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Abstract 

Area closures have become increasingly popular in the management of marine resources 

and in helping to rebuild overexploited species, yet their effectiveness rely on a sound 

understanding of key animal behaviours such as movement and residency, which for 

many highly mobile species remains largely unknown.  The nursery areas of school 

shark (Galeorhinus galeus) have been protected throughout southern Australia since the 

1960s in an effort to re-build severely overfished stocks.  Only recently have there been 

signs of recovery in the population, however, a limited understanding of how and when 

G. galeus utilise protected nurseries makes it difficult to evaluate the role and

effectiveness of these areas in current stock re-building and management strategies. 

Throughout this thesis, acoustic telemetry and stable isotope analysis together with 

more traditional catch rate surveys are used in a series of studies to address these 

limitations in our current understanding of G. galeus early life history, by examining the 

population dynamics and ecology of this overfished species and several other 

chondrichthyan species in a protected nursery area in southeast Tasmania. 

The first seasonal longline fishing surveys since the 1990s revealed young-of-the-year 

(YOY) and juvenile G. galeus continue to occupy protected nursery areas during 

summer and autumn, as was the case in the 1990s.  However, longline catch rates 

indicated that abundances of YOY G. galeus may have increased or at least have 

remained stable since sampling in 1991-97, but are likely still below those of historic 

handline catches in 1947-52.  A re-analysis of historic research survey data indicated 

that variations in YOY abundance in this nursery reflected modelled stock declines 

through the history of the fishery, suggesting that continued monitoring of YOY 

abundances may provide an alternative to fishery dependent tools for monitoring trends 

in overall stock recovery. 

Acoustic telemetry was used to better understand ontogenetic differences in site fidelity, 

habitat preferences and seasonal use of protected nursery areas by YOY and juvenile 

(1+) G. galeus.  Both age classes showed a distinct seasonal pattern of occurrence in the 

refuge area with most departing the area during winter and only some YOY returning 



 

v 

 

the following spring.  Whilst nursery areas continue to function and provide important 

habitat for the offspring of G. galeus, evidence of YOY and juveniles emigrating from 

these areas within their first 1-2 years and the fact that few YOY (33%) return suggest 

these areas may only afford protection for a more limited amount of time than 

previously thought.  These results suggest that adopting a multi-facet management 

approach incorporating conventional fisheries management (e.g. catch limits) with area 

closures is critical to ensuring long-term conservation outcomes and recovery for this 

species. 

Integration of acoustic telemetry with a novel application of stable isotope analysis was 

used to determine movement behaviours and the separation of parturition sites within a 

nursery area.  YOY captured from an estuary historically considered an important 

pupping site for G. galeus had enriched δ13C and δ15N and were distinctly separated 

from those captured in an adjoining coastal embayment suggesting that individuals were 

born at either site and remained within their birth sites for an extended period.  This 

conclusion was supported by acoustic tracking which showed that YOY G. galeus 

remained in the estuary for 3-4 months after parturition before migrating to the coastal 

embayment. 

Stable isotope analysis and acoustic telemetry were also integrated with traditional catch 

rate surveys to examine how various chondrichthyan species (three sharks, three rays 

and one chimera) and a common teleost coexist in an important pupping area for G. 

galeus with limited predation risk.  Dietary partitioning was evident between species 

which had high spatial overlap.  In contrast species which were competing for similar 

dietary requirements often foraged in different habitats.  These results demonstrate that 

resource partitioning strategies play an important role in shaping the dynamics of shark 

nursery areas, ecological mechanisms that must be maintained in developing strategies 

to enhance the recovery of G. galeus. 

Together these studies provide a greater understanding of how nursery areas are utilised 

by G. galeus and chondrichthyans in general.  This study demonstrates the value of 

integrating multiple sampling methodologies to improve the resolution and 

understanding of key animal behaviours needed to evaluate and refine the effectiveness 
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of current area closures and enhance our efforts to conserve and promote the recovery of 

overexploited marine resources. 

School shark (Galeorhinus galeus). Copyright Fisheries Research and Development Corporation (FRDC). 
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1 

1 General Introduction 

 

1.1 Area closures as a management tool 

Overfishing has resulted in widespread decline and collapse of many global fisheries 

(Pauly et al., 1998; Hutchings, 2000; Myers and Worm, 2003).  In response, 

conventional fisheries management techniques such as catch and effort restrictions are 

often used to limit overfishing, however, spatial management in the form of area 

closures are being increasingly used to supplement these strategies (Roberts et al., 2001; 

Dinmore et al., 2003; Gell and Roberts, 2003; Gaylord et al., 2005; Thorpe et al., 2011).  

Area closures are regions where the extraction of resources, primarily by fisheries, and 

access to vulnerable habitats is restricted either temporarily, seasonally or permanently 

(Botsford et al., 2003; Sobel and Dahlgren, 2004; Gaines et al., 2010).  In their simplest 

form they provide refuges where populations of exploited species can recover and 

habitats modified by anthropogenic disturbance can regenerate (Gell and Roberts, 

2003).  Surrounding areas and subsequent fisheries may then benefit from spillover of 

juveniles and adults, and export of eggs and larvae outside the closed area boundaries 

(Roberts et al., 2001; Gell and Roberts, 2003; Hilborn et al., 2004b; Russ et al., 2004; 

Roberts et al., 2005; Roberts, 2012). 

Perhaps the most recognised use of area closures are the implementation of Marine 

Protected Areas (MPAs) (Gubbay, 1995b; Agardy, 1997; Edgar et al., 2007; Thorpe et 

al., 2011).  MPAs are funadmentaly designed to enahnce biodiversity by providing a 
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safe haven for marine life and their habitats (Gubbay, 1995a; Dahlgren et al., 2006).  

However, MPAs are probably one of the more contencious strategies used in marine 

resource management and there is still considerable debate surrounding their 

conservation merits (Agardy et al., 2003; Halpern, 2003; Hilborn et al., 2004b; Jones, 

2007; Kearney et al., 2012; Kearney et al., 2013).  Much of the uncertainity surrounding 

MPAs, and area closures in general, stems from a limited understanding of how key 

species utilise these areas and how these systems function (Agardy, 2000).  Prior to 

establishing an area closure it is crucial to understand key animal behaviours such as 

movement and species interactions to properly evaluate and appreciate the benefits that 

areas closures will derive.  However, due to the urgent need to protect vulnerable 

species already suffering from over-exploitation many area closures are implemented 

withouout any firm knowledge of these behaviours, thus limiting our understanding of 

how closed areas will function and benefit those species that they are designed to 

protect (Roberts, 2000; Agardy et al., 2003; Heupel and Simpfendorfer, 2005b; Lucifora 

et al., 2011).  

Until recently, the difficulties of obtaining data on key behaviours for aquatic 

organisms, particulalry those that are highly mobile, has been a major reason for the 

paucity of information available when developing spatial management options.  

Traditionally researchers have relied on sampling techniques such as abundance surveys 

and tag-recapture experiments to examine behaviours such as movement, habitat 

selection and species interactions (McFarlane et al., 1990; Nichols, 1992; Kohler and 

Turner, 2001).  Whilst these techniques are still valuable in providing some 

understanding of these key behaviours and for comparing with historical records, they 

generally lack the resoultion needed to design effective area closures (Sibert and 

Nielsen, 2001; Nielsen et al., 2009).  For example traditional tag-recapture data provide 

only two points in an animals life history, the point of tagging and release and the point 

of re-capture; it does not provide any detail of behaviours that occur in between tagging 

and re-capture.  However, advancements in modern electronic tracking tools such as 

acoustic telemetry and trophic-analytical methods such as stable isotope analysis, are 

rapidly overcoming these limitations to advance our undertanding of animal behaviour, 

movements and ecosystem dynamics, needed to understand the effectiveness of spatial 

area closures (e.g. DeAngelis et al., 2008; Kinney et al., 2011; Speed et al., 2011). 
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Whilst understanding key animal behaviours is essential to establishing area closures, of 

equal importance is a need to monitor closed areas over time in order to evaluate their 

perfomance and continued ability to function as designed (Alder et al., 2002; Pomeroy 

et al., 2004; Gerber et al., 2005; Pomeroy et al., 2005).  Simply restricting access to an 

area does not guarantee it will be immune from environmental and anthropogenic 

disturbances and there is growing evidence that these disturbances are altering the 

function and conservation benefits afforded by many area closures (Rogers and Beets, 

2001; Jones et al., 2004; Williamson et al., 2014).  Urban development, alteration of 

catchments, and sewage and waste disposal, are emerging as some of the greatest 

anthropogenic threats to coastal areas, including those managed by area closures 

(Kappel, 2005; Halpern et al., 2007).  Monitoring is therefore critical to assess the 

effectiveness of area closures and allow prompt adjustment of management strategies to 

maintain their functional role (Gerber et al., 2005). 

1.2 Shark nursery area closures 

In the marine realm, one of the broad criticisms of area closures is that they typically 

only provide the greatest benefits to species which have high site fidelity and remain 

within the closed area, such as reef fishes (Gell and Roberts, 2003; Gerber et al., 2003; 

Hilborn et al., 2004b).  For more mobile and highly migratory species it is generally 

considered that in order to protect these species using area closures, vast areas of 

coastline would need to be protected in order to afford effective protection, making 

conservation unfeasible (Kramer and Chapman, 1999a; Roberts, 2000; Baum et al., 

2003; Gell and Roberts, 2003; Shipp, 2003; Heupel and Simpfendorfer, 2005b; Heupel 

et al., 2007; Kinney and Simpfendorfer, 2009; Grüss et al., 2011).  Therefore spatial 

management of mobile marine species has mostly concentrated on protecting more 

targeted, discrete areas and habitats used during early life history, such as nursery areas 

(Roberts, 2000; Heupel and Simpfendorfer, 2005b).  

Sharks are among some of the more highly mobile species in our oceans, however, 

many species utilise shallow coastal embayments and estuaries as nursery areas where 

their offspring spend the first few months to years of their lives (Castro, 1993; Bethea et 
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al., 2007; Heupel et al., 2007; Skomal, 2007b).  Protection of nursery areas has 

therefore been a common strategy that has been employed to protect the early life stages 

of sharks (see Shotton, 1999) as they are generally thought to be essential for the long 

term sustainability of shark populations (Lack and Group, 2004; Fowler et al., 2005; 

Bethea et al., 2007).  However, because of their high mobility, it is recognised that 

nursery closures may have little benefit in the absence of conventional fisheries 

management strategies that protect sharks at vulnerable life stages and limit fishing 

mortality outside of closed areas (Kinney and Simpfendorfer, 2009).  Nevertheless, 

careful placement of small area closures has been demonstrated to benefit some mobile 

species such as teleosts (Kerwath et al., 2009; Claudet et al., 2010) and there is 

emerging evidence that they may benefit some shark species (Knip et al., 2012).  

Therefore studies are required to test the role and effectiveness of nursery areas in the 

overall management of shark populations based on understanding how and when sharks 

utilise such protected areas (Heupel and Simpfendorfer, 2005b). 

Shark nursery areas serve many functions, such as providing important habitats for 

reproduction (Castro, 1993), foraging (Bethea et al., 2004; Barnett and Semmens, 

2012), and refuge from predation (Heupel and Hueter, 2002; Heupel and Simpfendorfer, 

2005a; Wetherbee et al., 2007).  Therefore compiling a sound understanding of an 

animals ecology, movement and habitat is essential for optimising the placment and 

effectiveness of closed nursery areas for mobile species (Kramer and Chapman, 1999b; 

Grüss et al., 2011).  However, like many area closures the implementation of shark 

nursery protection is often done with little ecological understanding of these functions 

and are often based on the capture of only a few juveniles (Heupel et al., 2007).  Heupel 

et al. (2007) recommends that a shark nursery area should demonstrate that newborn or 

juvenile sharks (1) are more abundant than in other areas where the species is found, (2) 

remain within the area for extended periods (i.e. weeks or months) and (3) repeatedly 

used as a pupping area across years.  Yet only recently have studies begun to gather 

empirical data needed to understand the functional role of nurseries prior to their 

establishment as protected areas (e.g. Barnett et al., 2012).  Nevertheless, gathering 

these data after establishment can still provide management with useful guidance on 

how best to manipulate current designs to improve area closure effectiveness, 

particularly as sampling techniques advance and improve our understanding of key 
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animal behaviours.  Without these data the effectiveness of nursery closures will be 

severely compromised if they fail to encompass a large part of a sharks home range or 

functional habitat that is important for the survival of that species’ (Heupel et al., 2007).  

Understanding these behaviours also enables nurseries to be re-defined in accordance 

with more appropriate criteria, such as proposed by Heupel et al. (2007), which will 

assist management in prioritising conservation efforts directed towards protecting areas 

of greatest importance. 

Shark nurseries can host multiple shark species and are often characterised as being 

shallow, coastal areas where young sharks have access to ample food resources and are 

less vulnerable to predation (Springer, 1967; Castro, 1987; 1993; Morrissey and Gruber, 

1993; Simpfendorfer and Milward, 1993).  However, evidence of slow growth and high 

mortality among juvenile sharks in nurseries, partly attributed to limited food resources 

and high rates of predation (Bush and Holland, 2002; Heupel and Simpfendorfer, 2002; 

Duncan and Holland, 2006), indicate that traditional nursery area paradigms may no 

longer be applicable in all situations (Heupel et al., 2007).  Similarly, several studies 

have demonstrated that dietary (e.g. Bethea et al., 2004; Vaudo and Heithaus, 2011) and 

habitat partitioning (e.g. White and Potter, 2004; DeAngelis et al., 2008) play a critical 

role in enabling multiple species to coexist in nursery areas with a view that these 

behaviours may be adaption’s in response to limited resources (Bethea et al., 2004; 

Kinney et al., 2011).  However, most of these studies have examined dietary and habitat 

partitioning in isolation, and there is limited published evidence of these behaviours 

occurring in unison (e.g. Speed et al., 2012), as a response to predation risk (e.g. 

Papastamatiou et al., 2006), or between other competitor species, including teleosts (e.g. 

Kinney et al., 2011).  Knowledge of how multiple species interact and respond to 

competition and predation is essential to understanding how ecosystems are structured 

and function (Holt, 1977; Sih et al., 1985; Cherrett and Bradshaw, 1989).  An 

understanding of these ecosystem dynamics can then be used to make more informed 

decisions regarding the development and implementation of effective ecosystem-based 

management strategies and for assessing how animals may respond to anthropogenic 

disturbance and disrupted ecosystem balance (Walters and Kitchell, 2001; Dill et al., 

2003; Baskett et al., 2006). 
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1.3 Main study species: school shark (Galeorhinus galeus) 

School shark (Galeorhinus galeus) are members of the family Triakidae, commonly 

referred to as ‘houndsharks’.  Galeorhinus galeus are widely distributed throughout 

temperate waters of the world and are generally found in small schools of 

predominantly the one sex and size class (Last and Stevens, 2009).  Galeorhinus galeus 

can reach up to 195 cm in length and live for up to 60 years with maturity typically 

occurring at about four years for males and eight years for females (Last and Stevens, 

2009).  During the summer and autumn months pregnant females migrate into shallow 

coastal embayment’s where they give birth to litters of around 30 pups every three years 

after a gestation period of 12-months (Olsen, 1984; Last and Stevens, 2009). 

Galeorhinus galeus have been exploited throughout their distribution since the 1920s 

and once formed the bulk of the market for shark meat, more commonly known as 

‘flake’, however, intense fishing pressure has resulted in significant stock declines, 

particularly in Australia (Walker et al., 2006).  In Australia the G. galeus comprised the 

bulk of the Southern and Eastern Scalefish and Shark Fishery (SESSF) up until the early 

1950s when the fishery experienced significant catch declines (Olsen, 1959) (Fig. 1.1; 

see Table 1.1 for a historical summary of the SESSF).  In response to declining stocks 

eleven bays and estuaries around Tasmania (Fig. 1.2) identified as nurseries for the 

species were proclaimed as Shark Refuge Areas (SRAs) in 1962, and the taking of 

sharks from these areas prohibited to reduce fishing mortality on juvenile and pregnant 

G. galeus, in an attempt to rebuild the population (Walker, 1999; Kinney and 

Simpfendorfer, 2009).  Recreational and limited commercial fishing were still permitted 

in SRAs, however, sharks were not to be targeted or retained; regulations which remain 

current today (DPIPWE, 2013).  Furthermore, several Victorian estuaries also identified 

as nurseries have been protected through the closure in 1988 of Victorian coastal waters, 

offshore to three nautical miles, to commercial shark fishing (Walker, 1999). 
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Figure 1.1 Total catch of G. galeus (solid line) and gummy shark (Mustelius antarcticus) (dotted line) 
from 1927 to 2013 in the Southern and Eastern Shark Fishery.  (Source: Australian Fisheries Management 
Authority) 

Despite protection of nurseries and closure of fishing grounds, the fishery had showed 

no signs of recovery and juvenile G. galeus were either absent from or occurred in 

significantly lower numbers in many of these protected areas in the late 1990s compared 

with the 1950s (CSIRO, 1993; Stevens and West, 1997).  Continued overfishing and a 

limited reduction in fishing effort throughout the 1970s and 1980s was considered the 

main reason for the population collapse and failed recovery, however, it has been 

suggested that habitat degradation, particularly the loss of seagrass meadows in 

Victorian nursery areas and a reduction in the abundance of YOY G. galeus occurring 

in these areas may have also contributed to these declines (Stevens and West, 1997; 

AFMA, 2009).  Therefore the functional role of some of these nurseries has been 

fundamentally questioned (McLoughlin, 2008; AFMA, 2009), in particular do known 

nursery areas continue to be significant to the population or has there been a shift in the 

functionality and relative importance of particular nurseries as a result of environmental 

and fishing pressures?  However, interpreting the nature of these potential changes in 

nursery area function is difficult without an understanding of current population 

dynamics within nursery areas and the animal behaviours which contribute to their use 

and how they may compare historically. 
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Figure 1.2 Location of Shark Refuge Areas (SRAs) in Tasmania.  Map reproduced with permission of the 
Department of Primary Industries Parks Water and Environment, Tasmania. 

Since the early 2000s further fishing restrictions, gear modifications and fishing ground 

closures have been implemented in an effort to reduce fishery captures (McLoughlin, 

2008) and a School Shark Rebuilding Strategy (SSRS) has been in place since 2008 to 

help promote stock recovery (AFMA, 2009) (see Table 1.1 for a summary of 

management changes).  Recent stock assessments indicate that G. galeus populations in 

southern Australia may have stabilised at around 9-14% of virgin biomass and there is 

anecdotal evidence that suggest they are becoming increasingly common in fishery 

catches as a non-target species in the SESSF (AFMA, 2009; SharkRAG, 2010).  Whilst 

it is unclear as to the extent that the protection of nurseries have contributed to this 

stabilisation, identifying the full extent of other areas used as nursery areas that may not 

currently be identified and continuing to protect established nurseries by reducing 

pressures such as environmental degradation, has been recognised as the first stage in 

the SSRS (AFMA, 2009).  Yet, there have been no formal assessments of SRAs since 

the 1990s to address questions regarding their current functionality as nursery habitat 

for G. galeus or if the functionality of particular nurseries has altered in response to the 

degradation and deterioration of some nurseries such as those in Victoria.  A paucity of 
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this information makes it difficult to evaluate the current role of nursery area closures in 

the overall management and conservation of G. galeus. 

Moreover, despite the high importance placed on shark refuge areas for the protection of 

G. galeus these areas also support a diversity of chondrichthyan and teleost species 

(Stevens and West, 1997).  However, much of this earlier work on shark nursery areas 

in southeast Australia were based mainly on research fishing to determine indices of 

abundance and conventional  tagging surveys to determine movement (Olsen, 1954; 

Stevens and West, 1997) providing limited understanding of how G. galeus and other 

chondrichthyans utilise and interact within these nurseries.  Recent studies have 

demonstrated that the dominant apex predator, the broadnose sevengill shark 

(Notorynchus cepedianus) have complex predator-prey interactions with mesopredators 

(i.e. mid-level predators) including G. galeus in these areas and may be largely 

responsible for determining nursery area dynamics (Barnett et al., 2010a; Barnett et al., 

2010b; Barnett et al., 2010c; Barnett et al., 2011; Barnett and Semmens, 2012).  Yet 

these studies also conclude by emphasising the need to better understand the role 

mesopredators play in these systems particularly in areas historically important to G. 

galeus, by better understanding their abundance and behaviour. 
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Table 1.1 Historical summary of major fishery and management events relating to G. galeus in the 
Southern and Eastern Shark Fishery (Walker, 1999; Stobutzki et al., 2010; Huveneers et al., 2013). 

Year Description 

1927 Shark fishing first recorded in southern Australia. 

1940s 

Fishery expands due to demand for shark liver oil (fishery targets mainly pregnant 

adults and juveniles found in inshore areas such as Port Phillip Bay, Victoria).  

Introduction of first minimum legal size limits. 

1950s 

Fishery plateaus as demand for shark liver oil declines.  Fishery shifts from inshore to 

offshore waters as catches decline in inshore areas by up to 50%.  Nursery areas are 

identified (Olsen, 1954) and concerns rise over declining G. galeus CPUE in the 

fishery.  Seasonal closures are introduced to protect migrating pregnant females. 

1954 
Closure of Tasmanian inshore waters to commercial shark fishing (becoming formally 

recognised as Shark Refuge Areas in 1962). 

1960s 
Demand for shark meat increases which coincides with the introduction of gillnets into 

the fishery.  Fishery catches peak at 2556 tonnes in 1969. 

1970s 

Concern over high mercury levels in shark see the banning of large G. galeus from sale 

from 1972 to 1985.  Fishery shifts to targeting predominantly M. antarcticus and a 

minimum legal gillnet mesh size of 150 mm is introduced in 1975. 

1977 First G. galeus stock assessment conducted. 

1980s 

Fishery assessed as overfished.  Fishery remains open access until 1984, after which a 

fishing boat licence endorsement was required to access the fishery.  Mercury ban lifted 

and catches reach 2090 tonnes in 1986. 

1988 

Southern Shark Fishery management plan (1988) introduced creating a limited entry 

gillnet fishery, in an attempt to reduce fishing effort.  Targeted shark fishing in all 

Victorian coastal waters out to 3 nm is banned to protect G. galeus pupping grounds. 

1990s 

Stevens and West (1997) re-visit nursery areas examined by Olsen (1954) to discover 

neonate and juvenile G. galeus were either absent from or found in significantly lower 

abundances. 

1990 to 1993 
Fishery assessed as overfished and in danger of collapse.  Fishing effort is reduced by 

decreasing net units from 6000 m to 4200 m. 

1997 
An upper mesh size limit of 165 mm was introduced to reduce capture of large adult G. 

galeus. 

2000 to 2001 

Responsibility of management of G. galeus is transferred from States to the 

Commonwealth.  Introduction of Individual Transferable Quotas (ITQs) effectively 

stopping the targeted fishing for G. galeus.  A Total Allowable Catch (TAC) limit is set 

at 434 tonnes. 

2007 

Galeorhinus galeus stock size estimated at between 9-14 % of original pup production 

levels (McLoughlin, 2008).  Regional area closures implemented to prevent fishing for 

sharks in areas deeper than 130-183 m. 

2008 
The School Shark Rebuilding Strategy introduced with the objective of rebuilding 

stocks to between 20% and 40% within biologically reasonable timeframes. 

2009 
Galeorhinus galeus listed as conservation dependant under the Environment Protection 

and Biodiversity Conservation Act 1999.   

2012 Galeorhinus galeus TAC set at 150 tonnes. 
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1.4 Thesis objectives and structure 

The overall aim of this study was to better understand how G. galeus and other 

chondrichthyans utilise designated SRAs.  The study has two major objectives which 

are 1) to determine the historical changes in the population structure and abundance of 

G. galeus occurring in shark refuge areas, and 2) to determine the spatial and temporal 

use of shark refuge areas by G. galeus and co-occurring chondrichthyans.  Through an 

improved understanding of chondrichthyan movement behaviours it is anticipated that 

the role of SRAs will be better understood and refined where necessary to enhance their 

effectiveness in the recovery and conservation of G. galeus.  Furthermore, by 

establishing spatial and temporal movement behaviours, habitat use and feeding 

ecology, this study will further our understanding of chondrichthyans and their role in 

driving the ecosystem dynamics of these inshore areas.  To achieve these objectives a 

combination of conventional and modern survey techniques have been applied in four 

major studies and corresponding data chapters, with an overall discussion linking 

Chapters 2-5 together (Chapter 6).  Chapters have been prepared as standalone 

manuscripts for publication, all of which are currently under peer-review. 

Determining the abundance and dynamics of ecological communities following periods 

of anthropogenic and environmental change is critical to assessing and improving the 

effectiveness of conservation and management strategies such as area closures.  Chapter 

(2) re-examines the abundance and population structure of G. galeus in a shark refuge 

area using baited longline fishing to determine if these areas still host G. galeus 

populations.  Recent (2012-14) young-of-the-year (YOY) longline catches are compared 

with similar surveys conducted in years 1991-97 to determine changes in relative 

abundance of G. galeus.  This chapter also compares historical (1947-53, 1991-97 and 

2012-14) YOY G. galeus catches in nursery areas with modelled stock productivity 

during these same time periods to determine the suitability of adopting fishery 

independent catch rate surveys to monitor stock recovery. 

Understanding how animals use particular areas and the habitats within is essential to 

evaluating the effectiveness of current area closures.  Chapter 3 examines the movement 
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behaviours of YOY and juvenile G. galeus to better understand how they are utilising 

these areas based on residency times.  Acoustic telemetry is used to examine the spatial 

and temporal movement behaviours of G. galeus and determine the utilisation and 

importance of different habitats within the SRA.  These data provide empirical evidence 

needed to assess if present area closure management strategies are providing adequate 

protection for G. galeus during early life history. 

Stable isotope analysis has emerged as a viable tool for delineating the previous 

movement behaviours of animals by examining assimilated material in their tissues to 

trace back to where they may have foraged.  Integrating stable isotope analysis with 

acoustic telemetry in Chapter 4 provides a greater understanding of the past foraging 

behaviours and subsequent movements of YOY G. galeus within a shark nursery.  

Together with dietary data these movement behaviours are then used to further 

understand the functional role of these nursery areas by inferring the distribution of 

birthing sites for G. galeus. 

Competition and predation play a significant role in determining the structure and 

function of ecosystems.  In Chapter 5, these behaviours were examined using a 

combination of stable isotope analysis to determine dietary overlap and acoustic 

telemetry to examine spatial overlap of chondrichthyans and a dominant teleost that 

occupy an important birthing site identified for G. galeus (Chapter 4).  It examines the 

role of resource partitioning between chondrichthyans to enable multiple species to 

coexist in similar areas and how this may influence the recovery in G. galeus 

populations. 

The thesis concludes with a general discussion (Chapter 6) which provides an overall 

summary of findings and discusses implications for fisheries management.  It discusses 

the importance of shark nurseries for the recovery of G. galeus and outlines how the 

findings of this study can be used to make more informed and robust management 

decisions in the application of area closures for the conservation of sharks. 
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2.1 Abstract 

Determining the abundance and dynamics of ecological communities following periods 

of anthropogenic and environmental change is critical to assessing and improving the 

effectiveness of conservation and management strategies.  Several coastal waters of 

south-east Tasmania have been proclaimed as shark refuge areas (SRAs) after 

significant overfishing and catch declines of school shark (Galeorhinus galeus) in 

Australia since the 1940s.  These areas have provided protection for juvenile G. galeus 

in conjunction with fisheries management changes.  This study compared recent (2012-

2014) research longline catch data with historical research catch records (1947-1952 

and 1991-1997) to determine whether young-of-the year (YOY) and juvenile G. galeus 

continue to utilise these nursery areas and whether changes in abundance reflected 

modelled stock production through time.  Longline catch rates indicated that 

abundances of YOY G. galeus may have increased or at least have remained stable 

since sampling in 1991-97, but are likely still below those of historic handline catches in 

1947-52.  Catch records from 1947-52 were significantly correlated with modelled 

declines in stocks at the time, however, recent longline catch rates showed weak 

correlation with the model possibly due to depleted stock levels or a period of stock re-

building and stabilisation.  In the absence of reliable fishery dependant catch data, given 

the initially promising correlations with modelled stock size, ongoing YOY catch 

sampling in these areas may provide a viable fishery independent tool for measuring the 

recovery of over exploited species.  
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2.2 Introduction  

Overfishing has been identified as the single greatest cause of ecological change in 

marine communities, resulting in widespread collapse of many global fisheries (Jackson 

et al., 2001).  Fisheries management strategies such as catch and effort restrictions and 

in more recent years, area closures, are typically implemented to reduce overfishing and 

help rebuild overfished stocks (Botsford et al., 1997; Hilborn et al., 2004a; Worm et al., 

2009).  Therefore knowledge of how stocks respond to these strategies is essential for 

evaluating and refining their effectiveness and achieving conservation outcomes 

(Hilborn et al., 1993; Walters and Maguire, 1996; Punt and Hilborn, 1997). 

Monitoring fishery catch and effort data is typically used as an indicator of stock size 

(Maunder and Punt, 2004), however, long-term data sets are often incomplete (Mesnil et 

al., 2009) and their reliability is variable due to changes in fisher behaviour and fishing 

techniques (Hilborn and Walters, 1992; Chen et al., 2009).  Although complex catch 

standardisations can account for these variations (Bishop, 2006), indices of stock size 

should ideally be based on fishery independent data (Maunder and Punt, 2004).  

Furthermore, collecting fishery independent data from areas closed to extractive fishing 

may also contribute to a better understanding of stock size because it provides a control 

baseline against which exploited populations can be compared (Hilborn et al., 2004b). 

School shark (Galeorhinus galeus) are widespread throughout the temperate waters of 

the world and historical overfishing has resulted in significant stock declines, 

particularly in Australia during the 1940s (Walker, 1999).  In response to these declines, 

techniques including fishing gear restrictions and catch quotas have been implemented 

progressively and nursery areas proclaimed as Shark Refuge Areas (SRAs), where the 

taking of sharks was prohibited.  Yet by the 1990s follow up surveys of several SRAs 

established that newborn G. galeus were either absent or present in significantly lower 

numbers in some SRAs when compared to the 1940s (Stevens and West, 1997).  

Continued overfishing of the adult stock was considered the most likely cause, although 

degradation of nursery habitats, possibly from coastal development and pollution, may 

have also contributed to the declines, particularly in Victorian waters (AFMA, 2009).  

Further gear restrictions and catch quotas were implemented and recent stock 
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assessment modelling suggests there has been some stabilization in stocks (AFMA, 

2009).  Along with managing catches, maintenance of SRAs is considered essential to 

ongoing stock rebuilding strategies for G. galeus (AFMA, 2009).  There have been no 

repeat surveys of these SRAs since the 1990’s to assess whether these areas are still 

being utilised by G. galeus and remain functional as nursery areas.   

Galeorhinus galeus are currently managed as incidental bycatch in the Australian 

Southern and Eastern Scalefish and Shark Fishery (SESSF) with a total allowable catch 

(TAC) of between 200 – 225 tonnes/annum, with current fishing effort directed 

predominantly at gummy shark (Mustelius antarcticus) (AFMA, 2009).  As a 

consequence, the use of fishery catch per unit effort (CPUE) is no longer considered 

appropriate as an indicator for G. galeus stock assessment modelling which has lead to 

several questions about the suitability of the model (Huveneers et al., 2013).  Similarly, 

the relationship between G. galeus young-of-the-year (YOY) abundance in SRAs as an 

indicator of stock production (or abundance) remain largely unknown.  Fishery 

independent data such as the relative abundance of newborn G. galeus in SRAs may 

provide a proxy for monitoring trends in adult stock abundance.  The objectives of this 

study were to 1) determine the temporal and spatial patterns of abundance and size 

structure of G. galeus to assess the current functionality of a historically important shark 

nursery area, and 2) assess the viability of using YOY abundances in nurseries as an 

indicator of G. galeus stock abundance.  

2.3 Materials and methods 

2.3.1 Study site 

This study was conducted in Upper Pitt Water (UPW) and Frederick Henry Bay (FHB) 

in south east Tasmania, Australia (Fig. 2.1).  UPW is a shallow (~4 m average depth) 

estuary, comprised of mostly intertidal sand flats and a deep central channel (~8 m) with 

a surface area of approximately 20.7 km2 (Fig. 2.1).  UPW receives freshwater input 

from the Coal River after which it drains into Lower Pitt Water (LPW) via a manmade 

road causeway where it eventually enters into the deeper waters (10 – 30 m) of 

Frederick Henry and Storm Bay.  Pitt Water and FHB (FHB) are managed by the 
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Tasmanian State Government as SRAs, which prohibits retention of any chondrichthyan 

species, apart from a limited take of elephant fish (Callorhinchus milii).  

 
 

Figure 2.1 Map of study area in south east Tasmania showing the longline sampling sites (�).  Dashed 
line represents the boundary of the shark refuge area. 

2.3.2 2012 – 2014 animal collection 

Sampling was undertaken seasonally between January 2012 and April 2014 using 

bottom set baited longlines (n = 28 shots).  Longlines consisted of a 210 m, 6 mm lead 

core rope to which 50 stainless steel wire snoods with hooks (7x7 stainless steel wire, 

160 lb breaking strain, Mustard #8260 size 5/0 hook) were attached at 4 m intervals 

using 100 mm swivel shark snap clips.  Hooks were baited with squid.  Longlines were 

set at four fixed locations in both UPW and FHB (Fig. 2.1) between 0700 and 0730 

hours and were hauled between 0800 and 1000 hours.  Lines were typically deployed 

for 1 – 2 hours.  Captured sharks were identified, measured for total length (TL) to the 

nearest cm, sexed and released. 
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2.3.3 Historical and additional fishery data 

Comparison of relative abundance between recent (i.e. 2012-2014) and historical 

periods was undertaken using available historical raw catch data collected by CSIRO 

between 1947 and 1956, and 1991 and 1997.  Data collected during the 1947-56 period 

consisted of daily handline catches of G. galeus in upper and lower Pitt Water recorded 

during an intensive tagging programme of shark nurseries around Tasmania which have 

been published elsewhere (Olsen, 1954; Olsen, 1984).  Shark nursery areas in southern 

Australia, including Pitt Water, were re-sampled between 1991 and 1997 to investigate 

changes in the abundance of G. galeus and M. antarcticus (see Stevens and West, 1997).  

Sampling was based on seasonal longline fishing in UPW (except winter and spring) (n 

= 77 shots) at sites nearby to those sampled in 2012-2014.  Longlines were of the 

similar configuration to those used in the current study (i.e. bottom set using 50 hooks), 

the main differences were the snoods which were made from 27 kg breaking strain 

monofilament line, and lines were deployed overnight with soak times ranging between 

10-18 hours.  

To determine if there was any relationship between G. galeus YOY abundance in the 

shark refuges and estimated stock pup production based on the population assessment 

model (Punt et al., 2000a; Thompson and Punt, 2008; Thompson, 2012), catches from 

2012-14 and historical catch records from the 1947-56 and 1991-97 sampling periods 

were compared with pup production data for the same periods.  Pup production is used 

as a proxy for spawning biomass in the model (i.e. recruitment into the fishery) 

(Huveneers et al., 2013).  The number of pups modelled is dependent on the estimated 

number of mature animals, the proportion of pregnant adult females and the average 

fecundity of pregnant individuals (see Punt et al., 2000a; Punt et al., 2000b; Thompson 

and Punt, 2008) for detailed explanation of model and parameters).  Data is presented as 

pup depletion (pup production divided by pristine pup production in the year 1927) 

(Thompson, 2012).  Beyond the year 2008, the model no longer incorporates fishery 

CPUE data therefore pup production has been projected up until 2014 using a total 

catch of 225 t to reflect an average G. galeus bycatch TAC set at 215 t for the fishery 

since 2008.  Size composition and modal progression data from the study area suggest 

that G. galeus >500 mm TL caught during summer months (December – February) are 
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typically juveniles (1+) (Stevens and West, 1997).  For the purposes of this study 

individuals <500 mm TL were defined as YOY (or pups) (0+). 

2.3.4 Data analysis 

Recent and historical shark abundance data were pooled into their respective areas 

(UPW and FHB), and comparisons made between the catch per unit effort (CPUE), 

defined as the number of sharks captured per hook hour for longlining, while handline 

catch data for years 1948-53 was analysed as the number of sharks captured per fishing 

day.  Each longline site within an area was treated as a replicate for analysis.  Data 

collected in 1991-97 and 2012-14 were analysed separately to examine the effects of 

year, season and area on CPUE within each sampling period.  Data for each period 

were, however, pooled for between period comparisons.  Comparisons between 1991-97 

and 2012-14 longline data have been performed using both standardised (sharks × hook 

hr-1) and non-standardised longline data, defined as the number of sharks captured per 

line of 50 hooks, to account for the influence of soak times that differed between 

periods (i.e. 1-2 vs. 10-18 hours) on the magnitude of variation in catches between 

periods.  Since longline fishing was not undertaken in FHB during 1991-97, between-

period comparisons are limited to UPW. 

Kruskal-Wallis non parametric tests were used to determine the effects of year, season 

and site on CPUE between and within sampling periods. Analysis of variance 

(ANOVA) was used to compare size distributions between sites.  Generalised linear 

models (GLM) were used to examine relationships between estimated CPUE of G. 

galeus YOY captured in Pitt Water and modelled pup depletion. 

2.4 Results 

2.4.1 UPW vs. FHB catch rates 

Standardised CPUE (sharks × hook hr-1) for YOY and juvenile G. galeus was nine times 

higher in 2012-14 compared to 1991-97 in UPW (Table 2.1; Fig. 2.2).  Similarly, non-

standardised CPUE (sharks × 50 hooks-1) was significantly higher for juveniles, 

however, only 0.44 times higher but not significantly different (Kruskal-Wallis, χ
2 = 
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5.12, d.f. = 1, p = 0.02) for YOY in 2012-14 (Table 2.1; Fig. 2.2).  There were no 

significant differences in CPUE between years within each of the two sampling periods, 

including the peak seasons (summer/autumn), for both size classes, with CPUE being 

highly variable between years (Table 2.2; Fig. 2.2).  There were no seasonal differences 

in CPUE in 1991-97 (data for summer and autumn only), however, there were 

significant differences between seasons in 2012-14 for YOY and juveniles in UPW 

which was mostly attributed to nil catches during winter and spring (Table 2.2; Fig. 

2.2).   

In FHB there were no significant differences in annual catch rates for YOY or juveniles 

between 2012 and 2014 (Kruskal-Wallis, χ2 = 1.29 and 1.66, d.f. = 2, p = 0.52 and 0.43, 

respectively) (Fig. 2.2).  There were no significant seasonal differences in YOY CPUE 

(Kruskal-Wallis, χ
2 = 8.27, d.f. = 3, p = 0.05), however, juvenile CPUE varied 

seasonally (Kruskal-Wallis, χ2 = 11.97, d.f. = 3, p < 0.01), mainly influenced by low 

catch rates during autumn.  No YOY or juveniles were captured during winter and 

spring (Fig. 2.2).  

In 2012-14 catch rates of YOY were significantly higher in UPW compared to FHB 

whereas the catch rates for juveniles were comparable between areas (Table 2.1; Fig. 

2.2). 
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Table 2.1 Kruskal-Wallis test results (χ2) for YOY and juvenile G. galeus captured in UPW comparing CPUE for the 
combined overall (i.e. all seasons) and peak time of occurrence (i.e. summer and autumn) between sampling periods.  Both 
calculation methods for CPUE are included.  CV = coefficient of variation.  Significant differences are denoted by bold p-
values. 

Method Size Period CPUE (± s.e.) CV 
Overall   Peak 

d.f. χ
2
 p   d.f. χ

2
 p 

S
ha

rk
 ×

 h
oo

k 
 h

r-1
 

YOY 
1991-97 0.004 (<0.001) 1.31 

1 17.77 <0.01 
 1 38.69 <0.01 

2012-14 0.041 (<0.01) 1.25 
 

Juvenile 
1991-97 0.000075 (<0.001) 5.47 

1 10.32 <0.01  1 14.36 <0.01 
2012-14 0.0052 (<0.01) 1.99 

 

 

           

S
ha

rk
 ×

 5
0 

 h
oo

ks
-1

 YOY 
1991-97 3.01 (0.02) 1.34 

1 0.73 0.39  1 5.12 0.02 
2012-14 4.35 (0.07) 0.99 

 

Juvenile 
1991-97 0.05 (0.001) 5.31 

1 9.71 <0.01 
 1 13.55 13.55 

2012-14 0.43 (0.12) 1.73   
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Figure 2.2 Seasonal CPUE (individuals per hook hour) of YOY and juvenile (J) G. galeus for UPW and 
FHB.  Box plots show the median (line within boxes), interquartile ranges (boxes), 10th and 90th 
percentiles (whiskers), outliers (○), and mean (●) CPUE for each season.  * not sampled.  P = spring; S = 
summer; A = autumn; W = winter. 

 

Table 2.2 Kruskal-Wallis test results (χ2) for YOY and juvenile G. galeus 1) captured in UPW comparing 
CPUE (shark × hook hr-1) between years and seasons within each time period, and 2) overall differences 
in catch rates between the two sites in 2012-14.  Significant differences are denoted by bold p-values. 

Size Period 
Years   Seasons   UPW v FHB 2012-14 

d.f. χ
2 p   d.f. χ

2 p   d.f. χ
2 p 

YOY 
1991-97 5 12.91 0.02 

 
2 1.15 0.56 

 1 5.57 <0.01 
2012-14 2 7.74 0.02 

 
3 23.92 <0.01 

 

Juvenile 
1991-97 5 2.88 0.72 

 
2 0.73 0.69 

 1 1.65 0.19 
2012-14 2 7.69 0.02   3 14.09 <0.01   

2.4.2 Size distribution 

The size distributions of G. galeus were typically skewed towards smaller individuals in 

UPW, representing mostly YOY, whereas FHB distributions were bi-modal and skewed 
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towards juveniles (Fig. 2.3).  Overall G. galeus were significantly larger in FHB (mean 

TL = 491 ± 19.2 mm) compared to UPW (mean TL = 396 ± 2.1 mm) (ANOVA: F1, 609 

= 109.99, p < 0.01).  There was a distinct modal progression from summer to autumn in 

both regions, with increased proportions of neonatal size classes and fewer juveniles 

occurring in FHB during autumn (Fig. 2.3). 

 

Figure 2.3 Size frequency of G. galeus captured by longline in Upper Pitt Water (UPW) (black) and 
Frederick Henry Bay (FHB) (grey) in summer and autumn during 2012-14 sampling.  Sample sizes are 
also given. 
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2.4.3 Historical pup production 

Modelled pup production declined between the 1950s and late 1990s to less than 20% 

of pre-fishing levels, but is predicted to have stabilised by 2014 and is projected to 

increase slowly at current harvest levels (i.e. 200-225 t) beyond 2014 (Fig. 2.4d).  YOY 

handline catch rates in Pitt Water between 1948 and 1953 were significantly correlated 

with a 9% decline in pup production (Depletion = 0.83 to 0.75) during that period (F1, 4 

= 45.69, p < 0.01) (Fig. 2.4a).  By contrast, in UPW there was no significant 

relationship between pup production and YOY longline catches between 1993 and 1997 

(24% decline; 0.18 to 0.14: F1, 4 = 1.08, p = 0.38) (Fig. 2.4b) or between 2012 and 2014 

(0.6% decline; 0.122 to 0.121: F1, 4 = 7.73, p = 0.23) (Fig. 2.4c). 
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Figure 2.4 Relationship between pup depletion (pup production divided by pristine pup production) 
(solid line) and YOY G. galeus CPUE (mean ± s.e.) for (A) handline fishing in LPW in the period 1948-
53, and seasonal longline fishing in UPW in the period (B) 1993-97 and (C) 2012-14.  Model predicted 
pup depletion for the Tier 1 2009 base case assessment model for the period 1927-2008 and projected 
future depletions are shown for future catch scenarios of 200 t (solid line) and 225 t (dashed line) beyond 
2008 (D).  Note the differences in y-axis.  
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2.5 Discussion 

2.5.1 Seasonal G. galeus abundance in nursery areas 

After almost 80 years of fishing pressure, this study shows that YOY and juvenile G. 

galeus still occur in the shallow, protected embayment’s of Pitt Water and Frederick 

Henry Bay with evidence that their abundance may have increased or at least stabilised 

after decades of significant stock declines.  This study has confirmed findings of Olsen 

(1954; 1984) and Stevens and West (1997) that YOY and juvenile G. galeus are present 

predominantly in Pitt Water and FHB during summer and autumn.  The progressive 

shift of smaller animals from UPW to FHB, and disappearance of juveniles from FHB 

during autumn also conforms to previous migratory patterns observed in these areas 

(Olsen, 1954; Stevens and West, 1997).  The higher catch rates of YOY G. galeus in 

UPW compared to FHB are also consistent with those of Stevens and West (1997), 

providing further evidence to support suggestions that UPW is an important pupping 

area for this species (Olsen, 1954) and that these areas are likely to still function as 

nursery areas for G. galeus. 

Upper Pitt Water has consistently produced the highest catch rates of newly pupped G. 

galeus of all the known pupping areas monitored since Olsen’s (1954) sampling in the 

1940s (Stevens and West, 1997).  Although re-sampling of other nurseries is needed to 

confirm the comparative importance of UPW, catch results from 2012-14 provide 

strong evidence of an increased abundance of YOY G. galeus in UPW since the last 

assessment was conducted in 1991-97.  Whilst it is difficult to assess whether newborn 

G. galeus abundances are similar to those reported by Olsen (1954; 1984) in the 1940s, 

as direct comparisons are complicated by the different gear types used (handline vs. 

longline), the higher catch rates in 2012-14 suggest there may have been some recovery 

in the G. galeus breeding population. 

Alternatively, the increased abundances of YOY in UPW may represent a behavioural 

change in the utilisation of the area.  For instance, an uncoupling of the link between the 

overall stock and degraded nurseries such as those in Victoria, and a reliance on fewer 

nurseries like UPW.  Links among nursery areas and the broader population are rapidly 

uncoupled when degradation of essential habitats occur such as spawning sites (Roberts 
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and Hawkins, 1999).  For example, degradation of the nursery habitats for flatfish in the 

Eastern Channel (Western Europe) is thought to have contributed to an increased 

dependence on fewer nurseries for recruitment into the fishery (Rochette et al., 2010).  

Therefore re-visiting other recognised nursery areas may be required to determine if 

increased abundances of YOY G. galeus are specific to UPW or are more widespread 

and indicative of the trend in the breeding population. 

Standardisation of catch rates is often performed in order to make reliable comparisons 

between catch rates where variations in fishing techniques have occurred (Maunder and 

Punt, 2004).  Longlining is typically characterised by rising catches to a maximum 

followed by a decline in catch rates with increasing soak times (Løkkeborg and Pina, 

1997) which is partly due to loss of bait efficiency (i.e. loss of odour), rising proportions 

of broken snoods and hooked animals falling off, or animals being removed by 

predators (Murphy, 1960; Ward et al., 2004).  Consequently catch data from longlines 

can underestimate abundance when long soak times occur (Ward et al., 2004).  

Therefore, the nine-fold increase in YOY G. galeus abundance in 2012-14 revealed 

using standardised catch rates should be interpreted with caution given the longer soak 

times (i.e. 1-2 hours vs. 10-18 hours) and snood construction (monofilament vs. 

stainless steel wire) in 1991-97 compared to 2012-14.  Indeed comparing non-

standardised catch rates (i.e. shark × 50 hooks-1) revealed a 44% increase in abundance 

during 2012-14 suggesting the actual magnitude of increase probably fits somewhere in 

between estimates derived using standardised or non-standardised data.  Despite this 

both scenarios indicate that YOY catch rates have increased or at very least remained 

stable suggesting that the G. galeus spawning population has probably not deteriorated 

any further since 1991-97.  Validating short (1-2 hours) vs. long soak times (10-18 

hours) and monofilament vs. stainless steel snoods could help resolve the rate of 

increase using longline catch data but this was not possible in this study due to logistic 

and ethical/permit constraints. 

2.5.2 CPUE as a stock abundance indicator 

Comparing the relationship between YOY G. galeus catch rates in Pitt Water and 

modelled pup recruitment over time indicated that there may be some merit in 

monitoring YOY abundance in nursery areas (based on catch rates) as a proxy for trends 
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in overall stock size.  This is particularly evident during the years 1948 to 1953 when 

there was a strong correlation between declines in both handline catch rates in Pitt 

Water and predicted stock size.  Conversely, the relationship is unclear for data from 

1993 to 1997 and 2012 to 2014 showing a weak but positive correlation between YOY 

catches and productivity.  This may be due to the fact that the fishing method (handline 

vs. longline), site (LPW and UPW), and sampling duration (six, five and three years) 

differ between the 1940/50s and 1991-97 and 2012-14 sampling periods. 

Stock-recruitment relationships are inherently difficult to demonstrate appropriately and 

are influenced by diverse biological and inter-annual variations in environmental 

conditions (Walters and Ludwig, 1981; Fogarty et al., 1991; Myers, 2001).  One 

possible explanation for the mismatch in YOY abundance and modelled production for 

data between 1991-97 and 2012-14 is that the stock assessment model contains no 

recent or reliable catch data.  The model no longer uses commercial catch rates (or any 

other indices of abundance) beyond 1997, because industry were forced to no longer 

target G. galeus (Thompson and Sporcic, 2013).  Anecdotal reports from industry 

suggest the incidental capture of G. galeus have increased in recent years suggesting 

that the modelled productivity may be underestimated and that greater population 

recovery then predicted by the model has occurred (R. Thompson pers. comm.).  

Developing a time series of YOY abundances from UPW may therefore provide a 

fishery independent measure that validates the trend in stock productivity. 

Shark recruitment is also strongly related to the size of the breeding population (Kinney 

and Simpfendorfer, 2009), and recruitment variability in fisheries generally increases 

when population abundances of reproductive stocks are low (Myers and Barrowman, 

1996; Myers, 2001).  Galeorhinus galeus recruitment also appears to follow a similar 

pattern, with low variability around YOY catches during the 1940s compared to the 

later sampling periods where the stock was much lower and had declined to between 9-

14% of virgin biomass (Punt et al., 2005; McLoughlin, 2008).  Subsequently the strong 

relationship between YOY catch rates from 1948-53 with production may be due to the 

higher stock sizes and low variability around recruitment during this period compared to 

the later sampling periods.  Therefore the value of using YOY catch rates to monitor 
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stock size may be more beneficial at a point in time where the stock is at a size that 

causes minimal inter-annual recruitment variability. 

Perhaps the weakest aspect of using YOY catch rates to determine trends in stock size is 

the direct connectivity of YOY G. galeus between nursery areas and the broader 

population.  Previous movement studies of conventionally tagged YOY and juveniles in 

UPW and FHB found they widely migrate to waters where much of the fishery is based 

in southern Australia (Olsen, 1954; 1959; Stevens and West, 1997).  However, the 

relative contribution of YOY from UPW or FHB, and indeed remaining nursery areas 

remains largely unknown.  Determining the level of population mixing using modern 

genetic techniques to examine kinship (Palsbøll et al., 2010), coupled with further 

yearly monitoring of newborn G. galeus catch rates is therefore needed to provide a 

better understanding of the relative contribution and importance of YOY recruitment 

from Pitt Water to the wider stock before adopting the stock-recruitment index as 

proposed.  Understanding these connections would not only give greater confidence in 

using YOY abundances for monitoring stock size but would also provide management 

with a framework around which to base more focussed management of the most 

essential nursery areas. 

Another important caveat in using recruitment indices from Pitt Water is that natural 

mortality in YOY G. galeus soon after birth may also need to be considered in 

estimating absolute pup recruitment.  High rates of natural mortality can sometimes 

occur in sharks soon after birth (Heupel and Simpfendorfer, 2002) which may therefore 

limit the number of YOY sharks available to capture during recruitment monitoring 

studies if significant numbers are dying prior to sampling.  Although this study 

attempted to capture YOY G. galeus at the earliest possible stage after birth, the extent 

to which natural mortality affects the availability of YOY to sampling remains unclear 

and it is therefore impossible to account for these in estimating recruitment without 

conducting further research to estimate neonatal mortality rates. 

Despite these limitations, using longline catch rates to monitor YOY abundances does 

have the advantage of being less destructive compared to other fishing methods such as 

gillnets.  Mortality associated with hook and line fishing can be variable but is generally 

considered low (Hoffmayer and Parsons, 2001; Gurshin and Szedlmayer, 2004) with 
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recent studies demonstrating that gummy shark (Mustelus antarcticus), in the same 

family as G. galeus, have significantly higher survival rates when captured by longlines 

compared to gillnets (Frick et al., 2010).  Similarly, Stevens and West (1997) noted that 

survival of G. galeus captured on longlines during their sampling was 69% compared to 

29% in gillnets.  Less-destructive research techniques are becoming increasingly 

desirable in fisheries management particularly for vulnerable and threatened species 

such as sharks (Heupel and Simpfendorfer, 2010; Hammerschlag and Sulikowski, 

2011).  Moreover, collecting reliable information for overfished and recovering species 

in fisheries where they are no longer the primary target of that fishery is critical to their 

effective management and conservation (Bonfil, 2004).  Given the current conservation 

status of G. galeus and absence of reliable fishery dependant data to monitor stock 

sizes, adopting a precautionary approach to monitoring stock size such as YOY longline 

catch rates in nurseries may be the most appropriate management tool at the present 

time, an approach which could have broad applicability to managing the recovery of 

other overfished species elsewhere. 
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3.1 Abstract 

Protecting essential habitats through the implementation of area closures has been 

recognised as a useful management tool for rebuilding overfished populations and 

minimising habitat degradation.  School shark (Galeorhinus galeus) have suffered 

significant stock declines in Australia, however, recent stock assessments suggest the 

population may have stabilised and the protection of closed nursery areas has been 

identified as a key management strategy to rebuilding their numbers.  Young-of-the-

year (YOY) and juvenile G. galeus were acoustically tagged and monitored to 

determine ontogenetic differences in residency and seasonal use of an important 

protected nursery area (Shark Refuge Area or SRA) in south-eastern Tasmania.  Both 

YOY and juvenile G. galeus showed a distinct seasonal pattern of occurrence in the 

SRA with most departing the area during winter and only a small proportion of YOY 

(33%) and no juveniles returning the following spring, suggesting areas outside the 

SRA may also be important during these early life history stages.  Whilst these 

behaviours confirm SRAs continue to function as essential habitat during G. galeus 

early life history, evidence of YOY and juveniles emigrating from these areas within 

their first 1-2 years and the fact that few YOY return suggest these areas may only 

afford protection for a more limited amount of time than previously thought.  

Determining the importance of neighbouring coastal waters and maintaining the use of 

traditional fisheries management tools are therefore required to ensure effective 

conservation of G. galeus during early life history.  
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3.2 Introduction 

Anthropogenic impacts on marine life such as overfishing, pollution and coastal 

development have resulted in widespread collapse of many global fisheries and 

degradation of marine habitats (Pauly et al., 1998; Hutchings, 2000; Myers and Worm, 

2005).  Management tools such as catch quotas and fishing gear restrictions have 

traditionally been used to curb over-fishing, however, in more recent times area closures 

and implementation of marine reserves have gained popularity as a supplementary 

management strategy for enhancing stock recovery whilst at the same time protecting 

important marine habitats (Roberts et al., 2001; Gell and Roberts, 2003; Hilborn et al., 

2004b; Gaylord et al., 2005; Thorpe et al., 2011). 

Area closures typically involve protecting areas regularly used by key species for 

feeding, predator avoidance, or reproduction by restricting access to activities such as 

fishing, mining or other human disturbances (Gell and Roberts, 2003).  Area closures 

are considered most beneficial to species such as invertebrates and reef fishes that are 

relatively sedentary and spend a significant proportion of their time within the protected 

area (Gell and Roberts, 2003; Gerber et al., 2003; Hilborn et al., 2004b).  However, for 

more highly migratory species such as sharks and pelagic fishes, the protection afforded 

by area closures may be limited given the difficulties of protecting expansive areas that 

cover their large-scale migrations and movement patterns (Kramer and Chapman, 

1999a; Shipp, 2003; Heupel et al., 2007; Kinney and Simpfendorfer, 2009). 

Spatial closures for sharks have typically focussed on protecting areas used during 

vulnerable stages such as mating, pupping and early life history stages when their 

movements are often confined to discrete areas (Heupel et al., 2007).  Although some 

shark nursery areas have been protected, many of these have been protected with very 

little prior understanding of how and when sharks use such areas (Heupel and 

Simpfendorfer, 2005b; Heupel et al., 2007).  There is also a view that protecting nursery 

areas may have limited value to shark populations if more traditional fishery 

management is not used to protect juveniles and adults outside the closed area (Kinney 

and Simpfendorfer, 2009).  Therefore determining the movement behaviours of juvenile 

sharks and the nature of their association with particular areas during early life history is 



 

49 

 

crucial for implementing more effective area closures or evaluating their effectiveness 

for protecting these life history stages (Speed et al., 2010). 

The school shark (Galeorhinus galeus) is found circumglobally in temperate waters and 

has been subject to intense fishing pressure resulting in significant stock declines, 

particularly in Australia (Walker et al., 2006).  As a strategy to aid rebuilding the 

population, recognised nursery grounds around Tasmania and Victoria were declared as 

Shark Refuge Areas (SRAs) as early as 1954.  In such areas the taking of any species of  

shark is prohibited (Walker, 1999).  However, despite 40 years of protection, surveys of 

SRAs conducted during the 1990s found that young-of-the-year (YOY) and juveniles 

were either absent from or occurred in very low numbers in many of these refuges 

(Stevens and West, 1997; Walker, 1999).  Overfishing is considered the main reason for 

the population collapse (Walker, 1999), however, it has also been suggested that habitat 

degradation, particularly the loss of seagrass meadows in Victorian nursery areas may 

have contributed to this decline (AFMA, 2009).  Subsequently further fishing 

restrictions, gear modifications and fishing ground closures have been implemented in 

an effort to reduce fishery captures (McLoughlin, 2008) and a School Shark Rebuilding 

Strategy (SSRS) has been in place since 2008 to promote stock recovery (AFMA, 

2009).  Recent stock assessments estimate G. galeus populations in southern Australia 

are at 9-14% of virgin biomass, although, modelling indicates the population may have 

stabilised (AFMA, 2009; SharkRAG, 2010).  Furthermore, recent research fishing in 

southern Tasmanian SRAs has recorded significantly higher catches of YOY and 

juvenile G. galeus than reported in similar surveys conducted in the 1990s (authors 

unpublished data).  Whilst the relative contributions of the various management 

measures to this stabilisation are unclear, identifying additional nurseries and protecting 

current nursery areas has been recognised as the first priority in the SSRS (SharkRAG, 

2010). 

Despite the high importance placed on SRAs as a management measure, little is known 

about the role they play in supporting G. galeus during the early life history phases, 

with much of the previous research on SRAs in south-east Australia assessing patterns 

in relative abundance and movement based on conventional tag-recapture methods 

(Olsen, 1954; Stevens and West, 1997).  Knowledge of how G. galeus utilise these 



 

50 

 

areas in space and time is required to evaluate the effectiveness of the SRAs in the 

overall conservation of this species.  Furthermore, understanding how G. galeus use 

these areas may also provide greater insight into this species’ functional role in these 

areas, particularly in relation to predator-prey dynamics (Barnett and Semmens, 2012).  

In this study acoustic telemetry was applied to describe spatial and temporal movement 

behaviours, including seasonality of residency of YOY and juvenile G. galeus, within a 

long-established nursery ground off south-eastern Tasmania.  Duration of residency and 

patterns of emigration from the protected area are also examined to inform an 

assessment of the effectiveness of the protected area in the management and 

conservation of this species. 

3.3 Material and methods 

3.3.1 Study site 

The main study area was located in a SRA in south-east Tasmania, Australia (42° 

53.710'S 147° 34.228'E) that incorporates Pitt Water (PW), Frederick Henry Bay (FHB) 

and Norfolk Bay (NB) (Fig. 3.1).  Pitt Water is a shallow estuary (average depth 4 m; 

maximum depth 9 m) originating from the Coal River and is comprised of mostly 

intertidal sand flats and a narrow tidal entrance that connects to the deeper waters of 

Frederick Henry and Norfolk Bay (average depth 15 m; maximum depth 44 m). 

Fifty-eight acoustic receivers (VEMCO Ltd, Halifax, Canada) were deployed either as 

standalone units (FHB1-20) or in a line with overlapping detection ranges (E and H) so 

as to form a gate or curtain through which a tagged animal would need to pass to 

confirm it had entered a given area (Heupel et al., 2006) (Fig. 3.1).  In PW receivers 

were deployed in a Vemco Positioning System (VPS) array (Fig. 3.1) to examine fine-

scale movements and behaviour of G. galeus (authors unpublished data), and as 

standalone units located throughout the area but in particular in a main channel.  

Previous range testing in Norfolk Bay (42° 59.943'S 147° 47.153'E), which adjoins 

FHB (curtain E; Fig. 3.1), using the same transmitters as in this study had determined 

that 100% of tag transmissions could be detected at a range of 400–500 m (Barnett et 

al., 2011).  Therefore curtain receivers were deployed at a maximum distance of 800 m 
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apart.  The entire array was deployed on 6 January 2012 and recorded data until 22 May 

2013. 

In addition to the main study area, an array of 66 acoustic receivers was also deployed 

off the east coast of Tasmania by the Australian Animal Tagging and Monitoring 

System (AATAMS) and Ocean Tracking Network (OTN) forming two curtains which 

extended from mainland Tasmania to Maria Island and then to the continental shelf 

break (MARIA – 27 receivers) (42° 40.874’S 148° 15.101’E), and from the most 

easterly point of Cape Barren Island to the continental shelf break (CAPE BARREN – 

39 receivers (Fig. 3.1) (40° 28.901’S 148° 39.189’E). 

Figure 3.1 Map of main study area showing position of acoustic receivers (filled circles) in southern 
Tasmania (A and B).  Note that receivers without a unique identification have been pooled to form a 
resource (UPW and LPW) or curtain (E and H).  Dotted line represents Shark Refuge Area boundary and 
grey lines are the 5 m then 10 m depth contours.  Triangles represent the approximate capture and tagging 
sites in UPW and FHB.  Map (A) shows the receiver curtains MARIA and CAPE BARREN extending to 
the continental shelf break (200 m). 

3.3.2 Acoustic tagging 

Sharks were captured using bottom set baited longlines and were measured from the 

snout to the tip of the tail to the nearest mm (total length or TL mm) and their sex 
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recorded.  Sharks were categorised as either YOY (<500 mm TL) or juveniles (>500 

mm but typically >600 mm TL and <1000 mm TL) in January and February 2012 

(austral summer).  Previous seasonal sampling from the same area suggests that during 

summer individuals larger than 500 mm TL are typically 1+ years of age, with most 

YOY (0+) typically 350 to 450 mm TL (Stevens and West, 1997).   

YOY were fitted with either VEMCO V9 2L (n = 6) or V13 1L (n = 26) coded acoustic 

transmitters (transmission off times: random between 120-180 s; predicted battery life: 

2 and 5 years, respectively).  Also, one YOY and seven juveniles were implanted with 

V13P 1L acoustic-sensor tags (transmission off times: random between 60-180 s; 

predicted battery life: 5 years) (VEMCO Ltd., Halifax, Canada) (Table 3.1).  Sharks 

were held ventral side up on a piece of foam with running sea water pumped over the 

gills.  The acoustic tag was surgically inserted in the peritoneal cavity by making a 1-2 

cm incision in the abdominal wall, and closing the incision using surgical sutures 

(Braun Safil® HS26s).  Aseptic techniques were used during all stages of the surgery, 

taking no longer than 2-5 minutes to complete, after which the animal was released back 

into the water.  Animals were held in the water boat side until they could swim 

unassisted prior to being released.  Sharks were tagged in PW (32 YOY and one 

juvenile) and FHB (seven juveniles) between January 2012 and May 2012 (Fig. 3.1).  In 

PW sharks were captured and released near the VPS array, and between receivers FHB3 

and FHB4 in FHB (Fig. 3.1). 

3.3.3 Data analysis 

3.3.3.1 Seasonal residency and use of SRA 

Seasonal use of the SRA (% of time animals spent within the SRA) was determined by 

examining a visual plot of daily detections and by dividing the total number of days an 

individual was detected in the SRA by the total number of days that animal had been at 

liberty since tagging.  An animal was considered present in the SRA if it was detected 

by any receiver within PW or FHB more than once per day.  FHB comprised receivers 

FHB1-20, and curtains E and H.  An animal was considered to have departed the SRA if 

it was detected on the H-curtain, and subsequently went undetected by any receiver in 

the SRA for >1 day. 
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3.3.3.2 Seasonal distribution within SRA 

Receivers were grouped into five locations and the number of days an animal was 

detected at each location used to compare the seasonal distribution of YOY and 

juveniles throughout the SRA.  The five locations were: Upper Pitt Water (UPW) 

(receivers to the north of the causeway), Lower Pitt Water (LPW) (receivers to the south 

of causeway), FHB (receivers FHB1-20), and curtains E and H (Fig. 3.1).  The number 

of sharks detected per day for each location for each month was analysed using circular 

statistics (Oriana 4 software, Kovach Computing Services).  Rao’s Spacing Test was 

used to test for uniformity in detections over a year.  For this purpose, a 12-month 

subsample of the data was used, collected between January-December 2012.  

3.3.3.3 Fine-scale ontogenetic utilisation and spatial overlap within SRA 

Fine-scale utilisation of the SRA by YOY and juveniles was determined by examining 

the total number of hours each animal was detected at geographical location of 

standalone receivers (FHB1-20) or groups of receivers (UPW, LPW, E and H) in a 

given day.  If an animal was detected at least once in a given hour for that day then it 

was considered as being present during that hour.  Using the standalone and grouped 

receivers, spatial overlap between YOY and juveniles was then compared using niche 

overlap analysis in the EcoSimR package (Gotelli and Ellison, 2013) with R statistics 

software (R Development Core Team, 2013).  Pianka’s index (O) was selected and 

permutated 1000 times using the RA3 algorithm (Meyer et al., 2009).  The degree of 

overlap is presented by values between 0 and 1, where 0 = no overlap and 1 = 100% 

overlap.  In addition a log-likelihood test (χ2) was performed using the adehabitatHS 

package (Calenge, 2006) in R statistics software to test for individual selection (wi) for 

particular receivers.  Selection ratios >1 indicate a preference for a particular receiver 

whereas values <1 indicate avoidance (Manly et al., 2002).  Kernel Utilisation Densities 

(KUD) were also used to visually estimate the preference for each receiver and 

approximate area used, the 95% fixed kernel representing the overall use of available 

receivers and the 50% fixed kernel the receivers most often used.  KUDs were estimated 

using the Hawth’s Analysis Tools for ArcGIS 9.3.  Minimum movement paths between 

each possible combination of two standalone and/or grouped receivers made by each 

animal were also summed and mapped to show approximate travel paths. 
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Receivers at E, H and FHB were also assigned a depth zone based on the average depth 

covered by the receiver (<10, 10-15, 15-20 or >20 m) to calculate selection (wi) and 

overlap in the use of particular depths between YOY and juveniles in these locations.  

Circular statistics were also used to determine the diel use of each depth zone. 

3.3.3.4 Long-distance movement patterns 

Additional acoustic detection data from the MARIA and CAPE BARREN curtain, and 

the recapture of an acoustically tagged individual was also mapped to describe the long-

distance movement patterns of G. galeus once leaving the shark refuge area. 

3.4 Results 

Of the 40 sharks that were tagged, one YOY went undetected and was excluded from 

the analysis.  Therefore a total of 31 YOY and 8 juvenile sharks were monitored for 

seasonal occurrence in the SRA over the duration of the study.  On average individual 

YOY and juveniles were detected for 91 (S.E. ± 16) and 93 (S.E. ± 32) days, 

representing 19% and 21% of their time at liberty, respectively (Table 3.1). 

3.4.1 Seasonal residency and use of SRA 

Overall, 19 (62%) YOY remained within the SRA for the duration of the study, three 

(9%) departed the SRA and were not detected again in the SRA, and nine (29%) 

periodically departed and returned to the SRA between May and September 2012.  The 

general trend was for YOY (and the single juvenile) tagged in UPW to spend the 

summer months (December – February) in UPW and progressively migrate to LPW in 

autumn (March – May) and then into FHB.  YOY then either remained within FHB or 

departed the SRA (i.e. past the H-curtain) in late autumn (May – June) returning at a 

later date (Figs. 3.2 and 3.3).  This latter group was typically absent from the SRA for 

most of winter (July – September), and not detected in FHB again until mid-spring 

(October) (Figs. 3.2 and 3.3). 

On average, YOY were present in the SRA for 392 days representing 80% (range: 22-

100% days) of their time at liberty (Table 3.1).  Eighteen YOY (58%) remained in PW, 

whereas the others (42%) moved out of the estuary towards the end of May 2012 (Fig. 
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3.2).  Of the YOY that remained in PW, one was exclusively detected moving 

throughout UPW for the entire study duration and 16 were detected moving for up to 47 

days (average = 15 days) after being released but then went undetected thereafter.  Of 

the 14 YOY that departed PW, only two returned to UPW, one remaining there for the 

rest of the study (Fig. 3.2).  All but one of these 14 YOY departed the SRA around late 

autumn 2012 after moving from UPW, of which nine returned to FHB around spring 

2012, one remaining there for the rest of the study, the others departing the SRA again 

soon after or in winter the following year (Fig. 3.2). 

All tagged juveniles departed the SRA (Fig. 3.2).  On average juveniles were present in 

the SRA for 81 days representing 18% (range: 3-100% present) of their time at liberty 

(Table 3.1).  The juvenile tagged in UPW moved to FHB in early autumn (i.e. March 

2012), passed the H-curtain in late autumn (i.e. May 2012) and was not detected again 

(Figs 2 and 3).  None of the juveniles tagged in FHB entered PW and all remained in 

FHB up until April 2012 (autumn), after which they all moved out of the SRA with only 

one individual returning in spring before departing again in late autumn the following 

year (i.e. May 2013) (Fig. 3.2). 
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Table 3.1 Details of YOY (N) and juvenile (J) G. galeus fitted with acoustic or sensor (P) tags.  Date is the day animal was tagged.  TL is total length in mm.  Predicted battery life is 
the estimated number of days the tag was expected to transmit.  Days detected are the number of days an individual was detected by the acoustic array; % detected represents the 
percentage of days detected from the date of tagging until the end of the study (i.e. 22/5/2013); Days present represents the number of days the animal was considered inside the SRA 
(i.e. had not passed the H-curtain); % present represents the percentage of days the animal was considered inside the SRA during its time at liberty.  The symbols in the Return 
column indicate whether an animal departed the SRA and did not return (*), departed and returned to FHB (**) or departed and returned to UPW (***).  † Detected by MARIA 
curtain.  ‡ Detected by CAPE BARREN curtain. 

ID Location 
Tagging 

date 
Sex TL Age Tag type 

Predicted 
battery 

life 

Last 
detection 

date 

Days 
detected 

% 
detected 

Days 
present 

% 
present 

Return 

4061 UPW 1/02/2012 M 385 N V9-2L 633 19/03/2012 45 9 477 100 
4062 UPW 1/02/2012 M 390 N V9-2L 633 16/02/2012 16 3 477 100 
4063 UPW 11/01/2012 F 350 N V9-2L 633 14/01/2012 4 1 498 100 
4064 UPW 11/01/2012 F 355 N V9-2L 633 15/01/2012 5 1 498 100 
4067 UPW 4/02/2012 M 395 N V9-2L 633 16/02/2012 13 3 474 100 
4069 UPW 1/02/2012 F 380 N V9-2L 633 15/02/2012 15 3 477 100 

14714 UPW 11/03/2012 M 460 N V13P-1L 879 24/07/2012 75 17 135 31 ** 
31159 UPW 15/01/2012 F 365 N V13-1L 1336 11/04/2013 247 50 452 91 *** 
31160 UPW 15/01/2012 M 370 N V13-1L 1336 15/06/2012 131 27 152 31 *‡† 
31161 UPW 15/01/2012 F 355 N V13-1L 1336 12/02/2012 26 5 494 100 
31162 UPW 15/01/2012 M 333 N V13-1L 1336 9/02/2012 18 4 494 100 
31163 UPW 11/01/2012 F 370 N V13-1L 1336 5/02/2012 12 2 498 100 
31164 UPW 15/01/2012 M 370 N V13-1L 1336 6/07/2012 156 32 494 100 
31165 UPW 15/01/2012 M 388 N V13-1L 1336 6/02/2012 14 3 494 100 
31166 UPW 15/01/2012 M 340 N V13-1L 1336 15/11/2012 127 26 305 62 ** 
31167 UPW 15/01/2012 F 358 N V13-1L 1336 10/04/2013 304 62 451 91 ** 
31169 UPW 18/01/2012 M 405 N V13-1L 1336 21/06/2012 159 32 155 32 *† 
31170 UPW 18/01/2012 F 400 N V13-1L 1336 8/02/2012 15 3 491 100 
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Table 3.1 (continued) 

31171 UPW 18/01/2012 M 350 N V13-1L 1336 20/01/2012 3 1 491 100 
31172 UPW 18/01/2012 F 385 N V13-1L 1336 19/04/2013 320 65 457 93 **† 
31173 UPW 15/01/2012 F 442 N V13-1L 1336 10/07/2012 156 32 177 36 ** 
31174 UPW 1/02/2012 M 395 N V13-1L 1336 12/02/2012 8 2 477 100 
31175 UPW 27/01/2012 F 385 N V13-1L 1336 21/07/2012 144 30 176 37 **† 
31176 UPW 20/01/2012 M 395 N V13-1L 1336 27/05/2012 124 25 489 100 
31178 UPW 18/01/2012 M 370 N V13-1L 1336 7/02/2012 9 2 491 100 
31181 UPW 1/02/2012 F 405 N V13-1L 1336 21/06/2012 114 24 141 30 **† 
31183 UPW 1/02/2012 M 380 N V13-1L 1336 14/05/2012 104 22 103 22 * 
31184 UPW 1/02/2012 F 392 N V13-1L 1336 7/06/2012 106 22 127 27 ** 
31194 UPW 11/01/2012 F 365 N V13-1L 1336 Not detected 
31196 UPW 11/01/2012 F 360 N V13-1L 1336 17/01/2012 7 1 498 100 
31197 UPW 11/01/2012 F 365 N V13-1L 1336 15/05/2013 181 36 498 100 
31198 UPW 11/01/2012 F 370 N V13-1L 1336 9/02/2012 24 5 498 100 
14727 UPW 19/01/2012 M 675 J V13P-1L 879 18/04/2012 91 19 90 18 * 
14713 FHB 29/02/2012 M 510 J V13P-1L 879 21/04/2013 286 64 417 93 ** 
14718 FHB 29/02/2012 F 680 J V13P-1L 879 12/03/2012 13 3 12 3 * 
14722 FHB 28/02/2012 M 730 J V13P-1L 879 12/03/2012 14 3 13 3 * 
14723 FHB 28/02/2012 F 745 J V13P-1L 879 12/03/2012 13 3 13 3 * 
14728 FHB 29/02/2012 F 630 J V13P-1L 879 13/04/2012 45 10 44 10 * 
14729 FHB 29/02/2012 F 710 J V13P-1L 879 11/04/2012 38 8 42 9 ** 
14733 FHB 29/02/2012 F 685 J V13P-1L 879 13/03/2012 11 2 13 3 ** 
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Figure 3.2 Abacus plot showing the detection dates for YOY and juvenile (J) G. galeus tagged in Upper 
Pitt Water (UPW) and Frederick Henry Bay (FHB) between January 2012 and May 2013.  Each line 
represents an individual shark.   

3.4.2 Fine-scale movements and spatial overlap within the SRA 

Overall, YOY tagged in UPW were detected by UPW receivers for 88% of their time at 

liberty and were detected at most receivers in LPW and FHB upon leaving UPW (Fig. 

3.3).  Given juveniles were not detected in PW spatial overlap with YOY was only 

compared in FHB.  Overall there was a significant overlap in the use of receivers in 

FHB between YOY and juveniles (O = 0.8, p < 0.01), however, YOY tended to utilise a 

larger proportion of FHB (KUD95 = 132.76 km2), compared to juveniles (KUD95 = 

90.95 km2) (Fig. 3.4).  .  Selectivity analysis revealed a strong preference for YOY to 

remain near the entrance to PW and select receivers FHB1, FHB4-5, E and H once 

leaving UPW (χ2 = 75712.7, d.f. = 205, p < 0.01) (Fig. 3.4).  In contrast juveniles 

selected receivers in the middle of FHB (FHB4, 5, 7, 12, 17) (χ2 = 12583.1, d.f. = 93, p 

< 0.01) and to a lesser extent receivers near shore (FHB1, 4, 5) (Figs. 3.4 and 3.5).  

YOY displayed more movements between receivers than juveniles and appeared to 

move mostly between receivers closer to land in contrast to juveniles which appeared to 

occupy and move mostly between receivers located in the middle of FHB (Fig. 3.5). 

Receiver preference was also reflected in depth use with YOY preferring shallower 

areas (<10 m) in FHB (χ2 = 11953, d.f. = 37, p < 0.01) (Fig. 3.6).  YOY used largely the 



 

same depths over a 24

waters >20 m at night (χ

showed a strong preference for depths 10

< 0.01) and the shallower areas < 10 m during the night (

0.01). 

Figure 3.3 Circular plots showing 
each month.  Plots represent one year of data from January 2012 until December 2012.  Note the number 
of days individuals were detected varies on the axis between 
Different greyscale colours
month. 
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same depths over a 24-hour period, however, they had a slight preference for deeper 

waters >20 m at night (χ2 = 5267.8, d.f. = 35, p < 0.01).  In comparison juveniles 

showed a strong preference for depths 10-15 m during the day (χ2

< 0.01) and the shallower areas < 10 m during the night (χ2 = 3152.95, 

 

Circular plots showing the number of days YOY and juvenile G. galeus

each month.  Plots represent one year of data from January 2012 until December 2012.  Note the number 
of days individuals were detected varies on the axis between YOY and juveniles, and between areas.  

colours represent the maximum number of individuals detected in a given day

 

hour period, however, they had a slight preference for deeper 

In comparison juveniles 
2 = 2591.2, d.f. = 27, p 

= 3152.95, d.f. = 28, p < 

 

G. galeus spent in each area for 
each month.  Plots represent one year of data from January 2012 until December 2012.  Note the number 

and juveniles, and between areas.  
number of individuals detected in a given day for that 
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Figure 3.4 Spatial use of the Shark Refuge Area, excluding UPW, by YOY G. galeus tagged in Upper 
Pitt Water (A) and juveniles in Frederick Henry Bay (B).  Size of circles indicate the percentage of total 
detections at each receiver.  Dashed and solid line represents the overall 50 and 95% kernel utilisation 
distribution (KUD), respectively. 
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Figure 3.5 Movement patterns of YOY (A) and juvenile (B) G. galeus showing minimum transition paths 
between receivers.  Thickness of line represents the number of times the transition was made.  Circles 
represent position of acoustic receiver or midpoint of pooled receivers in UPW, LPW, E and H. 



 

 

Figure 3.6 Circular plots showing the number of 
day (% in total) at different depth con
detected in a given hour. 

3.4.3 Long-range movements

Five YOY were detected at the MARIA curtain (receiver depth: 88 

represents a minimum travel distance of 155 km, 10 to 358 days (mean = 154 ± 70 

days) after leaving the SRA 

by the CAPE BARREN curtain (bottom depth: 105 m), representing a minimum travel 

distance of 280 km, 348 days after leaving the SRA and was then detected nine days 
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Circular plots showing the number of YOY and juvenile G. galeus detected at each hour of the 
day (% in total) at different depth contours in FHB.  Different shading represents the number of sharks 

 

range movements 

Five YOY were detected at the MARIA curtain (receiver depth: 88 

represents a minimum travel distance of 155 km, 10 to 358 days (mean = 154 ± 70 

days) after leaving the SRA (Figs. 2 and 7).  One YOY (Tag ID# 31160) was detected 

ARREN curtain (bottom depth: 105 m), representing a minimum travel 

distance of 280 km, 348 days after leaving the SRA and was then detected nine days 

 

 

detected at each hour of the 
tours in FHB.  Different shading represents the number of sharks 

Five YOY were detected at the MARIA curtain (receiver depth: 88 – 113 m), which 

represents a minimum travel distance of 155 km, 10 to 358 days (mean = 154 ± 70 

One YOY (Tag ID# 31160) was detected 

ARREN curtain (bottom depth: 105 m), representing a minimum travel 

distance of 280 km, 348 days after leaving the SRA and was then detected nine days 
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later at the MARIA curtain (Figs. 2 and 7).  This animal was not detected at the MARIA 

curtain prior to the initial detection on the CAPE BARREN curtain.  In addition one 

acoustic tagged juvenile was recaptured in waters near Robe, South Australia 383 days 

after leaving the SRA representing a minimum distance of 1200 km (Figs. 2 and 7). 

 

Figure 3.7 Long-distance movements and presumed travel paths of G. galeus detected at the MARIA and 
CAPE BARREN curtains, and recapture location of an acoustically tagged juvenile. 

3.5 Discussion 

3.5.1 Residency in the SRA 

This study has confirmed that YOY and juvenile G. galeus seasonally use shark refuge 

areas in south-eastern Tasmania.  However, evidence of YOY and juveniles emigrating 

from these areas within their first 1-2 years and the fact that few YOY (33%) and none 

of the juveniles returned suggests these areas may only afford protection for a limited 

amount of time, much less than the 3-4 years that was estimated from previous mark-



 

64 

 

recapture results (Olsen, 1954; Stevens and West, 1997).  Despite the high percentage 

of YOY that appeared to remain in the SRA (62%) for the duration of the study (80% of 

days spent in SRA), it is important to note that most of these animals (15 of 19) were 

detected for only a small percentage of their time at liberty (<5% of days) upon being 

released in UPW, and this needs to be considered in evaluating neonatal residency in the 

SRA.  Whilst it is possible that these YOY were still present in the SRA but residing in 

areas of low receiver coverage, which seems unlikely given the number of receivers in 

UPW (n = 17) covering a relatively small area (approximately 20 km2) and the 

positioning of several receivers in areas forming gates through which animals would 

need to pass, it is more likely these animals may have died outside receiver coverage.  

Given natural mortality rates tend to be comparatively high in juvenile sharks (Bush and 

Holland, 2002; Heupel and Simpfendorfer, 2002) then removing the likely deceased 

YOY from the analysis would imply that the relative proportion of surviving YOY 

leaving the protection of the SRA in their first year could be as high as 75%.  However, 

further research may be required to validate these residency behaviours given that tag-

induced mortality in large pelagic fishes including sharks can also be comparatively 

high (Skomal, 2007a) and may therefore have been responsible for mortality in this 

study. 

Similarly, all juveniles that emigrated from the SRA within 12 months of being tagged 

were present in the SRA for only 18% of their time at liberty and only one individual 

returned to the SRA the following spring after leaving for winter.  Considering these 

juveniles were most likely only >1+ based on size at the time of emigration (Stevens 

and West, 1997), they are spending considerable time in other areas outside the 

protection of the SRA at a young age.  In fact three YOY were detected by acoustic 

receivers up to 280 km from the SRA and one juvenile was re-captured 1200 km away 

demonstrating that animals <2+ years are moving considerable distances outside the 

SRA during their early life development. 

The northward movements of some YOY and juveniles is also consistent with previous 

mark-recapture studies demonstrating that juveniles typically moved from southern 

Tasmania nurseries to areas of Bass Strait and South Australia (Stevens and West, 

1997).  However, in contrast to these earlier findings our study indicates that YOY are 
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migrating much greater distances in their first few months of life than previously shown 

and could explain why there are fewer YOY returning to their natal areas.  Whether 

these individuals are migrating to other known nursery areas around Tasmania such as 

Georges Bay (42° 19’0S 148° 14’0E) or utilising neighbouring waters of Storm Bay 

(Stevens and West, 1997) remains unclear.  Our results would suggest that a proportion 

of YOY are moving long distances to locations such as Cape Barren Island (Bass 

Strait), which coincides with Bass Strait being a traditional hotspot for juvenile 

abundance (Olsen, 1954; Stevens and West, 1997; Walker et al., 1999). 

The movement of young G. galeus from the SRA within their first 1-2 years and the 

ability to migrate long distances suggest that once individuals find suitable habitats 

elsewhere there is little need to return to their natal origins.  Similar observations have 

been made in other coastal elasmobranches such as gray smooth-hound sharks Mustelus 

californicus, leopard sharks Triakis semifasciata (Carlisle and Starr, 2009), and blacktip 

sharks Carcharhinus limbatus (Heupel and Simpfendorfer, 2005a).  These studies 

reported that most young sharks spent their first 12 months in estuarine and inshore 

nursery areas before moving into adjacent coastal waters, with only a small portion of 

the population exhibiting philopatry to their natal origins.  Therefore, determining 

where and how these additional areas are being used will be essential to ongoing 

recovery efforts for G. galeus as many of these areas remain un-protected from 

exploitation activities.   

3.5.2 Fine-scale movements and spatial overlap within the SRA 

YOY typically resided in the shallow estuary of Pitt Water for most of the summer 

months before emigrating to FHB during autumn.  After entering FHB only two 

individuals returned to UPW, while none of the juveniles tagged in FHB were detected 

in UPW.  This is somewhat contrary to previous work using conventional fisheries tags, 

which suggests that most YOY G. galeus are philopatric and return to their former 

estuarine nurseries (i.e. UPW) in the following spring (Olsen, 1954).  Our data showed 

that having left UPW most individuals either then left the SRA entirely or only returned 

to FHB.  Delayed tag induced mortality seems unlikely given that some YOY returned 

to FHB or were detected elsewhere outside the SRA at a later date.  One possible 

explanation why YOY did not return to UPW is that there may have been some 
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behavioural changes in the utilisation of this area by G. galeus during later life stages 

given the habitat degradation that has occurred throughout the estuary such as the loss 

of seagrass meadows (Rees, 1993).  Philopatry to nursery grounds is common among 

sharks yet habitat degradation is thought to have been responsible for the demise of this 

behaviour in many shark species (Hueter et al., 2005).  Continuing to monitor UPW and 

the remaining SRA with acoustic receivers may therefore be useful in determining if 

philopatric behaviour is still occurring but at a later stage in G. galeus life history. 

YOY and juveniles showed a distinct ontogenetic disparity in their use of habitats in the 

SRA.  YOY upon leaving UPW spent time in LPW before moving into and widely 

dispersing throughout mostly the shallower margins of FHB.  In contrast juveniles were 

typically associated with habitats towards the middle of FHB.  Ontogenetic resource 

partitioning by way of feeding on different prey or occupying different habitats is a 

common strategy among chondrichthyans that occupy similar spatial areas (Bethea et 

al., 2004; Papastamatiou et al., 2006; Taylor and Bennett, 2008; Grubbs, 2010).  

Crustaceans and cephalopods are important prey for YOY G. galeus, whereas teleosts 

become increasingly important in their diet with age (Stevens and West, 1997), 

suggesting that individuals may be selecting habitats based on the presence of their 

preferred prey.  However, without data on the abundance and distribution of these prey 

types in the area it is not possible to ascertain whether this represents a key separation.  

Juvenile use of deeper parts of FHB, particularly during the day, and expansion of their 

range and use of shallower areas at night may also represent a strategy to avoid 

predation.  Juvenile G. galeus and gummy shark (Mustelus antarcticus) also preferred 

deeper waters of nearby Norfolk Bay (Fig. 3.1) (Barnett and Semmens 2012).  Using the 

growing literature on behavioural responses of prey to the threat of predation and 

relevant theory as a guiding framework for interpretation (e.g. Wirsing & Ripple, 2011), 

Barnett and Semmens (2012) suggested that deeper water may enable a greater escape 

probability from, or allow easier detection of, the dominant predator in the area, the 

broadnose sevengill shark (Notorynchus cepedianus) in a relatively featureless 

environment (i.e. there is a lack of complex habitats in which to hide).  Similarly, FHB 

is also a fairly featureless environment and suggests the use of deeper waters may be a 

common tactic used by juvenile G. galeus in these inshore waters to avoid predation 
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during the day.  Conversely, juveniles may then use the cover of darkness to move into 

shallower, potentially riskier foraging areas, at night (Barnett and Semmens, 2012).  In 

contrast YOY were less selective in their habitat choice during the day as evidenced by 

their exploratory behaviour and broad use of FHB, and may represent more naive 

behaviour as they have not yet learnt to move into deeper areas where they are 

potentially less vulnerable to predation.  Previous studies on lemon sharks (Negaprion 

brevirostris) have shown that naive individuals become more efficient at foraging as 

they mature as they learn to feed when prey is easily targeted and predation risks are 

lower (Guttridge et al., 2009; Guttridge et al., 2013).  In addition, N. cepedianus are 

rarely found in UPW compared to FHB and NB (Stevens and West, 1997; Barnett et al., 

2011; Barnett and Semmens, 2012), therefore, the higher fidelity and residency times 

that YOY spend in UPW may be an innate mechanism to avoid predation from N. 

cepedianus.  Conversely, juveniles can trade-off the risk of predation in FHB for 

potentially increased resources (food, etc) because they are more adept at avoiding 

predators. 

3.5.3 Implications for conservation and management 

This study has demonstrated that south-east Tasmania SRAs continue to represent 

important nursery habitats for G. galeus, however, they may only play a temporary role 

in their overall conservation given YOY and juveniles spend a considerable time 

outside of the SRAs.  In addition to the protection afforded by SRAs during the early 

life history phase, these regions also have a role in protecting  pregnant females as they 

move in to the inshore areas to pup (Olsen, 1954; Walker, 1999).  However, the 

protection of nursery areas such as with the implementation of SRAs alone are not 

sufficient to ensure rebuilding and sustainability of the populations (Kinney and 

Simpfendorfer, 2009).  Of great importance are fisheries management measures such as 

minimum size limits that protect pre-recruits from fishing pressure when outside the 

protection of SRAs and total catch limits.  In essence, a combination of SRAs and 

fisheries management has likely been key to stabilisation in G. galeus stocks providing 

a good example of how overfished populations can be stabilised using multiple 

management strategies.  Therefore maintaining the function of SRAs and fisheries 

management measures will be essential for recovery of this species. 
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The strong affiliation of YOY with UPW and shallow areas of FHB in the SRA 

reinforces that continued protection of these areas is important.  Although current 

management measures prevent the take of sharks in the SRA, recreational fishing 

practices such as gillnetting are still permitted in shallow waters of FHB (i.e. out to 200 

m beyond the low tide mark).  Given that YOY and to a lesser extent juveniles utilise a 

large proportion of these shallow habitats and the fact that gillnetting may cause 

significant incidental mortality of young G. galeus (Williams and Schaap, 1992; Lyle et 

al., 2014), re-assessing the use of gillnets in these areas is warranted. 

Fishery closed areas (in the absence of take) can provide an opportunity to monitor the 

recovery of over-exploited species by acting as control sites (Gell and Roberts, 2003; 

Hilborn et al., 2004b).  Given there are currently no fishery independent surveys or 

other appropriate means of monitoring G. galeus stock sizes as the fishery is now 

managed as incidental bycatch and fishers no longer target G. galeus (Huveneers et al., 

2013), examining the long-term use of closed areas by acoustically tagged animals in 

this study may therefore be helpful in monitoring the recovery of the G. galeus 

population.  For example, acoustic monitoring of YOY G. galeus may provide estimates 

of natural mortality (Heupel and Simpfendorfer, 2002) which could be used to refine 

current recruitment and stock assessment modelling.  Expansion of the acoustic array to 

cover areas outside of SRAs may also provide further insight to the importance of un-

protected areas to G. galeus during early life history, providing critical empirical 

evidence needed to refine and enhance current management and conservation strategies 

such as closed area boundaries. 
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4.1 Abstract 

Determining the natal origin and birth site of highly mobile animals such as sharks is 

critical to understanding their ecology and in developing more focused management 

strategies which protect vulnerable early life stages.  However, traditional catch 

sampling and tagging techniques often provide little useful information on the past 

movement and residency behaviours of animals to determine natal origins.  Stable 

isotope analysis was used to determine if differences in isotope signatures were the 

result of young-of-the-year (YOY) school shark Galeorhinus galeus originating from 

separate pupping locations.  YOY G. galeus were captured from an estuarine site which 

has historically been considered a pupping area, and δ13C and δ15N compared with those 

captured from a coastal embayment during the peak pupping season.  YOY from the 

estuary had enriched δ13C and were distinctly separated from those captured in the 

coastal embayment suggesting that individuals were born in either site and remained in 

those areas for extended periods.  This was further supported by acoustic tracking which 

showed YOY G. galeus remained in the estuary for 3-4 months after parturition before 

migrating to the coastal embayment.  These results demonstrate the value of using 

multiple methods to capture movement and residency patterns of animals, providing 

evidence that separate pupping areas exist in the shark nursery area. 
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4.2 Introduction 

Identifying the natal origins or birth sites of animals has traditionally been regarded as 

an important component to their effective conservation since efforts can be more 

appropriately directed at protecting areas used during early life history when many 

species are most vulnerable (Hobson, 1999; Webster et al., 2002; Webster et al., 2005).  

However, there are emerging views that directing significant resources at protecting 

such areas may have little benefit in the overall conservation of a species in the absence 

of research and management outside these early life history areas (Kinney and 

Simpfendorfer, 2009).  Again directing resources at protecting these areas may also 

have their limitations, thus a combination of management approaches may be more 

appropriate particularly in the case where the reproductive success of some species is 

limited by the quality and quantity of suitable birthing habitat (Baltz et al., 2003).  

Therefore locating these areas should continue to form a component of the overall 

evaluation and management of a species population (Rowe and Hutchings, 2003).  This 

is particularly important for commercially harvested species which may depend on 

particular birthing sites for the viability of harvested populations (Hobson et al., 2009).  

Despite the importance of identifying these areas, birthing sites for many species remain 

largely unknown (Hobson et al., 2009).  

Stable isotopes, notably δ13C and δ15N, have been increasingly used as an alternative 

technique to track the historical (i.e. monthly – yearly) movements of animals by 

examining the assimilation and turnover of isotopically distinct food sources in their 

tissues (Hobson, 1999; Rubenstein and Hobson, 2004; Hobson et al., 2008).  This 

approach is based on differences in δ13C and δ15N occurring between regions having 

distinct baseline nutrient sources which are then assimilated in the tissues of animals 

that reside and forage in those areas over time.  Stable isotopes therefore provide time 

integrated information on where an animal has been prior to capture and have been 

successfully used to define the movement patterns of animals and delineate natal origins 

(see Hobson 2009 for review).  Combining stable isotope analysis with more traditional 

tagging techniques and advancements in modern tracking techniques such as electronic 

tags is also revealing more detailed movement behaviours and connectivity between 
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breeding and foraging sites of animals (e.g. Cerling et al., 2006; Abrantes and Barnett, 

2011; Van Wilgenburg and Hobson, 2011; Zbinden et al., 2011). 

Nursery areas are widely used by marine species to give birth to their offspring or to 

shelter juveniles, as they generally provide habitats which maximise the survival and 

development of young animals during their early life stages (Springer, 1967; Castro, 

1993; Morrissey and Gruber, 1993; Heupel et al., 2007).  However, for many species, 

the specific function and importance of nurseries remains largely unknown, particularly 

the delineation of birthing sites which are often incorporated with nurseries (Castro, 

1993; Parsons et al., 2005).  Nursery areas may play an important role in the viability of 

a species overall population (Beck et al., 2001a; Gillanders et al., 2003), therefore 

identifying birthing sites is important to developing more focused conservation 

strategies which protect habitats used during these vulnerable early life stages (Roberts, 

2012). 

Since 1954, eleven coastal embayment’s and estuaries around Tasmania, Australia have 

been managed as no-take Shark Refuge Areas (SRAs), after being identified as 

important nursery areas for school shark (Galeorhinus galeus), in an effort to rebuild 

populations which have declined to 9-14% of virgin stock biomass as a result of 

overfishing (Olsen, 1959; Walker, 1999).  During late spring and early summer 

pregnant G. galeus females are thought to migrate from offshore waters near the 

continental slope to these inshore areas where they give birth to their pups (Olsen, 1954; 

Walker et al., 1999).  Most of the pupping is thought to occur in the Upper Pitt Water 

estuary, in southeast Tasmania, where pups then disperse into the remaining areas of the 

nursery area over autumn and winter.  However, pregnant females have been poorly 

represented in recent and historical catch surveys to infer pupping grounds, and high 

catches of neonates and young-of-the-year (YOY) sharks that fall within the appropriate 

length-at-age category (28 – 35 cm TL) in early summer in other areas of the refuge 

suggests that these regions may also provide important pupping grounds for G. galeus 

(Stevens and West, 1997).  Whilst it has been demonstrated that the protection of 

nurseries alone has historically failed to stem the decline of the overfished G. galeus 

population (Kinney and Simpfendorfer, 2009), recent trends in the population suggest 

stocks may have stabilised as a result of implementing additional management changes 
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such as catch and effort restrictions (Huveneers et al., 2013).  Although the relative 

contribution of nursery area protection to these signs of recovery in the stock remains 

unclear, better understanding where and how these locations are used during early life 

history may provide important information that can be used to refine protection 

measures and potentially assist in the rebuilding of the overfished population. 

The aim of this study was to identify the natal origins of G. galeus in a shark nursery 

area in southeast Tasmania.  This was achieved by: (1) determining if there were 

differences in baseline isotope signatures between two areas where YOY G. galeus 

were captured; and (2) the use of stable isotopes together with acoustic tracking and 

stomach content data to determine differences in the movement and residency 

behaviours of YOY G. galeus captured from hypothesised pupping areas. 

4.3 Methods 

4.3.1 Study Site 

This study was conducted at two main sites: Upper Pitt Water (UPW) (42° 48.1S 147° 

30.4E) and Frederick Henry Bay (FHB) (42° 50.9S 147° 33.2E), located in southeast 

Tasmania, Australia (Fig. 4.1).  UPW is a shallow, turbid estuary (~4 m average depth), 

comprised of mostly intertidal sand flats and river channels with a narrow entrance that 

connects to the deeper, coastal waters of FHB (~15 m average depth).  FHB is an 

exposed coastal bay comprised mostly of beaches and sandy bottom habitats (Fig. 4.1).  

UPW receives freshwater input from regulated irrigation flows in the Coal River and 

also supports a number of oyster farming operations.  Both UPW and FHB are managed 

as part of the Frederick Henry and Norfolk Bay Shark Refuge Area. 
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Figure 4.1 Sampling sites in Tasmania for stable isotope analysis of YOY and adult (asterisk) G. galeus. 

4.3.2 Stable isotope tissue collection and preparation 

Sharks were sampled from UPW and FHB between January and May 2012 using baited 

longlines.  Because offspring are born with the maternal signature of their parent which 

is then diluted overtime as the tissue turns over and the young integrate their own diet 

isotope value (McMeans et al., 2009; Olin et al., 2011) adult G. galeus samples were 

also collected from commercial fishing operations at various offshore sites near the 

continental shelf break (~200 m depth) in southern Tasmania between Pedra Branca 

(43° 51.6S 146° 58.5E) and Tasman Island (43° 13.9S 148°E) (Fig. 4.1) to determine 

potential sources of error in isotope interpretation.  YOY G. galeus were collected from 

UPW and FHB over two consecutive days during summer (February 27-28th) and 

autumn (May 4-5th).  YOY G. galeus were defined as those individuals <500 mm TL.  

Previous seasonal length frequency studies in the same area have shown G. galeus >500 

mm TL during summer are typically 1+ years of age (Stevens and West, 1997).  Upon 

landing, sharks were measured for total length, sexed and a white muscle sample taken 
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from the dorsal flank using a 6 mm diameter biopsy punch and immediately placed on 

ice and later frozen at -30°C until analysis.  All sharks were returned to the water alive 

after taking the tissue sample except for samples which were collected from commercial 

catch landings. 

To determine an isotopic baseline at the main study sites (i.e. UPW and FHB) samples 

of seagrass (Zosteraceae family) and green algae (Caulerpaceae family) were collected 

from each site in February 2012.  Three fresh plants from each family were collected, 

rinsed with deionised water, oven dried at 60°C to a constant weight, and ground to a 

fine powder for isotope analysis. 

Because tissue lipids can affect its δ13C (DeNiro and Epstein, 1977; McConnaughey and 

McRoy, 1979), lipid extraction of shark tissue was performed by sonicating samples in 

petroleum ether (PE) for 15 minutes, then in deionised water for a further 15 minutes 

following the method of Kim and Koch (2012).  This procedure was repeated three 

times after which samples were dried to a constant weight at 60°C, and ground to a fine 

powder using a mortar and pestle.  Prepared shark and algae samples were measured for 

δ13C and δ15N using a PDZ Europa ANCA-GSL elemental analyser interfaced to a PDZ 

Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK) by the 

University of California Davis Stable Isotope Facility,.  Isotope abundances were 

expressed as per mille (‰) relative to international standards using the following 

equation: 

� C�� 	or	� N = 	 
�R
�����/R
�������� − 1� × 1000
�� 	 

where R equals either 13C/12C or 15N/14N.  The standard reference materials used 

were Vienna PeeDee Belemnite and Air for carbon and nitrogen, respectively. 

4.3.3 Seasonal use of study sites by YOY G. galeus 

An array of 52 acoustic receivers were deployed in UPW and FHB between January 

2012 and May 2013.  The array was set up to detect the presence of acoustic tagged 

sharks in either UPW or FHB and to track their movements between the two areas.  

Sharks captured in UPW (size range: 33 – 44 cm TL) were fitted with eitherV9 2L (n = 

6; Tag ID#4061 - 4069) or V13 1L (n = 22; Tag ID#31159 - 31198) acoustic-coded tags 
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(29 and 36 mm length x 9 and 13 mm diameter; weight in water: 2.9 and 6 g; 

transmission off times: random between 120-180 s; predicted battery life: 2 and 5 years, 

respectively) between January and May 2012.  The acoustic tag was surgically inserted 

in the peritoneal cavity of the animal by making a 1-2 cm incision in the abdominal 

wall, and the incision closed using surgical sutures (Braun Safil® HS26s).  Aseptic 

techniques were used and running water was pumped over the animals gills during all 

stages of the surgery, taking no longer than 2-5 minutes to complete, after which the 

animal was released back into the water.  Animals were held in the water boat side until 

they could swim unassisted prior to being released. 

For analysis of acoustic tracking data, receivers were pooled into two regional groups, 

UPW (n = 17 receivers) and FHB (n = 35).  Daily detection data was presented as a 

timeline of detections in each region and visually inspected to determine the residency 

patterns and times spent in either UPW or FHB.  An individual was considered to have 

moved into either region if it was detected by a receiver in that region at least once in a 

given day. 

4.3.4 Dietary analysis 

To identify dominant prey groups and potential sources of isotope material that would 

be reflected in shark muscle tissue, available stomach sample data from YOY G. galeus 

captured in UPW (size range: 31 – 50 cm TL; n = 53) and FHB (size range: 32 – 50 cm; 

n = 64) between February 1991 and December 1992 by Stevens and West (1997) was 

examined.  The frequency of occurrence (%F), percentage of numerical importance 

(%N), and percentage of weight (%W) dietary metrics were quantified and then used to 

determine the percentage Index of Relative Importance (%IRI) for each prey group 

(Hyslop, 1980).  Prey were identified and grouped to at least family level and where 

possible to species. 

4.3.5 Isotopic data analysis 

Classification and regression tree analysis (CART) were used to determine the effects of 

site of collection, season, sex, and animal size on δ13C and δ15N for YOY G. galeus.  

CART analysis was performed on each isotope element separately using the ‘rpart’ 

package in R (Therneau et al., 2010).  The size of the tree was selected by using the 10-
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fold cross validation and 1 – SE rule.  Kruskal-wallis tests (χ2) in R (R Core 

Devolpment Team, 2013) were then performed to test for significance difference in δ13C 

and δ15N which were identified from separation that occurred in the CART models (α = 

0.01).  The degree of isotopic overlap between regions and seasons was also determined 

by calculating the standard ellipse area (SEAB) using a Bayesian approach known as 

SIBER (Stable Isotope Bayesian Ellipses in R) with the SIAR package in R following 

methods of Jackson et al. (2011).  Differences in isotope composition between YOY 

and adult G. galeus, and between primary producers were determined using Kruskal-

wallis tests (α = 0.01).   

4.4 Results 

4.4.1 Isotopic analysis 

A total of 80 YOY and 25 adult G. galeus were used for stable isotope analysis (Table 

4.1 ).  Carbon (δ13C) isotope compositions ranged from -17.0 to -18.1‰, and δ15N from 

14.9 to 16.5‰, and varied between YOY and adults, sites and season (Table 4.1). 

Table 4.1 Number of YOY and adult G. galeus collected at each site and season, size range, δ13C and 
δ15N values and bulk C:N ratio (mean ± SD).  FHB = Frederick Henry Bay; UPW = Upper Pitt Water; OS 
= Offshore; Su = summer; Au = autumn; F = female; M = male. 

Site-Season n 
Size range 

(cm) 
δ13C δ15N C:N ratio 

YOY 
     

FHB-Su 28 33-43 -18.1 ± 0.3 14.9 ± 0.4 3.4 ± 0.1 
UPW-Su 30 31-41 -17.5 ± 0.7 15.3 ± 0.5 3.3 ± 0.1 
FHB-Au 11 39-49 -17.7 ± 0.3 15.3 ± 0.2 3.3 ± 0.1 
UPW-Au 11 43-47 -17.0 ± 0.5 15.5 ± 0.6 3.3 ± 0.1 
Adult 

     
OS-F 5 120-150 -18.0 ± 0.5 16.2 ± 0.6 3.3 ± 0.1 
OS-M 20 130-150 -18.0 ± 0.2 16.5 ± 0.5 3.3 ± 0.1 

 

4.4.2 YOY G. galeus 

For δ13C, the CART model (explaining 55% of the variability) revealed that YOY G. 

galeus δ13C depends primarily on size with individuals larger than 43 cm total length 

(TL) having higher δ13C (Fig. 4.2).  For YOY G. galeus smaller than 43 cm TL a 
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4.4.3 Adult G. galeus 

There was overlap in SEA (0.27 ‰2, corresponding to 23% and 96% of the total SEA of 

females and males, respectively) and no significant differences in δ13C and δ15N 

between adult male and female G. galeus captured offshore (Table 4.2 and 4.3) 

therefore sexes were pooled for comparisons with YOY.  There was no overlap between 

SEA of adults and YOY and δ15N was significantly higher in adults (Table 4.2 and 4.3).  

There were no significant differences in δ13C between adults and YOY captured in FHB 

during summer but δ13C was significantly lower than YOY from UPW captured in both 

summer and autumn and those from FHB captured during autumn (Table 4.2). 

 

Figure 4.3 Stable isotope values for YOY G. galeus captured in Upper Pitt Water (UPW) and Frederick 
Henry Bay (FHB) during summer (Su) and Autumn (Au), and adult females (OSF) and males (OSM) 
from offshore waters.  Bayesian standard ellipses (SEAB) (solid lines) used for comparing isotopic niche 
overlap between regions, seasons and life stages.  Convex hulls (i.e. isotope extent) are also shown for 
each combination of above (dashed lines). 
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Table 4.2 Kruskal-wallis tests for differences in d13C between sites and seasons for YOY and adult G. 
galeus. . *p < 0.01.  FHB = Frederick Henry Bay; UPW = Upper Pitt Water; Su = summer; Au = autumn. 

Site-Season UPW-Su FHB-Au UPW-Au Adult 

FHB-Su 22.52* 14.73* 21.92* 1.83 
UPW-Su - 0.02 17.44* 17.4* 
FHB-Au - - 13.19* 12.06* 
UPW-Au - - - 21.03* 

 

Table 4.3 Kruskal-wallis tests for differences in d15N between sites and seasons for YOY and adult G. 
galeus. *p < 0.01.  FHB = Frederick Henry Bay; UPW = Upper Pitt Water; Su = summer; Au = autumn. 

Site-Season UPW-Su FHB-Au UPW-Au Adult 

FHB-Su 19.66* 13.84* 12.78* 37.14* 
UPW-Su - 0.66 2.91 28.09* 
FHB-Au - - 4.13 18.91* 
UPW-Au - - - 15.19* 

4.4.4 Primary producers 

Seagrass and macroalgae from FHB were distinctly lower in δ13C than those from 

UPW, which was then replicated in the mean δ13C composition of sharks captured at 

each site during summer (Fig. 4.4).  There were no obvious differences in δ15N for 

primary producers between sites, however, δ15N was on average two times greater in 

sharks than primary producers (Fig. 4.4). 
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Figure 4.4 Isotope values of YOY G. galeus (), and baseline isotope signatures of Caulerpa sp. (�), 
and Zostera sp. (�) collected during summer 2012.  Closed symbols denote samples collected in FHB 
and open symbols in UPW. 

4.4.5 Seasonal use of study sites by YOY G. galeus 

YOY G. galeus had strong fidelity to UPW between January and May 2012 

(summer/autumn) with only one individual (ID# 31163) moving into FHB and returning 

to UPW during this period (Fig. 4.5).  Twelve of the 28 tagged individuals departed 

UPW and were detected in FHB between May and July 2012, with all but one of the 

remaining animals which was constantly detected in UPW, going undetected for the 

remainder of the tracking period (Fig. 4.5).  Of the individuals that moved into FHB, 

nine of 12 went undetected in FHB after July 2012, probably representing a movement 

out of FHB (Fig. 4.5).  Four of the 12 individuals which presumably moved out of FHB 

were again detected in FHB around September/October 2012 with only one of these 

animals returning to UPW in October 2012 before re-entering FHB in January 2013 

(Fig. 4.5).  
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Figure 4.5 Abacus plot showing the daily detections for YOY G. galeus between January 2012 and May 
2013.  Each line represents an individual shark.  Black represents detections by receivers in the UPW and 
grey represents detections in FHB. 

4.4.6 YOY G. galeus dietary analysis 

Data from a total of 117 YOY G. galeus stomach samples were re-analysed; 64 from 

FHB and 53 from UPW.  Teleosts were the main prey at both sites (IRI = 81-84%) 

followed by cephalopods (12%), however crustaceans were slightly more important in 

UPW (7%) than FHB (4%) (Table 4.4). 
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Table 4.4  Dietary composition of YOY G. galeus sampled during summer 1991 – 1992.  n = number of sharks containing prey, 
percentage of weight (%W), percentage of number counted (%N), frequency of occurrence (%FO), and index of relative 
importance (%IRI). 

Prey Upper Pitt Water (n = 53) Frederick Henry Bay (n = 64) 

%W %N %FO %IRI %W %N %FO %IRI 

Cephalopoda 17.24 23.81 24.19 11.52 14.50 25.00 27.45 11.87 

Loliolus noctiluca - - - - 5.02 1.32 1.96 0.27 
Unid cephalopod 17.24 23.81 24.19 24.33 9.48 23.68 25.49 18.06 

Crustacea 2.84 24.34 22.58 7.12 1.93 18.42 17.65 3.93 

Isopoda - - - - 0.01 1.32 1.96 0.06 
Amphipoda - 3.17 1.61 0.13 0.22 5.26 5.88 0.69 
Unid crustacean 2.84 21.16 20.97 12.33 1.70 11.84 9.80 2.84 

Teleostii 79.92 51.85 53.23 81.36 83.57 56.58 54.90 84.20 

Arenigobius bifrenatus 20.25 17.99 14.52 13.60 - - - - 
Atherinidae - - - - 0.27 1.32 1.96 0.07 
Atherinosoma microstoma 5.28 2.12 1.61 0.29 1.53 5.26 5.88 0.85 
Engraulis australis 8.77 2.12 3.23 0.86 - - - - 
Platycephalidae 2.77 1.06 1.61 0.15 8.31 1.32 1.96 0.40 
Rhombosolea tapirina 1.84 2.12 3.23 0.31 - - - - 
Silaginidae - - - - 29.29 6.58 5.88 4.51 
Unid teleosts 41.02 26.46 29.03 48.00 44.18 42.11 39.22 72.27 
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4.5 Discussion 

Differences in δ13C and δ15N between YOY G. galeus captured in Tasmanian estuarine 

and coastal waters supports our hypothesis of a potential separation of natal birth sites 

for this species in the shark refuge areas.  In general, YOY from the coastal waters of 

FHB had lower δ13C and δ15N than those captured in UPW which was in agreement 

with baseline δ13C signatures of macroalgae collected at each site.  If all YOY G. galeus 

sampled were born in the same area, either UPW or FHB, and they were moving 

between sites, isotope signatures of their tissues should have been overlapping 

irrespective of where they were caught, particularly during the peak pupping season in 

summer.  These results therefore confirm historical reports that pupping occurs in UPW 

(Olsen, 1954; Stevens and West, 1997), however, it also suggests that G. galeus 

pupping is probably more widely dispersed throughout other areas within the shark 

refuge area than previously thought. 

Isotope turnover in shark tissue is relatively slow (up to 2-years) (Malpica-Cruz et al., 

2012), therefore as YOY G. galeus were collected on consecutive days in UPW and 

FHB it is unlikely that their tissue would have assimilated a new isotopic baseline if 

they had moved between sites.  This may explain the lower δ13C in YOY from FHB and 

suggests that newborn individuals rarely move into UPW if they are born in FHB.  

Previous studies have demonstrated that isotope signatures will strongly overlap when 

species regularly move between isotopic gradients.  For example Atlantic salmon 

(Salmo salar) parr which made repeated forays between the Little Southwest Miramichi 

River and Otter Brook were shown to have an intermediate mean δ13C signature in 

contrast to that of parr which had high site fidelity to each site and as a result isotope 

signatures consistent with being long-term residents in either system (Cunjak et al., 

2005).  Acoustic tracking indicated that YOY G. galeus had strong fidelity to UPW (i.e. 

3-4 months), suggesting they have small home ranges, do not move long-distances 

initially, and forage close to their birth site.  If these characteristics are typical of 

newborn G. galeus elsewhere in the SRA then it is most likely that they do not move 

between sites but instead remain close to their birth site for an extended duration (i.e. 

first 3-6 months).   
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Enriched δ13C is generally associated with inshore and estuarine waters which derive 

much of their nutrients and organic matter from benthic food-webs, in contrast to 

coastal and oceanic waters which have food-webs primarily based on plankton (Fry et 

al., 1983; France, 1995).  Similarly, seagrass and other aquatic macrophytes typically 

associated with inshore marine environments are generally higher in δ13C than 

planktonic producers (Clementz and Koch, 2001) and δ15N is typically more enriched in 

inshore waters close to urban areas due to pollutants and/or agricultural runoff 

(Costanzo et al., 2003).  UPW is characterised by areas of patchy seagrass (Mount et 

al., 2005) and nutrient sources from sewage treatment plants and agricultural runoff 

(Davies et al., 2002), most likely explains the enrichment of primary producer δ15N 

compared to coastal waters of FHB.  Studies have shown that lower order consumers 

such as invertebrates and small fish which feed and reside in these systems will 

generally reflect the isotopic enrichment of estuaries (Paterson and Whitfield, 1997; 

Leakey et al., 2008).  Historically the diet of G. galeus was similar between UPW and 

FHB, comprised almost exclusively of teleosts.  Therefore, assuming diet hasn’t 

significantly changed since the 1990s and there is little movement of prey species 

between UPW and FHB, it is unlikely that dietary differences are the reason for the lack 

of isotope overlap but rather different carbon sources and/or pollutants affecting δ15N of 

primary producers between the two regions. 

However, one caveat to low overlap in isotope signatures of YOY G. galeus between 

UPW and FHB is that there may have been some pre-capture movement between sites 

immediately after birth which isotope analysis would not detect as individuals would 

not have spent enough time in their birth site to accumulate that area’s signature in their 

tissue.  Given that acoustic tracking implied YOY G. galeus have small home ranges it 

seems unlikely that there would have been any major movement or dispersal behaviours 

prior to sampling.  For example,  acoustic tagged YOY blacktip sharks (Carcharhinus 

limbatus) demonstrated small home ranges in the weeks following parturition which 

was characterised by strong site fidelity and limited movement within a nursery area 

(Heupel et al., 2004).  The lack of migration into UPW from FHB is further supported 

by conventional tagging of YOY G. galeus in FHB during the years 1947-56 (n = 4) and 

1991-92 (n = 152) which re-captured tagged animals close to their tagging site (i.e. 

FHB) but never in UPW (Olsen, 1954; Stevens and West, 1997). 
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Maternal meddling (i.e. the transfer of maternal reserves and subsequent isotope 

signatures between mother and young) may also influence the isotope signature of their 

offspring and interpretation of isotope data in young sharks (McMeans et al., 2009; Olin 

et al., 2011).  Reproduction in G. galeus is via aplacental viviparity (i.e. embryos 

develop inside the uterus but all nutrition is provided via unfertilised ovum and each 

other, before they emerge as live young ca. 28-35 cm TL) (Ripley, 1946; Camhi et al., 

2009).  In the few studies that have examined maternal meddling in neonate and YOY 

sharks most report enriched isotope signatures and a loss of that signature in YOY over 

time and increasing size (McMeans et al., 2009; Olin et al., 2011).  For example YOY 

Atlantic sharpnose shark Rhizoprionodon terraenovae at birth are likely to have higher 

δ13C and δ15N values than their parents and older YOY whose postpartum feeding 

habits have restructured their isotope profiles to reflect their postembryonic diet 

(McMeans et al., 2009).  However, YOY G. galeus were significantly lower in δ13C and 

δ15N compared to adults therefore implying that YOY had already lost the majority of 

their paternal signature and were now incorporating the isotope signature of their 

respective inshore birth sites.  If maternal meddling was occurring then the isotope 

signature of YOY should have been more enriched and similar to that of adults, and 

largely overlap between YOY from both sites.  However, it must be noted that only a 

small number adult females were collected in this study (n = 5).  Incorporating a larger 

sample size of females and from within the nursery area at the time of pupping may be 

more appropriate before discounting the maternal influence on YOY isotope signatures. 

Effective protection of essential habitats such as birthing areas requires a sound 

understanding of their distribution so that more focused management strategies can be 

implemented (Hobson, 1999; Webster and Peter 2005).  In this study, stable isotopes 

were used to identify a much broader distribution of pupping habitats in a historically 

important nursery area for G. galeus which are then used for an extended duration post-

parturition.  The use of stable isotope analysis for YOY captured elsewhere may 

therefore help in broadening our understanding of alternative pupping sites both within 

and outside the refuge area. 

Given the anthropogenic degradation and loss of other historically important nursery 

habitats elsewhere such as in Port Phillip Bay, Victoria (McLoughlin, 2008) and the 
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subsequent declines in newborn G. galeus, nursery areas and their associated pupping 

grounds identified in this study may be critical to the viability of the greater G. galeus 

population.  Although fisheries management strategies such as gear restrictions afford 

some protection to the pupping areas in UPW, different management approaches may 

be required to encompass and protect the broader distribution of pupping areas 

identified in FHB from anthropogenic disturbance.  For example, expansion of finfish 

aquaculture farming in Norfolk Bay (DPIPWE, 2014) and irrigation schemes in the 

UPW catchment (Tasmanian Irrigation, 2013) both have the potential to influence the 

quality and quantity of available pupping habitats.  Moreover permitted fishing 

practices such as gill netting in FHB may cause significant incidental mortality to 

pregnant G. galeus using these areas to give birth to their young (Williams and Schaap, 

1992; Lyle et al., 2014).  The greater understanding of these important pupping habitats 

has therefore provided managers with greater empirical evidence that will help in their 

decision making for better conservation outcomes and the continued recovery of G. 

galeus. 
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5.1 Abstract 

Determining interactions between animals such as how they shares resources and space 

is central to understanding ecosystem dynamics and is critical in the development of 

effective conservation strategies.  Acoustic telemetry in conjunction with stable isotope 

analysis was used to examine how multiple chondrichthyans (i.e. sharks, rays and 

chimeras) and a common teleost utilise an important shark nursery area, and the 

mechanisms that enable multiple species to coexist in an environment with limited 

predation risk.  Animals utilised largely the same overall area and were most often 

associated with deeper habitats, however, stable isotopes revealed possible dietary 

dissimilarities which suggest dietary partitioning facilitates habitat sharing between 

animals in the nursery area.  In contrast, high dietary overlap between some species 

suggest that their prey species may not be limiting, however, acoustic tracking revealed 

that these species often foraged in different habitats resulting in reduced competition.  

These results demonstrate that resource partitioning strategies play an important role 

shaping the dynamics of shared environments used by multiple species, ecological 

mechanisms that must be maintained in developing strategies to enhance the recovery of 

overfished populations.  
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5.2 Introduction 

Ecosystem structure is often determined by community interactions and the various 

ways in which organisms respond to competition and predation (Holt, 1977; Sih et al., 

1985; Cherrett and Bradshaw, 1989).  For example, competition between animals with 

similar dietary niches can lead to animals occupying different habitats in a common 

environment in order to coexist, i.e. resource partitioning (Schoener, 1974).  Similarly, 

risks imposed by predators may also cause prey to reside or forage in habitats where 

there are lower predation risks but potentially fewer resources (Glasser, 1979; Dupuch 

et al., 2009; Wirsing et al., 2010).  Competition and predation can also occur in unison 

and it is thought that increased competition resulting from the re-distribution of prey 

avoiding areas of higher predation risk is a major driver of resource partitioning and 

coexistence between animals (Chase et al., 2002; Werner and Peacor, 2003).  Therefore 

determining trophic interactions between species and the ways in which animals move 

and share common environments is essential to understanding how competition and 

predation influence community dynamics. 

Competition and predation may also play an important role in determining the 

effectiveness of ecosystem-based management decisions (Hixon and Jones, 2005).  For 

example, the removal of large numbers of predatory fishes from a population is thought 

to be partly responsible for the slow recovery of some species which have suffered 

significant overfishing such as Newfoundland Atlantic cod (Gadus morhua) (Swain and 

Sinclair, 2000; Walters and Kitchell, 2001) and rock lobsters (Jasus lalandii) (Barkai 

and McQuaid, 1988) because of the increased competition between their juvenile 

offspring and the greater numbers of juveniles of other competing species resulting 

from the reduced predation pressures.  Therefore, knowledge of how multiple species 

interact and respond to competition and predation is essential to understanding how 

ecosystems are structured and function in response to anthropogenic disturbance.  This 

can be used to make informed decisions regarding the development and implementation 

of effective ecosystem-based management strategies (Walters and Kitchell, 2001; Dill et 

al., 2003; Baskett et al., 2006).  



 

91 

 

Many marine species use shallow coastal waters as nursery areas during early life stages 

as they are thought to provide ample food resources and protection from predation 

(Springer, 1967; Branstetter, 1990; Simpfendorfer and Milward, 1993; Beck et al., 

2001a; Beck et al., 2001b).  Therefore indentifying and protecting nursery areas has 

formed an essential component of shark (Bethea et al., 2007; e.g. AFMA, 2009) and 

teleost (e.g. Benaka, 1999) recovery strategies.  However there is emerging evidence 

that nursery areas are more resource limited than previously thought and competition 

likely plays an important role in structuring these communities, particularly those used 

by sharks (Bush and Holland, 2002; Baker and Sheaves, 2007; Heupel et al., 2007).  

With the advent of modern electronic tracking tools such as acoustic telemetry and 

trophic analytical methods such as stable isotope analysis, there has been an increased 

effort to further improve our understanding of how competition, predation, and resource 

partitioning structure multi-species marine communities, including nursery areas (e.g. 

DeAngelis et al., 2008; Kinney et al., 2011; Speed et al., 2011). 

In Tasmania, Australia, a network of Shark Refuge Areas (SRAs) was established in the 

1960s to protect the nursery grounds of school sharks (Galeorhinus galeus) in response 

to significant catch declines in the Southern and Eastern Scalefish and Shark Fishery 

(SESSF) (Kinney and Simpfendorfer, 2009).  Recent stock assessments suggest the G. 

galeus population may have stabilised, although still at 9-14% of virgin biomass, and 

nurseries have been identified as important to stock rebuilding (AFMA, 2009).  In 

addition to G. galeus, these areas also support multiple chondrichthyan (i.e. sharks, rays 

and chimeras) and teleost (i.e. bony fishes) species (Stevens and West, 1997; Barnett 

and Semmens, 2012).  Given the diversity of chondrichthyans and teleosts found in 

these SRAs, it is likely that competition, predation, and resource sharing all play a role 

in structuring the dynamics of these areas.  However there has been no examination of 

the fine-scale habitat use and foraging behaviours of the chondrichthyan and teleost 

assemblages in these areas to understand the interactions and mechanisms that enable 

species to partition resources and co-occur.  Coexistence within communal 

chondrichthyan assemblages is often demonstrated by dietary (e.g. Bethea et al., 2004; 

Papastamatiou et al., 2006) and habitat partitioning (e.g. White and Potter, 2004; 

DeAngelis et al., 2008) between species, however, there is limited evidence of these 

behaviours occurring in unison or between chondricthyans and teleosts (e.g. Kinney et 
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al., 2011).  This study used a multi-methods approach to investigate competitive 

interactions between young-of-the-year (YOY) G. galeus, six other chondrichthyans 

(two sharks, one chimaera and three batoids), and the sand flathead (Platycephalus 

bassensis), a common predatory teleost in the area.  Given the importance of SRAs in 

Tasmania for recovery of G. galeus and the possible competition and predation that 

occurs in these areas, this study elucidates the role of resource partitioning in shaping 

SRA dynamics and the impact this may have on the recovery of the G. galeus 

population.  

5.3 Methods 

5.3.1 Study site 

Upper Pitt Water (UPW) is a shallow (~4 m average depth) estuary located in southeast 

Tasmania, Australia (42° 47.91′S, 147° 30.56′E; Fig. 5.1), and is comprised of mostly 

intertidal sand flats and a deep central channel (~8 m deep) (20 km2).  The main source 

of freshwater input is from the Coal River, after which UPW drains into Lower Pitt 

Water (LPW) through a manmade road causeway where it eventually enters into 

Frederick Henry Bay (FHB).  UPW supports a number of oyster farms and is part of the 

Frederick Henry and Norfolk Bay Shark Refuge Area (SRA).  Recreational fishing for 

teleosts and chimeras (i.e. elephant fish Callorhinchus milii) is allowed in the SRA 

however the removal of elasmobranchs (i.e. sharks and rays) is not permitted (DPIPWE, 

2013). 

A VEMCO Positioning System (VPS, Vemco Canada) was deployed to monitor the 

presence and movements of chondrichthyans and teleosts implanted with acoustic tags 

in UPW.  The VPS consisted of 14 acoustic receivers (VR2W, Vemco Canada) 

deployed in a grid of equilateral triangles such that the detection range of receivers 

overlapped (Fig. 5.1).  Range testing was conducted prior to deployment of receivers 

and acoustic transmitters, and determined an optimum distance between receivers of 

350 m which allowed for simultaneous detections by three or more receivers.  Receivers 

were deployed in depths of 3-9 m (~4 m average) and were secured to a concrete filled 

tyre and vertical steel pole which supported the receiver at 1.5 m from the seafloor.  A 
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synchronising transmitter or “sync tag” with a nominal transmission delay of 600s was 

moored approximately 1 m above each receiver to synchronise the internal clocks of 

receivers.  Three additional sync tags were deployed at fixed locations to help measure 

system performance (Fig. 5.1).  This array ensured tag transmissions were detected by 

at least three receivers, the difference in the timing of arrival of an acoustic ping at each 

receiver being used to triangulate a tagged animal’s position.  The array covered an area 

of approximately 1.8 km2 and was deployed on 6th January 2012 and recorded data until 

22nd May 2013.  The site of the VPS array in UPW (Fig. 5.1) was chosen based on 

previous information suggesting high occurrence of chondrichthyans (Stevens and West 

1997; R Daley pers. comm.).  Three additional acoustic receivers were placed in UPW 

to monitor tagged animals outside the VPS (Fig. 5.1).   

 

 
 

Figure 5.1 Map of study area showing VPS array in Upper Pitt Water (UPW) in south east Tasmania. 
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5.3.2 Animal collection and acoustic tagging 

Chondrichthyans and P. bassensis were captured using bottom set baited longlines and 

internally fitted with individually coded acoustic tags (see Table 5.1 for tag details).  

Longlines consisted of a 210 m, 6 mm lead core rope to which 50 stainless steel wire 

snoods with hooks (7x7 stainless steel wire, 160 lb breaking strain, Mustard #8260 size 

5/0 hook) were attached at 4 m intervals using 100 mm swivel shark snap clips.  Hooks 

were baited with squid.  Longlines were set at four fixed locations in UPW (Fig. 5.1) 

between 0700 and 0730 hours and were hauled between 0800 and 1000 hours.  Lines 

were typically deployed for 1 – 2 hours.   

In total 203 animals were acoustically tagged: 55 G. galeus, 24 gummy shark (Mustelus 

antarcticus), seven broadnose sevengill sharks (Notorynchus cepedianus) (sharks); 42 

C. milii (chimera); 31 P. bassensis (teleost); seven Melbourne skate (Spiniraja whitleyi), 

16 smooth stingray (Dasyatis brevicaudata), and 21 southern eagle ray (Myliobatis 

tenuicaudatus) (batoids).  Based on mean size-at-birth ranges for each species (Last and 

Stevens, 2009), 95% of G. galeus were considered young-of-the-year (YOY) whereas 

for most other species, with the exception of one YOY M. antarcticus, individuals were 

classed as sub-adults or adults (Table 5.2).  Notorynchus cepedianus represent the main 

predator the study system, with previous dietary analysis demonstrating they consume 

all the other species (Barnett et al., 2010a). 

Upon collection, total length (TL, cm) of all animals and disc width of batoids (DW, 

cm) was measured and the sex of chondrichthyans recorded.  Prior to tag insertion 

surgery, chondrichthyans were either placed on a padded cradle or held by another 

person while running water was pumped over their gills, whereas P. bassensis were 

anaesthetised in a seawater bath of Aqui-STM (0.03 ml·L-1).  Acoustic tags were then 

internally inserted in the peritoneal cavity of the animal by making a 1-2 cm incision in 

the abdominal wall with a scalpel, and the incision closed using surgical sutures (Braun 

Safil® HS26s).  Aseptic techniques were used during all stages of the surgery.  Surgical 

procedures took no longer than 2-5 minutes to complete.  Following surgery, 

chondrichthyans were held in the water on the side of the boat until they could swim 

unassisted whereas P. bassensis were held in an aerated container of seawater until they 

fully recovered from the anaesthetic, prior to being released back into the water in the 
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middle of the VPS array.  Animals were tagged between January 2012 and May 2012, 

and again between December 2012 and April 2013. 

5.3.3 Stable isotope tissue collection and preparation 

Muscle samples for stable isotope analyses were collected between January 2012 and 

May 2012.  Samples were taken from the dorsal flank with a 6 mm diameter biopsy 

punch and immediately placed on ice and later frozen at -30°C until analysis.  Biopsy 

puncher wounds were treated with antiseptic cream (Betadine®) prior to the animal 

being returned to the water alive.  Tissue samples were prepared and analysed for δ13C 

and δ15N following the same procedures detailed in Chapter 4. 

5.3.4 Data analysis 

VPS position fixes (latitude and longitude) were derived using Vemco VPS software 

(Vemco, Canada).  Each position was given a horizontal position error (HPE) which is 

based on the error sensitivity of the receiver array, calibrated to the local environmental 

conditions.  Only positions where HPE was <15 m at dawn and dusk were included in 

analyses.  Dawn and dusk were defined as 1 hour before and 1 hour after the predicted 

sunrise and sunset times for a given day obtained from the Bureau of Meteorology, 

Australia (www.bom.gov.au).  Animal positions were examined at dawn and dusk to 

observe spatial overlap between species at times when they were most likely to be 

feeding, as these are times when many animals show diel patterns of increased activity 

which are often associated with foraging (Conover, 2010) particularly in sharks (Carrier 

et al., 2010).  Animal positions were used to estimate Kernel Utilisation Densities 

(KUD) to determine spatial use of the VPS habitats, with the 95% fixed kernel 

representing the overall habitat use and the 50% fixed kernel the core use area.  KUD 

were estimated using the bivariate normal density kernel in the adehabitatHR package 

(Home Range Estimation in R; Calenge, 2011) in R statistical computing package (R 

Development Core Team, 2013).  The Utilisation Density Overlap Index (UDOI) was 

then calculated to determine the KUD overlap between species using the adehabitatHR 

package in R.  The degree of overlap is generally represented by values between 0 (no 

overlap) and 1, (100% overlap), however UDOIs can be >1 when KUDs are non-

uniformly distributed and have a high degree of overlap (Fieberg and Kochanny, 2005). 
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Individual VPS positions were also assigned a habitat category based on depth and 

location within UPW to test for habitat selection (wi) (Fig. 5.1).  The habitats ranged 

from the shallow sand flats (flats, 17% of area covered by the VPS), to the drop-off 

(edge; 10%) into the main basin (basin, 70%) and deepest part of UPW (channel; 3%).  

Selection for each habitat was determined using a log-likelihood test (χ2) in the 

adehabitatHS package (Exploratory Analysis of the Habitat Selection by Wildlife in R; 

Calenge 2011) in R.  Selection ratios >1 indicate a preference for a particular habitat 

whereas values <1 indicate avoidance. 

Residency patterns and seasonal use of UPW was determined by visually examining a 

plot of daily detections for animals that were fitted with acoustic tags with a battery 

life >71 days and were detected by any receiver in UPW (including VPS receivers).  

Residency within the VPS area was determined for animals that were fitted with 

acoustic tags with a battery life >71 days and had at least one VPS position (i.e. 

simultaneously detected by >3 VPS receivers).  Additional acoustic data from another 

related study in LPW and FHB was also included to examine if tagged animals had 

moved out of UPW (J. McAllister unpublished data).  Mean site fidelity in UPW or 

within the VPS (% of time animals spent within UPW or the VPS array) was 

determined by dividing the total number of days an individual was detected in UPW or 

positioned within the VPS, by either the battery duration of the tag or the number of 

days that animal had been at liberty depending on which fell first, respectively.  In 

addition, all seasonal longline catch data from UPW between 2012 and 2013 was 

pooled and Kruskal-Wallis non parametric tests (α = 0.01) used to determine seasonal 

differences in catch per unit effort (CPUE) for all species.  CPUE was defined as the 

number of sharks captured per hook hour. 

To investigate dietary overlap, the isotopic niches of each species were quantified based 

on sample size corrected Bayesian standard ellipse areas (SEAC; expressed in ‰2) along 

with the degree of overlap in SEAC.  SEAC and overlap were calculated using the 

SIBER package (Stable Isotope Bayesian Ellipses in R; Jackson et al., 2011) of Stable 

Isotope Analysis in R (SIAR; Parnell et al., 2008; Parnell et al., 2010).  SEAs are 

comparable to univariate standard deviations but are less affected by uneven sample 
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group sizes, therefore allowing for more reliable comparisons of isotopic niche between 

communities (Jackson et al., 2011). 

Due to capturing no N. cepedianus, S. whitleyi or D. brevicaudata, and insufficient M. 

tenuicaudatus (n = 1) from UPW for muscle samples, data was supplemented with 

stable isotope data collected for these species during a previous study in Norfolk Bay 

(42° 59.94′S, 147° 47.15′E), a sheltered embayment connected to Pitt Water through 

Frederick Henry Bay (FHB) (42° 55.4′S, 147° 36.5′E), during 2009 (Abrantes and 

Barnett, 2011).  Sufficient data (i.e. >2 samples) was available to calculate SEAC for N. 

cepedianus and S. whitleyi and include in overlap analysis, whereas D. brevicaudata 

and M. tenuicaudatus were used for qualitative analysis only (i.e. one sample each). 

5.4 Results 

5.4.1 Habitat use 

Most animals were detected at multiple receivers in UPW for an average of 22% of their 

time at liberty (Table 5.1), however, four C. milii remained in a stationary position 

within the VPS array for the duration of the study.  These animals most likely died and 

were therefore excluded from further analysis.  Overall, there was a clear seasonal use 

of UPW and areas within the VPS array (Fig. 5.2).  Typically animals were detected for 

most of summer/autumn (January to May) in UPW and the VPS before moving into 

FHB in winter (Fig. 5.2).  However, species variations in this pattern were evident, 

particularly for C. milii and M. antarcticus which regularly moved between UPW to 

FHB during summer and autumn (Fig. 5.2).  For all other species other than G. galeus, 

with the exception two C. milii and two P. bassensis, animals tagged in 2012 that left 

UPW during winter returned to UPW between spring 2012 and autumn 2013 (Fig. 5.2).  

For most G. galeus (43 of 45 tagged) however, no individuals returned to UPW after 

departing the estuary. 

Seasonal occurrence in UPW was also reflected in seasonal longline catches, with G. 

galeus, C. milii, and P. bassensis showing significant seasonal differences in CPUE (p < 

0.01).  This was mostly attributed to higher catches during summer and autumn, nil 

catches in winter and lower catches during spring (Fig. 5.3).  Catches did not vary 
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significantly between seasons for M. antarcticus (χ2 = 8.7, d.f. = 3, p = 0.03), N. 

cepedianus (χ2 = 9.8, d.f. = 3, p = 0.02), S. whitleyi (χ2 = 6.2, d.f. = 3, p = 0.1), D. 

brevicaudata (χ2 = 7.9, d.f. = 3, p = 0.05) or M. tenuicaudatus (χ2 = 3.2, d.f. = 3, p = 0.4).  

Galeorhinus galeus and P. bassensis dominated catches in most seasons whereas N. 

cepedianus, D. brevicaudata and S. whitelyi had the lowest catch rates (CPUE <0.01 

sharks × hook × hr-1) of the remaining species in all seasons (Fig. 5.3). 

A total of 57654 positions (<15 m HPE) were estimated using the VPS.  Of the 203 

animals tagged, more than five VPS positions were estimated for 34 G. galeus, 21 C. 

milii, four M. antarcticus, eight P. bassensis, four N. cepedianus, four S. whitleyi, seven 

D. brevicaudata, and five M. tenuicaudatus and were included in UDOI and depth 

selection analysis.  Overall, animals were positioned in the VPS for an average of 9% 

their time at liberty (Table 5.1).  In addition, these same animals were also detected at 

UPW receivers outside of the VPS array for 27% of their time at liberty (Table 5.1).  

Overall area use (i.e. 95% KUD) ranged between 0.8 – 1.6 km2 and 1.0 – 3.71 km2 at 

dawn and dusk, respectively.  Average core habitat use (i.e. 50% KUD) area estimates 

ranged between 0.2 – 0.5 km2 and 0.2 – 1.0 km2 at dawn and dusk, respectively and 

mostly corresponded to the basin habitat (Fig. 5.4). 
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Table 5.1 Summary of tracking data for animals fitted with acoustic tags.  In the acoustic tag type column, A, P, L and H indicate accelerometer sensors, 
pressure (depth) sensors, low signal output power and high signal output power, respectively.  Nominal delay is the delay (seconds) between tag transmissions, 
and battery life is the predicted battery life of the tag.  Size ranges represent total length (TL) for sharks, chimeras and teleosts, and disc width (DW) for 
batoids (cm).  Overall UPW fidelity is the mean percentage of days all animals were detected in UPW (including the VPS) during their time at liberty.  For 
animals that recorded VPS positions, tracking duration is the mean number of days an animal was positioned in the VPS array; site fidelity is the percentage 
of days an animal was positioned in the VPS array during its time at liberty, and; UPW fidelity is the percentage of days an animal was detected outside the 
VPS array in UPW during its time at liberty.  Note sensor tags were removed from site fidelity analysis and calculations represent pooled data of the various 
tag types used for each species.  (± s.e. in parenthesis). 

  

Species 
Acoustic 
tag type 

Nominal 
delay 
(sec) 

Battery 
life 
(d) 

Number 
tagged 

Size range 
(mean ± s.e.) 

(cm) 
Sex 

 Overall  VPS positions 

 UPW 
fidelity 
(% d) 

 Tracking 
duration 

(d) 

Site 
fidelity  
(% d) 

UPW 
fidelity 
(%d) 

G. galeus V13 1L 120-180 1336 30 

33-68 
(41±9) 

30 F 
25 M 

 

20 (3) 

 

32 (6) 9 (2) 22 (5)  
V13P 1L 120-180 879 2   

 
V9 2L 120-180 633 6   

 
V9A 2L 120-180 35 17   

             
C. milii V13 1L 120-180 1336 2 

67-96 
(81±13) 

27 F 
15 M 

 

30 (5) 

 

41 (11) 12 (2) 37 (7) 
 

V13A 1L 120-180 71 5   

 
V16 4L 120-180 3650 29   

 
V16 6L 120-180 3650 1   

 
V9A 2L 120-180 35 5   

             
M. antarcticus V13 1L 120-180 1336 8 

34-121 
(94±47) 

7 F 
17 M 

 

13 (2) 

 

13 (4) 3 (1) 23 (7) 
 

V13A 1L 120-180 71 5   

 
V9A 2L 120-180 35 11   
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Table 5.1 continued 

 

P. bassensis V9 2H 190-290 633 10 30-42 
(34±12) 

Unsexed 

 
10 (2) 

 
4 (1) 1 12 (4) 

 
V9A 2L 190-290 35 21   

N. cepedianus V13 1L 120-180 1336 1 

103-209 
(133±14) 

3 F 
4 M 

 

22 (6) 

 

14 (4) 3 (1) 15 (8) 
 

V13A 1L 60-120 68 2   

 
V13A 1L 120-180 71 1   

 
V16 6L 60-120 3650 1   

 
V16 6L 120-180 3650 1   

             
S. whitleyi V16 6L 120-180 3650 7 

62-119 
(89±72) 

4 F 
3 M 

 
58 (14) 

 
20 (10) 22 (8) 75 (8) 

             
D. brevicaudata V16 4L 120-180 3650 1 

49-123 
(79±46) 

5 F 
11 M 

 

24 (3) 

 

7 (2) 3 (1) 22 (5) 
 

V16 6L 120-180 3650 11   

 
V9 2L 120-180 633 4   

             
M. tenuicaudatus V16 6L 120-180 3650 7 

52-105 
(81±25) 

4 F 
17 M 

 

27 (4) 

 

20 (8) 4 (2) 36 (5) 
 

V13P 1L 120-180 879 7   

 
V9A 2L 190-290 35 7   

Total 
   

203    22 (2)  27 (4) 9 (1) 28 (3) 



 

 

 

101 

 

Figure 5.2 Abacus plot showing the daily detections for each individual of each species between January 2012 
and May 2013.  Each line represents an individual.  Black dots represent positions in the VPS, light grey 
represents detections outside the VPS array in UPW, and dark grey are detections by receivers in LPW and FHB. 
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Figure 5.3 Seasonal catch per unit effort (mean CPUE ± s.e.) of chondrichthyans and P. bassensis caught 
from longlining in UPW. 

Individuals of all species used largely the same overall area (i.e. 95% KUD) (Fig. 5.4) 

which was reflected in the strong overlap between species at dawn and dusk (mean 

UDOI = 0.72 ± 0.19 SD) (Table 5.2).  Core area overlap (i.e. 50% KUD) was equally 

highest between G. galeus and N. cepedianus with all other species (mean UDOI = 0.16) 

(Table 5.2).  Platycephalus bassensis and M. tenuicaudatus had the lowest core habitat 

overlap with all other species (mean UDOI = 0.05 – 0.09) (Table 5.2).  There was 

generally very little overlap in the use of core areas compared to overall habitat use 

(UDOI < 0.2) (Table 5.2), with each species appearing to utilise their own discrete areas, 

particularly at dawn (Fig. 5.4). 

The basin habitat was most commonly utilised by all species, however, sharks, C. milii 

and P. bassensis had the strongest (i.e. wi > 1) selection for the channel habitat at both 

dawn (χ2 = 438.8, d.f. = 13, p < 0.01) and dusk (χ2 = 936.1, d.f. = 17, p < 0.01) (Fig. 5.5).  
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There was also a preference for the edge habitat at dawn by S. whitleyi and P. bassensis 

and at dusk by M. antarcticus, D. brevicaudata, and M. tenuicaudatus (Fig. 5.5). 

 

Figure 5.4 Kernel utilisation distributions (KUDs) showing the overall (95% contour) and core habitat 
(50%) overlap between each species tracked in UPW at dawn and dusk. 
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Table 5.2 Summary of Utilisation Density Overlap Indices (UDOI) for 50% (upper triangle) and 95% 
(lower triangle) kernel utilisation densities (KUD) at dawn and dusk.  * denotes species where <5 animals 
were detected as required for UDOI to be calculated.  Note species names have been abbreviated for 
columns. 

Dawn GG CM MA PB NC SW DB MT 

G. galeus (GG) 
 

0.15 0.12 0.15 0.22 0.15 0.12 0.05 

C. milii (CM) 0.91 
 

0.10 0.11 0.16 0.10 0.04 0.00 

M. antarcticus (MA) 0.62 0.75 
 

0.05 0.18 0.09 0.24 0.02 

P. bassensis (PB) 0.75 0.80 0.52 
 

0.13 0.08 0.06 0.02 

N. cepedianus (NC) 0.84 0.92 0.82 0.68 
 

0.10 0.16 0.01 

S. whitleyi (SW) 0.73 0.75 0.60 0.52 0.65 
 

0.12 0 

D. brevicaudata (DB) 0.64 0.57 0.91 0.49 0.72 0.62 
 

0.01 

M. tenuicaudatus (MT) 0.57 0.32 0.36 0.46 0.27 0.31 0.29 
 

         
Dusk GG CM MA PB NC SW DB MT 

G. galeus (GG) 
 

0.24 0.23 0.17 0.20 0.24 * 0.09 

C. milii (CM) 0.88 
 

0.17 0.10 0.26 0.27 * 0.12 

M. antarcticus (MA) 0.90 0.89 
 

0.09 0.12 0.16 * 0.06 

P. bassensis (PB) 0.84 0.83 0.71 
 

0.08 0.10 * 0.02 

N. cepedianus (NC) 0.94 1 0.85 0.87 
 

0.27 * 0.12 

S. whitleyi (SW) 0.98 1 0.87 0.82 1 
 

* 0.13 

D. brevicaudata (DB) * * * * * * 
 

M. tenuicaudatus (MT) 0.83 0.86 0.82 0.53 0.91 0.94 
  



 

Figure 5.5 Selection index for each habitat category 
positioned in the VPS.  
particular habitat whereas values less than one indicate avoidance.

5.4.2 Trophic niches and niche overlap

Average δ13C values ranged from 

‰ (Table 5.3).  Both δ

differences in prey composition/carbon sources.  

widest range in δ13C, ranging from 

(-16.6 to -14.6 ‰) (Fig. 5.5).  

ranging from 12.2 ‰

Overall, the different species were separated into separate isotopic niches forming 

discrete clusters (Fig. 5.6)

(SEA = 4.9 ‰2), followed by 

smaller and similar SEAs

overlap in isotopic niches between most species captured in UPW 

105 

Selection index for each habitat category (wi ± s.e.) (filled circles and 
  Selection ratios greater than one (dashed line) indicate a preference for a 

particular habitat whereas values less than one indicate avoidance.    

Trophic niches and niche overlap 

C values ranged from -17.6 to -15.5 ‰ and δ15N ranged from 13.8 to 15.9 

(Table 5.3).  Both δ13C and δ15N varied among species (Table 5.3), indicating 

differences in prey composition/carbon sources.  Notorynchus cepedianus

C, ranging from -18.0 ‰ to -13.5 ‰, and P. bassensis

14.6 ‰) (Fig. 5.5).  Mustelus antarcticus had the widest range in δ

‰ to 17.2 ‰, and C. milii had the lowest (12.9 to 14.5 

erent species were separated into separate isotopic niches forming 

Fig. 5.6).  Mustelus antarcticus had the largest

), followed by N. cepedianus (3.3 ‰2), whereas 

ar SEAs (0.7-1.0 ‰2) (Table 5.3; Fig. 5.7). There was no 

isotopic niches between most species captured in UPW 

 

 

filled circles and line) for animals 
Selection ratios greater than one (dashed line) indicate a preference for a 

N ranged from 13.8 to 15.9 

varied among species (Table 5.3), indicating 

Notorynchus cepedianus had the 

P. bassensis had the lowest 

had the widest range in δ15N, 

had the lowest (12.9 to 14.5 ‰) (Fig. 5.6). 

erent species were separated into separate isotopic niches forming 

largest standard ellipse area 

whereas the other species had 

There was no or small 

isotopic niches between most species captured in UPW with the exception of 
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M. antarcticus and P. bassensis (SEA overlap = 0.9 ‰2, corresponding to 19% and 88% 

of the total SEA for M. antarcticus and P. bassensis, respectively) (Table 5.3; Fig. 5.6).  

Isotopic niches of supplementary N. cepedianus samples overlapped with G. galeus 

(0.3 ‰2, corresponding to 29% and 9% of the total SEA of G. galeus and N. cepedianus, 

respectively), M. antarcticus (0.38 ‰2, corresponding to 8% and 12% of the total SEA 

of M. antarcticus and N. cepedianus, respectively) and P. bassensis (0.24 ‰2, 

corresponding to 24% and 7% of the total SEA of P. bassensis and N. cepedianus, 

respectively) (Table 5.3; Fig. 5.6).  Isotopic niches of S. whitleyi overlapped with G. 

galeus (0.29 ‰2, corresponding to 30% and 14% of the total SEA of G. galeus and S. 

whitleyi, respectively) and M. antarcticus (0.34 ‰2, corresponding to 7% and 17% of 

the total SEA of M. antarcticus and S. whitleyi, respectively) (Table 5.3; Fig. 5.6). 

 

Figure 5.6 Stable isotope values (δ13C and δ15N) for each species captured in UPW (solid circles) and NB 
(open circles).  Solid lines are the Bayesian standard ellipses (SEAC),used for comparing isotopic niche 
overlap between species.  Convex hulls (i.e. isotope extent) are also shown for each species (dashed 
lines). 
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Figure 5.7 Density plots showing the credibility intervals of the standard ellipse areas (SEA).  Black 
diamonds are the mode SEA, and the shaded boxes indicate the 50, 75 and 95% credible intervals from 
dark (wide) to light (narrow) grey, respectively.  Black circles are the sample size-corrected SEA (SEAC). 
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Table 5.3 Summary of mean stable isotope values (in ‰; ±s.e.), and sample size corrected standard ellipse areas (SEAc, in ‰2) and 
SEA overlap (‰2) between species.  CM = C. milii, MA = M. antarcticus, PB = P. bassensis, NC = N. cepedianus, and SW = S. 

whitleyi.  *denotes samples from NB. 

Species n 
Size range 
(cm; ±s.e.) 

δ13C δ15N SEAc CM MA PB NC* SW* 

G. galeus 46 35-47 (±1) -17.3 (±0.1) 15.4 (±0.1) 1.03 0 0 0 0.30 0.29 

C. milii 19 60-95 (±3) -17.6 (±0.1) 13.8 (±0.1) 0.67 - 0 0 0 0 

M. antarcticus 15 34-144 (±8) -15.5 (±0.3) 14.0 (±0.4) 4.87 
 

- 0.94 0.38 0.33 

P. bassensis 13 20-41 (±1) -15.7 (±0.2) 14.7 (±0.2) 1.02 
  

- 0.24 0 

N. cepedianus* 40 120-270 (±5) -16.4 (±0.2) 15.9 (±0.1) 3.28 
   

- 0 

S. whitleyi* 6 100-106 (±10) -16.8 (±0.2) 14.2 (±0.3) 2.03     - 

D. brevicaudata* 2 87-88 (±1) -17.5 (±0.3) 12.6 (±0.8) -      

M. tenuicaudatus 1 90 -17.6 13.1 -      
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5.5 Discussion 

The results of this study provide evidence that dietary and spatial partitioning play an 

essential role in allowing multiple species to coexist in a shared environment where 

competition was expected.  With the exception of M. antarcticus and P. bassensis there 

was no overlap in isotopic niches between species indicating that most species are 

foraging on different prey.  Dietary variation may also explain the low overlap in core 

habitat use between species within the VPS if individual prey preferences reside in their 

own unique habitats within UPW.  Dietary partitioning is a common strategy used in 

shared habitats (e.g. DeAngelis et al., 2008; Kinney et al., 2011; Speed et al., 2011) and 

there are emerging views that this may be in response to limited resources (Bethea et 

al., 2004; Kinney et al., 2011).  Whilst the relative abundances and distribution of the 

different prey in UPW are largely unknown, the dissimilarities and low overlap in diet 

between most species suggest certain food resources may be limited.  For example, 

Kinney et al. (2011) suggest that sharks and teleosts occupying a similar trophic level in 

a communal shark nursery reduce competition for possibly limited prey types by 

partitioning on the basis of basal dietary resources and foraging on prey from different 

trophic pathways or carbon sources. 

High trophic niche overlap between M. antarcticus and P. bassensis suggests they are 

either competing for or sharing similar food resources in UPW (Croxall et al., 1999; 

Tinker et al., 2008).  Previous dietary studies indicate both species predominantly 

forage on similar benthic crustaceans in Tasmanian waters, such as mottled shore crabs 

(Paragrapsus gaimardii) (Edgar and Shaw, 1995; Yick et al., 2012).  However, a 

preference for shallower areas by M. antarcticus (i.e. edge habitats) and low spatial 

overlap with P. bassensis indicates that spatial partitioning may be a strategy used to 

alleviate competition for similar prey between these species in UPW.  Competition for 

similar dietary sources is often associated with a spatial segregation in habitat use 

between sharks (Bethea et al., 2004; Papastamatiou et al., 2006; DeAngelis et al., 

2008).  However, of the few studies that have examined resource sharing between 

sharks and teleosts, most report dietary partitioning (e.g. Kinney et al., 2011). 
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Most batoids (i.e. M. tenuicaudatus, S. whitleyi, and D. brevicaudata) also utilised 

shallower edge habitats, more so than other chondrichthyans.  Batoids typically utilise 

shallow habitats for foraging (Vaudo and Heithaus, 2009; Ajemian et al., 2012), and 

there is also some evidence that suggests shallow water may be important for batoid 

thermoregulation (Matern et al., 2000).  Although dietary or stable isotope data are 

required to determine the foraging behaviour of batoids in UPW, the use of shallow 

habitats may be in response to reducing competition with other chondrichthyans with 

similar dietary composition that forage in deeper areas.  In UPW stable isotope data of 

S. whitleyi suggests that there is some trophic niche overlap with G. galeus.  Given that 

dietary studies have shown S. whitleyi also predate on teleosts (Treloar et al., 2007), 

perhaps feeding on teleosts in shallow areas of UPW is a strategy this species uses to 

reduce competition with G. galeus.  Likewise, M. tenuicaudatus and D. brevicaudata 

may also adopt a similar shallow-water foraging behaviour to reduce competition with 

their nearest rivals.  Myliobatis tenuicaudatus and D. brevicaudata diets mostly consist 

of benthic molluscs and crustaceans (Le Port et al., 2008; Sommerville et al., 2011), 

which is similar to the prey of C. milii (Di Giacomo and Perier, 1996) and M. 

antarcticus (Yick et al., 2012).  Although sample sizes are low and were not statistically 

tested, stable isotope data indicates that dietary niches may indeed be similar in UPW 

for these species (Fig. 5.6).  However, the use of shallow habitats by M. tenuicaudatus 

and D. brevicaudata compared to C. milii and M. antarcticus which more frequently 

occurred in deeper areas, further supports some degree of spatial separation is occurring 

for species which feed on similar diets in UPW. 

Overall detections in the VPS were seemingly low (ca. 9% of time at liberty) relative to 

the higher proportion of detections that occurred at receivers in UPW outside the VPS 

array (ca. 28%).  The VPS monitoring site was selected based on previous reports of 

this being an area characterised by high catches of G. galeus and other chondrichthyans 

(Stevens and West 1997; R. Daley pers. comm.).  However, the higher number of 

detections outside of the VPS array suggests that there may be more important habitats 

outside the VPS array in UPW that are preferentially utilised.  Whether animals use 

these alternative areas in UPW in response to reducing competition between species 

with similar diets or because they provide more suitable foraging habitats remains 

unclear.  Understanding the importance of these fringing habitats is essential because 
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their existence could largely contribute to the resource partitioning that is occurring in 

UPW. 

Nurseries are traditionally thought to contain an abundance of resources and low 

predation risks (Springer, 1967; Branstetter, 1990; Simpfendorfer and Milward, 1993; 

Beck et al., 2001a; Beck et al., 2001b).  Therefore, if food resources are limited, then 

perhaps animals “choose” to occupy UPW due to lower predation risks.  Ecological 

theory predicts that animals will generally occupy areas where predation risks are low, 

even if that means foraging in areas where resources are less optimal (Lima and Dill, 

1990; Heithaus et al., 2007).  For example, juvenile scalloped hammerhead sharks 

Sphyrna lewini are thought to reside in Kāne’ohe Bay where food resources are limited, 

resulting in poorer body condition, because predation risks from larger sharks is low 

(Bush and Holland, 2002).  Given that N. cepedianus were not commonly captured 

during seasonal, dedicated longline fishing in UPW using larger hook sizes 

(unpublished data; Stevens and West, 1997), were rarely detected moving into UPW 

(Barnett et al., 2011; Barnett and Semmens, 2012) and were seldom detected during this 

study, dietary partitioning may be the best strategy to avoid competition between 

species in an environment where food may be limited, but the risk of predation is 

relatively lower compared to surrounding areas such as Norfolk Bay where N. 

cepedianus abundances are higher (Barnett et al., 2010c). 

Although predation pressure is probably relatively low, sevengills still occur in UPW 

and have a high spatial overlap with all species, as such the use of deeper areas of UPW 

by most chondrichthyan species could be predator avoidance behaviour during periods 

when small numbers of N. cepedianus move into the estuary.  Indeed, there was a strong 

preference for deeper areas in UPW, particularly around the channel, even though these 

formed a relatively low proportion of areas monitored (ca. 3%).  Barnett and Semmens 

(2012) also found that M. antarcticus and G. galeus selected deeper parts of Norfolk 

Bay, and suggested that animals may opt to use these areas because they provide greater 

escape probability from N. cepedianus in an environment that lacks complex habitat in 

which to hide.  Alternatively, it could be an innate behaviour or the fact that these 

deeper areas may contain greater resource availability (i.e. food) or preferred 

environmental conditions for these chondrichthyans.  Regardless of the reason, the use 
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of deeper areas results in reduced competition for resources in shallow areas with 

batoids.   

Despite stable isotope values indicating dietary partitioning between species, there are 

limitations that should be considered when interpreting these results.  Muscle tissue 

stable isotope composition can reflect chondrichthyan diet for long periods (i.e. up to 18 

months) (MacNeil et al., 2006; Logan and Lutcavage, 2010), so short-term fidelity to 

UPW and movement to surrounding regions (e.g. Lower Pitt Water and Frederick 

Henry Bay) by species such as C. milii and M. antarcticus, means that their stable 

isotope composition may represent a combination of feeding in several areas, in contrast 

to G. galeus which are born in UPW (J. McAllister unpublished data) and have high site 

fidelity.  Likewise, the greater amount of time spent in other habitats within UPW 

outside the VPS array also suggests that preferential utilisation of these habitats may 

also have greater influence on driving isotopic signatures.  In addition, some caution 

should be applied in comparing chondricthyans and teleosts given differences in their 

physiology which may influence the isotopic incorporation rate of tissues and δ15N 

values, such as the retention of urea and Trimethylamine N-oxide (TMAO) by 

chondricthyans (Dale et al., 2011). 

Knowledge of how competition and predation influence the structure of marine 

communities is essential to understanding how management of one species can affect 

the recovery of another when designing ecosystem based conservation strategies (Dill et 

al., 2003; Baskett et al., 2006).  The results of this study suggest that the recovery of G. 

galeus has likely benefited from their diet dissimilarity and ability to coexist with 

species in an environment where there is relatively low predation pressure but 

potentially strong competiton for limited resources.  Despite the lack of competition 

between G. galeus and the other species analysed in this study, research catch data from 

1991-97 (Stevens and West, 1997) indicate there are at least 13 shark and 28 teleost 

species found in UPW.  Although these other species during our study, determining 

their trophic position and spatial behaviour’s would provide an even greater 

understaning on how community ecology affects the recovery of G. galeus.  For 

example, dietary analysis of the white-spotted spurdog Squalus acanthias captured in 

NB indicate they prey on small benthic teleosts such as gobies (Yick et al., 2012), an 
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important component of YOY G. galeus diet (Stevens and West, 1997).  Stable isotope 

analysis also indicates that S. acanthias occupy a similar trophic position to G. galeus in 

these areas (Abrantes and Barnett, 2011), suggesting competition would result from 

increased numbers of S. acanthias in UPW, potentially impacting on G. galeus. 

The empirical data gathered in this study has provided an understanding of dietary and 

habitat partitioning that enables resource sharing in habitats shared by multiple species.  

Ecological theory would suggest that given the reduced predation threat from N. 

cepedianus compared to adjoining bays, there would be strong competition for 

resources between species.  However, this study suggests that dietary and resource 

partitioning plays a role in reducing competition between chondrichthyans and teleosts 

in multi-species shark assemblages.  In the case of G. galeus in UPW, partitioning 

resources with competing species such as S. whitleyi is likely key to maximising YOY 

survival in these areas.  For a species currently undergoing a rebuilding process after 

decades of overfishing (AFMA, 2009), protecting functional sources of recruitment will 

form a fundamental step in their rebuilding process.  Therefore knowledge of key 

behaviours such as dietary and habitat partitioning contributes to an understanding of 

how communities naturally maintain ecosystem function.  Such knowledge provides 

critical information as to how ecosystem function may respond to the potential 

consequences of anthropogenic disturbance which will help in the development of 

effective ecosystem based management of areas important to species recovery and 

conservation. 
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6 

6 General Discussion 

6.1 Synthesis of main results 

Spatial management based on the implementation of no-take area closures such as 

marine reserves is becoming an increasingly popular component of the management 

framework for the conservation and protection of overexploited species (Gell and 

Roberts, 2003; Halpern, 2003; Hilborn et al., 2004b; Russ et al., 2004; Roberts et al., 

2005).  Therefore, evaluating the effectiveness of spatial management in helping to re-

build overfished populations and meet conservation objectives is an essential 

requirement (Roberts, 2000; Halpern, 2003; Sobel and Dahlgren, 2004; Gaines et al., 

2010).  The re-examination and presence of Galeorhinus galeus in the protected Shark 

Refuge Areas (SRAs) in south east Tasmania (Chapter 2) confirms that these areas 

represent an important habitat used for this species.  Furthermore the as high or higher 

numbers of young-of-the-year (YOY) in UPW compared to the 1990s provides signs 

that re-building and recovery may be occurring in the G. galeus population. 

Shark refuge areas were established to protect the nursery grounds of G. galeus based 

on evidence derived from extensive life history studies of pregnant females and the 

capture of mostly YOY in these areas during the 1940s (Olsen, 1954; Walker, 1999).  

Conventional mark-recapture studies have provided some understanding of migratory 

patterns and connectivity between nursery areas and the broader population (Olsen, 

1954; Stevens and West, 1997; Walker et al., 1999; Punt et al., 2000a), however, 

knowledge of the spatial and temporal utilisation of nursery areas by YOY and juvenile 

General Discussion 
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G. galeus has been scarce, limiting our understanding of the functional role of these 

areas during their early life history in addition to the ecological role of sharks within 

these areas.  Indeed the functional role of many areas utilised by sharks is still poorly 

understood due to the limitations and difficulties of studying these often highly mobile 

animals (Heupel et al., 2007).  Only recently have studies begun to between understand 

the importance of shark nursery areas and their connectivity to adult populations (Yates 

et al., 2008; Froeschke et al., 2010).  This study provides new information and greater 

understanding of the movement behaviours and functional role of SRAs and shark 

nursery areas for G. galeus and a range of other chondrichthyan species. 

Nursery areas serve many functions, providing important habitats for reproduction 

(Castro, 1993), foraging (Bethea et al., 2004; Barnett and Semmens, 2012), and refuge 

from predation (Heupel and Hueter, 2002; Heupel and Simpfendorfer, 2005a; 

Wetherbee et al., 2007).  The presence of mostly YOY G. galeus, particularly in upper 

Pitt Water (UPW), supports historical evidence that this area functions as an important 

pupping and natal area for this species (Olsen, 1954) (Chapter 2).  Significant variations 

in the stable isotope composition of muscle tissue from similar size YOY captured in 

Frederick Henry Bay (FHB) also suggests that pupping is probably more widespread 

and extends throughout the SRAs in southeast Tasmania (Chapter 4).  Traditional 

nursery area paradigms would suggest UPW is an ideal pupping site for G. galeus given 

its shallow, warm, turbid water, and low predator abundance (Springer, 1967; Heupel et 

al., 2007): the occurrence of pupping in FHB was unexpected given its opposing 

environmental and ecological conditions.  Multiple spawning or breeding sites are 

thought to represent a bet-hedging strategy used by animals to maximise reproductive 

success by accounting for environmental variability, intra-specific competition between 

offspring and risks of predation (Crean and Marshall, 2009; Nevoux et al., 2010; 

Refsnider and Janzen, 2010).  In the case of G. galeus, the use of multiple pupping sites 

may represent a strategy to reduce intra-specific competition for food and risk of 

predation if large concentrations of YOY are present in small discrete areas such as 

UPW.  Therefore, although G. galeus largely use UPW specifically for pupping, 

maximum reproductive success may be dependent on other areas within SRAs also 

functioning as pupping sites.  



 

116 

 

Ontogenetic changes in movements and habitat use are common among animals and 

typically follow changes in foraging needs, predator avoidance, and reproduction 

(Grubbs, 2010).  Such behaviours are largely responsible for shaping population 

dynamics, inter- and intra-specific interactions, and ecosystem structure and function 

(Morris, 2003).  Therefore knowledge of these behaviours is critical to designing and 

implementing effective management strategies throughout a species life history.  In this 

study, acoustic telemetry demonstrated a clear separation in habitat use between YOY 

and juvenile G. galeus (Chapter 3).  YOY showed strong site fidelity and utilisation of 

the shallow, turbid waters of UPW in their first 3-4 months, and upon leaving UPW 

occupied mostly shallow areas of FHB.  In contrast juveniles rarely entered UPW and 

mostly occupied deeper areas of FHB.  These behaviours and fine scale distributions 

appear largely driven by different life history strategies and suggest SRAs may function 

differently for chondrichthyans at various life stages.  For example, the majority of G. 

galeus may choose to give birth to their offspring in UPW in what appears to be a trade-

off between potentially limited resources (i.e. food) but a lower occurrence of N. 

cepedianus, a major predator of chondrichthyans in these waters (Barnett et al., 2010a) 

(Chapter 5).  In contrast, juvenile G. galeus are able to occupy the deeper, potentially 

riskier habitats of FHB where resources may be more abundant because they may be 

more experienced at avoiding predators (Chapter 3 and 5).  However, given the dynamic 

nature of the estuarine conditions in UPW and the various physiological adaptations that 

chondrichthyans may require to exist in these environments, other factors such as 

ontogenetic tolerances to varying salinity levels (Morrissey and Gruber, 1993; Heupel 

and Simpfendorfer, 2008), may play a role in disparity of habitat choice between YOY 

and juvenile G. galeus and warrants further examination. 

Whilst shark nursery areas typically support neonatal and juvenile sharks, they are 

sometimes seasonally occupied by a diversity of chondrichthyans at various life stages 

(Castro, 1993; Simpfendorfer and Milward, 1993) which often requires complex intra 

and inter-specific interactions that enable individuals to coexist.  A common strategy 

used by animals that occupy similar areas is to partition resources such as food and 

habitat in order to reduce competition and increase survival (Schoener, 1974).  Similarly 

chondrichthyans that move seasonally into UPW, appear to reduce competition by 

either feeding on different prey taxa or foraging in different habitats within the area 
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when species were competing for similar dietary requirements (e.g. gummy sharks 

Mustelus antarcticus and the teleost sand flathead P. bassensis had high diet niche 

overlap but low spatial overlap) (Chapter 5).  Similarly, whilst the separation in the use 

of UPW and FHB, and shallow verse deep areas between YOY and juvenile G. galeus 

may be an innate strategy to reduce predation risks, this spatial partitioning may also be 

important for reducing competition for food (Chapter 3)? 

6.2 Implications for conservation and management 

Perhaps the most significant finding of this study was the earlier than expected 

emigration of YOY G. galeus from SRAs after 1-2 years, much less than the 3-4 years 

determined from historical abundance and tag-recapture studies (Olsen, 1954) (Chapter 

3).  Moreover, Olsen (1954) reported YOY and juveniles returning to these areas after 

winter, particularly into UPW, however, during the course of this study few YOY and 

no juveniles returned, and rarely into UPW (Chapter 3).  Whether these earlier than 

expected emigrations and residency patterns are the result of using a finer resolution 

tracking method (i.e. acoustic telemetry) or represent a change over time in the 

functional role of these SRAs during G. galeus early life history, remains unclear.  

Despite these uncertainties, understanding key movement behaviours such as home 

range and site fidelity are fundamental aspects for effective design and implementation 

of non-take areas (Kramer and Chapman, 1999a; Grüss et al., 2011).  A major criticism 

of many no-take areas is the fact that they provide limited benefit to species which are 

highly mobile and have large home ranges (Gell and Roberts, 2003; Gerber et al., 2003; 

Hilborn et al., 2004b).  Indeed the shorter than expected fidelity to SRAs by YOY and 

juvenile G. galeus and their ability to migrate long distances during early life history 

indicates that the protection benefits of these areas are temporally limited.  Increasing 

the size of SRAs to encompass these movements would probably be inappropriate given 

the distances that YOY travelled and the vast areas that would need to be protected to 

cover their home range, further highlighting the difficulty of establishing area closures 

for highly mobile species.  Therefore, although SRAs provide some protection for 

pregnant females and their offspring, effective fisheries management such as size limits, 
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gear restrictions (e.g. mesh size), and catch quotas are critical to minimising incidental 

mortality of juvenile and pregnant G. galeus outside of area closure boundaries. 

In addition to offering protection to pupping adults and the early life history stages, 

being established nursery areas, SRAs may provide an ideal opportunity to 

independently monitor the recovery of chondrichthyan populations.  Fishery 

independent surveys provide valuable and reliable measures of relative stock abundance 

because they are generally less subject to the unknown and often confounding factors 

that make fishery dependant data difficult to interpret (Hilborn and Walters, 1992; 

Musick and Bonfil, 2005).  However, collecting fishery independent data is often 

difficult due to many fisheries no longer targeting species which have been overfished 

(Bonfil, 2004).  In the case of G. galeus the species is now managed as incidental 

bycatch within the fishery since fishers no longer target the species (Huveneers et al., 

2013), thus traditional catch-rate indices of stock abundance are not available and 

alternative methods are required to monitor stock status.  Given the relationship 

between YOY catch rates from research fishing in SRAs and modelled G. galeus stock 

size since the 1940s, monitoring YOY abundances in SRAs may provide an alternative 

method for monitoring trends and recovery in the overall stock (Chapter 2).  Whilst 

some refinement and validation is needed, monitoring YOY catch rates in nursery areas 

represents a relatively cost-effective and less destructive sampling technique that may 

be applicable to other chondrichthyan populations that have no reliable means of 

monitoring stock abundance and recovery. 

Spatial movement behaviours are also a fundamental input for reliable fisheries stock 

assessment modelling as it provides the basis for understanding connectivity between 

populations and estimates of natural mortality (Booth, 2000).  Historically, models have 

relied mostly on conventional tag-recapture data (Goethel et al., 2011) and indeed these 

data are primarily used to estimate natural mortality in G. galeus stock assessments 

(Thompson and Punt, 2008).  However, conventional tag-recapture data often lacks the 

resolution needed to understand fine-scale movement behaviours, can suffer from 

significant tag loss or shedding, and requires animals to be recaptured and reported 

(Walker et al., 2008).  Although not without their own limitations, acoustic telemetry 

and stable isotope analysis provides an opportunity to study fine-scale movement and 
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migratory behaviours of animals which can be used refine the understanding of 

population dynamics, develop stock assessments and management strategies.  The 

application of these technologies in this study has provided a greater resolution of 

seasonal and migratory movement behaviours of YOY and juvenile G. galeus which 

may contribute to refining current stock assessment modelling.  Moreover, although not 

examined in this study, these movement data could also provide a more refined 

indication of natural mortality during early life stages of G. galeus (Heupel and 

Simpfendorfer, 2002).  

Whilst taking of sharks in SRAs is prohibited, both recreational and commercial fishing 

are still permitted in these areas using various gear types, and incidental captures of 

sharks do occur (Lyle et al., 2009).  Yet the full extent to which sharks are captured in 

SRAs and their post-release survival remains poorly understood.  Gillnetting in shallow 

waters of FHB is one practice which should be reviewed in light of evidence that these 

habitats are regularly occupied YOY G. galeus (Chapter 3) and the fact that gillnetting 

can cause high incidental mortality in sharks (Frick et al., 2010; Lyle et al., 2014).  

Similarly, given the popularity of recreational hook and line fishing in SRAs (Lyle et 

al., 2009), future studies are needed to ensure the post-release survival of G. galeus is 

not being compromised by current capture and handling practices using this method.  

Studies which examine different hook and line capture and handling techniques (e.g. 

Lyle et al., 2007) may therefore provide management with evidence needed to refine 

current fishing regulations that maximise post-release survival of incidental shark 

captures in SRAs. 

Identifying and understanding the importance of key habitats utilised during vulnerable 

life stages such as during an animals’ early life history are also critical to establishing 

effective spatial management and protection of important habitats (Roberts, 2000; 

Heupel and Simpfendorfer, 2005b).  Protection and restoration of key habitats is a 

fundamental component of current recovery plans for many over-exploited species, 

including chondrichthyans (e.g. Bethea et al., 2007; Bensley et al., 2009).  For G. 

galeus, protection of known nursery areas has been identified as one of the highest 

priorities in their recovery (AFMA, 2009), as is the identification of the full extent of 

other areas used as nursery areas that may not currently be identified, noting that this 
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issue has not been studied in depth since the pioneering work of Olsen (1954) in the 

1940s and 1950s.  It has been hypothesised that additional nursery areas may exist for 

G. galeus, particularly along ocean beaches and in coastal waters of South Australia but 

these have yet to be confirmed (Stevens and West, 1997).  Using the higher resolution 

of movement behaviours afforded by acoustic telemetry in this study, such as the strong 

preference for YOY to reside in UPW or shallower areas of FHB, provides management 

with a more focussed basis around which efforts can be directed to identify and protect 

similar habitats that are currently unidentified but may be critical to G. galeus recovery. 

Anthropogenic disturbance and loss of key marine habitats is becoming increasingly 

common as urbanisation and development of coastal areas occurs.  As a consequence 

many estuarine and coastal systems have suffered significant species loss, trophic 

collapse and loss of ecosystem structure and function (Dobson et al., 2006; Ferretti et 

al., 2010; Lotze et al., 2011).  In response, ecosystem-based management (EBM) is 

becoming widely recognised as an appropriate strategy for managing marine resources 

by considering the entire ecosystem, including human disturbance (Browman et al., 

2004; McLeod and Leslie, 2009).  Fundamental to effective EBM is knowledge of 

community dynamics and the functional mechanisms that enable species to interact with 

their environment and how they might cope with and respond to anthropogenic 

disturbance (Latour et al., 2003).  For instance, competition and predation play a 

significant role in shaping community dynamics (Holt, 1977; Sih et al., 1985; Cherrett 

and Bradshaw, 1989), therefore knowledge of how multi-species assemblages coexist in 

competitive environments (e.g. dietary and/or habitat partitioning) (Chapter 5) is critical 

in assessing how those communities may react in scenarios where resources (i.e. food or 

habitat) become limited as a result of habitat degradation or loss.  Similarly, an 

understanding of how species depend on specific habitats for their survival (e.g. UPW), 

either to avoid predation (e.g. C. milii and M. antarcticus) (Chapter 5) or for 

reproduction (e.g. G. galeus) (Chapter 3), is essential to assessing their vulnerability to 

habitat degradation and loss.  Given plans to alter land use practices such as increased 

irrigation schemes in the Coal River valley (Tasmanian Irrigation, 2013), and expansion 

of aquaculture Atlantic salmon (Salmo salar) farming in Norfolk Bay (DPIPWE, 2014), 

incorporating these species interaction data into ecosystem modelling and in the 
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development of environmental management plans may be important in assessing the 

impact of these practices on chondrichthyan community dynamics in SRAs. 

6.3 Future directions for research 

This study has provided a greater knowledge of the behavioural traits and spatial 

ecology of G. galeus and other chondrichthyans in a Shark Refuge Area, improving our 

understanding of the functional role area closures play in chondrichthyan conservation.  

Whilst these data provide management with a framework around which to refine current 

management and conservation strategies such as by reviewing gillnetting in shallow 

habitats of FHB (Chapter 3) or by examining the impact on changes to land use 

practices surrounding UPW (Chapter 5), there are still areas in which further research is 

required in order to better understand the importance and functional role of area 

closures to enhance recovery efforts for G. galeus. 

Given that the G. galeus population appears to have stabilised or at best has increased in 

size, re-visiting other historically recognised nursery areas may be warranted.  This 

study has examined one of eleven SRAs in Tasmania, albeit historically at least the 

most significant of the identified areas (Fig. 1.1), and whilst the increased abundances 

of YOY G. galeus supports a population recovery, understanding the relative 

contribution of different nursery areas to the overall stock is needed to determine 

whether there has been a shift in the functional role of SRAs and a greater dependency 

on fewer areas.  Identifying nurseries which may be supporting a recovery in the 

population will give management much needed information as to where best to direct 

current conservation efforts in order to maximise re-building strategies.   

YOY G. galeus catch rates in nursery areas have been determined at a point in time 

where the population appears stable and recovery is imminent (Chapter 2).  Continuing 

to develop a time series of YOY G. galeus abundances in UPW would provide 

management with a useful indicator of relative stock size and a means to track 

population recovery.  This study provides a baseline data set against which ongoing 

monitoring can compare and contrast with in order to detect change in the population.  

Whilst determining YOY G. galeus catch rates on an annual basis at present shows 
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some relationship with overall stock size, the high variability around catches suggests 

the frequency of monitoring may be more appropriate on a bi-annual or longer time 

frame until such a point in time that annual monitoring is more sensitive to detecting 

change in the population, such as during the 1950s. 

Determining the long-term movement behaviours of G. galeus will be essential to 

understanding the long-term fidelity to and importance of area closures throughout their 

life history.  This study has demonstrated that SRAs provide protection for YOY and 

juvenile G. galeus for up to 1-2 years.  However, given that many of the G. galeus in 

this study were implanted with acoustic tags which last up to five years, continuing to 

monitor these areas would provide a long-term data set on which to assess the reliance 

of closed areas.  Although, these tags will probably expire prior to these animals 

reaching sexual maturity (i.e. 9 years of age (Olsen, 1954)), investigating the use of 

longer life acoustic tags or genetic techniques such as kinship-based estimation 

(Palsbøll et al., 2010) may provide a greater understanding of natal homing and the 

importance of these areas for pup production in later generations. 

Broadening the acoustic array to cover areas adjacent to the closed areas would also 

benefit in understanding where YOY and juvenile G. galeus are migrating to in their 

early life history.  Developing an acoustic array that monitors both other protected shark 

refuge areas around southern Australia and unprotected areas that include preferred 

habitat types like those determined in this study, would provide a greater understanding 

of the relative importance of protected verse unprotected areas during early life history.  

Determining movement into these areas would provide management with critical 

information needed to assess whether current management arrangements provide 

adequate protection of those areas and their susceptibility to anthropogenic disturbance.  

As suggested by Stevens and West (1997) other unidentified nursery areas may exist.  

Therefore identifying and understanding the importance of these areas utilising similar 

techniques as to those in the study are needed before any major changes in protecting 

and monitoring known nurseries occur. 

Using a combination of sampling techniques in this study has demonstrated that 

chondrichthyan movements and habitat use are likely driven by innate responses to 

competition and predation within SRAs.  Chondrichthyan movements in estuarine and 



 

123 

 

coastal waters are also influenced by environmental conditions such as temperature 

(Morrissey and Gruber, 1993), salinity (Heupel and Simpfendorfer, 2008), and rainfall 

(Knip et al., 2011), however, the influence of these conditions on the distribution of 

chondrichthyans throughout southern Australia remain largely unknown.  Altered 

climate scenarios, including a 1°C to 2°C rise in sea surface temperature and reduced 

rainfall and subsequent river flows by the year 2070 are predicted for eastern Tasmania 

at medium to high rates of current greenhouse gas emissions (Hobday and Lough, 

2011).  Therefore determining the relationships between chondrichthyan movements 

and environmental conditions will be important for understanding their future utilisation 

of SRAs and in predictive modelling of population spread and habitat selection (e.g. 

Avgar et al., 2013).  Moreover, understating these relationships may also be important 

in assessing the impact of upstream land practices, such as irrigation, which may alter 

river flows, increase nutrient loads and change primary productivity in areas like UPW. 

6.4 General conclusion 

Area closures have become increasingly popular in the management of marine resources 

and in helping to rebuild overexploited species, yet their effectiveness rely on a sound 

understanding of key animal behaviours which for many highly mobile species remains 

largely unknown.  Ideally, it is desirable to gather knowledge of how and when an 

animal utilises important habitats prior to implementation of area closures, yet this is 

rarely achieved or is based on survey methods which lack the resolution needed to 

develop effective area closure design.  Instead, adaptive management and research (i.e. 

not waiting until determining all unknowns before doing anything) by integrating 

modern sampling methodologies with more traditional survey approaches such as those 

adopted in this study are rapidly enabling researchers to gather the empirical evidence 

needed to monitor, evaluate and refine the effectiveness of current area closures and 

enhance our efforts to conserve and promote the recovery of overexploited marine 

resources.   
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