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Summary

Inspired oxygen control for preterm infants is performed to maintain oxygen satura-

tion (SpO2) in the blood in a target range. Exposure to insufficient or excess levels of

fraction of inspired oxygen (FiO2) may increase the risk of mortality and morbidity

in these patients. Despite this sensitivity, manual control is still the common practice

largely due to immaturity of the existing control algorithms in dealing with the

challenging task. Accordingly, this thesis aimed to initially identify the shortcomings

of the existing automated controllers and then to provide indications for addressing

these shortcomings.

Through comprehensive analysis of the literature, the main design challenges of

automated controllers were identified as oxygenation variability, technologic insuf-

ficiencies of infant monitoring and safety considerations. The thesis then largely

focused on addressing the variability issue. Oxygenation variability means that a

given FiO2 adjustment may lead to a different SpO2 response on different occasions.

A first order transfer function characterised by a delay, a time-constant and a gain

was used to model the FiO2-SpO2 relationship following FiO2 adjustments in a large

dataset from preterm infants receiving supplemental oxygen. The model was found

representative for 37% of the adjustments from which an image of the parameter

variations was obtained. The model was more representative for FiO2 increments

than decrements and predictability was low in the collective set of model parameters.

The study was followed by a thorough characterisation of the oxygenation response

which most notably indicated intra and inter-patient variability as well as influence
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of severity of lung dysfunction on the gain of the oxygenation system. These findings

support the superiority of adaptive control algorithms over robust and rule-based

approaches. Moreover, these results provide a quantitative basis for developing

adaptive algorithms and point to the severity of lung dysfunction reflected in baseline

FiO2 as a viable basis for the adaptation.

Frequent fluctuations of SpO2 being another challenging aspect of variability was

then investigated. Apnoea, loss of circuit pressure and motion artefact concomitant

with falls in SpO2 (e.g. hypoxia) were of interest. The high frequency of these

factors as well as relevance of respiratory pauses with the characteristics of the

following hypoxic events indicated potential benefits of incorporating respiratory

rate in automated control methods. Finally, the issue of oximetry signal dropouts was

studied and the results indicated that pre-emptive increments to FiO2 when SpO2

is missing during automated control may not be necessary. Parts of the outcomes

of this thesis were used in development of a neonatal oxygen control algorithm for

which a patent application is in progress.

In a nutshell, the main contributions of this thesis to the research area include

1) Identification of the main challenges in automated control of FiO2 for preterm

infants, indications for overcoming the challenges, 2) Providing a quantitative image

of the characteristics of oxygenation system in preterm infants with a representation

suitable for developing automated control algorithms, 3) Identifying the severity of

lung dysfunction as a predictor of oxygenation response variability, 4) Revealing the

frequency and relevance of factors such as apnoea and motion artefact concomitant

to hypoxic events which can complicate automated FiO2 control, 5) Obtaining infor-

mation concerning the SpO2 changes before and after episodes of signal dropout

which assists in decision-making of a controller during these periods and 6) Pro-

viding information which acted as a basis for developing a control algorithm with

commercialisation prospects.
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Chapter 1

Introduction



Neonates, particularly premature infants often need respiratory support in a period

following their birth. Respiratory support includes delivery of humidified air-oxygen

mixture which can be performed through mechanical ventilation or a non-invasive

setting such as continuous positive airway pressure (CPAP). Maintaining oxygen

level in the blood in an optimal range by making adjustments to fraction of inspired

oxygen (FiO2) is required in order to minimise four associated risks especially for

the premature infants. The risks are mortality, retinopathy of prematurity, damage

to the brain and chronic lung disease (Silverman, 2004; Stenson, 2013; Saugstad and

Aune, 2014).

The adjustments in FiO2 are currently predominantly performed manually based on

oxygen saturation (SpO2) readings (figure 1.1), however clinical evidence suggests

that manual targeting of a SpO2 range is not very effective (Hagadorn et al., 2006;

Laptook et al., 2006; Schmidt et al., 2014, 2013). Even a recent report indicated to an

average of only 35 and 38% of the time spent within the target range for routine and

algorithm-based manual control, respectively, in a group of preterm infants (Clarke

et al., 2015).

Due to the logical benefits of automation of oxygen control (Claure and Bancalari,

2013b) such as providing on-time adjustments, it has long been investigated as a

potential solution with the early efforts dating back to 1970s (Beddis et al., 1979;

Collins et al., 1979). Notwithstanding significant progress over-time and relatively

improved outcomes, clinical trials on automated controllers suggest that they too

are far from optimal (Claure et al., 2009, 2011; Zapata et al., 2014; Hallenberger et al.,

2014).

The obvious sub-optimality of the existing controllers motivated this research project.

The project aimed to 1) Identify high level issues complicating the design of au-

tomated oxygen controllers for preterm infants and 2) Provide suggestions for

addressing the identified issues through analysis of datasets obtained from preterm

2



Figure 1.1: A sample of several hours of FiO2 and SpO2 recordings during manual
control showing the SpO2 trace, FiO2 targeting adjustments and the SpO2 target
range (dashed lines).

infants. Thus, the project started with a comprehensive evaluation of the existing

algorithms and their performance. Three main categories of identified challenges

were namely variability of the oxygenation system, technologic shortcomings of

infant monitoring and safety considerations. The outcomes of this part of the project

are presented in Chapter 2.

Based on these results, two chapters of the thesis were dedicated to investigation

of the variability of the SpO2 response to FiO2 adjustments because of the huge

gap in that area and significance of a potential outcome. Chapter 3 was concerned

with modelling of the oxygenation response as well as assessing the validity of the
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model. This chapter also investigated the possibility of cluster-based prediction of

the oxygenation system response.

Chapter 4 was a continuation of Chapter 3, where the parameters of the estimated

model were investigated to characterise the oxygenation response. Through these

studies, variables which could predict any of the model parameters and potentially

be used during automated control for adaptation purpose were sought. In addition,

intra and inter-infant variability in the response were analysed.

The thesis, then focused on another aspect of variability in oxygenation, being the

frequent declines in SpO2 (episodes of hypoxia) observed in preterm infants. An

underlying mechanism causing a real or perceived hypoxia may interfere with the

performance of an automated controller by disrupting the anticipated oxygenation

response to an FiO2 adjustment. Therefore, identifying the cause of hypoxia may

assist a controller in making prospective decisions. Chapter 5 was then dedicated

to investigation of the factors concomitant with hypoxia. The factors were namely

apnoea (respiratory pauses), loss of gas pressure and motion artefact. Moreover,

relevance between characteristics of hypoxic and apnoeic events was investigated.

Chapter 6 is concerned with the issue of oximetry signal dropouts which is a

shortcoming of infant monitoring that imposes a security challenge to an automated

controller. This is because in the absence of a SpO2 measurement, blindly adjusting

FiO2 could unpredictably change the actual level of oxygen saturation. On the other

hand, inaction in such an occasion if an adjustment is required may also lead to

undesired levels of oxygen saturation. Hence, in Chapter 6 the oximetry readings

were analysed before and after signal dropouts in a large dataset in order to obtain

an evidence-supported indication for appropriate actions during signal dropouts.

It is worthwhile to mention that Chapters 3-6 are self contained in having their

own introduction, methodology, results and discussions for two reasons. Firstly, the

nature of the study makes the presentation of the outcomes more appropriate in a

4



modular fashion without interruption of the flow of the thesis. Secondly, different

datasets with various available channels became available during the course of the

project at different stages. Given the necessities of each chapter, appropriate parts of

the dataset were used. Self-contained chapters allowed for providing information on

the dataset which was used for each chapter.

The chapters of the thesis overall reflect its main contributions to automated control

of inspired oxygen in preterm infants being increased understanding of the existing

challenges and their potential solutions, quantitative characterisation of the neonatal

oxygenation response, identifying predictors of the oxygenation response variability

and finally obtaining indications which help to deal with real-time interrupting

factors such as apnoea, motion artefact and SpO2 signal drop-outs during automated

control.

1.1 Background

The respiratory system is responsible for exchange of oxygen and carbon dioxide

between the body and environment. It starts at the airway openings, proceeds to

the internal airways and ends in alveoli as shown in figure 1.2. The deoxygenated

blood perfusing the lungs comes from the right ventricle of the heart through the

pulmonary artery and once oxygenated, it is carried to the left atrium of the heart

via pulmonary vein. The oxygenated blood is then pumped to the systemic circuit

from the left ventricle through the Aorta. A view of the heart is available in figure

1.3.

A central point in the gas exchange process in the body is the alveolus. Alveoli

are millions of gas chambers surrounded by pulmonary capillaries where the gas

exchange between the lungs and the blood takes place. The gas is exchanged through

diffusion in alveolus membrane because of the gradient concentration of the O2 and
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Figure 1.2: A schematic view of the alveoli. Public Domain image from Wikipedia:
https : //en.wikipedia.org/wiki/Pulmonaryalveolus.

CO2 in alveolus and capillary. The fraction of inspired oxygen defines the alveolar

partial pressure of oxygen which in turn determines the arterial partial pressure of

oxygen (PaO2).

Except for a small proportion dissolved in the blood plasma, the oxygen is almost

completely carried by the haemoglobin in the red blood cells. Oxygen-carrying

haemoglobin (oxyhaemoglobin) and desaturated haemoglobin (deoxyhaemoglobin)

account for most of the haemoglobin protein in the blood. The oxygen saturation

obtained from pulse oximetry (SpO2) is a measure of the ratio of the amount of

oxyhemoglobin to the summation of the amounts of oxyhaemoglobin and deoxy-

haemoglobin (Nitzan et al., 2014). This ratio defines the amount of oxygen delivered

to the tissues and must be kept in a target range (about 90%) in order to ensure

adequate body development while avoiding toxicity.
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Figure 1.3: A schematic view of the heart. Obtained from
https:commons.wikimedia.org/wiki/File:Heart_diagram-en.svg under the
Creative Commons Attribution-Share Alike 3.0 Unported license.

In a preterm infant several factors relevant to prematurity interrupt the natural

capability of the body in stably maintaining required oxygen levels. One issue is

the underdeveloped lungs e.g. fewer alveoli and stiff tissue which together with

compliant chest wall and weak muscles make it difficult for the neonate to maintain

a minimum required volume at the end of expiration. Also underdeveloped nervous

system inadequately driving respiration may play a role. Occasions of cessation

of respiratory effort or airflow called apnoea are also common in preterm infants

(Donn and Sinha, 2012).

To make things worse, various respiratory diseases such as infant respiratory distress

syndrome may affect ability of the neonates in oxygenating their blood. This
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particular disease is associated with lack of a substance called surfactant. This

natural material helps to prevent alveoli from collapsing at the end of expiration and

facilitates its inflation during inspiration. In order to tackle these issues respiratory

support devices are utilised (Reininger et al., 2005) which assist the infants by first

improving the ventilation of the lungs and then providing supplement oxygen to the

infants if needed. The supplemental oxygen is administered to provide adequate

blood oxygenation using the available respiratory functionality of the immature

body despite the existing deficiencies.

For inspiration to occur the pressure inside the lung should be less than the atmo-

spheric pressure. During spontaneous breathing this pressure difference is created

by reduced alveolar pressure while in so called "mechanical breathing" it is created

by positive atmospheric pressure (Donn and Sinha, 2012). This positive atmospheric

pressure and even in some cases a negative pressure in the lungs comes from res-

piratory support devices. Respiratory support devices can be broadly divided into

two categories namely invasive and non-invasive.

In invasive respiratory support the air-oxygen mixture is usually delivered via

an endotracheal tube inserted through the mouth. The infant is then enforced

to/assisted in breathing by the pressure changes in lungs caused by the ventilator.

These devices can be further divided into sub-categories based on the parameter that

they try to control e.g. pressure, volume or flow (Wheeler et al., 2011). Using invasive

support in preterm infants is associated with the risk of bronchopulmonary dysplasia;

a disease caused by abnormal development of the lungs as a result of ventilator-

induced injuries (Jobe and Ikegami, 1998). Moreover, weaning from mechanical

ventilators may be complicated by failure of the infant to breathe spontaneously.

Increasingly-popular non-invasive respiratory support devices on the other hand

deliver the gas using a non-invasive instrument such nasal prongs, nasal cannula,

face-mask, hood or and incubator. Infants breathing spontaneously can then inhale
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the air-oxygen mixture. A schematic diagram and photos of a typical CPAP device are

presented in figure 1.4, and 1.5. There are various types of non-invasive respiratory

support which differ mainly in terms of the type of pressure delivery at the airway.

For instance while a continuous positive airway pressure (CPAP) apparatus delivers

a constant pressure, a nasal intermittent positive pressure ventilator (NIPPV) delivers

a baseline pressure with frequent spikes (Davis et al., 2009). NIPPVs may in turn

be synchronous or asynchronous with the spontaneous breathing in triggering

the pressure spikes. Bi-level CPAP as another example, delivers two frequently

alternating constant pressures.

The choice of the invasive or non-invasive support depends on the needs of an

infant at a particular time and these two modes may be used as complements. The

non-invasive respiratory devices are the main area of focus in this thesis for which

the control of FiO2 is a key aspect.
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Figure 1.4: Top: A schematic diagram of a typical non-invasive ventilator, Middle
right: air-oxygen blender, left: humidifier, Bottom: an infant receiving CPAP
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Figure 1.5: Photo of a Neotech Medical Systems bubble CPAP device
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Chapter 2

Automated Control of Inspired

Oxygen, What We Have and What We

Need



2.1 Summary

This review provides the first comprehensive technically-focused image of algorithms

developed for automation of inspired oxygen control in preterm infants. The chapter

has two main parts; the first provides an overview of the existing algorithms and

the second presents the major design challenges of automated controllers. In the

first section, the algorithms are classified in four categories, namely rule-based,

proportional-integral-derivative, adaptive, and robust. The second section discusses

variability in oxygenation, technologic shortcomings of infant monitoring and safety

considerations as the three major challenges for designing automated controllers.

These challenges, particularly the variations in oxygenation both in the form of

response vagaries following FiO2 adjustments and hypoxia, are selected as the main

areas of focus for the thesis in the upcoming chapters.

The research contained within this chapter has been published as: Omid Sadeghi

Fathabadi, Timothy J Gale, JC Olivier and Peter A Dargaville. "Automated control of

inspired oxygen for preterm infants: what we have and what we need." Biomedical

Signal Processing and Control, 28: 9-18, 2016, Elsevier (Fathabadi et al., 2016b).
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2.2 Introduction

Newborn infants, particularly those born prematurely, often need respiratory support

in a period following their birth. This frequently includes supply of a warmed and

humidified mixture of air and oxygen, delivered either via a stand-alone gas blender

as part of non-invasive respiratory support, or by a blender incorporated into a

mechanical ventilator. Regardless of the mode of respiratory support, adjustment

of the fraction of inspired oxygen (FiO2) is critical, with the aim of keeping partial

pressure of oxygen in the arterial blood (PaO2) in an optimal range. In the neonate,

PaO2 levels that are too low (hypoxia) or too high (hyperoxia) are dangerous, being

associated with an increased risk of mortality, retinopathy, brain injury and chronic

lung disease (Silverman, 2004).

A compelling argument thus exists for avoiding extremes of oxygenation in the

newborn infant, especially for prolonged periods. Putting this into practice is chal-

lenging enough, but the difficulty is compounded by the lack of a direct, continuous

and precise measure of PaO2 in the neonate. For this reason a proxy measure of

oxygenation is used, that of oxygen saturation (SpO2) measured via a skin probe by a

pulse oximeter, rather than PaO2 itself. Given that the SpO2-PaO2 relationship is far

from linear, reliance on measurement of SpO2 to guide titration of oxygen therapy

imposes an additional layer of complexity to the problem of optimising oxygenation

in the newborn.

The current approach to titration of oxygen therapy in the preterm newborn is

that of manual adjustment of FiO2 by bedside caregivers in an effort to maintain

oxygen saturation (SpO2) in the target range. It is well-established, however, that

this method is not very effective (Hagadorn et al., 2006; Laptook et al., 2006). Recent

reports indicate that the average proportion of time spent within the target range

during manual control, can be as low as 30-40% (Lim et al., 2014; Clarke et al., 2015).

Accordingly, there have been efforts to automate this process (Claure and Bancalari,
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2013b). While early efforts towards automation of FiO2 control for preterm infants

date back to 1970s (Beddis et al., 1979; Collins et al., 1979), manual control is still the

common practice.

Previous reviews of automated control of FiO2 have discussed the rationale and

potential benefits and risks of automated control for preterm infants (Claure, 2007;

Bancalari and Claure, 2012; Claure and Bancalari, 2013b,a, 2015a,b) as well as re-

viewing the available evidence from clinical trials (Claure and Bancalari, 2015a,b),

(Hummler et al., 2014). These papers point to the potential for automated control to

more effectively maintain oxygenation in a target range and reduce the workload

of bedside caregivers. The need to perform large-scale clinical trials of automated

control has also been highlighted, including a study of longer term outcomes in

preterm infants receiving this form of support.

The published reviews appear not to reflect the importance of the technical charac-

teristics of automated oxygen control systems. The existing algorithms have not been

comprehensively described, critically appraised and compared. Accordingly, the first

aim of the current chapter is to summarise and classify algorithms for automated

control, and identify directions for future improvement. The second objective is

to identify the main obstacles in developing automated FiO2 control devices, and

suggest some potential solutions.

2.3 Existing Algorithms for Automated Control of FiO2

During automated or closed loop FiO2 control, regular adjustments to the fraction

of inspired oxygen are made based on a feedback of oxygenation. The control

loop includes the control algorithm programmed in a computer or an embedded

processing unit. This algorithm receives the oxygenation feedback and provides

the suggested FiO2. The other part of the loop is composed of the infant to whom
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the air-oxygen mixture with the desired FiO2 is delivered and from whom the

oxygenation measurement is obtained. The control loop is closed by the electrical

and mechanical actuators which receive the proposed FiO2 from the algorithm and

deliver the blended air-oxygen mixture.

Published reports reveal four major approaches to algorithm design for inspired

oxygen control in the neonate: a) rule-based, b) proportional-integral-derivative

(PID), c) adaptive and d) robust approaches. These are defined and examined in

detail below.

2.3.1 Rule-Based Controllers

Rule-based controllers make adjustments to FiO2 based on a set of rules which stem

from expert knowledge. A rule-based controller may be in the form of a simple

if-then loop or can engage fuzzy logic (Oviedo et al., 2006).

Non-Fuzzy Algorithms

Automation of oxygen control for preterm infants began with a simple rule-based

controller proposed by Beddis et al. (1979) and technically described in more detail by

Collins et al. (1979). This servo-controller adjusted FiO2 in 5% single step increments

or decrements at 1-min intervals if the measured partial pressure of arterial oxygen

(PaO2) was out of the desired range, or took no action if the PaO2 was acceptable.

Later rule-based algorithms (Morozoff et al., 1993; Urschitz et al., 2004) were similar

in terms of making step adjustments in FiO2 with a period of inaction thereafter,

but were significantly more elaborate in their decision-making. The algorithm of

Morozoff et al. (1993) used three error-based indices as inputs to a state machine

controller.
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The controller inputs were the signs of the magnitude, velocity and acceleration

of the error based on which the state machine determined a qualitative parameter

called trend of the error. The value of the trend defined the next state of the machine,

an FiO2 adjustment and a delay to give time for reaction to the adjustment. Although

the authors defined the states and trends in a table, they did not present detailed

information about transitions between the states, how the delay and adjustments

were determined and what were the actual values of these outputs (Morozoff et al.,

1993). The state machine was updated every second.

Along similar lines, the more recent controller of Urschitz et al. (2004) utilised the

concept of trend in its decision-making but defined it a totally different way. The

algorithm made a decision based on so called "state analysis" (180 seconds) and

"trend analysis" (60 seconds) followed by "no action" episodes (180 seconds). There

were five possible adjustments (-2%, -1%, 0, +2%, +5%) according to the state, which

could be postponed according to the extracted trend.

Qualitative descriptions (state and trend) were extracted from moving windows of

the recorded oxygen saturation (SpO2). There were five possible states (substantially

above, above, normal range, below, substantially below), and three possible trends

(increasing, stable, decreasing). The abstraction method was presented by Miksch

et al. (1999) and included linear regression steps; the basis of control algorithm was

introduced by Seyfang et al. (2001). The authors stated that this controller was not

designed to respond to acute severe hypoxic episodes (Urschitz et al., 2004).

Fuzzy Algorithms

The application of a fuzzy logic controller to neonatal inspired oxygen control was

first reported by Sun et al. (1994), paralleling the efforts of Morozoff (1996). Fuzzy

logic controllers are similar to simple rule-based controllers in using if-then pairs

but they make it possible for a given set of inputs to correspond to more than one
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Figure 2.1: Sample membership functions for a four-subset fuzzy set, a value of 1
denotes full membership to a subset while a value between 0 and 1 indicates to the
extent of partial membership.

rule with variable extents. This work is performed using membership functions

(figure 2.1) which define the extent of membership of a variable to subsets of a fuzzy

set. The final control decision is then made in a procedure using the outputs of the

relevant rules as well as the obtained memberships.

Putative advantages of fuzzy control over classical control theory are a) the appli-

cability to systems which are hard to model mathematically and are nonlinear, b)

the capacity to incorporate expert knowledge in the algorithm, c) the possibility to

facilitate linguistic description of continuous variables associated with fuzzy subsets,

d) less noise sensitivity and more robustness, and finally e) less complexity of the

design and faster computations in real-time (Sun et al., 1994).

In the first use of fuzzy logic for this purpose, Sun et al. (1994) used the values of error

and SpO2 slope as inputs which were then fuzzified into 7 and 5 regions, respectively,

using triangular membership functions. The error was defined as the difference

between the average and the target SpO2 while SpO2 slope was obtained from a

regression line; both were updated every 10 seconds. The fuzzification process

created 35 combined regions which corresponded to 35 if-then fuzzy inference

rules. The logic of the fuzzy inference rules was defined based on neonatologists’

knowledge.
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Along similar lines, a more recent fuzzy logic controller incorporated within a

medical device (Auto-mixer) (Lopez et al., 2014) created a fuzzy inference system

including 35 rules with the error and derivative of the SpO2 as its inputs. Unlike Sun

et al. (1994) however, the error was divided into five and the derivative into seven

regions.

In the following defuzzification stage, where Sun et al. (1994) used a weighted-mean

method to combine the outputs of the rules and to create a control action, by contrast

Lopez et al. (2014) prescribed 11 possible values for an adjustment ranging from

-5% to +5% based on the pre-defined rules. Implementation of both controllers was

performed using a look-up table to expedite the computation process in real time.

The test conditions of rule-based controllers have been widely disparate, which must

be taken into account in assessing their performance. Beddis et al. (1979) tested their

controller on 12 infants receiving supplemental oxygen via headbox, continuous

positive airway pressure (CPAP) or intermittent positive pressure ventilation (IPPV).

Morozoff et al. (1993) on the other hand studied only neonates that were intubated

and requiring assisted ventilation.

In many cases the tests were performed in two stages. As an example, Urschitz et al.

(2004) initially tested their algorithm on preterm infants under nasal continuous

positive airway pressure but later (Hallenberger et al., 2014) on patients receiving

mechanical ventilation and CPAP. Similarly, Sun et al. (1994) reported some prelimi-

nary clinical results, before testing the algorithm in open loop on 16 mechanically

ventilated infants (Sun et al., 1997).

Lopez et al. (2014) used a first-order model of FiO2-SpO2 relationship for their

preliminary tests on their controller and later reported the results of a randomized

controlled trial (Zapata et al., 2014). The patients in this trial received supplemental

oxygen using nasal cannula without mechanical ventilation.
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One major issue with the performance of rule-based controllers is that step adjust-

ments are followed by a lockout period with no action. It is thus possible that the

response to a sudden change in oxygenation will be inappropriately postponed.

Additionally, the different sets of rules based on clinical knowledge appear to be

incompletely validated. A clinical comparison of the effectiveness of these algorithms

would be the only way to assess their overall performances.

2.3.2 PID Controllers

PID control, the most popular form of control algorithm in industry, defines an error

(e) which is the deviation of the process signal from the set-point. The value of the

manipulated signal output (u) at each moment is proportional to the value of error,

its integral and derivative (equation 2.1), with a different multiplying coefficient

(Kp, Ki, Kd) in each case. The integral term considers accumulated past error and can

eliminate steady state error, whereas the derivative term is in essence a prediction of

the future error (Visioli, 2006).

u(t) = Kpe(t) + Ki

w
e(τ)dτ + Kd

de(t)
dt

(2.1)

A conventional PID algorithm was first applied to automated oxygen control by

Tehrani and Bazar (1994), and updated in 2001 (Tehrani, 2001). These controllers

were designed for infants given oxygen via an oxyhood or incubator, and were tested

in simulation studies using a mathematical model of the neonatal respiratory system.

For both algorithms, although oxygen saturation was measured, the PID algorithm

used partial pressure of arterial oxygen derived from SpO2 as the input.

One of the features of the earlier algorithm (Tehrani and Bazar, 1994) was frequent

adjustment of the setpoint of PaO2 within the range of 80-90 mmHg while in the later
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version (Tehrani, 2001) a stepwise algorithm was incorporated to respond to abrupt

desaturations, followed by a switch back to the PID algorithm for fine regulation.

Beyond those mentioned above, Morozoff and Evans (1992) described a "differential"

feedback-control algorithm, which was studied in ventilated infants. The algorithm

used the sign of the error as well as the velocity and acceleration of the filtered SpO2

to make FiO2 adjustments, followed by a delay in which no further adjustment was

made. Based on the described inputs and function of the controller, and with a lack

of further detail about the manner of reaching control decisions, this algorithm can

hardly be considered a subset of PID family.

The controller was too slow to properly respond to rapid desaturations and manual

interventions were regularly necessary. The authors suggested that incorporation

of an algorithm to identify and respond to rapid desaturations would improve

performance. In the most-recently published and the only experimentally-tested

example of a PID algorithm for automated FiO2 control (Morozoff and Smyth,

2009) the performance of three different controllers was compared. The results

indicated that besides its need for manual tuning, the tuned PID algorithm performed

comparably to a state-machine controller in terms of SpO2 targetting and manual

interventions but not as good as an adaptive one.

2.3.3 Adaptive Controllers

Adaptive control is an approach to control in which the behaviour of the algorithm

is adjusted based on varying characteristics of the process and its signals (Isermann,

1989). This approach has been used in a number of the automated oxygen control

devices for newborn infants described in the past 3 decades. One of the earliest and

most significant contributions was made by Sano and Kikucki (1985). Their adaptive

feedback controller was intended for newborn infants receiving supplemental oxygen

in an incubator.
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In their study, the relationship between FiO2 and oxygen pressure inside the incuba-

tor (PiO2) was described by a first order differential equation, and the association

between PiO2 and PaO2 was estimated by another first order equation. The second

equation was then estimated as a linear equation (equation 2.2) neglecting the time

constant of the body compared to the incubator.

The slope and intercept of the line described in equation 2.2 namely K1 and K2 were

considered the changing variables during adaptive control. The two equations were

then combined to create a discrete mathematical model of the PaO2 in response to

FiO2. This combined model with average K1 and K2 for infants with lung disease

was called the nominal model.

PaO2 = K1 × PiO2 + K2 (2.2)

A model reference adaptive control approach was then used, consisting of two

parts, an adaptive compensator and an optimum digital controller (figure 2.2). The

optimum controller was designed to make FiO2 adjustments to control the nominal

model. The adaptive compensator on the other hand, was in charge of compensating

the dynamics of the subject’s respiratory system so that the combination of the com-

pensator and the subject remained equal to the nominal model from the controller’s

point of view. In other words, the optimum controller assumed a constant nominal

model of the system while the adaptive compensator adaptively updated itself so

that the overall input-output model assumed by the optimum controller was realised.

The controller was tested using an analytical model of the respiratory system and

in experimental animals. Despite sophistication of the approach and an apparent

depth of physiological understanding on the part of the authors, this work is lacking

for supporting clinical data and has shortcomings such as the restricted focus on

delivery of ambient oxygen, and the reliance on transcutaneous PO2 measurement.
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Figure 2.2: Adaptive controller of Sano and Kikucki (1985). Reproduced by permis-
sion of the Institution of Engineering & Technology.

In work inspired by Sano and Kikucki (1985), Bhutani et al. (1992) examined the

performance of a PID algorithm developed within their group (Taube et al., 1988;

Taube and Bhutani, 1991). The sole adaptively-tuned parameter was the slope

of the PaO2-FiO2 relationship. This slope was iteratively calculated using SpO2

measurement, with the new value of slope being a weighted summation of the

previous value and the current ratio of PaO2 (derived from SpO2) to FiO2.

Again the focus was on infants receiving supplemental oxygen by hood. Studies on

fourteen infants showed superior performance of the adaptive algorithm compared

to both standard protocol-based and bedside manual control in terms of the time

spent in the target range, SpO2 stability and reduced overshoots introducing adaptive

approach as an efficient solution.

A further adaptive oxygen controller for neonates was proposed by Morozoff et al.

(1994), operating on the basis of changes to the FiO2-SpO2 relationship. This method

described the relationship by a curve (figure 2.3) which consisted of three lines

with various slopes and covering various ranges of FiO2 and SpO2. The algorithm

adjusted the lines periodically by evaluating the proportion of time that was spent

within, over or under the target range. The controller made its periodic adjustments
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Figure 2.3: A typical FiO2-SpO2 relationship and a piecewise linear model for
illustration of the method used by Morozoff et al. (1994). The solid line depicts the
FiO2-SpO2 curve and the dashed lines represent the model.

to FiO2 on the basis of the updated model (curve) at each time.

Shortcomings of this work were the limited justification for the method of updating

the lines, and for the determination of the magnitude of FiO2 adjustments based

on the model. The algorithm was compared with manual control, a state machine

controller and a PID controller in several infants and appeared overall to achieve

the highest proportion of time in the target SpO2 range, with little need for manual

intervention. However the study conditions including the target range were variable

and the results were not presented in detail. Morozoff and Smyth (2009) later

included these algorithms in clinical experiments with similar findings.

The most clinically-tested algorithm thus far developed for automated oxygen

control is also adaptive. Claure et al. (2001), devised a hybrid algorithm which is

a combination of differential feedback and rule-based control to maintain SpO2 in

a target range. Both timing and magnitude of the FiO2 adjustments are calculated

based on parameters such as current SpO2, direction and rate of variations in SpO2,

severity and duration of hypxoic/hyperoxic episodes, current FiO2 and basal FiO2
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during normoxia. Adjustments during hyperoxia are of lesser magnitude and speed

than during acute hypoxia episodes.

The algorithm is adaptive in the sense that FiO2 adjustments are directly proportional

to the severity of lung dysfunction, as measured by the current baseline oxygen

requirement. After the initial clinical study in mechanically ventilated preterm

infants (Claure et al., 2001), several clinical trials have compared the performance

of this algorithm with manual control in preterm infants (Claure et al., 2009, 2011;

Van Kaam et al., 2015; Waitz et al., 2015). Automated control was associated with a

greater proportion of time in the target SpO2 range compared with manual control

in all studies.

Time spent in the hyperoxic range was reduced. In the early studies this appeared to

be at the cost of more time spent in mild hypoxia (Claure et al., 2009, 2011), although

in the two most recent studies time in mild hypoxia has been on par with or less

than during manual control (Van Kaam et al., 2015; Waitz et al., 2015). This algorithm

is incorporated as an option (CliOTM
2 ) in a mechanical ventilator (Avea, Carefusion,

Seven Hills, Australia), and is approved for use in numerous countries. The (CliOTM
2 )

option has not been approved by the US Food and Drug Administration and is thus

not currently available in the United States.

Review of existing adaptive control algorithms reveals that their design is based on

numerous underlying assumptions. The first assumption is possibility of modelling

the oxygenation system a certain way for instance by a single or three lines. The

next assumption is that the variables which are used for the purpose of adaptation

are predictive of the variations of the system e.g. proportion of time that was spent

within the target range or severity and duration of hypxoic/hyperoxic episodes.

Finally, it is assumed that the association of these input variables and the oxygena-

tion dynamics is well known and accommodated by the algorithm. In absence of

independent studies on the extent of reliability of these assumptions, results of
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Figure 2.4: An assumed monotonic PaO2 response to a step change in FiO2 and its
step function model used by Dugdale et al. (1988). Reproduced by permission from
IOP Publishing.

clinical trials are the only indirect references for assessing their appropriateness.

2.3.4 Robust Controllers

A robust controller is a constant controller which is designed to remain stable and

perform within a particular range of control performance despite inexact process

model and large parameter changes (Isermann, 1989). Two algorithms designed for

automated oxygen control can be classified in this category. The first, by Dugdale

et al. (1988) was designed to respond to PaO2 measured using an in-dwelling oxygen

sensor in neonates with respiratory distress syndrome (RDS). The algorithm was

developed to account for dynamic characteristics of the system under study, and the

potential differences between infants.

A monotonic response in PaO2 was assumed (figure 2.4), and preliminary studies in

5 infants became a basis for calculation of system characteristics. The PaO2 response

was represented by a delayed (T) and scaled (b) step function (figure 2.4). Variables

’b’ and ’T’ became the design parameters chosen to achieve stability criteria. The

stability criteria were defined based on b and T.
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The control rule was very simple; the sampling interval was chosen equal to ’T’ and

the value of input to the system was equal to the summation of the previous input

and ratio of the current error to ’b’. Once the algorithm had been established, function

of the controller was evaluated in seven premature infants receiving supplemental

oxygen via a headbox and improved targeting compared to manual control was

observed. The authors suggested that enhancing the safety aspects of their controller

could make it appropriate for routine use.

A further robust controller was described by Keim et al. (2011). Clinical data from

premature infants was collected during recovery from hypoxia. A first-order transfer

function was fitted to the observed FiO2-SpO2 relationships, and the parameters

of the first-order model were estimated. An error model based on the estimated

parameter ranges was created, and consequently developed into a µ-synthesis robust

controller (Skogestad and Postlethwaite, 2005).

A detailed description of this method is beyond the scope of this review but as a

general statement, this design approach results in the controller in a mathematical

optimisation process considering the stability and performance requirements. Keim

et al. (2011) did not take the time delay of the response into account and the controller

was not tested in clinical studies. Moreover, both the assumption of a first order

model and the way the parameter estimation was performed had limitations which

will be mentioned when discussing the oxygenation variability inherent in the

premature infant.

2.3.5 Target Range Achievement and Automated Control

Performance of automated control algorithms can be measured in several ways,

including proportion of time in the target range, time spent in varying degrees of

hypoxia and hyperoxia when receiving oxygen, number of episodes of prolonged

hypoxia and hyperoxia, as well as the number of manual FiO2 adjustments required.
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The analysis should examine the performance in the group of infants overall, but

also focus on the most challenging cases (outliers) within the group. Results of

clinical trials since 2000 are presented in brief in table 2.1 and 2.2. The manual

control outcomes are consistent with the results of independent investigations on

target range achievement during manual control (Hagadorn et al., 2006; Laptook

et al., 2006; Lim et al., 2014), and in part reflect the span of the target range.

The recent clinical trials have all found automated control to improve time in the

target SpO2 range compared with standard manual control, although in some cases

the benefit has been modest. The variable extent of improvement in different trials

may stem from factors such as the chosen target range and the approach to manual

control, but also reflect the effectiveness of the algorithm itself. Further information

about these trials can be found in a systematic review by Hummler et al. (2014) and

elsewhere (Claure and Bancalari, 2015a,b).
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2.4 Design Challenges for Automated Controllers

Analysis of the existing approaches reveals challenges which need to be overcome

in order to significantly improve the performance of automated oxygen control in

preterm infants. Three fundamental issues stand out, these being the variability in

the biological system controlling oxygenation, technological shortcomings of both

physiological monitoring and oxygen delivery and finally safety considerations

including the need to choose an appropriate SpO2 target range. These challenges are

discussed further below.

2.4.1 Variability in Oxygenation

Unpredictable Variability of the Oxygenation Response

The oxygenation response refers to the way in which SpO2 changes as a result of a

change in FiO2. A variable oxygenation response means that a given FiO2 adjustment

may lead to a different SpO2 response on different occasions. An automated control

algorithm must remain stable and perform reasonably in spite of such variability.

Although many existing rule-based controllers attempt to deal with this variability

based on expert clinical knowledge, in the field of control engineering, design

techniques are heavily dependent on characterising the system under control in the

form of an input-output model, and quantifying the possible variations in it as a

basis for controller design (as exemplified earlier).

A first-order relationship between FiO2 and oxygen level in the blood (SpO2 or PaO2)

has been assumed in algorithms used for automated control in various studies in the

past (Sano and Kikucki, 1985; Keim et al., 2011; Lopez et al., 2014), but the applicability

and characteristics of a first order model have been insufficiently understood. One

factor which is known to cause variability is the non-linearity of the PaO2-SpO2
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Figure 2.5: The relationship between SpO2 and PaO2. Data from 122 preterm infants
(Castillo et al., 2008). Reproduced with permission from the American Academy of
Pediatrics.

relationship (Castillo et al., 2008) (figure 2.5).

The shape of the PaO2-SpO2 relationship results in poor resolution of SpO2 for

estimation of PaO2 at high levels of saturation; with wide variation in PaO2 for a

single SpO2 reading (figure 2.5). Use of SpO2 may thus fail to detect a wide departure

in PaO2 from an acceptable range and distort the first order behaviour. Additionally,

parameters that influence the SpO2-PaO2 relationship such as temperature and

acidity of the blood (Severinghaus, 1979) can also influence the response. Identifying

factors which affect the oxygenation response could have important implications and

potential applications for adaptation of an automated controller. It is particularly

important to find predictors which are available in real time.
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Fluctuating Oxygenation in Preterm Infants on Respiratory Support

A major issue with control of FiO2 in preterm infants is fluctuating SpO2, limiting

the proportion of time a given target range can be achieved. Hyperoxia in preterm

infants is related to unnecessarily high levels of FiO2 (Bancalari and Claure, 2012)

and automated controllers developed so far are relatively successful in managing

this condition. Note that SpO2 values above target range (> 96%) when in room air

are not considered hyperoxia, and simply reflect intact oxygen transfer. Hypoxia

on the other hand has a legion of causes, including worsening lung dysfunction,

transient airway blockage, diaphragmatic splinting and apnoea (Poets et al., 1992;

Bolivar et al., 1995; Poets, 2010).

Decrease in lung volume and development of an intrapulmonary shunt as result of

diaphragmatic splinting in expiration has been identified as one cause of hypoxia

in mechanically ventilated preterm infants (Bolivar et al., 1995), with agitation

and hypoventilation more generally being additional factors (Bancalari and Claure,

2012). Agitation and hypoventilation are also important in the genesis of hypoxia

in non-ventilated infants on non-invasive support, with apnoea being an important

additional cause (Pantalitschka et al., 2009).

Hypoxia imposes two challenges on the design of a controller. The first is that

characteristics of hypoxic events, including their frequency and severity, should be

considered in algorithm design. For instance rule-based controllers making periodic

FiO2 adjustments may not be optimally effective in treatment of infants with fast and

frequent declines in SpO2. The severity of a hypoxic event on the other hand defines

the position on the oxygen dissociation curve, which as discussed earlier affects the

oxygenation response and ultimately the magnitude of adjustment in FiO2 that is

required.

The second challenge is that the appropriate response to a hypoxic event should

vary according to its cause. Apnoea-induced hypoxia is an example, with an FiO2
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increment before apnoea cessation being unlikely to immediately increase alveolar

PO2, given that the infant is not breathing. Repeated FiO2 increments during apnoea

would likely increase the risk of post-apnoeic hyperoxic overshoot. Identifying the

cause of hypoxic events using additional inputs to the control algorithm may thus

be useful in scheduling FiO2 adjustments. Identification of the causative mechanism

of hypoxia may also be useful in prediction of the likely oxygenation response, and

allow adaptation of the control algorithm accordingly.

2.4.2 Technologic Shortcomings of Automated Control

Oxygenation Monitoring

Apart from early automation efforts using PaO2 measured via indwelling umbilical

artery electrodes or transcutaneous sensors as the feedback signal (Beddis et al., 1979;

Sano and Kikucki, 1985; Dugdale et al., 1988), more recent control devices have relied

on SpO2 derived from pulse oximetry as the primary, indeed the sole input. This

is due to the ease of measurement of SpO2 in comparison with partial pressure

of oxygen in the blood. However, pulse oximetry has well-known shortcomings

(Poets and Southall, 1994). The non-linear SpO2-PaO2 relationship discussed earlier

is the major inherent issue. If with technological advances the possibility emerges to

measure PaO2 non-invasively and accurately for extended periods, this might be the

preferred oxygenation input to guide automated oxygen control.

Other practical shortcomings of monitoring SpO2, especially poor accuracy in low

perfusion and most notably motion artefact, deserve consideration. Among other

issues with pulse oximetry, low accuracy even of newer generation devices at low

saturation levels (Dawson et al., 2014) and the problem of signal dropout are most

prominent. These problems are particularly relevant during automated control when

FiO2 adjustments are being made solely based on SpO2.
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Respiratory Monitoring

Apart from oxygenation, monitoring of respiratory motion (i.e. spontaneous breath-

ing movements) is another area where technological advances can offer a benefit

in automated FiO2 control for preterm infants. As stated above, alterations in

respiratory pattern can trigger hypoxic events and require increments in FiO2. Fur-

thermore, other informative parameters such as estimations of the lung volume

during non-invasive ventilation and phase shift between the thoracic and abdominal

movements are potential outputs from respiratory monitoring. Continuous measure-

ment of respiratory motion might thus provide future automated controllers with an

unprecedented level of knowledge about the infant when making control decisions.

The existing respiratory monitoring methods can be divided into contact and noncon-

tact approaches. Contact devices including respiratory inductance plethysmography

(Mazeika, 2007) and pressure sensor plethysmography (Banovcin et al., 1995) are

capable of relatively reliably monitoring respiratory patterns but they are difficult to

use continuously and may intervene the routine nursing care of the infant. Noncon-

tact devices on the other hand are preferable in terms of minimal disturbance to the

patient but they have not reached an adequate level of maturity for becoming a part

of routine clinical care (AL Khalidi et al., 2011).

Examples of noncontact approaches include radar (Lee et al., 2014), vision-based (Tan

et al., 2010) and thermal (Abbas et al., 2011) methods. Despite the potential benefits,

measurement of respiratory patterns beyond respiration rate is currently not a part

of routine clinical care for preterm infants.

Lack of specialised hardware for automated control of oxygen delivery

Beyond the important technological issues mentioned above, a further problem

that can be addressed more easily is the lack of specialised equipment capable of
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receiving control commands from a digital signal and producing a desired FiO2.

Whilst there are several purpose-built devices for automated control, these are not

widely available in NICUs worldwide. Mechanical ventilators into which a control

algorithm has been incorporated have the disadvantage of high capital cost, with the

end result being lack of access to the automated control technology.

A stand-alone automated oxygen control device with a state-of-the-art adaptive

algorithm, specifically designed for non-invasive ventilation, would thus be an

advantage. Such a device would find a place in NICUs in the developed world, but

also in low-resource settings in which the standard of care for preterm infants is

gradually improving, but risk of mortality and retinopathy of prematurity remain

high (Maida et al., 2008; Howson et al., 2012).

2.4.3 Safety Considerations and Target Range

Safety Considerations in the Existing Controllers and Role of Caregivers

A high priority should be given to safety in the design of any medical equipment

to be used in preterm infants, and it appears that attention has been paid to this

concern in current automated oxygen control devices. In-built safety precautions

currently include various alarms to alert bedside caregivers, along with rudimentary

SpO2 validation procedures and suspension of algorithm function and default to a

preset FiO2 if the signal is invalid.

These actions were triggered by repeated FiO2 adjustments in a single direction

(Beddis et al., 1979; Dugdale et al., 1988), sudden/rapid SpO2 falls (Tehrani and Bazar,

1994; Urschitz et al., 2004), low quality SpO2 signal (Urschitz et al., 2004; Claure et al.,

2009; Hallenberger et al., 2014; Zapata et al., 2014), low SpO2 values (Tehrani et al.,

2002; Urschitz et al., 2004), SpO2 remaining outside the target range for a minimum
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duration (Lopez et al., 2014), and missing signal or device disconnection (Morozoff

and Evans, 1992; Claure et al., 2001, 2009).

The process of automated oxygen control is complicated by the fact that a change

in FiO2 alone may not always be the best action, and intervention of clinical staff

may be necessary particularly in cases where a hypoxic event stems from impaired

ventilation including apnoea (Bancalari and Claure, 2012; Claure and Bancalari,

2013a). Thus, rather than entirely replacing manual care, automated controllers

should be thought of as providing "on-time care" for preterm infants, decreasing the

workload of the nursing staff (Claure, 2007). The potential for reduced attentiveness

of the bedside staff, and failure to recognize deterioration of an infant’s condition,

are concerns which have been expressed (Bancalari and Claure, 2012; Claure and

Bancalari, 2013a). Design of alarms to alert staff to persistent increase in oxygen

requirement is thus important (Claure and Bancalari, 2015b).

Target Range Limits

Regardless of the type of control algorithm, another difficulty of oxygen targeting

both in manual and automated control is the selection of the target range bound-

aries. Three recent large scale clinical trials involving thousands of preterm infants

(SUPPORT, 2010; BOOSTII et al., 2013; Schmidt et al., 2013) have compared a lower

oxygen saturation range (85-89%) with a higher range (91-95%). Two of these studies

(SUPPORT, 2010; BOOSTII et al., 2013), as well as a systematic review and meta-

analysis of all the three (Saugstad and Aune, 2014), suggested that the lower range

resulted in a reduction in retinopathy of prematurity but an increase in mortality.

Recommendations to avoid saturations below 90% have followed (Askie, 2013),

(Triven Bashambu et al., 2012; Bancalari and Claure, 2013; Saugstad and Aune, 2014),

but some uncertainty about the most appropriate target range remains (Sola et al.,

2014). Saugstad and Aune (2014) also highlighted other unanswered questions, such
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as whether the target range should be altered for different gestational ages, or over

time, or based on patient conditions.

Apart from the safety considerations, selection of the SpO2 target range may have

consequences for FiO2 control, including on the incidence of hypoxia. Di Fiore

et al. (2012) found an association between lower target range and higher rate of

intermittent hypoxia at certain postnatal ages. In another study of the effect of target

range on outcome of automated control in 21 infants, a narrower and higher target

range (90-93% vs. 87-93%) did not increase the time spent in the range of 87-93%

but it made the SpO2 distribution tighter (Wilinska et al., 2014).

The optimal span of the SpO2 target range for automated control remains to be

determined, and should be a topic for further research. A further related question

for study in this context is where within the target range to locate the "set point",

and whether to attenuate error where SpO2 readings fall within the desired range.

2.5 The Road Map

The identified challenges direct us towards investigation of the oxygenation system

variability both in the form of response vagaries following FiO2 adjustments and

also hypoxia. Modelling the the oxygenation response in large datasets obtained

from preterm infants and assessing the validity of these models can be of great value.

Such models can quantify the variations of the oxygenation response and be utilised

as a basis for developing automated controllers. Performing prediction studies on

the model and seeking predictors of the variability are also necessary in order to

develop adaptive algorithms.

Another area where further research is required is assessment of hypoxic events

and the concomitant factors of apnoea, loss of CPAP pressure and motion artefact.

These factors can complicate the process of automated control by increasing the risk
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of overshoot; thus, having an account of the frequency of such incidences would

clarify the necessity of any potential design consideration to address the issue. The

relationship between various types of apnoea and the associated hypoxia is also

important because existence of this association could help to differentiate different

types of apnoea-induced hypoxia and react to them correspondingly.

Finally, SpO2 signal dropouts may impose a safety risk during automated control by

leaving the controller with no reference to make the decisions. Therefore, investiga-

tion of these incidences and the signal values before and after their occurence helps

to identify the appropriate actions while the signal is missing. The rest of this thesis

is dedicated to following these directions.
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Chapter 3

FiO2-SpO2 Modelling, Assessment of

Validity and Predictability



3.1 Summary

This chapter presents an investigation of the gain, delay, and time-constant param-

eters of the transfer function describing the relation between fraction of inspired

oxygen (FiO2) and oxygen saturation in the blood (SpO2) in preterm infants. The

parameters were estimated following FiO2 adjustments and goodness of fit was

used to assess the validity of the model when using an assumed first-order trans-

fer function. For responses identified to be first-order, the estimated parameters

were then clustered to identify areas where they tended to be concentrated. Each

group described an operating region of the transfer function; thus, predicting the

right operating region could potentially assist a range-based robust inspired oxygen

controller to provide more optimal control by adapting to different clusters.

Accordingly, the samples were assigned labels based on their cluster associations and

14 features available at the time of each adjustment were used as inputs to an artificial

neural network to classify the clustered samples. The validity study suggested that

37% of the adjustments were followed by first-order responses. Prediction studies

on the first-order responses indicated that the clusters could be predicted with an

average accuracy of 64% when the parameters were divided into two groups.

The research contained within this chapter has been published as: Omid Sadeghi

Fathabadi, Timothy J Gale, Kathleen Lim, Brian P Salmon, Kevin I Wheeler, JC

Olivier and Peter A Dargaville. "Assessment of validity and predictability of the

FiO2-SpO2 transfer-function in preterm infants." Physiological Measurement, 35(7):

1425-1437, 2014, IOP Publishing (Fathabadi et al., 2014).
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3.2 Introduction

One of the main challenges in automatic control of FiO2 in newborn infants is the

varying behaviour of their individual respiratory system (Sano and Kikucki, 1985).

These variations are caused by the different respiration patterns as well as problems

that are associated with keeping the alveoli open (Donn and Sinha, 2012). In order

to design a controller, the system’s behaviour needs to be characterised first.

First-order transfer-functions describing the relation between a change in FiO2 and

the consequent change in the oxygen level in the blood are usually used to design

controllers (Yu et al., 1987; Sano et al., 1988; Keim et al., 2009, 2011; Krone, 2011). The

transfer function consists of three parameters namely gain, time-constant and delay.

One of the important issues in using the model and estimating its parameters is the

feedback signal, as the oxygen saturation and partial pressure of oxygen (PaO2) in

the blood have a nonlinear relationship described by the oxyhemoglobin dissociation

curve (Severinghaus, 1979; Castillo et al., 2008; Donn and Sinha, 2012) and the first

order relation between oxygen saturation and FiO2 is only true by making a linear

approximation of PaO2 and SpO2 around an operating point (Yu et al., 1987).

When SpO2 is measured using pulse oximetry an error is introduced (Trivedi et al.,

1997) due to limitations of the technology used in identifying different forms of

hemoglobin (Donn and Sinha, 2012). This is important because the SpO2 signal is

the preferred feedback in more recent works (Tehrani et al., 2002; Urschitz et al., 2004;

Iobbi et al., 2007; Morozoff and Smyth, 2009; Claure et al., 2011; Tehrani, 2012) due

to its non-invasive method of acquiring measurements and existing use in clinical

practice.

In the preterm infant, the nature of the feedback signal is not the only concern, as

other factors including the presence of respiratory distress syndrome and tendency

to have apnoea (temporary cessation of breathing) may interfere with oxygenation
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(Belal et al., 2011; Lee et al., 2012) in a chaotic and un-predictable manner. In the

case of apnoea, increasing FiO2 may not affect the oxygen saturation, especially

when infants are being supported with a device delivering continuous positive

airway pressure (CPAP), which unlike mechanical ventilation relies on spontaneous

breathing for delivery of air-oxygen mixture to the airspaces.

Despite these factors that make it difficult to characterise the oxygenation behaviour

in neonates, a number of previous studies (Versmold et al., 1978; Sano and Kikucki,

1985; Dugdale et al., 1988; Bhutani et al., 1992) have investigated the oxygenation

response to FiO2 adjustments in this group of patients. Particular attention was given

to the estimation of the first order transfer function parameters with SpO2 feedback

(Keim et al., 2011; Krone, 2011) in an attempt to design robust FiO2 controllers for

preterm infants. However, in both these studies only a subset of SpO2 increases was

used for parameter estimation and in neither case was the time-delay estimated.

Although variations of the parameters are accounted for in (Keim et al., 2011; Krone,

2011), using a subset of events for parameter estimation is inappropriate as it does

not encapsulate the nature of the excluded events when estimating the parameters. It

should be noted that these estimated parameters are used to design robust controllers

that must cater for both positive and negative adjustments.

The question that arises is to what extent does the first order transfer function,

which incorporates a time delay between SpO2 and FiO2, represent the oxygenation

response of preterm infants? Another question is whether it is possible to divide the

set of parameters into groups with less variability and predict at each time the group

that the transfer function parameters belong to. As the parameter range in each

cluster is narrower than the entire set, the operating region of the transfer function

is more exactly specified and the controller can thus provide more optimal control

by adapting itself to the parameter range in each group.

The objective of this chapter is to clarify these issues for newborn infants who are
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receiving supplemental oxygen from a CPAP device. An introduction to the dataset

as well as the detailed methodology is presented in Section 3.3 and the results are

presented in Section 3.4 followed by the discussion and conclusions in Section 3.5

and Section 3.6, respectively.

3.3 Material and Methods

3.3.1 Dataset

The data set was obtained from 34 preterm infants recorded over 3475 hours at

a sampling frequency of 1 Hz at the Neonatal and Paediatric Intensive Care Unit

(NPICU) of the Royal Hobart Hospital (Lim et al., 2014). The study was approved by

the institutional ethics committees and performed after obtaining parental consents.

The enrolled infants were all receiving CPAP, and were in supplemental oxygen (i.e.

FiO2 > 0.21) at the start of each 24 hour recording. Median (interquartile range)

gestational age was 31 weeks (28-32 weeks) and birth weight 1.4 (1.0-2.0) kg. Inspired

oxygen concentration was being regulated by manually applying step adjustments

using an air-oxygen blender.

For this analysis, FiO2 adjustments of at least ±0.01 were identified, and the con-

sequent changes in SpO2 were logged to examine the input-output relation of the

system. These adjustments were not instant step changes as the transitions took a

few seconds. The step position was defined as the first point where the change in

FiO2 was detected. Isolated FiO2 adjustments, with no other FiO2 change within 2

minutes before and after, were extracted for analysis.

This isolation was checked tolerantly to be more inclusive. Suppose that a time-

window of 2 minutes ending at the step position is called episode1 and another

window starting at the end-point of the adjustment and ending 2 minutes after the
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step position is called episode2. To check the isolation, the difference between the

FiO2 values at the first sample of episode2 and last sample of episode1 was first

calculated as an estimation of the magnitude and checked to be at least ±0.01.

An adjustment was considered isolated if the FiO2 values during episode1/episode2

did not deviate from the FiO2 at the end/beginning point of the episode more

than 25% of the step magnitude for longer than 10 seconds. This means that small

deviations in comparison with the large step as well as large deviations for a short

time were tolerated. Because of this tolerant selection, the difference in mean FiO2 in

episode2 and episode1 was considered as the adjustment magnitude and rechecked

to see if it was still at least ±0.01.

The time-window in SpO2 that was considered for parameter estimation started at

the step position and covered the next 2 minutes. Adjustments for which the SpO2

signal was missing at the step position, or for more than 30 seconds during the next

2 minutes, were excluded. The previous sample was used to fill the missing points

for short SpO2 dropouts. A total number of 2369 adjustments met the requirements

and were used in the analysis. As the transfer function described the relation of the

changes of SpO2 and FiO2, the measurements were reported relative to their value

at the step position. This was accomplished by subtracting the magnitude recorded

at the step position from all of the sequential measurements. Additionally, the

percentage of inspired oxygen, (FiO2 ×100) was used for estimation of the transfer

function parameters (Keim et al., 2011).

3.3.2 Methods

The gain, time-constant and delay of the transfer function were first estimated

following FiO2 adjustments using the dataset. For this purpose, inspired by (Krone,

2011) it was initially attempted to estimate the gain and the delay directly from the

data while obtaining the time-constant in an optimisation process. The inovative
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Binary optimisation method used for this purpose led to a conference publication

(Fathabadi et al., 2013) which can be found in the Appendix A. However, since the

direct estimations of gain and delay were not accurate, it was decided to estimate

all the three parameters in an optimisation process. This was done by fitting the

corresponding difference equation of the transfer-function describing the FiO2-SpO2

relation to the experimental data.

Minimisation of the error between the simulated and experimental data was per-

formed using a genetic algorithm. R2 metric was then used as a measure of validity

of the assumed first-order transfer-function.

Responses for different levels of fitness were observed and a threshold was selected

so that the adjustments with a better fit were recognised as first order. The percentage

of the recognised adjustments was considered as an indicator of the validity of the

model. This step was followed by applying an expectation-maximisation (EM)

clustering algorithm (Witten and Frank, 2005) to the transfer-function parameters

for the identified first-order responses. The adjustments were then labelled by their

cluster assignments and for each of them 14 features were extracted. These features

which include available signals and patient information, were used as inputs to an

artificial neural network to predict the labels.

Parameter Estimation

The S-domain transfer function describing changes in SpO2 after FiO2 adjustments

using pulse oximetry for measurement of SaO2 (Yu et al., 1987) is given as

∆SpO2

∆FiO2
=

G
τs + 1

e−Tds. (3.1)

In this equation, the parameter G denotes the gain, τ the time-constant and Td the
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delay. This transfer-function represents a time-shifted decaying exponential impulse

response. This system can alternatively be represented by a discrete transfer-function

in the Z domain (Widrow and Stearns, 1985) as

∆SpO2

∆FiO2
=

cZ−k0

1− dZ−1 , (3.2)

where k0 ∈ N is the time-delay, c/(1− d) is the gain (Z=1), with c, d ∈ R and

−1/ ln d is the time-constant. Since the step changes of FiO2 in the experimental

data were used and the initial levels of the two signals were negated, equation 3.2

for the remaining signals could be written in the form of a first order difference

equation given as

SpO2(k) = dSpO2(k− 1) + cFiO2(k− k0). (3.3)

The variables d, c, and k0 (consequently delay, time-constant, and gain) were esti-

mated by minimising the mean squared error between the model and experimental

SpO2 over the window of interest. After estimation of the parameters for all of the

adjustments, the goodness of fit between the model and the experimental data was

assessed based on R2 metric. The estimations were done based on the first-order

assumption and those responses which did not follow the first order pattern reported

a poor fit for the model. This means that first-order responses had a higher R2 and

to discriminate them from the rest, a threshold had to be defined. Selection of a

threshold was performed by observing the model output and the experimental data

over numerous samples in different ranges of R2 metric.
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Cluster Analysis

In cluster analysis samples in a dataset are divided into several clusters. The number

of clusters could be defined in advance or obtained during an iterative process.

There are numerous clustering techniques which vary in terms of the model that

they use for representing the dataset as well as the search process. The Expectation

Maximisation (EM) clustering algorithm (Witten and Frank, 2005) was used in our

study to divide the entire set of parameters from the first-order responses into

clusters with narrower parameters ranges. In this statistical method the dataset is

represented by a mixture of probability distributions each representing one cluster.

A feature of EM algorithm is that rather than strictly dividing the samples into

clusters, they are attributed to each cluster by a probability level. Moreover, a proba-

bility value is assigned to each cluster defining its likelihood. Gaussian probability

distributions are used in this thesis to describe the clusters which can be defined by

their mean and standard deviation.

The search process starts from initial guesses for the mean and standard deviation

of the distributions as well as likelihood of each cluster e.g. 3n-1 parameters for

n clusters. Then, the EM algorithm iteratively updates the probability of clusters

(expectation) and parameters of the distributions (maximisation). The iteration

continues until the increase in a so called "overall-likelihood" objective function

becomes less than a threshold. Further information can be found in (Witten and

Frank, 2005).

The algorithm was first applied to determine the optimal number of clusters which

described the data set by using cross validation (Witten and Frank, 2005). Using

this technique, clustering was performed for different number of clusters and the

cross-validation likelihood of the cluster assignments was calculated. The number of

clusters for which the likelihood was maximum and its corresponding cluster assign-

ments were then selected as the outcome of the cluster analysis. Also, the clustering
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was repeated by setting the number of clusters to 3 and 2 and the adjustments were

labelled accordingly. Selecting fewer clusters increases the chance of prediction by

tolerating wider variations in each cluster.

Feature Extraction

Since the transfer function parameters express the behaviour of the respiratory

system, it was first required to extract features that carried information about the

state of the system in order to predict the clusters. SpO2 gives the current oxygen

saturation and was selected as the first input. This parameter is important as it is

related to the position on the hemoglobin dissociation curve (Severinghaus, 1979).

The heart rate affects the perfusion of the lungs and may affect the way SpO2

responds to FiO2 adjustments; this possible relation comes to mind when considering

the fact that sometimes acute episodes of desaturation and apnoea are accompanied

by a decrease in heart rate known as bradycardia (Poets et al., 1993). The respiratory

rate was also included as it affects the ventilation of the alveoli in the lungs where

the oxygen exchange with the blood takes place. Both heart rate and respiratory rate

were moving averages over a minute and had a limited capacity in representing the

variations of the heart-beat and the respiration dynamics, respectively.

The CPAP pressure at the airway was used as it assists the infant by decreasing

the respiration effort and keeping the airspaces open. To account for level of

maturity and physical development at birth, four infant-specific parameters were

used: gestational age, birth weight, gender and exposure to antenatal steroids (used

to enhance lung maturation). Two parameters relating to the time of observation,

corrected age (gestational age + age since birth) and current weight were extracted

for each adjustment and considered as additional inputs.

The next parameter was the value of FiO2 at the step position. This parameter was
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Figure 3.1: Schematic of a typical ANN. Linear combinations of the predictor inputs
produce an output after passing throgh nonlinear activation functions.

considered to account for any possibility that the same magnitude of adjustment

can cause different consequent changes in SpO2 given the different absolute values

of FiO2 before the adjustment (Karbing et al., 2007). Recent changes of SpO2 might

contain information that is relevant to the current physiological conditions. For

example how rapidly the SpO2 has fallen before an adjustment might be related to

the underlying desaturation mechanism. Thus, having a model of the SpO2 signal

in a window before the adjustment can be useful in prediction of the clusters. A

third order autoregressive model of the mean-removed SpO2 in a 3-minute window

before the adjustment was used and is given as

x(n) = −a1x(n− 1)− a2x(n− 2)− a3x(n− 3). (3.4)

The coefficients a1, a2, a3 were used as the inputs for prediction. The disadvantage

of using a low order model is under-modelling of the signal dynamics, while a large

order could potentially model the noise. The order 3 was selected using Akaike

Information Criterion (AIC) which is given as
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AIC(p) =
2p
N

+ logV, (3.5)

where p is the order of the model, N is the number of samples used in the estimation

and V is the noise variance. The model order for which AIC was minimum was

considered the best order for modelling the signal (Blinowska and Zygierewicz,

2011). It should be mentioned that sometimes there were missing values in the

recorded signals; this was more commonly observed in the SpO2 signal related to

sensor drop-outs. Since the samples were required to fit the autoregressive model, it

was not possible to have a1 − a3 for all of the adjustments.

Thus the 14 selected features are listed here:

• SpO2 and FiO2,

• heart rate, respiratory rate and CPAP pressure,

• gestational age, birth weight, gender and steroid exposure,

• corrected age and current weight,

• parameters a1 − a3.

Missing values of any given feature were filled with random numbers in the range

of the available samples for that feature. This allowed a sample to be used for

prediction when a few of its relevant features were not available.

Parameter Classification

Classification was performed using artificial neural networks (figure 3.1). Networks

with a single hidden layer and a hyperbolic tangent sigmoid activation function
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in both hidden and output layers were trained to classify the parameters. To train

the classifier, networks with different number of neurons (from 1 to 50) in the

hidden layer were trained. For each selection of the number of neurons, the network

was trained 20 times and its performance was recorded in terms of mean and

standard deviation of the True Positive Rates (TPRs) (correctly classified samples in a

cluster/all of the samples in that cluster) and accuracies (overall number of correctly

classified samples/number of all of the samples) over the 20 runs in the unseen test

set which comprises 15% of the entire dataset.

During the training if a run caused all of the samples in the test set to be classified in

only one class, that run was eliminated from the study and replaced with a new one.

This was done to avoid obtaining high accuracies by classifying all of the samples

in the class that has the most number of members. The remaining samples of the

dataset included 70% training set and 15% validation set that were used during the

process of training. To compare the performance of the networks with different

number of neurons in the hidden layer the formula given as

score =

N
∑

i=1
TPRi(µ−σ)

NC
+ accuracy(µ−σ), (3.6)

was used to score each classifier. In this equation, NC is the number of classes.

TPR for each class defines the sensitivity of the classifier to that class. However,

since a high sensitivity can be obtained by assigning all the samples to one or a

few of the classes, it doesn’t guarantee a high precision. The overall accuracy of the

classifier should also be considered to have a better judgement of the classification

performance. On the other hand, accuracy describes the overall success of the

classification and TPR is defined for each class.

To define the score formula shown in equation 3.6 that gives the same weight to

the accuracy and TPR, the latter was averaged over the classes and summed with
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the accuracy of the network. Evaluation of the score was performed over the test

set to avoid selecting an over-fit network. The classifier with the highest score was

then selected and its performance was reported. Area under the receiver operating

characteristic curve (AUC) was also investigated as an additional measure of the

performance for each classifier.

3.4 Results

3.4.1 Parameter Estimation

Bound and linear inequality constraints were set during the application of the genetic

algorithm for estimating the parameters. Parameter k0 was constrained to integer

numbers in the range 0-90 seconds and the time-constant was limited to 120 seconds

that upper bounds d to exp(−1/120). d and c were lower bounded to zero and

finally the gain was limited to 30 which means c/(1− d) < 30. Three examples of

modelling for four different ranges of R2 are shown in figure 3.2.

Observing numerous examples in each group, R2 > 0.7 was selected as the threshold.

As observed in figure 3.2, the difference between the experimental data and the

model has increased for smaller values of R2. Table 3.1, presents the number and

percentage of the adjustments that have fallen into each group based on the goodness

of fit as well as the number and percentage of the positive adjustments in each group.

As seen in table 3.1, only 869 of 2369 adjustments (37%) had R2 > 0.7, and were

thus first order by our definition. Among the adjustments defined as first order, 507

(58%) were positive, compared with 44% for the entire dataset. χ2 test was applied

to the observed and expected incidences of the positive adjustments for different

levels of fitness among the first-order responses. The expected number of positives

in each group was obtained as the rounded product of the number of members in
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Figure 3.2: Examples of fit for different values of R2 (solid line: model output,
dashed line: experimental data).

that group and the ratio of positive adjustments in the entire dataset.

Histograms of the transfer function parameters for three different ranges of R2 are

presented in figure 3.3 and the median and interquartile ranges of the parameters

for different ranges of R2 among the first order responses are presented in table 3.2.

These results show that the gains and the time-constants have concentrated around

smaller values as the goodness of fit has decreased, while time delays have become

more widespread within the possible range.

Several examples of SpO2 responses following FiO2 adjustments are presented in
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Table 3.1: Number and percentage of samples for different fitness levels and the p
value for the χ2 test.

Fitness No. of % of No. of % of P
level (R2) members of all positives positives value
(0.95, 1] 126 5.3 107 85
(0.9, 0.95] 166 7.0 113 68
(0.85, 0.9] 149 6.3 100 67
(0.8, 0.85] 156 6.6 74 47 <0.001
(0.75, 0.8] 130 5.5 54 42
(0.7, 0.75] 142 6.0 59 42
(0.7, 1] 869 37 507 58

all 2369 100 1034 44

figures 3.4-3.9.

3.4.2 Cluster Analysis

Applying the clustering algorithm with cross-validation on the set of parameters

for the 869 first order adjustment, 6 clusters were identified as shown in table 3.3(a).

Table 3.3(b) and table 3.3(c) present the characteristics and the number of samples in

each cluster when the number of clusters was set to 3 and 2, respectively. Different

mean values of the parameters in the clusters show how the clusters have divided

the entire dataset into smaller subsets and the standard deviations in the clusters

indicate to the level of variations in each subset.

3.4.3 Feature Extraction

The ranges of the features are presented in table 3.4. Missing values were most

commonly observed in the SpO2 signal (432 cases) related to sensor drop-outs.

Additionally 82 samples of respiratory rate and 2 samples of heart rate in the

entire data set (2369 adjustments) were missing. It should be mentioned that all of

the features were later normalised to fall into the range of [−1,1] for training the
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classifier.

3.4.4 Classification of the Parameters Using Artificial Neural Net-

works

For each classifier TPRs and AUCs corresponding to each class and the overall

accuracy of the classifier were obtained for both the test set and the whole data.

In the case of two clusters, the second class is the alternative of the first class and

only one AUC value exists. These results which are presented in table 3.5 showed

that the extracted features had limited capability in explaining the variations of

the parameters. This limitation was reflected in the small values of TPRs, AUCs

and accuracies. The classification accuracy increased by decreasing the number of

clusters, where the maximum average classification accuracy was 64% for 2 clusters.

However, the average TPR was only 7.5% for the second class in this case and the

mean AUC was only 0.47.

3.5 Discussion

Central to optimal automatic control of FiO2 in newborn infants is an understanding

of the SpO2-FiO2 transfer function. In a dataset from preterm infants we found that

using an R2 threshold of 0.7 to define validity of the transfer function, only 37%

of FiO2 adjustments were followed by a first order SpO2 response. Applying EM

clustering to the gains, time-constants and delays of the transfer function of first

order responses, these parameters were divided into two clusters. With input of a

panel of 14 features relevant to the time of each adjustment, in a binary classification

using an artificial neural network, it was possible to predict the clusters correctly for

64% of the adjustments.
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Figure 3.3: Histograms of gain, delay, and time-constant for different ranges of R2.

3.5.1 The Transfer-Function Model and Dataset

One of the issues regarding developing controllers for automatic control of inspired

oxygen is that there is a gap between the language which is used in control theory

and the one used by clinicians in dealing with the gas exchange system (Karbing

et al., 2011). This chapter attempts to fill this gap by interpreting the physiological

system into technical terms using a large set of experimental data obtained from

preterm infants. A first order transfer function was the model utilised for this

purpose. Investigations performed on this representation would provide a solid

experimental background and conclusions which are usable in control theory.

Although transfer functions have been previously used to design oxygen controllers
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Table 3.2: Values of the transfer-function parameters for different levels of fitness.
Data are presented as median (interquartile range).

Fitness Time-constant Delay
level (R2) Gain (seconds) (seconds)
(0.9, 1] 3.2 (1.6 - 5.2) 21 (5.0 - 45) 20 (9 - 39)
(0.8, 0.9] 2.1 (1.1 - 3.8) 9.5 (1.2 - 28) 32 (13 - 55)
(0.7, 0.8] 1.4 (0.75 - 2.9) 4.6 (0.91 - 25) 30 (13 - 51)
(0.7, 1] 2.2 (1.1 - 4.1) 11 (1.6 - 32) 27 (12 - 48)

(Yu et al., 1987; Sano et al., 1988; Keim et al., 2009, 2011; Krone, 2011), using them

as a proxy for interpreting a large set of experimental data into technical terms in

order to assess validity and predictability of the model is novel. Assessment of

validity is important since it provides a basis for designing controllers. Investigating

the predictability of the model parameters on the other hand, clarifies whether it

is technically possible to predict the variations of the response based on the cur-

rently available measurements. Answering this question is valuable since accurately

predicting the model variations would make it possible to adapt a controller to the

infant over time and make the oxygen delivery safer and more optimal.

The dataset used in this work was a pooled set of FiO2 adjustments obtained from

34 infants during manual control of oxygen. The adjustments performed during

manual control were, in terms of timing, size and adequacy, not necessarily optimal,

and were not assumed or required to be so. This is because the adjustments and their

consequent responses were used to extract the system properties (or transfer function

parameters) under a wide range of infant conditions. Having these parameters for

variable conditions gives a realistic image of the situation that a potential controller

would face in practice.

3.5.2 Implications of the Results

We observed that the first order model was only valid for 37% of the adjustments.

Further, positive FiO2 alterations were over-represented amongst the first order
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Table 3.3: Values of the transfer-function parameters for different clusters (a) 6
clusters selected by cross-validation (b) fixed number of 3 clusters (c) fixed number
of 2 clusters. Data are presented as mean ± standard deviation.

(a)
Cluster label 1 2 3 4 5 6

Gain 1.5 ± 1.1 1.7 ± 1.1 7.9 ± 6.5 4.1 ± 2.6 3.7 ± 2.2 1.4 ± 0.72
Delay 44 ± 18 21 ± 13 42 ± 29 48 ± 25 7.4 ± 6.6 46 ± 19

Time-constant 0.48 ± 0.19 17 ± 8.9 49 ± 32 6.7 ± 4.6 48 ± 26 2.0 ± 1.1
No. of members 145 (17%) 170 (20%) 91 (10%) 133 (15%) 205 (24%) 125 (14%)

(b)
Cluster label 1 2 3

Gain 2.9 ± 2.0 1.5 ± 1.1 6.0 ± 5.2
Delay 12 ± 9.7 45 ± 19 45 ± 28

Time-constant 37 ± 28 1.6 ± 1.5 26 ± 27
No. of members 363 (42%) 309 (36%) 197 (23%)

(c)
Cluster label 1 2

Gain 4.1 ± 3.9 1.5 ± 1.0
Delay 25 ± 25 45 ± 20

Time-constant 33 ± 28 1.6 ± 1.5
No. of members 558 (64%) 311 (36%)

adjustments. The use of exclusively positive adjustments for parameter estimation

in previous studies (Keim et al., 2009; Krone, 2011) is thus explained by our finding.

Under-representation of negative adjustments is one of the reasons of the limited

validity of the model.

Positive and negative adjustments of FiO2 are related to low and high levels of SpO2

respectively and it is known that PaO2 widely varies for high levels of SpO2 (Castillo

et al., 2008). This means that when a negative adjustment is made the PaO2 might

be very high so that its reduction is not reflected in SpO2 and the expected first

order response is not observed. This limitation could be overcome using in-dwelling

sensors suitable for long-term monitoring of PaO2, thus providing more precise

measurements of oxygenation at high SpO2 levels.

Apart from the issue of validity, parameters of the transfer function presented in

figure 3.3 for FiO2 changes followed by first order responses depict wide variations

which reflect the difficulties of automated control of oxygen therapy in preterm
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Table 3.4: Ranges of the features in the entire dataset.

feature range
SpO2 (%) 31-100

FiO2 21-83
heart rate (min−1) 55-207

respiratory rate (min−1) 10-143
CPAP pressure (cmH2O) 5-10
gestational age (weeks) 25-37

birth weight (Kg) 0.6-3.6
gender 0,1(M,F)

steroid exposure 0,1 (False/True)
corrected age (weeks) 26-43
current weight (Kg) 0.6-3.5

a1 -1.29,-0.63
a2 -0.58,0.35
a3 -0.25,0.61

infants. Despite a few instances of long delay and large gain, these two parameters

were mostly concentrated around smaller values while time constant was more

widespread in its range.

From the physiological point of view during the oxygen control, a large value of

the gain parameter means that a given adjustment in FiO2 may cause a significant

overall change in SpO2. This change could start after a short or long delay and

the transition from the current level of SpO2 to the new level could be slow or fast

corresponding to large and small values of time constant, respectively. Thus, a closed

loop controller design based on incorrect values of the model parameter might be

unstable or sub-optimal in delivering the oxygen.

The cluster analysis performed in the chapter divided the adjustments into groups

with less variability of parameters in each one as shown in table 3.2 so that a potential

controller has to deal with less variation at any given time. These clusters provide

a basis for an adaptive control approach in which the controller switches between

the clusters as required. The classifiers developed for predicting the clusters based

on the available parameters performed poorly which means it was not possible to

accurately define the cluster of transfer-function parameters at each moment of time
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Table 3.5: Performance of the artificial neural networks in predicting the clusters
(a) a network with 12 neurons obtained the best performance for 6 clusters (b) a
network with 27 neurons obtained the best performance for 3 clusters (c) a network
with 4 neurons obtained the best performance for 2 clusters. Data are presented as
mean ± standard deviation.

(a)
Test set Whole data

Cluster label TPR AUC Accuracy TPR AUC Accuracy
1 13 ± 9.7 0.38 ± 0.20 22 ± 3.2 19 ± 11 0.42 ± 0.23 29 ± 2.7
2 23 ± 15 0.48 ± 0.10 31 ± 16 0.57 ± 0.10
3 5.9 ± 5.8 0.49 ± 0.13 12 ± 10 0.58 ± 0.15
4 15 ± 10 0.54 ± 0.08 20 ± 11 0.60 ± 0.06
5 49 ± 19 0.53 ± 0.16 54 ± 17 0.57 ± 0.17
6 13 ± 12 0.43 ± 0.23 18 ± 12 0.48 ± 0.25

(b)
Test set Whole data

Cluster label TPR AUC Accuracy TPR AUC Accuracy
1 64 ± 17 0.50 ± 0.17 42 ± 4.5 69 ± 12 0.56 ± 0.19 48 ± 4.7
2 38 ± 16 0.47 ± 0.17 43 ± 19 0.57 ± 0.20
3 8.7 ± 9.5 0.39 ± 0.21 15 ± 11 0.50 ± 0.26

(c)
Test set Whole data

Cluster label TPR AUC Accuracy TPR AUC Accuracy
1 94 ± 4.6 0.47 ± 0.17 64 ± 3.6 96 ± 3.3 0.51 ± 0.18 65 ± 1.1
2 7.5 ± 8.0 8.7 ± 7.5

based on the selected features and classifier.

This conclusion about predictability of the clusters emphasises the limitations of the

available inputs in explaining the variations of the response and the necessity to

measure more relevant inputs to improve the prediction performance. Obtaining

such measures could also provide insight into the underlying reasons of non-first

order responses apart from shortcomings of the SpO2 signal.

The study revealed the validity and predictability of the transfer function using a

large set of experimental data however; performing similar studies on larger datasets

may provide even more robust conclusions. Also, one of the inherent weaknesses of

using a time-invariant transfer function as the system representation is that it does

not reflect the dynamic changes of the system’s behaviour during the modelling

window which could be another reason for limited validity of the model.
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The chapter has a technical look at the transfer function parameters. This is while

the transfer function model is a representation of the characteristics of the SpO2

response to FiO2 adjustments. Investigation of the oxygenation characteristics and

their relationships with lung disease, SpO2 disturbances and baseline oxygenation

level could have important clinical implications if the transfer function parameters

are clinically interpreted. Study of intra- and inter-infant transfer function variability

is also of interest. These studies are the topic of Chapter 4.

3.6 Conclusion

The outcomes of this chapter quantify the characteristics of oxygenation response

in preterm infants which can be a basis for developing automated FiO2 controllers.

The results indicate that there is a need for measuring more physiological inputs to

achieve higher performance in predicting the clusters due to shortcomings of the

existing predictors. Because of the non-liniearity/inaccuracies in SpO2 which can

affect the shape and predictability of the oxygenation response to FiO2 adjustments,

using a more precise measure of the oxygen level in the blood as the feedback signal

could also help to improve the quality of control.
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Figure 3.4: Examples of SpO2 responses with R2 > 0.9 following FiO2 adjustments.
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Figure 3.5: Examples of SpO2 responses with 0.8 < R2 ≤ 0.9 following FiO2 adjust-
ments.

64



Figure 3.6: Examples of SpO2 responses with 0.7 < R2 ≤ 0.8 following FiO2 adjust-
ments.
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Figure 3.7: Examples of SpO2 responses with 0.6 < R2 ≤ 0.7 following FiO2 adjust-
ments.
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Figure 3.8: Examples of SpO2 responses with 0.5 < R2 ≤ 0.6 following FiO2 adjust-
ments.
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Figure 3.9: Examples of SpO2 responses with R2 ≤ 0.5 following FiO2 adjustments.
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Chapter 4

Characterisation of the Oxygenation

Response to Inspired Oxygen

Adjustments



4.1 Summary

Oxygen saturation (SpO2) targeting in the preterm infant may be improved with a

better understanding of the SpO2 responses to changes in inspired oxygen (FiO2).

We investigated the first-order FiO2-SpO2 relationship, aiming to quantify the pa-

rameters governing that relationship, the influences on these parameters, and their

variability. In recordings of FiO2 and SpO2 from preterm infants on continuous

positive airway pressure and supplemental oxygen, we identified unique FiO2 ad-

justments and mapped the subsequent SpO2 responses. For responses identified as

first-order, the delay, time constant, and gain parameters were determined. Clinical

and physiological predictors of these parameters were sought in regression analysis,

and intra- and inter-subject variability were evaluated.

In 3788 h of available data from 47 infants at 31 (28-33) post-menstrual weeks

[median, (interquartile range)], we identified 993 unique FiO2 adjustments followed

by a first-order SpO2 response. All response parameters differed between FiO2

increments and decrements, with for increments a shorter delay, longer time constant

and higher gain [2.9 (1.7-4.8) vs. 1.3 (0.58-2.6), P < 0.05]. Gain was also higher in less

mature infants and in the setting of recent SpO2 instability, and was diminished with

increasing severity of lung dysfunction. Intra-subject variability in all parameters

was prominent. First-order SpO2 responses show variable gain, influenced by the

direction of FiO2 adjustment and the severity of lung disease, as well as substantial

intra-subject parameter variability. These findings should be taken into account in

adjustment of FiO2 for SpO2 targeting in preterm infants.

The research contained within this chapter has been published as: Omid Sadeghi

Fathabadi, Timothy J Gale, Kathleen Lim, Brian P Salmon, Jennifer A Dawson, Kevin

I Wheeler, JC Olivier, Peter A Dargaville (2015). "Characterisation of the oxygenation

response to inspired oxygen adjustments in preterm infants." Neonatology, 109(1):37-

43, S. Karger AG (Fathabadi et al., 2015).
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4.2 The Necessity and Benefits of Characterisation

Despite many decades of oxygen therapy for preterm infants, there is no accepted

algorithm to determine suitable adjustment of FiO2 in clinical practice, and the

success of SpO2 targeting thus remains largely a function of the approach taken by

individual bedside caregivers. The characteristics of an infant’s SpO2 response after

FiO2 adjustment are not well understood and yet knowledge of the key parameters

governing this response might well aid in titrating oxygen delivery. Observational

studies under controlled conditions in adults (Cakar et al., 2001; Weinreich et al.,

2013), along with the few data in neonates (Keim et al., 2011; Sano and Kikucki, 1985;

Versmold et al., 1978), found FiO2 change to produce an exponential oxygenation

response typical of systems modelled mathematically using first-order differential

equations (figure 4.1a).

This first-order relationship has held regardless of whether oxygenation was mea-

sured as partial pressure of oxygen (PaO2) or SpO2 (Cakar et al., 2001; Weinreich

et al., 2013; Keim et al., 2011). For FiO2 alterations occurring as part of routine prac-

tice, we recently noted that 37% of SpO2 responses could be considered first-order,

with ongoing system instability and the complexities of the sigmoidal PaO2-SpO2

relationship acknowledged as potential interfering factors (Fathabadi et al., 2014).

Notwithstanding the documented unpredictability of the SpO2 response to FiO2

adjustment under standard clinical conditions, in the development of an algorithm

for control of oxygen therapy, the assumption of a first-order relationship appears

reasonable, and this form of modelling has long been used in the design of automated

FiO2 controllers (Sano and Kikucki, 1985; Keim et al., 2011; Yu et al., 1987; Lopez et al.,

2014; Luepschen et al., 2007). With the assumption of first-order behaviour comes

the requirement to further investigate the relevant parameters of the first-order

FiO2-SpO2 response, these being delay, time constant and gain (figure 4.1a).
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Knowledge of these parameters would potentially assist in determining the optimal

timing and magnitude of FiO2 adjustments. The factors influencing delay, time

constant and gain also deserve investigation, including the starting position on the

SpO2 sigmoid curve, and the severity of lung dysfunction (Claure et al., 2001; Quine

et al., 2006). Establishing the degree of intra- and inter-individual variability is also

clearly important. Such information would be valuable whether FiO2 adjustments

are being made manually, or by an automated control device.

In this study, we investigated the parameters of the first-order relationship between

FiO2 adjustment and observed SpO2 response in preterm infants receiving supple-

mental oxygen. We aimed to examine whether the response parameters were a)

similar for FiO2 increments and decrements, b) influenced by infant characteristics,

markers of disease severity and physiological instability, or by position on the SpO2

sigmoid curve, and c) subject to variability both within and between infants.

4.3 Dataset, Predictor Variables and the Approach

The physiological dataset used in this work was collected prospectively over a 10

month period from preterm infants <37 weeks gestation in the Neonatal Intensive

Care Units (NICUs) of the Royal Hobart Hospital, Hobart and the Royal Women’s

Hospital, Melbourne. All infants were being managed with continuous positive

airway pressure (CPAP) and supplemental oxygen. SpO2 target range was 88-92%

in all cases. Further details of the study design and infant selection are reported

previously (Lim et al., 2014).

Repeated physiological recordings of 24 h duration (maximum 25 recordings) were

made in preterm infants < 37 weeks gestation whilst they were on continuous pos-

itive airway pressure, in supplemental oxygen and less than 4 months corrected

gestational age. During each recording, clinical management including FiO2 ad-
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Figure 4.1: First-order modelling of the FiO2-SpO2 relationship Panel a. Example
of a first-order SpO2 response after a FiO2 increment from 21.3% to 26.6% at time
zero in a 24 week gestation infant at 22 days of age. Dashed line: recorded data
(raw values for SpO2), solid line: fitted first-order model, with SpO2 following an
exponential trajectory to a new steady state, with the rate of change of SpO2 being
proportional to the distance from steady state. The modelled first-order response fits
well to the recorded data (R2 > 0.90). The response parameters are indicated: delay =
elapsed time from FiO2 adjustment until first detected change in SpO2; time constant
= time to achieve 63% of the overall SpO2 change; gain = ratio between ultimate
SpO2 change and FiO2 increment (expressed as %). In this case delay = 9 sec, time
constant = 22 sec and gain = 21% / 5.3% = 3.9. Panel b. Examples of first order
SpO2 responses after FiO2 increments at time zero in a single infant. Y-axis: gain (as
defined above). The SpO2 responses show variability in all 3 response parameters
(delay, time constant and gain).

73



0 1 2 3 4 5 6 7
0

20

40

60

80

100

D
el

ay
 (

se
c)

0 1 2 3 4 5 6 7
0

20

40

60

80

100

0 1 2 3 4 5 6 7
0

30

60

90

120

T
im

e 
co

ns
ta

nt
 (

se
c)

0 1 2 3 4 5 6 7
0

30

60

90

120

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

G
ai

n

Time (days)
0 1 2 3 4 5 6 7

0

5

10

15

20

25

30

Time (days)

a d

b e

c f

Figure 4.2: Intra-subject variability in response parameters. Model parameters in
sequential adjustments with a first-order SpO2 response in one infant over a 1 week
period. Separate plots of delay, time constant and gain for increments (a, b, c) and
decrements (d, e, f). For FiO2 increments, quartile coefficients of variation for the
delay, time constant and gain were 0.67, 0.90, and 0.41, respectively, and 0.34, 0.86,
and 0.65 respectively for decrements.
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justment was performed as usual. SpO2 data were sourced from either a Dräger

Infinity Monitor (Dräger Medical Systems Inc., Notting Hill, Australia) or a Masimo

Radical v4 oximeter (Masimo Corp, Irvine, California), in both cases with minimum

averaging time (2-4 sec).

FiO2 was continuously measured with an inline oxygen analyser (MX300-I; Teledyne

Analytical Instruments, Industry, California). Both SpO2 and FiO2 signals were

input to a laptop computer with a sampling frequency of 0.5 or 1 Hz using purpose-

built software (LabVIEW 8.6, National Instruments, Austin, USA). From 24 h data

recordings, SpO2 and FiO2 signals were input to a laptop computer using purpose-

built software (LabVIEW 8.6, National Instruments, Austin, USA). The data collection

was approved by institutional ethics committees at both sites and parental consents

were obtained.

For this study, unique FiO2 adjustments with magnitude of at least ±0.01 and clear

by at least 120 sec of any other FiO2 alterations were first identified. Increments

and decrements in FiO2 were considered separately throughout, given that their

SpO2 start points would potentially be in different regions of the sigmoid curve.

Comparisons were made between the two groups as appropriate. The SpO2 response

to the FiO2 adjustment was examined over the 120 sec period after the FiO2 change.

Each SpO2 response was fitted to a first-order model (figure 4.1a), with best fit values

for the response characteristics determined, and a goodness of fit was evaluated

using the R2 metric. FiO2-SpO2 responses with R2 > 0.70 were considered first-order

(Fathabadi et al., 2014) and their values for delay, time constant and gain were used

in this study as response parameters.

In seeking factors influencing (i.e. predicting) the response parameters, clinical

and physiological data were collected. Gestation at birth, birth weight z score and

corrected gestational age at the time of each recording (post-menstrual weeks) were

ascertained. For each FiO2 adjustment, SpO2 instability was defined as the standard
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deviation in the SpO2 recording in the previous 2 min. Severity of lung dysfunction

and position on the SpO2 sigmoid curve were defined as the FiO2 and SpO2 values

immediately prior to each adjustment, respectively.

Univariate regression analysis of putative predictor variables was performed against

each of the response parameters, and the direction of the relationship (sign of the

regression coefficient), as well as its strength (P value), were noted. Multiple linear

regression analysis was used to identify which input variables were independently

predictive of each response parameter. This analysis was performed using the in-

built functions of the statistical software package NCSS. Input variables found to be

independently predictive of the outcome parameter (P < 0.05) are reported.

Intra-subject variability in each first-order parameter was quantified using the quar-

tile coefficient of variation (QCV) (Feinstein, 2001); the ratio of interquartile range

to the sum of the first and third quartiles. QCV values greater than 0.5 were taken

to represent considerable dispersion, with values of 0.2-0.3 indicative of relative

homogeneity in biological systems (Aliverti et al., 2013). Inter-subject variability

was examined initially by comparing first-order parameter subsets between subjects

(Kruskal-Wallis ANOVA, minimum 10 observations per individual).

4.4 Recognised Differences, Associations & Variations

A total of 3788 hours of recorded data was available, from 47 infants of median

gestational age 30 weeks (interquartile range, IQR, 27-32 weeks) and birth weight 1.3

(0.9-1.8) kilograms. At the commencement of each recording, the infants were 6 (2-28)

days of age, at a corrected gestation 31 (29-33) post-menstrual weeks, with CPAP

level 7 (6-8) cmH2O and FiO2 25 (22-29)%. In all, 2715 unique FiO2 adjustments were

identified with no other FiO2 alteration for 120 sec on either side. Of these 993 (37%)

were identified as having a first-order SpO2 response, including 580 increments and
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Table 4.1: First-order modelling of FiO2-SpO2 relationship FiO2 adjustment details
and values for the parameters from first-order modelling of the SpO2 response to
FiO2 adjustments. Includes only episodes for which goodness of fit of the first-order
model was R2 > 0.70. Median (IQR). Values for each model parameter differ between
increments and decrements, P<0.05, Mann-Whitney test. *absolute values.

FiO2 increments FiO2 decrements
N 580 413

FiO2 adjustment FiO2 (%) 3.8 (2.3, 7.1) 3.6 (2.1, 6.3)*
details Pre-adj. SpO2 (%) 79 (72, 84) 97 (95, 99)

Pre-adj. FiO2 (%) 28 (24, 33) 33 (28, 41)
Delay (seconds) 22 (8.0, 40) 34 (17, 57)

Model Time constant (sec) 13 (2.2, 35) 9.4 (1.2, 32 )
Parameters Gain 2.9 (1.7, 4.8) 1.3 (0.58, 2.6 )

R2 for model 0.88 (0.81, 0.94) 0.81 (0.75, 0.89)

413 decrements.

Analysis of the parameters derived from first-order modelling of SpO2 responses

revealed a shorter delay, longer time constant and higher gain after FiO2 increments

compared to decrements (table 4.1). In univariate analysis, the gain was the parame-

ter most strongly predicted by input variables, with gestation at birth and severity of

lung dysfunction predictive of gain for both FiO2 increments and decrements, and

SpO2 instability and position on the sigmoid curve being additional predictors for

FiO2 increments (table 4.2). Relationships with other first-order parameters were

inconsistent, although for FiO2 increments, lung dysfunction was predictive of delay

and time constant as well as gain. For these relationships, the sign of the regression

coefficient showed more severe lung dysfunction to be associated with a longer time

delay, shorter time constant and lower gain (table 4.2). The univariate relationships

largely persisted in multivariate analysis (table 4.2), with lung dysfunction remaining

as a strong predictor of gain, both for FiO2 increments and decrements (regression

coefficients -0.055 and -0.064, respectively).
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Considerable intra-subject variability was noted in all response parameters, both

for FiO2 increments and decrements (figure 4.2). The average QCV for delay, time

constant and gain among increments were 0.66, 0.79, 0.38, respectively and 0.57, 0.87,

and 0.59 for decrements. Values for response parameters also showed inter-subject

variation, with median values for delay (decrements only), time constant (increments

only) and gain (both) differing between subjects (P<0.05, Kruskal-Wallis ANOVA,

minimum 10 observations per subject).

4.5 Interpretation of the Outcomes and Their Implica-

tions

A requisite step towards improvement of SpO2 targeting in the preterm infant is to

better understand the vagaries of the FiO2-SpO2 relationship. In this study of FiO2

adjustments made during routine clinical practice, we found that the nature of the

SpO2 response differed with FiO2 increments and decrements, most notably in the

gain and thus ultimate SpO2 change. The gain was higher in less mature infants and

in the setting of recent SpO2 instability, and diminished with increasing severity of

lung dysfunction. All parameters of the SpO2 response showed substantial intra-

individual variability, along with variability between individuals in particular in the

gain parameter.

From a clinical perspective, our findings suggest the following:

1. Because of the take-off point on the steeper, linear section of the sigmoidal

PaO2-SpO2 curve, increasing FiO2 from a state of hypoxia is associated with

a greater gain in the SpO2 response than decreasing FiO2 from hyperoxia.

This means that FiO2 decrements in a state of hyperoxia must be of greater

magnitude to achieve the same ultimate SpO2 change compared with FiO2
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increments during hypoxia.

2. The SpO2 response to a FiO2 adjustment is affected by severity of lung dys-

function, with more severe disease being associated with substantial reduction

in gain. This means that FiO2 must be changed by a greater amount to achieve

the same ultimate SpO2 response in the diseased lung, with the gain being

reduced by 30-50% (based on the multivariate regression coefficients) for an

infant requiring 40% oxygen compared to one in room air.

3. The response parameters of the FiO2-SpO2 relationship show significant vari-

ability, both within and between individuals. Whatever the cause, this vari-

ability must be taken into account when adjusting FiO2, and has implications

in automated control, suggesting that adaptive (i.e. changing) and robust

(i.e. resilient to variation) algorithms may perform better than unchanging

algorithms designed to operate based on a constant set of model parameters.

Our study examined a large number of FiO2-SpO2 responses with first-order be-

haviour, recorded in a group of preterm infants under standard clinical conditions.

The data obtained are thus subject to the variability implicit in real-time recordings

from multiple subjects in uncontrolled circumstances, but on the other hand faith-

fully represent the challenges faced by caregivers (and control devices) attempting

to target an SpO2 range.

The values we obtained for first-order SpO2 response parameters in standard clinical

conditions are largely similar to those obtained from limited experimental data

by Keim et al. (2011), and also to what would be predicted from physiological

modelling and first principles (Yu et al., 1987; Severinghaus, 1979). Using data from

preterm infants after FiO2 increments, Keim et al noted gains ranging from 0.23 to

8.4 compared with a median value in our study of 2.9.

The Severinghaus equation linking PaO2 with SpO2 (Severinghaus, 1979) indicates
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that for FiO2 increments occurring on the steeper part of the haemoglobin dissocia-

tion curve (below SpO2 90%) a gain of 10 or more may be expected. Time constants

in the study of Keim et al. (2011) were in the range 32-122 sec, and somewhat longer

than we observed after FiO2 increments (median 13 sec, 75th centile 35 sec). Dif-

ferences in the degree of prematurity and severity of lung disease may explain the

relatively shorter time constants we observed.

The reduction in gain in association with increased lung dysfunction is an important

finding of our study. As reduced ventilation-perfusion ratio is not associated with

a change in slope of the FiO2-SpO2 curve (Appendix 8.2), the attenuated SpO2

response would appear to be at least in part explained by an increase in the degree

of shunt (Quine et al., 2006; Karbing et al., 2007). The assumption of a contribution

of shunt to the SpO2 response to FiO2 adjustments has long been incorporated in

modelling of oxygenation in preterm infants (Sano and Kikucki, 1985; Tehrani and

Bazar, 1994; Morozoff and Saif, 2008) but only one controller incorporates differences

in gain associated with differing severity of lung dysfunction (Claure et al., 2001).

Our findings have implications not only for manual FiO2 adjustments but also for

the design of automated control devices. The algorithm governing the response to

SpO2 deviations should ideally handle hypoxic and hyperoxic situations separately,

and have the capacity to alter gain depending on severity of lung disease. Ideally

the algorithm would be adaptive beyond these simple measures, and thus equipped

to accommodate the considerable intra- and inter-infant variability that was demon-

strated in our study group. A response to rapidly changing SpO2 should also be

incorporated.

Undoubtedly the underlying cause of fluctuation in SpO2 (e.g. apnoea, circuit

pressure loss) will be a determinant of the response after an FiO2 adjustment. Our

data did not allow an analysis along these lines, but this is clearly an important area

for future study. Similarly, a more complete analysis of the impact of severity and
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nature of lung disease on the FiO2-SpO2 relationship should be undertaken.

4.6 Conclusion

In conclusion, characterisation of first-order SpO2 responses to FiO2 adjustments

reveals a variable gain, influenced by the direction of FiO2 adjustment and the

severity of lung disease, as well as substantial intra- and inter-subject variability.

These findings should be taken into account in adjustment of FiO2 for SpO2 targeting

in preterm infants.
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Chapter 5

Hypoxic events and concomitant

factors in preterm infants on

non-invasive ventilation



5.1 Summary

Automated control of inspired oxygen for newborn infants is an emerging technology,

currently limited by reliance on a single input signal (oxygen saturation, SpO2). This

is while other signals that may herald the onset of hypoxic events or identify

spurious hypoxia are not usually utilised. We wished to assess the frequency of

apnoea, loss of circuit pressure and/or motion artefact in proximity to hypoxic

events in preterm infants on non-invasive ventilation. Hypoxic events (SpO2 <80%)

were identified using a dataset obtained from preterm infants receiving non-invasive

ventilation. Events with concomitant apnoea, loss of circuit pressure or oximetry

motion artefact were annotated, and the frequency of each of these factors was

determined. The effect of duration and timing of apnoea on the characteristics

of the associated hypoxic events was studied. Among 1224 hypoxic events, 555

(45%) were accompanied by apnoea, 31 (2.5%) by loss of circuit pressure and 696

(57%) by motion artefact, while for 224 (18%) there were no concomitant factors

identified. Respiratory pauses of longer duration (>15 seconds) preceding hypoxic

events, were associated with a relatively slow decline in SpO2 and more prolonged

hypoxia compared to shorter pauses. Hypoxic events are frequently accompanied

by respiratory pauses and/or motion artefact. Real-time monitoring and input of

respiratory rate may thus improve the function of automated oxygen controllers,

allowing pre-emptive responses to respiratory pauses. Furthermore, use of motion-

resistant oximeters and plethysmographic waveform assessment procedures will

help to optimise feedback control of inspired oxygen delivery.

The research contained within this chapter has been published as: Omid Sadeghi

Fathabadi, Timothy J Gale, Kevin I Wheeler, Gemma Plottier, Louise S Owen, JC

Olivier, Peter A Dargaville. "Hypoxic events and concomitant factors in preterm

infants on non-invasive ventilation." Journal of Clinical Monitoring and Computing,

1-7, 2016, Springer (Fathabadi et al., 2016a).
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5.2 Why Concomitant Factors Matter

In preterm infants needing respiratory support the fraction of inspired oxygen (FiO2)

is controlled to decrease the risk of consequences of both high and low levels of

oxygen delivery, including lung damage, retinopathy of prematurity and mortality

(Bhandari, 2010; Chen et al., 2010; SUPPORT, 2010). Currently the task of controlling

FiO2 in preterm infants is in the hands of bedside caregivers, who make adjustments

based on the level of oxygen saturation (SpO2), measured transcutaneously and

displayed in real-time. Targeting a desired range of SpO2 readings by manual FiO2

control is known to be difficult (Hagadorn et al., 2006; Laptook et al., 2006; Lim et al.,

2014), and for that reason the concept of automated control was first explored many

years ago (Beddis et al., 1979; Sano and Kikucki, 1985; Bhutani et al., 1992).

More recently, the field has entered a new phase, with the introduction of several

new control algorithms, some of which have been tested in clinical trials (Claure

et al., 2001; Urschitz et al., 2004; Morozoff and Smyth, 2009; Lopez et al., 2014). These

algorithms appear to show some promise, resulting in more time in the target SpO2

range compared with manual control. The algorithms also appear to limit the

amount of time spent with inappropriately high SpO2 readings, but in several cases

this is at the expense of a greater time spent hypoxic (i.e. with low SpO2 levels)

(Claure et al., 2009, 2011). This is while a recent study (Poets et al., 2015) suggests

that prolonged episodes of SpO2 <80% increase the risk of death and disability at 18

months corrected age for extremely preterm infants.

A major challenge in the design of an automated control algorithm is how to predict,

detect and respond to the relatively frequent hypoxic events that occur in preterm

infants. The difficulty stems in large part from the reliance on a single input to the

algorithm - SpO2 - without other contextual information. This is a limitation of all

recent control algorithms, and one that has several important consequences. Firstly,

the SpO2 reading from a probe on the limb of a premature infant is prone to motion
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artefact, with the potential for an incorrectly low SpO2 reading to be input to the

algorithm (Poets and Southall, 1994), and an inappropriate increase in FiO2 called

for.

Second, with SpO2 as the only input, in the case of true hypoxia an FiO2 adjustment

can only occur when the hypoxic event is underway, even though there may be

identifiable preceding or concurrent events that might predict the occurrence and

severity of hypoxia. Such predictive events might include transient cessation of

breathing (apnoea) or loss of pressure within the circuit of a respiratory support

device. Finally, having other inputs to the algorithm such as respiratory rate and

circuit pressure might also avoid an over-vigorous FiO2 adjustment in situations

in which there is a remediable cause of hypoxia. This in turn might prevent an

overshoot in SpO2 and exposure to unnecessarily high levels of oxygen once the

issue is resolved (Urschitz et al., 2004).

In this study we explored the relationship between hypoxic events in preterm infants

and concomitant factors, such as apnoea and circuit pressure drop, that might be

predictive of hypoxia and also interfere with the initial response to increases in

FiO2. We also explored the occurrence of motion artefact, potentially indicative

of spurious hypoxia. In physiological recordings from preterm infants receiving

respiratory support with continuous positive airway pressure (CPAP) we aimed to

identify hypoxic events, and determine the frequency of concomitant apnoea, loss of

CPAP circuit pressure or motion artefact.

5.3 Hypoxia Detection and Annotation

Physiological recordings were taken in preterm infants of median (IQR) 25 (25-27)

weeks gestational age and 830 (693-949) grams birth-weight, receiving respiratory

support with either CPAP or nasal intermittent positive pressure ventilation (NIPPV).
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The infants were admitted to the Royal Women’s Hospital in Melbourne, Australia.

The dataset, partially used elsewhere (Owen et al., 2010, 2011), was obtained from

20 infants and comprised of 136 recordings of 40 (30-45) minutes duration (5184

minutes overall).

Recordings of SpO2, saturation plethysmographic waveform, CPAP circuit pressure,

FiO2, and respiratory motion were made with a sampling frequency of 200 Hz. SpO2

was recorded from a Masimo Radical SET pulse oximeter (Masimo, Irvine, California,

USA), CPAP pressure with a Florian respiratory function monitor (Acutronic Medical

Systems, AG, Zug, Switzerland), FiO2 with an MX300 oxygen analyser (Teledyne

Analytical Instruments, City of Industry, California, USA) and respiratory motion

with an abdominal capsule linked to a respiration monitor (MR10; Graseby Medical,

Watford, England).

Video images of the infant’s head and torso were recorded at six frames per second

and synchronised with the physiological data using Spectra software (Grove Medical,

London, UK). The data collection was approved by the hospital Research and

Ethics Committees and informed written parental consent was obtained prior to the

recordings. A hypoxic event was defined as an episode starting with a fall in SpO2

and including SpO2 <80% for minimum duration of four seconds.

The detection algorithm detected the onset of a hypoxic event as the first point where

SpO2 fell by minimum 3% following a stable period or a local maximum (Poets

and Southall, 1991). If the onset was followed by an episode with SpO2 < 80% for

minimum 4 seconds in a 30 second time window the event was considered in the

analysis.

A graphical user interface was developed to investigate and annotate the hypoxic

events using MATLAB R2012a (The MathWorks, Inc., Natick, Massachusetts, United

States). A detailed description of the detection method as well as images of the

graphical user interface can be found in Appendix C in section 8.3. For each detected
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event, identification and annotation of concomitant apnoea and loss of pressure was

performed automatically (figure 5.1). Apnoea was defined as a pause in respiration

of 4 seconds or greater (Poets et al., 1991; Stebbens et al., 1991; Adams et al., 1997).

For apnoea detection, the search started form the end of the episode with SpO2

< 80% (maximum 30 seconds after the onset) by deriving the standard deviation

(SD) of the respiratory motion signal in a 4 second moving time window, with a

frameshift of 20 msec. The standard deviation was compared with an adjustable

threshold to identify cessation of breathing, with the onset of the respiratory pause

then located secondarily (maximum 30 seconds prior to the onset).

In cases with repeated respiratory pauses, those closest to the onset of hypoxia were

used in the analysis. Identified pauses were categorized as preceding the hypoxic

event if their onset was at least two seconds prior to onset of hypoxia (Poets et al.,

1991; Stebbens et al., 1991), or otherwise considered to be concurrent/subsequent.

Identified pauses were further sub-categorized by duration (<10 sec, 10-15 sec, >15

sec). The SpO2 slope from the onset of the hypoxic event to its detected minimum,

and the duration for which SpO2 was <80 %, were compared between respiratory

pauses of different timing of onset and duration (Kruskall-Wallis ANOVA with

Dunn’s post hoc test).

Loss of circuit pressure lasting for at least four seconds was detected using a similar

moving window to that described above, in this case identifying if pressure was < 4

cmH2O. Detected episodes of pressure loss were further investigated by examination

of the video recording looking for evidence of a detached CPAP interface or circuit

tubing.

Motion artefact associated to hypoxic events was detected by visual examination

of the plethysmographic waveform (Poets and Southall, 1994; Poets and Stebbens,

1997), looking for evidence of disturbance (a non-pulsatile tracing and/or baseline

fluctuation). This step was followed by review of video images by one of the authors,
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exploring whether there were observable infant movements in association with the

waveform disturbance.

Hypoxic events during which there was concurrent motion artefact in the waveform

were annotated as being potentially spurious. Finally, the co-existence of apnoea,

loss of circuit pressure and motion artefact was investigated by categorising the

hypoxic events into groups representing all possible combinations of concomitant

factors. The frequencies of the events in different groups were then analysed.

5.4 Frequency of Factors and Relevance of Apnoea

Overall, 1275 hypoxic events from 96 recordings met the criteria for study and were

analysed using the graphical user interface. Fifty-one events were later excluded,

39 because of presence of FiO2 decrements within 60 seconds preceding the onset

of hypoxia, 9 because of missing signals, and 3 because of being the extension of

a previous episode of hypoxia. For the 1224 remaining events, median SpO2 at

onset was 82% (interquartile range, IQR, 79-87%), and duration <80% was 8.0 (6.0-17)

seconds. The overall rate of hypoxic events in all 86 hours of recordings was 14

events per hour.

Detection of apnoea was optimised with an SD threshold of 0.075 applied to the

respiratory motion signal. Apnoea occurred concomitant with the hypoxic event in

555 (45%) cases, including 495 (40%) in which apnoea preceded the event and 165

events in which it occurred concurrently/subsequently. Comparisons between the

slope and duration of periods of hypoxia among different categories of apnoea (table

5.1) were performed for preceding apnoea of differing duration, and separately for

concurrent/subsequent apnoea.

Among apnoeic events preceding periods of hypoxia, the SpO2 slope was of lesser

magnitude but the hypoxia duration was longer for apnoea >15 sec compared with
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Figure 5.1: Representative hypoxic events with concomitant factors. Vertical solid
lines define the onset and minima of the hypoxic events; vertical dashed lines indicate
the period with SpO2 <80%. (a) Hypoxia preceded by apnoea at -9.1 seconds. (b)
Hypoxia preceded by loss of pressure at -29 sec and -20 sec, and also by apnoea at -10
sec. (c) Hypoxic event with circuit pressure loss at -6.6 sec and 2 sec, and a disturbed
plethysmographic waveform. Movements observed in the video recordings at time
points marked by arrows. Resp. motion: respiratory motion; Pleth. wave: oxygen
saturation plethysmographic waveform; Pressure: CPAP circuit pressure.
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shorter respiratory pauses (table 5.1). Among the concurrent/subsequent apnoeic

events the slope was again of lesser magnitude for pauses with >15 sec compared

with those with <10 sec duration, while pauses with 10-15 sec duration were not

different from either. Duration of hypoxia was also longer among pauses >10 sec

duration compared with shorter pauses.

Loss of circuit pressure was detected in 31 (2.5%) hypoxic events mostly occurring

preceding the event (table 5.2). Of which 22 were detected in a single 36 minute

recording in association with functional limitations of the NIPPV device. In other

cases an obvious tube disconnection or detachment of the prongs from the nostrils

was observed. In one case, the detected end-point for loss of pressure was adjusted

because of noisy data and inappropriate detection.

Disturbance of the plethysmographic waveform was present in the time window

of interest during 696 of 1224 hypoxic events (57%), with detectable body motion

present in the video recordings in 439 of these (67%). Analysis of the videos during

hypoxic events also revealed that there were occasions when the nasal prongs were

dislodged from nostrils but the prongs were obstructed against the infant’s face,

preventing loss of circuit pressure but providing no respiratory support.
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Table 5.3: Classification of 1224 hypoxic events.

Loss of Apnoea Motion No obvious
pressure artefact category

All 31 (2.5%) 555 (45%) 696 (57%) 224 (18%)
+No other factor 2 (0%) 297(24%) 429 (35%)
+Motion artefact 14 (1%) 243 (20%)

+Apnoea 5 (0%)
+Motion artefact & Apnoea 10 (1%)

Occasions where two or more factors were associated with a hypoxia were common

(table 5.3). In total 998 (82%) hypoxic events were collectively associated with either

apnoea or motion artefact, with an additional 2 instances including circuit pressure

loss. Only 224 (18%) of events were not associated with any of the three unwanted

factors. When an apnoea was present (555 events), the proportion of hypoxic events

concomitant with motion artefact (253/555) was 46%, less than for hypoxic events

overall (57%). Around 62% of the cases of motion artefact (429/696) occurred without

apnoea or loss of pressure.

5.5 Indications for Automated Control

Currently, automated control of inspired oxygen is based around detection of hypoxic

events, without regard to factors that may cause or mimic hypoxia. Apnoea and

loss of pressure could hinder appropriate respiratory support particularly during

automated control, and motion artefact on the other hand may mislead the control

algorithm. Hypoxic events were frequent among our infants with the overall average

rate of hypoxic events being 14 per hour.

This rate fits into the range of the rate of desaturations (0.0-45 per hour) in a report

studying artefact-free episodes of SpO2 in preterm infants receiving CPAP and

NIPPV and including shorter hypoxic events (Pantalitschka et al., 2009). We found

a high probability of apnoea preceding hypoxic events, and of motion artefact
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concurrent with such events. Long respiratory pauses were associated with a slower

decline in SpO2, but longer duration of hypoxia.

5.5.1 Apnoea and Loss of Pressure

Previous studies have found high rates of association between preceding apnoea

and hypoxic events (SpO2 < 80%) in the newborn. Stebbens and coworkers found

98% and 65% of hypoxic events in healthy term infants were related to a respiratory

pause during regular and non-regular breathing, respectively (Stebbens et al., 1991).

However, their study included very short episodes of hypoxia, with the median

duration of events being around 1 second. In separate studies of spontaneously-

breathing preterm infants, hypoxic events of at least 4 seconds have been found to

be preceded by respiratory pauses in 83% (Poets et al., 1991) and 97% (Adams et al.,

1997) of cases.

For the preterm infants on non-invasive respiratory support in our study, the propor-

tion of hypoxic events preceded by apnoeic pauses appears considerably less than

for those breathing spontaneously. We noted a respiratory pause ≥ 4 sec preceded

the onset of hypoxia in 40% of cases. The use of CPAP, known to increase lung

volume (Elgellab et al., 2001), may lessen the frequency of apnoea as an antecedent to

hypoxic events, as has previously been noted in infants during active sleep (Tourneux

et al., 2008). Our results indicate that although the likelihood of apnoea related to

major hypoxic events in infants receiving non-invasive support is less than previous

reports, it still remains a major concern for automation of oxygen control.

A key finding of our study is the association of longer preceding respiratory pauses

(>15 sec) with a slower decline in SpO2 but ultimately more prolonged hypoxia.

Studies on the slope and duration of hypoxic events in association with respiratory

pauses in infants are limited. A report on spontaneously breathing preterm infants

found an association between periodicity of apnoea and faster slope of desaturation

94



(Poets and Southall, 1991). Another study in term infants suggested that duration of

hypoxic events increased when breathing was non-regular (Stebbens et al., 1991).

Our findings suggest that for short apnoeic pauses and a rapid decline in SpO2, the

optimal response may be a brief increase in FiO2 to prevent or treat hypoxia. Longer

pauses may require another form of intervention (e.g. stimulation), with hypoxia

being refractory to FiO2 increases until respiratory effort has normalised. Thus far,

no automated oxygen controller has included a real-time measurement of respiratory

movement as an additional input, in part due to the practical difficulties associated

with such monitors.

We found circuit pressure loss to be much less common than apnoea as a factor

influencing hypoxic events. As we observed, respiratory support can be compro-

mised without loss of circuit pressure. Nevertheless, given the relative simplicity of

measurement of circuit pressure, it could easily be incorporated as an input in an

automated oxygen control device.

5.5.2 Motion artefact

A high proportion (57%) of hypoxic events in our study had concomitant motion

artefact identified in the plethysmographic oximetry waveform. Along with erro-

neous readings induced by low perfusion, motion artefact is well known to result in

falsely low SpO2 readings (Poets and Southall, 1994). Without another measure of

oxygenation, for any given hypoxic episode it may be difficult to discern whether

the low SpO2 values are spurious or not.

In a previous study (Poets and Stebbens, 1997), 31% of the recording segments of

plethysmographic waveform from preterm infants contained motion artefact, and

for episodes with SpO2 6 80%, this proportion increased to 88%. The authors thus

concluded that a significant proportion of perceived hypoxic episodes may actually
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be related to motion artefact and not represent true hypoxia.

The recommended approach in such cases has been to identify the motion, for

instance by comparing the plethysmographic extracted and electrocardiographic

heart rates (Poets and Stebbens, 1997), and then to consider the SpO2 readings valid

only when the two heart rates correlate. For an automated oxygen controller with

continuous SpO2 feedback this means there may be long episodes with no reliable

reference data on which to base decisions.

The high proportion of hypoxic events in which there is motion artefact necessitates

the design of automated oxygen controllers that can make a decision on the reliability

of the recorded hypoxic events. Motion tolerant oximeters (Goldman et al., 2000)

have been developed to extract SpO2 in the presence of motion (Petterson et al.,

2007). Even with motion-tolerant oximetry, there is still potential for spurious SpO2

readings to compromise the performance of automated control devices.

Accordingly, it is crucial to design control algorithms that use all possible avenues

to determine whether low SpO2 values are related to motion artefact. Beyond the

use of perfusion index and also comparison of heart rate as described above, we

recommend that waveform analysis software should be incorporated to identify

motion artefact, in much the same way as was done visually in this study.

5.5.3 Other Findings and Limitations

In our study, video images confirmed that a large proportion of the patient move-

ments led to motion artefact. On some occasions detected disturbance in the plethys-

mographic waveform did not have identifiable movement as a cause, and remained

unexplained. The question of the source of disturbance may be far less important

than its presence during automated oxygen control. However our observation en-

courages further study of the cause of oximetry waveform disturbance. Our findings
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concerning the reduced frequency of motion artefact during apnoea can be explained

by the fact that during a central apnoea an infant is not expected to move and cause

artefact in the plethysmographic waveform.

5.6 Conclusion

Incorporating real-time measurements of respiratory rate in automated oxygen

controllers would be beneficial in managing hypoxic events appropriately, and

measurement of gas pressure in the circuit may be useful. Brief intervals of elevated

FiO2 could be considered in prevention/treatment of hypoxic events following short

respiratory pauses and fast SpO2 declines. The influence of motion artefact on

plethysmographic waveforms during hypoxia remains significant and automated

oxygen controllers should only receive SpO2 input from motion-resistant oximeters,

and beyond this should implement effective waveform validation algorithms.
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Chapter 6

Lost without trace: Oximetry signal

dropouts in preterm infants



6.1 Summary

Oxygen saturation (SpO2) signal dropout leaves caregivers without a reliable measure

to guide oxygen therapy. We studied SpO2 dropout in preterm infants on continuous

positive airway pressure, noting the SpO2 values at signal loss and recovery and

thus the resultant change in SpO2, and the factors influencing this parameter. In 32

infants of median gestation 26 weeks, a total of 3932 SpO2 dropout episodes were

identified (1.1 episodes/h). In the episodes overall, SpO2 decreased by 1.1%, with

the SpO2 change influenced by starting SpO2 (negative correlation), but not dropout

duration. For episodes starting in hypoxia (SpO2 <85%), SpO2 recovered at a median

of 3.2% higher than at SpO2 dropout, with a downward trajectory in one-quarter of

cases. We conclude that after signal dropout SpO2 generally recovers in a relative

normoxic range. Blind FiO2 adjustments are thus unlikely to be of benefit during

most SpO2 dropout episodes.

The research contained within this chapter has been published as: Kathleen Lim,

Kevin I Wheeler, Hamish D Jackson, Omid Sadeghi Fathabadi, Timothy J Gale,

Peter A Dargaville. "Lost without trace: oximetry signal dropout in preterm in-

fants."Archives of Disease in Childhood-Fetal and Neonatal Edition, 100, F436-F438,

2015, BMJ Publishing Group Ltd (Lim et al., 2015).
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6.2 Pulse Oximetry and the Issue of Lost Signal

Pulse oximetry is a widely used monitoring technique, which allows continuous, non-

invasive measurement of oxygen saturation (SpO2) and guidance with supplemental

oxygen therapy (Mower et al., 1997). SpO2 monitoring is indispensable in the neonatal

intensive care unit (NICU), in particular for preterm infants highly susceptible to

adverse effects at the extremes of oxygenation. NICU caregivers have become heavily

reliant on continuous SpO2 information in preterm infants receiving supplemental

oxygen, with the knowledge that avoidance of hypoxia and hyperoxia may improve

outcome (Bateman and Polin, 2013).

For a variety of reasons, the photoplethysmography tracing from a pulse oximeter

probe may be temporarily lost, meaning that a valid SpO2 value cannot be displayed.

The occurrence of SpO2 signal dropout is all too familiar to NICU caregivers, and

leaves them without a reliable measure to guide oxygen therapy when caring for

preterm infants. Previous studies have suggested hypoxia to be the predominant

state upon signal return, (Claure et al., 2001) and that an increase in inspired oxygen

concentration (FiO2) should be considered during SpO2 dropout. The published

data are, however, limited to a few hundred dropout episodes in <200 hours of

signal recordings (Claure et al., 2001, 2009). Furthermore, no information is available

on the pre-dropout SpO2 values, and thus the trajectory of oxygenation during

dropout, which should be taken into account in determining appropriateness of FiO2

adjustments whilst awaiting signal return.

We studied SpO2 dropout in a large dataset from preterm infants, aiming to docu-

ment the context in which SpO2 dropout occurred, the SpO2 values at signal loss

and recovery and thus the resultant change in SpO2, and the factors influencing this

parameter.

100



6.3 Eligible Dropouts, Extracted Information and Anal-

ysis Details

Repeated 24 h real-time recordings of SpO2 and FiO2 at a sampling interval of 1 Hz

were made in preterm infants <37 weeks gestation at birth managed in the Royal

Hobart Hospital NICU with continuous positive airway pressure (CPAP) and on

supplemental oxygen at the start of each recording. SpO2 target range was 88 to

92%. Methods of data recording and initial analysis have been detailed previously

(Lim et al., 2014). In summary, SpO2 was extracted from bedside monitors (Infinity

Monitor, Dräger Medical Systems Inc., Notting Hill, Australia) set to minimum

averaging time (2-4 seconds). FiO2 sourced from an inline oxygen analyser (MX300-

I, Teledyne Analytical Instruments, City of Industry, USA). Data were input to a

laptop computer using custom software written with labVIEW (National Instruments,

Austin, USA). Data collection was approved by our institutional ethics committee as

an audit of clinical practice.

For the analysis of signal dropout, in pooled data from all infants episodes through-

out which a numerical SpO2 value was absent were identified. Those with a duration

<10 sec or >600 sec were excluded, as were dropout episodes with an FiO2 adjustment

in the preceding 120 sec. Those with a concurrent FiO2 adjustment were analysed

separately. For each episode, the values of SpO2 prior to signal dropout and at

recovery were derived from the average of SpO2 values over the 10 sec before and

after each dropout episode, respectively. From these, SpO2 change (δSpO2) and SpO2

trajectory (δSpO2/dropout duration) were determined.

Analysis was performed on all episodes combined, and on three sub-groups based

on pre-dropout SpO2: hypoxia (SpO2 <85%), relative normoxia (SpO2 85-95%), or

hyperoxia (SpO2 >95%). Median values were compared between these three oxygena-

tion sub-groups (Kruskal-Wallis test), and within each the pre- and post-dropout
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SpO2 values were compared (Wilcoxon signed-rank test). Potential predictors of

δSpO2 (pre-dropout SpO2, FiO2 and episode duration) were also evaluated using

Spearman correlation.

6.4 What Happens After a Dropout

Data were analysed from 32 infants of median gestation at birth 26 weeks (in-

terquartile range, IQR 26-28), birth weight 914 (912-1000) g, and post-natal age at

commencement of each recording 23 (7-64) d. Within 3724 h of data recordings, 5709

episodes of SpO2 dropout were identified. 1419 episodes lasted <10 sec, 22 episodes

lasted >600 sec, and there were 287 prior and 49 concurrent FiO2 adjustments. After

excluding these, 3932 dropout episodes were used for analysis (table 6.1).

SpO2 dropout accounted for 1.7% of the entire recording, and occurred with greater

relative frequency during hypoxia (table 6.1). Overall, SpO2 decreased slightly

during signal dropout (median δSpO2 -1.1%), but for episodes starting in hypoxia,

SpO2 increased by median +3.6% (trajectory +0.09% per sec). Within this hypoxic

sub-group, δSpO2 showed negative correlation with pre-dropout SpO2 (lower pre-

dropout SpO2 = higher positive value for δSpO2) and positive correlation with

FiO2. Across all oxygenation subgroups, slopes of the δSpO2 - duration correlation

suggested minimal effect of dropout duration on δSpO2 (table 6.1); for the hypoxia

sub-group the slope of 0.019 corresponds to a δSpO2 value only 1% higher for each

additional 50 sec of lost signal.

Amongst the episodes of signal dropout in hypoxia, just over one-quarter resulted

in a reduction in SpO2 from the starting value, and on 10% of occasions δSpO2 was

-6.1% or beyond (figure 6.1 A). When dropout occurred in relative normoxia, there

was a 10% risk of SpO2 change by -13% or more (figure 6.1 B).
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Figure 6.1: Range of δSpO2 values.3rd, 10th, 25th, 50th, 75th, 90th and 97th centiles for
change in SpO2 (δSpO2) during signal dropout commencing in hypoxia (<85%, panel
A), relative normoxia (85-95%, panel B) and hyperoxia (>95%, panel C). Shaded area
indicates interquartile range (IQR).

There were 49 dropout episodes during which an FiO2 adjustment was made (in-

creased on 42 occasions, decreased on 7). The increases in FiO2 were by 4.0 (2.4,10)%

and the decreases 8.4 (5.5,14)%. Duration of dropout was longer than for episodes in

which there was no FiO2 adjustment [FiO2 increase 74 (33,184) sec; FiO2 decrease:

67 (45,150) sec; no FiO2 adjustment: 34 (19,68) sec, p<0.05, Kruskal-Wallis test]. The

FiO2 alterations occurred relatively early in the dropout episodes, at 20 (7.0,97) and

23 (2.0,34) seconds after signal loss for FiO2 increases and decreases, respectively.

For the most part, δSpO2 values were as would be predicted by the direction of FiO2

adjustment [FiO2 increase: δSpO2 +0.95 (-4.9, +6.8)%; FiO2 decrease: -6.3 (-11, 0.0)].
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6.5 Comments on Results and Suggestions for Oxygen

Control

Episodes of SpO2 dropout are a common occurrence during NICU monitoring, which

in our study occurred at a rate of 1.1 episodes/h, with a higher frequency during

hypoxia. Overall, SpO2 usually recovered in relative normoxia. For episodes starting

in hypoxia, SpO2 recovered at a median of 3.2% higher than at SpO2 dropout. In

most cases, signal dropout lasted <60 secs and SpO2 on recovery changed by <6%.

To our knowledge, this is the first study to comprehensively examine oxygenation

changes and the influence of pre-dropout SpO2, FiO2 and dropout duration in a

large number of SpO2 dropout episodes. By design, we focused on dropout episodes

of at least 10 seconds duration in preterm infants on CPAP.

Our study findings differ somewhat from previous reports in which there was a

preponderance of hypoxic values on signal return, (Claure et al., 2001, 2009) resulting

in a suggestion to consider increasing FiO2 during signal dropout (Claure et al.,

2001). Past and present studies concur in the observation that SpO2 recovery in

the hyperoxic range is uncommon (Claure et al., 2001, 2009). Differences in study

methodology, including the study population, minimum dropout duration, and

definition of hypoxia, preclude further meaningful comparisons.

Although our dataset is the largest examined to date, interpretation is limited having

only including infants on CPAP, who were predominantly in supplemental oxygen

at the time of signal dropout. Additionally, no video collection was performed in

study subjects, no second SpO2 device was attached, and perfusion indices were not

recorded. There is thus a lack of information on the actual cause of signal dropout

episode (probe dislodgement/motion artefact/low perfusion) in each case, and some

uncertainty regarding the clinical condition preceding or during the event. Future

studies of SpO2 dropout should address these deficiencies.
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In conclusion, SpO2 signal dropout occurs frequently in preterm infants on CPAP.

In babies with stable FiO2, when the signal recovers, SpO2 is generally in a relative

normoxic range. Blind FiO2 adjustments are thus unlikely to be of benefit during

most episodes of SpO2 dropout.

6.6 The Final Word

In conclusion, SpO2 signal dropout occurs frequently in preterm infants on CPAP.

In babies with stable FiO2, when the signal recovers, SpO2 is generally in a relative

normoxic range. Blind FiO2 adjustments are thus unlikely to be of benefit during

most episodes of SpO2 dropout.
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Chapter 7

Conclusion and Future Directions



7.1 Conclusion

This thesis started with identifying the high level design challenges of automated

control of inspired oxygen for preterm infants following a comprehensive overview

of the existing algorithms. This part of the study pointed to the variability of

oxygenation in preterm infants together with technologic shortcomings of infant

monitoring and safety considerations as the major challenges. The thesis then largely

focused on investigation of the variability in oxygenation response.

In a study assessing the validity and predictability of this model in preterm infants

receiving CPAP (Fathabadi et al., 2014) we found that the first order model for

the FiO2-SpO2 relationship was valid in 37% of 2369 FiO2 adjustments. We also

found that first-order responses were more frequent among FiO2 increments than

decrements, due largely to the non-linearity of the PaO2-SpO2 relationship (Castillo

et al., 2008).

In a further study, (Fathabadi et al., 2015) we characterised the oxygenation response

by evaluating the parameters of the first order model, namely delay, time-constant

and gain, among 993 adjustments with first order responses. We found that, notwith-

standing significant intra- and inter-infant variability, for both FiO2 increments and

decrements, more severe lung dysfunction (as evidenced by higher baseline FiO2),

was associated with lower value of gain. It is important to note that while our studies

(Fathabadi et al., 2014, 2015) explained some of the variability of the SpO2 response

to FiO2 adjustments, in large part the variability remains unexplained, as does the

cause of non-first order responses.

The thesis then investigated the hypoxic events as another aspect of oxygenation

variability. Implications of this study were the potential benefits of incorporating

real-time measurements of respiratory rate and gas pressure in the circuit in auto-

mated oxygen controllers for managing hypoxic events appropriately. Brief intervals
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of elevated FiO2 could be considered in prevention/treatment of hypoxic events

following short respiratory pauses and fast SpO2 declines. We also concluded that

the influence of motion artefact on plethysmographic waveforms during hypoxia

remains significant and automated oxygen controllers should only receive SpO2

input from motion-resistant oximeters, and beyond this should implement effective

waveform validation algorithms.

The next issue studied in the thesis was the oximetry signal dropouts which can

leave an automated controller with no basis to make the adjustments based on. In

our recent study (Lim et al., 2015), since a majority of SpO2 dropouts during hypoxia

recovered in relative normoxia, we concluded that blind FiO2 adjustments when the

signal is missing would not be useful in most circumstances.

In a nutshell, although four decades have passed since the first attempts to automate

oxygenation control for preterm infants, the number of algorithms developed for

this purpose is limited, and much remains to be done. Before heading to the future

directions, the conclusions of our work are listed here:

1. The oxygenation system is highly variable within and between preterm infants,

manifested in both the variations of the SpO2 response to an FiO2 adjustment, as

well as in the rapid and repeated fluctuations in SpO2 that occur. Incorporation

of predictors of the SpO2 response (position on the dissociation curve, severity

of lung dysfunction) and of sudden hypoxia (apnoea and hypoventilation) may

enhance automated oxygen control algorithms.

2. Given the variability of the oxygenation system, adaptive and intuitive modifi-

cations to a rapidly responsive algorithm such as PID are likely to afford more

effective control of oxygenation than rule-based or robust algorithms.

3. Automated control of inspired oxygen is currently limited by the technological

shortcomings of infant monitoring. Pulse oximetry readings are an imprecise
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measure of oxygenation, particularly at high and low values of SpO2, or in the

presence of low perfusion and motion artefact. Current respiratory monitoring

devices are not designed for continuous and accurate use during automated

control. Future automated controllers will benefit from refined and additional

inputs of physiological data.

4. Safety considerations remain essential in the design and application of auto-

mated controllers, including appropriate alarms together with signal validity

and device functionality checks. Control devices must be viewed as enhancing

rather than replacing the skills of the bedside caregiver. Careful selection of

the SpO2 target range also remains crucial.

5. Increased interdisciplinary collaboration, data-sharing, and further experimen-

tal and clinical research will be needed in the effort to improve automated

oxygen control devices.

The results of the thesis and the conclusions stated above became a basis for devel-

opment of an automated FiO2 controller for preterm infants which is the ultimate

contribution of the thesis. This controller, for which a patent application has been

filed, has been clinically tested in the Neonatal/Paediatrics Intensive Care Unit of

the Royal Hobart Hospital. Development of the algorithm and clinical evaluation

of the controller in preterm infants are the areas of focus for other members of our

research team. Two papers describing features of the algorithm and outcomes of the

clinical validation respectively are submitted at the time of writing this thesis with

the candidate involved as a co-author.

7.2 Future Directions

In light of the challenges identified in this thesis, a number of directions for future

research can be identified. The largely unexplained variability of the oxygenation
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system is an area where further research is necessary. Using large datasets to develop

a simulation of oxygenation in the preterm infant will potentially help to understand

the relationship of predictor variables with response characteristics. A simulation of

the oxygenation response would also allow the validity of the assumptions under-

lying existing adaptive controllers to be tested, and the performance of algorithms

to be directly compared. The role of measureable predictors of hypoxic events as

inputs to future adaptive control algorithms clearly deserves attention.

As far as technological challenges are concerned, developments in pulse oximetry

allowing for more reliable measurements in spite of motion, would directly improve

the quality of automated control. Novel approaches such as multi-wavelength, wire-

less, reflective and in-ear pulse oximetry (Aoyagi et al., 2007; Li and Warren, 2012; Li

et al., 2012; Venema et al., 2012, 2014) could be investigated in this regard. Identifying

a practical respiratory monitoring technique for preterm infants during automated

oxygen control should be studied. The validity and precision of respiratory motion

measurement, as well as the feasibility and tolerance of long-term monitoring need

to be investigated.

Based on our findings, we propose that future automated control algorithms should

accommodate the following features. Firstly, the base algorithm must be capable

of responding to fast and frequent hypoxic events. The familiar PID algorithm

and other approaches which can make instant and continuous adjustments to FiO2

are thus preferred to rule-based algorithms making frequent but delayed stepwise

adjustments. These algorithms may then be modified or tuned intuitively to match

the requirements of infants. Secondly, the controller must be adaptive, so as to

overcome the variability in the oxygenation system that might otherwise de-stabilise

or at least degrade the performance of the controller. Parameters such as position on

the oxygen saturation curve and severity of lung dysfunction should be incorporated

in the algorithm.
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Thirdly, a controller should ideally utilise additional inputs to assist the algorithm

in identifying the cause of hypoxic events, the prediction of response variability as

well as validation of oximeter readings. An additional input for identification of

apnoea will be an important advance. A sophisticated suite of alarms and/or actions

are required, triggered by prolonged apnoea, equipment failure and respiratory

deterioration, to name but three. The device must complement but not supplant

the clinical acumen and attentiveness of the bedside staff, with the recognition that

interventions other than adjustment of FiO2 may be required.
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Chapter 8

Appendices

The research contained within Appendix A 
(section 8.1) has been published as: Omid
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FiO2-SpO2 case study." The 2013 Biomedical 
Engineering International Conference
(BMEiCON-2013), IEEE (Fathabadi et al., 2013). 
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8.2 Appendix B: Gas Exchange Impairment Mechanisms

Gas exchange impairment mechanisms are called shunting and reduced ventilation :

perfusion ratio. These two mechanisms affect the oxygenation curve describing the

relationship between arterial partial pressure of oxygen (or saturation) and oxygen

pressure in the alveoli in different ways (figure 8.4). While shunting deforms the

curve and causes a limit for the maximum level of oxygen in the blood, ventilation-

perfusion mismatch shifts the curve (Jones and Jones, 2000; Smith and Jones, 2001;

Kjaergaard et al., 2003).

Reduced ventilation:perfusion ratio causes increased levels of alveolar and arterial

CO2 and can be overcome by increasing inspired oxygen pressure. In shunting on

the other hand, a proportion of the blood bypasses ventilated areas of the lungs and

thus the resulting hypoxia can be resolved by increased inspired oxygen pressure

only up to a point where the oxygen carrying capacity of the non-shunted blood is

reached (Quine et al., 2006).

Figure 8.4: Effect of gas exchange impairment mechanisms on the relationship be-
tween oxygen saturation and partial pressure of inspired oxygen. A. Increased shunt
ratio lowers the curve in high oxygen pressures B. Reduced ventilation:perfusion
ratio shifts the curve to the right side. (De Gray et al., 1997; Kjaergaard et al., 2003;
Quine et al., 2006)
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8.3 Appendix C: Detection of hypoxic Events

For each one of the 136 recordings from 20 patients, after the first 60 seconds (12000

samples) and before the last 20 seconds (4000 samples), at every new sample of the

SpO2 signal (rounded to percentages), it was checked if the signal in that point was

equal to the preceding 1001 samples (signal was stable for > 5 s). If this condition

was satisfied for a sample, the next 5 seconds of the signal was searched for the

first point in which the value was at least 3% less than the stable period. This

point (if existent) was considered as the candidate onset point for the hypoxic event.

Then, the next 15 seconds after the onset, were looked for a minimum value of the

candidate desaturation event.

If such a condition was not met the candidate onset was not considered as a hypoxic

events. Also, if during the search for the minimum the signal became larger than the

detected minimum so far, the search for the minimum stopped to prevent detecting

the minimum of a possible neighbour hypoxic event as the minimum of the current

candidate event. At the end of this process, if there was a detected minimum meeting

the requirements after the onset, the candidate event was considered as a hypoxic

event.

The slope of the desaturation was computed between the onset and the minimum.

The search for the next hypoxic event was then continued from the minimum of the

current event. Also, if at a point the stability criteria was not met but the value of

the SpO2 signal was not smaller than its neighbouring samples in the previous and

the next 2.5 seconds (e.g. a local maximum), the search for the onset and potentially

for the minimum was performed as done for the stable periods mentioned above.
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8.3.1 Merging the Continuing Desaturations

After implementing the algorithm, it was observed that in some occasions, two

separately detected events look like a single desaturation with a bump between

them which had probably stopped them from being detected as a single event. Thus,

the algorithm was adjusted so that for each detected adjustment in each recording

(except for the first one), if its onset was located in less than 10 seconds after the

minimum point of the previous desaturation and the SpO2 at onset was less than or

equal to the minimum of the previous desaturation, the two events were merged to

form a single event.

8.3.2 Selecting Events with SpO2<80% and no Overlap

At this stage, among the detected hypoxic events those which were followed by an

episode of SpO2 <80% for 4 seconds or longer during a 30 second window were

selected for the analysis. To avoid analysis of a similar time window for more than

one event, if the episode of SpO2<80 for one event extended to after the onset of the

next desaturation, the next desaturation was excluded from the analysis. Overall,

1275 hypoxic events were detected. 40 of the 136 recordings included no detected

events with the mentioned characteristics.

8.3.3 The Graphical User Interface

Figure 8.5 depicts the graphical user interface developed for analysis of the hypoxic

events. The examples are those presented in figure 5.1.
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Figure 8.5: Graphical User Interface. (a) Hypoxia preceded by apnoea at -9.1 seconds.
(b) Hypoxia preceded by loss of pressure at -29 sec and -20 sec, and also by apnoea
at -10 sec. (c) Hypoxic event with circuit pressure loss at -6.6 sec and 2 sec, and a
disturbed plethysmographic waveform.
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