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Abstract 

Vacuum-packaged (VP) beef produced and packaged in Australia can have an unusually 

long shelf-life. This observation has been attributed, in part, to superior abattoir hygiene, but 

there is an absence of robust scientific evidence to support this claim. While plant hygiene 

may be an important factor in extending VP beef shelf-life, there are likely other contributing 

factors. 

Bacteria rarely exist in isolation and occur as members of a microbial niche. Numerous 

published studies have described the composition of bacterial species within food, including 

the influence of the environment; however, limited attention has been given to understanding 

how bacteria interact within foods, and how this contributes to the overall formation of a 

microbial community. The aim of the present study was to define how specific environmental 

factors, relevant to Australian VP beef, influence the interactions among bacteria. 

Interactions among representative species of bacteria isolated from Australian VP beef 

primals were investigated. From a set of strains, 39 isolates inhibiting (effectors) other 

bacteria, and 20 isolates actively inhibited (targets) by effectors, were selected for further 

study. These isolates represented ten bacterial genera; including Carnobacterium, 

Pseudomonas, Hafnia, Serratia, Yersinia, Rahnella, Brochothrix, Bacillus, Leuconostoc, and 

Staphylococcus. A number of interactions were observed, with 28.6% inhibiting and 4.2% 

promoting target isolate growth. All lactic acid bacteria (LAB) inhibited other species, 

especially Carnobacterium maltaromaticum, which inhibited the growth of a wider range of 

target isolates, compared to other LAB. The majority of Pseudomonas isolates antagonised 

growth of approximately one-half of target isolates. Two Bacillus spp. each inhibited the 

growth of 16 target bacteria. The majority of effector isolates that enhanced target isolate 

growth were Gram-negative bacteria, including Pseudomonas spp. and Enterobacteriaceae. 
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The mechanisms of interactions were partially characterised for eight effector-target 

isolate combinations. The inhibitory effects of two isolates of C. maltaromaticum and one 

isolate of Bacillus subtilis was mediated by heat-stable, pH-stable, proteinaceous substances 

found in cell-free supernatants (CFS). In contrast, live cells were required for the inhibitory 

activity of three isolates of Bacillus sp., Pseudomonas putida, and a Pseudomonas sp. against 

corresponding isolates of Yersinia enterocolitica, C. maltaromaticum and B. subtilis, yet this 

inhibitory effect did not require direct contact between effector and target cells. Compounds 

produced by B. subtilis and Serratia sp. that promoted the growth of Pseudomonas lundensis 

were non-proteinaceous and were heat- and pH-stable. 

The next phases of the thesis quantified the effect of simulated intrinsic VP beef factors 

and associated extrinsic storage conditions (i.e. pH, temperature, atmosphere, glucose, and 

lactic acid) on: 1) the sensitivity of target isolate C. maltaromaticum strain D8c to inhibition 

caused by effector strain C. maltaromaticum D0h and, 2) the production of inhibitory factor(s) 

by C. maltaromaticum D0h. In the former study, all five environmental factors significantly 

(P < 0.05) affected sensitivity of C. maltaromaticum D8c to D0h CFS inhibitory activity. 

Inhibition sensitivity was relatively higher at low pH (5.5), at higher concentrations of 

glucose (5.55 mM) and lactic acid (50 mM), and under aerobic conditions. The sensitivity of 

strain D8c did not correlate linearly with temperature; since inhibition was greatest at 15
°
C, 

followed by 7, -1, and 25
°
C. Preliminary models were produced to describe D8c sensitivity. 

Furthermore, the influence of pH, atmosphere, glucose, and lactic acid on production of 

inhibitory compounds by D0h was studied at 25
°
C. It was found pH produced the greatest 

influence on inhibitor production, compared to atmosphere, glucose, and lactic acid. The 

lowest amount of inhibitor was produced at an initial medium pH of 5.5. Lactic acid 

significantly reduced production, but only at an initial pH of 5.5. A two-factor interaction was 

observed between glucose and pH; relatively high concentrations of glucose (5.55 mM) 
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enhanced the production at pH 6.5, whereas production decreased at pH 5.5. Atmosphere did 

not significantly affect inhibitory activity. 

In conclusion, numerous interactions among the bacterial community of VP beef were 

described, and potentially drive formation of the microbial spoilage community, as 

influenced by environment. Intraspecific interactions between two C. maltaromaticum 

isolates were significantly affected by pH, atmosphere, lactic acid, glucose, and temperature. 

These findings, and the resulting models, may improve the understanding of putative 

interactions among spoilage bacteria in meat, in particular C. maltaromaticum, one of the 

most dominant bacterial species on chilled VP beef. 
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Chapter 1 

General introduction 

 

BACKGROUND AND STUDY AIMS 

Australia is one of the largest global exporters of beef, shipping beef products to more 

than 100 countries. Export has shown sustained growth over the past ten years and reached 

1.29 million tonnes in 2014, accounting for 74% of the total Australian beef production 

(MLA, 2015). Consequently, producing high-quality beef is a primary goal of the Australian 

meat industry.  

Long beef shelf-life is a prerequisite, especially for international markets compared to 

domestic market. Beef products for exports are normally vacuum-packaged (VP) as primal 

cuts in plastic films (CSIRO, 2009). Australian VP beef primals stored at optimal commercial 

conditions (-0.5
o
C) have a long shelf-life, 26–30 weeks (Small et al., 2012), however, the 

scientific reason for this is not well elucidated. Besides low levels of bacteria present before 

packaging, a specific bacterial composition, and interactions among bacteria, may contribute 

to the enhanced shelf-life.  

Bacterial interactions are one of the underlying forces that influence diversity of bacterial 

community in a niche (Blana and Nychas, 2014; Faust and Raes, 2012; Perez-Gutierrez et al., 

2013; Wolfe et al., 2014). Bacteria compete via secreting defensive compounds, directly 

‘scrambling’ for nutrients, or performing contact-dependent inhibition (Avendano-Perez and 

Pin, 2013; Cotter et al., 2013; Faust and Raes, 2012; Hayes et al., 2014; Hibbing et al., 2010; 

Oliveira et al., 2008; Russell et al., 2011; Vaughan et al., 2001). Conversely, some bacteria 

are able to cooperate by exchanging metabolic products or via quorum sensing systems 
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(Buckling et al., 2007; Faust and Raes, 2012; Giaouris et al., 2015; Pande et al., 2015; 

Ponomarova and Patil, 2015; Skandamis and Nychas, 2012). These interactions may also be 

affected by environmental factors, for example, pH, temperature, and available nutrients. 

However, research leading to understanding these processes, as they pertain to food-sourced 

bacteria, remains limited.  

Therefore, this thesis aims to elucidate: 

a. interactions among bacterial genera that predominate on VP beef; 

b. possible mechanisms mediating relatively strong interactions between VP beef-associated 

bacteria; 

c. effects of environmental factors on these interactions. 

 

STRUCTURE OF THE THESIS 

This thesis contains seven chapters: 

Chapter 1 (this chapter): The background, study aims, and the structure of the thesis are 

described. 

Chapter 2: The background research regarding potential contamination sources of VP beef 

during production, dominant bacterial species on VP beef, and putative factors in bacterial 

interactions are reviewed. 

Chapter 3: The interactions among bacterial isolates of ten genera obtained from Australian 

VP beef, including Carnobacterium, Leuconostoc, Brochothrix, Pseudomonas, Serratia, 

Hafnia, Rahnella, Yersinia, Bacillus, and Staphylococcus, are described. 
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Chapter 4: The possible mechanisms mediating the interactions found in the previous chapter, 

to help understand the effect of environmental factors on these interactions, are elucidated. 

Eight combinations of effector and target isolates showing relatively strong interactions were 

studied. 

Chapter 5: The effects of environmental factors of VP beef on the sensitivity of target isolate 

Carnobacterium maltaromaticum D8c to inhibitory compounds produced by effector isolate, 

C. maltaromaticum D0h, are described. This chapter has been submitted to a refereed journal, 

and includes preliminary characterization of interacting compounds produced by C. 

maltaromaticum D0h, data for which are also shown in Chapter 4. 

Chapter 6: The effects of environmental factors on production of inhibitory factors by 

effector isolate C. maltaromaticum D0h are explained. 

Chapter 7: The results achieved in this thesis and future research directions are discussed. 
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Chapter 2 

Literature review 

 

Australian vacuum-packaged (VP) beef primals have a long shelf-life. Small et al. (2012) 

investigated striploins and cube rolls collected from six Australian processing plants located 

over a wide range of latitudes, ranging from Tasmania (41.5S) to northern Queensland 

(19.2S). The study proved that beef primals achieved a shelf-life of at least 26 weeks, and 

bacterial counts on beef sample surface rarely reached 7 log cfu/cm
2
 even after 30 weeks. 

Well-managed beef processing (low initial microbial loads at the time of packaging) and 

storage (low temperature and low oxygen gaseous atmosphere) conditions may together 

contribute to the extended shelf-life. The composition of the meat bacterial community and 

bacterial interactions may also benefit extended long VP beef shelf-lives (Youssef et al., 

2014a). 

This review first introduces the process of beef production and potential contamination 

sources during production, the microbial community associated with VP beef spoilage, and 

environmental factors influencing spoilage. Thereafter, the review progresses to discussing 

bacterial interactions, possible influential environmental factors, and predictive models that 

consider bacterial interactions. 

 

BEEF PRODUCTION AND POTENTIAL CONTAMINATION SOURCES 

Livestock are prepared to be slaughtered once arriving at an abattoir. Pre-slaughter 

washing is normally applied to cattle to clean their hides (Byrne et al., 2000). Cattle are 
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immediately bled after stunning, followed by carcass processing in a series of procedures 

including skinning, evisceration, trimming and carcass washing, weighing, grading, and 

chilling (Rowlands, 2010). Beef carcasses are then chilled to 4
o
C or lower within 12 hours 

after slaughter (Rowlands, 2010).  

Initial microbial loads play a significant role in determining the quality of meat; as a result 

an hygienic environment is required during meat production (CSIRO, 2009). In general, the 

muscle tissue of a healthy animal is free of microorganisms, while the surface of the carcass 

is frequently contaminated during slaughter and processing (Huffman, 2002; Kperegbeyi, 

2014). Significant differences in beef carcass contamination have been found among animal 

farms, abattoirs and meat processing plants (Sofos et al., 1999; Zweifel et al., 2005). 

The processing sites for hide removal are the first immediate sources of carcass 

contamination (Bell, 1997). Contamination from within the processing environment (e.g. 

hands of workers) and from animal hides may be transferred to the surface of carcasses 

(Aslam et al., 2003; McEvoy et al., 2000). A positive relationship between the extent of hide 

contamination and bacterial loads on cattle carcasses has been found (McEvoy et al., 2000). 

Animal hides, especially the areas of the brisket, distal leg, and crotch, are the most easily 

contaminated by microorganisms from soil and faeces (Antic et al., 2010; Reid et al., 2002). 

Nevertheless, information on the diversity of bacterial species that may contaminate carcasses 

and subsequently affect shelf-life of beef products remains limited. Material from the 

gastrointestinal tract is an another contamination source, especially during evisceration if 

perforation occurs (CSIRO, 2009). Post-evisceration washes are able to reduce the bacterial 

counts on carcasses and also lead to the redistribution of organisms on carcasses (Bacon et al., 

2000; Bell, 1997). Bacterial contaminants can include a diverse range of bacteria, for 

example, Clostridium, Acinetobacter, and Enterococcus (Callaway et al., 2010; Dowd et al., 

2008). 
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After carcass chilling the next step is boning, in which carcasses are cut into small pieces 

or primals, for example, silverside, blade, striploin, and cube roll (AUS-MEAT, 2010). 

Packaging is often finished within 24 hours from slaughter. For Australian beef, primal cuts 

(2–9 kg) are normally vacuum-packaged in plastic film before being sold internationally or to 

domestic retailers (CSIRO, 2009). To ensure a longer storage life, packaging films should 

have low permeability to gases. In general, a small fraction of oxygen remains in the package 

and is absorbed by muscle tissue and microorganisms that exist on the meat surface. The 

storage temperature is typically -0.5 ± 0.5
o
C under optimal commercial conditions, especially 

for export, and is a key factor influencing the shelf-life of beef products (CSIRO, 2009; Small 

et al., 2012).  

 

VP BEEF SPOILAGE ASSOCIATED BACTERIA 

The spoilage of meat is a deterioration process of its sensory quality, which is caused by 

protein degradation of meat itself, and more importantly by the metabolic activity of its 

microbial community (Borch et al., 1996; Ellis et al., 2002; Nychas and Tassou, 1997). The 

development of off-odours, off-flavours, discoloration, and slime formation renders meat 

products unacceptable for human consumption. During meat processing and packaging, 

microorganisms have opportunities to attach to meat surface via van der Waals’ or 

electrostatic forces, and then steadily colonize it via glycocalyx formation (Chung et al., 1989; 

Zulfakar et al., 2012). Microorganisms are able to consume meat nutrients such as glucose, 

amino acids, and lactic acid, and produce undesirable metabolites including alcohols, ketones, 

amines, sulphur compounds, and organic acids. Proteins are often used as carbon sources by 

spoilage microbes at the end of meat storage (Montel et al., 1998; Nychas et al., 2008). Lactic 

acid bacteria (LAB), Enterobacteriaceae, Pseudomonas, Clostridium, and Brochothrix 

thermosphacta are the most common types of bacteria involved in beef spoilage (Brightwell 
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et al., 2009; Doulgeraki, 2010; Doulgeraki et al., 2012; Ercolini et al., 2009; Ferrocino, 2009; 

Pennacchia et al., 2011). 

Lactic acid bacteria. Psychrotrophic LAB are the most common bacteria associated with 

chilled VP beef spoilage (Borch et al., 1996). At the beginning of storage, LAB are often 

below detection limits; however, due to their adaptive capacity under anaerobic refrigeration 

conditions, their populations gradually increase and dominate the microbial community when 

maximum spoilage populations are reached (Hernandez-Macedo et al., 2011); the 

mechanisms by which they eventually predominate are not well described. 

Lactobacillus, Leuconostoc, Enterococcus, Lactococcus, and Carnobacterium are the 

main LAB genera that are well adapted in VP beef environments (Brightwell et al., 2009; 

Chaves et al., 2012; Gill and Badoni, 2002; Jones, 2004; Laursen et al., 2005; Pennacchia et 

al., 2011; Sakala et al., 2002; Samuel et al., 2011; Yost and Nattress, 2002; Youssef et al., 

2014a). In the study of Jones (2004), Enterococcus gilvus was reported as the most dominant 

LAB on chilled VP beef samples followed by Carnobacterium divergens, Enterococcus 

faecium, and Leuconostoc mesenteroides. However, Sakala et al. (2002) reported 

Leuconostoc gelidum, Lactococcus piscium and Lactobacillus algidus as dominant LAB 

species on VP beef stored at 2
o
C for up to 6 weeks, and C. divergens and C. maltaromaticum 

were present at relatively low levels. Brightwell et al. (2009) reported members of the genus 

Carnobacterium as the most abundant LAB in spoilage communities on VP New Zealand 

beef with C. divergens and C. maltaromaticum the two main species present.  

The dominant LAB species composition on VP beef can be affected by contamination 

during processing, storage temperature, and the vacuum-packaging method (traditional 

vacuum-package (TVP) versus advanced vacuum skin packaging (AVSP)) (Samuel et al., 

2011; Yang et al., 2009). Carnobacterium maltaromaticum displayed a higher growth rate at 
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0–4
o
C compared to L. mesenteroides and Lactobacillus lactis; whereas, the growth rates of 

these species were similar at 4–8
o
C (Yang et al., 2009). Samuel et al. (2011) applied a high 

temperature heating of package film immediately before it attached onto beef surface (AVSP); 

a lower proportion of L. mesenteroides was found compared to TVP without heating. 

A few LAB species contribute to meat spoilage through released metabolites, leading to 

organoleptic deterioration of meat (Pothakos et al., 2015). LAB are able to utilize glucose and 

other substrates in meat, and then produce metabolites having acidic or milky flavours, and 

cheesy or dairy odours. Occasionally, LAB may also produce gas (CO2) that can lead to 

package failure (Hanna et al., 1979; Hernandez-Macedo et al., 2011; Jones, 2004). On beef 

steaks, Leuconostoc gasicomitatum can cause green discolouration and off-odours 

(Vihavainen and Bjorkroth, 2007). This species can produce diacetyl, which manifests as 

buttery off-odours of meat products (Jaaskelainen et al., 2013; Johansson et al., 2011; 

Pothakos et al., 2014). Growth of L. mesenteroides can account for increased levels of butyric 

acid in meats, a compound associated with rancid/buttery flavours and odours (Jones, 2004). 

Carnobacterium maltaromaticum and L. sakei have also been reported to cause off-odours 

and discoloration of VP beef slices stored at 2
o
C (Leisner et al., 1995). Carnobacterium 

maltaromaticum produces volatile compounds, for instance, acetoin, 1-octen-3-ol, butanoic 

acid, aldehydes, lactones, and sulphur-containing compounds, all of which are related to beef 

deterioration (Casaburi et al., 2011; Ercolini et al., 2009). However, Casaburi et al. (2011), 

who investigated the spoilage potential of 54 strains of C. maltaromaticum, considered that 

the overall impact of C. maltaromaticum metabolizing activity on VP meat spoilage is either 

weak or negligible. 

On the contrary, LAB have been regarded as potential protective cultures due to their 

ability to produce organic acids and/or bacteriocins, which are unfavourable to the growth of 

other bacteria (Pothakos et al., 2015; Signorini et al., 2006). Lactobacillus curvatus CRL705 
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extended the shelf-life of chilled VP beef and delayed beef tissue degradation for 10 days 

(Castellano et al., 2010). Also, blown-pack spoilage of VP beef was delayed by Lactobacillus 

sakei (Jones et al., 2009). In the study of Katikou et al. (2005), L. sakei 4808 reduced the 

spoilage microbial counts of VP sliced beef, while L. curvatus CECT 904
T
 did not have a 

significant effect. 

Overall, the role of LAB in meat spoilage is ambiguous, which is probably due to the 

heterogeneity observed amongst this group of bacteria (Pothakos et al., 2015). Future studies 

are still needed to understand the potential role of LAB in meat shelf-life at species or even 

strain level. 

Brochotrix thermosphacta. Brochthrix thermosphacta is a Gram-positive, non-spore 

forming, homofermentative, facultatively anaerobic rod-shaped bacterium. This species was 

first described from pork sausages in 1951 (Casaburi et al., 2014; Nowak et al., 2012; 

Sulzbacher and Mclean, 1951). Since then, it has been frequently detected on lamb, beef, fish, 

and cured meats (De Filippis et al., 2013). In the investigation by Nowak et al. (2012), B. 

thermosphacta was only absent in 2 of 132 meat samples. 

The development of B. thermosphacta in meat products displays a negative impact on 

meat sensory properties (Braun and Sutherland, 2003; McClure et al., 1993). It has the 

potential to produce histamine, putrescine, tyramine, cadaverine and tryptamine in meats 

stored aerobically (Emborg et al., 2005; Nowak and Czyzowska, 2011; Papadopoulou et al., 

2012). Proteolytic and lipolytic activities, which are associated with organoleptic changes of 

meats, have been reported for bacteria of this species, but variability exists among strains. For 

instance, in the study of Casaburi et al. (2014), none of the strains was able to produce lipase 

or digest proteins in vitro or in situ at 4
o
C or 20

o
C. Conversely, some other authors reported 

lipolytic activity of various B. thermosphacta strains and found that most strains prefer 
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relatively high temperatures for synthesizing lipase, for example, 20
o
C in the studies of 

Papon and Talon (1988) and Braun and Sutherland (2003), and 25
o
C in the study of Nowak et 

al. (2012). The strain studied by Labadie (1999) did not degrade proteins, while Braun and 

Sutherland (2003) observed proteolytic enzymes produced by B. thermosphacta in stationary 

growth phase but did not observe exoproteases at temperatures below 6
o
C. According to these 

studies, temperature is an important factor influencing lipolytic or proteolytic activity; 

however, the effect of oxygen remains unclear. 

Brochotrix thermosphacta is able to grow at refrigerated temperatures under anaerobic 

conditions (Pin et al., 2002). However, its growth capability in the absence of oxygen is 

relatively weak than when oxygen is present (Kamenik et al., 2014; Pennacchia et al., 2011; 

Sakala et al., 2002). Studies showed that vacuum-packaging reduced the viable counts of B. 

thermosphacta, and this species is not able to compete against LAB in VP chilled meats 

(Crowley et al., 2010; Gribble and Brightwell, 2013; Pennacchia et al., 2011; Russo et al., 

2006; Sakala et al., 2002). The environmental factors in VP meat, such as lactic acid, may 

also inhibit the growth of B. thermosphacta (Bell et al., 2001; Grau, 1980; Newton et al., 

1978). In the study of Bell et al. (2001), B. thermosphacta failed to grow on VP beef possibly 

due to relatively high levels of lactic acid in the meat tissue. 

The presence of oxygen not only affects the growth of B. thermosphacta but also its 

carbohydrate metabolism (Pin et al., 2002). Under anaerobic conditions, it mainly causes off-

odours by producing L-(+)-lactic acid, ethanol, and small amounts of short chain fatty acids 

via consumption of glucose; under aerobic conditions, acetoin, which is considered to be 

related to creamy dairy odour of meat, has been used as a spoilage marker of saveloy, and is 

the most important sensory-related compound produced by B. thermosphacta, (Casaburi et al., 

2014; Casaburi et al., 2011; Holm et al., 2013; Holm et al., 2012).  
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Enterobacteriaceae. Members of the family Enterobacteriaceae are often present amongst 

the spoilage flora on VP beef (Sakala et al., 2002; Youssef et al., 2014a; Youssef et al., 

2014b). Fresh beef normally contains a small population of enterobacteria, and the number 

increases during storage (Degirmencioglu et al., 2012). Due to lack of oxygen, vacuum-

packaging generally reduces the number of enterobacteria on beef compared to aerobic 

packaging (Pennacchia et al., 2011); therefore their populations are normally lower than that 

of LAB (Chaves et al., 2012; Degirmencioglu et al., 2012; Youssef et al., 2014b).  

Serratia spp., Hafnia alvei, Rahnella spp., and Yersinia enterocolitica are the most 

frequently encountered taxa detected on VP beef, and other species occasionally, such as 

Citrobacter freundi, can also be isolated (Brightwell et al., 2009; Ercolini et al., 2009; Yost 

and Nattress, 2002). Hafnia and Serratia have been reported to produce diamine and cause 

spoilage of meat (Dainty et al., 1986; Edwards et al., 1985; Gill and Penney, 1988; Nortje and 

Shaw, 1989). Members of Enterobacteriaceae, especially H. alvei have the potential to cause 

“blown pack” spoilage, which is characterized as gas production and pack distension 

(Brightwell et al., 2007; Chaves et al., 2012; Hanna et al., 1979; Hernandez-Macedo et al., 

2011; Kang et al., 2002). Ercolini et al. (2009) reported that Serratia proteamaculans 

produced high concentration of alcohols including 1-octen-3-ol, and esters, such as isoamyl 

acetate. 

Pseudomonas. Pseudomonads are also major contaminants of meat and are often isolated 

from fresh beef (Chandran et al., 1986; De Filippis et al., 2013; Doulgeraki et al., 2012; 

Labadie, 1999; Nychas et al., 2008; Sakala et al., 2002; Venter et al., 2006). They are 

regarded as important spoilers of meat stored aerobically (Borch et al., 1996; Doulgeraki et 

al., 2012). On VP beef, the growth of Pseudomonas spp. is normally restricted by limited 

available oxygen (Pennacchia et al., 2011). However, Pseudomonas spp. have been reported 

to grow under vacuum-packaging, which may be due to the relatively high gaseous 
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permeability of vacuum films (Ercolini et al., 2010; Newton and Rigg, 1979; Tsigarida and 

Nychas, 2001). In the study of Pennacchia et al. (2011), Pseudomonas spp. were detected in 

all stages of VP beef sample storage. Pseudomonas fragi is one of the most prevalent species 

contaminating meats and has the potential to produce 1-octen-3-ol, an off-odour of meat 

(Ercolini et al., 2011; Ercolini et al., 2009). In addition, high amounts of alcohols and ketones 

were detected in the head space of VP beef samples inoculated with P. fragi (Ercolini et al., 

2009). Pseudomonas putida is another species that has been frequently reported on beef 

products with the potential to produce cadaverine, a biogenic amine formed by 

decarboxylation of lysine, and is associated with meat organoleptic changes and general 

decay processes (Ozogul and Ozogul, 2007).  

Clostridium. In some instances, blown-pack spoilage (BPS) may unpredictably occur in 

chilled VP meats including beef, pork and poultry, at an early stage of storage (Adam et al., 

2010). Due to a large amount of gas production, primarily CO2, package distention (“blown”) 

often happens to BPS meats (Hernandez-Macedo et al., 2012). Psychrotrophic clostridia 

including Clostridium algidicarnis, C. algidixylanolyticum, C. estertheticum, C. frigidicarnis, 

C. gasigenes, and C. putrefaciens have been regarded as the main causative microorganisms 

of blown-pack spoilage of VP chilled meat that results in the production of abundant gas, off-

odours, exudates, proteolysis and changes in pH and colour (Adam et al., 2011; Adam et al., 

2010; Broda et al., 2002; Caplice and Fitzgerald, 1999; Cavill et al., 2011; Silva et al., 2011). 

In a four-year survey of the incidence of C. estertheticum and C. gasigenes, primal cuts in 

Ireland were found to be contaminated by these bacterial species at a low but persistent level 

(0.2–4.3 %) (Bolton et al., 2015). 

Other species. Fresh beef products often also contain other bacterial species besides the 

main contaminants mentioned above (Youssef et al., 2014b). However, due to the selection 

pressure of subsequent storage conditions, it is difficult for these species to dominate the 
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microbial community on VP beef (Ercolini et al., 2011). Species of the genera Acinetobacter, 

Staphylococcus, Shewanella, and Bacillus have been detected during the early stages of VP 

beef storage (Doulgeraki et al., 2012; Ercolini et al., 2009; Sakala et al., 2002; Youssef et al., 

2014b). Shewanella putrefaciens is able to utilize cysteine of meat and produce hydrogen 

sulphide and organic sulphides, which have unpleasant odours and react with myoglobin to 

cause greening of meat (Hernandez-Macedo et al., 2011). Microbacterium, Flavobacterium, 

Moraxella, Ralstonia, Limnobacter, and Photobacerium can also occur on beef (Doulgeraki 

et al., 2012; Ercolini et al., 2011; Pennacchia et al., 2011; Youssef et al., 2014b). Argyri et al. 

(2011) also reported minced beef samples contained yeasts and moulds.  

 

POTENTIAL FACTORS INFLUENCING VP BEEF SPOILAGE 

    Initial microbial population. The initial population of microorganisms contaminating 

beef strongly influences shelf-life (Yang et al., 2014b); hence, keeping hygienic production 

conditions is crucial. The animal hide is well recognised as a main source of carcass 

contaminants. Various carcass decontamination treatments have been applied in abattoirs, 

such as washing with hot water and organic acids (e.g. lactic acid), irradiation and steam 

pasteurization (Baird et al., 2006; Edwards and Fung, 2006). Investigations have shown that 

hot water, lactic acid, sodium hydroxide and phosphoric acid reduce the cell counts of 

Enterobacteriaceae (Baird et al., 2006; Bosilevac et al., 2005). Greig et al. (2012) analysed 

202 experimental trials in the published literature and applied a systematic meta-analysis. 

They concluded that some carcass treatments, hot water washing, steam pasteurization and 

dry-chilling, are effective measures in reducing generic and pathogenic strains of E. coli 

contamination on beef carcasses. Hydrodynamic pressure processing applied before beef 
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packaging was also reported to be efficient in reducing initial cell density (Williams-

Campbell and Solomon, 2002). 

Packaging films. Vacuum-packaging protects beef from contact with oxygen, thus 

inhibiting the growth of aerobic bacteria, such as Pseudomonas spp. (Hernandez-Macedo et 

al., 2011). The low permeability of VP film to oxygen is important to ensure a long shelf-life 

of beef. However, in the beginning of VP beef storage, the residual oxygen or dissolved 

oxygen existing inside the package may allow slight growth of aerobic bacteria. Barros-

Velazquez et al. (2003) improved the vacuum-packaging system by introducing instantaneous 

heating of the packaging film before it tightly attached to the meat surface; beef cuts with this 

advanced vacuum skin system displayed an overall higher quality. Post-packaging heat 

shrinking was reported to accelerate the onset of blown pack spoilage mediated by 

Clostridium spp. (Bell et al., 2001). Conversely, beef spoilage was retarded by the 

combination of vacuum pressure (9 mbar) and shrinking temperature (87
o
C) according to 

Silva et al. (2012). 

Use of antimicrobial agents along with vacuum-packaging. To extend beef shelf-life, 

beef processors may add antimicrobial agents to meat being vacuum-packed. Lactic acid 

application on the surface of beef, vacuum-packaging, and storage at 4 and 20
o
C, proved to 

be efficient for controlling spoilage populations including Enterobacteriaceae, Pseudomonas 

spp., and B. thermosphacta (Signorini et al., 2006). Other chemicals including sodium lactate 

and peroxyacetic acid also have the potential to extend VP beef shelf-lives (Brightwell et al., 

2009; Maca et al., 1997). Bacteriocins, as optimal alternatives to antibiotics, have also been 

applied to control spoilage bacteria on VP beef. Nisin was found to be efficient in reducing 

the cell counts of B. thermosphacta on VP beef (Siragusa et al., 1999; Tu and Mustapha, 

2002). Application of protective cultures is another option to retard meat spoilage. According 

to Castellano et al. (2010), application of Lactobacillus curvatus CRL705 as a protective 
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culture retarded VP beef deterioration for 10 days. Certain strains of L. sakei have shown 

some potential to improve VP beef shelf-life (Jones et al., 2009; Katikou et al., 2005). In 

addition, Aksu et al. (2015) applied aqueous extracts of lyophilized Urtica dioica L. (stinging 

nettle), which includes natural plant antioxidants, in VP beef steaks and found that this 

substance delayed beef spoilage for >3 days at 450 ppm and for 3 days at 150–300 ppm, 

respectively; the growth of LAB, Pseudomonas, and Enterobacteriaceae were all decreased. 

pH. pH is an important intrinsic environmental factor that influences the growth of 

bacteria. In general, the pH of raw beef is approximately 5.5, subject to the effects of animal 

feeding and handling, and initial intervention treatments used on cattle carcasses (Alasvand 

Zarasvand et al., 2012; Argyri et al., 2011; Blixt and Borch, 2002). The pH of beef stored 

anaerobically usually decreases during storage (Irkin et al., 2011). LAB, which can produce 

lactic acid, is a major factor contributing to pH decrease of VP beef (Irkin et al., 2011). 

Some studies indicated that the growth of pseudomonads was inhibited by low pH (Blixt 

and Borch, 2002; Koutsoumanis et al., 2006), while in other research the growth kinetics of 

Pseudomonas did not change with the change in pH range from 5.3–7.8 (McMeekin and Ross, 

1996). Some researchers argue that a small change in pH value can be translated to a greater 

change in the concentration of lactic acid in meat (Blixt and Borch, 2002). The essence of the 

effect of pH on the growth kinetics of Pseudomonas may be its sensitivity to undissociated 

levels of lactic acid in meat (Koutsoumanis et al., 2006). The growth of other spoilage 

bacteria including B. thermosphacta can also be affected by pH (Koutsoumanis et al., 2006). 

McClure et al. (1993) observed the growth of B. thermosphacta in broth medium at pH 5.6–

6.8. In the study of Leroi et al. (2012), the optimal and minimal pH of B. thermosphacta was 

determined to be approximately 7.0 and 4.8, respectively. Conversely, there is usually no 

significant difference in growth of LAB under different pH values (Koutsoumanis et al., 2006; 

Koutsoumanis et al., 2004), which may be attributed to the higher acid tolerance of these 



19 

 

bacteria (Koutsoumanis et al., 2004). The spoilage activities of Clostridium frigoris and C. 

estertheticum seem to be pH-dependent; C. frigoris and C. estertheticum caused package 

swelling of beef samples at pH of 5.7–5.9 and 5.4–5.9, respectively, and neither led to blown-

pack spoilage of high-pH (≥ 6.0) beef samples (Yang et al., 2014a). 

Temperature. Temperature is one of the main strategies in extending shelf-life of food 

products (Clemens et al., 2010). The lowest recommended storage temperature for meat 

products without freezing is -1.5
o
C (Hernandez-Macedo et al., 2011). Relatively low 

temperature is able to extend lag phase duration, reduce growth rate, and even reduce final 

bacterial populations (Chaves et al., 2012; Doulgeraki et al., 2012; Li et al., 2013a; Mataragas 

et al., 2006). However, VP beef products are often stored at temperatures higher than -1.5
o
C; 

up to as much as 10
o
C (Koutsoumanis et al., 2006).  

In the study of Youssef et al. (2014a), the sensory analysis of VP top butt cuts indicated 

acceptable sensory characteristics were found after storage for 140 and 160 days for samples 

stored at 2
o
C and -1.5

o
C, respectively. Temperature might also affect the microbial 

composition of the beef samples used in this study, in which C. maltaromaticum was the only 

LAB species recovered from cuts stored at -1.5
o
C, while C. maltaromaticum and C. 

divergens were both recovered from cuts stored at 2
o
C. 

In meat, temperature not only influences the growth of microbiota but also affects their 

spoilage-related activity (Ercolini et al., 2009). The ability of microorganisms to adapt to 

temperature differs among species. Pseudomonas spp. are usually connected with the 

spoilage of meat at chill temperatures under aerobic atmospheres (Ercolini et al., 2010; 

Ercolini et al., 2007; Labadie, 1999), while for VP chilled meat, psychrotrophic LAB and 

Clostridium spp. are often involved in spoilage (Borch et al., 1996; Shaw and Harding, 1984). 
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Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp. are prevalent in the spoilage 

microbiota at an abuse temperature of 30°C (Gill and Newton, 1978). 

Other factors. Other factors may affect VP beef spoilage, for example, beef nutrient 

composition, water activity, and bacterial interactions. Since the aw of meat is relatively high, 

studies of the influence of aw on growth of spoilage bacteria on meat are limited (Borch et al., 

1996). Interactions among bacteria of VP beef also likely influence beef spoilage rates. In the 

study of Youssef et al. (2014a), only C. maltaromaticum and mostly consisting of only one 

strain of this species, was isolated from beef cuts stored at -1.5
o
C, indicating the growth of 

other LAB species or strains may have been suppressed by this C. maltaromaticum isolate. 

The unusually long shelf-life reported by Youssef et al. (2014a) and Small et al. (2012) may 

be related to an unusual microbial community composition and interactions among the 

bacteria on their VP beef samples. To date, relevant information on the influence of microbial 

interactions on stored meat surfaces remains limited. 

 

BACTERIAL INTERACTIONS 

Bacterial interactions in nature and foods. It has been recognized that bacteria normally 

act collectively rather than individually in nature (Faust and Raes, 2012; Keller and Surette, 

2006). Beside environmental factors, inter- or intra- species interactions play an important 

role in shaping the ultimate bacterial community structure (Aguirre-von-Wobeser et al., 2014; 

Aziz et al., 2015; Giaouris et al., 2015; Perez-Gutierrez et al., 2013). Competition and 

cooperation are two main forms of interactions.  

Interactions among a few food sourced bacterial species have been reported in the 

literature, and these interactions are considered to affect food safety or spoilage. The 

emphasis of these studies is mainly on the inhibitory activity of LAB on pathogenic or 
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spoilage bacteria in vitro or in situ within food (Metaxopoulos et al., 2002; Ostergaard et al., 

2014; Vereecken et al., 2000; Vermeiren et al., 2006). For example, Ostergaard et al. (2014) 

contemplated the inhibiting effect of LAB when developing a growth model for Listeria 

monocytogenes in cottage cheese. In the study of Metaxopoulos et al. (2002), LAB exhibited 

inhibitory effects on the growth of spoilage microflora in cooked cured meat products. A few 

researchers have also observed the inhibitory effect of natural microbiota of meat on the 

growth of pathogens, which has been defined as the ‘Jameson effect’ (Cornu et al., 2011; 

Jameson, 1962; Moller et al., 2013; Ross et al., 2000; Vermeiren et al., 2006). The growth of 

E. coli was affected by the population density of competing microorganisms in ground beef 

(Coleman et al., 2003). Studies regarding the effect of natural microbiota on the growth of 

Salmonella have been performed in ground chicken and pork (Moller et al., 2013; Oscar, 

2006, 2007; Zaher and Fujikawa, 2011). However, different from the Jameson effect, the 

presence of Pseudomonas spp. was found to enhance the survival of the pathogenic species 

Campylobacter jejuni in vitro and in poultry (Balamurugan et al., 2011; Hilbert et al., 2010).  

Both growth inhibition and promotion interactions among spoilage related bacteria were 

observed in the study of Joffraud et al. (2006), in which cold-smoked salmon fillets were 

inoculated with pure or mixed cultures of C. maltaromaticum, Photobacterium phosphoreum, 

L. sakei, a Vibrio sp., B. thermosphacta, and a S. liquefaciens-like strain; the spoilage activity 

of bacteria in mixed cultures was found to significantly differ from pure cultures. The 

abilities of E. coli and Pseudomonas mirabilis to produce biogenic amines in broth were 

respectively promoted and reduced by B. thermosphacta (Nowak and Czyzowska, 2011). The 

viable counts of B. thermosphacta were reduced in the presence of LAB on agar media 

(Russo et al., 2006). In the study of Youssef et al. (2014a), mostly only a single strain of C. 

maltaromaticum was found on chilled VP beef cuts, potentially indicating the growth of other 

bacteria was suppressed by antibacterial compounds produced by this strain. 
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Compared to the number of bacterial interaction reports dealing with food safety issues, 

reports on the interactions of spoilage related microorganisms associated with meat, 

especially on VP beef, are even scarcer. Also, these interaction studies involve a limited 

number of bacterial species. The investigation on interactions on a greater range of species is 

much needed.  

Bacterial interaction mechanisms. Competition-type interactions. Competition may be 

displayed as direct nutrient competition. This type of competition is also called scramble 

competition or exploitation competition. Limited resources may be rapidly used by 

competitive bacteria without direct interaction (Hibbing et al., 2010). Bacteria also compete 

with neighbouring microorganisms by antagonism, by secreting compounds either 

deliberately or incidentally as part of their standard metabolism. For food-sourced bacteria, 

these compounds may be bacteriocins, organic acids, hydrogen peroxide, and others (Faust 

and Raes, 2012; Oliveira et al., 2008; Vaughan et al., 2001). 

Bacteriocins are ribosomally synthesized antibacterial heat-stable peptides that exhibit 

antagonistic activity against closely related bacteria, most of which are Gram-positive (Cotter 

et al., 2013). To date, most bacteriocin-producing isolates found in foods are LAB, hence, the 

potential of LAB as protective cultures has been extensively investigated in food products 

(Luchansky, 1999). Certain strains of L. sakei and L. mesenteroides have been reported to 

produce sakacins and mesenterocins, respectively (Vaughan et al., 2001). Also, a number of 

C. divergens and C. maltaromaticum isolates are able to produce bacteriocins that have wide 

inhibition spectra (Laursen et al., 2005). Interestingly, the bacteriocins produced by C. 

divergens and C. maltaromaticum  often demonstrate intra-species inhibitory activity, for 

example, carnocyclin produced by C. maltaromaticum UAL 307 in the study of Martin-

Visscher et al. (2008). These bacteriocins may have a strong impact on the community 
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structure of meat, especially when stored anaerobically; however, the relevant information 

related to this is still scant (Youssef et al., 2014a).  

There are other inhibitory compounds that may also contribute to competition among 

bacteria. LAB are able to produce hydrogen peroxide and organic acids, primarily lactic acid 

and acetic acid, which can suppress the growth and metabolism of other bacteria in the food 

environment (Corsetti et al., 1998; Lindgren and Dobrogosz, 1990; Vasilopoulos et al., 2010). 

Russo et al. (2006) attributed the inhibitory activity of LAB on the growth of B. 

thermosphacta to low pH due to lactic acid accumulation.  

Cell-to-cell contact is necessary for a few bacterial species when competing with 

neighbouring bacterial cells (Avendano-Perez and Pin, 2013; Hayes et al., 2014; Russell et al., 

2011). Aoki et al. (2005) described a contact-dependent growth inhibition system among E. 

coli, in which a cell-surface protein is involved. In serial passage experiments, E. coli K-12 

with a hyper mutability phenotype (due to deletion of mutS) could inhibit the growth of 

analogous wild-type strains by physical contact when cells stopped growing; this was 

designated as stationary contact-dependent inhibition (Lemonnier et al., 2008). Dubey and 

Ben-Yehuda (2011) observed different sized tubular extensions between neighbouring cells 

under electron microscopy that could be used to transfer intracellular molecules. These types 

of nanotubes have been found between cells belonging to the same and different species. 

They believe that these nanotubes could be the main mechanism mediating bacterial 

communication in nature (Dubey and Ben-Yehuda, 2011). Pseudomonas aeruginosa deliver 

bacteriolytic effectors to other Gram-negative bacterial cells via the type VI secretion 

delivery system (T6SS) (Russell et al., 2011). This secretion system has also been studied in 

Vibrio cholerae and Burkholderia thailandensis; furthermore, T6SS has been identified in > 

80 Gram-negative bacterial genomes, including many members of the family 

Enterobacteriaceae (Boyer et al., 2009; MacIntyre et al., 2010; Russell et al., 2011; Schwarz 
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et al., 2010). According to Avendano-Perez and Pin (2013), live cells of human faecal 

bacteria were needed to inhibit S. enterica Typhimurium. Contact-dependent inhibition has 

been rarely reported in food research; however, a few studies suggest this type of bacterial 

interaction occurs in food systems. Schillinger and Lucke (1989), demonstrated that some 

strains of L. sakei isolated from meat inhibit the growth of some other lactobacilli on solid 

media, while their cell-free supernatants did not exhibit inhibitory activity. Similarly, 36 LAB 

isolates were shown by Oliveira et al. (2008) to inhibit the growth of American Type Culture 

Collection reference strains of lactobacilli, while the supernatants of only six strains exhibited 

inhibitory activity. This is probably a type of contact-dependent growth competition 

involving cell surface proteins, nanotubes, or other proteins and inter-cell structures. Further 

investigation is obviously needed to elucidate the exact mechanisms involved in the 

inhibitory activities of LAB. 

Cooperation. Cooperation is another type of bacterial interaction, which is very common 

in nature. Bacteria of two species may exchange metabolic products to benefit the growth of 

each other (Faust and Raes, 2012; Pande et al., 2015; Ponomarova and Patil, 2015). Also, one 

bacterial species may promote the growth of others by increasing nutrient availability. For 

instance, siderophores, which help to improve access to iron in the environment, can be 

utilized as “public goods” within a bacterial community (Buckling et al., 2007). According to 

D'Onofrio et al. (2010), previously uncultured bacteria from marine sediment were able to 

grow on agar in the presence of a readily cultured bacteria due to the latter forming a growth 

promoting siderophore. Pseudomonas spp. have been reported to enhance the growth of other 

strains in chicken meat via producing biosurfactants and making nutrients more freely 

available (Mellor et al., 2011). 

A large number of bacteria have been known to regulate their cooperative activities 

through quorum sensing systems (QS). They communicate by producing, detecting, and 
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responding to small diffusible signalling molecules which are defined as auto inducers (AI) 

(Giaouris et al., 2015; Skandamis and Nychas, 2012). These signalling molecules have been 

classified into four categories. AI-1 are N-acyl homoserine lactones, which are produced by 

Gram-negative bacteria and utilized for intra-species communication; while AI-2, furanosyl 

borate diesters are produced by Gram-negative and Gram-positive bacteria and have been 

regarded as a universal language for intra- and inter-species communication; AI-3, unknown 

aromatic compounds, are specific for pathogenic E. coli and used to detect epinephrine-

producing host cells; AI-4 are auto inducing peptides (AIPs) produced by various Gram-

positive bacteria (Skandamis and Nychas, 2012). 

QS has been well described in Aliivibrio (Vibrio) fischeri, a Gram-negative species (Miller 

and Bassler, 2001). As shown in Fig. 1, when N-(3-oxohexanoyl)-homoserine lactone 

(OHHL; AI-1) reaches a threshold concentration outside of the cell, LuxR (transcription 

factor) interacts with OHHL and binds to the upstream of luxICDABE, and induces the 

transcription of proteins of the luciferase system (Gobbetti et al., 2007). The transcription of 

luxI gene encoding OHHL synthase is also up-regulated at the same time. 
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FIG 1 Quorum sensing in Aliivibrio (Vibrio) fisheri. LuxI, auto inducer synthase; LuxR, 

transcription factor; luxICDABE, luciferase structural operon. Cited from March and Bentley 

(2004). 

 

There are some food-related Gram-negative bacteria shown to possess the LuxI/LuxR-like 

QS system. For example, Enterobacter agglomerans uses EagI/EagR as its regulatory 

proteins, and N-(3-oxohexanoyl)-HSL as its auto inducer. Enterobacteriaceae, especially H. 

alvei and Serratia spp. have been frequently reported to produce AI-1, mainly OHHL (Blana 

and Nychas, 2014; Bruhn et al., 2004; Gram et al., 2002; Ravn et al., 2001; Silva et al., 2002). 

Yersinia enterocolitica has YenI/YenR as regulatory proteins, and N-hexanoyl-HSL and N-

(3-oxohexanoyl)-HSL as auto inducers (Swift et al., 1993; Throup et al., 1995). N-butanoyl-

HSL is the auto inducer of the QS system in S. liquefaciens (Eberl et al., 1996; Givskov et al., 

1998). Onilude et al. (2002) hypothesized that Pseudomonas spp. can form biofilms in meat 

and that QS may be involved in this process.  

The QS in Gram-positive bacteria usually involves a three-component regulatory system 

(3CRS) and is very different from the QS system of Gram-negative bacteria (Gobbetti et al., 
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2007). This 3CRS gene cassette includes genes for AIP that is a ribosomal-generated 

oligopeptide, histidine protein kinase (HPK) and a response regulator (RR) (Hellingwerf et al., 

1998; Samelis et al., 2003). As these two proteins are located on the outer surface of the 

cytoplasmic membrane, AIP do not need to internalize to produce a communication signal 

(Gobbetti et al., 2007). Nakayama et al. (2003) acquired putative amino acid sequences of 

HPK for some species of Lactobacillus, Enterococcus and Clostridium and these sequences 

show high similarity with other members of the HPK10 subfamily. It has also been found that 

bacteriocin synthesis in Lactobacillus plantarum, L. sakei (Brurberg et al., 1997; Eijsink et al., 

1996), Enterococcus feacium (O'Keeffe et al., 1999) and C. maltaromaticum (Quadri et al., 

1997) is controlled by 3CRS. 

It is interesting that both Gram-positive and Gram-negative quorum sensing mechanisms 

are present in Vibrio harveyi (Bassler et al., 1994). AI-1 and sensor 1 (LuxN) compose 

system 1 involved in intra-species quorum sensing; however system 2, made up of sensor 2 

(LuxPQ) and AI-2, can be used for interspecies cell-cell communication (Surette et al., 1999). 

Database analysis has indicated that highly conserved homologues of luxS, the gene for 

synthesis of AI-2, exist in many Gram-negative and Gram-positive bacteria (Surette et al., 

1999; Xavier and Bassler, 2003). AI-2, as a potential universal language used for both intra- 

and interspecies communication, possesses the ability to modulate the gene expression of 

diverse bacterial species and genera (De Keersmaecker et al., 2006; Lonn-Stensrud et al., 

2007; Taga, 2005).  

Cell-free supernatants (CFS) of foods are often extracted to determine AI-2 or ‘AI-2 like 

activity’ and to better understand QS activity. Bassler et al. (1993) first designed V. harveyi 

strain BB170 that can be applied to detect AI-2-like activity in food samples by its sensor 

Lux PQ. Sivakumar et al. (2011) also described a detailed protocol to detect AI-2-like activity 

using CFS. This activity is present in some foods like frozen fish, tofu and some vegetables, 
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while it is absent in others such as, uncooked frozen beef patties, uncooked beef steak and 

uncooked chicken breast (Lu et al., 2004, 2005). A possible explanation for these results is 

that AI-2 bioassay is inhibited by some compounds present in meat or poultry products (Soni 

et al., 2008; Widmer et al., 2007), while further study should still be done to explicate this 

phenomenon. 

In the study of Ferrocino et al. (2009), all 72 strains of P. fragi isolated from fresh and 

spoiled meat produced AI-2 but could not produce N-acyl homoserine lactones. Hence, they 

believe that the QS system of P. fragi in meat is not regulated by N-acyl homoserine lactones, 

and AI-2 may play a role in meat spoilage dynamics. LAB and B. thermosphacta, as Gram-

positive bacteria, are capable of producing AI-2 and/or AI-4; however, the production level 

was not sufficient to induce biosensor strains applied in the assay (Schaefer et al., 2000; 

Sturme et al., 2002). Nychas et al. (2009) first determined the effect of natural QS 

compounds (AI-1 and AI-2) on the kinetic parameters of Serratia marcescens and 

Pseudomonas fluorescens in vitro, both of which are main spoilage organisms in pork. They 

found that the growth rate of these two bacteria could be increased by these QS compounds. 

The potential role of QS in food spoilage has been highlighted; however, the relevant 

literature is far from being conclusive. The mechanisms of action of QS compounds in 

interactions among spoilage bacteria, which specifically influence the spoilage process of 

foods, still need to be revealed. Also, the effect of natural compounds in foods on the activity 

of QS compounds is not clear. 
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POTENTIAL FACTORS INFLUENCING INTERACTIONS ON VP BEEF  

Various environmental factors of meat, including intrinsic factors, pH and meat nutrients 

(e.g. glucose), and extrinsic factors such as atmosphere and temperature, may affect 

interactions among bacterial communities on meats. A number of researchers have 

investigated the effect of these factors on the production or inhibitory activity of bacteriocins, 

which are important antagonistic compounds in competition interactions of foods, as 

mentioned above.  

Intrinsic factors. Relatively low pH may induce C. maltaromaticum to lose its capability 

of producing bacteriocins; for example, C. maltaromaticum LV61 did not produce 

bacteriocin at pH 5.5 in the study of Schillinger et al. (1993); Khouiti and Simon (2004) 

observed that strain 213 could not produce carnocin in MRS medium at a pH below 6.5.  pH 

also affects the inhibitory activity of bacteriocins (Abriouel et al., 2001). Nisin, sakacin P, 

and curvacin A demonstrate relatively greater inhibitory activity at low pH in broth media 

(Balciunas et al., 2013; Ganzle et al., 1999). As an important carbon source, the concentration 

of glucose in foods can also affect the production of bacteriocins (Biswas et al., 1991; 

Khouiti and Simon, 2004; Vignolo et al., 1995). Moreover, the target bacterial cells are able 

to be energized by the presence of glucose and their sensitivity to bacteriocins then may be 

enhanced (Castellano et al., 2003; McAuliffe et al., 1998).  

Extrinsic factors. The effect of other factors on bacteriocin production or activity has 

received far less attention. Regarding meat packaging atmosphere, it has been reported that 

the production of lactocin by L. sakei L45 was best under anaerobic conditions (McAuliffe et 

al., 1998). As small peptides, bacteriocins may be sensitive to proteases existing in meats. 

Aasen et al. (2003) found that proteolytic activity induced bacteriocin degradation in raw 

chicken. A specific temperature range has been reported to be required by certain C. 
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maltaromaticum isolates to produce bacteriocins, for instance, bacteriocin activity was only 

observable in the supernatant of C. maltaromaticum UAL26 grown in liquid media at 

temperatures less than 19°C (Gursky et al., 2006). 

Other types of interactions may also be affected by aforementioned meat factors; however, 

the relevant information is quite limited and piecemeal. According to Speranza et al. (2010), 

packaging atmosphere affects interaction between P. putida and E. coli O157:H7, with 

interaction being stronger in modified atmosphere packaging compared to aerobic conditions. 

QS signal molecules were found to be affected by the packaging conditions e.g. temperature 

and atmosphere used for meat preservation as a consequence of the development of a distinct 

microbial community (Blana and Nychas, 2014). 

 

PREDICTIVE MODELS CONSIDERING BACTERIAL INTERACTIONS 

Predictive microbiology is a discipline to study microorganism behaviour as a function of 

different intrinsic or extrinsic environmental parameters of foods (Cavre et al., 2005; 

McMeekin et al., 1987). It is a proven beneficial tool to evaluate food safety and shelf-life 

(Castillejo-Rodriguez et al., 2002; Dominguez and Schaffner, 2007; Mataragas et al., 2006).  

In the past 20 years, extensive predictive models on the growth of foodborne pathogens 

and spoilage bacteria of meat have been developed (Dalgaard, 1995; Koutsoumanis et al., 

2000; Mellefont et al., 2003; Oscar, 2002). Most of these models predict the growth of a 

single bacterial species or changes in the total bacterial population (Dalgaard, 1995; 

Koutsoumanis et al., 2000; Mellefont et al., 2003; Oscar, 2002). A few predictive growth 

models also considered bacterial interactions, primarily the ‘Jameson effect’ (Cornu et al., 

2011; Gimenez and Dalgaard, 2004; Moller et al., 2013). 
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However, the ‘Jameson effect’ is only one of the situations involving a competition type 

interactions within a bacterial community, and in reality in the case of the meat environment, 

a large variety of bacteria and complicated interactions exist together. Due to lack of 

information on these interactions, they are seldom considered in developing predictive 

models. Relevant research will help to understand the nature of dynamic features of meat 

bacterial communities that may be composed of inhibiting, sensitive, or promoting isolates, 

which in turn can dictate the rate that meat spoilage occurs. 

 

CONCLUSIONS 

VP beef is usually contaminated by diverse bacterial species during production, and 

contains different proportions of LAB, Enterobacteriaceae, B. thermosphacta, Pseudomonas, 

and Clostridium due to the subsequent selection pressure of the packaging. The long shelf-life 

(26–30 weeks) of Australian VP beef may be partly attributed to a specific composition of 

bacteria and the interactions amongst them, in addition to good hygienic processing practices.  

Bacterial interactions may be the underlying forces that shape community structural 

changes in food, which then affect shelf-life. However, the studies on interactions among 

meat-sourced bacteria have so far received limited attention. Further, these limited interaction 

studies have included relatively small number of strains/species, warranting broadening the 

range of taxa that need to be included, due to the complexity of bacterial communities on 

meats. 

Moreover, bacteria cooperate or compete in a community by various mechanisms. A 

number of researchers have studied protective cultures producing inhibitory compounds, e.g. 
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LAB. Other interaction mechanisms are not well explored in food, for example, whether 

contact-dependent inhibition exists in meat bacterial community.  

Furthermore, how environmental factors affect bacterial interactions has not received any 

research effort. Interactions are seldom considered when developing bacterial growth models 

due to limited understanding. However, relevant research may help develop improved 

strategies to maintain/extend shelf-life of meats. 
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Chapter 3  

Interstrain interactions between bacteria isolated from vacuum-packaged 

refrigerated beef 

 

ABSTRACT 

The formation of bacterial spoilage communities in food is influenced by both extrinsic 

and intrinsic environmental factors. While many reports describe how these factors affect 

bacterial growth, much less is known about interactions among bacteria, which may influence 

community structure. This study investigated interactions among representative species of 

bacteria isolated from vacuum-packaged (VP) beef. Thirty-nine effectors and 20 target 

isolates were selected, representing 10 bacterial genera: Carnobacterium, Pseudomonas, 

Hafnia, Serratia, Yersinia, Rahnella, Brochothrix, Bacillus, Leuconostoc and Staphylococcus. 

The influence of live effectors on growth of target isolates was measured by spot-lawn agar 

assay, and also in liquid culture medium broth using live targets and effector cell-free 

supernatants. Inhibition on agar was quantified by diameter of inhibition zone, and in broth 

by measuring detection time, growth rate, and maximum population density. A number of 

interactions were observed, with 28.6% of isolates inhibiting and 4.2% promoting growth. 

The majority of Pseudomonas isolates antagonised growth of approximately one-half of 

target isolates. Two Bacillus spp. each inhibited 16 targets. Among lactic acid bacteria (LAB), 

Carnobacterium maltaromaticum inhibited a wider range of isolates compared to other LAB. 

The majority of effector isolates enhancing target isolate growth were Gram-negative, 

including Pseudomonas spp. and Enterobacteriaceae. These findings markedly improve the 
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understanding of potential interactions among spoilage bacteria, possibly leading to more 

mechanistic descriptions of bacterial community formation in VP beef and other foods. 

 

INTRODUCTION 

The shelf-life of meat is influenced, in part, by the composition and levels of bacteria 

within the spoilage community (Nychas et al., 2008). Independent laboratories have 

confirmed relatively high microbial diversity at the time of meat packaging, and showing a 

progressive shift to lower community complexity towards the end of shelf-life (De Filippis et 

al., 2013; Powell and Tamplin, 2012; Sakala et al., 2002). For refrigerated vacuum-packaged 

(VP) beef, over time and under best-practice conditions, lactic acid bacteria (LAB) tend to 

predominate and, to a lesser extent, Enterobacteriaceae (Doulgeraki et al., 2012). 

Such change in bacterial community structure is based on intrinsic and extrinsic factors, 

including temperature, atmosphere, pH, and organic acids, all of which may influence growth 

(Doulgeraki et al., 2012; Nemergut et al., 2013). However, the underlying forces of microbial 

interactions may also be important in shaping biodiversity of communities (Blana and Nychas, 

2014; Faust and Raes, 2012; Perez-Gutierrez et al., 2013; Wolfe et al., 2014); such studies 

have received relatively little attention in foods. Bacteria interact in any given ecological 

niche through different mechanisms including quorum sensing, contact-dependent inhibition, 

nutrient competition, and via production of defence compounds such as bacteriocins, 

antibiotics and organic acids (Aoki et al., 2005; Blana and Nychas, 2014; Cotter et al., 2013; 

Deriu et al., 2013; Dubey and Ben-Yehuda, 2011). There have been numerous reports 

exploring the effectiveness of protective cultures and related antibacterial compounds at 

enhancing food safety and extending shelf-life (Budde et al., 2003; Hastings et al., 1994; 

Hequet et al., 2007; Li et al., 2011), however, few have investigated interactions among food 

bacteria, and of those which have, relatively few species have been studied (Dourou et al., 
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2011; Mellefont et al., 2008; Russo et al., 2006; Vasilopoulos et al., 2010); far fewer have 

involved species from diverse communities (Mounier et al., 2008; Wolfe et al., 2014). 

Nychas et al. (2009) found quorum-sensing compounds extracted from meat increased the 

growth rate of Serratia marcescens and Pseudomonas fluorescens. Also, Russo et al. (2006) 

reported the growth of Brochothrix thermosphacta, a meat spoilage bacteria, decreased in the 

presence of LAB. We postulate testing a wide range of bacterial genera and species can 

provide a fuller understanding of potential complex interactions.  

The spot-lawn agar method (Benkerroum et al., 1993) has been widely used to detect 

bacterial inhibitory activity, via reporting an inhibition zone (Aguirre-von-Wobeser et al., 

2014; Lo Giudice et al., 2007; Perez-Gutierrez et al., 2013). However, this method does not 

supply specific information about the effect of an effector on target growth, such as that 

achieved using broth-based assays. Also, the latter assay more readily detects growth-

promotion among isolates (Nychas et al., 2009).  

In this study, we applied both spot-lawn agar assay and broth assay, and investigated 

interactions among a diverse group of bacteria isolated from VP beef produced at six 

Australian abattoirs. Network maps illustrate the complexity of interactions, and the possible 

role of specific bacterial genera in community structure. Such information might eventually 

be translated into models describing dynamic changes in bacterial communities, and better 

inform processing and preservation strategies to enhance meat quality and shelf-life. 

 

MATERIALS AND METHODS 

Bacterial isolates. The 180 bacterial isolates used in this study were previously obtained 

from VP beef primals produced at six Australian abattoirs, stored at -0.5°C, and sampled at 
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various time intervals for up to 30 weeks, as described by Small et al. (2012). Ten colonies, 

representing different morphologies, were obtained and stored at -80°C. The isolates were 

identified by 16S rRNA gene sequences amplified using universal primers 10F (5’-

GAGTTTGATCCTGGCTCAG -3’) and 907R (5’-CCGTCAATTCCTTTGAGTTT-3’). The 

PCR products were sent to Macrogen (Seoul, Korea) for sequencing. Sequences were 

compared with those in Genbank using the BLAST function 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi), and the closest matches of each clone determined 

specific probable identities. 

The 180 isolates were screened for inhibitory activity by using a spot-lawn method 

(Benkerroum et al., 1993) at 25°C under aerobic conditions. Thirty-nine of the isolates 

showing inhibition (effectors) were selected, representing different species, abattoirs, storage 

times, and bacterial genera (Table 1). Twenty target (inhibited) bacteria were selected using 

the same criterion as effector bacteria (i.e., different species, abattoirs, storage times, and 

bacterial genera). Effector and target isolates comprised 10 genera, i.e., Carnobacterium, 

Pseudomonas, Brochothrix, Hafnia, Yersinia, Bacillus, Rahnella, Leuconostoc, Serratia and 

Staphylococcus (Table 1 and 2). Six (Leuconostoc mesenteroides B30b, Staphylococcus 

epidermidis F30c, Bacillus sp. strain A30g, Pseudomonas sp. D0g, Yersinia enterocolitica 

B8b and Rahnella aquatilis B8f) were tested as both targets and effectors. The rationale for 

isolate selection was not based on the species observed in a specific package of VP beef (24) 

but instead on having a panel of isolates representing those species found in VP beef from 

different abattoirs. Isolates were stored at -80
o
C in brain heart infusion broth (BHI; Amyl 

Media Ltd., Australia), supplemented with 20% (vol/vol) glycerol. 
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TABLE 1 Growth inhibition and promotion activity for effector isolates, as tested by spot-lawn and 

CFS assays 

Effector 

Isolate 

code 

Inhibition (no.)
a
 

Promotion 

(no.)
a
 

Agar
b
 CFS

c
 

Total
d
 Targets Inhibited Targets Inhibited 

Carnobacterium 

divergens 

A0a 20 2 19 4 5 0 

A0f 20 2 19 4 5 0 

C8j 20 2 19 7 8 0 

D30a 20 1 19 3 3 0 

E0j 20 2 19 5 5 0 

F8f 20 2 19 2 4 0 

        

Carnobacterium 

maltaromaticum 

B0f 20 3 19 7 8 0 

C0a 20 0 19 5 5 0 

C8h 20 0 19 9 9 0 

C30h 20 3 19 9 9 0 

D0h 20 4 19 9 10 0 

        

Carnobacterium 

sp. 

F8g 20 0 19 7 7 0 

        

Leuconostoc 

carnosum 

F30d 20 0 19 2 2 0 

F30h 20 0 19 2 2 0 

        

Leuconostoc 

mesenteroides 

B30b 19 0 18 3 3 1 

Brochothrix 

thermosphacta 

A8f 20 0 19 5 5 0 

Staphylococcus 

epidermidis 

F30c 19 7 18 4 7 0 

Bacillus subtilis E0g 20 12 19 12 16 1 

Bacillus sp. A30g 19 14 18 6 16 2 

        

Pseudomonas 

fluorescens 

B0i 20 3 19 4 6 2 

C0c 20 8 19 3 9 1 

        

Pseudomonas fragi F0b 20 12 19 2 13 2 

Pseudomonas 

putida 

D0b 20 18 19 1 18 2 

Pseudomonas sp. D0g 19 10 18 1 10 1 

E0f 20 11 19 2 12 2 

        

Hafnia alvei A8e 20 1 19 0 1 0 

D0f 20 1 19 0 1 1 

E30e 20 0 19 0 0 1 
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Yersinia 

enterocolitica 

B8b 19 1 18 3 4 0 

Yersinia 

frederiksenii 

A8h 20 3 19 0 3 1 

Yersinia sp. A8d 20 3 19 0 3 0 

Rahnella aquatilis B8f 19 0 18 1 1 1 

Serratia sp. C0b 20 1 19 0 1 3 

C30b 20 3 19 0 3 2 

E8i 20 2 19 0 2 1 

E8c 20 3 19 0 3 4 

E30g 20 1 19 0 1 2 

E30h 20 0 19 0 0 0 

E30j 20 1 19 0 1 1 
a 
no, the number of target isolates that were inhibited or promoted by each effector isolate. 

b
 Agar, spot-lawn assay with live cells on agar. 

c 
CFS, CFS-broth assay with cell-free supernatant in BHI broth. 

d 
That is, the total number of unique inhibitions observed by spot-lawn and CFS assays. 

 

TABLE 2 Effectors inhibiting or promoting growth of target isolates  

  %
a
  

Target Isolate code Inhibition Promotion 

Carnobacterium divergens D30f 51.3 25.6 

Carnobacterium maltaromaticum D8c 48.7 25.6 

Hafnia alvei E30d 17.9 0 

Brochothrix thermosphacta A0b 43.6 5.1 

Yersinia enterocolitica B8b 21.1 0 

Yersinia sp. D8b 25.6 0 

Bacillus subtilis  B30a 25.6 0 

Bacillus sp. A30g 36.8 5.3 

Serratia sp. B0h 5.1 0 

Serratia sp. D0c 17.9 0 

Serratia sp. D0d 23.1 0 

Pseudomonas lundensis D8g 23.1 12.8 

Pseudomonas  fluorescens D8d 33.3 0 

Pseudomonas sp. D0g 47.4 5.3 

Staphylococcus saprophyticus  E0c 38.5 0 

Staphylococcus epidermidis F30c 44.7 0 

Rahnella aquatilis B8f 13.2 0 

Leuconostoc carnosum F30j 30.8 0 
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Leuconostoc mesenteroides B30b 15.8 0 

Leuconostoc sp. F30e 7.7 0 
a
 The percentages of target isolates where growth was inhibited or promoted are indicated. 

 

Inhibition activity measured on agar. The spot-lawn method described by Benkerroum 

et al. (1993) was used to test for inhibitory activity of live effectors on target isolates. Briefly, 

all isolates were transferred from -80°C, streaked on tryptone soya agar (TSA; Oxoid Ltd., 

Australia), cultured for 24 h at 25°C, and then grown in BHI broth for 24 h at 25°C. Cell 

density was adjusted to an optical density at 540 nm (OD540) 0.6-0.8 for effectors and 0.15-

0.25 for targets, a difference designed to enhance detection of growth inhibition or promotion. 

One hundred microliters of each target was spread-plated on TSA, and then three replicate 

10-μl aliquots of effectors were spotted onto the target lawn. Inhibition was measured after 24 

h of incubation at 25
o
C, when TSA plates were photographed, and the diameter (D) of the 

inhibition zone was measured using the software program Image J (version 1.49 

[http://rsb.info.nih.gov/ij/index.html]). The degree of inhibition was classified at four levels: 

++++, +++, ++, and +, corresponding to D ≥ 4 mm, 2 ≤ D < 4 mm, 0.5 < D < 2 mm and 0 < 

D ≤ 0.5 mm, respectively (Fig. 1). This grouping considered variation in inhibition strength 

and facilitated comparison. Inhibition patterns were also classified as having a well 

delineated or diffuse edge. 
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FIG 1 Representative growth inhibition as determined by spot-lawn assay. 

Inhibition of target isolates was determined to be at four levels, ++++, +++, ++, and +, corresponding 

to D ≥ 4 mm, 2 mm ≤ D < 4 mm, 0.5 mm < D < 2 mm and 0 < D ≤ 0.5 mm, respectively. 

 

Interaction activity measured by CFS assay. Overnight cultures (24 h, 25
o
C) of target 

isolates were adjusted to 10
4 

cfu/ml. Effector isolates were incubated for 48 h at 25
o
C until 

the stationary phase was reached. Cell-free supernatant (CFS) of each effector isolates were 

made by centrifuging BHI cultures at 1,000 x g for 5 min, followed by filtration through a 

0.22 μm pore-sized filter (Whatman Ltd., Australia). Treatments consisted of mixing 100 µl 

of the diluted target suspension with 100 µl of CFS in wells of a BioscreenC microwell plate 

(Growth Curve Ab Ltd., Finland). Controls had the same volume of fresh BHI or phosphate-

buffered saline (PBS; 1M, [pH 7.4]), instead of CFS. Duplicate wells were used for all 

treatments and controls. The BioscreenC temperature was 25
o
C, and growth kinetics 

measured at 20-min intervals for 48 h. At the end of each run, data were exported to an Excel 

spreadsheet. Detection time (DT; in hours) was calculated as the time to reach an OD540 of 

0.12 (background corrected data). The Baranyi model (Baranyi and Roberts, 1994) was fitted 

to the primary growth curves using DMFit (v3.0 [Combase; http://www.combase.cc/tools/]) 

to calculate growth rate (GR; log10OD/h). Maximum population density (MPD; OD540) was 

calculated by averaging the three highest OD readings. DT, GR and MPD were compared 

among treatments and controls, using the Student t-Test in Excel. A P value below 0.05 was 

considered a significant interaction, i.e., as inhibition comparing treatment and PBS or as 

promotion comparing treatment and BHI. 

If P > 0.05, inhibition strength (IS) of CFS on individual target growth parameter was 

recorded as zero. If P < 0.05, the IS was calculated by comparison of treatment and PBS 

control using the following formulas: 
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ISDT = |DTTreatment – DTControl| / DTControl                                                                                                                             (1)                                                                                                                          

ISGR = |GRTreatment – GRControl| / GRControl                                                                                                                           (2) 

ISMPD = |MPDTreatment – MPDControl|/ MPDControl                                                                                                           (3) 

The cumulative IS effect (ISTotal) on all three growth parameters was quantified using the 

formula: 

ISTotal = (ISDT + ISGR + ISMPD) / 3                                                                                             (4) 

The promotion strength (PS) was calculated similar to IS, via comparison of test and BHI 

control. 

IS was classified at four levels, ++++, +++, ++, and +, corresponding to IS = 1 (no 

detectable growth of the target), 0.25 ≤ IS < 1, 0.15 ≤ IS < 0.25, and 0 < IS < 0.15, 

respectively (Fig. 2). In the relatively fewer instances where CFS promoted growth, growth 

PS was classified at two levels, ++ and +, corresponding to PS ≥ 0.1 and 0 < PS < 0.1, 

respectively. 
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FIG 2 Representative growth inhibition and promotion by CFS-broth assay. 

 

Network maps of bacterial interactions. Growth inhibition/promotion activity was 

described using a network diagram drawn with Cytoscape (v3.1.1 

[http://www.cytoscape.org/]) (Fig. 3). In maps, target and effector nodes were designated as 

diamonds and circles, respectively. Isolates used as both inhibitors and targets were 

represented by squares. Arrows (edges) connected interacting isolates. The strength of growth 

inhibition or promotion was distinguished by line thickness.  

In terms of node size, an arbitrary base number (BN) of 80 was first assigned. Then, a 

connection number (CN) was calculated for each node according to the number of each 

interaction level as follows: 
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𝐶𝑁 = ∑ (
𝑎𝑖

𝑏
× 100 × 𝑖)4

𝑖=1                                                                                                     (5) 

with i being the interaction level (1, +; 2, ++; 3, +++; and 4, ++++), ai the number of 

interactions at level i, and b the number of effectors or targets for corresponding target or 

effector. 

In the growth inhibition network map, the size of individual inhibiting nodes equalled the 

sum of BN and CN. For target isolates, the diameter of the node was the difference between 

BN and CN; the smaller the diamond, the greater the target was inhibited. In growth 

promotion network maps, the size of both targets and effectors was set as the sum of BN and 

CN. For isolates being both a target and effector, node size was calculated as target and 

effector, respectively, and then the final size displayed as the average of these two values. 



44 

 

 

A 



45 

 

 

  

B 



46 

 

 

 

FIG 3 Interactions among effector and target isolates.  

(A) Inhibition, spot-lawn assay; (B) Inhibition, CFS assay; (C), Promotion, CFS assay. Symnols:  

, target; , effector;  , isolate tested as both target and effector. a  b = a inhibited (A and B) or 

promoted (C) b. Thick to thin black (solid and dashed) arrows indicate “++++”, “+++”, “++”, and “+” 

inhibition, respectively. Medium and thin green arrows indicate “++” and “+” growth promotion, 

respectively. Dashed and solid black arrows indicate diffuse and clear inhibition zones, respectively, 

in panel A. In panels A and B, the size of an effector and target node is, respectively, positively and 

negatively correlated with the number and level of inhibitions. In panel C, the size of both an effector 

and target node is positively correlated with the number and level of promotions. 

 

Statistical analysis. The differences of distribution of growth-inhibiting and –promoting 

activity (IS and PS) among effectors at isolate, species and genus levels were statistically 

C  
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analysed. An F-test was applied to examine overall differences among different groups. If the 

F-test was significant (P < 0.05), a Student t test was used to identify the significant pairwise 

differences. Differences between Gram-negative and -positive bacteria were also examined in 

the same way. The dependent variable in analysis included IS from spot-lawn assay 

(inhibition diameter, mm), and IS, PS, ISDT, ISGR, ISMPD, PSDT, PSGR, and PSMPD from CFS 

assay (%). The arcsine transformation of square root of relative interaction strength was used 

to normalise the data from CFS assay. A P value below 0.05 from Student t test was 

considered statistically significant. These tests were performed using the GLM procedure in 

SAS (v 9.3; SAS, Inc., Rockville, MD). 

 

RESULTS 

Total of 774 and 735 combinations of effector and target isolates were tested by spot-lawn 

and CFS assay, respectively. The difference of 39 (i.e. 774-735=39) in total combinations 

between the two assays resulted from Leuconostoc sp. F30e not sufficiently growing in BHI 

broth for CFS analysis. 

Summary of interactions. Combined results of spot-lawn and CFS assays showed 31% of 

pairings produced an interaction, i.e., 28.6% (221 pairings) inhibitions compared to 4.2% (31 

pairings) promotions. A slightly larger number of inhibitory reactions were detected by spot-

lawn compared to CFS assay, i.e., 17.6% (136 pairings) versus 16.6% (122 pairings), 

respectively (Table 3). 
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TABLE 3 Summary of growth inhibition and promotion activity 

Interaction 

level
a
 

Spot-lawn assay 

(total) CFS assay
b
 

Total Inhibition Promotion
c
 

No. % No. % No. % 

++++ 6 0.8 19 2.6   

+++ 17 2.2 7 1.0   

++ 21 2.7 17 2.3 9 1.2 

+ 92 11.9 79 10.7 22 3.0 

       

Total
d
 136 17.6 122 16.6 31 4.2 

a 
Spot-lawn assay: ++++, D ≥ 4 mm; +++, 2 mm ≤ D < 4 mm; ++, 0.5 mm < D < 2 mm; +, 0 < D ≤ 

0.5 mm. CFS broth assay and growth inhibition: ++++, no growth of the target (IS =1); +++,  0.25 ≤ 

IS < 1; ++, 0.15 ≤ IS < 0.25; +, 0 < IS < 0.15. CFS assay and growth promotion: ++, PS ≥ 0.1; +, 0 < 

PS < 0.1. 

b 
Effector cell-free supernatant. 

c 
Growth promotion was classified at only two levels. 

d 
That is the total number or percentage of effector-target pairings displaying inhibition or promotion 

among 774 and 735 effector-target parings studied by using spot-lawn and CFS assays, respectively. 

 

Growth inhibition. Among the 774 effector-target pairings tested by spot-lawn assay, 

there were more weak (14.6%, + and ++) than strong inhibitions (3%, +++ and ++++) (Fig. 3 

and Table 3). By CFS assay, 3.6% versus 13% of interactions produced strong versus weak 

inhibition, respectively. Analysis of kinetic growth profiles of target bacteria showed CFS 

primarily affected DT (Table 4), an effect particularly evident for Carnobacterium (Table A1: 

Appendix A). On the whole, more inhibition events were associated with increased DT (78.9% 

of inhibitions) than decreased GR (44.7%) and MPD (28.5%). 
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TABLE 4 Effects on growth parameters measured by CFS assay 

 

Inhibition  Promotion 

Parameter
a
 %

b
 No.  % No. 

DT 78.9 97  51.6 16 

GR 44.7 55  32.3 10 

MPD 28.5 35  29 9 
a 
DT, detection time; GR, growth rate; MPD, maximum population density. 

b 
The percentage was based on the number of interactions affecting a specific growth parameter, 

divided the total number of interactions (inhibition, 122; promotion, 31). 

 

Growth promotion. Based on the nature of the two assays, growth promotion could only 

be detected by the CFS broth assay. Among 31 pairings promoting growth, 9 were strong (++) 

and 22 were weak (+) (Table 3). Pseudomonas spp. and Enterobacteriaceae were the most 

common growth-promoting effector isolates; less-common effectors included Bacillus sp. 

strains A30g and E0g, Yersinia frederiksenii A8h, and L. mesenteroides B30b (Table 1 and 

Fig. 3C). The isolates stimulating the strongest growth promotion effects were Bacillus sp. 

strains A30g and E0g, and Serratia sp. isolates C0b, C30b, E8c, E8i, and E30j. The targets 

most strongly promoted were Pseudomonas sp. isolates D0g and D8g, B. thermosphacta A0b, 

C. maltaromaticum D8c, Leuconostoc carnosum F30j, and L. mesenteroides (Fig. 3C). 

Although most growth-promoting activity reduced DT and/or increased GR (Table 4), 

MPD was enhanced in some interactions. For example, Bacillus subtilis E0g increased the 

MPD of Pseudomonas sp. D8g by 0.45 OD540 units. Similarly, Serratia sp. E8c increased the 

MPD of Pseudomonas sp. D0g by 0.35 OD540 units (Table A1: Appendix A). 

Effector species. Results of spot-lawn and CFS assays showed isolates inhibiting more 

than 10 targets predominantly belonged to the genera Pseudomonas, Bacillus and 

Carnobacterium (Table 1; Fig. 3A and B). All six Pseudomonas effector isolates, except B0i, 
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inhibited at least nine targets, with Pseudomonas sp. D0b inhibiting 18 targets (Table 1). 

Pseudomonas sp. B0i had a more limited spectrum, inhibiting only six targets. Bacillus sp. 

A30g and E0g each inhibited 16 targets. Carnobacterium maltaromaticum inhibited 5 (C0a) 

to 10 (C8h) targets. Carnobacterium F8g, not identified by 16s rRNA sequencing at the 

species level, inhibited seven targets, and Carnobacterium divergens three to eight targets. 

Staphylococcus epidermidis, represented by one isolate (F30c), inhibited four targets. Live 

effector cells of the family Enterobacteriaceae, including Hafnia alvei, Serratia spp., and R. 

aquatilis, produced lower levels of inhibition against a small number of targets on spot lawns 

and against an even smaller group of targets in the CFS assay (Fig. 3A and B). No inhibition 

by H. alvei E30e was observed in either assay. 

Intraspecies inhibition was observed as well. For example, C. divergens D30f and C. 

maltaromaticum D8c were inhibited by effector isolates of the same species in both spot-

lawn and CFS assay (Fig. 3A and B). Similarly, L. carnosum F30d and F30h inhibited L. 

carnosum F30j. Other interesting observations included effectors inhibiting targets on agar, 

but promoting growth of the same target in broth (e.g., Pseudomonas sp. E0f as effector and 

C. divergens D30f as target) (Fig. 3). 

Target species. Based on both assays, the most frequently inhibited species were C. 

divergens D30f, C. maltaromaticum D8c, Pseudomonas sp. D0g, S. epidermidis F30c and B. 

thermosphacta A0b, with 51.3, 48.7, 47.4, 44.7, and 43.6% of effectors inhibiting these 

isolates, respectively (Table 2). Interestingly, while being the most commonly inhibited 

species, growth of C. divergens D30f and C. maltaromaticum D8c was also promoted by the 

largest number (25.6%) of effector isolates (Table 2). 

Growth-promotion was target-dependent and restricted to a relatively small number of 

isolates, i.e., Carnobacterium sp. strains D30f and D8c, Pseudomonas sp. strains D8g and 
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D0g, Bacillus sp. A30g, and B. thermosphacta A0b (Table 2 and Fig. 3C). Among nine 

interactions showing strong growth promotion, five targets were Pseudomonas spp. (Fig. 3C). 

Both Bacillus sp. strains A30g and E0g promoted the growth of Pseudomonas sp. D8g, 

displaying PS of 0.15 and 0.32, respectively (Table A1: Appendix A). Serratia sp. E8c 

promoted the growth of both Pseudomonas sp. D8g and D0g at PS of 0.37 and 0.12, 

respectively (Table A1: Appendix A). 

Interactions measured by spot-lawn versus CFS-broth assay. Pseudomonas isolates 

inhibited more targets on agar (3 to 18 isolates) than in broth (1 to 4 isolates) (Table 1and Fig. 

3A and B). The influence of test method was especially evident for Pseudomonas sp. D0b, 

which inhibited only one target in broth but inhibited 18 on agar. Pseudomonas isolates were 

often associated with a diffuse inhibition zone (Fig. 3A). Specifically, diffuse zones were 

observed for thirteen, nine and eight targets by Pseudomonas sp. strains D0b, F0b, and D0g, 

respectively. 

Likewise, Bacillus sp. A30g inhibited 14 targets on agar versus seven in broth. Bacillus 

subtilis E0g, however, inhibited the same number of targets by both assays. C. 

maltaromaticum effectors inhibited a wider range of target strains/species in broth compared 

to agar (Fig. 3A and B). For example, C. maltaromaticum C30h inhibited nine of 20 targets in 

broth, but only three on agar (Fig. 3A and B and Table 1). Overall, by broth assay, Gram-

positive bacteria inhibited more target bacteria and displayed relatively stronger inhibition 

strength compared to Gram-negative bacteria (Fig. 3B). However, no significant difference 

between these two groups was observed by agar assay (data not shown). 
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DISCUSSION 

In food, bacterial strains rarely exist in isolation (Faust and Raes, 2012) but rather as 

members of a microbial community influencing food product quality and shelf-life. The 

structure of this community is not only affected by intrinsic and extrinsic environmental 

factors but also possibly by interactions among specific bacteria (Faust and Raes, 2012; 

Perez-Gutierrez et al., 2013; Wolfe et al., 2014), influencing food quality and safety. 

In the present study, we report numerous interactions, tested by both agar- and broth-based 

assays, among a large and diverse group of bacteria isolated from commercial Australian VP 

beef (Fig. 3). Among the 39 effector and 20 target isolates tested, representing a total of 774 

pair-wise tests, 28.6% (221 pairings) showed inhibition and 4.2% (31 pairings) promotion of 

target growth.  

These studies were conducted in bacteriological media, and under an aerobic atmosphere 

at 25°C. Although it may be argued that bacterial densities tested in these studies were high, 

such concentrations and cell-cell proximities may exist in food microenvironments, since 

bacteria are known to preferentially bind and colonize to specific structures (Zulfakar et al., 

2012). While the interpretation of these studies is limited to these specific conditions, they 

offer insight into potential inter-isolate interactions occurring before and shortly after beef 

primals are vacuum-packaged. Additional studies are underway to quantify interactions under 

conditions more relevant to long-term refrigerated storage of refrigerated VP beef. 

LAB have been extensively studied as protective cultures for extending food shelf-life and 

enhancing food safety. They inhibit growth of some spoilage and pathogenic bacteria, such as 

Carnobacterium spp., B. thermosphacta, Listeria spp., Salmonella spp., and Staphylococcus 

aureus, through the action of bacteriocins, organic acids and/or other antibacterial substances 

(Cotter et al., 2013; Li et al., 2011; Martin-Visscher et al., 2008). In the present study, C. 
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maltaromaticum isolates inhibited from five (C0a) to ten (D0h) target isolates (Table 1). In 

contrast, other LAB species did not display as large an inhibition spectrum as C. 

maltaromaticum; for example, most C. divergens inhibited no more than five targets, whereas 

L. carnosum inhibited two (Table 1). Interestingly, C. maltaromaticum and C. divergens also 

showed strong intraspecies inhibition (Fig. 3A and B), an observation consistent with the 

studies of Martin-Visscher et al. (2008) and Worobo et al. (1995). As such, C. 

maltaromaticum, and to a lesser extent C. divergens, may have a strong influence on bacterial 

community structure in VP beef. 

The inhibition spectrum of most LAB measured by the agar spot-lawn assay was not as 

diverse as that by CFS assay, for example, C. maltaromaticum D0h (Fig. 3), whereas in broth, 

extended DT and decreased GR were more frequently observed than decreased MPD (Table 

A1: Appendix A). These differences may due to inhibitory factors in CFS, such as 

disassociated lactic acid and bacteriocins, commonly produced by Carnobacterium spp.(Bali 

et al., 2014). 

When considering the combined results of spot-lawn and CFS assays, Pseudomonas spp., 

with the exception of effector Pseudomonas sp. B0i, displayed high antagonistic behaviour, 

inhibiting, on average, almost half of the targets (Fig. 3A and B and Table 1).  Pseudomonas 

sp. D0b inhibited 18 of the 20 targets (Table 1). Similarly, Aguirre-von-Wobeser et al. (2014), 

using the spot-lawn method, also found Pseudomonas spp., isolated from an aquatic 

environment, were the most highly antagonistic strains. Published reports show plant and 

clinical strains of Pseudomonas (e.g., Pseudomonas putida, P. fluorescens, and other 

Pseudomonas spp.) produce secondary antimicrobial metabolites, including enzymes, 

volatiles (hydrogen cyanide), cyclic lipopeptides, and antibiotics (Kruijt et al., 2009; Kuiper 

et al., 2004; Li et al., 2013b). These have been applied in plant pathology to control fungal 
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pathogens and in clinical studies to inhibit pathogenic strains (Afsharmanesh et al., 2010; 

Cardozo et al., 2013; Trippe et al., 2013). 

However, antibacterial compounds might not explain all the inhibitory activities of 

Pseudomonas spp., since inhibition patterns of Pseudomonas spp. differed markedly between 

spot-lawn and CFS assays. For example, Pseudomonas sp. D0b CFS only inhibited one target 

by CFS, but seventeen by spot-lawn. This may indicate live effector cells, not just CFS, are 

required for target inhibition, as reported by Russell et al. (2011), who found Pseudomonas 

spp. killed bacteria by exporting functional molecules through the type VI secretion system, a 

form of contact-mediated killing. It also may suggest physiological responses of 

Pseudomonas spp. differ in solid versus liquid media. 

It was also noted that growth of C. divergens D30f and C. maltaromaticum D8c was 

promoted by CFS from most Pseudomonas isolates, although promotion strength was low. 

Thus, in the early stages of vacuum-packaging of beef, when oxygen is present, the growth-

promoting and/or -inhibiting effects of Pseudomonas spp. on sensitive bacteria, such as 

Carnobacterium spp., may influence the levels and composition of bacterial species during 

later stages of VP storage. Further studies are required to elucidate the underlying interacting 

mechanism(s). 

Both Bacillus sp. strains E0g and A30g influenced the growth of a wide spectrum of 

isolates, inhibiting 16 of 20 targets. Members of this genus are known to produce 

antimicrobial compounds (Teixeira et al., 2013). Baindara et al. (2013) characterized two 

antimicrobial peptides produced by a B. subtilis strain, which showed antagonistic properties 

against Gram-positive bacteria, including S. aureus and Listeria monocytogenes. Other 

Bacillus species have been reported to produce bacteriocins and biosurfactants (Singh et al., 

2012; Velho et al., 2013); the bacteriocins inhibited the growth of a large range of Gram-
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positive and Gram-negative bacteria. Bacillus subtilis E0g strongly inhibited most Gram-

positive targets, including C. maltaromaticum D8c, B. thermosphacta A0b, Bacillus sp. A30g, 

S. epidermidis F30c, L. carnosum F30j, and also some Gram-negative species, such as 

Serratia spp. and Pseudomonas spp. (Fig. 3). Unlike B. subtilis E0g, Bacillus sp. A30g only 

displayed a wide inhibition spectrum when tested by spot-lawn assay. This indicates 

inhibition by Bacillus sp. A30g may be contact-dependent (Dubey and Ben-Yehuda, 2011). 

Enterobacteriaceae, such as H. alvei, Serratia spp., and R. aquatilis, produced a relatively 

lower level of inhibition under the test conditions (Fig. 3A and B). Staphylococcus spp. were 

studied by Cogen et al. (2010) and were shown to possess antimicrobial activity against skin 

pathogens such as S. aureus via phenol-soluble modulins. Nevertheless, to our knowledge, S. 

aureus has not been well studied for antimicrobial properties in food. The mechanism(s) of S. 

epidermidis F30c inhibition requires further study. 

By broth assay, the growth of target isolates was promoted in 4.2% of the effector and 

target combinations. Most effector isolates (84%) enhancing target growth were Gram-

negative bacteria, including Pseudomonas spp. and members of the Enterobacteriaceae, in 

addition to three other isolates (L. mesenteroides B30b, Bacillus sp. A30g and B. subtilis E0g 

(Fig. 3C). Growth promotion also appeared to be target-dependent, centering on a small range 

of targets, namely, Pseudomonas sp. D8g, B. thermosphacta A0b, C. maltaromaticum D30f, 

C. divergens D8c and L. carnosum F30j. A review of the literature shows promotion of 

bacterial growth by effector isolates has been less frequently reported compared to inhibition. 

Possible reasons include the spot-lawn method, a test format not readily detecting growth-

promotion, being a primary method used in many previous studies (Aguirre-von-Wobeser et 

al., 2014; Lo Giudice et al., 2007; Perez-Gutierrez et al., 2013), and that primary interests of 

applied food microbiology are in extending shelf-life and food quality. 
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The growth of two Carnobacterium spp. isolates was enhanced by a large number of 

effector isolates, including Serratia spp. and Pseudomonas spp. (Fig. 3C). As mentioned 

earlier, Carnobacterium spp. also inhibited a large spectrum of targets. These combined 

observations, as well as Carnobacterium spp. being a facultative anaerobe, may result in this 

genus being more dominant in meats stored under VP conditions (Casaburi et al., 2011; 

Kiermeier et al., 2013). 

In the present study, Leuconostoc sp. F30e failed to grow in BHI at 25
o
C, and thus 

influences on the growth of this strain were not measured by CFS-broth assay. According to 

other studies, some Leuconostoc species, such as Leuconostoc gelidum, are isolated form 

chill-stored foods and may not readily grow at elevated temperature, including 25
o
C used 

here (Cai et al., 1998; Kim et al., 2000; Shaw and Harding, 1989). 

While our general focus was to measure growth inhibition and promotion, we observed 

different inhibition zone morphologies on agar, possibly indicating different mechanisms of 

action. Undefined (diffuse) inhibition zones have been observed in antibiotic resistance 

studies (Deshpande et al., 2002; Steward et al., 2005), and interpreted as low levels of 

bacterial resistance. We noted that Pseudomonas spp. often produced such a diffuse type of 

inhibition zone. 

We measured microbial interactions among bacteria isolated from Australian VP beef, 

which may, in part, help explain the succession of bacterial communities. However, direct 

translation of these results to actual bacterial community formation in beef environments 

must consider that studies used bacteriological broth, relatively high densities of cells, and 

pair-wise comparison of isolates (Wolfe et al., 2014). 
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Chapter 4 

General characterization of mechanisms mediating bacterial interactions 

on vacuum-packaged beef 

 

ABSTRACT 

In Chapter 1, a large number of bacterial interactions were identified among bacteria 

isolated from vacuum-packaged beef. Elucidation of mechanisms mediating these 

interactions is important to further understand the effect of environmental factors, and the 

role of these interactions, in shaping diverse bacterial communities on VP beef. This study 

characterized factors influencing interactions between eight combinations of effector and 

target beef isolates, which previously showed strong growth inhibition or promotion. Results 

demonstrated the inhibitory effect of two isolates of Carnobacterium maltaromaticum and 

one isolate of Bacillus subtilis was mediated by heat- and pH-stable proteinaceous substances. 

In contrast, the inhibitory effect of three isolates of Bacillus sp., Pseudomonas putida, and 

Pseudomonas sp., on corresponding isolates of Yersinia enterocolitica, C. maltaromaticum, 

and B. subtilis, occurred only in the presence of live effector cells, yet was not contact-

dependent. Compounds produced by B. subtilis and Serratia sp. that promoted the growth of 

P. lundensis were non-proteinaceous, and heat- and pH-stable. This study characterized 

factors mediating growth inhibition and promotion, and showed bacterial interactions were 

mediated by diverse mechanisms. 
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INTRODUCTION 

Bacteria rarely exist in isolation, but as members of communities in any given niche, in 

which they compete or cooperate within the community (D'Onofrio et al., 2010; Faust and 

Raes, 2012; Lo Giudice et al., 2007). Two forms of competition have been realized in 

microbial ecology studies: 1) interference competition in which one bacterium directly 

impairs another; and 2) exploitative competition where community members compete for 

nutrients and space (Cornforth and Foster, 2013; Hibbing et al., 2010). 

A large number of bacterial species produce defence compounds such as organic acids, 

bacteriocins, antibiotics and hydrogen peroxide. Quorum molecules and contact-dependent 

communication are also involved in these contests (Aoki et al., 2005; Cotter et al., 2013; De 

Keersmaecker et al., 2006; Dubey and Ben-Yehuda, 2011; Gobbetti et al., 2007; Russell et al., 

2011; Skandamis and Nychas, 2012). Cooperation between bacteria is frequently observed, as 

well (Faust and Raes, 2012). For example, D'Onofrio et al. (2010) found the growth of 

uncultured bacteria was promoted by siderophores produced by adjacent organisms from 

marine sediment. 

Since refrigerated vacuum-packed meat environments contain a rich supply of nutrients, 

diverse bacterial species are present at the time meat is packaged (Ercolini et al., 2011). Over 

time, fewer species dominate the bacterial community due to selective environmental 

pressures. For example, lactic acid bacteria (LAB), Enterobacteriaceae, and Brochothrix 

thermosphacta tend to predominate in vacuum-packaged beef (Ercolini et al., 2011; Youssef 

et al., 2014a). Bacterial interactions may also be additional forces shaping the bacterial 

community. For instance, LAB have been shown to decrease the growth of B. thermosphacta 

(Russo et al., 2006). Furthermore, quorum sensing compounds extracted from meat increased 

the growth rate of Pseudomonas fluorescens and Serratia marcescens (Nychas et al., 2009).  
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In Chapter 1 (Zhang et al., 2015), a number of growth- inhibition and -promotion 

interactions were found between dominant bacteria isolated from Australian vacuum-

packaged beef. Carnobacterium, Pseudomonas, and Bacillus were the main genera 

displaying strong inhibitory activity. A number of effectors inhibited targets by both agar 

assay (live cells of effector and target) and cell-free supernatant (CFS)-broth (effector CFS 

plus live target cells) assays. Examples include C. maltaromatcium B0f and D0h inhibiting C. 

maltaromatcium D8c, and B. subtilis E0g inhibiting B. thermosphacta A0b. However, a 

number of other inhibitions only occurred with live effector cells, such as Bacillus sp. A30g 

versus Y. enterocolitica B8b, P. putida D0b versus C. maltaromaticum D8c, and 

Pseudomonas sp. D0g versus B. subtilis B30a. These observations indicate different 

mechanisms of inhibition. Similarly, different mechanisms may be involved in instances of 

target growth-promotion, such as where both B. subtilis E0g and Serratia sp. E8c strongly 

promoted the growth of P. lundensis D8g. 

This Chapter describes general characterisation of mechanisms responsible for growth-

promoting and -inhibiting activity for eight combinations of effector and target isolates, 

displaying various interaction styles and relative strong interaction strength (Zhang et al., 

2015). This information aids in selecting strains for growth studies described in Chapters 3 

and 4, and towards quantifying the effect of environmental factors on bacterial interactions in 

beef bacterial communities.  

 

MATERIALS AND METHODS 

Bacterial isolates. Eight combinations of effector and target isolates, which displayed 

diverse interaction style and relatively strong growth inhibition or promotion, were chosen 

for study ((Zhang et al., 2015); Table 1). The effectors included Carnobacterium, Bacillus, 
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Pseudomonas, and Serratia. Targets included Carnobacterium, Brochothrix, Yersinia, 

Bacillus, and Pseudomonas.  

 

TABLE 1 Eight combinations of effector and target isolates and the corresponding interaction 

strength (Zhang et al., 2015). 

 
Effector Target 

Interaction strength
a
 

Live cells  

(Agar, mm) 

CFS 

(Broth) 
Inhibition Carnobacterium 

maltaromaticum B0f 

Carnobacterium 

maltaromaticum D8c 

4.48 1 

Carnobacterium 

maltaromaticum D0h 

Carnobacterium 

maltaromaticum D8c 

 

 

4.82 1 

Bacillus subtilis E0g Brochothrix thermosphacta 

A0b 

1.49 1 

Bacillus sp. A30g Yersinia 

enterocolitica B8b 

2.65 0
b
 

Pseudomonas putida 

D0b 

Carnobacterium 

maltaromaticum D8c 

6.04 0 

  Pseudomonas sp. D0g Bacillus subtilis B30a 2.30 0 

Promotion Bacillus subtilis E0g Pseudomonas lundensis D8g /
c
 0.15 

Serratia sp. E8c P. lundensis D8g / 0.37 

     
a 
Interaction strength was designated as diameter of inhibition zone in agar assay, and relative 

inhibition strength which was calculated using detection time, growth rate and maximum population 

density in cell free supernatant (CFS) broth assay. The value was generated from the average data of 

triplicates of one experiment for spot-lawn assay and of duplicates of one experiment for CFS assay, 

respectively (Zhang et al., 2015). 

b
 No interaction was observed. 

c
 Agar assay was not able to test growth-promoting activity (Zhang et al., 2015). 
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Cell-free supernatant (CFS) preparation, and pH, temperature, and enzyme 

treatments. 

Preparation of CFS. Effector isolates were inoculated into brain heart infusion broth (BHI; 

Amyl Media Ltd, Australia) from a colony grown on tryptone soy agar (TSA, Oxoid Ltd, 

Australia). Cultures were grown at 25
o
C for 24 h, and then centrifuged at 10 000 × g for 5 

min. Supernatant was filtered through a 0.2 µm pore-sized filter (Corning®, Germany). 

Sensitivity of effector CFS to pH. The pH of overnight unfiltered CFS was measured. CFS 

was then adjusted to pH 3, 5, 7, 9 and 11 ( ± 0.1) using 1 M NaOH or 1 M HCl, and 

incubated at 4
o
C for 2 h (Baindara et al., 2013; Martin-Visscher et al., 2008). After incubation, 

pH was adjusted to the original value (6.2 ± 0.1 for C. maltaromaticum B0f, 6.3 ± 0.1 for C. 

maltaromaticum D0h, 6.7 ± 0.1 for B. subtilis E0g, and 6.7 ± 0.1 for Serratia sp. E8c), and 

then filtered-sterilised. Since NaCl was formed when CFS pH was adjusted, an equal volume 

of NaCl was added to un-pH-adjusted CFS (negative control). 

Sensitivity of effector CFS to temperature. One millilitre of CFS was incubated in a 

heating block (Bio-strategy, Australia) at 37, 70, and 100
o
C for 30 min, and then cooled to 

25
o
C. Controls were CFS incubated at 4

o
C. 

Sensitivity of effector CFS to degradative enzymes. CFS was treated with 1 mg/ml (final 

concentration) of lipase, α-amylase, catalase, papain, proteinase K, and pronase E (dissolved 

in H2O; Sigma - Aldrich, Australia), and kept at 37, 25, 25, 25, 37, and 37
o
C according to 

manufacturer’s instructions for 2 h, respectively. Controls were CFS containing the same 

volume of H2O for enzyme preparation, and H2O containing the same final concentration of 

enzymes. 
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Effect of CFS treatment on inhibition/promotion of isolate growth. After the 

treatments described above, CFS was tested for inhibition- or promotion- activity by agar 

overlay or CFS-broth assay. 

The inhibitory activity of CFS of C. maltaromaticum B0f and D0h against target C. 

maltaromaticum D8c was determined by the agar overlay method, as described by Aween et 

al. (2012). Briefly, overnight cultures of the target isolate were adjusted to cell density of 10
8
 

cfu/ml (an optical density at 600 nm (OD600), 0.10 – 0.15) and then diluted to 10
7
 cfu/ml 

using BHI. Nine millilitres of melted TSA (0.7% agar, g/v; 50
o
C) mixed with 1 ml of 

bacterial suspension was poured onto TSA plates. After solidification, 10 µl of CFS prepared 

as above was spotted onto the agar surface. After incubating at 25
o
C for 24 h, the inhibition 

zone was photographed and the inhibition diameter determined using software Image J 

(version 1.49; [http://rsb.info.nih.gov/ij/index.html]). Effect of CFS treatments was evaluated 

as the percentage in inhibition reduction, calculated as the difference of inhibition diameter 

between treated CFS and the corresponding control, divided by the inhibition diameter of the 

control. 

Since the inhibition effect of CFS of B. subtilis E0g on the growth of B. thermosphacta 

A0b was weak (Table 1) and not easily observed via agar assay, it was measured by broth 

assay using a BioscreenC instrument (Growth Curve Ab Ltd, Finland), as described in our 

previous study (Zhang et al., 2015). Untreated CFS was used as a positive control, and 1 M 

PBS and BHI (pH of both were 7.4 ± 0.1) as two negative controls. Four replicates (four 

wells in micro well plates) were used for each treatment, and two trials performed on 

different days. Since the agar assay did not detect growth-promotion (Zhang et al., 2015), the 

promoting activity of B. subtilis E0g CFS (vs P. lundensis D8g) and Serratia sp. E8c CFS (vs 

P. lundensis D8g) was determined via broth assay. 

http://rsb.info.nih.gov/ij/
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For the CFS-broth assay, the time to reach OD600 of 0.1 (background corrected data) was 

recorded as “detection time” (DT). Growth rate (GR, log10(OD)/h) and maximum OD600 (the 

highest OD600 a growth curve able to reach) were calculated as described in our previous 

study (Zhang et al., 2015). Inhibition strength (IS) or promotion strength (PS) (Zhang et al., 

2015) was then calculated according to each growth parameter for treated CFS and control. 

Effect of CFS treatments was evaluated as the percentage in inhibition or promotion activity 

reduction, calculated as the difference of IS or PS between treated CFS and the corresponding 

control, divided by the IS or PS of the control. 

Effect of Bacillus sp. A30g, Pseudomonas putida D0b and Pseudomonas sp. D0g live 

cells on Pseudomonas lundensis D8g growth. The inhibitory activity of live cells of three 

effector isolates on P. lundensis D8g was tested in two formats to determine if cell contact 

was required. 

In the first experiment (Fig. 1A), overnight cultures of effector isolates and corresponding 

target isolates were adjusted to 10
7
 cfu/ml in BHI. One millilitre of effector isolate 

suspension or un-inoculated BHI (control) was mixed with 9 ml of melted TSA and poured 

onto plates. After solidification, a piece of 0.2 µm pore-sized sterile filter paper (Diameter, 25 

mm; Nuclepore, Canada) was placed on top of the agar layer. Then, 10 µl of target isolate 

suspension was spotted on top of the filter. After incubating at 25
o
C for 12 h, the target 

bacterial cells were harvested by washing the top of the filter using 1 ml of peptone water 

(0.1% (g/v) bacteriological peptone, 0.85% (g/v) NaCl, pH 7.3 ± 0.2). The OD600 of washing 

fluid was measured. 

In the second experiment (Fig. 1B), a mixture containing 1 ml of target isolate suspension 

(10
7
 cfu/ml) and 9 ml of melted TSA was poured onto plates. After solidification, filter paper 

was placed on top of the agar layer. Ten microliter of effector isolates (10
8
 cfu/ml) was 
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spotted onto the top of the filter or directly onto the surface of top agar layer (control). After 

incubation at 25
o
C for 12 h, the filter paper was removed and the inhibition zone 

photographed.  

 

 

FIG 1 Layer design of trials separating live cells of effector and target isolates. 

 

Statistical analysis. Difference between treatment and control, or treatment groups, was 

compared using a Student’s t-test in Excel®. A P value below 0.05 was considered 

significant. 

 

RESULTS 

Treatment of C. maltaromaticum B0f and D0h CFS and the effect on inhibition of C. 

maltaromaticum D8c. Temperature, pH, lipase, α-amylase, and catalase treatment of C. 

maltaromaticum B0f and D0h CFS did not significantly affect inhibitory activity on C. 

maltaromaticum D8c, as measured by the agar overlay assay (Table 2). In contrast, treatment 

of D0h and B0f CFS with 1 mg/ml of proteolytic enzymes (papain, proteinase K, and pronase 

E) removed the inhibitory effects on D8c. 
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TABLE 2 Inhibitory activity of C. maltaromaticum B0f and D0h CFS after treatments. 

Treatment 

Reduction (%)
a
 in 

inhibitory activity 

B0f D0h 

pH 3 0.2 ± 0.3 2 ± 2.8 

 5 0 6 ± 8.4 

 7 2.9 ± 4.1 4.7 ± 6.7 

 9 3.1 ± 1.9 0.2 ± 0.3 

 11 5.3 ± 1.5 0.4 ± 3.8 

T (
o
C) 37 3.9 ± 4.2 0 

 70 2.8 ± 4.1 2.5 ± 3.6 

 100 9.3 ± 5.8 10 ± 0.6 

Enzymes Lipase 0 11 ± 5.9 

 α-Amylase 2.1 ± 0.6 7.8 ± 1.2 

 Catalase 3.5 ± 6.1 2.1 ± 3.6 

 Papain 100 100 

 Proteinase K 100 100 

 Pronase E 100 100 
a
 Effect of a CFS treatment was calculated as the difference of DI between treated CFS and 

corresponding control, divided by the DI of control, and then multiplied by 100 to get a percent. The 

data are represented as the mean of two trials ± standard deviation. 

 

Treatment of B. subtilis E0g CFS and the effect on inhibition of B. thermosphacta 

A0b. Temperature and pH treatments did not reduce the inhibitory activity of B. subtilis E0g 

CFS on B. thermosphacta A0b (Table 3 and Fig. 2). Similarly, inhibition activity was not 

affected by catalase, lipase, α-amylase, or papain treatments. However, inhibitory activity 

was reduced 100% after treatment with proteinase K and pronase E. 
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TABLE 3 The effect of treatments on inhibitory activity of B. subtilis E0g CFS on B. thermosphacta 

A0b. 

Treatment 

Inhibition activity 

reduction
a
 

pH 3 - 

 
5 - 

 
7 - 

 
9 - 

 
11 - 

T (
o
C) 37 - 

 
70 - 

 
100 - 

Enzymes Lipase - 

 
α-Amylase - 

 
Catalase - 

 
Papain - 

 
Proteinase K + 

  Pronase E + 
a
 Inhibitory activity reduction was shown as ‘–‘ (0% reduction) or ‘+’ (100% reduction) .  
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FIG 2 The effect of temperature (A) and proteinase K (B) on the inhibitory activity of Bacillus 

subtillis E0g CFS on Brochothrix thermosphacta A0b.  

(A), 0% reduction; T37, T70 and T100 refer to CFS treated at 37
o
C, 70

o
C and 100

o
C, respectively. TC 

refers to CFS control treated at 4
o
C. 

(B), 100% reduction; CFS+PK, CFS+H2O and H2O+PK refer to CFS treated with 1mg/ml of 

proteinase K, CFS added the same volume of H2O, and H2O added 1mg/ml of proteinase K, 

respectively. 

Both PBS and BHI were used as blank control without adding CFS in panel A and B. 

 

Measurement of contact-mediated inhibition caused by lives cells of Bacillus sp. A30g 

on Y. enterocolitica B8b, P. putida D0b on C. maltaromaticum D8c, and Pseudomonas sp. 

D0g on B. subtilis B30a. The first test format (Fig. 1A), in which growth of target isolates 

was measured by enumerating cells on filter paper overlying targets, indicated cell contact 

was not required to inhibit targets. Specifically, for Bacillus sp. A30g vs Y. enterocolitica 

B8b and P. putida D0b vs C. maltaromaticum D8c, the OD600 of target isolates washed from 

filter papers was 0.24 and 0.112, respectively, significantly lower than controls (0.412 and 

0.135) (Fig. 3A). Although OD600 of B. subtilis B30a was not significantly reduced by live 

cells of Pseudomonas sp. D0g, a reduction in OD600 from 0.305 (control) to 0.222 was 

observed (Fig. 3A). 
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Similar observations occurred in the second trial, in which inhibition was observed after 

removal of the 0.2 µm pore-sized filter (Fig. 1B and Fig. 3B). Inhibition was observed for all 

the three combinations of target and effector isolates. 

 

 

FIG 3 Characterization of inhibition produced by Bacillus sp. A30g, Pseudomonas putida D0b and 

Pseudomonas sp. D0g.  

Error bars represent x ± standard deviation, and x is the mean of two replicates. 

(A) Cell density of target isolate is measured via OD600 of washing fluid (Materials and methods). 

Effector isolates was (‘E+’) or was not (‘E-‘, control)) added into top agar layer. 

(B) 0.2 µm pore-sized filter membrane was (‘Membrane+’) or was not placed (‘Membrane-’) to 

separate live cells of effector and target isolates. Inhibition zone was photographed after peeling off 

the filter membrane. 

a: Bacillus sp. A30g (effector) vs Yersinia enterocolitica B8b (target) 

b: Pseudomonas putida D0b (effector) vs Carnobacterium maltaromaticum D8c (target) 

c: Pseudomonas sp. D0g (effector) vs Bacillus subtilis B30a (target) 

 

Treatment of CFS and the effect on growth-promotion of P. lundensis D8g by B. 

subtilis E0g and Serratia sp. E8c CFS. The growth-promoting effect of B. subtilis E0g CFS 
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on Pseudomonas sp. D8g was not affected by pH, temperature, or enzymes, except for lipase, 

as tested by broth assay (Table 4 and Fig. 4A). Interestingly, a significantly higher maximum 

OD600 (1.275) for target P. lundensis D8g was produced after E0g CFS was treated with 1 

mg/ml of lipase, compared to CFS without treatment (1.087) (Fig. 4A3).  

The growth-promoting activity of Serratia sp. E8c CFS was reduced by pH 3 and 11 

treatments, and was increased by lipase, as tested by broth assay (Table 4 and Fig. 4B1 and 

3B2). Specifically, GR of target Pseudomonas sp. D8g was 0.272 and 0.212 for CFS treated 

with pH 3 and 11, and 0.327 and 0.328 for controls, respectively. Serratia sp. E8c CFS 

treated with lipase had a higher maximum OD600 (1.346 vs 0.973 (control); Fig. 4B4). The 

growth-promoting activity of E8c CFS effector was not significantly influenced by other 

treatments. 

 

TABLE 4 The effect of treatments on promoting activity of B. subtilis E0g and Serratia sp. E8c CFS 

on P. lundensis D8g. 

Treatment Effect
a
 

 E0g E8c 

pH 3 -  D
b
 

 5 - - 

 7 - - 

 9 - - 

 11 - D
c
 

T (
o
C) 37 - - 

 70 - - 

 100 - - 

Enzymes Lipase I
d
 I

e
 

 α-Amylase - - 

 Catalase - - 

 Papain - - 

 Proteinase K -  -  

  Pronase E -  -  
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a
 The effect of treatments on CFS was shown as ‘–‘ (0% reduction), ‘D’ (significant decrease was 

observed in exponential growth phase, which was 12.6% for ‘D
b
’ and  55.3% for ‘D

c
’, respectively), 

and ‘I’ (significant increase was observed in stationary phase, which was 76.4 % for ‘I
d
’ and >100% 

for ‘I
e
’, respectively). 
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FIG 4 The effect of treatments on the promoting activity of CFS produced by Bacillus subtilis E0g 

and Serratia sp. E8c. 

(A1) – (A6), B. subtilis E0g (effector) vs Pseudomonas sp. D8g (target) 

(B1) – (B6), Serratia sp. E8c (effector) vs Pseudomonas sp. D8g (target) 

Both PBS and BHI were used as blank control without adding CFS in graphs A and B. 

(A1), (B1) and (B2), pH3 and pH11 refer to corresponding CFS treated with pH 3 and 11, and pH3C 

and pH11C refer to CFS control for corresponding pH, respectively. 
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(A2) and (B3), T37, T70 and T100 refer to CFS treated at 37
o
C, 70

o
C and 100

o
C, respectively. TC 

refers to CFS without heat treatment. 

(A3) - (A6) and (B4) - (B6), CFS+Li, CFS+Ca, CFS+PK, CFS+PE refer to corresponding CFS added 

1mg/ml of lipase, catalase, proteinase K and pronase E, respectively. CFS+H2O refer to corresponding 

CFS added the same volume of H2O. H2O+Li, H2O+Ca, H2O+PK and H2O+PE refer to H2O added 

1mg/ml of lipase, catalase, proteinase K, pronase E, respectively. 

 

DISCUSSION 

Inhibitory activity of C. maltaromaticum B0f and D0h CFS on C. maltaromaticum D8c. 

Carnobacterium is a LAB species that predominates in the bacterial community of vacuum-

packaged (VP) beef (Ercolini et al., 2011). Strains of C. maltaromaticum produce 

bacteriocins possessing inhibitory activity, even against isolates of the same species (Martin-

Visscher et al., 2008; Tulini et al., 2014). In our previous study, CFS of both C. 

maltaromaticum B0f and D0h were antagonistic against beef bacterial isolates from various 

species, and produced the largest inhibition against C. maltaromaticum D8c (Zhang et al., 

2015). Hence, this study used C. maltaromaticum D8c as a target isolate to characterise 

inhibitory activity caused by B0f and D0h CFS. 

The inhibitory activities of B0f and D0h CFS were sensitive to proteolytic enzymes 

including papain, proteinase K and pronase E, evidenced by no inhibition zone on agar plates 

(Table 2). In contrast, CFS of B0f and D0h retained the majority of inhibitory activity after 

treatment with the lipolytic enzyme, lipase, the glycolytic enzyme, α-amylase, and catalase. 

This indicates the antibacterial compounds are proteinaceous. 

The pH treatment of B0f and D0h CFS, showed CFS was more sensitive to high and low 

pH, respectively (Table 3). However, on the whole, CFS showed pronounced stability at 
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100
o
C, and pH from 3 to 11. The data indicate the CFS contains bacteriocin-like substances 

(Martin-Visscher et al., 2008; Tulini et al., 2014). 

Bacteriocins are ribosomally synthesized peptides, which are usually heat-stable and 

inhibit closely related bacteria (Cotter et al., 2013). C. maltaromaticum is known to produce 

class I and II bacteriocins (Holck et al., 1994; Martin-Visscher et al., 2008; Quadri et al., 

1994; Stoffels et al., 1992b; Tulini et al., 2014). Further investigation could clarify the exact 

type of bacteriocin produced by C. maltaromaticum B0f and D0h, although this was not the 

focus of this thesis. 

Inhibitory activity of B. subtilis E0g CFS on B. thermosphacta A0b. CFS of B. subtilis 

E0g was tested by agar assay, displaying a faint inhibition zone. Therefore, the greater 

sensitivity of the CFS-broth assay was used to measure the effect of pH, temperature and 

enzyme treatments on CFS. 

A large diversity of antibacterial compounds is produced by Bacillus spp., including 

various classes of bacteriocins and surface-active lipopeptides (Baindara et al., 2013; Ghribi 

et al., 2012; Joseph et al., 2013; Phelan et al., 2013; Xin et al., 2015). Due to the complete 

loss of inhibitory activity of B. subtilis E0g CFS after digestion by proteolytic enzymes, 

including proteinase K and pronase E, the inhibitory compounds are likely proteins (Table 3). 

However, the activity was not affected by papain. Similar discrepancies have been reported 

by Phelan et al. (2013), who found a B. subtilis strain produced a class I bacteriocin, 

subtilomycin resistant to proteinase K but susceptible to a protease mixture (pronase E). B. 

subtilis E0g CFS was not sensitive to lipase, catalase, pH from 3 to 11, and temperatures 

from 37
o
C to 100

o
C (Table 3). It has been reported that bacteriocins produced by Bacillus spp. 

are thermostable and resistant to a wide range of pH (Baindara et al., 2013; Joseph et al., 

2013; Phelan et al., 2013).  
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In the present study, α-amylase alone inhibited the growth of target isolate, B. 

thermosphacta A0b, and therefore the effect of this enzyme on B. subtilis E0g CFS could not 

be tested. Alpha-amylase was previously reported to inhibit the growth of clinical pathogens 

such as Legionella pneumophila (Bortner et al., 1983), Neisseria gonorrhoeae (Gregory et al., 

1983) and Porphyromonas gingivalis (Ochiai et al., 2014), though mechanisms of this 

inhibition are still unknown. 

Inhibition by live cells of Bacillus sp. A30g on Y. enterocolitica B8b, P. putida D0b 

CFS on C. maltaromaticum D8c, and Pseudomonas sp. D0g on B. subtilis B30a. In our 

previous study (Zhang et al., 2015), inhibitory activity between these three combinations of 

isolates was observed by agar assay but not observed by CFS-broth assay (Table 1). We 

hypothesized inhibition would require cell contact between live cells of effector and target 

isolates. 

A 0.2 µm pore-sized membrane was used to separate effector and target live cells. 

However, the growth of target isolates Y. enterocolitica B8b, C. maltaromaticum D8c, and B. 

subtilis B30a remained inhibited by Bacillus sp. A30g, P. putida D0b, and Pseudomonas sp. 

D0g, respectively. In addition, an inhibition zone was observed after removing the filter (Fig. 

3). This indicates inhibition by live effector cells is not contact-dependent. 

This phenomenon was possibly due to the production of antibacterial compounds induced 

by the presence of target live cells. Cornforth and Foster (2013) argue that toxin secretion of 

a number of species, including Pseudomonas and Bacillus, are frequently induced by 

environmental stress signals such as nutrient limitation. Slattery et al. (2001) also found that 

marine bacterial species, Streptomyces tenjimariensis was induced to produce antibiotic in the 

presence of competing bacteria. 
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Growth-promoting activity of B. subtilis E0g and Serratia sp. E8c CFS on P. 

lundensis D8g. Mutualistic interactions among bacteria are ubiquitous in nature, which 

involves various mechanisms (McInerney et al., 2008; Woyke et al., 2006). Bacteria 

metabolize compounds in a variety of ways, and some produce growth-promoting compounds 

(Grenier and Mayrand, 1986; Wyss, 1989). In the present study, growth-promoting activity of 

B. subtilis E0g and Serratia sp. E8c CFS were not sensitive to papain, proteinase K, pronase 

E, catalase, α-amylase, and were heat-stable (Table 4). The CFS of two effector isolates also 

produced pronounced pH stability from 3 to 11, except that CFS of Serratia sp. E8c was 

slightly inhibited by treatment at pH 3 and 11 (Fig. 4B1 & 4B2).  

These findings are partly consistent with the study of Tanaka et al. (2005), in which 

growth-promoting factors were heat-stable non-peptides with low molecular weights. Nychas 

et al. (2009) found that CFS containing quorum sensing (QS) compounds could promote the 

growth of P. fluorescens and Serratia marcescens. Although, the mechanism is unclear, it is 

argued QS might sense cell density of a bacterial population and then cause neighbouring 

cells to utilize extracellular nutrients by changing gene expression of target bacteria (Dourou 

et al., 2011). 

Siderophores have also been reported to play an important role in promoting growth by 

assisting neighbouring bacteria acquire environmental iron (D'Onofrio et al., 2010). P. 

fluorescens has been reported to possess 24 putative siderophore receptors, allowing the cell 

to acquire a range of heterologous siderophores, besides its own (Moon et al., 2008). P. 

lundensis D8g used in this study may have a similar property, as it was promoted by 

siderophores produced by B. subtilis E0g and Serratia sp. E8c. However, AI-2 (auto inducer-

2, QS factor) could also be a potential factor in promoting activity displayed by these two 

effector isolates. Autoinducer AI-2 is regarded as a universal language for the communication 

of both inter-species and intra-species. The growth of both Gram-negative and -positive 
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bacteria (Federle and Bassler, 2003; Skandamis and Nychas, 2012), and of Escherichia coli 

O157: H7 was promoted by an AI-2 mediated process (Dourou et al., 2011).  

An interesting phenomenon is that the maximum OD600 of P. lundensis D8g was further 

increased by CFS of the two effector isolates after lipase treatment (1 mg/ml). This infers 

lipase might digest compounds in effector bacteria CFS, making them more easily utilized by 

target bacteria. 

Due to the complexity of the composition of CFS of bacteria cultures, the chemical 

structure of the growth-promoting factors in the study could not be clarified. However, the 

susceptibility of these substances to pH, temperature and enzymes may help explain the effect 

of environmental factors on bacterial interactions on VP beef. 

 

CONCLUSIONS 

Two isolates of C. maltaromaticum and one isolate of B. subtilis from VP beef produced 

proteinaceous antibacterial compounds, which are temperature and pH stable. The inhibitory 

activity of Bacillus sp. A30g and two isolates of Pseudomonas against target isolates are not 

contact-dependent, but instead require the presence of live effector cells. The non-peptide 

substances produced by B. subtilis and Serratia sp., which are heat- and pH-stable, promote 

the growth of P. lundensis. 
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Chapter 5 

Effect of environmental factors on intraspecific inhibitory activity of 

Carnobacterium maltaromaticum strains isolated from vacuum-packaged 

refrigerated beef 

 

ABSTRACT 

Antibacterial compound production is a prevalent strategy used in inter- and intra-species 

competition for limited nutrients. Our previous study found vacuum-packaged (VP) beef 

isolate Carnobacterium maltaromaticum D0h strongly inhibited the growth of C. 

maltaromaticum D8c. However, the influence of environmental factors, relevant to the VP 

beef environment, on this interaction is unknown. This study investigated the effects of 

temperature, atmosphere, pH, lactic acid, and glucose on the sensitivity of strain D8c to 

inhibition by D0h cell-free supernatant (CFS), using an agar model system. D0h CFS was 

applied to agar containing viable cells of D8c, and then the inhibition zone (DI) measured to 

evaluate CFS inhibitory activity. The inhibitory activity, shown to be proteinaceous, was 

greatest at 15
o
C, followed by 7, -1, and 25

o
C, and higher under aerobic than anaerobic 

conditions. Agar supplemented with lactic acid and glucose increased DI. DI was less at pH 

6.5, compared to pH 5.5 and 6. Predictive models were produced to model environmental 

effects on DI. This study provides a quantitative understanding of intra-species interactions, 

and helps explain how VP beef related environmental factors affect these interactions. 
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INTRODUCTION 

Bacteria interact in any given niche, including food environments (Blana and Nychas, 

2014; Faust and Raes, 2012; Zhang et al., 2015). They cooperate or compete by secreting 

metabolites, or via direct cell-cell interactions (Aoki et al., 2005; Blana and Nychas, 2014; 

Cotter et al., 2013; Dubey and Ben-Yehuda, 2011; Pande et al., 2015; Zhang et al., 2015). 

Such interactions may be important in influencing the shelf-life of meat products through 

changes in bacterial community structure (Blana and Nychas, 2014; Perez-Gutierrez et al., 

2013; Wolfe et al., 2014). 

Production of defence compounds is an important strategy for bacteria to compete within 

bacterial communities (Cotter et al., 2013; Phelan et al., 2012; Zhang et al., 2015). 

Carnobacterium maltaromaticum, a dominant lactic acid bacteria (LAB) species in vacuum-

packaged (VP) meat, has been reported to produce inhibitory compounds, including organic 

acids and bacteriocins (Laursen et al., 2005; Martin-Visscher et al., 2008; Tulini et al., 2014; 

Youssef et al., 2014a). In our previous study (Zhang et al., 2015), cell-free supernatant (CFS) 

of various isolates of this species from Australian VP beef displayed inhibitory activity, and 

isolate D0h was found to have the widest inhibition spectrum against spoilage bacteria, 

including Serratia spp., Pseudomonas spp., Leuconostoc spp., and other Carnobacterium spp. 

Strain D0h even inhibited an isolate of the same species, namely C. maltaromaticum D8c, at 

25
o
C under aerobic conditions on standard laboratory media (Zhang et al., 2015). However, 

the effect of environmental factors on this inhibitory interaction was unknown. 

Such environmental conditions include < 1% v/v oxygen atmosphere, refrigerated 

temperature, pH 5.0 – 6.0, 10 – 100 mM lactic acid, and approximately 0.01 % (wt/wt) 

glucose (Frylinck et al., 2013; Jones, 2004; Small et al., 2012). Due to the dominant role of C. 

maltaromaticum in the bacterial community in VP beef (Doulgeraki et al., 2012), a better 
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understanding of factors affecting bacterial interactions, and community development, could 

help design processes to maintain and/or improve shelf-life. 

To date, numerous models have been developed to predict the effect of food-related 

environmental factors on growth of bacteria. However, due to a lack of quantitative 

information about bacterial interactions, these models consider the effect of environments on 

the growth of one or a few species, not accounting for interactions between species (Posada-

Izquierdo et al., 2014; Powell et al., 2015). 

This study quantified and modelled the effect of environmental factors—atmosphere, 

temperature, pH, glucose, and lactic acid—on sensitivity of C. maltaromaticum D8c to 

inhibitory factor(s) produced by C. maltaromaticum D0h. These in vitro findings provide a 

more mechanistic understanding of interactions between bacterial isolates under various 

environmental conditions, with potential applications to commercial beef. 

 

MATERIALS AND METHODS 

Bacterial isolates and CFS preparation. Effector and target strains of C. 

maltaromaticum, D0h and D8c, respectively, were isolated from VP beef (Small et al., 2012; 

Zhang et al., 2015) and stored at -80
o
C. Before each experiment, these isolates were 

separately inoculated into BHI broth (Amyl Media Ltd, Australia) from a single colony on 

tryptone soy agar (TSA, Oxoid Ltd, Australia) and incubated at 25
o
C for 24 h. CFS produced 

by D0h was prepared by centrifuging cultures at 10,000 × g for 5 min, followed by filtration 

through a 0.2 µm pore-sized membrane (Corning
®

, Germany).  

Measurement of CFS inhibitory activity. The inhibitory activity of isolate D0h CFS on 

growth of isolate D8c was determined by the agar overlay method as reported by Aween et al. 
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(2012), with slight modification. Briefly, early stationary phase cultures of D8c were adjusted 

to 10
8
 cfu/ml by optical density (OD) measurement in a 96-well plate at 600 nm (OD600; 

SPECTROstar Nano Absorbance Reader, Germany); OD values ranged from 0.10–0.15. Ten 

millilitres of melted TSA (0.7% agar, g/v; 50
o
C) was mixed with 10

7
 cfu D8c, and poured 

into agar plates. After solidification, 10 µl of filter-sterilised CFS was spotted onto the agar 

surface in triplicate, incubated at 25
o
C for 24 h, and then the inhibition zone photographed 

and the diameter of inhibition (DI) measured with ImageJ software (v1.49 

[http://rsb.info.nih.gov/ij/index.html]). 

Kinetics of production of C. maltaromaticum D0h inhibitory compounds. To 

investigate the kinetics of inhibitory compound production, C. maltaromaticum D0h was 

inoculated into BHI at an initial cell density of 10
5
 cfu/ml, and then incubated aerobically at 

25
o
C. Culture OD600 was measured every 3 h for the first 9 h, and then at 1.5 h intervals. At 

each time point, CFS was diluted in two-fold serial increments, and then inhibitory activity 

determined by the agar overlay assay, as described above. 

Effect of environmental factors on the sensitivity of C. maltaromaticum D8c to 

inhibition by C. maltaromaticum D0h CFS. The sensitivity of target isolate D8c to 

inhibitory compounds produced by D0h was tested using an agar overlay method. However, 

rather than TSA applied as above, modified brain heart infusion (mBHI) broth, without 

glucose, was used as the base medium (AM 11-NG, Amyl Media, Ltd., Australia; mBHI 

contained 10 g blended peptone no. 1, 5 g sodium chloride, 17.5 g brain heart infusion solid, 

and 2.5 g di-sodium hydrogen orthophosphate, per litre). Conditions included temperature (-1, 

7, 15, and 25
o
C), atmosphere (aerobic and anaerobic), pH (5.5, 6, and 6.5), lactic acid (0, 25, 

and 50 mM), and glucose (0, 0.56, and 5.55 mM). A full factorial design (4 × 2 × 3 × 3 × 3) 

was applied. 

http://rsb.info.nih.gov/ij/
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Different amounts of L(+) lactic acid (Scharlab, Spain) and G(+) glucose (Sigma, USA) 

were used to prepare 27 variations of mBHI (Table 1). The pH was adjusted to 5.5, 6, or 6.5 

(± 0.1) using 10 M NaOH or 32% (g/v) HCl (Table 1). After adding 15 g/L of agar, mBHI 

medium was autoclaved (121
o
C, 15 min), and pH adjusted when the medium cooled to 

approximately 60
o
C. The concentration of undissociated lactic acid (UndisLA) was 

calculated according to the total concentration of lactic acid and final pH.  

[𝑈𝑛𝑑𝑖𝑠𝐿𝐴] =
[𝐿𝐴]

1+ 10(𝑝𝐻−3.86)  (1) 

Ten millilitres of 50
o
C mBHI mixed with 10

7
 cfu D8c were added to Petri dishes, previously 

prepared with a bottom layer of 15 ml mBHI agar. 

Preliminary experiments showed C. maltaromaticum D0h broth cultures contained the 

highest levels of inhibitory compounds (1600 AU/ml) between 19.5–22.5 h of incubation (Fig. 

1). Using CFS from this time interval, three 10 µl aliquots of CFS were added to the agar 

surface. After CFS was completely absorbed, agar plates were incubated at different 

temperatures, both aerobically and anaerobically, until inhibition zones were observed (Table 

1 and 2). Anaerobic conditions (< 1.0% O2,  ≥13% CO2) were created by a GasPak EZ 

anaerobic pouch (BD, Australia) placed in a sealed jar. Incubation temperature was recorded 

using data loggers (Thermochron iButton
®
, Australia). At the end of the experiments, DI was 

measured. 
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TABLE 1 Levels of lactic acid, glucose, and pH for mBHI agar formulations. 

Medium 

(#) 

Lactic acid  

(mM) 

Glucose 

(mM) 

pH UndisLA 

(mM)
a
 

1 0 0 5.5 0 

2 0 0 6 0 

3 0 0 6.5 0 

4 25 0 5.5 0.56 

5 25 0 6 0.18 

6 25 0 6.5 0.06 

7 50 0 5.5 1.12 

8 50 0 6 0.36 

9 50 0 6.5 0.11 

10 0 0.56 5.5 0 

11 0 0.56 6 0 

12 0 0.56 6.5 0 

13 25 0.56 5.5 0.56 

14 25 0.56 6 0.18 

15 25 0.56 6.5 0.06 

16 50 0.56 5.5 1.12 

17 50 0.56 6 0.36 

18 50 0.56 6.5 0.11 

19 0 5.55 5.5 0 

20 0 5.55 6 0 

21 0 5.55 6.5 0 

22 25 5.55 5.5 0.56 

23 25 5.55 6 0.18 

24 25 5.55 6.5 0.06 

25 50 5.55 5.5 1.12 

26 50 5.55 6 0.36 

27 50 5.55 6.5 0.11 
a 
UndisLA, the undissociated form of lactic acid, the concentration of which is calculated according to 

the concentration of lactic acid and pH of corresponding medium ( [UndisLA] = [Lactic acid]/(10
(pH-

3.86)
+1) ). 
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TABLE 2 Incubation conditions for samples. 

Temperature 

(
o
C) 

Atmosphere Medium #
a
 

 

Incubation time 

(d) 

 Aerobic Anaerobic   

25 + +  1–27 10 

      

15 + +  1–27 19 

      

7 + +  1–27  45 

      

-1 

 

 

-1 

 

-1 

 

-1 

 

-1 

+ 

 

 

+ 

 

+  1–3, 5, 6, 8–12, 14, 15, 

17–21, 23, 24, 26, 27 

 

145 

+  13 263 

    

 +  4, 16, 22 263 

     

+ +  7, 25 NG
b 

     

+   4, 16, 22 NG 
a 
The media # (no.) are described in Table 1. 

b
 NG, no visible growth of target bacteria was observed; diameter of inhibition zone was not measured 

for these mBHI media. 

 

Data analysis and model development. The overall effect of environmental factors on DI 

was evaluated using analysis of variance (ANOVA), employing the GLM (general linear 

model) procedure in SAS (v9.3; SAS, Inc., Rockville, MD). If the P value from the F-test 

was below 0.05, a Student t test was then performed to identify the significant (P < 0.05) 

pairwise differences. The correlation coefficient between undissociated lactic acid and DI 

was calculated using Excel
® 

(v2010; Microsoft Corp). 

According to the effects of environmental factors investigated with the levels used in this 

study (i.e., four levels for temperature and three levels each for pH, glucose and lactic acid), a 

model of DI was developed to predict the values produced under the conditions which were 
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not explicitly tested in this study (interpolation). The model incorporated the factors which 

proved to be significant in affecting the inhibitory activity of C. maltaromaticum. Separate 

formulae were derived for aerobic and anaerobic conditions, respectively, using the REG 

procedure (a general-purpose procedure for regression) with the stepwise selection method in 

SAS. Variables meeting the 0.05 significance level for entry were included in the model. 

Characterization of antibacterial compounds in D0h CFS. To characterize the nature 

of antibacterial compounds, the sensitivity of D0h CFS to pH, temperature, and enzyme 

treatments was tested. 

pH. The pH of unfiltered C. maltaromaticum D0h culture medium was measured, and then 

CFS adjusted to pH 3, 5, 7, 9, and 11 (± 0.1) (Table 3) using 1 M NaOH or 1 M HCl, and 

incubated at 4
o
C for 2 h (Martin-Visscher et al., 2008). After incubation, pH was adjusted to 

the original value (6.3 ± 0.1), and then filter-sterilised. Since NaCl was formed when CFS pH 

was adjusted, an equal volume of NaCl was added to unadjusted CFS (negative control). 

Temperature. One millilitre of filter-sterilised D0h CFS was incubated in a heating block 

(Bio-Strategy, Australia) at 37, 70, and 100
o
C for 30 min (Table 3), and then cooled to 25

o
C. 

Control CFS was incubated at 4
o
C. 

Enzyme. CFS was treated with 1 mg/ml lipase, α-amylase, catalase, papain, proteinase K, 

and pronase E (dissolved in H2O; Sigma-Aldrich, Australia), and incubated at 37, 25, 25, 25, 

37, and 37
o
C, respectively, for 2 h, according to manufacturer’s instructions (Table 3). The 

same volume of H2O was added to CFS for the negative control.  

The inhibitory activity of CFS (with or without treatment) was determined by agar overlay 

assay as described in Section Measurement of CFS inhibitory activity. 
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TABLE 3 Inhibitory activity of C. maltaromaticum D0h CFS after treatments. 

Treatment 
Reduction (%)

a
 in 

inhibitory activity  

pH 3 2 ± 2.8 

 5 6 ± 8.4 

 7 4.7 ± 6.7 

 9 0.2 ± 0.3 

 11 0.4 ± 3.8 

 

T (
o
C) 37 0 

 70 2.5 ± 3.6 

 100 10 ± 0.6 

 

Enzymes Lipase 11 ± 5.9 

 α-Amylase 7.8 ± 1.2 

 Catalase 2.1 ± 3.6 

 Papain 100 

 Proteinase K 100 

 Pronase E 100 
a
 Effect of a CFS treatment was calculated as the difference of DI between treated CFS and 

corresponding control, divided by the DI of control, and then multiplied by 100 to get a percent. The 

data are represented as the mean of two trials ± standard deviation. 

 

RESULTS 

Kinetics of inhibitory compound production by D0h. Detectable levels of D0h 

inhibitory compounds occurred between 6 and 9 h of incubation (Fig. 1). Levels increased 

dramatically during the exponential growth phase, peaking (DI, 14.5mm) at 19.5 h, i.e. end of 

the exponential phase. There was no significant change (P > 0.05) in DI from 19.5 to 22.5 h. 
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FIG 1 Kinetics of inhibitory compound production by C. maltaromaticum D0h. DI, diameter of 

inhibition zone. 

 

Influence of environmental factors on D8c sensitivity to CFS. Each environmental 

factor had a significant effect on DI (Fig. 2). For temperature, DI was 13.8 mm at 25
o
C, 

significantly less than 20.1, 15.7, and 14.4 mm observed at 15, 7, and -1
o
C, respectively (Fig. 

2A). Overall, aerobic atmosphere produced a larger DI (16.5 mm) compared to anaerobic 

atmosphere (15.7 mm) (Fig. 2B). Glucose and lactic acid both increased DI significantly; for 

example, DI was 15.1 mm with no added glucose, but 17.4 mm with 5.55 mM added glucose 

(Fig. 2C). Lactic acid had a DI of 15.4 mm at 0 mM, increasing to 16.6 mm at 50 mM (Fig. 

2D). For pH, DI increased at lower pH, i.e. 15.4 mm at pH 6.5, 15.9 mm at pH 6, and 16.9 

mm at pH 5.5 (Fig. 2E). 
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FIG 2 Effect of environmental factors on diameter of inhibition zone (DI).  

Each factor had a significant (F-test, P < 0.05) effect on DI. Error bars represent standard error of the 

mean. 

 

Interactions between environmental factors on D8c sensitivity to CFS. Significant 

interactions were observed between temperature and atmosphere, temperature and glucose, 

temperature and lactic acid, temperature and pH, glucose and atmosphere, glucose and pH, 

and pH and lactic acid (Fig 3). 

Specifically, the effect of atmosphere at lower temperatures, particularly at 7
o
C, was larger 

compared to higher temperatures (15
o
C

 
and 25

o
C), with aerobic atmosphere resulting in 

A B C 

D E 
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larger DI than an anaerobic atmosphere (Fig. 3A). In contrast, glucose, lactic acid, and pH 

produced a greater effect on DI at higher temperature (Fig. 3B–3D). For example, at 25
o
C, 

5.55 mM of glucose increased DI by 2.7 mm, from a mean of 12.5 mm (0 mM glucose) to 

15.2 mm; however, at -1
o
C, the mean value only increased by 0.6 mm, from 14.1 mm (0 mM 

glucose) to 14.7 mm (5.55 mM glucose). 

At 5.55 mM glucose, the effects of atmosphere and pH on DI were larger than at lower 

glucose levels (Figs. 3E and 3F, respectively). In addition, low pH levels increased the effect 

of lactic acid; for example, at pH 5.5, lactic acid increased DI from 15.6 mm (0 mM lactic 

acid) to 19 mm (50 mM lactic acid) (Fig. 3G). Also, a positive correlation was observed 

between concentration of undissociated lactic acid and DI, with a corresponding linear 

regression R
2
 value of 0.965 (Fig. 3H). 
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FIG 3 Interactions between environmental factors affecting diameter of inhibition zone (DI). 

For panels A–G, interactions between factors were significant (F-test, P < 0.05). Panel H shows a 

linear regression between DI and undissociated lactic acid. 

Error bars are standard error of the mean. 

 

Model. As mentioned above, DI did not linearly correlate with temperature from 7 to 25
o
C, 

but the relationship was linear from -1 to 15
o
C (Fig. 2A). In addition, a significant difference 

in DI was observed with atmosphere (Fig. 2B), with aerobic conditions resulting in higher DI 

than anaerobic conditions. Therefore, DI was modelled at 25
o
C, and at -1 to 15

o
C, separately, 

under aerobic and anaerobic conditions, respectively. The formulae were as follows: 

25
o
C, aerobic: DI = 13.04 + 0.12*[glucose] – 0.629*10

(6-pH)
 + 

3.396∗[LA]

10(pH−3.86)+1
 + 

0.244*[glucose]*10
(6-pH)   

(R
2 

= 0.724) (2) 

25
o
C, anaerobic: DI = 12.139 + 0.254*[glucose] – 0.542*10

(6-pH)
 + 

5.107∗[LA]

10(pH−3.86)+1
 + 

0.152*[glucose]*10
(6-pH)   

(R
2
 = 0.905) (3) 

-1
o
C–15

o
C, aerobic: DI = 13.61 + 0.28*T + 0.257*[glucose] – 0.198*10

(6-pH)
 + 

2.253∗[LA]

10(pH−3.86)+1
 + 

0.0218*T*[glucose]  (R
2 

= 0.786)  (4) 

-1
o
C–15

o
C, anaerobic: DI = 13.55 + 0.319*T + 0.0413*[glucose] + 0.0278*T*[glucose]

 (R
2 

= 0.676) (5) 

The model for 25
o
C and aerobic conditions (Eq. 2) with R

2
 of 0.724 predicted DI with the 

absolute residuals (i.e., absolute difference between predicted and observed DI) not larger 

than 2 mm for 24 conditions and absolute residuals of 2.9, 1.9, and 2.3 mm for the other three 

conditions (Table B1: Appendix B). The latter three conditions were mBHI containing 50 

mM lactic acid and/or with pH 5.5. Equation (3) for 25
o
C and anaerobic condition with R

2
 of 
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0.905 gave better predictions than equation (2), and its residuals were smaller than 1.5 mm 

for all 27 conditions (Table B2: Appendix B). Regarding the models at -1 to 15
o
C, the aerobic 

model contained the main effects of temperature, glucose, pH, and undissociated lactic acid, 

whereas the anaerobic model did not require pH or undissociated lactic acid. Both models, 

which were based on 81 conditions each, produced relatively larger residuals than the two 

models at 25
o
C, the largest absolute residuals being 5.8, 4.4, and 3.2 mm for aerobic 

conditions (Eq. 4) and 4.8, 4.5, and 4.2 mm for anaerobic conditions (Eq. 5) (Table B3 and 

B4: Appendix B). Similar to the 25
o
C models, the worst prediction scenarios were mBHI 

with pH 5.5, and/or containing the largest concentration of lactic acid (50 mM). The R
2
 of 

equation 4 and 5 was 0.786 and 0.676, respectively. 

Characteristics of inhibitory compounds produced by C. maltaromaticum D0h. 

Treatment of D0h CFS with 1 mg/ml proteolytic enzymes (papain, proteinase K, and pronase 

E) eliminated 100% of inhibitory properties. D0h CFS inhibitory activity was not 

significantly reduced by pH treatment, by temperature treatment at 37 and 70
o
C, or by 

catalase treatment (Table 3). Inhibitory activity was slightly reduced by temperature 

treatment at 100
o
C (10%), and lipase (11%) and α-amylase treatments (7.8%).  

 

DISCUSSION 

Bacterial interactions have been investigated in culture media and food model systems. 

For example, quorum sensing compounds extracted from meat were found to promote growth 

of Pseudomonas fluorescens and Serratia marcescens (Nychas et al., 2009). Conversely, 

Brochothrix thermosphacta was inhibited by the presence of LAB in an agar model system 

(Russo et al., 2006). Youssef et al. (2014a) found that Carnobacterium maltaromaticum, 

isolated from beef cuts stored at -1.5
o
C for 160 days, mostly represented a single strain; it 
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was inferred that the growth of other organisms would have been suppressed by bacteriocins 

produced by this strain. These studies add to our understanding of how microbial species and 

communities form in food environments; however, to date, there have been no published 

studies that quantify these interactions. To address this gap, we investigated the effects of pH, 

lactic acid, glucose and atmosphere on interactions between two Carnobacterium 

maltaromaticum beef isolates. An in vitro agar matrix was used for greater control of 

interacting factors. 

Bacteriocins are frequently produced during the exponential growth phase (Baindara et al., 

2013; Ghanbari et al., 2013; Quadri et al., 1994). This is consistent with production kinetics 

found in this study. Inhibitory effects in D0h CFS were detected in the early exponential 

phase, reaching maximum levels in early stationary phase (Fig. 1). 

The pH of fresh beef at the beginning of storage is approximately pH 5.5; this increases to 

approximately pH 6.5 for aerobic packaged beef, and decreases to approximately pH 5 for 

beef stored under VP and modified atmosphere conditions (Argyri et al., 2015; Jones, 2004; 

Lavieri and Williams, 2014). A study in our lab (M. Kaur, unpublished data) showed that the 

pH of Australian VP beef primal samples stored at 0
o
C varied from pH 5.3 to 6. 

Intraspecific inhibitory activity, reflected by DI measurement, was enhanced at low pH. 

This agrees with Ganzle et al. (1999), who reported nisin, sakacin P and curvacin A increased 

inhibitory activity at low pH in a broth medium. Abriouel et al. (2001) considered that H
+
 

affected bacteriocin activity by changing the surface charge of target bacteria, thereby 

causing changes in conformation/oligomerization of bacteriocin peptides. Nisin is believed to 

have greater activity in acidic foods, due to increased solubility and stability (Balciunas et al., 

2013). To better interpret pH effects on the intraspecific inhibitory activity, final cell density 

was measured in mBHI agar, showing low D8c density at lower pH (Fig. B1: Appendix B). 
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In separate experiments, D8c growth rate in mBHI broth (25°C) increased with increased pH 

(Fig. B2: Appendix B). Therefore, larger inhibition zones produced at lower pH might be 

influenced by a higher level of inhibitory compound per cell. 

Lactic acid showed an overall potentiating effect on D8c inhibition by D0h CFS. To our 

knowledge, no reports have investigated the effect of lactic acid on bacteriocin-like activity. 

Nevertheless, lactic acid has a well-known inhibitory effect on the growth of pathogenic and 

spoilage bacteria, and is frequently applied as a food preservative (Balannec et al., 2007; 

Rosengren et al., 2013; Wang et al., 2013). This effect is attributed to the undissociated form 

of lactic acid, which has strong inhibitory activity due to lipophilic properties, enabling it to 

freely diffuse through bacterial membranes (Biesta-Peters et al., 2010; Lindblad and 

Lindqvist, 2010; Rosengren et al., 2013; Shelef, 1994). A significant interaction was seen 

between lactic acid and pH on DI, with lactic acid producing a greater effect at low pH (5.5) 

compared to higher pH (6 and 6.5) (Fig. 3G) and showing a positive linear relationship 

between DI and undissociated lactic acid (Fig. 3H). Hence, we propose that the effect of 

lactic acid results from its undissociated form. This study also demonstrated that higher lactic 

acid levels in mBHI agar resulted in a lower final cell density of D8c (Fig. B1: Appendix B), 

indicating DI might be influenced by a higher level of inhibitory compound per target cell.  

Inhibitory activity was greater in the presence of 5.5 mM compared to 0.56 mM glucose, 

and also when no glucose was added to mBHI agar (Fig. 2C). Carnobacterium 

maltaromaticum utilizes glucose and produces organic acids (Afzal et al., 2013; Mora et al., 

2003), producing 0.21 mole of L-lactic acid per mole of glucose (Borch and Molin, 1989). To 

investigate the mechanism of the glucose effect on DI, pH was measured in mBHI agar 

incubated at 15
o
C. Average pH decreased 0.4 units in 5.5 mM of glucose, which was greater 

than the pH decrease observed in 0 and 0.56 mM glucose, 0.09 and 0.1, respectively. 

Therefore, it is possible the enhancing effect of glucose on the intraspecific inhibitory activity 
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is due to increased lactic acid, which decreases pH during growth of D8c via glucose 

metabolism. This idea is consistent with interactions between glucose and pH (Fig. 3F). For 

5.55 mM glucose, DI was more sensitive to pH change compared to 0 and 0.56 mM glucose. 

This interaction may be a reflection of the interaction between lactic acid and pH. Similarly, 

final cell density was lower in mBHI agar containing higher glucose levels (Fig. B1: 

Appendix B). Other studies have also observed that the inhibitory activity of two-component 

bacteriocins, such as lactocin 705 and lacticin 3147, is enhanced when target cells are 

energized due to the take up of glucose (Castellano et al., 2003; McAuliffe et al., 1998).  

The inhibition by D0h CFS was greater under aerobic than under anaerobic conditions 

(Fig. 2B). According to Afzal et al. (2013), glucose metabolism by C. maltaromaticum 

LMA28 is higher in the presence of oxygen, and consequently, the production of lactic acid 

increases under aerobic conditions. This is likely the case in our study, where enhanced 

antibacterial activity of D0h CFS may result from increased production of lactic acid. It could 

also explain the interaction observed between atmosphere and glucose, although it was only 

marginally significant (P = 0.055) (Fig. 3E), in which the difference of DI between aerobic 

and anaerobic conditions was the greatest at 5.55 mM glucose. 

Due to low growth rates at -1, 7, and 15
o
C, mBHI agar was incubated for longer time 

periods (Table 2), compared to 25
o
C. Importantly, preliminary tests demonstrated DI did not 

increase with increased incubation time (Fig. B3: Appendix B). Inhibitory activity did not 

linearly correlate with temperature, where DI was the greatest at 15
o
C, compared to -1, 7 and 

25
o
C (Fig. 2A). Henry et al. (1995) reported the lethal effect of carnocin CP5 was lower, but 

more prolonged, in the range of 7 to 30
o
C; however, Stoffels et al. (1992a) found a 

bacteriocin produced by C. maltaromaticum had no effect at 4 and 15
o
C. We suggest the 

sensitivity, or the physiological state, of D8c target cells to D0h CFS could be affected by 

temperature (Jacquet et al., 2012). For instance, bacteriocins are known to interact with the 
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cytoplasmic membrane of sensitive bacteria (Balciunas et al., 2013; Cotter et al., 2013; Diep 

et al., 2007; Hechard and Sahl, 2002; Henning et al., 1986), and Jacquet et al. (2012) report 

that the effect of class IIa bacteriocins depends on the physiological state of target bacteria.  

Combining the effects of five factors (216 conditions in total), predictive models for DI 

were developed for aerobic and anaerobic conditions, respectively (Eq. 2–5). The models 

produced relatively large residuals under certain growth conditions with the lowest pH (5.5) 

and/or the largest concentration of lactic acid (50 mM) (Table B1–B4: Appendix B). This 

may have been due to the weak C. maltaromaticum D8c growth (i.e. low final cell density as 

described above) under these conditions, resulting in larger experimental error in DI 

measurement. All models predicted intraspecific inhibitory activity of C. maltaromaticum, 

explaining at least 67.6% (R
2
) of the variation in the response variable DI in the conditions 

investigated in this study. The interactions between food-sourced bacterial isolates have been 

investigated, but seldom been incorporated into mathematical models (Nychas et al., 2009; 

Russo et al., 2006; Zhang et al., 2015).  

However, since the inhibitory activity of C. maltaromaticum D0h CFS at temperatures 

larger than 15
o
C and lower than 25

o
C was not investigated, the relationship between DI and 

temperature within this range is not clear. Hence, the models provided in this study are not 

capable of predicting DI for temperatures between 15 and 25
o
C. Also, as this study focused 

on only four temperatures, and three levels each of pH, glucose, and lactic acid, the models 

are considered preliminary. Further studies could develop more robust models based on 

investigations of a larger spectrum of conditions for each factor. 

CFS produced by C. maltaromaticum D0h was sensitive to proteolytic enzymes, including 

papain, proteinase K, and pronase E (Table 3). This indicates the inhibitory factor(s) in D0h 

CFS are proteinaceous. CFS inhibitory activity was partially reduced by lipase and α-amylase, 
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generally lowered by approximately 10%. Additional investigations using an ultrafiltration 

method showed the inhibitory factor(s) was less than 50 KDa (Fig. B4: Appendix B). In this 

regard, C. maltaromaticum has been reported to produce class I and II bacteriocins (Holck et 

al., 1994; Martin-Visscher et al., 2008; Quadri et al., 1994; Stoffels et al., 1992b; Tulini et al., 

2014), ribosomally-synthesized peptides, which are usually heat-stable and have inhibitory 

activity against closely related species (Cotter et al., 2013). We consider the antibacterial 

compound(s) in D0h CFS to likely be a bacteriocin-like antimicrobial peptide(s). 

This study focused on the effects of environmental conditions on the sensitivity of the 

target strain, D8c, to inhibitory factors produced by D0h. Experimental data were generated 

in vitro to more clearly define the effect of environmental factors, without the potential 

complicating factors of a complex meat matrix. Such bacteriological medium-based studies 

have been extensively used to understand how environments influence bacterial growth, 

resulting in predictive models (Campos et al., 2005; Mejlholm et al., 2010; Ross et al., 2003; 

Tienungoon et al., 2000), which are subsequently validated in food matrices. Future 

experiments will define the in situ effect of environmental factors on production of inhibitory 

compounds. 
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Chapter 6 

Effect of environmental factors on the production of intraspecific 

inhibitory activity by Carnobacterium maltaromaticum D0h 

 

ABSTRACT 

Intraspecific inhibition interactions have been observed among strains of Carnobacterium 

maltaromaticum, a lactic acid bacterial species that dominates microbial communities in 

vacuum-packaged (VP) beef. However, the environmental factors that influence such 

inhibition activities remain poorly understood. Using a full factorial design, the effect of pH 

(5.5, 6.0, and 6.5), lactic acid (0, 25, and 50 mM), glucose (0, 0.56, and 5.55 mM), and 

atmosphere (aerobic and anaerobic) on production of inhibitory compounds by C. 

maltaromaticum D0h in broth medium, against the growth of target isolate C. 

maltaromaticum D8c, was investigated. The production rate and level of inhibitory factors 

per log10 cfu were evaluated as a function of environment. pH had the most significant effect 

on production rate (P < 0.0001) and production level (P = 0.03). The highest production was 

observed at pH 6.5, followed by pH 6 and 5.5. A two-factor interaction was observed 

between glucose and pH, and lactic acid and pH. Lactic acid reduced the production rate in 

broth media at pH 5.5, whereas lactic acid did not have a significant effect at pH 6 or 6.5. 

Production rate was enhanced by glucose at pH 6.5, but was reduced at pH 5.5. Atmosphere 

did not significantly affect inhibitory factor production. This study extends our understanding 

of the effects of VP beef relevant environmental factors on intraspecific interactions between 

C. maltaromaticum strains. 
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INTRODUCTION 

    Bacterial interactions occur in various environments, including food (Blana and Nychas, 

2014; Faust and Raes, 2012; Gobbetti et al., 2007; Gram et al., 2002; Moller et al., 2013). 

Interactions among foodborne bacteria play an important role in influencing the composition 

of microbial communities, which can further affect shelf-life (Joffraud et al., 2006; 

Metaxopoulos et al., 2002). For example, in meat environments a decrease in meat spoilage 

microflora has been observed in the presence of lactic acid bacteria (LAB) (Metaxopoulos et 

al., 2002; Russo et al., 2006). In addition, meat extracts containing quorum sensing 

compounds have been shown to increase the growth rate of Serratia marcescens and 

Pseudomonas fluorescens (Nychas et al., 2009). 

Carnobacterium maltaromaticum is a LAB species that often dominates vacuum-packaged 

(VP) meat, which can also contain species of Enterobacteriaceae, Shewanella, and 

Brochothrix thermosphacta (Doulgeraki et al., 2012; Jones, 2004; Sakala et al., 2002). 

Various strains of C. maltaromaticum produce antibacterial compounds, including 

bacteriocins and organic acids, which can inhibit other, as well as the strains of the same 

species (Holck et al., 1994; Martin-Visscher et al., 2008). Competition between 

Carnobacterium strains, including the effects of inhibitory compounds, may impact 

community composition within the food. The findings of Youssef et al. (2014a) indicate C. 

maltaromaticum strain G117 grew faster than other strains of C. maltaromaticum and C. 

divergens in VP beef primal cuts, and that bacteriocins produced by G117 may have been 

responsible for the observed suppressed growth of other strains. 

Environmental factors can play an important role in controlling the production of 

antibacterial compounds by LAB (Biswas et al., 1991; Himelbloom et al., 2001; Mataragas et 

al., 2003). Himelbloom et al. (2001), investigating the use of C. maltaromaticum as 
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protective cultures in smoked salmon, found media composition and sodium chloride affected 

bacteriocin production. Glucose and pH were also found to be important factors influencing 

or regulating bacteriocin production by C. maltaromaticum (Khouiti and Simon, 2004; 

Schillinger et al., 1993). 

In our previous studies (Chapter 5), C. maltaromaticum isolate D0h produced bacteriocin-

like substances, which inhibited various isolates cultured from VP beef, including C. 

maltaromaticum D8c. Temperature, pH, atmosphere (aerobic and anaerobic), lactic acid, and 

glucose significantly affected sensitivity of D8c to D0h cell-free supernatant (CFS). However, 

the effect of environmental factors on production of inhibitory substances must also be 

understood to explain two-way interactions between C. maltaromaticum D0h and D8c. 

Therefore, the aim of this study was to investigate the in vitro effects of environmental 

factors relevant to VP beef, including pH, atmosphere, glucose and lactic acid, on production 

of inhibitory compounds by C. maltaromaticum D0h. 

 

MATERIALS AND METHODS 

Bacterial strains and culture preparation. Effector isolate Carnobacterium 

maltaromaticum D0h and target strain C. maltaromaticum D8c were isolated from Australian 

VP beef, and have been described in previous studies (Small et al., 2012; Zhang et al., 2015). 

The strains were separately inoculated into 1 ml of brain heart infusion broth (BHI; Amyl 

Media, Ltd., Australia) from a colony isolated on tryptone soy agar (TSA; Oxoid, Ltd., 

Australia), and incubated at 25
o
C for 24 h. The cultures were then inoculated into fresh BHI, 

incubated at 25
o
C for 24h, and used for experiments. 
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Experimental design and modified BHI. A full factorial design (2 × 3 × 3 × 3) was 

applied, including atmosphere (aerobic and anaerobic), lactic acid (0, 25, and 50 mM), 

glucose (0, 0.56, and 5.55 mM), and pH (5.5, 6, and 6.5). Fifty-four combinations of the four 

environmental factors were tested, in total. BHI without glucose (AM11-NG, Amyl Media, 

Ltd., Australia; the medium contained 17.5 g/l brain heart infusion solid, 5 g/l sodium 

chloride, 10 g/l blended peptone no. 1, and 2.5 g/l di-sodium hydrogen orthophosphate) was 

applied as the basal medium for twenty-seven formulations of modified BHI medium (mBHI), 

based on the factorial design (Table 1) (Chapter 5). 
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TABLE 1 Lactic acid, glucose, and pH of modified BHI medium. 

Medium 

(#) 

Lactic acid  

(mM) 

Glucose 

(mM) 

pH UndisLA 

(mM)
a
 

1 0 0 5.5 0 

2 0 0 6 0 

3 0 0 6.5 0 

4 25 0 5.5 0.56 

5 25 0 6 0.18 

6 25 0 6.5 0.06 

7 50 0 5.5 1.12 

8 50 0 6 0.36 

9 50 0 6.5 0.11 

10 0 0.56 5.5 0 

11 0 0.56 6 0 

12 0 0.56 6.5 0 

13 25 0.56 5.5 0.56 

14 25 0.56 6 0.18 

15 25 0.56 6.5 0.06 

16 50 0.56 5.5 1.12 

17 50 0.56 6 0.36 

18 50 0.56 6.5 0.11 

19 0 5.55 5.5 0 

20 0 5.55 6 0 

21 0 5.55 6.5 0 

22 25 5.55 5.5 0.56 

23 25 5.55 6 0.18 

24 25 5.55 6.5 0.06 

25 50 5.55 5.5 1.12 

26 50 5.55 6 0.36 

27 50 5.55 6.5 0.11 

Note: This table is cited from Chapter 5. 

a
 UndisLA, undissociated lactic acid, is the calculated concentration based on the corresponding 

concentration of lactic acid and pH ( [UndisLA] = [Lactic acid]/(10
(pH-3.86)

+1) ). 

 

Inhibitory compound production. Individual wells of a 24-well plate received 1.8 ml of 

mBHI, and were then inoculated with 200 µl of C. maltaromaticum D0h culture, for a final 

cell density of 10
5 

cfu/ml. Two replicate wells were used for each test condition. Plates were 

incubated at 25
o
C, aerobically and anaerobically, respectively. Anaerobic condition (< 1.0% 
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O2, ≥ 13% CO2) was produced using a BD GasPak™ EZ Anaerobe Pouch System (BD, 

Australia).  

In our previous study (Chapter 5), inhibitory effect of C. maltaromaticum D0h was 

detected in the exponential growth phase. Therefore, mBHI cultures were sampled with a 

sterile syringe at 2 h intervals when the optical density (OD600) reached 0.05. OD600 was 

measured spectrophotometrically (SPECTROstar Nano Absorbance Reader, Germany) in a 

96-well plate. Cell-free supernatant (CFS) was obtained via filtering a mixture of two 

replicate samples through a 0.2 µm pore-sized filter (Corning®, Germany), and then serial 

dilutions were prepared. 

The concentration of inhibitory compounds in CFS was measured by the agar overlay 

method described in our previous study (Chapter 5). Briefly, the agar medium (pH 6.5 ± 0.1) 

was made with 37 g/l BHI, 5.06 g/l L(+)-lactic acid (Scharlab, Spain), and 15 g/l agar. Ten 

millilitre of molten medium (50
o
C) was mixed with approximate 10

5
 cfu of C. 

maltaromaticum D8c, and then poured over the previously hardened agar, made from the 

same medium. After air-drying in a hood, 10 µl of each CFS dilution was dropped onto the 

solidified agar surface. The agar plates were incubated at 25
o
C for 48 h. The highest dilution 

of CFS showing inhibition was designated as one arbitrary inhibition unit (AU) (Ghanbari et 

al., 2013). Each test of the 54 conditions was performed twice. 

Cell density calculation. To calculate the cell density in culture medium, the correlation 

between cell density (log10 cfu/ml) and OD600 was determined. Overnight (24 h) cultures of C. 

maltaromaticum D0h were diluted in two-fold serial dilutions, using BHI. For each dilution, 

OD600 was measured and cell density determined by plate count. The linear regression 

between the two variables was calculated in Excel 
® 

(v2010; Microsoft Corp). The cell 

density of each sample was then determined from a regression equation. 
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Calculation of inhibitory compound production rate and level. The relationship 

between sampling time (h) and concentration of inhibitory compounds (AU/ml) was 

calculated in Excel, and the production rate (AU/ml/h) was determined by linear regression. 

Linear regression was also used to associate concentration of inhibitory compounds and 

culture cell density. Production of inhibitory compounds by D0h per log cfu was calculated 

from the slope of the regression line, and designated as log10 AU/log cfu. 

The effects of environmental factors on production rate and production level were 

evaluated by the F-test. If the overall effect was significant (F-test, P < 0.05), a student t test 

was used to identify pairwise difference. These tests were performed using the general linear 

modelling procedure in SAS (v9.3; SAS, Inc., Rockville, MD).  

The production rate by C. maltaromaticum D0h under different combinations of 

environmental factors, including pH, glucose, and lactic acid, was plotted in 3D-scatter 

diagrams for aerobic and anaerobic conditions, respectively, using the Scatterplot3D package 

in the software R (v3.2.2 [CRAN; http://cran.r-project.org]).  

 

RESULTS 

Production rate. pH. Among all environmental factors, pH had the most significant 

overall effect (P < 0.0001, F-test) on inhibitory compound production by C. maltaromaticum 

D0h (Fig. 1A). The production rate was highest at pH 6.5 (117.4 AU/ml/h), followed by pH 6 

(95.2 AU/ml/h). At pH 5.5, inhibitory factor production decreased dramatically, showing an 

average of 29.8 AU/ml/h for all combinations (Fig. 1A), and was not detected in medium 

containing 50 mM lactic acid (medium#7, 16, and 25 in Table 1) under anaerobic conditions 
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(data not shown), or at pH 5.5 in medium containing 25 mM lactic acid and 5.55 mM glucose 

(medium #22 in Table 1), incubated aerobically and anaerobically. 

 

                

                                                                    

FIG 1 Effect of environmental factors on inhibitory compound production rate.  

The P value of F-test for pH, lactic acid (LA), glucose, and atmosphere was <0.001, 0.0392, 0.1544, 

and 0.2313, respectively. 

Error bar represents standard error of mean. 

 

Lactic acid. Interactions between lactic acid and pH were observed (P = 0.0043, Fig. 2A). 

Lactic acid had a significant effect (P = 0.0004) at pH 5.5, but not at pH 6 (P = 0.1809) and 

6.5 (P = 0.0651). At pH 5.5, production rate was the greatest in mBHI without lactic acid 
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(46.6 AU/ml/h), followed by 25 and 50 mM of lactic acid (21.3 and 22.6 AU/ml/h, 

respectively). 

 

FIG 2 Interaction between environmental factors affecting inhibitory compound production rate.  

P value of F-test in panel A, B, and C was 0.0043, < 0.0001, and 0.0002, respectively. 

Error bar represents standard error of mean. 

 

Due to interactions between pH and lactic acid, the effect of undissociated lactic acid was 

further investigated (Fig. 2B). Interestingly, the production rate by C. maltaromaticum D0h 

did not linearly correlate with the concentration of undissociated form of lactic acid. 

Production rate was the highest (144.6 AU/ml/h) and lowest (21.3 and 21.6 AU/ml/h) in the 

media with 0.11, 0.56, and 1.12 mM undissociated lactic acid, respectively (Fig. 2B). 
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Glucose. Glucose had different effects at each of the three pH levels. Specifically, at pH 

5.5 it reduced inhibitor production rate from 39.8 AU/ml/h (no glucose) to 38.8 (0.56 mM 

glucose), and to 9.5 (5.55 mM glucose) (P = 0.0005) (Fig. 2C). However, it enhanced 

production rate from 114.3 (no glucose) and 84.8 (0.56 mM glucose) to 150.3 AU/ml/h (5.55 

mM glucose) at pH 6.5 (P = 0.01). The presence of glucose had no significant effect at pH 6 

(P = 0.473). 

Interactions among pH, lactic acid, and glucose. A significant (P = 0.0431) three-factor 

interaction was observed for pH, lactic acid, and glucose. The interaction between glucose 

and pH decreased with the presence of lactic acid; P values were 0.0003, 0.0431, and 0.1291, 

for 0, 25, and 50 mM lactic acid, respectively (data not shown). Glucose also reduced the 

interaction between lactic acid and pH, which was significant only when there was no 

glucose in the medium (P = 0.0240) (data not shown). 

Atmosphere. The production rate of inhibitor was not significantly affected by atmosphere 

(P = 0.2313); however, there was a slight difference in production rate between aerobic (82.7 

AU/ml/h) and anaerobic (75.7 AU/ml/h) conditions (Fig. 1D). 

Inhibitor production level. The equation describing cell density (log cfu/ml) and optical 

density (log OD600) was (Fig. 3): Cell density = Optical density * 1.1168 + 9.4726.  

The environmental factor significantly affecting production of inhibitor per cfu was pH (P 

= 0.03), in contrast to lactic acid (P = 0.6723), glucose (P = 0.1357), and atmosphere (P = 

0.7681) (Fig. 4). Production level was lower at pH 5.5 (0.8 log AU/log cfu) compared to pH 6 

(1.4 log AU/log cfu) and 6.5 (1.2 log AU/log cfu) (Fig. 4A). 
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FIG 3 Linear regression between cell density and optical density of C. maltaromaticum D0h in 

culture medium. 

 

 

  

FIG 4 Effect of environmental factors on production of inhibitory factor per cfu (log AU/log cfu). 

P value of F-test for panel A, B, C, and D is 0.03, 0.6723, 0.1357, and 0.7681, respectively.  

y = 1.1168x + 9.4726 

R² = 0.996 
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Error bar represents standard error of mean. 

 

DISCUSSION 

Little is known about how bacterial interactions influence development of the bacterial 

community in meat products, including the spoilage process (Blana and Nychas, 2014; Perez-

Gutierrez et al., 2013; Wolfe et al., 2014). Our earlier study showed that environmental 

factors relevant to VP beef (i.e. atmosphere, pH, lactic acid, and glucose), affected sensitivity 

of C. maltaromaticum D8c to CFS produced by C. maltaromaticum D0h (Chapter 5). The 

present study extended these findings by determining how similar environmental factors 

influence production of inhibitors by C. maltaromaticum D0h. 

pH was the most important environmental factor affecting inhibitory factor production by 

C. maltaromaticum D0h, reducing both production rate and level of inhibitory factor per cfu, 

between pH 5.5 and 6.5 (Fig. 1A and 4A). Khouiti and Simon (2004) found that C. 

maltaromaticum 213 did not produce carnocin in modified MRS medium with pH below 6.5. 

Also, C. maltaromaticum LV 61 did not produce bacteriocin at pH 5.0 (Schillinger et al., 

1993). Carnobacterium maltaromaticum D0h produced small or no detectable levels of 

inhibitory factors in mBHI medium when the initial pH was 5.5 (Fig. 1A). In this regard, 

relatively high pH has been shown to be optimal for production of bacteriocins by C. 

maltaromaticum (Khouiti and Simon, 2004; Schillinger et al., 1993). This might result from a 

bacterial strategy to shift energy from biosynthesizing bacteriocins and translocating them to 

the external medium, to maintaining internal pH in high H
+
 environments (Khouiti and Simon, 

2004; Papagianni and Sergelidis, 2015). Other research in our laboratories (Kaur et al., 

unpublished data), demonstrated the pH of VP beef stored at 0
o
C began at ~5.5, increased to 

approximately pH 6 at ~30 d, and then gradually decreased to pH 5.5. Production of 
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inhibitory compounds by C. maltaromaticum D0h may follow a similar pattern, which 

increase at the early storage and decrease thereafter.  

Lactic acid displayed a significant effect on production rate of inhibitory compounds when 

the initial pH of mBHI was 5.5 (Fig. 2A). This may be because the concentration of 

undissociated lactic acid was relatively high at pH 5.5, compared to pH 6 and 6.5. 

Undissociated form of lactic acid is reported to have an inhibitory effect on bacterial growth 

(Aryani et al., 2015; Biesta-Peters et al., 2010). The lipophilic property enables it to freely 

diffuse across the bacterial cell membrane. Once the acid enters the bacterial cell, it 

dissociates with the release of protons into cytoplasm, thereby reducing internal pH (Brul and 

Coote, 1999; Cotter and Hill, 2003). We found inhibitory factor production rate decreased 

with increasing concentration of undissociated lactic acid above 0.11 mM (Fig. 2B).  

Glucose is an important carbon source for LAB metabolism, including bacteriocin 

production (Biswas et al., 1991; Khouiti and Simon, 2004; Vignolo et al., 1995). The 

production rate of inhibitory factor by C. maltaromaticum D0h was enhanced by relatively 

high levels of glucose at pH 6.5 (Fig. 2C). Interestingly, glucose did not similarly affect 

production rate at pH 5.5, but instead reduced production rate (Fig. 2C). This may have 

resulted from growth inhibition induced by organic acids produced by C. maltaromaticum via 

glucose metabolism, further decreasing medium pH (Afzal et al., 2013; Mora et al., 2003). 

To better define this effect, we measured the pH change of culture medium containing 0, 

0.56, and 5.55 mM glucose after 48 hour incubation. pH decreased 0.49 units at 5.55 mM 

glucose, yet no remarkable pH effect was observed at 0 and 0.56 mM glucose (data not 

shown). It is possible that pH 5.5 was close to the growth/no growth boundary of C. 

maltaromaticum (Edima et al., 2008; Kim and Austin, 2008; Yang et al., 2009).  
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Atmosphere did not have a significant effect on inhibitory compound production, although 

the production rate was slightly higher under aerobic conditions (Fig. 1D). It has been 

reported that nisin production is associated with an oxidative metabolic pathway, and can be 

dramatically enhanced by high concentrations of oxygen (≥ 50%) (Cabo et al., 2001). 

Conversely, production of lactosin by Lactobacillus sake L45 was greater under anaerobic 

conditions (Mortvedt-Abildgaa et al., 1995). Therefore, the effect of atmosphere varies with 

different inhibitory compounds. 

In this research, the production of inhibitory factor by D0h and the sensitivity of D8h to 

inhibition (Chapter 5) were studied separately. Yet, it is still possible to estimate the effects 

of environmental factors on the net outcome of the two-way interaction (Fig. 5 and Table 2). 

Glucose and lactic acid increased D8c sensitivity (Table 2 and Fig. 5) at all tested pH values, 

and increased D0h inhibitor production at pH 6 and 6.5 (Table 2 and Fig. 5). Therefore, D0h-

D8c interaction strength would be expected to be higher in environments containing lactic 

acid and glucose, from pH 6 to 6.5 (Table 2). However, at pH 5.5, glucose and lactic acid 

decreased D0h production rate and increased D8c sensitivity; in this instance, it is more 

difficult to predict the additive effect of these factors on the interaction strength. Similarly, 

relatively high concentrations of H
+ 

increased
 
D8c sensitivity, while decreasing inhibitor 

production rate by D0h (Fig. 5); it is difficult to evaluate the overall effect of H
+ 

on the 

interaction strength between C. maltaromaticum strains based on the achieved data. Under 

aerobic conditions, D8c sensitivity was significantly higher and inhibitor production rate was 

slightly higher (although not significant) than under anaerobic conditions (Table 2);therefore, 

D0h-D8c interaction strength is expected to be enhanced in the presence of O2. It is possible 

that residual O2, especially at the beginning of storage of VP beef, may benefit inhibitor 

strains of C. maltaromaticum to compete against sensitive strains.  
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TABLE 2 Summary of the effect of environmental factors on intraspecific interactions of C. 

maltaromaticum D0h and D8c. 

Factor  Production 

rate 

Inhibitory 

activity 

Interaction
a
 

H
+
 D

a
 I

a
 -

b
 

    

Glucose  pH 5.5 D I - 

pH 6 I I I 

pH 6.5 I I I 

     

Lactic acid pH 5.5 D I - 

pH 6 I I I 

pH 6.5 I I I 

     

Atmosphere (O2) I I I 

Note:
 
Effects of environmental factors on intraspecific interactions between D0h and D8c are based 

on the results of this study and those reported in Chapter 5. 

a 
Bolded font indicates the effect was significant (P < 0.05); 

D (decrease) or I (increase) in D0h production rate or D8c sensitivity by H+, glucose, lactic acid or 

atmosphere.  

b
-, The change of IS was not able to be predicted under corresponding condition. 
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FIG 5 C. maltaromaticum D8c sensitivity and D0h inhibitory production rate under different 

combinations of environmental factors. 

A and C, sensitivity of antibacterial compounds was expressed as inhibition diameter (mm) (Chapter 

5). Relatively large diameter indicates relatively larger inhibitory activity. 

B and D, inhibitory compound production rate. 

 

In conclusion, pH is one of the most important environmental factors affecting production 

of inhibitory factors by C. maltaromaticum D0h. Glucose and lactic acid affect the 

production rate via pH, and both factors decrease production rate at relatively low pH (5.5). 

Interaction between inhibiting and target strains of C. maltaromaticum is enhanced under 

aerobic conditions, and increased by glucose and lactic acid at pH 6 and 6.5. 

A 

C D 

B 
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Chapter 7 

General discussion and conclusion 

 

A variety of bacterial species can grow and form communities on vacuum-packaged (VP) 

beef. Within these communities, there is competition and cooperation occurring between 

species or strains (Blana and Nychas, 2014; Giaouris et al., 2015; Nychas et al., 2009; Russo 

et al., 2006). The long shelf-life of Australian VP beef can be partly attributed to good 

production control; however, it may also be due to the bacterial community composition and 

the interactions that occur between community members (Nychas et al., 2008; Small et al., 

2012). This thesis aimed to elucidate interactions between bacteria isolated from Australian 

VP beef and determine the effect of environmental factors on the interactions between 

isolates of dominating species. 

In order to study the nature of VP beef community interactions, the interactions between 

39 effector and 20 target isolates were investigated at 25
o
C under aerobic conditions. Both 

effector and target isolates represented a broad selection of bacterial taxa generally 

predominant on VP beef including Carnobacterium, Leuconostoc, Brochothrix, 

Staphylococcus, Bacillus, Pseudomonas, Hafnia, Yersinia, Rahnella, and Serratia (Brightwell 

et al., 2009; Doulgeraki, 2010; Doulgeraki et al., 2012; Ercolini et al., 2009; Ferrocino, 2009; 

Pennacchia et al., 2011). 

Among these genera, LAB have been frequently reported to produce inhibitory 

compounds including organic acids, bacteriocins, and hydrogen peroxide (Cotter et al., 2013). 

This thesis research demonstrated that various isolates of LAB possessed inhibitory activity, 

especially Carnobacterium maltaromaticum, inhibiting 25-50% of 20 target isolates. Intra-
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species interactions were observed for both C. maltaromaticum and Carnobacterium 

divergens strains. This is consistent with the published literature showing that certain strains 

of Carnobacterium are able to produce bacteriocins inhibiting closely related bacterial 

species, and even isolates of the same species (Martin-Visscher et al., 2008; Worobo et al., 

1995). The inhibitory activity may produce a significant growth advantage to 

Carnobacterium, which is usually the dominant community component on VP red meat 

(Brightwell et al., 2009; Pennacchia et al., 2011; Youssef et al., 2014a). 

Most Pseudomonas spp. isolates, except for one, inhibited almost half of the target isolates. 

This inhibitory activity was discerned in spot-lawn assays, in which live cells of the effector 

isolate were present. Similarly, the study of Aguirre-von-Wobeser et al. (2014), investigating 

bacteria isolated from aquatic environment and also using the spot-lawn method, found that 

Pseudomonas spp. were the most antagonistic strains. Pseudomonas spp. did not show a high 

level of inhibitory activity with cell-free supernatant (CFS) used in broth assays, indicating 

that either live cells are required for inhibition, or that the physiological responses of 

Pseudomonas spp. may differ when grown on solid versus broth medium.  

Other inhibitory isolates included Bacillus spp. and Staphylococcus epidermidis, with the 

former inhibiting 80% (16 of 20) target isolates and the latter inhibiting 36.8% (7 of 19) 

target isolates. Strains belonging to the family Enterobacteriaceae, which also often 

dominate bacterial community of VP beef, did not exhibit high levels of inhibition.  

Growth-promoting activity by foodborne bacteria has been less frequently reported, as 

compared to inhibition, which is probably because food microbiologists are primarily 

interested in studying species and conditions that reduce, not enhance, the growth of spoilage 

bacteria. The results from the present work found that effector isolates promoting the growth 

of target isolates were mostly (84%) Gram-negative bacteria, including Pseudomonas spp. 
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and Enterobacteriaceae; Carnobacterium spp. were promoted by CFS from most 

Pseudomonas spp.. Since Pseudomonas spp., the metabolic activities of which require 

oxygen (Pennacchia et al., 2011), are typically present initially on VP meat, they may 

potentially affect the growth of other bacterial species in communities when residual oxygen 

is still present. However, due to Pseudomonas spp. exhibiting both inhibiting (live cells) and 

promoting (CFS) effects as described above, the specific influence of this genus on bacterial 

community composition on VP beef is still not clear. 

Overall, Chapter 3 of the thesis demonstrated that among a total of 774 combinations of 

effector and target isolates, 28.6% inhibited and 4.2 % promoted the growth of other isolates. 

However, the mechanisms and factors mediating these interactions are still to be elucidated; 

more information is needed about the effect of VP beef-related environmental factors on 

these interactions and the role of these interactions in shaping bacterial community structure 

on VP beef.  

The 4th chapter broadly characterized the properties of factors responsible for isolate-

isolate interactions, using eight combinations of effector and target isolates that exhibited 

relatively strong growth inhibition or promotion. Interactions between VP beef isolates were 

mediated by different mechanisms. Specifically, non-peptide compounds produced by B. 

subtilis and Serratia sp. were pH- and heat-stable, and promoted the growth of Pseudomonas 

lundensis. Two isolates of C. maltaromaticum possessing intraspecific inhibitory activity 

produced bacteriocin-like inhibitory compounds that were temperature and pH stable. The 

antibacterial compounds produced by one B. subtilis isolate were proteinaceous in nature, and 

also temperature and pH stable. In contrast, the presence of live effector cells was essential 

for the inhibitory activity of Bacillus sp., Pseudomonas putida, and Pseudomonas sp. isolates, 

against corresponding target isolates of Yersinia enterocolitica, C. maltaromaticum, and B. 

subtilis.; however, direct contact of live cells between target and effector isolates was not 
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required. Possibly, contact-dependent inhibition is not common among bacteria living on 

meat. This finding does not agree with either the contact-dependent inhibition via type VI 

secretion system widespread in Gram-negative bacteria (Boyer et al., 2009; Coulthurst, 2013; 

MacIntyre et al., 2010; Russell et al., 2011; Schwarz et al., 2010) or via nanotube applied by 

Bacillus sp. (Dubey and Ben-Yehuda, 2011). 

As aforementioned, C. maltaromaticum displayed the widest inhibition spectrum 

compared to other LAB species. Carnobacterium maltaromaticum D0h strongly inhibited 

growth of C. maltaromaticum D8c (Chapter 3), and the inhibiting strain produced 

bacteriocin-like compounds (Chapter 4). The next two chapters of this thesis investigated the 

effect of environmental factors on the sensitivity of target isolate C. maltaromaticum D8c to 

CFS produced by effector isolate C. maltaromaticum D0h (Chapter 5), and also the effect of 

environmental factors on production of inhibitory factors by isolate D0h (Chapter 6).  

In Chapter 5, D8c sensitivity was shown to be affected by environmental factors including 

pH, glucose, lactic acid, atmosphere (aerobic and anaerobic conditions), and temperature. The 

inhibitory activity of C. maltaromaticum D0h CFS was enhanced by low pH (5.5). Relatively 

high concentrations of H
+ 

may have affected the sensitivity of D8c to D0h CFS by a change 

in surface charge (Abriouel et al., 2001). 

Bacteriocins inhibit closely related bacterial species by interacting with cytoplasmic 

membranes of target strains (Cotter et al., 2013; Diep et al., 2007; Hechard and Sahl, 2002; 

Henning et al., 1986). Due to decreasing pH during the storage of VP beef (Argyri et al., 

2015; Jones, 2004), the inhibitory activity of C. maltaromaticum CFS could increase. 

Lactic acid had a potentiating effect on D8c inhibition by D0h CFS; this effect may result 

from undissociated lactic acid, able to freely diffuse through bacterial cell membranes and 
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suppress bacterial growth by reducing intra-cytoplasmic pH (Biesta-Peters et al., 2010; 

Lindblad and Lindqvist, 2010; Rosengren et al., 2013; Shelef, 1994). 

The presence of glucose enhanced inhibitory activity of D0h CFS. This may be due to C. 

maltaromaticum D8c producing more lactic acid as an end product during glucose 

fermentation, which also reduced the pH of its surrounding environment (Afzal et al., 2013; 

Borch and Molin, 1989; Mora et al., 2003). The inhibitory activity of D0h CFS on growth of 

D8c was higher under aerobic versus anaerobic atmosphere. This again could be associated 

with more rapid utilization of glucose and production of lactic acid by C. maltaromaticum, 

which has been reported more efficient in the presence of oxygen (Afzal et al., 2013). 

Inhibitory activity was not linearly correlated with temperature, being the greatest at 15
o
C 

compared to -1, 7, and 25
o
C. One reason may be that varying physiological states of C. 

maltaromaticum D8c are produced when grown under different temperatures, thereby 

affecting the sensitivity of target bacteria to bacteriocins (Jacquet et al., 2012). 

A relationship between inhibitory activity and temperature from 15–25
o
C could not be 

defined; therefore, inhibitory activity of D0h CFS was modelled at 25
o
C and at -1 to 15

o
C, 

separately, under aerobic and anaerobic conditions, respectively. Although there were 

relatively large model residuals for certain growth media, such as higher lactic acid (50 mM) 

and/or lower pH (5.5), all four formulae explained at least 67.6% (R
2
) of the variation for 

conditions investigated in this study.  

In Chapter 6, pH was the most important factor dictating inhibitory factor production by C. 

maltaromaticum D0h, compared to other factors including lactic acid, glucose, and 

atmosphere. Relatively high concentrations of H
+
 (pH 5.5–6.5) decreased production; D0h 

produced a small amount of inhibitory compound in modified brain heart infusion (mBHI) at 

pH 5.5. Carnobacterium maltaromaticum may have a strategy at relatively low pH to 
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maintain internal pH, rather than to expend energy to synthesize inhibitory compounds 

(Khouiti and Simon, 2004; Papagianni and Sergelidis, 2015). Lactic acid significantly 

reduced D0h production at lower pH (5.5), possibly due to the relatively high concentration 

of undissociated lactic acid. Production was also influenced by levels of glucose and pH, 

where relatively higher concentration of glucose (5.55 mM) enhanced production at pH 6.5, 

whereas it decreased production at pH 5.5. The presence of O2 slightly increased the 

production of inhibitory factors although it was not significant. 

Examining the findings of Chapters 5 and 6, two-way intraspecific interactions between C. 

maltaromaticum D0h and D8c can be predicted. For example, D0h-D8c interactions were 

greater under aerobic versus anaerobic conditions. Residual oxygen at the beginning of VP 

packaging could help inhibitory compound-producing strains to outcompete sensitive strains. 

For VP beef at pH 6 or higher, relatively high concentrations of lactic acid and glucose could 

provide a growth advantage to C. maltaromaticum inhibitor strains.  

In conclusion, this research extends our understanding of interactions among bacterial 

strains isolated from Australian VP beef. A few LAB species, especially Carnobacterium 

spp., might be applied as protective cultures to extend VP beef shelf-life. However, the 

potential spoilage characteristics of candidate isolates must be investigated further, and in situ, 

before practical applications are possible. 

Although complex interactions, including inhibitions and promotions exist in VP beef 

bacterial community, the role of these interactions in influencing dynamic community 

structure is not well elucidated. Future research should study the growth of mixed cultures of 

bacterial inhibiting, promoting, and sensitive strains. This in vitro study demonstrates that 

environmental factors including pH, temperature, glucose, lactic acid, and atmosphere affect 

intra-specific interactions of C. maltaromaticum. It is not known whether other 
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environmental factors influence inhibitory activity of C. maltaromaticum, for example, 

enzymes in beef and intervention chemicals such as hydrochlorous acid and peroxy-acetic 

acid. Future research should also investigate the influence of environmental factors on inter-

species interactions, for example, interactions between LAB species and Enterobacteriaceae 

or Brochothrix thermosphacta.
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Appendix A 

(Chapter 3) 

 

TABLE A1 Interaction strength between effector and target isolates. 
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SMPD 
                    

S 0.05 
  

0.06 
          

0.04 0.03 
 

0.03 
  

F8f 

TSA 0.28 
              

+ 
    

Broth 

SDT 
   

0.18 
       

0.14 
        

SGR 
           

0.27 
        

SMPD 
                    

S 
   

0.06 
       

0.14 
        

Carnobacterium 

maltaromaticum 

B0f 

TSA V+ 4.48 + 
                 

Broth 

SDT 

NG NG 

   
0.14 

     
0.14 

  
0.09 

     

SGR 
   

0.24 
     

0.28 
 

0.37 0.36 0.24 
    

SMPD 
                  

S 
   

0.13 
     

0.14 
 

0.12 0.15 0.08 
    

C0a 

TSA 
                    

Broth 

SDT 0.12 0.16 
   

0.11 
              

SGR 
 

0.08 
    

0.22 
       

0.18 
     

SMPD 0.14 
     

0.36 
             

S 0.09 0.08 
   

0.04 0.19 
       

0.06 
     

C8h 

TSA 
                    

Broth 
SDT 0.11 0.28 

   
0.14 

 
0.20 

 
0.15 0.35 

 
0.25 0.27 

      

SGR 
              

0.46 
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SMPD 
          

0.24 
         

S 0.04 0.09 
   

0.05 
 

0.07 
 

0.05 0.20 
 

0.08 0.09 0.15 
     

C30h 

TSA V1.09 4.81 
                  

Broth 

SDT 

NG NG 

 
0.10 

 
0.19 

 
0.19 

 
0.18 

NG 

 
0.34 

NG 

      

SGR 
   

0.38 
            

SMPD 
                

S 
 

0.03 
 

0.19 
 

0.06 
 

0.06 
 

0.11 
      

D0h 

TSA V+ 4.82 
               

0.16 
 

0.49 

Broth 

SDT 

NG NG 

   
0.27 

 
0.12 

 
0.17 

NG 

 

NG NG 

   
0.55 

  

SGR 
               

SMPD 
            

0.40 
  

S 
   

0.09 
 

0.04 
 

0.06 
    

0.32 
  

Carnobacterium 

sp. 

F8g 

TSA 
                    

Broth 

SDT 0.11 0.32 
   

0.20 
 

0.17 
  

0.43 
 

0.32 0.16 
      

SGR 
       

0.74 
            

SMPD 
                    

S 0.04 0.11 
   

0.07 
 

0.30 
  

0.14 
 

0.11 0.05 
      

Leuconostoc 

carnosum 

F30d 

TSA 
                    

Broth 

SDT 
          

0.11 
      

0.16 
  

SGR 
                 

0.32 
  

SMPD 
                 

0.30 
  

S 
          

0.04 
      

0.26 
  

F30h 

TSA 
                    

Broth 

SDT 
             

0.14 
      

SGR 
             

0.21 
   

0.29 
  

SMPD 
                 

0.20 
  

S 
             

0.12 
   

0.16 
  

Leuconostoc 

mesenteroides 

B30b 

TSA 
                    

Broth 

SDT 0.08 0.16 
                  

SGR 
                 

0.05 
  

SMPD 
           

0.18 
     

0.15 
  

S 0.03 0.05 
         

0.06 
     

0.07 
  

Brochothrix A8f TSA 
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thermosphacta 

Broth 

SDT 
 

0.17 
        

0.11 
 

0.13 0.19 
      

SGR 
 

0.21 
            

0.46 
     

SMPD 
                    

S 
 

0.13 
        

0.04 
 

0.04 0.06 0.15 
     

Staphylococcus 

epidermidis 

F30c 

TSA 2.31 1.89 
 

0.38 
          

0.35 
  

0.14 0.96 1.41 

Broth 

SDT 0.63 0.27 
 

0.05 
          

0.46 
     

SGR 0.21 
                   

SMPD 
                    

S 0.28 0.09 
 

0.02 
          

0.15 
     

Bacillus subtilis 

E0g 

TSA V+ 0.64 V+ 1.49 V+ 0.21 
 

1.62 
      

1.40 1.53 
 

0.93 0.13 2.85 

Broth 

SDT 

NG 

1.35 
 

NG 

   

NG 

  

NG 

 
1.66 0.73 

NG NG 

 

NG NG 

 

SGR 0.64 
       

0.57 
   

SMPD 0.40 
   

0.35 
  

0.45 0.41 
   

S 0.80 
   

0.12 
  

0.15 0.88 0.24 
  

Bacillus sp. 

A30g 

TSA 
 

V+ V1 1.02 2.65 1.52 + 
  

+ 
 

V+ + 0.25 V+ V+ 1.75 
 

V+ 
 

Broth 

SDT 
 

0.04 
    

0.33 
     

0.10 
       

SGR 0.20 
          

0.36 0.33 1.09 
   

0.74 
  

SMPD 
           

0.59 
 

0.36 
    

0.48 
 

S 0.07 0.01 
    

0.11 
    

0.32 0.14 0.48 
   

0.25 0.16 
 

Pseudomonas 

fluorescens 

B0i 

TSA 
   

V+ 
  

+ 
        

V+ 
    

Broth 

SDT 0.08 0.13 
          

0.14 0.91 
      

SGR 
              

0.22 0.11 
    

SMPD 
                    

S 0.03 0.04 
          

0.05 0.30 0.07 0.04 
    

C0c 

TSA 
    

V+ 
 

0.22 + 
   

0.30 0.22 0.37 V+ V0.29 
    

Broth 

SDT 
 

0.12 
         

0.17 
        

SGR 
            

0.22 
     

0.32 
 

SMPD 
                    

S 
 

0.04 
         

0.06 0.07 
     

0.11 
 

Pseudomonas fragi 

F0b 

TSA V+ V+ 0.25 V+ V+ 
 

1.68 + 
      

V0.97 V+ V+ V+ V+ 
 

Broth 

SDT 0.08 
              

0.07 
    

SGR 
 

0.13 
           

0.45 
      

SMPD 
                    

S 0.03 0.04 
           

0.15 
 

0.02 
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Pseudomonas 

putida 

D0b 

TSA V4.53 6.04 V2.43 V+ V3.33 V2.36 2.67 3.26 V1.49 V0.94 V+ 1.42 V0.25 2.30 V2.19 V1.52 V1.77 V+ 
  

Broth 

SDT 0.07 0.13 
                  

SGR 
               

0.15 
    

SMPD 
                    

S 0.02 0.04 
             

0.05 
    

Pseudomonas sp. 
D0g 

TSA 
 

V+ V+ V+ V+ 
 

2.30 + 
      

V1.31 V1.90 
 

V+ V+ 
 

Broth 

SDT 
 

0.15 
             

0.16 
    

SGR 
                    

SMPD 
                    

S 
 

0.05 
             

0.05 
    

E0f 

TSA V+ V1.78 + 
 

V+ 
 

0.48 0.27 
    

+ V+ 
 

1.31 0.13 V+ 
  

Broth 

SDT 0.11 0.15 
         

0.21 
        

SGR 
            

0.16 
       

SMPD 
                    

S 0.04 0.05 
         

0.07 0.05 
       

Hafnia alvei 

A8e 

TSA 
           

V+ 
        

Broth 

SDT 
                    

SGR 
                    

SMPD 
                    

S 
                    

D0f 

TSA 
       

+ 
            

Broth 

SDT 0.07 
                   

SGR 
                    

SMPD 
                    

S 0.02 
                   

E30e 

TSA 
                    

Broth 

SDT 0.13 
                   

SGR 
                    

SMPD 
                    

S 0.04 
                   

Yersinia 

enterocolitica 

B8b 

TSA 
         

+ 
          

Broth 

SDT 0.08 0.15 
                  

SGR 
                    

SMPD 0.13 0.08 
    

0.21 
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S 0.07 0.08 
    

0.07 
             

Yersinia 

frederiksenii 

A8h 

TSA 
       

+ 
   

+ 
  

+ 
     

Broth 

SDT 
                    

SGR 
                    

SMPD 
       

0.09 
            

S 
       

0.03 
            

Yersinia sp. 

A8d 

TSA 
       

+ + 
       

+ 
   

Broth 

SDT 
                    

SGR 
                    

SMPD 
                    

S 
                    

Rahnella aquatilis 

B8f 

TSA 
                    

Broth 

SDT 0.05 
                   

SGR 
             

0.57 
      

SMPD 
                    

S 0.02 
            

0.19 
      

Serratia sp. 

C0b 

TSA 
   

V+ 
                

Broth 

SDT 
 

0.06 
                  

SGR 
                    

SMPD 
       

0.45 
   

0.15 
        

S 
 

0.02 
     

0.15 
   

0.05 
        

C30b 

TSA 
   

V+ + 
          

0.72 
    

Broth 

SDT 
                    

SGR 0.10 
  

0.94 
                

SMPD 
                    

S 0.03 
  

0.31 
                

E8i 

TSA 
   

V+ 
           

0.67 
    

Broth 

SDT 
                    

SGR 
   

1.71 
                

SMPD 
                    

S 
   

0.57 
                

E8c 

TSA 
   

V+ 
          

V+ V0.64 
    

Broth 
SDT 

                    

SGR 0.18 0.11 
         

0.61 
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SMPD 
           

0.49 
 

0.35 
      

S 0.06 0.04 
         

0.37 
 

0.12 
      

E30g 

TSA 
         

0.22 
          

Broth 

SDT 0.05 0.06 
                  

SGR 
                    

SMPD 
                    

S 0.02 0.02 
                  

E30h 

TSA 
                    

Broth 

SDT 
                    

SGR 
                    

SMPD 
                    

S 
                    

E30j 

TSA 
   

V+ 
                

Broth 

SDT 
 

0.06 
                  

SGR 
 

0.43 
                  

SMPD 
                    

S 
 

0.16 
                  

 

Note:  

  Inhibition 

  Promotion 

  No interaction 

  The effector and target isolate is the same strain 

  Not measured 

SDT Interaction strength calculated by comparing detection time (DT) of treatment and control 

SGR Interaction strength calculated by comparing growth rate (GR) of treatment and control 

SMPD Interaction strength calculated by comparing maximum population density (MPD) of treatment and control 

S Average of SDT, SGR and SMPD 

V The inhibition zone showed a vague edge on TSA 
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NG The target isolate did not grow 

 

1. Regarding the interaction in spot-lawn assay (TSA), interaction strength (S) is shown as the diameter (mm) of inhibition zone. If an inhibition 

zone was observed on TSA while it was too small to measure, S was regarded as level ‘+’. 

2. For the combination which did not show target isolate growth, S is displayed as NG (no growth).
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Appendix B 

(Chapter 5) 

TABLE B1 Model prediction residuals for 25
o
C and aerobic conditions. 

Medium 

(#) 

Glucose 

(mM) 
pH 

LA 

(mM) 

Diameter of inhibition zone (mm) 

Observation Prediction Residual 

1 0 5.5 0 10.91 11.0508 -0.1408 

2 0 6 0 12.44 12.4107 0.02927 

3 0 6.5 0 11.77 12.8408 -1.0708 

4 0 5.5 25 14.03 12.9519 1.07812 

5 0 6 25 12.38 13.0213 -0.6413 

6 0 6.5 25 12.27 13.0348 -0.7648 

7 0 5.5 50 15.02 14.853 0.167 

8 0 6 50 12.06 13.6318 -1.5718 

9 0 6.5 50 12.67 13.2288 -0.5588 

10 0.56 5.5 0 12.45 11.5504 0.89965 

11 0.56 6 0 13.63 12.6147 1.01527 

12 0.56 6.5 0 12.62 12.9513 -0.3313 

13 0.56 5.5 25 12.71 13.4515 -0.7415 

14 0.56 6 25 13.54 13.2253 0.31473 

15 0.56 6.5 25 13.53 13.1453 0.38466 

16 0.56 5.5 50 13.53 15.3526 -1.8226 

17 0.56 6 50 16.75 13.8358 2.91419 

18 0.56 6.5 50 14.57 13.3394 1.23063 

19 5.55 5.5 0 14.08 16.0021 -1.9221 

20 5.55 6 0 13.43 14.4326 -1.0026 

21 5.55 6.5 0 14.5 13.9362 0.56376 

22 5.55 5.5 25 20.19 17.9032 2.28676 

23 5.55 6 25 14.96 15.0431 -0.0831 

24 5.55 6.5 25 14.39 14.1303 0.25973 

25 5.55 5.5 50 19.68 19.8044 -0.1244 

26 5.55 6 50 16.01 15.6536 0.35635 

27 5.55 6.5 50 13.6 14.3243 -0.7243 
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TABLE B2 Model prediction residuals for 25
o
C and anaerobic conditions. 

Medium 

(#) 

Glucose 

(mM) 
pH 

LA 

(mM) 

Diameter of inhibition zone (mm) 

Observation Prediction Residual 

1 0 5.5 0 10.34 10.4248 -0.0848 

2 0 6 0 11.88 11.5971 0.28294 

3 0 6.5 0 11.75 11.9678 -0.2178 

4 0 5.5 25 14.03 13.284 0.74604 

5 0 6 25 12.01 12.5153 -0.5053 

6 0 6.5 25 11.33 12.2596 -0.9296 

7 0 5.5 50 15.81 16.1431 -0.3331 

8 0 6 50 12.3 13.4335 -1.1335 

9 0 6.5 50 12.35 12.5514 -0.2014 

10 0.56 5.5 0 11.99 10.8355 1.15455 

11 0.56 6 0 12.1 11.8242 0.27581 

12 0.56 6.5 0 12.48 12.1369 0.34315 

13 0.56 5.5 25 12.31 13.6946 -1.3846 

14 0.56 6 25 13.5 12.7424 0.75761 

15 0.56 6.5 25 12.83 12.4286 0.40135 

16 0.56 5.5 50 16.3 16.5538 -0.2538 

17 0.56 6 50 14.63 13.6606 0.9694 

18 0.56 6.5 50 13.1 12.7204 0.37955 

19 5.55 5.5 0 13.19 14.4947 -1.3047 

20 5.55 6 0 13.26 13.8481 -0.5881 

21 5.55 6.5 0 13.56 13.6436 -0.0836 

22 5.55 5.5 25 18.32 17.3539 0.9661 

23 5.55 6 25 15.31 14.7663 0.54372 

24 5.55 6.5 25 13.52 13.9354 -0.4154 

25 5.55 5.5 50 20.47 20.2131 0.25694 

26 5.55 6 50 16.07 15.6845 0.38551 

27 5.55 6.5 50 14.2 14.2272 -0.0272 
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TABLE B3 Model prediction residuals for -1–15
o
C and anaerobic conditions. 

Medium 

(#) 
T (

o
C) 

Glucose 

(mM) 
pH 

LA 

(mM) 

Diameter of inhibition zone (mm) 

Observation Prediction Residual 

1 -1 0 5.5 0 13.93 13.9535 -0.0235 

2 -1 0 6 0 13.27 13.5255 -0.2555 

3 -1 0 6.5 0 13.86 13.3902 0.46983 

4 -1 0 5.5 25 . 15.2151 . 

5 -1 0 6 25 15 13.9307 1.06935 

6 -1 0 6.5 25 13.63 13.5189 0.11108 

7 -1 0 5.5 50 . 16.4766 . 

8 -1 0 6 50 14.56 14.3358 0.2242 

9 -1 0 6.5 50 14.34 13.6477 0.69233 

10 -1 0.56 5.5 0 13.84 14.085 -0.245 

11 -1 0.56 6 0 12.72 13.657 -0.937 

12 -1 0.56 6.5 0 13.08 13.5217 -0.4417 

13 -1 0.56 5.5 25 15.46 15.3466 0.11344 

14 -1 0.56 6 25 15.58 14.0622 1.51784 

15 -1 0.56 6.5 25 15.31 13.6504 1.65957 

16 -1 0.56 5.5 50 . 16.6081 . 

17 -1 0.56 6 50 15.16 14.4673 0.69269 

18 -1 0.56 6.5 50 14.61 13.7792 0.83082 

19 -1 5.55 5.5 0 14.96 15.2568 -0.2968 

20 -1 5.55 6 0 14.99 14.8288 0.16117 

21 -1 5.55 6.5 0 14.25 14.6935 -0.4435 

22 -1 5.55 5.5 25 . 16.5184 . 

23 -1 5.55 6 25 15.21 15.234 -0.024 

24 -1 5.55 6.5 25 13.92 14.8222 -0.9022 

25 -1 5.55 5.5 50 . 17.7799 . 

26 -1 5.55 6 50 17.88 15.6391 2.24088 

27 -1 5.55 6.5 50 15.43 14.951 0.479 

1 7 0 5.5 0 13.76 16.1935 -2.4335 

2 7 0 6 0 15.9 15.7655 0.1345 

3 7 0 6.5 0 16.68 15.6302 1.04984 

4 7 0 5.5 25 16.4 17.455 -1.0551 

5 7 0 6 25 16.76 16.1706 0.58935 

6 7 0 6.5 25 16.03 15.7589 0.27109 

7 7 0 5.5 50 17.93 18.7166 -0.7866 

8 7 0 6 50 14.78 16.5758 -1.7958 

9 7 0 6.5 50 14.46 15.8877 -1.4277 

10 7 0.56 5.5 0 18.07 16.4225 1.64755 

11 7 0.56 6 0 17.2 15.9945 1.20552 

12 7 0.56 6.5 0 16.78 15.8591 0.92086 

13 7 0.56 5.5 25 15.31 17.684 -2.374 

14 7 0.56 6 25 17 16.3996 0.60038 
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15 7 0.56 6.5 25 16.49 15.9879 0.50211 

16 7 0.56 5.5 50 13.15 18.9456 -5.7956 

17 7 0.56 6 50 16.01 16.8048 -0.7948 

18 7 0.56 6.5 50 14.8 16.1166 -1.3166 

19 7 5.55 5.5 0 19.92 18.4628 1.45721 

20 7 5.55 6 0 19.12 18.0348 1.08519 

21 7 5.55 6.5 0 15.85 17.8995 -2.0495 

22 7 5.55 5.5 25 17.99 19.7244 -1.7344 

23 7 5.55 6 25 18.59 18.44 0.15004 

24 7 5.55 6.5 25 17.53 18.0282 -0.4982 

25 7 5.55 5.5 50 22.51 20.9859 1.52407 

26 7 5.55 6 50 17.06 18.8451 -1.7851 

27 7 5.55 6.5 50 17.48 18.157 -0.677 

1 15 0 5.5 0 18.22 18.4335 -0.2135 

2 15 0 6 0 18.03 18.0055 0.02451 

3 15 0 6.5 0 16.62 17.8702 -1.2502 

4 15 0 5.5 25 20.34 19.695 0.64496 

5 15 0 6 25 18.84 18.4106 0.42936 

6 15 0 6.5 25 17.26 17.9989 -0.7389 

7 15 0 5.5 50 19.52 20.9566 -1.4366 

8 15 0 6 50 18.25 18.8158 -0.5658 

9 15 0 6.5 50 17.32 18.1277 -0.8077 

10 15 0.56 5.5 0 19.98 18.7599 1.22008 

11 15 0.56 6 0 17.87 18.3319 -0.4619 

12 15 0.56 6.5 0 19.47 18.1966 1.2734 

13 15 0.56 5.5 25 21.57 20.0215 1.54851 

14 15 0.56 6 25 19.48 18.7371 0.74291 

15 15 0.56 6.5 25 18.99 18.3254 0.66465 

16 15 0.56 5.5 50 25.73 21.2831 4.44695 

17 15 0.56 6 50 19.88 19.1422 0.73777 

18 15 0.56 6.5 50 18.37 18.4541 -0.0841 

19 15 5.55 5.5 0 20.86 21.6688 -0.8088 

20 15 5.55 6 0 20.59 21.2408 -0.6508 

21 15 5.55 6.5 0 22.05 21.1055 0.94455 

22 15 5.55 5.5 25 23.21 22.9303 0.27966 

23 15 5.55 6 25 22 21.6459 0.35406 

24 15 5.55 6.5 25 19.82 21.2342 -1.4142 

25 15 5.55 5.5 50 27.36 24.1919 3.16809 

26 15 5.55 6 50 22.16 22.0511 0.10891 

27 15 5.55 6.5 50 19.9 21.363 -1.463 

Note: ‘.’, missing data. 
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TABLE B4 Model prediction residuals for -1–15
o
C and anaerobic conditions. 

Medium 

(#) 
T (

o
C) 

Glucose 

(mM) 
pH 

LA 

(mM) 

Diameter of inhibition zone (mm) 

Observation Prediction Residual 

1 -1 0 5.5 0 16.39 13.2343 3.15569 

2 -1 0 6 0 13.89 13.2343 0.65569 

3 -1 0 6.5 0 13.94 13.2343 0.70569 

4 -1 0 5.5 25 13.19 13.2343 -0.0443 

5 -1 0 6 25 13.77 13.2343 0.53569 

6 -1 0 6.5 25 13.36 13.2343 0.12569 

7 -1 0 5.5 50 . 13.2343 . 

8 -1 0 6 50 13.86 13.2343 0.62569 

9 -1 0 6.5 50 14.81 13.2343 1.57569 

10 -1 0.56 5.5 0 13.43 13.2419 0.18814 

11 -1 0.56 6 0 13.93 13.2419 0.68814 

12 -1 0.56 6.5 0 13.37 13.2419 0.12814 

13 -1 0.56 5.5 25 12.37 13.2419 -0.8719 

14 -1 0.56 6 25 14.43 13.2419 1.18814 

15 -1 0.56 6.5 25 14.24 13.2419 0.99814 

16 -1 0.56 5.5 50 14.35 13.2419 1.10814 

17 -1 0.56 6 50 14.01 13.2419 0.76814 

18 -1 0.56 6.5 50 13.87 13.2419 0.62814 

19 -1 5.55 5.5 0 15.15 13.3091 1.84086 

20 -1 5.55 6 0 12.63 13.3091 -0.6791 

21 -1 5.55 6.5 0 14.77 13.3091 1.46086 

22 -1 5.55 5.5 25 18.09 13.3091 4.78086 

23 -1 5.55 6 25 13.92 13.3091 0.61086 

24 -1 5.55 6.5 25 13.56 13.3091 0.25086 

25 -1 5.55 5.5 50 . 13.3091 . 

26 -1 5.55 6 50 14.15 13.3091 0.84086 

27 -1 5.55 6.5 50 14.72 13.3091 1.41086 

1 7 0 5.5 0 13.57 15.7863 -2.2163 

2 7 0 6 0 14.27 15.7863 -1.5163 

3 7 0 6.5 0 16.91 15.7863 1.12372 

4 7 0 5.5 25 13.42 15.7863 -2.3663 

5 7 0 6 25 16.51 15.7863 0.72372 

6 7 0 6.5 25 13.9 15.7863 -1.8863 

7 7 0 5.5 50 15.12 15.7863 -0.6663 

8 7 0 6 50 12.92 15.7863 -2.8663 

9 7 0 6.5 50 14.22 15.7863 -1.5663 

10 7 0.56 5.5 0 14.82 15.9185 -1.0985 

11 7 0.56 6 0 15.16 15.9185 -0.7585 

12 7 0.56 6.5 0 15.33 15.9185 -0.5885 

13 7 0.56 5.5 25 13.2 15.9185 -2.7185 

14 7 0.56 6 25 15.25 15.9185 -0.6685 
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15 7 0.56 6.5 25 13.52 15.9185 -2.3985 

16 7 0.56 5.5 50 14.05 15.9185 -1.8685 

17 7 0.56 6 50 14.78 15.9185 -1.1385 

18 7 0.56 6.5 50 13.69 15.9185 -2.2285 

19 7 5.55 5.5 0 14.22 17.0965 -2.8765 

20 7 5.55 6 0 15.62 17.0965 -1.4765 

21 7 5.55 6.5 0 13.4 17.0965 -3.6965 

22 7 5.55 5.5 25 14.17 17.0965 -2.9265 

23 7 5.55 6 25 14.95 17.0965 -2.1465 

24 7 5.55 6.5 25 15.37 17.0965 -1.7265 

25 7 5.55 5.5 50 16.09 17.0965 -1.0065 

26 7 5.55 6 50 14.48 17.0965 -2.6165 

27 7 5.55 6.5 50 14.92 17.0965 -2.1765 

1 15 0 5.5 0 18 18.3382 -0.3383 

2 15 0 6 0 17.53 18.3382 -0.8083 

3 15 0 6.5 0 17.47 18.3382 -0.8683 

4 15 0 5.5 25 19.05 18.3382 0.71175 

5 15 0 6 25 18.67 18.3382 0.33175 

6 15 0 6.5 25 17.27 18.3382 -1.0683 

7 15 0 5.5 50 22.87 18.3382 4.53175 

8 15 0 6 50 18.62 18.3382 0.28175 

9 15 0 6.5 50 17.81 18.3382 -0.5283 

10 15 0.56 5.5 0 18.5 18.5951 -0.0951 

11 15 0.56 6 0 18.01 18.5951 -0.5851 

12 15 0.56 6.5 0 18.47 18.5951 -0.1251 

13 15 0.56 5.5 25 21.78 18.5951 3.1849 

14 15 0.56 6 25 20.13 18.5951 1.5349 

15 15 0.56 6.5 25 19.31 18.5951 0.7149 

16 15 0.56 5.5 50 22.8 18.5951 4.2049 

17 15 0.56 6 50 20.01 18.5951 1.4149 

18 15 0.56 6.5 50 18.83 18.5951 0.2349 

19 15 5.55 5.5 0 23.03 20.8838 2.14619 

20 15 5.55 6 0 20.59 20.8838 -0.2938 

21 15 5.55 6.5 0 20.99 20.8838 0.10619 

22 15 5.55 5.5 25 23.7 20.8838 2.81619 

23 15 5.55 6 25 22.91 20.8838 2.02619 

24 15 5.55 6.5 25 19.95 20.8838 -0.9338 

25 15 5.55 5.5 50 24.11 20.8838 3.22619 

26 15 5.55 6 50 22.19 20.8838 1.30619 

27 15 5.55 6.5 50 20.43 20.8838 -0.4538 

Note: ‘.’, missing data. 



134 

 

 

FIG B1 Effect of environmental factors on final cell density (FCD). 

The effect was significant (F–test, P < 0.05) for the factors temperature, glucose, lactic acid, 

and pH (A, B, C, and D), but not for atmosphere (E). Error bars represent standard error of 

the mean. In this assay, a small piece (approximately 0.5 g) of agar was sampled from an area 

of mBHI agar not displaying an inhibition zone. Agar was weighed, pulverized, and then 

mixed with peptone water (bacteriological peptone 1 g/L, NaCl 8.5 g/L, pH 7.3 ± 0.2). CFU 

were determined by plate-count. 
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FIG B2 Effect of pH on growth rate of Carnobacterium maltaromaticum D8c. 

Error bars represent standard error of the mean. 
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FIG B3 Effect of incubation time on diameter of inhibition zone (DI). 

Error bars represent standard deviation. 
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FIG B4 Inhibitory activity of Carnobacterium maltaromaticum D0h CFS after ultrafiltration 

Cell-free supernatant (CFS) produced by C. maltaromaticum D0h were filtered through 

ultrafiltration units with cut-offs of 3, 10, 50, and 100 KDa, respectively. The inhibitory 

activity of filtrates (F) and retentates (R) were measured via agar overlay method as described 

in MATERIALS AND METHODS: Measurement of CFS inhibitory activity in Chapter 5. 
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