
THE RESPONSE OF MUON DETECTORS TO THE PRIMARY COSMIC RAY FLUX 

by 

D.J. Cooke, B.Sc. 	Melb.) 

submitted in fulfilment of the 

requirements for the degree of 

Doctor of Philosophy 

UNIVERSITY OF TASMANIA 

HOBART 

March 1971 



I IN,1;.3 

This thesis contains no material which has been accepted for 

the award of any degree or diploma in any university. 

To the best of my knowledge and belief, the thesis contains 

no material previously published or written by another person except 

where due reference is made in the text. 

D.J. Cooke 



CONTENTS 

SUMMARY 

ACKNOWLEDGEMENTS 
	

iv 

CHAPTER 1: RELATIONSHIP BETWEEN PRIMARY AND SECONDARY 

COSMIC RAYS 

1.1 	Introduction 	 1 

1.2 	Relating Muon Intensity to Primary Particle Flux 	3 

1.3 	Review of Previous Coupling Coefficient Determinations 	12 

1.4 	Discussion 	 16 

CHAPTER 2: LATITUDE SURVEY 

2.1 	Introduction 	 22 

2.2 	Design of the Experiment 	 23 

	

2.2.1 	Design of the Muon Telescopes 	28 

	

2.2.2 	Telescope Circuitry, Recording Equipment 	31 

2.3 	Execution of the Latitude Survey 	 38 

	

2.3.1 	Choice of Sites; Observing Procedures 	38 

	

2.3.2 	Investigation of Air Shower Effect 	41 

	

2.3.3 	Analysis of Errors 	 50 

2.3.3.1 	Errors in Individual Telescope Observations 50 

2.3.3.2 	Intercalibration Systematic Errors 	53 

2.3.3.3 	Fixed Systematic Errors 	54 

	

2.3.4 	Presentation of Experimental Data 	55 



CHAPTER 3: DETECTOR CHARACTERISTICS 

	

3.1 	Introduction 	 64 

	

3.2 	Review of Imiestigations of Telescope Response in 

Absence of Cut-offs 	 66 

	

3.3 	Generalized Technique for Calculating Telescope Response 	68 

	

3.3.1 	Geometric Sensitivity of Element 	68 

	

3.3.2 	Determination of Position of Element 	69 

	

3.3.3 	Radiation Sensitivity of Element in Absence 

of Cut-offs 	 71 

	

3.3.4 	Radiation Sensitivity of Element in Presence 

of Cut-offs 	 74 

	

3.3.5 	Calculation of Telescope Response 	77 

3.4 	Utilization of the "Detector Response" Program 	80 

CHAPTER 4: PRIMARY RADIATION CUT-OFFS IN THE GEOMAGNETIC FIELD 

	

4.1 	Introduction 	 82 

	

4.2 	Stormer Theory 	 84 

	

4.3 	Lemaitre and Vallarta Theory of the Allowed Cone 

of Radiation 	 86 

	

4.4 	Trajectory Derived Cut-offs 	 91 

	

4.5 	Determination of Cut-off Distributions at Survey Sites 	95 

	

4.6 	Calculation of Mean Effective Cut-off Values in the 

Directions of Viewing at the Latitude Survey Sites 	100 

	

4.7 	Main Cone Fold Effect - the Loop Cone 	106 

	

4.8 	Latitude Dependence of the Loop Cone 	114 



4.9 	Effect of the Loop Cone on Directional Cosmic 

Ray Intensities 	 124 

4.10 Dependence of Mean Effective Cut-off on Telescope 

Geometry 	 129 

4.11 On the Possible Direct Observation of Main Cone Folding 	134 

4.12 Sensitivity of Azimuth Position of Fold to Field Changes 140 

4.13 Conclusions - Ordering of Latitude Survey Data 	148 

CHAPTER 5: THE ATMOSPHERIC ASYMMETRY EFFECT 

5.1 	Introduction 	 154 

5.2 	Theory of the East-West Asymmetry Effect at High 

Latitudes 	 154 

5.3 	The North-South Asymmetry at High Latitudes 	161 

5.4 	Investigation of the Azimuthal Asymmetry Pattern 

at Mawson 	 163 

5.5 	Evidence for Primary Anisotropic Contributions to 

Azimuthal Asymmetry 	 166 

5.6 	Aims of the Present Atmospheric Asymmetry Investigation 	169 

5.7 	Theoretical Investigation of the Atmospheric Asymmetry 

Effect 	 173 

	

5.7.1 	Introduction of the Asymmetry Function 	173 

	

5.7.2 	Determination of Secondary Spectra 	174 

	

5.7.3 	Production Spectrum Dependence on Geomagnetic 

Cut-off 	 178 

5.7.3.1 	Dependence as Predicted by Olbert 	178 



	

5.7.3.2 	Calculation of Muon Cut-off 	179 

	

5.7.3.3 	Introduction of Modified Cut-off Variable 	182 

5.7.4 	Trajectory Tracing, Calculation of Survival 

Probabilities 	 184 

5.7.5 	Calculation of Muon Intensity 	188 

5.7.6 	Muon Charge Ratio 	 190 

5.7.7 	Representation of the Atmosphere 	191 

5.7.8 	Curved Earth Representation 	 194 

5.8 	Accuracy and Speed of Computer Program 	195 

5.9 	Test of Theoretical Predictions 	 196 

5.9.1 	Zenith Angle Dependence of Total Intensity 	196 

5.9.2 	Sea Level Spectra 	 199 

5.10 Muon Deflections, Momentum Loss, and Survival 

Probabilities 	 202 

5.11 Theoretical Unidirectional Asymmetry Factors 	206 

5.12 Asymmetry Factors for Detectors of Finite Acceptance 

Angle 	 221 

5.12.1 Derivation Technique 	 221 

5.12.2 Re-examination of Mawson Data 	223 

5.12.2 Correction of the Data of Mathews and Sivjee 	225 

5.12.4 Correction of Latitude Survey Data 	227 

5.13 Conclusions 	 235 

CHAPTER 6: DETERMINATION OF COUPLING COEFFICIENTS 

6.1 	Introduction 	 238 



	

6.2 	Justification of the Ratio Method of Analysis 	239 

	

6.3 	Analysis of Experimental Data 	 244 

	

6.4 	Determination of the Empirical Response Function 

Parameters 	 249 

	

6.5 	Determination of Response of the Vertical Telescope 	252 

	

6.5.1 	Integral Response 	 252 

	

6.5.2 	Dependence of Vertical Muon Intensity on 

Atmospheric Configuration 	 255 

	

6.6 	Unidirectional Dependence of k on Zenith Angle 	258 

	

6.7 	High Momentum Extrapolation of Coupling Coefficients 	262 

	

6.8 	Coupling Coefficient Extrapolation to High Zenith Angles 272 

	

6.9 	Adaption of the Coupling Coefficients to Change in 

Primary and Secondary Conditions 	 279 

	

6.9.1 	Coupling Coefficient Dependence on Primary 

Spectrum 	 279 

	

6.9.2 	The Effect of the Local Magnetic Field 	282 

	

6.9.3 	Coupling Coefficients in the Presence of 

Geomagnetic Cut-offs 	 285 

	

6.9.4 	Coupling Coefficients for Different Depths of 

Absorber 	 286 

	

6.9.5 	The Use of Atmospheric "Multiplicities" 	289 

6.10 Coupling Coefficients Pertaining to Detectors of Finite 

Acceptance Angle 	 292 



CHAPTER 7: ASYMPTOTIC CONE OF ACCEPTANCE OF MUON DETECTORS 

7.1 	Introduction 	 296 

7.2 	Asymptotic Directions for Primaries of Rigidity 	10 CV 	298 

7.3 	Asymptotic Directions for Primaries of Rigidity S 10 CV 	299 

7.4 	Determination of Detector Response to Primary Anisotropy 303 

7.5 	Automated Process of Asymptotic Cone Determination 	306 

7.6 	The Computer Program in Operation 	 312 

7.7 	Concluding Remarks 	 318 

APPENDIX 1: Definition of the Term "Re-entrant" 	320 

'APPENDIX 2: Stereoscopic Drawings 	 322 

APPENDIX 3: Maximum Momentum Transferable to Muon by Proton 

of Given Momentum 	 327 

APPENDIX 4: Coupling Coefficient Evaluation 	330 

APPENDIX 5: Tabulated Detector Mean Effective Response Values 336 

APPENDIX 6: Technique of Interpolating from Standard 

Asymptotic Direction Set 	 338 

PUBLICATIONS 	 344 

REFERENCES 	 345 



SUMMARY  

This thesis presents the results of some investigations into 

problems associated with the determination of the relationship 

between the sea level directional muon flux, as observed by muon 

detectors, and the primary cosmic ray flux. 

Previous estimates of muon coupling coefficients (which 

express the primary-secondary intensity relationship) have been 

in poor agreement, and insufficient to define the zenith angle 

dependence of the coefficients. 	A new determination was there- 

fore undertaken. 	The following are summaries of the main phases 

of the determination: 

Chapter 2: In order to acquire data suitable for deducing 

the coupling coefficients, an extensive latitude-azimuth survey 

was carried out, in which detailed directional muon intensity 

observations were made over the _latitude range from Hobart to 

Mossman, along the Eastern Australian coast (vertical cut-off 

range, 2.0 - 13.2 GeV/c; inclined cut-offs to 31.1 GeV/c). 	The 

design and conduct of the survey are discussed in this chapter, 

and the data are presented in Section 2.3.4. 

Chapter 3: Techniques are developed to allow the determination 

of telescope radiation sensitivities in the presence of any given 

geomagnetic cut-off distribution, and methods are devised to allow 

the accurate determination of the mean effective cut-offs pertaining 

to detectors in any particular situation. 



Chapter 4: The distribution of cut-off momenta at the latitude 

survey sites is deduced. 	A peculiar fine structure is apparent in 

these results, which appears to account For reported anomalies in 

the observations of other investigators. 	The effect is interpreted, 

in Section 4.7, in terms of the "loop cone", a phenomenon produced by 

the looping of trajectories around field lines at longitudes local to 

the sites. 	The sensitivity of the structure to changes in the cont- 

ributions to the geomagnetic field from internal and external sources 

is examined, in Section 4.12. 

Chapter 5: The atmospheric asymmetry effect, responsible for 

portion of the azimuthal asymmetry in the sea level muon flux, is 

investigated. 	A series of calculations is made to establish the 

dependence of the intensity perturbations (produced as a result of 

the deflection of muons in the geomagnetic field) on direction, 

atmospheric structure, local magnetic field configuration, altitude, 

and geomagnetic cut-off. 	The latitude survey data are corrected to 

remove the effects of the atmospheric asymmetry, in Section 5.12.4. 

The atmospheric asymmetry, although responsible for very considerable 

effects at low latitudes, has been overlooked by most investigators. 

It appears to be responsible, in part, for the discrepancies between 

the various previous coupling coefficient estimates. 

Chapter 6: A new technique, involving the use of data expressed 

in the form of inclined/ vertical intensity ratios, is used in 

analysing the latitude survey data. 	This method (described in 

Sections 2.3.4 and 6.2) allows the dependence of muon intensity to be 



obtained without the necessity for making detailed corrections to 

remove the dependence of muon intensity on atmospheric structure. 

Unidirectional coupling coefficients are deduced from the data, 

and extrapolated to high zenith angles (to r:185 ° ) and high momentum 

values. 	The coefficients, presented in Section 6.8, are expressed 

in terms of continuous functions of momentum and zenith angle. 

The dependence of the coupling coefficients on changes in primary 

and secondary conditions are examined, and a technique is devised 

to allow the azimuth dependence of the coefficients to be deduced. 

Chapter 7: Finally, to illustrate the use of the unidirectional 

muon coupling coefficients, a computer technique (described in 

Sections 7.5 and 7.6) is developed to allow the rapid, automatic 

determination of the asymptotic cone of acceptance, and thus the 

anisotropic response, of any sea level muon telescope to be calcul-

ated. 	This technique, in addition to introducing an increased 

degree of accuracy into telescope response calculations, is found 

to facilitate the effective optimization of telescope configuration 

for use in particular investigations. 	By carrying out this 

optimization, it appears possible to obtain gains of the order of 

five in the efficiency of anisotropy detection over equivalent 

experiments designed in terms of detectors of commonly used 

geometries. 
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CHAPTER 1  

RELATIONSHIP BETWEEN PRIMARY AND SECONDARY COSMIC RAYS 

1.1 Introduction  

Directional intensity measurements of cosmic rays of energies 

in excess of a few GeV, in yielding information on anisotropies 

occurring at distances of the order of 1 AU and greater from the 

earth, provide a means for pursuing the study of the solar system 

and the nearer regions of our galaxy. 	The only practical detectors 

so far employed at these energies are used at the surface of the 

earth or underground. 

Interpretation of the data from such instruments has a two-fold 

complexity. 	As nearly the entire cosmic ray flux which can be 

studied in this way consists of charged particles, deflected as they 

are by the terrestrial magnetic field in their motion towards the 

detector, the directional intensity distribution that existed at the 

outer boundary of the geomagnetic field is seriously modified. 

Consequently the directions of viewing of detectors on the surface 

of the earth are not simply related, except for very high energy 

particles, to the directions of motion outside the field. 

In addition, since detectors deep in the atmosphere are 

observing not the original cosmic rays, but rather the secondary 

descendants of these particles, produced on interaction of the 

primary rays with the oxygen and nitrogen nuclei higher in the 
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atmosphere, the detailed intensity relationship between the primary 

and secondary components has to be known accurately if precise 

interpretation of the data is to be undertaken. 

The first of these difficulties may be readily overcome since 

accurate calculations of the trajectories of primary particles in 

the geomagnetic field can be performed' with the aid of computers, 

and thus the "asymptotic cone of viewing" (the cone containing all 

the directions of viewing) of the detector may be deduced. 

The second difPiculty, that of knowing the intensity relation-

ship between the primary and secondary particle fluxes, has not yet 

been brought to a satisfactory conclusion for the muon component of 

the secondary radiation. 	The muon flux at sea level and below 

ground is of particular interest in cosmic ray astronomy because of 

the relatively high average momentum of the parent primaries, and 

the consequently large region of space about which information may 

be obtained. 

In this thesis coefficients are derived which relate the 

intensity of muons, at any zenith angle, to the primary particle 

intensity. 	Techniques are developed to use these coefficients 	in 

the complete specification of the differential response of cosmic 

ray detectors to anisotropy in the primary particle flux. 

As an essential step towards this result it has been necessary to 

investigate several other aspects of the geophysical effects on the 

cosmic radiation. 	This research is reported in detail in this 

thesis, which is complete in as much as the investigations and the 
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summaries of the associated literature are covered. 	The more 

general aspects of primary-secondary phenomena are well understood 

and thoroughly reported elsewhere, in review articles and text-

books (for example, Vallarta [1961], Fowler and Wolfendale [1961], 

and Sandstrom [1965]). 

1.2 Relating Muon Intensity to Primary Particle Flux  

The primary cosmic ray flux consists mainly of protons (P185%), 

a-particles (P110%), and the remainder nuclei with Z > 3. 	When 

these primary particles interact with nuclei in the atmosphere, they 

give rise to three main secondary components: mesons, nucleons, and 

the so-called soft component (electron - y showers). 	Great numbers 

of muons (p-mesons) penetrate to sea level where they are readily 

observed by normal charged particle detection methods (Geiger 

counters, plastic scintillators, etc.). 

The process of muon production are diverse and complex. 	The 

main mechanism is via charged pion (Tr-meson) production by the 

primaries. 	Most pions are produced in the initial interaction and 

then, because of their short mean life time (2.65x10 -8 
sec.) most 

decay, giving muons of the same charge. 	A small proportion are 

removed by collision, but these further interactions may produce 

more pions, which then decay to muons, so that the pion-muon decay 

is the predominant overall result. 	The other processes that give 

rise to muons together produce considerably fewer muons than are 

produced as a result of pion decay. 
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measurements show that, although muons may be produced at any 

level in the atmosphere, most originate at high altitudes. 

Because of their low interaction cross-section and their relatively 

long life at relativistic velocities (mean life at rest 2.21x10
-6 

sec.), muons penetrate in large numbers to sea level, and significant 

numbers to great depths underground. 	They retain the general 
1 

direction of motion of the parent primary, but there may be 

appreciable departures from parallel motion of primary and secondary 

particles. 	These deviations are produced partly in the initial 

pion production (because of multiple pion production the particles 

leave the struck nucleus in a cone relative to the laboratory co-

ordinate system), partly during the subsequent decay of pions into 

muons, and partly when muons experience coulomb scattering in the 

atmosphere. 	Sandstrom [1965] reviews these factors in detail. 	In 

addition, the geomagnetic field causes deflections of the muons 

within the atmosphere. 

The momentum possessed by a muon at production is not uniquely 

related to the momentum of the parent primary, and so the possession 

of detailed spectral information in relation to the muon flux at any 

level is of no assistance in determining the role of primaries of 

particular momentum in giving rise to the muons. 	It is necessary 

to determine by some other Means the extent to which primaries of 

any momentum contribute to the muon flux at any level. 

This information may be obtained in two different ways. 	In 

principle, theoretical calculations may be carried out, if 
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sufficiently detailed data are available describing the probabilities 

and cross-sections of the various interactions within the atmosphere. 

This approach, however, is very difficult due to the inherent 

complexity of the problem, and the scarcity of detailed information 

about the interaction processes. 	As a result theoreticians, as for 

example Pal and Peters [1964], Brooke et al. [1964], Krimsky et al. 

[1965], have found it necessary to use many approximations, such as 

the assumption that muon production is a one-dimensional process. 

The most sophisticated treatment appears to be that of Astrom 

[1968], who used information on muon production processes derived 

from accelerator studies. 	He derived a set of multiplicities for 

muon production by primaries of any momentum, for a range of angles 

relative to the velocity vector of the primary. 	Nevertheless his 

work of necessity involves certain approximations, and is limited 

to momentum values < 50 GeV/c. 	Sea level spectra calculated 

using this technique agree well with experiment, and it appears 

that further developments of this theoretical approach may 

ultimately provide complete specification of the primary-secondary 

relationship. 	Because of the scope of the theory the calculations 

involved in the application to particular problems are themselves 

complex and time consuming. 

The most straightforward means of determining the relation-

ship is the alternate semiempirical method which utilizes a direct 

experimental approach. 	This technique is a powerful one because 

it avoids the need to introduce detailed assumptions about the muon 
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production and interaction processes, but rather determines the 

actual, existing relationship. 	If, in the future, the results of 

this approach are outstripped by the greater possibilities of the 

theoretical determinations, the experimental method is nevertheless 

invaluable, as it yield information which is readily utilized in 

cosmic ray astronomy, and provides a check on the detailed results 

of the theoretical calculations. 

The semiempirical technique uses the geomagnetic field as a 

spectrum analyser, the latter preventing as it does primaries of 

less than a particular momentum from reaching the top of the atmos-

phere in a given direction. 	In any direction at any point on the 

earth, truncation of the primary spectrum therefore occurs at a 

certain calculable "cut-off" momentum (see Chapter 4). 	Correlation 

of the total muon intensity at any given level, in any direction, 

enables the contribution of primaries within any portion of the 

primary spectrum to be derived. 

If, following Fonger [1953], we use the specific yield function 

S(P,x) to express the relationship between the vertical intensity of 

muons at an atmospheric depth x, and the vertical intensity of 

primaries of momentum P, then the total vertical intensity of muons 

at that level is 
co 

N(P ,x) =  J(P) S(P,x) dP 
c 	p 

where 
P 
 is the vertical cut-off momentum, and J(P) is the 

primary spectrum. 	N(P,x) is called the integral response function. 
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If we assume for the moment that the structure of the atmosphere 

is latitude invariant, then S(P,x) is also latitude invariant. 

more generally we may relate the intensity of muons at any 

zenith angle 0 to the primary directional intensity by introducing 

a zenith dependent specific yield function S(0,P,x). 

Thus 
00 

N(e , Pc( 0 ,0)'x ) -10'10 , 0 ) 
J(P) S(0,P,x) dP 
	

(1 .2) 

where p(0,Ø) is the cut-off momentum in the direction 

specified by the zenith and azimuth angles 0 and 0. 

The yield function describes the effective multiplicity in 

the production of muons by primaries, for muons detectable at sea 

level. 	It is independent of azimuth in the absence of a magnetic 

field in the atmosphere, as then a cylindrically symmetric 

situation exists about the vertical. 

A factor which seems to have been overlooked in previous 

'calculations of specific yield functions is that this symmetry does 

not exist in real situations. 	In reality, of course, a magnetic 

field is present in the atmosphere, and systematic deflections of 

the muons occur. 	Owing to the predominance of positively charged 

muons in the secondary flux, an azimuthal variation arises, super-

imposed on the azimuthal intensity pattern due to the asymmetrical 

distribution of cut-off momenta at any site. 	Intensities tend to 

be enhanced at western azimuths and reduced in the east. 	This 

atmospheric asymmetry effect is largely responsible for the 
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azimuthal asymmetry observed at high geomagnetic latitudes (> 30 0 ), 

but is also of importance at lower latitudes. This phenomenon is 

discussed in detail, and quantitatively investigated in Chapter 5. 

For the present it is sufficient to appreciate the existence of the 

effect. 

The magnitude of the atmospheric asymmetry effect is dependent 

on the atmospheric depth x of the detection level, on the zenith and 

azimuth angles of viewing 0 and 0, on the geomagnetic cut-off P(0,Ø) 

and on the local magnetic field B. 

Experimental observations yield values of intensity 

I(0,0,P c ,x,B), where the intensity is modified by the magnetic field 

in the atmosphere. 	In order to obtain the intensity N(0,P c ,x) that 

would exist in the given set of conditions in the absence of the 

field, we assume that a function A(0,0,P
c ,x,i3) exists which relates 

these intensity values, such that 

N(O , Pc 1X) = I(0 , 09Pc ,X, B ) A(0 , 0,Pc ,X,8) 
	

(1 .3) 

If the function A is known, then, in principle, N may be determined, 

as discussed in Chapter 5. The specific yield function may then be 

obtained in an azimuth independent form by means of equation (1.2). 

Dorman [1957] introduced the concept of coupling coefficients - 

a particularly convenient form in which the primary-secondary 

relationship may be expressed. 	If atmospheric conditions are 

constant so that S(0,P,x) is invariant (data normalized to standard 



1.2 
	

9 

atmospheric conditions), and if the primary spectrum J(P) is in-

variant, then partial differentiation of equation (1.2) yields 

6N 
S(0,P,x) 6P 

Dividing both sides by the intensity W(0,Pc=0,x), 

1 6N 	J(P) S(0,P,x) 
 _ -W(0,P,x) 

N' 6P - 	N' (1.4) 

W(0,P,x) is the so-called coupling coefficient function, 

expressing the differential contribution to the directional muon 

intensity at zenith angle 0, and at atmospheric depth x, from the 

primaries of momentum P. 	Since at low momenta S(0,P,x), and at 

high momenta J(P), tend to zero, the coupling coefficient function 

possesses a maximum at some intermediate momentum. 

The coupling coefficients may be expressed in the units % per 

GeV/c, so that at any site, in any direction 

00 

S WO P,x) = 100 % 	 (1.5) 

If the dependence of N on P
c for any particular 0 is determined 

from experimental observations, then 
N7)Pc is known, and W(0,P,x) 

may be deduced. 	An upper limit exists in the range of P c  

available in the geomagnetic field at any zenith angle. 	In the 
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vertical direction this range extends to 	18 GeV/c, and at high 

zenith angles to w, 60 GeV/c. 	It is necessary to extrapolate the 

experimental coefficients in order to obtain the complete 

specification of the coupling coefficients. 	Dorman [1957] showed 

that the extrapolation to high momenta could be carried out by 

application of the known restraints on the function, viz. 

a) Total area under the coupling coefficient curves must be 

100 % (equation 1.5), 

b) Continuity Of slope and equality of absolute value required 

at the point where the extrapolation function joins the 

experimentally determined function. 

A further difficulty arises in practice because of the . 

significant latitude dependence of the muon intensity in any 

particular direction at a particular atmospheric level, due to 

variation in the temperature - height structure of the atmosphere. 

The intensity of muons at any site is dependent on both the pressure 

and temperature conditions existing at any instant. 	Increase in 

pressure alone will lead to a decrease in muon intensity, due to the 

increased mass of air above the site. 	Variation in temperature, 

however, has a"more devious effect on the observed intensity. 	With 

increase in temperature the atmosphere expands, resulting in an 

increase in height of the mean production level, and an increase 

in the distance the muons have to travel to the observing level. 

The muons consequently have an increased probability of decay. 	At 

the same time, due to the decreased density of the atmosphere, there 
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will be a decrease in the probability of pion loss by collision, 

causing increase in numbers of muons produced. 	The relative 

importance of these processes will depend on the actual configur-

ation of the atmosphere at any particular place and time. 

If observations of muon intensity at different sites are to be 

used in conjunction to derive the coupling coefficients, then it is 

necessary to have some means of normalizing the data to some 

standard set of conditions. 

We may summarize the requirements necessary for the successful 

determination of muon coupling coefficients by the method adopted 

in this thesis as follows. 	It is desirable to have: 

a) Accurate observational data, 

b) Knowledge of the values of the function A(0,0,P c ,x,B) 

pertaining to the directions of viewing of the muon detectors, 

c) Accurate knowledge of the geomagnetic cut-offs in the 

directions of viewing, 

d) The means of taking into account the finite acceptance 

cone of the detectors, 

e) The means for correcting or normalizing the experimental 

data to remove the effects of latitude variation of atmos-

pheric configuration. 

0 Experimental evidence of the form of the coupling 

coefficient function in the region of the maximum. 

To date, although numerous experimental determinations of muon 

coupling coefficients have been carried out, particularly for the 
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vertical muon component, there is great diversity in the results, 

evidently due to failure to take into account some or all of these 

factors. 	We now review the various determinations of the muon 

coupling coefficients. 

1.3 Review of Previous Coupling Coefficient Determinations  

The results of the vari ,-us experimental determinations of the 

muon coupling coefficients are briefly summarized, and consideration 

is then given to the effects of the factors listed in Section 1.2 to 

see if these can account for the disparity between the estimates. 

Dorman [1957] deduced the form of the coefficients for the 

vertical muon component, using the results of a latitude survey of 

vertical muon intensity. 	Corrections for atmospheric effects were 

applied to normalize the data, and then the intensity observations 

were correlated with vertical cut-off momentum. 	The coefficients 

were extrapolated to high momenta using an empirical formula of the 

form 
r
--]
P-(- a + bP0/P) 

P>P 	
KL

o 	
P
o 

(1.6) 

where P = momentum, and P
o
, K, a, and b are constants. 

The resulting estimate differed considerably from that of Webber 

and Quenby [1959], who used an essentially different technique to 

obtain the vertical coefficients. 	Rather than measure the 

latitude variation of intensity with a single detector during a 

period of cosmic ray calm, they noted the response of telescopes at 

sites distributed over a wide latitude range to a large cosmic ray 
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flare. 	The spectrum of the isotropic phase of the flare was 

deduced using the observed response of neutron monitors to the 

flare in conjunction with the previously established neutron 

specific yield function. 	The muon specific yield function was 

then deduced using the observed amplitudes of response of the muon 

telescopes. 	By combining the specific yield function with the 

quiet period primary spectrum, the muon coupling coefficients 

were deduced. 	This technique, unlike the standard latitude 

survey, avoids the need for detailed correction of data for 

removal of atmospheric effects, since the information used is 

essentially the percentage increase in observed muon intensity, 

rather than absolute intensity, over a very short period of time. 

Webber [1962] recalculated the vertical muon coupling co-

efficients from the data of Webber and Quenby, using improved 

cut-off values and neutron yield function. 	He extended the 

calculations to deduce the coupling coefficients pertaining to 

45
0 

zenith angle. 	These coefficients show the expected shift 

of the momentum of greatest response to higher momenta with 

increase in zenith angle. 	Extrapolation of the functions to 

high momenta was effected using the Dorman method. 

Kane [1962] used the data from all the currently available 

published surveys of azimuthal variation of muon intensity, to 

obtain information on the intensity variation as a function of 

directional main cone cut-off at a number of zenith angles. 	He 

found very considerable differences between the estimates made 
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from individual data sets, also observing inconsistencies among the 

coefficients obtained from a single set. 	Typically the empirical 

coupling coefficient functions he derived show no sign of a 

maximum, rather being irregular functions, decreasing in value with 

increasing momentum. 

Mathews [1963] used a different technique again to derive the 

coupling coefficients relating to the vertical sea level muon flux. 

By means of a method similar to that used by Dorman [1959] to relate 

coupling coefficients underground to those at sea level (discussed 

in Chapter 6), Mathews effected the conversion to sea level of 

Webber and Quenby's [1959] muon differential response curve pertain-

ing to 312 gm cm-2 atmospheric depth. 	The resulting coefficients 

are more akin to those of Webber [1962] than to those of Dorman --. 

[1957]. 	Although based on a purely empirical method, Mathews' 

determination is a valuable one, because the estimate of the 

position of the maximum in the sea level coefficients derives from 

direct experimental evidence, as against the extrapolation proced-

ure used in other determinations. 

Mazaryuk [1966] used data from a latitude survey conducted 

between Russia and Australia to deduce coupling coefficients for 

the vertical muon flux, also for the muon component inclined at 

30 0  zenith angle in the north-west and south-east. 	Separate 

estimates for the two azimuths were necessary because of the 

marked differences in the integral response functions (observed 

intensity vs cut-off momentum relationship) for the two azimuths. 
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The coefficients for the inclined directions show, contrary to 

reasonable expectations, maxima at lower momentum values than the 

maximum in the vertical coupling coefficient function. 

Dorman, Kovalenko and Milovidova [1967] carried out a latitude 

survey using vertical and inclined muon telescopes. 	The data so 

obtained were corrected for atmospheric temperature and pressure, 

then correlated with directional cut-off momenta. 	Like Mazaryuk, 

Dorman et al. found it necessary to deduce three separate sets of 

coefficients, for east, west and north-south combined. 	The 

experimental coefficients, for these azimuthal headings and for 

zenith angles of 0 °, 33
0 
 and 53

0 
 exhibit increases with increasing 

momentum. 	The predicted position of the maxima are not indicated, 

as the extrapolation to high momenta was not carried out. 

An interesting attempt to extend the range of momentum for 

which the vertical coupling coefficients have been experimentally 

determined was made by Mathews and Sivjee [1967]. 	The dependence 

of muon intensity on cut-off momentum in inclined directions at 

elevated sites was measured, with the aim of using the atmospheric 

depth so obtained (sensibly equivalent to the atmospheric depth in 

the vertical direction at sea level) in conjunction with the 

large cut-off values existing in the inclined directions at the 

equator to extend the vertical sea level integral response curve. 

It was found, however, that considerable disparity in slope 

existed between the sea level curve and the experimentally 

obtained extension, and Mathews and Sivjee were unable to make use 
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of the additional information. 

Dorman, Kovalenko and Cherkov [1969] carried out latitude 

survey observations between Russia and South America, and deduced 

the muon coupling coefficients pertaining to zenith angles of 

45
0 
 and 55

0 • 
	These results show evidence of a maximum in the 

experimentally determined portions of the functions. 	It is not 

stated by Dorman et al. whether the inclined coupling coefficients 

apply to any particular azimuth. 

The most recent determination of coupling coefficients appears 

to be that of Bel'skiy, Dmitriyev and Romanov [1969]. 	At a site 

having geomagnetic latitude 57
0 
 the azimuthal variation of intensity 

at zenith angles as great as 84 0  was investigated. 	Coupling 

coefficients were deduced from the resulting integral response 

curves. 	These coefficients are functions diminishing in value 

with increasing cut-off momentum, with no evidence of a maximum in 

the range of cut-offs investigated. 

1.4 Discussion  

Examining these various coupling coefficient estimates critic-

ally in respect of the requirements as stated in Section 1.2, it is 

evident that certain of them show deficiencies. 	The most obvious 

jailing is lack of consideration of the effects of the atmospheric 

asymmetry in data from inclined directions. 	It is necessary, in 

fact, to reject outright the coefficients of Bel'skiy et al., 

because it is quite clear that a sea level site with a geomagnetic 
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latitude of 57
o 
 is well beyond the latitude "knee" (see Chapter 5) 

for all zenith angles, and consequently the observations were 

simply measurements of the atmospheric azimuthal asymmetry alone. 

The atmospheric asymmetry effect seems to have been responsible, 

too, for the disparity between the integral response curves for 

different azimuths found by Mazaryuk [1966], and Dorman et al. 

[1967], producing as it does depression of eastern intensities and 

enhancement of those in the west. 

Although for many purposes it is obviously necessary to know 

the coupling coefficients pertaining to particular azimuths, it is 

invalid to deduce these from integral response functions constructed 

directly from data applying to the particular azimuths, since it is 

then implicitly assumed that the magnitude of the atmospheric asymm- 

etry is independent of cut-off value and magnetic field configuration. 

This, as is shown in Chapter 5, is contrary to expectation. 

For this reason, then, the determinations of specific azimuth 

coupling coefficients effected in this way must be regarded as in-

valid. 	At the same time, however, it is invalid simply to take the 

mean of the estimates for a number of azimuths as being the general- 

ized coupling coefficient function for that zenith angle. 	The 

reason for this cannot simply be explained in this chapter, arising 

as it does out of the observed peculiarities of the azimuthal 

asymmetry effect, as investigated in Chapter 5. 

It must, therefore, be assumed that the inclined coefficients 

of Mazaryuk [1966], and Dorman et al. [1967] contain significant 
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errors. 	It will be shown later in this thesis that failure to 

remove the effects of the atmospheric asymmetry from observational 

data can introduce distortion in the integral response curves, 

flattening the curves and even introducing curvature concave up- 

wards. 	This distortion characteristically causes displacement of 

the maxima in the inclined direction coupling coefficients towards 

low momentum values. 

This phenomenon appears to account for the failure of Mathews 

and Sivjee to achieve their object, as, without correction of the 

data from inclined directions to remove the atmospheric asymmetry, 

continuity of the two portions of the integral response curve 

could not be achieved. 	The basic technique is a very valuable 

one, and advantage is taken of the data of Mathews and Sivjee in 

later work. 

The observations of Dorman et al. [1969], pertaining to 

inclined directions, are combined in some manner, without explan- 

ation, to obtain a mean coefficient estimate for zenith angles of 

o 
and 53

o  
33  .  Without knowledge of how this was carried out, the 

results cannot be critically examined for evidence of distortion by 

the atmospheric asymmetry effect. 	In the absence of specific 

discussion by Dorman et al. it must be assumed that the results 

probably are affected. 

The estimates that are free of first order contamination from 

this source, then, are the vertical coefficients of Dorman [1957], 

Webber [1962], Mathews [1963], Mazaryuk [1966], and Dorman et al. 
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[1969], also the coefficients of Webber [1962], corresponding to a 

zenith angle of 45 0 . 

incident muon flux at sea level, according to the various 

investigators. 	In this diagram, and in Figure 1.2, the 

functions are normalized so that S W(O,P,x) = 100 %. 
0 

It appears that no detailed account has been made in any of 

these estimates for the finite cone of acceptance of the muon 

detectors, or for variation of primary cut-off momentum over the 

opening angle. 	In addition, these estimates, apart from those of 

Webber, involve the use of corrections of large magnitude to 

compensate for variation with latitude of atmospheric temperature 

and pressure. 	Any deficiencies, in particular the presence of 
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systematic errors, will tend to introduce large changes in the form 

of the coupling coefficients, related as they are to the first 

derivative of the integral response curves. 

Figure 1.2. Coupling coefficients pertaining to 45
o 

zenith angle. 

None of the estimates has made use of detailed, real field 

models of the geomagnetic field, and so the possibility must be 

accepted of significant errors in the detailed cut-off momentum 

values used. 	Uncertainty in this respect would probably be 

considerably less than the errors introduced by the use of axial 

. direction cut-offs in conjunction with wide angle detector data. 

This aspect of the use of cut-off data is examined in detail in 

Chapter 4, and shown to be of importance in the interpretation of 

data. 
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It is not surprising, therefore, that large disparities exist 

between the estimates of the vertical coupling coefficients, as may 

be seen in Figure 1.1. 	The inclined coupling coefficient function 

of Webber is presented in Figure 1.2. 	For comparison with this 

estimate, the theoretical coupling coefficients of Krimsky et al. 

[1965], and those quoted by Dorman et al. [1969], are also 

presented. 

The need is obvious for an accurate experimental determination 

of the muon coupling coefficients, in order to clarify the situation 

in the vertical direction, to determine in detail the zenith angle 

dependence of the coupling coefficient function, and to locate 

accurately the position of the maxima in the coefficients, so that 

accurate extrapolation of the functions to high momenta can be 

effected. 	In principle such an undertaking is possible only if 

the various factors affecting the interpretation of experimental 

intensity observations (listed in Section 1.2) are effectively 

taken into account. 

These problems are investigated in the following chapters. 
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CHAPTER 2  

LATITUDE SURVEY 

2.1 Introduction  

In order to take advantage of techniques developed to remove 

spurious effects from muon intensity data, it is of prime 

importance to acquire observational data of a high order of 

accuracy. 	So that the zenith angle dependence of the muon 

coupling coefficient function may be investigated, complete sets 

of observations over a wide range of zenith angles are required. 

In the absence of suitable existing data it is obvious that a new 

experiment must be carried out, specifically designed to allow the 

resolution of the problem. 

The Webber and Quenby method (described in Section 1.3) of 

determining coupling coefficients from data acquired during solar 

flares could not be employed at this time. 	Successful utilization 

of this technique necessitates the use of multiple beamed telescope 

arrays at a number of sites, and requires the occurrence of a 

suitable flare event. 	The resources were not available to build 

and maintain such a network of detectors, and in any case, at the 

1966-67 epoch, a large flare was most unlikely to occur. 

The present determination therefore, of necessity, was to be 

carried out using a latitude-azimuth survey. Because of failure 

to take into account the factors discussed in Section 1.2, invest- 
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igators in the past generally have had difficulty reconciling 

intensity vs cut-off data obtained from azimuth and latitude surveys. 

As is found in the following chapters, there are distinct advantages 

to be gained in combining data from both types of measurements, in 

order to make use of the desirable features of each. 

2.2 Design of the Experiment  

In essence the experiment consists of the transportation of a 

number of muon detectors of accurately known characteristics to 

sites over a wide latitude range, in order to establish by observ-

ation the distribution of muon intensity over the observing hemi-

sphere at each site. 

Whilst ideally it would be desirable to utilize fully the 

complete range of cut-offs available in the geomagnetic field, for 

practical and economic reasons the present survey was restricted 

to observations at sites within Australia covering the cut-off 

range 2-13 GeV/c in the vertical direction. 

An experiment was therefore planned in which a set of muon 

detectors was to be transported to a number of sites widely 

spaced over the latitude range available. 	It was fortunate that 

a large airconditioned semi-trailer unit became available at this 

time, and was purchased for the purposes of the survey. 	This 

vehicle was eminently suitable, having internal partitions 

conveniently arranged for division into laboratory and living 

space (see Figures 2.1 and 2.2). 
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Necessarily the size and shape of the equipment to be carried 

was dictated to a great extent by the space available in the unit. 

Figure 2.1 (opposite). 	Some "on location" scenes: 

'Figure 2.1a (top) Trailer set up at the northern-most site of 

the survey, Mossman, in tropical northern Australia. 

Figure 2.1b (centre left) Balloon inflation prior to launch at , 

Mossman. 

Figure 2.1c (centre right) The other climatic extreme - the 

trailer set up at the Springs, near Hobart. 

Figure 2.1d (lower left) Rock quarry at Townsville, where 

cosmic ray shower measurements were carried out. 

Figure 2.1e (lower right) Tribulations en route. 	Moving the 

heavily laden semi-trailer from site to site was far from 

"plain sailing". 	In addition to a number of mechanical break- 

downs, and eight tyre blowouts, difficulties were experienced 

due to the poor road conditions in northern Australia. 

During an unsuccessful attempt to reach Cooktown, the unit was 

on two occasions marooned in dry creekbeds for 24 hour periods, 

being of too low power to negotiate the steep exit tracks. 

Figure 2.1e shows the semi-trailer being towed from the bed of 

the Desailly River. 

Because of the extensive experience of the Hobart cosmic ray 

research group in the design and use of Geiger counters, triple 
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coincidence Geiger counter telescopes were chosen as the muon 

detectors. 	In addition to the muon detectors, it was planned to 

carry further detectors in the mobile unit, to facilitate other 

cosmic ray measurements. 	An IGY type neutron monitor was 

especially designed and built for the survey, to enable continuous 

measurements of neutron intensity to be carried out. 	The trailer 

was also fitted as a receiving station to receive and record data 

transmissions from high altitude balloon-borne neutron detectors. 

Sufficient equipment was carried to enable pre-flight checks to be 

made on the balloon rigs, and for the inflation and launch of the 

balloons (see Figure 2.1b). 	The neutron data are not presented in 

this thesis. 

Figure 2.2 (opposite). 	Details of mobile research unit; 

Figure 2.2a (left) Plan view of the trailer unit, showing the 

location of the cosmic ray detectors and associated recording 

equipment. 

Figure 2.2b (top right) Unit set up for observations at 

Williamtown. 	The antenna visible in this photograph was used 

for receiving telemetered data from balloon-borne equipment 

flown as part of the latitude survey program. 

Figure,  2.2c (centre right) A view in the forward compartment of 

the unit. 	A telescope unit is visible on the left, the neutron 

monitor in the foreground, and printing registers above. 

Figure 2.2d (lower right) Section of the living quarters in the 
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trailer unit, showing the well equipped kitchen area. 	For a year 

(August 1966 - August 1967) the trailer was "home" to the author, 

his wife, and daughter. 
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2.2.1 Design of the Muon Telescopes  

The configuration of the muon telescopes was carefully chosen 

to be an optimum one for the present purpose, giving a relatively 

narrow angle of response in conjunction with usefully high coinc-

idence rates at each of four equally spaced zenith angles - 

nominally 0 0, 22.5 ° , 45
0 
 and 67.5

o
. 	The following basic require- 

ments were considered when designing the telescopes: 

a) To minimize the total time for the survey, it was 

desirable to carry the maximum number of telescopes that could 

conveniently be transported, so that observations in a number 

of directions could be carried out simultaneously. 

b) Whilst, in order to shield the telescopes from the soft 

component of the cosmic ray flux it was necessary to use 10 cm. 

of lead absorber normal to the axis of each telescope, the 

total mass of lead had to minimized. 

c) Intercalibration of all the telescopes had to be easily 

effected. 

These specialized requirements were satisfied by a "cart-

wheel" type of telescope array, in which the telescopes were 

arranged about a central axle (see Figure 2.3). 	All the telescopes 

were of the same dimensions and had the required 10 cm. of lead 

absorber normal to their axes. 	The centre tray was common to all 

seven telescopes in the array. 	Glass wall Geiger counters of 60 

cm. length and 4 cm. diameter were used as the detecting elements. 

The sensitive area in the extreme trays in each telescope, which 
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Figure 2.3. 	Muon telescope design: 

Figure 2.3a (top) Details of the construction of the "cart-

wheel" telescope arrays. 

Figure 2.3b (lower left) A view of the telescope array 1 (see 

Figure 2.1a), showing EHT and scaling electronics. 

Figure 2.3c (lower right) Telescope array 2, viewed through 

a doorway in the trailer. 
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was formed by seven such counters, had the dimensions 60 x 29.5 cm. 

(the larger dimension parallel to the axle supporting the array), 

and the effective axial length of the telescopes was 159 cm.. 	The 

measured axial zenith angles of the detectors as constructed were 

0 0, 22.6 0 , 45.2 0 and 67.8 0 . 	The telescope arrays were axle 

mounted to facilitate the intercalibration of the telescopes. 	By 

rotating an array through one position and comparing the telescope 

counting rates before and after, counting efficiencies could be 

obtained relative to each other and to those in a second array. 

Two such units were constructed, one full array of seven 

telescopes, and one partial array which, due to the lack of space 

in the mobile unit, contained sufficient trays to form only one 

telescope at each of the four zenith angles. 	The two units were 

mounted in the trailer with their supporting axles at right angles 

in the horizontal plane. 	Intercalibration of the telescopes at 

the same zenith angle in the two arrays was effected by inter-

comparing rates after turning the mobile unit through 90 o 
in 

azimuth. 	By turning in this way and to intermediate 45 o 
azimuth 

points, and continuing observations until a statistically significant 

number of counts was recorded by each telescope, a set of related 

intensity measurements over the observing hemisphere at each site 

was obtained. 

In addition to the narrow angle telescopes, a vertical wide 

angle telescope was used, formed by the top three trays, the centre 

tray, and the bottom three trays of the complete array. 	The wide 
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angle telescope had an effective tray size of 60 x 91 cm., and 

axial length 159 cm.. 

240V. A.C. 
input 

12V. Trickle Trickle 12V 
accumulator I charger I charger I accumulator 11 

Figure 2.4. 	Block diagram of the circuitry associated with the 

muon telescopes. 

2.2.2 Telescope Circuitry, Recording Equipment  

As the existing observatory-type equipment operated by the 

Hobart cosmic ray group in 1966 was vacuum tube operated, it was 

necessary to design a completely new, transistorized, electronics 

system for the latitude survey equipment, in order to comply with 

the requirements of low power consumption, small component size, 

minimum weight, and maximum reliability in mobile operation. 	The 

circuits were required to be stable over wide variations in 

operating voltage and temperature. 	To this end great care was 
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taken in developing and testing the circuitry to ensure that these 

requirements were satisfactorily fulfilled. 	The circuits were 

designed to be of relatively low impedance, to ensure stability of 

operation in the presence of electrical "noise", and tests were 

carried out on the operating system to check that the events 

recorded could not be produced by other than counter discharges. 

A block diagram of the system is shown in Figure 2.4. 	The main 

components and functions of the circuitry will be described 

briefly here.' 

The basic muon detecting elements, the Geiger counters, 

required a high voltage, of the order of 1100 volts, for their 

operation. 	Simple neon stabilized EHT supplies (see Figure 2.5) 

provided this voltage, all counters in the one telescope array 

being supplied by a single power pack. 	The voltage to the 
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In order to obtain a short, sharp pulse suitable for use in 

coincidence circuitry, the pulses from all counters in each tray 

were first added through emitter follower stages into a common line, 

and then fed through a forward biassed diode acting as a noise dis-

criminator, into a Schmitt trigger circuit (see Figure 2.6). 	This 

circuit, used to square the waveform, was triggered by the first 

few percent of the Geiger pulses. 	The output of the Schmitt 

circuit was used to fire a single shot multivibrator, producing a 

2.5 microsec. positive pulse with sharp leading and trailing edges. 

Figure 2.7 shows the waveforms present in the different portions of 

the circuitry. 

Figure 2.7. 	Circuit waveforms. 	The points A, B, C and D at 

which these waveforms occur are identified in Figure 2.6. 
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counters was adjusted by means of a single control on the power 

supplies, and if it was necessary to adjust the voltage to individ-

ual counters, then this could be accomplished by connecting the 

anode resistors to one of five buss bars carrying 0, +25, +50, +75 

and +100 volts. 	The Geiger counters, as operated in the telescopes 

with a 3.3 megohm load, produced a 10 volt negative pulse, with 

rise time of P.16 microsec., and of about 100 microsec. duration. 

Figure 2.6. 	Telescope counter tray circuits: 

Figure 2.6a (upper diagram) Circuitry associated with each 

counter, and emitter follower Geiger pulse adding circuit. 

Figure 2.6b (lower diagram) Output pulse shaping circuit. 
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By means of these circuits, charged particles passing through 

each counter tray initiated short, square pulses, which were then 

fed through shielded cables into diode coincidence circuits. 

Events common to the three trays constituting each telescope were 

detected as short pulses present at the output of these circuits. 

These pulses were then pre-scaled by a given constant factor, and 

then counted by electro-mechanical printing registers. 	These 

registers were originally 240 V. operated, but were transistorized 

and adapted to low voltage operation for the survey. 	An 

Esterline-Angus event recorder was used as a backup recording 

system. 	The circuitry employed to detect the events and drive 

the recording devices is shown in Figure 2.8. 

Power for the electronic circuitry was supplied by two 12 V. 

car type accumulators, one used for powering the high current 

consumption printing printing registers, and the other supplying 

current to the remainder of the circuits. 	The batteries were 

normally trickle-charged by mains operated power supplies, but 

in the absence of a mains supply at a site, a portable, 1 kW 

generator unit was run to provide the 240 V. input to the battery 

chargers. 	The batteries, without charging, were capable of 

operating the equipment for a period of approximately 24 hours. 

Recording was carried out on an hourly basis. 	A crystal 

chronometer, designed by Dr. A.G. Fenton of the_Hobart research 

group, supplied the hour pulse used to initiate the printout 

sequence. 	As the printers took between two and three seconds 
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to print the accumulated count totals, the actual time varying from 

one printer to the next, a common dead time of 4 seconds was intro-

duced on all channels, at the end of each hour, to cover the print-

out time. 

Print initiate pulse 

Figure 2.8. 	Event registration circuits. 

Figure 2.8a (upper diagram) Coincidence, scaling and output 

circuits. 

Figure 2.8b (lower diagram) Power amplifiers, controlling the 

count and print operations of the printing registers. 
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It was necessary to have continuous recording of barometric 

pressure for use in conjunction with the cosmic ray observations. 

To this end an aneroid barograph and a Fortin mercury barometer 

were carried, and during the course of the survey pressure 

information was obtained using standard meteorological bureau 

procedures - regular three hourly Fortin barometer observations 

for use in conjunction with readings from the barograph trace, to 

obtain the mean hourly pressure. 

The stable operation of the equipment was dependent on the 

maintainance of reasonably constant temperature and humidity 

conditions in the trailer throughout the survey. 	The air- 

conditioning unit was found to be effective in controlling 

humidity and in maintaining the temperature of the equipment within 

quite acceptable bounds over the extremes of climatic conditions 

encountered. 	The mean temperature in the trailer was held in 

the range 75 t 50 F, and maximum excursions to 75 ± 10 °F, this 

range falling well inside the stable operating range of the 

equipment. 

The overall design and operation of the equipment was found 

most satisfactory, and a number of features of the muon telescope 

mechanical and electronic design were incorporated into the 

design of later transistorized observatory telescopes at Hobart 

(for example, the use of buss bar supplied HT voltages for facil- 

itating the adjustment of individual counter [HI voltages, and the 

use of the particular method of clamping counters in the trays). 



38 	 2.3 

2.3 Execution of the Latitude Survey  

2.3.1 Choice of Sites, Observing Procedures  

Seven major sea level sites were selected at which observations 

of directional muon intensity were to be made. 	The sites, 

approximately equally spaced in latitude, were chosen to fulfil 

where possible the requirements of level terrain, accurately known 

position coordinates, and regular upper atmospheric soundings. 	The 

sites were Hobart, Laverton, Williamtown, Brisbane, Rockhampton, 

Townsville and Mossman (see Figure 2.9 and Table 2.1 for site 

positions and details). 	In addition, measurements were made at two 

elevated sites, namely Toowoomba (near Brisbane, 610 m. above S.L.), 

and Mt. Wellington (near Hobart, 1250 m. above S.L.). 	Short, 

subsidiary series of observations were carried out in a deep rock 

quarry in Townsville, at Coolangatta (near Brisbane, S.L.), and at 

the Springs, Hobart, site of the Mt. Wellington neutron monitor. 

NORTHERN 
TERRITORY 

MOSSMAN 

TOWN SVILLE 

QUEENSLAND 	(s  
ROCKHAMPTON 

AUSTRALIA 
WESTERN TOOWOOMBA 
AUSTRALIA SOUTH BRISBANE 
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Figure 2.9. 	Latitude survey 

route, and main sites. 
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Table 2.1 	Details of latitude survey main sites. 

Site Geog. 

Lat(S) 

Coords. 

Lon(E) 

Alt. 
(km) 

Obs. 
period 

Mean 
press. 
(mb) 

Vert. 	Int.* 
(press. 	corr.) 

(site) 	(Hob.) 

Moss. 16
o
28' 145

o
18' SL 30/12/66- 1008.0 86.86 99.96 

13/1/67 

Towns. 19 °15' 146 °46' SL 17/1/67- 1009.1 89.53 100.42 
19/3/67 

' Rock. 23 °22' 150 °29' SL 24/3/67- 1016.0 93.21 100.83 
18/4/67 

Brisb. 27 °25' 153°05' SL 22/4/67- 1021.6 97.03 100.71 
17/5/67 

Toow. 27 ° 34' 151 °55' 0.48 21/5/67- 946.3 100.76 
3/6/67 

Will. 32
o
48' 151

o
50' SL 22/6/67- 1018.2 98.93 100.40 

7/7/67 

Lay. 37 °52' 144 °45' SL 12/7/67- 1018.8 99.65 100.74 
28/7/67 

Hob. 42
o
50' 147

o
30' SL 4/8/67- 1015.5 100.00 100.00 

31/8/67 

Mt. 	W. 42 °50' 147 °25' 1.25 9/11/67- 864.7 97.32 
26/11/67 

* In % relative to intensity during period of latitude survey 

observations at Hobart. 

At each site the trailer was aligned to the required azimuth 

with the aid of a prismatic compass and then raised on a set of 

rigid jacks (visible in Figure 2.2b). 	Care was taken to position 

the trailer away from buildings and trees, and to ensure that the 
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directions of viewing of the telescopes were completely clear of 

obstructions. 	The telescopes were accurately levelled using a 

three-point screw adjustment on their bases. 	Sensitive bubble 

levels were used as references to enable the required zenith angles 

of the telescopes to be accurately re-established after azimuth and 

site changes. 

Observations were normally continued for about a week in each 

direction to accumulate usefully large count totals. 	At each site 

a full intercalibration of all telescopes was carried out, to 

enable the intensity relationship between observations in all 

directions at each site to be deduced. 

The survey was conducted in the period from August 1966 to 

October 1967. Observations were made at each of the seven major 

sites on both the north-bound and south-bound legs of the survey, 

although in fact only the results of measurements carried out on 

the return half of the survey were finally used in the analysis 

which produced the coupling coefficients. The data acquired on 

the north bound section of the survey were rejected ;  due to major 

deficiencies in the observational data, which arose as follows: 

a) Serious interruptions were experienced during observations, 

due to the failure of many Geiger counters as a result of the 

cracking of glass-metal seals, brought about by vibration 

and temperature cycling during travel. 	This problem was 

overcome by applying a coating of epoxy resin over the seals 

of 'all counters. 
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b) Failure to carry out the intercalibration process at each 

site. 	This technique was introduced as a regular part of 

the operations at each site during the return half of the 

survey. 	Whilst this repeated calibration process added an 

extra two months to the survey work, it enabled results of 

greatly improved accuracy to be obtained, and in fact, it 

was due only to the implementation of this procedure that the 

ratio method of analysis could be developed (described in 

Section 2.3.4), allowing effective data analysis. 

The data used in the coupling coefficient determination, 

described in later chapters, were acquired over the period 

December 1966 to August 1967. 	The period of time spent at each 

site is listed in Table 2.1. 	Information about the relative 

muon intensities at the sites and at Hobart during these periods 

is also contained in Table 2.1. 

2.3.2 Investigation of Air Shower Effect  

Geiger counter telescopes obtain their directional sensitivity 

by detecting simultaneous occurrence of pulses that accompany the 

passage of a charged particle through the trays of the telescope. 

The charged particles in the sea level flux are mostly muons and 

electrons; however, a layer of 10 cm. of lead, inserted between two 

of the trays of the telescope, is able to prevent all but the 

highest energy electrons from being detected after entering within 

the opening angle of the telescope, whilst allowing the passage of 
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most of the muons. 

Many electrons originate in cosmic ray "shower" events, in 

which a high energy primary or secondary particle suffers a 

collision in the atmosphere, producing a cascade of electrons 

travelling downwards through the atmosphere (Janossy [1948] 

presented a detailed discussion of the morphology of cosmic ray 

showers). 	If such a shower impinges upon a telescope, bypassing 

the lead (incident from a direction outside the opening angle of 

the detector), a spurious event may be detected by the telescope, 

because the electrons can then produce simultaneous discharges in 

each of the counter trays constituting the telescope. 	Such events 

must be rejected if true directional muon intensities are to be 

measured. 

The actual effect that showers of this type have on any 

detector is found to be dependent on the configuration of the 

particular detector (the position of the absorber, the size, 

number and position of the trays, the inclination of the telescope, 

etc.), and the spurious event rate must normally be experimentally 

determined by means of extra circuitry incorporated into the 

detector electronics. 

The present series of observations were made using no direct 

suppression of the recording of shower produced events, although, 

because of the narrow angle of the telescopes, such events would 

be expected to contribute significantly to the total coincidence 

rate. It was found necessary to make regular direct observations 
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of the shower rates involved in order to subtract these from the 

observed rates. 	As will be shown presently, the removal of the 

effects of showers from the data is very important as the shower 

events are responsible for a marked zenith dependent increase in 

the atmospheric pressure coefficients of the total telescope rates. 

It is particularly important to remove this effect in order that 

the ratio technique of data analysis be successfully applied. 

The measurements of the coincidence rates produced by showers was 

made using the standard shower detection technique of recording 

four-fold coincidences, in this case between the three trays of 

the telescope involved and the summed outputs of other trays 

nearby, but outside, the acceptance angle of the telescope. 

The shower events as they affected the telescopes were found 

to have a very large pressure coefficient, varying from approx-

imately 0.72 % per mb. for telescopes inclined at 67.8 °  to the 

zenith (from now on referred to as the 67.8 0  telescopes), to 0.4 

% per mb. for the 0 0  telescopes. 	The shower rate - pressure 

relationship for showers affecting the various telescopes was 

observed to differ significantly from a simple exponential 

dependence. 

As a means of investigating the nature of the shower effect, 

an experiment was conducted in a deep rock quarry at Townsville 

(see Figure 2.1d). 	Telescopes inclined at 45.2 °  and 67.8 °  to tlie 

zenith were directed into a rock face, with a minimum thickness 

of approximately 24 m. of granite obscuring their cones of 
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acceptance. 	It was found that the three-fold coincidence rates 

dropped to approximately 15% of the normal rates. 	The four-fold 

rates, on the other hand, were not so greatly affected - the 67•8 0  

telescope four-fold rate dropped by 8 I 11 % (S.D.error), and that 

of the 45.2
0 

telescope by 34 1' 4 %. 	These observations tend to 

support the view that the showers affecting the telescope rates 

come predominantly from directions away from the acceptance cones. 

In order to investigate quantitatively the nature of the 

shower events, a further experiment was carried out, at Toowoomba, 

in which the four-fold events characterising the occurrence of 

showers were recorded individually on an event recorder for a three 

hour period, to find the number of detectors affected in each 

event. 	Analysis of these results showed that the ratio of the 

number of events in which one telescope was affected, to the 

number in which two or more were simultaneously excited, varied 

markedly with the zenith angle of viewing, from 0.49 for a 

vertical telescope, to 0.29 for one at 67.8 0 . 

This result, together with the observed variation from 

exponential dependence of shower rate on pressure, can be explained 

in terms of two components in the shower flux. 	One component 

corresponds to the multiple particle electron shower, initiating 

spurious coincidences by impinging on the telescopes from the sides, 

outside the cones of acceptance. 	The other component evidently is 

a hard shower component, consisting of a limited number of 

particles approaching the telescopes within the acceptance cones, 
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one of the particles at least (probably a muon), penetrating the 

absorber. 

Analysis of the shower rate vs pressure data for the telescopes 

at each zenith angle, using the measured ratios of the two compon-

ents, produced independent estimates of the pressure coefficients 

of the two components which agree well with one another (even 

though the ratios were derived as the result of the rather arbit-

rary division of the showers into those affecting one, or more than 

one telescope simultaneously). 	The pressure coefficient estimates 

were made by determining the two exponential components which 

together are required to make up the observed pressure dependence. 

It may be shown that, if the total shower rates I, 12  and 1 3  are 

known at three pressures P - 6P, P, and P + 6P, and the ratio of 

hard to soft shower rates
h/I s is known at pressure P (where 

1 2  = I + I
s
), then the pressure coefficients are given by 
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It is found that the alternate pairs of solutions predict 

essentially the same pressure coefficients. 	The calculated 

coefficient values were: -0.29 	0.05 % per mb. for the "hard" 
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component, and -0.81 ± 0.06 % per mb. for the "soft" shower comp-

onent. 

The two-component picture of the showers explains well the 

observed Townsville quarry results. 	On the basis of the two- 

component assumption, the expected decrease in shower rate for a 

67.8
o 

telescope is 22 ± 10 %, and 32 ± 10 % for one at 45.2
o
, as 

the result of blocking of the telescope cones of viewing (cf. 

8 ± 11 % and 34 ± 4 % respective experimental values). 	These 

calculated values do not take into account the slight reduction 

expected in the shower event rate due to the diminuition of the 

solid angle from which soft showers could arrive. 

Ideally, all the soft component shower events and that 

portion of the hard component produced by particles entering at 

some angle outside the telescope acceptance cone should be taken 

into account when corrections to the three fold coincidence rates 

are made. 	As, during the survey, only total shower event rates 

were measured, correction has been carried out to remove all 

detected shower events. 	It is apparent that a small overcorrect- 

ion is being made in that a significant number of muons enter the 

viewing cones of the telescopes, as discussed, accompanied by a 

second particle and are rejected as undesirable, although in fact 

forming part of the directional muon flux. 	This overcorrection, 

however, appears only as a small systematic change in the apparent 

zenith angle dependence of the muon intensity. 	Calculations of 

the magnitude of the effect, included in the error estimates in 
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the following section, show that no serious errors are introduced 

into the corrected data. 

The freedom of the final results from other spurious shower 

effects depends very much on the efficiency of the shower detection. 

If the detection efficiency is low, then, because of the high 

pressure coefficient of the residual uncorrected shower component, 

the resultant apparent muon pressure coefficient will be greater 

than the true value. 	The magnitude of the increase will vary 

with zenith angle, since the proportion of showers in the total 

rate varies greatly with zenith angle, and since the admixture of 

hard and soft components in the showers, each with a different 

pressure coefficient, is also a function of zenith angle. 	A 

low detection efficiency would be expected to be manifested as 

an artificial rise in the value of the pressure coefficient with 

increasing zenith angle. 

In order to obtain an estimate of the efficiency of shower 

detection, an experiment was carried out in which the rate of the 

wide angle telescope (denoted A in Figure 2.10) was compared, over 

a wide pressure range, with the summed rates of the three narrow 

angle telescopes B, C and D, whose trays together constituted the 

wide angle telescope. 	The three narrow angle telescopes together 

covered the same total field of view as the wide angle telescope, 

and in so far as their summed rates were equivalent to the wide 

angle rate, the observed pressure coefficient should have been the 

same, in the absence of showers. 
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Consider the effect of showers on the telescope rates. 

Whilst the genuine single event rate, dependent as it is on both 

the area of the trays and the solid angle of acceptance, varies 

approximately as (area)
2 

for a telescope of given axial length, the 

soft shower rate, as it is sensibly independent of the acceptance 

angle of the telescope, would be expected to vary approximately as 

(area)
1 
 in a telescope of given axial length. 

In the experiment, the 

wide angle telescope had the 

same axial length as the narrow 

angle telescopes, but had a tray 

area three times as large. 

Thus, from the preceding dis-

cussion, the genuine muon event 

rate would be expected to be 

nine times larger, and this is 

in fact observed. 	The shower 

rate would be expected to be 

approximately three times as 
relationship between the three 

large, compared with the factor 
narrow angle telescopes and the 

• of four observed. 
wide angle telescope. 

Because of the disprop- 

ortionate increase of the genuine event rate compared with the 

shower rate, the pressure coefficient of the uncorrected wide angle 

rate would be expected to be lower than that of the summed narrow 
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angle rates. 	The ratio of the uncorrected telescope rates 

B + C + D  . 
A 	

is seen, in Figure 2.11, to vary markedly with pressure. 

For comparison, the shower corrected ratio is also shown. 	Little 

residual pressure variation is observed. 	As the "guard tray" 

systems for the wide and narrow angle telescopes were similar, it 

is reasonable to assume that the efficiency of shower detection is 

essentially the same for all the telescopes. 	On this assumption, 

the shower detection efficiency, estimated from a comparison of 

the corrected and uncorrected ratio pressure dependence, as shown 

in Figure 2.11, is of the order of 70 %. 

Figure 2.11. Observed dependence of the ratio of the summed 

narrow angle telescope rate to the wide angle telescope rate, 

as deduced from both the shower corrected and uncorrected data. 
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2.3.3 Analysis of Errors  

The errors affecting the experimentalresultsmoy be divided 

into three classes: 

2.3.3.1 Errors in individual telescope observations  

These errors arise from four main sources: 

a) The limited statistical accuracy of the observations. 

Each measurement consisted of the detection of a finite 

number of events. 	Since, for the population of events detected by 

coincidence telescopes, Poisson statistics are found to apply, the 

standard errors were deduced in a straight forward manner. 

Further statistical error was introduced in the process of inter-

.calibration of the various telescopes inclined at any particular 

zenith angle. 	The statistical errors of observation and of 

calibration have been combined to produce a single standard 

deviation error on each estimate. 	It may be shown that the 

precision of an estimate derived as the ratio or product of two 

quantities, each with known statistical errors, is given by 

Cf = 2 + 02 ) 12  
1 	2 

where a, 61 , and a2  are the percentage S.D. errors of the 

estimate and the individual quantities respectively. 

b) Errors due to the uncertainty of telescope orientation in 

azimuth and zenith. 
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The possible azimuth angle error was estimated to be ± 1.5 0 , 

made up of the summed uncertainties in the effective telescope 

heading relative to the trailer, and in the trailer heading 

relative to an established azimuth bearing. 	The magnitude of the 

error so produced in the results is dependent upon the value of 

dl 
— at the particular azimuth and zenith, where I represents the 
dO 

muon intensity, and 0 the azimuth. 	The greatest value observed 

dI 
was at Mossman, where, for the 67.8 0 telescope, — Pe, 0.15 % per 

o
. 

de 

The possible errors from this source have been computed from the 

observational data and applied accordingly. 	In general, errors 

due to azimuth uncertainties are small compared with the 

statistical errors. 

The zenith angles of the telescopes were reproducible (with 

the aid of bubbles levels) to ± 15 seconds of arc. 	Assuming a 

cosine squared form of zenith dependence of intensity (to which 

all the results approximate), this uncertainty could result in 

errors of ± 0.01 % in 22.6 °  telescope results, ± 0.02 % at 45.2 ° , 

and ± 0.05 % at 67.8 ° . 	Calibration of the telescopes at any 

zenith angle against one "standard" telescope at each inclination 

was unaffected by slight differences in zenith angle of the 

individual telescopes, as these differences appeared merely as 

differences in relative efficiency. 

c) Errors due to uncertainties in the shower correction process. 

Overlooking for the moment the effects of inefficient 
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shower detection (discussed in Section 2.3.3.3 b), the effects are 

considered of inaccuracy arising in the estimates of the shower 

total corresponding to any particular recording period. 	The 

shower rates were regularly measured, and these data were compiled 

in the form of graphical plots of shower rate as a function of 

pressure for each telescope. 	The shower correction for any 

particular set of muon intensity data was found by interpolating•

the value of the shower correction appropriate for that period. 

The possible error in any value so derived is estimated to be 

i 3 %. 	The resulting errors in the intensity data are t 0.06 % 

at 0 °, t 0.09 % at 22.6 ° , t 0.12 % at 45.2 ° , and t 0.3 % at 67.8 ° . 

d) Errors resulting from the assumption that the inclined/ 

vertical intensity ratios are independent of changes in atmospheric 

conditions. 

The analysis technique adopted for deriving the coupling 

coefficients depends critically upon this assumption for its 

validity (this technique is discussed in Section 2.3.4, and 

justified in Chapter 6). 	The behaviour of the ratios was studied 

experimentally for large changes in atmospheric conditions, in 

particular, observations were made at the summit of Mt. Wellington, 

and the observed ratio values compared with those at sea level. 

The mean changes in the shower-corrected ratios were found to be, 

for a decrease in pressure of 150 mb., 	0.10 ± 0.15 % at 22.6 ° , 

- 0.3 ± 0.2 % at 45.2 ° , and - 2.7 ± 0.4 % at 67.8 ° . 	No significant 
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differential change in the ratio values was observed in the ratio 

values with variation in azimuth. 	The effects of correction for 

the "hard" shower over-compensation would tend to reduce these 

observed ratio changes to the point where little residual variation 

would remain; however, because of the incomplete knowledge of the 

precise proportion of such showers, no attempt was made to intro-

duce this factor. 

The mean pressure values at the sea level sites were found to 

lie within a 13 mb. range. 	The calculated changes in the inclined 

/ vertical intensity ratio for pressure variation in this range, 

relative to the ratios existing at the average pressure over the 

period of the entire survey, may be considered an estimate of the 

errors associated with the use of the ratio values. 	These errors 

are small: 21 0.005 % at 22.6 °, ± 0,015 % at 45.2 ° , and -I-  0.12 % 

at 67.8
o

. 

2.3.3.2 Intercalibration systematic errors  

These errors limit the accuracy to which comparison of data, 

for any particular zenith angle at any two sites, may be made. 

They arise in the process of intercalibration of the "standard" 

telescopes at the different zenith angles. 	Calculation of the 

magnitude of these errors has been carried out, taking into 

account the statistical accuracy of the count totals used to 

derive the relative efficiencies. 	Because intercalibration was 

carried out at each site, these errors are constant for any one 
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set of observations, but vary from site to site. The effects of 

long term changes in operating levels of the detectors were over-

come by this repeated intercalibration. The values of the inter-

calibration systematic errors at each site are tabulated in Tables 

2.2, 2.3, and 2.4, in conjunction with the tabulated ratio values. 

2.3.3.3 Fixed systematic errors  

These errors produce a systematic shift in the apparent 

zenith angle of the different "standard" telescopes, introducing 

errors into the data for each zenith angle data set which are 

constant throughout the entire series of measurements, affecting 

all observations for each particular zenith angle to the same 

extent. 	They arise in two ways: 

a) A significant uncertainty exists in the measured value of the 

zenith angles of the standard telescopes, estimated to t 20 

minutes of arc. 	The resulting possible errors are ± 0.8 % in 

the 22.6 °  results, t 1.6 % in the 45.2 °  results, and ± 4 % at 67.8 o
. 

Appreciable systematic errors could arise out of uncertainties 

associated with the shower correction process. 	Taking into 

account the estimated shower detection efficiency and the effects 

of over-correction for the "hard" shower component, the systematic 

+0.2 0+0.4   errors are estimated to be: - 1.0 % at 0, 	1.3  % at 22.6
o

, 

+ 0.8 
% at 45.2 ° , and ± 2 % at 67.8 ° . - 1.6 
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The total fixed systematic errors in the inclined/vertical 

1.0 
intensity ratios are as follows: + 

	
% at 22.6 ° , 	2 % at 45.2 ° , - 1.1 

+4 
and - 5.0 % at 67.8 ° . 

2.3.4 	Presentation of Experimental Data  

The experimental results are presented in tabular and 

graphical form, in Tables 2.2, 2.3, and 2.4, and in Figures 2.12, 

2.13, and 2.14. 	Table 2.5 specifies the azienuth angles referred 

to by number in Tables 2.2 - 2.4. 

The data are in the form of ratios of inclined/vertical 

muon intensities; or, more specifically, the ratio of the corrected 

counting rate of a narrow angle telescope (as described in Section 

2.2)directed in the specified viewing direction, to the rate of 

the same telescope directed vertically at the same site. 	The 

magnitude of the different types of errors discussed in Section 

2.3.3 are indicated in both the tables and the diagrams. 

The inclined/ vertical mode of presentation is a very 

important one, as it is the means by which the necessity for 

detailed correction for atmospheric effects in the data is 

avoided. 	The technique, justified in Chapter 6, relies on the 

fact that the muon pressure and temperature coefficients are 

sensibly independent of zenith and azimuth angle in the atmos- 

phere. 	As a result, it is possible to assume that, in the 

absence of the geomagnetic field (i.e. zero value cut-offs, 

and no atmospheric asymmetry effect), the ratio [to page 62] 



56 	 2.3 

Table 2.2. Value of inclined/vertical intensity ratio for range 

of values of azimuth at the latitude survey sites - zenith angle 

of inclined detector: 	22.6 0 . 	Note - bracketed errors are 	in %.• 

Site 	Inclined/vertical ratio at specified azimuths ( 1 ) 	Error 

1 	2 	3 	4 	5 	6 	7 	
8 	(2 )  

Moss. 	0.8548 0.8171 0.8547 0.8780 0.29 
(0.26) (0.23) (0.36) (0.23) 

• 
Towns. 0.8475 0.8268 0.8146 0.8308 0.8450 0.8606 0.8692 0.8633 0.17 

(0.10) (0.11) (0.13) (0.19) (0.15) (0.18) (0.12) 	(0.12) 

Rock. 	0.8431 0.8235 0.8299 0.8412 0.8521 0.8618 0.8528 0.37 
(0.13) (0.18) (0.14) (0.27) (0.27) (0.26) (0.29) 

Brisb. 	0.8401 0.8354 0.8360 0.8403 0.8480 0.8471 0.8440 0.18 
(0.17) (0.14) (0.29) (0.28) (0.28) (0.29) (0.14) 

bow. 	0.8347 0.8329 0.8389 0.8452 0.8528 0.8530 0.8447 0.29 
(0.18) (0.16) (0.33) (0.33) (0.33) (0.32) (0.16) 

Will. 	0.8450 0.8406 0.8413 0.8429 0.26 
(0.14) (0.31) (0.30) (0.15) 

Lay. 	0.8415 0.8359 0.8356 0.8400 0.26 
(0.16) (0.30) (0.30) (0.15) 

Hob. 	0.8391 0.8373 0.8387 0.8410 0.12 
(0.08) (0.08) (0.10) (0.09) 

Mt. 	W. 	0.8421 0.8346 0.8412 0.8428 0.27 
(0.26) (0.26) (0.13) (0.14) 

a) 1 	See Table 2.5. 

b) 2  Intercalibration systematic error M. 	see Section 2.3.3.2. 

c) Bracketed figures denote S.D. 	statistical error (%) 	applicable. 

A ± 0.13 % error also applies to each value (see Section 2.3.3.1). 

+ 1.0 
d) Fixed systematic error (see Section 2.3.3.3): 

	

	%. 
- 1.1 
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Table 2.3. Value of inclined/vertical intensity ratio for range 

of values of azimuth at the latitude survey sites - zenith angle 

of inclined detector: 45.2 0 . Note - bracketed errors are in % 

Site Inclined/vertical 

1 	2 	3 

ratio at specified azimuths 

4 	5 	6 	7 

(
1

) 

8  

Error 

( 2 )  

Moss. 0.4994 0.4611 0.4999 0.5155 0.41 
(0.35) (0.24) (0.50) (0.24) 

Towns. 0.4872 0.4716 0.4562 0.4766 0.4931 0.5005 0.5030 0.5019 0.24 
(0.15) (0.17) (0.16) (0.27) (0.21) (0.25) (0.17) (0.16) 

Rock. 0.4851 0.4693 0.4677 0.4838 0.4930 0.4936 0.4937 0.54 
(0.17) (0.24) (0.19) (0.40) (0.38) (0.36) (0.45) 

Brisb. 0.4743 0.4734 0.4731 0.4736 0.4849 0.4840 0.4829 0.26 
(0.21) (0.15) (0.36) (0.35) (0.35) (0.36) (0.17) 

bow. 0.4735 0.4677 0.4665 0.4687 0.4800 0.4771 0.4766 0.41 
(0.23) (0.21) (0.43) (0.43) (0.38) (0.38) (0.21) 

Will. 0.4759 0.4683 0.4733 0.4790 0.38 
(0.18) (0.38) (0.39) (0.20) 

Lay. 0.4712 0.4684 0.4640 0.4715 0.38 
(0.20) (0.39) (0.39) (0.19) 

Hob. 0.4720 0.4668 0.4719 0.4749 0.17 
(0.10) (0.12) (0.15) (0.12) 

Mt. 	W. 0.4710 0.4644 0.4695 0.4739 0.39 
(0.34) (0.34) (0.16) (0.17) 

a) 1  See Table 2.5. 

b) 2  Intercalibration systematic error (%), see Section 2.3.3.2. 

c) Bracketed figures denote S.D. statistical error (%) applicable. 

A 1 0.17 % error also applies to each value (see Section 2.3.3.1). 

d) Fixed systematic error (see Section 2.3.3.3): 1 2.2 %. 
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Figure 2.13. Graphical representation of observed inclined/ 

vertical intensity ratio - zenith angle of inclined detector: 

45.20. 	Inner and outer segments of error bars represent 

statistical and additional errors on points, double error bars 

at 315 °  azimuth indicate the magnitude of the intercalibration 

systematic error; the fixed systematic error applicable is 

2.2 % (see Sections 2.3.3.1, 2 and 3). 
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Table 2.4. Value of inclined/vertical intensity ratio for range 

of values of azimuth at the latitude survey sites - zenith angle 

of inclined detector: 	67.8 0 . 	Note - bracketed errors are 	in %. 

Site 	Inclined/vertical ratio at specified azimuths ( 1 ) 	Error 

1 	2 	3 	4 	5 	6 	7 	8 	( 2 )  

Moss. 0.1467 0.1364 0.1467 0.1538 • 0.57 
(0.65) (0.53) (0.92) (0.53) 

Towns. 0.1428 0.1390 0.1353 0.1408 0.1432 0.1465 0.1472 0.1465 0.34 
(0.31) (0.32) (0.30) (0.48) (0.38) (0.44) (0.31) (0.32) 

Rock. 0.1410 0.1390 0.1386 0.1400 0.1441 0.1463 0.1437 0.74 
(0.31) (0.45) (0.35) (0.72) (0.72) (0.65) (0.72) 

Brisb. 0.1374 0.1363 0.1366 0.1367 0.1426 0.1423 0.1398 0.36 
(0.41) (0.33) (0.68) (0.67) (0.62) (0.68) (0.37) 

Mow. 0.1346 0.1325 0.1339 0.1338 0.1378 0.1402 0.1365 0.57 
(0.43) (0.39) (0.79) (0.79) (0.80) (0.78) (0.39) 

Will. 0.1383 0.1334 0.1346 0.1394 0.53 
(0.35) (0.71) (0.73) (0.38) 

La.v. 0.1350 0.1313 0.1341 0.1369 0.52 
(0.38) (0.73) (0.73) (0.37) 

Hob. 0.1351 0.1340 0.1342 0.1370 0.23 
(0.21) (0.22) (0.23) (0.23) 

Mt. 	W. 0.1306 0.1306 0.1322 0.1329 0.54 
(0.64) (0.63) (0.31) (0.33) 

a) 1  See Table 2.5. 

b) 2  Intercalibration systematic error (%). see Section 2.3.3.2. 

c) Bracketed figures denote S.D. statistical error (%) applicable. 

A ± 0.49 % error also applies to each value (see Section 2.3.3.1). 

d) Fixed systematic error (see Section 2.3.3.3): 
- 5.0 
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Figure 2.13. Graphical representation of observed inclined/ 

vertical intensity ratio - zenith angle of inclined detector: 

67.8 ° . 	Inner and outer segments of error bars represent 

statistical and additional errors on points, double error bars 

at 315 °  azimuth indicate the magnitude of the intercalibration 

systematic error; the fixed systematic error applicable is 
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Table 2.5. Identification of numbers used to represent azimuth 

angles in Tables 2.2 - 2.4. 

Site 	Azimuth ( ° E of geographic N) equivalent of numbers 

1 2 3 4 5 6 7 8 

Moss. 15.5 105.5 195.5 285.5 

Towns. 20.5 65.5 110.5 155.5 200.5 245.5 290.5 335.5 

Rock. 28.0 73.0 118.0 163.0 208.0 298.0 343.0 

Brisb. 32.0 77.0 122.0 167.0 257.0 302.0 347.0 

Mow. 32.0 77.0 122.0 167.0 257.0 302.0 347.0 

Will. 15.0 105.0 195.0 285.0 

Lay. 15.5 105.5 195.5 285.5 

Hob. 13.0 103.0 193.0 283.0 

Mt. 	W. 13.0 103.0 193.0 283.0 

[from page 55] of inclined to vertical intensity, for a particular 

pair of detectors, is effectively dependent only on zenith angle, 

and is independent of the latitude of the observing site. 

Departure from the basic zenith angle dependence would occur in the 

presence of significant primary momentum cut-offs. 

Consider the situation at two sites, which, while being free 

of the manifestations of the atmospheric asymmetry effect, possess 

significant cut-off values over the observing hemisphere. 	At each 

of these sites, we may, in principle, deduce the azimuthal asymmetry 

pattern at any particular zenith angle by making a series of 
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observations with an inclined detector, and calculating the ratio 

of the rate of this detector to that of a vertically directed 

detector operating simultaneously. 	Comparison of the ratio values 

at the two sites would reveal that, for observations in inclined 

directions having the same cut-off value, the ratios have the same 

value if the vertical cut-offs were also of equal value. 	On the 

other hand, if the vertical cut-offs were not of equal value, the 

resulting difference in the ratio values would be a measure of the 

change in vertical muon intensity from one site to the other, due 

to the difference in vertical cut-off value, independent of the 

structure of the atmosphere. 

The presence of the geomagnetic field in the atmosphere 

complicates analysis by this technique, as directional asymmetries 

are produced due to the deflection of the muons. 	This-problem is 

investigated in Chapter 5, and it is shown that these effects may 

be removed from the data. 

Analysis of the corrected ratio data, in order to extract the 

uni-directional coupling coefficients as a function of zenith 

angle, necessitates detailed understanding of the response 

characteristics of the detectors used in the latitude survey. 	In 

the following chapter the telescope characteristics are considered, 

and in particular, techniques are developed for determining the 

detector response in the presence of geomagnetic cut-offs. 
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CHAPTER 3 

DETECTOR CHARACTERISTICS 

3.1 Introduction  

In many aspects of cosmic ray research, information is 

required, in principle, about unidirectional particle intensities. 

In practice, because of the low fluxes involved, it is usually 

necessary to resort to the use of detectors of relatively wide 

angle of response, in order to measure particle intensities to 

sufficient statistical accuracy. 

Such a situation exists in the determination of muon 

coupling coefficients by latitude survey. 	Because of the limit- 

ations on detector size imposed by the requirements of easy trans-

portability, together with the limited time of observation, 

investigators have, in general, made use of wide angle detectors, 

of cubic or semi-cubic geometry. 	In spite of the obvious desir- 

ability of rigorously taking.into account the finite width of the 

detector acceptance cone, the lack of information about several 

factors in the problem (distribution of cut-off momentum value 

over the acceptance cone, zenith dependence of response character-

istics, etc.) has led to the use of a simplified approach in data 

analyses. 	The cut-off momentum effective in any direction of 

viewing of a detector has therefore been assumed to be equal to 

that pertaining to the axial direction, and the coupling coeff- 
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icient estimates have been interpreted as applying to the zenith 

angle of the detector axis. 	Thus coefficients obtained by the 

use of vertically directed telescopes are usually assumed to be 

those applying to a zenith angle of 0 0 , even though, in fact, the 

mean zenith angle of response of such detectors is necessarily non-

zero. 

In order to derive the unidirectional dependence of coupling 

coefficients on zenith angle from the results of the latitude 

survey, the finite cone of acceptance of the telescopes must be 

- taken into account. 	Calculations must allow for the contributions 

from all portions of the acceptance cone, with account taken of 

variation of geometric sensitivity, muon intensity dependence on 

zenith angle, and the effects of a directional cut-off structure 

over the acceptance cone of the detector. 	It is in the consid- 

eration of this last factor that the problem becomes complex. 

At high latitudes the situation is relatively straight-

forward, as the geomagnetic cut-offs are masked by atmospheric 

absorption, and a simple zenith-dependent, azimuth-independent, 

expression may be used to represent the muon intensity distrib-

ution, in determinations of detector characteristics. 	A number 

of previous investigations have been made of detector response 

under these conditions. 	The more significant of these are 

reviewed here. 
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3.2 Review of Investigations of Telescope Response in Absence of  

Cut-offs  

In discussing detector characteristics, it is convenient to use 

the terms "geometric" and "radiation" sensitivity. 	The detector 

sensitivity calculated on the assumption that the particle flux is 

isotropic is called the geometric sensitivity (or geometric factor), 

whilst the radiation sensitivity is that calculated taking into 

account the directional dependence of the particle intensity 

reaching the detector. 

Calculations of telescope sensitivity are usually carried out 

to allow either: 

a) the determination of the relationship between directional 

intensities and observed detector rates, or 

b) the establishment of the sensitivity pattern of a partic-

ular telescope in a particular situation, as a necessary step 

in, for example, the interpretation of observed time variations 

in the cosmic ray flux, where it is important to know precisely 

the range of directions viewed by the detector. 

Investigations typical of the first type include those by 

Tidman and Ogilvie [1957], and Stern [1960], who derived integrable 

expressions representing the radiation sensitivity of a small 

element of a telescope, and from these deduced detector sensitiv-

ities. 	Tidman and Ogilvie carried out the integration process 

numerically, and, by varying the parameters representing the 

dimensions and inclination of a generalized detector, and the form 
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of the muon intensitivity zenith dependence f(e), obtained sets of 

values of a constant, C, which, when inserted into the expression 

I = I(0) f(0) (area) (solid angle) C 

allowed the counting rate of a detector of any configuration to 

be predicted. 	Due to certain approximations introduced into the 

calculations, the technique is limited to telescopes with 

(tray side) /(length) 	0.75. 

In his approach, Stern derived, by analytical integration, an 

expression giving the rate of a telescope of any dimensions in a 

radiation flux with variable zenith dependence. 	This expression, 

however, is applicable only to vertically directed telescopes. 

Parsons [1957,1959], Brunberg [1958], and Lindgren [1965], on 

the other hand, have investigated the sensitivity patterns of 

, detectors - the manner in which the sensitivity of a telescope 

varies over the acceptance cone. 	Parsons' approach is typical 

of these. 	He developed general relationships expressing the 

variation of radiation sensitivity of a telescope, of any geometry, 

with zenith angle, and carried out calculations of the sensitivity 

pattern of a number of telescopes of commonly used geometry and 

inclinations. 	Brunberg and Lindgren similarly have developed 

techniques for calculating sensitivity patterns of detectors, and 

have deduced the response characteristics of particular detectors, 

in high latitude situations. 

It can be seen that the techniques for,calculating telescope 

sensitivities at high latitudes are well established, and in 
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principle may be applied in any related situation. 	At low 

latitudes these techniques cannot be applied, because of the 

presence of geomagnetic cut-offs, and it appears that in the past 

no investigations have been made into the problem of taking the 

cut-offs into account. 

In order to interpret the present latitude survey observations 

it has been necessary to investigate this problem. 	A method of 

determining telescope response in any situation, in the presence or 

absence of geomagnetic cut-offs, has been developed, in a form 

particularly suited to computer solution. 

3.3 Generalized Technique for Calculating Telescope Response  

3.3.1 Geometric Sensitivity of Element  

Consider the telescope, of dimensions a x b x 1, represented 

in Figure 3.1. 	It is readily shown 

that a solid angle element whose 

position is defined by the angles 

a - ea/2, a + ba/2, p - sp/2, P 

6P/2, as indicated in this diagram, 

has solid angle 

division of acceptance 

cone of telescope into 

solid angle elements. 

where y = arctan[J(tan2a + tan28)] 

• This method of defining the element was 

chosen as it conveniently allows the 
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division of the acceptance cone of any telescope into rectangular 

elements for the purpose of summing the contributions from all 

elements. 	The cross-sectional area of the telescope presented 

to particles entering within the solid angle element may be shown 

to be 

A = cosy (a - 1 ltanal) (b - 1  Itar01) 

The geometric sensitivity G of the element is simply G = A on. 

3.3.2 Determination of Position of Element  

Calculation of the radiation sensitivity requires that the 

zenith and azimuth angles defining 

the position of the element be 

known, so that the directional 

distribution of muon intensity may 

be taken into account. 

If the telescope is tilted. 

about an - axis parallel to the side 

b, so that the telescope is inclined 
Figure 3.2. Position of 

at an angle of 0' to the zenith, and 
telescope after being 

directed at azimuth heading of 0', 
tilted through angle 0', 

as shown in Figure 3.2, then the 
and directed at azimuth 0. 

zenith and azimuth angles 0, 0 of 

the element are given by the expressions: 
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0 = arcos[cos(0 + a) cos(arctan(cosa tans))] 

0 = 0' + arctan[ c.osa tare  1  
sin(0 1  +a)-I 

(3.1 ) 

For certain applications it is desirable to rotate the 

telescope through an angle a about the axis of the acceptance cone, 

as shown in Figure 3.3. 	(This step is taken in Chapter 4, where 

Figure 3.3. Inclined telescope, 	Figure 3.4. Relationship 

after rotation through an angle 	between a', 0' and a, 13 

G about the axis of the telescope 	after telescope rotation. 

acceptance cone. 

the response of a narrow angle telescope, viewing in the direction 

of main cone folding, is determined. 	A further use of a rotation 

of this kind lies in cosmic ray astronomy, where it could be used 

as a means of optimizing the overall response of a multiple beam 

array of telescopes to a primary anisotropy). 

After rotation, the zenith and azimuth angles defining the 

position of a telescope element may be found by firstly transforming 
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the angles a and 0 defining the element position in the telescope 

frame of reference, to angles a' and pi fixed in the frame of ref-

erence coinciding with that existing in the telescope before the 

rotation was carried out (see Figure 3.4). 	The relationship 

between a', 0' and a, 0 is given by the equations: 

a' = arctan(tana cosy - tans sinG) 

0' = arctan(tan0 cosG + tana sinG) 

The position of the element is found by using a' and 0' in place of 

a and p in equations (3.1). 

3.3.3 Radiation Sensitivity of Element in Absence of Cut-offs  

The radiation sensitivity R of a telescope element is given 

quite generally by 
R = G f(0,0) 
	

(3.2) 

where f(0,0) is a function describing the directional 

distribution of muon intensity. 	In the absence of geomagnetic 

cut-offs (at high latitudes and low altitudes), the total muon 

intensity is almost independent of azimuth, and the radiation 

sensitivity may be expressed as 

R = G f(0) 	 (3.3) 

where f(0) is an expression describing the relative 

intensity , of muons at zenith angle 0. 	If a function 1(0) 

represents the absolute intensity of muons as a function of zenith 
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angle, then it is convenient to define f(0) as the ratio of the 

muon intensity at zenith angle 0 to that in the vertical direction, 

i.e. 
•(e ) = i(e) / i(o) 

The zenith dependence of muon intensity is found to be closely 

represented by an empirical function of the form 

I (e) = 1 (0) co s no 

over a wide range of conditions. 	Investigators have 

studied the value of the exponent n in various situations - Moroney 

and Parry [1954], for example, and Beiser [1954], have examined the 

dependence of n on muon momentum, whilst Gill and Mitra [1958] 

investigated the dependence of n on azimuth at low latitudes. 

For the muon component capable of penetrating 10 cm. of lead 

absorber at sea level, n is found to have value close to 2.2, for 

zenith angles as great as 70
0 
 approximately, in the absence of 

appreciable cut-offs (the various determinations of n have been 

reviewed by Fenton [1952] and Parsons [1959]). 	At higher zenith 

angles the intensity predicted by this function falls significantly 

below that observed, and at 90 0  a finite muon flux is observed, 

compared with the zero value predicted. 	Wilson [1959] suggested 

that an expression of the form 

I(0) = I(0) cos nO + K 

could be used to represent the high zenith angle 
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variation of muon intensity (where K is of the order of 1(0)/300). 

The data of Jakeman [1956], and Judge and Nash [1965], indicate 

that the value of the second term is 1(0)1330, at 90
0 
 zenith angle. 

A simple function that takes into account the presence of the 

high zenith angle muon flux, whilst remaining essentially the 

basic empirical function at lower zenith angles, is 

1(0) = - I(0) [cos n0 +ix 1/330] 	(3.4) 

where 0 is in degrees. 

This expression, with n = 2.2, evidently represents to an 

acceptable accuracy the zenith dependence of the total muon 

intensity on zenith angle at sea level, at high latitudes, and has 

been utilized in later work; for example, in the high zenith angle 

extrapolation of the muon coupling coefficients. 

For more immediate purposes it was desirable to find an 

expression capable of representing the basic zenith dependence of 

muon intensity in the latitude survey data, for use in the data 

analysis. 	Because of the appreciable magnitude fixed systematic 

errors (see Section 2.3.3.3), the unidirectional zenith dependence 

of the muon intensity as deduced from the high latitude data 

(those from Hobart) differed significantly from the dependence 

predicted by equation (3.4). 	Although the differences lay within 

the limits of the fixed systematic errors, because these errors 

introduced ,a constant shift in the data from each zenith angle, 

it was desirable to obtain a function capable of representing 
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accurately the observed high latitude zenith angle dependence of 

muon intensity, which expression could then be modified to take 

into account the effects of cut-offs at the low latitude sites. 

An expression similar in form to equation (3.4) was found 

suitable for this purpose, viz. 

I(0) = I(0) [cos 2.20 + 2.5 x 10 -6  x 0 2 ] 	(3.5) 

(for 0 < 0 < P.170 0 )• 	In the presence of the fixed 

systematic errors, it is unlikely that the second term has the same 

high zenith angle significance as that in equation (3.4). 

In Section 5.9 a comparison is made of the predictions of the 

functions (3.4) and (3.5) with the theoretically calculated zenith 

dependence of muon intensity. 

3.3.4 Radiation Sensitivity, of Element in Presence of Cut-offs  

In order to calculate the radiation sensitivity of a telescope 

element in the presence of a directional distribution of muon 

intensity having azimuth, in addition to zenith, dependence, it is 

necessary to invoke equation (3.2), viz. 

R = G f(0,0) 

At low latitude sites, an azimuth dependence of intensity 

arises out of the asymmetric distribution of geomagnetic cut-offs 

(in this discussion we do not consider the effects of the atmospheric 

asymmetry effect, which also produces azimuthal asymmetries; this 
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factor, which does not invalidate the present discussion, is dis-

cussed in Chapter 5). 	It is therefore possible to rewrite equation 

(3.2) as 
R = G f(0,Pc ) 

where P
c 

is the geomagnetic cut-off in the direction 0, 0 

The cut-offs have the effect Of diminishing the directional 

muon intensity relative to the intensity that would exist in the 

absence of cut-offs. 	In particular, the relative intensity of 

muons existing in the presence of a cut-off momentum of value P
c

, 

at any particular zenith angle 0, is given by the so-called 

integral response function No (Pc ) (see Section 1.2). 

Because they affect the directional intensities in this manner, 

the cut-offs may be considered to have the effect of perturbing the 

basic high latitude zenith dependence function f(0). 	The function 

f(0,P
c
) may therefore be considered to be made up of separable 

functions of zenith and cut-off, as follows 

f(e ' Pc )  = f(0) NO (Pc )  

The radiation sensitivity is thus simply 

R = G f(0) No (Pc ) 

Normally, of course, a penumbral structure exists in most 

directions over the observing hemisphere, rather than a simple 

unique cut-off value. 	Consider the situation at a site having a 

certain structure of main cone cut-off and penumbra, where the main 
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cone cut-off, and the upper and lower boundaries of the n allowed 

penumbral bands are known functions P(0,Ø) and P11 (0,0), P12 (0,0); 

P21 (0,0), P22 (0,0); 	 Pn1 (0,0), Pn2
(0,0); respectively, of 

zenith and azimuth (in the penumbral terms, the second subscript 

denotes the upper edge (1), or lower edge (2), of the particular 

penumbral band). 

The radiation sensitivity of an element in the direction 0, 0 

is, in terms of these functions 

R = f(0) G (\10[Pm(0,0)] 	
N0 [P12 (e ' 14)] 	N

0
[P11 (e ' °)]  

N0 [P22 (0 ' °)] 	N
0
[P21 (e ' °)]  

N [p (0,0)j - N[P(0,0)]i 
0 n2 	

o ni 
 

In practice the functions 	(0,0) etc. are not known 

explicitly. 	On the other hand, information is available about 

the discrete values Pm, ii 
	P21' 

 22 
	Pn1' Pn2 of  

the main cone cut-off, and upper and lower edges of the penumbral 

bands pertaining to any one of a large number of representative 

directions at any site, in principle, as the result of cut-off 

calculations of the type described in Chapter 4. 

In order to avoid the complexities of considering in detail 

the often finely detailed structure of the penumbra, it has 

proved convenient to introduce the concept of the "equivalent" 

penumbra. 	This consists of a single penumbral band equivalent in 

width to the summed widths of allowed penumbral bands, in any 

particular direction. 	Thus, in any direction, the cut-off 
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structure may be represented by three numbers: P 
m' 
 P 

 u 
 and Pl , where 

P
m denotes the main cone cut-off, and P u 

and P1 the upper and lower 

edges of the equivalent penumbra respectively. In terms of these 

values, the radiation sensitivity is, simply, 

R= G f(0) [Ne (pm ) + N
0
(P1 ) - No (PLI )] 

for an element directed at the zenith angle 0, in the 

particular direction. 

As P 
m 
 , P 

u  and P1 are not explicit functions, analytical 

integration of contributions to the radiation sensitivity from all 

portions of the acceptance cone of a telescope is out of the 

question, and a simple summation process is used to determine the 

total radiation sensitivity. 

As part of the summation process it is necessary to calculate 

the values of,P 
m 
 , P 

u 
 and P1  applying to any direction. 	To 

facilitate this calculation, the values of these quantities 

pertaining to closely spaced directions over the observing hemi-

sphere at the sites of interest are grouped in the form of a 

matrix of values, from which the values corresponding to any 

intermediate direction may be obtained by interpolation. 

3.3.5 Calculation of Telescope Response  

A computer program was written to carry out calculations 

of telescope response using the techniques described. 	Because 

of the rapidity of operation of the program in carrying out the 
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calculations, there is no disadvantage in having resorted to 

numerical methods. 	In practice any desired degree of accuracy may 

be attained by reduction of the size of the elements. 

As input data this "telescope response" program requires the 

matrix of values describing the cut-off configuration at the site 

of interest (in the case of a low latitude site), and details of 

the detector for which the particular calculations are to be carried 

out - zenith and azimuth of viewing, the dimensions of the telescope, 

the angle of rotation about the axis of the cone of acceptance, and 

the nominated element size. 	During calculations involving the 

optimization of the coupling coefficient functions, parameters in 

the functions describing the momentum and zenith angle dependence 

of the integral response function were also inserted as data. 

In calculating the radiation sensitivity of a given detector, 

the program first determines the number i and j of elements oa and 

op spanning the acceptance cone in each direction (taking into 

account, if necessary, the fractional portions of elements at the 

edges of the acceptance cones), and then systematically sums the 

radiation sensitivities of all the elements, i.e. 

R 	= E E G(a,0) f(0) [N
0m 
(P) + N

0
(P

1
) - N

0
(P

u
)] tot 	.. 1 

to obtain an estimate of the response of the particular 

telescope in the given situation. 

The element size required to produce the desired degree of 

accuracy was determined by carrying out test calculations for 
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progressively reduced element dimensions. 	The dependence of the 

calculated value of integrated telescope radiation sensitivity on 

element size is demonstrated in Table 3.1. 

Table 3.1 Dependence of calculated radiation sensitivity, and 

inclined/vertical ratio, of latitude survey telescopes on 

element size (the radiation sensitivity has units cm 2 ster.). 

Element 
size ( 

Radiation sensitivity for 
) given inclination telescope 

Inclined/vertical ratio for 
given inclination telescope 

00 22.6 °  45.2 °  67.8 °  0 °  22.6 °  45.2 °  67.8 °  

10 x 10 113.35 95.40 53.61 15.461 1.0000 0.8416 0.4730 0.1364 

5 x 5 113.70 95.65 53.66 15.333 1.0000 0.8413 0.4719 0.1349 

3 x 3 116.67 98.14 55.03 15.687 1.0000 0.8412 0.4717 0.1345 

2 x 2 113.79 95.72 53.67 15.298 1.0000 0.8412 0.4717 0.1344 

1 x 1 114.13 96.00 53.83 15.335 1.0000 0.8412 0.4716 0.1344 

x i 113.81 95.74 53.67 15.292 1.0000 0.8412 0.4716 0.1344 

It is evident from these figures that, whilst a certain 

variability exists in the estimates of radiation sensitivity, the 

inclined/vertical ratio values stabilize at element sizes of 2 0  and 

• less. 	Because the latitude survey data analysis is carried out in 

ratio form, an element size of 2 x 2
0 
 was adopted, and used 

throughout the series of calculations of telescope response at the 

latitude survey sites. 
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3.4 Utilization of the "Detector Response" Program  

The zenith angle dependence of radiation sensitivity of the 

latitude survey telescopes, in the absence of cut-offs, have been 

calculated in order to illustrate the general response character-

istics of these narrow angle detectors,(see Figure 3.5). 

10 	Z) 	30 	40 	50 	60 
	

70 
	

80 
	so 

ZENITH ANGLE ( • ) 

Figure 3.5. Zenith angle dependence of radiation sensitivity 

of the latitude survey telescopes, curve corresponds to telescope 

inclination 0 ° , 8 to 22.6 ° , C to 45.2 ° , and D to 67.8 ° . 	In each 

case the maximum differential response is normalized to unity. 

At low latitudes these response patterns would be modified to 

an extent dependent on the form of the cut-off distribution over 

the acceptance cones of the telescopes in any particular situation. 

In the numerous calculations of telescope response at the latitude 

survey sites, the details of the detector response were not 

explicitly determined, as only the integrated radiation sensitivit-

ies were required. 
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A facility was included in the "detector response" program to 

expedite calculation of detector radiation sensitivity in the 

presence of any given, constant, value of' cut-off. 	It was by means 

of such calculations that it was possible to deduce accurate mean 

effective cut-off values in the direction of viewing of detectors 

in any situation - information of great importance in the data 

analysis associated with the coupling coefficient determination. 

The detailed role of the "constant cut-off" technique is 

discussed in the following chapters. 

3.5 Conclusion  

Having, by virtue of the techniques described in this chapter, 

the means for accurately taking into account the details of 

directional cut-off and penumbral structure at all points within 

the cone of acceptance of muon detectors, it is necessary to 

acquire detailed information about the structure of cut-offs at 

the latitude survey sites. 	This problem is investigated in the 

following chapter.. 
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CHAPTER 4  

PRIMARY RADIATION CUT-OFFS IN THE GEOMAGNETIC FIELD 

4.1 Introduction  

The geomagnetic field, by deflecting charged primaries, effect-

ively limits the access of low energy cosmic rays to points within 

the field. 	Arrival at any given location, in any particular 

direction, is restricted to primary particles with energy (or 

momentum*) exceeding acertainffdnimum (cut-off) value. 	It may be 

shown, by means of Liouville's theorem (see, for example, Vallarta 

[1961]), that the intensity of primaries in any allowed direction 

in the field is the same, in the absence of energy changes, as 

that at large distances from the earth, assuming primary isotropy. 

This fact is a most important one in cosmic ray physics, as it 

* In the first three sections of this chapter, particle motion 

is referred to in terms of energy, because of the fundamental 

importance of this quantity in the analytical theories of 

particle motion in a magnetic field. 	In the later sections, 

momentum is the variable utilized, once again because of the 

significance of this unit in the techniques discussed. 	Later 

again, in Chapter 7, primary particle motion (in particular, 

in connection with asymptotic directions of approach) is dis-

cussed in terms of particle rigidity (momentum/unit charge). 
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simplifies the interpretation of cosmic ray astronomy studies made 

using detectors situated within the geomagnetic field. 

The problem of determining cut-offs at sites on the earth's 

surface is one that has been intensively studied because of the 

relevance of this information in many aspects of geophysics and 

cosmic ray physics. As the degree of specialization in experi-

mental observations developed, so the demands on the accuracy of 

theoretical cut-off estimates increased. 

It is not entirely true to say that the methods used to 

derive this information have become more sophisticated. 	The 

field is one in whiCh, at each stage in development, a very great 

degree of sophistication has existed - the techniques employed 

in determining geomagnetic cut-offs have developed largely as 

the result of the availability ofvastly improved computational 

methods (the introduction of mechnical, and later electronic 

computers). 	The emphasis has changed, as a result, from analyt- 

ical methods, involving the use of approximations to the actual 

physical situation, to comprehensive numerical techniques, 

capable of taking into account the many complicating factors in 

the problem. 	Historically, three main phases are evident in - 

this development. 	These are briefly reviewed here, with 

particular reference to certain aspects of the predicted ' 

behaviour of trajectories which are of interest later in this 

chapter. 
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4.2 Stormer Theory  

A first approach to the problem was provided by the theory of 

Stormer (reviewed in detail by Montgomery [1949], Vallarta [1961], 

and others). 	Stormer showed that in an axially symmetric field 

(for example the geomagnetic field, to a first approximation) an 

integral of the charged particle equation of motion exists, as a 

consequence of the axial symmetry. 	In this integral equation - 

the "Stormer equation", a variable may be introduced to represent 

the angle between the particle velocity vector and the local 

meridian plane. 	As the value of the trigonometric function 

containing the angle must lie within a known range, a means was 

thus available for delimiting the regions of the magnetic field to 

which particle entry is forbidden. 

To allow the shape of the regions to be quite generally invest-

igated and graphically represented, Stormer introduced a technique 

of using a unit of length related to the particle energy ( the unit 

corresponds to the radius at which a particle of the particular 

energy traces a circular orbit in the equatorial plane). 	It is 

thus possible to use the diagrams representing the shape of the 

forbidden regions to obtain information about particles of any 

energy, simply by scaling the diagrams appropriately. 	A variable, 

y, incorporated in the Stormer equation (equivalent to the impact 

parameter of the particle at large displacements from the earth), 

is found to have values lying within certain well defined ranges 

for different characteristic forms of the forbidden regions (Figure 
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4.1 illustrates typical forms of. these regions). 

41C\J■ 

 

  

y = + 1.016 	y = + 0.97 
	y = - 0.03 

Figure 4.1. Form of the regions of a dipole field inaccessible 

to charged particles, for different values of y, as predicted 

by Stormer theory. 

At any point in the field it may be shown that the velocity 

vectors of positive particles of given energy or lower are 

, expressly forbidden from lying within a particular range of 

directions, the range having the form of a circular cone with 

axis normal to the meridian plane and directed towards the east. 

The size of the Stormer cone is dependent on primary particle 

energy, the half angle of the cone increasing with decreasing 

energy. 

At any location in the field, in any direction, a Stormer 

cut-off may be calculated which gives the energy below which the 

particle entry is debarred. 	The Stormer cut-off R (GeV) in the 

dipole representation of the geomagnetic field is given by 

N1-2 R = 59.6 cos4 
r  

X 	+ 4(1 - sine cos0 cos
3 
 Xij 
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where X is the latitude, and 0, 0 are the zenith and 

azimuth angles defining the given direction. 

Stormer theory, whilst providing a means for examining the 

character of the forbidden regions, does not, on the other hand, 

yield information about particle accessibility to those regions not 

specifically forbidden. 	It was the development of a mechanical 

analogue computer (the differential analyser of Bush [1931]) that 

enabled Lemaitre and Vallarta [1936a, 1936b] to investigate this 

problem. 

4.3 Lemaitre and Vallarta Theory of the Allowed Cone of Radiation  

At any point in the geomagnetic field, the allowed, or main 

cone for particles of any particular energy is the region into 

which access is unrestricted to particles of the given energy or 

greater. 	Lemaitre and Vallarta showed that the edge of the main 

cone is a boundary between domains of trajectories travelling direct 

from infinity (non-reentrant) and those having re-entrant sections 

(where the term re-entrant, which may be taken as referring 

to reversals in the sense of motion relative to the centre of the 

earth, is defined more precisely in Appendix 1), and that the 

generators of the main cone, the transition trajectories between 

re-entrant and non-reentrant orbits, have the property of being 

asymptotic to bound periodic orbits. 	These bound orbits, 

investigated originally by Stormer, lie in the allowed pass between 

the "jaws" of the forbidden region (see Figure 4.1, y = + 0.97, for 
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example) for values of y in the range 0.78856 < y < 1. 

Lemaitre and Vallarta determined the characteristics of the 

bound periodic orbits in the dipole field for various values of y, 

and traced the path (as a projection on the moving meridian plane) 

of representative members of the families of trajectories asymp-

totic to these periodic orbits. 	Figure 4.2 reproduces Figure 2 

of Lemaitre and Vallarta [1936b], which illustrates the family of 

trajectories for y = 0.93. 	In this diagram (and in Figure 4.3) 

latitude is plotted on the vertical axis, whilst the parameter X 

plotted on the horizontal axis is related to the Stormer unit of 

length. 	The earth's surface is represented by a straight vertical 

line, whose position with respect to the trajectories is determined 

by the particle energy in question. 

40 

30 

20 

1 0 

X 

Figure 4.2. A family of asymptotic trajectories. y = 0.93. 

(Lemaitre and Vallarta [1936b]). 

As part of their investigation Lemaitre and Vallarta located 
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the envelopes defining the limits of the various sections of the 

trajectories constituting the families, for a range of values of y. 

The change in position of the envelopes for change in y is shown in 

Figure 4.3, a reproduction of Figure 1 of Lemaitre and Vallarta 

[1936a]. 

40 

30 

20 

0 

-10 

-20 

-30 

X 

Figure 4.3. The family of envelopes and periodic orbits, and a 

typical family of asymptotic trajectories. (Lemaitre and Vallarta 

[1936a]). 

The delineation of the main cone structure for primaries of any 

energy, using plots like these, is a complicated procedure, 

involving the location of points on the diagrams pertaining to the 

latitude of interest and position on the earth's surface for given 

values of trajectory inclination to the meridian plane, and the 

determination of the slope of the trajectories intersecting these 
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points. 	Lemaitre and Vallarta calculated the form of the main 

cone structure for a range of values of particle energy, at 

latitudes of 0 ° , 20 0  and 30 °  North in the dipole field. 

Presentation of the in- 
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tangential to the earth in re-entrant sections. 	In cut-off plot's 

the shadow cone edge so produced is manifested as a hump in the 

cut-off curves at eastern azimuths (this effect, although not 

visible in Figure 4.4, is readily distinguished in the cut-off 

diagrams presented in Section 4.5, for example Figure 4.9). 	The. 

region between the edges of the main and Stormer cones consists of 

• alternate allowed and forbidden directions, and is known as the 

penumbra. 	The presence of the solid earth intersecting traject- 

ories in re-entrant sections is a major factor contributing to the 

complexity of the penumbral structure. 

Hutner [1939a, 1939b] investigated the detail in the penumbra 

for a single energy at latitude 20 0  North, using the techniques of 

Lemaitre and Vallarta. 	Because of the complexity of the structure, 

Hutner concluded that a study restricted in this way could not form 

the basis for making general predictions about the behaviour of the 

penumbral structure in different situations, other than indicating 

that penumbra associated with low energy particles tend to have 

greater transparency (greater numbers of allowed bands) than 

penumbra at higher energies. 

The basic techniques of Stormer, and of Lemaitre and Vallarta, 

are restricted to consideration of particle motion in axially 

symmetric fields. 	The theoretical predictions are, as a result, of 

limited use when real field situations are being considered in 

detail. 	Improvement in the accuracy of estimated cut-off values 

has resulted from the efforts of investigators to adapt these 
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theories to take account of non-symmetric field components (for 

example, the work of Rothwell [1958], Rothwell and Quenby [1958], 

Quenby and Webber [1959], and Quenby and Wenk [1962]). These 

• techniques, and that of Sauer [1963], which utilizes the "guiding 

centre" approximation to particle motion in the determination of 

high latitude cut-offs, have been largely superseded by a later, 

more powerful technique, which relies on the use of extensive 

trajectory tracing calculations to examine particle accessibility 

to points in the real field. 

4.4 Trajectory Derived Cut -offs  

The development of this method has been possible because of 

the advent of fast electronic computers. 	Apparently first 

used by Kellogg and Schwartz [1959], the technique has been adopted 

by many other investigators, amongst them Kellogg [1960], Freon 

and McCracken [1962], Kondo and Kodama [1965], Shea, Smart and 

McCracken [1965], Daniel and Stephens [1966], Shea and Smart [1967, 

1970], Shea, Smart and McCall [1968], and Smart, Shea and Gall 

[1969]. 	Shea et al. [1965] have presented a comprehensive review 

of the operation of the method, in which they discussed the 

optimum value of the various parameters in the calculations, and 

the dependence of the results on the model used to represent 

the geomagnetic field. 	In practice, the technique, capable as it 

is of producing results of a high order of 

accuracy, has proved flexible, if time consuming, and has been 
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used almost exclusively in determinations of geomagnetic cut-offs in 

the past decade. 

The process of trajectory tracing involves the numerical 

integration, in a starting point calculation, of the differential 

equations representing the motion of a charged particle in the 

magnetic field, establishing in a cyclic sequence of operations 

successive points on the trajectory. 

The Lorentz equation has the form (in MKS units) 

•• 	• 
mR=qRxf3 

where m, q, R are the mass, - charge, and position vector 

of the particle, and 8 is a vector representing the magnetic field. 

In order that the trajectory pertaining to a particular 

direction and point of arrival in the field may be deduced for a 

particle of particular momentum, a trace is made of the trajectory 

of a negatively charged "proton", projected with specified zenith 

and angles away from a given site. 	It is readily seen that the 

path followed will be the same as, but traversed in the opposite 

direction to, that followed by an incoming positive proton having 

the same momentum, arriving at the site with the particular zenith 

and azimuth angles. 

McCracken et al. [1962] published a Fortran computer program 

designed to carry cut this trajectory tracing operation in a high 

order simulation of the earth's magnetic field (McCracken et al., and 

subsequently many other investigators have utilized this program to 
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carry out extensive investigations of cosmic ray trajectories, and 

determinations of cut-off values in the geomagnetic field). 

The use of such trajectory traces in the determinatipn of 

directional cut-offs involves essentially the examination of the 

freedom of access in a given direction, at a given site, of protons 

from infinity as a function of momentum. 	To facilitate further 

discussion, terms used to describe the features of the structure 

in the distribution of allowed and forbidden directions of approach 

are summarized here. 

Studies of charged particle motion in the geomagnetic field 

show that the allowed directions of arrival of a proton of given 

momentum at a given location are distributed in a well-determined 

manner. The following regions may be distinguished: 

• main Cone - The solid angle containing directions of arrival which 

are accessible to an incident proton with momentum between the 

given value and infinity. 

This definition is an equivalent re-statement of the "full light" 

definition of Lemaitre and Vallarta [1936a], that the main cone 

is the solid angle of directions along non-reentrant trajectories 

(see notes in Appendix 1). 

Stormer Cone - The solid angle of directions outside of which all 

directions are forbidden to particles of the given momentum'or 

lower. 
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Shadow Cone - The solid angle outside of which all directions are 

. forbidden to particles of the given momentum, due to the presence 

of the solid earth. 	In some directions the shadow cone edge 

constitutes the main cone edge. 

In any particular direction there exist momentum values at 

which an edge of each of these cones is encountered. 	These mom- 

entum values are known as the mein cone cut -off, Stormer cone cut-

off, or shadow cone cut-off, depending on which cone edge is 

under consideration. 

The term Penumbra is used to describe a region consisting of 

alternate allowed and forbidden trajectories. 	The term is used in 

two situations: 

a) In a given direction it refers to the momentum interval 

between the edges of the main and Stormer cones. 

b) At a given momentum, the solid angle region between the 

main and Stormer cone edges constitutes the penumbra. 

In practice, to determine the cut-off values pertaining to a 

particular direction, trajectory traces are carried out in a 

sequence of descending values of momentum, commencing with a high 

value, and continued until a value is found for which the trajectory 

is unable to leave the field. 	This momentum value is, by 

definition, the main cone cut-off in that direction. 	Examination 
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of the form of the trajectory reveals whether the cut-off is also 

the shadow cone cut-off. 	Trajectory traces carried out for lower 

values of momentum again permit penumbral details to be established, 

and also in principle allow the Stormer cut-off to be located, 

although this is not always distinct. 

4.5 Determination of Cut-off Distributions at Survey Sites  

The trajectory technique for deriving cut-offs has been used 

to obtain detailed information about the directional distribution 

of the primary radiation cut-offs over the observing hemisphere at 

the six northern-most major latitude sites (see Section 2.3.1). 

The trajectory traces have been carried out on an Elliott 503 

digital computer, using an Algol version (written by Mr. J.E. 

Humble, of the Hobart research group) of the McCracken et al. 

[1962] program. 	The Finch and Leaton [1957] sixth order coeff- 

icients were used to represent the geomagnetic field during the 

major part of the calculations, although in certain additional 

calculations, described in Section 4.12, the Jensen and Cain [1962] 

and Leaton et al. [1965] coefficients were utilized. 

The details of the trajectory tracing program (choice of step 

length, integration technique, method of generation of the field 

potential terms etc.) are essentially the same as published by 

McCracken et al. [1962]. 

In the process of locating the directional main cone cut-off, 

and establishing the form of the penumbra in a number of repres- 
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entative directions at each site, momentum steps of from 0.1 to 

0.01 GeV/c were used, depending on the particular requirements in 

hand. 	An automatic search procedure was developed to facilitate 

the location of main cone cut-off; the approximate cut-off value 

was first found in a coarse momentum step search, and then finally 

the accurate value in a fine, 0.01 GeV/c interval search. 

• Integration of each trajectory was commenced at a point 20 km 

above sea level at each site and continued until one or other of 

the following applied: 

a) a radial distance of 10 earth radii from the centre of the 

earth was reached (this point was sufficiently distant from the 

earth to be clearly outside the jaws of the Stormer forbidden 

•regions for particles with momenta close to the cut-off values at 

the latitudes considered, even in the presence of the non-dipole 

field components). 	At this point the trajectory was deemed 

accessible to a positive proton coming from infinity, and so was 

termed an allowed trajectory. 

b) the trajectory re-approached within 20 km of the earth's 

surface, in which case the trajectory was deemed forbidden to a 

proton from infinity. 

c) 5000 integration steps had been performed, representing 

about 7 minutes' computer time. 	It is known that such trajectories 

can proceed to a very large number of integration steps before 

reaching a definite result, and it was considered that the 

expenditure of the *required computer time was not warranted. 
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Calculations were therefore terminated and referred to as an 

integration failure. 	Uncertainty in cut-off value due to 

integration failures were negligably small at sites other than 

Laverton, where, due to numerous such failures, a possible error 

of up to 0.25 GeV/c applies to some of the main cone cut-offs. 

The cut-offs were calculated for sufficiently closely spaced 

directions to enable tracing of the finest detail in the direct-

ional main cone cut-off distributions. 	,Penumbral detail was 

investigated for a number of representative directions at each 

site and summarized in the form of the "equivalent" penumbra. 	We 

define the equivalent penumbra in any direction as the penumbral 

band equal in width to the sum total of allowed trajectories in the 

penumbra multiplied by the momentum interval interval between 

trajectories, centred on the arithmetic mean of the allowed 

trajectory momenta. 	This presentation was adopted in favour of 

subtracting the total penumbral width from the main cone cut-off 

as done by some investigators (for instance, Shea et al. [1965]) 

to obtain an "effective" cut-off, so that the penumbral information 

could be retained, to allow, in principle, increased accuracy in 

the utilization of the cut-off data. 

The distribution of cut-off momenta over the observing hemi-

sphere at Mossman, Rockhampton, Brisbane, Williamtown and Laverton•

(site locations given in Figure 4.5 and Table 4.1) are presented 

in Figures 4.6 to 4.11 inclusive, in the form of graphs showing the 

dependence of cut-off momentum on azimuth for a 	[to page 100] 
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Table 4.1 Position'coordinates of the sites for which detailed 

cut-off calculations have been carried out. 	The invariant 

latitude values were obtained from the charts of Kilfoyle and 

Jacka [1968]. 

Site Geographic 

Latitude Longitude 
( 0South) 	( 0East) 

Geomagnetic 

Latitude Longitude 
( °South) 	( ° East) 

Invariant 

Latitude 

Mossman 16
o
28' 145

o
18' 25 °50' 216°54' 24

o  

Townsville 19 °15' 146 °46' 28
o
36' 218

o
53' 27 0  

Rockhampton 23°22' 150 029' 31 °59' 223 ° 30' 31.5 °  

Brisbane 27 °25' 153°05' 35 ° 39' 227 °03' 360  

Williamtown 32
o
48' 151 °50' 41 o

07' 226
o
51' 42 °  

Laverton 37
o
52' 144

o
45' 47 o

05' 220 °06' 48.5 °  

MOSSMAN 
00KTOWN 

TOWNSVILLE 

AUSTRALIA 
ROCKHAMPTON 

BRISBANE 

_ 

WILLIAMTOWN 

, LAVER TON 

UHOBART 

110 	120 	130 	140 	150 	160 
GEOGRAPHIC LONGITUDE (*East) 

Figure 4.5. 'Location of the sites for which detailed cut-off 

distributions have been determined. 
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[from page 97] range of zenith angl~s (this presentation is the 

same as that used by Alpher, see for e~ample Figur~ 4.4). These 

cut-offs, momentum cut-offs for protons, ar~ numerically equal to 

the value of the rigidity cut-offs for other primary particles. 
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Figure 4.6 (left) and 4.7 (right). Variation of main cone cut-

off with geographic azimuth for various zenith angles at Mossman 

and Townsville respectively. Calculated cut-off values are 

shown as dots. The equivalent penumbra for 0°, 40° and.80° are 

represented by dashed lines. 
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4.6 

4.6 Calculation of mean Effective Cut-off Values in the Directions 

of Viewing at the Latitude Survey Sites  

Interpretation of directional muon intensity observations at 

the sites necessitates a knowledge of the average (or "mean 

0 30 60 90 120 150 180 210 240 270 300 330 260 

GEOGRAPHIC AZIMUTH 	(Degrees) 

0 30 60 90 120 150 180 210 240 270 300 330 360 

GEOGRAPHIC 	AZIMUTH 	Degrees) 

Figure 4.8 (left) and 4.9 .(right). 	Variation of main cone cut- 

off with geographic azimuth for various zenith angles at 

Rockhampton and Brisbane respectively. 	Calculated cut-off values 

are shown as dots. 	The equivalent penumbra for 0 0 , 40 0  and 80 °  

are represented by dashed lines. 
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effective") cut-off pertaining to each direction of viewing of the 

muon telescopes. 	Previous investigators, with the apparent 

exception of Carmichael et al. [1968, 1969] and Shea and Smart 

[1970b], have made use of the cut-off value in the axial direction 

of detectors as an approximation to the true mean effective cut-

off value. 

5 
(80 ) 
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Figure 4.10 (left) and 4.11 

* (above). Variation of main 

cone cut-off with geographic 

azimuth for various zenith 

angles at Williamtown and Laverton respectively. 	Calculated 

cut-off values are shown as dots. 	The equivalent penumbra 

for 0 0 , 40 0  and 80 0  are represented by dashed lines. 
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The axial effective cut-off values in the directions of viewing 

at each latitude survey site have been deduced, and are presented in 

Table 4.2. 	For comparison, the mean effective (m. e.) cut-off 

values applicable to each viewing direction are also tabulated. 

These values were calculated using the "constant cut-off" technique 

mentioned in Section 3.4 (and described more fully in Section 4.10), 

in conjunction with the integral response functions developed in 

Chapter 6. 	Where the atmospheric cut-offs exceed the geomagnetic 

cut-offs, the m. e. cut-offs are not determinable by this method. 

Table 4.2. Axial and mean effective cut-off momentum values in 

directions of viewing at the latitude survey sites (m.e. values 

. bracketed). 

Direction 

Ze. 	Az.* 

Mossman Towns. Rock. Brisbane Will. 

o° 13.0(13.2) 11.2(11.7) 9.8(10.0) 7.3(7.3) 5.1(5.1) 

22.6 °  1 12.9(13.0) 11.6(11.9) 9.9(10.1) 7.6(7.7) 5.0(5.0) 

2 16.3(16.4) 13.9(14.0) 11.6(11.5) 8.2(8.1) 5.5(5.6) 

3 13.8(13.9) 14.9(14.9) 12.0(11.9) 7.8(7.8) 5.0(5.2) 

4 10.7(11.0) 14.0(14.1) 10.2(10.4) 7.2(7.1) 4.5 	- 

5 12.0(12.2) 8.9(9.0) 6.4(6.5) 

6 10.5(10.4) 8.4(8.5) 6.6(6.5) 

7 9.7(10.0) 8.9(9.0) 7.1(7.2) 

8 10.0(10.4) 
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Table 4.2 (continued). 

Direction 

Ze. 	Az.* 

45.2 0  1 

2 

3 

4 

5 

6 

7 

8 

67.8 0 1 

2 

3 

4 

5 

6 

7 

8 

Mossman 

13.3(13.6) 

22.1(21.7) 

14.2(14.1) 

9.6(9.9) 

13.5(13.8) 

33.0(31.1) 

13.3(12.5) 

9.4(9.5) 

Towns. 	Rock. 	Brisbane 	Will. 

	

11.8(12.1) 10.0(10.2) 	7.8(7.9) 	5.1(5.2) 

	

17.3(17.1) 13.8(13.7) 	8.8(8.7) 	6.4(6.5) 

	

20.2(19.9) 15.2(14.4) 	8.4(8.5) 	4.9 - 

	

17.0(16.4) 9.5(9.6) 	7.6(7.6) 	4.3 - 

9.8(10.6) 	8.0(8.0) 	6.1(6.1) 

9.6(9.6) 	7.7(7.9) 	6.0(6.2) 

9.0(9.2) 	8.1(8.4) 	6.9(7.0) 

9.6(9.7) 

12.1(12.3) 10.1(10.1) 8.1 	- 

23.1(22.3) 16.8(16.5) 9.4 - 

29.6(28.1) 17.9(17.9) 13.1(11.7) 	- 

20.2(19.1) 16.3(14.5) 12.9(11.3) 	- 

11.8(11.0) 	9.1 	- 	6.1 	- 

7.8 - 	7.2 - 	5.7 - 

8.5 .- 	8.0 - 	6.9 - 

9.0 - 

* Table 2.5 identifies the azimuth.angles denoted here by numbers. 

It is to be observed, on examination of Table 4.2, that very 

appreciable differences exist between the axial effective and mean 
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effective cut-off values in some directions, differences of up to 

1.9 GeV/c, and 12 % in relative magnitude. 

It is not unreasonable that differences do occur, as, in incl-

ined directions, the zenith angle of maximum detector response may 

differ significantly from the inclination of the telescope axis 

(see Figure 3.5), and it would be expected that, for any particular 

detector geometry, systematic differences between the axial 

effective and mean effective cut-off values would exist. 	It is, 

however, at first sight surprising that the largest differences do 

not always occur in conjunction with the greatest cut-off values 

(see, in Table 4.2 for example, the 67.8 °  zenith angle cut-off 

values at azimuth 4 (163 ° ) at Rockhampton). 

An indication of the reason for this behaviour may be found in 

an examination of the distribution of cut-off•values at the sites. 

A structure is to be observed in the main cone cut-off distribution, 

associated with which are very large changes in cut-off value within 

small azimuth ranges, in particular, in the south-east at Townsville 

and Rockhampton. 	This structure is very clearly depicted in the 

stereo pair diagrams representing the cut-off distribution at these 

sites (Figures 4.12a and 4.12b). 	That the presence of such a 

structure could be responsible for large differences between the 

axial and mean effective cut-offs can be seen by considering the 

changes in cut-off value for a telescope scanning past the cut-off 

"discontinuity". 	It is evident that the axial effective cut-off 

changes drastically within a few degrees 	[to page 106] 
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Figures 4.12a (above) and 4.12b (below). 	Computer drawn stereo 

pair pictures of the directional cut-off distributions at Towns-

ville and Rockhampton respectively. Viewpoints: 220 0  azimuth in 

each case, and 45
0
, 30 0  zenith respectively. The "contour lines" 

show the variation of m.c. cut-off momentum with azimuth at var-

ious zeniths (cut-off value is proportional to the displacement 

of each point from the origin of the cartesian reference frames; 

the arrows point geogr. north). View with prism (see Appendix 2). 
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[from page 104] (for example, a drop of 	6 GeV/c within 2 °azimuth, 

at 60 °  to the zenith and 116 °  azimuth at Rockhampton, as shown in 

Figure 4.8). 	The mean effective cut-off, on the other hand, 

because of the finite acceptance angle of the telescope, will 

change from high to low cut-off value over a considerably wider 

azimuth range. 	Over this range, then, large differences between 

the axial and mean effective cut-off values can arise. 

Because of the possible effects of the structure on directional 

cosmic ray intensity, and therefore on the ordering of correspond-

ing observational data by the use of directional cut-off values, 

and in view of the fact that difficulty has commonly been exper-

ienced in the interpretation of data in terms of axial cut-offs 

(as, for example, by Carmichael et al. [1968]), it is of consid-

erable interest to investigate this effect further. 

4.7 Main Cone Fold Effect - the Loop Cone  

At very low geomagnetic latitudes the dependence of main cone 

cut-off on azimuth , for a constant zenith angle, is observed to be 

a smoothly varying function with a maximum in the east and a 

minimum in the west, and sensibly symmetric about an approximately 

east-west directed azimuthal plane (see, for example, the results 

of Daniel and Stephens [1966], and the 0 0  latitude results of 

Lemaitre and Vallarta [1936b] as presented by Alpher [1950]). 

The calculated main cone cut-off distributions at low and mid-

latitude sites (Figures 4.6 to 4.11) show significant departures 
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from this north-south symmetry, due to the presence of certain 

distinct features in the main cone cut-off values at southern 

azimuths. 	Such an effect can also be observed in Alpher's present- 

ation of the 30 °  North latitude results of Lemaitre and Vallarta, 

as reproduced in Figure 4.4. 	In this case the structure occurs 

at north-western azimuths. 

Hutner [1939a, 1939b] investigated the structure evident in 

Lemaitre and Vallarta's 20 °  North latitude data, using the Lemaitre-

Vallarta technique with fine spatial resolution. 	She found a 

complex penumbral structure over a small azimuth range in the north-

western quadrant (Northern hemisphere) which she predicted should 

be observable as humps in experimental muon intensity vs azimuth 

results. 	Perhaps partly because of limited observational accuracy, 

experimental results (reviewed by Kane [1962] have failed to show 

positive evidence of the structure at the expected azimuth. 

We have investigated the phenomenon and find it to be produced 

by the looping of trajectories. 	Trajectories with such looping, 

as will be shown presently, are able to approach a site more freely 

than those without the loops, enabling depressed values of main 

cone cut-off to exist in certain well defined ranges of directions. 

The penumbra, if present in any such direction, may also be 

affected; however, the predominant effect is the structure of the 

main cone edge, which may be present in the absence of a penumbra. 

It is an effect produced basically by the dipole field, and the 

introduction of higher order field terms merely modifies the 
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predicted size and position of the structure. 

A typical example of the phenomenon is to be seen in Figure 

4.13. 	We refer to the fine structure visible at 145
0 

and 260
0 

as 

folds and call the intermediate azimuth range labelled A, in which 

depressed values of cut-off exist, the "folded" region of the main 

cone cut-off curve. 	The reason for the formation of the folds is 

to be found in an examination of the trajectories associated with 

the main cone edge. 

90 	180 	270 
	

360 
GEOGRAPHIC AZIMUTH CI 

Figure 4.13. Variation of main cone cut-off with geographic 

latitude at 60 °  to the zenith at Townsville, showing folding over 

a well defined azimuth region. 	Trajectories corresponding to the 

directions of arrival, and momenta, indicated by the crosses, and 

denoted Al, A2, 81 and 82, have been plotted in part in Figure 4.14 

to illustrate the looping that is responsible for the folding. 

These momentum values lie just above the main cone cut-off. 
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As first stated by Lemaitre and Vallarta, the edge of the main 

cone is associated with two types of trajectories: those asymptotic 

to the Stormer periodic orbits (constituting in Figure 4.13 the 

entire main cone edge except that labelled "shadow cone edge"), and 

those which intersect the earth tangentially in a looped section, 

forming the shadow cone edge. 

Asymptotic trajectories (we are now considering the form of 

trajectories of negative "protons" that are travelling away from the 

earth) originating at mid latitude sites are observed to approach 

the equatorial regions within a narrow range of longitudes and then 

take on the characteristic form of closed periodic orbits, moving 

from west to east and swinging back and forth in quasi-periodic 

motion across the equator. 	It is due to the peculiarities of the 

initial aperiodic sections of the asymptotic trajectories that the 

folding of the main cone cut-off distribution is produced. 	The 

significance of the form of these trajectory sections will be 

illustrated for a typical mid-latitude site, Townsville. 

It is observed (see Figure 4.14) that the initial sections of 

trajectories originating inside the folds at Townsville (i.e. with-

in region A in Figure 4.13) have at some point reversals in the 

direction of crossing of the local magnetic meridians. 	In these 

reversals the general west to east motion with concave downwards 

curvature develops into east to west crossing of meridians, with 

the consequent reversal of the sense of the curvature relative to 

the surface of the earth. 	A loop thus forms in these traject- 
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ectories. 	On the other hand, trajectories originating outside the 

folds are seen in Figure 4.14 to be free of these reversals from 

west-east to east-west crossings of the magnetic meridians, and so 

do not possess loops. 	These unlooped trajectories do not have the 
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Figure 4.14. Sections of the trajectories of protons, whose 

directions of arrival and momenta are indicated in Figure 4.13, 

are plotted in detail on a latitude versus longitude plot (upper 

part of diagram) and on a height versus longitude plot(lower 

part). 	Trajectories Al and A2 (situated within the folded region 

of the main cone edge) are seen to loop in their south to north 

motion, whilst B1 and B2 (situated outside the folded region) are 

seen to be free of loops. 
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advantage of being re-projected away from the earth as do those 

with a loop, and so the cut-offs in the directions at the site 

from which the unlooped trajectories originate are observed to be 

relatively higher than those which, although perhaps pertaining to 

adjacent directions, are associated with looped orbits. 	If the 

loop intersects the surface of the earth the shadow cone edge is 

formed. 	Such an intersection occurs in the main cone edge traj- 

ectories at Townsville, producing the shadow cone edge evident in 

Figure 4.13. 

The solid angle of all the directions from which looped 

trajectories originate is found to have the form of portion of a 

nearly circular cone directed away from the equator. 	We propose 

to call this cone the loop cone, formally defining it after 

further discussion. 	At Townsville the loop cone has a half angle 

of 84
o
, and the axis of the cone is oriented 35

o 
below the hori-

zontal towards the South.. Inside this cone the main cone edge is 

formed by looped trajectories, and outside by unlooped traject- 

ories. 	Figure 4.15a shows, in the form of a stereo pair picture, 

an unlooped trajectory characteristic of those outside the loop 

cone at Townsville, and Fidure 4.15b illustrates a singly looped 

trajectory typical of those associated with the loop cone. 

The loop cone is bounded by an annular region of approximately 

o 
10 width, across which, instead of an abrupt discontinuity in 

main cone cut-off value occuring, a fold, or transition from high 

to low cut-off value is produced by the gradual [to page 113] 
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Figures 4.15a (top) and 4.15b (bottom). 	Stereo pair pictures of 

unlooped and singly looped trajectories characteristic of those 

arriving outside and inside the first order loop cone at Towns-

ville respectively. View with prism (see Appendix 2). 

Figure 4.15a shows path of a 25 GeV/c proton, arriving at zenith 

angle 60 ° , azimuth 90 ° . 	Viewed from latitude -15 ° , longitude 190
0 

. 

Figure 4.15b shows path of a 10.4 GeV/c proton, arriving at zenith 

angle 60
o
, azimuth 190

0
. 	Viewed from latitude 10 °, longitude 170°. 
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[from page 111] establishment of the looping condition in the 

trajectories. 	Because of the presentation, in Figures 4.6 to 4.11, 

of the cut-off data in the form of graphs of cut-off vs azimuth for 

constant zenith angle, the transition region is greatly exaggerated 

in apparent width at low zenith angles. 

An interesting feature of the fold visible in.the south-east 

at Townsville (and at Rockhampton) is that the main cone curve 

turns back under itself. 	Thus, in any direction within a finite 

range of directions, asympt- 
III 	 

Figure 4.16. Variation of main 

cone cut-off with azimuth, for 

o 	. 
65 zenith angle at Rockhamp- 

ton. 	An "overhang" of approx- 

imately 5 is visible between 

110
0 
 and 115

0 
 azimuth. 

otic trajectories may orig-

inate which correspond to 

the passage of protons with 

any one of a number of mom-

entum values. 	The lower 

values, by strict definition, 

should be regarded as pen-

umbral structure. 	Neverthe- 

less, taken together, these 

values are part of a smooth 

bounding main cone cut-off 

curve, and must therefore be 

regarded as genuine main cone 

structure. 	The Rockhampton 

65 0  zenith angle cut-off data 

show this effect particularly 
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clearly. 	In Figure 4.16 the calculated cut-off values defining the 

main cone edge are seen to lie on a smooth curve, in spite of an 

"overhang" of 5 0 • Extensive calculations have revealed no trace 

of penumbral structure in this azimuth range. 

Investigation has shown that the mechanism by which the over-

hang is produced is associated with the exit angle of trajectories 

from loops. 	Within a narrow range of azimuths the situation arises 

where, for decreasing momentum, trajectories, initially unlooped, 

acquire a loop, the exit angle from which is unsuitable to allow 

escape from the field. 	At a lower momentum again the exit direct- 

ion has rotated to the point where trajectory escape is permitted. 

On further momentum reduction, the exit angle again becomes unsuited 

to escape, or in some situations, the lower section of the loop 

intersects the surface of the earth, giving rise to the shadow cone 

edge. 	On either side of the band of azimuths where the conditional 

trajectory escape occurs, the loop orientation evidently is such as 

either to allow completely, or to forbid, the escape of these 

trajectories. 

4.8 Latitude Dependence of the Loop Cone  

Having discussed in the preceding section the loop cone as 

. observed at Townsville, we now consider the latitude dependence of 

the loop cone structure. 	The size of the loop cone is latitude 

dependent, a small opening angle being found at low latitudes 

(indeed, it is evident from the results of Lemaitre and Vallarta 
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[1936], and Daniel and Stephens [1966] that it is non-exister at 

very low latitudes), with the main cone edge in most directions 

being formed by unlooped trajectories. 	With increasing latitude, 

although the zenith and azimuth angles of the loop cone axis remain 

sensibly constant (see Table 4.3), the half angle of the cone 

increases, as illustrated in Figure 4.17, until by mid-latitudes 

the cone has almost entirely 

opened out and the main cone 

edge is formed predominantly 

by looped trajectories. 

At about these latitudes 

in the Southern hemisphere a 

further cone is observed to 

open in the south, distinguish-

able by the presence of folds 

in the main cone directional 

cut-off distribution (as exhib-

ited by the 60 °  zenith curve in 

- 	Figure 4.10). 	This new loop 

cone contains directions from 

which doubly looped trajectories 

originate, whereas outside this 

cone the main cone edge consists of singly looped trajectories. 

Figures 4.18 and 4.19 illustrate typical single and double looped 

trajectories originating at Williamtown. 	With further increasing 
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latitude this cone opens and other cones form, containing traject-

ories with greater numbers of loops again, and evident by the 

presence of further folds in the main cone cut-off distributions. 

140 	150 	160 	170 	180 	190 	200 
GEOGRAPHIC LONGITUDE ( e ) 

Figure 4.18. Trajectories (plotted as two different projections 

in upper and lower portions of the diagram) typical of those 

arriving outside (trajectory A) and inside (trajectory 8) the 

	

second order loop cone at Williamtown. 	Trajectory A: 6 GeV/c 

proton arriving at zenith angle 60 ° , azimuth. 150 0 ; trajectory 

B: 7.8 GeV/c proton arriving at zenith angle 60 ° , azimuth 120 0 . 

The systematic trajectory looping responsible for the 

formation of main cone folding is clearly indicated in the traject- 

ory plots of Lemaitre and Vallarta [1936a, 1936b] [to page 118] 
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Figures 4.19a (top) and 4.19b (bottom). 	Stereo pair pictures of 

singly and doubly looped trajectories characteristic of those 

arriving outside and inside the second order loop cone at William-

town respectively. 	View with prism (see Appendix 2). 

Figure 4.19a shows path of a 7.5 GeV/c proton, arriving at zenith 

angle 60 °, azimuth 90 ° . 	Viewed from latitude -50 ,.longitude 170
0 

. 

Figure 4.19b shows path of a 6.0 GeV/c proton, arriving at zenith 

angle 60 0, azimuth 150 ° . 	Viewed from latitude 5 °, longitude 175°. 
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[from page 116] (see for example, Figure 4.2) by the reversals in 

the sense of the curvature of the trajectories. 	Although not ind- 

icated in such drawings (which represent the projection of the ' 

trajectories onto the moving meridian plane), the trajectories in 

these sections remain within a relatively narrow band of longitudes, 

looping around field lines. 	Particles approaching higher latitude 

• sites, with momenta close to cut-off values, are very closely tied 

to the field lines, and perform many loops. 	A typical.example of 

this multiple looping is seen in the Frontispiece to this thesis, 

a computer drawn stereoscopic representation* of the trajectory of 

a proton of 4.0 GeV/c momentum approaching Hobart, destined to 

arrive at a zenith angle of 60 °  and a geographic azimuth of 180 ° . 

In this particular trajectory six loops are clearly visible. 

It is precisely because of the close adhesion of low energy 

particle trajectories to field lines that the "guiding centre" 

approximation to particle motion in the geomagnetic field may be 

applied, as, for example, by Sauer [1963] in the determination of 

high latitude cut-offs. 

* As an aid to trajectory visualization in the presently reported 

investigation, a computer program was developed to allow the 

preparation of stereoscopic drawings of cosmic ray trajectories 

by computer. 	The basic techniques involved are described in 

Appendix 2. 	The Frontispiece and Figures 4.12, 4.15, and 4.19 

were drawn by means of this program. 
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At low and mid-latitudes the tying of particle trajectories to 

field lines is not so complete, because of the considerably higher 

momentum values involved and the consequent large scale size of the 

loops. 	The formation of the folding around-the perimeter of the 

loop cones at such sites is due to the progressive establishment of 

loops in main cone edge trajectories with increasing latitude of 

arrival. 

That the main cone folding is in fact a genuine main cone 

structure, rather than a penumbral effect, such as could be produced 

by the progressive baring of underlying major penumbral bands with 

increasing latitude, may be shown by reference to the Lemaitre and 

Vallarta diagrams, Figures 4.2 and 4.3. 	If the phenomenon were 

merely penumbral then it would be reasonable to suppose that there 

exists above the cut-off-value within the loop cone a "virtual" 

main cone edge corresponding to periodic orbit entry via unlooped 

trajectories. 	The Lemaitre and Vallarta diagrams clearly show that 

such an undetected edge cannot exist. 	In Figure 4.2 it is apparent 

that trajectories passing through a point above the cusp point at 

latitude 25 0  must possess at least one loop (or above 37 0  two 

loops). 	Figure 4.3 shows the locus of the cusp point for changing 

Y. 	It is clear that asymptotic entry to the periodic orbits from 

a point at a latitude greater than approximately 3 5° in a dipole 

field cannot occur via other than looped trajectories, and thus the 

cut-off value associated with the looped trajectories is uniquely 

the main cone cut-off. 
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Having illustrated the significance of trajectory looping in 

the formation of the structure of the main cone edge, we now define 

the loop cone. 

The Loop Cone is the solid angle of directions in which a 

systematic depression of the main cone cut-off occurs due to the 

looping of trajectories. 	The loop cone may be of first or higher 

order according to the number of loops in the trajectories at the 

main cone edge within the loop cone. 

Table 4.3 lists the angular size and position of the loop cones 

more readily distinguishable in the cut-off results for the six 

sites. 	Although cones of order as high as four are visible, only 

the first and second order cones are sufficiently well defined to 

. Table 4.3 Configuration of the local magnetic field at the survey 

sites, and details of loop cones clearly evident in cut-off data. 

Site 	Magnetic Geog. Azimuth of 	Loop Cone Details 
Dip 

Angle 	Mag. N. Geom. N. Or- 	Half 	Inclin- 	Geom. 
CuE) 	

(uE) 	
der angler) ation of Azim. of 

axis p  axis X 

o 
Moss. 	-43°53' 	6 	

7o 	76.5o 

	

-36
o 	

196
o 

-47
o
57' 	7

o 	o 
7.5 Towns. 	 1 	84° 	-35° 	196.5 °  

o 	
8.5

o 	
1 	98

o  
Rock. 	-52

o
56' 	9 	 -34° 	197.5 °  

o 	
9.5

o 
Brisb. 	-57°12' 	10 	1 	,':1122 ° 	Pd-30 ° 	g1200 °  

o Will. 	-62 o54' 	12 ° 	10.5 ° 	2 	78 	-23
o 	

204.5o 

9.5
o  

Lav. 	-68
o
37' 	10.5° 
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allow estimation of size and position. 

Figure 4.20 illustrates diagramatically the intersection of 

the first order loop cone and the observing hemisphere at each site. 

The lines representing these 

erences in cut-off value ass- 

ROCXHAMPTON 
intersections indicate the 

OWN SVILLE 

MOSSMAN 	position of the first order 

folds, in direction, relative 

BRISBANE 

NORTH 	 SOUTH 	to the sites. WM" 141111 	
When the first order 

WEST 	iMossmon First 
/ Order Locp Cone 	 loop cone has small opening 

angle (at low latitude sites, 

such as Townsville), the diff- 
Figure 4.20. 	Intersection of 

the first order loop cone and 
ociated with the folds are 

the observing hemisphere at the 
large. 	With increasing open- 

different sites. 	The angles 
ing angle (i.e. with increas- 

9, p and X are used in Table 
ing site latitude), the size 

4.3 to indicate the size and 
of the first order folds de- 

position of the cones. 
crease, until at the latitude 

of Brisbane and greater, the folds are barely visible in the cut-

off distributions. 

The higher order folds are of small magnitude, even when the 

opening angle of the cones is small. 	Like the first order folds, 

they evidently tend to decrease in size with increasing opening 

angle. 	Save for the second order cone at Williamtown, there is 
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insufficient information available from the current series of calc-

ulations to deduce the accurate size and position of the higher 

order loop cones. 	We may, however, infer their behaviour with 

change in latitude by examining the change in azimuth position of 

the associated folds at given zenith angles. 	Figures 4.21a and 

4.21b show the observed azimuth bearings of the folds at each site 

for zenith angles of 60 0  and 80 0  respectively. 	In these diagrams 

lines have been drawn to indicate more clearly the sequence of 

opening of the firsf and higher order cones with increasing latit- 

ude. 	As indicated in Figure 4.21b, small folds are present in 

the Williamtown and Laverton cut-off data (as displayed in Figures 

4.10 and 4.11), associated with cones of order as high as four. 

In Figure 4.21, too, is to be seen the effect of the shadow cone 

edge intruding through the main cone edge and obscuring the folds 

within a certain range of azimuths, as indicated by the shading. 

The rapid change in position of the eastern edge of this region 

between Townsville and Rockhampton is due to the effect of the first 

order cone opening and exposing the underlying shadow cone edge. 

From these diagrams it is to be seen that at any particular 

zenith angle, as the order of the fold increases, there is a slight 

increase in the rate at which the folds sweep around in azimuth. 

This tendency is to be expected, since the momentum of the particles 

moving in trajectories associated with the main cone edge in these 

directions decreases, and so the dimensions of the loop (its wave-

length) will decrease, with a consequent decrease in the rate of 
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opening of the loop cone. 
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Figures 4.21a (upper part of diagram) and 4.21b (lower part). 

Observed variation in azimuth position of the main cone folds at 

60° and 80° zenith angle respectively. Dashed ~ines indicate the 

locus of the folds, of order indicated, with change in latitude. 
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The magnitude of the cut-off reduction across a fold varies 

along the perimeter of the loop cone, in addition to the decrease 

in the average cut-off reduction across the folds with increasing 

latitude. 	At low latitudes the folds are of very appreciable mag- 

nitude, and reductions of up to 35 % are observed as the first 

order folds are crossed in the south east at Townsville and Rock-

hampton (see Figures 4.7 and 4.8). 

It was shown, by means •of the calculations carried out in 

Section 4.6 to determine the mean effective cut-offs for the lati-

tude survey detectors, that the loop cone structure could signi-

ficantly modify the estimates of mean effective cut-offs. 	On the 

other hand, to this point in the discussion we have not yet demon-

strated the actual observable reality of the loop cone effect. 

Later in the following section we consider the evidence supporting 

the assumption of reality. 

4.9 Effect of the Loo Cone on Directional Cosmic Ray Intensities  

We have the situation where, as opening of the first order cone 

proceeds with increasing southern latitude, the first order fold, 

with its appreciable associated cut-off reduction sweeps •upwards 

from the south over observing hemisphere. 	(Correspondingly, the 

cones open in the north in the Northern hemisphere.) 	This pheno- 

menon would be expected to influence significantly the manner in 

which the directional cosmic ray intensity varies with latitude. 

In inclined directions, in particular at high zenith angles, 
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there is a rapid change in the azimuth position of the folds with 

latitude 	7
0 
 in azimuth per 1 0  in latitude at a zenith angle of 

60 0 , as shown in Figure 4.21a). 	This sensitivity suggests that 

the real field model used in the cut-off computations could be 

checked in part by the experimental observation of the actual 

position of the folds at a suitable latitude and zenith angle. 

In the vertical direction the movement of the first order 

fold significantly influences the dependence of the vertical cut-

off on latitude. 	As the first order cone expands, the section of 

the fold associated with the upper edge of the loop cone passes 

overhead, producing a distinct reduction in the vertical cut-off. 

In Figure 4.22, a graph of main cone cut-off vs zenith angle in the 
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.°11.14 
h6 0 44 pr4  
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Figure 4.22. Variation of main cone cut-off with zenith angle in 

the azimuthal plane containing the axis of the first order loop 

cone. 	M, Mossman; T, Townsville; R, Rockhampton; B, Brisbane. 

At 65 0  zenith angle in the South, the Brisbane curve shows second-

order folding. 
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plane containing the loop cone axis for the four northernmost sites, 

•the movement of the fold with latitude is evident. 	It is seen to 

.pass the zenith between Rockhampton and Brisbane, and the resultant 

drop in vertical main cone 

cut-off is seen in Figure 

4.23. 	The effect is to be 

observed on a world scale in 

X 8 	 the graphs of Kondo and Kod- 

ama [1965j, manifested as the 

bunching of the lines of 
	LAVERTON 	 

HOBARTIII 	equal main core cut-off at 

0 
low to mid latitudes (see 

Figure 4.24, a reproduction 
Figure 4.23. 	Variation of vert- 

of Figure 1 of Kondo and 
• ical main cone cut-off (uppermost 

Kodama). 
curve) and equivalent penumbra 

The loop cone would thus 
(shaded band) with geomagnetic 

be expected to modify the 
latitude, in the longitude range 

observed variation of count- 
of Eastern Australia. 

ing rate with latitude for a 

vertically directed detector, but not necessarily to a degree pre-

dictable from the vertical cut-off values. 	At low latitudes a 

smooth variation of cut-off exists over the observing hemisphere, 

and it would be expected that both the main cone and effective cut-

off values would vary in a reasonably linear manner with mean 

effective cut-off for a given vertical detector, although not necess- 

30 	40 	50 
GEOMAGNETIC LATITUDE (*South) 
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arily at any point being equal to it. 	However, in the latitude 

region where the first order loop cone edge nears the vertical this 

is not the case, since we have in the fold what may be regarded as 

an abrupt cut-off discontinuity propagating across the viewing 

cone. 	In addition to the main cone structure, the penumbra is 

similarly dependent on the trajectory looping and would be expected 

to have an appreciable effect on the latitude dependence of the 

mean effective cut-off. 	It is clear that the determination of 

mean effective cut-offs must incorporate details of main cone cut-

off and penumbra at all points inside the detector viewing cone, if 

observed responses are to be accurately interpreted. 

V 	 WV 	 MO ICY __,,....................„ 
!:-.1„,,f,-.11""`-ns.- iimin■legim 

I mino.eur ukr 	lev '  
A 

NEW
N

IIM
INEE

  
M

IE
S t'.13111fit 2  

p.m 

esaboommrs............ 
1,  .05 , 4 ,, 

60001.000minut=emimmir.--...„„„„ 

1 

■10--- 
•••-•P•smw""raamr:'aaii..m•mmmmlrc,er....a7....s.._Gr.s.AL,.._ 

.0.,..P.U.Ww.--a-row....-airdwaia...._■-minimpaigewiimpoww, 
wMavillumw=a1rwilwamilommimmixwmmelwim .A.......m.„.0mlormwsomm■mmmtio•omm.mmg,qgmmmainm 

mesmelliNS 

r---  Lip—dor 
30
drhr,,wg6,aw,,,F.arj,„...p.samwm...w....Tha....!wg)zi..■..u...g.p...r. 

"wwww--Na--...1117,1m..„.90,00m  
mcomosavatumnsemmosagnsm warommmommlusimmusammi 

MMOMM4MMOMMIVARMUM 
0 	b... 	_ 	■ ..b.........,..........wo.......  

IMMOGralammimm 
SOm6PrommEmmuannma , 	MEMO al.  wdmummmeraamm■m■ 

50,A1 	,dOMIPE.- ■ 

UMMEMMINVEMEMEMzSME WM= 

A....0010=■■""MaostaMi■■ 

M 
MEM 
—moms 

WED - 

1 Waffinai eMaling. 

2111 	I SIMI I. 
m=aLimmilli, ■11•101.11M 

,_ 	MI 1/1•1111 NE=00 
60 	90 	120 	150 	180 	-150 	-120 

Geographic Longitude 

Figure 4.24. Variation of vertical main cone cut-off with geo-

graphic latitude and longitude (Kondo and Kodama [1965]). 

90 

60 

30 

30 

60 

-9C 
- 90 	-60 	-30 



128 	 4.9 

The data of Carmichael et al. [1968] provide unmistakeable 

evidence of the loop cone phenomenon. 	In the analysis of their 

neutron monitor latitude survey data they find that the calculated 

vertical effective cut-off values poorly represent the variation of 

the actual mean effective cut-off with latitude in the region of 

Mexico City. 	It is apparent from the manner in which the vertical 

main cone cut-off varies with latitude that the first order loop 

cone is well developed at this location, and could be expected to 

influence significaritly the detector counting rate. 	Carmichael et 

al. [1968, 1969] have obtained satisfactory ordering of data by the 

• introduction of "geographically smoothed" geomagnetic cut-offs. 

These smoothed cut-offs, deduced empirically From the experimental 

data, implicitly take into account the effect on the detettor of 

cut-offs in inclined directions, and so in principle are equivalent 

to mean effective cut-offs. 

Shea and Smart [1970b] investigated the problem of ordering 

data using estimated cut-off values, and showed that the procedure 

used to obtain the effective cut-offs (that of subtracting the total 

width of the allowed bands from the main cone values, neglecting the 

momentum dependence of the response constants) could not account for 

the difference between the geographically smoothed and vertical 

effective cut-off values. 	Shea and Smart showed that calculated 

mean effective cut-offs for a neutron monitor in the region of 

Mexico City (which they refer to as " angular compensated" cut-offs) 

agreed closely with the oeographically smoothed cut-off values of 
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Carmichael et alia. 

A program of investigation was undertaken to make use of the 

Australian cut-off data in the further study of the problem, partic-

ularly as applied to muon detectors, but also to test generally the 

findings of Carmichael et al., and of Shea and Smart. 

4.10 Dependence of Mean Effective Cut-off on Telescope Geometry  

Calculations have been made of the mean effective cut-off 

values pertaining to vertical muon telescopes of various geometries 

at the six sites for which detailed cut-off distributions have been 

calculated. 	The constant cut-off technique, as described in 

Section 3.4, was employed in these calculations (in conjunction 

with the integral response functions deduced in later sections of 

this thesis). 	In detail, the constant cut-off technique involves 

establishing the precise form of the integral response function of 

a detector by determining the detector response in the presence of 

known cut-off values. 	It is then possible to interpolate from this 

function the cut-off value required to give the same response as 

• that calculated to be produced in the presence of any particular 

cut-off distribution, this cut-off value constituting the mean 

effective cut-off in the particular situation. 

• A number of telescope geometries were considered, varying from 

a very narrow angle detector of dimensions (1 x 1) x 8 units in 

• length, to a wide angle "semi-cube" telescope of dimensions (1 x 1) 

x 0.5 units in length. 	The mean effective cut-off values calc- 
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Figure 4.25. Theoretically calculated mean effective cut-offs 

applying to muon telescopes of various geometries, as function of 

	

geomagnetic latitude. 	The main cone and effective cut-off 

values in the vertical direction are also plotted. 
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ulated theoretically to Lapply to these detectors at the latitude 

survey sites are plotted as a function of geomagnetic latitude in 

Figure 4.25. 

In this diagram the large range of values of mean effective 
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cut-off at the sites for detectors of different geometries is imm-

ediately obvious, particularly at Townsville and Rockhampton. 	The 

mean effective cut-off is evidently a very sensitive function of 

opening angle at these sites. 	As expected, the mean effective 

cut-offs for a very narrow angle detector are very close in value 

to the vertical effective cut-off values. 	On the other hand, the 

mean effective cut-offs for the semi-cube telescope are of consid-

erably greater value than the vertical effective cut-off, with a 

difference of 1.5 GeV/c, for example, occurring at Townsville. 

Calculations to test the change in mean effective cut-off for 

rotation of the squared trayed telescopes about the vertical axis 

show that a quite negligible variation, of the order of 1O  

is produced in the estimate of the mean effective cut-off. 	(For 

detectors with rectangular trays an appreciable variation in mean 

effective cut-off may accompany rotation about the vertical axis. 

The magnitude of the effect for the vertical latitude survey 

detectors is still small, nevertheless, at 0.07 GeV/c.) 

The situation in the longitude range of Eastern Australia is 

evidently very similar to that in the region of Mexico City, 

• because of the close similarity between the latitude dependence of 

the vertical main cone and effective cut-off values in the two 

regions (compare the cut-offs in Figure 4.26, a reproduction of 

Figure 2 of Carmichael et al. [1968], with the main cone and 

effective cut-offs in Figure 4.25). 

Carmichael et al. noted that the main cone cut-off values 
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tended to exhibit the same form of latitude dependence as the ge6- 

graphically smoothed cut-offs pertaining to a neutron monitor, but 

with a small, nearly constant difference (see Figure 4.26). 	It is 

interesting to note in Figure 4.25 that the mean effective cut-off 

for a telescope of geometry (1 x 1) x 2 units similarly has mean 

effective cut-off values bearing the same relationship to the vert- 

ical main cone cut-off. 	Evidently there is some sort of equiv- 

alence between a telescope of this geometry and a neutron monitor, 

as far as mean effective cut-off values are concerned. 
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A further observation may be made from.Figure 4.25.. 	Although 

a large range in mean effective cut-off values for the different 

telescopes occurs at most latitudes, at Brisbane the spread is 

quite small, the total range there being 0.2 GeV/c. 	This result 

is not unexpected, since Brisbane lies at a latitude which is just 

outside the range for which the first order loop cone has an 

appreciable effect on the directional cut-off distribution, but at 

a point at which the second order cone is not yet well developed, 

so that a relatively smooth variation of cut-off exists over the 

observing hemisphere. 

It is of interest to examine the geographically smoothed cut-

offs of Carmichael et al. in the light of this observation. It is 

evident from Figure 4.26 that, as predicted, the effective cut-off 

and geographically smoothed cut-off have the same value at a point 

just below the "step" associated with the fold passage overhead. 

Obviously there are limitations to the validity of the gener-

alizations to be drawn from observations for any particular long-

itude range (and indeed hemisphere). 	Whilst the situation for 

Eastern Australia and Mexico are evidently very similar, at other 

longitudes it is possible that significant differences in cut-off 

dependence on latitude might exist. 	Carmichael et al. [1969] 

have published graphs of the geographically smoothed cut-offs in 

the Northern hemisphere, for longitudes in the range 195-- 285 °  

East. 	At points west of Mexico, these curves show that the fold 

passage overhead tends to be associated with higher momentum cut- 
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off values, and to cause a slightly more abrupt step. 	It is 

possible, in this case, that at these longitudes the first order 

fold may have some effect on the mean effective cut-offs after 

passing the zenith. 	This conjecture would of necessity have to be 

tested by calculation. 

The close agreement between the form of the geographically 

smoothed cut-offs and the angular-compensated cut-offs, on the one 

hand, and the general nature of the calculated mean effective cut-

offs in a similar situation, on the other, strongly supports the 

validity of the various approaches, and independently the reality of 

the loop cone phenomenon. 	It is interesting to conjecture upon 

the possibility of using observations of the intensity gradients 

associated with the folds and related penumbral structure to obtain 

information on the configuration of the geomagnetic field. 

4.11 On the Possible Direct Observation of Main Cone Folding  

It is obvious, both from the presently reported calculations, 

and those of Carmichael et al., and Shea and Smart, that whilst a 

characteristic structure is introduced into the vertical effective 

cut-off dependence on latitude as a consequence of the movement of 

the upper edge of the first order loop cone in the region of the 

zenith, the mean effective cut-off (geographically smoothed cut-off, 

angular-compensated cut-off) for a wide angle vertical detector has 

a relatively smooth dependence on latitude. 

It is possible' that narrow angle detectors could be used to 



15 
	

20 
GEOGRAPHIC LATITUDE ( 'N) 

4.11 	 135 
0 

detect the fine structure in the zenith direction, at longitudes 

where the effect is most pronounced (for example, at 285 0  East lon-

gitude, for which the vertical effective cut-offs are given by 

Carmichael et al. [1969], and reproduced in Figure 4.27a). 	If a 

Figure 4.27a (upper part of plot) 

and Figure 4.27b (lower part). 

Figure 4.27a shows the variation 

of vertical effective cut-off, at 

285
0 
 longitude (Carmichael et al. 

[1969]). 

Figure 4.27b shows the calculated 

relative counting rate of a vert-

ical narrow angle telescope over 

the same latitude range. 

sufficiently sensitive exp-

eriment could be carried 

out, then it is conceivable 

that useful information 

could be obtained about the 

geomagnetic field. 	As 

noted by Shea and Smart 

[1970a] and predicted in 

Section 4.10, the precise 

form of the mid-latitude 

cut-off dependence on lat-

itude is evidently apprec-

iably field sensitive. 

Calculations have 

been carried out to ascertain 

the response of a narrow 

- angle telescope to the fine 
structure exhibited in the 

vertical effective cut-off 

latitude distribution at 285 °  

longitude. 	The expected intensity dependence on latitude is shown 



136 	 4.11 

in Figure 4.27b. 	It can be seen that the slope of the dependence 

curve changes from 0.8 % per degree to zero within an interval of 10 

at 15.5
0 

North latitude. 	It is possible that by the use of narrow 

angle detectors this "knee" could be located; however, in practice 

difficulties would probably be experienced in the removal of atmos-

pheric effects from the observational data. 

The sensitivity of this method of locating the fine structure 

associated with the loop cones is obviously restricted, both by the 

fact that the change in vertical effective cut-off over this latitude 

range, although large, is relatively smooth; and by the limitations 

on the experimental method. 

At directions away from the zenith the intensity gradients 

associated with the first order folding are very much greater than 

those in the zenith direction, and it is possible that observations 

at inclined directions might enable the accurate location of main 

cone folds. 	An additional advantage of a determination in inclined 

directions is that the observations necessary for the execution of the 

experiment may be carried out at a single location, thus avoiding the 

uncertainties associated with the detailed corrections necessary for 

the removal of spurious atmospheric effects, for the reasons given in 

Section 1.3. 

Calculations have been carried out to estimate the sensitivity 

of a determination made using directional muon detectors. 	Obvious- 

ly, if the effects of main cone folding are to be seen clearly in the 

sea level muon intensity distribution then it is desirable that the 
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cut-off values associated with the main cone folding be as great as 

possible relative to the atmospheric cut-off (see Section 5.10). 

A suitable situation exists at Townsville, where cut-off changes of 

up to 5 GeV/c occur within azimuth ranges of one or two degrees, 

associated with the first cone edge in the south-east (see for 

example the cut-off structure at 55 °  to the zenith, at 152 °  azimuth 

in Figure 4.7). 	It was unfortunate that, at the time when the 

latitude survey observations were being carried out at Townsville, 

the cut-Off calculations were not sufficiently advanced to allow 

interpretation of the peculiarities in the cut-off distribution, 

and no attempt was made to observe the folding experimentally. 

The observations made as part of the normal program pertain to 

directions away from the folds, and whilst tending to exhibit 

general north-south asymmetry, show no direct evidence of folding. 

In the absence of suitable experimental observations, calcul-

ations have been carried out to explore the practicability of 

detecting the folding. 	Calculations have been made of the res- 

ponse of a narrow angle telescope when viewing in directions close 

to the folds. 	The detector configuration simulated during the 

calculations corresponds to a geometry that could be readily 

obtained in practice, but particularly suited to such observations. 

This telescope consists of four trays of Geiger counters, each tray 

being 1 metre square. 	By connecting various groups of counters in 

coincidence (assuming 4 cm diameter counters) it would be possible 

to obtain 36 telescope elements of dimensions (0.330 x 0.084) x 1 
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metres in length, having a cone of acceptance of 18.5 0 x 4•7 0 
and 

total counting rate of 1000/hour approximately (this telescope is 

illustrated in Figure 4.28). 	The telescope orientation best suited 

to the detection of the folds would be obtained by tilting the tele-

scope from the position in which the elements are viewing vertically, 

to a zenith angle of 55 0 
 (so that the long side of the element "fan" 

beams remain in a vertical plane), and then rotating the telescope 

about the long axis of the elements by 50 0  (clockwise rotation when 

telescope viewed from behind). 	In this position the long side of 

the element "fan" beams are able to lie parallel to the expected 

inblination of the first order folds at zenith angle 55 ° . 
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narrow angle detector illustrated. 	The direction of viewing of 

the telescope is indicated by an arrow in this diagram. 
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By varying the azimuth heading of the telescope array within 

the south-eastern quadrant at Townsville, the structure in the 

directional muon intensity distribution due to the first order fold 

could be examined. 

In practice, a very useful technique to apply in the analysis 

of data from this instrument would be that of expressing the narrow 

angle telescope counting rate as a fraction of the rate of a high 

counting rate vertical wide angle telescope operating at the same 

site. 	It would be possible by this means (for the reasons out- 

lined in Section 2.3) to avoid the uncertainties associated with 

the detailed correction for atmospheric effects. 	The dependence 

of the counting rate of the narrow angle detector on azimuth would 

be indicated by the form of the inclined/vertical telescope rate 

ratio. 

The expected dependence of muon intensity on azimuth has been 

calculated, with allowance made for the atmospheric asymmetry effect 

(discussed in the following chapter), and the results presented in 

Figure 4.28. 	This calculation does not take into account the 

effects of muon scattering, which would, however, not be expected 

to introduce a systematic shift in the apparent fold position, but 

would tend to diminish the value of the intensity gradient in the 

fold direction. 	The maximum intensity gradient that could be 

expected in the region of the fold would be % per degree in 

azimuth, and it estimated that in this case the fold could be 

located with an accuracy of .1- 2 0  in azimuth. Taking into account 



140 	 4.12 

the rate of change in position of the fold with change in latitude, 

this accuracy corresponds to an error of t 1/3 0  in latitude. 

It appears that this method of locating the main cone folds is 

capable of greater accuracy than the method described earlier, invol-

ving the use of narrow angle vertical telescopes in a latitude 

survey. 

4.12 Sensitivity of Azimuth Position of Fold to Field Changes 

A particular advantage in making observations of fold position 

in inclined directions at a fixed location is that, in principle, it 

would be possible to detect movement in the position of the fold, if 

such a shift were to occur in conjunction with perturbations in the 

geomagnetic field. 	Such an observation could be effected by 

directing the fan beam of a narrow angle telescope, similar to that 

described in the preceding section, to the azimuth at which the 

intensity gradient is a maximum (in Figure 4.28, 152 °  azimuth). 	In 

.this direction the fold shift would be most sensitively indicated by 

a change in telescope rate. 	For the dependence of intensity shown 

in Figure 4.28, a shift of 1 0  would be accompanied by a i % change in 

intensity. 	In using this technique, it would of course be necessary 

to discriminate between changes in detector rate produced by shift 

in fold position and those resulting from changes in mean primary 

intensity (the inclined/vertical ratio method of analysis strictly 

only pertains to conditions of invariant spectrum). 	In principle, 

if the multiple telescope segments were to be hodoscoped, then 
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directions of viewing could be obtained on either side of the fold, 

allowing the muon intensities to be monitored in these directions. 

Having established the general sensitivity of the experimental 

technique in locating fold position, it is of interest to obtain 

information about the dependence of the fold position on the con-

figuration of the geomagnetic field, and hence to ascertain whether 

useful information could be obtained about the field by such exper-

imental observations. 

As mentioned previously, the calculations of cut-offs at the 

latitude survey sites were carried out using the Finch and Leaton 

[1957] sixth order field coefficients. 	These particular coeff- 

icients were utilized because at the time the computations were 

made, the Finch and Leaton coefficients were widely used as the 

"standard" magnetic field model. 	Whilst for most applications, 

such as in the calculation of cut-offs in equatorial regions, their 

use has been shown to produce effective cut-off values essentially 

equivalent to those derived from other available field models, 

Shea and Smart [1970a] have shown that in the mid-latitude region 

the cut-offs are to a degree dependent on the choice of model. 

This result is not unexpected, since, as was discussed in Section 

4.9, the rapid rate of opening of the first order loop cone 

indicates a great sensitivity to field configuration. 	Shea and 

Smart found that, at any particular epoch, the calculated cut-offs 

were not greatly dependent upon the differences between models 

(and incidently that sixth and eighth order coefficients yielded 
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comparable results), but that a time dependence exists in the mid-

latitude cut-off values. 	At Mexico City, Shea and Smart showed 

that the vertical cut-off has apparently diminished by approximately 

1 GeV/c over the past thirty years. 

In the presently reported investigation, a limited number of 

calculations has been carried out using the Jensen and Cain [1962], 

and Leaton et al. [1965] coefficients, to see if the differences 

between these models and the Finch and Leaton model could be 

detected experimentally as changes in fold position. 	The azimuth 

position of the eastern section of the first order fold at 60 0  to 

the zenith at Townsville and Rockhampton have been calculated, 

using the different field models. 	The results are tabulated in 

Table 4.4. 

Table 4.4 Geographic azimuth position of eastern section of first 

order folds at 60 °  to the zenith, for various geomagnetic field 

models. 

Site 	Model: Finch & Leaton Jensen & Cain Leaton et al. 
Epoch: 1955 1960 1965 

Townsville 147.5 t 0.25 °  147.5 ± 0.25 °  148.5 ± 0.25 °  

Rockhampton 117.2 	± 0.1 °  115.75 ± 0.25 °  118.0 	± 0.25 °  

At Townsville the change in fold position is very small, a 

total of less than 1 ° . 	At Rockhampton a greater field sensitivity 
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is exhibited, the spread in fold positions in this case being about 

2
o

. 	That a greater sensitivity should exist at Rockhampton than 

at Townsville is seen to be reasonable when the discussion of 

Section 4.8 is recalled, in which the increase in rate of opening 

of the cones with latitude was attributed to the decreasing "wave- 

length" of the loops. 	Change in field configuration will obvious- 

ly produce a larger percentage change in the number of loops 

traversed in reaching a higher latitude site than a lower. 	With 

increasing latitude, however, while the fold sensitivity to field 

configuration is increasing, the cut-off values and the relative 

size of the folds are diminishing, and it is unlikely that at 

higher latitude sites there will be improvement in the ability to 

detect changes in the geomagnetic field using observations of fold 

position. 

It is to be noted in Table 4.4 that at Rockhampton the fold 

positions are not continuously displaced in one direction with 

increasing time. 	This fact, in conjunction with Shea and Smart's 

finding of relatively uniform change of cut-off with time at Mexico 

City, indicates that possibly the cut-offs in the region of 

Australia were not changing at a uniform rate over the period 

1955 - 1965. 	Alternatively, the result may indicate that, in fact, 

there are appreciable differences between the predictions of the 

various models, contrary to Shea and Smart's finding. 

In any case, it is apparent that the small shift in fold pos-

ition, in conjunction with an experimental error likely to be of the 
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same order of magnitude, render Australia unsuitable as a site for 

making observations designed to discriminate between the models. 

At other longitudes, on the other hand, for example in the region 

of Mexico City, it appears that a greater fold sensitivity to field 

configuration would exist. 	A systematic investigation of direct- 

ional cut-off distributions at such locations would have to be under-

taken to test this possibility. 

In addition to examining the loop cone dependence on mean field 

configuration it is of interest to examine the effect that perturb-

ations of the mean field will have on the loop cone structure. 

It has been shown that the trajectories associated with the 

main cone edge at particular sites become progressively more and more 

tied to field lines as the latitude of the site increases. 	The loop 

cone axes at high latitude sites are evidently related to the local 

field line direction at the site, and it would thus appear that the 

variation of the field could be manifested as an observable change 

in loop cone position as indicated by fold measurements, if the 

direction of the field line at the site changed during a magnetic 

disturbance. 	We may readily calculate the order of magnitude of 

this effect. 

During a magnetic storm, typical disturbances to the local 

field at mid-latitude sites are 	% in the horizontal component H 

and 1 % in the vertical component Z (Parkinson, private communic-

ation). 

Since 	tanI = Z/H 	where I is the dip angle of 
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the local field, 

h dZ - Z dH  
dl - 

It is readily shown, for •the local field conditions at Towns-

ville and Rockhampton, that such a disturbance will result in a 

change of 9' arc at Townsville and 1 0  at Rockhampton. 	A consid- 

erably larger shift would be required to produce detectable 

changes in fold position, since, at the zenith angle where the 

folding is most pronounced, at between 50 0  and 60 0  to the zenith, 

because the loop cone axis lies along a line at the same inclination, 

the folds are disposed normal to the axis about which the tilting 

occurs, so that the azimuth change in fold position is small. 	At 

other zenith angles, although a larger shift in fold position would 

be expected (up to the full value of the dip angle shift at low 

zenith angles), because of the small intensity gradients associated 

with the folds in these directions, experimental observation of 

changes in fold position would present great difficulties. 

It is likely, of course, that additional factors would be 

involved in the distortion of cosmic ray trajectories during mag-

netic field disturbances, thus affecting the loop cone structure. 

For example, a change in the half angle of the loop cone could 

possibly result as a consequence of fractional change in the number 

of loops in trajectories associated with mid-latitude sites, because 

of change in the length of the local field line bundle. 

Calculations have been made to determine the order of magnitude 

H
2  2 
secI 
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of the change in azimuth position of the first order folds in the 

presence of two types of magnetic field disturbance: 

a) the presence of a storm field, and 

b) the magnetospheric cavity distortion due to solar wind 

pressure on the geomagnetic field. 

In order to simplify the calculations, the basic geomagnetic field 

was assumed to have the form of a simple centred dipole having the 

components: B

r 
= -0.62 cos0/ r 3 

B = -0.31 sin0/ r
3 

P - 0 
	

gauss 

The storm field was simulated by the superposition of a linear 

100 y field antiparallel to the dipole field. 	In this case the 

total magnetic field has the components 

B
r = -0.62 cose / r

3 
+ 0.001 cos0 

B = -0.31 sine/ r 3 
+ 0.001 sine 

0 - - 

The magnetospheric current field was obtained by invoking the 

expressions developed by Mead [1964]. 	According to Mead. this field 

may, to a first approximation, be represented by an axial uniform 

field in conjunction with a component having a constant field grad-

ient along the earth-sun line, represented by the coefficients g
l  

and g2  respectively, where 

g
2 

= 0.1215 / r b
4 

g1  = -0.251S/ rb 3  and 
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and r
b 

is a constant representing the distance to the magnetospheric•

boundary along the earth-sun line, in earth radii (taken in this 

work to be 10). 	In this case the total field has the components 

B
r 
= -0.62 cos0 / r 3  - g i  cos0 - 243 g 2  r sine cos0 cos0 

B = -0.31 sin0 / r 3  + g sin0 - 	g
2 

r cos0 (2 cos 2 0 - 1) 
0 	1 

- 
- 	g

2 
r cos0 sin0 

For these field simulations the azimuth position of the eastern 

section of the first order fold at 60 0  zenith angle has been calc-

ulated, for latitudes of 28 °  and 32 °  South (corresponding approx-

imately to the positions of Townsville and Rockhampton respectively 

in the geomagnetic field). 	The results of these calculations are 

summarized in Table 4.5. 

Table 4.5 Azimuth position of first order fold:at 60 °  zenith angle 

in the south-east at sites at latitudes 28 °  and 32 °  South, in: 

A, Dipole field; B, Dipole + storm field; C, Dipole + magneto-

spheric field, with indication of the effect of rotation of the 

earth relative to the earth-sun line (D). 

Field 	28
o  

32
o  

A 	149.9
o 

123.2
o 

149.8
o 

. 122.7
o 

	

149.8 ° 	122.7 °  

< t 0.02 o 1: 0.05 o 
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It is apparent from these results that the external magnetic 

field sources exert only a very small influence on the first order 

folds at these latitudes (implying stability of the first order loop 

cone in the presence of the external sources). 	Rotation of the 

earth inside the magnetospheric cavity evidently produces a minute 

variation in the azimuth position of the first order folds (the 

azimuth positions of the folds were not, in fact, located to this 

accuracy, the small changes were deduced from variation in value 

of the cut-offs in the region of the folds). 

The field perturbations are unlikely to be detectable from 

observations of fold position in the sea level muon intensity dist-

ribution because of the small magnitude of the effect produced. 

It is conceivable that observations at higher levels in the atmos-

phere could lead to the detection of changes in the loop cone 

structure (first or higher order order cones) during magnetic field 

disturbances. 

4.13 Conclusions - Ordering of Latitude Survey Data  

The variation of main cone cut-off value and of equivalent pen-

umbral width over the observing hemisphere at six mid-latitude sites 

has been calculated in detail, and the results presented graphically. 

Fine structure visible in the results has been studied and found to 

be due to the loop cone phenomenon, an effect produced by either 

single of multiple looping of charged particle trajectories in the 

local longitude region about each site. 	With increasing latitude 



4.13 	 149 

a series of nearly circular cones opens up in the south at Southern 

hemisphere sites (and in the north at Northern hemisphere locations), 

the main cone edge within each being associated with trajectories 

having successively greater numbers of loops. 	Each loop cone may 

be distinguished by the presence of main cone folding. 

The large magnitude of the cut-off change associated with the 

first order loop cone edge could be expected to produce appreciable 

intensity gradients in the sea level directional muon intensity 

distribution. 	The loop cone phenomenon may be used to account for 

the anomalous behaviour of the mid-latitude neutron monitor latitude 

survey data reported by Carmichael et al. [1968]. 

The possibility of using directional muon detectors to locate 

the main cone fold positions, and so to obtain information about 

the geomagnetic field, has been explored. 	It is evident that, 

whilst the fold positions are appreciably dependent on the main 

field configuration, the external field sources exert a smaller 

influence on the loop cone structure (the difference in dependence 

arises because the looping responsible for the structure occurs at 

relatively low altitudes (;.-Ji e.r.), in regions of the geomagnetic 

field where external field contributions are small). 	In the 

longitude range of Eastern Australia the predicted change in fold 

position for chantje in main field configuration is of the same order 

of magnitude as the likely errus of observation, although it appears 

that a larger, detectable effect may occur at other longitudes. 

It may, in fact, be possible to make use of the stability 
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of the folds at low and mid latitude sites. 	In principle, an 

effective way exists of studying the changes occuring during cosmic 

ray events (Forbush decreases, energetic flares), in particular 

differential momentum ranges of the primary cosmic ray flux. 	These 

observations could be made by means of pairs of narrow angle detect-

ors viewing in directions either side of large first order folds, 

making use of the differences in cut-off momentum (up to 7 CeV/c 

approximately) existing in adjacent directions at low latitude sites. 

It is clear, from the results of the present investigation, and 

from the work of Carmichael et al., and of Shea and Smart, that very 

appreciable errors may arise out of the use of axial effective cut-

offs instead of mean effective cut-offs in ordering cosmic ray 

intensity data. 	The calculated mean effective cut-offs for the 

directions of viewing of the latitude survey telescopes have there-

fore been used for the purposes of ordering the observational data 

obtained during the latitude survey. 

The ratio data for the telescopes inclined at 22.6 ° , 45.2 °  and 

67.8
o 

to the zenith are plotted as a function of mean effective cut-

off in Figure 4.29. In directions of viewing where the atmospheric 

cut-off value exceeds the mean effective cut-off, the mean effective 

cut-off is indeterminate by the methods employed in the current in-

vestigation, and so the axial direction cut-offs are used. 

Whilst the various sets of data show general agreement in over-

all slope, the individual sections show peculiarities quite contrary 

to expectation, in particular, the data for 67.8 °  zenith angle. 
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Figure 4.29. Latitude survey data, plotted in the form of rates 

relative to that of a vertical detector at each site, of detectors 

inclined to 22.6°, 45.2° and 67.8°, as function of mean effective 

cut-off momentum in the inclined viewing direction. 
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CHAPTER 5  

THE ATMOSPHERIC ASYMMETRY EFFECT  

5.1 Introduction  

Measurements made with the aid of directional muon detectors 

reveal the presence of marked azimuthal asymmetries in the sea 

level directional muon flux, whose magnitude* is zenith angle and 

latitude dependent. 	Large asymmetries are observed near the geo- 

magnetic equator, with muon intensities in the west of the order of 

ten percent greater than those in the east, due to the presence of 

high value primary radiation cut-offs in the geomagnetic field. 

As the cut-offs diminish with increasing latitude, the azimuthal 

asymmetries are observed to decrease. 	At latitudes beyond the 

latitude "knee" (at approximately 25 °  geomagnetic latitude) the 

cut-offs are reduced to the point where the primary particles with-

in the sections of the primary spectrum removed due to the presence 

of the cut-offs are incapable of giving rise to muons energetic 

enough to penetrate the atmosphere and be detected at sea level. 

Thus, beyond this latitude (actually a small latitude range, due to 

the difference in knee position at each zenith and azimuth angle) 

* The quantitative asymmetry a between the radiation intensities 

I
1 
and 12,  in two directions, is defined as 

a = 
2 (I

1  - 12 )  x 100 
I + I 
1 	2 
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the geomagnetic cut-offs have no further effect on the sea level 

muon flux, and it would be expected that, since the primary rad-

iation at these higher latitudes is observed to be sensibly iso-

tropic, azimuthal asymmetry would vanish. 	Nevertheless, experi- 

mental observations show that small but significant azimuthal 

asymmetries do exist at these higher latitudes. 

First observed by Johnson and Street [1933], the presence of a 

"high latitude" azimuthal asymmetry of the order of one percent was 

confirmed by the observations of Johnson and Stevenson [1933], 

Froman and Stearns [1934], and Seidl [1941]. 	The asymmetry, 

although of smaller magnitude than those at low latitudes, was 

shown to be superficially similar, in that the greater intensity 

was associated with the west, and that the asymmetry increased with 

increasing zenith angle. 

5.2 Theory of the East-West Asymmetry at High Latitudes  

Bowen [1934] suggested that directional east-west asymmetry of 

the muon flux in the atmosphere could arise as a result of the defl-

ection of the muons in the magnetic field, if the numbers of positive 

and negative muons at production were unequal. 	The mechanism res- 

ponsible may be quantitatively considered to operate as follows: 

The sense of deflection of positive muons moving in the east-

west azimuthal plane is such that a greater depth of atmosphere will 

be traversed in order to arrive at a particular zenith angle in the 

east than in the west. 	The reverse is true for negative muons. 
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Because there is a preponderance of positive muons, a greater total 

intensity will be observed in the west than in the east. 

Bowen, after demonstrating that muon trajectories opproximate 

to equi-angular spirals, showed that the zenith angle intensity 

dependence in the east-west plane could be considered to be rotated 

through a small angle, and that the resulting intensity differences 

could account for the observed east-west asymmetry at medium and 

high latitudes. 

Johnson [1941] formulated a considerably more detailed treat-

ment of the asymmetry. 	He considered that at any point in the 

atmosphere the intensity of muons of one sign at a particular 

zenith angle 0 in the magnetic east-west plane would be the same 

as that at the zenith angle 0 - 60 in the absence of energy losses 

in the air, where SO is the additional deflection suffered by the 

muons due to energy loss. 	Because the normal zenith angle de- 

pendence of the total muon intensity in the absence of appreciable 

cut-offs was known, calculation of the dependence of IA on muon 

momentum, followed by integration over the secondary spectrum 

allowed the mean value of the additional deflection and hence the 

asymmetry to be deduced. 	Several simplifying assumptions were 

made: 

a) That the change in muon path length due to the small 

additional deflection is negligible. 

b) That the height-pressure relationship within the atmos-

phere may be adequately represented by a simple exponential 
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function. 

c) That the secondary spectrum is independent of zenith angle. 

d) That the muons lose energy at a constant rate per gm cm -2 

of air. 

e) That the muons move in the magnetic east west azimuthal 

plane and are deflected in a horizontal magnetic field. 

0 That if the muons did not lose energy, no asymmetry would 

exist. 

g) That the ratio of the numbers of positive and negative muons 

has a constant value, independent of momentum. 

Johnson showed that the asymmetry could be represented by an 

expression of the form 

= 	F a 	2 ) n 	tan° r + 1 

where n is the exponent in the empirical function express-

ing the zenith angle dependence of total muon intensity (see Section 

3.3), 6 is the mean additional deflection of the muons produced by 
the energy losses in the atmosphere, and r is the ratio of the number 

of positive to negative muons. 

The asymmetry values thus calculated were shown to give an 

adequate representation of the available experimental data. 

Burbury and Fenton [1952], having access to observational data 

of greater accuracy (from their work, and that of Fenton and Burbury 

[1948], and Burbury and McClaren [1952]), introduced certain refine-

ments into the Johnson theory in order to improve the theoretical 



5.2 	 157 

asymmetry calculations. 	They used numerical techniques to facil- 

itate the use of empirically determined data for the representation 

of the atmosphere, and for the rate of energy loss by muons. 

Rather than calculating merely the additional deflections due to 

the energy loss in the atmosphere, they computed the total defl- 

ections as they considered that the asymmetry arose as a consequence 

of these. 	As a result, their calculated values are significantly 

greater than corresponding values derived using the additional 

deflections alone, the disparity arising mainly from the large 

difference between the total and additional deflections at high 

muon momenta. 	Burbury and Fenton showed that their theoretical 

results gave good agreement with the experimental observations at 

Hobart and Macquarie Island at zenith angles up to about 60 0 , but 

overestimated the asymmetry values at higher zenith angles. 	They 

showed that, as predicted by theory, the values of the east-west 

asymmetry at a given zenith angle are evidently proportional to 

the horizontal component of the magnetic field, within the exper-

imental errors. 

Fenton [1952] examined Johnson's theory with the view of 

ascertaining the effect of muon decay on the quantitative theoret-

ical results. 	The original theory of Johnson assumes that the 

additional deflection of muons due to energy loss merely has the 

effect of rotating the observed zenith angle dependence of muon 

intensity through a small, energy dependent angle in the east-

west plane, and that it is unnecessary to introduce specific 
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considerations of the lifetime of the muons. 	Fenton demonstrated 

by calculation that, on the assumption that muon production occurs 

at a single atmospheric level, in the absence of energy loss by 

muons in the atmosphere an east-west asymmetry will arise of mag-

nitude about half that of the Johnson value at 45 °  to the zenith, 

due to the decay of muons. 	Thus Johnson's assumption that the 

additional deflection alone produces the asymmetry is not justified. 

Fenton pointed out that, ideally, integration should be carried 

out along the actual muon trajectory in order to determine the 

energy loss and survival probabilities of the muons. 	Because the 

means of carrying out the complex associated numerical calculations 

were not available, it was necessary to follow Johnson, and Burbury 

and Fenton in resorting to the use of integration along a straight 

line path to determine the required deflections. 	Fenton intro- 

duced the refinement of the Bethe-Bloch relationship for obtaining 

the rate of energy loss by the muons, and utilized a zenith angle-

dependent secondary spectrum, derived from the vertical sea level 

muon spectrum of Rossi [1948] on the assumption of muon production 

at the 100 mb level. 

The more detailed theoretical calculations of east-west asymm-

etry to date, those of Johnson, Burbury and Fenton, and Fenton, are 

essentially similar, disparities arising out of the use of the add-

itional deflection by Johnson and the total deflection by the other 

authors, and the degree of refinement in the introduction of the 

variables into the muon deflection calculations. 	Several approx- 
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imations are common to these approaches. 	Firstly, that the mag- 

netic field is considered to be horizontally directed and of mag-

nitude equal to the horizontal component of the field at any site. 

Secondly, that the calculation of muon deflection has been carried 

out by integration along a straight line path of the equation rep- 

resenting the instantaneous curvature of the trajectory. 	A con- 

sequence of the straight line path integration is that the defl-

ection of a positive muon is calculated to be equal in magnitude 

and opposite in sense to that of a negative muon arriving at the 

same zenith angle. 	Thus the resultant asymmetry is predicted to 

be manifested as an enhancement of the western intensity by an 

amount equal to the diminuition of the eastern intensity. 	It is 

readily apparent, in fact, that the deflections suffered by pos-

itive and negative muons in arriving at a particular zenith angle 

will in general not be the same, because of the difference in path 

length along the actual trajectories. 	An accurate theoretical 

approach, using trajectory tracing techniques as suggested by 

Fenton, would as a matter of course resolve this difficulty. 

In the past most study on azimuthal asymmetry has been devoted 

to that in the east-west azimuthal plane. 	This concentration has 

arisen for two reasons. 	Firstly, theoretical considerations 

become relatively simple if the field is assumed to be normal to 

the plane containing the particle trajectory, as may be done to a 

first approximation in the magnetic east-west plane. 	Secondly, 

azimuthal asymmetries are found to have their greatest magnitude 
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in directions close to the magnetic east-west azimuthal plane and 

thus are the most easily observed experimentally. 	However, the 

asymmetry in this plane is only one portion of an overall asymmetry 

affecting all azimuths, produced by systematic muon deflections in 

the magnetic field. 	It is desirable to have an understanding of 

the asymmetry effect at other azimuths. 

Fasoli et al. [1957] carried out theoretical calculations of 

low momentum ( 2 GeV/c) muon intensity dependence on azimuth in 

the presence of a horizontal magnetic field. 	Their approach was 

essentially similar to that used in the earlier east-west asymmetry 

calculations of Johnson, Fenton, and others. 	For example, total 

muon deflections were calculated by analytical integration of 

expressions representing the instantaneous curvature of the traj- 

ectories, along straight line paths. 	Like the earlier work, too, 

a constant charge ratio value was utilized, and muon decay was not 

considered. 	-Their final theory is more genral, however, as it 

applies to all azimuths. 	Because of the assumption of a horizontal 

magnetic field, the theory predicts an intensity distribution 

symmetrical about the magnetic east-west azimuthal plane, and as a 

consequence of the straight line path integration, the eastern 

intensity diminuition is equal in magnitude to the enhancement of 

the western intensity. 	Fasoli et al. found that their experimental 

observations exhibited agreement with the theoretical predictions, 

and claimed that the assumption of a horizontal magnetic field 

was acceptable. 
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Contrary to the findings of Fasoli et al., it may readily be 

shown that a north-south asymmetry can arise at sites where a 

vertical magnetic field component exists. 

5.3 The North-South Asymmetry at Hiqh Latitudes  

That a north-south asymmetry should exist may be seen by con-

sidering the situation at, say, a southern hemisphere site for 

which the local magnetic field line is inclined in the magnetic 

north at a zenith angle O. 	Secondaries approaching from the north 

at this zenith angle will be travelling along field lines and so 

will be undeflected. 	Those approaching from the south, on the 

other hand, will be crossing field lines and consequently will be 

deflected. 	The slight additional energy loss and increased time 

of flight will reduce the southern intensity relative to that from 

the north. 	In contrast to the east-west asymmetry effect, the 

north-south asymmetry is produced independently of the magnitude of 

the charge ratio. 	In the northern hemisphere the asymmetry would, 

by its nature, be expected to have opposite sign (i.e. a southern 

excess) to that in the southern hemisphere, as the field lines are 

there inclined in the south. 

The existence of a significant north-south asymmetry at high 

latitudes was demonstrated by Burbury and McClaren [1952]. 	In an 

experiment carried out at Hobart they found an asymmetry of approx-

imately half the magnitude of the east-west asymmetry at 45 °  zenith 

angle. 	Burbury [1952j presented a theoretical treatment of the 
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effect in which he showed that the north-south asymmetry could be 

represented as 

(0) 	2 (cos2.2 6 n - cos 2.2  ) u"ns 

where 6 n 6 s are the mean deflections of particles arr-

iving from the north and south at the particular zenith angle 0. 

Muon deflections calculated in the same way as by Burbury and 

Fenton [1952] in their study of the east-west asymmetry were used 

in the asymmetry calculations, which were shown to predict satis-

factorily the observed asymmetry at Hobart. 

Certain measurements of the north-south asymmetry at higher 

latitudes reveal that the observed asymmetries are markedly 

different from the theoretical values. 	Hovi and Aurela [1961] 

experimentally measured the north-south asymmetry at a geomagnetic 

latitude of 58 °  north and compared the result with values calcul- 

ated from Burbury's theory. 	The experimental value was shown to 

be significantly greater than predicted (i.e. a higher intensity 

from the south than expected), and they concluded that the discrep-

ancy was produced by anisotropy in the primary radiation. 

It is interesting to bear this result in mind when considering 

the results of an experiment conducted by the author at Mawson. 

This investigation, reported in detail by Cooke [1965], is briefly 

described here. 

2.2- 	2.2- cos 	6 n + cos 	6
s 
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5.4 Investigation of the Azimuthal Asymmetry Pattern at Mawson  

During the period July 1963 to January 1964 inclusive, obser-

vations were carried out to investigate the dependence of muon 

intensity on azimuth at Mawson (Geographic coordinates 67 036 S, 

o
53 	

o
' E, Geomagnetic coordinates 73

o 
S, 103 E 62 	 ). 	Measurements 

were made at equally spaced azimuths using high counting rate tele-

scopes inclined at 45
0 
 to the zenith. 	The telescopes, described 

in detail by ParsOns [1957], were a "wide angle" telescope of 

dimensions (1 x 1) x 1.5 m. long, and a "narrow angle" telescope, 

(0.4 x 0.4) x 1.5 m. long. 

The azimuthal asymmetry pattern was deduced, by calculating 

the asymmetry between the muon intensity at each azimuth to that 

in the geomagnetic west. 	The resultant asymmetry pattern is 

presented in Figure 5.1. 	Analysis of the data for each individual 

month revealed that no appreciable secular change occurred in this 

distribution over the six months observing period, although marked 

ehort term variation was observed. 	In particular, on September 

23rd 1963, the east-west asymmetry changed sign during a Forbush 

decrease to become negative (i.e. an eastern excess). 

The expected east-west and north-south asymmetries were calc-

dieted using the theoretical results of Burbury and Fenton [1952], 

and BUrbury [1952]. 	The east-west asymmetry values for several 

zenith angles were obtained by multiplying the asymmetry values, 

calculated for Macquarie Island by Burbury and Fenton, by the ratio 
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of the horizontal field components at the two sites. 	Similarly ' 

the north-south asymmetry values for several zenith angles were 

obtained using the formula of Burbury. 	The asymmetry values for 

these zenith angles were then used in conjunction with the telescope 

radiation sensitivity differential values for the same angles as 

derived by Parsons [1959], to obtain weighted mean estimates of the 

. expected asymmetry values at Mawson. 	The experimental and theor- 

etical east-west and north-south asymmetries, together with the 

estimated errors in the interpolated experimental values, are given 

in Table 5.1. 

Geog South 	 Mag. South 

Gecm South 

Azimuthal asymmetry patterns as 
indicated by -- .-- narrow angle telescope 

- wide 

Figure 5.1. Experimentally determined azimuthal asymmetry pattern 

at 45
0 

zenith angle at Mawson. The intensity in the geomagnetic 

west used as reference in calculating asymmetry values. 
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Table 5.1 Comparative experimental and theoretical values of 

magnetic east-west and north-south asymmetries at Mawson, as ob-

served"by-the_inclined "wide angle" telescope. 

Azimuthal 	Asymmetry Value (%) 

Plane 	Experimental Theoretical 

East-west - 	1.16 "I 0.03 	0.90 

North- 	0.00 ± 0.05 	0.68 
south 

Whilst the theoretical east-west asymmetry value is in reason-

able agreement with experiment, there is marked disagreement for the 

• north-south asymmetry. 	The low experimental value of north-south 

asymmetry corresponds to a higher value of southern intensity than 

expected relative to that in the north. 	To check that geomagnetic 

cut-offs were not responsible for this result the cut-off calculat-

ions of Kasper [1959] were consulted to find if the cut-offs in any 

direction at a site with the geomagnetic latitude of Mawson could 

exceed the atmospheric cut-offs. 	It was apparent, however, that 

in all directions the geomagnetic cut-offs are ineffective, and 

this source of perturbation of the azimuthal asymmetry pattern had 

to be discounted. 

Parsons carried out an experiment at Mawson, in 1956, in 

•which the wide angle telescope, described earlier, was used to in-

vestigate the daily variation in the muon component at four azim-

uths - geomagnetic east, south, west and north. 	The intensity 
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data, as published by Parsons [1960], although relating to direct-

ions too widely spaced in azimuth to allow estimation of the precise 

value of the magnetic east-west' and north-south asymmetries in 1956, 

nevertheless support the general intensity distribution as observed 

in 1963, and tend to indicate a low value of the north-south asymm-

etry. 	Thus the apparent southern excess of radiation at the top 

of the atmosphere appears consistent. 

5.5 Evidence for Primary Anisotropic Contributions to Azimuthal  

Asymmetry  

As noted in Section 5.3, Hovi and Aurela [1961], in their 

experiments at a high northern latitude, also found an apparent 

southern excess of primary radiation. 	The similar findings from 

both north and south hemispheres could be explained by the presence 

of a steady primary anisotropic component, with southern intensities 

higher than those from the north, such as could be produced by a 

density gradient of cosmic ray intensity normal to the ecliptic 

plane. 	Accurate investigation of the problem would require precise 

knowledge of muon coupling coefficients and asymptotic directions 

of approach of trajectories pertaining to the two sites, in order 
- 

that the asymptotic cones of viewing of the detectors could be 

derived. 

The presence of primary anisotropy is also indicated by the 

variability in the magnitude of the east-west asymmetry with time 

at high latitudes. Temporary, short period fluctuations are obs- 
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served during, for example, Forbush decrease events, and appreciable 

secular changes are observed over longer periods. 

Jacklyn and Fenton [1957] observed changes in the east-west 

asymmetry at Hobart over the period 1947-1956, in which the mag-

nitude of the asymmetry varied by a factor of three, apparently 

correlated with relative sunspot number. 	They considered the 

factors contributing to the atmospheric asymmetry to find if these 

could be responsible for significant asymmetry changes in the 

presence of primary isotropy. 	Since the horizontal magnetic field 

change associated with field disturbances is normally less than one 

percent they reasoned that the asymmetry could not change by more 

than approximately one percent, whilst primary spectrum changes 

would have to be drastic to produce significant effects. 	They con- 

cluded that variable primary anisotropic components were responsible 

for the observed asymmetry variability. 

Jacklyn [1959a] reported significant recurrence tendencies in 

the ,  east-west asymmetry data from Mawson, with evidence for a 27- 

day type of intensity variation. 	He suggested that unipolar mag- 

netic disturbances on the sun were responsible for the effect. 

Stensland [1965] also found marked recurrence tendencies in muon 

intensity data recorded at Malmberget, Sweden, which were evidently 

related to the passage of active areas across the disc of the sun. 

Forbush decreases are normally accompanied by small asymmetry 

changes (Jacklyn [1959b]), although occasionally very large changes 

are observed, in which the east-west asymmetry is depressed for a 
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period of one or more days. 	Sometimes an eastern excess of inten- 

sity is observed. 	Both Jacklyn and Stensland reported a large 

effect during the cosmic ray storm of July 1959, whilst, as rep-

orted in the preceding section, one occurred in September, 1963. 

Jacklyn investigated the phenomenon and concluded that factors con-

tributing directly to the atmospheric asymmetry production could 

not be responsible for the changes. 	He suggested that a mechanism 

operated which tends to reduce the intensity of protons reaching 

the earth from directions at right angles to the ecliptic plane, 

relative to the intensity closer to the plane. 	The asymptotic 

cones of west pointing telescopes at high southern latitudes lie 

close to the south polar axis, whilst the asymptotic cones of east 

pointing telescopes lie close to the equatorial plane. 	Jacklyn 

proposed that ecliptic latitude dependent hardening of the primary 

spectrum could occur during a Forbush type event, which would be 

manifested as a decrease in east-west asymmetry, as the result of 

the anisotropy produced in the distribution of primaries at the top 

of the atmosphere. 	(The magnitude of the anisotropy responsible 

for any particular asymmetry change is not necessarily large, as the 

asymmetry is very sensitive to departures from primary isotropy. 	A 

change of 100 % in a directional asymmetry of one percent may be 

brought about by an increase of only one percent in the intensity in 

one direction.) 

It is to be expected that the maximum sensitivity of asymmetry 

measurements to primary anisotropy would occur at high latitudes, 
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since it is there that the most distinct separation of the cones of 

viewing of detectors "looking" towards opposite azimuths occurs. 

At lower latitudes the geomagnetic field the geomagnetic field 

tends to exert a greater influence on the primary particle traj-

ectories, resulting in the tendency for the predicted asymptotic 

cones of viewing to merge. 	Thus the anisotropy of the primaries 

would, if present, affect asymmetry measurements less and less with 

decreasing latitude, and for this reason, together with the fact 

that the magnitude of the atmospheric asymmetry increases apprec-

iably with decreasing latitude, the observed azimuthal asymmetry 

would be expected, in the absence of appreciable geomagnetic cut-

offs, to correspond more and more to those calculated from a know-

ledge of the atmospheric asymmetry effect, on the assumption of 

, primary isotropy. 	Removal of the lower energy particles by the 

- action of the cut-offs would, in any case, tend to decrease the 

sensitivity of the total sea level muon intensity to primary an-

isotropies. 	For this reason, too, it could be expected that the 

magnitude of the atmospheric asymmetry at low latitudes would be 

adequately predicted by calculations carried out on the assumption 

of primary isotropy. 

5.6 	Aims of the Present Atmospheric Asymmetry Investigation  

Ample evidence exists to verify the operation of the atmos-

pheric asymmetry mechanism as proposed by Johnson, despite the 

possible confusion at high latitudes with asymmetry components 
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produced by primary anisotropies. 	It should be borne in mind that 

the object of the current study is not merely to examine the atmos-

pheric asymmetry effect as an isolated phenomenon. 	If accurate 

investigations are to be carried out on the effects of the geomag-

netic field on the primary cosmic radiation (one of the objects of 

this thesis), and the primary solar and siderial anisotropies, then 

it is necessary to establish by theoretical study the nature of the 

atmospheric asymmetry effect, in order that data from directional 

muon intensity studies at any latitude may be corrected to remove 

the effects of the overlaid atmospheric asymmetry. 

Evidence of the co-existence of the atmospheric asymmetry and 

the asymmetry produced by geomagnetic cut-offs at mid to low latit-

udes is distinct in the latitude survey data. 	From a graph of the 

observed east-west asymmetry at three zenith angles as a function of 

geographic latitude (Figure 5.2), it may be seen that the curves each 

exhibit a very distinct, abrupt change of slope. 	This discontinuity 

occurs at the point where, with decreasing latitude, the eastern geo-

magnetic cut-offs have reached a value where they are able to in-

fluence significantly the directional muon intensity at sea level, 

adding to the asymmetry already present as a result of the atmos- 

pheric asymmetry effect. 	The position of the changes of slope 

correspond to the latitude "knee" at eastern azimuths for these par-

ticular zenith angles. 

The effect is equally as clear in the published results of 

Dorman et al. [1967], who, apparently not aware of the atmospheric 
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asymmetry mechanism, interpreted their data in terms of geomagnetic 

cut-off action alone. 
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Figure 5.2. Dependence of east-west asymmetry on geographic 

latitude, as measured by telescopes inclined at three zenith 

angles during the latitude survey. 

At very low latitudes, although the change in secondary spec-

trum due to the presence of primary cut-offs would be presumed to 

modify the atmospheric asymmetry, there is no reason to suppose 

that the asymmetry is of negligible magnitude. 	In spite of this, 

most investigators, in interpreting the results of observations 
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with inclined telescopes at low latitudes, have assumed that azim-

uthal asymmetries arise solely because of the action of the geo-

magnetic cut-offs. 	The unfortunate choice of the name "high lat- 

itude" asymmetry may have been partly responsible for this over-

sight, as it tends to imply that the phenomenon affects only obs-

ervations at high latitudes. 

Kane [1962] pointed out that interpretation of low latitude 

azimuthal intensity patterns in terms of cut-offs alone was not 

satisfactory, following attempts to derive directional muon coupl-

ing coefficients from a number of sets of directional intensity 

data published by other authors. 	It is evident that both the 

presence of the atmospheric asymmetry effect, and poor statistics, 

were responsible for the lack of success. 

The only workers to be fully aware of the atmospheric asymm-

etry effect at low latitudes appear to have been Harris and Escobar 

[1955, 1956], who showed, by the use of theoretical calculations 

based on the production spectrum of Olbert [1954], that the observed 

east-west asymmetry in the low momentum muon component at the equator 

consists of both primary and secondary effects. 

In the current general investigation of the atmospheric asymm-

etry effect, it will obviously be necessary to introduce geomagnetic 

cut-off as a variable. 	Precise knowledge of the behaviour of the 

total intensity with cut-off implicitly assumes the availability of 

muon coupling coefficients (through the integral response functions), 

even though, in fact, the atmospheric asymmetry effect is being 
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investigated primarily in order that accurate coupling coefficients 

may be derived. 	This situation can be unambiguously resolved, as 

will be shown in Chapter 6, and for the purposes of this invest-

igation we anticipate the result and use the final estimated muon 

response functions. 

We now undertake a detailed examination of the atmospheric 

asymmetry effect, to determine the dependence of the azimuthal 

asymmetry pattern on zenith, azimuth, cut-off, magnetic field 

strength and orientation, altitude and atmospheric structure. 	The 

complexity of the asymmetry calculations, when considerations such 

as the determination of muon trajectories are introduced, has nec-

essitated the development of the problem in a form suitable for 

computer solution. 

5.7 Theoretical Investigation of the Atmospheric Asymmetry Effect  

5.7.1 Introduction of the Asymmetry Function  

We treat as separable effects the atmospheric asymmetry effect 

and the basic directional muon intensity distribution due to the 

presence of the atmosphere and geomagnetic cut-offs. 

If, in the presence of a magnetic field in the atmosphere, a 

certain directional intensity distribution I(0,0,P
c
,x,B) is observ-

ed at an atmospheric depth x, then the directional distribution that 

would be observed in the absence of the magnetic field may be re-

presented as 

N(O,Pc ,X ) = I ( 0,0,Pc,X,B) A(0,003c,X,8) 
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where 0, 0 are zenith and azimuth angles respectively, P
c 

is the primary cut-off momentum, and B the magnetic field. 

The dimensionless function A is a quantity we call the esymm-

etry function. 	In principle, experimental muon intensity data may 

be corrected to remove the effects of the atmospheric asymmetry if 

theoretical knowledge of the values of the asymmetry function 

(asymmetry factors) pertaining to the given conditions is available. 

In the present investigation it is desirable that the depend-

ence of the asymmetry function on the various parameters be invest-

igated in detail sufficient to allow the deduction of values of the 

asymmetry factor applying to any given set of conditions, in part-

icular so that the latitude survey data may be corrected. 

5.7.2 Determination of Secondary Spectra  

A basic requirement for investigating the atmospheric asymmetry 

is the knowledge of the spectrum of the muons on arrival at the 

observing point. 	Essentially, the investigation involves calc- 

ulating the perturbations of the muon spectrum due to variation of ' 

the parameters of interest in the problem. 	Having determined the 

modified spectrum, the directional muon intensity may then be obt-

ained by integrating over the spectrum. 

In order to determine the secondary spectrum we have utilized 

the production spectrum of Olbert [1954], modified in several res-

pects to render it more suitable for use in the present calculations. 

Olbert, using a technique originated by Sands [1950], derived an 
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empirical muon production spectrum expressing the production rate 

of muons by primary cosmic rays at any level in the atmosphere. 

This spectrum may be used in conjunction with expressions repres-

enting muon survival probability and proton intensity to obtain 

the contribution to the vertical muon intensity at any observing 

level from any higher levels in the atmosphere. 	Integration over 

all contributing levels allows the differential intensity to be 

obtained, and a further integration over any particular momentum 

interval yields the total vertical muon intensity within that int-

erval. 

The Olbert theory assumes that, because of the extremely short 

lifetime of the pions, the muons are produced in the initial proton 

interaction. 	The process of muon production, and the subsequent 

passage through the atmosphere is assumed to be one-dimensional. 

Olbert justified the one-dimensional treatment of the muon product-

ion by showing firstly that experimental evidence indicated good 

collimation of the muon beam relative to the direction of motion of 

the parent proton for muon momenta in the range of interest, and 

secondly that the mean square angle of scattering of muons in the 

atmosphere is negligible. 

Harris and Escobar [1955, 1956] found it necessary to intro-

duce a small empirical correction into the Olbert theory to account 

for discrepancies they found in the sea-level muon flux for muon 

momenta at production of approximately 3.4 GeV/c. 	Our work inv- 

olves mainly calculations corresponding to appreciably higher 
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momenta than this, and accordingly we feel justified in following 

Olbert and using the one-dimensional model. That the results of 

the calculations satisfactorily represent reality is demonstrated 

in Section 5.9. 

According to Olbert, at a latitude X the vertical differential 

intensity of muons with residual range R at a level s in the atmos-

phere may be expressed as 

I(R,s,X) = 	G(R',X) e
(-x/L) 

w(x,s,R) dx 
0 

where w is the survival probability of a muon of range R' 

produced at the atmospheric level x arriving at the level s. 

is the mean free path for absorption of protons in air (taken by 

Olbert to be 120 gm cm-2 ), and G(R',X) is the production spectrum, 

where 

G(R',X) - 7.3 x 10
4 

[H(X) + R'] 3 ' 58 . 
gm 	cm cm2 sec 

-1 
sterad

-1 
(5.1) 

where H is a latitude dependent constant. 

We assume (following Kraushaar [1949]) that at a zenith angle 

0 the differential intensity may be expressed as 

(-x/Lcos0) 
I(R,s,X,0) = 	G(R',X) e 	 w(x,s,R,O) dx 

0 	cos0 (5. 2) 

In the absence of a magnetic field in the atmosphere the muons 

are not deflected, and the evaluation of this integral is carried 
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5.6566 
dx dP 
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out over a straight line path at a constant zenith angle. The 

total muon intensity may then be found by integration over all 

ranges in the given direction, i.e. 

00 
I(s,X,O) = 	dR 

0 

In our calculations it was found most convenient to use muon 

momentum P as the variable rather than range R, so the empirical 

range-momentum relationship quoted by Olbert [1953] as being acc-

urate for momenta up to approximately 14 GeV/c was employed to 

effect the conversion. 	This relationship is 

53.5 P  
m cm-2 

2.07x10.-3  P + 0.10573 

assuming the muon mass to be 207 x electron mass, and 

where P is in GeV/c. 

In terms of momentum, then, the total intensity of muons in 

any direction is represented by the following expression 

00 s 	(-x/Lc050) 
I(s,X,0) = 	S G(P',X) e 	 w(x,s,P,O) 

00 	cos0 

(5.4) 

where P' is the muon momentum at the level x in the 

atmosphere. 	The intensity has the units particles per cm
2 

per 
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steradian per second. 

5.7.3 Production Spectrum Dependence on Geomagnetic  Cut-off  

5.7.3.1 Dependence as Predicted by Olbert  

In the production spectrum (equation 5.1) Olbert used the con-

stant H to introduce the latitude (cut-off) dependence. 	He estim- 

ated the form of the dependence by using the best information 

available at the time, and this relationship was subsequently con- 

firmed and extended by Harris and Escobar [1955]. 	From Olbert's 

graph of the variation of H with latitude, it is evident that a 

sensibly linear relationship exists between vertical cut-off mom-

entum and H, -which may empirically be described by the equation 

H = K P + 506 	gm cm-2 
	

(5.5) 

• where K is a constant of value 9.9, if P
c 

is in GeV/c. 

Test calculations carried out using this expression show that 

it leads to a poor representation of the observed integral muon 

intensity dependence on cut-off (neither Olbert's nor Harris and 

Escobar's applications of the production spectrum were critically 

dependent on the predicted form of the integral response). 	This 

arises out of the failure of the function to take into account an 

important factor in the problem. 

In equation (5.1) it is evident that variation of H changes 

the differential muon intensity at all points on the secondary 

spectrum. 	This does not correspond strictly to reality, since 
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the muons produced by primaries of momentum above the geomagnetic 

cut-off P
c are unaffected by the presence of a cut-off. 

	It is 

evidently necessary to modify the production spectrum to allow this 

factor to be taken into account. 

5.7.3.2 Calculation of the Muon Cut-off  

If we define f(P
c ) as the maximum momentum of a muon which a 

primary proton of momentum P
c can produce, the portion of the muon 

spectrum of momentum above f(P c ) at production is unaffected by the 

presence of the geomagnetic cut-off P. 	Only that portion of the 

production spectrum below f(P
c ) will be affected by the presence of 

a cut-off. 	At the observing level, we define the muon cut-off 

as the point on the muon spectrum above which the geomagnetic 

cut-offs exert no influence. 

The muon cut-off P 	for any particular primary cut-off value 
JJC 

and zenith angle through the atmosphere may be found by determining 

f(P
c ), and then subtracting the momentum loss OP sustained by the 

muon in passing through the atmosphere at the particular zenith 

angle. 	Thus 
P 	= f(Pc ) - 6P 
/JC (5.6) 

The determination of f(P
c ) necessitates the examination of the 

muon production process. 	Most muons in the atmosphere are gener- 

ated by protons via pion production. 	For each of the two stages 

in the muon production, the maximum energy that can be passed on 

to the descendant particle may be deduced. 	In Appendix 3 we 
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present equations representing the maximum energy transferred in 

the interactions, and from these derive a set of equations relating 

the maximum momentum of a muon to the momentum of the parent proton. 

We may calculate the other parameter, OP, as follows. 	Muons 

lose energy in Fissing through the atmosphere, and the final mom-

entum on reaching the observing level will depend on the atmospheric 

depth involved, the inclination of the muon path to the vertical 

(and the curvature of the path), and the mean energy of the muon. 

The rate of energy loss by a fast charged particle per gm cm-2 of 

any gas is given by the Bethe-Bloch relationship 

4  
dE 	4ffe N(Z/A) 	2m c2 	0

2 

-
dx 

- 	[1n( 	° 	) -2] 
moc

2
0
2 	

(1 -
2

) 
(5. 7) 

, where N is Avogadro's number, e the electronic charge, 

Z the atomic number of the absorber, A the atomic weight of the 

absorber, m
o the rest mass of electron, c the velocity of light, 

Oc the velocity of the particle, I the mean energy of excitation of 

the absorber electrons (taken as 80.5 eV), and E the kinetic energy 

of the particle. 

For muons in air this expression reduces to 

dE 	1.5375x105.[1n(• 
 

1 274x10 4  5 2 ) 	132] 
dx 

0
2 

1 - 0 2 

Integration of this expression along the path traversed by a 

muon yields the energy loss and hence the momentum loss .5P suffered 
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by the muon. 

Thus for any particular set of conditions 6P and f(P
c
) may be 

calculated and, with the aid of equation (5.6), the muon cut-off 

determined. 

If we let P
min be the momentum threshold of muon detection at 

the observing level (essentially P
min corresponds to the muon mom-

entum necessary for penetration of the telescope shielding; for 

tO on of lead, IP 
min = 0.25 GeV/c), then it may be seen that for 

P < P
min the primary cut-offs can have no effect on the second-pc 

ary spectrum at the observing level. 	The latitude for which 

P 	p 	at any particular zenith and azimuth angle is called the pc 

"latitude knee" in that direction. 	For the muon component at sea 

level the knee in most directions lies in the range 25 o 
to 35

o 
geo-

magnetic latitude. 	There is further discussion on the latitude 

knee effect in Section 5.12.4, with, reference to the observed lat-

itude dependence of the latitude survey data. 

When P 	= Pman , then the value of the primary cut-off mom- pc 

entum P
c 

is equal to the atmospheric cut-off P
at 

the lowest mom-

entum that a primary entering the atmosphere at any particular zen-

ith angle may possess to give rise to a muon that can be detected 

at the level of observation. 	In Section 5.10 we present the calc- 

ulated dependence of atmospheric cut-off on zenith angle for muon 

arrival at sea level in the standard N.A.C.A. atmosphere (see 

Section 5.7.7). 
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5.7.3.3 Introduction of modified Cut-off Variable  

From the preceding discussion it will be obvious that the 

simple form of cut-off dependence of H in the Olbert production 

spectrum cannot possibly allow satisfactory reproduction in all 

respects of the chacteristic observed dependence of the total muon 

intensity on latitude, as there is no facility for taking into 

account the proton-muon momentum relationship or the screening 

effect of the atmosphere. 

It has proved possible to effectively' introduce these factors 

into the calculations by making equation (5.5) momentum dependent, 

in particular, introducing the dependence of P
c 
on the momentum of 

the muons at the observing level. Initially a very simple form 

of dependence was used. 	In determining the value of H it was 

assumed that the parameter P
c 
had 'value equal to the primary cut-

off for muon momenta below the muon cut-off, but zero value other- 

wise. 	As such a dependence introduced a discontinuity into the 

secondary spectrum at the muon cut-off, it was evidently preferable 

to employ some method of "tapering" the value of P
c 

in equation 

(5.5), from the actual primary cut-off value, at a momentum value 

below the muon cut-off, to zero at the muon cut-off. 

To effect the tapering it was found satisfactory to use a 

third order polynomial to express the variation of the parameter P
c 

from full value to zero (see Figure 5.3). 	The constant D was intro- 

duced to represent the momentum interval over which the tapering 

takes place. 	Assuming arbitrarily a curve antisymmetric about the 



p = C 
[ 2x3 - 3(2X' - D)X2 + 6X 1 (X' - D)X + X' 2

(3D - 2 X')] c 	
D
3 

(5.8) 
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point X 	X' - D/2, P = P 12, having zero slope at X = X' and c 	c 

X = X' - D (the limits of the momentum range within which the func-

tion is used), the polynomial may be shown to be 

where the parameters are defined by Figure 5.3. 

It was found that the precise 

form of the integral muon 

Pc'   .N\  Yds:Trier 

k  
intensity dependence on pri- 

paynank 

PC 
mary cut-off momentum, as 

X (=X'-D) 	\ 	(=In Ppen 
calculated using this model, 

could be adjusted to some 
0 

1n(P) 
 

extent by suitable matched 

choice of the values of the 
Figure 5.3. Assumed dependence 

constant D and the constant 
of the parameter P

c in equation 
	

K in equation (5.5). 	In 
(5.5) on muon momentum P, as 

particular, an optimum pair of 
introduced into the modified 

values (D = 23.5, K = 200.0) 
Olbert production spectrum. 

was found to exist for which 

the observed form of experimental muon integral response curves 

could be accurately reproduced. (A comparison of the calculated 

and experimental integral response functions is made in Section 

6.8.) Close agreement was obtained, too, between the calculated 

integral response functions and the extrapolated portions of the 

experimental functions, for momenta up to several hundred GeV/c. 
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It will be shown later that, in spite of the possible departure of 

certain of the individual equations from reality (equations (5.1) 

and (5.3) strictly only apply for momenta less than approximately 

14 GeV/c), the production spectrum model nevertheless is capable, 

without further modification, of predicting accurately the form of 

the sea level muon spectra and integral response functions at 

momenta up to hundreds of GeV/c. 

5.7.4 Trajectory Tracing, Calculation of Survival Probabilities  

The paths of the muons in the atmosphere will in general be 

curved as the result of deflections in the geomagnetic field. 	In 

order to obtain the greatest degree of accuracy in the present 

investigation, it is desirable that the inner integral in equation 

(5.4) be evaluated along the actual path described by the muons. 

To allow calculations to be carried out corresponding to specific 

zenith and azimuth angles of arrival at the observing level of 

interest, we have followed the general practice used in the tracing 

of cosmic ray trajectories in that the trace is carried out in the 

reverse direction to the sense of motion of the actual particles. 

This is done by reversing the sign of the charge and the sense of 

the velocity vector of the particle. 	In our calculations it was 

assumed that the magnetic field is uniform in the atmosphere. 

The motion of a particle of charge q, mass m, and position 

vector R, moving with velocity V through the atmosphere in the 

presence of a magnetic field B, is expressed by the differential 



5.7 	 185 

equation of motion 

= q 	x 	m  dV 
dt 

dV 
— the acceleration of the particle due to energy loss in the air, dt' 

may be determined from knowledge of the rate of energy loss by the 

particle. (At any instant we can determine the rate of energy loss 

dE 
— by a particle of given momentum by invoking the Bethe-Bloch re- 

lationship (equation 5.7).) 	If the parameter s is introduced to 

represent the displacement along the trajectory, then, for air of 

density p, 	
dE _ 1 dE 
dx - )P ds 

and we may relate the rate of energy loss to the acceleration 

as follows 	
dV _ dE ds dE 
dt 	ds dt dV 

where, since the kinetic energy E = m
o 

c2  - 1) (where m
o 

is the rest mass of the particle, and y = 1/,,A1 - 0 2 ), where 

p = v/c) 

dV _ J9  dE 
dt 	3 dx 	(= Y)  

moY 

It is convenient to express the particle motion in terms of 

components in the cartesian coordinate system having its origin 

at the "observing" point (see Figure 5.4) in the atmosphere. 

The partial differential equations of motion are, then, 

dE m c 2 V  y 3 
V d 	o 

Therefore 
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v
x 
= V sine sin0 

v = V sine cos0 

v
z 
= V cos0 

a = Y sine sin0 + q/m (v B - v B ) 
x y z 	z y 

a = Y sin0 coal + q/m (v B - v B) 
z x 	x z 

a
z 

= Y cos() + q/m 	B - v 8 ) 
y x 

where Y is defined in the preceding equation. 

Having thus a set of instantaneous simultaneous differential 

equations representing the motion we may trace the trajectory by 

numerical integration in a 

Vz Airspace 

 

velocity starting point point calculation. 

of the particle at each point 

Army' 	

on the trajectory in order 

that the Lorentz force, and 

(5.10) 

position 
space 

0 

Figure 5.4. 	Diagram defining 

the relationship between the 

orientation of the axes of the 

cartesian coordinate system 

and the angles 0 and 0. 	The 

Y axis points geographic north, 

and the Z axis, vertical. 

vy  

ves determining the velocity 

Part of this operation 

hence the deflection term in 

the differential equation may 

be calculated. 	At low muon 

momenta the instantaneous 

velocity is directly determined 

in the course of the integr- 

ation. 	At large momentum 

values, on the other hand, the 
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velocities are highly relativistic, with p very close to unity, and 

it was found that for calculations corresponding to muon momenta 

greater than 25 GeV/c, the number of digits used by the computer in 

its operation (9 significant figures) was too low to allow the re-

quired manipulation of the p values. 	At these momenta, then, it 

became necessary to determine the velocity from considerations of 

the muon energy and the known rates of energy loss in the atmos- 

phere. 	It proved possible to estimate accurately the mean atmos- 

pheric density and mean rate of energy loss over the short trajec-

tory segments used in the numerical integration, and from this 

information to calculate the instantaneous energy, and thus velocity. 

Further differential equations may be set up to allow the 

determination of the time of flight of the muons, so that the sur-

vival probabilities corresponding to any particular situation (re-

quired in equation (5.4)) may be calculated. 	At the values of muon 

energy under consideration it is necessary to take into account the 

time dilatation in the c.m. system (the frame of reference in which 

the muon is at rest) due to the highly relativistic velocity in the 

laboratory system of coordinates. 

If a period of time t elapses in the c.m. system of a particle 

which is travelling at velocity V towards the observer, the period 

dt' 	1 of time which will elapse for the observer is t', where — 
dt 	y • 

	

1 	1 
d 2t' 	d() - 	d( -) 

dV dt dt2 	dt 

Now, 
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Therefore, since 

dl/ 	p  dE 	d2 t' 	,PV 	dE 
dt 	I 3 dx dt2 cm y 2 2 dx my 

Repeated numerical integration of the set of equations (5.10) 

dt' 	d2t' 
and of the expressions for --- and ---- in a starting point dt 

dt2 

calculation allows the position of the muon to be calculated at 

successive points on the trajectory, and also the time of flight' 

from each point to the origin, so that the survival probability 

may be evaluated for use, in conjunction with the production 

spectrum, in the determination of muon intensities. 

The Gill [1951] modification of the Runge-Kutta integration 

process, as used by McCracken, Rao and Shea [1962], was employed 

in the present *series of calculations. 	A step length of 3x10 -6 

was found to be suitable for most purposes, although the step 

length was reduced when the point on the trajectory was passed for 

which 2 gm cm-2 of atmosphere remained along the extrapolation of 

the trajectory path, in order to prevent overshoot of the height 

at which the atmosphere was assumed to terminate (see Section 

5.7.7). 

5.7.5 Calculation of Muon Intensity  

As the numerical integration of the various differential 

equations proceeded, the numerical evaluation of the inner integral 

in equation (5.4) was also carried out, so that at the completion 

of any particular trajectory trace the differential intensity of 



5.7 	 189 

muons of one sign and of a particular momentum at the observing 

level, in a given direction, was known. 	Pairs of trajectory cal- 

culations (for both positive and negative muons) were carried out 

for muon momenta at the observing level of 1000, 200, 40, 16, 7, 

3.5, 1.7, 0.8, 0.4 and 0.25 GeV/c. 

Within each of these individual trajectory calculations it was 

necessary to have knowledge of the muon cut-off (see Section 

5.7.3.2) in order that the tapering function described in Section 

5.7.3.3 could be applied, even though the precise value of the muon 

cut-off in each case was determinable only as the result of the 

particular calculation. 	This difficulty was overcome by retaining, 

on the completion of each trajectory trace within a set (calculat-

ions relating to a given direction at the observing point), the mom-

entum loss incurred in travelling from the 125 gm cm
-2 level to the 

observing point. 	These stored values were then used in the cal- 

culation of the muon cut-off for muons of the same sign in the next 

lower momentum calculation of the set. 	The accuracy of estimates 

made in this way was found quite satisfactory. 

In calculating the muon cut-off values, allowance was made for 

the momentum loss suffered by the prioary protons in travelling 

down to the 125 gm cm
-2 

level (the approximate mean production 

level of the muons) at any zenith angle. 	Calculations showed that 

• the momentum loss did not vary greatly with zenith angle and mom-

entum, lying within the range 0.28 t 0.08 GeV/c. 	In order to 

simplify the calculations a constant value of 0.25 GeV/c was assumed. 
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Thus, for the purposes of the calculations, equation (5.6) was used 

in the 'form 
P 	= f(P - 0.25) - 6P pC 

where 6P is the momentum loss incurred by the muon in 

passing through the atmosphere from the 125 gm cm-2 level at the 

particular zenith angle to the observing level, determined from the 

preceding related trajectory calculation. 

At the completion of each given set of trajectory tracing cal-

culations, a series of differential muon intensities existed, de-

fining the spectra of the positive and negative muons incident in 

the direction of interest. 	Calculation of the total intensity of 

muons of each sign was effected by numerical integration of these 

spectra. 	This integration was carried out by fitting 3rd order 

polynomial functions to each successive set of four calculated 

points on a log-log representation of the calculated spectra, then 

determining the area under the curves in natural units with the aid 

of a standard numerical integration procedure, and finally summing 

all these contributions to obtain the estimate of the total direct- .  

ional intensity of muons of each sign. 

5.7.6 Muon Charge Ratio  

It is necessary, in calculating the contributions to the total 

muon intensity in any situation from positive and negative muons, to 

know the relative numbers of these particles at production. 

Baber, Nash and Rastin [1968] reviewed the results of the most 
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accurate muon charge ratio determinations in the vertical direction. 

These data are of interest because, with allowance made for mom-

entum loss within the atmosphere, they indicate the momentum de-

endence of the ratio at production. 	In spite of the considerable 

disparity between results due to different investigators, it is 

evident that the charge ratio is only a slowly varying function of 

momentum, with an indication of a slight increase in magnitude for 

momenta in excess of approximately 100 GeV/c. 

Although a specific non-constant charge ratio spectrum could 

have been readily incorporated into our calculations, in view of 

the still considerable uncertainty as to the precise form of the 

charge spectrum a constant value of charge ratio was employed. 

The value of 1.266 (= +/-) of Moroney and Parry [1954] was adopted, 

, both because this value constitutes a reasonable approximation to 

the experimental charge spectrum, and because the computed spectra 

presented in this thesis may be checked readily against the obs-

erved muon spectra published by Moroney and Parry. 	This comparison 

is made in Section 5.9.2. 

5.7.7 Representation of the Atmosphere  

Because of the use of numerical integration techniques, actual 

atmospheric profiles could be readily incorporated into the cal-

culations, and in practice were introduced as a set of values rep-

resenting pressure and temperature at 25 altitudes in the atmosphere. 

Density values at any point in the atmosphere were obtained by first 
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interpolating values of temperature and pressure from the set, 

corresponding to the altitude of interest, then determining density 

using the relationship pmg  

P ( P ) 	RT(p) 

where p is the air pressure in cm water, M is the effect-

ive molecular weight of the air, g is the acceleration due to grav-

ity, R is the universal gas constant, and T is the temperature in 

°K; —g  = 3.484x10
-4 oK cm-1 (Olbert [1953]). 	The second order 

latitude dependence of this constant has been overlooked in the 

presently reported series of calculations. 

For the general investigation of the atmospheric asymmetry 

effect, the N.A.C.A. standard atmosphere was employed to represent 

the typical mid-latitude atmosphere (details were obtained from 

Montgomery [1949]), and to represent low and high latitude atmos-

pheres, profiles presented in the Handbook of Geophysics [1961] were 

adopted, and referred to as the "standard equatorial" and "standard 

polar" atmospheres respectively. 	In calculations corresponding to 

conditions at particular sites (for the purposes of data correction 

etc.), actual mean atmospheric profiles were used, derived from 

radiosonde data acquired during the observing periods at the sites. 

The three "standard" atmospheric profiles are presented in Figure 

5.5, and certain of the profiles typical of the latitude sites, in 

Figure 6.7 (in the following chapter). 

Whereas in fact the atmosphere extends to hundreds of kilo-

metres, for the purposes of the calculations zero air density was 
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assumed to occur at 34 km. 	The correct atmospheric structure was 

used to a height of 28 km, and the termination effected above this 

Figure 5.5. Graphical representation of the structure of the 

"standard" equatorial, mid-latitude, and polar atmospheres. 

altitude. 	The main purpose of this truncation was to minimize the 

calculation time required to trace trajectories through the atmos-

phere. Tests showed that a barely discernible effect arose in the 

overall results, due to the low intensity of muons originating from 

•this region. 
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5.7.8 Curved Earth Representation  

Because of the inadequacies of a flat earth representation at 

high zenith angles, a curved earth simulation was employed in the 

calculations. It is readily shown that the height h of a point P 

in the curved atmosphere (see Figure 5.6) is given by 

h = .4T(r
e + 1 cosa) 2  + 1 2  sin2G] - r 

Local vertical 

North 

Figures 5.6 (left) and 5.7 (right). 

Figure 5.6. Relationship between the variables used to define 

the position of a point P relative to the "observing" point 0 in 

the curved earth representation. 	C represents the centre of 

the earth. 

Figure 5.7. Diagram defining the angle O' between the velocity 

vector of the particle P and the local vertical through the atmos-

phere, and its relationship to the other angles that define the 

position of the particle and its velocity vector. 
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Similarly, at any point on a curvilinear trajectory in the 

curved atmosphere, the local zenith angle 0' (the zenith angle 

between the local vertical and the muon velocity vector (see Figure 

5.7)) may be shown to be 

0' = arccos[sin0
1 

cos0
2 

cos(0
1 

- 
2
) + cos0

1 
sin0

2
] 

where 01 is the azimuth bearing of the point relative to 

the origin of the cartesian reference system (the site position), 

0
1 
the angle between the local vertical and the vertical axis of 

the cartesian system, and 0 , 02  the known zenith and azimuth 

orientation of the velocity vector in velocity space (see Figure 

5.4). 

5.8 Accuracy and Speed of Computer Program  

The computer program written to carry out the muon intensity 

calculations using the techniques described in the preceding 

sections, required as input data details of the atmospheric and 

magnetic field configurations at the site, altitude, the zenith 

and azimuth angles defining the directions of interest, together with 

associated cut-off values. 	Estimates were thereupon made of the 

total muon intensity, charge ratio, and, if required, the asymmetry 

factor pertaining to the given directions. 	The asymmetry factor 

estimates, of course, were produced as the result of a pair of 

calculations, one pertaining to the actual site conditions, and the 

other to "field-free" conditions. 	Printout was obtained after each 
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calculation of the details of the directional muon spectra. 

A great deal of development and testing of the various sections 

of the program was carried out in order to allow results of suffic-

ient accuracy to be obtained for use in the atmospheric asymmetry 

investigation, and later, in the coupling coefficient investigation. 

The requirements of the latter of these were more stringent in that 

the slope of the calculated integral response curves, as determined 

by taking differences between adjacent intensity values on the 

curves, was required to be continuous. 	The price to be paid in 

return for a high degree of accuracy in the intensity estimates, 

however, was the slow speed of operation of the program. 

It was thus necessary, in the initial testing of the program, 

to establish the optimum between the degree of detail in the calc- 

ulations,(for example, the number of points calculated on the secondary 

spectra), and a practicable speed of operation. 	The program, in 

final form, was capable of producing muon intensity estimates 

internally consistent to within approximately 0.05% (i.e. a scatter 

of points lying within 0.05% of a continuous integral response 

curve). 	The operation time for calculation of a single directional 

intensity (involving 20 trajectory traces) varied between approxim-

ately 2 and 8 minutes, for low and high zenith angles respectively. 

5.9 Test of Theoretical Predictions  

5.9.1 Zenith Angle Dependence of Total Intensity  

In Section 3.3.3 we discussed the dependence of total muon 
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intensity on zenith angle, and its representation in terms of emp-

irical functions such as equation (3.4). 	We now compare the zen- 

ith angle dependence of this function with that predicted by the 

"muons in the atmosphere" computer program. 	The comparative 

results are shown in Figure 5.8. 

30 	 60 
	

90 
ZENITH ANGLE (*) 

Figure 5.8. Zenith angle dependence of total muon intensity. 

Function A is the dependence indicated by the latitude survey 

data (equation 3.5); Function B (equation 3.4) a realistic emp-

irical representation (see the discussion in Section 3.3); 

The "theoretical" curve represents the predictions of the program. 

The maximum discrepancy between the calculated zenith depend- 
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ence curve and that representing the true dependence (as represent- 

ed by equation (3.4)) is 15 %, at 65 °  to the zenith. 	It is likely 

that the disparity arises out of the failure of the calculations to 

. take into account the scattering of muons in the atmosphere. 	Such 

scattering would allow muons to arrive at any particular zenith 

angle from zenith angles up to several degrees lower than expected 

on the basis of deflections in the magnetic field alone, and pro-

duce a higher intensity because of the shorter path length in the 

atmosphere. 

The effects of scattering were not considered to be of suffic-

ient importance to warrant consideration in Olbert's development of 

his production spectrum (because the calculations applied to the 

vertical direction only relatively short path lengths were in-

volved, and in addition, a symmetry existed about the zenith). 

Harris and Escobar [1955, 1956], on the other hand, did take muon 

scattering into account in their adaption of the Blbert production 

spectrum. 	In the present case, the percentage errors introduced 

into the calculated asymmetry factors, due to exclusion of such con-

siderations, may be shown to be unimportant. 

In Figure 5.8 it may be seen that the error in the calculated 

intensity values corresponds to the displacement of the predicted 

intensity distribution pattern through approximately 2 °  relative to 

the true distribution. 	The error in the asymmetry factor estimate 

in this case would be expected to correspond approximately to the 

difference in asymmetry factor value for a change of 2 0  in zenith 
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angle. 	The possible error, on this basis, is of the order of 3 % 

at 45
0 
 zenith angle. 

5.9.2 Sea Level Spectra  

To obtain a detailed check on the validity of the calculations 

based on the modified Olbert production spectrum, the predicted sea 

level differential muon spectra have been compared with those exp-

erimentally observed. 	Firstly, the low momentum (< 50 GeV/c) 

portions of the spectra have been compared with the results of 

Moroney and Parry [1954], for both the vertical and inclined direc- 

tions. 	These investigators measured the muon spectra at zenith 

,angles of 0
0
, 30 0  and 60 0  in the east-west plane at Melbourne, 

Australia. 	They themselves demonstrated the acceptable agreement 

between their results and estimates based on the production spectrum 

of Sands [1950j. 	Our test calculations of comparative spectra 

(based on the Olbert spectrum) were carried out using an atmospheric 

profile, and magnetic field configuration, representative of the 

site. 	The calculated and experimental spectra are shown in Figure 

5.9. 	In conjunction with these spectra the calculated and observed 

charge ratio values are presented. 	It is to be seen, both from the 

form of the corresponding spectra, and the charge ratio values, that 

there is good agreement between theory and experiment. 

A check on the predictions of the Olbert production spectrum at 

higher momenta may be made by comparing the calculated and experim-

ental spectra in the momentum range 50 - 1000 GeV/c 	[to page 201] 
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Figure 5.9. Comparison of calculated and 

observed sea level muon spectra. 	The dia- 

gram on the left show the high momentum 

vertical spectra (crosses indicate Holmes 

et al. data). Diagrams on the right show 

comparative calculated, and Moroney and 

Parry spectra, for the given directions 

(scales A, B apply to these spectra respectively, comparative charge ratio values also given). 
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[from page 199] In this range numerous experimental spectra have 

been determined. 	The observations of most workers, for example 

Pine et al. [1959], Hayman and Wolfendale [1962], KrasilnikoV 

[1964], and Baber et al. [1968] agree closely in this momentum 

range, and are represented by a single line in Figure 5.9. 	The 

calculated spectrum, plotted in the same diagram, is seen to agree 

well for momentum values < 200 GeV/c, but to lie significantly 

above the experimental estimate at greater momenta, evidently more 

closely in agreement with the results of Holmes et al. [1961], 

which are represented by crosses in this diagram. 

It is generally observed that at higher zenith angles the 

.differential intensity of muons of high momenta increases (see for 

example the results of Mackeown et al. [1965], and Maeda [1964]), 

and the disparity between the predicted and experimental different-

ial muan intensity would thus be expected to decrease. 	It is 

estimated that the maximum error in calculated total intensity 

values due to the high momentum disparity evident in Figure 5.9 is 

0.5%. 

To test the predictions of our calculations in respect of sea 

level spectra in the presence of an appreciable primary cut-off, we 

have available the published results of experimental spectral de-

terminations. 	In particular, a comparison has been made of the 

predictions of the modified Olbert production spectrum as used in 

the "muons in the atmosphere" program with the experimental vertical 

spectrum of Allkofer et al. [1968] (measured at a site with a vert- 
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ical cut-off of 14.1 GeV/c). 	Allkofer et al. themselves carried 

out a comparison against the predictions of Olbert's production 

spectrum. 	They overlooked, however, the limitation of the Olbert 

model (in that the muon cut-off is not taken into account), and by 

arbitrarily assuming merging of the zero cut-off spectrum and the 

finite value cut-off spectrum at the appropriate momentum, obtained 

a spectrum agreeing with the experimental result. 	In our calcul- 

ations, the same good agreement is found, but obtained entirely 

through the operation of the internal provisions of the calculations. 

5.10 Muon Deflections, Momentum Loss, and Survival Probabilities  

It is of interest, for many purposes, to have access to inform-

ation relating to the propagation of muons in the atmosphere, inf-

ormation such as deflections, momentum loss, and survival probab- 

ilities. 	A certain amount of information is available in the lit- 

erature. 	For example, Bonnevier [1958] presented the calculated 

dependence of the deflection of muons arriving vertically at sea 

level, on horizontal field strength, and on magnetic dip angle. 

We have taken the opportunity of using the facilities prov-

ided by the "muons in the atmosphere" program to carry out calc-

ulations relating to certain aspects of the passage of muons through 

• the atmosphere, in order to supplement the available information. 

Calculations have been made of the deflection of muons arriv-

ing from inclined directions, for passage normal to a horizontal 

magnetic field. 	In these computations the assumption [to page 204] 
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[from page 202] was made that the muons are produced at the point 

in the standard mid-latitude atmosphere at which 125 gm cm
-2 

of air 

lies along the line of the trajectory extrapolated to the top of the 

atmosphere. 	Figure 5.10 presents muon deflection as a function of 

momentum at production for various momenta and zenith angles on arr- 

ival at sea level, and various horizontal field strengths. 	Because 

of the mode of presentation of these data, the graphs contain detail-

ed information about muon momentum loss in the atmosphere under the 

various conditions. 	Estimation of the loss may be carried out by 

noting the difference between the momentum at production and the sea 

level value. 
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Figure 5.11. Dependence of atmospheric cut-off, and muon moment-

um loss, on zenith angle in the field-free standard mid-latitude 

atmosphere. 
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Figure 5.11 represents the calculated zenith angle dependence 

of muon momentum loss and atmospheric cut-off in the field-free, 

standard mid-latitude atmosphere. 	The atmospheric cut-off is the 

lowest value of momentum that a primary proton may possess in order 

to give rise to muons observable at sea level. 	The considerations 

involved in the determination of these quantities were discussed in 

Section 5.7.3.2. 

Survival probabilities for muon arrival at sea level after 

production at the 125 gm cm-2  point in the field-free mid-latitude 

atmosphere were also calculated, and are presented in Figure 5.12. 

10  100 
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Figure 5.12. Dependence of muon survival probability on product-

ion momentum in field-free, standard mid-latitude atmosphere, for 

trajectories inclined at various indicated zenith angles, and for 

various values of sea level momentum (momentum values bracketed). 
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5.11 Theoretical Unidirectional Asymmetry Factors  

In Section 5.7.1 we introduced the asymmetry function, A, a 

function relating the muon intensity I existing in any direction in 

the presence of a magnetic field in the atmosphere, to the intensity 

N that would exist in the absence of the field, such that N = I A. 

An investigation has been carried out to ascertain the depend-

ence of the asymmetry function on various geophysical factors - mag-

netic field strength and direction, atmospheric structure, altitude, 

and cut-off. 	The calculated asymmetry factors (pertaining to four 

zenith angles: 0 °, 22.5 °, 45 °, and 67.5 0 ; and six azimuths: 30 °, 90 ° , 

150 °, 210 °, 270 °, and 330 °  E. of magnetic N.), deduced under the•

conditions listed in Table 5.2, are presented in Tables 5.3 to 5.9 

inclusive, together with the associated charge ratio values. 	Table 

5.2 lists the particular contents of these tables. 

Table 5.2 Configuration of parameters in the various series of 

calculations, the results of which are presented in Tables 5.3 to 

5.9 inclusive. 	(*) denotes the variable quantity in each table. 

Table number 	5.3 	5.4 	5.5 	5.6 	5.7 	5.8 	5.9 

Field strength 	* 	0.55 	0.55 	0.55 	0.55 	0.55 	0.55 

Dip angle 	-30
o 	* 	-30

o  
-30

0  
-60

o 
-30

o 
 -60

o  

Atmosphere 	mid 	mid 	* 	mid 	mid 	mid 	mid 

Altitude 	0 	0 	0 	* 	* 	0 	0 

' Cut-off 	0 	0 	0 	0 	0 	* 	* 
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The tabulated data refer to Southern hemisphere sites. 	In 

the Northern hemisphere the data relating to northern and southern 

azimuths would be transposed. 	The charge ratio values are given in 

the tables, although not further considered in this thesis, because 

they form in principle a useful basis for the comparison of exper-

imentally observed charge ratios under various conditions. [to p.214] 

Table 5.3 Asymmetry factor and charge ratio (bracketed) depend-

ence on magnetic field strength; dip angle = -30 °, at sea level 

in standard mid-latitude atmosphere, zero value cut-off. 

Field 
Strength 
(gauss) 

0.275 

Zenith Asymmetry factor and charge ratio at given azimuths 

Angle 	30
o  

90 0 	150 	210
o 	

270
o 	

330 

00  1.0010 
(1.266) 

22.5 1.0022 1.0038 1.0026 0.9998 0.9982 0.9994 
(1.236) (1.207) (1.236) (1.297) (1.328) (1.297) 

45
0 

1.0042 1.0079 1.0055 0.9982 0.9932 0.9968 
• (1.190) (1.118) (1.189) (1.347) (1.434) (1.347) 

67.5°  1.0064 1.0020 1.0103 0.9933 0.9782 0.9896 
(1.097) (0.949) (1.096) (1.462) (1.689) (1.460) 

0.55 0 1.0042 
(1.266) 

22.5 1.0064 1.0099 1.0082 1.0025 0.9985 1.0007 
(1.206) (1.149) (1.206) (1.329) (1.394) (1.329) 

45 1.0091 1.0164 1.0145 0.9997 0.9871 0.9944 
(1.117) (0.985) (1.117) (1.436) (1.627) (1.435) 

67.5
o 

1.0084 1.0250 1.0234 0.9895 0.9562 0.9754 
(0.951) (0.690) (0.948) (1.690) (2.323) (1.685) 
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Table 5.4 Asymmetry factor and charge ratio (bracketed) depend-

ence on dip angle; field strength = 0.55 gauss, sea level in 

standard mid-latitude atmosphere, zero value out-off. 

Dip  Zenith Asymmetry factor and charge ratio at given azimuths 

 

o  
210

o 
Angle  Angle  30 ° 	90 	150 °  270 °  330 °  

00 0
o 

1.0055 

(1.266) 

22.5
o 
1.0092 1.0122 1.0093 1.0027 0.9991 1.0027 

(1.197) (1.132) (1.197) (1.339) (1.416) (1.339) 

45
0 

 1.0144 1.0193 1.0144 0.9974 0.9854 0.9974 

(1.095) (0.947) (1.095) (1.463) (1.692) (1.463) 

67.5
o 

1.0184 1.0179 1.0184 0.9797 0.9418 0.9797 

(0.907) (0.637) (0.907) (1 ..767) (2.516) (1.767) 

-30 0
o 

1.0042 

(1.266) 

22.5
o 

1.0064 1.0099 1.0082 1.0025 0.9985 1.0007 

(1.206) (1.149) (1.206) (1.329) (1.394) (1.329) 

45
o 

1.0091 1.0164 1.0145 0.9997 0.9871 0.9944 

(1.117) (0.985) (1.117) (1.436) (1.627) (1.435) 

67.5
o 

1.0084 1.0250 1.0234 0.9895 0.9562 0.9754 

(0.951) (0.690) (0.948) (1.690) (2.323) (1.685) 

Note:  At -90 °  dip angle, asymmetry factor 

-60 0
o 

1.0014 

(1.266) 
at 22.5 ° , 45 °  =  1.0000;  at 67.5 °  = 1.0001. 

22.5
o 

1.0023 1.0047 1.0041 1.0008 0.9982 0.9990 

(1.231) (1.197) (1.231) (1.302) (1.339) (1.301) 

45
o 

1.0030 1.0090 1.0083 0.9997 0.9921 0.9946 

(1.178) (1.096) (1.177) (1.361) (1.462) (1.360) 

67.5 1.0028 1.0127 1.0169 0.9971 0.9742 0.9835 

(1.073) (0.908) (1.072) (1.496) (1.765) (1.494) 
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Table 5.5 Asymmetry factor and charge ratio (bracketed) depend-

ence on atmospheric configuration; field strength 0.55 gauss, 

dip angle -30 °, sea level, zero value cut-off. 

Atmos- Zenith Asymmetry factor and charge ratio at given azimuths 
phere 

Angle 	30 ° 	90
o  

150
o  

210
o  

270
o  

330
o  

Equat- 	0
o  

1.0044 
orial 	(1.266) 

	

22.5 0 1.0065 	1.0102 	1.0084 	1.0026 	0.9985 	1.0007 

	

(1.205) 	(1.146) 	(1.205) 	(1.330) 	(1.398) 	(1.330) 

45
0  

1.0094 	1.0167 	1.0151 	1.0000 	0.9868 	0.9944 

	

(1.115) 	(0.981) 	(1.114) 	(1.439) 	(1.634) 	(1.438) 

	

67.50 1.0090 	1.0223 	1.0235 	0.9891 	0.9534 	0.9754 

	

(0.945) (0.686) 	(0.944) 	(1.698) 	(2.335) 	(1.695) 

Mid- 	0 o  1.0042 
(1.266) 

Latit- 
ude 	22.5

o 
1.0064 	1.0099 	1.0082 	1.0025 	0.9985 	1.0007 

	

(1.206) (1.149) 	(1.206) 	(1.329) 	(1.394) 	(1.329) 

45 ° 	1.0091 	1.0164 	1.0145 	0.9997 	0.9871 	0.9944 

	

(1.117) 	(0.985) 	(1.117) 	(1.436) 	(1.627) 	(1.435) 

	

67.5
o 

1.0084 	1.0250 	1.0234 	0.9895 	0.9562 	0.9754 

	

(0.951) (0.690) 	(0.948) 	(1.690) 	(2.323) 	(1.685) 

Polar 	0 ° 	1.0034 
(1.266) 

	

22.5
o 

1.0056 	1.0087 	1.0070 	1.0017 	0.9982 	1.0003 

	

(1.211) 	(1.158) 	(1.211) 	(1.324) 	(1.384) 	(1.324) 

45
o  

1.0086 	1.0157 	1.0132 	0.9994 	0.9883 	0.9949 

	

(1.127) 	(1.002) 	(1.126) 	(1.423) 	(1.599) 	(1.422) 

	

67.5 0  1.0095 	1.0325 	1.0222 	0.9896 	0.9645 	0.9776 

	

(0.961) (0.697) 	(0.959) 	(1.670) 	(2.299) 	(1.667) 
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Table 5.7 Asymmetry factor and charge ratio (bracketed) depend-

ence on altitude; field strength 0.55 gauss, dip angle -60 ° , 

standard mid-latitude atmosphere, zero value cut-off. 

Altitude Zenith Asymmetry factor and charge ratio at given azimuths 

(km) 

0 

Angle 

0
o 

30 °  

1.0014 

(1.266) 

900  150 °  
o 

210 270 °  330
o 

 

22.5 °  1.0023 

(1.231) 

1.0047 

(1.197) 

1.0041 

(1.231) 

1.0008 

(1.302) 

0.9982 0,9990 

45°  1.0030 1.0090 1.0083 0.9997 

(1.339) 

• 0.9921 

(1.301) 

0.9946 

(1.178) (1.096) (1.177) (1.361) (1.462) (1.360) 

67.50 1.0028 1.0127 1.0169 0.9971 0.9742 0.9835 
(1.073) (0.908) (1.072) (1.496) (1.765) (1.494) 

0.7 0 °  1.0014 .  

(1.266) 

22.5 °  1.0020 1.0046 1.0039 1.0006 0.9980 0.9987 
(1.231) (1.197) (1.231) (1.302) (1.339) (1.302) 

45
0 

1.0032 1.0096 1.0090 1.0001 0.9920 0,9945 
(1.174) (1.089) (1.174) (1.365) (1.472) (1.365) 

67.5 °  1.0027 1.0132 1.0182 0.9974 0.9724 0.9822 
(1.062) (0.889) (1.061) (1.511) (1.803) (1.509) 

1.35 0
o 

1.0014 

(1.266) 

22.5
o 

1.0022 1.0048 1.0041 1.0007 0.9980 0.9988 

(1.231) (1.195) (1.230) (1.303) (1.341) (1.303) 

45
o 

1.0034 1.0102 1.0095 1.0004 0.9919 0.9943 

(1.171) (1.083) (1.171) (1.368) (1.479) (1.368) 

67.5°  1.0021 1.0129 1.0191 0.9971 0.9699 0.9807 
(1.051) (0.871) (1.050) (1.527) (1.839) (1.524) 
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Table 5.8 Asymmetry factor and charge ratio (bracketed) depend-

ence on geomagnetic cut-off; field strength 0.55 gauss, dip angle 

-30 0 , sea level in standard mid-latitude atmosphere. 

Cut-off Zenith Asymmetry factor and charge ratio at given azimuths 

(OeV/c) Angle 30 °  90
0 

 150 °  -210
o 

270 °  330 °  

0 0
o 

1.0042 

(1.266) 

1 0 1.0037 

(1.266) 

15 1.0032 

(1.266) 

20 1.0028 

(1.266) 

30 1.0022 

(1.266) 

0 22.5 °  1.0064 1.0099 1.0082 1.0025 0.9985 1.0007 

(1.206) (1.149) (1.206) (1.329) (1.394) (1.329) 

15 1.0052 1.0083 :1.0066 1.0016 G.9985 1.0003 

(1.215) (1.165) (1.215) (1.320) (1.376) (1.319) 

20 1.0047 1.0075 1.0059 1.0014 0.9986 1.0002 

(1.219) (1.173) (1.219) (1.315) (1.366) (1.315) 

30 1.0037 1.0061 1.0046 1.0009 0.9987 1.0000 

(1.226) (1.188) (1.226) (1.307) (1.349) (1.307) 

0 45°  1.0091 1.0164 1.0145 0.9997 0.9871 0.9944 

(1.117) (0.985) (1.117) (1.436) (1.627) (1.435) 

15 1.0085 1.0159 1.0131 0.9998 0.9895 0.9952 

(1.131) (1.010) (1.131) (1.417) (1.587) (1.417) 

30 1.0071 1.0141 1.0105 0.9997 0.9926 0.9963 
(1.156) (1.054) (1.155) (1.387) (1.520) (1.387) 
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Table 5.8 (continued) 

Cut-off Zenith Asymmetry factor and charge ratio at given azimuths 

(GeV/c) Angle 
o 

30 
o 

90 
o 

150 
o 

210 
o 

270 330 °  

45 45
o 

1.0059 1.0121 1.0085 0.9996 0.9946 0.9971 

(1.175) (1.090) (1.175) (1.364) (1.470) (1.364) 

0 67.5 °  1.0084 1.0250 1.0234 0.9895 0.9562 0.9754 

(0.951) (0.690) (0.948) (1.690) (2.323) (1.685) 

20 1.0094 1.0298 1.0232 0.9911 0.9640 0.9781 

(0.967) (0.712) (0.963) (1.665) (2.251) (1.658) 

40 1.0104 1.0347 1.0215 0.9938 0.9772 0.9835 

(1.005) (0.772) (1.000) (1.602) (2.076) (1.596) 

60 1.0105 1.0356 1.0193 0.9958 0.9863 0.9877 

(1.041) (0.832) (1.037) (1.545) (1.925) (1.540) 

Table 5.9 Asymmetry factor and charge ratio (bracketed) depend-

ence on geomagnetic cut-off; field strength 0.55 gauss, dip angle 

-60 0 , sea level in standard mid-latitude atmosphere. 

Cut-off Zenith Asymmetry factor and charge ratio at given azimuths 

(GeV/c) Angle  30°  90 °  
o 

150 210
o  

270
o  

330 °  

0 0°  1.0014 

(1.266) 

10 1.0012 

(1.266) 

16 1.0011 

(1.266) 

0 22.5
o 
1.0023 1.0047 1.0041 1.0008 0.9982 0.9990 

(1.231) (1.197) (1.231) (1.302) (1.339) (1.301) 
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Table 5.9 (continued) 

Cut-off Zenith Asymmetry factor and charge ratio at given azimuths 

(GeV/c) 
o 

Angle 	30 90 °  150
o  

210
o  

270 °  330 °  

10 22.5 °  1.0021 1.0044 1.0038 1.0008 0.9983 0.9991 
(1.234) (1.202) (1.234) (1.299) (1.333) (1.299) 

16 1.0019 1.0041 1.0035 1.0006 0.9984 0.9991 
(1.236) (1.207) (1.236) (1.297) (1.328) (1.297) 

45 9 
	

1.0030 1.0090 1.0083 0.9997 0.9921 0.9946 
(1.178) (1.096) (1.177) (1.361) (1.462) (1.360) 

16 1.0028 1.0084 1.0073 0.9997 0.9933 0.9953 
(1.187) (1.112) (1.186) (1.351) (1.441) (1.350) 

24 1.0027 1.0079 1.0067 0.9996 0.9938 0.9957 
(1.192) (1.123) (1.192) (1.345) (1.427) (1.344) 

67.5 °  1.0028 1.0127 1.0169 0.9971 0.9742 0.9835 
(1.073) (0.908) (1.072) (1.496) (1.765) (1.494) 

20 1.0034 1.0143 1.0162 0.9975 0.9778 0.9852 
(1.083) (0.925) (1.082) (1.482) (1.732) (1.480) 

30 1.0038 1.0149 1.0151 0.9978 0.9810 0.9869 
(1.095) (0.947) (1.094) (1.465) (1.693) (1.463) 

[from page 207] 	The particular conditions applying to the various 

sets of calculations do not correspond to those at any particular 

site, although certain of the parameter values (for example, altit-

ude) were, in fact, selected to allow particular information to be 

obtained. 	These calculations, rather, were carried out in order to 

admit an understanding of the nature of the asymmetry function, and, 

in addition, to allow estimates to be made of the asymmetry factor 
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applicable to any particular situation, where the configuration of 

the variables lies within the ranges considered. 

From the tabulated asymmetry factor values it may be seen that 

the magnetic field in the atmosphere can introduce very consider-

able perturbations into the sea level muon intensity distribution, 

particularly so at high zenith angles. 	Under the equatorial con- 

ditions simulated in Table 5.5, the calculations predict an east-

west asymmetry of approximately 7 % at a zenith angle of 67.5 0 , as 

a consequence of the muon deflections. 	This asymmetry is of the 

same order of magnitude as that produced by the geomagnetic cut-

offs at low latitudes, so the importance of taking the atmospheric 

asymmetry effect into account when interpreting low latitude obs- 

ervations will be readily appreciated. 	It is interesting to note 

too, that the vertical asymmetry factor in this situation indicates 

a reduction of Ri % in vertical muon intensity, due to the local 

magnetic field, compared with the reduction of r.-,0.1 % in magnetic 

field configurations corresponding to high latitude sites. 	Evid- 

ently a significant latitude dependence of vertical detector rate 

can arise out of the presence of the magnetic field in the atmos-

phere. 

To illustrate more specifically the character of the asymmetry 

function, we present in Figure 5.13 a graphical representation of 

the variation of asymmetry factor with zenith and azimuth angle at 

sea level in the standard mid-latitude atmosphere, for magnetic 

o  0 field strength 0.55 gauss, and for dip angles of 0, -30, and -60 o
. 
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The curves show, as expected, a maximum in the east and a minimum in 

the west. 	The azimuth position of the maximum is seen to be dis- 

placed towards higher values 
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with increasing magnitude of 

the dip angle. 	The effect on 

the directional distribution 

of muons would be to cause a 

progressive increase in mag-

nitude of the north-south 

asymmetry. 

It is to be noted that 

the curves are not symmetric-

ally disposed about the ordin-

ate 1.0000, confirming the 

90 	180 	270 	360 conjecture in Section 5.2, 
MAGNETIC AZIMUTH (.) 

that at high latitudes the 
Figure 5.13. Dependence of the 

western muon intensities are 
asymmetry factor on zenith and 

not necessarily enhanced by • 
azimuth angle, for various values 

an amount equal to the dimin- 
of dip angle. 

uition of the eastern inten- 

sities. 	For a zenith angle of 22.5 °  the curves are displaced well 

above the line corresponding to the unperturbed intensity, whilst 

for the 67.5 °  zenith angle curves the mean is displaced below this 

line. At high zenith angles, as a result, there is an essential 

difference between the manifestation of the atmospheric asymmetry 
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effect and the asymmetries produced by the geomagnetic cut-offs. 

The cut-off produced effect appears as the result of reduction of 

the intensities in the east, whilst the atmospheric asymmetry, at 

the high zenith angle, arises mainly from the enhancement of 

western intensities, with a smaller decrease of intensity in the 

east. 

This difference is readily illustrated graphically. In Figure 

5.14a we present diagrams representing the dependence of intensity 

> .... 
~ 
w .... 

100 A 

~ 
iii 

100 A 

~100 
~ ........__ ~ z 100 1=--------··-·-··-=-

N E 5 W N 
GEOGRAPHIC AZIMUTH 

~ 
< .J 
w o:: 1ool... _______________ y 

N E 5 W 
GEOGRAPHIC AZIMUTH 

Figures 5.14a (left) and 5.14b (right). Graphical illustration 

of the typical magnitude and form of intensity contributions to 

azimuthal asymmetry at high and low zenith angles respectively 

due to geomagnetic cut-off and atmospheric asymmetry effects. 

The sequence of drawings A to D is explained in detail in the 

text. The origin of these curves is discussed in Section 5.12.4. 

N 
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on azimuth as it might exist at a high zenith angle, at mid to low 

latitudes. 	The individual curves correspond to: 

A. The intensity distribution in the absence of atmospheric 

and geomagnetic cut-off asymmetry components. 

B. The geomagnetic cut-off produced intensity distribution, as 

it would exist in the absence of atmospheric asymmetry. 

C. The intensity distribution produced by the atmospheric 

asymmetry effect in the absence of geomagnetic cut-offs. 

D. The expected intensity variation with azimuth, in the pres-

ence of both effects. 

This latter curve displays a kink, for the case illustrated, in 

the south. 	This occurs as the result of displacement of the inten- 

sity minimum associated with the atmospheric asymmetry to higher 

value azimuths in the presence of a non-zero dip angle, together with 

the presence of the cut-off produced intensity diminuition over a 

limited range of azimuths (the limiting is caused by the presence of 

a relatively high value of atmospheric cut-off). 

The same sequence of curves A to D is displayed in Figure 5.14b, 

but in this case referring to the intensity distribution existing at a 

low zenith angle. 	Here the atmospheric asymmetry is manifested in 

a similar manner to the geomagnetic cut-off effect, and, notwith-

standing the difference in magnitude, would not be expected to have 

any effect other than to displace the minimum in the resulting intens-

ity pattern to higher values of azimuth angle. 

In the vertical direction the presence of any magnetic field 
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(save that with the field lines vertical) must introduce trajectory 

curvature, lengthening the muon paths relative to what they would 

have been in the absence of the field. 	For this reason, the 

asymmetry factors relating to the vertical direction must, without 

exception, have magnitude in excess of unity (see for example, the 

values in Table 5.3 to 5.9). 	The displacement, to values > 1.0000, 

of the mean asymmetry factor values pertaining to 22.5 0  zenith angle, 

as discussed earlier in this section in conjunction with Figure 

5.13, is associated with the tendency for trajectories to lengthen 

in the presence of a field. 	At high zenith angles, on the other 

hand, the fact that the mean asymmetry factor values are less than 

unity indicates that the introduction of trajectory curvature tends 

to decrease the mean path lengths in the atmosphere. [to page 221] 

Table 5.10 Configuration of the parameters applying to the 

results depicted in Figure 5.15. 	(*) denotes the independent 

variable in each of the six graphs displayed. 

Graph number: 	1 	2 	3 
	

5 	6 

Zenith angle 

Field strength 

Atmos. config. 

Dip angle (°) 

Altitude 

Cut-off 

	

0.55 	0.55 	0.55 	0.55 	0.55 

	

mid 	mid 
	

mid 	mid 	mid 

	

-30 	-30 	-30 	-30 -60 -30 -60 

0 
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Figure 5.15 (containing graphs 1 - 6). 	Calculated dependence of 

east-west asymmetry on various parameters as listed in Table 5.10. 



5.12 
	

221 

[from page 219] 
	

It is of interest to consider the east-west 

asymmetry as derived from the calculated asymmetry factors, and its 

dependence on the parameters introduced into those calculations. 

In Figure 5.15 we present a set of six graphs illustrating the be-

haviour of the east-west asymmetry under the conditions listed in 

Table 5.10. 

These diagrams show that, although the magnitude of the asymm-

etry varies rapidly with change in magnetic field conditions, and 

zenith angle, it evidently does not have a very steep dependence on 

atmospheric conditions or on geomagnetic cut-off. 	It is fortunate, 

for the calculation of atmospheric asymmetry at any particular site, 

that those factors on which the asymmetry is most sensitively dep-

endent, are those which most easily admit precise measurement. 

It is interesting to note, in graph 2 of Figure 5.15, that as 

predicted by less detailed east-west asymmetry calculations, and 

discussed by Burbury and Fenton [1952] (see Section 5.2), the east-

west asymmetry is proportional to the magnitude of the horizontal 

magnetic field component (even though, in our calculations, the total 

magnetic field was inclined at a dip angle of -30 °), although at 

high zenith angles there is some departure from precise proport-

ionality. 

5.12 Asymmetry Factors for Detectors of Finite Acceptance , Anqle  

5.12.1 Derivation Technique  

In the preceding section we examined the general dependence of 
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the atmospheric asymmetry effect on various geophysical factors that 

influence the production and motion of muons in the atmosphere. 

Calculation of the asymmetry factor has been carried out by simulat-

ing the arrival of an infinitesimally narrow angle beam of muons in 

specified directions, under given conditions. 	In practice it is 

necessary to be able to derive asymmetry factors applicable to de-

tectors of finite acceptance angle in any particular situation, in 

order to remove the atmospheric asymmetry contamination from observ-

ational data. 

In order to solve this problem we have investigated the relation-

ship between the asymmetry factor values pertaining to such detectors 

and the unidirectional values. 	It was found, by representing the 

dependence of the asymmetry factor on zenith and azimuth by polynomial 

functions, and comparing the magnitude of the calculated directional 

muon intensities relative to the intensities calculated to exist in 

the absence of the atmospheric asymmetry effect, that the mean effect- 

. ive asymmetry factor values were nearly equal, for any given detector, 

to the unidirectional values applicable to a particular, "equivalent" 

zenith angle. 	This zenith angle was found to be dependent on the 

axial inclination of the telescope considered, and on the width of 

the acceptance cone. 	Not surprisingly, the "equivalent" zenith angle 

was found to correspond approximately to the zenith angle of maximum 

response of the telescope. 	Thus, for the purposes of calculating 

the asymmetry factors applicable to different viewing conditions, it 

is necessary only to determine the unidirectional values appropriate 
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to the "equivalent" zenith angle. 	In Table 5.11 we present the 

equivalent zenith angles of the latitude survey telescopes and the 

wide angle telescope at Mawson (these telescopes are described in 

Sections 2.2.1 and 5.4 respectively). 

Table 5.11 Comparative values of axial and equivalent zenith 

angles of the narrow angle latitude survey telescopes, 	and the 

wide angle telescope at Mawson. 

Telescope 	Axial zenith 	Equivalent 
angle 	zenith angle 

Latitude survey narrow 	22.6 ° 	3.5
o  2 

angle telescope 
45.2 ° 	5.2

o 
 4 

67.8
o 	66.0 0  

Mawson wide angle telescope 	45.0
o 	

40.5 °  

5.12.2 Re-examination of Mawson Data  

We are now in a position to accurately predict the azimuthal 

asymmetry pattern at Mawson, for comparison with that observed. 

The expected azimuthal dependence of inclined wide angle telescope 

counting rate was deduced, by carrying out calculations for a range 

of azimuths, at the equivalent zenith angle discussed above, taking 

into account the atmospheric and magnetic field configurations at 

the site. 	The calculated asymmetry pattern is displayed in Figure 

5.16, tooether with the experimental result, as reported in Section 

5.4. 	The theoretical result is seen to be in considerably better 
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agreement with experiment (particularly in the case of the north-

south asymmetry) than the theoretical calculations reported in Sec-

tion 5.4. 	Evidently, the simple north-south asymmetry theory of 

Burbury [1952] does not completely represent the physical situation. 

The residual asymmetry pattern, after the Mawson observations 

had been corrected by application of the calculated asymmetry factors, 

is also displayed in Figure 5.16. 	A small though significant north- 

south asymmetry (0.3 %) remains, in addition to an east-west asymm-

etry of the same magnitude, evidently as a result of the presence of 

a primary anisotropy, as discussed in Section 5.5. 

Geom. North 
0-4 

Mag. Nort 	 Geog. North 

GOg South

====  

Asymmetry 

%Itt‘4 	

South 

Georn South 

Azimuthal asymmetry patterns 
a■■••■•■ experimental 

theoretical 
corrected experimental 

Figure 5.16. Comparison of the calculated asymmetry pattern at 

Mawson with that observed by inclined wide angle telescope. 	Also 

shown is the residual pattern obtained by correction of these data. 



5.12 	 -225 

5.12.3 Correction of the Data of Mathews and Sivjee  

A clear demonstration of the effectiveness of the use of calc-

ulated asymmetry factors in removing the atmospheric asymmetry con-

tamination in directional muon intensity observations at low latit-

udes lies in the correction of the data of Mathews and Sivjee 

[1967]. 	In order to obtain atmospheric depths equivalent to those 

in the vertical direction at sea level, but with maximum cut-off 

momenta (to 25 GeV/c) very considerably in excess of those vertic-

ally, these authors carried out a series of measurements with an 

inclined detector at elevated sites near the equator. 	They hoped 

to obtain the extended form of the vertical sea level muon integral 

response curve in order to deduce the form of the coupling coeff-

ients in the region of the function maximum (discussed further in 

Section 6.7). 

It was found, however, (see Figure 5.17) that the curve express-

ing the intensity-cutoff relationship obtained from the high altit-

ude measurements possessed considerably greater slope than that 

obtained by sea level latitude surveys with vertical detectors, in 

the range of momentum values common to both; and in addition, the 

curvature of the functions in the overlap region were of opposite 

sign. 

Mathews and Sivjee, in interpreting their data, did not take 

into account the presence of the atmospheric asymmetry effect, 

which manifestly adds to the total east-west asymmetry and would, 

as a result, be expected to increase the slope of the momentum- 
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ordered data. 

To test whether the atmospheric asymmetry effect could, in fact, 

have been responsible for the observed discrepencies, calculations 
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Figure 5.17. A reproduction of Figure 5 of Mathews and Sivjee 

[1967], showing the observed intensity of ions as functions of 

cut-off momentum, as deduced from latitude survey measurements 

(solid line), and mountain altitude azimuth survey (broken line). 

Also shown are the experimental data after correction for removal 

of the atmospheric asymmetry (calculated asymmetry factors app-

lied). 	In the range of overlap, these data points are seen to be 

in very much better agreement with the latitude survey result (solid 

line) than the uncorrected data, as represented by the broken line. 
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have been carried out to deduce the asymmetry factors pertaining to 

the conditions of the observations. 	The equivalent angle of view- 

ing of the telescope (see Section 5.12.1) at each site was estimated 

by determining the zenith angle of maximum telescope response in 

each situation, and used in the computations, in conjunction with 

the appropriate magnetic field configuration as predicted by the 

Finch and Leaton [1957] coefficients, the standard equatorial atmos-

phere (see Section 5.7.7), and the directions of viewing and assoc- 

. iated cut-off momenta as published by Mathews and Sivjee. 	The 

intensity data were then corrected by application of these asymmetry 

factors, and replotted in Figure 5.17. 	The ordered data now appear 

to be in good accord with the vertical integral response curve. 

We use the corrected data of Mathews and Sivjee in Section 6.7 

as an important piece of evidence in the process of fixing the form 

of the directional muon coupling coefficients. 

5.12.4 Correction of Latitude Survey Data  

A series of calculations has been carried out to deduce the 

asymmetry factors pertaining to the latitude survey data. 	The 

known magnetic field configuration at each site, the equivalent 

zenith angles of viewing as listed in Section 5.12.1, and the atmos-

pheric structure appropriate to each site were used as input data to 

the "muons in the atmosphere" computer program. 	The atmospheric 

profiles were adapted from information about the mean height and 

temperature of the significant pressure levels, as indicated by 
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the routine radiosonde flights conducted at the airport sites during 

the observing periods. - At the sites where such information was not 

directly available (Mossman and Rockhampton), estimates of the atmos-

pheric structures were obtained by interpolating details of the 

pressure levels for the corresponding periods at sites located at 

points either side of the survey stations (Port Moresby, Townsville 

and Brisbane). 	The technique involved in introducing the pressure 

data into the calculations is discussed in Section 5.7.7. 

The cut-off values introduced into the asymmetry factor calc-

ulations were the mean effective cut-offs (or, when the mean effect-

ive cut-offs were indeterminate, the axial effective cut-offs) per-

taining to the directions of viewing at each site. 	An approxim- 

ation was implicit in the use of these cut-offs, inasmuch as a con-

stant cut-off value is assumed, in the calculations, to apply to 

all the trajectory traces pertaining to any given direction at a 

site, rather than the cut-offs in the directions of entry of the 

primary particle destined to give rise to the muons, which, moving 

along curved trajectories, arrive at the site in the directions of 

interest. 	The "true" cut-off values could have been introduced 

into the calculationsby arranging that the program deduce from the 

matrix of values representing the cut-off distribution at each of 

the sites (see Section 3.3.4) the appropriate cut-off value at the 

end point of each calculated trajectory. 	To have done this would 

have involved approximately double the computer time, as it would 

have been necessary to trace each trajectory twice - first to 
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deduce the "asymptotic direction" at the top of the atmosphere, and 

then again to allow the computation of the differential muon inten-

sities, since this latter calculation involves knowledge of the cut-

off in the evaluation of an integral along the trajectory. 

It is estimated that the maximum error likely to arise from 

the use of the given cut-off values is small because of the compar-

ative insensitivity of the asymmetry factor to change in cut-off 

and the relatively slow change in cut-off with direction -. 	Because 

no observations were made in the direction of main cone folds (see 

Section 4.7), the rapid change in cut-off in these directions does 

not have to be considered. 	In addition, since the oppositely dir- 

ected deflection of the positive and negative muons tend to give 

rise to "true" cut-offs both above and below the mean effective 

cut-off value, it might be expected that any error due to this 

source would be a second order effect. 

The atmospheric asymmetry effect has been removed from the 

latitude survey data by application of correction factors calculated 

to take into account the asymmetry factor in both inclined and vert-

ical directions. 	These corrected data are presented in Tables 5.12 

to 5.14 inclusive, and plotted as a function of mean effective cut- 

off in the inclined direction, in Figure 5.18. 	In situations where 

the mean effective cut-off value is indeterminate (geomagnetic cut-

off exceeded by atmospheric cut-off), inclined axial effective cut-

off values have been used. 

The improvement in the ordering of the experimental [to p.231] 
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Tables 5.12 and 5.13. Value of corrected inclined/vertical inten-

sity ratio for various values of azimuth at latitude survey sites; 

zenith angle of inclined detectors: 22.6 °  and 45.2 °  respectively. 

Table 5.12 

	

Site 	Inclined/vertical ratio at specified azimuths (*) 

1 	2 	3 	4 	5 	6 	7 	8 

Mossman 	0.8564 0.8220 0.8567 0.8761 

Townsville 0.8495 0.8307 0.8195 0.8351 0.8472 0.8594 0.8663 0.8621 

Rockhampton 0.8434 0.8272 0.8345 0.8436 0.8535 0.8586 0.8522 

Brisbane 	0.8417 0.8388 0.8405 0.8438 0.8463 0.8446 0.8434 

Williamtown 0.8453 0.8445 0.8434 0.8411 

Laverton 	0.8417 0.8391 0.8370 0.8383 
* See Table 2.5, 

Hobart 	0.8399 0.8397 0.8400 0.8395 

Table 5.13 

	

Site 	Inclined/vertical ratio at specified azimuths (*) 

1 	2 	3 	4 	5 	6 	7 	8 

Mossman 	0.5001 0.4664 0.5015 0.5101 

Townsville 0.4880 0.4750 0.4613 0.4814 0.4947 0.4971 0.4976 0.4987 

Rockhampton 0.4867 0.4732 0.4729 0.4884 0.4936 0.4886 0.4908 

Brisbane 	0.4752 0.4772 0.4781 0.4777 0.4814 0.4792 0.4803 

Williamtown 0.4752 0.4726 0.4753 0.4753 0.4749 

Laverton 	0.4704 0.4720 0.4655 0.4679 
* See Table 2.5. 

Hobart 	0.4711 0.4697 0.4735 0.4720 
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Table 5.14 Value of corrected inclined/vertical intensity ratio 

for various values of azimuth at latitude survey sites; zenith 

angle of inclined detector: 67•8 0
• NOTE: errors on ratios in 

Tables 2.2-2.4 apply to corresponding ratios in Tables 5.12-5.14. 

Site 	Inclined/vertical ratio at specified azimuths (*) 

1 2 3 4 5 6 7 8 

Mossman 	0.1468 0.1392 0.1475 0.1487 

Townsville 	0.1429 0.1406 0.1380 0.1434 0.1438 0.1434 0.1425 0.1438 

Rockhampton 0.1412 0.1406 0.1410 0.1424 0.1443 0.1420 0.1415 

Brisbane 	0.1376 0.1378 0.1389 0.1390 0.1396 0.1385 0.1379 

Williamtown 0.1376 0.1352 0.1357 0.1361 

Laverton 	0.1344 0.1329 0.1350 0.1342 
* 	See Table 2.5. 

Hobart 	0.1344 0.1354 0.1352 0.1349 

[from page 229] data on introduction of the corrections is evident 

when these plots are compared with those in Figure 4.29. 	It may 

be seen that, if the vertical displacement between the various sub-

sets of data was removed, the points at each zenith angle would lie 

close to a common curve, having, as expected, minimum slope at the 

lowest momentum values. 	The interpretation of these data is carried 

out in the following chapter. 

The effectiveness of the applied asymmetry factors in removing 

the atmospheric asymmetry component is illustrated in Figure 5.19, 

which shows the latitude dependence of the east-west [to page 233] 
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Figure 5.18. Corrected latitude survey data, plotted in th~ form 

of rates relative to that of a vertical detector at each site, of 

detectors inclined to 22.6°, 45.2° and 67.8°, as function of mean 

effective cut-off momentum in the inclined viewing direction. 
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[from page 231] asymmetry in the corrected latitude survey data 

(compare this diagram with Figure 5.2, which shows the correspond-

ing dependence in the uncorrected data). 	It may be seen that the 

magnitude of the residual asymmetry at the higher latitudes is 

essentially zero in the corrected data, becoming finite at latit-

udes where the geomagnetic cut-offs start to exert a significant 

influence. 

By comparing the mean effective cut-off momentum values 

1 0 

220 
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10 - 
- 	 6743. 

1  
30 
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Figure 5.19. Latitude dependence of east-west asymmetry as ind-

icated by the atmospheric asymmetry-corrected latitude survey 

data (compare this diagram with Figure 5.2). 
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Section 4.6) in the east and west with the mean effective atmospher-

ic cut-off value pertaining to telescopes at each inclination, pre-

dictions have been made of the latitude position of the "knee" in 

these directions. 	These positions are listed in Table 5.15. 

Table 5.15 Predicted position of  latitude "knee" in the east and 

west, corresponding to observation by the inclined latitude survey 

telescopes. 

Zenith angle (°) 	Position of "knee" ( °S. Geographic) 
of telescope axis 

In east In west 

22.6 35 32 

45.2 34 27 

67.8 27 17 

The latitude dependence of the east-west asymmetry could be 

expected to reflect the presence of the "knees" in the east and 

west. 	In Figure 5.19 it can be seen that the experimental result, 

whilst not showing distinct evidence of the "knee" in the west, 
- 

does show very clearly the effect in the east (the experimental 

positions agree closely with those predicted). 	The effect is 

pronounced, for it is at these latitudes that the cut-offs first 

influence the east-west asymmetry. 

Having demonstrated, in the preceding discussion, the apparent 

validity of certain predictions made on the basis of the calculat-

ions, it is pertinent to explain the origin of the intensity 
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distributions illustrated in Figures 5.14a and 5.14b. 	These 

curves correspond to the azimuth distribution of intensity at 67.8 0 

and 22.6
o 

zenith angle respectively at Townsville, as predicted 

using the calculated asymmetry factors, and the integral response 

functions derived in the following chapter. 	The "kink", visible in 

the higher zenith angle curve, and discussed in Section 5.11, is 

predicted on this basis. 	It is interesting to note that the 

experimental data show evidence of this effect ( .see Figure 2.13). 

This fact supports the assumption that the atmospheric asymmetry 

and the geomagnetic cut-off produced asymmetry co-exist at low 

latitudes in the manner predicted by calculation. 

5.13 Conclusions  

Although the atmospheric asymmetry effect is responsible for 

very significant contributions to the azimuthal asymmetry of the 

directional distribution of muon intensity deep in the atmosphere 

(at low latitudes and at high zenith angles the effect is of the 

same order of magnitude as that produced by the geomagnetic cut-

offs), almost without exception the investigators examining muon 

intensity distributions have overlooked the effect, and have 

carried out interpretation in terms of cut-offs alone. 

The investigation reported in this chapter was carried out in 

order to determine the nature of the atmospheric asymmetry effect, 

and to calculate its dependence on direction, and on various geo-

physical factors - atmospheric structure, magnetic field 
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configuration, altitude, and geomagnetic cut-offs. 

It was found convenient to express the results of the calculat-

ions (which were carried out using the Olbert production spectrum 

model, modified in certain respects) in terms of "asymmetry factors" - 

values of the ratio (intensity of muons that would exist in a given 

situation in the absence of a local magnetic field)/ (intensity that 

would exist in the same physical situation in the presence of the 

field). 	The calculated sets of asymmetry factor values have been 

presented in full, as, in principle, through their use, the atmosph-

eric asymmetry in any related situation may be determined. 

Examination of these data reveals that the azimuthal asymmetries 

produced by the atmospheric asymmetry effect are relatively insensit-

ive to change in atmospheric structure, and geomagnetic cut-offs, but 

are very ' directly dependent on magnetic field configuration. 	As one 

result of this latter sensitivity, a latitude dependence of vertical 

muon intensity (c:-..-i%) is predicted, due to change in local field 

conditions with latitude. 

The relationship between the unidirectional asymmetry factors 

and those pertaining to detectors of finite acceptance angle has been 

investigated, and it is apparent that, to an acceptable accuracy, the 

asymmetry factor values applicable to given inclined detectors corr-

espond to those unidirectional values pertaining to the zenith angle 

of maximum telescope response in the same situation. 

On application of asymmetry factors to experimental data from 

Mawson, for removal of the atmospheric asymmetry component, a residual 
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asymmetry pattern remains, suggesting the presence of a steady 

primary anisotropy, such as could be produced by a density gradient 

of cosmic ray intensity normal to the ecliptic plane. 

Finally, the techniques developed in this chapter have been 

applied in the atmospheric asymmetry-correction of the latitude 

survey data. 	It was found possible to obtain more satisfactory 

momentum ordering of the corrected, than of the uncorrected,data, 

the peculiarities associated with the integral response curves 

deduced from the uncorrected data having been removed. 

In the following chapter we use these atmospheric asymmetry-

corrected latitude survey data in the determination of directional 

muon coupling coefficients. 
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CHAPTER 6  

DETERMINATION OF COUPLING COEFFICIENTS  

6.1 Introduction  

As the result of investigations described in the preceding 

chapters, the latitude survey data have been corrected to remove 

the effects of the atmospheric asymmetry, and ordered by the use 

of calculated mean effective cut-offs pertaining to the various 

directions of viewing at the sites (see Figure 5.18). 	These data, 

after normalization to remove the displacement between the various 

subsets of data applying to each zenith angle, will represent the 

integral response functions (see Section 1.2) for telescopes in- 

clined to three zenith angles. 	In addition, because of the use of 

the inclined/vertical mode of data presentation, the integral re-

sponse function pertaining to the vertical telescope may be deduced 

from the normalization factors, as discussed in Section 2.3.4. 

The coupling coefficients, which express the fractional cont-

ribution to the detector rate attributable to primary particles 

within any particular momentum interval, are related to the first 

differential of the integral response function (equation 1.4). 	In 

order to form an estimate of the coupling coefficients from the 

experimental integral response functions, it is necessary to det-

ermine the slope of these functions as a function of momentum. 

Since these estimates will apply to values of momentum corresponding 
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to the range of cut-offs encountered on the latitude survey, extr-

apolation to high momentum values is necessary in order to obtain 

complete specification of the detector coefficients. 

Because the coupling coefficients applying to particular det-

ectors are of limited general application, it is obviously desirable 

to obtain the coefficients in the form of a basic unidirectional 

set, which may then be used to derive the coupling coefficients 

applying to any detector. 

This chapter describes the derivation of a unidirectional 

coupling coefficient function from the experimental data. 	A tech- 

nique is developed by which the zenith angle dependence of param-

eters controlling the form of an empirical function fitted to the 

experimental integral response functions is examined, so that the 

zenith angle dependence of the coupling coefficient function may be 

deduced. 	Other techniques are then used to extrapolate the function 

to high momentum values and to high zenith angles. 

Because of the importance of the ratio method of analysis in 

extracting information from the experimental data, it is desirable, 

before proceeding further in the data analysis, to justify the 

technique and to estimate the possible errors associated with its 

implementation. 

6.2 Justification of the Ratio Method of Analysis 

The ratio technique (qualitatively discussed in Section 2.3.4) 

relies on the constancy, over a wide zenith angle range, of the 
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coefficients expressing the dependence of muon intensity on atmos-

pheric structure. 	In the absence of primary spectral changes, 

variation in atmospheric conditions would thus be expected to prod-

uce sensibly the same fractional change in muon intensity at each 

zenith angle, causing the ratio of inclined to vertical intensity 

to be independent of atmospheric structure. 	The ratio would, of 

course, be dependent on the zenith angle of the inclined direction 

and the cut-off values associated with the directions considered. 

The near constancy of the atmospheric coefficients with zenith 

angle is supported both theoretically and experimentally. 	Fenton 

[1952] investigated the zenith angle dependence of the barometer 

coefficient and found theoretically that, whilst the coefficients 

pertaining to muons of any particular momentum increase appreciably 

with zenith angle, the integral coefficients, due to the progressive 

hardening of the spectrum with increasing zenith angle, display 

only a small change, a decrease, with zenith angle. 	The effect was 

undetectable in the experimental evidence available at the time. 

The theoretical calculations of Wada [1960] support Fenton's finding. 

Dorman, Kovalenko and Milovidova [1965] experimentally determined 

the dependence of the barometer coefficient on zenith angle. 	Their 

results, like those of Fenton, fail to show any significant change in 

coefficient value with zenith angle. 	The experimental results of 

Fenton, and Dorman et al. are summarized in Figure 6.1. It is app-

arent from this diagram that the magnitude of any systematic change 

in the barometer coefficient must be of the order of 0.02 % per mb or 
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less over the range 00700  . 	It is of interest to calculate what 

effect a zenith angle variation in the coefficients of this mag-

nitude would have on the experimental ratio values. 

As indicated in Table 2.1, 

the mean pressures experienced 

during the observing periods at 

the sites lay within a 13 mb 

range. 	If, as a first approx- 

_ 
imation, the assumption is made 

that all the observations were 

made at different levels within 

a common atmosphere (overlook- 
Figure 6.1. Zenith angle dep- 

ing for the moment the effect 
endence of sea level muon bar- 

of the temperature distribution 
ometer coefficient, as exper- 

within the atmosphere on the 
imentally determined by Fenton 

ratios), then the maximum error 
[1952], and Dorman et al. [196 7]. 

in the ratio values due to the 

observed pressure differences would be of the order of 0.3%, at a 

telescope inclination of 67.8 0 . 	This error is of the order of the 

observational errors inherent in the ratio values (see Table 2.4) 

and consequently would not be expected to affect the validity of 

the ratio technique. 

That the zenith dependence of the barometer coefficient may 

be ignored is supported by the results of the experiment described 

in Section 2.3.2, in which the inclined/vertical ratio was 

• FENTON (1952) 

• DORMAN et aL (1967) 

1 	1 	1 	1 	1 	1 	1 	1 

ZENITH ANGLE ( • ) 
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measured over a large pressure range at Hobart. 	In this case the 

indicated differential pressure coefficient relating observations 

at 67.8 0  and 0 0  was +0.018 % per mb; the corresponding value for 

the 45.2 °  and 0 0 , +0.002 % per mb; and for 22.6 °  and 0 °, -0.001% 

per mb. 	As discussed in Section 2.3.3, the errors in the ratio 

values due to pressure changes are evidently small compared with 

the other errors of observation. 

To test the dependence of the ratios on other than simple 

pressure changes (for example, on changes in the height of the 

pressure levels in the upper atmosphere), calculations have been 

made by means of the "muons in the atmosphere" computer program, to 

determine the expected values of inclined/vertical ratio j.n atmos-

pheres of widely varying structure. 

Firstly, calculations were carried out for a given pressure 

level (1013.2 mb) in the "standard" equatorial, mid-latitude, and 

polar atmospheres (see Section 5.7.7 for details of the calculation 

techniques, and the method of representing these atmospheres). 

Directional muon intensities were evaluated at zenith angles of 8.2 ° , 

23.5 °, 45.2 °, and 66
0 
 (the "effective" zenith angles* of viewing of 

the 0 °, 22.6 ° , 45.2 ° , and 67.8
0 
 latitude survey telescopes respect-

ively), in the absence of geomagnetic cut-offs. 	The ratios are 

* The zenith angle at which the unidirectional integral response 

function best matches the mean effective response function for 

each particular detector. 
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presented in Table 6.1, together with the percentage departure of 

each ratio value from the corresponding mid-latitude value. 

Table 6.1 Values of inclined/ vertical ratio calculated for the 

"standard" equatorial, mid-latitude, and polar atmospheres. The 

bracketed figures refer to the percentage departure of the ratios 

from the mid-latitude values. 

Zenith angle 8.2 °  23.5 °  
o 

45.2 66.0 0  

Atmosphere 

Equatorial 1.0000 0.8304 0.4165 0.1269 
(+0.024) (+0.313) (+1.28) 

mid-latitude 1.0000 0.8302 0.4152 0.1253 

Polar 1.0000 0.8316 0.4171 0.1254 
(+0.169) (+0.458) (+0.080) 

It is evident that, whilst some differences are predicted to 

arise in the ratio values because of the variation of atmospheric 

configuration, particularly at the higher zenith angles, these are 

small compared with the magnitude of the total intensity variation 

with latitude, and must not be regarded as serious, in view of the 

uncertainties associated with removing the dependence on atmospheric 

structure directly. 

A further series of calculations has been carried out to est-

imate the likely dependence of the ratio values on both local atmos-

pheric configuration and on the pressure level at the observing site. 
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The details of the atmospheres at each site have been introduced 

into the computer program and the directional muon intensities have 

been deduced, in the absence of cut-offs. 	The results are presented 

in Table 6.2, in the form (like Table 6.1) of inclined/vertical 

ratio values, as calculated for the effective zenith angles of 

viewing of the latitude survey detectors, together with the percent-

age departures of the values from the corresponding value at Hobart. 

The indicated maximum departure of the ratios from constant 

values over the range of conditions is seen to be extremely small 

(0.05%) in the case of a telescope inclined to 22.6 ° , and 1% for 

one at 67.8 0  inclination, a value comparable with the other errors 

of observation. 	Test calculations have shown that, if anything, the 

computer program tends to indicate larger differences than actually 

are observed. 	In any case it is evident that ratios may be anal- 

ysed on the assumption of independence from atmospheric effects with- 

out the introduction of serious systematic errors. 	This conclusion 

is supported by the internal consistency observed in the data during 

the detailed analysis. 

6.3 Analysis of Experimental Data  

The intensity-corrected and momentum-ordered ratio data, as 

shown in Figure 5.18, have, at each zenith angle, the form of dis-

placed sections of a common integral response curve. 	This displ- 

acement, as mentioned in Section 2.3.4, is produced as a result of 

the change from site to site of the mean effective cut-off in the 
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Table 6.2 Values of inclined! vertical ratio calculated for 

atmospheric structures representative of those at the latitude 

survey sites. 	The bracketed figures refer to the percentage 

departure of the ratios from the Hobart values. 

Zenith angle 

Site 

8.2 °  23.5 °  45.2
o  

66.0
o  

Mossman 1.0000 0.8305 0.4166 0.1270 
(+0.00) (+0.10) (+0.79) 

Townsville 1.0000 0.8304 0.4165 0.1267 
(-0.01) (-0.05) (+0.56) 

Rockhampton 1.0000 0.8309 0.4175 0.1272 
(+0.05) (+0.31) (+0.95) 

Brisbane 1.0000 0.8305 0.4165 0.1262 
(+0.00) (+0.07) (+0.16) 

Williamtown 1.0000 0.8304 0.4159 0.1258 
(-0.01) (-0.07) (-0.16) 

Laverton 1.0000 0.8308 0.4163 0.1258 
(+0.04) (+0.02) (-0.16) 

Hobart 1.0000 0.8305 0.4162 0.1260 

direction of viewing of the vertical telescope. 	By correlating 

the indicated relative intensities with the mean effective cut-off 

values it is possible, in principle, to obtain the integral res-

ponse curve from those pertaining to the inclined directions. 

Estimates of the coupling coefficients for telescopes at each 

inclination may be made by calculating the slope of the experimental 

integral response curves as a function of momentum. 	These 
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estimates would, however, be the coefficients pertaining to the 

particular telescopes rather than estimates of the unidirectional 

coefficients at a number of zenith angles. 	It is obviously more 

desirable to use the available information as the basis for deriving 

a'set of unidirectional coupling coefficients. 	For this reason, 

and to take the detector characteristics more fully into account, a 

general empirical function has been sought to represent the depend-

ence of directional muon intensity on mean effective cut-off at each 

zenith angle. 	In addition, functional representation would allow 

an appreciably more efficient analysis of the observational data, 

and a more useful expression of the results, to be made. 

A function of the form 

= 100 - k(0) [p 
	Pat(e)r 
	

for P> P
at 	

(6. 1) 
= 100 
	

for P< P
at 

was found, by trial and error, to be eminently suitable 

for this purpose. In this function, which applies to momentum 

values within the range of cut-offs at which the latitude survey 

observations were made, I(0,P) is. the directional muon intensity 

(normalized to percent of intensity in the absence of cut-offs), 

Pa (0) is the mean effective atmospheric cut-off* for the detector 

* Mean effective atmospheric cut-off - the weighted mean atmos-

pheric cut-off applying to any particular detector configuration, 

calculated by the technique described in Section 6.6. 
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inclined to zenith angle 0, k is a zenith angle-dependent constant 

describing the general slope of the function, and n is a constant 

used to fix the curvature of the function. 	The conditional values 

take into account the fact that the integral response function must 

have zero slope for momenta below the atmospheric cut-off. 

P
at

, in contrast to the constants k and n, is not determined 

from the experimental data, rather being the weighted mean of the 

known zenith dependent unidirectional atmospheric cut-offs over the 

acceptance cone of the telescopes. 	Since the weighting depends on 

the other parameters to a certain extent, it is necessary to deduce 

the mean effective atmospheric cut-off for the telescopes by means 

of successive approximations over the cycle of operations involved 

in the optimization of the values of the other parameters. 	It was 

found possible to choose values of the parameters that brought 

about a close fit of the empirical function to the observational 

data at each zenith angle, so enabling the response functions 

pertaining to the telescopes to be determined. 

It is appropriate at this point to outline the principles 

involved in deducing the unidirectional muon response functions 

from the experimental functions (obtained by the use of detectors 

of finite acceptance angle). 	If it can be shown that the uni- 

directional integral response curve is well represented by a function 

of the same basic form as the empirical function, then the problem 

becomes one of determining what zenith dependence of n and k, to- 

gether with the known dependence of 
at 

on zenith angle (see Section 
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5.10), is required in order that calculations of telescope response 

reproduce precisely the experimental result. 	(The means of carrying 

out the response calculations 

have already been developed, in 

Chapter 3). 

Because of the involved 

interdependence of the mean 

effective values of k and P
at

, 

and the dependence of the asymm- 

etry factors (necessary for the 
THEORETICAL 

MODIFICATION CALCULATION 
	 OF k VS e 	 OF HIGH 

ZENITH ANGLE 	 correction of the experimental 
POLYNOMIAL 

COEFFICIENTS 

data) upon the final response 

functions, the entire process 

of determining the unidirectional 

response functions has the form 

of a cyclic series of operations 

in which the parameters are adj-

usted progressively until a 

stable series of values is found. 

The relationship between the 

various operations in the det-

ermination, 

the optimization "loops" are 

represented in Figure 6.2 by a 

flow chart. 	The processes 

DEDUCTION OF 

UNIDIRECTIONAL 

k se 
POLYNOMIAL 
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Figure 6.2. Flow chart re-

presenting the relationship 

between the various operations 

involved in the optimization of 

the parameters in the coupling 

coefficient model. 

and the position of 
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represented in the chart are elucidated in the following sections. 

The different relative "powers" of the parameters in the 

various parts of the overall operation (for example, the lesser 

dependence of the asymmetry function than the integral response 

function on momentum) leads to the presence of a single maximum in 

the multidimensional parametric surface, and so the final set of 

parameters represents a unique solution to the problem. 	It is 

found, as a result, that the difficulty discussed in Section 5.6, 

that of separating the genuine azimuthal asymmetry produced by the 

geomagnetic cut-offs from the effects of the overlaid atmospheric 

asymmetry, can be resolved. 

Correction of the experimental data for removal of the effects 

of atmospheric asymmetry were initially made on the assumption that 

the asymmetry factors were independent of cut-off momentum, and 

later successively improved models were used in the "muons in the 

atmosphere" computer program to derive the correction factors. 

Similarly, progressively improved estimates of mean effective 

geomagnetic cut-off were used, both in the numerical calculations, 

and in the data analysis. 

6.4 Determination of the Empirical Response Function Parameters 

A computer program was written to aid in the data analysis, 

which, given values of 
at 

and n, calculated the values of the 

constant k in equation (6.1) appropriate to the various subsets 

of data. It did this by means of a weighted regression analysis of 
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intensity I on (P - P
at

) n , producing k as the normalized regression 

coefficient, and estimating the associated correlation coefficient 

of the fit of the empirical function (the normalization was necess-

ary to obtain k in the correct percentage form). 	The weighting was 

applied according to the accuracy of the individual data points. 

Estimation of the value of n was made by examination of the 

dependence of the correlation coefficient on n for the Townsville 

data. 	These particular data were used for this purpose as they 

formed the most complete and accurate set, and the range of mean 

effective cut-offs at each zenith angle extended over a wide range. 

A maximum was observed in the correlation coefficient for a partic- 

ular value of n (n = 1.6 in the final estimate) for the 22.6 °  and 45.2
o 

data sets, whilst for the 67.8 °  data, although no distinct maximum 

was evident because of the considerably poorer accuracy of the data, 

the same value nevertheless allowed a satisfactory representation of 

the observational data to be obtained. 	The parameter n was there- 

fore chosen to have constant value, independent of zenith angle. 

At each zenith angle, for the given value of n, the data sub-

sets were found to predict essentially the same k values (after 

normalization to adjust for the intensity displacement between the 

various sections of the curves). 	The effectiveness of the empir- 

ical function, exemplified by this correspondence, is illustrated 

in Figure 6.3. 	In this diagram, sections of a common integral 

response curve are fitted to the 22.6
o 
data; in this case the 

curves are displaced by an amount predicted by the empirical function 
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appropriate to the vertical telescope. 

1 	1 	1 	1 	1 	1 	1 	1 	1 	1 

— 

— 

— 

TOWNSVILLE ,  

— 
ROCKHAMPTON L 

)1\ 

1 1 1-  

MOSSMAN 

i 

1 1 	1 	1 	1 1 

— 

— 

— 

— 

— 	

WILLIAMTOWNN 

BRISBANE LAVERTON 
— 

— 

_ 

111111111 1 1 1 	1 !III! 

. 

— 

— 

— 

— 

5 
	

10 
	

15 
	

20 
MOMENTUM (GeV/c) 

Figure 6.3. Comparison between the individual subsets of 22.6 0 
 

observational data and the empirical integral response function, 

which, having been derived by the use of the collected 22.6 °  

data, has been displaced in sections by amounts predicted by the 

empirical function appropriate to the vertical telescope. 	The 

errors indicated are standard deviation statistical errors. An 

additional uncertainty of magnitude ± 0.095% pertains to each of 

the individual observations. The double error bars on the integ-

ral response curve sections represent the uncertainty in relative 

position of each subset (see Section 2.3.3). 
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In order to make the best estimates of the k values appropriate 

to the full sets of inclined telescope data, multiplication factors 

were applied to the points in each subset (data relating to single 

sites), to bring the weighted mean intensity of each set onto the 

regression line fitted to the Townsville data at the given zenith 

angle (see Figure 6.4), and a new estimate of the value of k made 

from the collected data. 	In this way, three k values were obtained, 

one for each of the telescope inclinations. 

6.5 Determination of Response of the Vertical Telescope 

6.5.1 Integral Response  

The sets of multiplication factors are not merely numbers cal-

culated for the convenient handling of the inclined direction int-

ensity data. 	They contain information, as discussed previously, 

about the change in the true "corrected" vertical telescope rate 

over the latitude range of the survey. 	By carrying out regression 

Figure 6.4 (opposite). Experimental data after application of 

normalizing factors to bring the weighted mean of each data sub-

set onto the regression line fitted to the Townsville data at the 

given zenith angle. 	The error bars represent the calculated stat- 

istical standard deviation errors pertaining to each point. 	An 

additional uncertainty is associated with the observations (see 

Section 2.3.3) which has magnitude t 0.12% at 22.6 °, ± 0.16% at 

45.2
o
, and ± 0.49% at 67.8

o
. 
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analyses on the appropriately normalized sets of multiplication 

factors, one derived from each zenith angle data set, three indep- 
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endent estimates of the value of k pertaining to the vertical tele-

scope were obtained (see Table 6.3). 

Table 6.3 Values of k for vertical latitude survey telescope as 

deduced from various data sets. 

Data set Estimated k value 
for vertical telescope 

22.6 0  0.231 t 0.010 (S.D. error) 

45.2 0  0.260 t 0.015 

67.8
o  

0.249 t 0.032 

The fact that these values agree very closely tends to confirm 

the validity of the ratio method of analysis. 	If there had been 

appreciable systematic atmospheric dependence in the data, the k 

values would have been expected to reflect this. 	Because of the 

possibility of a small residual atmospheric dependence in the higher 

zenith angle data, the k estimate derived from the 22.6 o 
 data was in 

fact used for the purposes of further analysis. 

By the use of the ratio technique in this way, the integral 

response of the vertical latitude survey telescope has been obtained, 

effectively corrected for changes in atmospheric configuration at 

the different sites. 	Because the integral response function is 

produced as the product of independent measurements at each site, it, 

unlike other direct methods, does not depend on the absolute counting 

efficiency of the detectors. 
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6.5.2 Dependence of Vertical Muon Intensity on Atmospheric  

Configuration  

(This section may be omitted at a first reading) 

It is of interest to compare the ratio derived integral res-

ponse function for the vertical telescope with that obtained by 

direct observation of vertical muon intensity, and to note the 

significant dependence of the latter on atmospheric structure. 

The dependence of the vertical telescope rate on latitude is illust- 

rated in Figure 6.5. These relative intensity values were obtained 

from the wide angle telescope 

data, corrected to take into 

account the difference in open-

ing angle compared with the 

vertical narrow angle telescope 

(the corrections are small, 

amounting to about 0.25%), and 

corrected to remove the effect 

of differences in mean pressure 

at each site. 	The ratio derived 
Figure 6.5. Integral response 

relative intensity values are 
function of vertical narrow 

plotted in the same diagram. 
angle telescope, as deduced by 

The slight differences in mean 
the ratio method, and as obs- 

effective cut-off value relating 
erved experimentally. 

to the intensity values derived 

by the two methods arise out of the difference in opening angle of 
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the vertical telescopes used in the measurements. 

It is interesting to note that the experimentally determined 

function showing the dependence of pressure corrected muon intensity 

on latitude has maximum slope at about 12 GeV/c. 	Thus, unless the 

corrections for differences in atmospheric structure were to remove 

this feature, the coupling coefficients that would be determined 

from these data would have a maximum at this momentum. 

The difference between the observed and ratio derived intensit-

ies in Figure 6.5, a measure of the dependence of the muon intensity 

on atmospheric configuration, is shown as a function of geographic 

latitude in Figure 6.6. 

5 
DEPENDENCE 
OF RATE ON 
ATMOSPHERIC 
STRUCTURE W.) 

0 
20 	 30 	 40 

GEOGRAPHIC LATITUDE ( . 5) 

Figure 6.6. Dependence of vertical telescope rate on atmospheric 

structure over the latitude range of the survey - comparative 

experimental and calculated results. 

Figure 6.7 shows the atmospheric profiles representative of the 

alternate latitude survey sites. 	The differences between these 

structures is responsible for the latitude dependence of muon int-

ensity of muon intensity displayed in Figure 6.6. 
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These atmospheric profiles have been used in the "muons in the 

atmosphere" computer program to calculate the expected form of the 

muon intensity dependence on latitude. These predictions were 

made by computing the muon intensity at a zenith angle of 8.2° (the 

effective zenith angle of the vertical narrow angle telescopes), 

for a pressure level of 1013 mb, and in the presence of the calc-

ulated mean effective geomagnetic cut-offs for vertical telescopes 

at each site. The calculated dependence of telescope rate on 

latitude is plotted in Figure 6.6. Good general agreement is 

evident between the predicted and experimental results, particularly 

at the higher latitudes. The results tend to confirm the validity 

of the techniques, both in experiment and calculation. 
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Figure 6.7. Mean atmospheric structures at Mossman, Rockhampton, 

Williamtown and Hobart, as used in the "muons in the atmosphere" 

computer program. 
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6.6 Unidirectional Dependence of k on Zenith Angle  

In the preceding sections we have .described the process of 

evaluation of the integral response function parameter k from the 

latitude survey data. 	The values pertaining to telescopes at each 

inclination are given in Table 6.4. 

Table 6.4 Values of k for latitude survey telescopes. 

	

Telescope inclination 	k Value 
to zenith 

0 
	

0.231 t 0.010 (S.D. error) 

	

22.6 ° 
	

0.185 'I 0.006 

	

45.2
o 	

0.116 t 0.005 

	

67.8 0 
	

0.0353 t 0.007 

The coupling coefficients for these telescopes are readily 

obtained by differentiation of the empirical integral response 

function and insertion of the appropriate values of the parameters 

into the resulting differential response function, 

dI 

	

i.e., since W = -
7:1171 	(I normalized to /0) 

l then 	W = n k [P - P
at

(0)J n-1  (6.2) 

These coefficients are of very limited use, since they strictly 

pertain only to the latitude survey detectors, and to the momentum 

range corresponding to the cut-off momentum values encountered on 

the survey. 
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In order to obtain an estimate of the zenith angle dependence 

of the unidirectional coupling coefficients from the response 

functions applying to these detectors, it is necessary to deduce a 

model of the unidirectional response function that can be used to 

reconstitute the observed detector responses. 	To a first approx- 

imation the k values were assumed to apply to the zenith angles to 

which the telescopes were inclined. 	A polynomial function passing 

through the four established k values was constructed for use in 

representing the dependence of k on zenith angle. 	This function, 

together with a further function representing the dependence of 
at 

on zenith angle, was used in the "telescope response" computer 

program to allow the response of the latitude survey telescopes to 

be predicted. 

The constant cut-off technique, mentioned in Chapter 3, was 

employed to derive the mean effective values of k and P
at 

for the 

latitude survey telescopes. 	In detail, the technique operates as 

follows: 	If muon intensities
1

,
2' 

and 1
3 are calculated for 

a particular direction in the presence of cut-off values P 	P2 , 
2' 

and P3, and if the form of the dependence of intensity on cut-off 

is known, i.e. 
11.6 I =100 - k [P - P

at-1 

in the present case, then the mean effective k and at 

values corresponding to the particular telescope configuration 

simulated may be deduced, since it may be shown that (if P
1 is 

chosen to be = 0, making I I  = 100) 
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100 - 1 3) 1/1.6 
P - p2 

2 k00 - 
2  P

at 
- 

1 	COO - 1 3  1/1.6 
	i 
100 - I

2 

and 	k - 
100 - 1

3 
(p 	p 	116 

3 	at 

The assumption that the functional dependence of the telescope 

rate on mean effective cut-off is the same as the unidirectional 

intensity dependence on directional cut-off is acceptable, since it 

is found that the mean effective values of k and P
at 

are sensibly 

independent of the choice of P2  and P3 , if these cut-off values 

exceed the mean atmospheric cut-off value for the particular detect-

or. 

It is pertinent to note here that at small telescope inclinations 

the effective zenith angle of viewing as deduced independently from 

the mean effective k and 
at values (deduced by determining at what 

zenith angle the values of the mean efFective parameters are equal 

to the unidirectional values) are found to be essentially the same. 

On the other hand, at large zenith angles of viewing, the estimates 

of the effective angle of viewing of the telescope, as deduced from 

the two parameters, may differ very considerably. 	Thus, for large 

detector inclinations, the integral response functions do not corr-

espond to the unidirectional function at any particular zenith 

angle. 

When using the first estimate of the polynomial function rep- 
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resenting the unidirectional dependence of k on zenith angle, the 

calculated mean effective k values were found to be well removed 

from the actual observed values (i.e. those listed in Table 6.4), 

and considerable modification 
025 

was necessary in order to 

obtain satisfactory agree-

ment. 	Adjustment of this 

function also affected the 

calculated mean effective P
at 

values, and through these, the 

analysis of the experimental 

data. 	As a result, it was 

necessary to cycle around the 

sequence of operations shown 

in Figure 6.2, in order to so 

optimize the values of the 

various parameters. 	In add- 
zenith angle. 	The solid line 

ition, as the optimization 
section was deduced from the 

proceeded, the parameters in 
experimental k values (shown with 

the production spectrum model 
the calculated S.D. errors), and 

used in the "muons in the at- 
the dotted section was predicted 

mosphere" computer program had 
with the aid of the "muons in the 

to be adjusted, and as these 
atmosphere" computer program. 

also affected the experimental 

-- 

data (through the asymmetry factors), a series of operations was 

010 

c-0 015 

ov 

0-05 

60 
ZENITH ANGLE (•) 

Figure 6.8. Dependence of k on 
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necessary to optimize these parameters at the same time as adjusting 

the form of the k - 0 polynomial function. 	It was found, in 

practice; that because the asymmetry factor values were not greatly 

dependent on the parameters affected in the production spectrum 

model, it was necessary to traverse this particular loop only three 

times before arriving at satisfactory stability. 

The result of this sequence of operations was the derivation 

of a polynomial representing the unidirectional dependence of k on 

zenith angle (see Figure 6.8). 	When used in telescope response 

calculations, this function allowed the mean effective k values 

pertaining to the latitude survey telescopes to be predicted corr- 

ectly. 	Because information is now available about the zenith angle 

dependence of all the parameters in equation (6.2), the zenith angle 

dependence of the coupling coefficients is known. 

6.7 High Momentum Extrapolation of Coupling Coefficients  

The empirical coupling coefficient function, because it is 

derived basically from the experimental data, applies only to the 

"envelope" of angle - momentum values defined by the mean effective 

cut-off values encountered during the course of the latitude survey, 

• as shown in Table 6.4. 	To be of any practical use in cosmic ray 

astronomy, the coupling coefficient values have to be known at all 

momentum values. 	It is therefore necessary to extrapolate the 

empirical low momentum function. 

As discussed in Section 1.2, Dorman [1957] showed that this 
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extrapolation could be carried out by the use of an empirical 

function, whose parameters are determined by application of the 

known restraints on the expression. 	These restrF-ints are that the 

low momentum function and the extrapolation function be continuous 

at the point of connection, and that the area enclosed by the entire 

coupling coefficient function (corresponding to the total direction-

al muon intensity) be of given value. 

Table 6.4 Highest values of cut-off momentum (GeV/c) encountered 

at each telescope inclination on the latitude survey. 

Telescope inclination maximum cut-off value 

0 13.2 

22.6 °  163 

45.2
o  

21.7 

67.8 0  31.1 

Dorman used a function of the form 

= K [11] (- a  b130/p)  P>P 
0 	0 

for the extrapolation, where P is momentum, P o  is the 

point of connection of the two functions, and K, a and b are 

determinable constants. 

For the purposes of the present determination a different 

extrapolation function has been employed, one which has essentially 

the exponential character required by theory, but which has an 
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assigned asymptotic slope at high momenta, rather than a slope 

determined by the value of the constants as in the Dorman equation. 

The equation is 
A  

f(0) -2.5 
e
-(P

o
/P) m  

W' - 	P 

where A, Po and m are constants determined, as in the case 

of the Dorman equation, by application of the restraints; and f(0) 

is a function representing the zenith angle dependence of total muon 

intensity (see Section 3.3). 

This function has asymptotic slope equal to the slope of the 

differential spectrum at high momenta, corresponding to the assump-

tion that the multiplicity of production of muons detectable at sea 

level asymptotically approaches a constant value. 	This tendency 

to constant multiplicity is indicated by the theoretical calculations 

of Krimsky et al. [1965], and is not inconsistent with the exper-

imental evidence relating to the multiplicity of pion production as 

summarized by Sitte [1961]. 	It is useful to introduce the const- 

ancy because of the added flexibility in the later analysis. 	It 

should be noted that in the extrapolation function, the rate at 

which the curves asymptote to a line of constant slope can be con-

trolled over extremely wide limits by the choice of the constants 

P
o 

and m. 	If, in the process of optimization of the parameters, 

the data are not consistent with the assumption of constant mult-

iplicity at high momenta, the parameters are capable of taking this 

fact into account with acceptable efficiency. 	They accordingly 

take values that delay the rate of approach to the line of constant 
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slope, thereby decreasing the slope of the function at moderate 

momenta (whilst the true coupling coefficient slope may be equal to, 

or less negative than, the slope of the primary differential spec-

trum, it cannot have greater negative slope). 

Since the low momentum empirical coupling coefficient function 

is known, i.e. 	
W = 1.6 k [P - P

at ]
0.6  

the Dorman conditions relating W and W' (the extrapol-

ation function) at the point of connection of the two functions 

(at momentum P
a
) may be established: 

a) Equality of absolute values of W and W', i.e. 

W
P=Pa =WI P=Pa 

In terms of the functions, this conditions is 

1.6 k [P - P ]0.6 	A- - P -2 ' 5  e-(130/pa a 	at 	f(0) a 

b) Continuity of slope, i.e. 

dW' 	dW 
=• 

	(P = Pa ) dP 	a 	dP 

which may be shown to be given by 

A e-(P  o a /P)m  
[m(P

0
/P

a
) m  - 2.5] = 0.96 k (P

a 
- P )-0.4 

f(e) 10a 3.5
at  

c) The area condition. 	If the coefficients are expressed 

in the units % per GeV/c then this condition, in terms of the 

functions, is 
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03   r  A P 	-(P /)m 
f(e) 	

e 	o 	
)1.6 dP + k (P

a 
- P

at 	
= 100 

j   
a 

These equations are sufficient to determine the values of the 

constants A, P
o 

and m for any given value of P. 	On the other 

hand, if one of A, Po  or m is assigned a value, then the remaining 

three unknowns may be evaluated. 

A computer program was written to carry out the evaluation of 

these parameters, using the equations representing the Dorman con-

ditions. 	In a first series of calculations P a 
values were chosen 

corresponding to the highest cut-off values for which the exper- 

imental observations had been made (i.e. those in Table 6.4). 

The program selected the value of A which provided the most suit-

able extrapolation of the low momentum function at each of a number 

of nominated zenith angles (in a loop involving the successive 

adjustment of the P
a 

values at each zenith angle), and then de-

duced values of P o 
and m appropriate to each zenith angle. 

It became apparent, after these calculations, that this 

method of selecting P
a 
was very arbitrary. 	Since the choice of P

a 

effectively fixed the position of the maximum in the coupling co-

efficient functions, the overall shape of the curves were thus de-

pendent on values of momentum quite fortuitously associated with 

the observational data. 	It was found that a more useful starting 

point in the evaluation of the extrapolation parameters was the 

choice of a value of A, from which the remaining constants were 

deduced appropriate to each zenith angle. 
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Depending on the choice of A, one of a family of coupling co-

efficient curves could be produced at any particular zenith angle, 

as represented, for example, by the curves in Figure 6.9a. 	It can 

be seen that the shape of the function is very directly dependent 

on A, these differences causing very great variation in the shape 

of the corresponding integral response curves (see Figure 6.9b). 

No particular one of these curves can be selected a priori as being 

the most suitable, or as best representing the actual situation, 

since each extrapolation is equally valid, on the basis of the 

experimental evidence. 	It is apparent that very small A values are 

not appropriate, because of the patent artificiality of the form of 

the extrapolation (see Figure 6.9a). 	It is obvious that some other 

means must be found to select the value of A best representing the 

true primary-secondary relationship. 

In principle, if experimental evidence of the shape of the muon 

integral response curves in the region of the maximum could be ac-

quired, then this could form the basis for the selection. 	In 

practice the limited range of cut-offs available in the geomagnetic 

field preclude the execution of decisive observations at sea level. 

On the other hand, suitable experimental observations do exist, 

those of Mathews and Sivjee [1967], of muon intensity in inclined 

directions at mountain altitudes. 	As discussed in Section 5.12.3, 

these investigators hoped to extend the experimental determination 

of vertical muon coupling coefficients to higher momentum values by 

making observations through atmospheric depths equivalent to that in 
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the vertical direction at sea level, but in the presence of high 

cut-off values. 	Because of contamination by the atmospheric .  
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asymmetry effect, Mathews and Sivjee were unable to obtain the 

result they sought (they themselves attributed their anomalous 

result to failure to take into account the differences in geometry 

of the detectors used in the sea level and mountain altitude obs-

ervations). 	We have been able to correct these data (see Section 

5.12.3) and use them to resolve the problem of selecting a suitable 

value of the constant A. 

Calculations were made of the effective values of the constants 

k and 
at pertaining to the configuration of the Mathews and Sivjee 

telescope when directed vertically at sea level, and as a result 

the low momentum portion of the integral response function for this 

telescope could be drawn (see Figure 6.10). 	This response curve 

is equivalent to the unidirectional response function at 16.6 0  

zenith angle (this fact is utilized in later work). 

The experimental data were normalized so that the corrected 

Figure 6.9 (opposite). 

Figure 6.9a (upper diagram). 16.6 °  zenith angle coupling 

coefficient function, for various values of the parameter A: 

curve A, A = 2x10 4 ; B, A = 5x10 4; C, A = 10 5 ; D, A = 1.575x10 5 . 

The short vertical bars intersecting the lines indicates the join 

between the two empirical functions. 

Figure 6.9b (lower diagram). Integral response curves corresp-

onding to the coupling coefficient curves represented in Figure 

6.9a. 
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data points could be plotted on the same diagram. This normaliz-

ation was carried out by fitting a straight line of best fit to the 

data (the points collectively do not exhibit any appreciable curv-

ature), and then a multiplication factor applied to bring the re-

gression line into coincidence with the empirical function at 12.5 

GeVic (see Figure 6.10). It may be seen that the general slope of 
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Figure 6.10. Low momentum portion of the 16.6 °  zenith angle int-

egral response curves displayed in Figure 6.9. 	The data points 

represent the corrected observations of Mathews and Sivjee, and 

the dashed line the integral response curve as predicted by the 

modified Olbert production spectrum. 



6.7 	 271 

the empirical function is preserved in the distribution of the data 

points. 

We now have an estimate of the position (although not the de-

tailed shape) of the integral response curve, for momenta as high 

as 25 CeV/c. 	By comparison of this integral response curve with 

the various curves representing the possible range of values of A, 

as illustrated in Figure 6.10, it was found that a value of A = 

1.575x10
5 

produced the best representation of the experimental 

data. 	In this way it was possible to select a value of A out of 

the large range of possible values, and confidently use it to 

represent the actual physical situation. 	In determining A, a 

definite high momentum form has been assigned to the coupling 

coefficient function, so that for the zenith angle range covered 

by the experimental observations a complete specification of the 

coupling coefficients is available. 

It should be noted here that the choice of A = 1.575x10 5 

causes the point of connection of the low and high momentum 

empirical functions to lie at momenta lower than the highest 

cut-off values encountered in the latitude survey (see Table 6.4). 

As a result, the experimental data should, in principle, have been 

represented by two functions in the data analysis, rather than by 

a single function. 	Fortunately, the modification to the shape of 

the integral response curve is minute in the momentum range affected 

(see for example, the relative positions of the integral response 

curves in Figure 6.10, for momenta < 14 GeV/c), and the resulting 
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errors are negligible. 

It would be of very great value to obtain the high zenith 

angle form of the muon coupling coefficients, both for use in the 

analysis of data from high zenith angle detectors such as those in 

use at Mawson and Hobart in the study of primary cosmic ray anisot-

ropies, and as a means of obtaining evidence about the form of the 

coupling coefficients pertaining to moderate depths of absorber. 

At large zenith angles the atmospheric depth is approximately equiv-

alent to the absorber depth in the viewing cone of underground 

detectors at tens of metres water equivalent. 

6.8 Coupling Coefficient Extrapolation to High Zenith Angles  

It would be quite invalid simply to extrapolate the k function 

to high zenith angles, as there is no means of knowing a priori the 

true extrapolated form of the dependence. 	It is therefore 

necessary to look elsewhere for evidence on which to base the 

extrapolation. 

The key to the solution of this problem lies in the use of the 

"muons in the atmosphere" computer program. 	The adjustment of the 

parameters in the calculations executed by the program was made by 

matching the predictions of the calculations to the form of the 

semi-empirical integral response curve at a zenith angle of 16.60 . 

At this zenith angle the best evidence exists concerning the true 

shape of the muon integral response functions (i.e. the Mathews and 

Sivjee data). 	It is particularly interesting to note that, whilst 
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change of the parameters K and D in the computer program (defined 

in Sections 7.7.3.1 and 5.7.3.3) could cause variation in slope, 

and to a certain extent the overall curvature of the calculated 

integral response function, the predicted position of the point of 

maximum slope remained virtually unchanged, this point agreeing 

very closely with that obtained by the use of the chosen value of 

the parameter A in the extrapolation formula. 	It was found 

possible to choose a pair of values of K and D that allowed the 

predicted integral response function to be in very close corresp- 

ondence to the experimental curve. 	The comparitive calculated 

and experimental integral response curves are depicted in Figure 

6.10. and the corresponding differential response curves (coupling 

coefficients) are shown in Figure 6.11. 	The agreement is 
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Figure 6.11. 16.6 0 
zenith angle coupling coefficients as predict-

ed by calculation, and by the empirical model (A 	1.575x105). 
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remarkably good for momenta < 300 GeV/c, although at higher momenta 

the estimates diverge. 	In view of the demonstrated departure of 

the calculations based on the modified production spectrum 

from reality at high momenta (see Section 5.9.2), the observed 

disparity between the semiempirical and calculated coefficients at 

high momenta is in no way an indication of lack of plausibility of 

the semiempirical result. 

It is of interest to find how closely the computer calculations 

predict the experimental result at other zenith angles. 	A series 

of calculations was carried out to derive the coupling coefficients 

at 8.2
o
, 23.7

o
, 46.5

o
, and 66

o 
zenith angle ("effective" zenith 

angles of viewing of the latitude survey telescopes). 	These results 

were then compared with the coefficients as predicted by the empir- 

ical functions. 	The comparative results are presented graphically 

in Figure 6.12. 

Although a shift is evident in the relative position of the 

curves obtained by the two methods (as a result of the difference in 

high momentum behaviour), a close correspondence is displayed between 

the positions of the maxima. 	The sensitivity of the position of the 

maxima to change in the values of the parameters in the empirical 

extrapolation formula has already been indicated (Section 6.7; see, 

in particular, Figure 6.9). 	In principle then, by ensuring that at 

high zenith angles the maxima in the semiempirical coefficients occur 

at the same momentum values as predicted by calculation, a means is 

available for choosing the form of the zenith angle dependence of k 
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at high zenith angles. The sensitivity of the position of the 

maximum to change in k is large, a change of 10% in k causing a 

shift of approximately 6% in the momentum value at the peak, at 

medium and high zenith angles. 
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Figure 6.12. 	Coupling coefficients for a range of zenith angles, 

as predicted by calculation, and by the semiempirical model. 

In the high zenith angle extrapolation, the general empirical 

function, equation (3.4), has been used to represent the zenith 

angle dependence of total muon intensity, rather than equation 

(3.5), which was developed for use in conjunction with the experi-

mental data. 	At zenith angles < 70 0  these functions, as used in 

establishing the empirical coupling coefficient model,are essent-

ially equivalent. 

At very small zenith angles (S 5 ° ) the experimental data do not 
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01 
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allow the precise form of the k -U polynomial to be fixed; how-

ever, the "muon in the atmosphere" computer program provides a means 

for doing this. 	The selection of the k value appropriate to 00 

zenith angle was made by noting the indicated displacement between 

members of the family of calculated coupling coefficient curves 

relating to small zenith angles. 

Modification at both the high and low zenith angle regions of 

_the polynomial representing the zenith angle dependence of k nec-

essitated further repetition of the cycle of operations involved in 

deducing the unidirectional coupling coefficients, in all its detail, 

as indicated by the flow chart in Figure 6.2. 

As the end result of this involved process, a polynomial 

function was determined, expressing the zenith angle dependence of k, 

whose use in the various functions satisfied all the derivation con-

ditions. 	This function (illustrated in Figure 6.8), together with 

the chosen value of the constant A, specifies completely the muon 

coupling coefficients, at all momenta, and at zenith angles up to 

approximately 85 ° . 	The coupling coefficients, which relate the 

Figure 6.13 (opposite). 

Figure 6.13a (upper diagram). 	Coupling coefficients for a range 

of zenith angles at sea level in the "field-free" standard mid-

latitude atmosphere, in the absence of geomagnetic cut-offs. 

Figure 6.13b (lower diagram). 	The family of integral response 

curves corresponding to the coupling coefficients in Figure 6.13a. 
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primary cosmic ray intensity to the directional muon intensity at 

"field free", mid- to low-latitude sites during periods of low 
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solar activity, are presented graphically in Figure 6.13a, and the 

corresponding integral response curves in Figure 6.13b. 	Table 6.5 

contains the values of the parameters k, P
a
, P

at
, P

o 
and m, and 

also the values of the function f(0), at the various zenith angles. 

Table 6.5 Values of empirical coupling coefficient parameters for 

range of zenith angles. 	At momenta P
at
<PflP

o
, and P> Pa, the 

following functions, respectively, apply: 

W = 1.6 k 
[13  - Pat 1"6  

1.575x10
5 

-2.5 -(p /P)m 
e 	o 

f(8) 

where bold face denotes zenith dependency. 	The coupling 

coefficient values have the units 

Zenith 	k 	P
at 	a angle 

(% 	per GeV/c). 

f(e) 

o 0.2401 4.41 7.63 273 0.549 1.0000 

10 0.2289 4.47 8.26 279 0.550 0.9675 

20 0.1983 4.64 9.55 298 0.551 0.8729 

30 0.1629 4.94 11.00 340 0.548 0.7296 

40 0.1322 5.46 12.17 429 0.534 0.5578 

50 0.0985 6.31 13.99 602 0.516 0.3800 

60 0.0565 7.82 20.01 913 0.505 0.2197 

70 0.0256 10.91 32.18 1729 0.488 0.0967 

75 0.0165 14.01 39.44 2948 0.464 0.0536 

80 0.0091 20.09 51.67 6182 0.435 0.0239 

85 0.0030 36.25 88.76 17310 0.408 0.0075 
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It is obviously desirable to present the coupling coefficients 

in a form capable of allowing the determination of the coupling 

coefficient value corresponding to any particular momentum and 

zenith angle, for use in computer programs, for example. 	Polynom- 

ials have therefore been derived to represent the zenith angle de- 

pendence of the various parameters. 	Details of these polynomials 

are given in Appendix 4, in the body of a computer program which 

may be used to calculate the coupling coefficient value at any 

particular momentum and zenith angle. 

6.9 Adaption of the Coupling Coefficients to Change in Primary and  

Secondary Conditions  

Having available an accurate, basic set of muon coupling 

coefficients, the question arises of how to adapt these to take into 

account the conditions affecting the primary and secondary cosmic 

rays, should they differ from those for which the standard coeff-

icients apply. 	In addition to change in the primary spectrum, the 

factors which must be considered include the presence of a magnetic 

field in the atmosphere, the existence of geomagnetic cut-off values 

in excess of the atmospheric cut-offs, and change in the observing 

level in the atmosphere. 

6.9.1 Coupling Coefficient Dependence on Primary Spectrum 

Kane [1963] has shown that long term chances in the primary 

spectrum produce relatively small changes in the sea level muon 
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coupling coefficients, of considerably smaller magnitude than the 

disparity between the vertical coefficient estimates by various 

investigators. 	On the other hand, large short term changes do 

occur, during periods of solar disturbance (as a manifestation of 

Forbush decreases or solar flares), which would appreciably affect 

the form of the coupling coefficients, particularly at low momenta 

and at low zenith angles. 	It is desirable to be able to adapt the 

coefficients for use during such periods. 

In Section 1.2 it was shown that the relationship between the 

coupling coefficients W(P,O,x) and the primary differential 

spectrum J(P) may be expressed as 

W(P,O,x) = J(P) S(P,O,x) N 

where N is the integrated directional muon intensity at 

zenith angle 0 at the level x, and J(P,O,x) is the specific yield 

function. 

Webber and Quenby [1959] pointed out that contributions to the 

sea level muon flux from a particles are significant, and so should .  

be  taken into account when yield functions are being derived. 

Because of the similarity in shape of the proton and a particle 

rigidity spectra, and since contributions within a given rigidity 

interval from particles with charge number > 2 are approximately 

equal to the contributions from protons, Webber and Quenby showed 

that it was possible to express the "gross" yield function S
G
(R,x) 

as 
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SG (R,x) = S (R,x) + S (0.x) 

(where the proton specific yield function S is here 

expressed in terms of rigidity R), and from this expression, by 

means of an iteration process, to deduce the proton specific yield 

function. 

Using the technique described by Webber and Quenby, in con-

junction with the quiet solar period primary differential spectrum 

of Ormes and Webber [1965] 	= 1.05 
P-2.5 

particles per cm2 
per 

ster. per sec. per GeV/c), we have obtained firstly the gross 

yield functions as predicted by our coupling coefficient model for 

10 	 100 
	

MOO 
	

10000 
RIGIDITY (GV) 

Figure 6.14. Proton specific yield functions deduced from semi-

empirical coupling coefficients, for a range of zenith angles. 
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various zenith angles, and then deduced the corresponding proton 

specific yield functions. 	These latter functions are shown in 

Figure 6.14. Using these specific yield functions it is-possible 

to estimate the coupling coefficients pertaining to any particular 

primary spectrum, by evaluating the expression 

W(R,O) = J(R) [S (R,O) + S (iR,0)] 

6.9.2 The Effect of the Local Magnetic Field  

As discussed in Section 1.2 and in Chapter 5, the presence of 

the magnetic field in the atmosphere is responsible for introducing 

appreciable deflections in the paths of muons travelling through 

the atmosphere, causing systematic intensity changes in the sea 

level directional muon flux. 	It is obviously desirable to know 

what effect this phenomenon will have on the primary-secondary 

intensity relationship. 	It is not valid, as pointed out in Section 

1.4, to obtain the appropriate relationship by using data from a 

latitude survey in which telescopes are directed at fixed azimuths, 

since implicit in this means of determination is the erroneous 

assumption that the atmospheric asymmetry effect is constant, indep-

endent of cut-off and local magnetic field configuration. 

In order to deduce the modified form of the coupling coeffic-

ients appropriate to any particular direction at a given site, it is 

necessary to have sufficient information to allow the form of the 

perturbed integral response function in that direction to be deduced. 

As a result of the investigation described in Chapter 5, it was 
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shown (Section 5.7.1) that a function A could be introduced to 

relate the directional intensity I of muons in any situation in the 

presence of a magnetic field to the intensity N that would exist in 

the absence of the field, such that N = I A • 	Of particular 

interest in this discussion is the dependence of these quantities 

on cut-off momentum. 	In any particular situation the function 

N(P) is simply the integral response function. 	Therefore I(P) 

corresponds to the required perturbed integral response function. 

It is evident that if the dependence of the asymmetry function A on 

cut-off can be deduced, then the perturbed integral response function 

may be obtained, and the corresponding coupling coefficients 

derived. 

It was in anticipation of this usage of the asymmetry factor 

that the calculations of the asymmetry factors were carried out, in 

some situations, for momenta well in excess of the maximum cut-off 

existing in the geomagnetic field (see Table 5.8). 	Under these 

conditions, which are representative of a mid- to low-latitude sea 

level site (0.55 gauss field at a dip angle of -30 0, standard mid-

latitude atmosphere), we have calculated the coupling coefficients 

applicable to magnetic east and west azimuths, at 45 o 
to the zenith. 

These coefficients are displayed in Figure 6.15, together with the 

unperturbed coupling coefficient function. 	It can be seen that, 

whilst the curves are displaced relative to each other, the position 

of the maxima agree closely in momentum. 

The differences between the coupling coefficients for east and 
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west, as determined in this way, are very much smaller than when 

obtained directly by latitude survey (as, for example, by Mazaryuk 

[1966], and Dorman et al. [1967]). 	Evidently the variation in 

local field conditions from site to site, in addition to producing 

distortion of the coupling coefficient functions, tends to produce 

exaggerated estimates of the differences between the coupling co-

efficients for different azimuths. 

6 	 100 
MOMENTUM (GeV/0 

Figure 6.15. Coupling coefficients applying to magnetic east and 

west azimuths, at 45 0 
 zenith .  angle, at sea level in the standard 

mid-latitude atmosphere, in a magnetic field of strength 0.55 

gauss and dip angle -30 ° . 

It is evident, from our calculations, that the magnitude of the 

differences between the coupling coefficients for particular azimuths 

and the basic functions are sufficiently small (S 2% in Figure 6.15) 

that for most purposes they could be ignored, and the basic function 
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used. 

6.9.3 Coupling Coefficients in the Presence of Geomagnetic Cut-offs 

It is necessary to modify the coupling coefficients in order 

that they apply at low latitude sites, where the geomagnetic cut-

offs have appreciable effect. 	The modification, which is readily 

made, involves truncating the lower momentum end of the coupling co-

efficient function at the momentum equal in value to the cut-off 

momentum in the direction of interest, and renormalizing the pos-

ition of the curve to obtain the correct area under the function. 

In Figure 6.16 the coupling coefficients appropriate to 45
0 
 zenith 

angle in the "field free" mid-latitude atmosphere are presented, 

modified to take into account cut-off values of 10, 15 and 20 GeV/c. 

1-0 
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Figure 6.16. Coupling coefficients pertaining to 45 °  zenith 

angle in the "field free" mid-latitude atmosphere, in the presence 

of geomagnetic cut-offs of value 0, 10, 15, and 20 GeV/c. 
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6.9.4 Coupling Coefficients for Different Depths of Absorber  

If observations at other than sea level are to be carried out, 

then it is desirable to adapt the coupling coefficients accordingly. 

Dorman [1959] presented an approximate relationship between 

the coupling coefficients for the vertically incident muon compon-

ent at two different atmospheric depths. 	This is given by 

.(1.11p, x  1 . 	L11\1(P 	) dP' 	1' 	P
1 
 dP'  
 1 

where P is momentum, x
1  and x2 

are the two levels of reg-

istration of the muon component, SI(P,x
1 
 ) is the differential res- 

dP 

	

P 	P  2 dN 	2 ponse at the momentum P and depth x l , and TT 7(P 7—,x2 ) is the 

	

P1 	r-. 1 
differential response at the momentum P 	and depth x 2 . 	P1  and 

r-1 
P
2 

are the lowest momenta that primaries can possess in order to 

give rise to muons detectable at the two levels x
1 

and x
2 

resp-

ectively. 

This expression implies that the coupling coefficient curves 

appropriate to different depths of absorber have essentially the 

same form, on a log-log plot, and that approximate coupling coeff-

icients for any particular level may be obtained by bodily dis-

placing the curves, in momentum, by an amount indicated by the ratio 

of the thresholds for detector response from primaries at each level, 

and in intensity by the reciprocal of the same ratio (in order to 

obtain correctly normalized curves, with 100% area under each 

curve). 

The validity of Dorman's assumption of the similarity in form 
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of the similarity in form of the coupling coefficients at different 

absorber depths is borne out by the similarity in general shape of 

the different members of the family of curves representing the 

coupling coefficients at different zenith angles, deduced in this 

chapter (see Figure 6.13). 

As discussed in Section 1.3, Mathews [1963] used Dorman's 

technique to deduce the coupling coefficients corresponding to the 

vertical direction at sea level, and those applying to 40 and 60 

m.w.e. absorber, from the coefficients pertaining to 312 gm cm
-2 

absorber. 	The close correspondence between the vertical sea 

level curve of Mathews and our own is evident in Figure 6.17. 	It 
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is of interest, too,.to note 

the similarity in the pos-

ition of maxima, and general 

high momentum behaviour, of 

Mathews' 40 and 60 m.w.e. 

results and our own at zenith 

angles 75 0  and 80 ° . 	The diff- 

erences at lower momenta may 
Figure 6.17. Comparison of the 

arise out of the difference in 
coupling coefficients of Mathews 

path length under the conditions 
[1963] with those derived in 

represented, nevertheless the 
this chapter. 

discrepancy between these two 

sets of coefficients is smaller than those to be found between the 

other independent estimates of the underground coupling coefficients. 
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The possibility is raised of using the high zenith angle coe-

fficients to represent, in a very convenient form, the underground 

coupling coefficients corresponding to any moderate depth of abs-

orber, since the coefficients deduced in this chapter are available 

in the form of known, continuous functions of zenith angle and 

momentum (see Section 6.7). 	If the primary threshold for detector 

response were to be determined in any situation (on the basis of 

known depth of rock plus known atmospheric depth), then the coeff-

icients corresponding to that situation could be obtained, by cal-

culating what particular zenith angle in air possesses that thres-

hold, and constructing the appropriate values of the parameters from 

the polynomial functions. 	In order to facilitate the implementation 

of this technique a polynomial function has been derived, represent- 

ing zenith angle as a function of atmospheric cut-off. 	The coeff- 

icients of this polynomial function are given in Appendix 4. 

• By means of this technique it would be possible to determine 

detector response in any situation where the absorber configuration 

is known. 	An additional piece of information is required in these' 

calculations, that is, the variation of total muon intensity with 

absorber depth. 	Published data may be used to yield this inform- 

ation, for example, those of Barton and Stockel [1968]. 

It is reiterated that this technique will be subject to errors 

at low momenta, due to the differences in muon behaviour in air and 

rock, but that these errors are likely to be of magnitude smaller 

than the differences between the various independent estimates of 
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the underground coupling coefficients. 

6.9.5 The Use of Atmospheric "Multiplicities"  

A rigorous means of deriving muon coupling coefficients in any 

situation lies in the use of muon "multiplicities". 	These express 

the average spectrum of muons produced by primaries of any partic- 

ular rigidity. 	Using this information it is possible to deduce 

the relationship between the muon flux at any level and the primary 

cosmic ray flux, by considering in detail the interactions occurring 

in the atmosphere. 	The muon multiplicities, in short, represent a 

complete specification of the primary-secondary relationship, 

although the calculations necessary to make use of this information 

may be very complex. 

A set of three-dimensional muon multiplicities pertaining to 

muon of momenta < 50 GeV/c was deduced by Astrom [1968]. 	This 

information was obtained from analysis of published data from 

accelerator studies. 	Although Astrom has shown that sea level 

muon spectra are predicted satisfactorily by the use of these 

functions, it appears that no information on primary-secondary 

intensity relationship has been published in a form allowing direct 

comparison with muon coupling coefficients as derived directly by 

measurements of the sea level muon flux. 

In principle, the multiplicities may be calculated from the 

sea level muon coupling coefficients. A simplified approach to 

this problem has been adopted here to illustrate generally the 
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principles involved. 

If the directional muon coupling coefficients are expressed in 

the form of relative intensities rather than in the units (% per 

GeV/c), then the coefficients may be replotted in a form showing 

the intensity of muons descendant from primaries of any particular 

momentum, as a function of zenith angle (see Figure 6.18). 	This 

diagram shows the reduction 
10 

in the intensity of the beam 

of muons initiated by primary 

particles of particular mom-

entum as the angle of the beam 

to the vertical increases. 

As illustrated in Figure 
Lii 
1-01 

5.12, the probability of surv- 

ival of muons arriving at any 

survival probabilities F(P,e), 
Figure 6.18. Relative intensity 

of muons descended Prom primaries 

of given momentum, as function 

of zenith angle. 

together with the observed 

zenith angle, for particular 

zenith angle variation of int-

ensity I(0,P 1 ) of muons descend-

ant from primaries of particular 
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momentum P', may be used to deduce the average "multiplicity" N(P) 

of muons, by means of the following expression, which is readily 

seen to relate these quantities 

max 
I(O,P') 	N 1 (P) F(P,O) dP 

p. 
mmn 

(6.3 ) 

where P 	is the highest momentum a muon can possess 
max 

when descended from the primary of momentum P', and P
min 

is the 

lowest momentum that a muon may possess at production and be obs-

erved at sea level. 	These momentum values may be determined 

explicitly (see Appendix 3 and Section 5.10). 

A technique was developed for representing the "multiplicity" 

by a polynomial function, and for applying systematic distortion 

to this function to a degree described by two independent param- 

eters. 	A standard minimization procedure was used to optimize the 

values of these parameters so that a suitable function could be 

derived, subject to the restraints of equation (6.3). 

Attempts to deduce multiplicities using this simplified 

approach were successful for primary particle momenta > 15 GeV/c, 

yielding multiplicities superficially like those of Astrom, but 

failing at lower momenta, probably as a result of the assumptions 

of single layer production and muon production by protons only. 

Whilst, in principle, these factors could be taken into account, 

the technique necessary for producing the multiplicities would of 

necessity be very much more sophisticated, and beyond the scope of 

the present investigation. 
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6.10 Coupling Coefficients Pertaining to Detectors of Finite 

Acceptance Angle  

In Section 6.6 it was shown that mean effective values of the 

constants k and P
at' 

used in the empirical functions expressing the 

detector integral response, could be calculated by means of the 

constant cut-off technique in the "telescope response" computer 

program. 	Having assigned values to these constants, a complete 

specification of the coupling coefficients may be obtained, by 

extrapolating the empirical junction to high-momentum values, as 

outlined in Section 6.7. 

Coupling coefficients appropriate to a number of detector con-

figurations in use by the Hobart and Antarctic Division cosmic ray 

research groups have been determined in this way. 	The coupling' 

coefficient functions presented in Figure 6.19a are identified in 

Table 6.6, which also lists the values of the parameters describing 

these curves. 	The corresponding integral response curves are 

presented in Figure 6.19b. 

Whilst these coupling coefficients and integral response curves 

may conveniently be used to gain an understanding of the overall 

Figure 6.19 (opposite). 

Figure 6.19a (upper diagram). Coupling coefficients pertaining to 

the detector configurations listed in Table 6.6. 

Figure 6.19b (lower diagram). Integral response curves corresp-

onding to the coupling coefficient curves in Figure 6.19a. 
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response of these detectors to the primary cosmic radiation, and 

indeed could be used to facilitate detailed analyses, greater 
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accuracy would be attainable through the use of the unidirectional 

coupling coefficient model as represented by the information in 

Table 6.5 or by the use of the polynomial representation of the 

parameters (see Appendix 4), in conjunction with information about 

the directional properties of the detectors. 

Table 6.6 Specification of the configuration of the detectors 

referred to in the text, and values of the parameters determining 

the form of the corresponding coupling coefficients (as displayed 

in Figure 6.19). 

Detector specification 
	

Parameter values 

A 

B 

C 

D 

Inclin- 
ation 

0 0  

o 
45 

o 
45 

76.5
o 

Dimensions 

1x(1x1) 	units 

1.5x(1x1) 

1.5x(0.4x0.4) 

0.5x(0.08x1) 

k 

0.1916 

0.1285 

0.1184 

0.0129 

P 
at 

4.69 

5.39 

5.71 

12.82 

p 
a 

10.66 

11.60 

12.65 

46.91 

P 
o 

245 

536 

509 

3521 

0.580 

0.511 

0.522 

0.459 

6.11 Conclusions  

Unidirectional sea level muon coupling coefficients have been 

deduced from the latitude survey data, using a number of new tech-

niques. 	Extrapolation of the coefficients to high momentum values 

and high zenith angles has been effected with the aid of published 

observational data, and through the use of calculations based on the 

Olbert production spectrum. 
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The resulting vertical coefficients are very similar in form 

to the coupling coefficients of Mathews [1963], and as a result 

would be expected to predict essentially the same response to a 

primary anisotropy. 

For convenience in the application of the directional coupling 

coefficients, in particular for use in computer-aided calculations, 

the zenith angle dependence of the parameters in the basic momentum-

dependent empirical coupling coefficient functions have been ex-

pressed in terms of polynomial functions. 	Thus a completely 

continuous mathematical description of the coefficients is available. 

Methods have been examined for deducing the form of the 

coupling coefficients under different conditions, to take into 

account change in primary spectrum, the presence of a local magnetic 

field, the effects of geomagnetic cut-offs, and change in level of 

observation. 	A method was discussed, of using the sea level 

coupling coefficients to represent the coefficients pertaining to 

underground situations. 

Finally, the effective coupling coefficients applying to a 

number of detector configurations currently in use, have been de-

duced. 

In the following chapter, an application of the unidirectional 

coupling coefficient model is described. 	A computer technique is 

developed to facilitate the completely automatic determination of the 

response of any sea level muon telescope to primary cosmic ray 

anisotropies. 
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CHAPTER 7 

ASYMPTOTIC CONE OF ACCEPTANCE OF MUON DETECTORS 

7.1 Introduction  

In the preceding chapters of this thesis consideration has 

been given to the means by which the intensity relationship between 

the primary cosmic ray flux and the directional muon component of 

the secondary cosmic ray flux may be established. 	The complete 

specification of the primary-secondary relationship involves, in 

addition, the correlation of the directions of viewing at the 

detector with primary particle directions of arrival at the outer 

boundary of the geomagnetic field. 

In this chapter we consider some of the factors influencing 

the motion of charged primary particles within the domain of the 

geomagnetic field. 	We then go on to develop a technique of com- 

bining the primary-secondary intensity and direction information 

in a completely automatic operation within a computer program, so 

that predictions may be accurately and rapidly made of the response 

of muon detectors in any situation to anisotropies that exist in 

the primary cosmic ray flux on entry into the geomagnetic field. 

We do not here consider the effects of any factors, such as the 

interplanetary magnetic field, whose manifestations are external to 

the terrestrial field. 

Except for primaries of very high energy the directions of 
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arrival of primaries at the top of the atmosphere do not correspond 

to the directions of entry into the field (asymptotic directions of 

approach), as a result of deflections in the field. 	It is obvious 

that interpretation of the time variations of muon intensity 

observed by any particular detector must take these deflections 

into account if information is to be obtained about anisotropies in 

the distribution of primary particles outside the geomagnetic field. 

Two methods have been used in the past to obtain details of 

asymptotic directions of approach to sites on the earth's surface. 

The first, originally developed by Birkeland [1901], involves the 

use of an experimental "scale model" technique to trace trajector-

ies in a simulation of the terrestrial magnetic field. 	Brunberg 

[1953], and Brunberg and Dattner [1953] carried out a series of 

measurements, using this technique, to enable them to deduce the 

dependence of asymptotic direction on zenith and azimuth angles of 

approach at sites of varying latitude, for a range of values of 

primary particle rigidity. 	Whilst information such as this was 

invaluable for early studies of the primary cosmic ray distribution 

external to the geomagnetic field, it was necessary, in later 

generations of experiments, to have access to information of 

greater accuracy, to represent better the effects of the magnetic 

field. 

The electronic computer provides the means of obtaining inform-

ation to the accuracy required, by allowing trajectory paths to be 

calculated in a simulation of the geomagnetic field as produced by 
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both internal and external sources. 	This technique, because of 

its great power, has come into almost universal use for theoretical 

studies of cosmic ray motion in the geomagnetic field, and a great 

many calculations have been carried out, by many investigators, to 

obtain information relating to particular sites and sets of condit- 

ions. 	Details of the operation of trajectory tracing, as applied 

to the problem of directional cut-off determination, were discussed 

in'Section 4.4. 

In deducing asymptotic directions,of approach pertaining to 

particular sites, the trajectories of negatively charged particles•

are traced outwards from the site in the given directions, and the 

calculations proceed until a displacement from the centre of the 

earth is reached at which the geomagnetic field is deemed to 

terminate. 	The direction of the velocity vector in velocity 

space at the termination of the field becomes the asymptotic dir- 

ection of approach of positively charged particles. 	McCracken et 

al. [1962] presented a detailed discussion of this technique. 

7.2 Asymptotic Directions for Primaries of Rigidity 	10 CV  

The determination of asymptotic directions pertaining to 

primaries with rigidity 	10 CV is relatively simple, since it is 

found (as noted for example, by Gall et al. [1969]) that external 

field sources do not greatly affect the form of the cosmic ray 

trajectories. 	It is generally found sufficient to utilize the 

internal magnetic field as represented by 6th or 8th order field 
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terms. 	For these particle rigidities the field may be regarded as 

time independent, and a set of asymptotic directions appropriate to 

different values of particle rigidity and directions of arrival at 

any given site is readily calculated, these directions co-rotating 

with the earth. 	Results of calculations of this type have been 

published by McCracken et al. [1962], Hatton and Carswell [1963], 

Shea et al. [1965, 1968], among others. 

7.3 Asymptotic Directions for Primaries of Rigidity 	10 CV  

The trajectories of particles of rigidity S 10 CV are found to 

be significantly influenced by external magnetic field sources. 	In 

particular, for very low rigidities (R < 4 CV), the situation is 

very complex, because the external field contributions to the total 

magnetic field (magnetopause current field, magnetospheric tail 

field, and ring current field) have a great influence on cosmic ray 

trajectories. 	Under most conditions the direction of particle 

entry into the field is found to stay roughly fixed with respect to 

the earth-sun line, for a given direction of arrival on the surface 

of the' earth. 	Gall, Jimenez and Orozco [1969] pointed out that the 

concept of an "asymptotic" direction of approach is not strictly 

applicable in such cases, and they suggested that these arrival 

directions be referred to simply as "directions of approach". 	The 

formidable complexity of the problem prevents detailed analyses 

appropriate to any particular situation being made. 	Instead, 

investigations (by Gall et al. [1968], Gall [1968], Gall et al. 
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[1969], for example) have been aimed at elucidating the general 

characteristics of particle motion under these conditions. 

Because sea level muon detectors do not respond to primaries 

of rigidity R<4 CV (experimentally determined by McCracken [1962], 

and demonstrated by calculation in Section 5.10), these very severe 

distortions of the primary cosmic ray trajectories will not serious-

' ly affect . the form of the telescope asymptotic cone of acceptance.' 

Primaries of rigidity 5 < R<10 CV are found (Gall [1968]), in 

general, to possess asymptotic directions that, while rotating with 

the earth, exhibit appreciable daily variation (and, because of the 

inclination of the axis of rotation of the earth to the ecliptic 

plane, a certain yearly variation). 	Due to the lengthy nature of 

the calculations in even relatively simple situations, the diffi-

culties of effectively studying the dependence of asymptotic direct-

ion on time are considerable. 

Gall investigated the local time dependence of asymptotic 

directions for particles arriving at high latitude sites. 	In this 

investigation, because coefficients representing the magnetopause 

and magnetospheric tail field were used in conjunction with a 

dipole representation of the internal field, the annual time depend-

ence was of course removed. 	Nevertheless, because of the large 

expected difference in the magnitudes of the daily and yearly var- 

iations, such an approach is acceptable. 	From Gall's diagrams it 

appears that at sites with latitude in the range 60-70 ° , the 

asymptotic longitude daily variation is of the order of 10 °  at 5 CV, 
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and < 5 °  for rigidities > 10 CV. 	Because the contribution to a 

vertical telescope counting rate (for example, a vertical cube, see 

Figure 6.19), due to primaries with rigidity R<10 CV is of the 

order of 3 %, and for a telescope inclined at 45
o
, 1.5 % it is 

evident that the resultant daily variation of muon intensity in the 

presence of anisotropy will be extremely small. 	Gall's results 

indicate that at sites near the poles the daily variation of asymp-

totic longitude will be somewhat larger; however, due to the small 

telescope response to primaries in the differential rigidity inter-

val affected, a very small change in telescope response to external 

anisotropies would be expected. 

It is interesting to examine the dependence of asymptotic 

latitude and longitude on rigidity and on direction of arrival at 

a site. 	At any given high latitude site, the asymptotic directions 

pertaining to a particular direction of arrival of particles of low 

rigidity would be expected to exhibit a degree of periodicity with 

change in momentum, as a consequence of the multiple looping of 

trajectories about the local field line bundle. 	The change in 

latitude and longitude would occur as the angle of entry into the 

first loop (in the region of the geomagnetic equator) changed with 

particle rigidity (trajectory looping is discussed in Chapter 4). 

The phenomenon is to be seen manifested in the results of Gall 

[1968], where, for rigidity in the range 3-20 CV approximately, 

distinct changes in asymptotic latitude and longitude occur, 

indicative of the periodicity. 
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Primaries with rigidity lying close to the main cone cut-off, 

or within the penumbra, in any direction at a site, move along 

trajectories that have a form similar to the closed periodic orbits, 

in that the trajectories oscillate from hemisphere to hemisphere 

before being restrained to loop along the bundle of field lines 

associated with the site (see Section 4.7). 	As a result the asymp- 

totic directions associated with these particular directions of 

arrival and values of rigidity exhibit a further systematic variat-

ion with change in rigidity, this variation being responsible for a 

"smearing" of the lower rigidity portions of the telescope asymp- 

totic cone of acceptance. 	Allowance for the "smearing" of the cone 

at these rigidities may in principle be made using the results of 

calculations of asymptotic directions of approach at the appropriate 

rigidity values in the internal field. 	Because of the small range 

of rigidities affected, the "smearing" would be expected to lead to 

only a very small dilution of the response of a detector to a 

primary anisotropy. 	Since, in any case, as discussed in Chapter 4, 

the cut-off values at mid- to low-latitude regions are not apprec-

iably dependent on the external contributions to the geomagnetic 

field, it would be expected that, for a detector in such a situation, 

any daily variation in the form of the asymptotic cone of acceptance 

would be a second order effect. 

It would thus appear that, for muon detectors at sea level, the 

effects of the external field contributions on asymptotic directions 

may for most purposes be overlooked, as the perturbation in the time 
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dependence of telescope response to external anisotropies is evid-

ently very small. . 

7.4 Determination of Detector Response to Primary Anisotropies  

In order to obtain an estimate of the reponse of any particular 

telescope to a primary anisotropy, it is necessary to make use of 

the intensity and direction relationships calculated to exist be-

tween the primary and secondary cosmic ray fluxes (i.e. coupling 

coefficients, such as determined in the preceding chapter, and 

calculated asymptotic directions of approach). 

Bostrom [1965] discussed the general problems involved in the 

transformation of elements of a telescope acceptance cone through 

the geomagnetic field in order to deduce the detector response to - 

external anisotropies. 	He presented a detailed 'discussion of the 

general properties of transformed elements under various conditions, 

and reviewed the methods of Brunberg [1958], and Rao et al. [1963], 

by which detector response may be calculated. 	Sandstrom [1965] 

also presented a detailed review of these techniques. 	Very brief- 

ly, the pertinent details are as follows: 

Brunberg's technique involves the division of the asymptotic 

cone into small elements (spatial and rigidity elements), and cal-

culation of the response of the detector to radiation arriving 

within each element. 	The relative contributions are expressed by 

means of these "sensitivity coefficients", and the response to an-

isotropy is then calculated by summation over all elements, each 
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weighted according to the form of the anisotropy. 

The method of Rao et al. is essentially similar, in that the 

detector response to radiation arriving within given elements of 

the asymptotic cone is calculated, except that in this case the 

coefficients used to express the response, the "variational coeff-

icients, represent the response of the detector to fractional 

change in the intensity incident within each element (the variation 

occurring according to an anisotropy of a given form). 

A third method (used by Jacklyn and Humble [1955], for example) 

is that in which, instead of the initial division of the asymptotic 

cone of acceptance into elements, the determination of response 

commences with the division of the acceptance cone of the detector 

into elements. 	These elements are then transformed through the 

geomagnetic Field onto the asymptotic cone of directions. 

In this latter technique it is in practice found unnecessary to 

consider the transformed shape of the element, but sufficient to 

determine the asymptotic direction corresponding to the zenith and 

azimuth angles defining the position of the centre of the particular 

element in the detector, for the particular rigidity. 	The elements 

are chosen to be of sufficiently small size that the intensity var-

iation over the corresponding element in the asymptotic cone may be 

neglected (this is readily achieved, except where the solid angle 

"magnification", as referred to by Brunberg, is extremely small, such 

as, for example, in portions of the cone where the rigidity is close 

to the cut-off value). 
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The fractional contribution to the telescope rate from each 

element, due to particles having rigidity within small rigidity 

intervals, is initially calculated on the assumption of primary 

isotropy, by applying the coupling coefficient value appropriate 

to the zenith angle of the element and the rigidity under consid-

eration. 	Having a complete set of these "differential sensit- 

ivities", the response of the detector to any form of primary an-

isotropy may be readily calculated, by summation over the approp-

riately weighted element sensitivities. 

This technique is a particularly convenient way of calculat-

ing telescope response by means of computer, since the division of 

the acceptance cone of the detector into elements is carried out as 

a part of the process of determining the sensitivity pattern of .. 

the detector in any case. The element radiation sensitivities can 

then be carried over into the next phase of the process, to be mod-

ified by application of the pertinent coupling coefficient value to 

become the differential sensitivities. 

From the discussion in this section it will be apparent that 

the principles by which the reponse of a detector to primary an-

isotropy may be determined are well established. 	In the absence 

of accurate information on the functional dependence of muon coupling 

coefficients on zenith angle and rigidity, the use of very detailed 

techniques for accurately determining the asymptotic cone of the 

detector has not been warranted. 	Accordingly, in most investig- 

ations certain simplifications have been made, such as the use of a 
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fixed coupling coefficient function to apply to all points within 

. the acceptance cone of the detector, and the division of the accept-

ance cone into only a small number of elements. 

7.5 Automated Process of Asymptotic Cone Determination  

The investigations in this thesis have been oriented towards 

the development of techniques by which more general and accurate 

determinations of muon detector response may be effected, with the 

aid of computers. 	A program has been written, capable of automat- 

ically deducing the details of the asymptotic cone for telescopes 

of any configuration, estimating the differential response of the 

telescope to any given form of primary anisotropy, and pictorially 

representing the asymptotic cone. 

The program utilizes the approach in which the determination 

of telescope response commences with the division of the telescope 

acceptance cone into elements. 	The division is carried out by 

means of the technique described in Chapter 3, and each element is 

assigned a radiation sensitivity roa, where 0 and 0 refer to the 

zenith and azimuth angles defining the position of the element. 

The differential element sensitivities s 	are then evaluated 
0,0,R 

by multiplication of the radiation sensitivity of each element by 

the appropriate value W
9
(R) of the coupling coefficient function 

(determined by means of the computer procedure described in Appendix 

4), i.e. 

SOA R = r0 , 0 w0(R) 
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• The remaining task in establishing the asymptotic cone is the 

determination of the asymptotic direction of approach corresponding 

to the zenith and azimuth angle associated with each element, for 

primaries of given rigidity. 

If the acceptance cone has been divided into a large number of 

elements then it is completely impractical to calculate the asymp-

totic directions from .first principles for each element, because of 

the very great time involved. 	It is far more desirable that the . 

asymptotic direction pertaining to any particular direction and 

rigidity be interpolated from a set of asymptotic directions prev-

iously determined, for a range of values of zenith and azimuth dir-

ection, and rigidity. 

The problems of interpolating from such a set are considerable 

because of the complexity, in many cases, of the locus of,asymp-

totic direction with, for example, changing azimuth for a given 

zenith angle at low rigidity. 	It is obvious that curvilinear inter- 

polation must be used because of the extremely poor fit, in most 

cases, of a great circle section to successive points on the locus. 

Further, it is preferable that the interpolation process use as 

independent variables, parameters other than latitude and longitude, 

because of the complications introduced into the interpolation 

process by the clustering of meridian lines at the poles. 

For this reason, an interpolation technique was developed, that 

makes use of two angles (0",y) to express the relative position of 

two points on a spherical surface, where a is the angle between the 
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great circle connecting the points and the meridian line intersect-

ing one of them, and y is the angle subtended at the centre of the 

sphere by the two points (see Figure 7.1). 	It may be shown that, 

in terms of the latitude and longitude of the two points (X 1 41 ) 

and (X 2 42 ), the angles are given by 

6 = arctan[ 
sin($2  - 	cosX 2  

sinX i  cosX 2  - sinX i  cosk 2  cos(02  - $ 1 ) 3  

y = arccos[cos0
2 

-
1
) cosX

1 
cosX

2 
+ sinX

1 
sink

2
] 

The use of these angles (whose magnitude is independent of the 

latitude and longitude position of the points) allows the represent- 

ation, by parabolic sections, of 

the locus of asymptotic direction 

	

2' 21"2) 	
for variation of zenith angle for 

constant azimuth angle, and vice 

versa, on the surface of a unit 

sphere. 	In principle, it would 

be a relatively matter to inter- 
Figure 7.1. Diagram defining 

polate in rigidity, too, although 
the angles 6 and y used to 

this facility has not yet been 
express the relative position 

incorporated into the program. 
of the two points P

1 
 and P

2 
on The interpolation process is des- 

a spherical surface. 	C is 
cribed in detail in Appendix 6. 

the centre of the sphere. 
It is sufficient for the present 

purpose to say that it is possible to use standard sets of asymptotic 
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directions pertaining.to  widely spaced zenith and azimuth directions 

at given sites to. deduce, by means ofthis interpolation process, 

the asymptotic direction corresponding to any intermediate zenith 

and azimuth angle. 

Obviously, in order to minimize the number of calculations 

required to derive a basic set of asymptotic directions, it is 

preferable to use a relatively low number ,  of zenith and azimuth 

directions. 	In practice it has been found that a satisfactory 

specification of the asymptotic cone of directions corresponding to 

the observing hemisphere at any site may be obtained in terms of 49 

asymptotic asymptotic directions for any rigidity in excess of 25 

At these rigidities, directions spaced 15 0 
in zenith and 45

0 

in azimuth have been found satisfactory for use in the standard 

asymptotic direction set, and for rigidities < 25 CV, 22.5 61  

spacing in azimuth for zenith angles > 45 ° ; additional directions 

are inserted in the set to aid the interpolation where curvature 

reversals are present in the loci. 	This information is readily 

assembled in the correct form by the computer program used to derive 

the trajectories. 

That the interpolation procedure is satisfactory is evidenced 

by the very smooth form of the asymptotic cones deduced in this way, 

the elements lying in ordered progression without sign of the irr-

egularities that would accompany poor interpolation. 	A certain 

amount of testing has been carried out to determine the effect of 

altering the zenith and azimuth intervals used in the asymptotic 
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direction sets, in particular by comparing the interpolated latitude 

and longitude when interpolated from a set in which the zenith 

spacing was 10 0  and the azimuth spacing 22.5 °, with the predictions 

of the standard set, for a rigidity of 50 GU. 	The differences in 

latitude and longitude were small, at most 2 0, and no significant 

differences arose in the associated response calculations (magnitude 

and phase of response equal to the fourth decimal place). 

The differential sensitivities and asymptotic directions per-

taining to the telescope elements together constitute a perfectly 

general specification of the asymptotic cone of acceptance of the 

detector at any particular rigidity (since the sensitivities are 

calculated on the assumption of primary isotropy). 	Having determ- 

ined them once for a particular detector at a particular site, it is 

unnecessary at any stage to repeat the calculations. 	For this 

reason the computer program, if required, outputs these data in the 

form of punched tape, for use in later analyses. 

In the next stage of its operation, the program calculates the 

differential response of the telescope to any given form of primary 

anisotropy (for example, an anisotropy having a given 'form of ecliptic 

latitude dependence). 	It does this by applying appropriate weight- 

ing to the differential element sensitivities, and then estimating 

the amplitude and phase of the first and second harmonic components 

of the indicated daily variation of detector rate. 

Although, as the result of the calculations at a single rigidity, 

there is insufficient information to allow the estimation of the 
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fractional contribution to the telescope counting rate from primar-

ies within a given rigidity interval about the rigidity value 

concerned, the program outputs a "relative" response figure. 	By 

comparison of this figure with those from calculations at other 

rigidities, the rigidity dependence of the response may be precisely 

determined. 	The "relative" response figures are equivalent to the 

coupling coefficients, except that the values have not been normal-

ized to allow the figures to represent the response in percentage 

form. 

The program then calculates the total counting rate of the 

telescope in the particular situation, by taking the product of the 

integrated radiation sensitivity and the sea level vertical muon 

intensity (0.009 particles per cm 2 
per ster. per sec.). 	This 

facility is particularly useful when the program is being used for 

purposes of experiment design. 

On completion of these calculations, the program causes the 

detector asymptotic cone to be drawn, in the form of a grid of lines 

on a spherical surface, as seen in perspective from any desired 

asymptotic direction. 	If required, the diagrams are drawn with 

the lines representing the element positions raised in proportion 

to the differential sensitivities at the particular rigidity. 

In summary then, the main phases of the operation of the 

"asymptotic cone" computer program are as follows: 

1) Data input. 

a) Standard asymptotic direction set, 
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b) Telescope details - dimensions, orientation. 

2) Calculations. 

a) Viewing cone split into elements, 

b) Radiation sensitivities calculated, 

c) Coupling coefficient values determined, 

d) Differential sensitivities produced, 

e) Asymptotic directions interpolated from standard set, 

0 "Relative" response figure determined, 

g) Differential response to given anisotropy calculated, 

h) Counting rate of detector in given situation calculated. 

3) Output. 

a) Tape containing differential sensitivities, 

b) Asymptotic cone drawn, from specified viewpoint, 

c) Response figures printed. 

7.6 The Com uter Pro ram in 0 eration 

As an example of the operation of the program, we present in 

Figure 7.2 a series of computer drawn asymptotic cones of acceptance, 

for the 76.5 °  zenith angle telescope described in Section 6.10, 

viewing towards geographic north at Mawson (geomagnetic coordinates 

73
0 

S, 103 °E), for rigidities 1000, 300, 100, 50, 35, 25, and 18 CV. 

In these diagrams the change in the asymptotic cones with decreasing 

rigidity is very clearly displayed. 	At high rigidities the asymp- 

totic cone corresponds closely to the "line of sight" cone of the 

detector, but with diminishing rigidity the magnetic [to page 314] 
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150 GV 

100 GV 
	

506V 
	

35 OV 

25 OV 
	

18 GV 

Figure 7.2. Computer drawn asymptotic cone of acceptance for the 

north pointing 76.5 °  zenith angle telescope (described in Section 

6.10) at Mawson, for a range of rigidity values. The location of 

Mawson is shown by the upper cross, the south pole by the lower. 
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[from page 312] field is seen to exert a progressively greater 

focussing effect. 	Each of these drawings and the associated cal- 

culations took approximately 3 minutes on an Elliott 503 computer. 

It would be true to say that, in general, the differences in 

predicted response when the detailed form of a detector acceptance 

cone is taken into account to that predicted on the assumption of 

a single, or limited number, of asymptotic directions of approaqh, 

are of magnitude sufficient to affect significantly the interpret-

ation of experimentally observed daily variation of telescope rate. 

The diagrams in Figure 7.2 illustrate clearly the necessity of 

taking into account the effects of contributions to the telescope 

rate from all portions of the telescope acceptance cone. 	It is 

seen that the asymptotic cone at high rigidities lies parallel to 

the equator, extending over a large range of longitudes. 	The 

response of the telescope at high rigidities would, as a result, be 

smeared, particularly in the response to a second harmonic anisotr- 

opic component. 	If the "fan" beam of the telescope were to be 

rotated through 90 °, then the response to an anisotropy would 

obviously be considerably greater, as then the asymptotic cone, for 

high rigidities, would lie over only a very narrow band of longit- 

udes. 	Rotation of the telescope would similarly produce a change 

in response at the lower rigidities. 

The potential power of the "asymptotic cone" program lies in 

its capacity to facilitate the optimization of detector configuration 

for use in studies of primary anisotropies, since it in essence 
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provides a means of "conducting the experiment" at the console key-

board of a computer. 	The calculations are sufficiently rapid to 

allow a thorough investigation to be made of the effects of change 

in detector orientation and opening angle. 

Calculations, carried out as an aid to the design of proposed 

experiments at Mawson, have shown that very real gains may result 

from the optimization of the detector configuration. 	In a number 

of situations it has proved possible, for a given sensitive area 

of detecting elements, to obtain increases in counting rate of the 

order of five over the rates expected with telescopes of standard 

design (for example, cubic geometry), without appreciably affecting 

the predicted amplitude of response to any particular anisotropy. 

The increase in counting rate has been obtained by an increase in 

opening angle of the telescopes in one or more dimensions, in con-

junction with a selected change in orientation. 

Because of the very large opening angles of telescopes in such 

situations, the orientation required to obtain the desired result 

is found to be critical. 	The wide angle detectors "view" over a 

very large range of zenith angles, and the availability of an 

accurate zenith angle-dependent coupling coefficient function 

(such as that produced in the preceding chapter and used in the 

" asymptotic cone" program) is most important. 

In experiment design will-I .-the aid of the computer program, it 

has proved possible to take more subtle considerations into account. 

In given situations, detector configurations have been predicted 
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that are capable of producing, at high counting rates, particular 

forms of detector response to given anisotropies, broadly analogous 

to the "band pass" and "notch" characteristics of electronic 

filters. 	These response characteristics are potentially valuable 

in the study of the rigidity dependence of primary anisotropies. 

As an aid to achieving these and other particular forms of telescope 

response, it is useful to introduce into the calculations, in addit-

ion to other details of telescope design, the angle of rotation of 

the telescope about 'the axis of the acceptance cone, particularly if 

a "fan" beam telescope or multiple beam telescope array is to be 

used. 

So much for the use of the program as a tool in experiment 

design. 	In the basic function of predicting the response of any 

given, telescope, the program differs from previous methods of comp-

utation most significantly in the introduction of the directional 

coupling coefficient model, and the division of the viewing cone 

into small elements. 

Comparisons made between the predictions if the program and 

those of a less detailed approach (in particular, those of Jacklyn 

[private communication]) have shown that, for a telescope of 

moderate width of acceptance cone, whilst the predictions are 

essentially similar, significant differences do occur in the 

detailed estimates of the response. 	In Table 7.1 we present the 

comparative estimates of the differential response of telescopes of 

dimensions (1.5 units in length x 1 x 1), inclined at 45 °  zenith 
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angle in the geomagnetic east and west at Mawson, to a solar anis-

otropy having a cosine form of ecliptic latitude dependence. 

Jacklyn used the 45 °  zenith angle coupling coefficients of Webber 

[1962], and divided the acceptance cone of the telescope into 16 

Table 7.1 Comparison of calculated amplitude A and phase 0  of 

the first harmonic response of east and west pointing telescopes 

at Mawson to a solar anisotropy having a cosine form of ecliptic 

latitude dependence, as estimated by Jacklyn and by the computer 

technique. The amplitude A is the response of the telescope to 

the anisotropy relative to the response that would occur if the 

asymptotic cone were unidirectional and located on the equator. 

The phase 0 is the amount by which the mean longitude of viewing 

of the detector is "ahead" of the station 

Rigidity 

(CV) 

East 

Jacklyn 	Computer 

A 	0 	A 	0 

West 

Jacklyn 	Computer 

A 	0 	A 	0 

25 0.96 -5 °  0.94 -3 °  0.34 5
0 

 0.40 5° 	" 

35 0.95 8 °  0.92 9
0 

 0.17 -20 0  0.26 -13 °.  

50 0.94 20 °  0.90 18 °  0.18 -63 °  0.22 -47 o 

100 0.89 32 °  0.84 30 °  0.34 -95 °  0.33 -78 °  

150 0.85 35
0 

0.81 34
o 

0.42 -97
o 

0.37 -83
o 

300 0.82 39 °  0.78 38 °  0.48 -95 °  0.43 -86 °  

1000 45
0 

0.76 41
o 

-95
o 

0.47 -87
o 
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segments (compared with approximately 150 in the computer calculat-

ions). 

The order of the disparity between the differential responses 

calculated by the computer technique and the less detailed approach, 

although relatively small for the case considered, would be expected 

to increase with increasing width of telescope acceptance cone. 

The precise manner in which the integral response of a telescope in 

any situation would be affected by such differences, in conjunction 

with the different cbupling coefficients, would of necessity have to 

be determined by calculation. 	It is apparent, however, that sig- 

nificant differences will arise, particularly in the case of detect-

ors whose differential response phase angle is a sensitive function 

of rigidity. 

7.7 Concluding Remarks  

The research reported in this thesis consists of a number of 

investigations, by their nature separate, but aimed overall at 

improving the accuracy in the specification of the relationship 

between the sea level directional muon component and the primary 

cosmic ray flux. 	Where the inherent interest in the problem has 

justified it, these investigations have been carried further than 

strictly necessary for the resolution of . the main problem (for 

example, the investigations of the loop cone phenomenon, and the 

atmospheric asymmetry effect). 

With the aid of a number of new techniques, experimental data 
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from a latitude survey, corrected for removal of the atmospheric 

asymmetry effect and ordered by the use of calculated mean effective 

cut-offs, have been used to derive a comprehensive unidirectional 

muon coupling coefficient model. 	Techniques for modifying the 

coefficients to take account of change in the conditions affecting 

the primary and secondary components have been discussed, and 

developed where necessary. 	In order to facilitate the accurate 

implementation of the coefficients, the basic coupling coefficient 

set has been described in terms of continuous functions of zenith 

angle and momenta, by means of polynomial representation of the 

parameters. 

The possession of a complete functional coupling coefficient 

model has facilitated the development of a computer program 

capable of accurately and automatically determining the asymptotic 

cone of acceptance of any sea level muon telescope. 	This program 

offers the means of introducing an increased degree of sophistic-

ation in certain aspects of cosmic ray astronomy - at the planning 

level, because of the possibility of effective optimization of . 

detector configuration (thus allowing greatly improved efficiency 

of detection of anisotropic effects); and in the analysis of data, 

as a result of the greater accuracy attainable in the determination 

of detector response. 
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APPENDIX 1  

DEFINITION OF THE TERM "RE-ENTRANT"  

The term "re-entrant" has been used in two different senses in 

the literature for referring to properties of the trajectories of 

charged particles in the geomagnetic field. 

The original usage was introduced by Lemaitre and Vallarta 

[1936a], who defined the allowed (or main) cone of radiation as the 

solid angle of directions along non-reentrant trajectories. 	Schremp 

[1938] formally defined re-entrancy in terms of the shape of orbital 

"sections", where a "section" is any segment of an orbit lying between 

two . consecOtive points at which a 

A 
certain function associated with 

the trajectories attains relative 

minima. 	To be "re-entrant", the 
X 

two ends of an orbital section have 

to be directed towards the dipole. 

The minima appear on X-X plots 
Figure A1.1. Typical traject- 

(see Section 4.3) as maxima in the 
ory sections. "A" represents 

a looped trajectory, and "6" 

a trajectory oscillating in 

the region of the bound per-

iodic orbits. By definition, 

only B is re-entrant. 

curvature of the trajectories. 	A 

section such as that labelled A in 

Figure A1.1 would, in view of the 

orientation of the section ends, be 

regarded as "re-entrant". 	This 

trajectory segment is typical of 
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an orbit oscillating in the region of the bound periodic orbits. 

On the other hand, the looping of trajectories around field 

lines would not produce re-entrancy, in spite of possible reversals 

in the sense of motion relative to the dipole, because these 

sections would not satisfy the requirements of the re-entrant 

definition (see, for example, trajectory A in Figure A1.1). 

It should, perhaps, be noted here that the definition of re-

entrancy given by Vallarta [1961] does allow trajectory loops 

having such reversals in the sense of motion relative to the dipole 

to be regarded as re-entrant sections. 	Since these loops may 

occur in trajectories associated with primary particles having 

momenta in excess of the main cone cut-off (as determined by in-

voking the requirement for the main cone edge trajectory to be 

associated with asymptotic entrance to bound periodic orbits), it 

would thus appear that the Vallarta definition is in conflict with 

Lemaitre and Vallarta's definition of the allowed cone in terms of 

non-reentrant trajectories. 	The disparity arises out of an 

apparent error in the definition of "re-entrant" as given by 

Vallarta, in which the re-entrant sections are referred to as lying 

between consecutive relative maxima (rather than minima) of the 

function associated with the trajectories. 

The second usage of the term "re-entrant" occurs in the later 

literature, where it is used (by Shea et al. [1965], for example) 

to refer to calculated trajectories commenced at a point on the 

earth that subsequently intersect the surface of the earth. 
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APPENDIX 2  

STEREOSCOPIC DRAWINGS  

Stereoscopic drawings of cosmic ray trajectories and cut-off 

information have proved . a useful aid to the visualization and 

interpretation of the cosmic ray trajectory effects described in 

Chapter 4, and a number of the stereo pictures have been presented 

to illustrate the discussions in that chapter. (the frontispiece, 

and Figures 4.12, 4.15 and 4.19). 

A2.1 Viewing the Stereoscopic Drawings  

These drawings, constructed by means of a computer program 

written by the author, have been prepared for viewing in two 

different ways: 

a) Over-printed Colour Image Technique (Frontispiece) 

In order to obtain visual separation of the two over-printed 

images in the Frontispiece, it is necessary to make use of the 

coloured filter "spectacles" enclosed inside the back cover of 

this thesis. 	This diagram is designed to be viewed from a distance 

of 12 - 15 inches, with the red filter over the left eye and the 

green over the right. 	This presentation has the advantage over 

the separate image stereo pair pictures in that a wider field of 

view may be encompassed. 	On the other hand, it is difficult to 

prepare pictures of this type because of the problem of obtaining 

colours pure enough and of the right intensity to ensure 
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satisfactory image separation. 	Because the coloured inks available 

for use on the computer X-Y plotter were unsuitable for use 

directly, it was necessary to prepare separate pairs of drawings in 

black, and to over-print these in colour by means of the offset 

printing process. 

b) Stereo pair pictures (Figures 4.12, 4.15, and 4.19) 

These pictures may be viewed with the aid of the prism enclosed 

inside the back cover of this thesis, from a distance of 10 - 12 

inches. 	In using the prism, hold the thin edge towards the nose, 

immediately in front of one eye. 	With little difficulty the 

images should rearrange themselves so that there appear to be only 

three images, of which the centre one is the fused stereoscopic 

image. 

This type of drawing is easily prepared, and can be drawn 

directly by the computer plotter for direct viewing. 	These 

particular drawings were, in fact, prepared twice the size required, 

and photographically reduced, in order to minimize the visual 

effects of the finite step size of the digital X-Y plotter. 

A2.2 Preparation of the Stereoscopic pictures  

Although the computer program is relatively simple in function, 

the basic angle conversions necessary for the production of the 

drawings are involved, and so these are presented here in detail. 

In the preparation of the stereoscopic drawings in this thesis, 

the information to be represented was available in the form of 



Figure A2.1. Diagram showing 

the quantities used to define 

the relative positions of eye, 

the origin of the coordinate 

system fixed in the object, 

and a generalized point. 
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sets of points whose positions were available in spherical coord-

inates (latitude, longitude and radius, in the case of the traj- 

ories; zenith, azimuth and 

radius (cut-off) for the cut-

off information). 	Angle con- 

versions had to be applied to 

allow the calculation of the 

position of each data point on 

a plain two dimensional surface 

to represent the "scene" when 

viewed from given, related 

pairs of positions outside the 

scene (corresponding to the 

"point of view" of each eye). 

Consider the scene as 

viewed by an eye situated at a 

point (k,a,b) relative to a 

spherical coordinate system centred on the object of interest 

(see Figure A2.1). 	We wish to determine the values of the angles 

X.,111 describing the apparent position of the point relative to the 

eye. 	It may be shown that: 

= arctanr sine sin(b - 0)] 
k - r cosy 

cos(arctan( r siny  )) 
k - r cosy  ] X = arccos[ 

cosql 
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where 

y = arccos[cos(arcsin(sin0 sin(b - 0))) 

sin(a + arctan(tan0 cos(b - 0)))] 

Having determined these angles, the position (x,y) of the 

point of intersection of the line of sight with the plane on which 

the scene is being recorded 
	

t distance V from the eye, normal to 

the eye-object origin line) may be found using the equations 

y = V tan0 

tanX 
x= V 

cos0 

(A2.1) 

It is necessary to determine the apparent position, in the 

same plane, of the given point as viewed by a second eye, displaced 

a distance X laterally from the first. 	In this case the position 

of the point is given by 

0' = arctan( R cosX sinal - X \  
R cosX cosai 

= arctan( tanX cosal'\ 
cosi!' 

where R is the displacement of the - point from the first 

eye, given by 
R - k - r cosy 

cosX cosai 

The corresponding position in the X-Y plane is found using 

0 1  and X' in equations (42.1) instead of 0, X. 

The computer, in operation, required specification of the 

view-point (k,a,b) to be used for the particular plot, and of 
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a magnification figure to fix the simulated size of the "object". 

For plotting the cut-off directional distributions, data were 

provided in the form of prepared data tapes, whilst for drawing 

trajectories the program carried out the trajectory trace using 

standard numerical integration methods, plotting simultaneously 

the first of the traces. 	On completion of the first trace, the 

• second was automatically drawn, from the correct view-point, using 

the trajectory details stored in the computer memory. 

The basic perspective drawing technique was also utilized 

in the "asymptotic cone" computer program described in Chapter 6, 

for representing the detector asymptotic cones on a unit sphere 

(see Figure 7.2). 
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APPENDIX 3  

MAXIMUM MOMENTUM TRANSFERABLE TO MUON BY PROTON OF GIVEN MOMENTUM  

Most muons in the atmosphere are produced as a result of the 

decay pf pions produced in the initial interaction of primary protons 

in the atmosphere. 	Rossi [1952] described the physical processes 

involved, and outlined the nature of the calculations by which the 

energies of the particles may be deduced. 

The production of pions is described by the equations 

p+ 	n+ 

p + n 	p + p + Tr--  

and the production of muons from pions, by the equation 

Tr --o p
t 

+ one or more neutrinos. 

The muon energy is a maximum when the mesons are ejected in 

the forward direction in the c.m. systems of each of the groups of 

particles associated with each reaction, the maximum available 

energy goes into the pion production, and a single neutrino is 

produced in the pion decay. 

We have derived equations relating the momentum of the 

maximum energy muon to the momentum of the parent primary proton. 

In these equations the following notation is used: m, rest mass; 

P, T, E, the momentum, kinetic energy, and total energy respectively 

in the laboratory system, and the same letters with an asterisk 

refer to these quantities measured in the appropriate c.m. system. 

For determining the maximum muon momentum possible for a given 
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proton momentum these equations have the form 

E  „A E,2 _ m2c4 ) 4. E , „A E2 _ m
2 
c4 )  

Jp 	IT 	11-  Pc-   IT 	P 
P 	m c2  

IT 

where E* = im c2  (m /m + m /m ) fl
p 	Ji lT  

= T + 2m c2  -2 4(m2 c4  + T m c 2/2) 
P P 

= .j(m
2
c
4 

+ P
2
c
2
) - m c

2 
T 

 

Conversely, to determine the minimum proton momentum required to 

produce a muon of given momentum, the equations may be used in the 

following form 

P c = T 4(1 + 2m c 2
/T ) 

P 	P 

where • = E --m c2 
+ 4(m 6 (2E + m c 2 )) 

P 	11. 	P 	p 
E„ 

-4 

 /((p c )2 	E*2) 	p c 	mc  24 )  

E = m c2  ( 	 ) 
IT 	'IT 	 24 

m c 
)-1 

c2  (m / + n /m ) 
P 	P 	P PIT 

The momentum relationship predicted by these equations is ill-

ustrated in Figure A3.1 (where the calculations were carried out 

.assuming a pion mass of 273 x electron mass, and a muon mass of 

207 x electron mass). 	In this diagram the ratio of proton momentum 

to muon maximum momentum is shown as a function of muon and proton 

momentum. 	In Table A3.1 we present, for a range of values of muon 
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momentum, the calculated minimum momentum required by a proton in 

order to give rise to a muon of given' momentum. 

I 	1 	1 1 I III 

 

 

Figure 13.1 (left). Proton 

momentum - muon maximum mom-

entum ratio as a function of 

muon and proton momentum. 
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Table A3.1 Value of minimum proton momentum required to allow 

production of muons of given. momentum (GeV/c). 

Muon momentum Proton momentum 
Proton 

Ratio ----- momentum muon 

1.00 2.503 2.503 
1.50 3.300 2.200 
2.50 4.774 1.910 
4.00 6.835 1.709 
6.50 10.074 1.550 

10.00 14.403 1.440 
15.00 20.367 1.358 
25.00 31.900 1.276 
40.00 48.706 1.218 
65.00 76.079 1.170 

100.00 113.727 1.137 
150.00 166.801 1.112 
250.00 271.679 1.087 
400.00 427.413 1.069 
650.00 684.938 1.054 

1000.00 1043.330 1.043 
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APPENDIX 4 

COUPLING COEFFICIENT EVALUATION 

Chapter 6 describes the derivation of a unidirectional 

coupling coefficient model from experimental data. 	Two empirical 

functions were used to describe the momentum dependence of the 

coefficients (at low and high momenta), where the parameters in 

these functions took values dependent upon the zenith angle under 

consideration. 	In order to obtain functional representation of 

the dependence of the coupling coefficients on zenith angle, poly-

nomial functions were derived to represent the zenith angle 

dependence of the individual parameters. 

So that a form of parameter zenith angle dependence suitable 

for accurate representation by polynomial functions could be 

obtained, it was necessary, in deriving the polynomial expressions, 

to modify first the values of some of the parameters by insertion 

into suitable arbitrary functions. 	Thus, for example, a polynomial 

was derived to represent, instead of the dependence of atmospheric 

cut-off P
c 

on zenith angle, the dependence of ln(ln(P
c
)) on zenith 

angle. 	Necessarily these secondary functions must be taken into 

account when using the polynomial functions. 

The computer program presented in this Appendix calculates the 

coupling coefficient value appropriate to any given zenith angle and 

momentum. 	It takes into account the secondary functions in the 

polynomial evaluations, and selects the correct empirical function. 



A4 	 331 

Coupling Coefficient Evaluation; 

begin  real k,m,pi,ze,atmos,I,P,Pa,Pc,Po; 

12tEatE  a,b,c,d,e,i; 

real array  Aa,Ab,Ac,Ad,Ae[0:11]; 

comment  The following procedure evaluates the polynomial expressions; 

procedure  assemble(j,x,B); 

value j; real x; integer  j; array  B; 

begin  for i:=j step  -1 until 0 do 

if i=0 then x:=x+B[i] else x:=x+B[i]* eti 

end assemble; 

comment  The following procedure calculates coupling coefficient value 

I appropriate to given zenith angle ze (radians) and momentum P; 

procedure  coco; 

begin  Pa:=Pc:=Po:=k:=m40; 

comment  Pc polynomial evaluated; 

assemble(a,Pc,Aa); 

if P<Pc then I:=0 else 

begin  assemble(b,Pa,Ab); 

comment  Pa polynomial evaluated; 

Pa:=exp(exp(Pa)); 

if P<Pa then 

begin  assemble(c,k,Ac); 

comment  k polynomial evaluated; 	k:=exp(11-exp(k 

comment  Low momentum empirical function invoked; 

I:=1.6*k*(P-Pc)i0.6 
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end else 

begin assemble(d,Po,Ad); 

comment Po polynomial evaluated; 	Po:=exp(exp(Po)); 

comment m polynomial evaluated; 	assemble(e,m,Ae); 

comment High momentum empirical function invoked; 

I:=1.575
10

5/atmos* 

exp(-(Po/P) m)/(P)i2.5 

end 

end 

end coca; 

comment List of polynomial coefficients follows, first the Pc 

coefficients; 

a:=8; 

Aa[0]:=3.94343496 10 -1; Aa[1]:=2.83884720 10 -2; 

Aa[2]:=3.18442428
10

-1; 	Aa[3]:=-0.16828682 1; 
10 

Aa[4]:=6.99170487 100; 	Aa[5]:=-0.12935522 102; 

Aa[6]:=1.24020400
10

1; 	Aa[7]:=-0.59915204
10

1; 

Aa[8]:=1.16222237
10

0; 

comment Pa coefficients; 

b:=11; 

Ab[0]:=7.08785201
10
-1; Ab[1]:=5.64229237

10-2; 

Ab[2]:=1.06625323
10

0; 	Ab[3]:=1.40906421
10

0; 

Ab[4]:=-0.21538617
10

2; 	Ab[5]:=7.63781066
10

1; 

Ab[6]:=-0.1398355 10 3; 	Ab[7]:=1.30777139 102; 

Ab[8]:=-0.41757523
10
2; Ab[9]:=-0.23013499

10 2; 
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Ab[10]:=2.1424339
10

1; 
 

Ab[11]:=-0.46189787
10 1 ; 

comment k ccefficients; 

c:=11; 

Ac[0j:=-0.94776962
10

-1; Ac[1]:=-0.13363799
10

0; 

 

Ac[2]:=1.62128649 100;  Ac[3]:=9.69825069100; 

Ac[4]:=-0.25649371
10

2; 

Ac[6]:=4.02677287
10

2; 

Ac[8]:=8.66742904
10

2; 

Ac[10]:=1.79171694
10

2; 

comment Po coefficients; 

d:=9; 

Ad[0]:=1.72573354
10

0; 

Ad[2]:=1.63812338
10

-1; 

Ad[4]:=-0.20060650
10

2; 

Ad[6]:=-0.69388286
10

2; 

Ad[8]:=-0.19193853
10

2; 

comment m coefficients; 

e:=10; .  

Ae[0]:=5.48965579
10

-1; 

Ac[5]:=-0.68015002
10

2; 

Ac[7]:=-0.80381229 10 3; 

Ac[9]:=-0.53638738
10

3; 

Ac[11]:=-0.25040684
10

2; 

Ad[1]:=-0.49085898
10

-1; 

d[ 3 ] : =3 . 275458 i70 ; 

Ad[5]:=5.17553067
10

1; 

Ad[7]:=5.07210045 1; 
10 

Ad[9]:=2.95101927
10

0; 

Ae[1]:=-0.10698337
10

-1; 

Ae[2]:=1.49861853
10

-1; Ae[3]:=3.19583393  -1; 
10 

Ae[4]:=-0.79977262
10

1; Ae[5]:=3.71731038
10

1; 

Ae[6]:=-0.84547734
10

2; Ae[7]:=1.05937600 102; 

Ae[8]:=-0.74223833
10

2; Ae[9]:=2.72343586
10

1; 

Ae[10]:=-0.40758739
10

1; 

comment Program reads zenith angle (degrees) and momentum (in GeV/c), 
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and then prints out the appropriate coupling coupling coefficient 

value (units: % per GeV/c); 

sameline; top of form; pi:=3.141593; 

read ze,P; ze:=ze*pi/180; 

atmos:=(cos(ze))12.24-0.001909*ze; 

coca; 

print  aligned(4,1),ze*180/pi,EEt??,P,ELt??,aligned(1,5),I 

end of program; 

. As mentioned in Section 6.9.4, a polynomial function has been 

deduced to express the dependence of zenith angle on atmospheric cut-

off. 	The following computer program evaluates the zenith angle 

appropriate to any given value of atmospheric cut-off. 	ThiS angle 

may then be inserted in the preceding progrpm to evaluate the 

coupling coefficient value for any given value of momentum. 

Zenith 

 .b:::Ine

,r:::::::::::mospheric Cut-off; 

integer  m,n; 

real array A[0:7]; 

m:=7; 

A[0]:=1.22879907
10

1; 

A[2]:=3.86597802
102; 

A[4]:=8.45104302 102; 

A[6]:=1.10075228
102; 

A[1]:=-0.10852344
10 3; 

A[3]:=-0.73939884
10 3; 

A[5]:= -0.57151438
10 3; 

A[7]:=-0.32267157
102; 
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comment Program reads atmospheric cut-off value (in GeV/c), and 

prints out corresponding zenith angle (degrees); • 

sameline; top of form; pi:=3.141593; x:=0 ; 

read Pc; 

for n:=m step -1 until 0 do 

if n=0 then x:=x+A[n] else x:=x+A[n]*(1n(ln(Pc)))fn; 

if x.<0 then print 111?Pc too low? else 

begin ze:=pi/180*(abs(x))10.3333; 

print 111?Pc=?,aligned(3,3),Pc,ilt?Angle=?,ze 

end 

eJ2 d of program; 
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APPENDIX 5  

TABULATED DETECTOR MEAN EFFECTIVE RESPONSE VALUES 

We present here values of mean effective coupling coefficient 

W and integral response N at various momenta P, for the detectors 

listed in Table 6.6 (and identified A, B, C and D). The coupling 

coefficient values have the units % per GeV/c, whilst the integral 

response figures represent the percentage of the detector rate due 

to primaries of momentum greater than the given momentum values. 

A 

W 

8 

0.000 100.00 0.000 100.00 0.000 100.00 0.000 100.00 

5 0.150 99.97 0.000 100.00 0.000 100.00 0.000 100.00 

6 0.360 99.71 0.153 99.94 0.090 99.98 0.000 100.00 

7 0.506 99.27 0.273 99.72 0.221 99.82 0.000 100.00 

0.628 98.70 0.365 99.40 0.312 99.55 0.000 100.00 

9 0.736 98.02 0.443 99.00 0.387 99.20 0.000 100.00 

10 0.834 97.23 0.513 98.52 0.454 98.78 0.000 100.00 

11 0.925 96.35 0.577 97.97 0.515 98.30 0.000 100.00 

12 1.002 95.39 0.637 97.37 0.571 97.75 0.000 100.00 

13 1.065 94.35 0.689 96.70 0.624 97.16 0.007 100.00 

14 1.115 93.26 0.734 95.99 0.670 96.51 0.023 99.98 

15 1.153 92.13 0.772 95.24 0.711 95.82 0.033 99.96 

16 1.181 90.96 0.804 94.45 0.745 95.09 0.041 99.92 
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p A 8 c D 

IJJ N IJJ N IJJ N IJJ N 

17 1.201 89.77 0.830 93.63 0.774 94.33 0.049 99.87 

18 1.214 88.56 a. 851 92.79 0.798 93.54 0.055 99.82 

19 1.220 87.34 0.867 91.93 0.818 92.73 0.062 99.76 

20 1.221 86.12 0.879 91.06 0.833 91.91 0.067 99.70 

25 1 .175 80.11 0.897 86.59 0.866 87.63 0.092 99.30 

30 1.086 74.45 a. 871 · 82.16 0.850 83.33 0.114 98.78 

35 0.986 69.27 0.824 77.92 0.812 79.17 0.133 98.16 

40 0.889 64.58 0.770 73.93 0.764 75.23 0.150 97.46 

50 a. 120 56.56 a. 661 66.78 0.662 68.1 a 0.180 95.80 

60 0.588 50.05 0.565 60.66 0.569 61.96 0.201 93.89 

80 0.405 40.27 0. 418 50.91 0.425 52.11 0.218 89.65 

100 0.293 33.38 0. 318 43.61 o. 324 44.68 0. 217 85.29 

120 0.220 28.30 a. 249 · 37.98 0.254 38.93 0.207 81.04 

150 a .151 22.83 a .180 31 .63 0.184 32.44 0.188 75.1 a 

200 0.090 16.98 a .114 24.48 0.117 25.11 0.155 66.56 

300 0.041 10.84 0. 056 16.46 0.058 16.88 0.106 53.74 

500 a. o1s 5.89 0.021 9.50 0.022 9. 72 0.056 38.28 

1000 0.003 2.43 0.005 4.20 0.005 4.29 a .019 21 • 71 

5000 0.000 0.27 0.000 0.53 0.000 0.54 0.001 4.53 

10000 o.oao 0.11 0.000 0.22 o.ooo 0.22 o.oao 2.43 
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APPENDIX 6  

TECHNIQUE OF INTERPOLATING FROM STANDARD ASYMPTOTIC DIRECTION SET  

A technique has been developed to allow the asymptotic direct-

ion pertaining to any given direction at a site (for any particular 

rigidity) to be deduced from a standard set of asymptotic directions 

relating to widely spaced directions at the site. 	As mentioned in 

Section 7.5, this interpolation process involves the use of two 

variables (6,y) to describe the relationship between two asymptotic 

directions. 	If the asymptotic directions are considered as being 

represented by points on a spherical surface, then G is the angle 

between the great circle section connecting the points and the merid-

ian line (line of constant asymptotic longitude) passing through one 

of the points, and y is the angle subtended at the centre of the 

sphere by the two points (see Figure 7.1). 	The relationship 

between G,y and the latitudes and longitudes of the points is given 

by equations (7.1). 

A single phase of the process of interpolation of the required 

intermediate asymptotic direction is described here. 	In the 

operation considered, the asymptotic direction pertaining to a site 

direction with given zenith and azimuth angles is determined from 

the set of asymptotic directions pertaining to a range of zenith 

angles at the given azimuth angle. 	In the "asymptotic cone" 

computer program the interpolation is carried out in both zenith and 

azimuth, and in principle the technique could also be used to 
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Figure A6.1. Diagram illust- 

rating interpolation from the 

assumed 0-y relationship. 
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interpolate in rigidity. 

Assume that, for primaries of a given rigidity approaching 

the site of interest, the asymptotic directions (X,0) 1 , (X,0) 2  

and (2010 3  apply to three site directions (0 1 ,0), (0 2 ,0), and 

(0
3
0), where X,111 refer to asymptotic latitude and longitude 

respectively, and 0,0 to zenith and azimuth angles respectively. 

We wish to determine the asymptotic direction (X,10' corresponding 

to a site direction (0',0), where 0 1  < 0< 0 3 . 

The relationship between the asymptotic directions is first 

established, in particular, the pair of angles (G,y) 2  relating the 

asymptotic directions (X,0 1  and (X,0 2 , and the angles (5,y) 3 

relating (X,0 1  and (X,0 3  are calculated. 	We then examine the 

dependence of a,y on the independent variable in the interpolation 

(in this case 0). 	Since it is possible to say that the value of 

yi  (the angle subtended at the centre of the sphere by the direction 

(X,41)
1 relative to itself) is zero, three values of y are known, 

pertaining to the three zenith 

angles 0 1 , 0 2  and 0 	The value 

of y' corresponding to the zenith 

angle 0' may be found by fitting 

a quadratic t the three points 

(0,y) 1 , (0,Y) 2  and (0,Y) 3 , as 

shown in Figure A6.1, and inter-

polating accordingly. 

In the case of the variable 
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Figure A6.2. Diagram illust- 

rating interpolation from the 

assumed 0-5 relationship. 
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a (the angle between the great circle section connecting two points, 

and the meridian through one of them), the value 5
1 

is indeterminate 

from a consideration of the point (X,T)
1 

alone. 	Therefore, since 

only two a values are known, a linear relationship between 5 and 0 

is assumed to exist. 	The value G' corresponding to the zenith 

angle 0' is deduced by making 

use of the equation of the 

straight line passing through 

points (0,5) 2  and (0,5) 3 , as 

illustrated in Figure A6.2. 

Thus the angles (G,y) 1  

describing the position of the 

required intermediate asymptotic 

direction relative to other 

asymptotic directions in the standard set are known. 	The asymp- 

totic latitude and longitude appropriate to the indicated direction 

are found using the equations 

X' = n/2 - arccos(cosa siny cosX
1 
+ cosy sinX

1 ) 

,sin5 siny )  
+ arcsink 

cosX' 

The operation described in the preceding discussion involved 

interpolation in zenith angle 0 alone. 	In order to establish the 

asymptotic direction (X,0 1  for the intermediate direction at the site 

(0,0)', four interpolation cycles are required, •three to determine 

the asymptotic directions appropriate to, for example, (0'901), 

= 
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(0'42 ) and (0',0 3), and then one interpolation in azimuth to find 

(0,0)'. 	The interpolation may of course be carried out in the 

reverse order, i.e. interpolation in azimuth first, and then in 

zenith. 	Figure A6.3 illustrates the relationship of the asymptotic 

directions (plotted on a spherical surface) for 0 = 0 1 , 0 2 , 0 3  and 

0 = 01' 02' 03' and the lines fitted to aid the interpolation of the 

asymptotic direction pertaining 

to the site direction (0,0)' 

when the interpolation is carried 

out in either order (the lines 

represent the asymptotic direct-

ion loci for change in zenith 

and azimuth). 	The thick lines 

represent the "loci" constructed 

for use in the interpolation in 

the order zenith-azimuth, and the 

thin lines those used for inter- 

Figure 6.3. Diagram showing 

the "loci" constructed in the 

interpolation process. 

polation in the reverse order. 

For greater accuracy, in situations where asymptotic direction 

loci are complex (for example at low momenta), it would be advan-

tageous to use higher order interpolation, using sets of four, 

rather than three, points. 	In this case y would be determined from 

a third order, and G from a second order, function. 	Necessarily 

the time involved in the interpolation would increase accordingly. 

Although the facility for interpolation in rigidity has not 
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been incorporated into the "asymptotic cone" computer program, the 

principles involved would be the same as those discussed, although 

because of the network of interrelationships to be established in 

order to interpolate in zenith, azimuth and rigidity, the volume 

of calculations would increase by a factor of three minimum. 

Although the use of the variables 5 and y removes, in principle, 

the difficulty in the interpolation process in the region of the 

poles, in practice a difficulty is encountered in unambiguously 

defining the correct quadrant in which the angle values lie, so that 

the angle values are introduced into the interpolation in the correct 

order. 	To overcome this difficulty, an angle transformation has 

been employed that, when asymptotic latitudes greater than 50 0  are 

encountered, allows the asymptotic direction to be calculated 

relative to a frame of reference in which the poles lie on the 

"equator" of the sphere (and thus causing the former poles to lie 

on the "equator" of the new coordinate system). 	The transformation 

into this coordinate system is given by 

X' = arcsin(cos0 cosX) 

0! = Tr/2 - arccos( sink / cosX') 

and the transformation from the new system back into 

terrestrial latitude and longitude by 

X = arcsin(sin0' cosX9 

0 = Tr/2 - arcsin(sinX / cosX) 
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This transformation is potentially useful in the calculation 

of cosmic ray trajectories that pass close to the geographic poles. 

Because of the rapid change in longitude in such cases, the Runge-

Kutta integration process is sometimes found to fail, or more often 

to introduce a step size which, while small enough to facilitate 

the completion of the trajectory, increases the calculation time 

considerably. 	In these cases there may be advantages in applying 

the coordinate transformation and recalculating the trajectory in 

the new coordinate system. 
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