
An Application of Algebra to the Semantics
of Programming Languages

by

C.A.Baker-Finch, B.Sc. Dip.Ed.

submitted in fulfilment
of the requirements for the degree of

Doctor of Philosophy

UNIVERSITY OF TASMANIA
HOBART

August 1985

Except as stated herein, this thesis contains no material which has
been accepted for the award of any other degree or diploma in any
university. To the best of my knowledge and belief, this thesis contains no
copy or paraphrase of material previously published or written by another
person, except where due reference has been made in the text of the thesis.

C A Baker-Finch

Acknowledgements

I would like to express my gratitude to my supervisors Charles Lakos
and Richard Watkins for their valuable time and helpful advice and
especially Phil Collier for his many suggestions and healthy scepticism.
Thanks also to Toni Hickey for careful and accurate typing of a difficult
manuscript. Last but certainly not least I thank my wife Sue for her
patience and constant support.

Abstract.
This dissertation investigates the use of the algebraic style of

abstract data type specifications for the definition of programming
language semantics. The choice of appropriate mathematical models for
such presentations is an important aspect of this work largely because the
semantics of programming languages will generally be defined in terms of
domains that are more complex than those required for dealing with more
elementary data types. The relationship between initial algebra semantics
and the proposed style of specification is explored.

From this foundation, the intuitive notion of the congruence of a
pair of semantic definitions can be inspected and formalised against an
algebraic background. Using the formal definition so developed and the
simple but powerful notion of initiality, proofs of congruence are possible
for semantics that are not amenable to the more traditional techniques of
structural and fixed-point induction.

Finally the problem of establishing the correctness of a compiler is
investigated, reworking the traditional "commuting square" approach for
the style of semantic presentation developed in this thesis rather than the
usual initial algebra style. This allows a clearer focus on some of the
shortcomings of the commuting square notion.

Table of Contents

Chapter 1 Introduction 	1

Chapter 2 Foundations 	5
2.1 Signatures and Algebras 	 6
2.2 Equational Presentations 	 12
2.3 Algebraic Theories 	 18

Chapter 3 Specification of Programming Language Semantics 	23
3.1 Semantic Presentations and Models 	 24

3.1.1 A Presentation for the Lambda Calculus 	 24
3.1.2 A Model of the Lambda Calculus Presentation 	 27

3.2 Initial Algebra Semantics 	 34
3.2.1 Denotational and Initial Algebra Semantics 	 35
3.2.2 Semantic Models and Initial Algebra Semantics 	 37
3.2.3 Deriving Initial Algebra Semantics from Semantic Models 	42

3.3 Acceptable Semantic Models 	 46
3.3.1 A Solution for Abstract Data Types 	 46
3.3.2 Allowing junk 	 48
3.3.3 Limiting Confusion 	 49
3.3.4 The Category of Acceptable Models 	 52
3.3.5 Freely Interpreting Syntactic Signatures 	 53

Chapter 4 Congruence of Semantic Models 	56
4.1 Algebraic View of Semantic Congruence 	 57

4.1.1 The Intuitive Concept 	 57
4.1.2 Lambda Calculus Congruence Statement 	 58
4.1.3 Addition Expression Congruence Statement 	 59
4.1.4 DEVIL Congruence Statement 	 61
4.1.5 Relation to Initial Algebra Semantics 	 64

4.2 Lambda Calculus Example 	 68
4.2.1 The Scott-Strachey-Milne Approach 	 69
4.2.2 Op and Den are Models of LC 	 70
4.2.3 Op is an Initial Model of LC+e' 	 72
4.2.4 The Form of the Homomorphism from Op to Den 	 74
4.2.5 Proofs 	 75

ctd.

4.3 Initial Algebra Fixed-point Construction 	 78
4.3.1 Definition 	 79
4.3.2 Lambda Calculus Example Revisited 	 81
4.3.3 General Properties and Observations 	 83

4.4 Addition Expression Example 	 86
4.4.1 The Presentations and Models 	 96
4.4.2 The Theory Morphism and the Derived Model 	89
4.4.3 The Relation Between Dir and U o (Stk) 	 92
4.4.4 Comparison with the Usual Style of Proof 	 93

4.5 DEVIL Example 	 96
4.5.1 The Presentations and Models 	 96
4.5.2 The Initiality of the Completion Semantics 	 108
4.5.3 The Theory Morphism 	 114

4.6 Stoy's PL Example 	 116
4.6.1 The Interpreter 	 117
4.6.2 The Direct Denotational Semantics 	 127
4.6.3 The Congruence and a Theory Morphism 	 135

Chapter 5 Compiler Correctness 	142
5.1 Semantic Presentations of a Source Language and a Target Language 146
5.2 Compilers as Homomorphisms 	 152
5.3 A Compiler 	 155
5.4 Compiler Correctness and the Commuting Square 	 167

Chapter 6 Conclusion 	172

Bibliography 	175

1

Chapter 1
Introduction.

The connection between universal algebra and the specification of
abstract data types has become well established since the seminal works of
Guttag (1975) and Liskov & ZiIles (1975). While these early works were
rather informal with respect to the precise mathematical object being
associated with each particular specification (i.e. the "semantics" of the
specification language), much has been published since then (Kutzer &
Lichtenberger, 1983) especially relating to the modularisation of the
specifications. Naturally these two facets are intermingled in the literature
since each new modularisation tool that is put forward requires separate
treatment of its formal semantics. Despite the volume of literature that has
appeared in the past decade there is still no real consensus on the basic
issue of what mathematical object (algebraic theory, signed theory
constrained theory, equational variety of algebras, initial algebra etc) is the
most appropriate choice as the semantics of an abstract data type
specification.

Burstall & Landin (1969) suggested a connection between universal
algebra and programming, particularly programming language semantics
and compiler correctness, but progress in this area of research seems to
have been much slower. It would appear that the use of equations by
Wand (1980b) to specify programming language semantics was the first
indication that the work on abstract data type specifications could be
extended to apply to programming language semantics. However, the
better understanding of abstract data type specifications has not really
impacted upon this area and informal and simplistic semantics dominate in
the literature.

In Chapter 3 we investigate the use of algebraic presentations for
specifying programming language semantics. We adopt a particular
mathematical object as being the most appropriate one to associate with
such presentations, thus defining a semantics of the specification language.
The adequacy of such a choice is then examined and its relationship to
initial algebra semantics is detailed.

One of the main purposes of precise and well-founded specifications
is to make it possible to state and prove formal properties in a rigorous

2

way. Hence, in Chapter 4 we look at the rather intuitive notion of
congruence between semantic models and produce a clear and thorough
algebraic formulation of the concept. The machinery of the algebraic
foundations makes possible some proofs of congruence that are not
amenable to the traditional inductive approach used by workers in
denotational semantics.

The techniques and concepts developed in Chapter 4 are immediately
applicable to the classic problem of establishing the correctness of a
compiler or translation algorithm. Chapter 5 looks at a variation on
Morris's approach that is suited to our style of semantic definition and
allows us to focus more clearly on some of the shortcomings of the (perhaps
too simplistic) commuting square notion.

To put this dissertation in a proper perspective it is appropriate to
briefly review the major related applications of algebra to the specification
of program m ing language semantics that have appeared in the literature.

• Goguen, Thatcher & Wagner (1977) exploit the implicitly algebraic
structure of denotational semantics in their work on initial algebra
semantics. By relating context-free grammars to signatures, abstract
syntax becomes identified with an initial algebra. Hence every other
algebra with the same signature - provides a "semantics" for that language
via the unique homomorphism property. We will look more closely at this
approach, particularly in §3.2.

Wand (1980b) suggests the possibility of semantic definitions
consisting of a signature and a set of equations. As such, his work is closely
related to our approach and provided considerable inspiration, but was in
terms of single-sorted algebras and did not address the problem of
restricting the class of models of a presentation that provide an acceptable
semantics for the particular language. Further, while Wand identifies
denotational semantics with the initial model, his operational semantics is
reducible to the same object, this view being supported by Goguen (1980)
and Goguen & Parsaye-Ghomi (1981). Mosses (1983) raises the criticism
that Wand's semantic functions are "... just operations of abstract data types
that combine syntax and semantics", yet he is willing to be much more
flexible in his consideration of denotational semantics valuations. Our work
in Chapter 3 suggests this criticism is not justified.

Goguen & Parsaye-Ghomi (1981) built on utYs work by treat'
largeri 	using many-sorted g I gebras smd by modularising the
definition, though we feel that the choice ,ct na ,sAiules does little to assist the
reader. Further, since they insist on the initial 	their semantics is zog
denotational, as the semantics of procedures ue given by closures
consist partly of unevaluated prcs 01E1 teat. rill:,

The work ,$); Gaudel (11978, 1980) and Pair (1982) is based ttic the
style of abstract data type specifications. They appear to be specifying a
particular algebra (based on their definition of states Or "informations")
though their work is rather informal. They make considerable use of pre-
and post-conditions and "modifiable operators" (though they can be
considered only as notational sugar and are easily factored out) that
their definitions are clearly oriented toward compiler generation (Bjorner,
1983). r e have misgivings about their use of notation without full
Consideration of its semantics glcd hence their rather arbitrary technique of
establislcirq the correctness of implementations.

The "abstract semantics algebras" •t Mosses (1980, 1981, 1983) are
based on a combined use of initial algebra sc wi antics and abstract data type
specifications. Itrce of the major aims would see to be to further the
author's intention to make se roi antic definitions more m* ,s1tilar, so that
extensions to the language beIfilk, treated do not necessarily require a major
rewrite of the existing clauses of the definition. Some confusion arises in
(Moses, 1983) as to the meaning of a al abstract 	antic algebra
specification, at first claiming:

"There are, in general, many different possible models of the a ionas
of an ASA st,st-cification, including I Ice (discrete) initial one, which is
taken as its we 31 1 Iii A

However, the following contradictory statement is made later:
"One may obtain a standard denotational description from one based
on ASAs by chooslici, a Tim ode! (using Scott dough's) for the axioms of
the ASA specifications."

Finally, he expresses some misgivings that his use of discrete algebras only
provides for finite unfoldings (t.q. of loops), yet this is • lc I , the case if
attention is restricted us the initial ebra since otherwise we I ay simply
choose a model constructed from appropriate Scott domains.

4

Broy & Wirsing (1980), Broy, Dosch, Moller & Wirsing (1981) and
Wir sing & Broy (1982) take a rather different approach using partial
algebras, with "definedness" predicates explicitly included in the
specifications and maintained under an appropriate version of the notion of
"homomorphism". This rather neatly allows the class of si/ models of a
presentation to be considered. Though we have not considered the problem
in detail, there would appear to be some difficulties related to the
sufficiency and generality of an explicit "definedness" specification.

A somewhat different connection between algebra and programming
language semantics is the notion of order-algebraic semantics (eg. Elgot ,
1973, Wagner, Thatcher & Wright, 1978, Guessarian, 1981, 1983) where
the central concepts are that of a rational algebraic theory or an ordered
algebra. Work in this area is not directly relevant to the application of
algebra propounded in this thesis, since it is concerned less with specifying
semantics than with modelling the fundamental machinery of computation.

5

Choptar 2
Peamolatimmo.

Our Skil this chapter is to briefly survey the mathematical
concepts and resullts tlitat Irani the inektirotsad wirastili the watt of
this dissertation is set. As such, we tread what we see as a middle ground
between two extremes.

Firstly, we do not consider it appropriate here to give a full
intro sluctogy coverage of the field and hence the discussion arid examples
giveri will iost likely be insufficient for the complete ebraic novice. The
following references are &MOOS those that combine to provide an accessible
and coo puter science oriented intr,iluction to those aspects of universal
algebra a d (oategory theory that are relevant to this thesis:
Thatcher & agner (1978), Burma p4•1: uen (1979, 1982),
Bursta (1984), , (sluen & Dieseguer (1983), Cohn (1980.

uen,
uen &

psoor,

04,

• On the other ha d we consider it equally inappropriate to slick this
chapter oil iy at the I., athe niri atical sophisticate. Thus in 111E any instances
where there is a choice among various expressions of the same result, or
for ulationtis of the same concept, we invariably choose the rtcost prosaic or
intuitively pleasing one, frequently at the cost eleg a ice. Also in this
vein, we consider it inappropriate to include any proofs in a survey such as
this. Perhaps the best justification for our approach is that we gASSU gitke our
audience to be computer scientists, and as such we feel that the best
approach is the one that gives the best intuitions a %d ins' hts without
compromisi A, the accuracy or rigour the presentation.

• The references given in vc is chapter are not in general to papers
col,taining the orinal results but are chosen aczordi)Ik to the criteria that
they be reaInably recent and fairly standard; that their notation is siuilar
to ours, where possible; and that they are preferably oriented toward
coriiputer science, at least with respect to the ex& filC pies used.

Generally, surveys like this chapter are rather dry and lack
relevance in isolation. e therefore feel that the uaterial herein should be
given orc1y cursory attention to get the flavour of 4e mathe ii atics used
the body of Vt ■ s dissertation. The reader way then refer back to this
chapter when necessary.

I ft

6

2_1 Signatures and Algebras

One of the central concepts used in this work is that of a
many-sorted algebra (Goguen, Thatcher & Wagner, 1978) which is
basically a reformulation of the earlier notion of a heterogeneous
algebra (Birkhoff 8c Lipson, 1970) which is in turn a generalization of an
algebra (Birkhoff, 1935).

Definition. A heterogeneous algebra A consists of
1. a family (Si) indexed by some set I where each Si is a non-void

set called a phylum of A;
2. a set (fa) of finitary total functions indexed by some set Q

where each fa is a mapping
fa : Si(1 ,a) x Si(2 ,a) x x Si(n(a),a)

for some non-negative integer n(a), function i a : k -) i(k,a)
from (1,2,...,n(0) to I, and Om) E I.

Simply put, a heterogeneous algebra is a family of non-void sets together
with some functions among those sets. As such, it is a generalisation of the
earlier notion of a (homogeneous) algebra that consists of a single set S
together with some functions on that set.

It is convenient when dealing with algebras together with algebraic
theories (another central concept in this dissertation) to give a different
formulation of the same structure in terms of a signature or operator
domain so that we may precisely characterise "species" of algebras. Again,
a many-sorted algebra is essentially a family of sets (called the
carriers of the algebra) with a collection of operations (total functions)
among them. The index set for the carriers is called the sort set. (Note
that the "non-void" restriction has been dropped from the original
definition.) Since we deal exclusively with many-sorted algebras (rather
than single-sorted) in this thesis, we will feel free to shorten the name to
algebra without confusion.

Definition. Given a set S of sorts, an S-sorted signature or
operator domain Q is a family Qw,s of sets, for s E S and w E S*
(where S* is the set of all finite strings from S, including the empty
string A). F E Qw,s is an operation symbol of rantw,s, of arity
w and of sort s.

7

Definition. Given an S-sorted signature Q, an 12-edgebra A
consists of a set As for each s E S and a function f A: As], x A52 x x
Asn 4 As for each f E Qw,s with w=s1s2...sn. For f E QA,s, fA E As.

Thus, the purpose of signatures or operator domains is to identify the
sbapeof many-sorted algebras, essentially providing names for the
carriers and operators. Following this notion of shape a little further,
signatures may be specified diagramatically with considerable clarity.
Consider the following representation for a Stack-of-Integers signature.

zero empty

The names in the ovals are the sorts, while the names on the edges
connecting them are the operator symbols with arities given by the source
of those edges and sorts by the targets. While this representation may be
quite clear, we will generally employ the more widely used and compact
notation given below for the same signature.

sort Int
zero : -) Int
succ : Int Int

sort Stack
empty : Stack
push : Stack X mt. -' Stack
pop : Stack -• Stack
top : Stack -• Int

Calling this signature E, a possible E-algebra Swould have carriers Si nt = N
and -%tack = W. The operators could be chosen as follows:

zeros= 0
succs= the successor function

push

8

emptys= <>, the empty list
push= concatenate
pops= tail of the list
tops- head of the list

Another useful generalization from the single-sorted case is that of the
concept of homomorphism of many-sorted algebras.

Definition. If A and Bare both 0-algebras, an .0-homomorpbism
b: A-, Bis a family of functions (hs : As -) .89 I SE S) that satisfy
1. if f E QA,s then hs(f A) = fg
2 - if f E Qs1s2...sn,s and 	an> E A5 1 x A52 xx

then hs(f Atal ,a2.---iannmfihsl (a 1), 42(a2),---An(anD

Thus, in the same sense that group homomorphisms "preserve" the group
operations, Q-homomorphisms "preserve" the operations named in Q.

It is convenient for us to couch some of our discussion in terms of the
language of category theory, though it is not in fact necessary to do so. We
use only the most basic notions of category, initial and final object.
However it would be quite a straightforward matter to adjust our
standpoint such that categories were the most central mathematical
structure, rather than algebras. Informally, a category consists of a
collection of oblectstogether with some arrows (morphisms) between
them such that identities are included and end-to-end composition is
associative. For more details in a computer science vein see Goguen,
Thatcher, Wagner & Wright (1973, 1975,1976). Arbib & Manes (1975)
provide a very accessible introduction, while MacLane (1972) is the
standard reference.

Result. A class of 0-algebra together with a//the
Q-homomorphisms between the algebras form a category of D
-algebras, say C. The objects of C are the algebras and the
morphisalsof C are the 0-homomorphisms.

This is the only type of category with which we will be having many direct
dealings.

Definition. An object is initialin a category if and only if there is a

9

unique morphism from that object to every object in the category.
The duenotion is the following:
An object is fins/(terminal) in a category if and only if there is a
unique morphism to that object from every object in the category.

Clearly, in terms of categories of Q-algebras this concept translates into: A
is jai:is/in a category C of 0-algebras if and only if for every algebra Bin
C there is a unique homomorphism b: A -■

This notion is widely used both in the study of abstract data types
(Goguen et al, 1978 and Zilles, 1979 among many others) and in some work
on the semantics of programming languages (Goguen, Thatcher, Wagner &
Wright, 1977, Mosses, 1983), including the present endeavour. A very
straightforward but important result is the following:

Result. Given an algebra A, initial in a category C of 0-algebras, an
algebra ii(in C) is initial in C if and only if Bis isomorphic to A.

At this point it should be noted that it is the standard practice in algebra
not to distinguish between isomorphic objects. Thus we will generally
speak of Ihe initial algebra rather than the isomorphism class of initial
algebras.

Given a signature 0, we denote the category of /WO-algebras, Alga.
Alga always has an initial algebra and the following construction provides
us with a technique of directly deriving such an algebra from the signature
Q. The algebra is called an .0-word algebra and is denoted Ta.

Definition. (Goguen et al., 1978). Let 0 (ambiguously) denote the
set of all operator symbols in the S-sorted signature 0, ie,
U wEst ,ses(Qw,$). Let <Ta ,s>ses be the family of the smallest sets of
strings contained in (Q u (j,)))* satisfying the following two
conditions (here (i ,)) is a two element set disjoint from Q, though
except for this definition we shall omit the underlines):
1. c
2. If E 	w-s ...sn and ti E Tasi -1..n, then

aft 1...tni E Ta,s.
Such strings are usually called .0-words. The family (Ta,s> can be
made into an 0 algebra by defining the operations:

10

1. FOr 0 E 	 = E To,s;
2. For o E Qw,s , w=s,...sn and ti E TQsi. i=1...n,

= 	E TQA
Such a Ti2 is initial in Algc2, the category of all 0-algebras.

We occasionally make use of the notion of the fins/algebra in Algo
and hence a method for constructing such an algebra is desirable. It is
much simpler than the initial algebra construction and requires us simply
to choose the carrier of each sort to be a singleton set and define the
operators accordingly. We sometimes refer to this algebra as the
degenerate Q-algebra.

It is important to see (we make frequent use of the fact) that
although the structure of an Q-algebra A is specified by a certain subset of
the set of all finitary operations among the carriers of A, the important role
is played not merely by the set of operations defined by f2, but by the set
of all operations obtainable from them by composition. The single-sorted
case is treated in Cohn (1981) and Manes (1976) in terms of the notion of a
clone (closed set of operations) on a set of M which briefly is a set of
operations on M that is closed under composition and contains the
projection functions (selecting the ith element of a tuple). The clone of
Saki, of a single-sorted signature I on M is the clone generated by the
operators defined by E.

The (formal) extension of the notion to the many-sorted case is
straightforward but a little tedious. We prefer to approach it from the
much more intuitively (and notationally) pleasing idea of derived
operators It is straightforward to extend the notion of Q-words to
include "variables as follows. First fix an S-indexed family <X s>sEs of sets
of variables. It serves no purpose here to consider the effect of limiting the
number of variables, so we assume all the X s are infinite. Clearly, we can
construct a new signature 0(X) which is derived from Q by adding each x E

Xs to f21 for all s E S, thus considering (temporarily) each variable to be a
constant of the appropriate source. Now, by simply generating Tow we
have an algebra whose carriers consist of a-words with variables. T(X)
when considered as an Q-algebra rather than an Q(X)-algebra is usually
denoted T(X) and called the free D-algebra generated byX. Now any
word of sort s containing variables x i,...,xn respectively of sorts s1,...,s n, say
t(x1...xn) defines a derived operator t of arity s1 ...s and sort s for any

11

0-algebra. The set of all such derived operators of 0 is denoted 5 and
coincides with the clone of action of 0 for any particular 0-algebra.

12

2.2 Equational Presentations

In this section we introduce the notion of an equational
presentation and treat it only in terms of many-sorted algebras, leaving
the concept of an algebraic theoryto 62.3.

In 62.1 we introduced signatures as a means by which "species" of
algebras may be characterised by their "shape". To allow further
restriction we introduce the notion of a set of axioms in the form of
first-order, universally-quantified equations, that a particular algebra may
or may not satisfy. In this way we may characterise species of algebras
with a certain signature which also satisfy a certain set of equations.
We begin by developing the sigebraicconcepts of equation and satisfy

Definition. Given an S-sorted 0-algebra A and an S-indexed family
of sets of variables X-<X>. Any function a: X A (actually a family
of functions <as: Xs -0 Aeses) is called an assignment of values of
sort s in A to variables of sort s in X.

Using this idea we can formalise the notion of evaluating an expression (ie a
term of To(X)) given values for the variables.

Result. Let A be an Q-algebra and a: X A an assignment. Then
there is a unique Q-homomorphism ix': TQ(X) A that extends a in
the sense that ii 5(x)=u5(x) for all s E S and x E Xs.

Despite the notation and abstract formulation, what we are doing here is
quite familiar. Any t E TQ(X) is an expression involving some variables
from X and a is an assignment of values from A to those variables. Further,
since A is an 0-algebra the symbols from 0 appearing in t already have
some corresponding meaning in A. Hence ix(t) evaluates t to get a unique
value in A, so a can be seen as the process of evaluation of expressions
with the values of the variables given by a.

Definition. An .0-equation is a triple <X,t1,t2> where X is an
S-indexed set (of variables) and t1 ,t2 E To(X)9 for some s. A more
suggestive notation is VX,t1=t2 though since a suitable X can be
deduced from ti and t2, we generally write t1 =t2.

13

Definition. An 0-algebra A satisfiesan 0-equation <X,t1,t2> if and
only if m(ti) = a(t2) in A for a//assignments a: X -) A. A satisfies a
set E of 0-equations iff A satisfies each e E E.

Definition. An equational presentation (or just presentation)
P is pair. <0,E> where 0 is a signature and E is a set of 0-equations.
An 0-algebra that satisfies E is called a P-algebra

If we continue our Stack-of-Integers example begun in §2.1, we may give
an equational presentation Stk consisting of the signature Z together with
the following set of I-equations.

1. pop(push(s,n)) = $
2. pop(empty) = empty
3. top(push(s,n)) = n

The S.-algebra S defined in §2.1 is a Stk-algebra. We will leave the proof
that this is the case until later when we have developed a proof-theoretic
notion of an equation being satisfied to complement the model-theoretic
one above.

Generally in universal algebra, given a presentation P=d2,E>, the class
of all P-algebras is termed the E-variety of /2-algebras and studied as a
class of objects. We, however, prefer to add a little more structure by
constructing the category of P-algebras, denoted Algp, from the class of all
P-algebras together with all 0-homomorphisms between them. As for
Algo), Algp always has an initial algebra and we now proceed with a
method for the construction of Tp, the E-quotient of To, that is always
initial in Algp. Firstly we need a little more machinery.

Definition. An .0-congruence= on an 0-algebra A is a family
<E s>ses of equivalence relationsF...s on As for each s E S, such that if

E Qs 1 ...sn,s , ai,a'i E Asi and aiEsiaii for i=1..n, then
oial—an)

We now need to discuss the notion of taking the quotient of an algebra for a
congruence defined on that algebra. If A is an (2-algebra and E--- is an
0-congruence on A, we define a new (2-algebra called the Quotient of A
by denoted A/F- as follows. For each s E S let (A/F4 5 be As/Es, the set of

14

E- s-equivalence classes of As . If we denote the equivalence class of a by [a],
we may now make the S-indexed family A/E into an 0-algebra by defining
the operations as follows:

1. If a E QA ,s then a 	= [a A]
2. If a E 0s i ...snis and tail E (A/E)si for i=1..n, then

illaga 1,...,1anD=Ia Ata 1

The final step in the development involves determining a congruence from
the equations of a presentation. A set of equations E determines a relation
E(A) on any Q-algebra A consisting of the family of sets of all pairs
<a5(t1),a5(t2)> where <X,t1,t2> E Es and a is an assignment X A. There is a
least Q-congruence on A containing E(A), referred to as the 12 congruence
generated by E(A) on A. At last we can define Tp and give the initiality
result.

Result. Let P = <0,E) be a presentation and let EE be the
0-congruence on TQ generated by E(T0). Then TQ/EE, the quotient
of TO by EE, which we shall denote Tp, is the initial algebra of Algp.

Continuing our Stack-of-Integers example, the carrier of sort Stack in Tstk
has elements

[empty],
Ipush(empty,n)1, V 11 E Tstunt
Ipush(push(empty,n),m)1, Vm,n E Tstunt
and so on.

The functions are defined along the lines of
pushTstkas],[nl) - [push(s,n)l.

It should be noted in passing that since Stk includes no equation involving
"top(empty)", the carrier of sort Int in Tp includes the elements

Itop(empty)],
(succ(top(empty))l,
Isucc(succ(top(empty)))1

and so on, implying that such elements can validly be "pushed" onto a

15

stack. This may or may not be seen as undesirable depending on the
application. If such a situation is considered unacceptable, error terms may
be introduced, but this too is fraught with danger and may require the
equations be "error-conditioned" (Goguen, 1978).

Finally we note that we can construct an algebra by distinguishing a
single element from each of the equivalence classes of the carriers of Tp.
Clearly such an algebra is isomorphic to Tp and is hence initial in Algp.
Such an algebra is generally called a Ca110.0kai term algebra

We complete this section with a brief discussion of equational
deduction based largely on the work of Goguen & Meseguer (1982). As
mentioned above in the context of showing Sto be a Stk-algebra, a
proof-theoretic notion that coincides with the model-theoretic definition of
an equation being satisfied is desirable, especially given that our central
concern is the development of proof techniques. Thus we need to define an
equational logic (deduction system) that is soundin the sense that new
equations that are deduced are always satisfied by any algebra satisfying
the given equations, and that it is complete in the sense that every
equation satisfied by all the algebras satisfying the given equations can be
deduced using the rules of the system.

Unfortunately the usual rules of equational deduction, reflexivity,
symmetry, transitivity and substitutivity, while they may be sound and
complete for the single-sorted case, are not sound when generalised to the
many-sorted case. We demonstrate this with an example taken from
Goguen & Meseguer (1981) based on the following presentation, B.

Signature
sort Boo!

tt : Boo!
ff Boo!

: Bool Bool
: Bool x Boo!-' Boo!

v : Boo! x Boo! Boo!
sort A

foo : A -) Bool

16

Equations
(we use the more suggestive infix form for the operator
symbols)
1. (tt) - ff
2. , (ff) = tt
3. bv , b=tt
4. b 	b = ff
5. bvb-b
6. bAb=b
7. foo(a) = foo(a)

Now using the usual system of equational deduction we may show:

tt = foo(a) v foo(a) 	(3)
= foo(a) v foo(a) 	(7)

foo(a) 	 (5)
= foo(a) foo(a) 	(6)
= foo(a) 	foo(a) 	(7)
= ff 	 (4)

If such rules of deduction were sound then we would expect tt = ff to hold
in everyB-algebra, but this is not the case. There is a B-algebra gar
where Bsibooi = (true,false), Barik = 0, foo is the empty function and all
the Bool functions are the usual ones. Clearly true • false in Bar and thus
the rules are not sound.

Goguen & Meseguer (1981) and (1983) provide quantified versions
of reflexivity, symmetry, transitivity and substitutivity that are sound for
many-sorted logic. This is why the set of variables used is explicitly
included in the structure of equations. Two more rules are required to
make the deduction system complete: abstraction and concretion that
basically provide a means for adding and removing variables from that
part of the equation.

We do not give the details of this deduction system here since
(fortuitously) for the examples we consider in this thesis, as well as many
other applications, the ordinary rules are indeed sound and complete. to
make this precise we need the following notions (Huet & Oppen, 1980).

17

Definition. If Q is an S-sorted signature, we say that s E S is strict
in Q if and only if there is either
I. some E 020, or
2. some a E Os i ...sro where si is strict in Q, i-1..n.
The signature Q is sensible if and only if for every a E Q51...sn,s ,
if s is strict then so are all the s, i=1..n.

We prefer this definition to the concept of 11011-voidsorts in Goguen &
Meseguer (1983) since it is slightly more general. The final result follows:

Result. The ordinary rules of equational deduction are sound and
complete for a signature if and only if Q is sensible.

For the presentation B above, the signature is not sensible since Bool is
strict (tt : -) Boo!) but A is not, and foo : A -) Boo!. We make a blanket
appeal to this result, claiming all the signatures of later chapters to be
sensible.

Further contributions to many-sorted equational logic have recently
been put forward by Padawitz & Wirsing (1984) and MacQueen & Sanella
(1984).

18

2_3 Algebraic Theories

It is fairly natural for computer scientists to consider equational
presentations as a specification language as witnessed by the bulk of
the work using algebra for the definition of data abstractions. In the
previous section we used presentations to specify a class of algebras; in this
section we wish to explore an alternative "semantics" for such a "language".

The object we now claim to be specified by a presentation is a
(many-sorted) algebraic theory which can be seen as one possible
formalisation of the loose, intuitive mathematical notion of a "theory".
There are many alternative definitions of algebraic theories, depending on
the background against which they are being developed. The most
common, including the original definition (Lawvere, 1963) is in terms of a
particular category whose objects are the natural numbers, though even
then there is considerable variation. Goguen et al. (1975) use theory
congruences, Bigot (1973) takes a more axiomatic approach, while Kamin
(1979) avoids using category theory explicitly yet still constructs the same
object. Other formulations are based on triples (or monads) as in Manes
(1976) and Cohn (1981), or functors (Goguen et al., 1975), or even an
algebra (Goguen, 1975), (Fasel, 1980). A more accessible definition, though
perhaps less amenable to mathematical discourse, is that of the related
notion of 12-theoryby Burstall & Goguen (1979) based on signed
theories(Goguen & Burstall, 1984a, 1984b). Our definition of a
many-sorted algebraic theory is similar in style to that of an 0-theory.
Unfortunately we pay a price for using such an intuitively appealing
definition by making some of the related definitions slightly more difficult
and hence a little indirect at times. A more rigorous development of (most
of) the same concepts introduced here is given by Goguen et al. (1975) in
terms of a more traditional definition of algebraic theory.

We will give a model-theoretic definition of an algebraic theory in
terms of the following notions.

Definition_ Given a set E of 0-equations, let E* denote the set of all
0-algebras which satisfy every equation in E.

Given a set M of 0-algebras, let M' denote the set of
0-equations satisfied by every algebra in M.

Given an 0-algebra A, let denote A considered as an

19

r2-a1gebra. Xis the largest li-subalgebra of A.
Given a set M of 0-a1gebras, let M + denote the set of

(7-a1gebras such that 1E M+ iff A E M.
Given a set E of 0-equations, the clone-closure of E is

the set E***, denoted E.

We may now give the central definitions of this section.

Definition. An algebraic theory is a presentation <0,E> such that
Q is closed and E is clone-closed.
Thus Q = 5 and E = E.

Definition. The algebraic theory presented by P = <Q,E> is <Q,E>
and is- denoted Thp.

Given this notion, we call the algebras of Algp the models of the theory
presented by P. Hence we may view algebraic theories as a "higher level"
of semantics for presentations, fitting in between the presentation and the
class of algebras specified.

Our definition differs from the notion of an 0-theory which retains
the original signature and only takes the closure of the equations. It is
more in the spirit of the original work (Lawvere, 1963) to abstract away
from the signature as well as the equations. The notion of an a-theory is
slightly simpler and adequate for Burstall SC Goguen's (1979) semantics of
the specification language, Clear. The main advantage of using our more
abstract notion is that we can avoid treating theory morphisms and
derivors separately. In contrast, it was clearly more convenient for Burstall
& Goguen to maintain such a separation since Clear has a specific derive
operator. Much of the remaining material in this section consists of
reworking the material of part 2 of Burstall 8c Goguen (1979) in terms of
our notion of algebraic theory.

Definition. A signature morphism from an S-sorted signature Q
to an S'-sorted signature 0' is a pair <fs> consisting of a map f: S S'
and a family of maps gw,s: Qw,s -• fris(v)ns) , where r is the
pointwise extension of f to strings.

Thus a signature morphism is a map that takes sorts to sorts and operators

20

to operators, preserv

their arities and sorts. Mil

Bhififilfigfien. Given two theories, T taxi T., say <Q,E> and d'2E'>. A
gheory 'orp.bJs1 from T to T', is a s nature amorphisb a: 0 4 Q'
such that o(e) E E for each e E E.

e Rem the notion of o being extended to equations as intuitively
understood here, and refer the reader to Burstall & , •quen(1.979), part 2.3
for r'orous definition. A theory morphis rim is therefore a signature

orphism that preserves I ie aniortics. It is worth noting here that the
above two derifiliti011e We identical to those for 0-theories. It should be
borne in ra ind that our theories iy differ from 0-theories byinsAst r,

that the s nature be closed, so we should expect some overlap.

1220TO Mir®C®fa011110)51 ilarElCZED. Given two presentations <,E> and
(0',18'> of theories T am.d T. res.- ctively. If a: Q 	a is s' nature
1 1 1 1 orphisrlic then a can be uniquely extended to 	--> 5'. (This
closely follows the idea of a be: extended • equations; see Burstall

, feuaen, 1979, part 2.3). Now : T 	a is theory amorphism if and
4) IA 1 y if o(e) E E' for each. e E

Thus, if we can define 0 : Q 4 such that the equations of Ere still
satisfied, we may deduce Fi : 5 -4 F2' and be sure that sill the equations of E
are satisfied. This is of considerable importance for our work since it
provi 	a des pr P4I tev,ilque for estiblis1E whether a given signature)

orphisam, is a theory morphia rii in terms at the presentations alone.

Finally we may tisk how a theory amorphism can be reflected in the
[Ii I1 ■ els of the source and target theories. In short, it provides a means for
deriv , i A a ip mliel of the source theory from any model the target theory;
in the opposite direction to the theory amorphism, so to speak. Though we
are more interested in theory morphisms in this dissertation the concept is

so applicable siAnature itorphis ills, es reflected by the following
definition.

1Dentanakia. Given an S-sorted s nature 0id ii S'-sorted
s nature 0' telether with a signature icorphism a : -4 0'. If A is

y 0*- ebra then there is an Q- a ebra, denoted U6(A) where the
carriers and operators correspond as follows:

21

1. (U0(A))5 = Aos) for all s S
2. 'rut(A) = a(T A) for all operator symbols T E Q.

The notion of a U0-derivor can be extended to theory morphisms in a
straightforward manner.

Definition. Given two theories T and T presented by <Q,E> and
<C2',E> respectively, together with a signature morphism a: Q E'
that is (or can be extended to) a theory morphism T T. If A is any
<V,E'>-algebra (model of T') then U0(A) is a model of T, constructed
as above.

A special case we shall occasionally find useful is where a is an inclusion
morphism; that is the sorts of Q are a subset of the sorts of CT, similarly for
the operators, and a(s) = s.

Definition. Given an S-sorted signature Q and an S'-sorted
signature CT, where S S' and Owes aw,s for all w S*, s S. If a
is a signature morphism Q -) C2' such that a(s) = $ for all s E S and
a(r) t• for all r E Q (ambiguously denoting all the operator symbols
in Q), then for any CT-algebra A, we call the Q-algebra U0(A) the
12-reductof A.

In essence, taking the Q-reduct of an CT-algebra is achieved by "forgetting"
the sorts and operators of a that are not also in Q.

It is possible to avoid all this extra machinery (for our applications at
least) by dealing with derivors on individual algebras rather than
morphisms between theories. We prefer not to do this for a number of
reasons. First, it is usually advantageous to work at the highest available
level of abstraction and generality. Second, by finding a theory morphism
T T' we have a means of deriving a T-algebra from anyT'-algebra,
whereas we would need to repeat the proof for each algebra were we to
use the derivor machinery. Finally, in later chapters a pleasing and
convenient split of semantic congruences and compiler definitions into
two-stage connections is reflected by the separation of models from their
theories.

Note that we will occasionally allow an abuse of notation (when no

22

confusion can arise) that involves denoting theories by their presentations.
Thus, given a presentation P. we may speak of "the models of P" rather
than "the models of Thp" and so on.

23

Chapter3
Specification of Programming Language Semantics

In this chapter we describe the technique we have adopted for
specifying the semantics of programming languages. It has been influenced
by the Oxford style of denotational semantics in that we provide a set of
semantic domains and semantic functions from an abstract syntax for the
language. It has also been influenced by the early work on algebraic
specification of abstract data types (eg Liskov & Zilles, 1975). As such it is
relatively unsophisticated in that our specifications consist only of a
signature and a set of first-order equations, thus relinquishing the
expressive power of parameterized modules, conditional axioms and
structured "theory - building" operations.

The advantage of such a plain specification language is that it retains
very simple semantics and in fact it directly reflects those semantics.
Further, it seems unwise at this stage to settle on a choice between Clear,
OBJ etc. especially when none is completely suited (semantically) to the
present endeavour.

The disadvantage of such unstructured specifications as ours is quite
obvious, however, As P. Lucas points out in the first session discussion in
(Bjorner, 1983),

"... it was clear almost from the beginning that having a big language
definition on the one hand and a big implementation on the other
hand and then asking whether the implementation obeys the rules of
the definition is not really a viable question to ask.... So it was clear
that it was necessary to decompose this gigantic task into smaller
sub-tasks that are manageable. In other words, we are looking for
modularity. Modularity of the definition as well as the proofs of
correctness."

Thus for a full-scale venture such as a large language or frequent use, our
specification language absolutely requires to be structured. However, since
in this dissertation we are investigating proof techniques that are based on
the semantics of our specification language we intend to persevcrc with the
simple notation we have adopted. Development of a more modular style
must take a high priority in any further development of this work.

24

3_1 Semantic Presentations and Models

We now proceed to discuss the semantics of our specification
language, largely in terms of an example using the lambda calculus. -
Though our presentations look like a simplified version of OBJ (Goguen &
Tardo, 1979) they have different semantics. While an OBJ object represents
a particular algebra (the initial one), our presentations represent algebraic
theories. However, we are not directly interested in the theories
themselves, but rather their classes of models (algebras). It is each of these
models that give a concrete semantics whereas the presentation can be
considered as a kind of "semantic schema". It may seem at this point that
we are interested in an equational variety of algebras rather than an
algebraic theory. While this is partly true, we will later find it convenient
to define relationships between the entire classes of models of two
presentations, rather than individual algebras and more elegant machinery
exists for doing this in terms of theories rather than varieties.

3.1.1 A Presentation for the Lambda Calculus

Rather than dealing with the pure lambda calculus (Church, 1941),
we extend it by including constant valued atoms. While this is strictly
unnecessary, it does make the operational semantics considered in 64.2
somewhat more tangible. Thus, a lambda expression is either a constant or
an identifier; or an abstraction in which case it consists of a bound variable
which is an identifier and a body which is a lambda expression; or an
application being an operator-operand pair of lambda expressions. We
stress again that the presentation that follows represents an algebraic
theory and that the semantics of the lambda calculus are given by the
models of that theory rather than by the theory itself.

Signature (Z)
sort Lambda.

constant : B -) Lambda
var : Ide 4 Lambda
abstraction : Ide x Lambda 4 Lambda
application : Lambda x Lambda "4 Lambda

sort env.

25

arid : 4 env
bind : env x Ide x W 4 env
find : env x Ide W

sort W.
injB : B W
injA : Abstr W
err : -) W
appl:W x W-) W

sort Abstr.
A : Lambda x Ide x env 4 Abstr

M : Lambda x env -) W

Equations (E)
1. find(arid,x) = err
2. find(bind(e,x,w),y) = if x=y then w else find(e,y)
3. M(constant(b),e) - injB(b)
4. M(var(1),e) = find(ex)
5. M(abstraction(x,q),e) = injA(A(ri,x,e))
6. M(application(a,13),e) = appla4(cce), MWeD
7. appl(injB(b),w) - err
8. appl(injA(A(q,x,e)),w) = M(q,bind(e,x,w))
9. appl(err,w) = err

LC - lambda calculus presentation

Note that although the abstract syntax was included as part of the
signature as sort Lambda, it is generally more convenient to employ the
usual strings of the language. Note also that the presentation LC is
somewhat incomplete with sorts B and Ide being left unspecified. We will
frequently make use of such deliberately loose notation especially with •

respect to Ide since we are generally not interested in the set of identifiers
save for the fact that there are enough of them and that we can test for
their equality. The following presentation is sufficient provided we wish to
have an unlimited pool of identifiers.

sort Ide.
first : -) Ide
next : Ide Ide
equal : Ide x Ide 4 Bool

equal (first, first) = tt

26

equal (first, neEt(y)) = if
equal(neEt(E),first) = if
equa(neEt(E),neEt(y)) = equal(E,y).

e will also in general assume a sort 1; , •.•1 with two constants tt and If to be
available and will only eEplicitly include it in presentations when further
operators are required. Similarly we will feel free to use the apparently
generic (miEfiE) operatorif_ then_ else _ in the equations of
presentations in the kglowledge that such an operator is easily defined for
any given target sort X as follows:

if_ lien _ elsex_:1; ,• 4xXxX-0 X
if tt iii Sfl B1 Oise x E2 =
if If the 31 CiSO x E2 E2

Again, in some circumstances such as when the presentation of s4

consists of mace than just two constant o;i) , rai , •TS (eg 04.6), such
specifications if lien else operators ci ay be inappropriate, so in those
cases we will eEplicitly include the in the presentation. However, for

ost mi the emickples treated in this thesis the style of definition given
above is sufficient rod we therefore assume an if lien else operator of
every sort to be available without actually writing down the details.

In a slightly different vein sort i, representing basic values, is left
unspecified since a y particular choice of hock!, for B will not impircke on
our discussion of LC and its tam 'leis, so it could be seen as a primitive for
of parameterization. Also it may seem a little untosu41 to have a semantic
do am n (sort B) for i part of the syntax as described by
"constant : B -> La fRbda" rather than the b,ore usual couplete separation of
syntactic and Be ginfltiC domains as in standard denotational semantics.
There, typically, numerals and numbers are distinguished and an oe V1101113

se fU antic function say : 	RI, is said to eEist but is left tons cified.
(See Stoy, 1977 for eEample). In our gigebrlic frarcilework we tnay easily
Mill syntactic and semantic sorts and we often choose • do so in an effort
to avoid such vagueness.

As an aid to the reader an intuitive interpretation of the lambda
calculus presentation follows. As already discussed, sort B represents a
do u tin of basic values, Ide a domain of identifiers and La rekbda the parse
trees of the 1 a 31 ID ie of k-enpressions ,3f-Al sort 'T represents the
underlyi doiric tin of "values" of A-eEpressions 51d is basically intended to
look like the su ri% of B and Abstr. Hence the two operators injB and injA

27

depict the usual injemion functions. Sort V is also provided with an
operator ADM for "applyi 'A " eleme0,13 • 'T to each other, and a
distinguished error term in case such applications go wro. Equations 7, 8
and 9 aziomatise the behaviour of appl. Sort env represents environments
where information regardliC the binding of values of sort W to identifiers
is kept tAnd the intention of the operators bind and find A d the =stilt
arid is clear from equations 1 and 2. The operator A and the Ft Abstr
531 ay at first appear somewhat mysterious and incovinpletely specified.
However, if we keep in wind our intention that the presentation is a
"semantic sche wa", and that the ,4 :ebras provide the actual semantics, it is
clear that possible models for Abstr may include [V 4 VI where V is a
suitable model of w, or "closures (Landin, 1964) consisting of the
infor m ation required to represent an abstraction (ie its bo.i , its bound
variable and the current environ went) so that its application to Aother
expression may be simulated. These two cases will be dealt with in detail
in 03.1.2 Elnd 04.2 respectively. Finally, the operator k4 represe ts the
semantic function as defined by equations 3 to 6 and is isolated from the
other oorrators in the signature to emphasise its distinguished role.

It seems most natural to view the presentation LC as describing an
operatiolcal se antics. In other words it is seen as specifying a set of
rewrite rules on terms rather than a set of operator sy bob and axiom's. It
is interest to note that this intuitive interpretation of a presentation like
LC is (always) the initial1 model of the theory presented. As 0,,tinted out
earlier in this chapter (indeed, we have 0 ,•ssibly laboured the 0 lint), we
intend that no particular mc•Jel is "the" se mi antics. Rather, we claim that

1 there ay be m y Nii • •Iels of LC other than the initial one that provide
satisfactory snag %tics of the lambda calculus. Unfortunately not every

odel gives an acceptable se auntics, an obvious case being the algebra in
which the carrier IV is is'rcAleton set. Further since ".`, is described • 01 iy
by recursive equations any fixed-point satisfies the equations and is thus a
legitimate choice for modelling M. The issue of character, : :rc,1; Lllose
algebras that are satisfactory se unlink taken models is t 	up in 03.3.

.2 A DEed®Il 12,1@ Larbsclo Cokollmo Ik@asaantrion

1: 1 31

Our discussion in this section centres around the (by now standard)
denotational se iw 3 tics of the la ri bda calculus given below. A very si 511I HIT
definition is given in Stoy (1977) along with detailed discussion of the

:4

28

domains involved.

Domains
V B + FUN
FUN = V V
ENV = Ide -0 V

Semantic Function
Val : Lambda x ENV -0 V

(V I) 	c:constantip = c in V
(V2) = p(x)
(V3) Valthx.qip - Aa.Valarillp Li/al in V
(V4) Valfix(p)Bp = Vaiflixip IFUN(Valffplp)

where

and

i v 	if v € FUN
AFUN-

i 	otherwise

/ p(z) 	ifzox
phaal - Az.

La 	if z = x

denotational semantics of lambda calculus

To proceed, we make the observation that the denotational semantics
is a many-sorted algebra. It fits the definition very neatly since in the
final analysis it consists of nothing more than a family of sets (the domains)
and some functions among them. Note however, that in viewing such
semantics as an algebra requires that we be more explicit about identifying
exactly which functions are being used, a detail that is not an issue for the
usual view of denotational definitions. Put another way, having decided to
view the denotational semantics as an algebra, we must then decide on a
signature for that algebra. It will be seen below that we have some degree
of choice in this matter.

Our overall aim in this section is to show that the algebra (call it Den)
associated with the denotational definition above is a model of LC. To do
this we need only to show that Den has the signature E as given in LC (or at
least arrange for it be be so) and further to show that Den satisfies the

29

equations E given in LC.

It is easy to demonstrate that Den has the same signature as LC by
firstly defining a correspondence between the sorts of LC and the domains
(carriers) of Den and then listing the operator symbols of E each paired
with a function from Den of corresponding arity and sort. Note that we are
not concerned that the denotational definition may involve other functions
which have no associated operator symbol in E
Instantiate the sorts as follows:

sort env : 	ENV
sort W : 	V
sort Abstr : FUN

Then the operator symbols and functions correspond as follows:

Den
injB:B W 	 _ JD V
injA: Abstr -• W 	 _ Jo V
err: -• W 	 .t.
arid:-. env
bind: env x Ide x W 4 env
find: env x Ide W 	 _(_)
A: Lambda x Ide x env 4 Abstr 	 Aa.Vall_l_[_./al
app!: W x W -) W 	 (_ I FUN)(_)
M: Lambda x env-' W 	 Val

Some of the functions listed under Den may look a little strange at
first glance. The underline notation has been used where the operation has
been written in mixfix notation (Mosses, 1980). Thus _1_/_1: env x Ide
x V -0 env, eg p[/al. Further, some of the functions have been derived
from simpler ones by means of composition. For example, (_ I FUN)(_) uses
projection and function application. It is in this sense that we have
"arranged" for Den to have the signature E rather than some other
signature containing say, an operator for each of the primitive functions
involved in the denotational semantics. In fact, it is not at all clear that any
agreement could be reached as to the identification of these primitive
functions. The central point is that the abstract syntax, semantic domains
and valuations are the nucleus of any denotational definition. We are

30

therefore at liberty to install them in any algebra that suits our purpose
and the other sorts and operator symbols (carriers and operators) present
in that algebra may be chosen arbitrarily without affecting the intended
semantics.

To establish that Den satisfies the equations of LC, the equations may
be translated into expressions of Den using the signature correspondence
described above and then verified using the definitions of the operations of
Den. In fact, having once recognised the signature correspondence, this
part of the proof goes through very easily. Note that since E is a sensible
signature (for any reasonable B) as discussed in chapter 2, we have no
problems applying the ordinary rules of equational deduction.

1. AzJ.(i)= i.
(find(arid,x) = err)
Immediately true.

2. ply/vI(x) = if x=y then v else p(x)
(find(bind(e,y,w),x) = ifr=y lhenw else find (e,x))
Can easily be shown from the definition of ply/v1 by considering the
cases x=y and xoy.

3. Valli b:constantip = bin V
(M(constant(b),e) = injB(b))
Immediate by VI of Den.

4. Vallx:Idelp = p(x)
(M(var(x),e) = find(e,x))
Immediate by V2.

5. ValllAx.q1p = Aa.ValIIrJIp Ix/al in V
(M(abstraction(x,q),e) injA(A(ri,x,e)))
Immediate by V3.

6. Vane(()ip = (VaNcdp 1 FUN)()
(M(application(a,B),e) = appl(M(a,e), M(B,e)))
Immediate by V4.

7. ((b in V) 1 FUN)(v) =
(appl(injB(b),w) = err)
Follows from definition of I FUN.
((Aa.Vallinip Wal in V) 1 FUN)(v) 	(x/v1
(appl(injA(A(n,x,e)),w) = M(n, bind(e,x,w)))
Follows from definition of 1 FUN and lambda-substitution.

31

9. 	(.1(FUN)(v) =
(appl(err,w) = err)
Follows from definition of I FUN and i.

Through this proof we have demonstrated that there are interesting
models of algebraic theories other than the initial one, thus justifying our
decision to view presentations as denoting theories rather than a single
particular algebra.

Before leaving this example for the time being (we return to it in
§4.2), some further points of clarification need to be discussed. First, it
may not have escaped the readers attention that the functionality of Val in
the denotational semantics was written Val: Lambda x ENV -• V rather than
the more usual Val: Lambda -0 ENV V. Had we wished our presentation to
reflect this curried version, a new sort representing Ienv -) WI would have
to be added to the signature and appropriate changes made to the
equations as follows.

sort envtoW.
apply: envtoW x env -) W
M': Lambda -0 envtoW

3. apply (M(constant(b)),e) = injE(b)
4. apply(M(var(x)),e) = find(e,x)
5. apply(M(abstraction(x,n,)),e) - injA(A(q,x,e))
6. apply(Mlapplication(u,(3)),e) =

appl(apply(Mlute),apply(MIBte))

Of course the fact that we are persisting with parenthesised prefix function
notation makes the above changes look worse than they otherwise could,
but there is no denying that treating the semantic functions of more
complex cases in this way will quickly become unwieldy. For example, to
reflect the curried nature of the single valuation (taken from Tennent,
1977) 51: Exp -4 US -* Md -) U -0K -0 C in a theory presentation would require
4 more sorts and 4 more apply-like operators than allowing X': Exp x Us x
Md x U xIC -)C. When one considers the number of valuations required for
a realistic language such additions to the signature would quickly become
tedious and would certainly reduce the readability of the presentation.

It should not be surprising however, that a denotational semantics

32

with the curried version of Val is also a 0,44e1 of LC. After all, La bda
V V and Lambda x 1:1s , V 4 V are isomorphic domains. The only change

to the proof above that is necessary is a clarification of the correspondence
between M and the new Val, for example Valall_ us: r g, the same underline
notation as previously or perhaps more explicitly Ag,p>.Valgulp
Effectively, we urn-curry the fm ,soiel to suit the Signature rather than
currying the a' nature to suit the model. Clearly thell, the rather
non-standard functionality of the orIginal Val was not strictly necessary,
but was considered desirable at this initial exp(rsitory stage.

As a further variation on the denotational semantics and it relation
to LC, it is enlightening to consider changing applications to call by value
rather than the call by name used in the current model. Basically, the
difference is that in this mode of evaluation both the operator and operand
are evaluated before the application itself is performed. Thus, under call
by name an expression We (Ay.0)((Ax.xx)(Azz.xx)) evaluates to 0 whereas it
fails to terminate under call by value. The change required to the
denotational semantics to reflect this alteration is to replace (V3) by the
following equation

ValgAx.rgp (stirieg (Aa.Va1110pix/a))) fa V.
A fuller discussion may be found in Stoy (1977). The function
stria : FUN 4 FUN is defined such that for all v E V.

sgria (f)(x)
{ 1,T or 	if is respectively 1, T or??

f(x) 	otherwise

It is clear that this new algebra (call it Dan') is not a model of LC,
since it fails to satisfy equation 8 -

((sir/c: (An.Valalp izial) th V)PFUN)(v) = Val* lz/vil.
The naive addition of another equation

10. appl(w,ere) = err
is insufficient and comp munds our problems rather than solving them. if
we consider the expression appl(iniA(A(0,y,e)),err), then by equation 10
this reduces to err. However by equations 9,4 and 2 it reduces to 0, thus
"collapsing" the carrier of W . a abide value. To overcome the problem we
need condition the equations on certain arguments not being error terms
so that for example equation 8 only holds when w g err. This conditioning
can be carried out quite systematically as described in ■ 	(1978) and
in fact the specification language OBJ («ostuen & Yard°, 1979) has a syntax

33

that explicitly reflects this technique of handling error terms.

34

3_2 Initial Algebra Semantics

Perhaps one of the most influential and successful applications of
algebra to programming language semantics to date is the so-called initial
algebra semantics reported in (Goguen, Thatcher, Wagner & Wright,
1977) and heavily used in (Thatcher, Wagner & Wright, 1979). Their aim
was to unify some apparently diverse approaches to semantic definitions
using the single but powerful concept of initiality. By observing that for
any context-free grammar G there is a signature I such that Tz corresponds
exactly to the parse trees of G, it is clear that any other I-algebra provides
a semantics for the language of G through the unique homomorphism
assigning "meanings" to all the terms of Tz. After filling in some more
details, we investigate the ways in which denotational semantics fits into
this approach and then generalize this relationship to cater for our
"semantic model" concept.

To derive a signature corresponding to a context-free grammar we
proceed as follows. Associate a sort with each non-terminal and an
operator symbol with each production No -) ocoNiai Nock whose sort is
No and arity N1N2 Nk. The signature we require is just that set of sorts
and operator symbols. As a demonstration, consider the lambda calculus
example of S3.1. In BNF, the syntax is written as follows with each
production named to simplify expression of the signature.

(constant) 	 <Lambda> ::=
(var) 	 <Lambda> ::= <Ide>
(abstraction) 	 <Lambda> ::= Adde>.<Lambda>
(application) 	 <Lambda> ::- <Lambda>(<Lambda>)

Choose sorts Lambda, B and Ide corresponding in the obvious way to the
non-terminals. The operator symbol associated with the production
(constant) has sort Lambda and arity B, and so forth. Using our standard
notation to express the signature (call it (2) we get:

constant: B -* Lambda
var: Ide -• Lambda
abstraction: Ide x Lambda "4 Lambda
application: Lambda x Lambda -) Lambda

35

which is precisely the abstract syntax part of the signature E given in
63.1.1.

According to the principles of initial algebra semantics we now need
only choose a suitable Q-algebra SD to define the meanings of
A-expressions since we automatically get a unique homomorphism from TD
to SD. So choosing a carrier for each sort of Q and defining a function for
each operator symbol of Q is all that is required. For this example we allow
ourselves to be guided by the denotational definition given in 63.1.2 and
we assume exactly the same domain definitions here. Associate carriers
with the sorts in the following way

SQ,Lambda = [Buy. VI
SQ,Ide = 'de
SDA = B

and define the operators as follows (using lambda notation)

constantsa (b) = Ap.(b in V)
varsdx) Ap.p(x)
abstractionsdx,q) = 21p.(lia.q(pfx/a1)) in V
appl1cationsda,I3) = Ap.(a(p)IFUN)(13(p)).

• The underlying idea of initial algebra semantics that there is a
unique homomorphism from the abstract syntax in the form of TD to any
SD chosen to be the semantics of that language can be seen as an attempt to
formalize what constitutes a semantics. Since we subscribe to such a
view of semantics there will frequently be places in this dissertation where
we will attempt to relate our style of semantics to the initial algebra style.
As a precursor to the first and most detailed of these, we will now examine
the connection between denotational and initial algebra semantics.

3.2.1 Denotational and Initial Algebra Semantics

The following quote from Goguen et al (1977) contains the general
thrust of their claim that denotational semantics fits the initial algebra
semantics concept.

"In general, the 'semantic equations' define the meaning of a
syntactic construct C as a function Fc of the meanings of the

36

conic •ments to that construct, and in so doilti the semantic equation s
describe em A igebra (the function Fc is the oci t. ration corresn(.nding
to the syntactic construct C) cad say that semantics is g
homomorphis

IOW e the general intent may be clear, the connectioi, is discussed only
briefly and rather informally and consequently leaves sore questions of
detail unanswered. Clearly ff the semantic functions are to be
homoorphisms then their deftions, the semantic equations [el ust be
constrained in some way, yet no enplicit mention is made of su(in the
fundamental denotationg semantics literature. However, in the "folklore"
surrounding denotational semantics much emphasis is placed on the
concept of refereigisd lteig2Spare cy (Stay, 1977), 	& Strachey,
11976), though :Again no hard-and-fast definition is given. ■• ale of the
implications is that the meaning •t a particular syntactic construct depends
o.a./7 on the meanings of its constituents. llf we adhere to this principle
then we imm.ediately satisfy the requirements for the semantic functions to
be hom000rphisms. Nevertheless, inspection of sooe typical denotationg
definitions reveals several cases where the semantic equations do not
appear to be entirely hornomorphic, three classes
by Mosses (11983) and Ere treated below.

which were identified •)I

First the equations are someti es non-coo ..,tsitional and therefore liii

appear to deviate from the principle of referential transparency, es.
e1 - e2 = e1 + (-e2)11

CR a.@p@og =...C1d1...eiTegnog
Such equations, usually seen as harmless shorthand, can be dealt with in
two ways; either reject them es unacceptable and dismiss the semantic
definition as non-denotational, or replace them with filP ore acceptable
versions. The first ezample can be rewritten by an eupansion of Eitel
4-e2)14 using the clauses for Eitel e211 end Eit-el, and the second one can
be rewritten with eEplicit use of the fed- co,cint operator.

Second, the creation of environments may directly involve identifiers
rather than their denotations as in

'Malaga,ii = a =
The way around this has already been CPII entioned in our la nbda calculus
eEample. We take 1de to be a semantic domain (as well as syntactic one)
and leave the semlriitic function Ide 1de implicit as an identity. Basically
these problems only arises due to a lack of complete forPhality in the

37

definitions.

Third, there are often several semantic functions for the sane
syntactic domain, such as E, g, eR: Exp We feel that it nay have been
exactly this problem that led and (1982) to suggest that the
honomorp4, lc nature of semantics was lost in continuation sem g tics where
he claireics"... the notion of t rke value of a subezpression is meaningless". The
classic case for continuation seoaaratics is a language with labels and vacs,
and this requires at least two se fcc antic functions operatIrci, on co it m ands,
one to collect up label values, the other to evaluate the con minds
themselves. The solution is straightforward if we consider the several
functions as comc.nents of a el de compound semantic function and use
explicit projection End tripilitE to 0, anipulate that function. A detailed
example is given in 03.2.2.

Thus it appears that ven a denotational semantics (within certain
guidelines) we c riI re-express it directly as an initial algebra se nantics, so
denotational definitions are indeed a possible expression of our
funde nental concept of "semantics". However Mosses' (1983) claim that we
can "go the other way" needs to be tempered somewhat. Certainly any
initial a i Cebra semi %tics can be expressed in the noteytios of denotational
se rcil antics, but it will not necessarily be denotational. For example we can
easily give an initial algebra semantics where the semantic algebra consists
of the stir s of the language or where procedure declarations ae handled
syntactically as in l'Auen & Parsaye-Ghomi (11981), yet such do o tins are
not acceptable in denotational semantics.

33.2_2 Seclanatik Elodallo can4llfigñQll&ftmeboo Semomtfyg@

Since our semantic presentations bear some rese blame to
denotational definitions, at least i style, it would seem hopeful that our
se n antic m.els ,also characterize an initial algebra semantics. We intend
to de 51.1onstrate that such is indeed the case a d also to develop a little

ore for 5M nifty about any require %cents we wish to place on the form of
semantic equations. The example we intend to use is a stripped-down

i,uage with only vtos, labels and A)- other state n era, whose action is
undefined. Although it is not strictly necessary to do so, we give the
presentatitI as well as the leo. , oel with which we choose to work.

38

Sistnature
sort Program

prog: Stmt Program
sort Stmt

seq: Stint x Stint -4 Stmt
goto: Ide Stmt
labelled: Ide x Stint Stmt
other: -) Stmt

sort Env
arid: Env
bind: Fsnv x Ide x C -0 Env
find: Env x Ide C
bindall: Env x Idlist x Clist Env

sort C 	(continuations)
- depends on semantics of 'other statement -
err: --) C

sort Idlist
emptyi: -4 Idlist
cati: Ide x Idlist Idlist
headi: Idlist -4 Ide
tail Idlist Idlist
appi: Idlist x Idlist Idlist

sort Gist
emptyc: -0 Gist
catc: C x Gist -) Gist
headc: Gist -4 C
tailc: Gist Clist
appc: Gist x Gist ain

P: Program x Env x C -0 C
C: Stmt x Env x C C
L:Stmtx Env x C-3 Env
/: Stint -4 Idlist
Al:Stmt x Env x C Clist

Equations
1. find(arid,x) = err
2. find(bind(p,x,0),y) = if ii=y then 8 else find(p,y)

39

3. bindall(p,xf,d) = if if = emptyi then p else
bindall(bind(p,headi(xt),headc(c)),

taili(x(),tailc(d))
4. headi(cati(x,x0) x
5. taili(cati(i,x0) = xf
6. appi(xf,y0 = if If = emptyi then yt

else catitheadi(xt), appi(taili(x0,y0)
7. headc(catc(0,c0) = 0
8. tailc(catc(8,c0) = d
9. appc(d,d0 = if d = emptyc then clt

else catc(headc(cf),appc(tailc(d),d0)
10. P(prog(s),p,O) - C(s,L (s,p,0),0)
11. L (s,p,O) = bindall(p,./(s), M(s,L (s,p,0),0))
12. C(seq(sl,s2),p,0) = C(sl,p,C(s2,p,0))
13. C(goto(t),p,O) = find(p,f)
14. C(labelled(f,$),p,8) C(s,p,e)
15. C(other,p,O) = ... (not specified)
16. /(seq(sl,s2)) = appi(/(s1), /(s2))
17. /(goto(0) = emptyi
18. /(labelled(f,$)) cati(f, /(s))
19. /(other) = emptyi
20. Al(seq(sl,s2),p,0) = appc(Af(sl,p, C(s2,p,0)), Af(s2,p,e))
21. Al(goto(f),p,O) = emptyc
22. iff(labelled(f,$),p,O) caw(C(s,p 10), Af(s,p,e))
23. Al(other,p,O) = emptyc

GL - simple aoto-lanauaae presentation

Note that we have been rather meticulous with our notation in these
equations. In future examples for the sake of readability we shall use more
"normal abstract syntax and where there can be no misunderstanding,
implicit parentheses. The model (offered without proof) of GL we intend to
work with is the denotational one given below.

U-Ide-bC
I): Program 114 C -• C
C:Stmt-)U4 C-)C

Stmt -> Ide*
Al Stmt U - C C*

40

P11 begin s end Ipe = Cid fix (1ip'.0111 Whiff slip 81)0
C11s1;s211p0 =CllsiBp(els2Bp0)
Cllgoto tip° - pa)

= CIIsBpO
ClotherlIp0 =
ills ;s211 = s 	app ill 8211
,llgoto tB

= cat ifs]
'Mother] =

s ;$211p0 = 	s 'Bp (CI s21p0) app .hti s21p0
Algot° (DO - 0
Atitslipe = CI sip0 cat .411 slip°
Attlotherlp0 =

denotational model of GL

If we denote by Z the signature corresponding to the abstract syntax,
then our aim is to derive a semantic E-algebra SE based on the denotational
model given above. Simply by abstracting away from the syntactic sorts
and "target tupling" where there is more than one semantic function on the
same syntactic sort we get the following definiton of SE.

Carriers
SProgram =U9C4C
Sstmt = 11.1 C — CI X Ide* x 	C 4 Cla i

Operators
progs(s) Ap0.(stl)(fix (Ipliti*1.0*.pli*/0*1)(st2)((st3)p .0)))0
semis(s 1 ,s2) = <Ap0.(s i1)p((s241)p0),

5142 app s242,
Ape.(5143)0(s241)p8) app

gotos(t) = <Ap0.pa), 0, Ap0.<»
labellcds(t,$) = 	t cat sa, Ap0.((s4.1)p0 cat (s43)p0))
others =

semantic E-algebra based on denotational model of GL

Though the derivation of Sx may seem to have been contrived (even

41

magical) a full and r orous description of a suitable general technique is
given in 03.2.3. It is clear fro w this example that to ensure initial Iebri
semantics ctin be derived from semantic m4 , ,Ols in an orderly way we need
a principle similar to referential transparency for denotational semantics.
Mosses(1983) defined a set of hafforssorphic SOEBBfinic CeeaNdOES for a
given (syntactic) signature I Es follows: for each operator u E 29 1 ...9g1,9
there is one equation of the form F. (10(E li ,...,21,0) = v(Fsil itz li),...,4„tts.))
where vof li ,...,E .„) is En appropriate term of (TE.Or)) s.. Briefly
se DI antic s' nature wherein for each s (#4 E we may find a corres • ,I ,nd
(Full details are given in the original paper). While this concept may be
suitable for Mosses' "abstract semantic ebra" specifications and it clearly
ensures that all the semantic functions Fs. so defined are indeed
homomorphic, it needs to be generalized somewhat to deal with our less
restricted style (ct semantic presentation.

We may identify the semantic operators of some signature Q Es all
operators F E Owis where s is not a syntactic sort and w inclatides at most
one syntactic sort. ThtBs we avoid the operators defining the abstract
syntax and the primitive operators on the mantic sorts. It is only the
semantic operators that we wish to be hoimonaorphic so we give the
2'01101171%g sufficient conditions Epplyi mg to equations involving semantic
operators: all syntactic elements (variables, constants or expressions) that
occur on the right hand side of the equation also occur on the left hand side;
and nll syntactic elements that =Cur in equations involving both syntax
sind se Di antics occur only as arguwents to the semantic oo rrators. T. is
requirement closely parallels the denotational semantics referential
transparency notion.

It is interesting to note that the equational specifications of Wand
(19806) meet our requirements End therefore characterise an initial algebra
semantics, yet Mosses (1983) contrasts that approach with his own by
claiiii rit "... (Wand's) 'semantic functions' were non-hoinoruorphic, they
were just orators of abstract data types that combined syntax and
semantics." It seems a little unreasonable to accept indirect definitions of
hognomorphisms in denotational semantics while rejectll g them in Wand's
a A ebraically founded specifications.

The rather minor restrictions we place on the for of se Tilantic
presentations by enforcing the conditions given above create no real

1[11 1

42

difficulties. Indeed, considering that workers in denotational semantics
largely satisfied these requirements without necessarily knowing (or
caring) that they are describing a homomorphism, the two conditions above
can be seen as guides rather than restrictions.

3.2.3 Deriving Initial Algebra Semantics from Semantic Models

In the preceding section we derived the initial algebra semantics
characterised by a particular model of a semantic presentation without
giving any real hint of how it was done. Our aim here is to formalize the
technique in an algebraic framework giving both an algorithmic and a
category-theoretic formulation.

As a starting point we note that the basic techniques involved are
abstraction away from syntactic sorts and target tupling. Now a parallel
exists in work on algebraic data type specifications: the so-called fins/
delta type extension of Wand (1979) and Kamin (1980,1983). Basically
the aim is given a I-algebra A, we wish to derive the most abstnict
algebra that extends A with another sort and some operators on that sort.
Here we outline the method for achieving this described in Katnin (1983)
and refer the reader to that source for more details.

Suppose that we have a I-algebra A and we wish to extend it by
adding a sort N and a number of operators all involving N. First we identify
a subset of those operators that we believe will sufficiently distinguish
among elements of the new sort. Clearly all will refer to N in their arities.
Suppose this distinguishing set is

(N x x x An ro N,
•• •

fm: N x Bi) x Bnm N,
x CI x ...x 	Ei,

sk: N x Di x x Dik Ek),

where all of the E's, A's, B's, C's and D's are sorts of I, k) 1 and m) 0 (in fact
for our specific case m will always be zero). Then the most abstract
representation of N is

43

We then proceed to define (in whichever way is considered appropriate)
the operators on N as functions over the abstract representation. This gives
the final EN- extension of A where EN is the signature denoting the sort
N and the new operators on N that are to be added to A.

A hint of the direction we are heading may be taken by imagining N
as a syntactic sort. To construct its abstract representation we abstract
away from N and tuple those domains if there is more than one operator
on that sort. Within certain bounds this is just the process we are aiming
for. Suppose we are given a semantic presentation <Q,E>. Then the
signature can be divided into E + A + +where I corresponds to the abstract
syntax, A corresponds to the semantic domains and auxiliary functions and
+ corresponds to the semantic functions. Clearly I and A are quite discrete
and (I) will include no new sorts. For some model of the <Q,E)-theory, say
MQ, to derive the corresponding initial algebra semantics we need to
construct a I-algebra SE based on the semantic carriers of MQ.

To begin we take the A-reduct of MQ, MA. Put simply, to derive MA
from MQ we merely "forget" about the E++ parts of MQ, so MA consists
only of the semantic domains and the operators on them. If we now
construct the final (I+ +)-extension of MA we get a different 0-algebra, say
SQ in which the carriers of the syntactic sorts are precisely the abstract
domains we have been seeking. Thus, the E-reduct of SQ is the required
semantic 1-algebra SE. While this may at first seem rather obscure and
perhaps over-complicated, in practice it is quite straightforward and we
now demonstrate the technique using the example introduced in §3.2.2.

The signature of the GL presentation (call it 0) can easily be divided
into the syntax I consisting of sorts Program and Stint and the operators
listed under those heading; the semantic domains A consisting of all other
sorts and the operators listed under their headings; and the semantic
functions consisting of operators P. C, L, and Al and all sorts of Q. If we

44

call the given denotational model of the GL-theory Do, then the A-reduct of
Do has carriers U, C, Ides and C* (as defined) for sorts Env, C, Idlist and Clist
respectively with appropriately defined functions for each operator symbol.
Now to construct the final (E + 4)-extension of DA, which we will denote So,
we first identify the operators that will sufficiently distinguish between
elements of the new sort. This will always be the operators of 4), the
semantic functions. (In fact, Kamin's technique only deals with adding one
sort at a time. For the sake of brevity we will work by adding the two sorts
Program and Stint in parallel. There is no problem here but in general one
may need to be a little more careful, especially when several of the
semantic functions interact.) Thus the distinguishing set for sort Program is

(P:ProgramxEnvxC-, C)
and for sort Stmt it is

(C: Stint x Env x C C,
I: Stmt -) Idlist
Al: Stint x Env x C -0 Clist).

The semantic function .L is not included because it is directly defined in
terms of 1 and Al

Thus the carrier of sort Program in SQ is 1EnvD x CD 4 CD] which is
1U x C -+ CI. Similarly the carrier of sort Stmt in SO is lEnvD x CD 4 CD1 x
1IdlistD1 x rEnvD x CD -) ClistD1 which is 1U x C -) CI x Ude] x x C 4 C*1.
Though we omit most of the details here, the definitions of the functions for
each of the syntactic operators (eg. prog: Stint -• Program, semi: Stint x Stint
-0 Stmt) are quite straightforward and are based on the rather trivial
observation that for each operator in the distinguishing set for sort n,
g1(n,a1,....,aii) = (n41)(a1,....,aji), where sti is the ith projection of n. For
example, given the definitions in the model Do of t, ID and MD on the
class of statements "semi(sl,s2)"

4,0(semi(sl,s2),p,O) = 4)(sl,p,C(s2,p,O))
ID(semi(sl,s2)) = ID(s1) app 11)(32)
A4(semi(s1,32),p,O) 	CD(s2,p,0)) app A4)(s2,p,O)

and the information that
C(semi(sl,s2),p,O) = (semi(sl,s2))(p,0),
/(semi(sl,s2)) = (semi(sl,s2)42)0 and
Af(semi(s1,82),p,O) (semi(sl,s2)43)(p,0),

we may immediately deduce

45

semis(sl,s2) = <48.s141(p,s241(p,8)),
s12 app s242,
Ap8.s143(p,s24.1(p,8)) app s24.3(p,8)>.

Finally to derive SE, the semantic algebra we require for the initial algebra
semantics, we take the E-reduct of SQ, simply forgetting all of SQ except
the syntactic sorts and operators.

The above technique provides a "recipe" for deriving the initial
algebra semantics characterized by one of our semantic models, however a
more concise non-algorithmic formulation is possible. Again presume we
have a semantic presentation P whose signature Q can be divided as above
into E + A + and a model of P called MQ. Then the semantic E-algebra SE
we require is the E-reduct of SQ, the final object in the subcategory of Algp
consisting of only those models that are relatively prime to MA, the
A-reduct of MQ. A P-algebra AQ is prime relative to MA if and only if the
A-reduct of Ag is isomorphic to MA and the unique homorphism h:Tp -+ AQ
is surjective on the carriers of Q- A (ie.E).

The concept of prime re/alive to I is a relaxation of Kamin's
(1983) insistence on prime algebras, that is algebras such that the unique
homomorphism to them is onto. This does not suit our purposes since we
do not wish to be restricted to semantic domains with no "junk" values
since, for example, the domain V B + [V -) VI used in the denotational
model of the lambda calculus presentation (S3.1.2) would not then be
permissible. We treat this question in detail in the next section.

It is worth pointing out that this formulation of the relation between
initial algebra semantics and our semantic models is not particularly
interesting from an algebraic viewpoint nor is it exactly perspicuous.
However, the algebra does provide a convenient setting for what is at least
a rigorous and compact definition.

46

3_3 AanpgolOh S®C1Eamttk DEedeRo

As was briefly mentioned in 03.1.1 not every node' of a presentation
fleceosmily provides a satisfactory semantics for the language being
described. In other words, given some presentation P we %.1 ay wish to
specify a sub-class of the a i zebras constituting Alxp as those which are
acceptable semantic models. While we will never need to do so in this
dissertation, we treat the problem here since it has occasionally been
touched on in the literature and see us to have led to sorke confusion. For
example, Wand (1979) goes no further than to say that the class of
acceptable models will be so we subcatc ory of Alp, while by far the most
0012201on approach (at least in the abstract data type literature) is to ignore
the question completely, using the wcification tett Iiique without ever
saying exactly whgg (athematic) ject is being sto). cified, rather
relying on the intuitions of the reader. This section is largely taken from
Baker-Finch (1984a).

Rill

11 ft & Schasion ZOT kai@aPElea Matta cilYwo

Probably the first staestion of a satisfactory semantics of the
signature plus equatioics tea rt, Ivo for abstract data type specification was
the initial ebra approach clearly described in (, Pluen, Thatcher &
Wagner (1978). There, given some present ition P, the particular mtelect
be 	specified is the (isomorphism class of the) initial algebra in Algp.
This n ,tebra has some attractive properties, not the least of which is the
fact that it is easy to ocristruct. Further, the 0) ,cpularity of the choice of the
initial a ik;ebra as She object represented by a presentation is explained by
Wand (1979) as follows: "First, its universe contains no values other than
those required by the generators. Second, two values have the same
se 'N antics in the initial T-a I ebra if and only if they have the saw e
se R'A antics in every T-,1Ixebra. Thus no information is lost except that which
is required by the relations". (For"T-algebra" read "algebra in Algp").
Burstall and , ntien (1982) put it somewhat more snappily: "... the initial
algebra ... has /20i At: every eleraent of the carrier is the value of some
term; Bo CathiSi012: different terms get different values". However, if we
choose this a igebra to be the oBiy model of the presentation, we are
wasting the considerable is' vwer of the specification technique. After all, if
we only want to describe a siiixle algebra there are numerous ti ore direct
and simple methods. Further, the initial m ,•,481 may not necessarily be the

47

intended or most intuitive one. Consider for example the following typical
presentation for (unbounded) arrays of natural numbers.

sort Nat
zero: Nat
succ: Nat -) Nat

sort Array
empty: -0 Array
assign: Array x Nat x Nat '4 Array
access: Array x Nat -0 Nat

Equations
1. access(empty,i) = zero
2. access(assign(a,j,n),i) = ii i=j then n else access (a,i).

In the initial model it is not the case that assign(empty,1,5) and
assign(assign(empty,1,9),1,5) are the same array. An entire history of
assignments to each element of the array is maintained and this does not fit
the generally accepted array concept.

Perhaps the most popular current view is that an abstract data type
specification (being some presentation P) represents the algebraic theory
Thp. If we settle on this choice however, we are begging the question. The
theory has a class of models that is isomorphic to Algp. So if we accept the
algebraic theory approach, we are left with exactly the same question we
must answer with respect to the equational variety: "which of the algebras
are satisfactory semantics?" It is important to point out that we do not
therefore reject the view that an abstract data type specification presents
an algebraic theory; we are only saying that the question remains
irrespective of such a choice.

A refinement of the algebraic theory approach has been put forward
by Burstall & Goguen (1979) and Reichel (1980) by developing a notion
similar to an algebraic theory which only has initial models. The writer of
an algebraic presentation is then able to distinguish some sorts as being
subject to initial interpretation. The usefulness of this approach can be
displayed using our array-of-naturals example. If we can somehow insist
that the Nat part of the theory is to be interpreted initially, then any model
that satisfies such a restriction will satisfy our intuitive concept of such a

48

data type. 1Burst&11 and Coven's "data theories" and Reichel's "canons" or
"initially restricting d 1 obruic theories" provide the weans by which to give
a rigorous meaning to the notion outlined above. Unfortunately our lambda
calculus presentation LC of 03.1.11 is 'cot simenable to this treat went. Clearly
we do not wish to be restricted to ['codes where Abstr or W are interpreted
initially since this would ezclude the denotational node described in
03.1.2, but to leave Abstr A i d TIT unrestricted would admit undesirable
tralodels suc is the ckgenefette one with s de point carriers. Thus, while
initially restricting idgebraic theories appear to satisfactorily provide a
solution for specifications of data types they do not j eet lie require ents
for our illore ambitious u r of equational presentations.

33.31 Allkuasig jiminft

The precise question we are considering is: "which of the algebras in
Map, for some presentation P <E,E>, are acceptable semantics of the
concept we are try ■ iii; to describe?". Note that it is quite obvious that the
class of such acceptable %CI "leis cannot be identified solely by innate

m properties. It ust be left up to the writer of e specificatio%s to
so wehow state which are acceptable, but we can defer this consideratio
for now.

Clearly, the initial m ,• , 41e1 w I ilwys be an acceptable El • <el since
the only objects that are equated are those so specified in the presentation.
If it is iot, then there can be so acceptable oodels I'Ld hence the
presentation oust be inadequate. It follows fro5:11 the fact that there is a
unique homwitorp ■i'so from Initp to every other algebra in Algp that I

these other ,A igebras have "junk" or "confusion" or both. 'M e ens' me how
much junk and confusion is acceptable.

Firstly, we should not be concerned if the carriers co tain ele Rents
that are not the value of any term. After , this is frequently the case in
denotational se 11 11 milks. For elm ii' pie, the domain V el B [V -) VI used in

fit the la bda calculus wodel of 03.1.2 contains w any ele wants never reached
by any semantic valuation; in particular, all the transcendental functions.
The only query about allowing unlimited junk is whether we want to allow
it in the syntactic carriers. If we do, then the algebra describes the
"semantics" of various objects beyond the terms generated by the abstract
syntax. However, if we take the view that the semantics is riii Ma to give

49

the eiriuircg, of a term of the 113103W with which it is presented (i.e. the
syntax is described elsewhere) then we can happily &HOW nonsense values
in the syntactic carriers. Though this ftP ay be a satisfactory situation for the
purposes of specification alone, the uses to which we will be putting the
semantic presentations later in this dissertation will require us to insist
that the syntactic carriers exactly reflect the la ri use belriix dealt with.
will have more to say on this issue)111 03.3.5, but for now we offer
formalized statements of both

An a ixebra A in Map is an acceptable model in the sense outlined
above if the unique homomcephism h: Initp A is a inonomorpIsm (ie.
one-one). This effectively ensures that all the elements of the carriers of
the initial algebra (the terms) gi e separately represented in A. To disallow
junk in the syntactic carriers we 5111 mice the following further restriction
Ii: Initp A consists of <h5 1 ,...,h5 > and (sili E I) are the syntactic sorts.

Then as well as h beIrc a monomorphism, the Ilk for i E)1 must be
bijections. This extra restriction is such a minor point and is so easily
catered for that we shall overlook it for the remainder of this discussion.

3.3.3 Rasit

earafmonem ting

Clearly the above restriction is unsatisfactory since it again disallows
our denotations" model of LC, and serves only to demonstrate that it is the
limitation of confusion that must be our objective. W hile it is possible to
give a simple general statement about junk in acceptable Olt 4els, the
degree of confusion allowed ['lust be the choice of the person writing the
specification. For instance, again usircA our lambda calculus exa 511 pie, there
can be no a priori reason to think that Am.! and Ay.y may be given the
same meaning, or that bind(bind(arid,z,m),y,b) and bind(bAnd(arid,Y,b),u,a)
could be evaluated to equivalent representations. Thus if we wish to
identify all the acceptable models we are bound to souehow specify which
terms may be equated and which ones may not. One way to do this is to
pick a particular algebra as the "o axi [cc ally-confused" cc ode! (for want of a
better mane). The model is chosen on the basis that as RA any terus as we
find acceptable to equate are equated. If we can then define a relationship
between this and other algebras that have Bo (Mhor confusion, we have a
way of identify: It the class of such acceptable ro, 41els.

For guidance in our choice of this "maximally- nfused" model we

our purposes we iterpret t s to fill ean that the n is tot to differe tiate
between the meanings of two pt•Iram ins language constructs that are
equivalent in the view ci the semiantics writer or language designer. So

ii

50

are attrticted by the tenets ii denotational semi ii tics (Scott and Strachey,
1971). As well, the notion of fatly sthsgrga (M 7 Iller, 1977) see tiii
related. It is reasonable to say that one of the aims of (standard)
denotational semantics is to ake the se antic descriptiot as abstract as 191

ssible and the concept of "fully abstract" serves to formalize this sin. For

perhaps a denotational style of model would be a good choice as the
acceptable model that gives the same Dinning to as a cgany terms as
4 4 ssible. We need to be a little Careful here - it would be quite valid to
represent an environment as list, say ilde x VI° wrCch is not as abstract as
fide -> VI. In such a don lin t te two environ lucent ter rrc s given above do not
evaluate to the same element of the carrier yet none of the interr ation
operators can differe tiste between the two ale ttents. Thus it seems that
final algebra extensions (min, 1983) may also have something to say on
the choice of a maxi ally-confused

Let us look %core closely at the concept of full abstraction introduced
by Milner (1977). Put briefly, a semantic descripti• t is fully abstract
provided two pt rases (pieces of abstract syntax) are given the same

if ,1% d only if their substitution into the sane pr Ilram context (a
pr , 	Dip! with a "hole" in it) always gives two pr si,ratils with identical
meanings. A for nal algebraic definition of the concept is given in , ,• , ,,uen
gad Meseguer (1983). Thus, the effect of full abstraction is to assign
different It e ItA,s to syntactic constructs only when necessary. This is
exactly what we want for our maximiilly-cot I used models and is, to a
degree, what the final algebra construction provides.

However, there is still some work to be done. The final algebra
construction depends • t the pre-existence of some primitive types
(otherwise we would always get the algebra with single-point carriers).
Similarly, full abstraction is defined with respect to the se ci, antic domain of
whole pr ran, meanings. Thus in that do u aim n we nay assign differe t
meanings to what are intuitively equivalent whole pri•Irams (es. Ali and
ity.y) and still have a fully abstract model. (The lanbda calculus is not in
fact a particularly good exanple since whole pr ra s are also pr•4,ra ■ 111,

phrases). Hence we require iore of a nazinially-oonfused tcodel than its
being fully abstract. Rather, it is a fully abstract model with domain of

51i

prnre RIP meanings X whea-e X is chosen to identify as 101 a ihy pa...II-ens as we
consider appropriate. Having chosen such an X, ICSIMlif3 (1983) final
a ebre entension construction can be of assistance in deriving the
eppropriete other semantic domains. Unfortunetely it is not quite is
straightforward Es we may desire since the final algebre extension depends
elso on the functionaty of the orhfretors; in this case particulerly the
semantic functions. Consider the (rather contrived) case where we have

	

P: Prilram C and C: Selig 	x CD where the irrelevant informetion of
(say) the first identifier occurring in the statement is included in its
se RIC tie don ain. Clearly this is not fully abstract but the final 2 igebra
construction does not preclude such a possibility. Thus we need to make a
careful choice of a po.ram meaning domain RR,' semantic functions as a

	

inin um basis for Went ry 	a flit ma rfiA ally-confused m(hoiel.

Returning to our lambda calculus enample, suppose we choose (or
derive) the denotational model Den as our inholel that identifies as many
terms as possible while still remainix;, acceptable. How then nay we use
t s choice to decide which other nodes are appropriate? As a first t
approximation, let us say that algebra A in Algu is an appropriate model if
there 13a E-h.omomorphism h: A-4 Den. The effect of this limitation is to
ensure that the terms are equated in A only if they are equated in De
Thus we are say in that only the kind of "confusion" that occurs in Den is
allowed in our "appropriate hliels". This is clear from the definition of
E-homomorphism. Thus in one fell swoop we are disallow l rci, undesirable
eveulation of different ter nis to the same value and as a consequence
ensuring that solutions of recursive equations are always like least
fined-points in the sense that a non-term
given a "sensible" value.

computation, will never be 1 ril

So far in this section we have not considered the allowance of extra
elements in the carriers of the algebras. So the problem remains that given
some A such that h: A -4 Den is a h.omomoephisn (i.e. A is an acceptable
model), there may be an LC- ebre B such that there is a mon000rphism
k: A -4 B. In other words B differs from A only in that it includes "junk" in
its carriers. However, it is likely that there is no homomorphism B -4 Den.
From our discussion in the previous section we would like algebras such as
B to be included h our class of acceptable m4 	•:,e last refinement
leads to the follow' lc definition wherein we finally ab 2 lc don the loose
concepts "acceptable model" and "ffilli cc 	used model".

sub -final
model

52

Given a presentation P = <I,E>, an algebra A in Algp is an ot-model
of flip if there is a E-homomorphism h: A -) J where J is some
P-algebra such that there is a monomorphism k: D -■ J where D is the
P-algebra distinguished as the sub-final mode/of Thp.

Note that the carriers of the sub-final model can have extra
elements. For example V in Den has elements that are not in the image of
Val. In such cases there is clearly a model, say M, with no such extra
elements and a monomorphism from that model to the chosen sub-final
model, say D. Thus if there is a homomorphism A -> M there must be one
A -• D by composition. The following diagram showing some of the
morphisms(the epi- mono factorizations, Arbib and Manes, 1975) may be
enlightening. The monomorphisms (one-one) indicate "same confusion,
more junk"; the epimorphisms (onto) indicate "same junk, more confusion".

Note that this is really a very loose representation (for example, it suggests
that the class of ok-models is always countable) but it is only intended as
an aid to intuition.

3.3.4 The Category of Acceptable Models

It is interesting to consider what sort of structure the class of
ok-models forms. Clearly, they form a full subcategory (call it "or) of Algp
since all the morphisms between objects in the subcategory are retained. It
is only the existence of certain morphisms that we use to choose the

53

!ems. However, the ok-Nct ,tiels do not for 51 11 an equational variety. By the
Birkhoff Variety Theorem (in Manes, 1976), if V is a variety and A is in V
thei all of As quotient algebras are :3 V. (B is a quotient of A if there is an
epimorphism A -D B). Now the degener te P-g i,:,ebra (the one whose
carriers are all s%Jews, sets) is a quotient of every ok-model but it is not
itself in OK, in our exaris ple at least, since there is no houomorphis
Deg D and no monomorphism D Deg.

Ttli is has relevg nce to the view at these specifications represent
ebraic theories. As t(tinted out earlier, the category of IPC Weis of Thp is

isomorphic to the variety of P-algebras. It is clear therefore that it is
I/A/possible to present a theory all of whose ikodels are ok-mno,els. 1 1 % is
fact appears i ,e, cut across Wand's (1980b) hope that "such restrictions (on
the class of acceptable 	els) seem., to depend only on the theory fild not
on the specification".

To su Di arize, it has been argued that none of the approaches to the
se Di antics of algebrg'c data ty spe ications extend satisfactorily to our
use of a eb gic presentations for describl putirau irag language. A
possible solution is to entend the specification to consist of a signature,
so .3 , e equations egad a description of a particular, suitably abstract algebra
as %e sub-final Dot tie!. For the applications dealt with in this thesis such
restrictions on the class of Diodels %ever come into play since all our proofs

e either general enough to apply to All . s els, or we deal with a single
specific D odel. However, it is necessary or at least desirable that whe
usirc,1,: equational seri'' , g %tic presentatiols to ,rescribe the se fui 2 *tics of a
progra 	In* 4usge the class of acceptable D odels be dearly delineated.

133.5 1re2Ilv Ilmgm-DTTgAmm Svmgogalc Sioniogaues3

As uentioned briefly in 03.3.2, the work of later chapters fro 33, 	e
to time requires that there be no junk in the carriers of the syntactic sorts.
Basically, without tA 7 s restriction structural induction over the language
bec.o b , es invalid and the unnecessary ii a position of such a Hu itation on the
syllable proof techniques is unwarranted.

At the level of the algebras or II odds of a theory we can easily
for Elise this restriction by the qualification that the ok-Dodels Dust be
reschgble on the syntactic sorts (Sanella & Wirsing, 1983). 111 we denote

54

the set of syntactic sorts of some presentation P by S, then a P-algebra A is
reachable on S provided h: Tp -0 A is such that hs is onto for all s E S. With
such a condition being satisfied we may clearly use structural induction
over the language within any particular ok-model. However, we will need
to use induction at the level of the theory rather than the models so the
restriction we require will need to be on the theory rather than the models
of that theory. Thus we need the concept of a theory whose only models
are initial ones (which can be extended to a theory whose models are
"partly initial").

As a brief example consider the following presentation for natural
numbers with an equality operator.

sort Boo!
tt: -0 Boo!
ff: -0 Boo!

sort Nat
zero: -) Nat
sum '4 Nat
eq: Nat x Nat Bool

Equations
eq(zero,zero) = tt
eq(zero,succ(n)) = ff
eq(succ(n), zero) ff .

eq(succ(m),succ(n)) = eq(m,n)

Now while the theory of this presentation has equations such as
eq(succ(zero), succ(zero)) tt, eq(succ(succ(0)), succ(succ(0))) tt and so on,
it does not include the equation eq(n,n) = tt. This is simply because there is
a model of the theory whose carrier for Nat has some element, say Q, that is
not the value of any term (i.e. it is junk) and eq(Q,Q) = ff. Thus, by our
definition of algebraic theory in 62.3, eq (n,n) tt is excluded even though
we would intuitively wish it to be true. If we could somehow constrain the
theory so that Nat was freely interpreted (i.e. only the initial model is
allowed) then we could be sure that the carriers for Nat were always in
bijective correspondence with the set (zero, succ(zero), succ(succ(zero)) ...)
so that no such Q could exist and we could apply induction over Nat to
establish such properties as eq(n,n) = tt not given by the rules of equational
inference alone.

55

Fortunately a mechanism for expressing such restrictions is already
available and was mentioned briefly in 83.3.1. It is the "initially-restricting
algebraic theories" of Reichel (1980) or the data theories" of Clear (Burstall
8c Goguen, 1979). Indeed the term "induce" was used in earlier versions of
Clear (Burstall & (loguen, 1977) which more directly suggested the effect of
such restrictions. We consider a long and technical discussion of these new
theories to be inappropriate at this point and refer the reader to Burstall &
Goguen (1979) and Reichel (1980).

The most important aspect to us is that we may insist that some sorts
must be freely interpreted in all models without being reduced to consider
a sub-class of the models of the theory; the restriction is on the theory
itself. Thus we may mark all of the syntactic sorts of our presentations to
be freely interpreted without relinquishing our claim that we are
presenting algebraic theories. To this end, in all presentations from this
point on we will distinguish those sorts that are subject to initial
interpetation by denoting them as syntactic sorts as for example:

syntactic sort Lambda.
const: B -• Lambda
•••

It will always be exactly those sorts representing the abstract syntax that
will be so marked. The first point at which we will actually need such
constraints on our semantic theories will be in 84.4 and we will continue
the discussion there when faced with a realistic example.

56

Chapter 4
Congruence of Semantic Models

The notion of semantic congruence is an important one in the
denotational semantics literature, especially in relation to proofs of
correctness of compilers or interpreters. In this chapter we intend to
develop the concept against the algebraic background developed so far and
atterapt to pin down exactly what constitutes a semantic congruence, a
subject discussed only in loose, general terms in the denotational semantics
literature.

Our approach will be to consider a sequence of several simple
examples using them to clarify our intuitive notion of congruence for each
of them, with a view to evolving a formal algebraic definition of semantic
congruence. Having done that, we show that the clarified definition and its
algebraic foundation combine to simplify many (though not all) proofs of
congruence that appear in the literature. Indeed, it makes possible some
proofs that cannot be realised by the traditional approach. As well, we feel
that our way of expressing the congruence is more direct and therefore
more appealing than the predicates generally used in denotational
semantics.

57

4_1 Algebraic View of Semantic Congruence

An important question in the study of programming language
semantics is whether or not two semantic definitions are congruent; that is,
do they describe (semantically) the same language. This is particularly
relevant in that an established technique for demonstrating the correctness
of a translation involves a hierarchy of semantic models and the
establishment of such a relation between the consecutive models. Since our
work here is characteristically algebraic, it is natural for us to seek an
algebraic formulation of the concept of semantic congruence. Further, we
consider the fixing of a formal notion of congruence, algebraic or
otherwise, to be a valuable goal in its own right.

4_1_1. The Intuitive Concept

Simply put, we will consider two semantic models to be congruent
provided they give equivalent meanings to the same language. Having
stated that, it quickly becomes apparent that "equivalent meaning" requires
some clarification, especially when these meanings may be values from
quite different domains Little help or guidance can be found in the
denotational semantics literature other than loose generalizations. The
most that is offered by Stoy (1977) is the following:

"The exact details of such (congruence) conditions depend on the
details of the definitions being compared, but the general idea is that
two definitions are congruent if it can reasonably be claimed that
they are defining the same language."

A more detailed discussion occurs in Milne & Strachey (1976) though it
only really applies to the example language Sal around which the entire
book revolves. Even so, apart from stating that if a program does not
terminate under one of the semantic definitions then it must not terminate
under the other, no guidelines are offered. Thus there is nothing to prevent
us putting forward quite pathological conditions and claiming that they are
a statement of congruence. A rather extreme example would be to claim
that two definitions that always return different answers for identical
programs are therefore congruent. So although we have a fairly clear
perception of what we require of a congruence we have absolutely no
formal basis on which to work.

4_1.2 Lambda Calculus Congruence Statement

58

The first example we consider is the lambda calculus, partly because
of its smallness and partly because we have already discussed a semantic
presentation LC and a (denotational) semantic model, Den. We wish to
consider the congruence of Den with a particular operational semantics of
the lambda calculus. The full details of the semantic definition are given at
the beginning of 64.2 rather than here since it seems more desirable to
have the formal definition close to the proof for easy reference at that
stage. In the operational semantics, we have the same domain B of basic
values, but FUN is replaced by a new domain CIO (for "closures": Landin,
1964) of triples that gather together the information required to re -present
the meaning of an abstraction (i.e. its body, its bound variable and an
environment). Similarly ENV is replaced by the domain E of lists of
identifier, value pairs. A function apply interprets closures, mimicking
the direct application of members of FUN to arguments. The new semantic
function is Eval: Lambda x E IB + CLO] and the semantic equations are
very similar to these in the denotational definition.

The best intuitive notion of congruence betwen those two semantic
definitions can obviously be given in terms of two functions: one
embedding U into V and the other relating the finite environments of E to
elements ENV. l u in V
Value (u) =

Aa.Valfinl EN(e)Ix/al in V
EN(e) = Ax.Value(Lookup(x,e))

if u E B

if u = 	E ao

The function Value sends closures to the functions they encode while not
affecting basic values. EN constructs a function which looks up the value of
an identifier in e and embeds this value in V. Using these functions the
intuitive congruence is the following:

For each • E Lambda,
Value(Evali011e) = Valk)] EN(e)

Two points need to be made here. First, the simplicity of the relation is
largely due to the fact that the two models "look the same" in a sense, only
really differing with respect to the domains involved. Second, despite the

59

apparent simplicity this congruence Cannot be established by the
traditional techniques of denotational semantics (Turner, 1979). This
problem, though it looms rather large, will be overlooked for now since we
are presently concerned only with what constitutes a congruence and the
issue of its provability is deferred to 64.2.

In 63.1.2 the point was made that we can consider denotational
definitions as algebras and indeed we showed Den to be a model of the
lambda calculus presentation LC. By the same argument, the operational
definition we are presently discussing is also an algebra (we shall call it Op)
and will also be shown in 64.2.3 to be a model of LC using a style of proof
identical to that used in 63.1.2. Thus, if we assume (for now) that Op and
Den have the same signature E, then the congruence we wish to establish is
exactly a I-homomorphism provided we add identity maps for B and
Lambda. By definition, if h: Op -0 Den is a E-homomorphism consisting in
part of hu: u V and hE: E -0 ENV then it must satisfy hu(Evalkie) -
Vall1011 hE(e) which is exactly the condition required of Value and EN.

While it may seem that there are still many loose ends we make the
claim that for this example at least, an algebra homomorphism correctly
constitutes a congruence.

4.1.3 Addition Expression Congruence Statement

It is not at all difficult to imagine a congruence relation that does not
fit into the rather narrow definition proposed above and it is an example of
such that we wish to explore here. The language consists simply of
numerals and a plus sign (bold to distinguish it from the addition operator)
and the semantics we will consider are the usual direct semantics and stack
semantics. The definitions are brief enough to give both here and in 64.4.1.

Syntax
<Exp: = <to I <MEI)) + <Exp> 	(again we will blur the Numeral/

Number distinction)
Domain
n : N
	

(natural numbers)

Semantic Function
ED: Exp N

60

(DI) EDffN1 = n
(D2) EDilei +e211 =8,Dlle111 + EDIe211

direct semantics of addition expressions

Syntax
<Exp>: = <N> I <ExP> <IT>
Domains

(natural numbers)
Fl* 	 (stacks are represented by

sequences of natural numbers)
Semantic Function
Es: Exp x 14* Fr

(Si) SOW =n cat t
(S2) E511e1 + egt = add(Esilepasle))

where add (t) 	+ 	cat (tall(1211()).

stack semantics of addition expressions

Thus the effect of the stack semantics is to push the "value" of the
expression onto the stack. The effect of add is to replace the top two
elements of the stack by their sum.

Again, we can consider the direct semantics and the stack semantics
as many-sorted algebras (we shall refer to these algebras as Dir and Stk
respectively). However, even the briefest inspection confirms that they
cannot sensibly be given the same signature, so we cannot talk of their
relation in terms of homomorphism. It is clear that a possible statement of
congruence between the two definitions is the following:

For each e E Exp and any E FP,
EDI - (Esti elt

It is also clear that Dir and Stk must be models of some theories (TN) and
Ths given in 64.4.1) so that, for example cat and _11 are realisations of
operators of Ths. In this light, the congruence condition can be seen as
reflecting a relation between ThE, and Th. In fact it is the relation
between theories that conceptually corresponds to homomorphism between
algebras: a theory morphism. So if we denote the theory morphism

61

embodied the congruence state newt above by a: Ths -0 Thp then what
we wish to show is that Dir = Ua(Stk) where Ua is the derivor of a as
discussed in ■Japter 2. Derivors were used directly for a very si agar
language by Burstall & Landin 0969). We prefer the slightly ri'A ore abstract
expressiov in terms of theory oorphisnlis since we are working in part with
theories; our se fu antic presentations specify algebraic theories. Further, a
derivor in the sense used by BurstnI & ri4i is specific to a particul
algebra whereas giveN, a theory morphis A B we can derive a bode! of
A frolin any of the entire class of Ilicnniels of B by a single standard process.

So far we have two quite different for It ulations of n algebraic
notion of semantic congruence: ,gebra homomorphism and theory
morpn s [cc . In the follow 'N py section we consider a Jiore realistic emu pie in

atte i pt to bring the two t ether.

4.1L4 MEL Comormairge Statememt

The IL n,tuage DEVIL was devised by Henson & Turner (1982) as a
vehicle for introducing comfilegioy 	sB S en lics, an operational se 1,C antics
that they suggest should be seen as a "standard" operational version of
con luation se ,r1 antics. In their view, DEVIL "...contains Icost of the
features wl,,ch force a wedge between denotational nd operational
definitions." Further, the do ains used in the conk pletion definition are Ii

largely based on Landin's (1964) cioseeres and as such rather closely
resemble the do ains of the comitinuatio definition. Despite this si 11111

the proof of congruence is not at all str

ghtforw d and the best that I

Henson & Turrer hope for is that" a st dardisation of the operational
sell. antics dor.- the :,4ies suggested here affects a corresponding
staIhdardisation of the congruence proof and "the structure of the proof
offered (in their paper) Will serve as a paradi for any such proof relating
continuation and completion semantics."

The syntax of DEVIL is given below, though we have in fact altered it
fro 11 1 the or in by eliuinating scams a id labels. This has the effect of
shortening the definitions and the proofs without altering their co bi plexity
since the se 'en antic domains re rn sin virtually as they are in (Henson &
Turner, 1982).

clunica7 I Cork Co 	Ide: = Ezp Icalll Exp monfitilo Fszp

hi

1 I A,

62

Exp Com, Com I while Exp do Com
Exp Ide I true I false I Exp Exp, Exp I valor Corn I proc Corn

Again the complete definitions are given in §4.5.1 though we repeat part of
the domain definitions here to give the flavour of the completion style.
First the continuation semantics:

S-L-.(VxTJ 	 stores
U = [Ide -4 DI X K 	 environments
C = S -0 S 	 command continuations
K = E C 	 expression continuations
F C -• C 	 function closures
Cd: Com 4 U -0 C -0 C

d : Exp --) U K C

Now the completion semantics:

S -IL x V x 11* 	 stores
U = [Ide x DI* X K 	 environments
C- IF x CI + [Exp x U x KI + IE X Kl + (fail) + (final)

command completions
K = [(update) x D x CI + ((call) x CI + Rcond) x C x CI

expression completions
F (Corn xUI 	 command closures
Cce: COM 4 U-0 C-0 S -0 S
E0: Exp4U4K4S-0S

The resemblance is quite close with stores and environments in the
operational semantics being the "usual" list representation of the abstract
function, and command and expression completions being unions of the
various types of closures that arise in the semantic clauses.

Because of this close resemblance one may expect that we could
arrange for the two semantics to be models of the same theory, as is
the case for our lambda calculus example. Indeed, this can easily be seen
by partly expanding the functionality of Cd and Ed to Cd: Com -4 U 4 C 4 S
-0S and Ed: Exp -0U-0K4S4S so that there is an exact match with Co and
So. However, for the purpose of this exercise we choose to treat them as
models of different theories DA -and DB where the major difference is the

63

arity of the semantic functions; CA: Com xUxCxS -0S, EA: Exp x U x x S
4 S, 4: COMXUXC 4 Cand 4: ExpxuxK-0 C. Under this assumption we
need a theory morphism 6: DA .4 DB such that b(CA) = apply.q and b(EA) =
apply..43 where apply : C x S -• S. However, given a continuation model
Cont, and a completion model Comp, U6(Cont) is not Comp, as was
suggested to be the case for the addition expression example since we still
have a mismatch of the domains. Thus it appears that a sensible aim is to
find a homomorphism between Comp and U6(Cont). The intuitive
congruence is the following:

1. h1j(1)011dipa) = tdff di hu(p)hs(a)
2. hs(ColcilpOo) - Cdadhu(p)hc(8)(hs(o))
3. hs(SoilelpKo) Ediellhu(p)hK(K)(hs(a))

where
hu: Ude x DI* X K (Ide -) DIx K

hu((p, K>) 	hp(lookup (p,x)), hK(K)>
hs: 	x 	-+ 	VI

115(0) 	value(t,a)
hc: x CI + [Rip x U x KI + IE x KI + (fail) + (final) IS Si

h($,O) hF($)(12c(8))
h(e,p,K) =Edffeihu(p)hK(K)
hc(c,K) hK(K)(h(c))
h(fail) =Aa.?s
h(final) - /lox

hK: ((update) x D x CI + ((call) x CI + Rcond) x C 	[13 -+
hK(update,6,8) /as". 8(a[6/cn
hK(cal1,8) = Ac. 8(c)
hecond,01,82) - Av. (v -+ 81:82)

hF: (Com x 	IC CI
hF(c,p) = edlcihu(p)

The algebraic interpretation we place on this congruence condition is that
we wish to show the existence of a homomorphism embodied in the various
h functions from the model Comp to a model derived from Cont. The
derivor is rather obscured by details since it is extremely simple (and
perhaps rather contrived) but it can be detected in equations 2 and 3 above
where the right hand sides have the explicity parenthesised form
Ccillcip0 (a) and Edielpic (a) to make quite clear that we are composing the
semantic functions with "application to the store".

64

Our formalised algebraic notion of semantic congruence is the
following:

Given two semantic models A and B for (syntactically) the same
language where A is a model of some theory ThA and B is a model of
some theory Thg; if there exists a theory morphism 6: ThA 4 Thg
such that there is a homomorphism h: A 4 U6(B) (or h: U6(B) A)
then we may say that A and B are congruent

It is quite easy to fit the simpler examples of 64.1.2 and 64.1.3 into this
framework. For the lambda calculus example, since both semantics are
models of the same theory, the theory morphism part of the congruence is
the identity. Similarly , for the addition expression example the
homomorphism is an isomorphism.

In 64.6 we will meet a complication that does not arise in the simple
cases outlined so far. While at first sight it may not seem to fit the
definition above it will not cause us to alter this relationship in any way.

4.1.5 Relation to Initial Algebra Semantics

In 63.2 we claimed that the initial algebra semantics approach was
the most fundamental one and that other semantic styles including our own
can be reduced to the simple concept of homomorphism and a semantic
algebra with the same signature as the abstract syntax. Thus it is natural
here to consider how our notion of semantic congruence translates into the
initial algebra framework.

In outline, ourlechnique for establishing a congruence between two
semantics A and B is as follows. First present theories_ThA and Thg of
which A and B are respectively models and define an appropriate theory
morphism a: ThA -0 Thg. Now generate U 0(B) and show there is a ThA-
homomorphism between A and U 0(B) (in either direction). A possible
variation available is to present a third theory The, define theory
morphisms a: The ThA and 13: The 4 Thg, and find a The homomorphism
between Ua(A) and Up(B). However, this process of factoring the relation
into two parts has not proved necesary in any of the examples we have
ever considered and it is difficult to imagine even a most contrived case
where a direct theory morphism cannot be found. Consideration of the
number of proofs required to establish such a congruence (A is a model of

65

ThA; B is a model of ThB; a is a theory morphism; and a homomorphism
exists between A and U0(B)) may be rather daunting but they are generally
very simple (especially the first three) and at least they clarify exactly
what must be proven.

ThA
	a 	ThB

AlgA 	 Alga

It should be made clear that if we are attempting to show that two
semantic definitions are congruent then we need only concern ourselves
with the existence and not the nature of the homomorphism. Thus
unless we are interested in exactly how the two semantic definitions
correspond we need not even bother writing the homomorphic relation
down provided we can merely establish its existence. A rather pleasing
aspect of our formulation of semantic congruences is the split into two
discrete steps. The homomorphism is concerned solely with relating the
semantic objects ("meaning" values) of the two definitions , while the
theory morphism specifies an "implementation" of the semantic functions.
Indeed, Goguen et al (1977) use the similar notion of derivor to formalise
the concept of implementation for abstract data types. Further, this split
allows us to be a little more general: a theory morphism ThA ThB
provides a means of deriving a ThA- model from every model of ThB so
there is no need to repeat this part of the proof for each model separately.
Actually, in some cases, such as where A is initial in AlgA or where there is
a homomorphism A -) U 0(TB) we may establish a complete congruence
between A and every ThB-model all at once.

In terms of initial algebra semantics, the technique we have been
discussing demonstrates that the following diagram exists and commutes.
The abstract syntax is the initial E-algebra Tz and SE andS'E are the

66

semantic E-algebras respectively derived from A and U G(B) as described in
§3.2.3.

The homomorphisms g and k exist in A and 110(B) as (a set of) operations
representing the semantic functions provided the semantic equations are
homomorphic as discussed in §3.2.2. If there is a homomorphism, say
h': A U0(B) which clearly must be an identity (or isomorphism) on the
syntactic subalgebra of A then h'.g = k.h = k so h is the restriction of h' to
the semantic part of A and the diagram commutes. Basically, the fact that g
and k are unique homomorphisms allows the mere existence of h to
guarantee commutation.

The similarity with the so-called "Morris-square" (after Morris,
1973) is worth noting here. In essence, his advice is that to prove compiler
correctness requires to show that a square of homomorphisms with source
programs, source meanings, target programs and target meaning on the
corners commutes.

source
language L

semantics

compile 	> T target
language

semantics

NIP

source 	NI
meanings

I) target
meanings

encode

Now if source programs and target programs are identical as they are here,
the compiler becomes completely trivial and the square collapes into the
triangle diagram above.

67

We have yet to comment on the relationship between pairs of
semantic 1-algebras B and U 0(B) for some theory morphism a. If we
denote the E-algebra corresponding to B and U0(B) as RE and S'E
respectively, it is clear from inspection of the cases dealt with elsewhere in
this thesis that SE can be obtained from RE in a fashion similar to the
application of Uo. It makes little sense in this context to think of S's and RE
only in terms of 1-algebras since U o only has an interesting effect on the
semantic sorts and operators and these are "forgotten" when generating S'E
and RE. Perhaps one intuitively helpful way to view the situation is to
consider U0 as having the effect of renaming some of the derived
operators of B (in the clone of B; §2.1) and forgetting others. Thus B and
U0(B) can be considered as the same object viewed from the two attitudes
of a ThA-algebra and a ThB-algebra, and their semantic 1-algebra are
similarly related. Basically the effect of U 0 is either to remove unnecessary
complexity, say replacing a variable by a constant as in moving from
continuation semantics to direct semantics by always supplying the identity
continuation; or add in further (unnecessary) complexity by composing
functions to consider extra arguments, as in going from direct to
continuation semantics by composing the direct semantic function with
"application of continuations to stores". In brief , these two examples are
represented by the following two equations respectively:
CBI dipa = kir* (Aa.a)a and CcIldpea = 	cipa).

Our definition of semantic congruence may seem excessively
restrictive especially given that to the present some such relations are not
even able to be established. However, we maintain this view to be the
appropriate one and that "congruence conditions" that fall outside our
definition are "relations" or "facts" that may indeed be important or useful
in themselves without actually being congruences. In the following sections
of this chapter we will work through some examples (including the three
already introduced) to test the usefulness of the algebraic framework we
have set up. In most, though not all cases initiality assists us in proving the
existence of appropriate homomorphisms.

68

4.2 Lambda Calculus Example

In this section, largely taken from Baker-Finch (1984b), we
investigate in detail the congruence of the denotational and operational
semantics introduced in §4.1.2. The operational definition follows, while
the denotational one may be found in 63.1.2 and the presentation LC is
given in 63.1.1.

Domains
U=B+CLO
CLO = Lambda xIde x E
E Ode x U)z
Semantic Function
Eval: Lambda x E U

(El)) Evallc: constantlle = c in U
(E2) Evalllx: Idele = Lookup(x,e)
(E3) Evalfillx.0 e = <,x,e in U
(E4) Evelio((f3)1 e = apply(Evalial e, Eva1l4311e)

where
Eval110 Extend(e,x,b) if a =

apply (a,b) =
otherwise

Extend(e,x,u) = <x,u>.e
2nd (ea) 	 if i exists s.t. 1st (e4i) = x and

Lookup(x,e) = 	 V j < 1st (e4j) x
{

otherwise
&a is the ith element of the list a and 1st and 2nd respectively return
the first and second item of a pair.

operational semantics of lambda calculus

We begin by briefly following an attempted proof of the congruence
Value(Eval1144 e) = ValisS EN(e) described in 64.1.2 using the traditional
techniques, to demonstrate how the proof breaks down in that situation. In
outline, for our algebraic style of proof we intend to show that Op (the
algebra corresponding to the operational semantics definition above) and
Den are both models of LC and that furthermore Op is an initial model of LC.
Thus by initiality there is a unique homomorphism mapping Op to Den and
this can be shown to be the strong congruence desired. Den has already .

69

been shown to be in AlgLc (53.1.2) and the proof for Op is exactly
analogous. By showing that the unique homomorphism h: TLC -> Op is
bijective (set-wise) we establish the initiality of Op. It will be seen in
64.2.3 that there are some difficulties involved in this second step.

4.2.1 The Scott-Strachey-Milne Approach

This section is a summary of a paper by Turner (1979), a least up to
the point where the proof of congruence initially breaks down. The proof
techniques are basically those developed by Milne (1974). First we repeat
the definitions of the embedding functions and the congruence condition.

l u in V 	 if u EB
Value(u) =

EN(e)[x/a1 in V 	if u = 	E CLO
EN(e) Ax.Value(Lookup(x,e))

For each 0 E Lambda,
Value(Evall01e) = Va1101 EN(e).

Structural induction over Lambda is not a valid means by which to attempt
a proof of this congruence. This is clear due to the fact that the operational
semantics does not directly provide the meaning of a A-expression in terms
of the meanings of its subcomponents. Rather, Eval is given as the
fixed-point of a certain functional so fixed-point induction suggests itself as
the appropriate proof technique.

In fact one half of the proof succeeds, namely Value(Eval1101e)
Va1101 EN(e) where "4 " is the usual "less defined than or equal" operator. If
we define a function F as follows:

Lookup(0,e) 	 if 0 E Ide
F = 	(ri,x,e> 	 if 0 =

applys(Sflod) e,Sf1r311e) 	 if 0 = 0013)

then it is quite straightforward (e.g. Stoy, 1977) to show that
Value(FkG)1[01 e) ValllB EN(e) by induction on k.

The converse, Va1144 EN(e) Value(Evalf01e) however cannot be proved by
fixpoint induction. If we follow through an attempt to establish this result

70

it will be seen that the proof breaks down in the induction step.
Define G as follows:

1 p(a) 	 if 4) E Ide
G = AD1.01.p. 1.a.DIqlp Ix/a] 	 if 0 = 1ix.q

(Dicdp I FUN)(DiBlp) 	 if 0 = a(13)

At some point in the proof we must show
(Gk(.1.)11cd EN(e) I FUN)(Gk(i)1p EN(e)) Value(Evalla ()ile).

By induction it is sufficient to show
V alue(Evaliall e)(Value(Evala131 e)) (V alue(Evalla ()lle).

By the inequality established above the left hand side is an approximation
to (Vela!' EN(e) I FUN)(Vallin EN(e)) which is VallIa(B)DEN(e). So we need to
establish that Valia(13)11EN(e) Value(Evalloc(11)1e), but this is just what we
are trying to provel Thus it could be said that we must prove the theorem
as a lemma to its own proof.

At this point Turner presents a less direct "congruence" based on the
notion that congruent functions and closures must return congruent values
when applied to congruent arguments. Though this is still quite a useful
and natural concept of equivalence we argue that it does not constitute a
congruence.

4.2_2 Op and Den are Models of LC

We have already shown in 63.1.2 that Den is a model of LC. The
proof that Op is a model of LC is equally straightforward by choosing a
carrier of Op for each sort of LC, a function of appropriate arity for each
operator symbol of I (the signature of LC), and show that the equations E

of LC are satisfied by such a E-algebra. Instantiate the sorts as follows:

sort env: E
sort W: U
sort Abstr: CLO

Then the operator symbols and functions correspond as follows:

Op
InjB: B W 	 ioU

71

injA: Abstr W 	 in U
err:-'W
arid: env
bind: env x Ide x W env 	 Extend
find: env x Ide -) W 	 Lookup
A: Lambda x 	x env 4 Abstr 	 < 	>
appl: W x W W 	 apply
M: Lambda x env W 	 Eval

Again, the underline notation has been used for operations written in
mixfix.

To test whether Op satisfied equations 1 to 9 of LC they may be
translated into expressions of Op using the signature correspondence
described above and then verified using the definitions of the operations of
Op.

1. Lookup(<>,x) = I.
(find(arid,x) = err)
Holds by the definition of Lookup since there is no i such that

1 st(041) - x.
2. Lookup(Extend(e,y,u),x) = if x=y then u else Lookup(e,x).

(find(bind(e,y,w),x) = if x=y then w else find(e,x))
Can easily be shown by considering the cases x-y and xoy.

3. Evan: constantlle = b in U.
(M(constant(b),e) = injB(b))
Immediate by El of Op.

4. Evalllx: Idele = Lookup(e,x).
(M(var(x),e) = find(e,x))
Immediate by E2.

5. EvallAx.nle = <n,x,e> in U.
(M(abstraction(x,n),e) - injA(A(n,x,e)))
Immediate by E3.

6. Evallla 	e = apply(Evallall e,EvaliBI e)
(M(application(a,B),e) = appl(M(u,e),M(B,e)))
Immediate by E4.

7. apply(b in U,u)= i.

(appl(injB(b),w) = err)
Follows from definition of apply.

72

8. 	apply((n,x,e) m U, u) = Evalr1I Extend(e,x,u).
(appl(injA(A(r),x,e)),w) = M(n,bind(e,x,w)))
Follows from definition of apply.
apply(i,u)
(appl(err,w) = err)
Follows from definition of apply.

Having thus shown Op to be in AlgLc, we automatically have a unique
homomorphism from TLc to Op by the initiality of TLC. To show that this is
an isomorphism and hence that Op is initial in AlgLc we may either show
that this homomorphism is bijective or show that its inverse is a
homomorphism from Op to TLC.

4_2_3 Op is an Initial Model of LC+E•

We would like to show that Op is initial in AlgLc by showing
hE: TLC,env E, hW: TLC,W U and hA :-LC,Abstr CLO to be bijective, the
other carrier to carrier maps being identities. Unfortunately, hw and hA
are not bijective and we must alter our semantic presentation slightly to
proceed.

The problem lies in the fact that the members of TLc ,w cannot be
characterised by
(injB(b) 1 b E B) u (injA(A(n,x,e)) 1 n E Lambda, x E Ide, e E env) u (err)
which is what is required for a correspondence with U = B + CLO. By
considering a non-terminating 13-reduction, say 111.1x(Ax.xx), MTLc is
defined such that MTLc(11x.xx(21.x.xx),e) = 1M(Ax.xx(Ax.xx),e))E . This
equivalence class contains no terms of the form injB(b) or injA(A(n,x,e)) or
err. Thus, although all functions in TLC are total, each non-terminating
A-expression may have a different meaning so Mnc(Ax.ix(1.x.xx),e)
MTLc(AYW(XYTY),e) MTLc(Ax-xxx(iallx),e) and so on. Now in Op. Eval is
made total by sending all non-terminating A-expressions to i so there is no
bijection TLciw -0 U, Op and TLC are not isomorphic and therefore Op is not
initial in AlgLc.

To retrieve the situation we must restrict the algebraic semantics so
that the error-like terms generated by non-terminating computations are
all collapsed to err. Clearly the non-terminating A-expressions cannot be
finitely characterised, since this would be a solution to the halting problem.

73

We can however extend the set of equations of LC to E+E . where E . is the
infinite (and undecidable) set of equations given below.
c' = (x = err 1 x E TLc,w & x * injA(A(ri,y,e)) for any ri,y,e

& * injB(b) for any b E B)
In effect, E . puts any term occurring in one of the equivalence classes that
make up the carrier for W in TE/Ec that does not also contain a term such
as injB(b) or injA(A(q,y,e)) into IerrIc+E .. The proof that hw: 	U
and hA: TLc+E',Abstr CLO are bijections now goes through easily by
structural induction since TLc.t.E .,w can be characterised by the set
expression we described above.

However we are left with a residual problem. Since we are now
considering the category Algu.i.c . rather than Algu, Op and Den must be
shown to satisfy E+E . rather than just E. To show that Op satisfies E . we first
translate the equations using the signature correspondence.
eop - (x -"1xEU Scx • oly,e> in U for any ri,y,e

8clobinUforanybEB)
where "=" has replaced "E" since Op has already been shown to satisfy E.
Clearly since U = B + (1o, c'op reduces to the single trivially satisfied
equation, I 1.

In trying to show that Den satisfies E . we meet another small
problem. If we translate c' into the notation of Den we get
£ 'Den (x -"IxE V Scx Aa.Valfirlip Ey/a1 m V for any r),y,e

&xplb in VforanybEB)
Now V = B + FUN , but there are many members of FUN that cannot be
expressed in the form Aa.Vallp Iy/a). To proceed we may alter the
algebra Den simply by restricting the meaning domain so that Val is onto;
i.e. Val: Lambda x ENV (V image Val) where V image Val is the subset
of V consisting of only those elements that are the result of applying Val to
some A-expression and some environment. This restriction has no effect on
the semantics but reduces c'Den to an empty set. Further, there is a
E-homomorphism (the identity) from this restriction of Den to the algebra
Den itself. Thus by composition, if we show there s a homomorphism from
Op to the restriction of Den, we may immediately deduce the existence of a
homomorphism from Op to the full Den algebra.

Clearly such convolutions in the proof and such distortions of the
semantic definitions seriously detract from what is otherwise a very

74

straightforward and elegant technique. However we may take heart from
the fact that for those cases where such unpleasant extensions to the set of
equations are necessary, we can work in close analogy with the above
discussion of E'. In S4.3 we make another attack on this problem from a
more basic starting point: The ways in which we make total functions from
what are more naturally partial functions (Eval is a case in point).

To finalise the proof that Op is initial in LC+E we show that
hE: TLc+E.,env E is one-to-one by structural induction over Tu+E.,env
(actually , the carrier of canonical term algebra isomorphic to Tu i, E .). The
details of the proof are easy but are included at the end of 64.2 for the sake
of completeness, as are all other proofs. Finally to complete our proof that
h: TLC+E' Op is an isomorphism we need to show that hE: TLc +E . E is
onto. Again, the proof is by structural induction, this time over E.

4_2_4 The Form of the Homnomorphism from Op to Den

Up to this point we have shown Op to be an initial model of LC+E' and
Den to also be a model of LC+E' and hence there is a unique
E-homomorphism taking Op to Den. From our discussion in S4.1 we claim
that this is all we need to prove to establish a congruence between Op and
Den. However, we feel it proper at this expository stage to address the
question of whether this E-homomorphism is indeed the intuitive
congruence suggested in S4.1.2. In particular we are interested in the
mappings U -o V, CLO -0 FUN and E -) ENV with the carrier to carrier maps
being identities. It will be convenient to define these maps via TLC+E' SO
let g: Tu+E , -0 Den be the unique homomorphism <gE: TLC+E .,env 4 ENV ,
gW: TLC+W 4 V , gA: TLC+E',Abstr FUN>. Then the unique
homomorphism from Op to Den will be (gE. hE': E -) ENV, gw.hw': U -) V,
gp.hA': CLO -0 FUN> where h' denotes the inverse of h.

What we need to show is that gE. hE' is the same as EN and gw.hw' is
the same as Value; i.e.
1. gw.hw(u) = b in V 	 ifu=binU,bEB
2. gw.hw'(u) = 	gE.hi(e)1x/al m V 	if u = <ri,x,e> in U
3. gElEle) - A.x.gw.hwILookup(x,e)).
The proofs are quite direct and simple and are relegated to the end of this
section.

75

The algebraic framework has obviously been very useful, allowing us
to develop a simple proof of a relation that was otherwise unattainable.
The only slight question hangs over the equations E', but as mentioned
previously we demonstrate a technique to circumvent such problems in
§4.3. In essence the reason that the congruence cannot be established by
the traditional techniques is that they attempt to prove the homomorphism
from Op to Den directly. Due to the nature of the definition of Op structural
induction cannot be used and the only alternative, fixed-point (or
computational) induction only goes round in circles. On the other hand, in
the algebraic framework we can use structural induction over TLC and
indeed this is done in the proof that there is a unique homomorphism from
TLc to any other LC-algebra (see Goguen et al, 1977). Proving that TLC and
Op are isomorphic requires further structural induction over TLC and also
over the domains of Op which is quite valid since they are simple data
structures. So underneath all the algebra the proof is in fact simply
(though indirectly) by structural induction.

4.2.5 Proofs

Proposition
hE: TLc+E,env E is one-to-one. '

Proof:
By induction over TLc+c env
Suppose el and e2 are elements of TLc+E ',env and show that
hE(el) = hE(e2) only when el = e2.
case 1: el = arid

hE(el) = <>
case 1.1: e2 = arid = el.
case 1.2: e2 - bind(e,x,injB(b))

hE(e2) = <x, b 	hE(e) g hE(el)
case 1.3: e2 = bind(exinjA(A(n,y,e')))

hE(e2) = <x, oi,y,hE(e)> 	U>.hie) hE(el)
case 2: el bind(e,x,injB(b))

hE(el) = <x, b in U>.hie)
case 2.1: e2 = arid

hE(e2) = <> g hE(el)

76

case 2.2: e2 = bind(e',y,injB(a))
hE(e2) = <y, a in B>.hE(e')
= hE(el) only when x=y, b=a and (by inductive hypothesis)

e-e'
i.e. only when el = e2.

case 2.3 e2 = bind(Cy,injA(A(rj,z,e")))
hE (e2) = <y, <rj,z,hE(e")> Jo U>.hE(e') hE(el)

case 3: el - bind(e,x,injA(A(rky,e')))
hE (el)) = <x, <rj,y,hE(e')> in U>.e
case 3.1: e2 = arid

hE(e2) = <> hE(el)
case 3.2: e2 bind(e",z,injB(b))

hE(e2) = <z, b in B>.hE(e") h(el)
case 3.3: e2 = bind(e",z,injA(A(P,p,e —)))

hE(e2) = 	<P,p,hE(e)> 111 U >lie")
hE(el) only when x-z, n-13, y-p (by the inductive

hypothesis) e=e" and e=e-
ie only when el = e2.

Proorosition:
hE: TLC+,env E is onto. c '

Proof:
Let en be an element of E. We show by induction over E that there
is always an element e of TLC+E .,env such that hE(e) = en.
case 1: en = <>

hE(arid) =
case 2: en = <x, b in U>.en'

by inductive hypothesis, there is an e such that
hE(e1= en', so hE(bind(e',x,injB(b))) = <x, b in U>.hE(e') = en.

case 3: en = (x, <fl,y,en'> in U>.en"
by inductive hypothesis, there is an e' and an e" such that
hE(e') en' and hE(e") = en".
so hE(bind(e",x,injA(A(ri,y,e')))) =

(x, <rj,y,hE(e')> 	U>.hE(e") = en.

77

Proposition:
gw.hw(b in U) = b in V

Proof:
hw'(b in U) = injB(b)
gw(injB(b)) = b in V.

Proposition:
g.h(<,x,e in U) = Aa.Valinl gE.hi(e)lx/a1 in V

Proof:
hvirl<n,x,e> 	- injA(A(ri,x,hE(e))),
gwlinjA(A(q,x,hE(e)))) = Aa.Vall411gE.h(e)Ix/al in V.

Proposition:
gE.hE'(e) - Ax. gw.hw(Lookup(x,e))

PEA:

By induction over E.
case!: e

gEhEle) = g(arid) = ALL v
Lookup(x,<>)
SO gw.hwILookup(x,<>)) = gw.hwliu) = g(err) =
so ALL v Ax.gw.hw(Lookup(x,0))

case 2: e =
gE-11E (e) = gE(bind(hEle1,x,gw.hw(u)))

= gE.hee'llx/gw.hw .(u)]
= i .

J
 8E-E()() 	 if z x

1 gw.hw .(u) 	 if z = x
Az. JAL gw.hw(Lookup(x,e))(z) if z x (induction)

lgw.hw'(u) 	 if z = x
= Az. f gw.hw(Lookup(z,e)) 	if z x

lgw.hwTh) 	 if z = x
= Az. Igw.hwThookup(z,<x,u>.e') 	if z x (since z x)

1 gw.hw'(u) 	 if z = x
= Az. I gw.hw(Lookup(z,e)) 	if z x

lgw.hwILookup(z,a,u>.e .) 	if z = x
(for any e actually)

= Az. gw.hw(Lookup(z,e))

78

4_3 Initial Algebra Fired-Point Construction

A natural, convenient and very common way of defining functions is
to do so in terms of a set of axioms or equations that the function must
"obey". In particular, the semantic definitions given in this dissertation all
use this technique. However, in the case where the equations are recursive
and the function intended to be defined is partial (undefined for some
arguments), there can be many solutions. The following example taken
from Manna (1974) demonstrates this fact. Given the following equation
defining F,

F(x,y) = if x=y then y+1 else F(x,F(x-1,y+1))
all of the following (directly defined) functions are among the possible
solutions for F:

fi(x,y) = if x=y then y+1 else x+1,
f2 (x,y) =if x)y then x+1 else y-1,
f3 (x,y) = if (x) y) & (x-y even) then x+1 else undefined

So if we substitute the definitions of f , f2, or f3 for F in the above equation
we get an identity.

It is natural to take f3 as the function intended to be F above and it
can be shown that f3 is less defined than or equal to any other solution of
the above recursive equation. This observation leads to the traditional
approach of least fixed-points wherein a single distinguished element,
usually denoted w or i and representing the "value" undefined is added
to the domain of the function and a partial order is constructed to reflect
the notion of "less defined than or equal". It is then stated that the
intended solution of a recursive equation is the least-defined
fixed-point of that equation (actually, the functional represented by the
equation); f3 in the case above. An important point to note here is that the
process relies on eliminating partial functions, converting them to total •
functions by adding an extra element to the domains to denote an actual
value representing those places where the partial function is undefined.

Given this rather rudimentary foundation it is possible for us to
temporarily lay aside the widely-used least fixed-point approach and ask
the question: how do we judge the suitability of a fixed-point solution? We
suggest the answer is simply that no "sensible" value should be returned at
a point where the partial function is undefined. In the traditional
approach outlined above there can be (at most) only one such solution

79

because we add to the domain only one value that is not sensible - co, and
that solution is the least fixed-point.

However, the problems we had with initiality of Op in §4.2.3 and the
term algebra construction hint at a different possibility: that of adding as
many different undefined values as there are separate paths of
non-terminating computation (considering the equations as rewrite rules).
We proceed now with a definition of such a domain extension and the
associated solution of recursive function definitions and follow this with an
investigation of some of the properties of the construction and its
application to our work.

4.3.1 Definition

In general the type of function definitions we are dealing with here
feature the following elements:

(a) some domains,
(b) the arity of some functions to be defined to operate on those

domains,
(c) some equations intended to define those functions , possibly

directly or mutually recursive and involving:
(d) certain other pre-defined functions on those domains.

Quite likely (a) and (b) will only be implicit in the definition. If we
consider the names of the domains (a), together with (b) and the arities of
(d), plus the elements of the domains (treated as constant operators) to be a
signature Q, we may generate the word algebra TQ. We can generate the
smallest 0-congruence, s c based on the equations (c). By treating the
functions (d) as sets of ordered pairs, we may further generate the
smallest a-congruence containing s c and (d). If we now take the quotient
TQ/s then the completion of some domain A (say) may be denoted A+ and
can be defined to be

A+ g A u (TQ/EA - 	I a E A))
or, more simply

A+ TQ/s-A
Similarly the completion of f: X -) A is r: -) A + and r (x) = If(x)1.. Again,

f+ fTo/s.

80

An example may help clarify matters. Consider the usual recursive
definition of factorial over the integers, fact: Z -• Z and
fact(i) = i=0 -) 1; i x fact (i-1). The four elements outlined above are
present:

(a) domain - Z
(b) arity of fact - fact: Z -• Z
(c) equation defining fact - fact(i) = i = 0 -• 1; i x fact(i-1)
(d) pre-defined functions - _-0-•1;_:Zx2-•2

x:ZxZ4Z

In this case Ti2 has one sort, Tca = (rfact(ir 1 i E Tizz) u
(ri-0-, 1;r1i,jcTca)u(rixrli,jeTca)u(1-1 -'1iETRz)uZ. Ifwe
respectively call c and the definitions of d £ and c', we get
E = 	(cfact(i)", i = 0 -' 1; fact(i - 1)'> 1 i E Tca) and
c'= (C0=0-01;r,1))u((1=0-, 1;r,plio0)u(ixr,ixpli,jeZ)u

i - 1> 1 i Z)
and TQ/E is as follows:

Z+ To/E----z Z + R
where R = (rfact (i) 	Zneg) u (rfact Or 1 i 12) u

(rixplic12,jEZ+)u(rixr1jER,i€Z)u
(ri-rliER)u
(ri=041;r1iER,jalu(ri=0-, 1;r1j€R,icr)

face(i) = i E Zpos -• 11; rfact(i)
ix+j=iEZ&jEZ-oixj;rixr
1-1 + =iE 2-)i-1, ri-1"
i=0-41;+j=iEZ&jEZ-0

i = 0 1; j ; ri=041;
The overall effect is to add a new undefined element to the

domain for each non-terminating computation unless it can be reduced to
another term for which we already have such an element. For times when
we may wish to be explicit about using such a completion, we introduce the
(generic) function afix: ED -) DI D distinguished from the usual least
fixed-point fix: ID -) DI D but allow the ambiguity of denoting both types
of domain completion as D+. Thus for the factorial example above,
face: 2+ -• 2+ and face = 	1=0 -01; F (i-1)).

Clearly, such a construction satisfies our criterion of giving no
sensible value to points where the partial function is undefined and as will
be seen in §4.3.2, if we use this concept rather than the least fixed-point for

defining the operational se antics of the la rftbda calculus, the need to add ,1111

the rather u pleas t set of equations of E4.2.3 ci n be avoided. ;

81

F ally, we ote that our do 'n coupletions and the function giriz

depend to a degree on the context of the pre-defined functions involved in
the definition. Clearly in our factorial em u& above we could have easily
identified the pre-defined functions to be other than those used, for
example

_=0-01;_xxZxZ-*and

The co5.,pletions will differ in the following way: for the original definition,
Z+ will contain ele reLents such as [1-3 x fact (-1)1 whereas if we used the

ternative set of pre-defined functions, no such ter II can be gener ted.
Thus in the two cases the eleueils added to Z to make 2+ will be different.
This is perhaps a little unfortunate and and suggests that full details of the
pre-defined functions must be given to indicate that the true nature of gliz
and the do gin oorci,pletions. Fortunately, for our applications such det q'fls
are auto0atically included through our use of s natures in se 0 If tic
presentations.

4.31 Tile Lambda Cdcwilloo Ihnoge Ilevilonted

For the traditional proof of congruence of the operation
denotational se antics of the la rill bda calculus the usual partial order/ least $1,

fixed-point construction was used to !lake the functions Eval and apply
total in a sensible way, presumably because it then matches the
denotational se 0 antics and possibly also because the consideration of
alter %gives was of no apparent value. So although it is 31 ost natural to
view the s terpreter as a 11;1, tial function it needs to be 'Lade total so that
it coincides with the denotational definition sd it is therefore convenient
to use the sao e s achinery as de,lotational se 3.1 antics.

Our experience suggests that this is not the ki ost oonve,tient
approach in our algebr 1:c framework. Functions do leed to be made total
to fit our definition of 0, any-sorted algebras, but it would see 0, convenie4t
in the case under discussion to make Op co cide with the initial 0 ode! of
LC. Such a chg ,I,ge to Op could not be 52'd to 2ctually change the se 0 antics
it represents s, lice the change is only to points where the partial functions
Eva and apply are undefined.

82

By using our initial algebra fixpoint explicitly for the operational
semantics, we can arrange that Op is initial in AlgLc. The following
definition avoides recursion by explicit use of at& assuming the
pre-defined functions be to those identified by presentation LC. The
(rather unwiedly) notation used for defining mutually recursive functions
is that also used for the usual function fix and is discussed in Stoy (1977)
and Manna (1974).

au:faint
= B + CLO + (I)

CLO - Lambda x Ide x E
E = Ude x

Semantic Function
Eva!: Lambda x E+ U +

c in U

1

iff=c€B
Lookup(x,e) 	if f = x E Ide

<Eval, apply> = afix (AEA.<14e. q,x,e>, in U 	if f = Ax.n
A(Elloth e, Eilpil e) 	if f - tx(p)

, lab. JEW Extend(e,x, (3) if a =
b. 	 otherwise

>)
Extend and Lookup are unchanged.

operational semantics of lambda calculus (Version 2)

The (perhaps rather surprising) explicit inclusion of an element ".1." in the
domain U does not imply any ordering. Rather, it is a legacy of the
unfortunate and somewhat unorthodox explicit use of in the original
definitions of apply and Lookup for denoting situations other than
non-terminating computations. A more standard technique would have
been to use a further explicit error term (usually denoted ?)) so that in the
original operational definition, U = B + CLO + (7) and ? replaces i in the
definitions of apply and Lookup. Had this been the case, the more
acceptable element ? would also have been used in version 2 of the
semantics rather than the somewhat misleading

The proof of initiality of the algebra associated with the new

83

definition (call it Op') is now immediate since U+ TLC,U and r TLC,E-
This algebra, Op which is in our view a quite satisfactory completion of the
(partial function) interpreter, is an initial model of LC so the equations c'
of §4.2.3 become unnecessary and the congruence of the operational and
denotational definitions is established in the straightforward manner
originadiP'rOPosed. In later proofs involving operational semantics we
shall have no hesitation in using the initial algebra fixed-point construction
rather than the traditional least fixed-point construction.

4.3.3 General Properties and Observations

In this section we wish to consider briefly a number of the more
interesting and relevant properties of the initial algebra fixed-point. This
does not in any way purport to be a complete or structured investigation.

As mentioned in 64.3.1 the "choice" of predefined functions greatly
affects the domain completion generated by our technique. This does not
cause a problem here since the nature of our endeavour is such that
signatures are always provided, but in general some similar explicit
identification of the pre-defined functions is required. Thus for some set of
predefined functions P, we should perhaps write afixp and I)+P rather than
the ambiguous afix and D.

One of the nice features of the initial algebra fixed-point construction
when it is applied to operational semantics is that it is more
computational" than the traditional least fixed-point approach. By this we

mean that the undefined values added to the domain directly reflect all
possible attempts to evaluate the function at a point where it is not defined.
For example, in the case of the definition of factorial above, the result of the
expression fact (-2) is Irfact (-2)1 and other expressions in that
equivalence class include r-2 x fact (-3)', r-3 X -2 x fact (-4)' and so on.
Every (reasonable or otherwise) computation rule will be represented. This
is quite pleasant in a way since if we consider the introduced undefined
elements as error messages then they contain maximum possible
information about what has been asked of the interpreter and the paths it
could possibly follow. In this respect at least, the initial algebra fixed-point
seems more suited to operational semantics than the least fixed-point.

Monotonicity and continuity of functions are very important notions

84

when dealing with the traditional completion technique since they provided
a simple way of ascertaining whether a least fixed-point exists. The
question naturally arises whether such notions are relevant to our algebraic
completion. Our intuition suggests not, since a quotient algebra exists for
any presentation and thus we should succeed with the completion and the
initial algebra fixed-point for any function definition irrespective of
monotonicity. We demonstrate this by examining two simple examples
taken from Manna (1974).

EwanILL
101(x): iT F(x) 0 thenlelse 0
T is a functional corresponding to the recursive equational
definition F(x) = if F(x) =4 0 then lelse 0. T is a nonmonotonic
functional over IN+ -) Nithat has 110 fixed-points.
Our approach is the following.
(a) domain - N
(b) arity - F: N N
(c) F(x) =if F(x) =0 then 1 else 0
(d) pre-defined functions -

if_- 0 then_else_:N x14 x1N4141
So calling the implicity represented signature 0,
To ,N = 14 u (if i= 0 then j else kIi,j,k E To,N) U (F(i) Ii E TizN)
TiVEN = ii u (IF(i)L1i E TQ/EN)
and the two summands are distinct. Thus any attempt to evaluate F
results in an error message whcih is as we would wish.

TIG1(x): if G(x) a 0 then 0 else 1
T' is a functional corresponding to the recursive equational
definition G(x) = if G(x) 0 then 0 else 1. T. ' is a nonmonotonic
functional over [re N1 that has two fixed-points, 0 and 1, but no
least fixed-point.
Our approach is the following.
(a) domain -
(b) arity - G: N -0 IN
(c) G(x) = if G(x) =0 then 0 else 1
(d) pre-defined functions -

if_=0 then _ase_: NxNxIN PI
So calling the implicity represented signature I,

85

TE ,N = N u 	i = 0 then j elsekI i,j,k E TE ,N) u (G(i) I i E TE ,N)
TE/EN = N u 	I I E TE/EN)
and the two summands are distinct. Thus any attempt to evaluate G
results in an error message which is as we would wish.

Clearly the initial algebra fixed-point construction can be useful for
our purposes and we shall make further use of it in the ensuing sections. It
is at least acceptable according to our earlier stated criterion of not giving
sensible values where the partial function is undefined and it can be
argued that for operational semantics where the concept of computing a
result is central, our algebraic domain completion is a better reflection of
the situation than the more usual least fixed-point and complete partial
order style of completion.

86

4.4 Addition Expression Example

In this section we consider the congruence of two very simple
semantic models (adapted from Stoy, 1977) that are clearly from different
theories. As discussed in 54.1.3 the notion of congruence here coincides
with a theory morphism so our Investigation will involve defining the
theory morphism, proving that it is such and examining the derived model.
Since this is the first example of such a congruence (and a very simple one)
we will include considerable detail that in later examples would be
tiresome and could cloud the central issues. We begin by repeating the
semantic definitions given in 54.1.3 and presenting theories of which they
are models.

4.4.1 The Presentations and Models

We refer the reader once again to the direct and stack semantics for
addition expressions which we duplicate here. The algebras associated with
these definitions will be called Dir and Stk respectively.

Syntax
<Exp>:: <FA> I lisp) + <Sip>
Domain
14 	natural numbers
semantic Function
ED: Exp F1

(1) EDINA n
(2) Spiel .e211 	Sple21

Dir-direct semantics for addition expressions

Sulu
(Exp>:: <FA> I <Elio 4. dbcp>
Domains

natural numbers
PI* 	 stacks are represented by

sequences of natural numbers
Semantic Function
Es: Kip x N. -4 W
(1) asInit 	act t

87

(2) este' • e2t - add(sleptsle))
where add(t) - (t4I + V.2)es1(trzi7(tili(t)).

Stk - stack semantics for addition expressions

As would perhaps be expected for such simple semantics involving such
fundamental domains, the semantic presentations bear considerable
resemblance to the definitions above.

syntactic sort Exp
const: N -• Exp
plus: Sip x Sip -• Sip

sort N
zero: -) N
succ: N -• N
sum:NxN-•N

4): Exp N

Equations En
DI. sum(zero,n) n
D2. sum(succ(n),m) sum(nesucc(m))
D3. 4)(oonst(n)) n
D4. 4(p1us(e 1 ,e2)) - sum(4(e2), 4(e1))

- direct semantics presentatioa

Signature Qa
syntactic sort Sip

const: N Exp
plus : Exp x Exp Sip

sort N
zero: -• N
SUCC: N N
sum: Nx N-041

sort Stack
empty: Stack
push: Stack x N Stack

88

pop: Stack Stack
top: Stack 4 N

4: Exp x Stack Stack

Equations Ea
Si. sum(zero,n) n
S2. sum(succ(n),m) sum(n,succ(m))
S3. top(push(s,n)) - n
S4. pop(push(s,n)) s
S5. 4(const(n),$) push(s,n)
S6. 4(plus(e1,e2),$) - push(pop(pop(s1 sum(top(s .),top(pop(e))))

where s' - 4(e2 14(e1 1s))

5 - stack semantics presgntation

To show that Dir is a model of ThD and Stk is a model of Ths we need to
instantiate the sorts and operator symbols of the presentations with
carriers and functions from the algebras and demonstrate that the
equations ED and Es respectively are satisfied. To distinguish between
identical operator symbols from the two presentations we decorate them
with subscripts such as constD and consts. The signature correspondences
are as follows:

Dir
constD: N Exp 	 <Exp>::- <lb
plusD: Exp X Rip Rip 	dirro::. <Sip> • <Sip
zeroD: N 	 0
succD: N N 	 _ + 1
sumD:NxN4N 	 -+-.
ED: Exp 4 N

Stk
coasts: N Sip 	 <11>
plus: Sip X Sip Sip 	<Rip:- <Sip • diiip
zeros: -• N 	 0
succs: N N
sums:NxN4N _ + _
empty: 9 Stack
push: Stack x N -4 Stack 	- est _

89

pop: Stack -• Stack 	 tail
top: Stack N 	 _ 4 1
A: Rip x Stack Stack

The equations of ED and Es are so trivally satisfied that we eschew any
further considerations of proofs that Dir is a model of ThD and Stk is a
model of Th.

4.4.2 The Theory Morphiss and the Derived Model

In 64.1.3 we suggested that the congruence between Dir and Stk
embodied in the following statement:

For all e Ely and t N*,
apIel %stet 41

resembles a derivor or a theory morphism. In this section we explicitly
define the theory morphism a: ThD The, prove that it is indeed a theory
morphism and generate the derived model U o(Stk) which will later be
related to Dir.

Following the convention mentioned in 62 we use a to represent both
the sort map and the operator symbol map.

a(ExpD) - Rips
a(ND) Ns
a(constD) = consts
a(plusD) pluss
a(zeroD) - zeros
a(succD) = succs
a(sumD) - sums
a(t)(e) - top(A(e,$)) for any stack expression, s. Though the
choice of s is irrelevant, it must be specified for a to be fully defined.
The simplest choice is s = empty.

By the presentation lemma (62.3), to show that a is a theory morphism we
need only show Eqn(aXD1, ... 1)4) are in Es. In other words we translate
the equations DI, D2, D3 and 1)4 using the definition of a and show that the
new equations can be established from SI - 56 of Es.

a(D1): sums(zeros,n) = n

90

o(D2): sums(succs(n),m) sums(n,succs(m))
o(D3): top(4(const5(n),empty)) n
a(D4): top(A(pluss(e i,e2),empty)) sums(top(A(e2,empty)),

top(4(e 1 ,empty)))
Both o(D1) and o(D2) are exactly the equations Si and S2 while o(D3) can
be shown from S5 and S3. The final equation o(D4) requires a more
detailed proof.

It is here that our requirement that sort Rip be freely interpreted
comes into play (see 63.3.5). Without such a restriction o(D4) cannot be
established from Si ... S6 by the usual system of equational inference
based on the reflexivity, symmetry and transitivity of equality plus the
substitution properties. Thus a(D4) is not an equation of Ths. Expressed
model-theoretically (rather than proof-theorectically), if we allow a
non-initial interpretation of Rip then in some algebra, say A, there is an
element of ExpA, say Q, that is not the value of any term (i.e. it is "junk")
and AA(Q0) s. Clearly by substituting Q for e2 in 0(1)4) we see that the
equation does not hold for A and thus is not in Ths. Hence it is only
through our insistence that Rip be freely interpreted that induction on the
structure of the terms becomes a valid means by which to find equations
holding in a theory.

Rather than directly deriving o(D4) it is convenient first to establish
the result A(e,s - push(s1 1top(g(e,s2))) for any s2. Using this equation,
the proof of o(D4) is as follows:

topig(pluste ,e2),empty))
- sum(top(4(e2,A(e 1 ,empty))),top(pop(A(e2,4(e i ,empty)))))

- S6, S3
sum(top(push(4(e i ,empty),top(A(e2,empty)))),

top(pop(push(Ve 1 ,empty),top(4(e2,empty))))))
- above result

sum(top(A(e2,empty)),top(4(e i ,empty))) 	- S3, 54
The underlying result is proved by induction over the structure of
expressions.

case 1: e const(n)
A(const(n),s i) - push(s 1 ,n) 	 - S5

push(s ,top(push(11,s2))) 	- S3
push(s ,top(4(n,s2))) 	- S5

91

case 2:e = plus(e ,e2)
4(p1us(e i ,e2),s i)= push(pop(pop(s)),sum(top(s)top(pop(e))))

where If = A(624(81,81)) 	 -56
push(push(s 1 ,top(4(e I ,s2))),top(4%(e2 1 .63(e 1

- inductive hypothesis
push(s ,su m(top(s),top(pop(e)))) - 54

= push(s 1 ,su m(top(A(e2, A(e 1,82))),top(Ate
- S3, S4

push(s1,sum(top(4(e2,4(e1,82))),
top(pop(push(Ate .82),

top(A(e2,83)))))))
- 54

= push(s ,su m(top(4(e2,4(e ,s2))),
top(poptt(e2 14(e

- inductive hypothesis
push(s ,top(push(pop(pop(4(e2,Ate 1

sum(top(4(e2,4(e1,82))),
toP(Polg 4(e2,4(e

- S3
- push(81,top(4(plus(e1,e2),82))) - 56

Having thus shown a to be a theory morphism ThD -) Ths, we may
derive a D-algebra from any S-algebra by the contravariant application of
a. In particular we are interested in deriving a D-algebra Uo(Stk) from the
S-algebra Stk. The carriers of ExpD and ND in U o(Stk) must be the carriers
of Exps and Ns in Stk since the definition of a says that o(ExpD) Exps and
u(ND) = Ns. The following definition of Uo(Stk) uses notation similar to the
semantic definitions of Dir and Stk for comparison purposes.

5,Y11111/
Pb(I <Elio • <Rip

Dalian
14 	 natural numbers
Stiustitlimahla
Sus: Exp -) N

(1) EusInl - (411110)j.1 - (n cat 041 - n
(2) IUSiel e21 (gel e0 (>41

U(Stk) - derived semantics for addition exoressions

92

It would have been possible to come up with the direct definition
aUSIel *e21 Steel] + guste21, but leaving it in terms of as reflects the
fact that Eus is derived from Es . We now move on to consider how Dir and
Uo(Stk) are related.

4.4.3 The Relation Between Dir and 11 0(Stt)

In 64.1.3 it was suggested that proving the congruence Spiel -
(EsIlelt)41 was equivalent to showing Dir Uo(Stk). In fact we have been
deliberately vague in the definitions of Dir and Stk to demonstrate that this
is not necessarily the case. In Stk we have not given precise definitions of
the auxiliary functions 41, 42 and tag particularly their boundary
behaviour. By considering expressions as 041 and 1,61 (0) it It clear that
some sort of error element must be available in both domains N and N* yet
no mention is made of such in the definition. Further, no such error
element is needed in the domain N of Dir so it is clear that Dir and Uo(Stk)
may not coincide exactly depending on how we determine the final nature
of the domains.

Now the intention of Stoy (1977), from which our definitions have
been adapted, is clear: all domains are complete lattices with a
distinguished, incomparable error element whether it is needed or not.
Thus they all have 1, T and ?, with tag(*) - ? and (0)41 - ?. In this case
we could establish the full equality of Dir and U o(Stk). However, if the
domains do not completely coincide we can still establish that there is a
(one-one) homomorphism Dir U o(Stk), and that homomorphism will
satisfy the condition Spiel - austel - (Eget 41 which was the original
statement of congruence.

Hence we intend to remain vague in our definitions of Stk and Dir
and show that Dir and Uo(Stk) are homomorphic irrespective of whether
we have an error element in domain N of Dir. In other words we are
establishing the congruence for several variations on Dir.

We could establish the existence of h: Dir Ua(Stk) by showing Dir to
be initial in TN) (this would require us to eliminate the vagueness in the
definition of N), but a direct proof is simpler. Compare this with our
previous example of the lambda calculus where a direct proof was not even

93

possible using known techniques. The homomorphism (if it exists) consists
of two maps hE: DirEip 4 USExp and hN: DirN -4 USN that satisfy the
following conditions:

heconstmr(n)) - constus(hN(n))
plusDir(e ,e2)) - plusus(h(e 1),hie2))

hN(zeroDir) = wrous
hN(succDir(n)) succus(hN(n))
hN(sumDir(m,n))) - sumus(hN(m),h00)
hN(roir(e)) rus(h(e))

Clearly, the first five conditions are trivially satisfied by choosing hE and
hN to be identity maps. The last condition, translated below into the
notation of the semantic model definitions, requires proof by induction over
the structure of expressions.

hN(rDir(e)) Spiel since hN is an identity.
rfus(hie)) tuslel since hE is an identity.
Proof that Spiel - tusiel for all e:
case 1: e n

EDIel -n
IUSim (1Sinit)i1 = n

gasea: e - ei + e2
IUSiel + e21 (ISIel + e2it

= (adasle211(esle)))41 	definition es
(add(IDIe21 est (Isle Mt 1

inductive hypothesis
(add(EDIe211 cat (Idle cat t))41

inductive hypothesis
((eDle21 + 	II) cat 04.1 	definition add

- (Epley.- e21 cat Oa 	definition ED
= IDIei+ e21

Thus we have completed our proof that Dir and Stk are congruent semantic
models by showing that there is a theory morphism a and a
homomorphism h: Dir 4 Uo(Stk) (which is one-one by virtue of the fact that
hE and hN are identities, and may be onto depending on the exact definition
of the t1 domains).

4.44 Comparison with the Usual Style of Proof

It is interesting to compare the proof we have detailed in this section

94

with the more traditional style of proof suggested by Stoy (1977). The
obvious approach is to establish Spiel - (astelt)il by structural induction
over e, which is in fact exactly what we did for the very last part of our
proof above.

The question naturally arises why all the rest was necessary:
defining presentations D and S aand showing Dir and Stk to be models;
defining a and showing it to be a theory morphism; deriving Uo(Stk); and
finally showing that there is a homomorphism Dir -• Uo(Stk), being the only
part having some correspondence with the non-algebraic proof. Part of the
answer lies in the fact that we have proved something about the
relationship Spiel - (eslellt)41 beyond merely showing it to be true. Since
we have adopted a precisely defined notion of congruence in terms of
theory morphisms and homomorphisms we must work within that
framework. In other words we need to show that the relationship Spiel -
(Eget 1 is a commence and this is where most of the effort in this
section was concentrated.

It is important to note that in this case and indeed every case where
the homomorphism can be directly dealt with (unlike the lambda calculus
example), the proof can be greatly simplified by a different choice of
semantic presentations. If we review the proof in this section it is dear
that most of the work goes in showing that the equations of the theories are
satisfied in various circumstances yet the final crux of the proof, that
/Did = (asI et) 1, makes no use of the equations at all. If, instead of the
presentations D and S we had given only their respective signatures (call
them A and E) without any equations we could have followed the same
style of proof with much less effort. First, to show that Dir and Stk are
respectively models of Tha and Thz we need only show that they have the
appropriate signatures. Second, given that a is a signature morphism, it is
Immediately a theory morphism ThA -• Th! by virtue of the fact that there
are no (non-trivial) equations in the theories. Finally, showing that there is
a A-homomorphism Dir Uo(Stk) is exactly the same as the non-algebraic
structural induction proof.

Thus, for cases where the homomorphic relationship can be directly
established without redress to initiality results the most sensible choice of
semantic presentation is simply a signature Q and the theory represented
is the free theory ThQ. By making such a choice the work involved in the

95

algebraic proof is exactly the same as that required to establish the
congruence result by traditional techniques, so our approach does not in
fact suffer on the grounds of practicality or effort required in comparison
with the traditional, less-structured one.

96

4.5 DEVIL Example

In this section we treat a more realistic example with the intention of
consolidalinithe work already presented. A subsidiary objective is to
demonstrate the facility and expressive power of using algebraic
presentations as semantic definitions, a theme discussed in Chapter 3. The
language is DEVIL (Henson & Turner, 1982) though we have eliminated
gob's and labels since they add length to the semantic definition and
proofs without adding any extra interest. DEVIL in turn was based on the
language uied by Strachey & Wadsworth (1974) to introduce continuation
semantics.

The language was chosen by Henson & Turner because it contained
most of the features which force a wedge between denotational and

operational definitions. We choose it for much the same reason but also
because Henson & Turner's so-called completion semantics offer an
interesting and unusual style of operational semantics. Further, the
notation used for completion semantics is much more directly amenable to
our algebraic treatment than the more usual "interpreter definition" style
of operational semantics (es. Stoy, 1977, 1981). The abstract syntax for
DEVIL is as follows:

c: Com
e: Exp
d: Dec

- dummy Ic; cI 	e I call e I resnitis e I if e then c else c
I while e do c I begin d; c end

e:: - I true I false I e then e else e I valof c I proc c
= var i I d; d

The existence of result blocks (valof c, resultis e) is enough to make a
direct style of denotational semantics inadequate to describe DEVIL.

4.5.1 The Presentations and Models

We begin by detailing the denotational semantic definition of DEVIL.
We offer no commentary other than to note that it is a continuation
semantics and refer the reader to Strachey & Wadsworth (1974) if
necessary. The corresponding algebra wil be called Cont.

97

kininus_saina
T .(

Semantic Do
.u.0 	

•
elan)

v:E.TfF
6:D.L+K

o: Su lu, p. 	
Ude -• x K 0:

K: K 934
‘‘I

0: F (C CI

truth values
locations
expressible values
denotable values
storable values
stores
environments
command continuations
expression continuations
function closures

Semantic Functions
1): Dec U -) S 	x SI
C:Com-'U-4C-)C
1:Exp-• U-•

1. 'Divas' Boo - (pIi/new 01, oInew a/71>
2. di; d2Ipa ti d2lp 'a'

where IX d lips -
3. CIdusanylp0 -
4. Clco; cilp0 Cle.0lp(Clc1lp0)
5. CI Laelp0 - Ile%) (update(pl il)0)
6. CI call elp0 - Ilelp (call))
7. Clresultis elp0 a 8Ielp (p42)
8. CIff e then co else c1lp0 a Elelp(cond(Clcolpe , C1c11p0))
9. Clvhffe e do clp0 fix1X0'. Help (conaldp0 ',OM
10. Clbegin d; c endlp0o Chip Val

where VI dlpo (ps,a 1 >
11. Elam" - K(o(plillt.))
12. throe 	= K(true)
13. ElIalselpK - K(false)
14. Elff eo then el else e2IpK Eleolp(cond(leilpK, ele2IpK))
15. elvalof dpic - CI d (p41,K)(7)
16. El proc dot - K(Cldp)

Auxiliary Functions
new a is a location unused in a.
update de - hva. d e L 8(oldIL/v1); ?

98

call 8 Av. v E F 4 (v1FX3 ; ?
cond (80,80 Av. v E T (vIT 4 Op; elk ?

Coat - continuation semanti for DEVIL

The completion semantics correspond closely to the continuation
semantics above. In fact the correspondence is so strong (compare the
domain definitions) that Henson & Turner(1982) are moved to argue that
completion semantics should be viewed as the standird operational
semantics. An important point to note is that the semantic definition that
follows is first-order in that the domain equations involve only the
domain constructors "+", "x" (and "*") but not "4". Jumps present something
of a problem in this context and Henson & Turner offer "completions" as a
possible solution. These are data items (consisting in part of pieces of
program text) that directly represent continuations.

A more detailed comparison of the domain equations of the two
semantic definitions is worthwhile. Notice firstly that the basic domains of
expressible, denotable and storable values have very similar structures.
Next, the store and environment in the completion semantics are just the
usual list-of-pairs representations of the mapping functions of the
denotational definition. For the operational definition of F the domain of
procedure values, the obvious representation is a closure, directly
analogous to the corresponding aspect of the operational semantics of the
lambda calculus (g4.2.1).

Command completions and expression completions correspond to
command continuations and expression continuations respectively.
Command completions may have the form (text, p, 0> EFxC
or <text, p, K> Exp xUxIC or 4,, so E x K. With the first and second form
we have some text to evaluate, an environment to evaluate it in and a
completion to evaluate next. The third form reflects the fact that
expression completions represent expression continuations K [11 CI, so
given an expressible value te and an expression completion K, 4fr,K> is the
command completion corresponding to the "application" of K to V. Naturally
in all cases in the operational semantics a store must be provided before
any computation can proceed.

Expression completions take one of three main forms, in which the

99

words "update", "call" and "cond" are used as an aid to readability and to
correspond to the auxiliary functions of Cont but contain no actual
information. By providing them with an expressible value and a store, an
intui0eliticloperational) explanation of the various forms is possible.
First,iirti(iend((update,d,0>,v), a) has the effect of assigning It to d in a and
then running 0 on that new store. Next, run(send((calt0),v), a) expects I , to
be a closure (c,p> so the effect is to execute c with the parameters p,0 and a;
i.e. ClcIpOo. Finally run(send((cond,01,02),v), a) expects t, to be a truth
value and accordingly chooses one of 01 or 02 to be run on 0. Thus the
whole philosophy behind completion semantics is to offer a textual (and
therefore referentially opaque) representation of the higher-order concepts
of continuation semantics.

Semantic Domains
T - (true, false)

t: L
v:E=T+F+(?)
6:D=L+K+(?)
v:V=T+F+(?)
a: S = x VI* + (?)
p: U Ilde x Dr x K
0: C 	x CI +

(131p x U x KI +
IE x1(1+
(fail) + (final)

K: K = ((update) x D x CI +
((call) x CI +
[(cond) x C x CI + (?)

•: F = (Corn x UJ

truth values
locations
expressible values
denotable values
storable values
stores
environments

command completions

expression completions
command closures

Semantic Functions
1:1:Dec-'U-)S-P1UxS)
C:Corn-• U4C-*S-PS
6:Exp-•

1. "'war Op° - <bind(p,i,new(a)), set(a,new(a),?)>
2. $(d ; d21po -1)11d2lp 'a'

where t1 d 111po =<fist')
-1)11d211((9)11 d)41)(('11 d Ipa)42)

100

3. Cldwassylp0a run(0,a)
4. Clco; c1lp0a Clcolp(<ci,p,O)a
5. CI i: = elp0a = El elp (update,lookup(p,i),0)a
6. Clean elp0a Ele1p(call,0) a
7. Clresultis elp0a = Elelp(res(p))a
8. CIff e then co else c1lp0a = Elelp (cond,«c0,p>,0>,«c1,p>,0>)o
9. Clvhile e do dp0a run(afixp0le,p,(cond,«c,p),0'>,841,a)
10. Clbegin d; c endlp0a Cldp

where %dip° =
11. Ham = run(send(K,deref(lookup(p,i),a)),a)
12. El truelpKa = run(send(K,true),a)
13. ElfalselpKa run(send(Kialse),a)
14. El if eo then ei else e2IpKa = Eleolp(cond,<el,p,Kme2,p,K4a
15. Elvalef dpKa Cldbindres(p,K)(fai)a
16. Hproc dpKa = run(send(K,<c,p),0)

Auxiliary Functions
2nd(a441) 	if lst(asn) t and V m<n, lst(atm) 01

map(al)
otherwise

map(a,6IL) 	if 	L
deref(b,a)

? 	otherwise
set(a,t,v) - 4,v> cst a
new(a) is a location unused in a.
bind(p,i,6) - «i,6> cst (p1).2
bindres(p,K) -

2nd(p414n) 	if lst(pt14n) - i and V m<n,1et(p414m) • i /
lookup(pi) -

res(p) = pa
send(K,v) - <V,K>
run(fail,a) ?
run(final,a) = a
run((<c,p>,0),a) = Cldpea
run((e,p,K),a) ElelpKa

otherwise

101

{ run(0,set(o,d0a,v)) 	if d e L
run((v,<update,d,04,0) -

? 	 otherwise

1 Cldp0o 	 if v e F, OF - (c,p>
run((v,<call,0>),o) -

? 	 otherwise

vIT run(01,o); run(02,a) 	ift■ eT
run((v,mond,01,824,0)

otherwise

Comp - completion semantics for DEVIL

Notice that the clause for Mirkae e do d involves an infinite data
structure by virtue of the use of afix. Of course, Henson &Turner used the
usual fix operator, but in this case the result is the same. There is in fact a
finite alternative that is no more difficult for us to treat than the above
version, and it will be briefly discussed later.

Following our discussion in 64.3, since we intend to show Comp to be
initial in AlgDA presented below it is convenient (though not absolutely
necessary, see 64.3) to use our initial algebra fixed-point construction for
the completion semantics.

One final point is that we have been quite explicit as to which of the
domains have an error element,?. Again this is because we intend to
establish the initiality of Comp in AlgDA and we are necessarily explicit
about error constants in the presentation DA. Only those sorts that require
error values were given them but it would present no difficulty to have an
error constant of every sort if it was thought desirable to have an error
element in every domain of Comp.

Since we have used the same names for many of the functions and
domains in the two semantic definitions, we shall resolve any confusion
that may arise by decorating those from Comp with a subscript "o" (for
operational) e.g. Co, So and those from Cont with a subscript "d" (for
denotational) e.g. Cd, Ed.

102

We now detail the presentation DA of which we will show Comp to be
a model (the initial one) and DB of which we will show Cont to be a model.
Rather than explicitly including the syntactic sorts we dispense with such
details and use the notation of the abstract syntax. The translation from
one notation to the other is purely mechanical (Goguen et al, 1977).

$ignature
syntactic sorts as for abstract syntax of DEVIL.
sort Bool

tt, ff: 4 Bool
sort Val

injB: Bool 4 Val
injA: Abstr 4 Val
errV: .4 Val

sort Den
injL: Loc 4 Den
injK: font 4 Den
errD: 4 Den

sort Store
empty: 4 Store
set: Store x Loc x Val Store
contents: Store x Den -) Val
errS: -4 Store

sort Loc
new: Store 4 Loc

sort Env
arid: -) Env
bind: Env x Ide x Den -4 Env
find: Env x Ide 4 Den
bindres: Env x Kont Fsnv
res: Env 4 Kont

sort Modff
null: '4 Modif
fail: 4 Modff
apply: Modif x Store 4 Store

Exp x Env x Kont 4 Modff
loop: Exp x Com x Env x Modff 4 Modff

103

sort Kont
update: Den x Modif 4 Kont
call: Modff -• Kont
cond: Modff x Modif Kont
kontin: Kont x Val Modif
errK: Kont

sort Abstr
do: Corn x Env -4 Abstr
contin: Abstr x Modif 4 Modif

: Dec x FInv x Store Env
D2: Dec x Env x Store -• Store
C: Com x Env x Modff x Store 4 Store
A': Exp x Env x Kont x Store -4 Store

EQUAL=
1. contents(empty,d) errV
2. contents(set(a,t ,vnjL(t2)) if f1= t2 then

else contents(ainjL(f2))
3. contents(set(al,v),injK(K)) errV
4. contents(set(o,f,v),errD) - errV
5. contents(errS,6) etT V
6. find(arid,i) errD
7. find(bind(p,S,6),j) //' i-j then 6 else find(p,j)
8. find(bindres(p,K),i) find(pa)
9. res(arid) errK
10. res(bind(p,i,d)) res(p)
11. res(bindres(m)) sc
12. apply(null,a) - a
13. apply(fall,a) errS
14. apply(klo(e,p,K),a) • 6(e, p,K,a)
15. apply(contin(clo(c,p),8),o) = C(c, p,O,a)
16. apply(kontin(cond(01,02),injBatn,a) - apply(81,0)
17. apply(kontin(cond(01k2),injB(ff)),0) = apply(02,a)
18. applyacontin(cond(61,82),injA(a)),a) errS
19. apply(lcontin(cond(81,82),errV),a) errS
20. apply(kontin(call(0),injB(b)),a) errS
21. apply(kontin(call(0),injA(a)),a) apply(contin(03),a)
22. appty(kontin(call(0),errV),a) = errS
23. apply(kontin(update(injL(f),8),v),a) = apply(8,set(a,t,v))

104

24. apply(kontin(update(injIC(K),0),v),o) = errS
25. apply(kontin(update(errD,0),v),o) errS
26. apply(kontin(errK,v),o) = errS
27. loop(e,c,p,O) - k1o(e,p,cond(contin(clo(c.p)300P(eAPADR))
28. DI (var 1, p,o) = bind(p,i,new(a))
29. B2(var I, p,o) set(o,new(o),errV)
30. DI (di; d2, p,a) D1 (d2, D1 (di, p,o),D2 (di, p,a))
31. B2(d1; d2, p,o) D2(d2, D1 (di, p,a),112 (di, p,a))
32. C(dnamy, p,O,o) apply(0,o)
33. C(ci; c2, p,O,o) = C(ci, p,contin(clo(c2,p),0),o)
34. C(i:=e, p,O,o) =ff(e, p,update(find(p,i),0),a)
35. C(e.all e, p,O,o) ,f(e, p,call(0),o)
36. C(resultIs e, p,O,o) = ff(e, p,res(p),o)
37. C(ff e then c1 else c2, p,O,o) = ff(e, p,cond(contin(clo(c1,p).0),

contin(clo(c2 1p),0)),o)
38. C(while e do c, p,O,a) apply(loop(e,c,p,8),o)
39. abegin d; c end, p,O,o) C(c, DI (d,p,o),O,D2(d,p,o))
40. ff(i, p,K,o) = apply(kontin(K,contents(0,find(p,1))),o)
41. Aisne, p,K,o) 22 apply(kontin(K,inj13(tt)),a)
42. E(false, p,K,o) = apply(kontin(KAB(ff)),o)
43. Alf e0 then el else e2, p,K,o) = AIN), p,cond(klo(ei,p,K),

klo(e2,p,K)),o)
44. .E(valof c, p,K,o) = C(c, bindres(p,K),fail,o)
45. .fi(proc c, px,o) -apply(kontin(K,InjA(do(c,p))),o)

DA - semantic Presentation for DEVIL

105

Signature
syntactic sorts as for abstract syntax of DEVIL.
sort Bool

tt, IT: 4 Bool
sort Val

injB: Boo!.4 Val
injA: Abstr 4 Val
errV: 4 Val

sort Den
injL: Loc 4 Den
injIC: font -4 Den
errD: .4 Den

sort Store
empty: -• Store
set: Store x Loc x Val 4 Store
contents: Store x Den 4 Val
errS: -4 Store

sort Loc
new: Store 4 Loc

sort Env
arid: 4 Env
bind: Env x Ide x Den 4 Env
find: Env x Ide 4 Den
bindres: Env x font 4 Env
res: Env 4 font

sort Modff
null: 4 Modff
fail: 4 Modff
apply: Modff x Store 4 Store

sort font
update: Den x Modff 4 font
call: Modif font
cond: Modff x Modff 4 font
fontin: font x Val 4 Modff
era: .4 font

sort Abstr
do: Com x Env4 Abstr
contin: Abstr x Modff Modff

106

Di : Dec x Env x Store -PEnv
D2: Dec x Fsnv x Store -• SU:Ire
C: Com x Env x Modif Modff
B: Esp x Env x Kont Modff

Eauations
1. contents(empty,b) = errV
2. contents(set(o,t1,v),inj1(t2))

	

	-(2 then I,
else contents(o,injL((2))

3. contents(set(o,f,v),injK(K)) errV
4. contents(set(o,t,v),errD) errV
5. contents(errS,6) - errV
6. find(arid,i) errD
7. find(bind(p16),j) - if 	then 6 else find(p,j)
8. find(bindres(p,K),i) find(p,i)
9. res(arid) - errK
10. res(bind(p,i,6)) res(p)
11. res(bindres(p,K)) = K
12. apply(null,o) =
13. apply(fail,o) errS
14. contin(clo(c,p),0) 	p,0)
15. kontin(cond(01 192),injB(tt)) -01
16. kontin(cond(01,02),injB(ff)) = 02
17. kontin(cond(01,02),injA(a)) - fail
18. kontin(cond(01,02),errV) - fail
19. kontin(call(0),injB(b)) - fail
20. kontin(call(8),injA(a)) = contin(a,0)
21. kontin(call(8),errV) - fail
22. apply(kontin(update(injL(0,0),v),a) apply(0,set(o,f,v))
23. kontin(update(injK(a),0),v) a fail
24. kontin(update(errD,0),v) = fail
25. kontin(errK,v) - fail
26. Di (var p,o) bind(p,i,new(0))
27. D2 (var 1, p,o) set(o,new(45),errV)
28. Di(dr, d2, p,o) = D/(d2, DI (di, p,a),D2(d1, p,o))
29. D2(d1; d2, p,o) - B2(d2, 	p,o),D2(d1, p,a))
30. C(doessay, p,0)
31. C(ci: c2, p,O) 	C(ci, p,C(c2, p,0))
32. CU: e, p,O) 	p,update(find(p,i),e))

107

33. C(call e, p,0) = E(e, p,call(0))
34. C(restaltls e, p,0) E(e, ptres(p))
35. C(ff e then c1 else c2, p,0) = E(e, p,cond(C(ci, p,0),C(c2, p,0)))
36. C(while e do c, p,0) 	p,cond(p,C(while e do c, p,0)),0))
37. apply(C(begin d; c end, p 10),o) = apply(C(c, D/ (d, p,o),0),

DZ(d, p,0))
38. apply(EU, p,K),o) = apply(kontin(K,contents(a,find(p,i))),a)
39. E(trn., p,K) = kontin(K, injB(tt))
40. E(false,p,K) = kontin (K, injB(ff))
41. E(ff eo then el else e2, p,K) = E(e0, p,cond(E(ei, p,K),E(e2, p,K)))
42. Ayala c, p,K) = C(c, bindres(p,K)fail)
43. Aproc c, p,K) = kontin(K,injA(clo(c,p)))

DB - semantic presentation for DEVIL

As perhaps would be expected given the many similarities in the
completion and continuation semantics, the two presentations DA and DB
have much in common.

108

4_5.2 Initially of the Completion Semantics

In this section we show that Comp is an initial model of DA and that
Cont is a model of DB. To establish the congruence of Comp and Cont we
then only need to prove that there is a theory morphism from DA to DB. To
show that Comp and Cont are respectively models of DA and DB we need to
specify a carrier from the algebra for each sort and a function for each
operator symbol of the presentation and then show that the equations of
the presentation are satisfied. Again, this is a very straightforward task
and the details follow. Since the equations are all very simply satisfied
(and there are a large number of them) we dispense with those proofs and
provide only the signature correspondences, DA with Comp and DB with
Cont and the equations of the presentations rewritten in the notation of the
models.

Comp carriers for DA sorts
Bool: 	T -(true, false)
Loc.
VaL
	E-V=T+F+(?)

Den: 	D=L+K+(?)
Store: 	S = x vr +(?)
Env: 	U = Ude x D18 x K
Modff: 	C =IF x CI + [Exp x U x KI + (E x KI + (fail) + (final)
Kont: 	K ((update) xDxCi+ [(call) x C I + [(cond) x C x CI + (7)
Abstr: 	F (Com x U)

Comp functions for DA ooerators
DA
tt. Boo!
ff: Bool
injB: Bool -4 Val
injA: Abstr-4 Val
era: Val
injL : Loc -4 Den
injK: Kont -4 Den
errD: -4 Den
empty: Store
set: Store x Loc x Val ,4 Store
contents: Store x Den -) Val

C9.211/
true
false
AT. T in V
M. • inV
?Ir
at 112D
AK. K 1:12 D

0

set
deref

109

errS: -• Store 	 ?S
new: Store '4 Loc 	 new
null: -a Modff 	 final
fail: -• Modff 	 fail
apply: Modif x Store 4 Store 	run
kW: Rip x Env x Kont -• Modff 	AepK. (e,p,K>
loop: Exp x Corn X Env x Modif -> Modff

Aecp0. afixpie'.(e,p,(cond,«c,p>,0'>,0»)
update: Den x Modif -• Kont 	160. <update,6,0>
call: Modff -• Kont 	 AO. cal113>
cond: Modif x Modff -• Kont 	A0102.(cond,01 102>
kontin: Kont x Val -• Modif 	send
errK: Kont 	 ?K
do: Corn X Env -) Abstr 	Acp. (Id,p>
contin: Abstr x Modff -0 Modif 	AO. 4,0>
arid: -• Env
bind: Env x Ide x Den -• Env 	bind
find: Env x Ide -• Den 	lookup
bindres: Env x Kont -• Env 	bindres
res: Env -• Kont 	 res
Dl: Dec X Env x Store-. Env 	Adpa. (1)1c9pa

Z: Dec x Env x Store Store 	Adpa. dip° 42
C: Corn X Env x Modff x Store-' Store

Acp0a. ClcIp0a
E: Rip X Env X Kont x Store -0Store Aeptca. Elelpica

DA eauations for Comp
1. deren<>,d) -?
2. deref(set(oSi,v), t2 in V) - 11(142 then v else deref(a, (2 in V)
3. deref(set(a,f,v), K in V) =?
4. derenset(a,(,v),?) =7
5. deref(?,6) ?
6. lookup(«>,?>j) =7
7. lookup(bind(p,i,6),j) = ii i-j then 6 else lookup(p,j)
8. lookup(bindres(p,K),i) lookup(p,i)
9. res(«>,?>) -?
10. res(bind(p,i,6)) res(p)
11. res(bindres(p,K)) K

110

12. run(final,o) = a
13. run(fall,a)
14. run(<e,p,K>,a) = IeIpKO

15. run(m,p>,0>,a> CI dp0a
16. run(senCcond,01 102>, true in V),O) = run(01,o)
17. run(send(<cond,01,02>, false in V),o) run(0210)
18. run(send((cond,01 102>, e inV),(1) =?
19. run(senCcond, 01 102>,?),a) ?
20. run(send((cal1,0>, T in 11),0) =?
21. run(send(ccall,0>, e in V),O) = run(4,0>,o)
22. run(send(<call,0>,?),o) ?
23. run(send(<update, (in D, 0>,v),a) run(0,set(a,t,v))
24. run(senCupdate, K in D, O v),a) =?
25. run(senCupdate,?,0>,v),a) =?
26. run(send(7,v),a) =?
27. afisDiOle,p,(cond,«c,p>,0*>,0))1 -

(e,p,(cond,«c,p>,afispi01.(e,p,(cond,«c,p>,0'),0))]>,0))
28. MIIvar 4°141 = bind(pinew(o))
29. alive' Bp; 	= set(a,nev.(0),7)
30. d ;d2Ipa 41 - (1)1 d21(1)1 d iipo 41($1 d illpa)t2)i1
31. d ;d211po 42 = 	d21(IN d lip°)41(9)11 diipa)4.2)42
32. eldustaylpeo = a
33. Mc' ;c2Ip0a Clcillp ((c2,p>,0)0
34. CI - elp0o - SI* (update,lookup(p,i),0)0
35. Clean elpeo = Elelp (callfi)a
36. CI reseals elp8a = Elelp trestpila
37. Clif e then c1 else c21p0a Slelp (cond,«c ,p0),«c2,p>,8>)a
38. awhile e do dpEla - SI elp (cond,«c,p),(0whlle e do c, p>,0»,0)a
39. abstain d; c endlp0o = Cid(CNdlpo)i1)8(eDI dlpo 42)
40. al ipica = runtsend(K,deref(lookup(p,ao)),a)
41. II truelpica = run(send0c, true in V),a)
42. lifalselpsco run(send(ic, false ic V),a)
43. tiff .30 then el else e2lpKo = aleolp (cond,(e ,p,K>,<e2,p,K>)a
44. Elvalof dpKo = Cld(bindres (p,K))(fail)a
45. El proc dpKa = run(send(K, <ad)) /Dna)

111

Cont carriers for DB sorts
Bool: 	T = (true, false)
Loc:
Val: 	E-V-r+F+(?)
Den: 	D=L+K+(?)
Env: 	U=1Ide41)1xK
Modif: 	C IS SI + (?)
Kont: 	K 	4 C) + (?)
Abstr: 	F 	4 Cl

Coat functions for DB Ooerators
DE 	 rani
tt: 4 Bool 	 true
ff: 4 Bool 	 false
injB: Boot 4 Val 	 kr. T IR V
injA: Abstr 4 Val 	 k4). e in V
errV: 4 Val 	 ?V
injL: Loc 4 Den 	 kt. f
injK: Kont Den 	 Aic.KI12 D
errD: 4 Den 	 ?D
empty: 4 Store 	 Af.?v
set: Store x Loc x Val 4 Store 	kofv. ogivi
contents: Store x Den -'Vat 	kab. o(6114)
errS: 4 Store 	 ?S
new: Store 4 Loc 	 new
null: 4 Modff 	 ko.o
fail: 4 Modif 	 ?C
apply: Modffx Store 4 Store 	A9o. O(o)
update: Den x Modff Kont 	update
call: Modif i Kont 	 call
cond: Modif x Modif 4 Kont 	cond
kontin: Kont x Val -4 Modif 	kw% K(v)
era: 4 Kont 	 PL
do: Cora x Env 4 Abstr 	kcp. Clcip
contin: Abstr x Modff Modff 	49. 00)
arid: 4 Env 	 <MID, ?K)
bind: Env x Ide x Den 4 Env 	kpi6. p11/61
find: Env x Ide 4 Den 	kpl. (p41)I Ill
bindres: Env x Kont -4 Env 	Apic. <p4.1,K)

112

res: Env -• Kora
DJ : Dec x Env x Store 4 Env
D2: Dec x Fsnv x Store -• Store
C: Corn x Env x Modif --)Modif
.E: Exp x Env x Kont Modif

Ap.p42
Adpo. (VI dip°)41
Ad pa. (VI cOpo)42
Acp0. CIdp0
/tem El elpic

DB mations for Cont
1. Ott.?Xclft.) -?
2. (alt /v1)((t2 inD)1L) - if (1 f2 then te else o((t2th D)1L)
3. tog/v1Mic inD)1L) ?
4. (og/vD(?1L) =7
5. ?(61L) -?
6. (th.?, ?>41)111 =7
7. (pli/6111)0 a if 	:bent) eise(p41)IjI
8. (<1141,K)41)Iil (p41)I1l
9. 41.?,?>42 -?
10. (p[i/61)42 p42
11. <pl.1,Ic>42 = Ic
12. (Acr.o)(o) =
13. ?(o) - ?
14. CIdp (0) - CId1p0
15. cond(01,02)(true in V) - 01
16. cond(01,02)(false 	y) - 82
17. cond(01,02)(mV) -?
18. cond(01,02)? ?
19. call(0)(T in V) ?
20. call(8)($ in V) = ve)
21. call(0)? - ?
22. update(t in D, 0)(v)(o) 8(0g/vI)
23. update (K 	D, 0)(v) ?
24. update(?, 0)(v) ?
25. ?(v) - ?
26. ('DIvar Opo)41 p11/new
27. (VIvir Opo - (Anew (o)/?1
28. Mild ;d2Ipo)41 	d2I(1I dillpo)41 (VI dilpo)a)41
29. (VI di;d2lpo)42 - eD1d2I(VId1lpo)41 (VI dilpo)42)42
30. CI duasaylp0 =
31. CIc1;c2Ip0 CI clip (CI c2Ip0)
32. CIL-CIO a Help (update(pI)8)

113

33. Mall elp0 = Elelp (calla)
34. CI resultIs elp0 a El elp (pa)
35. Cliff e then c1 else c2lp0 a Elelp (conalcilp0,C1c21p0))
36. elvIdle e do dp0 - Elelp(conaldp (ClvhIle e do dp0),0)
37. Climes d; c endlpeo = CI dp (1)11dIpa)410(1)Idlpo
38. Elilpsco = K(o(plillL))(o)
39. Eltruelpic = Karue)
40. Elfalselpsc - K(false)
41. tilf 00 then el else e2lpic a tleolp (cond(gleilpic e2lpic))
42. tIvalof dptc a CI d <pa ,K>(?)
43. Ilproc dpic = ideldp in V)

Having shown Comp to be a model of ThDA, to establish its initiality
it is sufficient to show that the unique homomorphism h: TDA -.Comp is
bijective. Had we not used the initial algebra fixed point completion for our
definition of Comp this would not have been true and we would need to
apply the technique of 64.2.3 to proceed. However as things stand,
statements such as "'while true do dusty" are given the same meaning
in TDA as Comp by virtue of our more appropriate fixed point construction.

As a consequence, when showing h to be bijective we need only
consider the "sensible elements of the carriers of TDA• Such elements are
exactly the ones generated by the operator symbols and constants of the
semantic sorts of DA and not by the semantic operators PI, P2, C and E.
So we need to generate those parts of the carriers of TDA and show them to
be isomorphic to the uncompleted semantic domains of Comp since the
elements added for the completion are the same in both algebras. It is quite
simple to generate such parts of the carriers of TDA by identifying those
operator symbols and constants that are constructors, as outlined by Guttag
& Horning (1978).

TDA,Bool (u, if) T - (true, false)
TDA,Loc= (new (0) I 0 e TDAstore)

L is unspecified in Comp save that new must return a location
unused in the current store. The above set of locations is
certainly sufficient to ensure this.

TDA,Val = (injB(T) 1 t E TDA ,B001) u (injA(4))14) E TDA,Abstr) U (errV)
EV=T+F +(?)

114

TDA,Den (injL(C) I f E TDAL0c) U (injK(K) I K E TDAxont) u (errD)
wD=L 	+(?)

TDA,Store - ((empty) u (set(ol,v) I a e TDA .sure , E TDA,Loc,
V E TDA yap u (errS))*

TDA,Env (arid) u (bind(p.i,e5) I p e TDA,V.I E Ide, 6 E TDA .Den)
u (bindres(p,K) I p c TDA,Env)

wU -1Ide x DJ a x

TDA,modff (contin(0,0) I E TDA,Abstr, 0 E TDA,Modif) u
(klo(e,p,K) I e E Rip, p E TDA ,Env, K E TDA ,Kont) U

(kontin(K,v) IK E TDA .Kont, v E TDAyai) u (1111l0 U (fail)
• C 	x + [Lip x U x + x 	+ (final) + (fail)

TDA,Kont = (UPdate(61e) I 6 6 TDA,Den, e E TDA,Modif) u
(call(0) I 0 e TDAmodff) u
(cond(0 1,92) 181 E TDAmodif) u (errt)

wK - [(update) x D X C1+ ((call) X CI f 1(cond) x C x CI + (?)
TDA,Abstr (cic(c•P) I c e corn. P e TDA,Env)

• F =1Corn X Ul

4.5.3 The Theory Morphisat

To finish our proof of the congruence of the completion semantics
and continuation semantics of DEVIL we need only show that there is a
theory morphism 6: ThDA ThDp, thus ensuring that there is a derived
model Uo(Cont) in AlgDA and there is a homomorphism Comp Uo(Cont)
due to the initiality of Comp established above. Note that we do not need to
write down U6(Cont) at any stage since it is completely determined by the
definition of 6 and the process of proving 6 to be a theory morphism is
exactly parallel to showing the derived algebra to be a model of DA.

As may be expected due to the close similarity between DA and DB,
the theory morphism 6: ThDA ThDp is easily defined and verified. In
fact, 6 takes the sorts of DA to the sorts of DB with the same names and
similarly matches identical operator symbols from DA and 1)8 with the
following exceptions:

6(klo)(e,p,K) 43(e, p,K)
6(loop)(e,c,p,8) = 4)(e, p,cond(p, 41(while e do c, p,0)),0))
6(CA)(c, p,O,o) = aPPIn(43(c, p,0),o)
6(4)(e, p,K,a) = apply8(43(e, p,K),e)

115

Due to the apparent similarites of DA and DB, showing that 6 is a theory
morphism (by showing that the 6-translation of the equations of DA hold in
DB; presentation lemma 62.3) is quite straightforward. All of the equations
of DA either map exactly on to equations of DB, or are trivially true, or
require a maximum of two steps to establish them as a consequence of the
equations of DB. For this reason we dispense with the tedium of a detailed
proof.

As mentioned above (64.5.1), there is an alternative for the while -
statement clause in the completion semantics that does not require the
generation of an infinite data structure for its command completion:
Colvhile e do dp0a - Ie1p (cond,«c,p>,(mhille e do c, p>,8»,8)ci
Henson & Turner's reasons for not using this interpreter-oriented version
are not entirely clear, but the most likely explanation is that they were
aiming to make completion semantics as abstract, or as much like the
denotational semantics as possible. The infinite version also helps to
simplify their proof of congruence by bringing the two semantics closer
together. In constrast, our style of proof is marginally easier for the finite
version. The presentation DA requires the following equation to replace
that for C(while e do c, p,e,0) :

38'. C(while e do c, p,O,o) -
E(e,p,cond(contin(clo(c,p),contin(clo(vhile e do c, p),8)),8),o)

and the operator loop: Exp x Coin x Env x Modff 4 Modff can be eliminated
entirely, since its sole purpose was to construct an infinite term of sort
Modff in the initial model of DA. The elimination of the loop operator also
further simplifies the theory morphism, 6.

116

4_6 Store PL Example

Our final detailed example is an algebraic version of the congruence
proof by Stoy (1981). The two definitions are very different both in
notation and their underlying concepts, one being an interpreter based on
continuations and operating on strings of text, the other a standard direct
denotational semantics. As such, for our algebraic proof more emphasis
will need to be placed on finding appropriate theories and showing the two
semantics to be models than has been the case in earlier proofs.

We make only one minor alteration to Stoy's definitions. Though he
gives the direct (and continuation) semantics for the full language PL, the
interpreter (and hence the congruence) is only defined for a kernel of the
language.

e:: 	1 e(e) I proc(i): e I rec i(aelcreselbl
Oe I ef2e I if e then e else e I let i-e In e
Iterate i to e front e while e

c..:=L=e1whileedocic;c1ifethencelsecl()

full syntax of PL

= i I i(i) I proc
C:: - L-elvhileidocic;clifithencelsecl()

syntax of kernel PL

Stoy cites Dennis (1974) as showing that any PL program can be
transformed into an equivalent one in the kernel language, thus justifying
an immediate simplification of the problem at least in terms of the length
of proofs. We take the view that since the congruence involves only the
kernel language, any reference to the full language is peripheral and
possibly distracting. Therefore our denotational definition is of the kernel
language.

It should be noted that since the semantics are in terms of an
environment only rather than the more usual environment plus store, a
number of the syntactic constructs in the language do not behave as their
appearance may suggest. Thus for example, assignments are more like

117

local declarations so the result of the following PL program is 3 rather than
4.

(i:-3;
lx-Prec (j): (L-4 res j);
k:-p(i)) res i

For the purpose of comparison we shall briefly outline the main steps
in the congruence proof as Stoy approaches it. First define a continuation
denotational semantics to act as a bridge between the interpreter and the
direct denotational semantics. The two denotational definitions are shown
to be congruent by defining appropriate predicates and showing by
structural induction over PL that they are satisified. The proof that these
predicates exist becomes that most difficult part since they are not
monotonic and thus the fixed-point result of Tarski (1955) is of no help and
an induction over the complexity of approximations to reflexive domains is
required. The relationship between the interpeter and the continuation
semantics is then considered. Here, predicates are defined whereby the
interpeter can be shown (by fixed-point induction) to be weaker than the
continuation semantics and the continuation semantics can be shown (by
structural induction) to be weaker than the interpreter. Again, the
existence of the predicates must be established. Finally, since the sense of
"weaker" is different in each case, further work is required to combine the
two results concerning the continuation semantics and the interpreter into
a final relation.

In constrast, our proof requires no intermediate semantic definition
and consists simply of showing the interpreter to be an initial model of a
particular theory Thc and showing that there is a derived model of the
direct denotational semantics that is also a model of The, exactly as we
have done in earlier examples.

4_6.1 The Interpreter

We begin by reconstructing Stoy's (1981) description of the PL
interpreter, noting that simpler examples using the same notation and
concepts can be found in Stoy (1977). Unfortunately, some of the details of
the operation of the PL interpreter are either loosely explained or referred
to Dennis (1976) which we are unable to obtain. When showing the
interpreter to be a model of Thc (presented below), we will therefore need

118

to use our intuitive understanding to make such operations explicit.

The interpreter operates on states which are textual
representations of the current stage of program execution. Thus,
Interpret is a function from states to states defined as follows

Interpret- fix (11010. Term/n/11(0) 4 0, 0(Slop(a))) where a
rerloilLe state occurs when an error arises or when the execution is
successfully completed. In our usual fashion we differ from Stoy's
intention and construe the above equation to be in terms of the algebraic
fixed-point. The syntax of states is as follows:

0:: - evil e in p; K I perform c in p;B I
assign v to i in p; I done v I error

Here K and e denote the "continuations" of expression and command
evaluation, and their syntax reflects the notion of "incomplete stater.

K:: = done <> I assign <> to i in p; 8
8:: = perform c in 0; 8 I eval e in 0; K

The symbol 0 represents missing components (values or environments), so
that
Append • val:v 10K
and
Append 'env': p toe
both produce complete states. (This is an example of the operations whose
definitions must be formalised before the proof is possible). Environments,
p, are data structures with the following auxiliary operations defined on
them:
Has (p,i) tests whether p has a component with selector i.
Select (p,i) gives the component of p with selector i.
Append iv to p gives a new structure containing tfr with selector i,
replacing any component with selector i in p and leaving all other
components as in p. In the following tables describing Terminal and Step
the notation a royal e in p; K' tests whether a is of the specified
syntactic form and also introduces names for the various components,
which may be used in an arm of a conditional invoked by satisfying the
test. The symbol s bears little relation to the use of the same symbol in the
denotational definition of 64.6.2.

119

Terminal (a) (0 rdone 	v (a 'error')
Step (a) TO

a reval e in p; se 4
e E rr

rerror,),
-0 Append Vid . : Se/ea (pi) to K,

• 111 	(i i r
liss(p,i0) fies(p,ii) -0

Select(p,i0) a rfunction (12): e2 in P2' 4
"oval e2 in (Append i2: Select (p,ii) to p2); K',

Seiea(p,10) = rrecfun 12 (13) : e2 in p2' -•
royal e2 in (Append 13: Select (ph) to

(Append 12: Select (p,10) to p2)); K',
rorror',

rerror', rerror",
e rproc (1): eo' 4

Append Val': rfunction (0: no in p" to K,
e rrec io (ii) : eo'

Append 'Ver : rrecfun io (10 : eo in p' to K,
e rc re: eo" -•

rperform c in p; royal eo in 0; K",
e 93" -•

Append lest: Rep(B) to K

e E 1-011 	...

rerror",
a al rperform c in p; 0' -•

C ri: = 	-•
reval e in p; rassign <> to i in p; 8",

c 'while i do co ' -•
.ffas(p,0 -4 Seiect(p,0 -4

rperform co in p; rperform rwhile i do c.o' in 0; 8",
Append "env":p to 0,

rerror",
rco; ci' -0

rperform co in p; rperform c1 in 0; 0",
c a rff i then c.0 else ci' -•

Ilts(p,0 -4 Select (p, -• rperform co in p; 8',

120

rperfora ci in p; 8',
rerror',

r(r -0
Append 'env': p to 8,

rerroe,
rassign v to i in p; -)

Append 'env': (Append i:v to p) to 8,

rerror"

Int - the PL interpreter

The careful reader may note that by a simple extension of the _
operator, certain type checks have been factored out from the clauses for
while and if statements in Stoy's original definition.

The interpreter is the first semantic definition we have dealt with
that does not seem to fit the initial algebra semantics template of a
homomorphism from a free syntactic algebra to a semantic algebra of the
same signature, as discussed in 53.2. However, by inspecting the syntax of
states and continuations we can make various distinctions and
observations. For example we may readily view the command continuation
reval e in 0; IC" as a function from expressions and expression
continuations to command continuations. The full range of such
observations will be detailed when showing the interpreter (the algebra
hit) to be a model of Thc where C is the continuation semantics scheme
presented below.

Sianature
Sort B

... unspecified but including tt and ff
Sort E

injB: B -• E
fun: Ide x Exp x Env E
rec: Ide x Ide x Exp x Env -• E
errE: -■ B
ok: B -• B

121

sort Env
arid: -• Env
bind: Env x Ide x E -4 Env
find: Env x Ide -• E
has: Env x Ide --•

sort C
eval: Exp x K -• C
perf: Corn x C C
run: C x Env

sort K
assign: Ide x Env x C -4 K
done: K
send:KxE4E
call: ExExK4E

P:Exp-, E
E:ExpxEnvxK4E
C:ComxEnvxC413

fauations
1. find(arid,i) - errE
2. find(bind(p,i,v),j) - if i-j then v else find(p,j)
3. ok(injB(b)) = tt
4. ok(fun(i,e,p)) = tt
5. ok(rec(i,j,e,p)) tt
6. ok(errE) ft
7. has(p,i) ok(find(p,i))
8. run(eval(e,K),p) = E(e, p,K)
9. run(perf(c,0),p) - C(c, p,O)
10. send(assign(i,p,0),v) - if ok(v) then run(0,bind(p,i,v)) else errE
11. send(doney) v
12. send(K,errE) = errE
13. call(fun(i,e,p),v,K) - ff(e, bind(p,i,v),K)
14. call(rec(ile,p),v,K) 	ff(e, bind(bind(p,i,rec(i,j,e,p)),j,v),K)
15. call (injB(b),v,K) = errE
16. call(errE,v,K) errE
17. P(e) - 	arid,done)
18. .ff(i, p,K) - if has(p,i) then send(K,find(p,i)) else errE
19. ff(i1(12), p,K) - if has(p,ii) then if has(p,i2) then

call(find(p,i1),find(p,i2)) else errE else errE

122

20. E(proc (i):e, p,K) = send(K,fun(i,e,p))
21. Arm i(j): e, p,x) = send(K,redi,j,e,p))
22. Etc res e, p,tc) = C(c, p,eval(e,K))
23. E(bp,K) - send(K,injB(b))
24. E(0i, p,K) =
25. E(i Gi2, p,K)
26. C(i:=e, p,0) = E(e, p,assign(i,p,0))
27. C(while i doc, p,0) - if has(p,i) then if find(p,i) then

p,perf(while i do c,0))
else run(0,p) else errE

28. C(c1;c2, p,0) = C(ci, p,perf(c2 10))
29. C(ff i then c1 else c2, p,0) = if has(p,i) then if find(p,i) then

C(ci, p,13) else C(c2, p,0)
else errE

30. CM, p,0) = run(0p)

C - continuation semantics presentation

To show that the interpreter is a model of Thc we need to specify
first the carriers for the sorts of C and then the functions corresponding to
the operator symbols of C. Since the interpreter operates on states (and
continuations) that are syntactic objects, it is appropriate that we choose
certain sets of strings as the carriers of the sorts.

Intl;
IntE - Rep(b) I rfunction e In p' I

rred'un i (j): e in p' I 'error'
IntEnv Ilde x Inte
Into - rperform c in 0; 01 revel e in 0;
Ink - rdone o I realign <>10 i in p; 0'

At this stage, having fixed upon the domains involved in the interpreter's
operation we are able to give appropriate rigorous definitions of the
auxiliary functions left loosely described in the original paper.

Append ''v,/': IntE x Ink -• state
Append 'env':1ntEnv x 'Mc-) state
Append: Ide x IntE x IntEnv -• IntEnv
Select: intEnv x Ide IntE

fits: latEnv x Ide -4 B

{

Append 'val':v to "done<>" -

Append Valv to
'assign 0 to i in p;0' =

Append 'env':p to rperfors c in 0; 0' = rperform c in pr
Append 'env': p toreval e in 03e reval e in p3c'
Appendiv top- (i,v> cut p

rdOne 	otherwise
/ 'error" 	if t, = "error'

'assign t• to i in pr otherwise

retror, if v - "error"

123

Select (p,i) -
2nd(run)

"error'

if n exists s.t. 1st(p4n)
V wn, lst(p4m)

otherwise

i and
i

Ilas(p,O= Select(p,i)• "error"

This definition of Has has been used rather than the more natural version
true 	if n exists s.t. lst(pita)

.ffas(p.i) =
false 	otherwise

The two definitions are clearly not equivalent by virtue of the fact that IntE
includes the error element, 'error'. However, it can be shown by
structural induction over PL that an environment with the error value
bound to an identifier never arises during the interpretation of any
program, thus ensuring that the two definitions of lies are effectively
equivalent in the current application. Further, albeit informal justification
for the acceptibility of the first definition of Has exists in the observation
that the interpreter's sole purpose for Iles is to "protect" the function
Select from failure (i.e. returning an error).

The style of many of the "functions" derived from the interpreter is
reflected by our earlier observation that the string revel e in 03C can be
considered as the result of applying a function to an expression and an
expression continuation. This idea has much in common with the
pioneering work of Goguen et al (1977). Thus the operator correspondence
is as follows:

124

inj13:13 -• E
fun: Ide x Exp x Env E
rec: Ide x Ide x Exp x Env -4 E
errE: E
ok: E -• B
arid: Env
bind: Env x Ide x E -• Env
find: Env x Ide E
has: Env x Ide -• B
eval: Exp x K C
pert Com x C -0C
run: C x Env
assign: Ide X Env x C -0K
done: -• K
send: K x B -0E
call: ExExK

Int
Rep
kiep. 'function (0: e in p'
kijep. "recfun i(j): e In p'
"error'
Ay. -,(v E rerror")
0
Apiv. Append top
Select
His
AeK. revel an 030
h. "perfor B c In <>;e'
ltep. Interpret (Append 'env: p WO)
)uO. "assign 0101 in p;8"
'done o'
kicv. Interpret(Append sval:v toK)
liviv2K. Interpret(

via "function (i): e in p' ->
revel e in (Append 	to p);K",

tt1 "radon i(j): e in p" ->
"oval e in

(Append j:v2 to
(Appeadi: "recfun i(j):e In p'
to p));K",

rerror)
ke. Interpret(reval e in arid;

"done <>")
kepic. Interpret (revel e in p;K')
Acp0. Interpret ("perform c in p;0")

P: Exp -• E

E:ExpxEnvxK-0E
C:ComxEnvxC-+E

The rather messy version of call above is due to the informal notion
of the binary operator a having the side-effect of pattern-matching and
binding appropriate syntactic forms to variables. A more rigorous (though
less expedient) alternative notation would be the analytic syntax of
McCarthy (1962) which consists in part of selector functions that return
substrings of syntactic forms.

The following table of equations is the translation of the equations of

125

C according to the signature correspondence above. It can be easily
established that the interpreter satisfies all of the equations, thus showing
Int to be a model of The.

1. Select(04)= rerroe
2. Select (Append 1:v to p,j) = i=j -4 v, Select (p,j)
3. ,(Rep(b) rerror) = true
4. ,("function (0: e in p' E 'err(W") - true
5. ,("recfun i(j): e in p' 'error') = true
6. -.(relive "(woe) = false
7. Ilas(p,i)= ,(Select(p,i)=rerroe)
8. Interpret(Append 	p to royal e in <>;K") -

Interpret (royal e in p; K')
9. Interpret (Append 'env': p to "perform c Ino; -

Interpret(rperfonac in p; 8')
10. Interpret (Append "varf:v to "assign <> to i in p; -

,(v a "error")
Interpret (Append env*:(Appendiv top) too),
"error'

11. Interpret (Append l'ar:v to 'done <>") - "clone v'
12. interpret (Append 'nil': reffor' 10 K) = 'error'
13. Interpret ("function (0: e in p' "function (1): e' in p''

royal e' in (Append i': v to pi);e,
'function (i): e in p' "redun i'(j'): e' in p''

revel e' in (Append j':v to
(Append "red'un i'(j'): e' in p'' to OW,

rerror1 -
Interpret royal e in (Append iv to p)30)

14. Interpret (rredun i(j): e in p' E 'function 	e' in p" -•
revel e' in (Append 	to p'),e,

"redun i(j): e in p' "recfun i'(j'): e' in p"
"eye e' in (Append j':v to

(Append i': "redun 	e' in p" to p'));e,
rerror) -

Interpret(reval e in (Append j:v to
(Append i: "recfun i(j): e in p" to p));K")

126

15. Interpret(Rep(b) s 'function 01: e in p"
reVal e' in (Append 1% v to p),e,

Rep (b) "rodun 101: e' in p"
reVal es in (Append f:v to

(Append "run 101: e' in p" top'));
"error')

"error"
16. Intetpretrerror' 7unction (1):e* in p" -•

"oval e' in (Append f: v to plx",
"error" E. "rodun 101: e' in p"

"oval e' in (Append Iv to
(Append "recfun 	e' in p" top')); Kr,

"error"
17. Interpret ("oval e In arid; done 01

Interpret (revel e in arid; done <>I
18. Interpret (revel "i' in px") =

His(p,i) Interprel(Append'val% Select (p,i) to K),
"error"

19. interpret ("oval ri 1 (i2) 	crte)
HIS (01) B'es(p,i2)
Interpret (Select(p,ii) 7unction 01: e' in p"

"oval e' in (Append Select (p,i2) top'); Kr,

Select(p,ii) "recfun 	e' in p"
"oval e' in (Append f: Select (p,i2) to

(Append rrecfun f(f): e' in p" to p'));K",
"error"), 'error', "error"

20. Interpret('evalrproc (a& in p;K") -
Interpret (Append 	7unction (i): e in p' to K)

21. Interpret (reval rrec i(j) ..e" in p;ic") =
Interpret (Append VW': "mann i(j): e in p' toK)

22. Interpret (revel "c res e" in p;K") -
interpretrperform c in p; "oval e in <>; K")

23. Interpret ("oval "b' in p3C) -
Interpret(Append 	Rep(b) toK)

24. Interpret (reval "Or In p;K")
25. Interpret (revel ri 1 Qie in p;ic") =
26. Interpret ("perform "i:=e' in p-,(r) -

Interpret (oval e in p; "assign <> to i in p;0")

127

27. Interpret (rperfors rwhile i do c' in pgr)
Seect(p,i)-,

Interpret ('perform c in p;
rperfors rvhile i do c' in 0; 0"),

Interpret (Append 'env': p 100),
retfrOr

28. Interpret (rperform rc1;c2' In p-,0) =
interpret (rperfors ciin p; rperform c2 in 0; 0')

29. Interpret rperform rff i then c1 else c2' in p;01
Has (p,i) Select (pi)

Interpret (Indere' c1 In p;0'),
Interpret (rperform c2 In p01,

rerror"
30. Interpret (roofers rWin p;0) -

Interpret (Append 	p to 0)

All that remains is to show Int to be initial in Algc. To achieve this
we follow the same procedure that was employed in S4.5.2, considering
only the sensible parts of the carriers of Tc and generating these by
recognising the operator symbols and constants of C that are constructors.
Once again, since we are assuming the initial algebra fixed-point completion
to have been employed in the interpreter definition we may assume that
elements of the carriers of Tc other than those generated by the
constructors will also occur in the carriers of mt.

Tcx = (injB(b) I b E B) u (fun (i,e,p) I i E Ide, e e Exp, p E Tunv) u
(redi,j,e,p) I i,j e Ide, e e Exp, p E Tcsnv) u (errE)

• IntE - Rep (b) I r function e in p' I rrecfun (j): e in p 'error'
for b e B, i,j Ide, e e Esp, p e IntEnv

Tc.Env = (arid) u (bind(p,i,v) 1 p E %Env, i E Ide, V E Tc,E)
g ItitEnv = Ude x Eine'
Tcg - (eval(e,K) 1 e e Exp, K e Tcx) u (perf(c1,0) I c e Corn, 0 E Tcg)
g ink reval e in 0; K' I 'perform c in 0; 0"

for e E Exp, CE Corn, IC E IntK, E Ink
Tcx (assign(i,p,0) $1 e Ide, p e rainy,B ET,) u (done)
wIntK - 'assign 0 toi in p;0' 1 rdone o'

for i € Ide, p e IntEnv, E lilt

It is interesting at this point to note that we can immediately

128

construct a completion semantics (Henson & Turner, 1982) similar to that
given for DEVIL in 64.5.1 that is also initial in The. The appropriate
domain equations are given below; the semantic functions are the obvious
ones corresponding to the semantic operators of the presentation C.

E-B+F+(?)
U.'(IdexEI
C - [Cvm x CI + [Exp x KI
K - [(update) x Ide x U x CI + (final)
F = [(function) x Ide x Exp x Ui +

Rrecfun) x Ide Ide x Rip x UI

expressible values
environments
command completions
expression completions

closures

Thus such a completion semantics is isomorphic to Stoy's interpreter. On
this basis Henson & Turner's call for completion semantics to be considered
as the standard operational semantics is difficult to sustain since it is only
its notation that distinguishes it from a host of other "different"
operational definitions.

127

4.62 The Direct Denotational Semantics

The denotational definition given below differs from that given in
Stoy (1981) in two ways; it gives the semantics of the kernel language
rather than PL and corrects several minor (probably typographical) errors
in the original definition. The most curious is Stoy's definition of nand
which reads"' follows:

For x,y e D and b in some domain including T,
cone/ (x,y)b 2 (bin 2 true I,

(bIT) false -• y,
?D

whereb-'x,y2 x 	ifbE true
if b E false

.LDT D,?D if b IT.TT ,?T-

So, while 	is strict, cond is not. Thus, given a clause such as
Gill e then co else clip = conclCicolip, Clcilp>(Egelp), the implication is
that in the case where the evaluation of e does not terminate and 81 eip
the result of the if statement is an error, ?, rather than i. Not only is this
most unusual, but no interpreter can possibly behave in such a fashion,
since it would need to recognise that it had embarked on a non-terminating
computation, recover and report an error. As we are proving the
congruence of the denotational semantics and an interpreter it is clear that
such a definition of cone' must be unacceptable. In our definition we
assume the (completely) strict version of cone/ defined as follows:

cone, (x,y>b (bIT) x,y

Semantic Domains

F =1E El
E=B+F+(?)
U = Ude 4 El + (?)

Semantic Functions
Exp -• E

8:Exp-)U-0
C:Com-*U-)U

basic values including true and false
function values
expressible values
environments

128

Etilip 9 pig
EgiOUIDP strict(pliol I F)(piliiI)

proc (the 	strict (1pliv.Elell(piviii) th E)
El roc io(i1): el s stricl(Ap.fir Dinliv1lell(00 in E/illv/i11)] "BE)
Elic res dip a)
81b1 E stricl(Ap.(b in E))
810ill

""

strict(kv.plv/i1)(1.1elp)
Cvhile i dod 3- firOt9itp.cond<8(Cidp), pApid))
Clco; clip
Calf i then co else clip E` am/eh:M.0p, Cicilp Apia)
Cif011p p
"lei Ellell(Al.?)

Auxiliary Definitions
The separated sum is implied in the domain equations. For any domain D
and a,b E D, a E b is true if a is the same element as b and false
otherwise. The symbol "-" is reserved to denote a continuous (completely
strict) equality predicate.
for b T (truth values) and x,y D,
b-)x,yax 	ff b true

if b false
,? 	b .1.,T,?

strict f 	 ff x
f(i) 	otherwise

ie strict f produces a completely strict version of f.

Den - direct denotational semantics of PL

The theory presentation D (of which we intend to show Den to be a
model) that follows is influenced largely by the requirement that there
must be a theory morphism Thc ThD and Thc is constrained quite
significantly by the requirement that Int must be its initial model. Further,
since our presentation must be first-order in the sense that we have no
way of including operator symbols that have a domain consisting of other
operator symbols (cf. Parsaye-Ghomi, 1981) we have no way of directly
representing functions such as stria. Our approach is not to consider i
and T in presentation D (indeed, this has been our policy for all examples

129

except the first consideration of the lambda calculus) and explicitly test for
error values at appropriate points. Hence corresponding to the equation

CI k-elp a strict Oiv.p1v/MEllelp
in the denotational definition, we use the following equation in D

C(i:-e,p) - if ok(B(e,p)) then bind (p,i,Ae,p))eise errE
where ok(v) is if for v - errE and tt for other sensible values. In the
denotatione semantics, the function corresponding to ok is a doubly strict
test for equality with ?.

One of the important differences between the direct denotational
semantics and the continuation-style interpreter is that the direct
definition requires the concept of an 'error environment' so that errors can
be propagated. In contrast, since the interpreter uses continuations,
Improper commands immediately give rise to improper results and their
effects need not be propagated by means of the environment produced.
Our presentations must reflect this situation and since we maintain the
need to construct a theory morphism between them, sort Env in D
represents the proper environments and sort U represents the sum of Env
with an error environment. Further, since k and 4 in Thc are only
concerned with proper environments it is convenient to give two separate
equations for and 4) for each phrase of the abstract syntax; one for
proper environments, one for the error environment.

Signature.
Sort B

•••
	 unspecified but including tt and if

Sort E
injB: B -• E
fun: Ide X Sip X Env-.
rec: Ide x Ide X Sip x Env -0 E
errE: E
apply: ExE
ok: 	B
if_ then _ else _:BxExE E

Sort Env
arid: Env
bind: Env x Ide x 134 Env
find: Env x Ide -• E

, 130

Sort U
injE: Env -0U
errU: U

Men _ eise_:BxUxU-01J
P:Exp-)E
E:ExpxU-0E
C: Corn x U U

&Mai=
DI. ok(injB(b)) = tt
D2. ok(fun(i,e,p)) = tt
D3. ok(rec(i,j,e,p)) - tt
D4. ok(errE) IT

apply(fun(i,e,p),v) = Ete, injE(bind(p,i,v)))
D6. apply(rec(i,j,e,p),v) = 	injE(bind(bind(p,i,redi,j,e,p)),j,v)))
D7. apply (injB(b),v) errE
D8. apply (errE,v) = errE
D9. find(arid,i) = errE
D10. find(bind(p,i,v),j) .7 if i=j then it else find(p,j)
D11. if tt then a else b - a
D12. if ff then a tale b b
D13. P(e) 	Injaarld))
D14. E(i, injE(p)) - if ok(find(p,i)) then find(p,i) else errE
D15. E(i, errU) - errE
DI6. 	inlE(P)) - if ok(find(P ..12)) h en apply(find(pi1) ,find(Pj2))

else errE
D17. E(ii(i2), errU) = errE
D18. E(proc (i):e, injE(p)) fun(i,e,p)
D19. Aproc (i):e, errU) errE
D20. Etrec i(j):e, InjE(p)) rec(I,j,e,p)
D21. Arm i(j):e, errU) = errE
D22. .E(c res e, p) E(e,C(c,p))
D23. E(b, injE(p)) = injB(b)
D24. A(b, errU) = errE
D25. E(0i, p)
D26. E(iIC2i2, p) =
D27. C(E-e, injE(p))

	

	ok(E(e, injE(p))) then bind(p,i,E(e, injE(p)))
else errU

D28. C(1:=e, errU) = errU

131

D29. awhile i do c, injE(p)) if ok(find(p,i)) then
if find(p,i) then

C(while i do c, C(c, injE(p)))
else injE(p)

else errU
D30. awhile i do c, errU) = errU
D31. p) = C(c2,C(c1, p))
D32. C(ff i then c1 else c2, injE(p)) = if ok(find(p,i)) then

if find(p,i) then C(ci,injE(p))
else C(c2, injE(p))

else errU
D33. COI i then ci else c2, errU) errU
D34. p) = p

- direct semantics oresentation

When showing Den to be a model of Thp below, various 'degrees' of
strictness will be important, so we repeat what we consider to be the
standard definitions.

A function f is strict if f(i) i

A function f is doubly strict if f(±) -a and f(r) T

A function f is completely strict if) I, f(i) T and f(?) ?
A useful higher-order function which we shall employ is dstrict defined
as follows

dstrict f a. 1,T 	if x 9 1,T

f(x) 	otherwise.
So dstrict produces a doubly strict version of a function while strict
produces a completely strict version. It is convenient to define a further
equality predicate to complement a and - defined earlier. Let -- denote a
doubly strict equality predicate. The usefulness of such a predicate is that
it allows us to compare proper elements to ? without always returning ?
(as - would do) yet returning i or T if the element is i or T (as would
not do). This allows us to easily define a function in Den modeling the
operator ok of D.

The correspondence between the sorts of D and the domains of the
denotational semantics is the obvious one:

Deng = B

132

DenE = E = B IE 	+ (?)
DenEnv Ude El
Denu Ude -) El + (?)

The operator correspondence is as follows:

Den
E

/dep. (dstrict (Ap'.(liv.al el (ply/ill)
in E)(p))

• (dstria(Ap*.fixpol.1.v.
Elel(pI.in E/illy/j1)1 inE)(p))

?E
• iv 2. (v in El)(v 2)
Ay. 4v==?E)
Abv iv 2. ((WI) V i,v2)
ki.?E
Apiv. (ply/11)
• (ph D)

U (injection of Ude El into
Ude -+ El + (?))

kbp1p2. ((bai)-) p P2)

injB: B E
fun: Ide x Exp x Env -• E

rec: Ide x Ide x Eip x Fsnv E

errE: E
apply: ExE4E
ok: E B
iLthen_eise:B xExE-PE
arid: Env
bind: Env x Ide x E -• Env
find: Env x Ids E
injE: Env -• U

errU: -• U
/Lae/La/se :BxUxU U
P: Exp E
E:ExpxU-.E
C:ComxU-0L1

The equations that follow are translations of the equations of D into the
notation of Den and must be shown to be satisfied by Den to complete the
proof that Den is a model of ThD. Though we refrain from including any
detailed proofs, some commentary is offered for those equations that are
not absolutely trivial.

DI. -((b in E) == ?E) a true
Note that this depends on there being no error element in B. If
this is not considered satisfactory, then the equation ok(injB(b))
- tt could be changed to ok(injB(b)) = okB(b), and the new
operator appropriately defined in D and implemented in Den.

D2. -4 (Istria (Ap'.(Avtlelp lit/il) in E)(p) -= 7E) trUe

133

03. ,(dstrict 	 inVil[V/i1)1 in E)(p) --?E a true
02 and 03 hold because the function is made completely strict
in v at application time (see the clauses for CHOI Op and

p)), and because p e Den Env - Ilde El and thus p is not

?U-
N. -,(?E--?E) E false
05. (dstrkt(Ap.(AvIleip 'Iv/i1) in E)(p)11E 4 131)(V) alelp Iv/i1
D6. (dstrict(Ap'.firlAOliv.alel(p10 in E 	41)) in EXp)11E 4 ED(v)

a MHO.'in 11/111v/j1)
where ito' a fix DotavIlei (00 /BE/illy/1)1

Again in 05 and 06, p E DenEnv Ude -4 El. These results are
established by structural induction over Rip in the denotational
model. In fact, the stronger result that a and C are completely
strict is easier to establish. This appears as Lemma 6.2 in (Stoy,
1981).

7. (b 	El IE EI)(V)
8. (?E1 IE El)(v) E h
9. (Ai.?E)(i) E?E
D10. (ply/Ingo Jai v,p10 	 p E DenEnv
D11. true 	E a
D12. false a,b E b
D13. Ind E aliel(A1.?E /DU)
14. aliip -(pin —PO -+ pig, PE

	

	 E pin
by definition of

15. tin ?u a ?E 	 E RIO"

16. alio(ii)Ip a 	==?E) 	VIIIE -0 E1)(pliii),4
p E DellEnv

17. alio(ii)nk E ?E
18. ai proc (thelp dstrict (Ap'.(Avall Iv/i1) in E)(p)

p e DenEnv
19. al proc (i):el ?u BE k
20. Eirec i(j):elp E

dstrict(Aff.fix[Olivli *(0 in Willv/jIl inE)(p)
p e DenEnv

21. airec i(j):ei?u ?E
D22. Icresep a)
023. aibip abin E
	

p E DellEnv
D24. alibi ?u a ?E

134

D25. 8.10fip
D26. ellorlillp ...
D27. '(Help --?g) *4 Alsip /iI,Pu 	p e DenEnv
D28. Clk-el?u a ?u
D29. Clvhik i do dp

▪ --?E) (pill -•Ciwbile i do cl(ClcIp), p), ?u
p E DellEnv

D30. ellsrluie i do d ?u ?u
D31. Clc.oxilp Clcil(Clcolp
D32. Clff i then c.o else Op a

▪ ==?E)-) pig -• Clcolp, Clcilp, ?u
D33. Mit i then co else cpu a ?u
D34. C101p p

p e DenEnv

135

4.6.3 The Congruence and a Theory Morphiss

The definition of the congruence of the two semantic definitions of
PL is not quite as straightforward on first inspection as the preceding
examples, so some precursory discussion seems appropriate. In loose
terms, the basic requirement is that we obtain the same result for a
program under the evaluation implied by the two semantic definitions.
Clearly, the concept of "the same result" will need to cater for the difference
in function values for the two semantics; a string like rfunction (i): e in p"
for the interpreter, an element of lE -+ El for the denotational semantics.
For this purpose we may define a function e: El m EDen as follows:

e(v) = b 	E 	 if v - Rep (b)
if It rerror'

dstrici(Ape.(AvIlellp Iv/i1) in EX ii (p))
if v - rfunction(i): e in p'

dstrict(Ap'.fix(AOlivAffelip10 in E/illv/j11 in EH u (p))
if v rrecfun i(j): e in p'

where u (p) = (Ai. e(Selea (p,i))) in U

With these definitions, the congruence can be precisely given as:

e (Interpret (royal e in arid; done 01) -

Since IP is defined in terms of a and C, the following two equations also
suggest themselves:

e(Interpret(revale in p; K')) = send(/' (K), tad(u(p)))
e(Interpret(rperforia c in p; 01) - run(c (0),C1d(u(p)))

But what are I and C ? There are no domains in the direct denotational
semantics corresponding to expression continuations or command
continuations, so there is no way that functions such as I and c can be
Instantiated. In the same vein, send and run are similar mysteries.

If we shelve these apparent difficulties for the moment and consider
an algebraic formulation of the problem, the congruence statement is
clearly something file the form required. First we have what looks like a
theory morphism y:

136

= ib(e)
1(k) (e,p,K) = send(K,ED(e,p))
y(q)(40-,e) = run(13, CD(c,p))

and a C-homomorphism Int-. U1(Den) consisting of the functions e,u,k,c
In this context, some clarification can be made: i is not a theory morphism
since send and run are operators from C, not D.

This suggests that D has been chosen inappropriately and we intend
to present a new theory ThDi which is derived from ThD by adding sorts K
and C and appropriate operators to D. We repeat here the point made
briefly in S3.1.2 that the crux of a semantic definition is the abstract
syntax, the semantic domains and the valuations and we are therefore free
to install them in any algebra we wish, selecting whatever other sorts and
operator symbols we consider appropriate for our purposes without
affecting the intended semantics.

It is also asserted in 63.2 that the semantics embodied in any model
of ThD or ThDi is the homomorphism indicated by Pjand C from the
algebra defined by the abstract syntax to a semantic algebra with the same
signature. Since the operators and sorts we intend to add to D do not
"interfere" with any of the sorts of D, the semantic homomorphism in any
model of ThD remains unchanged no matter how that model is extended to
be a model of ThDx . Given that view, the sorts and operators added in Dx
can be viewed as "extra baggage".

As an analogy, consider adding a sort string and some typical
operators to a complete specification of the data type Stack-of-Integers as
given in S2.2. Provided the definitions are fairly standard (not
pathological), we still have an implementation of a stack in the models of
the theory.

The extensions to D to create Dx are as follows:
sort C

eval:13xp x K -) C
perf: Corn x C C
run:CxEnv-0E

137

sort K
assign: Ide x Fsnv x C K
done: -• K
send:KxE-+E

Eauations
xl. 	run(eval(e,K),p) = send(K,E(e,injE(p)))
x2. 	run(perf(c,0),p) - run(0, 	pp)
13. run(0,errU) err8
14. run(°, if b then pi else p2) - if b then run(0,p) else run(0,p2)

send(assign(i,p,0),v) - if ok(v) then run(0,bind(p,i,v)) else era
x6. send(done,v) - v
17. send(K,errE) era
x8. send(K, if b then v1 else v2)- If b then send (K,v

else send(K,v2)

rix - extensions to direct semantic presentation,

Given such extensions to D, the definition of y above will serve as the
basis of the definition of a theory morphism Thc -• ThDi (we vuprove it to
be such later). The final requirement is that we must extend Den in a way
that parallels the extension of D to Dx. Since, as pointed out above, such
extensions have absolutely no effect on the semantics, any carriers and
operators that satisfy the x-equations will do and as such we need not even
bother specifying them. However the simplest choice is the trivial one with
single point carriers for sorts C and K. Clearly the initial algebra semantics
derived from any such extension to Den is identical to the initial algebra
semantics derived from Den (83.2.3).

A similar, though much simpler case can be given in terms of the
addition expression example of §4.4. Instead of giving the congruence as

- (8.511elt).s1, an equally acceptable statement would have been
Esileit - eptel cat t. In the language of the algebraic presentations this
would be 4(e,$) push(s,t(e)), which cannot be a theory morphism since
push and 4) are not operators from the same theory. The solution is to
extend the direct semantics presentation by adding a stack. Clearly the
stack plays no part in the evaluation of expressions and thus has no effect
on the semantics being defined. In 4.4 we avoided this problem by using
Bp(e)= top (4(e,$)) where top is in some sense the opposite of push.

138

Such an alternative is clearly not available for our semantics of PL.

We now proceed with the details of the definition of the theory
morphism Thc Thm.

5orlat.:
i(B) B
i(E) - E
i(Env) - Env
i(C) C
I(C) = K

(note: not U)

Operator Symbols :
i(injB)(b) = injB(b)
i(fun)(i,e,p) fun(i,e,p)
T(rec)(i,j,e,p) - rec(i,j,e,p)
y(errE) errE
i(ok)(v) ok(v)
i(arid) = arid
itbindXp,i,v) bind(p,i,v)
ir(find)(p,i) find(p,i)
I(has)(p,i) ok(find(p,i))
i(eval)(e,K) eval(e,K)
y(perf)(c,O) - pernc,O)
y(run)(O,p) run(O,p)
i(assign)(i,p,O) assign(i,p,O)
i(done) = done
i(send)(K,v) send(K,v)
y(call)(v 1 ,v2,K) send(K,apply(v
V(P)(e)= P(e)
I(E)(e, p,K) = send(K,h(e, injgp)))
lf(C(c, p,O) run(0,C(c, injE(p)))

The equations that follow must be shown to hold in ThTh r to establish that
is a theory morphism. Brief proof outlines are given, though they are all
very straightforward.

11(1) find(arid,i) errE
lf(2) find(bind(p,i,v),j) = if i=j then it else find(p,j)

139

i(3) ok(injB(b))
1(4) ok(fun(i,e,p)) = U
1(5) ok(rec(i,j,e,p)) = U
1(6) ok(errE) - ff
1(7) ok(find(p,i)) = ok(find(p,i))
I(8) run(eval(e,K),p) = send(K,E(e, injE(p)))
1(9) run(perf(c,8),p) = runt% C(c, injFs(p)))
1(10) send(assign(i,p,0),v) = if ok(v) then run(9,bind(p,i,v))

else errE
1(11) send(done,v)
1(12) send(K,errE) = errE
y(13) send(K,apply(fun(i,e,p),v)) - send(K,E(e,injE(bind(p,i,v))))
1(14) send(K,apply(rec(i,j,e,p),v)) -

send(K,E(e, injE(bind(bind(piredi,j,e,p)),j,v))))
1(15) send(K,apply(injB(b),v)) = errE
i(16) send(K,apply(errE,v)) errE
y(17) P(e) = send(done,E(e, injE(arid)))
y(18) send(K,E(i, injE(p))) =

	

	ok(fInd(p,i)) then send(K,find(p,n)
else errE

y(19) send(K,A11(i2), injE(p))) -
if ok(find(p,ii))then if ok(find(P,i2)) then

sendk.apply(find(pi1).find(p.I2)))
else errE else era

y(20) send(K,E(proc (i):e, injE(p))) - send(Kfun(i,e,p))
i(21) send(K,E(rec i(j):e, injrs(p))) send(K,redi,j,e,p))
V(22) send(K,E(c res e, injE(p))) run(eval(e,K),C(c, injap)))
1(23) send(K,E(b, injE(p))) send(K,injB(b))
1(24) send(K,E(01, injE(p))) -
y(25) send(K,E(i1tli2, injE(p)))
V(26) rung), C(i:-e, injE(p))) - send(assign(0,0),E(e, injE(p)))
1(27) rung), C(vhile i do c, injFs(p))) =

if ok(find(p,i)) then if find(p,i) then
run(perf(while i do c,8), C(inlE(P)))

else run(e.p) else errE
i(28) runt°, C(ci;c2, injE(p))) run(perf(c2 113),C(c1, injE(p)))
i(29) runt% C(If i then ci else c2, injE(p))) -

if ok(find(p.0) then if find(p,i) then
runt% C(ci,injE(p)))

else run(0,C(c2,injE(p))) else errE

140

y(30) run(8, CU), injE(p))) run(8kinj13(p))

The proof outlines follow:

"find" equations -
1(1): D9
i(2): DIO

"ok" equations -
T(3): DI
1(4): 02
1(5): 03
1(6): D4
1(7): trivial

"run" equations -
1(8): xl
1(9): x2

"send" equations -
(10):x5

i(11): x6
I(12): x7

"call" equations -
1(13): 05
1(14): 06
1(15): D7, 17
i(16): D8, x7

"P' equations -
y(17): D13, x6

"B" equations -
y(18): D14, x8
v(19): D16, x8
1(20): 018

020
T(22): D22, xi
1(23): 023
x(24): 025 ...
1(25): D26 ...

"C" equations -
1(26): D27, 14,15, x3
1(27): 029, x4, x2, x3

141

T(28): D31, x2
1(29): D32, zal, x3
i(30): D34

Thus we have shown Ito be a theory morphism and Int to be initial in
Algc. There must therefore be a homomorphism from Int to U i(Den). and
this constitutes the semantic congruence.

142

Chapter 5
Compiler Correctness

It was noted earlier (S4.1.5) that certain similarities appear to exist
between our notion of semantic congruence and the algebraic approach to
establishing the correctness of compilers (or "translation algorithms" as
practitioners would be more inclined to call them). It is this
correspondence we wish to exploit in the current chapter.

The first published attempt to formalise what it means for a compiler
to be correct and then to follow through an example proof was by
McCarthy & Painter (1967) where they treated the translation of arithmetic
expressions into sequences of instructions for a single-address accumulator
machine. However, it was Burstall & Landin (1969) that first suggested the
(explicit) use of algebra for such a proof, based on indentifying abstract
syntax with the word algebra for some signature. The idea was further
developed by Milner & Wehrauch (1972) and by Morris (1972,1973),
leading to the diagrammatic representation known generally as the "Morris
Square".

Essentially the idea is that given a source language whose abstract
syntax can be identified with some signature we may construct the
following diagram.

source compile T target
lf

> language

semantics

language

semantics

source 	NI
meanings

U target
meanings

encode

In this diagram S, M, T and U are all Q-algebras, S in particular is the
Q-word algebra TQ and y, 	c are all Q-homomorphisms. In this context
a proof of compiler correctness consists of a proof that the above diagram
commutes; in other words 	= I... Clearly, since S is the initial (-algebra,

..c and T.. are all unique and the proof is reduced to showing that there
is some homomorphism c: M U. Actually, Morris' original diagram has a

143

decode homomorphism 6: U M rather than £, though in the text of
(Morris, 1973) c: M4U. is used. We will comment on the appropriateness of
the choice between c and 6 in 65.4.

An important part of the work involved is left out of the above
diagram, however. T is the algebra of programs that may possibly be
produced by the compiler, rather than the algebra of programs that may be
written in the target language. If the abstract syntax of the target language
is identified with some signature X, then its semantics will be given by a
homomorphism from the initial I-algebra (denoted T o by Morris) to some
I-algebra of target meanings, Uo. The (-algebras T and U are then
derived from To and U0, generally in an ad hoc though enlightened
manner. Burstall & Landin (1969) however, explicity include the derivors
in their diagram and we feel this to be more informative since the compiler
description is embodied in the derivation of T from T o.

	 T

111

U 	n

The fact that the two derivor arrows are both labelled ff implies that U is
derived from U0 in the same way as T is derived from T. This in turn
ensures that I's is a homomorphism (since ilt o is a homomorphism), a fact
presented under the title "homomorphism of restriction lemma in Burstall
& Landin (1969). In our framework, ir is the derivor UT associated with
some signature morphism T: I -0 a

Further work on this approach to compiler correctness has included
the contribution by Thatcher, Wagner & Wright (1979) to clarify the
construction and semantics of flow charts (as Morris used for T o and U0) by
using a more categorical approach involving the notion of continuous
algebraic theories (Wagner, Wright, Goguen & Thatcher, 1976). Henson
(1983) extends the technique to source languages that require continuation
semantics, though that work does not adhere completely to the commuting

T 0

144

square advice. Other papers that approach compiler correctness from an
algebraic viewpoint include Mosses (1980) and Wand (1980a) but they
employ quite different techniques to the traditional one discussed above.

• Returning to the proposed connection between our work on semantic
congruences and the notion of compiler correctness, we consider the
following diagram derived from the one given in 64.1.5 to represent the
(homomorphic) congruence of semantic models.

- =
TS?.

Clearly the relation represented by the above diagram can be simply and
directly extended to treat compiler correctness by discarding the
requirement that the syntactic signatures be identical, thus generalising the
isomorphism lefe TQ to a homomorphism TQ-, AQ for some algebra of
target programs AQ.

Since in this dissertation we prefer to treat semantic definitions as
algebras with the (homomorphic) semantic valuations included as operators
of the signature, in contrast with the initial algebra semantics approach, a
more direct representation of our compiler correctness proof technique is
as follows:

ThSL TL

AlgsL 	 • Aign

145

Now this is exactly the diagram of 14.1.5 except that we no longer insist
that SL and TL present the semantics of the same language.

In summary, our approach to establishing the correctness of a
compiler is as follows. Given a source language presentation SL and a
particular model of ThsL, say A, and a target language presentation TL and
a particular model of Thin" say B, first define a theory morphism
t: ThsL -• ThrL. Now derive the SL-algebra U(B) and show there is a
homomorphism h: A -• Ut(B). Intuitively t is the compiler definition,
while h restricted to the syntactic part of the signature of SL is the
compilation process Relating this back once again to the diagram of
Burstall & Landin (1969) reproduced above, h incorporates the
homomorphisms y and E while Lit incorporates both applications of the
derivor Ir. The semantic homomorphisms 	and 41 are respectively part
of the algebras A, B and Ut(B). It is inappropriate to appeal to the
"homomorphism of restrictions lemma", nor is there any need to, since 4i is
a homomorphism by virtue of the fact that U(B) is a model of ThsL rather
than any property of the way it is derived from B.

The body of this chapter follows an example proof for the source
language and target language described in the next section. Our example
differs markedly from those of Morris (1973) and Thatcher et al (1979) not
only in the way we describe the semantics, but most importantly in the
style of our target language. In contrast to the use of flow charts in those
papers, our target language is much more like an assembler language with
flow of control being wrought by branch instructions and as such is much
more "realistic.

146

5_1 Semantic Presentations of a Source Language
and a Target Language

The source language we will deal with is a simplified version of the
one treated by Morris (1973) and it shall be referred to as SL. An SL
program is a sequence of commands which may be assignments,
conditionals, while loops or dummies. The expressions of the language have
boolean values and the value of an uninitialised variable is distinguished as
an error, though such an access does not affect the continued execution of
the program.

We now proceed with a presentation SLP of the semantics of SL. In
the sequel the part of the signature that describes the abstract syntax of SL
will be referred to under the name I. so that I contains only the sorts
Program, Corn and Rip (and Ide) and the operators among them.

Signature
syntactic sort Program

prog: Corn -4 Program
syntactic sort Corn

continue: 4 Corn
seq: Com x Com Com
assign: Ide x Rip -+Com
if: Exp x Com x Com Coro
while: Rip x Cora -) Corn

syntactic sort Rip
var: Ide Yap
true: 4 Rip
false: -• Rip
not: Rip -+ Rip
and: Exp x Exp -4 Rip
or: Exp x Exp -• Rip

sort U
arid: U
bind: U x Ide x Bool U
find: U x Ide Bool

sort Bool
tt: 4 Bool
ff: --• Bool

147

Bool Boo!
A: Bool x Bool Boot
v: Bool x Bool -) Bool
err: -■ Boot

P: Program -0U
C:ComxU-01.1
E: Exp x U -• Bool

Eauations
1. find(arid, i) = err
2. find(bind(p,i,b),j) = if i-j then b else find(p,j)
3. ,(tt) - ff
4. ,(ff) tt
5. ,(err) - err
6. ttAb-b
7. ff A b - if b-err then err else ff
8. err A b err
9. tt v b if b-err then err else tt
10.ffvb-b
11.err v b - err
12.P(prog(c)) C(c,arid)
13. acontinue, p) p
14. C(seq(ci, c2), p) C(c2, C(ci, p)
15. C(assign(i,e), p) bind(p,i,E(e, p))
16. C(ine,c1,c2), p) ifE(e, p) then C(ci,p) else C(c2, p)
17. C(while(e,c), p) - E(e, p) then C(while(e,c), C(c, p)) else p
18.E(vartit p) 4ind(p,i)
19.E(true, p) - tt
20. E(false, p) ff
21. E(not(e), p) = -E(e, p)
22. E(and(e1,e2), p) E(ei, p) A E(e2p)
23. E(or(e1,e2), p) - E(ei, p) v E(e2, p)

5LP - semantic presentation for source languaxe SL

As mentioned above, the target language TL we will deal with can be
viewed as a simple assembler language, basically made up of instructions
that move values (booleans for our purpose) about in locations with the
sequence of instruction execution being controlled by labels and jumps

148

(both conditional and unconditional). The machine upon which they
operate consists only of a store with no registers and no explicit stack, so
the operators of the language are permitted to manipulate any of the
locations in the store. We intend the compiler to implement an implicit
stack as a sequence of locations, hence the presentation of TL has the
(otherwise rather mysterious) notion of two constants of sort Loc, to being
the base location of the segment where the values of variables are stored
and sO being the base location of the segment set aside for the stack.

We now proceed with a presentation TLP of the semantics of TL. The
part of the signature that describes the abstract syntax of TL will be
referred to as 0, thus consists only of the sorts Programs, Instr, Loc and
Tag and the operators among them. We defer discussion and consideration
of actual SLP and TLP models to §5.3.

Signature
syntactic sort Program

prog: Instr 4 Program
syntactic sort Instr

dummy: 4 Instr
seq: Instr x Instr Instr
move: Loc x Loc 4 Instr
ldt: Loc 4 Instr
ldf: Loc 4 Instr
corn: Loc 4 Instr
or: Loc x Loc Instr
lab: Tag 4 Instr
br: Tag '4 Instr
brt: Loc x Tag . Instr

syntactic sort Tag
to: 4 Tag
nit: Tag Tag

syntactic sort Loc
tO: Loc
sO: Loc
nxt: Loc 4 Loc

149

sort Store
empty: -) Store
set: Store x Loc x Boo! -) Store
Val: Store x Loc Boo!

sort Boo!
tt: -• Boo!
ff: -> Bool

Bool -• Boo!
A: Bool x Boo!-' Boo!
v: Bool x Bool -0 Bool
err: Boo!

sort Env
arid: -> Env
bind: Env x Tag x C Env
find: Env x Tag 4 C
bindall: Env x Taglist x Clist -> Env

sort C
null: -• C
fail: 4 C
ass: Loc x Boo! -• C
apply: C x Store -> C

sort Clist
newc: 4 Chat
catc C x Chat -• Chat

sort Taglist
newt: 4 Taglist
catt: Tag x Taglist Taglist

P: Program -> Store
I: Instr x Env x C C
D: Instr -• Env
r: Instr x Taglist -> Taglist
Al: Instr x Env x C x Chat 4 Chat

Bauations
1. val(empty,t) err
2. val(set(a,t1,b),f2) - if ti-f2 then b else val(a,f2)
3. find(arid,t) = fail
4. find(bind(p,t1,0),t2) - if ti-t2 then 8 else find(p,t)
5. -.(tt) ff

150

6. -,(ff) = tt
7. -a(err) = err
8. ttAb=b
9. ff A b - if b-err then err else ff
10. err A b -err
11. tt v b = if b=err then err else tt
12. ffvb=b
13. err v b - err
14. apply(null,o) =
15.apply(ass(t,b),a) = set(o,t,b)
16. bindall(p,newt, cl) = p
17. bindall(p,catt(ttacatc(0,c1)) = bindall(bind(p,t,0),t1,c1)
18.P(prog(c)) = apply(/(c,D(c),null),empty)
19.D(c) = bindall(arid,r(c,newt),Anc, D(c),null,newc))
20. i(seq(c1,c2), ti) = i(c2,r(ci, tl)
21. T(lab(t), to catt(t,t1)
22. nother., tl) = tl
23. Af(seq(c1,c2), p,8,c.1) = Af(c2, p,O,Af(ci, p,/(c2, p,0),c1))
24. Af(lab(t), p,0,c1)- catc(0,c1)
25. Another., p,0,c1) -cl
26. /(dummy, p,O) = 0
27. /(seq(c1,c2), p,O) = /(c1, p11(c2, p,0))
28. apply(/(move(t1,t2), p,0),a) = apply(0 set(oh,vallo,f1)))
29. apply(/(ld(fl, p,e),a) apply(0,set(o,f,t0)
30. apply(/(iW), p,0),a) = apply(0,set(o,t,ff))
31. apply(/(com(t), p,0),a) = apply(0,sego,t, ,(va1(a,t))))
32. apply(f(or(t1S2), p,0),o) = apply(0,set(a,(2,val(a1) v val(a,f2)))
33. /(lab(t), p,0) - 0
34. /(br(t), p,0) = find(p,t)
35. apply(/(brt(t,t), p,0),a) = apply((ifval(a,f) then

find(p,t) else0),a)

TLP - semantic presentation for target language TL

Briefly, we anticipate the compiler from SL to TL to have the
following overall features. First, for simplicity we assume there to be a
pre-determined homomorphic relation between identifiers (Ide) and
locations (Loc) in the segment whose base address is to, though we will
consider replacing this with "symbol-table" information in 15.3. Second,

15 1

expressions will be evaluated on an implicit stack of locations in the
segment whose base address is sO. Further, the top-of-stack pointer is to
be simulated at compile time, so expressions will be translated into
instruction sequences with absolute addresses.

152

5_2 Compilers u Homomorphisms

Were we to closely follow the advice of Morris for defining our
compiler and verifying its correctness, the first requirement would be to
derive a E-algebra (I is the abstract syntax of SL) from To (Q is the
abstract syntax of TL), thus giving a homomorphism S -) T where S is TE,
the algebra of SL programs and T is the derived E-algebra (UT(%) for
some signature morphism T: 	Q). This is basically the top line of the
commuting square diagram of the chapter introduction.

TE 	 UT(Ta)
	 T

- 	T
T

Even given the simple and fairly standard features outlined in S5.1 of the
compiler we intend to construct, this task appears to be quite impossible.

The following example pinpoints one of the problem areas. Consider
the (intended) translation of the SL commands i a or (not(b)) and
i := (not(1))) or c. The code sequences we expect to produce are

something like the following, assuming for concreteness that a, b, c and i
are mapped to locations ti, (2, (3 and (4 respectively.

i := a or (not(b))

i (not(b)) or c

move(t 1 ,s0)
move(t2,s 1)
com(s 1)
or(sl,s0)
move(s0,(4)

move(f2,30)
com(s0)
move(tls 1)
or(s1,30)
move(s0,14)

If we now concentrate on the coding of the sub-expression not(b), it can be
seen that in the first case the corresponding instruction sequence is

153

move(t2,s 1)
com(s 1)

whereas in the second case the corresponding instruction sequence is
move(t2,s0)
com(s0).

Clearly, if it is possible to obtain two different target programs for the same
source (sub)-expression we cannot have a homomorphism from the algebra
of source program s to the algebra of compiler-produced target programs T.
Hence it is impossible to express such a compiler by deriving an
appropriate E-algebra from TQ or, equivalently, by defining a signature
morphism ,T: E -0 Q.

The intuitive explanation for this problem can be found in the fact
that in addition to the structure of the source expression being translated,
the compiler needs to be informed as to where the current top-of-stack is.
In other words, each expression is translated into instructions that leave
the result in some location, and the instructions vary according to the
choice of location. Thus, the compilation function (for expressions at least)
may be thought of as taking a source expression and a location, producing
target instruction sequences such as follows:

compile(var(i),f) = move(compile(i),0
compile(not(e),t) = seq(compile(e,0,com(0)
compile(or(e ,e2),t) = seq(compile(e 10,

compile(e2,nxt(0),or(nxt(0,0))
(Note that here and elsewhere we allow the slight abuse of notation
whereby seq takes any number of arguments to save us writing
seq(c,seq(c,c)) and so on.)

Now the definition of compile above is roughly what we want for a
signature morphism T : E -• Q, but falls short in that locations are not
permissible arguments since they do not occur in I.

This situation is reminiscent of the one that arose in §4.6.3 where the
desired congruence did not appear to consist of a theory morphism for
similar reasons: sorts and operators of the source theory were being
referred to as though they were present in the target theory. That is

send(K,4)(e,p))
I()(c,p,0) = run(0, 4)(c,p))

where send, run, K and c occur in the continuation semantics presentation

154

but not in the direct semantics presentation. Our solution in that case was
to extend the target theory by the addition of sorts and operators with the
aim of making I a theory morphism from the source theory to that new
target theory. Clearly the semantic valuation operators and the semantic
sorts are unaffected by such additions so the semantics of the language is
unchanged (see §4.6.3).

Since the work in this chapter is intended to be based on exploiting
the observed similarities between our notions of semantic congruence and
compiler correctness, we are naturally guided to seek a solution for the
present problem that is similar to the approach taken in 64.6.

Our intention in S5.3 is to make appropriate extensions to Q (and
TLP) so that a signature morphism (later a theory morphism) can be found
that is the analogue of the compiler we have in mind. Given that the
function compile: Exp x Loc Instr roughly expresses the pattern upon
which we are basing the compiler definition, the natural choice for a
signature morphism would seem to be of the form T: Rip -) (Loc
suggesting that we need to extend Q by adding a sort that adequately
represents (Loc InstrI. This is the basic approach that we intend to take
in the next section, though further similar extensions will be required when
considering T(Com).

155

5.3 A Compiler

In this section we intend to detail an extension of Q to Cr (and TLP to
TLPX) so that a satisfactory signature morphism T: E a may be defined
Such that it expresses the translation algorithm we intend. We will discuss
the requirements for expressions first, along the lines hinted at in the
previous section and then treat commands in an analogous way.

The first extension to C2 we require for T to parallel the effect of
"compile" (R5.2) is the addition of a sort we shall call LtoInstr to represent
functions from locations to instructions, [Loc Instil. The necessary
operator symbols will include the notion of applying an abstraction (the
objects of sort LtoInstr) to a location to produce an instruction. Recall that
for the compilation of expressions we need to provide the location in which
the compiled instructions are to leave the resultant value. Thus, the
abstraction will be resolved (grounded) by supplying a particular location
when compiling commands that explicitly contain an expression.

On the other hand, the choice of operator symbols to act as
constructors of LtoInstr is not so clear cut. The most direct approach is to
include an operator symbol for each instruction type, such as:

ldf-abstr: LtoInstr
br: Tag -' LtoInstr
brt: Tag -■ LtoInstr
seq: LtoInstr x LtoInstr LtoInstr

and so on. However, complications arise for those instructions which refer
to two locations, such as or: Loc x Loc -) Instr. The options are to add a
further sort representing [Loc [Loc 4 Instill which is general, but
long-winded, or make the observation that the compiler only ever produces
instructions like or(nxt(t),f) for some f, thus reducing it again to an
abstraction on a single location. Another difficulty is evident from
inspection of (for example) the compilation of el or e2 (65.2), where we
have a sequence of instructions where a location, say f, is supplied to the
first instruction, while nxt(t) is supplied to the second instruction. The
solution here is to add a further operator symbol next: LtoInstr 4 LtoInstr
with the understanding that the application of next(a) to some location f is
the same as the application of a to nxt(f). While the approach of including
an operator symbol for each instruction type is possible, in view of the
difficulties outlined above the extensions could become unnecessarily

156

complicated.

For our purposes we take a less direct approach based on the fact
that the extensions to Q are required solely so that a morphism E -•
can be established. Clearly then we may choose to identify as the
constructors of LtoInstr only those objects that are to be mapped to by T
taking an operator of sort expression from E. This option is completely
compiler-oriented and as such has some disadvantages over the more
general scheme outlined above, not the least of which is the fact that the
definition of T no longer directly contains the definition of the translation
algorithm. However this approach is much simpler, especially when we
consider the translation of commands below and the requirements of more
realistic and complex languages. The basic idea is to include an operator
symbol of sort LtoInstr for each type of SL expression and we name them
in a way that reflects this relation.

sort LtoInstr
target: LtoInstr x Loc Instr
var-abstr: Loc LtoInstr
true-abstr: -• LtoInst
false-abstr: LtoInst
not-abstr: LtoInstr -• LtoInstr
and-abstr: LtoInstr x LtoInstr LtoInstr
or-abstr: LtoInstr x LtoInstr LtoInstr.

Given this extension to Q, we may immediately define at least part of
the signature morphism T: E (2'. As mentioned in 65.1 we are assuming
that there is some pre-determined relation between identifiers and the
locations in the segment based on CO. Thus we have 'rade) Loc but we
eschew further details. One possibility, assuming the presentation of Ide
given in 63.1.1 is T(baseid) - to and T(next) = nit.

Sorts:
T(Ide) = Loc
T(Expr) LtoInstr

Operator Symbols:
T(var) var-abstr
T(true) = true-abstr
T(false) = false-abstr
T(not) = not-abstr

157

T(and) = and-abstr
.r(or) = or-abstr

In itself, this definition of T is far from enlightening so we immediately
give the intended interpretation of the operators of sort LtoInstr by listing
the associated equations to be added to TLP. The variable e is of sort
LtoInstr, though it is obviously intended to be reminiscent of variables of
sort Exp in!.

xl. target(var-abstr(f1).t2) = move(f f2)
x2. target(true-abstr,f) ldt(f)
13. target(false-abstr 0 - WOO
14. target(not-abstr(e),f) seq(target(e,f),com(f))
15. target(and-abstr(e1,e2),f) seq(targettei.0.

com(t),
target(e2,nxt(0),
com(nxt(f)),
ortnit(f)f),
com(f))

16. target(or-abstr(e1,e2),f) seq(target(ei,f),
target(e2,nxt(0),
or(nxt(f),f))

To provide some intuitive insight, consider the translation of x or y
embodied in t(or)(t(var)(r(x)),r(var)(t(y))), assuming target location sO.

T(or)(t(var)(t(i)),T(var)(t(y))) -
or-abstr(var-abstr(T(X)),var-abstr(r(y)))

target(or-abstr(var-abstr(r(x)),var-abstr(t(y))),s0) -
seq(target(var-abstr(i(x)),s0),

target(var-abstr(t(y)),nxt(s0)),
or(nxt(s0),s0))

seq(move(r(x),s0),
move(T(y),nxt(s0)),
or(nxt(s0),s0))

Hence the translation of x or y consists of instructions to load the value of
x into the location on top of the stack, load the value of y into the location
above that and then "or" the two together into the lower location.

158

The initial top of stack for each complete expression (i.e. an
expression occurring directly as part of a command) will be sO, as chosen in
the above example, and this information will be provided when compiling a
command. For example, an assignment statement i:-e could be treated as
follows:

ar(assign)Cr(i),T(e)) - seq(targeth(e),s0).
move(s0),T(0)).

The compilation of commands is a little less straightforward than this and
we shall see below that such a definition of .r(assign) is quite inadequate,
though here it does serve the purpose of illustration.

We now turn our attention to the translation of the commands of SL.
Clearly, since the only control structures in TL are conditional and
unconditional branches to labels, the if and while commands of SL must be
coded using such primitives. Hence the compiler must be supplied with
labels with which to construct the instruction sequences for the translation
of commands, in much the same way as the compiler is supplied with
locations for the translation of expressions. This implies the need for a sort
representing [Tag -• Instrl, but there is a fundamental difference between
the supply of tags and the supply of locations: the locations can be
re-used for "consecutive" expressions, whereas a new and different tag
must be used each time. Therefore we need to maintain a record of which
tags we have used and provided this is done in a regular manner (to first,
nxt(t0) next and so on), the record of used tags can be achieved by
associating a tag to tag map with each command. Putting the two
requirements together, we appear to need a sort representing ITag -0 Ilnstr
x Tagil for T(Com). We achieve this by adding two sorts, IandT and
TtolandT respectively representing [Instr x Tag] and [Tag - ,[Instr x Tagil to
f2 (and TLP). Again, as was the case for translation of expression above, we
allow the syntax of SL commands to suggest the operator symbols of sort
Ttolandr.

sort IandT
Instr x Tag landT

1st: landT Instr
2nd: IandT -• Tag

sort TtoIandT
supply: TtoIandT x Tag landT
continue-abstr: TtoIandT

159

seq-abstr: TtoIandT x TtoIandT TtolandT
assign-abstr: Loc x LtoInstr -0 TtoIandT
if-abstr: LtoInstr x TtoIandT x TtoIandT TtoIandT
while-abstr: LtoInstr x TtoIandT TtolandT

Given the (now completed) extension of Q to a, we may complete the
definition of T: E fr.

Sorts:
T(Com) TtoIandT
T(Program) - Program

Operator Symbols:
r(continue) continue-abstr
t(seq) seq-abstr
T(assign) = assign-abstr
r(if) - if-abstr
t(while) while-abstr
T(prog)(T(c)) prog(lst(supply(r(c)30)))

Note that it is important that T(Program) - Program as a general rule.
Intuitively our compiler must produce a program in the target language
given a program in the source language, otherwise we could not justify
calling it a compiler! On a more technical note, if we did not insist on
T(Program) - Program it would be feasible to extend the target language
presentation and define the signature morphism only in terms of the sorts
and operators that had been added, with no reference to the actual target
language. Clearly such a morphism could not be considered to be
embodying a translation from the source to the target language.

The equation to be added to TLP to make TLPX (and give some
meaning to the operators above) are as follows: -

x7. lst(dp) = i
x8. 2nd(dP) = t
19. supply(continue-abstr,t) (dummy,t>
x10. supply(seq-abstr(ci,c2)0 -

(seq(lst(supply(ci,t)),
1st(supply(c2,2nd(supply(ci A))M,

2nd(supply(c2,2nd(supply(c1 M)))

160

x11.supply(assign-abstr(f,e),t) mq(target(e,s0),move(s0,0), t>
x12.supply(if-abstr(e,ci,c2),t)

<seq(target(e,s0),
com(s0),
brt(s0,0,
lst(supply(ci,nxt(nxt(t)))),
brt(nxt(t)),
lab(t),
1st(supply(c2,2nd(supply(c1,nxt(nxt(t)))))),
lab(nxt(t))),

2nd(supply(c2 12nd(supply(c1 1nxt(nxt(t)))))))
x13.supply(while-abstr(e,c),t) -

<seq(lab(t),
target(e,s0),
com(s0),
brt(s0,nxt(0),
lst(supply(c,nxt(nxt(t)))),
br(t),
lab(nxt(t))),

2nd(supply(c,nxt(nxt(t))))>

By virtue of having defined a signature morphism T: E fr we have
specified the intended translation algorithm of SL programs into TL
programs. For the proof of correctness of this compiler we need to define a
theory morphism SLP TLPX based on the above definition of the
signature morphism T: 	Q. The extension of T to a full theory morphism
(which we shall ambiguously but conveniently also denote T) is dearly
guided by the arity and sort of each of the operator symbols representing
semantic valuations. For example, it: Program U and Pr: Program -•
Store together with T(Program) Program suggests T(it) = Pr and T(U) -
Store, and so on. The final part of the definition of T: ThsLp Thnapx is
therefore as follows:

Sorts:
T(U) - Store
T(Bool) - Boot

Operator Symbols:
T(arid) - empty
T(bind) = set

161

T(find) = val
T(tt) = tt
T(ff) = if
T(,) —
T(A) = A

T(V) = V

T(err) = err

T(C)(t(c),T(p)) - apply(1(1st(supply(T(c),0),
.0(lst(supply(T(c),0)),
null),T(p))

Note that any tag twill do and that the use of D is valid only
because we are providing the null continuation; otherwise a more
complex formulation would be required.

T(E)(T(e),T(p)) = val(apply(I (target(T(e),O,
49(target(T(e),CD,
null),T(p)),0

Again note that any location t will serve and that, a least for our
simple language SL, D(target(T(e),0) will always return the arid
environment by virtue of the fact that labels are never used in the
coding of expressions.

To show T to be a theory morphism, we need to show that ThrLpx contains
the T-translation of the equations of SLP. We repeat them here but give no
detailed proofs. Equations 1 to 11 are trivially satisfied and equations 12
to 23 (the semantic clauses) cause no difficulties though the proofs quickly
become unwiedly, mainly due to the rather verbose notation. Also,
structural induction over the syntactic sorts is required occasionally, for
example T(14) (see S3.3.5).

T(12). P(prog(1 st(supply(c,t0))))
- apply(1(1st(supply(c,t)),

.0(1st(supply(c,t))),
nulltempty)

T(13). apply(/(1st(supply(continue-abstr,t)),
lst(supply(continue-abstr,t))),

null),a)

162

T(14). apply(/ (lst(supply(seq-abstr(ci,
D(lst(supPly(seq -abstr(ci, c2),t))),
null),0)

- apply(/(1st(supply(c2,0),
P(lst(supply(c2,0)),
null),

apply(/(lst(supply(01
D(lst(supply(c1,t))),
null),a))

T(15). apply(1(1st(supply(assign-abstr(t,e),0),
D(lst(supply(assign-abstr(t,e),0)),
null),0)

set(0,f,val(apply(/(target(ek), '
D(target(e,()),
null),0),(1))

r(16). apply(1(1st(supply(if-abstr(e,c1 1c2),0),
D(lst(supply(if-abstr(e,c1,c2),OD,
nu10,0)

if val(apply(I (target(eS),
P(target(e,0),
null),0),C)

then apply(I(lst(supply(ci,t)),
D(lst(supply(c
null),0)

else apply(1(lst(supply(c2,0)
D(lst(supply(c2,0)),
null),a)

r(17). apply(/(lst(supply(while-abstr(e,c) 0),
D(1s(supply(while -abstr(e,c),0)),
null),0)

if vallapply(/(target(e,t),
D(target(e,0),
null),0),f)

then apply(1(1st(supply(while-abstr(e,c),0),
B(supply(while-abstr(e,c),t))),
null),

apply(/(ist(supply(c,t)),
D(lst(supply(c,t))).
null),0))

163

else
T(18). val(apply(/(target(var-abstr(t)k)

arid,null),a),0
val(o,t)

r(19). vallapply(/(target(true-abstr,t),
arid,null)A),t)

= tt
T(20). vallapply(/(target(false-abstr,t),

arid,null),o),t)
- If

r(21). val(apply(f(target(not-abstr(e),t),
arid,null),a),t)

wal(apply(targette,t),arid,nullto)t)
T(22). vallapply(/(target(and-abstr(e1,e2),O,

arid,null),a),()
= vallapply(/(targetteiStarid,null),ott)

valiapply(/(target(e2 1t),arid,null),ott)
r(23). val(apply(/(target(or-abstr(e1,e2),t),

arid,null),o),t)
- vallapply(/(targetteiStarid,null),(0,0

v val(apply(/(target(e2 10,arid,nu11),c),0

The first expansions of supply(..., 0 or target(..., 0 are the most enlightening
since they replace the uninformative abstraction operators with (possibly
incomplete) TL instruction sequences.

Diagrammatically, we may represent the stage we have now reached
in the proof as follows:

Th SLP

ThTUX

To finalise the proof we must fix an SLP-algebra S and a TLPX-algebra T
and establish the existence of an SLP-homomorphism h: S UT(T). This
may be done directly (where possible) or by proving the initiality of S
where possible. Note that it may be necessary in the case where S is given

164

first, to tailor SLP such that S is initial. In the present case we have fixed
the presentation first so we are free to choose any appropriate model, in
particular the initial one.

igap
	

AlgT LPX

Before any further discussion of particular choices of models we wish
to point out two aspects of the example we are treating that have not
featured prominently so far. The first is that the compilation
homomorphism I: (algebra of source programs) (algebra of abstracted
target programs) is not one to one. This was arranged so that the example
was a more comprehensive illustration and simply involves implementing
the source language and by invoking the identity
a A b 	v ,b), made necessary by the absence from TL of a
corresponding and-instruction. Hence the two source language expressions
a and b and not(not(a) or not(b)) are identically coded. The second
(and quite separate) point is that the use of the "homomorphism of
restriction lemma" (Burstall & Landin, 1969) which is a major feature of
earlier related work on compiler correctness has been circumvented in our
approach. UT "subsumes" the restrictions since the semantic valuations of
any TLPX-model (say T) are homomorphic, as must be the semantic
valuations of UT(T), simply by virtue of the fact that U T(T) is an
SLP-algebra and all the models of SLP have homomorphic semantic
valuations (see 63.2).

At this point we intend to leave our example incomplete by not
considering particular models and the ettablishment of an appropriate
homomorphism on the grounds that little would be gained through such an
exercise, particularly since we have investigated this area fairly thoroughly
in Chapter 4. Instead, we shall discuss in more general terms some
apparent benefits in the clear separation of the proof into two stages:

165

establishing a theory morphism and establishing a homomorphism. The
underlying intuition is that the translation algorithm proper is expressed
via the theory (or signature) morphism while the implementation of the
semantic domains of the source language is expressed by means of the
homomorphism. Again this idea closely follows a similar notion for
semantic congruences, as discussed in 64.1.5.

The factoring of the proof into two stages therefore allows certain
implementation details to be treated in isolation and hence they do not
interfere with the actual translation algorithm. As a concrete example,
a source language whose data types include integers would most likely
presume the infinite semantic domain Z. However the target machine may
represent integers as strings of 16 bits using the usual 2's complement, that
is -32768 .. 32767. Now both are models of the usual presentation (succ,
pred, zero, etc) and therefore the theory morphism may be constructed
without this mismatch in mind. However when attempting to establish a
homomorphism from the source semantics to the derived model, the
problem is highlighted by the fact that no such homomorphism exists and
the domain of the source semantics model must be altered to =respond to
the target model. Thus implementation restrictions are identified and may
be treated in isolation. More complicated examples of mismatches between
the "idealised" source language semantics and target language semantics
that may arise in practice include problems with real arithmetic accuracy;
limitations on the size of source programs, according to code segment size
limitations or symbol table limitations; limitations on the depth of static
nesting of blocks as on Burroughs B6700; and the tendency of many Pascal
compilers to recognise only the first 8 characters of identifiers. Such
difficulties clearly lie within the bounds of what would be called
implementation restrictions rather than being major issues in the definition
of translation algorithms.

As mentioned in 65.1 we have simplified our example by assuming a
direct translation T(Ide) • Loc. It is interesting to consider briefly the
requirements necessary for treating a compilation algorithm that takes the
more usual approach of maintaining a symbol table. The rudimentary
symbol table we have in mind consists of identifier, location pairs with a
new pair being added whenever an identifier is met in a defining
occurrence in the program. For our purposes we will consider the first
(textually) assignment to an identifier to be its defining occurrence and the

166

locations to be allocated in sequence (0, nit(t0) and so on. Thus we wish to
construct a (finite) function: Ide -+ Loc or its analogue as the compiler scans
the program text. Clearly this notion closely corresponds to the
environment structure commonly used in semantic definitions.

This compiler information is more complex than that we have so far
considered: the location that is currently top of the stack and the next
available tag. However it can be treated in much the same fashion by
adding sorts and operators to the target language presentation that abstract
on the symbol table concept. In outline, the requirements are firstly the
addition to TLP of a sort Symtab representing (Ide Loci or (Ide x Loci*
with operators similar to those used for environments throughout this
dissertation (ie arid, bind and find). Note that sort Ide must also be added
to TLP therefore. Secondly, the symbol table is required for translating
commands and may itself be altered in the process much as is the next
available tag information. Hence we replace TtoIandT (representing
Tag (Instr x Tag(by SandTtoIandrandS, representing (Symtab x Tagi -•
(Instr x Tag x Symtabl. Similarly, since the symbol table is required for
compiling expressions, LtoInstr should be replaced by SandLtoInstr
representing (Symtab x Lod .4 Instr. The definition of appropriate
operators can be achieved in a straightforward manner by taking the same
approach as was applied in the detailed extension of TLP to TLPX above.

A less ad hoc approach to the general problem could involve
collecting all aspects of the information for the compiler under the umbrella
of a single sort called (say) Compinfo. This sort would generally represent
tuples; for our case Loc x Tag x Symtab. Given such a sort, the target
language presentation could be further extended by a single abstraction
sort representing Compinfo (Instr x CompinfoI with operators based on
each of the source language syntactic operators. Further consideration of
such a methodology is outside the scope of our investigation but does
provide a pointer for future work.

167

5.4 Compiler Correctness and the Commuting Square

It is pointed out in Thatcher et al (1979) that proving that a Morris
square commutes does not necessarily always correspond to proof of
compiler correctness. In the usual diagram of E-algebras and X-
homomorphisms (§5.0), if T and U are chosen to be single point algebras,
then commutation is ensured simply by the fact that T and U will thus be
final E-algebras and 	end c are hence unique (as is 0). Clearly there
are many more subtle cases than the completely degenerate one outlined
here.

To provide a more concrete example of how such a single point T and
U can arise in practice we can define an appropriate "compiler" from SL to
TL that always produces the same TL program. If we arrange for every SL
program to be translated to the Slite 'FL code,

prog(Idt(th))
then each SL command can be viewed as being translated into Idt(f0). Such
a compiler leads to a 2-algebra T with carriers defined as follows:

Tprogram (prog(Idt(t0)))
Tcom (MOO))
Tgap (Idt(s0)) (though there is no significance in such a choice)
ride a 60)

The corresponding semantic E-algebra U may be derived from the semantic
Q-algebra U0 intrinsic in any particular model of TLP by the same means
that T is derived from To above, so that Uprogram g (set(empty,f030).
Since the carriers of T and U are all singleton sets, T and U are final objects
in Algx implying that and E are unique and the square commutes, yet we
are unlikely to consider such a translation algorithm to be a correct
compiler.

Thatcher et al (1979) suggest that requiring E to be injective is
sufficient to avoid such degenerate cases and work their proof within such
a framework. However they leave open the question whether the
injectivity of E is a necessary condition. The intuition underlying such a
restriction on E is that it prevents two different source program meanings
(in M) from being identified in U. Thus if two programs in S have
different meanings attached by the homomorphism 0: S 4 M, then

168

requiring c to be injective effectively prevents those two programs from
being compiled into target language programs (in T) that have the same
meaning. This circumvents the problems of degeneracy outlined above.

On the other hand the original diagram of Morris (1973) has a decode
homomorphism 6: U M, though for convenience he deals with E : M -> U.
This requires the inclusion of a proof that c has an inverse, at least for the
part of U related to runnable programs. Without going into the details of
that paper, this is equivalent to showing that E has an inverse
homomorphism 	E is an isomorphism) when restricted to a particular
subalgebra of U. Clearly this is equivalent to requiring that c be injective.

We suggest that using 6: U -) M is inappropriate and that requiring E
to be injective is an excessive restriction. In the remainder of this section
we intend to formulate necessary and sufficient conditions to ensure that a
proof that a Morris square commutes constitutes a proof of compiler
correctness. As a vehicle for our discussion we intend to use the rather
unorthodox, but very simple notion of a completely trivial compiler that
translates source programs into themselves. Also, rather than introducing
any new languages we return to the lambda calculus as our source (and
target) language and consider the semantic models treated in 64.2.2. One
reason for choosing a compiler that translates a lambda expression into the
same lambda expression is that it allows us to make the application of our
work on semantic congruences more obvious. Another reason is that there
can be no doubt that such a compiler is correct although we can imagine
some resistance to the term "compiler" being applied.

To construct our Morris square, we intend to choose the left hand
side of the diagram, 8: S 4 M, to be the LC-algebra Op and the right hand
side of the diagram, T 4 U, to be the LC-algebra Den (S4.2.2). For
completeness we will give specific definitions of the algebras S, M, T and U.
Presume the syntactic signature to be the following portion of LC, denoted
A.

sorts: Lambda, B, Ide
operators: constant: B 4 Lambda

var: Ide 4 Lambda
abstraction: Ide x Lambda 4 Lambda
application: Lambda x Lambda -4 Lambda

169

Then the semantic A-algebra M can be derived from Op as desaibed in
13.2.3 to yield the following definition.

MLambda LE 4 UI
MB B
MIde = Ide
where E - Ude x u?, u LB CLOI and CLO - Lambda IM 	x Ide x El --
constantm(b) Ae.(b .thU)
varm(x) Ae.Lookup(x,e)
abstractionm(x,r) = Ae.(q,x,e in U)
appl1cat1onm(tx,13) -1.e.apply(ix(e),13(e))
where apply(<q,x,e>,b) q(Extend(e,x,b))

Similarly, the semantic A-algebra U can be derived from Den.

ULambda = [ENV 4 VI
UB B
Ulde Ide
where ENV - Ude -> V], V -113+ FUN] and FUN - LV -' VI
constantu(b) Ap.(b in V)
varu(x) = Ap.p(x)
abstractionu(x,q) Ap.(Aa.(q(plx/al)in
application0a,P) - Ap.(a(p)IFUN)(13(p))

The particular Morris square we are dealing with is the following:

TA

TA

1/1 	

in which M and U are defined above, S and T are both instantiated as an
initial A-algebra, 0 and * are the associated unique homomorphisms and
is the identity homomorphism. The existence of the encoding

170

homomorphism c is (indirectly) established in 64.2.

Thus we have defined a correct compiler and shown that its
corresponding diagram does in fact commute. However E is 1101 injective,
nor can a decode homomorphism 6: U M be found. If we consider the two
lambda expressions ALI and Ay.y, their respective meanings in M,
attached by 0, are

Ae.(cAe'.Lookup(x,e'),x,e in U)
and ke.(<1tellookup(y,e 1),y,e> in U)
which are dearly different at least in the second item of the triple. The
meanings in U attached by lig are both

itp. (ka.a in V).
Hence the A-homomorphism c:M4U takes both the above objects of M to
the same object of U and E is immediately not injective. On the other hand,
a decode homomorphism cannot possibly exist since clearly
6(Ap.(21a.a in V)) must be single valued yet still satisfy 8-14.6.

It would seem that such blanket restrictions as "injective (" have
little to offer as general solutions to the problem we are addressing. We
see a parallel here with the notion of an acceptable model of a semantic
theory (ok-model) discussed in 63.3. It is noted there that the individual
specifying the semantics of a particular language must be the one who
decides whether two constructs may or may not be assigned the same
meaning value. For instance, there can be no a priori reason for expecting
that XXI and Ay.y may be given equivalent interpretations. In the same
vein, there can be no justification for insisting in all cases that no more
identification (i.e. confusion, 63.3) occurs in the semantics of (compiled)
target programs than in the semantics of source programs, yet this is
precisely what restricting to be injective ensures.

This leads us to suggest the following single requirement for a
commuting square to represent compiler correctness: both 0: S -• M and

S -• U should define acceptable semantics for the source language. If
this condition holds we consider If to be an acceptable translation. With
respect to our trivial compiler for the lambda calculus, is the identity and
8: S -• M and 41: T U are respectively the operational and denotational
semantics of the lambda calculus and they are clearly acceptable semantic
models according to our treatment in 63.3.

171

In terms of the semantic models we have been mainly dealing with
in this dissertation, where syntactic domains, semantic domains and
semantic valuations are treated as aspects of a single algebra, the notion of
acceptable translation can be defined more exactly in terms of previously
introduced concepts. Supposing we have source and target language
semantic presentations SL and TL, together with an SL-algebra A, a
TL-algebra B and a theory morphism t: Ths, -• ThTL, then establishing the
existence of and SL-homomorphism h: A -• U(B) constitutes our version of
proof that the related Morris square commutes. To ensure the acceptability
of the compiler we further require U(B) to be an ok-model of ThsL.
Naturally, we are already presuming A and B to be ok-models of their
respective theories and hence that appropriate sub-final models have been
indicated.

We claim this requirement to be a suitable replacement for the
rather excessive restriction that c be injective on the grounds that the
definition of ok-models has the effect of placing an upper limit on the
allowable identification of SLP terms in Ut(B), irrespective of whether or
not they are identified in A.

172

Chapter 6
Conclusion

In this thesis we have been concerned with developing an
algebraically based technique for specifying the semantics of programming
languages and examining the technique's utility and influence on formal
proofs involving such specifications.

In Chapter 3, we laid the foundations by investigating the use of
equational presentations for specifying programming language semantics.
We noted that not all the algebras that are models of the presented theory
necessarily provide acceptable semantics and suggested that a delineation
of the subclass of models that are acceptable can be achieved by
designating a particular algebra as being the one where as much
identification of terms (i.e. confusion) as is admissible takes place. The
ok-models are then those algebras with a particular homomorphic relation
to this one such that no further identification is ensured.

It has been noted from the very beginning that a methodology and
modularisation technique must be developed to control the level of
complexity in any enterprise aimed at producing a sound semantic
specification of any realistic language. Insisting on a modular approach
leads naturally to the notion of keeping a library of standard types and
type constructors and the situation may well develop wherein semantic
definitions begin to resemble the denotational style, at least in surface
appearance. In fact, Ehrich 8c Lipeck (1983) have already made some
progress in this direction, though they only manage to treat domains of
finite functions. An important aspect is the consideration of the
usefulness and flexibility of the idea of bi;fher-order algebras. The
choices here are to follow the work of Parsaye-Ghomi (1981) or Poigne
(1984) or perhaps to stick with standard universal algebra and develop a
standard notation for sorts representing functional domains. This latter
option seems more attractive at present since it would seem advantageous
to avoid any insistence on carriers being functional and consequently
disallowing closures as operational equivalents.

The relation between the models of our semantic presentations and
the initial algebra approach is established on both a conceptual and formal
level. An interesting opportunity for further research arises here. Given

173

some operational semantic model, an initial algebra semantics may be
systematically derived from it. Now the initial algebra semantics is clearly
denotational by virtue of the fact that it is in terms of a homomorphism
from syntax to semantics and homomorphisms are by definition
compositional. The exact connection between such "pairs" of operational
and denotational definitions is not immediately evident, nor is it clear
whether such connections can be fruitfully exploited.

In Chapter 4 we examined the notion of the congruence of semantic
models from an intuitive standpoint and developed a rigorous algebraic
formulation corresponding to the natural idea. Expressed simply, two
semantic models are congruent provided there is a homomorphism from
one to an algebra derived from the other. Such relationships cannot always
be established by the traditional inductive approaches, however the
concept of initiality and some straightforward related results allow us to fill
this gap. The detailed examples treated in Chapter 4 are sufficient to give
us confidence that our formal notion of congruence is both useful and
tractable. The fixed-point construction developed when dealing with those
examples would appear to have applications for operational semantics
beyond the fairly narrow range of uses given here.

The size and level of detail of some of the proofs in Chapter 4 clearly
indicates the need for some form of automation or mechanical assistance
when developing such proofs. Though it is outside the bounds of this
dissertation, there would appear to be some challenging problems involved
with the development of a fully general system based on equational
rewrite rules (O'Donnell, 1977).

In Chapter 5 we reformulated the advice of Morris (1973) on proving
the correctness of compilers to suit our style of semantic definition,
applying much of the work we had done on congruences to this related
problem. In treating a somewhat more realistic example than those
appearing in the literature, with the target languages being described in the
same style as the source language, it was made clear that the notion of a
compiler being a homomorphism from the language to an algebra derived
from the target language was overly simplistic. If the compiler expects to
maintain any record of the symbols being used (eg the location that is
current top of stack, the next unused target label) or any relation between
source and target objects (eg a symbol table), then the compiler appears to

174

correspond more closely to a homomorphism from the source language to
abstractions of the target language, so that the derived algebra cannot
always be generated from the target language alone.

The status of the homomorphism that forms the part of the
commuting square diagram connecting the two semantic algebras was
investigated in tems of a trivial example. Both the decode option, being a
homomorphism from target program meanings of source program meanings
or requiring the encode homomorphism E from source program meanings
to be injective were found to be too restrictive and hence unsatisfactory.
An alternative is presented wherein the compiler homomorphism is
required to constitute an acceptable translation, a notion closely related
to that of an ok-model introduced in S3.3. In fact, closer examination leads
to more fundamental questions than the injectivity or otherwise of E,
calling into doubt the appropriateness of the whole commuting square
approach.

It seems natural that if -Ir.*: S U (the semantics of S given by the
composition of the compiler and target semantics homomorphisms) is an
acceptable semantic definition of the source language S, then the translation
y is correct as well as being acceptable. For certain choices of models,
such a situation can exist without a homomorphism E: M U necessarily
existing. We are actively pursuing this line of investigation at the moment,
with obvious influence on a re-development of the concept of an ok-model,
both in terms of our semantic definitions and also within the framework of
initial algebra semantics.

The future will tell whether algebraic foundations will allow the
development of programming methodologies (or even programming
languages) emphasising correctness, that are accessible to and useful for
programmers at large. What is clear however, is that the formal basis of
any such work must be clearly detailed and confirmed if such an enterprise
is to succeed.

175

Bibliography

Arbib, M.A. and Manes, E.G. (1975):
Arrows, Structures and Functors: The CalegefiCal
Imperative Academic Press.

Baker-Finch, CA. (1984a):
Acceptable Models of Algebraic Semantics 7th Annual
Australian Computer Science Conference. Australian Computer
Science Communications 6,1, pp. 5.1-5.10.

Baker-Finch, C.A. (1984b):
Algebraic, Operational and 1)012014111101121 Semantics of the
Lambda Calculus Australian Computer Journal, 16,3, pp. 96-101.

Birkhoff, G. (1935):
On the Structure of Abstract Algebras Proceedings, Cambridge
Philosophical Society 31, pp 433-454.

Birkhoff, G and Lipson, J.D. (1970):
Heterogeneous Algebras Journal of Combinatorial Theory 8,
pp 115-133.

Bjorner, D. (editor) (1983):
Formal Description of Programming Concepts - IL
North-Holland.

Broy, M. and Wirsing, M. (1980):
Programming Languages as Abstract Data Types
5eme Colloque de Arbres en Algebre et en Program mation, Lille.
M. Dauchet (ed.), pp 160-177.

Broy, M., Dosch, W., Moller, B. and Wirsing, M. (1981):
GOT0s - A Study in the Algebraic Specification of
Programming Languages Internal Report CSR-89-81. Department
of Computer Science, University of Edinburgh.

Burstall, R.M. and Goguen, J.A. (1979):
The Semantics of Clear, A Specification Language, Abstract
Software Specifications. D. Bjorner (ed.), Lecture Notes in Computer
Science 86, pp 292-332. Springer-Verlag.

Burstall, R.M. and Goguen, J.A. (1982):
Algebras, Theories and Freeness: An Introduction for
Computer Scientists Theoretical Foundations of Programming
Methodology, M. Bray and G. Schmidt (eds.), pp 329-348.
D. Reidel.

176

Burstall, R.M. and Landin, P.J. (1969):
Programs and Their Proofs.- An Algebraic Approach, Machine
Intelligence 4, pp 17-43. Edinburgh University Press.

Church, A. (1941):
The Calculi of Lambda - Conversion. Princeton University Press.

Cohn,.P.M. (1982):
Universal Algebra D. Reidel.

Dennis, J.B. (1974):
On Storage Management for Advanced Programming
Language a MIT Computation Structures Group Memo 109-1.

Dennis, J.B. (1976):
Semantic Theory for Computer System .% Course Notes 6.841,
Massachussets Institute of Technology.

Ehrich, H-D. and Lipeck, U. (1983):
Algebraic Domain Equation a Theoretical Computer Science 27,
pp 167-196. North-Holland.

Elgot, C. C. (1973):
Monadic Computation and Iterative Algebraic Theorieg Logic
Colloquium 73. H.E. Rose and J.C. Shepherdson (eds), pp 175-230.
North-Holland.

Fasel, J.H. (1980):
Programming Languages as Abstract Data Types: Definition
and Implementation. Ph.D. Thesis, Purdue University.

Gaudel, M-C., Deschamp, Ph. and Mazaud, M. (1978):
Semantics of Procedures as an Algebraic Abstract Data
Type, IRIA Laboria Report No. 334.

Gaudel, M-C. (1980):
Specification of Compilers as Abstract Data Type
Representations Semantics-Directed Compiler Generation.
N.D. Jones (ed.), Lecture Notes in Computer Science 94, pp 140-164.
Springer-Verlag.

Goguen, J.A. (1975):
Correctness and Equivalence of Data Type a Mathematical
Systems Theory. Lecture Notes in Economics and Mathematical
Systems 131, pp 352-358. Springer-Verlag.

Goguen, J.A. (1978):
Abstract Errors for Abstract Data Type Formal Desaiption of
Programming Concepts. E.J. Neuhold (ed.). North-Holland.

177

Goguen, J.A. (1980):
How to Prove Algebraic Inductive Hypotheses Without
Induction 5th Conference on Automated Deduction. W. Bibel and
R. Kowalski (eds.), Lecture Notes in Computer Science 87,
pp 356-373. Springer-Verlag.

Goguen, J.A. and Burstall, R.M. (1984a):
Some Fundaments/ Algebraic Took for the Semantics of
Computation. Part I: Comma Categories, Colimits,
Signatures and Theories Theoretical Computer Science 31,
pp 175-209. North Holland.

Goguen, J.A. and Burstall, R.M. (1984b):
Some Fundamental Algebraic Tools for the Semantics of
Computation. Part 2: Signed and Abstract Theories
Theoretical Computer Science 31, pp 263-295. North-Holland.

Goguen, J.A. and Meseguer, J. (1981):
Completeness of Many -Sorted Equational Logic ACM SIGPLAN
Notices 16, 7, pp 24-32.

Goguen, J.A. and Meseguer, J. (1983):
An Mills/11y Primer. (Draft Report).

Goguen, J.A. and Parsaye-Ghomi, K. (1981):
Algebraic Denotationsi Semantics Using Parameterised
Abstract Modules International Colloquium on Formalisation of
Programming Concepts. J. Diaz and I. Ramos (eds.), Lecture Notes in
Computer Science 107, pp 292-309. Springer-Verlag.

Goguen, J.A. and Tardo, J.J. (1979):
An Introduction to OBI: A Language for Writing and
Testing Formal Algebraic Program Specifications Specification
of Reliable Software, IEEE, pp 170-189.

Goguen, J.A., Thatcher, J.W. and Wagner, E.G. (1977):
Initial Algebra Semantics and Continuous Algebras Journal of
the ACM 24, 1, pp 68-95.

Goguen, J.A., Thatcher, J.W. and Wagner, E.G. (1978):
An Initial Algebra Approach to the Specification,
Correctness and Implementation of Abstract Data Types
Current Trends in Programming Methodology, Vol. 4, R.T. Yeh (ed.),
pp 80-149. Prentice-Hall.

178

Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B. (1973):
A Junction Between Computer Science and Category Theory,
I: Basic Concepts and Examples (Part 1) Technical Report, IBM
T.J. Watson Research Centre, Yorktown Heights, New York. Research
Report RC 4526.

Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B. (1975):
AD Introduction to Categories, Algebraic Theories and
Algebras; Technical Report, IBM T.J. Watson Research Centre,
Yorktown Heights, New York. Research Report RC 5369.

Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B. (1976):
A Junction Between Computer Science and Category Theory,
I: Basic Concepts and Examples (Part 2) Technical Report, IBM
T.J. Watson Research Centre, Yorktown Heights, New York. Research
Report RC 5908.

Guessarian, I. (1981):
Algebraic Semantics, Lecture Notes in Computer Science 99.
Springer-Verlag.

Guessarian, I. (1983):
Survey on Classes of Interpretations and Some of Their
Applications ACM SIGACT News 15, 3, pp 45-71.

Guttag, J.V. (1975):
The Specification and Application to Programming of
Abstract Data Types Ph.D. Thesis, University of Toronto,
Technical Report CSRG-59.

Guttag, J.V. and Horning, J.J. (1978):
The Algebraic Specification of Abstract Data Types Acta
Informatica 10, pp 27-52.

Henson, Mk. (1983):
Extending Advice On Structuring Compilers and Preying
Them Correa Proceedings 3rd Conference on Foundations of
Software Technology and Theoretical Computer Science. (Bangalore).
Also: Technical Report CSM-56, Department of Computer Science,
University of Essex.

Henson, M.C. and Turner, R. (1982):
Completion Semantics and interpreter Genetation, 9th Annual
Symposium on Principles of Programming Languages, ACM,
pp 242-254.

179

Huet, G. and Oppen, D.C. (1980:
Equations and Rewrite Rules: A Survey, Formal Language
Theory - Perspectives and Open Problems, R.V. Book (ed.),
pp 349-405.

Kamin, S. (1979):
Rationalizing Many-Sorted Algebraic Theories Technical
Report, IBM T.J. Watson Research Centre, Yorktown Heights, New
York. Research Report RC 7574.

Kamin, S. (1980):
Final Data Type Specifications: A New Data Type
Specification Method, 7th Annual Symposium on Principles of
Programming Languages, ACM, pp 131-138.

Kamin, S. (1983):
Final Data Types and Their Specification, ACM Transactions on
Programming Languages and Systems 5, 1, pp 97-123.

Kaphengst, H. and Reichel, H. (1977):
Initial Algebraic Sematnics for NOB Context-Free Languages
Fundamentals of Computation Theory. Proceedings 1977.
M. Larpinski (ed.), Lecture Notes in Computer Science 56,
pp 120-126. Springer-Verlag.

Kutzler, B. and Lichtenberger, F. (1983):
Bibliography On Abstract Data Types Informatik - Fachberichte
68. Springer-Verlag.

Landin, P.J. (1964):
Mechanical Evaluation of Expressions Computer Journal, 6, 4,
PP 308-320.

Lawvere, F.W. (1963):
FILOctorial Semantics of Algebraic Theories Ph.D. Thesis,
University of Columbia.

Liskov, B. and Liles, S.N. (1975):
Specification Techniques for Data Abstractions,
IEEE Transactions on Software Engineering SE-1, 1, pp 7-19.

MacLane, S. (1972):
Categories for the Forting Mathematician. Springer-Verlag.

MacQueen, D.B. and Sanella, D.T. (1984):
Completeness of Proof Systems for Equational
Specifications Internal Report CSR-160-184. Department of
Computer Science, University of Edinburgh.

180

Manes, E.G. (1976):
Algebraic Theories Springer-Verlag.

Manna, Z. (1974):
Mathematical Theory of Computation. McGraw-Hill.

McCarthy, J. (1962):
Towards a Mathematics/ Science of Computation, Information
Processing, pp 21-28. North-Holland.

McCarthy, J. and Painter, J. (1967):
Correctness of a Compiler for Arithmetic Expressions,
Proceedings of Symposia in Applied Mathematics 19, pp 33-41.

Milne, R.B. (1974):
The Formal Semantics of Computer Languages and Their
Implementations Ph.D. Thesis, Cambridge University.

Milne, RI. and Strachey, C. (1976):
A Theory of Programming Languages Semantics Chapman
and Hall.

Milner, R. (1977):
Fully Abstract Models of Typed A-Csicol4 Theoretical
Computer Science 4, pp 1-22.

Milner, R. and Wehrauch, R. (1972):
Proving Compiler Correctness in a Mechanized Logic Machine
Intelligence 7, pp 51-70. Edinburgh University Press.

Morris, F.L. (1972):
Correctness of Translations of Programming Languages --
An Algebraic Approach, Stanford Artificial Intelligence Project
Memo AIM - 174. Computer Science Department Report CS-303,
Stanford University.

Morris, F.L. (1973):
Advice On Structuring Compilers and Proving Them Correct,
ACM Symposium on Principles of Programming Languages,
pp 144-152.

Mosses, P. (1980):
A Constructive Approach to Compiler Correctness, Automata,
Languages and Programming. Proceedings 1980. J. de Bakker and J.
van Leeuwen (eds.), Lecture Notes in Computer Science 85,
pp 449-469. Springer-Verlag.

180

Manes, E.G. (1976):
Algebraic Theories Springer-Verlag.

Manna, Z. (1974):
Mathematical Theory of Computation. McGraw-Hill.

McCarthy, J. (1962):
Towards a Mathematical Science of Computation, Information
Processing, pp 21-28. North-Holland.

McCarthy, J. and Painter, J. (1967):
Correctness of a Compiler for Arithmetic Expressions,
Proceedings of Symposia in Applied Mathematics 19, pp 33-41.

Milne, RI (1974):
The Formal Semantics of Computer Languages and Their
Implementations Ph.D. Thesis, Cambridge University.

Milne, RI. and Strachey, C. (1976):
A Theory of Programming Languages Semantics Chapman
and Hall.

Milner, R. (19'77):
Fully Abstract Models of Typed A-Cskul4 Theoretical
Computer Science 4, pp 1-22.

Milner, R. and Wehrauch, R. (1972):
Proving Compiler Correctness hi a Mechanized Logic Machine
Intelligence 7, pp 51-70. Edinburgh University Press.

Morris, F.L. (1972):
Correctness of Translations of Programming Languages --
An Algebraic Approach, Stanford Artificial Intelligence Project
Memo AIM - 174. Computer Science Department Report CS-303,
Stanford University.

Morris, F.L. (1973):
Advice On Structuring Compilers and Proving Them Correct,
ACM Symposium on Principles of Programming Languages,
pp 144-152.

Mosses, P. (1980):
A Constructive Approach to Compiler Correctness, Automata,
Languages and Programming. Proceedings 1980. J. de Bakker and J.
van Leeuwen (eds.), Lecture Notes in Computer Science 85,
pp 449-469. Springer-Verlag.

181

Mosses, P. (1981):
A Semantic Algebra for Binding Constructs International
Colloquium on Formalization of Programming Concepts, J. Diaz and
I. Ramos (eds.), Lecture Notes in Computer Science 107, pp 408-418.
Springer-Verlag.

Mosses, P. (1983):
Abstract Semantic Algebras!, Formal Description of
Programming Concepts - II, D. Bjorner (ed.), pp 45-70.
North-Holland.

O'Donnell, M.J. (1977):
Computing in Systems Described by Equations, Lecture Notes
in Computer Science 58. Springer-Verlag.

Padawitz, P. and Wirsing, M. (1984):
Completeness of Many-Sorted Equational Logic Revisitea
Bulletin of the European Association for Theoretical Computer
Science, 24, pp 88-94.

Pair, C. (1982):
Abstract Data Types and Algebraic Semantics of
Programming Languages Theoretical Computer Science 18,
pp 1-31. North-Holland.

Parsaye-Ghomi, K. (1981):
Higher Order Abstract Data Types Ph.D. Thesis. University of
California, Los Angeles.

Poigne, A. (1984):
Higher Order Data Structures - Cartesian Closure Versus
A-Calculus Symposium of Theoretical Aspects of Computer Science.
M. Fontet and K. Melhorn (eds.), Lecture Notes in Computer Science
166, pp 174-185. Springer-Verlag.

Reichel, H. (1980):
Initially - Restricting Algebraic Theories Mathematical
Foundations of Computer Science 1980. P. Dembinski (ed.), Lecture
Notes in Computer Science 88, pp 504-514. Springer-Verlag.

Sanella, D. and Wirsing, M. (1983):
A Kernel Language for Algebraic Specification and
Implementation, Interal Report CSR-131-83. Department of
Computer Science, University of Edinburgh.

Scott, D.S. and Strachey, C. (1971):
Toward a Mathematical Semantics for Computer Languages
PRG-6, Programming Research Group, Oxford University.

182

Stoy, J.E. (1977):
Denotation,/ Semantics: The Scott-Strachey Approach to
Programming Language Theory MIT Press.

Stoy, J.E. (1981):
The Congruence of Two Programming Language Definition.%
Theoretical Computer Science 13, pp 151-174.

Strachey, C. and Wadsworth, C.P. (1974):
Continuations: A Mathematical Semantics for Handling Full
Jumps, PRG-11, Programming Research Group, Oxford University.

Tarski, A. (1955):
A Lattice-Theoretical Fixpoint Theorem and its Application,
Pacific Journal of Mathematics 5, pp 285-309.

Tennett, 1LD. (1977):
A Denotations! Definition of the Programming Language
Pascal, Technical Report 77-47, Queens University, Ontario.

Thatcher, J.W., Wagner, E.G. and Wright, J.B. (1979):
More On Advice on Structuring Compilers and Proving Them
Correct, Automata, Languages and Programming. Proceedings
1979. H.A. Maurer (ed.), Lecture Notes in Computer Science 71,
pp 596-615. Springer-Verlag.

Turner, R. (1979):
The Operational and DODOillliellili Semantics of the Lambda
Calculus, (unpublished manuscript). University of Essex.

Wagner, E.G., Thatcher, J.W. and Wright, J.B. (1978):
Programmkg Languages as Mathematical Objects,
Mathematical Foundations of Computer Science. J. Winkowski (ed.),
Lecture Notes in Computer Science 64, pp 84-101. Springer-Verlag.

Wagner, E.G., Wright, J.B., Goguen, J.A. and Thatcher, J.W. (1976):
Some Fundamentals of Order - Algebraic Semantics,
Mathematical Foundations of Computer Science, 1976.
A. Mazurkiewicz (ed.), Lecture Notes in Computer Science 45,
pp 153-168. Springer-Verlag.

Wand, M. (1979):
Final Algebra Semantics and Data Type Extensions, Journal of
Computer and System Sciences 19, 1, pp 27-44.

Wand, M. (1980a):
Different Advice On Structuring Compilers and Proving
Them Correc4 Technical Report No. 95. Computer Science
Department, Indiana University.

183

Wand, M. (1980b):
First-Order Identities as a Defining Language, Acta
Informatica 14, pp 337-357.

Wand, M. (1982):
Deriving Target Code as z Representation of Continuation
Se11181111CX ACM Transactions on Programming Languages and
Systems, 4,3, pp 496-517.

Wirsing, M. and Broy, M. (1982):
An Analysis of Semantic Models for Algebraic
Specifications, Theoretical Foundations of Programming
Methodology. M. Broy and G. Schmidt (eds.), pp 351-412. D. Reidel.

Zilles, S.N. (1979):
An Introduction to Data Algebras, Abstract Software
Specifications. D. Bjorner (ed.). Lecture Notes in Computer Science 86,
pp 248-272. Springer-Verlag.

A

6

