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ABSTRACT 

 

Prostate cancer is the most commonly diagnosed cancer in males and is the second 

leading cause of cancer deaths in men after skin cancer. It is still associated with 

significant mortality and morbidity and statistics indicate that 80% of prostate cancer 

deaths have metastatic bony lesions. Previous work from our group has identified integrin 

alpha 2 (ITGA2) as a putative prostate cancer susceptibility gene through a familial 

genetic study. There is an increasing body of evidence suggesting it is involved in 

prostate cancer progression, particularly contributing to the preferential metastasis of 

prostate cancer cells to the bone. Integrins are surface receptors which play important 

roles in cell migration, invasion, survival and angiogenesis. Altered expression of 

integrins has been found to mediate tumour cell invasion and metastasis in a range of 

cancers including prostate cancer. Recently, it has become evident that epigenetic 

mechanisms play important roles in the progression of prostate cancer, affecting a large 

number of genes associated with the disease, which leads to the hypothesis that 

deregulation of ITGA2 expression by epigenetic alterations may be associated with 

prostate tumour progression and metastasis. To examine this hypothesis, regulation of the 

ITGA2 gene was investigated in a panel of prostate cell lines which represents different 

aspects of prostate cancer biology. 

 

The ITGA2 promoter is associated with a large CpG island and reduced methylation at 

the ITGA2 promoter was observed in the bone metastatic cell line, PC3 when compared 

to the non-tumorigenic cell line, LNCaP and the benign prostate cell line, PWR-1E. 

Reduced methylation correlated with increased ITGA2 expression levels in these cell 

lines. Chromatin accessibility and histone acetylation at the ITGA2 promoter was found 

to be higher in the more highly expressing PC3 cell line. A lower percentage of 

nucleosome occupancy at the transcription start site also correlated with the higher 

expression of ITGA2 in 22Rv1 as compared to LNCaP cells. In addition, inhibition of 

DNA methylation and histone acetylation in combination increased ITGA2 expression in 

LNCaP cells. These data are consistent with DNA methylation, nucleosome occupancy 

and histone acetylation contributing to ITGA2 regulation.  
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Higher ITGA2 gene expression levels were also found to correlate with higher cell 

migration capacity. This was consistent with LNCaP cells displaying an epithelial-like 

phenotype while the highly expressing PC3 cells displayed a mesenchymal-like 

phenotype. Knockdown of ITGA2 in the metastatic prostate cancer cell line, PC3, 

resulted in reduced cell migration, without affecting epithelial to mesenchymal transition 

(EMT). However, selection of cells with increased ITGA2 expression by serial passaging 

of cells on collagen matrix correlated with altered expression of transcription factors 

known to modulate EMT. Higher ITGA2 expression correlated with increased Twist and 

decreased Snail expression.  

 

Further examination of the regulation of ITGA2 gene by transcription factors suggests 

that the Sp1 transcription factor activates ITGA2 expression. However, Sp1 is expressed 

at equivalent levels in both LNCaP and PC3 cells and thus, can not account for the 

differential ITGA2 expression observed. While Twist showed inconsistent activity, 

androgen treatment and Snail overexpression repressed ITGA2 promoter activity. Since 

Snail is more highly expressed in LNCaP as compared to PC3 cells, this could explain the 

lower ITGA2 expression observed in LNCaP compared to PC3 cells. 

 

Overall, ITGA2 has been shown by others to be involved in the selective metastasis of 

prostate cancer to the bone, which is the major cause of prostate cancer related death. 

ITGA2 may therefore represent a potential therapeutic target in metastatic prostate cancer. 

This study has shown that both epigenetic factors involving DNA methylation, histone 

acetylation and nucleosome occupancy and the transcription factors, Sp1, Snail and 

androgen receptor cooperate to regulate ITGA2 gene expression. Further, the data 

presented suggest that alterations to epigenetic factors and/ or the EMT transcription 

factor Snail may contribute to aberrant ITGA2 expression during prostate cancer 

metastasis. 
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Chapter 1 

INTRODUCTION 

 

1.1 PROSTATE CANCER 

Prostate cancer is the most commonly diagnosed invasive cancer in men and is the 

second leading cause of cancer deaths in men after lung cancer. According to the report 

by the Australian Institute of Health and Welfare, in 2009, there were 21 808 new cases 

of prostate cancer and it is expected to reach 25 000 new cases per year in 2020. Despite 

considerable advances in prostate cancer research, this cancer is still associated with 

significant mortality and morbidity (Rider et al. 2012). The risk factors involved in the 

development of prostate cancer include advancing age, race and family history. If 

detected in the early stage of disease, prostate cancer is considered curable by surgical 

excision methods, radiotherapy and androgen deprivation therapy (Fleshner et al. 2010). 

However, in a percentage of men disease recurs, is frequently refractory to treatment and 

this is associated with poor prognosis. It is thought there is a population of prostate 

tumour cells that have the capacity to invade and metastasize, with bone being the most 

common metastatic site. Autopsy studies have found that more than 80% of men who die 

of prostate cancer have metastatic bony lesions (Bubendorf et al. 2000).  

 

The current prostate specific antigen (PSA) screening tool has allowed early detection of 

prostate cancer, when still locally confined (Paquette et al. 2002). PSA is a protein 

produced by the cells in the prostate gland. The PSA screening tool measures the level of 

PSA in the blood where a high PSA level is indicative of the presence of cancer (Gann et 

al. 1995). However, benign conditions may also show elevated levels of PSA (Nadler et 

al. 1995). Therefore, the PSA screening tool has significant limitations resulting in a false 

positive rate of 80% when PSA cutoff is between 2.5 and 4.0 µg/L (Wolf et al. 2010). 

Further, it is unable to distinguish the aggressive tumours requiring immediate 

intervention from those that are more appropriately managed by regular surveillance. 

Thus, there is considerable interest in identifying and discovering new prognostic and 
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diagnostic markers for prostate cancer, particularly markers that can identify those 

tumours likely to progress to a more aggressive state. 

 

Prostatic intraepithelial neoplasia (PIN), in particular high-grade PIN has been identified 

as a precursor to prostate cancer. High-grade PIN is an abnormal condition of the prostate 

gland and is considered a pre-malignant condition. Studies have reported that 

approximately 30% of men with high-grade PIN lesions will develop prostate cancer 

(Lefkowitz et al. 2002). Atypical small acinar proliferation (ASAP) is also a precursor to 

prostate cancer. ASAP lesions mimic cancer and have been found to be strongly 

predictive of subsequent prostate cancer, with approximately 60% of men with ASAP 

found to subsequently develop prostate cancer (Bostwick et al. 2006). The progression of 

prostate cancer may be driven by the accumulation of genetic and epigenetic changes, 

leading to the activation of oncogenes and inactivation of tumour suppressor genes (De 

Marzo et al. 2007). These changes lead to the development of PIN and ASAP which may 

progress into localised invasive cancer and finally metastatic tumours (Figure 1.1).  

 

The process of the onset of invasion and metastasis is a multistep process. Firstly, this 

involves the detachment of tumour cells from the primary site by disruption of the 

basement membrane barrier followed by invasion through the basement membrane, 

intravasation into the blood vessels, extravasation from the blood vessels and finally, 

formation of secondary metastases (Geiger et al. 2009; Yang et al. 2004). Recently, the 

epithelial-mesenchymal transition (EMT) process has been proposed to be involved in 

facilitating tumour cell migration and many studies have suggested that activation of 

EMT is a critical event in the progression of a benign tumour into a malignant tumour 

(Thiery 2002). 
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Androgen-

independent 

Figure 1.1 Development and progression pathway for human prostate cancer. Adapted 

from Abate Shen et al. (2000). 
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1.2 EPITHELIAL-MESENCHYMAL TRANSITION 

(This section has been substantially published in Chin et al. 2013) 

 

Epithelial cells are organised in layers of cells that are maintained by cell-cell interactions 

involving tight junctions and desmosomes. In addition, these cells have apical-basolateral 

polarity. In contrast, mesenchymal cells are irregular, elongated, spindle-shaped and do 

not have cell-cell contacts nor apical-basolateral polarity but have distinct cell-

extracellular matrix (ECM) interactions and cytoskeletal structures and are highly motile. 

The transition of an epithelial cell into a mesenchymal cell is known as epithelial-

mesenchymal transition (EMT). EMT involves a series of events where the cell-cell and 

cell-ECM interactions are altered by degradation of underlying basement membrane 

resulting in detachment of epithelial cells from the surrounding tissue followed by 

rearrangement of the cytoskeleton to confer the ability to move through a three-

dimensional ECM and the induction of a series of new transcriptional signalling 

pathways to maintain the mesenchymal phenotype (Radisky 2005). This process is 

important in embryonic development, particularly in gastrulation and segment formation. 

Activation of EMT is also involved in tissue repair and more recently, EMT has been 

implicated in carcinogenesis. EMT is a reversible event, and the reverse process, known 

as mesenchymal-epithelial transition (MET) is involved in the formation of epithelial 

organs by mesenchymal cells (Thiery 2002). In vivo and in vitro studies have shown that 

tumour cells can undergo partial or complete EMT, showing loss of epithelial phenotype 

and gaining mesenchymal characteristics. EMT facilitates migration by disrupting the 

polarity of epithelial cells leading to the loss of cell adhesion, allowing tumour cells to 

invade through the basement membrane. 

 

1.2.1 Regulation of EMT 

 

EMT involves a series of signalling processes. Firstly, it involves the break-down of cell-

cell interactions leading to loss of E-cadherin expression and the upregulation of 

mesenchymal markers such as N-cadherin, vimentin and the transcription factors Snail, 
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Twist and ZEB family members. Then, it is followed by a loss of cell polarisation and 

cytoskeleton remodelling. Finally, changes in cell adhesion occur leading to cell 

detachment and the activation of proteolytic enzymes, matrix metalloproteinases (MMPs) 

(Tomita et al. 2000). The initiation of EMT is tissue and context dependent and may not 

involve all EMT markers (Umbas et al. 1992). There are various stimuli from outside the 

cell which regulate EMT within the tumour microenvironment. These include the binding 

of transforming growth factor-β (TGFβ) to the TGFβ receptor (TGFβr), growth factors 

such as epidermal growth factor (EGF), fibroblast growth factor (FGF) and hepatocyte 

growth factor (HGF) which bind to their cognate kinase receptors  (TKR), the highly 

conserved Wnt/β-catenin pathway and also integrin signalling which activates the focal 

adhesion kinase (FAK) signalling pathway (Gould Rothberg et al. 2006). Since integrins 

are involved in cell adhesion and signalling, it is possible that integrins can initiate and 

mediate EMT and invasion in tumour progression (Figure 1.2). These various signalling 

pathways then activate a range of EMT-inducing transcription factors such as Snail, Slug, 

Twist, zinc finger E-box binding homeobox 1 and 2 (ZEB1 and ZEB2).  

 

 

1.3 INTEGRINS 

 (This section has been substantially published in Chin et al. 2013) 

 

Integrins play important roles in normal prostate development where they are involved in 

the interaction of the prostate epithelial cells with the ECM and also influence cell 

signalling, growth, survival and differentiation (Koistinen et al. 2000). In addition, the 

transition from a normal prostate gland to the formation of PIN and to invasive and 

metastatic cancers involves alterations in these cell surface adhesive receptors, integrins 

(Bonkhoff et al. 1993; Haywood‐Reid et al. 1997; Knox et al. 1994; Murant et al. 1997). 

During metastasis, changes in integrin expression result in changes in the tumour cell 

adhesion to adjacent cells and to the ECM leading to increased cell motility. Thus, 

integrins are key players in metastatic events since they mediate cell to cell (homotypic) 

and cell to ECM (heterotypic) interactions of prostate cells and EMT is likely important 

in this process. During EMT, tumour cells switch from cell-cell to cell-matrix adhesion  
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Figure 1.2 Schematic representation of the EMT process and the roles of integrins in 

cell adhesion and migration. Adapted from Chin et al. (2013). 
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thus mediating cell migration. As integrins are involved in cell-matrix adhesion, changes 

in integrins may occur during EMT. 

 

Integrins belong to a superfamily of transmembrane glycoprotein receptors involved in 

mediating cell to cell and cell to ECM interactions. They exist as heterodimers composed 

of α and β subunits bound by non-covalent bonds. To date, 18 α subunits and 8 β subunits 

have been identified in humans, which can associate to form 24 unique complexes 

(Table1.1) with the different αβ combinations possessing distinct ligand binding 

specificities (Hynes 1992; Rosales et al. 1995). There are three distinct regions in each 

integrin subunit with each subunit containing an extracellular domain, a transmembrane 

domain and a short intracellular domain. 

 

The extracellular regions of the α and β subunits together form the ligand binding site. 

The most common ligands for integrins are large ECM proteins such as laminin, 

fibronectin, collagen and vitronectin. These ECM proteins (except for laminin and 

collagen) have a common arginine-glycine-aspartic acid (RGD) motif, whereas integrins 

recognise laminin and collagen through cryptic RGD sites. In addition, there are some 

integrins that interact with other adhesion molecules such as cadherins, intracellular 

adhesion molecules (ICAMs) and vascular adhesion molecules (VCAMs), expressed on 

leukocytes and endothelial cells. However, integrins can frequently bind several ligands 

(as outlined in Table 1.1), permitting redundancy in signalling as multiple integrins are 

generally present on any particular cell surface.  

 

As an integrin binds to its ligand, it undergoes structural changes which affect the ligand 

binding affinity (Hughes et al. 1997). This affinity is also determined by the cytoplasmic 

signals from within the cell which affects the molecular interactions at the integrin 

cytoplasmic domain influencing the degree of cell adhesion. This is referred to as inside-

out signalling. Integrins also play a role in signal transduction where they transduce 

extracellular signals to the interior of the cell, referred to as outside-in signalling. Such 

signalling can affect cell migration, differentiation, survival and proliferation (Giancotti 

et al. 1999; Hood et al. 2002; Lee et al. 2004). When bound to the ECM proteins,  
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Table 1.1 List of integrins and their ligands. Adapted from Chin et al. (2013). 
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integrins recruit a range of adaptor proteins, and activate various signalling pathways. For 

example, integrin clustering activates the FAK, Src family kinases, Rac and Rho 

GTPases leading to the recruitment of cytoskeleton proteins such as talin, α-actinin, 

vinculin, paxillin and tensin (Ren et al. 2007). Activation of these kinase pathways and 

cytoskeleton proteins contributes to changes in cell architecture, adhesion and migration 

on the ECM (Desgrosellier et al. 2010).  

 

1.3.1 Roles of Integrins in cancer progression 

 

While integrins mediate cell attachment, ligation of integrins by the ECM proteins 

induces cell migration by generating the traction required for invasion. In cancer, 

expression of integrins that are involved in cell adhesion is frequently altered, leading to 

cell proliferation, migration and metastasis. Previous studies in which integrin expression 

levels were correlated to the different stages of human tumours and the pathological 

outcomes (metastasis, recurrence, survival), implicated a number of integrins in cancer 

progression (Gillan et al. 2002; Hall et al. 2008; Mitchell et al. 2010; Pontes-Junior et al. 

2009; Ramirez et al. 2011; Reinmuth et al. 2003; Rolli et al. 2003; Saito et al. 2010; Sung 

et al. 1998; Tsuji et al. 2002; Zutter et al. 1995). These integrins include αvβ3, α2β1, 

α3β1 and α6β1. In contrast integrin α4β1 is associated with tumour suppression 

(Saramaki et al. 2006).  

 

Integrin αvβ3 has been associated with tumour progression in a range of cancers 

including lung cancer, gastric cancer, breast cancer and prostate cancer (Mitchell et al. 

2010; Pontes-Junior et al. 2009; Saito et al. 2010; Tsuji et al. 2002). Integrin αvβ3 

remains the most well-studied integrin involved in tumour progression. Interestingly, 

integrin αvβ3 is usually only expressed in activated leukocytes, macrophages, platelets 

and osteoclasts and is not normally expressed in epithelial cells. It has been found to 

mediate adhesion of breast cancer cells to bone matrix and also facilitate migration of 

breast cancer cells on bone sialoprotein (Sung et al. 1998; van der et al. 1997). In colon 

cancer, blocking integrin αvβ3 resulted in a decrease in tumour metastasis and improved 

survival in mice (Reinmuth et al. 2003). This integrin was also found to bind to periostin, 
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which is upregulated in epithelial ovarian cancer cells, and to promote cell adhesion and 

migration (Gillan et al. 2002). 

 

Changes in integrin α2β1 have also been associated with tumour progression where high 

expression of α2β1 was observed in ductules of normal breast, low or undetectable 

expression was observed in poorly differentiated adenocarcinomas and intermediate 

expression levels were detected in more well-differentiated adenocarcinomas (Zutter et 

al. 1990). These observations suggest that in breast cancer, decreased expression of α2β1 

contributes to the malignant phenotype. In another study, loss of integrin α2β1 resulted in 

the induction of breast cancer cell metastasis in vivo, suggesting that integrin α2β1 is a 

metastasis suppressor (Ramirez et al. 2011). The re-expression of α2β1 in breast cancer 

cells reversed some of the tumorigenic properties of the cells (Zutter et al. 1995). In 

contrast, in prostate cancer, integrin α2β1 was found to induce prostate cancer cell 

metastasis to the bone (Hall et al. 2008). Thus, these studies suggest that integrin function 

is cell type and context dependent.  

 

The development of integrin α2 knockout mice (Chen et al. 2002) has provided further 

insight into the role of α2β1 in tumorigenesis. These mice were viable, fertile and showed 

normal development most likely due to the compensatory mechanisms of other collagen-

binding integrins (Zhanf et al. 2006b). However, when the α2-null mice were challenged 

with B16F10 melanoma cells, tumours in these mice grew rapidly with larger tumours 

and increased tumour angiogenesis correlating with upregulation of Vascular Endothelial 

Growth Factor Receptor 1 (VEGFR1) expression when compared to wild type mice. 

However, α2 knockout mice bearing Lewis Lung carcinoma (LLC) cells displayed no 

difference in tumour angiogenesis. Further analysis showed that integrin α2β1-dependent 

angiogenesis involves the secretion of placental growth factor (PLGF) which was 

produced by B16F10 cells but not the LLC cells. These data add weight to the notion that 

integrin expression is cell type and context dependent, where it depends on the 

interactions of the host factors with the surrounding microenvironment. Following this 

study, the α2 knockout mice were crossed with mice carrying the MMTV-c-erbB2/Neu 

oncogene, a spontaneous, clinically relevant mouse model of breast cancer, to generate 
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α2-null/Neu mice (Ramirez et al. 2011). α2-null/Neu mice displayed decreased mammary 

tumour latency, increased cancer metastasis and enhanced tumour cell intravasation, 

supporting the idea that α2β1 is a metastasis suppressor. 

 

Knockdown of α2β1 expression by transfecting the human breast carcinoma cells T47D, 

with antisense mRNA resulted in decreased cell adhesion on collagen I and IV but 

adhesion to fibronectin and laminin were not affected (Keely et al. 1995). α2β1 

expression has also been associated with cell migration. Cell attachment and migration 

were analysed in melanoma cell lines with cells that did not express α2β1 showing weak 

cell attachment and low cell migration ratse on both laminin and type IV collagen (Etoh 

et al. 1993). Blocking of either α2 or β1 using monoclonal antibodies resulted in 

inhibition of cell migration but no detectable cell detachment. Other integrin blocking 

antibodies such as anti-α3 and anti-α6 did not affect cell migration and attachment, 

suggesting that cell migration on laminin and collagen IV is mainly mediated by α2β1. 

 

1.3.2 Roles of integrins in prostate cancer progression 

 

Integrins are expressed in normal prostate basal cells and are required for the interaction 

of the cells with surrounding stroma which influences their growth, survival and 

differentiation potential. These integrins include α2β1, α3β1, α5β1 and α6β4 (Bonkhoff 

et al. 1993; Collins et al. 2001; Davis et al. 2001b; Knox et al. 1994; Nagle et al. 1995). 

Altered expression of integrins affects cell adhesion to adjacent cells and to the ECM and 

such effects have been observed in solid tumours and prostate cancer cell lines. Table 1.2 

highlights the best characterised integrins involved in prostate cancer progression, 

migration and invasion, and these integrins are discussed below. 

 

A microarray study was conducted on 111 individuals with localised prostate cancer who 

had undergone radical prostectomy, including 60 individuals who had tumour recurrence 

after a follow-up of 123 months (Pontes-Junior et al. 2010). In this study increased 

integrin α3 and α3β1 expression was found to be related to worse outcome with strong  
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Table 1.2 Summary of publications which have reported altered expression of integrins in 

prostate cancer progression. Adapted from Chin et al. (2013). 
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α3 and α3β1 expression associated with higher incidence of recurrence. In another 

microarray study performed on four prostate cancer cell lines (LNCaP, DU145, PC3 and 

22Rv1) and 13 prostate cancer xenografts, decreased expression of integrin α4 was 

observed and was found to be associated with deletion of the integrin α4 locus (Saramaki 

et al. 2006). Since all samples were derived from metastases, it suggests that integrin α4 

could be a tumour suppressor. Interestingly, integrin α7 has also been identified as a 

tumour suppressor (Ren et al. 2007). In this study, the prostate cancer cell lines, PC3 and 

DU145 were transfected with an integrin α7 expression vector and implanted in SCID 

mice. After six weeks, the volume of the tumours was measured and compared to tumour 

volume in mice injected with cell that had been transfected with control vector. Reduced 

tumour volume and fewer metastases were observed in the integrin α7 vector transfected 

mice. Further analysis of metastatic potential using a wound-healing assay recorded 

reduced rates of migration in both PC3 and DU145 cells overexpressing integrin α7. 

Thus, these studies support the notion that integrin α7 inhibits cell migration and acts as a 

tumour suppressor.  

 

An early study using DU145 and PC3 cells, which express integrin  αIIbβ3, suggested that 

integrin  αIIbβ3 is also involved in prostate cancer metastasis (Trikha et al. 1998). 

Although both cell lines express integrin αIIbβ3, immunofluorescence data displayed 

different localisation patterns of the integrin. In DU145 cells the integrin localises to 

focal contact sites whereas in PC3 cells, it is mainly intracellular. Interestingly, when 

both the tumorigenic cell lines were injected intraprostatically into SCID mice, only the 

DU145 cells metastasised. Further analysis by flow cytometry with an antibody to αIIbβ3 

detected higher expression of αIIbβ3 in DU145 cells isolated from the prostate when 

compared to DU145 cells from the subcutaneous tissue. Therefore, the data suggests that 

integrin αIIbβ3 is involved in the metastatic progression of prostate tumours. Recently, 

integrin α5β1 also has been found to be important in cell adhesion in prostate cancer cells 

(Stachurska et al. 2012). When integrin α5β1 was blocked with an antibody, a decrease in 

the number of adherent PC3 cells to fibronectin was observed. Partial inhibition of PC3 

cell migration and the formation of quasi-spherical cell shape changes were observed, 

suggesting a reversal to a less mesenchymal phenotype. In addition, the blocking of α5β1 
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resulted in weak expression of the cytoskeletal proteins F-actin and α-actinin suggesting a 

weak cell-fibronectin interaction. Thus, these results support the idea that integrin α5β1 

plays an important role in the adhesion of PC3 cells to fibronectin and the migration of 

PC3 cells.  

 

Integrin αvβ3 has also been identified to be involved in prostate cancer metastasis. Zheng 

et al. (1999) found expression of integrin αvβ3 in 16 prostate cancer specimens but not in 

normal prostate epithelial cells. The highly metastatic and invasive PC3 cell line also 

expresses integrin αvβ3 but not the non-invasive LNCaP cell line (Zheng et al. 1999). 

These αvβ3 expressing PC3 cells and the primary prostate cancer cells were found to 

adhere and migrate on vitronectin. When LNCaP cells were transfected with an αvβ3 

expression plasmid to induce αvβ3 expression, LNCaP cells also adhered to and migrated 

on vitronectin. Thus, this study suggests that αvβ3 is potentially involved in prostate 

cancer invasion and metastasis. A following study found integrin αvβ3 to be involved in 

bone metabolism and angiogenesis (Nemeth et al. 2003). To investigate how inhibition of 

integrin αvβ3 in cells native to the bone would affect prostate cancer bone metastasis, a 

prostate cancer cell line that expresses little or no integrin αvβ3 was chosen. Interestingly, 

in this study, PC3 cells were used as they found undetectable levels of αvβ3 by FACS 

analysis and antibody staining. This is conflicting with the previous study which reported 

expression of αvβ3 in PC3 cells and it is possible that this is due to the use of different 

types of antibodies. Regardless, PC3 cells were injected directly into human bone 

fragments which were previously implanted subcutaneously in SCID mice and the mice 

were treated with anti-β3 antibody fragment (m7E3 F(ab’)2). This antibody only blocks 

the human bone-derived αvβ3. After two weeks of treatment, inhibition of integrin αvβ3 

resulted in a reduced proportion of antigenically-human blood vessels within tumour-

bearing bone implants. In addition, a reduction in the rate of tumour cell proliferation 

within the bone implants, reduced osteoclast number and degradation of calcified bone 

tissue were observed. 

 

Integrin α6 can pair with either β1 or β4 subunits and it binds to laminin. The integrin 

α6β4 is a laminin receptor and is known as a hemidesmosome complex, mediating cell 
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attachment to the ECM. It acts as a junctional complex on the basal cell surface and is 

involved in the attachment of epithelial cells to the adjacent basement membrane. In 

contrast integrin α6β1 has been found to be involved in the cell migratory phenotype. The 

expression and distribution of integrin α6β1 in normal, hyperplastic and neoplastic 

prostate tissue and lymph node metastases was therefore examined (Bonkhoff et al. 

1993). Approximately 85% of the grade I and grade II tumours and also the lymph node 

metastases showed upregulation of integrin α6β1, compared to normal and hyperplastic 

samples. Staining showed clusters of α6β1 receptors in acinar basement membranes 

which suggests that integrin α6β1 is important in mediating cell attachment to the 

basement membrane. In a later study, Nagle et al. (1994), found that while most of the  

prostate carcinoma tissues they tested displayed downregulation of integrins, the majority 

of these samples expressed α6β1 (Nagle et al. 1994). This is consistent with the loss of 

integrin β4 in the carcinoma samples. In a separate study, integrin β4 was found to be 

absent in prostate carcinoma tissues and only present in normal prostate glands and PIN 

lesions (Davis et al. 2001a), supporting the previous study. Therefore, these data suggest 

that integrin β4 is lost during cancer progression and therefore, integrin α6 is 

preferentially paired with the β1 subunit, forming α6β1. A following study found a 

variant form of integrin α6, α6p which was expressed in DU145, LNCaP and PC3 

prostate cancer cell lines but not expressed in the normal prostate cells, PrEC  (Davis et 

al. 2001b). This α6p variant also binds to both the β1 and the β4 subunits and has three 

times longer half-life than α6. Recently, King et al. (2008) investigated the role of 

integrin α6β1 in prostate cancer migration and bone pain in a novel xenograft mouse 

model. The human prostate cancer cells (PC3N), were stably transfected to overexpress 

either the cleavable wild type (PC3N-α6-WT) which forms the α6p variant or the 

uncleavable (PC3N-α6-RR) form of integrin α6. The α6 subunit can be cleaved via 

Urokinase-type Plasminogen Activator (uPA) treatment and the cells were directly 

injected and sealed into the femur of a mouse. After 21 days, tumour cells expressing 

wild-type integrin α6 (non-cleavable) showed a significant decrease in bone loss, 

unicortical or bicortical fractures and decreased ability of tumour cells to reach the 

epiphyseal plate of bone and prevented movement evoked pain, compared to the 

cleavable α6 integrin. Thus, these results suggest thaTargetedg of integrin α6 cleavage in 
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prostate tumour cells results in decreased tumour cell migration within the bone and 

reduced bone fractures and pain.  

 

Targeted deletion of integrin β1 (which binds to many α subunits) in the mammary 

epithelium of the MMTV/Cre mice breast cancer model using the Cre/LoxP1 

recombination system has shown that integrin β1 expression plays a role in the initiation 

of mammary tumorigenesis and for maintaining the cell proliferative capacity of late-

stage tumour cells (White et al. 2004). Similarly, targeted disruption of integrin β1 in 

ErbB2-induced mammary tumours resulted in impaired tumour progression (Huck et al. 

2010). Further investigation revealed that this was associated with increased apoptotic 

cell death and impaired angiogenic infiltration. In addition, during prostate cancer 

progression, integrin β1 expression has been shown to be upregulated and mis-localised 

(Knox et al. 1994; Murant et al. 1997). Targeted deletion of integrin β1 in the transgenic 

adenocarcinoma of the mouse prostate (TRAMP) model resulted in decreased animal 

survival, decreased retention of normal prostate morphology, increased the percentage of 

tissue with poorly differentiated carcinoma and increased cell proliferation (Moran-Jones 

et al. 2012). Taken together, these results suggest that integrin β1 plays an important role 

in tumour initiation and maintaining cell proliferative capacity. 

 

 

1.4 PUTATIVE PROSTATE CANCER SUSCEPTIBILITY GENES 

 

Advances in high-throughput genotyping assays have allowed genotyping of thousands of 

single nucleotide polymorphism (SNPs) and thus, lead to the identification of cancer 

susceptibility variants. Genome wide association studies have identified more than 50 

variants associated with prostate cancer risk. One such variant within the α6 gene has 

been associated with prostate cancer susceptibility (Eeles et al. 2009). As family history 

is a significant risk factor for developing prostate cancer, many studies have been focused 

on identifying these susceptibility genes. Family history of disease is important in 

identifying inherited genetic predisposition.  
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Familial linkage analysis of a large Tasmanian family affected by multiple, densely 

aggregated cases of prostate cancer has identified a linkage on chromosome 5q13q2 

(Fitzgerald 2009). Two polymorphisms within the ITGA2 gene were found to be 

associated with prostate cancer risk in both familial and sporadic cases.     

 

The ITGA2 gene encodes for the α2 subunit which only heterodimerises with the β1 

subunit to form the collagen/laminin receptor. The α2β1 complex is known as CD49b or 

Very Late Antigen 2 receptor (VLA-2). The α2β1 integrin is expressed on a wide variety 

of cell types including epithelial, mesenchymal, endothelial and fibroblast cells as well as 

platelets and megakaryocytes (Kirchhofer et al. 1990; Santoro et al. 1988; Takada et al. 

1988). The α2β1 complex is involved in mediating cell differentiation, invasion and 

metastasis (Chan et al. 1991; Keely et al. 1995).  

 

 

1.5 ROLES OF ITGA2 IN PROSTATE CANCER 

 

Bonkhoff et al. (1993) investigated the expression of integrin α2β1 in normal, 

hyperplastic and neoplastic human prostate tissue as well as lymph node metastasis 

samples. Results showed downregulation of α2β1 in 70% of the hyperplastic samples 

compared to normal prostate tissues. However, α2β1 was upregulated in the lymph node 

metastases compared to primary lesions (Table 1.3). In contrast, immunohistochemistry 

of α2β1 showed loss of expression in lymph node compared to their respective primary 

prostate tumour (Pontes-Junior et al. 2009). In another study, the role of integrin α2 in 

prostate cancer metastasis was investigated (Van Slambrouck et al. 2009). 

Immunofluorescence staining showed the presence of α2 and β1 subunit clusters in the 

bone metastatic prostate cancer cell line (C4-2B) but not in the lymph node metastatic 

prostate cancer cells (LNCaP), consistent with findings of Pontes-Junior et al. (2009), but 

in contrast to the findings of Bonkhoff et al., which reported α2β1 upregulation in lymph 

node metastasis. The functional blocking of the integrin α2 subunit with antibodies in the 

C4-2B bone metastatic prostate cancer cell line resulted in reduced adhesion and 

inhibition of invasion to collagen I (Van Slambrouck et al. 2009). Consistent with this, 
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flow cytometry showed an increase of α2 in LNCaP compared to C4-2B cells (Stewart et 

al. 2004). This correlated with C4-2B cells spontaneously metastasising to the bone 

whereas LNCaP cells failed to do so. Ramirez et al. (2011) found high expression of 

α2β1 in normal prostate and decreased expression in PIN and significantly decreased 

expression in lymph node metastases thus, supporting the findings of Van Slambrouck et 

al. (2009) and Pontes-Junior et al. (2009). More recently, α2β1 protein was found to be 

elevated in prostate cancer skeletal metastases compared to prostate cancer primary 

lesions or soft tissue metastases (Sottnik et al. 2012). 

 

The α2β1 integrin has been shown to be involved in adhesion of metastatic prostate cells 

to the bone. PC3 cells were found to rapidly adhere in a dose-dependent manner to 

immobilised human type I collagen but not to fibronectin (Festuccia et al. 1999). In 

addition, PC3 cells were found to show greater adherence and spread on collagen 1 than 

on fibronectin and poly-L-lysine (Kiefer et al. 2001). In both studies, blocking of the 

α2β1 integrin using anti-α2 and anti-β1 antibodies inhibited PC3 cell adhesion on 

collagen, suggesting adherence of PC3 cells to collagen 1 was through α2β1. Treatment 

of PC3 cells with transforming growth factor-β1 (TGF-β1), a major bone derived growth 

factor, increased the de novo synthesis of α2 and β1 and resulted in a 2-3 fold increase in 

cell adhesion and spreading on collagen. These data suggest that α2β1 and TGF-β 

synergistically facilitate adhesion of metastatic prostate cells to the bone. In another 

study, prostate epithelial cells derived from both malignant and benign tissues showed 

greater preference of adhesion to bone marrow stromal cells than to benign prostatic 

fibroblasts, skin fibroblasts or plastic tissue culture plates, in keeping with data 

suggesting that prostate cancer cells have a propensity to metastasise to the bone (Lang et 

al. 1997). Adhesion of prostate epithelial cells to bone marrow stromal cells was inhibited 

by anti-α2 and anti-β1 antibodies. 

 

The role of α2β1 in bone metastasis is further supported by a study by Hall et al. (2006). 

A collagen-binding LNCaP cell line was derived (LNCaPcol) which showed increased 

levels of α2β1 with associated increased migration towards collagen I (Hall et al. 2006). 
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Table 1.3 Summary of publications which have reported altered expression of α2β1 in 

prostate cancer samples.  
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 In an in vivo analysis of these cells, LNCaPcol cells were injected into the tibia of nude 

mice and the LNCaPcol injected mice developed bone tumours. In addition, SCID mice 

implanted with LNCaPcol cells with knockdown of ITGA2 displayed a 69% decrease in 

osseous tumour burden. 

 

Overall, these studies suggest that ITGA2 is involved in prostate cancer progression 

playing a role in adhesion, invasion and migration to collagen type I, which is the 

predominant protein in the bone. Bone is the most common and frequent target for 

prostate cancer metastasis and thus, suggests that ITGA2 plays an important role in 

prostate cancer metastasis.   

 

1.5.1 Prostate cancer stem cells 

 

According to the cancer stem cell hypothesis tumours are initiated by a rare 

subpopulation of putative cancer stem cells or progenitor cells, sharing similar properties 

to normal adult stem cells that have the ability to self-renew and also give rise to 

differentiated tissue cells (Tan et al. 2006). Whilst the cellular origin of prostate cancer 

remains controversial, putative prostate cancer stem cells originating from primary 

tumours have been shown to have the ability for self-renewal and high clonogenic 

potential (Collins et al. 2001). 

 

ITGA2 has been found to be an important marker of these prostate cancer stem cells. 

Isolation of cells with higher surface expression of ITGA2 from the human prostate 

epithelium displayed the ability to form colonies and regenerate a fully differentiated 

prostate epithelium in vivo and thus behave equivalent to the prostate stem cell (Collins et 

al. 2001). Further studies have found that human basal cells expressing α2β1
hi

/CD133
+ 

have epithelial stem cell properties and thus are used as a marker for selecting human 

prostatic epithelial stem cells (Richardson et al. 2004). Following this study, it was 

discovered that prostate cancer stem cells have a CD44
+
/α2β1

hi
/CD133

+ 
phenotype 

(Collins et al. 2005). CD44 and CD133 are well chracterised cell surface markers for 

cancer stem cells in brain, breast, pancreas, ovarian and liver cancers (Curley et al. 2009; 
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Lee et al. 2008; Singh et al. 2004; Wright et al. 2008; Zhu et al. 2010b).  These cells were 

shown to have the capacity for extensive proliferation, self-renewal, differentiation and 

invasion. These were consistent with data presented in Patrawala et al. (2006) where 80% 

of the CD44
+
 prostate cancer cells were of a CD44

+
/α2β1

hi
/CD133

+ 
tumour progenitor 

phenotype and they therefore concluded that in prostate cancer, the tumour is likely to 

contain multiple populations of tumorigenic cells which are able to give rise to tumours 

with differing efficiencies. 

 

1.5.2 Regulation of ITGA2 gene expression 

 

Numerous studies have demonstrated altered expression of ITGA2 during carcinogenesis. 

ITGA2 expression appears to be regulated primarily at the transcriptional level and its 

regulation has been examined in megakaryocytes (Zutter et al, 1995), epithelial cells (Ye 

et al. 1996) and fibroblasts (Xu et al. 1998a). Our understanding of its regulation is 

currently limited but, promoter and enhancer regions have been identified 5’ to the 

transcription start site (TSS; Zutter et al. 1994). Thus far, several Sp1 transcription factor 

binding sites have been identified and studies have shown that the Sp1 transcription 

factor is responsible for the basal activity of ITGA2 in megakaryocytic cells (Jacquelin et 

al. 2001). In addition to transcription factors, epigenetic factors have also been shown to 

be important in the regulation of integrin gene expression.  

 

1.6 EPIGENETIC REGULATION 

(This section has been substantially published in Chin et al. 2011) 

 

Epigenetic alterations are heritable changes in gene expression that occur without 

changes in DNA sequence, with the broadest definition including all factors other than 

DNA sequence changes, that heritably influence gene expression (Berger et al. 2009). 

While the best described of these mechanisms is DNA methylation, other epigenetic 

mechanisms include physical and chemical changes to chromatin and regulation of gene 

expression by microRNAs (miRNAs).   
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DNA methylation plays an important role in DNA repair, recombination and replication, 

as well as regulating gene activity (Figure 1.3). DNA methylation involves the addition 

of a methyl group to the 5’-carbon of cytosine in CpG dinucleotide sequences, catalysed 

by a family DNA methyltransferases (DNMTs). CpG rich regions, known as CpG islands 

are commonly found associated with the 5’ region of vertebrate genes (Gardiner-Garden 

et al. 1987) and are generally protected from methylation (Bird 2002). For many years 

CpG islands have been implicated in gene regulation with their methylation strongly 

correlated with gene silencing (Illingworth et al. 2009). DNA methylation can regulate 

gene activity via two mechanisms. Firstly, methylation of CpG dinucleotides within 

transcription factor binding sites can inhibit transcription factor binding and therefore 

directly influence gene activity (Hark et al. 2000b). Secondly, methylated CpG 

dinucleotides act as binding sites for methyl CpG binding proteins, which are associated 

with other factors such as histone deacetylases, involved in establishing repressive 

chromatin structures (Jones et al. 1998; Nan et al. 1998).  

 

Changes in DNA methylation patterns have been linked with cancer for many years now 

(Jones et al. 2007). However, the methylation changes are complex, with both 

hypomethylation and hypermethylation occurring in cancer cells. Aberrant DNA 

hypermethylation occuring at gene promoters, can lead to gene inactivation and localised 

hypermethylation of gene promoters has been reported in virtually all types of cancers, 

including prostate cancer. In contrast, DNA hypomethylation is the demethylation of 

normally methylated DNA and can lead to chromosomal instability and activation of 

proto-oncogenes (Dunn 2003; Eden et al. 2003; Sharma et al. 2010). Both global and 

gene-specific hypomethylation events have also been implicated in prostate cancer.  

 

While alterations in DNA methylation have long been linked to cancer, there is also 

mounting evidence that other epigenetic changes, such as changes to chromatin 

composition or structure, contribute to cancer. Within the eukaryotic nucleus DNA is 

assembled into chromatin, the basic unit of which is the nucleosome. Nucleosomes are 

composed of approximately 147 base pairs of DNA wrapped around an octamer of core 

histone proteins, containing two each of histones H2A, H2B, H3 and H4 (Kornberg et al. 
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1999). The N-termini of the core histones protrude from the nucleosome and are 

subjected to a range of covalent modifications, catalysed by various histone modifying 

enzymes. At least ten different histone modifications have now been reported, including 

acetylation, methylation, phosphorylation and ubiquitination (Gardner et al. 2011; 

Kouzarides 2007). Each of these modifications affects chromatin structure and function 

in a different way by either disrupting chromatin contacts or affecting the recruitment of 

other proteins to the chromatin (Kouzarides 2007). Acetylation of lysine residues in 

histone H3 and H4 (H3Ac, H4Ac) is in general associated with transcriptional activity, 

whereas histone methylation is associated with transcriptional activation or repression 

depending on the site of modification, and the number of methyl groups added (Figure 

1.3). For example, histone H3 lysine 4 (H3K4) methylation is generally associated with 

transcriptional activation, whereas histone H3 lysine 9 (H3K9) and histone H3 lysine 27 

(H3K27) di- and tri-methylation is generally associated with transcriptional repression 

(Kouzarides 2007). As with DNA methylation, there is an increasing body of evidence 

that changes in histone modifications due to aberrant activity or mis-targeting of 

chromatin-modifying enzymes is involved in carcinogenesis (Hake et al. 2004).  

 

1.6.1 Epigenetic alterations in prostate cancer progression 

 

1.6.1.1 DNA Hypomethylation 

There is considerable evidence that changes in DNA methylation patterns occur in 

prostate cancer with DNA hypomethylation in tumour samples first documented more 

than twenty years ago. In 1987, Bedford and van Helden analysed DNA 5'-

methylcytosine content in human prostate samples and reported a correlation between 

global hypomethylation and development of benign prostatic hyperplasia (BPH) and 

metastatic tumours (Bedford et al. 1987). Comparison of DNA methylation levels in 

tumour and normal prostate tissue by immunohistochemistry similarly detected global 

hypomethylation in prostate cancer (Brothman et al. 2005). In keeping with this 

Santourlidis et al. (1999) examined methylation of LINE-1 repetitive sequences in 

prostate adenocarcinomas and found that LINE-1 methylation tended to decrease with 

tumour stage. A further study analysing tumour samples similarly demonstrated an 
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Figure 1.3 A model depicting epigenetic modifications associated with different 

transcriptional states and some of the inhibitors that target epigenetic modifiers and, 

therefore, influence transcriptional activity. Adapted from Chin et al. (2011). 
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 association between DNA hypomethylation, tumour state and metastasis, with extensive 

hypomethylation of LINE-1 observed in 64% of cases with lymph node or distant 

metastases, but only in 21% of cases without detectable metastases (Schulz et al. 2002). 

All cases of hormone-refractory locally recurrent tumours displayed extensive LINE-1 

hypomethylation. The study by Schulz et al. (2002) also found a strong association 

between LINE-1 DNA hypomethylation and chromosomal alterations, in support of the 

notion that DNA hypomethylation increases genomic instability (Schulz et al. 2002). 

Most prostate cancer samples with prominent DNA hypomethylation also exhibited a 

large number of chromosomal alterations, and vice versa.  These findings were supported 

by a further study which found increased prevalence of LINE-1 hypomethylation in later 

stage prostate cancers and lymph-node positive prostate cancers (Florl et al. 2004). In 

contrast gene-specific hypermethylation events did not correlate with tumour stage, being 

present in both early and late stage prostate cancer. These data therefore suggest that 

hypomethylation is a later event in prostate cancer progression compared to gene-specific 

hypermethylation.  Consistent with this, a recent study examined LINE-1 methylation in 

primary prostate cancers compared to normal prostate tissues and found a significantly 

higher level of LINE-1 hypomethylation in metastatic prostate cancer tissues, suggesting 

that global hypomethylation occurs late in prostate cancer progression, particularly at the 

metastatic disease stage (Yegnasubramanian et al. 2008).  

 

While global DNA hypomethylation can contribute to cancer by promoting genomic 

instability, the hypomethylation of individual gene promoters can also contribute to 

cancer development and progression by directing aberrant gene expression. 

Hypomethylation of a number of genes has been linked to prostate cancer. For example, a 

study by Yegnasubramanian et al. (2008), found that CpG islands associated with a class 

of cancer testis antigen genes were hypomethylated in prostate cancer, correlating with 

their overexpression in primary prostate cancers, and more so in metastatic prostate 

cancer. Similarly hypomethylation of the promoter of the heparanase gene has been 

reported in prostate cancer, compared to BPH (Ogishima et al. 2005). This correlates with 

increased mRNA expression of the heparanase gene, which is associated with tumour 

invasion and metastasis (Hulett et al. 1999; Vlodavsky et al. 1988). Further investigation 
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of the WNT5A gene revealed three CpG sites in the promoter region which were 

consistently methylated in a normal prostate cell line and normal prostate tissues, but not 

in a prostate cancer cell line and primary prostate cancer tissues (Wang et al. 2007). 

Therefore hypomethylation and consequent upregulation of genes involved in metastasis 

and cell invasion may be an important factor in prostate cancer progression. In support of 

this, treatment of the PC-3 prostate cancer cell line with reagents that prevent DNA 

hypomethylation has an inhibitory effect on cell invasion in vitro and tumour growth in 

vivo (Shukeir et al. 2006). 

 

1.6.1.2 DNA Hypermethylation 

DNA hypermethylation is the most commonly reported epigenetic alteration observed in 

prostate cancer. Many genes have been identified as aberrantly hypermethylated in 

prostate cancer and these genes include tumour-suppressor genes, DNA damage repair 

genes, hormonal response genes and genes involved in cell cycle control, tumour cell 

invasion and metastasis (Phé et al. 2010). Hypermethylation of DNA can lead to 

inappropriate gene silencing, disrupting gene function and thus contributing to tumour 

initiation, progression and metastasis (Li et al. 2004).  

 

The most frequently reported hypermethylated gene in prostate cancer is the π-class 

glutathione-S-transferase (GSTP1) gene. GSTP1 is an enzyme involved in the 

metabolism, detoxification and elimination of reactive chemical compounds and in this 

way protects cells from DNA damage and cancer initiation (Lee 2007). Hypermethylation 

of the GSTP1 gene in prostate cancer was first reported by Lee et al. (1994) who found 

hypermethylation of the gene in all 20 human prostate cancer tissue samples examined, 

but not in normal tissues or BPH. Following this, GSTP1 gene expression was analysed 

in 60 high-grade PIN samples, with all samples showing a loss of GSTP1 gene expression 

(Brooks et al. 1998). Further investigation found that this loss of GSTP1 expression was 

due to hypermethylation of the gene promoter. A large number of studies have now 

reported GSTP1 hypermethylation in prostate cancer samples, with methylation detected 

in up to 90% of samples, suggesting GSTP1 hypermethylation is a common epigenetic 
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alteration in prostate cancer (Bastian et al. 2004; Chu et al. 2002; Goessl et al. 2001; 

Harden et al. 2003; Jeronimo et al. 2002; Nakayama et al. 2003).  

 

Promoter hypermethylation of genes involved in tumour invasion has also been observed 

in prostate cancer. The maintenance of the normal cell architecture is regulated by the 

cadherin-catenin system. Loss of E-cadherin gene expression is associated with the 

transition from adenoma to carcinoma and the acquisition of metastatic potential (Perl et 

al. 1998). E-cadherin hypermethylation was observed in prostate cancer cell lines and 

treatment with the demethylating agent, 5-aza-2’-deoxycytidine restored E-cadherin 

mRNA and protein expression in the cell lines, suggesting that promoter 

hypermethylation was responsible for E-cadherin silencing in these cells (Graff et al. 

1995). Furthermore, Kallakury et al. (2001) reported that the E-cadherin gene promoter 

was methylated in 8 out of 10 prostate cancer tissues examined. Interestingly, the degree 

of E-cadherin promoter methylation correlated with the pathological stage of the prostate 

tumour tissues, with E-cadherin promoter methylation occurring in 30% of low-grade 

prostate cancer tissues, but increasing to 70% in high-grade tumours (Li et al. 2001). 

These results suggest that methylation of the E-cadherin promoter is associated with 

prostate tumour progression.  

 

CD44, which is a cell surface glycoprotein involved in cell matrix adhesion and signal 

transduction is also silenced in prostate cancer by methylation of the gene promoter. Lou 

et al. (1999), examined methylation levels of the CD44 gene in 84 matched normal and 

prostate cancer samples and found hypermethylation of CD44 in 31 out of 40 of the 

primary prostate cancer samples. Further investigation by Verkaik et al. (1999) showed 

that in CD44 negative prostate cancer cell lines (LNCaP and PC346C) the CD44 

promoter was hypermethylated compared to CD44 positive prostate cancer cell lines 

(DU145, PC3 and TSU). A further study of CD44 silencing was conducted on human 

tissue samples and demonstrated that 9 out of 11 lymph node metastases of prostate 

cancer displayed CD44 gene promoter methylation. These data therefore suggest that 

hypermethylation of the CD44 promoter resulting in downregulation of CD44 gene 
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expression may be involved in prostate cancer progression and metastasis (Verkaik et al. 

2000). 

 

DNA methylation is also involved in regulation of the androgen receptor (AR). The AR 

is activated by androgen, which plays a critical role in the development, growth and 

maintenance of the prostate (Jenster 1999). In the initial stages, prostate cancer is 

androgen dependent, but eventually becomes androgen independent, due to the loss of 

AR expression (Jarrard et al. 1998; Suzuki et al. 2003; Takahashi et al. 2002; Tekur et al. 

2001). Data from a number of studies suggest that this loss of AR expression is at least 

partly due to hypermethylation of the AR gene promoter. Jarrard et al. (1998) found AR 

promoter hypermethylation in AR negative prostate cancer cell lines (DU145, DuPro, 

TSU-PR1 and PPC1) whereas the promoter was unmethylated in AR positive cell lines 

(LNCaP and PC3). Expression of the AR gene was restored in the AR negative cell lines 

by treatment with the demethylating agent 5-aza-2’deoxycytidine, suggesting that 

promoter methylation was responsible for AR gene silencing in the AR negative cell 

lines.  Further, Suzuki et al. (2003) reported that promoter hypermethylation of AR 

leading to loss of AR expression occurs in 30% of hormone refractory prostate cancers, 

suggesting that DNA hypermethylation contributes to loss of AR expression in at least 

some prostate cancers.  

 

The silencing of cell cycle regulation genes by DNA hypermethylation has also been 

observed in prostate cancer. The Ras associated domain family 1A gene (RASSF1A) is 

highly methylated in several human cancers, including prostate cancer (Aitchison et al. 

2007; Dammann et al. 2005; Hesson et al. 2007; Kang et al. 2004a; Liu et al. 2002; 

Pfeifer et al. 2005; Serth et al. 2008). Liu et al. (2002), examined methylation of the 

RASSF1A promoter in primary prostate tumours and reported methylation of the 

RASSF1A promoter in over 70% of the tumours. Further investigation found a correlation 

between the frequency of methylation and the Gleason score of the tumour, with highly 

aggressive tumours displaying more frequent DNA methylation compared to less 

aggressive tumours. Similarly, Kang et al. (2004a) reported methylation of a number of 
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genes, including RASSF1A in prostate cancer and PIN samples, with more frequent 

methylation correlating with higher PSA levels and Gleason score.  

 

Silencing of tumour suppressor genes by DNA methylation is also often observed in 

prostate cancer. DNA hypermethylation of the adenomatous polyposis coli (APC) gene in 

prostate cancer individuals was observed in a study by Rosenbaum et al (2005), which 

examined promoter methylation of a number of genes. Hypermethylation of APC alone, 

and hypermethylation of APC and the cell cycle regulation gene cyclin D2 in 

combination were found to be significant predictors of prostate cancer progression. In 

keeping with this, Henrique et al (2007) analysed a small panel of gene promoters in 

prostate biopsy samples and similarly found that hypermethylation of APC is an 

independent predictor of poor prognosis in prostate cancer. Subsequent studies have 

similarly found APC hypermethylation to be a predictor of prostate cancer progression 

(Liu et al. 2011; Richiardi et al. 2009).  

 

1.6.1.3 Histone modifications 

Compared to DNA methylation the involvement of histone modifications in prostate 

cancer is relatively poorly understood, even though these two epigenetic mechanisms are 

closely related  (Sharma et al. 2010). However, some data relating particular histone 

modifications to prostate cancer have emerged in recent years. Seligson et al. (2005), 

analysed a range of histone modifications by immunohistochemistry including acetylated 

histone H3 lysine 9 (H3K9Ac), H3K18Ac, H4K12Ac, dimethylated H4 arginine 3 

(H4R3me2) and dimethylated H3 lysine 4 (H3K4me2) in 183 primary prostate cancer 

tissue samples. In the individuals with low-grade tumours, the study found two subgroups 

with different risks of tumour recurrence based on the presence of similar combinations 

of global histone modifications. Individuals with a lower risk of tumour recurrence were 

those who were above the 60
th

 percentile staining for H3K4me2 or above the 35
th

 

percentile staining for H3K18Ac and H3K4me2. However, these histone modification 

patterns did not correlate with the Gleason score. In contrast, a more recent study of 

primary and metastatic prostate cancer samples found that high global levels of 

H3K18Ac and H3K4me2 correlated with a 3-fold increased risk of prostate cancer 
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recurrence (Bianco-Miotto et al. 2010). A further study showed that global levels of 

H3K4me1, H3K9me2, H3K9me3, H3Ac and H4Ac were significantly reduced in 

prostate cancer compared to BPH and normal prostate tissue (Ellinger et al. 2010), with 

H3Ac and H3K9me2 in particular discriminating between the malignant and non-

malignant samples. They also found that individuals with high H3K4me1 levels were 

more likely to experience recurrence of the prostate cancer and thus suggested that 

analysis of H3K4me1 may provide predictive information regarding likelihood of tumour 

recurrence.  

 

In addition to the studies outlined above that have documented changes in histone 

modifications associated with prostate cancer, there is accumulating evidence that 

expression of histone modifying enzymes is altered in prostate cancer. Bianco-Miotto et 

al. (2010) identified a candidate gene signature consisting of six genes encoding 

epigenetic modifiers, including both DNA methyltransferases and histone 

methyltransferases (HMT), that was associated with prostate cancer progression. In 

addition a number of studies have documented alterations in the HMT EZH2, which is 

responsible for the repressive H3K27me3 modification, in prostate cancer. EZH2 is 

upregulated in hormone-refractory metastatic prostate cancer (Varambally et al. 2002). 

Overexpression of EZH2 in prostate cancer cell lines increases the invasive 

characteristics of the cells, while knockdown of EZH2 decreases the proliferative 

capacity of the cells, and more so in hormone independent cell lines (Karanikolas et al. 

2010; Varambally et al. 2002). Furthermore, microarray analysis of metastatic prostate 

cancer tissue identified a group of EZH2 repressed genes that were associated with 

prostate cancer progression (Yu et al. 2007). 

 

A number of studies have also implicated lysine-specific demethylase 1 (LSD1) in 

prostate cancer. LSD1 was originally identified as a H3K4 demethylating enzyme 

(HDM). This enzyme was thought to function as a transcriptional co-repressor by 

reversing the H3K4me modifications associated with transcriptional activation (Shi et al. 

2004). However, genome-wide studies of LSD1 homologues in yeast suggest that these 

enzymes can act as both co-activators and co-repressors by targeting H3K4 or H3K9, 
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respectively (Opel et al. 2007). In keeping with this, LSD1 has been demonstrated to form 

ligand-dependent, chromatin-associated complexes with AR, stimulating AR-dependent 

transcription (Metzger et al. 2005). In this case LSD1 acts by demethylating histone 

H3K9, thus activating AR target genes by removing repressive H3K9me modifications. 

This study found that LSD1 and AR were co-localised in both normal prostate and 

prostate cancer. A further study by Kahl et al (2006), correlated the expression patterns of 

AR, LSD1 and the AR co-activator FHL2 (four and a half LIM-domain protein 2) with 

Gleason score, Gleason grade and p53 expression in 153 prostate tumour samples, from 

patients which relapse after radical prostatectomy. The study found that increased LSD1, 

nuclear expression of FHL2, high Gleason score and grade and high levels of p53 in 

tumours strongly associated with relapse during follow-up. In addition, upregulation of 

both LSD1 mRNA and protein levels was associated with high risk of relapse. While 

LSD1 demethylates H3K9me1 and H3K9me2, a further study found that the Jumonji C 

domain containing protein JMJD2C can demethylate H3K9me3 (Wissmann et al. 2007). 

JMJD2C associates with AR and LSD1 in prostate cells, and this complex acts to 

demethylate H3K9me3 and increase AR-dependent gene transcription. A second Jumonji 

protein, JHDM2A, which also demethylates H3K9me1/2, has similarly been found to 

stimulate transcription of AR dependent genes (Yamane et al. 2006). Furthermore, 

Gaughan et al (2011) showed that AR interacts with, and is methylated by, the HMT 

enzyme SET9. SET9 was originally identified as an enzyme responsible for catalysing 

the activating histone modification H3K4me1, and therefore was associated with 

transcriptional activation (Nishioka et al. 2002). However, Gaughan et al (2011) found 

that by methylating AR SET9 increased the transcriptional activation of AR itself. In 

doing so SET9 was found to have pro-proliferative and anti-apoptotic activity in the AR-

dependent LNCaP prostate cancer cell line. 

 

While the studies outlined above have highlighted differences in histone modifications 

and histone modifiers correlating with prostate cancer stage or recurrence, it should be 

noted that many of these studies have described global changes and further studies are 

therefore needed to investigate how these global changes relate to gene-specific loci, 

particularly at genes that have already been implicated in prostate cancer. 
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1.6.2 Epigenetic modulation and transcription factor binding 

 

Epigenetic factors are clearly involved in the regulation of gene expression. However, 

these factors do not operate in isolation, but rather operate with transcription factors 

within the chromatin landscape. DNA methylation can mediate gene silencing by directly 

inhibiting the binding of transcription factors. The insulator CTCF protein is an example 

of a factor that is affected by CpG methylation (Bell et al. 2000; Hark et al. 2000a; 

Holmgren et al. 2001; Szabó et al. 2000). CTCF is responsible for insulating the promoter 

from the influence of enhancers and the binding of this protein between the promoter and 

its downstream enhancer in the maternal Igf2 gene results in silencing of that gene. 

Contrary to this, paternal Igf2 is highly methylated and thus, prevents the binding of 

CTCF which leads to gene activation by the downstream enhancer.  Interestingly, there 

are also factors that are responsible for blocking epigenetic inactivation. Binding of the 

Sp1 transcription factor at the promoter appears to confer resistance to CpG methylation 

(Mancini et al. 1999; Mummaneni et al. 1998). However, whether methylation at the Sp1 

binding site affects Sp1 binding remains unresolved. Several studies have found that Sp1 

binding and gene expression are not affected by methylation at Sp1 binding sites both in 

vitro and in vivo (Ghosh et al. 1999; Harrington et al. 1988; Höller et al. 1988; Song et al. 

2002). In contrast, others have found that methylation of the CpG dinucleotide affects 

Sp1 binding which depends on the configuration of methylated cytosines within the Sp1 

consensus sequence (Clark et al. 1997; Mancini et al. 1999). These results suggest that 

the effect of methylation at the Sp1 binding site may be dependent on context.  Further 

investigations have reported that methylation of CpG sites outside of Sp1 consensus sites 

can directly reduce the binding of Sp1 (Zhu et al. 2003). 

 

It is still unclear how histone modifications directly affect transcription factor binding but 

it is proposed that histone modifications regulate chromatin organisation and thus 

promoter accessibility, which results in either an accessible open chromatin, allowing 

transcription factor binding or inaccessible chromatin states, which are inhibitory to 

transcription factor binding (Struhl 1998). Overall, both epigenetic regulation and 

transcription factors play important roles in the regulation of gene expression. 
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1.7 RESEARCH AIMS 

 

The ITGA2 gene, encoding the α2 subunit of the collagen receptor (α2β1), has been found 

to be involved in the progression of several cancers, including prostate cancer. Altered 

expression of α2β1 in prostate cancer has been correlated with a poor outcome and 

progression of prostate tumours to an invasive, metastatic and highly aggressive tumour 

phenotype in a highly cell-dependent manner. A previous study by our research group has 

identified ITGA2 as a prostate cancer susceptibility gene through a familial prostate 

cancer study (FitzGerald et al. 2009). There is evidence that α2β1 expression changes 

during tumour progression and we hypothesise that deregulation of ITGA2 expression by 

epigenetic alterations may be associated with prostate tumour progression. 

 

Therefore, the main aim of this study is to examine the regulation of the ITGA2 gene in 

prostate cancer. More specifically, the aims are to: 

 

1. Determine whether the ITGA2 gene is regulated by epigenetic factors in prostate 

cancer cell lines. 

 

2. Determine whether the ITGA2 gene is regulated by/ during EMT and if 

modulation of ITGA2 affects cell migration. 

 

3. Identify the transcription factors involved in regulation of ITGA2 expression in 

prostate cells. 
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Chapter 2 

MATERIALS & METHODS 

 

2.1 Mammalian cell cultures 

2.1.1 Cell culture 

PWR-1e, LNCaP, 22Rv1, VCaP and PC3 cell lines were purchased from the American 

Type Culture Collection (Rockville, MD). All cell lines were cultured in a humidified 

incubator at 37 ºC and 5% CO2. LNCaP and 22Rv1 cells were cultured in Roswell Park 

Memorial Institute 1640 medium (RPMI 1640; Sigma-Aldrich Corporation, USA) 

supplemented with 10% foetal calf serum (FCS; Sigma-Aldrich Corporation, USA) and 

1% Penicillin/Streptomycin solution (containing 5000 U/mL Penicillin G and 5000 

g/mL Streptomycin) (Sigma-Aldrich Corporation, USA). The LNCaP cells were further 

supplemented with 2.0 g/L D-glucose and 1.0 mM sodium pyruvate. PC3 cells were 

cultured in Ham’s F12K nutrient mixture Kaighn’s modification 1X liquid (Sigma-

Aldrich Corporation, USA), VCaP cells were cultured in Dulbecco’s Modified Eagle 

Medium, (DMEM; Invitrogen, USA) and PWR-1e cells were cultured in Keratinocyte 

Serum Free Media (Invitrogen, USA) which were all supplemented with 10% FCS and 

1% Penicillin/Streptomycin solution. 

 

2.1.2 Derivation of LNCaPcol 

LNCaPcol cells were derived from parental LNCaP cells by successive panning on type I 

collagen according to Hall et al. (2006). LNCaP cells (1 x 10
5 

cells/mL) in 10 mL binding 

buffer [serum free RMPI 1640 supplemented with 0.5% bovine serum albumin (Sigma-

Aldrich Corporation, USA)] were plated in a 75 cm
2
 BD Falcon collagen I coated flask 

(Becton Dickinson Biosciences, USA). After 1 hour, non-adherent cells were removed by 

washing three times with binding buffer. Fresh culture medium was added and the 

collagen-adherent cells were allowed to expand. Once the cells reach 80% confluency, 

the cells were removed in 1.0 mmol/L ethylenediaminetetraacetic acid (EDTA) in 

phosphate buffered saline (PBS), washed in PBS and 1 x 10
5 

cells/mL were repeatedly 

panned while the rest of the cells were harvested for RNA and DNA extraction. 
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2.1.3 Cell treatments 

Where indicated in the results, LNCaP, and 22Rv1 cells were treated with 0.5 µM 5-Aza-

2’-deoxycytidine (AzaC; Sigma-Aldrich Corporation, USA). Cells were grown to 

approximately 60% confluency in their respective media for 24 hours and then washed 

with PBS before the addition of OPTI-MEM medium with AzaC for 5 days, during 

which AzaC was added on alternate days with fresh media. In addition, the cells were 

treated with 200 ng/mL Trichostatin A (TSA) for 4 hours on the final day of AzaC 

treatment. After 5 days, the cells were trypsinised and harvested by centrifuging at 500 g 

for 5 minutes at 20 ºC to pellet cells. The medium was aspirated and cell pellets were 

stored at -80 ºC.  

 

Where indicated in the text, cells were treated with 10 nM 5α-Androstan-17β-ol-3-one 

(DHT; Sigma-Aldrich Corporation, USA) in OPTI-MEM® (Gibco®, USA) medium for 

3, 6 and 24 hours. Cells were seeded at 2 x 10
5
 cells/mL in OPTI-MEM media without 

FCS and left to adhere for 24 hours before the addition of DHT.  The cells were then 

pelleted as described above. Where specified in the relevant chapters, cells were also pre-

treated with 10 µg/mL Cyclohexamide (CHX; Sigma-Aldrich Corporation, USA) for 30 

minutes before DHT treatment. 

 

 

2.2 Gene expression analysis 

2.2.1 RNA extraction 

Cell pellets (from 5 x 10
5
 cells) which were stored at -80 ºC were resuspended in 1mL 

TRI
®
 reagent (Sigma-Aldrich Corporation, USA) and transferred to microcentrifuge 

tubes.  Cells were thoroughly resuspended in TRI
®
 reagent to lyse cells, and then 

incubated at room temperature for 5 minutes.  Next, 200 L chloroform was added, 

followed by vigorous shaking for 15 seconds and incubation at room temperature for 10 

minutes.  The samples were then centrifuged at 13000 g for 15 minutes at 4 ºC.  The 

clear, aqueous upper layer was transferred to a fresh microcentrifuge tube, and 250 L 

isopropanol was added.  This was followed by an overnight incubation at -20 ºC to 

precipitate the RNA.  The RNA was then pelleted by centrifugation at 13000 g for 20 
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minutes at 4 ºC.  The pellet was then washed in 1mL 70% ethanol, and then re-pelleted 

by centrifugation at 13000 g for 5 minutes at room temperature.  All residual ethanol was 

removed and the pellet was allowed to dry at room temperature, after which it was 

resuspended in 20 L MilliQ
®
 water.  The RNA samples were quantified (Section 2.2.2) 

then frozen in liquid nitrogen and stored at -80 ºC until further analysis. 

 

2.2.2 RNA quantitation 

The RNA was quantified by measuring the optical density of the absorbance at 260 nm 

using a NanoDrop
®
 ND-1000 spectrophotometer. The absorbance at 260 nm was 

converted to a concentration of RNA by the conversion factor of 1 O.D.260 = 40 g/mL. 

The purity of each sample was also assessed by the absorbance at 260 nm relative to the 

absorbance at 280 nm (OD260/OD280), with a ratio between 1.8 and 2.0 indicating high 

purity. 

 

2.2.3 RNA quality assessment 

The quality of RNA can not be assessed by spectrophotometry (Section 2.2.2). Therefore, 

RNA quality was evaluated by agarose gel electrophoresis. The RNA samples (0.5-1.0 

g) were diluted to 12.0 μL with MilliQ
®
 water. Agarose gel loading dye (3 μL) was then 

added to a total volume of 15 μL, and the RNA sample was then loaded onto a 1% 

agarose gel. The λHindIII molecular weight marker (λHindIII Marker; New England 

Biolabs, USA, 1 g) was electrophoresed alongside the RNA, in order to visualise the 

amount and quality of the RNA.  The gel was electrophoresed for 60 minutes at 100 V in 

1X Tris Acetic acid EDTA (TAE) buffer containing 0.03 g/L SYBR safe DNA gel 

stain 10000X (Invitrogen, USA). Finally, the gel was visualised using a Safe Imager 

(Invitrogen, USA). Presence of 2 rRNA bands (18s, 28s) was used a guide to the quality 

of the RNA. 

 

2.2.4 Synthesis of cDNA 

An aliquot of 1µg of RNA was used in preparing cDNA using SuperScript
TM

 reverse 

transcriptase III (Invitrogen, USA). The RNA was first treated with 1 U of DNase I 

(Invitrogen, USA) in 1X First Strand Buffer (Invitrogen, USA). Samples were incubated 
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at 37 ºC for 30 minutes, followed by 5 minutes of heating at 75 ºC to inactivate DNase I. 

Then, 5 μM of oligo dT (Invitrogen, USA) was added and the samples were incubated at 

70 ºC for 10 minutes. mRNA was then reverse transcribed to cDNA with 100 U of 

SuperScript
TM

  reverse transcriptase III enzyme (Invitrogen, USA), in 1X First Strand 

Buffer supplemented with 0.1 M DTT (Invitrogen, USA) and 10 μM dNTPs (Invitrogen, 

USA) at 42 ºC for 50 minutes. This was followed by a 70 ºC incubation for 15 minutes to 

inactivate the enzyme. cDNA was stored at -20 ºC until further analysis.  

 

2.2.5 Real-time PCR 

Gene expression was analysed using real-time PCR. cDNA (50 ng) prepared as described 

above (Section 2.2.4), was used as template in the PCR reaction, and amplified using 

QuantiTect
®
 SYBR

®
 Green PCR Mastermix (Qiagen, USA). 

 

Forward and reverse primer sets for each mRNA (designed as outlined in Section 2.2.6) 

were added to the mastermix. In each PCR tube, 1x QuantiTect
® 

SYBR
®
 green PCR 

mastermix, 0.3 µM of forward primer, 0.3 µM of reverse primer and 50 ng of either 

diluted cDNA (for each sample) or nuclease free water (for the no template control, 

NTC) were added, in a total volume of 25 µL. 

 

The polymerase was activated by an initial incubation at 95 ºC for 10 minutes and then 

amplified for 40 cycles consisting of 95 ºC for 15 seconds, 60 ºC for 30 seconds. 

Amplification and analysis were carried out in a Rotorgene
®

 real-time PCR machine 

using the accompanying Rotorgene
®
 software (Corbett Research). 

 

Melt curve analysis was undertaken to ensure that the PCR was specific and was 

amplifying a single product. Analysis from 60 ºC to 95 ºC, increasing by 1 degree every 5 

seconds was undertaken to verify amplification of a single product. In addition, PCR 

products were subjected to agarose gel electrophoresis (Section 2.2.3) to ensure the 

correct fragment size. 
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2.2.6 Primer design 

PCR primers were designed to amplify each cDNA using the Primer3 program at 

http://frodo.wi.mit.edu/primer3/ and were designed to span across exons to ensure that 

these primers would amplify only the RNA. The selected primers were then analysed 

using the BLAST program at http://blast.ncbi.nlm.nih.gov/Blast.cgi to confirm 

specificity. The primer sequences are shown in Table 2.1.  

 

Primer Name Primer sequence 
Amplicon 

size 

ITGA2 Forward 5’ –CTCACCAGGAACATGGGAAC– 3’ 

99 bp 

ITGA2 Reverse 5’ –GTCAGAACACACACCCGTTG-3’ 

E-Cadherin 

Forward 
5’ – CGCCTGGGACTCCACCTACAGAA– 3’ 

97 bp 

E-Cadherin 

Reverse 
5’ – AGAAACGGAGGCCTGATGGGGC– 3’ 

Twist1 Forward 5’ – TGGTCCATGTCCGCGTCCCA– 3’ 

74 bp 

Twist1 Reverse 5’ – AATGACATCTAGGTCTCCGGCCC– 3’ 

N-Cadherin 

Forward 
5’ – TCCGCCTCCATGTGCCGGATA– 3’ 

89 bp 

N-Cadherin 

Reverse 
5’ – CCAGAAGCCTCTACAGACGCCTGA– 3’ 

Snai1 Forward 5’ – GCCCTCCGACCCCAATCGGA– 3’ 

77 bp 

Snai1 Reverse 5’ – AGGGCTGCTGGAAGGTAAACTCTGG– 3’ 

Vimentin Forward 5’ – AGGCGAGGAGAGCAGGATTTCT – 3’ 98 bp 

http://frodo.wi.mit.edu/primer3/
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Vimentin Reverse 5’ – AGTGGGTATCAACCAGAGGGAGTGA– 3’ 

PSA Forward 5’ – TCTGCGGCGGTGTTCTG– 3’ 

87 bp 

PSA Reverse 5’ – GCCGACCCAGCAAGATCA– 3’ 

hGAPDH Forward 5’ – AAATATGATGACATCAAGAAGG – 3’ 

68 bp 

hGAPDH Reverse 5’ – AGCCCAGGATGCCCTTGAGGG – 3’ 

h18s Forward 5’ – GTAACCCGTTGAACCCCATT – 3’ 

147 bp 

h18s Reverse 5’ – CCATCCAATCGGTAGTAGCG – 3’ 

hB-Actin Forward 5’ – GGCTGGCCGGGACCTGACTGA – 3’ 

106 bp 

hB-Actin Reverse 5’ – CTTCTCCTTAATGTCACGCACG – 3’ 

hB2M Forward 5’ – ACTGAATTCACCCCCACTGA – 3’ 

114 bp 

hB2M Reverse 5’ – CCTCCATGATGCTGCTTACA – 3’ 

Table 2.1 Real-time PCR primer sequences.  

 

 

2.3 Bisulphite methods 

2.3.1 Bisulphite treatment 

Genomic DNA isolated from prostate cancer cell lines (see Section 2.5.1) was subjected 

to bisulphite modification using an EZ DNA Methylation-Lightning™ Kit (Zymo 

Research Corporation, USA) according to the manufacturer’s instructions. 

 

2.3.2 Bisulphite primers 

The bisulphite treated DNA was then subjected to nested PCR to amplify the regions of 

interest. Primers were designed using the Methyl Primer Express program (ABI). Primer 
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sequences are summarised in Table 2.2 and the primer binding positions in the ITGA2 

promoter are shown in Figure 2.1. 

 

 

Primer Name Primer sequence 

BSITGA1 Forward 5’ – CTGATGAGTTAGTTTCTAACCTGG – 3’ 

ITGA2NoMe2 Reverse 5’ – CCCATCCTAAATCTAAC – 3’ 

BSITGA2 Reverse 5’ – AAAAAATACCCCAATCCC – 3’ 

BSITGA2 Forward 5’ – TTAGGTATTGTGGTTTAGGGTT – 3’ 

BSITGA46 Reverse 5’ –AGTTTCTGGGCAGCTCCTGCA– 3’ 

Table 2.2 Bisulphite PCR primer sequences.  

 

-611 cacacacagctcttgcagcaggtattgcttaaatatcaccttggataatc 

-561 ataacttgtgagcagatcttctttcctgatgagttagtttctaacctggt BSITGA1F 

-511 cattctgcgcttatttttgtccctttctccacccacttaggaaaaacaga  

-461 gaaagggacgcaccgcgcagcccctaggcactgtggtttagggctagtgc BSTIGA2F 

-411 cctcggcacccgctgccaggagccgggcgctgccaagggctgcggagggg 

-361 ccacgttctcccggggactggggcatctcctgcgtgctggcgacaggctc BSITGA2R 

-311 gcgggggcggagtggtgccagggcgggcgctcgcccgtccggatatgccc 

-261 acccgtcccgtccaggcaggaaagcctgccagggcgccatccccatcccc 

-211 accgcctccaggctgccggggctgggccgctgtacgggagccaaggtcgg 

-161 tgccccgcgtgtggacgagccgaggtgcagcccgcggggccgcagggccg  

-111 gggtggggcgggcgcggccggagcagatccggtgtttgcggaatcaggag 

 -61 gggcgggctggggcgggccctcggcgctgcaggagctgcccagaaacttt BSTGA46R 

 -11 tccctgctctcaccgggcgggggagagaagccctctggacagcttctaga 

 +40 gtgtgcaggttctcgtatccctcggccaagggtatcctctgcaaacctct 

 +90 gcaaacccagcgcaactacggtcccccggtcagacccaggatggggccag ITGA2NoMe2R 

+140 aacggacaggggccgcgccgctgccgctgctgctggtggtagcgctcagt 

Figure 2.1 Bisulphite PCR primer position in the ITGA2 promoter.  
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2.3.3 PCR amplification of bisulphite converted DNA 

The regions of interest were amplified using PCR from 100 ng of bisulphite converted 

DNA using primers listed in Table 2.2. PCR was carried out using GoTaq
®
 Green 2X 

Master Mix (Promega Corporation, USA) in 20 l reaction volumes. Each PCR 

contained 1X GoTaq® Green 2X Master Mix, 0.25 M of forward primer, 0.25 M of 

reverse primer and 100 ng of bisulphite converted DNA (from Section 2.3.1) or nuclease 

free water (for the no template control, NTC). 

 

Amplifications were carried out in a Veriti Thermal Cycler (Applied Biosystems, USA). 

The polymerase was activated by an initial incubation at 95 ºC for 5 minutes and then 

DNA amplified for 35 cycles consisting of 95 ºC for 15 seconds, annealing at 52-56 ºC 

(depending on the primer set) for 30 seconds, 60 ºC for 30 seconds and 72 ºC for 10 

minutes. The PCR products were visualised by agarose gel electrophoresis (Section 2.2.3) 

and products to be cloned were excised from the gels. 

 

 

2.4 Cloning 

2.4.1 PCR purification 

The PCR fragments were excised from agarose gels and purified using the Illustra GFX 

PCR DNA and Gel Band Purification Kit (GE Healthcare, Australia) according to the 

manufacturer’s instructions. All samples were eluted in 10 µL of nuclease free water. 

 

2.4.2 Ligation 

As for bisulphite sequencing and NoMe-seq (Section 2.9.3), isolated PCR fragments were 

ligated into the pGEMT-easy vector (Promega, USA) whereas for cloning promoter 

deletion mutants (Section 2.12), pXPG (provided by Prof Peter Cockerill, Bert et al. 

2000) vector was used. The purified PCR products (Section 2.4.1) were quantitated by 

gel electrophoresis. The amount of PCR product needed to be ligated to 50 ng of vector 

in a 1:3 ratio was calculated and the determined amount was added to 0.5 l of T4 Ligase 

and 2.5 l of 2x ligation buffer in a total volume of 5 l. The reaction was incubated at 

room temperature for 1 hour and then overnight at 4 ºC. 
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2.4.3  Transformation of plasmid 

The ligated plasmids were transformed into JM109 High Efficiency Competent Cells 

(Promega, USA) according to the manufacturer’s instructions and plated on agar plates 

containing 100 µg/mL ampicillin (Sigma-Aldrich Corporation, USA), 0.5 mM IPTG 

(Sigma-Aldrich Corporation, USA) and 80 µg/mL X-Gal (Promega, USA). Plates were 

incubated at 37 ºC overnight. 

 

Isolated colonies were selected from the agar plate and inoculated into 10 l of MilliQ
®

 

water and screened for recombinants by PCR by using 2 L of the MilliQ
®
 water as DNA 

template in a PCR reaction. If the colonies were positive in the PCR, the colonies were 

grown overnight in L-broth and DNA was harvested using a DNA Purification System 

SV Minipreps kit (Promega, USA) according to the manufacturer’s instructions. The 

DNA was digested with appropriate restriction enzymes to confirm the presence of the 

insert (Section 2.6.2).  

 

 

2.5 DNA sequencing 

2.5.1 DNA isolation 

The nucleotide sequence of recombinant DNA constructs was determined by DNA 

sequencing. In order to sequence the construct, the plasmid was purified using a DNA 

Purification System SV Minipreps kit (Promega, USA) according to the manufacturer’s 

instructions. The plasmid DNA was stored at -20 ºC. 

 

2.5.2 DNA sequencing 

Sequencing were conducted using the BigDye® Terminator v3.1 Cycle Sequencing Kit 

(Applied Biosystems, USA) with the SP6 reverse primer in Table 2.3. In each sample, 

1.75 l of BigDye® Terminator sequencing buffer, 0.25 l of BigDye® Terminator, 0.32 

M of primer, 100-150 ng of DNA isolated by DNA Purification System SV Minipreps 

(Promega, USA; Section 2.5.1) were added and were made up to 10 l in total with 

MilliQ
®
 water. 
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The reactions were amplified in a Veriti Thermal Cycler (Applied Biosystems, USA) for 

25 cycles consisting of 96 ºC for 10 seconds, 50 ºC for 5 seconds and 60 ºC for 4 

minutes. The products were then purified to remove the dye-terminator using the 

Agencourt® CleanSEQ® kit (Agencourt Bioscience Corporation, Beckman Coulter®, 

USA) according to manufacturer’s instructions.    

 

After purification, 30 l of the sample was subjected to sequencing on an ABI Prism® 

310 Genetic Analyzer (Applied Biosystems, USA).  The sequencing data was retrieved 

using 310 Data Collection and Sequence Analysis software (Applied Biosystems, USA) 

and analysed using the computer software program Sequencher
TM

 (Gene Codes 

Corporation, USA). 

 

As for bisulphite sequencing, the sequences were further analysed using BiQ Analyzer 

software (Max Planck Institute Informatik, Germany) and the information used to 

generate bisulphite bubble maps using CpG Bubble Chart Generator, Version 20061209 

Alpha (created by Mark A. Miranda).  

Table 2.3 Sequencing primer sequences 

 

2.6 Reporter assays 

2.6.1 Plasmid preparation 

Plasmids used in reporter assays are summarised in Table 2.4. The plasmids were 

transformed into JM109 cells (Promega, USA) plated on agar plates; single colonies were 

selected and grown in 1 mL of L-broth containing 50 g/mL ampicillin starter culture at 

37 ºC overnight with shaking. The starter cultures were inoculated into 100 mL L-broth 

and were incubated overnight with shaking at 37 ºC (200 mL in total for each plasmid). 

The plasmid DNA was extracted from the bacterial culture using a Plasmid Maxi Kit 

Primer Primer sequence 

Sp6 Reverse 5’ –TATTTAGGTGACACTATAG– 3’ 
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(Qiagen, USA) according to the manufacturer’s instructions. Plasmid DNA pellets were 

resuspended in 100 µL of Tris/EDTA (TE) buffer. The plasmid DNA was then quantified 

using a NanoDrop® ND-1000 spectrophotometer (NanoDrop Technologies, USA).  The 

DNA was stored at -20 ºC. 

 

Plasmid Description Source 

pGL3 Control 

SV40 promoter and enhancer driving 

luciferase expression with ampicillin 

resistance gene 

Promega 

pXPG ITGA2 
874 bp of human ITGA2 promoter (-791 to 

+83) with ampicillin resistance gene 

Cloned by Alison 

West 

pCpGL ITGA2 
874 bp of human ITGA2 promoter (-791 to 

+83) with zeocin resistance gene 

Cloned by Annabel 

Short 

RcCMV 
Contains neomycin and ampicillin 

resistance gene 
Invitrogen 

pCMV-Flag 

SNAIL WT 

800 bp of Human SNAII gene with 

kanamycin resistance gene 
Addgene 

pCMV6 TWIST1 
884 bp of human TWIST1 gene with 

ampicillin resistance gene 
Origene 

pXPG ITGA2-E-

Boxm 

As for pXPG ITGA2 with putative E-Box 

site mutated with ampicillin resistance 

gene 

Refer to Chapter 5 

pXPG ITGA2 Del1 
652 bp of human ITGA2 promoter (-569 

to +83) with ampicillin resistance gene 
Refer to Chapter 5 

pXPG ITGA2 Del2 
353 bp of human ITGA2 promoter (-270 

to +83) with ampicillin resistance gene 
Refer to Chapter 5 
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EF1α-Sp1Neo Sp1 cDNA with neomycin resistance gene 

Professor Merlin 

Crossley, Ref 

Crossley et al. 1995 

Table 2.4 Plasmids used in transient transfection 

2.6.2 Restriction enzyme digests 

Restriction enzyme digestions were used to confirm the identity of the plasmids.  In 

general, the concentration of DNA used was between 100 ng and 1 g.  The digestion 

reaction consisted of the 1X recommended buffer (New England Biolabs, USA), 100 

µg/mL BSA (New England Biolabs, USA), 1 L of enzyme (20 U/L, New England 

Biolabs, USA) and MilliQ
®
 water to a total volume of 20 µL. The samples were 

incubated at the optimal temperature of the enzyme overnight, then analysed by agarose 

gel electrophoresis. 

 

2.6.3 Methylation of vector 

CpG methyltransferase (M.SssI) (New England Biolabs, USA) was used to methylate the 

pCpGL ITGA2 vector. Approximately 1 µg of vector was methylated with 1/10
th

 volume 

of NEB2, 1/50
th

 volume of 32 mM SAM and 100 U of M.SssI. The reaction was 

incubated for 4 hours at 37 ºC. This was followed by an inactivation step at 60 ºC for 20 

minutes. To confirm methylation, the vector was digested with AciI methylation sensitive 

enzymes. 

 

2.6.4 Transfection of prostate cancer cell lines 

LNCaP and/or PC3 cells (2 x 10
6
 cells) in 500 µL of PBS were used for each 

transfection. Transfections were conducted in duplicate. Purified plasmid DNA was 

added to a Gene Pulser
®

 electroporation cuvette (4 mm; BioRad, USA) along with 500 

µL of cells and then electroporated at 300 V with a capacitance of 500 µF using a BioRad 

Gene Pulsar
®
 PLUS

TM
 electroporator unit. Next, 1 mL of medium was added into each 

cuvette and the cells were allowed to recover for 5 minutes at room temperature. Cells 

were removed from the cuvette with a sterile Pasteur pipette and duplicate transfections 
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were combined into a flask containing 7.5 mL medium. The cells were allowed to recover 

for 24 hours.  

 

2.6.5 Preparation of cell lysates 

Following appropriate treatment, the transfected cells were harvested in PBS using a cell 

scraper (TPP®, Switzerland) and then centrifuged at 500 g for 5 minutes to pellet the 

cells. The supernatant was discarded and the cell pellets were resuspended in 100 µL of 

1X cell lysis buffer (Promega, USA). The cell lysates were subjected to a freeze thaw 

cycle by placing them at -80 ºC for a minimum of 15 minutes and then returning them to 

room temperature. This was followed by vortexing for 15 seconds and then centrifuging 

at 10000 g for 15 seconds. The supernatant containing cellular proteins was removed and 

an aliquot of the lysate was diluted 1:10 to measure protein concentration using a 

Bradford assay (Section 2.6.6). The cell lysate was stored at -80 ºC, until analysis. 

 

2.6.6 Bradford assays 

Bradford protein assay was used to ascertain the concentration of proteins in cell lysates 

prepared in Section 2.6.5. A standard curve created using bovine serum albumin (BSA; 

New England Biolabs, USA) was used to determine the concentration of the protein. The 

Protein Assay Dye Reagent Concentrate (Bio-Rad, USA) was diluted 1:5 and 1 mL was 

added to 10 µL of each standard or protein extract, mixed well and allowed to stand at 

room temperature for 5 minutes. The absorbance at 595 nm was measured for each 

standard relative to a blank using the BioSpec-mini spectrophotometer (Shimadzu 

Corporation, USA). Concentrations of samples were determined using standard curves 

generated using BSA standards. 

 

2.6.7 Luciferase assays 

The activity of the integrin promoter cloned into reporter plasmids (Section 2.4) was 

determined using a Luciferase Assay System (Promega, USA). Protein extracts (30 µg) 

were added into each well of a 96 well plate in triplicate for each sample. Then, 100 µL 

luciferase assay reagent (Promega, USA) was added into each well. Luciferase activity 
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was measured using a Veritas
TM

 Microplate Luminometer (Turner Biosystems, USA) 

program with 2 seconds integration. 

 

 

2.7 Small interfering RNAs (siRNA) 

2.7.1 siRNA transfection 

Specific human ITGA2 siRNA (ON-TARGETplus SMARTpool ITGA2), negative control 

siRNA (ON-TARGETplus Non-Targeting pool) and siGLO® siRNA (to measure 

transfection efficiency) were purchased from Dharmacon (USA). These siRNAs were 

resuspended to 100 µM stocks, according to the manufacturer’s instructions. The ITGA2 

siRNA target sequences are summarised in Table 2.5. 

 

ON-TARGETplus SMARTpool ITGA2 

GAACGGGACUUUCGCAUCA 

GAACGCCCUUGAUACUAA 

GUUCAGACCUACUAAGCAA 

AAACAAGGCUGAUAAUUUG 

Table 2.5 ITGA2 siRNA sequences 

The siRNAs were diluted to 40 ρmol per well and added to Opti-MEM® (Gibco®, USA) 

medium to a total of 100 µL (per well). A 1.5 µL aliquot of Attractene Transfection 

Reagent (Qiagen, USA) was added to complete the transfection reaction and incubated 

for 15 minutes at room temperature. PC3 and 22Rv1 cells were harvested at 

approximately 70% confluency and the cell pellet was resuspended in 1 mL of medium 

and counted. A 1 mL aliquot of cells (1.5 x 10
5
 cells/mL) was added to each well in a 24-

well plate. A 100 µL aliquot of the transfection complex was then added with pipette 

mixing. Each siRNA transfection was conducted in duplicate wells and the cells were 

incubated for 24 to 48 hours.     
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2.7.2 Harvesting transfected cells 

To harvest the siRNA transfected cells, medium was removed and the cells were washed 

with PBS. A cell scraper (TPP®, Switzerland) was used to detach the adherent cells in 

250 µL of 0.05% trypsin in PBS solution. A 250 µL aliquot of medium was added before 

pipette mixing and combining the replicates. Cells were pelleted at 500 g for 5 minutes, 

cell pellets were stored at -80 ºC and RNA was extracted according to Section 2.2.1.  

 

 

2.8 Cell migration methods 

2.8.1 Cell migration assays 

LNCaP, 22Rv1 and PC3 cells as well as cell lines transfected with siRNA were plated 

onto circular glass coverslips (13 mm
2
) pre-coated overnight with 0.01% poly-l-lysine at 

a cell density of 3 x 10
5 

cells/mL in 500 µL medium per well. Cells were incubated for 24 

hours. After 24 hours, the attached cells were scratched with a P20 pipette tip and 

replicate wells fixed at 0 hour, 4 hour and 6 hour by removing the medium and 

incubating in 4% paraformaldehyde for 20 minutes at room temperature with agitation. 

The fixed cells were washed 3 times by incubating with PBS for 10 minutes at room 

temperature with agitation. After the last wash, the coverslips were stored in PBS at 4 ºC 

until further analysis. 

 

2.8.2 Immunostaining 

To visualise cell migration, the cell nuclei were stained with 0.01% Nuclear Yellow 

(Invitrogen, USA) in 250 µL PBS per well in a 24-well plate for 10 minutes with 

agitation. This was followed by 3X 10 minutes PBS washes with agitation and then the 

coverslips were rinsed in MilliQ® water. Coverslips were mounted onto glass slides 

using Permafluor mounting medium (Immunotech, Marseilles, France). Fluorescence was 

viewed with an Olympus BX-50 microscope and images were acquired with a Magnafire 

CCD camera (Optronics, Goleta, CA). Photos were taken at 20x magnification. 
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2.9 Chromatin methods 

2.9.1 Chromatin accessibility assay (CHART-PCR) 

Chromatin accessibility to digestion with micrococcal nuclease (MNase) was analysed 

using CHART-PCR as described in Rao et al., (2001). To isolate the nuclei, LNCaP, 

22Rv1 and PC3 cells at 5 x 10
5 

cells/mL were centrifuged for 5 minutes at 500g, washed 

with PBS and resuspended in 1 mL of ice cold nuclei buffer (10 mM Tris pH7.5, 10 mM 

NaCl, 3 mM MgCl2, 0.1 mM EDTA and 0.5% Igepal, 0.15 mM spermine, 0.5 mM 

spermidine). The cells were incubated on ice for 5 minutes and the nuclei were recovered 

by centrifugation at 3000 g for 3 minutes, washed with 1 mL of ice cold MNase buffer 

(10 mM Tris pH7.5, 15 mM NaCl, 60 mM KCl, 0.15 mM spermine, 0.5 mM spermidine), 

centrifuged at 3000 g for 3 minutes and resuspended in 200 µL MNase buffer. Nuclei (94 

µL) were treated with 25 U MNase (Sigma-Aldrich Corporation, USA) and 1 µL 0.1 M 

CaCl2 for 5 minutes at room temperature, as determined empirically. For each sample, a 

control (without the enzyme) was incubated in a similar way to monitor the endonuclease 

activity. An aliquot of 20 µL stop buffer (0.1 M EDTA pH8, 0.05 M EGTA pH8) was 

added to quench the reaction. Genomic DNA was isolated using a QIAamp blood kit 

(Qiagen, USA) according to the manufacturer’s instructions. Genomic DNA (50 ng) was 

analysed by real-time PCR (Section 2.2.5). The primer sets used are summarised in Table 

2.6. 

 

CHART-PCR primers Product size 

-555 Forward CACAGCTCTTGCAGCAGGTA 

106 bp 

-555 Reverse GCGCAGAATGACCAGGTTAG 

1hm Forward GCAGCCCCTAGGCACTGTGGT 

85 bp 

1hm Reverse GCCCCTCCGCAGCCCTTG 

2hm Forward GCTCGCCGTCGGATATG 

120 bp 

2hm Reverse CACCTTGGCTCCCGTACAGC 
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-126 Forward CTGTACGGGAGCCAAGGTG 

112 bp 

-126 Reverse GCAAACACCGGATCTGCTC 

52hrm#2 Forward GGTGTTTTGCGGAATCAG 

78 bp 

52hrm#2 Reverse AGCAGGGAAAAGTTTC 

3hm Forward GAAACTTTTCCCTGCT 

77 bp 

3hm Reverse AGGGATACGAGAACCTGCAC 

+210 Forward GTCAAGGTAAGCGGGGATTT 

95 bp 

+210 Reverse CTCCCTAGTTCCGCCCAAT 

Table 2.6 CHART-PCR primer sequences 

2.9.2 Chromatin immunoprecipitation assay (ChIP) 

DNA-protein interactions were examined by ChIP analysis. LNCaP, 22Rv1 and PC3 (5 x 

10
6
 cells) were treated with 1% formaldehyde for 15 minutes with agitation at room 

temperature to crosslink the proteins and DNA then quenched by addition of 0.125 M 

glycine and incubated for 10 minutes with agitation. Cells were then pelleted by 

centrifugation at 500 g for 5 minutes and washed twice with ice cold PBS. Cell pellets 

were resuspended in 1 mL lysis buffer (20 mM Tris-HCl pH8, 8.5 mM KCl, 0.5% Igepal) 

and incubated on ice for 10 minutes. After cell lysis, nuclear extracts were pelleted by 

centrifugation at 500g for 5 minutes, washed twice with ice cold PBS. Nuclei (9 x 10
6
) 

were lysed with 250 µL of nuclei lysis buffer (1% SDS, 10 mM 0.5M EDTA, 50 mM 1M 

Tris pH8) and incubated for 10 minutes on ice. Nuclei were sheared into 100-500 bp 

fragments by sonification on high power setting and two runs of 10 times (30 seconds 

‘on’, 30 seconds ‘off’) with a Diagenode Bioruptor sonicator (Diagenode, USA), as 

determined empirically.  The solute was pre-cleared for 2 hours at 4 ºC on a rotating 

wheel with 1 mL ChIP dilution buffer (0.01% SDS, 1.2 mM EDTA, 16.7 mM Tris-HCL 

pH8, 1% Triton X-100, 167 mM NaCl) and 60 µL salmon sperm DNA/protein A agarose 

slurry (Millipore, USA). Solubilised chromatin was immunoprecipitated with 1.8 µg anti-
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H3 (1791 Abcam, USA) and 4 µg anti-acetyl H3 (06-599 Millipore, USA) by incubating 

overnight at 4 ºC on a rotating wheel.  

 

The immune complexes were recovered using 60 µL salmon sperm DNA/ protein A 

agarose for 4 hours at 4 ºC on a rotating wheel and then pelleted by centrifugation at 2000 

g for 1 minute at 4 ºC and the supernatant discarded. The slurry was the washed with 1 

mL each of low salt buffer (2 mM EDTA pH 8, 0.1% SDS, 1% Triton X-100, 20 mM 

Tris-HCl pH 8.1, 150 mM NaCl), high salt buffer (2 mM EDTA pH 8, 0.1% SDS, 1% 

Triton X-100, 20 mM Tris-HCl pH 8.1, 500 mM NaCl), washed twice with LiCl buffer (1 

mM EDTA pH 8, 10 mM Tris-HCl pH 8.1, 250 mM LiCl, 1% Igepal, 1% sodium 

deoxycholate) and washed twice with TE buffer (1 mM EDTA pH 8, 10 mM Tris-HCl 

pH 8.1). DNA/ protein complexes were eluted from the slurry with 200 µL of elution 

buffer (100 mM NaHCO3, 1% SDS), incubated on a rotating wheel for 15 minutes at 

room temperature and the slurry pelleted. To reverse the cross-links, 0.2 M NaCl was 

added to the supernatant and the proteins were degraded with proteinase K (Qiagen, 

USA) treatment overnight. DNA was purified by phenol/chloroform extraction (50% 

phenol, 50% chloroform), followed by ethanol precipitation for at least 4 hours and 

resuspended in 50 µL MilliQ water. DNA (5 µL) was amplified using real-time PCR 

(Section 2.2.5) and levels determined as a percentage of the total input DNA with no 

antibody control immunoprecipitates were analysed in parallel. The -555 and the 3hm 

primer sets (refer to Table 2.6) were used to analyse regions of the ITGA2 promoter. 

 

2.9.3 Nucleosome occupancy and methylome sequencing (NoMe-seq) 

Analysis of both nucleosome occupancy and DNA methylation on the same DNA was 

undertaken by NoMe-seq (You et al., 2011). Nuclei were extracted by modification of a 

previously published method (Schreiber et al. 1989). Briefly, cells were trypsinised and 

centrifuged for 3 minutes at 500 g. Cell pellets were washed in ice-cold PBS and 

resuspended in 1 mL ice-cold Nuclei Buffer (10 mM Tris pH 7.4, 10 mM NaCl, 3 mM 

MgCl2, 0.1 mM EDTA and 0.5% NP-40, plus protease inhibitors) per 5 x 10
6
 cells, and 

incubated on ice for 5 minutes. Nuclei were recovered by centrifugation at 900 g for 3 

minutes, washed in Nuclei Wash Buffer (10 mM Tris pH 7.4, 10 mM NaCl, 3 mM MgCl2 
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and 0.1 mM EDTA containing protease inhibitors) and resuspended at a concentration of 

2 x 10
5
 cells/mL in 1X M.CviPI reaction buffer. Nuclei were treated with 200 U of 

M.CviPI for 15 minutes at 37 ºC. Reactions were quenched by the addition of an equal 

volume of Stop Solution (20 nM Tris-HCl pH 7.9, 600 mM NaCl, 1% SDS, 10 mM 

EDTA) and genomic DNA was isolated using a QIAamp blood kit (Qiagen, USA) 

according to the manufacturer’s instructions. Bisulphite conversion was performed using 

an EZ DNA Methylation-Lightning™ Kit (Zymo Research Corporation, USA; refer to 

Section 2.3) according to the manufacturer’s instructions and regions of interest were 

amplified using primers summarised in Table 2.7. PCR fragments were cloned into the 

pGEMT easy vector (Promega, USA) according to Section 2.4. 

 

Primer Name Primer sequence 

-488NoMe 

Forward 
5’ – TTTTTTTATTTATTTAGGAAAAATAGAGAAAGGGA-3’ 

ITGA2NoMe2 

Reverse 
5’ – CCCATCCTAAATCTAAC – 3’ 

GRP78 Forward 5’ – GAGAAGAAAAAGTTTAGATTTTATAG – 3’ 

GRP78 Reverse 5’ – AAACACCCCAATAAATCAATC – 3’ 

Table 2.7 NoMe-seq primer sequences 

 

2.10 Protein analysis 

2.10.1 Nuclear extracts 

LNCaP and PC3 cells at 5 x 10
5 

cells/mL were centrifuged for 5 minutes at 500 g, 

washed with PBS and resuspended in 1 mL of ice cold buffer A (10 mM Tris, pH7.4, 10 
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mM NaCl, 3 mM MgCl2, 0.1 mM EDTA and 0.5% Igepal). The cells were incubated on 

ice for 5 minutes and the nuclei were recovered by centrifugation at 900 g for 5 minutes, 

washed with buffer A without Igepal and resuspended in 75 µL buffer C (400 mM NaCl, 

7.5 mM MgCl2, 0.2 mM EDTA, 0.1 mM EGTA, 1 mM DTT and protease inhibitors) and 

incubated on ice with shaking for 15 minutes. The nuclear debris was removed by 

centrifugation at 13000 g for 5 minutes. Protein concentrations were determined by 

Bradford Assay (Section 2.6.6). 

 

2.10.2 Western blot 

Protein extracts were resolved by SDS-PAGE through 12% polyacrylamide, transferred 

to a nitrocellulose and subjected to western analysis with 1:1000 anti-Sp1 antibody (sc-

59, Santa Cruz Biotechnology, USA) and 1:1000 anti-H3 antibody (1791 Abcam, USA). 

Proteins were visualised using a Supersignal West Pico Chemiluminescent kit (Pierce, 

USA). 

 

 

2.11 Site-directed mutagenesis methods 

2.11.1 Primer design 

The QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies, USA) was 

used to introduce mutations into specific sites of the ITGA2 promoter. Mutagenesis 

primer sequences are listed in Table 2.8. 

 

Primers Sequences 

E-BoxMutF CGGTGCCCCGCGACTGTGGACGAGCC 

E-BoxMutR GGCTCGTCCACAGTCGCGGGGCACCG 

Tm : 87.1˚C; GC% : 76.9% 

E-BoxMut2F GGTCGGTGCCCCGCTTATGGACGAGCCGAC 
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E-BoxMut2R GTCGGCTCGTCCATAAGCGGGGCACCGACC 

Tm : 82.5˚C; GC% : 70% 

Table 2.8 E-Box site-directed mutagenesis primer sequences 

2.11.2 Mutagenesis 

Mutagenesis reactions were set up according to the manufacturer’s instructions. Briefly, 

the plasmid was constructed with the mutation primers to produce the mutant plasmid 

containing staggered nicks. The reaction was then digested with DpnI enzyme, specific 

for methylated DNA which digests the parental plasmid as DNA isolated from E. coli 

strains is dam methylated and thus, susceptible to DpnI. This results in the mutated 

plasmid remaining behind. These plasmids were then transformed into the XL10-Gold 

ultracompetent cells supplied with the QuikChange II XL kit, according to the 

manufacturer’s instructions. Colony screening was then carried out by isolating plasmid 

DNA (Section 2.4.3) from each clone and subjecting them to restriction enzyme analysis 

(Section 2.6.2) or sequencing (Section 2.5). 

 

 

2.12 Promoter analysis 

2.12.1 Primer design 

Primers were designed to amplify two different lengths of the ITGA2 promoter. 

Restriction enzyme sites for BamHI and XhoI were added to the ends of the primers. 

Primer sequences are listed in Table 2.9.  

 

Promoter deletion mutant construct primers 

ITGA2cl F1 CTACGGATCCGGATAATCATAACTTGTGAGC 

ITGA2cl F2 CTACGGATCCGATATGCCCACCCGTC 

ITGA2cl R1 CATCCTCGAGTTTGCAGAGGATACCCTTG 

Table 2.9 Deletion mutagenesis primer sequences 



55 
 

Primers were designed to amplify 2 sizes of the ITGA2 promoter as summarised in Table 

2.10. 

 

Construct sizes 

ITGA2 WT -791 to +83 

ITGA2 Del1 -569 to +83 

ITGA2 Del2 -270 to  +83 

Table 2.10 Deletion constructs sizes 

2.12.2 Cloning 

Cloning methods in Section 2.4 were followed but instead of ligation into pGEMT 

vector, pXPG vector was used for these deletion mutant constructs. Screening and 

sequencing were performed as mentioned previously in Section 2.5. 

 

 

2.13 Statistical analysis  

All statistical analysis of data was performed using GraphPad Prism® 5. 
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Chapter 3 

REGULATION OF ITGA2 GENE EXPRESSION BY EPIGENETIC FACTORS IN 

PROSTATE CANCER 

 

3.1 Introduction 

3.1.1 Genetic and epigenetic events in prostate cancer 

 

Traditionally, it was thought that cancer arises by progressive genetic mutations in 

tumour-suppressor genes and oncogenes as well as chromosomal abnormalities (Hahn et 

al. 1999; Hanahan et al. 2000, 2011). This is supported by Knudson’s two hit hypothesis 

that cancer arises by two successive genetic ‘hits’, where both alleles of a gene are 

required to be inactivated to cause the loss of function of tumour-suppressor genes. 

Knudson’s model explains development of some tumours, for example, the ‘genetically’ 

arising Wilms’ tumours which involve Wilms’ tumour gene (WTI) mutations. However, a 

second group/class of ‘late-arising’ Wilms’ tumours are usually not a result of a second 

hit in a tumour suppressor gene, but due to inactivation of the second allele by epigenetic 

mechanisms (Moulton et al. 1994; Steenman et al. 1994). This has subsequently been 

shown for many other cancers, for example, the breast cancer 1 (BRCA1) gene in breast 

cancer and serine/ threonine kinase 11 (STK11) gene in colon cancer (Jones et al. 2002). 

 

It is therefore clear that cancer is a disease that also involves epigenetic changes (Baylin 

et al. 2006). These epigenetic changes involve DNA hypo- and hypermethylation and 

altered histone modifications, which affect the chromatin structure and thus, regulation of 

genes. Many studies have shown that in cancer, epigenetic events complement genetic 

mutations (Esteller et al. 2000b; Feinberg 2004; Sailasree et al. 2008; Wong et al. 2003). 

It has been shown that mutations can be maintained in one allele of a gene while the other 

allele can be hypermethylated and this leads to the functional inactivation of both alleles. 

This had been observed in the p16
ink4A

 gene in colon carcinoma cells (HCT116) and E-

cadherin gene in gastric cancer (Grady et al. 2000; Myohanen et al. 1998).  
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In addition to complementing genetic mutations, epigenetic silencing in cancer can lead 

to mutational events during tumour progression.  This has been observed for the 

mismatch-repair gene, mutL homologue 1 (MLH1), which is frequently hypermethylated 

and this is associated with microsatellite instability in colorectal cancer (Nakagawa et al. 

2001), in gastric cancers (Fleisher et al. 1999) and in sporadic endometrial cancers 

(Simpkins et al. 1999). Further, silencing of the O
6
-methylguanine DNA 

methyltransferase (MGMT) gene (a DNA repair gene) was found to predispose cells to 

mutation in the K-RAS oncogene in colon cancer (Esteller et al. 2000a). The review by 

Baylin et al. (2006) highlighted that epigenetic changes might predispose tumour cells to 

signalling pathway abnormalities during early stages of tumour development and 

dependence on these pathways will lead to acquisition of genetic mutations. Therefore, it 

is now well accepted that both genetic mutations and epigenetic events can affect tumour 

progression.  

 

A previous familial genetic study by FitzGerald et al. (2009) identified two 

polymorphisms (rs3212649 and rs1126643) within the ITGA2 gene that are associated 

with prostate cancer risk. Further, the differential expression of the ITGA2 gene in normal 

prostate samples as compared to prostate tumour samples suggests that ITGA2 plays an 

important role in prostate cancer progression, as outlined in Section 1.5. In addition, 

studies have also shown that the α2β1 complex is involved in adhesion of metastatic 

prostate cells to the bone (Hall et al. 2006; Sottnik et al. 2012).  

 

Given this it was hypothesised that deregulation of ITGA2 expression by epigenetic 

alterations may contribute to prostate tumour development and progression. Analysis of 

the ITGA2 promoter revealed a highly CpG rich region (Figure 3.1) and therefore, led to 

the examination of whether altered methylation and chromatin environment is involved in 

dysregulation of ITGA2 expression in a prostate cancer cell model. The aim of this 

chapter is therefore to investigate the regulation of ITGA2 by epigenetic factors in 

prostate cancer. 
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3.2 Results 

3.2.1 Increased ITGA2 gene expression correlates with increased cell migration 

capacity 

In order to investigate the role of ITGA2 in prostate cancer, a panel of prostate cell lines 

was used in this study which represents different aspects of prostate tumour biology. 

These cells include a benign prostate cell line (PWR-1e), lymph node metastasis-derived 

cell line (LNCaP), localised prostate cancer cell line (22Rv1), vertebral metastasis-

derived cell line (VCaP) and bone metastatic prostate cancer cell line (PC3), as 

summarised in Table 3.1. The PWR-1e cell line is classified as non-tumorigenic cells as 

these cells do not develop tumours when injected into nude mice (Webber et al. 1996; 

Wu et al. 1994). Conversely, LNCaP, 22Rv1, VCaP and PC3 cell lines are classified as 

tumorigenic as they develop tumours in nude mice (Kaighn et al. 1979; Korenchuk et al. 

2000; Sramkoski et al. 1999). Interestingly, LNCaP cells alone are nontumorigenic, 

however, for LNCaP cells to grow on xenografts in nude mice, the cells must be injected 

with Matrigel or stromal cells, which support cell viability and promote formation of a 

blood supply as tumour establishes (Tuxhorn et al. 2002). The latter cell lines have also 

been reported as having differing migratory potential. In order to assess comparative 

migratory capabilities, the LNCaP, 22Rv1 and PC3 cell lines were seeded onto poly-

lysine coated coverslips, grown to confluency and a scratch in the monolayer was created 

across the coverslip using a plastic pipette tip. Replicate coverslips were fixed at the time 

of injury (0 hour) and 24 hours post-injury and the cell nuclei were stained with Nuclear 

yellow. A qualitative assessment of migratory potential was made following visualising 

the cells by fluorescence microscopy (Figure 3.2). LNCaP cells showed little or no 

migration at 24 hours whereas 22Rv1 cells showed some cell migration with the border 

of the scratch becoming irregular. Conversely, PC3 cells showed higher migration 

capacity with cells clearly localised within the scratch. Therefore, these results confirm 

that these cell lines have different cell migration capacity. 

 

To determine whether ITGA2 gene expression correlates with migration capacity, ITGA2 

mRNA levels were determined by real-time PCR and using the Pfaffl method. This 

method is a widely used method which produces reproducible and highly accurate results  
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Table 3.1 Summary of the characteristics of the prostate cell lines used in this study. 
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Figure 3.2 PC3 cells display higher cell migration capacity than 22Rv1 and LNCaP 

cells 
Images of confluent LNCaP, 22Rv1 and PC3 cells scratched with a P20 pipette tip and 

fixed at 0 hour and 24 hours as indicated. Cell nuclei were stained with 1:100 dilution of 

nuclear yellow. Scale bar, 100 µM. 
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where the relative expression ratio is calculated only from the real-time PCR efficiencies 

and the crossing point deviation of an unknown sample versus control (Pfaffl 2001). 

Expression of four different putative housekeeping genes was also analysed in the cell 

lines in order to identify a gene whose expression could be used to normalise expression 

of ITGA2 across the cell lines. Interestingly, β-actin (Figure 3.3a) and β-2 microgrobulin 

(β2M; Figure 3.3b) expression was not consistent across the different cell lines, with 

higher expression levels in PC3 cells compared to LNCaP cells in both cases. However, 

levels of the 18S ribosomal RNA (Figure 3.3c) and the Glyceraldehyde 3-phosphate 

dehydrogenase mRNA (GAPDH; Figure 3.3d) were relatively consistent across the cell 

lines. As a much higher abundance of the 18S RNA was detected compared to the other 

genes, GAPDH was selected for normalisation of ITGA2 levels across the cell lines. 

 

The data presented here show that, the PC3 cell line expresses higher levels of ITGA2 

mRNA while 22Rv1 cells showed moderate levels of expression compared to LNCaP 

cells, which displayed low levels of ITGA2 expression (Figure 3.3e). Therefore, ITGA2 

expression in these cells correlated with the migration capacity observed with higher 

expression of ITGA2 correlating with higher migration capacity and lower expression of 

ITGA2 correlating with lower or no migration capacity.  

 

3.2.2 The ITGA2 promoter is differentially methylated in prostate cancer cell lines 

Given the differential ITGA2 expression patterns across the prostate cancer cell lines, 

mechanisms that might regulate this differential expression were investigated. As noted 

previously, the ITGA2 gene promoter is located within a large CpG island (Figure 3.1). 

This 774 bp island contains 62 CpG dinucleotides and therefore, could potentially be 

regulated by DNA methylation. The bisulphite sequencing method was therefore utilised 

to analyse ITGA2 promoter methylation across the cell lines. Genomic DNA was 

bisulphite converted and the promoter region of ITGA2 from -500 to -37 bp relative to the 

TSS, containing 47 CpG dinucleotides was amplified by PCR (Figure 3.4a). Amplified 

fragments were then cloned and representative clones were selected for sequencing. 

Methylation of each CpG from -500 bp to the transcription start site (TSS) was analysed 

in 6-10 clones from each of the prostate cell lines (Figure 3.4b-f). The ITGA2 promoter 
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Figure 3.3 Differential ITGA2 expression levels in the prostate cell lines 
Total mRNA isolated from the prostate cell lines as indicated was reverse transcribed and 

amplified by real-time PCR using primers designed to amplify (a) β-actin (b) β2M (c) 18s 

ribosomal RNA (d) GAPDH (e) ITGA2. Raw levels of expression were graphed in (a)-(d) and 

expression relative to GAPDH were graphed in (e). Values expressed as mean ± SEM (n=3). 

Statistical significance was determined using one-way ANOVA with Neuman-Keuls multiple 

comparison test. 



64 
 

 

 

 

 

 

 

 

Figure 3.4 A putative CpG island within the ITGA2 promoter is densely methylated in 

LNCaP and 22Rv1 but not in PWR-1e. VCaP and PC3 cells 
(a) CpG plot of the ITGA2 promoter region analysed in this study. Each vertical line 

represents a CpG dinucleotide and the transcription start site is indicated by an arrow. The 

region analysed by bisulphite sequencing is represented by the dashed line in red; (b-f) 

Methylation pattern of the ITGA2 promoter analysed by bisulphite sequencing in (b) PWR-

1e, (c) LNCaP, (d) 22Rv1, (e) VCaP and (f) PC3 cells. White circles represent unmethylated 

CpG sites and black circles represent methylated CpG sites. Each line of circles represents 1 

clone. X indicates nucleotides where the sequence where nucleotides could not be 

determined because of sequencing quality. 
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 was largely unmethylated in PWR-1e, VCaP and PC3 cell lines whereas in LNCaP and 

22Rv1 cells, high levels of DNA methylation were observed across the promoter. 

Interestingly, distinctly different methylation patterns were observed in LNCaP and 

22Rv1 cells with high methylation at the -500 to -250 bp region in LNCaP cells whereas 

in 22Rv1 cells, high methylation at the -300 to -50 bp region was observed. However, 

overall the methylation levels displayed at the ITGA2 promoter in these cells correlated  

well with ITGA2 gene expression levels. Higher expression of ITGA2 was observed in 

PWR-1e and PC3 cells correlating well with lower DNA methylation levels, while lower 

expression of ITGA2 was observed in LNCaP and 22Rv1 cells correlating with higher 

DNA methylation at the promoter. These data suggest that DNA methylation may be 

involved in regulating ITGA2 expression. However, in VCaP cells, ITGA2 expression 

was relatively low despite the promoter being almost completely unmethylated, 

suggesting that other factors are also involved in its regulation.  

 

3.2.3 Increased chromatin accessibility and histone H3 acetylation at the ITGA2 

promoter correlates with increased ITGA2 expression 

Differences in DNA methylation are also often associated with differences in chromatin 

status (reviewed in Jones et al. 2002). Therefore, to determine whether chromatin 

accessibility across the ITGA2 gene promoter in the different cell lines also correlates 

with expression levels, accessibility of DNA to micrococcal nuclease (MNase) was 

measured using a real-time PCR based accessibility assay (CHART-PCR; Rao et al. 

2001). Nuclei were isolated from LNCaP, 22Rv1 and PC3 cells and digested with a 

limiting amount of MNase. Seven PCR primer sets amplifying regions from -555 to 

+210, with the approximate locations shown in Figure 3.5, were used to measure the 

degree of chromatin accessibility across the ITGA2 promoter. In this assay, the amount of 

PCR product generated is inversely proportional to the level of MNase digestion within 

the region. An increase in the level of MNase digestion and thus, decrease in PCR 

product generated indicates increased chromatin accessibility. A ratio of PCR product 

generated from undigested DNA compared to the amount generated from digested DNA 

for each primer set was determined and a line graph representing the relative accessibility 

was generated by plotting the centre position of each primer set (Figure 3.5). 
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Figure 3.5 Chromatin accessibility at the ITGA2 promoter in prostate cancer cell lines 

Relative accessibility (uncut/cut) determined in LNCaP, 22Rv1 and PC3 cells by CHART-

PCR assay was plotted against the position on the ITGA2 gene promoter corresponding to the 

midpoint of each primer set indicated below the x-axis. Values expressed as mean ± SEM 

(n=3). 
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PC3 cells displayed relatively high chromatin accessibility across the ITGA2 promoter 

compared to 22Rv1 cells, which displayed moderate levels of chromatin accessibility, 

while low levels of chromatin accessibility were detected in LNCaP cells. Thus, the 

chromatin accessibility levels correlated with ITGA2 gene expression. In addition, 

increased chromatin accessibility in all three cell lines was observed at the -52 bp region 

near the TSS. The region downstream of the TSS (0 to +210) showed increased 

accessibility as compared to the region upstream of the TSS (-555 to -126). The 

accessibility levels at the 0 to +210 region, also positively correlated with ITGA2 gene 

expression in the cell lines, with a statistically significant difference in accessibility at 

this region in LNCaP compared to PC3 cells (Figure 3.6).  Although accessibility 

between 22Rv1 and PC3 cells was not statistically significant, the data still suggest a 

trend of increasing chromatin accessibility correlating with increased ITGA2 gene 

expression.   

 

Further examination of the chromatin environment at the ITGA2 gene promoter using 

ChIP analysis was performed to determine histone occupancy at the promoter. The level 

of promoter H3 occupancy was determined by analysing DNA immunoprecipitated with 

anti-H3 antibodies and quantified using real-time PCR with two primer sets that 

amplified the region 0.5kb upstream of the TSS and the region at the TSS (Figure 3.7a). 

H3 occupancy at the 0.5kb 5’ region was relatively similar in all cell lines (Figure 3.7b). 

H3 occupancy of both regions were similar in LNCaP cells, however in 22Rv1 and PC3 

cells, a trend of lower H3 occupancy was observed at the TSS as compared to the 0.5kb 

5’ region, although this was not statistically significant. This is in keeping with the 

increased chromatin accessibility observed at these regions in the cell lines. 

 

Histone acetylation levels were also examined at both regions by ChIP analysis with anti-

acetyl H3 antibodies. At the 0.5kb 5’ region in 22Rv1 cells, higher levels of histone H3 

acetylation was observed as compared to both LNCaP and PC3 cells (Figure 3.7c). In 

LNCaP cells, similar levels of histone H3 acetylation were observed at both the 0.5kb 5’ 

region and the TSS. However, histone H3 acetylation was significantly higher at the TSS 

as compared to the 0.5kb 5’ region in both 22Rv1 and PC3 cells. This higher level of  
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Figure 3.6 Increased chromatin accessibility correlates with increased ITGA2 expression 
Relative chromatin accessibility (as depicted in Figure 3.5) at the +210 bp region was plotted 

against the average ITGA2 mRNA expression in LNCaP, 22Rv1 and PC3 cells (as determined 

in Figure 3.3e).  Values expressed as means ± SEM (n=3). Statistical significance (* p<0.05) 

was determined using one-way ANOVA with Neuman-Keuls multiple comparison test. 
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Figure 3.7 Decreasing trend of histone H3 occupancy and increased histone H3 

acetylation at the TSS of the ITGA2 gene in higher expressing cell lines, 22Rv1 and PC3 
(a) Schematic diagram of the ITGA2 promoter with positions of primer sets at 0.5kb 5’ and 

TSS indicated by arrows; (b) ChIP analysis of histone H3 occupancy analysed in the cell lines 

as indicated and (c) acetylated H3 levels relative to total H3. Values expressed as mean ± 

SEM (n=3). Statistical significance was determined using student’s t test. 
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histone H3 acetylation at the TSS may be contributing to the higher expression of the 

ITGA2 gene in these cells. Overall, these results suggest that increased chromatin 

accessibility and increased levels of histone acetylation at the ITGA2 promoter correlates 

with higher ITGA2 gene expression.     

 

3.2.4 A nucleosome depleted region at the promoter correlates with higher ITGA2 

gene expression 

Nucleosome depleted regions (NDRs) have been described previously at the TSS of 

active genes and also enhancer regions (Jiang et al. 2009; Kelly et al. 2012; You et al. 

2011). The methylation data presented here showed a reciprocal pattern of DNA 

methylation in LNCaP and 22Rv1 cells and also higher levels of histone H3 acetylation at 

the TSS in 22Rv1 cells. However, DNA methylation and histone modifications work 

coordinately with nucleosome positioning to alter the accessibility of promoter regions to 

the transcription machinery and thus regulate gene expression (Lin et al. 2007).  

 

A further, recently developed method known as the nucleosome occupancy and 

methylome sequencing (NoMe-seq; You et al. 2011) approach was therefore also used to 

determine accessibility at the promoter in these two cell lines. A major advantage of this 

method is that it provides information regarding both endogenous DNA methylation as 

well as the distribution of nucleosomes on the same DNA strand (You et al. 2011). 

Nuclei from LNCaP and 22Rv1 cells were treated with 200 U M.CviPI enzyme which 

methylates GpC dinucleotides not protected by nucleosomes or tight binding proteins. 

DNA was then extracted and subjected to bisulphite conversion which allows 

differentiation between methylated and unmethylated cytosines residues. Endogenous 

methylation data is derived from the cytosine of CpG dinucleotides while nucleosome 

positioning is determined from analysis of cytosines within GpC dinucleotides. The data 

generated provides information on DNA accessibility, with regions of inaccessibility less 

than 146 bp suggestive of DNA binding proteins and regions greater than 146 bp 

indicating the presence of nucleosomes (Kelly et al. 2010). As GpCs are endogenously 

unmethylated in humans, the M.CviPI enzyme can provide an accurate footprint of 
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nucleosome positioning, except when it is occurring at GpCpG sites and thus, these sites 

are excluded from the analysis.  

 

To determine if the amount of enzyme used provided accurate footprinting results, the 

GRP78 gene promoter was used. This has been used commonly as a ‘control’ for the 

NoMe-seq method (Gal-Yam et al. 2006; Kelly et al. 2012; Kelly et al. 2010). The 

GRP78 gene promoter contains a CpG island and thereby provides a dense CpG grid that 

allows endogenous methylation analysis. The promoter is endogenously unmethylated 

and has a TATA box with a well-defined TSS that has a NDR region of 350 bp (Gal-Yam 

et al. 2006). Analysis of the GRP78 gene promoter (from -350 to +102) in both LNCaP 

and 22Rv1 cells using 200 U enzyme provided accurate data as expected. The GRP78 

gene promoter was unmethylated in both LNCaP and 22Rv1 cells and showed a NDR 

region upstream of the promoter (Figure 3.8a-d).  

 

From the same bisulphite converted DNA, the ITGA2 promoter was amplified from both 

cell lines and 9-10 clones were selected and analysed for DNA methylation and 

accessibility to the GpC enzyme from -350 to +120 (Figure 3.9a-d). Interestingly, the 

ITGA2 promoter in LNCaP cells showed two different methylation patterns. Half of the 

clones were either unmethylated or sporadically methylated, suggesting monoallelic 

methylation. These results were in contrast to the previous bisulphite sequencing pattern 

observed in Section 3.2.2 and these differences will be discussed later. However, 

unmethylated clones had minimal accessibility to M.CviPI with regions greater than 146 

bp, indicating nucleosome occupancy at regions both upstream and downstream of the 

TSS. In contrast, the other 50% of clones in LNCaP cells showed heavy methylation 

upstream of the TSS but also displayed a NDR throughout the promoter. Similarly in 

22Rv1 cells, the ITGA2 promoter displayed heavy methylation upstream of the TSS (7 

out of 9 clones) and displayed an NDR throughout the promoter. Two of the clones were 

not methylated but displayed nucleosome occupancy upstream of the TSS. Therefore, 

from both cell lines, the data suggest that clones that were unmethylated displayed 

nucleosome occupancy, suggesting a poised or repressed promoter (Kelly et al. 2012). 

However, methylated DNA was found to have NDR regions upstream of the TSS, which  
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Figure 3.8 NoMe-seq footprint of the active GRP78 promoter 
Cell nuclei were treated with 200 U of M.CviPI, DNA extracted, bisulphite converted and 

sequenced. Analysis of CpG sites at the GRP78 promoter in (a) LNCaP cells and (c) 22Rv1 

cells. Analysis of GpC sites which were either protected or unprotected by nucleosomes in (b) 

LNCaP cells and (d) 22Rv1 cells. White circles represent unmethylated CpG and black circles 

represent methylated CpG sites. Unfilled blue circles represent GpC sites that are inaccessible 

to M.CviPI and green filled blue circles represent GpC sites that are accessible to M.CviPI. 

Each line of circles represents 1 clone. X indicates nucleotides where the sequence where 

nucleotides could not be determined because of sequencing quality. 

(a) 

(b) 

(c) 

(d) 
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Figure 3.9 NoMe-seq analysis of the ITGA2 promoter 
Cell nuclei were treated with 200 U of M.CviPI, DNA extracted, bisulphite converted and 

sequenced. Analysis of CpG sites at the ITGA2 promoter in (a) LNCaP cells and (c) 22Rv1 

cells. Analysis of GpC sites which were either protected or unprotected by nucleosomes in (b) 

LNCaP cells and (d) 22Rv1 cells. White circles represent unmethylated CpG and black circles 

represent methylated CpG sites. Unfilled blue circles represent GpC sites that are inaccessible 

to M.CviPI and green filled blue circles represent GpC sites that are accessible to M.CviPI. 

Pink bars represent regions of inaccessibility large enough to accommodate a nucleosome. 

Each line of circles represents 1 clone. X indicates nucleotides where the sequence where 

nucleotides could not be determined because of sequencing quality. 

(a) 

(b) 

(c) 

(d) 
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has not previously been reported. The percentage of ITGA2 promoter clones in both 

LNCaP and 22Rv1 cells which displayed nucleosome occupancy as assessed by the lack  

of M.CviPI methylation was determined and compared to ITGA2 expression levels in 

these cells (Figure 3.10). LNCaP cells which have low ITGA2 expression displayed 

higher levels of nucleosome occupancy at the TSS while 22Rv1 cells which express 

ITGA2 at higher levels have a lower nucleosome occupancy at the TSS.  Therefore, 

decreased nucleosome occupancy at the TSS correlates with increased expression of the 

ITGA2 gene. 

 

3.2.5 Combined treatment with 5-Aza-2’-deoxycytidine and Trichostatin A 

upregulates ITGA2 gene expression in a lower expressing cell line  

The data presented so far suggest that ITGA2 is regulated by DNA methylation and 

histone H3 acetylation. Unlike genetic mutations, epigenetic alterations are chemically 

reversible by epigenetic modifiers and these agents allow the effect of modulating 

epigenetic modifications to be determined (Chin et al. 2011). To investigate the effects of 

DNA demethylation on ITGA2 gene expression, both LNCaP and 22Rv1 cells were 

treated with a DNA methyltransferase inhibitor (DNMTi), 5-Aza-2’-deoxycytidine 

(AzaC) on alternate days for 5 days. This treatment regime has been shown to be the 

lowest dose sufficient to demethylate the GSTP1 promoter (a well described 

hypermethylated gene in prostate cancer) and was previously shown to permit 

reexpression of GSTP1 protein in LNCaP cells (Chiam et al. 2011). Hence, as a control, 

GSTP1 expression was analysed in these cells. GSTP1 mRNA levels were determined by 

real-time PCR. Interestingly, AzaC treatment was found to affect the house-keeping gene, 

GAPDH, with increased expression following AzaC treatment (Figure 3.11a). Therefore, 

another house-keeping gene, β-actin was used for normalisation in the AzaC treated cells 

as the expression of this gene was unchanged between non-treated (NS) and AzaC treated 

cells (Figure 3.11b). As expected, upregulation of the GSTP1 gene was observed in both 

cell lines following AzaC treatment (Figure 3.11c) suggesting that AzaC was effectively 

demethylating DNA. ITGA2 expression was then analysed in the same samples and the 

results showed that treatment of both LNCaP and 22Rv1 cells with AzaC did not  
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Figure 3.10 Nucleosome occupancy at the TSS of the ITGA2 gene inversely correlated 

with ITGA2 expression 
The percentage of promoter clones that contained a nucleosome at the TSS (pink bar; as 

depicted in Figure 3.9) is plotted along with ITGA2 expression (purple bar; as determined in 

Figure 3.3e). Expression is shown relative to GAPDH. Values expressed as mean ± SEM 

(n=3). 
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Figure 3.11 AzaC treatment did not upregulate ITGA2 expression in prostate cancer cells 
Total mRNA isolated from either untreated (NS) cells or cells treated with 0.5 µM AzaC as 

indicated, reverse transcribed and amplified by real-time PCR primers designed to amplify: 

(a) GAPDH (b) β-actin (c) GSTP1 (d) ITGA2. Raw levels of expression are shown in (a) and 

(b) and expression relative to β-actin is depicted in (c) and (d). Values expressed as mean ± 

SEM (n=3). Statistical significance was determined relative to the indicated control using 

student’s t test. 
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upregulate ITGA2 gene expression (Figure 3.11d), suggesting that demethylation does not 

affect ITGA2 gene expression. Next, to investigate the effects of modulating histone 

acetylation, a widely used histone deacetylase inhibitor (HDACi), Trichostatin A (TSA) 

was used to treat both LNCaP and 22Rv1 cells for 4 hours either with or without prior 

AzaC treatment. RNA was isolated from the cell lines, converted to cDNA and ITGA2 

mRNA levels were determined by real-time PCR. TSA treatment did not upregulate 

ITGA2 gene expression in either cell line (Figure 3.12). However, combination treatment 

of both AzaC and TSA upregulated ITGA2 expression in the lower expressing cell line, 

LNCaP, but not in the higher expressing, 22Rv1 cell line suggesting that DNA 

demethylation and inhibition of histone acetylation in combination modulates ITGA2 

expression in LNCaP cells.  

 

Overall, the data presented here suggests that the ITGA2 gene is regulated by both DNA 

methylation and histone H3 acetylation. 

 

3.2.6 Increased ITGA2 expression corresponds with  demethylation at the ITGA2 

promoter 

Experiments were then conducted to determine whether upregulation of ITGA2 

necessarily involves DNA demethylation. To do this, a strategy was employed in which 

higher ITGA2 expressing cells, LNCaPcol were derived by successive panning of LNCaP 

cells on type I collagen. This method has been used previously to generate LNCaP cells 

that displayed characteristics of high affinity for collagen type I with increased α2β1 

expression (Hall et al. 2006). LNCaPcol cells were derived as previously described (Hall 

et al. 2006) and summarised in Figure 3.13. After each panning, RNA was isolated from 

some of the cells, converted to cDNA and ITGA2 mRNA levels were determined by real-

time PCR.  DNA was also isolated from the cells to perform bisulphite sequencing while 

the rest of the cells were replated on collagen. Cells were panned for two rounds, with 

LNCaPcol from the second panning (LNCaPcol2) displaying a significant increase in 

ITGA2 mRNA levels as compared to the LNCaPcol from the first panning (LNCaPcol1) 
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Figure 3.12 DNA demethylation and histone acetylation upregulated ITGA2 expression 

in LNCaP but not 22Rv1 cells 
Total mRNA isolated from cells either untreated (NS), treated with 0.5 µM AzaC, treated with 

200 ng/mL TSA or treated with both AzaC and TSA, was reverse transcribed and amplified by 

real-time PCR using primers designed to amplify ITGA2 mRNA. The data show ITGA2 

expression in LNCaP and 22Rv1 relative to β-actin. Values expressed as mean ± SEM (n=3). 

Statistical significance was determined using one-way ANOVA with Neuman-Keuls multiple 

comparison test. 
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Figure 3.13 Flow chart depicting the derivation of the LNCaP
col

 cells and subsequent 

ITGA2 analysis. 
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and the parental LNCaP cells (Figure 3.14a). Analysis of ITGA2 promoter methylation of 

LNCaPcol1 and LNCaPcol2 cells showed demethylation at regions -325 to -190 when  

compared to the parental LNCaP cells (Figure 3.14b and c). However, although 

demethylation was also observed in LNCaPcol1 cells, no changes in ITGA2 gene 

expression were detected, suggesting perhaps a delay in upregulation of gene expression 

following demethylation. Demethylation observed in LNCaPcol2 cells correlated with 

increased ITGA2 expression.  

 

3.3 Discussion 

Bone is the most frequent site of prostate cancer metastases with 90% of all men who die 

of prostate cancer having metastatic bony lesions (Bubendorf et al. 2000). The collagen 

receptor, α2β1 has been shown to play an important role in the normal development of 

the prostate and also progression of prostate cancer by facilitating tumour migration and 

bone metastasis. Studies have shown variable ITGA2 expression at different stages of 

tumour development as outlined in Section 1.5. In particular, down regulation of ITGA2 

was observed as an early event in prostate cancer, followed by up regulation as a late 

event in prostate cancer (Bonkhoff et al. 1993; Pontes-Junior et al. 2009; Ramirez et al. 

2011; Van Slambrouck et al. 2009). Since ITGA2 encodes for the α subunit of the α2β1 

complex and has been identified as a prostate cancer susceptibility gene through a 

previous study (FitzGerald et al. 2009), the ITGA2 gene would appear to be a logical 

therapeutic target in prostate cancer metastasis. However, little is known about the 

regulation of this gene in prostate cancer or during tumorigenesis. 

 

In order to investigate the epigenetic regulation of the ITGA2 promoter, a panel of 

prostate cell lines which represent non-tumorigenic and tumorigenic aspects of prostate 

cancer were used. Although LNCaP cells are derived from lymph node metastasis, these 

cells routinely fail to bind collagen type I in in vitro attachment assays and are considered 

non-tumorigenic in nude mice (Hall et al. 2006). The ITGA2 expression pattern observed 

in these cells suggests that in benign prostate cells (represented by PWR-1e), high 

expression of ITGA2 could be involved in growth and cell attachment. This is similar to 

the expression pattern observed by Bonkhoff et al. (1993) where similar staining patterns  
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Figure 3.14 Increased ITGA2 expression in LNCaP
col

 cells correlated with demethylation 

at regions -325 to -190 of the ITGA2 promoter 
(a) RNA from the parental LNCaP, LNCaP

col
1 and LNCaP

col
2 cells was reverse transcribed 

and amplified by real-time PCR using ITGA2 primers. ITGA2 expression was graphed relative 

to GAPDH. Values expressed as mean ± SEM (n=3). Statistical significance was determined 

using one-way ANOVA with Neuman-Keuls multiple comparison test; (b-d) Methylation 

pattern of the ITGA2 promoter analysed by bisulphite sequencing in (b) parental LNCaP, (c) 

LNCaP
col

1, and (d) LNCaP
col

2 cells. White circles represent unmethylated CpG sites and 

black circles represent methylated CpG sites. Each line of circles represents 1 clone.  
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for α2β1 were observed in both normal and hyperplastic prostate samples. 

Downregulation of its expression (in keeping with the relatively low expression detected 

in 22Rv1 cells) may be involved in the development of prostate cancer and also may 

facilitate cell detachment, necessary for tumour cells to escape from the primary site.  

This type of gene expression pattern was observed by Gorlov et al. (2009) where ITGA2 

downregulation was observed in localised prostate cancer tissue compared to normal 

tissue using microarray assays. Re-expression of ITGA2 in bone metastatic prostate 

cancer (in keeping with the higher expression levels observed in PC3 cells) may be 

involved in facilitating tumour cell relocation and in this case, attachment to the bone, 

where collagen I, the ligand of α2β1, is highly expressed. This is consistent with the 

ITGA2 staining that was reported in 9 out of 11 bone metastasis tissue samples as 

compared to the matched normal samples (Eaton et al. 2010).  

 

Higher ITGA2 gene expression also correlated with increased cell migration capacity as 

observed in PC3 cells which support the idea that ITGA2 may play a role in prostate 

cancer metastasis. Differential expression of the ITGA2 gene also correlated with the 

differential methylation pattern observed in these cells, suggesting ITGA2 could be 

regulated by DNA methylation. Previous analysis of ITGA2 promoter methylation by our 

group, from -504 to -350 upstream of the TSS in localised prostate tumour samples 

showed lower methylation levels as compared to normal prostate samples (Short AK, 

unpublished data; Figure 3.15a, b and c). ITGA2 expression was not examined in these 

tumour samples but since lower DNA methylation is associated with increase gene 

expression, this would suggest higher ITGA2 expression in tumour samples as compared 

to normal prostate samples and thus, does not correlate with these findings. Nevertheless, 

only 11 of 47 CpG sites were analysed in the tumour samples and analysis of the CpGs 

further downstream and particularly at the TSS may provide more informative data. It is 

interesting however that this region is also demethylated in the 22Rv1 cell line which 

represents a localised prostate cancer cell lines. In this study, increased ITGA2 expression 

correlated with low DNA methylation, increased chromatin accessibility at the promoter 

and increased histone H3 acetylation at the TSS. Interestingly, while the ITGA2 promoter 

of the VCaP cells remained unmethylated, these cells did not express high levels of the  
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Figure 3.15 The  ITGA2 promoter is more densely methylated in normal tissue samples 

as compared to tumour tissue samples 
(a)  CpG plot of the ITGA2 promoter region analysed in this study. Methylation pattern of the 

ITGA2 promoter analysed by bisulphite sequencing in (b) normal tissue samples and (c) 

tumour tissue samples. White circles represent unmethylated CpG sites and black circles 

represent methylated CpG sites. Each line of circles represents 1 clone. Data adapted from 

Short, AK 2009 (unpublished data). 
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ITGA2 gene, suggesting these cells may be regulated by an alternative mechanism 

involving other histone or chromatin modifications. However, further experiments using 

CHART-PCR, ChIP and NoMe-seq may be required in order to elucidate the alternative 

mechanisms regulating the ITGA2 gene expression observed in this cell line. Difficulties 

in growing these cells were encountered during the study, which prevented the further 

experiments to be carried out. 

 

The NoMe-seq method was utilised to analyse the nucleosome occupancy and DNA 

methylation at the ITGA2 promoter of the same DNA strand. The NoMe-seq footprinting 

data for the GRP78 promoter suggests that the amount of enzyme used is enough to 

provide accurate footprinting results. Nucleosome occupancy footprinting at the ITGA2 

promoter in LNCaP and 22Rv1 cells was analysed using PCR primers lacking CpG or 

GpC sites to avoid complications due to endogenous methylation. Therefore, these 

primers were different from the normal bisulphite primers used previously. The ITGA2 

promoter methylation observed in the LNCaP cells in the bisulphite data in Figure 3.4c 

showed methylation from -500 to -250 whereas NoMe-seq endogenous methylation data 

in Figure 3.9a showed monoallelic methylation, where 5 of 9 clones sequenced showed 

unmethylated or sporadically methylated CpGs from -300 to +100 and this matches the 

methylation pattern observed using the normal bisulphite primers. However, 4 of 9 clones 

sequenced showed high methylation from -300 to +3, which in contrast to the bisulphite 

sequencing data from the earlier study. This discrepancy may be due to the normal 

bisulphite primers selecting for the unmethylated allele. This may also be due to fact that 

the earlier bisulphite sequencing only involved 6 clones whereas for the NoMe-seq, 10 

clones were selected and thus, if more clones were selected in the earlier study, the 

monoallelic effect may be observed. Therefore, an alternate approach using the next 

generation sequencing would likely result in rapid sequencing of larger number of DNA 

strands and thus reveal the heterogeneicity in these cells. In addition, growth behaviour of 

these cells could change over time with continuous culturing and thus, may affect these 

results. Interestingly, discrepancies in methylation levels in LNCaP cells were previously 

observed when using two different methods, bisulphite sequencing and restriction 

enzyme based analysis (West AC, unpublished data). Further investigation suggested the 
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presence of an inhibitory element affecting the enzyme based assay in 50% of the DNA, 

which was not present during the examination of LNCaP DNA by bisulphite sequencing, 

again, suggesting allelic differences at the ITGA2 loci in this cell line. 

 

Interestingly, NoMe-seq data showed that the two different alleles also have different 

nucleosome occupancy conformation at the promoter, with unmethylated alleles having 

nucleosome occupancy while methylated alleles have a NDR.  Therefore, NoMe-seq 

provides more information than average levels observed in a population of cells because 

different chromatin states can exists on the two alleles in a single cell or in different 

subpopulation of cells within a sample (Kelly et al. 2012). It is also well described now 

that active promoters typically have a NDR immediately upstream of the TSS whereas 

transcriptionally inactive promoters usually lack this NDR. Comparing percentage of 

nucleosome occupancy at the TSS in both LNCaP and 22Rv1 cells, 40% of the clones in  

LNCaP cells displayed nucleosome occupancy at the TSS, correlating with lower ITGA2 

expression. On the other hand, 22Rv1 cells displayed 22% nucleosome occupancy at the 

TSS, correlating with higher ITGA2 expression as compared to LNCaP cells. These 

results suggest that the presence of NDR at the TSS may be contributing to increase 

ITGA2 gene expression. Overall, these results strongly suggest that ITGA2 expression 

may be regulated by epigenetic factors. However, in is also interesting that methylated 

DNA was found to have NDR regions upstream of the TSS, which has not previously 

been reported. 

 

To assess whether ITGA2 expression could be induced using epigenetic modifiers, the 

lower expressing cell lines, LNCaP and 22Rv1 were treated with the demethylating 

agent, AzaC. However, promoter demethylation was not sufficient to induce gene re-

expression. Treatment of cells with the HDACi, TSA was also not sufficient to induce 

gene re-expression. However, co-treatment with both AzaC and TSA induced 

upregulation of the ITGA2 gene in the lower expressing cells (LNCaP), suggesting a 

possible interaction between AzaC and TSA where demethylation and increased histone 

acetylation in combination leads to changes in chromatin structure and thus, facilitates 

increased gene expression. Interestingly, upregulation of ITGA2 gene expression with 
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both AzaC and TSA was only observed in LNCaP cells but not in 22Rv1 cells, although 

the level of expression was still not as high as the ITGA2 expression observed in normal 

PC3 cells. This could be because while treatment with AzaC in both cells leads to 

demethylation at the promoter, treatment with TSA had more effect in LNCaP cells 

compared to 22Rv1 cells (Figure 3.16) as the endogenous histone H3 acetylation levels 

were much higher in 22Rv1 as compared to LNCaP cells (Figure 3.7c). The idea that the 

ITGA2 gene is regulated by DNA methylation was further supported by the collagen 

panned cells, LNCaPcol2, where upregulation of ITGA2 expression correlated with 

demethylation at regions -325 to -190 as compared to parental LNCaP cells. However, 

demethylation at the same region was also observed in the first round collagen panned 

cells, LNCaPcol1 but expression of ITGA2 was similar to parental LNCaP, suggesting a 

delay in re-expression of ITGA2 after demethylation has occurred. Recently, You et al. 

(2011) showed that nucleosome occupancy precedes DNA methylation in gene silencing 

while during gene re-expression, loss of methylation occurs first and is followed by NDR 

formation. This is consistent with the idea that nucleosomal DNA is the preferred 

substrate for DNA methylation (Jones PA 2013).  Therefore, the delay in re-expression of 

the ITGA2 gene despite demethylation at the promoter occurring could be due to the 

presence of nucleosome occupancy. Although treatment of cells with both AzaC and 

TSA did not produce as marked changes in ITGA2 expression as expected, an alternative 

approach to highlight these effects to a greater extent may be conducting the AzaC and 

TSA treatment of LNCaP cells during its growth on collagen. 

 

In summary, the data presented here provide evidence that epigenetic factors are involved 

in the differential expression of ITGA2 observed in the prostate cell lines. Loss of 

methylation and increased histone H3 acetylation at the ITGA2 promoter may be 

associated with increased ITGA2 expression. NoMe-seq data also suggests that 

nucleosome occupancy at the TSS results in lower ITGA2 expression. Treatment with 

epigenetic modifiers, AzaC and TSA resulted in upregulation of ITGA2 expression. 

However these levels were not as high as the ITGA2 expression observed in PC3 cells. In 

addition, inducing ITGA2 expression in LNCaP cells only resulted in slight 

demethylation at the promoter. Overall, these results support the notion that ITGA2 is 
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Figure 3.16 Model of activation of ITGA2 expression in LNCaP 
Schematic diagram of the DNA methyalation and histone acetylation marks present at the 

ITGA2 promoter in LNCaP and 22Rv1. Treatment with AzaC leads to demethylation on both 

cells however, TSA treatment only leads to increase histone H3 acetylation in LNCaP, which 

has low histone H3 acetylation levels.   
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 regulated by epigenetic factors but suggests that other factors are also involved in 

regulating ITGA2 expression. This is also supported by the data generated in VCaP cells, 

in which the ITGA2 promoter is not methylated but the gene displayed relatively low 

expression.    
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Chapter 4 

POSSIBLE INVOLVEMENT OF EMT FACTORS IN REGULATING ITGA2 

 

4.1 Introduction 

4.1.1 EMT in prostate cancer 

Tumour progression and metastasis involves the invasion and migration of tumour cells 

from the primary site into the surrounding tissue. In order to acquire invasive and 

metastatic abilities, the tumour cells must convert from a polarised epithelial cell to a 

highly motile mesenchymal phenotype and this process is also known as epithelial-

mesenchymal transition, EMT (Thiery 2002). This transition is characterised by changes 

in gene expression programs and cell surface molecules, with some of these such as E-

cadherin and N-cadherin now commonly regarded as markers of EMT. E-cadherin is an 

adheren junction protein which is widely expressed in epithelial cells and is involved in 

cell-cell adhesion (Oda et al. 1994). In contrast, N-cadherin is associated with a less 

stable and more dynamic form of cell-cell adhesion and it is found in mesenchymal cells 

(Bixby et al. 1990). Several transcription factors have also been characterised as playing 

supporter roles in EMT. Twist is a basic helix-loop-helix (bHLH) transcription factor that 

is involved in initiating mesoderm development during gastrulation and plays a role in E-

cadherin repression and EMT induction (Kang et al. 2004b; Yang et al. 2004), while 

Snail is a zinc finger transcription factor involved in EMT and responsible for inducing 

tumour invasion through the repression of E-cadherin (Batlle et al. 2000; Cano et al. 

2000).  

 

EMT has now been found to contribute to metastasis of several tumour types, including 

breast cancer, colon cancer and prostate cancer (Beach et al. 2007; Burk et al. 2008; 

Karnoub et al. 2007; Spaderna et al. 2006; Tomita et al. 2000). In prostate cancer, 

decreased E-cadherin expression due to loss of cell-cell adhesion is a feature of 

progression of the disease and is associated with poor prognosis (Umbas et al. 1994; 

Gravdal et al. 2007; Richmond et al. 1997). Loss of E-cadherin expression has been 

correlated with increased tumour grade, with 46 out of 92 prostate tumour samples 
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showing reduced or absence of E-cadherin staining when compared to non-malignant 

prostate samples (Umbas et al. 1992). In contrast N-cadherin, was not expressed in 

normal prostate tissue but expressed in the poorly differentiated areas of prostate cancer 

specimens, where E-cadherin was absent (Tomita et al. 2000). Therefore, the loss of E-

cadherin and the upregulation of N-cadherin suggest that cadherin switching occurs 

during tumour progression. The switch to N-cadherin expression was found to occur in 

higher grade prostate cancer and this correlated with increasing Gleason grade and 

tumour stage (Bussemakers et al. 2000; Jaggi et al. 2006). These studies suggest that 

switching of cadherin expression correlates with prostate cancer metastasis. Further study 

has shown that cells in the centre of a prostate tumour maintain an epithelial phenotype 

with high E-cadherin expression whereas cells at the invasive tumour front have a 

mesenchymal phenotype with higher expression of vimentin, Platelet Derived Growth 

Factor D (PDGF-D), Notch homologue 1 (Notch-1), ZEB1 and nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB) (Sethi et al. 2011).  

 

EMT has been shown to be involved in tumour metastasis using the inducible ARCaP 

prostate cancer cell line model. ARCaP cell subclones were derived by dilution cloning, 

forming two morphologically distinct subclones, where the ARCaPE subline have a 

cobblestone epithelial-like morphology, while the ARCaPM subline have a spindle-shape 

mesenchymal-like phenotype (Xu et al. 2006). ARCaPE cells expressed epithelial 

markers including E-cadherin, whereas ARCaPM cells expressed mesenchymal markers 

such as N-cadherin and vimentin and showed higher migration rate. Interestingly, the 

ARCaPE cells can be induced to undergo EMT to form ARCaPM cells by treating the 

cells with TGFβ1 plus EGF, IGF-1, β-2 microglobulin or subjecting them to a bone 

microenvironment by orthotopic injection into SCID mice. ARCaPM cells showed 

upregulation of mesenchymal markers including N-cadherin and vimentin and also 

formed bone metastases (Zhau et al. 2008). These studies suggest that EMT can be 

induced by soluble factors by activating a specific cell signalling pathway and the 

transition of ARCaPE to ARCaPM can be correlated with prostate cancer progression. In 

addition, in the bone microenvironment, growth factors that are released during bone 
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turnover may play a critical role in the initiation of EMT and prostate cancer growth, 

survival and bone colonisation.   

 

4.1.2 ITGA2 and EMT 

 

During EMT, tumour cells switch from cell-cell to cell-matrix adhesion thus mediating 

cell migration. As integrins are involved in cell-matrix adhesion, changes in integrins 

may occur during EMT. To date, studies on the involvement of integrins in EMT during 

cancer progression have been limited, particularly in prostate cancer. Integrin αvβ6 

(Bates et al. 2005), αvβ3 (Haraguchi et al. 2008) and α5 (Nam et al. 2012) were 

upregulated during EMT while integrin β4 was downregulated in metastatic prostate 

tumour samples as compared to primary tumours (Drake et al. 2010). 

 

Collagen type I, which is a ligand of integrin α2β1, was found to induce the disruption of 

E-cadherin adhesion complexes in pancreatic cancer (Koenig et al. 2006). The study 

suggested that binding of collagen type I to α2β1 activates FAK phosphorylation which 

enhances tyrosine phosphorylation of β-catenin and causes the disassembly of the E-

cadherin complex. In addition, Shintani et al. (2008) showed that activation of integrin 

α2β1 by collagen type I together with activation of the discoidin domain receptor 1 

(DDR1) induces N-cadherin expression (Shintani et al. 2008). Furthermore, high E-

cadherin was observed in suspended PC3 cells and the expression decreased as cells 

attached to a fibronectin substrate, whereas N-cadherin expression was 4-fold lower in 

suspension cells compared with attached cells (Alexander et al. 2006). Blocking of 

integrin β1 by the AIIB2 antibody resulted in no increase of N-cadherin expression in 

PC3 cells, suggesting that integrin β1-mediated cell adhesion to fibronectin is involved in 

regulating N-cadherin expression in prostate cancer. The study also investigated the 

regulation of N-cadherin by Twist1. Knockdown of Twist1 expression in PC3 cells 

resulted in decreased N-cadherin expression and inhibition of cell migration. 

Interestingly, blocking of integrin β1 correlated with inhibition of nuclear accumulation 

of Twist1 following cell attachment. Therefore, these data suggest that the integrin β1-
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mediated adhesion is regulated through Twist1 accumulation and activation of N-

cadherin. 

 

Since the previous results support that increased ITGA2 expression in the prostate cell 

lines correlates with increased cell migration capacity and it is well described that EMT is 

associated with tumour progression and metastasis, it was hypothesised that  ITGA2 

expression may change during EMT. In addition to cadherins, transcription factors such 

as Snail, Slug and members of ZEB and bHLH families are involved in EMT. A 

microarray study was conducted to determine the transcriptional consequences of 

exogenous expression of Snail and Slug at a global level in the MCF-7 breast cancer cell 

line (Dhasarathy et al. 2011). Interestingly, while downregulation of E-cadherin 

expression was observed, ITGA2 gene expression was also downregulated by Snail. In 

addition, when the prostate cancer cell line ARCaP was stably transfected with Snail, 

decreased E-cadherin and also decreased ITGA5, ITGA2 and ITGB1 expression was 

observed (Neal et al. 2011). Therefore, these studies suggest that integrin expression and 

particularly ITGA2 may change during EMT.  

 

Since EMT and ITGA2 are involved in tumour progression and metastasis, the aim of this 

study is to determine whether modulation of ITGA2 expression in the prostate cancer cell 

lines affects EMT marker expression and thus, determine the potential role of ITGA2 in 

EMT. 

 

4.2 Results 

4.2.1 Increased ITGA2 expression correlates with a mesenchymal-like phenotype 

The prostate cancer cell lines were previously shown to have different migration capacity 

(Chapter 3). Since EMT is associated with tumour progression and metastasis, expression 

analysis was undertaken to characterise the EMT phenotype of the various cell lines. In 

order to determine the epithelial or mesenchymal phenotype of the different prostate 

cancer cell lines, a panel of EMT markers was analysed by real-time PCR. E-cadherin 

which represents an epithelial marker was selected along with the mesenchymal marker 

N-cadherin and the transcription factors, Twist and Snail. Expression of these EMT 
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markers was determined in the prostate cancer cell lines LNCaP, 22Rv1 and PC3, which 

differ in their ITGA2 expression and migration ability (Figure 4.1). PWR-1e was 

excluded as this cell line has different growth characteristic and it requires the addition of 

EGF in the growth media. Since EGF is a known EMT inducer (Ackland et al. 2003; 

Docherty et al. 2006; Schlessinger et al. 2004), this may affect EMT marker expression. 

RNA was isolated from the cell lines, converted to cDNA and mRNA levels of EMT 

markers was analysed by real-time PCR. The LNCaP cells displayed a statistically 

significantly higher expression of the epithelial marker E-cadherin as compared to the 

22Rv1 and PC3 cells, with PC3 cells expressing very low levels of E-cadherin. In 

contrast, LNCaP cells displayed very low expression of Twist and undetectable N-

cadherin. Conversely, PC3 cells displayed a statistically significant higher expression of 

the mesenchymal markers, Twist and N-cadherin. The 22Rv1 displayed higher levels of 

Twist but low levels of N-cadherin. Therefore, decreased E-cadherin expression observed 

in these cell lines was consistent with increased Twist and N-cadherin expression. 

Unexpectedly, although it is documented that Snail represses E-cadherin (Batlle et al. 

2000; Cano et al. 2000), Snail expression was higher in LNCaP cells as compared to 

22Rv1 and PC3 cells, and thus showed a positive correlation with E-cadherin, rather than 

the expected inverse correlation. 

 

Therefore, LNCaP cells displayed a more epithelial-like expression pattern (with high E-

cadherin and low N-cadherin expression), while PC3 cells displayed a more 

mesenchymal-like phenotype (with low E-cadherin and high N-cadherin) and 22Rv1 cells 

displayed an expression pattern intermediate between the two. When comparing these 

phenotypes to the ITGA2 expression documented earlier (Figure 3.2), higher ITGA2 

expression in PC3 is correlated with a mesenchymal-like phenotype whereas lower 

expression of ITGA2 is correlated with an epithelial-like phenotype.   

 

4.2.2 Downregulation of ITGA2 leads to suppression of migration but does not 

modulate EMT  

Previously, differential expression of ITGA2 was shown to correlate with differential cell 

migration capacity, with higher ITGA2 expression correlating with higher migratory  
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Figure 4.1 PC3 cells display a mesenchymal-like phenotype while LNCaP cells display an 

epithelial-like phenotype 
Total RNA isolated from LNCaP, 22Rv1 and PC3 cells was reverse transcribed and amplified 

by real-time PCR using primers designed to amplify the EMT markers E-cadherin, Twist, N-

cadherin and Snail as indicated. EMT marker mRNA levels are shown relative to GAPDH. 

Values expressed as mean ± SEM (n=3). Statistical significance was determined using one-

way ANOVA with Neuman-Keuls multiple comparison test. 
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capacity (Chapter 3). Therefore, to determine whether changes in ITGA2 expression may 

influence the epithelial or mesenchymal phenotype, ITGA2 expression was modulated in 

PC3 and 22Rv1 cells. In order to modulate ITGA2 expression, ITGA2 siRNA was used to 

knockdown ITGA2 expression in these cells. As transfection efficiency varies across cell 

lines, a fluorescence transfection indicator, siGLO was used. siGLO is a red fluorescently 

labelled siRNA which localises to the nucleus and thus, enables visual assessment of 

uptake into cells. This was used as an alternative to flow cytometry given that the cell 

lines are adherent. Both PC3 and 22Rv1 cells were transfected with 25 nM siGLO. After 

24 hours, images of the cells were captured (Figure 4.2). Analysis of the fluorescence 

images, suggests almost 100% transfection efficiency in the PC3 cells whereas 22Rv1 

cells displayed approximately 70% transfection efficiency.  

 

To knockdown ITGA2 expression, the cells were transfected with 40 ρmol of either a 

negative control siRNA containing a scrambled sequence of non-targeting siRNA or a 

siRNA which is specifically designed to knockdown ITGA2 expression. To determine the 

amount of ITGA2 gene knockdown in the transfected cells, ITGA2 mRNA levels were 

measured in both PC3 and 22Rv1 cells at 24 hours and 48 hours post-transfection. This 

was compared to the ITGA2 mRNA levels in the cells transfected with the non-targeting 

control siRNA. PC3 cells showed approximately 57% ITGA2 knockdown at 24 hours and 

60% at 48 hours after transfection, which was statistically significantly different to the 

control (Figure 4.3a). ITGA2 knockdown was also observed in 22Rv1 cells, although 

only 27% knockdown was observed at 24 hours and 23% at 48 hours, which was not 

statistically significantly different to the control, and may reflect the lower transfection 

efficiencies of these cells (Figure 4.3b). Interestingly, ITGA2 knockdown cells appeared 

to display a different cell morphology as compared to the cells transfected with the 

control siRNA (Figure 4.4). The ITGA2 knockdown PC3 cells (Figure 4.4b) displayed 

rounded cell morphology while the control transfected PC3 cells (Figure 4.4a) displayed 

a more elongated cell morphology. 
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Figure 4.2 siGLO transfection in PC3 and 22Rv1 cells 
Cells were transfected with 25 nM siGLO for 24 hours. Representative images were taken at 

20X magnification under brighfield (left) and florescence (right) to show transfection 

efficiency after 24 hours using siGLO. Scale bar, 50 µM. 

Brightfield                                               Fluorescence 

PC3 

22Rv1 
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Figure 4.3 Knockdown of ITGA2 gene expression in prostate cancer cell lines 
Total RNA isolated from cells transfected with control siRNA or ITGA2 siRNA was reverse 

transcribed and amplified by real-time PCR using primers designed to amplify ITGA2. (a) 

ITGA2 mRNA levels relative to GAPDH in PC3 cells at 24 hour and 48 hours after 

transfection and (b) ITGA2 mRNA levels are shown relative to GAPDH in 22Rv1 cells at 24 

hours and 48 hours after transfection. Values expressed as mean ± SEM (n=3). Statistical 

significance was determined relative to the indicated control using student’s t test. 
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(a) 

(b) 

Figure 4.4 ITGA2 knockdown in PC3 changes cell morphology 
PC3 cells were transfected with (a) control siRNA and (b) ITGA2 siRNA and representative 

images were taken 24 hours after transfection at 20X magnification. Scale bar, 50 µM. 
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To determine whether altering ITGA2 expression affects cell migration, the effect of 

ITGA2 knockdown on cell migration was determined. PC3 cells transfected with either 

the control siRNA or the ITGA2 siRNA were grown overnight on poly-L-Lysine coated  

coverslips. After 24 hours, a scratch was created in the middle of the coverslip using a 

P20 pipette tip and the cells were fixed at the time of scratching (0 hour) as well as 4 

hours and 6 hours post-scratching (Figure 4.5). The cells were stained with nuclear 

yellow and the migration of cells into the scratch site assessed as a measure of migration 

capacity of the cells. While PC3 cells transfected with the control siRNA showed 

migration into the scratch site at 6 hours, PC3 cells transfected with ITGA2 siRNA 

appeared to show fewer cells migrating into the scratch site. This suggests that reduced 

ITGA2 expression impaired PC3 cell migration. 

 

Since knockdown of ITGA2 expression is consistent with a decrease in cell migration, it 

was asked whether knockdown of ITGA2 also results in a change in EMT phenotype. 

Therefore, EMT marker expression was examined in cells transfected with ITGA2 siRNA 

compared to cells transfected with the control siRNA. RNA isolated from PC3 and 

22Rv1 cells transfected with control or ITGA2 siRNA was analysed by real-time PCR, 

which determined that there was no significant change in the EMT markers E-cadherin, 

N-cadherin, Snail or Twist in either PC3 (Figure 4.6a) or 22Rv1 cells (Figure 4.6b) 

transfected with ITGA2 siRNA. Taken together, these results indicate that while reduced 

ITGA2 expression impairs cell migration, it does not affect the EMT phenotype of these 

cells.  

 

4.2.3 LNCaPcol cells with increased ITGA2 expression display higher Snail and lower 

Twist expression  

To further validate whether modulation of ITGA2 expression affects EMT, EMT marker 

expression was determined in LNCaPcol cells. Previously (Section 3.2.6), the derivation 

of LNCaPcol cells, a collagen binding variant of LNCaP cells showed a significant 

upregulation of ITGA2 expression in cells following the second panning (LNCaPcol2), as 

compared to the first panning (LNCaPcol1) and the parental LNCaP cells. This was  
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Figure 4.6 ITGA2 knockdown does not affect EMT marker expression 
Total RNA isolated from cells transfected with control siRNA or ITGA2 siRNA was reverse 

transcribed and amplified by real-time PCR using primers designed to amplify EMT markers. 

(a) EMT marker mRNA levels are shown relative to GAPDH in PC3 cells at 24 hours after 

transfection; (b) EMT marker mRNA levels are shown relative to GAPDH in 22Rv1 cells at 

24 hours after transfection. Values expressed as mean ± SEM (n=3). 
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consistent with a previous report (Hall et al. 2006) where these LNCaPcol cells were 

shown to display increased collagen I binding associated with increased α2β1 expression. 

These cells were shown to be capable of growth within the bone. Therefore, since these 

cells showed acquisition of a bone metastatic phenotype (Hall et al. 2006) and this 

correlated with increased ITGA2 expression, the expression of EMT markers was 

examined by real-time PCR in the LNCaPcol cells. A statistically significant increase in 

E-cadherin expression in LNCaPcol2 as compared to LNCaPcol1 and the parental LNCaP 

cells was observed (Figure 4.7a). Twist also showed a statistically significant increased 

expression in LNCaPcol2 as compared to LNCaPcol1 and LNCaP cells (Figure 4.7b). 

Expression of Snail was not statistically significantly different although it showed a trend 

of increased expression in LNCaPcol1 but not in LNCaPcol2 cells (Figure 4.7c). 

Interestingly, Snail and Twist which are transcription factors involved in downregulating 

E-cadherin did not show any correlation with E-cadherin expression. However, increased 

ITGA2 expression in the LNCaPcol2 cells correlated with higher Twist and lower Snail 

expression. Although knockdown of ITGA2 expression did not directly affect EMT 

marker expression, the collagen binding variant LNCaPcol cells showed increase in 

ITGA2 expression which correlates with changes in expression of EMT markers. 

 

4.3 Discussion 

Both EMT and changes in ITGA2 expression have been well described in tumour 

progression and metastasis (Alexander et al. 2006; Dhasarathy et al. 2011; Koenig et al. 

2006; Neal et al. 2011; Shintani et al. 2008). However, it is unclear whether ITGA2 is 

modulated by EMT. Several studies have shown that tumour cells switch from cadherin-

mediated to integrin-mediated adhesion during EMT, with downregulation of E-cadherin 

and upregulation of ITGA2 (Chen et al. 2011; Zhang et al. 2006a). However, contrary to 

this in another study, overexpression of the mesenchymal transcription factor Snail, 

resulted in downregulation of E-cadherin and downregulation of ITGA2 was also 

observed (Dhasarathy et al. 2011; Neal et al. 2011).  

 

In this study, LNCaP, 22Rv1 and PC3 prostate cancer cell lines were used, which have 

different tumorigenicity and metastatic potential with the metastatic potential of these  
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Figure 4.7 Increased ITGA2 expression in LNCaP
col

 cells correlated with changes in 

EMT markers expression 
Total RNA isolated from the parental LNCaP, LNCaP

col
1 and LNCaP

col
2 cells was reverse 

transcribed and amplified by real-time PCR using primers designed to amplify EMT markers. 

(a) E-cadherin mRNA levels are shown relative to GAPDH; (b) Twist mRNA levels are shown 

relative to GAPDH; and (c) Snail mRNA levels are shown relative to GAPDH. Values 

expressed as mean ± SEM (n=3). Statistical significance was determined using one-way 

ANOVA with Neuman-Keuls multiple comparison test. 
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cells correlating with ITGA2 expression (Chapter 3). The data presented here suggest that 

the less tumorigenic and less metastatic cell line, LNCaP which displayed low ITGA2  

expression has an epithelial-like phenotype with high expression of E-cadherin and low 

or no expression of the mesenchymal markers, Twist and N-cadherin. On the other hand, 

the highly metastatic and tumorigenic cell line, PC3 which displayed high expression of 

ITGA2 has a mesenchymal-like phenotype with low E-cadherin and high Twist and N-

cadherin expression. The epithelial-like and mesenchymal-like phenotypes observed in 

these cells correlated with cell morphology. LNCaP and 22Rv1cells displayed a more 

flattened shape with pseudopodium-like extensions, consistent with an epithelial-like 

phenotype, while PC3 cells display an elongated spindle shape cell morphology, 

consistent with a mesenchymal-like phenotype. However, expression of the Snail 

transcription factor which has been well described as a repressor of E-cadherin 

expression (Batlle et al. 2000; Cano et al. 2000), did not correlate with E-cadherin 

expression levels displayed in these cells. Nevertheless, it has also been shown that in 

instances where there was no difference in protein levels, colocalisation of E-cadherin 

from the nucleus to cytosol was observed in Snail transfected LNCaP cells as compared 

to the control transfected LNCaP cells (McKeithen et al. 2010). Therefore, E-cadherin 

localisation rather than expression levels may be a better indicator of EMT. In this study, 

although Snail expression levels did not correlate with E-cadherin expression, the Snail 

expression pattern displayed by these cells showed an inverse correlation with ITGA2 

expression. This expression pattern is consistent with the findings of Neal et al. (2011), 

where overexpression of Snail in ARCaP cells resulted in decreased cell adhesion and 

increased cell migration on collagen I with downregulation of ITGA2 and ITGB1 

expression. 

 

Interestingly, knockdown of ITGA2 expression using siRNA further confirms the 

involvement of ITGA2 in cell migration. ITGA2 knockdown in PC3 cells resulted in 

reduced cell migration capacity consistent with morphological changes from elongated to 

rounded cells, suggesting the cells are less adhesive. However, while changes in ITGA2 

expression were consistent with changes in cell migration, knockdown of ITGA2 did not 
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change epithelial and mesenchymal marker expression which suggests that they are not a 

downstream pathway of ITGA2 signalling (Figure 4.8). This is consistent with the idea 

that tumour progression involves switching from cadherin-mediated to integrin-mediated 

adhesion (Chen et al. 2011; Zheng et al. 2000) and thus, ITGA2 expression may change 

as a result of EMT, rather than being a driver of EMT.  

 

While knockdown of ITGA2 did not affect the EMT phenotype, the collagen binding 

variant LNCaPcol cells displayed changes in EMT marker expression, which correlated 

with upregulation of ITGA2 expression (Chapter 3). LNCaPcol cells have previously been 

found to display increased α2β1 surface expression, with increased collagen mediated 

migration and capability to grow within the bone (Hall et al. 2006). Therefore, changes in 

ITGA2 expression in these cells with bone tumour formation capability are possibly due 

to changes in EMT marker expression. 

 

Taken together, these results emphasise that EMT is a dynamic and reversible response to 

environmental conditions. As such, modification of expression of an individual marker or 

small set of markers, especially ones that change as a result of EMT rather than being an  

initiator of the EMT process, may not be expected to promote induction of EMT if 

disrupted. However, it is possible that changes in EMT affect ITGA2 expression which 

leads to cell migration and the data presented here suggest that Snail and/ or Twist may 

regulate ITGA2 expression. Alternatively, both EMT and ITGA2 may independently 

affect cells migration, and this warrants further study.  
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Chapter 5 

REGULATION OF THE ITGA2 GENE EXPRESSION BY TRANSCRIPTION 

FACTORS IN PROSTATE CANCER 

 

5.1  Introduction 

5.1.1 ITGA2 expression and malignancy 

 

α2β1 integrin is expressed on epithelial cells, endothelial cells and fibroblasts in 

numerous tissues and its altered expression has been associated with many cancers, 

including prostate cancer (Bonkhoff et al. 1993; Kirchhofer et al. 1990; Pontes-Junior et 

al. 2009; Santoro et al. 1988; Takada et al. 1988; Van Slambrouck et al. 2009). The role 

of ITGA2 expression in tumour malignancy is controversial with both upregulation and 

downregulation of the α2β1 integrin having been correlated with a poor outcome and the 

progression of tumours to acquire an invasive, metastatic and aggressive tumour 

phenotype (Zutter et al. 1995; Klein et al. 1991; Koretz et al. 1991; Ramirez et al. 2011). 

In breast cancer, decreased expression of α2β1 integrin is associated with poorly 

differentiated adenocarcinoma and re-expression of the α2β1 integrin resulted in a 

reversed phenotype from an invasive fibroblastoid to a less motile epitheloid cell (Zutter 

et al. 1995). Consistent with this, loss of α2β1 integrin expression is associated with an 

invasive tumour type in colon cancer (Koretz et al. 1991). In contrast, increased 

expression of α2β1 integrin is associated with a more malignant phenotype in anaplastic 

thyroid carcinoma (Dahlman et al. 1998), melanoma (Klein et al. 1991) and prostate 

cancer (Hall et al. 2006; Ramirez et al. 2011; Van Slambrouck et al. 2009). It has been 

shown that increased α2β1 integrin expression is due to an increase in steady-state levels 

of ITGA2 mRNA as a result of transcriptional activation of the ITGA2 gene (Zutter et al. 

1990). Discovering the contributions of changing levels of expression on tumour 

development necessarily requires an understanding of how the gene is regulated. 

 

 

 

 



107 
 

5.1.2 Characterisation of the ITGA2 promoter 

 

Interestingly, the promoter and enhancer regions of the ITGA2 gene were found to be 

involved in cell type-specific and differentiation-induced ITGA2 gene expression. 

Elements within the first 961 bp upstream of the TSS were found to be important in 

driving ITGA2 expression in cells of epithelial origin (Zutter et al. 1995). Deletion 

mutants then displayed an enhancer region between -776 and -92 bp and a repressor 

region between -961 and -776 bp in epithelial cells, while in megakaryocytic cells, the 

region from -961 to -92 bp displayed the presence of repressor elements (Figure 5.1). The 

core promoter for both cell types appears to be from -92 to -30 bp and thus it was 

suggested that this core promoter is not cell type specific (Zutter et al. 1995). Therefore, 

these results suggest a combination of positive and negative regulatory elements present 

at the ITGA2 promoter regulating its expression in a cell-type and differentiation specific 

manner. 

 

Characterisation of the promoter in the haematopoietic cell line K562 also identified four 

Sp1 transcription factor binding sites within the core promoter with two of these sites 

overlapping a potential AP-2 site and an additional two Sp1 sites further upstream (Zutter 

et al. 1995). Follow on studies by the same group then found that the two tandem Sp1 

binding sites (-61 to -53 and -51 to -43), but not the AP-2 site, are responsible for the core 

promoter activity in the haematopoietic cell line (Zutter et al. 1997). Although Sp1 is 

generally ubiquitously expressed, Sp1 is involved in transcription of many cell type 

specific genes (Block et al. 1996; Faber et al. 1993). Sp1 is also an activator of promoters 

that lack a TATA box (Emami et al. 1997). Since the ITGA2 promoter also lacks a TATA 

and CAAT boxes, Sp1 may play an important role in activation of the ITGA2 promoter. 

Later studies also confirmed that Sp1 binds to the -107 to -99 region and mutation of 

these Sp1 sites abolishes basal activity of the promoter (Jacquelin et al. 2001). 

Interestingly, the Sp1 binding sites also contain CpG sites and evidence suggests that 

methylation of CpG islands that surround the Sp1 binding site can inhibit Sp1 activity 

and therefore affect gene expression (Zhu et al. 2003). However, whether Sp1 activity is 

affected by methylation of the CpG island at the ITGA2 promoter remains unstudied. 
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Figure 5.1 Schematic representation of ITGA2 regulatory elements 
Regulatory elements identified upstream of the TSS of the ITGA2 gene in (a) the epithelial 

cell line, T47-D and (b) the megakaryocytic cell line, K562. The core promoter (-92 to -30 bp) 

is not cell-type specific. Enhancer function within -761 to -92 bp is specific to cells of 

epithelial origin while repressor activity is present from -961 to -92 bp in megakaryocytic 

cells. Figure constructed based on the findings of Zutter et al. (1995). 
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A number of other factors have been documented as regulating ITGA2 activity include 

collagen, a number of growth factors; platelet-derived growth factor, PDGF (Åhlén et al. 

1994), EGF (Fujii et al. 1995), TGF-β (Riikonen et al. 1995), the NF-κB transcription 

factor (Xu et al. 1998b) and the oncogenes Erb-B2 and V-ras (Ye et al. 1996). 

Furthermore two estrogen half sites have been identified in the enhancer region, 

suggesting a possible role for steroid hormones in the regulation of ITGA2 expression 

(Zutter et al. 1993). 

 

Overall, the regulation of ITGA2 expression plays a key role in the processes of cell 

differentiation, and altered adhesion, invasion and migration of tumour cells. 

Characterisation of the ITGA2 promoter has shown that the regulatory elements present at 

the promoter confer cell type specific expression. Although the regulatory regions of the 

ITGA2 promoter have been characterised in epithelial cells, the transcription factors that 

bind to these regions of the promoter in epithelial cells have not been investigated. 

Results presented in Chapter 3 suggest that epigenetic factors are involved in regulation 

of the ITGA2 gene in prostate cancer. However, only small effects were observed when 

cells were treated with epigenetic modulators, suggesting the involvement of other factors 

also.  

 

It is well documented that transcription factors and epigenetic factors cooperate to 

regulate gene expression (Jaenisch et al. 2003; Reik 2007). Therefore, the aim of this 

chapter was to identify the transcription factors predicted to be important in regulating 

ITGA2 expression in prostate cancer cell lines.  

 

 

5.2Results 

5.2.1 Putative transcription factor binding sites at the ITGA2 promoter 

The MatInspector bioinformatics tool that uses the TRANSFAC database of transcription 

factors was utilised for screening of potential transcription factor binding sites within the 

ITGA2 promoter (http://www.genomatix.de/online_help/help_matinspector/matinspector 
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_help.html). This tool places emphasis on sequences with experimentally verified binding 

capacity that have been shown to be useful in estimating functional putative binding sites 

that can be used as a basis for designing appropriate experiments (Quandt et al. 1995). 

The region from -1000 bp to the TSS of the ITGA2 promoter was screened for potential 

transcription factor binding sites, and the list of putative transcription factor binding sites 

was further narrowed based on prostate related and EMT related transcription factors. 

Therefore, Sp1, an androgen response element (ARE) half-site and enhancer box (E-box) 

transcription factor binding sites were selected for further analysis, with the predicted 

positions and recognition sequences of these transcription factors outlined in Figure 5.2a 

and b.   

 

5.2.2 Sp1 transactivates the ITGA2 promoter regardless of methylation 

Sp1 is an ubiquitously expressed zinc finger transcription factor and was initially thought 

to regulate expression of housekeeping genes. However, it is now known to regulate 

expression of genes involved in many cellular processes such as differentiation (Opitz et 

al. 2000), cell growth (Santiago et al. 2007), angiogenesis (Mazure et al. 2003), apoptosis 

(Kaczynski et al. 2003) and immune responses (Jones et al. 1986). The Sp1 transcription 

factor specifically binds to GC rich sites and can regulate both TATA-containing and 

TATA-less promoters via interactions with other transcription factors (Näär et al. 1998). 

Since the ITGA2 promoter is a TATA-less promoter, it has been suggested that Sp1 plays 

an important role in regulating basal ITGA2 gene expression. However, the role of Sp1 in 

regulating ITGA2 promoter activity in epithelial cells has not been investigated. Given 

ITGA2 gene expression is cell-type specific, the role of Sp1 in the different cell types is 

of interest.  

 

To determine the effect of the Sp1 transcription factor on the ITGA2 promoter in prostate 

cancer cells, transient luciferase reporter assays were performed. A construct containing -

791 to +83 bp of the ITGA2 promoter cloned upstream of a luciferase gene, pXPG 

ITGA2, was transfected into PC3 and LNCaP cells either with or without an Sp1 

expression plasmid, EF1α-Sp1Neo. This region of the promoter has previously been   
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Figure 5.2 (a) Schematic representation of the positions of putative transcription factor 

binding sites and (b) recognition sequences identified by the  MatInspector tool in the 

region upstream of the ITGA2 TSS 
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shown to direct high levels of reporter gene activity in the breast cancer cell line, T47-D 

(epithelial cell model).After a 24 hour recovery period, cell lysates were harvested and 

luciferase activity was then measured. Cells were transfected in parallel with the pGL3 

control plasmid (Promega), containing the constitutively active Simian virus 40 (SV40) 

promoter and enhancer upstream of the luciferase gene, to monitor transfection efficiency 

in the two cell lines.  

 

Transfection of cells with the control plasmid, pGL3, resulted in a significant difference 

in luciferase activity between LNCaP and PC3 cells, with an approximately 10-fold 

higher level of luciferase activity observed in PC3 cells (Figure 5.3a). These results 

indicate that PC3 cells transfect more efficiently than LNCaP cells. In keeping with this, 

different levels of ITGA2 promoter activity were observed in the two cell lines with 

approximately 10-fold lower activity in LNCaP (Figure 5.3b) compared to PC3 cells 

(Figure 5.3c). In both cell types, Sp1 overexpression resulted in a two-fold increase in 

ITGA2 promoter activity. Given the differences in transfection efficiencies, in subsequent 

luciferase activity analysis, the luciferase activity of cells co-transfected with both ITGA2 

and the transcription factor of interest were graphed relative to the luciferase activity of 

cells transfected with only ITGA2 plasmid, which was adjusted to 100. This will account 

for the differences in transfection efficiency in these cells and allow a more direct 

comparison of the effect of transcription factors on the promoter between cell lines. Sp1 

transcription factor showed a relatively similar level of activation of the ITGA2 promoter 

in both LNCaP and PC3 cells (Figure 5.4a), although this was only statistically 

significant in PC3 cells.  

 

To determine whether the differences in endogenous ITGA2 expression in these cell lines 

(Chapter 3) can be accounted for by differences in Sp1 levels in these cells, western blot 

analysis was performed to examine protein levels. Nuclear extracts were isolated from 

both LNCaP and PC3 cells and separated by SDS-PAGE. The proteins were transferred 

to a nitrocellulose membrane and probed with antibodies for Sp1 and histone H3, as a 

control (Figure 5.4b). Relatively equivalent levels of Sp1 protein were observed in the  
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Figure 5.3 Sp1 activates the ITGA2 promoter in both LNCaP and PC3 cells 
(a) Relative luciferase activity of the pGL3 vector (5µg) in LNCaP and PC3 cells. (b) Relative 

luciferase activity of the pXPG ITGA2 promoter (5µg) in cells transfected with or without 

EF1α-Sp1Neo (5µg) in LNCaP cells and (c) in PC3 cells. Values expressed as mean ± SEM 

(n=3). Statistical significance was determined using student’s t test. 
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nucleus of LNCaP and PC3 cells, with approximately equivalent levels of histone H3 

protein, demonstrating relatively equal loading of proteins in each lane. Therefore, while 

Sp1 activates the ITGA2 promoter, LNCaP and PC3 cells contain equivalent endogenous 

Sp1 protein levels and thus, Sp1 cannot account for the different expression levels of the 

ITGA2 gene observed in these cell lines (Figure 3.3e).         

 

As all six of the putative Sp1 binding sites are located in the CpG island of the ITGA2 

promoter and the Sp1 consensus site contains a CpG dinucleotide, it is possible that the 

ability of Sp1 to activate the ITGA2 promoter is affected by methylation of the CpG sites 

at the ITGA2 promoter.  In order to investigate whether methylation of the ITGA2 

promoter affects its activity and transactivation by the Sp1 transcription factor, a 

construct was generated containing the region from -791 to +83 bp of the ITGA2 

promoter region cloned into a CpG free luciferase reporter, pCpGL (Klug et al. 2006). 

This construct was either left unmethylated or methylated with the CpG methylase 

M.SssI, before transfection into PC3 cells. 

 

To confirm that methylation was complete, methylated and unmethylated plasmid were 

digested with AciI restriction enzyme and separated by agarose gel electrophoresis. This 

enzyme cuts at the recognition site 5’ C^CGC 3’, however, methylation at the CpG 

dinucleotide prevents digestion by this enzyme. As can be seen in Figure 5.5a, the 

unmethylated vector is digested by AciI whereas the M.SssI-methylated vector remains 

undigested, indicating that the vector had undergone complete CpG methylation. 

Transfection of the unmethylated and methylated vector into PC3 cells showed that 

methylation of the ITGA2 promoter significantly reduced promoter activity by 4-fold as 

compared to the unmethylated vector (Figure 5.5b) thus, suggesting that DNA 

methylation represses ITGA2 promoter activity. Consistent with the previous results, a 4-

fold activation of the unmethylated ITGA2 promoter by Sp1 transcription factor was 

observed. In addition, 6-fold activation of the methylated ITGA2 promoter by the Sp1 

transcription factor was observed, suggesting methylation of the CpG dinucleotides, 

while affecting basal activity of the promoter, does not affect the ability of Sp1 to 

transactivate the promoter. Together, these results suggest that Sp1 transcription factor  
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Figure 5.4 Sp1 activates the ITGA2 promoter in both LNCaP and PC3 cells 
(a) Relative luciferase activity of the pXPG ITGA2 promoter (5µg) in cells transfected with or 

without EF1α-Sp1Neo (5µg) was measured and adjusted relative to pXPG ITGA2 promoter 

activity which was set at 100. Values expressed as mean ± SEM (n=3). Statistical significance 

was determined using two-way ANOVA with Bonferonni post test. (b) Nuclear proteins 

isolated from LNCaP and PC3 cells were subjected to Western blotting with antibodies as 

indicated. 
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Figure 5.5 Sp1 activates the ITGA2 promoter in PC3 cells regardless of DNA 

methylation level  

(a) The pCpGL ITGA2 vector was either treated with M.SssI methylase or left untreated, 

digested with AciI or left undigested, and analysed by agarose gel electrophoresis. Lanes 

contain (1) HyperladderII size marker; (2) non-M.SssI treated, non-AciI digested plasmid; (3) 

M.SssI treated, non-AciI digested plasmid; (4) non-M.SssI treated, AciI digested plasmid and 

(5) M.SssI treated, AciI digested plasmid. Sizes of selected marker bands are indicated. (b) 

Relative luciferase activity of unmethylated and methylated (M.SssI-treated) pXPG ITGA2 

vector transfected into PC3 cells either with or without EF1α-Sp1Neo was measured. Values 

expressed as mean ± SEM (n=3). Statistical significance was determined one-way ANOVA 

with Neuman-Keuls multiple comparison test. 
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plays a role in activation of the ITGA2 promoter regardless of methylation. However, 

these data suggest that Sp1 drives basal activity of the promoter but does not contribute to 

the differential expression of ITGA2 observed between the prostate cancer cell lines.  

 

5.2.3 Androgen treatment represses the ITGA2 mRNA expression through an 

indirect effect 

Prostate cancer is initially androgen-dependent and can be treated by androgen ablation 

therapy (Wang et al. 2007). However, the tumour eventually progresses into an androgen-

independent state that leads to metastases with no effective therapy available. Androgens 

which activate androgen receptor are required for normal growth and function of the 

prostate gland (So et al. 2003). Androgens have been shown to regulate gene expression 

through the ARE site in the well described androgen regulated genes, human glandular 

kallikrein-1 (hKLK2) and PSA (Murtha et al. 1993). Given that an ARE half site was 

present in the ITGA2 promoter region, experiments were undertaken to determine 

whether the promoter is androgen responsive.  

 

The predicted ARE half site in the ITGA2 promoter contains the consensus sequence of 

the classical ARE, 5’ TGTTCT 3’, although a functional ARE usually consists of tandem 

sites. To determine if androgen is regulating the ITGA2 promoter, the androgen hormone, 

5α-Androstan-17β-ol-3-one (dihydrotestosterone; DHT) was used to treat the androgen-

sensitive cell line, LNCaP. LNCaP cells were treated with DHT in a serum-free medium, 

OPTI-MEM and RNA isolated at 3, 6, and 24 hours post-treatment. RNA was isolated, 

cDNA prepared and ITGA2 mRNA expression analysed by real-time PCR. A statistically 

significant downregulation of ITGA2 mRNA levels upon DHT treatment was observed at 

all three timepoints (Figure 5.6). This repressive effect was unexpected as androgen is 

generally reported to be an activator of gene expression (Heemers et al. 2001; Murtha et 

al. 1993).  

 

In order to determine whether the effect of the DHT treatment on ITGA2 is dependent on 

protein synthesis and therefore likely to be an indirect effect, cells were pre-treated with 

cycloheximide (CHX). Given that androgen receptor is pre-existing in the cells, CHX is  
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Figure 5.6 DHT treatment represses ITGA2 mRNA expression 
Total RNA isolated from LNCaP cells treated either with 95% ethanol NT (no treatment or 

vehicle) or 10nM DHT (5α-Androstan-17β-ol-3-one) for 3, 6 and 24 hours, was reverse 

transcribed and amplified by real-time PCR using primers designed to amplify ITGA2 mRNA. 

ITGA2 mRNA levels are shown relative to β-actin. Values expressed as mean ± SEM (n=3). 

Statistical significance was determined relative to the indicated control using student’s t test. 
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used to inhibit de novo protein synthesis and if repression of ITGA2 gene expression upon 

DHT treatment is still observed with CHX pre-treatment, this will indicate that it is 

independent of de novo protein synthesis. Conversely, if no repression of ITGA2 gene 

expression upon DHT treatment with CHX pre-treatment is observed, this will indicate 

that it is dependent on de novo protein synthesis. DHT treatment in LNCaP cells for 3 

hours demonstrated repression of ITGA2 mRNA expression thus this treatment timepoint 

was used to determine if the DHT effect is dependent on protein synthesis (Figure 5.7a). 

In the CHX pre-treated cells, DHT failed to repress ITGA2 expression, suggesting that 

repression of ITGA2 by androgen is protein synthesis dependent and thus a secondary 

effect. CHX treatment alone decreased ITGA2 expression, suggesting that basal ITGA2 

expression is protein synthesis dependent. 

 

Since the PSA gene is an extensively studied direct target gene of androgen receptor and 

contains a well characterised ARE in its promoter (Cleutjens et al. 1997; Murtha et al. 

1993; Wang et al. 1999), PSA mRNA levels were analysed in the same samples to 

validate the DHT treatment. In the cells without CHX pre-treatment, PSA mRNA levels 

were statistically significantly upregulated upon DHT treatment (Figure 5.7b), consistent 

with previously reported findings by others. This was also observed in cells treated with 

DHT in the presence of CHX pre-treatment, which supports that upregulation of PSA 

mRNA expression is a direct effect of androgen receptor and thus, is consistent with the 

findings of others. Therefore, these results suggest that ITGA2 is repressed by androgen 

through an indirect mechanism. 

 

5.2.4 E-box binding factors: Snail represses ITGA2 promoter activity  

The bHLH transcription factors are known to bind to E-box recognition sites and mediate 

target gene transcription. This family of transcription factors includes the EMT 

transcription factors, Snail and Twist, which for example bind to the E-box of E-cadherin 

leading to downregulation of this gene (Batlle et al. 2000; Cano et al. 2000). Given that a 

putative E-box binding site was identified in the ITGA2 promoter and the results 

presented in Chapter 4 suggests the possible involvement of Snail and Twist in regulating  
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Figure 5.7 Repression of ITGA2 mRNA expression by DHT is an indirect effect 
LNCaP cells were treated with or without cycloheximide (CHX) for 30 minutes, followed by 

treatment with or without DHT for 3 hours. Total RNA was isolated from cells, reverse 

transcribed and amplified by real-time PCR using primers designed to amplify ITGA2 mRNA 

or PSA mRNA. (a) ITGA2 mRNA levels are shown relative to β-actin; (b) PSA mRNA levels 

are shown relative to β-actin. Values expressed as mean ± SEM (n=3). Statistical significance 

was determined using one-way ANOVA with Neuman-Keuls multiple comparison test. 
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ITGA2 expression, further investigation of the potential role of these transcription factors 

in ITGA2 regulation was undertaken. 

 

 LNCaP and PC3 cells were transfected with pXPG ITGA2 vector as previously described 

(Section 5.2.2), either with or without a Snail expression vector, pCMV-Flag SNAIL WT 

 (Addgene, USA). After a 24 hour recovery period, cell lysates were harvested and 

luciferase activity was then measured. To account for the differences in transfection 

efficiency in these cells and to allow a direct comparison between both cell lines, the 

relative luciferase activity observed from cells transfected with only the ITGA2 plasmid 

was adjusted to 100 and the relative luciferase activity from cells co-transfected with 

Snail was adjusted accordingly. As previously, a basal level of ITGA2 promoter activity 

was detected in both LNCaP and PC3 cells, and this was repressed upon co-transfection 

with Snail expression vector. A greater repressive effect, which was statistically 

significant, was observed in PC3 cells as compared to LNCaP cells (Figure 5.8a). This 

could be due to the fact that LNCaP cells express higher levels of endogenous Snail 

mRNA levels as compared to the PC3 cells (Figure 5.8b). Overall, these results suggest 

that Snail represses ITGA2 promoter activity.  

 

Twist, another EMT transcription factor, is known to also bind to E-box elements and the 

results in Section 4.2.3 suggest a possible involvement of this transcription factor in 

regulating ITGA2 gene expression also. Therefore, as with the previous experiment, 

LNCaP and PC3 cells were transfected with pXPG ITGA2 vector either with or without a 

Twist expression vector, pCMV6 TWIST1 (Origene, USA) and cell lysates were 

harvested after 24 hours to assay for the luciferase activity. Interestingly, Twist activates 

ITGA2 promoter activity in LNCaP cells but did not affect ITGA2 promoter activity in 

PC3 cells (Figure 5.9a). These differences in activity observed could be due to the 

differences in Twist endogenous mRNA expression levels (Figure 5.9b). A statistically 

significantly higher level of Twist mRNA levels was observed in PC3 cells compared to 

LNCaP cells, which showed very low or no expression of Twist (Figure 5.9b). Since 

activation of ITGA2 promoter activity by Twist was only observed in LNCaP cells, Twist 

effects on ITGA2 promoter activity was further investigated. While the initial four  
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Figure 5.8 Snail represses ITGA2 promoter activity in prostate cancer cells 
(a) Relative luciferase activity of the pXPG ITGA2 promoter (5µg) in cells transfected with or 

without pCMV-Flag SNAIL WT (5µg) were measured and adjusted relative to pXPG ITGA2 

promoter activity and (b) total RNA isolated from LNCaP and PC3 cells was reverse 

transcribed and amplified by real-time PCR using primers designed to amplify Snail mRNA. 

Snail mRNA levels are shown relative to GAPDH (adapted from Figure 4.1). Values 

expressed as mean ± SEM (n=3). Statistical significance was using student’s t test. 
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experiments represented in Figure 5.9 were consistent with activation of the promoter by 

Twist, further experimental replicates showed either no change or slight repression of 

ITGA2 promoter activity (Figure 5.10). These results suggest inconsistency in Twist 

activity and thus, no further studies on Twist were undertaken at this stage, although this 

warrants further investigation. 

 

5.2.5 Sp1 and Snail regulate ITGA2 promoter activity in PC3 cells 

Thus far, Sp1 has been found to activate whilst Snail represses ITGA2 promoter activity, 

and therefore the effect of the combination of these factors was determined. As this 

experiment requires transfection of multiple vectors into the cells, PC3 cells were 

selected for these experiments because this cell line showed higher and more consistent 

transfection efficiency. PC3 cells were transfected with the pXPG ITGA2 vector and 

either Sp1, Snail or both Sp1 and Snail expression constructs. Cell lysates were harvested 

after 24 hours to assay for luciferase activity. 

 

Consistent with the previous findings, Sp1 activated ITGA2 promoter activity while Snail 

represses ITGA2 promoter activity (Figure 5.11). Further, Sp1 was able to partially 

relieve the repressive effect of Snail. Therefore, these results suggest that Sp1 and Snail 

combine to regulate ITGA2 promoter.   

 

5.2.6 Snail potentially regulates ITGA2 through an E-box site within the -791 to -569 

bp region of the promoter 

To determine if Snail acted via the putative E-box binding site -154 bp upstream of the 

TSS identified by the MatInspector bioinformatics tool, site-directed mutagenesis of the 

E-box was performed. The well characterised E-box recognition sequence is 5’ 

CANNTG 3’ (where N can be substituted by any nucleotide), however, the recognition 

sequence identified by the MatInspector bioinformatics tool as an E-box is 5’ 

GCCCGCGTGTGG 3’ (with the core recognition bases underlined). Therefore, in order 

to mutate the E-box site, the core recognition sequence was mutated from CGTG to 

CTTA to generate the construct, pXPG ITGA2-E-boxm (Figure 5.12a). Sequencing 

confirmed that the E-box mutation was present in the vector.  
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Figure 5.9 Twist activates ITGA2 promoter activity in LNCaP but not PC3 cells 

(a) Relative luciferase activity of the pXPG ITGA2 promoter (5µg) in cells transfected with or 

without pCMV6 TWIST1 (5µg) were measured and adjusted relative to pXPG ITGA2 

promoter activity and (b) total RNA isolated from LNCaP and PC3 cells was reverse 

transcribed and amplified by real-time PCR using primers designed to amplify Twist mRNA, 

Twist mRNA levels are shown relative to GAPDH (adapted from Figure 4.1). Values 

expressed as mean ± SEM (n=3). Statistical significance was determined using student’s t test.  
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Figure 5.10 Effects of Twist on the ITGA2 promoter were inconsistent  
Relative luciferase activity of the pXPG ITGA2 promoter (5µg) was measured in cells 

transfected with the ITGA2 promoter construct alone or with pCMV-Flag pCMV6 TWIST1 

(5µg). Ten individual experiments are shown (1-10) and the average value of these 10 

experiments were measured and adjusted relative to pXPG ITGA2 promoter activity in each 

case.  
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Figure 5.11 Sp1 is able to partially relieve Snail repression of the ITGA2 promoter in 

PC3 cells 
Relative luciferase activity of the pXPG ITGA2 promoter (5µg) in cells transfected with or 

without EF1α-Sp1Neo (5µg) or pCMV-Flag SNAIL WT (5µg), or both. Values were 

measured and adjusted relative to pXPG ITGA2 promoter activity. Values expressed as mean 

± SEM (n=3). Statistical significance was determined using one-way ANOVA with Neuman-

Keuls multiple comparison test. 
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LNCaP cells were then transfected with the wild type (WT) ITGA2 vector either with or 

without Snail expression vector and cell lysates were harvested after 24 hours to assay for 

the luciferase activity. At the same time, LNCaP cells were also transfected with the 

ITGA2 vector containing the mutant E-box either with or without Snail transcription 

factor (Figure 5.12b). As expected, Snail repressed ITGA2 promoter activity. Cells 

transfected with the mutant vector showed equivalent levels of luciferase activity as 

compared to the cells transfected with the WT ITGA2 vector. Interestingly, repression of 

ITGA2 promoter activity by Snail was still observed when the E-box site was mutated, 

indicating that Snail does not act through the putative E-box at -154 bp. Since this 

experiment showed negative results, these transfections were not repeated and the 

possibility of an alternative E-box binding site at the ITGA2 promoter region was 

investigated. 

 

The MatInspector tool predicted E-box site at -154 bp recognition sequence did not 

match the classical 5’ CANNTG 3’, however, using the classical consensus recognition 

site, a search of the ITGA2 promoter revealed a second putative E-box site at -759 bp 

with the recognition sequence 5’ CAAGTG 3’ (Figure 5.13a and b). The possibility exists 

that the repression of ITGA2 promoter activity observed with Snail could be through 

binding to this putative E-box site.  

 

To further determine if the second predicted E-box at -759 bp plays a role in Snail 

transcription factor binding and thus, drives the repression of ITGA2 expression, deletion 

mutants pXPG ITGA2 Del1 (-569 to +83) and pXPG ITGA2 Del2 (+270 to +83) were 

constructed (Figure 5.14a). Primers were designed to amplify the regions of interest from 

the WT vector, then cloned and screened for inclusion of the inserts by digestion with the 

same restriction enzymes used for cloning, BamHI and XhoI. After digestion, the 

products were separated using agarose gel electrophoresis. Results showed the expected 

sizes of insert for pXPG ITGA2 Del1 (652 bp) and pXPG ITGA2 Del2 (353 bp; Figure 

5.14b). 
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Figure 5.12 Mutation of the predicted E-box site at -154 bp did not affect Snail 

repression of the ITGA2 promoter in LNCaP cells 
(a) Schematic representation showing the potential E-box at -154 of the ITGA2 promoter and 

the nucleotides mutated, as indicated in red. (b) Relative luciferase activity of the pXPG 

ITGA2 promoter (5µg) or the pXPG ITGA2 Eboxm, with or without pCMV-Flag SNAIL WT 

(5µg) were measured. Values expressed as mean ± SEM for one independent experiment with 

three repeated measures. Statistical significance was determined using student’s t test. 
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Figure 5.13 (a) Schematic representation of the positions of putative transcription factor 

binding sites in the ITGA2 promoter. Predicted E-box sites are shown at position -759 bp 

(in purple) and -154 bp. (b) Recognition sequences of the transcription factor binding 

sites are shown with the new predicted E-box site at position -759 indicated in purple. 
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Figure 5.14 (a) Schematic representation of the ITGA2 promoter deletion constructs 

showing the putative transcription factor binding sites in the promoter and (b) deletion 

mutants were cloned and checked for the expected insert sizes by digestion with BamHI 

and XhoI enzymes and analysed by agarose gel electrophoresis. 
Lanes contain (1) HyperladderII size marker; (2) digested pXPG ITGA2 Del1 vector and (3) 

digested pXPG ITGA2 Del2 vector. Sizes of selected marker bands are indicated. 
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LNCaP cells were then transfected with the WT, Del1 and Del2 constructs, either with or 

without Snail expression vector, and cell lysates were harvested after 24 hours to assay 

for the luciferase activity. Both of the shorter constructs, Del1 and Del2 showed higher  

ITGA2 promoter activity as compared to the full length, WT construct (Figure 5.15). 

Therefore, these results suggest that a repressor element could be present within the -791 

to -569 bp region and an enhancer element within the -569 to -92 bp region of the ITGA2 

promoter. 

 

As would be expected, Snail repressed WT ITGA2 promoter activity in the transfected 

cells (Figure 5.15). Interestingly, Snail did not have an effect on the ITGA2 Del1 

promoter. This suggests the predicted E-box site lies within the region of -791 to -569 bp 

which contains the putative E-box at -759 bp. Unexpectedly, Snail activated the ITGA2 

Del2 promoter. Due to time constraints, this experiment was conducted only once, 

however, the luciferase activity was measured in triplicate. Overall, the results suggest 

that the E-box where Snail binds and represses ITGA2 promoter activity is present within 

the -791 to -569 bp region although this remains to be confirmed. 

 

5.3 Discussion 

Previously, the results presented in Chapter 3 suggest that epigenetic factors, mainly 

involving promoter DNA methylation and histone acetylation, are at least in part 

responsible for the differential expression of ITGA2 observed in the prostate cancer cell 

lines. Since both epigenetic factors and transcription factors play important roles in 

regulation of gene expression, the data presented here in this chapter demonstrate that 

ITGA2 activity can be regulated by a combination of transcription factors. Utilising the 

MatInspector bioinformatics tool several putative transcription factor binding sites were 

indentified in the ITGA2 gene promoter, including Sp1 binding sites, an ARE and an E-

box element.  

 

Sp1 was found to activate the ITGA2 promoter in both LNCaP and PC3 cells. It is well 

established that methylation of CpG dinucleotides can directly inhibit promoter function  
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Figure 5.15 Identification of the Snail responsive region of the ITGA2 promoter 
Relative luciferase activity of the pXPG ITGA2 promoter (5µg), pXPG ITGA2 Del1 (5µg) 

and pXPG ITGA2 Del2 (5µg), with or without pCMV-Flag SNAIL WT (5µg) in LNCaP cells 

were measured. Values expressed as mean ± SEM for one independent experiment, with three 

repeated measures. 
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by preventing the binding of transcription factors (Bell et al. 2000; Hark et al. 2000a; 

Holmgren et al. 2001; Szabó et al. 2000). Whilst the Sp1 binding site contains a CpG 

dinucleotide, whether Sp1 binding is affected by methylation remains controversial. 

Interestingly, one of the six Sp1 binding sites showed differential methylation at the CpG 

dinucleotide at position -58 bp region between the prostate cancer cell lines. This site is 

unmethylated in LNCaP and PC3 cells while it is methylated in 22Rv1 cells (Figure 3.4). 

However, reporter assays suggest that Sp1 still activates ITGA2 promoter activity 

regardless of methylation. Hence Sp1 activation of the ITGA2 promoter is unlikely to be 

affected by the differential methylation pattern observed in the different cell lines. This 

suggests that the Sp1 transcription factor can not account for the differences in ITGA2 

expression observed in LNCaP and PC3 cells. Therefore, the Sp1 transcription factor may 

be important in regulating basal ITGA2 expression in these prostate cancer cells, 

consistent with other studies which have found Sp1 to be important for ITGA2 expression 

in megakaryocytic cells (Jacquelin et al. 2001). However, when the ITGA2 endogenous 

gene is methylated, this is also associated with decreased chromatin accessibility which 

may affect Sp1 binding at the promoter. Additionally, the reporter assay results support 

that methylation represses ITGA2 promoter activity and thus, are consistent with the 

methylation analysis and gene expression presented in Chapter 3. 

 

Examination of the influence of androgens, which activate the androgen receptor that 

binds to the ARE, in the regulation of the ITGA2 gene expression revealed that androgen 

represses ITGA2 gene expression. This is consistent with a study where DHT treatment of  

PC3 cells transfected with androgen receptor resulted in down regulation of α2β1 surface 

expression (Evangelou et al. 2002) and was followed by decreased PC3 cell adhesion to 

collagen type I. Further examination of this repressive effect confirmed that it is not a 

direct effect and thus, androgen treatment could be activating a repressor, resulting in 

repression of ITGA2 expression. Treatment of LNCaP cells with CHX alone resulted in 

repression of ITGA2 basal expression, which is potentially due to CHX treatment 

inhibiting synthesis of the Sp1 transcription factor which contributes to basal ITGA2 

promoter activity. However, the effect of androgen treatment on ITGA2 promoter activity 

was not determined in this study as the pXPG ITGA2 promoter construct was only cloned 
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from -791 bp, which did not include the ARE site. A future study of the effects of 

androgen treatment on ITGA2 promoter activity can be determined by assessing the 

luciferase activity of the ITGA2 promoter construct (containing the ARE site) with DHT 

treatment. 

 

Studies have shown that upon binding to the E-box, Snail family members act as 

transcriptional repressors (Batlle et al. 2000; Cano et al. 2000). Consistent with these 

observations, Snail had a repressive effect on ITGA2 promoter activity in both LNCaP 

and PC3 cells. The greater repression observed in PC3 cells following Snail 

overexpression is consistent with the lower endogenous Snail expression in this cell line. 

Interestingly, Sp1 was able to partially relieve the repressive effect of Snail and therefore, 

while Sp1 is expressed at equivalent levels in both PC3 and LNCaP cells, which confers 

the basal ITGA2 expression, the higher endogenous Snail expression in LNCaP cells as 

compared to PC3 cells may be responsible for the lower ITGA2 expression observed in 

LNCaP cells. 

 

While studies have shown that Twist directly downregulates E-cadherin expression 

through binding to an E-box site (Kang et al. 2004b; Vesuna et al. 2008), there are also 

studies which have demonstrated the Twist can also act as a transcriptional activator of 

some genes, for example, GLI1 and N-cadherin  (Alexander et al. 2006; Villavicencio et 

al. 2002; Yang et al. 2008). Initially, Twist activation of the ITGA2 promoter was 

detected. However, this result was inconsistent across a large number of experiments. 

Therefore, one possibility is that the Twist effect is cell cycle dependent or otherwise 

influenced by the growth characteristics of the cells. Although this has not previously 

been reported, there are studies that have shown that Twist regulates genes involved in 

cell differentiation (Lee et al. 1999; Maestro et al. 1999).  Future studies to further verify 

the role Twist transcription factor can be carried out using well-characterised cell lines 

with very high transfection transfection efficiencies and high levels of co-factors, such as 

the Cos-7 cell line, although this can not be used to investigate the prostate cancer cell 

type specific promoter regulagtion. 
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Since the predicted E-box site at -154 bp initially identified bioinformatically in the 

ITGA2 promoter was different to the classical E-box consensus sequence, site-directed 

mutagenesis experiments were undertaken and indicate that Snail does not act through 

this site. However, further analysis using deletion mutants demonstrated that a possible 

E-box site could be present within the -791 to -569 bp region and a classical E-box 

consensus sequence was found at position -759 bp. Consistent with this, the second 

putative E-box site at -759 bp lies within the repressor region of the ITGA2 promoter. 

This repressor region from -961 to -569 bp may be specific for prostate cancer (Figure 

5.16a). In previous study the ITGA2 promoter was characterised in the breast cancer cell 

line, T47-D (Figure 5.16b), although the repressor region was identified from -961 to -

776 bp and therefore does not encompass the potential E-box at -759 (Zutter et al. 1994), 

it is likely these positive and negative regulatory elements play important roles in 

determining cell type specific expression.  

 

Interestingly, Snail activated ITGA2 promoter activity of the Del2 construct. As this short 

construct does not include the putative E-box site, it is possible that this effect by Snail is 

an indirect effect and since this region contains the Sp1 transcription factor binding sites, 

Snail may be associating with Sp1 transcription factor to activate ITGA2 activity. 

Although conventionally Snail has been described as a transcriptional repressor (Batlle et 

al. 2000; Cano et al. 2000) there are now studies that have found a possible role for Snail 

as a transcriptional activator of the matrix methalloproteinase 9 (MMP-9) gene (Jordà et 

al. 2005; Miyoshi et al. 2005; Sun et al. 2008; Whiteman et al. 2008) and the cyclin-

dependent kinase 4 inhibitor b (p15
ink4b

) gene  (Hu et al. 2010). While the mechanisms by 

which Snail activates MMP-9 were not investigated, Snail was found to associate with 

the Sp1 and early growth response gene 1 (EGR-1) transcription factors to upregulate 

transcription of p15
ink4b

. Interestingly, using the MatInspector tool, two putative EGR-1 

binding sites are identified, which coincide with the Sp1 binding sites at the -109 bp and -

59 bp regions, and are highlighted in Figure 5.16c and d. Although the classical 

recognition sequence for a Snail/ E-Box binding site could not be found in both these 

regions, it is possible that Snail may be binding near one or both of these sites together  
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Figure 5.16 Schematic representation of ITGA2 putative regulatory elements 
Regulatory elements identified upstream of the TSS of the ITGA2 gene in (a) the prostate 

cancer cell line, LNCaP and (b) the epithelial cell line, T47-D. A repressor region from -961 to 

-776 was identified in a breast cancer model and similarly a repressor region from -961 to -

569 was identified using prostate cancer cells here. (c) Schematic representation of the 

positions of putative transcription factor binding sites in the ITGA2 promoter, including the 

putative EGR-1 binding sites (orange) and (d) recognition sequences identified by the 

MatInspector  tool, with the putative EGR-1 binding sites as shown in orange. 
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with the Sp1 and EGR-1 transcription factor and thus leading to the activation of ITGA2 

promoter activity when the repressor region is absent. Interestingly, Snail binding at the 

p15
ink4b

 promoter was through a sequence element which did not match the classical 

recognition site. 

 

In summary, Sp1 activates ITGA2 promoter activity regardless of methylation and since it 

is expressed at equivalent levels in both LNCaP and PC3 cells, Sp1 may be regulating 

basal expression of ITGA2 in these cells. Additionally, Snail is involved in the repression 

of ITGA2 promoter activity and since endogenous Snail is expressed in higher levels by 

LNCaP cells, Snail may be responsible for the repression of ITGA2 observed in LNCaP 

cells. Furthermore, androgens indirectly repress ITGA2 promoter activity and several 

studies have shown that DHT can activate Snail (Zhu et al. 2010; Chen et al. 2006)  and 

therefore androgen may be activating Snail leading to the repression in ITGA2 promoter 

activity. Finally, Twist displayed inconsistent activity on the ITGA2 promoter and thus 

suggests that it could be regulating other genes which indirectly affect ITGA2 promoter 

activity.  

 

Future studies to further verify the mechanism of Snail regulation of the ITGA2 promoter 

can be carried out using more extensive bioinformatics analysis of the ITGA2 promoter 

using the ever expanding gene expression, SNP and ChIP databases now available.  In 

addition, methods such as DNase 1 footprinting and electromobility shift assays 

(EMSAs) could be used to further characterise the ITGA2 promoter.  
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Chapter 6 

FINAL DISCUSSION AND FUTURE DIRECTIONS 

 

Bone metastasis is the major cause of prostate cancer related death (Bubendorf et al. 

2000). There is an increasing body of evidence suggesting that the ITGA2 gene is 

involved in prostate cancer progression, particularly mediating the preferential metastasis 

of prostate cancer cells to the bone (Hall et al. 2006; Hall et al. 2008; Sottnik et al. 2012). 

In addition, differential levels of ITGA2 expression have been reported in prostate cancer 

tissue samples from different stages of disease thus, suggesting that altered expression of 

ITGA2 may contribute to the progression of prostate cancer. This gene has also been 

identified as a putative prostate cancer susceptibility gene through a previous familial 

genetic study (FitzGerald et al. 2009). ITGA2 is then a rational therapeutic target in 

prostate cancer metastasis. However, little is known about the regulation of the ITGA2 

gene and how this gene is dysregulated during tumorigenesis. The data presented here 

expands our understanding of the regulatory mechanisms that control ITGA2 gene 

expression in prostate cancer.  

 

A panel of prostate cell lines were used in this study, with the cells displaying different 

migration capacity and tumorigenicity. These cells displayed differential ITGA2 

expression with high expression observed in the benign cell line, PWR-1e and bone 

metastatic cell line PC3 while lower expression was observed in the non-tumorigenic cell 

line, LNCaP. Although other studies suggest that high expression of ITGA2 is associated 

with increased prostate cancer cell metastasis, high ITGA2 expression would also be 

expected in normal tissue as integrins are involved in cell growth and cell attachment and 

high integrin expression is associated with maintenance of cell-cell interactions and tissue 

organisation. Consistent with this, Bonkhoff et al. (1993) found ITGA2 to be expressed in 

normal and benign prostate tissue samples. The lower ITGA2 expression in LNCaP cells 

and high expression in PC3 cells is consistent with other studies where decreased ITGA2 

expression was observed in soft tissue metastasis while high expression was observed in 

skeletal tissue metastasis (Ramirez et al. 2011; Sottnik et al. 2012; Van Slambrouck et al. 

2009) and also normal prostate tissue (Ramirez et al. 2011). Therefore, while high 
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expression of ITGA2 is important for prostate cell growth, downregulation during 

prostate cancer progression may facilitate cell detachment and tumour escape from the 

primary site. Re-expression of this gene may then facilitate tumour cell relocation and 

particularly the preferential binding of prostate cancer cells to the bone.  

 

Gaining a thorough understanding of the mechanisms underlying differential expression 

of the ITGA2 gene and the regulation of this gene is therefore of warranted.  The ITGA2 

promoter contains a 700 bp CpG island 5’ to the TSS. Examination of this region using 

bisulphite sequencing showed differential methylation patterns, which inversely 

correlated with the expression levels in these cells. LNCaP cells displayed high levels of 

methylation at the promoter, correlating with lower ITGA2 gene expression while PC3 

cells displayed low levels of methylation, correlating with higher ITGA2 expression. 

Increased chromatin accessibility and histone H3 acetylation at the ITGA2 promoter also 

correlated with increased ITGA2 expression as observed in PC3 cells. Interestingly, 

LNCaP cells and 22Rv1 cells displayed similar levels of methylation but opposing 

methylation patterns at the ITGA2 promoter with 22Rv1 cells displaying methylation 

closer to the TSS and expressing higher ITGA2 as compared to LNCaP cells. Further 

examination using the NoMe-seq assay showed that methylation observed in LNCaP 

cells is a monoallelic effect and the non-methylated clones were occupied by 

nucleosomes. Therefore, the higher percentage of nucleosome occupancy at the TSS may 

account for the lower ITGA2 expression in LNCaP cells while a lower percentage of 

nucleosome occupancy at the TSS in 22Rv1 may account for the higher ITGA2 

expression.  

 

Taken together, these results are suggestive that epigenetic factors involving DNA 

methylation, histone acetylation and nucleosome occupancy are involved in regulation of 

ITGA2 expression. Changes in epigenetic modifications are increasingly being associated 

with prostate cancer but unlike genetic mutations, epigenetic alterations are potentially 

reversible. 5-azacytidine and 5-aza-2’-deoxycytidine (Figure 1.3) are the most clinically 

advanced DNMTi and have been examined extensively in clinical trials in a range of 

cancers, with 5-aza-2’-deoxycytidine receiving US Food and Drug Administration (FDA) 
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approval for the treatment of myelodysplastic syndrome (Kaminskas et al. 2005). 

However, a small number of clinical trials conducted in individuals diagnosed with 

prostate cancer suggest these inhibitors may have more limited use in the treatment of 

this cancer. Although the in vitro studies of nucleoside inhibitors have been successful in 

restoring silenced gene expression in prostate cancer cell lines, as reviewed in Chin et al. 

(2011), a phase II study of 5-aza-2’-deoxycytidine conducted in 14 men with androgen 

independent metastatic prostate cancer had limited success with only 2 of the 12 

individuals displaying stable disease with delayed time to progression (Thibault et al. 

1998). This study concluded that while 5-aza-2’-deoxycytidine is well-tolerated it has 

only moderate effects on hormone-independent prostate cancer. Further, although these 

inhibitors may reverse aberrant DNA hypermethylation, they act through nonspecific 

mechanisms and have previously been found to have side effects such as 

myelosuppression (Appleton et al. 2007; Batty et al. 2010; Cashen et al. 2008; Chuang et 

al. 2010; Kantarjian et al. 2003; Schrump et al. 2006), tumorigenesis (Hamm et al. 2009; 

Schnekenburger et al. 2011; Walker et al. 1986) and mutagenesis (Jackson-Grusby et al. 

1997; Lavelle et al. 2007; Perry et al. 1992; Saunthararajah et al. 2003), which may limit 

their usefulness as a therapeutic drug in prostate cancer. In addition, remethylation occurs 

upon withdrawal of this drug, suggesting a continual need for administration (Egger et al. 

2004). While agents that inhibit DNA methylation are being actively investigated as 

potential therapeutic agents in prostate cancer, one issue that also needs to be considered 

is their potential to hypomethylate and therefore upregulate genes involved in metastasis. 

 

LNCaP and 22Rv1 cells were treated with the DMNTi, 5-Aza-2’-deoxycytidine (AzaC) 

and/ or in combination with the HDACi, Trichostatin A (TSA). Interestingly, treatment 

with AzaC alone or TSA alone did not affect ITGA2 expression but, the combination 

treatment of both resulted in upregulation of ITGA2 in the lower expressing cell line, 

LNCaP. Therefore, treating prostate cancer with these epigenetic modifiers may actually 

be upregulating genes that are involved in mediating tumour cell metastases. 

Nonetheless, the upregulation resulting from AzaC treatment was not as high as the 

ITGA2 expression observed in PC3 cells. In addition, cells that were selected for 

increased ITGA2 expression (LNCaPcol) by serial passaging of cells on collagen showed 
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only some demethylation at specific regions however, whether there are changes in 

nucleosome occupancy remains to be examined. Overall, these data suggest that while 

epigenetic factors contribute to ITGA2 regulation in prostate cancer, other factors not 

surprisingly also contribute to the regulation of the ITGA2 gene.  

 

Cell migration assays have shown a correlation between ITGA2 expression and cell 

migration capacity with higher expression of ITGA2 correlating with increased cell 

migration. EMT has been found to be associated with several tumour metastases 

including prostate cancer (Alexander et al. 2006; Thompson et al. 2005; Tomita et al. 

2000). In breast cancer, classification of breast cancer cell lines based on the expression 

profile of 24 gene products was shown to be predictive of their invasive and migratory 

properties (Zajchowski et al. 2001). Cell lines with an epithelial-like phenotype were 

found to be noninvasive while a mesenchymal-like phenotype was associated with 

invasive, more motile, more tumorigenic and more metastatic cell lines. In keeping with 

this, examination of EMT markers in prostate cancer cell lines in this present study 

showed that an epithelial-like phenotype correlates with low or no cell migration with 

low levels of ITGA2 as observed in LNCaP while mesenchymal-like phenotype 

correlated with high cell migration capacity with high levels of ITGA2 as observed in 

PC3 cells. Therefore, these EMT-like phenotypes correlated with heightened metastatic 

potential in prostate cancer. Knockdown of ITGA2 expression using siRNA impaired cell 

migration potential. However, no significant changes in EMT marker expression was 

detected and while this suggests that this change in cell migration driven by ITGA2 

changes does not involve EMT changes, it may also be due to only the ‘invasive front’ 

cells showing changes in EMT-like signatures, which are then not detectable when 

examining expression in the entire population of cells. Nonetheless, collagen binding 

variant LNCaPcol cells that have been shown by other studies to have increased collagen 

mediated migration and bone tumour growth capabilities (Hall et al. 2006; Sottnik et al. 

2012), displayed increased ITGA2 expression which correlated with lower Snail and 

higher Twist expression.  
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It is well described that epigenetic factors and transcription factors cooperate to regulate 

gene expression (Li 2002; Reik 2007; Struhl 1998). DNA methylation can directly inhibit 

the binding of methylation sensitive transcription factors while histone modifications 

affect chromatin organisation and thus, modulate accessibility of DNA to transcription 

factors. Putative transcription factor binding sites in the ITGA2 promoter were identified 

using the MatInspector bioinfomatics tool. Six Sp1 binding sites are present in the ITGA2 

promoter and Sp1 activated an ITGA2 promoter reporter in both LNCaP and PC3 cells. 

However, since the Sp1 transcription factor is endogenously expressed at equivalent 

levels in both cell lines, this transcription factor can not account for the differential 

ITGA2 expression observed in these cells. Therefore, consistent with the role determined 

for Sp1 in megakaryocytic cells (Jacquelin et al. 2001), Sp1 may be involved in the basal 

expression of ITGA2 in prostate cells. In addition, although one out of six of these Sp1 

sites were differentially methylated across the cell lines, the reporter data presented 

confirmed that methylation does not affect the ability of Sp1 to activate the ITGA2 

promoter. 

 

While androgen treatment was shown to repress ITGA2 expression, this was found to be 

an indirect effect. Snail, a transcription factor involved in EMT was also found to repress 

ITGA2 promoter activity with deletion mutant analysis strongly suggesting that the -791 

to -569 bp region of the ITGA2 promoter contains a repressor element and is required for 

the Snail repressive effect. Interestingly, LNCaP cells express higher levels of 

endogenous Snail as compared to PC3 and thus, this higher expression of Snail may be 

responsible for the lower expression of the ITGA2 gene in LNCaP cells, and the data 

presented suggest that this is a direct effect potentially through a putative E-box located 

at -759 bp although this remains to be confirmed by site directed mutagenesis. 

 

Snail activation triggers EMT with epithelial cells converted into mesenchymal type cells 

through direct repression of E-cadherin. Interestingly, investigation of the endogenous E-

cadherin promoter in Snail-expressing cells showed enrichment in deacetylated H3/H4 

and H3K9me2 and thus, repression of E-cadherin by Snail involve HDAC activity which 

was subsequently shown to be reversed by TSA treatment (Peinado et al. 2004). The 
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recruitment of HDAC1, HDAC2 and the corepressor mSin3A have been found to be 

required for the repression of E-cadherin by Snail. Further, a microarray study showed 

167 genes which were repressed by Snail while only 23 genes were upregulated when 

Snail was overexpressed. These data suggest that Snail mainly acts as a transcriptional 

repressor by repressing genes that are involved in epithelial phenotype, signalling and 

metabolism (De Craene et al. 2005). Further analysis of a subset of potential Snail target 

genes showed the presence of E-boxes at the gene promoters and ChIP analysis 

confirmed the binding of Snail at these gene promoters. 

 

Other studies have shown that androgens can activate Snail expression (Chen et al. 2006; 

Zhu et al. 2010a). Since androgen was found to repress ITGA2 expression through an 

indirect effect, and given that androgen is usually an activator (Chen et al. 2000; 

Cleutjens et al. 1997; Murtha et al. 1993; Wang et al. 1999),  androgen may be activating 

Snail expression and thus, leading to the repression of ITGA2 expression observed in this 

study. In addition, while in the present study Sp1 was able to partially relieve the 

repressive effect of Snail, the higher endogenous Snail expression may be responsible for 

the downregulation of ITGA2 expression in LNCaP cells. 

 

Taken together the data presented here from analysis of prostate cancer cell lines is 

consistent with a model in which the Sp1 transcription factor binds to the ITGA2 

promoter, regardless of methylation and is responsible for basal ITGA2 expression. In 

contrast, the Snail transcription factor represses ITGA2 promoter activity and androgen 

leads to the activation of Snail expression and thus, further represses ITGA2 promoter 

activity, resulting in lower ITGA2 gene expression as observed in LNCaP cells. In 

addition, the higher DNA methylation as observed in LNCaP cells, consistent with a 

higher percentage of nucleosome occupancy at the TSS and low levels of histone H3 

acetylation at the ITGA2 promoter may be responsible for the lower ITGA2 expression. 

This low ITGA2 expression is consistent with little or no cell migration potential. 

Therefore, data from this study broadens our understanding of how epigenetic factors 

cooperate with transcription factors to regulate ITGA2 gene expression in the different 

prostate cancer cell lines, resulting in different cell migration capacity.  
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This model can now be expanded upon (Figure 6.1). High ITGA2 expression observed in 

normal prostate cells may be due to low DNA methylation and regulation by the Sp1 

transcription factor (Figure 6.1a). In early stage prostate cancer, the lower expression of 

the ITGA2 gene reported may be due increased DNA methylation, decreased H3 

acetylation and lower chromatin accessibility at the promoter, correlating with a higher 

percentage of nucleosome occupancy at the TSS (Figure 6.1b). Although Sp1 activity is 

not affected by methylation and thus can still activate ITGA2 promoter activity, these 

early stage tumour cells are androgen responsive and therefore, the presence of androgen 

may activate Snail expression leading to the repression of ITGA2 expression. In contrast, 

in late stage prostate cancer (bone metastatic prostate cancer), upregulation of ITGA2 

expression has been observed and this may be due to the lower DNA methylation and 

higher chromatin accessibility correlating with higher histone H3 acetylation at the 

promoter (Figure 6.1c). Since late stage prostate cancer cells are androgen independent, 

Snail expression may be reduced relieving repression of ITGA2 expression. However, in 

this model what remains to be determined are the triggering events that lead to prostate 

cancer progression. For example it is currently not clear whether epigenetic changes, such 

as those observed at the ITGA2 gene promoter, are a cause or consequence of the 

progression of prostate cancer. 

 

Elucidating the regulation mechanism of the ITGA2 gene in prostate cancer as presented 

in this study may open new perspectives and possibilities to explore ITGA2 as a 

therapeutic target to prevent prostate cancer bone metastasis. Future work involving 

integration of DNase I hypersensitive sites sequencing (DNase-seq), RNA sequencing 

(RNA-seq), ChIP sequencing (ChIP-seq) and motif analysis may further elucidate the 

epigenetic platform and transcriptional regulation mechanism at this promoter which will 

allow the development of a more specific and targeted therapy for prostate cancer 

treatment.  
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Figure 6.1 Model of regulation of the ITGA2 promoter by epigenetic factors and 

transcription factors in different stages of prostate cancer. 
(a) In the normal prostate, the ITGA2 promoter is marked by relatively low levels of DNA 

methylation and Sp1 binding, resulting in high expression of ITGA2. (b) In early stage 

prostate cancer, the ITGA2 promoter is marked by high DNA methylation (red circles), low 

histone H3 acetylation, Sp1 binding and Snail binding, resulting in repression of ITGA2 gene 

expression. Androgen activates Snail which can further repress ITGA2 gene expression. (c) In 

late stage prostate cancer, the ITGA2 promoter is marked by relatively low levels of DNA 

methylation, high histone H3 acetylation and Sp1 binding, resulting in permissive state and 

thus, allowing high expression of ITGA2. However, the factors and events that trigger the 

progression of prostate cancer in this model are not clear. 
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