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Abstract. 
This dissertation investigates the use of the algebraic style of 

abstract data type specifications for the definition of programming 
language semantics. The choice of appropriate mathematical models for 
such presentations is an important aspect of this work largely because the 
semantics of programming languages will generally be defined in terms of 
domains that are more complex than those required for dealing with more 
elementary data types. The relationship between initial algebra semantics 
and the proposed style of specification is explored. 

From this foundation, the intuitive notion of the congruence of a 
pair of semantic definitions can be inspected and formalised against an 
algebraic background. Using the formal definition so developed and the 
simple but powerful notion of initiality, proofs of congruence are possible 
for semantics that are not amenable to the more traditional techniques of 
structural and fixed-point induction. 

Finally the problem of establishing the correctness of a compiler is 
investigated, reworking the traditional "commuting square" approach for 
the style of semantic presentation developed in this thesis rather than the 
usual initial algebra style. This allows a clearer focus on some of the 
shortcomings of the commuting square notion. 
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Chapter 1 
Introduction. 

The connection between universal algebra and the specification of 
abstract data types has become well established since the seminal works of 
Guttag (1975) and Liskov & ZiIles (1975). While these early works were 
rather informal with respect to the precise mathematical object being 
associated with each particular specification (i.e. the "semantics" of the 
specification language), much has been published since then (Kutzer & 
Lichtenberger, 1983) especially relating to the modularisation of the 
specifications. Naturally these two facets are intermingled in the literature 
since each new modularisation tool that is put forward requires separate 
treatment of its formal semantics. Despite the volume of literature that has 
appeared in the past decade there is still no real consensus on the basic 
issue of what mathematical object (algebraic theory, signed theory 
constrained theory, equational variety of algebras, initial algebra etc) is the 
most appropriate choice as the semantics of an abstract data type 
specification. 

Burstall & Landin (1969) suggested a connection between universal 
algebra and programming, particularly programming language semantics 
and compiler correctness, but progress in this area of research seems to 
have been much slower. It would appear that the use of equations by 
Wand (1980b) to specify programming language semantics was the first 
indication that the work on abstract data type specifications could be 
extended to apply to programming language semantics. However, the 
better understanding of abstract data type specifications has not really 
impacted upon this area and informal and simplistic semantics dominate in 
the literature. 

In Chapter 3 we investigate the use of algebraic presentations for 
specifying programming language semantics. We adopt a particular 
mathematical object as being the most appropriate one to associate with 
such presentations, thus defining a semantics of the specification language. 
The adequacy of such a choice is then examined and its relationship to 
initial algebra semantics is detailed. 

One of the main purposes of precise and well-founded specifications 
is to make it possible to state and prove formal properties in a rigorous 
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way. Hence, in Chapter 4 we look at the rather intuitive notion of 
congruence between semantic models and produce a clear and thorough 
algebraic formulation of the concept. The machinery of the algebraic 
foundations makes possible some proofs of congruence that are not 
amenable to the traditional inductive approach used by workers in 
denotational semantics. 

The techniques and concepts developed in Chapter 4 are immediately 
applicable to the classic problem of establishing the correctness of a 
compiler or translation algorithm. Chapter 5 looks at a variation on 
Morris's approach that is suited to our style of semantic definition and 
allows us to focus more clearly on some of the shortcomings of the (perhaps 
too simplistic) commuting square notion. 

To put this dissertation in a proper perspective it is appropriate to 
briefly review the major related applications of algebra to the specification 
of program m ing language semantics that have appeared in the literature. 

• Goguen, Thatcher & Wagner (1977) exploit the implicitly algebraic 
structure of denotational semantics in their work on initial algebra 
semantics. By relating context-free grammars to signatures, abstract 
syntax becomes identified with an initial algebra. Hence every other 
algebra with the same signature - provides a "semantics" for that language 
via the unique homomorphism property. We will look more closely at this 
approach, particularly in §3.2. 

Wand (1980b) suggests the possibility of semantic definitions 
consisting of a signature and a set of equations. As such, his work is closely 
related to our approach and provided considerable inspiration, but was in 
terms of single-sorted algebras and did not address the problem of 
restricting the class of models of a presentation that provide an acceptable 
semantics for the particular language. Further, while Wand identifies 
denotational semantics with the initial model, his operational semantics is 
reducible to the same object, this view being supported by Goguen (1980) 
and Goguen & Parsaye-Ghomi (1981). Mosses (1983) raises the criticism 
that Wand's semantic functions are "... just operations of abstract data types 
that combine syntax and semantics", yet he is willing to be much more 
flexible in his consideration of denotational semantics valuations. Our work 
in Chapter 3 suggests this criticism is not justified. 



Goguen & Parsaye-Ghomi (1981) built on utYs work by treat' 
largeri 	using many-sorted g I gebras smd by modularising the 
definition, though we feel that the choice ,ct na ,sAiules does little to assist the 
reader. Further, since they insist on the initial 	their semantics is zog 
denotational, as the semantics of procedures ue given by closures 
consist partly of unevaluated prcs 01E1 teat. rill:, 

The work ,$); Gaudel (11978, 1980) and Pair (1982) is based ttic the 
style of abstract data type specifications. They appear to be specifying a 
particular algebra (based on their definition of states Or "informations") 
though their work is rather informal. They make considerable use of pre-
and post-conditions and "modifiable operators" (though they can be 
considered only as notational sugar and are easily factored out) that 
their definitions are clearly oriented toward compiler generation (Bjorner, 
1983). r e have misgivings about their use of notation without full 
Consideration of its semantics glcd hence their rather arbitrary technique of 
establislcirq the correctness of implementations. 

The "abstract semantics algebras" •t Mosses (1980, 1981, 1983) are 
based on a combined use of initial algebra sc wi antics and abstract data type 
specifications. Itrce of the major aims would see to be to further the 
author's intention to make se roi antic definitions more m* ,s1tilar, so that 
extensions to the language beIfilk, treated do not necessarily require a major 
rewrite of the existing clauses of the definition. Some confusion arises in 
(Moses, 1983) as to the meaning of a al abstract 	antic algebra 
specification, at first claiming: 

"There are, in general, many different possible models of the a ionas 
of an ASA st,st-cification, including I Ice (discrete) initial one, which is 
taken as its we 31 1 Iii A 

However, the following contradictory statement is made later: 
"One may obtain a standard denotational description from one based 
on ASAs by chooslici, a Tim ode! (using Scott dough's) for the axioms of 
the ASA specifications." 

Finally, he expresses some misgivings that his use of discrete algebras only 
provides for finite unfoldings (t.q. of loops), yet this is • lc I ,  the case if 
attention is restricted us the initial ebra since otherwise we I ay simply 
choose a model constructed from appropriate Scott domains. 
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Broy & Wirsing (1980), Broy, Dosch, Moller & Wirsing (1981) and 
Wir sing & Broy (1982) take a rather different approach using partial 
algebras, with "definedness" predicates explicitly included in the 
specifications and maintained under an appropriate version of the notion of 
"homomorphism". This rather neatly allows the class of si/ models of a 
presentation to be considered. Though we have not considered the problem 
in detail, there would appear to be some difficulties related to the 
sufficiency and generality of an explicit "definedness" specification. 

A somewhat different connection between algebra and programming 
language semantics is the notion of order-algebraic semantics (eg. Elgot , 
1973, Wagner, Thatcher & Wright, 1978, Guessarian, 1981, 1983) where 
the central concepts are that of a rational algebraic theory or an ordered 
algebra. Work in this area is not directly relevant to the application of 
algebra propounded in this thesis, since it is concerned less with specifying 
semantics than with modelling the fundamental machinery of computation. 
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Choptar 2 
Peamolatimmo. 

Our Skil this chapter is to briefly survey the mathematical 
concepts and resullts tlitat Irani the inektirotsad wirastili the watt of 
this dissertation is set. As such, we tread what we see as a middle ground 
between two extremes. 

Firstly, we do not consider it appropriate here to give a full 
intro sluctogy coverage of the field and hence the discussion arid examples 
giveri will iost likely be insufficient for the complete ebraic novice. The 
following references are &MOOS those that combine to provide an accessible 
and coo puter science oriented intr,iluction to those aspects of universal 
algebra a d (oategory theory that are relevant to this thesis: 
Thatcher & agner (1978), Burma p4•1: uen (1979, 1982), 
Bursta (1984), , (sluen & Dieseguer (1983), Cohn (1980. 

   

uen, 
uen & 

psoor,  

   

 

# 04,  

 

    

• On the other ha d we consider it equally inappropriate to slick this 
chapter oil iy at the I., athe niri atical sophisticate. Thus in 111E any instances 
where there is a choice among various expressions of the same result, or 
for ulationtis of the same concept, we invariably choose the rtcost prosaic or 
intuitively pleasing one, frequently at the cost eleg a ice. Also in this 
vein, we consider it inappropriate to include any proofs in a survey such as 
this. Perhaps the best justification for our approach is that we gASSU gitke our 
audience to be computer scientists, and as such we feel that the best 
approach is the one that gives the best intuitions a %d ins' hts without 
compromisi A, the accuracy or rigour the presentation. 

• The references given in vc is chapter are not in general to papers 
col,taining the orinal results but are chosen aczordi)Ik to the criteria that 
they be reaInably recent and fairly standard; that their notation is siuilar 
to ours, where possible; and that they are preferably oriented toward 
coriiputer science, at least with respect to the ex& filC pies used. 

Generally, surveys like this chapter are rather dry and lack 
relevance in isolation. e therefore feel that the uaterial herein should be 
given orc1y cursory attention to get the flavour of 4e mathe ii atics used 
the body of Vt ■ s dissertation. The reader way then refer back to this 
chapter when necessary. 

I ft 
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2_1 Signatures and Algebras 

One of the central concepts used in this work is that of a 
many-sorted algebra (Goguen, Thatcher & Wagner, 1978) which is 
basically a reformulation of the earlier notion of a heterogeneous 
algebra (Birkhoff 8c Lipson, 1970) which is in turn a generalization of an 
algebra (Birkhoff, 1935). 

Definition. A heterogeneous algebra A consists of 
1. a family (Si) indexed by some set I where each Si is a non-void 

set called a phylum of A; 
2. a set (fa) of finitary total functions indexed by some set Q 

where each fa  is a mapping 
fa  : Si(1 ,a) x Si(2 ,a) x x Si(n(a),a ) 

for some non-negative integer n(a), function i a  : k -) i(k,a) 
from (1,2,...,n(0) to I, and Om) E I. 

Simply put, a heterogeneous algebra is a family of non-void sets together 
with some functions among those sets. As such, it is a generalisation of the 
earlier notion of a (homogeneous) algebra that consists of a single set S 
together with some functions on that set. 

It is convenient when dealing with algebras together with algebraic 
theories (another central concept in this dissertation) to give a different 
formulation of the same structure in terms of a signature or operator 
domain so that we may precisely characterise "species" of algebras. Again, 
a many-sorted algebra is essentially a family of sets (called the 
carriers of the algebra) with a collection of operations (total functions) 
among them. The index set for the carriers is called the sort set. (Note 
that the "non-void" restriction has been dropped from the original 
definition.) Since we deal exclusively with many-sorted algebras (rather 
than single-sorted) in this thesis, we will feel free to shorten the name to 
algebra without confusion. 

Definition. Given a set S of sorts, an S-sorted signature or 
operator domain Q is a family Qw,s  of sets, for s E S and w E S* 
(where S* is the set of all finite strings from S, including the empty 
string A). F E Qw,s  is an operation symbol of rantw,s, of arity 
w and of sort s. 
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Definition. Given an S-sorted signature Q, an 12-edgebra A 
consists of a set As  for each s E S and a function f A: As ], x A52 x x 
Asn  4  As for each f E Qw,s  with w=s1s2...sn. For f E QA,s, fA E As. 

Thus, the purpose of signatures or operator domains is to identify the 
sbapeof many-sorted algebras, essentially providing names for the 
carriers and operators. Following this notion of shape a little further, 
signatures may be specified diagramatically with considerable clarity. 
Consider the following representation for a Stack-of-Integers signature. 

zero empty 

The names in the ovals are the sorts, while the names on the edges 
connecting them are the operator symbols with arities given by the source 
of those edges and sorts by the targets. While this representation may be 
quite clear, we will generally employ the more widely used and compact 
notation given below for the same signature. 

sort Int 
zero : -) Int 
succ : Int Int 

sort Stack 
empty : Stack 
push : Stack X mt. -' Stack 
pop : Stack -• Stack 
top : Stack -• Int 

Calling this signature E, a possible E-algebra Swould have carriers Si nt  = N 
and -%tack = W. The operators could be chosen as follows: 

zeros= 0 
succs= the successor function 

push 
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emptys= <>, the empty list 
push= concatenate 
pops= tail of the list 
tops- head of the list 

Another useful generalization from the single-sorted case is that of the 
concept of homomorphism of many-sorted algebras. 

Definition. If A and Bare both 0-algebras, an .0-homomorpbism 
b: A-,  Bis a family of functions (hs : As -) .89 I SE S) that satisfy 
1. if f E QA,s  then hs(f A) = fg 
2 - if f E  Qs1s2...sn,s and 	an> E A5 1 x A52 xx  

then hs(f Atal ,a2.---iannmfihsl (a 1 ), 42(a2),---An(anD 

Thus, in the same sense that group homomorphisms "preserve" the group 
operations, Q-homomorphisms "preserve" the operations named in Q. 

It is convenient for us to couch some of our discussion in terms of the 
language of category theory, though it is not in fact necessary to do so. We 
use only the most basic notions of category, initial and final object. 
However it would be quite a straightforward matter to adjust our 
standpoint such that categories were the most central mathematical 
structure, rather than algebras. Informally, a category consists of a 
collection of oblectstogether with some arrows ( morphisms) between 
them such that identities are included and end-to-end composition is 
associative. For more details in a computer science vein see Goguen, 
Thatcher, Wagner & Wright (1973, 1975,1976). Arbib & Manes (1975) 
provide a very accessible introduction, while MacLane (1972) is the 
standard reference. 

Result. A class of 0-algebra together with a//the 
Q-homomorphisms between the algebras form a category of D 
-algebras, say C. The objects of C are the algebras and the 
morphisalsof C are the 0-homomorphisms. 

This is the only type of category with which we will be having many direct 
dealings. 

Definition. An object is initialin a category if and only if there is a 
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unique morphism from that object to every object in the category. 
The duenotion is the following: 
An object is fins/(terminal) in a category if and only if there is a 
unique morphism to that object from every object in the category. 

Clearly, in terms of categories of Q-algebras this concept translates into: A 
is jai:is/in a category C of 0-algebras if and only if for every algebra Bin 
C there is a unique homomorphism b: A -■ 

This notion is widely used both in the study of abstract data types 
(Goguen et al, 1978 and Zilles, 1979 among many others) and in some work 
on the semantics of programming languages (Goguen, Thatcher, Wagner & 
Wright, 1977, Mosses, 1983), including the present endeavour. A very 
straightforward but important result is the following: 

Result. Given an algebra A, initial in a category C of 0-algebras, an 
algebra ii(in C) is initial in C if and only if Bis isomorphic to A. 

At this point it should be noted that it is the standard practice in algebra 
not to distinguish between isomorphic objects. Thus we will generally 
speak of Ihe initial algebra rather than the isomorphism class of initial 
algebras. 

Given a signature 0, we denote the category of /WO-algebras, Alga. 
Alga always has an initial algebra and the following construction provides 
us with a technique of directly deriving such an algebra from the signature 
Q. The algebra is called an .0-word algebra and is denoted Ta. 

Definition. (Goguen et al., 1978). Let 0 (ambiguously) denote the 
set of all operator symbols in the S-sorted signature 0, ie, 
U wEst ,ses(Qw,$). Let <Ta ,s>ses be the family of the smallest sets of 
strings contained in (Q u (j,  )))* satisfying the following two 
conditions (here (i , )) is a two element set disjoint from Q, though 
except for this definition we shall omit the underlines): 
1. c 
2. If E 	w-s ...sn  and ti E Tasi -1..n, then 

aft 1...tni E Ta,s.  
Such strings are usually called .0-words. The family (Ta,s> can be 
made into an 0 algebra by defining the operations: 
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1. FOr 0 E 	 = E To,s; 
2. For o E Qw,s , w=s,...sn  and ti E TQsi.  i=1...n, 

= 	E TQA 
Such a Ti2 is initial in Algc2, the category of all 0-algebras. 

We occasionally make use of the notion of the fins/algebra in Algo 
and hence a method for constructing such an algebra is desirable. It is 
much simpler than the initial algebra construction and requires us simply 
to choose the carrier of each sort to be a singleton set and define the 
operators accordingly. We sometimes refer to this algebra as the 
degenerate Q-algebra. 

It is important to see (we make frequent use of the fact) that 
although the structure of an Q-algebra A is specified by a certain subset of 
the set of all finitary operations among the carriers of A, the important role 
is played not merely by the set of operations defined by f2, but by the set 
of all operations obtainable from them by composition. The single-sorted 
case is treated in Cohn (1981) and Manes (1976) in terms of the notion of a 
clone (closed set of operations) on a set of M which briefly is a set of 
operations on M that is closed under composition and contains the 
projection functions (selecting the ith element of a tuple). The clone of 
Saki, of a single-sorted signature I on M is the clone generated by the 
operators defined by E. 

The (formal) extension of the notion to the many-sorted case is 
straightforward but a little tedious. We prefer to approach it from the 
much more intuitively (and notationally) pleasing idea of derived 
operators It is straightforward to extend the notion of Q-words to 
include "variables as follows. First fix an S-indexed family <X s>sEs of sets 
of variables. It serves no purpose here to consider the effect of limiting the 
number of variables, so we assume all the X s  are infinite. Clearly, we can 
construct a new signature 0(X) which is derived from Q by adding each x E 

Xs  to f21 for all s E S, thus considering (temporarily) each variable to be a 
constant of the appropriate source. Now, by simply generating Tow we 
have an algebra whose carriers consist of a-words with variables. T(X) 
when considered as an Q-algebra rather than an Q(X)-algebra is usually 
denoted T(X) and called the free D-algebra generated byX. Now any 
word of sort s containing variables x i,...,xn  respectively of sorts s1,...,s n, say 
t(x1...xn) defines a derived operator t of arity s1 ...s  and sort s for any 
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0-algebra. The set of all such derived operators of 0 is denoted 5 and 
coincides with the clone of action of 0 for any particular 0-algebra. 
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2.2 Equational Presentations 

In this section we introduce the notion of an equational 
presentation and treat it only in terms of many-sorted algebras, leaving 
the concept of an algebraic theoryto 62.3. 

In 62.1 we introduced signatures as a means by which "species" of 
algebras may be characterised by their "shape". To allow further 
restriction we introduce the notion of a set of axioms in the form of 
first-order, universally-quantified equations, that a particular algebra may 
or may not satisfy. In this way we may characterise species of algebras 
with a certain signature which also satisfy a certain set of equations. 
We begin by developing the sigebraicconcepts of equation and satisfy 

Definition. Given an S-sorted 0-algebra A and an S-indexed family 
of sets of variables X-<X>. Any function a: X A (actually a family 
of functions <as: Xs  -0 Aeses) is called an assignment of values of 
sort s in A to variables of sort s in X. 

Using this idea we can formalise the notion of evaluating an expression (ie a 
term of To(X)) given values for the variables. 

Result. Let A be an Q-algebra and a: X A an assignment. Then 
there is a unique Q-homomorphism ix': TQ(X) A that extends a in 
the sense that ii 5(x)=u5(x) for all s E S and x E Xs. 

Despite the notation and abstract formulation, what we are doing here is 
quite familiar. Any t E TQ(X) is an expression involving some variables 
from X and a is an assignment of values from A to those variables. Further, 
since A is an 0-algebra the symbols from 0 appearing in t already have 
some corresponding meaning in A. Hence ix(t) evaluates t to get a unique 
value in A, so a can be seen as the process of evaluation of expressions 
with the values of the variables given by a. 

Definition. An .0-equation is a triple <X,t1,t2> where X is an 
S-indexed set (of variables) and t1 ,t2 E To(X)9  for some s. A more 
suggestive notation is VX,t1=t2 though since a suitable X can be 
deduced from ti and t2, we generally write t1 =t2. 
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Definition. An 0-algebra A satisfiesan 0-equation <X,t1,t2> if and 
only if m(ti) = a(t2) in A for a//assignments a: X -) A. A satisfies a 
set E of 0-equations iff A satisfies each e E E. 

Definition. An equational presentation (or just presentation) 
P is pair. <0,E> where 0 is a signature and E is a set of 0-equations. 
An 0-algebra that satisfies E is called a P-algebra 

If we continue our Stack-of-Integers example begun in §2.1, we may give 
an equational presentation Stk consisting of the signature Z together with 
the following set of I-equations. 

1. pop(push(s,n)) = $ 
2. pop(empty) = empty 
3. top(push(s,n)) = n 

The S.-algebra S defined in §2.1 is a Stk-algebra. We will leave the proof 
that this is the case until later when we have developed a proof-theoretic 
notion of an equation being satisfied to complement the model-theoretic 
one above. 

Generally in universal algebra, given a presentation P=d2,E>, the class 
of all P-algebras is termed the E-variety of /2-algebras and studied as a 
class of objects. We, however, prefer to add a little more structure by 
constructing the category of P-algebras, denoted Algp, from the class of all 
P-algebras together with all 0-homomorphisms between them. As for 
Algo 	), Algp always has an initial algebra and we now proceed with a 
method for the construction of Tp, the E-quotient of To, that is always 
initial in Algp. Firstly we need a little more machinery. 

Definition. An .0-congruence= on an 0-algebra A is a family 
<E s>ses of equivalence relationsF...s  on As  for each s E S, such that if 

E Qs 1 ...sn,s , ai,a'i E Asi and aiEsiaii for i=1..n, then 
oial—an )  

We now need to discuss the notion of taking the quotient of an algebra for a 
congruence defined on that algebra. If A is an (2-algebra and E---  is an 
0-congruence on A, we define a new (2-algebra called the Quotient of A 
by denoted A/F- as follows. For each s E S let (A/F4 5  be As/Es, the set of 
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E- s-equivalence classes of As . If we denote the equivalence class of a by [a], 
we may now make the S-indexed family A/E into an 0-algebra by defining 
the operations as follows: 

1. If a E QA ,s  then a 	= [a A] 
2. If a E 0s i ...snis  and tail E (A/E)si for i=1..n, then 

illaga 1,...,1anD=Ia Ata 1 

The final step in the development involves determining a congruence from 
the equations of a presentation. A set of equations E determines a relation 
E(A) on any Q-algebra A consisting of the family of sets of all pairs 
<a5(t1),a5(t2)> where <X,t1,t2> E Es  and a is an assignment X A. There is a 
least Q-congruence on A containing E(A), referred to as the 12 congruence 
generated by E(A) on A. At last we can define Tp and give the initiality 
result. 

Result. Let P = <0,E) be a presentation and let EE be the 
0-congruence on TQ generated by E(T0). Then TQ/EE, the quotient 
of TO by EE, which we shall denote Tp, is the initial algebra of Algp. 

Continuing our Stack-of-Integers example, the carrier of sort Stack in Tstk 
has elements 

[empty], 
Ipush(empty,n)1, V 11 E Tstunt  
Ipush(push(empty,n),m)1, Vm,n E Tstunt 
and so on. 

The functions are defined along the lines of 
pushTstkas],[nl) - [push(s,n)l. 

It should be noted in passing that since Stk includes no equation involving 
"top(empty)", the carrier of sort Int in Tp includes the elements 

Itop(empty)], 
(succ(top(empty))l, 
Isucc(succ(top(empty)))1 

and so on, implying that such elements can validly be "pushed" onto a 
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stack. This may or may not be seen as undesirable depending on the 
application. If such a situation is considered unacceptable, error terms may 
be introduced, but this too is fraught with danger and may require the 
equations be "error-conditioned" (Goguen, 1978). 

Finally we note that we can construct an algebra by distinguishing a 
single element from each of the equivalence classes of the carriers of Tp. 
Clearly such an algebra is isomorphic to Tp and is hence initial in Algp. 
Such an algebra is generally called a Ca110.0kai term algebra 

We complete this section with a brief discussion of equational 
deduction based largely on the work of Goguen & Meseguer (1982). As 
mentioned above in the context of showing Sto be a Stk-algebra, a 
proof-theoretic notion that coincides with the model-theoretic definition of 
an equation being satisfied is desirable, especially given that our central 
concern is the development of proof techniques. Thus we need to define an 
equational logic (deduction system) that is soundin the sense that new 
equations that are deduced are always satisfied by any algebra satisfying 
the given equations, and that it is complete in the sense that every 
equation satisfied by all the algebras satisfying the given equations can be 
deduced using the rules of the system. 

Unfortunately the usual rules of equational deduction, reflexivity, 
symmetry, transitivity and substitutivity, while they may be sound and 
complete for the single-sorted case, are not sound when generalised to the 
many-sorted case. We demonstrate this with an example taken from 
Goguen & Meseguer (1981) based on the following presentation, B. 

Signature  
sort Boo! 

tt : Boo! 
ff Boo! 

: Bool Bool 
: Bool x Boo!-' Boo! 

v : Boo! x Boo! Boo! 
sort A 

foo : A -) Bool 
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Equations  
(we use the more suggestive infix form for the operator 
symbols) 
1. (tt) - ff 
2. , (ff) = tt 
3. bv , b=tt 
4. b 	b = ff 
5. bvb-b 
6. bAb=b 
7. foo(a) = foo(a) 

Now using the usual system of equational deduction we may show: 

tt = foo(a) v foo(a) 	(3) 
= foo(a) v foo(a) 	(7) 

foo(a) 	 (5) 
= foo(a) foo(a) 	(6) 
= foo(a) 	foo(a) 	(7) 
= ff 	 (4) 

If such rules of deduction were sound then we would expect tt = ff to hold 
in everyB-algebra, but this is not the case. There is a B-algebra gar 
where Bsibooi = (true,false), Barik = 0, foo is the empty function and all 
the Bool functions are the usual ones. Clearly true • false in Bar and thus 
the rules are not sound. 

Goguen & Meseguer (1981) and (1983) provide quantified versions 
of reflexivity, symmetry, transitivity and substitutivity that are sound for 
many-sorted logic. This is why the set of variables used is explicitly 
included in the structure of equations. Two more rules are required to 
make the deduction system complete: abstraction and concretion that 
basically provide a means for adding and removing variables from that 
part of the equation. 

We do not give the details of this deduction system here since 
(fortuitously) for the examples we consider in this thesis, as well as many 
other applications, the ordinary rules are indeed sound and complete. to 
make this precise we need the following notions (Huet & Oppen, 1980). 
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Definition. If Q is an S-sorted signature, we say that s E S is strict 
in Q if and only if there is either 
I. some E 020, or 
2. some a E Os i ...sro  where si is strict in Q, i-1..n. 
The signature Q is sensible if and only if for every a E  Q51...sn,s ,  
if s is strict then so are all the s, i=1..n. 

We prefer this definition to the concept of 11011-voidsorts in Goguen & 
Meseguer (1983) since it is slightly more general. The final result follows: 

Result. The ordinary rules of equational deduction are sound and 
complete for a signature if and only if Q is sensible. 

For the presentation B above, the signature is not sensible since Bool is 
strict (tt : -) Boo!) but A is not, and foo : A -) Boo!. We make a blanket 
appeal to this result, claiming all the signatures of later chapters to be 
sensible. 

Further contributions to many-sorted equational logic have recently 
been put forward by Padawitz & Wirsing (1984) and MacQueen & Sanella 
(1984). 
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2_3 Algebraic Theories 

It is fairly natural for computer scientists to consider equational 
presentations as a specification language as witnessed by the bulk of 
the work using algebra for the definition of data abstractions. In the 
previous section we used presentations to specify a class of algebras; in this 
section we wish to explore an alternative "semantics" for such a "language". 

The object we now claim to be specified by a presentation is a 
(many-sorted) algebraic theory which can be seen as one possible 
formalisation of the loose, intuitive mathematical notion of a "theory". 
There are many alternative definitions of algebraic theories, depending on 
the background against which they are being developed. The most 
common, including the original definition (Lawvere, 1963) is in terms of a 
particular category whose objects are the natural numbers, though even 
then there is considerable variation. Goguen et al. (1975) use theory 
congruences, Bigot (1973) takes a more axiomatic approach, while Kamin 
(1979) avoids using category theory explicitly yet still constructs the same 
object. Other formulations are based on triples (or monads) as in Manes 
(1976) and Cohn (1981), or functors (Goguen et al., 1975), or even an 
algebra (Goguen, 1975), (Fasel, 1980). A more accessible definition, though 
perhaps less amenable to mathematical discourse, is that of the related 
notion of 12-theoryby Burstall & Goguen (1979) based on signed 
theories(Goguen & Burstall, 1984a, 1984b). Our definition of a 
many-sorted algebraic theory is similar in style to that of an 0-theory. 
Unfortunately we pay a price for using such an intuitively appealing 
definition by making some of the related definitions slightly more difficult 
and hence a little indirect at times. A more rigorous development of (most 
of) the same concepts introduced here is given by Goguen et al. (1975) in 
terms of a more traditional definition of algebraic theory. 

We will give a model-theoretic definition of an algebraic theory in 
terms of the following notions. 

Definition_ Given a set E of 0-equations, let E* denote the set of all 
0-algebras which satisfy every equation in E. 

Given a set M of 0-algebras, let M' denote the set of 
0-equations satisfied by every algebra in M. 

Given an 0-algebra A, let denote A considered as an 
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r2-a1gebra. Xis the largest li-subalgebra of A. 
Given a set M of 0-a1gebras, let M +  denote the set of 

(7-a1gebras such that 1E M+  iff A E M. 
Given a set E of 0-equations, the clone-closure of E is 

the set E***, denoted E. 

We may now give the central definitions of this section. 

Definition. An algebraic theory is a presentation <0,E> such that 
Q is closed and E is clone-closed. 
Thus Q = 5 and E = E. 

Definition. The algebraic theory presented by P = <Q,E> is <Q,E> 
and is- denoted Thp. 

Given this notion, we call the algebras of Algp the models of the theory 
presented by P. Hence we may view algebraic theories as a "higher level" 
of semantics for presentations, fitting in between the presentation and the 
class of algebras specified. 

Our definition differs from the notion of an 0-theory which retains 
the original signature and only takes the closure of the equations. It is 
more in the spirit of the original work (Lawvere, 1963) to abstract away 
from the signature as well as the equations. The notion of an a-theory is 
slightly simpler and adequate for Burstall SC Goguen's (1979) semantics of 
the specification language, Clear. The main advantage of using our more 
abstract notion is that we can avoid treating theory morphisms and 
derivors separately. In contrast, it was clearly more convenient for Burstall 
& Goguen to maintain such a separation since Clear has a specific derive 
operator. Much of the remaining material in this section consists of 
reworking the material of part 2 of Burstall 8c Goguen (1979) in terms of 
our notion of algebraic theory. 

Definition. A signature morphism from an S-sorted signature Q 
to an S'-sorted signature 0' is a pair <fs> consisting of a map f: S S' 
and a family of maps gw,s: Qw,s  -• fris(v )ns) , where r is the 
pointwise extension of f to strings. 

Thus a signature morphism is a map that takes sorts to sorts and operators 
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to operators, preserv 

 

their arities and sorts. Mil 

 

Bhififilfigfien. Given two theories, T taxi T., say <Q,E> and d'2E'>. A 
gheory 'orp.bJs1 from T to T', is a s nature amorphisb a: 0 4 Q' 
such that o(e) E E for each e E E. 

e Rem the notion of o being extended to equations as intuitively 
understood here, and refer the reader to Burstall & , •quen(1.979), part 2.3 
for r'orous definition. A theory morphis rim is therefore a signature 

orphism that preserves I ie aniortics. It is worth noting here that the 
above two derifiliti011e We identical to those for 0-theories. It should be 
borne in ra ind that our theories iy differ from 0-theories byinsAst r, 

that the s nature be closed, so we should expect some overlap. 

1220TO Mir®C®fa011110)51 ilarElCZED. Given two presentations <,E> and 
(0',18'> of theories T am.d T.  res.- ctively. If a: Q 	a is s' nature 
1 1 1 1 orphisrlic then a can be uniquely extended to 	--> 5'. (This 
closely follows the idea of a be: extended • equations; see Burstall 

, feuaen, 1979, part 2.3). Now : T 	a is theory amorphism if and 
4) IA 1 y if o(e) E E' for each. e E 

Thus, if we can define 0 : Q 4 such that the equations of Ere still 
satisfied, we may deduce Fi : 5 -4  F2' and be sure that sill the equations of E 
are satisfied. This is of considerable importance for our work since it 
provi 	a des pr P4I tev,ilque for estiblis1E whether a given signature ) 

orphisam, is a theory morphia rii in terms at the presentations alone. 

Finally we may tisk how a theory amorphism can be reflected in the 
[Ii I1 ■ els of the source and target theories. In short, it provides a means for 
deriv ,  i A a ip mliel of the source theory from any model the target theory; 
in the opposite direction to the theory amorphism, so to speak. Though we 
are more interested in theory morphisms in this dissertation the concept is 

so applicable siAnature itorphis ills, es reflected by the following 
definition. 

1Dentanakia. Given an S-sorted s nature 0id ii S'-sorted 
s nature 0' telether with a signature icorphism a : -4  0'. If A is 

y 0*- ebra then there is an Q- a ebra, denoted U6( A) where the 
carriers and operators correspond as follows: 
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1. (U0(A))5  = Aos) for all s S 
2. 'rut( A) = a(T A) for all operator symbols T E Q. 

The notion of a U0-derivor can be extended to theory morphisms in a 
straightforward manner. 

Definition. Given two theories T and T presented by <Q,E> and 
<C2',E> respectively, together with a signature morphism a: Q E' 
that is (or can be extended to) a theory morphism T T. If A is any 
<V,E'>-algebra (model of T') then U0(A) is a model of T, constructed 
as above. 

A special case we shall occasionally find useful is where a is an inclusion 
morphism; that is the sorts of Q are a subset of the sorts of CT, similarly for 
the operators, and a(s) = s. 

Definition. Given an S-sorted signature Q and an S'-sorted 
signature CT, where S S' and Owes  aw,s  for all w S*, s S. If a 
is a signature morphism Q -) C2' such that a(s) = $ for all s E S and 
a(r) t• for all r E Q (ambiguously denoting all the operator symbols 
in Q), then for any CT-algebra A, we call the Q-algebra U0(A) the 
12-reductof A. 

In essence, taking the Q-reduct of an CT-algebra is achieved by "forgetting" 
the sorts and operators of a that are not also in Q. 

It is possible to avoid all this extra machinery (for our applications at 
least) by dealing with derivors on individual algebras rather than 
morphisms between theories. We prefer not to do this for a number of 
reasons. First, it is usually advantageous to work at the highest available 
level of abstraction and generality. Second, by finding a theory morphism 
T T' we have a means of deriving a T-algebra from anyT'-algebra, 
whereas we would need to repeat the proof for each algebra were we to 
use the derivor machinery. Finally, in later chapters a pleasing and 
convenient split of semantic congruences and compiler definitions into 
two-stage connections is reflected by the separation of models from their 
theories. 

Note that we will occasionally allow an abuse of notation (when no 
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confusion can arise) that involves denoting theories by their presentations. 
Thus, given a presentation P. we may speak of "the models of P" rather 
than "the models of Thp" and so on. 
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Chapter3 
Specification of Programming Language Semantics 

In this chapter we describe the technique we have adopted for 
specifying the semantics of programming languages. It has been influenced 
by the Oxford style of denotational semantics in that we provide a set of 
semantic domains and semantic functions from an abstract syntax for the 
language. It has also been influenced by the early work on algebraic 
specification of abstract data types (eg Liskov & Zilles, 1975). As such it is 
relatively unsophisticated in that our specifications consist only of a 
signature and a set of first-order equations, thus relinquishing the 
expressive power of parameterized modules, conditional axioms and 
structured "theory - building" operations. 

The advantage of such a plain specification language is that it retains 
very simple semantics and in fact it directly reflects those semantics. 
Further, it seems unwise at this stage to settle on a choice between Clear, 
OBJ etc. especially when none is completely suited (semantically) to the 
present endeavour. 

The disadvantage of such unstructured specifications as ours is quite 
obvious, however, As P. Lucas points out in the first session discussion in 
(Bjorner, 1983), 

"... it was clear almost from the beginning that having a big language 
definition on the one hand and a big implementation on the other 
hand and then asking whether the implementation obeys the rules of 
the definition is not really a viable question to ask.... So it was clear 
that it was necessary to decompose this gigantic task into smaller 
sub-tasks that are manageable. In other words, we are looking for 
modularity. Modularity of the definition as well as the proofs of 
correctness." 

Thus for a full-scale venture such as a large language or frequent use, our 
specification language absolutely requires to be structured. However, since 
in this dissertation we are investigating proof techniques that are based on 
the semantics of our specification language we intend to persevcrc with the 
simple notation we have adopted. Development of a more modular style 
must take a high priority in any further development of this work. 
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3_1 Semantic Presentations and Models 

We now proceed to discuss the semantics of our specification 
language, largely in terms of an example using the lambda calculus. - 
Though our presentations look like a simplified version of OBJ (Goguen & 
Tardo, 1979) they have different semantics. While an OBJ object represents 
a particular algebra (the initial one), our presentations represent algebraic 
theories. However, we are not directly interested in the theories 
themselves, but rather their classes of models (algebras). It is each of these 
models that give a concrete semantics whereas the presentation can be 
considered as a kind of "semantic schema". It may seem at this point that 
we are interested in an equational variety of algebras rather than an 
algebraic theory. While this is partly true, we will later find it convenient 
to define relationships between the entire classes of models of two 
presentations, rather than individual algebras and more elegant machinery 
exists for doing this in terms of theories rather than varieties. 

3.1.1 A Presentation for the Lambda Calculus 

Rather than dealing with the pure lambda calculus (Church, 1941), 
we extend it by including constant valued atoms. While this is strictly 
unnecessary, it does make the operational semantics considered in 64.2 
somewhat more tangible. Thus, a lambda expression is either a constant or 
an identifier; or an abstraction in which case it consists of a bound variable 
which is an identifier and a body which is a lambda expression; or an 
application being an operator-operand pair of lambda expressions. We 
stress again that the presentation that follows represents an algebraic 
theory and that the semantics of the lambda calculus are given by the 
models of that theory rather than by the theory itself. 

Signature (Z)  
sort Lambda. 

constant : B -) Lambda 
var : Ide 4  Lambda 
abstraction : Ide x Lambda 4 Lambda 
application : Lambda x Lambda "4  Lambda 

sort env. 
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arid : 4  env 
bind : env x Ide x W 4  env 
find : env x Ide W 

sort W. 
injB : B W 
injA : Abstr W 
err : -) W 
appl:W x W-) W 

sort Abstr. 
A : Lambda x Ide x env 4  Abstr 

M : Lambda x env -) W 

Equations (E)  
1. find(arid,x) = err 
2. find(bind(e,x,w),y) = if x=y then w else find(e,y) 
3. M(constant(b),e) - injB(b) 
4. M(var(1),e) = find(ex) 
5. M(abstraction(x,q),e) = injA(A(ri,x,e)) 
6. M(application(a,13),e) = appla4(cce), MWeD 
7. appl(injB(b),w) - err 
8. appl(injA(A(q,x,e)),w) = M(q,bind(e,x,w)) 
9. appl(err,w) = err 

LC - lambda calculus presentation  

Note that although the abstract syntax was included as part of the 
signature as sort Lambda, it is generally more convenient to employ the 
usual strings of the language. Note also that the presentation LC is 
somewhat incomplete with sorts B and Ide being left unspecified. We will 
frequently make use of such deliberately loose notation especially with • 

respect to Ide since we are generally not interested in the set of identifiers 
save for the fact that there are enough of them and that we can test for 
their equality. The following presentation is sufficient provided we wish to 
have an unlimited pool of identifiers. 

sort Ide. 
first : -) Ide 
next : Ide Ide 
equal : Ide x Ide 4  Bool 

equal (first, first) = tt 
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equal (first, neEt(y)) = if 
equal(neEt(E),first) = if 
equa(neEt(E),neEt(y)) = equal(E,y). 

e will also in general assume a sort 1; , •.•1 with two constants tt and If to be 
available and will only eEplicitly include it in presentations when further 
operators are required. Similarly we will feel free to use the apparently 
generic (miEfiE) operatorif_ then_ else _ in the equations of 
presentations in the kglowledge that such an operator is easily defined for 
any given target sort X as follows: 

if_ lien _ elsex_:1; ,• 4xXxX-0 X 
if tt iii Sfl B1 Oise x E2 = 
if If the 31 CiSO x E2 E2 

Again, in some circumstances such as when the presentation of s4 

consists of mace than just two constant o;i) ,  rai , •TS (eg 04.6), such 
specifications if lien else operators ci  ay be inappropriate, so in those 
cases we will eEplicitly include the in the presentation. However, for 

ost mi the emickples treated in this thesis the style of definition given 
above is sufficient rod we therefore assume an if lien else operator of 
every sort to be available without actually writing down the details. 

In a slightly different vein sort i, representing basic values, is left 
unspecified since a y particular choice of hock!, for B will not impircke on 
our discussion of LC and its tam 'leis, so it could be seen as a primitive for 
of parameterization. Also it may seem a little untosu41 to have a semantic 
do am n (sort B) for i part of the syntax as described by 
"constant : B -> La fRbda" rather than the b,ore usual couplete separation of 
syntactic and Be ginfltiC domains as in standard denotational semantics. 
There, typically, numerals and numbers are distinguished and an oe V1101113 

se fU antic function say : 	RI, is said to eEist but is left tons cified. 
(See Stoy, 1977 for eEample). In our gigebrlic frarcilework we tnay easily 
Mill syntactic and semantic sorts and we often choose • do so in an effort 
to avoid such vagueness. 

As an aid to the reader an intuitive interpretation of the lambda 
calculus presentation follows. As already discussed, sort B represents a 
do u tin of basic values, Ide a domain of identifiers and La rekbda the parse 
trees of the 1 a 31 ID ie of k-enpressions ,3f-Al sort 'T represents the 
underlyi doiric tin of "values" of A-eEpressions 51d is basically intended to 
look like the su ri% of B and Abstr. Hence the two operators injB and injA 
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depict the usual injemion functions. Sort V is also provided with an 
operator ADM for "applyi 'A "  eleme0,13 • 'T to each other, and a 
distinguished error term in case such applications go wro. Equations 7, 8 
and 9 aziomatise the behaviour of appl. Sort env represents environments 
where information regardliC the binding of values of sort W to identifiers 
is kept tAnd the intention of the operators bind and find A d the =stilt 
arid is clear from equations 1 and 2. The operator A and the Ft Abstr 
531 ay at first appear somewhat mysterious and incovinpletely specified. 
However, if we keep in wind our intention that the presentation is a 
"semantic sche wa", and that the ,4 :ebras provide the actual semantics, it is 
clear that possible models for Abstr may include [V 4 VI where V is a 
suitable model of w, or "closures (Landin, 1964) consisting of the 
infor m ation required to represent an abstraction (ie its bo.i , its bound 
variable and the current environ went) so that its application to Aother 
expression may be simulated. These two cases will be dealt with in detail 
in 03.1.2 Elnd 04.2 respectively. Finally, the operator k4 represe ts the 
semantic function as defined by equations 3 to 6 and is isolated from the 
other oorrators in the signature to emphasise its distinguished role. 

It seems most natural to view the presentation LC as describing an 
operatiolcal se antics. In other words it is seen as specifying a set of 
rewrite rules on terms rather than a set of operator sy bob and axiom's. It 
is interest to note that this intuitive interpretation of a presentation like 
LC is (always) the initial1 model of the theory presented. As 0,,tinted out 
earlier in this chapter (indeed, we have 0 ,•ssibly laboured the 0 lint), we 
intend that no particular mc•Jel is "the" se mi antics. Rather, we claim that 

1 there ay be m y Nii • •Iels of LC other than the initial one that provide 
satisfactory snag %tics of the lambda calculus. Unfortunately not every 

odel gives an acceptable se auntics, an obvious case being the algebra in 
which the carrier IV is is'rcAleton set. Further since ".`, is described • 01 iy 
by recursive equations any fixed-point satisfies the equations and is thus a 
legitimate choice for modelling M. The issue of character, : :rc,1; Lllose 
algebras that are satisfactory se unlink taken models is t 	up in 03.3. 

.2 A DEed®Il 12,1@ Larbsclo Cokollmo Ik@asaantrion 

1: 1 31 

Our discussion in this section centres around the (by now standard) 
denotational se iw 3 tics of the la ri bda calculus given below. A very si 511I HIT 
definition is given in Stoy (1977) along with detailed discussion of the 

:4 
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domains involved. 

Domains  
V B + FUN 
FUN = V V 
ENV = Ide -0 V 

Semantic Function  
Val : Lambda x ENV -0 V 

(V I ) 	c:constantip = c in V 
(V2) = p(x) 
(V3) Valthx.qip - Aa.Valarillp Li/al in V 
(V4) Valfix(p)Bp = Vaiflixip IFUN(Valffplp ) 

where 

and 

i  v 	if v € FUN 
AFUN- 

i 	otherwise 

/ p(z) 	ifzox 
phaal - Az. 

La 	if z = x 

denotational semantics of lambda calculus  

To proceed, we make the observation that the denotational semantics 
is a many-sorted algebra. It fits the definition very neatly since in the 
final analysis it consists of nothing more than a family of sets (the domains) 
and some functions among them. Note however, that in viewing such 
semantics as an algebra requires that we be more explicit about identifying 
exactly which functions are being used, a detail that is not an issue for the 
usual view of denotational definitions. Put another way, having decided to 
view the denotational semantics as an algebra, we must then decide on a 
signature for that algebra. It will be seen below that we have some degree 
of choice in this matter. 

Our overall aim in this section is to show that the algebra (call it Den) 
associated with the denotational definition above is a model of LC. To do 
this we need only to show that Den has the signature E as given in LC (or at 
least arrange for it be be so) and further to show that Den satisfies the 
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equations E given in LC. 

It is easy to demonstrate that Den has the same signature as LC by 
firstly defining a correspondence between the sorts of LC and the domains 
(carriers) of Den and then listing the operator symbols of E each paired 
with a function from Den of corresponding arity and sort. Note that we are 
not concerned that the denotational definition may involve other functions 
which have no associated operator symbol in E 
Instantiate the sorts as follows: 

sort env : 	ENV 
sort W : 	V 
sort Abstr : FUN 

Then the operator symbols and functions correspond as follows: 

Den 
injB:B W 	 _ JD V 
injA: Abstr -• W 	 _ Jo V 
err: -• W 	 .t. 
arid:-. env 
bind: env x Ide x W 4  env 
find: env x Ide W 	 _(_) 
A: Lambda x Ide x env 4  Abstr 	 Aa.Vall_l_[_./al 
app!: W x W -) W 	 (_ I FUN)(_) 
M: Lambda x env-' W 	 Val 

Some of the functions listed under Den may look a little strange at 
first glance. The underline notation has been used where the operation has 
been written in mixfix notation (Mosses, 1980). Thus _1_/_1: env x Ide 
x V -0 env, eg p[/al. Further, some of the functions have been derived 
from simpler ones by means of composition. For example, (_ I FUN)(_) uses 
projection and function application. It is in this sense that we have 
"arranged" for Den to have the signature E rather than some other 
signature containing say, an operator for each of the primitive functions 
involved in the denotational semantics. In fact, it is not at all clear that any 
agreement could be reached as to the identification of these primitive 
functions. The central point is that the abstract syntax, semantic domains 
and valuations are the nucleus of any denotational definition. We are 
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therefore at liberty to install them in any algebra that suits our purpose 
and the other sorts and operator symbols (carriers and operators) present 
in that algebra may be chosen arbitrarily without affecting the intended 
semantics. 

To establish that Den satisfies the equations of LC, the equations may 
be translated into expressions of Den using the signature correspondence 
described above and then verified using the definitions of the operations of 
Den. In fact, having once recognised the signature correspondence, this 
part of the proof goes through very easily. Note that since E is a sensible 
signature (for any reasonable B) as discussed in chapter 2, we have no 
problems applying the ordinary rules of equational deduction. 

1. AzJ.(i)= i.  
(find(arid,x) = err) 
Immediately true. 

2. ply/vI(x) = if x=y then v else p(x) 
(find(bind(e,y,w),x) = ifr=y lhenw else find (e,x)) 
Can easily be shown from the definition of ply/v1 by considering the 
cases x=y and xoy. 

3. Valli b:constantip = bin  V 
(M(constant(b),e) = injB(b)) 
Immediate by VI of Den. 

4. Vallx:Idelp = p(x) 
(M(var(x),e) = find(e,x)) 
Immediate by V2. 

5. ValllAx.q1p = Aa.ValIIrJIp Ix/al in V 
(M(abstraction(x,q),e) injA(A(ri,x,e))) 
Immediate by V3. 

6. Vane( ()ip = (VaNcdp 1 FUN)( 	) 
(M(application(a,B),e) = appl(M(a,e), M(B,e))) 
Immediate by V4. 

7. ((b in V) 1 FUN)(v) = 
(appl(injB(b),w) = err) 
Follows from definition of I FUN. 
((Aa.Vallinip Wal in V) 1 FUN)(v) 	(x/v1 
(appl(injA(A(n,x,e)),w) = M(n, bind(e,x,w))) 
Follows from definition of 1 FUN and lambda-substitution. 
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9. 	(.1(FUN)(v) = 
(appl(err,w) = err) 
Follows from definition of I FUN and i. 

Through this proof we have demonstrated that there are interesting 
models of algebraic theories other than the initial one, thus justifying our 
decision to view presentations as denoting theories rather than a single 
particular algebra. 

Before leaving this example for the time being (we return to it in 
§4.2), some further points of clarification need to be discussed. First, it 
may not have escaped the readers attention that the functionality of Val in 
the denotational semantics was written Val: Lambda x ENV -• V rather than 
the more usual Val: Lambda -0 ENV V. Had we wished our presentation to 
reflect this curried version, a new sort representing Ienv -) WI would have 
to be added to the signature and appropriate changes made to the 
equations as follows. 

sort envtoW. 
apply: envtoW x env -) W 
M': Lambda -0 envtoW 

3. apply (M(constant(b)),e) = injE(b) 
4. apply(M(var(x)),e) = find(e,x) 
5. apply(M(abstraction(x,n,)),e) - injA(A(q,x,e)) 
6. apply(Mlapplication(u,(3)),e) = 

appl(apply(Mlute),apply(MIBte)) 

Of course the fact that we are persisting with parenthesised prefix function 
notation makes the above changes look worse than they otherwise could, 
but there is no denying that treating the semantic functions of more 
complex cases in this way will quickly become unwieldy. For example, to 
reflect the curried nature of the single valuation (taken from Tennent, 
1977) 51: Exp -4 US -* Md -) U -0K -0 C in a theory presentation would require 
4 more sorts and 4 more apply-like operators than allowing X': Exp x Us x 
Md x U xIC -)C. When one considers the number of valuations required for 
a realistic language such additions to the signature would quickly become 
tedious and would certainly reduce the readability of the presentation. 

It should not be surprising however, that a denotational semantics 
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with the curried version of Val is also a 0,44e1 of LC. After all, La bda 
V V and Lambda x 1:1s ,  V 4 V are isomorphic domains. The only change 

to the proof above that is necessary is a clarification of the correspondence 
between M and the new Val, for example Valall_ us: r g, the same underline 
notation as previously or perhaps more explicitly Ag,p>.Valgulp 
Effectively, we urn-curry the fm ,soiel to suit the Signature rather than 
currying the a' nature to suit the model. Clearly thell, the rather 
non-standard functionality of the orIginal Val was not strictly necessary, 
but was considered desirable at this initial exp(rsitory stage. 

As a further variation on the denotational semantics and it relation 
to LC, it is enlightening to consider changing applications to call by value 
rather than the call by name used in the current model. Basically, the 
difference is that in this mode of evaluation both the operator and operand 
are evaluated before the application itself is performed. Thus, under call 
by name an expression We (Ay.0)((Ax.xx)(Azz.xx)) evaluates to 0 whereas it 
fails to terminate under call by value. The change required to the 
denotational semantics to reflect this alteration is to replace (V3) by the 
following equation 

ValgAx.rgp ( stirieg (Aa.Va1110pix/a))) fa V. 
A fuller discussion may be found in Stoy (1977). The function 
stria : FUN 4 FUN is defined such that for all v E V. 

sgria (f)(x) 
{ 1,T or 	if is respectively 1, T or?? 

f(x) 	otherwise 

It is clear that this new algebra (call it Dan') is not a model of LC, 
since it fails to satisfy equation 8 - 

((sir/c: (An.Valalp izial) th V)PFUN)(v) = Val* lz/vil. 
The naive addition of another equation 

10. appl(w,ere) = err 
is insufficient and comp munds our problems rather than solving them. if 
we consider the expression appl(iniA(A(0,y,e)),err), then by equation 10 
this reduces to err. However by equations 9,4 and 2 it reduces to 0, thus 
"collapsing" the carrier of W . a abide value. To overcome the problem we 
need condition the equations on certain arguments not being error terms 
so that for example equation 8 only holds when w g err. This conditioning 
can be carried out quite systematically as described in ■ 	(1978) and 
in fact the specification language OBJ («ostuen & Yard°, 1979) has a syntax 
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that explicitly reflects this technique of handling error terms. 
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3_2 Initial Algebra Semantics 

Perhaps one of the most influential and successful applications of 
algebra to programming language semantics to date is the so-called initial 
algebra semantics reported in (Goguen, Thatcher, Wagner & Wright, 
1977) and heavily used in (Thatcher, Wagner & Wright, 1979). Their aim 
was to unify some apparently diverse approaches to semantic definitions 
using the single but powerful concept of initiality. By observing that for 
any context-free grammar G there is a signature I such that Tz corresponds 
exactly to the parse trees of G, it is clear that any other I-algebra provides 
a semantics for the language of G through the unique homomorphism 
assigning "meanings" to all the terms of Tz. After filling in some more 
details, we investigate the ways in which denotational semantics fits into 
this approach and then generalize this relationship to cater for our 
"semantic model" concept. 

To derive a signature corresponding to a context-free grammar we 
proceed as follows. Associate a sort with each non-terminal and an 
operator symbol with each production No -) ocoNiai Nock whose sort is 
No and arity N1N2 Nk. The signature we require is just that set of sorts 
and operator symbols. As a demonstration, consider the lambda calculus 
example of S3.1. In BNF, the syntax is written as follows with each 
production named to simplify expression of the signature. 

(constant) 	 <Lambda> ::= <B> 
(var) 	 <Lambda> ::= <Ide> 
(abstraction) 	 <Lambda> ::= Adde>.<Lambda> 
(application) 	 <Lambda> ::- <Lambda>(<Lambda>) 

Choose sorts Lambda, B and Ide corresponding in the obvious way to the 
non-terminals. The operator symbol associated with the production 
(constant) has sort Lambda and arity B, and so forth. Using our standard 
notation to express the signature (call it (2) we get: 

constant: B -* Lambda 
var: Ide -• Lambda 
abstraction: Ide x Lambda "4  Lambda 
application: Lambda x Lambda -) Lambda 
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which is precisely the abstract syntax part of the signature E given in 
63.1.1. 

According to the principles of initial algebra semantics we now need 
only choose a suitable Q-algebra SD to define the meanings of 
A-expressions since we automatically get a unique homomorphism from TD 
to SD. So choosing a carrier for each sort of Q and defining a function for 
each operator symbol of Q is all that is required. For this example we allow 
ourselves to be guided by the denotational definition given in 63.1.2 and 
we assume exactly the same domain definitions here. Associate carriers 
with the sorts in the following way 

SQ,Lambda = [Buy. VI 
SQ,Ide = 'de 
SDA = B 

and define the operators as follows (using lambda notation) 

constantsa  (b) = Ap.(b in V) 
varsdx) Ap.p(x) 
abstractionsdx,q) = 21p.(lia.q(pfx/a1)) in V 
appl1cationsda,I3) = Ap.(a(p)IFUN)(13(p)). 

• The underlying idea of initial algebra semantics that there is a 
unique homomorphism from the abstract syntax in the form of TD to any 
SD chosen to be the semantics of that language can be seen as an attempt to 
formalize what constitutes a semantics. Since we subscribe to such a 
view of semantics there will frequently be places in this dissertation where 
we will attempt to relate our style of semantics to the initial algebra style. 
As a precursor to the first and most detailed of these, we will now examine 
the connection between denotational and initial algebra semantics. 

3.2.1 Denotational and Initial Algebra Semantics 

The following quote from Goguen et al (1977) contains the general 
thrust of their claim that denotational semantics fits the initial algebra 
semantics concept. 

"In general, the 'semantic equations' define the meaning of a 
syntactic construct C as a function Fc of the meanings of the 
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conic •ments to that construct, and in so doilti the semantic equation s 
describe em A igebra (the function Fc is the oci t. ration corresn(.nding 
to the syntactic construct C) cad say that semantics is g 
homomorphis 

IOW e the general intent may be clear, the connectioi, is discussed only 
briefly and rather informally and consequently leaves sore questions of 
detail unanswered. Clearly ff the semantic functions are to be 
homoorphisms then their deftions, the semantic equations [el ust be 
constrained in some way, yet no enplicit mention is made of su( in the 
fundamental denotationg semantics literature. However, in the "folklore" 
surrounding denotational semantics much emphasis is placed on the 
concept of refereigisd lteig2Spare cy (Stay, 1977), 	& Strachey, 
11976), though :Again no hard-and-fast definition is given. ■• ale of the 
implications is that the meaning •t a particular syntactic construct depends 
o.a./7 on the meanings of its constituents. llf we adhere to this principle 
then we imm.ediately satisfy the requirements for the semantic functions to 
be hom000rphisms. Nevertheless, inspection of sooe typical denotationg 
definitions reveals several cases where the semantic equations do not 
appear to be entirely hornomorphic, three classes 
by Mosses (11983) and Ere treated below. 

 

which were identified •)I 

 

First the equations are someti es non-coo ..,tsitional and therefore liii 

appear to deviate from the principle of referential transparency, es. 
e1 - e2 = e1 + (-e2)11 

CR a.@p@og =...C1d1...eiTegnog 
Such equations, usually seen as harmless shorthand, can be dealt with in 
two ways; either reject them es unacceptable and dismiss the semantic 
definition as non-denotational, or replace them with filP ore acceptable 
versions. The first ezample can be rewritten by an eupansion of Eitel 
4-e2)14 using the clauses for Eitel e211 end Eit-el, and the second one can 
be rewritten with eEplicit use of the fed- co,cint operator. 

Second, the creation of environments may directly involve identifiers 
rather than their denotations as in 

'Malaga,ii = a = 
The way around this has already been CPII entioned in our la nbda calculus 
eEample. We take 1de to be a semantic domain (as well as syntactic one) 
and leave the semlriitic function Ide 1de implicit as an identity. Basically 
these problems only arises due to a lack of complete forPhality in the 
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definitions. 

Third, there are often several semantic functions for the sane 
syntactic domain, such as E, g, eR: Exp .... We feel that it nay have been 
exactly this problem that led and (1982) to suggest that the 
honomorp4, lc nature of semantics was lost in continuation sem g tics where 
he claireics"... the notion of t rke value of a subezpression is meaningless". The 
classic case for continuation seoaaratics is a language with labels and vacs, 
and this requires at least two se fcc antic functions operatIrci, on co it m ands, 
one to collect up label values, the other to evaluate the con minds 
themselves. The solution is straightforward if we consider the several 
functions as comc.nents of a el de compound semantic function and use 
explicit projection End tripilitE to 0, anipulate that function. A detailed 
example is given in 03.2.2. 

Thus it appears that ven a denotational semantics (within certain 
guidelines) we c riI re-express it directly as an initial algebra se nantics, so 
denotational definitions are indeed a possible expression of our 
funde nental concept of "semantics". However Mosses' (1983) claim that we 
can "go the other way" needs to be tempered somewhat. Certainly any 
initial a i Cebra semi %tics can be expressed in the noteytios of denotational 
se rcil antics, but it will not necessarily be denotational. For example we can 
easily give an initial algebra semantics where the semantic algebra consists 
of the stir s of the language or where procedure declarations ae handled 
syntactically as in l'Auen & Parsaye-Ghomi (11981), yet such do o tins are 
not acceptable in denotational semantics. 

33.2_2 Seclanatik Elodallo can4llfigñQll&ftmeboo Semomtfyg@ 

Since our semantic presentations bear some rese blame to 
denotational definitions, at least i style, it would seem hopeful that our 
se n antic m.els ,also characterize an initial algebra semantics. We intend 
to de 51.1onstrate that such is indeed the case a d also to develop a little 

ore for 5M nifty about any require %cents we wish to place on the form of 
semantic equations. The example we intend to use is a stripped-down 

i,uage with only vtos, labels and A )- other state n era, whose action is 
undefined. Although it is not strictly necessary to do so, we give the 
presentatitI as well as the leo. ,  oel with which we choose to work. 
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Sistnature  
sort Program 

prog: Stmt Program 
sort Stmt 

seq: Stint x Stint -4 Stmt 
goto: Ide Stmt 
labelled: Ide x Stint Stmt 
other: -) Stmt 

sort Env 
arid: Env 
bind: Fsnv x Ide x C -0 Env 
find: Env x Ide C 
bindall: Env x Idlist x Clist Env 

sort C 	(continuations) 
- depends on semantics of 'other statement - 
err: --) C 

sort Idlist 
emptyi: -4 Idlist 
cati: Ide x Idlist Idlist 
headi: Idlist -4 Ide 
tail Idlist Idlist 
appi: Idlist x Idlist Idlist 

sort Gist 
emptyc: -0 Gist 
catc: C x Gist -) Gist 
headc: Gist -4 C 
tailc: Gist Clist 
appc: Gist x Gist ain 

P: Program x Env x C -0 C 
C: Stmt x Env x C C 
L:Stmtx Env x C-3 Env 
/: Stint -4 Idlist 
Al:Stmt x Env x C Clist 

Equations  
1. find(arid,x) = err 
2. find(bind(p,x,0),y) = if ii=y then 8 else find(p,y) 
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3. bindall(p,xf,d) = if if = emptyi then p else 
bindall(bind(p,headi(xt),headc(c)), 

taili(x(),tailc(d)) 
4. headi(cati(x,x0) x 
5. taili(cati(i,x0) = xf 
6. appi(xf,y0 = if If = emptyi then yt 

else catitheadi(xt), appi(taili(x0,y0) 
7. headc(catc(0,c0) = 0 
8. tailc(catc(8,c0) = d 
9. appc(d,d0 = if d = emptyc then clt 

else catc(headc(cf),appc(tailc(d),d0) 
10. P(prog(s),p,O) - C(s,L (s,p,0),0) 
11. L (s,p,O) = bindall(p,./(s), M(s,L (s,p,0),0)) 
12. C(seq(sl,s2),p,0) = C(sl,p,C(s2,p,0)) 
13. C(goto(t),p,O) = find(p,f) 
14. C(labelled(f,$),p,8) C(s,p,e) 
15. C(other,p,O) = ... (not specified) 
16. /(seq(sl,s2)) = appi(/(s1), /(s2)) 
17. /(goto(0) = emptyi 
18. /(labelled(f,$)) cati(f, /(s)) 
19. /(other) = emptyi 
20. Al(seq(sl,s2),p,0) = appc( Af(sl,p, C(s2,p,0)), Af(s2,p,e)) 
21. Al(goto(f),p,O) = emptyc 
22. iff(labelled(f,$),p,O) caw( C(s,p 10), Af(s,p,e)) 
23. Al(other,p,O) = emptyc 

GL - simple aoto-lanauaae presentation 

Note that we have been rather meticulous with our notation in these 
equations. In future examples for the sake of readability we shall use more 
"normal abstract syntax and where there can be no misunderstanding, 
implicit parentheses. The model (offered without proof) of GL we intend to 
work with is the denotational one given below. 

U-Ide-bC 
I): Program 114 C -• C 
C:Stmt-)U4 C-)C 

Stmt -> Ide* 
Al Stmt U - C C* 
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P11 begin s end Ipe = Cid fix (1ip'.0111 Whiff slip 81)0 
C11s1;s211p0 =CllsiBp(els2Bp0) 
Cllgoto tip° - pa) 

= CIIsBpO  
ClotherlIp0 = 
ills ;s211 = s 	app ill 8211 
,llgoto tB  

= cat ifs] 
'Mother] = 

s ;$211p0 = 	s 'Bp (CI s21p0 ) app .hti s21p0 
Algot° (DO - 0 
Atitslipe = CI sip0 cat .411 slip° 
Attlotherlp0 = 

denotational model of GL  

If we denote by Z the signature corresponding to the abstract syntax, 
then our aim is to derive a semantic E-algebra SE based on the denotational 
model given above. Simply by abstracting away from the syntactic sorts 
and "target tupling" where there is more than one semantic function on the 
same syntactic sort we get the following definiton of SE. 

Carriers  
SProgram =U9C4C 
Sstmt = 11.1 C —  CI X Ide* x 	C 4  Cla i 

Operators  
progs(s) Ap0.(stl )(fix (Ipliti*1.0*.pli*/0*1)(st2)((st3)p .0)))0 
semis(s 1 ,s2) = <Ap0.(s i1  )p((s241)p0), 

5142 app s242, 
Ape.(5143)0(s241)p8 ) app  

gotos(t) = <Ap0.pa), 0, Ap0.<» 
labellcds(t,$) = 	t cat sa, Ap0.((s4.1)p0 cat (s43)p0)) 
others = 

semantic E-algebra based on denotational model of GL  

Though the derivation of Sx may seem to have been contrived (even 
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magical) a full and r orous description of a suitable general technique is 
given in 03.2.3. It is clear fro w this example that to ensure initial Iebri 
semantics ctin be derived from semantic m4 , ,Ols in an orderly way we need 
a principle similar to referential transparency for denotational semantics. 
Mosses(1983) defined a set of hafforssorphic SOEBBfinic CeeaNdOES for a 
given (syntactic) signature I Es follows: for each operator u E 29 1 ...9g1,9  
there is one equation of the form F. (10(E li ,...,21,0) = v(Fsil itz li ),...,4„tts.)) 
where vof li ,...,E .„) is En appropriate term of (TE.Or)) s.. Briefly 
se DI antic s' nature wherein for each s (#4 E we may find a corres • ,I ,nd 
(Full details are given in the original paper). While this concept may be 
suitable for Mosses' "abstract semantic ebra" specifications and it clearly 
ensures that all the semantic functions Fs. so defined are indeed 
homomorphic, it needs to be generalized somewhat to deal with our less 
restricted style (ct semantic presentation. 

We may identify the semantic operators of some signature Q Es all 
operators F E Owis  where s is not a syntactic sort and w inclatides at most 
one syntactic sort. ThtBs we avoid the operators defining the abstract 
syntax and the primitive operators on the mantic sorts. It is only the 
semantic operators that we wish to be hoimonaorphic so we give the 
2'01101171%g sufficient conditions Epplyi mg to equations involving semantic 
operators: all syntactic elements (variables, constants or expressions) that 
occur on the right hand side of the equation also occur on the left hand side; 
and nll syntactic elements that =Cur in equations involving both syntax 
sind se Di antics occur only as arguwents to the semantic oo rrators. T. is 
requirement closely parallels the denotational semantics referential 
transparency notion. 

It is interesting to note that the equational specifications of Wand 
(19806) meet our requirements End therefore characterise an initial algebra 
semantics, yet Mosses (1983) contrasts that approach with his own by 
claiiii rit "... (Wand's) 'semantic functions' were non-hoinoruorphic, they 
were just orators of abstract data types that combined syntax and 
semantics." It seems a little unreasonable to accept indirect definitions of 
hognomorphisms in denotational semantics while rejectll g them in Wand's 
a A ebraically founded specifications. 

The rather minor restrictions we place on the for of se Tilantic 
presentations by enforcing the conditions given above create no real 

1[11 1 
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difficulties. Indeed, considering that workers in denotational semantics 
largely satisfied these requirements without necessarily knowing (or 
caring) that they are describing a homomorphism, the two conditions above 
can be seen as guides rather than restrictions. 

3.2.3 Deriving Initial Algebra Semantics from Semantic Models 

In the preceding section we derived the initial algebra semantics 
characterised by a particular model of a semantic presentation without 
giving any real hint of how it was done. Our aim here is to formalize the 
technique in an algebraic framework giving both an algorithmic and a 
category-theoretic formulation. 

As a starting point we note that the basic techniques involved are 
abstraction away from syntactic sorts and target tupling. Now a parallel 
exists in work on algebraic data type specifications: the so-called fins/ 
delta type extension of Wand (1979) and Kamin (1980,1983). Basically 
the aim is given a I-algebra A, we wish to derive the most abstnict 
algebra that extends A with another sort and some operators on that sort. 
Here we outline the method for achieving this described in Katnin (1983) 
and refer the reader to that source for more details. 

Suppose that we have a I-algebra A and we wish to extend it by 
adding a sort N and a number of operators all involving N. First we identify 
a subset of those operators that we believe will sufficiently distinguish 
among elements of the new sort. Clearly all will refer to N in their arities. 
Suppose this distinguishing set is 

( N x x x An ro N, 
•• • 

fm: N x Bi ) x Bnm  N, 
x CI x ...x 	Ei, 

sk: N x Di x x Dik Ek ), 

where all of the E's, A's, B's, C's and D's are sorts of I, k) 1 and m) 0 (in fact 
for our specific case m will always be zero). Then the most abstract 
representation of N is 
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We then proceed to define (in whichever way is considered appropriate) 
the operators on N as functions over the abstract representation. This gives 
the final EN- extension of A where EN is the signature denoting the sort 
N and the new operators on N that are to be added to A. 

A hint of the direction we are heading may be taken by imagining N 
as a syntactic sort. To construct its abstract representation we abstract 
away from N and tuple those domains if there is more than one operator 
on that sort. Within certain bounds this is just the process we are aiming 
for. Suppose we are given a semantic presentation <Q,E>. Then the 
signature can be divided into E + A + +where I corresponds to the abstract 
syntax, A corresponds to the semantic domains and auxiliary functions and 
+ corresponds to the semantic functions. Clearly I and A are quite discrete 
and (I) will include no new sorts. For some model of the <Q,E)-theory, say 
MQ, to derive the corresponding initial algebra semantics we need to 
construct a I-algebra SE based on the semantic carriers of MQ. 

To begin we take the A-reduct of MQ, MA. Put simply, to derive MA 
from MQ we merely "forget" about the E++ parts of MQ, so MA consists 
only of the semantic domains and the operators on them. If we now 
construct the final (I+ +)-extension of MA we get a different 0-algebra, say 
SQ in which the carriers of the syntactic sorts are precisely the abstract 
domains we have been seeking. Thus, the E-reduct of SQ is the required 
semantic 1-algebra SE. While this may at first seem rather obscure and 
perhaps over-complicated, in practice it is quite straightforward and we 
now demonstrate the technique using the example introduced in §3.2.2. 

The signature of the GL presentation (call it 0) can easily be divided 
into the syntax I consisting of sorts Program and Stint and the operators 
listed under those heading; the semantic domains A consisting of all other 
sorts and the operators listed under their headings; and the semantic 
functions consisting of operators P. C, L, and Al and all sorts of Q. If we 
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call the given denotational model of the GL-theory Do, then the A-reduct of 
Do has carriers U, C, Ides and C* (as defined) for sorts Env, C, Idlist and Clist 
respectively with appropriately defined functions for each operator symbol. 
Now to construct the final (E + 4)-extension of DA, which we will denote So, 
we first identify the operators that will sufficiently distinguish between 
elements of the new sort. This will always be the operators of 4), the 
semantic functions. (In fact, Kamin's technique only deals with adding one 
sort at a time. For the sake of brevity we will work by adding the two sorts 
Program and Stint in parallel. There is no problem here but in general one 
may need to be a little more careful, especially when several of the 
semantic functions interact.) Thus the distinguishing set for sort Program is 

(P:ProgramxEnvxC-, C) 
and for sort Stmt it is 

( C: Stint x Env x C C, 
I: Stmt -) Idlist 
Al: Stint x Env x C -0 Clist ). 

The semantic function .L is not included because it is directly defined in 
terms of 1 and Al 

Thus the carrier of sort Program in SQ is 1EnvD x CD 4  CD] which is 
1U x C -+ CI. Similarly the carrier of sort Stmt in SO is lEnvD x CD 4  CD1 x 
1IdlistD1 x rEnvD x CD -) ClistD1 which is 1U x C -) CI x Ude] x x C 4  C*1. 
Though we omit most of the details here, the definitions of the functions for 
each of the syntactic operators (eg. prog: Stint -• Program, semi: Stint x Stint 
-0 Stmt) are quite straightforward and are based on the rather trivial 
observation that for each operator in the distinguishing set for sort n, 
g1(n,a1,....,aii) = (n41)(a1,....,aji), where sti is the ith projection of n. For 
example, given the definitions in the model Do of t, ID and MD on the 
class of statements "semi(sl,s2)" 

4,0(semi(sl,s2),p,O) = 4)(sl,p,C(s2,p,O)) 
ID(semi(sl,s2)) = ID(s1) app 11)(32) 
A4(semi(s1,32),p,O) 	CD(s2,p,0)) app A4)(s2,p,O) 

and the information that 
C(semi(sl,s2),p,O) = (semi(sl,s2) )(p,0), 
/(semi(sl,s2)) = (semi(sl,s2)42)0 and 
Af(semi(s1,82),p,O) (semi(sl,s2)43)(p,0), 

we may immediately deduce 
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semis(sl,s2) = <48.s141(p,s241(p,8)), 
s12 app s242, 
Ap8.s143(p,s24.1(p,8)) app s24.3( p,8)>. 

Finally to derive SE, the semantic algebra we require for the initial algebra 
semantics, we take the E-reduct of SQ, simply forgetting all of SQ except 
the syntactic sorts and operators. 

The above technique provides a "recipe" for deriving the initial 
algebra semantics characterized by one of our semantic models, however a 
more concise non-algorithmic formulation is possible. Again presume we 
have a semantic presentation P whose signature Q can be divided as above 
into E + A + and a model of P called MQ. Then the semantic E-algebra SE 
we require is the E-reduct of SQ, the final object in the subcategory of Algp 
consisting of only those models that are relatively prime to MA, the 
A-reduct of MQ. A P-algebra AQ is prime relative to MA if and only if the 
A-reduct of Ag is isomorphic to MA and the unique homorphism h:Tp -+ AQ 
is surjective on the carriers of Q- A (ie.E). 

The concept of prime re/alive to I is a relaxation of Kamin's 
(1983) insistence on prime algebras, that is algebras such that the unique 
homomorphism to them is onto. This does not suit our purposes since we 
do not wish to be restricted to semantic domains with no "junk" values 
since, for example, the domain V B + [V -) VI used in the denotational 
model of the lambda calculus presentation (S3.1.2) would not then be 
permissible. We treat this question in detail in the next section. 

It is worth pointing out that this formulation of the relation between 
initial algebra semantics and our semantic models is not particularly 
interesting from an algebraic viewpoint nor is it exactly perspicuous. 
However, the algebra does provide a convenient setting for what is at least 
a rigorous and compact definition. 
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3_3 AanpgolOh S®C1Eamttk DEedeRo 

As was briefly mentioned in 03.1.1 not every node' of a presentation 
fleceosmily provides a satisfactory semantics for the language being 
described. In other words, given some presentation P we %.1 ay wish to 
specify a sub-class of the a i zebras constituting Alxp as those which are 
acceptable semantic models. While we will never need to do so in this 
dissertation, we treat the problem here since it has occasionally been 
touched on in the literature and see us to have led to sorke confusion. For 
example, Wand (1979) goes no further than to say that the class of 
acceptable models will be so we subcatc ory of Alp, while by far the most 
0012201on approach (at least in the abstract data type literature) is to ignore 
the question completely, using the wcification tett Iiique without ever 
saying exactly whgg ( athematic ) ject is being sto). cified, rather 
relying on the intuitions of the reader. This section is largely taken from 
Baker-Finch (1984a). 

Rill 

11 ft & Schasion ZOT kai@aPElea Matta cilYwo 

Probably the first staestion of a satisfactory semantics of the 
signature plus equatioics tea rt, Ivo for abstract data type specification was 
the initial ebra approach clearly described in ( , Pluen, Thatcher & 
Wagner (1978). There, given some present ition P, the particular mtelect 
be 	specified is the (isomorphism class of the) initial algebra in Algp. 
This n ,tebra has some attractive properties, not the least of which is the 
fact that it is easy to ocristruct. Further, the 0) ,cpularity of the choice of the 
initial a ik;ebra as She object represented by a presentation is explained by 
Wand (1979) as follows: "First, its universe contains no values other than 
those required by the generators. Second, two values have the same 
se 'N antics in the initial T-a I ebra if and only if they have the saw e 
se R'A antics in every T-,1Ixebra. Thus no information is lost except that which 
is required by the relations". (For"T-algebra" read "algebra in Algp"). 
Burstall and , ntien (1982) put it somewhat more snappily: "... the initial 
algebra ... has /20i At: every eleraent of the carrier is the value of some 
term; Bo CathiSi012: different terms get different values". However, if we 
choose this a igebra to be the oBiy model of the presentation, we are 
wasting the considerable is' vwer of the specification technique. After all, if 
we only want to describe a siiixle algebra there are numerous ti ore direct 
and simple methods. Further, the initial m ,•,481 may not necessarily be the 
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intended or most intuitive one. Consider for example the following typical 
presentation for (unbounded) arrays of natural numbers. 

sort Nat 
zero: Nat 
succ: Nat -) Nat 

sort Array 
empty: -0 Array 
assign: Array x Nat x Nat '4  Array 
access: Array x Nat -0 Nat 

Equations 
1. access(empty,i) = zero 
2. access(assign(a,j,n),i) = ii i=j then n else access (a,i). 

In the initial model it is not the case that assign(empty,1,5) and 
assign(assign(empty,1,9),1,5) are the same array. An entire history of 
assignments to each element of the array is maintained and this does not fit 
the generally accepted array concept. 

Perhaps the most popular current view is that an abstract data type 
specification (being some presentation P) represents the algebraic theory 
Thp. If we settle on this choice however, we are begging the question. The 
theory has a class of models that is isomorphic to Algp. So if we accept the 
algebraic theory approach, we are left with exactly the same question we 
must answer with respect to the equational variety: "which of the algebras 
are satisfactory semantics?" It is important to point out that we do not 
therefore reject the view that an abstract data type specification presents 
an algebraic theory; we are only saying that the question remains 
irrespective of such a choice. 

A refinement of the algebraic theory approach has been put forward 
by Burstall & Goguen (1979) and Reichel (1980) by developing a notion 
similar to an algebraic theory which only has initial models. The writer of 
an algebraic presentation is then able to distinguish some sorts as being 
subject to initial interpretation. The usefulness of this approach can be 
displayed using our array-of-naturals example. If we can somehow insist 
that the Nat part of the theory is to be interpreted initially, then any model 
that satisfies such a restriction will satisfy our intuitive concept of such a 
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data type. 1Burst&11 and Coven's "data theories" and Reichel's "canons" or 
"initially restricting d 1 obruic theories" provide the weans by which to give 
a rigorous meaning to the notion outlined above. Unfortunately our lambda 
calculus presentation LC of 03.1.11 is 'cot simenable to this treat went. Clearly 
we do not wish to be restricted to ['codes where Abstr or W are interpreted 
initially since this would ezclude the denotational node described in 
03.1.2, but to leave Abstr A i d TIT unrestricted would admit undesirable 
tralodels suc is the ckgenefette one with s de point carriers. Thus, while 
initially restricting idgebraic theories appear to satisfactorily provide a 
solution for specifications of data types they do not j eet lie require ents 
for our illore ambitious u r  of equational presentations. 

33.31 Allkuasig jiminft 

The precise question we are considering is: "which of the algebras in 
Map, for some presentation P <E,E>, are acceptable semantics of the 
concept we are try ■ iii; to describe?". Note that it is quite obvious that the 
class of such acceptable %CI "leis cannot be identified solely by innate 

m properties. It ust be left up to the writer of e specificatio%s to 
so wehow state which are acceptable, but we can defer this consideratio 
for now. 

Clearly, the initial m ,• , 41e1 w I ilwys be an acceptable El • <el since 
the only objects that are equated are those so specified in the presentation. 
If it is iot, then there can be so acceptable oodels I'Ld hence the 
presentation oust be inadequate. It follows fro5:11 the fact that there is a 
unique homwitorp ■i'so from Initp to every other algebra in Algp that I 

these other ,A igebras have "junk" or "confusion" or both. 'M e ens' me how 
much junk and confusion is acceptable. 

Firstly, we should not be concerned if the carriers co tain ele Rents 
that are not the value of any term. After , this is frequently the case in 
denotational se 11 11 milks. For elm ii' pie, the domain V el B [V -) VI used in 

fit the la bda calculus wodel of 03.1.2 contains w any ele wants never reached 
by any semantic valuation; in particular, all the transcendental functions. 
The only query about allowing unlimited junk is whether we want to allow 
it in the syntactic carriers. If we do, then the algebra describes the 
"semantics" of various objects beyond the terms generated by the abstract 
syntax. However, if we take the view that the semantics is riii Ma to give 
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the eiriuircg, of a term of the 113103W with which it is presented (i.e. the 
syntax is described elsewhere) then we can happily &HOW nonsense values 
in the syntactic carriers. Though this ftP ay be a satisfactory situation for the 
purposes of specification alone, the uses to which we will be putting the 
semantic presentations later in this dissertation will require us to insist 
that the syntactic carriers exactly reflect the la ri use belriix dealt with. 
will have more to say on this issue )111 03.3.5, but for now we offer 
formalized statements of both 

An a ixebra A in Map is an acceptable model in the sense outlined 
above if the unique homomcephism h: Initp A is a inonomorpIsm (ie. 
one-one). This effectively ensures that all the elements of the carriers of 
the initial algebra (the terms) gi e separately represented in A. To disallow 
junk in the syntactic carriers we 5111 mice the following further restriction 
Ii: Initp A consists of <h5 1 ,...,h5 > and (sili E I) are the syntactic sorts. 

Then as well as h beIrc a monomorphism, the Ilk for i E )1 must be 
bijections. This extra restriction is such a minor point and is so easily 
catered for that we shall overlook it for the remainder of this discussion. 

3.3.3 Rasit 

 

earafmonem ting 

Clearly the above restriction is unsatisfactory since it again disallows 
our denotations" model of LC, and serves only to demonstrate that it is the 
limitation of confusion that must be our objective. W hile it is possible to 
give a simple general statement about junk in acceptable Olt 4els, the 
degree of confusion allowed ['lust be the choice of the person writing the 
specification. For instance, again usircA our lambda calculus exa 511  pie, there 
can be no a priori reason to think that Am.! and Ay.y may be given the 
same meaning, or that bind(bind(arid,z,m),y,b) and bind(bAnd(arid,Y,b),u,a) 
could be evaluated to equivalent representations. Thus if we wish to 
identify all the acceptable models we are bound to souehow specify which 
terms may be equated and which ones may not. One way to do this is to 
pick a particular algebra as the "o axi [cc ally-confused" cc ode! (for want of a 
better mane). The model is chosen on the basis that as RA any terus as we 
find acceptable to equate are equated. If we can then define a relationship 
between this and other algebras that have Bo (Mhor confusion, we have a 
way of identify: It the class of such acceptable ro,  41els. 

For guidance in our choice of this "maximally-  nfused" model we 



our purposes we iterpret t s to fill ean that the n is tot to differe tiate 
between the meanings of two pt•Iram ins language constructs that are 
equivalent in the view ci the semiantics writer or language designer. So 
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are attrticted by the tenets ii denotational semi ii tics (Scott and Strachey, 
1971). As well, the notion of fatly sthsgrga (M 7 Iller, 1977) see tiii 
related. It is reasonable to say that one of the aims of (standard) 
denotational semantics is to ake the se antic descriptiot as abstract as 191 

ssible and the concept of "fully abstract" serves to formalize this sin. For 

perhaps a denotational style of model would be a good choice as the 
acceptable model that gives the same Dinning to as a cgany terms as 
4 4 ssible. We need to be a little Careful here - it would be quite valid to 
represent an environment as list, say ilde x VI° wrCch is not as abstract as 
fide -> VI. In such a don lin t te two environ lucent ter rrc s given above do not 
evaluate to the same element of the carrier yet none of the interr ation 
operators can differe tiste between the two ale ttents. Thus it seems that 
final algebra extensions (min, 1983) may also have something to say on 
the choice of a maxi ally-confused 

Let us look %core closely at the concept of full abstraction introduced 
by Milner (1977). Put briefly, a semantic descripti• t is fully abstract 
provided two pt rases (pieces of abstract syntax) are given the same 

if ,1% d only if their substitution into the sane pr Ilram context (a 
pr , 	Dip! with a "hole" in it) always gives two pr si,ratils with identical 
meanings. A for nal algebraic definition of the concept is given in , ,• , ,,uen 
gad Meseguer (1983). Thus, the effect of full abstraction is to assign 
different It e ItA,s to syntactic constructs only when necessary. This is 
exactly what we want for our maximiilly-cot I used models and is, to a 
degree, what the final algebra construction provides. 

However, there is still some work to be done. The final algebra 
construction depends • t the pre-existence of some primitive types 
(otherwise we would always get the algebra with single-point carriers). 
Similarly, full abstraction is defined with respect to the se ci, antic domain of 
whole pr ran, meanings. Thus in that do u aim n we nay assign differe t 
meanings to what are intuitively equivalent whole pri•Irams (es. Ali and 
ity.y) and still have a fully abstract model. (The lanbda calculus is not in 
fact a particularly good exanple since whole pr ra s are also pr•4,ra ■ 111, 

phrases). Hence we require iore of a nazinially-oonfused tcodel than its 
being fully abstract. Rather, it is a fully abstract model with domain of 
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prnre RIP meanings X whea-e X is chosen to identify as 101 a ihy pa...II-ens as we 
consider appropriate. Having chosen such an X, ICSIMlif3 (1983) final 
a ebre entension construction can be of assistance in deriving the 
eppropriete other semantic domains. Unfortunetely it is not quite is 
straightforward Es we may desire since the final algebre extension depends 
elso on the functionaty of the orhfretors; in this case particulerly the 
semantic functions. Consider the (rather contrived) case where we have 

	

P: Prilram C and C: Selig 	x CD where the irrelevant informetion of 
(say) the first identifier occurring in the statement is included in its 
se RIC tie don ain. Clearly this is not fully abstract but the final 2 igebra 
construction does not preclude such a possibility. Thus we need to make a 
careful choice of a po.ram meaning domain RR,' semantic functions as a 

	

inin um basis for Went ry 	a flit ma rfiA ally-confused m(hoiel. 

Returning to our lambda calculus enample, suppose we choose (or 
derive) the denotational model Den as our inholel that identifies as many 
terms as possible while still remainix;, acceptable. How then nay we use 
t s choice to decide which other nodes are appropriate? As a first t 
approximation, let us say that algebra A in Algu is an appropriate model if 
there 13a E-h.omomorphism h: A-4  Den. The effect of this limitation is to 
ensure that the terms are equated in A only if they are equated in De 
Thus we are say in that only the kind of "confusion" that occurs in Den is 
allowed in our "appropriate hliels". This is clear from the definition of 
E-homomorphism. Thus in one fell swoop we are disallow l rci, undesirable 
eveulation of different ter nis to the same value and as a consequence 
ensuring that solutions of recursive equations are always like least 
fined-points in the sense that a non-term 
given a "sensible" value. 

 

computation, will never be 1 ril 

 

So far in this section we have not considered the allowance of extra 
elements in the carriers of the algebras. So the problem remains that given 
some A such that h: A -4 Den is a h.omomoephisn (i.e. A is an acceptable 
model), there may be an LC- ebre B such that there is a mon000rphism 
k: A -4 B. In other words B differs from A only in that it includes "junk" in 
its carriers. However, it is likely that there is no homomorphism B -4 Den. 
From our discussion in the previous section we would like algebras such as 
B to be included h our class of acceptable m4 	•:,e last refinement 
leads to the follow' lc definition wherein we finally ab 2 lc don the loose 
concepts "acceptable model" and "ffilli cc 	used model". 
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Given a presentation P = <I,E>, an algebra A in Algp is an ot-model 
of flip if there is a E-homomorphism h: A -) J where J is some 
P-algebra such that there is a monomorphism k: D -■ J where D is the 
P-algebra distinguished as the sub-final mode/of Thp. 

Note that the carriers of the sub-final model can have extra 
elements. For example V in Den has elements that are not in the image of 
Val. In such cases there is clearly a model, say M, with no such extra 
elements and a monomorphism from that model to the chosen sub-final 
model, say D. Thus if there is a homomorphism A -> M there must be one 
A -• D by composition. The following diagram showing some of the 
morphisms(the epi- mono factorizations, Arbib and Manes, 1975) may be 
enlightening. The monomorphisms (one-one) indicate "same confusion, 
more junk"; the epimorphisms (onto) indicate "same junk, more confusion". 

Note that this is really a very loose representation (for example, it suggests 
that the class of ok-models is always countable) but it is only intended as 
an aid to intuition. 

3.3.4 The Category of Acceptable Models 

It is interesting to consider what sort of structure the class of 
ok-models forms. Clearly, they form a full subcategory (call it "or) of Algp 
since all the morphisms between objects in the subcategory are retained. It 
is only the existence of certain morphisms that we use to choose the 
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!ems. However, the ok-Nct ,tiels do not for 51 11 an equational variety. By the 
Birkhoff Variety Theorem (in Manes, 1976), if V is a variety and A is in V 
thei all of As quotient algebras are :3 V. (B is a quotient of A if there is an 
epimorphism A -D  B). Now the degener te P-g i,:,ebra (the one whose 
carriers are all s%Jews, sets) is a quotient of every ok-model but it is not 
itself in OK, in our exaris ple at least, since there is no houomorphis 
Deg D and no monomorphism D Deg. 

Ttli is has relevg nce to the view at these specifications represent 
ebraic theories. As t(tinted out earlier, the category of IPC Weis of Thp is 

isomorphic to the variety of P-algebras. It is clear therefore that it is 
I/A/possible to present a theory all of whose ikodels are ok-mno,els. 1 1 % is 
fact appears i ,e,  cut across Wand's (1980b) hope that "such restrictions (on 
the class of acceptable 	els) seem., to depend only on the theory fild not 
on the specification". 

To su Di arize, it has been argued that none of the approaches to the 
se Di antics of algebrg'c data ty spe  ications extend satisfactorily to our 
use of a eb gic presentations for describl putirau irag language. A 
possible solution is to entend the specification to consist of a signature, 
so .3 , e equations egad a description of a particular, suitably abstract algebra 
as %e sub-final Dot tie!. For the applications dealt with in this thesis such 
restrictions on the class of Diodels %ever come into play since all our proofs 

e either general enough to apply to All . s els, or we deal with a single 
specific D odel. However, it is necessary or at least desirable that whe 
usirc,1,: equational seri'' ,  g %tic presentatiols to ,rescribe the se fui 2 *tics of a 
progra 	In* 4usge the class of acceptable D odels be dearly delineated. 

133.5 1re2Ilv Ilmgm-DTTgAmm Svmgogalc Sioniogaues3 

As uentioned briefly in 03.3.2, the work of later chapters fro 33, 	e 
to time requires that there be no junk in the carriers of the syntactic sorts. 
Basically, without tA 7 s restriction structural induction over the language 
bec.o b ,  es invalid and the unnecessary ii a position of such a Hu itation on the 
syllable proof techniques is unwarranted. 

At the level of the algebras or II odds of a theory we can easily 
for Elise this restriction by the qualification that the ok-Dodels Dust be 
reschgble on the syntactic sorts (Sanella & Wirsing, 1983). 111 we denote 
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the set of syntactic sorts of some presentation P by S, then a P-algebra A is 
reachable on S provided h: Tp -0 A is such that hs  is onto for all s E S. With 
such a condition being satisfied we may clearly use structural induction 
over the language within any particular ok-model. However, we will need 
to use induction at the level of the theory rather than the models so the 
restriction we require will need to be on the theory rather than the models 
of that theory. Thus we need the concept of a theory whose only models 
are initial ones (which can be extended to a theory whose models are 
"partly initial"). 

As a brief example consider the following presentation for natural 
numbers with an equality operator. 

sort Boo! 
tt: -0 Boo! 
ff: -0 Boo! 

sort Nat 
zero: -) Nat 
sum '4  Nat 
eq: Nat x Nat Bool 

Equations 
eq(zero,zero) = tt 
eq(zero,succ(n)) = ff 
eq(succ(n), zero) ff .  

eq(succ(m),succ(n)) = eq(m,n) 

Now while the theory of this presentation has equations such as 
eq(succ(zero), succ(zero)) tt, eq(succ(succ(0)), succ(succ(0))) tt and so on, 
it does not include the equation eq(n,n) = tt. This is simply because there is 
a model of the theory whose carrier for Nat has some element, say Q, that is 
not the value of any term (i.e. it is junk) and eq(Q,Q) = ff. Thus, by our 
definition of algebraic theory in 62.3, eq (n,n) tt is excluded even though 
we would intuitively wish it to be true. If we could somehow constrain the 
theory so that Nat was freely interpreted (i.e. only the initial model is 
allowed) then we could be sure that the carriers for Nat were always in 
bijective correspondence with the set (zero, succ(zero), succ(succ(zero)) ...) 
so that no such Q could exist and we could apply induction over Nat to 
establish such properties as eq(n,n) = tt not given by the rules of equational 
inference alone. 
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Fortunately a mechanism for expressing such restrictions is already 
available and was mentioned briefly in 83.3.1. It is the "initially-restricting 
algebraic theories" of Reichel (1980) or the data theories" of Clear (Burstall 
8c Goguen, 1979). Indeed the term "induce" was used in earlier versions of 
Clear (Burstall & (loguen, 1977) which more directly suggested the effect of 
such restrictions. We consider a long and technical discussion of these new 
theories to be inappropriate at this point and refer the reader to Burstall & 
Goguen (1979) and Reichel (1980). 

The most important aspect to us is that we may insist that some sorts 
must be freely interpreted in all models without being reduced to consider 
a sub-class of the models of the theory; the restriction is on the theory 
itself. Thus we may mark all of the syntactic sorts of our presentations to 
be freely interpreted without relinquishing our claim that we are 
presenting algebraic theories. To this end, in all presentations from this 
point on we will distinguish those sorts that are subject to initial 
interpetation by denoting them as syntactic sorts as for example: 

syntactic sort Lambda. 
const: B -• Lambda 
••• 

It will always be exactly those sorts representing the abstract syntax that 
will be so marked. The first point at which we will actually need such 
constraints on our semantic theories will be in 84.4 and we will continue 
the discussion there when faced with a realistic example. 
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Chapter 4 
Congruence of Semantic Models 

The notion of semantic congruence is an important one in the 
denotational semantics literature, especially in relation to proofs of 
correctness of compilers or interpreters. In this chapter we intend to 
develop the concept against the algebraic background developed so far and 
atterapt to pin down exactly what constitutes a semantic congruence, a 
subject discussed only in loose, general terms in the denotational semantics 
literature. 

Our approach will be to consider a sequence of several simple 
examples using them to clarify our intuitive notion of congruence for each 
of them, with a view to evolving a formal algebraic definition of semantic 
congruence. Having done that, we show that the clarified definition and its 
algebraic foundation combine to simplify many (though not all) proofs of 
congruence that appear in the literature. Indeed, it makes possible some 
proofs that cannot be realised by the traditional approach. As well, we feel 
that our way of expressing the congruence is more direct and therefore 
more appealing than the predicates generally used in denotational 
semantics. 
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4_1 Algebraic View of Semantic Congruence 

An important question in the study of programming language 
semantics is whether or not two semantic definitions are congruent; that is, 
do they describe (semantically) the same language. This is particularly 
relevant in that an established technique for demonstrating the correctness 
of a translation involves a hierarchy of semantic models and the 
establishment of such a relation between the consecutive models. Since our 
work here is characteristically algebraic, it is natural for us to seek an 
algebraic formulation of the concept of semantic congruence. Further, we 
consider the fixing of a formal notion of congruence, algebraic or 
otherwise, to be a valuable goal in its own right. 

4_1_1. The Intuitive Concept 

Simply put, we will consider two semantic models to be congruent 
provided they give equivalent meanings to the same language. Having 
stated that, it quickly becomes apparent that "equivalent meaning" requires 
some clarification, especially when these meanings may be values from 
quite different domains Little help or guidance can be found in the 
denotational semantics literature other than loose generalizations. The 
most that is offered by Stoy (1977) is the following: 

"The exact details of such (congruence) conditions depend on the 
details of the definitions being compared, but the general idea is that 
two definitions are congruent if it can reasonably be claimed that 
they are defining the same language." 

A more detailed discussion occurs in Milne & Strachey (1976) though it 
only really applies to the example language Sal around which the entire 
book revolves. Even so, apart from stating that if a program does not 
terminate under one of the semantic definitions then it must not terminate 
under the other, no guidelines are offered. Thus there is nothing to prevent 
us putting forward quite pathological conditions and claiming that they are 
a statement of congruence. A rather extreme example would be to claim 
that two definitions that always return different answers for identical 
programs are therefore congruent. So although we have a fairly clear 
perception of what we require of a congruence we have absolutely no 
formal basis on which to work. 

4_1.2 Lambda Calculus Congruence Statement 
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The first example we consider is the lambda calculus, partly because 
of its smallness and partly because we have already discussed a semantic 
presentation LC and a (denotational) semantic model, Den. We wish to 
consider the congruence of Den with a particular operational semantics of 
the lambda calculus. The full details of the semantic definition are given at 
the beginning of 64.2 rather than here since it seems more desirable to 
have the formal definition close to the proof for easy reference at that 
stage. In the operational semantics, we have the same domain B of basic 
values, but FUN is replaced by a new domain CIO (for "closures": Landin, 
1964) of triples that gather together the information required to re -present 
the meaning of an abstraction (i.e. its body, its bound variable and an 
environment). Similarly ENV is replaced by the domain E of lists of 
identifier, value pairs. A function apply interprets closures, mimicking 
the direct application of members of FUN to arguments. The new semantic 
function is Eval: Lambda x E IB + CLO] and the semantic equations are 
very similar to these in the denotational definition. 

The best intuitive notion of congruence betwen those two semantic 
definitions can obviously be given in terms of two functions: one 
embedding U into V and the other relating the finite environments of E to 
elements ENV. l u in V 
Value (u) = 

Aa.Valfinl EN(e)Ix/al in V 
EN(e) = Ax.Value(Lookup(x,e)) 

if u E B 

if u = 	E ao 

The function Value sends closures to the functions they encode while not 
affecting basic values. EN constructs a function which looks up the value of 
an identifier in e and embeds this value in V. Using these functions the 
intuitive congruence is the following: 

For each • E Lambda, 
Value(Evali011e) = Valk)] EN(e) 

Two points need to be made here. First, the simplicity of the relation is 
largely due to the fact that the two models "look the same" in a sense, only 
really differing with respect to the domains involved. Second, despite the 
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apparent simplicity this congruence Cannot be established by the 
traditional techniques of denotational semantics (Turner, 1979). This 
problem, though it looms rather large, will be overlooked for now since we 
are presently concerned only with what constitutes a congruence and the 
issue of its provability is deferred to 64.2. 

In 63.1.2 the point was made that we can consider denotational 
definitions as algebras and indeed we showed Den to be a model of the 
lambda calculus presentation LC. By the same argument, the operational 
definition we are presently discussing is also an algebra (we shall call it Op) 
and will also be shown in 64.2.3 to be a model of LC using a style of proof 
identical to that used in 63.1.2. Thus, if we assume (for now) that Op and 
Den have the same signature E, then the congruence we wish to establish is 
exactly a I-homomorphism provided we add identity maps for B and 
Lambda. By definition, if h: Op -0 Den is a E-homomorphism consisting in 
part of hu: u V and hE: E -0 ENV then it must satisfy hu(Evalkie) - 
Vall1011 hE(e) which is exactly the condition required of Value and EN. 

While it may seem that there are still many loose ends we make the 
claim that for this example at least, an algebra homomorphism correctly 
constitutes a congruence. 

4.1.3 Addition Expression Congruence Statement 

It is not at all difficult to imagine a congruence relation that does not 
fit into the rather narrow definition proposed above and it is an example of 
such that we wish to explore here. The language consists simply of 
numerals and a plus sign (bold to distinguish it from the addition operator) 
and the semantics we will consider are the usual direct semantics and stack 
semantics. The definitions are brief enough to give both here and in 64.4.1. 

Syntax  
<Exp: = <to I <MEI)) + <Exp> 	(again we will blur the Numeral/ 

Number distinction) 
Domain 
n : N 
	

(natural numbers) 

Semantic Function 
ED: Exp N 
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(DI) EDffN1 = n 
(D2) EDilei +e211 =8,Dlle111 + EDIe211 

direct semantics of addition expressions  

Syntax  
<Exp>: = <N> I <ExP> <IT> 
Domains  

(natural numbers) 
Fl* 	 (stacks are represented by 

sequences of natural numbers) 
Semantic Function  
Es: Exp x 14* Fr 

(Si) SOW =n cat t 
(S2) E511e1 + egt = add(Esilepasle )) 

where add (t) 	+ 	cat (tall(1211()). 

stack semantics of addition expressions 

Thus the effect of the stack semantics is to push the "value" of the 
expression onto the stack. The effect of add is to replace the top two 
elements of the stack by their sum. 

Again, we can consider the direct semantics and the stack semantics 
as many-sorted algebras (we shall refer to these algebras as Dir and Stk 
respectively). However, even the briefest inspection confirms that they 
cannot sensibly be given the same signature, so we cannot talk of their 
relation in terms of homomorphism. It is clear that a possible statement of 
congruence between the two definitions is the following: 

For each e E Exp and any E FP, 
EDI - (Esti elt 

It is also clear that Dir and Stk must be models of some theories (TN) and 
Ths given in 64.4.1) so that, for example cat and _11 are realisations of 
operators of Ths. In this light, the congruence condition can be seen as 
reflecting a relation between ThE, and Th. In fact it is the relation 
between theories that conceptually corresponds to homomorphism between 
algebras: a theory morphism. So if we denote the theory morphism 
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embodied the congruence state newt above by a: Ths -0 Thp then what 
we wish to show is that Dir = Ua(Stk) where Ua  is the derivor of a as 
discussed in ■Japter 2. Derivors were used directly for a very si agar 
language by Burstall & Landin 0969). We prefer the slightly ri'A ore abstract 
expressiov in terms of theory oorphisnlis since we are working in part with 
theories; our se fu antic presentations specify algebraic theories. Further, a 
derivor in the sense used by BurstnI & ri4i is specific to a particul 
algebra whereas giveN, a theory morphis A B we can derive a bode! of 
A frolin any of the entire class of Ilicnniels of B by a single standard process. 

So far we have two quite different for It ulations of n algebraic 
notion of semantic congruence: ,gebra homomorphism and theory 
morpn s [cc . In the follow 'N py section we consider a Jiore realistic emu pie in 

atte i pt to bring the two t ether. 

4.1L4 MEL Comormairge Statememt 

The IL n,tuage DEVIL was devised by Henson & Turner (1982) as a 
vehicle for introducing comfilegioy 	sB S en lics, an operational se 1,C antics 
that they suggest should be seen as a "standard" operational version of 
con luation se ,r1 antics. In their view, DEVIL "...contains Icost of the 
features wl,,ch force a wedge between denotational nd operational 
definitions." Further, the do ains used in the conk pletion definition are Ii 

largely based on Landin's (1964) cioseeres and as such rather closely 
resemble the do ains of the comitinuatio definition. Despite this si 11111 

the proof of congruence is not at all str 

 

ghtforw d and the best that I 

 

Henson & Turrer hope for is that" a st dardisation of the operational 
sell. antics dor.-  the :,4ies suggested here affects a corresponding 
staIhdardisation of the congruence proof and "the structure of the proof 
offered (in their paper) Will serve as a paradi for any such proof relating 
continuation and completion semantics." 

The syntax of DEVIL is given below, though we have in fact altered it 
fro 11 1  the or in by eliuinating scams a id labels. This has the effect of 
shortening the definitions and the proofs without altering their co bi plexity 
since the se 'en antic domains re rn sin virtually as they are in (Henson & 
Turner, 1982). 

clunica7 I Cork Co 	Ide: = Ezp Icalll Exp monfitilo Fszp 

hi 

1 I A, 
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Exp Com, Com I while Exp do Com 
Exp Ide I true I false I Exp Exp, Exp I valor Corn I proc Corn 

Again the complete definitions are given in §4.5.1 though we repeat part of 
the domain definitions here to give the flavour of the completion style. 
First the continuation semantics: 

S-L-.(VxTJ 	 stores 
U = [Ide -4 DI X K 	 environments 
C = S -0 S 	 command continuations 
K = E C 	 expression continuations 
F C -• C 	 function closures 
Cd: Com 4 U -0 C -0 C 

d : Exp --) U K C 

Now the completion semantics: 

S -IL x V x 11* 	 stores 
U = [Ide x DI* X K 	 environments 
C- IF x CI + [Exp x U x KI + IE X Kl + (fail) + (final) 

command completions 
K = [(update) x D x CI + ((call) x CI + Rcond) x C x CI 

expression completions 
F (Corn xUI 	 command closures 
Cce: COM 4 U-0 C-0 S -0 S 
E0: Exp4U4K4S-0S 

The resemblance is quite close with stores and environments in the 
operational semantics being the "usual" list representation of the abstract 
function, and command and expression completions being unions of the 
various types of closures that arise in the semantic clauses. 

Because of this close resemblance one may expect that we could 
arrange for the two semantics to be models of the same theory, as is 
the case for our lambda calculus example. Indeed, this can easily be seen 
by partly expanding the functionality of Cd and Ed to Cd: Com -4 U 4 C 4 S 
-0S and Ed: Exp -0U-0K4S4S so that there is an exact match with Co and 
So. However, for the purpose of this exercise we choose to treat them as 
models of different theories DA -and DB where the major difference is the 
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arity of the semantic functions; CA: Com xUxCxS -0S, EA: Exp x U x x S 
4 S, 4: COMXUXC 4 Cand 4: ExpxuxK-0 C. Under this assumption we 
need a theory morphism 6: DA .4 DB such that b( CA) = apply.q and b(EA) = 
apply..43 where apply : C x S -• S. However, given a continuation model 
Cont, and a completion model Comp, U6(Cont) is not Comp, as was 
suggested to be the case for the addition expression example since we still 
have a mismatch of the domains. Thus it appears that a sensible aim is to 
find a homomorphism between Comp and U6(Cont). The intuitive 
congruence is the following: 

1. h1j(1)011dipa ) = tdff di hu(p)hs(a) 
2. hs(ColcilpOo ) - Cdadhu(p)hc(8)(hs(o)) 
3. hs(SoilelpKo ) Ediellhu(p)hK(K)(hs(a)) 

where 
hu: Ude x DI* X K (Ide -) DIx K 

hu((p, K>) 	hp(lookup (p,x)), hK(K)> 
hs: 	x 	-+ 	VI 

115(0) 	value(t,a) 
hc: x CI + [Rip x U x KI + IE x KI + (fail) + (final) IS Si 

h($,O) hF($)(12c(8)) 
h(e,p,K) =Edffeihu(p)hK(K) 
hc(c,K) hK(K)(h(c)) 
h(fail) =Aa.?s 
h(final) - /lox 

hK: ((update) x D x CI + ((call) x CI + Rcond) x C 	[13 -+ 
hK(update,6,8) /as". 8(a[6/cn 
hK(cal1,8) = Ac. 8(c) 
hecond,01,82) - Av. (v -+ 81:82) 

hF: (Com x 	IC CI 
hF(c,p) = edlcihu(p) 

The algebraic interpretation we place on this congruence condition is that 
we wish to show the existence of a homomorphism embodied in the various 
h functions from the model Comp to a model derived from Cont. The 
derivor is rather obscured by details since it is extremely simple (and 
perhaps rather contrived) but it can be detected in equations 2 and 3 above 
where the right hand sides have the explicity parenthesised form 
Ccillcip0 (a) and Edielpic (a) to make quite clear that we are composing the 
semantic functions with "application to the store". 
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Our formalised algebraic notion of semantic congruence is the 
following: 

Given two semantic models A and B for (syntactically) the same 
language where A is a model of some theory ThA and B is a model of 
some theory Thg; if there exists a theory morphism 6: ThA 4 Thg 
such that there is a homomorphism h: A 4 U6(B) (or h: U6(B) A) 
then we may say that A and B are congruent 

It is quite easy to fit the simpler examples of 64.1.2 and 64.1.3 into this 
framework. For the lambda calculus example, since both semantics are 
models of the same theory, the theory morphism part of the congruence is 
the identity. Similarly , for the addition expression example the 
homomorphism is an isomorphism. 

In 64.6 we will meet a complication that does not arise in the simple 
cases outlined so far. While at first sight it may not seem to fit the 
definition above it will not cause us to alter this relationship in any way. 

4.1.5 Relation to Initial Algebra Semantics 

In 63.2 we claimed that the initial algebra semantics approach was 
the most fundamental one and that other semantic styles including our own 
can be reduced to the simple concept of homomorphism and a semantic 
algebra with the same signature as the abstract syntax. Thus it is natural 
here to consider how our notion of semantic congruence translates into the 
initial algebra framework. 

In outline, ourlechnique for establishing a congruence between two 
semantics A and B is as follows. First present theories_ThA and Thg of 
which A and B are respectively models and define an appropriate theory 
morphism a: ThA -0 Thg. Now generate U 0(B) and show there is a ThA-
homomorphism between A and U 0(B) (in either direction). A possible 
variation available is to present a third theory The, define theory 
morphisms a: The ThA and 13: The 4 Thg, and find a The homomorphism 
between Ua(A) and Up(B). However, this process of factoring the relation 
into two parts has not proved necesary in any of the examples we have 
ever considered and it is difficult to imagine even a most contrived case 
where a direct theory morphism cannot be found. Consideration of the 
number of proofs required to establish such a congruence (A is a model of 
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ThA; B is a model of ThB; a is a theory morphism; and a homomorphism 
exists between A and U0(B)) may be rather daunting but they are generally 
very simple (especially the first three) and at least they clarify exactly 
what must be proven. 

ThA 
	a 	ThB 

AlgA 	 Alga  

It should be made clear that if we are attempting to show that two 
semantic definitions are congruent then we need only concern ourselves 
with the existence and not the nature of the homomorphism. Thus 
unless we are interested in exactly how the two semantic definitions 
correspond we need not even bother writing the homomorphic relation 
down provided we can merely establish its existence. A rather pleasing 
aspect of our formulation of semantic congruences is the split into two 
discrete steps. The homomorphism is concerned solely with relating the 
semantic objects ("meaning" values) of the two definitions , while the 
theory morphism specifies an "implementation" of the semantic functions. 
Indeed, Goguen et al (1977) use the similar notion of derivor to formalise 
the concept of implementation for abstract data types. Further, this split 
allows us to be a little more general: a theory morphism ThA ThB 
provides a means of deriving a ThA-  model from every model of ThB so 
there is no need to repeat this part of the proof for each model separately. 
Actually, in some cases, such as where A is initial in AlgA or where there is 
a homomorphism A -) U 0(TB) we may establish a complete congruence 
between A and every ThB-model all at once. 

In terms of initial algebra semantics, the technique we have been 
discussing demonstrates that the following diagram exists and commutes. 
The abstract syntax is the initial E-algebra Tz and SE andS'E are the 
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semantic E-algebras respectively derived from A and U G(B) as described in 
§3.2.3. 

The homomorphisms g and k exist in A and 110(B) as (a set of) operations 
representing the semantic functions provided the semantic equations are 
homomorphic as discussed in §3.2.2. If there is a homomorphism, say 
h': A U0(B) which clearly must be an identity (or isomorphism) on the 
syntactic subalgebra of A then h'.g = k.h = k so h is the restriction of h' to 
the semantic part of A and the diagram commutes. Basically, the fact that g 
and k are unique homomorphisms allows the mere existence of h to 
guarantee commutation. 

The similarity with the so-called "Morris-square" (after Morris, 
1973) is worth noting here. In essence, his advice is that to prove compiler 
correctness requires to show that a square of homomorphisms with source 
programs, source meanings, target programs and target meaning on the 
corners commutes. 

source 
language L  

semantics 

compile 	> T  target 
language 

 

   

semantics 

     

NIP 

    

source 	NI 
meanings 

  

I)  target 
meanings 

encode 

 

Now if source programs and target programs are identical as they are here, 
the compiler becomes completely trivial and the square collapes into the 
triangle diagram above. 
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We have yet to comment on the relationship between pairs of 
semantic 1-algebras B and U 0(B) for some theory morphism a. If we 
denote the E-algebra corresponding to B and U0(B) as RE and S'E 
respectively, it is clear from inspection of the cases dealt with elsewhere in 
this thesis that SE  can be obtained from RE in a fashion similar to the 
application of Uo. It makes little sense in this context to think of S's and RE 
only in terms of 1-algebras since U o  only has an interesting effect on the 
semantic sorts and operators and these are "forgotten" when generating S'E 
and RE. Perhaps one intuitively helpful way to view the situation is to 
consider U0  as having the effect of renaming some of the derived 
operators of B (in the clone of B; §2.1) and forgetting others. Thus B and 
U0(B) can be considered as the same object viewed from the two attitudes 
of a ThA-algebra and a ThB-algebra, and their semantic 1-algebra are 
similarly related. Basically the effect of U 0  is either to remove unnecessary 
complexity, say replacing a variable by a constant as in moving from 
continuation semantics to direct semantics by always supplying the identity 
continuation; or add in further (unnecessary) complexity by composing 
functions to consider extra arguments, as in going from direct to 
continuation semantics by composing the direct semantic function with 
"application of continuations to stores". In brief , these two examples are 
represented by the following two equations respectively: 
CBI dipa = kir* (Aa.a)a and CcIldpea = 	cipa ). 

Our definition of semantic congruence may seem excessively 
restrictive especially given that to the present some such relations are not 
even able to be established. However, we maintain this view to be the 
appropriate one and that "congruence conditions" that fall outside our 
definition are "relations" or "facts" that may indeed be important or useful 
in themselves without actually being congruences. In the following sections 
of this chapter we will work through some examples (including the three 
already introduced) to test the usefulness of the algebraic framework we 
have set up. In most, though not all cases initiality assists us in proving the 
existence of appropriate homomorphisms. 
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4.2 Lambda Calculus Example 

In this section, largely taken from Baker-Finch (1984b), we 
investigate in detail the congruence of the denotational and operational 
semantics introduced in §4.1.2. The operational definition follows, while 
the denotational one may be found in 63.1.2 and the presentation LC is 
given in 63.1.1. 

Domains  
U=B+CLO 
CLO = Lambda xIde x E 
E Ode x U)z 
Semantic Function  
Eval: Lambda x E U 

(El) ) Evallc: constantlle = c in U 
(E2) Evalllx: Idele = Lookup(x,e) 
(E3) Evalfillx.0 e = <,x,e in U 
(E4) Evelio( (f3)1 e = apply(Evalial e, Eva1l4311e) 

where 
Eval110 Extend(e,x,b) if a = 

apply (a,b) = 
otherwise 

Extend(e,x,u) = <x,u>.e 
2nd (ea) 	 if i exists s.t. 1st (e4i) = x and 

Lookup(x,e) = 	 V j < 1st (e4j) x 
{  

otherwise 
&a is the ith element of the list a and 1st and 2nd respectively return 
the first and second item of a pair. 

operational semantics of lambda calculus  

We begin by briefly following an attempted proof of the congruence 
Value(Eval1144 e) = ValisS EN(e) described in 64.1.2 using the traditional 
techniques, to demonstrate how the proof breaks down in that situation. In 
outline, for our algebraic style of proof we intend to show that Op (the 
algebra corresponding to the operational semantics definition above) and 
Den are both models of LC and that furthermore Op is an initial model of LC. 
Thus by initiality there is a unique homomorphism mapping Op to Den and 
this can be shown to be the strong congruence desired. Den has already .  
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been shown to be in AlgLc (53.1.2) and the proof for Op is exactly 
analogous. By showing that the unique homomorphism h: TLC  -> Op is 
bijective (set-wise) we establish the initiality of Op. It will be seen in 
64.2.3 that there are some difficulties involved in this second step. 

4.2.1 The Scott-Strachey-Milne Approach 

This section is a summary of a paper by Turner (1979), a least up to 
the point where the proof of congruence initially breaks down. The proof 
techniques are basically those developed by Milne (1974). First we repeat 
the definitions of the embedding functions and the congruence condition. 

l u in V 	 if u EB 
Value(u) = 

EN(e)[x/a1 in V 	if u = 	E CLO 
EN(e) Ax.Value(Lookup(x,e)) 

For each 0 E Lambda, 
Value(Evall01e) = Va1101 EN(e). 

Structural induction over Lambda is not a valid means by which to attempt 
a proof of this congruence. This is clear due to the fact that the operational 
semantics does not directly provide the meaning of a A-expression in terms 
of the meanings of its subcomponents. Rather, Eval is given as the 
fixed-point of a certain functional so fixed-point induction suggests itself as 
the appropriate proof technique. 

In fact one half of the proof succeeds, namely Value(Eval1101e) 
Va1101 EN(e) where "4 " is the usual "less defined than or equal" operator. If 
we define a function F as follows: 

Lookup(0,e) 	 if 0 E Ide 
F = 	(ri,x,e> 	 if 0 = 

applys(Sflod) e,Sf1r311e) 	 if 0 = 0013) 

then it is quite straightforward (e.g. Stoy, 1977) to show that 
Value(FkG )1[01 e) ValllB EN(e) by induction on k. 

The converse, Va1144 EN(e) Value(Evalf01e) however cannot be proved by 
fixpoint induction. If we follow through an attempt to establish this result 
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it will be seen that the proof breaks down in the induction step. 
Define G as follows: 

1 p(a) 	 if 4) E Ide 
G = AD1.01.p. 1.a.DIqlp Ix/a] 	 if 0 = 1ix.q 

(Dicdp I FUN)(DiBlp ) 	 if 0 = a(13) 

At some point in the proof we must show 
( Gk(.1. )11cd EN(e) I FUN)(Gk(i )1p EN(e)) Value(Evalla ()ile). 

By induction it is sufficient to show 
V alue(Evaliall e)( Value(Evala131 e)) ( V alue(Evalla ( )lle). 

By the inequality established above the left hand side is an approximation 
to (Vela!' EN(e) I FUN)(Vallin EN(e)) which is VallIa(B)DEN(e). So we need to 
establish that Valia(13)11EN(e) Value(Evalloc(11)1e), but this is just what we 
are trying to provel Thus it could be said that we must prove the theorem 
as a lemma to its own proof. 

At this point Turner presents a less direct "congruence" based on the 
notion that congruent functions and closures must return congruent values 
when applied to congruent arguments. Though this is still quite a useful 
and natural concept of equivalence we argue that it does not constitute a 
congruence. 

4.2_2 Op and Den are Models of LC 

We have already shown in 63.1.2 that Den is a model of LC. The 
proof that Op is a model of LC is equally straightforward by choosing a 
carrier of Op for each sort of LC, a function of appropriate arity for each 
operator symbol of I (the signature of LC), and show that the equations E 

of LC are satisfied by such a E-algebra. Instantiate the sorts as follows: 

sort env: E 
sort W: U 
sort Abstr: CLO 

Then the operator symbols and functions correspond as follows: 

Op 
InjB: B W 	 ioU 
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injA: Abstr W 	 in U 
err:-'W 
arid: env 
bind: env x Ide x W env 	 Extend 
find: env x Ide -) W 	 Lookup 
A: Lambda x 	x env 4 Abstr 	 < 	> 
appl: W x W W 	 apply 
M: Lambda x env W 	 Eval 

Again, the underline notation has been used for operations written in 
mixfix. 

To test whether Op satisfied equations 1 to 9 of LC they may be 
translated into expressions of Op using the signature correspondence 
described above and then verified using the definitions of the operations of 
Op. 

1. Lookup(<>,x) = I. 
(find(arid,x) = err) 
Holds by the definition of Lookup since there is no i such that 

1 st(041) - x. 
2. Lookup(Extend(e,y,u),x) = if x=y then u else Lookup(e,x). 

(find(bind(e,y,w),x) = if x=y then w else find(e,x)) 
Can easily be shown by considering the cases x-y and xoy. 

3. Evan: constantlle = b in U. 
(M(constant(b),e) = injB(b)) 
Immediate by El of Op. 

4. Evalllx: Idele = Lookup(e,x). 
(M(var(x),e) = find(e,x)) 
Immediate by E2. 

5. EvallAx.nle = <n,x,e> in U. 
(M(abstraction(x,n),e) - injA(A(n,x,e))) 
Immediate by E3. 

6. Evallla 	e = apply(Evallall e,EvaliBI e) 
(M(application(a,B),e) = appl(M(u,e),M(B,e))) 
Immediate by E4. 

7. apply(b in U,u)= i.  

(appl(injB(b),w) = err) 
Follows from definition of apply. 
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8. 	apply((n,x,e) m U, u) = Evalr1I Extend(e,x,u). 
(appl(injA(A(r),x,e)),w) = M(n,bind(e,x,w))) 
Follows from definition of apply. 
apply(i,u) 
(appl(err,w) = err) 
Follows from definition of apply. 

Having thus shown Op to be in AlgLc, we automatically have a unique 
homomorphism from TLc to Op by the initiality of TLC. To show that this is 
an isomorphism and hence that Op is initial in AlgLc we may either show 
that this homomorphism is bijective or show that its inverse is a 
homomorphism from Op to TLC. 

4_2_3 Op is an Initial Model of LC+E• 

We would like to show that Op is initial in AlgLc by showing 
hE: TLC,env E,  hW: TLC,W U and hA :-LC,Abstr CLO to be bijective, the 
other carrier to carrier maps being identities. Unfortunately, hw and hA 
are not bijective and we must alter our semantic presentation slightly to 
proceed. 

The problem lies in the fact that the members of TLc ,w cannot be 
characterised by 
(injB(b) 1 b E B) u (injA(A(n,x,e)) 1 n E Lambda, x E Ide, e E env) u (err) 
which is what is required for a correspondence with U = B + CLO. By 
considering a non-terminating 13-reduction, say 111.1x(Ax.xx), MTLc is 
defined such that MTLc(11x.xx(21.x.xx),e) = 1M(Ax.xx(Ax.xx),e))E . This 
equivalence class contains no terms of the form injB(b) or injA(A(n,x,e)) or 
err. Thus, although all functions in TLC  are total, each non-terminating 
A-expression may have a different meaning so Mnc(Ax.ix(1.x.xx),e) 
MTLc(AYW( XYTY ),e )  MTLc(Ax-xxx(iallx),e) and so on. Now in Op. Eval is 
made total by sending all non-terminating A-expressions to i so there is no 
bijection TLciw -0 U, Op and TLC  are not isomorphic and therefore Op is not 
initial in AlgLc. 

To retrieve the situation we must restrict the algebraic semantics so 
that the error-like terms generated by non-terminating computations are 
all collapsed to err. Clearly the non-terminating A-expressions cannot be 
finitely characterised, since this would be a solution to the halting problem. 
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We can however extend the set of equations of LC to E+E .  where E .  is the 
infinite (and undecidable) set of equations given below. 
c' = (x = err 1 x E TLc,w & x * injA(A(ri,y,e)) for any ri,y,e 

& * injB(b) for any b E B) 
In effect, E .  puts any term occurring in one of the equivalence classes that 
make up the carrier for W in TE/Ec  that does not also contain a term such 
as injB(b) or injA(A(q,y,e)) into IerrIc+E .. The proof that hw: 	U 
and hA: TLc+E',Abstr  CLO are bijections now goes through easily by 
structural induction since TLc.t.E .,w can be characterised by the set 
expression we described above. 

However we are left with a residual problem. Since we are now 
considering the category Algu.i.c . rather than Algu, Op and Den must be 
shown to satisfy E+E .  rather than just E. To show that Op satisfies E .  we first 
translate the equations using the signature correspondence. 
eop - (x -"1xEU Scx • oly,e> in U for any ri,y,e 

8clobinUforanybEB) 
where "=" has replaced "E" since Op has already been shown to satisfy E. 
Clearly since U = B + (1o, c'op  reduces to the single trivially satisfied 
equation, I 1. 

In trying to show that Den satisfies E .  we meet another small 
problem. If we translate c' into the notation of Den we get 
£ 'Den  (x -"IxE V Scx Aa.Valfirlip Ey/a1 m V for any r),y,e 

&xplb in VforanybEB) 
Now V = B + FUN , but there are many members of FUN that cannot be 
expressed in the form Aa.Vallp Iy/a). To proceed we may alter the 
algebra Den simply by restricting the meaning domain so that Val is onto; 
i.e. Val: Lambda x ENV (V image Val) where V image Val is the subset 
of V consisting of only those elements that are the result of applying Val to 
some A-expression and some environment. This restriction has no effect on 
the semantics but reduces c'Den  to an empty set. Further, there is a 
E-homomorphism (the identity) from this restriction of Den to the algebra 
Den itself. Thus by composition, if we show there s a homomorphism from 
Op to the restriction of Den, we may immediately deduce the existence of a 
homomorphism from Op to the full Den algebra. 

Clearly such convolutions in the proof and such distortions of the 
semantic definitions seriously detract from what is otherwise a very 
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straightforward and elegant technique. However we may take heart from 
the fact that for those cases where such unpleasant extensions to the set of 
equations are necessary, we can work in close analogy with the above 
discussion of E'. In S4.3 we make another attack on this problem from a 
more basic starting point: The ways in which we make total functions from 
what are more naturally partial functions (Eval is a case in point). 

To finalise the proof that Op is initial in LC+E we show that 
hE: TLc+E.,env  E is one-to-one by structural induction over Tu+E.,env 
(actually , the carrier of canonical term algebra isomorphic to Tu i, E .). The 
details of the proof are easy but are included at the end of 64.2 for the sake 
of completeness, as are all other proofs. Finally to complete our proof that 
h: TLC+E' Op is an isomorphism we need to show that hE: TLc +E . E is 
onto. Again, the proof is by structural induction, this time over E. 

4_2_4 The Form of the Homnomorphism from Op to Den 

Up to this point we have shown Op to be an initial model of LC+E' and 
Den to also be a model of LC+E' and hence there is a unique 
E-homomorphism taking Op to Den. From our discussion in S4.1 we claim 
that this is all we need to prove to establish a congruence between Op and 
Den. However, we feel it proper at this expository stage to address the 
question of whether this E-homomorphism is indeed the intuitive 
congruence suggested in S4.1.2. In particular we are interested in the 
mappings U -o V, CLO -0 FUN and E -) ENV with the carrier to carrier maps 
being identities. It will be convenient to define these maps via TLC+E' SO 
let g: Tu+E , -0 Den be the unique homomorphism <gE: TLC+E .,env 4  ENV ,  
gW: TLC+W 4  V ,  gA: TLC+E',Abstr FUN>. Then the unique 
homomorphism from Op to Den will be (gE. hE': E -) ENV, gw.hw': U -) V, 
gp.hA': CLO -0 FUN> where h' denotes the inverse of h. 

What we need to show is that gE. hE' is the same as EN and gw.hw' is 
the same as Value; i.e. 
1. gw.hw(u) = b in V 	 ifu=binU,bEB 
2. gw.hw'(u) = 	gE.hi(e)1x/al m V 	if u = <ri,x,e> in U 
3. gElEle) - A.x.gw.hwILookup(x,e)). 
The proofs are quite direct and simple and are relegated to the end of this 
section. 
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The algebraic framework has obviously been very useful, allowing us 
to develop a simple proof of a relation that was otherwise unattainable. 
The only slight question hangs over the equations E', but as mentioned 
previously we demonstrate a technique to circumvent such problems in 
§4.3. In essence the reason that the congruence cannot be established by 
the traditional techniques is that they attempt to prove the homomorphism 
from Op to Den directly. Due to the nature of the definition of Op structural 
induction cannot be used and the only alternative, fixed-point (or 
computational) induction only goes round in circles. On the other hand, in 
the algebraic framework we can use structural induction over TLC  and 
indeed this is done in the proof that there is a unique homomorphism from 
TLc to any other LC-algebra (see Goguen et al, 1977). Proving that TLC  and 
Op are isomorphic requires further structural induction over TLC  and also 
over the domains of Op which is quite valid since they are simple data 
structures. So underneath all the algebra the proof is in fact simply 
(though indirectly) by structural induction. 

4.2.5 Proofs 

Proposition  
hE: TLc+E,env  E is one-to-one. '  

Proof: 
By induction over TLc+c env 
Suppose el and e2 are elements of TLc+E ',env and show that 
hE(el) = hE(e2) only when el = e2. 
case 1: el = arid 

hE(el ) = <> 
case 1.1: e2 = arid = el. 
case 1.2: e2 - bind(e,x,injB(b)) 

hE(e2) = <x, b 	hE(e) g hE(el) 
case 1.3: e2 = bind(exinjA(A(n,y,e'))) 

hE(e2) = <x, oi,y,hE(e)> 	U>.hie) hE(el) 
case 2: el bind(e,x,injB(b)) 

hE(el) = <x, b in U>.hie) 
case 2.1: e2 = arid 

hE(e2) = <> g hE(el) 
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case 2.2: e2 = bind(e',y,injB(a)) 
hE(e2) = <y, a in B>.hE(e') 
= hE(el) only when x=y, b=a and (by inductive hypothesis) 

e-e' 
i.e. only when el = e2. 

case 2.3 e2 = bind(Cy,injA(A(rj,z,e"))) 
hE (e2) = <y, <rj,z,hE(e")> Jo U>.hE(e') hE(el) 

case 3: el - bind(e,x,injA(A(rky,e'))) 
hE (el) ) = <x, <rj,y,hE(e')> in U>.e 
case 3.1: e2 = arid 

hE(e2) = <> hE(el ) 
case 3.2: e2 bind(e",z,injB(b)) 

hE(e2) = <z, b in B>.hE(e") h(el) 
case 3.3: e2 = bind(e",z,injA(A(P,p,e — ))) 

hE(e2) = 	<P,p,hE(e)> 111  U >lie" ) 
hE(el) only when x-z, n-13, y-p (by the inductive 

hypothesis) e=e" and e=e- 
ie only when el = e2. 

Proorosition:  
hE: TLC+,env  E is onto. c '  

Proof: 
Let en be an element of E. We show by induction over E that there 
is always an element e of TLC+E .,env  such that hE(e) = en. 
case 1: en = <> 

hE(arid) = 
case 2: en = <x, b in U>.en' 

by inductive hypothesis, there is an e such that 
hE(e1= en', so hE(bind(e',x,injB(b))) = <x, b in U>.hE(e') = en. 

case  3: en = (x, <fl,y,en'> in U>.en" 
by inductive hypothesis, there is an e' and an e" such that 
hE(e') en' and hE(e") = en". 
so hE(bind(e",x,injA(A(ri,y,e')))) = 

(x, <rj,y,hE(e')> 	U>.hE(e") = en. 
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Proposition: 
gw.hw(b in U) = b in V 

Proof: 
hw'(b in U) = injB(b) 
gw(injB(b)) = b in V. 

Proposition: 
g.h(<,x,e in U) = Aa.Valinl gE.hi(e)lx/a1 in V 

Proof: 
hvirl<n,x,e> 	- injA(A(ri,x,hE(e))), 
gwlinjA(A(q,x,hE(e)))) = Aa.Vall411gE.h(e)Ix/al in V. 

Proposition:  
gE.hE'(e) - Ax. gw.hw(Lookup(x,e)) 

PEA: 

By induction over E. 
case!: e 

gEhEle) = g(arid) = ALL v 
Lookup(x,<>) 
SO gw.hwILookup(x,<>)) = gw.hwliu) = g(err) = 
so ALL v Ax.gw.hw(Lookup(x,0)) 

case 2: e = 
gE-11E (e )  = gE(bind(hEle1,x,gw.hw(u))) 

= gE.hee'llx/gw.hw .(u)] 
= i . 

J 
 8E-E()() 	 if z x 

1 gw.hw .(u) 	 if z = x 
Az.  JAL gw.hw(Lookup(x,e))(z) if z x (induction) 

lgw.hw'(u) 	 if z = x 
= Az. f gw.hw(Lookup(z,e)) 	if z x 

lgw.hwTh) 	 if z = x 
= Az.  Igw.hwThookup(z,<x,u>.e') 	if z x (since z x) 

1 gw.hw'(u) 	 if z = x 
= Az. I  gw.hw(Lookup(z,e)) 	if z x 

lgw.hwILookup(z,a,u>.e . ) 	if z = x 
(for any e actually) 

= Az. gw.hw(Lookup(z,e)) 
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4_3 Initial Algebra Fired-Point Construction 

A natural, convenient and very common way of defining functions is 
to do so in terms of a set of axioms or equations that the function must 
"obey". In particular, the semantic definitions given in this dissertation all 
use this technique. However, in the case where the equations are recursive 
and the function intended to be defined is partial (undefined for some 
arguments), there can be many solutions. The following example taken 
from Manna (1974) demonstrates this fact. Given the following equation 
defining F, 

F(x,y) = if x=y then y+1 else F(x,F(x-1,y+1)) 
all of the following (directly defined) functions are among the possible 
solutions for F: 

fi(x,y) = if x=y then y+1 else x+1, 
f2 (x,y) =if x)y then x+1 else y-1, 
f3 (x,y) = if (x) y) & (x-y even) then x+1 else undefined 

So if we substitute the definitions of f , f2, or f3 for F in the above equation 
we get an identity. 

It is natural to take f3 as the function intended to be F above and it 
can be shown that f3 is less defined than or equal to any other solution of 
the above recursive equation. This observation leads to the traditional 
approach of least fixed-points wherein a single distinguished element, 
usually denoted w or i and representing the "value" undefined is added 
to the domain of the function and a partial order is constructed to reflect 
the notion of "less defined than or equal". It is then stated that the 
intended solution of a recursive equation is the least-defined 
fixed-point of that equation (actually, the functional represented by the 
equation); f3 in the case above. An important point to note here is that the 
process relies on eliminating partial functions, converting them to total •  
functions by adding an extra element to the domains to denote an actual 
value representing those places where the partial function is undefined. 

Given this rather rudimentary foundation it is possible for us to 
temporarily lay aside the widely-used least fixed-point approach and ask 
the question: how do we judge the suitability of a fixed-point solution? We 
suggest the answer is simply that no "sensible" value should be returned at 
a point where the partial function is undefined. In the traditional 
approach outlined above there can be (at most) only one such solution 
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because we add to the domain only one value that is not sensible - co, and 
that solution is the least fixed-point. 

However, the problems we had with initiality of Op in §4.2.3 and the 
term algebra construction hint at a different possibility: that of adding as 
many different undefined values as there are separate paths of 
non-terminating computation (considering the equations as rewrite rules). 
We proceed now with a definition of such a domain extension and the 
associated solution of recursive function definitions and follow this with an 
investigation of some of the properties of the construction and its 
application to our work. 

4.3.1 Definition 

In general the type of function definitions we are dealing with here 
feature the following elements: 

(a) some domains, 
(b) the arity of some functions to be defined to operate on those 

domains, 
(c) some equations intended to define those functions , possibly 

directly or mutually recursive and involving: 
(d) certain other pre-defined functions on those domains. 

Quite likely (a) and (b) will only be implicit in the definition. If we 
consider the names of the domains (a), together with (b) and the arities of 
(d), plus the elements of the domains (treated as constant operators) to be a 
signature Q, we may generate the word algebra TQ. We can generate the 
smallest 0-congruence, s c  based on the equations (c). By treating the 
functions (d) as sets of ordered pairs, we may further generate the 
smallest a-congruence containing s c  and (d). If we now take the quotient 
TQ/s then the completion of some domain A (say) may be denoted A+ and 
can be defined to be 

A+ g A u (TQ/EA - 	I a E A)) 
or, more simply 

A+ TQ/s-A 
Similarly the completion of f: X -) A is r: -) A +  and r (x) = If(x)1.. Again, 

f+  fTo/s. 
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An example may help clarify matters. Consider the usual recursive 
definition of factorial over the integers, fact: Z -• Z and 
fact(i) = i=0 -) 1; i x fact (i-1). The four elements outlined above are 
present: 

(a) domain - Z 
(b) arity of fact - fact: Z -• Z 
(c) equation defining fact - fact(i) = i = 0 -• 1; i x fact(i-1) 
(d) pre-defined functions - _-0-•1;_:Zx2-•2 

_x_:ZxZ4Z 

In this case Ti2 has one sort, Tca = (rfact(ir 1 i E Tizz) u 
(ri-0-, 1;r1i,jcTca)u(rixrli,jeTca)u(1-1 -'1iETRz)uZ. Ifwe 
respectively call c and the definitions of d £ and c', we get 
E = 	(cfact(i)", i = 0 -' 1; fact(i - 1 )'> 1 i E Tca ) and 
c'= (C0=0-01;r,1))u((1=0-, 1;r,plio0)u(ixr,ixpli,jeZ)u 

i - 1> 1 i Z) 
and TQ/E is as follows: 

Z+ To/E----z Z + R 
where R = (rfact (i) 	Zneg ) u (rfact Or 1 i 12) u 

(rixplic12,jEZ+)u(rixr1jER,i€Z)u 
(ri-rliER)u 
(ri=041;r1iER,jalu(ri=0-, 1;r1j€R,icr) 

face(i) = i E Zpos -• 11; rfact(i) 
ix+j=iEZ&jEZ-oixj;rixr 
1-1 +  =iE 2-)i-1, ri-1" 
i=0-41;+j=iEZ&jEZ-0 

i = 0 1; j ; ri=041; 
The overall effect is to add a new undefined element to the 

domain for each non-terminating computation unless it can be reduced to 
another term for which we already have such an element. For times when 
we may wish to be explicit about using such a completion, we introduce the 
(generic) function afix: ED -) DI D distinguished from the usual least 
fixed-point fix: ID -) DI D but allow the ambiguity of denoting both types 
of domain completion as D+. Thus for the factorial example above, 
face: 2+  -• 2+ and face = 	1=0 -01; F (i-1)). 

Clearly, such a construction satisfies our criterion of giving no 
sensible value to points where the partial function is undefined and as will 
be seen in §4.3.2, if we use this concept rather than the least fixed-point for 
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the rather u pleas t set of equations of E4.2.3 ci n be avoided. ; 
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F ally, we ote that our do 'n coupletions and the function giriz 

depend to a degree on the context of the pre-defined functions involved in 
the definition. Clearly in our factorial em u& above we could have easily 
identified the pre-defined functions to be other than those used, for 
example 

_=0-01;_xxZxZ-*and 

The co5.,pletions will differ in the following way: for the original definition, 
Z+ will contain ele reLents such as [ 1-3 x fact (-1)1 whereas if we used the 

ternative set of pre-defined functions, no such ter II can be gener ted. 
Thus in the two cases the eleueils added to Z to make 2+ will be different. 
This is perhaps a little unfortunate and and suggests that full details of the 
pre-defined functions must be given to indicate that the true nature of gliz 
and the do gin oorci,pletions. Fortunately, for our applications such det q'fls 
are auto0atically included through our use of s natures in se 0 If tic 
presentations. 

4.31 Tile Lambda Cdcwilloo Ihnoge Ilevilonted 

For the traditional proof of congruence of the operation 
denotational se antics of the la rill bda calculus the usual partial order/ least $1, 

fixed-point construction was used to !lake the functions Eval and apply 
total in a sensible way, presumably because it then matches the 
denotational se 0 antics and possibly also because the consideration of 
alter %gives was of no apparent value. So although it is 31 ost natural to 
view the s terpreter as a 11;1, tial function it needs to be 'Lade total so that 
it coincides with the denotational definition sd it is therefore convenient 
to use the sao e s achinery as de,lotational se 3.1  antics. 

Our experience suggests that this is not the ki ost oonve,tient 
approach in our algebr 1:c framework. Functions do leed to be made total 
to fit our definition of 0, any-sorted algebras, but it would see 0, convenie4t 
in the case under discussion to make Op co cide with the initial 0 ode! of 
LC. Such a chg ,I,ge to Op could not be 52'd to 2ctually change the se 0 antics 
it represents s, lice the change is only to points where the partial functions 
Eva and apply are undefined. 
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By using our initial algebra fixpoint explicitly for the operational 
semantics, we can arrange that Op is initial in AlgLc. The following 
definition avoides recursion by explicit use of at& assuming the 
pre-defined functions be to those identified by presentation LC. The 
(rather unwiedly) notation used for defining mutually recursive functions 
is that also used for the usual function fix and is discussed in Stoy (1977) 
and Manna (1974). 

au:faint 
= B + CLO + (I) 

CLO - Lambda x Ide x E 
E = Ude x 

Semantic Function  
Eva!: Lambda x E+ U +  

c in U 

1

iff=c€B 
Lookup(x,e) 	if f = x E Ide 

<Eval, apply> = afix (AEA.<14e. q,x,e>, in U 	if f = Ax.n 
A(Elloth e, Eilpil e) 	if f - tx(p) 

, lab. JEW Extend(e,x, (3) if a = 
b. 	 otherwise 

>) 
Extend and Lookup are unchanged. 

operational semantics of lambda calculus (Version 2) 

The (perhaps rather surprising) explicit inclusion of an element ".1." in the 
domain U does not imply any ordering. Rather, it is a legacy of the 
unfortunate and somewhat unorthodox explicit use of in the original 
definitions of apply and Lookup for denoting situations other than 
non-terminating computations. A more standard technique would have 
been to use a further explicit error term (usually denoted ?)) so that in the 
original operational definition, U = B + CLO + (7) and ? replaces i in the 
definitions of apply and Lookup. Had this been the case, the more 
acceptable element ? would also have been used in version 2 of the 
semantics rather than the somewhat misleading 

The proof of initiality of the algebra associated with the new 
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definition (call it Op') is now immediate since U+ TLC,U and r TLC,E-
This algebra, Op which is in our view a quite satisfactory completion of the 
(partial function) interpreter, is an initial model of LC so the equations c' 
of §4.2.3 become unnecessary and the congruence of the operational and 
denotational definitions is established in the straightforward manner 
originadiP'rOPosed. In later proofs involving operational semantics we 
shall have no hesitation in using the initial algebra fixed-point construction 
rather than the traditional least fixed-point construction. 

4.3.3 General Properties and Observations 

In this section we wish to consider briefly a number of the more 
interesting and relevant properties of the initial algebra fixed-point. This 
does not in any way purport to be a complete or structured investigation. 

As mentioned in 64.3.1 the "choice" of predefined functions greatly 
affects the domain completion generated by our technique. This does not 
cause a problem here since the nature of our endeavour is such that 
signatures are always provided, but in general some similar explicit 
identification of the pre-defined functions is required. Thus for some set of 
predefined functions P, we should perhaps write afixp and I)+P rather than 
the ambiguous afix and D. 

One of the nice features of the initial algebra fixed-point construction 
when it is applied to operational semantics is that it is more 
computational" than the traditional least fixed-point approach. By this we 

mean that the undefined values added to the domain directly reflect all 
possible attempts to evaluate the function at a point where it is not defined. 
For example, in the case of the definition of factorial above, the result of the 
expression fact (-2) is Irfact (-2)1 and other expressions in that 
equivalence class include r-2 x fact (-3)', r-3 X -2 x fact (-4)' and so on. 
Every (reasonable or otherwise) computation rule will be represented. This 
is quite pleasant in a way since if we consider the introduced undefined 
elements as error messages then they contain maximum possible 
information about what has been asked of the interpreter and the paths it 
could possibly follow. In this respect at least, the initial algebra fixed-point 
seems more suited to operational semantics than the least fixed-point. 

Monotonicity and continuity of functions are very important notions 
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when dealing with the traditional completion technique since they provided 
a simple way of ascertaining whether a least fixed-point exists. The 
question naturally arises whether such notions are relevant to our algebraic 
completion. Our intuition suggests not, since a quotient algebra exists for 
any presentation and thus we should succeed with the completion and the 
initial algebra fixed-point for any function definition irrespective of 
monotonicity. We demonstrate this by examining two simple examples 
taken from Manna (1974). 

EwanILL 
101(x): iT F(x) 0 thenlelse 0 
T is a functional corresponding to the recursive equational 
definition F(x) = if F(x) =4 0 then lelse 0. T is a nonmonotonic 
functional over IN+  -) Nithat has 110 fixed-points. 
Our approach is the following. 
(a) domain - N 
(b) arity - F: N N 
(c) F(x) =if F(x) =0 then 1 else 0 
(d) pre-defined functions - 

if_- 0 then_else_:N x14 x1N4141 
So calling the implicity represented signature 0, 
To ,N = 14 u (if i= 0 then j else kIi,j,k E To,N) U (F(i) Ii E TizN) 
TiVEN = ii u (IF(i)L1i E TQ/EN) 
and the two summands are distinct. Thus any attempt to evaluate F 
results in an error message whcih is as we would wish. 

TIG1(x): if G(x) a 0 then 0 else 1 
T' is a functional corresponding to the recursive equational 
definition G(x) = if G(x) 0 then 0 else 1. T. ' is a nonmonotonic 
functional over [re N1 that has two fixed-points, 0 and 1, but no 
least fixed-point. 
Our approach is the following. 
(a) domain - 
(b) arity - G: N -0  IN 
(c) G(x) = if G(x) =0 then 0 else 1 
(d) pre-defined functions - 

if_=0 then _ase_: NxNxIN PI 
So calling the implicity represented signature I, 
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TE ,N = N u 	i = 0 then j elsekI i,j,k E TE ,N) u (G(i) I i E TE ,N) 
TE/EN = N u 	I I E TE/EN) 
and the two summands are distinct. Thus any attempt to evaluate G 
results in an error message which is as we would wish. 

Clearly the initial algebra fixed-point construction can be useful for 
our purposes and we shall make further use of it in the ensuing sections. It 
is at least acceptable according to our earlier stated criterion of not giving 
sensible values where the partial function is undefined and it can be 
argued that for operational semantics where the concept of computing a 
result is central, our algebraic domain completion is a better reflection of 
the situation than the more usual least fixed-point and complete partial 
order style of completion. 
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4.4 Addition Expression Example 

In this section we consider the congruence of two very simple 
semantic models (adapted from Stoy, 1977) that are clearly from different 
theories. As discussed in 54.1.3 the notion of congruence here coincides 
with a theory morphism so our Investigation will involve defining the 
theory morphism, proving that it is such and examining the derived model. 
Since this is the first example of such a congruence (and a very simple one) 
we will include considerable detail that in later examples would be 
tiresome and could cloud the central issues. We begin by repeating the 
semantic definitions given in 54.1.3 and presenting theories of which they 
are models. 

4.4.1 The Presentations and Models 

We refer the reader once again to the direct and stack semantics for 
addition expressions which we duplicate here. The algebras associated with 
these definitions will be called Dir and Stk respectively. 

Syntax 
<Exp>:: <FA> I lisp) + <Sip> 
Domain 
14 	natural numbers 
semantic Function  
ED: Exp F1 

(1) EDINA n 
(2) Spiel .e211 	Sple21 

Dir-direct semantics for addition expressions  

Sulu 
(Exp>::  <FA> I <Elio 4. dbcp> 
Domains 

natural numbers 
PI* 	 stacks are represented by 

sequences of natural numbers 
Semantic Function  
Es: Kip x N.  -4 W 
(1) asInit 	act t 
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(2) este' • e2t - add(sleptsle )) 
where add(t) - (t4I + V.2)es1(trzi7(tili(t)). 

Stk - stack semantics for addition expressions  

As would perhaps be expected for such simple semantics involving such 
fundamental domains, the semantic presentations bear considerable 
resemblance to the definitions above. 

syntactic sort Exp 
const: N -• Exp 
plus: Sip x Sip -• Sip 

sort N 
zero: -) N 
succ: N -• N 
sum:NxN-•N 

4): Exp N 

Equations En 
DI. sum(zero,n) n 
D2. sum(succ(n),m) sum(nesucc(m)) 
D3. 4)(oonst(n)) n 
D4. 4(p1us(e 1 ,e2 )) - sum(4(e2), 4(e1)) 

- direct semantics presentatioa 

Signature Qa 
syntactic sort Sip 

const: N Exp 
plus : Exp x Exp Sip 

sort N 
zero: -• N 
SUCC: N N 
sum: Nx N-041 

sort Stack 
empty: Stack 
push: Stack x N Stack 



88 

pop: Stack Stack 
top: Stack 4 N 

4: Exp x Stack Stack 

Equations Ea  
Si. sum(zero,n) n 
S2. sum(succ(n),m) sum(n,succ(m)) 
S3. top(push(s,n)) - n 
S4. pop(push(s,n)) s 
S5. 4(const(n),$) push(s,n) 
S6. 4(plus(e1,e2),$) - push(pop(pop(s1 sum(top(s . ),top(pop(e)))) 

where s' - 4(e2 14(e1 1s)) 

5  - stack semantics presgntation 

To show that Dir is a model of ThD and Stk is a model of Ths we need to 
instantiate the sorts and operator symbols of the presentations with 
carriers and functions from the algebras and demonstrate that the 
equations ED and Es respectively are satisfied. To distinguish between 
identical operator symbols from the two presentations we decorate them 
with subscripts such as constD and consts. The signature correspondences 
are as follows: 

Dir 
constD: N Exp 	 <Exp>::- <lb 
plusD: Exp X Rip Rip 	dirro::. <Sip> • <Sip 
zeroD: N 	 0 
succD: N N 	 _ + 1 
sumD:NxN4N 	 -+-.  
ED: Exp 4 N 

Stk 
coasts: N Sip 	 <11> 
plus: Sip X Sip Sip 	<Rip:- <Sip • diiip 
zeros: -• N 	 0 
succs: N N  
sums:NxN4N _ + _ 
empty: 9 Stack 
push: Stack x N -4 Stack 	- est _ 
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pop: Stack -• Stack 	 tail 
top: Stack N 	 _ 4 1 
A: Rip x Stack Stack 

The equations of ED and Es are so trivally satisfied that we eschew any 
further considerations of proofs that Dir is a model of ThD and Stk is a 
model of Th. 

4.4.2 The Theory Morphiss and the Derived Model 

In 64.1.3 we suggested that the congruence between Dir and Stk 
embodied in the following statement: 

For all  e Ely and t N*, 
apIel %stet 41 

resembles a derivor or a theory morphism. In this section we explicitly 
define the theory morphism a: ThD The,  prove that it is indeed a theory 
morphism and generate the derived model U o(Stk) which will later be 
related to Dir. 

Following the convention mentioned in 62 we use a to represent both 
the sort map and the operator symbol map. 

a(ExpD) - Rips 
a(ND) Ns 
a(constD) = consts 
a(plusD) pluss 
a(zeroD) - zeros 
a(succD) = succs 
a(sumD) - sums 
a(t)(e) - top( A(e,$)) for any stack expression, s. Though the 
choice of s is irrelevant, it must be specified for a to be fully defined. 
The simplest choice is s = empty. 

By the presentation lemma (62.3), to show that a is a theory morphism we 
need only show Eqn(aXD1, ... 1)4) are in Es. In other words we translate 
the equations DI, D2, D3 and 1)4 using the definition of a and show that the 
new equations can be established from SI - 56 of Es. 

a(D1): sums(zeros,n) = n 
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o(D2): sums(succs(n),m) sums(n,succs(m)) 
o(D3): top(4(const5(n),empty)) n 
a(D4): top( A(pluss(e i,e2 ),empty)) sums(top( A(e2,empty)), 

top( 4(e 1 ,empty))) 
Both o(D1) and o(D2) are exactly the equations Si and S2 while o(D3) can 
be shown from S5 and S3. The final equation o(D4) requires a more 
detailed proof. 

It is here that our requirement that sort Rip be freely interpreted 
comes into play (see 63.3.5). Without such a restriction o(D4) cannot be 
established from Si ... S6 by the usual system of equational inference 
based on the reflexivity, symmetry and transitivity of equality plus the 
substitution properties. Thus a(D4) is not an equation of Ths. Expressed 
model-theoretically (rather than proof-theorectically), if we allow a 
non-initial interpretation of Rip then in some algebra, say A, there is an 
element of ExpA, say Q, that is not the value of any term (i.e. it is "junk") 
and AA(Q0) s. Clearly by substituting Q for e2 in 0(1)4) we see that the 
equation does not hold for A and thus is not in Ths. Hence it is only 
through our insistence that Rip be freely interpreted that induction on the 
structure of the terms becomes a valid means by which to find equations 
holding in a theory. 

Rather than directly deriving o(D4) it is convenient first to establish 
the result A(e,s - push(s1 1top(g(e,s2))) for any s2. Using this equation, 
the proof of o(D4) is as follows: 

topig(pluste ,e2 ),empty)) 
- sum(top( 4(e2,A(e 1 ,empty))),top( pop( A(e2,4(e i ,empty))))) 

- S6, S3 
sum(top(push( 4(e i  ,empty),top( A(e2,empty)))), 

top( pop( push( Ve 1 ,empty),top( 4(e2,empty)))))) 
- above result 

sum(top( A(e2,empty)),top( 4(e i  ,empty))) 	- S3, 54 
The underlying result is proved by induction over the structure of 
expressions. 

case 1:  e const(n) 
A(const(n),s i) - push( s 1 ,n) 	 - S5 

push( s ,top( push(11,s2 ))) 	- S3 
push(s ,top( 4(n,s2))) 	- S5 



91 

case 2:e = plus(e ,e2 ) 
4(p1us(e i ,e2 ),s i  )= push(pop(pop(s)),sum(top(s)top(pop(e)))) 

where If = A(624(81,81)) 	 -56 
push(push(s 1 ,top( 4(e I  ,s2 ))),top( 4%(e2 1 .63(e 1 

- inductive hypothesis 
push(s ,su m(top(s),top( pop(e)))) - 54 

= push(s 1 ,su m(top( A(e2, A(e 1,82 ))),top( Ate 
- S3, S4 

push(s1,sum(top(4(e2,4(e1,82))), 
top(pop(push( Ate .82 ), 

top(A(e2,83))))))) 
- 54 

= push(s ,su m(top( 4(e2,4(e ,s2 ))), 
top(poptt(e2 14(e  

- inductive hypothesis 
push(s ,top(push(pop(pop( 4(e2,Ate 1 

sum(top(4(e2,4(e1,82))), 
toP(Polg 4(e2,4(e  

- S3 
- push(81,top(4(plus(e1,e2),82))) - 56 

Having thus shown a to be a theory morphism ThD -) Ths, we may 
derive a D-algebra from any S-algebra by the contravariant application of 
a. In particular we are interested in deriving a D-algebra Uo(Stk) from the 
S-algebra Stk. The carriers of ExpD and ND in U o(Stk) must be the carriers 
of Exps and Ns in Stk since the definition of a says that o(ExpD) Exps and 
u(ND) = Ns. The following definition of Uo(Stk) uses notation similar to the 
semantic definitions of Dir and Stk for comparison purposes. 

5,Y11111/ 
Pb( I <Elio • <Rip 

Dalian 
14 	 natural numbers 
Stiustitlimahla 
Sus: Exp -) N 

(1) EusInl - (411110)j.1 - (n cat 041 - n 
(2) IUSiel e21 ( gel e0 (>41  

U(Stk) - derived semantics for addition exoressions  
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It would have been possible to come up with the direct definition 
aUSIel *e21 Steel] + guste21, but leaving it in terms of as reflects the 
fact that Eus is derived from Es . We now move on to consider how Dir and 
Uo(Stk) are related. 

4.4.3 The Relation Between Dir and 11 0(Stt) 

In 64.1.3 it was suggested that proving the congruence Spiel - 
(EsIlelt )41 was equivalent to showing Dir Uo(Stk). In fact we have been 
deliberately vague in the definitions of Dir and Stk to demonstrate that this 
is not necessarily the case. In Stk we have not given precise definitions of 
the auxiliary functions 41, 42 and tag particularly their boundary 
behaviour. By considering expressions as 041 and 1,61 (0) it It clear that 
some sort of error element must be available in both domains N and N* yet 
no mention is made of such in the definition. Further, no such error 
element is needed in the domain N of Dir so it is clear that Dir and Uo(Stk) 
may not coincide exactly depending on how we determine the final nature 
of the domains. 

Now the intention of Stoy (1977), from which our definitions have 
been adapted, is clear: all domains are complete lattices with a 
distinguished, incomparable error element whether it is needed or not. 
Thus they all have 1, T and ?, with tag(*) - ? and (0)41 - ?. In this case 
we could establish the full equality of Dir and U o(Stk). However, if the 
domains do not completely coincide we can still establish that there is a 
(one-one) homomorphism Dir U o(Stk), and that homomorphism will 
satisfy the condition Spiel - austel - (Eget 41 which was the original 
statement of congruence. 

Hence we intend to remain vague in our definitions of Stk and Dir 
and show that Dir and Uo(Stk) are homomorphic irrespective of whether 
we have an error element in domain N of Dir. In other words we are 
establishing the congruence for several variations on Dir. 

We could establish the existence of h: Dir Ua(Stk) by showing Dir to 
be initial in TN) (this would require us to eliminate the vagueness in the 
definition of N), but a direct proof is simpler. Compare this with our 
previous example of the lambda calculus where a direct proof was not even 
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possible using known techniques. The homomorphism (if it exists) consists 
of two maps hE: DirEip  4  USExp and hN: DirN -4 USN that satisfy the 
following conditions: 

heconstmr(n)) - constus(hN(n)) 
plusDir(e ,e2)) - plusus(h(e 1 ),hie2 )) 

hN(zeroDir ) = wrous 
hN(succDir(n)) succus(hN(n)) 
hN(sumDir(m,n))) - sumus(hN(m),h00) 
hN(roir(e)) rus(h(e)) 

Clearly, the first five conditions are trivially satisfied by choosing hE and 
hN to be identity maps. The last condition, translated below into the 
notation of the semantic model definitions, requires proof by induction over 
the structure of expressions. 

hN(rDir(e)) Spiel since hN is an identity. 
rfus(hie)) tuslel since hE is an identity. 
Proof that Spiel - tusiel for all e: 
case 1: e n 

EDIel -n 
IUSim (1Sinit)i1 = n 

gasea: e - ei + e2 
IUSiel +  e21 (ISIel +  e2it 

= (adasle211(esle )))41 	definition es 
(add(IDIe21 est (Isle Mt 1 

inductive hypothesis 
(add(EDIe211 cat (Idle cat t))41 

inductive hypothesis 
((eDle21 + 	II) cat 04.1 	definition add 

- (Epley.- e21 cat Oa 	definition ED 
= IDIei+ e21 

Thus we have completed our proof that Dir and Stk are congruent semantic 
models by showing that there is a theory morphism a and a 
homomorphism h: Dir 4  Uo(Stk) (which is one-one by virtue of the fact that 
hE and hN are identities, and may be onto depending on the exact definition 
of the t1 domains). 

4.44 Comparison with the Usual Style of Proof 

It is interesting to compare the proof we have detailed in this section 
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with the more traditional style of proof suggested by Stoy (1977). The 
obvious approach is to establish Spiel - (astelt )il by structural induction 
over e, which is in fact exactly what we did for the very last part of our 
proof above. 

The question naturally arises why all the rest was necessary: 
defining presentations D and S aand showing Dir and Stk to be models; 
defining a and showing it to be a theory morphism; deriving Uo(Stk); and 
finally showing that there is a homomorphism Dir -• Uo(Stk), being the only 
part having some correspondence with the non-algebraic proof. Part of the 
answer lies in the fact that we have proved something about the 
relationship Spiel - (eslellt )41 beyond merely showing it to be true. Since 
we have adopted a precisely defined notion of congruence in terms of 
theory morphisms and homomorphisms we must work within that 
framework. In other words we need to show that the relationship Spiel - 
(Eget 1 is a commence and this is where most of the effort in this 
section was concentrated. 

It is important to note that in this case and indeed every case where 
the homomorphism can be directly dealt with (unlike the lambda calculus 
example), the proof can be greatly simplified by a different choice of 
semantic presentations. If we review the proof in this section it is dear 
that most of the work goes in showing that the equations of the theories are 
satisfied in various circumstances yet the final crux of the proof, that 
/Did = (asI et ) 1, makes no use of the equations at all. If, instead of the 
presentations D and S we had given only their respective signatures (call 
them A and E) without any equations we could have followed the same 
style of proof with much less effort. First, to show that Dir and Stk are 
respectively models of Tha and Thz we need only show that they have the 
appropriate signatures. Second, given that a is a signature morphism, it is 
Immediately a theory morphism ThA -• Th! by virtue of the fact that there 
are no (non-trivial) equations in the theories. Finally, showing that there is 
a A-homomorphism Dir Uo(Stk) is exactly the same as the non-algebraic 
structural induction proof. 

Thus, for cases where the homomorphic relationship can be directly 
established without redress to initiality results the most sensible choice of 
semantic presentation is simply a signature Q and the theory represented 
is the free theory ThQ. By making such a choice the work involved in the 
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algebraic proof is exactly the same as that required to establish the 
congruence result by traditional techniques, so our approach does not in 
fact suffer on the grounds of practicality or effort required in comparison 
with the traditional, less-structured one. 
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4.5 DEVIL Example 

In this section we treat a more realistic example with the intention of 
consolidalinithe work already presented. A subsidiary objective is to 
demonstrate the facility and expressive power of using algebraic 
presentations as semantic definitions, a theme discussed in Chapter 3. The 
language is DEVIL (Henson & Turner, 1982) though we have eliminated 
gob's and labels since they add length to the semantic definition and 
proofs without adding any extra interest. DEVIL in turn was based on the 
language uied by Strachey & Wadsworth (1974) to introduce continuation 
semantics. 

The language was chosen by Henson & Turner because it contained 
most of the features which force a wedge between denotational and 

operational definitions. We choose it for much the same reason but also 
because Henson & Turner's so-called completion semantics offer an 
interesting and unusual style of operational semantics. Further, the 
notation used for completion semantics is much more directly amenable to 
our algebraic treatment than the more usual "interpreter definition" style 
of operational semantics (es. Stoy, 1977, 1981). The abstract syntax for 
DEVIL is as follows: 

c: Com 
e: Exp 
d: Dec 

- dummy Ic; cI 	e I call e I resnitis e I if e then c else c 
I while e do c I begin d; c end 

e:: - I true I false I e then e else e I valof c I proc c 
= var i I d; d 

The existence of result blocks (valof c, resultis e) is enough to make a 
direct style of denotational semantics inadequate to describe DEVIL. 

4.5.1 The Presentations and Models 

We begin by detailing the denotational semantic definition of DEVIL. 
We offer no commentary other than to note that it is a continuation 
semantics and refer the reader to Strachey & Wadsworth (1974) if 
necessary. The corresponding algebra wil be called Cont. 
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kininus_saina 
T .( 

Semantic Do 
.u.0 	

• 
elan) 

v:E.TfF 
6:D.L+K 

o: Su lu, p. 	
Ude -• x  K 0:   

K: K 934 
‘‘I  

0: F (C CI 

truth values 
locations 
expressible values 
denotable values 
storable values 
stores 
environments 
command continuations 
expression continuations 
function closures 

Semantic Functions  
1): Dec U -) S 	x SI 
C:Com-'U-4C-)C 
1:Exp-• U-• 

1. 'Divas' Boo - (pIi/new 01, oInew a/71> 
2. di; d2Ipa ti d2lp 'a' 

where IX d lips - 
3. CIdusanylp0 - 
4. Clco; cilp0 Cle.0lp(Clc1lp0) 
5. CI Laelp0 - Ile%) (update( pl il )0) 
6. CI call elp0 - Ilelp (call)) 
7. Clresultis elp0 a 8Ielp (p42) 
8. CIff e then co else c1lp0 a Elelp(cond(Clcolpe , C1c11p0)) 
9. Clvhffe e do clp0 fix1X0'. Help (conaldp0 ',OM 
10. Clbegin d; c endlp0o Chip Val 

where VI dlpo (ps,a 1 > 
11. Elam" - K(o(plillt.)) 
12. throe 	= K(true) 
13. ElIalselpK - K(false) 
14. Elff eo then el else e2IpK Eleolp(cond(leilpK, ele2IpK )) 
15. elvalof dpic - CI d (p41,K)(7) 
16. El proc dot - K(Cldp ) 

Auxiliary Functions  
new a is a location unused in a. 
update de - hva. d e L 8(oldIL/v1); ? 
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call 8 Av. v E F 4 (v1FX3 ; ? 
cond (80,80 Av. v E T (vIT 4 Op; elk ? 

Coat - continuation semanti for DEVIL  

The completion semantics correspond closely to the continuation 
semantics above. In fact the correspondence is so strong (compare the 
domain definitions) that Henson & Turner(1982) are moved to argue that 
completion semantics should be viewed as the standird operational 
semantics. An important point to note is that the semantic definition that 
follows is first-order in that the domain equations involve only the 
domain constructors "+", "x" (and "*") but not "4". Jumps present something 
of a problem in this context and Henson & Turner offer "completions" as a 
possible solution. These are data items (consisting in part of pieces of 
program text) that directly represent continuations. 

A more detailed comparison of the domain equations of the two 
semantic definitions is worthwhile. Notice firstly that the basic domains of 
expressible, denotable and storable values have very similar structures. 
Next, the store and environment in the completion semantics are just the 
usual list-of-pairs representations of the mapping functions of the 
denotational definition. For the operational definition of F the domain of 
procedure values, the obvious representation is a closure, directly 
analogous to the corresponding aspect of the operational semantics of the 
lambda calculus (g4.2.1). 

Command completions and expression completions correspond to 
command continuations and expression continuations respectively. 
Command completions may have the form (text, p, 0> EFxC 
or <text, p, K> Exp xUxIC or 4,, so E x K. With the first and second form 
we have some text to evaluate, an environment to evaluate it in and a 
completion to evaluate next. The third form reflects the fact that 
expression completions represent expression continuations K [11 CI, so 
given an expressible value te and an expression completion K, 4fr,K> is the 
command completion corresponding to the "application" of K to V. Naturally 
in all cases in the operational semantics a store must be provided before 
any computation can proceed. 

Expression completions take one of three main forms, in which the 
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words "update", "call" and "cond" are used as an aid to readability and to 
correspond to the auxiliary functions of Cont but contain no actual 
information. By providing them with an expressible value and a store, an 
intui0eliticloperational) explanation of the various forms is possible. 
First,iirti(iend((update,d,0>,v), a) has the effect of assigning It to d in a and 
then running 0 on that new store. Next, run(send((calt0),v), a) expects I ,  to 
be a closure (c,p> so the effect is to execute c with the parameters p,0 and a; 
i.e. ClcIpOo. Finally run(send((cond,01,02),v), a) expects t,  to be a truth 
value and accordingly chooses one of 01 or 02 to be run on 0. Thus the 
whole philosophy behind completion semantics is to offer a textual (and 
therefore referentially opaque) representation of the higher-order concepts 
of continuation semantics. 

Semantic Domains 
T - (true, false) 

t: L 
v:E=T+F+(?) 
6:D=L+K+(?) 
v:V=T+F+(?) 
a: S = x VI* + (?) 
p: U Ilde x Dr x K 
0: C 	x CI + 

(131p x U x KI + 
IE x1(1+ 
(fail) + (final) 

K: K = ((update) x D x CI + 
((call) x CI + 
[(cond) x C x CI + (?) 

•: F = (Corn x UJ 

truth values 
locations 
expressible values 
denotable values 
storable values 
stores 
environments 

command completions 

expression completions 
command closures 

Semantic Functions  
1:1:Dec-'U-)S-P1UxS) 
C:Corn-• U4C-*S-PS 
6:Exp-• 

1. "'war Op° - <bind(p,i,new(a)), set(a,new(a),?)> 
2. $( d ; d21po -1)11d2lp 'a' 

where t1 d 111po =<fist') 
-1)11d211((9)11 d 	)41)(('11 d Ipa )42) 
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3. Cldwassylp0a run(0,a) 
4. Clco; c1lp0a Clcolp(<ci,p,O)a 
5. CI i: = elp0a = El elp (update,lookup(p,i),0)a 
6. Clean elp0a Ele1p(call,0) a 
7. Clresultis elp0a = Elelp(res(p))a 
8. CIff e then co else c1lp0a = Elelp (cond,«c0,p>,0>,«c1,p>,0>)o 
9. Clvhile e do dp0a run(afixp0le,p,(cond,«c,p),0'>,841,a) 
10. Clbegin d; c endlp0a Cldp 

where %dip° = 
11. Ham = run(send(K,deref(lookup(p,i),a)),a) 
12. El truelpKa = run(send(K,true),a) 
13. ElfalselpKa run(send(Kialse),a) 
14. El if eo then ei else e2IpKa = Eleolp(cond,<el,p,Kme2,p,K4a 
15. Elvalef dpKa Cldbindres(p,K)(fai)a 
16. Hproc dpKa = run(send(K,<c,p),0) 

Auxiliary Functions  
2nd(a441) 	if lst(asn) t and V m<n, lst(atm) 01 

map(al) 
otherwise 

map(a,6IL) 	if 	L 
deref(b,a) 

? 	otherwise 
set(a,t,v) - 4,v> cst a 
new(a) is a location unused in a. 
bind(p,i,6) - «i,6> cst (p1).2 
bindres(p,K) - 

2nd(p414n) 	if lst(pt14n) - i and V m<n,1et(p414m) • i / 
lookup(pi) - 

res(p) = pa 
send(K,v) - <V,K> 
run(fail,a) ? 
run(final,a) = a 
run((<c,p>,0),a) = Cldpea 
run((e,p,K),a) ElelpKa 

otherwise 
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{ run(0,set(o,d0a,v)) 	if d e L 
run((v,<update,d,04,0) - 

? 	 otherwise 

1 Cldp0o 	 if v e F, OF - (c,p> 
run((v,<call,0>),o) - 

? 	 otherwise 

vIT run(01,o); run(02,a) 	ift■ eT 
run((v,mond,01,824,0) 

otherwise 

Comp - completion semantics for DEVIL  

Notice that the clause for Mirkae e do d involves an infinite data 
structure by virtue of the use of afix. Of course, Henson &Turner used the 
usual fix operator, but in this case the result is the same. There is in fact a 
finite alternative that is no more difficult for us to treat than the above 
version, and it will be briefly discussed later. 

Following our discussion in 64.3, since we intend to show Comp to be 
initial in AlgDA presented below it is convenient (though not absolutely 
necessary, see 64.3) to use our initial algebra fixed-point construction for 
the completion semantics. 

One final point is that we have been quite explicit as to which of the 
domains have an error element,?. Again this is because we intend to 
establish the initiality of Comp in AlgDA and we are necessarily explicit 
about error constants in the presentation DA. Only those sorts that require 
error values were given them but it would present no difficulty to have an 
error constant of every sort if it was thought desirable to have an error 
element in every domain of Comp. 

Since we have used the same names for many of the functions and 
domains in the two semantic definitions, we shall resolve any confusion 
that may arise by decorating those from Comp with a subscript "o" (for 
operational) e.g. Co, So  and those from Cont with a subscript "d" (for 
denotational) e.g. Cd, Ed. 
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We now detail the presentation DA of which we will show Comp to be 
a model (the initial one) and DB of which we will show Cont to be a model. 
Rather than explicitly including the syntactic sorts we dispense with such 
details and use the notation of the abstract syntax. The translation from 
one notation to the other is purely mechanical (Goguen et al, 1977). 

$ignature  
syntactic sorts as for abstract syntax of DEVIL. 
sort Bool 

tt, ff: 4 Bool 
sort Val 

injB: Bool 4 Val 
injA: Abstr 4 Val 
errV: .4 Val 

sort Den 
injL: Loc 4 Den 
injK: font 4 Den 
errD: 4  Den 

sort Store 
empty: 4  Store 
set: Store x Loc x Val Store 
contents: Store x Den -) Val 
errS: -4 Store 

sort Loc 
new: Store 4 Loc 

sort Env 
arid: -) Env 
bind: Env x Ide x Den -4  Env 
find: Env x Ide 4 Den 
bindres: Env x Kont Fsnv 
res: Env 4 Kont 

sort Modff 
null: '4  Modif 
fail: 4 Modff 
apply: Modif x Store 4 Store 

Exp x Env x Kont 4 Modff 
loop: Exp x Com x Env x Modff 4 Modff 
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sort Kont 
update: Den x Modif 4 Kont 
call: Modff -• Kont 
cond: Modff x Modif Kont 
kontin: Kont x Val Modif 
errK: Kont 

sort Abstr 
do: Corn x Env -4 Abstr 
contin: Abstr x Modif 4 Modif 

: Dec x FInv x Store Env 
D2: Dec x Env x Store -• Store 
C: Com x Env x Modff x Store 4 Store 
A': Exp x Env x Kont x Store -4 Store 

EQUAL= 
1. contents(empty,d) errV 
2. contents(set(a,t ,vnjL(t2)) if f1= t2 then 

else contents(ainjL(f2)) 
3. contents(set(al,v),injK(K)) errV 
4. contents(set(o,f,v),errD) - errV 
5. contents(errS,6) etT V 
6. find(arid,i) errD 
7. find(bind(p,S,6),j) //' i-j then 6 else find(p,j) 
8. find(bindres(p,K),i) find(pa) 
9. res(arid) errK 
10. res(bind(p,i,d)) res(p) 
11. res(bindres(m)) sc 
12. apply(null,a) - a 
13. apply(fall,a) errS 
14. apply(klo(e,p,K),a) • 6(e, p,K,a) 
15. apply(contin(clo(c,p),8),o) = C(c, p,O,a) 
16. apply(kontin(cond(01,02),injBatn,a) - apply(81,0) 
17. apply(kontin(cond(01k2),injB(ff)),0) = apply(02,a) 
18. applyacontin(cond(61,82),injA(a)),a) errS 
19. apply(lcontin(cond(81,82),errV),a) errS 
20. apply(kontin(call(0),injB(b)),a) errS 
21. apply(kontin(call(0),injA(a)),a) apply(contin(03),a) 
22. appty(kontin(call(0),errV),a) = errS 
23. apply(kontin(update(injL(f),8),v),a) = apply(8,set(a,t,v)) 
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24. apply(kontin(update(injIC(K),0),v),o) = errS 
25. apply(kontin(update(errD,0),v),o) errS 
26. apply(kontin(errK,v),o) = errS 
27. loop(e,c,p,O) - k1o(e,p,cond(contin(clo(c.p)300P(eAPADR)) 
28. DI (var 1, p,o) = bind(p,i,new(a)) 
29. B2(var I, p,o) set(o,new(o),errV) 
30. DI (di; d2, p,a) D1 (d2, D1 (di, p,o),D2 (di, p,a)) 
31. B2(d1; d2, p,o) D2(d2, D1 (di, p,a),112 (di, p,a)) 
32. C(dnamy, p,O,o) apply(0,o) 
33. C(ci; c2, p,O,o) = C(ci, p,contin(clo(c2,p),0),o) 
34. C(i:=e, p,O,o) =ff(e, p,update(find(p,i),0),a) 
35. C(e.all e, p,O,o) ,f(e, p,call(0),o) 
36. C(resultIs e, p,O,o) = ff(e, p,res(p),o) 
37. C(ff e then c1 else c2, p,O,o) = ff(e, p,cond(contin(clo(c1,p).0), 

contin(clo(c2 1p),0)),o) 
38. C(while e do c, p,O,a) apply(loop(e,c,p,8),o) 
39. abegin d; c end, p,O,o) C(c, DI (d,p,o),O,D2(d,p,o)) 
40. ff(i, p,K,o) = apply(kontin(K,contents(0,find(p,1))),o) 
41. Aisne, p,K,o) 22  apply(kontin(K,inj13(tt)),a) 
42. E(false, p,K,o) = apply(kontin(KAB(ff)),o) 
43. Alf e0 then el else e2, p,K,o) = AIN), p,cond(klo(ei,p,K), 

klo(e2,p,K)),o) 
44. .E(valof c, p,K,o) = C(c, bindres(p,K),fail,o) 
45. .fi(proc c, px,o) -apply(kontin(K,InjA(do(c,p))),o) 

DA - semantic Presentation for DEVIL  
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Signature  
syntactic sorts as for abstract syntax of DEVIL. 
sort Bool 

tt, IT: 4  Bool 
sort Val 

injB: Boo!.4 Val 
injA: Abstr 4 Val 
errV: 4 Val 

sort Den 
injL: Loc 4 Den 
injIC: font -4 Den 
errD: .4 Den 

sort Store 
empty: -• Store 
set: Store x Loc x Val 4 Store 
contents: Store x Den 4  Val 
errS: -4 Store 

sort Loc 
new: Store 4 Loc 

sort Env 
arid: 4 Env 
bind: Env x Ide x Den 4 Env 
find: Env x Ide 4 Den 
bindres: Env x font 4 Env 
res: Env 4 font 

sort Modff 
null: 4 Modff 
fail: 4 Modff 
apply: Modff x Store 4 Store 

sort font 
update: Den x Modff 4  font 
call: Modif font 
cond: Modff x Modff 4 font 
fontin: font x Val 4 Modff 
era: .4 font 

sort Abstr 
do: Com x Env4 Abstr 
contin: Abstr x Modff Modff 
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Di : Dec x Env x Store -PEnv 
D2: Dec x Fsnv x Store -• SU:Ire 
C: Com x Env x Modif Modff 
B: Esp x Env x Kont Modff 

Eauations  
1. contents(empty,b) = errV 
2. contents(set(o,t1,v),inj1(t2)) 

	

	-(2 then I,  
else contents(o,injL((2)) 

3. contents(set(o,f,v),injK(K)) errV 
4. contents(set(o,t,v),errD) errV 
5. contents(errS,6) - errV 
6. find(arid,i) errD 
7. find(bind(p16),j) - if 	then 6 else find(p,j) 
8. find(bindres(p,K),i) find(p,i) 
9. res(arid) - errK 
10. res(bind(p,i,6)) res(p) 
11. res(bindres(p,K)) = K 
12. apply(null,o) = 
13. apply(fail,o) errS 
14. contin(clo(c,p),0) 	p,0) 
15. kontin(cond(01 192),injB(tt)) -01 
16. kontin(cond(01,02),injB(ff)) = 02 
17. kontin(cond(01,02),injA(a)) - fail 
18. kontin(cond(01,02),errV) - fail 
19. kontin(call(0),injB(b)) - fail 
20. kontin(call(8),injA(a)) = contin(a,0) 
21. kontin(call(8),errV) - fail 
22. apply(kontin(update(injL(0,0),v),a) apply(0,set(o,f,v)) 
23. kontin(update(injK(a),0),v) a fail 
24. kontin(update(errD,0),v) = fail 
25. kontin(errK,v) - fail 
26. Di (var p,o) bind(p,i,new(0)) 
27. D2 (var 1, p,o) set(o,new(45),errV) 
28. Di(dr, d2, p,o) = D/(d2, DI (di, p,a),D2(d1, p,o)) 
29. D2(d1; d2, p,o) - B2(d2, 	p,o),D2(d1, p,a)) 
30. C(doessay, p,0) 
31. C(ci: c2, p,O) 	C(ci, p,C(c2, p,0)) 
32. CU: e, p,O) 	p,update(find(p,i),e)) 



107 

33. C(call e, p,0) = E(e, p,call(0)) 
34. C(restaltls e, p,0) E(e, ptres(p)) 
35. C(ff e then c1 else c2, p,0) = E(e, p,cond( C(ci, p,0),C(c2, p,0))) 
36. C(while e do c, p,0) 	p,cond( 	p,C(while e do c, p,0)),0)) 
37. apply( C(begin d; c end, p 10),o) = apply( C(c, D/ (d, p,o),0), 

DZ(d, p,0)) 
38. apply( EU, p,K),o) = apply(kontin(K,contents(a,find(p,i))),a) 
39. E(trn., p,K) = kontin(K, injB(tt)) 
40. E(false,p,K) = kontin (K, injB(ff)) 
41. E(ff eo then el else e2, p,K) = E(e0, p,cond(E(ei, p,K),E(e2, p,K))) 
42. Ayala c, p,K) = C(c, bindres(p,K)fail) 
43. Aproc c, p,K) = kontin(K,injA(clo(c,p))) 

DB - semantic presentation for DEVIL  

As perhaps would be expected given the many similarities in the 
completion and continuation semantics, the two presentations DA and DB 
have much in common. 
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4_5.2 Initially of the Completion Semantics 

In this section we show that Comp is an initial model of DA and that 
Cont is a model of DB. To establish the congruence of Comp and Cont we 
then only need to prove that there is a theory morphism from DA to DB. To 
show that Comp and Cont are respectively models of DA and DB we need to 
specify a carrier from the algebra for each sort and a function for each 
operator symbol of the presentation and then show that the equations of 
the presentation are satisfied. Again, this is a very straightforward task 
and the details follow. Since the equations are all very simply satisfied 
(and there are a large number of them) we dispense with those proofs and 
provide only the signature correspondences, DA with Comp and DB with 
Cont and the equations of the presentations rewritten in the notation of the 
models. 

Comp carriers for DA sorts  
Bool: 	T -(true, false) 
Loc. 
VaL 
	E-V=T+F+(?) 

Den: 	D=L+K+(?) 
Store: 	S = x vr +(?) 
Env: 	U = Ude x D18  x K 
Modff: 	C =IF x CI + [Exp x U x KI + (E x KI + (fail) + (final) 
Kont: 	K ((update) xDxCi+ [(call) x C I + [(cond) x C x CI + (7) 
Abstr: 	F (Com x U) 

Comp functions for DA ooerators  
DA 
tt. Boo! 
ff: Bool 
injB: Bool -4  Val 
injA: Abstr-4 Val 
era: Val 
injL : Loc -4 Den 
injK: Kont -4 Den 
errD: -4 Den 
empty: Store 
set: Store x Loc x Val ,4 Store 
contents: Store x Den -) Val 

C9.211/ 
true 
false 
AT. T in V 
M. • inV 
?Ir 
at 112D 
AK. K 1:12 D 

0 

set 
deref 
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errS: -• Store 	 ?S 
new: Store '4  Loc 	 new 
null: -a Modff 	 final 
fail: -• Modff 	 fail 
apply: Modif x Store 4 Store 	run 
kW: Rip x Env x Kont -• Modff 	AepK. (e,p,K> 
loop: Exp x Corn X Env x Modif -> Modff 

Aecp0. afixpie'.(e,p,(cond,«c,p>,0'>,0») 
update: Den x Modif -• Kont 	160. <update,6,0> 
call: Modff -• Kont 	 AO. cal113> 
cond: Modif x Modff -• Kont 	A0102.(cond,01 102> 
kontin: Kont x Val -• Modif 	send 
errK: Kont 	 ?K 
do: Corn X Env -) Abstr 	Acp. (Id,p> 
contin: Abstr x Modff -0 Modif 	AO. 4,0> 
arid: -• Env  
bind: Env x Ide x Den -• Env 	bind 
find: Env x Ide -• Den 	lookup 
bindres: Env x Kont -• Env 	bindres 
res: Env -• Kont 	 res 
Dl: Dec X Env x Store-. Env 	Adpa. (1)1c9pa 

Z: Dec x Env x Store Store 	Adpa. dip° 42 
C: Corn X Env x Modff x Store-' Store 

Acp0a. ClcIp0a 
E: Rip X Env X Kont x Store -0Store Aeptca. Elelpica 

DA eauations for Comp  
1. deren<>,d) -? 
2. deref(set(oSi,v), t2 in V) - 11(142 then v else deref(a, (2 in V) 
3. deref(set(a,f,v), K in V) =? 
4. derenset(a,(,v),?) =7 
5. deref(?,6) ? 
6. lookup(«>,?>j) =7 
7. lookup(bind(p,i,6),j) = ii i-j then 6 else lookup(p,j) 
8. lookup(bindres(p,K),i) lookup(p,i) 
9. res(«>,?>) -? 
10. res(bind(p,i,6)) res(p) 
11. res(bindres(p,K)) K 
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12. run(final,o) = a 
13. run(fall,a) 
14. run(<e,p,K>,a) = IeIpKO  

15. run(m,p>,0>,a> CI dp0a 
16. run(senCcond,01 102>, true in V),O) = run(01,o) 
17. run(send(<cond,01,02>, false in V),o) run(0210) 
18. run(send((cond,01 102>, e inV),(1) =? 
19. run(senCcond, 01 102>,?),a) ? 
20. run(send((cal1,0>, T in 11),0) =? 
21. run(send(ccall,0>, e in V),O) = run(4,0>,o) 
22. run(send(<call,0>,?),o) ? 
23. run(send(<update, ( in D, 0>,v),a) run(0,set(a,t,v)) 
24. run(senCupdate, K in D, O v),a) =? 
25. run(senCupdate,?,0>,v),a) =? 
26. run(send(7,v),a) =? 
27. afisDiOle,p,(cond,«c,p>,0*>,0))1 - 

(e,p,(cond,«c,p>,afispi01.(e,p,(cond,«c,p>,0'),0))]>,0)) 
28. MIIvar 4°141 = bind(pinew(o)) 
29. alive' Bp; 	= set(a,nev.(0),7) 
30. d ;d2Ipa 41 - (1)1 d21(1)1 d iipo 41($1 d illpa )t2)i1 
31. d ;d211po 42 = 	d21(IN d lip° )41(9)11 diipa )4.2)42 
32. eldustaylpeo = a 
33. Mc' ;c2Ip0a Clcillp ((c2,p>,0)0 
34. CI - elp0o - SI* (update,lookup(p,i),0)0 
35. Clean elpeo = Elelp (callfi)a 
36. CI reseals elp8a = Elelp trestpila 
37. Clif e then c1 else c21p0a Slelp (cond,«c ,p0),«c2,p>,8>)a 
38. awhile e do dpEla - SI elp (cond,«c,p),(0whlle e do c, p>,0»,0)a 
39. abstain d; c endlp0o = Cid(CNdlpo )i1 )8(eDI dlpo 42) 
40. al ipica = runtsend(K,deref(lookup(p,ao)),a) 
41. II truelpica = run(send0c, true in V),a) 
42. lifalselpsco run(send(ic, false ic V),a) 
43. tiff .30 then el else e2lpKo = aleolp (cond,(e ,p,K>,<e2,p,K>)a 
44. Elvalof dpKo = Cld(bindres (p,K))(fail)a 
45. El proc dpKa = run(send(K, <ad)) /Dna) 
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Cont carriers for DB sorts  
Bool: 	T = (true, false) 
Loc: 
Val: 	E-V-r+F+(?) 
Den: 	D=L+K+(?) 
Env: 	U=1Ide41)1xK 
Modif: 	C IS SI + (?) 
Kont: 	K 	4 C) + (?) 
Abstr: 	F 	4 Cl 

Coat functions for DB Ooerators  
DE 	 rani 
tt: 4  Bool 	 true 
ff: 4 Bool 	 false 
injB: Boot 4 Val 	 kr. T IR V 
injA: Abstr 4 Val 	 k4). e in V 
errV: 4 Val 	 ?V 
injL: Loc 4 Den 	 kt. f 
injK: Kont Den 	 Aic.KI12 D 
errD: 4 Den 	 ?D 
empty: 4 Store 	 Af.?v 
set: Store x Loc x Val 4 Store 	kofv. ogivi 
contents: Store x Den -'Vat 	kab. o(6114) 
errS: 4  Store 	 ?S 
new: Store 4 Loc 	 new 
null: 4 Modff 	 ko.o 
fail: 4 Modif 	 ?C 
apply: Modffx Store 4 Store 	A9o. O(o) 
update: Den x Modff Kont 	update 
call: Modif i  Kont 	 call 
cond: Modif x Modif 4  Kont 	cond 
kontin: Kont x Val -4 Modif 	kw% K(v) 
era: 4 Kont 	 PL 
do: Cora x Env 4  Abstr 	kcp. Clcip 
contin: Abstr x Modff Modff 	49. 00) 
arid: 4 Env 	 <MID,  ?K)  
bind: Env x Ide x Den 4 Env 	kpi6. p11/61 
find: Env x Ide 4  Den 	kpl. (p41)I Ill 
bindres: Env x Kont -4 Env 	Apic. <p4.1,K) 
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res: Env -• Kora 
DJ : Dec x Env x Store 4 Env 
D2: Dec x Fsnv x Store -• Store 
C: Corn x Env x Modif --)Modif 
.E: Exp x Env x Kont Modif 

Ap.p42 
Adpo. (VI dip° )41 
Ad pa. (VI cOpo )42 
Acp0. CIdp0 
/tem El elpic 

DB mations for Cont  
1. Ott.?Xclft.) -? 
2. (alt /v1)((t2 inD)1L) - if (1 f2 then te else o((t2th D)1L) 
3. tog/v1Mic inD)1L) ? 
4. (og/vD(?1L) =7 
5. ?(61L) -? 
6. (th.?, ?>41)111 =7 
7. (pli/6111)0 a  if 	:bent) eise(p41)IjI 
8. (<1141,K)41)Iil (p41)I1l 
9. 41.?,?>42 -? 
10. (p[i/61)42 p42 
11. <pl.1,Ic>42 = Ic  
12. (Acr.o)(o) = 
13. ?(o) - ? 
14. CIdp (0) - CId1p0 
15. cond(01,02)(true in V) - 01 
16. cond(01,02)(false 	y) - 82 
17. cond(01,02)( mV) -? 
18. cond(01,02)? ? 
19. call(0)(T in V) ? 
20. call(8)($ in V) = ve) 
21. call(0)? - ? 
22. update(t in D, 0)(v)(o) 8(0g/vI) 
23. update (K 	D, 0)(v) ? 
24. update(?, 0)(v) ? 
25. ?(v) - ? 
26. ('DIvar Opo )41 p11/new 
27. (VIvir Opo - (Anew (o)/?1 
28. Mild ;d2Ipo )41 	d2I(1I dillpo )41 (VI dilpo)a)41 
29. (VI di;d2lpo )42 - eD1d2I(VId1lpo )41 (VI dilpo )42 )42 
30. CI duasaylp0 = 
31. CIc1;c2Ip0 CI clip (CI c2Ip0 ) 
32. CIL-CIO a Help (update(pI )8) 



113 

33. Mall elp0 = Elelp (calla) 
34. CI resultIs elp0 a El elp (pa) 
35. Cliff e then c1 else c2lp0 a Elelp (conalcilp0,C1c21p0 )) 
36. elvIdle e do dp0 - Elelp(conaldp (ClvhIle e do dp0),0) 
37. Climes d; c endlpeo = CI dp (1)11dIpa )410(1)Idlpo 
38. Elilpsco = K(o(plillL))(o) 
39. Eltruelpic = Karue) 
40. Elfalselpsc - K(false) 
41. tilf 00 then el else e2lpic a tleolp (cond(gleilpic e2lpic )) 
42. tIvalof dptc a CI d <pa ,K>(?) 
43. Ilproc dpic = ideldp in V) 

Having shown Comp to be a model of ThDA, to establish its initiality 
it is sufficient to show that the unique homomorphism h: TDA -.Comp is 
bijective. Had we not used the initial algebra fixed point completion for our 
definition of Comp this would not have been true and we would need to 
apply the technique of 64.2.3 to proceed. However as things stand, 
statements such as "'while true do dusty" are given the same meaning 
in TDA  as Comp by virtue of our more appropriate fixed point construction. 

As a consequence, when showing h to be bijective we need only 
consider the "sensible elements of the carriers of TDA• Such elements are 
exactly the ones generated by the operator symbols and constants of the 
semantic sorts of DA and not by the semantic operators PI, P2, C and E. 
So we need to generate those parts of the carriers of TDA and show them to 
be isomorphic to the uncompleted semantic domains of Comp since the 
elements added for the completion are the same in both algebras. It is quite 
simple to generate such parts of the carriers of TDA by identifying those 
operator symbols and constants that are constructors, as outlined by Guttag 
& Horning (1978). 

TDA,Bool (u, if) T - (true, false) 
TDA,Loc= (new (0) I 0 e TDAstore ) 

L is unspecified in Comp save that new must return a location 
unused in the current store. The above set of locations is 
certainly sufficient to ensure this. 

TDA,Val = (injB(T) 1 t E TDA ,B001) u (injA(4))14) E TDA,Abstr) U (errV) 
EV=T+F +(?) 
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TDA,Den (injL(C) I f E TDAL0c) U (injK(K) I K E TDAxont ) u (errD) 
wD=L 	+(?) 

TDA,Store - ((empty) u (set(ol,v) I a e TDA .sure , E TDA,Loc, 
V E TDA yap u (errS))* 

TDA,Env (arid) u (bind(p.i,e5) I p e TDA,V.I E Ide, 6 E TDA .Den) 
u (bindres(p,K) I p c TDA,Env)  

wU -1Ide x DJ a x 

TDA,modff (contin(0,0) I E TDA,Abstr, 0  E TDA,Modif) u 
(klo(e,p,K) I e E Rip, p E TDA ,Env, K E TDA ,Kont) U 

(kontin(K,v) IK E TDA .Kont, v E TDAyai) u (1111l0 U (fail) 
• C 	x + [Lip x U x + x 	+ (final) + (fail) 

TDA,Kont = (UPdate(61e)  I 6  6  TDA,Den,  e E TDA,Modif) u 
(call(0) I 0 e TDAmodff) u 
(cond(0 1,92) 181 E TDAmodif) u (errt) 

wK - [(update) x D X C1+ ((call) X CI f 1(cond) x C x CI + (?) 
TDA,Abstr (cic(c•P) I  c e corn. P e TDA,Env)  

• F =1Corn X Ul 

4.5.3 The Theory Morphisat 

To finish our proof of the congruence of the completion semantics 
and continuation semantics of DEVIL we need only show that there is a 
theory morphism 6: ThDA ThDp, thus ensuring that there is a derived 
model Uo(Cont) in AlgDA and there is a homomorphism Comp Uo(Cont) 
due to the initiality of Comp established above. Note that we do not need to 
write down U6(Cont) at any stage since it is completely determined by the 
definition of 6 and the process of proving 6 to be a theory morphism is 
exactly parallel to showing the derived algebra to be a model of DA. 

As may be expected due to the close similarity between DA and DB, 
the theory morphism 6: ThDA ThDp is easily defined and verified. In 
fact, 6 takes the sorts of DA to the sorts of DB with the same names and 
similarly matches identical operator symbols from DA and 1)8 with the 
following exceptions: 

6(klo)(e,p,K) 43(e, p,K) 
6(loop)(e,c,p,8) = 4)(e, p,cond( 	p, 41(while e do c, p,0)),0)) 
6( CA)(c, p,O,o) = aPPIn( 43(c, p,0),o) 
6(4)(e, p,K,a) = apply8(43(e, p,K),e) 
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Due to the apparent similarites of DA and DB, showing that 6 is a theory 
morphism (by showing that the 6-translation of the equations of DA hold in 
DB; presentation lemma 62.3) is quite straightforward. All of the equations 
of DA either map exactly on to equations of DB, or are trivially true, or 
require a maximum of two steps to establish them as a consequence of the 
equations of DB. For this reason we dispense with the tedium of a detailed 
proof. 

As mentioned above (64.5.1), there is an alternative for the while - 
statement clause in the completion semantics that does not require the 
generation of an infinite data structure for its command completion: 
Colvhile e do dp0a - Ie1p (cond,«c,p>,(mhille e do c, p>,8»,8)ci 
Henson & Turner's reasons for not using this interpreter-oriented version 
are not entirely clear, but the most likely explanation is that they were 
aiming to make completion semantics as abstract, or as much like the 
denotational semantics as possible. The infinite version also helps to 
simplify their proof of congruence by bringing the two semantics closer 
together. In constrast, our style of proof is marginally easier for the finite 
version. The presentation DA requires the following equation to replace 
that for C(while e do c, p,e,0) : 

38'. C(while e do c, p,O,o) - 
E(e,p,cond(contin(clo(c,p),contin(clo(vhile e do c, p),8)),8),o) 

and the operator loop: Exp x Coin x Env x Modff 4  Modff can be eliminated 
entirely, since its sole purpose was to construct an infinite term of sort 
Modff in the initial model of DA. The elimination of the loop operator also 
further simplifies the theory morphism, 6. 
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4_6 Store PL Example 

Our final detailed example is an algebraic version of the congruence 
proof by Stoy (1981). The two definitions are very different both in 
notation and their underlying concepts, one being an interpreter based on 
continuations and operating on strings of text, the other a standard direct 
denotational semantics. As such, for our algebraic proof more emphasis 
will need to be placed on finding appropriate theories and showing the two 
semantics to be models than has been the case in earlier proofs. 

We make only one minor alteration to Stoy's definitions. Though he 
gives the direct (and continuation) semantics for the full language PL, the 
interpreter (and hence the congruence) is only defined for a kernel of the 
language. 

e:: 	1 e(e) I proc(i): e I rec i(aelcreselbl 
Oe I ef2e I if e then e else e I let i-e In e 
Iterate i to e front e while e 

c..:=L=e1whileedocic;c1ifethencelsecl() 

full syntax of PL  

= i I i(i) I proc 
C:: - L-elvhileidocic;clifithencelsecl() 

syntax of kernel PL  

Stoy cites Dennis (1974) as showing that any PL program can be 
transformed into an equivalent one in the kernel language, thus justifying 
an immediate simplification of the problem at least in terms of the length 
of proofs. We take the view that since the congruence involves only the 
kernel language, any reference to the full language is peripheral and 
possibly distracting. Therefore our denotational definition is of the kernel 
language. 

It should be noted that since the semantics are in terms of an 
environment only rather than the more usual environment plus store, a 
number of the syntactic constructs in the language do not behave as their 
appearance may suggest. Thus for example, assignments are more like 
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local declarations so the result of the following PL program is 3 rather than 
4. 

( i:-3; 
lx-Prec (j): (L-4 res j); 
k:-p(i) ) res i 

For the purpose of comparison we shall briefly outline the main steps 
in the congruence proof as Stoy approaches it. First define a continuation 
denotational semantics to act as a bridge between the interpreter and the 
direct denotational semantics. The two denotational definitions are shown 
to be congruent by defining appropriate predicates and showing by 
structural induction over PL that they are satisified. The proof that these 
predicates exist becomes that most difficult part since they are not 
monotonic and thus the fixed-point result of Tarski (1955) is of no help and 
an induction over the complexity of approximations to reflexive domains is 
required. The relationship between the interpeter and the continuation 
semantics is then considered. Here, predicates are defined whereby the 
interpeter can be shown (by fixed-point induction) to be weaker than the 
continuation semantics and the continuation semantics can be shown (by 
structural induction) to be weaker than the interpreter. Again, the 
existence of the predicates must be established. Finally, since the sense of 
"weaker" is different in each case, further work is required to combine the 
two results concerning the continuation semantics and the interpreter into 
a final relation. 

In constrast, our proof requires no intermediate semantic definition 
and consists simply of showing the interpreter to be an initial model of a 
particular theory Thc and showing that there is a derived model of the 
direct denotational semantics that is also a model of The,  exactly as we 
have done in earlier examples. 

4_6.1 The Interpreter 

We begin by reconstructing Stoy's (1981) description of the PL 
interpreter, noting that simpler examples using the same notation and 
concepts can be found in Stoy (1977). Unfortunately, some of the details of 
the operation of the PL interpreter are either loosely explained or referred 
to Dennis (1976) which we are unable to obtain. When showing the 
interpreter to be a model of Thc (presented below), we will therefore need 
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to use our intuitive understanding to make such operations explicit. 

The interpreter operates on states which are textual 
representations of the current stage of program execution. Thus, 
Interpret is a function from states to states defined as follows 

Interpret- fix (11010. Term/n/11(0) 4  0, 0(Slop(a))) where a 
rerloilLe state occurs when an error arises or when the execution is 
successfully completed. In our usual fashion we differ from Stoy's 
intention and construe the above equation to be in terms of the algebraic 
fixed-point. The syntax of states is as follows: 

0:: - evil e in p; K I perform c in p;B I 
assign v to i in p; I done v I error 

Here K and e denote the "continuations" of expression and command 
evaluation, and their syntax reflects the notion of "incomplete stater. 

K:: = done <> I assign <> to i in p; 8 
8:: = perform c in 0; 8 I eval e in 0; K 

The symbol 0 represents missing components (values or environments), so 
that 
Append • val:v 10K 
and 
Append 'env': p toe 
both produce complete states. (This is an example of the operations whose 
definitions must be formalised before the proof is possible). Environments, 
p, are data structures with the following auxiliary operations defined on 
them: 
Has (p,i) tests whether p has a component with selector i. 
Select (p,i) gives the component of p with selector i. 
Append iv to p gives a new structure containing tfr with selector i, 
replacing any component with selector i in p and leaving all other 
components as in p. In the following tables describing Terminal and Step 
the notation a royal e in p; K' tests whether a is of the specified 
syntactic form and also introduces names for the various components, 
which may be used in an arm of a conditional invoked by satisfying the 
test. The symbol s bears little relation to the use of the same symbol in the 
denotational definition of 64.6.2. 
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Terminal (a) (0 rdone 	v (a 'error') 
Step (a) TO 

a reval e in p; se 4 
e E rr 

rerror, ),  
-0  Append Vid . : Se/ea (pi) to K, 

• 111 	(i i r  
liss(p,i0) fies(p,ii) -0 

Select(p,i0) a rfunction (12): e2 in P2' 4  
"oval e2 in (Append i2: Select (p,ii ) to p2); K', 

Seiea(p,10) = rrecfun 12 (13) : e2 in p2' -• 
royal e2 in (Append 13: Select (ph ) to 

(Append 12: Select (p,10) to p2)); K', 
rorror', 

rerror', rerror", 
e rproc (1): eo' 4 

Append Val': rfunction (0: no in p" to K, 
e rrec io (ii) : eo' 

Append 'Ver : rrecfun io (10 : eo in p' to K, 
e rc re: eo" -• 

rperform c in p; royal eo in 0; K", 
e 93" -• 

Append lest: Rep(B) to K 

e E 1-011 	... 

rerror", 
a al rperform c in p; 0' -• 

C ri: = 	-• 
reval e in p; rassign <> to i in p; 8", 

c 'while i do co ' -• 
.ffas(p,0 -4 Seiect(p,0 -4 

rperform co in p; rperform rwhile i do c.o' in 0; 8", 
Append "env":p to 0, 

rerror", 
rco; ci' -0 

rperform co in p; rperform c1 in 0; 0", 
c a rff i then c.0 else ci' -• 

Ilts(p,0 -4 Select (p, -• rperform co in p; 8', 
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rperfora ci in p; 8', 
rerror', 

r( r -0 
Append 'env': p to 8, 

rerroe, 
rassign v to i in p; -) 

Append 'env': (Append i:v to p) to 8, 

rerror" 

Int - the PL interpreter  

The careful reader may note that by a simple extension of the _ 
operator, certain type checks have been factored out from the clauses for 
while and if statements in Stoy's original definition. 

The interpreter is the first semantic definition we have dealt with 
that does not seem to fit the initial algebra semantics template of a 
homomorphism from a free syntactic algebra to a semantic algebra of the 
same signature, as discussed in 53.2. However, by inspecting the syntax of 
states and continuations we can make various distinctions and 
observations. For example we may readily view the command continuation 
reval e in 0; IC" as a function from expressions and expression 
continuations to command continuations. The full range of such 
observations will be detailed when showing the interpreter (the algebra 
hit) to be a model of Thc where C is the continuation semantics scheme 
presented below. 

Sianature  
Sort B 

... unspecified but including tt and ff 
Sort E 

injB: B -• E 
fun: Ide x Exp x Env E 
rec: Ide x Ide x Exp x Env -• E 
errE: -■ B 
ok: B -• B 
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sort Env 
arid: -• Env 
bind: Env x Ide x E -4 Env 
find: Env x Ide -• E 
has: Env x Ide --• 

sort C 
eval: Exp x K -• C 
perf: Corn x C C 
run: C x Env 

sort K 
assign: Ide x Env x C -4  K 
done: K 
send:KxE4E 
call: ExExK4E 

P:Exp-, E 
E:ExpxEnvxK4E 
C:ComxEnvxC413 

fauations  
1. find(arid,i) - errE 
2. find(bind(p,i,v),j) - if i-j then v else find(p,j) 
3. ok(injB(b)) = tt 
4. ok(fun(i,e,p)) = tt 
5. ok(rec(i,j,e,p)) tt 
6. ok(errE) ft 
7. has(p,i) ok(find(p,i)) 
8. run(eval(e,K),p) = E(e, p,K) 
9. run(perf(c,0),p) - C(c, p,O) 
10. send(assign(i,p,0),v) - if ok(v) then run(0,bind(p,i,v)) else errE 
11. send(doney) v 
12. send(K,errE) = errE 
13. call(fun(i,e,p),v,K) - ff(e, bind(p,i,v),K) 
14. call(rec(ile,p),v,K) 	ff(e, bind(bind(p,i,rec(i,j,e,p)),j,v),K) 
15. call (injB(b),v,K) = errE 
16. call(errE,v,K) errE 
17. P(e) - 	arid,done) 
18. .ff(i, p,K) - if has(p,i) then send(K,find(p,i)) else errE 
19. ff(i1(12), p,K) - if has(p,ii) then if has(p,i2) then 

call(find(p,i1),find(p,i2)) else errE else errE 
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20. E(proc (i):e, p,K) = send(K,fun(i,e,p)) 
21. Arm i(j): e, p,x) = send(K,redi,j,e,p)) 
22. Etc res e, p,tc) = C(c, p,eval(e,K)) 
23. E(bp,K) - send(K,injB(b)) 
24. E(0i, p,K) = 
25. E(i Gi2, p,K) 
26. C(i:=e, p,0) = E(e, p,assign(i,p,0)) 
27. C(while i doc, p,0) - if has(p,i) then if find(p,i) then 

p,perf(while i do c,0)) 
else run(0,p) else errE 

28. C(c1;c2, p,0) = C(ci, p,perf(c2 10)) 
29. C(ff i then c1 else c2, p,0) = if has(p,i) then if find(p,i) then 

C(ci, p,13) else C(c2, p,0) 
else errE 

30. CM, p,0) = run(0p) 

C - continuation semantics presentation 

To show that the interpreter is a model of Thc we need to specify 
first the carriers for the sorts of C and then the functions corresponding to 
the operator symbols of C. Since the interpreter operates on states (and 
continuations) that are syntactic objects, it is appropriate that we choose 
certain sets of strings as the carriers of the sorts. 

Intl; 
IntE - Rep(b) I rfunction e In p' I 

rred'un i (j): e in p' I 'error' 
IntEnv  Ilde x Inte 
Into - rperform c in 0; 01 revel e in 0; 
Ink - rdone o I realign  <>10 i in p; 0' 

At this stage, having fixed upon the domains involved in the interpreter's 
operation we are able to give appropriate rigorous definitions of the 
auxiliary functions left loosely described in the original paper. 

Append ''v,/': IntE x Ink -• state 
Append 'env':1ntEnv  x 'Mc-) state 
Append: Ide x IntE x IntEnv  -• IntEnv  
Select: intEnv  x Ide IntE 



fits: latEnv  x Ide -4  B 

{

Append 'val':v to "done<>" - 

Append Valv to 
'assign 0 to i in p;0' = 

Append 'env':p to rperfors c in 0; 0' = rperform c in pr 
Append 'env': p toreval e in 03e reval e in p3c' 
Appendiv top- (i,v> cut p 

rdOne 	otherwise 
/ 'error" 	if t,  = "error' 

'assign t• to i in pr otherwise 

retror, if v - "error" 
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Select (p,i) - 
2nd(run) 

"error' 

if n exists s.t. 1st(p4n) 
V wn, lst(p4m) 

otherwise 

i and 
i 

Ilas(p,O= Select(p,i)• "error" 

This definition of Has has been used rather than the more natural version 
true 	if n exists s.t. lst(pita) 

.ffas(p.i) = 
false 	otherwise 

The two definitions are clearly not equivalent by virtue of the fact that IntE 
includes the error element, 'error'. However, it can be shown by 
structural induction over PL that an environment with the error value 
bound to an identifier never arises during the interpretation of any 
program, thus ensuring that the two definitions of lies are effectively 
equivalent in the current application. Further, albeit informal justification 
for the acceptibility of the first definition of Has exists in the observation 
that the interpreter's sole purpose for Iles is to "protect" the function 
Select from failure (i.e. returning an error). 

The style of many of the "functions" derived from the interpreter is 
reflected by our earlier observation that the string revel e in 03C can be 
considered as the result of applying a function to an expression and an 
expression continuation. This idea has much in common with the 
pioneering work of Goguen et al (1977). Thus the operator correspondence 
is as follows: 
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inj13:13 -• E 
fun: Ide x Exp x Env E 
rec: Ide x Ide x Exp x Env -4 E 
errE: E 
ok: E -• B 
arid: Env 
bind: Env x Ide x E -• Env 
find: Env x Ide E 
has: Env x Ide -• B 
eval: Exp x K C 
pert Com x C -0C 
run: C x Env 
assign: Ide X Env x C -0K 
done: -• K 
send: K x B -0E 
call: ExExK 

Int 
Rep 
kiep. 'function (0: e in p' 
kijep. "recfun i(j): e In p' 
"error' 
Ay. -,(v E rerror") 
0 
Apiv. Append top 
Select 
His 
AeK. revel an 030 
h. "perfor B c In <>;e' 
ltep. Interpret (Append 'env: p WO) 
)uO. "assign 0101  in p;8" 
'done o' 
kicv. Interpret(Append sval:v toK) 
liviv2K. Interpret( 

via "function (i): e in p' -> 
revel e in (Append 	to p);K", 

tt1 "radon i(j): e in p" -> 
"oval e in 

(Append j:v2 to 
(Appeadi: "recfun i(j):e In p' 
to p));K", 

rerror) 
ke. Interpret(reval e in arid; 

"done <>") 
kepic. Interpret (revel e in p;K') 
Acp0. Interpret ("perform c in p;0") 

P: Exp -• E 

E:ExpxEnvxK-0E 
C:ComxEnvxC-+E 

The rather messy version of call above is due to the informal notion 
of the binary operator a having the side-effect of pattern-matching and 
binding appropriate syntactic forms to variables. A more rigorous (though 
less expedient) alternative notation would be the analytic syntax of 
McCarthy (1962) which consists in part of selector functions that return 
substrings of syntactic forms. 

The following table of equations is the translation of the equations of 
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C according to the signature correspondence above. It can be easily 
established that the interpreter satisfies all of the equations, thus showing 
Int to be a model of The. 

1. Select(04)= rerroe 
2. Select (Append 1:v to p,j) = i=j -4 v, Select (p,j) 
3. ,(Rep(b) rerror) = true 
4. ,("function (0: e in p' E 'err(W") - true 
5. ,("recfun i(j): e in p' 'error') = true 
6. -.(relive "(woe) = false 
7. Ilas(p,i)= ,(Select(p,i)=rerroe) 
8. Interpret(Append 	p to royal e in <>;K") - 

Interpret (royal e in p; K') 
9. Interpret (Append 'env': p to "perform c Ino; - 

Interpret(rperfonac in p; 8') 
10. Interpret (Append "varf:v to "assign <> to i in p; - 

,(v a "error") 
Interpret (Append env*:(Appendiv top) too), 
"error' 

11. Interpret (Append l'ar:v to 'done <>") - "clone v' 
12. interpret (Append 'nil': reffor' 10 K) = 'error' 
13. Interpret ("function (0: e in p' "function (1): e' in p'' 

royal e' in (Append i': v to pi);e, 
'function (i): e in p' "redun i'(j'): e' in p'' 

revel e' in (Append j':v to 
(Append "red'un i'(j'): e' in p'' to OW, 

rerror1 - 
Interpret royal e in (Append iv to p)30) 

14. Interpret (rredun i(j): e in p' E 'function 	e' in p" -• 
revel e' in (Append 	to p'),e, 

"redun i(j): e in p' "recfun i'(j'): e' in p" 
"eye e' in (Append j':v to 

(Append i': "redun 	e' in p" to p'));e, 
rerror) - 

Interpret(reval e in (Append j:v to 
(Append i: "recfun i(j): e in p" to p));K") 
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15. Interpret(Rep(b) s 'function 01: e in p" 
reVal e' in (Append 1% v to p),e, 

Rep (b) "rodun 101: e' in p" 
reVal es in (Append f:v to 

(Append "run  101: e' in p" top')); 
"error') 

"error" 
16. Intetpretrerror' 7unction (1):e* in p" -• 

"oval e' in (Append f: v to plx", 
"error" E. "rodun 101: e' in p" 

"oval e' in (Append Iv to 
(Append "recfun 	e' in p" top')); Kr, 

"error" 
17. Interpret ("oval e In arid; done 01 

Interpret (revel e in arid; done <>I 
18. Interpret (revel "i' in px") = 

His(p,i) Interprel(Append'val% Select (p,i) to K), 
"error" 

19. interpret ("oval ri 1 (i2 ) 	crte) 
HIS (01 ) B'es(p,i2) 
Interpret (Select(p,ii) 7unction 01: e' in p" 

"oval e' in (Append Select (p,i2) top'); Kr, 

Select(p,ii) "recfun 	e' in p" 
"oval e' in (Append f: Select (p,i2) to 

(Append rrecfun f(f): e' in p" to p'));K", 
"error"), 'error', "error" 

20. Interpret('evalrproc (a& in p;K") - 
Interpret (Append 	7unction (i): e in p' to K) 

21. Interpret (reval rrec i(j) ..e" in p;ic") = 
Interpret (Append VW': "mann i(j): e in p' toK) 

22. Interpret (revel "c res e" in p;K") - 
interpretrperform c in p; "oval e in <>; K") 

23. Interpret ("oval "b' in p3C) - 
Interpret(Append 	Rep(b) toK) 

24. Interpret (reval "Or In p;K") 
25. Interpret (revel ri 1 Qie in p;ic") = 
26. Interpret ("perform "i:=e' in p-,(r) - 

Interpret (oval e in p; "assign <> to i in p;0") 
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27. Interpret ( rperfors rwhile i do c' in pgr) 
Seect(p,i)-,  

Interpret ('perform c in p; 
rperfors rvhile i do c' in 0; 0"), 

Interpret (Append 'env': p 100), 
retfrOr 

28. Interpret ( rperform rc1;c2' In p-,0) = 
interpret (rperfors ciin p; rperform c2 in 0; 0') 

29. Interpret rperform rff i then c1 else c2' in p;01 
Has (p,i) Select (pi) 

Interpret (Indere' c1 In p;0'), 
Interpret (rperform c2 In p01, 

rerror" 
30. Interpret (roofers rWin p;0) - 

Interpret (Append 	p to 0) 

All that remains is to show Int to be initial in Algc. To achieve this 
we follow the same procedure that was employed in S4.5.2, considering 
only the sensible parts of the carriers of Tc and generating these by 
recognising the operator symbols and constants of C that are constructors. 
Once again, since we are assuming the initial algebra fixed-point completion 
to have been employed in the interpreter definition we may assume that 
elements of the carriers of Tc other than those generated by the 
constructors will also occur in the carriers of mt. 

Tcx = (injB(b) I b E B) u (fun (i,e,p) I i E Ide, e e Exp, p E Tunv) u 
(redi,j,e,p) I i,j e Ide, e e Exp, p E Tcsnv) u (errE) 

• IntE - Rep (b) I r function e in p' I rrecfun (j): e in p 'error' 
for b e B, i,j Ide, e e Esp, p e IntEnv  

Tc.Env  = (arid) u (bind(p,i,v) 1 p E %Env, i E Ide, V E Tc,E) 
g ItitEnv = Ude x Eine' 
Tcg - (eval(e,K) 1 e e Exp, K e Tcx) u (perf(c1,0) I c e Corn, 0 E Tcg) 
g ink reval e in 0; K' I 'perform c in 0; 0" 

for e E Exp, CE Corn, IC E  IntK, E Ink 
Tcx (assign(i,p,0) $1 e Ide, p e rainy,B ET,)  u (done) 
wIntK - 'assign 0 toi in p;0' 1 rdone o' 

for i € Ide, p e IntEnv, E lilt 

It is interesting at this point to note that we can immediately 
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construct a completion semantics (Henson & Turner, 1982) similar to that 
given for DEVIL in 64.5.1 that is also initial in The.  The appropriate 
domain equations are given below; the semantic functions are the obvious 
ones corresponding to the semantic operators of the presentation C. 

E-B+F+(?) 
U.'(IdexEI  
C - [Cvm x CI + [Exp x KI 
K - [(update) x Ide x U x CI + (final) 
F = [(function) x Ide x Exp x Ui + 

Rrecfun) x Ide Ide x Rip x UI 

expressible values 
environments 
command completions 
expression completions 

closures 

Thus such a completion semantics is isomorphic to Stoy's interpreter. On 
this basis Henson & Turner's call for completion semantics to be considered 
as the standard operational semantics is difficult to sustain since it is only 
its notation that distinguishes it from a host of other "different" 
operational definitions. 
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4.62 The Direct Denotational Semantics 

The denotational definition given below differs from that given in 
Stoy (1981) in two ways; it gives the semantics of the kernel language 
rather than PL and corrects several minor (probably typographical) errors 
in the original definition. The most curious is Stoy's definition of nand 
which reads"' follows: 

For x,y e D and b in some domain including T, 
cone/ (x,y)b 2 (bin  2 true I, 

(bIT) false -• y, 
?D 

whereb-'x,y2 x 	ifbE true 
if b E false 

.LDT D,?D if b IT.TT ,?T- 

So, while 	is strict, cond is not. Thus, given a clause such as 
Gill e then co else clip = conclCicolip, Clcilp>(Egelp ), the implication is 
that in the case where the evaluation of e does not terminate and 81 eip 
the result of the if statement is an error, ?, rather than i. Not only is this 
most unusual, but no interpreter can possibly behave in such a fashion, 
since it would need to recognise that it had embarked on a non-terminating 
computation, recover and report an error. As we are proving the 
congruence of the denotational semantics and an interpreter it is clear that 
such a definition of cone' must be unacceptable. In our definition we 
assume the (completely) strict version of cone/ defined as follows: 

cone, (x,y>b (bIT) x,y 

Semantic Domains 

F =1E El 
E=B+F+(?) 
U = Ude 4 El + (?) 

Semantic Functions  
Exp -• E 

8:Exp-)U-0 
C:Com-*U-)U 

basic values including true and false 
function values 
expressible values 
environments 
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Etilip 9  pig 
EgiOUIDP strict(pliol I F)(piliiI) 

proc (the 	strict (1pliv.Elell(piviii) th E) 
El roc io(i1): el s stricl(Ap.fir Dinliv1lell(00 in E/illv/i11)] "BE) 
Elic res dip a 	) 
81b1 E stricl(Ap.(b in E)) 
810ill 

"" 

strict(kv.plv/i1)(1.1elp ) 
Cvhile i dod 3- firOt9itp.cond<8(Cidp), pApid)) 
Clco; clip 
Calf i then co else clip E` am/eh:M.0p, Cicilp Apia) 
Cif011p p 
"lei Ellell(Al.?) 

Auxiliary Definitions 
The separated sum is implied in the domain equations. For any domain D 
and a,b E D, a E b is true if a is the same element as b and false 
otherwise. The symbol "-" is reserved to denote a continuous (completely 
strict) equality predicate. 
for b T (truth values) and x,y D, 
b-)x,yax 	ff b true 

if b false 
,? 	b .1.,T,? 

strict f 	 ff x 
f(i) 	otherwise 

ie strict f produces a completely strict version of f. 

Den - direct denotational semantics of PL  

The theory presentation D (of which we intend to show Den to be a 
model) that follows is influenced largely by the requirement that there 
must be a theory morphism Thc ThD and Thc is constrained quite 
significantly by the requirement that Int must be its initial model. Further, 
since our presentation must be first-order in the sense that we have no 
way of including operator symbols that have a domain consisting of other 
operator symbols (cf. Parsaye-Ghomi, 1981) we have no way of directly 
representing functions such as stria. Our approach is not to consider i 
and T in presentation D (indeed, this has been our policy for all examples 
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except the first consideration of the lambda calculus) and explicitly test for 
error values at appropriate points. Hence corresponding to the equation 

CI k-elp a strict Oiv.p1v/MEllelp 
in the denotational definition, we use the following equation in D 

C(i:-e,p) - if ok(B(e,p)) then bind (p,i,Ae,p))eise errE 
where ok(v) is if for v - errE and tt for other sensible values. In the 
denotatione semantics, the function corresponding to ok is a doubly strict 
test for equality with ?. 

One of the important differences between the direct denotational 
semantics and the continuation-style interpreter is that the direct 
definition requires the concept of an 'error environment' so that errors can 
be propagated. In contrast, since the interpreter uses continuations, 
Improper commands immediately give rise to improper results and their 
effects need not be propagated by means of the environment produced. 
Our presentations must reflect this situation and since we maintain the 
need to construct a theory morphism between them, sort Env in D 
represents the proper environments and sort U represents the sum of Env 
with an error environment. Further, since k and 4  in Thc are only 
concerned with proper environments it is convenient to give two separate 
equations for and 4) for each phrase of the abstract syntax; one for 
proper environments, one for the error environment. 

Signature.  
Sort B 

••• 
	 unspecified but including tt and if 

Sort E 
injB: B -• E 
fun: Ide X Sip X Env-. 
rec: Ide x Ide X Sip x Env -0 E 
errE: E 
apply: ExE 
ok: 	B 
if_ then _ else _:BxExE E 

Sort Env 
arid: Env 
bind: Env x Ide x 134 Env 
find: Env x Ide -• E 
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Sort U 
injE: Env -0U 
errU: U 

Men _ eise_:BxUxU-01J 
P:Exp-)E 
E:ExpxU-0E 
C: Corn x U U 

&Mai= 
DI. ok(injB(b)) = tt 
D2. ok(fun(i,e,p)) = tt 
D3. ok(rec(i,j,e,p)) - tt 
D4. ok(errE) IT 

apply(fun(i,e,p),v) = Ete, injE(bind(p,i,v))) 
D6. apply(rec(i,j,e,p),v) = 	injE(bind(bind(p,i,redi,j,e,p)),j,v))) 
D7. apply (injB(b),v) errE 
D8. apply (errE,v) = errE 
D9. find(arid,i) = errE 
D10. find(bind(p,i,v),j) .7 if i=j then it else find(p,j) 
D11. if tt then a else b - a 
D12. if ff then a tale b b 
D13. P(e) 	Injaarld)) 
D14. E(i, injE(p)) - if ok(find(p,i)) then find(p,i) else errE 
D15. E(i, errU) - errE 
DI6. 	inlE(P)) - if ok(find(P ..12)) h en apply(find(pi1) ,find(Pj2)) 

else errE 
D17. E(ii(i2), errU) = errE 
D18. E(proc (i):e, injE(p)) fun(i,e,p) 
D19. Aproc (i):e, errU) errE 
D20. Etrec i(j):e, InjE(p)) rec(I,j,e,p) 
D21. Arm i(j):e, errU) = errE 
D22. .E(c res e, p) E(e,C(c,p)) 
D23. E(b, injE(p)) = injB(b) 
D24. A(b, errU) = errE 
D25. E(0i, p) 
D26. E(iIC2i2, p) = 
D27. C(E-e, injE(p)) 

	

	ok(E(e, injE(p))) then bind(p,i,E(e, injE(p))) 
else errU 

D28. C(1:=e, errU) = errU 
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D29. awhile i do c, injE(p)) if ok(find(p,i)) then 
if find(p,i) then 

C(while i do c, C(c, injE(p))) 
else injE(p) 

else errU 
D30. awhile i do c, errU) = errU 
D31. p) = C(c2,C(c1, p)) 
D32. C(ff i then c1 else c2, injE(p)) = if ok(find(p,i)) then 

if find(p,i) then C(ci,injE(p)) 
else C(c2, injE(p)) 

else errU 
D33. COI i then ci else c2, errU) errU 
D34. p) = p 

- direct semantics oresentation 

When showing Den to be a model of Thp below, various 'degrees' of 
strictness will be important, so we repeat what we consider to be the 
standard definitions. 

A function f is strict if f(i ) i 

A function f is doubly strict if f(±) -a and f(r) T 

A function f is completely strict if ) I, f(i) T and f(?) ? 
A useful higher-order function which we shall employ is dstrict defined 
as follows 

dstrict f a. 1,T 	if x 9 1,T 

f(x) 	otherwise. 
So dstrict produces a doubly strict version of a function while strict 
produces a completely strict version. It is convenient to define a further 
equality predicate to complement a and - defined earlier. Let -- denote a 
doubly strict equality predicate. The usefulness of such a predicate is that 
it allows us to compare proper elements to ? without always returning ? 
(as - would do) yet returning i or T if the element is i or T (as would 
not do). This allows us to easily define a function in Den modeling the 
operator ok of D. 

The correspondence between the sorts of D and the domains of the 
denotational semantics is the obvious one: 

Deng = B 
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DenE = E = B IE 	+ (?) 
DenEnv Ude El 
Denu Ude -) El + (?) 

The operator correspondence is as follows: 

Den 
E 

/dep. ( dstrict (Ap'.(liv.al el (ply/ill) 
in E)(p)) 

• ( dstria(Ap*.fixpol.1.v. 
Elel(pI.in E/illy/j1)1 inE)(p)) 

?E 
• iv 2. (v in El)(v 2) 
Ay. 4v==?E) 
Abv iv 2. ((WI) V i,v2) 
ki.?E 
Apiv. (ply/11) 
• (ph D ) 

U (injection of Ude El into 
Ude -+ El + (?)) 

kbp1p2. ((bai)-) p P2) 

injB: B E 
fun: Ide x Exp x Env -• E 

rec: Ide x Ide x Eip x Fsnv E 

errE: E 
apply: ExE4E 
ok: E B 
iLthen_eise:B xExE-PE 
arid: Env 
bind: Env x Ide x E -• Env 
find: Env x Ids E 
injE: Env -• U 

errU: -• U 
/Lae/La/se :BxUxU U 
P: Exp E 
E:ExpxU-.E 
C:ComxU-0L1 

The equations that follow are translations of the equations of D into the 
notation of Den and must be shown to be satisfied by Den to complete the 
proof that Den is a model of ThD. Though we refrain from including any 
detailed proofs, some commentary is offered for those equations that are 
not absolutely trivial. 

DI. -((b in E) == ?E) a true 
Note that this depends on there being no error element in B. If 
this is not considered satisfactory, then the equation ok(injB(b)) 
- tt could be changed to ok(injB(b)) = okB(b), and the new 
operator appropriately defined in D and implemented in Den. 

D2. -4 (Istria (Ap'.(Avtlelp lit/il) in E)(p) -= 7E) trUe 
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03. ,(dstrict 	 inVil[V/i1)1 in E)(p) --?E a true 
02 and 03 hold because the function is made completely strict 
in v at application time (see the clauses for CHOI Op and 

p)), and because p e Den  Env  - Ilde El and thus p is not 

?U- 
N. -,(?E--?E) E false 
05. (dstrkt(Ap.(AvIleip 'Iv/i1) in E)(p)11E 4  131)(V) alelp Iv/i1 
D6. ( dstrict(Ap'.firlAOliv.alel(p10 in E 	41)) in EXp)11E 4 ED(v) 

a MHO.'in 11/111v/j1) 
where ito' a fix DotavIlei (00 /BE/illy/1)1 

Again in 05 and 06, p E DenEnv  Ude -4 El. These results are 
established by structural induction over Rip in the denotational 
model. In fact, the stronger result that a and C are completely 
strict is easier to establish. This appears as Lemma 6.2 in (Stoy, 
1981). 

7. (b 	El IE EI)(V) 
8. (?E1 IE El)(v) E h 
9. (Ai.?E)(i) E?E 
D10. (ply/Ingo Jai v,p10 	 p E DenEnv  
D11. true 	E a 
D12. false a,b E b 
D13. Ind E aliel(A1.?E /DU) 
14. aliip -(pin —PO -+ pig, PE 

	

	 E pin 
by definition of 

15. tin ?u a ?E 	 E RIO" 

16. alio(ii )Ip a 	==?E) 	VIIIE -0 E1)(pliii),4 
p E DellEnv  

17. alio(ii)nk E ?E 
18. ai proc (thelp dstrict (Ap'.(Avall Iv/i1) in E)(p) 

p e DenEnv  
19. al proc (i):el ?u BE k 
20. Eirec i(j):elp E 

dstrict(Aff.fix[Olivli *(0 in Willv/jIl inE)(p) 
p e DenEnv  

21. airec i(j):ei?u ?E 
D22. Icresep a 	) 
023. aibip abin E 
	

p E DellEnv 
D24. alibi ?u a ?E 
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D25. 8.10fip 
D26. ellorlillp ... 
D27. '(Help --?g) *4  Alsip /iI,Pu 	p e DenEnv  
D28. Clk-el?u a ?u 
D29. Clvhik i do dp 

▪ --?E) (pill -•Ciwbile i do cl(ClcIp ), p), ?u 
p E DellEnv 

D30. ellsrluie i do d ?u ?u 
D31. Clc.oxilp Clcil(Clcolp 
D32. Clff i then c.o else Op a 

▪ ==?E)-) pig -• Clcolp, Clcilp, ?u 
D33. Mit i then co else cpu a ?u 
D34. C101p p 

p e DenEnv 
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4.6.3 The Congruence and a Theory Morphiss 

The definition of the congruence of the two semantic definitions of 
PL is not quite as straightforward on first inspection as the preceding 
examples, so some precursory discussion seems appropriate. In loose 
terms, the basic requirement is that we obtain the same result for a 
program under the evaluation implied by the two semantic definitions. 
Clearly, the concept of "the same result" will need to cater for the difference 
in function values for the two semantics; a string like rfunction (i): e in p" 
for the interpreter, an element of lE -+ El for the denotational semantics. 
For this purpose we may define a function e: El m  EDen  as follows: 

e(v) = b 	E 	 if v - Rep (b) 
if It rerror' 

dstrici(Ape.(AvIlellp Iv/i1) in EX ii (p)) 
if v - rfunction(i): e in p' 

dstrict(Ap'.fix(AOlivAffelip10 in E/illv/j11 in EH u (p)) 
if v rrecfun i(j): e in p' 

where u (p) = (Ai. e(Selea (p,i))) in U 

With these definitions, the congruence can be precisely given as: 

e ( Interpret (royal e in arid; done 01) - 

Since IP is defined in terms of a and C, the following two equations also 
suggest themselves: 

e(Interpret(revale in p; K')) = send(/' (K), tad( u(p))) 
e(Interpret(rperforia c in p; 01) - run( c (0),C1d( u(p))) 

But what are I and C ? There are no domains in the direct denotational 
semantics corresponding to expression continuations or command 
continuations, so there is no way that functions such as I and c can be 
Instantiated. In the same vein, send and run are similar mysteries. 

If we shelve these apparent difficulties for the moment and consider 
an algebraic formulation of the problem, the congruence statement is 
clearly something file the form required. First we have what looks like a 
theory morphism y: 
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= ib(e) 
1(k) (e,p,K) = send(K,ED(e,p)) 
y( q)(40-,e) = run(13, CD(c,p)) 

and a C-homomorphism Int-. U1(Den) consisting of the functions e,u,k,c 
In this context, some clarification can be made: i  is not a theory morphism 
since send and run are operators from C, not D. 

This suggests that D has been chosen inappropriately and we intend 
to present a new theory ThDi  which is derived from ThD by adding sorts K 
and C and appropriate operators to D. We repeat here the point made 
briefly in S3.1.2 that the crux of a semantic definition is the abstract 
syntax, the semantic domains and the valuations and we are therefore free 
to install them in any algebra we wish, selecting whatever other sorts and 
operator symbols we consider appropriate for our purposes without 
affecting the intended semantics. 

It is also asserted in 63.2 that the semantics embodied in any model 
of ThD or ThDi  is the homomorphism indicated by Pjand C from the 
algebra defined by the abstract syntax to a semantic algebra with the same 
signature. Since the operators and sorts we intend to add to D do not 
"interfere" with any of the sorts of D, the semantic homomorphism in any 
model of ThD remains unchanged no matter how that model is extended to 
be a model of ThDx . Given that view, the sorts and operators added in Dx 
can be viewed as "extra baggage". 

As an analogy, consider adding a sort string and some typical 
operators to a complete specification of the data type Stack-of-Integers as 
given in S2.2. Provided the definitions are fairly standard (not 
pathological), we still have an implementation of a stack in the models of 
the theory. 

The extensions to D to create Dx are as follows: 
sort C 

eval:13xp x K -) C 
perf: Corn x C C 
run:CxEnv-0E 
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sort K 
assign: Ide x Fsnv x C K 
done: -• K 
send:KxE-+E 

Eauations  
xl. 	run(eval(e,K),p) = send(K,E(e,injE( p))) 
x2. 	run(perf(c,0),p) - run(0, 	pp) 
13. run(0,errU) err8 
14. run(°, if b then pi else p2) - if b then run(0,p) else run(0,p2) 

send(assign(i,p,0),v) - if ok(v) then run(0,bind(p,i,v)) else era 
x6. send(done,v) - v 
17. send(K,errE) era 
x8. send(K, if b then v1 else v2)- If b then send (K,v 

else send(K,v2) 

rix - extensions to direct semantic presentation, 

Given such extensions to D, the definition of y above will serve as the 
basis of the definition of a theory morphism Thc -• ThDi  (we vuprove it to 
be such later). The final requirement is that we must extend Den in a way 
that parallels the extension of D to Dx. Since, as pointed out above, such 
extensions have absolutely no effect on the semantics, any carriers and 
operators that satisfy the x-equations will do and as such we need not even 
bother specifying them. However the simplest choice is the trivial one with 
single point carriers for sorts C and K. Clearly the initial algebra semantics 
derived from any such extension to Den is identical to the initial algebra 
semantics derived from Den (83.2.3). 

A similar, though much simpler case can be given in terms of the 
addition expression example of §4.4. Instead of giving the congruence as 

- (8.511elt ).s1, an equally acceptable statement would have been 
Esileit - eptel cat t. In the language of the algebraic presentations this 
would be 4(e,$) push(s,t(e)), which cannot be a theory morphism since 
push and 4) are not operators from the same theory. The solution is to 
extend the direct semantics presentation by adding a stack. Clearly the 
stack plays no part in the evaluation of expressions and thus has no effect 
on the semantics being defined. In 4.4 we avoided this problem by using 
Bp(e)= top (4(e,$)) where top is in some sense the opposite of push. 
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Such an alternative is clearly not available for our semantics of PL. 

We now proceed with the details of the definition of the theory 
morphism Thc Thm. 

5orlat.: 
i(B) B 
i(E) - E 
i(Env) - Env 
i(C) C 
I(C) = K 

(note: not U) 

Operator Symbols  : 
i(injB)(b) = injB(b) 
i(fun)(i,e,p) fun(i,e,p) 
T(rec)(i,j,e,p) - rec(i,j,e,p) 
y(errE) errE 
i(ok)(v) ok(v) 
i(arid) = arid 
itbindXp,i,v) bind(p,i,v) 
ir(find)(p,i) find(p,i) 
I(has)(p,i) ok(find(p,i)) 
i(eval)(e,K) eval(e,K) 
y(perf)(c,O) - pernc,O) 
y(run)(O,p) run(O,p) 
i(assign)(i,p,O) assign(i,p,O) 
i(done) = done 
i(send)(K,v) send(K,v) 
y(call)(v 1 ,v2,K) send(K,apply(v 
V(P)(e)= P(e) 
I(E)(e, p,K) = send(K,h(e, injgp))) 
lf( C(c, p,O) run(0,C(c, injE(p))) 

The equations that follow must be shown to hold in ThTh r  to establish that 
is a theory morphism. Brief proof outlines are given, though they are all 
very straightforward. 

11(1) find(arid,i) errE 
lf(2) find(bind(p,i,v),j) = if i=j then it else find(p,j) 
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i(3) ok(injB(b)) 
1(4) ok(fun(i,e,p)) = U 
1(5) ok(rec(i,j,e,p)) = U 
1(6) ok(errE) - ff 
1(7) ok(find(p,i)) = ok(find(p,i)) 
I(8) run(eval(e,K),p) = send(K,E(e, injE(p))) 
1(9) run(perf(c,8),p) = runt% C(c, injFs(p))) 
1(10) send(assign(i,p,0),v) = if ok(v) then run(9,bind(p,i,v)) 

else errE 
1(11) send(done,v) 
1(12) send(K,errE) = errE 
y(13) send(K,apply(fun(i,e,p),v)) - send(K,E(e,injE(bind(p,i,v)))) 
1(14) send(K,apply(rec(i,j,e,p),v)) - 

send(K,E(e, injE(bind(bind(piredi,j,e,p)),j,v)))) 
1(15) send(K,apply(injB(b),v)) = errE 
i(16) send(K,apply(errE,v)) errE 
y(17) P(e) = send(done,E(e, injE(arid))) 
y(18) send(K,E(i, injE(p))) = 

	

	ok(fInd(p,i)) then send(K,find(p,n) 
else errE 

y(19) send(K,A11(i2), injE(p))) - 
if ok(find(p,ii))then if ok(find(P,i2)) then 

sendk.apply(find(pi1).find(p.I2))) 
else errE else era 

y(20) send(K,E(proc (i):e, injE(p))) - send(Kfun(i,e,p)) 
i(21) send(K,E(rec i(j):e, injrs(p))) send(K,redi,j,e,p)) 
V(22) send(K,E(c res e, injE(p))) run(eval(e,K),C(c, injap))) 
1(23) send(K,E(b, injE(p))) send(K,injB(b)) 
1(24) send(K,E(01, injE(p))) - 
y(25) send(K,E(i1tli2, injE(p))) 
V(26) rung), C(i:-e, injE(p))) - send(assign(0,0),E(e, injE(p))) 
1(27) rung), C(vhile i do c, injFs(p))) = 

if ok(find(p,i)) then if find(p,i) then 
run(perf(while i do c,8), C( inlE(P))) 

else run(e.p) else errE 
i(28) runt°, C(ci;c2, injE(p))) run(perf(c2 113),C(c1, injE(p))) 
i(29) runt% C(If i then ci else c2, injE(p))) - 

if ok(find(p.0) then if find(p,i) then 
runt% C(ci,injE(p))) 

else run(0,C(c2,injE(p))) else errE 
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y(30) run(8, CU), injE(p))) run(8kinj13(p)) 

The proof outlines follow: 

"find" equations - 
1(1): D9 
i(2): DIO 

"ok" equations - 
T(3): DI 
1(4): 02 
1(5): 03 
1(6): D4 
1(7): trivial 

"run" equations - 
1(8): xl 
1(9): x2 

"send" equations - 
(10):x5 

i(11): x6 
I(12): x7 

"call" equations - 
1(13): 05 
1(14): 06 
1(15): D7, 17 
i(16): D8, x7 

"P' equations - 
y(17): D13, x6 

"B" equations - 
y(18): D14, x8 
v(19): D16, x8 
1(20): 018  

020 
T(22): D22, xi 
1(23): 023 
x(24): 025 ... 
1(25): D26 ... 

"C" equations - 
1(26): D27, 14,15, x3 
1(27): 029, x4, x2, x3 
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T(28): D31, x2 
1(29): D32, zal, x3 
i(30): D34 

Thus we have shown Ito be a theory morphism and Int to be initial in 
Algc. There must therefore be a homomorphism from Int to U i(Den). and 
this constitutes the semantic congruence. 
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Chapter 5 
Compiler Correctness 

It was noted earlier (S4.1.5) that certain similarities appear to exist 
between our notion of semantic congruence and the algebraic approach to 
establishing the correctness of compilers (or "translation algorithms" as 
practitioners would be more inclined to call them). It is this 
correspondence we wish to exploit in the current chapter. 

The first published attempt to formalise what it means for a compiler 
to be correct and then to follow through an example proof was by 
McCarthy & Painter (1967) where they treated the translation of arithmetic 
expressions into sequences of instructions for a single-address accumulator 
machine. However, it was Burstall & Landin (1969) that first suggested the 
(explicit) use of algebra for such a proof, based on indentifying abstract 
syntax with the word algebra for some signature. The idea was further 
developed by Milner & Wehrauch (1972) and by Morris (1972,1973), 
leading to the diagrammatic representation known generally as the "Morris 
Square". 

Essentially the idea is that given a source language whose abstract 
syntax can be identified with some signature we may construct the 
following diagram. 

source compile T target 
lf 

> language 

semantics 

language 

semantics 

source 	NI 
meanings 

 

U target 
meanings 

encode 

In this diagram S, M, T and U are all Q-algebras, S in particular is the 
Q-word algebra TQ and y, 	c are all Q-homomorphisms. In this context 
a proof of compiler correctness consists of a proof that the above diagram 
commutes; in other words 	= I... Clearly, since S is the initial (-algebra, 

..c and T.. are all unique and the proof is reduced to showing that there 
is some homomorphism c: M U. Actually, Morris' original diagram has a 



143 

decode homomorphism 6: U M rather than £, though in the text of 
(Morris, 1973) c: M4U. is used. We will comment on the appropriateness of 
the choice between c and 6 in 65.4. 

An important part of the work involved is left out of the above 
diagram, however. T is the algebra of programs that may possibly be 
produced by the compiler, rather than the algebra of programs that may be 
written in the target language. If the abstract syntax of the target language 
is identified with some signature X, then its semantics will be given by a 
homomorphism from the initial I-algebra (denoted T o  by Morris) to some 
I-algebra of target meanings, Uo. The (-algebras T and U are then 
derived from To  and U0, generally in an ad hoc though enlightened 
manner. Burstall & Landin (1969) however, explicity include the derivors 
in their diagram and we feel this to be more informative since the compiler 
description is embodied in the derivation of T from T o. 

	 T 

111  

U 	n  

The fact that the two derivor arrows are both labelled ff implies that U is 
derived from U0  in the same way as T is derived from T.  This in turn 
ensures that I's is a homomorphism (since ilt o  is a homomorphism), a fact 
presented under the title "homomorphism of restriction lemma in Burstall 
& Landin (1969). In our framework, ir is  the derivor UT associated with 
some signature morphism T: I -0 a 

Further work on this approach to compiler correctness has included 
the contribution by Thatcher, Wagner & Wright (1979) to clarify the 
construction and semantics of flow charts (as Morris used for T o  and U0) by 
using a more categorical approach involving the notion of continuous 
algebraic theories (Wagner, Wright, Goguen & Thatcher, 1976). Henson 
(1983) extends the technique to source languages that require continuation 
semantics, though that work does not adhere completely to the commuting 

T 0  
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square advice. Other papers that approach compiler correctness from an 
algebraic viewpoint include Mosses (1980) and Wand (1980a) but they 
employ quite different techniques to the traditional one discussed above. 

• Returning to the proposed connection between our work on semantic 
congruences and the notion of compiler correctness, we consider the 
following diagram derived from the one given in 64.1.5 to represent the 
(homomorphic) congruence of semantic models. 

- = 
TS?. 

  

  

    

    

    

Clearly the relation represented by the above diagram can be simply and 
directly extended to treat compiler correctness by discarding the 
requirement that the syntactic signatures be identical, thus generalising the 
isomorphism lefe TQ to a homomorphism TQ-,  AQ for some algebra of 
target programs AQ. 

Since in this dissertation we prefer to treat semantic definitions as 
algebras with the (homomorphic) semantic valuations included as operators 
of the signature, in contrast with the initial algebra semantics approach, a 
more direct representation of our compiler correctness proof technique is 
as follows: 

ThSL TL 

AlgsL 	 • Aign 
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Now this is exactly the diagram of 14.1.5 except that we no longer insist 
that SL and TL present the semantics of the same language. 

In summary, our approach to establishing the correctness of a 
compiler is as follows. Given a source language presentation SL and a 
particular model of ThsL, say A, and a target language presentation TL and 
a particular model of Thin" say B, first define a theory morphism 
t: ThsL -• ThrL. Now derive the SL-algebra U(B) and show there is a 
homomorphism h: A -• Ut(B). Intuitively t is the compiler definition, 
while h restricted to the syntactic part of the signature of SL is the 
compilation process Relating this back once again to the diagram of 
Burstall & Landin (1969) reproduced above, h incorporates the 
homomorphisms y and E while Lit incorporates both applications of the 
derivor Ir. The semantic homomorphisms 	and 41 are respectively part 
of the algebras A, B and Ut(B). It is inappropriate to appeal to the 
"homomorphism of restrictions lemma", nor is there any need to, since 4i is 
a homomorphism by virtue of the fact that U(B) is a model of ThsL rather 
than any property of the way it is derived from B. 

The body of this chapter follows an example proof for the source 
language and target language described in the next section. Our example 
differs markedly from those of Morris (1973) and Thatcher et al (1979) not 
only in the way we describe the semantics, but most importantly in the 
style of our target language. In contrast to the use of flow charts in those 
papers, our target language is much more like an assembler language with 
flow of control being wrought by branch instructions and as such is much 
more "realistic. 
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5_1 Semantic Presentations of a Source Language 
and a Target Language 

The source language we will deal with is a simplified version of the 
one treated by Morris (1973) and it shall be referred to as SL. An SL 
program is a sequence of commands which may be assignments, 
conditionals, while loops or dummies. The expressions of the language have 
boolean values and the value of an uninitialised variable is distinguished as 
an error, though such an access does not affect the continued execution of 
the program. 

We now proceed with a presentation SLP of the semantics of SL. In 
the sequel the part of the signature that describes the abstract syntax of SL 
will be referred to under the name I. so that I contains only the sorts 
Program, Corn and Rip (and Ide) and the operators among them. 

Signature  
syntactic sort Program 

prog: Corn -4 Program 
syntactic sort Corn 

continue: 4  Corn 
seq: Com x Com Com 
assign: Ide x Rip -+Com 
if: Exp x Com x Com Coro 
while: Rip x Cora -) Corn 

syntactic sort Rip 
var: Ide Yap 
true: 4  Rip 
false: -• Rip 
not: Rip -+ Rip 
and: Exp x Exp -4 Rip 
or: Exp x Exp -• Rip 

sort U 
arid: U 
bind: U x Ide x Bool U 
find: U x Ide Bool 

sort Bool 
tt: 4  Bool 
ff: --• Bool 
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Bool Boo! 
A: Bool x Bool Boot 
v: Bool x Bool -) Bool 
err: -■ Boot 

P: Program -0U 
C:ComxU-01.1 
E: Exp x U -• Bool 

Eauations  
1. find(arid, i) = err 
2. find(bind(p,i,b),j) = if i-j then b else find(p,j) 
3. ,(tt) - ff 
4. ,(ff) tt 
5. ,(err) - err 
6. ttAb-b 
7. ff A b - if b-err then err else ff 
8. err A b err 
9. tt v b if b-err then err else tt 
10.ffvb-b 
11.err v b - err 
12.P(prog(c)) C(c,arid) 
13. acontinue, p) p 
14. C(seq(ci, c2), p) C(c2, C(ci, p) 
15. C(assign(i,e), p) bind(p,i,E(e, p)) 
16. C(ine,c1,c2), p) ifE(e, p) then C(ci,p) else C(c2, p) 
17. C(while(e,c), p) - E(e, p) then C(while(e,c), C(c, p)) else p 
18.E(vartit p) 4ind(p,i) 
19.E(true, p) - tt 
20. E(false, p) ff 
21. E(not(e), p) = -E(e, p) 
22. E(and(e1,e2), p) E(ei, p) A E(e2p) 
23. E(or(e1,e2), p) - E(ei, p) v E(e2, p) 

5LP - semantic presentation for source languaxe SL  

As mentioned above, the target language TL we will deal with can be 
viewed as a simple assembler language, basically made up of instructions 
that move values (booleans for our purpose) about in locations with the 
sequence of instruction execution being controlled by labels and jumps 
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(both conditional and unconditional). The machine upon which they 
operate consists only of a store with no registers and no explicit stack, so 
the operators of the language are permitted to manipulate any of the 
locations in the store. We intend the compiler to implement an implicit 
stack as a sequence of locations, hence the presentation of TL has the 
(otherwise rather mysterious) notion of two constants of sort Loc, to being 
the base location of the segment where the values of variables are stored 
and sO being the base location of the segment set aside for the stack. 

We now proceed with a presentation TLP of the semantics of TL. The 
part of the signature that describes the abstract syntax of TL will be 
referred to as 0, thus consists only of the sorts Programs, Instr, Loc and 
Tag and the operators among them. We defer discussion and consideration 
of actual SLP and TLP models to §5.3. 

Signature  
syntactic sort Program 

prog: Instr 4  Program 
syntactic sort Instr 

dummy: 4  Instr 
seq: Instr x Instr Instr 
move: Loc x Loc 4 Instr 
ldt: Loc 4 Instr 
ldf: Loc 4  Instr 
corn: Loc 4 Instr 
or: Loc x Loc Instr 
lab: Tag 4 Instr 
br: Tag '4  Instr 
brt: Loc x Tag . Instr 

syntactic sort Tag 
to: 4 Tag 
nit: Tag Tag 

syntactic sort Loc 
tO: Loc 
sO: Loc 
nxt: Loc 4 Loc 
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sort Store 
empty: -) Store 
set: Store x Loc x Boo! -) Store 
Val: Store x Loc Boo! 

sort Boo! 
tt: -• Boo! 
ff: -> Bool 

Bool -• Boo! 
A: Bool x Boo!-' Boo! 
v: Bool x Bool -0 Bool 
err: Boo! 

sort Env 
arid: -> Env 
bind: Env x Tag x C Env 
find: Env x Tag 4  C 
bindall: Env x Taglist x Clist -> Env 

sort C 
null: -• C 
fail: 4  C 
ass: Loc x Boo! -• C 
apply: C x Store -> C 

sort Clist 
newc: 4  Chat 
catc C x Chat -• Chat 

sort Taglist 
newt: 4  Taglist 
catt: Tag x Taglist Taglist 

P: Program -> Store 
I: Instr x Env x C C 
D: Instr -• Env 
r: Instr x Taglist -> Taglist 
Al: Instr x Env x C x Chat 4  Chat 

Bauations  
1. val(empty,t) err 
2. val(set(a,t1,b),f2) - if ti-f2 then b else val(a,f2) 
3. find(arid,t) = fail 
4. find(bind(p,t1,0),t2) - if ti-t2 then 8 else find(p,t ) 
5. -.(tt) ff 
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6. -,(ff) = tt 
7. -a(err) = err 
8. ttAb=b 
9. ff A b - if b-err then err else ff 
10. err A b -err 
11. tt v b = if b=err then err else tt 
12. ffvb=b 
13. err v b - err 
14. apply(null,o) = 
15.apply(ass(t,b),a) = set(o,t,b) 
16. bindall(p,newt, cl) = p 
17. bindall(p,catt(ttacatc(0,c1)) = bindall(bind(p,t,0),t1,c1) 
18.P(prog(c)) = apply( /(c,D(c),null),empty) 
19.D(c) = bindall(arid,r(c,newt),Anc, D(c),null,newc)) 
20. i(seq(c1,c2), ti) = i(c2,r(ci, tl) 
21. T(lab(t), to catt(t,t1) 
22. nother., tl) = tl 
23. Af(seq(c1,c2), p,8,c.1) = Af(c2, p,O,Af(ci, p,/(c2, p,0),c1)) 
24. Af(lab(t), p,0,c1)- catc(0,c1) 
25. Another., p,0,c1) -cl 
26. /(dummy, p,O) = 0 
27. /(seq(c1,c2), p,O) = /(c1, p11(c2, p,0)) 
28. apply( /(move(t1,t2), p,0),a) = apply(0 set(oh,vallo,f1))) 
29. apply( /(ld(fl, p,e),a) apply(0,set(o,f,t0) 
30. apply( /(iW), p,0),a) = apply(0,set(o,t,ff)) 
31. apply( /(com(t), p,0),a) = apply(0,sego,t, ,(va1(a,t)))) 
32. apply( f(or(t1S2), p,0),o) = apply(0,set(a,(2,val(a1 ) v val(a,f2))) 
33. /(lab(t), p,0) - 0 
34. /(br(t), p,0) = find(p,t) 
35. apply( /(brt(t,t), p,0),a) = apply((ifval(a,f) then 

find(p,t) else0),a) 

TLP - semantic presentation for target language TL  

Briefly, we anticipate the compiler from SL to TL to have the 
following overall features. First, for simplicity we assume there to be a 
pre-determined homomorphic relation between identifiers (Ide) and 
locations (Loc) in the segment whose base address is to, though we will 
consider replacing this with "symbol-table" information in 15.3. Second, 
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expressions will be evaluated on an implicit stack of locations in the 
segment whose base address is sO. Further, the top-of-stack pointer is to 
be simulated at compile time, so expressions will be translated into 
instruction sequences with absolute addresses. 



152 

5_2 Compilers u Homomorphisms 

Were we to closely follow the advice of Morris for defining our 
compiler and verifying its correctness, the first requirement would be to 
derive a E-algebra ( I is the abstract syntax of SL) from To (Q is the 
abstract syntax of TL), thus giving a homomorphism S -) T where S is TE, 
the algebra of SL programs and T is the derived E-algebra (UT(%) for 
some signature morphism T: 	Q). This is basically the top line of the 
commuting square diagram of the chapter introduction. 

TE 	 UT(Ta) 
	  T 

- 	T 
T 

Even given the simple and fairly standard features outlined in S5.1 of the 
compiler we intend to construct, this task appears to be quite impossible. 

The following example pinpoints one of the problem areas. Consider 
the (intended) translation of the SL commands i a or (not(b)) and 
i := (not(1))) or c. The code sequences we expect to produce are 

something like the following, assuming for concreteness that a, b, c and i 
are mapped to locations ti, (2, (3 and (4 respectively. 

i := a or (not(b)) 

i (not(b)) or c 

move(t 1 ,s0) 
move(t2,s 1 ) 
com(s 1 ) 
or(sl,s0) 
move(s0,(4) 

move(f2,30) 
com(s0) 
move(tls 1 ) 
or(s1,30) 
move(s0,14) 

If we now concentrate on the coding of the sub-expression not(b), it can be 
seen that in the first case the corresponding instruction sequence is 
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move(t2,s 1 ) 
com(s 1 ) 

whereas in the second case the corresponding instruction sequence is 
move(t2,s0) 
com(s0). 

Clearly, if it is possible to obtain two different target programs for the same 
source (sub)-expression we cannot have a homomorphism from the algebra 
of source program s to the algebra of compiler-produced target programs T. 
Hence it is impossible to express such a compiler by deriving an 
appropriate E-algebra from TQ or, equivalently, by defining a signature 
morphism ,T: E -0 Q. 

The intuitive explanation for this problem can be found in the fact 
that in addition to the structure of the source expression being translated, 
the compiler needs to be informed as to where the current top-of-stack is. 
In other words, each expression is translated into instructions that leave 
the result in some location, and the instructions vary according to the 
choice of location. Thus, the compilation function (for expressions at least) 
may be thought of as taking a source expression and a location, producing 
target instruction sequences such as follows: 

compile(var(i),f) = move(compile(i),0 
compile(not(e),t) = seq(compile(e,0,com(0) 
compile(or(e ,e2 ),t) = seq(compile(e 10, 

compile(e2,nxt(0),or(nxt(0,0)) 
(Note that here and elsewhere we allow the slight abuse of notation 
whereby seq takes any number of arguments to save us writing 
seq(c,seq(c,c)) and so on.) 

Now the definition of compile above is roughly what we want for a 
signature morphism T : E -• Q, but falls short in that locations are not 
permissible arguments since they do not occur in I. 

This situation is reminiscent of the one that arose in §4.6.3 where the 
desired congruence did not appear to consist of a theory morphism for 
similar reasons: sorts and operators of the source theory were being 
referred to as though they were present in the target theory. That is 

send(K,4)(e,p)) 
I( )(c,p,0) = run(0, 4)(c,p)) 

where send, run, K and c occur in the continuation semantics presentation 
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but not in the direct semantics presentation. Our solution in that case was 
to extend the target theory by the addition of sorts and operators with the 
aim of making I a theory morphism from the source theory to that new 
target theory. Clearly the semantic valuation operators and the semantic 
sorts are unaffected by such additions so the semantics of the language is 
unchanged (see §4.6.3). 

Since the work in this chapter is intended to be based on exploiting 
the observed similarities between our notions of semantic congruence and 
compiler correctness, we are naturally guided to seek a solution for the 
present problem that is similar to the approach taken in 64.6. 

Our intention in S5.3 is to make appropriate extensions to Q (and 
TLP) so that a signature morphism (later a theory morphism) can be found 
that is the analogue of the compiler we have in mind. Given that the 
function compile: Exp x Loc Instr roughly expresses the pattern upon 
which we are basing the compiler definition, the natural choice for a 
signature morphism would seem to be of the form T: Rip -) (Loc 
suggesting that we need to extend Q by adding a sort that adequately 
represents (Loc InstrI. This is the basic approach that we intend to take 
in the next section, though further similar extensions will be required when 
considering T(Com). 
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5.3 A Compiler 

In this section we intend to detail an extension of Q to Cr (and TLP to 
TLPX) so that a satisfactory signature morphism T: E a may be defined 
Such that it expresses the translation algorithm we intend. We will discuss 
the requirements for expressions first, along the lines hinted at in the 
previous section and then treat commands in an analogous way. 

The first extension to C2 we require for T to parallel the effect of 
"compile" (R5.2) is the addition of a sort we shall call LtoInstr to represent 
functions from locations to instructions, [Loc Instil. The necessary 
operator symbols will include the notion of applying an abstraction (the 
objects of sort LtoInstr) to a location to produce an instruction. Recall that 
for the compilation of expressions we need to provide the location in which 
the compiled instructions are to leave the resultant value. Thus, the 
abstraction will be resolved (grounded) by supplying a particular location 
when compiling commands that explicitly contain an expression. 

On the other hand, the choice of operator symbols to act as 
constructors of LtoInstr is not so clear cut. The most direct approach is to 
include an operator symbol for each instruction type, such as: 

ldf-abstr: LtoInstr 
br: Tag -' LtoInstr 
brt: Tag -■ LtoInstr 
seq: LtoInstr x LtoInstr LtoInstr 

and so on. However, complications arise for those instructions which refer 
to two locations, such as or: Loc x Loc -) Instr. The options are to add a 
further sort representing [Loc [Loc 4  Instill which is general, but 
long-winded, or make the observation that the compiler only ever produces 
instructions like or(nxt(t),f) for some f, thus reducing it again to an 
abstraction on a single location. Another difficulty is evident from 
inspection of (for example) the compilation of el or e2 (65.2), where we 
have a sequence of instructions where a location, say f, is supplied to the 
first instruction, while nxt(t) is supplied to the second instruction. The 
solution here is to add a further operator symbol next: LtoInstr 4  LtoInstr 
with the understanding that the application of next(a) to some location f is 
the same as the application of a to nxt(f). While the approach of including 
an operator symbol for each instruction type is possible, in view of the 
difficulties outlined above the extensions could become unnecessarily 
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complicated. 

For our purposes we take a less direct approach based on the fact 
that the extensions to Q are required solely so that a morphism E -• 
can be established. Clearly then we may choose to identify as the 
constructors of LtoInstr only those objects that are to be mapped to by T 
taking an operator of sort expression from E. This option is completely 
compiler-oriented and as such has some disadvantages over the more 
general scheme outlined above, not the least of which is the fact that the 
definition of T no longer directly contains the definition of the translation 
algorithm. However this approach is much simpler, especially when we 
consider the translation of commands below and the requirements of more 
realistic and complex languages. The basic idea is to include an operator 
symbol of sort LtoInstr for each type of SL expression and we name them 
in a way that reflects this relation. 

sort LtoInstr 
target: LtoInstr x Loc Instr 
var-abstr: Loc LtoInstr 
true-abstr: -• LtoInst 
false-abstr: LtoInst 
not-abstr: LtoInstr -• LtoInstr 
and-abstr: LtoInstr x LtoInstr LtoInstr 
or-abstr: LtoInstr x LtoInstr LtoInstr. 

Given this extension to Q, we may immediately define at least part of 
the signature morphism T: E (2'. As mentioned in 65.1 we are assuming 
that there is some pre-determined relation between identifiers and the 
locations in the segment based on CO. Thus we have 'rade) Loc but we 
eschew further details. One possibility, assuming the presentation of Ide 
given in 63.1.1 is T(baseid) - to and T(next) = nit. 

Sorts: 
T(Ide) = Loc 
T(Expr) LtoInstr 

Operator Symbols: 
T(var) var-abstr 
T(true) = true-abstr 
T(false) = false-abstr 
T(not) = not-abstr 



157 

T(and) = and-abstr 
.r(or) = or-abstr 

In itself, this definition of T is far from enlightening so we immediately 
give the intended interpretation of the operators of sort LtoInstr by listing 
the associated equations to be added to TLP. The variable e is of sort 
LtoInstr, though it is obviously intended to be reminiscent of variables of 
sort Exp in!. 

xl. target(var-abstr(f1).t2) = move(f f2 ) 
x2. target(true-abstr,f) ldt(f) 
13. target(false-abstr 0 - WOO 
14. target(not-abstr(e),f) seq(target(e,f),com(f)) 
15. target(and-abstr(e1,e2),f) seq(targettei.0. 

com(t), 
target(e2,nxt(0), 
com(nxt(f)), 
ortnit(f)f), 
com(f)) 

16. target(or-abstr(e1,e2),f) seq(target(ei,f), 
target(e2,nxt(0), 
or(nxt(f),f)) 

To provide some intuitive insight, consider the translation of x or y 
embodied in t(or)(t(var)(r(x)),r(var)(t(y))), assuming target location sO. 

T(or)(t(var)(t(i)),T(var)(t(y))) - 
or-abstr(var-abstr(T(X)),var-abstr(r(y))) 

target(or-abstr(var-abstr(r(x)),var-abstr(t(y))),s0) - 
seq(target(var-abstr(i(x)),s0), 

target(var-abstr(t(y)),nxt(s0)), 
or(nxt(s0),s0)) 

seq(move(r(x),s0), 
move(T(y),nxt(s0)), 
or(nxt(s0),s0)) 

Hence the translation of x or y consists of instructions to load the value of 
x into the location on top of the stack, load the value of y into the location 
above that and then "or" the two together into the lower location. 
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The initial top of stack for each complete expression (i.e. an 
expression occurring directly as part of a command) will be sO, as chosen in 
the above example, and this information will be provided when compiling a 
command. For example, an assignment statement i:-e could be treated as 
follows: 

ar(assign)Cr(i),T(e)) - seq(targeth(e),s0). 
move(s0),T(0)). 

The compilation of commands is a little less straightforward than this and 
we shall see below that such a definition of .r(assign) is quite inadequate, 
though here it does serve the purpose of illustration. 

We now turn our attention to the translation of the commands of SL. 
Clearly, since the only control structures in TL are conditional and 
unconditional branches to labels, the if and while commands of SL must be 
coded using such primitives. Hence the compiler must be supplied with 
labels with which to construct the instruction sequences for the translation 
of commands, in much the same way as the compiler is supplied with 
locations for the translation of expressions. This implies the need for a sort 
representing [Tag -• Instrl, but there is a fundamental difference between 
the supply of tags and the supply of locations: the locations can be 
re-used for "consecutive" expressions, whereas a new and different tag 
must be used each time. Therefore we need to maintain a record of which 
tags we have used and provided this is done in a regular manner (to first, 
nxt(t0) next and so on), the record of used tags can be achieved by 
associating a tag to tag map with each command. Putting the two 
requirements together, we appear to need a sort representing ITag -0 Ilnstr 
x Tagil for T(Com). We achieve this by adding two sorts, IandT and 
TtolandT respectively representing [Instr x Tag] and [Tag - ,[Instr x Tagil to 
f2 (and TLP). Again, as was the case for translation of expression above, we 
allow the syntax of SL commands to suggest the operator symbols of sort 
Ttolandr. 

sort IandT 
Instr x Tag landT 

1st: landT Instr 
2nd: IandT -• Tag 

sort TtoIandT 
supply: TtoIandT x Tag landT 
continue-abstr: TtoIandT 
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seq-abstr: TtoIandT x TtoIandT TtolandT 
assign-abstr: Loc x LtoInstr -0 TtoIandT 
if-abstr: LtoInstr x TtoIandT x TtoIandT TtoIandT 
while-abstr: LtoInstr x TtoIandT TtolandT 

Given the (now completed) extension of Q to a, we may complete the 
definition of T: E fr. 

Sorts: 
T(Com) TtoIandT 
T(Program) - Program 

Operator Symbols: 
r(continue) continue-abstr 
t(seq) seq-abstr 
T(assign) = assign-abstr 
r(if) - if-abstr 
t(while) while-abstr 
T(prog)(T(c)) prog(lst(supply(r(c)30))) 

Note that it is important that T(Program) - Program as a general rule. 
Intuitively our compiler must produce a program in the target language 
given a program in the source language, otherwise we could not justify 
calling it a compiler! On a more technical note, if we did not insist on 
T(Program) - Program it would be feasible to extend the target language 
presentation and define the signature morphism only in terms of the sorts 
and operators that had been added, with no reference to the actual target 
language. Clearly such a morphism could not be considered to be 
embodying a translation from the source to the target language. 

The equation to be added to TLP to make TLPX (and give some 
meaning to the operators above) are as follows: - 

x7. lst(dp) = i 
x8. 2nd(dP) = t 
19. supply(continue-abstr,t) (dummy,t> 
x10. supply(seq-abstr(ci,c2)0 - 

(seq(lst(supply(ci,t)), 
1st(supply(c2,2nd(supply(ci A))M, 

2nd(supply(c2,2nd(supply(c1 M))) 
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x11.supply(assign-abstr(f,e),t) mq(target(e,s0),move(s0,0), t> 
x12.supply(if-abstr(e,ci,c2),t) 

<seq(target(e,s0), 
com(s0), 
brt(s0,0, 
lst(supply(ci,nxt(nxt(t)))), 
brt(nxt(t)), 
lab(t), 
1st(supply(c2,2nd(supply(c1,nxt(nxt(t)))))), 
lab(nxt(t))), 

2nd(supply(c2 12nd(supply(c1 1nxt(nxt(t))))))) 
x13.supply(while-abstr(e,c),t) - 

<seq(lab(t), 
target(e,s0), 
com(s0), 
brt(s0,nxt(0), 
lst(supply(c,nxt(nxt(t)))), 
br(t), 
lab(nxt(t))), 

2nd(supply(c,nxt(nxt(t))))> 

By virtue of having defined a signature morphism T: E fr we have 
specified the intended translation algorithm of SL programs into TL 
programs. For the proof of correctness of this compiler we need to define a 
theory morphism SLP TLPX based on the above definition of the 
signature morphism T: 	Q. The extension of T to a full theory morphism 
(which we shall ambiguously but conveniently also denote T) is dearly 
guided by the arity and sort of each of the operator symbols representing 
semantic valuations. For example, it: Program U and Pr: Program -• 
Store together with T(Program) Program suggests T(it) = Pr and T(U) - 
Store, and so on. The final part of the definition of T: ThsLp Thnapx is 
therefore as follows: 

Sorts: 
T(U) - Store 
T(Bool) - Boot 

Operator Symbols: 
T(arid) - empty 
T(bind) = set 
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T(find) = val 
T(tt) = tt 
T(ff) = if 
T(,) — 
T(A) = A 

T(V) = V 

T(err) = err 

T( C )(t(c),T(p)) - apply(1(1st(supply(T(c),0), 
.0( lst(supply(T(c),0)), 
null),T(p)) 

Note that any tag twill do and that the use of D is valid only 
because we are providing the null continuation; otherwise a more 
complex formulation would be required. 

T(E)(T(e),T(p)) = val(apply( I (target(T(e),O, 
49(target(T(e),CD, 
null),T(p)),0 

Again note that any location t will serve and that, a least for our 
simple language SL, D(target(T(e),0) will always return the arid 
environment by virtue of the fact that labels are never used in the 
coding of expressions. 

To show T to be a theory morphism, we need to show that ThrLpx contains 
the T-translation of the equations of SLP. We repeat them here but give no 
detailed proofs. Equations 1 to 11 are trivially satisfied and equations 12 
to 23 (the semantic clauses) cause no difficulties though the proofs quickly 
become unwiedly, mainly due to the rather verbose notation. Also, 
structural induction over the syntactic sorts is required occasionally, for 
example T(14) (see S3.3.5). 

T( 12). P(prog( 1 st(supply(c,t0 )))) 
- apply( 1(1st(supply(c,t)), 

.0(1st(supply(c,t))), 
nulltempty) 

T(13). apply( /(1st(supply(continue-abstr,t)), 
lst(supply(continue-abstr,t))), 

null),a) 
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T(14). apply( / (lst(supply(seq-abstr(ci, 
D(lst(supPly(seq -abstr(ci, c2),t))), 
null),0) 

- apply( /(1st(supply(c2,0), 
P(lst(supply(c2,0)), 
null), 

apply( /( lst(supply(01 
D(lst(supply(c1,t))), 
null),a)) 

T(15). apply( 1(1st(supply(assign-abstr(t,e),0), 
D(lst(supply(assign-abstr(t,e),0)), 
null),0) 

set(0,f,val(apply( /(target(ek), ' 
D(target(e,()), 
null),0),( 1 )) 

r( 16). apply( 1(1st(supply(if-abstr(e,c1 1c2),0), 
D(lst(supply(if-abstr(e,c1,c2 ),OD, 
nu10,0) 

if val(apply( I (target(eS), 
P(target(e,0), 
null),0),C) 

then apply( I(lst(supply(ci,t)), 
D(lst(supply(c 
null),0) 

else apply( 1( lst(supply(c2,0) 
D(lst(supply(c2,0)), 
null),a) 

r( 17). apply( /( lst(supply(while-abstr(e,c) 0), 
D(1s(supply(while -abstr(e,c),0)), 
null),0) 

if vallapply( /(target(e,t), 
D(target(e,0), 
null),0),f ) 

then apply( 1(1st(supply(while-abstr(e,c),0), 
B(supply(while-abstr(e,c),t))), 
null), 

apply( /( ist(supply(c,t)), 
D(lst(supply(c,t))). 
null),0)) 
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else 
T(18). val(apply( /(target(var-abstr(t)k) 

arid,null),a),0 
val(o,t) 

r(19). vallapply( /(target(true-abstr,t), 
arid,null)A),t) 

= tt 
T(20). vallapply( /(target(false-abstr,t), 

arid,null),o),t) 
- If 

r(21). val(apply( f(target(not-abstr(e),t), 
arid,null),a),t) 

wal(apply(targette,t),arid,nullto)t) 
T(22 ). vallapply( /(target(and-abstr(e1,e2),O, 

arid,null),a),() 
= vallapply( /(targetteiStarid,null),ott) 

valiapply( /(target(e2 1t),arid,null),ott) 
r(23). val(apply( /(target(or-abstr(e1,e2),t), 

arid,null),o),t) 
- vallapply( /(targetteiStarid,null),(0,0 

v val(apply( /(target(e2 10,arid,nu11),c),0 

The first expansions of supply(..., 0 or target(..., 0 are the most enlightening 
since they replace the uninformative abstraction operators with (possibly 
incomplete) TL instruction sequences. 

Diagrammatically, we may represent the stage we have now reached 
in the proof as follows: 

Th SLP 

    

ThTUX 

    

      

      

      

To finalise the proof we must fix an SLP-algebra S and a TLPX-algebra T 
and establish the existence of an SLP-homomorphism h: S UT(T). This 
may be done directly (where possible) or by proving the initiality of S 
where possible. Note that it may be necessary in the case where S is given 
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first, to tailor SLP such that S is initial. In the present case we have fixed 
the presentation first so we are free to choose any appropriate model, in 
particular the initial one. 

igap 
	

AlgT LPX 

Before any further discussion of particular choices of models we wish 
to point out two aspects of the example we are treating that have not 
featured prominently so far. The first is that the compilation 
homomorphism I: (algebra of source programs) (algebra of abstracted 
target programs) is not one to one. This was arranged so that the example 
was a more comprehensive illustration and simply involves implementing 
the source language and by invoking the identity 
a A b 	v ,b), made necessary by the absence from TL of a 
corresponding and-instruction. Hence the two source language expressions 
a and b and not(not(a) or not(b)) are identically coded. The second 
(and quite separate) point is that the use of the "homomorphism of 
restriction lemma" (Burstall & Landin, 1969) which is a major feature of 
earlier related work on compiler correctness has been circumvented in our 
approach. UT  "subsumes" the restrictions since the semantic valuations of 
any TLPX-model (say T) are homomorphic, as must be the semantic 
valuations of UT(T), simply by virtue of the fact that U T(T) is an 
SLP-algebra and all the models of SLP have homomorphic semantic 
valuations (see 63.2). 

At this point we intend to leave our example incomplete by not 
considering particular models and the ettablishment of an appropriate 
homomorphism on the grounds that little would be gained through such an 
exercise, particularly since we have investigated this area fairly thoroughly 
in Chapter 4. Instead, we shall discuss in more general terms some 
apparent benefits in the clear separation of the proof into two stages: 
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establishing a theory morphism and establishing a homomorphism. The 
underlying intuition is that the translation algorithm proper is expressed 
via the theory (or signature) morphism while the implementation of the 
semantic domains of the source language is expressed by means of the 
homomorphism. Again this idea closely follows a similar notion for 
semantic congruences, as discussed in 64.1.5. 

The factoring of the proof into two stages therefore allows certain 
implementation details to be treated in isolation and hence they do not 
interfere with the actual translation algorithm. As a concrete example, 
a source language whose data types include integers would most likely 
presume the infinite semantic domain Z. However the target machine may 
represent integers as strings of 16 bits using the usual 2's complement, that 
is -32768 .. 32767. Now both are models of the usual presentation (succ, 
pred, zero, etc) and therefore the theory morphism may be constructed 
without this mismatch in mind. However when attempting to establish a 
homomorphism from the source semantics to the derived model, the 
problem is highlighted by the fact that no such homomorphism exists and 
the domain of the source semantics model must be altered to =respond to 
the target model. Thus implementation restrictions are identified and may 
be treated in isolation. More complicated examples of mismatches between 
the "idealised" source language semantics and target language semantics 
that may arise in practice include problems with real arithmetic accuracy; 
limitations on the size of source programs, according to code segment size 
limitations or symbol table limitations; limitations on the depth of static 
nesting of blocks as on Burroughs B6700; and the tendency of many Pascal 
compilers to recognise only the first 8 characters of identifiers. Such 
difficulties clearly lie within the bounds of what would be called 
implementation restrictions rather than being major issues in the definition 
of translation algorithms. 

As mentioned in 65.1 we have simplified our example by assuming a 
direct translation T(Ide) • Loc. It is interesting to consider briefly the 
requirements necessary for treating a compilation algorithm that takes the 
more usual approach of maintaining a symbol table. The rudimentary 
symbol table we have in mind consists of identifier, location pairs with a 
new pair being added whenever an identifier is met in a defining 
occurrence in the program. For our purposes we will consider the first 
(textually) assignment to an identifier to be its defining occurrence and the 
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locations to be allocated in sequence (0, nit(t0) and so on. Thus we wish to 
construct a (finite) function: Ide -+ Loc or its analogue as the compiler scans 
the program text. Clearly this notion closely corresponds to the 
environment structure commonly used in semantic definitions. 

This compiler information is more complex than that we have so far 
considered: the location that is currently top of the stack and the next 
available tag. However it can be treated in much the same fashion by 
adding sorts and operators to the target language presentation that abstract 
on the symbol table concept. In outline, the requirements are firstly the 
addition to TLP of a sort Symtab representing (Ide Loci or (Ide x Loci* 
with operators similar to those used for environments throughout this 
dissertation (ie arid, bind and find). Note that sort Ide must also be added 
to TLP therefore. Secondly, the symbol table is required for translating 
commands and may itself be altered in the process much as is the next 
available tag information. Hence we replace TtoIandT (representing 
Tag (Instr x Tag( by SandTtoIandrandS, representing (Symtab x Tagi -• 
(Instr x Tag x Symtabl. Similarly, since the symbol table is required for 
compiling expressions, LtoInstr should be replaced by SandLtoInstr 
representing (Symtab x Lod .4 Instr. The definition of appropriate 
operators can be achieved in a straightforward manner by taking the same 
approach as was applied in the detailed extension of TLP to TLPX above. 

A less ad hoc approach to the general problem could involve 
collecting all aspects of the information for the compiler under the umbrella 
of a single sort called (say) Compinfo. This sort would generally represent 
tuples; for our case Loc x Tag x Symtab. Given such a sort, the target 
language presentation could be further extended by a single abstraction 
sort representing Compinfo (Instr x CompinfoI with operators based on 
each of the source language syntactic operators. Further consideration of 
such a methodology is outside the scope of our investigation but does 
provide a pointer for future work. 
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5.4 Compiler Correctness and the Commuting Square 

It is pointed out in Thatcher et al (1979) that proving that a Morris 
square commutes does not necessarily always correspond to proof of 
compiler correctness. In the usual diagram of E-algebras and X-
homomorphisms (§5.0), if T and U are chosen to be single point algebras, 
then commutation is ensured simply by the fact that T and U will thus be 
final E-algebras and 	end c are hence unique (as is 0). Clearly there 
are many more subtle cases than the completely degenerate one outlined 
here. 

To provide a more concrete example of how such a single point T and 
U can arise in practice we can define an appropriate "compiler" from SL to 
TL that always produces the same TL program. If we arrange for every SL 
program to be translated to the Slite 'FL code, 

prog(Idt(th)) 
then each SL command can be viewed as being translated into Idt(f0). Such 
a compiler leads to a 2-algebra T with carriers defined as follows: 

Tprogram  (prog(Idt(t0))) 
Tcom  (MOO)) 
Tgap  (Idt(s0)) (though there is no significance in such a choice) 
ride a 60 ) 

The corresponding semantic E-algebra U may be derived from the semantic 
Q-algebra U0 intrinsic in any particular model of TLP by the same means 
that T is derived from To above, so that Uprogram  g (set(empty,f030). 
Since the carriers of T and U are all singleton sets, T and U are final objects 
in Algx implying that and E are unique and the square commutes, yet we 
are unlikely to consider such a translation algorithm to be a correct 
compiler. 

Thatcher et al (1979) suggest that requiring E to be injective is 
sufficient to avoid such degenerate cases and work their proof within such 
a framework. However they leave open the question whether the 
injectivity of E is a necessary condition. The intuition underlying such a 
restriction on E is that it prevents two different source program meanings 
(in M) from being identified in U. Thus if two programs in S have 
different meanings attached by the homomorphism 0: S 4 M, then 
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requiring c to be injective effectively prevents those two programs from 
being compiled into target language programs (in T) that have the same 
meaning. This circumvents the problems of degeneracy outlined above. 

On the other hand the original diagram of Morris (1973) has a decode 
homomorphism 6: U M, though for convenience he deals with E : M -> U. 
This requires the inclusion of a proof that c has an inverse, at least for the 
part of U related to runnable programs. Without going into the details of 
that paper, this is equivalent to showing that E has an inverse 
homomorphism 	E is an isomorphism) when restricted to a particular 
subalgebra of U. Clearly this is equivalent to requiring that c be injective. 

We suggest that using 6: U -) M is inappropriate and that requiring E 
to be injective is an excessive restriction. In the remainder of this section 
we intend to formulate necessary and sufficient conditions to ensure that a 
proof that a Morris square commutes constitutes a proof of compiler 
correctness. As a vehicle for our discussion we intend to use the rather 
unorthodox, but very simple notion of a completely trivial compiler that 
translates source programs into themselves. Also, rather than introducing 
any new languages we return to the lambda calculus as our source (and 
target) language and consider the semantic models treated in 64.2.2. One 
reason for choosing a compiler that translates a lambda expression into the 
same lambda expression is that it allows us to make the application of our 
work on semantic congruences more obvious. Another reason is that there 
can be no doubt that such a compiler is correct although we can imagine 
some resistance to the term "compiler" being applied. 

To construct our Morris square, we intend to choose the left hand 
side of the diagram, 8: S 4  M, to be the LC-algebra Op and the right hand 
side of the diagram, T 4  U, to be the LC-algebra Den (S4.2.2). For 
completeness we will give specific definitions of the algebras S, M, T and U. 
Presume the syntactic signature to be the following portion of LC, denoted 
A. 

sorts: Lambda, B, Ide 
operators: constant: B 4  Lambda 

var: Ide 4  Lambda 
abstraction: Ide x Lambda 4  Lambda 
application: Lambda x Lambda -4 Lambda 
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Then the semantic A-algebra M can be derived from Op as desaibed in 
13.2.3 to yield the following definition. 

MLambda LE 4  UI 
MB B 
MIde = Ide 
where E - Ude x u?, u LB CLOI and CLO - Lambda IM 	x Ide x El -- 
constantm(b) Ae.(b .thU) 
varm(x) Ae.Lookup(x,e) 
abstractionm(x,r) = Ae.(q,x,e in U) 
appl1cat1onm(tx,13) -1.e.apply(ix(e),13(e)) 
where apply(<q,x,e>,b) q(Extend(e,x,b)) 

Similarly, the semantic A-algebra U can be derived from Den. 

ULambda = [ENV 4 VI 
UB B 
Ulde Ide 
where ENV - Ude -> V], V -113+ FUN] and FUN - LV -' VI  
constantu(b) Ap.(b in V) 
varu(x) = Ap.p(x) 
abstractionu(x,q) Ap.(Aa.(q(plx/al)in 
application0a,P) - Ap.(a(p)IFUN)(13(p)) 

The particular Morris square we are dealing with is the following: 

TA 

 

TA 

 

1/1 	  

in which M and U are defined above, S and T are both instantiated as an 
initial A-algebra, 0 and * are the associated unique homomorphisms and 
is the identity homomorphism. The existence of the encoding 
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homomorphism c is (indirectly) established in 64.2. 

Thus we have defined a correct compiler and shown that its 
corresponding diagram does in fact commute. However E is 1101 injective, 
nor can a decode homomorphism 6: U M be found. If we consider the two 
lambda expressions ALI and Ay.y, their respective meanings in M, 
attached by 0, are 

Ae.(cAe'.Lookup(x,e'),x,e in U) 
and ke.(<1tellookup(y,e 1 ),y,e> in U) 
which are dearly different at least in the second item of the triple. The 
meanings in U attached by lig are both 

itp. (ka.a in V). 
Hence the A-homomorphism c:M4U takes both the above objects of M to 
the same object of U and E is immediately not injective. On the other hand, 
a decode homomorphism cannot possibly exist since clearly 
6(Ap.(21a.a in V)) must be single valued yet still satisfy 8-14.6. 

It would seem that such blanket restrictions as "injective (" have 
little to offer as general solutions to the problem we are addressing. We 
see a parallel here with the notion of an acceptable model of a semantic 
theory (ok-model) discussed in 63.3. It is noted there that the individual 
specifying the semantics of a particular language must be the one who 
decides whether two constructs may or may not be assigned the same 
meaning value. For instance, there can be no a priori reason for expecting 
that XXI and Ay.y may be given equivalent interpretations. In the same 
vein, there can be no justification for insisting in all cases that no more 
identification (i.e. confusion, 63.3) occurs in the semantics of (compiled) 
target programs than in the semantics of source programs, yet this is 
precisely what restricting to be injective ensures. 

This leads us to suggest the following single requirement for a 
commuting square to represent compiler correctness: both 0: S -• M and 

S -• U should define acceptable semantics for the source language. If 
this condition holds we consider If to be an acceptable translation. With 
respect to our trivial compiler for the lambda calculus, is the identity and 
8: S -• M and 41: T U are respectively the operational and denotational 
semantics of the lambda calculus and they are clearly acceptable semantic 
models according to our treatment in 63.3. 
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In terms of the semantic models we have been mainly dealing with 
in this dissertation, where syntactic domains, semantic domains and 
semantic valuations are treated as aspects of a single algebra, the notion of 
acceptable translation can be defined more exactly in terms of previously 
introduced concepts. Supposing we have source and target language 
semantic presentations SL and TL, together with an SL-algebra A, a 
TL-algebra B and a theory morphism t: Ths, -• ThTL, then establishing the 
existence of and SL-homomorphism h: A -• U(B) constitutes our version of 
proof that the related Morris square commutes. To ensure the acceptability 
of the compiler we further require U(B) to be an ok-model of ThsL. 
Naturally, we are already presuming A and B to be ok-models of their 
respective theories and hence that appropriate sub-final models have been 
indicated. 

We claim this requirement to be a suitable replacement for the 
rather excessive restriction that c be injective on the grounds that the 
definition of ok-models has the effect of placing an upper limit on the 
allowable identification of SLP terms in Ut(B), irrespective of whether or 
not they are identified in A. 
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Chapter 6 
Conclusion 

In this thesis we have been concerned with developing an 
algebraically based technique for specifying the semantics of programming 
languages and examining the technique's utility and influence on formal 
proofs involving such specifications. 

In Chapter 3, we laid the foundations by investigating the use of 
equational presentations for specifying programming language semantics. 
We noted that not all the algebras that are models of the presented theory 
necessarily provide acceptable semantics and suggested that a delineation 
of the subclass of models that are acceptable can be achieved by 
designating a particular algebra as being the one where as much 
identification of terms (i.e. confusion) as is admissible takes place. The 
ok-models are then those algebras with a particular homomorphic relation 
to this one such that no further identification is ensured. 

It has been noted from the very beginning that a methodology and 
modularisation technique must be developed to control the level of 
complexity in any enterprise aimed at producing a sound semantic 
specification of any realistic language. Insisting on a modular approach 
leads naturally to the notion of keeping a library of standard types and 
type constructors and the situation may well develop wherein semantic 
definitions begin to resemble the denotational style, at least in surface 
appearance. In fact, Ehrich 8c Lipeck (1983) have already made some 
progress in this direction, though they only manage to treat domains of 
finite functions. An important aspect is the consideration of the 
usefulness and flexibility of the idea of bi;fher-order algebras. The 
choices here are to follow the work of Parsaye-Ghomi (1981) or Poigne 
(1984) or perhaps to stick with standard universal algebra and develop a 
standard notation for sorts representing functional domains. This latter 
option seems more attractive at present since it would seem advantageous 
to avoid any insistence on carriers being functional and consequently 
disallowing closures as operational equivalents. 

The relation between the models of our semantic presentations and 
the initial algebra approach is established on both a conceptual and formal 
level. An interesting opportunity for further research arises here. Given 
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some operational semantic model, an initial algebra semantics may be 
systematically derived from it. Now the initial algebra semantics is clearly 
denotational by virtue of the fact that it is in terms of a homomorphism 
from syntax to semantics and homomorphisms are by definition 
compositional. The exact connection between such "pairs" of operational 
and denotational definitions is not immediately evident, nor is it clear 
whether such connections can be fruitfully exploited. 

In Chapter 4 we examined the notion of the congruence of semantic 
models from an intuitive standpoint and developed a rigorous algebraic 
formulation corresponding to the natural idea. Expressed simply, two 
semantic models are congruent provided there is a homomorphism from 
one to an algebra derived from the other. Such relationships cannot always 
be established by the traditional inductive approaches, however the 
concept of initiality and some straightforward related results allow us to fill 
this gap. The detailed examples treated in Chapter 4 are sufficient to give 
us confidence that our formal notion of congruence is both useful and 
tractable. The fixed-point construction developed when dealing with those 
examples would appear to have applications for operational semantics 
beyond the fairly narrow range of uses given here. 

The size and level of detail of some of the proofs in Chapter 4 clearly 
indicates the need for some form of automation or mechanical assistance 
when developing such proofs. Though it is outside the bounds of this 
dissertation, there would appear to be some challenging problems involved 
with the development of a fully general system based on equational 
rewrite rules (O'Donnell, 1977). 

In Chapter 5 we reformulated the advice of Morris (1973) on proving 
the correctness of compilers to suit our style of semantic definition, 
applying much of the work we had done on congruences to this related 
problem. In treating a somewhat more realistic example than those 
appearing in the literature, with the target languages being described in the 
same style as the source language, it was made clear that the notion of a 
compiler being a homomorphism from the language to an algebra derived 
from the target language was overly simplistic. If the compiler expects to 
maintain any record of the symbols being used (eg the location that is 
current top of stack, the next unused target label) or any relation between 
source and target objects (eg a symbol table), then the compiler appears to 
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correspond more closely to a homomorphism from the source language to 
abstractions of the target language, so that the derived algebra cannot 
always be generated from the target language alone. 

The status of the homomorphism that forms the part of the 
commuting square diagram connecting the two semantic algebras was 
investigated in tems of a trivial example. Both the decode option, being a 
homomorphism from target program meanings of source program meanings 
or requiring the encode homomorphism E from source program meanings 
to be injective were found to be too restrictive and hence unsatisfactory. 
An alternative is presented wherein the compiler homomorphism is 
required to constitute an acceptable translation, a notion closely related 
to that of an ok-model introduced in S3.3. In fact, closer examination leads 
to more fundamental questions than the injectivity or otherwise of E, 
calling into doubt the appropriateness of the whole commuting square 
approach. 

It seems natural that if -Ir.*: S U (the semantics of S given by the 
composition of the compiler and target semantics homomorphisms) is an 
acceptable semantic definition of the source language S, then the translation 
y is correct as well as being acceptable. For certain choices of models, 
such a situation can exist without a homomorphism E: M U necessarily 
existing. We are actively pursuing this line of investigation at the moment, 
with obvious influence on a re-development of the concept of an ok-model, 
both in terms of our semantic definitions and also within the framework of 
initial algebra semantics. 

The future will tell whether algebraic foundations will allow the 
development of programming methodologies (or even programming 
languages) emphasising correctness, that are accessible to and useful for 
programmers at large. What is clear however, is that the formal basis of 
any such work must be clearly detailed and confirmed if such an enterprise 
is to succeed. 
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