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The optica: 	principles of the two -mirror Ritchey-Chretieil 

Lelescop objcotive seM ar.  developed systematically, starting from 

funOmentais. 	Th t±i -A-order aberraLioncoefficients of Buchdahl• are 

derived for such a system and based On these coefficients, expressionsfor the 

first of the ext.ra-ax!al curvare coefficients of the mirrors which provide 

,aplanatic co-, dition at 1 . htt CIssegran focns are. derived.. 

A nuorical 	(Lropod Anglo-Aus'Jralian• 150-inch - telescope) 

is considered to iiluslate the pri- 
	les. 	Third-order correction to achieve 

apianatism is found r.o 	:ri;-2deeuLi 	-ot diagram analysis is made.  Tian 

expressions for the fifth-qader spherical aberration coefficient, ul, and 

linear coma coefficients, 1-12,;i3 
 for the tirvo-mirror system are then.derived 

and arc used to achieve aplanatic condition to fifth-order. 	When this is 

applied to the numerical example, Lhe performance of the system is found to be 

.extremely cjood. 	The profi -s of the mirrors of the seventh-order aplanatic 

syst;,,.m are fonnc: o be scarcely dk,tinquiahle from those of the fifth-order 

aplanatft !,ystem. 	wi;r.,r5 	conic.c::=ad as two hyperboioids, based 

on third-order aberrations, and it is not iced that the curvature coefficients 

of these mirrors L4nd the performance of such a system is not far removed from • 

that of the fifth-order aplanatic system, justifying the popular view. 	-A  . 

consideration of the aberration balance technique has brought the hyperboloid • 

System still closer to the fifth-order system. 
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The design prtncip1e ,,; of two typs• of secorr tocus correctors to 

eliminate the residuel 	riauisili and field carvatt.:re of the aplanatic.system 

are outlined. 	These are ap aspheric .plate 	th fid flattener and a Rosin 

type doublet. 	The prirlciOes are successfully adopted to develop these 

correctors for the nu4tieri 	1 example. With the for type of corrector, it 

Is noticed that best correction can be achieve4 lf the RiLchey-Chretien mirror 

constants are slightly. ch3nged. 	Rosin type corrector is‘ associated with 

colour problems. 

Expressloos for the prime focus aberrations a e derived and the 

design principles of f,ftgle plate and three-plate correctors to correct these 

aberrations are discussed. 	Two-plate correctors provide no practicable 

arrangement. 	The single plate corrector provides a !imall useful field, 

whereas the three-plate corrector offers more useful field. 	With these 

correctors in place, the prime focus lar9ely suffers from higher order 

aberrations.. 

The concluion are mostly derived f-om - the numerical example. 

However, they are valL. for p wide range of parameter;. 
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ABSTRACT 

The optical design principles of the two-mirror Ritchey-Chretien telescope 

objective system are developed systematically, starting from fundamentals. The 

third-order aberration coefficients of Buchdahl are derived for such a system and 

based on these coefficients, expressions for the first of the extra-axial 

curvature coefficients of the mirrors which provide aplanatio condition at the 

Cassegrain focus are devilled. 

A numerical example (proposed Anglo-Australian 150-inch telescope) is 

considered to illustrate the principles. Third-order correction to achieve 

aplanatism is found to be inadequate when spot diagram analysis is made. The 

expressions for the fifth-order spherical aberration coefficient, 	and linear 

coma coefficients, 112 , p4 for the two-mirror system are then derived and are 

used to achieve aplanatic condition to fifth-order. When this is applied to the 

numerical example, the performance of the system 3.8 found to be extremely good. 

The profiles of the mirrors of the seventh -order aplanatic system are found to be 

scarcely distinguishable from those of the fifth -order aplanatio system. The 

mirrors are then considered as two hyperboloids, based on third-order aberrations, 

and it is noticed that the curvature coefficients of these mirrors and the 

performance of such a system is not far removed from that of the fifth-order 

aplanatic system, justifying the popular view. A consideration of the aberration 

balance technique has brought the hyperboloid system still closer to the fifth-

order system. 

The design principles of two types of secondary focus correctors to eliminate 

the residual astigmatism and field curvature of the aplanatic system are outlined. 

These are an aspheric plate with field flattener and a Rosin type doublet. The 

principles are successfully adopted to develop these correctors for the numerical 

example. With the farmer type of corrector, it is noticed that best correction can 



be achieved if the Ritchey-Chretien mirror constants are slightly changed!  

Rosin type corrector is associated with colour problems: 

Expressions for the prime focus aberrations are derived and the design 

principles of single plate and three-plate correctors to correct these 

aberrations are discussed: Two-plate correctors provide no practicable 

arrangement: The single plate corrector provides a small useful field, 

whereas the three-plate corrector offers more useful field. With these 

correctors in place, the prime focus largely suffers from higher order 

aberrations. 

The conclusions are mostly derived from the numerical example. However, 

they are valid for a wide range of parameters. 



OH/tr.-TER I.  

I .1 INTRODUCTION  

Reflecting and refracting telescope objectives have been in existence for 

many years. Because of the chromatic effects associated with the refracting 

objective, in the earlier days reflecting objectives were preferred, despite 

the difficulties in figuring the mirrors. Following the invention of the 

achromatic object glass and because of the difficulties in casting and figuring 

specula the refractor for a time, almost completely superseded the reflector. 

Many practical men seem to think that the refractor has entirely superseded the 

reflector and that all attempts to improve the reflecting instrument are useless. 

Larger and larger refracting objectives were made and with the completion of the 

36 inch (1888) and the 40 inch (1897) refractors, toward the end of the 

nineteenth century, no larger objectives have ever been made. 

At the time when this development was taking place, the strong proponents 

of the reflecting objective continued the research to overcome the difficulties 

associated with the speculum metal and arrived at the silver on glass mirror. 

Perhaps the 47 inch reflector made in 1860 was the last large telescope using 

speculum metal for the mirrors. The achievement of the silver on glass mirror, 

began to bring the reflecting telescope back into favour in the seventies and 

eighties of the last century. 

Newton was the first to overcome the difficulty associated will all 

systems employing a concave mirror, of obtaining an accessible focal plane, by 

inserting a plane reflector into the beam of converging light, so that the image 

is formed outside the incoming light rays, and as a rule lies in a plane which is 

parallel to the axis of the mirrors. The first telescope of this kind was made by 

Newton in 1668. A paraboloid mirror must be employed to obtain a stigmatic axial 

image. The fact tha'. a parabolic mirror produces off-axial comatic imagery, 
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idgether with the circumstance that large relative apertures are employed, 

makes the usable field very small. Another important method of obtaining 

an accessible focal plane is the cassegrain arrangement, where a convex 

secondary mirror mounted in the convergent beam returns the image along the 

axis of the system. In a large astronomical telescope, such an arrangement 

is often an alternative to the Newtonian arrangesent. Different mirrors may 

be used to obtain a variety of focal lengths. The classical form of this 

telescope consists of a paraboloid primary mirror and an hyperboloid 

secondary , mirror. In this way spherical aberration correction was achieved 

but the coma of the system was found to be more than that of a Newtonian 

paraboloid mirror alone. The petzval sun of the system reduces as a result 

of the use of the convex secondary mirror. These classical shapes of the 

primary and secondary mirrors of the cassegrain system are altered to make 

the system free from spherical aberration and coma. K. Schwarzschild (1905) 

considered a class of telescope objectives consisting of two aspheric 

mirrors, and showed that such a system can be made aplanatic. Two telescopes 

of this type were later constructed, one with an aperture of 24 inches at the 

University of Indiana, and 'another with a 12 inch aperture at Brown University; 

Schwarzschild's analysis was essentially meant for obtaining aplanatic 

Gregorian focus. Chretien (1922) later gave math ematically exact formulae for 

the profiles of the mirrors which provide aplanatic images at the cassegrain 

focus. The mirrors were figured and tested by Ritchey and such systems are 

therefore often referred to as Ritchey-Chretien telescopes. 

Even though, theoretically, solutions for aplanatic objectives were 

developed, it appears that until recently, no serious view was taken to construct 

such a telescope system. Much recent development has been done by D.H. Schulte 

(1963), using spot diagram methods. He observes that the Ritchey-Chretien 'system 



employs a near-hyperboloid primary and secondary, both departing farther from 

the base sphere than either of their counterparts in the cassegrain system. 

The resultant improvement in the images due to the removal of the coma term 

is shown in Figure 1. of his paper. The latest demands set for the field 

size and the correction of the extra-axial aberrations cannot be realised 

with the traditional cassegrain and Newtonian types. It appears from the 

figures given in the literature that the cassegrain system working at g/8 

provides a field of 5 minutes only, whereas, the same paraboloic primary 

mirror alone working at g/3 covers a field of 0.6 minutes. The extra-axial 

aberration which limits the field size is mainly coma and as a result of this, 

aplanatio systems are adopted for the telescopes constructed or planned 

recently. The 84 inch Kitt Peak telescope constructed in 1964 was the first 

large telescope of this form to be made. The advantage obtained by using the 

aganatic system is at the sacrifice of the axially stigmatic images of the 

traditional cassegrain system at the prime focus. 

• Wynne (1968) gave equations for the profiles of the mirrors which provide 

aplanatic condition to third order. He has avoided giving the equations for the 

third order aberration coefficients which may be a necessity if residual values 

for the third order spherical aberration and coma are to be prescribed to balance 

the higher order aberrations.. He limited his analysis to third order and 

apparently failed to show the advantages offered by analysing the mirrors to 

provide aplanatism to a higher order. It appears from the literature that there 

seems to have been no discussion in between the third order aberrations and the 

mathematically exact formulae of Chretien. It also ,seems that no limits are 

given in the literature concerning the extent of physically realisable aplanatism 

at the cassegrain focus, in the sense that, whether the profiles of the mirrors 

for a particular order of aplanatism are distinguishable from those of the 

preceding order of aplanatism. 
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Since the secondary focus of the Ritchey-Chretien system suffers from 

astigmatism and field curvature, secondary focus correctors are required, 

if the field size for mad imagery is to be improved. Due to this fact several 

field correctors consisting of spherical surfaces only, Rosin (1966), Kohler 

(1966), Wynne (1965,68); and aspherical surfaces, Gascoigne (1965), Schulte 

(1966) have been proposed. Kohler suggested that a negative lens located, at a 

suitable distance from the focus is capable of correcting the astigmatism and 

field curvature of the Ritchey-Chretien system. Such a lens may not be a 

useful proposition as it introduces considerable transverse colour. Wynne 

(1965) had proposed a two lens corrector which provides a useful field. of about 

50 minutes. Excepting for few remarks, his paper does not disclose the 

essential principles underlying the design of the corrector. 

Rosin pointed out that the two lens corrector system may be usied to correct 

astigmatism and petzval sum, and colour of the system. As the lenses consist of 

aplanatic and concentric surfaces they do not introduce any third conier spherical 

aberration or =Dap but have a substantial effect on astigmatism arid petzval 

curvature. With such a corrector system either longittviinal or transverse 

chromatic aberration may be corrected. Gascoigne has suggested that an aspheric 

plate placed a short distance in front of the focus may be used to correct the 

astigmatism of the Ritchey-Chretien system. As such an aspherio plate 

introduces snail spherical aberration and coma, he pointed out that the 

asphericities of the Ritchey-Chretien mirrors and the plate maybe chosen 

simultaneously to correct spherical aberration, cans and astigmatism. Based on 

such a principle, Schulte developed an anastigmatic objective with very 

encouraging results. He used a field flattening lens to remove the petzval 

curvature of the system. This type of correction no longer makes the two 

mirror system produce aplanatio images at the cassegrain focus, when the 

correcting system is removed. 
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The Ritchey-Chretien primary focus suffers considerably from all the 

monochromatic aberrations. Therefore if the primary focus is to be used, 

prime focus correctors are needed even to obtain good imagery on the axis. 

Gascoigne (1965), Wynne (1965,68), Ross (1935), Kohler (1968), reinea (1953) 

and Schulte (1966) have all proposed prime focus corrector systems consisting 

of either spherical surfaces or aspherical surfaces or both. Gaseoigne noted 

that a single aspheric plate may be used to correct both spherical aberration 

and coma by a proper choice of the location of the plate and its asphericity. 

Kohler, following an earlier suggestion by Meinel, used a three plate corrector 

together with a field flattening lens to correct the prime focus aberrations. 

The asphericities of the plates may be chosen to correct the spherical 

aberration, coma and astigmatism, while the paraxial powers of the plates and 

field flattener correct field curvature and colour. With such a corrector a 

useful field of one degree may be achieved. Ross designed a doublet corrector 

for the prime focus of a paraboloid mirror. Wynne's elegant two lens and 

three lens prime focus correctors are derived mostly from the originarltoss 

doublet. With the doublet corrector, he used the separations, powers and shapes 

as the parameters to control the monochromatic and chromatic aberrations. With 

such.a'oorrector system higher order aberrations limit the size of the useful 

field. He apparently overcame this difficulty by adding one more lens to the 

syStem. As a result of this addition he found that the monochromatic 

aberrations are distributed over the three elements, and, as a result of this 

the individual curvatures will be snail, resulting in small higher order 

chromatic and monochromatic aberrations. With Wynne's triplet corrector one 

could achieve almost the same performance as that of Kohler's four element 

corrector. 
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An attempt is made in the succeeding chapters to analyse the Ritchey-

Chretien aplanatic objective system by making use of Buchdahl's aberration 

coefficients. Equations are given which provide aplanatic secondary focus 

to fifth order. The seventh order aplanatism is also discussed..scan be 

seen later such an aplanatism may not be physically distinguishable from the 

fifth order aplanatism. An analysis of hyperboloid mirrors is also made. 

The merits and demerits of the secondary focus correctors of the Gascoigne 

and Rosin type and the prime focus correctors of the Gascoigne and Neinel 

type are investigated. The usefulness of the various equations developed is 

shown by way of a numerical example. Spot diagrams, wherever necessary are 

provided. 

1.2 ASPHERIC SURFACES.  

Buchdahl (1950 and Cruickshank (1968) have given various ways of 

specifying aspheric surfaces of revolution. Each method of definition has a 

particular advantage. The standard and most usual way of specifying an aspheric 

surface is by its profile equation, given by 

x = 	on (y2  + z2  ) n 
	

( . ) 

a - I 

In the meridional plane (z = 0), we have 

x = y2  +3t + 033 6 	0.08 	 .. 	 (1.2) 

where, the values of the coefficients Q. 11  characterise the surface. 

Buchdahl partioa140Wintroduced the idea of the extra-axial curvatures 

which simply represent the otirvature of the profile of the sUrface at any point 

(x,y) on the profile 'by 'a power series in y. This kind of specification is 

mostly used in the aberration coefficients analysis for aspheric surfaces. 
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By way of equation we may write 

F = c 0  + 3004 + 502 y4  + 7c3 y6  +  
	

(1 .3 ) 

where 0 0', c„ c2 	are defined as the curvature coefficients; in particular s  

c o  is defined as the axial curvature of the surface corresponding to the polar 

tangent sphere, and e l , o2 , 	on  are defined as the extra-axial curvature 

coefficients. The aspheric surface may be defined through either of these 

coefficients, on  or en . As they define the same surface, a relationzh4p 

between these coefficients exists and may be obtained by changing equations 

(12) and (10) into a common form and then comparing the coefficients of the 

powers of 5r 

From calculus, we have 

r = 	+a(a/t,)2 1/2 

which after integration with respect to y becomes 

dy 11 :X(ctdy)2 	= 1C(1 '.12 +11  X  

	

6 4  ..c5g *6  • • • • ) (1.4) 

Where,. 	k = &lay 

Equation (1.5) after integration with respect to y becomes 

dY = ca.  + ci 	c2 Y5  + 
	 .5) 

From equation 	after differentiation, we get 

= aei y + 440r3  + 6o3y4  + 8o4Y7  +   (1.6) 

Combining equations (1.4) and' (1.6) and then comparing the coefficients 
of the 

different powers of y in this equation and those of equation (1.5) we get 
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= _ea  
411 	2 

02  = lk (2c, + 0 2 3 ) 

• — -1- (8C2 4. 12C O2 01 	300 8 ) 
4.8 

• = jg 0 643 + 24.0 02  + 3000 4  CI 	24.00  C; 2  + 5C0 7 

05  = 	('1604  + 24.00203  + 3000 402  + 60.0 	2+ 

+ 8c, 3  4' 48C0C, C2  4. 3500 6 C + 	Co 9 )• 

A third method of specification, mostly useful for ray tracing through 

the system, is by the introduction of phi-values, which are the coefficients 

characterising the departure of the surface of revolution from the spherical 

form. This may be written in the form of an equation (for the profile of the 

surface, z = 0) as 

2x ce (x2  + Y2  ) = 	+ (he + 92 Y4  + 

 

(1 .8) 

 

Expressing the left hand side of equation (1.8) in terms of a power series of 

y by using equation (1.2), and then comparing the coefficients of the letwers 

of y along with equations (1.7), we obtain 

. 	= 0 

9i = '1!" 

	

1.1 	. 

— lg k 2432  + 3c 02  91  ) 

= J86  1 2a3 .4  5c o (co% + C  (Pt )1 

= 1 	
(3264  + 112c 2 93  + 24.80 0 c, (p2 	270 0 3  CI  2  -I- 16c, 3  ) 

(P4 	60 

(1.9) 
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1.3 CONICOIDS.  

In the previous section, we have silo= different methods of specifying 

an aspheric surface. A conicoid is usually specified by its eccentricity and 

the axial curvature, and then all other curvature coefficients are defined: 

It may, therefore, be a necessity to provide relations between the curvature 

coefficients and the axial curvature and eccentricity. The equation of the 

profile of a oonicoid may be written as 

coy2  Poe y4  F2  o ey 6 	5 
x —2— + 	+ 	+ 	P3 00 7 ye + 

•"27. 	
9yi 0 4. 
	 (1.10) 

where 	P = 1 	e being the eccentricity. 

Comparing the coefficients of the powers of y In equations (1.10) and (1.2) and 

then using equations (1.7) we obtain 

02  

= 

= 

62  co *  
2 

e4 co s 
8 (im) 

03  = 406 0 0 7  
16 

et 	9 04 ° O 

• • • lb • • • • a, 

Hence, the equations (1.11) determine the curvature coefficients of a conicoid, 

once c o  and e of the surface are specified. 

1.4 RAY TRACE SCHEME.  

Buehaahl (1954),  Ford (1966) and Cruickshank (1968) have described the 

theory of the marginal ray trace scheme suitable for systems consisting of 

aspheric surfaces. In this scheme an asptheric surface is completely defined 



10. 

by its axial curvature and the phi-values as defined earlier. The surface may 

be specified by as many phi-values as is necessary. As the aberration 

coefficients are computed up to seventh ardor only, which involve the axial 

curvature and the first of the three extra-axial curvatures, we therefore 

specify the surface by its first three aspheric constants (phi-values) and as 

far as our ray trace scheme is concerned all the remaining aspheric constants 

are conatdered as zero. Thus the designer has under his control the axial 

curvature and the first three extra-axial curvatures of an aspheric surface as 

on , n>4. are predetermined by the condition that 9 11  (n> 3) are zero. The 

preceding statements fail in the case of a conicoid, as the curvature 

coefficients are predetermined by the axial curvature and the eccentricity. 

Unless the systems work at a very low aperture and field so that the ninth and 
1 

higher order 

/

aberrations are negligible, the deductions that will be made from 

/ 
the marginal ray traces, where 9,, (1)2 , 95  only are given may not be the true 

deductions. It appears that Ford has overlooked such a case. For this reason 

expressions are given for otp4 and 08  also. 

The ray trace scheme makes use of the (5T coordinates for the specification 

of the incident rays. The advantage of these coordinates is that all the rays in 

the pencil of light from one object point may be specified in turn by changing 

only the values of Sy and Sz . Choosing the meridional plane as the x y 

coordinate plane, the initial coordinates are written as 

Sy = pcoso 	Ty  = Hy, /101  

S =psino 	Tz  =0 

where (p0) are the coordinates of the point of intersection of the ray in the 

first polar tangent plane with reference to the coordinates of the intersection 

point of the principal ray as origin and the y-axis as initial line. The tracing 

of two formal paraxial rays, namely the a-ray with initial coordinates 



(y, = 1, 11, = 	and the b-ray with initial coordinates fy; = pv,, 

v; 	p/1 01 )1 where, 1 01  is the distance ,  of the object plane, and p is 

the distance of the entrance pupil, both measured from the vertex of the first 

polar tangent plane, give the values of the paracanonical parakial coefficients, 

Yaj vo, Ybi s  vbj for the system which are ultimately used for the computation_ 

of the canonical variables Y, Z, V, -V1 of the ray. The path of an actual ray 

after refraction or reflection at a surface, mill, in general, differ from the 

ideal ray (paraxial ray) path. Bence, the difference between the coordinates 

Z, v , 1) of the intersection points at any plane between the ideal ray and 

the actual ray is used as a measure of the aberration of the ray produced by the 

surfaces through which the ray has travelled. This principle is used as the 

main basis for finding the actual aberration of the ray or the intersection 

point of the actual ray in the paraxial image plane or in any other neighbouring 

plane. An actual computation scheme, (Ford, 1966), with the results for one 

particular trace is shown in Table I. For our present telescope objective 

system the primary mirror acts as the stop of the system and therefore the 

entrance pupil coincides with the first polar tangent plane. The object lies 

at infinity. Therefore the initial paracanonical coordinates and the initial 

particular paracarionical (4-coordinates 1  are identically equal. That is, 

Sy = Yi s S2 = Zi ,,Ty = rif and T z  = 0. Table I explains clearly the aCtual process 

of computation. 

The evaluation of the quality of the image is ultimately assessed by 

producing a spot diagram. To obtain this we need to divide the entrance pupil 

into a number of small equal areas and thdn trace a ray from the object point 

through the centre of each of the small areas. The intersection points of each 

ray in the selected image plane are then plotted. This produces the spot 

diagram. The spot diagram illustrates the appearance of the image of a point 
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object with a fair degree of accuracy. For this purpose, a programme is written 

in the Algol 60 programming language .  for the Elliott 503 computer. The 

progranue is suitable for systems consisting of spherical and non-spherical 

Surfaces of revolution. All the displacements will be computed in the paraxial 

image plane of the e-line. The entrance pupil is divided into small equal areas 

on the basis of the rectangular grid system. As the rays on each side of the 

meridional plane are mirror images, only the rays incident on one side of the 

neridional plane are traced through the system for the extra-axial object points. 

For axial object points the rays incident in one quadrant of the entrance pupil 

only are traced as the rays of the other quadrants are mirror image's. 

■ 411.4.1.4. .. ~Om.. 



Paraxial data 

	

*t1  dt2 	Y's  

	

*1(1-k)c0t1 kkt2 1 	va  

	

*14 -d.t4 	yb 

*10-k)o ot +kt 4 1 	3712  

Ray trace 

*(t8-t45) (44.6) 

*(tott?o) (Sz-00) 

qt 7 ft43 ) (Teo) 

*(ts+t44) (T+45) 

TABLE I. Process of finding spherical aberration present in the modified hyperboloid 
aplanat by nurginal ray trace. 

Surface Data 	 1 
	

1 
	

2 
	

2 

0,  o 

C l 
 

-1.2 

1:0134987 

483974.4 

1, *8073699 

-2.1024735 

39.592933 

-1118.3972 

35102.009 

c; /2 Tf 0,50674933 -19.796466 

(2c2  + 3c02 q)1  )/6 ,.•0.06313195 -329:04496 

2c3  +500  (c0% +cs  p )1/8  (P3 • 0.00959778 •6836.4.845 

-0.27794118 0.0 

N 9  ri .0 1:0 

t1  

,0 

1.0 

-1:0 

0.33294117 0.33294117 

% 0.0 '''2 .4 1.0 

ts 0.0 -0:27794118 •-0,:27794118 

t4  1.0 -1.o .  2.1687279 

ts 0.0625 0.06285329 0.06262203 

ts 0. 0 0.0 0.0 

t, 0,0 -o.00007356 -040000003 

t a 0.0 o.o 
0 

0.0 

Note: An * before or after a symbol indicates quantities from the preceding or following surface. 
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Written in matrix form, 

[1 	{y = R  [y 

[1 -1 [y] 

1 	v, 	.v, 

(2.5) 

CHAPTER II..  

aPLZATIC OBJECTIVES 

2.1 PARIOCL-LL EQUATIONS 

Consider an optical system (Fig. 2.1) consisting of two reflecting 

surfaces of revolution which are arranged coaxially with an axial separation,. 

For any paraxial ray (y,z,v,w) incident at such a reflecting surface r  we have 

= y 

= 

 

N. 
where k = rfr  = .4 0. and * = (•-k)a0, = 

surfacer and 

20os are constants of the reflecting 

= yt' 	tv 	 (2e,3) 

= (2.4) 

Equations (2.1), (262) are referred to as the paraxial reflection equations of 

the surfacer whereas equations (2.3) 0  (2.4) are referred to as the paraxial 

transfer equations for the two surfaces. 

Similarly, we can write 

0 z1 [1 	1 [z] = R  [z 

w [' 

(2.6) 
[2 1 

w + 0 

-t 

1 

I 

lei=  

z 

Nr1 [ 



Fig 	2.1 

Optical diagram of the Ritchey - chretien mirror system 



14. 

where primed symbols denote the coordinates of the ray after reflection and 

the subscript (+) denotes the following surface. R and T are known as the 

Paraxial reflection matrix of the surface and paraxial transfer matrix of the 

two surfaces respectively. 

The paraxial matrix of the whole system is then given by 

P = 

r

C

i2  

2 

Bl 

1)2 
=R2TtRi= 

1 

ir2 

0 

k2 
-+ 

Ii Ii Ic, 

L1 2to o , 	t 

20 02 -2c -14.tc 0,0 02 	1+2tc 02  

where c ol , 0 02  are the paraxial curvatures of the two mirrors. 

(2.7) 

2.2 PARAMETERS of the SYSTEM 

Important quantities associated with a telescope objective are the 

diameter of the primary mirror, 2h1 , the focal length of the system, V, and 

the f-numbers at different foci. In the development of the design, it is 

convenient to work with a unit power system. We introduce two new parameters 

R and x, where R is defined as the ratio of the f-number, u 2 , of the whole 

system to the f-number, p i , of the primary mirror, and x is the distance of 

the back focal plane from the vertex of the primary mirror. 

Then, by definition, 

f 	1 
D I  

2h, 	/4-c 01  

f' 	1 
2hi 	- 2h, 
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whence 1)2 
R = 	= 20 0 , u, 

or 	 001 	OD 

2 

The back focal distance is given by 

A2 
t + x = l'f =r = A2  

that is, 	- t + x = 1 - 2tc 0, = 1 + tR 

or t = x - 1 
R+ 1 

Since the power, C2  of the system is unity, 

2c 02  - 4tc 01  c02  - 20 0, = 1 

from which, we get 

(1 - R2)  
002 - 2(1 + Rx) 

Assembling these results, the paraxial arrangement of the whole system is given 

by 

= D2A, 

001 = - R/2 

002 = ( 1-R2  )/2(1+Rx) 

= (x-1)/(R+1) 

(2.8) 

  

If h2  is the semi-aperture of the secondary mirror sufficient to transmit the 

full aperture axial pencil, then h 2  is given by 

. 	( 1 +Rx)h, 
hz = ( 1  - 2tc01  )bi  = R 	 (2.9) 

This aperture has to be increased to about (h 2  + tv, ) to transmit an unvignetted 

pencil at a field angle of 2v, . 



1 6. 

2.3 THIRD-ORDER ABERRATION COEFFICIENTS 

The third-order aberration polynomials of a system consisting of non-

spherical surfaces of revolution may be written (Buohdahl, 194.8),  

s y k l  = 01 p 4cos 0 + 02 p2R(2+co3 2e)+(303+04)A2 cos e + osIP 

- 
clos sin 0 + c2 p2 N sin 2e +(o340)00cos  e 

where (pyol , 0 are the polar coordinates of the intersection poiiif of a ray 

in the first polar tangent plane relative to the corresponding intersection 

point of the principal ray and (l ot , 410,,O) are the coordinates of the 

object point. For objects at infinity, H is given by the tangent of the 

semi-field angle. The coefficients 0, to 05  are the coefficients of the third 

order spherical aberration, circular coma, astigmatism, petzval curvature of 

field, and distortion, respectively, given by 

=.1 	
(2 .1 0) 

pAso + T o )  

= P2( cIS O PT o) 

03  = 112(q2S 0  4. PIO 

04 = 

05 = ACI SSO P3T O + 

(2.11) 

= 1/11k ivok t  
(N'-N)oo  c0(1.40 

= 2NN• 	2N 

q= Vico 

P = Yho 

So  = 0.5Ni02 y0  (1-k)(io  

To  = (N'-N)ci  yo 4  

(2.12) 



17. 

It should be noted that the quantity S o  is associated with the axial 

curvature (spherical form) of the surface, whereas the quantity T o  is related 

to the asphericity of the surface. 

In these equations, the quantities y o , vo , i o , i 0 1 , y, i are obtained 

by tracing through the system two formal paraxial rays called the a-ray 

(axial ray, distinguished by the suffix o) and the b-ray (principal ray). 

The initial data for these two rays are 

yo, 

Yi 	= Pv, 

vo , = 1/10 1  

V 	= i/(1 -13/101 ) 
(2.13) 

  

where 1 0, is the distance of the object plane and p is the distance of the 

paraxial entrance pupil, both measured from the vertex of the first surface. 

For the two-mirror telescope objective system, we have 

A =' = 

1 01  = 

N, = N2  = —1 

p= 0 
(2.14) 

    

Equations (2.1) - (2.4), and (2.8) then give 

=I 	v 01  = 0 	5- 01  = -W2 

- g:10 ) 	- 2 vo2  = -R 	42  - (1+E)  

= R,(2 

 

  

2 

(2.15) 

=0 	v, =1 	i, =—I 

3C 	
(1+4 (1+R)  

1i.+1 	V2 - 	i2 - 2(1 +RX) 



Substituting these expressions in equations (2.12) we obtain 

= 2/R 

=0 

Sol = R3/8  

Toi  =-2c1  

= +X)/(1+RX) q2 

P; = (x-1)/(1+Rx) 

Zr2  = (Fe -1 )/2(1+Rx) 

S 02  = (1-R2  )(1+Rx)/8 

T02 = 2ci  2  (1+RX) 4/( 1 +R) 4  

(2.16) 

   

Combining equations (2.11), (2.16) the expressions for the third order 

aberration coefficients may be obtained. 

The third order spherical aberration is given by 

18, 

01  = So, + To, + So2  + T02  

— 	(1 '412  ) (1+Rx)  
8 	+ 201  2  — 8 	 1+R)4 

Similarly, the third order circular mina coefficient is 

002  =. q, S ol  + P1 T0, + q2  S02  + P2  T 02  

	

R2 	(1•••R2  ) ( 1+X) 	2C1 (X"1 ) ( 1+RX) 3  
= 4 	, 8 (UR) 4 

Continuing in this manner„ we obtain 

_ 2 

▪ 	

8(1 4.R2E) 
R 	(1 -R2 ) (1 +x) 2 

 ▪ 

20, ( x-1 ) 2  (1+RX) 2  
- 	 (1+R)4 

R 	R2_ 1  
04 = C OI 	CO2 = 	2 + 2 1-'.17...7.1bC 

R2  (1"X) 	R -  
2(1+Rx) 

(2.17) 

(2.18) 

(2. 19) 

(2:20) 

Os = 
+2x 	2c, 2 +Ibii  

1+R) (2.21) 

It should be noted that the third order aberration coefficients involve 

only the first of• the extra axial curvatures. 



1+x+2R 
Ca = 4. 

R2 (1-10 - 1 R 
04 	2(1+Rx) 

2."13R2  );2 	2R2  X + R2 
05 	 +RX)2 

(2.24) 

(2.25) 

(2.26) 

2.4 THIRD ORDER ArldiNATISM 

Noting again the closing remark of the last section, it is clear that 

equations (2.17), (2.18) allow us to choose c ii , c12  so that 0, and 02  

are adjusted to zero or any desired suall value. The condition that ai = 0 0  

for example, is, from equation (2.18), - 

(If x R2 	X 1 ), 	R) 4  
CI 2 - 	 16(x-1) (1 +Rx) 3  

The condition that cri  = 0 as well, then., requires that 

+ 11+Rx )  

1 (1-x 

(2.22) 

(2.23) 

This means that with these values of the first extra-axial curvatures the 

system is aplanatic to third order. 

The third order residual aberrations, astignatism0petzval curvature of 

field, and distortion of the aplanatic system are then obtained by 

substituting the expressions for e ll , ci2  in equations (2.19), (2.20) and 

(2.21). We now have 

19. 

The variation of the residual aberrations, astigmatism, petzval curvature 

of field with respect to the parameters R and x are shown in Figures 2.2 a - d. 

The figures illustl-ate that both astigmatism and. petzval curvature vary 

similarly with respect to R and x. The figures also illustrate that both the 



  

16 

1.2 

bm 8 

 

12 

b"4  
8 

4 x=0 	4 
x-=0.05 

Il  

x =0.1 

   

   

0 1 2 3 4 5 6 
	

0 	2 	4 
	

6 

(a) 
	

(b) 

16 

12 

8 

4 

12 

bcr)  8  

4 

/MI 

0 	.04 	.08 	1.2 

(c)  

R=6 

R = 4 

R =2 

.04 	.08 	1.2 

(d) 

R = 6 
R =4 

,  
0 

Fig 	2.2 Variation of residuals 0-3 ,0'4  with R and x. 
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residuals can be decreased by decreasing R and increasing x. The petzval 

curvature is more sensitive to R and x as compared to astigmatism. Hence a 

proper selection of the ratio of the f-numbers at the two foci, R and the 

baCk focal distance , x has to be made in order to keep the residual aberrations 

low. These values, however, are determined by considerations other than those 

concerning residual aberrations. 

2.5 MEAN FOCAL SURFACE.  

If the principal ray intersection in the paraxial image plane is taken as 

the reference point for measuring the aberrations, then the third order 

aberration polynomials (2.10) for this aplanatic system reduce to 
•Wir. 

p 	= (303  + 04  )pEO cos e 

P;k 1  = (03 	04 )1:0 sin 0 
a/ (2.27) 

  

   

At any other plane distant xl from the paraxial image plane, the aberration 

equations (2.27) become (Buchdahl 1954) 

y k .' = (.303  04 )piii cos 0 + x 008 0 

eZIC I  = (03 + 03 )012  sin 8 + x'psin e 
(2.28) 

The distances of the tangential focal line xt' and the sagittal focal line x; 

measured from the paraxial image plane may be written as 

xt' = -(303  + 04 )ER 

X 1 = - (o3 	04)EL2  
( 2 .29) 

  

In the presence of astigmati :sm and petzval curVature,. the best image is 

formed on the mean focal surface which is half way between the. tangential and 

sagittal surfaces. Hence , the distance, xi', of the mean focal surface.  from 

the paraxial image plane is 

Xm l  = -(203 + 	 (2.30) 
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Therefore, the test image will be formed on a curved surface whose profile 

is given by equation (2.30) where ri is the same as y, the image height. 
For this focal surface, the aberration equations (2.28) reduce to 

eyo . os pE?cop 0 

- ci8P12  sin e 
(2.31) 

  

The image of a star in this mean fbcal surface is a circle of diameter 

aley k s z  k" which is equal to 2030712 . • Since the focal length Is anitYs  

the angular diameter of the blur circle will be 

203 prig if • = 2 chprI 2  

If we specify the image quality in terms of the angular diameter of the blur 

spot, then, if the blur circle diameter for acceptable definition is limited 

to d seconds of arc, then the maximum semi-field of the objective, 11, measured 

in radians, is 

4132 4'1(03 x 20b2b5) 

or, more conveniently, if R is expressed in minutes of arc, we have 

Ti = 457.3 1)2 C3/03 (2.32) 

2.6 NUMERICAL EXAMPLE.  

We will now consider a numerical example, the purpose of which is to 

make use of the equations of the previous sections in the development of an 

actual telescope objective system. The writer understands that the proposed 

Anglo-Australian 150-inch telescope is to be a Ritchey-Chretien system, with 

the following specifications: 

=10/3 	u2 = 8  

f' = 1200 inches 	x' = 66 inches 

2111  = 150 inches 	d = 0.5 seconds 
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It will be of interest then to consider the design of an objective of this 

type. Reducing the system to unit focal length, we have 

ul  = 10/3 
	

D2 = 8  
f' = 	 x ,  = 0.055 

21 = 0,125 

(1) Using equations (2.8), the paraxial arrangenent of the objective is 

R =2.4 

oi = 0.1.200000 

02 = -2.1024735 

t = -0.27794118 

(2) Using equations (2.22), (2.23), the values of the first extra-axial 

curvatures which will give third order aplanatism (04 = 0, 02  = 0) 

are found to be 

= 1.0137355 

C; 2  = 39.592933 

(3) Having obtained the aplanatic system, the next step is to-cakotlate -the 

coefficients of third order residual astigmatism, petzval curvature, and 

distortion. Equations (2.24) - (2.26) give for these 

05  = 1.2930654 

04  = 0.90247351 

05  = 0.8481537 

From equation (2.30), we obtain the profile of the mean focal surface as 

X = -3.4886043 Ei2 

from which it follows that the axial curvature of this surface is 

c o  = -6.9772086 
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Equation (2.32) gives the maximum semi-field for which the angular diameter 

of the blur circle does not exceed 0.5 seconds of arc as 

rin k = 13.3 minutes 

The spot diagram programme is now used to analyse the correction state 

of the third order aplanatic system. The image spread is compared with a 

0.5 seconds of arc diameter circle. About 200 points are obtained to produce 

the spot diagram. The spot diagrams are obtained (i) for the axial object 

point (v = 0), (ii) for an extra-axial object point corresponding to a semi-

field angle of 6.5 minutes (v = 6.5), and (iii) for an object point given by 

v = 13 minutes. Figures 2.3 a - c illustrate the appearance of the image for 

the above three cases. Figure 2.3a illustrates that the third order aplanat 

objective system suffers from a higher order spherical aberration equivalent 

to 0.16 seconds of arc in diameter. This is well within the tolerance of the 

0.5 seconds of arc diameter. The spot diagrams for the extra-axial object 

points show that the system suffers from aberrations other than the third order 

astigpatiam and higher order spherical aberration. For the semi-field angle of 

13 minutes the image spread is equal to 0.64 seconds of arc. This clearly 

illustrates that the performance of the system is not determined by third order 

aberrations only. For the tolerance of 0.5 seconds of arc image spread, the 

field coverage of the third order aplanat is about 9.5 minutes only. The third 

order analysis of the two-mirror system is therefore inadequate. If the quality 

of the extra-axial images is to be improved, it is clear that higher order 

aberrations must be considered. Just what higher order aberrations are involved 

needs to be investigated. 



V = O f 
	

V = 6(5 
	

V =1 31. 0 

THIRD - ORDER 

APLANAT 

1 

1 

.r 
(C) 

A 

	

.: 	:. 

,'„ 	.:,, 
.••••.• 	. 
. 	 .. 

: 	.• ..... '. : 

	

., 	. 

..... • 
% 

- 	- 

•:;rithii;:• 

FIFTH-ORDER 

APLANAT 

(d) (8) 

• 	
.
.
.
.
•
 

1
•••  411 

,stnite...  . 

 

iiiiiiii' 

HYPERBOLOID 

APLANAT 

(g) 410 h) (ii  

• 	 •• 	............ 	•. ,.. 	............. : 	. 	: 	  . 	e 
, 

. 	 
. 

. 	 • 

	 . 
r 

--- -_. 

MODIFIED HYPERBOLOID 

APLANAT 

( 	) 

 0. 

(L) 

Fig 2.3 	SPOT DIAGRAMS FOR APLANATIC SYSTEMS 

(The circles correspond to 0.5") 



2.7 THE utECT of FIFTEI ORDER COEFFICIENTS.  

As the angular field of the telescope objectives under consideration 

is very small, it will probably be sufficient to consider those fifth order 

aberrations which are independent of 11 or are linear in I Hence we begin 

with an investigation cf the fifth order spherical aberration and coma. 

This requires explicit expressions for the coefficients pi , 112 , W. Equations 

(68.7), (68.8) of Buchdahl (1954) may be used in deriving expressions for 

these, The full contribution to the coefficient of fifth order spherical 

aberration is given by 

4 p = 3,1 	(j02 +42 4. 42 +vo2 )+( 44105.) 	voi  2 I 

  

 

+ 	y 0 6 	0 3  Pr 0 ( (t) 	vo—iovo) + (2. 33) 

The contribution gip to the first of the coefficients governing effective 

fifth order circular coma is given by 

P = qS P 	q(Act) 	A} al 

+ (P—q)iyo4s, p 	yo 4  i(5'2:kci) 	(2P-q)A I 	(2 .34-) 

where, oi i is the surface contribution to ci, , and an antiprime indicates 

division by N 1 , the refractive index of the medium in which the object lies, and 

j-1 

= 
1=1 

= (N'-N)co 

Cl  I 02 

1=1 

.. 	( v. 2 	2 q 	0 	01 

Aq  = 	q 	Nt  (V02  -voi  ) 	+ p2 ."61  yo  

,pCYo 5 	‘ji  [2(4 — 	c03r0(i0 -3v0)iYo 



(2.37) 

In the equation for A , °A is the spherical part of A and all the quantities 

on the right hand side except °A are meant for the previous surface. It 

follows from these definitions that 
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= 	= 	= 

We now apply these considerations to the objective developed in the preceding 

sections. Using equations (2.21), (2.22), we obtain 

c„ R(R-00 1  )  -2c1  4 pi 

A2 =011 

• 	R2 	£2  

	

A2  = A2  = z 	Aq  2 	• 4.  

'112 =A2 = 01 I 

, 

q2 	4. 

(2.35) 

P2 = 2c22y025 	a& 1 1.R2 4. yo, co. (i+7R), 
2 	2 	yo2 

Combining equations (2.35) (2.33) , (2.31 .), we get 

p 	9R.2i cz,  
- 	R2  o, , 	2o2  1  

3ip2 = 301 1 (1W2  4. 17eL q20,11 

3 174.2 	•I`R ) 2  

	

+ 	
f, 

2 1 202 	4. 	I +R 

     

     

1 2  22 YO2 

(2. 36 ) 

PI 	9o11 	2011 - 44o, 011 1 

	

p2= 2P2 Yo2 lie2 2 + 3cit al 2 	+ 	q2 Ch 

4, 	tin  17 a 
' 2 	2 -1 2 CO 2 	C 	4 	+R• 

4.(2 n 2 " 
2 	-12 wi ' •••• 2 

+ 29222" 	• R2  + y02 c02 (1+7R)] (Ps —q2 ) 
4. 

+ 2012  (P2  'Ci2  )Y0 2  4  ta2  (2P2  --g2  )o„ 1 



The fifth order spherical aberration coefficient, mi , is then given by 

Pk = 81 pi +S12 

(3)  - 202i  + 2c22y02 6 
	

2.38) 

where pi (s) is the fifth order spherical aberration coefficient of the 

aplanat system at the stage in which c2 ,  = = (322, and is given by  

• 	c(14t)2 	1-R2  
+ 	%on 

s orft,(1+R)2 	/ yo2  
4.-  2 1312 	4 	1 + R 

(2.39) 

If the third order spherical aberration and coma coefficients are zero, then 

26. 

c21 
- 80,1! 

112 , 113  are given by 

= 	pa 42 P2 =at - 	h`l • (3)  4. ' n 	v — 2 -22'1 02 
(2.4.0) - 

113 

( 3 ) where m2 	is the fifth order coma of 'the aplanat system at the stage in 

which o21  = 0 = c22 , 

112 (3)  = 31Iet  

given by _ 
2 

f ( 3 ) att R°1 	g2 1111 	" 128 + 2 
4 

(•-• - C32 2  C11 )al 2 + 	4 	_ 2 	 - R2  + 

+ 2o, 2 (P2-q2 )y02 4f? + (2P2 -012 ) 07,,]] 

x+1)  
5r02 =

( f  C112  '14-RX)  
= 

(R+1)(1V-1)vo3l  
8 

Returning now to the numerical example, the values of the coefficients,, 

m2 , pis  of the objective, obtained by using equations (2.38), (2.40) are 

III = 0.35731 
	11.2  = .6.47E4 

 g3 = •4.3176 

2.42) 

012 = 2ci2Y02 4  

3142002( 1 +7R)i(P2-q2) 

(2 .41) 
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If we include the effect of the fifth order aberration coefficients gi  p2 , p4  

in the computation of the aberrations, then the aberration displacements in 

the mean focal surface are given, by extension of equations (2.31), as 

e; k = O3pri2003 e + p 500s 6 + (42 + peos 2e)p 4 11 

- 
e;k = -c3 pH2  sin e + p 5 sin e + 113 Sill 2ep 4 ri 

(2.4.3) 

Using these equations, the predicted intersection points in the mean focal 

surface of the rays coming from an object point corresponding to a semdLtield 

angle of 13 minutes were computed for the maximum aperture zone of the 

objective. Figures(2.4,a c) show the effect on the shape of the predicted 

intersection locus of (i) 03, i) 	andgi  , and 	p2  and p4  

respectively. 

Using the ray trace programme to obtain the true intersection locus for 

this zone, Figure 2.4d is obtained. The agreement between the shapes of the 

predicted intersection locus in Figure 2.4c and the actual intersection locus 

in Figure 2.4d confirms the expectation that the principal effect of fifth 

order coefficients is confined to that of pi  p2  and p.a . Hence it should be 

possible to improve the quality of the image by the adjustment of these fifth 

order coefficients. 

2.8 FIFTH MEER APLANATISM 

If we solve equations (2.38), (2.40), for those values of 022 , c  

will make pi  = 112  = CI, the objective then becomes aplanatic to the fifthorder. 

Proceeding in this way, we obtain 

( 3  ) _ j, I, , ( 3  ) 	= 	1 •  1143405 "21 - 2 CPI 	3p2   

C22 = 112 (3  ) 16P2 y026 = " 949.27 



Fig 	2.4 
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The performance of this fifth order aplanatie system is now submitted to 

analysis by ray tracing. Spot diagrams for (i) v = 0, (ii) v = 6.5 minutes, 

and (iii) v = 13 minutes are shown in Figures (2.3d-f) and comparison of these 

with the corresponding third order aplanat diagrams in Figures (2. 3a-c) show 

that h 	.mprovement has been achieved by the reductiOn of pi  and 122  to 

zero. The system still has spherical aberration equivalent to 0.004. seconds 

of arc, but this is negligible compared with the tolerance of 0.5 seconds. 

The spot diagram plotted for the maximum semi-field angle of 13 minutes shows 

that the image spread is within the 0.5 seconds of arc tolerance and indicates 

that the coma present in the system is negligible. The field coverage of the 

system is therefore limited by astigmatism only, unlike the third order 

aplanatic system where the field coverage is limited by astigmatism, spherical 

aberration, and coma. The last traces of spherical aberration and coma may be 

eliminated by correcting the seventh order coefficients t i  T." T3 with the 

help of the extra axial curvatures c 31 , 032 , but it is questionable whether 

this would have any practical significance. 

2.9 IMEallalailla 

It has been customary to consider the Ritchey-Chretien objective as 

consisting of two hyperboloids. An hyperboloid is defined by its paraxial 

curvature CO  and its eccentricity e. Once these are given, all the extra axial 

curvatures are determined (equation (1.11) of Chapter 1). It becomes of 

interest, then, to tiornmAtle the connection between a system of two hyperboloids 

and the fifth order aplanatic system that we have developed. Now, considering 

a two-mirror objective consisting of two hyperboloids which have the same 

• paraxial curvatures c oi , co2  and the same extra-axial curvatures cii , ci2  as 

the third order aplanat of section 2.6, we obtain 
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= 1..83192 T cot __I 
- ast 2 

= 2.9189593 

The curvature coefficients of these two hyperboloids, obtained,by-

using equations (1.11), are then 

= 1 
	

42  = 2.1024.735 

1 .6137355 := 39.592933 

021  = 1.2845745 s 2  = - 1118.3972 

C3  , = 1 ..8086371 es 2  = 35102.009 

11.004110, 

It is very interesting to note that the second extras-axial curvature 

coefficients 021 , c22  of these hyperboloids are not far removed from the 

values obtained for the fifth order aplanatic system. The adoption of 

hyperboloid fm for each mirror, then, ensures that the coefficients 

, 112  , 112  will have values close to those desired for best fifth order 

correction. 

Figures (2.3,g-i), which give the spot diagrams fbr this system, show 

considerable improvement in its performance as compared to the third order 

aplanatic system. Still, the system has spherical aberration equivalent to 

0.04.5 seconds of arc in diameter. The image spread for the object point, given 

by v = 13 minutes, is 0.535 seconds. The spot diagrams for extra-axial object 

points indicate that the shape of the image is mostly dependent on spherical 

aDerration and astigmatism, with little coma dependence. The hyperboloid 

aplanatio system is much superior in performance to the third order aplane_tio 

system and inferior, but close, to the fifth-order aplanatic system. The 

aor 
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residual spherical aberration of this system may be reduced further by 

correcting spherical aberration to fifth order at the maximum aperture. The 

same type of correction may be applied to coma, but because of the small 

angular fields considered, this analysis for coma is scarcely necessary. 

We call the hyperboloid objective which is corrected for spherical 

aberration to fifth order, the modified. hyperboloid aplanat. The general 

equations to obtain such a system are given first, so that they may be used. 

for systems having different values of the parameters, and then the equations 

are used to get such a system for the numerical example. Replacing c 	c12 , 

, d22  in equations (2.17), (2.38) by their respective expressions from 

equations (1.11), we get 

EP - (R2-4)(i+Rx)  
8 	+ e1 2 0 3  ." Y02 4e2 2 002 a 	(2.44 

, r el+R) 2 	1-R 2  
PI - 128 	*491  2 1  16 	8 	+ 1V-1  1R2 	111- 11 0,21co, el 2  

	

3 	 2  f 	 Arn) ( I +1)2  , 	 R3  

	

Yo2 	02 -2 C 	4. 	14.fi„s 

65r0. 8 0Q1 3 0,12 3 e. 2 04 2  
(1 + R) 

	

6 4 	v 6n, Se  4 

	

4. cOi e t . 	4 002 - 02 -2 (2.4.5 ) 

The eccentricity of the secondary mirror, e 2 , remains the same as previously 

obtained, and e i  will be obtained from the condition 

( 2.4.6) 

which provides spherical aberration correction to fifth order. 

Returning now to the numerical example, the eccentricity and the extra-

axial curvatures for the primary mirror are calculated using equations (2.44) - 

(2.46). In this way we obtain 

03 = 1 .8073699 c= .4.2839744 21 el  = 1.0830655 	oil  = 1.0134987 
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The spot diagrams Figures (2.4., j -l), show the improvement in the image 

quality following this adjustment. Spherical aberration is reduced to one-

third. The image spread for the object point at v = 13 minutes is equal to 

0.5 seconds which is the specified tolerance. The image quality, still, 

is not as good as that obtained with the fifth order aplanatic system. 

2.10 SPECIFICATIONS 

The focal length of the aplanatio system is now raised to the desired 

focal length of 1200 inches. For this focal length the paraxial arrangement 

is computed. The profile equations for the mirrors of the four aplanatio 

systems are obtained. Tables I and II give for the four aplanatic systems 

the departure of the mirrors from their respective polar tangent spheres. 

The semi-aperture of the secondary mirror sufficient to transmit an 

unvignetted pencil, and the size of the photographic plate required for a 

given field size is Shown in Figure (2.5). The requirements for the 1200 inch 

focal length objective system are given below. 

Paraxial Arranaement 

1 	2 

oo 
	 -0.001 inch" 

	-.00175206 inch" 

ro 	 -1000 inch 
	-570.75671 inch 

t i 
	 -333.52942 inch 

lf , 
	

66 inch 
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Profile Equations of the Mirrors 

1. Third order aplanat 

Primary Mirror 

+ 8.41631 2x10-1 7y6 x = -5x10-4y2  + 2.16E612x10-" y4  

+ 3.390396x10- 2 3 y4  

2. Fifth order aplanat x =--5k10- 4 y2 + 2.166312x10-11 y4  + 9 • 52504.5X1 0" a y6  
- 5.006387x10 23 3 8  

3. Ilyperboloid aplanat X =-5x10-4y2  + 2.166612x10-ily4  - 8771 58X1 	1  y6  
+ 2.033249x10-2 5e 

4.  Modified hyperboloid 
aplanat 

x= _5x1c1-4 7,2  2.162886x10- tirs 

2.023621x10r 25Y4  

1.871222%1 0-10y6 

1. Third order aplanat 

2. Fifth order aplanat 

Byperboloid aplanat 

4. Modified hyperboloid 
aplanat 

Secondarvarror 

X = -8.760307x10 4ye + 5.055852x10-9y4  

+ 1.655192x10ri 4y4  - 1 .2384x10' 

x = -8.760307x10 4 572  + 5.055852x10-9y4  
- 4.702980x10-1430 - 3.434153x10-1 9yo 

x  - -8,760307x10-6y4 + 5.055852x10  9y4  

5.835787300-14y4  + 8.42004.8x1Cr19 y 

x = -8.760307x10-45* + 5.055852x10-9e 

- 5. 835787x1 0- 1 4y6  + 8.42004.8x1 0- I 9y°  

PhotoAraphio Plate 

Vertex radius of curvature = -171.98857 inches 

Profile equation 	x = -2.90717 x 10- 5 312 
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2.11 CONCLUSIONS  

A comparative study of the performance of the four aplanatic systems 

reveal that the fifth order aplanat, modified hyperlocloideplaluxt, 

hyperboloid &planet, and third order aplanat are in that order of merit as 

regards performance. The fifth order arlanatic system is almost free from 

spherical aberration and coma. However, the last traces of these two 

aberrations may be eliminated by correcting the seventh order spherical 

aberration and circular coma with the help of the third of the extra-axial 

curvatures of the mirrors. The profiles of the mirrors obtained on this 

basis indicate that they can scarcely be distinguished from the mirrors of 

the fifth order aplanatic system. We can, therefore, confidently state that 

the analysis of the mirrors to obtain images aplanatic to seventh or higher 

order is not of practical significance even though, theoretically, it may 

appear encouraging. 

For all practical purposes where the limitation is put on the image 

spread only, it appears from the above analysis that the best solution for 

the two-mirror system nay be approximated closely by two hyperboloids. This 

is rather accidental, and is due to the fact that when such an approximation 

is made, the higher order extra-axial curvatures of the arms are 

approximately those of the mirrors of the fifth order aplanatid system. The 

performance of the hyperboloid system may be improved further by the 

introduction of a small amount of third order spherical aberration to balance 

the higher order residuals. But it should, be noted that the quality of the 

image obtained with the hyperboloid systems is not as good as that of the 

fifth order aplanatic system. Inspection of Tables I and II shows that the 

differences in profile of the mirrors of any of the four aplanats studied amount 

to about a wavelength at the edges of the mirrors. 



CHAPTER III 

SECONDARY FOCUS CORRECTORS.  

3.1 INTRODUCTION  

It was shown in the previous chapter that the focus of the Ritchey-Ohretien 

mirror system is free from spherical aberration and coma, but has considerable 

astigmatism and petzval curvature of field. The image spread due to these two 

aberrations is proportional to the square of the angular size of the field. 

These aberrations must be corrected or reduced if it is desired to increase the 

size of the field. For this purpose, certain corrector systems have been 

proposed for addition to the objective near the secondary focus. Some of these 

consist of lens systems with spherical surfaces (Wynne, 1965, 1968; Rosin, 1966) 0  

while others include an aspheric plate (Gascoigne, 1965; Schulte, 1966). The 

field size is also limited by the availability of large photographic plates. 

This limitation is particularly important in systems having long focal lengths. 

The usual practice among astronomers is to regard a total angular field of one 

degree as the general aim. Some basic considerations Which govern the design of 

the field correctors will be discussed. The advantages and disadvantages in 

using the Ritchey-Chretien mirror constants as free parameters whilst designing 

the corrector system are also investigated. One example of each of the two types 

of correctors will be considered. This chapter is devoted to study the design 

principles along with the merits and demerits of a corrector system consisting 

of an aspheric plate and field flattening lens. All the monochromatic 

aberrations are corrected for the e-line and the system is achromatised for the 

h- and C-lines, whereas the spot diagrams are given for the spectral range 

365 nm - 706 nm, where necessary. 



35. 

3.2 ASPBERIC PLATE_AudiFEW) FLATTERER.  

, A negative lens (Fiazzi-Snyth field lens), placed a short distance away 

from the focal plane, may be used to correct the petzval curvature of field of 

the aplanatic system. The size of the field for goal imagery is then limited by 

astigmatism only. This residual astigmatism may be eliminated (Gascoigne, 1965) 

by introducing an aspheric plate at a suitable distance in front of the focal 

plane. The selection of this distance involves a oampromise between the 

asphericity of the plate and the aberrations introduced by the plate. This is 

discussed in the succeeding sections. The presence of the field flattener 

introduces some transverse colour. We shall then, choose the axial power 

of the aspheric plate to correct the transverse colour introduced by this 

negative lens. The astimatism is then corrected. by a proper selection of the 

asphericity of the plate. 

The Ritchey*Chretien aplanatic system with corrector is shown in Figure (3.1). 

Surfaces 4  and 6 are plane surfaces. The curvatures of surfaces 3 and 5 are to be 

chosen to correct petzval curvature and colour simultaneously. All the parameters 

of the corrector which are not directly involved in the correction of transverse 

colour, field curvature and astigmatism will be chosen arbitrarily and within 

reasonable limits. The petzval curvature coefficient, a s , of the whole system 

per unit focal length (Fig. 3.1) is given by 

211(1..;x) - 1 	R 	;1"_•43. 
04 = 	2 	

+ 	003 	OA)
(1+Rx) 	2 	2 	03 

The paraxial transverse colour, toil', present in the system is measuxed by the 

difference in the paraxial heights of the principal ray intersection points for 

the h- and C-lines in the paraxial image plane for e-line and is written as 

tah' = 	116k= iJks(*g - Yvc) Yic  - 
	(3.2 ) 



   

 

• 

 

  

Fig 	3.1 

Ritchey - chretien mirror system with the corrector 



The expressions for 14ke°  v , 	y ,yilh  in equation (3.2) may be obtained 

by tracing the following rays through the thole system; (i) a-ray for the 

c-line with initial coordinates yo, = 1, vol  = 1401  = 0, which provides us with 

the expression for 140 ; (ii) the b-ray for C-line with initial coordinates 

= p/(1-p/1 01 ) = 0, v1  = 14-pil51 ) = 1. This provides us m4th-the expressions 

for vilc  and ylecc ; (iii) the b-ray for the h-line with initial coordinates same as 

in (ii) which provides us with the expressions for v 	y. Tracing these 

three rays through the whole system, we obtain 

= 
0ke kivo'k  

( 3. 3 ) 

(kj..h 1)k504Y3  alha6(i-k5h)°08  

a2hd4(1-k5h)°°' 

= vs  + 1c41-4 )Y5 03 + h(k6h-1 )005  •■• a2h(k6h-1 )cos  co s  

yitce  = alc k5Cdt; 420 	(k40-1)k5Cd4Y31P03 	
alcd4(1-k5c  cos  

+ a d4(1-k )0 20 	5C 03  

vkC = 	(k4e1)Y3°03  al0(k6C-1 ° 0$ ( -1 ) 0  6c 	03  e ll  

where 

ale 
k50v 03 

 
+ (k -1)k dly lc - a d'(1-k )c [ 

6 	4e 	5e °' °' 	le ' 	5e 35  

+ a W-(1-k )c o 
2e ' 	-5e 03 OS 

Ve = vo3 + (k .4)y 	+ a 
Ok  10  33  03 	le 6e (k -1)°0 ° 	a2e(k6ea1)°03003  

and 

ale  = yos - k3edlv03  4v05 

a 	= 	- k3h  dIvs d214 lh  

'IC = 	k3cdjvs 	114,vs  

= a 	k d' v ih 5h 	3  

05 
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a2e = (1-k3e)dbro3  + (k10-1)4y05  

a2h 	(1-k3h)d Y3 	(k h-1)d45'21 
	

(3.4.) 

a20 = (1 ,k3c )d3!y3  + (k4.0.4)Ny3  

4103 =1 

= (R+x)/(1+Rx) 

(power of the aplanatic system considered being unity) 

+ Rx 

	

Y03  = 1 +R 	d; 

(R + x)  al  

	

R + 1 	+ Rx) 

and the letters e, h, C in the subscript of any quantity indicates that the 

quantity is meant for that line. Once the air separations and thicknesses are 

prescribed and the material for the plate and. field flattener are chosen, then 

the coefficient e4 and the transverse colour, tch', will be purely functions 

of c os and cos . Renee, for any required residual values for the petzval 

curvature and transverse colour (usually zero residuals will be prescribed 

initially), the paraxial curvatures of surfaces 3 and 5 may be found by solving 

equations (3.1) and (3,2). We will then be left with astigmatism only. 

The coefficient of the third order astigmatism, 03 • for the whole system 

y3 

per unit focal length is given by 

(1+x+2R)  
- 4.(1+Rx) T03  

a 

The values of qi and 124 may be obtained by tracing the a- and b-rays for the 

e-line through the whole system. Sai values may be computed from equation (2.12). 

For any given ola residual value%, T0 3  may be obtained from equation (3.5) and then 

the values of the first of the extra-axial curvatures of the plate (surface 3) may 

be obtained from the equation 



0 =  qi 3S0i Paqoa 
.3 

(2- 31R2  )x2 +2R2 .x+R2  -2  
4(1 + Rx)2  
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0, 3  = T03/(N 1 • N3 )43 	 (3.6) 

The unknown residual aberrations per unit focal length of this new objective 

system are then given by 
6 

01  = 
	

Soi + To3 

a 

q1 S0 1 + P;  T0 3 	 (3.7) 
a 

We will now use these equations in the case of the numerical example of 

Chapter II to add a corrector system to the fifth order aPlanat. Choosing 

quartz as the material to be used for the plate and the field flattener, on 

account of its transparency, then 

= 116c, = 1.46043; Nix = N6C = 1 ..45642; 

N 	= N. =1.4.7021 4h 	6h 	• 

Placing the plate a short distance behind the primary mirror and the field 

flattener sufficiently in front of the paraxial focal plane to afford the 

necessary clearance, we have 

= 0.28746866 	di = 0.00125 	3, = 0.04104251 4 = 0.0004 
. 	• 

We shall, however, study the effect of the variation of the distance of the plate, 

, on the aberrations and on the asphericity of the plate later. Fox-C4 = 0, 

equation (3.1) gives the relation between cot and cos as 

cos = -5.72761 - 003 
	 (3.8) 
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Substituting the prescribed values in equations (3.4) and then combining 

these computed values mith equations (3.3), we obtain 

oke 

IrL 

yiscb 

- 

= 

= 

(-0.00000011 cli - 0.00088256 cos  + 0.00330253) 

(0.00040338 ct s  

.0.00786793 c; s  

0.00000216 . 43  

+ 0.02158922 cos  + 0.99058112) 

- 0.00358913 Cos  + 4.7626856 

+ 0.01723935 cos  - 0.99356192 

vL.h  = -0.00834894 4 3  - 0.00509929 cos  + 4.84101085 

yLti  = 0.00000227 cl s  + 0.01775717 cstos - 0 . 9935535  

(3. 9) 

Now for tph' = 0, we obtain from equation (3.2) 

0.00000854 otos  + 0.21343327 43  11.443951 43 - 587.23858 003 

+ 250.33079 = 0.0 	(3.10) 

Solving equation (3.10) by Newton's method, we obtain 

003  = 0.42282805 

and then from equation (3.8) 

eos = -6.1504642 

As the paraxial arrangement of the whole system is now known, we trace the 

two paraxial a- and b-rays through the whole system and compute the values 

of qi, So i and Ps . Substituting these values in equation (3.5) and for 

= 0, we get 

= -0.00322228 

Then, from equation (3.6), o l 3 is determined as 

= .-1637.9 

The residual aberrations of the whole system axe then computed from equations 

(3.7). The corrector system specifications and the third order aberrations 

of the objective are given by 
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d; = 0.28746826 
	

d4 = 0.00125 
	

d4 = 0.04104251 	=0.000h. 

	

coa = 0.42282805 	coo  = 0.0' 	cos  = -6.15c4642 	00 6 = 0.0 • 

at 3 = —1637.9 

 

= —0.0027223 
 = 0.065291 

04 0.0 

Os = 29.13966 

The performance of the fifth order aplanat 4th the corrector system may 

then be assessed from the spot diagrams which are shown in Figures (3.2, a-o). 

These indicate that the addition of the =rector to the fifth order aplanatic 

system has not as yet improved either the quality of the image or the size of 

the field. The reason for this is that the corrector system, while correcting 

the astigmatism and the field curvature, introduces considerable spherical 

aberration and coma. The spot diagram for V = 0 shows that the correotor introduces 

spherical aberration equivalent to about 0.288 seconds. The 'image spread for the 

object point given by V = 90 minutes amounts to about 0.65 seconds and the shape 

of the image is comatio. The spherical aberration is continuing its domination 

in shaping the image. In fact, the general situation mould be improved if this 

corrector were added to the third order aplanatic system, as the fifth order 

residual aberrations of such a system compensate partially the third order 

aberrations of the corrector system. But it was shown in the previous chapter 

that the residual aberrations of the tithe order aplanat produced poor imagery for 

off-axial object points. Hence the possibility of the addition of the corrector 

to the third order aplanatic system is ruled out. This shows that this corrector 

system in its present arrangement may not be a useful solution for the 

elimination of astigmatism and field curvature. However, it is worth trying to 

reduce the aberrations of the plate, if possible, by an alteration of the plate's 

position before coming to any conclusions. 
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Fig 	3 . 2 

SPOT DIAGRAMS FOR THE RITCHEY — CHRETIEN SYSTEM WITH THE CORRECTOR 
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3.3 EFFECT of the DISTaNCE of the PLATE 

The effects of changes in the distance of the plate from the vertex of 

the secondary mirror , 6, on the aberrations introthmed by the plate and on 

its asphericity are now investigated. Corresponding to an increase or decrease 

in (1;„ the distance between the plate and the field flattener, d4, has also to 

be adjusted accordingly. The distance 	is changa twice and the whole 

procedure of section (3.2) is repeated to obtain two more corrector system 

arrangements for the correction of colour, field curvature and astigmatism. 

The second and third arrangements for the corrector along with the third order 

aberrations for the objective system are: 

(2) 

(3) 

d! 	0.3025 	di = 0.00125 

oos = 0..65794614 	o04 = 0.0 

0 3 = a-3485.4486 

e4 = -0.00111 	02  = 0.0421 81 

. 0.0 	 04 = 0 .0 

0o  = 44.165 

d; = 0.3175 	= 0.00125 

d!, = 0.026044251 

0 05  = ..6.3855823 

d4 = 0.01104251 

d 	= 

004 

O4 = 

0.0004 

= 0.0 , 

0.0004 

coo  = 1.5111767 

cit = -12080.171 

= 70.00035382 

= 0.0 

= 85.544 

004 = 0.0 	clot  = 77.2388128 oo t = 0.0 

02 = 0.020686 

04 = 0.0 

These results are plotted in Figure (3.3). 
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Variation of aberration with distance of the plate, d'2 



These two corrector systems are again added to the fifth order aplanatic 

system and the spot diagrams, obtained in these cases are shown in Figures 

(3.2,d-i). For the second arrangement, the spot diagram for V = 0 indicates 

that the spherical aberration is reduced to 0.123 seconds of are. This is 

further reduced to 0.041 seconds for the third arrangement. The spot diagrams 

for the extra...axial object points illustrate that there is considerable 

reduction in came. As a result of these reductions, the field size for the 

prescribed tolerance (0.5 seconds of arc), also increases. For the second 

arrangement the semi-field covered by the system for the same tolerance will 

be about 14 minutes. This shows that the sizes of the field covered by the 

fifth order aplanatic system and the fifth order aplanatic system with corrector 

are almost the sane. But it should be remembered that the fifth order splenetic 

system produces very good images on a curved surface, whereas the fifth order 

aplanat with the corrector system produces comatic images of about the same size 

on a plane surface. In this way, the two systems are not comparable. 

In the third arrangement at a semi-field angle of 30 minutes, the image 

spread amounts to about 0.543 seconds and the corresponding spot diagram 

illustrates that the shape of the image is not only governed by the effect of 

coma but also by higher order astigmatism. 

A comparison of the values of the first of the extra-axial curvatures of 

the plate for the three corrector arrangements indicates that the asphericity 

of the plate increases rapidly as the distance between the plate and the back 

focus decreases. This is shown clearly in Figures (3.4), which give the 

departure of the surface from its polar tangent sphere for different semi-

apertures for the three correotor arrangements. The asphericity of the surface 

for the second and third arrangements is about twice and seven times that of the 

plate for the first arrangement respectively. For a semi-aperture of 7,5 inches, 
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the departure of the surface from its polar tangent sphere for the three 

arrangements is (i) 38X, (ii) 78X, (iii) 260X respectively, X being equal 

to 0.00002165 inches. 

The effects of the change in the distance of the plate, d:, on the 

aberrations introduced by the corrector for (i) p = 0.0625,11 = -01X435; 

(ii) p = 0.0625, = 0.0087 are shown in Figures (3.5 a-b). These figures 

illustrate that both the third order spherical aberration and coma reduce 

considerably as the plate approaches the focus. The spherical aberration 

introduced by the plate for the third arrangement of the corrector amounts 

to only one-thirteenth of the prescribedtolerance and the coma spread 

amounts to less than half the tolerance for a semi-field angle of 15 minutes, 

Which increases to about the tolerance value of 0.5 seconds of arc for the 

semi-field of 30 minutes. Of the fifth order aberrations, spherical aberration 

and circular coma are negligible. The fifth order cubic astigmatism is 

reasonably stable with a change in the distance of the plate. Cubic coma and 

linear astigmatism increase considerably. when the distance between the plate 

and the back focus decreases. For the semi-fieldof 15 ndnutes y  the 

contribution of these aberrations is insignificant. But the increase in the 

contribution of these aberrations becomes pronounced when the field is doubled. 

This is due to the fact that the cubic coma and linear astigmatism are 

respectively proportional to the third and fourth powers of the field size. The 

fifth order cubic astigmatism,_ being opposite in sign compensates partially the 

linear astigmatism. As compared to the large reduction obtained in the third 

order spherical aberration and coma, the increase in the fifth order aberrations 

is not discouraging. However, the fifth order residual astigmatism may be 

balanced by introducing a small third order residual astigmatism. This, however, 

does not reduce the image spread much as the advantage gained by this compensation 
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is Offset partially by the increase in the third order copa and. fifth order 

cubic coma. With the astigmatism balanced, me will be lo:t mr4fi almost comatio 

imagery. Hence, it should be noticed that the selection of the distance of the 

plate, d, depends mostly on the limitation put to the asphericity .of the plate 

than on the higher order aberrations. It appears frau the above analysis that 

this type of corrector system may not be Very useful unless astronomers are not 

concerned about the type of energy distribution within the prescribed circle 

(0.5"). 

The requirements for the third corrector arrangement which is to be used 

with the 1200- inch focal length Ritchey-Chretien telescope objective are 

computed and are given below. All the parameters are expressed in inch units. 

Paraxial Arrangement 

c3: = 381.0 

00 

ro 

41 

3 

0.00125931 

794.08565 

1.5 

4 

0 (0 
-..:. 

13.251012 

5 . 

-0.0003234. 

-165.77315  

048 

6 

0.0 

Profile equation: Aspheric Plate  

x = 6.2965696 xfor 4 3,2 -1.7474.603 x icree - 2.7714455 x 10' 1 236  

141535565 x 1(r143,8 



TAME I. 

ASPHERIC PLATE 

12.0 

10.8 

1674.08 

1098.368 

9.6 685.702 

8.4. 401.942 

7.2 216.955 

6.0 104.625 

4.8 42.654- 

3.6 13.559 

2.4 2.678 

1.2 0.167 

Y = semi-aperture 

dx = departure of the aspheric surface from its polar tangent 

sphere in wavelengths (1,t, = 040002165) 



CHAPTER IN' 

ANASTIGMAT OBJECTIVES 

441 ANASTIGMATS 

It was shown in the previous chapter that a corrector system consisting of 

an aspheric plate and field flattening lens can be used to correct the 

astigmatism and the field curvature inherent in the two-mirror aplanatio objective. 

It was noticed that such a corrector system used with a pure aplanatic objective 

introduces considerable positive coma and spherical aberration which cause the 

image quality to deteriorate, It was also noted that for different corrector 

arrangements, these aberrations become smaller as the distance between the plate 

and the focus decreases, mhile the required asphericity of the plate and the 

higher order aberrations increase. Gascoigne (1965) has stated that the telescope 

objective may be corrected for third-order spherical aberration, coma and 

astigmatism simultaneously by allowing the Ritohey-Chretien mirror constants to be 

free parameters, and on this basis Schulte (1966) developed the optical design of 

a 152 centimetre objective with very encouraging results,. The asphericities of 

the mirrors and the plate may be chosen to correct simultaneously spherical 

aberration, coma, and astigmatism, while the paraxial set up of the corrector 

makes the system free from transverse colour and petzval curvature. The 

resultant system is called an anastigmatic objective. Accordinglh we may now 

develop anastigmatic objectives, corresponding to the different aplanatic 

objectives of Chapter II. It should be noted that the two-mirror objective 

without the =erector no longer gives aplanatic images at the secondary focus. 

The development of the anastigmatic objective is considered for only one 

specified paraxial arrangement of the correcting system, and as the asphericity 

of the plate and the higher order aberrations are quite small for the first 

corrector arrangement, we select this paraxial arrangement for the anastigmat. 



4..2 THERD.ORDKR ANASTICAkTe  

Once the air separations, thicknesses, and material for the field flattener 

and plate are chosen, the axial curvatures of surfaces 3 and 5 (Pig. 3.1) may be 

found by errploying the procedure of section (3.2) for colour and petaval sum 

correction: We will then find the first of the extra-axial curvatures c i  of the 

mirrors and plate to correct third-order spherical aberration, coma and 

astigmatism. The third-order aberration coefficients Oi  02  Ca per unit focal 

length are given by 

To i (4..1) 

3 

02 
	 PiTo i 

	 (4.2) 

Oa 1= 

3 

101 

P1 2  T (4...3) 

Solving equations (4..i) - 4..3) for T 1 , To x,, T03 and. substituting P 

we obtain 

R3— P3; 
011111■MOIMill•Ii116104•01. 

P22 	pp 	p2 „.. p 
2 	2 3 	3 	2

p 3 
 

	

113 	Po R2  
T o2  

p 2 — p p 

	

2 	2 3  

Ra "' Pa R2 T03  = 
pZS 2p p 2 

Toi  
R3 "" P2 R  2 



4.7. 

where, = at 

R3= 03 

q4 S0 1 

gi 2 S0 1 

(4.5) 

The first of the extra-axial curvatures are then given by 

= To i/(Ni' - N1)y0 1 4 
	 (4‘.6 ) 

Once the paraxial arrangement of the system is known, we can compute qi, S o ; , 

P2 , P3 as mentioned earlier. Then finding the extra-axial curvatures for any 

given residual values of 01 , 02  , 03  is a simple procedure. 

Returning now to the numerical example, If the first corrector arrangement 

is chosen to combine with the aplanatic system, from section (3.2) we have 

1 	 2 	 6 

oo -1 .2 -2.1024735 0.4.2282805 0.0 -6.1504.614.2 0.0 

d' -0.27794.118 0.28746866 0.00125 0.04.104.251 0.0004. 0.0 

quartz being the material chosen for the plate and the field flattener. The 

trace of au- and b-rays provides us with 

6 

So i = 1.05496071 
a 

qiS o i = 0.81567824. 

gl 2 S0 i = 0.58805695 

P2  =m.0.834.80568 
	

P3  := 	9.822585 



4 8 . 

For 01  = 0 = 02  = 031  equations (WO and (4.5) than give 

T01  = ...2.10623698 	T02  = 1.05461034 	T03  = ..0600336711 

We then obtain from equation (4.6) the values for the extra-axial,cuxvatures 

as 

o = 1.05311849 	01 2 = 42.914(65 	C13 = 1 711 11151 71  

The third-order anastigmat is now submitted to analysis by ray tracing. 

The spot diagrams (Figs. 4.1 a-d) are obtained for (i) V = 0, (ii) V = 10 

minutes, (iii) V = 20 minutes, and (iv) V = ya minutes. The spot diagram 

corresporuiing to V = 0 indicates that the system suffers from higher order 

spherical aberration equivalent to 0.267 seconds. The system covers about 

30 minutes semi-field for the 0.5 seconds image spread tolerance. But the 

image shape is typically comatio, modified somewhat by spherical aberration. 

Figures (4.2a), (4.2b) represent respectively the actual intersection loci 

for the zones corresponding to the maximum aperture and 0.707 times the maximum 

aperture, whereas Figures (4.20), (4.2d) represent the corresponding predicted 

loci. The predicted locus is obtained by taking the aberration coefficients 

pi , p2 , p4  into consideration. A comparison of the jaredicted and the actual loci 

for the two zones illustrates that suoh poor image quality for the third-order 

anastigmat is mostly due to the presence of the fifth-order spherical aberration 

and linear coma in the objective. Considerable reduction in the image spread 

should therefore be possible if the coefficients Ili g2, 3 3  are either corrected 

or reduced, and the next step in the process of improving the image quality will 

obviously be to reduce the effect of A I , 132 	• 
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4..3 FIFTH-ORDER .a.NASTIGMAT.  

Based on the last comment of the previous section we will now attempt 

to reduce the effect of the coefficients pi , 112 , 114  by the use of the second 

of the extra-axial curvatures of the mirrors 0 21 , 022 • AS the thiad-order 

aberrations of the two mirrors are still small, we can use equations (2.38), 

(2.40) of Chapter II to find 0 21 , 022  which provide pl , 112 , pa correction. 

It is sufficient if we make: pi  = 0 and leave a small negative residual for 

p2  and p,3  for the mirrors as the other members of the anastigmat objective 

contribute negligible spherical aberration and very small positive fifth-

order linear coma. Returning now to the numerical example, for p i  = 0, 

pl  = .0.27, and substituting the new values of o il , 012  in equations (2.39), 

(2.41), and then from equations (2.38), (2.40), we obtain the values of 021, s22 as 

021 = -1.0911112 	C122 = *1037.0176 

With these values of the extra-axial curvatures, the fifth-order anastigmat 

objective provides images free from spherical aberration up to fifth-order, 

circular coma up to fifth-order, third-order astigmatism and petzval curvature, 

and presumably colour.. 
- 

The spot diagrams for (i) V = 0, (ii) V = 10 minutes, (Ili) V = 20 

minutes, and (iv) V = 30 minutes are obtained for the fifth-order anastigmat and 

are shown in Figures 4.1 e-h. The spot diagrams show remarkable improvement in 

the image quality. The image spread for axial and extra-axial object points is 

negligible as compared to the prescribed tolerance. Even at V = 30 minutes, the 

image spread amounts to 0.075 seconds only. The actual locus of the intersection 

points for the maximum aperture zone for V = 30 minutes, (Fig. 4.2e) and the 

predicted locus, obtained on the basis of fifth-order aberrations, (Fig.4.2f), 
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illustrate that this small image spread is mostly due to the fifth-order 

linear and cubic astigmatism with a small amount of cubic coma. The image 

spread can be reduced still further to an insignificant size by balancing 

the present residual aberrations with mall residual third-order astigmatism 

and fifth-order linear coma. This kind of analysis is made while considering 

the mirrors as hyperboloids in the next section. 

4..4. HYPEMOLOID ANASTIGMATS.  

While considering the development of the hyperboloid aplanat objective, 

it was noticed that the fifth-order spherical aberration and linear ompa 

reduce considerably in magnitude when the mirrors are considered as hyperboloids 

and the modified hyperboloid aplanat objective, for which spherical aberration 

is corrected to fifth-order, improves the image quality further. We will 

therefore consider firstly the development of an hyperboloid anastigpat I 

objective, which is corrected for spherical aberration to fifth-order, whereas 

coma and astigmatism are corrected to third-order.. The secondary mirror of this 

objective will have the sane axial and the first extra-axial curvatures as that 

of the third-order anastigmat and, being an hypertoloid, defines the other 

curvature coefficients. We can use equations (2.44), ( 2 .45), (2.46) of Chapter 

II to find the eccentricity of the primary mirror, which provides spherical 

aberration correction to fifth-order for the hyperboloid mirrors only, but, as 

the other members of the anastigrat contribute negligible fifth-order spherical 

aberration, we obtain an anastigmat for which spherical aberration is corrected 

to fifth-order. Once the eccentricity is found and as the axial curvature is 

known, we can obtain from equation (1M) of Chapter I all the other curvature 

coefficients for the primary mirror also. Proceeding in this way, we get for the 

numerical example, 
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=1.01386284. 

e2 = •*2.1024.735 

=1.0527954. 

012 =42.914665 

421 = -1,3854.726 

022 = *1313.9299 

031  =2 .0258599 

032 = 44698.826 

The specifications for the other members of the anastigmat remain the same as 

that of the other anastigmats obtained. before. 

Figures (4.1i) (4.11), which give the spot diagrams for the hyperboloid 

anastigmat, show the improvement in the reduction of the image spread as compared 

with that of the third-order anastigmat. The Jump spread for the maximum field 

amounts to 0.16 seconds only. The spherical aberration present in the system is 

negligible as compared with the tolerance. The comatio shape of the image is 

modified by astigmatism. To confirm this view, and to know exactly what higher 

order aberrations are present, the actual locus of the -intersection points for 

the maximum aperture zone (Fig. 4.2g) is obtained. Thi.:. oloac$ resemblance of this 

locus with the predicted locus (Fig. 4.2h), obtained by the use of third- and 

fifth.-order aberration coefficients, indicates that the image shape of the 

hyperboloid anastigmat I is mostly governed by the fifth-order linear and cubic 

coma and also by the linear and cubic astigmatism..  

We shall now consider the development of the hyperboloid anastigmat 

The fifth-order spherical aberration, cons and linear astigmatism of this 

anastigmat are balanced by the introduction of corresponding residual third- 

order spherical aberration, coma and astigmatism. To study the effect of the 

change in the paraxial transverse colour on the monochromatic fifth-order 

aberrations which is necessary for prescribing residual monochromatic 

aberrations, while considering colour correction, a small residual value is 

introduced by changing arbitrarily the axial curvature of surface 3. It is 

later noticed that such a change does not affect the fifth-orderaberratimos 
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much. The balancing of the aberrations is made at the maximum aperture and 

at the edge of the field. The resicinal  values for 01  , 02 , 03 required to 

balance the fifth-order aberrations are found from the-equatipm 

010 Pips =0 

20004i+ p2 p4i1 + plp2 A3  = 0 
	

(4.7) 

303012 + P oP114  

Returning now to the numerical example, co  is changed from 042282805 

to 0.42614443 and, correspondingly, 0 05  is changed from 6.1504642 to -.6.1537806 

to retain field curvature correction. The a- and b-rays are then traced through 

the whole system and the values of 

"  DiS"' 
 qj 2 Sj ,. P2  and "1"3  

are computed. The third-order residuals 0 1 , 02, 03 required to ctiMpensate the 

effect of Cue fifth-order coefficients 14 11 2  , pi 0  are obtained from equations 

(4..7). Equations (4.4.) (4.6) then give 

ell  = 1.05654525  0, 2  = 43.221034 

The curvature coefficients of the mirrors are obtained as 

cit = -1722.08 s 

	

001  = -1.2 	a,, = 1.05654.525 

	

002  = '0'2.1024135 	Ot 2  = 4-3.221034- 

= A.39535983 

022 = -1332.7572 .  

05  = 2. 04.75844. 

q 45662.997 

Figures (4.3 a-d) show the corresponding spot diagrams. The spot diagrams 

are also obtained for C, F, h lines and Figures (4.3 e-p) represent these spot 

diagrams. The spot diagrams for the e-line show 0..zb.;.aerable improvement in the 

image quality. There is some variation of distortion with wavelength. The system 

has some marginal transverse colour. The total image spread due to the whole 

spectrum, 656.3 nm - 400 run, amounts to about 0.366 seconds of arc for the maximum 

field. The colour correction and a further improvement in the reduction of the 
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image spread is considered, and the objective fbr which this is done will be 

called the hyperboloid anastigmat III, for which the process of development 

is given bdlow. 

For V = 30 minutes it is found that the warginal transverse colour 

present in the system is 

Ink- 	= 0.00000058 

Therefore we prescribe the residual paraxial transverse dolour as 

hhk 116k  = 00.00000058 

which residual is supposed to give colour Correction at the edge of the field. 

Therefore, the value of t;11  in equation (3.2) becomes 

ttlh  = *0.00000058/0.0087 = Pool000lco6$66 

This is required as the t; 11,  of equation (3.2) carresponds to unit semi-field 

angle. With this residual lateral colour the axial curvatures of surfaces 3 

and 5 are found from equations (3. 1 ), (3.2), to obtain field curvatuxe 

correction and lateral colour correction at the edge of the field, as 

cb3 = 0.53448654 	42 05 = .-6.26212268 

The 03  residual required for the system is computed from the equation 

301,30" 1.4a014  (11441100n2= a 	(4.8) 

whereas the 0,, 02  residuals =Wired are found fran equation (4.7), and with 

these resiamis the extra-axial curvatures of the mirrors and the plate are 

determined by adopting a sinner procedure used in the development of 

hyperboloid enastigmat II. Arranging the calculated values together, se have 



co  = -1.2 , 

co = ,i,2.1024735 q2  

003 = 0.53448654 0, 3  

= 1.051.8921 

=43.074204 

= '11682.254.6 
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= -1.3909966 a = 2 .0379879 

c 22= -1 323 . 7173  032 = 4-5199.198 

cos = ..6.26212268 

The spot diagrams for the hyperbola(' anastigmat III (Figs. 4.4 a-p) show 

considerable improvement in the image quality and. the colour is corrected fully 

at the edge of the field. There is small longitudinal colour present in the 

system. The image spread for the whole spectrum, 695.3 nm 400.0 nm, up to 

the maximum field angle amounts to about 0.186 seconcls only. This shows 

remarkable improvement in the image quality as compared with the hyperboloid 

anastignat II. The spot diagrams illustrate that there is sone variation of 

astigmatism and coma with wavelength. A snail introciu4tion of negative coma 

for e-line seems to be useful in reducing the image spread for the whole 

spectrum. 

4.5 SPECIFICATIONS.  

The specifications for the 1200-inch focal length fifth-order anastigmat 

II and the hyperboloid anastigmat III telescope objectives are given. below. 

All the parameters are expressed in inch units. The symbols .4 dx represent 

respectively the semi-aperture and the departure of a surface from its polar 

tangent sphere. 
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TABLE 1 • PARAXIAL ARRANG 

Surface number 
and type 

Vertex radius 
of curvature 

Distance to 
next surface 

Clear aperture 

1. Aspheric (or 	-1000.0000 	0 	-333.52942 	150 
hyperboloid) 

2. Aspherio (or 	. 570.75671 	3Z44.96239 	56 
hyperboloid) 

3. Aspheric 	2245.145E. 	 1.5 	 24 

Spherical 	 Cl■=a 
	 49.251012 

Spherical 	-191 .62831 
	 0.48 	 21 

Spherical 	 G.C=7 
	

3.3894 
(back focal 
distance) 

2. Profile emations 

Primarv mirror 

1. Fifth-order anastigmat II 	x = -5 x 10-4y2 267167436 x 10-i I 3r4  

+ 2.1871194 x 10" 7ye  

••• 4.2141178 X 10 2  aye 

2. Hyperboloid anastigmat III 	x = -5 x 10"y2 + 2.7617488 x 	3r4  

- 3.0508978 x 10-* 6 34 

+ 4.2129047 x 10-2 aye 



Secondary mirror 

1. Fifth-order anastigmat II 	x = •8,760307 X 10-4y2 + 5.5190452 3c I Cr y4  

'6  4068014483 X 1Cri 4y6  

3.7247501 xiC0•19y4  

2. -11,yperboloid dnagtigiat III ' x =.-8 ..760307 x 

	

	y + 5.5595084. x. cy. 9  y4  

7.0564.04.7 X 10" 4y8  

Aspheric plate 

+ 1. 1 199+259 X 10" aye 

9. Fifth-order anastigmat II x = 2.2270272 x 	y2 - 2.4-397226 x 10• 7y4 

4.84.01781 x iCrot 43r6 

+ 7.9533087 x 10-I 7y8  

2. H,yperboloid anastiguiat III x = 2.2270272 x 10-412 2.4337069' x 10-7y4  

- 4.828244 x 10 —14y6 

+ 7.914.1357 x icrt 7y8 



3. Departures of the Surfaces from their Polar tangent 

TABLE 2: 	PRIMARY MIRROR 

spheres. 

Fifth-order anastigmat II gyperboloid anastigpat III 
dx dx 

75.0 -223.080 -223 .535 

67.5 -146.276 -146.600 

60.0 -91.271 -91.487 

52.5 -53.477 -53.611 

45.0 -28.854 -28.929 

37.5 -13.910 -13.948 

30.0 -5.695 -5.712 

22.5 -1.80a -1.807 

15.0 -0.356 -0'.357 



TABLE 3, SECONDARY MIRROR 

Fifth-order anastigmat II 
dx 

Hyperboloid ariastigmat III 
dx 

28.0 -174.74-9 -175.395 

25.2 -114-.782 -115.265 

22.4. -71.729 -72.065 

19.6 -42.083 -42.298 

16.8 -22.733 -22.857 

14,0 -10.970 -11.034. 

11.2 -4.4-96 -4. 523 

8.4 -1.423  

5.6 -0.281 -0.283 



TABLE 4, ASPHERIC ELATE 

Fifth-order anastigmat II 
dx 

Hyperboloid anastigmat III 
dx 

12,0 233.688 233.112 
10.8 153.322 152.944 
9.6 95.718 954E2 

55.108 55.970 

7.2 30.286 30.211 
6.0 14.605 14.569 

5.982 5.968 
3.6 1.893 1.888 
2.4. 0.374 0.37) 
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ammusIaus.  

The spot diagrams, which are obtained for the fifth-order anastigmat, 

when the coldur correction is made for the maximum field, are shown in 

Figures (4.5 a-p). These figures show that, as compared with the hyperboloid 

anastigmat III, there is considerable inTmvemsnt in the image quality as far 

as the e-line is concerned, but this improvement is not much for the spectral 

range considered, as the image spread has reduced to 0.936 seconds only. This 

shows that the mirrors of the anastigmatic system may be approximated as 

hyperboloids„ as there is not much disadvantage incurred by such an 

approximation, which is evident from the spot diagrams. The objective system, 

when the corrector system is removed, aversa total field of 8 or 10 minutes 

approximately, depending on whether plane plates or bent plates will be used. 

The general situation regarding these aberrations improves if the plate is 

taken nearer to the focus, at the cost of increasing the asphericity of the 

plate. It seems that this kind of anastigmatic arrangensnt is mostly suitable 

in systems where maximum field coverage is required while using correetors, 

otherwise, it may not be an advisable solution. 

An inspection of Tables I and II shows that the difference in profile of 

the mirrors of the two anastigmats amounts to less than a wavelength at the 

edges of the mirrors, indicating that the hyperbolaW mirrors are not far 

removed from the aspheric mirrors of revolutiaa.- 



CHAPTER V.  

SPHERICAL LENS SECW.DaY FOCUS CORRECTORS 

5.1 	INTRODUCTION..  

In the previous tyro chapters, the usefulness of secondary focus correctors 

consisting of aspherical surfaces of revolution was discussed. It was noticed 

there that such systems require slight depariare from the aplanatic condition 

of the R.Ct system to balance the small zpherical aberration and coma introduced 

by the corrector. This Chapter is particularly devoted to bringing out the 

principles of the correctors consisting of spherical surfaces only. Rosin (1966) 

has suggested a corrector system, which he used for an C/4 primary and C/10 

system with an aperture of 105 inches, consisting of purely spherical surfaces. 

He uses either the concentric or the aplanatic principle in determining the 

curvature of any surface. This being the case, suah a corrector does not suffer 

from either spherical aberration or linear coma as can be seen later. Therefore, 

such a corrector system, if added to the Ritchey-Chretien system, does not alter 

the aplanatic property at the cassegrain focus. Such a =rector system uses the 

glass constants as the parameters to correct field curvature and either 

longitudinal colour or transverse colour and all the remaining quantities except 

two, associated with the corrector Will be determined to satisfy the aplanatie 

and concentric relations whilst correcting astigmatism. As the corrector employs 

glass constants also as parameters, different combinations of glasses are 

unavoidable. 

As will be seen later, the aplanatic surfaces contribute zero spherical 

aberration, coma and astigmatism (third-order), whereas the contribution from the 

concentric surfaces to spnerical aberr.:tir-g, acYale and paraxial lOngitudinal colour 

* Ri tchey-Chret ien 
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are zero. The aplanatic condition at any surface requires that i j - vo j = 0, 

whilst the concentric condition requires i o j = 0. This later condition results 

in the relation ijyo j = i/Nj, which can be derived easily from the 

consideration of the relation between the paraxia3 coefficients. The 

contribution of such surfaces to third-order aberration coefficients, C4 - 04, 

may be obtained by using equations (2.11) (2.12) of Chapter II as follows. 

(1) Aplanatio surface 

Ol i = So =ilify0 jiti(1 ■ki)(14rV0 i) = 0 

Q 	1.111 	4 4 	(4 1r )(4I 	) 	A 
021 = qj'Oj = 2 -jYoral-oW --pN'orvoJi = 

otj = Npr 0 jii(1—k1)(41-v0 1) = 0 

(1"4S1 )001  
04 1 - 

(2) Concentric surface 

i2  ( .1-k )0.'2-v0 = 0 01 I — 2 goi 0.1 

02  = 12. N iy0ji ji 0i (11—k i )(i4i—v 0 i) = 0 

(5.2) 

°Ili =12 Proi ii (1.6ki )(34rvol )  

(1 .-kj)00 
04j = 	2N1 

The expressions for 03 , e4 indicate that for a concentric surface the 

astigpatio coefficient is equal and opposite to the petmal curvature 

coefficient of that surface. A close inspection of the expressions for Cs 

indicates that a concentric glass lens always contributes positive astigmatism, 

whereas a concentric air lens contributes negative astignatimm unless the axial 

separation of the two such surfaces is negative, which has no physical significance. 



5.2 RI=1EY-411RETIal SYSTEM WITH ROSIN CORRECTOR.  

The Ritchey-Ohretien system along with the 'Rosin corrector is shOwn •  in 

Figure (5.1). It was noticed in Chapter II that the Ritchey-Chretien system 

suffers from positive astigmatism. It therefore follows from the concluding 

remark of the previous section that we should employ a concentric air-lene 

to correct the positive astigmatism of the RitOhey-Chretien system. The 

bounding surfaces of the two lenses may be chosen as aplanatic and different 

materials will be used for the two lenses so that the refractive indices and 

the V-numbers will be the parameters used to correct the petzval sum of the 

Ritchey-Chretieri system 'am. either the longitudinal colour or the transverse 

colour of the whole.  System. The resultant system will therefore have surfaces 

3 and 6 as aplanatic and surfaces 4. and 5 as concentric. The following 

relations may be obtained by imposing the aplanatic conditions at surfaces 3 

and 6 and concentric conditions at surfaces 4. and 5. The power of the Ritchey

Chretien system is considered as unity. 

1+ 15  
coa yes = k 3  

VO4 = Ica  

. .V0 = 1/k3 

cosyos = 1/k 3 

• VO '= 1/10 

0 6Y06 =. (l+k6 )/k3 k 6 

.V07 14S3 k6 	/N 

( 5 3) 



Fig 5.1 

RITCHEY CHRETIEN SYSTEM WITH ROSIN 

CORRECTOR. 
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The expressions for va7  indicates that the focal length of the whole wstem 

changes from unity to the N s/W4  value. 

The expressions for the third-order aberration coefficientsch - 04  and 

for the paraxial colour may be derived as follows. The terms containing R 

and x refer to the mirror system. 

CI  = 0 
= 0 

f cnA(k4-1) 	calakts.1)  
413  = DqVi

• 

'A't 14. 1+Rx 	2N4 	Ms 	1  

h6 ettx4.2R 	004(kt-1) 	000(k5-.0  , 
N4 tg +MO 	2N4 	2N 5  (5.10 

f
(o3—c04)(41) 	(008 ■006)(N0-4)  

2114 	 2ff6 

	

Isp211 ,0;x)-1-R 	(003-opA)(N4-4) 	Co4R-co4)(N4-1) 
= N4  2(lax) 	2N4 	2N6 

1 1 	 1"""" 	gr 4 	U 	4 	 1 b  ) ch -  N. 11. f(J04...94-&611J43.40(NaaNy)a 	(y00.06-koraaias)(Na-Nyis 
kva lc  

=g. 	y03  + (kavos-di-di-81)(141,-Nv)b 
Wks  

(5.5) 
th= 

	1(y05q-7044)(N-N)b. + (45g-Y064)(5x-Ny)bi 

- 	i' + 1' AN -N ) 	(1  -+ Y04 1-4)(NeNy43 — N4 	03 3 	N4 	X y 	N6  

where the subscripts a , y indicate the two lines for which colour correction 

is required, and the subscripts a  and b denote the front lens and the back lens 

respectively. The expressions for lh, th are obtained on the basis of 

chromatic coefficients (Cruickshank, 1968)._ 

> 



5.3 CORRECTION PROCEDURE.  

The equations of the previous sections show that there are two possible 

ways of reaching an anastigmatic solution. One way is to assume the thickness 

of the lenses, the distance of the corrector from the focal plane and the 

refractive index of the front lens; and then determine the air separation 

between the two lenses and the refractive index of the back component along 

with the curvatures to obtain the required correction state while satisfying 

the aplanatic and concentric' conditions. The second approach will be to 

assume the refractive indices, distance of the corrector from the focal plane, 

and thickness of the front lens as known quantities and then find the 

curvatures and separation of the two lenses and the thickness of the back 

component to obtain again the required correction state while satisfying the 

aplanatic and concentric principles. The latter approach is followed here, as 

the former procedure is more theoretical and the analysis is not very favourable 

because of the limited number of glasses available. Using equations (5.3) - 

(5.4), the explicit expressions for the different quantities are derived and are 

assembled as shown below. The values of d:, d, N4f NG  are assumed to have been 

specified. 

Yea = YO2 ". 	(i+Rz)/o+R) - dl 2 

CO 3 = +k3 Wk3 Yoa 

0Q4 = 1A1i 	- 410 

005 = 

2N6 	1 	(clOa-c..)(114-1)  
(N6  -1) 1  2 1+Rx 	21s4 

(locesvna 	Cosdl 	1)  

co s 

(34 _ ksk6cpe,v03 	kilcoe(di+dA) 	(1+k6) 

kOo. 

endak004)  
2N4  

e0 6 

(IA 
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where R, x have the same meaning as before, and 03 , 04 are the residuals of 

the whole system, and will usually be zero or very small. 

We are now left with colour correction. As the paraxial set up of the 

whole system is known, we shall trace two formal paraxial a- and b-rays 

through the whole system for the c-line (base line) and determine the unknown 

quantities in equations (5.5). The equations (5.5) will then become functions 

of (Nx-Ny ) a  and (Nx-Ny )b only. A proper ohoice of these two quantities is 

made depending on whether longitudinal colour correction or transverse colour 

correction is required. When one of these corrections is made, then the 

residual value of the other colour may be obtained from its min expression. 

As the refractive indices for the glasses are assumed to be known it is 

necessary to search for the isoindex glasses in the glass catalogue for colour 

correction. 

5.4. NUMERICAL EXATITLE.  

The principles outlined in the previous sections are now utilised in 

developing a doublet corrector system of the Rosin type to correct 04  t c4 

the Ritchey-Chretien telescope objective system developed earlier. The 

distance of the corrector; 41, is chosen arbitrarily and the front lens of the 

corrector lies just before the vertex of the primary mirror. However, the 

variation of the higher order aberrations with d4 is studied by changing at once: 

Initially, K$518 590 and SK 16 620 603 are chosen as the materials for the front 

lens and the back lens respectively. The initial prescription foi di, d$, Nct  N6 

is 

(11 = 0.27325251 	.d. 0.0008 	N4  = 1.52032 	Na  = 1.62286 0;  = e4 = 0.0 
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Using equations (5.6), we obtain 

	

oes = 42.20436 	c os  = 26.000643 	c os  = 29.923601 	c os  = 49.093165 

= 0.00504215 d; = 0.00049744 

This corrector is added to the Ritchey-Chretien system and the third- and fifth-

order aberration coefficients for the whole system are computed and are shown in 

Table I. With the same pair of glasses, the distance d: is now ohahged to 0.285 

and the paraxial set up for the corrector is 

 

003  = 52.571099  964 = 32.537676  003  . 35:752772  cos  = 58.31944 • 

= 0.285 	d; = 0 . 0008 	= 0.00276374. 	= 0.00025704. 

The third- and fifth-order aberration coefficients for the two-mirror system with 

this corrector added to it are again computed and are shown in Table I. an 

inspection of Table I indicates that the fifth-order linear astignatism, cubic 

coma and distortion increase considerably, whereas the fifth-order cubic 

astigmatism is reasonably stable. It is to be noted that for this increase in 

4, both longitudinal and transverse colour also increase. An increase in d: 

decreases the diameter of the lenses. It is therefore more advantageous to 

select the first position of the corrector for further analysis. . 

lact balance tilue fifth-order astigmatism it is necessary to introduce a 

small residual third-order astigmatism. The residual value for 0 3  is presoribed 

as 0.21234, which is supposed to balance the fifth-order linear astigmatism at 

the edge of the aperture for a semi-field of 20 minutes. The new set up for the 

corrector with this 0 0  residual value is obtained as 

cos = 42.224436 004  = 26.000643 cos  = 28.886353 

d; = 0.27325251 dl = 0.0008 d = 0.00384316 

006 = 48.055916 

al = 0.000198685 
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CN 0.0 '0.0 

02  o.o. 0.0 

e4 0.0 0.0 

04_ 0.0 0.0 

Os 123.85 148.17 

PI 0.0 0.0 

P-2 0.0 0.0 

113 ' 0.0 0.0 

1,14 "10.326 "10.12 

14 .  • -7.616t -74097 .. 
P4 "2.7098 02.7099 

P4 309.43 351..58 

155.81 176.89 

Po 153.63 1 74.7 

pi 0 -j2)& 2 -22891 

Ail —41158.1. .6184.8 

P42 182400 3102900 
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The colour of the system is found by using equations (5.5), and it is noticed 

that there is considerable change in colour when the residual value for 0 3  is 

changed. However, with the present set up, the longitudinal and the transverse 

colour are both found to be within the tolerance limits up to a field angle of 

4.0 minutes for the wavelength range C - F. The system is now submitted to 

analysis by spot diagrams. Figures (5.2 a,b,c) show the spot diagrams for the 

e-line. The image spread up,to,Arto.V4FArield of 4.0 minutes amounts to about 

0.115 seconds only. This image spread is found to have increased'tb about 0.89 

seconds for the wavelength range C - F, and as a consequence of this, the spot 

diagrams are not plotted for the other wavelengths. This glass selection is 

therefore rejected and then proceeded to find isoindex glasses. 

As SK 15 623 581 is nearly an isoindex glass to SK 16, this material is 

now chosen for the back lens and the combinationL... has reduced longitudinal 

colour considerably, whereas the transverse colour has worsened the situation. 

A few more different combinations (restricting ourselves to highly transparent 

glasses) were tried and ultimately it was decided to leave some longitudinal 

colour and decrease transverse colour considerably. For this purpose, K 10 

501 564. and SIC 16 620 603 are found to be suitable materials for the front and 

back component lenses respectively. The paraxial set up for the corrector is 

found to be 

d2' 

co3  

= 

= 

0.27325251 

4.1.9424.79 

d; 

004 

= 

= 

0.0009 

25.773153 

dl 	=0.00332564 

s  = co 	28..189325  

(54 

006 

= 0.00108736 

=47.000128 

This set up makes the system suffer from some transverse colour and considerable 

longitudinal colour. 
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SPOT DIAGRAMS FOR RITCHEY — CHRETIEN SYSTEM WITH ROSIN CORRECTOR (initial correction) 



This final corrector system is added to the Ritchey-Chretien system 

and the combined system is submitted to analysis by ray tracing. Figures 

(5.3 a-i) show the spot diagrams for the C o  e, Filmes for (i) V = 0, 

(ii) V 10 minutes, (iii) V = 20 minutes. The image spread for the e-line 

amounts to about 0.136 seconds only up to a total field angle of 4.0 minutes, 

whereas this increases to about 0.77 seconds of ar for the wavelength range 

C F, which is about one and a half times the preacribed tolerance. A study 

of the different combinations of glasses has revealed that with the present 

set up of the Ritchey-Chretien system, about this much image spread appears 

to be inevitable. 

5.5 SPECIFICATIONS 

The specifications of the corrector systaulthich is to be added to the 

1200 inch focal length telescope objective are computed and are given in 

Table IL All the parameters are expressed in inch units. Distance of the 

corrector from the vertex of the secondary mirror t= 327,903. 

5.6 CONCLUSIONS 

The analysis given in the previous sections illustrates that the 

limitation in the use of the Rosin corrector Unataily confined to colour. 

With this type of corrector system, one could achieve the best monochromatic 

aberration correction, whereas the colour amrecticxn appears to be rather 

difficult. In fact, with Such a corrector system, the useful field for a 

given spectral range is mainly limited by the image spread produced by other 

lines rather than the e-line. This type of corrector system also introduces 

considerable distortion. If the longitudinal colour is fully corrected, it 
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TAE II  

Surface 
number' 

radius of 
curvature 

distance to 
next surface 

material Clear 
aperture 

3 28.610608 1.08 
KtO 501 564. 21.0 

4 46.560094 3.990768 
SK16 620 60 21.0 

5 42.569313 1.344832 

6 254531848 
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appears that there will not be much variation in the image shape with wave-

length. Such a corrector system finds maximum utility where a narrow range 

of the spectrum is considered. The .;escoigne plate with the field flattening 

lens appears to have more useful application in improving the size of the 

field for a wide range of the spectrum. The advantage of the Rosin 

corrector is that it does not alter the Ritchey-Chretien configuration of the 

mirrors. Except for the best correction and the considerable increase in 

field size (a full one-degree field can be obtained without exceeding even 

0.25 seconds of arc) for the wiaine, this kind of corrector seems to have 

limited use. 



CliAPTER VI 

PRIME FOCUS CORRECTORS 

6.1 INTRODUCTION.  

The image formed at the primary focus of the Ritchey-Chretien telescope - 

objective system suffers from spherical aberration, coma, field curvature and 

astigmatism. If the primary focus is to be used,. prime focus correctors are 

therefore required. Prime focus correctors consisting of spherical surfaces 

(Wynne, 1965, 1968; Ross, 1935; Rosin, 1966), and aspheric surfaces of 

revolution (geinel, 1953; Gascoigne, 1965, Kohler, 1966; Schulte, 1966) are 

proposed. Gascoigne has suggested a single .plat. corrector for the 

correction of third-order spherical aberration and coma. With this single 

plate Corrector, the size of the useful field obtained may not be considerable. 

Meinel has suggested that the field aberrations of a parabolic mirror may be 

corrected by using three air spaced aspheric gates uhich are paaced nearer to 

the focal plane. Following this earlier suggestion by Meinel, field correctors 

of this type for the primary mirror of a Ritcher,,Chretien system were 

investigated by *Schulte (1966) and Kohler (1966), Kohler has used one more 

spherical lens to correct the field curvature of the primary mirror. This 

Chapter is particularly devoted to the investigation of the usefulness of 

field correctors for the primary focus involving aspheric surfaces. The design 

principles underlying the development of single plate and, three plates 

correctors will be discussed. 

6.2 PRIM FOCUS ABERRATIONS.  

When deriving the expressions for the third-order aberration coefficients 

for the two-mirror objective system, the direct summation property of the 

aberration coefficients is used. It is therefore easy to obtain the expressions 
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for the third-order aberration coefficients for the primary mirror directly 

from equations (2.17)- (2.21) of Chapter II. In this way, we get 

R3  01  = -8- - 2431  

 

(6.1) 
_2 - 03 2 

e4  - 2 

If we work with the 

 

  

unit power primary mirror and use the expression for 

oil  from equation (2.23), equations (6.1) then become 

02 

n  

, R 3  

	

= R3 	173-  

- 1  • 

	

R2 	4. 

	

= R 	2 

_ 
• 2 

(6 .2) 

47- , 

20, I 	74117tex 
= 0.25 

- 0,5 

.5 

Equations (6.2) show that far the unit power primary mirror the coefficients 

02  04 are independent of R and x. 

Returning now to the numerical example, where R = 2.4 and x = 0.055 9  

we obtain the aberration coefficients 0 1  - 04  as 

• 0 = *04 021 6 6 31 	02  = 0.25 	03 = 0.5 
	04 = .0.5 	(6.3) 

These figures for the aberration coefficients indicate that the prime focus 

suffers very seriously from all the monochromatic aberrations. The coefficient 

01  itself produces a very large image spread, showing that prime focus 

correctors are required even to obtain axially stigmatic imagery. 
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6.3 SINGLE PLATE CORRECTORS.. 

Gascoigne has suggested that a single aspherio plate inserted at a 

suitable distance before the focal plane is capable of correcting coma and 

spherical aberration of the mirror. This therefore necessitates that the 

distance di' of the plate from the vertex of the mirror d the aspherioity 

of the plate are to be chosen to correct spherical aberration and .coma 

simultaneously. The aspherioity imposed on the plate for this correction 

necessarily introduces considerable astigmatism as can be seen later. The 

size of the useful field is therefore limited by astisnatism and petzval 

curvature. The effect of the petzval curvature on the image spread may be 

eliminated by using the mean focal surface, which requires brint photographic 

plates. This also reduces the effect of astigmatism to some extent. Any 

small amount of colour introduced by the asphericity of the plate may be 

reduced by a proper choice of the axial power for the plate. 

Figure (6.1) shows the optical arrangement, of the primary mirror with the 

corrector plate. We shall make initially two approximations while deriving the 

expressions for the third-order aberration coefficients 	- 04 , namely that 

the paraxial power of the plate ix Zero and the thickness of the plate is 

negligible. Because of these approximations, the contributions due to the 

sphericity of the bounding surfaces of the plate to the aberration coefficients 

01  - 04 are zero. Tracing the waraY (Yol = 1  VOI = 1/101 ) and the bn`a.IT 

(y, 	p/(1-11/10, ), vi - 1/( 1 	)) through the system shown in Figure (6.1), 

we get 

Ye2 = Ye, 	VP 2 	dt 

Y2 = Y1 	at' V2 = det 

P2 =  

(6.4.) 



Fig 	6.1 

Primary mirror with single plate corrector 



= 
4. (N-1)0,2 (1+1;) + (Nal )01 a  di" (1+41  )2 	(6.7) 

01 (N"1 )°I 2Y:2 (Nool)ci 	d: 4  (6*5) 

02 (N-1 = 	+ (N-1 )012 (111 ( 1  di° )3  (6.6) 
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Substituting these expressions in the expressions for e4 - e4 of Chapter 

equations (2.11), (2.12), we get 

04 = u. 0.5 (6.8) 

For any required 01 , 02  residual values for the system, the expressions for 

0i2  and d: may be obtained by solving equations (6.5) - (6.6) as 

01 2 	(N•el 
(0, 

   

 

al■ 

    

(0, 

   

     

(6.9) 

where, N is the refractive index of the material of the plate. The values of 

012 , dit that will be obtained from equations (6.9) for any given 0 1 „ p2  

residual values serve as an initial approximate solution, and any further 

improvement in the correction state of the spherical aberration and coma may be 

started from here, and the iterative process with the differential correction 

methods may 	adopted to obtain the exact prescribed values forth, 02 . The 

further development of the correction state is given below in stages. 
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Stage (1): Initially°, and °a  may be prescribed as zero. The initial 

starting solution may be obtained from equations (6.9). We shall then 

specify the actual paraxial curvature for the plate and the thickness of 

the plate. Changing 012  and d: by small quantities, one at a tine, the 

derivativesaq/ac, 2 , a02/ac12 , actiad,', and a02AV may be obtained. Then, 

using the equations given below .and iterating the process, we cad Obtain the 

exact prescribed values fera l , 02 . 

80, 
• A012  + 	• 	= (Ri  - a, ) 

Qui 

8°2 
• Ac, 2  + 73.Ti  • die  = ( R2 02 ) 

(6.io) 

where RI , F6 are the residuals prescribed for , 0 2 . We shall then compute 

the higher order aberrations for the system. We can choose the second of the 

extra-axial curvatures of the plate as a parameter to balance the seventh-order 

spherical aberration with fifth-order spherical aberration. We shall then 

choose a proper residual far 02  to balance the higher order coma effects, while 

prescribing a,  as zero. This type of correction makes spherical aberration 

zero up to seventh-order and higher order coma is balanced largely by third-

order coma. 

Stage (2): After the above correction, it is necessary to trace a few rays 

through the system in the 0-, e- and h-lines to find the effect of the 

asphericity of the plate on the colour. The asphericity of the plate mainly 

effects the longitudinal colour whilst the effect on transverse colour is 

negligible. This present view is in contradiction to Wynne's statement (1968) 

where he reports that the asphericity of the plate introduces transverse colour. 

This present view of the author is supported later on when the actual 
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performance is shown by way of spot diagrams. The residual value to be 

prescribed for the paraxial longitudinal colour may be found from the traces. 

The approximate value of c o  which gives the necessary paraxial longitudinal 

colour may be obtained from the equation 

1:h 
002 = 	

cNx4y)(i+c1; )2 
(6.11) 

where l:h is the necessary longitudinal colour residual and N 2 , Ny  are the 

refractive indices of the lines for which colour correction is required. The 

above equation is obtained by using chromatic coefficients. Any further 

improvement in the colour correction may again be obtained by the iterative 

differential correction method while tracing the paraxial a-rays in x, e, 

y-lines to determine the actual colour. This time 002  will be the parameter 

for such correction. 

Stage (3): The introduction of the paraxial power to the plate slightly alters 

the monochromatic aberration correction. This therefore necessitates the 

repetition of the whole process of stage (1) and stage (2) to obtain the final 

correction. 

Returning now to the numerical example considered earlier, we apply the 

above principles to obtain a single plate corrector which provides images at 

the prime focus free from colour, spherical aberration and coma. Quartz is the 

material chosen for the aspheric plate. As the process of development has been 

clearly described, the actual design of the corrector is given here, without 

detailing all the stages of the development. The set up fur the unit power 

primary mirror is obtained as 

Co l  = 0.5 002 = 0 .05  003  = 0.0 

= 0. 9211 1 176 =-0.0012 

o 0.07333156 °12 =-1245.4205 

021  = - 0 .01399463 022  = 570489.74 
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The third-order aberration coefficients for the system are 

01  = 0.0 	02  = .0.0081632 	03  = 3.534.7 	04  = -0.5085 	05 = -35:398 

The whole system is now submitted to analysis by ray-tracing. The spot 

diagrams for the C-9  e-, h-lines for (i) V = 0, (ii) V = 5 minutes are shown 

in Figures (6.2 a-f). The displacements are computed in the mean focal plane. 

It can be noticed from the spot diagrams that there is not much variation in 

the image spread with wavelength. The colour present in the system is 

negligible. For a semi-field angle of 5 minutes and for the spectral range, 

C h, the image spread amounts to about 0.610 seconds. The size 'of the field 

increases to some extent, if the tolerance limit for the blur circle is 

increased. The usefulness of this corrector in improving the field size for 

good imagery is mainly limited by astigmatism only. As the size of the useful 

field obtained with this single plate corrector is small, this type of corrector 

finds limited applications. This type of corrector plate, as pointed out by .  

Gascoigne l  finds its use mostly in prime-focus spectroscopy, photometry and to 

some extent in astronomical work. 

The following are the specifications of the corrector plate and the 

photographic plate when the power of the system is raised from unity to the 

actual power. All the dimensions are expressed in inch units. 

Corrector Plate 

Distance of the plate from the vertex of the primary mirror = -460.55588 

Radius of curvatures of surfaces 1 and 2 

=10000 
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SPOT DIAGRAMS FOR PRIMARY MIRROR WITH SINGLE PLATE CORRECTOR 
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Thickness = 0.6 

Diameter 7.e-15.4 

Ehofile equation is given by 

x = 5 x 10.6R  - 2.4908409 x 10r 6 y4 + 3.042587 x 140.4 3, 6  

+ 1.8955157 x 10' 5 y8  

Asphericity 

6.6 	5.94. 	5.28 	4.62 	3.96 	3.3 	2.64 	1.913 	102 

dx 496.054 328.936 207.294 122.516 66.601 32.310 13.298 4.214 0.837 

Where, I is the semi-aperture in inches, and dx is the departure from the 

polar tangent sphere in wavelengths (W = .00002165 inches) 

Pliptincraphic Blatt  

Vertex radius of curvature = a-19.05328 

Diameter == 1.6 

6.4 THREE-PIATES CO 

   

SYSTEM.  

 

N'D 

 

   

    

As the single plate corrector did not improve the field size considerably, 

it is desirable to proceed with the two or three plates corrector solutions to 

improve the size of the field further. Before proceeding with the design of a 

three-plates corrector system, a two-plates corrector system solution has been 

tried. With such a corrector, we will have six parameters to control the six 

required aberrations. These parameters are the air separations d it , d; and 

the curvature coefficients 0o2 0041 0 2  p 01 4 , and the third-order aberrations 

to be controlled are spherical aberration, longitudinal colour, transverse 

colour, field curvature, coma, and astigmatism. When the six parameters are 

used to control the six aberrations, the set up of the corrector has been found 

to have no physical significance due to the faot that one of the plates lies 

behind the focal plane. Therefore, it appears that a two.plates correct= 
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system does not provide a real physical solution to the problem. Due to this 

reason, a three-plates corrector system has been tried. In the case of the 

three-plates corrector, the paraxial curvatures will be chosen to cdntrol the 

longitudinal and transverse colour and field curvature, whereas the extra-axial 

curvature coefficients of the plates will be chosen to correct spherical 

aberration, cone and astigmatism, while the air separation and the axial 

thicknesses of the plates may be selected arbitrarily. As the higher order•

aberrations are not usually negligible with such correctors, the second of the 

extra-axial curvatures of the plates may be chosen to reduce the effect of these 

higher order aberrations. Figure (6.3) shows the optical arrangenent of such a 

corrector system along with the primary mirror. 

6.40 ImAxia ARRANGNma. 

The initial solution for the paraxial arrangement of the corrector may be 

obtained by considering the plates as thin anl assuming equal spacing between the 

plates. Using the thin lens equations (Cruickshank, 1968), we will obtain the 

paraxial equations as 

Voa = 	va  = -1.0 

You " 	3ro 

vob = d.1.4 4,  Yoe% 

Yob yoo d;vo b 

Voc = vob Yob% 

4c ' Yob - dPv0C 

vb 	0140 + yacht  

4 4 cla'vb 

vc ' vb ncb 

4' dIVc 

where we have designated the plates by the symbols otbsc. 



PRIMARY MIRROR WITH THREE PLATE CORRECTOR 

Fig 6.3 
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The equations for the field curvature coefficient, 041  paraxial longitudinal 

and transverse colours may be written as 

	

.0.5 4. _Jur 	+ 
(34  - NMI( 	214aNa 	2-11bN1 	2Nec 

c 9840 	/1130. 1) 4.  Tato ,  1  
3411 8  tra 	Ira- 	14 	VC /  

tZ 
1. 	9.0..04,4 caw% cappYc, 
„ f v  Vb 	Vc  S -ok 	.4 

We will choose the sane material for all the three plates, and 	th may be 

prescribed as zero initially, and if any residual values are required, the 

spacing between the plates maybe adjusted to achieve the actual holour 

prescribed. Equations (6.13) - (6.15) then become 

TO + Tb+ Tc = (11+114 ) 
	

(6.16) 

ctaio + %AD + Talc = ° 
	

(6.17) 

ToYooYi + TOY0b4 + To3roac = 0 
	

(6.18) 

where N is the refractive index of the material of the plate, and B4 is 

given by 

B4 = 2. 	 (6.19) 

Equations '(6.16) (6.18) nay be solved to obtain a very approximate solution 

for obtaining zero values for 1h  and th and the actual value for 0 4 , When 

the powers of the plates are determined, the axial curvatures may be computed 

from the equation 

oc i = (N-1)4k. 
	 (6.1o) 

where i = 2,4,6 and k = co b, c . With this as the initial solution, the actual 

values required for MI, 24b may be obtained by further adjustment of the air 

spaces dif dl by using differential correction method. This my, the whole 

paraxial set up can be determined. 
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6.4..2 THIREh-ORDER MONOCHROMATIC ABERRATIONS CORRECTION.  

As the parwrial  set up of the corrector is known, we will trace two 

formal paraxial rays, the a-ray (y e, = 1, ve, = 1/10, ) and the bray 

(y, = p/(1-p/10 , ), v, = 1/(1-p/10 , )) through the system to determine the 

values of s e ,P,q at every surface. Using equations (2.11), the third-order 

aberration coefficients a, 9  02 9  03 may be written as 

4

▪ 

R3 (1-x) 
(6.21) 

I "2 
	11'2 

7 	 7 

02 = 
	

qi so i 
	Pi Tei  + 0.25 	 (6.22) 

IP 2 	 • 2 
7 	 7 

03 = To  + 0.5 (6.23) 

Solving equations (6.21) - (6.23) for T 02 , T04 T06, which give simultaneously 

zero or any residual values of o , , 02, 03  for the whole system,. we get 

(P2 P2 +1)6 R2 '22 Pe  RI "'Rs ) • (R3 "P4R2 POI% P2 10  
TA v2 = 	". (P4-P2  ) (P6 	) 	(F6 	)(Ps -P2 -) 	

(6.24) 

To 4  
P2  R2 4. P6 	"" P2 1:36 	- R3 

— (P4 	P2 ) (P4 "' P4) 
(6.25) 

TO 
(R3  - P4R2  "' P2  R2  + P4P2  

- ( 1)6 	P4 ) (P6 	P2 ) 
(6.26) 

1 t Rx  where, 	= 	4.R3 -x) 
.2 

/12 = 02 - 0.25 - CIA So i 

R3 = 03  0 • 5 qiSe i 

So 1 

(6.27) 

i 42 



We will then find the first of the extra-axial curvature coefficients of the 

plates from the equation 
To i 

77:177 

With these values of the extra-axial curvatures, we will obtain the required 

correction state of the third-order aberrations. 

6.4.3 HIGHER ORDER ABERRLITICNS.  

With this type of correction and also as the position of the plates is 

far removed from the entrance pupil (this is necessary to reduce the diameter 

of the plates), the system will suffer seriously from all the higher order 

aberrations. In order to reduce the effect of these higher order aberrations, 

a proper choice of the second of the extra-axial curvatures shall be made. 

However, as the fifth-order aberration coefficients are linearly related to the 

second of the extra-axial curvature coefficients, and also due to the fact that 

the introduction of the second of the extra-axial curvatures on a particular 

surface alters the aberration coefficients of that surface ohly, the labour 

reduces in the development of the design to some extent. If the aberrations 

are much beyond the tolerable limits, then, the Introduction of third-order 

residuals for all or for some of the aberration coefirliats may be inevitable. 

However, this decision will depend entirely on the actual values of the higher 

order aberration coefficients. 

6.4..4. APPLICATION to NUMERICAL EXAMPLE.  

The principles outlined in the previous sections are now illustrated by 

way of an example., Returning now to the numerical example considered earlier, 

we will develop a three-plates aspherio corrector suitable to the primary mirror 

of the telescope. We will seleot quartz as the material to be used for the plates. 

(6.28) 
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in order to keep the diameter of the largest plate less than about 20 inches, 

we will choose d: as equal to -0.92. Using equations (6.12), (6.16 - 6.18), 

the initial paraxial set up is obtained as 

= -2.9246083 003 = 0.0 004 = 7.7993'176 
cols  = -.8.0480082 

= -0.92 d 2 = -0.001 d's  = -0.05 

dj = -0.05 

005  = 0.0 

co7  = 0.0 

A = -0.001 

d; = -0.001 

With this arrangement, the actual values of06 11h, t'o h are found to be 

e4 =0.0 

= 0.00003704 

= 0.00084739 

where, the values for 11h, th refer to the unit semi-aperture and semi-field. 

These values for lhs th may be reduced to negligible quantities by wijusting 

the air spaces 

adjustment, 

4, (141, using 

we obtain 

the differential correction method. After this 

co, = -2.9246083 cos  = 0.0 006  = 7j993176 005 = 0.0 

co6  = 8X480082 007  = 0.0 

Al = -0.92 d; = -0.001 d; = -0.02620383 = -0.001 

dl = -0.03491344 c1 = -0.001 

Tracing the two formal paraxial rays with the initial coordinates yoi = 1, 

voi  = 0 for the a-ray, and y, = 0, v i  = 1 for the b-ray, we will determine the 

values Of qi,,So i,l) at every surface. Employingthe equations (6.24.) - (6.28) 

we will determine the values of C 3  0, 6 „ cis  of the plates which give 

e4 = 02=03 = 0. In this way, we get 



1132 = 0.05 279. ,142  
ri22  = 0.001108 	. a62  

P112. 70.00212362 Pi 4 

a44= -04041478 . , 114 4 

444 = 0Xsi7934 1194 

j1= 0.0 0.2 4 

as.= -0.0,921 1166 

496. 0.0s54.735-'  

= -0.049635 

= 0.00073867 

= 440 .0474 

= 40 . 04493 
= 0.048967 

= 0.04 23 

=+0.081843 

A104= -0.00081291 

ci = '770.86889 

Cs  4 = -5934..8109 

=4E451.895 

The aberration coefficients for the whole system ate 

ch = 	05 . 04  = 0.0 5 	05  = 290 . 94 

..,.. 0.071164. 	p,2 	= -2.4.91 	p,3 	= -1.6607 p4 =48.704. = 15.079 

p,6  = 33.625 117  = -821.03 115  = -629.4.7 L9 = -191.55 Pi = 35215 

11, = 2925.7 I I 2 = 7158110 

= 0.24741 172 	. -9.8183 T3 = +6.854. = 299.75 T6 = 97.428 

14 = 216.47 T7 = -5380.6 "r6 = -3563.4. To = -1604 "CI  0= +136.4.7 

T„= 4.0764. 1712 = 5693.9 3= 94.12.7 'r1 4 	9097.5 '61 8= 803730 

.614= 799780 'CI  7= 125380 'el  8 = -14805000 Irt 0 =  "393380  T20 = +70645000 

These figures indicate that the third-order correction of the aberrations increase 

the fifth-order aberrations to a very large extent. It is therefore necessary to 

choose the second of the extra-axial curvature coefficients to reduce the effect of 

these coefficients considerably. Changing the 0 2  values of the plates from zero to 

some other values, and again computing the fifth-order aberration coefficients, we 

can obtain the derivatives of these coefficients with respect to c 22  c2 4  024 53  

	

= .0.06 12 	1122  •= 0.0509 

	

0,52 = -0.04 3212 	12162 = 	6423 . 

	

a92  = 0.00036933 	111 02 = -0.01061 791 

	

0.0 641 
	

CL64 =  0606 27 

	

454  = +0.0 5986 	11 7 4 = 0 4 03  26896 

'43.004.07815 AI 4= "0.00081572 

0.0816 1146 • = "0.082765 

0.04164211 466 = 0.04109475 

+0.000162582 

04 = 

A88 = 

a76 = 

111  6= 



so. 

where, 	is defined as the derivative of 1,1; with respect to cj, and 

takes the values from 1 - 11 and j takes the values 2,4,6. 

• Using the derivatives of the fifth-order aberration coefficients, and 

tAking into consideration the effects of seventh-order coefficients, along 

with the reduction of the image spread (irrespective of the type of energy 

distribution) as the main aim, the curvature coefficients 022, 0246 02 are 

prescribed as 

022 •= 63906 
	

024 = -1200000 
	

02 0 = 45234944 

This corrector is now added to the primary mirror and the aberration 

coefficients are obtained as 

= 02  = 03 

pi  = 0.0082148 

= 04 	= 0.0; 

p2  = .00.21349 

= 290.94  os  

p4  = -0.14232 114 	'604406  . ;is = "3.3026 

114 = '3.138 117 = 246.16 = 81.99 = 1 64..17 o= -526.7 

pit = -4222.5 pi2 = 242070 

= 0.03493 = -3.453 173  = -2.0801 ¶4 = 146.34 = 42.398 

T6 = 99.388  T7 = 7274805 = "1812.5 r 9  = +722.65 'r, 0= ^137.41 	• 

6636.6 't 12 _ 31762 TI3 =  "106704 Ti  4= 17309 T= —399550 

1.1 6 = -414410 Ti 	49215 T1 8= 37574000 ti 9= 2920500 • 2
= ,.2604.10000 o 

The quality of the image at the prime focus is then analysed by means of the 

spot diagrams. Figures (6.4 a-d) show the spot diagrams for (i) V = 

(ii) V = 10', (iii) V = 20', and (iv) V = 30'. The spot diagrams show that the 

quality of the image deteriorates very rapidly with the increase in field, size. 

However, the image spread does not exceed 1 second of arc up to a total field of 

50 minutes. An inspection of the aberration coefficients indicates that the 

deterioration of the image quality when the field is increased is mainly confined 



(a) V = 0 (b) V = 10 '  (c) V = 20' 

(4) V = 25 (e)V = 30' 

Fig 6.4 
SPOT DIAGRAMS FOR PRIMARY MIRROR WITH THE THREE PLATE CORRECTOR IN PLACE. 
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to the fifth-order linear astigmatic coefficient 	It is hardly possible 

to bring both the aberration coefficients p i " gi  under control. 

With the present set up, the system suffers from some higher order 

chromatic aberration. It is therefore required to prescribe proper residuals 

for the paraxial colours to balance the higher order chromatic effects for an 

appropriate aperture and field angle. A small positive residua value for 04  

may be useful in balancing the effect of higher order astigmatic coefficients. 

These changes require the initial paraxial set up to be altered, which 

slightly alters the required asphericity of the plates, fbr the correction of 

monochromatic aberrations. The principles outlined earlier may be used to 

obtain a best three plates corrector system. 
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