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Abstract.

This dissertation investigates the use of the algebraic style of
abstract data type specifications for the definition of programming |
language semantics. The choice of appropriate mathematical models for
such presentations is an important aspect of this work largely because the
semantics of programming languages will generally be defined in terms of
domains that are more complex than those required for dealing with more
elementary data types. The relationship between initial algebra semantics

‘and the proposed style of specification is explored. ,

From this foundation, the intuitive notion of the congruence of a
pair of semantic definitions can be inspected and for malised against an
algebraic background. Using the formal definition so developed and the
simple but powerful notion of initiality, proofs of congruence are possible
for semantics that are not amenable to the more traditional techniques of
structural-and f ixed-point induction.

Finally the problem of establishing the correctness of a compiler is
investigated, reworking the traditional "commuting square” approach for
the style of semantic presentation developed in this thesis rather than the
usual initial algebra style. This allows a clearer focus on some of the
shortcomings of the commuting square notion.
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Chapter 1
Introduction.

The connection between universal algebra and the specification of
abstract data types has become well established since the seminal works of
Guttag (1975) and Liskov & Zilles (1975). While these early works were
rather informal with respect to the precise mathematical object being
associated with each particular specification (i.e. the "semantics” of the
specification language), much has been published since then (Kutzer &

‘Lichtenberger, 1983) especially relating to the modularisation of the
specifications. Naturally these two facets are intermingled in the literature
since each new modularisation tool that is put forward requires separate
treatment of its formal semantics. Despite the volume of literaturc that has
appeared in the past decade there is still no real consensus on the basic
issue of what mathematical object (algebraic theory, signed theory
constrained theory, equational variety of algebras, initial algebra etc) is the
most appropriate choice as the semantics of an abstract data type |
specification.

Burstall & Landin (1969) suggested a connection between universal
algebra and programming, particularly programming language semantics
and compiler correctness, but progress in this arca of research seems to

- have been much slower. It would appear that the use of equations by
Wand (1980b) to specify programming language semantics was the first
indication that the work on abstract data type specifications could be
extended to apply to programming language semantics. However, the
better understanding of abstract data type specifications has not really
impacted upon this area and informal and simplistic semantics dominate in
the literature.

In Chapter 3 we investigate the use of algebraic presentations for
specifying programming language semantics. We adopt a particular
mathematical object as being the most appropriate one to associate with
such presentations, thus defining a semantics of the specification language.
The adequacy of such a choice is then exammed and its relationship to
initial algebra semantics is detailed.

One of the main purposes of precise and well-founded specifications
is to make it possible to state and prove formal propcrties in a rigorous



way. Hence, in Chaptcr 4 we look at the rather intuitive notion of
congruence between semantic models and produce a clear and thorough
algebraic formulation of the concept. The machinery of the algebraic
foundations makes possible some proofs of congruence that are not
amenable to the traditional mducuve approach used by workers in
denotauonal semantics.

The techniques and concepts developed in Chapter 4 are immediately
applicable to the classic problem of establishing the correctness of a
- compiler or transiation algorithm. Chapter 5 looks at a variation on
Morris's approach that is suited to our style of semantic definition and
allows us to focus more clearly on some of the shortcomings of the (perhaps
too simplistic) commuting square notion.

To put this dissertation in ai proper perspective it is appropriate to
briefly review the major related applications of algebra to the specification
of programming language semantics that have appeared in the literature.

" Goguen, Thatcher & Wagner (1977) exploit the implicitly algebraic

- structure of denotational semantics in their work on initial algebra
semantics. By relating context-free grammars Lo signatures, abstract
‘syntax becomes idcntified with an initial aigebra. Hence every other
algebra with the same signature provides a "semantics” for that language
via the unique homomorphism property. We wul look more closely at this
approach, particularly in §3.2.

Wand (1980b) suggests the possibility of semantic definitions
consisting of a signature and a set of equations. As such, his work is closely
- related to our approach and provided considerable inspiration, but was in -
terms of single-sorted algebras and did not address the problem of
restricting the class of models of a presentation that provide an acceptable
semantics for the particular language. Further, while Wand identifies
denotational semantics with the initial model, his operational semantics is
reducible to the same object, this view being supported by Goguen (1980)
and Goguen & Parsaye-Ghomi (1981). Mosses (1983) raises the criticism
that Wand's semantic functions are “... just operations of abstract data types
that combine syntax and semantics”, yet he is willing to be much more
flexible in his consideration of denotational semantics valuations. Our work
in Chapter 3 suggests this criticism is not justified.



Goguen & Parsaye-Ghomi (1981) built on Wand's work by ireating 8
larger language, using many-sorted sigebras and by modularising the
definition, though we feel that the choice of modules does little to assist the
reader. Further, since they insist on the initial model their semantics is nos
denotational, as the semantics of procedures are given by closures
consisting partly of unevaluated program text.

The work of Gaudel (1978, 1980) and Pair (1982) is based on the
style of abstract data type specifications. They appear to be specifying 8
particuler algebra (based on their definition of states or “infor mations”)
though their work is rather informel. They meake considerable use of pre-
and post-conditions and “modifiable operators” (though they can be '
considered only as notational sugar and are easily factored out) so that
their definitions are clearly oriented toward compiler generation (Bjorner,

- 1983)..-We have misgivings about their use of notation without full

~ consideration of its semantics and hence their rather arbitrary technique of
establishing the correctaess of implementations.

The "abstract semantics algebras” of Mosses (1980, 1981, 1983) are
based on a combined use of initial algebra scmantics and abstract dats type
specifications. One of the major aims would seem to be to further the
author's intention to make semantic definitions more modular, so that
extensions to the language being treated do not necessarily require & major
rewrite of the existing clauses of the definition. Some confusion arises in
(Moses, 1983) as to the meaning of an abstract semantic algebra
specification, at first claiming: .

"There are, in general, many different possible models of the axions

of an ASA sp@cmcmﬂom including the (olﬁscmlte) initial ome, which is

taken as its meaning.”
However, the following contradictory statement is made later:

"One may obtsain a standard denotational description from one based
on ASAs by cheosing & model (using Scott d@mms) for the axioms of
the ASA specifications.”

Finally, he expresses some mnsgnvings that his use of discrete algebras only
provides for finite unfoldings (eg. of lcops), yet this is only the case if
attention is restricted to the initial algebra since otherwise we may simply
choose a mode! constructed from appropriate Scoit domains.



Broy & Wirsing (1980), Broy, Dosch, Moller & Wirsing (1981) and
Wirsing & Broy (1982) take a rather different approach using partial
algebras, with “definedness” predicates explicitly included in the
specifications and maintained under an appropriate version of the notion of
"homomorphism”. This rather neatly allows the class of &// models of a '
presentation to be considered. Though we have not considered the problcm
in detail, there would appear to be some difficulties related to the
sufficiency and generalily of an explicit “definedness” specification.

A somewhat different connection between algebra and programming
language semantics is the notion of order-algebraic semantics (eg. Elgot ,
1973, Wagner, Thatcher & Wright, 1978, Guessarian, 1981, 1983) where
the central concepts are that of a rational algebraic theory or an ordered
algebra. Work in this area is not directly rclevant to the application of
algebra propounded in this thesis, since it is concerned less with specifying
semantics than with modelling the fundamental machinery of computation.



Chapter 2
Foundatioms.

Our aim in this chapter is to briefly survey the mathematical
concepts dnd results that form tae buckground sgainst wihich the work of
this dissertation is set. As such, we tread what we see as & middie ground
between tWo exiremes.

‘Firstly, we do not consider it appropriate here to give a full
introductory coverage of the field and hence the discussion and examples
given will most likely be insufficient for the complete algebraic novice. The
following references are among those that combine to provide an accessible
and computer science oriented introduction to those aspects of vniversal
aﬂgebm and category theory that are relevant to this thesis: Goguen,
Thatcher & Wagner (1978), Burstall & Goguen (1979, 1982), Goguen &
Burstall (1984), Goguen & Meseguer (1983), Cohn (1981).

On the other hand we consider it equally inappropriate 1o aim this
chapter only at the mathematical sophisticate. Thus in many instances
where there is a choice among various expressions of the same result, or
formulsations of the same concept, we invariably choose the most prosaic or
intuitively pleasing one, frequently at the cost of elcgance. Also in this
vein, we consider it inappropriate to include aay proofs in @ survey such as
this. Perhaps the best justification for our approach is that we assume our
audience to be computer scientists, and as such we feel that the best
approach is the one that gives the best intuitions and insights without
compromising the accuracy or rigour of the presentation.

The references given in this chapter are not in general to papers

~ containing the original results but are chosen acording to the criteria that
they be reasonably recent and fairly standard; that their notation is similar
to ours, where possible; and that they are preferably oriented toward
‘computer science, at least with respect to the examples used.

Generally, surveys like this chapter are rather dry and lack ,
relevance in isolation. We therefore feel that the material herein should be
given only cursory attention to get the flavour of the mathematics used in
the body of this dissertation. The reader may then refer back to this
chapter when necessary.



2.1 Signatures and Algebras

One of the central concepts used in this work is that of a
many-sorted algebra(Goguen, Thatcher & Wagner, 1978) which is
basically a reformulation of the earlier notion of a feterogeneous
a/gebra (Birkhoff & Lipson, 1970) which is in turn a generalization of an
2/gebra (Birkhoff, 1935).

Definition. A Aeterogencous algebra A consists of _
1. afamily (S;} indexed by some set 1 where each §; is a non-void
set called a pAy/lumof A; ‘
2. aset (f) of finitary total functions indexed by some set Q
where each f is a mapping
For: Si1,0) % Si(2,00) % - * Si(n(ex), )  Se(ex)
for some non-negative integer n(x), function iy : k - i(k,x)
from (1,2,..n(x)) to I, and r(e) € 1. |

Simply put, a heterogeneous algebra is a family of non-void sets together
with some functions among those sets. As such, it is a generalisation of the
earlier notion of a (homogeneous) algebra that consists of a single set S
together with some functions on that set.

It is convenient when dealing with algebras togcther with g/gebrasc

theorfes (another central concept in this dissertation) to give a different
formulation of the same structure in terms of a s/jgnazureor operator
domain so that we may precisely characterise "species” of algebras. Again,
a many-sorted algebrais essentially a family of sets (called the
carriersof the algebra) with a collection of operations (total functions)
among them. The index set for the carriers is called the sorz set. (Note
that the "non-void” restriction has been dropped from the original
~ definition.) Since we deal exclusively with many-sorted algebras (rather
than single-sorted) in this thesis, we will feel free to shorten the name to
-a/gebra without confusion.

Definition. Given a set S of sorts, an S-sorted signatureor .
operator domain Q is a family Qy, ¢ of sets, for s € S and w € S*
(where S* is the set of all finite strings from S, including the empty
string A). F € Qy, ¢ is an operation symbol of rankws,of arity
w and of sort s.



Definition. Given an S-sorted signature Q, an 2-a/gebra A
consists of a set Ag for each s € S and a function f 4: Agy x Ag2 x ... x
Agn > Agfor each f € Qy, g with w=sl1s2..sn. For fe Q) ¢ f g€ 4

Thus, the purpose of signatures or operator domains is to identify the
shapeof many-sorted algebras, essentially providing names for the
carriers and operators. Following this notion of shape a little further,
signatures may be specified diagramatically with considerable clarity.
Consider the following representation for a Stack-of-Integers signature.

v

- The names in the ovals are the sorts, while the names on the edges
connecting them are the operator symbols with arities given by the source
of those edges and sorts by the targets. While this representation may be
quite clear, we will generally employ the more widely used and compact
notation given below for the same signature. |

sort Int
zero: - Int
succ : Int - Int
sort Stack
empty : - Stack
push : Stack x Int -+ Stack
pop : Stack - Stack
top : Stack -» Int

Calling this signature Z, a possible Z-algebra Swould have carriers Sj5 = N
and Syack = N*. The operators could be chosen as follows:

zero¢g=0
succ ¢= the successor function



empty ¢= ©, the empty list
push ¢= concatenate

pop ¢= tail of the list

top ¢~ head of the list

Ano_ther useful generalization from the Single-sorted case is that of the
concept of homomorphism of many-sorted algebras.

Definition. If 4 and Z are both Q-algebras, an 2-Aomomorplhism
h: A~ Bis afamily of functions (A : Ag~ B | s € S) that satisfy
1.iffe Q) g then bl 4)=Fp
2. iffe QSISZ...SB,S and <ay,2),...8g> € Agy x Ag2 x ... x Agqp,

then 4g(f 4(a1,a7,..80))=f # Ag1(a1),82(22).... B5pn(ag))

Thus, in the same sense that group homomorphisms "preserve” the group
operations, Q-homomorphisms “"preserve” the operations named in .

It is convenient for us to couch some of our discussion in terms of the
language of category theory, though it is not in fact necessary to do so. We
use only the most basic notions of category, initial and final object.
However it would be quite a straightforward matter to adjust our
standpoint such that categories were the most central mathematical
structure, rather than algebras. Informally, a cazegory consists of a
collection of objectstogether with some arrows (morphbisms) between
them such that identities are included and end-to-end composition is
associative. For more details in a computer science vein see Goguen,
Thatcher, Wagner & Wright (1973, 1975,1976). Arbib & Manes (1975)
provide a very accessible introduction, while MacLane (1972) is the
standard reference. ’

Result. A class of Q2-algebra together with #//the
Q-homomorphisms between the algebras form a cazegory of £2
-algebras, say C. The objectsof C are the algebras and the
morphismsof C are the Q-homomorphisms.

This is the only type of category with which we will be having many direct
dealings.

Definition. An object is /n/f7a/in a category if and only if there is a



vnique morphism from that object to every object in the category.
The dva/notion is the following:

An object is f7na/(terminal) in a category if and only if there is-a
unique morphism to that object from every object in the category.

Clearly, in terms of categories of Q-algebras this concept transiates into: A4
is 7nitia/in a category C of Q-algebras if and only if for every algebra Zin
C there is a ¥n/que homomorphism 4: A+ £

This notion is widely used both in the study of abstract data types
(Goguen et al, 1978 and Zilles, 1979 among many others) and in some work
on the semantics of programming languages (Goguen, Thatcher, Wagner & -
Wright, 1977, Mosses, 1983), including the present endeavour. A very '
straightforward but important result is the following: :

Result. Given an algebra 4, initial in a category C of Q-algebras, an
algebra Z(in C) is initial in C if and only if Zis isomorphic to A.

At this point it should be noted that it is the standard practice in algebra
not to distinguish between isomorphic objects. Thus we will generally '
speak of 7Aeinitial algebra rather than the 1somorph13m class of initial

| algebras

Given a signature 2, we denote the category of 2//Q2-algebras, Algq,.
Alg always has an initial algebra and the following construction provides
us with a technique of directly deriving such an algebra from the signature
Q. The algebra is called an £2-word a/gebraand is denoted Tq).

Definition. (Goguen et al, 1978). Let Q (ambiguously) denote the

set of all operator symbols in the S-sorted signature , ie,

Uwes® ses(Qw g)- Let <Tg gges be the family of the smallest sets of
strings contained in (Q u (( , )))* satisfying the following two

conditions (here (( , )} is a two element set disjoint from €, though

except for this definition we shall omit the underlines):

L Q) scTogs:

2. If 6 € Qy g W=38]..5y and tj € T g5, i=1.n, then

oft;.thleTqg
Such strings are usually called £2-words. The ramuy <TQ ¢> can be
made into an Q algebra by defining the operations:
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1. Foro€Q) ¢ 0Tq=0 €T
2. For 0 € Qy g W=S,.8p and t; € T g, i=1..0,

orgty,-tn) = 0l ty) €T
Such a T, is initial in Algp, the category of all Q-algebras.

We occasionally make use of the notion of the f7n4/algebra in Alg)
~ and hence a method for constructing such an algebra is desirable. It is
much simpler than the initial aigebra construction and requires us simply
to choose the carrier of each sort to be a s/ng/eton set and define the
operators accordingly. We sometimes refer to this algebra as the
degenerate -algebra.

It is important to see (we make frequent use of the fact) that
although the structure of an Q-algebra A4 is specified by a certain subset of
the set of all finitary operations among the carriers of 4, the important role
is plaYed not: merely by the set of operations defined by {, but by the set
of all operations obtainable from them by composition. The single-sorted
case is treated in Cohn (1981) and Manes (1976) in terms of the notion of a
clone (closed set of operations) on a set of M which briefly is a set of
operations on M that is closed under composition and contains the
projection functions (selecting the ith element of a tuple). The c/one of
actionof a single-sorted signature ~ on M is the clone generated by the
operators defined by 3. ' S

The (formal) extension of the notion to the many-sorted case is
straightforward but a little tedious. We prefer to approach it from the
much more intuitively (and notationally) pleasing idea of der/ved
operators. It is straightforward to extend the notion of -words to
include "variables" as follows. First fix an S-indexed family <Xpgeg of sets
of variables. It serves no purpose here to consider the effect of limiting the
number of variables, so we assume all the X are infinite. Clearly, we can
construct a new signature Q(X) which is derived from Q by adding each x € _
Xg t0 Q) ¢ for all s € S, thus considering (temporarily) each variable to be a
constant of the appropriate source. Now, by simply generating Tqy(x) we
~ have an algebra whose carriers consist of Q-words with variables. To(x)
when considered as an Q-algebra rather than an Q(X)-algebra is usually
denoted T((X) and called the /ree £2-a/gebra gencrated by X. Now any
word of sort s containing variables X{,...X, respectively of sorts sp....Sp, say
t(xy..Xp) defines a dersved operator t of arity s;..s, and sort s for any
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Q-algebra. The set of all such derived operators of Q is denoted Q and
coincides with the clone of action of 2 for any particular Q2-algebra.
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2.2 Bquational Presentations

In this section we introduce the notion of an eguvational
presentation and treat it only in terms of many-sorted algebras, leaving
the concept of an a/gebraic theoryto $2.3.

In §2.1 we introduced signatures as a means by which “species” of
algebras may be characterised by their "shape”. To allow further
restriction we introduce the notion of a set of axioms in the form of
first-order, universally-quantified equations, that a particular algebra may
or may not satisfy. In this way we may characterise species of algebras
with a certain signature which also satisfy a certain set of equations. _
We begin by developing the #/gebraicconcepts of eqution and saiisly.

Definition. Given an S-sorted Q-algebra A and an S-indexed family
of sets of variables X=-<Xg>. Any function o: X+ A (actually a family
of functions <ag: Xg - Ag>ges) is called an assignment of values of
sort s in A to variables of sort s in X. |

Using this idea we can formalise the notion of evaluating an expression (1e a
term of To(X)) given values for the variables.

Result. Let 4 be an 2-algebra and o: X » 4 an assignment. Then
there is a unique Q-homomorphism o: TQ(X) -+ A tha_t extends & in
the sense that Xg(x)=g(x) for all s € S and x € X,

Despite the notation and abstract formulation, what we are doing here is
quite familiar. Any t € To(X) is an expression involving some variables
from X and « is an assignment of values from A to those variables. Further,
- since A is an Q-algcebra the symbols from Q appearing in t already have
some corresponding meaning in 4. Hence @(t) eva/uates t toget a unique
value in A4, so @ can be seen as the process of evaluation of expressions
with the values of the variables given by a.

Definition. An 2-eqguationis a triple <X,t1,tp> where X is an
S-indexed set (of variables) and t{,t5 € T(X)q for some s. A more
suggestive notation is VXt {=t, though since a suitable X can be
deduced from t{ and ty, we generally write t{=t5. -
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Definition. An Q-algebra A satisfiesan Q-equation <Xyt if and
only if a(ty) = a(ty) in A4 for #//assignments : X A. A satisfies a
set B of Q-equations iff A satisfies each e € E.

~ Definition. An eguational presentation (or just presentation)
P is pair <Q.B> where Q is a signature and E is a set of Q-equations. .
An Q-algebra that satisfies E is called a P-a/gebra

If we continue our Stack-of-Integers example begun m §2.1, we may give
an equational presentation Stk consisting of the signature 2. together with
the following set of Z-equations.

1. pop(push(sn)) =s
2. pop(empty) = empty
3. top(push(s.n)) = n

The 5.-algebra S defined in §2.1 is a Stk-algebra. We will leave the proof
that this is the case until later when we have developed a proof -theoretic
notion of an equation being satisfied to complement the model-theoretic
one above. :

Generally in universal algebra, given a presentation P=<Q B>, the class
of all P-algebras is termed the A-variety of $2-algebrasand studied as a
class of objects. We, however, prefer to add a little more structure by
constructing the category of P-algebras, denoted Algp, from the class of all
~ P-algebras together with all Q-homomorphisms between them. ' As for
Algg (82.1), Algp always has an initial algebra and we now prooeedivith a
method for the construction of Tp, the E-quotient of T, that is always
initial in Algp. Firstly we need a little more machinery.

Definition. An 2-congruence= on an (Q-algebra A is a family
<=g>gcs Of equivalence relations =¢ on Ag for each s € S, such that if
0 € Qg1 sng 8j8j € 4gj and aj=g;a’; for i=1.n, then

We now need to discuss the notion of taking the quotient of an aigebra for a
congruence defined on that algebra. If A is an Q-algebra and = is an
Q-congruence on 4, we define a new Q-algebra called the guotient of A
by =, denoted A4/= as follows. For each s € S let (4/=)g be Ag/=g, the set of
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=q-equivalence classes of 4. If we dcnote the equivalence class of a by [a],
~ we may now make the S-indexed family 4/= into an Q-algebra by defining
the operations as follows:

1. IfoeQ) gtheno 4/= = [o 41
2. If 0 € Q41 gn s and [a;] € (A/=)g; for i=1.n, then
o 4/=l1ay]..lag))=lo 4(a;,...ap5)]

The final step in the development involves determining a congruence from
the equations of a presentation. A set of equations E determines a relation
E(A) on any Q-algebra A consisting of the family of sets of all pairs
<og(t]).ag(ty)> where <Xt; t2> € Eg and o is an assignment X » 4. Thereisa
least Q2-congruence on A containing E( 4), referred to as the £ congruence
generated by E(A)on A. At last we can define Tp and give the initiality
result.

Result. Let P = <QE> be a presentation and let =g be the
Q-congruence on T¢) generated by E(Tq). Then Tq/=, the quotient
of Tqy by =g, which we shall denote Tp, is the initial algebra of Algp.

Continuing our Stdck-of -Integers example, the carrier of sort Stack in Tgyy
has elements

[empty],

[push(emptyn)l, V n e Tgy Int |
[push(push(empty.n).m)l, Vm.n € Ty 1y
and so on.

The functions are defincd along the lines of
pushyg,([slinl) ~ [push(sn)].

It should be noted in passing that since Stk includes no equation involving
"top(empty)", the carrier of sort Int in Tp includes the elements

[top(empty)),
[succ(top(empty))],
[succ(succ(top(empty)))]

and so on, implying th'.at such elements can validly be "pushed” onto a
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stack. This may or may not be seen as undesirable depending on the
application. If such a situation is considered unacceptable, error terms may
be introduced, but this too is fraught with danger and may require the
equations be "error-conditioned” (Goguen, 1978).

Finally we note that we can construct an algebra by distinguishing a
single element from each of the equivalence classes of the carriers of Tp.
Clearly such an aigebra is isomorphic to Tp and is hence initial in Algp.
Such an algebra is generally called a canonica/ term algebra

We complete this section with a brief discussion of eguational
deductionbased largely on the work of Goguen & Meseguer (1982). As
mentioned above in the cuntext of showing Sto be a Stk-algebra, a
proof-theoretic notion that coincides with the model-theoretic definition of
an equation being satisfied is desirable, especially given that our central
concern is the development of proof techniques. Thus we need to define an
equational logic (deduction system) that is soundin the sense that new
equations that are deduced are always satisfied by any algebra satisfying
the given equations, and that it is comp/ete in the sense that every
equation satisfied by all the algebras satisfying the given equations can be
deduced using the rules of the system.

' Unfortunately the usual rules of equational deduction, reflexivity,
symmetry, transitivity and substitutivity, while they may be sound and
complete for the single-sorted case, are not sound when generalised to the
many-sorted case. We demonstrate this with an example taken from
Goguen & Meseguer (1981) based on the following presentation, B.

Signature
sort Bool

it : - Bool

ff : » Bool

- : Bool - Bool

A : Bool x Bool - Bool

v : Bool x Bool -» Bool
sort A

“foo : A - Bool
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Equations S

(we use the more suggestive infix form for the operator
symbols) - .

1. ~(tt) = ff |

2. ~(fMN=u

3. bv-b=tt

4. ba-~b-=ff

S. bvb=b

6. bab=>b

7. foo(a) = -~ foo(a)

Now using the usual system of equational deduction we may show: |

t-foola)v ~foola)  (3)

= foo(a) v foo(a) (7)
= foo(a) (5)
= foo(a) A foo(a) (6)
= foo(a) A - foo(a) (7)
=ff (4)

If such rules of deduction were sound then we would expect tt = ff to hold
in everyB-algebra, but this is not the case. There is a B-algebra Bar
where Barggg = (true false), Bary = (3, foo is the empty function and all
the Bool functions are the usual ones. Clearly true ~ false in Zarand thus
the rules are not sound.

Goguen & Meseguer (1981) and (1983) provide quantified versions
of reflexivity, symmetry, transitivity and substitutivity that are sound for
many-sorted logic. This is why the set of variables used is explicitly
included in the structure of equations. Two more rules are required to
make the deduction system complete: #bsiractionand concretionthat
basically provide a means for adding and removing variables from that
part of the equation. ' '

We do not give the details of this deduction system here since
(fortuitousty) for the examples we consider in this thesis, as well as many
other applications, the ordinary rules are indeed sound and complete. to
make this precise we need the following notions (Huet & Oppen, 1980).
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Definition. If Q is an S-sorted signature. we say that s € S is strict
in Q if and only if there is either
1. some 0 € Q) g, OF
2. some 0 €Qg) gng where 8 is strict in Q i=1.n.
The signature Q is sens/b/eif and only if for every 0 € Qg1 ¢n s,
if s is strict then so are all the s;, i=1..n.

We pref er this definition to the concept of z2on-voridsorts in Goguen &
Meseg_uer (1983) since it is slightly more general. The final result follows:

Re,nilt. The ordinary rules of equational deduction are sound and
qomplete for a signature Q if and only if Q is sensible.

For the presentation B above, the signature is not sensible since Bool is
strict (tt : » Bool) but A is not, and foo : A » Bool. We make a blanket
appeal to this result, claiming all the signatures of later chapters to be
sensible.

: Further contributions to many-sorted equational logic have recently
been put forward by Padawitz & Wirsing (1984) and MacQueen & Sanella
(1984).
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2.3 Algebraic Theories

It is fairly natural for computer scientists to consider equational
presentations as a specificalion langvage as witnessed by the bulk of
the work using algebra for the definition of data abstractions. In the
previous section we used presentations to specify a class of algebras; in this
section we wish to explore an alternative “semantics” for such a “language”.

The object we now claim to be specified by a presentation is a
(many-sorted) algebraic theory, which can be seen as one possible
~ formalisation of the loose, intuitive mathematical notion of a “theory".
There are many alternative definitions of algebraic theories, depending on
the background against which they are being developed. The most
common, including the original definition (Lawvere, 1963) is in terms of a
particular category whose objects are the natural numbers, though even
then there is considerable variation. Goguen et al. (1975) use theory

- congruences, Eigot (1973) takes a more axiomatic approach, while Kamin

(1979) avoids using category theory explicitly yet still constructs the same
object. Other formulations are based on triples (or monads) as in Manes
(1976) and Cohn (1981), or functors (Goguen et al., 1975), or even an
algebra (Goguen, 1975), (Fasel, 1980). A more accessible definition, though
perhaps less amenable to mathematical discourse, is that of the related
notion of 2-7heoryby Burstall & Goguen (1979) based on signed
theories(Goguen & Burstall, 1984a, 1984b). Our definition of a
many-sorted algebraic theory is similar in style to that of an Q-theory.
Unfortunately we pay a price for using such an intuitively appealing
definition by making some of the related definitions slightly more difficult
and hence a little indirect at times. A more rigorous development of (most
of) the same concepts introduced here is given by Goguen et al. (1975) in
terms of a more traditional definition of algebraic theory. -

We will give a model-theoretic definition of an algebraic theory in
terms of the following notions.

Definition. Given a set E of Q-equations, let E* denote the set of all
Q2-algebras which satisfy every equation in E.

Given a set M of Q2-algebras, let M* denote the set of
(2-equations satisfied by every algebra in M.

Given an Q-algebra A, let 4 denote 4 considered as an
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Q-algebra. A is the largest Q-subalgebra of A.
Given a set M of Q-algebras, let M* denote the set of
Q-algebras such that 4 € M* iff 4e M.
Given a set E of Q-equations, the c/one-closureof E is
. the set E***, denoted £

We may now give the central definitions of this section.

Definition. An g/gebraic theoryis a presentation «QB> such that
Q is closed and E is clone-closed.
ThusQ =QandE=E.

Definition. The a/gebraic theory presented by P = QP is QB
and is denoted Thp.

Given this notion, we call the algebras of Algp the mode/s of the theory
_presented by P. Hence we may view algebraic theories as a "higher level”
of semantics for presentations, fitting in between the presentation and the
class of algebras specified.

Our definition differs from the notion of an Q-theory which retains
the original signature and only takes the closure of the equations. It is
more in the spirit of the original work (Lawvere, 1963) to abstract away
from the signature as well as the equations. The notion of an Q-theory is
slightly simpler and adequate for Burstall & Goguen's (1979) semantics of
the specification language, Clear. The main advantage of using our more
abstract notion is that we can avoid treating theory morphisms and
derivors separately. In contrast, it was clearly more convenient for Burstall
& Goguen to maintain such a separation since Clear has a specific der/ve
operator. Much of the remaining material in this section consists of
reworking the material of part 2 of Burstall & Goguen (1979) in terms of
- our notion of algebraic theory.

Definition. A signatvre morphismfrom an S-sorted signature Q
‘to an S'-sorted signature Q' is a pair «,g> consisting of amap f:S- §
and a family of maps gy, g Qy s » Qr*(w)f(s) - where f* is the
pointwise extension of f to strings.

Thus a signature morphism is a map that takes sorts to sorts and operators
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to operators, preserving their arities and sorts.

Deffimition. Given two theories, T and T', say QB> and «2E>. A
theory morphismfrom T to T', is & signature morphism ¢: §2 » £’
such that o(e) € E' for each e € E.

We leave the notion of ¢ being extended to equations as intuitively
uaderstood here, and refer the reader to Burstall & Goguen(1979), pact 2.3
for a rigorous definition. A theory morphism is therefore a signature
morphism that preserves the axioms. It is worth noting here that the
above two definitions are identical to those for 2-theories. It should be
borne in mind that our theories only differ from RQ-theories by insisting

~ that the signature be closed, so we should expect some overlap.

Result (Presemtation Lemaan). Given two presentations <«Q,E> and
Q' E"» of theories T and T' cespectively. If 6: Q- Q' is a signature
morphism then 6 can be uniquely extended to 0: @ » &' (This
closely follows the idea of ¢ being extended to equations; see Burstall
& Goguen, 1979, part 2.3). Now ¢ : T » T' is a theory morphism if and
only if ole) € E for each e € E.

Thus, if we can define 0 :  » Q' such that the equations of E are still
satisfied, we may deduce @ : Q » Q' and be sure that all the equations of £
are satisfied. This is of considerable importance for our work since it
provides a proof technique for establishing whether & given signature
morphism is & theory morphism in terms of the presentations alone.

_  Finally we say ask how a theory aorphisa can be reflected in the
models of the source and target theories. In short, it provides a means for
deriving 2 model of the source theory from any model of the target theory;
in the opposite direction to the theory morphism, so to speak. Though we
are more interested in theory morphisms in this dissertation the concept is
-also applicable to signature morphisms, as reflected by the following
definition. '

Defimition. Given an S-sorted signature  and an S'-sorted
signature Q' together with & signature morphism ¢ : - Q" If Ais.
any Q'-algebra then there is an Q-algebra, denoted Ul A) where the
carriers and operators correspond as Jl‘ollﬂows
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1. (Ug(A))g = Ay(s) forallses
2. Tye(4) = 0(T 4 for all operator symbols T € Q.

The notion of a Ug-derivor can be extended to theory morphisms in a
straightforward manner.

Definition. Given two theories T and T' presented by «Q,B> and
«Q' B> respectively, together with a signature morphism o: Q - [9)
that is (or can be extended to) a theory morphism T -» T". If A4is any
«Q'E>-algebra (model of T') then Uq4( A) is a model of T, constructed
as above. '

A special case we shall occasionally find useful is where ¢ is an inclusion .
morphism; that is the sorts of Q are a subset of the sorts of €', similarly for
the operators, and o(s) = s. :

Definition. Given an S-sorted signature Q2 and an S'-sorted
signature ', where Sc S'and Qy, s < Qg gforallwe §*, s€S. If o
is a signature morphism Q - Q' such that o(s) = s for all s € S and
o(7) = 7 for all T € Q (ambiguously denoting all the operator symbols
in Q), then for any Q'-algebra A, we call the Q-aigebra Ug( A) the
2-redvctof A '

In essence, taking the Q-reduct of an Q'-algebra is achieved by “forgetting”
the sorts and operators of Q' that are not also in €.

It is possible to avoid all this extra machinery (for our applications at
least) by dealing with derivors on individual algebras rather than
- morphisms between theories. We prefer not to do this for a number of
reasons. First, it is usually advantageous to work at the highest available
fevel of abstraction and generality. Second, by finding a theory morphism
T » T' we have a means of deriving a T-algebra from 22y T -algebra,
whereas we would need to repeat the proof for each algebra were we to
use the derivor machinery. Finally, in later chapters a pleasing and
convenient split of semantic congruences and compiler definitions into
two-stage connections is reflected by the separation of models from their
theories.

Note that we will occasionally allow an abuse of notation (when no
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confusion can arise) that involves denoting theories by their presentations.
Thus, given a presentation P, we may speak of "the models of P" rather
than “the models of Thp"“ and so on.
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Chapter3 .
Specification of Programming Language Semantics

In this chapter we describe the technique we have adopted for
specifying the semantics of programming languages. It has been influenced
by the Oxford style of denotational semantics in that we provide a set of
semantic domains and semantic functions from an abstract syntax for the
language. It has also been influenced by the early work on algebraic
specification of abstract data types (eg Liskov & Zilles, 1975). As such it is
relatively unsophisticated in that our specifications consist only of a
signature and a set of first-order equations, thus relinquishing the
expressive power of parameterized modules, conditional axioms and
structured "theofy - building” operations.

The advantage of such a plain specification language is that it retains
very simple semantics and in fact it directly reflects those semantics.
Further, it seems unwise at this stage to settle on a choice between Clear,
OB] etc. especially when none is completely suited (semanticaily) to the
present endeavour.

~ The disadvantage of such unstructured specifications as ours is quite

obvious, however, As P. Lucas points out in the first session discussion in
(Bjorner, 1983),

“... it was clear almost from the beginning that having a big language

definition on the one hand and a big implementation on the other

hand and then asking whether the implementation obeys the rules of

the definition is not really a viable question to ask... So it was clear

that it was neoesSary to decompose this gigantic task into smaller

sub-tasks that are manageable. In other words, we are looking for

- modularity. Modularity of the definition as well as the proofs of

correctness.”
Thus for a full-scale venture such as a large fanguage or frequent use, our
specification language absolutely requires to be structured. However, since
in this dissertation we are investigating proof techniques that are based on
the semantics of our specification language we intend to persevcre with the
simple notation we have adopted. Development of a more modular style
must take a high priority in any further development of this work.
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3.1 Semantic Presentations and Models

We now proceed to discuss the semantics of our specification
language, largely in terms of an example using the lambda calculus. -
Though our presentations look like a simplified version of OB} (Goguen &
Tardo, 1979) they have different semantics. While an OB] object represents
a particular algebra (the initial one), our presentations represent algebraic
theories. However, we are not directly interested in the theories
themselves, but rather their classes of models (algebras). It is each of these
models that give a concrete semantics whereas the presentation can be
considered as a kind of "semantic schema”. It may seem at this point that
we are interested in an equational variety of algebras rather than an
algebraic theory. While this is partly true, we will later find it convenient
to define relationships between the entire classes of models of two
presentations, rather than individual algebras and more elegant machinery
- exists for doing this in terms of theories rather than varieties.

3.1.1 A Presentation for the Lambda Calculus

Rather than dealing with the pure lambda calculus (Church, 1941),
we extend it by including constant valued atoms. While this is strictly
- ynnecessary, it does make the operational semantics considered in §4.2
somewhat more tangible. Thus, a lambda expression is either a constant or
an identifier; or an abstraction in which case it consists of a bound variable
which is an identifier and a body which is a lambda expression; or an
application being an operator-operand pair of lambda expressions. We
stress again that the presentation that follows represents an algebraic
theory and that the semantics of the lambda calculus are given by the
models of that theory rather than by the theory itself.

Signature (%)
sort Lambda.
constant : B » Lambda
var : Ide - Lambda :
abstraction : Ide x Lambda » Lambda
application : Lambda x Lambda -» Lambda
sort env.
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arid : » env
bind : env x Ide x W -» env
find :envx Ide-> W
sort W.
injB:B->W
injA : Abstr-> W
err:- W
appl : WxW->W
"sort Abstr.
A :Lambda x Ide x env -» Abstr
M:Lambdaxenv-> W

Equations (€)
1. [find(arid x) = err
2. find(bind(ex,w)y) = 7 =y then w else find(ey)

3.  M(constant(b)e) - injB(b)

4.  M(var(x)e) = find(ex)

S.  M(abstraction(x,n).e) = injA(A(n.x.e))

6.  Mlapplication(x,p).e) = appl(M(a.e), M(B, e))

7.  appl(injB(b)w) = err

8.  appl(injA(A(n.x.e)),w) = M(n, bmd(e,x w))

9. appl(err,w) = err

- a ntation

Note that "although the abstract syntax was included as part of the
signature as sort Lambda, it is generally more convenient to employ the
usual strings of the language. Note also that the presentation LCis
somewhat incomplete with sorts B and Ide being left unspecified. We will
frequently make use of such deliberately loose notation especially with -
respect to Ide since we are generally not interested in the set of identifiers
save for the fact that there are enough of them and that we can test for
their equality. The following presentation is sufficient provided we wish to
have an unlimited pool of identifiers.

sort Ide.

first : - Ide

next : Ide -» Ide

equal : Ide x Ide » Bool
equal (first, first) = tt
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equal (first, next(y)) = If
equal{aext(x)ficst) = IT
equal(next(x),aext(y)) = equal(z,y). |
We will also in general assume a sort Bool with two constants 1t and {f to be
available and will only explicitly include it in presentations when further
operators are required. Similarly we will feel free to use the apparently
generic (mixfix) operator i/ - fhen - efse _ in the equations of
presentations in the knowledge that such an opemﬁm is easily defined for
any given target sort X as follows:
i then _ elsey —:Bool xXx K-+ X
i W then Ry elsey Rp = Xy
i 1f then x| elsey 5y =1z
Again, in some circumstances such as when the presentation of Bool
comsists of more than just two constant operators (eg §4.6), such
specifications of i/ 2hen efse operators may be inappropriate, so in those
cases we will explicitly include them in the presentation. However, for
most of the examples treated in this thesis the style of definition given
above is sulficient and we therefore assume an i Zhen else operator of
every sort to be available without actually writing down the details.

In a slightly different vein sort B, representing basic values, is left

unspecified since any particular choice of model for B will not impinge on
" our discussion of LC and its models, so it could be seen as a primitive form
of parameterization. Also it may seem a little vausual to have & semantic
domain (sort B) forming part of the syntax as described by
"constant : B » Lambda” rather than the more usual complete separation of
syntactic and semantic domains as in standard denotational semantics.

There, typically, numerals and aumbers are dﬂs&ﬁrmguished and an obvious
~ semantic fuaction say N : Num - (¥, is said to exist but is left unspecified.
(See Stoy, 1977 for example). In our algebraic [ramework we may easily
mix syatactic and semantic sorts and we often choose 1o do so in an effort
to avoid such vagueness.

As an aid to the reader an intuitive interpretation of the lambda
calculus presentation follows. As already discussed, sort B represents a
domain of basic values, Ide a domain of identifiers and Lambda the parse
trees of the language of A-expressions and sort W represents the
uaderlying domain of “values” of A-expressions and is basically intended to
look like the sum of B and Abste. Hence the two operators injB and injA
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depict the usual injection functions. Sort ¥ is also provided with an
operator appl for “applying” elements of W to each other, and &
distinguished error term in case such applications go wrong. Equations 7, 8
and 9 axiomatise the behaviour of appl. Sort eav represents environments
where infor mation regarding the binding of values of sort W to ideatifiers
is kept and the intention of the operators bind and find and the constant
arid is clear from equmﬂoms i and 2. The operator A and the sort Abstr
may at first appear somewhat mysterious and incompletely specified.
However, if we keep in mind our intention that the presentation is &
"sementic schema”, and that the algebras provide the actual semantics, it is
clear that possible models for Abste may include [V » V] where V is @
suitable model of W, or "closures” (Landin, 1964) consisting of the
information required to represent an abstraction (ie its body, its bound
variable and the current eavironment) so that its application to another
expression may be simulated. These two cases will be dealt with in detail
in §3.1.2 and §4.2 respectively. Finally, the operator M represents the
semantic function as defined by equations 3 to 6 and is isolated from the
other operators in the signature to emphasise its distinguished role.

It seems most natural to view the presentation LC as describing an
operational semantics. In other words it is seen as specifying a set of
rewrite rules on terms rather than a set of operator symbols and axioms. It
is interesting to note that this intuvitive interpretation of a preseatation like
LC is (afways) the initial model of the theory presented. As pointed out
earlier in this chapter (indeed, we have possibly laboured the point), we
intend that no particular model is “the” semantics. Rather, we claim that
there may be many models of LC other than the ﬁmml one that provide
satisfactory semantics of the lambda calculus. Unfortunately not every |
model gives an acceptable semantics, an obvious case being the algebra in
which the carrier of W is a singleton set. Further since M is described only
by recursive equations any fized-point satisfies the equations and is thus @
legitimate choice for modelling M. The issue of characterizing those
algebras that are satisfactory semantic models is taken up im §3.3.

3.1.2 A Model of the Lambda Caleulus Presemtation
Our discussion in this section centres around the (by now standard)

denotational semantics of the lambda calculus given below. A very similar
definition is given ia Stoy (1977) along with detailed discussion of the
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domains involved.

Domains
V = B+FUN

- FUN=V-V

ENV =1de-»V

icF ion
Val:Lambda x ENV-> V
(V1) Vallcconstantlp =c /o V
(V2) Vallx:Idelp = p(x)
(V3) VallAx.nlp = Aa.Valinlp [x/a] /2 V
(V4) Vallx(p)lp = Vallodp [FUN(Vallplp )

where
, : v if v € FUN
vIFUN- {
1 otherwise
and
p(z) ifz=x
plx/a] - Az. {
a fz=x

denotational semantics of lambda calculus

To proceed, we make the observation that the denotational semantics
/s a many-sorted algebra. It fits the definition very neatly since in the
final analysis it consists of nothing more than a family of sets (the domains)
and some functions among them. Note however, that in viewing such
semantics as an algebra requires that we be more eiplicit about identifying
exactly which functions are being used, a detail that is not an issue for the
usual view of denotational definitions. Put another way, having decided to
view the denotational semantics as an algebra, we must then decide on a
signature for that algebra. It will be seen below that we have some degree
of choice in this matter. '

Our overall aim in this section is to show that the algebra (call it Den)
associated with the denotational definition above is a model of LC. To do
this we need only to show that Den has the signature I as given in LC (or at
least arrange for it be be so) and further to show that Den satisfies the
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equations € given in LC.

It is easy to demonstrate that Den has the same signature as LC by
firstly defining a correspondence between the sorts of LC and the domains
(carriers) of Den and then listing the operator symbols of Z each paired
with a function from Den of corresponding arity and sort. Note that we are
not concerned that the denotational definition may involve other functions
which have no associated operator symbol in Z.-

Instantiate the sorts as follows:

sort env : BNV
sort W : \'4
sort Abstr : FUN

Then the operator symbols and functions correspond as follows:

z Den

~ injBB-W ~-in 'V
injA: Abstr » W _inV
err:» W 1
arid: -» env Ax.1
bind: env x Ide x W » env MW
find: env x Ide » W )
A: Lambda x Ide x env > Abstr Aa.Vall_1_[ /a]
appl: WxW->W (— I FUN)(L)

M: Lambda xenv-> W | Val

Some of the functions listed under Den may look a little strange at
first glance. The underline notation has been used where the operation has
been written in mixfix notation (Mosses, 1980). Thus _[_/_]: env x Ide
x V - env, eg plx/al. Further, some of the functions have been derived
from simpler ones by means of composition. For example, (_ | FUN)(_) uses
projection and function application. It is in this sense that we have
"arranged” for Den to have the signature Z rather than some other
- signature containing say, an operator for each of the primitive functions
involved in the denotational semantics. In fact, it is not at all clear that any
agreement could be reached as to the identification of these primitive
functions. The central point is that the abstract syntax, semantic domains
and valuations are the nucleus of any denotational definition. We are
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therefore at liberty to install them in any algebra that suits our purpose
and the other sorts and operator symbols (carriers and operators) present
in that algebra may be chosen arbitrarily without affecting the intended
semantics.

To establish that Den satisfies the equations of LC, the equations may
be translated into expressions of Den using the signature correspondence
described above and then verified using the definitions of the operations of
Den. In fact, having once recognised the signature correspondence, this
part of the proof goes through very easily. Note that since I is a sensible
signature (for any reasonable B) as discussed in chapter 2, we have no
problems applying the ordinary rules of equational deduction.

. Azu(x)=1
{find(arid x) = err)
Immediately true.

2.  ply/vi(x) = if x=y then v else p(x)
(find(bind(e,y.w)x) = /3=y 2henw elsefind (e X))
Can easily be shown from the definition of ply/v] by considering the
cases x=y and x~»y.

3. Valib:constantlp =bsn V
{M(constant(b).e) = injB(b)}

Immediate by V1 of Den.

4. Valix:Idelp = p(x)
(M(var(x),e) = find(e,x))
Immediate by V2.

5.  VallAx.nlp = Aa.Valinlp [x/a] /o V
(M(abstraction(x,n).e) = injA(A(n,x.e)))

: Immediate by V3.

6.  Vallx(p)lp = (Valladp | FUN)(Vallplp )
(M(application(w,p).e) = appl(M(cx.e), M(p.e)))
Immediate by V4.

7. ((b in V)| FUN)v) =1
(appl(injB(b).w) = err)

Follows from definition of | FUN.

8.  ((ra.Valinlp [x/a] 7z V)| FUN)(v) = Vallinlp [x/v]
(appl(injA(A(n,x.e)),w) = M(n, bind(e x,w)))

Follows from definition of | FUN and lambda-substitution.
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9. (1 IFUN)v) =1
~ {(appl(err,.w) = err)
Follows from definition of | FUN and 1.

~ Through this proof we have demonstrated that there are interesting
models of algebraic theories other than the initial one, thus justifying our
decision to view presentations as denoting theories rather than a single
particular algebra. |

Before leaving this example for the time being (we return to it in
§4.2), some further points of clarification need to be discussed. First, it
may not have escaped the readers attention that the functionality of Val in
the denotational semantics was written Val: Lambda x ENV - V rather than
the more usual Val: Lambda -» ENV » V. Had we wished our presentation to
reflect this curried version, a new sort representing lenv » W} would have
to be added to the signature and appropriate changes made to the
equations as follows.

. sort envioW.

' apply: envioW x env » W

M'" Lambda -» envtoW

apply (M'(constant(b)),e) = injB(b)

apply(M'(var(x)),e) = find(e,x)

apply(M'(abstraction(x,n,)).e) = injA(A(n,x,e))

apply(M'(application(x,f))e) =
appl(apply(M'(x).e),apply(M'(B).e))

oMb W

Of course the fact that we are persisting with parenthesised prefix function
notation makes the above changes look worse than they otherwise could,
but there is no denying that treating the semantic functions of more
complex cases in this way will quickly become unwieldy. For example, to
reflect the curried nature of the single valuation (taken from Tennent,
1977) A: Exp» Us » Md » U- K- C in a theory presentation would require
4 more sorts and 4 more 2pp/y~like operators than allowing 54 Exp x Us x
Md x Ux K- C. When one considers the number of valuations required for
a realistic language such additions to the signature would quickly become
tedious and would certainly reduce the readability of the presentation.

It should not be surprising however, that a denotational semantics
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with the curried version of Val is also a model of LC. After all, Lambda -
ENV » V and Lambda x BNV » V are isomorphic domains. The oaly change
to the proof above that is necessary is a clarification of the correspondence
between M and the new Val, for example Vald_J_ usﬁﬁg the same underline
notation as previously or perhaps more explicitly A<m,p>.Valinip .

- Bifectively, we un-curry the model to suit the signature rather than
currying the signature to suit the model. Clearly then, the rather
non-standard functionality of the originel Val was not strictly necessary,
but was considered desirable at this initial expository stage.

 As afurther variation on the denotational semantics and its relation
to LC, it is enlightening to consider changing applications to call by value
rather than the call by name used in the current model. Basﬁccmﬂy, the
difference is that in this mode of evaluation both the operator and operand
are evaluated besfore the application itself is performed. Thus, under call
by name an expression like (Ay.0)((Ax.xx)(Axz.2x)) evaluates to 0 whereas it
fails to terminate uader call by value. The change required to the
denotational semantics to reflect this alleration is to replace (V3) by the
following equation
VallAx.nlp = (strics (ha.Valindp [x/a])) iz V.
A fuller discussion may be found in Stoy (1977). The function
strict : FUN - FUN is defined such that for allve V,
Lror? if X is respectively 1, T or ?
strict (E)g) = {

f(x) otherwise

It is clear that this new algebra (call it Den’) is not a model of LC,
simce it fails to satisfy equation 8 - '
(( sericr (Aa.Valinlp [x/a]) o VIFUN)v) = Valinip [x/v].
‘The naive addition of another equation '
10. appl{w.err) = ere

is insufficient and compounds our problems rather than solving thea. If
we consider the expression appl(injA(A(Oy.e))err), then by equation 10
1his reduces 1o err. However by equations 9,4 and 2 it reduces 1o 0, thus
- "collapsing” the cacrier of W to a single value. To overcome the problem we

‘need to condition the equations on certain arguments not being error terms
~so that for example equation 8 only holds when w = ere. This conditioning
can be carried out quite systematically as described in Goguen (1978) and
in fact the specification language OB] (Goguen & Tardo, 1979) has a syntax
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that explicitly reflects this technique of handling error terms.
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3.2 Initial Algebra Semantics

Perhaps one of the most influential and successful applications of
algebra to programming language semantics to date is the so-called /n/s7/a/
algebra semantics reported in (Goguen, Thatcher, Wagner & Wright,
1977) and heavily used in (Thatcher, Wagner & Wright, 1979). Their aim
was to unify some apparently diverse approaches to semantic definitions
using the single but powerful concept of initiality. By observing that for
any context-free grammar G there is a signature Z such that Ty oorrespondé
exactly to the parse trees of G, it is clear that any other Z-algebra provides
a semantics for the language of G through the unique homomorphism
assigning “meanings" to ali the terms of Ty. After filling in some more
details, we investigate the ways in which denotational semantics fits into
this approach and then generalize this relationship to cater for our
"semantic model” concept. ' : '

To derive a signature corresponding to a context-free grammar we
proceed as follows. Associate a sort with each non-terminal and an
operator symbol with each production Ny -» ogN{ & ... Nyoxy Whose sort is
Np and arity NyN; .. Ny. The signature we require is just that set of sorts
and operator symbols. As a demonstration, consider the lambda calculus
example of §3.1. In BNF, the syntax is written as follows with each
production named to simplify expression of the signature.

(constant) <Lambda> := <B>

(var) . <Lambda> ::= <Ide>

(abstraction) <Lambda> ;= A<Ide>.<Lambda>
(application) <Lambda> ::= <(Lambda>(<Lambda>)

Choose sorts Lambda, B and Ide corresponding in the obvious way to the
non-terminals. The operator symbol associated with the production
(constant) has sort Lambda and arity B, and so forth. Using our standard
notation to express the signature (call it Q) we get:

constant: B » Lambda

var: Ide - Lambda

abstraction: Ide x Lambda -» Lambda
application: Lambda x Lambda » Lambda
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which is precisely the abstract syntax part of the signature Z given in
§3.1.1.

According to the principles of initial algebra semantics we now need
- only choose a suitable Q-algebra Sq, to define the meanings of
A-expressions since we automatically get a unique homomorphism from T
t0 S). So choosing a carrier for each sort of Q and defining a function for
each operator symbol of Q is all that is required. For this example we allow
ourselves to be guided by the denotational definition given in §3.1.2 and
we assume exactly the same domain definitions here. Associate carriers
with the sorts in the following way

SQ Lambda = [Env ¢ vi
sQ,Ide = [de
SQ B= B

and define the opérators as follows (using lambda notation)

constantgg (b) = Ap.(b 72 V)

vargo(x) = Ap.p(x)

abstractiongn(x,n) = Ap.(Aa.n(plx/al)) /o V
applicationgn(a,p) = Ap.(a(p) | FUN)(B(p)).

. The underlying idea of initial algebra semantics that there is a
unique homomorphism from the abstract syntax in the form of T to any
Sq chosen to be the semantics of that language can be seen as an attempt 10
formalize what consiitutes a semantics. Since we subscribe to such a
view of semantics there will frequently be places in this dissertation where
we will attempt to relate our style of semantics to the initial algebra style. |
As a precursor to the first and most detailed of these, we will now examine
the connection between denotational and initial algebra semantics.

3.2.1 Denotational and Initial Algebra Semantics

The following quote from Goguen et al (1977) contains the general |
thrust of their claim that denotational semantics fits the initial algebra
semantics concept.

"In general, the ‘semantic equations’ define the meaning of a

syntactic construct £ as a function F, of the meanings of the
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components to that construct, and in so doing the semantic equations
describe an algebra (the function £ is the operation corresponding
to the syatactic construct £) 22d say that semantics is &
homomorphism.”
While the general intent may be clear, the connection is discussed only
briefly and rather informally and consequently leaves some guestions of
detail unanswered. Clearly if the semantic functions are to be
homomorphisams then their definitions, the semantic equations must be
constrained in some way, yet no explicit mention is made of such in the
fundamental denotational semantics literature. However, in the "folklore”
smmm@]ﬁm denotational semantics much emphasis is placed on the
concept of refereniisd iranspareacy (Stoy, 1977), (Milae & Strachey,
1976), though again no hard-and-fast definition is given. One of the
implications is that the meaning of 2 particular syntactic construct depends
on/y on the meanings of its constituents. If we adhere to this principle
then we immediately satisfy the requirements for the semantic functions to
be homomorphisms. Nevertheless, inspection of some typical denotational
definitions reveals several cases where the semantic equations do not
appear to be entirely homomorphic, three classes of which were identified
by Mosses (1983) and are treated below.

First the equations are sometimes non-compositional and therefore
app@m to deviate from the principle of referential iransparency, eg.
. Blleq - egh =8ley » (-ep) |
Clirepeat d =.Clidl..Clirepeat d...
Such equations, usually seen as harmiess shorthand, can be dealt with in
two ways; either reject them as unacceplable and dismiss the semantic
definition as non-denotational, or fepnm@ them with aore acceptable
versions. The first example can be rewritlten by an expansion of e
+(-e2)1 using the clauses for Ele; + el and El-el, and the second one can
be rewritten with explicit use of the fixed-point operator.

Second, the creation of environments may directly involve identifiers
rather than their denotations as in

Dicomat i = el = ...ple/i] .... |
The way acound this has already been mentioned in our lambda calculus
example. We take Ide to be a semantic domain (as well as syntactic one)
and leave the semaatic fuaction Ide » Ide implicit as an identity. Basically
these problemms onlly arises due to a Jack of complete for mality in the
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definitions.

Third, there are often several semantic functions for the same
syatactic domain, such as €, £, R: Exp » ... We feel that it may have been
exactly this problem that led Wand (1982) to suggest that the
homomorphic nature of semantics was fost in continuation semantics where
he claims"... the notion of the value of a subexpression is meaningless”. The
classic case for continvation semantics is & language with labels and gotos,
and this requires at least two semantic funclions operating on com mands,
one to collect up label values, the other to evaluate the commands
themselves. The solution is straightforward if we consider the several
fuactions as components of a single compound semantic function and use
explicit pmjecnon and tripling to manipulate that function. A detailed
example is given in §3.2.2.

Thus it appears that given & denotational semantics (within certain
guidelines) we can re-express it directly as an initial algebra semantics, so
denotational definitions are indeed a possible expression of our |
fundamental concept of "semantics”. However Mosses' (1983) claim that we
can “go the other way” needs to be tempered somewhat. Certainly any
initial algebra semantics can be expressed in the noraiion of denotational
semantics, but it will not necessarily be denotational. For example we can

easily give an initial algebra semantics where the semantic algebra consists
of the strings of the language or where procedure declarations are handled
syntactically as in Goguen & Parsaye-Ghomi (1981), yet such domains are
not acceptable in denotational semantics.

3.2.2 Semamtic Models amd Tmitial Algebra Semamtics

Since our semantic presentations bear some resemblance 1o
denotational definitions, at least in style, it would seem hopeful that our
semantic models also characterize an initial algebra semantics. We intend
to demonstrate that such is indeed the case and also to develop a little
more formality about any requirements we wish to place on the form of
semantic equations. The example we intend to use is a stripped-down
language with only gotoes, labels and another statement, whose action is
undefined. Although it is not strictly necessary to do so, we give the
presentation as well as the model with which we chcose to work.
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Signature
sort Program
prog: Stmt » Program
sort Stmt
seq: Stmt x Stmt - Stmt
goto: Ide -» Stmt
labelled: Ide x Stmt » Stmt
other: - Stmt
sort Env
arid: » Env
bind: Env x Ide x C» Env
find: Env x Ide-> C
bindall: Env x Idlist x Clist » Env
sort C  {continuations)
- depends on semantics of ‘other’ statement - -
err:»C
sort Idlist
emptyi: - Idlist
cati: Ide x Idlist » Idlist
headi: Idlist » Ide
taili: Idlist - Idlist
appi: Idlist x Idlist » Idlist
sort Clist
emptyc: - Clist
catc: C x Clist - Clist
headc: Clist » C
tailc: Clist - Clist
appc: Clist x Clist - Clist

P:Program xEnvxC-C
C:Stmt x EnvxC-C
L:Stmt x Env x C- Env
/- Stmt - Idlist

M: Stmt x Env x C - Clist

Eguaiions _
1. [find(aridx) =err
2. find(bind(px8)y) = if x=y then 0 e/se find(py)
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10.
11.
12.
13.
14.
15
16.
17.
18.
19.
20.
21.
22.
23.

Note that we have been rather meticulous with our notation in these
equations. In future examples for the sake of readability we shall use more
“normal” abstract syntax and where there can be no misunderstanding,
implicit parentheses. The model (offered without proof) of GL we intend to
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bindall(px{,{) = 47 x{ = emptyi zfen p else

bindall(bind(p headi(x{),headc(c)),

taili(x(),tailc(c())

headi(cati(x,x()) = x
taili(cati(x,x()) = x{
appi(x{.yl) = /7 x{ - emptyi then yl

e/se cati(headi(xl), appi(taili(x(),y())
headc(catc(0,c()) = 6 |
tailc(catc(8,c()) = ol
appc(cl,dl) = 7 cf = emptyc zhen dl

e/se catc(headc(cl),appc(taile(cl), d())
Plprog(s),p,8) = C(s,L(s,0,6)0)
L (s,p.9) = bindall(p, /(s), M(s,Z (s,p,0)8))
C(seq(s1,82),p.0) = C(s1,p,C(s2,p,8))
C(goto({),p,8) = find(p,{)
C(labelied((,s),p,8) = C(s,p,0)
Clother,p,0) = .. (not specified)
7I(seq(s1,s2)) = appi( /(s1), 7(s2))
7(goto(l)) = emptyi
/(1abelled((,s)) = cati(f, 7(s))
/(other) = emptyi

M(seq(s1,s2),p,0) = appc( M(sl,p, C(sz 0.0)), M(s2,p8))

M(goro((),p.0) = emptyc
M(labelled({,s),p.0) = catc( C(s,p,0), M (s,p.0))
M(other,p,0) = emptyc

GL - si oto-lan e presentation

work with is the denotational one given below.

U=1Ide-C

P: Program - U-C-C
C:Stmt-U-»C-C

§: Stmt > Ide*
MStmt-U-C-C*
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Pibegin s end 1p8 = SlsD /7x (Ap'.pl3lsl/MIslp 818
Clsy;s20p8 = Clsylp (ClsylpB)
Sligoto {Ip = p(l)
Ci{:sbpd = Clslpb
Clotherlp = ...
$0sy:sp0 = 4lsy1 app $lsyl
jigoto (] = ©
$1t:st ={ car 90sd
‘$lotherl = ...
Misy;820p8 = Misylp (CLs,lpB ) app Ml szllpe
Migoto {Ipd = ©
MI{:slp8 = Clslp® car Mislpd
Miotherlpd = ..

d ional model of GL

If we denote by Z the signature corresponding to the abstract syntax,
then our aim is to derive a semantic Z-algebra Sy based on the denotational
model given above. Simply lby abstracting away from the syntactic sorts
and "target tupling” where there is more than one semantic function on the
same syntactic sort we get the following definiton of Sy.

Carriers
Sgtmt = (U~ C- Clx Ide* x [U-C~ C*]

Operators
progg(s) = ApB.(s+1)(/ix (Ap".(Ai*A6*.pli*/6°1}(512)((s43)p8)))8
semig(sy.82) = <ApB.(s111)p{(sp¢1)pB3,
: $142 app 8342,

ApB.(s;43)p((s741)p0 } @pp (s343)p6 >
gotos(() = Ap8.p({), o, ApB.o> >
labellcds(t s) = <stl, t cal si2, hpB{(si1)pB cat (s13)p6)>
otherg =

semantic Z- i model of GL

Though the derivation of Sy may seem to have been contrived (even
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magical) a full and rigorous description of & suitable general technique is
given in §3.2.3. It is clear from this example that to ensure initial algebra
semantics can be derived from semantic models in aa orderly way we need
a principle similar to referential transparency for denotational semantics.
Mosses(1983) defined a set of Lomomorphic semantic equalions for a
given (syntactic) signature £ as follows: for each operalor U € Zg]. sm,8
there is one equation of the form £ (u(xy,..Xp)) = (L (x),... Anlsy))
where 1'(x'y,...X'p) is 8n appropriate term of (T5(X))g. Briefly Z'is a
semantic signature wherein for each s of £ we may find a corresponding s'.
(Full details are given in the original paper). VWhile this concept may be
suitable for Mosses' “abstract semantic algebra” specifications and it clearly
ensures that all the semantic functions A so defined are indeed
homomorphic, it needs to be generalized somewhat to deal with our less
restricted style of semantic presentation.

We may identily the semeantic operators of some signatuce §2 as all
operators £ € Qy g Where s is not a syntactic sort and w includes at most
one syntactic sort. Thus we avoid the operators defining the abstract
syntax and the primitive operators on the semantic sorts. It is only the
semantic operators that we wish to be homomorphic so we give the
following sufficient conditions applying to equations involving semantic
operators: all syntactic elements (variables, constants or expressions) that
occur on the right hand side of the equation also cccur on the left hand side;
and all syatactic elements that cccur in equations involviag both syntax
and semantics cocur only as arguments to the semantic operators. This
requirement closely parallels the denotational semantics referential
transparency notion.

It is interesting to note that the equational specifications of Wand
(19801 meet our requirements and therefore characterise an initial algebra
semantics, yet Mosses (1983) contrasts that approach with his own by
cleiming “... (Wand's) ‘semantic functions’ were non-homomorphic, they
were just operators of abstract data types that combined syntax and
semantics.” It seems a little unreasonable 1o accept indirect definitions of
homomorphisms in denotational semantics while rejecting them in Wand's
algebraically founded sp@cﬁﬁ'ﬁcamﬁom.

The rather minor restrictions we place on the form of semantic
presentations by enforcing the conditions given above create no real
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difficulties. Indeed, considering that workers in denotational semantics
largely satisfied these requirements without necessarily knowing (or
caring) that they are describing a homomorphism, the two conditions above
can be seen as guides rather than restrictions.

3.2.3 Deriving Initial Algebra Semantics from Semantic Modeis

In the preceding section we derived the initial algebra semantics
characterised by a particular model of a semantic presentation without
giving any real hint of how it was done. Our aim here is to formalize the
technique in an algebraic framework giving both an algorithmic and a
category-theoretic formulation.

As a starting point we note that the basic techniques invoived are
abstraction away from syntactic sorts and target tupling. Now a parallel
exists in work on algebraic data type specifications: the so-called /in&/
data type ertension of Wand (1979) and Kamin (1980,1983). Basicalty
the aim is given a Z-aigebra A, we wish to derive the most absiract
algebra that extends A with another sort and some operators on that sort.
Here we outline the method for achieving this described in Kamin (1983)
and refer the reader to that source for more details.

Suppose that we have a Z-algebra A and we wish to extend it by
adding a sort N and a number of operators all involving N. First we identify
a subset of those operators that we believe will sufficiently distinguish
among elements of the new sort. Clearly all will refer to N in their arities.
Suppose this distinguishing set is

(£i:NxApx..xAgp +N,

fm:NxBIX...xBnm-fN,
RI:NxCl x...xcil-’Bl,

jkiNxDl "-""Djk"Ek ),
where all of the E's, A's, B's, C's and D's are sorts of Z, k3 1 and m3 0 (in fact

for our specific case m will always be zero). Then the most abstract
representation of N is '
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N= IAI x...xAnlﬁN]x
R ¢

IBI x...xBnm-iN]x

{CI x...ijl -’Ellx
b ¢

lDl X ... X Dik - Bl(]'

We then proceed to define (in whichever way is considered appropriate)
the operators on N as functions over the abstract representation. This gives
the final ZN-extension of A where 2 is the signature denoting the sort
N and the new operators on N that are to be added to A.

A hint of the direction we are heading may be taken by imagining N
as a syntactic sort. To construct its abstract representation we abstract
away from N and tuple those domains if there is more than one operator
on that sort. Within certain bounds this is just the process we are aiming
for. Suppose we are given a semantic presentation <Q,E>. Then the
signature can be divided into £ + A + ® where X corresponds to the abstract
syntax, A corresponds to the semantic domains and auxiliary functions and
¢ corresponds to the semantic functions. Clearly  and A are quite discrete
and ¢ will include no new sorts. For some model of the <Q,E>-theory, say
Mg, to derive the corresponding initial aigebra semantics we need to
construct a Z-algebra Sy based on the semantic carriers of M.

To begin we take the A-reduct of Mg, My. Put simply, to derive My
from Mg we merely “forget” about the 2+ ¢ parts of Mg, so My consists
only of the semantic domains and the operators on them. If we now
construct the final (Z+ #)-extension of My we get a different Q-algebra,'say
Sq in which the carriers of the synzactic sorts are precisely the abstract
domains we have been seeking. TnUS, the 2-reduct of S, is the required
semantic Z-algebra Sy. While this may at first seem rather obscure and
perhaps over-complicated, in practice it is quite straightforward and we
now demonstrate the technique using the example introduced in §3.2.2.

The signature of the GL presentation (call it Q) can easily be divided
into the syntax I consisting of sorts Program and Stmt and the operators
listed under those heading; the semantic domains A consisting of all other
sorts and the operators listed under their headings; and the semantic
functions consisting of operators £, L, / and M and all sorts of Q. If we
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call the given denotational model of the GL-theory Dg;, then the A-reduct of
Dq, has carriers U, C, Ide* and C* (as defined) for sorts Env, C, Idlist and Clist
respectively with appropriately defined functions for each operator symbol.
Now to construct the final (£ + )-extension of Dy, which we will denote Sg;,
we first identify the operators that will sufficiently distinguish between
elements of the new sort. This will 2/ways be the operators of &, the
semantic functions. (In fact, Kamin's technique only deals with adding one
sort at a time. For the sake of brevity we will work by adding the two sorts
- Program and Stmt in parallel. There is no problem here but in general one
may need to be a little more careful, especially when several of the
semantic functions interact.) Thus the distinguishing set for sort Program is
( P:Program x EnvxC-C) '
- and for sort Stmt it is
(C:Stmt x EnvxC-C,
/7 Stmt - Idlist
M Stmt x Env x C - Clist ).
The semantic function Z is not included because it is directly defined in
termsof / and M

Thus the carrier of sort Program in Sg, is [Eavp x Cp » Cpl which is
[Ux C- C]. Similarly the carrier of sort Stmt in S is [Envp x Cp - Cpl x
[1dlistpl x [Envp x Cp - Clistp] which is [U x C » C} x [Ide*] x [U x C- C*].
Though we omit most of the details here, the definitions of the functions for
each of the syntactic operators (eg. prog: Stmt -» Program, semi: Stmt x Stmt
- Stmt) are quite straightforward and are based on the rather trivial
observation that for each operator in the distinguishing set for sort n,
gi(n,aj....aj;) = (nii)lay,....a;;), where nii is the ith projection of n. For
example, given the definitions in the model Dp, of &), 4 and Afon the
class of statements “semi(s1,s2)"

G(semi(s1,52),p,8) = Gysl,p,C(s2 pe))

Kysemi(s1,52)) = 4ys1) app £s2)

Mp(semi(s1,s2),0.8) = My(sl.p, Gy(s2,p8)) app Mp(s2,p.0)
and the information that

C(semi(s1,s2),0,0) = (semi(sl,s2k1)(p0), -

/(semi(s1,s2)) = (semi(s1,s2142)() and

M (semi(s1,2),0,0) = (semi(s! 32)¢3)(p 0),
we may immediately deduce
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semig(s1,s2) = ApB.slil(p,s2¢1(p8)),
sli2 app s2i2,
ApB.s143(p,s241(p,8)) app s243(p.B).
Finally to derive Sy, the semantic algebra we require for the initial algebra
semantics, we take the Z-reduct of Sq), simply forgetting all of Sp exoept
the syntactic sorts and operators.

The above technique provides a “recipe” for deriving the initial
algebra semantics characterized by one of our semantic models, however a
more concise non-algorithmic formulation is possible. Again presume we
have a semantic presentation P whose signature 2 can be divided as above
into = + A + & and a model of P called M. Then the semantic Z-algebra Sy
we require is the Z-reduct of S, the final object in the subcategory of Algp
consisting of only those models that are re/at/vely prime to M,, the
A-reduct of M. A P-algebra A, is prime relative to M, if and only if the
A-reduct of Ag is isomorphic to My and the unique homorphism h:Tp+» A
is surjective on the carriers of Q- A (ie.2).

The concept of prime relative to X is a relaxation of Kamin's
(1983) insistence on prime algebras, that is algebras such that the unique
homomorphism to them is onto. This does not suit our purposes since we
do not wish to be restricted to semantic domains with no “junk” values
since, for example, the domain V = B + [V » V] used in the denotational
model of the lambda calculus presentation (§3.1.2) would not then be
permissible. We treat this question in detail in the next section.

It is worth pointing out that this formulation of the relation between
initial algebra semantics and our semantic models is not particularly
interesting from an algebraic viewpoint nor is it exactly perspicuous.

- However, the algebra does provide a convenient setting for what is at least
a rigorous and compact definition.
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3.3 Acceptable Semamtic Models

As was brieflly mentioned in §3.1.1 not every model of a presentation
necessarily provides a satisfactory semantics for the language being
described. In other words, given some presentation P we may wish to
specily a sub-class of the algebras constituting Algp as those which are -
acceptable semantic models. While we will never need to do so in this
dissertation, we treat the problem here since it has cccasionally been
touched on in the literature and seems to have led to some confusion. For
example, Waad (1979) goes no further than to say that the class of
acceptable models will be some subcategory of Algp, While by far the most
com@on approach (at least in the abstract data type literatuce) is to ignore
the question completely, using the specification techaique without ever
saying exaclly whes (mathematical) object is being specified, rather
relying on the intuitions of the reader. This section is largely taken from
Baker-Finch (1984a).

3.3.1 A Solution for Abstract Data Types

Probably the first suggestion of a satisfactory semantics of the
signature plus equations technique for abstract data type specification was
the initial algebra approach clearly described in Goguen, Thatcher &
Wagner (1978). There, given some presentation P, the particular object
being specified is the (isomorphisam class of the) initial algebra in Algp.
This algebra has some aticactive properties, not the least of which is the
fact that it is easy to construct. Further, the popularity of the choice of the
~ initial algebra as Zhe object represented by a presentation is explained by
Wand (1979) as follows: “First, its universe contains no values other than
those required by the generators. Second, two values have the same
semantics in the initial T-algebra if and only if they have the same
semantics in every T-algebra. Thus no information is lost except that which
is required by the relations”. (For"T-algebra” read "algebra in Algp").
Burstall and Goguen (1982) put it somewhat more snappily: ... the initial
algebra ... has no junk: every element of the carcier is the value of some
term; 2o con/usion: different terams get different values”. However, if we
choose this algebra to be the oa/y model of the presentation, we are
wasting the considerable power of the specification technique. After all, if
we only want to describe & single algebra there are avaerous more direct
and simple methods. Further, the initial model may not necessarily be the
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intended or most intuitive one. Consider for example the following typical
presentation for (unbounded) arrays of natural numbers.

sort Nat
Zero: » Nat
succ: Nat -» Nat
sort Array
empty: -» Array
assign: Array x Nat x Nat -» Array
access: Array x Nat - Nat

Equations
1. access(empty,i) = zero
2. access(assign(a,jn)i) = /7 i=j then n else access (a,i).

In the initial model it is 207 the case that assign(empty.l,SA) and
assign(assign(empty,1,9),1,5) are the same array. An entire history of
assignments to each element of the array is maintained and this does not fit
the generally accepted array concept.

Perhaps the most popular current view is that an abstract data type
specification (being some presentation P) represents the algebraic theory
Thp. If we settle on this choice however, we are begging the question. The
theory has a class of models that is isomorphic to Algp. So if we accept the
algebraic theory approach, we are left with exactly the same question we
must answer with respect to the equational variety: "which of the algebras
are satisfactory semantics?” It is important to point out that we do not
therefore reject the view that an abstract data type specification presents
an algebraic theory; we are only saying that the question remains
irrespective of such a choice. '

A refinement of the algebraic theory approach has been put forward
by Burstall & Goguen (1979) and Reichel (1980) by developing a notion
similar to an algebraic theory which only has initial models. The writer of
an algebraic presentation is then able to distinguish some sorts as being
subject to initial interpretation. The usefulness of this approach can be
displayed using our array-of-naturals example. If we can somehow insist
that the Nat part of the theory is to be interpreted initially, then any model
_ that satisfies such a restriction will satisfy our intuitive concept of such a
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data type. Burstall and Goguen's "data theories” and Reichel's “canons” or
“initially restricting algebraic theories” provide the means by which to give
a rigorous meaning to the notion outlined above. Unfortunately our lambda
calculus presentation LC of §3.1.1 is not amenable to this treatment. Clearly
we do not wish to be restricted to models where Abstr or W are interpreted
initially since this would exclude the denotational model described in
§3.1.2, but to leave Abstr and W uarestricted would admit undesirable
models such as the degenerate one with single point carriers. Thus, while
initially restricting algebraic theories appear to satisfactorily provide &
solution for specifications of data types they do not meet the requirements
for our more ambitious use of equational presentations. ‘

3.3.2 Allowing Jumk

The precise question we are considering is: "which of the algebras in
Algp, for some presentation P = <Z,B>, are acceptable semantics of the
concept we are trying to descripe?”. Note that it is quite obvious that the
class of such acceptable models cannot be identified solely by innate
- properties. It sust be left up to the writer of the specifications to
somehow state which are acceptable, but we can defer this consideration
for now.

Clearly, the initial model will always be an acceptable model since
the only objects that are equated are those so specified in the presentation.
If it is not, then there can be zo acceptable models and hence the
presentation must be inadequate. It follows from the fact that there is &
unigue homomorphism from Initp to every other algebra in Algp that all
these other algebras have "junk” or "confusion” or both. We examine how
much junk and confusion is acceptable. '

Firstly, we should not be concerned if the carriers contain elements
that are not the value of any term. After all, this is frequeatly the case in
denotational semantics. For example, the domain V = B + [V » V] used in
the lambda calculus model of §3.1.2 contains many elements never reached
by any semaatic valuation; in particular, all the transcendental functions.
The only query about allowing unlimited junk is whether we waat to allow
it in the syntactic carriers. If we do, then the algebra describes the
“semantics” of various objects beyond the terms generated by the abstract
syntax. However, if we take the view that the semantics is meant to give



49

the meaning of & term of the language with which it is presented (i.e. the
syntax is described elsewhere) then we cen happily allow nonsense values
in the syntactic carriers. Though this may be & satisfactory situation for the
purposes of specification alone, the uses to which we will be putting the
semantic presentations later in this dissertation will require us to ingsist
that the syntactic carriers exactly reflect the language being dealt with. We
will have more to say on this issue in §3.3.5, but for now we offer
formalized statements of both possibilities.

An algebra A in Algp is an acceptable model in the sense ovtlined

- above if the unique homomorphism h: Initp » A is & monomorphism (ie.
one-one). This effectively ensures that all the elements of the carriers of
the initial algebra (the terms) are separately represented in A. To disallow
junk in the syatactic carriers we make the following further restriction

h: Initp » A consists of <igj....ngn> and {sili € I} are the syntactic sorts.
Then as well as h being 8 monomorphism, the hg; for i € I must be
bijections. This extra restriction is such & minor point and is so easily
catered for that we shall overicok it for the remainder of this discussion.

 3.3.3 Limiting Confusion

Clearly the above restriction is unsatisfactory since it again disaliows
our denotational model of LC, and serves only to demonstrate that it is the
limitation of confusion that aust be our objective. While it is possible to
give 8 simple general statement about junk in acceptable models, the
degree of confusion allowed must be the choice of the person writing the
specification. For instance, again vsing our lambda calculus example, there
can be 0o @ priors reason to think that Ax.x and Ay.y may be given the
same meaning, or that bind(bind(arid.x,a),y,b) and bind(bind(arid,y.b).x,a)
could be evaluated to equivalent representations. Thus if we wish to
identify all the acceptable models we are bound to somehow specifly which
terms may be equated and which ones may not. One way to do this is to
pick a particular algebra as the “maximally-confused” model (for want of a
better name). The model is chosen on the basis that as many terms as we
find scceptable to equate are equated. If we can then define a relationship
between this and other algebras that have no other confusion, we have a
way of identilying the class of such acoepmbll@ models.

For guidance in our choice of this "mmmaﬁy-wnmsed“ model we
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are attracted by the tenets of denotational semantics (Scott and Strachey,
1971). As well, the notion of 7w/fy 2b6siract models (Milner, 1977) seems
related. It is reasonable to say that one of the aims of (standard)
denotational semantics is to make the semantic description as abstract as
possibie and the concept of "fully abstract” serves to for malize this aim. For
our purposes we interpret this to mean that the aim is not to differentiate
between the meanings of two programming language constructs that are
equivalent in the view of the semantics writer or language desigaer. So
perhaps a denotational style of model would be a good choice as the
acceptable model that gives the same meaning to &S MANY terms as
possible. We aeed to be a little careful here - it would be quite valid to
represent an eavironment as a list, say [Ide x VI* which is not as abstract as
[ide » V]. In such & domain the two environment terms given above do not
evaluate to the same element of the carrier vet none of the interrogation
operators can differentiate between the two elements. Thus it seems that
final algebra extensions (Kamin, 1983) may also have something to say on
the choice of a maximally-confused modef.

Let us look more closely at the concept of full ebstraction introduced
by Milner (1977). Put briefly, 8 semantic description is fully abstract
provided two phrases (pieces of abstract syntax) are given the same
meaning if and only if their substitution into the same program context (a
program Wwith 2 "hole” in it) always gives two programs with identical
meanings. A formal algebraic definition of the concept is given in Goguen
and Meseguer (1983). Thus, the effect of full abstraction is to assign
different meanings to syatactic constructs only when necessary. This is
exactly what we want for our maximally-confused models and is, to 8
degree, what the final algebra construction provides. '

However, there is still some work to be done. The final algebra
construction depends on the pre-existence of some primitive types
(otherwise we would always get the algebra with single-point carriers).
Simiferly, full abstraction is defined with respect to the semantic domain of
whole program meanings. Thus in that domain we may assign different

“meanings to what are intuitively equivalent whole programs (eg. Ax.x and
Ay.y) and still have g fully abstract model. (The lambda calculus is not in
fact a particularly good example since whole programs are also program
phrases). Hence we require more of a maximally-confused model than its
beiag fully abstract. Rather, it is a fully abstract model with domain of
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program meanings X where X is chosen to identifly as many programs as we
consider appropriate. Having chosen such aa X, Kamin's (1983) final
algebra extension construction can be of assistance in deriving the
appropriate other semantic domains. Unfortunately it is not quite as
straightforward as we may desire since the final algebra extension depends
also on the functionality of the operators; in this case particularly the
semantic functions. Coasider the (rather contrived) case where we have

P: Program - C and C: Stmt -+ [Ide x C] where the irrelevant information of
(say) the first identifier cccurring in the statement is included in its .
semantic domain. Clearly this is not fully abstract but the final algebra
construction does not preclude such & possibility. Thus we need to make a
careful choice of & program meaning domain 274 semantic funclions as &
minimum basis for identifying & maximally-confused model.

Returning to our lambda calculus example, suppose we chcose (or
derive) the denotational model Den as our model that identifies as many
terms as possible while still remaining acceptable. How then may we use
this choice 1o decide which other models are appropriate? As a first
approximation, let us say that algebra A in Algyc is an appropriate model if
there is 8 T-homomorphism h: A» Den. The effect of this limitation is Lo
ensure that the terms are eguated in A only if they are equated in Den.
Thus we are saying that only the kind of "confusion” that cccurs in Den is
allowed in our "appropriate models”. This is clear from the definition of
$-homomorphism. Thus in one fell swoop we are disallowing uadesirable
evaulation of different terms to the same value and as a consequence
ensuring that solutions of recursive equations are always like least
fixed-points in the sense that a non-terminating computation will never be
given & "sensible” value.

So far in this section we have not considered the allowance of extra
elements in the cacriers of the algebras. So the problem remains that given
some A such that h: A - Den is & homomorphisa (i.e. A is an acceptable
model), there may be an LC-algebra B such that there is 8 monomorphism
k: A - B. In other words B differs from A only in that it includes “junk” in
its carriers. However, it is likely that there is no homomorphis@m B -» Den.
From our discussion in the previous section we would like algebras such as
B to be included in our class of acceptable models. One last refinement
leads to the following definition wherein we finally abandon the lcose
concepts "acceptable model” and "maximally-confused model”.
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Given a presentation P = <2B>, an algebra A in Algp is an of -mode/
of Thp if there is a Z-homomorphism h: A » ] where ] is some
P-algebra such that there is a monomorphism k: D » ] where D is the
P-algebra distinguished as the sub-fina/ mode/of Thp.

Note that the carriers of the sub-final model can have extra
elements. For example V in Den has elements that are not in the image of
Val. In such cases there is clearly a model, say M, with no such extra
elements and a monomorphism from that model to the chosen sub-final
model, say D. Thus if there is a homomorphism A - M there must be one
A - D by composition. The following diagram showing some of the
morphisms(the epi-mono factorizations, Arbib and Manes, 1975) may be
enlightening. The monomorphisms (one-one) indicate “same confusion,
more junk”; the epimorphisms (onto) indicate “same junk, more confusion”.

sub-final
model

Note that this is really a very loose representation (for example, it suggests
that the class of ok-models is always countable) but it is only intended as
an aid to intuition. '

3.3.4 The Category of Acceptablie Models

It is interesting to consider what sort of structure the class of _
ok-models forms. Clearly, they form a full subcategory (call it "0K") of Algp
since all the morphisms between objects in the subcategory are retained. It
is only the erxistence of certain morphisms that we use to choose the
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objects. However, the ok-models do not form an equational variety. By the
Birkhoff Variety Theorem (in Manes, 1976), if V is a variety and A is in V
then all of A's quotient algebras are in V. (B isa quotient of A if there is an
epimorphism A -+ B). Now the degenerate P-algebra (the one whose
carriers are all singleton sets) is a quotient of every ok-model but it is not
itself in OK, in our example at least, since there is 0O homomor phism

Deg - D 2nd ao monomorphism D - Deg.

This has relevance to the view that these specifications represent
algebraic theories. As pointed out earlier, the category of models of Thp is
isomorphic to the variety of P-algebras. It is clear therefore that it is
impossible 1o present a theory all of whose models are ok-models. This
fact appears to cut across Wand's (1980b) hope that “"such restrictions (on
the class of acceptable models) seem to depend only on the theory and not
on the specification”. ’

To summarize, it has been argued that none of the approaches to the
semantics of algebraic data type specifications extend satisfactorily to our
use of algebraic presentations for describing programming language. A
possible solution is to extend the specification to consist of & signature,
some equations #nd & description of a particular, suitably abstract algebra
as the sub-final model. For the applications dealt with in this thesis such
restrictions on the class of models aever come into play since all our proofs
are either general enovgh to apply to 2/ models, or we deal with a single
specific model. However, it is necessary or at least desirable that when
using equational semantic presentations to prescribe the semantics of a
programming language the class of acceptable models be clearly delineated.

3.3.5 Preely Interpreting Symtactic Sﬁgma&@ﬁ'@s

As mentioned briefly in §3.3.2, the work of later chapters from time
to time requires that there be no junk in the carciers of the syntactic sorts.
Basically, without this restriction structural induction over the language
becomes invalid and the unaecessary isposition of such a limitation on the
available proof techniques is uawarranted.

At the level of the algebras or models of a theory we can easily
formalise this restriction by the qualification that the ok-models must be
reachable on the syatactic sorts (Sanella & Wirsing, 1983). If we denote
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~ the set of syntactic sorts of some presentation P by S, then a P-algebra A is
reachable on S provided h: Tp - A is such that hg is onto for all s € S. With
such a condition being satisfied we may clearly use structural induction
over the language within any particular ok-model. However, we will need
to use induction at the level of the 74eory rather than the models so the
restriction we require will need to be on the theory rather than the models
of that theory. Thus we need the concept of a theory whose only models
are initial ones (which can be extended to a theory whose models are
“partly initial").

As a brief example consider the following presentation for natural
numbers with an equality operator.

sort Bool
tt: » Bool
ff: -» Bool
sort Nat
zero: - Nat
succ: -» Nat
eq: Nat x Nat -» Bool
Equations
eq(zero,zero) = tt
eq(zero,succ(n)) = ff
eq(succ(n), zero) = ff.
eq(succ{m),succ(n)) = eq(m,n)

Now while the theory of this presentation has equations such as
eq(succ(zero), succ(zero)) = tt, eq(succ(succ(0)), succ(succ(0))) = tt and so on,
it does not include the equation eq(n,n) = tt. This is simply because there is
a model of the theory whose carrier for Nat has some element, say Q, that is
not the value of any term (i.e. it is junk) and eq(Q,Q) = ff. Thus, by our
definition of algebraic theory in §2.3, eq (n,n) = tt is excluded even though
we would intuitively wish it to be true. If we could somehow constrain the
theory so that Nat was freely interpreted (i.e. only the initial model is
allowed) then we could be sure that the carriers for Nat were always in
bijective correspondence with the set (zero, succ(zero), succ(succ(zero)) ...}
so that no such Q could exist and we could apply induction over Nat to
establish such properties as eq(n,n) = tt not given by the rules of equational
inference alone. ' o
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Fortunately a mechanism for expressing such restrictions is already
available and was mentioned briefly in §3.3.1. It is the "initially-restricting
algebraic theories” of Reichel (1980) or the “data theories” of Clear (Burstall
& Goguen, 1979). Indeed the term “induce” was used in earlier versions of
Clear (Burstall & Goguen, 1977) which more directly suggested the effect of
such restrictions. We consider a long and technical discussion of these new
theories to be inappropriate at this point and refer the reader to Burstall &
Goguen (1979) and Reichel (1980). |

The most important aspect to us is that we may insist that some sorts
must be freely interpreted in all models without being reduced to consider
a sub-class of the mode/s of the theory; the restriction is on the zheory
itself. Thus we may mark all of the syntactic sorts of our presentations to
be freely interpreted without relinquishing our claim that we are
presenting algebraic theories. To this end, in all presentations from this
point on we will distinguish those sorts that are subject to initial
interpetation by denoting them as syntaclic sorts as for example:

syntactic sort Lambda.
const: B » Lambda

It will always be exactly those sorts representing the abstract syntax that
will be so marked. The first point at which we will actually need such
constraints on our semantic theories will be in §4.4 and we will continue
the discussion there when faced with a realistic example.



56

Chapter 4
Congruence of Semantic Models

The notion of semantic congruence is an important one in the
denotational semantics literature, especially in relation to proof’s of
correctness of compilers or interpreters. In this chapter we intend to
develop the concept against the algebraic background developed so far and
atterapt to pin down exactly what constitutes a semantic congruence, a
subject discussed only in ioose, general terms in the denotational semantics
literature. : '

Our approach will be to consider a sequénoe of several simple
examples using them to clarify our intuitive notion of congruence for each
of them, with a view to evolving a formal algebraic definition of semantic
congruence. Having done that, we show that the clarified definition and its
algebraic foundation combine to simplify many (though not all) proofs of
congruence that appear in the literature. Indeed, it makes possib/e some
proofs that cannot be realised by the traditional approach . As well, we feel
that our way of expressing the congruence is more direct and therefore
more appealing than the predicates generally used in denotational
semantics.
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4.1 Algebraic View of Semantic Congruence

An important question in the study of programming language
semantics is whether or not two semantic definitions are congruent; that is,
do they describe (semantically) the same language. This is particularly
relevant in that an established technique for demonstrating the correctness
of a translation involves a hierarchy of semantic models and the
establishment of such a relation between the consecutive models. Since our
work here is characteristically algebraic, it is natural for us to seek an
algebraic formulation of the concept of semantic congruence. Further, we
consider the fixing of a formal/ notion of congruence, algebraic or
otherwise, to be a valuable goal in its own right.

4.1.1. The Intuitive Concept

Simply put, we will consider two semantic models to be congruent
provided they give equivalent meanings to the same language. Having
stated that, it quickly becomes apparent that "equivalent meaning" requires

some clarification, especially when these meanings may be values from
quite different domains. Little help or guidance can be found inthe
denotational semantics literature other than loose generalizations. The
most that is offered by Stoy (1977) is the following:

“T'he exact details of such (congruence) conditions depend on the

details of the definitions being compared, but the general idea is that

two definitions are congruent if it can reasonably be claimed that
they are defining the same language.”
A more detailed discussion occurs in Milne & Strachey (1976) though it
only really applies to the example language Sal around which the entire
book revolves. Even so, apart from stating that if a program does not
terminate under one of the semantic definitions then it must not terminate
under the other, no guidelines are offered. Thus there is nothing to prevent
~ us putting forward quite pathological conditions and claiming that they are
a statement of congruence. A rather extreme example would be to claim
that two definitions that always return different answers for identical
programs are therefore congruent. So although we have a fairly clear
perception of what we require of a congruence we have absolutely no
formal basis on which to work. o '

4.1.2 Lambda Calculus Congruence Statement
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The first example we consider is the lambda calculus, partly because
of its smallness and partly because we have already discussed a semantic
presentation LC and a (denotational) semantic model, Den. We wish to
consider the congruence of Den with a particular operational semantics of
the lambda calculus. The full details of the semantic definition are given at
the beginning of §4.2 rather than here since it seems more desirable to
have the formal definition close to the proof for easy reference at that
stage. In the operational semantics, we have the same domain B of basic
values, but FUN is replaced by a new domain CLO (for “closures™ Landin,
1964) of triples that gather together the information required to represent
the meaning of an abstraction (i.e. its body, its bound variable and an
environment). Similarly ENV is replaced by the domain E of lists of
identifier, value pairs. A function 2pp/y interprets closures, mimicking
the direct application of members of FUN to arguments. The new semantic
function is Eval: Lambda x E - [B + CLO] and the semantic equations are
very similar to these in the denotational definition.

‘The best intuitive notion of congruence betwen those two semantic
definitions can obviously be given in terms of two functions: one
embedding U into V and the other relating the finite environments of E to
elements ENV.

uinV fueB
Value (u) = {

Aa.Vallnl EN(e)(x/al in V if u=mxe €CLO
EN(e) = Ax.Value(Lookup(x.e))

The function Value sends closures to the functions they encode while not
affecting basic values. EN constructs a function which looks up the value of
an identifier in e and embeds this value in V. Using these functions the
intuitive congruence is the following:

For each ¢ € Lambda,
Value(Evall¢l e) = Vall¢l EN(e)

Two points need to be made here. First, the simplicity of the relation is
largely due to the fact that the two models “look the same” in a sense, only
really differing with respect to the domains involved. Second, despite the
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apparent simplicity this congruence c4anzof be established by the
traditional techniques of denotational semantics (Turner, 1979). This
problem, though it looms rather large, will be overlooked for now since we

- are presently concerned only with what coanstitutes a congruence and the
issue of its provability is deferred to §4.2.

In 8§3.1.2 the point was made that we can consider denotational
definitions as algebras and indeed we showed Den to be a model of the
lambda calculus presentation LC. By the same argument, the operational
definition we are presently discussing is also an algebra (we shall call it Op)
and will also be shown in §4.2.3 to be a model of LC using a style of proof
identical to that used in §3.1.2. Thus, if we assume (for now) that Op and
Den have the same signature Z, then the congruence we wish to establish is
exactly a 2-Aomomorphism provided we add identity maps for B and
Lambda. By definition, if h: Op -» Den is a 2-homomorphism consisting in
part of hyj: U~ V and hg: E - ENV then it must satisfy hyj(Evali¢le) =
Vall¢l hg(e) which is exactly the condition required of Value and EN.

While it may seem that there are still many loose ends we make the
claim that for this example at least, an algebra homomorphism correctly
constitutes a congruence. |

4.1.3 Addition Expression Congruence Statement

It is not at all difficult to imagine a congruence relation that does not
fit into the rather narrow definition proposed above and it is an example of
such that we wish to explore here. The language consists simply of
numerals and a plus sign (bold to distinguish it from the addition operator)
and the semantics we will consider are the usual direct semantics and stack
semantics. The definitions are brief enough to give both here and in §4.4.1.

Syntax .

<Bxp>: = <N> | <Bxp> + <Exp> (again we will biur the Numeral/
Number distinction)

Domain

n:N | * (natural numbers)

S ic Fundti

€p:Exp- N
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(D1) &pINI = n
(D2) Eple; + e5l =Epleql + Eplesl

direct semantics of addition expressions

Syntax
<Exp>: = <N> | <Exp> + <Exp>
Domains
N (natural numbers)
N* (stacks are represented by
- sequences of natural numbers)
Semantic Function

&g: Exp x N* » N*

(S1) Eginl §=n caz §

(S2) Eglley + exlt = add(Eglesl(Egle 1K)
where add (§) = (§e1 + §42) caz (2a7/(tai/(3)).

stack semantics of addition expressions

Thus the effect of the stack semantics is to push the “value” of the
expression onto the stack. The effect of 2d¢ is to replace the top two
elements of the stack by their sum.

Again, we can consider the direct semantics and the stack semantics
as many-sorted algebras (we shall refer to these algebras as Dir and Stk
respectively). However, even the briefest inspection confirms that they
cannot sensibly be given the same signature, so we cannot talk of their
relation in terms of homomorphism. It is clear that a possible statement of
congruence between the two definitions is the following:

For each e € Exp and any § € N*,
Eplel - (Eglielg k1.

It is also clear that Dir and Stk must be models of some theories (Thp and
Thg given in §4.4.1) so that, for example cas and _i1 are realisations of
operators of Thg. In this light, the congruence condition can be seen as
reflecting a relation between ThD and Thg. In fact it is the relation
between theories that conceptually corresponds to homomorphism between
algebras: a theory morphism. So if we denote the theory morphism
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embodied in the congruence statement above by o: Thg ~» Thy then what
we wish to show is that Dir = Ug(Stk) where Uy is the derivor of ¢ as
discussed in Chapter 2. Derivors were used directly for a very similar
langusage by Burstall & Landin (1969). We prefer the slightly more abstract
expression in terms of theory morphisms since we are working in part with
theories; our semantic presentations specify algebraic theories. Further, a
derivor in the sense used by Burstall & Landin is specific to a particular
algebra whereas given & theory morphism A - B we can derive 8 model of
A from any of the entire class of models of B by a single standard process.

So far we have two quite different formulations of an algebraic
notion of semantic congruence: algebra homomorphism and theory
morphism. In the following section we consider a more realistic example in
an attempt to bring the two together. ’

4.1.4 DBVIL Congrucnece Statement

The language DEVIL was devised by Henson & Turner (1982) as a
vehicle for introducing compleiion semaniics, an operational semantics
that they suggest should be seen as & “standard” operational version of
continuation semantics. In their view, DEVIL “ ... contains most of the
features which force a wedge between denotational and operational
definitions.” Further, the domains used in the completion definition are
largely based on Landin's (1964) c/oswres and as such rather closely
resemble the domains of the continuation definition. Despite this similarity,
the proof of congruence is not at all straightforward and the best that
Henson & Turaer hope for is that " ... a standardisation of the operational -
semantics along the lines suggested here alfects & corresponding
standardisation of the congruence proof” and "the structure of the proof
offered (in their paper) will serve as a paradigm for any such proof relating
continuation and completion semantics.” '

The syntax of DEVIL is given below, though we have in fact altered it -
from the original by eliminating gotos and labels. This has the effect of
shortening the definitions and the proofs without altering their complexity
~ since the semantic domains remain virtually as they are in (Henson &
Turaer, 1982).

Com = dummy | Com; Com | Ide: = Exp | eall Exp | resultis Exp |
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Exp - Com, Com | while Exp do Com
Exp := Ide | true | false | Exp - Exp, Exp | valof Com | proc Com

Again the complete definitions are given in §4.5.1 though we repeat part of
the domain definitions here to give the flavour of the completion style.
First the continuation semantics:

S=L-[VxT] stores

U =[Ide-~ D] xK : environments

C=S-9§ command continuations
K=E-C expression continuations
F=C-C function closures

Cqg:Com->U-C-C
EqBExp-U-K-C

Now the completion semantics:

S=[LxVxTI stores
U =[Ide x DI* xK environments
C-[FxC]+lEXDxeK]* leK]+(fail]+(ﬁnal]
' command completions
K = [(update} x D x C] + [(call} x C] + [{cond) x Cx C]
: expression completions
F = [Com x U] command closures
Cp: Com->U-+C+5-3 '
Ey Exp>U-+K-+S§-3

The resemblance i3 quite close with stores and environments in the
operational semantics being the “usual” list representation of the abstract
function, and command and expression completions being unions of the
various types of closures that arise in the semantic clauses.

Because of this close resemblance one may expect that we could
arrange for the two semantics to be models of the same theory, as is
the case for our lambda calculus example. Indeed, this can easily be seen
by partly expanding the functionality of Gy and€4t08y: Com~»U-+C- S
+S and €4: Exp » U- K -+ S - S so that there is an exact match with T, and
€, However, for the purpose of this exercise we choose to treat them as
models of different theories DA @nd DB where the major difference is the
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arity of the semantic functions; Cj: Com xUxCx S-S, fp:Expx UxK«xS$
S5, G ComxUxC-Cand &: Expx UxK-C. Under this assumption we
need a theory morphism d: DA - DB such that () = apply. G and d( ) =
apply. 43 where apply : Cx S » S. However, given a continuation model
Cont, and a completion model Comp, Ug(Cont) is not Comp, as was
suggested to be the case for the addition expression example since we still
have a mismatch of the domains. Thus it appears that a sensible aim is to
find a homomorphism between Comp and Uy(Cont). The intuitive
congruence is the following:

1. hy(Doldipa) = Dyl dihy(p)hglo)

2. hg(CylcipBa) = Syl dhy(plhc(6)(hg(o))

3. hg(&,lelpka) = E4lebhyy(p)hy(k)(hg(a))

where

hy: [Ide x DI* x K - [Ide » DI x K
hyl¢p, ©>) = < Ax. hp(lookup (px)), hg(x)>

hg: [Lx V]*-[L-~ V]
hg(o) = Al. value({,0)

he: [F x C] + [Bxp x U x K] + [E x K] + {fail) + {final} - [S - S}
hc(¢.8) = hp(6)(hc(8))
hcle,p.x) = €4lelhy(p)hg(x)
hcle x) = hg(x)(hg(e))
he(fail) = Aa.?g
hc(final) = Ao.o _

hy: [{update) x D x C] + [{call} x C] + [{cond) x Cx C] » [E -+ C]
hg(update,d,0) = Aeo. 8(ald/e])
hy(call 8) = Ae. 8(c)
hg(oond.el,ez) =Av. (v~ 8y: 92)

hy: [Com x U+ [C+ C)
hp(c.p) = C4lcdhyp)

The algebraic interpretation we place on this congruence condition is that
we wish to show the existence of a homomorphism embodied in the various
h functions from the model Comp to a model derived from Cont. The
derivor is rather obscured by details since it is extremely simple (and
perhaps rather contrived) but it can be detected in equations 2 and 3 above
where the right hand sides have the explicity parenthesised form

Cylclpd (o) and € 4lelpx (o) to make quite clear that we are composing the
semantic functions with “application to the store”.
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Our formalised algebraic notion of semantic congruence isthe
following:

Given two semantic models A and B for (syntactically) the same

language where A is a model of some theory Th, and B is a model of

some theory Thg; if there exists a theory morphism d: Thy - Thy

such that there is a homomorphism h: A » Ug(B) (or h: Us(B) » A)

then we may say that A and B are congruent.
It is quite easy to fit the simpler examples of §4.1.2 and §4.1.3 into this
framework. For the lambda calculus example, since both semantics are
models of the same theory, the theory morphism part of the congruence is
the identity. Similarly , for the addition expression example the
homomorphism is an isomorphism.

In 84.6 we will meet a complication that does not arise in the simple
cases outlined so far. While at first sight it may not seem to fit the
definition above it will not cause us to alter this relationship in any way.

4.1.5° Relation to Initial Algebra Semantics

In §3.2 we claimed that the initial algebra semantics approach was
the most fundamental one and that other semantic styles inciuding our own
can be reduced to the simple concept of homomorphism and a semantic
algebra with the same signature as the abstract syntax. Thus it is natural
here to consider how our notion of semantic congruence translates into the
initial algebra f[ramework.

In outline, our‘technique for establishing a congruence between two
semantics A and B is as follows. First present theories Thy and Thg of
which A and B are respectively models and define an appropriate theory
morphism o: Thy -+ Thy. Now generate U,(B) and show there isa Thy -
homomorphism between A and U4(B) (in either direction). A possible
variation available is to present a third theory Thg, define theory
morphisms o: The - Thy and B: The - Thg, and find a The homomorphism
between Uy(A) and UD(B). However, this process of factoring the relation
into two parts has not proved necesary in any of the examples we have
ever considered and it is difficult to imagine even a most contrived case
where a direct theory morphism cannot be found. Consideration of the
number of proofs required to establish such a congruence (A is a mode! of
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Thy; B is a model of Thg; ¢ is a theory morphism; and a homomorphism
exists between A and Uy(B)) may be rather daunting but they are generally
very simple {(especially the first three) and at least they clarify exactly
what must be proven.

5 ‘
Thy i‘ThB

Uo

() ®
(&)

Alg Algp

It should be made clear that if we are attempting to show that two
semantic definitions are congruent then we need only concern ourselves
with the ersstence and not the nsature of the homomorphism. Thus
unless we are interested in exactly how the two semantic definitions
correspond we need not even bother writing the homomorphic relation
down provided we can merely establish its existence. A rather pleasing
aspect of our formulation of semantic congruences is the split into two
discrete steps. The homomorphism is concerned solely with relating the
semantic objects ("meaning” values) of the two definitions , while the
theory morphism specifies an "implementation” of the semantic functions.
Indeed, Goguen et al (1977) use the similar notion of dersvor to formalise
the concept of implementation for abstract data types. Further, this split
allows us to be a little more general: a theory morphism Thy -+ Thg
provides a means of deriving a Th-model from everyp model of Thg so
there is no need to repeat this part of the proof for each model separately.
Actually, in some cases, such as where A is initial in Alg or where there is
a homomorphism A » Us(Tg) we may establish a complete congruence
between A and every Thg-model all at once.

In terms of initial aigebra semanﬁcs, the technique we have been
discussing demonstrates that the following diagram exists and commutes.
The abstract syntax is the initial Z-aigebra Ty and Sz andS'y are the
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semantic Z-algebras respectively derived from A and U4(B) as described in
§3.2.3.

The homomorphisms g and k exist in A and U4(B) as (a set of) operations
representing the semantic functions provided the semantic equations are
homomorphic as discussed in §3.2.2. If there is a homomorphism, say

h': A » U4(B) which clearly must be an identity (or isomorphism) on the
syntactic subalgebra of A then h'g = k.h' = k so h is the restriction of h’' to
the semantic part of A and the diagram commutes. Basically, the fact that g
and k are unique homomorphisms allows the mere existence of h to
guarantee commutation.

The similarity with the so-called “Morris-square” (after Morris,
1973) is worth noting here. In essence, his advice is that to prove compiler
correctness requires to show that a square of homomorphisms with source
programs, source meanings, target programs and target meaning on the
corners commutes. '

source L. compile > T target
language f language
semantics semantics
'\r A 4
source M >
- meanings encode ’ arget
g meanings

Now if source programs and target programs are identical as they are here,
the compiler becomes completely trivial and the square collapes into the
triangle diagram above. |
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We have yet to comment on the relationship between pairs of
semantic Z-algebras B and U4(B) for some theory morphism o. If we
denote the Z-algebra corresponding to B and U4(B) as Ry and S’y
respectively, it is clear from inspection of the cases dealt with elsewhere in
this thesis that S’y can be obtained from Ry in a fashion similar to the
application of Ug. It makes little sense in this context to think of S’y and Ry
only in terms of 2-aigebras since Uy only has an interesting effect on the
semantic sorts and operators and these are “forgotten” when generating S’y
and Ry. Perhaps one intuitively helpful way to view the situation is to
consider Uy as having the effect of renaming some of the derived
operators of B (in the c/one of B; §2.1) and forgetting others. Thus B and
U4(B) can be considered as the same object viewed from the two attitudes
of a Thy -algebra and a Thy-algebra, and their semantic Z-algebra are A
similarly related. Basically the effect of Uy is either to remove unnecessary
complexity, say replacing a variable by a constant as in moving from |
continuation semantics to direct semantics by always supplying the identity
continuation; or add in further (unnecessary) complexity by composing
functions to consider extra arguments, as in going from direct to
continuation semantics by composing the direct semantic function with
"application of continuations to stores”. In brief , these two examples are
represented by the following two equations respectively:

Gpldipo =Cclclp{Aro.c)o and CclclpBo = 8(Cpl dpa).

Our definition of semantic congruence may seem excessively
restrictive especially given that to the present some such relations are not
even able to be established. However, we maintain this view to be the
appropriate one and that “congruence conditions” that fall outside our
definition are "relations” or “facts” that may indeed be important or useful
in themselves without actually being congruences. In the following sections
of this chapter we will work through some examples (inciuding the three
already introduced) to test the usefulness of the algebraic framework we
have set up. In most, though not all cases initiality assists us in proving the
existence of appropriate homomorphisms. '
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4.2 Lambda Calculus Example

In this section, largely taken from Baker-Finch (1984b), we
investigate in detail the congruence of the denotational and operational
semantics introduced in §4.1.2. The operational definition follows, while
the denotational one may be found in §3.1.2 and the presentation LC is
given in §3.1.1.

Domains
U=B+CLO
CLO = Lambda xIlde x E
E-= (Ide X U)'
Semantic Function
Eval: LambdaxE-> U
(E1) Evallc: constantle =¢ 7z U
(E2) Evalix: Idele = Lookup(x.e)
(E3) EvallAx.nl e =<xe in U
(E4) Evalla(p)le = apply(Evallol e, Evalipl e)
where _
Evallnl Extend(e x,b) if a = < x>
apply (ab) = { _ |
1 o otherwise

Extend(e x,u) = <x,u>.e

2nd (edi) if i exists s.t. 1st (ei) = x and
Lookup(x.e) ={ C Vj<i, Ist(ed) = x

L otherwise

ali is the ith element of the list a and 1st and 2nd respectively return
the first and second item of a pair.

We begin by briefly following an attempted proof of the congruence
Value(Evallol e) = Vallol EN(e) described in §4.1.2 using the traditional
techniques, to demonstrate how the proof breaks down in that situation. In
outline, for our algebraic style of proof we intend to show that Op (the
algebra corresponding to the operational semantics definition above) and
Den are both models of LC and that furthermore Op is an initial model of LC. _
Thus by initiality there is a unique homomorphism mapping Op to Den and
this can be shown to be the strong congruence desired. Den has already
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been shown to be in Algy ¢ (§3.1.2) and the proof for Op is exactly
analogous. By showing that the unique homomorphism h: T ¢ - Op is
bijective (set-wise) we establish the initiality of Op. It will be seen in
§4.2.3 that there are some difficulties invoived in this second step.

4.2.1 The Scott-Strachey-Milne Approach

| This section is a summary of a paper by Turner (1979), a least up to

the point where the proof of congruence initially breaks down. The proof
techniques are basically those developed by Milne (1974). First we repeat
the definitions of the embedding functions and the congruence condition.

umnV ifueB
Value(u) = {
Aa.Vallnl EN(e)(x/a]l in V if u=c<xe eCLO
EN(e) = Ax.Value(Lookup(x.e))

For each ¢ € Lambda,
Value(Evall¢l e) = Vall¢l EN(e).

Structural induction over Lambda is not a valid means by which to attempt
a proof of this congruence. This is clear due to the fact that the operational
semantics does not directly provide the meaning of a A-expression in terms |
of the meanings of its subcomponents. Rather, Eval is given as the
fixed-point of a certain functional so fixed-point induction suggests itself as
the appropriate proof technique.

In fact one half of the proof succeeds, namely Value(Evallol e) ¢
Vallo! EN(e) where "< is the usual “less defined than or equal” operator. If
we define a function F as follows:

Lookup(¢.e) if ¢ € Ide
F = ASAQMe. { |38 | . ife=Amm
applyg(Slal e Sifl e) if ¢ = a(p)

then it is quite straightforward (e.g. Stoy, 1977) to show that

' Value(FK(1)Iol ) ¢ Vall¢l EN(e) by induction on k.

The converse, Vallol EN(e) ¢ Value(Evallol e) however cannot be proved by
fixpoint induction. If we follow through an attempt to establish this result
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it will be seen that the proof breaks down in the induction step.
Define G as follows:

p(a) if ¢ € Ide
G = ADAOAp. { Aa.Dinlp [x/a} if & = Axq
(DIodp | FUN)(DIBIp ) if o =a(p)

At some point in the proof we must show

( GK(1)Iad EN(e) | FUN)(GK(1 )IBD EN(e)) ¢ Value(Evallu(p)le).
By induction it is sufficient to show

Value(Evallod e)(Value(Evalipl e)) < Value(Evallx(p)le).
By the inequality established above the left hand side is an approximation
to (Valload EN(e) | FUN)(Vallpl EN(e)) which is Vallx(p)IEN(e). So we need to
establish that Valla(B)IEN(e) ¢ Value(Evalix(B)le), but this is just what we
are trying to provel Thus it could be said that we must prove the theorem
as a lemma to its own proof. '

At this point Turner presents a less direct “congruence” based on the
notion that congruent functions and closures must return congruent values
when applied to congruent arguments. Though this is still quite a useful
and natural concept of equivalence we argue that it does not constitute a
congruence.

4.2.2 Op and Den are Models of LC

We have already shown in §3.1.2 that Den is a mode! of LC. The
proof that Op is a model of LC is equally straightforward by choosing a
carrier of Op for each sort of LC, a function of appropriate arity for each
operator symbol of (the signature of LC), and show that the equations €
of LC are satisfied by such a Z-algebra. Instantiate the sorts as follows:

sortenv: E
sort W: U
sort Abstr: CLO

Then the operator symbols and functions correspond as follows:

z Op
InjB:B-> W o inU
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injA: Abstr- W nU

err:-» W 1

arid: » env o

bind: env x Ide x W -» env | Extend
find: env x Ide - W Lookup
A: Lambda x Ide x env » Abstr : T
appl: WxW-W apply
M: Lambda xenv-> W Eval

Again, the underline notation has been used for operations written in
mixfix.

To test whether Op satisfied equations 1 to 9 of LC they may be
translated into expressions of Op using the signature correspondence
described above and then verified using the definitions of the operations of
Op. |

1. . Lookup(®vx)=1.
~ {find(arid x) = err)
Holds by the definition of Lookup since there is no i such that
Ist(<ni) = x. '
2.  Lookup(Extend(ey,u)x) = i/ x=y Zhen v efse Lookup(ex).
(find(bind(e,y,w)X) = if x=y then w e/se find(ex)}
Can easily be shown by considering the cases x=y and x~y.
3. . Evalib: constantle = b /z U.
- {M(constant(b),e) = injB(b)}
Immediate by E1 of Op.
4. Evallx: Idelle = Lookup(e.x).
{M(var(x).e) = find(e x))
Immediate by E2.
5. Evallix.nle = < x.e> /2 U.
(M(abstraction(x,n).e) - injA(A(n.x.e)))
Immediate by E3.
6.  Evallu(p)le = apply(Evallal e Evallpl e)
(M(application(x,p).e) = appl(M(cx.e),M(B.e))}
Immediate by E4.
7. apply(b /nU,u) =1
~ {appl(injB(b),w) = err)
Follows from definition of apply.
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8.  apply(«nx.e) /nU, u) = Evalinl Extend(e x,u).
(appl(injA(A(n.x,e)),w) = M(n,bind(e,x,w)))

| Follows from definition of apply.

9.  apply(L,u) =L
(appl(err,w) = err)
Follows from definition of apply.

Having thus shown Op to be in Algj c, we automaticaily have a unique
homomorphism from Ty ¢ to Op by the initiality of Ty c. To show that this is
an isomorphism and hence that Op is initial in Algj,c we may either show
that this homomorphism is bijective or show that its inverse is a
homomorphism from Op to Ty ¢.

4.2.3 Op is an Initial Model of LC+€"

We would like to show that Op is initial in Algj c by showing
hg: T cenv ~ E hy: Tycw - U and hp Ty ¢ apstr = CLO to be bijective, the
other carrier to carrier maps being identities. Unfortunately, hyy and h
are not bijective and we must alter our semantic presentation slightly to
proceed.

The problem lies in the fact that the members of Tf,c w cannot be
characterised by ‘
(injB(b) | b € B} u (injA(A(n,x.e)) | n € Lambda, x € Ide, e € env) u {err)
which is what is required for a correspondence with U =B + CLO. By
considering a non-terminating p-reduction, say AX.xx(Ax.xx), My ¢ is
defined such that My (Ax.xx(Ax.xx),e) = [M(Ax.xX(AX.XX).0)]c. This
equivalence class contains no terms of the form injB(b) or injA(A(n.x.e)) or
err. Thus, aithough all functions in T ¢ are total, each non-terminating
A-expression may have a different meaning so My (Ax.xx(Ax.XX)€) *
M7y c(Ay.yy(Ay.yy)e) = My (Ax.xxx(Ax.XXX),e) and so on. Now in Op, Eval is
made total by sending all non-terminating A-expressions to L so there is no
bijection T,c w - U, Op and Tj ¢ are not isomorphic and therefore Op is not
initial in Algyc. |

To retrieve the situation we must restrict the algebraic semantics so
that the error-like terms generated by non-terminating computations are
“all collapsed to err. Clearly the non-terminating A-expressions cannot be
finitely characterised, since this would be a solution to the halting problem.
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We can however extend the set of equations € of LC to €+¢’ where €' is the
infinite (and undecidable) set of equations given befow.
€' =(x-err|xeTycw & #injA(A(ny.e)) for any ny.e

& x # injB(b) for any b € B)
In effect, €’ puts any term occurring in one of the equivalence classes that
make up the carrier for W in Ts:/=¢ that does not also contain a term such
as injB(b) or injA(A(n,y.e)) into lerrlg,¢-. The proof that hyy: Ty c,e w > U
and hy: Ty c.e' Abstr ~ CLO are bijections now goes through easily by
structural induction since Ty c,¢* W can be characterlsed by the set
expression we described above. '

However we are left with a residual problem. Since we are now
considering the category Alg c.¢' rather than Algy ¢, Op and Den must be
shown to satisfy €+¢’ rather than just €. To show that Op satisfies €' we first
translate the equations using the signature correspondence.
€0p - (x=LlxeU&x~<nye /n U for any ny.e

& x=b /n Ufor any b € B)
where "=" has replaced "=" since Op has already been shown to satisfy €.
Clearly since U = B + CLO, S'Op reduces to the single trivially satisfied
equation, 1 =1.

In trying to show that Den satisfies € we meet another small
problem. If we translate €' into the notation of Den we get
€pen = (X=11X €V &x~Aa.Vallnlp ly/a] /2 V for any nye

& X =b 7n Vfor any b € B)

Now V = B + FUN , but there are many members of FUN that cannot be
expressed in the form Aa.Vallnlp [y/al. To proceed we may alter the
algebra Den simply by restricting the meaning domain so that Val is onto;
ie. Val: Lambda x ENV - (V /mage Val) where V /mage Val is the subset
of V consisting of only those elements that are the result of applying Val to
some A-expression and some environment. This restriction has no effect on
the semantics but reduces €'pepy t0 an empty set. Further, thereis a
Z-homomorphism (the identity) from this restriction of Den to the algebra
Den itself. Thus by composition, if we show there is a homomorphism from
Op to the restriction of Den, we may immediately deduce the existence of a
homomorphism from Op to the full Den algebra.

Clearly such convolutions in the proof and such distortions of the
semantic definitions seriously detract from what is otherwise a very
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straightforward and elegant technique. However we may take heart from
the fact that for those cases where such unpleasant extensions to the set of
equations are necessary, we can work in close analogy with the above
discussion of €. In §4.3 we make another attack on this problem from a
more basic starting point: The ways in which we make total functions from
what are more'naturally partial functions (Eval is a case in point).

To finalise the proof that Op is initial in LC+&’ we show that
hg: TLCie* env  E is one-to-one by structural induction over Ty, eny
(actually , the carrier of canonical term algebra isomorphic to Tyc,¢). The
details of the proof are easy but are included at the end of §4.2 for the sake
of completeness, as are all other proofs. Finally to complete our proof that
h: Ty c.e' = Op is an isomorphism we need to show that hg: Ty c,.' > Eis
onto. Again, the proof is by structural induction, this time over E.

4.2.4 The Form of the Homomorphism from Op to Den

Up to this point we have shown Op to be an initial model of LC+¢" and
Den to also be a model of LC+¢' and hence there is a unique
Z-homomorphism taking Op to Den. From our discussion in §4.1 we claim
that this is all we need to prove to establish a congruence between Op and
Den. However, we feel it proper at this expository stage to address the
question of whether this 3-homomorphism is indeed the intuitive
congruence suggested in §4.1.2. In particular we are interested in the
mappings U - V, CLO » FUN and E -» ENV with the carrier to carrier maps
being identities. It will be convenient to define these maps via T{,c,¢' SO
let g: Ty c4¢’ - Den be the unique homomorphism <gg: Ty env = ENV,
8W: TLC+e’ W 2 V. 8A: TLCve Abste ~ FUN>. Then the unique
homomorphism from Op to Den will be gg. hg E-» ENV,gw.hyw U=~ V,
ga-hp " CLO- FUN> where h' denotes the inverse of h.

What we need to show is that gg. hg' is the same as EN and gy .hy ' is
the same as Value; ie.
1. gwhyW=binV | ifu=me,beB
2. gw-hy'(u) = Aa.Valind gg.hg'(e)ix/a] mV ifu=wmxe o U
3.  gghg'(e) = Axgy.hy'(Lookup(x.e)).
The proofs are qu1te direct and simple and are relegated to the end of this
section.
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The algebraic framework has obviously been very useful, allowing us
to develop a simple proof of a relation that was otherwise unattainable.
The only slight question hangs over the equations €', but as mentioned
previously we demonstrate a technique to circumvent such problems in
§4.3. In essence the reason that the congruence cannot be established by
the traditional techniques is that they attempt to prove the homomorphism
from Op to Den directly. Due to the nature of the definition of Op structural
induction cannot be used and the only alternative, fixed-point (or
computational) induction only goes round in circles. On the other hand, in
the algebraic framework we can use structural induction over T and
indeed this is done in the proof that there is a unique homomorphism from
Ty to any other LC-algebra (see Goguen et al, 1977). Proving that T} ¢ and
Op are isomorphic requires further structural induction over Tp and also
over the domains of Op which is quite valid since they are simple data
structures. So underneath all the algebra the proof is in fact simply
(though indirectly) by structural induction.

4.2.5 Proofs

Proof:
By induction over TLC+e env
Suppose el and e2 are elements of Ty c,¢ env and show that
hg(el) = hg(e2) only when el = e2.
case 1: el = arid
hglel) = ©
case 1.1: e2 = arid = el.
case 1.2: e2 - bind(ex,injB(b))
hg(e2) = <, b 7nU>. hgle) = hglel)
case 1.3: e2 = bind(e x,injA(A(n.y.e’)))
hgle2) = <, m,y hgle’)> inUs>.hgle) = hglel)
case 2: el = bind(e,x,injB(b))
hglel) = «x, b 7z Us.hgle)
case 2.1: e2 = arid
hg(e2) = <> = hglel)
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case 2.2: e2 = bind(e'y,injB(a))
hgle2) = <y, a /n B>.hgle)
= hg(e1) only when x=y, b=a and (by inductive hypothesis)

e=e’ :

ie. only whenel =e2.

case 2.3 e2 = bind(e',y.injA(A(n,z.e")))
hg (e2) = <y, <n,zhgle")> in Us>.hgle’) = hylel)

case 3: el = bind(e x,injA(A(ny.e’)))

hg (e1) = <x, <n,yhgle’) 7n e

case 3.1: e2 = arid
hg(e2) = < = hglel)

case 3.2: e2 = bind(e"z,injB(b))
hg(e2) = <z, b in B>.hgle”) = hglel)

case 3.3: e2 = bind(e"zinjA(A(p.p.e™)))
hgle2) = «z, ,p,hg(e”)> 7nU>.hgle")
- hg(el) only when x-z, n=B, y=p (by the inductive
hypothesis) e=e" and e'=e"™”
ie only when el = e2.

Proprosition: |
hg: Ty Cie ' env ~ E is onto.

Proof:

Let en be an element of E. We show by induction over E that there
is always an element e of T c.¢'epy SUch that hgfe) = en.
case l:en=¢©

hglarid) = ©
case 2: en=<x,b /nen’

by inductive hypothesis, there is an ¢’ such that

hg(e’)= en’, so hg(bind(e'x,injB(b))) = <x, b /» U>.hgle') = en.
case 3: en = <x, <nyen> /o Uren”

- by inductive hypothésis, there is an e’ and an e” such that
hgle’) = en’ and hgle”) = en”.
so hg(bind(e" x,injA(A(n,y.e))) =
<x, <n.y.hgle’)> /nU>.hgle”) = en.
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Proposition:
gw-hy'b ;2 U)=bin V

Proof:
hy'(b /7 U) = injB(b)
gw(injB(b)) =b /n V.

sition:
gw-hyw(<nx.e> 7z U) = Aa.Vallnl gghg(e)ix/al 7n V

Proof:
hy'(nx.e> in U) = injA(A(nx,hg(e))),
gw (injA(A(n,x,hg'(e)))) = Aa.Valinl gg.hg'(e)ix/a} in V.

Proposition:
- gghg(e) - Ax. gy .hyy'(Lookup(x.e))

Proof:

By induction over E.

case l: e=0
gghg'(e) = gplarid) = Axuy
Lookup(x,¢) = Ly
so gy -hyy '(Lookup(x,0)) = gyw.hyw (1) = gyylerr) =1y
80 AX.1 y = Ax.gw.hyr'(Lookup(x,0))

case 2: e=<x,w.e’
gg-hg'(e) = gg(bind(hg'(e') X gy .hyw (u)))

= gg-hg(e')x/gy.hyy'(u)]
- az J8ghE(e)(z) ifz~x
{Sw-hw‘(u) | ifz=x
- AZ {Ax gw-hyy (Lookup(x.e))(z) if z = x (induction)
gw-hy'(v) | ifz=x
- Az [8w-hw (Lookupl(ze’) - ifzex
{gwhw(u) . ifz=x
- Az [8w-hyw (Lookup(z xu.e ) if z = X (since z = x)
{ gw-hy (u) ifz=x
= Az | 8w-hyy '(Lookup(ze)) if z=3
{ gw-hyw'(Lookup(z,xu>e) if z=x

(for any e’ actually)
= Az gy .hyy '(Lookup(ze)) : ‘



78

43 Ihitial Algebra Fixed-Point Construction

A natural, convenient and very common way of defining functions is
to do s0 in terms of a set of axioms or equations that the function must
“obey”. In particular, the semantic definitions given in this dissertation all
use this technique. However, in the case where the equations are recursive
and the function intended to be defined is partia/ (undefined for some
arguments), there can be many solutions. The following example taken
- from Manna (1974) demonstrates this fact. Given the following equation
defining F,

F(x,y) = if x=y 1hen y+1 else F(xF(x-1,y+1))
all of the following (directly defined) functions are among the possible
solutions for F: ' -

f1(xy) = if x=y then y+1 else x+1,

fp (xy) =i 3y then x+1 else y-1,

f3 (xy) = if (DY) & (x-y even) then x+1 else undefined,

So if we substitute the definitions of f, f5, or f 3 for F in the above equation
we get an identity.

It is natural to take f3 as the function intended to be F above and it
can be shown that f3 is less defined than or equal to any other solution of
the above recursive equation. This observation leads to the traditional
approach of /east fixed-points wherein a single distinguished element,
usually denoted w or 1 and representing the “value” vadefined is added
to the domain of the function and a partial order is constructed to reflect
the notion of “less defined than or equal”. It is then stated that the
intended solution of a recursive equation is the /easz-defined
fired-point of that equation (actually, the functional represented by the
equation); f 3 in the case above. An important point to note here is that the
process relies on eliminating partial functions, converting them to total
functions by adding an extra element to the domains to denote an actual
value representing those places where the partial function is undefined.

Given this rather rudimentary foundation it is possible for us to
temporarily lay aside the widely-used least fixed-point approach and ask
the question: how do we judge the suitability of a fixed-point solution? We
suggest the answer is simply that no "sensible” value should be returned at
a point where the partial function is undefined. In the traditional
approach outlined above there can be (at most) only one such solution
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because we add to the domain only one value that is not sensible - w, and
that solution is the least fixed-point. '

However, the problems we had with initiality of Op in §4.2.3 and the
term algebra construction hint at a different possibility: that of adding as
many different vndefined valves as there are separate paths of

,non-tei'minating computation (considering the equations as rewrite rules).
We proceed now with a definition of such a domain extension and the
associated solution of recursive function definitions and follow this with an
investigation of some of the properties of the construction and its
application to our work.

4.3.1 Definition

In general the type of function definitions we are dealing with here
feature the following elements:

(a) some domains,

(b) the arity of some functions to be defined to operate on those

~ domains,

(c) some equations intended to define those functions , possibly

directly or mutually recursive and involving:

(d) certain other pre-defined functions on those domains.
Quite likely (a) and (b) will only be implicit in the definition. If we
consider the names of the domains (a), together with (b) and the arities of
(d), plus the elements of the domains (treated as constant operators) to be a
signature Q, we may generate the word algebra To). We can generate the
smallest Q-congruence, =, based on the equations (c). By treating the
functions (d) as sets of ordered pairs, we may further generate =, the
smallest Q-congruence containing =, and (d). If we now take the quotient
Tq/= then the completion of some domain A (say) may be denoted At and
can be defined to be :

At =2 Au(Tq/=, - ([a]E la€A))
or, more simply

At =To/=p
Similarly the completion of f: X - A is f*: X* > A* and f* (x) = [f(x)l=. Again,

[ = fro/=,
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An example may help clarify matters. Consider the usual recursive
definition of factorial over the integers, fact: Z - Z and
fact(i) = i=0 » 1; i x fact (i-1). The four elements outlined above are
present:

(a) domain- 2

(b) arityof fact - fact:Z- 2 ,

(c) equation defining fact - fact(i) = i=0- I;ix fact(i-1)

(d) pre-defined functions- _=0-1; :Zx2-+2

-x_—Zx2Z~+2
: --1:2- 2
In this case T, has one sort, T 7 = (Tact(i)" lie Toz) u
((i=0-1;i"lijeTz)u(Mixj lijeTQz)u(i-1"lieTgz)u Z. Ifwe
respectively call c and the definitions of d € and €', we get
€= (<Tact(i)”, "i=0- I;factli- 1) |ie Tz ) and
€= (0=0-1,]", D)ulci =0-1;"pli=0)u{ixjixplije2)u

-1 i- D lie 2)
and Tq/= is as follows:

'=Tq/=p=2Z+R

where R = ("Tact (i) "|ie Zneg } u (fact (i)"lie R} u

(ixj"lieR,jeZNu( ixj ljeR i€l v

(i-1"lieR}u

("i=0-1;i"lieR,je€ZY u ("i=0-1;j"ljeR, i€l
fact*(i) = i € Zpos - il; fact(i)”

ix*j=i€e2&jeZixj ixj

i-1*=ie2Z-i-1, i-1° '

i=0-1'j=icZ&jeZ~

i=0-1;j; i=0-1;§"

The overall effect is to add a new wndefined element tothe
domain for each non-terminating computation unless it can be reduced to
another term for which we already have such an element. For times when
we may wish to be explicit about using such a completion, we introduce the
(generic) function a/7r: [D - D] -» D distinguished from the usual least
fixed-point /7r : [D - D] » D but allow the ambiguity of denoting both types
of domain completion as D*. Thus for the factorial example above,
fact*: 2* » 2* and fact* = a/7x (AFAi. i=0 »1; F (i-1)).

Clearly, such a construction satisfies our criterion of giving no
sensible value to points where the partial function is undefined and as will
be seen in §4.3.2, if we use this concept rather than the least fixed-point for
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defining the operational semantics of the lambda calculus, the need to add
the rather unpleasant set of equations of §4.2.3 can be avoided.

Finally, we note that our domain completions and the function &#/7r
depend to a degree on the context of the pre-defined functions involved in
the definition. Clearly in our factorial example above we could have easily
identified the pre-defined functions to be other than those used, for
example

_=0-=1,_x -ZxZxZ~-»Z and

--1:Z-2Z.

The completions will differ in the following way: for the original definition,
Z* will contain elements such as ["3 x fact (-1)"] - whereas if we used the
alternative set of pre-defined functions, no such term can be generated.
Thus in the two cases the elements added to Z to make Z2* will be different.
This is perhaps a littie unfortunate and and suggests that full details of the
pre-defined functions must be given to indicate that the true nature of &/7x
and the domain completions. Fortunately, for our applications such details
are avtomatically included through our use of signatures in semantic
presentations. ’

4.3.2 The Lambda Calculus Bxample Revisited

For the traditional proof of congruence of the operational and
denotational semantics of the lambda calculus the usual partial order/ least
f ixed-poim construction was used to make the functions Eval and apply
total in a sensible way, presumably because it then matches the
denotational semantics and possibly also because the consideration of
alternatives was of no apparent value. So although it is most natural to
view the interpreter as a partial function it needs to be made total so that
it coincides with the denotational definition and it is therefore convenient
to use the same machinery as denotational semantics.

Our experience suggests that this is not the most convenient
approach in our algebraic framework. Functions do need to be made total
to fit our definition of meany-sorted algebras, but it would seem convenient

in the case under discussion 1o make Op coincide with the initial model of
 LC. Such a change to Op could not be said to actually change the semantics
it represents since the change is only to points where the partial functions
Eval and apply are undefined.
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By using our initial algebra fixpoint explicitly for the operational
semantics, we can arrange that Op is initial in Algjc. The following
definition avoides recursion by explicit use of 2/7r assuming the
pre-defined functions be to those identified by presentation LC. The
(rather unwiedly) notation used for defining mutually recursive functions
is that also used for the usual function /ir and is discussed in Stoy (1977)
and Manna (1974).

Domains

U= B+CLO+ (1)
CLO = Lambda x Ide x E
E = (Ide x U)*

Semantic Function
Eval: Lambda x E* » U* _
cinU iff=ceB
Lookup(z.e) if{=x¢€lde
<Eval, apply> = afix (AEA.<Xle. | <\nxe, /n U if { =Axq
A(Elode, EIple)  if { = a(B)
, Aab. {Ellnll Extend(ex,p) ifa=<mxe
1 otherwise
>)

Extend and Lookup are 'unchanged.

The (perhaps rather surprising) explicit inclusion of an element "L" in the
domain U does not imply any ordering. Rather, it is a legacy of the
unfortunate and somewhat unorthodox explicit use of 1 in the original
definitions of apply and Lookup for denoting situations other than

non-ter minating computations. A more standard technique would have
been to use a further explicit error term (usually denoted ?)) so that in the
original operational definition, U = B + CLO + (?) and ? replaces 1 in the
definitions of apply and Lookup. Had this been the case, the more
acceptable element ? would also have been used in version 2 of the
semantics rather than the somewhat misleading 1.

The proof of initiality of the algebra associated with the new
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definition (call it Op') is now immediate since U* = T cyand E* = T c E.
This algebra, Op’ which is in our view a quite satisfactory compietion of the
(partial function) interpreter, /s an initial model of LC so the equations €’
of §4.2.3 become unnecessary and the congruence of the operational and
denotatxonal def initions is established in the straightforward manner
ongmally proposed In later proofs involving operational semantics we
shall have no hesitation in using the initial algebra fixed-point construction
rather than the traditional least fixed-point construction.

4.3.3 General Properties and Observations

In this section we wish to consider briefly a number of the more
interesting and relevant properties of the initial algebra fixed-point. This
does not in any way purport to be a complete or structured investigation.

As mentioned in §4.3.1 the “choice” of predefined functions greatly
affects the domain completion generated by our technique. This does not
cause a problem here since the nature of our endeavour is such that
signatures are always provided, but in general some similar explicit
identification of the pre-defined functions is required. Thus for some set of
predefined functions P, we should perhaps write afixp and D*P rather than
the ambiguous afix and D*.

One of the nice features of the initial algebra fixed-point construction
when it is applied to operational semantics is that it is more
“computational” than the traditional least fixed-point approach. By this we
mean that the vadefined values added to the domain directly reflect all
possible attempts to evaluate the function at a point where it is not defined.
For example, in the case of the definition of factorial above, the result of the
expression fact (-2) is ["Tact (-2)°] and other expressions in that
equivalence class include "-2 x fact (-3)”, -3 x -2 x fact (-4)" and so on.
Every (reasonable or otherwise) computation rule will be represented. This
is quite pleasant in a way since if we consider the introduced vndefined
elements as error messages then they contain maximum possible
infor mation about what has been asked of the interpreter and the paths it
could possibly follow. In this respect at least, the initial algebra fixed-point
seems more suited to operational semantics than the least fixed-point.

Monotonicity and continuity of functions are very important notions
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when dealing with the traditional completion technique since they provided
a simple way of ascertaining whether a least fixed-point exists. The
question naturally arises whether such notions are relevant to our algebraic
completion. Our intuition suggests not, since a quotient algebra exists for
any presentation and thus we should succeed with the completion and the
initial algebra fixed-point for 22y function definition irrespective of
monotonicity. We demonstrate this by examining two simple examples
taken from Manna (1974). :

Example 1 : .
T[Fi(x): if F(x) =0 2henlel/se 0

7 is a functional corresponding to the recursive equational
definition F(x) = i/ F(x) = 0 zhen 1e/se 0. T is a nonmonotonic
functional over [N* - N*] that has nofixed-points.
Our approach is the following.
(a) domain- N
(b) arity- F-FN-N
(c) F(x)=if F(x) =0 then 1 efse 0
(d) pre-defined functions -

if_=0 then_else.NxNxN-N
So calling the implicity represented signature €,
ToN=Nu(ii=0 then j else klijk e TN} u(F(l)lxeTQN}
Tqo/=N =Nu {[F(i)): lieTg/=N)
and the two summands are distinct. Thus any attempt to evaluate F
results in an error message whcih is as we would wish.

Example 2
v[GKx): i G(x) =0 then 0 else |

7' is a functional corresponding to the recursive equational
definition G(x) = /7 G(x) = 0 z8en 0 e/fse 1. T is a nonmonotonic
functional over [N* - N*} that has fwo fixed-points, 0 and 1, but no
least fixed-point. |
Our approach is the following.
(a) domain- N
(b) arity- G:N-N
(c) G(x) = 47 G(x) =0 z8en 0 else 1
(d) pre-defined functions -
=0 then_efse: NxNxN- N
So calling the implicity represented signature 3,
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TsN=Nu(ii=0 then j e/sek|ijk € TgN) u (G(i) |ie Ty N)
Ts/=N = Nu (Gl i€ Ts/=N)

and the two summands are distinct. Thus any attempt to evaluate G
results in an error message which is as we would wish.

Clearly the initial algebra fixed-point construction can be useful for
our purposes and we shall make further use of it in the ensuing sections. It
is at least acceptable according to our earlier stated criterion of not giving
sensible values where the partial function is undefined and it can be
argued that for operational semantics where the concept of computing a
result is central, our algebraic domain completion is a better reflection of
the situation than the more usual least fixed-point and complete partial
order style of completion. '
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4.4 Addition Expression Example

In this section we consider the congruence of two very simple
semantic models (adapted from Stoy, 1977) that are clearly from different
theories. As discussed in §4.1.3 the notion of congruence here coincides
with a theory morphism 80 our investigation will invoive defining the
- theory morphism, proving that it is such and examining the derived model.
Since this is the first example of such a congruence (and a very simple one)
we will include considerable detail that in later examples would be
tiresome and could cloud the central issues. We begin by repeating the
semantic definitions given in §4.1.3 and presenting theories of which they
are models.

44.1 The Presentations and Models

We refer the reader once again to the direct and stack semantics for
addition expressions which we duplicate here. The algebras associated with
these definitions will be called Dir and Stk respectively.

Syntax

<Bxp>:: = N> | <Exp> + <Bxp>

Domain
N natural numbers

S ic Functi
E&p Exp- N

(1) é&pinl=n

(2) &ple; + exd =€pleql + Eplerl

syntax
<Bxp>:: = <N> | <Bxp> + <Bxp>
Domains
N natural numbers
N* stacks are represented by
sequences of natural numbers
S ic Functi

& BxpxN* - N*
(1) &InK =ncas
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(2) 8&gley + ez = add(&glerl(Esie;K))
where add(t) = (Si1 + §32) car ( 227/ 124/ (3)).

As would perhaps be expected for such simple semantics involving such
fundamental domains, the semantic presentations bear considerable
resemblance to the definitions above.

Sixnnl.nr.tﬂp
syntactic sort Exp
- const: N-» Exp
- plus: Bxp x Exp -+ Exp
sort N : ~
zero:» N
succ:N» N
sum:NxN- N

&y Exp-> N

- D1.  sum(zeron)=n
D2. sum(succ(n)m) - sum(n.sueo(m))
D3. Alconst(n))=n

D4. Aplus(ey.ez)) - sum(5yey), q)(el))

D - direct i i

signature Qg
syntactic sort Exp
const: N - Exp
plus : Exp x Exp -» Exp
sort N
zero:» N
succ: N- N
sum: NxN-»N
sort Stack
empty: -» Stack
push: Stack x N - Stack
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pop: Stack - Stack
top: Stack » N
&5: Bxp x Stack -+ Stack

Equations eg

S1. sum(zeron)=n

S2. sum(succ(n),m) = sum(n,succ(m))

S3. top(push(sn)) -n

S4. pop(push(sn))=s

S5.  &(const(n)s) - push(s,n)

$6. &(plus(e.e2).s) - push(pop(pop(s’) sum(top(s’),top(pop(s’))))
where 8' = 5(ep,5(ey.9))

To show that Dir is a model of Thy and Stk is a model of Thg we need to
instantiate the sorts and operator symbols of the presentations with
‘carriers and functions from the algebras and demonstrate that the
equations €y and €g respectively are satisfied. To distinguish between
identical operator symbols from the two presentations we decorate them
with subscripts such as constp and consts. The signature correspondences
are as follows:

D Dir

consty: N - Exp <Bxp>:= <N>

pluspy: Exp x Exp - Exp <Exp>::= <Exp> + <Bxp>
zerop: - N 0

succy: N+ N -+1

sump: NxN-N —-+_

AyBxpsN &p

S Stk

constg: N » Exp Bxp>:= N>

plusg: Exp x Exp -+ Exp <Bxp>::= <Exp> + <Bxp>
zerog: -+ N 0

succg: N-+ N -+1

sumg:NxN- N -4 _

empty: -» Stack O

push: Stack x N - Stack
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pop: Stack - Stack tarf

top: Stack + N ‘ —+1
& Exp x Stack - Stack &

The equations of €p and €g are so trivally satisfied that we eschew any
further considerations of proofs that Dir is a model of Thp and Stk is a
model of Ths.

4.4.2 The Theory Morphism and the Derived Model

In 84.1.3 we suggested that the congruenoe between Dir and Stk
embodied in the following statement:

For all e € Exp and § € N*,
Eplel = (Eglek kil

resembles a derivor or a theory morphism. In this section we explicitly
define the theory morphism o: Thp -+ Thg, prove that it is indeed a theory
morphism and generate the derived model U,(Stk) which will later be
related to Dir. :

Following the convention mentioned in §2 we use ¢ to represent both
the sort map and the operator symbol map.

o(Expp) - Expg

o(Np) = Ng

o(constp) = constg

o(plusp) = plusg

o(zerop) - zerog

o(succp) = succg

o(sump) - sumg

o( £)e) = top( K (e,s)) for any stack expression, s. Though the

choice of s is irrelevant, it must be specmed for o to be fully defined.

The simplest choice is s = empty.

By the presentation lemma (8§2.3), to show that ¢ is a theory morphism we
need only show Sga(a)(D1, .. D4) are in €g. In other words we transiate
the equations D1, D2, D3 and D4 using the definition of ¢ and show that the
new equations can be established from S1 - S6 of €g.

o(D1): sumg(zerog,n) =n
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0(D2): sumg(succg(n),m) = sumg(n,succg(m))
o(D3): top(A&(constg(n).empty)) =n
o(D4): top(&(plusg(ey.e2)empty)) = sumg(top( K(e,.empty)),
top( Z(e.empty)))
Both o(D1) and o(D2) are exactly the equations S1 and S2 while 6(D3) can
be shown from S5 and S3. The final equation ¢(D4) requires a more
detailed proof.

It is here that our requirement that sort Exp be freely interpreted
comes into play (see $3.3.5). Without such a restriction a(D4) cannot be
established from S1 ... S6 by the usual system of equational inference
based on the reflexivity, symmetry and transitivity of equality pius the

‘substitution properties. Thus o(D4) is not an equation of Thg. Expressed
model-theoretically (rather than proof-theorectically), if we allow a
non-initial interpretation of Exp then in some algebra, say A, there is an
element of Exp,, say Q, that is not the value of any term (i.e. it is "junk”)
and £,(Q,s0) = s. Clearly by substituting Q for e in o(D4) we see that the
equation does not hold for A and thus is not in Thg. Hence it is only
through our insistence that Exp be freely interpreted that induction on the -
structure of the terms becomes a valid means by which to find equations
holding in a theory. .

Rather than directly deriving o(D4) it is convenient first to establish
the result &(e,s|) - push(s},top(5(es7))) for any s,. Using this equation,
the proof of o(D4) is as follows:

top( K(plus(e  .e2).empty))

= sum(top( K(e5, K(e.empty)))top(pop( Klez, &le.empty)))))

_ -$6,S3
= sum(top(push( (e empty),top( &(es.empty)))),
top(pop(push( (e | empty),top( &(e.empty))))))
- above result

= sum(top( 55(ez,.empty)),top( K(e | .empty))) - 53, 54
The underlying result is proved by induction over the structure of
expressions.

case |: e= const(n)
£ (const(n),s{) - push(sy.n) -85
= push(s top(push(n,s3))) -S3

= push(s, top( &(n,s3))) -85
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case 2: e = plus(e;.e;)
&(plus(eq.e).8)) = push(pop(pop(s’)).sum(top(s’).top(pop(s'))))

where 8" = K(ep,55(e,81)) - S6
s' = push(push(s; top((ey,52)))top( Klep, &leq.32)))
- inductive hypothesis

= push(s{,sum(top(s’),top(pop(s’)))) - S4
= push(s | ,sum(top( 5(ep, Kle.82))) top( Hle,52))
- 83, 54
= push(s sum(top( (e, K(e},52))),
top{pop(push( Kley.s7),
top(&(ez.s:,)))))))
-S4
= push(s sum(top( Klez, Kley.87))),
toD(DOD(%(ez &leq.50))
- inductive hypothesis
= push(s top(push(pop(popug(ez Kley.so0)),
sum(top(&(ez,&ley.57))),
top(pop( K(eo, Kle.52))))))
-83
= push(sy,top( K(plus(e;.e)87))) -S6.

Having thus shown ¢ to be a theory morphism Thp - Thg, we may

derive a D-algebra from any S-algebra by the contravariant application of

o. In particular we are interested in deriving a D-algebra U4(Stk) from the

S-algebra Stk. The carriers of Expp and Np in U4(Stk) must be the carriers

of Expg and Ng in Stk since the definition of ¢ says that o(Expp) = Bxpg and

o(Np) = Ng. The following definition of U,(Stk) uses notation similar to the
- semantic definitions of Dir and Stk for comparison purposes.

Syntax |

<EBxp>: = N> | <Bxp> + Exp>

Domain

N natural numbers

Semantic Function

€ys:Exp- N
(1) &yslnd = (Eginloll = (n cazoll =0
(2) Eygley +exd = (&gley + eglohl
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It would have been possible to come up with the direct definition

Eysle; + eol = Eysleqd + Eyglesl, but leaving it in terms of Eg reflects the
fact that Eyg is derived from €. We now move on to consider how Dir and
U4(Stk) are related. |

4.4.3 The Relation Between Dir and U4(Sik)

In §4.1.3 it was suggested that proving the congruence Epjiel -
(8giek 41 was equivalent to showing Dir = U4(Stk). In fact we have been
deliberately vague in the definitions of Dir and Stk to demonstrate that this
is not necessarily the case. In Stk we have not given precise definitions of
the auxiliary functions 41, 42 and za#// particularly their boundary
behaviour. By considering expressions as o1 and 7#/7(0) it it clear that
some sort of error element must be available in both domains N and N* yet
no mention is made of such in the definition. Further, no such error
element is needed in the domain N of Dir so it is clear that Dir and U4(Stk)
may not coincide exactly depending on how we determine the final nature
of the domains.

Now the intention of Stoy (1977), from which our definitions have
been adapted, is clear: all domains are complete lattices with a
distinguished, incomparable error element whether it is needed or not.
Thus they all have L, T and ?, with Z2//(¢) = ? and (0}1 = 2. In this case
we could establish the full equality of Dir and U4(Stk). However, if the
domains do not completely coincide we can still establish that there is a |
(one-one) homomorphism Dir » Uy(Stk), and that homomorphism will
satisfy the condition Eplel - Eyslel - (Eglek i1 which was the original
statement of congruence. '

Hence we intend to remain vague in our definitions of Stk and Dir
- and show that Dir and U,4(Stk) are homomorphic irrespective of whether
we have an error element in domain N of Dir. In other words we are -
establishing the congruence for several variations on Dir.

We could establish the existence of h: Dir » U4(Stk) by showing Dir to
be initial in Thy) (this would require us to eliminate the vagueness in the
definition of N), but a direct proof is simpler. Compare this with our
previous example of the lambda calculus where a direct proof was not even
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possible using known techniques. The homomorphism (if it exists) consists
of two maps hg: Dirgyg - USgyp and hy: Diry -+ USy that satisfy the
following conditions:

hg(constp;e(n)) = constys(hy(n))

hg(pluspjr(e.e2)) = plusys(hgle).hgles))

hy(zerop;y) = zeroys

hy(sucep;r(n)) = succys(bn(n))

hy(sump;r(m,n))) = sumyg(hy(m)hy(n))

hn( Byie(e)) = Fjys(hgle))
Clearly, the first five conditions are trivially satisfied by choosing hg and
hy to be identity maps. The last condition, transiated befow into the
notation of the semantic mode! definitions, requires proof by induction over
the structure of expressions.

hyn( &igle)) = Eplel since hy is an identity.

Bjs(hgle)) = Eyslel since hg is an identity.

Proof that &pfliel - &yglel for all e:

case 1. e=n
Epiel =n
Eystel = EsinK kil =n
gase 2: e=-eq + €
Eysieg+ exl = (&sley+ exK Ml »
= (add(@glexd(€sie K Nkl definition &g
= (add(Epleol caz(Egle(K )kl
inductive hypothesis
= (add(@pleol car(@pieqd car §)hi |
inductive hypothesis
= ((Epleyl + Epleqd) car Thl  definition add
= (Eple;+ e)l caz Thl . definition Ep
=8plej+ erl ‘

Thus we .have completed our proof that Dir and Stk are congruent semantic
models by showing that there is a theory morphism ¢ and a
homomorphism h: Dir -+ Ug(Stk) (which is one-one by virtue of the fact that

hg and hy are identities, and may be onto dependmg on the exact definition
of the N domams) |

4 4.4 Comparison with the Usual Style of Proof

It is interesting to compare the proof we have detailed in this section
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with the more traditional style of proof suggested by Stoy (1977). The
obvious approach is to establish Eplel = (EgieK i1 by structural induction
over e, which is in fact exactly what we did for the very last part of our
proof above. ' ‘

The question naturally arises why all the rest was necessary:
defining presentations D and S aand showing Dir and Stk to be models;
defining ¢ and showing it to be a theory morphism; deriving U4(Stk); and
finally showing that there is a homomorphism Dir » U4(Stk), being the only
part having some correspondence with the non-algebraic proof. Part of the
answer lies in the fact that we have proved something #H0u7 the
relationship &pled - (Eglels i1 beyond merely showing it to be true. Since
we have adopted a precisely defined notion of congruence in terms of
theory morphisms and homomorphisms we must work within that
framework. In other words we need to show that the relationship Eplel -
(8gleK k1 /s a congruence and this is where most of the effort in this
section was concentrated.

It is important to note that in this case and indeed every case where
the homomorphism can be directly dealt with (unlike the lambda calculus
example), the proof can be greatly simplified by a different choice of
semantic presentations. If we review the proof in this section it is clear
that most of the work goes in showing that the equations of the theories are
satisfied in various circumstances yet the final crux of the proof, that
gplel = (Eglek )1, makes no use of the equations at all. If, instead of the
presentations D and S we had given only their respective signatures (call
them A and ¥) without any equations we could have followed the same
style of proof with much less effort. First, to show that Dir and Stk are ,
respectively models of Thy and Thy we need only show that they have the
appropriate signatures. Second, given that o is a signature morphism, it is
immediately a theory morphism Thy -+ Thy by virtue of the fact that there
are no (non-trivial) equations in the theories. Finally, showing that there is
a A-homomorphism Dir -+ U4(Stk) is exactly the same as the non-algebraic
structural induction proof.

Thus, for cases where the homomorphic relationship can be directly
established without redress to initiality resuits the most sensible choice of
semantic presentation is simply a signature 2 and the theory represented
is the free theory Thy). By making such a choice the work involved in the
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algebraic proof is exactly the same as that required to establish the
congruence result by traditional techniques, so our approach does not in

fact suffer on the grounds of practicality or effort required in comparison
with the traditional, less-structured one.
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4.5 DEVIL Example

In tlns section we treat a more realistic example with the intention of
consohdating the work already presented. A subsidiary objective is to
demonstrate the facility and expressive power of using algebraic
presentations as semantic definitions, a theme discussed in Chapter 3. The
language is DEVIL (Henson & Turner, 1982) though we have eliminated
goto's and labels since they add length to the semantic definition and
proofs without adding any extra interest. DEVIL in turn was based on the
language used by Strachey & Wadsworth (1974) to introduce continuation

. semantics.

The language was chosen by Henson & Turner because it contained
"most of the features which force a wedge between denotational and
operational definitions”. We choose it for much the same reason but also
because Henson & Turner's so-called comp/etion semantics offer an
interesting and unusual style of operational semantics. Further, the
notation used for completion semantics is much more directly amenable to
our algebraic treatment than the more usual “interpreter definition” style
of operational semantics (eg. Stoy, 1977, 1981). The abstract syntax for
DBVIL is as follows:

¢ Com
e: Exp
d: Dec

c:=dummy |c;clii=elcall e|resultis e | if e then celse ¢
| while e do c | begin d; c end

e:=iltrue |false |if e then e else e | valof c | procc

d:=varild;d |

The existence of result blocks (valof c, resultis e) is enough to make a -
direct style of denotational semantics inadequate to describe DEVIL.

4.5.1 The Presentations and Models

We begin by detailing the denotational semantic definition of DEVIL.
We offer no commentary other than to note that it is a continuation
semantics and refer the reader to Strachey & Wadsworth (1974) if
necessary. The corresponding algebra wil be called Cont.
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T =(truefalse) truth values
L locations
v:E=-T+F expressible values
D=L+K o denotable values
V=T+F storable values
0:S=[L-V] stores
p: U = [Ide » D] xK environments
0:C=-=[S-89] command continuations
kK=[E~C] expression continuations
o:F=[C-C] function closures
S ic Fundti

PD: Dec-» U-S-{UxS]
C:Com-U-C-»C
g:Exp-U-K-C

Pivar ilpo - <pli/new ol, olnew a/2?)

2. Pldy; dolpo = Dldokp'c’

where DIdlpo = <p',0"
3. Cidummylpb -0
4. Clcg; cqlpd = Clcglp(Clcyipd)
S. Cli=elpd = &lelp (update(plil)e)
6. Clcall elpd = Elelp(callf)
7.  Clresultis elpd = &lelp (pi2)
8.  Glif e then cg else c(ipd = &lelp(cond(Cicolpd, Sicyip))
9. Clwhile e do c2p8 = fix[A6'. Elelp (cond(Clclps ' 0))}
10. Cibegind;c endlpOo Cldp ‘00’

- where Dldipo = <p o>

11. E&lidpxo = x(o(pliliL))
12. &ltrue Ipx = k(true)
13. E&lfalselpx = x(false)
14. &lif e then e else ejlpx = Eieplp (oond(&lellpx Eleylpx )
15. éElvalof dpx =Clid il x(?)
16. E&lprocdpx = x(Cidp)
s uziliary Functi

new o is a location unused in 0.
~ update d0 = Avo. d € L - 6(aldIL/v]); ?
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call=\v. v €F- (VIF)O; ?
cond (89.8¢) =Av.v €T (VIT »8¢;8¢); ?

The completion semantics correspond closely to the continuation
semantics above. In fact the correspondence is so strong (compare the
domain definitions) that Henson & Turner(1982) are moved to argue that
completion semantics should be viewed as the szandard operational
semantics. An important point to note is that the semantic definition that
follows is first-order in that the domain equations involve only the
domain constructors “+*, "x” (and "*“) but not "»". Jumps present something
of a problem in this context and Henson & Turner offer “completions” as a
possible solution. These are data items (consisting in part of pieces of
program text) that directly represent continuations.

A more detailed comparison of the domain equations of the two
semantic definitions is worthwhile. Notice firstly that the basic domains of
expressible, denotable and storable values have very similar structures.
Next, the store and environment in the completion semantics are just the
usual list-of -pairs representations of the mapping functions of the
denotational definition. For the operational definition of F the domain of
procedure values, the obvious representation is a c/osure, directly
analogous to the corresponding aspect of the operational semantics of the
lambda caiculus (§4.2.1).

Command completions and expression completions correspond to
command continuations and expression continuations respectively.
Command completions may have the form <text, p, & € FxC

or <text, p, x> e Expx Ux K or @, k> € E x K. With the first and second form
we have some text to evaluate, an environment to evaluate it in and a
completion to evaluate next. The third form reflects the fact that
expression completions represent expression continuations K = [E - C], so
given an expressible value v and an expression completion k, ¥.x> is the
command completion corresponding to the “application” of k to v. Naturally
in all cases in the operational semantics a store must be provided betore
any computation can proceed.

Expression completions take one of three main forms, in which the
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words “update”, “call” and "ocond" are used as an aid to readability and to
correspond to the auxiliary functions of Cont but contain no actual ‘
information. By providing them with an expressible value and a store, an
intuitive (and’ “operauonal) explanation of the various forms is possible.
Fn'st 'run(sehd(mpdate d,61), o) has the effect of assigning v to d in ¢ and
then running © on that new store. Next, run(send(<call.8>y'), 6) expects v to
be a closure <c,p> so the effect is to execute ¢ with the parameters p 0 and o;
ie. CldpBo. Finally run(send(<cond,8;,62>V), 0) expects v to be a truth
value and accordingly chooses one of 8 or 62 to be run on ¢. Thus the
whole philosophy behind completion semantics is to offer a textual (and
therefore referentially opaque) representation of the higher-order concepts
of continuation semantics.

T = (true, false) truth values

L locations
V:E=T+F+(?) expressible values
:D=L+K+(?) denotable values
V:V=T+F+(?) " storable values
0:S=[LxV]+(?) stores
p: U =[Ide x DJ* xK environments
0:C=[FxC]+

lep x U x K] +

[B x K] +

(fail) + (final) command completions
k:K = [{update) x Dx C] +

{(call) x C] +

[(cond) x Cx C} + (?) expression completions
¢: F = [Com x U} command closures
S ic Functi

D:Dec»U-+S-[UxS]
C:Com->U-+C-+S-+S
g:Bxp-U-+K-+S-S

1. 9Dlvarilpo - <bind(p,inew(a)), set(o.new(o) )
2. 9ld1. dolpo = Pldodp e’
where Didipo = <p',0>
= Did 0 ((DidBpo k1)(DEdBpo k2)
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3. Cidummylpbo = run(6,0)
4.  Olcg: cqlpBo = Tlcglp («cqy,p> B0
S.  Cli: = elpBo = Elelp (update lookup(p,i), 8)o
6. Clcall elp8c = Elelp(callf) o
7.  Clresultis elpdc = Elelp (res(p)lo
8.  CIif e then c( else c)pB0 = €l elp (cond,«<cq,p>.0>,¢<C1.p>.00}0
9. Cliwhile e do dpbo = run(afix|A@'.(e,p,«cond,«c,p>8",65})]0)
10. Cibegin d; c endlpbo = Cliclp B0’
where Pidlpo = <p',0>
11. &ldpxo = run(send(x deref(lookup(p,i),0))0)
12. &itruelpxo = run(send(x,true),o)
13. Elfaiselpxo = run(send(x false)o)
14. &lif e then e else ezlpxo = Eleglp (cond,ceq,p,x>.@2,px0)0
15. E&ivalof dpxo = Cicibindres(p,x)(fail}o
16. E&lproc dpxo = run(send(x,<c,p>),0)
sugiliary Functi
: 2nd(oin) if 1st(csn) ={ and V m«n, Ist(oim) = {
map(c () = { -
? » otherwise
map(o,diL) ifdel

deref(d,0) = {

? otherwise

set(of{y)=dyv> cat o

new(o) is a location unused in o.
bind(p,i,0) = «i,0> car (pil), pi2>
bindres(p,x) = <pt1,1>

lookup(p,i) = {

2nd(ps1sn) if 1st(pilen) =iand ¥V men,ist(pilim) = i

? ~ otherwise

res(p) = pi2

send(x V) = & x>
run(fail,o) = ?
run(final,c) = ¢
run((«,p0),0) = CIcipBo
run((e,p,x),0) = Elelpxo
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run(6,set(o,diLv)) ifdeL
run((v, update,d,0>),0) = {
? otherwise
- Sldpbo  ifve FVIF = «p
run((v,«call,8},0) = {

? otherwise

vIT > run(64,0); run(62,0) ifveT
run({v,<cond81.8),0) = {
? otherwise

Notice that the clause for Ciwhile e do & involves an infinite data
structure by virtue of the use of afix. Of course, Henson &Turner used the
usual fix operator, but in this case the result is the same. There is in fact a
finite alternative that is no more difficult for us to treat than the above
version, and it will be briefly discussed later.

Following our discussion in §4.3, since we intend to show Comp to be
initial in Algp, presented below it is convenient (though not absolutety
necessary, see §4.3) to use our initial algebra fixed-point construction for
the completion semantics.

One {inal point is that we have been quite explicit as to which of the
domains have an error element,?. Again this is because we intend to
establish the initiality of Comp in Algp, and we are necessarily explicit
about error constants in the presentation DA. Only those sorts that require
error values were given them but it would present no difficulty to have an
error constant of every sort if it was thought desirable to have an error
element in every domain of Comp. '

Since we have used the same names for many of the functions and
domains in the two semantic definitions, we shall resolve any confusion
that may arise by decorating those from Comp with a subscript “o" (for
operational) e.g. G, &, and those from Cont with a subscript “d” (for
denotational) eg. Gy, &4.
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We now detail the presentation DA of which we will show Comp to be
a model (the initial one) and DB of which we will show Cont to be a model.
Rather than explicitly including the syntactic sorts we dispense with such
details and use the notation of the abstract syntax. The transiation from
one notation to the other is purely mechanical (Goguen et al, 1977).

Signature
syntactic sorts as for abstract syntax of DEVIL.

sort Bool
tt, fT: - Bool

sort Val
injB: Bool -» Val
injA: Abstr » Val
errV:- Val

sort Den
injL: Loc » Den
injK: Kont -» Den
errD: -» Den

sort Store
empty: - Store
set:. Store x Loc x Val - Store
contents: Store x Den » Val
errS: - Stote

sort Loc
new: Store - Loc

sort Env
arid: - Bnv
bind: Eav x Ide x Den » Env
find: Env x Ide - Den
bindres: Env x Kont » Env
res: Env - Kont

sort Modif
null: - Modif
fail: -» Modif
apply: Modif x Store - Store
klo: Exp x Env x Kont - Modif
loop: Exp x Com x Env x Modif -+ Modif
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sort Kont

update: Den x Modif - Kont
call: Modif - Kont

cond: Modif x Modif -+ Kont
kontin: Kont x Val - Modif
errK: - Kont

sort Abstr

clo: Com x Env -+ Abstr
contin: Abstr x Modif + Modif

D7 : Dec x Env x Store - Env

D2 Dec x Env x Store - Store
C:Com x Env x Modif x Store -» Store
£ Bxp x Env x Kont x Store -+ Store

Equations

1.

N

® NRAW AW

10.
11
12.
13.
14.
15.
16.
17.
18,
19.
20.
21.
22.
23.

contents(empty.d) - errV

contents(set(o,{; v)injiL({)) = i/ {§ = {5 thenv
e/se contents(o,injL({3)) -

contents(set(c,{v),injK(x)) = errV '

contents(set(o {v).ertD) = errV

contents(errS,d) = errV

find(arid,i) = errD

find(bind(p,i,8),j) = £ i=j Lhen d else find(p,j)

find(bindres(p,k),i) - find(p,i)

res(arid) = errk

res(bind(p.i,d)) = res(p)

res(bindres(p,x)) = k

apply(null,c) - ¢

apply(fail,o) = errS

apply(klole,p.x),0) = £(e, px.0)

apply(contin(clo(c,p)8),6) = C(c, p.8,6)

apply(kontin(cond(8y,8,),injB(tt)),0) - apply(8{,0)

apply(kontin(cond(81,6,),injB(ff)),6) = apply(6,,0)

apply(kontin(cond(8,87).injA(a)),0) = errS

apply(kontin(cond(8,07).errV),0) = errS

apply(kontin(call(8),injB(b)),0) - errS

apply(kontin(call(8),injA(a)),0) = apply(contin(a8),0)

apply(kontin(call(8).errV),o) = errS

apply(kontin(update(injL({) 0),v),0) = apply(8.set(c )



24.
25.
26.
27.
28.
29.
30.
31
32.
33.
34.
35.
36.
37.

38.
39.
40.
41.
42.
43.

- 44
45.

104

apply(kontin(update(injK(x),8)v),0) = errS

apply(kontin(update(errD,0),v),0) = errS

apply(kontin(errK,v),0) = errS

loop(e,c,p.0) - kio(e,p,cond(contin(clo(c,p) loop(e.c,p,6)),0))

D/ (var i, p,0) = bind(p,i,new(c))

D2(var i, p,o) = set(o,new(c)errV)

DI(dy; dy, p6) = D/(dp, D/(dy, p,6),02(dq, p.0))

D2(dy; ds, p.6) = D2(dy, DI(dy, p,06),02(d}, p,6))

C(dummy, p9,0) = apply(0,0)

C(cy; ¢, p8,0) = C(cq, p.contin(clo(cy,p).6),0)

C(i:=e, p,9,0) = 5(e, p,update(find(p,i) 0),0)

C(call e, p8,0) = £(e, p,call(6),0)

C(resultis e, p,9,0) = F(e, p,res(p)o)

C(if e then ¢ else ¢, p.9,0) = Fle, p.cond(contin(clo{cy,p).0),
contin(clo(cy,p).8)),0)

C(vllne e do ¢, p,9,0) = apply(loop(e,c,p.0),0) |

C(begin d; c end, p98,6) = C(c, D/(d,p,0)8,02(d,p,0))

£(i, p,x,0) = apply(kontin(x,contents(o find(p,i))).0)

F(teue, pk,0) = apply(kontin(x,injB(tt)),0)

F(false, p,x,6) = apply(kontin(x,injB(ff)),0)

E(if ep then e else e;, px,0) = Fleg, p,cond(kloley,p,x),

klo(ez,p.x)),0)
F(valof ¢, px,0) = C(c, bindres(p,x)fail,c)
F(proe ¢, p.x,0) =apply(kontin(x,injA(clolc,p))),0)

DA - semantic presentation {or DEVIL
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Signature
syntactic sorts as for abstract syntax of DEVIL.
sort Bool
tt, ff: - Bool
sort Val
injB: Boof -» Val
injA: Abstr » Val
errV: » Val
sort Den
injL: Loc - Den
injk: Kont -+ Den
errD: - Den
sort Store
empty: -» Store
set: Store x Loc x Val - Store
contents: Store x Den -+ Val
errS: - Store
sort Loc
new: Store - Loc
sort Env
arid: » Bav
bind: Env x Ide x Den -+ Env
find: Env x Ide - Den
bindres: Env x Kont -» Env
res: Env - Kont
sort Modif -
- null: » Modif
fail: - Modif
apply: Modif x Store - Store
sort Kont
update: Den x Modif -+ Kont
call: Modif - Kont
cond: Modif x Modif - Kont
Kontin: Kont x Val + Modif
errK: -» Kont
sort Abstr _
clo: Com x Env -» Abstr
contin: Abstr x Modif -+ Modif
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D7 : Dec x Env x Store - Eav
D2 Dec x Env x Store - Store
C: Com x Eav x Modif » Modif
.. & Bxp x Env x Kont » Modif

Eauations

1.

N

® NOW AW

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
- 25.
26.
27.
28.
29.
30.
31
32.

contents(empty,d) = errV

contents(set(0,{; v),injL({3)) - 7 {; =ty then v
e/se contents(c,injL({;))

contents(set(o {v).injK(x)) = errV

contents(set(o,{).errD) = errV

contents(errS,d) - errV

find(arid,i) = errD

find(bind(p.i,d).j) = i7 i=j Lben & else find(p.j)

find(bindres(p,k),i) = find(p,i)

res(arid) = errk

res(bind(p,i,0)) = res(p)

res(bindres(p,x)) = x

apply(null,o) = ¢

apply(fail,c) = errS

contin(clo(c,p),8) = C(c, p.8)

kontin(cond(01,8,).injB(tt)) = 8;

kontin(cond(8,87),injB(fr)) = 85

kontin(cond(8,8;),injA(a)) - fail

kontin(cond(61.87).errV) = fail

kontin(call(8),injB(b)) = faii

kontin(call(8),injA(a)) = contin(a )

kontin(call(8),errV) = fail

apply(kontin(update(injL({),0)'),0) = apply(8,set(c,{v))

kontin(update(injK(x).0).v) = fail

kontin(update(errD6)v) = fail

kontin(errK,v) - fail

D/ (var i, p,0) = bind(p,inew(o))

D2 (var i, p,o) = set(o.new(o)errV)

D1I(dy; dy, p,0) = DI (dy, DI(dy, p.0),02(dy, p,0))

D2(dy: dy, p,0) = D2(d3, DI(dy, p,0),02(d}, p,6))

C(dummy, pf8) =0

Clcy: ¢z, pB) = Cley, p.Clcy, pB)

C(i: = e, p8) = £le, p,update(find(p,i).0))



33.
34.
35.
36.
37.

38.
39.
40.
41.
42.
43.
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C(call e, p8) = F(e, p,call(d))
C(resultis e, p8) = 5(e, pres(p)) '
C(if e then c{ else c;, p.8) = F(e, p.cond( C(cy, p.B8),Clcy, pB)))
C(while e do ¢, p,8) = £le, p,cond(C(c, p,C(while e do ¢, p,0)).0))
apply( C(begin d; c end, p8),0) = apply( C(c, 2/(d, p,0).0),

| D2(d, p,0))
apply( £(i, p,x),0) = apply(kontin(x,contents(s find(p.,i))),0)
F(true, px) ~ kontin(x, injB(tt))
F(false,px) = kontin (x, injB(ff))
5(if e then e; eise e, px) = Sleg, p.cond(F(ey, p.x),F(es, p.x)))
F(valof ¢, px) = C(c, bindres(px)fail)
F(proc ¢, p.x) = kontin(k,injA(clo(c,p)))

DB - semantic presentation for DEVIL

As perhaps would be expected given the many similarities in the

completion and continuation semantics, the two presentations DA and DB
have much in common.
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4.5.2 Initiality of the Complction Semantics

In this section we show that Comp is an initial model of DA and that
Cont is a model of DB. To establish the congruence of Comp and Cont we
then only need to prove that there is a theory morphism from DA to DB. To
show that Comp and Cont are respectively models of DA and DB we need to
specify a carrier from the algebra for each sort and a function for each
operator symbol of the presentation and then show that the equations of
the presentation are satisfied. Again, this is a very straightforward task
and the details follow. Since the equations are all very simply satisfied
(and there are a large number of them) we dispenae with those proofs and
provide only the signature correspondences, DA with Comp and DB with
Cont and the equations of the presentations rewritten in the notation of the
models.

Comp carriers for DA sorts

Bool: T =(true, false)
Loc: L ’

Val E=V=T+F+(?)

Den: D=L+K+(?)

Store: S=[Lx V]*+(?)

Env: U=[Ide xDI* xK

Modif: C=[FxC]+[BxpxUxK]+[ExK]+ {fail} + (final)

Kont: K = [(update} x D x C] + [{call) xC] +[{cond) x CxC] + (?)
Abstr:  F=[Com x U)

Comp functions for DA operators

DA Comp

tt: -» Bool true

ff: » Bool false |
injB: Bool » Val At.T inV
injA: Abstr- Val A.O inV
errV:- Val vy
injL : Loc » Den M.{ /oD
injK: Kont - Den AK.x in D
errD: » Den ?p

empty: » Store O

set: Store x Loc x Val » Store set

contents: Store x Den -» Val

deref
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errS: » Store | ?g

new: Store » Loc new

aull: - Modif final

fail: - Modif | - fail

apply: Modif x Store - Store run

klo: Exp x Env x Kont » Modif Aepk. <e.p.K>

loop: Bxp x Com x Env x Modif - Modif
AecpO. afix[A0'.ce,p,ccond,«c,p>,0,0»]

update: Den x Modif -+ Kont ' A00. <update,d.9
cail: Modif - Kont A0. «call 8

cond: Modif x Modif » Kont - A810,.c«cond 81,8
kontin: Kont x Val » Modif send

errk: - Kont ¢ »

clo: Com x Env » Abstr Acp. <id,p>
contin: Abstr x Modif » Modif A$0. «0.0>

arid: » Env <, >

bind: Env x Ide x Den -» Env bind

find: Env x Ide -» Den lookup

bindres: Env x Kont - Env bindres

res: Env - Kont res

D1 : Dec x Env x Store » Env Adpo. (Didipo i1
D2 : Dec x Env x Store - Store Adpo. (Didlpo k2

C: Com x Env x Modif x Store - Store
AcpBo. Gl clpbo
5 Exp x Env x Kont x Store - Store  Aepko. Elelpxo

ions for Cor
deref(o,d) - ? -
deref(set(o,{y V), {5 in V) = if {y={y then v else deref(o, {3 inV)
deref(set(of{v),x /n V)= ? .
deref(set(c (1) ?) = ?

deref(?,0) = ?

lookup(<o,?,i) = ?

lookup(bind(p.i,d),j) = £ i=j 28en & else lookup(p,j)
lookup(bindres(p,k),i) = lookup(p.i)

res(¢<o,?) =?

res(bind(p,i,d)) = res(p)

res(bindres(px)) = x

VRN AN
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12.
13.
14,
15.
16.
17.
18.
19.
20.
21,
22.
23.
24.
25.
26.
27.

28.
29.
30.
31
32.
33.
34.
35.
36.
37.
38.
39.
40.
4].
42.
43.
44.
45.
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run(final,0) = 0
run(failg) = ?
run(<e,p,x>,0) = Elelpko
run(«c,p>,0,0> = Sl dpbo
run(send(«cond 81,82, true /2 V),0) = run(64,0)
run(send(<cond 8.8, false /2 V),0) = run(63,0)
run(send(«cond 8,82, ¢ /nV),0) = ?
run(send(<cond, 81,65°,2),0) = ?
run(send(<call,®>, T 7z V),0) =?
run(send(<call 8, ¢ /2 V),6) = run(«¢9,0>,06)
run(send(<call,0>,?),0) = ?
run(send(<update, { 72 D, ®V),0) = run(0,set(a (1))
run(send(<update, x /o D, 0> v)0) = ?
run(send(<update,?,0>v),0) = ?
run(send(?v),0) = ?
afix[A0".(e,p,(cond <<c,p>,0,0)}] - ,

' (e,p,{cond,«c,p>,afix{A0".(e,p,(cond, <<c;p>,07,0))),8))
(Pivar iipo k1 = bind(p i,new(o)) '
(Dlvar po k2 = set(o,new(0),?)
(DLd}:dzlp0 o1 = (DLdH(DId Hpo k1 (Did;Ipo k2Nl
(DEd;dolpo W2 = (DId(DEd Ipo k1(Did Ipo k22
Cldummyiplo = o
Clcy:colpbo = Tlcylp(«cp.p0)0
Cli: = elp8o = Elelp (update lookup(p,i)0)o
Clcall elpbo = &lelp (call B)o
Ciresuitis efp8o = Eielp (res(p)lo
CLif o then c else cylpBc = Elelp (cond,«ccq,p>,0>,¢<co,p,0)0
Cliwhile e do cpbo = Elelp (cond,«c,p>,«cwhile e do ¢, p>,0>,0)0

~ Cibegin d; c endlpbc = CLA((DPIdipo k1)0((Didipo k2)

€iilpxo = run(send(x,deref(lookup(p.i),6)),0)

Eltruelpko = run(send(x, true /2 V),0)

£ifalselpxo = run(send(k, false /7 V),0)

8Iif e then e else e;lpxo = Eleglp (cond,<e,p,0,€2,0,)0
givalof dpxo = CEci(bindres (p,x))fail)o '

Elproc dpxo = run(send(x, <c,p> /2 V),0)



Cont carriers for DB sorts

Bool: T = (true, false)
Loc: L

Val: E=Va=T+F+(?)
Den:  D=L+K+(?)
Env: U =[Ide » D] xK

Modif: C=[S-S]+(?)
Kont: K=[E-C]+(?)
Abstr; F=[C~(]

Cont functions for DB Operators

DB

tt: » Bool

{T: -» Bool

injB: Bool » Val

injA: Abstr » Val

errV:- Val

injL: Loc -» Den

injK: Kont » Den

errD: » Den

empty: - Store

set. Store x Loc x Val » Store
contents: Store x Den -»>Val
errS: -» Store

new: Store -» Loc

null: - Modif

fail: - Modif

apply: Modifx Store - Store
update: Den x Modif » Kont
call: Modif -» Kont

cond: Modif x Modif -» Kont
kontin: Kont x Val » Modif
errK: -» Kont

clo: Com x Env - Abstr
contin: Abstr x Modif - Modif
arid: » Env

bind: Env x Ide x Den -» Env
find: Env x Ide - Den
bindres: Env x Kont » Env
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Cont

true

false

At. T/ V
AO. 0 /nV
?y

AM.{ inD
AK.x /nD
D

At.?v '
Acofy. ol{/v]
Acd. o(dIL)
s

new

AC.0

o

A80. 6(0)
update

call

cond

Axv. k(v)
%
Acp.Cldp
A¢0. ¢(0)
<AL?p, P
Apid. pli/d]
Api. (pe1)Eid
ApK. <pil K>
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res: Env -» Kont Ap.pi2

D/ : Dec x Env x Store - Env Adpo. (Pidipo k1
D2: Dec x Env x Store - Store Adpo. (DEdIpo k2
C: Com x Env x Modif -Modif AcpB. CIclp®

£ Exp x Env x Kont » Modif Aepx. Elelpx

DB equations for Cont

1. (AL?XdL)-? |
2. (olty/vI({y inDIL) = if {§ = {3 then v else o(({3/n D)IL)
3.  (olt/v(x /aD)L) = ?

4.  (ollzvX(PlL) = ?

S. ?20IL)-7?

6. (Ai?, 231)IiB =2

7. (plizdls1Uj} = if i=] thend else (ps1)ifl

8. (¢l )il = (pal)iid

9. AL?, N2 =2

10. (pli/dIn2 = pu2

11, «pilxnN2 =k

122 (Ao'0’)o)=0

13. 2o)=?

14. Cidp(6) = Slcipd

15. cond(8y,87)(true /o V) =8

16. cond(6;,0,)false inV) =8,

17. cond(8;.8;)(¢ /nV) = ?

18. cond(6;,67)?=7?

19. cal(6)t /oV)=12

20. call(8)(¢ in V) = ¢(B)

21.  call(®)? - ? |

22. update({ 72D, 6)(v)o) = 8(cll/v])

23. update (x /zD,0)v)=7?

24. update(?,0)(v)=?

25. v)=2?

26. (Plvar iBpo k1 = pli/new (o)}

27. (Dlvar ilpo u2 = olnew (0)/?] ,

28. (Dldy:doipo k1 = (DEdR(DIdlpo k1 (Didglpo 2}l
29.  (PIdy:dolpo k2 = (DPIdN(Did dpo k1 (DIdlpo k2)2 -
30. Cidummylpb =0

31. Clcyicolpd =Clcqlp (ClcoipB)

32. Cii=elpd = Elelp (update(plil)o)
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33. Clcall elpd = 8lelp(calld)

34. Cliresultis elpd = &lelp (pi2)

35. Clif e then cg else cylpd = Elelp (cond(TClc;1pb Tlcylpd )
36. Clwhile e do dpd = Elelp (cond(Cldp (Ciwhile e do cipb ) .0)
37. Clibegin d; c endpfo = Cidp (PIdipo i16(Pidlpo k2

38. &lilpxo = x(o(pliliL))o)

39. E&ltruelpx = k(true)

40. E&lfalselpx - x(false)

41. 8lif ep then e, else e,lpk = Eleglp (cond(Eleqlpx Eleglpx )
42. &ivalof dpx = Cidpil (7}

43. E&lprocdpx = x(Clidp /nV)

Having shown Comp to be a model of Thp,, to establish its initiality
it is sufficient to show that the unique homomorphism h: T - Comp is
bijective. Had we not used the initial algebra fixed point completion for our
definition of Comp this would not have been true and we would need to
~ apply the technique of §4.2.3 to proceed. However as things stand,
statements such as “while true do dummy" are given the same meaning
in Tp, as Comp by virtue of our more appropriate fixed point construction.

As a consequence, when showing h to be bijective we need only
consider the “sensible” elements of the carriers of Tp,. Such elements are
exact/y the ones generated by the operator symbois and constants of the
semantic sorts of DA and not by the semantic operators 2/, J2, C and £

'So we need to generate those parts of the carriers of Tpa and show them to
be isomorphic to the vrcompleted semantic domains of Comp since the
elements added for the completion are the same in both algebras. It is quite
simple to generate such parts of the carriers of Tp, by identifying those
operator symbols and constants that are constructors, as outlined by Guttag
& Horning (1978).

TpA Boot = = (tt, ff) = T = (true, false)

TpA Loc = {new (o)lo € TDA,Store)
L is unspecified in Comp save that new must return a locauon
unused in the current store. The above set of locations is
‘certainly sufficient to ensure this.

Tpa,vai = (injB(t) | T € Tpp Boot) v (injA(®) | 0 € Tpy, Abstr) u (errV}
aV=T+F +(?)
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TDA Den - = (injL(0 I { € TpALod v (injK(x) | x € Tpp Kont ) v (eer]
«D=L +K +(?)
TDA,Store = ((empty) u (set(c{v)l o € TDA,Store-t € TDA,LOC'
v € Tpy vai) u lerrS))
@S =([LxV]+(?))
TpA Env - (arid) u (bind(p.id) | p € Tpp Env. i € Ide, d € Ty pen)
v (bindres(p,x) | p € Tpp Eav)
« U-=-[IdexDJ* xK
TpA Modif = (contin(0.8) | & € Tpp Abstr. 0 € Tpa Modif) v
(kiole,p,x) | e € Exp, p € Tpp Env. K € TDA Kont) ¥
(kontin(kV) Ik € Tpp Kont, V € Tpa vat) v (null) u (fail)
2 C=[FxC]+[BxpxUxK]+[ExK] +(final) + (fail)
TpA Kont = (update(d,8) | & € Tpp pen, 8 € TpA Modif) v
(cail(8) 18 € Tpp Modif) v
(oond(el,oz) 10192 € TDA,MOdif] u {errK)
= K = [(update) x D x C} + [{call) x C} + [{cond) x Cx C] + (?)
Tpa Abstr = (clolc,p) | ¢ € Com, p € Tpp Env)
« F = [Com x U}

4.5.3 The Theory Morphism

To finish our proof of the congruence of the completion semantics
and continuation semantics of DEVIL we need only show that thereisa
theory morphism d: Thp, - Thppg, thus ensuring that there is a derived
model Uy(Cont) in Algp, and there is a homomorphism Comp - Us(Cont) |
due to the initiality of Comp established above. Note that we do not need to
write down Uy(Cont) at any stage since it is completely determined by the
definition of d and the process of proving 4 to be a theory morphism is

exactly parallel to showing the derived algebra to be a model of DA.

As may be expected due to the close similarity between DA and DB,
the theory morphism d: Thp, - Thpp is easily defined and verified. In
fact, 0 takes the sorts of DA to the sorts of DB with the same names and
similarly matches identical operator symbols from DA and DB with the
following exceptions:

- O(klo)e,p.x) = Sle, px)

d(loopXe.c,p.8) = A(e, p.cond( Gs(c, p, Gy(while e do c, p.e)) 0))

() )c, p8.0) = applyg(Gylc, pB).o) -

d( £y e, p.x,0) = applyg(Hle, px),0)
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Due to the apparent similarites of DA and DB, showing that d is a theory
morphism (by showing that the d-transiation of the equations of DA hold in
DB; presentation lemma 82.3) is quite straightforward. All of the equations
of DA either map exactly on to equations of DB, or are triviaily true, or
require a maximum of two steps to establish them as a consequence of the
equations of DB. For this reason we dispense with the tedium of a detailed
proof. : ’

As mentioned above (§4.5.1), there is an alternative for the while -
statement clause in the completion semantics that does not require the
generation of an infinite data structure for its command completion:

Col while e do dpbo - €l elp (cond,«<c,p>««while e do ¢, p>,6> 8]0
Henson & Turner's reasons for not using this interpreter-oriented version - .
are not entirely clear, but the most likely explanation is that they were
aiming to make completion semantics as abstract, or as much like the
denotational semantics as possible. The infinite version also helps to
simplify their proof of congruence by bringing the two semantics closer
together. In constrast, our style of proof is marginally easier for the finite
version. The presentation DA requires the following equation to réplaoe
that for C(while e doc, p,0,0):
38'. C(whilee doc, p8,0) =

£(e,p,cond(contin(clolc,p),contin(cio(while e do c, p)8))0).0)
- and the operator loop: Exp x Com x Env x Modif - Modif can be eliminated
entirely, since its sole purpose was to construct an infinite term of sort
Modif in the initial model of DA. The elimination of the loop operator also
further simplifies the theory morphism, 0.
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4.6 Stoy's PL Example

Our final detailed example is an algebraic version of the congruence
proof by Stoy (1981). The two definitions are very different both in |
notation and their underlying concepts, one being an interpreter based on
continuations and operating on strings of text, the other a standard direct
denotational semantics. As such, for our algebraic proof more emphasis
will need to be placed on finding appropriate theories and showing the two
semantics to be models than has been the case in earlier proof's.

We make only one minor alteration to Stoy's definitions. Though he
gives the direct (and continuation) semantics for the full language PL, the
interpreter (and hence the congruence) is only defined for a £erne/ of the
language. '

e:=ile(e) | procli):elreci(ielcreselb]
OceleQelifetheneelsee|leti-einel
iterate i toe from e while e

c:=i=e|whileedoclic clifethencelsec|()

full syntax of PL

e:=ili(i) | proc (i) el reci(i):elcreselb|0iliQi
c:= i=e|whileidoclc,clifithencelsec|()

syotax of kernel PL

Stoy cites Dennis (1974) as showing that any PL program can be

transfor med into an equivalent one in the kernel language, thus justifying
an immediate simplification of the probiem at least in terms of the length
of proofs. We take the view that since the congruence invoives only the
kernel language, any reference to the full language is peripheral and
possibly distracting. Therefore our denotational definition is of the kernel
language.

It should be noted that since the semantics are in terms of an
environment only rather than the more usual environment plus store, a
number of the syntactic constructs in the language do not behave as their
appearance may suggest. Thus for example, assignments are more like
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local declarations so the result of the following PL program is 3 rather than
4.
(i=3;
p:=proc (j): (i:=4 res j);
k:=p(i) )resi

For the purpose of comparison we shall briefly outline the main steps
in the congruence proof as Stoy approaches it. First define a continuation
denotational semantics to act as a bridge between the interpreter and the
direct denotational semantics. The two denotational definitions are shown
to be congruent by defining appropriate predicates and showing by
structural induction over PL that they are satisified. The proof that these
predicates exist becomes that most difficult part since they are not
monotonic and thus the fixed-point result of Tarski (1955) is of no help and
an induction over the complexity of approximations to reflexive domains is
required. The relationship between the interpeter and the continuation
semantics is then considered. Here, predicates are defined whereby the
interpeter can be shown (by fixed-point induction) to be weaker than the
continuation semantics and the continuation semantics can be shown (by
structural induction) to be weaker than the interpreter. Again, the
existence of the predicates must be established. Finally, since the sense of
“weaker” is different in each case, further work is required to combine the
two results concerning the continuation semantics and the interpreter into
a final relation.

In constrast, our proof requires no intermediate semantic definition
and consists simply of showing the interpreter to be an initial model of a
particular theory Th and showing that there is a derived model of the
direct denotational semantics that is also a model of Thg, exactly as we .
have done in earlier examples.

| 4 6.1 The Interpreter

We begin by reconstructing Stoy's (1981) description of the PL
interpreter, noting that simpler examples using the same notation and
concepts can be found in Stoy (1977). Unfortunately, some of the details of
~ the operation of the PL interpreter are either loosely explained or referred
to Dennis (1976) which we are unable to obtain. When showing the
interpreter to be a model of Th¢ (presented below), we will therefore need
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to use our intuitive understanding to make such operations explicit.

The interpreter operates on szafes which are textual
representations of the current stage of program execution. Thus,
Interpret is a function from states to states defined as follows

Interpret= fixr(\O.A0. Terminal(o) - o, §(Stop (0))) where a
Terminal/ state occurs when an error arises or when the execution is
successfully completed. In our usual fashion we differ from Stoy's
intention and construe the above equation to be in terms of the algebraic
fixed-point. The syntax of states is as follows:

o:-evalein p;x|performcinp; 0|
assign v toi in p; 0 | done v | error

Here x and g denote the “continuations” of expression and command
| evaluation, and their syntax reflects the notion ot_‘ "incomplete states”.

x: = dome < | assign o toiim p; 0
6:=performcin o;0jevalein o; x

The symbol  represents missing components (values or environments), so
‘that

Append 'val v lox

and ,

Append ‘env':. p 100

both produce complete states. (This is an example of the operations whose
definitions must be formalised before the proof is possible). Environments,
p, are data structures with the following auxiliary operations defined on
them: | - - |

Has (p,i) tests whether p has a component with selector i.

Select (p,i) gives the component of p with selector i.

Append iv to p gives a new structure containing v with selector i,
replacing any component with selector i in p and leaving all other
components as in p. In the following tables describing 7ermsna/and Step
the notation ¢ = "eval e im p; k" tests whether o is of the specified
syntactic form and also introduces names for the various components,
- which may be used in an arm of a conditional invoked by satisfying the
test. The symbol = bears little relation to the use of the same symbol in the
denotational definition of §4.6.2.



119

Terminal/ (o) = (o ="donev”) v (0 = "error™)
Step (o) =
o="evalein p; k"~
e="i - .
(Has(pi)» Append val: Select(pji) to x,
‘error’), |
e ="ig (i)~
Has(pjig) » Has(p,iy)» |
Select (p,ig) = "Tunction (i3): e in p3™ -
"eval o7 in (Append iy: Select(pjiy) 10py); kK,
Select(pig) = ‘recfun iy (i3): ez im py”
"eval ey in (4ppend i3: Select(p.iy) to
(Append iy: Select(pig) 10p))); x™,
"error”,
- "error”, "error",
e= "proc (i) ep” - _
Append val': Tunction (i):eg in p” 20 K,
e="recig(ij):eg™~ -
Append val’ :"recfunig(ij):egin p” 20 «,
e="creseqg -
"perform c in p; "eval e in o; k™",
e="B" -
Append val': Rep(B) to x
e="0i"~..
e="{1Qir7 - ..
‘error”,
0= "performcinp;0” -
c="ii=e"
"evale in p; "assign o toiin p; 67",
c="whileidocgy "~
Has(p, i) » Sefect(p, i)+ |
"perform cg in p; "perform "while i docy” in ;07"
Append ‘env p 0 6,
“error’,
C="cp;Cp =
"perform cg in p; "perform cg in ©; 07",
c="if i themcyelsec;” - |
Has(p,i)» Select(p, i) » "perform cg in p; 67,
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"perform cy in p; 07,
"error’,
c="()-

Append eav’. p 0 6,

"errof’, |
o="assignvtoiinp;8™ -
Append env’'. (Append i.:v to p) to 8,

"error’
Int - the PL interpreter

The careful reader may note that by a simple extension of the _-»_, _
operator, certain type checks have been factored out from the clauses for
while and if statements in Stoy's original definition.

The interpreter is the first semantic definition we have dealt with
that does not seem to fit the initial algebra semantics template of a
homomorphism from a free syntactic algebra to a semantic algebra of the
same signature, as discussed in §3.2. However, by inspecting the syntax of
states and continuations we can make varjous distinctions and
observations. For example we may readily view the command continuation
"eval e in ©; k™ as a function from expressions and expression
continuations to command continuations. The full range of such
observations will be detailed when showing the interpreter (the algebra
Int) to be a model of The where C is the continuation semantics scheme
presented below. |

Signature
Sort B _ ¢
. unspecified but including tt and ff
Sort B
injB: B» E
fun: Ide x Bxp x Env - E
rec: Ide x Ide x Exp x Env > E
errE -+ E
ok:E-B
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sort Env
arid: » Env
bind: Env x Ide x E - Env
find: Env x Ide » B
~ has:Bnvx Ide- B
evhl:Expxxec
perf: Com xC-+C
run:CxEnv-E
sortK
assign: Ide x Bnvx C- K
done:» K
send:KxE-E
call ExExK-E
. P Exp-E
5 ExpxEnvxK-E
C:Com x EnvxC-E

Equations

find(arid,i) = errE

find(bind(p,iv),j) = if i=j then v else fmd(p.])
ok(injB(b)) = tt

ok(fun(ie,p)) = tt

ok(rec(ije.p)) = tt

ok(errE) = ff

has(p.i) = ok(find(p.i))

run(eval(ex),p) = Fle, p.x)

® NSO AWNN -

9. run(perf(c0),p) = Clc, p.B)

10.  send(assign(i,p8)V) = i ok(v) then run(6 bmd(p.l,v)) else errB
11. send(doneyv)=v

12. send(k.errE) = errE

13. call(fun(iep)y ) - £le, bind(p,iy)x)

14. call(rec(ijep)vx) = 5(e, bind(bind(p,ireci,; e.p)).w) K)
15. call (injB(b)V k) = errE

16. call{errEv k) = errE

17. Ple) - 5le, arid,done)

18. £, px) = if has(p,i) hen send(xfind(p,i)) e/se errE
19. 5(11(12) p.X) = /i has(p,iy) 2hen if has(p,ij) then

call(find(p,iy ) find(p.ip)) e/se ercE e/se ertE



20.
21.
22.
23.
24.
25.
26.
27.

28.
29.

30.
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F(proc (i)e, p.x) = send(x fun(ie,p))
F(reci(j): e, px) = send(x rec(ij.e,p))
Flcrese, px) = C(c, pevallex))
£(b, px) - = send(x,injB(b))
£(0i, pK)=..
£(i1Qip, px) = ...
C(i=e, p.8) = F(e, p,assign(i,p,0))
C(werile i doc, p,0) = i/ has(p,i) 2hen if find(pi) then
C(c, p,perf(while i do ¢,0))
e/se run(0,p) e/se errE
Clcyicz, pB) = Clcy, pperficy,8))
C(if i then c; else cp, p.8) = i/ has(p,i) then if find(p,i) then
Clcy, pB) efse Clca, pb)
e/se ertE
C((), p.8) = run(0,p)

To show that the interpreter is a model of The we need to specify

first the carriers for the sorts of C and then the functions corresponding to
the operator symbols of C. Since the interpreter operates on states (and
continuations) that are syntactic objects, it is appropriate that we choose
certain sets of strings as the carriers of the sorts.

IntB =B

Intg = Rep(b) | "Tunction (i):ein p° |
"recfuni(j):einp” | "error’

Intgay - [Ide x IntBl‘

Intc - "perform cin ;0" | "eval e in ©; x”

Intg - "dome " | "assign © to i in p; 6°

At this stage, having fixed upon the domains involved in the interpreter's -
operation we are able to give appropriate rigorous definitions of the
auxiliary functions left loosely described in the original paper.

Append val": Intg x Intg -+ state
Append ‘env’. Intg,y x Intc - state
Append : 1de x Intg x Intgyy - Intgay
Select : Intg,. x 1de -+ Intg
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Has: Intgqy x Ide > B
"error’ ifv ="error’
Append va/'.v to"dones’ = {
"done v” otherwise
e ‘error’ if v = "error”
Append val'v lo -
"assign o toiin po” =
‘assignv toiim pB” otherwise
Append env’. p to"perform cin ;0" = "perform cin pg’
Append env’. p lo"evale in o = "eval e in px”
Appendiv top = <iy> calp

2nd(pin) if n exists s.t. 1st(pin) = i and
Select (p,i) = { V m«n, I1st(pim) =i
"error’ otherwise

Has(p,i) = Select(p,i) = "error”

This definition of Z&s has been used rather than the more natural version
true if n exists s.t. 1st(pin) = i
Has(p,j) = {
false otherwise
The two definitions are clearly not equivalent by virtue of the fact that Intg
includes the error element, "error”. However, it can be shown by |
structural induction over PL that an environment with the error value
bound to an identifier never arises during the interpretation of any
program, thus ensuring that the two definitions of Fas are effectively
equivalent in the current application. Further, albeit informal justification
for the acceptibility of the first definition of Zas exists in the observation
that the interpreter’s sole purpose for Z#s is to “protect” the function
Select from failure (ie. returning an error). |

The style of many of the “functions” derived from the interpreter is
reflected by our earlier observation that the string “eval e im ©x” can be
considered as the result of applying a function to an expression and an |
expression continuation. This idea has much in common with the

pioneering work of Goguen et al (1977). Thus the operator correspondence
is as follows:
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- injB: B+ E _
fun: Ide x Exp x Env » E
rec: Ide x Ide x Exp x Env- E
ertE: - E

ok: E-B

arid: - Env

bind: Env x Ide x E » Eav
find: Env x Ide > B

has: Env x Ide > B

- eval: ExpxK-»C
perf:Com xC-»C
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Int
Rep
Aiep. "Tunction (i): e in p°~
Aijep. recfun i(j): e in p”
"error’
Av. ~(v = "error™)
<

Apiv. Append iv top

Sel/ect

Has

Aex. "eval ein ox”

AcO. "perform ¢ in ©;9°

run:CxEnv-E
assign: Ide x Envx C-K
done: » K
send:KxE-E

calll ExExK-E

A8p. /nterprel(Append env:ploB)
AipB. "assign © toi in p;8°
"dome ©”
A\kv. /nterpret(Append ‘val'v tox)
Avvak. laterpret(
- v = Tunction (i):e in p" >
“eval e in (Append iv, 1o p)K,
vy ="recuni(j):einp’-
"evalein
(Append jv, to
(Appendi: "recfuni(j)e in p”
10p))x’,
"error”)
Ae. /nterpret("eval e in arid;
"done ")
Aepx. /nterpret(“eval e in p;x”)
AcpO. /nterpret("perform ¢ in p;67)

P Exp-E

F ExpxEnvxK-E
C:ComxEnvxC-E

The rather messy version of call above is due to the informal notion
of the binary operator = having the s/de-effect of pattern-matching and
binding appropriate syntactic forms to variables. A more rigorous (though
less expedient) alternative notation would be the 22#/ptic syntax of
McCarthy (1962) which consists in part of selector functions that return
substrings of syntactic forms. :

The following table of equations is the transliation of the equations of
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C according to the signature correspondence above. It can be easily
established that the interpreter satisfies all of the equauons thus showing
Int to be a model of Th.

Se/ect (o) = "error’ :
Sefect (Append i:v lo pj) = 1=| -+ v, Select (pj)
~(Rep(b) = "error”) = true |
~("Tuaction (i): e in p” = "error™) = true
~("recfun i(j): e in p” = "error”) = true
~("error™ = "error’) = false
Has(p,i) = «(Select (p i) = "error™)
Interpret(Append env’': plo'eval e in OK) -
Iloterpret ("eval e in p; )
Interpret (Append env': pto "petform c ino;0°) =
/oterpret("perform cin p;07)
10. /aterpret(Append ‘val' v to assign o toiin p;07) -
| ~(v = "error’) -+
Interpret(Append eav’. (Appendiv top) 109),
| l“m“'i ‘
11. /oterpret(Append val'.v to done ") - "done v
12. /oterpret(Append val': "error” tox) = "error’
13. /nterpret(Tunction (i).ein p” = "Tunction (i'): e’ inp” -
‘eval e’ in (Append i v to p')x",
"function (i): e in p™ = "recfun i'(j’): ¢’ in p™ -+
‘evale’ in (Append j v to |
(Append i: recfuni(j’).e im p™ 20p’))xk",
"error’) -
Ilnterpret("eval e in (Append iv to p)x’)
14. /oterpret(recfun i(j). e inm p” = Tunction (i').¢'in p™ -
"evale' in (Append i:v top)K’,
recfun i(j):e in p° = recfun i(j). ¢’ inm p™
‘evale’ in (Append jv to
(Append i ‘recfuni(j’).e' inmp™ 10p'))x",
"error”) = |
Interpret(“eval e in (Append iv to
(Append i: "recfun i(j).e in p” 20p))x”)

@ N AWBN -

b



15.

16.

17.

18.

19.

' 20.
21.
22.
23.
24.

25.
26.
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Interpret(Rep (b) = Tunction (i').e' in p™ -
‘eval e’ in (Append i v top’)x",
Rep(b) = recfuni(j').e inp” -
"eval e in (Append j'v to
(Append i: recfuni(j). e inp” top)); X",
"error’) =
rerror™
Inle prel('error = Tunction (i')e' inp™ -
reval e' in (Append i v 10op)K",
“error” = recfuni(j)e inpT -
"eval e’ in (Append j'v 10
(Append i: recduni(j).e inp™ t0p)); k",
Terror’) =
"error”
Interpret ("eval e in arid; done ©™) =
Ioterpret ("eval e in arid; done «°)
foterpret(Teval i im px’) =
Has(p,i) » Interpret( Append ‘val": Select(p,) 10x),
"error”
Interpret ("eval "iy(ip)" in pix”) -
Has(piy)-» Has(piz)»
Interpret (Select(piy) = "Tunction (i):.¢ in p™ -
"eval e' in (Append i: Select(pjj) top’), K",
Select(pji) = recfuni(j). ¢ inp”
"eval ¢’ in (Append j: Select(p,ij) to
(Append i recfun i(j). e’ im p™ L0p)))K",
"error’), "error”, "error”
Interpret(“eval "proc (i)e” in p;x”) =
Interpret(Append val/': "function (i). e in p~ fok)
Interpret ("eval "rec i(j)e” in pix”) =
Interpret(Append val': "recfun i(j): e in p” z0x)
loterpret(“eval "crese’in px’) =
Ioterpret("perform c in p; "eval e in ©; K“)
Interpret ("eval " in px°) =
Interpret(Append val': Rep(b) tox)
Interpret(“eval "0i” in pk°) = ..
Interpret("eval "i|Qiy” in px7) =
Interpret ("perform "i:=¢” in p;) =
/nterpret (eval e in p; "assign © 1o iin p8™")
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27. [nterpret("perform "while i doc” in p8°) =
Has(p,i) - Select(p,i) -
Interpret ("perform ¢ in p;
o "perform "while i do ¢’ im ©;07),
SRR . Interpret(Append ‘eav". p 200),
T Terror”
28. /oterpret ("petrform “cyc7” in pB) =
| foterpret ("perform cjin p; "perform c; in ©; 0™7)
29. /nterpret ("perform "if i them c; else c;” in p97) =
Has (p i) » Select (p.i) -
Interpret ("perform ¢y in p8°),
Interpret ("petform c; in p9°),
"error’
30. /oterpret(“perform "()" im pB) =
Joterpret(Append env'. p to 6)

All that remains is to show Int to be initial in Algc. To achieve this
we follow the same procedure that was employed in §4.5.2, considering
only the sensible parts of the carriers of TC and generating these by
recognising the operator symbols and constants of C that are constructors.
Once again, since we are assuming the initial algebra fixed-point completion
to have been employed in the interpreter definition we may assume that
elements of the carriers of T¢ other than those generated by the |
constructors will also occur in the carriers of Int.

Tcg = (injB(b) Ib € B) v (fun (ie,p) li € Ide, e € Exp, p € T Eay) U
(reclije,p) | ij € Ide, e € Exp, p € Tc gay) u (errE)
= Intg = Rep(b) | " function (i) e in p” | recfuni(j):e in p” | "error’
for b € B, i,j € Ide, e € Exp, p € Intgqy
TcEnv = (arid) v (bind(piv) | p € TcEay. i € Ide, v € T )
= Intgyy = [Ide x Bygl* ‘
Tcc - (eval(ex) | e € Exp, x € Tcg) u (perf(c, 8) I c € Com, 0 € Tc()
= Intc - "eval e in ©; k" | "perform ¢ in ;6"
for e € Exp, c € Com, x € Intg, 6 € Intc
Tck - (assign(i,p,8) | i € Ide, p € Tc gay. eTc'CJ u (done)
- lntx - "assign © toi in p9° | "done ©°
forielde,pe Intgnv, 6e Intc

It is interesting at this point to note that we can immediately'
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construct a completion semantics (Henson & Turner, 1982) similar to that
given for DEVIL in §4.5.1 that is also initial in Thc. The appropriate
domain equations are given below; the semantic functions are the obvious
ones corresponding to the semantic operators of the presentation C.

E=B+F+(?) expressible values
U = [I1de x EJ* . environments
C-[ComxC]+[BxpxK] ~ command completions
K = [(update) x Ide x U x C] + {final) expression completions
F = [{function) x Ide x Exp x U] +

[(recfun) x Ide x Ide x Exp x U} closures

Thus such a completion semantics is /somorphic to Stoy's interpreter. On
this basis Henson & Turner's call for completion semantics to be considered
as the sZandard operational semantics is difficult to sustain since it is only
its noration that distinguishes it from a host of other "different’
operational definitions.
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4.6.2 The Direct Denotational Semantics

The denotational definition given below differs from that given in
Stoy (1981) in two ways; it gives the semantics of the kernel language
rather than PL and corrects several minor (probably typographical) errors
in the original definition. The most curious is Stoy's definition of cond
which reads s follows: '

For x,y € D and b in some domain including T,
cond ayb= (bll)= trve -1,

(biT) = fa/se -y,
p

whereb-xy= X ifb= trve
y ifb= false

ipTp?p ifbs= lT-TTJT',

So, while _»___ is strict, cond is not. Thus, given a clause such as

Clif e then cg else cqlp = cond Tlcglp, Slcylp>(Elelp), the implication is
that in the case where the evaluation of e does not terminate and Elelp = 1
the result of the if statement is an error, ?, rather than . Not only is this
most unusual, but no interpreter can possibly behave in such a fashion,
since it would need to recognise that it had embarked on a non-terminating
computation, recover and report an error. As we are proving the
congruence of the denotational semantics and an interpreter it is clear that |
such a definition of cond must be unacceptable. In our definition we
assume the (completely) strict version of cond defined as follows:

cond xyb = (blT) - 1y
s I . D o | v
B basic values including Zrve and fa/se
F=[E-E] function values
E=B+F+(?) expressible values

U=[Ide > E]+(?) environments

S ic F .
P Exp-E

& Exp-U-E
C:Com->U-U
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&lilp = plil

&igliyBp = surict(pligh | F)(pliql)

gl proc (i)el = strict(ApAv £lel(plv/il) /in E)
Elrecigliy): e = strict (A\p.fix \o v Elel(plo /n B/illv/i{])] inE)
Eicres elp = &lel(Clidp)

gib} = strict(Ap.(b in E))

8i0il = ... '

EligQiql = ...

Cli=elp = strict(\v plv/il)(&lelp)

Ciwhile i do cl = /7r(A0.Ap.cond B(Cidp), p>(plil))
Clicg; cydp =Clcyd(Cicglp)

CEif i then cq else c|lp = cond Tlcglp, Clcylp>(plil)
Ci()lp =p

Plel =Elel(Ai?)

\ uxiliary Definiti |

The separated sum is implied in the domain equations. For any domain D
and ab €D, a=bis Zrve if a is the same element as b and /2/se
otherwise. The symbol “=" is reserved to denote a continuous (completety
strict) equality predicate.

for b € T (truth values) and x,y € D,

b-1y=X ifb = trve
Yy ifb = false
Lr,? ifb=17,?
strict fx=.1,7,2 fx=.772
| f(x) otherwise

ie strict f produces a completely strict version of f.

The theory presentation D (of which we intend to show Den to be a
model) that follows is influenced largely by the requirement that there
must be a theory morphism The -+ Thp and Th is constrained quite
significantly by the requirement that Int must be its initial model. Further,
since our presentation must be first-order in the sense that we have no
way of including operator symbols that have a domain consisting of other
operator symbols (cf. Parsaye-Ghomi, 1981) we have no way of directly
representing functions such as szrsct. Our approach is not to consider 1
and 7 in presentation D (indeed, this has been our policy for all examples
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except the first consideration of the lambda calculus) and explicitly test for
error values at appropriate points. Hence corresponding to the equation
Cli:=elp = strict(\wv.plv/illelp
in the denotational definition, we use the following equation in D
Cli=e,p) = if ok(£(e,p)) 2hen bind (p i, F(e,p))e/se errB
where ok(v) is f for v = errE and tt for other sensible values. In the
denotationa’ semantics, the function corresponding to ok is a doubly strict
test for equality with ?.

One of the important differences between the direct denotational
semantics and the continuation-style interpreter is that the direct
definition requires the concept of an ‘error environment’ so that errors can
be propagated. In contrast, since the interpreter uses continuations,
improper commands immediately give rise to improper resuits and their
effects need not be propagated by means of the environment produced.
Our presentations must reflect this situation and since we maintain the
need to construct a theory morphism between them, sort EnvinD -
represents the proper environments and sort U represents the sum of Env
with an error environment. Further, since & and ( in Thc are only
concerned with proper environments it is convenient to give two separate
equations for 4)and G for each phrase of the abstract syntax; one for
‘proper environments, one for the error environment.

Sort B
unspecified but including tt and T
Sort E | .
- injB:B-E
fun: Ide x Exp x Env -~ E
rec: Ide x Ide x Exp x Eav- E
errE:» E ‘ '
apply: ExE-E
ok:E-B ,
If. then _ else _BxExE - E
Sort Env -
arid: - Env
bind: Env x Ide x E - Env
find: Env x Ide - E
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Sort U
injB: Env-> U
errU.-U
i then _ e/fse ~BxUxU-U
P Exp-E
5 ExpxU-E
C:ComxU—~U

Equations _

DI. ok(injB(b)) =1t

D2. ok(fun(iep)) =tt

D3. ok(rec(ije,p)) = tt

D4. ok(errE) =ff

DS. apply(fun(ie.p)v) = Ale, injE(bind(p,iv)))

D6. apply(rec(ijep)y) = Fle, injE(bind(bind(p,irec(ij.e.p))jv))

D7. apply (injB(b),v) = errE

D8. apply (errEv) = errE

D9. find(arid,i) = errE

D10. find(bind(p.iv)j) = if i=j then v else find(p,j)

Dil. i/t then a e/se b=a

D12. i/ ff then a ele b =D

D13. P(e) = £f(e, injE(arid))

D14. £(i, injB(p)) = if ok(find(p,i)) 2en find(p,i) e/se ertE

D1S. A(i, errU) = errE

D16. Aliy(ip), injB(p)) = 4f ok(find(p,ip)) then apply(find(p.ij)find(p.iz))

| “e/se errE :

D17. A(i(ip), errU) = ercE

D18. F(proc (i)e, injE(p)) = fun(ie,p)

D19. F(proc (i)e, errU) = errE

D20. A(reci(j)e, injE(p)) = rec(i,je.p)

D21. A(reci(j)e, errU) = errE

D22. FKl(crese,p) = Fle,Clcp))

D23. (b, injB(p)) = injB(b)

D24. 4&(b, errU) = errE

D25. £(0i,p)=..

D26. 5(ijQip, p) = ..

D27. Cl(i~e, injB(p)) = if ok(£(e, injB(p))) then bmd(p.l.ﬁ‘(e injB(p)))
. else ertU

D28. Cli:=e, errU) = errU
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D29. C(while i do c, injE(p)) = /7 ok(find(p,i)) 2ben
' If tind(p,i) then
C(while i do ¢, C(c, injE(p)))
e/se injE(p)
e/se errl

D30. C(while i doc, errU) = ertU
D31. Cley=p, p) = Clep,Cley, p))
D32. - C(if i then c; else c, injE(p)) = 4/ ok(find(p,i)) zben

if find(p,i) 2ten C(cy, injE(p))

e/se C(cy, injE(p))

e/se errU

D33. C(if i then c; else ¢, errU) ~ errU
D34. C((),p)=p -

n- lo » I Io I Io

When showing Den to be a model of Thpy below, various ‘degrees’ of
strictness will be important, so we repeat what we consider to be the
standard definitions. '

A function f is strictif f(L) =1

A function f is doubly strictif f(1) =1 and (1) =T

A function [ is completely sirictif f(L)=1,[(T)=1 and[(?)=?
A useful higher-order function which we shall employ is dsirict defined
- as follows :

dstrict fx=1T if x=a7

f(x) otherwise.
So dstrict produces a doubly strict version of a function while sirict
produces a completely strict version. It is convenient to define a further
equality predicate to complement = and - defined earlier. Let == denote a
doubly strict equality predicate. The usefulness of such a predicate is that
it allows us to compare proper elements to ? without always returning ?
(as = would do) yet returning 1 or T if the element is 1 or T (as = would
not do). This allows us to easily define a function in Den modeling the
operator ok of D.

The correspondence between the sorts of D and the domains of the
denotational semantics is the obvious one: '

Deng = B
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Deng =E=B+[E~El+(2)
mnEnv = [Ide - E]
Deny = [Ide - E} + (?)

The operator correspondence is as follows:

D Den
injB: B~ E inE
fun: Ide x Exp x Env -+ E }aep (dstrict (A\p'.(Av Bl el(plv /il))

in E)p))
rec: Ide x Ide x Bxp x Env » E  Aijep. (dstrict(\p'.fix Ao Av.
, Eled(ple 7z E/illv/jD] inE)p))
errE: > E ?g

apply: ExE- E Avvy. (V{IE - ED(v5)

ok:E-B Av. ~(v==7g) |

il_then e/se:BxExE-E Abv vy ((bIT)- v{v))

arid: » Env AL?E

bind: Env x Idex E-» Eav  Apiv. (plv /i)

find: Env x Ide » E Api. (plid)

injB: Env-» U fn U (injection of [Ide - El into
[Ide - E] + (7))

errtU.» U 7y

i then else:BxUxU- U Abppa. ((BIT) -~ py.p2) -

P:Exp-+E b

F:ExpxU-E 8

C:ComxU-U C

The equations that follow are translations of the equations of D into the
notation of Den and must be shown to be satisfied by Den to complete the
proof that Den is a model of Thy. Though we refrain from including any
detailed proofs, some commentary is offered for those equations that are
not absolutely trivial.

D1. (b /o B) == ?g) = true
- Note that this depends on there being no error element in B. If
this is not considered satisfactory, then the equation ok(injB(b))
= tt could be changed to ok(injB(b)) = okB(b), and the new
operator appropriately defined in D and implemented in Den.
D2. ~(dstrict (Ap'(Av Eledp v /il) in E)p) == ?g) = frue



D3.

DS.

D10.
Dil.
D12.
D13.
D14.

D15.
D16.

D17.
D18.

- D19.
D20.

D21.
D22.
D23.
D24.
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~(dstrict Ap'.fixIAo AV Eled(p'lo /o B/illv/j))] in B)p) ==?g = true

D2 and D3 hold because the function is made completely strict
inv at application time (see the clauses for €lig(ij)lp and
£(ij(iz), p)), and because p € Dengyy = [Ide -+ E} and thus p is not
(418 | |
+(?g==?g) = false
(dstrict (\p.(\v £ledp v /il) jn B)p)IE - B)(v) = Eledp [v/il
(dstrice (Ap' fixINoAv Elel(pllo 7 E/illv/iD) in EXp)IE - ED(v)

= 8lel(plo’ iz B/illv/i)) -

where ¢' = /7xr(Ao.Av Elel(plo’ /a2 E/illv /i)

~ Again in DS and D6, p € Dengyy = [Ide - E|. These results are

established by structural induction over Exp in the denotational
model. In fact, the stronger result that & and C are completely
strict is easier to establish. This appears as Lemma 6.2 in (Stoy,
1981). |

(b /2E|[E~ ED(v) = ?g

(?g 1B~ Elv) = ?g

Ai?giid=?g

(plv/iDifl = isj-> v plj§ , p € Denppy
lrue »ab=a .
false »ab=b
Plel = &leb(Ai?g /nU) |
Elilp = ~(plil ==2g) - plid, ?g = plid

- : by definition of -»_,_
gliley =75 ‘ = (P
EligligMp = ~(pligd ==7g) - ( pligl | [E > EN(pliyB),2g

o p € Dengay
Elig(ig 2y =?g
Elproc (i)elp = dstrict(\p' (\v £lelplv/il) inE)p)
- | | p € Dengpy
Elproc (ixel?y = ?¢
gireci(j)elp = |

dstrict(\p'.fix oAV Elelp (o /nE/illv/ill inE)p)

| | p € Denggy

Elreci(j)el?y = 7 o
gicres elp =8lel(Ciclp)
E€iblp=b /n B p € Dengyy
Eibl?y = 7



D25.
D26.
D27.
D28.
D29.

D30.
D31.
D32.

D33.
D34.
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gloilp = ...
8ligQiylp = ...
Cli:~elp = ~(Elelp ==?p) - pl€lelp /il, 7y p € Denpgy
Cli-el?y =7y ,
Clwhileidodp = :
~(piid ==7g) - (plil -» Ciwhile i do A(Tidip). p), ?U :
p € Dengyy
Ciwhueidod?y=?y
Cicgicylp = Blc ) (Clcylp)
Clif i thenm cg else cylp = : |
~(pliD ==2g) - plil » Clcglp, Cleydp, 7U p € Denggy
Clif i then cq else ¢| 3?7y = 75
Ci()ip=p
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4.6.3 The Congruence and a Theory Morphism

The definition of the congruence of the two semantic definitions of
PL is not quite as straightforward on first inspection as the preceding
examples, so some precursory discussion seems appropriate. In loose
terms, the basic requirement is that we obtain the same result for a
program under the evaluation implied by the two semantic definitions.
Clearly, the concept of “the same result” will need to cater for the difference
in function values for the two semantics; a string like "Tunction (i): e in p"
for the interpreter, an element of [E - El for the denotational semantics.
For this purpose we may define a function e: Ejg; - Epep a8 follows:

e(v)=b /n B if v = Rep(b)
(4} | if v = "error”
dstrict(\p'(Av £lelp v /il) in BN v (p))
if v = "Tunction(i): e in p°
dstrict(\p'.fix|A0 v Bl edp [¢ 7n B/illv/jll in EX v (p))
ifv="recdunij)ein p°
where v (p) = (Ai.e(Select(p,i))) in U

With these definitions, the congruence can be precisely given as:
e(/oterpret(“eval e in arid; done ™)) = Plel

Since P is defined in terms of € and C, the following two equations aiso
- suggest themselves:

e(/nterpret(“eval e in p; k°)) = send( £ (x), Slel(»u(p)))
e(/nterpret("perform c in p; 0°)) = run(c(6)SId( z (p)))

But what are £ and ¢ ? There are no domains in the direct denotational
semantics corresponding to expression continuations or command
continuations, so there is no way that functions such as £ and ¢ can be
instantiated. In the same vein, send and run are similar mysteries.

, If we sheive these apparent difficulties for the moment and consider
an algebraic formulation of the problem, the congruence statement is
clearly something //#e the form required. First we have what looks like a
theory morphism y:
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V(A)e) = Ayle)
(&) (g.p,tc) = seqd(x,tb(e,p))
1 Q)c,p.0) = run(8, Gylc.p))

and a C-homomorphism Int - U (Den) consisting of the functions e.4,£.c
In this context, some clarification can be made: y is not a theory morphism
since send and run are operators from C, not D.

_ This suggests that D has been chosen inappropriately and we intend
to present a new theory Thpy Which is derived from Thp by adding sorts K
and C and appropriate operators to D. We repeat here the point made
briefly in $3.1.2 that the crux of a semantic definition is the abstract
syntax, the semantic domains and the valuations and we are therefore free
~ to install them in any algebra we wish, selecting whatever other sorts and
operator symbols we consider appropriate for our purposes without
affecting the intended semantics.

It is also asserted in 83.2 that the semantics embodied in any model
of Thy or Thpy is the homomorphism indicated by £ Fand € from the
algebra defined by the abstract syntax to a semantic algebra with the same
signature. Since the operators and sorts we intend to add to D do not
"interfere” with any of the sorts of D, the semantic homomorphism in any
model of Thy remains unchanged no matter how that model is extended to -
be a model of Thyy. Given that view, the sorts and operators added in Dx
can be viewed as “extra baggage”.

As an analogy, consider adding a sort string and some typical
operators to a complete specification of the data type Stack-of-Integers as
given in §2.2. Provided the definitions are fairly standard (not
pathological), we still have an implementation of a stack in the models of
the theory. 4

The extensions to D to create Dx are as follows:
sofrt C

eval BxpxK-C
perf:Com xC-C
run:Cx BEnv-E
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- sortK

assign: Ide x Eavx C-»K
done: - K
send: KxE-> E

Equations
xl. run(eval(ek),p) = send(x,5(e,injE(p)))
12. run(perf(c0),p) = run(8, C(cinjE(p)))
x3. run(6errU) = errE -
x4. run(, /7 blben pyelse py) = if b Lhen run(B,p) efse run(B,py)
15. send(assign(i,p.0)v) = if ok(v) then run(0bind(p,iv)) e/se errB
x6. send(doney)-v |
x7. send(x.errB) = errB
x8. send(x, 7 b then vy else v3) = if blhensend (kv )
| else send(ky7)

Given such extensions to D, the definition of y above will serve as the
basis of the definition of a theory morphism Th¢ » Thpy (We wil prove it to
be such later). The final requirement is that we must extend Den in a way
that paralleis the extension of D to Dx. Since, as pointed out above, such
extensions have absolutely no effect on the semantics, 22y carriers and
operators that satisfy the x-equations will do and as such we need not even
bother specifying them. However the simplest choice is the trivial one with
single point carriers for sorts C and K. Clearly the initial algebra semantics
derived from any such extension to Den is identical to the initial algebra
semantics derived from Den (§3.2.3). -

A similar, though much simpler case can be given in terms of the
addition expression example of §4.4. Instead of giving the congruence as
Eplel - (Eglel k1, an equally acceptable statement would have been
Eglek - Eplel cas §. In the language of the algebraic presentations this
would be £(e,s) = push(s, fye)), which cannot be a theory morphism since
push and 4 are not operators from the same theory. The solution is to
extend the direct semantics presentation by adding a stack. Clearly the
stack plays no part in the evaluation of expressions and thus has no effect
on the semantics being defined. In 4.4 we avoided this problem by using
£p(e) = top (L(e,s)) where top is in some sense the opposite of push.
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Such an alternative is clearly not available for our semantics of PL.

We now proceed with the details of the definition of the theory
morphism y: Th¢ » Thpy.

Sorts:
¥(B)=B
v(E)=E
¥(Eav) = Env (note: not U)
¥(C)=C
¥(K) =K

Operator Symbols :
¥(injB)(b) = injB(b)
y(fun)ie,p) = fun(ie,p)
y(rec)(ije,p) = reclije.p)
y(errB) = errB
y(ok)(v) = ok(v)
y(arid) = arid
¥(bind)(p,iy) = bind(p,iy)
¥(find)(p,i) = find(p,i)
v(has)(p,i) = ok(find(p,i))
y(eval)(ex) = eval(e,k)
¥(perf)(c,8) = perf(c,0)
¥(run)(6,p) = run(6,p)
¥(assign)(i,p,0) = assign(i,p.0)
y(done) = done
y(send)(x,v) = send(xv)
v(call)(v | v'2.x) = send(x,apply(v | v2)
¥(P)e) = Ple)
¥(F)e, p.x) = send(x, Fle, injB(p)))
¥( C(c, p8) = run(8,C(c, injE(p)))

The equations that follow must be shown to hold in Thpy to establish that ¥
is a theory morphism. Brief proof outlines are given, though they are all
very straightforward. '

¥(1) find(arid,i) = errE
¥(2) find(bind(piv)j) = if i=j then v else fmd(p.])
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¥(3) ok(injB(b)) = tt
¥(4) ok(fun(iep)) =1t
¥(S) ok(rec(ijep)) =tt
¥(6) ok(errE) = ff
¥7) ok(find(p,i)) = ok(find(p,i))
¥(8) run(eval(e.x).p) = send(k, (e, injE(p)))
¥(9) run(perf(c,0),p) = run(8, C(c, injE(p)))
¥(10) send(assign(i,p.0)v) = if ok(v) zben run(0,bind(p, l,V))
e/se ertE
y(11) send(done V) =v
v(12) send(x.errE) = errE
¥(13) send(x.apply(fun(ie,p)v)) = send(x, 5(e,injE(bind(p,i, v)))
¥(14) send(x apply(rec(ijep)v)) = |
‘ send(x, £le, injE(bind(bind(p.irec(ij.e.p),. v))))
¥(15) send(x.apply(injB(b))) = errE
¥(16) send(x,apply(errEy)) = errB
¥(17) P(e) = send(done, F(e, injE(arid))) :
1(18) send(x, £(i, injE(p))) = ir ok(find(p.i)) Men send(x find(p,i))
e/se errE
1(19) send(x, 5(11(12) injE(p))) =
if ok(find(p,i)) then if ok(find(pip)) then
send(x.apply(find(p.iy ), find(p.is)))
else ertE else ertE
¥(20) send(x,£(proe (i)e, injE(p))) - send(x fun(ie,p))
¥(21) send(k,A(rec i(j)e, injB(p))) = send(x rec(ije,p))
¥(22) send(x,5(c res e, injE(p))) = run(eval(e k), Clc, injE(p)))
¥(23) send(x,£(b, injB(p))) = send(«,injB(b))
¥(24) send(x,£(0;, injE(p))) = ...
¥(25) send(x,£(i{Qip, injB(p))) = ..
¥(26) run(®, C(i:=e, injE(p))) = send(assign(i.p.0), £ (e, myh’(p)))
¥(27) run(e, C(while i do ¢, injE(p))) =
if ok(find(p,i)) then i find(p,i) 26en
‘run(perf(while i do ¢8),C(q injE(p)))
e/serun(0,p) e/se errB
¥(28) run(®, C(cyicy, injE(p))) = run(perf(cy,8), Clcy, injE(p)))
¥(29) run(6, C(if i then c| else c;, injE(p))) -
if ok(find(p,i)) 2pen if find(pi) then
run(@, C(cy.injB(p)))
e/se run(6,C(cy,injE(p))) e/se errB
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¥(30) run(8, C((), injE(p))) = run(8,injE(p))
The proof outlines follow:

"find” equations -
| ¥(1): D9
¥(2): D10
“ok” equations -
¥(3): D1
v(4). D2
¥(5): D3
¥(6): D4
¥(7). trivial
“run” equations -
¥(8): x1
¥(9): 12
"send” equations -
¥(10): x5
¥(11):x6
¥v(12).x7
"call” equations -
¥(13): DS
¥(14):D6
¥(15):D7, x7
¥(16):D8, x7
" P" equations -
¥(17):D13, x6
" £ equations -
v(18): D14, 18
¥(19):D16,x8
¥(20): D18
¥(21):D20
¥(22): D22, x1
¥(23):D23
- ¥(24):D25 ...
¥(25): D26 ...
"¢ equations -
¥(26): D27, x4, x5, 13
¥(27):D29, x4, 32, 13
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¥(28): D31, x2
¥(29): D32, x4, x3
¥(30): D34

Thus we have shown ¥ to be a theory morphism and Int to be initial in
Algc. There must therefore be a homomorphism from Int to U.‘(Den) and
this constitutes the semantic congruence.
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Chapter 5 |
Compiler Correctness

It was noted earlier (§4.1.5) that certain similarities appear to exist
between our notion of semantic congruence and the algebraic approach to
establishing the correctness of compilers (or "transiation aigorithms" as
practitioners would be more inclined to call them). It is this
correspondence we wish to exploit in the current chapter.

The first published attempt to formalise what it means for a compiler
to be correct and then to follow through an example proof was by
McCarthy & Painter (1967) where they treated the translation of arithmetic
expressions into sequences of instructions for a single-address accumulator
machine. However, it was Burstall & Landin (1969) that first suggested the
(explicit) use of algebra for such a proof, based on indentifying abstract
syntax with the word algebra for some signature. The idea was further
developed by Milner & Wehrauch (1972) and by Morris (1972,1973),
leading to the diagrammatic representation known generally as the "Morris
Square”.

Essentially the idea is that given a source languagc whose abstract
syntax can be identified with some signature we may construct the
following diagram. ’

source _ compile > T target
language © - - Y language
semantics| ¢ ¥ |semantics
< v
source M > U target
. encode
meanings meanings

In this diagram S, M, T and U are all Q-algebras, S in particular is the
Q-word algebra T() and v, ¢ J, € are all Q-homomorphisms. In this context
a proof of compiler correctness consists of a proof that the above diagram
commutes; in other words ¢.€ = v.¥. Clearly, since S is the initial 2-algebra,
¢, 0.€ and y.y are all unique and the proof is reduced to showing that there
7s some homomorphism €: M » U. Actually, Morris’ original diagram has a
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decode homomorphism d: U+ M rather than €, though in the text of
(Morris, 1973) €: M-U. is used. We will comment on the appropriateness of
the choice between € and d in §5.4.

An important part of the work involved is left out of the above
diagram, however. T is the algebra of programs that may possibly be
produced by the compiler, rather than the aigebra of programs that may be
written in the target language. If the abstract syntax of the target language
is identified with some signature Z, then its semantics will be given by a
homomorphism from the initial Z-algebra (denoted T, by Morris) to some
Z-algebra of target meanings, U, The Q2-algebras T and U are then
derived from T, and Uy, generally in an ad hoc though enlightened
manner. Burstall & Landin (1969) however, explicity include the derivors
in their diagram and we feel this to be more infor mative since the compiler
'description is embodied in the derivation of T from T,

s Li STe o
¢ ¥
Vo
M = > U e g

The fact that the two derivor arrows are both labelled i implies that U is
derived from U, in the same way as T is derived from T, This in turn
ensures that § is a homomorphism (since ¥, is a homomorphism), a fact
presented under the title “homomorphism of restriction lemma" in Burstali
& Landin (1969). In our framework, i is the derivor Uy assocmted wnth
some signature morphism 1: £ - Q.

Further work on this approach to compiler oorrectness has inciuded
the contribution by Thatcher, Wagner & Wright (1979) to clarify the
construction and semantics of flow charts (as Morris used for T, and U,) by
using a more categorical approach involving the notion of continuous
algebraic theories (Wagner, Wright, Goguen & Thatcher, 1976). Henson
(1983) extends the technique to source languages that require continuation
semantics, though that work does not adhere completely to the commuting
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square advice. Other papers that approach compiler correctness from an
algebraic viewpoint include Mosses (1980) and Wand (1980a) but they
emplcy quite different techniques to the traditional one discussed above.

- Returmng to the proposed connection between our work on semantic
congruences ‘and the notion of compiler correctness, we consider the
followmg diagram derived from the one given in §4.1.5 to represent the
(homomorphic) congruence of semantic models. |

11§

Ta > To
® K
~ ) A 4
S_Q > g.'Q.

h

Clearly the relation represented by the above diagram can be simply and
directly extended to treat compiler correctness by discarding the
requirement that the syntactic signatures be identical, thus generalising the
isomorphism Tq~» Tg to a homomorphism T~ Ag) for some algebra of
target programs Ap.

Since in this dissertation we prefer to treat semantic definitions as
algebras with the (homomorphic) semantic valuations included as operators
of the signature, in contrast with the initial algebra semantics approach, a
more direct representation of our compiler correctness proof technique is
as follows: ’ :

Alggy, Algyy
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Now this is exactly the diagram of §4.1.5 except that we no longer insist
that SL and TL present the semantics of the same language.

_ In summary, our approach to establishing the correctness of a
compiler is as follows. Given a source language presentation SL and a
particular model of Thgj, say A, and a target language presentation TL and
a particular model of Thyy, say B, first define a theory morphism

§: Thgy, » Thyy,. Now derive the SL-algebra Ug(B) and show there is a
homomorphism h: A » U;(B). Intuitively § is the compiler def7nition,
while h restricted to the syntactic part of the signature of SL is the
compilation process. Relating this back once again to the diagram of
Burstall & Landin (1969) reproduced above, h incorporates the
homomorphisms y and € while Ug incorporates both applications of the
derivor m. The semantic homomorphisms ¢, y, and § are respectively part
of the algebras A, B and U;(B). It is inappropriate to appeal to the
“homomorphism of restrictions lemma”, nor is there any need to, since ¥ is
a homomorphism by virtue of the fact that U;(B) is a model of ThSL rather
than any property of the way it is derived from B.

The body of this chapter follows an example proof for the source
language and target language described in the next section. Our example
differs markedly from those of Morris (1973) and Thatcher et al (1979) not
only in the way we describe the semantics, but most importantly in the
style of our target language. In contrast to the use of flow charts in those
papers, our target language is much more like an assembler language with
flow of control being wrought by branch instructions and as such is much
more “realistic”.
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5.1 Semantic Presentations of a Source Language
and a Target Language

The source language we will deal with is a simplified version of the
one treated by Morris (1973) and it shall be referred to as SL. An SL
program is a sequence of commands which may be assignments,
conditionals, while loops or dummies. The expressions of the language have
boolean values and the value of an uninitialised variable is distinguished as
an error, though such an access does not affect the continued execution of
the program.

- We now proceed with a presentation SLP of the semantics of SL. In
the sequel the part of the signature that describes the abstract syntax of SL
will be referred to under the name 2, so that 2 contains only the sorts

Program, Com and Exp (and Ide) and the operators among them.

Signature
syntactic sort Program

prog: Com -+ Program
syntactic sort Com

continue: » Com

seq: Com x Com -» Com

assign: Ide x Exp » Com

if: Exp x Com x Com -» Com

while: Exp x Com - Com
syntactic sort Exp

var: Ide - Exp

true: » Exp

false: -» Bxp

not: Exp » Exp

and: Exp x Exp -» Exp

or: Exp x Exp » Exp
sort U

arid:» U

bind: U x Ide x Bool » U

find: U x Ide -+ Bool
sort Bool

tt: » Bool

ff: - Bool
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~: Bool - Bool
A: Bool x Bool » Bool
v: Bool x Bool - Bool
err: » Bool
P:Program-» U
C:ComxU-»U
& Exp x U - Bool

find(arid, i) =err -
find(bind(p,ib),j) = i 1-1 then b else find(p,j)
~(tt) = ff
~(ff) = tt
~(err) = err
ttab=>
ff A b = if b=err then err else ff
err Ab=err
ttvb=i b-err then err e/se tt
10 ffvb=b '
1l.errvb=err
12. P(prog(c)) = C(c,arid)
13. C(continue, p) = p
14. C(seqlcy, cp), p) = Clcy, C‘(cl p)
15. C(assign(i.e), p) = bind(p,i, £(e, p))
16. C(if(ecy.cp), p) = i £e, p) then C(cy, p) efse C(cy, p)
17. C(while(e,c), p) = if £(e, p) then C(while(ec), C(c, p)) elfsep
18. £(var(i), p) =find(p i)
19. £(true, p) = tt
20. F(false, p) = £f
21. K(not(e), p) = ~£e, p)
22. S(and(ey.e2), p) = Bley, p) A Blezp)
23. £lorlegep), p) - £ley, p)v £lep, p)

=
WO NOUAWN O

As mentioned above, the target language TL we will deal with can be
viewed as a simple assembler language, basically made up of instructions
that move values (booleans for our purpose) about in locations with the
sequence of instruction execution being controlled by labels and jumps
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(both conditional and unconditional). The machine upon which they
operate consists only of a store with no registers and no explicit stack, so
the operators of the language are permitted to manipulate any of the
locations in the store. We intend the compiler to implement an implicit
stack as a sequence of locations, hence the presentation of TL has the
(otherwise rather mysterious) notion of two constants of sort Loc, {0 being
the base location of the segment where the values of variables are stored
and s0 being the base location of the segment set aside for the stack.

We now proceed with a presentation TLP of the semantics of TL. The
part of the signature that describes the abstract syntax of TL will be
referred to as Q, thus Q consists only of the sorts Programs, Instr, Loc and
Tag and the operators among them. We defer discussion and consideration
of actual SLP and TLP models to §5.3.

Signature |
syntactic sort Program '

prog: Instr - Program
syntactic sort Instr

dummy: - Instr

seq: Instr x Instr - Instr

move: Loc x Loc - Instr

ldt: Loc -» Instr

1df: Loc » Instr

com: Loc -» Instr

or: Loc x Loc - Instr

lab: Tag - Instr

br: Tag -+ Instr

brt: Loc x Tag » Instr
syntactic sort Tag

t0: - Tag

nxt: Tag -» Tag
syntactic sort Loc

{0: - Loc

80: - Loc

nxt: Loc » Loc
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sort Store
empty: - Store
set: Store x Loc x Bool - Store
val: Store x Loc - Bool
~ sort Bool
tt: » Bool
ff: - Bool
-: Bool -» Bool
A: Bool x Bool - Bool
v: Bool x Bool -» Bool
err: » Bool
sort Env
arid: » Env
bind: Env x Tag x C » Env
find: Env x Tag » C
bindall: Env x Taglist x Clist - Env
sort C
null:»C
fail: » C -
ass: Loc x Bool » C
apply: C x Store » C
sort Clist
newc: - Clist
- catc: C x Clist - Clist
sort Taglist
newt: - Taglist
catt: Tag x Taglist » Taglist
P: Program - Store
J:Instr xEnvxC-C
D: Instr - Env
T Instr x Taglist - Taglist
M Instr x Env x C x Clist - Clist

. val(empty() = err
. val(set(o{;,b){3) = i {y={; then b else val(otz)
. find(arid,t) = fail

. find(bind(pt 8)t3) = i ty=ty Lhen @ else find(pty)

Equatjons
1
2
3
4
S. s(tt) =ff
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

35.
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~(ff) = tt
-(err) = err

tab=b

ff Ab = if b=err then err else ff

errab=err

tt vb = /7 b=err Lhen err else tt

ffvb=>

errvb=err

apply(null,o) = 0

apply(ass({,b),0) = set(a,(b)

bindall(p,newt, cl) = p

bindall(p,catt(t,t1) catc(6,cl)) = ‘bindatl(bind(p,t,8)tLcl)
P(prog(c)) = apply( /7 (c,2(c)null) empty)

D(c) = bindall(arid, 7" (c.newt), M (c, J(c),nuli,newc))

T(seqleq,cp), t1) = (e, T'(cy, th)

7 (1ab(t), t1) = catt(t,tl)

I'(other, tl) =t

M (seq(cy.cp), pB.c) = Mlcy, pB,M(cy, p,/(cp, pe)cl))

M (1ab(t), p,0.cl) = catc(6,cl)

M(other, pBcl) =c1

/(dummy, p6) =0

I(seq(cycp), pB) = /(cy, p.7(co, pO))

apply( /(move(l{,{3), p.0),0) = apply(6 set(c,{5,val(a,{1))

apply( /7 (1du((), p,0),0) = apply(6,set(s,{t))

apply( /(1df({), p,8),0) = apply(6,set(o,{f))

apply( /(com({), p.8).0) = apply(8,set(o,{,~(vai(c,0))))

apply( /(or({y.{5), p.08),0) = apply(8,set(a,(,val(o(y) v val(o tz)))

/(1ab(t), p.8) - 0

/7(br(t), p8) = find(p,t)

apply( /(bru({t), p,6), o) = apply((ifvallo () then
find(p,t) e/se0),0)

- semanti ntati t e

Briefly, we anticipate the compiler from SL to TL to have the ,
following overall features. First, for simplicity we assume there to be a
pre-determined homomorphic relation between identifiers (Ide) and .
locations (Loc) in the segment whose base address is {0, though we will
consider replacing this with "symbol-table” information in §5.3. Second,
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expressions will be evaluated on an implicit stack of locations in the
segment whose base address is s0. Further, the top-of-stack pointer is to
- be simulated at compi/e time, so expressions will be translated into
instruction sequences with absolute addresses.
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5.2 Compilers as Homomorphisms

Were we to closely follow the advice of Morris for defining our
compiler and verifying its correctness, the first requirement would be to
derive a Z-algebra ( Z is the abstract syntax of SL) from Tq (Q is the
abstract syntax of TL), thus giving a homomorphism y: S - T where S is Ty,
the algebra of SL programs and T is the derived Z-algebra (U.(Tq) for
some signature morphism 1: £ - Q). This is basicaily the top line of the
commuting square diagram of the chapter introduction.

Ts Ur(Tq)
S > T «

Even given the simple and fairly standard features outlined in §5.1 of the
compiler we intend to construct, this task appears to be quite impossible.

The following example pinpoints one of the problem areas. Consider
the (intended) translation of the SL commands i := a or (not(b)) and
i := (not(b)) or c. The code sequences we expect to produce are
something like the followmg, assuming for concreteness that a, b, ¢ and 1
are mapped to locations {1, {2, {3 and {4 respectively.

i:=aor(not(d)) move({1,50)
| move({2,s1)
com(s1)
or(s1,50)
move(s0,{4)

i:= (not(b)) or ¢ move({2,30)
com(s0)
move({3,s1)
or(s1,s0)
move(s0,(4)

If we now concentrate on the coding of the sub-expression not(b), it can be
seen that in the first case the corresponding instruction sequence is
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move({2,s1)

com(sl)
whereas in the second case the corresponding instruction sequence is

g move({2,50)

com(s0).
Clearly, if it is possible to obtain two different target programs for the same
source (sub)-expression we cannot have a homomorphism from the algebra
of source program s to the algebra of compiler-produced target programs T.
Hence it is impossible to express such a compiler by deriving an
appropriate Z-algebra from Tg or, equivalently, by defining a signature
morphism-1: 2 - Q.

The intuitive explanation for this problem can be found in the fact
that in addition to the structure of the source expression being transiated,
the compiler needs to be informed as to where the current top-of-stack is.
In other words, each expression is translated into instructions that leave
the result /o some /ocation, and the instructions vary according to the
choice of location. Thus, the compilation function (for expressions at least)
may be thought of as taking a source expression £24 a location, producing
target instruction sequences such as follows: '

“compile(var(i),{) = move(compile(i),{)
compile(not(e){) = seq(compile(e,{),com(())
compile(or(e,e2),() = seq(compile(e,{), |
* compile(e,nxt(()) or(nxt(()()))
(Note that here and-elsewhere we allow the slight abuse of notation
whereby seq takes any number of arguments to save us writing
seq(c,seq(c,c)) and so on.)

Now the definition of compile above is roughly what we Want for a
signature morphism 7 : Z - , but falis short in that locations are not
permissible arguments since they do not occur in 3.

This situation is reminiscent of the one that arose in §4.6.3 where the
desired congruence did not appear to consist of a theory morphism for
similar reasons: sorts and operators of the source theory were being
referred to as though they were present in the target theory. That is

(& )e,p.x) = send(k, £ye,p))

¥(&)c.p.8) = run(6, Gc.p))

where send, run, k and ¢ occur in the continuation semantics presentation
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but not in the direct semantics presentation. Our solution in that case was
to extend the target theory by the addition of sorts and operators with the
aim of making y a theory morphism from the source theory to that new
target theory. Clearly the semantic valuation operators and the semantic
sorts are unaffected by such additions so the semantics of the language is
unchanged (see §4.6.3).

Since the work in this chapter is intended to be based on exploiting
the observed similarities between our notions of semantic congruence and
compiler correctness, we are naturally guided to seek a solution for the
present problem that is similar to the approach taken in §4.6.

Our intention in §5.3 is to make appropriate extensions to Q2 (and
TLP) so that a signature morphism (later a theory morphism) can be found
that is the analogue of the compiler we have in ’mind. Given that the |
function compile: Exp x Loc -+ Instr roughly expresses the pattern upon
which we are basing the compiler definition, the natural choice for a
signature morphism would seem to be of the form 1: Exp - [Loc » Instr]
- suggesting that we need to extend QQ by adding a sort that adequately
represents [Loc » Instr]. This is the basic approach that we intend to take
in the next section, though further similar extensions will be required when
considering T(Com). :
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5.3 A Compiler

_In this section we intend to detail an extension of Q to Q' (and TLP to
TLPX) so that a satisfactory signature morphism T: Z » Q' may be defined
‘such that it expresses the translation algorithm we intend. We will discuss
the requirements for expressions first, along the lines hinted at in the
previous section and then treat commands in an analogous way.

The first extension to Q we require for T to parallel the effect of
"compile” (85.2) is the addition of a sort we shall call Ltolnstr to represent
functions from locations to instructions, [Loc - Instr]. The necessary
operator symbols will include the notion of applying an abstraction (the
objects of sort LtoInstr) to a location to produce an instruction. Recall that
for the compilation of expressions we need to provide the location in which
the compiled instructions are to leave the resultant value. Thus, the
abstraction will be resolved (grounded) by supplying a particular location
when compiling commands that explicitly contain an expression.

On the other hand, the choice of operator symbols to act as
constructors of Ltolnstr is not so clear cut. The most direct approach is to
include an operator symbol for each instruction type, such as:

Idf-abstr: -» Ltolnstr

br: Tag - Ltolnstr

brt: Tag - Ltolnstr

seq: Ltolnstr x Ltolnstr -+ Ltolnstr
and so on. However, complications arise for those instructions which refer
to two locations, such as or: Loc x Loc - Instr. The options are to add a
further sort representing [Loc - [Loc - Instr]] which is general, but
long-winded, or make the observation that the compiler only ever produces
instructions like or(nxt({),{) for some {, thus reducing it again to an
abstraction on a single location. Another difficulty is evident from
 inspection of (for example) the compilation of ej or e (§5.2), where we
have a sequence of instructions where a location, say {, is supplied to the
first instruction, while nxt({) is supplied to the second instruction. The
solution here is to add a further operator symbol next: Ltolnstr - Ltolastr
with the understanding that the application of next(x) to some location { is
the same as the application of u to nxt({). While the approach of including
an operator symbol for each instruction type is possible, in view of the
difficulties outlined above the extensions could become unnecessarily
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complicated.

For our purposes we take a less direct approach based on the fact
that the extensions to Q are required solely so that a morphism 1: Z » Q'
can be established. Clearly then we may choose to identify as the
constructors of Ltolnstr only those objects that are to be mapped to by T
taking an operator of sort expression from X. This option is completely
compiler-oriented and as such has some disﬁdvantages over the more
general scheme outlined above, not the least of which is the fact that the
definition of T no longer directly contains the definition of the transiation
algorithm. However this approach is much simpler, especially when we
consider the translation of commands below and the requirements of more
realistic and complex languages. The basic idea is to include an operator
symbol of sort LtoInstr for each type of SL expression and we name them
in a way that reflects this relation.
sort Ltolnstr

target: Ltolnstr x Loc - Instr

var-abstr: Loc - Ltolnstr

true-abstr: - Ltolnst

false-abstr: - Ltolnast

not-abstr: Ltolnstr - Ltolnstr

and-abstr: Ltolnstr x Ltolnstr - Ltolnstr

or-abstr: Ltolnstr x Ltolnstr - Ltolnstr.

Given this extension to 2, we may immediately define at least part of
the signature morphism 1: 2 » Q. As mentioned in §5.1 we are assuming
that there is some pre-determined relation between identifiers and the
locations in the segment based on (0. Thus we have t(Ide) = Loc but we
eschew further details. One possibility, assuming the presentation of Ide
given in §3.1.1 is T(baseid) = {0 and T(next) = nxt.

Sorts:

t(Ide) = Loc -
7(Expr) = Ltolnstr

* Operator Symbols:
t(var) = var-abstr
t(true) = true-abstr
t(false) = false-abstr
T(not) = not-abstr
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t{and) = and-abstr
t(or) = or-abstr

In itself, this definition of T is far from enlightening so we immediately
give the intended interpretation of the operators of sort Ltolnstr by listing
the associated equations to be added to TLP. The variable e is of sort
Ltolnstr, though it is obviously intended to be reminiscent of variables of
sort Exp in . | |

x1. target(var-abstr({{)7) = move(l; ()
x2. target(true-abstr{) = 1dt({)
x3. target(false-abstr {) = 1df({)
14. target(not-abstr(e)) = seq(target(e,{),com({))
x5. target(and-abstr(e;.e) ) = seq(target(ey.(),
com({),
target(e,,nxt({)),
com(nxt({)),
or(nxt({).0),
com({))
x6. target(or-abstr(ey.ep)l) = seq(target(e ),
target(e,nxt(()),
or(nxt(().0))

To provide some intuitive insight, consider the transiation of x or y
embodied in t(or)(T(var)(t(z)),T(var)(t(y))), assuming target location sO0.
tlor)(t(var)(t(x)),r(var)t(y))) =
~ or-abstr(var-abstr(t(x)),var-abstr(t(y)))
target(or-abstr(var-abste(t(x)),var-abste(t(y))),s0) -
seq(target(var-abstr(t(x)),s0),
target(var-abstr(t(y)),nxt(s0)),
or(nxt(s0),s0))
= seq(move(t(x);s0),
 move(t(y),nxt(s0)),
or(nxt(s0),s0))

Hence the translation of X or y consists of instructions to load the value of
X into the location on top of the stack, load the value of y into the location
above that and then “or” the two together into the lower location.
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The initial top of stack for each complete expression (i.e. an
expression occurring directly as part of a command) will be s0, as chosen in
the above example, and this information will be provided when compiling a
command. For example, an assignment statement i:=e could be treated as
follows: ,

t(assign)(t(i),t(e)) - seq(target(t(e),s0),

move(s0),1(i))).
The compilation of commands is a little less straightforward than this and
we shall see below that such a definition of t(assign) is quite inadequate,
though here it does serve the purpose of illustration.

We now turn our attention to the transiation of the commands of SL.
Clearly, since the only control structures in TL are conditional and
unconditional branches to labels, the if and while commands of SL must be
coded using such primitives. Hence the compiler must be supplied with
labels with which to construct the instruction sequences for the translation
of commands, in much the same way as the compiler is supplied with
locations for the translation of expressions. This implies the need for a sort
representing [Tag - Instr], but there is a fundamental difference between
the supply of tags and the supply of locations: the locations can be '
re-used for “consecutive” expressions, whereas a new and different tag
must be used each time. Therefore we need to maintain a record of which
tags we have used and provided this is done in a regular manner (0 first,
nxt(t0) next and so on), the record of used tags can be achieved by
associating a tag to tag map with each command. Putting the two
requirements together, we appear to need a sort representing [Tag - [Instr
x Tag]] for T(Com). We achieve this by adding two sorts, IandT and
TtolandT respectively representing [Instr x Tag] and [Tag -[Instr x Tagl] to
Q (and TLP). Again, as was the case for translation of expression above, we
aliow the syntax of SL commands to suggest the operator symbols of sort .
TtolandT.

sort landT
<,: Instr x Tag » landT
1st: IandT - Instr
2nd: IandT - Tag
sort TtolandT
supply: TtolandT x Tag -» IandT
continue-abstr: » TtolandT
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seq-abstr: TtolandT x TtolandT - TtolandT
assign-abstr: Loc x Ltolnste » TtolandT

if-abste: Ltolnstr x TtolandT x TtolandT - TtolandT
while-abstr: Ltolnstr x TtolandT - TtolandT

Given the (now completed) extension of Q to Q', we may complete the
definition of 7: 2 -+ Q"

Sorts:
7(Com) = TtolandT
T(Program) = Program
Operator Symbols:
t(continue) = continue-abstr
t(seq) = seq-abstr
t(assign) = assign-abstr
(if) = if-abstr
T(while) = while-abstr
- t(prog)(t(c)) = prog(1st(supply(t(c),t0)))

Note that it is important that t(Program) = Program as a general rule.
Intuitively our compiler must produce a program in the target language
given a program in the source language, otherwise we could not justify
calling it a compilerl On a more technical note, if we did not insist on
7(Program) = Program it would be feasible to extend the target language
presentation and define the signature morphism only in terms of the sorts
- and operators that had been added, with no reference to the actual target
language. Clearly such a morphism could not be considered to be
embodying a transiation from the source to the target language.

~ The equation to be added to TLP to make TLPX (and give some
meaning to the operators above) are as follows: -

x7. 1Ist(<ip) =i
18. 2nd(«<iv) =1t
19. supply(continue-abstrt) = <dummy,t>
x10. supply(seq-abstricy.co)t) =
<seq(1st(suppty(cy.t)),
1st(supply(cp.2nd(supply(cy.1))))),
2nd(supply(cp,2nd(supply(cy t))))
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x11. supply(assign-abstr({.e).t) = <seq(target(e s0), move(so D), v
112. supplyl(if-abstr(e.cq.co)t) =
<seq(target(e,s0),

com(s0),

brt(s0,t),

1st(supply(cy.nxt(nxt(t)))),

bri(nxt(t)),

lab(t),

1st(supply(cp,2nd(supply(c.nxt(nxt(t))))),

lab(nxt(t))),

2nd(supply(cp,2nd(supply(cy ,nxt(nxt(t))))))>
x13. supply(while-abstr(ec)t) =
<seq(lab(t),

target(e,s0),

com(s0),

brt(s0,nxt(t)),

1st(supply(c.nxt(nxt(t)))),

br(t),

lab(nxt(t))),

2nd(supply(c.axt(nxt(t))))

By virtue of having defined a signature morphism T: 2 -+ Q' we have
specified the intended translation algorithm of SL programs into TL
programs. For the proof of correctness of this compiler we need to define a
theory morphism SLP - TLPX based on the above definition of the
~ signature morphism 1:Z » Q'. The extension of T to a full theory morphism
(which we shall ambiguously but conveniently also denote ) is clearly
guided by the arity and sort of each of the operator symbols representing
semantic valuations. For example, A: Program -+ U and A Program -
Store together with T(Program) = Program suggests T(A&) = A and t(U) =
Store, and so on. The final part of the definition of T: Thgy p - Thyy py is
therefore as follows:

Sorts:
7(U) = Store
7(Bool) = Boot
Operator Symbols:
t(arid) = empty
7(bind) = set
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t(find) = val

T(tt) = 1

(ff) = ff

(=) =~

T(A) = A

wv)=v

t(err) = err

UR) - A |

1( C)(t(c),t(p)) - appty( 7 (1st(supply(t(c),t)),

’ D(1st(supply(T(c).t))),
null),T(p))
Note that any tag t will do and that the use of 2 is valid only
because we are providing the null continuation; otherwise a more
complex formulation would be required.

(£ )((e),7(p)) = vai(apply( / (target(t(e) (),
D(target(t(e)()),
aull),t(p) )

Again note that any location { will serve and that, a least for our
simple language SL, D(target(t(e),{)) will always return the arid
environment by virtue of the fact that labels are never used in the
coding of expressions.

To show T to be a theory morphism, we need to show that Thy py contains
the t-translation of the equations of SLP. We repeat them here but give no
detailed proofs. Equations 1 to 11 are trivially satisfied and equations 12
to 23 (the semantic clauses) cause no difficulties though the proofs quickly
become unwiedly, mainly due to the rather verbose notation. Also,
structural induction over the syntactic sorts is required occasionally, for
example 1(14) (see §3.3.5).

1(12). P(prog(1st(supply(c,10))))
- apply( /(1st(supply(c.t)),
D(1st(supply(ct))),
null) empty)
7(13). apply(/(1st(supply(continue-abstr.t)),
D(1st(supply(continue-abstr.t))),
null),0) ’
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1(14). apply(/(1st(supply(seq-abstr(cy, cz).t)),
D(1st(supply(seq-abstr(cy, cz).t))),
null)o)

- apply( 7 (1st(supply(ca.t)),
D(1st(supply(cy.t))),
null),
apply( 7(1st(supply(cy.t)),
D(1st(supply(cy 1)),
null),0))

1(15). apply(/(1st(suppty(assign-absir({.e)t)),

D(1st(supply(assign-abstr({.e)t))),

null),o)
= set(o,{val(apply( /(target(e (), -
D(target(ef)),
null),0) ()

1(16). apply(/(1st(supply(if-abstr(e.cq.c2)t)),
D(1st(supply(if-abstr(e,cq.cz).t))),
null),o)

= if val(apply( / (target(e),
D(target(e)),
| aull),0)()
then apply(/(1st(supply(cy.t)),
D(1st(supply(cy.t))),
aull),0)

e/se apply(/(1st(supply(cy.t))
D(1st(supply(cy.t))),
null),0) -

1(17). apply( /(1st(supply(while-abstr(e.c) t)),

' D(1s(supply(while-abstr(e.c)t))),
null),¢)
= jf val(apply( /(target(e,(),
D(target(ef)),
null),0)() |
then apply( /(1st(supply(while-abstr(e,c)t)),
D(supply(while-abstr(e,c),t))),
| null),
apply( /(1st(suppty(ct)),
D(1st(supply(c,t))),
null),0))
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e/se ¢
7(18). val(apply( /(target(var-abstr({),())
arid,null),0),(’)
= val(a/{)
1(19). val(apply( /(target(tcue-abstr ),
arid.null),0){)
=1t
1(20). val(apply( /(target(false-abstr (),
arid,null),0) ()
=T
1(21). val(apply( /(target(not-abstr(e),0),
arid,null),0)0)
= -val(appty(target(e,{),arid,null),0),{)
1(22). val(apply( /(target(and-abstr(eq.e3).0),
arid,aull),0).0)
- val(apply( /(target(e () arid,null),6) ()
A val(apply( /(target(e,,{),arid,null),0) ()
1(23). val(apply( /(target(or-abstr(ey.e3)0),
arid,null),0){) |
- val(apply( /(target(e () arid,null),0),()
v val(apply( /(target(e,{).arid,null),0).()

The first expansions of supply(.., t) or target(.., {) are the most enlightening
since they replace the uninformative abstraction operators with (possibly
incomplete) TL instruction sequences.

Diagrammatically, we may represent the stage we have now reached
in the proof as follows: :

Th

L)

SLP ] Thyppy -

To finalise the proof we must fix an SLP-algebra S and a TLPX-algebra T
and establish the existence of an SLP-homomorphism h: S -+ UL(T). This
may be done directly (where possible) or by proving the initiality of S
where possible. Note that it may be necessary in the case where S is given
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first, to tailor SLP such that S is initial. In the present case we have fixed
the presentation first so we are free to choose any appropriate model, in
particular the initial one.

Alg SLP AlgT LPX

Before any further discussion of particular choices of models we wish
to point out two aspects of the example we are treating that have not
featured prominently so far. The first is that the compilation
homomorphism 7: (algebra of source programs) - (aigebra of abstracted
target programs) is not one to one. This was arranged so that the example
was a more comprehensive illustration and simply involves implementing
the source language and by invoking the identity
a A b = +(~a v -b), made necessary by the absence from TL of a
corresponding and-instruction. Hence the two source language expressions
" a and b and not(not(a) or not(b)) are identically coded. The second

(and quite separate) point is that the use of the "homomorphism of
restriction lemma” (Burstall & Landin, 1969) which is a major feature of
earlier related work on compiler correctness has been circumvented in our
approach. Ur "subsumes” the restrictions since the semantic valuations of
any TLPX-model (say T) are homomorphic, as must be the semantic
‘valuations of U,(T), simply by virtue of the fact that U,(T) is an
SLP-algebra and all the models of SLP have homomorphic semantic
valuations (see §3.2).

At this point we intend to leave our example incompiete by not
considering particular models and the establishment of an appropriate
homomorphism on the grounds that little would be gained through such an .
exercise, particularly since we have investigated this area fairlty thoroughly
in Chapter 4. Instead, we shall discuss in more general terms some
apparent benefits in the clear separation of the proof into two stages:
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establishing a theory morphism and establishing a homomorphism. The
underlying intuition is that the translation aigorithm proper is expressed
via the theory (or signature) morphism while the implementation of the
semantic domains of the source language is expressed by means of the
homomorphism. Again this idea closely follows a similar notion for
semantic congruences, as discussed in §4.1.5.

The factoring of the proof into two stages therefore allows certain
implementation details to be treated in isolation and hence they do not
interfere with the actual transiation algorithm. As a concrete example,

a source language whose data types include integers would most likely
presume the infinite semantic domain 2. However the target machine may
represent integers as strings of 16 bits using the usual 2's complement, that
is -32768 .. 32767. Now both are models of the usual presentation (succ,
pred, zero, etc) and therefore the theory morphism may be constructed
without this mismatch in mind. However when attempting to establish a
homomorphism from the source semantics to0 the derived model, the
problem is highlighted by the fact that no such homomorphism exists and
the domain of the source semantics model must be altered to correspond to
the target model. Thus implementation restrictions are identified and may
be treated in isolation. More complicated examples of mismatches between
the "idealised” source language semantics and target language semantics
that may arise in practice include problems with real arithmetic accuracy;
limitations on the size of source programs, according to code segment size
limitations or symbol table limitations; limitations on the depth of static

- nesting of blocks as on Burrough's B6700; and the tendency of many Pascal
compilers to recognise only the first 8 characters of identifiers. Such
difficulties clearly lie within the bounds of what would be called
implementation restrictions rather than being major issues in the definition
of translation aigorithms.

As mentioned in §5.1 we have simplified our example by assuming a

direct translation t(Ide) = Loc. It is interesting to consider briefly the

requirements necessary for treating a compilation algorithm that takes the
" more usual approach of maintaining a symbol table. The rudimentary
symbol table we have in mind consists of identifier, location pairs with a
new pair being added whenever an identifier is met in a defining
occurrence in the program. For our purposes we will consider the first -
(textually) assignment to an identifier to be its defining occurrence and the
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locations to be allocated in sequence {0, nxt({0) and so on. Thus we wish to
construct a (finite) function: Ide - Loc or its analogue as the compiler scans
the program text. Clearty this notion closely corresponds to the
environment structure commonly used in semantic definitions.

This compiler information is more complex than that we have so far
considered: the location that is currently top of the stack and the next
available tag. However it can be treated in much the same fashion by
adding sorts and operators to the target language presentation that abstract
on the symbol table concept. In outline, the requirements are firstly the
addition to TLP of a sort Symtab representing [Ide - Loc] or [Ide x Loc]*
with operators similar to those used for environments throughout this
dissertation (ie arid, bind and find). Note that sort Ide must also be added
to TLP therefore. Secondly, the symbol table is required for transiating
commands and may itself be altered in the process much as is the next
available tag information. Hence we replace TtolandT (representing
Tag - [Instr x Tag] by SandTtolandTandsS, representing [Symtab x Tag] -+
[Instr x Tag x Symtab]. Similarly, since the symbol table is required for
compiling expressions, LtoInstr should be replaced by SandLtolnstr
representing [Symtab x Loc] » Instr. The definition of appropriate
operators can be achieved in a straightforward manner by taking the same
approach as was applied in the detailed extension of TLP to TLPX above.

A less ad hoc approach to the general problem could involve
collecting all aspects of the infor mation for the compiler under the umbrella
of a single sort called (say) Compinfo. This sort would generally represent
tuples; for our case Loc x Tag x Symtab. Given such a sort, the target
language presentation could be further extended by a single abstraction
sort representing Compinfo - [Instr x Compinfo] with operators based on
each of the source language syntactic operators. Further consideration of
such a methodology is outside the scope of our investigation but does |
provide a pointer for future work.
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5.4 Compiler Correctness and the Commuting Square

It is pointed out in Thatcher et al (1979) that proving that a Morris
square commutes does not necessarily always correspond to proof of
compiler correctness. In the usual diagram of Z-algebras and Z-
homomorphisms (§5.0), if T and U are chosen to be single point algebras,
then commutation is ensured simply by the fact that T and U will thus be
final T-algebras and y, § #2d € are hence unique (as is 6). Clearly there
are many more subtle cases than the completely degenerate one outlined
here. '

To provide a more concrete example of how such a single point T and
U can arise in practice we can define an appropriate "compiler” from SL to
TL that always produces the same TL program. If we arrange for every SL
program to be transiated to the seme TL code,

prog(1dt({0))
then each SL command can be viewed as being transiated into 1dt({0). Such
a compiler leads to a Z-algebra T with carriers defined as follows:

Tprogram = (prog(1dt({0)))
Tpyp = (1dt(s0))  (though there is no significance in such a choice)
Tige = ((0) '

The corresponding semantic Z-algebra U may be derived from the semantic
~ Q-algebra Up intrinsic in any particular model of TLP by the same means
that T is derived from Tq above, so that Upprogram = (set(empty,(0,1t)).
Since the carriers of T and U are all singleton sets, T and U are final objects
in Algy implying that § and € are unique and the square commutes, yet we
are unlikely to consider such a transiation algorithm to be a correct
compiler.

Thatcher et al (1979) suggest that requiring € to be injective is
sufficient to avoid such degenerate cases and work their proof within such
a framework. However they leave open the question whether the
injectivity of € is a necessary condition. The intuition underlying such a
restriction on € is that it prevents two different source program meanings
(in M) from being identified in U. Thus if two programs in S have
different meanings attached by the homomorphism 6: S - M, then
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requiring € to be injective effectively prevents those two programs from
being compiled into target language programs (in T) that have the same
meaning. This circumvents the problems of degeneracy outlined above.

On the other hand the original diagram of Morris (1973) has a decode
homomorphism d: U » M, though for convenience he deals with ¢: M -» U.
This requires the inclusion of a proof that € has an inverse, at least for the
part of U related to runnable programs. Without going into the details of
that paper, this is equivalent to showing that € has an inverse
homomorphism d(i.e. € is an isomorphism) when restricted to a particular
subaigebra of U. Clearly this is equivalent to requiring that € be injective.

We suggest that using d: U » M is inappropriate and that requiring €
to be injective is an excessive restriction. In the remainder of this section
we intend to formulate necessary and sufficient conditions to ensure that a
proof that a Morris square commutes constitutes a proof of compiler
correctness. As a vehicle for our discussion we intend to use the rather
unorthodox, but very simple notion of a completely trivial compiler that
transiates source programs into themselves. Also, rather than introducing
any new languages we return to the lambda calculus as our source (and
target) language and consider the semantic models treated in §4.2.2. One
reason for choosing a compiler that transiates a lambda expression into the
same lambda expression is that it allows us to make the application of our
work on semantic congruences more obvious. Another reason is that there
can be no doubt that such a compiler is correct although we can imagine
some resistance to the term "compiler” being applied.

To construct our Morris square, we intend to choose the left hand
side of the diagram, 6: S » M, to be the LC-algebra Op and the right hand
side of the diagram, y: T -+ U, to be the LC-algebra Den (§4.2.2). For
completeness we will give specific definitions of the algebras S,M,Tand U.

Presume the syntactic signature to be the following portion of LC, denoted
A. ' ' ' :

sorts: Lambda, B, Ide

operators: constant: B - Lambda
var: Ide - Lambda
abstraction: Ide x Lambda -+ Lambda
application: Lambda x Lambda - Lambda
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Then the semantic A-algebra M can be derived from Op as described in
§3.2.3 to yield the following definition.

Mpambda =B~ Ul

Mg =B

Mjge = Ide

where E - llde x Ul' U- [B CLO] and CLO - [MLambda x Ide x B]
- constantyy(b) = Ae.(b /nU)

var)4(x) = Ae.Lookup(x.e)

abstraction)g(x,n) = Ae.(<nx.e> /2 U)

applicationyg(x,B) = Ae.apply(u(e),ple))

where apply(<n.x.e>,b) = n(Extend(ex,b))

Similarly, the semantic A-algebra U can be derived from Den.

ULambda = (ENV » V]

Ugp=B

Upge = 1de

where ENV = [Ide » V], V = [B + FUN] and FUN = [V » V]
constantyy(b) = Ap.(b /2 V)

vargy(x) = Ap.p(x)

abstractiongy(x.n) = Ap.(Aa.(n(plx/a}))in V)
applicationy(a,p) = Ap.(a(p)IFUN)(B(p))

The particular Morris square we are dealing with is the following:

¥
TA _ > TA
6 V
M >

€ v

in which M and U are defined above, S and T are both instantiated as an
initial A-algebra, 6 and ¥ are the associated unique homomorphisms and y
is the identity homomorphism. The existence of the encoding
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homomorphism € is (indirectly) established in §4.2.

Thus we have defined a correct compiler and shown that its
corresponding diagram does in fact commute. However € is 207 injective,
nor can a decode homomorphism 6: U+ M be found. If we consider the two
lambda expressions Ax.x and Ay.y, their respective meanings in M,
attached by 6, are '

Ae.(«Ae’Lookup(x.e’).x.e> /aU)
and Ae.(«Ae'Lookup(y.e')y.e> inU)
which are clearly different at least in the second item of the triple. The
meanings in U attached by ¥ are both

Ap. (Aaa /o V).

Hence the A-homomorphism €:M-U takes both the above objects of M to
the same object of U and € is immediately not injective. On the other hand,
a decode homomorphism cannot possibly exist since clearly

d(Ap.(Aa.a 72V)) must be single valued yet still satisfy 6= y.4.5.

It would seem that such blanket restrictions as “injective € have
little to offer as general solutions to the problem we are addressing. We
see a paraliel here with the notion of an acceptable model of a semantic
theory (ok-model) discussed in §3.3. It is noted there that the individual
specifying the semantics of a particular language must be the one who -
decides whether two constructs may or may not be assigned the same |
meaning value. For instance, there can be no a priori reason for expecting
that Ax.x and Ay.y may be given equivalent interpretations. In the same
vein, there can be no justification for insisting in all cases that no more
identification (i.e. confusion, §3.3) occurs in the semantics of (compiled)
target programs than in the semantics of source programs, yet this is
precisely what restricting € to be injective ensures.

This leads us to suggés_t the following single requirement for a
commuting square to represent compiler correctness: both9: S + M and
¥.¥: S - U should define acceptable semantics for the source language. If
this condition holds we consider y to be an 2ccepilable iransiation. With
respect to our trivial compiler for the lambda calculus, y is the identity and
8:S-» M and §: T » U are respectively the operational and denotational
semantics of the lambda calculus and they are clearly acceptable semantic
models according to our treatment in §3.3.
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In terms of the semantic models we have been mainly dealing with
in this dissertation, where syntactic domains, semantic domains and
semantic valuations are treated as aspects of a single algebra, the notion of
acceptable translation can be defined more exactly in terms of previously
introduced concepts. Supposing we have source and target language
semantic presentations SL and TL, together with an SL-algebra A, a
TL-algebra B and a theory morphism §: Thgy, » Thyy, then establishing the
existence of and SL-homomorphism h: A -+ Ur(B) constitutes our version of
proof that the related Morris square commutes. To ensure the acceptability
of the compiler we further require Ug(B) to be an ok-model of Thgj,.
Naturally, we are already presuming A and B to be ok-models of their

respective theories and hence that appropriate sub-final models have been
indicated.

~ Weclaim this requirément to be a suitable replacement for the
rather excessive restriction that € be injective on the grounds that the
definition of ok-models has the effect of placing an upper limit on the
allowable identification of SLP terms in U;(B). irrespective of whether or
not they are identified in A.
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Chapter 6
Conclusion

In this thesis we have been concerned with developing an
algebraically based technique for specifying the semantics of programming
languages and examining the technique’s utility and infiuence on formal
proofs involving such specifications.

In Chapter 3, we laid the foundations by investigating the use of |
equational presentations for specifying programming language semantics.
We noted that not all the aigebras that are models of the presented theory
necessarily provide acceptable semantics and suggested that a delineation
of the subclass of models that are acceptable can be achieved by
designating a particular algebra as being the one where as much
identification of terms (i.e. confusion) as is admissible takes place. The
ok-models are then those algebras with a particular homomorphic relation
to this one such that no further identification is ensured.

It has been noted from the very beginning that a methodology and
modularisation technique must be developed to control the level of
complexity in any enterprise aimed at producing a sound semantic
specification of any realistic language. Insisting on a modular approach
leads naturaily to the notion of keeping a library of standard types and
type constructors and the situation may well develop wherein semantic
definitions begin to resemble the denotational style, at least in surface
appearance. In fact, Bhrich & Lipeck (1983) have already made some
progress in this direction, though they only manage to treat domains of
finite functions. An important aspect is the consideration of the
usefulness and flexibility of the idea of A/gher-order algebras. The
choices here are to foliow the work of Parsaye-Ghomi (1981) or Poigne
(1984) or perhaps to stick with standard universal algebra and develop a
standard nozation for sorts representing functional domains. This latter
option seems more attractive at present since it would seem advantageous
to avoid any insistence on carriers being functional and consequently
disallowing closures as operational equivalents. ‘

The relation between the models of our semantic presentations and
the initial aigebra approach is established on both a conceptual and formal
level. An interesting opportunity for further research arises here. Given
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some operational semantic model, an initial algebra semantics may be
systematically derived from it. Now the initial algebra semantics is clearly
denotational by virtue of the fact that it is in terms of a homomorphism
from syntax to semantics and homomorphisms are by definition
compositional. The exact connection between such “pairs” of operational
and denotational definitions is not immediately evident, nor is it clear
whether such connections can be fruitfully exploited.

In Chapter 4 we examined the notion of the congruence of semantic
models from an intuitive standpoint and developed a rigorous algebraic
formulation corresponding to the natural idea. Expressed simply, two
semantic models are congruent provided there is a homomorphism from
one to an algebra derived from the other. Such relationships cannot always
be established by the traditional inductive approaches, however the
concept of initiality and some straightforward related results allow us to fill .
this gap. The detailed examples treated in Chapter 4 are sufficient to give
us confidence that our formal notion of congruence is both useful and
tractable. The fixed-point construction developed when dealing with those
examples would appear to have applications for operational semantics
beyond the fairly narrow range of uses given here.

The size and level of detail of some of the proofs in Chapter 4 clearly
indicates the need for some form of automation or mechanical assistance
when developing such proofs. Though it is outside the bounds of this
dissertation, there would appear to be some challenging probiems involved
with the development of a fully general system based on equational
rewrite rules (O'Donnell, 1977).

In Chapter 5 we reformulated the advice of Morris (1973) on proving
the correctness of compilers to suit our style of semantic definition,
applying much of the work we had done on congruences to this related
problem. In treating a somewhat more realistic example than those
appearing in the literature, with the target languages being described in the
same style as the source language, it was made clear that the notion of a -
compiler being a homomorphism from the language to an algebra derived
from the target language was overly simplistic. If the compiler expects to
maintain any record of the symbols being used (eg the location that is
current top of stack, the next unused target label) or any relation between
source and target objects (eg a symbol table), then the compiler appears to
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correspond more closely to a homomorphism from the source language to
abstractions of the target language, so that the derived algebra cannot
always be generated from the target language alone.

The status of the homomorphism that forms the part of the
commuting square diagram connecting the two semantic aigebras was
investigated in tems of a trivial example. Both the decode option, being a
homomorphism from target program meanings of source program meanings
or requiring the ezcode homomorphism € from source program meanings
to be injective were found to be too restrictive and hence unsatisfactory.
An alternative is presented wherein the compiler homomorphism is
required to constitute an acceplable irans/ation, a notion closely related
to that of an ok-model introduced in §3.3. In fact, closer examination leads
to more fundamental questions than the injectivity or otherwise of €,
calling into doubt the appropriateness of the whole commuting square
approach.

It seems natural that if y.y: S » U (the semantics of S given by the
composition of the compiler and target semantics homomorphisms) is an
acceptable semantic definition of the source language S, then the translation
¥ is correct as well as being acceptable. For certain choices of models,
such a situation can exist without a homomorphism €: M -+ U necessarily
existing. We are actively pursuing this line of investigation at the moment,
with obvious influence on a re-development of the concept of an ok-model,
both in terms of our semantic definitions and also within the framework of
initial algebra semantics.

The future will tell whether algebraic foundations will allow the
development of programming methodologies (or even programming
languages) emphasising correctness, that are accessible to and useful for
programmers at large. What is clear however, is that the formal basis of

any such work must be clearly detailed and confirmed if such an enterprise
is to succeed.
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