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An aerial view of the north Kimberley in the wet season. The landscape is dominated by 

savannas, with small rainforest patches predominantly found in topographically sheltered 

locations (bottom left).
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Abstract 

Rainforests and savannas are floristically and structurally distinct vegetation types 

which, within an intermediate rainfall range (1000-2000 mm·year-1), can coexist in 

the same landscape. In those areas the relative importance of bottom-up factors, like 

geology and water availability, or top-down controls, such as fire and megaherbivores, 

as drivers of rainforest distribution is still controversial. In this thesis I aim to assess 

the influence of environmental factors on rainforest density and boundary change in 

the Wunambal Gaambera Country (north Kimberley, Western Australia), where 

rainforests are represented by small patches surrounded by a savanna matrix, and are 

potentially under threat due to climatic changes, alteration of fire regimes, and the 

recent introduction of cattle. I then provide management guidelines for the Indigenous 

land managers, taking into account western science and Aboriginal knowledge.  

First, I used a GIS-based approach to investigate variations in rainforest density in the 

north-western Australian monsoon tropics by blending existing maps, and in the north 

Kimberley by creating ex novo a detailed map of rainforest patches (30-m accuracy). 

I showed that at a regional scale climatic factors associated with water availability, 

such as mean annual rainfall and moisture index, were the main drivers of rainforest 

density. At a landscape scale geology and topography strongly affected rainforest 

density, supporting the hypothesis that bottom-up controls influence rainforest 

distribution. Nonetheless, rainforest density was higher in locations characterised by 

low fire frequency, implying that top-down controls may also be involved. 

To further investigate the role of top-down controls, I conducted a natural experiment 

to test the effects of disturbance on historical rainforest expansion trends and current 

structure of rainforests and adjacent savannas, using historical aerial photographs and 

vegetation transects. I selected two study locations characterised by similar climate 

and geology, to remove the effect of bottom-up controls, but strikingly different levels 

of disturbance (fire activity and cattle). Disturbance negatively affected rainforest 

expansion, and was associated with sharp rainforest-savanna boundaries. In 
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disturbance-free areas savannas displayed abundance of rainforest elements, with 

gradual transition from rainforest to savanna. 

Despite the importance of fire in determining rainforest distribution, growing evidence 

shows that some rainforest species are able to survive a single fire event. To test this 

hypothesis, I compared survival rate and resprouting strategies of rainforest saplings 

burnt with an experimental treatment that mimicked a low-intensity savanna fire with 

savanna saplings burnt by an ambient early dry season fire. The results suggested that, 

despite low stem survival rates that restricted resprouting to basal buds, a proportion 

of the rainforest species found in the north Kimberley is able to survive a fire event. 

Basal resprouting however negatively affects growth rates, yet this does not 

necessarily prevent rainforest expansion under low-intensity fire regimes. 

Finally, I tested whether the fire management currently in place is leading to a positive 

change in fire regimes. I also examined the implications of vegetation management 

for the local fauna, with particular focus on threatened species, by using camera traps 

to record animal presence across the vegetation transects described above. Fire 

management successfully led to a shift from late dry season to early dry season fires, 

which are typically less intense. However, both high fire frequencies and unmanaged 

cattle had a negative effect on native animal distribution. Fire management should then 

focus on reducing fire frequency in areas exposed to prevailing wildfires through 

planned burning, while of in fire-protected areas a relatively low frequency of patchy 

prescribed fires would suffice to keep the sizes of single fuel age patches at 

manageable levels.  

In conclusion, I found that disturbance regimes have a strong influence on rainforest 

distribution, which is determined by the interplay of both bottom-up and top-down 

controls. Land management should thus be adaptive, and evolve based on changing 

environmental conditions between different locations and in time. 
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1.1 RAINFOREST AND SAVANNA DISTRIBUTION 

Globally, the geographic distribution of rainforests is predominantly determined by 

climate. Rainforests are generally found in high precipitation, warm regions; where 

annual rainfall is lower, they are replaced by savannas (Whittaker, 1975). However, it 

has been observed that the current global distribution of rainforests does not entirely 

reflect their potential extent (Bond, 2005). Extensive tropical regions where, based 

solely on climate, rainforests should be dominant, are in fact covered by savannas, 

especially in South America and Africa (Bond and Keeley, 2005). When mean annual 

rainfall falls within an intermediate range (1000-2000 mm/year) and rainfall 

seasonality is mild, savannas can coexist with rainforests under the same climate and 

can even be the dominant vegetation type (Sankaran et al., 2005, Staver et al., 2011b). 

An example is represented by the seasonal tropics, composed of a mosaic of savanna 

and closed-canopy rainforest. In these environments, rainforests and savannas are 

described as alternative stables states, since they tend to coexist while maintaining the 

contrasting different floristic composition and vegetation structure that characterised 

them: rainforests typically occur in rarely burnt environments, where dense canopy 

cover and the consequent lack of grass prevents flammable fuel accumulation (Ratnam 

et al., 2011, Little et al., 2012); conversely, savannas are fire-prone environments 

defined by a continuous grass layer and variable tree cover (Whittaker, 1975). 

According to the Alternative Stable State theory, when different vegetation types 

coexist in the same environment they are maintained in a stable state by a complex 

network of feedbacks involving climatic and local factors. The interactions between 

factors and vegetation produce strong biological feedbacks (Beckage et al., 2009, 

Staver et al., 2011b, Bowman et al., 2015), which tend to maintain the existing 

rainforest-savanna pattern (Sankaran et al., 2005). Disruption of these feedback 

networks can shift vegetation from one type to the other (Murphy and Bowman, 2012, 

Hoffmann et al., 2012a). Support for the hypothesis that rainforest and savannas 

represent alternative stable states comes from a range of field and remote sensing 

observations. Analyses of satellite imagery have detected bimodality in canopy cover 

distribution, with peaks corresponding to a savanna or rainforest state and intermediate 

states scarce or non-existing (Hirota et al., 2011, Staver et al., 2011b). Field data have 
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also highlighted the presence of sharp structural and climatic transitions across the 

rainforest-savanna boundary (Dantas et al., 2013a, Bowman, 1992).  

 

1.2 FACTORS INFLUENCING RAINFOREST-SAVANNA 

DYNAMICS 

1.2.1 Bottom-up factors: resources 

Factors modulating growth rates strongly influence the ability of a rainforest to 

establish (Murphy and Bowman, 2012). A primary factor influencing plant growth is 

water availability, which is mostly determined by climate, particularly mean annual 

rainfall and rainfall seasonality. In addition, at a landscape scale, soil permeability and 

topography also affect the proportion of water retained in the soil and available for 

plants (Ash, 1988). Palynological and isotopic analyses showed that savanna and 

rainforest have shifted in the palaeoecological past in response to climate changes. For 

example, pollen and carbon isotopes data from Gabonese lakes highlighted a strong 

correlation between changes in rainforest structure and climatic fluctuations 

(Ngomanda et al., 2007). In the Congo, carbon isotope analyses identified fast 

rainforest encroachment into savannas, with the latter predicted to disappear from the 

area within the next 1000-2000 years, should the current conditions persist (Schwartz 

et al., 1996). In the Amazon basin, pollen data supported the association between 

wetting trends and rainforest expansion (Behling and Hooghiemstra, 2000). Reduced 

precipitation during the Early-Mid-Holocene caused significant shifts in rainforest-

savanna boundaries, with rainforest contraction (Desjardins et al., 1996), while during 

the Late Holocene increased precipitation reversed this trend and rainforests expanded 

once again (Mayle et al., 2004). 

Enhanced levels of atmospheric CO2 are also thought to favour woody plant 

dominance (Higgins and Scheiter, 2012). CO2 enhances trees’ growth rate, allowing 

them to recover fast after a disturbance, and increases the carbon assimilation in plants 

possessing the C3 pathway (which includes most rainforest woody plants), while 
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species using C4 pathway (including most savanna grasses) are less affected (Bond 

and Midgley, 2000). However, this hypothesis is still controversial. Recent studies 

failed to identify a link between CO2 levels and plant growth rates (e.g. van der Sleen 

et al., 2015, Manea and Leishman, 2015, Silva and Anand, 2013), although some 

found that CO2 enhances water use efficiency in plants, reducing transpiration by 

shallow-rooted species and increasing percolation of soil water to deeper soil layers, 

favouring establishment and persistence of deep-rooted woody plants (van der Sleen 

et al., 2015). Elevated levels of CO2 have also been associated with faster post-fire 

resprouting in savanna trees (Hoffmann et al., 2000). 

Soil fertility is often a limiting growth factor in rainforests (Silva et al., 2013), and 

fertility thresholds have been detected across rainforest-savanna boundaries (Dantas 

et al., 2013a). It has been hypothesised that soil fertility is the main driver, together 

with climate, of rainforest distribution, and other factors such as fire activity are a 

consequence of the vegetation type established rather than one of its drivers 

(Veenendaal et al., 2015, Lloyd and Veenendaal, 2016). However, nutrient stock 

analyses showed that most savannas are able to sustain rainforests (Bond, 2010), 

despite their low levels of P and Ca (Silva et al., 2013) and rainforests have shown to 

be able to colonise adjacent savannas (e.g. Bowman et al., 2001, Russell‐Smith et al., 

2004). It is also important to note that soil fertility is locally subject to the dynamic 

interaction between vegetation and abiotic factors (Pellegrini, 2015). For example, 

nutrient input via litterfall is higher in rainforests than in savannas, due to the greater 

canopy productivity (Paiva et al., 2015), which results in soil enrichment over time 

and contributes to sharpening the differences between rainforests and savannas.  

1.2.2 Top-down factors: disturbance 

Recognised as a natural element of many ecosystems (Bond and Keeley, 2005), fire is 

ascribed as a crucial factor determining the presence of either rainforests or savannas 

(Dantas et al., 2016, Staver et al., 2011b, Pausas, 2015a). Savanna species, adapted to 

a fire-prone environment, possess a suite of traits associated with fire resistance, such 

as thick bark (Lawes et al., 2011c, Pausas, 2015b) and the ability to resprout after fire 

from aerial buds (Clarke et al., 2013). Conversely, rainforests species are characterised 



Chapter 1  Introduction 

 

 

5 

 

by a thinner bark (Lawes et al., 2013), which leads to higher rates of top-kill after a 

fire (Hoffmann et al., 2009). As a consequence of top-kill, rainforest trees require 

longer fire-free intervals to reach the threshold height that allows them to escape the 

‘fire trap’ by accumulating enough bark to avoid stem death during fire (Hoffmann et 

al., 2012a). Once a rainforest has had the chance to establish, the lack of grasses in the 

understorey substantially limits the amount and ignitability of surface fuels, and thus 

the capacity of a fire to spread in the rainforest (Just et al., 2015). Alterations in fire 

regimes, both natural and anthropogenic, can consequently shift the balance toward 

one vegetation state or the other (Murphy and Bowman, 2012). An alternative view is 

that fire is, rather than a driver of vegetation, a consequence of it (Veenendaal et al., 

2015), a ‘sharpening factor’ reinforcing soil-driven mechanisms at best (Lloyd and 

Veenendaal, 2016).  

Megaherbivores, both grazers and browsers, are also thought to have an impact on 

rainforest-savanna dynamics. Browser activity prevents large trees establishment 

(Staver and Bond, 2014), with a consequent reduction in tree density in favour of a 

grass layer (Staver et al., 2009), leading to more extensive and less patchy fires 

(Waldram et al., 2007). Conversely, the presence of grazers reduces fuel load, 

decreasing fire intensity and facilitating increases in woody cover (Van Langevelde et 

al., 2003) as well as fire heterogeneity (Holdo et al., 2009, Kerby et al., 2006). Large 

fires restrain heavy grazing, thereby maintaining the balance between graze-tolerant 

and graze-intolerant grasses (Archibald et al., 2005). The effects of pyric-herbivory 

feedbacks on vegetation are scale-dependent (Kerby et al., 2006). Grazer-vegetation 

models of African savannas detected minor effect of grazers on distribution of biomes 

at a continental scale (Pachzelt et al., 2015), whereas in the United States the effects 

of fire-herbivore interactions were scale-dependent (Collins and Smith, 2006). Both 

browsers and grazers can also have a direct negative effect on rainforests through 

trampling and wallowing on moist soil (Russell-Smith and Bowman, 1992). 

1.2.3 Human management 

Land use and management have a strong influence on rainforest distribution. Models 

indicated that tropical rainforests are amongst the habitats most affected by land use 
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changes during this century, with the conversion of rainforests to grasslands resulting 

in substantial loss of tree species and associated animals (Sala et al., 2000). 

Nonetheless, appropriate rainforest management can have positive effects on 

rainforest distribution and biodiversity. Many rainforests across the globe have in fact 

been managed by Indigenous people for generations and their current conditions are, 

in many cases, the result of centuries, if not millennia, of human interaction with those 

environments (Ellen, 1998). Traditional rainforest management can occur at different 

levels. A simple approach consists of intentionally planting useful species, as practiced 

by the rainforest dwellers in the Amazon (Bennett, 1992); over time even small groups 

of hunter-gatherers can cause habitat changes through dropping seeds of species 

collected for food (Ellen, 1998). Complex management systems can involve more 

substantial habitat changes. The Kayapo Indians of Brazil, for example, are known to 

preserve and enhance rainforest biodiversity by creating ‘artificial’ forest islands, 

apete, containing a high number of medicinal plants, palms and vines that produce 

drinking water (Gadgil et al., 1993). Indigenous rainforest management can also 

include practices aimed to protect rainforests from potential threats. In northern 

Australia, for instance, Traditional Aboriginal rainforest management involves the 

skilful use of fire to reduce fuel load near rainforest patches, preventing potential 

wildfires from damaging the fire-sensitive rainforests (Russell-Smith et al., 1997, 

Mangglamarra et al., 1991).  

 

1.3 THE STRANGE CASE OF AUSTRALIA 

Satellite-based analyses did not detect bimodality in tree cover in Australia, due to the 

absence of high tree cover rather than due to the presence of intermediate states (Staver 

et al., 2011b). Rainforest distribution is also more restricted in Australian tropical 

regions when compared with South American or African regions with similar rainfall 

(Hirota et al., 2011). This is possibly caused by climatic factors, such as the long 

duration of the dry season (Staver et al., 2011b), or biogeographic factors, like the 

presence of eucalypts in the Australian savannas, which are believed to allow fire to 
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invade rainforests (Murphy and Bowman, 2012). The relative importance of local 

factors may then be higher in Australia, to the point of partially overriding the 

influence of climate. Nonetheless, rainforest expansion (Bowman et al., 2010a, Banfai 

and Bowman, 2007, Wigley et al., 2010) and savanna thickening (Fensham and 

Fairfax, 2003) have been documented in the Australian tropics, apparently associated 

with wetting trends, together with raised CO2 levels. 

In Australia, even the definition of ‘rainforest’ is controversial. Several attempts have 

been made to clearly define them, based either on canopy cover, species composition, 

light environment, fire susceptibility, or even on what they are not (Bowman, 2000). 

Defining these environments is challenging because Australian rainforests include a 

broad variety of environments with different floristic and structural characteristics, 

and they are usually classified based on the climatic regimes under which they occur 

(Fig. 1.1). The term ‘rainforest’ itself, rather than ‘rain forest’, was adopted to avoid a 

definition based solely on precipitation (Baur, 1968), since Australian rainforests can 

be found in areas with mean annual precipitation as low as 600 mm · year-1 (Bowman, 

2000). Lynch and Nelder (2000) proposed a definition of rainforest as environments 

with above ground biomass dominated by trees, the tallest of which are unable to 

regenerate in undisturbed closed canopy. However, some giant eucalypt species, such 

as Eucalyptus regnans or Eucalyptus grandis, have been found to be common 

elements of rainforests in their early stages and have several functional traits in 

common with rainforest species (Tng et al., 2013). These observations suggest that, 

despite their dependence on fire for regeneration, giant eucalypts should be considered 

rainforest pioneers (Tng et al., 2012b). Because of the arbitrarily chosen climatic and 

structural parameters adopted to define rainforests, Bowman (2001) recommended 

continuing to use the term ad hoc, requiring scientists to justify their definition. For 

the purpose of this study, I defined ‘rainforest’ as closed canopy vegetation, not 

dominated by eucalypts (Eucalyptus spp. and Corymbia spp.) or paperbark (Melaleuca 

spp.) species (Russell-Smith, 1991). For the classification of individual species as 

rainforest elements, I relied on the floristic classification performed by Kenneally et 

al. (1991). 



Chapter 1  Introduction 

 

 

8 

 

1.3.1 Australian monsoon rainforests 

The Australian monsoon tropics are an example of the coexistence of rainforests and 

savannas in a vegetation mosaic. In these landscapes, mostly dominated by savannas, 

rainforests are found as small patches of closed canopy vegetation often confined to 

specific landscape settings and occupying a small portion of their potential climatic 

range (Bowman, 2000). Rainforest expansion has also been detected in the Australian 

monsoon tropics during the last decades (Banfai and Bowman, 2006, Brook and 

Bowman, 2006), despite the recent increase in fire frequency and intensity (Russell-

Smith et al., 2010a). In spite of their limited extent, they substantially contribute to 

floristic biodiversity (Russell-Smith, 1991) and represent important refugia and food 

sources for animal species (Woinarski et al., 2004). In this study, I investigated 

rainforest-savanna dynamics in the Wunambal Gaambera Country (north Kimberley, 

Western Australia), the traditional country of the Wunambal Gaambera Aboriginal 

people. The rainforests found in this area, located toward the driest climatic end of the 

Australian tropical rainforest range (Fig. 1.1; Bowman, 2000), are classified as 

monsoon rainforests, ranging from evergreen wet forests to dry semi-deciduous vine 

thickets (Russell-Smith, 1991). These rainforests are of great ecological and cultural 

value (McKenzie et al., 2009, Wunambal Gaambera Aboriginal Corporation, 2010). 

There is concern that climatic changes, alteration of fire regimes, and the recent 

introduction of cattle may pose a threat to these rainforests. In this study, I investigated 

the relative importance of bottom-up and top-down factors, in order to clarify the 

impact of disturbance on rainforest distribution and boundary dynamics and evaluate 

management options to protect rainforests in the light of regional and global 

environmental changes. 
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Figure 1.1 Approximate climatic range of rainforests in Australia (bold line) and location 

of the north Kimberley (Western Australia), situated toward the driest end of the 

monsoon rainforest climatic range (adapted from Bowman et al., 2000). 

 

This study was performed in collaboration with the Wunambal Gaambera Aboriginal 

Corporation and was covered by a cooperative research agreement. The project 

included participatory research with Uunguu Rangers and Traditional Owners were 

involved in field work planning and implementation and the results of this thesis will 

inform future management and monitoring of monsoon rainforests (Wulo) in the 

Wunambal Gaambera Country. 
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1.4 THESIS OUTLINE 

1.4.1 Aims 

The aims of this project were to: 

 Investigate the climatic factors influencing rainforest density at a sub-

continental scale and the local factors affecting it at a regional scale in the 

Australian monsoon tropics; 

 Quantify the historical rainforest expansion rates and associate them with 

disturbance, current vegetation structure and rainforest-savanna boundary 

dynamics; 

 Test the importance of fire intensity by assessing ability of rainforest saplings 

to survive and regenerate after a low-intensity fire; 

 Evaluate the implications of vegetation structure and disturbance levels for the 

local fauna, and the effectiveness of local management plans in reducing 

disturbance. 

1.4.2 Overview of chapters 

My thesis consists of 6 chapters. The experimental chapters of this thesis (Chapters 2 

– 5) have been written in paper style and Chapters 2 – 4 are published or in the process 

of publication. Chapter 2 and Chapter 4 have been published as peer-reviewed articles 

(Ondei et al., 2016b, 2017 attached in Appendices 4-5). Chapters 3 has been submitted 

and is currently in review (Ondei et al., 2016a). In all cases I was lead author, and 

developed and conducted the research under the guidance of my supervisors. Due to 

the paper style structure of this thesis, some repetition of concepts and ideas was 

unavoidable, particularly in the Introduction and Study area sections. The published 

or in review papers have been reformatted (including figure and table numbering), and 

the references have been combined into a single section.  

Prior to this study, the exact distribution of rainforest patches in the north Kimberley 

was unknown, and so was the importance of different environmental factors as drivers 

of this distribution. In Chapter 2, I adopted a sub-continental scale approach to 

investigate the correlations between rainforest density and climatic factors in the 

north-western Australian monsoon tropics. I then assessed the importance of local 
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factors, such as geology, topography, and fire activity through a regional-scale 

analysis, based on a highly detailed map of the north Kimberley rainforests created ex 

novo.  

During the last decades, rainforest expansion has been detected in several areas of the 

Australian tropics. Is this phenomenon also occurring in the small patches of monsoon 

rainforests of the north Kimberley? Do fire and cattle influence expansion rates? In 

Chapter 3 I combined the analysis of historical aerial photographs and vegetation 

transects to answer these questions through a natural experiment. 

Despite their lack of protection, some rainforest species are thought to be able to 

regenerate after a low-intensity fire. To test this hypothesis, in Chapter 4 I undertook 

a burning experiment by burning rainforest saplings, all found on a rainforest edge, 

with a gas burner, controlling for duration and intensity to replicate the intensity of a 

mild savanna fire. One year later I assessed survival rates and resprouting strategies 

and compared them with those recorded for savanna species. 

In Chapter 5 I addressed the management implications of my results. To do so, I 

identify the most vulnerable rainforest patches, based on their characteristics and fire 

activity, and analyse the effectiveness of the recently reintroduced Aboriginal-led 

burning program in proximity of rainforests. To provide a broader ecological view I 

also performed an exploratory study to associate vegetation and disturbance with 

relative differences in faunal abundance, with particular attention to small/medium 

mammals, currently declining in the Australian tropics. 

In Chapter 6 I summarised the key findings and discuss their relevance to my chief 

question of whether monsoon rainforest distribution is influenced by disturbance, in 

particular fire activity. I then placed the results in the context of global rainforest 

distribution and management. Finally, I suggested possible directions for future 

research
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2.1 ABSTRACT 

The small rainforest fragments found in savanna landscapes are powerful, yet often 

overlooked, model systems to understand the controls of these contrasting ecosystems. 

We analysed the relative effect of climatic variables on rainforest density at a sub-

continental level, and employed high-resolution, regional-level analyses, to assess the 

importance of landscape settings and fire activity in determining rainforest density in 

a frequently burnt Australian savanna landscape. Estimates of rainforest density (ha · 

km-2) across the Northern Territory and Western Australia, derived from pre-existing 

maps, were used to calculate the correlations between rainforest density and climatic 

variables. A detailed map of the north Kimberley (Western Australia) rainforests was 

generated and analysed to determine the importance of geology and topography in 

controlling rainforests, and to contrast rainforest density on frequently burnt mainland 

and nearby islands. In the north-western Australian tropics rainforest density was 

positively correlated with rainfall and moisture index, and negatively correlated with 

potential evapotranspiration. At a regional scale, rainforests showed preference for 

complex topographic positions and more fertile geology. Compared to mainland areas, 

islands had significantly lower fire activity, with no differences between terrain types. 

They also displayed substantially higher rainforest density, even on level terrain where 

geomorphological processes do not concentrate nutrients or water. Our multi-scale 

approach corroborates previous studies that suggest moist climate, infrequent fires, 

and geology are important stabilizing factors that allow rainforest fragments to persist 

in savanna landscapes. These factors need to be incorporated in models to predict the 

future extent of savannas and rainforests under climate change. 

 

2.2 INTRODUCTION 

The global extent of closed canopy tropical rainforests and savannas is determined by 

climate, especially mean annual precipitation (Lehmann et al., 2014, Murphy and 

Bowman, 2012). However, at around 1000-2000 mm · year-1 rainforest and savanna 

form vegetation mosaics (Hirota et al., 2011, Staver et al., 2011a, Staver et al., 2011b). 
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Tropical savannas are characterised by a low tree cover and a high biomass of C4 

grasses, which supports frequent fires in the dry season (Bond et al., 2005, Hoffmann 

et al., 2012b). By contrast tropical rainforests have a species rich tree flora that form 

dense canopies, little grass and infrequent fire activity. 

The mechanisms that control patterning of rainforest and savanna mosaics are 

disputed, with debate polarised between the importance of fire and soils. One view is 

that edaphic factors like soil nutrients are the main control of rainforest - savanna 

mosaics, and fire is not a cause but rather a consequence of vegetation patterns (Lloyd 

et al., 2008, Veenendaal et al., 2015). Although savanna soils may have sufficient 

nutrient stocks to support rainforest trees (Bond, 2010, Vourlitis et al., 2015), 

rainforests are generally found on more nutrient-rich soils compared with savannas 

(Dantas et al., 2013a, Silva et al., 2013). Infertile savanna soils are known to limit 

expansion of rainforest (Silva et al., 2013), while deeper and more fertile substrates 

allow rainforest to grow in drier climates (known as 'edaphic compensation'; Ash, 

1988, Webb, 1968). However, it is not clear whether these patterns result from a direct 

edaphic effect or from local feedbacks. Soils underneath rainforests are often more 

rich in nutrients, compared with savannas, regardless of the inherent fertility of soil 

parent material (Dantas et al., 2013a, Silva et al., 2013), because of nutrient acquisition 

and cycling (Silva et al., 2008). Tree canopy cover and canopy productivity increase 

soil nutrient content (Paiva et al., 2015), particularly N concentration and availability 

(Schmidt and Stewart, 2003). Consequently, there are substantial practical difficulties 

in making ecologically meaningful measurements of soil fertility variation, 

particularly across rainforest ecotones, where forest boundaries wax and wane (Silva 

et al., 2013, Warman et al., 2013). 

The alternative view is that rainforest and savanna are ‘bi-stable’ in regions with 

intermediate productivity, and the realisation of vegetation depends on landscape fire 

history (Bond et al., 2005, Dantas et al., 2016, Hoffmann et al., 2012a, Murphy and 

Bowman, 2012, Staver et al., 2011a, Warman and Moles, 2009). This view is based 

on alternative stable state (ASS) theory, whereby stabilising feedbacks hold rainforest 

or savanna in specific ‘basins of attraction’ (Hirota et al., 2011). Resolving the role of 
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edaphic factors in controlling rainforest boundaries directly or indirectly via feedbacks 

is complex and demands multiple lines of evidence, including direct measurements of 

soils, modelling and experiments (Bowman et al., 2015). Analysis of remote sensing 

estimates of canopy cover at a global scale has been presented as evidence for the 

bimodal distribution of rainforests and savannas (Staver et al., 2011b). It has been 

argued that the intensity of the bimodality may be a statistical artefact associated with 

the use of regression tree (CART) analyses, which impose discontinuities in satellite 

tree-cover estimates (Hanan et al., 2014, Staver and Hansen, 2015, Hanan et al., 2015), 

although global canopy height analyses, based on products derived from LiDAR 

measurements, confirmed the bimodality detected through satellite data (Xu et al., 

2016). 

Regional-level analyses based on remote sensing have been employed in studies 

investigating the environmental controls of different types of vegetation (e.g., Dahlin 

et al., 2014, Fensham et al., 2005, Murphy et al., 2010). However, there has been 

surprisingly limited analysis of rainforest-savanna mosaics at a regional level. In an 

important pioneering study, Ash (1988) synthesised data from topographic maps, 

aerial photography and field data to create a model of the environmental controls of 

rainforests and savanna vegetation in the wet tropics of North Queensland (Australia), 

to assess the relationship between rainforest location and environmental 

characteristics. Ash (1988) concluded that the distribution of rainforest boundaries can 

be empirically predicted based on water availability and topography, and substrate 

fertility might allow rainforests to expand into otherwise unfavourable environments. 

This research was supported by Fensham (1995), who employed aerial photography 

and satellite imagery to investigate the relation between dry rainforest and 

environmental variables in North Queensland. To the best of our knowledge, there are 

no other map-based analyses of rainforest-savanna mosaics at a regional scale 

anywhere else in the tropics. These rainforest patches are known to be biodiverse and 

important for a broad cross section of fauna (e.g. Price, 2006, Tutin et al., 1997), yet 

they have been poorly researched compared with the more extensive wet rainforests 

(Sánchez-Azofeifa et al., 2005).  
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North-western Australia is an attractive model system because it spans a wide rainfall 

gradient at the driest extreme of the Australian tropical rainforest estate (Bowman 

2000). The global analysis of Staver et al. (2011b) suggests the region is 

deterministically savanna; yet tiny patches of rainforest exist, embedded in the 

savanna matrix. These environments rainforests are more exposed to fire due to their 

higher boundary/core ratio, nonetheless, in some locations rainforest expansion has 

occurred (Banfai and Bowman, 2006, Bowman et al., 2001, Clayton-Greene and 

Beard, 1985). Studies from northern Australia and elsewhere in the tropics have 

identified the importance of landscape setting in determining rainforest distribution in 

areas subject to high fire activity. For example, rainforests can be more abundant on 

islands that have lower fire activity than adjacent mainland savannas (Clayton-Greene 

and Beard, 1985).  Rainforests can also be confined to steep gullies or valleys 

(Bowman, 2000, Ibanez et al., 2013a, Warman and Moles, 2009) because of the fire 

protection they provide (Murphy and Bowman, 2012), although additional effects of 

higher nutrient and water availability could also be important (Ash, 1988). 

We employed a macroecological approach to determine the effect of climatic and 

geomorphological factors (topography and geology) on rainforest abundance at a large 

spatial scale. Geology was used as a proxy for the nutrient stock provided by the parent 

material, to exclude the effect of vegetation on soil fertility. To assess the correlations 

between climate and rainforest distribution in the entire north-western Australian 

monsoon tropics, we analysed existing sub-continental scale vegetation maps. We then 

assessed the importance of topography and geology at a regional scale, since the 

effects of these factors on rainforest distribution are detectable at this scale, compared 

with climate (Murphy and Bowman, 2012). To do so, we generated a detailed map of 

rainforests in the north Kimberley (Western Australia), which is characterised by a 

limited rainfall range (200mm · year-1), and a variety of geologies and topographic 

settings. Within this region we undertook a local-scale ‘natural experiment’, 

comparing the influence of topography and fire activity on rainforest density on 

mainland and adjacent islands with similar rainfall, geology and distance from the 

coastline. We addressed the following hypotheses:  
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• At a sub-continental scale, factors associated with water availability are the 

main climatic drivers determining rainforest density; 

• At a regional scale, topography and geology affect rainforest distribution; 

• At a local scale, the importance of insularity and topography is directly related 

to fire activity. In locations with high fire activity (mainland), rainforests are 

predominantly confined to fire-sheltered settings, whereas in areas with lower fire 

activity (islands), rainforests will also be able to grow in more exposed settings.  

Collectively this study investigates the drivers of rainforest distribution across 

multiple spatial scales in northern Australia, thereby illuminating the capacity for 

climate change and fire management to affect rainforest coverage and providing 

insights for both theoretical ecology and applied land management. 

 

2.3 METHODS 

2.3.1 Geographic context 

The Australian monsoon tropics are characterised by a pronounced wet and dry season 

associated with the Australian summer monsoon (Bowman et al., 2010b). This region 

includes the whole of northern Australia except the Australian wet tropics in North 

Queensland (Bowman, 2000) (Fig. 2.1a). In contrast to the wet tropics, where tropical 

rainforests dominate, the monsoon tropics support vast eucalypt savannas (Bowman, 

2000) (Fig. 2.2a, c). Embedded in these savannas are very small patches of monsoon 

tropical rainforest, ranging from a few trees to 100 ha in area (McKenzie et al., 1991). 

These rainforests have floristic and biogeographic affinities with wet tropical 

rainforests in both Asia and Australia. They have been intensively studied given their 

unusual biogeography and ecology, particularly their ability to persist in a highly 

flammable tropical savanna environment (Bowman, 2000). Some rainforests are 

known to grow on aquifers (Kenneally et al., 1991; Russell-Smith, 1991), which 

insulate them from regional climate, but our mapping could not differentiate these 
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types from the more widespread and drought adapted rainforests (Bowman et al., 1991, 

Russell-Smith, 1991). The locus of the sub-continental study was the Australian 

monsoon tropics west of the Carpentarian Gap biogeographic divide, which separates 

the biota of the Northern Territory and Western Australia from Cape York Peninsula 

(Bowman et al., 2010b). Annual rainfall in this area varies from approximately 1900 

mm in the north east to 700 mm in the south west (Fig. 2.1c), that would be expected 

to exert a strong influence on the abundance of rainforest. This analysis was made 

possible by combining vegetation maps produced by the Northern Territory and 

Western Australian government land management agencies, noting that the border 

between the two states broadly aligns with the Ord Arid Intrusion, a major 

biogeographic boundary that separates the biota of the Kimberley region of Western 

Australia from that of the ‘Top End’ of the Northern Territory (Fig. 2.1; Bowman et 

al., 2010b; Eldridge et al., 2011), and that likely affects rainforest species diversity. 

 

Figure 2.1 The monsoon rainforest domain in north-western Australia. The grey area 

represents the monsoon rainforest domain in the north of Western Australia (WA; 

Kimber et al. 1991) and the Northern Territory (NT). The Ord Arid Intrusion, the main 

biogeographic barrier between the two states, is indicated. Dashed lines indicate rainfall 

isohyets (mm). The insets show (a) the study area within Australia and (b) elevation 

(minimum, 0 m, white; maximum, 960 m, black).  
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In addition to this coarse-scale sub-continental study, we undertook a more detailed 

analysis of the rainforests to the west of the Ord Arid Intrusion. This region, located 

at the extreme end of the precipitation gradient where rainforest occurs in northern 

Australia, has limited spatial variability in rainfall (1200 to 1400 mm), which allowed 

us to identify ecological factors, other than precipitation, that shape rainforest 

distribution. This was based on fine-scale mapping of the traditional lands of the 

Wunambal Gaambera people, henceforth called the Wunambal Gaambera Country.  

The Wunambal Gaambera Country occupies an area of 9144 km2, dominated by 

biodiverse tropical savannas occurring on deeply weathered sandstones and basaltic 

base rocks of Precambrian age, often capped by Cainozoic laterites. In this region 

average annual rainfall occurs almost entirely during the summer wet season 

(November to April), while the rest of the year is almost rain-free (Beard, 1976). The 

landscapes are shaped by geology; the dominant substrates are infertile sandstone, 

where the Holocene sea-level rise has created rugged coastlines, and the moderately 

fertile basalt country, characterised by gentle slopes and hills (Speck et al., 1960, 

Beard, 1979) (Fig. 2.2b). The vegetation is predominantly eucalypt savanna. 

Eucalyptus tetrodonta – E. miniata savannas are found on the laterite mesas and hills, 

while E. tectifica – E. grandifolia savannas are common on deeper, clay soils on 

plains. Small patches of semi-deciduous rainforests are interspersed in the savanna 

(Fig. 2.2c, e), typically located in fire-protected locations (Vigilante et al., 2004). 

Fire regimes in the north Kimberley are strongly shaped by anthropogenic ignitions, 

and have been for over 40,000 years (O'Connor, 1995). This ancient tradition of 

Aboriginal fire management is likely to have maintained biodiverse open savanna 

habitats and protected small isolated rainforest fragments (Mangglamarra et al., 1991, 

Trauernicht et al., 2015, Vigilante et al., 2009). The cessation of Aboriginal fire 

management in many northern Australian environments has been associated with 

degradation of some rainforests and other fire sensitive plant communities (Russell-

Smith and Bowman, 1992, Trauernicht et al., 2012), although in rarely burnt areas 

there can be expansion of rainforest (Bowman and Fensham, 1991, Clayton-Greene 

and Beard, 1985). 
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Figure 2.2 (a) Extent of the mapped area in the north Kimberley, including (b) the main 

geology types in the area and (d) rainforest density, calculated in ha per km2 of land. In 

this area rainforests are typically represented by (c) small patches surrounded by savanna 

(Beard et al. 1990), with (d) sharp boundaries between the two vegetation types. 

 

2.3.2 Rainforest mapping and analyses 

Sub-continental scale – climatic drivers of rainforest density 

The distribution and areal extent of the rainforests in the north-western Australian 

monsoon tropics was determined by blending existing vegetation maps. Total 

coverage of rainforest in Western Australia and Northern Territory was calculated for 

a lattice of grid cells 50 x 50 km in area. The Western Australia map (1: 200000) was 

derived from Kimber et al. (1991), who used semi-automated classification of Landsat 

imagery taken in 1986 and did not differentiate floristics or structure variation amongst 

rainforests. The Northern Territory vegetation data (1: 80000), based on interpretation 

of aerial photography classified according to Russell-Smith (1991), were supplied by 
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the Department of Land Resource Management, © Northern Territory of Australia. In 

calculating rainforest coverage in the Northern Territory lattice cells we selected both 

dry and wet rainforest types because they are structurally and floristically similar to 

the Western Australian rainforests (Kenneally et al., 1991, Bowman, 1992). We 

combined the Western Australia and Northern Territory data to create a map of the 

north-western rainforest domain, extending from 11.00 °S to 18.00 °S in latitude and 

from 122.14 °E to 138.00 °E in longitude (Fig. 2.1). This resulted in 192 and 63 grid 

cells in the Northern Territory and Western Australia respectively. For each grid cell, 

mean annual rainfall, precipitation seasonality (coefficient of variation of monthly 

rainfall expressed as a percentage), potential evapotranspiration, moisture index (mean 

annual precipitation over potential evapotranspiration; Thornthwaite, 1948), and 

annual mean temperature were calculated for the centre point of each cell. Rainfall, 

precipitation seasonality and temperature data were obtained from WorldClim Global 

Climate Data (Hijmans et al., 2005) and moisture index and potential 

evapotranspiration were downloaded from the Global Aridity and PET database 

(Zomer et al., 2008). Minimum, maximum and median values of the climatic variables 

were calculated separately for the Western Australia and Northern Territory grid cells.  

Regional scale – local drivers of rainforest density 

We generated a map of the rainforests in the north Kimberley, covering the entire 

Wunambal Gaambera Country and expanding the analysis to the adjacent coastal areas 

(total surface 12,572 km2), as follows. Orthophotos (scale 1:8,000) taken during the 

dry season (May-August) of the years 2005-2007 were used create a map of the 

rainforest patches located in the study area. A lattice of 30 m x 30 m cells was overlaid 

on the orthophotos and every cell was manually classified as “rainforest”, “savanna” 

or “other”. The vegetation type of each cell was considered to be the one occupying 

the highest proportion of the cell. A map of the rainforest patches was produced by 

merging the contiguous cells classified as “rainforest” (Fig. 2.2d). A helicopter survey 

was conducted to validate the map. The flight path, designed to include locations with 

both high and low rainforest cover, included coastal and inland areas as well as islands. 

It covered the main geologic substrates, in particular basalt, sandstone and laterite. We 
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flew along the selected path at an average height of 300 m above the ground for a total 

length of 550 km on 22 September 2013. Waypoints, collected every 10 seconds, were 

visually identified as “rainforest” or “savanna”. The points were then buffered 30 m 

and intersected with the rainforest map. A confusion matrix was generated to calculate 

map accuracy, omission and commission errors, and kappa coefficient of agreement 

(Congalton, 1991). 

Patch size, distance from the coastline and distance from the nearest drainage line were 

calculated for every rainforest polygon on the regional scale map. Rainforest density 

was calculated as ha of rainforest per km2 of land, based on a grid of 1 km x1 km size 

cells for computational reasons. For each cell we also calculated: (i) the geology 

category, based on the predominant geology type in each1 km x 1 km cell, and (ii) the 

topographic category, based on the predominant topographic position index (TPI; 

Jenness, 2006) in the cell. The TPI was calculated for every pixel in the mapped area 

from a 30-m resolution digital elevation model (DEM), based on the difference in 

elevation between each pixel and the average elevation of the eight neighbouring 

pixels; values lower than -1 were classified as “valley”, and values higher than +1 as 

“ridge”. Intermediate values were classified as “flat” or “slope” depending on the slope 

of the pixel (≤ 4° for flat areas, >4° for slopes), obtained from the 30-m DEM. (iii) 

Each grid cell was further classified as having ‘complex’ or ‘level’ terrain, noting that 

complex terrain is often associated with rockiness. Cells in which the categories 

‘valley’ + ‘ridge’ + ‘slope’ occupied more than 50% of the cell were classified as 

‘complex’, the others as ‘level’. The average rainforest density in the north Kimberley 

was then calculated for each geologic substrate and TPI based on the rainforest density 

grid.  

2.3.3 Local scale natural experiment - Mainland Vs Islands 

We expected there would be differences in fire activity and rainforest distribution 

between islands and mainland, because islands have been subject to fewer human 

ignitions due to infrequent visitation in recent times (Vigilante et al., 2013) and the 

sea provides a natural fire break from surrounding landscape fires. To test this, we 

compared rainforest density grid cells on islands and the mainland. We selected areas 
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that were geographically, floristically, and ecologically similar by extracting from the 

‘regional scale dataset’ only grid cells with the following attributes: mean annual 

rainfall between 1250-1382 mm · year-1, distance from the coastline <5 km (equivalent 

to the radius of the biggest island, hence the maximum distance from the coastline on 

islands), and geology developed on basalt, laterite or coastal sediments. Islands and 

coastal areas of the north Kimberley are floristically similar, with only a very small 

group of taxa recoded only from islands (Lyons et al., 2014). Grid cells located on the 

Bougainville Peninsula were included in the category ‘islands’, due its narrow neck 

which makes it functionally equivalent to an island in terms of isolation from the 

mainland.  

Fire activity was calculated from a 15-year fire history map (2000-2014), created at a 

pixel resolution of 250 m based on MODIS satellite imagery, accesses via North 

Australian Fire Information website (http://www.firenorth.org.au/nafi3/). Due to the 

coarse resolution of the fire history map it was impossible to accurately locate every 

fire scar, so the data were used to provide coarse-scale information about differences 

in fire activity between the mainland and islands. For every cell of the rainforest 

density grid the area-weighted proportion of years burnt was calculated by dividing 

the average number of years in which the cell was burnt by 15, the total number of 

years investigated. The average fire activity per year and rainforest density were 

calculated for cells classified as ‘island’ or ‘mainland’ and, within each category, 

‘complex’ or ‘level’ terrain.  

2.3.4 Statistical analyses 

At a sub-continental scale, we employed the Pearson product moment correlation 

coefficient to examine correlations amongst rainforest density and the climatic 

variables, and presented the results in a constellation diagram. For presentation (but 

not in the analysis), we aggregated the grid cells into 200 mm- mean annual rainfall 

bins and calculated the average rainforest density for each bin. 

At a regional scale, we first tested for spatial autocorrelation in rainforest density and 

assessed minimum sampling distance, estimated by plotting the semi-variance as a 
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function of distance, using the software R (R Core Team, 2013) and the R package 

geoR (Ribeiro and Diggle, 2001) (Fig A1.1 in Appendix 1). We then tested whether 

the factors terrain and geology are related to rainforest density. We also checked 

whether rainforest density was associated with geology within level and complex 

terrain types. To do this, we used generalised linear models (GLMs) and complete 

subset regression and model selection based on Akaike’s Information Criterion (AIC; 

Burnham and Anderson, 2002), calculated using the R package ‘MuMIn’ (Bartoń, 

2009). We used the compound Poisson-gamma distribution, included in the tweedie 

family of distributions, which allows regression modelling of zero-inflated positive 

continuous data (R packages ‘tweedie’ (Dunn, 2014) and ‘statmod’ (Smyth et al., 

2015)). To assess the importance of each variable, we calculated Akaike weights (wi), 

which represent the probability that a given model is the best in the candidate set 

(Burnham and Anderson, 2004). We then calculated variable importance (w+) as the 

summed wi of the models in which the variable occurs. w+ values higher than 0.73 

were considered to indicate that the variable is a statistically important predictor 

(Murphy et al., 2010). Model summaries are provided in Table 1.1a-c in Appendix 1. 

When comparing mainland vs islands, we examined differences in rainforest density 

and fire activity between locations, testing for the factors insularity (island or 

mainland) and terrain (complex or level). To do so, we employed GLMs, using the 

compound Poisson-gamma distribution for both rainforest density and fire activity, 

complete subset regression, and model selection based on AIC as described above. 

Variable importance was assessed by calculating w+, as described above. Model 

summaries are provided in Table 1.1d, e in Appendix 1. 

 

2.4 RESULTS 

2.4.1 Sub-continental scale  

The north-western Australian rainforest domain covered an area of 640,000 km2, 

ranging from the coastline to a maximum of 350 km inland. Rainforest density was 
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lower west of the Ord Arid Intrusion: in Western Australia rainforest density ranged 

from 0 to 8.7 ha of rainforest per km2 of land (average 1.1 ± 0.2 ha · km-2), while in 

the Northern Territory the range was 0 to 19.0 ha per km2 of land (average 1.4 ± 0.2 

ha · km-2). The Northern Territory showed higher median values and a broader range 

of both mean annual rainfall and moisture index (Fig. 2.3a, b). Mean annual 

temperature and precipitation seasonality showed higher median and maximum values 

in Western Australia and minimum in the Northern Territory (Fig. 2.3c, d), while 

annual potential evapotranspiration had a similar range in the two states but higher 

median values in the Northern Territory (Fig. 2.3e). 

 

Figure 2.3 Comparison of (a) average annual rainfall, (b) moisture index, (c) mean 

annual temperature, (d) precipitation seasonality, and (e) potential evapotranspiration 

(PET) within the monsoon rainforest domain in Western Australia (WA) and Northern 

Territory (NT). Boxes indicate median value and upper and lower quartiles, bars the 10th and 

90th percentiles. 
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There was a positive correlation between rainforest density and both mean annual 

rainfall and moisture index (Figs 2.4, 2.5), which were also positively correlated. 

Potential evapotranspiration was negatively correlated with rainforest density, 

moisture index and rainfall, while precipitation seasonality was negatively correlated 

with rainfall and moisture index. Mean annual temperature was not correlated with 

any of the climatic variables investigated nor with rainforest density.  

 

Figure 2.4 Constellation diagram showing the strength and direction of correlations 

amongst rainforest density and the climatic variables average annual rainfall, moisture 

index, potential evapotranspiration (PET), precipitation seasonality, and mean annual 

temperature in the monsoon rainforest domain in north-west Australia. Positive 

correlations are represented by black lines, negative correlations by grey lines. Correlations 

stronger than 0.4 or -0.4 are indicated; wider lines indicate stronger correlations, narrower 

lines weaker correlations. 

 

Figure 2.5 Average rainforest density by average annual rainfall, calculated within the 

rainforest domain in the Australian monsoon tropics. The numbers above each column 

represent the number of grid cell included in that rainfall interval. Error bars represent standard 

errors. 
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2.4.2 Regional scale  

In total, 2902 points were assessed during the aerial survey. There was a strong 

concordance between the rainforest map and the aerial assessment, with a resulting 

overall map accuracy of 93% (Kappa coefficient 0.78; Table 2.1). A high accuracy 

was obtained for savanna points (95% for both producer’s and user’s accuracy), 

meaning few savanna points were mistaken for rainforest. We attribute the lower 

producer’s and user’s accuracy for rainforests (83% and 82% respectively) to the 

floristic composition of the monsoon vine thickets, where semi-deciduous species can 

dominate (Beard, 1979), making portions of the forest patches undetectable from 

orthophotos taken during the dry season. 

 

Table 2.1 Accuracy of the north Kimberley rainforest map, assessed through aerial 

survey. 

 

 

 

 

 

 

 

Savanna was by far the most common vegetation, covering 98.9% of the area. We 

detected a total of 6460 rainforest patches covering 10300 ha, equivalent to 0.82% of 

the mapped land. Patch size ranged from 0.1 to 220 ha, and averaged 1.6 ha ± 0.1 (SE). 

Seventy-five percent of patches were smaller than 1 ha, and only 2.5% were larger 

than 10 ha (Fig. 2.6a). More than 40% of the mapped rainforest patches were located 

  

  

  

  

Habitat 

Rainforest Savanna 

Producer's accuracy (omission)   

   In class (%) 83 95 

   Not in class (%) 17 5 

User's accuracy (commission)   

   In class (%) 82 95 

   Not in class (%) 18 5 

Overall accuracy (%) 93   

    

Kappa coefficient 0.78     
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within 1 km of the coastline (Fig. 2.6b), but patches were detected up to 47 km inland 

(average 4.7 km ± 0.1 (SE)). A similar pattern was identified for distance from 

drainage lines, with 64% of the patches located within 1 km of the nearest drainage 

line (Fig. 2.6c), but some up to 32 km distant (average 1.7 km ± 0.0 (SE)). 

 

 

Figure 2.6 Frequency distribution of rainforest patches in the north Kimberley region 

according to (a) size, (b) distance from the coastline, and (c) distance from the nearest 

drainage line. Note the logarithmic scale for the x axes. 

 

Rainforest density was strongly dependent on both terrain (w+ = 1.00) and geology 

(w+ = 1.00); average rainforest density was higher on relatively fertile substrates 

(laterite, coastal sediments and basalt), and lower on alluvium and colluvium and 

infertile sandstone (Fig. 2.7a). Average rainforest density was also higher in complex 

terrain such as ridges, slopes and valleys and lower on level areas (Fig. 2.7b). The 

model including geology and terrain explained 32.1% of the deviance. The preference 

for relatively nutrient-rich geology was independent on terrain, as on both level and 

complex terrain rainforest density was strongly associated with geology (w+ = 1.00 in 

both cases). Geology explained 13% of deviance on complex terrain and 10% of 

deviance on level terrain. 
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Figure 2.7 Rainforest density in relation to (a) geological substrate and (b) topographic 

position in the north Kimberley (regional analysis). Rainforest density was highest on 

coastal sediments, basalt, and lateritic substrates. It was also higher on ridges, slopes and 

valleys, and almost absent in flat areas. Error bars represent standard errors. 

 

2.4.3 Local Scale - Mainland vs Islands  

The grid cells on basalt, laterite and coastal substrates and within 5 km of the coast 

covered an area of 332.4 km2 on islands and 693.1 km2 on the mainland. The total area 

covered by rainforests was 47.0 km2 on the islands, compared with 13.6 km2 on the 

mainland, so that rainforest density was 7 times higher on the islands (Table 2.2). 

Islands were more topographically complex than the mainland. There was statistical 

support for an influence of both insularity (w+ = 1.00) and terrain (w+ = 1.00) on 

rainforest density (Table 2.3), and the model including both explained 35% of 
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deviance. There was less fire activity on islands (average 0.061 ± 0.003 times burnt 

per year) than on the mainland (average 0.266 ± 0.004 times burnt per year; w+ = 

1.00), and insularity alone accounted for 39.1% of deviance. Contrary to expectations, 

there was no statistical support for an effect of terrain on fire activity (w+ = 0.48; Table 

2.3). 

Table 2.2 Extent, rainforest cover, average rainfall and extent of the geologic substrates 

and terrain type on the selected grid cells used to compare rainforest density on islands 

and the mainland in the north Kimberley. 

    Islands Mainland 

Total land (km2)  332.4 693.1 

Rainforest area (km2)  47.0 13.6 

Average rainfall (mm · year-1) 1348 ± 1 1307 ± 1 

Geology type Basalt 64.4% 81.2% 

 Coastal sediments 0.5% 2.7% 

 Laterite 35.1% 16.1% 

Terrain type Complex 62.8% 55.6% 

  Level 37.2% 44.4% 

 

Table 2.3 Average fire activity, measured as times burnt per year, and average rainforest 

density, measured as ha · km-2, for complex and level terrain located on the selected grid 

cells on islands and mainland in the north Kimberley. 

Location Terrain 

Fire activity 

(average times burnt per year ± 

SE) 

Rainforest density 

(ha · km-2 ± SE) 

Islands Complex 0.05 ± 0.00 19.69 ± 0.88 

 Level 0.08 ± 0.01 6.81 ± 0.73 

Mainland Complex 0.27 ± 0.01 4.29 ± 0.42 

  Level 0.26 ± 0.01 0.30 ± 0.06 

 

2.5 DISCUSSION 

We found that in north-western Australian monsoon tropics rainforest patches are tiny 

and scattered across a vast savanna matrix. Due to their small size, these rainforest 

fragments are essentially undetectable at the resolution employed by global-level 

assessments (Murphy and Bowman, 2012, Staver et al., 2011b). At a subcontinental 
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scale, the strong correlation between rainforest density and annual rainfall, potential 

evapotranspiration, and moisture index highlighted the primacy of water supply 

compared to mean annual temperature and precipitation seasonality, and supported 

our first hypothesis. This correlation is congruous with the observation that a trend of 

increasing rainfall in northern Australia since the 1940s is the key driver of rainforest 

patch expansion (Bowman et al., 2001, Banfai and Bowman, 2007). These findings 

are also consistent with the global trend of increasing proportion of rainforest (and 

decreasing savanna) as mean annual precipitation increases (Hirota et al., 2011, 

Murphy and Bowman, 2012). In the drier landscapes west of the Ord Arid Intrusion, 

rainforest species diversity is also lower than to the wetter east and most of the species 

in Western Australia are a subset of those in the Northern Territory (Kenneally et al., 

1991). However, the presence of rainforests in the north-western Australian monsoon 

tropics showed that the region cannot be defined as deterministically savanna based 

solely on climate (Murphy and Bowman, 2012). Similarly, rainforest patches exist 

throughout much of the tropics globally, which suggests that in all but arid tropical 

regions, climate alone is not the only factor controlling rainforest distribution (Staver 

et al., 2011b). In Brazil, for example, small patches of deciduous and semi-deciduous 

rainforests are interspersed in a matrix of savanna plants (Cerrado) or thorn scrubs 

(Caatinga), and are restricted to slopes and moist, nutrient-rich sites (Oliveira-Filho 

and Ratter, 2002, Leal et al., 2005). Likewise, in Ivory Coast the dominant savanna 

vegetation is scattered with small patches of dry rainforest (Goetze et al., 2006).  

We also found support for our second hypothesis, that topography and geology affect 

rainforest distribution. The influence of topography on rainforest density was manifest 

in the higher rainforest density on complex compared with level terrain. Rainforest 

density was also higher on nutrient-rich basalt compared with the nutrient-poor 

sandstone, despite the higher fire frequency and intensity recorded on basalt (Vigilante 

et al., 2004). This pattern is consistent with the edaphic compensation hypothesis 

(Ash, 1988, Webb and Tracey, 1981), whose underlying mechanism is probably the 

effect of increased fertility in enhancing plant growth, allowing trees to reach the 

threshold size that triggers the switch from savanna to rainforest through grass shading 

(Hoffmann et al., 2012a, Murphy and Bowman, 2012). It is important to note that 
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geology and terrain are typically not independent. For example, in the north Kimberley 

rounded hills are more common on basalt, while steep gorges are frequently found on 

sandstone (Vigilante et al., 2004). However, in our analysis we were able to 

demonstrate an effect of geology alone by comparing areas on the same terrain, 

showing that there are more rainforests on basalt than on less fertile geologies. 

There was only partial support for our third hypothesis, that insularity and topographic 

effects are directly related to fire activity. Clearly, there were more rainforests on 

islands, where there was also less fire activity compared with the mainland. The 

importance of fire in restricting rainforests has been demonstrated by rainforest 

expansion in other savanna landscapes where fire has been excluded, in northern 

Australia (Scott et al., 2012, Fensham and Butler, 2004) and elsewhere (Bond et al., 

2003). Rainforest species are typically less fire tolerant than savanna species due to 

thinner bark and less developed post fire recovery mechanisms (Lawes et al., 2013, 

Ondei et al., 2016, Pausas, 2015b). However, we failed to detect a corresponding 

difference in fire activity between terrain types on the mainland, and found only a 

minor difference on islands. There are two possible reasons for this lack of 

correspondence, which are not mutually exclusive. One is that terrain, or associated 

rockiness, did exert an influence on fire activity, but this was obscured by the coarse 

scale of the grid cells in our analysis (1 km x 1 km). Another possible reason is that 

the higher rainforest density on complex terrain is the result of water and nutrient 

accumulation (Daws et al., 2002, Ash, 1988), rather than topographic fire protection. 

Nonetheless, the presence of rainforest on level terrain on islands, but not on the 

mainland, suggests that fire is an important controller of rainforest distribution in the 

region. 

We suggest that rainforest density is determined by the interplay of fire activity and 

plant growth rates (Fig. 2.8a). Fire activity is shaped by insularity and possibly terrain 

complexity, while plant growth rates are known to be controlled by water availability 

and the nutrient stock provided by the geological substrate control (Murphy and 

Bowman, 2012), with an effect of terrain in enhancing water and soil accumulation 

(Ash, 1988). Growth rates affect the capacity of rainforest trees to grow rapidly and 
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escape the ‘fire trap’, thereby developing a closed canopy which shades out grass 

biomass, reducing fire frequency which in turns reinforces rainforest expansion 

(Murphy and Bowman, 2012, Hoffmann et al., 2012a, Dantas et al., 2013a). Our 

findings are summarised in Fig. 2.8b, which shows characteristic patterns of rainforest 

fragments in the landscape, and how these fragments are likely to expand in response 

to a wetting climate under contrasting fertility and fire regimes. Rainforest expansion 

should be proportionally greater in lower rainfall areas that currently have low 

rainforest density, like the north Kimberley, because there are more landscape niches 

available for occupancy, such as nutrient-rich and fire protected sites. A prediction of 

our work is that, under the current wetting trend, there will be continuing rainforest 

expansion in the Kimberley, as has been observed elsewhere in the Australian tropics 

(e.g. Russell-Smith et al., 2004). 
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Figure 2.8 Synthesis of the environmental determinants of monsoon forest fragments in 

the north Kimberley.  (a) Diagram showing the positive (+) and negative (-) effects of 

environmental factors on rainforest density based on the results of this study. The thickness of 

the arrows scales to the magnitude of the effects. (b) Top row: oblique aerial photos showing 

examples of the density of rainforest fragments on sites with contrasting geology (sandstone 

vs. basalt) and fire activity in the north Kimberley. Second row:  3D renderings of rainforest 

distribution (dark green) on sandstone (nutrient-poor) and basalt (nutrient-rich) landscape 

under current dry climate. Bottom row: 3D renderings of plausible rainforest density under a 

climate as wet as coastal regions of the Northern Territory. In this study we demonstrated that 

insular sites have substantially lower fire activity than environmentally comparable mainland 

savanna areas. Under the current climate rainforest density is highest on fertile infrequently 

burnt areas, and in frequently burnt landscapes is confined to topographically fire protected 

settings, particularly on nutrient-poor geology. Under a wetter climate we expect the rainforest 

patches to expand and new patches to establish in suitable landscape niches, with the greatest 

expansion on basalt landscapes. The exact amount of expansion is unpredictable because of 

the influence of fire activity and fire management.  
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2.6 CONCLUSION 

We have shown that the density of monsoon rainforest in the north-western Australian 

savanna is affected by moisture availability, substrate and fire. The effects of these 

drivers appear to involve complicated feedbacks and interactions, such as the 

combined effects of potential fire protection and increased productivity in 

topographically complex terrains. We acknowledge that our correlative analysis 

cannot separate cause and effect, or test the fire driven alternative stable state model 

in explaining the distribution of rainforests. To do this demands analysis of vegetation 

boundary dynamics coupled with contrasts of substrate type and fire history. This can 

be achieved through carefully designed regional scale analysis of rainforest boundaries 

trends, such as field surveys and historical sequences of aerial photography (Banfai 

and Bowman, 2006, Butler et al., 2014, MacDermott et al., 2016), and is the subject 

of a subsequent paper. Despite its limitations, our approach is an important step in 

understanding the effect of climate change and anthropogenic disturbances on 

naturally fragmented rainforests elsewhere in the tropical savanna biome.  
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3.1 ABSTRACT 

Rainforest expansion into savannas has been detected in several tropical locations, 

including the Australian tropics, but little is known about rainforest boundary 

dynamics in the north Kimberley. To assess rainforest expansion and the effects of 

climate change and disturbance on vegetation dynamics in that region, we used 

sequences of geo-rectified aerial photographs of the Mitchell Plateau and the 

Bougainville Peninsula, locations characterised by similar geology and mean annual 

rainfall but different disturbance (fire activity and cattle) levels. We generated maps 

of rainforest patches in 1949 and 1969, and compared them a map of rainforest patches 

from 2005. To ground-truth rainforest expansion we established 20 transects, each 

containing five plots, running across rainforest-savanna boundaries. The plots were 

associated to the corresponding vegetation type mapped in 1949, 1969 and 2005. 

Generalised linear models were used to detect differences in species, stand basal area, 

canopy cover, grass and rock cover, cattle impact, and fire activity between vegetation 

types and locations. On the Bougainville Peninsula average fire frequency was low 

(0.11 per year) and cattle entirely absent, while on the Mitchell Plateau average fire 

frequency was high (0.58 per year), and cattle were common and associated with lower 

seedling density in savannas. Rainforest expanded more on the Bougainville Peninsula 

(69%), where patches were bigger and more convoluted, than on the Mitchell Plateau 

(9%). Rainforest expansion was positively associated with rainfall and topographic 

complexity, and on level terrain, it occurred only on the Bougainville Peninsula. 

Rainforests were floristically and structurally similar in the two locations, while 

savannas on the Bougainville Peninsula had denser vegetation and more abundant 

rainforest elements. The frequency distribution of canopy cover was bimodal on the 

Mitchell Plateau, signalling the presence of two distinct vegetation states, and 

unimodal on the Bougainville Peninsula, consistent with the blending of the two states. 

Wetting trends are likely strong drivers of rainforest expansion, but at a landscape 

scale their effect is probably modulated by fire activity and the presence of 

megaherbivores, which may also be pivotal in maintaining sharp floristic and 

structural distinctions between rainforests and savannas. 
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3.2 INTRODUCTION 

Top-down disturbances, such as fire and mega-herbivory, have been postulated to 

shape vegetation structure and in some cases cause departure from climate-constrained 

potential vegetation (Bond, 2005). A prime example of this concerns the distribution 

of rainforests and savannas. Globally, the geographic distribution of these biomes is 

strongly controlled by climate, with rainforests, characterised by high canopy cover 

and an absence of grass, dominant in high rainfall areas, and savannas, distinguished 

by a continuous grass layer and sparse trees, found in lower rainfall regions (Lehmann 

et al., 2011). However, in landscapes with intermediate rainfall (1000-2000 mm year-

1), rainforests and savannas can coexist in the same landscape, forming complex 

mosaics (Staver et al., 2011). Contrasting fire regimes are considered key factors 

influencing these vegetation types and maintaining sharp boundaries between the two 

(Dantas et al., 2016). Rainforests are rarely burnt, because the dense canopy cover 

creates a moist microclimate and little flammable grass is present (Little et al., 2012), 

limiting the incursion of fire (Just et al., 2015). When fires do occur, they are typically 

mild surface fires in leaf litter (Cochrane, 2003). By contrast, savannas are 

characterised by high degree of disturbance, such as frequent fires (Huntley and 

Walker, 2012). Compared to rainforest species, savanna plants are better adapted to 

tolerate (e.g. thick bark) and recover (aerial buds) from fire (Lawes et al., 2013, Ondei 

et al., 2016, Pausas, 2015b). Dynamic global vegetation models suggest that some 

tropical savannas have the climatic potential to become forests in the absence of fire 

(Bond et al., 2005). Several small-scale experiments have demonstrated substantial 

changes in species diversity and stem density in response to fire exclusion, although 

this was not necessarily associated with conversion to rainforest (e.g. Bowman and 

Panton, 1995, Woinarski et al., 2004).  

Another common disturbance is grazing by megaherbivores. In the Australian 

monsoon tropics, introduced cattle, pigs and buffalo can damage rainforest patches 

through trampling vegetation and wallowing in moist soils (Russell-Smith and 

Bowman, 1992, Petty et al., 2007). Experimental exclosures of medium and large 

herbivores in Mexican and Brazilian rainforests resulted in higher seedling recruitment 
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and survival (Camargo-Sanabria et al., 2015, Fleury et al., 2015), due to the removal 

of the direct negative effects of browsing on plant biomass and the indirect effects of 

trampling (Fleury et al., 2015). While herbivory can affect woody vegetation floristics 

and structure (Midgley et al., 2010), it is unclear if mega-herbivore disturbance 

substantially influences rainforest-savanna boundaries at a landscape-level (Petty et 

al., 2007). Furthermore, a strong interaction between megaherbivores and fire has 

been posited by palaeoecological studies. Following the extinction of Australian 

megafauna, the consequent increase in fire activity could have led to a shift from 

broadleaf to more flammable vegetation (Rule et al., 2012).  

Factors affecting tree growth rates, particularly water availability and nutrient 

availability, influence the rate of forest expansion (Murphy and Bowman, 2012), 

because fast-growing plants require shorter disturbance-free time to grow tall enough 

to resist the negative effects of fire disturbance (Hoffmann et al., 2012a). A trend in 

increasing precipitation, possibly amplified by enhanced CO2, has been postulated as 

the cause for the expansion of rainforests into savannas north-western Australia 

(Banfai and Bowman, 2007, Bowman et al., 2010a). Significant soil fertility gradients 

are also found across most rainforest-savanna boundaries (Dantas et al., 2013a). 

Indeed, a controversial alternative perspective is that disturbance-based feedbacks on 

rainforest-savanna boundaries are a consequence of the established vegetation type, 

rather than a primary determinant (Veenendaal et al., 2015, Lloyd and Veenendaal, 

2016). Hence controlling for edaphic factors and climatic trends is essential when 

evaluating the effect of fire and megaherbivore disturbance on rainforest-savanna 

dynamics. 

Classical experiments designed to determine the effects of exclusion of fire and 

herbivores on rainforests and savannas at the landscape level are often impractical, 

given the spatial and temporal scales involved and the difficulty in having adequate 

replication (Andersen et al., 1998). A realistic alternative to tackle large-scale 

ecological problems is to take advantage of conditions naturally occurring in a 

landscape by performing natural experiments (Diamond, 1983). This approach 

requires careful site selection, to ensure locations share a common or known 
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environmental history (Johnson and Miyanishi, 2008), and some treatment 

combinations can be absent, due to the rarity of naturally long-unburnt areas 

(Andersen et al., 1998). Nonetheless, natural experiments can successfully test the 

effects of disturbance on vegetation in fire prone environments (e.g. Vigilante et al., 

2004, Woinarski et al., 2004). 

We used a natural experiment to investigate rainforest expansion and vegetation 

structure in two extensive locations of the north Kimberley (Western Australia): the 

Bougainville Peninsula and the Mitchell Plateau. These two locations share similar 

climate and geologic substrate, but experience strikingly different levels of 

disturbance: the Mitchell Plateau has a high frequency of extensive savanna fires and 

a large, unmanaged population of cattle, whereas the Bougainville Peninsula is rarely 

burnt and is cattle-free. This contrast allows us to determine the combined effects of 

fire and cattle on rainforest-savanna dynamics while controlling for climate and 

geology. We used historical aerial photography (1949, 1969 and 2005), which 

provided time depth in forest boundary dynamics across the entire study areas. We 

then ground-truthed these analyses using transects that recorded variation in tree 

species populations across selected boundaries. Specifically, we hypothesised that 

rainforest expansion has occurred in the north Kimberley in response to the wetting 

trend in northern Australia over the last century (Bowman et al., 2010a), together with 

increasing atmospheric CO2, but that the expansion is strongly influenced by the 

combined effects of fire and megaherbivores. We also predicted that areas subject to 

high disturbance are characterized by smaller and more compact rainforest patches, 

separated from the surrounding savanna by sharp boundaries, whereas in cattle- and 

fire-free locations we expected to find bigger and more convoluted patches, with wider 

ecotones containing a mix of rainforest and savanna species, signs of ongoing 

rainforest expansion. This natural experiment therefore contributes to the broader 

debates about tropical savanna-forest boundaries, by testing the role of fire and 

megafauna disturbance as drivers of rainforest change in time and space. 
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3.3 METHODS 

3.3.1 Study area 

The study was conducted on the Wunambal Gaambera (WG) Country in the north 

Kimberley, Western Australia, which occupies an area of 9,144 km2. It is defined by 

the Wanjina Wunggurr Uunguu Native Title Determination, and represents the 

traditional lands of the Wunambal Gaambera Aboriginal people. The geology of the 

region is characterised by deeply weathered sandstones and basaltic base rocks of 

Precambrian age, often capped by Cainozoic laterites (Beard, 1976). Rainfall occurs 

almost entirely during the summer wet season (November to April), while the rest of 

the year is almost rain-free (Beard, 1976). Current average annual rainfall across the 

region ranges from 1200 to 1400 mm. A wetting trend has been detected since the 

beginning of the 20th century, with an increment in average annual rainfall of 40-50 

mm every 10 years since the late 1940s (Bureau of Meteorology, 2016). The 

vegetation is predominantly biodiverse tropical savannas: Eucalyptus tetrodonta-E. 

miniata savannas are found on the laterite mesas and hills, while E. tectifica-E. 

grandifolia savannas are common on deeper, clay soils on the plains. Small patches of 

semi-deciduous rainforests are interspersed in the savanna, typically found in fire-

protected locations (Beard, 1976, Vigilante et al., 2004).  

The study was centred on two of the locations with the highest density of rainforests 

in the north Kimberley: the Mitchell Plateau and the Bougainville Peninsula (Fig. 3.1). 

These locations have similar geology (basalt and laterite) and mean annual rainfall 

(range 1300-1400 mm year-1), but contrasting management histories. The Mitchell 

Plateau (754 km2) has a high fire frequency (average times burnt: 0.5 year-1; data from 

North Australia Fire Information, based on the 15-year time period from 2000-2014). 

The Bougainville Peninsula (298 km2), connected with the mainland only by a narrow 

strip of sand, has a much lower fire frequency (average times burnt: 0.08 year-1). The 

fire regime of the entire study area has undergone dramatic shifts in the last 100 years. 

Wunambal Gaambera people practiced landscape scale burning as part of their hunter-

gatherer lifestyle up until the 1940s and 1950s, when they moved off their country to 

settlements. The next 50 years were dominated by unmanaged wildfires moving in 
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from adjacent areas or started by lightning. Since 2010, Aboriginal land management 

programs have initiated prescribed burning programs. While pastoral leases have been 

established in parts of the north Kimberley since the 1950s, the study area has never 

been formally used for pastoral purposes. A 1976 biological survey of the Mitchell 

Plateau did not record any cattle in the area (Wilson, 1981). However, a biological 

survey of Kimberley rainforests in 1987 found evidence of cattle on the Mitchell 

Plateau, but not in the Bougainville Peninsula (Mckenzie and Belbin, 1991).  

 

Figure 3.1  Location of the two study sites in the north Kimberley. The Mitchell Plateau 

extends in latitude from 14.457 °S to 14.893 °S and in longitude from 125.722 °E to 125.949 

°E. The Bougainville Peninsula stretches from 13.897 °S to 14.146 °S in latitude and from 

125.975 °E to 126.225 °E in longitude. Dashed lines represent isohyets (mm · year-1). The 

inset shows the location of the study sites within Australia. 

 

3.3.2 Rainforest-savanna boundary change 

Digitized aerial photographs of the study locations were obtained for the years 1949 

(black and white; 1: 50,000) and 1969 (black and white; 1: 83,300) and georectified, 

using the spline tool in ArcGIS 10 Georeferencing Toolbox to correct for obvious 

misalignments. Rainforests were mapped at a common scale of 1:2,500, adapting the 
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method described in Bowman et al. (2001), based on grid cell classification. We 

overlaid a 30 x 30 m lattice grid to the aerial photographs and, for each investigated 

year, grid cells were manually classified as “rainforest” or “other”, based on the 

vegetation type occupying the highest proportion of the cell. To compare the historic 

rainforest extent with a more recent distribution (dry season of 2005), we used a pre-

existing, validated map of the north Kimberley rainforests produced using the same 

methods and resolution (30 x 30 m) in Ondei et al. (2017) (Fig. 3.2). 

3.3.3 Patch characteristics and location 

A map of the rainforest patches was produced for the years 1949, 1969 and 2005, 

obtained by merging the contiguous cells classified as “rainforest”. For each patch we 

calculated area, perimeter, distance from the coastline, and topographic position index 

(TPI). The latter was calculated as described in Ondei et al. (2017), classifying the 

land in four different topographic categories: valleys, slopes, ridges and flat areas. We 

analysed the effect on expansion of both patch size and shape, and defined the degree 

of patch convolution by calculating patch fractal dimension (2*ln(0.25 * 

perimeter)/ln(area)), which ranges from 1 (compact) to 2 (highly convoluted) (Hargis 

et al., 1998). 

3.3.4 Correlates of rainforest expansion 

To investigate the environmental drivers of rainforest expansion in the time periods 

1949-1969 and 1969-2005, we selected all savanna grid cells located within 60 m 

(equivalent to two times the map resolution) of the patch perimeter at the first year of 

each time period (1949 or 1969). For each selected grid cell, we calculated distance 

from the coastline, TPI, and the distance from and the size, convolution, and location 

of the nearest patch. We also calculated aspect, obtained from a 30-m Digital Elevation 

Model (DEM), and the bearing angle, defined as the angular direction of the cell 

relative to the patch of origin. Both bearing angle and aspect were decomposed into 

their North-South (cosine of angle) and East-West (sine of angle) components. 
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Figure 3.2 Example of aerial photography of the Mitchell Plateau and Bougainville 

Peninsula used in the analyses. Polygons obtained from merging grid cells classified as 

‘Rainforest’ are shown. Percentage of change between each pair of photographs is indicated. 
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3.3.5 Vegetation structure 

To determine vegetation structure and composition across the rainforest-savanna 

transition zones we established a total of 20 transects, 10 placed on the Mitchell 

Plateau and 10 on the Bougainville Peninsula. Transects were all located on different 

patches and at a minimum distance of 500 m. Each transect was 300 m long, and 

consisted of five 10 x 20 m plots placed at regular intervals along it. The first plot was 

located 60 m inside the rainforest, to measure structure and floristic composition of 

the forest core; the second was at the patch boundary, capturing, when present, the 

characteristics of the ecotone, while the remaining three were placed in the vegetation 

outside the rainforest. The patch boundary was visually determined as by Hennenberg 

et al. (2005), based on discontinuities in floristic composition and canopy cover. For 

each plot we recorded grass cover, rock cover, canopy cover, number of seedlings, and 

signs of cattle presence. Canopy cover was measured by taking hemispherical 

photographs using a fish-eye lens (Nikon AF Fisheye NIKKOR 10.5mm), taking 

pictures at 1 m height and calculating the percentage of closed canopy using the 

software CAN-EYE (www.avignon.inra.fr/can_eye). The number of seedlings was 

counted on a 1 x 20 m sub-plot. The presence of cattle was ranked on a qualitative 

scale, from ‘0’ indicating no sign of cattle, to ‘3’, high cattle impact, based on the 

presence of tracks and excrements on the ground and partially browsed plants. For 

each adult tree, operationally defined as having a diameter at breast height (DBH) > 5 

cm and being taller than 2 m, we recorded species name, height, and DBH. Total basal 

area was calculated for each plot. We also recorded the species identity of every tree 

and shrub in the plot. When species identification was not possible in the field, voucher 

samples were collected and identified at the Northern Territory Herbarium, where they 

have been lodged. To determine whether a species was a rainforest element we relied 

on the floristic classification of Kenneally et al. (1991) for the north Kimberley 

rainforests. Each plot was then assigned to one of the following vegetation classes 

based on the mapping for 1949, 1969 and 2005: ‘stable rainforest’ plots were those 

mapped as ‘rainforest’ during all the investigated years; ‘converted to rainforest in 

1969’ were plots mapped as ‘savanna’ in 1949 and ‘rainforest’ in 1969; ‘converted to 

rainforest in 2005’ plots were mapped as ‘savanna in 1969’ and ‘rainforest’ in 2005; 
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‘stable savanna’ plots were mapped as ‘savanna’ during the entire length of the study. 

Fire frequency was calculated for each plot based on 15-year data obtained from North 

Australia Fire Information (NAFI; available at www.firenorth.org.au), based on 

MODIS products displayed at a resolution of 250m.  

3.3.6 Statistical analyses 

All analyses were performed using the software R (R Core Team, 2013). To assess 

variation in patch size and convolution we employed generalized linear models 

(GLMs), using the Gamma family of distribution (link = “log”). Patch size and 

convolution were response variables and year and location were explanatory variables. 

For each location we calculated differences in the proportion of rainforests located on 

different topographic settings in the years 1949, 1969 and 2005. 

To evaluate how environmental variables affected the conversion from savanna to 

rainforest in each time period, we randomly selected a subset of 5,000 grid cells within 

60 m of a rainforest patch (selected as described above), stratified for vegetation type. 

We employed GLMs, considering the response variable as binary: 1 - savanna 

converted to rainforest, or 0 - savanna remained savanna, and using binomial models 

(link ‘logit’). We tested the relationship between the response variable and TPI, 

distance from the coastline, location, area, and convolution of the nearest patch, 

distance from the nearest patch, and North-South and East-West components of both 

aspect and bearing angle. Spatial autocorrelation was assessed by plotting semi-

variograms of model residuals. As only few cells underwent a conversion from 

rainforest to savanna, no analyses on that vegetation change were performed. 

To determine differences in fire activity between the two study locations, we employed 

GLMs and the Gaussian distribution. Differences in cattle impact between vegetation 

classes located on the Mitchell Plateau were tested using ordinal logistic regression 

(package ‘MASS’, Venables and Ripley, 2002) and the influence of cattle impact on 

the number of seedlings was investigated using the Poisson distribution. 

GLMs were also used to test whether the disturbance levels, and environmental and 

vegetation characteristics recorded in each plot and listed below varied between 
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locations (Mitchell Plateau or Bougainville Peninsula) for plots within the same 

vegetation class (e.g. ‘stable savanna’). For these analyses the two classes ‘converted 

to rainforest in 1969’ and ‘converted to rainforest in 2005’ were merged due to the 

limited number of plots. When required, data were log transformed to meet the 

assumption of normality. Within the GLMs, the Poisson distribution (log link) was 

used for count data such as the number of seedlings, number of trees, species richness. 

The binomial distribution (logit link) was used to assess differences between locations 

in the proportion of rainforest and savanna species per plot, while the Gaussian 

distribution (identity link) was used for the response variable basal area. Differences 

in grass cover and rock cover were assessed using ordinal logistic regression.  

For all the modelling we employed complete subset regression and Akaike’s 

Information Criterion (AIC; Burnham and Anderson, 2002) to evaluate models. To do 

this, candidate sets were constructed with models containing all possible combinations 

of explanatory variables, without interactions. Akaike weights (wi) were calculated for 

each model to indicate the probability that a given model is the best in the candidate 

set (Burnham and Anderson, 2004). The importance of single variables (w+) was 

calculated as the sum of wi of the models within the set in which the variable occurred. 

Variables were considered important predictors if w+ exceeded 0.73, as per Murphy 

et al. (2010). Summaries of all analyses are reported in Tables A2.1 and A2.2 in 

Appendix 2. 

To compare variation in canopy across the rainforest-savanna boundary in the Mitchell 

Plateau and the Bougainville Peninsula, we calculated the average canopy cover 

profile for each location. To detect the presence of distinct vegetation states we also 

tested differences in canopy cover modality employing latent class analysis (Hirota et 

al., 2011). To do this, we analysed the frequency distribution of canopy cover data, 

pooled for all plots within the vegetation transects at each location. We compared the 

fit of models with 1, 2 or 3 modes using the Bayesian Information Criterion (BIC). 

More details are given in Appendix 2 (Table A2.3).  
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3.4 RESULTS 

3.4.1 Rainforest expansion/contraction 

 During the 20-year time period 1949-1969, the north Kimberley experienced 

expansion of rainforest cover. The extent of expansion varied depending on the 

location: rainforests expanded by 52%, equivalent to 4.25 km ha-1, on the Bougainville 

Peninsula, and only by 9%, corresponding to 0.12 km ha-1, on the Mitchell Plateau 

(Figs. 3.3a, b).  

 

 

Figure 3.3 Rainforest extent over time in the studied locations. The graphs show a) 

rainforest area during 1949, 1969 and 2005, expressed as proportion of total land, and b) 

proportion of change in rainforest extent, relative to the baseline year 1949. 

 

During the 36-year time period 1969-2005 the expansion continued at a lower rate on 

the Bougainville Peninsula, reaching an overall expansion of 69%, whereas on the 

Mitchell Plateau rainforest extent remained stable. On the Bougainville Peninsula, 

areas of contraction were recorded during both time periods, although always 

compensated by an overall higher proportion of expanded rainforest. At both sites 

rainforests consistently preferred slopes, valleys and ridges (Fig. 3.4).  
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Figure 3.4 Proportion of landscape occupied by rainforest in slopes, valleys, flat areas, 

and ridges in the studied locations over time, from 1949 to 2005. 

 

3.4.2 Patch characteristics 

In 1949 a total of 1668 patches, covering 3% of the land, were mapped, and this area 

increased during the 20-year period to 1969, with a smaller increase between 1969 and 

2005 (Table 3.1). There were marked differences in trends between the Mitchell 

Plateau and the Bougainville Peninsula in terms of patch density, individual patch size 

and convolution. At all three observation times, patches on the Mitchell Plateau were 

smaller (w+ = 1.00) and more compact (w+ = 1.00) than those on the Bougainville 

Peninsula. Patch size and density increased on the Bougainville Peninsula, while on 

the Mitchell Plateau there was no substantial change in average patch size over the 

entire 56-year time frame (Fig. 3.5a, b), but a small increase in patch density was 

detected between 1949 and 1969. Rainforests on the Bougainville Peninsula were 

bigger in 1969 and less convoluted in 2005 compared with 1949 (Fig. 3.5b, c).  
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Table 3.1 Total number of rainforest patches, rainforest extent, and proportion of land 

covered by rainforest for the years 1949, 1969 and 2005 in the Bougainville Peninsula 

(BP), Mitchell Plateau (MP) and the entire study area. 

Year 

Number of patches Rainforest extent (ha) 
Rainforest cover 

(ha · km-2) 

BP MP Total BP MP Total BP MP Average 

1949 759 776 1668 2504 968 3786 8.4 1.3 3.5 

1969 908 831 1891 3770 1053 5230 12.6 1.4 4.8 

2005 989 869 2053 4085 1054 5713 13.7 1.4 5.2 

 

 

 

Figure 3.5 Patch characteristics in the Bougainville Peninsula and Mitchell Plateau in 

the years 1949, 1969, and 2005. (a) patch density, expressed as number of rainforest patches 

normalized by the location area, (b) average patch size, and (c) average fractal dimension of 

rainforest patches. Error bars represent standard errors. 

 

3.4.3 Correlates of rainforest expansion 

Model selection showed that between 1949 and 1969, the local variables that affected 

rainforest expansion were: convolution and area of the original patch, distance from 

patch edge, and TPI (Table 3.2). Areas on the Bougainville Peninsula, and those close 

to the edge of bigger and more convoluted patches, were more likely to convert from 
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savanna to rainforest. The same variables affected the expansion of rainforests 

between 1969 and 2005. During this period, rainforests were also more likely to 

establish on the northern side of already existing patches and close to the coast (Table 

3.2). On the Bougainville Peninsula there was substantial expansion on flat locations 

during both periods, but this was not evident on the Mitchell Plateau (Fig. 3.4). The 

best models for both periods explained 22% of the deviance. 

Table 3.2 Explanatory variables included in the models assessing the likelihood of a 

savanna cell, located within 60 m to a rainforest patch, to convert in a rainforest cell. The 

importance of each variable is expressed as w+, the probability of the factor to be included in 

the best model. The direction of the effect is indicated within brackets: + positive, or – negative 

for continuous variables; for categorical factors the categories positively affecting the 

conversion to rainforest are shown. Variables with w+ values > 0.73 (in bold) are considered 

important predictors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable 

w+ 

Time period 

1949-1969 

Time period 

1969-2005 

Location (Bougainville Peninsula) 1.00 1.00 

Fractal dimension (+) 1.00 1.00 

Patch area (+) 1.00 0.98 

Distance from rainforest edge (-) 1.00 1.00 

TPI (slopes, ridges, and valleys) 1.00 1.00 

Distance from the coastline (-) 0.27 1.00 

Expansion North-South (North) 0.40 0.97 

Expansion East-West (West) 0.44 0.32 

North-South component of aspect (North) 0.31 0.40 

East-West component of aspect (West) 0.30 0.28 
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3.4.4 Disturbance 

No sign of cattle was found in any of the plots on the Bougainville Peninsula. On the 

Mitchell Plateau, cattle presence was detected in 62% of the plots, with no substantial 

differences in the intensity of cattle impact among vegetation classes (w+ = 0.51; 

Table A2.4). The intensity of cattle grazing was negatively correlated with tree 

seedling density in savannas (w+ = 1.00), but not in rainforests (w+ = 0.63). Fire 

frequency was lower on plots located on the Bougainville Peninsula (w+ = 1.00).  

3.4.5 Floristics and vegetation structure 

We identified 82 species belonging to the rainforest flora in plots on the Bougainville 

Peninsula, and 71 in those on the Mitchell Plateau. Most records were of species 

commonly found in Kimberley rainforests, with the exception of Pouteria richardii 

(F. Muell.) Baehni, found on the Bougainville Peninsula and never recorded before in 

Western Australia. Species composition was uniform within rainforest patches; of the 

species sighted at least five times, only four rainforest species were found exclusively 

on the patch edge (Bridelia tomentosa Blume, Ficus aculeata Miq., Flueggea virosa 

(Willd.) Voig, and Trema tomentosa (Roxb.) Hara), and only two were limited to the 

patch core (Diospyros maritima Blume and Meiogyne cylindrocarpa (Burck) 

Heusden). The savanna flora had similar richness in the Bougainville Peninsula and 

Mitchell Plateau (29 and 31 species respectively). However, while all the savanna 

species identified on the Mitchell Plateau are common throughout the north 

Kimberley, on the Bougainville Peninsula we detected uncommon species recorded in 

only a few sites in Western Australia, such as Eucalyptus oligantha Schauer, and 

Xanthostemon psidioides (Lindl.) Peter G. Wilson & J.T. Waterh. The latter is 

considered near threatened in Western Australia. We also recorded two species 

thought not to grow in the north Kimberley Acacia drepanocarpa subsp. latifolia 

Pedley and Vachellia ditricha (Pedley) Kodela (Atlas of Living Australia website at 

http://www.ala.org.au; Western Australian Herbarium, 1998-). Some of the savanna 

elements detected only on the Bougainville Peninsula, such as acacias (Acacia 

hemignosta F. Muell. A. stigmatophylla Benth, A. drepanocarpa sub. latifolia Pedley), 
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are known to be sensitive to frequent fires (Russell-Smith et al., 2010b). The full list 

of species is reported in Table A2.5 in Appendix 2. 

Abrupt changes in vegetation characteristics were detected across rainforest-savanna 

boundaries on the Mitchell Plateau, while on the Bougainville Peninsula the 

differences were less apparent (Table A2.6, Fig. 3.6). The floristic composition and 

vegetation structure of stable and expanded rainforests were very similar at the two 

study locations, with the exception of higher tree and seedling density on the 

Bougainville Peninsula (w+ = 0.92 and w+ = 1.00 respectively, Table A2.7). Stable 

rainforests also had more seedlings (w+ = 0.84) and a higher proportion of rainforest 

species (w+ = 1.00) compared with recently expanded rainforests. For the savannas, 

there were clear differences between the two location, with signs of rainforest invasion 

on the Bougainville Peninsula. Indeed, every savanna quadrat on the Bougainville 

Peninsula contained rainforest species in the understorey, compared with only 27% on 

the Mitchell Plateau. Consequently, savannas on the Bougainville Peninsula displayed 

greater species richness (w+ = 1.00), due to more rainforest species per plot (w+ = 

1.00). The Bougainville Peninsula’s savannas also had higher densities of adult trees 

and seedlings (w+ = 0.88 and w+ = 1.00 respectively), and greater grass cover (w+ = 

0.87).  
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Figure 3.6 Average plot values of a) proportion of rainforest plants amongst the adult 

trees, b) grass cover, c) rock cover, d) number of adult trees, e) number of seedlings, and 

f) species richness in the two study locations for each vegetation class: (St RF) stable 

rainforests, (Exp 69) converted to rainforest in 1969, (Exp 05) converted to rainforest in 

2005, (St SAV) stable savannas. Error bars represent standard errors. 

 

The invasion of rainforest species into the savanna on the Bougainville Peninsula 

resulted in contrasting profiles of tree canopy cover across the rainforest-savanna 

boundaries at the two locations. There was a gradual change in canopy cover across 

boundaries on the Bougainville Peninsula compared with abrupt boundaries on the 

Mitchell Plateau (Fig. 3.7). Furthermore, frequency distribution of canopy cover on 

the Mitchell Plateau transects displayed the bimodality characteristic of two distinct 

vegetation states (Fig. 3.8, Table A2.3). By contrast, the unimodal canopy cover 

model, corresponding to blending of vegetation, was the best model for the 

Bougainville Peninsula. 
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Figure 3.7 Average canopy cover recorded in the vegetation transects running across the 

rain forest-savanna boundary. In the Mitchell Plateau there was a steep increase in canopy 

cover in at the edge of the rain forest, while on the Bougainville Peninsula canopy cover 

increased gradually. Error bars represent standard errors. 

 

 

 

Figure 3.8 Probability density distribution of total canopy cover (trees and shrubs) in 

our study transects, illustrating a) unimodal distribution on the Bougainville Peninsula 

and b) bimodal distribution in the Mitchell Plateau, as indicated by the lowest BIC value. 

These patterns reflect the distinct vegetation boundary in the Mitchell Plateau, and blurring of 

the boundary due to rainforest expansion on the Bougainville Peninsula. 
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3.5 DISCUSSION  

Our natural experiment in the north Kimberley, based on two geographically similar 

areas with contrasting disturbance regimes, revealed significant differences in 

vegetation structure and in the rate, magnitude, and environmental correlates of 

rainforest expansion in time. Specifically, the study design combined historical aerial 

photography and field measurements to address three predictions: (a) rainforest 

expansion has occurred in the north Kimberley concurrently with the trend of 

increasing precipitation and/or atmospheric CO2 (b) this trend was locally influenced 

by the combined effects of fire and megaherbivores and (c) areas subject to high 

disturbance have different boundaries and patch shapes from less disturbed areas. 

Below we discuss our findings with respect to the current theories on rainforest-

savanna dynamics. 

The two study locations have similar climates, with mean annual precipitation towards 

the lower limit of rainforests in Australia and globally (Bowman, 2000). In the area, 

annual rainfall increased from an estimated 1080 mm to 1280 mm during the period 

1949 and 2005, consistent with increasing precipitation and longer wet seasons 

observed in north-western Australia in the past decades (Feng et al., 2013, Bureau of 

Meteorology, 2016). The positive correlation between wetting trends and rainforest 

expansion in the north Kimberley is consistent with findings of previous studies in the 

Australian tropics, which associated increased rainfall with rainforest expansion 

(Banfai and Bowman, 2006, Bowman et al., 2010a) or savanna woody thickening 

(Lehmann et al., 2009). However, we used space-for-time substitution and data for 

current rainforest cover in monsoonal Australia (Ondei et al., 2017) and estimated that 

this increase in rainfall corresponds to a 41% relative increase in the 95th percentile of 

rainforest cover (Fig. A2.1). It is therefore improbable that wetting trends are solely 

responsible for the 69% increase in rainforest cover observed on the Mitchell Plateau. 

Elevated CO2 has also been associated with enhanced tree growth and recruitment 

(Kgope et al., 2010) and resprouting of seedlings after defoliation, potentially 

contributing to shift savannas towards a tree-dominated state (Bond and Midgley, 
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2000, Hoffmann et al., 2000, Buitenwerf et al., 2012). We also cannot rule out 

relaxation of disturbance regimes contributing to the rainforest expansion. 

Our experiment was designed to compare locations with similar climate and geology, 

and thus amounts of nutrients derived from the parent material. Yet, remarkable 

differences in rainforest expansion were detected between the Mitchell Plateau and the 

Bougainville Peninsula, suggesting that rainforest distribution is not determined by 

resources alone. Furthermore, our results showed that on the Bougainville Peninsula, 

rainforest expanded into infrequently burnt savannas across all landscape settings, 

while on the Mitchell Plateau rainforest expansion was constrained to slopes, valleys 

and ridges. These differences highlight the importance of disturbance history in 

modifying the expansion of rainforest. The frequently burnt savannas on the Mitchell 

Plateau had structurally abrupt and floristically distinct rainforest-savanna boundaries, 

consistent with the view that fire maintains a sharp transition between these two 

vegetation types (Dantas et al., 2013a, 2016). Elevated fire activity may also explain 

the very restricted patches and their limited convolutions. By contrast, on the 

Bougainville Peninsula the lower fire activity resulted in large, convoluted patches 

that occurred across a range of landforms. Grass cover was higher in savannas on the 

Bougainville Peninsula than the Mitchell Plateau, and a striking feature of the 

Bougainville Peninsula’s savannas was the admixture of savanna and rainforest trees. 

Because of the low fire frequency in the savanna on the Bougainville Peninsula, 

rainforest trees, including some species not found elsewhere in the Kimberley, were 

able to grow even where the canopy was not yet closed sufficiently to exclude grasses 

(Lawes et al., 2011b). The rarity of anthropogenic ignitions on the Bougainville 

Peninsula and its fire-protected position have possibly caused this anomaly. Here, the 

main limitation to rainforest tree growth appears to be competition with savanna trees 

and grasses for resources (Bond, 2008). By contrast, on the Mitchell Plateau, frequent 

disturbance also imposes a constraint on rainforest tree growth.  

The invasion of cattle on the Mitchell Plateau during the time period 1969-2005 is 

likely to have accentuated the differences in rainforest expansion between the Mitchell 

Plateau and the Bougainville Peninsula, through direct and indirect effects. Cattle may 
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have limited the expansion of patches on the Mitchell Plateau, because trampling and 

browsing of juveniles likely contributed to lower seedling density. Cattle may also 

have increased grass cover by opening up understories on rainforest boundaries, 

thereby increasing fire activity (Mckenzie and Belbin, 1991, Staver et al., 2009, 

Camargo-Sanabria et al., 2015, Fleury et al., 2015). 

Because our natural experiment was based on only two locations (and hence n = 1), 

we cannot rule out the possibility that factors other than those we tested contributed to 

differences in rainforest structure, distribution, and expansion, as the study is 

pseudoreplicated, due to the lack of multiple disturbed and undisturbed locations. 

Nonetheless, by removing climatic and geological differences from our study design, 

we showed that fire activity probably has a primary role in driving vegetation 

dynamics (Hoffmann et al., 2012a, Lawes et al., 2011b, Murphy and Bowman, 2012), 

with cattle herbivory perhaps playing a subsidiary role. On fertile substrates and when 

freed from disturbance, rainforests can occupy a larger range of landscapes than is 

typically observed. We found that the expansion of rainforests into unburnt savannas 

resulted in ecotonal vegetation that blends the floristic and structural elements of both 

vegetation types. This highlights the importance of fire regimes in shaping vegetation 

structure and floristic composition in regions where savanna and rainforest co-exist 

(Dantas et al., 2013a). It is possible that, prior to Aboriginal colonisation and the 

marsupial megafaunal extinctions, there would have been a less pronounced 

dichotomy between savannas and rainforests, and long-lasting transitional states such 

as those that now occur on the Bougainville Peninsula may have been present. 

Analysis of pollen, charcoal and Sporormiella records in north-east Australia have 

been interpreted as showing that the extinction of marsupial megafauna following 

human colonisation led to a transition from relatively open and mixed rainforest-

sclerophyll forest to pure sclerophyll vegetation and an increase in fire activity (Rule 

et al., 2012). Aboriginal fire management possibly sharpened boundaries between 

savanna and rainforests, maintaining fire sensitive vegetation in a matrix of flammable 

savanna (Trauernicht et al., 2015). 
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Across northern Australia, contemporary disturbance regimes, which include frequent 

landscape burning and widespread cattle grazing, are thought to be contributing to the 

decline of many small to medium sized mammals due to loss of shelter and food 

resources (Legge et al., 2011a, Woinarski et al., 2015). In this context, the cattle-free 

and rarely burnt Bougainville may be important for biodiversity, by offering more 

long-unburnt habitats for large numbers of threatened small to medium sized 

mammals and fire-sensitive floristic elements rarely found elsewhere in northern 

Australia (Radford et al. 2015, Woinarski et al. 2004).
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4.1 ABSTRACT 

In tropical areas where climatic conditions support both rainforests and savannas, fire 

is considered one of the main factors determining their distribution, particularly in 

environments where growth rates are limited by water availability. The observed 

expansion of some rainforests into savannas suggests that rainforest saplings could 

have traits that enable them to survive in the savanna environment, including 

recovering from infrequent fires. We applied the Clarke et al. (2013) buds-protection-

resources (BPR) framework to the rainforest-savanna system of the north Kimberley 

(Western Australia), to compare the resprouting response of five savanna species 

saplings burnt by an ambient early dry season fire with seven rainforest species 

saplings burnt using an experimental treatment that mimicked a savanna fire. Most 

plants survived the fire, although plant mortality was higher for rainforest (19%) than 

savanna (2%) individuals, as was stem mortality (37% vs. 12%). All rainforest and 

savanna species expressed aerial resprouting; two of the savanna species and two of 

the rainforest species did not express basal resprouting. After one year most savanna 

individuals had more and longer shoots than the rainforest saplings and had regained 

their original height while rainforest plants were on average 43% shorter than their pre 

fire height. These results suggest that, although rainforest species are less able to 

escape the ‘fire trap’ than savanna species, they are able to recover from a low intensity 

fire. 

 

4.2 INTRODUCTION 

Boundaries between rainforest and savanna provide important insights into the 

feedbacks between vegetation type and fire activity under a common climate (Murphy 

and Bowman, 2012). Fire activity is higher in savannas because of the abundance of 

flammable C4 grass biomass, which supports frequent fires with a high rate of spread 

and long flame lengths compared to forests; the latter have less frequent and lower 

intensity fires, owing to dense litter fuels beds and a moister and more shaded 

microclimate (Hennenberg et al., 2006, Hoffmann et al., 2012b, Little et al., 2012, 
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Ratnam et al., 2011). Savanna fire regimes present a powerful filter of tree species, 

selecting for ensembles of traits relating to fire resistance and recovery. For example, 

savanna species have thicker bark compared to rainforest species (Brando et al., 2012, 

Dantas et al., 2013a, Hoffmann et al., 2012a, Lawes et al., 2013, Pausas, 2015b), 

rendering them less vulnerable to thermal shock (Lawes et al., 2011c) and stem death 

('top kill'). Nonetheless, rainforest species also show capacity to regenerate via aerial 

and basal shoots after a low-moderate intensity fire (Bowman, 1991, Bowman and 

Panton, 1993, Campbell and Clarke, 2006, Hoffmann et al., 2004, Marrinan et al., 

2005, Müller et al., 2007, Poorter et al., 2010, Williams, 2000, Williams et al., 2012, 

Zimmer et al., 2015). 

Frequent burning is recognised as one of the main constraints to rainforest seedling 

establishment, causing rainforest plants to suffer higher mortality compared with 

savanna plants (Bowman and Panton, 1993, Fairfax et al., 2009, Fensham et al., 2003, 

Gignoux et al., 2009, Hoffmann et al., 2000, Hoffmann et al., 2004, Müller et al., 

2007, Rossatto et al., 2009, Russell-Smith et al., 2004). Nonetheless, rainforests have 

been reported expanding into savannas. Descriptive studies on the Bougainville 

Peninsula and nearby islands in the north Kimberley recognised rainforest elements 

colonising savanna (Beard et al., 1984). Elsewhere in northern Australia, some 

encroachment of rainforests into the surrounding savanna has occurred (Banfai and 

Bowman, 2006, Bowman et al., 2001, Clayton-Greene and Beard, 1985, Russell‐

Smith et al., 2004, Tng et al., 2012a) despite a recent increase in the extent, frequency 

and severity of savanna fires associated with regional declines in biodiversity 

(Radford, 2010, Trauernicht et al., 2013). It has been asserted that rainforests are 

encroaching into frequently burnt savannas because of enhanced growth rates in 

response to increasing atmospheric CO2 and mean annual precipitation over the last 

50 years (Banfai and Bowman, 2006, Bowman et al., 2010a). This expansion raises 

intriguing questions concerning the comparative fire tolerance and post-fire recovery 

of savanna and rainforest trees. Quantifying these differences is essential for 

understanding the potential of state shift between rainforest and savanna. There has 

been recent focus on the role of bark in affording fire protection (Brando et al., 2012, 

Lawes et al., 2011c, Pausas, 2015b), how this trait varies across forest-savanna 
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boundaries (Dantas et al., 2013a, Hoffmann et al., 2012a), and post fire recovery of 

temperate rainforest juveniles growing in nursery conditions (Zimmer et al., 2015). 

However, to date there have been no comparative studies of the regeneration strategies 

of tropical savanna or rainforest saplings using experimental burning conditions in 

their natural environment.  

We hypothesised that (i) there are marked differences in regeneration strategies 

amongst savanna and rainforest species, reflecting differences in both sensitivity to 

and recovery from fire. This influences the dynamics of the boundary between these 

contrasting vegetation types; (ii) rainforest plants can recover after a mild fire, 

although less efficiently than savanna plants. To test these hypotheses, we undertook 

a burning experiment on a rainforest-savanna boundary in the Mitchell Plateau (north 

Kimberley, Western Australia) to determine the responses of the rainforest trees to a 

simulated savanna fire. We did this by exposing rainforest saplings located along the 

forest boundary to flames that are comparable, in terms of temperature and intensity, 

to observed savanna fires. Seeking to explain differential responses in terms of bark 

thickness and the position of regenerative shoots, we recorded the mortality, and the 

type and extent of vegetative recovery of the rainforest species. We followed the 

classification designed by Clarke et al. (2013), which provides an important 

conceptual framework to understand the resprouting strategies of woody species in 

response to fire regime based on the position and protection of regenerative buds and 

the allocation of resources, known as the buds-protection-resources (BPR) framework. 

We made similar observations and analyses of savanna species burnt by an ambient 

low severity fire, which allowed qualitative comparisons of the responses of savanna 

and rainforest species. 
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4.3 METHODS 

4.3.1 Study site 

The Mitchell Plateau is located at the driest end of the Australian rainforest’s climatic 

range (Bowman, 2000). The land surface is intensely weathered Precambrian basalt 

resulting in a landscape with rounded hills and low mesas capped by laterite (Beard, 

1979). Average elevation is 200 m asl (range: 0 – 500m asl). The climate is monsoonal, 

with a pronounced austral summer wet season (November to April) with the remainder 

of the year rain-free. Average yearly rainfall is above 1300 mm, higher than the 

Kimberley average of about 700 mm per year (Craig, 1997); a trend to increasing 

precipitation has been observed since the middle of last century (Reisinger et al., 

2014). The average daily maximum temperature exceeds 30°C every month, but 

average daily minimum temperature ranges from 14°C in austral winter months to 

25°C in austral summer months (Bureau of Meteorology, 2016).  

Eucalypt savanna is the main vegetation of the area, with Eucalyptus tetrodonta – E. 

miniata savanna dominating the laterite mesas and hills and E. tectifica – E. 

grandifolia savanna common in deeper, clay soils on plains dominated by perennial 

tussock grasses with some annual sorghum (Sarga timorense) on drier and shallower 

sites. Interspersed in these savannas are small patches of rainforests with a mix of 

deciduous and evergreen species, typically in fire-sheltered landscape settings (Beard, 

1979, Beard, 1990). There is concern that some rainforests are being degraded by the 

current fire regime, which is characterised by extensive frequent fires (Vigilante et al., 

2004). Nonetheless, some rainforests in this region have been shown to invade into 

long unburnt savannas (Beard et al., 1984). 

The study was conducted in a rainforest patch at a place called Yalgi by the Wunambal 

Gaambera people, located within the Yalgi Aboriginal Reserve, 11 km far from 

Kandiwal Aboriginal Community in the valley of Camp Creek (Fig. 4.1).  
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Figure 4.1 Location of the rainforest study site on the Mitchell Plateau in northern 

Australia (14.888° S, 125.770° E). Elevation is indicated. 

 

The surrounding E. tectifica – E. grandifolia savanna has been burnt 8 times in the last 

13 years (North Australian Fire Information; NAFI, 2016). The boundary that 

separates the two vegetation types is very sharp across a gradual slope, where the 

savanna occurs on soils with little surface rock cover and the rainforest occurs on soils 

with variable rock cover (Fig. 4.2). 

 

Figure 4.2 Abrupt boundary between the monsoon rainforest (left) and the surrounding 

savanna (right) at Yalgi, on the Mitchell Plateau, northern Australia. 
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4.3.2 Definition of resprouting 

We followed the Clarke et al. (2013) framework to record regeneration strategies of 

rainforest and savanna species. Amongst the described key regeneration types are 

‘aerial resprouters’ and ‘basal resprouters’. The ‘aerial resprouters’ type is broken 

down into subtypes including ‘axillary resprouters’, characterised by survival of the 

main aerial stem with the regenerative process occurring through axillary buds 

protected by the leaf base, and ‘epicormic resprouters’, which possess accessory buds 

protected by the bark. Amongst the ‘basal resprouters’ type the ‘collar resprouters’ 

subtype is defined by death of the main stem with regeneration occurring from buds 

located at the stem base beneath the bark. 

4.3.3 Savanna fire intensity  

Practical and ethical issues concerning lighting fires in the rare, small and potentially 

threatened north Kimberley rainforests required the use of a gas burner to simulate a 

mild savanna fire rather than setting fires in the rainforest. The gas burner method has 

already been used to simulate fire effects in other savanna studies (e.g. Bowman et al., 

2014). In order to apply a representative treatment, we first measured the residence 

time, temperature and intensity of an actual savanna fire. To achieve this, we set fires 

in the early dry season on two plots 4000 m2 in area outside Kandiwal community 

(Fig. 4.1).  The fires were set at 4 p.m. on 27 June 2013. A portable meteorological 

station showed that during the controlled burn the wind speed was 10 km h-1, humidity 

was 53% and air temperature 29.2°C. The average temperature of flames 1.5-2 m high, 

measured using a thermocouple mounted at the end of a rigid wire, was 387°C ±16 

(SE).  Fire intensity was estimated using Byram’s fire-line intensity (Byram, 1959):  

𝐼 = 𝐻𝑤𝑟 

where I is fire intensity (kW m-1), H is heat of combustion (17781 kJ kg-1; Trollope, 

1984), w the mass of fuel combusted (kg m-2) and r the rate of spread of the head fire 

front (m s-1). Data were collected following  the methods of  Trauernicht et al. (2012): 

fuel load was assessed cutting and weighting the standing biomass of litter and dead 
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and live graminoids from five, randomly placed 1x1 m quadrats collected before and 

after the fires. Rate of spread was calculated from the time elapsed for the fire front to 

pass through two pair of points located 20 m apart (Pérez and Moreno, 1998). These 

measurements showed that the rate of spread was 0.11 m s-1, and fuel consumption 

averaged 0.153 kg m-2 ±0.087 SE, about 60% of the standing biomass. We thereby 

estimated the intensity of fire at 300 kW m-1. Scorch heights were measured on the 

two plots to provide an alternative estimate for fire intensity, using the empirical 

relationship described between scorch height and fire intensity in Australian tropical 

savannas by Setterfield et al. (2010). Scorch height of the fire ranged from 0.9 to 4 m 

(average 2.42 m ± 0.22 SE), falling within the low intensity (<1000 kW m-1) range of 

savanna fires as defined by Russell-Smith and Edwards (2006). We also estimated the 

energy of these fires at ground level by using five aluminium drink cans filled with 50 

g of water as open-calorimeters, and five cans were placed away from the fire to 

account for ambient evaporation. Water loss was used as a proxy for the energy 

released by the fires which was calculated using the following formula: 

Q = mLv 

where Q is the latent heat, m is the mass of water lost and Lv is the latent heat of 

vaporization (2.26 x 106 J kg-1 for water) (Pérez and Moreno, 1998). This showed the 

energy absorbed by the cans was 5.0 kJ ± 1.0 (SE). 

Informed by the above measurements we burnt the rainforest plants using a butane gas 

burner. The above ground portions of the plants were bathed in flames by evenly 

sweeping the burner up and down the axis of the stem for 60 seconds and using a 

thermocouple to ensure the flame was at 300 to 500 °C. We validated this treatment 

in two ways. First, ten replicate aluminium cans were placed on the ground and 

exposed to the gas burner flame using the same procedure and we recorded the mass 

of water lost at ground level, while accounting for ambient evaporation losses. This 

showed our burning treatment caused the cans to absorb 3.0 kJ ± 1.6 (SE) from the gas 

flame, which is slightly lower than the values obtained from the savanna fires. Second, 

we calculated the fire intensity (kW m-1) from the burner using the flow rate of the 

butane, the energy density of this gas (47 MJ per kg), and the width of the flame (11.5 
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cm). This showed that the gas burner treatment produced a fire intensity of 290 kW 

m-1, similar to the intensity of the savanna fires. 

4.3.4 Rainforest fire trial 

Seven rainforest species were selected for the experiment: Atalaya salicifolia (A.DC.) 

Blume (Sapindaceae), Canarium australianum F.Muell. (Burseraceae), Ficus 

aculeata Miq. (Moraceae), Sterculia quadrifida R.Br. (Malvaceae), Strychnos lucida 

R.Br. (Loganiaceae), Terminalia petiolaris Benth. (Combretaceae), Vitex acuminata 

R.Br. (Lamiaceae). We focused on rainforest plants located along the boundary 

because some of these species are known to colonise unburnt savanna elsewhere in 

this region (Vigilante and Bowman, 2004). For each species, 10 individuals across a 

range of sizes were selected, from 50 cm to 300 cm height (i.e. combined juveniles 

and small saplings classes of Werner and Prior (2013); all would be beneath the mean 

typical flame height of a savanna fire), and stem height and basal diameter were 

measured. Following the guidelines in Perez-Harguindeguy et al. (2013), bark 

thickness was recorded as the average of two measurements obtained by peeling the 

bark at the stem base and measuring it with digital callipers (0.01mm). These callipers 

were sensitive enough to detect differences in the thin bark of rainforest saplings. 

Relative bark thickness was used for interspecies comparison and was calculated as 

the ratio of individual bark thickness to stem diameter (Lawes et al., 2013).  

The rainforest species were burnt in June 2013 using a gas burner. In August 2014 we 

recorded (i) whether the plants survived the treatment; (ii) the regenerating strategy of 

all surviving individuals according to the Clarke et al. (2013) framework (i.e. 

epicormic, axillary, and basal resprout); (iii) living stem height; (iv) number of shoots, 

which we operationally defined as having at least one fully expanded leaf; and (v) 

length of the longest shoot. Relative height difference pre- and post-fire was calculated 

as the difference between the initial stem height and the stem height after one year 

(August 2014), expressed as a percentage. Because of lost tags, the post-fire response 

of 6 stems could not be assessed. 
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4.3.5 Savanna species post-fire recovery 

It was not possible to repeat for savanna species the same procedure adopted for 

rainforest plants, due to the high grass biomass and the associated risk of uncontrolled 

fire. A low severity (sensu Russell-Smith and Edwards, 2006), early dry season fire 

occurred in a portion of the savanna on the perimeter of the Yalgi rainforest two 

months before the rainforest fire treatment (NAFI, 2016), providing the opportunity to 

gather data from savanna plants for a qualitative comparison of the two vegetation 

types. The five savanna species selected for study were Corymbia confertiflora 

(F.Muell.) K.D.Hill & L.A.S.Johnson (Myrtaceae), Erythrophleum chlorostachys 

(F.Muell.) Baill. (Fabaceae), Eucalyptus tectifica F.Muell. (Myrtaceae), Planchonia 

careya (F.Muell.) R.Knuth (Lecythiadaceae), and Terminalia canescens (DC.) Radlk. 

(Combretaceae). The measurement protocol and time of sampling was the same as for 

rainforest plants except bark thickness data were collected from the portion of the stem 

that remained unburnt. Because of lost tags, post-fire responses of 8 stems could not 

be assessed. A table with the data recorded for both rainforest and savanna plants is 

provided in Table A3.1 in Appendix 3. 

4.3.6 Statistical analyses 

Variables were checked for normality and where necessary, data were log- or square 

root-transformed. The stem traits absolute bark thickness, relative bark thickness (ratio 

of individual bark thickness to stem diameter) and stem diameter – height ratio were 

compared between rainforest and savanna species using univariate analysis of variance 

(ANOVA) and the software R (R Core Team, 2013). For each species we calculated 

the equation describing the relationship between stem diameter and bark thickness and 

applied it, using the stem diameter recorded one year after the fire trial, to estimate the 

increment in bark thickness. Because of the differences in fire treatments 

(experimental vs. ambient) it was not valid to statistically compare survival and mode 

of resprouting for rainforest and savanna individuals, but we were able to compare 

responses of the various regeneration types within rainforest and savanna vegetation. 

For rainforest individuals, we tested whether the three response variables, whole plant 

survival (living vs. dead), stem survival (living vs. dead), and resprouter type (basal 
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vs. aerial) were correlated with bark thickness, species and plant height. For savanna 

plants we modelled only stem survival, because only one savanna individual died. We 

also tested whether the number and length of shoots and relative height difference 

differed among species and resprouter type (aerial vs. basal). We further investigated 

factors potentially affecting the number of shoots, assessing if the number of shoots 

of basal and aerial resprouters differed among species, controlling for stem diameter. 

To do this, we used generalised linear models (GLM), complete subsets regression 

and model selection based on Akaike’s Information Criterion for small sample size 

(AICc) (Burnham and Anderson, 2002). Linear models were used for shoot length and 

relative height difference,  Poisson models with a log link were applied  for the number 

of shoots and binomial models with a logit link were used to test survival and 

resprouter type. Akaike weights (wi) were calculated as a “weight of evidence” to 

evaluate the probability of a given model to actually be the best in the set (Burnham 

and Anderson, 2004). Importance of single variables (w+) was calculated as the sum 

of wi of the models within the set in which the variable occurs.  w+ values higher than 

0.73 indicate that the variable is likely to be an important predictor (Murphy et al., 

2014). Full AICc results are provided in Table A3.2 in Appendix 3. For each species 

we computed the Pearson’s product-moment correlation coefficient to assess the 

relationship between the average bark thickness and the percentage of aerial 

resprouters, as well as the relationship between the estimate bark thickness increment 

and the height increment.  

 

4.4 RESULTS 

4.4.1 Stem traits comparison 

Stem diameter-height ratio values were significantly different (P <0.001) between 

rainforest (average 1.00 cm m-1 ± 0.05 SE) and savanna trees (average 1.78 cm m-1 ± 

0.09 SE), meaning that within our pre-selected height range rainforest species had 

smaller basal stem diameters than savanna trees for a given height (Fig. 4.3.a, b). For 

example, modelled basal stem diameter of a 2-m high rainforest tree was 2.4 cm while 
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that of a savanna tree was 4.0 cm. There was also a positive relationship between 

absolute bark thickness and stem diameter for both vegetation types (Fig. 4.3 c, d). 

 

 

Figure 4.3 Relationship between diameter and height for (a) savanna and (b) rainforest 

species, and diameter and unburnt bark thickness for (c) savanna and (d) rainforest 

species. Regression lines and coefficients of determination (r2) are shown. 
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Rainforest plants had thinner bark than savanna species of comparable size; ANOVA 

showed that savanna species had higher absolute and relative bark thickness (P < 

0.001and P < 0.05 respectively; Fig.4.4 a, b).  

 

 

4.4.2 Post-fire regeneration of savanna plants 

One year after the low intensity fire, whole plant mortality was observed in only one 

individual, a Terminalia canescens sapling (Table 4.1). For all five savanna species 

most of the main stems (88%) survived, with no stem death recorded in the two 

Myrtaceae species (Corymbia confertiflora and Eucalyptus tectifica), and thus these 

species did not have any basal shoots. AICc model selection showed no relationship 

between the few occurrences of main stem death and plant size, bark thickness or 

species (Fig. 4.5a). 

Figure 4.4 a) Absolute and b) relative unburnt bark thickness of the studied rainforest and 

savanna species. The species are ordered by median value; all the rainforest species fell on the 

left side of the dashed line and savanna species on the right side. 
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Table 4.1 Individual survival, stem survival and mode of regeneration of rainforest and savanna species to a low intensity fire in northern Australia. 

Rate of plant survival and stem survival are calculated considering all the studied plants, grouped by species. 

 

Species Phenology 

Number 

of 

observed 

plants 

Plant 

survival 

(%) 

Stem 

survival 

(%) 

% of plants 

Relative height 

difference (%) 

(mean ± SE) 

Number of 

shoots 

(mean ± SE) 

Length of the 

longest shoot (cm) 

(mean ± SE) 

Basal Aerial Basal Aerial Basal Aerial Basal Aerial 

Rainforest  Atalaya salicifolia Evergreen 10 90 30 67 33 -23 ± 17 18 ± 40 3 ± 0 7 ± 4 89 ± 23 60 ± 21 

Canarium australianum Deciduous 10 60 40 33 67 -36 ± 7 48 ± 76 1 ± 0 1 ± 0 18 ± 16 55 ± 16 

Ficus aculeata Evergreen 9 100 44 56 44 -23 ± 10 -23 ± 6 2 ± 1 3 ± 0 95 ± 15 84 ± 18 

Sterculia quadrifida Deciduous 5 80 40 50 50 -70 ± 13 -23 ± 22 3 ± 1 3 ± 1 34 ± 4 39 ± 21 

Strychnos lucida Deciduous 10 100 40 60 40 -72 ± 6 -50 ± 15 2 ± 0 3 ± 1 44 ± 17 62 ± 11 

Terminalia petiolaris Deciduous 10 50 50 0 100 - 10 ± 10 - 6 ± 1 - 70 ± 15 

Vitex acuminata Deciduous 10 80 80 0 100 - -35 ± 9 - 2 ± 0 - 56 ± 6 

Total rainforest  64 81 47 41 59 -43 ± 7 -12 ± 11 2 ± 0 3 ± 1 66 ± 10 62 ± 5 

Savanna    Corymbia confertiflora Deciduous 8 100 100 0 100 - 1 ± 7 - 8 ± 2 - 32 ± 6 

Erythrophleum chlorostachys Semi-deciduous 8 100 75 25 75 -33 ± 9 -19 ± 11 5 ± 3  9 ± 3 89 ± 4 35 ± 5 

Eucalyptus tectifica Evergreen 8 100 100 0 100 - 8 ± 3 - 17 ± 2 - 44 ± 3 

Planchonia careya Deciduous 8 100 75 25 75 -8 ± 13 -13 ± 10 5 ± 1 13 ± 3 85 ± 55 50 ± 11 

Terminalia canescens Semi-deciduous 10 90 80 11 89 -44 ± 0 -4 ± 6 5 ± 0 10 ± 1 110 ± 0 31 ± 8 

Total savanna  42 98 86 12 88 -25 ± 9 -5 ± 3 5 ± 1 12 ± 1 92 ± 18 38 ± 3 



Chapter 4  Post-fire resprouting strategies 

 

74 

 

After one year the savanna plants were on an average 93% of their pre fire height. Our 

modelling showed that the resprouter type was not correlated with any of the tested 

variables (Fig. 4.5a); the variation in relative height difference pre- and post-fire was 

not well correlated with either species or resprouter type, while resprouter type best 

predicted the number of shoots (w+ = 0.77; Fig. 4.5c). There was no correlation 

between the average bark thickness and the percentage of aerial resprouters (r = -0.21; 

Fig. 4.6a), while there was a negative correlation between the average estimated bark 

thickness increment and the average height increment (r = -0.76; Fig. 4.6c). Amongst 

aerial resprouters there was strong support for differences amongst species and a 

positive effect of stem diameter (w+ = 1.00 for both) on the number of shoots. All 

savanna individuals with surviving stems (i.e. aerial resprouters) resprouted 

epicormically, exclusively for all species except T. canescens, which also exhibited 

strong aerial axillary resprouting. With the exception of the two eucalypts, which were 

not topkilled, all of the species had some basal shoots. For savanna basal resprouters, 

neither species nor stem diameter was predictive of the number of shoots. Amongst 

all savanna individuals the length of the longest shoot was best predicted by resprouter 

type (w+ >0.99; Fig. 4.5c), whereby basal shoots were longer than aerial shoots (Table 

4.1). 

4.4.3 Post-fire regeneration of rainforest plants 

After one year 81% of the rainforest plants had survived the experimental fire. Stem 

and plant survival were not predicted by any of the investigated factors, while 

resprouter type was correlated with species (w+ 0.91; Fig.5b). Of the surviving plants, 

41% regenerated via basal resprouting, although neither T. petiolaris nor Vitex 

acuminata adopted this regeneration strategy (Table 4.1). All the main stems that 

recovered had axillary shoots, and none had epicormic shoots. The variation in relative 

height difference (pre- and post-fire) and the number of shoots were both strongly 

affected by species (w+ 0.97 and 1.00 respectively) and resprouter type (w+ 0.88 and 

0.89 respectively; Fig. 5d). No correlation between bark thickness and the percentage 

of aerial resprouters was detected (r = 0.34; Fig. 4.6b), while there was a positive 

relationship between the estimated bark thickness increment and the height increment 
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(r = 0.64; Fig. 4.6d). Basal resprouters lost relatively more height and had fewer shoots 

than aerial resprouters. For instance, the basal resprouter S. lucida had the largest 

height loss (-71.7 ± 6.2 SE %), while aerial resprouters of Canarium australianum 

substantially increased their relative height (by 48 ± 76 SE %). Amongst basal 

resprouters, neither stem diameter nor species clearly explained variation in the 

number of regenerative shoots; in contrast, the number of shoots produced by aerial 

resprouters was most affected by species (w+ 0.81). No variables were found to be 

associated with the length of the longest shoot. 

 

Figure 4.5 Importance of the variables examined in rainforest and savanna 

environments, expressed as w+, the probability of the variable being included in the best 

model. Species, bark thickness and plant height were included in models describing whole 

plant and stem survival and resprouter type, while models describing relative height 

difference, number of shoots and length of the longest shoot were based on the variables 

species and resprouter type. w+ values > 0.73, indicated by the dashed line, were considered 

important. 
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Figure 4.6 Relationship between average bark thickness and percentage of aerial 

resprouter for (a) savanna and (b), rainforest species, and estimated bark thickness 

increment and height increment for (c) savanna and (d) rainforest species. 

 

4.5 DISCUSSION 

We tested the survival and resprouting strategies of savanna and rainforest saplings 

burnt by low intensity fires typical of the early dry season, classifying regenerating 

strategies according to the framework designed by Clarke et al. (2013). We have 

shown that while both vegetation types have limited mortality, they have markedly 

different modes of recovery. The savanna species have thick bark, which protects stem 

tissue from fire, and following defoliation are able to replace their crowns and regain 

their pre-fire height via aerial resprouting within one year, predominantly via 

epicormic buds. In contrast, the rainforest species have limited investment in bark 

protection and, following a simulated low severity savanna fire, had high stem 

mortality and basal resprouting was common in 5 of the 7 species. These patterns 
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concord with the findings of Dantas et al. (2013a), who assessed the existence of 

threshold patterns in functional traits across the rainforest-savanna boundary in the 

Cerrado, and Clarke et al. (2015), who undertook a survey of regeneration strategies 

of the Australian tree and shrub flora. We found that savanna species produced more 

shoots, and savanna basal resprouters had longer shoots than those of rainforest basal 

resprouters. Amongst savanna species, basal resprouters had longer shoots than aerial 

resprouters, a pattern similar to that recorded by aerial and basal resprouts of 

Eucalyptus tetrodonta (Franklin et al., 2010). After one year, recovering rainforest 

species regained only about 60% of their pre-fire height whereas savanna plants had 

almost fully recovered. Although the savanna plants were burnt two months before the 

rainforest plants, this is not likely to affect the dissimilarities in growth rate we 

detected, because the time difference occurred during the dry season and most of the 

annual growth of rainforest species occurs during the wet season (Prior et al., 2004). 

A feature of our results is the uniformity of responses within vegetation types by 

species from a range of lineages, suggesting that the regenerative traits have evolved 

convergently, presumably in response to sharply contrasting fire regimes. In savanna 

there is strong selection pressure to escape the fire trap through rapid height growth, 

whereas the development of dense crowns by rainforest species is advantageous 

because they suppress grass, thereby reducing the risk of frequent fires (Hoffmann et 

al., 2012a). Our findings showed the existence, amongst the studied savanna species, 

of a trade-off between increment in bark thickness and in height; the species that 

invested more in bark thickness had the lowest height recovery and vice-versa. While 

none of the rainforest plants resprouted epicormically, this strategy was common 

amongst savanna species. Despite their thin bark epicormic resprouting was the only 

stratergy adopted by the two eucalypt species, Eucalyptus tectifica and Corymbia 

confertiflora , the thinnest recorded amongst the investigated savanna species. 

Previous research has shown that eucalypt clade has evolved radially oriented 

meristem strips through the cambium, an anatomy unique in the plant kingdom which 

provides an extraordinary capacity to recover after canopy defoliation (Burrows, 2013, 

Clarke et al., 2013, Crisp et al., 2011, Lawes et al., 2011a). Basal resprouting in 

eucalypts is also well known: they have well developed lignotubers, and root suckering 
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occurs in some tropical species (Lacey, 1974). The lack of basal resprouting by the 

eucalypts in this study is probably explained by the absence of topkill .The only 

axillary resprouting species detected in the savanna, Terminalia canescens, belongs to 

a genus represented in both rainforest and savanna. The two Terminalia species 

investigated in our study were located at the extremes of the bark thickness range: the 

savanna tree T. canescens had the thickest bark of all the sampled species and showed 

basal resprouting capacity, whereas T. petiolaris, found in the rainforest, had very thin 

bark and no basal shoots, resulting in the high mortality of this species. Consistently 

with an evolutionary response to a biome switch from rainforest into the savanna 

(Crisp et al., 2011), the thick bark and basal resprouting of T. canescens presumably 

enable this species to recover from fire, in contrast to its congener. This finding 

supports the theory that resprouting ability and stem defences belong to a suite of co-

evolved traits associated with survival in a disturbed habitat (Keeley et al., 2011, 

Poorter et al., 2010).  

Amongst rainforest species, basal shoots were recorded for about half of the 

individuals. None of the basal resprouters was able to fully recover the original height 

after one year; indeed, basal resprouters of the rainforest species Sterculia quadrifida 

and Strychnos lucida lost on  average 70% of the original height. However, five of the 

rainforest species were able to resprout from aerial buds, enabling rapid height 

recovery. The species that best recovered their height were also those with the highest 

estimated increase in bark thickness; for example, the Canarium australianum 

individuals increased their height by almost 50% (Table 4.1), and this capacity to 

rapidly gain height and bark thickness following fire suggests this species may be able 

to invade savannas. Figs have also been identified as potential pioneers: they are 

important contributors in terms of seed bank (Russell-Smith and Setterfield, 2006) and 

in our study Ficus aculeata, a species which tolerates a broad range of environmental 

conditions, had comparatively thick bark, intermediate between the savanna species 

and other rainforest species. Vitex acuminata exhibited only aerial resprouting (by 

eight stems), with no basal resprouting from the two stems that were killed by fire. 
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It is important to note that basal resprouters occur in both savanna and rainforest 

habitats, and this strategy is also beneficial following disturbances other than fire, like 

cyclonic storms (Bowman and Panton, 1994). For example, Franklin et al. (2010) 

found that in the savanna, saplings or trees highly damaged by a tornado tend to 

resprout predominantly from basal shoots. In addition, some rainforest species have 

well developed aerial resprouting in response to disturbance other than fire (Marrinan 

et al., 2005). 

Our findings suggest substantial differences in resource allocation amongst rainforest 

and savanna species. Previous studies, from around the globe and including northern 

Australia, have stressed the greater investment of savanna species in bark protection 

compared to rainforest species (Charles-Dominique et al., 2015, Dantas et al., 2013a, 

Dantas et al., 2013b, Hoffmann et al., 2009, Hoffmann et al., 2012a, Lawes et al., 

2013, Pausas, 2015b). North Australian savanna seedlings are better able to recover 

from multiple landscape fire events compared to rainforest seedlings (Bowman, 2005). 

A similar pattern in South American savanna and rainforest seedlings has been 

attributed to higher total non-structural carbohydrate (TNC) reserves in the roots of 

savanna seedlings (Hoffmann et al., 2004) as a consequence of  their  high root:shoot 

ratio providing more resources per unit of above-ground biomass (Hoffmann et al., 

2003).  

Because of contrasting regeneration strategies, rainforest and savanna saplings have 

different capacities to recruit into the canopy layer in frequently burnt savannas. 

Aerially resprouting savanna plants only need a few years without fire to escape from 

the effects of grass fires. In contrast, basally regenerating rainforest species are in 

direct competition with grass for light and are highly vulnerable to further top kill until 

they can suppress grass cover, requiring longer fire free periods. Our observed 

differences in regeneration strategy concords with the observations of Williams et al. 

(2012), which established the predominance of basal resprouters in wet tropical 

rainforest species in north-eastern Australia, in contrast to many aerial, particularly 

epicormic, resprouters in adjacent savannas. Our results therefore support the 

conceptual model of Hoffmann et al. (2012a), which explains the control of rainforest-
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savanna boundaries as an interplay between fire frequency, differential mortality and 

recovery between savanna and rainforest species via interspecific variation in growth 

rate, resprouting and bark thickness.  

Our study site had an abrupt boundary only partially associated with an increase in 

rock cover on the rainforest margin, pointing to the importance of frequent fires in 

controlling rainforest extent. Murphy and Bowman (2012) have proposed a model 

where increased tree growth rate can result in expansion of rainforest boundaries. 

Based on our results, the expansion of rainforests into the north Kimberley savannas 

seems unlikely under the current frequent-fire regime. However, this may change in 

response to climate change. Our system is at the driest end of the rainforest range, 

where the very limited occurrence of rainforests is restricted to the highest rainfall 

areas and in topographic settings that capture or supply moisture. It would hence be 

expected that this system is sensitive to variations in annual rainfall, given that water 

availability is a major factor limiting growth of rainforest trees in savanna habitat (Hao 

et al., 2008). Together with increasing rainfall, rising CO2 levels would enhance plant 

growth (Drake et al., 1997, Lewis et al., 2009) by increasing photosynthetic efficiency, 

in particular at the seedling and sapling stage (Bond and Midgley, 2012, Lloyd and 

Farquhar, 2008), and resprouting ability (Hoffmann et al., 2000). These changes could 

affect trees-grass dynamics by facilitating C3 trees and shrubs over the savanna C4 

grasses (Bond and Midgley, 2000, Bowman et al., 2010a) with a consequent reduction 

of the flammable grass layer. That could allow rainforest trees to escape the fire-trap 

more quickly, despite their less effective regeneration strategies, and possibly expand 

into savannas, as has been argued by Bowman et al. (2010). Resolving the effect of 

CO2 and precipitation on growth of rainforest species is important to understand the 

future dynamics of these systems, as well as to predict changes in wetter systems 

where a possible decrease in rainfall has been predicted (e.g. continental edges of 

north-eastern Australia; Reisinger et al., 2014). 



 

 

 

 

  
A cross-cultural approach to rainforest 

management: changes in fire regimes, 

animal abundance, and management 

options  
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5.1 ABSTRACT 

In northern Australia, severe late dry season fires have become widespread following 

the decline of Aboriginal Traditional fire management through the 20th century. A fire 

management program, designed to re-instate Aboriginal fire regimes according to 

customary principles, has been introduced in the Wunambal Gaambera Country (north 

Kimberley, Western Australia) since 2010. We analysed the effectiveness of the fire 

program in protecting rainforests from wildfires, as well as its potential consequences 

for wildlife. To do so, we investigated whether there were shifts in fire regimes, from 

high-intensity late dry season fires to early dry season fires, in the proximity of 

rainforests. We also identified the most vulnerable patches based on size, distance 

from neighbouring patches and fire frequency, and tested for changes in fire regimes 

in areas with clusters of vulnerable patches. Fire management performed by 

Aboriginal rangers effectively shifted fire regimes, decreasing the frequency of late 

dry season fires, particularly in areas with clusters of vulnerable rainforests. In 

addition, we compared native small/medium mammal abundance in rainforests and 

savannas with different fire disturbance levels using camera traps. Rainforests in 

frequently burnt areas had significantly lower small/medium mammal abundance than 

infrequently burnt areas, and savannas invaded by rainforest had more abundant and 

diverse native mammal fauna than frequently burnt savannas, suggesting that long 

unburnt areas might be critical for the survival of fire-sensitive species. We 

recommend ongoing monitoring and community consultation to evaluate the effects 

of current and long-term management interventions. 

 

5.2 INTRODUCTION 

The important role of Indigenous People in biodiversity conservation programs is 

becoming increasingly recognized internationally (e.g. Convention on Biological 

Diversity 2011, Berkes et al., 2006, Gadgil et al., 2003, Prado et al., 2013, Bohensky 

et al., 2013). This includes the declaration of Indigenous and Community 

Conservation Areas (ICCAs), whereby indigenous or other communities voluntarily 
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conserve their lands and waters as protected areas. In Australia, over 70 Indigenous 

Protected Areas (IPAs), formally recognised by the Australian Government and 

counted in the National Reserve System, have been declared by Indigenous groups in 

recent decades, and now cover 65 million hectares, which represents 7% of Australia 

and 40% of the National Reserve System (Australian Government, 2016, Altman and 

Whitehead, 2003). IPAs, like other protected areas, require management planning, 

monitoring and evaluation, and a variety of approaches have been adopted by 

practitioners (Davies et al., 2013). Implementation of management on indigenous 

lands also requires the integration of the knowledge systems of Indigenous people 

(including Traditional Ecological Knowledge) and non-indigenous partner agencies 

and the development of participatory community-based approaches to monitoring and 

management (including Participatory Monitoring and Management) (Participatory 

monitoring and management partnership, 2016, Constantino et al., 2012, Luzar et al., 

2011, Hill et al., 2011b).  

The strong relationship between Aboriginal people and the land they inhabit translates 

to deep knowledge of these environments, which comes from thousands of generations 

of direct experience (Horstman and Wightman, 2001). Such depth of ecological 

knowledge matches other studies elsewhere in the world that show the indigenous 

inhabitants of tropical rainforests carefully managed and utilised plant and animal 

resources such as food, medicine, and materials for boats, houses and tools (Ellen, 

1998, Bennett, 1992). Often this knowledge is encoded in cultural stories and 

ceremonial sites (Ellen, 1998, Banfai and Bowman, 2006, McIntyre-Tamwoy, 2008). 

Karadada et al. (2011) compiled the ethno-ecological knowledge of rainforests by 

Wunambal Gaambera people, including the names and uses of several plant and 

animal species for food (e.g. yams (Dioscorea spp.), black flying-foxes, and birds and 

their eggs), canoes (e.g. Bombax ceiba) and medicine, some of which are associated 

with special Dreaming stories, songs and a style of rock art (Gwion) (Wunambal 

Gaambera Aboriginal Corporation, 2010). 

Indigenous knowledge is based on long-term presence in an area and is the result of 

accumulated experience, experimentation and information exchange that can track 
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back to hundreds or even thousands of years (Gadgil et al., 2003) and can complement 

scientific studies with time-depth (Prado et al., 2013). In Australia Traditional 

Aboriginal knowledge has been successfully combined with western science to assess 

and monitor environmental issues (Bohensky et al., 2013), such as feral buffalo impact 

(Ens et al., 2010a), the decline in fruit production of bush tucker species (Ens et al., 

2010b), fire management (Vigilante et al., 2009), mammal decline (Ziembicki et al., 

2013) and botanical data collection (Ens and Towler, 2011). 

The Uunguu Indigenous Protected Area was declared by Wunambal Gaambera 

Aboriginal Corporation (WGAC) in 2011 and now extends over 800,000 ha. The 

management plan for the Uunguu IPA was developed using a local form of the Open 

Standards for the Practice of Conservation called ‘Healthy Country Planning’, and 

identified 10 important ‘Conservation Targets’ (assets) to be monitored and managed 

(Moorcroft et al., 2012, The Nature Conservancy (TNC), 2010). Rainforests, known 

as Wulo in Wunambal and Gaambera languages, are one of the 10 ‘Targets’ identified 

as important to Traditional Owners in the Wunambal Gaambera Healthy Country Plan. 

These rainforests, classified as monsoon vine thickets, are found across northern 

Australia, occurring in regions with strongly seasonal climate at the driest end of the 

Australian rainforest climatic range. They are characterised by low stature trees, a high 

density of shrubs and vines, and are a type of tropical monsoon forest (Russell-Smith, 

1991, Webb, 1959).  Rainforests were not formally reported as occurring in Western 

Australia until 1965 (McKenzie, 1991), when the botanist John Beard and some 

associates provided the first descriptive studies (Beard, 1976, Beard et al., 1984). 

These monsoon vine thickets and some other evergreen rainforest types associated 

with aquifers were also documented in a series of biological surveys in the region, 

some of which included parts of Wunambal Gaambera Country (WGC) (Miles and 

Burbidge, 1975, Wilson, 1981, Burbidge and McKenzie, 1978, Bowman, 1992). 

Despite their relative small extent, rainforests contribute to 25% of floristic 

biodiversity of the north Kimberley (McKenzie et al., 2009), and a comprehensive 

survey of rainforests, undertaken from 1987-1989 as part of the National Rainforest 

Conservation Programme (McKenzie, 1991), recorded 453 species of vascular plants, 

93 of which were rainforest specialist trees. Hibiscus peralbus Fryxell, a shrub 
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belonging to the Malvaceae family, was the only endemic species found. Unusually 

for that period, the survey team included an indigenous elder Geoffrey Mangglamarra 

(now deceased), who accompanied scientists to a number of rainforests in the WGC 

and contributed a paper to the study. It included the names of important animals and 

plants and a description of how rainforests were used and managed by his people in 

the past (Mangglamarra et al., 1991).  

Unmanaged wildfires are one of the key threats to the health of rainforests identified 

in the Healthy Country Plan. Likewise, wildfires are recognised as a threat to natural 

and cultural values elsewhere in the Australian monsoon tropics (Trauernicht et al., 

2015, Williams et al., 1999, Legge et al., 2011b, McKenzie and Belbin, 1991). 

Changes in fire regimes have been observed in Australia with the switch from 

Traditional Aboriginal burning to European colonisation. This led to a decrease in 

early dry season (EDS) fires, typically of low intensity, in favour of late dry season 

(LDS) fires, which are likely to pose a threat to rainforests due to their high intensity 

and extent (Russell‐Smith et al., 2012, Edwards and Russell-Smith, 2009). This is in 

spite of the rainforest expansion trends observed in the Australian monsoon tropics in 

the past years (Banfai and Bowman, 2006, Bowman et al., 2001), which have been 

linked with regional wetting trends and possibly atmospheric CO2 enrichment 

(Bowman et al., 2010a, Banfai and Bowman, 2007, Buitenwerf et al., 2012, Bond and 

Midgley, 2000). Intense fires can cause direct damage to entire rainforest patches or 

portions of them, since rainforest species generally present limited fire protection 

(thick bark) and ability to resprout after a fire compared with savanna species (Clarke 

et al., 2013, Lawes et al., 2013). Indirect effects include increased run-off and soil 

erosion at time of first rain (Townsend and Douglas, 2000). It can also influence the 

dynamics of woody vegetation in savanna adjacent to rainforest patches and affect the 

expansion and contraction of rainforests over time (Bowman et al., 2001, Banfai and 

Bowman, 2006). Johnstone and Burbidge (1991) suggested that fire had affected a 

rainforest patch at the Mitchell Plateau; an abandoned Orange-footed Scrubfowl 

mound on the edge subject to burning was evidence that wildfire had caused the patch 

to recede, since Scrubfowl are thought to nest only under closed canopy, and that this 

degradation had resulted in fewer bird records (Bowman et al., 1994, Bowman et al., 
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1999). Of the 95 patches visited in the 1987 survey, 40 showed evidence of fire 

damage (McKenzie and Belbin, 1991). In an attempt to restore pre-European fire 

regimes in the WCG, in 2010 the WGAC initiated a fire management program, 

consisting in a combination of ground-lit fires and aerial burning performed during the 

EDS. 

Altered fire regimes may be contributing to the alarming decline of mammal species 

observed in many parts of northern Australia over the past ~ 200 years (Woinarski et 

al., 2015). This decline has been detected by scientific studies (Johnson, 2006, 

Woinarski et al., 2011, Woinarski et al., 2010, Fitzsimons et al., 2010) and also in 

interviews conducted with Aboriginal people (Ziembicki et al., 2013). However, in 

the comparatively high rainfall and most rugged areas of the north Kimberley, 

mammal populations are thought to be relatively stable (Turpin, 2015), although 

potentially affected by changes in fire regimes (Start et al., 2007). Kimberley 

rainforests constitute the preferred habitat for a number of mammal species (Start et 

al., 2007, Woinarski et al., 2004). They also are important habitat for some bird 

species, including 22 species that are rainforest specialists, such as the Orange-footed 

Scrub-fowl and the Rainbow Pitta (Johnstone and Burbidge, 1991), and provide 

refuges for several endemic species of invertebrates, particularly land snails (Solem, 

1991). 

The aim of this chapter was to evaluate the effectiveness of the fire management 

program in protecting rainforests from high intensity LDS fires, and its likely 

consequences for wildlife. To do this, we compared fire regimes pre- and post-fire 

management in proximity of rainforest. We also designed an index to calculate the 

level of vulnerability to fire of each rainforest patch, based on patch connectivity and 

fire frequency, and assessed if differences in fire regimes occurred in areas where 

clusters of vulnerable patches were found. In order to discuss the potential benefits 

and disadvantages of the fire management program in a broader ecological context, 

we also employed camera traps to perform an exploratory wildlife survey. We 

compared the abundance of small/medium native mammals in rainforests and 

savannas characterised by contrasting fire regimes, testing whether areas with low fire 
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activity displayed higher small mammal abundance. Finally, we combined these 

results with some of the outputs of the previous chapters to consider implications and 

options for ongoing management and monitoring of the rainforest biodiversity by 

Traditional Owners. 

 

5.3 STUDY AREA 

The WGC occupies about 800,000 ha of land and sea in the north Kimberley region 

of Western Australia, which is located toward the driest portion of the rainforest range 

in the Australian tropics (Bowman, 2000), and listed as one of the 15 Australian 

National Biodiversity Hotspots (Australian Government, Department of 

Environment). WGC is defined by the Wanjina Wunggurr Uunguu Native Title 

Determination, and represents the traditional lands of Wunambal Gaambera 

Aboriginal people (Fig. 5.1).  

 

Figure 5.1 Extent of the Wunambal Gaambera Country, as defined by the Wanjina 

Wunggurr Uunguu Native Title Determination. Adapted from Wunambal Gaambera 

Aboriginal Corporation (2010). 

 



Chapter 5                                               Rainforests, small mammals and fire management 

 

88 

 

5.3.1 Environment 

WGC lies on the Kimberley basin, which forms a dissected plateau of deeply 

weathered sandstones of Precambrian age with interspersed areas of Precambrian 

basaltic base rocks, occasionally capped by mid-Cainozoic laterite (Beard, 1979, 

Vigilante, 2001). The climate is tropical monsoonal, characterised by a short summer 

wet season (November to April) during which most of precipitation occurs, while the 

rest of the year is virtually rain-free (Beard, 1979). Mean annual rainfall currently 

ranges from 1000 to 1400 mm and average maximum temperatures are equal or higher 

than 30°C all year, while average minimum temperatures vary from 20°C or more in 

summer to as low as 10°C in winter (Bureau of Meteorology, 2016). A wetting and 

warming trend has been detected since the beginning of the 21st century, with an 

increment in average annual rainfall of 40-50 mm/10 years, and a temperature rise of 

0.15°C/10 years since the late 1940s (Bureau of Meteorology, 2016). WGC falls 

within the Gardner botanical district classification (Beard, 1979) and the Mitchell sub-

region of the North Kimberley Bioregion (Thackway and Cresswell, 1995). Its 

vegetation is predominantly biodiverse tropical savannas: Eucalyptus tetrodonta-E. 

miniata savannas are found on the laterite mesas and hills, while E. tectifica-E. 

grandifolia savannas are common on deeper, clay soils on plains. Small patches of 

monsoon rainforests are interspersed in the savanna, typically found in fire-protected 

locations (Beard, 1979). These monsoon rainforests support a high diversity of plant 

species (Russell-Smith, 1991) and are important refugia for savanna-adapted 

mammals to avoid climatic extremes, predators and fires (Bowman and Woinarski 

1994). 

The analysis of fauna pattern was focused on two specific locations: the Mitchell 

Plateau and the Bougainville Peninsula, which share similar climate and geology, but 

different levels of disturbance. The Mitchell Plateau (754 km2) has a high fire 

frequency (average times burnt: 0.5 · year-1, data from North Australian Fire 

Information (NAFI, 2016), based on a 15-year time period (2000-2014)) and 

unmanaged cattle are found throughout the area. By contrast, Bougainville Peninsula 

(298 km2) has a much lower fire frequency (average times burnt: 0.08· year-1) and 
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cattle have never been recorded (McKenzie and Belbin, 1991). These dynamics are 

likely to have persisted during the last decades; a study performed in 1985 found that 

half of the surveyed rainforest patches in Mitchell Plateau were damaged by fire and/or 

cyclones, while on Bougainville Peninsula cyclones were the only visible cause of 

damage (Clayton-Greene and Beard, 1985). 

5.3.2 Historical fire management 

Prior to European colonisation Traditional Owners practiced landscape-scale burning 

on an annual basis for a range of purposes including for hunting and gathering. These 

burning practices steadily declined during the colonial period, which commenced in 

the late 19th century, as traditional lifestyles were increasingly disrupted by European 

colonisation and Aboriginal people moved into settlements. By the 1950s Aboriginal 

burning had largely ceased in remote parts of the north Kimberley, but was practiced 

to a limited extent around communities (Vigilante, 2004). The cessation of Aboriginal 

burning led to the emergence of large destructive late dry season wildfires, set by both 

anthropogenic ignitions and lightning, that became a dominant feature of the fire 

regime of the region until recent times (Fisher et al., 2003). As described earlier, 

prescribed burning began in 2010 through the Wunambal Gaambera Healthy Country 

Plan. 

 

5.4 METHODS 

5.4.1 Changes in fire regimes 

The recent fire history of rainforest patches was examined using ‘firescar’ data created 

at a pixel resolution of 250 m based on MODIS satellite imagery, accessed from the 

North Australian Fire Information website (NAFI, 2016). A 250m buffer was created 

around each individual rainforest patch and the fire scar data for each year from 2000 

to 2015 was analysed using the ‘spatial join’ function in ArcGIS. Each rainforest patch 

was considered to have experienced fire if one or more fire scars occurred within its 

area. This was intended to be an index of fire regime rather than an absolute measure 
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of fire impact on rainforest patches and their boundaries. Total fire frequency, 

frequency of EDS fires (January to July) and frequency of LDS fires (August to 

December) were calculated (Hunt, 2015). Fire scar years were organised into 

unmanaged ‘baseline’ years (2000-2009) and managed ‘project’ years (2012-2015), 

aligning with the Wunambal Gaambera Uunguu Fire Project and the Savanna Burning 

Methodology (Hunt, 2015). The years 2010 and 2011 were excluded from the analysis 

as they were ‘transition’ years where WGAC was reaching management capacity. 

Differences in the frequency of EDS fires, LDS fires, and total fire frequency were 

then analysed with a paired t-test. Using the baseline period (2000-2009, for which 

fire scar data was accessible) as a sample of the pre-management period (1950s-

2000s), the frequency of fires was calculated. Pearson product moment correlation 

coefficient (r) was employed to examine correlations of fire frequency with distance 

from the coastline and slope. Fire frequency was also compared for geology types 

using the Kruskal-Wallis test and the average fire frequency was calculated for each 

geology type. 

5.4.2 Patch vulnerability 

Based on the rainforest map generated in Ondei et al. (2017), we identified the most 

isolated patches by calculating, for each rainforest patch, the average edge-to-edge 

distance of the nearest five neighbours, using the ‘average nearest neighbour’ tool in 

ArcMap. A simple connectivity index was then calculated as follows 

𝑃𝑎𝑡𝑐ℎ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐴

𝐷𝑖𝑠𝑡
 

Where A is the area of the focal patch (ha), and Dist is the distance to the nearest five 

patches (km) (Munguía-Rosas and Montiel, 2014). Patch isolation increases with the 

decrease of this index. Further analyses were then undertaken to analyse risk factors 

associated with isolation. 

In order to identify which patches were most at risk of being completely destroyed by 

fire, with a lower chance of being recolonised, we calculated a vulnerability index, 
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taking into account patch size, distance from neighbouring patches and fire frequency. 

The ‘Vulnerability index’ was hence calculated for each rainforest patch as follows  

𝑃𝑎𝑡𝑐ℎ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝐹𝑖𝑟𝑒 𝐹𝑟𝑒𝑞𝑏𝑎𝑠
 

where Patch connectivity includes information on patch size and distance from the 

nearest five patches, and total Fire Freqbas is the total fire frequency in proximity of 

the patch recorded during the baseline years. We used total fire frequency because 

under unmanaged fire regimes, even EDS fires can be extensive and intense due to 

fuel accumulation. Note that lower index values indicate higher vulnerability to fire. 

Based on the fire risk index values, we tested for the presence of clusters of patches 

potentially at risk, by using the Moran’s I test in ArcMap on (i) all patches and (ii) the 

5% most vulnerable patches. We then evaluated the effectiveness of planned burning 

in protecting particularly vulnerable patches by comparing using a paired t test, 

changes in LDS fire frequency for the 5% most vulnerable patches.  

5.4.3 Examining fauna patterns in rainforests and adjacent 

savannas 

During my rainforest study, rainforest patches were sampled to investigate if plant and 

animal populations are influenced by patch distribution, other environmental factors 

and potential threatening processes. To do so, 20 vegetation transects, running across 

the rainforest-savanna boundary, were established in Mitchell Plateau and 

Bougainville Peninsula, as described in Chapter 3. Each transect included five 10 x 

20m plots, and for each plot, data on canopy cover, grass cover, rock cover, floristics, 

stand basal area, and number of adult trees were collected. In the study documented in 

this current chapter, I associated vegetation structure in the established transects with 

animal abundance using camera traps. Vertebrate species were sampled using 40 

camera traps (RECONYX HyperFireTM PC800 Professional) positioned along the 

vegetation transects for 8-9 months (from July/August 2014 to May/June 2015). For 

each transect, two cameras were positioned, one on the rainforest edge and the other 
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in the savanna, at a minimum distance of 500m. Cameras were set up to take 3 pictures 

per trigger, with a one-second pause between pictures and one-minute delay between 

triggers. For each species or animal group, sampling effort was calculated as the 

number of observations divided by the total camera effort for each location and 

vegetation type. We compared the number of small/medium mammals (excluding 

human-introduced predators such as dingoes and cats) detected by camera traps in 

savannas and rainforests in the Mitchell Plateau and the Bougainville Peninsula. 

Differences in the number of these mammals detected between rainforests and 

savannas in the same location (Mitchell Plateau or Bougainville Peninsula), and 

between locations for the same vegetation type (rainforest or savanna), were analysed 

using generalised linear models (GLM) and the Poisson family of distribution, 

controlling for differences in trapping effort between cameras by including trapping 

effort as offset. Analyses were conducted in R (R Core Team, 2013).  

 

5.5 RESULTS 

5.5.1 Changes in fire regimes 

The fire history estimated for the baseline years (2000-2009), showed that total fire 

frequency around rainforest patches ranged from 0.000 to 0.900 times burnt · year-1 

(average 0.295 ± 0.003; Fig. 5.2a), while during the project years total fire frequency 

ranged from 0.000 to 1.000 times burnt · year-1 (average 0.333 ± 0.004; Fig. 5.2b). 

Total fire frequency under unmanaged conditions (baseline years) was correlated with 

distance from the coastline (r = 0.65), but not with topographic slope (r = -0.15). It 

also differed significantly between geology types (P < 0.001), with alluvium and 

colluvium experiencing the highest average frequency (0.36 ± 0.03 times burnt · year-

1) and coastal deposits the lowest (0.16 ± 0.02 times burnt · year-1), reflecting 

contrasting productivity of these substrate types. 
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Figure 5.2 Maps showing total fire frequency in proximity of rainforests during (a) the 

unmanaged baseline years and (b) the project years. 

Prescribed burning resulted in a significant reduction in LDS fires between the 

baseline years and the project years (P < 0.001), and a significant increase of EDS and 

total fire frequency (P < 0.001 for both; Fig. 5.3). Average frequency of EDS fires, 

LDS fires, and total frequency for the baseline years and the project years are reported 

in Table 5.1.  
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Figure 5.3 Maps displaying variations in the frequency of early dry season (EDS) fires 

and late dry season (LDS) fires in proximity of rainforests between the baseline years 

(2000-2009) and the project years (2012-2015). 

 

Table 5.1 Average frequency (± standard error) of early dry season (EDS) fires, late dry 

season (LDS) fires and total fire frequency recorded for the baseline years (2000-2009) 

and the project years (2012-2015). 

 
EDS LDS Total 

Baseline 0.091 (± 0.002) 0.213 (± 0.002) 0.295 (± 0.003) 

Project 0.252 (± 0.003) 0.091 (± 0.002) 0.333 (± 0.004) 

5.5.2 Patch vulnerability 

The average distance from a rainforest to the five nearest patches ranged from 0.015 

km to 10.879 km (average 0.659 km ± 0.011 km), and patch connectivity index ranged 

from 0.008 to 7327.150 (average 8.887 ± 1.774) (Fig. 5.4). The frequency of baseline 
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fires was correlated with distance from the coastline (r = 0.65), but not with slope (r 

= -0.15). It also differed significantly between geology types (P < 0.001). 

 

Figure 5.4 Patch connectivity of rainforests in WGC. showing areas with high 

connectivity, meaning patches are larger and close to each other (dark green), and areas 

with low connectivity, meaning patches are smaller and more sparse (light green). 

Based on our vulnerability index, which considers patch size, distance from 

neighbouring patches and fire frequency, no clustering was detected when considering 

all rainforest patches. However, when only the 5% most vulnerable patches were 

considered, we detected significant clustering (P < 0.001; Fig. 5.5). The most 

vulnerable patches experienced a significant reduction in LDS fires, with an average 

reduction of 0.32 times burnt · year-1 during the LDS (P < 0.001), while total fire 

frequency did not significantly change. 
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Figure 5.5 Location and density of the most vulnerable 5% of rainforest patches, based 

on their size, distance from neighbouring patches and fire frequency. The density map 

(red gradient) shows some clear clusters of vulnerable patches. Black dots represent single 

patches. 

 

5.5.3 Fauna patterns 

Total camera trapping effort was 9140 trap-nights between 10 July 2014 and 2 June 

2015. In the Bougainville Peninsula trapping effort was 2,755 nights in rainforests and 

2,561 nights in savannas. In the Mitchell Plateau, two cameras were burnt and two 

went missing. Thus trapping effort in this location was lower, at 2,643 nights in 

rainforests and 1,181 nights in savannas. In total 5,506 true-triggers were taken, 

resulting in 1,869 animal detections. Photos were taken of six native mammal species, 

ten bird species, one reptile species and three introduced mammal species (cattle, 

dingoes, and feral cats). For 18% of the photos, animals were identified only at a sub-

order or family level, and 1% of the photos were unidentifiable (Table 5.2).  

Small/medium native mammal species were not equally distributed throughout the 

study locations. We detected significantly more of these species in rainforests than 

savannas in both locations (P < 0.001 in both cases) and significantly more 

small/medium mammals on Bougainville Peninsula when separately comparing 

rainforests and savannas in the two locations (P < 0.001 for both vegetation types; Fig. 

5.6a, b).  
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Table 5.2 Summary of the animal observations obtained from the camera traps deployed 

in the Mitchell Plateau and Bougainville Peninsula from July 2014 to May 2015. 

 Rainforest Savanna 

Species 
Mitchell 

Plateau 

Bougainville 

Peninsula 

Mitchell 

Plateau 

Bougainville 

Peninsula 

MAMMALS     

Bandicoot (Isoodon sp.) 19 45 9 67 

Echidna (Tachyglossus aculeatus) 0 2 0 1 

Kangaroo – unidentified 13 180 14 19 

Northern quoll (Dasyurus hallucatus) 4 2 0 0 

Pale field rat (Rattus tunneyi) 0 1 0 0 

Rodent – unidentified 56 31 0 26 

Melomys burtoni 0 12 0 2 

Short-eared rock wallaby (Petrogale brachyotis) 0 15 0 24 

BIRDS     

Bar-shouldered dove (Geopelia humeralis) 9 8 0 39 

Bird – unidentified 3 3 1 3 

Emerald dove (Chalcophaps indica) 9 3 0 20 

Great bowerbird (Chlamydera nuchalis) 9 2 0 2 

Orange-footed Scrubfowl (Megapodius 

(Megapodius) reinwardt) 41 2 0 0 

Pheasant coucal (Centropus (Polophilus) 

phasianinus) 0 1 0 15 

Rainbow pitta (Pitta (Pitta) iris) 2 3 0 0 

Sand goanna (Varanus gouldii) 0 1 0 0 

Silver-crowned friarbird (Philemon (Philemon) 

argenticeps) 0 4 0 2 

Sulphur-crested cockatoo (Cacatua (Cacatua) 

galerita) 7 0 0 0 

Wedge-tailed eagle (Aquila (Uroaetus) audax) 0 0 5 0 

REPTILES     

Frilled lizard (Chlamydosaurus kingii) 0 0 4 0 

Snake – unidentified 0 2 0 0 

TOTAL NATIVE 199 329 45 265 

AVERAGE PER 100 TRAP NIGHTS 6.5 11.5 2.3 8.6 

INTRODUCED     

Cattle (Bos (Bos) taurus) 739 0 354 0 

Dingo (Canis lupus dingo) 27 12 12 45 

Feral cat (Felis catus) 4 0 5 0 

TOTAL INTRODUCED 743 0 359 0 

AVERAGE PER 100 TRAP NIGHTS 27.9 0.4 30.5 1.8 
     

Unknown 17 0 1 0 
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Figure 5.6 Maps showing (a) location of the camera traps in Mitchell Plateau and the 

Bougainville Peninsula and (b) average number of small/medium mammals detected per 

night in rainforests and savannas in the two sites. 
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5.6 DISCUSSION 

5.6.1 Fire regimes 

Our analysis showed that the combination of aerial and ground-based ignitions by 

Aboriginal Rangers has caused a shift from LDS fires to EDS fires. This approach 

seeks to emulate traditional Aboriginal fire management (Mangglamarra et al., 1991), 

which protected rainforests from destructive wildfires in the past. EDS burning limits 

the build-up of fuel that can lead to large, and destructive wildfires (Vigilante et al., 

2004). The observed reduction of LDS fires in proximity of the most vulnerable 5% 

of rainforest patches suggests that this method can be effective in areas with clusters 

of those rainforests that would likely be severely damaged by an intense fire (Fig. 5.5). 

Savannas may also benefit from the reintroduction of EDS burning through the 

creation of fine-grained burn mosaics that are vital for wildlife (Bowman and Legge, 

2016), and that are thought to characterise Aboriginal fire management (Trauernicht 

et al., 2016).  

5.6.2 Small mammal abundance 

The greater small mammal abundance detected on the Bougainville Peninsula, 

combined with previous observations from Aboriginal rangers, suggests that the area 

may be a refuge for small mammals, allowing threatened species to avoid the decline 

associated with the recent range contractions observed elsewhere in the Australian 

tropics (Woinarski et al., 2015). These results harmonise with the concept that long 

unburnt habitats are crucial for small mammal diversity (Woinarski et al., 2004), due 

to the sensitivity of some animal species to fire frequency (Woinarski et al., 2015). 

This highlights the need to carefully manage long unburnt areas such as the 

Bougainville Peninsula. It is also possible that the greater abundance of rainforest plant 

species detected on the Bougainville Peninsula, which provide a critical food source 

(particularly fruit) for the local fauna, contribute to the high habitat quality for 

small/medium mammals (McKenzie et al., 2009). On mainland areas, it is impractical 

to create large unburnt patches, so the provision of long unburnt habitat is best 

achieved by fine-scale patch burning (Trauernicht et al., 2015). 
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5.6.3 Management options 

The results from the rainforest study raise some interesting management questions that 

Traditional Owners need to consider for the future. The archipelago of rainforest 

patches found in the WGC has been traditionally utilized by Aboriginal People. Such 

rainforest patches are crucial to maintaining landscape biodiversity and habitat islands 

for volant taxa (especially bats and fruit eating birds) in northern Australia (Price, 

2006, Woinarski and Legge, 2013, Moran and Catterall, 2014, Palmer et al., 2000) 

and ensuring the survival of low-dispersal animal taxa (Graham et al., 2006). Thus the 

entire WGC estate needs to be carefully managed, to prevent individual patches from 

contracting below the minimum size that can support the animal species currently 

inhabiting them (Bierregaard et al., 1992). Particular attention needs to be paid to 

small, isolated rainforests.  

Prior to colonization, Traditional Owners burned some savanna areas on the 

Bougainville Peninsula to facilitate walking and hunting and gathering. This 

particularly took place in the open woodland on the laterite plateau and some of the 

larger savanna areas in the valleys and slopes, including the areas with cycads. 

Nowadays, the Traditional Owners and Aboriginal Rangers involved in fieldwork 

during this study express concern about some unburnt savanna that is overgrown with 

vines and shrubs, making walking difficult, and are inclined to burn such areas to 

restore savanna to a more open condition. Nonetheless, lower fire frequencies on the 

fire-protected Bougainville Peninsula over the last 50 years have enabled rainforest 

patches to expand into adjacent savanna (Chapter 3). Crucially, more small/medium 

native mammals were also found in that location than on the Mitchell Plateau. The 

question now arises as to whether more frequent fires should be returned to this area 

to maintain a healthy savanna, or whether rainforest expansion should be facilitated 

by excluding fire as much as possible.  

Large, long unburnt areas can contain high and continuous fuel loads of grass, litter 

and woody debris, which presents a risk of late dry season wildfire. In other cases, 

long-unburnt areas do not always have higher amounts of grass and litter fuel than 

frequently burnt sites (Scott et al., 2009, Elliott et al., 2009), and their fuel composition 
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is characterized by more litter and less flammable grasses (Woinarski et al., 2004). 

However, under severe fire weather, even moderate loads of continuous fuels can 

support wildfires. Should lightning hit a fire-protected area it could cause extensive 

and potentially destructive fires, as occurred on Bigge Island in 2012 and Middle 

Osborn Island in 2015 (NAFI, 2016). WGC is subject to frequent lightning, with an 

average of 8-12 flashes on the ground · km-2 yr-1, amongst the highest in Australia 

(Bureau of Meteorology, 2016). Unburnt areas may disadvantage some plant species 

such as the cycad population on Bougainville Peninsula, which could benefit from 

frequent fires to reduce competition with other species colonizing the savanna, such 

as rainforest trees. 

The argument for increasing the frequency of fire in long unburnt savannas needs to 

be weighed against the biodiversity values of these habitats. Rainforests and 

rainforest-savanna mosaics in naturally fire-protected areas substantially enhance 

plant and animal biodiversity. Long unburnt areas are very rare in the Australian 

tropics, with approximately 3.1% of land remaining unburnt for at least five years and 

only 0.098 % for at least ten years (Woinarski et al., 2004). These areas are 

increasingly recognised as important for key components of the savanna biota 

(Andersen et al., 2005). To re-establish frequent fire regimes on the Bougainville 

Peninsula could irreversibly change vegetation structure and cause the loss of some of 

the rarest environments in the Australian tropics, along with the wildlife they host. 

From this perspective, fire management needs to be carefully planned, applied on a 

fine scale, and subject to long-term assessments to monitor its effects on vegetation 

and on wildlife, given that these fires may adversely affect some small mammals if 

they are too frequent (Perry et al., 2016).



 

 

 

 

  
Conclusions: reflections on theory and 

practice 
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6.1 SYNTHESIS 

The overall aims of this thesis were to identify the ecological factors that influence 

rainforest distribution and expansion, focusing on tropical areas where rainforests are 

represented by small patches in a savanna-dominated landscape. To achieve this, I 

adopted a multi-scale approach, investigating the importance of climate, terrain, 

geology, and disturbance. Results from spatial analyses were validated and further 

explored through ground-based assessments and experiments. 

The importance of bottom-up factors (resources) as drivers of rainforest distribution 

and boundary dynamics was confirmed by the results of both my sub-continental and 

regional analyses. The sub-continental analysis of rainforest distribution, described in 

Chapter 2, was the first to identify the rainforest domain in north-western Australia 

and to analyse the importance of climate on rainforest distribution when considering 

the entire north-western Australian monsoon tropics. I found that water availability 

was the most important climatic driver of rainforest density, as showed by the 

correlation between rainforest density with mean annual rainfall, moisture index, and 

potential evapotranspiration. At a regional scale, the importance of bottom-up factors 

was confirmed by the analysis of rainforest distribution in the north Kimberley, based 

on the first high resolution map of rainforests ever created for that area (Chapter 2). 

While rainforests were found on a wide range of landscape settings, rainforest density 

was significantly higher on nutrient-rich geologic substrates such as basalt and 

topographic positions like valleys, which provide higher amount of nutrients due to 

soil accumulation and water retention. Furthermore, the rainforest expansion trends 

detected in the Mitchell Plateau and Bougainville Peninsula using aerial photography 

from 1949 to 2005 (Chapter 3) occurred in conjunction with a wetting trend (Bureau 

of Meteorology, 2016). This suggests that increased annual rainfall facilitated the 

expansion of rainforests into surrounding savannas, as hypothesised for other locations 

in the Australian monsoon tropics (e.g. Banfai and Bowman, 2006, Bowman et al., 

2010a). It is also possible that the increase in atmospheric CO2 levels contributed to 

this phenomenon, through increased photosynthetic rates (Lloyd and Farquhar, 2008), 

from which C3 trees would benefit more than C4 savanna grasses (Bond and Midgley, 
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2000), or via enhanced water-use efficiency of tropical trees (van der Sleen et al., 

2015). These results confirm the importance of bottom-up factors in determining 

rainforest distribution at different scales, but do not disprove the hypothesis that top-

down factors (consumers), in particular fire regimes and cattle, may also strongly 

influence rainforest-savanna dynamics. Topographic positions such as slopes or 

valleys, for example, not only provide higher amount of nutrients due to soil 

accumulation and water retention, but also protection from fire (Ash, 1988). Similarly, 

geologic substrates richer in nutrients could support higher rainforest density because 

rainforests species require deep and not leached soils to establish (Bond, 2010), or 

because higher soil fertility enhances growth rates, increasing the chances of rainforest 

trees growing fast enough to escape the fire trap (Hoffmann et al., 2012a), or both.  

The presence, in the north Kimberley, of ecologically similar locations characterised 

by different levels of disturbance allowed us to perform the first analysis of rainforest 

distribution in disturbed and naturally undisturbed areas at a regional scale (Chapter 

2). This was a rare opportunity, as fire is a ubiquitous feature of the north-western 

Australian tropics and the few fire-free areas are generally the result of artificial, 

small-scale fire exclusions (e.g. Woinarski et al., 2004).  The comparison of rainforest 

distribution on islands and the mainland (Chapter 2) showed a significantly higher 

presence of rainforests in undisturbed locations, such as islands, suggesting a strong 

influence of disturbance. This was further confirmed by the historical analysis of 

rainforest boundary dynamics in the Mitchell Plateau and Bougainville Peninsula 

(Chapter 3).  Rainforest expansion into adjoining savannas was most pronounced in 

areas with low fire frequency and absence of cattle, such as the Bougainville 

Peninsula. By contrast, patches located in the Mitchell Plateau, and hence exposed to 

elevated disturbance levels, were found to have more stable boundaries, probably 

because they are restricted to topographically fire protected settings (Chapters 2 and 

3). Small patches were less likely to expand compared with bigger patches, possibly 

because their perimeter to core ratio is higher, rendering them more vulnerable to 

intense fires (Russell-Smith and Bowman, 1992). This result is of particular 

importance considering that 75% of rainforest patches mapped in the north Kimberley 

are smaller than 1 ha (Chapter 2).  



Chapter 6                 Conclusions 

 

105 

 

Rainforests in disturbed and undisturbed locations did not present substantial floristic 

differences, but the absence of disturbance facilitated tree recruitment, as shown by 

the higher tree and seedling density in rainforests on the Bougainville Peninsula, where 

we also detected the presence of rare species identified in the north Kimberley – or in 

some cases in the entire Western Australia - for the first time (Chapter 3). Disturbance 

not only influenced distribution and expansion rates of rainforests, but also the 

structure of the adjacent savannas and the rainforest-savanna boundaries. Savannas on 

the Bougainville Peninsula were characterised by higher proportions of rainforest 

adult trees and the widespread presence of rainforest species in the understorey, 

signalling that rainforest expansion is still occurring (Russell‐Smith et al., 2004). The 

structure of rainforest-savanna boundaries varied depending on the levels of 

disturbance. In the Mitchell Plateau they were characterised by abrupt transitions in 

vegetation characteristics, such as tree and seedling density and grass cover, similar to 

what has been observed in previous studies in Australia (Banfai and Bowman, 2007) 

and other in tropical areas in the world (e.g. Ibanez et al., 2013b, Dantas et al., 2013a). 

The analysis of canopy cover bimodality presented in Chapter 3 was the first to be 

based on transects running across the rainforest-savanna boundary, rather than 

satellite-based assessments or independent plots. It provided ground-based evidence 

to the hypothesis that rainforests and savannas exist as two distinct states (Staver et 

al., 2011b, Hirota et al., 2011). However, on the cattle free and fire protected 

Bougainville Peninsula rainforest-savanna boundaries were more blurred, with 

gradual transitions in vegetation structure, and canopy cover was unimodal. The 

results of this natural experiment pointed to disturbance as the major factor 

determining the presence of rainforests and savannas as alternative stable states 

(Dantas et al., 2016).  

Rainforest plants are damaged and killed by recurrent high intensity fires (Fensham et 

al., 2003), probably due to their thin bark, which provides little fire protection (Lawes 

et al., 2013, Pausas, 2015b). However, in some cases they displayed the capacity to 

survive and resprout after a fire (Clarke et al., 2013). Fire intensity is likely to be a 

critical factor determining the post-burn recovery capacity of rainforest species, but 

previous field-based studies did not control for this factor (e.g. Williams et al., 2012). 
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Conversely, in controlled studies that accounted for fire intensity, rainforest plants 

were burnt and left to recover in artificial environments, where they were not subject 

to natural conditions, such as competition and drought (e.g. Zimmer et al., 2015). My 

field experiment combined for the first time controlled burning conditions with plant 

recovery in a natural environment (Chapter 4). It found that rainforest saplings 

displayed the capacity to survive a single low intensity savanna fire and recover 

through regenerative buds, suggesting that not only fire frequency, but also fire 

intensity is important. Rainforests plants would therefore benefit from a shift from the 

current fire regimes, characterised by late dry season intense and extensive fires 

(Vigilante et al., 2004), toward less intense fire regimes, such as those typical of 

Aboriginal fire management, which facilitate the creation of habitat patchiness. Such 

patchiness would help protect fire-sensitive habitats, including rainforests 

(Trauernicht et al., 2016, Woinarski et al., 2004). In the Wunambal Gaambera 

Country, I demonstrated that the reintroduction of early dry season prescribed burning 

successfully reduced the number of high intensity, late dry season fires, particularly in 

locations with clusters of rainforest patches classified as vulnerable (Chapter 5). The 

ability of rainforest plants to survive at least a single low intensity fires suggests that 

this shift in fire regimes could facilitate rainforest tree survival. However, elevated fire 

frequency could still constrain rainforests to fire-protected locations. Regeneration of 

rainforest plants occurred predominantly through basal buds due to the high stem death 

rates, preventing rainforest plants from regaining their original height after one year. 

Frequent fires could then prevent them from reaching the height that allow them to 

develop enough protection to escape the ‘fire trap’ (Hoffmann et al., 2012a). 

I quantified the presence of cattle in rainforests and savannas in the Mitchell Plateau, 

as well as their impact on seedling number and grass cover, in rainforests and savannas 

of the north Kimberley (Chapter 3), previously only qualitatively observed by 

McKenzie and Belbin (1991). Cattle impact was not associated with reduced grass 

cover (Chapter 3), signalling that in the north Kimberley cattle presence does not 

reduce fuel load, contrary to what has been observed elsewhere in the tropics for other 

herbivores (Werner, 2005, Staver and Bond, 2014), perhaps because of the low cattle 

numbers. High cattle presence was instead associated with lower tree seedling density 
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in savannas (Chapter 3), suggesting that megaherbivores may cause a population 

bottleneck for tree species by substantially reducing tree recruitment, especially when 

combined with high fire activity and thus limiting the capacity of rainforests to expand 

into savannas. These results are comparable with the findings of Staver et al. (2009) 

for African savannas. I also provided the first ground-based evidence that the 

Bougainville Peninsula is free from cattle, highlighting the importance of maintaining 

the deterring methods currently in place, such as the cattle-proof fence built by the 

Wunambal Gaambera rangers at the base of that location. 

The emerging pattern is that rainforest-savanna dynamics are driven by the interplay 

of water and nutrient availability (bottom-up factors) and fire activity and presence of 

megaherbivores (top-down factors), which can affect rainforests directly, or indirectly 

by influencing each other (Fig. 6.1) (Murphy and Bowman, 2012, Hoffmann et al., 

2012a). Due to their capacity to affect several of these factors, human activities and 

land management are also important. 

 

Figure 6.1 Feedbacks regulating the presence of rainforests or savannas. I adapted the 

diagram from Murphy et al. (2012) to show only the factors investigated in this study, and 

have included megaherbivores as a determinant of vegetation states. Factors were also 

classified as bottom-up controls (resources) or top-down controls (consumers). Vegetation 

acts as a consumer of resources such as water and nutrients, and as a resource for the 

consumers of biomass (megaherbivores and fire). Top-down and bottom-up controls influence 

each other via direct effect or by facilitating the establishment of one vegetation type or the 

other. The approximate strength of each relationship is indicated by the width of the arrows. 
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Severe decline of native mammal fauna has occurred in the last 20 years Northern 

Australia (Woinarski et al., 2011). The north Kimberley is considered one of the few 

locations in the Australian tropics where mammal decline is occurring at a lower rate 

(Start et al., 2007), although it is not exempt from the threat represented by frequent 

and high intensity fire regimes (Radford et al., 2015). The exploratory study on animal 

abundance, performed using camera traps, was the first to investigate small/medium 

mammals in the remote and disturbance-free Bougainville Peninsula, enabling a 

comparison with the results from the fire-prone Mitchell Plateau (Chapter 5). Overall, 

I detected high presence of small/medium mammals, particularly in rainforests and 

savannas on the Bougainville Peninsula relative to the more disturbed Mitchell 

Plateau. These results suggest that in the north Kimberley the reduction in 

small/medium mammal abundance is still limited. The low level of threats such as 

predation and disturbance, and the high food availability due to the abundance of 

rainforest elements have probably contributed enhance the resilience of these mammal 

populations (Frank et al., 2014, Legge et al., 2011a, Woinarski et al., 2011).  

 

6.2 CULTURAL CONSIDERATIONS 

Combining Aboriginal knowledge and management with the approaches and aims of 

western science can be challenging. Firstly, the specific objectives of Aboriginal land 

management and western science may not necessarily overlap. While most of the 

ecological targets considered important in Aboriginal culture find a parallel in western 

science (Moorcroft et al., 2012), some specific objectives may differ, such as, for 

example, the protection of individual species for cultural reasons. It is then important 

that decision-making processes are participatory and represent Aboriginal law and 

traditions in area where Aboriginal people retain connection to country (Hill et al., 

2011b), and are considered in addition to western science in areas subject to co-

management. In other settings, Aboriginal people are land owners with the primary 

land management responsibility and will manage land according to their own cultural 

principles. Second, monitoring and managing extensive remote areas is resource 

demanding. Aboriginal people and the organizations that represent them need to seek 
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external funding to manage these areas, which requires the recognition of the 

ecological and cultural value of their land (Hill et al., 2011a) and careful planning in 

order to meet national management standards (Hill et al., 2011b). Finally, it is 

necessary to ensure Traditional Aboriginal knowledge and customs are transferred 

from one generation to the next. This is increasingly difficult to achieve, due to the 

lack of Aboriginal people living on country and the tendency of young generations to 

adopt more western lifestyles (Moorcroft et al., 2012); the lack of intergenerational 

transfer of knowledge may quickly lead to loss of Traditional knowledge (Horstman 

and Wightman, 2001).  

In spite of these difficulties, restoring Aboriginal management is desirable for long-

term conservation of both traditional ecological knowledge and for biodiversity, as 

well as contributing to livelihoods and well-being of Aboriginal people (Prado et al., 

2013, Burgess et al., 2005). The results from Chapter 5 suggest that to protect 

rainforests it is necessary to (i) maintain the human component with which they 

evolved over the last thousands of years, (ii) adapt management strategies to local 

conditions to maintain both habitat stability and diversity, and (iii) frame management 

in light of global and regional environmental changes such as increasing climate 

variability, wetting trends, loss of long unburnt vegetation, and a small mammal 

extinction crisis. This demands community consultation to develop sustainable 

management regimes (Hill et al., 2010). Ongoing monitoring is essential to evaluate 

the effects of management strategies and adapt to changing local and global socio-

ecological circumstances.  

 

6.3 FUTURE AVENUES FOR RESEARCH 

The natural experiment performed in this study took advantage of the existence of a 

large, disturbance-protected area (the Bougainville Peninsula). Long unburnt areas are 

rare in the Australian tropics (Woinarski et al., 2004). The comparison of vegetation 

dynamics in the Bougainville Peninsula and Mitchell Plateau offered the uncommon 

opportunity to investigate rainforest-savanna dynamics in the presence and absence of 
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cattle and fire, providing a better understanding of the effects of disturbance. More 

studies should be performed in these locations, to take further advantage of the 

existence of a vast fire-protected area. Although not designed to describe the totality 

of floristic diversity of the area, this study captured regionally interesting floristic 

elements in both rainforests and savannas of the Bougainville Peninsula (Chapter 3). 

These results suggest that intensive floristic studies would increase our knowledge of 

the local flora. To include, if at all possible, more geographically representative 

undisturbed and disturbed locations in the study would also increase the explanatory 

power of the analyses testing the influence of local and climatic factors on rainforest-

savanna boundary dynamics. 

Further animal studies also would be beneficial to investigate what habitats still 

support dense small mammal populations and what environmental changes would put 

them at risk. Long-term studies in rainforests and savannas of the Bougainville 

Peninsula, using both camera traps and animal capture data, would avoid the risk of 

multiple detections of the same individuals and facilitate species identification and 

range detection. Thanks to the presence of ecologically similar disturbed (Mitchell 

Plateau) and undisturbed (Bougainville Peninsula) areas, such studies would also 

benefit from a sampling framework that incorporates the effects of time as well as 

disturbance, such as BACI design (Before-After, Control-Impact, Stewart-Oaten et 

al., 1986). This would provide important information on threatened or endangered 

species, such as the Nabarlek (Petrogale concinna Gould), the black-footed tree-rat 

(Mesembriomys gouldii Gray), or the brush-tailed phascogale (Phascogale tapoatafa 

Meyer) (http://www.iucnredlist.org; Woinarski et al., 2011), and consequently useful 

insights for land managers to help limit further extinctions. 

In this thesis I combined spatial analyses, performed at different scales, field 

observations of both flora and fauna, and field experiments to investigate the drivers 

of rainforest distribution, historical boundary change, and vegetation structure in the 

north Kimberley, focusing in particular on the impact of disturbance levels on 

rainforests and savannas. The outcomes of this study improved our understanding of 

rainforest-savanna boundary dynamics in locations where climatic and local factors 
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support the existence of both vegetation types, and showed the importance of both 

bottom-up and top-down in determining rainforest distribution. These results, as well 

as the methods developed, will be of use for ecologists working in similar 

environmental settings in Australia or elsewhere in the tropics (e.g. MacDermott et 

al., 2016) and for land management planning. 
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Appendix 1 
Supplementary material to Chapter 2 

 

Figure A1.1 Semi-variogram describing the spatial pattern of rainforest density 

observations, obtained from the north Kimberley rainforest map. To measure the degree 

of spatial dependence between samples we plotted the semi-variance as a function of distance 

between pairs of observations. The graph shows that the semi-variance decreases when the lag 

distance exceeds 1000 m, which corresponds to the minimum distance between observations 

in our dataset 
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Table A1.1. Summary of regional and local scale models testing a) the importance of geology 

and terrain for rainforest density at a regional scale, and the importance of geology alone on 

b) complex terrain and c) level terrain; the effects of insularity (mainland vs islands) and 

terrain (complex vs level) at a local scale on d) rainforest density, and e) fire activity. K 

represents the number of parameters, AIC the Akaike value, Delta the difference between the 

AIC of the model and the AIC of the best model in the set, Weight the Akaike weight (defined 

as the relative likelihood of the model), and Deviance is the percentage of deviance explained 

by the model. 

a) Rainforest density (Regional scale) 

Model K AIC Delta Weight Deviance 

Geology and terrain 6 27898.0 0.00 1.00 32.0% 

Terrain 2 28949.6 596.31 0.00 26.3% 

Geology 5 28949.6 1051.52 0.00 19.4% 

Null 1 30133.7 2235.65 0.00 NA 

 

b) Rainforest density on complex terrain (Regional scale) 

Model K AIC Delta Weight Deviance 

Geology 5 13085.8 0.00 1.00 13.0% 

Null 1 13537.8 452.00 0.00 NA 

 

c) Rainforest density on level terrain (Regional scale) 

Model K AIC Delta Weight Deviance 

Geology 5 15164.8 0.00 1.00 10.0% 

Null 1 15427.9 263.10 0.00 NA 
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d) Rainforest density (Local scale) 

Model K      AIC   Delta    Weight Deviance 

Insularity and terrain 3 7001.4 0.00 1.00 35.0% 

Insularity 2 7278.2 276.82 0.00 21.7% 

Terrain 2 7451.1 449.75 0.00 12.6% 

Null 1 7669.5 668.15 0.00 NA 

 

e) Fire activity (Local scale) 

Model K      AIC    Delta Weight Deviance 

Insularity 2 -1402.0 0.00 0.52 39.1% 

Insularity and terrain 3 -1401.8 0.12 0.48 39.2% 

Terrain 2 -581.7 820.26 0.00 0.4% 

Null 1 -576.9 825.04 0.00 NA 
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Appendix 2 

Supplementary material to Chapter 3 

Table A2.1 Summary of the models testing the importance of the factor location 

(Mitchell Plateau or Bougainville Peninsula) and vegetation type (stable rain forest or 

expanded rain forest) on a) the number of seedlings, b) number of trees, c) number of 

species, d) proportion of rain forest species, e) basal area, f) grass cover, g) rock cover in 

rain forest plots. Df represents the number of parameters, logLik the maximum likelihood, 

AIC the Akaike value, delta the difference between the AIC of the model and the AIC of the 

best model in the set, and weight the Akaike weight (defined as the relative likelihood of the 

model). 

 

a) Number of seedlings 

Model Df logLik AIC delta weight 

Vegetation type and Location 3 -201.399 408.8 0.00 0.84 

Location 2 -204.047 412.1 3.30 0.16 

Null 1 -221.804 445.6 36.81 0.00 

Vegetation type 2 -221.715 447.4 38.63 0.00 

 

b) Number of trees 

Model Df logLik AIC delta weight 

Vegetation type and Location 3 -136.173 278.3 0.00 0.64 

Location 2 -137.959 279.9 1.57 0.29 

Null 1 -140.703 283.4 5.06 0.05 

Vegetation type 2 -140.441 284.9 6.54 0.02 
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c) Number of species 

Model Df logLik AIC delta weight 

Null 1 -105.418 212.8 0.00 0.33 

Location 2 -104.602 213.2 0.37 0.28 

Vegetation type 2 -104.69 213.4 0.54 0.26 

Vegetation type and Location 3 -104.334 214.7 1.83 0.13 

 

d) Proportion of rainforest species 

Model Df logLik AIC delta weight 

Vegetation type 2 -64.707 133.4 0.00 0.59 

Vegetation type and Location 3 -64.085 134.2 0.76 0.41 

Location 2 -93.07 190.1 56.73 0.00 

Null 1 -94.279 190.6 57.14 0.00 

 

e) Basal area 

Model Df logLik AIC delta weight 

Location 3 -39.61 85.2 0.00 0.37 

Vegetation type 3 -40.068 86.1 0.92 0.23 

Null 2 -41.172 86.3 1.12 0.21 

Vegetation type and Location 4 -39.257 86.5 1.29 0.19 

 

f) Grass cover 

Model Df logLik AIC delta weight 

Vegetation type 5 -33.667 77.3 0.00 0.48 

Vegetation type and Location 6 -33.428 78.9 1.52 0.22 

Location 5 -34.832 79.7 2.33 0.15 

Null 4 -35.836 79.7 2.34 0.15 
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g) Rock cover 

Model Df logLik AIC delta weight 

Null 4 -41.644 91.3 0.00 0.40 

Location 5 -40.885 91.8 0.48 0.32 

Vegetation type 5 -41.557 93.1 1.83 0.16 

Vegetation type and Location 6 -40.883 93.8 2.48 0.12 

 

Table A2.2 Summary of the models testing the importance of the factor location 

(Mitchell Plateau or Bougainville Peninsula) on a) the number of seedlings, b) number 

of trees, c) number of species, d) proportion of rain forest species, e) basal area, f) grass 

cover, g) rock cover in savanna plots. Df represents the number of parameters, logLik the 

maximum likelihood, AIC the Akaike value, delta the difference between the AIC of the 

model and the AIC of the best model in the set, and weight the Akaike weight (defined as the 

relative likelihood of the model). 

a) Number of seedlings 

Model Df logLik AIC delta weight 

Location 2 -272.416 548.8 0.00 1.00 

Null 1 -285.116 572.2 23.40 0.00 

 

b) Number of trees 

Model Df logLik AIC delta weight 

Location 2 -293.248 590.5 0.00 0.88 

Null 1 -296.278 594.6 4.06 0.12 

 

c) Number of species 

Model Df logLik AIC delta weight 

Location 2 -164.732 333.5 0.00 1.00 

Null 1 -205.583 413.2 79.70 0.00 
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d) Proportion of rain forest species 

Model Df logLik AIC delta weight 

Location 2 -124.472 252.9 0.00 1.00 

Null 1 -200.881 403.8 150.82 0.00 

 

e) Basal area 

Model Df logLik AIC delta weight 

Null 2 -85.793 175.6 0.00 0.73 

Location 3 -85.774 177.5 1.96 0.27 

 

f) Grass cover 

Model Df logLik AIC delta weight 

Location 5 -72.036 154.1 0.00 0.87 

Null 4 -74.916 157.8 3.76 0.13 

 

g) Rock cover 

Model Df logLik AIC delta weight 

Null 4 -70.275 148.6 0.00 0.57 

Location 5 -69.546 149.1 0.54 0.43 
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Table A2.3 Analysis of canopy cover multimodality in the Plateau and the Peninsula. 
Results of the analysis of multimodality, conducted to detect the number of modes in total 

canopy cover. We employed latent class analysis on arcsine square-root transformed total 

canopy cover (Hirota et al., 2011) and compared the fit of the models with 1, 2, or 3 modes 

using Bayesian Information Criterion (BIC). The lowest BIC values, corresponding to the best 

fitting mode, are highlighted in bold. Analyses were performed using the ‘flexmix’ package 

in R (Grun and Leisch, 2008; R Core Team, 2013). 

Location 1 mode 2 modes 3 modes 

Bougainville Peninsula -7.89 -6.22 5.45 

Mitchell Plateau 18.44 14.44 22.41 

 

 

Table A2.4 Disturbance levels recorded in plots classified as stable rainforest, rainforest 

expanded in 1969 (‘Expanded 1969’), rainforest expanded in 2005 (‘Expanded 2005’), 

and stable savanna. Data are shown separately for the Bougainville Peninsula (Boug) and 

Mitchell Plateau (Mitch). Standard errors are reported for average values. 

Disturbance 

Stable rainforest Expanded 1969 Expanded 2005 Stable savanna 

Boug Mitch Boug Mitch Boug Mitch Boug Mitch 

Cattle impact 0 ± 0 1 ± 0 0 ± 0 2 ± 1 0 ± 0 1 ± 1 0 ± 0 1 ± 0 

Fire 
frequency 

0.1 ± 0.0 0.6 ± 0.0 0.1 ± 0.0 0.4 ± 0.0 0.1 ± 0.0 0.5 ± 0.0 0.1 ± 0.0 0.6 ± 0.0 
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Table A2.5 List of trees, shrubs, and vines identified in the vegetation transects and 

number of plots in which they were recorded in rainforests (RF) and savannas (SAV) 

in the Mitchell Plateau and the Bougainville Peninsula. 

Species Family 
Typical 

habitat 

Mitchell Plateau Bougainville Peninsula 

  SAV RF SAV RF 

Abrus precatorius L. Fabaceae R 2 6 5 11 

Acacia dimidiata Benth.  Fabaceae S 0 0 6 0 

Acacia drepanocarpa sub. latifolia Pedley Fabaceae S 0 0 3 0 

Acacia hemignosta F.Muell. Fabaceae S 0 0 1 0 

Acacia sp. Mill. Fabaceae S 1 1 0 0 

Acacia stigmatophylla Benth. Fabaceae S 0 0 1 1 

Adenia heterophylla (Blume) Koord. Passifloraceae R 1 1 0 0 

Aglaia eleagnoidea (A. Juss.) Benth. Meliaceae R 1 0 1 4 

Aidia racemosa (Cav.) Tirveng. Rubiaceae R 2 4 1 3 

Ailanthus triphysa (Dennst.) Alston Simaroubaceae R 0 0 0 1 

Albizia canescens Benth. Mimosaceae R 0 0 1 0 

Albizia lebbek (L.) Benth. Mimosaceae R 1 8 0 1 

Allophylus sp. L. Sapindaceae R 1 0 0 0 

Alstonia actinophylla (A.Cunn.) 

K.Schum. 
Apocynaceae R 2 0 0 0 

Alstonia spectabilis R.Br. Apocynaceae R 0 1 1 0 

Antidesma ghaesembilla Gaertn. Phyllanthaceae S 6 4 15 2 

Asparagus racemosus Willd. Asparagaceae R 0 1 1 3 

Atalaya salicifolia (A.DC.) Blume Sapindaceae R 3 10 1 10 

Bauhinia cunninghamii Benth. Caesalpiniaceae R 0 0 3 6 

Bauhinia malabarica Roxb. Caesalpiniaceae R 3 0 0 1 

Bombax ceiba L. Malvaceae R 3 4 5 7 

Bossiaea bossiaeoides (A.Cunn. ex 

Benth.) Court 
Fabaceae S 0 0 1 0 

Brachychiton diversifolius R.Br. Malvaceae S 3 1 3 1 

Brachychiton xanthophyllus Guymer Malvaceae R 0 5 11 13 

Breynia cernua (Poir.) Mull.Arg. Phyllanthaceae R 3 6 11 4 

Bridelia tomentosa Blume Phyllanthaceae R 0 0 10 3 

Brucea javanica (L.) Merr. Simaroubaceae R 0 0 0 1 

Buchanania obovata Engl. Anacardiaceae S 4 0 0 0 

Canarium australianum F.Muell. Burseraceae R 4 4 0 2 

Capparis lasiantha R.Br. ex DC. Capparaceae R 0 0 4 1 

Capparis sepiaria L. Capparaceae R 2 16 10 9 

Capparis sp. L. Capparaceae R 1 5 0 3 

Celtis philippensis Blanco Ulmaceae R 1 7 18 17 

Clerodendrum sp. L. Lamiaceae R 0 2 0 0 

Clerodendrum floribundum R.Br. Lamiaceae R 0 0 1 0 

Clerodendrum tomentosum (Vent.) R.Br. Lamiaceae R 0 1 0 0 
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Species Family 
Typical 

habitat 

Mitchell Plateau Bougainville Peninsula 

  SAV RF SAV RF 

Cochlospermum fraseri Planch. Bixaceae S 0 0 2 0 

Corymbia bella K.D.Hill & L.A.S.Johnson Myrtaceae S 7 0 2 0 

Corymbia confertiflora (F.Muell.) 

K.D.Hill & L.A.S.Johnson 
Myrtaceae S 13 2 1 0 

Corymbia latifolia (F.Muell.) K.D.Hill & 

L.A.S.Johnson 
Myrtaceae S 1 0 10 6 

Corymbia nesophila (Blakely) K.D.Hill & 
L.A.S.Johnson 

Myrtaceae S 14 0 13 0 

Corymbia polycarpa (F.Muell.) K.D.Hill 

& L.A.S.Johnson 
Myrtaceae S 0 0 2 0 

Corymbia sp. K.D.Hill & L.A.S.Johnson Myrtaceae S 3 0 2 0 

Croton habrophyllus Airy Shaw Euphorbiaceae R 0 4 6 12 

Croton schultzii Benth. Euphorbiaceae R 0 0 0 4 

Croton tomentellus F.Muell. Euphorbiaceae R 0 0 2 4 

Cryptocarya cunninghamii Meisn. Lauraceae R 0 0 0 1 

Cupaniopsis anacardioides (A.Rich.) 

Radlk. 
Sapindaceae R 0 5 5 7 

Cyathostemma glabrum (Span.) Jessup ex 
Utteridge 

Annonaceae R 0 8 1 2 

Cycas basaltica C.A. Gardner Cycadaceae S 0 0 2 0 

Denhamia obscura (A.Rich.) Meisn. ex 

Walp. 
Celastraceae R 0 2 2 1 

Dioscorea bulbifera L. Dioscoreaceae R 1 0 0 0 

Diospyros calicantha O.Schwarz Ebenaceae R 0 4 0 0 

Diospyros humilis (R.Br.) F.Muell. Ebenaceae R 1 0 0 2 

Diospyros maritima Blume Ebenaceae R 1 4 0 2 

Diospyros rugosula R.Br. Ebenaceae R 0 0 1 1 

Dodonaea platyptera F.Muell. Sapindaceae R 0 2 4 1 

Dolichandrone heterophylla (R.Br.) 

F.Muell. 
Bignoniaceae S 0 1 15 4 

Drypetes deplanchei (Brongn. & Gris) 
Merr. 

Putranjivaceae R 1 5 2 10 

Elaeodendron melanocarpum F.Muell. Celastraceae R 1 5 1 5 

Erythrina vespertilio Benth. Fabaceae S 1 0 0 0 

Erythrophleum chlorostachys (F.Muell.) 

Baill. 
Fabaceae S 17 2 16 3 

Eucalyptus miniata A.Cunn. ex Schauer Myrtaceae S 5 0 0 0 

Eucalyptus oligantha Schauer Myrtaceae S 0 0 2 0 

Eucalyptus tectifica F.Muell. Myrtaceae S 14 0 9 1 

Eucalyptus tetrodonta F.Muell. Myrtaceae S 2 0 0 0 

Exocarpos latifolius R.Br. Santalaceae R 0 4 11 12 

Ficus aculeata A.Cunn. ex Miq. Moraceae R 5 1 3 0 

Ficus hispida L.f. Moraceae R 0 3 0 0 

Flagellaria indica L. Flagellariaceae R 1 9 0 6 

Flueggea virosa (Willd.) Voigt Phyllanthaceae R 1 4 17 2 

Ganophyllum falcatum Blume Sapindaceae R 3 4 0 4 

Gardenia pyriformis Benth. Rubiaceae S 1 0 0 0 

Garuga floribunda Decne. Burseraceae R 0 5 0 2 
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Species Family 
Typical 

habitat 

Mitchell Plateau Bougainville Peninsula 

  SAV RF SAV RF 

Glochidion disparipes Airy Shaw Phyllanthaceae R 0 2 0 0 

Glycosmis trifoliata (Blume) Spreng. Rutaceae R 1 12 2 12 

Grevillea dimidiata F.Muell. Proteaceae S 7 0 0 0 

Grevillea heliosperma R.Br. Proteaceae S 2 1 0 0 

Grewia breviflora Benth. Malvaceae R 4 5 10 13 

Grewia oxyphylla Burret Malvaceae R 0 1 0 0 

Grewia retusifolia Kurz Malvaceae S 10 2 11 2 

Hakea arborescens R.Br. Proteaceae S 2 1 11 2 

Ichnocarpus frutescens (L.) W.T.Aiton Apocynaceae R 2 5 0 0 

Ipomoea costata Benth. Convolvulaceae S 0 0 2 1 

Jasminum didymum G.Forst. Oleaceae R 0 2 6 7 

Lepisanthes rubiginosa (Roxb.) Leenh. Sapindaceae R 0 2 0 0 

Litsea glutinosa (Lour.) C.B.Rob. Lauraceae R 1 4 1 1 

Livistona eastonii C.A.Gardner Arecaceae S 18 4 0 0 

Luffa aegyptiaca var. leiocarpa (Naud.) 

Heiser & E.E.Schill. 
Cucurbitaceae R 1 0 0 0 

Luvunga monophylla (DC.) Mabb. Rutaceae R 0 0 1 6 

Mallotus dispersus P.I.Forst. Euphorbiaceae R 0 0 0 4 

Maytenus sp. Molina Celastraceae S 3 1 0 0 

Meiogyne cylindrocarpa (Burck) Heusden Annonaceae R 0 6 0 3 

Melochia umbellata (Houtt.) Stapf Malvaceae R 0 5 2 1 

Micromelum minutum (G.Forst.) Wight & 

Arn. 
Rutaceae R 3 9 1 5 

Miliusa brahei (F.Muell.) Jessup Annonaceae R 0 0 0 1 

Miliusa tracey Jessup Annonaceae R 0 1 1 3 

Mimusops elengi L. Sapotaceae R 1 3 5 14 

Murraya paniculata (L.) Jack Rutaceae R 0 7 5 6 

Myristica insipida R.Br. Myristicaceae R 0 0 0 1 

Myrsine kimberleyensis Jackes Primulaceae R 1 1 0 1 

Operculina sp. Silva Manso Convolvulaceae S 0 0 0 1 

Pachygone ovata (Poir.) Hook.f. & 
Thomson 

Menispermaceae R 0 0 0 1 

Parsonsia velutina R.Br. Apocynaceae R 1 1 1 2 

Passiflora foetida L. Passifloraceae S 3 2 25 4 

Pavetta kimberleyana S.T.Reynolds. Rubiaceae R 4 10 1 3 

Persoonia falcata R.Br. Proteaceae S 1 0 0 0 

Petalostigma pubescens Domin Picrodendraceae S 6 1 0 0 

Phyllanthus reticulatus Poir. Phyllanthaceae S 0 1 0 0 

Pisonia aculeata L. Nyctaginaceae R 0 0 0 1 

Pittosporum spinescens (F.Muell.) 

L.Cayzer, Crisp & I.Telford 
Pittosporaceae R 1 2 2 6 

Planchonia careya (F.Muell.) R.Knuth Lecythidaceae S 17 0 4 0 

Plumbago zeylanica L. Plumbaginaceae R 0 3 0 0 

Polyalthia australis (Benth.) Jessup Annonaceae R 1 6 0 2 
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Species Family 
Typical 

habitat 

Mitchell Plateau Bougainville Peninsula 

  SAV RF SAV RF 

Pouteria richardii (F.Muell.) Baehni Sapotaceae R 0 0 1 1 

Premna acuminata R.Br. Lamiaceae R 0 0 0 2 

Psychotria nesophila F.Muell. Rubiaceae R 0 1 0 1 

Secamone elliptica R.Br. Apocynaceae R 0 0 0 1 

Sersalisia sericea (Aiton) R.Br. Sapotaceae R 2 4 2 5 

Sterculia quadrifida R.Br. Malvaceae R 2 2 2 3 

Strichnos lucida R.Br. Loganiaceae R 2 8 15 14 

Tarenna dallachiana (Benth.) S.Moore Rubiaceae R 0 4 1 2 

Terminalia canescens (DC.) Radlk Combretaceae S 5 1 11 1 

Terminalia microcarpa Decne. Combretaceae R 7 10 4 1 

Terminalia petiolaris Benth. Combretaceae R 1 6 6 10 

Terminalia volucris Benth. Combretaceae R 0 0 0 2 

Thespesia thespesioides (Benth.) Fryxell Malvaceae S 2 0 0 0 

Tinospora smilacina Benth. Menispermaceae R 0 0 1 1 

Trema tomentosa (Roxb.) Hara Cannabaceae R 1 1 16 0 

Turraea pubescens Hell. Meliaceae R 0 0 0 1 

Tylophora cinerascens (R.Br.) P.I.Forst. Apocynaceae R 0 7 0 0 

Vachellia ditricha (Pedley) Kodela Fabaceae S 0 0 1 0 

Vachellia suberosa (Benth.) Kodela Fabaceae S 6 0 17 4 

Vavaea sp. Benth. Meliaceae R 0 0 3 0 

Vitex acuminata R.Br. Lamiaceae R 2 6 11 10 

Wrightia pubescens R.Br. Apocynaceae R 0 8 1 0 

Xanthostemon psidioides (Lindl.) Peter 
G.Wilson & J.T.Waterh. 

Myrtaceae S 0 0 1 0 

Xanthostemon sp. F.Muell. Myrtaceae S 1 0 0 0 

Ziziphus quadrilocularis F.Muell. Rhamnaceae R 0 2 9 12 
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Table A2.6 Number of plots and characteristics recorded in plots classified as stable rainforest, rainforest expanded in 1969 (‘Expanded 1969’), 

rainforest expanded in 2005 (‘Expanded 2005’), and stable savanna. Data are shown separately for the Bougainville Peninsula (Boug) and Mitchell Plateau 

(Mitch). Standard errors are reported for average values. 

Plot characteristics 
Stable rainforest Expanded 1969 Expanded 2005 Stable savanna 

Boug Mitch Boug Mitch Boug Mitch Boug Mitch 

         

N. plots 7 15 8 2 4 2 30 30 

Grass cover 1 ± 0 1 ± 0 2 ± 0 2 ± 1 4 ± 1 1 ± 0 4 ± 0 4 ± 0 

Rock cover 4 ± 0 4 ± 0 5 ± 0 5 ± 1 3 ± 0 3 ± 0 2 ± 0 2 ± 0 

Number of seedlings 35 ± 4 27 ± 3 40 ± 6 16 ± 3 25 ± 7 16 ± 2 15 ± 2 10 ± 1 

Number of trees 21 ± 4 14 ± 1 18 ± 2 14 ± 2 10 ± 3 16 ± 5 9 ± 1 11 ± 2 

Basal area (m2 · ha-1) 13 ± 2 17 ± 4 10 ± 2 19 ± 6 6 ± 1 11 ± 5 8 ± 1 8 ± 1 

Proportion of rainforest adult trees (%) 98 ± 2 98 ± 2 90 ± 5 84 ± 16 48 ± 20 79 ± 12 29 ± 6 1 ± 1 

Savanna understorey (% of plots) 14 27 25 50 75 50 97 100 

Rainforest understorey (% of plots) 100 100 100 100 100 100 100 27 

Species richness (number/plot) 20 ± 2 17 ± 1 20 ± 1 19 ± 0 17 ± 1 22 ± 1 15 ± 1 7 ± 1 

Tree canopy cover (%) 65 ± 9 62 ± 6 52 ± 6 72 ± 5 37 ± 3 73 ± 13 28 ± 3 26 ± 3 

Full canopy cover (%) 75 ± 7 71 ± 5 66 ± 5 78 ± 3 48 ± 4 84 ± 3 41 ± 2 33 ± 3 
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Table S2.7 Importance (w+) of a) the factors location (Mitchell Plateau or Bougainville 

Peninsula) and vegetation type (stable rain forest or expanded rain forest) as predictor 

of the listed response variables in rainforests and b) the factor location as a predictor in 

stable savannas. Factor importance is expressed as w+, with values > 0.73 (in bold) 

considered important predictors. 

a) Rain forests (stable and expanded) 

 

Response variable 
w+   

Location Vegetation type 

N. seedlings 1.00 0.84 

N. adult trees 0.92 0.66 

N. species 0.41 0.39 

Proportion of rainforest species 0.41 1.00 

Basal area 0.56 0.42 

Grass cover 0.37 0.70 

Rock cover 0.43 0.28 

 

b) Stable savannas  

 

Response variable 
w+   

Location 

N. seedlings 1.00 

N. adult trees 0.88 

N. species 1.00 

Proportion of rainforest species 1.00 

Basal area 0.27 

Grass cover 0.87 

Rock cover 0.43 
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Fig. A2.1 Percentile analysis of the correlation rainfall-rainforest cover. Using data for 

current rainforest cover and rainfall in northern Australia from Chapter 2, we employed the R 

package ‘quantreg’ (Koenker, 2016) to calculate the 95% percentile regression and compared 

the variation in rainforest cover and rainfall in the north-west Australian monsoon tropics with 

those obtained for the Plateau and Peninsula. This space-for-time substitution showed that an 

increase in rainfall from 1080 mm/year (as recorded in the study areas in 1949) to 1280 

mm/year (as recorded in 1969) corresponded to a relative rainforest increment of 41%. The 

regression line represents variations in rainforest cover associated with differences in mean 

annual rainfall in the north-west Australian monsoon tropics. Rainforest cover detected in the 

two study locations in 1949, 1969, and 2005 are also reported. 
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Appendix 3 
Supplementary material to Chapter 4 
Table A3.1 Main data collected, including species, bark thickness (2013), height (2013 and 2014), stem diameter (2013 and 2014) and resprouter type 

(2014). 

Habitat Species 

Height 

(m) 

2013 

Stem 

diameter 

(cm) 2013 

Bark 

thickness 

(mm) 2013 

Condition 

2014 

Resprouter type 

2014 

Height 

(m) 2014 

Stem 

diameter (cm) 

2014 

Rainforest Atalaya salicifolia 0.89 0.58 0.19 Alive Aerial - axillary 1.73 2.90 

Rainforest Atalaya salicifolia 0.76 0.76 0.40 Alive Aerial - axillary 0.74 0.80 

Rainforest Atalaya salicifolia 0.75 0.75 0.55 Alive Aerial - axillary 0.77 0.80 

Rainforest Atalaya salicifolia 1.72 1.27 1.13 Alive Basal 1.06 1.70 

Rainforest Atalaya salicifolia 1.13 1.10 0.63 Alive Basal 0.52 0.40 

Rainforest Atalaya salicifolia 1.61 1.41 0.79 Alive Basal 0.64 0.50 

Rainforest Atalaya salicifolia 0.82 0.93 0.48 Alive Basal 0.63 0.70 

Rainforest Atalaya salicifolia 1.90 1.52 1.03 Dead - - - 

Rainforest Atalaya salicifolia 2.06 2.68 0.33 Alive Basal 3.00 4.00 

Rainforest Atalaya salicifolia 1.68 1.20 0.83 Alive Basal 0.86 1.80 

Rainforest Canarium australianum 2.36 2.19 0.56 Dead - - - 

Rainforest Canarium australianum 1.13 1.06 0.65 Dead - - - 

Rainforest Canarium australianum 0.65 0.48 0.43 Alive Aerial - axillary 0.53 0.80 

Rainforest Canarium australianum 1.46 2.00 0.86 Alive Basal 1.03 0.80 

Rainforest Canarium australianum 2.60 1.49 0.40 Missing - - - 

Rainforest Canarium australianum 2.90 3.13 1.40 Alive Aerial - axillary 1.30 3.70 

Rainforest Canarium australianum 2.55 2.53 0.77 Dead - - - 
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Habitat Species 

Height 

(m) 

2013 

Stem 

diameter 

(cm) 2013 

Bark 

thickness 

(mm) 2013 

Condition 

2014 

Resprouter type 

2014 

Height 

(m) 2014 

Stem 

diameter (cm) 

2014 

Rainforest Canarium australianum 0.75 1.36 0.69 Alive Aerial - axillary 0.70 2.30 

Rainforest Canarium australianum 0.54 0.64 0.48 Alive Aerial - axillary 2.01 3.40 

Rainforest Canarium australianum 0.60 1.32 0.33 Alive Basal 0.34 0.30 

Rainforest Ficus aculeata 1.68 1.32 0.64 Alive Basal 0.82 0.90 

Rainforest Ficus aculeata 0.80 0.98 0.57 Alive Basal 0.63 0.70 

Rainforest Ficus aculeata 1.08 1.11 0.54 Alive Basal 0.97 0.90 

Rainforest Ficus aculeata 1.35 1.33 0.55 Alive Basal 0.86 0.80 

Rainforest Ficus aculeata 1.57 3.24 4.01 Alive Basal 1.61 3.20 

Rainforest Ficus aculeata 2.25 2.00 1.07 Alive Aerial - axillary 1.80 2.80 

Rainforest Ficus aculeata 1.38 1.50 0.85 Alive Aerial - axillary 1.14 2.50 

Rainforest Ficus aculeata 1.80 1.92 2.23 Alive Aerial - axillary 1.54 3.00 

Rainforest Ficus aculeata 1.77 2.20 1.64 Missing - - - 

Rainforest Ficus aculeata 1.37 1.13 0.68 Alive Aerial - axillary 0.81 2.30 

Rainforest Sterculia quadrifida 0.86 0.84 0.59 Missing - - - 

Rainforest Sterculia quadrifida 1.48 1.07 0.54 Dead - - - 

Rainforest Sterculia quadrifida 2.15 2.33 0.41 Alive Aerial - axillary 2.14 2.90 

Rainforest Sterculia quadrifida 2.45 2.42 0.55 Missing - - - 

Rainforest Sterculia quadrifida 1.84 2.15 0.58 Alive Aerial - axillary 1.02 2.90 

Rainforest Sterculia quadrifida 1.55 1.21 0.37 Alive Basal 0.26 0.30 

Rainforest Sterculia quadrifida 0.96 0.87 0.35 Alive Basal 0.41 0.50 

Rainforest Sterculia quadrifida 1.28 1.15 0.37 Missing - - - 

Rainforest Sterculia quadrifida 1.27 0.83 0.25 Missing - - - 

Rainforest Strychnos lucida 1.22 0.33 0.33 Alive Basal 0.28 0.20 

Rainforest Strychnos lucida 1.54 1.12 0.24 Alive Aerial - axillary 0.62 1.50 

Rainforest Strychnos lucida 1.12 0.87 0.30 Alive Basal 0.14 0.20 

Rainforest Strychnos lucida 1.19 0.70 0.64 Alive Basal 0.19 0.50 
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Habitat Species 

Height 

(m) 

2013 

Stem 

diameter 

(cm) 2013 

Bark 

thickness 

(mm) 2013 

Condition 

2014 

Resprouter type 

2014 

Height 

(m) 2014 

Stem 

diameter (cm) 

2014 

Rainforest Strychnos lucida 1.35 1.05 0.25 Alive Aerial - axillary 0.33 1.50 

Rainforest Strychnos lucida 2.57 1.08 0.32 Alive Basal 1.24 0.60 

Rainforest Strychnos lucida 1.98 1.28 0.40 Alive Aerial - axillary 0.80 1.70 

Rainforest Strychnos lucida 2.11 3.78 1.04 Alive Aerial - axillary 1.97 4.00 

Rainforest Strychnos lucida 1.46 0.73 0.43 Alive Basal 0.36 0.50 

Rainforest Strychnos lucida 0.99 0.73 0.20 Alive Basal 0.45 0.30 

Rainforest Terminalia petiolaris 1.74 1.34 0.44 Dead - - - 

Rainforest Terminalia petiolaris 1.85 2.69 0.58 Alive Aerial - axillary 1.90 4.40 

Rainforest Terminalia petiolaris 1.39 1.55 0.45 Dead - - - 

Rainforest Terminalia petiolaris 3.12 4.64 0.60 Alive Aerial - axillary 2.40 6.70 

Rainforest Terminalia petiolaris 1.87 2.23 0.55 Alive Aerial - axillary 2.07 3.80 

Rainforest Terminalia petiolaris 1.29 1.78 0.47 Alive Aerial - axillary 1.79 4.00 

Rainforest Terminalia petiolaris 1.65 2.29 0.53 Alive Aerial - axillary 1.96 4.10 

Rainforest Terminalia petiolaris 0.92 1.12 0.28 Dead - - - 

Rainforest Terminalia petiolaris 1.08 1.13 0.36 Dead - - - 

Rainforest Terminalia petiolaris 0.52 0.51 0.25 Dead - - - 

Rainforest Vitex acuminata 1.87 1.37 0.59 Alive Aerial - axillary 0.96 2.10 

Rainforest Vitex acuminata 2.70 2.13 0.36 Alive Aerial - axillary 2.50 2.90 

Rainforest Vitex acuminata 0.64 0.76 0.53 Alive Aerial - axillary 0.65 1.30 

Rainforest Vitex acuminata 1.27 0.89 0.32 Alive Aerial - axillary 0.92 1.50 

Rainforest Vitex acuminata 1.76 1.40 0.60 Alive Aerial - axillary 1.28 2.00 

Rainforest Vitex acuminata 1.19 0.74 0.42 Dead Aerial - axillary   
Rainforest Vitex acuminata 2.12 1.44 0.58 Alive Aerial - axillary 0.50 2.20 

Rainforest Vitex acuminata 0.97 1.04 0.58 Alive Aerial - axillary 0.78 1.70 

Rainforest Vitex acuminata 1.05 0.92 0.30 Alive Aerial - axillary 0.57 1.80 

Rainforest Vitex acuminata 0.75 1.09 0.53 Alive Aerial - axillary 0.27 1.10 
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Habitat Species 

Height 

(m) 

2013 

Stem 

diameter 

(cm) 2013 

Bark 

thickness 

(mm) 2013 

Condition 

2014 

Resprouter type 

2014 

Height 

(m) 2014 

Stem 

diameter (cm) 

2014 

Savanna Corimbia confertiflora 2.07 4.23 3.86 Alive Aerial - epicormic 1.98 5.20 

Savanna Corimbia confertiflora 2.57 4.65 3.03 Alive Aerial - epicormic 2.60 6.00 

Savanna Corimbia confertiflora 1.50 2.33 2.86 Missing - - - 

Savanna Corimbia confertiflora 1.59 2.84 1.98 Alive Aerial - epicormic 1.75 40.00 

Savanna Corimbia confertiflora 2.05 3.77 2.44 Alive Aerial - epicormic 1.85 4.90 

Savanna Corimbia confertiflora 1.36 3.34 2.56 Alive Aerial - epicormic 1.60 5.00 

Savanna Corimbia confertiflora 1.42 3.46 2.76 Alive Aerial - epicormic 1.70 4.90 

Savanna Corimbia confertiflora 1.44 2.75 3.06 Alive Aerial - epicormic 0.85 3.50 

Savanna Corimbia confertiflora 1.23 3.04 2.88 Missing - - - 

Savanna Corimbia confertiflora 2.18 4.04 3.41 Alive Aerial - epicormic 2.40 5.00 

Savanna Erythrophleum chlorostachys 1.16 2.03 1.41 Missing - - - 

Savanna Erythrophleum chlorostachys 1.33 3.04 2.95 Alive Aerial - epicormic 0.50 4.50 

Savanna Erythrophleum chlorostachys 2.48 4.32 4.46 Alive Aerial - epicormic 2.50 6.30 

Savanna Erythrophleum chlorostachys 2.89 5.46 6.22 Alive Aerial - epicormic 3.00 7.90 

Savanna Erythrophleum chlorostachys 2.28 4.18 4.40 Missing - - - 

Savanna Erythrophleum chlorostachys 2.75 4.27 3.58 Alive Aerial - epicormic 1.70  
Savanna Erythrophleum chlorostachys 2.72 4.29 4.71 Alive Aerial - epicormic 2.50 5.90 

Savanna Erythrophleum chlorostachys 1.47 1.87 2.48 Alive Basal 0.85 2.00 

Savanna Erythrophleum chlorostachys 0.97 1.54 2.03 Alive Aerial - epicormic 0.89 2.10 

Savanna Erythrophleum chlorostachys 1.23 1.62 1.60 Alive Basal 0.93 2.50 

Savanna Eucalyptus tectifica 1.12 3.63 2.71 Alive Aerial - epicormic 1.15 4.00 

Savanna Eucalyptus tectifica 1.07 2.16 1.92 Alive Aerial - epicormic 1.30 3.30 

Savanna Eucalyptus tectifica 1.08 3.06 2.08 Alive Aerial - epicormic 1.20 3.00 

Savanna Eucalyptus tectifica 0.93 1.75 0.84 Missing - - - 

Savanna Eucalyptus tectifica 1.07 3.35 1.72 Missing - - - 

Savanna Eucalyptus tectifica 1.66 3.68 3.22 Alive Aerial - epicormic 1.80 5.10 
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Habitat Species 

Height 

(m) 

2013 

Stem 

diameter 

(cm) 2013 

Bark 

thickness 

(mm) 2013 

Condition 

2014 

Resprouter type 

2014 

Height 

(m) 2014 

Stem 

diameter (cm) 

2014 

Savanna Eucalyptus tectifica 1.93 3.72 2.00 Alive Aerial - epicormic 1.95 4.20 

Savanna Eucalyptus tectifica 2.21 0.41 1.85 Alive Aerial - epicormic 2.30 4.80 

Savanna Eucalyptus tectifica 2.16 3.62 4.37 Alive Aerial - epicormic 2.10 5.00 

Savanna Eucalyptus tectifica 1.62 4.82 3.75 Alive Aerial - epicormic 1.85 6.00 

Savanna Planchonia careya 1.76 3.25 3.24 Alive Basal 1.40 2.50 

Savanna Planchonia careya 2.17 4.72 4.62 Alive Aerial - epicormic 2.10 5.80 

Savanna Planchonia careya 1.88 4.21 4.01 Alive Aerial - epicormic 1.80 6.00 

Savanna Planchonia careya 2.29 5.08 4.98 Alive Aerial - epicormic 2.00 6.90 

Savanna Planchonia careya 2.28 5.49 4.33 Alive Basal 2.40 8.30 

Savanna Planchonia careya 1.35 2.22 3.65 Alive Aerial - epicormic 1.60 3.80 

Savanna Planchonia careya 1.06 0.90 0.78 Alive Aerial - epicormic 0.54 1.00 

Savanna Planchonia careya 1.07 0.80 0.58 Alive Aerial - epicormic 0.75 1.00 

Savanna Planchonia careya 1.11 1.09 1.00 Missing - - - 

Savanna Planchonia careya 1.19 0.94 0.31 Missing - - - 

Savanna Terminalia canescens 1.30 1.96 4.99 Alive Aerial - axillary 1.23 2.50 

Savanna Terminalia canescens 1.13 1.84 3.45 Alive Aerial - epicormic 1.24 1.90 

Savanna Terminalia canescens 1.32 1.87 3.53 Dead - - - 

Savanna Terminalia canescens 1.33 2.85 5.42 Alive Aerial - epicormic 0.89 2.90 

Savanna Terminalia canescens 0.72 0.69 1.17 Alive Aerial - axillary 0.73 1.30 

Savanna Terminalia canescens 2.29 3.13 7.75 Alive Aerial - axillary 2.54 4.00 

Savanna Terminalia canescens 1.98 2.64 4.86 Alive Aerial - axillary 2.20 3.90 

Savanna Terminalia canescens 1.97 2.13 3.98 Alive Basal 1.10 1.00 

Savanna Terminalia canescens 1.58 2.40 4.52 Alive Aerial - epicormic 1.21 2.00 

Savanna Terminalia canescens 2.49 3.08 4.67 Alive Aerial - axillary 2.40 4.10 
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Table A3.2 Comparison of models describing the relationship between whole plant 

survival and bark thickness, species, and plant height for a) rainforest and b) savanna 

individuals. 

 K AICc Δ_AICc AICcWt Cum.Wt LL 

a) Species 7 59.36 0 0.36 0.36 -21.66 

Null Model 1 60.42 1.05 0.21 0.57 -29.18 

Bark thickness + Species 8 61.88 2.52 0.1 0.68 -21.61 

Height + Species 8 61.99 2.63 0.1 0.77 -21.66 

Bark thickness 2 62.08 2.71 0.09 0.87 -28.94 

Height 2 62.55 3.19 0.07 0.94 -29.18 

Height + Bark thickness 3 64.22 4.85 0.03 0.97 -28.9 

Height + Species + Bark 

thickness 
9 64.58 5.22 0.03 1 -21.59 

b) Null Model 1 11.55 0 0.47 0.47 -4.73 

Height 2 13.07 1.52 0.22 0.69 -4.38 

Bark thickness 2 13.67 2.12 0.16 0.85 -4.68 

Height + Bark thickness 3 14.34 2.79 0.12 0.97 -3.85 

Species 5 18.17 6.62 0.02 0.99 -3.25 

Height + Species 6 20.54 8.99 0.01 0.99 -3.07 

Bark thickness + Species 6 20.81 9.26 0 1 -3.21 

Height + Species + Bark 

thickness 
7 23.39 11.84 0 1 -3.05 
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