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The optical <:<ign principles of the twe-mirror Ritchey-Chretien

telescope ahicclive sysiem are developed svstematically, starting from

fundamentais.  The thivd-order aberration-coefficients of Buchdah!l are
derived for such a system and baséd'on these coefficients, expressions for the

Tirst of the exira-axlal curvature ceceificients of the mirrors which provide

~

caplanatic condition at the (issegrain focus are derived..

A nurericatl exanr iz liropoucd hnq.o Australian 150-inch telescope)

i oconsidered to dllustrate the prin rles.  Third-order correctinn to achieve
apianatism s found ro he nadoguate wieo ot diagram analysis is made. The

N

expressions for the fiftlh-grder sphericai aberration ceefficient, Uy, and

Vinear coma coefficients, liz,ys for the two-mirror system are then.derived

and are used to achieve aplanatic condition to fifth-order. When this is

* applied to the nurerical example, the performance of fhe system is found to be
\
. “ertrenely good. The profilze of the mirrors of the seventh-qrder aplanatic
system are found to be scerceiy distinguishable fromvthose of the fifth-order
’ aplanatic uystem. e wivrors Gre Ui Lonsiuesed as'two hyperbo}oids,.based

on third-order aberraticas, and it is noticed that the curvatuyre coefficients
of these mirrors «nd the performance of such a system is not far removed from
that of the Fifth"order aplanatic'$vstem, Jnstlfylng the popular view. A

c0usnderut.0n of the aberrataOn balance Lcrhn:que has ‘brought the hyperbOIOtd

system still closer to the fnfth order sy s tem.
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The design principies of twe types of secondery focus correctors to

eliminate the residua! asziiynatism and fiald carvalure of the aplanatic system
are outlined. These are ar aspheric plate with field iiaitener and a Rosin
type doubiet. The principles are successfully adopied to develop thesé
correctors for the nuserical example. With the former Lype of corrector, it
is noticed that best correction can be achievad if the Rigchey‘ﬁhretien wirror

constants are slightly changed. Rosin type corrector is associated with

colour problems.

ExpresleQS fO( the prime foﬁus aberrations are derlved and the
design principles of sirgle plate and thrze-plate correctors to correct these
aberrations are discussed. Two-piate correcters provide no practicable
arrangement. The singie plate corrector provides a smaill useful fZQ)d,
whereas the three-plate corrector offers more useful {ield. With these
correctors in place, the prime focus ifargeiy suffers from higher order

aberrations.

The conclusions are mostly derived from the nunerical example.

However, they are valiu for a wide range of parametars.
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ABSTRACT

The optical design principles of the two-mirror Ritchey-Chretien telescope
objective system are developed systematically, starting from fundamentals. The
third~order aberration coefficients of Buchdahl are derived for such a system and
based on these coefficients, expressions faor the first of the extra-axial
curvature coefficients of the mirrors which provide aplanatic condition at the

Cassegrain focus are derived.

A numerical example (proposed Anglo-Australian 150-inch telescope) is
considered to illustrate the principles. Third-order correction to achieve
aplanatism is found to be inadequate when spot diagram analysis is made., The
expressions far the fifth-order spherical aberration coefficient, u,, and linear
coma coefficients, u,, pus for the two-mirror system are then derived and are
used to achieve aplanatic condition to fifth-order. When this is applied to the
numerical example, the performance of the system is fox_md to be extremely good.
The profiles of the mirrors of the seventh=order aplanatic system are found to be
scarcely distinguishable from those of the fifth-order aplanatic system. The
mirrors are then considered as two hyperboloids, based on third-order aberrations,
and it is noticed that the curvature coef’f’icienfs of these mirrors and the
performance of such a system is not far removed from that of the fifth-order
aplanatic system, justifying the popular view. A consideration of the aberration
balance technique has brought the hyperboloid system still closer to the fifth-

order system.

The design principles of two types of secondary focus correctors to eliminate
the residual astigmatism and field curvature of the aplanatic system are outlined.
These are an aspheric plate with field flattener and a Rosin type doublet. The
principles are successfully adopted to develop these correctors for the numerical

example, With the former type of corrector, it is noticed that best correction can



be achieved if the Ritchey-Chretien mirror constants are slightly chenged,

Rosin type corrector is associated with colour problems.

Expressions for the prime focus aberrations are derived and the design
principles of single plate and three-plate correctors to correct these
'a‘berratic;ns are discussed. Two-plate correctors provide no practicable
ari'angement', The single plate corrector provides a small useful field,
whereas the three-plate corrector offers more useful field., With these
‘correctors in place, the prime focus largely suffers from higher order

aberrations.

The conclusions are mostly derived from the numerical example., However,

they are valid for a wide range of parameters.,



CHAPTER I.

1.1 INTRODUCTION

Reflecting and refracting telescope objectives have been in existence for
many years. Because of the chramatic effects associafed with the refracting.
objective, in the earlier days reflecting objectives were preferred, despite
the @ifficulties in figuring the mirrors. Following the invention of the
achromatic objecf glass and because of the difficulties in casting and figuring
specula, the refractor for a time, almost completely superseded the reflector.
Many practical men seem to think that the refractor has entirely superseded the
reflector and that all attempts to improve the reflecting instrument are useless.
Larger and larger refracting objectives were made and with the completion of the
36 inch (1888) and the 40 inch (1897) refractors, toward the end of the

nineteenth century, no larger objectives have ever been made.

At the time when this development was taeking place, the strong proponents
of the reflecting objective continued the research to overcome the difficulties
associated with the speculum metal and arrived at the silver on glass mirror.
Perhaps the 47 inch reflector made in 1860 was the last large telescope using
speculum metal for the mirrors. The achievement of the silver on glass mirror,
began to bring the reflecting telescope back into favour in the seventies and

eighties of the last century.

Newton was the first to overcome the difficulty associated will all
systems employing a concave mirror, of obtaining an accessible focal plane, by
inserting a piane reflector into the beam of converging light, so that the immge
is formed outside the incoming light rays, and as a rule lies in a plane which is
paralle'i t§ the axis of the mirrors. The first telescope of this kind was made by
Newton in 1668, A paraboloid mirror must be employed to obtain a stigmatic axial |

image., The fact thci a parabolic mirror produces off-axial comatic imagery,
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together with the circumstance that large relative apertures are employed,
makes the usable field very small. Another important method c?i‘ obtaining

an gccessil?le focal plane is the cassegrain arrangement, where a convex
secondary ’mi;'z'or mounted in the convergent beam returns lthe image along the
axis of the system. In a large astronomﬂ:cal telescope, suc}? an arrangement
is oﬁ;en an alternative to the Newtonian arrangement. , Different mirrors may
be used to obtain a variety of focal lengths. .The classical form of this
telescope consists of a pargboloid primary mirror and an hyperboloid
secondary mirror, In this way spherical ‘aberration correction was achieved
but the coma of the system was found to be more than that of a Newtonian
paraboloid mirror alone. The petzval sum of the system redwes as a result
of the use of the convex secondarybmirror. These classical shapes of the
primary and secondary mirrors of the cassegrain system are altered to make
the system free from spherical ‘aberration and coma. K. Schwarzschild (1905)
considered a class of telescope objectives consisting of two aspheric
mirrors, and showed that such a system can be made aplanatic. Two telescopes
" of this type %ere later constructed, one with an aperture of 24 inches at the
University of Indiana, and another with a 12 inch aperture at Brown University.
Schwargschild's analysis was essentially meant for obtaining aplanatic
Gregorian focus. Chretien (1922) later gave mathematically exact formulae for
the profiles of the mirrors which provide aplanatic images at the cassegrain
focus. The mirrors were figured and tested by Ritchey and such systems are

therefore often referred to as Ritchey-Chretien telescopes.

Even though, theoretically, solutions far aplanatic objectives were
developed, it appears that until reéently, no' serious view was taken to construct
such a telescope system, Much recent development has been done by D.H. Schul te

(1963), using spot diagram methods. He observes that the Ritchey-Chretien éystem
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employs a near-hyperboloid primary and secondary, bot'h' departing _f‘arthex: from
the base sphere thah either. of their counterparts in fhe cassegrain system.
The resultant 1mprovement in the :mages due to the removal of the coma term
is shown in Figure 1. of his paper. The latest denands set for the f‘:.eld |

| size and the correctmn of the extra-axlal aberratmns cannot be reallsed
mth the trad:.t:.onal cassegrain and Newtonian types. It appears from the

| f‘igures given in the la.terature that the cassegrain system working at f/8
provides a field of 5 minutes only, whereas, the same paraboloic primary |
lmirror alone work:mg at f/3 covers a field of O 6 minutes. The extra-axial

| aberration which limits the f:.eld size is mamly coma and as a result of this,
aplanatic systen}s are adopted for the telescopes constructed or planned |
fecent_iy. Thé 8L linch-Kitff Peak telescd;ge constructed in 1964 was the first
large telescoéle of this fprm to Ee made. The advéqtage obtained by using the
apl.anatié syst.em is. at the sacrifice of the ax::.ally s?igmatic images of the

traditional cassegrain system at the prime focus.

Wynne (1968) gave equations for the profiles of the mrrors which provide
aplanatic condition to third orders He has avoided giving the equations for the
third order aberration coef‘fioients, which may be a necessity if residual valu;es‘
for the third order spherical aberration and coma are to be prescribed to balance
the higher order aberrations. He limited his analysis to third order and
‘apparently failed to show the advanf:ageé offered by analysing the mirrors to
provide aplanatism to a higher order. It appears from the literature that there
séems to have been no discussion in between the third order aberrations and the
mathematically exact formulae of Chretien. It also seems that no limits are
given in the lite¥'ature concerning the extent of physically realisable aplanatisn
at the cassegram f‘ocus, in the sense that, whether the proflles of the mirrors

for a partlcular order of aplanat:.sm are dlst:.ngmshable from those of the

preced:mg order of aplanatism.



Since the secondary focus of the Ritchey-Chretien system suffers from
astigmatism and field curvature, secondary focus correctors are requi;r'ed,

_if the field size for good imagery is to be improved. Due to fhis fact several
field correctors consisting of spherical surfaces only, Rosin (1966), Kohler
(1966), Wynne (1965,68); and aspherical surfaces, Gascoigne (1965), Schulte
(1966) have been proposed. Kohler suggested that a negative lens located at a
suitable distance from the focus is capable of correcting the astignétism and
field curvature of the Ritchey-Chretien system. Such a lens may not be a
useful proposition as it introduces' considerable transverse colowr. Wynne
(1965) had proposed a two lens corrector which provides a useful fieid of about
50 minutes. Excepting for few remarks, his paper does not disclose the

essential principles underlying the design of the corrector.

Rosin pointed out that the two lens corrector system may be used to correct
astigmatism and petzval sum, and colour of the system, 4As the lenses consist of
aplanatic and concentric suff’aces they ‘do'not introduwe any third order spherical
aberration or coma, but have a substantial effect on astigmatism and petzval
curvature, With such a corrector system either longitudinal or transverse
chromatic aberration may be corrected. Gascoigne has suggested that an aspheric
plate placed a short distance in front of the focus may be used to correct the
astigmatism of the Ritchey-Chretien system, As such an aspheric plate
introdues small spherical aberration and coma, he pointed out that the
asphericities of the Ritchey~Chretien mirrors and the plate may be chosen
simultaneously to correct spherical aberration, coma and astigmatism. Based on
such a principle, Schulte developed an anastigmatic objective with wvery
encouraging results. He used a field flattening lens to remove the petzval
curvature of the system. This type of carrection no longer makes the two

mirror system produce aplanatic images at the cassegrain focus, vwhen the

correcting system is removed. A
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The Ritchey-Chretien primary focus suffers considerably from all the
monochromatic aberrations. Therefore, if the primary focus is to be used,
prime focus carrectors are needed even to obtain good imagery on ﬂne.axis.
Gascoigne (1965), Wynne (1965,68), Ross (19}5), Kohler (1968), Meinel (1953)
and Schulte (1966) have all proposed prime focus corrector systems econsisting
of either spherical surfaces or aspherical surfaces or both, Gascoigne noted
that a single agpheric plate méy be used to correct both spherical aberration
and coma by a proper choice of the location of the plate and its asphericity.
Kohler, following an earlier suggestion by Meinel, used a three plate corrector
together with a field flattening lens to correct the prime focus aberrations.
The aéphericities of the plates may be chosen to correct the spherical
aberration, coma and astigmtism, while the paraxial powers of the ~plai;es and
field flattener correct field curvature and colour. With such a @rreotor a
useful field of one degree may be achieved. HRoss designed a doublét correctar
for the prime focus of a paraboloid mirror. Viymne's elegant two lens and
three lens prime focus correctors are derived mostly from the original Ross
doublet. With the doublet corrector, he used the separations, powers and shapes
as the parameters fo control - the monochromatic and chfomatic aberrations., Vith
such a ‘corrector system highéxr order aberrations limit the size of the useful
field. He apparently overcame this difficulty by adding one more lens to the
sygéem. As a result of this addition he found that the monochromatic
abérrations are distributed over the three elements, and, as a result of this
the individual curvatures will be amall, resulting in small higher order
chromatic and monochromatic aberrations., With Wynne's triplet corrector one
could achieve almost the same performance as that of Kohler's four element

corrector.



An attempt is made in the succeeding chapters to a.na.iyse the Ritchey-
Chretien aplanatic objective system by making use of Buchdahl's aberration
coefficients, Equations are given which provide aplanatic secondary f"ocus'
to fifth order. The seven‘th order aplanatism is also discussed. 4s can be
seen later such an aplanatism niayl not be physically distinguishable fram the
fifth order aplanatism. An analysis of hyperboloid mirrors is also made.
The merits and demerits of the secondary focus correctors of the Gascoigne
and Rosin type and the prime fﬁcus correctors of the Gascoigne and Meinel
type are/ investigated. The usefulness of the various equations develoéed isv
shown by way of a numerical example. Spot diagrams, wherever necessary are

provided.

1.2  ASPFHFRIC SURFACES,

Buchdahl (1954.) and Cruickshank (1968) have given various ways of
specifying aspheric surfaces of revolution. Eé.ch method of definition has a

particular advantage. The standard and most usual way of specifying an aspheric
surface is by its profile equation, given by

o
)

x= ), enly +22)" | (1.1)
ney :
In the meridional plane (z = 0), we have
X=F +aY +03 + 0,8 + ieees - (1.2)

where, the values of the coefficients ¢, characterise the surface.

Buchdahl partias

Frintroduced the idea of the extré-a.xial curvatures
which simpl x;epreéent the survature of the profile of the surface at any point
(x,y) on the profile 1:y ‘a pbwer series in y. This kind of speciﬁcatidn'is

mostly used. inthe abezratioqmgoef’f'icients analysis for aspheric smﬂgces.



By way of equation, we may write

r = 'Co + 301y2 +.5°2Y‘ + 7c3y6 + .c.oo‘o ] (103)

where Cy, C, 5 C, eves are defined as the curvature coeff‘ié:isnt,s;-iin particular,
c, is def‘in_ed ag the axial curvature of the surface corre_spénding to the polar
tangent sphere, and Ac, ’ .c, s seee Cp are defined as the extra-axial curvature
coefficients, The aspheric surface may be defined through eithei' of these
coefficients, o, or c,. #s they define the same surfaci_a, a'rela,‘cione;h}p
between these coefficients exists and may be obtained by changing équa'tions

| (1.2) and (1.3) into a common form and then comparing the coefficients of the

powers of y.
From calculus, we have
&%9;& S,
T'= {1 + dy 2; 3/2

which after integration with respect to y becomes

I i CatVIRTUIE B R PRty

Where,, %X = ax/dy

‘Equation (1.3) after integration with respect to y becomes

,,[I’dy=c°'y+ e,y +cl:2y5'+'...... | U.S)
 From equation (!.7), after differentiation, we get |
X =20,y + ko, ¥y + 6os y*° +‘89"y’ + secene | (1.6)
.4) and (1.6) and then comparing the coefficients of the

Combining equations (1
@ifferent powers of y in this equation and those of equation (1.5) we get
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c
& =3 5
1 : >

& =3 (2¢, + c4?)
k-
83 =‘-L (8c, + 12cy2c, + 3c¢,%) _ >

. 3. (1.7)
9‘=—§(16c3 + 2 2+3Ocoq + 2hcyq? + 5¢c,7) -

e

=¥ =m (16¢c, + 22;.c;,2c, + 30cy*c, + 600;,3013 + o
+ 8¢, 2 + 4Bcyc,c, + 350,°¢q + %5 co’)

(¥

A third pethod of specification, mostly useful for ray tracing through
the slystem, is by the introduction of phi-values, which are the coefficients
characterising the departure of the surface of rewvolution from the spherical
form. This may be written in the form of an equation (for the profile of the

swface, z = 0) as

2x”c°(x2 "’ya) =Qof +(p'r +¢2y‘ + ecese (108)
Expressing the left hand side of eguation (1.8) in terms of a power .series of
y by using equation (1.2), and then .comparing the coefficients of the powers

of y along with equations (1.7), we obtain

_9 =0
c
— malm ,
g?l_ e 2
¢ =% (26, + 3c2q,)
Qs = %[20, + 5°o(°o<Pz + C ¢ )}

F

(32c, + 11200 9z + 28o,c,9, = 27¢,%c,2 + 16¢,?)

S
&

u
-»
oN

0
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1.3 CONICOIDS.

In the previous section, we have shown different methods of specifying
an aspheric surface: A conicoid is uswlly speoifiéd by its eccentricity and
the ax:.al curvature, and then all other curvature coefficients are c'ief:'med-.
It my, therefore, be a neoéssity to provide relations between the cm:'vatm'ev'
coefficients and the axial curvature and eccentricity. The equation of the
profile of a conicoid may be written as

Co¥? Pco’y‘ chqsyc 5

= . = J
X =54 5t 16 ,"128P3°0y +
(1.10)
+ ‘2‘% P‘co"y‘ O 4 voenee
where P=1 e, ’ e being the eccentricity,

Comparing the coefficients of the powers of y in equations (1.10) and (1.2) and

then using equations (1.7) we obtain

q =~-1 €c 3 7
— 0 >
2
02 = 1 Q‘COB =
8 (1.11)
¢, = = GeSc,” | 3
1 .
S =35““ &, 9 7
Cs i 32233 &7 Cy :
. . ' -

[ER RN NN N REIENENEES R XX ]

Hence, the equations (1.11) determine the curvature coefficients of a conicoid,

once c, and e of the surface are specified.

1.4 RAY TRACE SCHEME,

Buchdahl (1954), Ford (1966) and Cruickshank (1968) have described the
theory of the marginal ray trace scheme suitable for systems consisting of

aspheric surfaces. In this scheme an aspheric swface is completely defined
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by its axial cwrvature and the phi-values, as defined earlier, Ti'xe surface may
be specified by as many phi-values as is necessary. As the aberz;ation
coefficiepts are computed up to seventh order only, which inwlve the axial
curvature and the first o.f the three extra-axial curvatures, we therefore
specify the Sui'face by its firét three aspheric constants (phi-values) and as
far as owr ray trace scheme is concerned all the remaining aspheric constants
are considered as zero. Thus the'designer has under his control the axial
curvature and the first three extra-axial curvatures of an aspheric surface as
p, N>L4 are predetermined by the condition that g, (n> 3) are zero.: The.
preceding statements fail in the case of a conicoid, as the curvature
coefficients are predetermined by the axial curvature and the eccentricity.

. Unless the systems work at a very low aperture and field so that the ninth and
higher order éj;nerrations are negligible, the dedustions that will be made from
_ the marginal ray traces, where ¢,, ¢,, @3 only are given may not be the true
deductions. It appears 1.:hat Ford has overlooked such a case., For this reason

expressions are given for ¢, and g4 also.

The ray trace schéme makes use of the 5’1‘ coozﬁirétes for the specificaf;ion
of the incident rays. The advantage of these coordinates is that all the rays in
the penecil of light from one objecﬁ point may be specified in turn by changing
only the values of Sy' and S;. Choosing the meridional plane as the x - y

coordinate plane, the initial coordinates are written as

By, /o,

1]
H]

pcose , Ty

S

S5, 0

psing T,

where (p,e) are the coordinates of the point of intersection of the ray in the
first polar tangent plane with reference to the coordinates of the intersection
point of the principal ray as origin and the y-axis as initial line. The tracing

of two formal paraxial rays, nemely the a-ray with initial coordinates
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(y, =1, v, =1/1y,); and the b-ray with initial coordinates iy, = pv, ,
x:r, = 1/(1 - p/1,, )] where; 1, is the distance of the object plane, and p is
the distance of the entrance pupil, both measured frt;m the'vértex of the first
polar tangent plane, give the values of the paraca‘nonic‘ai paraxial coefficienﬁ‘s,
Yajs Vajs Ybjs Vbj for the system which are ultimately uséd for the computation.
of -'the canonical variables Y,b Z, V, W1 of the ray. The path of an actual ray
af'ter refraction or reflection at a surface, will, in general, differ from the
ideal ray (paraxial ray) path. Hence, the difference between the coordinates
(v, 2, v, W) of the intersection points at any plane between the ideal ray and
th'.e. actual ray is used as a measure of the aberration of the ray produced by the
surfaces through which the ray has travelled. This principle is used as the
- main basis for finding the actwal aberration of the ray or the intersection
point of the actual ray in the paraxial image plane or in any other neighbouring
plane. An actual computation scheme, (Ford, 1966), with the results for one
particular trace is shown in Table I. For our present telescope objective
system the primary mirror acts as the stop of the system and therefore the
entrance pupil coincides with the first polar tangent plane. The objecj; lies
at infinity. Therefore the initial paracanonical coordinates and the initial
particulér para'caﬂoni.cal (&D-cbordinates, are identically equal. That is,
Sy =Y, 8 =2%,7T = 'ﬁ, and T, = 0. Table I explains clearly the adtual process

of computation.

The evaluation of the quality of the image is ultimately assessed by
producing a spot diagram. To obtain this we need to divide the entrance pupil
into a m.zmﬁer of small equal areas and thén trace a ray from the object point
through the centre of each of the small areas. The intersection points of each

- ray in the éeleqted image plane are then plotted. This produces the spot

diagram. The spot diagram illustrates the appearance of the image of a point
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object with a fair degree of accuracy, For this purpose, a programme its written
in the Algol 60 pmgra.mminé langizage. for the Elliott 503 con;pujter,_' The

programme is suitable for Systens-cc'ansisfing of spherical and nbnéspﬁeﬁqal '
surfaces of revc;lﬁtion. "All the displécanents will be computed in the paraxial )
image piahe of' the .e-lines. The entr:axice pupil is divided in'tof-smafll 'éq;tﬂl areas

- on the basis ;af’ the rec‘tangtﬁ.ar _gfi‘d system. As the rays on each side of the.
meridional plane are m:l.rror imges, only fhe rays incident on one side of thie
meridional plane are traced through the system for the extra-axisl “‘ot{;j;‘a“ct points.-
For axisl object points the rays incident in one quadrant of the entrance pupil "

only are traced as the rays qif;:t;he, other quadrants are mirror images.

o o o o 2 0 W 240



TAELE I. Process of finding spherical aberrat:.on pmsent in the: mod:f:.ed hyperb0101d.
g apla.nat by margi.nal ray trace.

Surface Data

1 2
Co a2 -2,1024735
c, 1,0134987 39.592933
5 -1.2839744 ~1118.3972
o - 1.8073699 ' +35102,009
6/2 o 0450674933 © 19.796466
(26, + Beg2q, )/6. % ~0.06313195 ~329.,04496
{205 4500 (Cop#oy @ )1/8 @5 - 0.00959778 | 6836.4845
| a -0,27794118 0.0
- N? 1.0 1.0
, .
k -1.0 -1.0
Paraxial data o .
*t, —dt ya ¢ 1.0 0.33294117 0. 33294117
a{(1-k)cot +kt } v, t 0.0 2. | X 1 0
| °t;7at. B t 0.0 <0.27794118  -0.27794118
o{(1-k)ogtsakty]. vy k. 1.0 1.0 2.1687279
Ray trace S -
*(ts=tes) (Sy#0) ts  0.0625 0.06285329 0. 06262203'
5(1:_!}:":1:{5’) (sz#0)  te 0.0 0.0 0,0
(t,+t,. T,45) | -
( i “) ( y*ﬁ) t’, 6.0 =0,0000735% uru«eoﬂ
*(tﬂtu) (1,46) t s 0.0 0.0 T,
0.0

Note: An * before or after a symbol md:.cates quantities from the preceding or following surf‘ace.
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CHAPTER II,.

APLANATIC OBJECTIVES

2,1  PaRsXIaL EQUATIONS .

Consider an optical system (Fig. 2.1) consisting of two reflecting
surfaces of revolution which are arranged coaxially with an axial separation, t..
For any paraxial ray (y,z,v,w) incident at. such a reﬂécting Isurf‘ace,. we have

o=y | (2.1)
v’ =yy + kv (2.2)
where k = -11%,: = =1, and § = (1-k)e, = 2¢,, are constants of the reflecting

surface, and

y' - tv! - (2.3)
v - _(2-.'14-) :

MA

v,

Equations (2.1), (2+2) are referred to as the paraxial reflection equations of
the surface, whereas equations (2.3), (2.4) are referred to as the paraxial

transfer equations for the two surfaces.

Wx"itfen in matrix form,

- — -1 = -

vl [+ o] ly

= = R
f .
vl k] S
(2.5)
ry_;:- (1 “t Fy’ ry'
= =7
v o 1 v! v'
Similarly, we can write
2! -:l 0— .z ] [z ]
= =R
' N
w _q; k | _wd _w_ |
- (2.6)
Z'.._‘; [-1 ,.t I—z' [-z'
= =T
w 0 1 w' w!




Fig 2.1

Optical diagram of the Ritchey - chretien mirror system




.

where primed symbols denote the coordinates of the ray after reflection and

the subscript (+) denotes the following surface. R and T are known as the

paraxial reflection matrix of the surface and paraxial transfer matrix of the

two surfaces regpectively.

The paraxial matrix of the whole system is then given by

L, B 1 o]l b <] f o

P - =R TR =

. o, Y I T I P
1-2t0,, | t

= , , | (2.7)
_2302 =2cy, "4tcy, 00, = 1+2tcy,

where cq,, Co, are the paraxial curvatures of the two mirrors.

2.2 PARAMETERS of the SYSTEM

Importé.nt quantities associated with a telescope objective are the
diameter of ﬁe primary mirror, Zh, ,' the focal length of the system, f'!, and
the f-nunbers at different foci. In the development of the design, it is
convenient to work with a unit power system.. We introduce two new parameters
| R and x, where R is defined as the ratio of the f-number, v,, of the whole
system to the f-nunber, v, , of the primary mirror, and x is the distance of

‘

the back focal plane from the vertex of the primary mirror.

Then, by definition,

Vv, == f“-.- = - 1
! 2 4eo, by
£ A

fi

2 % 2, T o,
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or 001 -=-%

The back focal distance is given by

A
-t+x=1'f :--0-2--=A2
that is, ~t+x=1-2tc, =1+ 1R
_x=1
or - t=ErT

Since the power, C,, of the system is unity,
from which, we get
%: =2(1 + Rx)

Assembling these results, the paraxial arrangement of the whole system is given

by
R =v,/v,
Coy = < R/2 '
Co, = (1-R?)/2(1+Rx) (2.8)
t =

(x~1)/(R+1)

If h, is the semi-aperture of the secondary mirror sufficient to transmit the
full aperture axial pencil, then h, is given by

h, = (1 - 2tcy, )h =———(;*fx2"' (2.9)

This aperture has to be increased to about (h7 + tv, ) to transmit an unvignetted

pencil at a field angle of 2v, .
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2.3 THIRD-ORDER ABERRATION COEFFICIENTS

The third~order aberration polynomials of a system consisting of non-'

spherical surfaces of revolution may be written (Buchdahl, 1948)

Eyk o,picos 6 + 02p33(2+c05 26)+(303+o.)pﬁ’ cos O + os;l’

(2.10)

It

€2k’ = 0,p%8in 6 + ,p?H sin 20 +(0;+0¢)pH cos €

where (py,,, 6) are the polar coordinates of the intezc;s,ectipn point of a ray
in the first polar tangent plane relative to the corresponding ix{tersection
point of the principal ray and (1,,, -Hl,, ,0) are the coordinates of the
object point. For objects at infinity, H is given by the tangent of the
semi-field angle. The coefficients 0, to g5 are the coefficients of the third
order spherical aberration, circular coma, astigmatism, petzval curvature of

field, and distortion, respectively, given by
0 = uxXS, + Ty) ]
G = uz(‘lso + PT,) [
o5 = puxlazS, + PA,) | - (2.11)
Os = Pjﬂ)

os = uXq®Sy + P'Ty + q0)

and w o= /N v ,
e, (1K) x
=Nt T 2N .
= i/i
Vi, o -1 (2412)
P = .V/yo 3
So = O.SNioz yo(1-k)(io'-vO) e
TO = (N"-N)c’ yo‘ , : J
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It should be noted that the quantity S, is associated with the axial

curvature (spherical form) of the surface, whereas the quantity T, is related

to the asphericity of the surface.

In these equations, the quantities y,, vy, iy, is', ¥, 1 are obtained

by tracing through the system two formal paraxial rays called the a~ray

(axial ray, distinguished by the suffix o) and the b-ray (principal ray).

The initial data for these two rays are

1/1q
oY, v, 1/(1-p/1,, )

1 Vo,

]

Yo,

"
L}

A

(2.13)

where 1, is the distance of the object plane and p is the distance of the

paraxial entrance pupil, both measured from the vertex of the first swface.

For the two-mirror telescope objective system, we have

N =N"'=1 N,' =N, = -1

o= lgy == =0 p= 0

Equations (2.1) - (2.4), and (2.8) then give

Yo =1 Ve, =0 igy = -R/2 i, ' =
14Rx) 14R
yy =0 v = 1 i, = -1

. _Qax 14R)
2 = 2(1eRx)

Y =

1 .
w‘x
-l
R
]
AN

(2.14)

(2.15)
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Substituting these expressions-in equations (2.12), we obtain

o =2/R g = (1+x)/(1+Rx)

P =0 E = (x-1//(1+Rx)

T, = -R/2 W = (R-1)/2(14R) (2.16)
5oy = B/8 Se = (1-R2)(1+Re)/8 |
Toy = =2G, Top. = 20, (14Rx)*/(14R) ¢

Combining equations (2.11), (2.16), the expressions for the third order
aberration coefficients may be obtained.
The third order spherical aberration is given by

3 L.:...)_Lﬁasl

Similarly, the third order circular coma coefficient is

O, = 48y + P Ty + S5, +FT,,

R 1-R2) (1+x 2012(x-1L (1+Rx)?
=;‘+ .+ 8 | | (1+R)‘ (2.18)

Continuing in this manner, we obtain
» 1-R2 x=1)2 (1+Rx)?
Cs = 2 8Z1+Rx5 (1+R) ¢ ~ (2.19)

A R
O = Car %0 ="G ¥ (T

R{1-%x) - R - 4
2(1+Rx) (2.20)

. o A 3
1-R) (1+x) (2 +2%~ 2¢12 (14 x=1

.08 = 8(1+Rx) + 14R) (2.21)

It should be noted that the third order aberration coefficients involve

only the first of the extra axial curvatures.
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2.4  THIRD ORDER APLANATISM

Noting again the closing remark of the last section, it is clear that
equations (2.17), (2.18) allow us to choose ¢,,, ¢,, S0 that g, and o,
ﬂgre adjusted to zero or any desired small value. The condition that g, = O,

for example, is, from equation (2.18), -
__SR’::F-R2 -x=1) (1 +R)*
G2 T TT16(x-1) (1+Rx)° . (2.22)
The condition that ¢, = O as well, then, requires that

R (1-x) + 2(41+Rx)
ey =—1—-%(—+—lf s (2.23)

This means that with these values of the first extra-axial curvatures, the

system is aplanatic to third order’

The third order residual abexratioﬁs, astigmatism,petzval curvature of
field, and distortion of the aplanatic system are then obtained by
substituting the expressions for c,,, ¢,, in equations (2.19), (2.20) and
(2.21). We now have |

1. | .
o =&-;‘§§—x2§l (2.24)
R(4=x} = 4 =~ R
R (r ml (2.25)
‘ Gs = l.. 1+RX)2 | (2'26)

- The variation of the residual aberrations, astigmatism, petzva; curvature

of field with respect to the parameters R and x are shown in Figures 2.2 a - 4.
The figures illustiate that both astigmatism and petzval curvature vary -

similarly with respect to YR and x. The figures also illustrate that both the



12

12

16

Fig 2.2 Variation of residuals 03,04 with R and x.

8 x=0
12
b T x =0.05
8 r x=0.1
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R R
(a) (b)
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residuals can be decreased by decreasing R and increasing x. The petzval
curvature is more se'ns.i-tivev to R and x as compared to astigmatism. _ Hencel a
proper selection of the ratio of the f-numbers at the two f'oéi’, R and ’the

back focal distance, x has to be made in order to keep the residual aberrations
low., These values, however, are determined by considerations other than those

concerning residual aberrations,

2.5 MEsN FOCAL SURFACE,

If the principal ray intersection in the paraxial iniage plane is taken as
the reference point for measwring the aberrations, then th¢ third order

aberration polynomials (2.10) for this aplanatic system reduce to

eyk ",

(305 + 04 )p“I-P cos 6

_ (2.27)
(0; + 04)pfiz sin ©

€zk

At any other plane distant x' from the paraxial image plane, the aberration

equations (2.27) become (Buchdahl, 1954)

eyk! = (305 + 04 )pRcos 6 + x'pcos ©
y o | (2.28)

ezk' = (05 + 04 )oR2 5in 6 + x'psin 6
The distances of the tangential focal line x;' and the sagittal focal line xg
measured from the paraxial image plane may be written as

~(%0s + 04 )H2
"(.03 + Oy )ﬁz

Xt'

- (2.29)

]

]
Xg

In the presence of astigmatism and petzval curvature, the best image is
formed on the mean focal surface which is half way between the tangential and
sagittal surfaces. Hence the distance, x,', of the mean focal surface from |

the paraxial image plane is

xp' = -(203 + O4)H2 ' (2.30)



21.

Therefore, the best image will be formed on a curved surface whose profile
is given by equation (2.30), where H is the same as y, the image height,

For this focal surface, the aberration equations (2.28) reduce to

ospH cos 6

- oapﬁ"' Sin 5]

Eyk' »
(2.31)

ezk'

[}

The image of a star in this mean focal surface is a circle .of diameter

NEyK'Z + 6747 vhich is equal to 20,p2 . - Since the focal length is’mity,
the angular diameter of the blur circle will be

20,08 /2" = 20pfi2
If we specify the image quality in terms of the angular diemeter of the blur -
spot, then, if the blur circle diameter for acceptable definition is limited
to d seconds of arc, then the maximum senﬁ.-.field of the objective, ﬁ, neasured
in radians, is

BH= V-Uzwk’a X 200 265,
or, more conveniently, if H is expressed in minutes of arc, we have

H = ¥57.3 v, /05 (2.32)

2.6  NUMERICAL EXAMFLE,

We will now consider a numerical example, the purpose of which is to
make uée of the equa.t;i.Ons of the preirious sections in the development of an
actual teiescope objective system. The writer understands that the proposed.
Anglo-Australian 150-inch telescope is to be a Ritchey-Chretien system, with
the following specifications:

v, = 10/3 v, = 8.
66 inches

£' = 1200 inches x!

i
i

0.5 seconds

[

2h, = 150 inches ‘ da
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It will be of interest then to consider the design of an objective of this

type. Reducing the system to unit focal length, we have’

v, = 10/3 | v, =8
' =1 x' = 0,085

2h = 0,125

(1) Using equations (2.8), the paraxial arrangement of the o'bjec‘tive is

R = 2.10-

~1,200000
Opy = =2.1024735
t = ~0.27794118
(2) ~ Using equations (2.22), (2.23), the values of the first extra-axial
curvatures which will give third ordef aplanatism (g, = 0, g, = 0)
are found to be | |

¢, = 1.,0137355
q, = 39.592933
(3) Having obtained the aplanatic system, the next step is to-calcoulate -the
coefficients of third order residual astigmtism, petzval curvature, ard

distortion. Equaticns (2.24) - (2.:26) give for these

1.2930654

'03=
04 = 0.90247351
0s = 0.84B15357

From equation (2.30), we obtain the profile of the mean focal surface as
X = "'3o1+88602+3 i
ﬁbm»vmich it follows that the axial curvature of this surface is

Cop = -6.9772086
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Equation (2.32) gives the maximum semi-field for which the angular diameter

.of the blur circle does not exceed 0.5 seconds of arc as

Hpag = 13.3 minutes

The spot diagram_programme is now used to analyse the correction state
of the third order aplanatic system.; The image spread is compared with a
0.5 seconds of arc diameter cirél‘é. Abou{ 260 points are obtained te produce
the spot diagram. The spot diagrams are obtained (i) for the axial object
point (v = 0), (ii) for an extra-axial object point corresponding to a semi~
field angle of 6.5 minutes (v = 6.5), and (iii) for an object point given by
v = 13 minutes. Figures 2.3 a = ¢ illustrate the appearance of the image for
the above threé cases, Figure 2,3a illustrates that the third order aplanat
objective system suffers from a higher order spherical aberration equivalent
to 0.16 seconds of arc in diameter. This is well within the tolerance of the
0.5 seconds of arc diameter. The spot diagrams for the extra-axial object
points show that the system suffers from aberrations other than the third order
astigmatism and higher order spherical aberration. For the semi~-field angle of
13 minutes, the ibage spread is equal to 0.64 seconds of arc. This clearly
illustrates that the performance of the system is not determined by third order
aberrations only., For the tolerance of 0.5 seconds of arc image spread, the
field coverage of the third order aplanat is about 9.5 minutes only. 'The third
order ané.lysis of the ltwo-mirror system is therefore inadequate. If the quality
of the extra-axial immges is to be improved, it is clear that higher order
aberrations must be considered. Just what higher order aberrations are involved

needs to be investigated.
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2.7 THE EFFECT of FIFTH ORDER COEFFICIINTS.

As the angular field qf‘ the telescope objectives under consideration
is very Small, it will probably be sufficient to consider those ﬁf‘th order
aberrations which are viv.ndepend‘ent of H or are linear in H. Hence we .begin
witix én investigation cf the fifth order spherical aberration and cmﬂa. ’
This requires explicit expressions for the coefficients u,, u,, us» Equations
(68.7), (68.8)- of Buchdahl (1954) ‘may be used in deriving expressions for
these. The full contribution to the coefficient of £ifth order spherical
aberration is given by

S8, = X 1{%(:1024152 +V32 +v,2 )%(q_'A-‘K)- 12' Vo, 2}
""5525’0'6"’&-;1 Yo® § 701§ ”15‘}0‘10Yo) + ﬁ%o 11 (2.33)
The contribution §, p to‘the first of the coefficients governing effective
 fifth order dircular comais given 'by |
Sp=08p ={% - a(Bey) + Cf"A}o. i
o (B-QFeS p + 0,30 (R-2g) + (2p-08]]  (2.34)

| where, ¢, y is the surface contribution to O, , and an antiprime indicates

division by N,, the refractive index of the medium in which the object li-es,. and
5= g o
Aj = Z O i Ej:i O, §
i=t i=1
en = (N'-N)ey B = A - -;" (vo2 =vo?
Ry ={ala's -3 N (ve2-ve,2) ] + B, 5,*
= ';,yos +i' c, [2(15 - Vo )i} + co¥olig=3v,)1¥e®

J[)(

p
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In the equation for i,, A is the spherical part of A and all the quantities
on the right hand side except ‘A are meant for the previous surface. It

follows from these definitions that

A =4 =‘A| =W, =84 =" =0
We now apply these considerai;iqns' to the objective developed in the preceding
sections. Using equations (2.21), (2.22), we obtain

c IRgR-cQ, )

Sp = =2g,~ 5

v

- . R2 J .
% =0 . A 4 ’ Ay =A2 = Oy (2.35)
\‘ o m \ X . i ) y 2
PR S B S
i ) - \ 1+7R
Sp2 = 265,567° 4,92.2.{.1.2.@..,.192.@4%‘_'21-1; Jo2
Conbining equations (2.35), (2.33), (2.34), we get
5 ps ='9£71%"_ "%chn - 20,,
14R)2  1=R2
S p2 = 30,, [ 1+ "'-85-"“120”} (2.35)
2
+ 2 0,70, 5&%:51_ _1&%.{. 1 + 20,5,
5{ P :% 5901‘1 - 20, = Leg, 0y, }
- 2 =R
Spe = BT, "0, + 3%0:; { 1% +7g * %04 }
e 2 ' -
-&‘g’ q,c,zyozs im'(%ﬂl_ "'?'_.%"; 1 ‘
| (2.37)
| 7
+ (%- %20”)012 ;1
vy . ]
...13—-4-”!* G2 f4 = R + yozcoz(_1+7R)I (B2-q)
+ 20,,(5,0,)55, ¢ [ §5" + (B -g )0} )



The fifth order spherical aberration coefficient s Iy » is then given by

M = S;p, + Sy,

= p,‘(’) - 2c,, + 2¢,,¥,° . (2.38)

3) : '
where p.,( ) is the fifth order spherical aberration coefficient of the

aplé.nat system at the stagé in which ¢,, =0 = ¢,,, and is given by

(' = 3012{1'1_61' "'-__"' %0y}

,,%351%-’--80”; (2.39)

If the third order spherical aberration and coma coefficients are zero, then

i » M3 are given by

. - - T (3
W T S(S_‘ Pz+szp2) =ué-( ) + 68,0,,%,
2 (2.40)
Hs = 3 M o

3 ‘ : .
where uz( ) is the fifth order coma of ‘the aplanat system at the stage in

vhich ¢,, =0 =g,,, given by
(' ..3{%?—‘ —0-9-\- ‘ERG +qaf\(3)

+ (E = 9220“)0,2 + '22,_0 — {1 = R + yo;c0, (1+7R)} (P, =g, )

76 * 3 o

+ 20, ,(P,~q,)¥ 0, *} L T (2P2—q2 Joy, 1 (2'1'_'1)
| 1+ Vv - 4 - ot
where. Yoz = (1+R§ % = (14rx B = (lerx
o < , , (2.42)
: : (R+ )(RZ- 21.3 :
Oy 4 =§"2°n . (s 1994 =2012y02‘- 8

Returning nbw to the numerical example, the values of the coefficie’nts,‘
His oo p;a of the objective, obtained by using equations (2.38), (2.40) are

H = 0'35731 U'z = “6016-7621- B~ ‘1{-.31 76
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If we include the effect of the fifth order aberration coefficients i , w,, us
in the computation of the aberrations, then the aberration displacements in

the mean focal surface are given, by extension of equations (2.31), as

eyk q,pﬁ?cos 6 + u,plcos 6 + (n,+ pgos Ze)p‘ﬁ
(2.43)
€1k '

il

<0;pMsin 6 + p,p®sin © 4+ pysin 26p*H

Using these equations, the predicted intersection points in the mean foecal
surface of the rays coming from an object point corresponding to a semifield
angle of 13 minutes were computed for the maximum aperture zone of the.
objective. . Figures (2.4,3. - ¢) show the effect on the shape of the predicted

intersection locus of (i) os, (ii) oy andp,, and (113.%):9&,“&,, B, and us

respectively.

Using the ray trabe programme to obtain the true intersection locus for
this zone, Figure 2.4d is obtained. The agreement between the shapes of the
predicted intersection locus in Figure 2.4c and the actual intersection locus
in Pigure 2.44 confirms the expectation that the principal effect of fifth
order coefficients is confined to that of y,, p, and us. Hence it should be
possible to improve the quality of the image by the adjustment of these fifth

oraer coefficients,

2.8 FIFTH ORDER APLANATISM

If we solve equations (2.38), (2.40), for those values of c,, , ¢,;, Wwhich
will make y, =, = O, the objective then becomes aplanatic to the fif'th order.

Proceeding in this way; we obtain

(®)
% =7 *) - Y= - 1.1143405

3
€2 = "l"z( )/szvyt.m6 = = 949.27



(a)

effect of o3

(c)

effect of 03, Wi, W2,

and us3
(predicted locus)

Fig

2.4

(b)

O3 and W1

effect Of

(d)

actual locus
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" The performance of this fifth order aplanatic system is now submitted to
analysis by ray tracing. Spot diagrams for -(i) v=0, (ii) v = 6.5 minutes,
and (iii) v = 13 minutes are shown in Figures (2.3d-f) and comparison of these
with the corresponding third order aplanat diagrams in Figures (2.3a-c) show
that »n pre” ¢ .iprovement hus ﬂeen achieved by the reduction of yu, and p,z 'to
zero. The system still has spherical aberration equivalent to 0.00k seconds
of arec, but ’chis is negh.gible compared with the tolerance of 0.5 seconds.

The spot diagram plotted for the maximum sem:.-field angle of 13 minutes shows
that the image spread is within the 0.5 seconds of arc tolerance and indicates
that the coma present in the systeni is pegligible. The field coverage of.the
system is therefore limited by astigmatism only, wnlike the third order
aplanatic system where the field coverage is limited by astigmetism, spherical
aberration, and coma. The 1as£ traces of spherical aberration and coma may be
| eliminated by correcting the-seventh order coefficients %,, T,, T; with the
help of the extra axial curvatures c;,, ¢j,, but it is questionable vhether

this would have any practical significance,

2.9 HYPERBOLOID APLANAT

3

It has been customary to consider the Ritchey-Chretien objective as
consisting of two hyperboloids. An hyperboloid is defined by its paraxial
éurvature ¢, and its eccentricity e. Once these are given, all the extra axial
ourvatures are determined (equation (1.11) of Chapter 1). It becolmes of
interest, then, to examine the connection between a system of two hyperboloids
a:ﬁ the fifth order aplanatic system that we have developed. Now, considering
a two-mirror ob;jectivé consisting of two hyperboloids which have the same
_paraxial curvatures ¢, , ¢, and the same extra-axial curvatures Cyys Gy a8

the third order aplanat of section 2.6, we obtain
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- -1
o = | -2aL|iy .083192
L Cpy
— 5 e C
:e2 - _r'—QL% L= 2.9189593
. oy coz ] .

The curvature coefficients of these two hyperboloids » Obtained by-

using equations (1.11), are then

Gy = - 1.2 oy = - 21024735
q, = 1.0137355 G, & 394592933
g, =~ 35S g, =~ 1183972

o5y = 1.,8086371 ey, = 35102.009

seseve eGP ROIOGE 4 $000000s000 00000

It is very interesting to note that the second extra~axial curvature
coefficients ¢,,, ¢,, of these hyperboloids are not far removed from the
values obtained for the fifth order aplanatic system. The adoption of
hyperboloid frym for each mirror, then, enswres that the coefficients
Lys My s s Will have values close to those desired for best fifth order

correction.

Figures (2,3,g-1), which givé the spot diagrams for this system, show
considerable improvement in its performance as compared to the third oxrder
aplanatic system. St111, the system has spherical aberration equivalent to
0.045 seconds of arc in dameter. Thé image spread for the object point, given
by v =13 m:imutes, is 0.535 seconds. The spot diagrams for extra.-axial object
points mdicate that the shape of the :.n'age is mostly dependent on spha‘ical
averration and astlgnatlsm, with little coma dependence.,” The hyperboloid
aplanatic system is much super:.or in performance to the third order aplanatic

system a.nd J.nf'erior, but close, to the fifth-order aplanatic system. The
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residual spherical aberration of this system may be reduced further by
éorrecting spherical aberration to fifth order at the maximum aperture. The
same type of correction may be applied to coma, but, because of the small

angular fields considered, this analysis for coma is scarcely necessary. '

We ¢all the hyperboloid objectivé which is corrected for spherical
aberration to fifth order, the modified hyperboloid aplenat. The general
equations to obtain such a system are given first, so that they may be used
for systems having different !va.l'ues of the parameters, and. then the equations
are used to get such a system for the n_umerica.l example. Replacing ¢,,, ¢, 2 .
ch » 6, in equations (2.17), (2.38) by their respective expressions from
equations (1.11), we get

Ra- R ~-1)(1+Rx v
G, = 8 + e,2¢c4,% = ¥, %e,70,,° (2,04

14R)? V-Ri
N 128 + 3012{"—%)_ + %—} + 1 §r? + l"Qz(’lzlcm e,?

xna“’:Bz? -
’"f?_‘ Yoa °0362{ L 1.,.3;
+6 PN R R

1 +R

-2 Coy "€yt "’ﬁ Yo

n ,%¢0,%€,4 (2.4.5)

The eccentricity of the secondary mirror, e,, remains the same as previously
obtained, and e, will be obtained from the condition
6,p° + pp® =0 (2.46)
which provides spherical aberration correction to fifth order.
Returning now to the nmnerical example, fhe eccentricity and the extra-

axial curvatures for the primary mirror are calculated using equations (2.44) -
(2.46). In this way we obtain

e, = 1.0830655 ¢, = 1.013,987 ¢, =-1.283974  c;, = 1.8073699
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The spot diagrams, Figures (2.4, j-1), show the improvement in the image
quality following this adjustment. Spherical aberration is reduced to one-
third, The image spread for the object point at v = 13 minutes is equal to
0.5 seconds, which is the specified tol'era.n;:e. The image quality, still,

is not as good as that obtained with the fifth order aplanatic system.

2,10 SPECIFICATIONS

The focal length of the aplanatic system is now raised to the desired
focal length of 1200 inches., For this focal length the parax:.al arrangement
is computed, The prbf‘ile equations for the mirrors of the four aplanatic
systems are obtained. Tables I and II give for the four aplanatic systems
the departure of the mirrors from their respective polar tangent spheres..

The semi-aperture o_f" the secohdary mirror sufficient to transmit an
unvignetted pencil, and the size of the photographic plate required for a
given field size is shown in Figure (2.5)., The requirements for the 1200 inch

focal length objective system are given below.

Paraxial Arr’an_gement

1 | 2
co , -0,001 inch™! ~.00175206 inch™!
o -1000 inch ~570.75671 inch
! =333 45292 mch

1! 66 inch
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Profile Equationg of the Mirrors

1,

2.

3.

&,

1.

S

4.

Thixrd order aplanat
Fifth order aplanat
Hyperboloid aplanat

Modified hyperboloid
aplanat

Third order aplanat
Fifth order aplanat
Hyperboloid aplanat

Modified hyperboloi
aplanat '

Photographic FPlate

X

Primary Mirmor
= =5x10"4y2 + 2,166312x10" ' y* + 8.416312x10=1 Tyb
+ 3.390396x10-23y8 |

==5K10"432 + 2,166312x10°1 ' y* + 9,525045x101 8 g6
5.006387:{1 0-2 Syb

==5x10"4y2 4+ 2,166312x10"11 y* - 1,877158x10~1 8 y6

' 2.03324,9%10~2 5 y8

= «5x10"432 + 2,162886x10"11y* - 1.8712223110“ 8y
+ 2,023621x10~2 8y9 '

+

Secondary Mirror

= =8,760307x10"4y2 + 5.055852x10"9y*

+ 1.655192%10"1 4y6 - 1.2384x10%1 Oy®
-8,760307x10°4y2 + 5,055852%10°y*

= 4,702980%10=1 456 = 3.4,34153x10=1 9y
-8,760307%10°*y? + 5.055852x10"°y*

~ 5,835787%1071 4% + 8.420048%1071 °y0
~8,760307X10°432 + 5,055852%40"°y*

- 5,835787%X101 4y% + 8.4,20048%10=1 9y8

n

-

Vertex radius of curvature = -471,98857 inches

Profile equation x

~2,90717 X 10-3y2



TABLE I. PRIMARY MIRROR

Departure from the polar tangent sphere, dx, in wavelengths (x = 0.00002165 inches)

Semi~aperture o 3rd order 5th order 7th order hyperboloid modified hyperboloid

Y in inches aplanat aplanat aplanat aplanat aplanat
75-b =215.551 | =244..934 —Z‘ih--937 -214..843 ~214..793
67.5 441,272 ~140. 904 -140.946 -140.896 -140,863
60,0 -88.111 ~-87.950 -87.950 -87.926 -87.905
52.5 -5t .606 =51.533 -51.533 -51.522 -51.510
45.0 -27.835 -27.806 v—é%.eos -27.802 ~27.796
37.5 - =13.415 ~-1'3fl»06 =13.406 =13.404 -13.40
30.0 ~5.492 -5.490 ~5.490 ~5.4,89 ~5.488
23.5 -1.737 -1.737 =1.,737 -1.737 - 1.736
15.0 =343 -o343 =343 - o343 =.343




TABLE II,  SECONDARY MIRROR

Departure from the polar tangent sphere, dx, in wavelengths () = 0.00002165 inches)

Semi-~aperture 3rd order 5th order 7th order hyperboloid modified byperboloid
Y in inches aplanat aplanat aplanat aplanat aplanat
27.87228 -160.057 -158.676 -158,691 -158.451 ~158.45%
25.085052 -104.966 ~104.4233 -104.239 =1044111 ~104.111
22.2976824 ~65. 504 ~65.142 -65,145 65,081 65,081
19.510596 -38.383 ~38.221 -38.222 ~38.19 -38.19
16.723368 -20.742 ~20.648 ~20,648' ~20.637 -20.637
13.93614 -9.986 -9.96, -9.96) -9.964 -9.961
11.148912 © =4.089 =408, =4..08 ~4.083 ~4.083
8.36168, -1.29 -1.293 -1.293 -1.292 -1.292
5.57uh56 -.256 -.255 -.255 -.255 -.255
2.787228 -.016 ~.016 -.016 -.016 -.016




APERTURE IN INCHES

SEMI

300

275

25.0

225 |-

200

Y

~

(8)}
1

B0 [

12.5

100

2.5

1 1 1 1 | |

0 5 10 15 20 25 30
SEMI FIELD ANGLE IN MINUTES

Fig 2.5
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2.11 CONCLUSIONS

A comparative study of the performance of the four aplanatic systems
reveal that the fifth order aplanat, mgdified hyperboloid aplanat,
hyperboloid aplanat, and third order aplanat are in that order of merit as
regards performance. The fifth order aplanafic' system is almost free from
spherical aberration and comé.. However, the last traces of these two
aberrations may be eliminated by correcting the seventh order spherical |
aberration and circular coma with the help of the third of the extra-ajc'ial
curvatures of the mirrors. The profiles of the mirrors obtained on this
basis indicate that they can scarcely be distinguished from the mirrors of
the fifth order aplanatic system. We @, therefore, confidently state that
the analysis of .thé mirrors to obtain images aplanatic to seventh or higher
order is not of practical significance, even though, theoretically, it may

appear encouraging,

For all practical purposes, where the limitation is put on the image
spread only, it appears from the above analysis that the best solution for .
the two-mirrbr ‘system may be approximated closely by two hyperboloids‘. This
is rather accidental, and is due to the fact that when such an approximation
is made, the higher order extra-axial curvatures of the mirrors are
approximately those of the mirrors of the fifth order aplanatic system. The
performance of the hypérboloid system may be improved further by the |
introduction of a small amount of third ofder spherical aberration to balance
the higher order residwls. But it should be noted that the quality of the
image obtained with the hyperboloid systems is not as gpod as that of the
fifth order aplané.tic system. Inspection of Tables I and II shows thaf the
differences in profile of the mirrors of any of the four aplanats studied amount

to about a wavelength at the edges of the mirrors.

- e g W e " g S



CHAPTER III

SECONDARY FOCUS CORRECTORS.

5,1  INTRODUGTION

It was shown in the previous chapter that the focus of the Ritchey-chzetien
mirror system is free from spherical aberration and coms, but has considerable
astigmatism and petzval curvature of field. The image spread due to these two
aberrations is proportional to the square of the angular size of the field. |
These aberrations must be corrected or reduced if it is desired to increase the
~ size of the field. For this purpese, certain corrector systems have been
proposed for addition to the objective near the secondary ffocus. Some of these
consist of lens systems with spherical surfaces (Wynne, 1965, 1968; Rosin, 1966),
while others include an aspheric plate (Gascoigne, 1965; Schulte; 1966). The
| field size is also limited by the availability of large photographic plates.

This limitation is particularly important in systems havingvlong' f‘oéal lengths,
The usual practice among astronomers is to regard a total angular field of one
degree as the general aim. Somé basic considerations vwhich govern the design of
the field correctors will be discussed, The advantageé and vdisadvantages in
using the Ritchey-Chretien mirror constants as free parameters whilst designing
the corrector system are also investigated. One example of' each of the two types
of correctars will be considered. This chapter is devoted to study the design
principles along with the merits and demeritsv of a corrector system consisting
of an aspheric plate and field flattening lens. 4ll the monochromatic
aberrations are corrected for the e-line and the system is achromatised for the
h- and C-~lines, whereas thé spot diagrams are given for the spectral range

365 nm - 706 nm, where necessary.
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3.2  ASPHERIC FLATE efid FERLD FLATTENER,

» A negative lens (Piazzi~Smyth field lens), placed a short d stance away
from the focal plane, may be used to correct the petzval curvature of field of
the aplanatic system. The size of the field for good imagery is then limited by
astiématism only, This;esiaual astigmatism may be eliminated (Gascoigne, 1965)
by introducing an aspheric plate at a suitable distance in ﬁwont of the focal
plane. The selection of this distance involves a compromise between thé
asphericity of the plate and the aberrations introduced by the ﬁlate. This is
discuésed in the succeeding sections: The presence of the field flattener
introduces some transverse colour, We shall, then, choose the axial power -
of the aspheric piate to correct the transverse eolour introduced by this
negative lens. The astigmtism is then corrected by a proper selection of the

asphericity of the plate.

The Ritehey~Chretien aplanatic systém with corrector is shown in Figure (3.1).
Surfaces 4 and 6 are plane surfaces. The curvatures of surfaces 3 and 5 are to be
chosen to correct .petzva]_. curvature and colour simultaneously., All the parameters
of the corrector which are not directly involved in the correction of transverse
col'our, field curvature and astigmatism will be chosen arbitrarily a.nd- wi thin
reascnable limits, The petzval curvature coefficient, g,, Of the whole system
per unit fooal length (Fig. 3.1) is given by

o BUYRSISR | Likeo, sk, )

The paraxial transverse colouwr, tch', present in the system is measured by the
difference in the paraxial heights of the principal ray intersection points for
the h- and C-lines in the paraxial image plane for e-line and is written as

tch' = by = ik = Idke(Wlh - Vk'c) + Mg = n ‘ (3.2)



[

U]

Fig 3.1

Ritchey - chretien mirror system with the corrector



3.

The expressions for 1§, ., Viy » Vios Yyo» Ji in equation (3.2) may be obtained
by tracing the following rays through the whole system; (i) a=ray for the

e-line with initial coordinates y,, = 1, vo, = 1/1;, = 0, which provides us with
the expression for 1g, ; (i1) the b=ray for C-line with initial coordinates

¥, =. p/(1-p/1,,) = 0, v, = 1Mi-p/1,,) = 1. This provides us w*th -the expressions

for v, and y!.; (iii) the beray for the h-line with initial coordinates same as

in (ii) which provides us with the expressions for Vi, and yl";;_,. T:caoing these

three rays through the whole systexh, we Obtain -

Rl

.Yc'pk/"ak
yl;h = - kShdg vy - iaZh + (kh.h - 1)k5hds';.yalc“ - a1hdg(1-k5h)o°5
o+ azhdg(1-k5h)qo,c” >

1"’ke

v X

LY}

vl.Ch = v; + (kb.h"“ )yacoa + a1h(k6h"1 )ces - e.Zh(kGh"1 )(‘;03605 (3‘3)

lec = a1c - kscao'vs - iazc + (kl'.c"‘,)kwdgys}cos - a1cd5'(1-k56)°05
+ azcd;(1'ksc)603¢ 08

AT S '

Vie =V ¢+ (kl‘_c-'-1 )¥sces + a55{kgo=1)ogs = azc(k&-ﬂco,c” |
where
.V(.ik = 9'16 - ksed;voa" {aZe + (k40-1 )kseds'yosl"os - a1ed;(1‘k59)¢05

+ aZGdg(}' "1‘»59) Co30s

Vi = Vos* (khe-:-‘t )¥e3C0s + a‘le(kﬁe-”c" - a, (kg =1)0g3Cqs

8o = Jos- kjedivoa - 44vos

a1h =y - thda'Va = d:vE

P
Q
f

s - kmd:s'va - dgvy
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2e * (1"k5e)ds'303 + (kl..e-1 )alYos

N’
=g
i

]

8¢ (1‘k30)d;YB + (kw'1)d"y3 |
Vs =1 (power of the aplanatic system considered being unity)

(Rex)/(1+Rx)-

&
it

1.+ Rx
Yoo =7, R "%

-1 (R .
v =‘§T‘11"%Tf‘§)"=

and the letters e, h, C in the subscript of any quantity indicates that the

quantity is meant for that line. Once the air separations and thicknesses are
prescribed and the material for the plate and field flattener are chosen, then
the coefficient ¢, and the transverse colour, tch', will be purely f'unc;tions

of ¢gs and cyg. Hence, for any required residual values for fhe petzval
curvature end transverse colour {usuvally zero :esidmls will be prescribed
initially), the paraxial curvatures of surfaces 3 ani 5 may be found by solving '
equations (3.1) and (3.2). We will then be lef's with aatignatis'n{ only.

The coefficient of the third order agstigmatism, g3 , for the whole system
per unit focal length ié given by
6 _
1+x+2R
Cs =3 (1+Rx) Z Q%% + F3 Tos (3.5)

- fu3
The values of qf and P53 may be obtained by tracing the a- and b-rays for the
e-line through the whole system. Soi values may be computed from equation (2.12).
For any given O3 residuéi value:, To3 may be obtained from equation (3.5) and then
the values of the first of the cxtra-axial curvatures of the plate (surface 3) may

be obtained from the equation
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G = Tcﬂa‘a/(Ng - Ny )yds - | (3.6)

The unknown residual aberrations per unit focal length of this new objective

system are then given by
- 6

O = Z Sp1 + To3

in3
. .

bz = Z q‘SOi + PgToB ’ . (3‘7)

{=3 : A

6 S : ‘
‘ : ' 2 24+ 2R2 -,
O = Z qi®Sgy + Py Tos + Z Q4§04 + 451 "+ Rt )2

i.‘a A {=3 '

We will now use these equations in the case of the numerical example of
Chapter II to add a corrector system to the fifth order aplanat, Choosing
quartz as the material to be used for the plate and the field flattener’, on

account of its transparency, then

. Nl;.e = NGG = 1.[‘,6013; Nh.C = NGC = 1.4%&2;

Placing the plate a short distance behind the primary mirror and the field
flattener sufficiently in front of the paraxial focal plane to afford the

necessary clearance, we have

a4 = (5.2871;.6866 a§ = 0.00125 d) = 0.04404251 4} = 0.0004

I

We shall, however, study the effect of the variation of the distance of the plate,
dz' s on the aberrations and on the asphericity of the plate later. Foxr Os = O,

equation (3.1) gives the relation between cos and cos as

Qs = =5.7276361 = cq; B |  (3.8)
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Substituting the prescribed values in equations (3.4) and then cambining

these computed values with equations (3.3), we obtain
(~0.00000011 c}3 = 0.00088256 ¢o; + 0.00330253)

-
-

l'
oke ~ (0,00040338 ¢, + 0.02158922 cg; + 0.99058112)
b -

Vi = =0.00786793 ¢35 = 0.00358913 co3 + 4.7626856
| (3.9)
Vi = 0.00000216 & + 0.01723935 oy = 0.99356192
Wl = =0.008348% cf; = 0.00509929 coy + 4.BK101085
iy = 0.00000227 chs + 0.01775717 055 = 0.9935535
Now for tgh' = O, we obtain from equation (3.2)
0.00000854 c§s + 0.21343327 o), = 11.443951 chs = 587.23858 oy,
+ 250.33079 = 0.0 (3.10)

Solving equation (3.10) by Newton's method, we obtain
Cos = 0.42282805

and then from equation (3.8)
Cps = =0.1504642

As the paraxial arrangement of the whole system is now known, we trace the
two paraxial a- and berays through the whole system and compute the values
of qq, Spy and P;. Substituting these values in eguation (3.5) and for
o =0, we get

Tps = =0.00322228
Then, from equation (3.6), ¢,3 is determined as

8,5 = =1637.9

The residual aberrations of the vhole system are then camputed from equations

(3.7). The corrector system specifications and the third order aberrations

of the gpjective are given by



&t = 0.26746826 &) = 0.00125 ! = 0.04104251 &) = 0.0004

Cos = 0.42282805 ¢y = 0.0 Cos = =6.1504642  co6 = 0.0
o = ~1637.9

0, = =0,0027223 0, = 0.065291

os = 0.0 o, =-0.0

os = 29.13966

The performance of the fifth order aplanat with the corrector éystem may
then be assessed from the spot diagrams which are shown in Figures (3.2, a=o).
Thesé indicate that the addition of the corrector to the fifth order aplanatic
system has not as yet improved either the quality of the image or the sige of

the field, The reason for this is that the corrector system, while correcting

. the astigné.tism and the field curvature, introduces ¢onsiderable spherical
aberration and coma. The spot diagram for V = O shows that' the correotor introduces
spherioal aberration equivalent to about 0.288 seconds. The image spread for the
object point given by V = 10 minutes amounts to about 0.65 séconds and the shape
of the image is comatic. The spherical aberration is continuing its domination
in shaping the imge. In fact, the general situation would be improved if this
corrector were added to the third order aplanatic system, as the fifth order
residual aberrations of suwh a system compensate partially ’ghe third order
aberrations of the corrector system. But it was shown in the previous chapter
that the residwal aberrations of the third order aplanat produced poor imagery for
off-axial object points. Hence the possibility of the addition of the corrector
to thei third order aplanatic system is ruled out. This shows that this corrector.
system in ite present arrangement may not be a useful solution for the

elimination of astigmatism and field curvature. However, it is worth trying to
reduce the aberrations of the plate, if possible, by an alteration of the plate's

position before coming to any conclusions.
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d; = 0,28747,
(a) v=o0 (b} v =5’ {c) v =10

—— G5
-

’

d, =0.3025.
(d) v=o0 (e) v =10/ (f) v =15’

s i
dy = 0.3175.

{gd v=0 (h) v =15 (i) v =30’
Fig 3.2

SPOT DIAGRAMS FOR THE RITCHEY - CHRETIEN SYSTEM WITH THE CORREC TOR
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3.3 [EFFECT of the DISTaNCE of the PLATE

The effects of changes in the distance of the plate from the vertex of
the secondary mirror, 4!, on the aberrations introduced by the plate and on
its asphericity are now investigated., Corresponding to an increase or dscrease
in @}, the distance between the plate and the field flattener, 44, has also to
be adjusted accordingly. The distance, d), is changed twice and the whole
procedure of section (3.2) is repeated to obtain two more corrector system
arrangements for the correction of colour, field curvature and astigmatism.
The second and third arrangements for the corrector along with the third order

aberrations for the objective system are:

(2) a3 =0.3025 d} = 0.00125 a4 = 0.02604251 a% = 0.000,
Cps = 0.65794644  cge= 0.0 Sos = =6.3855823 Cos = 0.0 .
e, 3 = «3485.4486
o, = ~0.00111 o, = 0.042181
_os = 0.0 04 = 0.0
| 05» = 4h o165 |
(3) ay=0.3175 dy = 0.00125 a} = 0.01104251 a} = 0.0004

Ogs = 1.5111767  ©ops = 0.0  Gps = =7.2388128 ¢y = 0.0
as = ~12080.171

o, = =0.00035382 g, = 0.020686

oy = 0.0 O¢ = 0.0

o5 = 85:544

These results are plotted in Figwre (3.3).
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These two corrector systems are again added to the fifth order aplanatic
system and the spot diagrams; obtained in these cases are shown in Figures
(3,2,d-1). For the seéond arrangement, ﬁhe spot diagram for V = O indicates
that the spherical aberration is reduced to 0.123 seconds of arc. This is
further reduced to 0,041 seconds for the third arrangements The spot diagrams '
for the extra-axial object points illustrate that there is considerable
reduction in coma. As a result of these reductions, the field size for the
prescribed - tolerance (0;5 seconds of arc), also increases. For the second
arrangement, the semi-field covered by the system for the same tolerance will
be about 14 minutes. This shows that the sizes of the field covered by the
fifth order aplanatic system and the fifth order 'aplahatic system with corrector
are almost the same. But it should be remembered that the fifth order aplanatic
system produces very good images on a curved éur_face; whereas the fifth order
aplanat with the corrector system produces camatic images of about the same sige

on a plane surfage. In this way, the two systems are not comparable.

In the third arrangsment at a semi~-field angle of 30 minutes, the image
spread amounts to about 0.5,3 seconds and the corresponding spot diagram
illustrates that the shape of the image is not only governed by the effect of

coma but also by higher order é.stignatiam.,

A comparison of the values of the first of the extra<axial curvatures of
the plate for the three corrector arrangements indicates that the asphericity
of the plate. increases lrapialy as the distance between the plate and the back
focus decreases. This is shown clearly in Filgures (3:4), which give the
departure of the surface froxﬁ its polar tangent sphere for different semi-
apertures for the three corrector arrangements. The asphericity of the surface
for the second and third arrangements is about twice and seven times that of the

plate for the first arrangement respectively. PFor a semi-aperture of 7,5 inches,
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the departure of the surface from its polar tangent sphere for the tixee
arrangements is (i) 38\, (ii) 78\, (4ii) 260\ respectively, A being equal
to 0,00002165 inches. '

The effects of the change in the distance of the plate, d}, on the
aberrations introduced by the corrector for (i) p = 0.0625, H = 0:00435;
(ii) p = 0,0625, f = 0,0087 are shown in Figwes (3.5 a<b). These figures
illustrate that both the third order spherical aberration and coma reduce
considerably as the plate approaches the focus. The spherical aberration
introduced by the plate for the third arrangement of the corrector amounts
to only one=thirteenth of the prescribed tolefance and the coma spread
amounts to less than half the t'olerance for a semi-field angle of 15 minutes,
which increases to about the tolerance value of 0.5 seconds of arc for the
semi-field of 30 minutes. Of the fifth order aberrations, spherical aberration
and circular coma are negligible. The fifth order cubioc astigmatism is
reasonably stable with a change in the distance of the plate. Cubic coma and
linear astigmatism increase considerably when the distance between the plate
and the back focus decreases. For the semi-field of 15 minutes,. the
contribution of these aberrations is insignificant. But the increase in the
contribution of these aberrations becomes .pronounced when thg field is doubled.
This is due to the fact that the cubic coma and linear astigmatism are |
respectively proportional to the third and fourth powers of the field sizé., The
fifth order cubic astigmatism, being opposite in sign compensates partially the
linear astigmatism. As compared to the large reduo.tion obtained in the third
order spherical aberration and coma, the increase in the fifth order aberrations
is not discouraging. However, the fifth order residual astigmatism may be
balanced by introanc.’mg a small third order residual astigmatism. - This, however,

does not reduce the image spread much as the advantage gained by this compensation
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is offset partially by the increase in the third order coma and fifth order
cubic coma, With the astigmatism balanced, we will be 1};*; wlr.h almost comatic
imagery. Hence, it should be noticed thaf.f the selection of the' distancé of the
plate, d) depends mostly on the l:lmitatioh put to the asphericity of the plate
than on the higzez; brder'aberrations. It appears from the above analysis that
this type of corrector system may not be very useful unless astronomers are not
concerned about.the type of energy distribution within the prescribed circle

(0.5").

The requirements for the third corrector arrangement vhich is to be used
with the 1200~ inch focal length Ritchey~Chretien teleéscope cbjective are |

computed and are given below. All the parameters are expressed in inch units.

Paraxial Arrangement

a} = 381.0
3 n 5. 5
% 0.00125931 | 0.01 ~0.0060323%; 0.0
Ty 794.08565 - “165.77315 - -~
ar 1.5 13.,251012 0.48 1

Profile equation: Aspheric Plate

x = 6,2965696 X 1074y = 1.7474603 X 10°8y* - 27714455 x 10"12 8

+ 1.1535565 x 1071 4y®



TABLE I.

ASPHERIC PLATE

X ax
12.0 167,08
108 1098. 368

9.6 685,702

8.4 401 .92

7.2 216.955

6.0 . 104,625

4.8 42,85,

3.6 134559

2.4 | 2.678

1.2 0.167

Y = sgemi-aperture
dx = departure of the aspheric surface from its polar tangent
sphere in wavelengths (A = 0.00002165)

O S S T W



CHAPTER IV

ANASTIGMAT OBJECTIVES

4ol ANASTIGMATS,

It was shown in the previous chapter that a corrector system consisting of
an aspheric plate and field flattening lens can be used to correct the
astigmatism and the field curvature inherent in the two-mirror aplanatic objective.
It was noticed that suoﬁ a corrector system used with a pure aplanatic objective
introduces considerable positive coma and spherical aberration which cause the
image quality to deteriorate, It was also noted that for different corrector
arrangements, these aberrations become smaller as the distance between the plate
and the focus decreases, while the required asphericity of the plate and the
higher order aberrations increase. Gasc:oigrxe (1965) has stated that the telescope
objective may be corrected for third-order spherical aberration, coma and
astigmatism simultaneously by allowing the Ritchey-Chretien mirror constants to be
free parameters, and on this basis Schulte (1966) developed the optical design of
a 152 centimetre objective with very encouraging results, The asphericities of
the mirrors and the plate may be chosen to correct simultaneously spherical
aberration, coma, and astigmatism, while the paraxial set up of the corrector
makes the system free from transverse colour and pétzval curvature. The
resul tant system is called an anastigmatic objective. Accordingly, we may now
develop anastigmatic objectives, cm‘responding to the different aplanatic
objectives 6f Chapter II. It should be noted that the two-mirror objective
without the carrector no longer gives aplanatic imges at the secondary focus.
The development of the anastigmatic obj ective is considered for only one
specified paraxial arrangement of the correcting system, and as the aspliericity
of the plate and the higher order aberrations are quite small for the first ‘

corrector arrangement, we select this paraxial arrangement for the anastigmat.
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4.2  THIRD-ORDER ANASTIGMAT,

Once the air separations, thicknesses, and materiel for the field flattener
and plate are chosen, the axial curvatures of surfaces 3 and 5 (Fig. 3.1) may be
found by employing the procedure of section (3.2) for colour and petzval sum
corrections; We will then find the first of the extra-axial curvatures ¢, of the
mirrors and plate to correct thixd-order spherical abexration,_ coma and
astigmatism, The third-order aberration coef‘f'ioiehts O, » 0,5 O Per unit focal

length are given by

O = Z Sei + —Z To4 (4.1)

[
fmy fuy

6 3 | ‘
0 = Z 951 *+ Z PiTo1 (4.2)

=y fmy

3
o; = Z q42Se¢ + Z P{2Ty4 _ (4.3)

fey

Solving equations (4.1) = (4.3) for T,,, Tors Tosz and substituting P = O,
we obtain

R_,-,- P3R2A Ry; - F,R,
Toy =R == - '

Ra - P&%

(4.4)

+3
d
X1

H

R -~ ER ,
P2 - BBy

il
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6
where, R =g - Z So4

juy
6

Bo=0g = Q§Se (4.5)
jmy .
6

B =05 - 92 Sp §

The first of the extra-axial curvatures are thhen given by
o i = To1/(Ny* = Ny)ypy (446)

Once the paraxial arrangement of the systenmis known, we can compute qi, Spi,

’

F,, P; as mentioned éarlier, Then finding the extra-axial curvatures for any

given residwal values of ¢,; 0,, 0z is a simpl e procedure.

Retumning now to the numerical example, if the first corrector arrangement

is chosen to combine with the aplanatic systemm, from section (3:2) we have

i 2 2 'S 2
Sy -1.2 -2,1024735  0.42282805 © 0.0 ~6.1504642

a' ~0,27794118 0.2874,6866 0.00125 0.,04104251 0.0004

quartz being the mterial chosen for the plete and the field flattener. The

trace of a~ and b=rays provides us with

z Sgi = 1.05496071 Z QiSyi = 0.8136782,
fuy ’ fuy
6

Z Qi2S,4 = 0.58805695

iﬁ

2

B, ==0.83,80568 P, = -19.822585

6
0.0

0.0
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For ‘o, =0=g = 05, equations (4) and (4.5) then give

Ty, = =2.10623698  Tp, = 1.05464334 Ty = =0.00336711

e

We then obtain from squation (4.6) the values for the extra-axial _curvatures

as
6, = 105311849 ¢, = 42.994665 6,5 = =1711,5171

The third-order anastignat is now submitted to analy-_sis by ray tracing.
The spot diagrams (Figs. 4.1 a-d) are obtained for (i) V =0, (ii) V=10
minutes, (iii) V = 20 minutes, and (iv) V = 30 mnutes. The spot diagram
carresponding to V = 0 indicates that the system suffers from higher order
spherical aberration equivalent to 0.267 seconds. The system covers about
30 minutes semi-field for the 0.5 seconds image spread tolerance, But the
image shipé is typically comatic, modified .somewhat by spherical aberration.

 Pigures (4.22), (4.2b) represent respectively the actual ifitersection loci
for the zones corresponding to the maximum aperture and 0,707 times the maximum
aperture, whereas Figures (4.2c), (4.2d) represent the corresponding predicted
loci. The predicted locus is obtained by taking the aberration coefficients
W s Up» M3 into oonsideration. A comparison of the predicted and the actual loci
for the two zones illustrates that such poor image quality for the third-order
anastigmat is mostly due to the presence of the fifth-order spherical aberration
and linear coma in the objective. Considerable reduetion in the image spread
should therefore be possible if the coefficients i, M2 , M3 are either corrected
or reduced, and the next step in the process of improving the image quality will

obviously be to reduce the effect of y,, u,s Uze
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4.3 FIFTH-ORDER ANASTIGMaT,

Based on the last comment of the previous section we will now attempt
to reduce the effect of the coefficients y, , p,, ps by the we of the second
of the extra-axial curvatures of the mirrors Cpys G, As the third-order
aberrations of the two mirrors are still small, we can use equations (2.38),
(2.40) of Ghapter II to find ¢,,, ©,, which provide y,, u,, us <correction.
It is sufficient if we make: u, = O and leave a smll negative residual for
g, and ps for the mirrors as the other members of the anastigat objective
contribute negligible spherical aberration and very small positive fifth-
order linear coma. Returning now to the numerical example, for ., = 0O,

g, = =0.27, and substituting the new values of ¢,,, ¢,, in ewations (2.39),
(2.41), and then from equations (2.38), (2.40), we obtain the walues of c,,, ¢,, as

c,, = =1.0911112 ¢,, = =1037.0176

With these values of the extra~axial curvatures, the fifth~order anastigmat
objective provides images free from spherical aberration up to fifth~-order,
circular coma up to fifth~order, third~order astigmatism and petzval curvature,

and presumably colour.

The spot diagrams for (i) V = 0, (ii) V = 10 minutes, (iii) V=20
minutes, and (iv) V = 30 minutes are obtained for the fifth-order anéstigmat and
are shown in Figures 4.1 e~h. The spot diagrams show remarkable improvemeht in
the image quality. The in'agel spread for axial and extra-axial object points is
negligible as compared to the prescribed tolerance,. Even af V = 30 minutes, the
image spread amounts to 0.075 secaonds only. The actual locus of the intersection
points for the maximum aperture zone for V = 30 minutes, (Fig. 4.2e) and the
predicted locus, obtained on the basis of fifth-order sberratioms, (Fig.4.2f),
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illustrate that this small image spread is mostly due to the fifth«-orderA
linear and cubic astigmatism with a small amount of cubic coma. The image
spread can be reduced still further to an insignificant size by balancing
the present residual aberrations with small residual third-order astigmatism
and fifth-order linear coma. This kind of analysis is made while considering

the mirrors as hyperboloids in the next section.

4.4  HYPERBOLOID ANASTIGMATS,

While considering the development of the hyperboloid aplanat objective,
it was noticed that the fifth-order spherical aberration and linear coma
reduce considerably in magnitude when the mirrors are considered as hyperboloids
and the modified hyperboloid aplanét objective, for which spherical aberration
is corrected to fifth-order, impz;oves the image quality further. Ve will
therefore consider firstly the development of an hyperboloid anastigmat I
objective, which is corrected for spherical aberration to fifth-order, whereas
coma and astigmatism are corrected to third~order. The secondary mirror of this
objective will have the same axial and the first extra=-axial curvatures as that
of the third-order anastigmat and, being an hyperboloid, defines the other
curvature coeff‘ic,iénts._ We can use equations (2.44); (2.45), (2.46) of Chapter
II to find the eccentricity of the primary mirror, which provides spherical
aberration correction to fifth-order for the hyperboloid mirrors only, but, as
the other members of the anaétignat contribute negligible fifth-order spherical
aberration, we obtain an enastigmt for which spherical aberration is corrected
to fifth-order, Once the eccentricity is found and as the axial curvature is
known, we can obtain from equation (1.11) of Chapter I all the other curvature
coefficients 'for the primary mirror also. Proceeding in this way, we get for the

numerical example,



5te

u
1]
i

1.01386284 ¢, = 1.0527954 ¢, = -1.3854726  ¢;, = 2,0258599

»
]

#
]
]

42,914665  o,, 44698.,826

o
i

, = =2.024735  o,, ~1313.9299 o,

The specifications for the other members of the anastigmat remain the same as

that of the other anastigmats obtained before.

Figures (4.1i) = (4.11), which give the spot diagrams for the hyperboloid
anastigmat, show the improvement in the reduction of the image spread as compared
with that of the third-order anastigmat. The image spread for the maximum field
amounts to 0.16 seconds only., The spherical aberration present in the system is
negligible as compared with the tolerance. The comatic shape of the image is
modified by astigmatism., To confirm this view, and to know exact}y vhat higher
order aberrations are present, the actual locus of the jnte’mection' roints for
the maximum aperture zone (Fig. 4.2g) is obtained. Thc cicse reséimblance of this -
locus with the predicted locus (Fig. 4.2h), obtained by the use of third- and
fifth-order aberration coefficients, indicates that the image shape of the
hyperboloid anastigmat I is mostly governed by the fifth-order linear amd cubie
coma and also by the linear and eubic astigmatism..

We shall now consider the development of the hyperboloid anastigmat II.
The fifth-order spherical aberration, coma and linear astigmatism of this
anastigmat are bglanoed by the introduetion of corresponding residual third-
order spherical aberration, coma and astigm;atism.' To study the effect of the
change in the paraxial transverse colour on the monochromatic fifth-order
aberrations which is necessary for preséribing residual monochromatic
aberrations, while considering colour correction, a smll residual value is
introduced by changing arbitrarily the axial curvature of surface 3. It is
later noticed that such a change does not affect the fifth-order aberrations
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much; The balancing of the aberrations is made at the maximum apertwre and
at the edge of the field. The residual values for g, , G, » O3 required to

balance the fifth~order aberrations are found from the-eguations

o,p’ + p,'ps =0
26,077t + , 0*f + p,p? B = 0 (4.7)
3030?12"' Hy opﬁ‘ =0

Returning now to the numerical example, ¢; is changed from 0.42282805
to 0.42614443 and, correspondingly, c,s is changed from =6.150462 to =6.1 537806
to retain field curvature correction., The a~ and b~rays are then traced through
the whole system and the values of |

z So1s. Zqisois. Z Q42594 F, and T
/ o

are oompuj:ed. The third-order residuals o,, O,, 0; required toc&ﬁbensate the
" effect of tus fifth-order coefficients p,, y,s o are obtained from equations
(4.7). Equations (4.4) = (4.6) then give

6,, = 1.09654525 ¢, = 43.22103% . c,5 = =1722,08
The curvature coefficients of the mi.rrors are obtained as
Goy = ~1.2 o, =1.0%654525  c,, = ~1.39535983 o, = 2.04758k
Co, = =2.1024735 ¢, = 43.221034 6y, = ~1332.7572 . ¢35, = 45662.997

Figuwes (4.3 a-d) show the corresponding spot diagrams, The spot d.:.agrams
are also obtained for C, F, h lines and Figures (4.3 e-p) represent these spot
diagrams. The spot aagrms for the e-line show c.isijerable improvement in the
image quality. There is some variation of distortion with wavelength. The gystem
has some marginal transverse colour. The total image spread due to the whole
spectrum, 656.3 nm = 400 nm, amounts to about 0,366 seconds of arc for the maximum

field. The colour correction and a further improvement in the reduction of the
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image spread is considered, and the objective for which this is done will be
called the hyperboloid anastigmat III, for which the process of development
is given bealow,

For V = 30 minutes; it is found that the marginal transverse colour

present in the system is
1 - H
Hhk HCk = 0,00000058
Therefare we prescribe the residual paraxial transverse colowr as
U - ] Y "
hhk th = «0,00000058
which residual is supposed to give colour correction at the edge of the field.

Therefore, the value of t'. in equation (3.2) becomss

ch
t = =0,00000058/0.0087 = =0.00006666

This is requi;red as the t;h of equation (3.2) corresponds to unit semi-field
angle. With this residual lateral colour the axial curvatures of surfaces 3
end 5 are found from equations (3.1), (3.2), to obtain field curvature

correction and iateral colour correction at the edge of the fieid-,- as
s = 0.53448654 © o5 = ~0.26212268
The g; residual required for the system is computed from the eguation
..3°ao§’+ o opl* + (uyse 0B = 0 | (%.8)

whereas the ¢,, o, residwls pequired ére found from eqmtiph (4.7), and with
these re_sidu:'als the extra~axial curvatures of the mirrors and the plate are
détemined by adopting a similar procedure used in the development of
hyperboloid anastigmat II. Arranging the calculated values together, we have



S

Gy, = =102 o, = 1.0548921 G, = =1.39099%6 o, = 2.0579879
o = <2.1024735 @, = 43.074204 ¢, = =1325.7173 &, = 45199.198
‘coa = 0.5344805, c, 3 = =1682.254,6

Cos = =6.26212268

The spot diagrams for the hyperboloid amstigmat IIT (Pigs. 4.4 a=p) show
considerable improvement in the image quality and the eolour is corrected fully
at the edge of the field. There is smil longitudinal colour present in the
systems The image spread for the whole spectrum, 656.3 nm = 400,0 nm; up to
the maximun field angle amounts to about 0.186 seconds only. This shows
remarkable improvement in the image quality as compared with the hyperboloid
anastigmt II, The spot diagrams illustrate that there is some variation of
astigmatism and coma with wavelength. A small introduction of negative coma
for e~line seems to be useful in reducing the imge spread for the whole

spectrum.

4.5 SPECIFICATIONS,

The specifications for the 1200-inch focal length fifth~order anastigmat
II and the hyperboloid anastigmat III telescope objectives are given below.
All the parameters are expressed in inch units. The symbols Y, dx represent
respecti.vely the gemi-aperture and the departure of a surface from its polar
tangent sphere. )
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TABLE 1. PARAXTAL ARRANGEMENT

Surface number Vertex radius Distance to Clear aperture
- and type - of curvature next surface
1. Aspheric (or -4000,0000 -333,52942 150
hyperboloid)
2. Aspheric (or - 570.75674 34,..96239 56
hyperboloid)
3. Aspheric 224.5.14.5, 1.5 2
5« Spherical 191 .62831 0.48 21
(back focal
distance)
2, Profile equations

;5 x 10"y + 2.7167436 x 10~% 1 y*
2.1871114 x 10=1 7y

1. Fifth~order anastigmat II b4

+

4.2141178 x 10~2 3 y0

-5 x 10"4y2 + 2,76174,88 x 10~ y*
3.0508978 x 10=-2 6 yé
+ 4..212904,7 x 10=24y®

2. Hyperboloid anastigmat III b'4



1.

2. .

1.

2,

Fifth-order anastigmat II

Hyperboloid anastigmat III °

Fifth-order anastigmt II

Hyperboloid anastigmat III

X

1

Secondary mirror _
=8,760307 X 10°4y2 + 5,5190452 x 10~9 y
~ 4.6804483 x 10=1 4y6
= 3.7247501 x 10=1 9y

=8.760307 x 107 y >+ 5.5595084 x 10~9y4 °
- 700564047 x10™ ‘y‘
+ 1.11954259 x 10~10y8

Agpheric te

2,2270272 x 104y « 2,4,397226 x 107y
- L.BLO1781 X 10=1 4yo

+ 7.9533087 x 10=1 7y8

2.2270272 x 107452 = 2.4357069 % 10=7ys
- 4.82824 % 10-1 438
+ 7.9141357 X 10™1 738



3 Departures of the Surfaces from their Polar tangent spheres.

TABLE 2; PRIMARY MIRROR

X Fifth-order dinastignat II merboloi%x anastigmat IIL
175.0 223,080 223 .535

67.5 ‘ -146,276 -146,600

60.0 o -91.271 | -91.4,87

52.5 ~53.477 -53.611

45.0 28,854 - -28.929

37.5 -13.910 | ~13.948

30.0 -5.695 5712

22,5 | -1.802 - . -1.807

15.0 ~0,356" 0,357




TABLE 3, SECONDARY MIRROR

Fifth-order anastigmat II - Hyperboloid anastigmat III

L
ax dx

28,0 . 1T | =175. 395
25,2 - -114.,782 -115.265
22,44 | -71,729 -72.065
19.6 -42,083 -42.298
16.8 -22,733 «22,857
14,0 ~=10,970 -11.034
11.2 by 4496 “le 523

8.4 «1.4235 ~1.432

5,6 ~0.281 . -0, 283




b

12,0
10.8
9.6
8l
72
6.0
4.8
3.6
2.4

TABLE &, ASPHFRIC FLATE

Fifth-order anastigmat II

Hyperboloid anastigmat III

dx dx

235,688 233.112

153,322 152,944
95.748 95.4,82
55.108 55.970
30.286 30,211
14,605 140569
5,982 5.968
1.893 1.888
0,374

L Q.375
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4.6  CONCLUSIONS.

The spot diagrams, which are obtained for the fifth~order anastigmat,
whén the colour correction is made for the maximum field, are shown in
Figures (4,5 a=p). These figures show that, as coxﬁpared with the hyperboloid
anastigmat III, there is considerable improvement in the image quality as far
as the e~line is concerned, but this improvement is not much for the speotral»
range oonéidered,, as the image spread has reduced to 0.136 seconds only. This
shows that the mirrors of the anastigmatic system my be approximated as
hyperboloids, as there is not much disadvantage incurred by such an
approximation, which is evident from the spot diagrams. The objective system,
when the carrector system is removed, coversa total field of 8 or 10 minutes
approximately, depending on whether plane plates or bent plates will be used.
The general situation regarding these aberrations improves if the plate is
taken nearer to the focus, at the cost of increasing the asphericity of the
plate. It seems that this kind of anastigmatic arrangement is mostly suitable
in systems where maximum field coverage is required while using correg¢tors,

‘

otherwise, it may not be an advisable solution.

An inspection of Tables I and II shows that the dif’f'e'r‘ence in profile of
the mirrors of the two anastigmats amounts to less than a waveleng’th at the
edges of the mirrors, indicating that the hyperboloid mirrors are not far

removed from the aspheric mirrors of revolution.-



CHAPTER V.,

SEPHERICAL LENS SECONDaRY FOCUS CORRECTORS

5.1 INTRODUCTION..

In the previous two chapters, the usefulness of secondary focus correctors
consisting of aspherical surfaces of revelution was discussed. It was noticed
there that such systems require slight Jemariure Zrom the aplanatic ‘condition
of the R.C¢ éystem to balance the small spherical aberration and coma ix;ﬁfoduqed
by the correetof.': This Chapter is partioularly devoted to bringing out the
principles of the correctors consistmg of spherical surfaces only, Rosin (1966)
has suggested a corrector system, which he used for an £/)4 primary and £/10
system with an aperture of 105 inches, consisting of purely spherical surfaces.
He uses either the concentric or the aplanatic principle in determining the
cuxvature of any éurf'aoa, This being the case, such a corrector does not suffer
from either spherical aberration or linear c¢oma as can be seen later., Therefore,
such a ;:orrecto:' system, if added to the Ritchey«Chretien system, does not al ter
the aplanatic property at the cassegrain focus. Sush a corrector systgm uses the
glass constants as the parameters to correct field curvature and eith;r
longitudinal colour or transverse colour and all the remaining quantities except
two, associated with the corrector will be determined to satisfy the aplanatic
and concentric relations whilst correcting astigmatism, As the corrector employs
glass constants also as parameters, different combinations of glasses are

unavoidable.

As will be seen later, the aplanatic surfaces contribute zero spherical
aberration, coma and astigmatism (third-orc’ier), whereas the contribution from the

concentric surfaces to spunerical aberr.tirw, souae and paraxial longitudinal colour

* Ritchey-Chretien
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are gero. The aplanatic condition at any surface requires that ig § =~ Vo3 =0,
whilst thg concentric condition requires ig5 = O. This later condition results
in the relation iy, = = 1/Ny, which can be deriwed easily from the
consideration of the relation between the paraxia). coefficients. The
contribution of such surfaces to third-order aberration coefficients, o, - 04,

may be obtained by using equations (2.11) = (2.12) of Chapter II as follows.
(1) Aplanatic surface

Soj =%N,yui%j(hkj)(i;j-voj) =0

o;vj =
Gy = ASay = 3 NyFoyyhoy1=ky)(1y=vey) = O |
\
Oz} =%Njyojiﬁ(1-kj )(1gj-v°j) = 0 e (5.1)
943 = ;N’ B J
(2) Concentric surface

G § = % N’yojizoj(“-k’)(i;l-voj) =0
0 f =5 Ni¥ostyles(1=k)(13yvey) = 0

(5.2)

co3(1-k;)

ory =3 NyToyth (1-kg)idyovy) = - 3 —,
A (1-kj)c°j
Caj = ZNj

The expressions for ¢z, 0, indicate that-f‘or a concentric surface the
astigmtio coefficient is equal and opposite to the petzval curvature
coefficient of that surface. A close inspection of the expressions for o3
indicates that a concentric glass lens always contributes positive astigmatism,
whereas a concentric air lens contributes negative astigmatism unless the axial

separation of the two such surfaces is negative, which has no physical significance,
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5,2 RITCHEY-CHRETIEN SYSTEM WITH ROSIN CORRECTOR. -

The Ritchey-Chretien system along wi.th the Rosin corrector 'is shown in
F:.gure (5 1) It was noticed in Chapter I1 that the RitcheybChret:.cn system
suﬁ'ers from positivc aetignatism. It therefore follows from the concluding
remark of the previous section that we should employ a concentric air-lens ' -
to correct the posn.tive aetigmatism of the Ritcheybcm'etien system, The
bounding surfaces of the two lenses may be chosen as aplanatic and different
mtemle will be used for the twc lenses so that the refractive indices and
the V-numbers will be the parameters used to correct the petzval sum of the
Ritchey-Chretien system and either the loﬂgitﬁdinal colour or the transverse
colour of the whole gystem, The resultant system will therefore have surfaces
3 and 6 as aplanatic: and surfaces 4 and 5 as concentric. The following
relatione nayvbe": obtained by imposing the aplanatic conditions at surfaces 3
and 6 and concentric conditions at surfaces 4 and 5. The power of the Ritchey-

Chretien system is considered as unity.

4+ K
@3 PE =T T
4 | 3
Vo4 ks
coayos = 1/k3
. Wos = 1/ks

(5.3)
cosyos = 1/k 3

voeé = 4/ks

(VISR ' DU ' IR ' SN | SO | S |

R -

coeyos = (1+ke Vs k 6

- o1 = 1/kske = Né/Ne. .




Fig 5.1

RITCHEY CHRETIEN SYSTEM WITH ROSIN
CORRECTOR.
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The expressions for v,, indicates that the focal length of the whole gystem
changes from unity to the Ng/N, value.

The expressions for the third-order aberration coefficients'g, - o, and
for the paraxial colour may be derived as follows. The terms containing R
and x refer to the mirror system.

o =0
0 =0 |
1 (%mzk) gg..,ﬂsa__.). .e.a.n.(.h._].l ]
O3 =,N|‘(V5k‘[ 4(1+Rx _ ; i >1
N . iex+2R ' -1 k-1.. | e
-5 R - e e (50
-l (1=x)=1-R | (cos=cos)(N4=1) (gos-cos)(Ne=1)
Os -'ﬁ%ﬁ " 2(erx * 2N, e 21:15 } 1
=NL o 2(eRe) ? 2N, * 2N, " 1
1chnﬁ {(yuioc"ka)'oaioa)(ﬁx‘Ny)a + (yoo-ioo"ks.%sios)(Nx"NY’)bI
~dd - ) (Nx-N
”I\% [(Ny=Ny)y yop + =X k;’ka = ' ] (5.5)
tt':h=%3—- (¥os18=Yould J(Ny=Ny)y + (Fo528-Toeds) (Ny=y)p}
='§:!(yoaia (el )y - (’1 + yosis)(N Ny} 7

vhere the subscripts 4, y indicate the two lines for which colour correction
is required, and the subscripts , and , denote the front lens and the back lens
réspectively. The expressions for 1ly, t{p are obtained on the basis of

chromatic coefficients (Cruickshank, 1968).



5.3 CORRECTION FROCEDURE,

The equations of the previous sections show that there are two possible
ways of reaching an anastigmatic solution. One way is to assume the thickness
of the lenses, the distance of the corrector from the fogal plane and the
refractive index of the front lens; and then determine the aJ.r separation
between the two lenses and the refractive index of the back éomponent along
with the curvatures to obtain the required correction state while satisfying
the aplanatic .and concentric conditions. The second approach will be to
assume the refractive indices, distance of the corrector‘ from thg focal plane,
and thickness of the front lens as known quantities and then £ind the |
curvatures and separation of the two lenses and the thickness of the back
component to obtain again the required correction state while satisfying the
aplanatic and concentric principles. The latter appmach is followed here, as
the former procedure is more theoretical and the analysis is not very favourable
. because of the limited number of glasses available., Using e’qi:aﬁi‘é)_xié (563) =
(5.4), the explicit expressions for the d,ifférent quantities are derived and are

assembled as shown below. The values of &', &, Ny N¢ are assumed to have been

spec;'if'ied. .
2
Yos = Yoo ~ &' = (14Rx)/(1+R) - 4} 7
e
Gz = (1+k; )/ks ¥o3
Se = V(¥ = 05') ]

g
i

= Tt 5%? - ﬂfﬁ?‘wﬁ' } 1 (5.6)

_ _2Ns =x)=1-R . (c02=0ac)(Ne=1) = cas(Ne=1) N, )3}
%6 = Tie=1) ] 2{1+Rx$ TN, * TN, " T 04}

Cos

a3 =M§-—w 3= tggg(ﬂ:ﬁ 2 - (11:&_16 v

k3Co6
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where R, x have the same meaning as before, and o;; o, are the residuals of

the whole system, and will usually be zZero or very small.

We are now left with colour correction, As the paraxlal set up of the
whole system is lmown, we shall trace two formal paraxial a+ and b-rays
through the whole system for the e-line (bage line) and determine the unknown
quantities in equations (5.5). The equations (5.5) will then become functions
of (Ny=Ny), and (Ng=Ny)y onlj. A proper choice of these two quantities is
made depending on whether longitudinal colour correction or transverse colour
correction is required. When one of these corrections is made, then the
residual value of the other colour may be obtained from its own expression.

As the refractive indices for the glasses are assumed to be known, it is
necessary to search for the isoindex glasses in the glass catalogue for colour

correction,

5.4  NUMERICAL EXAMPLE,

‘The principles outlined in the previous séctiona are now utilised .-’m'
developing a doublet corrector syétem of the Rosin type to correct9s , Cs of
the Ritchey-Chretien telescope objective system developed earlier: The
distance of the corrector, &, is chosen arbitrarily and the front lens of the
corrector lies just before the vertex of the primary mirror, However, fhe
variation of the higher order aberrations with &7 is studied by changing & once.
Initialiy, K3 518 590 and SK 16 620 603 are chosen as the materials for the front .
lens and the back lens respectively. The initdial prescription for dz’, df, Ne, Ne
ig

a = 0.27325251 &} = 0.0008 N, =1.52032 N, = 1.62286 0, = 04 = 0.0
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Uéix;g equations (5.6), we obtain
26.,000643  co5 = 29.923601 o6 = 49.093165
0.00049744

603 = 2{-2.224436 004
a = 0.00504215 &}

i

This carrector is added to the Ritchey-Chretien system and the third~- and fifth-
order aberration coefficients for the whole system are computed and are shown in
Table I. With the same pair of glasses, the distance d; is now changed to 0.285

and the paraxial set up for the corrector is

32,537676  cos = 35:752772 cCgg

58431944
0.00025704

52571099 Coe
0.285 as

]
H

Co3
Q'

The third- and fifth-order aberration coefficients for the two-miirror system with

]
1]
1

this corrector added to it are again computed and are shown in Table I. 4an-
inspection of Table I indicates that the fifth~order linear astigmatism, cubic¢
coma and distortion increase considerably, whereas the fifth-order cubic
astigmatism is reasonably stable. It is to be noted that for this increase in
4, both longitudinal and transverse colour also increase. 4n increase in 4,
decreases the diameter of the lenses. It is therefore more advantageous to

select the first position of the corrector for further analysis. .

o balanee the fifth-order astigmatism it is necessary to introduce a
small residugl third-order astigmatism. The residual value for ¢os is presoribed
as 0.21234, which is supposed to balance the ﬁ.fth-ordér linear asffignatism at
the edge of the aperture for a semi-field of 20 minutes. The new set up for the

corrector with this gz residual value is obtained as

48.055916
0,00098685

28.886353 cg¢

coa =lb2-22416-36 Cos 2690006“3 "~ Cgs
dz' = 0,27325251 d; = 0.0008 d:

0.0038,316 da}



TABLE T, ABERRATION COEFFICIENTS

a | o27msest | 0285
0‘ 000 ) . 0.0
o, 0.0 0.0
o B 0.0 0.0
- o] . : .
"E E'{" Oy 0.0 0.0
+ k4 G
288 | o 123.85 148.17
'_“ 0.0 0.0
u.z » 0.0 t 0.0
*3 Ms - 0.0 0.0
1 me -10.326 -10.12
g s | - =7.6161. «7.4097
2 T -2.7098 -2,7099
O i
3w 309.43 351.58
§  Us 155.81 176.89
[ ] ' )
% Ko 153.63 1747
81 o 16242 -22891.
g u,‘ 1 "lblb3801 "'61 &08
Py
[TH 182400 3102900
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The colour of the system is found by using equations (5.5), and it is noticed
that there is considerable change in colour whén the residual value for g, is
changed. However, with the present set U;p, the longitudinal and the transverse
colour are both found to be within the tolerance limits up to a field angle of
40 minutes for the wavelength range C - F, The system 1s now submitted to
analysis by spot diagrams. Figures (5.2 a,b,c) show the spot diagrams for the
e-line. The image spread up_tg.a.%¢tal.field of 40 minutes amounts to about
0.115 seconds only. This image spread is found to have increased“t'o about 0.89
seconds for the wavelength range C - F, and as a consequence of this, the vspot
diagrams are not plotted for the other wavelengths, This glass s.eleotion is

therefore rejected and then proceeded to find isoindex glasses.

As SK 15 623 581 is nearly an isoindex glass to SK 16, this material is
now chosen far the back lens and the combinations has reduced longitudinal
colour considerably, whereas the transverse colour has worsened the situation.
A few more different combinations (restricting ourselves to highly transparent
glasses) were tried and ultimately it was decided to leave some longitudinal
colour and decrease transverse colour considerably. For this purpose, K 10
501 564 and SK 16 620 603 are found to be suitable materials for the front and

back component lenses respectively. The paraxial set up for the corrector is

found to be
dz' = 0.27325251 dy = 0.0009 al = 0.00332564. a = 0.00108736
Cos = 41.942479 Cos = 25.773153 ° c45 = 28.189325 Co6 = 47.000128

This set up makes the system suffer from some transverse colour and considerable

longitudinal colour.,
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Fig 5.2

SPOT DIAGRAMS FOR RITCHEY - CHRETIEN SYSTEM WITH ROSIN CORRECTOR (initial correction)




64

This final corrector system is added to the Ritchey~Chretien system
and the combined system is submitted to analysis by ray tracing. Figures
(5.3 a=i) show the spot diagrams for the C, e, Flines for (1) v = 0,

(41) v =10 minutes, (iis) vV =20 minutes. The irnage spread for the e~line
amounts to about 0,136 seconds only up to a total field angle of 4O minutes,
whereas this ingreasgs to about 0,77 seconds of are for the wavelength range
C = F, which is about one and a half times the prescribed tolerance. A study
of the different combinations of glasses has revealed that with the present
set up of the Ritchey-Chretien syste'm, about this much image sp'read appears

to be inevitable.

5.5 SEECIFICATIONS

The specifications of the corrector systenmwhich is to be added to the
1200 inch focal length telescope objective are cumputed and are given in
Table II, All the parameters are expressed in inchh units. Distance of the

corrector from the vertex of the secondary mirror = 327,903.

5.6  CONCLUSIONS

The analysis given in the previous sections Zllustrates that the
limitation in tﬁe use of the Rosin corrector is minly confined to colour,
With this type of corrector system, one couid, achleve the best monochromtic
aberration correction, whereas the colour correcticm appears to be rather
difficult. In fact, with such a corrector system, the useful field for a
given spectral range is mainly limited by the imge spread produced”by other
lines rather than the e-line. This type of corrector system also introduces
considerable distortion. If the longitudinal coloux is fully corrected, it
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Fig 5.3

SPOT DIAGRAMS FOR RITCHEY CHRETIEN SYSTEM WITH ROSIN CORRECTOR




ZABLE 11

Surface radius of distance to material ¢lear
number curvature next swface aperture
. K10 501 564 21.0
4 4,6,56009% 3.990768
SK16 620 603 21.0
5 42.569313 1.304832
6

25,531848
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appears that there will not be much variation in the image shape with wave-
length. Such a carrector system finds maximum utility where a narrow range
of the spectrum is considered. The uascoigne plate with the field flattening
lens appears to have more useful application in improving the size of the
field for a wide range of the spectrum. The advantage of the Rosin

corrector is that it does not alter the Ritchey-Chretien configuxration of tﬁe
mirrors. Except for the best ocorrection and the considerable increase in
field size (a full one-degree field can be obtained without exceeding even
0.25 seconds of arc) for the e=line, this kind of corrector seems to have

limited use.



CHAPTER VI

FRIME FOCUS CORRECTORS

6.1 INTRODUCTION,

The image formed at the primary focus of the Ritchey-Chretien telescope
objective system suffers from spherical aberration, coma, field cuxrvature and
astigmatism. If the primary focus is to be used,. primé focus con‘éctom are
thereforé mquiréd. Prime foous correctors consisting of spheﬁcﬂ surfaces
(Wynne, 1965, 1968; Ross, 1935; Rosin, 1966), and aspheric surfaces of
revolution (Meinel, 1953; Gascoigne, '1965, Kohlers, 1966; Schulte, 1966) are
proposed. Gascoigne has suggested a single plate corrector for the
correction of third-order spherical aberration and coma., With this single
plate correotor, the size of the useful field obtained may not be considerable.
Meinel has suggested that the field aberrations of a parabolic mirror may be
corrected by using three air spaced aspheric plates which are placed‘ nearer to
the focal plane. Following this earlier suggestion by Meinel, field correctors
of this type for the primary mirror of a Ritechey=Chretien system were
investigated by Schulte (1966) and Kohler (1966). Kohler has used one more
spherical lens to correct the field curvature of the primary mirror. This
chapter is particularly devoted to the investigation of the usefulness of
field correctors for the primary focus involving aspheric surfaces. The design
principles underlying the development of single plate and three plates
correctors will be discussed.

6.2 PRIME FOCUS_ABERRATIONS.

When deriving the expressions for the third-order aberration coefficients
for the two-mirror objective system, the diréct sumation property of the

aberration coefficients is used, It is therefore easy to obtain the expressions
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for the third-order aberration coefficients for the primary mirror directly
from equations (2.17)- (2.21) of Chapter I1I. In this way, we get

R ]
o =g < 20, )
2
oz==% 7
| R (6.1)
R
Os = 2
| 7
Os =-‘§ 7

If we work with the unit power primary mirror and use the expression for

o, from equation (2.23), equations (6.1) then become

.41 R L., . 7
O, =%§ i-e-- 20‘1} ='-m3 1=
2
G, = %2 . 'E = 0.:25
R - A (6.2)
O3 =% . % = 0.5
Os. ’::-% ‘ 'ZR" ==0:5 J

Equations (6.2) show that for the unit power primary mirror the coefficients

O, = 04 are independent of R and x.

Returning now to the nmnerz.cal example, where R = 2.4 and x = 0.055,

we obtain the aberratlon coefficients O, = 04 a8
g, = -0.0216631 g, = 0.25 os = 0.5 O4 = ~0:5 (6.3)

These figures for the aberrat:uon coefficients indicate that the prime foous
suf’fers very seriously f‘mm all the monochromatic aberrations. The coeffic:.enf
o, itself produces a very large image spread, showing that prime foous

correctors are required even to obtain axially stigmatic imagery.



6.3 INGLE PLATE CORRECTORS

Gascoigne hé.s suggested that a single aspheric plate inserted at a
suitable distance before the focal plans is ocapable of correcting coma and
spherical aberration of the mirror. This therefore necessitates that the
distance d' of the plate from the vertex of the mirror =nd the asphericity
of the plate are to be chosen to correct sphérical gberration and .com
simul taneously: The asphericity in;posed on the plate for this coireetion
necessarily introduces considerable astigmatism as ¢an be seen later. The
size of the useful field is therefore limited by astigmatism and petsval
curvature. The effect of the petzval cwrvature on the image spread my be
eliminated by using the mean focal surface, which requires boni 'pl}gt’ograph‘ic
plates. This also rédmes the effect of astigmatism to some extent. Any
gmall amount of colour introduced by the asphericity of the plate may be

reduced by a proper choice of the axial power for the plate;

Figure (6.1) shows the optical arrangement of the primary mirror with the
corrector plate. We shall make initially two epproximations while deriving the
expressions for the third-oxrder aberration coeffioients,‘ O, = U4, Ramly that

| the paraxial power of the plate is zZero and the thickness of the plate is
negligible, Because of these approximations, the contributions due to the
sphericity of ths bounding surfaces of the plate to the aberration coefficients
0, = 04 are zero. Tracing the a<ray (yo, =1, vg, = 1/1,,) and the bray

(j{, = p/(4=p/1,, ), v,- = 1/{1-571,, )) “hiough the system shown in Figure (6.1),
we get

Toa = Tou = v, =1+ a

Y, =¥ =d'v, = a) . (6.4)

B o= a/(14a)) |



Fig 6.1

Primary mirror with single plate corrector
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Substituting these expressions in the expressions for ¢, = o, of Chapter II,

equations (2.11), (2.12), we get

G = --lj.R3+1~x_ + (Nﬁ)o‘zyzz = - QJRJS%%T * (Nﬂ)ctz(j";a'\'»)‘ (6:5)
Ty Wede, () = (e ar(na) (66)
o] =;1+. * 1+¢'1; 2 (=10, , (14a))* ='12' + (Nt )e, 402 (140} (6.7)

Oy == 0.5 v (6.8)

For any required o‘ » 0, residual values for the system, the expressions for

¢, and d,' my be obta:.ned by solving equations (6.5) = (6.6) as

~
LAyt
(O' ﬂa 1& !ﬁ_). . >
(N ‘D (O, +,. . ) o |
| (6.9)
a = — °2_.f',i'» ]
G =0 *h-R"'*‘i-x *i' v J

where, N is the refractive index of the material of the plate. The values of
O é.,’ that will be obtained from equations (6.9) for any given g, , o,
residual values serve as an initial approximate solution, and any further
improvement in. the con‘ecfion state of the spherical aberration and coma may be
started from here, and the iterative process with the differential correction
methods my be adopted to obtain the exact prescribed values for g,, 0, The

further development of the correction state is given below in stages.
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Stage (1): Initially o, and g, may be prescribed as zero. The initial
starting solution may be obtained from equations (6.9). We shall then
specify the actual paraxial curvature for the plate and the thickmess of

the plate. Changing ¢,, and 4' by small quantities, one at a time, the
derivatives 9 ¢,/d¢c,,, 30,/3¢,,, 20,/04}, and d,/d3} may be obtained, Then,
using the equations given below .and iterating the process, we can cbtain the

exact prescribed values for ¢,, O,.

30, ‘ 30,
Sor c ben v 3y o =R -0)
- | (6.10)
aoz 602 . .
3., Ac,, ""5517, « AG) = (Rz" 02)

where R,, R, are the residuals prescribed for Oy Gy Ve shall then compute
the higher order aberrations for the system. We can choose the second of the
extra-axial curvatures of the plate as a parameter to balance the seventh—oxder
spherical abe&ation with fifth-order spherical aberratibn. We shall then
choose a proper residual for ¢, to balance the high& order coma effects, while
prescribing g, as zero. This type of cormcfion makes spherical aberration
gero up to seventh-order and higher order coma is balanced la.rgeiy by third-

order coma.

Stage (2): After the above correction, it is necessary to trace a few rays
through the system in the C~, e~- and h-lines to find the effect of the
asphericity of the plate on the colour. The asphericity of the plate minly
effects the longitudinal colour whilst the effect on transverse colour is
negligible. This present view is in contradiction to Wynne's statement (1968)
where he reports that the asphericity of the plate introduces transverse colour.

This present view of the author is supported later on when the actual
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performance is shown by way of spot diagrams. The residual value to be
prescribed for the paraxial longitudinal colour may be found froni the traces.

The approximate value of ¢, which gives the necessary pa.raxial longitudinal
| colour may be obtained fram the equation '

1ih
o2 = T TN, N, J(1+a 2

(6.11)

where 1{, is the necessary longitudinal colour residual and N,, Ny are the
refractive indices of the lines for which colour correction is required. The
above equation is obtained by using chromatic coefficients. Any further
improvement in the colour correction may again be obtained by the iterative

- differential correction method, while tracing the paraxial a-rays in x, e,
y-lines to determine the actual colour. This time ¢y, will be the parameter

for such correction.

Stage (3): The introduction of the paraxial power to the plate slightly alters
the monochromatic aberration correction. This therefore necessitates the
repetition of the whole process of stage (1) and stage (2) to obtain the final

- correction.

Returning now to the numerical example considered earlier, we apply the
above principles to obtain a single plate corrector which provides images at
the prime focus free from colour, spherical aberration and coma. Quartz is the
material chosen for the aspheric plate, As the process of develorment has been
clearly described, the actual design of the corrector is given here, without
. detailing all the stages of the development. The set up for the unit power

primary mirror is obtained as

co’ = - 0.5 °°2 = 0005 coa = 0.0
a' = - 0.92111176 4} = - 0.0012
c,, = 0.0733315 ©,, ==1245,4205

Gy,

1]

- 0.01399463 o,, = 570489.74
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The third-order aberration coefficients for the system are

o, = 0.0 o, = =0.0081632 Oz = 3.5347 O¢ = =0.5085 Os = =35:.398

The whole system is now submitted to analysis by .ray-fracix_lg. The spot
diagrams for the C~, e-, h-lines for (1) V =0, (ii) V = 5 minutes are shown
in Figuwes (6.2 a-f). The displacements are computed in the mean focal plane.
It can be noticed from the spot diagrams that there is not much va;iation in
the image spread with wavelength. The colouwr present in the system is
negligible. Por a semi-field angle of 5 minutes and for the spectral range,

C = h, the image spread émo\mts to about C.618 sécbnds. The size ‘of the field
increases to some extent, if the tolerance limit for the blur cirdle is
zi;noreased. The usefulness of this corrector in improving the field size for
good»imagéry is mainly limited by astigmatism only. As' the size of the useful
field obtained with this single plate corrector is amall, .this type of corrector
finds limited applic;ations. This type of corrector plate, as pointed out by -
Gascoigmg, finds its use mostly in prime-foous spectroscopy, photometry and to
some extent in astronomical work.

The following are the specifications of the corrector plate and the
photographic plate when the power of the system is raised from unity to the

actual power. All the dimensions are expressed in inch units.

qurector Flate
Distance of the plate from the vertex of the primary mirror = =460.55588
Radius of curvatures of surfaces 1 and 2 are
r, = 10000
co

r, -~
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Fig’ 6.2

SPOT DIAGRAMS FOR PRIMARY MIRROR WITH SINGLE PLATE CORRECTOR
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Thickness = 0.6
Diameter ~13.4
Frofile equation is given by
x = 5% 1078 = 2.4908409 X 10765 + 3.042587 x 10-°y*®
| + 1.8955157 x 10~ 53'5
_ As;ﬁedcity
X 6.6 5.9 5.28 4.62 3.96 3.3 2,6,  1.98  1.32

dx  496.05, 328,936 < 207.29% 122,516 66,601 32,310 13.298 4.22 0.837

%ere, Y is the semi~aperture in inches, and dx is the departure from the
polar tangent sphere in wavelengths (A = .00002165 inches)
Photographic Flate
Vertex radius of curvature = =19,05328
m.amﬁter =~ 1 .6

6.4 THREE-FLATES COFRFCTOR SYSTEM,

As the single plate corrector did not improve the field size considerably,
it is desirable to proceed with the two or three plates corrector solutions to
mlprove the size of the field further. Before proceeding with the design of a
three-plates correotor system, a two-plates corrector system solution has been
tried. With such a corrector, we will have six parameters to control the six
required aberrations. These parameters are the air separations d', 4§ end
the curvature coefficients ©p,, Gpes G 55 © 4 and the third-order aberrations
to be controlled are spherical aberration, longitudinal colour, transverse
colour, field curvature, coma, and astigmatism: Vhen the six parameters are
used to control the six aberrations, the set up of the corrector has been found
to have no physical significance due to the fact that one of the plates lies

behind the focal plane. Therefore, it appears that a two-plates correotor



e

system does not provide a real physical solution to the problem. Due to this
reason, a three-plates corrector system has been fried. In the case of the
three~plates corrector, the paraxial e\n}-vatums will be chosen to control the
longitudinal and transverse colour and. field curvature, whereas the ext'ra—éxial
curvature coefficients of'- the plates will be chosen to correct spherical
aberration, coma and astigmatism, while the air separation and the axial
thicknesses of the plates may be éeleoted arbitrarilys 4s the higher order
aberrations are not usually neg,ligible with such éarrectors, the second of the
extra—axial curvatures of the plates may be chosen to reduce the effect of these
higher order eberrations. Figure (6.3) shows the optical arrangement of such a
carrector system along with the primary mirror.

6.l PARAXIAL ARRANGEMENT,

The initial solution for the paraxial arrangement of the corrector may be
obtained by considering the plates as thin and assuming equal spacing between the
plates. Using the thin lens equations (Cruickshank, 1968), we will obtain the

paraxial equations as

v:oa = “‘100‘ va = ‘.‘100
Yoa =1 +8 ¥ =4
Vob = =140 + ¥0a0p

Yob = Joa = d; Vg
Voe = Vob + YabPb

Yoe = Yob = 93 Vo

VB = "1 .‘0 + ya(pa
yb = Yo = &W
Ve = Vh + Ybob

Yo =3 - &v

where we have designated the plates by the symbols gypyce



PRIMARY MIRROR WITH THREE PLATE CORREC TOR
Fig 6.3
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The equations for the field curvature coefficient, o,, paraxial longitudinal

and transverse colours may be written as

...-.L’ ~
Os = NI¥Y, [ =0.5+ -m‘.ZN.N; + -ﬁh—szNB +—-9“-—2NcNé } _ (6.13)
Psdhs  Pb¥Eb  PcYhe
e gy L vf e el (6.14)
4 PaToa¥a  PbYod¥b  PcYocYec A »
ey LY, T, YTy, ‘ (6.15)

We will choose the same material for all the three plates, and 1§ 5, t¢y may be
prescribed as zero initially, and if any residual values are required, the
spacing between the plates may be adjusted to achieve the actual tolour

prescribed. Equations (6,13) - (6.15) then become

Pa * Qb+ Q¢ = (4R, ) . | ~ (6.16)
' PaYha * PpYhb + PcShe = O ' (6.17)
PaYoaYa + PbYobYp + PcYoeYe = O - (6.18)

where N is the refractive index of the material of the plate, and R, is
given by |
R = NG - (6.19)
Equations {6.46) < (6.18) may be solved to obtain a very approximate solution
for obtaining gero values for 1}j and t}, and the actual value for g, When

the powers of the plates are determined, the axial curvatures may be computed -
from the equation A

ot = (N=1)/px ~ o (6.10)_

where = 2,4,6 and | = gsbsce With this as the initial solution, the actual
values required for tfn, lén may be obtained by further adjustment of the air
spaces 4! , d% by using differential correction method. This vay, the whole

paraxial set up can be determined.
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64402 THIRD-CRDER MONOCHROMATIC ABERRATIONS CORRECTION.

As the paraxial set up of the corrector is known, we w:ll trace two
formal paraxial rays, the a=ray (o, = 1, Vo, = 1/l5, ) and the beray
(5, = p/(1-p/1y,), ¥ = 1/(1-p/1,, )) through the system to determine the
values of 54,P,q at every surface. Using equations (2.11), the third-order

aberration coefficients ¢,, 0,, 05 may be written as

7 7 .
o = Z St + Z Ty - Tty 3 (6:21)
ie2 2
?
o, = Z QS + Z BiTyq + 0.25 (6.22)

o3 = BTy + 0.5 (6.23)

,.
| gy
2
&
+

Solving equations (6.21) - (6.23) for Tp,, Toss Tos, Which give simultaneously
zero or any residual values of 0,, 0,, O3 for the whole system, we get

(PR, #PeR, =B, FR =Ry ) (Ry-ByR, -F, RyP, B, R)

Too =R = (Be-F, J(Be-Fy )~ (Be=Fy )J(P-F, ) (6.24)
F,R+ FeR, - F,FR '
Tc‘ e (P‘ — P2 )(P‘ - P,) (6.25)
_(Rs_ - PR, - E)R, + PByF,R, ) |
Tos =3, - P (B - B) (6.26)
- 7
where, R =0, +33 1;_?: - Z Se1
jo
] 2
R, = g, - 0.25 - z Q4Se 4 (6.27)
=2
R; =05 = 0.5 ~ ASe4
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‘We will thén find the first of the extra~axial curvature coefficients of the

plates from the equation
To4

AR () rry | (6.28)
With these values of the extra-axial curvatures, we will obtain the réquired

correction state of the third-order aberrations.

6.4.3 HIGHER ORDER ABERRATIONS,

With this type of correction and also as the position of the plates is
far removed from the entronce pupil (this is necessary to reduce the diameter
of the plates), the system will suffer seriously from all the higher order
aberrations. In order to reduce the effect of these higher order aberrations,
a proper choice of the second of the extra-axial curvatures shall be made,
However, as the fifth-order aberration coefficients are linearly related to the
second of the extra-axial curvature coefficients, and also due\to the fact that
the introduction of the second of the extra~axial cwvatures on a particular
surface alters the aberration coefficients of that surface ohiy, the labour
reduces in the development of the design to some extent. If the aberrations
are much beyond the tolerable limits, then, the introduction of third-order
residuals for all or for some of the aberration coeffirisats may be inevitable.
However, this decision will depend entirely on the actual values of the higher

order aberration coefficients,

6.4.4 APELICATION to NUMFRICAL EXAMFLE,

The principles outlined in the previous sections are now illustrated by
way of an example.  Returning now to the numerical example considered earlier,
we will develop a three-plates aspheric corrector suitable to the primary mirror

of the telescope. We will select quartz as the material to be used for the plates.
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‘In order to keep the diameter of the largest plate less than about 20 inches,
we will choose ' as equal to =0,92. Using equtions (6.12), (6.16 - 6.18),

the initial paraxial set up is obtained as

‘2.92‘1-6083 | Co3

Cpp = = 0.0 Cgq = 7.793176  cps = 0.0
006 = "800’&&082 007 = 0.0

d" = -0092 d; = “0.001 a'a = "00026 d" = -0.001
ds. = -00026 d: = -0.001

With this arrangement, the actual values ofg; , lih, tip are found to be

O‘ = 0 . 0
1% = 0.0000370%

vhere, the values for 1lgy, tg)p refer to the unit semi-aperture and semi-field.
The;e values for 1f;, tlj may be reduced to negligible quantities by adjusting
the air spaces 4, 4§, using the differential correction method. After this
adjustment; we obtain

C°2 = -20924&83 008 = 0.0 Oo‘ = 7.7993176 cos = 0.0
005 = 'Somaz éo, = 0,0
4" = -0.92 a =-0.001 a} = -0.02620383 4} = -0.001

a} = -0.03491344 4} = -0.001

Tracing the two formal paraxial rays with the initial coordinates yo1 = 1,

Vo, = O for the a-ray, and 33 =0, vy =1 for the b=ray, we will determine the
values of Qij,Spi,Fi at every surface. vEmploying the equations (6;24)_ - (6.28)
we will determine the values of ¢,,, 6,4, ¢ s Of the plates which give

6, =0, =03 =0. In this way, we get
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G

i

-7700 86889
=5934.8109

Q¢ = 46451.895

The aberration evefficiénts for the whole system are

0, =0, =05 =0s=0.0, 05 =290.9%
W = OOTABL = 2,491 ps = =1.6607 e = 48.704 ps = 15.079
U = 33.625 iy o= 821,03 pp = <6297 e = ~190.55 i o= 35215
My o= 2925.7 Wy ,= =158110
T, = 0. T, = =9.8183 5 = =6.85, Te = 299.75 s = 97.428
Te = 216,47 .‘ Ty = =5380.6 T, = =3563. Ty = =160, T, 0= =136.47
Ty = 4076, T, ,= 5693.9 Ty g W27 T, 4= 909745 T, 5= 803730
T, ¢= 799780 %, 7= 125380 T, ~14805000 T, o= =593380 T, o= ~70645000

These figures indicate that the third-order correction of theé aberrations increase

the fifth-order aberrations to a very large extent., It is therefore necessary to

choose the second of the extra~axial curvature coefficients to reduce the effect of

these edef'f‘icients considerably. Changing the ¢, values of the plates from zero to

some other values, and again &nmuting the fifth-order aberration coefficients, we

can obtain the derivatives of these coefficients with respect to ¢,,, ¢4, ¢ as

oy =
fisz
fo, =
e =

fLes =

«0.0412

= =0.0, 3212

0.00036933
0.0,41
-0.0,986
-0.00407815

= 0.0416
= 0.04164211
= «0,000162582

fl, = 0.0.519

fle = =0:0,6423
fly 0, = =0.01061791 -
fige= 0.0,27

Bre= 0:0,26896
iy, 4= =0400081572
e = =0.042765
flss = 0.0.109475

,. '-152= 00052?9
iy, = 0.001108

1y, ,= =0:00212362
fHea= =0:041478 |
llsa= 0.0517934
ie= 0.0 |

lise= =0+07921

fos® 00554735 -

flag = =0.0,9635
s, = 0.00073867
e = =0.0074
fiss = =0.05493
fos = 0.0,8967
ﬁ,; = 0:0523
fiss ==0.061843

L o6= ~0.00081291



where, ,;lij‘r is defined as the derivative of i with respect to cj, and

j takes the values from 1 - 11 and ; takes the values 2,4,6. -

'Using the derivatives of the fifth~order aberration coeff‘idimts, and
taking into _considération the effects of seventh~order coefficients, aloﬁg
with the reduction of the imge spread (irrespective of the type of energy
gistribution) es the min aim, the curvature coefficients ¢, , O,4p O s 8r

prescribed as
0,, = 635496 Crs = «-1200000 Crs = 45234944

This cd_rrector is now added to the primary mirror and the aberration

coefficients are obtained as

G =0, =05 =04 =0.0; s = 290.9
gy = 0.0082148 i, = «0.21349  ps = =0.94232 g = ~6.4406 g - ~3.3026
pe = <3138 py = 2646y, = 81.99 pe = 164,17 o= -526.7
hyy = ~4222.5 o= 242070 | a

T, = 0.039493 T, = =3.453 75 = -2,0801 T, = 6.3 T = 42,398
Te = 99.388 Ty = =2748.5 Ty = ~1812.5 Ty = =722,65 T, o= ~137.41 -
%, = 6636.6 T,,= 3762 T,y 1067 T, 4= 17309 T, g= =399550

T, 6= 41410 T, 75 =69215 Tye= 3757000 T, 5= 2920500 1, o= =260,10000

- The quality of the imge'at the prime focus is then analysed by meahs of the
spot diagrams. Figures (6.4 a=d) show the spot diagram‘f'or (i) V=0,
(i1) V= 10!, (iii) v = 20', and (iv) V = 30'. The spot.diagrams show that ihe
quality of the image deteriorates very rapidly with the inczjease in field size.
Howevei, the image spread does not .exceed 1 second of‘v arc upv to a total field of
50 minutes. An inspection of the sberration coefficients indicates that the

deterioration of the image quality when the field is increased is mainly confined
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to the fifth-order linear astigmtic coefficient y,,. It is hardly possible

to bring both the aberration coefficients y,4, u,, under control.

With the present set up, the syétem suf £ers from some higher order
chromatic aberration, It is therefore required to prescribe proper residuals
for the paraxial colours to balance the highex~ order chromatic effects for an
appropriate aperture and f‘iéld angle. A smll positive residual value for g,
. may be useful in balancing the eff'ect of higher order astigmatic coefficients.
These changes require the initial paraxial set up to be altered, which
slightly éi_térs the required asphericity of the plates, for the correction of
monochromatic aberrations. The principles outlined earlier may be used to

obtain a best three plates corrector system.

s 4 WP e WS GO mIes W
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