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Abstract 

The precise connectivity that underlies neural circuitry in the central nervous system is 

regulated by axon guidance.  This process is regulated by a highly specialized sensory 

structure at the tip of extending axons called the growth cone, which responds to extrinsic 

guidance cues in the embryonic environment. Disorders of growth cone motility and axon 

guidance are thought to underlie a range of neurological disorders such as autism and 

schizophrenia due to defects in neuronal targeting and connectivity. The spatial and 

temporal regulation of calcium signalling at the neuronal growth cone is essential for 

axon guidance and motility, however the exact mechanisms that regulate these localised 

calcium signals are not fully elucidated. Growth cone filopodia are the “first responders” 

during axon guidance, transducing guidance cues through receptor-mediated calcium 

transients. However, what regulates and sustains the spatiotemporal calcium signals at 

filopodia and precisely how these signals are instructional for growth cone motility 

remains unclear. 

As a major store of intracellular calcium, the endoplasmic reticulum (ER) would be 

predicted to have a vital role in growth cone calcium regulation, although ER function in 

the growth cone and in particular, the filopodia is largely unexplored. An important 

calcium-regulatory mechanism that occurs in growth cones is store operated calcium 

entry (SOCE) which is activated when Stromal Interacting Protein 1 (STIM1), an ER-

embedded calcium-sensing protein, and Orai1 on the plasma membrane form a highly 

selective calcium channel allowing calcium to enter the cell. STIM1 expression is 

necessary for transduction of filopodial calcium transients in Xenopus growth cones. In 

DRG neurons, STIM1 is required for attractive growth cone turning towards BDNF, where 

STIM1 functions to sustain calcium by refilling depleted ER stores through SOCE. STIM1 

also regulates motility in response to a calcium-independent cue Sema-3a, suggesting 

that STIM1 functions in multiple pathways. In non-neuronal cells, STIM1 has also been 
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reported to act as a microtubule plus-end tracking protein, where it facilitates 

microtubule-dependent ER remodelling through direct interaction with end-binding 

protein-1 and 3 (EB-1/3), in a tip-attachment complex. Given these findings, the central 

hypothesis of this thesis is that STIM1 mediates instructive ER-microtubule dynamics 

which are necessary to spatially and temporally localise calcium signals required to 

sustain motile or turning behaviours in pathfinding growth cones. 

This study tested whether STIM1 functions in a tip-attachment complex to mediate ER-

remodelling into filopodia of motile growth cones from rodent DRG sensory neurons. 

STIM1 localised with the microtubule cytoskeleton through an association with EB1/3, 

that was required for remodelling ER to peripheral areas of steering growth cones. 

Filopodial protrusion and stabilisation by microtubules is a well-known correlate of 

directed growth cone motility, but how microtubules are recruited to facilitate SOCE at 

filopodia has not been determined until now. The data presented in this study supports 

the hypothesis that microtubule-ER remodelling in sensory neuron filopodia is regulated 

by STIM1. Reduced STIM1 expression significantly perturbed microtubule assembly and 

organization in growth cones turning to BDNF and Sema-3a. STIM1 was necessary for 

appropriate distribution and dynamics of microtubule-associated proteins EB-1/3, as well 

as expression levels of filamentous-actin, actin-associated proteins and adhesion-

regulating elements. Additionally, using an ER-targeted low affinity calcium indicator, 

calcium dynamics and spatiotemporal localization of ER in filopodia were shown to be 

perturbed in growth cones with reduced STIM1 expression. Taken together, the data 

presented here demonstrate that STIM1-EB3 interaction represent a direct physical link 

between ER-derived calcium signals and the cytoskeleton. These data support a 

mechanism where ER remodelling, particularly in filopodia, supports and sustains crucial 

spatiotemporal regulation of calcium which is instructive for pathfinding axons during 

wiring of developing neural circuitry. 
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Chapter 1: 

Introduction and literature review 
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1.1 Axon pathfinding drives connectivity during development 

The nervous system is comprised of a functional network of billions of precisely, 

interconnected neurons and supporting glia that work in synchronisation to regulate all 

aspects of body activity and behaviour. Accurate wiring of the nervous system is 

essential for communication between the neurons and their targets. This intricate 

connectivity is finely regulated during development and adulthood (Jüttner and Rathjen, 

2005; Colon-Ramos, 2009). Alterations in synapse formation and connectivity are 

commonly observed in neurodevelopmental disorders such as autism (Geschwind and 

Levitt, 2007), epilepsy, injury (Yaron and Zheng, 2007) and degenerative diseases such 

as amyotrophic lateral sclerosis (Vickers et al., 2009). Precisely how neuronal 

connectivity is established and what the exact mechanisms that regulate this complex 

process are questions of ongoing research.  

 

During development, neurons extend processes or axons towards their appropriate 

targets in a process known as axon pathfinding. A specialised sensory structure at the 

tip of extending axons, the growth cone, senses and responds to various diffusible and 

contact-mediated cues using chemotaxis (Sperry, 1963; Tessier-Lavigne and Goodman, 

1996a; Mortimer et al., 2008).  The growth cone is activated when membrane receptors 

closest to the guidance source trigger asymmetric signaling events within the growth 

cone, which are transmitted by second messengers to the cytoskeleton to regulate 

motility (Tessier-Lavigne and Goodman, 1996a; Song and Poo, 1999; Chilton, 2006; 

Mortimer et al., 2009). In this manner, guidance cues elicit the reorganisation of 

cytoskeletal structures at the growth cone through second messengers such as calcium 

and trigger the directed extension of axons to their targets and subsequent formation of 

synapses during synaptogenesis. This chapter will review what is currently known about 

directed axon motility focusing on the role of the important second messenger calcium 

and how it controls the organization of the growth cone cytoskeleton.  
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1.1.1 Directed axon motility in response to a range of cues: Growth cones lead 

the way 

During axon pathfinding, molecular cues instruct growth cone motility and ultimately 

direct appropriate synapse formation. Chemotropic guidance cues may attract or repel 

growth cones (Tessier-Lavigne and Goodman, 1996a; Chilton, 2006). Guidance cues 

may be tethered to the extracellular matrix (ECM) or encountered as a diffusible 

concentration gradient released from final or intermediate targets (Tessier-Lavigne and 

Goodman, 1996a; Rosoff et al., 2004; Chilton, 2006). Various chemotropic cues that 

regulate growth cone pathfinding have been identified and defined, including nerve 

growth factor (Gundersen and Barrett, 1979; Levi-Montalcini, 1987; Paves and Saarma, 

1997), netrins (Kennedy et al., 1994; Hong et al., 2000), collapsin-1/semaphorin-3a (Luo 

et al., 1993), neurotransmitters (Zheng et al., 1994) and brain derived neurotrophic factor 

(BDNF) (Paves and Saarma, 1997). Contact-mediated mechanisms directing axon 

guidance over shorter distances have also been described such as adhesion molecules 

and extracellular matrix proteins (Suter et al., 1998; Suter and Forscher, 2000; Henle et 

al., 2013). Defects in axon guidance can result from mutations or deletions of these 

guidance cues and potentially cause neuropathological disorders. For example, mice 

lacking netrin-1, a chemotropic agent for developing axons, display aberrant formation 

of hippocampal networks (Barallobre et al., 2000).  

 

Growth cones were first identified and described by Santiago Ramón y Cajal (de Castro 

et al., 2007). He accurately described the structure of the growth cone using histological 

techniques. The growth cone was described by Ramón y Cajal as a chemically-sensitive 

structure that exhibits rapid amoeboid movements upon the presentation of chemotropic 

cues, a behaviour used to reach a desired target during development (de Castro et al., 

2007). The growth cone is made up of three domains: the peripheral domain consisting 
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of filopodia and lamellipodia, the central domain where supporting organelles such as 

the endoplasmic reticulum are concentrated and the intermediate transition zone (Suter 

and Forscher, 2000; Vitriol and Zheng, 2012). Filopodia and lamellipodia are 

membranous extensions that protrude from the peripheral domain of the growth cone 

and which function as sensory structures mediating motility and pathfinding (Argiro et al., 

1984). The rate of growth cone advance is directly correlated with filopodial and 

lamellipodial dynamics (Argiro et al., 1984). Filopodia are essential for axon guidance as 

they are the most distal part of the growth cone that comes into contact with a guidance 

cue and as such, filopodia are abundant in receptors that transduce guidance cues to 

intracellular signalling molecules (Gomez and Letourneau, 1994; Gomez et al., 2001). 

Given the crucial role of filopodia in transducing signals during axon guidance, this thesis 

will investigate filopodial calcium signalling.  

 

During pathfinding, growth cones integrate extracellular and intracellular signals into a 

range of motile behaviours such as turning (attraction or repulsion), retraction, stalling, 

fasciculating and branching, as well as outgrowth (Suter and Forscher, 2000). During 

outgrowth, growth cones undergo protrusion, engorgement and consolidation (Goldberg 

and Burmeister, 1986; Godement et al., 1994; Halloran and Kalil, 1994; Dent and Gertler, 

2003). During lamellipodial protrusion, the initial formation and elongation of filopodia 

and lamellipodia take place at the leading edge. Lamellipodia then become engorged 

with vesicles and organelles, while filopodia move to the lateral portions of the growth 

cone (Dent and Gertler, 2003). At consolidation, filopodia retract to the base, promoting 

the formation of an axon shaft and the addition of a new distal axon segment (Dent and 

Gertler, 2003).  

 

Rearrangement and stabilisation of the growth cone cytoskeleton as axons extend and 

steer, are regulated by polymerisation and depolymerisation of the actin and microtubule 

cytoskeleton (Figure 1.1). The growth cone is a major site of microtubule assembly 
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(Bamburg et al., 1986) which, combined with assembly-disassembly of actin 

microfilaments at the periphery of the growth cone, regulate processes like calcium-

dependent axonal growth (Lankford and Letourneau, 1989). As the growth cone 

advances, a balance between actin polymerisation and depolymerisation maintains axon 

protrusion and retraction respectively (Marsh and Letourneau, 1984; Bentley and 

Toroian-Raymond, 1986; Forscher and Smith, 1988; Chien et al., 1993). Microtubule and 

actin stabilisation at the side of the growth cone facing an attractive guidance cue results 

in growth cone motility towards that cue, while cytoskeletal destabilisation in response to 

an inhibitory/repulsive guidance cue results in growth away from that cue (Lin et al., 

1994; Buck and Zheng, 2002; Hur et al., 2012). Cell stabilisation towards a signalling 

source and the asymmetric rearrangement of cytoskeletal components and signalling 

complexes are crucial for cell extension and oriented migration (Etienne-Manneville, 

2004). Second messengers including calcium regulate the stabilisation and 

destabilisation of the actin and microtubule cytoskeleton to direct growth cone motility 

(Lankford and Letourneau, 1989; Buck and Zheng, 2002). Given this, the growth cone 

cytoskeleton and the molecules that regulate cytoskeletal stability and organisation will 

be reviewed in greater detail.   

	
1.2 The growth cone cytoskeleton 

1.2.1 Actin cytoskeleton 

Actin is the major component of lamellipodia and, indeed, one of the most abundant 

proteins in eukaryotic cells. Actin filaments are composed of actin monomers organised 

in double helical polymers (Dominguez and Holmes, 2011). This structure establishes 

molecular polarity and results in strong orientation of the filament ends, with barbed or  
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Figure 1.1- Cytoskeletal rearrangements underlying growth cone turning   

An attractive cue triggers the bundling of F-actin into filamentous structures within 

filopodia and meshwork array within lamellipodia. The stable ends of microtubules 

bundle in the axon shaft. At the growth cone periphery, actin and microtubule 

polymerization (P) on the side facing the highest concentration of attractant induces 

filopodial and lamellipodial activity. Actin-bundling proteins stabilise filamentous (F)-actin 

bundles where substrate adhesion is being favoured. Membrane collapse on the far side 

(facing lowest concentration of attractant) results from decreased cytoskeletal 

polymerisation and/or increased depolymerisation (D). This process of membrane 

collapse can also be triggered by repulsive cues.  
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rapidly-growing ends extending outwards and pointed or slower-growing ends facing 

inwards (Pantaloni et al., 2001; Pollard and Borisy, 2003). Addition of actin subunits to 

the barbed-end enables the rapid growth of actin filaments during polymerisation. The 

spatial regulation of actin polymerisation is crucial for cell motility and is responsible for 

the generation of membranous protrusions like lamellipodia (Pak et al., 2008). Actin 

filaments polymerise at barbed-ends of actin filaments at the leading edge, and 

depolymerise at pointed-ends in a process described as “treadmilling” (Wang, 1985).  

 

Treadmilling regulates protrusion in fast-moving cells, and retrograde flow in slow-

moving cells. The control of depolymerisation-polymerisation at the respective ends of 

the actin filaments determines protrusive force and the rate of treadmilling is regulated 

by the activity of actin-binding proteins (Le Clainche and Carlier, 2008). These include 

cofilin (actin depolymerising factor, ADF), profilin and barbed-end capping proteins 

(Schafer and Cooper, 1995; Carlier et al., 1997; Didry et al., 1998; Pantaloni et al., 2001; 

Le Clainche and Carlier, 2008). Cofilin binds to actin filaments, inducing pointed-end 

depolymerisation and increasing the production of actin monomers (Carlier et al., 1997). 

Increasing the rate of depolymerisation at the pointed ends promotes barbed end growth. 

The activity of cofilin is regulated by profilin which assists in the recycling of actin 

monomers and directs movement towards barbed ends, increasing the rate of 

treadmilling (Didry et al., 1998). In addition, capping proteins bind or cap the barbed ends 

of actin with high affinity, causing an increase in monomeric actin levels. An increase in 

concentration of monomeric actin leads to “funnelling” of monomers to faster-growing 

non-capped filaments, further enhancing the rate of treadmilling (Schafer and Cooper, 

1995; Pantaloni et al., 2001; Le Clainche and Carlier, 2008). Actin assembly, remodelling 

and turnover are interdependent and recurring processes that are essential for cellular 

motility.  
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Actin assembly and turnover directs and sustains growth cone motility during axon 

protrusion. Growth cones treated with the actin-stabilising drug jasplakinolide, which 

inhibits F-actin turnover, collapse and are unable to protrude (Gallo et al., 2002). During 

random growth, a balance between actin polymerisation and depolymerisation maintains 

both protrusion and retraction of the growth cone (Pak et al., 2008). During growth cone 

turning or steering, actin anti-capping proteins promote actin polymerisation on the 

motile/turning side by supporting actin-monomer associations and barbed-end 

elongation (Lebrand et al., 2004; Mattila and Lappalainen, 2008). Actin is stabilised 

against retraction by actin-bundling proteins and substrate-adhesion components (Suter 

and Forscher, 2000). Growth cone steering in response to bone morphogenic proteins 

(BMPs) for example, can be modulated by the bidirectional phosphorylation of cofilin by 

LIM kinase (LIMK) or Slingshot (SSH) resulting in growth cone attraction or repulsion, 

respectively (Wen et al., 2007). Enabled/vasodilator-stimulated phosphoprotein 

(Ena/VASP) proteins antagonise the action of capping proteins and promote extension 

at the barbed-end of actin filaments, which is necessary for the formation of filopodia in 

response to Netrin-1 and protein kinase A (PKA) activation (Lebrand et al., 2004). Many 

other actin-binding proteins regulate polymerisation in response to guidance cues 

including profilin, Abelson tyrosine kinase (Abl) and capulet (Slit/Robo pathway), and 

actin-binding LIM (Netrin/DCC pathway) which are beyond the scope of this review (Dent 

and Gertler, 2003). Cytoskeletal binding proteins and molecular motors regulate actin 

assembly and disassembly, which is necessary for movement and function of growth 

cones.  

 

1.2.2 Microtubule cytoskeleton 

The microtubule cytoskeleton is vital for many cellular processes including the 

maintenance of cell structure, involvement in cell division as a major component of the 

mitotic spindle and serving as a scaffold for intracellular transport (Stephens and Edds, 
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1976). Microtubules are polarised filaments composed of alternating tubulin subunits, or 

dimers, arranged into linear arrays. Tubulin subunits, α- and β-tubulin, assemble to form 

α/β tubulin dimers (Breuss et al., 2017). The α/β tubulin dimers are organised head-to-

tail, producing polarised filaments with two inherently distinct ends: the plus-end and 

minus-end. Tubulin preferentially assembles at the plus-end and disassembles, or 

becomes capped, at the minus-end (Geraldo and Gordon-Weeks, 2009). Microtubules 

exhibit a property known as dynamic instability where polymers cycle between periods 

of shrinkage or catastrophe and growth or rescue (Mitchison and Kirschner, 1984). 

Dynamic instability of microtubules is more efficient than the common intrinsic 

mechanism for assembly-disassembly of polymers (reversible polymerisation), as it 

significantly reduces the time required for probing intracellular spaces to find a target 

(Holy and Leibler, 1994) likely to be important for dynamic axon growth. These intrinsic 

properties, along with the activity of associated proteins, influence microtubule 

distribution and stability. Microtubule dynamics are crucial for axon outgrowth, branching 

and growth cone turning, where microtubules take on an instructive role (Buck and 

Zheng, 2002; Dent and Gertler, 2003).  

 

Microtubule distribution and organisation is differentially regulated within distinct 

compartments in neurons. In axons, microtubules are uniformly distributed with plus-

ends oriented distal to the cell body. In dendrites, microtubules display non-uniform 

polarity with only about half of the microtubule plus ends oriented distally (Baas et al., 

1988). In the growth cone, microtubules are either splayed apart with their plus-ends 

facing towards the periphery or distal end of the growth cone, or looped and curved within 

the central domain (Dent et al., 1999). It was initially thought that microtubule extension 

was inhibited within actin-rich areas of the growth cone, perhaps by steric hindrance of 

microtubule polymerisation. This was supported by studies showing that drug-induced 

depolymerisation of actin enhanced microtubule extension towards the leading edge of 

neutrophils and neuronal growth cones (Forscher and Smith, 1988; Etienne-Manneville, 
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2004). However, it is clear that microtubules are present in actin-rich domains of the 

growth cone as they extend and retract from the peripheral domain, and extend well into 

filopodia (Letourneau, 1983; Gordon-Weeks, 1991; Dent and Kalil, 2001). This raises an 

interesting point regarding the functional interaction between microtubules and the actin 

cytoskeleton. While both microtubule and actin have distinct roles, it is clear that neither 

cytoskeletal component acts alone, and that interactions between the two cytoskeletal 

elements are vital for growth cone motility. The work described in this thesis will examine 

this idea. 

 

Dynamic interactions between microtubules and actin regulate a plethora of cellular 

events. One of the earliest examples of such interactions arose from a report that 

microtubules provide the basis of stabilisation of actin-dependent structures at the 

leading edge of fibroblasts (Vasiliev et al., 1970). It has since been suggested that 

interactions between microtubules and actin may be either regulatory or structural 

(Rodriguez et al., 2003). Regulatory interactions are described as those in which actin 

and microtubules control each other indirectly through signalling cascades. Signalling by 

the Rho family of small guanosine-5’-triphosphatases (GTPases) provides good 

examples of such interactions.  

 

Rho GTPases belong to the superfamily of Ras-related small GTPases. Rho GTPases 

cycle between an inactive state (GDP-bound) and an active state (GTP-bound) 

resembling other molecular switches (Ridley, 2001; Jaffe and Hall, 2005). Rho guanine 

nucleotide exchange factors (GEF) and GTPase-activating proteins (GAP) activate or 

inactivate the Rho GTPase molecular switch, respectively (Dickson, 2001; Gonzalez-

Billault et al., 2012). Three members of the Rho GTPase family are Rho, Rac and Cdc42. 

Rho and Rac regulate actin polymerisation required for the formation of stress fibers and 

lamellipodia, respectively, and Cdc42 functions in filopodia formation (Ridley and Hall, 

1992; Ridley et al., 1992; Kozma et al., 1995; Nobes and Hall, 1995). At the growth cone, 
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activation of Rac and Cdc42 is thought to promote axon extension and stabilisation, 

whilst RhoA activity increases the likelihood of growth cone retraction (Luo et al., 1997). 

This suggests that during growth cone turning, asymmetries of Rho GTPases are created 

within the growth cone through the activity of Rac and Cdc42 on the turning side (in 

response to an attractive cue) and Rho on the retracting side (in response to a repulsive 

cue) (Hall, 1998; Dickson, 2001). While Rho GTPases act as instructive molecules during 

growth cone guidance, it is possible that they merely participate in a permissive manner 

assisting the dynamic cytoskeletal structures without conveying directional cues 

(Dickson, 2001).  

 

The activity of Rho GTPases is also regulated in a reciprocal manner by microtubules 

and actin. Microtubule and actin disassembly activates RhoA, and microtubule assembly 

is known to promote the activation of Rac1 (Ren et al., 1999; Waterman-Storer et al., 

1999). Microtubule depolymerisation is thought to activate RhoA through GEF-H1; a Rho 

GEF that localises to microtubules and regulates actin organisation in cell lines (Krendel 

et al., 2002). In contrast, microtubule polymerisation regulates the activity of Rac and 

Cdc42, both involved in actin polymerisation and microtubule dynamics (Jaffe and Hall, 

2005). Activation of Rac1 is known to regulate lamellipodial actin polymerisation and 

dynamic microtubule instability through p21-activated kinases (Pak). Inhibition of Pak 

inhibits Rac1-induced microtubule dynamics in vivo, including microtubule growth and 

retrograde flow (Wittmann et al., 2003; Kalil and Dent, 2005). Rho GTPases bridge 

microtubule and actin interactions in a regulatory manner, which is less direct than 

structural interactions. Structural interactions between microtubules and actin are static 

or dynamic and are mediated by the formation of cytoskeleton-associated protein 

complexes (Geraldo and Gordon-Weeks, 2009). 

 

Microtubule-associated proteins (MAPs) regulate spatiotemporal microtubule dynamics 

by modulating the stabilisation and destabilisation of microtubule filaments. MAPs, 
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including plus-end tracking proteins (+TIPs), target soluble non-polymerised tubulin 

(Akhmanova and Steinmetz, 2008). +TIPs are a heterogeneous family of proteins 

ranging from motor proteins to transmembrane proteins, which localise at the growing 

plus-ends of microtubules.  +TIPs have been proposed to regulate microtubule-actin 

interactions within the growth cone (Geraldo and Gordon-Weeks, 2009). Two members 

of the end-binding (EB) family of proteins, EB1 and EB3, function as +TIPs. Both EB1 

and EB3 are expressed in growth cones (Stepanova et al., 2003) where they regulate 

microtubule growth by inhibiting microtubule catastrophes (Komarova et al., 2009). When 

visualised, EB1 and EB3 proteins appear as comet-like dashes on the plus-ends of 

extending microtubules, with their ‘tails’ pointing towards the minus ends. EB-GFP 

dashes are thought to disappear, and presumably rapidly disassemble, when 

microtubules are no longer extending or become depolymerised (Geraldo et al., 2008; 

Geraldo and Gordon-Weeks, 2009). In growth cones, EB3 coordinates actin-microtubule 

interactions through a direct interaction with the F-actin-associated protein drebrin 

(Geraldo et al., 2008). This interaction occurs when drebrin is present in the proximal 

region of the growth cone filopodia, as EB3 caps the microtubules invading filopodia 

(Geraldo et al., 2008). EB1 also regulates microtubule-actin interactions through 

crosstalk with the Rho GTPase system by mediating the complex formed between the 

+TIP, Navigator 1 (NAV1) and the Rho GEF, TRIO. NAV1-TRIO complexes localise and 

selectively activate Rac1 for the regulation of neurite growth (van Haren et al., 2009; 

2014). 

 

In non-neuronal cells, EB1 proteins regulate directional migration by forming +TIP 

complexes with the actin-associated protein, adenomatous polyposis coli (APC) (Su et 

al., 1995). APC is a multi-functional microtubule plus-end-binding protein that can 

interact with a range of proteins (Hanson and Miller, 2005). The local distribution of APC 

is necessary for appropriate growth cone steering, indicating its essential role in the 

dynamic regulation of microtubule organisation (Koester et al., 2007). The ability to 
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interact with a range of proteins enables APC to participate in intracellular signalling, cell 

migration (Hanson and Miller, 2005), and the regulation of microtubule-actin interactions 

through crosstalk with the Rho GTPases. For example, in non-neuronal cells APC is 

recruited to the plus-ends of growing microtubules during cell migration to form 

complexes with a Rac-specific GEF for the regulation of membrane flattening, ruffling, 

and lamellipodia formation (Näthke et al., 1996; Kawasaki et al., 2000; 2003). Similarly, 

the Rac1/Cdc42-effector IQ motif-containing GTPase-activating protein 1 (IQGAP1), 

interacts directly with APC to form a tripartite complex with activated Rac1/Cdc42. 

IQGAP1 and APC are interdependently recruited to the leading edge of migrating cells 

and are necessary for actin meshwork formation, polarised migration, and localisation of 

the microtubule plus-end stabilising protein CLIP-170 (Fukata et al., 2002; Watanabe et 

al., 2004; Noritake et al., 2005). Stabilisation of microtubules and cell migration are also 

promoted by the EB1-APC-mDia1 (a Rho effector) complex formation in fibroblasts (Wen 

et al., 2004a). The processes that regulate cell motility are heavily reliant on the activity 

of regulatory and structural microtubule-actin effectors. Key second messengers, 

particularly calcium, regulates the organisation and localised stabilisation of the 

cytoskeleton as well as focal adhesions and membrane recycling which are crucial for 

directing growth cone steering. As such, the function of these second messengers will 

be reviewed in detail. 

	
1.3 Calcium and cyclic nucleotides are key second messengers that 

mediate growth cone dynamics 

Within the growth cone, calcium (Ca2+) and cyclic nucleotides are two key second 

messenger systems that regulate bidirectional switching, intracellular signal amplification 

and precise axon pathfinding (Tojima et al., 2011). For example, in the developing 

vertebrate nervous system, the bifunctional guidance cue netrin-1 is permissive for 

extension of some axons into the floor plate and simultaneously steers others away 

(Colamarino and Tessier-Lavigne, 1995). This reflects receptor-mediated signal 
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transduction through select second messengers. The modulatory effects exerted by 

second messengers enable the regulation of cellular processes in a manner that is cell-

type specific and dependent on the spatiotemporal activity of effectors. 

 

1.3.1 Cyclic nucleotides 

Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate 

(cGMP) are second messengers known to be crucial for the regulation of axon 

pathfinding (Lohof et al., 1992; Kim and Wu, 1996; Ming et al., 1997). High levels of 

cAMP or the downstream effector protein kinase A (PKA) are associated with attractive 

growth cone turning, while high levels of cGMP or protein kinase G (PKG) regulate 

growth cone repulsion (Lohof et al., 1992; Ming et al., 1997; Song et al., 1997; 1998; 

Song and Poo, 1999). The levels of cyclic nucleotides are regulated by reciprocal 

inhibition, a process mediated by specific phosphodiesterases (PDE) which degrade 

cyclic nucleotides to monophosphate nucleotides (Shelly et al., 2010). Importantly, the 

ratio of cAMP-to-cGMP determines growth cone turning behaviours to various guidance 

cues, with high ratios of cAMP-to-cGMP favouring growth cone attraction and low ratios 

favouring repulsion or growth-inhibition (Song et al., 1997; 1998; Nishiyama et al., 2003). 

This suggests that growth cones are able to switch their turning response to chemotropic 

cues by establishing polarity through the ratio of cyclic nucleotides (Figure 1.2).  

 

The cyclic nucleotide-induced switch in growth cone turning is activated by a number of 

guidance cues. For example, in Xenopus spinal neuron growth cones netrin-1, usually 

an attractive cue, can induce repulsion by activating PKG and suppressing L-type voltage 

gated Ca2+ channels (VGCC) (Song and Poo, 1999; Nishiyama et al., 2003). Similarly, 

growth cone attraction in response to the Ca2+-dependent guidance cues brain derived 

neurotrophic factor (BDNF) and acetylcholine (ACh), can be turned to  
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Figure 1.2- Regulation of growth cone turning through second messenger 

signalling (cyclic nucleotide-dependent switch and CaMKII/CaN bimodal switch)  

High ratios of [cAMP]i:[cGMP]i favour attractive growth cone turning responses, while low 

ratios of [cAMP]i:[cGMP]i favour repulsive turning. Cyclic nucleotides exert reciprocal 

inhibition over each other, and regulate the rate of Ca2+ flux from the endoplasmic 

reticulum (ER) by facilitating or inhibiting mobilisation through IP3R/RyR.  A smaller rise 

of [Ca2+]i is sufficient to activate calcineurin (CaN). CaN mediates cytoskeletal 

depolymerisation (D) which results in membrane collapse or repulsive turning away from 

a guidance cue, such as sema-3a.  A larger rise of [Ca2+]i is necessary to activate Ca2+-

calmodulin dependent protein kinase II (CaMKII). CaMKII mediates cytoskeletal 

polymerisation (P) resulting in an attractive turning response towards a guidance cue, 

such as BDNF.  CaN is also involved in reciprocal inhibition of the attractive-CaMKII 

pathway by activating protein phosphatase 1 (PP1), which is able to inhibit CaMKII 

activity.  Similarly, the dephosphorylation pathway can be inhibited by the production of 

protein kinase A (PKA), which inhibits PP1 activity. 
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repulsion when inhibiting either cAMP or PKA (Song et al., 1997). The Ca2+-independent 

cue semaphorin-3a (sema-3a) triggers soluble guanylyl cyclase (sGC) to activate cGMP 

and allow a small influx of Ca2+ via cyclic nucleotide gated channels (CNGCs) (Togashi 

et al., 2008). Nishiyama and colleagues (Nishiyama et al., 2008) reported that repulsive 

cues sema-3a and Slit2 cause membrane hyperpolarisation at the growth cone, while 

attractive cues including BDNF and DCC-mediated netrin-1 shift potentials towards 

depolarization. When cGMP production is greater than cGMP hydrolysis, PKG activates 

sodium channels and induces PKG-mediated depolarization, switching sema-3a induced 

repulsion to attraction (Nishiyama et al., 2008). Evidence suggests that electrical activity 

is important for steering, for example pre-exposure to electrical stimulation enhances 

growth cone attraction to netrin-1 and switches repulsion in response to myelin-

associated glycoprotein (MAG) to attraction, in a mechanism mediated by both 

extracellular Ca2+ and increased cAMP activity (Ming et al., 2001). Reciprocal crosstalk 

between cyclic nucleotides and Ca2+ signalling is necessary for growth cone steering, it 

is not either/or that is more important. An example of this includes cyclic nucleotide-

dependent mobilisation of Ca2+ from intracellular stores (Lohof et al., 1992). Hence, 

growth cone motility can be seen as the result of intricate crosstalk signalling mediated 

by second messenger activity, but how are these second messengers regulated 

spatially?    

 

1.3.2 Calcium  

Calcium (Ca2+) is a ubiquitous second messenger required for axon outgrowth and 

growth cone motility (Kater et al., 1988; Gomez et al., 1995; Hong et al., 2000). Various 

outcomes of growth cone motility including pausing and differential turning (attraction or 

repulsion) in response to the same guidance cue, depend on intracellular Ca2+ ([Ca2+]i) 

within a permissive range (Kater and Mills, 1991). Seminal work by Zheng  demonstrated 

that a spatially-restricted change of [Ca2+]i is sufficient to direct growth cone extension 
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and steering, by focally increasing [Ca2+]i on one side of the growth cone to initiate 

attraction, and focally decreasing resting [Ca2+]i to induce repulsion from the side of 

stimulation (Zheng, 2000). The multifunctionality of Ca2+ in cell migration, relies on the 

tightly regulated spatiotemporal organisation of Ca2+ signals, and the generation of 

patterned signal activation within specific cellular microdomains (Wei et al., 2009). Due 

to limited diffusion of local Ca2+, a rise of [Ca2+]i is spatially restricted to the open 

channel(s) (Gabso et al., 1997; Augustine et al., 2003). The remainder of this review will 

focus on what is known of how spatial Ca2+ signals within growth cones are regulated, 

including the amplitude and the source from which Ca2+ originates and is sustained.  

 

The amplitude and spatial localisation of Ca2+ is a vital determinant and regulator of 

growth cone behaviour and steering (Wen et al., 2004b) as Ca2+ can regulate both 

repulsive and attractive signals, in other words Ca2+ can elicit bidirectional turning 

responses (Tojima et al., 2011). Growth cone turning is regulated by the downstream 

Ca2+ effectors Ca2+-calmodulin dependent protein kinase II (CaMKII) and Ca2+-

calmodulin dependent protein phosphatase, calcineurin (CaN) (Wen et al., 2004b). Due 

to their different affinities for Ca2+, a small intracellular Ca2+ signal activates CaN or 

protein phosphatase 1 (PP1) causing growth cone repulsion, while a large local Ca2+ rise 

activates CaMKII causing an attractive turning response (Wen et al., 2004b) (Figure 1.2). 

A CaMKII/CaN-PP1 bimodal switch integrates local Ca2+ signals in order to control the 

direction of Ca2+-dependent growth cone extension (Wen et al., 2004b). CaMKII and CaN 

phosphorylate and dephosphorylate cytoskeleton-associated proteins respectively, to 

modulate the assembly and stability of microtubules (Goto et al., 1985; Yamamoto et al., 

1985).  

 

Another determinant of Ca2+-mediated growth cone steering and the regulation of 

cytoskeletal organisation is the source of Ca2+. In growth cones Ca2+ mobilises from 

either extracellular or intracellular source. The source of Ca2+ determines the amplitude 
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change in [Ca2+]i which is important for the regulation of growth cone behaviour (Ooashi 

et al., 2005; Arie et al., 2009). Extracellular and intracellular sources of Ca2+ at the growth 

cone are discussed in more detail below.  

 

1.4 Extracellular and intracellular sources of calcium at the growth cone 

1.4.1 Extracellular calcium: transient receptor potential channels and voltage-

gated calcium channels 

Extracellular Ca2+ is necessary for growth cone turning in response to Ca2+-dependent 

guidance cues such as the neurotransmitter acetylcholine (ACh), BDNF, MAG and 

netrin-1 (Zheng et al., 1994; Ming et al., 1997; Song et al., 1997; 1998). Ca2+ is mobilised 

from the extracellular environment through plasma membrane Ca2+ channels, including 

transient receptor potential canonical (TRPC) channels and voltage-gated Ca2+ channels 

(VGCC) (Berridge et al., 2003). TRPC channels, typically thought of as sensory 

channels, are transiently activated by receptor tyrosine kinases and G-protein-coupled 

receptors in response to various stimuli including temperature, pain, osmolarity and 

mechanical stress (Clapham, 2003). During axon pathfinding, TRPC channels (including 

TRPC1 and TRPC3) regulate growth cone turning responses to guidance cues such as 

netrin-1, BDNF and MAG (Shim et al., 2005; Li et al., 2005b; Gasperini et al., 2009). 

TRPC5 has been implicated in the regulation of filopodial length and neurite extension, 

suggesting a role of TRPC channels in neurite outgrowth as well as growth cone 

pathfinding (Greka et al., 2003). TRPC channels are likely to regulate distinct pathways 

in growth cones by generating different spatiotemporal Ca2+ signals regulated by the 

activation of phospholipase C (PLC) and phosphatidylinositol 4,5-biphosphate (PIP2) 

(Ramsey et al., 2006; Mori et al., 2015). 

 

VGCC are plasma membrane ion channels that are activated upon membrane 

depolarisation to mobilise Ca2+ into cells. VGCC generate fast Ca2+ fluxes that control a 
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range of physiological processes including neurotransmission, muscle contraction and 

cell differentiation (Catterall, 2000; Bootman et al., 2001; Catterall, 2011). With respect 

to growth cone pathfinding, L-type VGCC regulate netrin-1 induced growth cone turning 

(Hong et al., 2000; Nishiyama et al., 2003). However, this necessity is likely to be context 

dependent or cell specific as L-type VGCC are also non-essential for netrin-1 and BDNF 

induced growth cone turning in rat sensory neurons (Gasperini et al., 2017).  

 

1.4.2 Intracellular calcium: endoplasmic reticulum  

In addition to influx from extracellular sources, Ca2+ can also be mobilised from internal 

stores, such as the endoplasmic reticulum (ER). Ca2+ release from the ER regulates 

signal amplification by sustaining an initial rise in [Ca2+]i through a process that can be 

induced by Ca2+, known as Ca2+-induced Ca2+ release (CICR) through activation of 

ryanodine receptors, or inositol-1,4,5-triphosphate (IP3), termed IP3-induced Ca2+ 

release (IICR) (Tojima et al., 2011). At the growth cone, Ca2+ mobilisation through 

ryanodine and IP3 receptors (RyR and IP3R) is necessary for extension and Ca2+-

dependent growth cone attraction (Takei et al., 1998; Hong et al., 2000; Jin et al., 2005a; 

Ooashi et al., 2005; Li et al., 2005b; Tojima et al., 2007; Akiyama et al., 2009; Akiyama 

and Kamiguchi, 2010; Wada et al., 2016). Release of Ca2+ from the ER increases the 

magnitude of [Ca2+]i, and sustains these signals (Hong et al., 2000).  

 

Ca2+ can also be mobilised from the ER upon cyclic nucleotide signalling, a process 

known to be necessary for axon pathfinding (Lohof et al., 1992).  cAMP facilitates 

attractive turning by activating ligand-dependent RyR and IP3R, whilst cGMP facilitates 

repulsive turning by inactivating RyR and inhibiting Ca2+ mobilisation from the ER 

(Nishiyama et al., 2003; Ooashi et al., 2005; Tojima et al., 2009). IP3R and RyR on the 

ER can be phosphorylated by the cyclic nucleotide-dependent protein kinases, PKA and 

PKG. Phosphorylation of IP3R and RyR channels increase Ca2+ release from ER stores, 
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while receptor dephosphorylation decreases Ca2+ release (Foskett et al., 2007; Zalk et 

al., 2007). In this manner, second messenger crosstalk regulates mobilisation of Ca2+ 

from the ER stores to sustain Ca2+ signalling within growth cones. The ER however is a 

finite store of Ca2+ and becomes depleted following sustained release of Ca2+. Depleted 

ER stores activate a process known as store operated Ca2+ entry to replenish Ca2+ levels.  

 

1.4.3 Store Operated Calcium entry 

One source of Ca2+ and an important regulator of Ca2+ levels and replenishment of 

intracellular Ca2+ stores is store operated Ca2+ entry (SOCE). Sarcoplasmic/endoplasmic 

reticulum Ca2+ ATPase (SERCA) pumps refill the ER by transporting Ca2+ from the 

cytoplasm to the ER lumen (Higgins et al., 2006). A mechanism that allows Ca2+ to re-

enter the cytoplasm in response to ER depletion is required to refill the ER stores and 

maintain Ca2+ signals. This mechanism is known as capacitative Ca2+ entry or SOCE 

(Putney, 1986; Lewis, 2007). SOCE mobilises Ca2+ from the extracellular space and 

refills the depleted ER stores to prolong Ca2+ signalling (Tsien et al., 1988; Hoth and 

Penner, 1992; Harraz and Altier, 2014) and sustain growth cone turning responses 

(Mitchell et al., 2012).  

 

The influx of Ca2+ triggered by SOCE, is referred to as Ca2+ release-activated Ca2+ 

(CRAC) current or ICRAC and functions independently of membrane voltage changes 

(Hoth and Penner, 1992). It was initially thought that CRAC currents predominate in non-

excitable cells and VGCC predominate in excitable cells including neurons, however the 

machinery for both sources of Ca2+ influx are present in neuronal cells (Park et al., 2010; 

Wang et al., 2010). ICRAC, is gated through a number of ion channels including TRPC and 

Orai, and is triggered after store depletion. ICRAC is mediated by the Ca2+ sensing ER 

proteins stromal interacting molecule 1 and 2 (STIM1 and STIM2) (Huang et al., 2006; 

Yuan et al., 2007). In non-neuronal cells, STIM1 is known to activate SOCE through its 
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interaction with plasma membrane proteins Orai1, 2 and 3, resulting in the formation of 

a CRAC current (Liou et al., 2005; Roos et al., 2005; Zhang et al., 2005; Prakriya et al., 

2006; Soboloff et al., 2006). The roles of STIM1 and STIM2 have been well studied in 

non-excitable tissues, however less is known about STIM function and how SOCE 

regulates Ca2+ dynamics in the developing nervous system. STIM1 and/or Orai have 

more recently been implicated in neuronal Ca2+ homeostasis and axon pathfinding 

(Gasperini et al., 2009; Steinbeck et al., 2011; Mitchell et al., 2012; Shim et al., 2013). 

STIM1 regulates growth cone navigation in sensory neurons by mediating SOCE in 

response to BDNF induced chemoattraction. STIM1 also functions in sema-3a induced 

chemorepulsion by an unknown mechanism likely to be SOCE-independent (Mitchell et 

al., 2012).  Within the growth cone STIM1 is actively recruited asymmetrically during 

growth cone turning, dynamically participating in the regulation of growth cone motility 

(Mitchell et al., 2012). Mechanisms that regulate STIM1 motility and subsequent Ca2+ 

influx have yet to be determined.  

 

1.5 Stromal Interacting Molecule 1 (STIM1) is a key regulator of store 

operated calcium entry  

STIM1, the main regulator of SOCE following store depletion (Liou et al., 2005; Roos et 

al., 2005; Zhang et al., 2005), is structurally complex and multifunctional. The three most 

studied STIM proteins are STIM1, STIM2 and D-STIM; however, due to its role in 

neuronal Ca2+ homeostasis and growth cone dynamics, the focus of this thesis is on 

STIM1. STIM1 is a 90 kDa single-pass transmembrane phosphoprotein that is 

ubiquitously expressed in most tissues (Dziadek and Johnstone, 2007). STIM proteins 

possess a number of motifs which allow this family of proteins to interact with a range of 

molecules. The N-terminus of STIM1 is located within the ER lumen and contains a single 

helix-loop-helix motif, also known as the EF-hand Ca2+-binding domain which binds Ca2+ 

within the ER. The N-terminus also contains a conserved single sterile-α motif (SAM) 
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domain involved in protein-protein interactions (Schultz et al., 1997; Williams et al., 2001; 

2002; Dziadek and Johnstone, 2007). The C-terminus contains two alpha helices that 

are predicted to form coiled-coils, and which reside within an ezrin/radixin/moesin (ERM) 

domain (Dziadek and Johnstone, 2007). The C-terminus of STIM1 also contains a highly 

conserved small polypeptide motif, (TRIP), which participates in hydrophobic interactions 

with microtubule-associated proteins and makes STIM1 a SxIP-consensus protein 

(Honnappa et al., 2009; Kumar and Wittmann, 2012). The function of SxIP motif in STIM1 

will be discussed in more detail in the coming section. 

 

The process of SOCE occurs following STIM1 oligomerisation and CRAC activation. 

Upon store depletion, the luminal tertiary fold of STIM1 becomes unstable and exposes 

the hydrophobic unpaired EF-hand and the SAM domain. This conformational change 

allows STIM1 to oligomerise and activate SOC channels (Dziadek and Johnstone, 2007; 

Luik et al., 2008). STIM1 oligomers translocate and form puncta in close proximity to the 

plasma membrane (ER-PM junctions) (Carrasco and Meyer, 2011). Here, STIM1 triggers 

the formation of CRAC channels (Liou et al., 2005; Zhang et al., 2005; Baba et al., 2006; 

Wu et al., 2006; Luik et al., 2008). STIM1 oligomers interact with plasma membrane 

proteins Orai1, the pore-forming subunits of CRAC channels (Feske et al., 2006; Prakriya 

et al., 2006). Orai1 proteins cluster into tetramers and form CRAC channels (Soboloff et 

al., 2006; Lewis, 2007; Stathopulos et al., 2008) (Figure 1.3). While most of the SOCE 

literature focuses on the interaction of STIM1 and Orai1, SOCE has been reported to 

occur through STIM1-activation of other ion 
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Figure 1.3- STIM1 senses luminal ER Ca2+ levels to activate Orai1 for SOCE   

(i) Under Ca2+ replete conditions monomers of the endoplasmic reticulum-(ER) protein 

stromal interacting molecule 1 (STIM1), which bind Ca2+ by the unpaired EF hand 

domain, are uniformly distributed along the ER membrane. (ii) As ER Ca2+ is released 

from the stores through IP3R/RyR, (iii) Ca2+ depletion causes STIM1 monomers to 

oligomerise and translocate into larger complexes at ER-PM junctions (arrowhead).  

STIM1 interacts with Orai, causing Orai dimerisation and the formation of a Ca2+ release-

activated Ca2+ (CRAC) channel that facilitates store operated Ca2+ entry (SOCE) into the 

cytoplasm. (iv) Ca2+ entering the cytosol through SOC channels is rapidly sequestered 

to the ER via the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump, facilitating 

store repletion. 
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channels including TRPC channels (Yuan et al., 2007) and CRACM2 and 3 (Orai2 and 

3) (Lis et al., 2007).   

 

The molecular mechanisms by which STIM1 mediates SOCE are well understood, 

however it remains unclear whether STIM1 also regulates ER rearrangement to facilitate 

SOCE and if so, by what mechanism. Localisation and motility of intracellular signalling 

proteins and organelles is in most cases regulated by the cytoskeleton. ER structure and 

function is known to be influenced by the microtubule cytoskeleton (Terasaki et al., 

1986). A number of studies have reported that drug-induced depolymerisation of actin 

and microtubules into monomers does not negatively impact or inhibit SOCE in various 

cell lines (Ribeiro et al., 1997; Patterson et al., 1999; Baba et al., 2006). In contrast, there 

is evidence that the organisation of STIM1 and microtubules is strikingly similar (Baba et 

al., 2006; Mercer et al., 2006) and that microtubule depolymerisation using nocodazole 

disrupts SOCE, ICRAC and the organisation of EYFP-STIM1 in HEK 293 cells (Smyth et 

al., 2007). These findings indicate that, through the organisation of STIM1, microtubules 

might facilitate SOCE by optimising communication between STIM1 and PM-channel 

Orai (Smyth et al., 2007). STIM1-directed reorganisation of microtubules has also been 

demonstrated to function in mast cell activation (Hájková et al., 2011a), further 

supporting a mechanism of tight crosstalk between Ca2+ signalling and cytoskeleton 

structures. As discussed earlier in this review, Ca2+ signalling in growth cones regulates 

the assembly and disassembly of the cytoskeleton by activating kinase and phosphatase 

activity respectively however, whether a direct physical link between the main source of 

Ca2+ and the cytoskeleton exists is unclear.  
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1.6 Endoplasmic reticulum in growth cones: a source of localized 

calcium? 

The ER is a major store of intracellular Ca2+ and release of Ca2+ from the ER is important 

for axon outgrowth in various models, including Xenopus motor neurons (Gomez and 

Spitzer, 2000; Gu and Spitzer, 1995) and chicken dorsal root ganglion neurons (Wada 

et al., 2016).  However, it is unknown whether ER can regulate the spatiotemporal 

localisation of Ca2+ signals in motile growth cones, which would require the remodelling 

of ER. The mechanisms that would control this process have not been previously 

explored. What little is known about ER organisation in growth cones is from early work 

that examined the spatial and temporal dynamics of ER-like membranes at the neuronal 

growth cone using a fluorescent lipophilic dye which targets and marks membrane-bound 

organelles (Dailey and Bridgman, 1989). ER-membrane distribution was examined 

during growth cone advance and was seen to actively remodel (extend, retract and 

change direction) at the advancing peripheral edge. By co-labelling with a microtubule 

marker, a striking colocalisation (79%) between microtubules and ER-like membranous-

organelles was observed at the growth cone periphery (Dailey and Bridgman, 1989). The 

authors concluded that ER-like membranes were possibly regulating local Ca2+ signals 

to affect microtubule stability and overall coordination of growth cone activity (Dailey and 

Bridgman, 1989). At the time, this conclusion was in agreement with findings from Kater 

and colleagues who had proposed that localised Ca2+ signals of different magnitudes are 

required to regulate motile growth cone behaviours (Kater et al., 1988). Taking these 

findings into consideration, Dailey and Bridgman inferred that a Ca2+-sequestering 

organelle such as the ER, was likely to distribute with microtubules to regulate the 

localisation of Ca2+ in growth cones (Dailey and Bridgman, 1991). Furthermore, the 

authors proposed that ER-like membranes formed transport tracks with microtubules to 

facilitate movement of other organelles after observing that vesicle-like structures 
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followed tubular membranous-organelles into the growth cone periphery (Dailey and 

Bridgman, 1989).  

 

Since these studies, membrane trafficking has been extensively studied in steering 

growth cones and Kamiguchi and colleagues have recently reported that ER-derived 

Ca2+ signals facilitate the microtubule-dependent trafficking of vesicle-associated 

membrane protein 2 (VAMP2)-positive vesicles (Wada et al., 2016). VAMP2-vesicle 

trafficking was asymmetrically distributed to the side of the growth cone with highest Ca2+ 

concentration. The Ca2+-dependent motor protein, myosin Va (MyoVa), was shown to 

tether VAMP2-positive vesicles to the ER via IP3R/RyR binding sites and localise the 

vesicles to the side of elevated Ca2+ in growth cones responding to attractive cues (Wada 

et al., 2016). Exocytosis-induced growth cone attraction resulted from dissociation of 

MyoVa from ER binding site and release of VAMP2-positive vesicles following activation 

of CICR (Wada et al., 2016). This work demonstrates a mechanism in which Ca2+-

induced membrane targeting regulates growth cone motility and indicates that direct 

interactions between ER and microtubules facilitate signal localisation, membrane 

recycling and spatial localisation of store Ca2+. Exactly how ER is spatially localised or 

remodelled in growth cones is unknown.  

 

Microtubule-dependent ER remodelling can occur in three ways in non-neuronal cells 

(Waterman-Storer and Salmon, 1998): ER-membrane sliding (Allan and Vale, 1991; 

Schroer and Sheetz, 1991; Allan and Vale, 1994; Friedman et al., 2010), microtubule-

based movement (Vale and Hotani, 1988), and movement via a microtubule tip 

attachment complex (TAC) (Waterman-Storer et al., 1995). ER remodelling is often 

regulated by ER-sliding mechanism through motor proteins kinesin1 and dynein 

(Wozniak et al., 2009; Friedman et al., 2010), rather than a TAC.  However a TAC, which 

comprises the binding of ER-protein STIM1 to the microtubule-binding-protein EB1 (and 

EB3) (Grigoriev et al., 2008) via the SxIP motif (Honnappa et al., 2009), enables ER 
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tubules to grow and shrink in parallel with the polymerising microtubule plus-ends. 

Recently, STIM1-mediated SOCE was shown to regulate axon guidance of sensory 

neurons (Mitchell et al., 2012) and the oscillatory filopodial Ca2+ dynamics of Xenopus 

spinal cord commissural interneurons (Shim et al., 2013). Co-distribution of ER and 

microtubules through TAC might be a specific mechanism by which STIM1 regulates ER 

remodelling at the growth cone periphery for the sustainment of filopodial Ca2+ transients, 

which are necessary for the regulation of pathfinding behaviours.   

 

Following the report that STIM1 functions as a microtubule plus-end-tracking protein to 

regulate ER remodelling by bridging ER and microtubules in non-neuronal cells 

(Grigoriev et al., 2008), a relay-type of association between STIM1 and +TIPs EB1 and 

APC was investigated (Asanov et al., 2013). An association between STIM1 and APC is 

necessary for the anchoring of STIM1 puncta at ER-PM junctions in non-neuronal cells, 

which form following store depletion and likely represent sites of CRAC. The authors 

demonstrated that STIM1 interacts with EB1 when the ER stores are replete, and this 

interaction is fundamental for tracking of ER along the microtubules (Grigoriev et al., 

2008; Asanov et al., 2013). Upon store depletion, STIM1 dissociates from EB1 and 

interacts with APC in a relay-type mechanism that facilitates the anchoring of STIM1 at 

ER-PM junctions (Asanov et al., 2013). Such a mechanism of STIM1-mediated ER-

microtubule interaction which is dependent on Ca2+
ER content, provides a direct link 

between ER-derived Ca2+ signals (CICR and IICR), ER-induced Ca2+ signals (SOCE) 

and the cytoskeleton (microtubules via EB1, and actin via APC). Whether STIM1 

facilitates sustained and localised Ca2+ within growth cones through direct bridging of ER 

and the microtubule cytoskeleton, is one of the questions this thesis will aim to answer 

as it would signify a mechanism for directly regulating spatiotemporal Ca2+ signals in 

motile growth cone. 
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Early work by Dailey and Bridgman using freeze-etch EM on growth cones from superior 

cervical ganglia explants (Dailey and Bridgman, 1991), showed that while ER-like 

membranes occasionally protruded into the periphery of the growth cone 

unaccompanied by microtubules, smooth ER-like membranes were often observed 

extending to microtubule tips. Interestingly, associations between microtubules and ER 

membranes were most obvious at the electron-dense microtubule tip (Dailey and 

Bridgman, 1991). The presence of cross-bridging elements between microtubules and 

ER-like membranes were reported and were, at the time, hypothesised to correspond to 

microtubule-based motors, such as kinesin (Vale et al., 1985; Vale and Hotani, 1988; 

Dailey and Bridgman, 1991). The significance of a direct association between 

microtubules and ER, given the ability of ER to sequester and release Ca2+ (Somlyo, 

1984), lie in the fact that Ca2+ is a known local regulator of microtubule stability and 

polymerisation (Schliwa et al., 1981). Such an interaction would provide less stable 

microtubules protruding into the growth cone periphery with spatially restricted local Ca2+ 

signals required to sustain extension and growth. Direct ER-microtubule interactions 

have been previously explored in non-neuronal cells in the context of tethering of STIM1 

to +TIP proteins EB1/3 (Grigoriev et al., 2008) and association of ER with the 

microtubule-based motor protein kinesin-1 (Wozniak et al., 2009; Friedman et al., 2010; 

Friedman and Voeltz, 2011). IP3R, embedded within the ER, has also been reported to 

bind the microtubule +TIP EB3 in endothelial cells. Binding of IP3R to EB3 occurs through 

the TxIP motif in IP3R, and binds with less affinity that when binding to STIM1 (Geyer et 

al., 2015). Consistent with previously reported roles of microtubules in organising IP3R-

evoked Ca2+ signalling, Rac1 has been shown to induce microtubule-dependent ER 

protrusion into the growth cone periphery whilst simultaneously promoting IP3-mediated 

Ca2+ release via ROS production (Zhang and Forscher, 2009). Understanding whether 

Ca2+ is sustained and localised within growth cones through direct association between 

ER and microtubules is a major focus of this thesis as it would provide a direct method 

for regulating spatiotemporal Ca2+ signals in motile and pathfinding growth cone. 
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1.7 Hypothesis 

 

It has been proposed that EB-STIM1 interactions enable ER tracking along microtubules 

for the facilitation of SOCE upon ER depletion and the localization of Ca2+ (Smyth et al., 

2007). Aside from evidence suggesting STIM1 and microtubule organization is strikingly 

similar (Baba et al., 2006; Mercer et al., 2006), evidence indicates that microtubule 

depolymerization disrupts SOCE and ICRAC (Smyth et al., 2007) and that STIM1-directed 

rearrangement of microtubules occurs in mast cell activation (Hájková et al., 2011a). 

Altogether, these studies suggest that ER and microtubules are interdependent 

structures likely to function in close apposition and influence the function of the other, 

and STIM1 is likely to facilitate such interactions as a microtubule-binding protein and 

mediator of SOCE. Furthermore, STIM1 is expressed at the growth cone of rodent 

sensory neurons where STIM1 mediates SOCE-dependent growth cone steering to 

BDNF through CaMKII/CaN switch, as well as SOCE-independent turning to sema-3a 

by unclear mechanisms (Mitchell et al., 2012). This suggests that STIM1 is 

multifunctional in growth cones, however it is unknown whether STIM1 functions as a 

microtubule-binding protein in growth cones to directly link ER-derived Ca2+ to the 

microtubule cytoskeleton for the regulation of growth cone motility. Such mechanism in 

growth cones would provide a direct target for spatiotemporally localizing Ca2+ signals 

necessary to mediate axon steering. Therefore, the central hypothesis of this work is that 

STIM1 regulates ER-microtubule dynamics which are necessary to spatially and 

temporally localize the Ca2+ signals required to sustain growth cone motility and 

pathfinding.   
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1.7.1 Aims 

 

To address the central hypothesis, a series of aims that utilize live cell imaging, 

immunocytochemistry, and optogenetics, have been devised to examine the role of 

STIM1 in cytoskeletal remodelling at the motile growth cone: 

 

Aim 1: Investigate whether STIM1 associates with the cytoskeleton in motile 

growth cones 

-Examine whether actin/microtubule-regulatory factors, and adhesion components are 

disrupted in growth cones with reduced STIM1 expression. 

 

Aim 2: Determine whether STIM1 regulates functions of the microtubule 

cytoskeleton during growth cone steering 

-Examine whether STIM1 acts as a microtubule-binding protein in growth cones, as 

reported to occur in non-neuronal cells 

-Determine whether STIM1 expression is required for polymerization and spatial 

rearrangement of microtubules 

 

Aim 3: Examine whether STIM1 is required for instructive ER-microtubule 

remodelling at growth cone filopodia 

-Determine if there are functional microtubule-ER interactions at the growth cone 

filopodia, and whether these interactions are mediated or regulated by STIM1 expression 

-Examine whether STIM1 expression is required to maintain and regulate Ca2+
ER at 

growth cone filopodia 
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2.1 Experimental model details 

All animal procedures were conducted under the approval of the University of Tasmania 

Animal Ethics Committee (Ethics number A14975), consistent with the Australian 

NHMRC Code of Practice for the Care and Use of Animals for Scientific Purposes. 

Female Sprague Dawley rats (Animal Facility, University of Tasmania) were used.  

 

2.2 Materials/Reagents 

For detailed list of materials/reagents used, see key resources (Appendix 1). 

 

2.3 Sensory neurons cell culture and pharmacology  

2.3.1 Cell culture 

Primary sensory neuron cultures were prepared as described previously (Gasperini et 

al., 2009; Mitchell et al., 2012). Pregnant Sprague Dawley rats were euthanized by CO2 

inhalation. Embryonic day (E)16-18 embryos were immediately dissected. Thoracic 

dorsal root ganglia (DRG) from E16–18 embryos were mechanically dissociated and 

cultured in sensory neuron media (SNM; Dulbecco’s Modified Eagle’s Medium/Hams F-

12 medium 1:1, Penicillin-Streptomycin [100μg/ml], N2 neural medium supplement [1% 

v/v], foetal calf serum [%5 v/v], nerve growth factor [50ng/ml]) for 4–6hr prior to imaging.  

 

2.3.2 Protein knockdown 

Protein expression was reduced using morpholinos, as described previously. DRG were 

mechanically dissociated in the presence of morpholinos (5μM) and plated at low density 

onto glass coverslips treated with poly-ornithine (1mg/ml) and laminin (50ng/ml). Protein 

knockdown was confirmed by immunofluorescence as previously described (Mitchell et 
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al., 2012). Similarly, Orai1 siRNA (10nM) was used to reduce the expression of Orai1 

protein.   

 

2.3.3 Pharmacology 

The microtubule-stabilising drug epothilone D (EpoD) was bath-applied in SNM at 0.1nM 

(higher concentrations halt axon extension) for 4hrs prior to imaging. An inhibitor of 

sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), thapsigargin (TG), was bath-

applied in SNM at 50nM for 5min to deplete ER Ca2+ stores. Control cells were incubated 

with vehicle (SNM).  

 

2.4 In vitro growth cone turning assay 

Growth cone turning assays were performed as previously described (Lohof et al., 1992; 

Gasperini et al., 2009; Mitchell et al., 2012). Brain derived neurotrophic factor (BDNF, 

10μg/ml) and semaphorin-3a (sema-3a, 20μg/ml) were loaded into fire-polished 

micropipettes (tip diameter of 1.0-1.2μm) and positioned at a 45ᵒ angle and 75-100μm 

from isolated growth cones, to obtain a molecular gradient with an estimated 

concentration of 10-3 at the growth cone (Lohof et al., 1992). The molecular gradient was 

created by pulsatile ejection (Picospritzer, Parker, USA), using a pressure of 5psi at a 

rate of 1Hz (Gasperini et al., 2009; Mitchell et al., 2012). Phase images were obtained 

using Matlab analysis software (Mathworks Inc., USA) every 7sec for 30min (acquisition 

times varied depending on the experiment, parameters specified in individual sections). 

Analysis of time-lapse images was performed using ImageJ (NIH, USA). Turning angles 

were measured for growth cones which extended at least 10μm over 30min of imaging 

and that did not interact with neighbouring cells or debris. The angle of turning was 

defined as the change in axon trajectory, relative to the pipette, of the distal 10μm axon. 

Attraction was defined as a positive turning angle towards the micropipette, while 

repulsion was defined as a negative turning angle away from the micropipette. Statistical 
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analysis for turning data, Mann-Whitney t-test, was performed using GraphPad Prism 

(GraphPad Software, USA).   

 

2.5 Immunocytochemistry  

Protein expression in control and STIM1 morphant cells were determined by 

immunocytochemistry. Briefly, cells were fixed in 4% paraformaldehyde (in PBS) at room 

temperature for 5min, and 100% methanol at -20°C for 15min, followed by blocking (5% 

foetal calf serum in PBS). Primary antibodies for STIM1, β3-tubulin, EB1/3, APC and 

drebrin (see Appendix 1) were detected using Alexa Fluor 405/488/568/647 secondary 

antibodies. Images were acquired using an UltraView spinning disk confocal microscope 

(PerkinElmer, USA), equipped with a 100x 1.5-numerical aperture objective, and 

acquisition software (Volocity Image Analysis Software, Perkin Elmer).  

 

2.5.1 Immunocytochemistry in turning growth cones 

Control and STIM1 morphant cells were grown on gridded coverslips (enabling 

localization of individual growth cones post-turn and post-processing). Cells were fixed 

after 15min exposure to guidance cues (vehicle/SNM, BDNF or Sema3a) and processed 

for immunocytochemistry as previously described (Mitchell et al., 2012). STIM1, EB-1/3, 

APC, drebrin and F-actin expression, as well as polymerized microtubules were 

determined using ImageJ software analyses. Protein expression levels or the number of 

polymerized microtubules on the near and far sides of the growth cone with respect to 

the micropipette (ie. near side of growth cone is closest to micropipette) were determined 

and presented as a near/far ratio.  

 

Protein expression was assessed by two analysis methods: integrated pixel intensity and 

puncta analyses. Integrated pixel intensity (ImageJ) from each half of the growth cone 

was used to derive a pixel intensity near/far ratio (Leung et al., 2006). Each growth cone 
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half was determined by parting along the middle of the growth cone relative to the distal 

axon, and pixel intensity from each half was normalized to area. For puncta analysis, 8-

bit images were background subtracted and thresholded (RenyiEntropy filter, ImageJ). 

Particle numbers from each half were used to derive a puncta near/far ratio. Both 

methods gave consistent measures for all proteins assessed.  

 

2.5.2 Immunocytochemistry for protein colocalisation analysis 

Cultures were grown for 4hr then incubated with vehicle or thapsigargin (50nM) for 5min 

prior to fixation (Mitchell et al., 2012). Cells were fixed at room temperature for 5min, and 

permeabilised using 100% methanol at -20°C for 15min. Primary antibodies for STIM1 

and EB-1/3 were detected using Alexa Fluor 488/594 secondary antibodies. Overlap 

coefficients were calculated between colocalisation channels corresponding to STIM1 

and EB1/3 in vehicle-treatment and thapsigargin-treated cells. Analysis was conducted 

using Manders’ overlap coefficient plugin (Manders et al., 1993).  

 

2.6 Transfection methods used for protein overexpression 

DRG sensory neurons are difficult to transfect, hence four approaches were used to 

express fluorescently labelled proteins in sensory neurons: transfection using 

baculovirus-packaged fusion markers, magnetic particles, lentivirus packaging, and 

electroporation.  

 

2.6.1 BacMam transfection  

BacMam technology, which uses baculovirus-packaged fusion constructs, was used for 

co-labelling of microtubules and ER. Cells were incubated at 37°C and 5% CO2 overnight 

with CellLight Tubulin-GFP and CellLight ER-RFP (see Appendix 1) according to 

manufacturer’s instructions (Thermo Fisher Scientific, USA).  
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2.6.2 Magnetofection  

Magnetic particles were used to transfect EB1-RFP and EB3-YFP in sensory neurons. 

Cells were transfected following manufacturer’s instructions (NeuroMag; Oz 

Biosciences, France). Briefly, NeuroMag-DNA complexes were formed with 0.75µl 

NeuroMag to 1µg DNA (EB3-YFP) in serum-free solution for 20min. Plated cells 

(transfected with control or STIM1-specific morpholino, as described in section 2.3.2) 

were incubated with NeuroMag-DNA complexes over a magnetic plate for 20min, then 

incubated at 37°C and 5% CO2 overnight for imaging. 

 

2.6.3 Lentivirus production and transduction 

For transfection of EB3-YFP in growth cones used for turning experiments, a lentiviral 

approach was also used. The gene sequence encoding EB3-YFP was sub-cloned into a 

second-generation lentiviral construct with a neuron-specific human synapsin (hSyn) 

promoter, using ligation of PCR-amplified insert (EB3-YFP) and lentiviral vector. 

Lentiviral particles were then made as previously described (Lin et al., 2013). Briefly, 

HEK293A cells were grown to 90% confluency, and transfer vectors pLenti_hsyn_EB3-

YFP, psPAX2 and pMD2.G (see Appendix 1) were transfected using Effectene 

(QIAGene, Germany). Virus particles were harvested from HEK293A cells in low-serum-

containing medium and concentrated using an Amicon Ultra centrifugal filter (Millipore, 

USA). Whole DRG were gently dissociated with lentiviral particles in SNM (particle 

number not calculated, 20µl of concentrated solution per 12-well coverslip), and cells 

were incubated for 24hr (in suspension). Media was exchanged and cells were again 

incubated for 24hr, at 4°C. Cells were gently triturated with morpholinos, plated and 

incubated at 37°C and 5% CO2 for 4–6hr prior to imaging. 
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2.6.4 Electroporation by nucleofection method  

Electroporation was used for co-transfection of EB3-tdTomato and ER-GCaMP6, or EB3-

YFP and KDEL-mCherry (see Appendix 1). Dissociated sensory neurons were 

electroporated using a nucleofector protocol, following manufacturer’s instructions 

(Lonza, Switzerland). Briefly, whole DRG were treated with 0.125% trypsin and gently 

dissociated. Cells were resuspended in P3 buffer (transfection buffer) and 2 x 106 cells 

were electroporated with 2μg DNA. Cells were incubated in plastic T25 culture flask 

(Corning, USA) for 2hr to remove or reduce the number of fibroblasts and other non-

neuronal cells. Neurons were resuspended in media containing morpholinos and plated 

on laminin-coated coverslips. Cells were incubated overnight then imaged.  

 

2.7 Live cell imaging: Analysis of OptoSTIM1-induced growth cone motility  

Optogenetic stimulation of STIM1 was performed using a light-inducible STIM1 known 

as OptoSTIM1 (Kyung et al., 2015). HEK293A cells were transfected with OptoSTIM1 

using Effectene (QIAGene). Cells were loaded with Fura-2 AM (0.5 µM) in FluoroBrite 

DMEM (Thermo Fisher Scientific) for 10min at room temperature, then washed and 

incubated in calcium-replete media (5-10mM CaCl2) at 37ᵒC for a minimum of 10min. 

Images were acquired using an EMCCD digital camera (Evolve, Photometrics) and 

motorized inverted microscope (Eclipse TiE; Nikon Instruments Inc) with x40 Flour-S oil-

immersion objective. Spatially-restricted regions of HEK cells, or whole field of view, were 

stimulated for 2sec every 5min with LED light (485nm) using a digital mirror device 

(Mightex, USA) attached to the light path of the motorized inverted microscope.  Fura-2 

was alternatively excited (340nm and 380nm), and images were acquired at 510nm 

wavelength using NIS Elements software (Nikon) every 2sec for 10-15min. The ratio of 

340/380 fluorescence (a.u.) was calculated following background subtraction, in cells 

with medium-to-low levels of OptoSTIM1 over-expression before and after LED 

stimulation using NIS-Elements AR 4.00.12 software (Nikon, Japan).  
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Sensory neurons were transfected with OptoSTIM1, a light-insensitive OptoSTIM1 

variant OptoSTIM1(Cry2(D387A)), or LOVS1K (see Appendix 1) by electroporation using 

the Nucleofector Kit (Lonza). Cells were imaged using x100/0.95 oil-immersion objective. 

Spatially-restricted regions of growth cones (ROIs on one side of growth cone, 

stimulation-sides were randomly selected) were stimulated by LED light (485nm) using 

a digital mirror device. Optogenetic stimulation was 2sec every 5min. Phase images were 

acquired every 2sec for 12min. The angle of turning was defined as the change in axon 

trajectory measured between the initial trajectory and the final trajectory of the distal 

10μm of axon after the 12min imaging period. Repulsion was defined as a negative angle 

of axon extension on the opposite side of the stimulation side, that is axon growth away 

from stimulation side.  Attraction was defined as a positive angle of turning towards the 

side of stimulation, and no change in the angle of turning was classified as random 

growth. Analysis of time-lapse images was performed using ImageJ (NIH, USA). 

 

2.8 Live cell imaging: Analysis of EB3 dash dynamics  

Microtubule dynamics were measured using fluorescently-labelled EB3. EB3-YFP was 

observed as comet-like dashes. Sensory neurons transfected with EB3-YFP were 

imaged in imaging buffer (FluoroBrite DMEM, 15mM HEPES, 1% Penicillin-

Streptomycin, 100x N2 neural medium supplement, 5% foetal calf serum, nerve growth 

factor [50ng/ml]), using an EMCCD digital camera (Evolve, Photometrics) and motorized 

inverted microscope (Eclipse TiE; Nikon Instruments Inc) with x40 air objective. 

Acquisition time for dash movement was 0.14-0.17 Hz for 10-12min in randomly 

extending growth cones and in response to asymmetric guidance cues. Images were 

acquired using NIS-Elements AR 4.00.12 software (Nikon, Japan). EB3-YFP trajectories 

were analysed in filopodia of control and STIM1 morphant growth cones, and in growth 

cones responding to vehicle/SNM, BDNF and Sema3a. Only dashes that could be 

tracked for a minimum of three consecutive frames were included in analysis, as 
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previously described (Stepanova et al., 2003). Parameters measured, including distance 

travelled and velocity of EB3-YFP dashes, were calculated using Manual tracking on 

ImageJ software analyses. 

 

2.9 Live cell imaging: Analysis of Ca2+
ER dynamics at filopodia  

Sensory neurons transfected with EB3-YFP and KDEL-mCherry (as readout of 

polymerizing microtubules and ER-marker respectively), or EB3-tdTomato and ER-

GCaMP6 (as readout of polymerizing microtubules and Ca2+
ER sensor respectively), 

were imaged using a x100/0.95 oil-immersion objective. Images were acquired at 0.5 Hz 

for 5min, with EB3-tdTomato fluorescence and phase images acquired simultaneously. 

Analysis of microtubule-ER remodelling and microtubule-Ca2+
ER dynamics in filopodia 

included percentage measurement of filopodia expressing KDEL-mCherry or ER-

GCaMP6 signal in control and STIM1 morphant growth cones and distance of EB3-KDEL 

or EB3-ER-GCaMP6 protrusion into filopodia.  

 

Integrated filopodial Ca2+
ER (DF/F0) was calculated by averaging DF/F0 values over 20sec 

at three positions within the filopodia (tip-most, middle and base) where EB3 dashes 

were present. Average filopodial ER-GCaMP signal (DF/F0) was calculated from the 

average ER-GCaMP6-150 relative fluoresce at the time coinciding with peak EB3 

intensity signal response (ie. point in time where EB3 dash was present at filopodial 

base, middle, or tip-most section). Measurements of filopodial Ca2+
ER in control and 

STIM1 morphant growth cones were analysed using NIS-Elements AR 4.00.12 analyses 

software. 
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2.10 Statistical analyses 

All data were organized using Microsoft Excel and analysed using and GraphPad Prism 

6 (GraphPad Software Inc., USA). Statistical analyses include Student’s t-test, Mann–

Whitney U-test (growth cone turning data), one-way ANOVA (using Tukey’s multiple 

comparison test) and Two-way ANOVA (Ca2+
ER dynamics). p-values are defined as *p < 

0.05, **p < 0.01, ***p < 0.0005 and ****p < 0.0001, unless otherwise stated. 
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Chapter 3: STIM1 interacts with the growth cone cytoskeleton  

3.1 Introduction 

STIM1 is multifunctional as evidenced by its regulation of Ca2+ influx through Orai1 (Lis 

et al., 2007; Yuan et al., 2007), association with cytoskeletal proteins such as EB-1/3 

and APC (Grigoriev et al., 2008; Asanov et al., 2013) and focal adhesion turnover (Yang 

et al., 2009; Chen et al., 2011; 2013). The question of how STIM1-mediated Ca2+ 

signaling regulates cytoskeletal-dependent events such as motility, migration and cell 

adhesion has been examined in a range of cell types and models. In migratory cancer 

cells, STIM1 activates SOCE to regulate actin organization, focal-adhesion turnover and 

contractility (Yang et al., 2009; Chen et al., 2011; 2013).	Additionally, in non-neuronal 

cells STIM1 binds to homologs of the end-binding (EB) family, EB1 and EB3 (EB-1/3) to 

form tip attachment complexes at microtubule plus-ends, thereby enabling ER coupling 

to microtubule plus-ends (Grigoriev et al., 2008; Honnappa et al., 2009). In growth cones, 

this coupling would be predicted to actively remodel ER adjacent to microtubule 

polymerization. In this chapter, we sought to examine whether STIM1 interacts with the 

growth cone cytoskeleton, as such interactions could explain how STIM1 regulates 

SOCE-dependent and –independent growth cone steering (Mitchell et al., 2012).  

 

Actin and microtubules act co-operatively to regulate growth cone motility (Rodriguez et 

al., 2003). A number of studies have demonstrated that inhibition of either actin or 

microtubule polymerization disrupts growth cone pathfinding (Marsh and Letourneau, 

1984; Bentley and Toroian-Raymond, 1986; Tanaka et al., 1995). For example, 

destabilization of actin bundles on one side of the growth cone using collapsing factor 

ML-7 inhibited local microtubule protrusion to the growth cone periphery and resulted in 

axon extension away from the treated (collapsing) side (Zhou et al., 2002). Also, 

microtubule extension at the growth cone periphery is required to sustain lamellipodial 

protrusions and growth cone turning (Buck and Zheng, 2002). Local microtubule 
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stabilization using taxol altered growth cone steering by inducing actin-based protrusions 

through Rho-GTPase activity (Buck and Zheng, 2002). This dynamic interplay between 

microtubules and actin is regulated by second messengers such as Ca2+, cyclic 

nucleotides and the Rho GTPases.  

 

The Rho GTPases regulate cytoskeletal phosphorylation and are activated by various 

proteins including the Ca2+-dependent kinases CaMKII and protein kinase C (PKC) (Jin 

et al., 2005b). Cdc42/Rac activation promotes axon growth, while RhoA activation 

inhibits axon growth and favours retraction (Hall, 1998). In growth cones, local rises of 

Ca2+ activate Cdc42/Rac and inactivate RhoA to promote directed axon extension in 

response to guidance cues (Jin et al., 2005b). Rho GTPases might also facilitate the 

localization of Ca2+ signals in the growth cone. Rac1 promotes microtubule/ER protrusion 

to the growth cone periphery and facilitates IP3-dependent Ca2+
ER release in response to 

the signaling cue serotonin (Zhang and Forscher, 2009). Collectively, these studies 

demonstrate a complex interplay of Ca2+-dependent signaling events which converge on 

the cytoskeleton to regulate growth cone motility. This dynamic interplay between 

microtubules and actin is also regulated more directly through the formation of 

cytoskeleton-associated protein complexes. 

 

Drebrin and adenomatous polyposis coli (APC) are two microtubule-actin associated 

proteins which form complexes that mediate structural cytoskeletal interactions within 

growth cones (Geraldo and Gordon-Weeks, 2009). Drebrin is an actin-filament 

associated protein that binds EB3 at polymerising microtubule tips in proximal areas of 

filopodia (Geraldo et al., 2008). By binding EB3, drebrin participates in filopodial 

formation by sustaining microtubule invasion into filopodia at lamellipodial borders 

(Geraldo et al., 2008). In growth cones, actin-microtubule interactions are also regulated 

by APC. The local activation of APC stabilizes actin and microtubules in growth cones 

responding to NGF (Zhou et al., 2004). As a microtubule-tracking protein APC can also 
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regulate spatiotemporal microtubule dynamics by alternatively stabilising and 

destabilising microtubule filaments (Akhmanova and Steinmetz, 2008). Like drebrin, 

APC also binds EB proteins. APC binds EB proteins through a microtubule-tip 

localization motif, which is also present in STIM1 (SxIP, or TxIP in STIM1). STIM1 

associates and dissociates from EB-1/3 in a manner that is dependent on luminal ER 

Ca2+ (Ca2+
ER) content (Grigoriev et al., 2008; Honnappa et al., 2009). Asanov and 

colleagues demonstrated that in HEK293T cells, STIM1 dissociates from EB1 upon store 

depletion and subsequently binds APC to activate the CRAC and induce SOCE at ER-

PM junctions (Asanov et al., 2013).  

 

STIM1 binding to EB-1/3 represents a powerful mechanism for localising ER to 

microtubules. This interaction regulates ER-remodelling (Grigoriev et al., 2008; 

Honnappa et al., 2009) and optimizes  STIM1 localisation for SOCE in non-neuronal cells 

(Smyth et al., 2007). Such a mechanism in growth cones could spatially restrict ER-

induced Ca2+ signals to the cytoskeleton. In support of this idea, STIM1 has been shown 

to distribute asymmetrically to the motile or protruding side of steering growth cones in 

response to BDNF and sema-3a (Mitchell et al., 2012). Given the multifunctional nature 

of STIM1, its active localization could facilitate spatially-restricted SOCE to regulate 

cytoskeletal-dependent growth cone motility. This chapter will examine the role of STIM1 

as a component of tip attachment complexes in growth cones. These experiments will 

help to understand whether the reported interaction between STIM1 and EB-1/3 is a 

mechanism employed in growth cones for ER remodelling and facilitation of SOCE.  

 

Finally, STIM1-mediated SOCE signaling has also been linked to the regulation of focal 

adhesion turnover necessary for cell migration (Yang et al., 2009; Chen et al., 2011; 

2013). Focal adhesions are complexes that couple extracellular substrates to the 

cytoskeleton. The transduction of force required to guide Aplysia growth cones in 

response to extracellular substrates and cues is linked to directed microtubule growth 
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and contractility of the actomyosin system through cell adhesion elements (Suter et al., 

1998). Ca2+ regulates focal adhesion turnover through proteins such as calpain, a 

regulator of actomyosin which drives mechanical forces during cell motility (Huttenlocher 

et al., 1997). Focal adhesion turnover is impaired in breast tumour cells with reduced 

STIM1 expression or following treatment with a SOC channel inhibitor, and this effect 

was rescued by activating the small GTPases Ras and Rac1 (Yang et al., 2009). STIM1 

activates calpain and the tyrosine kinase Pyk2, both known to regulate focal adhesion 

dynamics and migration/motility of cervical cancer cells (Chen et al., 2011). Chen and 

colleagues reported that STIM1 deficiency and drug induced SOCE inhibition disrupts 

actomyosin formation and inhibits cervical cancer cell migration, while STIM1 

overexpression significantly increases the rate of cell migration (Chen et al., 2013). 

STIM1 deficiency inhibits the recruitment and association of focal adhesion kinase (FAK) 

and talin, which associate to regulate adhesion, force transduction and motility (Chen et 

al., 2013). FAKs are required for the formation of adhesion sites in growth cones to 

promote integrin dependent growth cone turning and outgrowth by stabilizing 

lamellipodia (Robles and Gomez, 2006; Myers and Gomez, 2011). For example, 

inhibition of FAK disrupts growth cone adhesion, force generation and mechano-

transduction required for netrin1-induced growth cone attraction (Moore et al., 2012).  

 

In this chapter, we determined whether STIM1 interacts with the growth cone 

cytoskeleton as has been described in non-neuronal cells. We assessed whether STIM1 

regulates the levels or localization of actin, actin and microtubule binding proteins and 

FAK as these are key regulators of growth cone motility and pathfinding. Here, we also 

investigated whether STIM1 forms tip attachment complexes with EB-1/3 and whether 

this association is dependent on the content of Ca2+
ER. STIM1 interactions with the 

growth cone cytoskeleton, would provide a mechanism to explain how STIM1 regulates 

SOCE-independent growth cone steering in response to sema-3a (Mitchell et al., 2012).  
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3.2 Results 

 

3.2.1 STIM1 regulates the expression of actin and focal adhesion kinase in motile 

growth cones  

STIM1-dependent SOCE signaling is required for actomyosin organisation, contractility 

and focal adhesion turnover in migratory cells (Yang et al., 2009; Chen et al., 2011; 

2013). A specific morpholino oligonucleotide was used to reduce STIM1 expression in 

DRG sensory neurons, to determine whether STIM1 regulates the actin cytoskeleton and 

focal adhesion system in motile growth cones in vitro. Sensory neurons treated with 

mispaired (control) morpholino or a specific STIM1 morpholino (STIM1 morphant) were 

immunolabelled and protein expression levels were assessed in randomly extending 

growth cones that were not responding to any externally applied guidance cue. The level 

of filamentous (F)-actin was significantly decreased in growth cones with reduced STIM1 

expression (n=39) compared to control growth cones (n=45; Fig. 3.1.a-b, quantified in 

Fig. 3.1.c). It is likely that impaired SOCE signaling in growth cones with reduced STIM1 

expression indirectly causes the actin cytoskeleton to be less stable resulting in 

decreased F-actin expression.  

 

To investigate the effects of STIM1 on aspects of growth cone adhesion we examined 

the expression of focal adhesion kinase (FAK) in growth cones with reduced STIM1 

expression. Immunoreactivity of FAK was significantly decreased in growth cones with 

reduced STIM1 expression (n=20; Fig. 3.2.b,d,f) compared to growth cones treated with 

control morpholino (n=38; Fig. 3.2.a,c,e, quantified in Fig. 3.2.g). While axon extension 

is not affected in growth cones with reduced STIM1 expression in the short-term (Mitchell 

et al., 2012), previous reports together with the findings presented would support a 

function of STIM1 in regulating force-transduction in growth cones which could perturb 

extension over time.  
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Figure 3.1. STIM1 regulates the level of filamentous (F)-actin in growth cones 

 

(a) Control and (b) STIM1 morphant growth cones labelled for actin (phalloidin, green) 

and STIM1 (red).  

(c) F-actin (as represented by phalloidin integrated pixel intensity) in whole growth cone 

of control (grey bar) and STIM1 morphant (clear bar) sensory neurons. The total number 

of growth cones assessed per group (corresponding to a minimum of 3 separate 

experiments) are displayed within bars on graph. Error bars represent SEM.  

*** p<0.0005; (Students t-test). Scale bar 5μm. 
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Figure 3.2. STIM1 expression regulates focal adhesion kinase in motile growth 

cones 

 

(a-f) Growth cones immunostained for (a-b) focal adhesion kinase (FAK, yellow), (c-d) 

STIM1 (magenta) and (e-f) F-actin using phalloidin (cyan, merge), in (a, c, e) control and 

(b, d, f) STIM1 morphants (growth cones are outlined by dash lines in a-d).  

(g) Total FAK immunoreactivity (as represented by integrated pixel density) in whole 

growth cone of control (grey bar) and STIM1 morphant (clear bar) neurons. Error bars 

represent SEM. 

* p<0.05; (Students t-test). Scale bar 5μm. 
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3.2.2 STIM1 regulates expression of the actin-associated protein drebrin in growth 

cones 

Having determined that STIM1 regulates F-actin expression levels in motile growth 

cones, we next sought to determine the effects of STIM1 on the expression and 

localization of proteins that mediate actin and microtubule interactions, particularly EB3 

and drebrin. In growth cones, drebrin-EB3 interactions mediate actin-microtubule 

dynamics through direct binding. Drebrin, an actin-binding protein, crosslinks with 

microtubules by binding EB3 at the base of growth cone filopodia and facilitates 

microtubule protrusion into filopodia (Geraldo et al., 2008). Given that EB3 binds STIM1 

directly to form tip attachment complexes (Grigoriev et al., 2008), we predicted that the 

expression of drebrin would be disrupted in STIM1-deficient growth cones. In addition, 

since drebrin interacts with EB3 to mediate microtubule extension in filopodia, we also 

sought to determine whether STIM1 is required for the spatial localization of drebrin in 

growth cones.  

 

Randomly extending control growth cones and growth cones with reduced STIM1 

expression were immunolabelled for drebrin and STIM1 (Fig. 3.3.a-b). Prominent drebrin 

expression was observed in the peripheral zone of control and STIM1 morphant growth 

cones, especially at lamellipodial borders (Fig. 3.3.a-b and arrowhead). Drebrin 

immunoreactivity in whole growth cones (control n=21, STIM1 KD n=25; Fig. 3.3.c) and 

at filopodia (control n=86, STIM1 KD n=81; Fig. 3.3.d) was significantly increased in 

growth cones with reduced STIM1 expression, compared to control. The percentage of 

filopodia that were positive for drebrin or STIM1 immunoreactivity (regardless of 

expression level) was analysed in control growth cones (n=21) and growth cones with 

reduced STIM1 expression (n=25; Fig. 3.3.e).  51 ± 5.7% of filopodia in control growth 

cones were positive for drebrin, and 77 ± 5.3 % were positive for STIM1 expression,  
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Figure 3.3. Reduced expression of STIM1 increases drebrin expression at 

filopodial growth cones 

 

(a) Control and (b) STIM1 morphant growth cones were immunolabelled with drebrin 

(green, arrowhead and inset depict prominent expression along lamellipodial border and 

filopodia respectively) and STIM1 (red).  

(c-d) Drebrin immunoreactivity was quantified in (c) whole growth cone and in (d) 

filopodia of control and STIM1 morphant sensory neurons. * p<0.05, **** p<0.0001; 

(Students t-test).  

(e) Proportion of filopodia that are positive for drebrin and STIM1 immunoreactivity in 

control and STIM1 morphant neurons. ** p<0.01, *** p<0.005, **** p<0.0001; (one-way 

ANOVA, Tukey’s multiple comparison test). 

(f) Drebrin-to-STIM1 pixel intensity ratio at filopodia of control and STIM1 morphant 

growth cones. *** p<0.005; (Students t-test). Error bars indicate ± SEM. 

* p<0.05, ** p<0.01, *** p<0.005, **** p<0.0001; (Students t-test, one-way ANOVA, 

Tukey’s multiple comparison test). Scale bar 5μm. 
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while in growth cones with reduced STIM1 expression 81 ± 3.4% of filopodia were 

positive for drebrin, and 48 ± 4.1% were positive for STIM1 (Fig. 3.3.e). To further 

demonstrate that STIM1 expression regulates filopodial drebrin levels, the ratio of 

filopodial drebrin and STIM1 immunoreactivity was calculated and shown to be 

significantly increased in filopodia of growth cones with reduced STIM1 expression 

(n=46) compared to control (n=38; Fig. 3.3.f). As a cross-linker of actin and microtubules 

and a binding partner of EB3, drebrin function was predicted to be altered in growth 

cones with reduced STIM1 expression. These data might potentially suggest a 

compensatory mechanism.  

 

3.2.3 STIM1 localises with EB-1/3 at the periphery of randomly extending growth 

cones in a Ca2+
ER-dependent manner 

Having shown that STIM1 regulates the expression of actin and focal adhesion kinase 

and the expression and localization of the actin-microtubule cross-linker protein drebrin, 

we sought to determine whether STIM1 interacts with the microtubule cytoskeleton 

through binding to the proteins EB-1/3 and APC. The microtubule-binding proteins EB-

1/3 and APC have been previously studied in neuronal growth cones (Stepanova et al., 

2003; Zhou et al., 2004). Whether these proteins interact with STIM1 to form tip 

attachment complexes to remodel ER and activate SOCE in motile growth cones is not 

known. The presence of STIM1-mediated tip attachment complexes in growth cones 

would provide a mechanism for directly localizing ER and Ca2+
ER signals to the 

cytoskeleton. Using immunocytochemistry, bIII tubulin (Fig. 3.4.a-b), EB-1/3 (Fig. 

3.4.a,c), STIM1 (Fig. 3.4.b,c) and APC (Fig. 3.4.c-d) were quantified. As expected, EB-

1/3 expression was localized to polymerizing microtubule plus-ends at the growth cone 

periphery (arrowheads Fig. 3.4.a). STIM1 immunostaining decorated the entire growth 

cone and closely aligned with the microtubule cytoskeleton, particularly at filopodia  
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Figure 3.4. STIM1 colocalises with EB-1/3 and APC at the periphery of sensory 

growth cones and STIM1 dissociates from EB-1/3 following Ca2+
ER depletion.  

 

(a-b) Images of randomly extending sensory neuron growth cones immunostained with 

β-III tubulin (green) and microtubule plus-end binding proteins (a) EB-1/3 (red) or (b) 

STIM1 (red). EB-1/3 and STIM1 align with polymerised microtubules (β-III tubulin) and 

extend into filopodial tips (arrowheads, insets).  

(c) EB-1/3 (red) and APC (green) colocalise along microtubules in central and peripheral 

regions of growth cone (inset depicts colocalised proteins at base of filopodia). (d) APC 

(green) localizes with STIM1 (red) along filopodial compartments (arrowheads, inset). (e) 

Quantified ACP immunoreactivity (as represented by integrated pixel density) in whole 

growth cone of control (grey bars) and STIM1 morphant (clear bars) neurons. * p<0.05; 

(Students t-test). 

(f-g) STIM1 (green) and EB-1/3 (red) colocalisation (inset) (e) before and (f) after Ca2+
ER 

depletion with 50 nM thapsigargin (TG).  

(h) Colocalisation of EB-1/3 and STIM1 in cells treated with vehicle or TG was analysed 

in the whole growth cone and the peripheral zone calculated using Mander’s overlap 

coefficient, where 1 is complete colocalisation. (i) Colocalisation between EB-1/3 and 

STIM1, STIM1 and APC, and EB-1/3 and APC at the growth cone periphery of cells 

treated with vehicle or TG, calculated using Mander’s overlap coefficient. * p<0.05; (One-

way ANOVA, Tukey’s multiple comparison test). Error bars indicate ± SEM. 

* p<0.05; (Students t-test, One-way ANOVA, Tukey’s multiple comparison test). Scale 

bar 5μm. 
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(arrowheads Fig. 3.4.c). APC interacts with EB1 via the short polypeptide motif SxIP, in 

the same manner as STIM1 (Honnappa et al., 2009). Colocalisation of APC with EB-1/3 

(Fig. 3.4.c) and STIM1 (Fig. 3.4.d) was also observed throughout the growth cone and 

peripherally in filopodia (insets Fig. 3.4.c-d). Interestingly, the total expression of APC 

was significantly increased in growth cones with reduced STIM1 expression (n=34) 

compared to control growth cones (n=36; Fig. 3.4.e). This is most likely as a result of 

increased availability of SxIP-binding motif of EB-1/3 in growth cones with reduced 

STIM1 expression, since APC and STIM1 bind EB-1/3 in the same manner to the 

hydrophobic groove of the EB homology domain (Honnappa et al., 2009).  

 

The close apposition of STIM1, EB-1/3 and APC in the growth cone could support the 

presence of a relay mechanism similar to that described previously. In non-neuronal 

cells, a relay mechanism occurs in a Ca2+
ER-dependent manner, where STIM1 

dissociates from EB1 upon ER store depletion to bind APC and facilitate SOCE activation 

(Asanov et al., 2013). To determine whether STIM1 and EB-1/3 associate in growth 

cones in a Ca2+
ER-dependent manner, Ca2+

ER depletion was induced using a 

sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitor, thapsigargin (TG, 

50nM). Thapsigargin has been previously used to activate STIM1 oligomerisation and 

therefore SOCE, in DRG sensory neuron growth cones (Mitchell et al., 2012). Treatment 

with thapsigargin inhibits SERCA pumps, resulting in Ca2+
ER depletion (Gomez et al., 

1995). Following treatment, cells were fixed and immunostained for STIM1, EB-1/3 and 

APC. Significant colocalisation of STIM1 and EB-1/3 along microtubules was observed 

throughout the growth cone and extending into the periphery (Fig. 3.4.f); an interaction 

that was less apparent following treatment with TG (Fig. 3.4.g). Analysis of colocalisation 

using Manders’ overlap coefficient (Manders et al., 1993) revealed that STIM1 and EB-

1/3 colocalisation was significantly reduced in the growth cone periphery following 

treatment with TG (-TG n=13, +TG n=14; *p= 0.0174; Fig. 3.4.h). Colocalisation between 
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STIM1 and APC, or EB-1/3 and APC was not significantly changed following 5 min 

treatment with TG (-TG n=16, +TG n=12; Fig. 3.4.i). These data suggest STIM1 and EB-

1/3 interact as tip attachment complexes at the neuronal growth cone in a manner that 

is dependent on Ca2+
ER. 
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3.3 Discussion  

 

This chapter investigated STIM1 interactions with the growth cone cytoskeleton, 

including actin and microtubule associated proteins and focal adhesion kinases, all key 

regulators of cell motility. Our data demonstrate that expression levels of F-actin and 

FAK are significantly decreased in growth cones with reduced STIM1 expression. These 

findings are consistent with reports that STIM1-dependent SOCE regulates actomyosin 

and focal adhesion turnover in migratory cancer cells (Yang et al., 2009; Chen et al., 

2011; 2013).	Interestingly, in growth cones with reduced STIM1 expression levels of APC 

and drebrin were significantly increased. Moreover, in growth cones with reduced STIM1 

expression, drebrin was significantly upregulated in filopodia. A likely reason for this 

localised upregulation, is that reduced STIM1 expression increased filopodial drebrin 

levels in response to impaired EB3-microtubule protrusion in growth cones, in an attempt 

to promote filopodial stability. Furthermore, STIM1 was localised with the microtubule-

binding proteins EB-1/3 and APC throughout the growth cone and particularly at 

peripheral areas of active growth/remodelling and guidance-cue signaling such as 

filopodia. The close apposition of STIM1 and EB-1/3 expression was dependent on 

Ca2+
ER content, which is consistent with a model of ER remodelling where STIM1 

associates with microtubules when ER stores are replete and dissociates from EB-1/3 

upon store depletion to activate SOCE.		

 

STIM1 has been previously reported to regulate SOCE-dependent BDNF induced 

growth cone attraction, as well as SOCE-independent sema-3a induced growth cone 

repulsion (Mitchell et al., 2012). The mechanisms of STIM1 function in sema-3a induced 

growth cone turning are unclear. STIM1-dependent regulation of growth cone turning in 

response to sema-3a may be due to the STIM1 microtubule binding function. Together 

with our current findings, we suggest that reducing STIM1 below a threshold level 
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perturbs STIM1-mediated SOCE (Mitchell et al., 2012), but also STIM1 regulation of the 

cytoskeleton and adhesion elements.  

 

STIM1 is necessary for the regulation of F-actin, focal adhesions and drebrin  

These data demonstrate that F-actin and FAK levels were significantly decreased in 

randomly extending growth cones with reduced expression of STIM1. As a result, STIM1 

deficient growth cones were often smaller in area, although adhered and extended on 

laminin substrates normally, as axon extension rates were unchanged between controls 

and growth cones with reduced STIM1 expression, as previously reported (Mitchell et 

al., 2012). Axon extension or branching over longer cell culture periods might 

demonstrate that these behaviours are perturbed over time in growth cones with reduced 

STIM1 expression, however time did not permit these experiments. Since STIM1-

dependent Ca2+ signaling regulates focal adhesion turnover, actomyosin organisation 

and cell migration of non-neuronal cells (Yang et al., 2009; Chen et al., 2011; 2013), it 

was not surprising to observe actin and focal adhesion kinase defects in STIM1 deficient 

growth cones.  

 

Ca2+ signaling is a known regulator of growth cone adhesion and motility. Local 

calcineurin-dependent Ca2+ transients in Xenopus neuronal growth cones reduce the 

level of activated FAK (phosphorylated FAK) and lead to growth cone de-adhesion 

(Conklin et al., 2005). Calpain is another Ca2+-dependent effector involved in Xenopus 

axon outgrowth, filopodial Ca2+ signals and growth cone steering through regulation of 

FAK and talin (Kerstein et al., 2017). Given that STIM1-dependent SOCE signaling is 

impaired in growth cones with reduced STIM1 expression (Mitchell et al., 2012) and 

within filopodia of STIM1-deficient Xenopus spinal neurons (Shim et al., 2013) it is 

possible that the defects observed in actin and adhesion systems in the current study 
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are in part the result of disrupted SOCE, but may also reflect defects in STIM1 binding 

of APC, EB3 and the cytoskeleton.  

 

The multifunctional aspect of STIM1 is also supported by the finding that STIM1 

expression is required for growth cone repulsion in response to the Ca2+/SOCE-

independent cue sema-3a. Sema-3a causes accumulation of PTEN (phosphatase and 

tensin homolog deleted on chromosome ten) at the growth cone leading edge, which 

induces growth cone collapse (Chadborn et al., 2006). The phosphatase PTEN mediates 

growth cone collapse or chemorepulsion in response to MAG (and likely also in response 

to sema-3a) by dephosphorylating PIP3 to PIP2 and by negatively regulating b1-integrin 

adhesions (Henle et al., 2013). Prior to being recruited to the growth cone leading edge, 

PTEN is sequestered to microtubules (Chadborn et al., 2006), where it has been shown 

to affect phosphorylation and association of microtubule-associated protein Tau with 

microtubules (Zhang et al., 2006). In light of this, it could be possible that sema-3a 

regulates microtubule dynamics via PTEN to induce growth cone repulsion/collapse, and 

in growth cones with reduced STIM1 expression where microtubule-binding function is 

disrupted growth cones are unable to respond. Furthermore, sema-3a signaling has also 

been linked to Mical-induced disassembly of F-actin in vivo (Hung et al., 2010). Mical is 

an F-actin depolymerizing protein known to function in motor axon guidance (Terman et 

al., 2002), and proposed to regulate complex highly-branched growth cone morphologies 

associated with pausing at choice points (Hung et al., 2010). Since growth cones with 

reduced STIM1 expression have reduced basal levels of F-actin, it is possible that Mical 

function is also subsequently disrupted in STIM1 deficient growth cones. Together these 

mechanisms might help explain the necessity of STIM1 for microtubule, F-actin and 

adhesion regulation necessary for appropriate turning in response to SOCE-independent 

guidance cue sema-3a. 
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Upregulation of drebrin in both growth cones and filopodia of STIM1 morphant growth 

cones illustrates the complex interplay of compensatory signals acting at polymerizing 

microtubules to maintain motility. Overexpression of drebrin has been shown to increase 

levels of F-actin, stabilize adhesion sites and induce axonal growth(Ikeda et al., 1996; 

Geraldo et al., 2008; Mizui et al., 2009), while drebrin deficiency has been correlated to 

reduced F-actin levels in neuronal growth cones (Mizui et al., 2009). Drebrin deficiency 

also inhibits SOCE in Jurkat T cells, and prevents actin rearrangements (Mercer et al., 

2010). Drebrin upregulation is associated with increased microtubule invasion into 

filopodia which in turn stabilize filopodial protrusions and increases the number of 

filopodia (Geraldo et al., 2008). This mechanism likely represents the compensatory 

drebrin effect that was observed here. APC expression was also significantly increased 

in growth cones with reduced STIM1 expression. A decrease in STIM1 expression may 

result in increased availability of the microtubule binding SxIP motif of EB-1/3 in STIM1 

morphant growth cones. This would result in increased APC binding to EB-1/3 at the 

SxIP motif on EB homology domain (Honnappa et al., 2009). The increase in APC 

binding may cause an increase in the expression of drebrin, which does not bind EB3 

via the same motif as APC. This may represent a compensatory mechanism to preserve 

microtubule protrusion into filopodia, in agreement with the observations of Geraldo and 

colleagues (Geraldo et al., 2008). Another possible explanation for APC upregulation in 

growth cones with reduced STIM1 expression is that APC is upregulated to enhance 

SOCE activation with the remaining STIM1.  

 

STIM1 regulates actin and microtubule associated proteins and interacts with EB-

1/3 in a Ca2+
ER-dependent manner  

This chapter demonstrates that colocalisation between STIM1 and EB-1/3 proteins at the 

growth cone periphery is dependent on the level of Ca2+ within the ER.  These 

observations are consistent with previously reported models of ER remodelling and 

SOCE in non-neuronal cells (Grigoriev et al., 2008) where STIM1 binds EB proteins 
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directly and this interaction is crucial for ER remodelling. Depletion of either STIM1 or 

EB1 perturbs ER protrusion, but is distinct from SOCE as knockdown of EB1 does not 

affect SOCE (Grigoriev et al., 2008). In the model proposed by Asanov and colleagues 

(Asanov et al., 2013), EB1 dissociates from STIM1 upon ER store depletion and STIM1 

subsequently associates with APC to facilitate the formation of SOCE channels at ER-

PM junctions. Our results are consistent with the STIM1-EB dissociation model, however 

the relay mechanism in which STIM1 associates with APC following store depletion is 

not supported in our system. While APC is crucial for axon growth and guidance, through 

the regulation of microtubule and actin assembly (Zhou et al., 2004; Koester et al., 2007), 

it might not play a vital role in localising calcium signals as part of a tip attachment 

complex with EB-1/3 and STIM1 in growth cones. Indeed the study by Asanov and 

colleagues (Asanov et al., 2013) reported that APC depletion diminished but did not block 

thapsigargin-induced calcium entry suggesting that APC is important but not crucial for 

SOCE. The results presented here however are limited to the resolution of confocal 

microscopy and it is likely that coupling between STIM1 and APC following store 

depletion could be better detected with more sensitive imaging. Current super-resolution 

imaging techniques have identified that molecules once thought to interact (using less 

sensitive imaging modalities) are in fact positioned in overlapping yet distinct 

nanodomains (Huang et al., 2009). Future experiments are necessary to re-examine the 

relay mechanism and address whether APC facilitates STIM1 clustering at ER-PM 

junctions. These experiments should consider the use of techniques which enable the 

visualisation of molecules at the nanometre scale or single-molecule level including 

super-resolution imaging (Huang et al., 2009) and electron microscopy using 

immunogold labelling (de Harven et al., 1984). Furthermore, experiments using 

overexpression of STIM1 variants that lack functional EB-1/3 and APC binding domains, 

in a STIM1- replete and deplete background may tease out the STIM1-EB-APC relay 

mechanism in growth cones.  
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A model in which STIM1 forms tip attachment complexes with EB-1/3 in growth cones 

and particularly in sub-compartments of the growth cone involved in active guidance cue 

transduction signaling such as the filopodia, would provide the means to localize Ca2+
ER 

signals spatially and temporally. Altogether, these data strongly suggest that STIM1 is 

multifunctional and acts as a key regulator of instructional signals during growth cone 

motility by altering the cytoskeletal organisation in ways that are both SOCE-dependent 

and independent.  

 

These findings prompted further investigation on the association of STIM1 with the 

microtubule cytoskeleton, particularly in growth cones under active control of a guidance 

cue in addition to randomly extending motile growth cones. We asked whether STIM1 

participates in the formation of tip-attachment complexes and regulates the localization 

of ER (and Ca2+) through direct interaction with microtubules in steering growth cones.  
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Chapter 4: STIM1 is required for the spatial distribution and polymerization 

of microtubules in steering growth cones 

4.1 Introduction 

During axon pathfinding, guidance cues activate receptors on the growth cone 

membrane to instruct growth cone motility and steering (Tessier-Lavigne and Goodman, 

1996b; Song and Poo, 1999; Dent and Gertler, 2003; Chilton, 2006). Cue-induced signal 

transduction regulates growth cone motility through the activity of second messengers, 

such as calcium (Ca2+). Ca2+ regulates cytoskeletal rearrangements that alter growth 

cone motility and turning (Kater and Mills, 1991; Gomez et al., 1995; Gomez and Spitzer, 

1999; Song and Poo, 1999; Hong et al., 2000; Zheng, 2000; Henley et al., 2004; Jin et 

al., 2005a; Gasperini et al., 2017). Understanding how Ca2+ signals are regulated in 

growth cones is of particular importance since highly spatial and localized elevations of 

intracellular Ca2+ in filopodial and lamellipodial compartments provide directional 

instruction for growth cone extension and steering (Zheng et al., 1994; 1996; Zheng, 

2000; Gomez et al., 2001; Wen et al., 2004b; Shim et al., 2013). There are two major 

sources of Ca2+ in growth cones: extracellular and intracellular. These sources determine 

and regulate the cytosolic Ca2+ levels that instruct cytoskeletal organization and growth 

cone motility. Transient and localized Ca2+ signals are generated by channels that 

mobilize Ca2+ from the extracellular space, such as TRPC, VGCC or CRAC; or 

intracellular stores, such as IP3R and RyR on the endoplasmic reticulum (Bandtlow et 

al., 1993; Gomez et al., 1995; Tang et al., 2003a; Shim et al., 2013). While we know the 

spatial dynamics of Ca2+ are instructional for growth cone motility, the mechanisms that 

regulate the spatial localization of Ca2+ signals remain unclear. 

 

Store operated Ca2+ entry (SOCE), a STIM1-induced source of Ca2+ which is necessary 

for growth cone pathfinding (Mitchell et al., 2012), is activated to replenish depleted ER 

compartments (Liou et al., 2005; Roos et al., 2005; Zhang et al., 2005). STIM1 
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expression is necessary for growth cone attraction to the Ca2+/SOCE-dependent cue 

BDNF, as well as repulsion to the Ca2+/SOCE-independent cue sema-3a (Mitchell et al., 

2012), indicating that STIM1 may have multiple functions in steering growth cones. 

BDNF induced growth cone attraction is likely to require STIM1 expression to sustain 

Ca2+ signals for the regulation of Ca2+-dependent CaMKII/CaN switch, however the 

mechanisms by which STIM1 regulates sema-3a induced growth cone repulsion are less 

clear. STIM1 expression has been shown to regulate microtubule polymerization and 

organization in mast cells and HEK 293 (Smyth et al., 2007; Hájková et al., 2011b) 

possibly indicating a direct regulatory link between a STIM1-dependent Ca2+ source and 

the cytoskeleton.  Indeed, the ER and microtubule cytoskeleton are highly 

interdependent structures proposed to function in close association to localize ER-

derived signals within cells (Terasaki et al., 1986; Dailey and Bridgman, 1989; 

Waterman-Storer and Salmon, 1998). Ca2+ differentially stabilizes and destabilizes the 

microtubule and actin cytoskeleton in a localized manner to regulate axon extension, 

growth cone motility and steering (Gasperini et al., 2017). However, exactly how Ca2+ 

signals are spatially and temporally localized to the growth cone cytoskeleton to alter 

motility remains unclear. The data presented in chapter 3 suggests that STIM1 may 

regulate the growth cone cytoskeleton in a Ca2+ dependent manner.  

 

Microtubule-associated proteins including the microtubule plus-end tracking proteins, 

regulate spatiotemporal microtubule dynamics by the differential stabilization of 

microtubule filaments (Akhmanova and Steinmetz, 2008). Microtubule plus-end tracking 

proteins also mediate direct interactions between the ER and the microtubule 

cytoskeleton through tip-attachment complexes (Waterman-Storer and Salmon, 1998; 

Akhmanova and Steinmetz, 2008). In chapter 3, we demonstrated that STIM1 localises 

with microtubule associated proteins in particular EB-1/3, and this association was 

dependent on Ca2+
ER content. In non-neuronal cells, the binding of STIM1 and EB-1/3 

facilitates the tracking of ER along microtubules, which in turn optimizes STIM1 
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localisation for SOCE (Smyth et al., 2007). We therefore asked whether the interaction 

between STIM1 and EB-1/3 was a mechanism used to remodel ER and SOCE in steering 

growth cones.  

 

The multifunctional nature of STIM1 and particularly how STIM1 regulates both SOCE 

and microtubule dynamics was investigated using optogenetics, immunocytochemistry 

and pharmacology. The data in this chapter demonstrate the role of STIM1 on 

microtubule polymerisation and recruitment to the motile/steering side during growth 

cone turning. We also investigate whether tip-attachment complexes (comprising STIM1, 

EB-1/3 and APC) translocate within actively turning growth cones to areas requiring 

localized Ca2+ signals.  
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4.2 Results 

 

4.2.1 STIM1 activation is sufficient to steer growth cones 

STIM1 and SOCE are necessary for growth cone steering in response to guidance cues 

(Mitchell et al., 2012; Shim et al., 2013). While ER-derived Ca2+ signals and SOCE are 

required to sustain growth cone attraction in response to BDNF (Li et al., 2005b; Mitchell 

et al., 2012), Ca2+-independent cues such as sema-3a elicit growth cone repulsion in an 

SOCE-independent manner (Mitchell et al., 2012). Growth cone repulsion in response to 

sema-3a however, is abolished following knockdown of STIM1 expression (Mitchell et 

al., 2012), suggesting a non-SOCE function of STIM1 is required for sema-3a repulsion. 

We therefore asked whether STIM1 was both necessary and sufficient to regulate growth 

cone motility, and if STIM1 and SOCE activation per se could steer growth cones in the 

absence of a guidance cue. 

 

To investigate whether STIM1 activation is sufficient to steer growth cones three 

optogenetic variants of STIM1 were used. OptoSTIM1 contains full-length STIM1 and 

activates Ca2+-release-activated Ca2+ (CRAC) channels upon stimulation with blue light 

(Kyung et al., 2015). The light-insensitive OptoSTIM1 variant OptoSTIM1-Cry2(D387A) 

was used as a control (Kyung et al., 2015). To explore the possibility that the STIM1 

interaction with microtubules (Grigoriev et al., 2008)  is necessary to regulate growth 

cone steering, a truncated optogenetic variant of STIM1 was expressed in sensory 

neurons: LOVS1K which lacks the SxIP microtubule-binding domain but retains CRAC 

activity (Pham et al., 2011) (Fig. 4.1.a). The traditional SOCE function of OptoSTIM1 was 

first tested for each construct in HEK293A cells. HEK293A cells transfected with 

OptoSTIM1 were loaded with Fura-2 AM and imaged in the presence of 5-10mM Ca2+. 

Illumination induced transient intracellular [Ca2+] increases in HEK293A cells  
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Figure 4.1. Activation of STIM1 is sufficient to alter growth cone motility. 

 

(a) Schematic depiction of OptoSTIM1, OptoSTIM1-Cry2(D387A) and LOVS1K 

constructs. OptoSTIM1 fusion constructs are labelled with EGFP, while LOVS1K is 

labelled with mRFP. CC2, Coiled-coil domain 2; ERM, ezrin-radixin- moesin domain; 

SxIP, Ser-x-Ile-Pro domain; APC/K, adenomatous polyposis coli (APC)-binding and 

polybasic domain.  

(b) Fluorescence image of Fura-2 intensity in HEK293A cells expressing moderate (left 

cell) or low (right cell) levels of OptoSTIM1, imaged before and after illumination with 

blue light (2 sec stimulation every 4 min). Scale bar 30μm. (c) Relative mean 

fluorescence of Fura-2, normalized to intensity at t=0 (DF/F), where arrows indicate 

illumination time-points. n=13.  

(d) OptoSTIM1 localisation in a DRG growth cone before and after illumination (2 sec 

stimulation every 5 min for 12 min at ROI indicated by dotted rectangle). Arrows indicate 

OptoSTIM1 puncta formed at the stimulated side. 

(e) Change in axon trajectory evident after 12 min stimulation in OptoSTIM1-transfected 

growth cones stimulated with light at bounded ROI (dotted rectangle). 

(f) Average angle of steering from initial trajectory exhibited by growth cones transfected 

with OptoSTIM1-D387A, LOVS1K and OptoSTIM1 in response to light stimulation, where 

positive turning angles correspond to the stimulated side. Unless indicated by bars, 

asterisk represents significance compared to OptoSTIM1-D387A. Error bars indicate ± 

SEM.  

*** p<0.0005; (Mann-Whitney U-test). Scale bars b, 30μm; d-e, 5μm. 
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transfected with moderate levels of OptoSTIM1 compared to cells expressing little or no 

OptoSTIM1 (Fig. 4.1.b-c). Having validated that activation of OptoSTIM1 causes an 

increase in cytosolic [Ca2+], we next activated OptoSTIM1 asymmetrically in growth 

cones. Localised illumination of OptoSTIM1-transfected growth cones caused 

redistribution of the eGFP-tagged protein at the stimulated area, forming aggregates or 

puncta (Fig. 4.1.d, arrows). These likely represented oligomerised STIM1 and potentially 

sites of CRAC. Asymmetric stimulation resulted in significant change in axon angle as 

growth cones turned towards the stimulated side (Fig. 4.1.e). This effect was not 

observed in growth cones expressing the light-insensitive OptoSTIM1-Cry2(D387A) 

(n=9; Fig. 4.1.f). Furthermore, to test whether growth cone reorientation following 

OptoSTIM1 activation requires STIM1 SOCE function as well as microtubule 

interactions, LOVS1K was transfected into neurons and activated asymmetrically in 

extending growth cones. Significantly, LOVS1K-transfected growth cones (n=11) 

exhibited variable angles of steering to asymmetric illumination, which were not 

significantly different from growth cones transfected with OptoSTIM1-Cry2(D387A) (Fig. 

4.1.f). These data suggest that local STIM1 activation is sufficient to trigger growth cone 

steering when SOCE and non-SOCE functions of STIM1 are conserved, and implies that 

in addition to SOCE activation, STIM1 also requires interaction with polymerising 

microtubule tips to facilitate growth cone steering.   

 

4.2.2 STIM1 is necessary for microtubule polymerization and growth cone turning  

The close association of STIM1 and EB proteins at microtubule plus-ends (as 

demonstrated in Chapter 3) suggests that ER tubules interact with polymerizing 

microtubules in growth cones. This mechanism could remodel the ER in growth cones 

to spatially localize and provide a direct source of Ca2+ to support microtubule 

polymerization. Growth cones treated with mispaired (control) morpholino displayed 

regular microtubule distribution, with polymerized microtubules splayed from the central 
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domain of the growth cone into the transition and peripheral domains, as well as filopodial 

tips (Fig. 4.2.a). Growth cones of neurons treated with a specific STIM1 morpholino 

(STIM1 morphant) displayed significantly reduced numbers of polymerized microtubules 

(n=35; Fig. 4.2.b; quantified in Fig. 4.2.g).  

 

We next asked whether the microtubule destabilization observed in growth cones with 

reduced STIM1 expression resulted from perturbed SOCE activity. We investigated the 

role of the binding partner of STIM1, Orai1, on microtubule polymerization. Since Orai1 

does not bind microtubules, any changes to microtubule polymerization observed in 

growth cones with reduced Orai1 expression would result from altered SOCE signaling. 

Reducing the expression of Orai1 using Orai1-specific siRNA oligonucleotides did not 

alter microtubule polymerization in growth cones (n=19; Fig. 4.2.c; quantified in Fig. 

4.2.g). Importantly, expression of polymerised and non-polymerised bIII-tubulin as 

measured by immunocytochemistry was unchanged in growth cones with reduced 

expression of STIM1 (n=50) or Orai1 (n=19), compared to control growth cones (n=46; 

Fig. 4.2.h).  

 

To further investigate the mechanisms by which STIM1 regulates microtubule 

polymerisation, DRG neurons were transfected with a mutant STIM1: STIM1-DK, which 

retains the SxIP domain but lacks a C-terminal polybasic motif required for targeting ER 

to the plasma membrane (Liou et al., 2007). Overexpression of STIM1-DK has been 

previously used to separate two STIM1 processes; oligomerization following Ca2+
ER 

depletion and translocation of STIM1 to ER-PM junctions for the formation of store 

operated Ca2+ channels (Liou et al., 2007). STIM1-DK mutant is able to oligomerise, but 

fails to recruit STIM1 puncta to ER-PM junctions for SOCE in HeLa cells, suggesting the 

polybasic motif is required for such recruitment (Liou et al., 2007). It is reasonable to infer 

that if microtubule polymerization was perturbed in growth cones overexpressing STIM1-
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DK, then microtubule disruption in growth cones with reduced STIM1 expression is likely 

to result from failure of STIM1 to participate in SOCE. To test this idea, DRG neurons 

were transfected with STIM1-DK and growth cones were immunostained for STIM1 and 

microtubules. Overexpression of STIM1-DK in wild-type growth cones did not alter 

microtubule polymerization of DRG growth cones compared to control growth cones 

(n=21; Fig. 4.2.d; quantified in Fig. 4.2.g). However, it has been reported that STIM1-DK 

can also oligomerise with endogenous STIM1 and be recruited to the plasma membrane 

via the polybasic tail of wild-type STIM1 (Liou et al., 2007). We subsequently expressed 

STIM1-DK in growth cones with reduced STIM1 expression. Overexpression of STIM1-

DK in growth cones with reduced STIM1 expression did not alter microtubule 

polymerization compared to control growth cones (n=11; Fig. 4.2.e; quantified in Fig. 

4.2.g). Taken together, these data suggest that reduced microtubule polymerization in 

STIM1 morphant growth cones does not result from impaired SOCE, but it is more likely 

the result of disrupting the function of STIM1 at the microtubule plus-end.  

 

We next asked whether pharmacological stabilization of microtubules might “rescue” the 

microtubule phenotype observed in growth cones with reduced STIM1 expression. 

Epothilones promote the polymerization of tubulin monomers into microtubules, and 

when used at higher concentrations, can cause cell cycle arrest and cytotoxicity as a 

result of microtubule hyperstabilisation (Bollag et al., 1995). When used at lower 

concentrations however, epothilone D (EpoD) has neuroprotective effects in models of 

Parkinson’s disease (Cartelli et al., 2013) and tauopathy (Brunden et al., 2010). A low 

concentration of 0.1nM EpoD has been reported to promote microtubule polymerization 

of injured neurons in vitro (Brizuela et al., 2015). Using this concentration, we observed 

that the number of polymerized microtubules in growth cones with reduced STIM1 

expression following treatment with 0.1nM EpoD was significantly increased compared 

to untreated STIM1 morphant growth cones (n=18; Fig. 4.2.f; quantified in Fig. 4.2.g).  
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Having found that microtubule polymerization in STIM1 deficient growth cones could be 

normalized using EpoD, we next investigated whether promoting microtubule 

polymerization could “rescue” the turning phenotype exhibited by growth cones with 

reduced STIM1 expression in response to the guidance cues BDNF and sema-3a. 

Consistent with our previous work (Mitchell et al., 2012), reducing STIM1 expression 

reversed attractive growth cone turning in response to BDNF (n=21), and abolished 

repulsion in response to sema-3a (n=19; Fig. 4.3.a). EpoD treatment did not rescue 

turning to BDNF (n=11) or sema-3a (n=13) in STIM1 morphants, which remained 

significantly different from controls treated with the same concentration of EpoD (Fig. 

4.3.a). Axon extension was significantly increased in growth cones with reduced STIM1 

expression after treatment with EpoD, as a result of enhanced microtubule 

polymerization (Fig. 4.3.b). EpoD-treatment groups displayed increased variability in 

turning data and increased axon extension during imaging, likely suggesting that EpoD 

enhanced axon outgrowth rather than directional behaviour of growth cones, highlighting 

differences between the two distinct processes. These results demonstrate that while 

STIM1 is required for net polymerisation at microtubule plus-ends, pharmacological 

stabilization of microtubules is insufficient to rescue turning in growth cones with reduced 

STIM1 expression. Altogether, these findings reflect a necessity for multiple STIM1 

functions during turning including the regulation of SOCE and recruitment of 

microtubules, which is in agreement with previous reports (Mitchell et al., 2012).		

 

4.2.3 STIM1 is required for EB3 movement and recruitment in sensory neuron 

growth cones 

	
The data above demonstrates that STIM1 is required for microtubule polymerization.  
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Figure 4.2. STIM1 is necessary for microtubule polymerization in randomly 

extending sensory growth cones.  

 

(a-f) Images of sensory neuron growth cones immunostained with β-III tubulin (green) 

and STIM1 (red). Growth cones were treated with (a) control morpholino, (b) STIM1 

morpholino, (c) Orai1 siRNA; or were transfected with STIM1-DK in (d) wild type (WT) or 

(e) STIM1 knockdown (STIM1 KD) growth cones; or were treated with (f) STIM1 

morpholino and microtubule-stabilizing drug Epothilone-D (EpoD).  

(g) Number of polymerised microtubules in growth cones of all treatment groups 

(normalized to growth cone area). (h) Total β-III tubulin immunoreactivity measured by 

integrated density, in control, STIM1 morphant and Orai1 knockdown growth cones was 

unchanged.  

* p<0.05, ** p<0.01; (One-way ANOVA, Tukey’s multiple comparison test). Scale bar 

5μm. 
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Figure 4.3. Microtubule-stabilization with epothilone-D does not rescue turning in 

STIM1 morphant growth cones. 

 

(a) Average turning angles in response to vehicle, BDNF and sema-3a, in normal and 

EpoD treatment conditions for control and STIM1 morphant growth cones. Growth cone 

turning response was analysed following treatment with 0.1nM EpoD (bath applied). (b) 

Axon growth/extension during imaging was increased in most EpoD treatment groups 

compared to vehicle. Unless otherwise specified, asterisks represent significance 

compared to vehicle. * p<0.05, ** p<0.01, *** p<0.0005, **** p<0.0001; (Mann-Whitney 

U-test). 
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To determine whether STIM1 also regulates microtubule dynamics such as rate of 

growth and trajectory of microtubules, EB3-YFP overexpression was used to localize the 

polymerizing tips of microtubules in real-time.  Consistent with previous reports 

(Stepanova et al., 2003; Geraldo et al., 2008), neurons transfected with EB3-YFP 

demonstrate comet-like dashes in all neuronal compartments, including the growth cone 

(Fig. 4.4.a-b). Live imaging of sensory neurons co-transfected with EB3-YFP and control 

morpholino revealed that EB3 dashes spread from the central domain of the growth cone 

to the peripheral domain, extending out to filopodial tips (Fig. 4.4.a, arrows and insets). 

The trajectories of EB3-YFP dashes at the growth cone moved from the distal axon 

towards the filopodial tips and reflected anterograde growth, consistent with previous 

reports (Stepanova et al., 2003). Sensory neurons co-transfected with EB3-YFP and 

STIM1 morpholino displayed disrupted EB3 dash behaviour compared to control 

neurons (Fig. 4.4.a-b, inset depicts distance of dash protruded into filopodia over the 

same time). Closer examination revealed that growth cones with reduced STIM1 

expression displayed EB3 dashes which tracked shorter distances and moved at slower 

rates compared to control growth cones (Fig. 4.4.c-d and Table. 4.1). The number of EB3 

dashes observed per single frame (acquisition every 6 sec for 10 min) was averaged and 

normalized to whole growth cone area (μm2), to account for growth cone size variability. 

Although not significantly different, a trend was observed where average dash numbers 

within growth cones with reduced STIM1 expression were decreased compared to 

control growth cones (Table. 4.1). In control growth cones 82% of dashes could be traced 

for >4μm, while only 33% could be traced for >4μm in STIM1 deficient growth cones. 

Average EB3 dash velocity was significantly reduced in STIM1 morphant growth cones 

compared to control (Table. 4.1). Since average EB3 dash velocity is a measure of 

microtubule polymerization rate (Stepanova et al., 2003), these data suggest microtubule 

polymerization is perturbed in neurons with reduced STIM1 expression. We also 

observed that average distance travelled by a single dash was significantly reduced in 
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STIM1 morphant growth cones (0.71 ± 0.26μm) compared to control (1.07 ± 0.36μm) 

(Table. 4.1). Furthermore, average track length calculated from the sum of the distance 

travelled by an individual dash was also significantly reduced in STIM1 deficient growth 

cones (3.81 ± 1.58μm) compared to control (9 ± 5.85μm) (Table. 4.1). These results 

demonstrate that growth cones with reduced STIM1 expression exhibit perturbed EB3 

dash dynamics, further supporting a role for STIM1 in the regulation of microtubule 

function.   

 

Filopodia are key signalling domains in growth cones. Ca2+ regulation would be expected 

to have crucial functions in these peripheral structures. EB3 dashes were observed 

protruding to the periphery of control growth cones and often extended into filopodia, 

however in growth cones with reduced STIM1 expression EB3 dashes were spatially 

restricted to the central domain (Fig. 4.4.d), Given the importance of microtubule 

protrusion into filopodia during steering (Dent et al., 1999), we next examined whether 

STIM1 was required for EB3 dash recruitment to filopodia. First, the number of filopodia 

were quantified and found to be significantly increased in control growth cones 

overexpressing EB3-YFP (n=12) compared to non-transfected control (n=32) and STIM1 

morphant growth cones (n=30; Fig. 4.4.e). Increased filopodial formation in control 

growth cones overexpressing EB3-YFP most likely results from enhanced recruitment of 

microtubules and microtubule-binding effectors such as drebrin to the growth cone 

periphery (Geraldo et al., 2008). Furthermore, enhanced filopodial formation in growth 

cones overexpressing EB3-YFP required STIM1 expression as this effect was not 

observed in EB3-YFP-transfected STIM1 morphant growth cones (n=17; Fig. 4.4.e). 

Significantly, control and STIM1 morphant growth cones that were not transfected with 

EB3-YFP showed comparable numbers of filopodia (Fig. 4.4.e), indicating little 

compensation by other microtubule-binding effectors or that STIM1 has no effect on the 

initial formation of filopodia.  
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Figure 4.4. STIM1 regulates EB3 recruitment and dynamics at the periphery of 

sensory growth cones.  

 

(a-b) Microtubule dynamics were examined using EB3-YFP in (a) control and (b) STIM1 

morphant growth cones. Representative images depict EB3 comet-like dashes, including 

movement into filopodia (arrows, insets depict movement of filopodial EB3 dash over 14 

sec).  

(c-d) Composite of EB3-YFP dashes in (c) control and (d) STIM1 morphant growth 

cones, colour-coded for dash velocity (μm/sec), comprising of 5-7 dashes from 3 growth 

cones per group (control and STIM1 morphant).  

(e) Total number of filopodia in control and STIM1 morphant growth cones, with or 

without EB3-YFP overexpression. * p<0.05, ** p<0.01; (One-way ANOVA, Tukey’s 

multiple comparison test). (f) Percentage of filopodia that present EB-1/3 dash 

immunoreactivity (endogenous) in control and STIM1 morphant growth cones. (g) 

Percentage of filopodia that present EB3 dashes in control and STIM1 morphant growth 

cones which overexpressed EB3-YFP. Column graphs display controls in grey bars and 

STIM1 morphants in clear bars. n-values are displayed within bars on graph.  * p<0.05, 

*** p<0.0005; (Student’s t-test).  

* p<0.05, ** p<0.01, *** p<0.0005; (Student’s t-test, One-way ANOVA, Tukey’s multiple 

comparison test). Scale bar 5μm. 
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Table 4.1. Reduced STIM1 expression disrupts EB3 dash dynamics. 

 

a Images acquired every 6 seconds. Number of dashes/EB3 comets per frame, were 

normalized to growth cone area. b μm/sec ± SD. c Value calculated from average of 

distance travelled by a single dash per frame.  

* p<0.05, **** p<0.0001; (Student’s t-test). 
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Filopodia of STIM1 deficient growth cones (n=35) exhibited fewer endogenous EB-1/3 

dash-like puncta compared to control growth cones (n=26; Fig. 4.4.f). In STIM1 morphant 

growth cones overexpressing EB3-YFP (n=17), filopodia were also less likely to contain 

EB3 dashes and when present these dashes protruded slower than EB3 dashes in 

filopodia of control growth cones (n=12; Fig. 4.4.g and Table. 4.1). These findings 

demonstrate that reducing STIM1 expression in growth cones disrupts EB3 dash velocity 

and track length, which in turn decreases microtubule polymerisation and disrupts 

organisation/protrusion of microtubules to peripheral structures of the growth cone 

involved in active signal transduction, such as the filopodia.   

 

4.2.4 The spatial organization of microtubules and microtubule-associated 

proteins necessary for appropriate growth cone turning requires STIM1 

expression 

If STIM1-EB interactions are important for ER remodelling and microtubule 

polymerisation in pathfinding growth cones as the data presented here suggests, then 

reducing STIM1 expression should disrupt the recruitment of EB dashes to the motile 

side of turning growth cones responding to guidance cues. To test this idea, we 

examined the dynamics of EB3 dashes in control and STIM1 morphant growth cones in 

response to pulsatile microgradients of the attractive guidance cue BDNF or the repulsive 

guidance cue sema-3a using time-lapse imaging (Fig. 4.5). As reported previously 

(Mitchell et al., 2012), growth cone attraction in response to BDNF was reversed and 

repulsion to sema-3a was abolished in growth cones with reduced STIM1 expression 

(Fig. 4.5.a). By dividing growth cone images symmetrically at the midline extending from 

the peripheral domain to the axon, “near” and “far” side of growth cones were defined 

relative to the source of guidance cue (Fig. 4.5.b). Analysis of EB3-YFP dash trajectories 

using a near/far ratio (Fig. 4.5.c) revealed that EB3 dashes, and by  



	 90	

Figure 4.5. STIM1 expression regulates EB3-YFP recruitment to the steering side 

of turning growth cones.  

 

(a) Average turning angles in response to vehicle, BDNF and sema-3a, in control (grey 

bars) and STIM1 morphant (white bars) growth cones. * p<0.05, ** p<0.01; (Mann-

Whitney U-test).  

(b) Schematic representation of turning assay depicting “near” and “far” side of growth 

cone used to calculate EB3-YFP-labelled tracks, where near (N) side is closest to source 

of guidance cue compared to far (F) side, in control and STIM1 morphant growth cones 

turning in response to BDNF and sema-3a. (c) Near/Far ratio of EB3-YFP-labelled tracks.  

(d-g) Polar plots depicting displacement and angle of trajectory of individual EB3 dashes 

calculated from time-lapses of control (d and f) and STIM1 morphant (e and g) growth 

cones (n=3 per group) responding to a gradient of (d-e) BDNF and (f-g) sema-3a. 

Representative control and STIM1 morphant growth cones turning to BDNF and sema-

3a display EB3-YFP-labelled tracks quantified over 12 min (color-coded for average 

velocity per dash, μm/sec). Dash tracks displayed anterograde movement at the growth 

cone.  

* p<0.05, ** p<0.01, *** p<0.0005, **** p<0.0001; (Student’s t-test). Scale bar 5μm.
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implication polymerising microtubule tips, translocate to the motile/turning side of control 

growth cones turning to BDNF (near or attractive side, n=6) and sema-3a (far or repulsive 

side, n=5). Analysis of growth cones with reduced STIM1 expression responding to 

BDNF (n=5) revealed that EB3 dashes translocated to the far/repulsive side and were 

distributed randomly in response to sema-3a (n=6; Fig. 4.5.c), consistent with the turning 

results (Fig. 4.5.a). Analyses of dash trajectory and displacement were also visualised 

using polar plots and by creating superimposed composite reconstructions of EB3 

dashes in individual growth cones exposed to BDNF (Fig. 4.5.d-e) or sema-3a (Fig. 4.5.f-

g). These data illustrate that EB3 dashes, representing polymerising microtubules, 

translocate to the steering/turning side of growth cones. Moreover, EB3 dash 

translocation in turning growth cones was dependent on STIM1 expression, implying a 

necessity of the STIM1-EB interaction for the regulation of microtubule distribution and 

ultimately growth cone motility in response to guidance cues.  

 

The work above examined EB3 movement in growth cones overexpressing EB3-YFP. 

We next confirmed that this data extended to endogenous microtubules and the 

microtubule-associated proteins involved in tip-attachment complexes, in steering 

growth cones. To assess the endogenous distribution of these microtubule-binding 

proteins during steering, growth cones exposed to asymmetric gradients of vehicle (Fig. 

4.6.a), BDNF (Fig. 4.6.b) and sema-3a (Fig. 4.6.c) were rapidly fixed following steering 

and processed for immunocytochemistry. EB-1/3, APC and bIII tubulin 

immunoreactivities were analysed in the near and far side of growth cones (as depicted 

in schematic Fig. 4.6.d) with reduced expression of STIM1 or Orai1 (as knockdown of 

Orai1 tests SOCE function independently of microtubule-binding). BDNF-induced growth 

cone turning (Fig. 4.6.e) and near/far ratio of polymerized microtubules (Fig. 4.6.f) were 

significantly reversed in growth cones with reduced STIM1 expression (n=17; turning 

angle p<0.0001; N/F microtubule ratio p<0.0005) and reduced Orai1 expression (n=10; 

turning angle p<0.0001; N/F microtubule ratio p<0.05) compared to controls (n=31). In 
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response to sema-3a, average turning angles (Fig. 4.6.e) and near/far ratio of 

polymerized microtubules (Fig. 4.6.f) were abolished (not significantly different from 

vehicle) in growth cones with reduced STIM1 levels (n=22; turning angle p<0.0001; N/F 

microtubule ratio p<0.05) and Orai1 levels (n=9; turning angle p<0.0001; N/F microtubule 

ratio p<0.05) compared to controls (n=33). These data demonstrate that STIM1 and 

Orai1 are required for growth cone turning in response to BDNF and sema-3a, and that 

disruption of SOCE-machinery results in loss of microtubule recruitment. Reduction of 

Orai1 expression and hence SOCE at the growth cone likely impairs STIM1 function, 

subsequently inhibiting the ability of STIM1 to localize the cytoskeleton. No significant 

changes were observed in tubulin immunoreactivity measured using pixel intensity 

amongst the different treatment groups (Fig. 4.6.g), suggesting the total protein level of 

tubulin is not affected and the likely cause of impaired growth cone turning relates to a 

loss of polymerization and recruitment of microtubules to the appropriate steering/turning 

side.  

 

Consistent with our data demonstrating EB3-dash recruitment to the steering side of 

turning growth cones (Fig. 4.5), there was a significant loss of endogenous EB-1/3 

recruitment, in terms of near/far ratio of EB-1/3 puncta (Fig. 4.6.h) and pixel intensity (not 

shown) in response to BDNF (STIM1 morphant p<0.01; Orai1 knockdown p<0.0005 

compared to control) and sema-3a (STIM1 morphant p<0.05; Orai1 knockdown p<0.05 

compared to control). APC localization to the turning side of growth cones (Fig. 4.6.i), 

was abolished in STIM1 deficient growth cones turning to BDNF (n=13; p<0.05 

compared to control, n=6) and appeared to trend towards even distribution in growth 

cones with reduced STIM1 expression responding to sema-3a (n=8; p>0.05 compared 

to control, n=11). Taken together, these data support a mechanism in which EB-1/3 and 

APC interact with STIM1 at the polymerizing microtubule plus-end, possibly via tip-

attachment complexes, to mediate microtubule-ER association in steering growth cones. 
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In this manner, STIM1 and microtubules coordinate the translocation of ER membranes 

and SOCE machinery to the steering/turning side of growth cones.  
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Figure 4.6. STIM1 is required for EB-1/3 and APC recruitment to the steering side 

of turning growth cones.  

 

(a-c) Representative images of growth cones turning in response to microgradients of 

(a) vehicle, (b) BDNF, and (c) sema-3a. Growth cones fixed immediately post-turn were 

immunolabelled for β-III tubulin (green), EB-1/3 (red), and APC (blue). In all cases, the 

pipette delivering guidance cue was positioned top-left corner creating an asymmetric 

microgradient as depicted in (d). (e) Average turning angles in response to vehicle, 

BDNF and sema-3a, in growth cones treated with control morpholino (grey bars), STIM1 

morpholino (white bars) and Orai1 siRNA (black bars). Key applies to (e-h). ** p<0.01, 

*** p<0.0005, **** p<0.0001; (Mann-Whitney U-test). 

(f) Near/Far ratio of polymerized microtubules showed loss of recruitment to the 

appropriate turning side in response to BDNF and sema-3a in growth cones with reduced 

STIM1 or Orai1 expression. (g-i) Graph of (g) β-III tubulin pixel intensity near/far ratio, 

(H) EB-1/3 and, (i) APC puncta near/far ratio in response to vehicle (circles), BDNF 

(squares) and sema-3a (triangles). All treatments were compared to vehicle control, 

unless otherwise shown. * p<0.05, ** p<0.01, *** p<0.0005; (Student’s t-test).  

* p<0.05, ** p<0.01, *** p<0.0005, **** p<0.0001; (Student’s t-test, Mann-Whitney U-test). 

Scale bar 10μm. 
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4.3 Discussion  

 

Growth cone motility is critically dependent on the spatiotemporal regulation of 

intracellular Ca2+ (Zheng, 2000) and while Ca2+ regulates cytoskeletal dynamics 

indirectly through downstream effectors, physical links between microtubules and a Ca2+-

source such as the ER have not been largely studied in growth cones until recently. 

STIM1-dependent regulation of SOCE and tip-attachment complexes is important for 

microtubule polymerization and is likely necessary for ER remodelling and localization of 

ER-derived Ca2+ signals within growth cones. The functional consequences of ER 

remodelling have, until now, been largely ignored in neuronal cells. Using STIM1 and 

EB-1/3 as markers of ER and microtubules, this chapter has demonstrated the close 

association between the ER and microtubule cytoskeleton in central and peripheral 

domains of steering growth cones. The components of tip-attachment complexes and 

cross-linkers of microtubules and ER have not been investigated at the periphery of the 

growth cone until now. Our previous results (chapter 3) indicated that the association of 

STIM1 and EB-1/3 is Ca2+
ER-dependent. Here we also demonstrate that this association 

is functional and necessary for steering/turning growth cones. STIM1-mediated ER 

remodelling in growth cones would support the spatial localization of Ca2+ signals 

required for axon pathfinding, a mechanism that has not been previously investigated.  

 

STIM1 regulates microtubule polymerization in steering growth cones 

In this study, reduced STIM1 expression decreased the number of polymerized 

microtubules in randomly extending growth cones. Analysis of endogenous EB-1/3 

protein distribution after steering to BDNF or sema-3a, and EB3-YFP dash trajectories 

were also disrupted in growth cones with reduced STIM1 expression. Significantly fewer 

EB-1/3 dashes were observed in filopodia of STIM1 morphant growth cones. This finding 

suggests that STIM1 expression is necessary for the advancement or protrusion of 
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polymerizing microtubules into filopodia, where they are necessary to sustain growth 

cone motility and extension.  

 

Imaging experiments presented in this chapter have demonstrated that the number of 

filopodia remained unchanged between control growth cones and those with reduced 

STIM1 expression. Interestingly, control growth cones overexpressing EB3-YFP 

exhibited greater number of filopodia most likely through enhanced recruitment of 

effectors such as drebrin. Indeed, reports have demonstrated that upregulation of drebrin 

stabilizes filopodial protrusions and increases the number of filopodia in COS-7 cells 

(Geraldo et al., 2008). However, filopodial numbers were unchanged in growth cones 

with reduced STIM1 expression transfected with EB3-YFP despite having found in the 

previous chapter that filopodial drebrin is upregulated in STIM1 morphant growth cones 

(see chapter 3). This supports the idea that drebrin upregulation alone is insufficient to 

“rescue” filopodial defects. 

	

Multifunctional role of STIM1 in the regulation of SOCE and ER-remodelling is 

dependent on a threshold expression level  

Associations between SOCE and microtubule polymerization have been previously 

demonstrated. In HEK293 cells, microtubule depolymerisation using nocodazole 

inhibited SOCE, and this is significantly reversed in cells overexpressing STIM1-YFP 

(Smyth et al., 2012). It is likely that perturbing aspects of one function of STIM1, for 

example SOCE or microtubule regulation, can affect the ability of STIM1 to function in 

other signaling mechanisms. We propose that STIM1 expression but more importantly a 

crucial level/threshold of STIM1 expression is required for STIM1 to appropriately 

regulate SOCE and tip-attachment complex functions. In line with this idea, our data 

suggests that asymmetric activation of OptoSTIM1 but not LOVS1K induces growth cone 

motility, supporting the notion that both SOCE and microtubule-binding functions of 

STIM1 are necessary for the regulation of growth cone motility. Our findings that 
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LOVS1K activation does not induce a change in growth cone motility could suggest that 

SOCE is not necessary for growth cone pathfinding. However LOVS1K has limitations 

including different activation kinetics compared to OptoSTIM1 (Pham et al., 2011; Kyung 

et al., 2015) and the absence of a lysine-rich tail which has been shown to be necessary 

for SOCE activation in non-neuronal cells (Huang et al., 2006). Future experiments could 

include examining LOVS1K distribution post-light stimulation and simultaneously 

measuring calcium levels during optogenetic stimulation, in order to determine whether 

LOVS1K is able to oligomerise and induce SOCE in growth cones. 

 

Our experiments predicted that if microtubule polymerization was reduced in STIM1-

deficient growth cones, reduced Orai1 expression in growth cones would also perturb 

microtubule polymerisation. While we did not observe a significant change in the number 

of polymerized microtubules in growth cones with reduced Orai1 expression compared 

to control, such a defect could be masked by an underlying compensatory mechanism 

and binding of STIM1 to isoforms of Orai1 and/or TRPC channels. If that was the case, 

reduced Orai1 expression should not have disrupted growth cone turning in response to 

guidance cues. Since growth cone turning and the distribution of polymerized 

microtubules were disrupted in response to either STIM1 or Orai1 knockdown, we 

conclude that appropriate growth cone steering requires the integration of SOCE 

activation and organized spatiotemporal regulation of microtubules. Knockdown of Orai1 

disrupts SOCE, which in turn disrupts STIM1 and hinders STIM1 function as a regulator 

of microtubule organization.  

 

It is possible that for STIM1 to function appropriately as a regulator of steering, a 

threshold level of STIM1 and Orai1 expression is required and when either function is 

disrupted, dysregulation of all STIM1 functions results. This is a likely possibility, given 

that overexpression of the mutant STIM1-DK (Liou et al., 2007) in STIM1 morphant 

growth cones rescued the number of polymerized microtubules. In this case, STIM1-DK 
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was unable to participate in SOCE but retained microtubule-binding/tracking abilities, 

theoretically allowing ER to be remodelled through tip-attachment complexes. STIM1 

morphants with increased expression of STIM1-DK exhibited normal numbers of 

polymerized microtubules as STIM1-DK retains microtubule binding function that is able 

to restore the functional STIM1 threshold. However, steering of STIM1 morphant growth 

cones expressing STIM1-DK (data unavailable as time did not permit) would be predicted 

to be perturbed as SOCE is required for growth cone turning (Mitchell et al., 2012) and 

microtubule dynamics (Smyth et al., 2007; Hájková et al., 2011b). In addition, the 

directionality of the microtubules after reducing endogenous STIM1 levels and 

overexpressing STIM1-DK, while not quantified, appeared quite different to controls, 

suggesting that full function of STIM1 is required to regulate microtubule orientation and 

recruitment. The concept that a threshold level of regulatory proteins is required to 

promote specific functions has been reported in many other cell systems. Examples of 

this include threshold levels of APC to protect against intestinal tumorigenesis (Li et al., 

2005a); PKA/cAMP levels to promote fungus growth (Pereyra et al., 2000); glucocorticoid 

receptor levels to promote leukemic cell apoptosis (Schwartz et al., 2010); and DNA 

methyltransferase 1 levels to maintain genomic methylation in human cells (Spada et al., 

2007). We therefore propose that a threshold level of STIM1 is crucial and necessary for 

the regulation of SOCE and tip-attachment complexes in steering growth cones.  

 

Our finding that treatment of STIM1 morphant cells with the microtubule-stabilising 

compound EpoD, while rescuing the number of polymerized microtubules, did not rescue 

turning to BDNF and sema-3a, suggests that promoting microtubule polymerization 

alone is insufficient to restore a turning phenotype, as Ca2+ signal localization remains 

perturbed. Local and selective stabilization of microtubules has been previously shown 

to initiate and instruct directional growth cone steering (Buck and Zheng, 2002). Taken 

together, an interplay between functional microtubule growth and localization, with 
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appropriate Ca2+ signaling is necessary for instructive cytoskeletal-driven growth cone 

steering.  

 

STIM1 serves as a direct link between microtubules and ER to localize Ca2+ signals 

necessary for growth cone steering 

We observed that EB-1/3 was spatially redistributed to the turning side of growth cones 

in response to BDNF and sema-3a, consistent with our hypothesis that STIM1 forms tip-

attachment complexes with EB-1/3. Significantly, the spatial reorganization of EB-1/3 

was dependent on STIM1 expression. These findings indicate that STIM1 is important 

for the coupling of ER to microtubules and the distribution/localization of microtubules, 

and suggests that STIM1 participates to link instructive microtubule reorganization and 

Ca2+ signaling. This data is in concordance with reports demonstrating STIM1 

translocation to the turning side of growth cones responding to Ca2+-dependent guidance 

cues (Mitchell et al., 2012) in a manner that facilitates spatial Ca2+ signals to regulate 

growth cone steering (Zheng, 2000). Previously, asymmetric Ca2+ transients and 

microtubule reorganization have been linked by microtubule-associated protein Tau (Li 

et al., 2013). The morphogen Wnt5a elicits axon extension and growth cone repulsion 

by distinct mechanisms that either activate TRP channels and IP3R for axon extension, 

or TRP channels alone for growth cone repulsion (Li et al., 2009). Li and colleagues (Li 

et al., 2013) showed that Wnt5a-induced growth cone chemorepulsion was facilitated by 

Tau-mediated microtubule organization and upon CaMKII inhibition, which inhibits Tau 

phosphorylation, microtubule reorganization was prevented. Our data suggests that 

STIM1 provides a direct link between the microtubule cytoskeleton and the ER-derived 

Ca2+ signal, rather than indirectly through downstream effectors of Ca2+ such as CaMKII, 

potentially providing a more efficient regulatory mechanism to instruct growth cone 

steering.  
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The spatial regulation of Ca2+ signaling to the cytoskeleton to instruct growth cone motility 

has been mostly studied in the context of indirect mechanisms that signal through 

molecules such as IP3 (Akiyama et al., 2009), phosphatidylinositol 3-kinase 

(PI3K)/glycogen synthase kinase 3β (GSK-3β)/APC (Zhou et al., 2004), and 

PI(3,4,5)P3/Akt/TRPC (Henle et al., 2011). For example, microtubule advance into the 

growth cone peripheral domain is facilitated by PI3K downstream of Ca2+ and facilitates 

microtubule-dependent membrane trafficking (Akiyama and Kamiguchi, 2010). 

Microtubule excursions into the growth cone periphery are blunted in the presence of 

PI3K inhibitors, which in turn also abolish vesicle transport known to occur in response 

to Ca2+ signals (Akiyama and Kamiguchi, 2010). PI3K catalyses the production of PIP3 

from PI(4,5)P2 to activate a number of downstream effectors including the kinase Akt, 

which when activated asymmetrically, can regulate growth cone attraction (Henle et al., 

2011). Growth cone attraction by PIP3/Akt signalling requires TRP channel activation and 

downstream Ca2+ signals (Henle et al., 2011). Inhibition of PI3K is able to reduce EB1 

dash speed and attenuate microtubule advance into growth cone periphery, whereas the 

presence of exogenous PIP3 increases EB1 dash speed and promotes microtubule 

advance (Akiyama and Kamiguchi, 2010). Exactly how PIP3/PI3K is spatially localized to 

the cytoskeleton remains unclear, however it could be facilitated by STIM1 localization 

of ER to microtubules. 

 

For example, spatially activated PI3K and downstream inactivation of local GSK-3β, 

mediates nerve growth factor (NGF)-induced axon extension through 

phosphorylation/activation of APC (Zhou et al., 2004). Zhou and colleagues have 

demonstrated that spatial activation of APC in growth cones sustained extension by 

inducing microtubule assembly and actin stabilization through activation of the 

Cdc42/Rac pathway (Zhou et al., 2004). It is possible that APC supports microtubule 

stability in response to locally applied guidance cues in a GSK-3β-dependent manner, 

as cues such as sema-3a have been shown to require compartmentalized GSK-3β 
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signaling (Eickholt et al., 2002). Our results showing the spatial organization of 

microtubule binding proteins in control, and both STIM1 and Orai1 knockdown growth 

cones turning to BDNF revealed that EB-1/3 and APC distribution correlated to the 

distribution of polymerized microtubules. However unlike EB-1/3, APC distribution was 

not significantly organized in response to sema-3a in control and STIM1 morphants. 

Since APC accumulation at the distal axon is not necessary for microtubule 

polymerization per se (Zhou et al., 2004), it is likely that APC is not required to regulate 

spatial microtubule dynamics directly, but rather it stabilizes microtubules (consistent 

with axon extension role) and mediates microtubule-actin interactions.  

 

Taken together and in conjunction with previous studies, the data presented in this 

chapter demonstrate that STIM1 is crucial for the regulation of SOCE and microtubule 

polymerization in steering growth cones. Our data demonstrate that STIM1-mediated 

cytoskeletal organization and signal transduction is necessary for growth cone steering 

in response to Ca2+ dependent and independent guidance cues. Furthermore, the 

findings in this chapter strongly support the function of tip-attachment complexes in 

growth cones, and provide a mechanism to regulate ER remodelling and the localization 

of Ca2+ signals in steering growth cones. Whether STIM1 facilitates this remodelling to 

localize Ca2+
ER signals within sub-compartments of motile growth cones involved in cue-

sensing and signal transduction, such as filopodia, is unknown.  

	  



	 104	

 

 

 

 

 

 

Chapter 5: 

STIM1 regulates ER remodelling and microtubule 

protrusion into filopodia 

 

Chapter 5: STIM1 regulates ER remodelling and 
microtubule protrusion into filopodia 

 

 

 

 



	 105	

Chapter 5: STIM1 regulates ER remodelling and microtubule protrusion into 

filopodia 

5.1 Introduction 

As growth cones pathfind through the embryonic milieu they encounter a range of 

guideposts and extracellular guidance cues, which alter growth cone morphology and 

rate of migration. Changes in growth cone behaviour and axon outgrowth are initiated by 

receptor-mediated intracellular signalling on growth cone filopodia (Gomez and 

Letourneau, 1994; Gomez et al., 2001; Dent et al., 2007; Shim et al., 2013). Growth cone 

filopodia express receptors which support transmission of Ca2+ signals from filopodial 

tips to the growth cone (Davenport et al., 1993). Filopodia are therefore considered the 

“first responders” of axon guidance. Consistent with this role, early studies demonstrated 

that disruption of filopodia formation in embryonic grasshopper Ti1 pioneer neurons 

causes growth cones to become disoriented and unable to steer appropriately (Bentley 

and Toroian-Raymond, 1986). A single filopodial contact with a high-affinity substrate 

was sufficient to cause the reorientation of Ti1 pioneer growth cones steering in situ 

(O'Connor et al., 1990). Growth cone filopodia are reported to be the driving force of 

sensory and motor growth cone functions, and are regulated by external cues and 

intracellular signal amplification (Goodhill et al., 2004). Filopodia transduce guidance 

cues through receptor-mediated Ca2+ transients (Gomez et al., 2001; Shim et al., 2013) 

however, precisely how filopodial Ca2+ signals regulate the cytoskeleton to support 

growth cone motility is unknown at present.  

 

Ca2+ is a crucial regulator of filopodial dynamics and function. Early experiments 

demonstrated that electric fields increase the number of growth cone filopodia and 

cytoplasmic spines in Xenopus spinal neurites (McCaig, 1986). These activity-induced 

filopodial changes were subsequently linked to spatially restricted increases of 



	 106	

intracellular Ca2+ in growth cones of Helisoma neurons (Davenport and Kater, 1992). 

Focal Ca2+ increases, using photolysis, induce filopodial extension in Ti1 neurons from 

F-actin patches and cause branching of new filopodia from existing ones (Lau et al., 

1999). Spatially restricted Ca2+ transients, including in filopodia, also regulate the rate of 

neurite outgrowth and promote growth cone turning when stimulated asymmetrically and 

differentially (Gomez and Spitzer, 1999; Hong et al., 2000; Zheng, 2000; Gomez et al., 

2001; Ooashi et al., 2005). However, the question of how Ca2+ signals are localised and 

regulated spatiotemporally within subcellular micro-domains of the growth cone, such as 

the filopodia, remains largely unanswered.  

 

Ca2+ signals derived from the ER are likely to be an important component of the spatially 

restricted Ca2+ signals that regulate growth cone motility (Davenport et al., 1996; 

Gasperini et al., 2009; Mitchell et al., 2012). However, exactly how ER might remodel to 

localize Ca2+ signals within filopodia, in order to spatially regulate cytoskeletal dynamics 

for instructional growth cone steering, is unknown. Data presented in chapter 3 and 4 

suggests that the interaction between EB proteins and STIM1 mediates ER tracking and 

remodeling along microtubules to localize Ca2+ and facilitate SOCE, as described in non-

neuronal cells (Smyth et al., 2007; Grigoriev et al., 2008). STIM1 and microtubules share 

strikingly similar organisation in non-neuronal cells (Baba et al., 2006; Mercer et al., 

2006) and previous work has shown that STIM1 regulates microtubule rearrangement in 

mast cells (Hájková et al., 2011a). Furthermore, microtubule depolymerization is linked 

to disrupted SOCE and ICRAC signaling in non-neuronal cells (Smyth et al., 2007). Taken 

together these data demonstrate that ER and microtubules are interdependent and that 

STIM1 regulates ER-microtubule interactions as a microtubule binding protein as well as 

a regulator of SOCE. Since ER functions to sequester and release Ca2+ (Somlyo, 1984), 

and Ca2+ is a known local regulator of microtubule stability (Schliwa et al., 1981), a direct 

interaction with microtubules would likely facilitate Ca2+
ER localization. Filopodia and 
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growth cone behaviors are spatially regulated by distinct local Ca2+ microdomains, and 

these domains depend on the source and availability of Ca2+ stores (Davenport et al., 

1996). Significantly, STIM1 regulates filopodial Ca2+ transients in Xenopus growth cones 

which are necessary for appropriate growth cone turning in response to Netrin-1 (Shim 

et al., 2013). Thus, STIM1 is required for filopodial (Shim et al., 2013) and whole growth 

cone (Mitchell et al., 2012) Ca2+ dynamics in response to guidance cues.    

 

Experiments previously described in chapter 4, demonstrated that filopodial numbers 

were reduced in STIM1 deficient growth cones overexpressing EB3-YFP compared to 

control EB3-YFP-transfected growth cones. These data suggest that STIM1 morphant 

growth cones have a disrupted ability to induce or sustain filopodia. Given the crucial 

role of filopodia in growth cone navigation (Bentley and Toroian-Raymond, 1986; 

O'Connor et al., 1990), this would likely result in axon pathfinding defects. Regulation of 

growth cone filopodial dynamics have been previously linked to changes in intracellular 

Ca2+ (Davenport and Kater, 1992; Lau et al., 1999; Gomez et al., 2001) and the 

cytoskeleton (Schaefer et al., 2002; Zhou et al., 2002). Therefore, given the role of STIM1 

as a Ca2+
ER sensor, regulator of SOCE and microtubule-binding protein, it was 

hypothesised that STIM1 functions as a crucial regulator of Ca2+ transduction in growth 

cone filopodia.  
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5.2 Results 

 

5.2.1 STIM1 expression is required for microtubule protrusion and ER remodeling 

into growth cone filopodia 

The ER and microtubule cytoskeleton are highly interdependent structures, likely 

functioning closely to localize signals, proteins, vesicles and membrane trafficking within 

cells (Terasaki et al., 1986; Dailey and Bridgman, 1989; Cole and Lippincott-Schwartz, 

1995; Waterman-Storer and Salmon, 1998; Wada et al., 2016). Given that in a range of 

non-neuronal cells, microtubules support ER remodeling and SOCE in a STIM1-

dependent manner (Baba et al., 2006; Smyth et al., 2007; Hájková et al., 2011a), we 

hypothesized that ER is remodeled by microtubules to facilitate spatial Ca2+ signals in 

steering growth cones. In the previous chapter, we used STIM1 expression as a proxy 

of ER localisation. To confirm the presence and localisation of ER within growth cones, 

and determine whether ER membranes are closely associated with microtubules, 

randomly extending growth cones (Fig. 5.1.a) were imaged using tubulin-GFP (Fig. 

5.1.b), and ER-RFP (Fig. 5.1.c) reporters, to label microtubules and ER respectively. 

Microtubule and ER structures redistributed in parallel within the central and peripheral 

zones of growth cones (Fig. 5.1.d), consistent with results in chapters 3 and 4 which 

used STIM1 and bIII-tubulin as measures of ER and microtubule localisation. These data 

suggest ER colocalises with microtubules in DRG sensory neuron growth cones. Taken 

together with data in chapter 4, STIM1 functions as both a microtubule binding protein 

and SOCE regulator to possibly localise Ca2+ signals to the cytoskeleton directly through 

EB3. We sought to determine whether ER remodeling occurs in a STIM1 and EB3 

dependent manner in areas of instructive Ca2+ signaling, such as growth cone filopodia.  

 

While the peripheral domains of extending growth cones are relatively organelle-poor 

and dominated by actin filaments, the presence of microtubules and ER-like membranes 
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in growth cones has been previously demonstrated by electron microscopy (Dailey and 

Bridgman, 1989; 1991). Since our baculovirus-transfected tubulin-GFP and ER-RFP 

experiments provided initial confirmation of ER remodeling in sensory growth cones, we 

next utilized more sensitive constructs that allowed visualization and spatiotemporal 

analysis of ER and microtubule structures in the small filopodial sub-compartments. To 

determine whether remodelling of the ER occurs in growth cone filopodia, DRGs were 

co-transfected with BiP-mCherry-KDEL (Zurek et al., 2011) and EB3-YFP (Fig. 5.2), to 

localise ER and microtubules respectively. Consistent with previous reports that ER-like 

membranes extend along microtubules and appear to interact via cross-bridging 

elements at electron dense microtubule tips (Dailey and Bridgman, 1991), ER (KDEL-

mCherry) co-localised with EB3-YFP at microtubule-tips, extending towards and into 

filopodia (Fig. 5.2.a-b). Growth cones with reduced STIM1 expression exhibited 

significantly fewer filopodia that contained both ER and EB3 protrusions (Fig. 5.2.c; 

quantified in Fig. 5.2.e). Interestingly, while in control growth cones (n=7)	many of the 

observed EB3 dashes (80.1 ± 5.8%) were localized with KDEL-mCherry, this number 

was significantly reduced (54.13 ± 5.4%) in growth cones with reduced STIM1 

expression (n=12;	 Fig. 5.2.f). This could account for the reduced number of ER-

protrusions in filopodia of STIM1 deficient growth cones. Furthermore, the distance and 

velocity of ER and EB3 protrusions in filopodia (quantified in Fig. 5.2.g) was significantly 

reduced in growth cones with reduced STIM1 expression compared to control (as 

reflected in time-scale of kymographs, Fig. 5.2.b,d). Taken together, these findings 

demonstrate that STIM1 is required for the tethering and remodelling of ER into 

protruding filopodia by microtubules.  
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Figure 5.1. Remodeling of the ER parallels the distribution of tubulin 

 

(a-d) Time-lapse images of randomly extending DRG sensory neuron growth cones 

imaged over 2 min (phase images in a) transfected with fluorescent reporters for (b) 

tubulin (GFP, green) and (c) endoplasmic reticulum (ER; RFP, red). Arrows depict ER 

protrusions extending into the leading edge of the growth cone over time, which co-

localize with polymerized microtubules (merged images in d).  

Scale bars a, 10μm; b-d, 5μm. 
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Figure 5.2. STIM1 is required for the remodeling of microtubules and ER at growth 

cone filopodia 

 

(a-d) Images of randomly extending DRG sensory neurons co-transfected with BiP-

mCherry-KDEL (ER marker, red) and EB3-YFP (green). (a, c) Merged images depict ER 

and EB3 distribution in (a) control (inset depicts filopodial expression) and (c) STIM1 

knockdown (STIM1 KD) growth cones.  

(b, d) Left: KDEL (red) and EB3 (green) localisation in filopodia (outlined on phase 

images). Right: Representative kymograph of KDEL (red) and EB3 (green) as an EB3-

dash extends into filopodial tip, displayed over 20sec in (b) control and 40sec in (d) 

STIM1 morphant.  

(e) Percent of filopodia with KDEL signal, (f) percent of filopodia with EB3-KDEL signal 

and (g) the distance of EB3-KDEL protrusion into filopodia of control and STIM1 

morphant growth cones (distance of protrusion normalized to entire filopodial length). n-

values displayed. Error bars indicate ± SEM. * p<0.05, **** p<0.0001; (Student’s t-test). 

* p<0.05, **** p<0.0001; (Student’s t-test). Scale bars a and c, 5μm; b and d, 500nm. 
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5.2.2 STIM1 regulates endoplasmic reticulum-derived Ca2+ signals in growth cone 

filopodia 

STIM1 has been shown to mediate filopodial Ca2+ transients in Xenopus spinal neurons 

through activation of SOCE (Shim et al., 2013). Given that STIM1 functions as a regulator 

of luminal Ca2+
ER content, we next asked if knockdown of STIM1 expression was able to 

perturb Ca2+
ER in filopodia in addition to disrupting ER remodelling.  To quantitate Ca2+

ER 

in filopodia, a genetically-encoded Ca2+
ER sensor ER-GCaMP6-150 was used. ER-

GCaMP6-150 has a Ca2+ affinity that closely resembles resting Ca2+
ER levels, and is 

capable of measuring changes in axonal Ca2+
ER (de Juan-Sanz et al., 2017). These 

properties make ER-GCaMP6 a good candidate for measuring filopodial Ca2+
ER 

compared to alternative Ca2+
ER sensors.  

 

Consistent with findings that ER and EB3 protrusion into growth cone filopodia (Fig. 5.2), 

Ca2+
ER dynamics were perturbed in filopodia with reduced STIM1 expression (Figs. 5.3- 

5.5). The speed at which EB3 and Ca2+-replete ER membrane protruded to the tip of 

growth cone filopodia was decreased in STIM1 morphant growth cones (as reflected in 

time-scale of kymographs Fig. 5.3.b and Fig. 5.3.e) compared to control growth cones 

(Fig. 5.3.a and Fig. 5.3.d).  Similarly, the distance protruded by EB3 and Ca2+-replete ER 

membrane was also reduced in STIM1 morphant filopodia compared to control 

(quantified in Fig. 5.4.c), as ER protrusion was reduced in filopodia of STIM1 morphants 

(Fig. 5.2). Interestingly, in control growth cones (n=12) 74.5 ± 3.5% of EB3 dashes in 

filopodia were localized with a Ca2+
ER signal, while in growth cones with reduced STIM1 

expression (n=12) this number was significantly reduced (59.01 ± 2.7%) (Fig. 5.4.a). This 

result was specific to filopodia and was not significantly different between control and 

STIM1 morphants in transition or central domains of growth cones (Fig. 5.4.a). 

Importantly, this figure represents EB3 dashes associated with any fluorescent signal  
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Figure 5.3. STIM1 is required for the regulation of Ca2+
ER signals at growth cone 

filopodia	
 

(a-b) Time-lapse images of randomly extending growth cone filopodia co-transfected with 

ER-GCaMP6-150 (Ca2+
ER reporter, green) and EB3-tdTomato (red), imaged over 10sec 

in (a) control and 25sec (b) STIM1 morphant. 

(c) Schematic illustrates STIM1-EB3-mediated protrusion of microtubules and 

endoplasmic reticulum into filopodia, where ER-GCaMP6 fluorescence was used to 

report Ca2+
ER.  

(d-e) Left: Ca2+
ER (green) and EB3 (red) in filopodia (outlined using phase images). 

Middle: Representative kymograph of Ca2+
ER (green) and EB3 (red) as EB3-dash 

extends towards filopodial tip, displayed over 20sec in (d) control and 40sec (e) STIM1 

morphant. Right: Representative kymograph of Ca2+
ER (ER-GCaMP6 pseudocoloured for 

intensity, colours corresponding to level of Ca2+ as indicated by heat-map). Asterisks 

depict Ca2+
ER “hotspots” likely to represent sites of ER-refilling.  

Scale bars a-b, 1μm; d-e, 500nm. 
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Figure 5.4. STIM1 is required for localisation of ER-derived Ca2+ signals at growth 

cone filopodia 

 

(a) Percent of EB3 dashes that were co-expressed with any detectable ER-GCaMP6 

(Ca2+
ER) signal at filopodia, transition zone and central zone in control (grey bars) and 

STIM1 morphant (clear bars) growth cones. (b) Percent of filopodia with any detectable 

Ca2+
ER signal and (c) the distance of EB3-Ca2+

ER protrusion into filopodia of control (grey 

bars) and STIM1 morphant (grey bars) growth cones (normalized to entire filopodial 

length). * p<0.05, ** p<0.01; (Student’s t-test). 
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from the ER-GCaMP6-150, regardless of how weak the signal. As illustrated in Fig. 5.3.e, 

the Ca2+
ER signal was extremely weak (quantified in Fig. 5.5.c). In both control and STIM1 

deficient growth cones, the percentage of filopodia exhibiting a Ca2+
ER signal (Fig. 5.4.b, 

signals quantified irrespective of magnitude) correlated with the percentage of filopodia 

containing ER (Fig. 5.2.e). Interestingly, Ca2+
ER signal was highly localised with the EB3 

signal in control growth cones as EB3 dash protruded to the tip of the filopodia (see 

kymograph Fig. 5.3.d), suggesting interaction between microtubules and replete stores, 

consistent with the Ca2+
ER-dependent tip-attachment complex model. Focal Ca2+

ER 

signals were detected at stationary “hot-spots” (Fig. 5.3.d) which followed periods of low 

Ca2+
ER signals (emptied stores) and likely represent sites of ER-refilling. Taken together, 

these results demonstrate that reduced STIM1 expression disrupts both the level of 

Ca2+
ER, SOCE signalling and ER remodelling in filopodia.  

 

Quantitation of Ca2+
ER flux in filopodia confirmed how these are spatially regulated in 

filopodia of control and STIM1 morphant growth cones. The spatial kinetics of Ca2+
ER 

concentration in filopodia were analysed by measuring Ca2+
ER at the base, middle and 

tip of filopodia as EB3 dashes protruded towards the filopodial tip (Fig. 5.5.a-b), as 

previously we had only quantitated the percentage of filopodia expression any Ca2+
ER 

signal, regardless of spatial location and concentration. Focal increases in filopodial 

Ca2+
ER, observed in control growth cones were not evident in STIM1 morphant growth 

cones.  Notably, these focally-elevated Ca2+
ER signals were evident at or near EB3 

dashes in control filopodia (Fig. 5.5.b), further indicating that Ca2+
ER signals within replete 

and actively-remodelling ER were closely associated with protruding microtubules in 

filopodia. The level of Ca2+
ER, assessed using the change in relative fluorescence of ER-

GCaMP6-150, was dramatically reduced in STIM1 morphant filopodia (n=39; 0.08 ± 

0.02) compared to control filopodia (n=36; 0.38 ± 0.07) (Fig. 5.5.c), correlated to the 

expressions presented earlier (Fig. 5.3). These findings support a model where STIM1 
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expression is necessary for the regulation of Ca2+
ER levels and localisation of ER-derived 

Ca2+ signals within subcellular compartments such as filopodia (Fig. 5.5.d). Altogether 

these data demonstrate a necessity for STIM1 in the spatial localisation of ER Ca2+ flux 

in filopodia. 
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Figure 5.5. STIM1 is required for the spatial regulation of ER-derived Ca2+ signals 

at growth cone filopodia 

 

(a) Schematic illustrating STIM1- and EB3-mediated microtubule and ER protrusion into 

filopodia, and demarks regions at the base, middle and tip of filopodia. (b) ER-GCaMP6 

relative fluorescence (∆F/F) was measured at these points in control (grey circles) and 

STIM1 morphant (open circles) filopodia. Arrowheads depict point of peak EB3 intensity 

at tip, middle and base of filopodia. * p<0.05; (Two-way ANOVA, Sidak’s multiple 

comparison test).  

(c) Relative filopodial Ca2+
ER signal in control (n=12) and STIM1 morphant (n=13) 

filopodia (integrated over the entire imaging period). **** p<0.0001; (Student’s t-test). 

(d) Schematic illustrates proposed model of STIM1-EB3-mediated microtubule and ER 

protrusion in control and STIM1 morphant filopodia where STIM1 expression facilitates 

ER-protrusion and sustains ER-derived Ca2+ signals.  

* p<0.05, **** p<0.0001; (Student’s t-test, Two-way ANOVA, Sidak’s multiple comparison 

test)) 
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5.3 Discussion  

 

This is the first study to demonstrate active ER remodeling in growth cone filopodia. The 

data presented in this chapter suggest that ER networks are dynamically mobile within 

growth cones and that ER remodeling at central and peripheral domains of growth cones 

is facilitated by microtubules. The dynamic interaction between polymerizing 

microtubules observed using EB3 dashes, and ER membranes at the growth cone 

periphery was disrupted when STIM1 expression was reduced. The data presented here 

suggests that STIM1 is necessary for both protrusion of microtubules and remodeling of 

Ca2+-replete ER at growth cone filopodia, mediating the spatiotemporal dynamics of 

Ca2+
ER in filopodia. These data strongly suggest that STIM1 regulates Ca2+

ER and 

microtubule stability in filopodia and represents a possible mechanism to sustain 

instructional Ca2+ transients. Since filopodia are the crucial initiators of growth cone 

motility and instructors of axon navigation, it is not surprising that STIM1 morphant 

growth cones exhibit axon pathfinding defects when filopodial Ca2+
ER signal localization 

is disrupted.  

 

STIM1 is necessary for the remodeling of microtubules and ER into filopodia 

Tubular ER is thought to be a wholly interconnected and continuous membrane structure 

in neurons (Terasaki et al., 1994). This Ca2+-rich network could facilitate the transduction 

of Ca2+ signals throughout growth cones through a tunnel-like system of interconnected 

tubules. In this manner, Ca2+
ER depletion in areas of active motility such as the growth 

cone periphery could activate SOCE and sustain Ca2+ signals spatially and temporally. 

Work in this chapter supports the notion that STIM1 is crucial for the transduction of such 

Ca2+ signals to areas that are critical for growth cone steering such as growth cone 

filopodia, by directly regulating ER-microtubule remodeling. Interactions between 

microtubules and ER associated proteins, including p600 and myosin Va, are known to 
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occur in neurons and are important for neuronal function (Shim et al., 2008; Wada et al., 

2016). This chapter demonstrates that STIM1 is also crucial for microtubule-ER 

remodeling and the localization of Ca2+
ER in filopodia, a mechanism that is likely to sustain 

instructional Ca2+ transients necessary during pathfinding.  

 

Here we demonstrate that microtubules remodel ER in growth cones and filopodia. 

These findings support the early work of Dailey and Bridgman who demonstrated striking 

colocalisation between ER-like membranes and microtubules at the growth cone 

periphery using electron microscopy (Dailey and Bridgman, 1989). The colocalisation 

between microtubules and a Ca2+ sequestering store such as the ER was proposed to 

coordinate Ca2+ signals and cytoskeletal reorganization in growth cones (Dailey and 

Bridgman, 1989). Since then, mechanisms that regulate direct interaction between the 

ER and microtubule cytoskeleton have been explored in various cell types.  

 

The microtubule and ER associated protein, p600 (or ZUBR1), has been shown to 

colocalise with microtubules and ER in various compartments of neurons (Shim et al., 

2008). Reducing the expression of p600 disrupts migration and positioning of cortical 

neurons in the developing mouse neocortex, likely resulting from destabilization of 

microtubules and reduced ER localization at leading processes (Shim et al., 2008). While 

STIM1 links ER and microtubules through a tip attachment complex with EB proteins 

(Grigoriev et al., 2008), p600 is likely implicated in ER-microtubule transport through 

sliding via motors, or microtubule-based movement (Waterman-Storer and Salmon, 

1998; Shim et al., 2008). In a manner similar to STIM1 morphant growth cones however, 

leading processes of p600-depleted neurons contained few weakly stained ER-

membranes, exhibited perturbed microtubule stability and presented defects in motility, 

migration and positioning. Although there is no evidence that STIM1 and p600 interact 

to regulate ER and microtubule interactions in growth cones, these ER-proteins appear 
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to share functions and cause similar defects in neurons when absent. Together with the 

results demonstrated in this chapter, it is clear that growth cone motility is heavily 

dependent on the interplay between cytoskeletal dynamics and ER function, including 

Ca2+
ER signaling.   

 

In endothelial cells, direct interaction between microtubules and ER occur through EB3 

binding to IP3Rs (Geyer et al., 2015). Microtubules assist in the clustering of IP3Rs within 

the ER membrane, and this clustering is required for Ca2+ to be released from the stores 

to generate spatially-organized Ca2+ domains (Geyer et al., 2015). In this manner, 

microtubules support the generation of IP3-induced Ca2+ micro-domains (Geyer et al., 

2015), reflecting how microtubule tip-attachment complexe localizes STIM1 to activate 

SOCE upon store depletion.  

 

Microtubule-ER interactions are also regulated by the Ca2+-dependent motor protein 

myosin Va (MyoVa) which binds to RyR and IP3R to tether VAMP2-positive vesicles to 

ER membranes to regulate vesicle transport in a Ca2+-dependent manner (Wada et al., 

2016). Activation of CICR causes MyoVa to dissociate from RyR and IP3R and facilitates 

asymmetric vesicle transport and membrane exocytosis which supports attractive growth 

cone turning. Growth cone attraction is reversed to repulsion when the MyoVa pathway 

is impaired (Wada et al., 2016). It is likely that dissociation of MyoVa from the ER 

facilitates vesicle recruitment and downstream microtubule-dependent membrane 

transport to the cell periphery in a mechanism assisted by kinesin-driven transport 

(Akiyama et al., 2016; Wada et al., 2016). Such localized membrane and organelle 

trafficking is crucial for axon motility and further highlights the importance of 

understanding the mechanisms that localize Ca2+ signals within motile growth cones.   
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STIM1 is required for the spatial regulation of Ca2+
ER at growth cone filopodia 

The findings presented here demonstrate that STIM1 is necessary for the protrusion of 

microtubules, ER, and importantly, Ca2+
ER to distal filopodia. These results provide novel 

insights into the processes underlying the generation and maintenance of filopodial Ca2+ 

signals. Calcium is a vital regulator of filopodial protrusion and stabilisation, as 

demonstrated in grasshopper axons, where increasing intracellular calcium levels to 

approximately 1µM using photolysis, results in the formation of new filopodial protrusions 

which persist for up to 15 minutes (Lau et al., 1999). At rest, the concentration of cytosolic 

calcium is in the nM scale, while the luminal Ca2+
ER concentration in sensory DRG 

neurons has been shown to range from 100-200µM (Solovyova et al., 2002). Solovyova 

and colleagues also calculated the maximum rate of calcium release from the ER to be 

90µM/min, where the amplitude of calcium release depends on the level of luminal 

Ca2+
ER, and the maximum rate of uptake was 360µM/min (Solovyova et al., 2002). Given 

that the ER can remodel to localise calcium signals, it provides the ideal means to 

maintain calcium signals necessary for the generation and stabilisation of filopodia. In 

support of this, while not quantified, collapsing filopodia are devoid of microtubules and 

ER, although it is unclear whether retraction of microtubules and ER result in the collapse 

of an unstable filopodia, or whether the retraction of these organelles and the filopodium 

itself occur simultaneously. Such experiments would be of interest to improve our 

understanding of filopodial protrusion and stabilisation.  

 

Previously, the frequency of Ca2+ transients in filopodia of Xenopus spinal neurons was 

shown to be unaffected by store depletion (Gomez et al., 2001). Gomez and colleagues 

(Gomez et al., 2001) demonstrated that spatially-localized filopodial Ca2+ transients 

resulting from Ca2+ influx through non-VGCC, propagated back to the parent growth cone 

and assisted in directing growth cone motility when stimulated asymmetrically. However, 
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the frequency of filopodial transients was unchanged with thapsigargin treatment (ER 

depletion) and it was thought that filopodial Ca2+ transients did not require signal 

amplification from store-derived Ca2+ release. This is at odds with more recent reports 

which have demonstrated that STIM1-dependent SOCE operates in growth cone 

filopodia of Xenopus spinal neurons in vitro and in vivo where STIM1 expression was 

vital for the generation of oscillatory filopodial Ca2+ transients (Shim et al., 2013). The 

results outlined in this study are in broad agreement with Shim and colleagues, in that 

we demonstrate protrusion of ER membranes as well as filopodial Ca2+
ER dynamics 

require STIM1. We demonstrate that STIM1-deficient growth cones exhibit fewer EB3 

dashes associated with any Ca2+
ER signal, regardless of localisation and concentration. 

Our findings that Ca2+
ER dynamics were reduced in STIM1 morphant filopodia, even at 

the base of filopodia where ER membranes were still observed (Fig. 5.5), suggests that 

not only is STIM1 necessary for ER-microtubule protrusion at the periphery of growth 

cones, but it is also required for the maintenance of Ca2+
ER content (as illustrated in model 

Fig. 5.5.c). This is also illustrated by the absence of Ca2+
ER fluctuations over time in 

STIM1-deficient filopodia as EB3 dashes protrude to the filopodial tip. The results in this 

chapter also showed that the distance and velocity of ER and EB3 protrusions in filopodia 

are significantly reduced in STIM1 knockdown growth cones. These findings are 

consistent with the results presented in the previous chapter, and agree with the notion 

that a threshold level of STIM1 is necessary to sustain STIM1-microtubule interactions 

and SOCE. Perturbing this threshold level reduces the rate of protrusion of both ER and 

microtubules in filopodia as both depend on STIM1 to function correctly.  

 

Our data, together with the observation that STIM1-dependent SOCE is required for 

filopodial Ca2+ transients and for growth cone turning to netrin-1 (Shim et al., 2013), 

suggest that STIM1 likely regulates filopodial Ca2+ through two parallel mechanisms: 

firstly, STIM1 interactions with polymerizing microtubules via tip-attachment complexes 
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remodels ER and ER-derived Ca2+ signals into filopodia, and secondly STIM1 

dissociates from EB-1/3 upon store depletion to trigger SOCE. It is likely that Ca2+ 

transients initiated at distal filopodial tips require signal amplification, from both CICR 

and SOCE, in order to effectively propagate back to the growth cone and areas of motile 

reorganization, such as lamellipodia. A local and sustained Ca2+ signal that is directly 

linked to the microtubule cytoskeleton at growth cone filopodia would be predicted to 

reduce microtubule catastrophe and therefore enhance filopodial stabilization (Buck and 

Zheng, 2002). The spatiotemporal regulation of ER remodeling in filopodia, and 

subsequent formation of CRAC at ER-PM junctions following store depletion, would also 

provide a localized source of Ca2+ to enhance filopodial stability for growth cone 

consolidation and extension.  

 

Whilst STIM1-dependent SOCE is necessary for the generation of filopodial Ca2+ 

transients in Xenopus spinal neurons (Shim et al., 2013), SOCE has also been shown to 

remain unchanged in STIM1 knockout rodent cortical neurons where STIM2 appears to 

be the main SOCE-regulator (Berna-Erro et al., 2009). For this reason, and given the 

abundant expression of other Ca2+ channels in neurons such as VGCCs, which are well-

known correlates of prominent Ca2+ signals and neuronal activity, the function of STIM1 

in neuronal cells has until recently been largely unexplored. Most studies investigating 

the function of STIM proteins in the nervous system report on their regulation of Ca2+ 

signaling in synaptic activity (Berna-Erro et al., 2009; Hartmann et al., 2014; Sun et al., 

2014; de Juan-Sanz et al., 2017), with some reporting on SOCE-independent functions 

either at the synapse or growth cone (Mitchell et al., 2012; Garcia-Alvarez et al., 2015). 

The work in this chapter demonstrates that the SOCE-independent function of STIM1 

acts to remodel ER into filopodia, and this is crucial for the delivery of ER cargo to distal 

filopodial tips. In rodent hippocampal neurons, Ca2+
ER content drives changes in 

exocytosis at the presynaptic compartment, where natural fluctuations in Ca2+
ER content 
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act in a feedback loop to drive synapse activity through regulation of plasma membrane 

function. This Ca2+
ER-plasma membrane feedback loop is regulated by STIM1 expression 

(de Juan-Sanz et al., 2017). The work of de Juan-Sanz and colleagues provided a novel 

link between ER and synapse function, in a mechanism that is STIM1-dependent. Since 

the growth cone specializes to become the presynaptic compartment of the synapse, it 

may not be surprising that STIM1-regulated Ca2+
ER machinery is vitally important in both 

structures. Furthermore, given the necessity of STIM1 in the Ca2+
ER-plasma membrane 

feedback loop at the synapse, it would be expected that growth cone pathfinding is 

disrupted when STIM1-regulated exocytosis is perturbed in STIM1 morphant growth 

cones (Tojima et al., 2007; 2010).  
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Chapter 6: Conclusions and future directions  

In addition to the canonical role of STIM proteins in store-operated Ca2+ entry, STIM1 is 

multifunctional, being required for a range of cellular processes. STIM proteins are 

crucial determinants of neuronal function, through regulation of Ca2+ homeostasis and 

synaptic activity (Berna-Erro et al., 2009; Hartmann et al., 2014; Sun et al., 2014; de 

Juan-Sanz et al., 2017), or via SOCE-independent functions either at the synapse or 

growth cone (Mitchell et al., 2012; Garcia-Alvarez et al., 2015). STIM1 regulates axon 

pathfinding, synaptic plasticity, axon branching and neuropathic pain (Baba et al., 2003; 

Gemes et al., 2011; Steinbeck et al., 2011; Mitchell et al., 2012; Shim et al., 2013), as 

well as inhibition of L-type VGCC in neurons (Park et al., 2010; Wang et al., 2010), and 

activation of second messenger cAMP in non-neuronal cell lines (Lefkimmiatis et al., 

2009). STIM1-dependent SOCE regulates growth cone motility and Ca2+ dynamics in 

response to various guidance cues (Mitchell et al., 2012; Shim et al., 2013). A substantial 

amount of work mostly derived from non-neuronal cells, has demonstrated that STIM1 

can regulate SOCE-dependent and –independent mechanisms, including the formation 

of tip-attachment complexes (Grigoriev et al., 2008; Honnappa et al., 2009). This thesis 

has investigated how STIM1 associates with the cytoskeleton, particularly with 

microtubules through tip-attachment complexes to facilitate ER remodelling and activate 

SOCE signalling in neuronal growth cones. The work presented here supports the 

hypothesis that STIM1 is not only a SOCE regulator, it also regulates ER-microtubule 

remodelling and localises instructive Ca2+ signals in a spatiotemporal and 

compartmentalised manner at the growth cone and at actively protruding structures such 

as filopodia.  

 

Previously, STIM1 has been shown to be a key regulator of Ca2+
ER in mouse cerebellar 

Purkinje neurons (Hartmann et al., 2014), and more recently, Ca2+
ER content has been 

shown to regulate exocytosis and synapse activity in a STIM1-dependent manner at the 
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presynaptic compartment of rodent hippocampal neurons via a Ca2+
ER-plasma 

membrane feedback loop (de Juan-Sanz et al., 2017). The work of de Juan-Sanz and 

colleagues provided novel insights into the intersection between ER and synapse 

dysfunction, and an understanding of the function of presynaptic STIM1. Indeed, a 

number of studies have demonstrated ER dysfunction in neurodevelopmental disorders 

such as autism, spastic paraplegias and neurodegenerative diseases including 

Alzheimer’s, Parkinson’s and amyotrophic lateral sclerosis (ALS) (Katayama et al., 1999; 

Atkin et al., 2008; Saxena et al., 2009; Beetz et al., 2013; Hetz and Mollereau, 2014; 

Schmunk et al., 2015; 2017; Yalçın et al., 2017). In order to target neurological disorders 

where ER dysfunction occurs, we need to better understand ER regulation in neurons.   

 

This thesis demonstrates that as a microtubule-associated protein, STIM1 localizes with 

the microtubule tracking proteins EB-1/3 and APC throughout the growth cone and 

particularly at peripheral areas such as filopodia. The association of STIM1 and EB-1/3 

was dependent on Ca2+
ER content, suggesting that when ER stores are replete ER 

associates and remodels with microtubules via a tip-attachment complex formed by 

STIM1 and EB-1/3. This complex dissociates upon store depletion to activate SOCE. 

These two functions of STIM1 (formation of tip attachment complexes and SOCE 

activation) previously thought to be unrelated (Bola and Allan, 2009) are crucial for 

growth cone steering. STIM1 regulates ER remodelling and the localisation of ER-

induced Ca2+ signals in a spatial and temporal manner in growth cone filopodia, where 

Ca2+ signals are instructional for steering (Fig. 6.1). Our data showed that both functions 

of STIM1, as microtubule-binding protein and SOCE activator, are necessary and 

sufficient to steer growth cones. Optogenetic activation of STIM1 which preserves SOCE 

and microtubule-binding functions, induced directed-growth. However, stimulation of the 

STIM1-variant lacking a microtubule binding domain, was unable to trigger directed 

growth. In addition, knockdown of Orai1 expression had no effect on  
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Figure 6.1. STIM1 functions as SOCE-regulator and microtubule-binding protein in 

growth cones in a Ca2+
ER-dependent manner, and facilitates compartmentalised 

spatiotemporal Ca2+ signals at filopodia 

 

Schematic of proposed mechanism featuring STIM1 and EB-1/3 tip attachment complex-

mediated remodeling of ER and microtubules in filopodia. In response to receptor 

mediated Ca2+ signals, tip attachment complexes recruit microtubules and ER to sustain 

Ca2+ flux. STIM1 orchestrates ER remodeling into growth cone periphery through tip 

attachment complexes, while also functioning in store operated Ca2+ entry (SOCE). ER 

remodelling to growth cone filopodia is crucial for regulating local ER-derived and ER-

induced Ca2+ signals in a spatiotemporal manner at the actively-protruding growth cone 

periphery (arrowheads depict local Ca2+ microgradients). 

(i) Under Ca2+ replete conditions monomers of the endoplasmic reticulum-(ER) protein 

STIM1 are uniformly distributed along the ER membrane, in a state where STIM1 can 

interact with the microtubule-binding proteins EB-1/3 to facilitate ER-microtubule 

remodelling. As ER Ca2+ is released from the stores through IP3R/RyR, (ii) Ca2+ depletion 

causes STIM1 monomers to dissociate from EB-1/3, oligomerise and translocate into 

larger complexes at ER-PM junctions (arrowhead).  STIM1 interacts with Orai1, causing 

Orai1 dimerisation and the formation of a Ca2+ release-activated Ca2+ (CRAC) channel 

that facilitates store operated Ca2+ entry (SOCE) into the cytoplasm. Ca2+ entering the 

cytosol through SOC channels is rapidly sequestered to the ER via the 

sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump, facilitating store repletion.  
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microtubule polymerisation but significantly impaired growth cone turning to BDNF and 

sema-3a, demonstrating that a threshold level of STIM1 and SOCE activity are required 

to carry out SOCE dependent and independent functions. These findings suggest that 

STIM1 regulates growth cone steering through both SOCE and microtubule-binding 

functions. 

 

However, there are limitations that remain to be addressed in order to dissect out these 

functions and better understand how they instruct growth cone motility. While both 

OptoSTIM1 and LOVS1K trigger Ca2+ influx upon light stimulation, OptoSTIM1 has been 

reported to be more efficient and have higher dynamic range than LOVS1K (Pham et al., 

2011; Kyung et al., 2015). This is not surprising, given that OptoSTIM1 and LOVS1K use 

different light-activated domain systems and LOVS1K is also significantly truncated and 

lacks not only the EB-1/3 binding domain but also the polybasic polyphosphoinositide 

binding motif that binds APC. In future work, a potential better control would be 

“OptoSTIM1-NN” which would combine the light-inducing activity of OptoSTIM1 with a 

STIM1-NN construct. STIM1-NN has two mutations within EB-1/3-binding motif that 

render the protein incapable of binding microtubules; 2 amino acids (IP from SxIP motif) 

are mutated to NN (ie. I644N and P645N point mutations (Honnappa et al., 2009)). This 

experiment would serve to confirm the microtubule-binding function of STIM1 from SOCE 

activation.  Regardless, our work demonstrates that both SOCE and microtubule-binding 

functions of STIM1 are necessary for the regulation of growth cone steering.  

 

The ER and microtubule cytoskeleton are interdependent structures. This thesis 

supports the hypothesis that ER remodels into peripheral regions of the growth cone 

including filopodia, and demonstrates that this remodelling is mediated by STIM1. As 

outlined in chapters four and five, STIM1 regulates the spatial localisation of ER, 

microtubules, microtubule-associated proteins and Ca2+
ER within actively protruding 

growth cones. Interactions between the ER and microtubules are crucial for ER 
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translocation and organisation, which in itself, is vital for cell migration and motility (Bola 

and Allan, 2009). Previously, a direct interaction between microtubules and ER via EB-

3 and IP3R had been reported to occur in endothelial cells (also through S/TxIP motif) 

(Geyer et al., 2015). This interaction is required for the activation of IP3-induced Ca2+ 

release from the stores and helps to provide a localised Ca2+ signal in endothelial cells 

(Geyer et al., 2015). Microtubules also localise Ca2+
ER signals through binding of the 

Ca2+-dependent motor protein myosin Va to IP3R/RyR, thus facilitating vesicle-transport 

and localise membrane trafficking in neuronal growth cones (Wada et al., 2016).  

 

There is clear evidence that microtubules are required to regulate ER-derived Ca2+ 

signals such as those mediated by IP3R, as well as ER-induced Ca2+ signals (ie. SOCE). 

Disruption of either ER or microtubule function can significantly affect the function of the 

other organelle. For example, pharmacological disruption of microtubules has been 

shown to inhibit IP3R-induced Ca2+ activity (Fogarty et al., 2000; Béliveau and 

Guillemette, 2009), SOCE and ICRAC in non-neuronal cells (Smyth et al., 2007). Perhaps 

not surprisingly, IP3R has also been reported to interact with STIM proteins in bovine 

aortic endothelial cells. In these cells, reduced STIM1 expression disrupts IP3R-induced 

Ca2+ release from the stores, effectively regulating Ca2+ mobilisation by altering both 

SOCE and IP3R-mediated Ca2+ mobilisation (Béliveau et al., 2014). In addition, it is also 

likely that STIM1 regulates IP3R-induced Ca2+ release indirectly through calnexin and 

calreticulin which directly interact with IP3R (Camacho and Lechleiter, 1995; Joseph et 

al., 1999). Taken together with the findings presented in this thesis, STIM1 functions as 

a microtubule-binding protein and activator of SOCE to regulate instructive ER-

microtubule remodelling and sustain both Ca2+ homeostasis and cytoskeletal dynamics 

in motile cells and pathfinding growth cones.  

 

Microtubules and ER can associate directly through microtubule and ER crosslinking 

proteins, such as STIM1. This study has demonstrated that STIM1 functions as a 
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microtubule-binding protein to mediate ER-microtubule remodelling in pathfinding growth 

cones in vitro. One of the first microtubule-associated proteins demonstrated to interact 

with ER in neurons was p600 (Shim et al., 2008). p600 is necessary for the migration 

and localisation of cortical neurons in developing mouse neocortex; a process regulated 

by direct polymerisation of microtubules (Shim et al., 2008). Unlike STIM1 which is 

ubiquitously expressed throughout the body, p600 expression is reported in developing 

and adult neurons of the CNS (Shim et al., 2008). The findings presented in this thesis 

demonstrate that microtubule polymerisation as well as spatial organisation, were 

regulated by the microtubule and ER associated protein STIM1. Interestingly, p600 is a 

calmodulin-binding protein required for membrane-ruffle formation and activation of FAK, 

and therefore regulation of integrin-mediated signalling in fibroblasts (Nakatani et al., 

2005). It is likely that as a calmodulin-binding protein, p600 participates in Ca2+ signalling 

and either directly or indirectly promotes microtubule stabilisation and focal adhesion 

disassembly at the leading edge of motile neurons, however these speculative p600-

mediated mechanisms remain largely unclear. STIM1 on the other hand, forms tip-

attachment complexes with EB-1/3 and APC, proteins which stabilise microtubule ends 

by forming complexes with the formin mDia2 (downstream of Rho) (Wen et al., 2004a) 

to facilitate filopodial formation, growth and maintenance (Schirenbeck et al., 2005).  

 

The cytoskeleton and cytoskeletal-associated proteins are also crucial regulators of focal 

adhesions. In fibroblasts, microtubule targeting at the leading edge precedes focal 

adhesion site remodelling and dissociation (Kaverina et al., 1999). Local tensile stress 

at adhesion sites within the leading-edge, signal to microtubules to grow towards these 

sites in various cell types (Kaverina et al., 2002). Of interest, in addition to being a 

microtubule-associated protein, APC is also involved in the nucleation or assembly of 

actin in directed cell migration of non-neuronal cells where APC promotes actin 

nucleation at focal adhesion sites to promote microtubule-induced focal adhesion 

turnover (Juanes et al., 2017). The findings presented in this thesis demonstrate that 
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STIM1 regulates cytoskeletal-associated proteins including APC and the levels of focal 

adhesion kinase, an element of adhesion complexes. Given that STIM1 is crucial for the 

regulation of cytoskeletal and adhesion systems in growth cones, it is not surprising that 

microtubules are unable to protrude and become stabilised at the growth cone periphery 

despite possible compensatory mechanisms taking place such as drebrin upregulation. 

Several other ER-resident proteins, including calreticulin and protein tyrosine 

phosphatase 1B (PTP1B) regulate aspects of focal adhesion components (Arregui et al., 

1998; Papp et al., 2008; Bola and Allan, 2009) which further support the idea that STIM1 

is multifunctional and also necessary for focal adhesion turnover. The data presented 

here, together with previous reports, demonstrate that STIM1 is multifunctional and 

necessary for a range of cellular functions including SOCE, ER-remodelling, formation 

of tip-attachment complexes, and regulation of actin and focal adhesions (Fig. 6.2). 

 

Growth cones specialise to form the presynaptic compartments of synapses, hence 

many of the mechanisms that regulate function at the growth cone also correlate to 

presynaptic activity. Ca2+ signalling for example, regulates cytoskeletal dynamics at the 

pre- and post-synaptic structures during synaptogenesis and synapse maturation (Dillon 

and Goda, 2005; Poo, 2007), as it regulates growth cone pathfinding and extension. 

Synaptic plasticity, the process that represents the basis for learning and memory, is 

also regulated by Ca2+ (Zucker, 1999). Changes in the magnitude and spatiotemporal 

organisation of Ca2+ signals are proposed to regulate synaptic plasticity and direct a 

bidirectional switch between long-term potentiation and long-term depression (Berridge, 

1998). This bidirectional switch mirrors the attraction/repulsion switch which directs 

growth cone turning, supporting the notion that Ca2+ signalling is  

Figure 6.2. STIM1 is a multifunctional protein involved in the regulation of several 

signalling pathways 
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Schematic illustrates a number of proposed STIM1 functions, some which remain to be 

demonstrated in neuronal growth cones. Functions of STIM1 in neurons include store 

operated Ca2+ entry (SOCE), STIM1-mediated inhibition of L-type voltage-gated Ca2+ 

channels (L-VGCC), and tip-attachment complex formation with EB-1/3 to remodel ER 

and microtubules. Ca2+ influx from STIM1/Orai-mediated SOCE is crucial for actomyosin 

formation and contractile force generation; for focal adhesion turnover through activation 

of Rac1/Ras1 and Pyk2; and for focal adhesion cleavage through calpain activity on focal 

adhesion components talin and focal adhesion kinase (FAK). STIM1 has also been 

shown to interact with ER-buffer calnexin (Cnx), which in turn interacts with calreticulin 

(Crt) to regulate Ca2+
ER capacity, Ca2+

ER mobilisation and SOCE activation. Lastly, store-

operated cAMP signaling has been shown to couple Ca2+
ER directly with cAMP 

production, through adenylate cyclase (AC). Cyclic nucleotides exert reciprocal inhibition 

over each other, and regulate the rate of Ca2+ flux from the ER by facilitating or inhibiting 

mobilisation through IP3R/RyR. A large rise of Ca2+ activates Ca2+-calmodulin dependent 

protein kinase II (CaMKII), which mediates cytoskeletal polymerisation resulting in axon 

extension or attractive turning if activated asymmetrically in response to a guidance cue 

such as BDNF. 

 



	 140	

	
	
 

 

  



	 141	

crucial for the regulation of bidirectional responses during axon guidance and synaptic 

plasticity (Poo, 2007). Given the necessity of STIM1 in the Ca2+
ER-plasma membrane 

feedback loop at the synapse (de Juan-Sanz et al., 2017), it is likely via the microtubule-

ER association that STIM1 also regulates exocytosis in growth cones which is vital for 

pathfinding (Tojima et al., 2007; 2010). In mouse cerebellar Purkinje neurons STIM1 

regulation of Ca2+
ER is required for metabotropic glutamate receptor type 1 (mGluR1) and 

IP3R-dependent Ca2+ signals (Hartmann et al., 2014). mGluR1 is abundantly expressed 

in the CNS and regulates activity-dependent synaptic plasticity (Nakanishi, 1992), thus 

the finding that STIM1 regulates mGluR1 activity has significant implications for neuronal 

function in learning and memory.  

 

The function of STIM1 in neurons has been greatly debated, and for a long time was 

dismissed, given the abundant nature of non-SOCE channels involved in Ca2+ signalling 

in excitable cells, including VGCC. VGCC are activated by depolarisations associated 

with action potentials or subthreshold stimuli and trigger the influx of Ca2+ necessary for 

neurotransmitter release and synaptic input integration (Furukawa, 2013). Ca2+ influx 

through VGCC and the generation of Ca2+ spikes and transients or prolonged global rise 

of intracellular Ca2+, have been shown to halt growth cone and filopodial extension (Tang 

et al., 2003b; Lohmann et al., 2005; Gomez and Zheng, 2006). This suggests that a 

relatively large influx of Ca2+ through VGCC is more likely to sustain coordinated and 

activity-dependent events such as synaptogenesis, whilst alternate sources of Ca2+ may 

be recruited during dynamically motile events, such as axon pathfinding, where activity 

is spontaneous. Supporting the idea that VGCC drive coordinated events while non-

VGCC sources drive spontaneous pathfinding events, is evidence that L- and N-type 

VGCC are significantly upregulated in foetal and adult synaptosomal membrane 

subfractions (Vigers and Pfenninger, 1991). Additionally, early stages of development 

known to support processes such as growth cone motility are mediated by spontaneous 

Ca2+ transients through non-VGCC (Gomez et al., 1995), and attractive growth cone 
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turning to BDNF and netrin-1 occurs largely independently of L-type VGCC activation in 

rodent DRG growth cones (Gasperini et al., 2017). STIM1 is necessary for growth cone 

turning (Mitchell et al., 2012; Shim et al., 2013), and has also been shown to reciprocally 

inhibit L-type VGCC in neurons while activating Orai1 (Park et al., 2010; Wang et al., 

2010). Given this, the function of STIM1 as growth cones specialise to form synapses 

might be to switch the main source of Ca2+ from spontaneous to coordinated (via VGCC), 

to drive pathfinding and synaptic activity respectively. 

 

The notion that SOCE is a crucial source of Ca2+ in developing neurons is intriguing, 

given the spectrum of Ca2+ channels involved in the regulation of neuronal processes 

such as axon guidance and synaptic plasticity (Luebke et al., 1993; Takahashi and 

Momiyama, 1993; Wheeler et al., 1994; Iwasaki et al., 2000; Gomez and Zheng, 2006). 

Crosstalk between different sources of Ca2+ signalling is likely to be important for the 

regulation of synaptic activity. Ca2+ resulting from SOCE and NMDA-induced transients 

and the involvement of NMDA receptor-induced SOCE in long-term potentiation, suggest 

these sources may function in cooperation to amplify signals (Baba et al., 2003). It is 

possible that the main source of Ca2+ necessary for driving processes such as growth 

cone navigation change as growth cones specialise into presynaptic structures. Although 

the role of Ca2+ signalling in regulating cytoskeletal dynamics and membrane trafficking 

at the growth cone and in synaptic function are well described (Zheng and Poo, 2007), 

the Ca2+ signals that direct the transition from growth cone to synapse are unclear. 

Investigating whether the source of Ca2+ at the growth cone shifts from CRAC to VGCC 

by means of STIM1 reciprocal inhibition as the growth cone transitions into a presynaptic 

structure, would provide great insights into the regulatory mechanisms that direct 

synaptogenesis. The source of Ca2+ determines the amplitude change in [Ca2+]i which is 

important for the regulation of growth cone behaviours  (Ooashi et al., 2005; Arie et al., 

2009). While an initial Ca2+ signal through the plasma membrane can trigger growth cone 

repulsion, an additional release of Ca2+ from internal stores can shift this response to 
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attraction (Ooashi et al., 2005). Internal stores provide a necessary additional source of 

Ca2+, which is not only crucial for modulating growth cone behaviour, but also for the 

regulation of synaptic activity (Peng, 1996; Llano et al., 2000; Galante and Marty, 2003; 

Sharma and Vijayaraghavan, 2003). Not only are stores necessary to sustain Ca2+ 

signals, but as the work in this thesis has shown, ER stores also regulate the spatial 

localisation of Ca2+ signals within nanostructures.  

 

The work presented here demonstrates that STIM1 is multifunctional and regulates the 

function of various systems involved in steering growth cones, including the dynamics of 

the cytoskeleton, tip-attachment complexes, cytoskeletal-associated proteins and focal 

adhesion complexes. We have demonstrated that STIM1 is necessary and sufficient to 

steer growth cones, and that a threshold level of STIM1 expression is required to regulate 

the various aspects of STIM1 function. STIM1-mediated ER-remodelling and association 

with microtubules is likely to mediate spatially restricted Ca2+
ER signals within the 

pathfinding growth cone, which is vital for growth cone motility and axon pathfinding.  
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Appendix 1. KEY RESOURCES 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 

Rabbit anti-STIM1 (N-terminal, 1:500) Sigma-Aldrich (USA) Cat#S6072; RRID: AB_1079008 

Rabbit anti-MAPRE1 (EB-1 with limited homology to 

human EB-3; 1:1000) 

Abcam (UK) Cat#ab50188; RRID: AB_880911 

Mouse anti-β3-tubulin (1:1200) Promega (USA) Cat#G7121; RRID: AB_430874 

Mouse APC-NT (1:400)  Generous gift from Maree Faux, 

Elliott et al., 2013 

N/A 

Mouse anti-Drebrin (MF26, 1:1000) Enzo Life Sciences (USA) Cat#ADI-NBA-110-E;  

RRID: AB_2039073 

Mouse anti-FAK (1:1000) Millipore (USA) Cat#05-537; RRID: AB_2173817 

Alexafluor 488 Phalloidin Invitrogen (USA) Cat#A12379; RRID: AB_2315147 

Alexafluor 405/488/568/647 secondary antibodies (1:1000) Invitrogen (USA)  

Bacterial and Virus Strains  
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CellLight Tubulin-GFP, BacMam 2.0 Thermo Fisher Scientific (USA) Cat#C10509 

CellLight ER-RFP, BacMam 2.0 Thermo Fisher Scientific (USA) Cat#C10591 

plenti-hsyn-EB3-YFP  N/A 

Chemicals, Peptides, and Recombinant Proteins 

Laminin Mouse Protein, Natural Invitrogen (USA) Cat#23017015 

Poly-L-ornithine hydrochloride Sigma-Aldrich (USA) Cat#P2533; CAS: 26982-21-8 

Brain-derived neurotrophic factor human Sigma-Aldrich (USA) Cat#B3795 

Recombinant Human Semaphorin 3A Fc Chimera Protein  R&D Systems (USA) Cat#1250-S3 

Epothilone D  Abcam (UK) ab143616; CAS: 189453-10-9 

Thapsigargin Santa Cruz Biotechnology 

(USA) 

Cat#sc-24017A; CAS: 67526-95-8 

Fura-2, AM, cell permeant Invitrogen (USA) Cat#F1225 

Effectene transfection reagent Qiagen (Germany) Cat#301425 

Rat Neuron Nucleofector ® Kit Lonza (Switzerland) Cat#VPG-1003 

NeuroMag transfection reagent Oz Biosciences (France) Cat#NM50200 
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Experimental Models: Cell Lines 

HEK293A Cryosite CRL-11268 

Experimental Models: Organisms/Strains 

Sprague-Dawley Rat University of Tasmania   

Oligonucleotides  

Morpholino-targeting sequence: STIM1 control (5’-

GGCCAACACCAGCCACAGATCCAT)  

Gene Tools LLC (USA)  

Morpholino-targeting sequence: STIM1-specific (5’-

GGGCAAGACGAGCGCACACATCCAT)  

Gene Tools LLC (USA)  

siRNA targeting sequence: Orai1-specific and control non-

targeting siRNA  

Dharmacon (USA) 304496, Alias: RGD1311873 

Recombinant DNA 

pCMV-OptoSTIM1 Kyung et al. 2015 Addgene plasmid #70159 

pCMV-OptoSTIM1(Cry2(D387A)) Kyung et al. 2015 Addgene plasmid #70160 
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LOVS1K Pham et al. 2011 Addgene plasmid #31981 

pclink-EB1-RFP and pclink-EB3-YFP Generous gift from John Chilton N/A 

pclink-BiP-mCherry-KDEL Generous gift from John Chilton, 

Based on Zurek et al. 2011 

N/A 

pEX-YFP-STIM1 delta K Liou et al., 2007 Addgene plasmid #18861 

EB3-tdTomato Merriam et al., 2013 Addgene plasmid #50708 

ER-GCaMP6-150/210 Generous gift from Timothy 

Ryan, de Juan-Sanz et al., 2017 

N/A 

Software and Algorithms 

ImageJ NIH (USA) https://imagej.nih.gov/ij/ 

GraphPad Prism 6 GraphPad Software Inc. (USA) https://www.graphpad.com 

NIS-Elements AR 4.00.12 software Nikon (Japan) https://www.nikoninstruments.com 

Volocity Image Analysis Software Perkin Elmer (USA) http://www.perkinelmer.com 

MATLAB MathWorks (USA) https://www.mathworks.com 
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