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Abstract 

Capture-mark-recapture (CMR) modelling is commonly used for direct estimation of demographic 

parameters in the wild. Whilst it is well known that the precision of estimated parameters in CMR 

studies increases with sample size, duration of study and the number of recapture events there are 

few studies that explore the design of CMR projects to achieve optimal outcomes. Research funding 

and time allocation are two constraints that place restrictions on the research design. This study 

addresses this challenge and seeks to demonstrate issues that need to be addressed and ways to 

design CMR that minimise costs while still providing the precision and accuracy required for 

assessment of marine resources . 

A twelve year tagging data set for Jasus edwardsii at a non-fishing site (Crayfish Point Scientific 

Reserve, Tasmania, Australia) was used in the study. Cormack-Jolly-Seber (CJS) modelling was 

used to compare estimates of survival probability with increasing numbers of surveys from 3 to 12 

for both equal (annual) and unequal survey intervals. 

The study found that more surveys were required to obtain precise estimates of survival probability 

in females than in males, and the number of surveys required increased when intervals between 

surveys were unequal. For annual surveys, stable estimates of survival probability generally 

required at least five years, which is often beyond the three-year duration commonly used in 

scientific studies. 

Five annual surveys were used to determine the effect of sample size and fishing effort (the number 

of traps set per day and days fished) on the precision of estimated survival probability. Larger 

sample sizes (>=500) and more sampling effort were required to determine sex specific survival 

probability estimates. 

Tag induced mortality (TIM) and tag loss reduce the number of tagged lobsters in the population 

and result in an under-estimation of survival probability. TIM is often investigated in aquaria 

studies with small sample sizes and over short time periods. In this study, a model based on three 

111 



annual-surveys was used to provide in-situ estimates of TIM proportion. Estimates of TIM 

proportion were high and varied being on average between 25% and 40%. Capturing sufficient 

lobsters during the third survey that were tagged in the first survey and also seen in the second 

survey was a major limitation in using this method. 

Tag loss is usually estimated by double tagging in the wild. This study investigated the fate of new 

tags and existing ( old) tags applied to lobsters. Estimated tag loss rate was different between males 

and females and the annual rate of tag loss was similar between years during the two year study 

indicating that tag loss is chronic and needs to be accounted for throughout the entire period of 

mark-recapture programs. In general, older tags were lost at a slightly higher rate than new tags. 

The design of mark-recapture programs will be dependent on the species under study and although 

these results are specific for J edwardsii, the issues considered and methods used in this thesis 

should assist researchers in the design of tagging surveys. Importantly, both tag loss and tag 

induced mortality can be of a magnitude that impacts estimates from mark recapture studies and the 

thesis demonstrates issues to be considered in designing a tagging program that meets the objectives 

of the study and also enables estimation of issues such as tag loss rate and TIM proportion which 

can bias survival probability and population estimates. 
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Chapter 1 General Introduction 

Capture-mark-recapture (CMR) modelling is a tool that can be used for investigating the dynamics 

of fished populations where it is not practical to capture all members of a population or to make 

direct observations as in aquatic populations (Bell et al., 2003).  CMR provides an opportunity to 

track individually marked animals over time (Lebreton et al., 1992) and to directly estimate 

demographic parameters in the wild.  

Whilst, a wide range of CMR models associated with the objective of the studies (Yoccoz et al., 

2001) has been used with closed, open, and combined (robust) population models (Otis et al., 1978; 

Pollock et al., 1990), some challenges, including research funding associated with study design 

(sample size and study period) and the effect of tagging on animals (tag loss and tag induced 

mortality) put restrictions on CMR studies. This affects the desired precision and accuracy in the 

estimation of demographic parameters including those used in assessing exploitable fish stocks and 

thus the setting of sustainable catch limits. 

Collecting data in CMR studies on marine resources can be an expensive process as it often 

involves the charter of vessels and gear, scientific and technical labour, and tagging equipment. 

Whilst, it is well known that the accuracy and precision of estimates can improve with increasing 

sample size and survey period, research funding and time can affect the final CMR design. 

Minimising costs can have substantial benefits but needs to be balanced against the objectives to 

ensure that sustainable management of the resource can be achieved. This is mainly through 

ensuring the appropriate precision and accuracy in parameter estimates. 

This study has focused on the design of southern rock lobster tagging experiments to determine 

design issues to meet the objectives of minimal costs while ensuring appropriate outcomes. In 

particular, the study focused on issues that impact the precision and accuracy of parameter estimates 

including survey design (i.e. number of surveys, samples, and sampling effort) and tagging effects 

that could bias estimates. 
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1.1 Study area 

This study was conducted in the Crayfish Point Scientific Reserve (CPSR), Tasmania, Australia, 

where southern rock lobster has been protected from fishing since 1971. Tagging surveys have been 

undertaken approximately annually in the reserve since 2000 as well as several ad-hoc surveys 

undertaken within years associated with other research activity. However, the objectives for many 

of the surveys varied resulting in considerable variation in the number of days that sampling was 

undertaken in each survey, the number of traps used each day and the number of lobsters captured 

and tagged. While these inconsistencies in sampling design can cause issues in the reliability of 

estimates, they also provide a basis from which to understand how these changes influence the 

precision and accuracy of results. 

The population of lobsters in the CPSR is only affected by natural mortality, as removal of tagged 

lobsters from the resource from fishing was not an issue, and emigration from the area was also 

considered minimal as southern rock lobster has high site fidelity (Barrett et al., 2009). Gardner et 

al. (2003) also found no evidence of migration of Jasus edwardsii in Tasmania. As such, the CPSR 

provides an appropriate study site to determine survival or natural mortality (1-survival) rate. 

However, caution does need to be used when applying these estimates to fished populations as the 

size composition and density of lobsters is not similar to exploited regions of the resource.  

Another benefit of the CPSR is that it is bounded by large regions of sand habitat making the reef 

study region a bounded and constant area between surveys. However, a major perturbation in the 

lobster population within the CPSR occurred in November 2005 when 1998 tagged lobsters were 

introduced to the population as part of a separate study (Green and Gardner, 2009). The effect of 

this perturbation on the CJS mark recapture models was assessed. Other principal changes occurred 

in the annual surveys with a declining number of survey days associated with minimising research 

costs. The major change was a reduction from a two week (12 days) to a single working week 

(Monday to Friday) sampling regime. 
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1.2 Cormack -Jolly-Seber (CJS) model 

The Cormack-Jolly-Seber (CJS) model was developed to study apparent survival probability from 

capture-recapture data (Cormack, 1964; Jolly, 1965; Seber, 1965), where it is not possible to 

separate natural mortality (death) and permanent migration. Capture probability is defined as the 

probability that animals alive and present at one capture occasion are captured. The survival 

probability is defined as the probability that animals alive at one capture occasion are still alive at 

the next. The main CJS model assumption is that all animals in the population have the same 

capture and survival probabilities at a single capture occasion. 

Assumptions of CMR methods are outlined below and violation of these may lead to bias in 

parameter estimation (Pollock et al., 1990; Pollock et al., 2007). These include: 

(1) An equal probability of capture for every individual in the population at each sampling 

event. Biases in population estimates will occur if tagged and non-tagged animals do not mix freely 

and uniformly after tagging. Biases in estimates of survival probability will also occur if different 

tagging cohorts do not mix freely with each other. 

(2) An equal probability of survival for every marked animal from one survey event to the next, 

irrespective of when it was tagged. 

(3)  Tag loss is zero or negligible. By decreasing the number of animals available to be 

recaptured in the population, tag loss can result in serious under-estimation (negative bias) of 

survival rates (Pollock et al., 1990) and over-estimation (positive bias) of population size  

(McDonald et al., 2003; Pollock and Alpizar Jara, 2010)  

(4) After sampling all animals are released immediately back to the location of capture and the 

sampling period is of short duration compared to the periods between successive tagging events. 

Recapture rate may be affected if the tagged animals are held for longer periods before release 

(Courtney et al., 2001). 
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(5) Emigration is permanent. Temporary emigration may lead to biased survival probability and 

population size estimates. 

Pollock et al. (1990) showed that violations of the first assumption related to inherent heterogeneity 

in recapture and survival probabilities, which could cause small positive or negative bias in 

estimates of survival probability. Similarly, heterogeneity of survival rates in combination with 

heterogeneous capture rates could cause positive or negative biases in survival rates (Pollock et al., 

1990). Both tag loss and tag induced mortality impact assumption 3.  Frusher et al. (2009) found 

that there was little difference in tag loss between small and medium sized lobsters that reflected the 

size composition in fished regions although larger lobsters (well above the legal size limit and rare 

in the commercial fishery) tended to have a higher rate of tag loss.  Although sample sizes were 

small, Frusher et al. (2009) also reported that tag loss in smaller lobsters tended to be greater than 

the average during the first year after tagging. Higher tag loss for smaller lobsters was also found 

for the European spiny lobster Palinurus elephas (Gonzalez-Vicente et al., 2012). In addition, sex 

and the stage of moulting have an impact on tag loss (Melville-Smith and Chubb, 1997; Frusher et 

al., 2009; Gonzalez-Vicente et al., 2012). Each reported a lower rate of tag loss in females than in 

males.   

Previous studies of tag induced mortality (TIM) have been undertaken in artificial environments 

(aquarium and sea-cage) and have shown high estimates (30-50 %) for lobsters. Some of these high 

estimates have been considered to be biased due to additional stress associated with bottom 

contamination in artificial environments (Montgomery and Brett, 1996), low sample size (Dubula et 

al., 2005; Claverie and Smith, 2007) or short experimental duration (Claverie and Smith, 2007). 

 

1.3 Approach and thesis structure 

A long term T-bar tagging dataset conducted on Jasus edwardsii population from 2000 to 2012 in 

the Crayfish Scientific Point Reserve, near Hobart, Tasmania, Australia provided an ideal 
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opportunity to investigate how accuracy and precision of survival probability of lobster would 

change with sample size, survey number and interval. Chapter 2 was designed to find whether a 

three-year survey period which is common in scientific investigation due to standard funding 

durations, could provide reliable and precise estimations of survival probability. 

Sample size and sampling duration have been shown to impact the estimates of growth (Fiske et al., 

2008) and the precision of other estimated population parameters (Lindberg and Walker, 2007) in 

both matrix and CMR modelling. The precise and the most cost-effective survey number derived in 

this study (five surveys - Chapter 2) was used to investigate the effect of sample size and fishing 

effort on the precision of the survival probability estimates and to determine the minimum sample 

size and effort required to obtain precise estimates (Chapter 3). 

As the estimates of survival probability are conditional on the number of tagged lobsters alive in the 

population, it is also important to understand what may impact the number of lobsters that are 

available for recapture, that is, if there are changes between the number tagged at time “t” and those 

available to be captured at time “t+1”. In addition to a direct bias induced on survival rate (i.e. 1 - 

natural mortality), tagged induced mortality (where the lobster dies from the tagging process and is 

no longer available to be captured in the following survey) and tag loss (where the lobster is still 

alive but no longer carries the tag and cannot be identified as a tagged lobster during the next 

survey) change the number of tagged lobsters available to be recaptured. In the second part of this 

thesis I investigated tag induced mortality proportion (Chapter 4) and tag loss rate (Chapter 5). 

Tag induced mortality (TIM) rate and/or proportion is usually estimated in an artificial environment 

where it is restricted by small sample size and short study duration. Biased estimates of TIM rate 

and/or proportion are considered to be usually obtained by these methods, as the effect of predators 

on tagged animals and other environmental circumstances cannot be replicated by laboratory and 

cage studies. In Chapter 4, a three-survey model was used to provide an estimate of TIM. In 

addition to providing an in-situ estimate of TIM rate and/or proportion, Chapter 4 also explores 
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sampling design issues which may impact the use of this method and the reliability of the estimate, 

especially the sample size required to obtain suitable estimates. 

Tag loss is normally estimated by the use of double tagging methods in the field, where two tags are 

synchronously applied to each lobster. In Chapter 5, annual tag loss was estimated for lobsters over 

two survey years. In addition, the rate of tag loss for new tags and existing tags was compared to 

evaluate the effect of the timing of tagging on tag loss. 

In Chapter 6, the results from chapters 2 to 5 are discussed and a design outlined that should address 

the key concerns highlighted in this thesis. 
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Chapter 2 Estimating survival probability of rock lobsters from long-term 

tagging programmes – how survey number and interval influence estimates 

 

Abstract 

A long-term tagging data set on southern rock lobster Jasus edwardsii conducted at the Crayfish 

Point Scientific Reserve (CPSR) Taroona near Hobart, Tasmania, Australia was used to determine 

how survey number and survey duration affected the precision of survival probability estimates for 

male and female lobsters in order to ensure sustainable exploitation of the population. Tagging 

surveys were undertaken twice a year during 2000-2003 with unequal time-intervals between 

surveys and then once per year with equal time intervals during 2004-2012 during the January-

February period. The most parsimonious Cormack-Jolly-Seber (CJS) model for estimating survival 

probability of lobsters was dependent on (i) timing of the tagging and recapture surveys, (ii) time 

between consecutive recapture surveys, and (iii) sex. The number of surveys required to provide a 

precise survival probability varied with sex and time between recapture surveys. For surveys where 

there was unequal time between recapture surveys, seven and five surveys were required for female 

and male lobsters, respectively, whereas only five surveys were required when annual surveys were 

undertaken. Thus, lobster tagging projects using annual surveys should ideally extend to at least 

five years, which is beyond the three year project duration common in marine science. 

Key words: Capture-mark-recapture (CMR), Cormack-Jolly-Seber (CJS) model, survival probability, lobster. 

 

2.1 Introduction 

Capture-mark-recapture (CMR) modelling is widely used for estimating demographic parameters 

including survival rate and population size (Pollock et al., 1990). Estimating survival probability is 

especially important for harvested species where one is attempting to sustainably exploit the 

population. CMR studies provide an opportunity to follow an individually marked animal through 
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37time (Lebreton et al., 1992), and can provide insights into biotic and abiotic environmental 

factors that impact survival and migration and thus the productivity of the population. 

CMR designs, including marking and data collection methods are varied and determined by the 

objective(s) of the study (Yoccoz et al., 2001). Different applications of CMR models require 

examination of the assumptions made in each case to minimise violations (Pollock et al., 1990) 

whilst attaining the most precise and accurate estimates of demographic parameters. Otis et al. 

(1978) reported that factors affecting CMR studies in trap-based fisheries can be categorised into 

two groups: 1) statistical design and data recording, including the number of capture surveys, 

interval between surveys, size and shape of traps, spacing of traps and number of traps at a specific 

location; and 2) field procedures, including the method of marking or tagging, method of recapture, 

use of bait, time of day when traps are checked and handling of the animals.   

Sampling design or data collection methods may also be limited by the costs of surveying. While 

the precision of estimated parameters increases with the number of sampling events and tagged 

animals (Beasom et al., 1986), there is a trade-off with the cost of the program. For example, Rozas 

and Minello (1997) noted that resources and time may be wasted by conducting excessive sampling 

events while the precision of the results may be affected by too few samples. In addition, designing 

a mark recapture plan beyond the required precision wastes funds (Frusher and Hoenig, 2001b; 

Frusher et al., 2009). However, there are few cases where these have been empirically tested. For 

example, the impact of the number of recapture events on the estimation of survival probability in 

open populations has not been examined. 

The aim of this study was to determine how the number of surveys and different time intervals 

between surveys affect the precision of estimates of survival probability for male and female rock 

lobsters. This was achieved using a long-term, mark-recapture data set of southern rock lobster 

Jasus edwardsii, collected over 13 years (2000-2012) from the Crayfish Point Reserve on the east 

coast of Tasmania, Australia.  
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2.2 Methods 

2.2.1 Study site  

Tagging surveys were conducted at the Crayfish Point Scientific Reserve (CPSR), Taroona, near 

Hobart, Tasmania, Australia (42 57’ 08”S 142 21’ 20”E), which has been closed to fishing for Jasus 

edwardsii since November 1971. The reserve covers around 1.24 km
2
 and has a mixture of 

temperate rocky reef and sandy substrate to a maximum depth of 18 m. A major change to the 

population of J. edwardsii occurred in November 2005 when 1998 tagged lobsters (565 males and 

1433 females) were translocated to the CPSR from deeper water regions off southern Tasmania. All 

these lobsters were below the legal minimum lengths (LML) of 105 mm CL (females) and 110 mm 

CL (males) (Green and Gardner, 2009).  

 

2.2.2 Field methods  

A long term tagging program of J. edwardsii in the CPSR has been ongoing since 2000. This work 

has been undertaken to address several projects, which resulted in variation between surveys in 

terms of effort, sample size and survey interval. Seventeen major tagging surveys were undertaken 

compromising eight surveys of unequal time intervals from 2000 to 2003 and nine surveys at 

approximately equal (annual) time intervals from 2004 to 2012 (Table 2-1). Collectively, this 

provided a long-term (13-year) capture-recapture experiment. 

As the number of traps and the number of trapping days varied between surveys, the number of 

lobsters captured per trap was used to standardise these variations to enable comparisons between 

surveys. Trapping occurred during consecutive days during all surveys. On the first day of each 

survey, traps were baited and set in the early afternoon. On subsequent days the traps were checked 

in the morning, re-baited and re-set. All untagged lobsters were tagged by uniquely coded T-bar 

tags (Hallprint T-bar anchor tag; TBA1, Hallprint Pty Ltd, 27 Jacobsen Crescent, Holden Hill, 
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South Australia 5088, Australia) on the ventral side of the first or second abdominal segment. The 

tag number, length of carapace and sex of all lobsters were recorded and lobsters were released 

back immediately to the wild after tagging.   

Lobsters captured in recapture surveys following the initial tagging event were in one of three 

groups: 

(i) untagged lobsters that were subsequently tagged; 

(ii) lobsters that had been tagged in a previous survey of this study; and  

(iii) lobsters tagged in other studies, such as prior to the first survey of this study (i.e. prior to 2000) 

or been translocated to the reserve, when group (iii) lobsters were first seen in a survey used in this 

study, they were considered “untagged” and treated as newly tagged lobster with the original tag 

number being treated as a new tag number. For these lobsters we assume that they had no difference 

in tag induced mortality proportion and that their probability of recapture was equal to newly tagged 

lobsters. 

 

2.2.3 Mark-recapture modelling (statistical methods) 

Model selection and data analyses were based on Cormack-Jolly-Seber (CJS) models (Cormack, 

1964; Jolly, 1965; Seber, 1965). Program Mark was used for fitting the models (White and 

Burnham, 1999). 

Survival probability (φ) and recapture probability (p) were estimated from the survey data set of 

time (t) and sex (g) by maximum likelihood. Sixteen parameter combinations of survival and 

capture probability were estimated with constant (time and sex-independent) survival probability 

(φ(.)), time specific survival probability (φ(t)), sex specific survival probability (φ(g)) or time and 

sex specific survival probability (φ(g*t)) with constant (time and sex-independent) capture 
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probability (p(.)), time specific capture probability (p(t)), sex specific recapture probability (p(g)), 

or time and sex specific recapture probability (p(g*t)). The fully parameterised (saturated) model 

was φ(g*t)p(g*t). 

Models were run for a set of surveys that had at least three survey events. The first survey was the 

tagging survey and was followed by a series of mark-recapture events to estimate the change in the 

accuracy and precision of survival probability.  

Two designs were chosen to determine the impacts of study design on the accuracy and precision of 

survival probability estimates. 

1. Effect of increasing the number of subsequent surveys. Apparent survival probability was 

estimated and compared for models that used 2, 3, 4, etc. subsequent surveys after the initial 

tagging survey (Table 2-1). This was repeated using every survey (e.g. Nov 00, Nov 01 etc.) 

as the initial tagging event. 

2. Effect of different tagging times. This design kept the number of surveys constant and 

varied the initial tagging event. For example, survival probabilities estimated from three 

survey events with a different initial tagging event were compared (Table 2-2). This was 

repeated for models using 4, 5, 6 etc. surveys. 

Table 2 - 1 Example of Design 1 using Jan-Feb 2000 as the initial tagging survey and survival probability 
estimated from models with increasing numbers of subsequent surveys. Time intervals were unequal. 

Tagging 

Events 

(S1) 

Recapture events for Tagging events (Jan-Feb 2000). The interval between recapture events was unequal. 

Nov 

00 

Nov 

01 

Dec 

01 

Jan-

Feb 

02 

Nov 

02 

Jan-

Feb 

03 

Nov 

03 

Jan-

Feb 

04 

Jan 

05 

Jan-

Feb 

06 

Jan 

07 

Jan 

08 

Feb 

09 

Jan 

10 

Jan 

11 

Feb 

12 

JF 00 

(S1) 
S2 S3               

JF 00 

(S1) 
S2 S3 S4              

… …                
JF 00 

(S1) 
S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16  

JF 00 

(S1) 
S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 
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Table 2 - 2 Example of Design 2 involved comparison of the three survey models run over different time 

periods. 

Tagging 

Events 

Tagging event (S1) and two Recapture events (S2 and S3) associated with each initial tagging 

event  

Nov 

00 

Dec 

01 

Jan-

Feb  

03 

Jan-

Feb 

04 

Jan 

05 

Jan-

Feb 

06 

Jan 

07 

Jan  

08 

Feb 

09 

Jan 

10 

Jan 

11 

Feb 

12 

Nov 2000 S1 S2 S3          

Dec 2001  S1 S2 S3         

…             

Jan 2010          S1 S2 S3 

 

Akaike Information Criteria (AICc), that accounts for small sample sizes (Hurvich and Tsai, 1991) , 

was used to select the best model(s). Delta AICc, the difference in AICc of each candidate model 

relative to the model found to have the lowest AICc, was used to determine the most parsimonious 

model from the candidate set of models (Burnham and Anderson, 1998). In general, any models 

with the delta AICc score of <2 was considered to have substantial support in CMR studies 

(Boulanger et al., 2006). 

Sixteen candidate models were available for each analysis. Based on the delta AICc scores each 

model was coded relative to the Delta AICc value. The codes of 1, 2, 3, 4 and 5 were applied to the 

models with the value of 0<= Delta AICc<2, 2<= Delta AICc<4, 4<= Delta AICc<7, 7<= Delta 

AICc<10, and Delta AICc>=10, respectively. For each initial starting survey (e.g. Jan-Feb 00 in 

Table 2-1) CJS analyses were undertaken for each combination of surveys by incrementally adding 

a survey and repeating the analysis until the last survey in February 2012 (i.e. 3 surveys, 4 surveys, 

5 surveys etc). For each subsequent initial starting survey (e.g. Nov 00, Nov 01 etc) the number of 

possible CJS analyses declined (e.g. 9 possible analyses for Nov 00, 8 possible analyses for Nov 01 

etc). To determine the preferred model for each starting date, the analyses for each model (e.g. 

φ(g)p(g)) were summed across all analyses (e.g. Jan-Feb00:3 surveys + Jan-Feb00:4 surveys + Jan-

Feb00:5 surveys etc) and divided by the total number of analyses. As it is possible to have a range 

of models that are equally likely, all models that were within 0.2 units of the lowest value were 

considered to be likely. 
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Relative standard error (RSE) was used to determine the precision of the estimated survival 

probability with low relative standard error, indicating high precision of estimates (Lindberg and 

Walker, 2007). 

Relative standard error was calculated as =
𝑆𝐸̅̅̅̅

�̅�
 , where  𝑆𝐸̅̅̅̅  and �̅� are the standard error and mean of 

the parameter estimates, respectively. 

 

2.3 Results 

A total of 12,317 J.edwardsii were tagged in 17 separate surveys from 2000 to 2012. The number of 

captured lobsters (capture per trap) was variable between traps within surveys, between surveys and 

between sexes. The mean number and standard deviation of males captured per trap (1.62±0.47) 

was greater than the mean number of females (1.12±0.40) (Figure 2-1, Figure 2-2 and Table 2-3).   

 

 Figure 2 - 1  Sex ratio (M/F) of newly tagged (◆), recaptured (○) and total captured (∆) lobsters for each 

sample period. A value of more than one indicates that the sample was skewed towards males. 
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Figure 2 - 2 Proportion of newly tagged females (∆) to total newly tagged lobsters and proportion of 

recaptured females (▲) to total recaptured lobsters. 

 

Although the sex ratio (and standard deviation) of males and females captured from 2000 to 2005 

was similar (1.14±0.15), the sex ratio became skewed towards males from 2006 onwards 

(2.57±0.16). This peaked in the 2011 survey when the sex ratio was 6.02 (Table 2-3). 

 

 

 
 

Figure 2 - 3 Comparison of mean carapace length (mm) for male (○) and female (∆) newly tagged lobsters 

for surveys from 2000 to 2012. Error bars are standard deviation (+sd for males and –sd for females). 

 

 

The mean size of newly tagged lobsters showed only minor changes between surveys prior to 

translocation in January –February 2006 (Figure 2-3). 
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2.3.1 Model selection 

The effect of sex and time on estimated survival probability varied both within and between models 

for the equal and unequal survey periods (Table 2-4). The preferred models for the equal time 

period shifted from sex dependent in the early survey period to either constant (sex/time-

independent) and/or sex dependent models towards the end of the survey period before time became 

a factor in the latter surveys. The preferred model for the unequal time period surveys tended to be 

the sex-dependent (g) or sex and time-dependent (g*t) during the period when greater than one 

survey was undertaken each year (2000 – 2003). In all models the recapture probability was sex and 

time dependent. 

For models using a different number of surveys and equal recapture intervals, the most 

parsimonious model was usually sex dependent for five or more surveys. In contrast, where there 

was an unequal recapture interval, the most parsimonious model was primarily sex and time 

dependent irrespective of the number of surveys (Table 2-5). The following results on the effect of 

the number of sampling events, the start data and the precision of survival probability estimates are 

reported for each sex and based on outputs from the φ(g)p(g*t) as the most consistent model across 

all analyses. 

 

2.3.2 Survival probability – effect of number of sampling events 

The apparent survival probability estimates of females were higher than males although the 

precision (RSE) was more variable for females for any given model (Figure 2-3).  

In general, at least five surveys were required to obtain stable and thus reliable estimates of survival 

probability for males whereas estimates for females required approximately seven surveys before 

they became stable. 
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Table 2 - 3 Summary of sampling statistics for each survey event (TC=total capture, F=female, M=male). 

 

 

Parameters 

Jan-

Feb 

2000 

Nov 

00 

Nov 

01 

Dec 

01 

Jan-

Feb  

02 

Nov 

02 

Jan-

Feb  

03 

Nov  

03 

Jan-

Feb  

04 

Jan 05 Jan-

Feb  

06 

Jan 

07 

Jan  

08 

Feb 

09 

Jan 

10 

Jan 

11 

Feb  

12 

Trap lifts 

(days)  
16 9 8 7 10 4 11 9 7 10 12 7 4 4 4 4 4 

TC Female 697 1170 672 1057 660 358 704 487 455 946 548 638 246 129 242 75 373 
TC Male 904 1192 675 1028 723 453 1010 502 567 1086 1017 1191 474 345 530 459 547 
Total Captures 1601 2362 1347 2085 1383 811 1714 899 1022 2032 1565 1829 721 474 772 534 920 
Traps 833 891 444 602 495 310 801 399 403 708 885 419 232 239 240 240 240 
Capture/trap 1.92 2.65 3.03 3.46 2.79 2.61 2.14 2.25 2.53 2.87 1.77 4.36 3.11 1.98 3.22 2.22 3.83 
Capture /trap 

(F) 0.84 1.31 1.51 1.75 1.33 1.15 0.88 1.22 1.13 1.34 0.62 1.52 1.06 0.54 1.01 0.31 1.55 
Capture /trap 

(M) 1.08 1.34 1.52 1.71 1.46 1.46 1.26 1.26 1.41 1.53 1.15 2.84 2.04 1.44 2.21 1.91 2.28 
Sex Ratio       

New Tag (M/F) 1.30 0.88 0.88 0.83 0.74 1.42 1.49 1.05 1.16 1.27 1.72 1.88 1.31 

 

1.89 1.61 4.39 1.28 
Sex Ratio      

Recapture  

(M/F)  1.66 1.15 1.13 1.33 1.20 1.40 1.01 1.30 1.04 2.07 1.85 3.2 4.7 3.46 9.38 1.84 
Sex Ratio 

(Total) 

Capture  (M/F) 

 

 

1.30 1.02 1.00 0.97 1.09 1.27 1.44 1.03 1.25 1.14 1.85 1.87 1.93 2.67 2.19 6.02 1.44 
Translocated Lobster Total Recap / trap 0.23 0.36 0.20 .015 0.27 0.17 0.18 
Translocated Lobster (M) Recap/trap 0.12 0.22 0.14 0.12 0.19 0.15 0.14 
Translocated Lobster (F) Recap/trap 0.11 0.14 0.06 0.02 0.08 0.02 0.04 
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Table 2 - 4 Dependency of survival probability (φ) on sex (g), time (t) and/or sex and time (g*t) in the range 

of models that were equally likely to be within 0.2 units of the lowest value of coded Delta AICc run for 

different tagging events with equal and unequal survey intervals. The general model is φ(x)p(g*t) where “x” 

within the mentioned threshold is shown in the table and (.) denotes φ in the model was independent of sex 

and/or time. 

Survey 

intervals 

Tagging (or recapture) events 

Jan-

Feb 

2000 

Nov 

00 

Nov 

01 

Dec 

01 

Jan-

Feb 

02 

Nov 

02 

Jan-

Feb 

03 

Nov 

03 

Jan-

Feb 

04 

Jan 

05 

Jan-

Feb 

06 

Jan 

07 

Jan 

08 

Equal 

(Annual) 

- (g) - (g) - - (g);(.) - (.);(g) (.);(g) (.);(g) (t) (.);(t) 

Unequal  (g) (g*t) (g*t) (g*t) (g) (g) (g) (g*t);(t) (.);(g) (.);(g) (.);(g) (t) (.);(t) 

 

Table 2 - 5 Dependency of survival probability (φ) on sex (g), time (t) and/or sex and time (g*t) in the range 

of models that were equally likely to be within 0.2 units of the lowest value of coded Delta AICc run with 

the same number of surveys in equal and unequal survey intervals. The general model is φ(x)p(g*t) where 

“x” within the mentioned threshold is shown in the table and (.) denotes φ in the model was independent of 

sex and/or time. 

Survey 

intervals 

number of surveys used in the models  

3  4 5  6  7  8  9 10  11  12  13  14  15  

Equal 

(Annual) 

(g*t); 
(g);(t);(.) 

(g);(t) (g) (g) (g) (g) (g) (g) - - - - - 

Unequal  (g*t) (t) (t) (g*t) (g*t);(g) (g);(g*t) (g) (g) (g) (g*t);(g) (g*t) (g*t) (g*t) 
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Figure 2 - 4 Average survival probability estimates (φ±s.d.) and average relative standard error 

(RSE+s.d.), combined from several studies with the same number of surveys for males (○) and females 

(▲) with (a) equal (annual) and (b) unequal intervals between surveys. 

 

 

 

 

 

 

 

 

 

 

Figure 2 - 5 Annual survival probability estimates (φ±SE) with different number of surveys and equal 

(annual) intervals for every study based on start times (Design 1); Males (○), Females (▲). 
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Figure 2 - 6 Annual survival probability estimates (φ±SE) with different number of surveys and unequal 

intervals for every study based on start times (Design 1); Males (○), Females (▲). Only annual surveys 

were undertaken after Jan-Feb 2004. 

 

2.3.3 Annual Survival probability – effect of start date 

Estimated annual survival probability of males was relatively stable at around 0.63 yr
-1

irrespective 

of the time of the initial survey period whereas apparent survival probability of females varied 

depending on the period selected (Figures 2-4 and 2-5). There was a trend of decline in estimates of 

apparent survival probability of females from approximately 0.77 yr
-1

 at the start of the time series 

to 0.60 yr
-1

 for the later surveys. The pattern was similar for both males and females irrespective of 

whether there were equal or unequal periods between surveys.  

In all but two model runs, at least 5 surveys were required before male and female apparent survival 

probability estimates stabilised.  
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2.3.4 Precision of survival probability estimates 

The desired level of precision of survival probability estimates varies with the application. In these 

analyses we have arbitrarily chosen ± 5% as the level of precision. At the 5% level, males required 

fewer surveys to provide both precise estimates of survival probability than females, with models 

unable to establish precise estimates for females in the latter period of the time series. Estimates 

from unequal surveys were more variable in the number of surveys required to provide precise 

estimates (Table 2-6). 

 Table 2 - 6 Number of surveys required to obtain precise estimate of survival probability that has a 95% 

probability of being within 5 % of the overall mean survival probability estimate. Models were classified as 

not acceptable (NA) where the precision of survival probability estimation was above this threshold. 

Survey Sex (Independent) Tagging events The range 

of the 

required 

surveys 

Jan-

Feb 

00 

Nov 

00 

Nov 

01 

Dec 

01 

Jan-

Feb 

02 

Nov 

02 

Jan-

Feb 

03 

Nov 

03 

Jan-

Feb 

04 

Jan 

05 

Jan-

Feb 

06 

Jan 

07 

Equal 

(Annual) 

M - 4 - 4 - - 4 - 4 4 5 5 4-5 

 

F - 4 - 4 - - 5 - 9 8 

 

NA 

 

NA 

 

4-NA 

 

Unequal M 4 3 7 5 5 6 5 5 4 4 5 5 3-7 

 

F 4 4 7 5 6 7 7 NA 

 

NA 

 

8 

 

NA 

 

NA 

 

4-NA 

 

 

2.4 Discussion  

In this study, models were developed to understand the precision of survival probability estimates 

for the southern rock lobster Jasus edwardsii relating to the number of surveys and the interval 

between surveys. Although, the site used for collection of data was a scientific reserve closed to 

fishing, a major perturbation in the reserve occurred when a large number of lobsters were 

translocated into the reserve in 2005 (Green and Gardner, 2009), resulting in an increase in density 

in the reserve. This translocation appears to have had a greater impact on female lobsters where sex 

ratio changed in favour of males and estimated survival probability of females decreased. In 

contrast, translocation of lobsters into the site did not coincide with any change in the survival 

probability of males where it was consistent over time. The cause of the decline in apparent annual 



 

35 

 

survival probability of female lobsters is uncertain, as CJS models cannot separate emigration from 

the study site and mortality, although previous research has shown that this species has high site 

fidelity (Gardner et al., 2003; Barrett et al., 2009). The Crayfish Point Reserve used in this study 

has been protected for 40 years and the habitat and or food for lobsters may have reached its 

carrying capacity, thus resulting in emigration of females from the reserve after density was 

increased by translocation of additional lobsters into the site. Emigration has been found to increase 

capture heterogeneity and reduce capture probability resulting in an increasing bias and decreasing 

precision of survival probability estimates (Bailey et al., 2010).  

Females had greater survival probability than males but the precision of estimates were higher for 

males than for females. Apparent survival probability of males and females were estimated to be 

between 0.60-0.63 and 0.75-0.78 yr-
1
, respectively. Sex specific differences in survival probability 

estimates was also reported by (Frusher et al., 2009) in an analysis of a similar dataset using a lower 

number of annual survey periods. Sex differences have been reported in other studies of crustaceans 

although there is inconsistency in the patterns as higher survival probability estimates were obtained 

for female western king prawn (Penaeus latisulcatus) from fishing and natural mortality (Xiao and 

McShane, 2000), whereas Bell et al. (2003) found the opposite pattern with higher apparent 

survival probability for male edible crabs Cancer pagurus. 

The most parsimonious model for estimating apparent survival probability was affected by whether 

the design involved equal or unequal survey intervals. For the design with unequal survey intervals, 

both the timing of tagging and the time interval between recapture surveys decreased the precision 

of survival probability estimates for both males and females. 

Although Program MARK allows for different time intervals between surveys, the variation in this 

study was extreme (from 1-13 months) and useful for testing differences in interval. It resulted in a 

lack of precision in survival probability estimates for periods of unequal recapture intervals. When 

compared to equal surveys, the parsimonious model for estimating survival probability of lobsters 
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in unequal surveys was sex and time-dependent when the first tagging survey occurred in 

November and December. There also appeared to be a synergistic effect between the timing of the 

initial tagging event and the time interval between subsequent recapture events. In surveys where 

tagging events commenced in November or December, and where the time interval between the 

subsequent surveys was small (e.g. one or two months), survival probability of both males and 

females estimated by 3-5 surveys declined substantially in precision. Crustaceans demonstrate 

substantial variability in catchability due to mating, moulting and compensatory periods (Ziegler et 

al., 2004). The increased bias and decreased precision of survival probability estimates obtained in 

this study when models used unequal time periods between surveys, suggests that behaviour 

affecting catchability was not constant during these periods. By comparison, Nowicki et al. (2008) 

found that population size of freshwater crayfish was not biased where time interval between 

surveys was constant and also short enough (two weeks) to avoid trap-shy behaviour. Furthermore, 

unbiased annual survival probability was obtained using an annual (constant) survey interval (in this 

study). Therefore, it seems that a large difference in survey intervals may affect the estimate of 

survival probability in lobsters. 

The number of surveys required to provide adequate precision in the estimation of survival 

probability in lobsters was dependent on sex and time between recapture intervals. Prior to the 

impact of translocation a minimum of five surveys were required to obtain stable estimates of 

survival probability with the most parsimonious model being sex-dependent irrespective of whether 

equal (annual) or unequal survey time intervals were involved. 

In general, females required more surveys (five annual surveys or seven unequal interval surveys) 

than males (four annual surveys or five unequal interval surveys). Similarly, Nowicki et al. (2008) 

found that estimation of population size for a freshwater crayfish was not biased with five surveys 

when short (fortnightly) and equal intervals between surveys was applied. Thus, for an annual 

model, the length of a tagging project should be longer than the standard three year project duration 

that is common in science. Managers and funding agencies need to be aware of the benefits of 
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longer-term projects and the loss in the precision of important assessment parameters that can occur 

if project duration is reduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

38 

 

 

 

 

 

 

 

Chapter 3 

 

 

Sample size and fishing effort influence estimates of survival 

probability in a capture-mark-recapture study on southern rock 

lobster (Jasus edwardsii) 

 

 

 

 

   

 

 

 



 

39 

 

Chapter 3 Sample size and fishing effort influence estimates of survival 

probability in a capture-mark-recapture study on southern rock lobster 

(Jasus edwardsii) 

 

Abstract 

Five annual capture-mark-recapture surveys on Jasus edwardsii commencing in November 

2000 at Crayfish Point Scientific Reserve (CPSR), Hobart, Tasmania, Australia, were used to 

evaluate the effect of sample size and fishing effort on the precision of estimated survival 

probability. Random subsampling was conducted from every annual survey with groups of 

200, 250, 300, 400, 500, 750 and 1000 individuals; and 12 combinations of effort subsampled 

at three levels of the number of traps (15, 30 and 50) over four levels of the number of 

sampling-days (2, 4, 6 and 7). The most parsimonious Cormack-Jolly-Seber (CJS) model for 

estimating survival probability shifted from a constant model towards sex-dependent models 

with increasing sample size and effort. Whilst, a sample of 500 lobsters or setting 50 traps 

over four consecutive sampling-days provided enough support for obtaining precise survival 

probability estimations for males and females separately, 30 traps over four sampling days 

was adequate if an estimate of survival probability for combined sexes was sufficient for 

management of the fishery. The choice of effort in designing mark-recapture studies is 

dependent on the objectives of studies, the budget and the precision of information required 

by management for assessment of the fishery.   

Key words: capture-mark-recapture (CMR), survival probability, sample size, effort, 

Cormack-Jolly-Seber (CJS), lobster 

 



 

40 

 

3.1 Introduction 

Capture-mark-recapture (CMR) modelling is a common method of estimating demographic 

parameters in field studies where live recapture or resighting is possible (Pollock et al., 1990; 

Lebreton et al., 1992; Nichols, 1992). Although CMR methods are widely applied, there is 

often limited attention given to sampling design. Planning the appropriate intensity and 

duration of sampling to obtain a specified level of precision is a challenging issue and can 

bias or affect estimates if there is insufficient data. For example, McKelvey and Pearson 

(2001) reported that 98% of samples collected in small mammal population studies were too 

small for estimating population density.  

Precision and accuracy of estimated survival probabilities are known to increase with sample 

size and duration of sampling (Robson and Regier, 1964; Pollock et al., 1990). However, 

sampling intensity and effectiveness may be constrained by environmental and biological 

factors as well as the pragmatic constraints of research funding and time. Tagging studies 

often rely on data collected by trapping and in these studies the sampling efficiency is 

affected by the catchability of animals, which in turn is affected by environmental and 

physiological factors. For example, catchability of animals by baited-traps such as lobster 

(Ziegler et al., 2003), crab (Williams and Hill, 1982) and crayfish (Somers and Stechey, 

1986) consistently decline in winter. In addition, several biological characteristics of 

crustaceans including moulting and mating can occur at different times of the year and have 

been shown to influence the precision and accuracy of survival rate estimates (Kelly et al., 

1999; Ziegler et al., 2004).  

Perhaps most importantly, research funds and time often place the greatest limitation on 

CMR studies commonly manifesting in restrictions on sample size and duration of sampling. 

Other resourcing constraints include the cost of tagging equipment such as transmitters in 
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satellite telemetry (Lindberg and Walker, 2007) or the cost of boat charter, crews and 

scientists. 

It is commonly assumed that CMR methods are robust to restrictions in sampling effort as 

long as effort remains consistent within the study. However, a number of studies have shown 

that this assumption may be invalid (Robson and Regier, 1964). For example, sample size and 

sample duration have been shown to influence estimates of growth rate (Fiske et al., 2008) , 

meta-population estimates of interchange among populations (Burke et al., 1995) as well as 

the precision of estimated parameters (Lindberg and Walker, 2007) in both matrix and CMR 

modelling.  

This study examined the effect of sample size and fishing effort on the precision of parameter 

estimates in five annual mark-recapture surveys of the southern rock lobster Jasus edwardsii. 

Previous work (Chapter 2) showed that precision of survival probability estimates increased 

with the number of recapture surveys although beyond five surveys the improvements were 

not significant.  

This chapter used five annual sampling events to: 

1. evaluate the effects of sample size and fishing effort on the precision of survival 

probability estimates; and to  

2. determine the minimum sample size and effort needed to obtain precise survival 

probability estimates. 
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3.2 Methods 

3.2.1 Study area 

In CMR studies, precision of survival probability estimates can be dependent on the size of 

the population  (Robson and Regier, 1964) and the size of the sampling area (Pennington and 

Vølstad, 1991; 1994). The effect of varied population size and sampling area was limited in 

this study by conducting sampling within the Crayfish Point Scientific Reserve (CPSR), 

Taroona, Tasmania, Australia (42 57’ 08”S 142 21’ 20”E). This reserve contains rocky reef 

habitat and is surrounded by sand, which limits rock lobster movement (Barrett et al., 2009).  

The reserve contains a temperate rocky reef of 1.24 km
2
 with maximum depth of 15 m. 

Fishing in the reserve has been banned since its declaration in November 1971 and the 

reserve now holds a dense population of southern rock lobsters (Green and Gardner, 2009).  

 

3.2.2 Field method   

Mark-recapture data were collected for five separate research projects on Jasus edwardsii 

from 2000 to 2005. As the surveys were originally undertaken to address different objectives, 

there was some variation between surveys in effort including the number of traps used, the 

number of sampling days and number of lobsters tagged. These factors, in addition to likely 

changes in catchability and abundance, resulted in differences in the number of lobsters 

tagged and/or recaptured between surveys (Table 3-1). However all surveys used consistent 

sampling protocols and similar equipment. On the first sampling day, traps were baited and 

set in the afternoon. On subsequent days, traps were checked in the morning, rebaited and 

reset. We refer to days when traps are hauled and the contents of the trap sampled as 

“sampling days”. All untagged lobsters were tagged by a uniquely coded T-bar tag (Hallprint 
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T-bar anchor tag; TBA1, Hallprint Pty Ltd, 27 Jacobson Crescent, Holden Hill, South 

Australia 5088, Australia) on the ventral side of the first or second abdominal segment. The 

tag number, length of carapace and sex of each lobster were recorded. 

3.2.3 Varying sample size 

Previous research found that five surveys was the most economical number of surveys for 

estimating survival probability at a 5% level of precision (Chapter 2, Kordjazi et al., 2015). 

The surveys used here were restricted to those that provided an opportunity to subsample up 

to 1000 tagged lobsters (Table 3-1).  Random subsampling of both (newly) tagged and 

recaptured lobsters was undertaken with the statistical package R (R core team 2013) from 

every annual survey, with the number of individuals subsampled without replacement set at 

200, 250, 300, 400, 500, 750 or 1000. Approximately equal numbers of males and females 

were selected as the average sex ratio across all surveys was 1.16 (M/F). Recapture histories 

were established based on the first survey undertaken in November 2000 and four successive 

recapture events. This process was repeated ten times by selecting ten independent 

subsamples for each level of sample size. 

 

3.2.4 Varying sampling effort  

The effect of sampling effort on estimates of survival probability was examined by 

subsampling a combination of the number of traps deployed each sampling day and the 

number of days sampled during each of five annual surveys (Table 3-1). 

To quantify the effect of the number of traps on the precision of lobster survival probabilities, 

a total of 50, 30 and 15 traps were randomly subsampled from each day of sampling in each 
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survey. A random design was used to ensure that tagged lobsters that would be distributed 

across the entire reef region had equal probability of being captured in each survey. 

Table 3 - 1 Summary of sampling data 

 Annual surveys 

Nov 2000 Dec 01 Jan-Feb 03 Jan-Feb 04 Jan 05 

Sampling-days 10  7 11 7 10 

Total traps deployed 891 602 761 403 708 

Traps/day 89-90 86 69-78 49-63* 68-73 

Lobsters captured  2362 2085 1714 1022 2032 

*The lowest number of traps was 49 which occurred on two days in January-February 2004 survey. 

To determine the effect of the number of days of sampling, 7, 6, 4 and 2 sampling days were 

randomly selected out of the total number of days sampled each survey.  As such, 3*4 (=12) 

combinations of both the number of traps and days of sampling were applied in each survey, 

with each of these combinations replicated 10 times. For each subsample, 5-year capture 

histories were constructed based on lobsters that were tagged in the initial year’s survey 

(November 2000), and seen or not seen in the four subsequent recapture surveys in the 

program R (R core team 2013).  

Model selection and data analyses were based on Cormack-Jolly-Seber (CJS) models 

(Cormack, 1964; Jolly, 1965; Seber, 1965). The best model and survival probability of males 

and females was determined using the capture-recapture analysis in program MARK (White 

and Burnham, 1999), accessed through R via the RMark package (Laake and Rexstad, 2012).  

Survival probability (φ) and recapture probability (p) were estimated from each survey data 

set. The likelihoods of survival probability and recapture probability were estimated 

incorporating factors of time (t) and sex (g). Sixteen parameter combinations of survival and 

capture probability were estimated with constant survival probability (φ(.)), time specific 

survival probability (φ(t)), sex specific survival probability (φ(g)) or time and sex specific 

survival probability (φ(g*t)) with constant capture probability (p(.)), time specific capture 
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probability (p(t)), sex specific recapture probability (p(g)) or time and sex specific recapture 

probability (p(g*t)). The fully parameterised (saturated) model was φ(g*t)p(g*t). 

Delta AICc (AIC corrected for low sample sizes) , the difference in AICc of each candidate 

model relative to the model found to have the lowest AICc, was used to determine the most 

parsimonious model for each analysis from sixteen candidate set of models (Burnham and 

Anderson, 1998). Whilst, the model with the lowest delta AICc value was considered the 

most parsimonious, all models within 2 units of the lowest delta AICc value (lowest delta 

AICc value +2) also had substantial support and needed to be considered (Boulanger et al., 

2006).   

In this study, the process of data analysis was repeated 10 times by 10 independent 

subsamples without replacement for each level of sample size and effort. To find the best 

model based on the delta AICc scores among these 10 analyses, each model was coded 

relative to the Delta AICc score. The codes of 1, 2, 3, 4 and 5 were applied to the models with 

the value of 0<= Delta AICc<2, 2<= Delta AICc<4, 4<= Delta AICc<7, 7<= Delta AICc<10, 

and Delta AICc>=10, respectively. Whilst the model with the lowest average coded delta 

AICc (∆AICc) value among these10 analyses was evaluated as a parsimonious model, all 

models that were within 0.2 units of the lowest average coded delta AICc (∆AICc) value 

were considered to be likely models.  

The best model among the 10 repetitions of each level of subsample was then used to 

examine the effect of sex and time on survival probability of lobster with varying sample 

size. Relative standard error (RSE) was used to determine the precision of the estimated 

survival probability with low relative standard error, indicating high precision of estimates 

(Lindberg and Walker, 2007). Relative standard error was calculated as 𝑅𝑆𝐸 =
𝑆𝐸̅̅ ̅

�̅�
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where  𝑆𝐸̅̅̅̅  and �̅�  are average standard error and mean of the parameter estimates, 

respectively. 

3.3 Results 

3.3.1 Sample size 

The most parsimonious model for estimating survival probability (φ) and recapture 

probability (p) changed from constant (sex and/or time-independent) and/or sex-dependent to 

only sex-dependent with increase in the number of tagged lobsters in the sample (Table 3-2). 

The number of equally supported models (i.e. within 0.2 units of the most parsimonious 

model) also decreased from 3 when 250 lobsters were tagged to one when 750 or more 

lobsters were tagged. Thus sex differences were significant when sufficient lobsters were 

tagged. 

 Table 3 - 2 Comparison of model performance with increasing sample size. (*) indicates models that 

were considered equally parsimonious (i.e. within 0.2 units of the most parsimonious model) 

Model  

Sample size 

250 

Coded 

∆AICc 

250 

Model  

Sample size 

500 

Coded 

∆AICc 

500 

Model  

Sample size 

750 

Coded 

∆AICc 

750 

Model 

Sample size 

1000 

Coded 

∆AICc 

1000 

φ(.) p(g)  1.3* φ(g) p(.)  1.5* φ(g) p(g)  1.6* φ(g) p(g)  2.1* 

φ(.) p(.)  1.4* φ(.) p(g)  1.6* φ(.) p(t)  2.1 φ(g) p(g*t)  3 

φ(g) p(.)  1.4* φ(.) p(.) 1.8 φ(g) p(t)  2.1 φ(t) p(.)  3.2 

φ(g) p(g)  2 φ(g) p(g)  1.9 φ(g) p(.)  2.2 φ(t) p(g)  3.3 

φ(.) p(t)  2.3 φ(.) p(t)  2.5 φ(.) p(.)  2.4 φ(g*t) p(g)  3.3 

φ(t) p(.)  3 φ(g) p(t)  2.6 φ(t) p(.)  2.4 φ(.) p(g)  3.4 

φ(g) p(t)  2.5 φ(t) p(.)  2.7 φ(.) p(g)  2.4 φ(.) p(.)  3.5 

φ(t) p(g)  3.1 φ(t) p(g)  2.8 φ(t) p(g)  2.7 φ(g) p(.)  3.5 

φ(t) p(t)  3.7 φ(t) p(t)  3.1 φ(t) p(t)  2.8 φ(.) p(t)  3.5 

φ(.) p(g*t)  3.4 φ(g) p(g*t)  3.1 φ(g) p(g*t)  3 φ(g) p(t)  3.5 

φ(g) p(g*t)  4.1 φ(g*t) p(.)  3.1 φ(g*t) p(g)  3.1 φ(g*t) p(.)  3.6 

φ(t) p(g*t)  4.3 φ(.) p(g*t)  3.3 φ(.) p(g*t)  3.3 φ(.) p(g*t)  3.7 

φ(g*t) p(.)  4.6 φ(g*t) p(g)  3.6 φ(g*t) p(.)  3.3 φ(t) p(t)  4 

φ(g*t) p(g)  4.8 φ(g*t) p(t)  3.9 φ(t) p(g*t)  3.8 φ(g*t) p(t)  4 

φ(g*t) p(t)  4.6 φ(t) p(g*t)  4.2 φ(g*t) p(t)  3.9 φ(t) p(g*t)  4.1 

φ(g*t) p(g*t)  5 φ(g*t) p(g*t)  4.6 φ(g*t) p(g*t)  4.3 φ(g*t) p(g*t)  4.2 
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3.3.1.1 Survival probability and precision of survival probability 

To determine the survival probability of males and females separated, the most 

parsimonious model which occurred across all sample sizes (φ(g)p(g)) was selected. Both 

estimated average survival (Figure 3-1a) and average recapture probability (Figure 3-1c) 

increased with sample size. Females had a higher average survival probability and lower 

average recapture probability than males. The precision of survival probability estimates and 

recapture probability improved with sample size for both sexes as average standard errors of 

estimates decreased (Figure 3-1b). Although the degree of precision would be determined 

by managers or assessors of the fishery, in this study a relative standard error (RSE) of 0.05 

was chosen to compare the relative precision across different models. 

A sample of at least 500 lobsters was required to obtain a survival probability estimate with a 

RSE < 0.05 for both males and females (Figure 3-1b). Reliable survival probability estimates 

for females alone could, however, be obtained from a sample of 400 female lobsters. This 

resulted in a 5-10% probability of resighting each lobster. 

  

          

Figure 3 - 1 Average estimated survival probability (a), relative standard error (RSE) of survival probability 

(b) and average recapture (resighting) probability (c) of males (●) and females (▲) at different levels of 

subsample size (number of individuals). The horizontal line in (b) indicates a 5% level of precision. 
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3.3.2 Sampling effort 

As effort, both in number of sampling days and number of traps increased (i.e., from bottom right 

quadrat in Table 3-3 to top left quadrat) the survival and recapture probability estimates for the most 

parsimonious models tended to shift from sex and time independent to sex dependent and time and 

sex dependent, respectively. 

 

3.3.2.1 Survival probability and precision of survival probability 

The most common sex-time independent and sex dependent models found across the combinations 

of the number of traps and sampling days was φ(.)p(g) and φ(g)p(g) respectively (Table 3-3). To 

determine the appropriate sampling design a precision level (RSE) of 5% was used. If a combined 

sex model is considered appropriate then 15 traps at 6 days or 30 traps at 4 days would be sufficient. 

Although 50 traps at 4 days also produced precise estimates, this has not been considered as the 

required precision, <5% RSE, was not obtained with fewer trap (Figure 3-2a). If the survival 

probability between the different sexes was considered sufficient to warrant different survival 

estimates then at least 30 traps for 6 days is required or 50 traps at 4 days (Figure 3-2b). If less 

precision is required (e.g. 10%), 15 traps for 4 days or 30 traps for 2 days would be the minimum 

required for estimating annual survival probability for combined sexes and 30 traps for 4 days for 

separate sexes. 
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Table 3 - 3 Dependency of survival probability (φ) and recapture probability (p) on sex (g), time (t) and/or 

sex and time (g*t) in the five top models for combinations of sampling days and number of traps. General 

model is φ(x)p(y) where “x” and “y” have been shown in the following table as (x)/(y). (.) denotes where φ 

and/or p in the model were independent of sex and/or time. (*) indicates the most parsimonious models in the 

range of Z+0.2, where Z is the average of the coded ∆AICc value among ten repetitions. The values of 0<= 

∆AICc<2, 2<= ∆AICc<4, 4<= ∆AICc<7, 7<= ∆AICc<10, and ∆AICc>=10 were coded from 1 to 5, 

respectively. 

Number 

of traps 

Parsimonious 

models  

Number of sampling days 

7 6 4 2 

50 First 

Second 

Third 

Forth 

Fifth  

(g)/(g*t)      1.0* 

(.)/(g*t)       1.1* 

(t)/(g*t)       2.5 

(g*t)/(g)      3.0 

(g*t)/(g*t)   3.9 

(.)/(g*t)     1.3* 

(g)/(g*t)    1.6  

(t)/(g)        1.8 

(t)/(g*t)     2.0 

(g*t)/(g)    2.8 

(.)/(g)   1.8* 

(.)/(t)    2.0* 

(g)/(g)  2.1 

(.)/(.)    2.1 

(t)/(.)    2.1 

(.)/(.)    1.3* 

(.)/(t)    1.5* 

(g)/(.)   1.6 

(.)/(t)    1.7 

(g)/(t)   1.7 

30 First 

Second 

Third 

Forth 

Fifth 

(.)/(g*t)       1.7* 

(g)/(g*t)      2.0 

(g)/(g)         2.6 

(.)/(g)          2.8 

(.)/(t)           2.9 

(.)/(g)        2.0* 

(.)/(t)         2.2* 

(g)/(t)        2.3 

(g)/(g)       2.5 

(.)/(.)         2.5 

(.)/(t)    1.7* 

(.)/(.)    1.7* 

(.)/(g)   1.8* 

(t)/(.)    1.8* 

(g)/(.)   2.0 

(.)/(.)     1.0* 

(.)/(g)    1.4 

(g)/(.)    1.7 

(g)/(g)   1.9 

(.)/(t)     2.1 

15 First 

Second 

Third 

Forth 

Fifth 

(g)/(g)         1.5* 

(.)/(g)          1.6* 

(.)/(.)           1.8 

(g)/(.)          2.1 

(.)/(t)           2.7 

(.)/(g)        1.2* 

(g)/(g)       1.4* 

(.)/(.)         1.6 

(g)/(.)        1.7 

(t)/(g)        2.8 

(.)/(.)     1.0* 

(.)/(g)    1.0* 

(g)/(.)    1.3 

(g)/(g)   1.8 

(.)/(g*t)  2.3 

(.)/(.)     1.0* 

(.)/(g)    1.2* 

(g)/(.)    1.3 

(g)/(g)   2.2 

(.)/(t)     3.4 
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Figure 3 - 2 Survival probability (φ) and relative standard error (RSE) of lobsters - combined sexes (a) 

and different sexes (b) (males (○) and females (▲)), estimated by sex-time independent model 

(φ(.)p(g)) and sex dependent model φ(g)p(g) respectively, associated with each combination of fishing 

effort.  
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traps set and number of days sampled). As expected, both the sample size and sampling effort 

affected the precision and accuracy of survival probability estimates. Decreasing effort, both 

in terms of numbers of individuals sampled and the allocation of effort (days sampled and 

traps set) led to decreased precision in estimates of both survival probabilities (φ) and 
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recapture probabilities (p). Importantly, under-sampling led to biased estimates of survival 

probability and also minimised the ability to determine differences between sexes. Finally, 

the minimal increase in precision at higher levels of sampling effort, suggests that an optimal 

ratio of sampling to precision can be achieved which can be used to find the balance in 

sampling effort that delivers quality data without excessive effort and cost. 

Although sex specific (φ(g)) was an equally likely model for each of the sample sizes, it was 

only when 750 or more lobsters were tagged that it had substantially greater support than the 

combined sexes (φ(.)) models. However, at the pre-determined RSE of 0.05, 500 tagged 

lobsters was sufficient to provide precise estimates of survival probability indicating the 

importance of both model selection (at 500 tagged lobsters, the sex specific model was not 

the only parsimonious model) and interrogating the model outputs (i.e. plotting means, 

standard deviations and RSE). 

While catch rates could be used to determine the effort needed to achieve a targeted sample 

size of recaptured lobsters, catch rates can vary considerably and we selected the number of 

traps set and consecutive sampling days as alternative metrics for determining sampling 

design. 

The number of captured lobsters increased with more sampling effort, that is, with more 

traps, more trapping days, or both. Not surprisingly, it was possible to obtain a satisfactory 

estimate of survival probability by trading off the amount of traps versus days of sampling. 

Understanding the trade-off between these two aspects of sampling can assist in optimizing 

sampling strategies (Comeau et al., 2009).  

Daily catchability of rock lobsters is known to vary significantly due to factors such as swell 

and moon phase (Srisurichan et al., 2005) which have not been included as explanatory 

variables in this study. Because of this we speculated that there was potential for different 
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outcomes from short sampling periods with lots of traps each day versus longer sampling 

periods with fewer traps each day.  However, our results suggest that sampling design is free 

to be driven by the optimal, pragmatic balance between the number of traps and sampling-

days that result in the most cost effective and operationally feasible sampling program. 

Increasing the number of traps from 15 to 50 enabled more precise survival probability 

estimates. Whilst, four days of sampling for 50 traps subsampled was required to obtain 

precise survival probability estimates for males and females separately, 30 traps set for four 

sampling-days was sufficient for obtaining precise survival probability estimates for 

combined sexes. Although, fewer traps in a fixed sampling area can impact the effectiveness 

of bait plumes and thus reduce the probability of capture of animals (Acosta and Perry, 

2000), sampling plans based on setting fewer traps over more days may, however, be 

advantageous in some situations. Whilst more accurate and precise parameter estimates are 

often pursued in mark recapture studies with the use of more traps (Zimmerman and Palo, 

2011), data collected with 15 traps provided precise parameter estimates for combined sexes, 

where 6 sampling-days were required to obtain precise survival probability estimates in the 

level of 0.05. This can also be impacted by the logistics of the sampling methodology being 

undertaken as the costs of each additional trap needs to be compared to the cost of labour and 

vessel charter, including scientist’s time with adding additional days to the survey. Of 

particular importance in Australia is the need to minimise costs by not sampling over a 

weekend (Saturday and Sunday). Increasing the traps used across 4 days of sampling is 

preferred. 

A priori determination of the desired level of precision and accuracy of estimated parameters, 

population size and sampling area can assist in planning sampling design in a CMR study 

(Robson and Regier, 1964; Lindberg et al., 2002). This process is necessary for many 

research projects because of the constraint of research funding that limits the extent of data 
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collection. While this study may provide a guide, we recommend that prior to planning large 

scale tagging programs that pilot programs are undertaken and analyses such as those 

undertaken in this chapter be used to determine a cost effective sampling design.     
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Chapter 4 Estimating tag induced mortality of southern rock lobster in 

the wild - How does variation in the size and the number of tagged lobsters 

affect the tag induced mortality estimations? 

 

Abstract  

A long-term capture-mark-recapture study conducted since 2000 at the Crayfish Point 

Scientific Reserve (CPSR), Hobart, Tasmania, Australia, was used to estimate in situ tag 

induced mortality (TIM) proportion. A three-survey model was used that assumed the impact 

of tagging was most important immediately after the animal was tagged and thus occurs 

before the next survey. The average of TIM proportion estimates for lobsters (combined 

sexes) was 35%. Estimates of TIM proportion for lobsters were varied and dependent on the 

number of recaptured lobsters. To provide reliable estimates of TIM proportion in this study 

at least 15 lobsters had to be captured in two subsequent surveys after the initial tagging 

survey. As tagging normally only marks a small proportion of a population, tag recovery rates 

are relatively low and the need to recover sufficient lobsters on two separate surveys is a 

major constraint of the method. High TIM proportion estimates need to be factored into the 

analysis of mark recapture studies that are used to estimate population parameters otherwise 

overly optimistic projections would result which would potentially lead to over-estimation of 

the resource and inappropriate catch allocations.  

Key words: capture-mark-recapture (CMR), tag induced mortality (TIM), proportion, lobster. 

 

4.1 Introduction 

Capture-mark-recapture (CMR) methods are commonly used for estimating demographic 

characteristics of crustaceans in the wild, including survival probability, population size and 

migration, provided the tags can be retained over a series of moults (Pollock et al., 1990). In 
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any tagging study, the effect of tag loss and tag induced mortality (TIM) should be 

investigated as both result in fewer tagged animals being available for recapture and will 

therefore bias estimation of population parameters. 

TIM is defined as the death of a tagged animal due to factors either directly or indirectly 

related to the tagging process including stress caused by recapture, handling by the tagger, tag   

wounds, infection of the tagging area, and predation as a result of capture and tagging. 

Additionally, TIM may be influenced by traits or biological aspects of tagged animals such as 

moult stage or size. In lobsters, various studies have demonstrated that the most appropriate 

period of the moult cycle for tagging to minimize tag loss and tag induced mortality is during 

the inter-moult stage (Montgomery et al., 1995; Moriyasu et al., 1995; Frusher et al., 2009).        

Determination of TIM proportion, tag loss rate and tag related injuries has traditionally been 

estimated in aquaria facilities or with caging studies conducted in the field (Montgomery and 

Brett, 1996; Davis et al., 2004; Dubula et al., 2005; Mattei et al., 2011; Gonzalez-Vicente et 

al., 2012). Aquaria based studies of TIM can provide biased values as the artificial 

environment can place additional stress on captured animals and these environments also fail 

to replicate interactions with predators, prey and habitat. In addition, aquaria studies usually 

comprise small sample sizes (Mattei et al., 2011) and/or short time periods (Montgomery and 

Brett, 1996; Claverie and Smith, 2007).  

In-situ measurements of TIM, where tagged animals are rapidly released into the wild to mix 

and behave with the population from which they were captured, can overcome several of the 

biases associated with aquaria or caged studies. Frusher et al. (2009) developed a model 

based on three survey events that compared the survival of lobsters tagged in a second survey 

compared to lobsters previously tagged in the first survey. The method assumes that TIM has 

already impacted the previously tagged lobsters and thus provides an estimate of the initial 



 

57 

 

impact of tagging. The timing of surveys dictates the period over which the impact of tagging 

is considered. However, the method does require animals to be recaptured on two subsequent 

occasions which can be an impediment when tag return rates are low. Recognising CMR 

studies are expensive and there is a trade-off between effort and the precision of estimates, it 

is desirable to determine what sample size and sampling effort is required to gain reasonable 

estimates of TIM proportion in the wild. In this study, capture-mark-recapture data collected 

over 13 years (2000-2012) was used to estimate TIM proportion in the wild for the southern 

rock lobster Jasus edwardsii . 

The aim of this study was to:  

1) Determine tag induced mortality proportion for J. edwardsii . 

2) Evaluate the effect of the number and size range of initially tagged lobsters on 

estimates of tag induced mortality proportion. 

 

4.2 Method 

4.2.1 Study area 

A long term annual tagging and recapture survey was conducted from 2000 to 2012 at the 

Crayfish Point Scientific Reserve (CPSR), near Hobart, Tasmania, Australia (42 57’ 08”S 

142 21’ 20”E). This scientific reserve contains rocky reef habitat and is surrounded by sand, 

which limits rock lobster movement (Barrett et al., 2009).  The reserve contains a temperate 

rocky reef of 1.24 km
2
 with maximum depth of 15 m. Fishing for lobsters in the reserve has 

been banned since November 1971 and the reserve now holds a dense population of southern 

rock lobsters (Green et al., 2009). 
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4.2.2 Field methods 

A tagging program of southern rock lobster in the CPSR has been conducted since 2000 to 

address a number of research projects. In this study we used the surveys undertaken 

approximately annually at the start of each year as this is the inter-moult period for both 

males and females and catchability is higher. Catchability declines as waters cool from 

February to August (Ziegler et al., 2003). On the first day, traps were baited and set in the 

early afternoon. On subsequent days the traps were checked in the morning, re-baited and re-

set. All untagged lobsters were tagged by a uniquely coded T-bar tag (Hallprint T-bar anchor 

tag; TBA1, Hallprint Pty Ltd, 27 Jacobsen Crescent, Holden Hill, South Australia 5088, 

Australia) on the ventral side of the first or second abdominal segment. The tag number, 

length of carapace and sex of all lobsters were recorded and lobsters were released back 

immediately to the wild after tagging.   

 

4.2.3 Estimating tag induced mortality (TIM) proportion  

A three-year tagging model (Figure 4-1) was used to estimate tag induced mortality (TIM) 

proportion. This three-year tagging model developed  by Frusher et al. (2009) is described in 

Appendix 4-1. As tagging surveys were undertaken annually, the TIM estimates are the 

annual proportion of lobsters that died from tagging during a year. Untagged lobsters were 

tagged on the first and second surveys (N1 and N2, respectively). During the second survey 

lobsters that were tagged in the first survey are also captured (R[21]) and returned to the sea 

with newly tagged lobsters. It was assumed that TIM had already occurred for this group of 

tagged lobsters between the first and second survey. In the third survey, lobsters were caught 

from both the first (R[31]) and second surveys (R[32]). It was assumed that over the second year 
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of study, TIM (I2) only impacts lobsters that were tagged in the second survey. Whilst, 

lobsters tagged in the first survey experienced the impact of tagging over the first year of 

study (I1), it was assumed that tagged lobsters recaptured in the second survey had already 

survived the impact of tagging and thus no impact of tagging between surveys 2 and 3 occurs. 

For estimating TIM proportion only a component of the R[31] was required. These were the 

lobsters that were caught in both the second and third surveys. It was assumed that no TIM 

occurs for these lobsters between the second and third surveys. These are denoted as R3[21].  

 

 

 

Figure 4 - 1 Three-year tagging survey method for estimating TIM proportion. The bold and boxed 

texts indicate the data used (from Frusher et al., 2009). I1 and I2 denote the impact of tagging on 

mortality of lobsters tagged in the first and second tagging events, respectively. 

 

Tag induced mortality (TIM) proportion for the period between survey 2 and 3 (I2) is 

calculated as:                      

𝐼2 = 1 − (
𝑅[32]∗𝑅[21]

𝑅3[21]∗𝑁2
)           (Equation 1) 

where  
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I2: Tag induced mortality (TIM) proportion for the period between survey 2 and 3. 

R[21]: Number of tagged lobsters captured in the second survey that were tagged in the first 

survey 

R[32]: Number of tagged lobsters captured in the third survey that were tagged in the second 

survey 

R3[21]: Number of tagged lobsters captured in the third survey that were tagged in the first 

survey and also captured in the second survey. 

N2: Number of lobsters tagged in the second survey. 

This model assumes that no tagged lobsters are lost to migration and that tagged lobsters 

from each tagging event mix evenly with each other and that each tagged lobster,  

irrespective of when it was tagged, has an equal probability of being captured. 

 

4.2.4 Criteria for determining TIM 

To ensure that sufficient recaptures are obtained to estimate TIM, the largest sample size 

should be used. This would be the entire tagged population in each survey. However, to 

minimise any size dependent tag induced mortality impacts, estimates of TIM were 

calculated for increased size ranges. The most frequent 10 mm CL size bin of male and 

female lobsters capture in the CPSR from 2000 to 2012 was 120-130 mm CL and 100-110 

mm CL for males and females, respectively (Figure 4-2). This size bin was used as the 

smallest bin and increasing samples were obtained by expanding the size bin width 

incrementally by 5mm CL either side of these bins. 
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Figure 4 - 2 Size frequency of male (black column) and female (dashed column) lobsters tagged from 

2000 to 2012.  

For example, male TIM was estimated for size bins 120-130; 115-135; 110-140 etc. TIM was 

estimated for lobsters in each size group for male and female lobsters, separately.  

 

4.2.4.1 Determination of size bin 

A major restriction in the use of the in-situ method is the low sample size of recaptured 

lobsters. From Figure 4-1 the lowest sample size would be expected with the R3[21] group as 

this requires lobsters to be recaptured on two separate occasions.  

To select the size bin with the highest numbers of tagged and recaptured lobsters (R3[21] and 

R[32]), the relationships between size bin width and R3[21] and R[32] were separately evaluated.  

 

4.2.4.2 Determination of the minimum number of recaptured lobsters 

Delta TIM ( ∆𝑇𝐼𝑀 ) defined as the change in the estimated TIM between successive 

(overlapping) size bin widths in every survey was used (i) to determine the accuracy of the 

TIM estimates, and (ii) to find the minimum number of recaptured lobsters in the third survey 

(R3[21] and R[32]) which resulted in accurate estimates. Accuracy of TIM proportion estimate 

was considered high, when estimates were within ±10%. 
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  ∆𝑇𝐼𝑀= TIM(n)- TIM(n-1)      (Equation 2) 

 

4.2.4.3 Determination of sample size and effort 

To determine the amount of effort required to obtain reliable estimates of TIM proportion in 

the CPSR, the number of lobsters that needed to be tagged was initially estimated using the 

following equation: 

𝑁�̂�=R3[21]/ (β[21]* β3[21])                (Equation 3) 

where  

𝑁�̂�: Estimated number of lobsters to be tagged in the first survey 

R3[21]: Number of tagged lobsters captured in the third survey that were tagged in the first 

survey and also captured in the second survey. 

β[21]: Proportion of lobsters tagged in the first survey that were recaptured in the second 

survey (R[21]/Ni).  

β3[21]: Proportion of lobsters recaptured in the third survey that had also been recaptured in 

the second survey divided by the number recaptured in the second survey that had been 

tagged in the first tagging survey (R3[21]/R[21]). 

To determine the effort required to catch the estimated number of lobsters (Ni), the capture 

rate (per trap lift) was estimated for the first survey in each estimate of TIM proportion.  

Capture rate per trap is estimated by the following formula: 

  Cr𝑖 = N𝑖 T𝑖⁄     (Equation 4) 

Where  
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Cr𝑖: Capture and/or recapture rate in survey i  

N𝑖: Number of lobsters tagged and/or recaptured in survey i 

T𝑖: Number of traps applied in survey i 

For the first survey, N𝑖 is the total number of the tagged lobsters, whilst in the second and 

third surveys, N𝑖 is the number of recaptured lobsters (=R[21]) and the number of lobsters 

recaptured over two consecutive surveys (=R3[21]), respectively.  

The number of traps was estimated by: 

T�̂� = N�̂� Cr𝑖⁄   

Where N�̂� is the estimated number of lobsters required to generate TIM proportion estimates 

(equation 3) and Cr𝑖 is the observed capture rate for the same survey (equation 4). 

 

4.3 Results 

4.3.1 Determination of criteria for estimating TIM proportion 

4.3.1.1 Determination of size bin 

Generally, there was an almost linear increase in the number of recaptured lobsters versus 

size bin width until approximately 95-155 mm CL and 80 –130 mm CL for males and 

females respectively after which an increase in the size bin resulted in fewer or no additional 

returns (Figures 4-3 and 4-4).  
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Figure 4 - 3 The number of recaptured lobsters at R3[21] and R[32] for different size bin widths.
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 Figure 4 - 4 The number of recaptured lobsters at R3[21] and R[32] for different size bin widths. 
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4.3.1.2 The effect of the number of R3[21] and R[32] on the estimated TIM proportion 

The accuracy of the estimated TIM proportion increased with the number of recaptured 

lobsters in the third survey (i.e. R3[21] and R[32]). The number of R3[21] and R[32] required to 

obtain accurate estimates was at least 15 and 40 recaptured lobsters, respectively (Figure 4-

5). Unfortunately fewer female lobsters were recaptured in these larger size bins making an 

estimate for females difficult although results do appear similar.   

 

  

  

Figure 4 - 5 Accuracy of estimated TIM proportion against the number of recaptured lobsters at R3[21] 

(a) and R[32] (b) for males (♂) and females (♀), separately. 
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4.3.1.3 Determination of effort  

As 1998 lobsters were translocated to the study area in November 2005, capture rate after this 

perturbation may not reflect the normal situation. As such, only three “three-survey” studies 

(i.e. include the initial tagging event and two subsequent recapture events) were undertaken 

before this perturbation (i.e. studies that started in Nov 2000, Dec 2001 and Jan-Feb 2003), 

could be analysed to determine the effort required to estimate TIM proportion. 

The estimated sample size and effort is based on 15 lobsters being recaptured in survey 3 

(R3[21]) as determined in section 4.3.1.2.  Only surveys in Nov 2000, Jan-Feb 2003 and Jan 

2005 met the criteria of >15 lobsters in R3[21] and >40 lobsters in R[32]. For females, Nov 2000 

was the only set of surveys where sufficient female lobsters were recaptured in the third 

survey (Table 4-1). However, unlike males where the number captured in the third survey for 

analyses starting in Nov 2000, Dec 2001 and Jan-Feb 2003 was more than 15, females had 

substantially lower recapture rates, particular between the second and third surveys. This 

resulted in the estimated number of traps required in each of the surveys to be large for 

females. 

Across all surveys, using the mean proportion of lobsters recaptured and capture rates, the 

maximum number traps required to capture sufficient lobsters to produce an accurate estimate 

of TIM for males was 572 (~600) and 1173 (~1200) traps in the first survey for males and 

females, respectively (Table 4-2), whilst the number of traps required to capture sufficient 

lobsters to produce an accurate estimate of TIM proportion for combined sexes was 371 

(~400). 
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Table 4 - 1  Estimated and observed parameters in every three survey study started in 2000, 2001 and 

2003. Bold indicates when the observed value was greater than the estimated. T1, T2, and T3 denote 

the number of traps set in the first, second and third surveys, respectively.  

Sex/ Studies 

 

Parameters 

Males Females Combined Sexes 

Nov 

2000 

Dec 

2001 

JF 

2003 

Nov 

2000 

Dec 

2001 

JF 

2003 

Nov 

2000 

Dec 

2001 

JF 

2003 

N1 Observed 267 255 246 448 393 228 715 648 474 

Estimated 167 239 217 320 1474 855 238 486 338 

R[21] Observed 73 55 38 109 48 14 182 103 52 

Estimated 46 52 33 78 180 52 61 77 37 

R3[21] Observed 24 16 17 21 4 4 45 20 21 

Fixed 15 15 15 15 15 15 15 15 15 

T1 Observed 891 602 801 891 602 801 891 602 801 

Estimated 557 564 707 636 2257 3004 297 451 572 

T2 Observed 602 801 403 602 801 403 602 801 403 

Estimated 376 751 356 430 3004 1511 201 601 288 

T3 Observed 801 403 708 801 403 708 801 403 708 

Estimated 501 378 625 572 1511 2655 267 302 506 
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Table 4 - 2 Summary of the mean observed and estimated parameters. (Cr= Capture rate) 

 Males Females Combined sexes 
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M
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N1 256 197 0.34 356 563 0.48 612 305 0.82 

R[21] 55 42 0.09 57 80 0.09 112 53 0.19 

R3[21] 19 15 0.03 10 15 0.01 29 15 0.05 

Trap S1 765 572 - 765 1173 - 765 371 - 

Trap S2 602 445 - 602 872 - 602 285 - 

Trap S3 637 480 - 637 1077 - 637 332 - 

  

4.3.2  Estimation of TIM proportion  

4.3.2.1 Estimation of TIM proportion with observed data 

From 2000 – 2012 there were only four occasions for males, one occasion for females and 

five occasions for combined sexes where there was greater than 15 and 40 recaptures of 

lobsters in both categories R3[21] and R[32], respectively.  Estimates of TIM proportion varied 

in the reserve (Table 4-3). In 2005 TIM proportion was as low as 12% whereas in 2000 it was 

almost 34%. The average of TIM proportion estimates for combined sexes was 35%, whilst 

TIM proportion was 25% and 37% across all male surveys and the only estimates for females, 

respectively. 
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Table 4 - 3 Estimates of TIM proportion with observed data in the size bin of 95-155 (males) and 80-

130 (females). 

 Sex survey Overall 

TIM 

proportion 

estimate 

X ± s.d. 

Nov 

2000 

Dec 

2001 

Jan-

Feb 

2003 

Jan-

Feb 

2004 

Jan 

2005 

Jan-

Feb 

2006 

Jan 

2007 

Jan 

2008 

Feb 

2009 

Jan 

2010 

Number of 

Sampling- 

days 

M&F 10 7 11 7 10 12 7 4 4 4 

Number of 

Tagged 

Lobsters* 

N1 

M 267 255 246 132 359 312 255 116 69 116 

F 488 393 228 143 363 191 156 91 56 90 

M&F 755 648 474 275 722 503 411 207 125 206 

Number of 

Tagged 

Lobsters* 

N2 

M 255 246 132 359 312 255 116 69 116 85 

F 393 228 143 363 191 156 91 56 90 34 

M&F 648 474 275 722 503 411 207 125 206 119 

Capture rate  

Beta3[21]= 

R3[21]/R[21] 

M 0.33 0.29 0.45 0.29 0.41 0.24 0.19 0.57 0.10 0.23 

F 0.19 0.08 0.29 0.15 0.23 0.04 0.00 0.00 0.33 0.50 

M&F 0.25 0.19 0.40 0.23 0.37 0.20 0.17 0.45 0.15 0.25 

Capture rate  

Beta[21]= 

R[21]/N1 

M 0.27 022 0.15 0.32 0.25 0.36 0.12 0.20 0.14 0.22 

F 0.22 0.12 0.06 0.19 0.06 0.14 0.03 0.07 0.05 0.02 

M&F 0.25 0.16 0.11 0.25 0.15 0.28 0.09 0.14 0.10 0.14 

Capture rate  

Beta[32]= 

R[32]/N2 

M 0.22 0.15 0.32 0.25 0.36 0.12 0.20 0.14 0.22 0.11 

F 0.12 0.06 0.19 0.06 0.14 0.03 0.07 0.05 0.02 0.09 

M&F 016 0.11 0.25 0.15 0.28 0.09 0.14 0.10 0.14 0.10 

Number of 

Recaptured 

Lobsters 

R[21] 

M 73 55 38 42 88 112 31 23 10 26 

F 109 48 14 27 22 27 5 6 3 2 

M&F 182 103 52 69 110 139 36 29 13 28 

Number of 

Recaptured 

Lobsters 

R3[21]>15 

M 24 16 17 12 36 27 6 13 1 6 

F 21 4 4 4 5 1 0 0 1 1 

M&F 45 20 21 16 41 28 6 13 2 7 

Number of 

Recaptured 

Lobsters 

 R[32]>40 

M 55 38 42 88 112 31 23 10 26 9 

F 48 14 27 22 27 5 6 3 2 3 

M&F 103 52 69 110 139 36 29 13 28 12 

TIM 
proportion  

Estimates** 

M 0.34 0.47 0.29 0.14 0.12 0.49 -0.02 0.74 -1.2 0.54 0.25±0.12 

F 0.37 0.26 0.34 0.59 0.38 0.13 Inf Inf 0.93 0.83 0.37 

M&F 0.36 0.44 0.38 0.34 0.26 0.57 0.16 0.77 0.12 0.59 0.35±0.06 

* Number of tagged lobsters in the first tagging event for every three-year survey. 

**TIM proportion was only estimated in four occasions for males, one occasion for females and five occasion 

for combined sexes when R3[21]>15 and R[32]>40. 
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4.4 Discussion 

In this study we applied a three survey model to estimate tag induced mortality (TIM) proportion of 

lobsters tagged annually in the wild. Previous attempts to estimate annual TIM proportion have 

been reliant on aquaria studies or caging experiments. A major benefit of this method is that it 

estimates TIM proportion in-situ by comparing tag returns from multiple tagging years. However, a 

weakness of the method is the need to recapture animals on two occasions. For our dataset we found 

that at least 15 lobsters had to be recaptured from two occasions R3[21] and 40 on one occasion R[32]. 

Over the three “three-survey” periods that we could estimate the number of traps required to capture 

15 lobsters in the third survey, there was considerable variability in the proportion of lobsters 

captured between surveys for both sexes, although the proportion was substantially lower for 

females resulting in estimates that are probably beyond logistical capabilities. On average 600 traps 

would be required for males, 1200 for females and 400 for combined sexes. 

The average proportion of annual TIM for males was estimated at 0.25 and varied from 0.12 in 

2005 to 0.34 in 2000. The only estimate for females was 0.37. There are a number of reasons for 

such stark contrasts in TIM proportion including the quality of handling and tagging process. In this 

study, tagging was conducted by different people ranging from those with no prior experience to 

staff with many years’ experience, which may have led to differences in stress and injury during 

tagging. For example, inappropriate handling can result in the loss of some appendages including 

antenna or legs, which can affect foraging and defence against predators and thus increased 

mortality rates (Herrnkind et al., 2001; Parsons and Eggleston, 2005; Frisch and Hobbs, 2011). 

Parsons and Eggleston (2005) mentioned three reasons for the higher predation rate on injured 

lobsters all of which could contribute to the estimate of TIM proportion in this study: 1) releasing a 

mixture of organic compounds (e.g., blood) that may attract predators; 2) reduction in the defensive 

capacity of injured lobsters; and 3) losing cooperative group defence by injured lobsters. 
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However, other studies using aquaria and cage methods have also reported high estimates of TIM 

proportion. Montgomery and Brett (1996) indicated that TIM was occurring after 4 weeks for Jasus 

verreauxi tagged with T-anchor tags and held in aquaria although environmental conditions within 

the aquaria made it difficult to separate out TIM from other stressors as mortality occurred in both 

tagged and untagged lobsters after week 15. Dubula et al. (2005) found that the rate of TIM in Jasus 

lalandii was 27% and 46% in aquarium and in sea-cage studies, respectively. They reported that the 

higher rate of TIM estimates in sea-cages was due to cannibalism as they were unable to separate 

lobsters in sea cages as they moulted. Claverie and Smith (2007) suggested that the high rate of 

TIM (48%) over a 60 day-study for the galatheid, Munida rugose (Fabricius, 1775) was associated 

with infection. Both Dubula et al. (2005) and Claverie and Smith (2007) observed black necrotic 

tissue around the wound associated with tagging. 

Our study also found high TIM proportion similar to these studies. While there are potential 

explanations for such high proportion and/or rate estimates for each of the methods, the consistency 

in high values across the different methods would suggest that TIM proportion and/or rate is high 

for crustaceans. If these estimates are correct, then caution needs to be applied in the use of tagging 

data to estimate survival probability or population size. Tagging studies used to estimate population 

parameters assume that all animals tagged in a survey are equally available for recapture at the next 

survey with the difference being survival rate. With substantially fewer lobsters available for 

recapture due to TIM, survival probability and population estimates that do not account for TIM 

would be over-estimated. 

Although only one estimate of TIM proportion was available for females, it is encouraging to see 

that it is relatively similar to the estimate for males and thus an estimate of TIM proportion for 

combined sexes may be appropriate given the consistency across species. In this study, TIM 

proportion could be estimated for combined sexes on five occasions. There was considerable 

consistency between these estimates with a mean of 0.35 and standard deviation of 0.06 indicating 
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that TIM proportion may be consistent between years and could be estimated on a small number of 

occasions and applied for longer time periods. An alternative estimate of TIM proportion can be 

achieved by aggregating data across all surveys. This provided a TIM estimate of 0.30, 0.42 and 

0.39 from males, females and combined sexes respectively. Although the data is limited, both the 

single estimate (Nov 2000) and the aggregated data indicate that TIM proportion is slightly higher 

for females than males. However, this difference is far less than the difference in recapture 

probability between males and females suggesting that there are other biological issues influences 

recaptures rates such are dominance hierarchies (Frusher and Hoenig, 2001). 

From 2008 onwards there was a reduction in the effort to 4 days in response to cost savings. 

Unfortunately for calculating TIM proportion the effort was insufficient to recapture enough tagged 

lobsters in the R3[21] and R[32] categories. Of particular importance is the need to maintain 

consistency in sampling effort across all the surveys used. Although appropriate numbers of lobsters 

were tagged in 2007 during a 7 day survey, the subsequent survey days were reduced to 4 in 2008 

and 2009 resulting in insufficient lobsters to estimate TIM proportion.  

The extremely low estimate of TIM in 2005 may reflect a perturbation to the population as over 

1998 tagged lobsters (28% male, 72% female) were translocated into the study area three months 

before the first annual recapture event of the three-year survey which started in 2005.  

This study highlights the need for TIM proportion and/or rate to be estimated as an essential part of 

tagging programs and provides a method to do so that can be incorporated into a standard tagging 

program. Tagging programs can provide valuable information on population parameters for 

assessing fish stocks but large values of TIM proportion, as found in this and other surveys, would 

result in biased estimates that are overly optimistic and lead to over exploitation of stocks. TIM 

proportion needs to be estimated in tagging programs and incorporated into analyses for improved 

estimates of survival rates and population size. 
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Appendix 4-1 Development of in situ tag-induced mortality model (From Frusher et al., 2009) 

In a tagging program the first survey captures untagged animals and the released lobsters include 

lobsters tagged during that survey. On subsequent surveys the catch will include lobsters tagged on 

previous surveys as well as untagged lobsters that are subsequently tagged during this event. 

Released lobsters include a mix of previously tagged and newly tagged lobsters. If the initial impact 

of tagging occurs between surveys then tagged lobsters recaptured in any subsequent survey would 

have survived the impact of tagging. By comparing the fate of previously tagged lobsters against the 

fate of newly tagged lobsters on subsequent surveys, the difference should be the initial impact of 

tagging. A minimum of three surveys are required to estimate tag induced mortality and the 

following example illustrates the method: 

During each of two surveys we tag a number of animals. During the second survey (S2) we would 

recapture animals tagged during the first survey (S1) and during the third survey (S3) we would 

recapture animals that were tagged during both the first (S1) and second (S2) surveys. 

If we assume that initial tag loss and tag-induced mortality occurs shortly after tagging and before 

the following survey then recaptures will be a function of the total number tagged, the initial impact 

of tagging (which includes both initial tag loss and initial tag-induced mortality), and the recapture 

rate. 

 

    (1) 

 

where iir ,1 = expected recaptures during survey i+1 from animals tagged during survey i 

 Ni    = number of animals tagged during survey i 

 
iI   = number of animals that die from the initial impact of tagging during survey i 

 
iR  = probability of recapture during survey i (recapture rate) 

 

 

 

 

 

1
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For three surveys a tagging/recapture matrix can be establish as follows: 

 

Survey 1 (S1) Survey 2 (S2) Survey 3 (S3) 

Tagging (N1) Recapture 

))1((
21121 RINr   

Recapture 

))1((
31131 RINr   

 Tagging (N2) ))1((
32232 RINr   

 

Recaptures during S3 will also include recaptures of animals that were recaptured and released 

during S2 from tagging event 1. This subset of recaptures can be stated as follows: 

 

      (2) 

 

Note that equation (2) is similar to the other equations in the tagging/recapture matrix with the 

number recaptured and returned during survey 2 now becoming the number of tagged lobsters 

released (i.e. r21 replaces N1 in the equation estimating r31) and as these animals were previously 

tagged, the initially impact of tagging for this cohort has already occurred (i.e. 0
1
I and therefore 

)1)1(
1
 I . 

 

If we divide r32 by r3[21] it is possible to estimate the initial impact of tagging associated with 

tagging event 2. 

 

     (3) 

 

If we assume that the probability of capturing a tagged animal in the population is equal for animals 

tagged during surveys 1 and 2 then 
3R cancels out and 

2I is the only unknown. 

 

     (4) 
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      (5) 

 

The following is a worked example.  

Let the number of animals tagged be 100 and 200 for S1 and S2 respectively. The initial impact of 

tagging is 10% for S1 and 20% for S2 and the tag recovery rate is 30% in S2 and 40% in S3. 

 

Thus,  N1 = 100, N2 = 200, 
1I

 = 0.1, 
2I = 0.2, 

2R = 0.3 and 
3R = 0.4 

 

Using the tagging/recapture matrix above, we get: 

 

S1 S2 S3 

Tagging  

N1 = 100 

Recapture 

21r 100*(1-0.1)*0.3 = 27 

Recapture 

31r 100*(1-0.1)*0.4= 36  

 and  

r3[21] = 27*0.4 = 10.8 

 Tagging  

N2 = 200 
32r 200*(1-0.2)*0.4 = 64 

 

From equation 5 we can estimate 
2I  

2008.10

2764
1

2 


I = 0.2 

  

 

It is worthwhile noting that neither chronic tag loss nor natural mortality has been incorporated into 

the methodology. It is assumed that natural mortality would be equivalent for both groups between 

surveys and thus cancel out. If tag loss in chronic and linear, then tag loss would be equivalent for 

both groups and   would be a measure of tag-induced mortality only. 
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Chapter 5 Estimating tag loss rate for the southern rock lobster Jasus 

edwardsii  

 

Abstract 

A three-year double tagging program was conducted from 2012 to 2014 in a no-fishing area at 

Crayfish Point Scientific Reserve (CPSR), near Hobart, Tasmania, Australia, where the population 

contains lobsters tagged over the last two decades, to determine tag loss rate and evaluate the effect 

of synchronous and non-synchronous double tagging of Jasus edwardsii. The rate of tag loss 

depended on the time interval between applying the first and second tags on lobsters and sex. Males 

had a higher rate of tag loss than females over the first year of the study. Lobsters that were double-

tagged but at two different times (non-synchronous)  had a slightly higher rate of tag loss than those 

double tagged synchronously, which was associated with the higher rate of tag loss for the older tag. 

A higher rate of tag loss for older tags suggests that tag loss is both chronic and non-linear. If tag 

loss rate is substantially non-linear, multi-year tagging programs would need to account for tag loss 

in the analysis. 

Key words: capture-mark-recapture (CMR), tag loss rate, lobster 

 

5.1 Introduction 

Tagging is widely used to estimate demographic parameters in aquatic animals (Bell et al., 2003) 

including those harvested in fisheries. The method involves tracking the fate of tagged animals over 

time, although, tag loss decreases the number of tagged individuals in the population (Montgomery 

and Brett, 1996), which can bias both survival probability and population size estimates. Tagged 

individuals will also be lost due to tag induced mortality (TIM), natural mortality, fishing mortality, 

or when tagged animals emigrate from the study area. Tags may be lost due to tissue infection or 

insufficient anchoring (“type I tag loss”) or may be shed during moulting in crustaceans where the 

tag is attached to the exoskeleton (“type II tag loss”) (Beverton and Holt, 1957). Research reported 
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here was on crustaceans where tags were inserted into the muscle rather than attached to the 

exoskeleton so were not technically exposed to type II tag loss. Where tag loss affects the estimates 

obtained from tag-recapture models, the fate of tags needs to be investigated to minimise bias in 

interpretation of model estimates. 

Two broad approaches are used for estimating tag loss rate. The first is direct observation where 

tagged animals are monitored in a captive environment such as aquaria or sea-cages. However, 

captivity may reduce environmental factors that would otherwise lead to tag loss, including 

infection (Courtney et al., 2001), entanglement (Frisch and Hobbs, 2006) and tag removal by other 

animals (Melville-Smith and Chubb, 1997). The second method is indirect and involves double-

tagging individuals in the field and estimating the rate of tag loss from the relative proportion of 

recaptured individuals with both tags or only one tag still attached (Frisch and Hobbs, 2006; 

Frusher et al., 2009). Although the direct method provides an absolute measurement of tag loss rate, 

the indirect method is considered to be more realistic of what might occur in nature, provided 

sufficient individuals are released and recaptured (Frisch and Hobbs, 2006). 

Several studies have been conducted to assess the effect of factors such as size-at-tagging, sex, 

moulting stage and insertion position of the tags on the rate of loss of T-bar tags in lobsters where 

two tags were inserted synchronously (i.e. two tags applied at the same time). They include studies 

under artificial conditions such as cage and aquarium trials (Montgomery and Brett, 1996) and in 

the field (Melville-Smith and Chubb, 1997; Frusher et al., 2009; Gonzalez-Vicente et al., 2012). 

Double-tagging studies have also been conducted on the same species examined here, Jasus 

edwardsii, with Frusher et al. (2009) reporting that size had no significant impact on tag loss rate 

although tag loss rate was almost double in male lobsters. A higher rate of tag loss rate in males has 

also been reported in other lobster species (Gonzalez-Vicente et al., 2012; Xu et al., 2014). The 

probability of losing a tag also varies with moult cycle and increased during the late pre-moult 

(Moriyasu et al., 1995). Both Melville-Smith and Chubb (1997) and Frusher et al. (2009) reported 
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that dorsal tags were more likely to be lost or damaged compared to tags inserted into the ventral 

parts of lobsters. Frusher et al. (2009) found tag loss to be chronic with an approximately constant 

rate of loss over time. In this study we explored in more detail the fate of tags by comparing newly 

tagged lobsters with previously tagged lobsters. 

 

5.2 Methods 

5.2.1 Study area 

This study was conducted at the Crayfish Point Scientific Reserve (CPSR), in Tasmania, Australia 

(42 57’ 08”S 142 21’ 20”E). This scientific reserve contains rocky reef habitat and is surrounded by 

sand, which limits rock lobster movement (Barrett et al., 2009).  The reserve contains a temperate 

rocky reef of 1.24 km
2
 with maximum depth of 15 m. Fishing in the reserve has been prohibited 

since its declaration in November 1971 and the reserve now holds a dense population of Jasus 

edwardsii (Green et al., 2009) that have been tagged for various projects over the last two decades. 

5.2.2 Field method 

 A three-year double tagging program was conducted from 2012 to 2014. On the first day of each 

annual survey baited traps were set in the early afternoon. On subsequent days the traps were 

checked in the morning, all lobsters removed, re-baited and re-set. In 2012 and 2013 untagged 

lobsters were double tagged and lobsters that had been single tagged in previous surveys had an 

additional tag inserted. All tags are uniquely coded T-bar tags (Hallprint T-bar anchor tag; TBA1, 

Hallprint Pty Ltd, 27 Jacobsen Crescent, Holden Hill, South Australia 5088, Australia) and were 

applied on both sides of the ventral surface of the first or second abdominal segment. The tag 

number, length of carapace and sex of all lobsters were recorded and lobsters were immediately 

released after tagging.   
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In 2012, during the first survey there were two groups of lobsters released: 1) lobsters bearing no 

tag on which two new tags (2NT) were applied synchronously, 2) lobsters carrying a single old tag 

on which a new tag (ONT) was applied as the second tag (non-synchronously double tagged 

lobsters). In 2013, in addition to these groups, a third group of lobsters was released: 3) lobsters 

carrying two old tags (2OT) where no new tag was applied. This included both group 1 and group 2 

lobsters tagged in 2012.   

Tag loss was estimated as the proportion of double tagged lobsters tagged in survey St that had lost 

a tag in a future survey (St+1): 

𝑇𝑎𝑔 𝑙𝑜𝑠𝑠 =
𝑁1𝑇(𝑆𝑡+1)

𝑁𝐷𝑇(𝑆𝑡+1)
 

Where tag loss is the proportion of tags lost between survey (t) and the following survey (t+1) 

N1T = Number of double tagged lobsters in St that had lost one tag in survey St+1 

NDT = Number of double tagged lobsters in St that had lost no tags in survey St+1 

 

5.3 Results  

In 2012 and 2013, 340 and 235 double-tagged lobsters were released back to the wild, respectively. 

The number of recaptures is shown in Table 5-1. The annual rate of tag loss was slightly higher 

during the second year (17.9%) compared to the first year (15.7%) after tagging (Figure 5-1).  
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Table 5 - 1 Fate of tags on newly tagged and previously tagged lobsters. 

Tagging 

Year  

Recapture 

Year  

Number  

of  

Double 

Tagged 

Lobsters  

Double 

tagged 

lobsters 

including 

lobsters 

with 

Survey 

period 

Year  

Recaptured lobsters 

Originally double tagged 1 tag loss 

Total Male Female Total Male Female 

2012+2013 2013+2014 575 2 new 

tags and  

1 old and 

1 new tag 

1  102 

(48+54) 

72 30 16 

(8+8) 

13 3 

2012+2013 2013+2014 285 2 new 

tags 

1  43 

(19+24) 

33 10 6 

(2+4) 

4 2 

2012+2013 2013+2014 290 1 old and 

1 new tag 

1  59 39 20 10* 9 1 

2012 2013 and 

2014 

340 2 old tags 1  18** 13 5 4 2 2 

2012 2014 240 2 new 

tags and  

1 old and 

1 new tag 

2  70 43 27 25 12 13 

2012 2014 160 2 new 

Tags 

2  28 19 9 9 5 4 

2012 2014 180 1 old and 

1 new tag 

2  42 24 18 16*** 7 9 

*including 6 old tags and 4 new tags lost 

**Double tagged lobsters recaptured over two consecutive recapture events in 2013 and 2014 

*** including 4 old tags and 12 new tags lost 

 

 

Figure 5 - 1 Annual rate of tag loss for lobsters 

double tagged synchronously (■), non-

synchronously (▲) and combined (○) for one 

and two years since tagging. The number of single 

tagged and double tagged lobsters captured for 

non-synchronous, combined and synchronous are 

provided from top to bottom respectively. 

 

Figure 5 - 2 Annual rate of tag loss for lobsters 

captured in 2014 which had either two new tag 

(2NT), an old and a new tag (ONT) or two old 

tags (2OT) when released in 2012 and/or 2013. 

The number of single tagged and double tagged 

lobsters captured are provided below each data 

point.
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Lobsters tagged non-synchronously had a slightly higher rate of annual tag loss than those 

tagged synchronously indicating that older tags are lost at a greater rate than new tags 

(Figures 5-1and 5-2). This resulted in slightly higher overall annual tag loss rates of lobsters 

recaptured after two years as these included a greater proportion of older tagged lobsters 

(Figure 5-1).  

 

Figure 5 - 3 Annual rate of tag loss for males (■) and females (▲) lobsters double tagged 

(synchronous and non-synchronous combined) over the first and second year of study. The number of 

single tagged and double tagged lobsters captured is adjacent to each data point. 

 

Males and female lobsters showed both different rates and different trends in tag loss. Males 

had a higher rate of annual tag loss during the first year and then only a minor decrease in the 

rate of annual tag loss over the second year, whereas females had a lower initial rate of tag 

loss in the first year followed by a substantial increase in annual tag loss rate in the second 

year (Figure 5-3).  

 

5.4 Discussion 

A double tagging program conducted over a two year period showed that the rate of tag loss 

was relatively constant over time, with non-synchronous double tagged lobsters having a 

slightly higher rate of tag loss than synchronous double tagged lobsters. The rate of tag loss 

found in this study was higher than reported in other studies for both this species and for 

other lobster species (Table 5-2). Several factors may influence the difference between 
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studies including the proportion of synchronous or non-synchronous tagged lobsters in the 

populations, species, sex, experience level of taggers, experimental conditions (e.g. field vs 

laboratory) and tag insertion position (dorsal or ventral). 

 

Table 5 - 2 Summary of the tag loss rate estimated for different species of lobsters.  

Species Experiment Tag 

position 

Sex % TL 

Annually  

 Annual TL % References 

Year 

1 

Year 

2 

Jasus 

edwardsii 

Field  ventrally M & 

F 

15.7 Male 18.0 14.0 Current study 

 Female 10.0 24.0 

Jasus 

varreauxi 

Laboratory dorsally M & 

F 

8.0    Montgomery 

and Brett 

(1996) 

Jasus 

edwardsii 

Field ventrally M 13.4    Frusher et al. 

(2009) F 6.1    

Palinurus 

elephas 

Field dorsally M 6.8    Gonzalez-

Vicente et al. 

(2012) 
F 5.0    

 

In this study many of the lobsters captured already had a single tag and the extra (double) tag 

inserted was a new tag. The increased rate of tag loss of lobsters that had either one or two 

old tags (i.e. tags inserted a least one year prior to the year of capture) indicates that, over 

time, tags are able to work their way out of the lobster or are weakened such that they are 

more easily removed. Although the difference was relatively small, further studies into the 

longevity of tags inserted into lobsters are required as chronic and non-linear tag loss rate is 

problematic in many mark recapture models such as multi-year mark recapture models. 

Similar to Frusher et al., 2009, this study also found annual tag loss rate to be chronic and 

similar from year to year although at a higher rate. The continued loss of tags needs to be 

factored into mark recapture experiments as it reduces the number of tagged lobsters in the 

population available for recapture during the recapture surveys and would result in an under-

estimation (negative bias) of survival rates (Pollock et al., 1990) and over-estimation 

(positive bias) of population size (Pollock and Alpizar Jara, 2010). 
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The rate of tag loss varied between sexes. Females had a lower rate of tag loss than males 

over a 12-month period between tagging and recapture event which was similar to previous 

studies undertaken on Jasus edwadsii and Palinurous elephas in the field (Frusher et al., 

2009; Gonzalez-Vicente et al., 2012). Although the rate of tag loss for both sexes was higher 

than Frusher et al. (2009), females were estimated to have approximately half the tag loss 

rate of males. In contrast, Gonzalez-Vicente et al. (2012) estimated substantially lower tag 

loss rates for both males and females of P. elephas with only a minor difference between 

sexes. The lower tag loss rate in females may be due to the ventral positioning of the tag 

which would be protected by the larger pleopods and the developing eggs in females which 

occur for 5-6 months of the year. 

However, in contrast to the findings of Frusher et al. (2009), the annual tag rate declined for 

males between the first and second year and rapidly increased for females. This may have 

been associated with lower sample sizes in the current study, as Frusher et al. (2009) and 

Gonzalez-Vicente et al. (2012) tagged 700 lobsters and 2486 lobsters (64.2 % females) 

respectively, whereas only 575 lobsters were double tagged in this study. Although an 

accurate number could not be determined, greater than 575 lobsters need to be double tagged 

and approximately 1000 lobsters is likely to be a better sample of tagged individuals. Given 

the magnitude of tag loss rate and the contrasting results for males and females and between 

different studies on the same species, further research conducted over longer periods of time 

(i.e. > 3 years) and with larger sample sizes is warranted.  

Although the number of lobsters tagged in this study was low and this made it difficult to 

estimate the rate of tag loss for males and females over two years, results from this study 

confirm that tag loss rate is relatively high (between 5-20%) and thus important if population 

size and survival or mortality rate are to be estimated from tagging studies. The history of the 

tag (i.e. whether synchronously or non-synchronously tagged) and the sex of the species 
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being tagged will also bias population parameter estimates from tagging studies. In-situ 

double tagging experiments should be an important component in the initial design of 

tagging studies. 
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Chapter 6 General Discussion  

The development of future management strategies is dependent on the quality and quantity of 

data available for assessment of natural resources. In the marine environment the provision 

of such data is even more problematic as it is not possible to directly observe aquatic 

animals. For fisheries, the sources of data are either fisheries dependent, where the industry 

supplies information (e.g. catch and effort data in mandatory log books) or independent 

where scientists control the design and collection of information or a combination of both 

where fishers participate in scientifically designed data collection projects or programs. 

Fisheries dependent data collected by routine fishing operations is limited by (i) regulatory 

factors including minimum size limit, seasonal closures, fishing effort and landings and (ii) 

fishers’ decisions associated with economic yield as fishermen chase profits (e.g. they may 

change the locations of fishing to obtain the best catch rate). While fisheries dependent data 

comes from all regions of the fishery and during times when the fishery is operating, fishery 

independent data is normally associated with short time intervals and few locations due to 

funding constraints. 

Annual estimates of population size are required to determine the amount of fish available 

for harvesting. Population size is affected by birth, immigration, emigration and mortality 

(natural and fishing). In fishing areas, the density of legal size animals can be substantially 

reduced by fishing. Survival or natural mortality (1 - natural survival) estimates have proven 

to be difficult to estimate in fished regions where attribution between fishing and natural 

causes of mortality are confounded. Studies in regions where fishing is prohibited can 

provide valuable insights into natural mortality as it is not complicated by fishing. However, 

the size structure and density in fish protected areas is different to that within fished areas 

and extrapolation to fished areas needs to be undertaken with caution. However, given the 
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difficulty in estimating survival probability, these estimates do provide valuable insights into 

the potential magnitude of natural mortality.  

Fisheries dependent data relies on catch and effort data to obtain population size and there 

are concerns that this data will become less reliable as fisheries adopt output controls such as 

quota systems. Under a quota system fishers aim to maximise return per fish ($/kg) rather 

than maximising catch. This can result in fishers changing behaviour to target different 

locations and/or times of the year when fish prices are higher but catch rates are lower or 

they may prefer to discard less valuable catches and allocate their quota to more valuable fish 

(i.e. high grading). Under quota management systems, fishery independent methods for 

estimating population size may become increasingly required if the relationship between 

catch rates and abundance dissolves.  

Tagging is one of the most widely used tools in fisheries science and capture-mark-recapture 

models are able to estimate both survival probability and population size. Many of these 

models require multiple tagging events and a large number of animals to be tagged to provide 

sufficient precision and accuracy in parameter estimates. However, like most fishery 

independent studies, surveys can be expensive and thus it is important to minimise costs 

while ensuring the appropriate outcomes are achieved. While there is a range of software 

available for analysing CMR data, including statistical methods for selecting the best fitting 

model from a range of possible models (Lebreton et al., 1992), limited attention has been 

given to some of the pragmatic issues associated with sampling design including the costs of 

research and the trade-off between costs and accuracy and precision of estimated parameters. 

For example, small sample size rendered 98% of small mammal studies (McKelvey and 

Pearson, 2001) ineffective highlighting the need for careful consideration of the number of 

surveys, sampling days per survey and sampling units per sampling day. 
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CMR studies are also likely to be restricted by funding and time. Although it is well known 

that the accuracy and precision of estimates increase with sampling design, there is a trade-

off between research funding and the precision of estimates. A cost-effective CMR design 

can minimize the cost of the study, whilst ensuring that the required precision and accuracy 

of estimates are provided for sustainable fisheries management. The aim of this study was to 

examine a cost-effective sampling design for estimating survival probability of Jasus 

edwardsii in the Crayfish Point Scientific Reserve (CPSR) where fishing has been banned 

since 1971.  

Although, this study was conducted in a no-fishing area, the outcomes of this study can be 

used as a guideline for applying CMR studies in fished and non-fished areas. Whilst, the 

most cost efficient outcomes for sampling design are discussed in this study, some issues 

including density and size structure of target animals need to be taken into account for 

applying the outcome of this study for the same species in fished areas. For estimating 

survival probability, no-fishing areas can be beneficial as there are no confounding effects of 

fishing and the probability of recapture of each tagged lobster is higher. For example, Olsen 

and Moland (2011) found that 50% of tagged animals can be removed by fishing. However, 

the size structure of the target animal is often wider in the no-fishing area where super legal 

size individuals can be a considerable proportion of the population. Survival rates may 

therefore be lower than a fished population as older animals are expected to have higher 

mortality rates. 

The current study was conducted on Jasus edwardsii, which has high site fidelity (Gardner et 

al., 2003; Barrett et al., 2009). The CPSR, which is surrounded by non-reef habitat, is an 

ideal place to undertake the study as apparent survival probability estimates are unlikely to 

include effects of migration. In studies where animals have low site fidelity or high rates of 

migration mark-recapture survival probability estimates will be underestimates of actual 
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survival probability as emigration of tagged lobsters will have the same impact as natural 

mortality, tag loss or tag induced mortality.  

In multiyear CMR studies, any specific pressure on the target population may affect the 

outcome of the study. The result of this study showed that translocation of lobsters to the no-

fishing area affected sex ratio of tagged and/or recaptured lobsters in favour of males. Whilst, 

72% of translocated lobsters were females, survival probability of females reduced from 0.78 

yr
-1

 to 0.60 yr
-1 

since translocating in November 2005.  It appears that translocated lobsters 

may have been in excess of the carrying capacity of the CPSR resulting in either emigration 

or death of tagged females. 

 

6.1 Developing a capture-mark-recapture design for estimating survival 

probability 

In this study, a long term tagging data set from a population of Jasus edwardsii at Taroona, 

Tasmania, Australia was used to investigate the impact of the number of surveys and interval 

size between surveys (Chapter 2), and sample size and effort (Chapter 3), on the precision of 

survival probability estimates.  

Whilst three-annual surveys are common in CMR studies, the result of this study showed that 

at least five annual surveys were required to obtain precise survival probability estimates at 

the level of 5% RSE for males and females, separately. Similarly Nowicki et al. (2008) also 

required five surveys to obtain a precise estimate of population size for white-clawed 

crayfish (Austropotamobius pallipes). In comparing between surveys undertaken at either 

equal or unequal time intervals between surveys, unequal survey intervals required more 

surveys to obtain similar precision to surveys with approximately equal intervals between 

surveys. Thus, equal interval survey designs were more cost-effective than unequal interval 

designs. 
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Examination of the amount of sampling effort required to achieve acceptable estimates of 

survival probability for males and females found that with increasing sampling effort 

(number of surveys and sample size) the most parsimonious model for estimating survival 

probability shifted from sex-independent towards sex-dependent. Although there was a 0.2 

unit difference in survival probability between males and females, at least four sampling days 

using 50 traps were required for the most parsimonious model to be sex specific. However, 

depending on the requirements of the users of the data, sex differences of this magnitude may 

not warrant the extra costs associated with sampling. 

A minimum of 500 lobsters (of approximately equal number of each sex) were needed to be 

tagged to obtain precise survival probability estimates. Depending on the costs of the survey, 

this could be achieved in the CPSR with either 30 traps over 4 sampling-days or with fewer 

traps (e.g. 15 traps) over longer sampling-days (e.g. six sampling-days) to estimate survival 

probability of combined sexes. Although the CPSR is in relatively protected waters and close 

to the research laboratories resulting in the requirement of a small vessel for a short period of 

time, the cost of vessel use and labour have resulted in many surveys being restricted to four 

days to match the Australian working week (Monday to Friday). Lower effort would also 

result in lowering the precision of the survival probability estimates. This study used a 

relative standard error of 5% and fisheries managers and/or assessment scientists may 

consider less precision is required, which would result in fewer traps or fewer trapping days. 

Thus it is important for the experimental design to be matched to the expected level of 

precision required by management. 

 

6.2 Tag induced mortality (TIM) and tag loss (TL) 

Tag induced mortality (TIM) and tag loss (TL) both reduce the initial number of tagged 

animals in the population and can bias parameter estimates. If the rate of tag loss or tag 



 

93 

 

induced mortality is substantial, survival probability would be under-estimated and 

population size overestimated (Pollock et al., 1990; McDonald et al., 2003).  

In this study, a three-survey model was used to obtain in situ estimates of TIM proportion 

(Chapter 3).  

Estimates of TIM proportion for this study were relatively high being on average between 

25% and 40%. Although high, these estimates are similar to other studies across different 

species of lobster irrespective of the sampling design both in situ (current study) and in 

aquaria and/or in sea-cage studies (Montgomery and Brett, 1996; Dubula et al., 2005). For 

example, Dubula et al. (2005) found that the rate of TIM in Jasus lalandii was 27% and 46% 

in aquarium and in sea-cage studies, respectively. When TIM rate is high, and not accounted 

in mark-recapture designs, estimates of population size will be substantially overestimated 

and would lead to inappropriate management decisions of the amount of allocated catch. 

The precision of TIM proportion estimates is dependent on the number of tagged lobsters 

recaptured in two successive surveys from the initial tagging event. For lobsters in the CPSR 

a minimum of 15 lobsters were required to be recaptured in the third survey that were tagged 

in the first survey and also recaptured in the second survey. To meet this criterion for 

separate estimates of TIM proportion for males and females separately, trapping effort was 

greater than required to estimate survival probability. Approximately, 600 trap lifts were 

required for males and 1200 for females. The higher effort required for females reflected the 

lower recapture probability. While there was limited data available to compare differences 

between sexes, the available data did suggest that differences may be small and thus a 

combined estimate might be sufficient. A combined estimate required approximately 400 

trap lifts which is almost double the estimated number of traps lifts required to estimate 

survival probability. Whereas survival probability estimates could be achieved with 50 traps 

over four days, to be able to estimate TIM proportion over four days (and thus fit into a 
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standard working week) twice as many traps would be required and consideration needs to be 

given to the extent of habitat that can be surveyed as well as the logistics of servicing this 

many traps. 

In addition to TIM, tag loss also impacts the outcomes from survival probability estimates 

and in lobsters has been assumed to be low. Tag loss can be caused by either the method 

(poor tag insertion) or the environment including the tagged animal rejecting or removing the 

tag. The design of double tagging experiments including the timing of double tagging, 

sample size and sex differences can also affect the precision and accuracy of tag loss rate 

estimates.  

Estimates of tag loss rate from this study were higher than previously reported for J. 

edwardsii (Frusher et al., 2009) and other species (Montgomery and Brett, 1996; Gonzalez-

Vicente et al., 2012). A possible explanation for the higher rate of tag loss was asynchronous 

application of both tags. Old tags have a slightly higher rate of tag loss and many lobsters in 

this project already had an existing tag and thus the second tag was added to an existing 

single tagged lobster (Chapter 5). Other studies have also reported that tag durability 

decreased with the time after tagging both in lobsters and fish (Frusher et al., 2009; Rude et 

al., 2011; Bodine and Fleming, 2014).  

This study was unable to define the minimum sample size required to obtain a precise 

estimate of tag loss rate due to the low number of lobsters double tagged. However, the 

number of double tagged lobsters is expected to be in excess of the number required to be 

tagged to estimate survival probability or tag induced mortality.  

 

6.3 Combined estimates 

Estimates of tag induced mortality and tag loss have not been incorporated into the survival 
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estimates. Results from this study found that at least 5 surveys were required to obtain 

precise estimates of survival based on Cormack-Jolly-Seber (CJS) mark-recapture models 

(Chapter 2).  These survival estimates are based on recaptures across a number of surveys 

where tag loss and TIM would have different impacts. For example, TIM only impacts 

between the first and second annual survey and not between subsequent surveys. While these 

estimates are not additive they can provide approximate estimates of the mortality schedule. 

For example, in a study commencing in 2000, male mean annual survival from a 5 survey 

design was estimated at 61% (Figure 2-4), TIM at 34% (Table 4-3) and tag loss was 16% 

(Table 5-2). Combined these add to 111%. In contrast, for the study commencing in 2005, 

these estimates were 63%, 12% and 16% respectively and combined these totalled 91%. 

Although survival estimates will alter when TIM and tag loss are incorporated into the CJS 

models, these would suggest that natural mortality is low which is consistent with the stock 

assessment models used for this species. Further research incorporating TIM and tag loss into 

the estimation of survival is required given the magnitude of these estimates found in this 

study. 

 

6.4 Survey design 

In this study I have demonstrated the need to consider sample design in developing tagging 

studies as well as the need to consider factors influencing the fate of tagged lobsters (tag 

induced mortality and tag loss). Ideally it would be appropriate to design a tagging survey to 

achieve all of these objectives (survival probability, TIM, tag loss). The number of lobsters 

required to provide precise and accurate estimates of the required values varies for each of 

the objectives and studies need to focus on the maximum number needed. For example, using 

the results of this study for southern rock lobster a five year study is required. In the initial 

survey at least 1000 lobsters should be double tagged to estimate tag loss rate followed by 
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two other tagging surveys where at least 400 trap lifts are undertaken to estimate tag induced 

mortality proportion and a further two recapture events (fourth and fifth survey) is required 

to estimate survival probability. Such a design should optimise outcomes while also being 

cost-effective. 

Combined studies that target the objectives of the study and provide for additional 

information necessary in interpreting parameter estimates should be considered as normal 

practice in designing tagging projects for marine animals where estimates are required for the 

management of marine resources. This thesis brings together a series of methods that can be 

used to develop an optimal design providing prior knowledge on catch rates is available. 

While estimation of the proportoin of lobsters dying from tagging (TIM) and the rate of tag 

loss require greater effort and number of animals to be tagged, these estimates are likely to be 

relatively consistent over time and may only need to be estimated at less regular intervals if 

longer-term tagging studies are envisaged. 

 

6.5 Future Work 

Although, a 12-year tagging data-set was used for estimating survival probability, there were 

some restrictions to use the whole data-set in this study. As individual surveys were 

originally designed for different projects, number of traps and trapping-days were varied 

among the surveys. This issue placed some restrictions on using the whole data-set. For 

example, only one and three out of 10 three-survey designs provided enough data to estimate 

tag induced mortality proportion for females and males, separately. 

 

 

Further research that should be undertaken include: 

 

1) The results of this study were conducted on lobsters in a no-fishing area and while I 

suggest that they can be applied as a cautionary guideline for studies in a fished area, 

I believe that greater effort is required to examine cost-effective CMR designs on the 

species in fished areas where fishing reduces the size structure and density of target 

species and also removes tagged animals in the population.   
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2) Behaviour of species can affect CMR study design. Unfortunately, there were limited 

sample sizes to look at the effect of different size groups of lobsters. For example, it 

has been shown that there is a size hierarchy in catchability of lobsters (Frusher and 

Hoenig, 2001a; Ihde et al., 2006). Further work on understanding the impacts of this 

behavioural trait on survival and how it might bias survival probability estimates 

would be worthwhile.  Developing a model using size as a co-variate based on 

increased numbers of small and medium sized lobsters (males) and small and large 

lobsters (females) should be undertaken. 

 

3) There are a range of environmental factors that potentially impact catchability and 

thus CMR outcomes. These can include water temperature, lunar cycle (moon phase) 

and swell. Resent research showed that the East Australian Current (EAC) is 

expanding southwards which is expected to impact recapture probability of lobsters. 

It has been shown that moon phase impacts daily catch rates of western rock lobster, 

but it is unclear how lunar cycle (moon phase) affects the catch rate of lobster in the 

Crayfish Point Scientific Reserve where the maximum depth is 15 m.  
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