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ABSTRACT 

Recent commercial interest in the Patagonian toothfish (Dissostichus eleginoides) in 

the Macquarie Island region has heightened the need for a better understanding of 

the life history of this species. Of particular interest are dietary considerations. 

However, despite the importance of toothfish in the deep-sea food web of this and 

other Southern Ocean regions, relatively little is known of their diet. Current 

knowledge is based upon the examination of stomach contents, a technique that 

fails to identify with any certainty long-term dietary composition. The determination 

of lipid composition may provide a simple and effective means of determining the 

diet of toothfish, one that complements traditional techniques. Specifically, many 

higher order species are thought to deposit fatty acids derived from prey into storage 

with little or no modification. Constituent fatty acids of a predator may therefore 

represent a temporal integration of diet. The lipid composition of toothfish was 

investigated in relation to both physical (sex, age/size) and fishing parameters 

(region, season, depth, time of day). Each parameter was compared using a variety 

of statistical methods including multidimensional scaling and linear discriminant 

analysis. Significant variations in total lipid content, lipid class composition and 

especially fatty acid composition between fish of different sizes (ages) points to a 

potential shift in diet as fish mature. Eicosapentaenoic and docosahexaenoic acids 

were those fatty acids most responsible for the observed variation with size. The 

influence of the remaining parameters on lipid composition is less pronounced. To 

determine whether these variations in lipid composition were due to possible 

variations in diet, a comparison with potential prey species was undertaken. This 

involved the examination of 21 species of midwater fish, including 8 species of 

Myctophidae, and 6 species of squid. Many of these species are know to contribute 

to the diet of toothfish in the Macquarie Island region. The results of statistical 

analysis suggest that the diet of Patagonian toothfish at Macquarie Island may vary 

to a far greater extent, relative to size increases, than is suggested by stomach 

content analysis. For instance smaller sized toothfish are more closely linked to 

squid, based on fatty acid composition, than are larger toothfish. Most notable with 

regards to potential fish prey is that the fatty acid compositions of Myctophidae are 

more closely related to larger rather than smaller toothfish, possibly indicating a shift 

in dietary preference as toothfish mature. 
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"Tell me what vou eat and I 
ii~ tell vou what vou are" 

Anthelme Brillat-Savarin 
The PhVSiOIOUV Of Taste, 1825 

" an is what he eats" 
Ludwig Feuerbach 
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CHAPTER 1 

GENERAL INTRODUCTION, 

1.1 INTRODUCTION 

The commencement of fishing for Patagonian toothfish (Dissostichus 

eleginoides Smitt 1898, hereafter referred to as toothfishfin. the 1980s 

signaled a new era in the development of deepsea fisheries in the Southern 

Ocean. The factors counting against the capture of toothfish as an . 

economically viable venture, namely the isolated nature and discontinuous 

distribution of the known population, were eroded by the dramatic collapse in 

worldwide fishing stocks. The best known example is the failure· of the 

Atlantic cod ( Gadus morhua) fishery in the Northern Atlantic in the 1990's (Fu 

et al. 2001; Haedrich et al. 2001 )-. With what was an effecti~ely self-managed 

fishery, the risk of overexploitation represented a tangible threat to the 

sustainability of toothfish stocks in the Southern Ocean (Haedrich et al. 

2001 ). The scientific data necessary to construct a management framework, 

considered an essential component of proper fisheries management (Frank 

and Brickman 2001; Gordon 2001 ), did not initially exist for toothfish. . 

The fishing of toothfish within Australian waters, in the regions of Macquarie 

and' Heard Islands, took significantly longer to take hold than other regions of 

the Southern Ocean. Exploratory fishing in the Macquarie Island region 

began in the 1994-1995 fishing season under the supervision of the 

Australian Fisheries Management Authority (AFMA) (Williams and Lamb 

2001 ). Growing concern over the potentially deleterious impacts of these 

operations led to the commissioning of a report by the Fisheries Research 

and Development Corporation (FRDC), in association with partners 

Commonwealth Scientific and Industrial Research Organisation (CSIRO) 

Marine Research, Australian Antarctic Division (AAD) and Austral Fisheries 

P~y Ltd., into the ecological sustainability of such a fishery (He and Furlani 



CHAPTER 1 GENERAL INTRODUCTION 

2001 ). The report covered all aspects of toothfish biology vital to the proper 

management of the fishery in the Macquarie Island region, including key 

population parameters (age validation, growth, age of maturity, mortality), 

distribution and relative abundance. 

A cornerstone of the FRDC study was the identification of food chain linkages 

between the, fishery, toothfish and the main bird and mammal species, 

primarily through the examination of stomach and faecal contents 
\ 

(Goldsworthy et al. 2001 b; Goldsworthy et al. 2001 c; Goldsworthy' et al. 

200'1 d; Goldsworthy et al. 2002). Although these traditional methods of 

dietary determination provide invaluable information, they are subject to ~ 

number of acknowledged yet unavoidable biases. Amongst these is a failure 

to identify with any certainty long-term dietary composition and bias due to 

differential digestion of prey items (Antonelis et al. 1987; Harwood and 

Croxall 1988; Chou et al. 1995). · 

Ways to ameliorate the$e problems were sought through the application of 

developing techniques that explore predator-prey interaction through the 

identification of biological markers (biomarkers) rather than prey remains. 

Fatty acids, biological components that perform a range of important 

functions, represent one such biomarker. Many fatty acids are readily 

transferred by dietary interactions within-the food web from prey to predator. 

In many higher order species, dietary derived fatty acids are thought to be 

incorporated into storage, with little or no modification (e.g. Iverson 1993). 

Observed differences in fatty acid composition between species and even 

between individuals of the same species are consequently due, in part, to 

dietary differences. 

An initial attempt at assessing the diet of Macquarie Island toothfish using 

fatty acid tracers was included in the FRDC study (Wilson and Nichols 2001 ). 

Although providing a promising insight into the potential application of this 

technique to a dietary study of toothfish, this initial study was hampered by a 

lack of information regarding the fatty acid composition of potential prey 

species. Subsequent research has seen a rapid advancement in the number 

2 



CHAPTER 1 GENERAL INTRODUCTION 

of prey species for which fatty acid compositions exist as well as expansion 

in the scope of the toothfish data set, particularly with respect to size, 

geographical location and year of coHection: 

1.2 DEEPSEA FISHERIES OF THE SOUTHERN OCEAN 

The commercial capture of deepsea fish in the Southern Ocean, once 

restrained by the practical limitations of fishing the open oceans, has 

increased dramatically in recent times. The escalating interest in deep-sea 

stocks is partly a consequence of the worldwide collapse of the inshore 

fisheries that have historically formed the basis of the industry (Haedrich et 

al. 2001 ). Inshore fisheries, usually contained within or near to the margins of 

the continental shelf, are generally within easy reach of ports. This ease of 

access has left many inshore fisheries prone to overexploitation, a situation 

with disastrous implications for the entire marine ecosystem .. In response, 

fishers have eventually sought out those fish stocks, situated on the 

continental slope, that were previously considered economically marginal. 

Steady improvements in fishing technology have overcome prior restrictions 

to operating in the deepsea environment (e.g. Haedrich et al. 2001 ). These 

have included the development of suitable fishing gear, including longlines 

and specialised trawl nets, the construction of vessels capable of spending 

long periods at sea and handling often harsh weather ·conditions, increased 

understanding of fish behaviour, technological advances ir:i fish detection, 

and improvements in refrigeration that have allowed the delivery of suitably 

'fresh' fish to market. These factors, combined with ever increasing market 

pressures, mean that very few regions of the ocean are considered off-limits 

to fishers, both practically and economically. A number of deepsea species 

that, until recently, were not investigated ~o any great extent by fishers are 

now considered to be commercially viable. 

3 



CHAPTER 1 GENERAL INTRODUCTION 

Patagonian toothfish and Orange Roi.Jghy Fisheries of the Southern 

Ocean 

Fisheries based upon deepsea species are relatively new, with large-scale 

development beginning in the 1970s (Haedrich et al. 2001 ). Based beyond 

the continental shelf, they have redefined the way in which the industry 

traditionally operates. In contrast to the support offered to local communities 

by inshore fishing, deepsea operations usually operate outside national 

boundaries, sometimes relying on flags of convenience to evade international 

laws aimed at legislating fishing 'of the high seas (Willock 2002). The isolated 

nature of the deepsea and its large area has meant that patrolling and 

regulating fisheries for species such as toothfish has remained inherently 

difficult and generally unsuccessful (Pearce 1996). 

The past three decades have seen the development of several important 

deep-:sea fisheries in the Southern Ocean. Of greatest commercial interest in 

sub-Antarctic waters are the fisheries for orange roughy (Hop/ostethus 

atlanticus) and Patagonian toothfish (Dis,sostichus e/eginoides). The fillets of 

toothfish are commercially prized for their large size, absence of pin bones 

and soft flesh, all of which contribute to their high market value (Nichols et al. 

1994a). A contributing factor to the difficulty in tracing the movement of 

illegally caught toothfish is the multitude of common names used in the 

international marketplace (Table 1.1 ). 

The development of both fisheries continues to invoke political and 

environmental debate. The exploitation of both Patagonian toothfish and 

orange roughy illustrate the main .issues surrounding fishing in the deep 

ocean. The discovery, development and subsequent decline of this fishery 

has closely followed the trajectory of other exploited fish species. A period of 

extremely high catch rates is quickly fallowed by a rapid decline in fish 

numbers, sometimes to the point of commercial extinction (Clark 1999). The 

rapid rise and fall of fish stocks, with high landings of fish in the first few. 

, seasons before a dramatic dropMoff in returns, has been repeated throughout 

the worlds oceans. Perhaps the most dramatic examples have been from the 

North Atlantic, particularly the fisheries for Atlantic cod ( Gadus morhua). In all 

4 



CHAPTER 1 GENERAL INTRODUCTION 

Table 1.1. A selection of country-specific common names for Dissostichus 

eleginoides used in the international marketplace 

Country 

United Kingdom 

USA, Canada 

France 

Japan 

Chile, Spain, Argentina 

Common Name -

Australian Sea Bass, Antarctic Sea Bass 

Chilean Sea Bass, Poor Man's Lobster 

Legine Austral 

Mero 

Merluza negra, Bacalao de profundidad 

cases over-fishing and habitat degradation are cited as the main causes of 

the decline in fish stocks (Frank and Brickman 2001 ). 

A defining characteristic of deepsea fisheries is that commercial exploration 

often precedes scientific investigation. Data essential to proper management, 

including population structure, location and life history, is often obtained after 

commercial exploitation has already commenced (Frank and Brickman 2001 ; 

Gordon 2001; Tuck et al. 2001 a). Such information consequently rarely 

reflects the state· of the fishery prior to anthropogenic influence. ·in many 

cases initial fish populations have already drastically declined before 

knowledge of the fishery has been suitably collated. Thus, catch-rates 
-

continue to decline, even after the introduction of a management strategy. 

The application of 'backwards logic' to fisheries management has lead to a 

number of negative effects not only to target species, but throughout the 

entire marine ecosystem. The need for a scientific basis to the management 

·of fish stocks has been clearly evidenced by the rapid decline in orange 

roughy numbers in Australian and New Zealand waters (Clark 1999). The 

disastrous overexploitation of orange roughy from Tasmanian seamounts in 

the 1990s was a consequence of the initial overestimation of both virgin fish 

biomass and mortality rates (Pankhurst 1999). 

Management of Patagonian toothfish in the Australian fisheries based around 

Macquarie, Heard and McDonald Islands has been directly influenced by the 

experienced gained from the overexploitation of orange roughy. Both 

5 



CHAPTER 1 GENERAL INTRODUCTION 

fisheries are strictly managed by regulatory bodies (e.g. AFMA, CCAMLR1
) 

using the precautionary approach to fishing and aided by an ongoing 

program of scientific research (e.g. FROG, CSIRO; AAD).- Amongst the 

measures implemented in these fisheries are restrictions on the number of 

vessels permitted to operate, the use of trawl riets rather than longlines to 

reduce the incidental mortality of seabirds and the ability to close grounds 

where necessary based upon monitoring of catches using the total allowable 

catch (TAC) quota system (Sainsbury and de la Mare 2001). 

Despite this attempt at regulation, the isolated nature of both fisheries and 

the high value of the catch has attracted illegal, unregulated and unreported 

(IUU) activities that may account for up to 50% of the total catch of toothfish 

in the Southern Ocean (Willock 2002). The impact of IUU fishing on these 

regions is substantial, directly accounting for declines in not only the stocks 

of target spedes but also the numbers of seabird and by-catch species as 

well as degradation of the ocean floor environment (Frank and Brickmar:i 

2001; Kock 2001 ). The decline in fish stocks affected by these impacts may 

prove irreversible. 

1.3 DISTRIBUTION, BIOLOGY AND FORAGING ECOLOGY OF THE 

PATAGONIAN TOOTHFISH IN THE SOUTHERN OCEAN 

First described by Smitt in 1898, Patagonian toothfish are amongst the 
,, 

largest fish residing in the Southern Ocean. The unique ecology of tooth.fish, 

. especially their aggregation in large numbers around deepsea mounts and 

valleys, has contributed to the attractiveness of this species to commercial . 

concerns. Numerous other characteristics contribute to the unique nature of 

1 Although Macquarie Island is not included in the regions covered by the Convention for the 
Conservation of Antarctic Marine Living Resources (CCAMLR), certain aspects of the 
Convention apply to the fishery. Resolution 1 O/Xll states that all signature countries, 
including Australia, must ensure that flag vessels harvesting stocks which are also found in 
the Convention area (such as Patagonian toothfish) do so responsibly and with due respect 
for Conservation Measures adopted by the Commission 

6 



CHAPTER 1 GENERAL INTRODUCTION 

toothfish including the absence of a swimbladder, the extreme depths at 

which they reside and the relative isolation of populations. 

Distribution of Patagonian toothfish in the Southern Ocean 

Distribution of toothfish is a discontinuous band confined exclusively to sub­

temperate and sub-Antarctic latitudes of the Southern Ocean (Figure 1.1 ). 

Northern and southern distribution is restricted to approximately 30°S and 

60°S respectively. Distribution of adults within the water column is spread 

over a range of depths from 600-3500m and is highly dependent upon 

region. 

Major populations have been identified from the coast of the South American 

continent, shelves and seamounts associated with a number of sub-Antarctic 

islands, and in the region of the Antarctic Peninsula. These populations are 

generally separated into two distinct groups, the southwest Atlantic and sub­

Antarctic Indian Ocean (Garcfa de la Rosa et al. 1997). Specifically, toothfish 

in the southwest Atlantic region are reported from the coasts of southern 

Chile (Arrizaga et al. 1996; Parkes et al. 1996) and Argentina (Garcfa de la 

Rosa et al. 1997), the Falkland Islands (Coggan et al. 1996; Des Ciers et al. 

1996; Collins et al. 1999; Smith and McVeagh 2000), South Georgia (Zhivov 

and Krivoruchko 1990; McKenna Jr 1991; Evseenko et al. 1995; Parkes et al. 

1996; Garcf a de la Rosa et al. 1997) and larvae have been reported from the 

Scotia Sea (Yefremenko 1979). Indian Ocean populations are confined to the 

sub-Antarctic islands of Prince Edward (Vukhov 1972), Kerguelen and Crozat 

(Vukhov 1972; Duhamel and Hureau 1985; Diano 1989; Chikov and 

Mel' nikov 1991,)Heard and McDonald (Williams and Ensor 1988; Williams 

and de la Mare 1995; Smith and McVeagh 2000) and Macquarie (Smith and 

McVeagh 2000). 

Patagonian toothfish fisheries in Australian waters 

The Australian toothfish fishery is based around, two main fishing grounds in 

the Southern Ocean (Figure 1.1 ). The Heard (53°01 'S: 73°23'E) and 

McDonald Islands (53°03'S: 72°36'E) form part of the Kerguelen-Gaussberg 

ridge and lie 300km south of the Antarctic Convergence (Williams 1983). 

7 



<X> 

Pacific 
Ocean 

Antarctic Convergence 
-------------------

~ 

I , 

South 
Atlantic 
Ocean 

~a 

0 

r-

D 

Indian 
Ocean 

~ -

;J 
~ 
~ 

~&'~ 
Pacific 
Ocean 

Crozet Islands 
Falkland/Malvinas Prince T~:~~~ • e Kerguelen_~!~~~~---- , Islands 

-- __ , • -- -- , ----- --- ----- ' --- -- ,' e-soUlhG-;~;g;;,------- ---- e '--~!d & McDonald Islands-------., ____ __,_--

\J ) 
!' • Lena Bank MacqUar;e Island 

,,,,,, Southern 
- Ocean 

Antarctica KEY 

Southern 
Ocean 

Figure 1.1 Distribution of Patagonian toothfish (Dissostichus eleginoides) in 

the Southern Ocean (based upon Willock 2002) 

• Patagonian toothfish 

(') 
:I: 
)> .,, 
-f 
m 
lJ .... 
G> 
m z 
m 
:n 
)> 
r 
z 
-l 
:n 
0 
0 
c 
() .. 
-l 
6 z 



CHAPTER 1 GENERAL INTRODUCTION 

Both Islands are surrounded by relatively shallow shelf water of between 

200-600m depth. 

By contrast Macquarie Island (54°30'S: 158°55'E) is located north of the 

Antarctic Convergence, approximately 1500km southeast of Tasmania, and 

is surrounded by deep water. The waters around Macquarie were declared a 

marine park in 2000 (Anon 2000). The fishery also includes two small 

islands, Judge & Clerk and Bishop & Clerk Island, located near to Macquarie. 

These islands form part of the Macquarie Ridge, a region of uplifted ocean 

crust formed by the collision of tectonic plates. The ridge also includes a 

series of deep ocean valleys , seamounts and troughs, in excess of 5000m 

deep, which surround the relatively small Macquarie Island shelf. Fishing is 

concentrated in two main fishing grounds, one to the North of Macquarie 

Island in the area of the Northern Valleys, encompassing the Colgate Valley 

and Grand Canyon (northern fishing ground), and the other to the west of 

Macquarie Island, dominated by the Aurora Trough (southern fishing ground) 

(Figure 1.2) (Sainsbury and de la Mare 2001 ). 

Degree of exchange between toothfish populations 

The amount of exchange occurring between the various populations is 

largely unknown. However the migration of toothfish over large distances is, 

at least with respect to adults, unlikely. T oothfish are essentially a localised, 

sedentary species with limited migratory abilities due to their weak swimming 

ability (Smith and McVeagh 2000). A notable exception is the apparent 

incidental migration of a single toothfish from the Southern Atlantic Ocean to 

Greenland, presumably by following the path of cold deepwater currents 

(M0ller et al. 2003). The extent to which toothfish may regularly utilise 

currents of this type to migrate large distances is uncertain. The migration of 

larvae to other populations is more conceivable than for adult toothfish , 

although evidence to support this mode of mixing remains scarce. 

A number of methods have been used to elucidate differences between 

populations based upon certain characteristics, including genetic (Smith and 

McVeagh 2000) , enzymatic (Diano 1989) and morphological 

9 
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Figure 1.2 Approximate positions of southern and northern fishing grounds 

relative to Macquarie Island (map courtesy of Simon Goldsworthy) 

(Williams and de la Mare 1995). All support the view that toothfish are 

separated into distinctly segregated populations that experience little or no 

contact with toothfish from other regions. 

Toothfish size and morphological characteristics 

Patagonian toothfish are the largest member of the family Nototheniidae. The 

maximum size documented is for a female toothfish from the Falkland Islands 

10 
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measuring 225cm total length and 131 kg estimated mass (Des Ciers et al. 

1996). Interpretation of otolith data currently places the maximum age of 

toothfish at 53 years (Horn 2002). A degree-of sexual dimorphism· has been 

suggested in certain stocks, such as those from South Georgia and 

Argentineah continental slope (Garcia de la Rosa et al. 1997). These 

diff~rences, however, may be due to differences in sampling regimes. 

Differences in both maximum size and stock size structure have also been 
' . 

observed for toothfish from different areas, although this is likely a 

consequence of exogenous constraints (primary production, oceanographic 

features) rather than purely endogenou_s biological factors. Toothfish 

morphology is characterised by a large' body size, absence of a swimbladder, 

prominent mouth and eyes, dark skin, and a white, soft flesh devoid of pin 

bones (Figure 1.3). 

Figure 1.3 Patagonian toothfish, Dissostichus eleginoides (Source: Gan and 

Heemstra 1990) 

Life history 

Many toothfish life history parameters remain unresolved. It appears that 

toothfish from different populations have slightly different life histories, 

possibly related to oceanographic features such as temperature. Generalised 

patterns of reproduction, spawning, and growth have been determined using 

evidence collected from several populations. 

11 
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Along with a closely related Antarctic species, Dissostichus mawsoni, 

toothfish are amongst the most fecund of the nototheniids {Evseenko et al. 

1995). Onset of sexual maturity is variable, occurring between 7-1 O years 

(fish length of 64-94cm) in males and 9-12 years (85-11 Scm) in females 

(Zhivov and Krivoruchko 1990). Absoluts toothfish fecundity increases with 

length and weight (Chikov and Mel' nikov 1991.) 

Depending upon region, toothfish spawn between March and April on the 

continental slope at-around 500m depth (Des Ciers et al. 1996). Eggs are 

deposited demersally on rocky substrate (Zhivov and Krivoruchko 1990), 

hatching between August and November (Evseenko et al. 1995). Larvae and 

postlarvae develop pelagically in the upper 200m of the water column 

(Garcfa de la Rosa et al. 1997). Juveniles remain in the pelagic zone, living in 

depths of between 70-1500m over the shelf and drop-off (Zhivov and 

Krivoruchko 1990; Garcfa de la Rosa et al. 1997). Upon reaching 15-20cm in 

length or approximately 1 year, juveniles begin.to migrate towards a 

demersal existence in shallower water (Duhamel and Hureau 1985; Des 

Ciers et al. 1996). Adult fish continue to migrate into deeper water as they 

mature, evidenced by an increase in mean fish length with increasing depth 

(Zhivov and Krivoruchko 1990; Coggan et al. 1996). 

Foraging ecology of toothfish 

Diet is region specific and changes as fish mature to deeper waters. Most 

' dietary information is based upon the identification of prey in stomach 

contents, and is therefore affected by the acknowledged biases of this . 

technique. Toothfish feed upon a wide diversity of prey items. Larvae 

consume small zooplankton, mainly euphausiids, whilst postlarvae and 

juveniles feed upon larger zooplankton species (Duhamel and Hureau 1985; 

Garcfa de la Rosa et al. 1997). Adults, toothfish aged greater than 3 years, 

feed primarily on fish species, including numerous myctophid species, with 

squid and zooplankton as secondary prey items (Duhamel arn;:I Hureau 1985; 

McKenna Jr 1991; Kozlov 1995; Garcfa de la Rosa et al. 1997). 

12 
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1.4 LIPIDS AS DIETARY INDICATORS 

An area of great importance in the stt:Jdy of ecosystems is the determination 

of diet or foraging ecology. Although the need to determine diet is 

unquestionable, this rarely translates into a practical response. The 

inherently_ difficult nature of study in the oceanic environment has limited 

exploration to only a fraction of the ecosystem. Compounding this is the fact 

that observatic;m of marine organisms in their natural state is often difficult. 

With the exception of certain marine mammals and seabirds, the majority of 

species spend the entirety of their lives at sea, breeding, foraging and 

interacting. Although the relative biomass of the oceans is immense, the 

distribution of species within it is not well understood. Large aggregations of 

species are rare and unpredictable, the notable exception being 

commercially harvested fish (e.g. orange roughy). 

Traditional methods of dietary determination 

The investigation of diet commonly relies heavily on two techniques; direct 

observation of feeding events, and the analysis of stomach contents. Direct 

observation involves firsthand witnessing of the capture of prey by a 

predator. Stomach content analysis requires the meticulous sorting and 

identification of indigestible body parts, including otoliths, statoliths and squid 

beaks, and relating these to potential prey speci~s. Whilst each method has 

its relative merits, both are difficult to undertake, costly and time consuming. 

The results obtained from stomach content analysis in particular are virtually 

impossible to verify without avoiding any number of well-acknowledged 

biases associated with this technique. Amongst these are a failure to identify 

with certainty long-term dietary compositions and bias introduced by the 

differential digestion of prey items (see Antonelis. et al. 1987; Harwood and 

Croxall 1988; Rodhouse and Nigmatullin 1996; Phillips et al. 2001 ). 

Observation for the majority of marine populations involves the inva$ive 

sampling and removal of specimens. In some cases, these specimens can 

then be maintained in controlled environments (for instance aquaria), 

however most are sacrificed during the processes of inspection and analysis. 
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Modern techniques have been developed which attempt to observe marine 

organisms in conditions reflecting as closely as possible their natural state, 

including, underwater filming (Collins et al. 1999; Yau et al. 2001; Yau et al. 

2002) and satellite tracking. Associated with these sophisticated techniques 

are several notable disadvantages. They are expensive and difficult to 

perform whilst suffering from many of the same problems as the more 

traditional techniques, providing at best only a cursory insight into foraging 

ecology. 

Fatty acids as dietary indicators 

The use of alternate and complementary methods may overcome some of 

the disadvantages of these traditional techniques. One such alterna~e 

method is the use of biological or biochemical markers including fatty acids. 

Analysis of the fatty acid composition of toothfish could provide a simple and 

effective means of determining diet. Combinations of fatty acids (also termed 

"signature lipids") are readily transferred within the foodweb from predator to 

prey. Whilst numerous fatty acids can be synthesised de novo from non­

lipoidal sources (e .. g. protein and carbohydrate) a large number can only 

have arisen from dietary sources and are termed 'essential'. Essential fatty 

acids are therefore particularly useful as signature lipids. Most of the long-

. chain polyunsaturated fatty acids (PUFA) are synthesised almost exclusively 

by primary producers at the base of the foodchain (Graeve et al. 1994; 

Nichols et al. 1994a; Dunstan et al. 1999). In higher order species, these 

dietary derived fatty acids are thought to be incorporated into storage tissues 

with little or no _modification (e.g. Iverson 1993; Navarro et al. 1995; Iverson 

et al. 1997; Kirsch et al. 1998). Identification of signature lipid combinations in 

the lipid deposits of an organism provides potential evidence of foraging 

events and represents, to some extent, a temporal integration of diet. 

Observed differences in fatty acid composition between individuals of the 

same species are consequently due, in part, to differences in diet. 

The use of fatty acids as dietary indicators is a relatively novel concept. The 

continuing development of more sophisticated analytical techniques (e.g. gas 

chromatography-mass spectrometry), and statistical methods for treating the 
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vast data sets created (e.g. principle component analysis, classification trees) 

has· lead to the increasing relevance of fatty acids in dietary studies. 

Fatty acid studies of the Southern Ocean 

Although signature fatty acids have been applied to the investigation of 

dietary interactions across a broad range of species and environments, it is 

the marine ecosystem that has most benefited from the application and 

development of this technique. Investigations into the lipid composition of 

marine organisms have included species from almost every trophic level and 

oceanic region. The degree of investigation varies greatly and has 

predominantly focussed upon higher level predators and those species of 

either commercial interest (e.g. fish} or a perceived threat to these 

commercial interests (e.g. seals). Rather than a detailed analysis of 

constituent fatty acids, the main objective of many of these studies has been 

the determination of proximal lipid composition (lipid class and total content). 

The proximal lipid composition of marine organisms has been applied to the 

study of metabolic energy flow within foodwebs (Tierney et al. 2002), en·ergy 

storage (Hochachka et al. 1975; Semmens 1998), the structural role of lipids 

in cells and buoyancy regulation (Clarke et al. 1984; Phleger 1991; Phleger 

1998; Hagen et al. 2000), areas of research that generally do not require 

detailed information on fatty acid composition. Recently however, fatty acids 

have begun to play an important role in the detailed investigation of these 

topics as well as in research directed toward·physiological processes, 

including reproduction (e.g. Cavalli et al. 2001 ), neurological development 

and the functioning of the central nervous system (Dumont et al. 1992; 

Dumont et al. 1994). 

The use of lipids as indicators of foraging ecology first came to prominence 

with the work of Ackman et al. (1965) on fin whales (Balaenoptera physalus) 

from the North Atlantic where differences in the lipid composition of blubber 

in Arctic and Antarctic populations were related to possible dietary 

differences. At the present time, the fatty acid composition of relatively few 

marine species from sub-Antarctic regions have been determined. The 
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complexity of intermediary trophic interactions for sub-Antarctic species has 

limited dietary determination in the majority of fish and squid species to 

traditional techniques. Previous studies into the use of fatty acids as dietary --· 

tracers in the Southern Ocean have so far been restricted primarily to either 

top-level marine predators (namely whales, seals and seabirds e.g. Raclot et 

al. 1998; Brown et al. 1999), primary producers (phytoplankton and bacteria 

e.g. Nichols et al. 1993; Graeve et al. 1994) and lower-end .consumers 

(zooplankton e.g. Kattner et al. 1994; Kattner and Hagen 1995). Detailed 

fatty acid studies incorporating mid-level consumers of the Southern Ocean, 

ostensibly fish and squid, have only recently emerged (e.g. Phillips et al. 

2001; Lea et al. 2002; Phillips et al. 2002). 

Primary producers: phytoplankton, bacteria and particulate organic matter 

Knowledge of the lipid composition of primary producers is generally poor, 

particularly for the Southern Ocean. Given that phytoplankton are thought to 

produce many of the essential Omega-3 and Omega-6 PUF~ (Graeve et al. 

1994; Nichols et al. 1994a; Dunstan et al: 1999), the lack of attention given to 

those organisms at the base of the foodweb has resulted in a large gap in the 

understanding of fatty acid transfer from lower to higher trophic levels .. 

Nichols et al. (1989) identified a number of unusual fatty acids in particulate 

matter of the Southern Ocean that may prove of use as signature lipids. 

Invertebrates 

The invertebrate fauna of the Southern Ocean is diverse, but is dominated by 

a relative few number of species of mainly copepods and euphausiids. 

Antarctic krill, Euphausia superba, are arguably the best studied of all 

South~rn Ocean organisms. The position of krill as a corner-stone species, 

particularly in Antarctic waters, has meant that almost every aspect of their 

biology, including lipid composition, has been studied extensively. The fatty 

acid composition of E. superba appears to be highly sensitive to seasonal 

changes in diet. The fatty acid composition of wild populations of E. superba 

have been related to periods of omnivorous foraging (Falk-Petersen et al. 
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2000). Captive studies of E. superba have also been used to explore the use 

of fatty acids in the detection of carnivorous (Cripps and Atkinson 2000) and 

algal (Virtue et al. 1993a) feeding activities. ·Falk-Petersen et al. (2000) also 

examined a further krill, E. crystallorophias, and found a fatty acid 

composition consistent with a predominantly herbivorous diet. 

The fatty acid composition of various Southern Ocean copepods have also 

been examined in relation to dietary studies. Graeve et al. (1994) classified 

various Antarctic copepods ( Calanoides acutus, Rhinca/anus gigas, Metridia 

gerlachet) as either herbivorous or omnivorous based upon lipid composition. 

A further study by Kattner and Hagen (1995) further explored the relationship 

between copepod diet and lipid composition and-categorised wild populations 

of various phytoplankton-consuming Arctic and Antarctic copepods (C. 

acutus, R. gigas) into three broad dietary groups (diatom, dinoflagellate and 

omnivorous feeders) by the presence of fatty acids unique to these 

phytoplankton groups. 

The use of lipids for dietary studies of Antarctic pteropods and amphipods 

has also been assessed. lnterannual variations in the lipid composition of the 

pteropods Clione limacina and C. pyramidata were attributed to possible 

fluctuations in the composition of phytoplankton in the diet (Phleger et al. 

2001 ). A similar interannual variation in the lipid composition of various 

Antarctic amphipods ( Themisto gaudichaudii, Hyperia macrocephalus, 

Primno macropa, Eusirus perdentatus, Orchomeme rosst) was also related to 

diet (Nelson et al. 2001 ). 

Finally, an inclusive study by Phleger et al. (1998) used fatty acid 

composition to distinguish between the herbivorous and carnivorous diets of 

a number of Antarctic zooplankton, including the amphipod T. gaudichaudii, 

the krill E. tricantha and E. frigida and the scyphomedusan Periphylla 

periphylla. 
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Mid-level consumers: fish and squid 

Although still grossly under-represent~d, factors st,Jch as Jhe increasing 

commercialisation of many species has shifted the focus of current lipid 

research onto species of fish and squid in the Southern Ocean. Phleger et al. 

(1997) related differences in the lipid composition of two Antarctic 

populations of the myctophid Electrona antarctica to dietary sources. Lipid 

studies of midwater fish from _sub-Antarctic regions are also beginning to 

, emerge. Lea et al. (2002) determined the lipid composition of various 

myctophids and the nototheniid Champsocephalus gunnari from the 

Kerguelen Plateau and Macquarie Island region and discussed the 

implications of these findings to marine predators. 

Understanding of the biology of Southern Ocean squid has greatly benefited 

from lipid studies. Phillips et al. (2001) used fatty acids to explore the trophic 

interactions between the squid Moroteuthis ingens and myctophid fish in the 

Macquarie Island region. 

Higher predators: marine mammals 

The work of Iverson (1993) on the lipid composition of milk from Californian 

sea lions and Harbour seals rejuvenated interest in the use of dietary lipids, 

especially in the study of marine mammals. This and subsequent research 

rested upon work stretching back to the study of Fin whales by Ackman et al. 

(1965). Importantly, the effectiveness of this technique to the s~udy of m.arine 

mammals has been called into question by several researchers (Grahl­

Nielsen and Mjaavatten 1991 ; Grahl-Nielsen 1999; Grahl-Nielsen et al. 

2000), although this claim has also been repudiated (e.g. Smith et al. 1999). 

The application of signature lipids to Southern Ocean marine mammals has 

been less pronounced. Later research by Iverson et al. (1997) applied the 

same technique used in relation to Californian sea lions and Harbour seals to 

the study of lactating Antarctic fur seal (Arctocephalus gaze/la) diet. A major 

shift in the fatty acid composition of milk in these seals was related to a 
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possible change in diet from krill to fish. Brown et al. (1999) also examined 

the milk of Antarctic fur seals as well as Southern elephant seals (Mirounga 

/eonina). Similarities were observed in the fatty acid composition-of krill and 

krill-eating fish and fur seals, whilst the fatty acid composition of Southern 

elephant seals were closer to larger fish such as nototheniids (including 

Patagonian toothfish) and myctophids. 

1.5 PROJECT OBJECTIVES 

The main objectives of this study are: 

1 . Determine the lipid composition of toothfish in the Macquarie Island 

region and to compare these profiles over a range of sizes (ages), fishing 

grounds, fishing seasons, fishing depths and between sexes 

2. Determine the lipid composition of potential fish and squid prey including 

those species identified from stomach content analysis 

3. Assess likely physiological functions of lipid in toothfish and potential prey 

4. Assess the dietary interaction and the long-term diet of toothfish ba~ed on 

a comparison of the fatty acid profiles of toothfish and potential prey 

including the use of statistical analysis. 

19 



CHAPTER 2 

LIPID COMPOSITION OF THE MESOPELAGIC AND 

BATHYPELAGIC FISH ASSEMBLAGE OF THE MACQUARIE 

ISLAND REGION 

2.1 INTRODUCTION 

Mesopelagic and bathypelagic fish, collectively known as midwater fish, are 

important components of sub-Antarctic regions of the Southern Ocean 

marine ecosystem. Characterised by a relatively small shelf and a vast 

system of deep ocean valleys, seamounts and troughs, sub-Antarctic 

Macquarie Island supports a unique and diverse midwater fish assemblage 

(Willfams et al. 2001 ). Lying within the Antarctic polar frontal zone, Macquarie 

Island is exposed to the seasonal productivity, typical of many sub-Antarctic 

Islands, that drives and sustains the growth of zooplankton (Goldsworthy et 

al. 2001 a). It is upon this zooplankton community, consisting of various 

species of copepod, euphausiid and amphipod, that midwater fish primarily 

forage (Gaskett et al. 2001 ). 

In terms of total biomass and species diversity, midwater fish perform a 

crucial role in the dietary interactions of numerous foodwebs. The total 

annual consumption of midwater fish in the Macquarie Island region by 

predators and fishing operations is estima~ed to be over 250 OOO tonnes per 

year (Goldsworthy et al. 2001 d). Fish of the mesopelagic family Myctophidae, 

in particular, are often cited as important prey for a number of higher 

predators especially seabirds (Kozlov 1995; Cherel et al. 1996; Goldsworthy 

et al. 2001 d) and squid (Rod house and White 1995; Rod house and 

Nigmatullin 1996; Phillips et al. 2001 ). Although the importance of midwater 

fish to the diet of marine mammals is not as well defined, studies on 

Southern elephant seals (Green and Burton 1993), fur seals (Green et al. 
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1990) and Hooker's sea lions (McMahon et al. 1999) from the Macquarie 

Island region suggest that a number of fish species, including myctophids, 

are commonly consumed by these predators. The-importance of midwater 

fish in the diet-of other fish species (including cannibalism) is considered to 

be minor (Kozlov 1995), with the exception of larger predatory fish, such as 

Patagonian toothfish (Dissostichus eleginoides) (Goldsworthy et al. 2002). 

The development of a commercial fishery for Patagonian toothfish has 

hastened the need for a better understanding of the dietary interactions 

operating within the Macquarie Island foodweb. Included within the scope of 

such an investigation is a need to determine the foraging ecology of midwater 

fish. Gaskett et al. (2001) investigated the diet of 23 commonly occurring 

species of mesopelagic and bathypelagic fish from the Macquarie Island 

region using stomach content analysis. Five trophic guilds were identified 

within this midwater population, based upon the varying importance of 

copepods, euphausiids, amphipods and, to a lesser degree, fish in the diet. 

Dietary studies relying upon the identification of prey remains in stomach 

contents are, however, prone to several well-acknowledged and unavoidable 

biases when applied in isolation. Amongst these are a failure to identify with 

certainty long-term dietary compositions and bias introduced by the_ 

differential digestion of prey items (Antonelis et al. 1987; Harwood and 

Croxall 1988; Redhouse and Nigmatullin 1996; Phillips et al. 2001 ). 

A technique with increasing application to dietary studies is the use of lipid, 

and in particular fatty acid, composition to assess predator-prey interaction. 

For instance Phillips et al. (2001) recently assessed the dietary interaction of 

squid and myctophids in the Macquarie Island region using a combination of 

traditional (stomach contents) and developing (dietary lipids) techniques. The 

use of dietary lipids in the study of midwater fish has so far been 

predominantly limited to oceanic regions other than the sub-Antarctic. Saito 

and Murata (1998) applied lipids in a dietary investigation of several Northern 

hemisphere myctophids. Phleger et al. (1997) related differences in the lipid 

composition of two Antarctic populations of the myctophid Electrona 

antarctica to dietary sources. 
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Lipid studies of midwater fish from sub-Antarctic regions are beginning to 

emerge. Lea et al. (2002) determined the lipid composition of various 

myctophids and the nototheniid Champsocephalus gunnari from the 

Kerguelen Plateau and discussed the implications of these findings to marine 

predators. Included within their study was a comparison with several 

myctophid species from the Macquarie Island region. 

The lipid composition of 21 species of midwater fish from the Macquarie 

. Island region were determined in the current investigation, many of which 

were included in the dietary study of Gaskett et al. (2001 ). The purpose of 

this study is to determine whether similarities in diet based upon stomach 

content analysis are reflected in similarities in lipid (primarily fatty acid) 

composition. Secondly, the lipid composition of species, included in this 

study, and collected in other regions of the Southern Ocean will be compared 

to investigate the potential effect of regional variations in diet on lipid 

composition. 

Finally, a lack of lipid compositional data concerning invertebrates from the 

lower trophic levels (i.e. the prey of higher predators) has hampered the 

application of the signature lipid technique in regions such as Macquarie 

Island. It is therefore anticipated that the results of this and other studies (e.g. 

Phillips et al. 2001; Lea et al. 2002) will further the understanding of dietary 

interactions within the Macquarie Island marine ecosystem. 

2.2 MATERIALS AND METHODS 

Sample collection 

Pelagic fish samples (n=84) were collected as part of joint fishing activities of 

the FV Austral Leader, a deep-sea trawler operated by Austral Fisheries Pty. 

Ltd. (Fremantle, Western Australia) and the CSIRO research vessel RV 

Southern Surveyor. Fishing took place over the Southern Hemisphere 

summers of 1998-1999 and 1999-2000 in fishing grounds of the Macquarie 
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Island region (54°30' S; 15855' E), approximately 1500km SW of Tasmania, 

Australia. 

Immediately after capture, samples were identified to species· level, where 

possible, frozen at -20°C and analysed within 3 months where logistics 

allowed. Prior to analysis total length (TL, tip of snout to tip of caudal fin) and 

total weights (TW, wet mass) were determined before whole fish samples 

were thawed and then ground. A sub-sample (1-2g) was removed for lipid 

extraction and analysis. 

Lipid extraction and class determination 

Total lipids were extracted using the one-phase method of Bligh and Dyer 

(1959). After phase separation, _total lipids were recovered from the lower 

chloroform phase and concentrated in vacuo (rotary evaporator, 40°C}. 

Samples were stored at.-20°C prior to analysis. Lipid class profiles were· 

determined by TLC-FID using an ·1atroscan MkV TH10 analyser (Volkman 

and Nichols 1991). Wax ester (WE), triacylglycerol (TAG), free fatty acid 

(FFA}, sterol (ST) and polar lipid (PL) components were resolved in a polar 

solvent system consisting of hexane-diethyl ether-acetic acid (60:17:0.2 v/v). 

The presence or absence of WE and diacylglyceryl ethers (DAGE) was 

confirmed by the use of a non-polar solvent system (hexane-diethyl ether; 

96:4 v/v). Peak areas were quantified using commercially available 

chromatography software (DAPA Scientific Software, Kalamunda, Western 

Australia). 

Fatty acid and fatty alcohol determination 

Fatty acid methyl esters (FAME) were prepared by addition of methanol -

(MeOH), concentrated hydrochloric acid (HCI) and chloroform (CHCl3) (3ml 

10:1 :1, v/v/v, 80°C/2hr) to an aliquot of the total lipid. After the addition of 

1 ml of water, resulting FAME was extracted (3x) with 4:1 v/v hexane/CHCis. 

Chlorofo~m containing C19 FAME internal standard was then added. FAME 

fractions were treated with N,0-bis-(trimethylsilyl) trifluoroacetamide (BSTFA 

50µL, 60°C, 2hr) to convert any sterols present to their corresponding 
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trimethylsilyl (TMS) ethers and any wax esters to their corresponding·fatty 

alcohols. 

Gas chromatographic analysis was performed on a Hewlett Packard 5890A 

GC equipped with a flame ionisation detector, a cross-linked methyl silicone 

(HP5) fused silica capillary column (50m length x 0.32 µm internal diameter), 

employing hydrogen as the carrier gas. Samples were injected (HP7673 

auto-injector) at 50°C in the splitless mode, with a 2-min. venting time 

(Nichols et al. 1993): The injector and detector were maintained at 290°C and 

310°C respectively. The temperature of the oven was increased after 1 min. , 

to 150°C at 30°C min-1
, then to 250°C at 2°C min-1 and finally to 300~C at 

5°C min-1 (Nichols et al. 1993). Peak areas were quantified using Millennium 

32 Chromatography Manager (Waters Corporation, Milford, Massachusetts, 

USA). Identification of individual fatty acids was based upon a comparison of 

relative retention times with those obtained for authentic and laboratory 

standards. GC-mass spectrometry (Fisons MD800 system and Finnigan 

Thermoquest GCQ fitted wJ~h an on-column injector, both configured as 

above) was used for confirmation of components from representative 

samples (Nichols et al. 1993). 

Statistical analyses 

All statistical .analyses were performed using SYSTAT 9 (SYSTAT, Inc, 

Evanston, Illinois, USA). Variations in total lipid content, lipid class and 

individual fatty acid compositions in relation to varying size were compared 

using two-sample t-tests (95% confidence interval). 

Multivariate statistics were also used to analyse total fatty acid and lipid class 

composition. Hierarchical clustering (Pearson's average linkage) was used to 

compare the average fatty acid composition of the various species. Non­

metric multi-dimensional scaling (MOS; Kruskall loss function) was employed 

to compare the fatty acid and lipid class composition of the various fish 

species in two dimensions in order to assess whether groupings existed 

within the data set. 
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2.3 RESULTS 

Species composition and size 

A total of 84 fish samples were collected for analysis in this study, 

representing 11 families and 21 species (Table 2.1 ). This included 8 species 

of Myctophidae, 3 species of Stomiatidae, 2 species of Gonostomatidae and 

single species from the families Melamphaidae, Astronesthidae, 

Sternoptychidae, Bathylagidae, Nemichthyidae, Carapidae, Phosichthyidae 

and Zoarcidae. Several authors classify the astronesthid Borostomias 

antarcticus and Stomiatidae species together into a single family, Stomiidae 

(e.g. Gan and Heemstra 1990). However, for the purposes of this study, 

Borostomias antarcticus has been placed into a separate family 

(Astronesthidae) according to the grouping of Miller (1993). 

Specimens ranged greatly in total length (TL) and total weight (TW), both 

between and within species (Table 2.1 ). TW was below 50g in all species 

with the exception of Gymnoscopelus bolini, which contained the heaviest 

specimen analysed as well as the greatest range of TW within a single 

species (range 50.2-89.Sg). Another myctophid, Gymnoscopelus braueri, 

contained the lightest specimen analysed (0.1 g). 

TL in all species was all less than 300mm, with the exception of Labichthys 

yanoi (range 460-61 Omm) and Echiodon cryomargarites (320mm). A 

specimen of G. braueri represented the smallest TL (35mm), whilst the 

largest range of TL within a single species occurred in Stomias gracilis '. 

(range 80-290mm). 

A sufficient range of sizes were available to separate specimens of 

Borostomias antarcticus (range 74-220mm TL), Bathylagus antarcticus 

(range 68-140mm TL) and S. gracilis (range 80-290mm TL) into adults and 

juveniles (Table 2.5). Of these species, however, only the sample size of 

Bathylagus antarcticus and S. graci/is allowed for the statistical comparison 

of adults and juveniles. 

26 



Table 2.1 Summary of fish species included in the current study from Macquarie Island showing details of family and species name, 

total wet weight and length (data presented as range of values, n=number of samples) and habitat 

Fam ii~ Famil~ common name S~ecies n Total weight (g} Total length (mm} Habitat 
Stomiatidae Scaly Dragonfishes Stomias boa boa 2 25.1-34.4 230-270 meso-bathypelagic 

Stomias gracilis 5 0.3-14.0 80-290 mesopelagic 
Chauliodus sloani 2 10.9-17.6 210-250 bathypelagic 

Astronesthidae Snaggletooths Borostomias antarcticus 8 0.5-32.3 74-220 bathypelagic 

Melamphaidae Bigscales, Ridgeheads, Crested Bigscales Poromitra crassiceps 1 1.8 65 meso-bathypelagic 

Sternoptychidae Hatchetfishes Sternoptyx sp. 1 4.3 60 meso-bathypelagic 

Bathylagidae Deepsea smelts, Blacksmelts Bathylagus antarcticus 11 0.5-13.6 58-140 meso-bathypelagic 10 :c 
)> 

Myctophidae Lanternfishes E/ectrona carlsbergi 5 8.6-10.8 100-110 epi-mesopelagic 
.,, 
--f 

E/ectrona antarctica 4 0.4-3.2 42-85 epi-mesopelagic m 
::u 

Lampanyctus achirus 1 0.7 140 bathypelagic I\) 

Gymnoscopelus nicholsi 2 18.8-21.2 140-150 epi-mesopelagic r 
=a 

Gymnoscope/us fraseri 8 1.1-6.8 60-100 epi-mesopelagic a 
Gymnoscopelus braueri 8 0.1-0.5 35-47 epi-mesopelagic 0 

0 
Gymnoscopelus bolini. 3 50.2-89.6 200-220 epi-mesopelagic :s: 
Protomyctophum bolini 10 1.0-1.7 58-66 mesopelagic "U 

0 en 
Nemichthyidae Snipe Eels Labichthys yanoi 2 4.9-23.5 460-610 bathypelagic I~ 

z 
Carapidae Carapids, Pearlfishes Echiodon cryomargarites 1 9.8 320 mesopelagic 0 

'TI 

:s: 
Phosichthyidae · Lightfishes Phosichthys argenteus 1 5.0 135 meso-bathypeiagic a 

~ 

Gonostomatidae Bristlemouths, Lightfishes Cyclothone sp. 3 0.2-0.8 40-60 bathypelagic ~ m 
Dip/ophos rebainsi 1 22.7 240 bathypelagic :D ,, 

~I 
Ci5 

Zoarcidae Eel~outs Melanostig_ma g_elatinosum 5 0.7-0.9 80-100 e~i-meso~elagic ::r: 
1Source: Gan and Heemstra (1990), Miller (1993), Kock (1992), Pakhomov et al. (1996), Kozlov and Tarverdiyeva (1989), Kozlov (1995) 



CHAPTER 2 LIPID COMPOSITION OF MIDWATER FISH 

Total lipid content 

Total lipid contents were determined in 83 specimens (Tables 2.2-2.5). Lipid 

content, in individual specimens, ranged from a hi§h of 20.4% WW 

(Electrona antarctica) to a low of <1 %WW (Phosichthys argenteus). Variation 

within an individual species was greatest in Gymnoscope/us braueri (range 

4.8-17.1 % WW). Average lipid content within families varied little in 

stomiatids (Table_ 2.2) and gonostomiatids (Table 2.4), but showed greater 

variation across the eight myctophid species (Table 2.3). 

Fish could be separated into three main groups, based on average lipid 

content. The first group consisted of those species with an average of <5% 

WW lipid and included members of various families; juvenile Borostomias 

antarcticus, juvenile Bathy/agus antarcticus, juvenile Stomias gracilis, 

Melanostigma gelatinosum, Phosichthys argenteus, Poromitra crassiceps, 

Stemoptyx sp., and Echiodon cryomargarites. 

The second group, with an average total lipid content between- 5-10% WW, 

contained a number of myctophid species (Electrona carlsbergi, 

Gymnoscopelus braueri, Gymnoscopelus fraseri, Gymnoscopelus nicholsi 

and Lampanyctus achirus), a species of stomiatid ( Chauliodus s/oam), the 

nemichthyid Labichthys yanoi and adults of both Borostomias antarcticus and 

Bathylagus antarcticus. 

The final group contained the remaining stomiatids ( Stomias boa boa and 

adult Stomias gracilis) and myctophids (E/ectrona antarctica, Gymnoscopelus 

bolini and Protomyctophum bolim) as well as both gonostomatid species 

(Cyclothone sp. and Diplophos rebains1), the total lipid content of which 

exceeded 10% WW. 

Of those species with both a sufficient number of specimens (n>2) and a 

diverse enough range of sizes, appreciable increases in lipid content with 

increasing length and weight were observed in S. graci/is, Borostomias 

antarcticus, Bathylagus antarcticus, G. fraseri, G. braueri, G. bolini, 

Cyclothone sp., M. gelatinosum and P. bolini. Lipid contents were negatively 
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Table 2.2 Total lipid content (percent composition, wet weight) and lipid class composition (percentage of total lipid content) of 

various species of the family Stomiatidae from the Macquarie Island region (all data presented as mean± standard deviation) 

Total lipid LiQid class 
S~ecies n content WE TAG FFA ST PL Total 
Stomias gracilis 1 2 4.3±0.8 14.9±14.0 30.5±21.8 39.9±2.9 6.7±1.2 8.1±3.7 100.0 
Stomias gracilis a 3 14.2±2.0 0.0 90.4±3.5 7.6±3.2 0.9±0.2 1.1±0.3 100.0 
Stomias boa boa 2 10.2±2.6 0.0 91.9±1.5 4.0±1.2 0.9±0.5 3.3±2.2 100.0 
Chauliodus sloani 2 9.7±2.6 0.0 71.2±2.3 22.6±2.4 3.6±0.4 2.5±0.5 100.0 

WE=wax ester; TAG=triacylglycerol; FFA=free fatty acid; ST =sterol (predominantly cholesterol, may also contain trace amounts of diacylglycerol); PL=polar lipid; n=number of 
samples; j=juveniles (<200mm total length); a=adults (>200mm total length) 

Table 2.3 Total lipid content (percent composition, wet weight) and lipid class composition (percentage of total lipid content) of 

various species of the family Myctophidae from the Macquarie Island region (all data presented as mean ± standard deviation) 

Total lipid LiQid class 
S~ecies n content WE TAG FFA ST PL 'Total 
Electrona antarctica 3 17.5 ± 3.6 86.2± 4.6 2.1 ± 1.1 4.4± 1.0 1.6 ± 0.3 5.7± 2.5 100.0 
Electrona carlsbergi 5 9.5 ±2.2 0.3 ± 0.2 64.2± 8.8 5.0 ± 2.8 1.6±0.7 29.0±7.3 100.0 
Gymnoscopelus bolini 3 14.5 ± 1.8 85.1±10.3 8.0 ±7.8 3.9 ± 1.1 1.2 ± 0.9 1.7 ± 0.5 100.0 
Gymnoscopelus braueri 8 9.7±3.8 66.5 ±20.7 0.9 ± 1.3 22.4± 16.0 4.7±3.2 5.5± 2.4 100.0 
Gymnoscopelus fraseri 8 7.6 ±4.4 1.0 ± 2.0 53.6 ±26.7 17.6±11.3 4.0 ±2.5 23.9± 15.4 100.0 
Gymnoscopelus nicholsi 2 7.~ ± 2.0 0.0 ' 80.7± 6.2 10.4± 3.0 1.2 ± 0.4 7.8±2.8 100.0 
Protomyctophum bolini 10 11.0 ± q.4 1.0±1.0 49.8 ± 21.0 17.7±11.2 3.2 ± 2.1 28.3 ± 21.2 100.0 
Lame_anr_ctus achirus 1 6.1 2.7 20.4 27.9 8.8' 40.2 100.0 

WE=wax ester; TAG=triacylglycerol; FFA=free fatty acid; ST =sterol (predominantly cholesterol, may also contain trace amounts of diacylglycerol); PL=polar lipid; n=number of 
samples 
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~I Table 2.4 Total lipid content (percent composition, wet weight) and lipid class composition (percentage of total lipid content) of 

various species of the family Gonostomatidae from the Macquarie Island region (all data presented as mean ±standard deviation) 

Total lipid Lipid class 
Species n content WE TAG FFA ST PL Total 
Cyc/othonesp. 3 12.3±2.4 86.7±1.9 6.4±2.7 3.6±2.3 1.5±1.0 1.7±0.3 100.0 
Diplosis rebainsi 1 17 .0 96.6 0.8 1.3 0.4 1.0 100.0 

WE=wax ester; TAG=triacylglycerol; FFA=free fatty acid; ST =sterol (predominantly cholesterol, may also contain trace amounts of diacylglycerol); PL=polar lipid; n=number of 
samples 

Table 2.5 Total lipid content (percent composition, wet weight) and lipid class composition (percentage of total lipid content of 

miscellaneous fish species from the Macquarie Island region (all data presented as mean ±standard deviation) 

Total lipid Lipid class 
Species n content WE TAG FFA ST PL Total 
Borostomias antarcticus J 5 1.5 ± 0.4 19.6±10.7 10.3±7.5 12.6 ± 7.8 10.8 ± 4.9 46.7 ± 7.9 100.0 
Borostomias antarcticus a 1 9.6 59.4 34.1 3.2 1.1 2.2 100.0 
Bathylagus antarcticus J 6 2.2± 0.5 1.6 ± 0.7 6.3 ± 4.1 35.9 ± 1.8 11.4 ± 0.8 44.9± 5.6 100.0 
Bathy/agus antarcticus a 5 6.3 ± 1.4 0.0 ± 0.0 82.9 ± 5.4 8.2 ± 3.7 1.8±0.7 7.2 ± 3.0 100.0 
Labichthys yanoi 2 8.7± 0.4 88.7 ± 6.0 4.5± 3.6 4.1±1.9 1.5 ± 0.6 1.2 ± 0.1 100.0 
Melanostigma gelatinosum 5 3.7± 0.8 3.5± 2.7 11.0 ± 5.8 29.9 ± 5.4 8.4 ± 2.0 47.2± 8.3 100.0' 
Phosichthys argenteus 1 1.0 2.4 20.2 0.1 11.9 65.3 100.0 
Poromitra crassiceps 1 1.3 1.5 8.6 0.0 8.9 80.9 100.0 
Sternoptyx sp. 1 1.9 0.7 8.6 0.0 12.6 78.1 100.0' 
Echiodon cry__omarg_arites 1 2.0 19.7 7.1 18.2 10.2 44.7 100.0 
WE=wax ester; TAG=triacylglycerol; FFA=free fatty acid; ST =Sterol (predominantly cholesterol, may also contain trace amounts of diacylglycerol); PL=polar lipid; n=number of 
samples; j=juveniles (Borostomias antarcticus <200mm; Bathylagus antarcticus <1 OOmm total length); a=adults (Borostomias antarcticus >200mm total length; Bathylagus 
antarcticus > 1 OOmm total length) 
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CHAPTER 2 LIPID COMPOSITION OF MIDWATER FISH 

correlated in relation to increases in length and weight in E. antarctica. Adults 

of both Bathylagus antarcticus and S. gracilis are significantly higher in total 

lipid content than juveniles (t-test, 95% confidence interval , p<0.01 ). 

Lipid class composition 

Lipid class composition varied considerably across the species analysed 

(Tables 2.2-2.5). The greatest variation between species occurred in the 

levels of triacylglycerol (TAG) , wax ester (WE) and polar lipid (PL). All 

species could be broadly separated based upon the dominance of one of 

these lipid classes using multidimensional scaling (Figure 2.1 ). Those 

dominated by TAG (;;:::50%) included all the stomiatids (excluding juvenile S. 

gracilis), several myctophids (E. carlsbergi, G. fraseri, G. nicholsi and P. 

bolim) and adult Bathylagus antarcticus. Species containing high WE (;;:::60%) 

included both gonostomatid species, the remaining myctophids (E. 

antarctica, G. bolini and G. brauen) the nemichthyid L. yanoi and the adult 

specimen of Borostomias antarcticus. The final group, containing those 

species dominated by PL (;;:::40%), consisted of the myctophid L. achirus, M. 

gelatinosum, P. argenteus, P. crassiceps, Sternoptyx sp. , E. cryomargarites 

and juveniles of both Bathylagus antarcticus and Borostomias antarcticus. All 

specimens containing PL-rich lipid weighed less than 5g, with the exception 

of E. cryomargarites (9.8g) and one Bathylagus antarcticus specimen (8.3g). 

Additionally, the juveniles of Bathylagus antarcticus and Borostomias 

antarcticus were dominated by PL, whilst the adults were dominated by either 

WE (Borostomias antarcticus) or TAG (Bathylagus antarcticus) (Table 2.5) . 

Likewise, juvenile Bathylagus antarcticus and S. gracilis contain WE whilst 

adults do not. Statistical analysis of Bathylagus antarcticus and S. gracilis 

supports these observations, revealing a significant difference (t-test, 

Bathylagus antarcticus p<0.001 , S. gracilis p<0.05) in the content of all lipid 

classes between adults and juveniles. 

Several individual specimens separated from the main groups when 

analysed using MOS (Figure 2.1 ). A juvenile specimen of S. gracilis 

separated from the other juvenile specimen due to a higher relative level of 
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Figure 2.1 Scatterplot of multidimensional scaling (MOS) based upon the 

lipid class composition of fish in this study from the Macquarie Island region 

A=grouped by myctophid species only; B=grouped by all families 

32 



CHAPTER 2 LIPID COMPOSITION OF MIDWATER FISH 

WE (24.8% versus 5.0%). Two specimens of Borostomias antarcticus also 

separated from the other specimens; a juvenile specimen that contained 

higher WE levels (32.6%) than the other juveniles (average 20.6±3.5%), and 

the single adult specimen that contained intermediate levels of both WE 

(59.4%) and TAG (34.1%). 

A number of fish species also contained elevated levels (> 10%) of free fatty 

acid (FFA). These include two species of stomiatid Quvenile S. gracilis, C. 

sloam), several myctophids (G. braueri, G. fraseri, G. nicho/si, P. bolim), 

juveniles of both Borostomias antarcticus and Bathylagus antarcticus, and M. 

gelatinosum. With the'exception of C. sloani, Borostomias antarcticus and 

Bathy/agus antarcticus; elevated fatty acid levels were confined to specimens 

with a TW of less than 1.5g. This is exemplified by the substantially elevated 

FFA content of juvenile Bathylagus antarcticus, Borostomias antarcticus and 

S. gracilis compared to the levels obs.erved in adults. S. graci/is also 

contained the highest FFA of any species (average 39.9±2.9%). 

The content of sterol (ST, predominantly cholesterol based upon GC 

analysis) also varied consid~rably. In a number of species ST was present at 

levels > 10%, namely juvenile Bathy/agus antarcticus (average 11.4±0.8%), 

juvenile Borostomias antarcticus (average 10.8±4.9%), P. argenteus (11.9%), 

Sternoptyx sp. (12.6%) and E. cryomargarites (10.2%). With the exception of 

P. argenteus and Sternoptyx sp., the high ST levels of these species were 

associated with elevated FFA. For the remaining species, ST levels were 

generally less than 2%. 

Little association between family and lipid class was observed. Both 

gonostomatids contained >85% WE and low contents of the other lipid 

classes. All stomiatids contained >70% TAG, with the exception of juvenile S. 

gracilis that contained appreciable amounts of WE (14.9±14.0%, absent in 

the other stomiatid species), high levels of FFA (39.9±2.9%) and intermediate 

TAG content (30.5±21.8%). Myctophid lipid class composition varied 

significantly between the eight species analysed (Figure 2.1 ). WE (>65%) 

dominated the lipid class composition of three myctophid species, E. 
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antarctica, G. bolini and G. braueri, whilst contributing <3% to the remaining 

myctophid species. High levels of both TAG (~50%) and PL (~24%) 

characterised E. car/sbergi, G. fraseri, P. bolini and L achirus. G. nicholsi 

contained no WE, low PL levels (7.8±2.8%) and high TAG (80.7±6.2%). 

Fatty acid composition 

The fatty acid composition of the species analysed was dominated, with the 

exception of a small number of specimens, by monounsaturated fatty acids 

(MUFA) (Tables 2.6-2.11 ). MUFA content ranged from a high of 90% in D. 

rebainsi (Table 2.7) to a low of 29.2% in P. crassiceps (Table 2.11 ). The 

greatest variation within a single species occurred in Borostomias antarcticus 

(37.9-71.9%), reflecting an increase in overall MUFA content from juveniles 

to adults (Table-2.10) .. Continuing this trend, MUFA content was also greater 

in the adults of Bathylagus antarcticus and S. gracilis. This was confirmed by 

statistical differences (t-test, 95% confidence interval, p<0.05) in the 

composition of several MUFA in Bathylagus antarcticus (16:1 ro7c, 16:1 m7t, 

17:1, 20:1 m9c, 20:1 ro7c, 22:1 ro9c, 24:1 ro9c) and S. gracilis (14:1 ro5c, 

26:1 m7c, 18:1 m7c, 24:1 m9c). 

The MUFA 18:1 m9c was the single most important fatty acid in the majority of 

species, dominating the composition of all stomiatids, all myctophids 

(excepting G. nichols1), both gonostomatids, adults of both Borostomias 

antarcticus and Bathy/agus antarcticus and a number of other species 

including L. yanoi, M. gelatinosum, E. cryomargarites.' 18:1 co9c content was 

highest in D. rebainsi (76.3%) and lowest in P. crassiceps (11.7%). Another 

MUFA, 20:1 m9c, dominated the fatty acid composition of the myctophid G. 

nicholsi (average 22.7±1.0%). Other important MUFA included 16:1 m7c 
' 

(range across all species 2.4-16%), 18:1ro7c (range 2.8-8.8%), 20:1ro9c 

(range 1.5-22.7%) and 22:1 m11 c (range 0.2-6.0%). 

Polyunsaturated fatty acids (PUFA) dominated the composition of P. 

crassiceps (43.4%), Sternoptyx sp. (41.8%) and juvenile Bathylagus 
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Table 2.6 Fatty acid composition (%composition of total fatty acids) of 

various Stomiatidae included in this study from the Macquarie Island region 

(data presented as mean standard ±-deviaUon) 

S ecies 
Fatty Stomias Stomias g_racilis Chauliodus 
Acid boa boa juvenile adult average sloani 

(n=2) (n=2) (n=3) (n=5) (n=3) 
14:0 1.3 ± 0.6 1.1 ±0.2 5.2±1.0 3.6 ± 2.45 3.5=!::1.7 
15:0 0.3 ±0.0 0.4 ± 0.2 0.4±0.0 0.4 ± 0.1 0.3 ± 0.0 
16:0 11.4 ± 5.7 18.8 ± 1.3 14.9±0.1 16.4 ±2.2 12.2±1.9 
17:0 0.7±0.3 0.7±0.0 0.5±0.0 0.6 ± 0.1 0.5±0.0 
18:0 2.2 ± 0.1 4.0 ±0.7 2.0±0.6 2.8±1.2 2.2±0.3 
20:0 0.1±0.0 0.0 ±0.0 0.1 ±0.0 0.1±0.1 0.1±0.1 
22:0 0.2 ±0.0 0.5 ± 0.1 0.1±0.1 0.2 ±0.2 0.2 ± 0.1 

14:1 ro5c 0.1 ±0.0 0.0 ±0.0 0.1 ±0.0 0.1±0.1 5 0.1 ±0.0 
16:1ro9c 0.2 ±0.0 0.2±0.0 0.3±0.0 0.2 ± 0.1 0.3 ± 0.1 
16:1ro7c 7.0 ± 0.1 4.8 ±0.2 8.4 ± 0.1 7.0±2.0 5 9.4±1.5 
16:1 ro7t 0.4 ± 0.1 0.3 ± 0.1 0.4±0.1 0.3 ± 0.1 0.4±0.1 
16:1 ro5c 0.2±0.0 0.2 ± 0.1 0.3±0.0 0.2 ± 0.1 0.3 ±0.0 
17:1 0.7 ± 0.1 0.5 ± 0.1 0.4±0.0 0.4 ± 0.1 0.4 ± 0.0 
18:1 ro9c 39.9 ±3.0 22.9 ±3.1 34.4 ±0.6 29.8 ± 6.5 31.9±8.6 
18:1ro7c 5.8 ± 0.1 3.2 ± 0.4 5.2±0.8 4.4 ± 1.2 s 4.5±1.0 
18:1 ro5c 0.6 ± 0.1 0.6 ± 0.1 0.7±0.0 0.7 ± 0.1 0.7 ± 0.1 
18:1 0.5 ±0.2 0.1 ±0.2 0.3±0.0 0.2 ± 0.1 0.2 ± 0.1 
19:1 0.4 ± 0.1 0.1 ±0.2 0.3±0.0 0.3 ±0.2 0.3 ± 0.0 
20:1ro11c 1.0 ± 0.2 0.6 ± 0.1 0.7 ± 0.1 0.7 ± 0.1 0.6±0.3 
20:1ro9c 8.3 ± 0.4 2.9±1.6 7.4±1.1 5.6 ±2.7 4.7±0.3 
20:1ro7c 0.6 ± 0.1 0.3 ± 0.1 0.4±0.0 0.4 ± 0.1 0.3±0.0 
22:1 ro11c 3.1±0.4 4.2±1.6 3.4 ±0.9 3.7±1.1 3.5 ± 3.0 
22:1ro9c 1.4 ± 0.1 2.1 ±0.3 1.4±0.3 1.7 ± 0.4 1.5 ± 1.1 
22:1ro7c 0.2±0.0 0.3 ± 0.1 0.1 ±0.0 0.2 ± 0.1 0.2 ± 0.1 
24:1 ro11c 0.7 ±0.2 1.6±1.3 0.9 ±0.5 1.2±0.8 1.2±1.3 
24:1ro9c 0.9 ± 0.1 2.1 ±0.3 1.2±0.3 1.5 ± 0.6 s 1.1±0.6 

18:3ro6 0.1±0.0 0.0 ± 0.1 0.1 ±0.0 0.1 ±0.1 0.2 ± 0.0 
18:4ro3 1.0 ± 0.1 1.1 ± 0.4 1.1 ±0.0 1.1±0.2 1.4 ± 0.3 
18:2ro6 1.7±0.2 1.1 ± 0.1 1.7±0.2 1.5 ± 0.4 s 1.9 ± 0.4 
AA 0.4 ± 0.2 0.9±0.2 0.4±0.1 0.6 ±0.3 0.6 ± 0.0 
EPA 2.2±0.5 6.1 ±0.6 2.4±0.6 3.9 ± 2.1 s 4.6±1.2 
20:3ro6 0.1 ±0.0 0.1 ±0.0 0.2±0.0 0.1 ±0.0 0.2 ± 0.1 
20:4ro3 0.5 ± 0.1 0.5 ± 0.1 0.5 ±0.1 0.5 ± 0.1 0.7±0.0 
20·2006 0.3 ± 0.1 0.3 ± 0.1 0.3±0.0 0.3 ±0.0. 0.2±0.0 
C21 PUFA 0.1 ±0.0 0.2±0.0 0.1 ±0.1 0.1±0.1 0.1 ±0.0 
22:5ro6 0.2 ± 0.0 0.2 ± 0.1 0.1 ±0.0 0.1 ± 0.1 0.2±0.0 
DHA 3.7±1.2 15.5 ± 0.4 2.9±1.5 8.0 ± 6.9 5 8.1±2.6 
22:4ro6 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0:0 0.1±0.0 
DPA 0.3 ± 0.1 0.8 ±0.0 0.3 ±0.1 0.5±0.2 0.7± 0.2 

SFA 16.1 ±5.9 25.4 ± 1.2 23.3±0.5 24.1±1.4 19.1 ±0.6 
BrFA 1.4 ± 0.3 0.6 ±0.2 0.4 ±0.0 0.5±0.2 0.3 ±0.0 
MUFA 72.0 ±3.7 47.2±1.2 66.4 ± 1.9 58.7±10.6 61.7±4.6 
PUFA 10.5 ± 2.6 26.9 ± 0.2 10.0 ± 2.4 16.7 ± 9.4 18.9 ± 3.9 

TOTAL 100.0 ± 0.0 100.0 ±0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ±0.0 
AA=arachidonic acid (20:4ro6); EPA=eicosapentaenoic acid (20:5ro3); DHA=docosahexaenoic acid 
(22:6ro3); DPA=docosapentaenoic acid (22:5ro3); SFA=saturated fatty acid; BrFA=branched fatty acid 
MUFA=monounsaturated fatty acid; PUFA=polyunsatured fatty acid; c=cis double bond orientation; 
t=trans double bond orientation; n=number of samples; juveniles= <200mm total length; adults= 
>200mm total length; 5significant variation (t-test, 95% confidence interval, p<0.05) 
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Table 2.7 Fatty acid composition (%composition of total fatty acids) of 

various Gonostomatidae included in this study from the Macquarie Island 

region (data presented as mean standard± deviation) 

S ecies 
Fatty acid Cyclothone sp. Diplophos rebainsi 

(n=3) (n=1) 
14:0 1.2 ± 0.1 0.2 
15:0 0.1±0.0 0.3 
16:0 5.0 ±0.6 1.9 
17:0 1.3±0.1 1.0 
18:0 1.9 ± 0.3 0.7 
20:0 0.0± 0.0 0.0 
22:0 0.4 ± 0.0 0.1 

14:1m5c 0.3 ±0.0 0.1 
16:1 m9c 0.1±0.0 0.2 
16:1m7c 7.5 ±0.7 4.7 
16:1 ro7t 0.2 ± 0.1 0.2 
16:1 m5c 0.2±0.0 0.1 
17:1 0.4 ± 0.0 0.2 
18:1 m9c 29.7±2.2 76.3 
18:1m7c 6.3±1.3 2.9 
18:1 m5c 0.7±0.0 0.2 
18:1 0.7±0.0 0.7 
19:1 0.3 ±0.0 0.3 
20:1m11c 1.1 ±0.1 0.2 
20:1m9c 9.3±1.0 2.5 
20:1ro7c 0.7 ± 0.1 0.2 
22·1m11c 3.0 ± 0.5 0.6 
22:1m9c 1.7 ± 0.2 0.3 
22:1ro7c 0.3 ± 0.1 0.0 
24:1ro11c 0.7 ± 0.1 0.1 
24:1 m9c 1.4 ± 0.3 0.4 

18:3ro6 0.2 ± 0.1 0.0 
18:4m3 1.1 ±0.1 0.2 
18:2m6 1.4± 0.2 1.2 
AA 0.5 ±0.0 0.5 
EPA 8.2± 0.6 1.1 
20:3m6 0.2±0.0 0.1 
20:4m3 0.8 ± 0.1 0.3 
20:2ro6 0.3 ±0.0 0.1 
C21 PUFA 0.2 ±0.0 0.1 
22:5ro6 0.3 ± 0.1 0.0 
DHA 11.5 ± 0.6 1.7 
22:4m6 0.1±0.0 0.1 
DPA 0.7 ±0.0 0.3 

SFA 9.9±0.8 4.2 
BrFA 0.2 ± 0.0 0.1 
MUFA 64.4± 0.6 90.0 
PUFA 25.4±1.3 5.8 

TOTAL 100.0 ± 0.0 100.0 
AA=arachidonic acid (20:4ro6); EPA=eicosapentaenoic acid (20:5m3); DHA=docosahexaenoic acid 
(22:6m3); DPA=docosapentaenoic acid (22:5ro3); SFA=saturated fatty acid; BrFA=branched fatty acid 
MUFA=monounsaturated fatty acid; PUFA=polyunsatured fatty acid; c=cis double bond orientation; 
t=trans double bond orientation; n=number of samples 
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Table 2.8 Fatty acid composition (% composition of total fatty acids) of 

various Myctophidae (genus Gymnoscopelus) included in this study from the 

Macquarie Island region (data presented as mean standard± deviation) 

S ecies 
Fatty Gymnoscopelus Gymnoscopelus Gymnoscopelus Gymnoscoplelus 
Acid bolini braueri fraseri nicholsi 

(n=3) (n=8) (n=3) (n=2) 
14:0 0.9±0.6 0.8±0.5 1.5±1.0 1.7±0.4 
15:0 0.1±0.1 0.3 ±0.2 0.4 ± 0.1 0.1±0.0 
16:0 4.3 ± 1.4 8.5 ±4.2 17.4 ± 3.1 10.4 ± 0.4 
17:0 0.8±0.3 0.8 ±0.1 0.5 ± 0,1 0.2±0.0 
18:0 1.1 ±0.2 2.5 ±0.9 4.3±0.2 4.8 ±0.4 
20:0 0.0±0.0 0.0 ±0.0 0.2±0.1 0.4 ± 0.1 
22:0 0.2±0.2 0.3±0.2 0.2±0.0 0.2 ± 0.1 

14:1 ro5c 0.1±0.0 0.1 ±0.0 0.0 ±0.0 0.0±0.0 
16:1 ro9c 0.1 ±0.0 0.1 ±0.1 0.1±0.0 0.0±0.0 
16:1 ro7c 5.2±0.6 5.1 ±0.8 3.3 ±0.9 2.5 ±0.2 
16:1 ro7t 0.2±0.0 0.2 ± 0.1 0.6,± 0.1 0.5 ±0.0 
16:1 ro5c 0.2±0.0 0.2±0.0 0.3 ±0.0 0.2±0.0 
17:1 ' 0.4 ± 0.1 0.6±0.1 0.5 ± 0.1 0.2±0.0 
18:1ro9c 30.5 ±0.4 38.7±11.0 17.6±1.4 20.7 ±0.5 
18:1ro7c 8.8±0.7 4.7 ±0.8 5.8 ± 0.5 8.2 ±0.4 
18:1ro5c 0.8 ± 0.1 0.6 ±0.1 0.7±0.0 0.5 ±0.0 
18:1 0.7±0.2 0.6±0.2 0.4 ±0.0 0.3 ±0.0 
19:1 0.6 ± 0.1 0.5±0.2 0.5±0.1 0.2±0.0 
20:1 ro11 c 1.5 ± 0.1 0.6 ±0.1 0.5 ±0.2 0.8±0.2 
20:1 ro9c 17.2 ± 2.4 4.3±1.0 11.0 ± 3.1 22.7±1.0 
20:1 ro7c 0.9±0.0 0.4 ±0.1 0.5 ±0.0 '1.0±0.1 
22:1 ro11c 6.0±2.8 1.4 ± 0.3 2.3±1.1 5.4±0.0 
22:1 ro9c 2.4±0.7 1.2 ±0.4 1.3 ±0.5 2.5±0.4 
22:1ro7c 0.3 ± 0.1 0.2 ± 0.1 0.3 ±0.0 0.5 ±0.1 
24:1 ro11 c 1.7 ± 0.7 0.6 ± 0.1 1.0 ±0.5 1.2 ± 0.0 
24:1ro9c 1.7 ± 0.4 2.0 ±0.5 2.2 ±0.3 2.1 ±0.6 

18:3ro6 0.0 ±0.0 0.1±0.1 0.8±0.2 0.1 ±0.0 
18:4ro3 0.8±0.4 2.1±0.6 0.5 ±0.0 0.3 ±0.0 
18:2ro6 1.6 ± 0.3 1.8 ± 0.3 2.0 ±0.2 3.3±0.2 
AA 0.6±0.2 0.8±0.1 Q.6 ± 0.1 0,4 ± 0.0 
EPA 2.8:!;1.5 5.3±2.0 7.1 ±0.5 2.1±0.1 
20:3ro6 0.4 ± 0.1 0.1' ± 0.1 0.2 ±0.0 0.2±0.0 
20:4ro3 1.5 ± 0.2 0.7±0.1 1.1±0.2 0.2 ± 0.1 
20:2ro6 0.8±0.2 0.3 ±0.1 0.4±0.1 0.3 ± 0.1 
C21 PUFA 0.1 ±0.0 0.2±0.0 0.1 ± 0.0 0.1 ±0.1 
22:5ro6 0.1±0.1 0.1 ±0.1 0.2±0.0 0.0 ± 0.1 
DHA 3.6 ±0.8 12.3 ±5.5 11.4 ± 1.0 4.4 ± 0.1 
22:4ro6 0.1 ±0.0 0.1 ±0.0 0.1 ±0.0 0.0 ±0.0 
DPA 0.7 ± 0.4 0.6±0.2 0.7 ± 0.1 0.4 ±0.0 

SFA 7.5±2.0 13.2 ±5.8 24.4 ± 3.9 17.9 ± 0.3 
BrFA 0.2±0.0 0.2 ± 0.1 1.5 ± 0.1 0.8±0.3 
MUFA 79.2±5.5 62.1±12.9 48.9 ± 3.4 69.5 ± 0.3 
PUFA 13.1±3.5 24.5 ±7.2 25.2±1.4 11.7±0.2 

TOTAL 100.0 100.0 100.0 100.0 
AA=arachidonic acid (20:4ro6); EPA=eicosapentaenoic acid (20:5ro3); DHA=docosahexaenoic acid 
(22:6ro3); DPA=docosapentaenoic acid (22:5ro3); SFA=saturated fatty acid; BrFA=branched fatty acid 
MUFA=monounsaturated fatty acid; PUFA=polyunsatured fatty acid; e=cis double bond orientation; 
t=trans double bond orientation; n=number of samples 
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Table 2.9 Fatty acid composition(% composition of total fatty acids) of 

various Myctophidae included in this study from the Macquarie Island region 

(data presented as mean standard± deviation) 

S ecies 
Fatty Electrona Electrona Protomyctophum Lampanyctus 
Acid antarctica carlsbergi bolini achirus 

(n=3) (n=3) (n=10) (n=1) 
14:0 1.7±0.1 1.5 ±0.6 4.5 ±0.6 1.6 
15:0 0.1±0.0 0.4±0.0 0.5 ±0.0 0.3 
16:0 5.8±1.1 18.1 ±0.7 20.4± 2.0 17.4 
17:0 1.2±0.1 0.4±0.1 0.7 ± 0.1 0.3 
18:0 2.0±0.3 3.9 ±0.1 3.2 ± 0.4 4.1 
20:0 0.0±0.0 0.2±0.0 0.1±0.1 0.1 
22:0 0.2±0.0 0.6 ±0.6 0.3 ± 0.1 0.1 

14:1ro5c 0.4± 0.1 0.0 ±0.0 0.1 ±0.0 0.1 
16:1 ro9c 0.3±0.0 0.1 ±0.0 0.2 ±0.0 0.2 
16:1ro7c 16.0±1.8 5.7±0.7 8.0±1.1 5.8 
16:1 ro7t 0.2±0.2 0.8 ± 0.1 0.3 ± 0.1 0.4 
16:1 ro5c 0.2±0.0 0.2±0.0 0.3 ±0.0 0.2 
17:1 0.5 ± 0.1 0.5±0.0 0.4 ±0.1 0.7 
18:1 ro9c 36.6 ±0.9 23.7± 1.9 22.1 ± 1.4 22.8 
18:1ro7c 4.0±0.5 3.9 ±0.4 5.2±0.7 4.1 
18:1ro5c 0.5±0.0 0.7±0.0 0.8 ± 0.1 0.5 
18:1 0.5±0.1 0.3 ±0.0 0.4 ± 0.1 0.3 
19:1 0.3±0.0 0.4 ± 0.3 0.4 ± 0.0 0.3 
20:1ro11c 0.6 ± 0.1 0.7±0.2 0.5 ± 0.1 0.5 
20:1ro9c 3.4± 0.,6 4.8±1.5 5.7±1.1 5.6 
20:1ro7c 0.5± 0.1 0.6 ± 0.1 0.4 ± 0.1 0.4 
22:1 ro11 c 3.4± 0.9 3.6±1.3 2.2 ±0.5 2.1 
22:1ro9c 1.9 ± 0.4 1.9 ± 0.5 1.2 ± 0.3 0.9 
22:1ro7c 0.5 ± 0.1 0.4±0.0 0.3 ± 0.1 0.2 
24:1 ro1.1 c 1.4± 0.5 1.1 ±0.4 0.7 ±0.2 0.5 
24:1 ro9c 1.5 ± 0.2 1.7±0.3 2.0 ±0.3 2.2 

18:3ro6 0.1 ±0.0 1.1±0.1 0.1 ±0.0 0.2 
18:4ro3 1.5 ± 0.1 0.4 ± 0.0 1.0±0.1 0.4 
18:2ro6 1.5 ± 0.1 1.4±0.1 1.4 ± 0.1 1.0 
AA 0.5 ± 0.0 0.7 ± 0.1 0.5 ± 0.1 1.1 
EPA 4.1 ±0.4 6.5±1.2 5.6±1.4 5.2 
20:3ro6 0.2±0.0 0.1±0.0 0.1±0.0 0.1 
20:4ro3 0.4± 0.0 0.4±0.1 0.4 ± 0.1 0.5 
20:2ro6 0.3 ± 0.1 0.3 ±0.0 0.2±0.0 0.2 . 
C21 PUFA 0.1 ±0.0 0.2 ± 0.1 0.1±0.0 0.3 
22:5ro6 0.1±0.0 0.2 ± 0.1 0.2±0.0 0.1 
DHA 6.7±0.9 10.6 ± 3.4 8.8±2.8 17.3 
22:4ro6 0.0±0.0 0.0±0.0 0.0 ±0.0 0.1 
DPA 0.4 ± 0.1 0.5 ± 0.1 0.4 ± 0.1 0.8 

SFA 11.0±1.3 25.2±0.8 29.7±2.6 23.9 
BrFA 0.3± 0.0 1.4 ± 0.3 0.3 ±0.2 1.3 
MUFA 72.7±0.9 51.0±4.5 51.2±2.2 47.6 
PUFA 16.0±1.2 22.4±4.7 18.8 ± 4.4 27.3 

TOTAL 100.0 ± 0.0 100.0 ±0.0 100.0 ±0.0 100.0 
AA=arachidonic acid (20:4ro6); EPA=eicosapentaenoic acid (20:5ro3); DHA=docosahexaenoic acid 
(22:6ro3); DPA=docosapentaenoic acid (22:5ro3); SFA=saturated fatty acid; BrFA=branched fatty acid 
MUFA=monounsaturated fatty acid; PUFA=polyunsatured fatty acid; C=cis double bond orientation; 
t=trans double bond orientation; n=number of samples 
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Table 2.1 O Fatty acid composition (% composition of total fatty acids) of 

Borostomias antarcticus and Bathylagus antarcticus included in this study 

from Macquarie Island (data presented as mean standard± deviation) 

S ecies 
Fatty Borostomias antarcticus Bathyfag_us antarcticus 
Acid juvenile adult average juvenile adult average 

(n=7) (n=1) (n=8) (n=6) (n=5) (n=11) 
14:0 1.6 ± 0.8 1.7 1.7±0.7 2.1±0.7 1.9 ± 0.6 2.0 ±0.6 
15:0 0.3 ± 0.1 0.2 0.3 ± 0.1 0.4 ± 0.1 0.5 ± 0.1 0.4 ± 0.1 
16:0 13.8 ± 2.0 8.8 13.1±2.6 16.4 ± 0.6 15.4 ± 0.8 15.9 ±0.8 
17:0 1.0 ± 0.5 1.0 1.0 ±0.5 0.4 ± 0.0 0.3 ± 0.1 0.3 ± 0.1 
18"0 3.8±1.1 2.0 3.6±1.2 5.1±0.5 4.0 ± 0.4 4.6 ± 0.7 5 

20:0 0.0 ±0.0 0.0 0.0 ±0.0 0.1±0.0 0.2 ± 0.1 0.2 ± 0.1 
22:0 0.1±0.2 0.3 0.2±0.2 0.1±0.0 0.3 ± 0.1 0.2 ± 0.1 

14:1 ro5c 0.0±0.0 0.0 0.0 ±0.0 0.1±0.1 0.0 ±0.0 0.0 ±0.0 
16:1 ro9c 0.2±0.0 0.2 0.2±0.0 0.1 ±0.0 0.1±0.0 0.1 ±0.0 
16:1 m7c 2.9 ± 0.8 5.6 3.3±1.3 3.0±1.3 4.7±0.6 3.8 ± 1.3 s 

16:1 ro7t 0.3 ± 0.1 0.2 0.3 ± 0.1 0.6 ± 0.1 1.1 ±0.1 0.8±0.3 5 

16:1 m5c 0.2 ± 0.1 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2±0.0 0.2 ± 0.1 
17:1 0.6 ±0.2 0.2 0.5±0.2 0.4 ± 0.1 0.3 ± 0.1 0.3±0.1 5 

18:1 ro9c 17.6±1.5 36.9 20.4 ± 7.4 16.5±1.8 18.8 ± 2.9 17.5 ± 2.5 
18:1 ro7c 2.8±0.8 4.7 3.1±1.0 4.0 ± 0.7 3.7±0.2 3.8 ±0.5 
18:1 ro5c 0.6 ± 0.1 0.6 0.6 ± 0.1 0.5 ± 0.1 - 0.6 ± 0.1 0.6 ± 0.1 
18:1 0.3 ± 0.1 0.5 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 
19:1 0.4 ± 0.0 0.4 0.4 ± 0.0 0.5 ± 0.1 0.4 ± 0.3 0.4 ± 0.2 
20:1 ro11c 1.0 ± 0.7 1.7 1.1 ±0.7 0.2±0.0 0.4±0.2 0.3 ± 0.2 
20:1ro9c 10.7 ±5.0 11.0 10.8 ±4.5 2.8 ±0.2 7.8±1.7 5.1 ±2.8 5 

20:1ro7c 0.4 ± 0.1 0.5 0.4 ± 0.1 0.8 ±0.2 1.6 ± 0.2 ·1.1 ± 0.4 s 

22:1ro11c 3.8 ±2.0 5.0 3.9±1.8 1.1±0.3 4.1±1.4 2.4± 1.8 
22:1ro9c 0.9 ± 0.2 1.7 1.1 ± 0.3 1.4 ± 0.4 3.4 ± 0.5 2.3±1.1 5 

22:1ro7c 0.4 ± 0.1 0.2 0.4 ± 0.1 0.2 ± 0.0 0.4 ± 0.1 0.3 ± 0.1 
24:1CQ11c 0.4 ± 0.1 1.0 0.5 ±0.2 0.6 ± 0.1 1.4 ± 0.6 1.0 ± 0.6 
24:1ro9c 2.8±0.5 1.2 2.6 ±0.8 2.3± 0.2 1.2±0.3 1.8±0.7 5 

18:3ro6 0.2 ± 0.2 0.1 0.2±0.2 0.3 ± 0.1 0.7± 0.2 0.5 ± 0.3 5 

18:4©3 0.4 ± 0.1 0.5 0.4 ± 0.1 0.4 ± 0.1 0.5± 0.1 0.4 ± 0.1 
18:2ro6 1.2 ± 0.2 1.4 1.2 ± 0.2 0.8 ± 0.1 1.1±0.2 0.9 ±0.2 
AA 1.3 ± 0.3 0.5 1.2 ± 0.4 2.0 ± 0.3 0.9±0.3 1.5 ± 0.6 s 

EPA 5.1 ± 1.2 2.7 4.7±1.4 7.0 ± 0.7 7.6±1.2 7.3±1.0 
20:3ro6 0.2 ± 0.1 0.1 0.2±0.0 0.1±0.0 0.1±0.0 0.1 ±0.0 
20:4©3 0.8±0.2 0.6 0.8±0.2 0.5 ± 0.1 0.8 ± 0.1 0.6 ± 0.2 5 

20:2ro6 0.2 ± 0.1 0.2 0.2 ± 0.1 0.3 ± 0.0 o.4 ± o.~ 0.3 ± 0.1 
C21 PUFA 0.4 ± 0.1 0.1 0.3 ± 0.1 0.8 ±0.2 0.5±0.2 0.7 ± 0.2 5 

22:5ro6 0.1±0.1_~ 0.1 0.1±0.1 0.1 ±0.0 0.2±0.0 0.2 ± 0.1 s 

DHA 20.6 ±3.9 6.5 18.6 ± 6.4 24.7±4.6 11.4±1.1 18.6±7.7 5 

22:4ro6 0.1 ±0.0 0.1 0.1±0.0 0.2 ± 0.0 0.1 ±0.0 0.2 ±0.0 
DPA 1.0 ± 0.2 0.9 1.0 ± 0.2 1.4 ± 0.3 1.1 ± 0.3 1.3 ± 0.3 

SFA 20.8 ±2.4 14.0 19.8 ± 3.4 24.5 ±0.7 22.6±1.2 23.6±1.3 
BrFA 1.0 ± 0.5 0.2 0.9 ±0.6 1.4 ± 0.2 1.7 ± 0.3 1.5 ± 0.3 
MUFA 46.5 ± 6.2 71.9 50.1 ± 11.1 35.6±4.3 50.3±1.5 42.3±8.3 
PUFA 31.7±4.3 13.9 29.2 ± 7.8 38.5±4.8 25.4±1.9 32.6±7.7 

TOTAL 100.0 100.0 100.0 100.0 100.0 100.0 
AA=arachidonic acid (20:4ro6); EPA=eicosapentaenoic acid (20:5©3); DHA=docosahexaenoic acid 
(22:6©3); DPA=docosapentaenoic acid (22:5ro3); SFA=saturated fatty acid; BrFA=branched fatty acid 
MUFA=monounsaturated fatty acid; PUFA=polyunsatured fatty acid; c=cis double bond orientation; 
t=trans double bond orientation; n=number of samples; 5significant variation (t-test, 95% confidence 
interval, p<0.05); refer to main body of text for details on sizing 
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Table 2.11 Fatty acid composition (% composition of total fatty acids) of 

miscellaneous fish species included in this study from the Macquarie Island 

region (d?ta presented as mean standard± deviatton) 

S ecies 
Fatty Labichthys Melanostigma Phosichthys Poromitra Sternoptyx Echiodon 
Acid yanoi gelatinosum argenteus crassiceps sp. cryomargarites 

(n=2) (n=5) (n=1) (n=1) (n=1) (n=1) 
14:0 1.3 ± 0.5 2.3 ±0.8 1.3 1.5 1.6 2.6 
15:0 0.1 ±0.0 0.6 ± 0.1 0.5 0.3 0.5 0.4 
16:0 4.0 ± 0.2 16.1 ± 0.8 20.7 17.4 19.8 13.5 
17:0 1.0 ± 0.2 0.7 ±0.0 0.9 0.5 0.6 1.3 
18:0 1.3 ± 0.2 4.4 ± 0.5 6.1 5.3 . 4.7 2.2 
20:0 0.0 ± 0.0 0.5±1.0 0.1 0.3 0.1 0.0 
22:0 0.3± 0.0 0.2 ± 0.1 0.7 0.2 0.1 0.4 

14:1oo5c 0.1 ±0.0 0.1±0.1 0.0 0.0 0.0 0.0 
16:1 oo9c 0.2 ± 0.0 0.2 ± 0.1 0.2 0.1 0.2 0.3 
16:1 oo7c 8.3±1.6 6.4±1.7 2.8 2.6 2.4 5.5 
16:1 oo7t 0.1 ±0.0 0.5 ± 0.1 0.2 0.1 0.3 0.2 
16:1oo5c 0.1 ±0.0 0.4 ± 0.1 0.1 0.2 0.3 0.2 
17:1 0.2±0.0 0.8 ± 0.1 0.6 0.3 0.7 0.5 
18:1 oo9c 43.2 ±2.6 19.6 ± 2.3 17.9 11.7 14.5 25.4 
18:1oo7c 4.8±0.6 5.1±0.4 3.7 3.7 4.2 4.3 
18:1 oo5c 0.6±0.0 0.7 ± 0.1 0.3 0.6 0.6 0.6 
18:1 0.6 ±0.0 0.2 ± 0.1 0.2 0.3 0.3 0.3 
19:1 0.6±0.0 0.7± 0.3 0.4 0.7 0.6 0.4 
20:1oo11c 1.8 ± 0.4 0.5 ± 0.2 0.3 0.2 0.1 0.5 
20:1oo9c 8.7± 1.1 6.0±1.1 2.4 1.8 1.5 4.5 .. 
20:1oo7c 1.2 ± 0.2 0.4 ± 0.1 0.2~ 0.4 0.3 0.3 
22:1oo11c 2.7 ± 0.4 0.7± 0.3 1.1 1.1 0.2 1.6 
22:1oo9c 1.5 ± 0.2 0.9 ± 0.1 0.6 0.7 0.4 0.8 
22:1oo7c 0.3 ± 0.2 0.0 ±0.0 0.1 0.4 0.2 0.3 
24:1oo11c 1.4 ± 0.4 0.3 ± 0.1 0.6 0.9 0.2 0.6 
24:1 oo9c 1.2 ± 0.0 2.0 ±0.3 4.0 3.3 2.3 2.2 

18·3006 0.0 ± 0.0 0.0±0.0 0.0 0.2 0.5 0.1 
18:4003 0.2 ± 0.0 1.8±0.3 0.5 0.4 0.4 0.6 
18:2006 1.3±0.1 1.4±0.1 0.9 0.8 2.0 1.6 
AA 0.8 ± 0.1 1.4 ± 0.4 1.6 2.8 2.2 1.8 
EPA 3.2±1.0 7.4±1.2 4.0 9.1 7.6 9.2 
20:3006 0.2 ±0.0 0.0 ± 0.1 0.1 0.1 0.2 0.2 
20:4oo3 0.7 ± 0.1 0.6 ± 0.1 0.4 0.4 0.6 0.5 
20:2006 0.3 ± 0.2 0.4 ± 0.1 0.2 0.2 0.3 0.2 
C21 PUFA 0.2±0.0 0.3 ± 0.1 0.4 0.7 0.2 o.4 
22:5006 0.1 ±0.0 0.1 ±0.1 0.1 0.3 0.2 0.3 
DHA 6.3±1.7 15.1 ± 3.3 24.5 27.3 26.5 14.5 
22:4006 0.1 ±0.0 0.0 ±0.0 0.0 0.0 0.1 0.1 
DPA 0.9 ± 0.5 0.7 ± 0.1 1.1 1.1 1.0 0.8 

SFA 8.0 ± 0.4 24.8 ±2.0 30.4 25.4 27.5 20.4 
BrFA 0.2±0.0 0.3 ± 0.1 0.2 2.0 1.4 0.9 
MUFA 77.7±4.2 45.7 ±4.8 35.6 29.2 29.3 48.6 
PUFA 14.2 ±3.9 29.2 ±4.9 33.8 43.4 41.8 30.1 

TOTAL 100.0 100.0 100.0 100.0 100.0 100.0 
AA=arachidonic acid (20:4006); EPA=eicosapentaenoic acid (20:5003); DHA=docosahexaenoic acid 
(22:6003); DPA,,,docosapentaenoic acid (22:5oo3); SFA=saturated fatty acid; BrFA=branched fatty acid 
MUFA,,,monounsaturated fatty acid; PUFA=polyunsatured fatty acid; c=cis double bond orientation; 
t=trans double bond orientation; n=number of samples 
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antarcticus (average 38.5±4.8%) and, after MUFA, was the second most 

important fatty acid class in the majority of the remaining species. PUFA 

levels were highest in P. crassiceps and lowest in D. rebainsi (5.8%), whilst 

variation within a single species was greatest in Borostomias antarcticus 

(range 13.9-37.5%). The PUFA docosahexaenoic acid (DHA, 22:6ro3) was . 

present at high levels in many species and was the single most abundant 

fatty acid (>20%) in P. argenteus (24.5%), P. crassiceps (27.3%), Sternoptyx 

sp. (26.5%), and juveniles of both Bathylagus antarcticus (average 

24.7±4.6%) and Borostomias antarcticus (average 20.6±3.9%). Levels of 

DHA ranged from a high of 27.3% in P. crassiceps to a low of 1.7% in D. 

rebainsi. Other important PUFA included eicosapentaenoic acid (EPA, 

20:5ro3; range 1.1-9.2%), 18:2ro6 (range 0.8-3.3%) and arachidonic acid (AA, 

20:4ro6; range 0.4-2.8%). The increase in MUFA with increasing age was 

matched by a proportional decrease in PUFA content. For example, the 

decrease in PUFA from juvenile to adult fish observed for S. gracilis, 

Bathylagus antarcticus and Borostomias antarcticus was primarily due to a 

substantial variation (approximately 15%) in DHA levels. T-testiog confirmed 

significant differences (p<0.05) in the amounts of several PUFA in juveniles 

. and adults of both Bathylagus antarcticus (18:3ro6, AA, 20:4ro3, C21 PUFA, 

22:5ro6, DHA) and S. graci/is (18:2ro6, EPA, DHA). 

Saturated fatty acids (SFA) were the second most common fatty acid class in 

several species including the myctophids E. carlsbergi (average 25.2±0.8%), 

P. bolinl (average 29.7±2.6%) and G. nicholsi (average 17.9±0.3) and the 

stomiatids S. boa boa (average 16.1 ±5.9%), C. sloani (average 19.1 ±0.6%) 

and adult S. gracilis (average 23.3±0.5%). SFA levels were highest in P. 

argenteus (30.4%) and lowest in D. rebainsi (4.2%). The SFA that 

contributed the most to overall fatty acid composition was 16:0, which ranged 

from 1.9% (D. rebains1) to 20.7% (P. argenteus). Of the remaining SFA, 14:0 

(range 0.2-5.2%) and 18:0 (range 0.7-6.1%) were also major fatty acid 

components. The composition and content of SFA in adults and juveniles of 

Bathylagus antarcticus, Borostomias antarcticus and S. gracilis did not vary 

greatly. However, significant differences (t-test, p<0.05) were detected in 

levels of 14:0 in S. gracilis and 18:0 in Bathylagus antarcticus. 
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Branched fatty acids (BrFA) were minor components of total fatty acid 

composition, representing <2% for all species (range 0.1-2.0%). 

Multivariate statistical analysis of fatty acid composition 

Hierarchical clustering analysis 

Hierarchical clustering analysis (HCA) produced several distinct groupings of 

midwater fish based upon the average fatty acid composition of each species 

(Figure 2.2), especially in the relative proportions of both PUFA and MUFA. 

When groups are placed in the order 1,2,3,6,4,5, 7 a trend toward increasing 

MUFA and decreasing PUFA is observed. For instance total PUFA levels for 

those species belonging to group 1 (range 33.8-43.4%) are considerably 

higher than those in group 7 (D. rebainsi, 5.8%), due mainly to a decrease in 

DHA (group 1, range 24.5-27.3%; group 7, 1.7%). Similarly, total MUFA 

increases from group 1 (range 29.2-35.6%) to group 7 (90.0%), primarily a 

consequence of an increase in 18:1 ro9c (group 1, 11.7-17.9%; group 7, 

76.3%). Stomiatids and myctophids were, to some extent, grouped together 

by HCA. With the exception of juvenile S. gracilis (group 3,) all the stomiatids 

clustered into group 6. Myctophids were clustered into several groups; L. 

achirus, E; carlsbergi, G. fraseri and P. bolini clustered into group 3, G. 

nicholsi group 4, G. bolini group 5, G. braueri and E. antarctica into group 6. 

Both gonostomatids clustered into separate groups. Additionally, adults and 

juveniles of Bathylagu~ antarcticus, Borostomias antarcticus and S. gracilis 

clustered into different groups. 

Multidimensional scaling 

Multidimensional scaling (MOS) analysis separated species into a number of 

groups based upon the proportion of MUFA and PUFA, similar to that 

observed for HCA (Figure 2.3). The largest grouping is of those species with 
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Figure 2.2 Hierarch_ical cluster dendogram based on Pearson's correlation . 

coefficient (average linkage) for the average fatty acid composition of 21 
. ' 

species of midwater fish from the Macquarie Island region. Species are 
' ' 

separated into groups 1-7 by horizontal dashed lines (J=juveniles; A=adul~s; 

PUFA=polyunsaturated fatty acid; MUFA=monounsaturated fatty acid) 

0.4 

intermediate· levels of both total MUFA and PUFA, and contains mahy of the 

same species contained within groups 2 and 3 of HCA. Similarly, a second 

large clustering of species with high total MUFA, coincides with groups 6 and 

7 of HCA. G. bolini and G. nicholsi form distinct groups, mainly due to 

elevated levels of 20:1 ro9c relative to all other species (average, G. bolini 

17.2±2.4%; G. nicholsi 22.7±1.0%), supporting the observations of HCA. The 

separation of D. rebainsi is not as defined as that obtained from HCA, 

although it does group close to the same species as it did in HCA. Three of 

the species from group 1 of HCA, P. argenteus, Sternoptyx sp. and P. 

crassiceps also cluster closely in the MOS plot. Juvenile Bathy/agus 
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antarcticus is spread more widely, though several specimens also group 

close to these three species. Once again, juveniles and adults of Bathylagus 

antarcticus, Borostomias antarcticus and S. gracilis are contained withfn 

different groups. 

MDS of only myctophids produced a much clearer separation of species, 

similar to that observed using MDS, and consistent with dietary information 

(Figure 2.3). E. antarctica and G. braueri (6 of 8 specimens), those species 

for which copepods are important dietary components, separated from other 

myctophid species mainly on the basis of higher levels of MUFA (e.g. 

18:1 ro9c). Two specimens of G. braueri also grouped close to bo~h 

euphausiid and amphipod feeders. These prey, along with amphipods, are 

important dietary components of G. braueri. A large collection of myctophids 

clustered, that consisted of species with potentially overlapping diets. These 

included euphausiid feeders (E. car/sbergi, P. bolim), amphipod feeders (L. 

archirus) and mixed euphausiid, copepod and amphipod feeders (G. frasen). 

The two remaining species, G. bolini (fish feeder) and G. nicho/si (mixed 

feeder) are separated from all other myctophids, consistent with the distinct 

diet of these species. 

Fatty alcohol composition 

Fatty alcohol composition, in those species containing WE, consisted entirely 
' -

of saturated and monounsaturated fatty alcohols (SATAlc and MUFAlc 

respectively) (Tables 2.12-2.14). MDS produced a scattered array of data 

points, highlighting the great variation in fatty alcohol composition between all 

species (Figure 2.4). Within-species variation in fatty alcohol composition 

was minimal, with the exception of Borostomias antarcticus (especially 

amongst juveniles). 

SATAlc (range across all species18.1-75.4%) dominated the fatty alcohol 

composition of the myctophids E. antarctica (average 50.2±0.2%) and G. 

braueri (average 58.6±7.5%) and the gonostomatid D. rebainsi (75.4%). The 

SATAlc 16:0 (range across· all species 10.9-60.9%) was the most common 
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Figure 2.3 Scatterplot of multidimensional scaling (MOS) based upon the 

fatty acid composition of various fish families included in this study from the 

Macquarie Island region (PUFA=polyunsaturated fatty acid ; 

MUFA=monounsaturated fatty acid) A=grouped by myctophid species only; 

B=grouped by all families 
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Table 2.12 Fatty alcohol composition (% composition of total fatty alcohols) 

of various fish species included in this study from the Macquarie Island 

region (data presented as mean standard± deviation) 

S ecies 
Fatty Cyclothone Diplophos Labichthys Stomias Echiodon 
Alcohol sp. rebainsi yanoi gracilis 1 cryomargarites 

(n=3) (n=1) (n=2) (n=2) (n=1) 
14:0 9.1 ± 1.6 5.6 3.7 ± 0.7 4.5 ± 0.9 3.1 
16:0 27.6 ± 5.4 60.9 25.1 ± 1.8 27.9 ± 4.4 10.9 
18:0 3.0 ± 0.4 9.0 5.1 ± 0.1 4.0 ± 2.1 2.9 

16:1 ro9 0.3 ± 0.0 0.2 0.1 ± 0.0 0.0 ± 0.0 0.2 
16:1 ro7 7.6 ± 0.5 1.6 0.8 ± 0.1 3.1 ± 0.9 2.6 
16:1 ro5\ 0.7 ± 0.0 0.3 0.2 ± 0.0 4.1 ± 3.3 1.4 
18:1 ro9 7.8 ± 1.0 16.6 18.2 ± 1.8 13.2 ± 2.0 3.0 
18:1 ro7\ 7.3 ± 1.7 2.8 7.8 ± 0.3 7.9 ± 3.0 4.6 
18:1 ro5 1.2 ± 0.1 0.2 1.4 ± 0.1 4.9 ± 2.3 2.1 
20:1ro11 0.0 ± 0.0 0.3 1.1 ± 0.1 2.1 ± 2.9 0.0 
20:1ro9 21.4 ± 3.8 1.8 10.5 ± 2.6 14.1 ± 3.6 27.1 
20:1ro7 0.9 ± 0.2 0.1 1.6 ± 0.3 0.4 ± 0.5 0.9 
22 :1 ro11 5.9 ± 0.3 0.3 8.5 ± 0.9 5.8 ± 1.2 20.9 
22 :1ro9 3.3 ± 0.6 0.2 5.7 ± 0.1 4.3 ± 0.7 8.0 
22 :1 ro7 0.5 ± 0. 1 0.2 2.3 ± 2.1 0.4 ± 0.6 1.3 
24 :1 ro11 0.8 ± 0.1 0.2 3.6 ± 0.0 3.4 ± 0.5 3.2 
24:1ro9 2.8 ± 0.3 0.0 4.2 ± 0.5 0.0 ± 0.0 7.8 

Sum SATAlc 39.7 ± 7.0 75.4 33.9 ± 1.2 36.4 ± 5.6 16.9 
Sum MUFAlc 60.3 ± 7.0 24.6 66.1 ± 1.2 63.6 ± 5.6 83.1 

TOTAL 100.0 ± 0.0 100.0 100.0 100.0 100.0 
SATAlc=saturated fatty alchohols; MUFAlc=monounsaturated fatty alcohols ; n=number of samples ; 
1 Stomias gracilis juveniles only (total length <200mm) 

fatty alcohol in D. rebainsi (60.9%), Cyclothone (average 27.6±5.4%), G. 

braueri (average 45.7±8.4%), E. antarctica (average 39.3±0.6%), juvenile S. 

gracilis (27.9±4.4%) and L. yanoi (25.1 ±1.8%). 

MUFAlc dominated the fatty alcohol of the remaining species; juvenile and 

adult Borostomias antarcticus (average 82.6±14.2% and 72.7% respectively) , 

L. yanoi (average 66.1 ±1.2%), juvenile S. gracilis (average 63.6±5.6%) , G. 

bolini (average 72.0±2.3%) and Cyclothone sp. (average 60.3±7.0%). Major 
' 

MUFAlc included 20:1 ro9 (range across all species 1.8-29.2%), which was 

also the most common fatty alcohol in adult Borostomias antarcticus (21.2%) 

and G. bolini (average 26.2±3.4%). The MUFAlc 22:1 ro11 (range across all 

species 0 .3-29 .2%) dominated the fatty alcohol composition of juvenile 

Borostomias antarcticus (average 29.2±13.7%), whilst 18:1 ro9 (range across 
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all species 3.0-28.1 %) dominated E. antarctica (28.1 ±1.2%). Fatty alcohol 

col'l!position varied greatly between adult and juvenile Borostomias 

antarcticus, particularly in the relative proportions of 16:0, 18:1 ro9· and 

22:1 ro11 (Table 2.14). 

Table 2.13 Fatty alcohol composition (%composition of total fatty alcohols) 

of various Myctophidae included in this study from the Macquarie Island 

region (data presented as mean standard± deviation) 

S~ecies 
Fatty Electrona Gymnoscopelus Gymnoscopelus 
Alcohol antarctica bolini braueri 

(n=3) (n=2) (n=8) 
14:0 8.3 ±0.8 1.3 ± 0.4 10.7±1.6 
16:0 39.3 ±0.6 17.5±1.5 45.7 ± 8.4 
18:0 ' 2.6±0.3 8.4 ± 0.4 2.2 ±0.5 

16:1 ro9 . 0.1±0.0 0.0±0.0 0.3 ± 0.1 
16:1 ro7 5.5 ±0.2 0.7±0.3 6.7±1.0 
16:1 ro5 0.6±0.0 0.2 ± 0.1 1.0 ± 0.4 
18:1ro9 28.1±1.2 14.6± 1.2 14.9 ± 2.3 
18:1 ro7 5.6 ±0.2 . 9.5±1.8 4.3±1.2 
18:,1 ro5 1.2 ±0.2 1.3±0.1 1.0 ± 0.3 
20:1ro11 .0.3±0.3 2.7±0.1 ' 0.1±0.1 
20:1ro9 5.5±1.0 26.2±3.4 9.2±3.9 
20:1ro7 0.3±0.0 1.6 ± 0.1 0.2 ± 0.1 
22:1 ro11 0.8 ±0.3 7.7± 1.5 1.1 ±0.9' 
22:1ro9 0.9 ± 0.1 3.9 ±0.4 1.2 ± 0.4 
22:1ro7 0.1 ±0.0 1.1 ±0.2 0.1±0.1 
24:1 ro11 0.5 ±0.1 1.1 ± 0.1 1.2 ± 0.6 
24:1ro9 0.3 ±0.5 2.3;!;0.0 0.0 ± 0.0 

Sum SATAlc 50.2±0.2 27.1 ±2.3 58.6 ±7.5 
Sum MUFAlc 49.8±0.2 72.9±2.3 41.4 ± 7.5 

TOTAL 100.0 100.0 100.0 
SATAlc=saturated fatty alchohols; MUFAlc=monounsaturated fatty alcohols; r:i=number of samples 
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Table 2.14 Fatty alcohol composition(% composition of total fatty alcohols) 

of Borostomias antarcticus included in this study from the Macquarie Island 

region (data presented as mean standard± deviation) 

Borostomias antarcticus 
Fatty alcohol juvenile adult average 

(n=6) (n=1) (n=7) 
14:0 4.0 ±3.9 3.0 3.9 ±3.6 
16:0 12.0 ± 9.8 20.4 13.2 ± 9.5 
18:0 1.4±0.7 4.0 1.8±1.2 

16:1 ro9 0.6±0.5 0.2 0.5 ±0.5 
16:1 ro7 3.4±3.8 2.1 3.2±3.5 
16:1 ro5 1.4 ± 0.8 0.4 1.3 ± 0.8 
18:1 co9 5.9 ±6.5 11.8 6.8±6.3 
18:1 ro7 4.8 ± 2.4 4.6 4.8±2.2 
18:1 ro5 2.3±2.2 0.9 2.1±2.1 
20:1 ro11 0.3 ±0.5 0.0 0.3±0.5 
20:1 ro9 26.8±9.8 21.2 26.0±9.2 
20:1co7 0.7 ± 0.1 0.9 0.7 ± 0.1 
22:1 ro11 29.2 ± 13.7 14.6 27.1±13.7 
22:1 co9 3.2±0.7 7.0 3.7±1.6 
22:1ro7 0.4±0.2 1.2 0.5 ± 0.4 
24:1 co11 1.0±1.7 3.2 1.4 ± 1.8 
24:1co9 2.6±1.5 4.7 2.9±1.6 

Sum SATAlc 17.4±14.2 27.3 18.8±13.5 
Sum MUFAlc 82.6±14.2 72.7 81.2 ± 13.5 

TOTAL 100.0 100.0 100.0 
SATAlc=saturated fatty alchohols; MUFAlc=monounsaturated fatty alcohols; Alc=alcohol; n=number of 
samples; juvenile=total length <200mm; adult=total length >200mm; n=number of samples 
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Figure 2.4 Scatterplot of multidimensional scaling (MOS} based upon the 

fatty alcohol composition of various fish families included in this study from 

the Macquar_ie Island region, highlighting the major fatty- alcohols of each 

group 

2.4 DISCUSSION 

The range of midwater fish species in this study, including several non­

myctophid species, is significant given the general preference for dietary 

studies to investigate predators occupying only the higher trophic levels. 

Midwater fish provide an important link between the primary production of 

phytoplankton (and dependent zooplankton} and higher pr:edators 

(Pakhomov et al. 1996; Gaskett et al: 2001 }. In the Macquarie Island region 

these higher predators include the Patagonian toothfish (D{ssostichus 

eleginoides), an ecologically and more recently commercially important fish 

species, and numerous marine mammals. 

Investigating the lipid composition of midwater fish and other prey groups 

(e.g. squid and invertebrates) provides an invaluable insight into a commonly 

overlooked aspect of the· marine ecosystem. The transfer of lipids, via the 

diet, from prey to predators is an important component of the maintenance of 
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energy flow from lower to higher trophic levels (Kozlov 1995; Pakhomov et al. 

1996; Gaskett et al. 2001 ). The knowledge gained from examining lipid 

composition can be applied two-fold. Firstly, it can -be used to examine the 

importance, energetically, of a potential prey species to a prey. Secondly, 

aspects of lipid composition, primarily fatty acids, can be applied to the study 

of dietary interactions and may provide clues to hitherto undetected predator­

prey relationships. 

The total lipid content of a species is to a certain degree a reflection of its 

calorific or energetic importance to a predator. Those species with high total 

lipid contents will generally pass on more metabolic energy to predators than 

species containing little lipid (excluding the importance of protein or 
' 

carbohydrate). This observation is supported by the results of a study of the 

calorific content (a measure of the combined of energy derived from 

carbohydrates, proteins and lipids) of mesopelagic fish from Macquarie 

Island by Tierney et al. (2002). The lipid-rich species from the present study, 

including the myctophids Electrona antarctica (17.5% WW) and 

Gymnoscopelus bolini (14.5% WW), are the same species identified as being 

the most calorie-rich. In terms of ecosystem functioning and trophodynamics, 

removal of those species with high lipid content (e.g. by commercial fishing) 

will potentially impact predators to a greater extent than removal of lipid poor 

species. 

In reality however, the functioning of ecosystems is rarely this simple. The 

maintenance of ecosystem diversity is crucial to the ability of species 

contained within the foodweb to deal with the seasonal flux of primary 

production that impacts upon both the composition and biomass of their prey. 

Consequentially, few predators rely upon just one or two prey species, but 

rather a suite of prey. Predators therefore adapt their dietary composition in 

tune to shifts in the availability of prey species (McKenna Jr 1991 ). 

The usual method of dietary analysis, the identification of prey within the 

contents of the stomach, has difficulty in detecting these shifts. Stomach 

contents are effectively a snapshot of diet, only reflecting recent dietary 
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events. Unless a population is continually and regularly sampled (an 

expensive, time-consuming and difficult undertaking) the detection of dietary 

variation using only stomach contents is impractical. The application of lipids, 

particularly fatty acids, to the determination of long-term diet may overcome 

some of the disadvantages associated with traditional techniques. Many fatty 

acids are readily transferred from prey to predators with little or no 

modification (e.g. Navarro et al. 1995; Kirsch et al. 1998). The lipid 

composition of a predator is therefore assumed to reflect, to some extent, a 

temporal integration of diet over a much longer time frame than stomach 

contents. The use of lipids as dietary indicators has been applied to the study 

of Southern Ocean fish (Phleger et al. 1997; Lea et al. 2002), seals (Brown et 

al. 1999), seabirds (Horgan and Barrett 1985), squid (Phillips et al. 2001 ; 

Phillips et al. 2002), amphipods (Nelson et al. 2001 ), and zooplankton 

(Phleger et al. 1998; Cripps and Atkinson 2000; Falk-Petersen et al. 2000). 

In theory, the use of fatty acids as dietary indicators requires knowledge of 

the lipid composition of potential prey with which to draw comparisons. 

Currently, the lipid composition of zooplankton (primary prey for midwater 

fish) is poorly described, at least for sub-Antarctic regions such as Macquarie 

Island. Nonetheless, an improved understanding of diet can still be obtained. 

For example, fish that group together based on fatty acid composition, 

especially PUFA, may share a common diet. By cross-referencing the results 

of stomach content analysis and lipid composition, the likelihood of such a 

dietary interaction can be compared. The following discussion will compare 

the various elements of lipid composition to results obtained from stomach 

content analysis, where available. 

Total lipid content and lipid class composition 

Implications to energy storage and buoyancy 

The lipid content of fish included in this study ranges from levels that can be 

considered to be lipid-rich (e.g. E. antarctica, D. rebainsi, G: bolini, adult S. 

graci/is) to those that can be described as lipid-poor (e.g. P. argenteus, P. 
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crassiceps, juvenile Bathylagus antarcticus). The varying levels of lipid stored 

by marine organisms has long been considered to reflect differing 

requirements for energy storage during times of reduced food availability 

(Friedrich and Hagen 1994; Bakes et al. 1995; Hagen et al. 2000; Kamler et 

al. 2001 ). Furthermore, the presence of large stores of WE (a long-term store 

of metabolic energy) rather than TAG in many of the species included in this 

study also points the use of lipid as an energy store. 

More recent research has centred on the potentially significant role played by 

large lipid stores in the buoyancy regulation of Southern Ocean fish, including 

the swim-bladderless notothenioids (Clarke et al. 1984; Eastman 1985; 

Eastman 1988; Friedrich and Hagen 1994; Phleger et al. 1999b; Hagen et al. 

2000; Kamler et al. 2001 ), myctqphids (Phleger et al. 1999a;· Kamler et al. · 

2001) and deep-sea areas (Bakes et al. 1995). The presence of large stores 

of low d~nsity lipid, such as WE, allows fish to maintain position in the water 

column whilst expending little energy (Phleger 1991; Phleger 1998). Lipids 

(including WE), as an alternative to swim bladders, also have the advantage 

of being essentially non-compressible and are therefore beneficial to 

vertically migrating species (e.g. during diurnal migration). 

Knowing the amount of lipid stored by fish can also provide information 

regarding life history. In contrast to the buoyancy requirements of many 

pelagic fish species, benthic species have little or no capacity to migrate 

within the water column and, consequently, less need for lipid stores enabling 

neutral bu?yancy. For instance pelagic notothenioids tend to have higher lipid 

contents than those that are benthic (Friedrich and Hagen 1994; Kamler et al. 

2001 ). The applicability of these findings to the present study is, unclear. The 

low lipid content of many species included in this study, and their reliance on 

TAG rather than WE, suggests that lipid does not play a large role in either 

the long-term storage of energy or buoyancy regulation in these fish. As all 

the fish examined are predominately midwater rather than benthic species, 

one might expect that th~y would store greater quantities of lipid than is 

observed. However, there are many other strategies to maintain neutral 
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buoyancy such as reduction of heavy protein and bone tissues and reduction 

of heavy ions to create low density body fluids. 

Many species examined do possess the pre-requisites that would enable 

them to control buoyancy through the use of lipids, namely a high WE and 

total lipid content. These include several myctophid (E. antarctica, G. bolini 

and G. brauen), both gonostomatids ( Cyclothone sp. and D. rebains1) and the 

nemichthyid L. yanoi. Although all these species live within pelagic waters, 

the degree to which they migrate within the water column at Macquarie 

Island, and would therefore benefit from the storage of WE, is unclear. 

Williams et al. (2001) found that G. braueri from Macquarie Island shows 

strong upward movement at night from below 500rri to the 500-0m depth 

range. The migration of E. antarctica is thought to be seasonal rather than 

diurnal (Sabourenkov 1990). Understanding of the life history of the 

remaining- species is incomplete. 

Elevated FFA levels were a prominent feature of many species (up to 39.9% 

in S. gracilis). The fact that this was confined to specimens of small size, 

generally less than 1 .5g TW, suggests that the smaller mass of these 

samples left them at greater risk of degr~dation due to thawing, heating etc. 

prior to storage. Whilst the effect of this degradation on lipid class 

composition is striking and significant, total lipid content is likely to have 

remained unaffected. Similarly, fatty acid composition appears to have 

remained largely unchanged. This is evidenced by the fact that PUFA levels 

(highly sensitive to prolonged exposure to oxygen) are actually highest in 

many of the specimens with elevated FFA content. For instance, both FFA 

and PUFA content is substantially higher in juveniles of S. gracilis, 

Bathylagus antarcticus and Borostomias antarcticus than in adults. 

Variation in total lipid content and lipid class composition with fish size 

The increase in lipid content from juvenile to adult stages observed in 

Bathylagus antarcticus, Borostomias antarcticus and S. gracilis is probable 

evidence of two mutually occurring factors. Firstly, increasing lipid stores 
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have been associated with the development of gonads in several Southern 

Ocean fish species (Friedrich and Hagen 1994; Montgomery et al. 1999; 

Kamler et al. 2001). Secondly, if lipid content is related to-the maintenance of - -

neutral buoyancy in these species, then the increased accumulation of lipid 

with age compensates for the higher density of adult fish. This pattern of lipid 

accumulation has been observed in a number of Antarctic species including 

Pleuragramma antarcticum (Eastman 1988; Friedrich and Hagen 1994) and 

Trematomus lepidorhinus (Friedrich and Hagen 1994). 

Lipid class composition also varied relative to size, particularly a decrease in 

PL with increasing size in Bathylagus antarcticus, Borostomias antarcticus, 

and Stomias gracilis. The dietary significance of this shift is relatively minor 

and is more a reflection of the accumulation of larger quantities of TAG-rich 

lipid in larger fish. As PL are ma!nly found as structural components of 

membranes, the accumulation of TAG contributes to a proportionate drop in 

their levels. 

Dietary implications of fatty alcohol composition 

Determining the dietary origin of fatty alcohols (derived from WE) is difficult. 

Whilst dietary accumulation is considered the main source of fatty alcohol in 

a number of marine fish, including deep-sea oreos (Bakes et al. 1995) and 

myctophids (Phleger et al. 1997; Phleger et al. 1999a), the degree to whi~h 

fish simply accumulate or actively modify fatty alcohols and WE from the diet 

is poorly understood. Nothing is known of the lipid composition of copepods 

in the Macquarie Island region, typical sources of WE in Antarctic waters 

(Graeve et al. 1994; Kattner et al. 1994). One possible explanation for the 

high levels of WE found in many fish species, other than a WE-rich diet, is 

synthesis (Phleger et al. 1997). Rather than transferring WE directly from the 

diet into tissue, species such as myctophids may reincorporate dietary­

derived fatty alcohols into WE within the body. The potential for these 

species to selectively accumulate certain fatty alcohols in preference to 

others is therefore plausible. 
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Although the species included in the present study are characterised by a 

varied array of fatty alcohol compositions (Figure 2.4), this is not necessarily 

indicative of a dietary influence. In the absence of data pertaining·to the lipid 

class composition of potential prey such copepods, the amount and 

composition of WE available to these fish species from dietary sources 

remains unknown. 

Dietary implications of fatty acid composition 

The substantial variation in fatty acid composition, particularly-PUFA, across 

the range of midwater fish species included in this study points to a possible 

underlying dietary influence (Figures 2.2 and 2.3). The ability of marine fishrto 

convert short-chain-omega-3 PUFA (e.g~ 18:3ro3) to longer-chain omega-3 

PUFA (e.g. DHA; DPA, EPA) is limited (Sargent et al. 1993; Ruyter et al. 
- - ' 

2000; Koven et al. 2001 ). The majority of these PUFA must therefore have 

originated from dietary sources. Evidence supporting the deposition of many 

dietary derived PUFA into the flesh of fish with minimal modification is 

supplied by various captive studies (e.g. Navarro et al. 1995; Ki~sch et al. 

1998). Given that variation in the composition of long-chain PUFA 

(particularly EPA and DHA).is likely to be indicative of dietary variation, the 

wide-ranging PUFA compositions of those species·included in the present 

study (varying by -40% across all the species examined) add support to the 

observations of available stomach content analyses. Although detailed 

dietary information concerning midwater fish from Macquarie Island is 

restricte.9 almost entirely to myctophids, it is· likely that the general range of 

- prey consumed by fish would be similar across all species: Myctophids 

consume a complex array of euphausiids, copepods, amphipods, decapodsj 

ostracods, mysids, gastropods, chaetognaths, cnidarians, cephalopods and 

fishes, the combination of which appears to be species specific (Gaskett et 

al. 2001 ). 

Determining the dietary source of the constituent fatty acids of midwater fish 

is severely curtailed by a lack of lipid compositional data on these potential 

prey species. Reliance is instead placed upon identifying similarities in fatty 

acid composition between species for which dietary information exists (e.g. 
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myctophids) and those for which the diet is unknown, and pebating the 

likelihood that they share similar diets. 

Of the 21 midwater species included in this study, 14 were also included in 

the study of Gaskett et al. (2001 ). Five trophic guilds were identified from 

stomach contents, although the results of cluster analysis are restricted to 

myctophid species due to the limited sample sizes of other species (Table 

2.15). Assuming that the dietary differences attributed to each of these 

trophic guilds was great enough to be reflected in variations in dietary fatty 

acids, then the grouping patterns of each of these dietary aspects would be 

expected to be similar. That is, species with similar diets and therefore fatty 

acid compositions should theoretically group together. Figures 2.2 and 2.3 

provide evidence of the existence of such a pattern, particularly '!Vith regards 

to myctophids. 

Myctophidae 

Of the eight myctophid species analysed, seven were assig.ned to trophic 

guilds by Gaskett et al.(2001) using hierarchical clust.ering analysis (HCA). 

For comparative purposes, HCA was also used to classify these same 

myctophids based on their fatty acid compositions (Figure 2.2). Comparison 

of the grouping patterns obtained reveals substantial correspondence 

between these two methods of dietary assessment (Table 2.15). Firstly, 

, myctophids are present in four out of the seven groups identified from fatty 

acid composition, similar to the five trophic guilds identified from stomach 

content analysis. 

Secondly, the distribution of myctophid species throughout these four groups 

closely resembles that of the trophic guilds (Table 2.15). That is, many of the 

same species are grouped together based on both stomach content and fatty 

acid composition. E. antarctica and G. braueri, species for which copepods 

are the most important dietary component (50.2% and 31.5% of the diet 

respectively), share the same HCA group (group 6, Figure 2.2) and also form 

a distinct group based on MOS (Figure 2.3). G. bolini is placed in it's own 
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Table 2.15 Comparison of the grouping of various midwater fish species by cluster analysis using stomach content analysis 

(Gaskett et al. 2001) and average fatty acid composition (this study) 

Species Trophic guild1 Dominant fatty acids2 Cluster grouping3 

Electrona carlsbergi E' 18:1 ro9c, 16:0, DHA, EPA, 16:1 ro?c 3 
Protomyctophum bolini E. 18:1 ro9c, 16:0, DHA, 20:1 ro9c, EPA 3 

Gymnoscopelus braueri c· 18:1 ro9c, DHA, 16:0, EPA, 16:1 ro?c 6 
Electrona antarctica c· 18:1ro9c, 16:1ro7c, DHA, 16:0, EPA 6 

Lampanyctus achirus A* 18:1 ro9c, 16:0, DHA, 16:1 ro7c, 20:1 ro9c 3 
Melanostigma gelatinosum A 18:1ro9c, 16:0, DHA, EPA, 16:1ro7c 3 
Bathylagus antarcticusa A 18:1ro9c, 16:0, DHA, 20:1ro9c, EPA 3 
Bathylagus antarcticus A DHA, 18:1ro9c, 16:0, EPA, 18:0 i 

Gymnoscopelus bo/in( p* 18:1 ro9c, 20:1 ro9c, 18:1 ro7c, 22:1 ro11 c, 16:1 ro7c 5 
Echiodon cryomargarites p 18:1 ro9c, DHA, 16:0, EPA, 16:1 ro7c 3 
Phosichthys argenteus p DHA, 16:0, 18:1 ro9c, 18:0, EPA+ 24:1 ro9c 1 
Borostomias antarcticusa p 18:1 ro9c, 20:1 ro9c, 16:0, DHA, 16:1 ro?c 6 
Borostomias antarcticu~ p DHA, 18:1ro9c, 16:0, 20:1ro9c, EPA 2 
Stomias gracilisa p 18:1 ro9c, 16:0, 16:1 ro7c, 20:1 ro9c, 14:0 6 
Stomias gracili~ p 18:1ro9c, 16:0, DHA, EPA, 16:1ro7c 3 

Gymnoscopelus fraseri EiC I A* 18:1 ro9c, 16:0, DHA, 20:1 ro9c, EPA 3 
Gymnoscopelus nicholsi EI CIA 20:1 ro9c, 18:1 ro9c, 16:0, 18,:1 ro7c, 22:1 ro11 c, 4 
1inferred from stomach contents (*confirmed by cluster analysis) by Gaskett et al(2001 ); E=euphausiid feeder; C=copepod feeder; A=amphipod fee~er; 
P=piscivore feeder; 2representing the five most prevalent fatty acids in descending order of dominance; 3determined from hierarchical cluster analysis of 
average fatty acid composition (refer to Figure 2.2); j=juvenile; a=adult (refer to text for details on sizing); EPA=eicosapentaenoic acid (20:5ro3); 
DHA=docosahexaenoic acid (22:6ro3) 
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CHAPTER 2 LIPID COMPOSITION OF MIDWATER FISH 

group on the basis of HCA (Group 5) and MOS, reflecting the fact that it also 

singularly occupies atrophic guild (piscivore). The grouping of the other 

myctophids by HCA and MOS are more ambiguous. E. car/sbergi and P. 

bolini (euphausiid consumers) are placed together in Group 3 and also group 

closely using MOS. However, they are also grouped with L. achirus 

(amphipod feeder) and G. fraseri (euphausiid, copepod and amphipod 

feeder) using HCA and MOS, even though these two myctophids are placed 

into separate trophic guilds on the basis of their stomach contents (Table 

-2.15). This could indicate a greater degree of dietary overlap in these four 

species than is revealed by stomach content analysis. 

Although G. nicholsi was not placed into a trophic guild by Gaskett et al. 

(2001 ), it's diet appears to be quite distinct from the other myctophids, 

characterized by a reliance on copepods, euphausiids and other unidentified 

crustaceans. This fact is reflected in the separation of G. nicho/si into a 

distinct group based on both HCA (Group 4) and MOS. 

Remaining midwater: species 

Of the 13 non-myctophid species analysed in this study, the stomach 

contents of only 6 were determined by Gaskett et al. (2001 ). Due to limited 

sample sizes, none of these 6 species were placed into trophic guilds. 

Grouping of these species based on diet is, however, still possible. For 

instance M. gelatinosum and Bathylagus antarcticus consume mainly 

amphipods (>90% of diet), whilst E. cryomargarites, P. argenteus, 

Borostomias antarcticus and S. gracilis rely primarily on (unspecified) fish 

(>70% of diet). Comparison is complicated by the fact that S. gracilis, 

Borostomias antarcticus and Bathylagus antarcticus have been separated 

into juveniles and adults in the current study. Gaskett et al. (2001) failed to 

specify whether they used adults, juveniles or a mixture of both ages classes 

in their analysis. The assumption has therefore been made that stomach 

contents were of adult fish only. 
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Dealing firstly with species for which dietary information exists, comparison of 

the two methods of dietary determination (Figure 2;2) again reveals a great 

deal of concurrence. The amphipod feeders M. ge/atinosum and- Bathylagus 

antarcticus (adults o_nly) are not only grouped together by HCA (Group 3), 

they also group with the myctophid L. achirus, also identified by stomach 

content analysis as primarily amphipod consumers (Table 2.15). MOS also 

groups these species, though the separation from other fish species is not as 

distinct. 

These species in turn grouped amongst a number of other species with wide­

ranging diets, including the euphausiid feeders E. carlsbergi and P. bolini, the 

piscivore E. cryomargarites and the mixed feeder G. fraseri. The species 

contained within Group 3 (Figure 2.2) may therefore represent a group 

- relying upon varying proportions of copepods, euphausiids, amphipods and 

fish rather than relying upon a single prey group. Although juvenile S. gracilis 

also grouped with these species,. it's diet is unclear. That fact that it grouped 

closest to E. carlsbergi in cluster analysis (Figure 2.2) and within the same 

group as E. carlsbergi using MOS analysis (Figure 2.3) raises the possibility 

that t~e diet of juvenile S. gracilis is dominated by euphausiids. 

The fish identified as piscivorous feeders by stomach content analysis are 

spread across a number of groups. E. cryomargarites (Group 3) and P. 

argenteus (Group 1) and G. bolini (Group 5) are al! present in separate 

_ groups, whilst adults of both S. gracilis and Borostomias antarcticus are 

included in the same grouping (Group 6). The exact composition of the fish 

included in the diet of these species is not specified· by Gaskett et al. (2001 ). 

However it is clear, given the range of fatty acid compositions encountered in 

the present study, that a diet based upon different combinations of fish prey 

would consequentially produce a considerable range of fatty acid 

compositions in the predator species. 

Although dietary information is unavailable for the remaining fish species 

examined in this study, several features are apparent. The species contained 

within HCA Group 1 , P. crassiceps, Sternoptyx sp., juvenile Bathylagus 
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antarcticus and P. argenteus must all share a diet rich in PUFA, particularly 

DHA (>24%). This could be a single DHA-rich prey species, or perhaps a 

combination of numerous DHA-rich prey. Whilst juvenile Borostomias 

antarcticus occupy their own group (Group 2), they are present on the same 

branch as Group 1 and share a similar fatty acid composition. A lower DHA 

content (=20%) and elevated level of 20:1 ro9c (=10%) suggests that, 

although juvenile Borostomias antarcticus possibly overlap with the diet of 

the fish from Group 1, they perhaps additionally forage upon MUFA-rich prey. 

The remaining species are all characterised by high levels of MUFA (>60%) 

and are split between two groups using HCA (Figure 2.2), but tend to 

associate in the same grouping using MOS (Figure 2.3). HCA Group 6 

Cyclothone sp., C. sloani, S. boa boa and L. yanoi are placed in HCA Group 

6, a group that also contains a number of fish that are classified as either 
, 

piscivores (adults of both Borostomias antarcticus and S. gracilis) or copepod 

feeders (G. braueri and E. antarctica) on the basis of stomach contents. The 

~learer grouping of these species with E. antarctica and G. ·braueri by MOS 

suggests that copepods may dominate the diet. 

D. rebainsi is singularly placed in Group 7. The fatty acid composition of D. 

rebainsi is exceptional in that it's fatty acid composition is dominated by 

18:1 ro9c (76.3%). The influence of biosynthesis and or bioaccumulation in 

this species may be substantial compared to other species, as levels of 

18:1 ro9c in excess of 30% are rare for marine species. 

Dietary implications of the variation in fatty acid composition with fish 

size 

A significant decrease in PUFA (up to 80%) and increase in MUFA (up to 

60%) was associated with increasing size in those species for which juvenile 

and adult stages were assessed, Stomias gracilis, Bathylagus antarcticus 

and Borostomias antarcticus. Similar shifts in fatty acid composition with 

increasing fish size, also related to dietary changes, have been reported in 

other species (e.g. Budge et al. 2002). Considerable differences in the diet of 

adult and juvenile fish are also apparent for other Southern Ocean $pecies, 
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including myctophids (Kozlov and Tarverdiyeva 1989; Sabourenkov 1990; 

Pakhomov et al. 1996) nototheniids (Duhamel and Hureau 1985; Williams 

1985; Arrizaga et al. 1996; Garcfa de la Rosa et al. 1997; Pakhomov 1997) 

and channichthyids (Duhamel and Hureau 1985). 

Although diet is likely to change as fish increase in size, the corresponding 

shift in fatty acid composition can be explained by other factors. Fish tend to 

, selectively deposit PUFA such as DHA and EPA into the PL fraction in order 

to maintain membrane fluidity (Dunstan et al. 1999; Cahu et al. 2000). 

Decreasing PL levels are also associated with the increasing size of S. 

gracilis, Bathylagus antarcticus and Borostomias antarcticus due to the 

deposition of larger quantities of TAG-rich lipid in adults, partly explaining the 

observed decrease in PUFA in large fish. 

Comparison with fatty acid composition of potential prey 

Confirming whether the variations in fatty acid composition between these 

groups of fish are due to dietary factors requires a knowledge of the lipid 

composition of the various species of copepod, euphausiid and amphipod 

that ar!3 thought to contribute to the diet. Unfortunately, detailed lipid 

compositional data on zooplankton from the Macquarie Island region does 

not exist. Current knowledge of the lipid composition of Southern Ocean 

euphausiids (Virtue et al. 1993a; Virtue et al. .1995; Phleger et al. 1998; 

Cripps and Atkinson 2000; Falk-Petersen et al. 2000), copepods (G.raeve et 

al. 1994; Kattner et al. 1994; Kattner and Hagen 1995) and amphipods ' 

(Phleger et al. 1998; Nelson et al. 2001) is restricted to primarily Antarctic 

species. 

The lipid composition of Antarctic zoopankton is likely to differ substantially to 

their sub-Antarctic equivalents due to many factors. The so-called 'latitudinal 

effect' is well described by many authors (e.g. Dunstan et al. 1999). Many 

marine species residing in high latitudes contain proportionally greater levels 

of omega-3 PUFA than more temperate species, a consequence of cold­

water adaptation (PUFA enable cellular membranes to remain fluid and thus 

active at low temperature). 
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Thus any comparison based upon the use of Antarctic rather than sub­

Antarctic species of prey would be speculative. A ease in-point, and one that - -

actually contradicts the 'latitudinal effect', is the significantly higher DHA 

, levels (average 21.3%) of the temperate euphausiid Nyctiphanes australis 

(Virtue et al. 1995) compared to the Antarctic species Euphausia superba 

(=10%) (e.g. Phleger et al. 1998; Falk-Petersen et al. 2000) due to dietary 

differences. 

Regional variations in fatty acid composition 

Lipid compositional data of midwater fish from other regions is essentially 

limited to myctophid species inhabiting Antarctic rather than sub-Antarctic 

waters. An exception is the study of Lea et al. (2002) that examined a 

number of myctophid species, also analysed in this study, from Macquarie 

Island and the Kerguelen Plateau. These included E. antarctica and G. 

fraseri (from both regions) and E. carlsbergi and G. nicholsi ( Kergeuelen 

Plateau only). Two further myctophid species from the sub-Antarctic have_ 

also been investigated. P. bolini was analysed in a dietary study of king 

penguins (Aptenodytes patagonicus) from lle de la Possession, Crozet 

Peninsula (Raclot et al. 1998) and G. nicholsi in an investigation into 

Antarctic fur seal (Arctocepha/us gaze/la) and Southern elephant seal 

(Mirounga leonina) diet at Bird Island, South Georgia (Brown et al. 1999). 

With respect to Antarctic populations, Phleger et al. (1997; 1999a) 

determined the lipid composition of several myctophids from Elephant Island, 

Antarctic Peninsula (E. antarctica, G. braueri, G. nicholsi and E. carlsberg1) 

and Eastern Antarctica (E. antarctica again). Comparison with the results of 

these studies is complicated by the fact that analysis was performed on a 

number of different body sections rather than whole specimens, as is the 

case with the current study. For the purposes of this investigation, the results 

obtained from flesh sections (flesh includes all body sections except viscera, 

neurocranium and vertebral centra) were compared. Reinhardt and Van Vleet 

(1986) also analysed E. antarctica, G. nicholsi and E. carlsbergi from Croker 

Passage, Antarctic Peninsula as well as P. bolini and the bathylagid 
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Bathylagus antarcticus. Although the lipid class composition of flesh from 

these species was determined, fatty acid analysis was limited to either 

viscera or larvae making them unsuitable for comparisons. Donnelly et al. 

(1990) determined the proximate composition, including lipid content, of 

Bathylagus antarcticus, E. antarctica, G. braueri, G. nicholsi and P. bolini in 

Antarctic waters (Weddell and Scotia Sea). 

Electrona antarctica 

The lipid composition of E. antarctica in this study closely resembles that 

previously determined from Macquarie Is. by Lea et al. (2002). Although total 

lipid content is comparable (17.5±3.6%WW this study versus 

14.5±1.1 %WW), lipid class composition differed slightly with respect to PL 

(5.7±2.5% this study versus 14.2±4.7%). PUFA composition was slightly 

lower in this study, due mainly to a variation in the level of EPA (4.1±0.4% 

this study versus 6.8±0.1 %) whilst MUFA content (mainly 18:1 m9c) was 

slightly higher (36.6±0.9% this study versus 32.1±1.5%). Little differer.ice in· 

fatty alcohol composition was observed. The difference in fatty acid 

composition may reflect the size differences apparent between these two 

studies. The E. antarctica included in the current study are slightly larger 

(average TL 62.3mm) than those analysed by Lea et al. (2002) (average TL 

57.7mm), perhaps_leading to a difference in diet between these two size 

groups. 

With regards to Antarctic populations of E. antarctica, total lipid content from 

this study is close to the findings from Croker Passage (range 17.1-

20.7%WW), and Kerguelen Plateau (13.7±1.6%WW), though is higher than 

the range reported by Donnelly et al. (1990) in the Scotia and Weddell Seas 

(8.9-13. 7%WW). E. antarctica from the current study are closer in lipid class 

composition to fish from Elephant Is. and Eastern Antarctica (WE >85%) 

(Phleger et al. 1997) than those from either Croker Passage or Kerguelen 

Island. E. antarctica from Croker Passage and Kerguelen Plateau contain 

less WE (range·, Croker Passage 34.7-61.8%; Kerguelen Plateau 71.6±8.2%) 
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and considerably more TAG (range, Croker Passage 8.2-27.4%; Kerguelen 

Plateau 17.3±10.3%) and PL (Croker Passage only, 19.8-42.5%) than fish 

from any of the other locations, although Phleger et al. (1-997) attributed the - -

elevated TAG in the Croker Passage population to a methodological error on 

the part of Reinhardt and Van Vleet (1986). Several differences in fatty acid 

composition are also apparent. Levels of total MUFA are lower (72.7±0.9%, 

principally 18:1 ro9c, 16:1 ro7c and 18:1 ro7c) and PUFA higher (16.0±1.2%, 

especially DHA and EPA) in Macquarie Is. E. antarctica than either the 

Eastern Antarctic (MUFA 82.2±1.2%; PUFA 7.8±0.5%) or Elephant Is. 

(MUFA 79.8±2.4%; PUFA 9.8±2.7%) populations. 

The variation in PUFA levels, in particular, point to a significant difference in 

diet between E. antarctica from the Antarctic and sub-Antarctic. Copepods 

dominate the diet of E. antarctica populations stretching from the sub­

Antarctic (including Macquarie) Island to the Antarctic continent (Williams 

1985; Kozlov and Tarverdiyeva 1989; Sabourenkov 1990; Pakhomov et al. 

1996). Sli~ht variations in diet are however apparent. Sabourenkov (1990) 

observed the growing importance of euphausiids in the adult E. antarctica (at 

an average TL of approximately 90mm) in Antarctic waters. As the TL of the 

E. antarctica from Elephant Island ranged from 96-1 OOmm, the diet of these 

specimens may be dominated by euphausiids rather than copepods. This is 

at odds with the high proportion of MUFA in the Elephant Island population, 

more readily associated with copepods (e.g. Kattner et al. 1994) rather than 

PUFA-rich euphausiids (e.g. Virtue et al. 1993b; Phleger et al. 1998; Cripps 

and Atkinson 2000). E. antarctica from East Antarctica on the other hand 

were of similar size to the specimens from the current study (TL range 57-

72mm) The differences in fatty acid composition between these two 

populations can more easily be attributed to dietary differences. 

Electrona carlsbergi 

The total lipid content of E. carlsbergifrom Croker Passage (11.2%, 

Reinhardt and Van Vleet 1986), and the two Macquarie Island studies 
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(9.5±2.2% in this study versus 12.2±3.9%) reveals little variation relative to 

geographical location. 

Lipid class composition is also relatively consistent between the various 

locations. In particular E. carlsbergifrom this study closely resembles fish 

from Elephant Island (Phleger et al. 1999a). Fish from all regions are 

dominated by TAG (>64%), substantial quantities of PL (> 17%) and trace 

amounts of WE (excepting Croker Passage, 6.7%). Slight differences are, 

however, apparent. Most notably, PL are considerably less in both the 

Kerguelen Plateau and _Croker Passage (=17%) relative to Macquarie and 

Elephant Islands .(29.0±7.3% and 24.5±14.7% respectively) .. 

Fatty acid composition is similarly consistent. All populations are 

characterised by high PUFA (>20%) and MUFA (>40%). The content of . 

various individual PUFA do, however, show some variation. E. carlsbergi 

from Elephant Island are particularly rich in DHA (14.7±8.2%) compared to 

fish from Macquarie Island and the Kerguelen Plateau (=10%). Similarly, EPA 

is present at higher levels at E:lephant Island and the Kerguelen Plateau 
' . 

(=10%) than the Macquarie Island population (6.5±1.2%). The level of 

18:1 co9c is approximately 5-10% higher in the Macquarie Island population 

(23.7±1.9%) than in fish from either the Kerguelen'Plateau (17.8±0.4%) .or 

Elephant Island (15.4±2.2%). 

The diet of E. carlsbergi is heavily influenced by geographical location. 

Copepods dominate the diet of populations from the Bellinghausen, d'Urville 

and Kosmonavtov (Kozlov and Tarverdiyeva 1989) and Lazarev Seas 

(Pakhomov et al. 1996) as well as South Georgia and the Scotia Sea 

between 20-40°W (Sabourenkov 1990). Euphausiids are the dominant prey 

consumed by E. carlsbergifrom Macquarie Island (Gaskett et al. 2001) and 

the Argentine Depression, Scotia Sea (Oven et al. 1990). Regional variations 

in the diet of E. carlsbergi could thus explain the observed variation in PUFA. 
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Gymnoscopelus braueri 

Total lipid content of G. brauerifrom this study (9.7±3.8%WW) is comparable - · 

to populations from the Weddell and Scotia Seas (11.1-13.7%,WW Donnelly 

et al. 1990). The dominance of WE in G. braueri from this study is similar to 

that of fish from Elephant Island. However FFA content (this study 

22.4±16.0%, Elephant Is. 0.5±0.5%) is considerably greater and PL lower in 

the Macquarie Island population (5.5±2.4% versus 23.7±7.5%). Large 

differences in fatty acid composition between the two populations are also 

evident. The higher PUFA content of Macquarie Island G. braueri 

(24.5±7.2%) compared to those from Elephant Is. (6.3±0.5%) is due mainly to 

variations in DHA (Macquarie Is. 12.3±5.5%; Elephant Is. 2.1 ±0.0%) and 

EPA (Macquarie Is. 5.3±2.0%; Elephant Is. 0.9±0.1 %). Consequently MUFA 

content is greatly reduced at Macquarie Is. (62.1±12.9%) compared to 

Elephant Island (80.3±2.7%), especially in the levels of 18:1 ro9c (Macquarie 

Is. 38.7±11.0%; Elephant Is. 55.0±0.6%). Differences in fatty alcohol 

composition are also evident, especially the higher levels of 20:1 ro9Alc in 

Macquarie (9.2±3.9%) compared to Elephant Island (3.8±1.1 %). 

Although the diet of G. braueri is poorly described, variations related to both 

region and fish size have been described. The diets of G. braueri from 

Macquarie Island (Gaskett et al. 2001) and small fish (TL 50-80mm) from the 

Kosmonavtov Sea, Antarctica (Kozlov and Tarverdiyeva 1989) are dominated 

by copepods. Larger fish from the Kosmonavtov Sea consume a mixture of 

euphausiids (mainly Euphausia superba) and copepods, whilst in the region 

of the Lazarev Sea (Kozlov and Tarverdiyeva 1989) and Prydz Bay, Eastern 

Antarctica (Williams 1985, TL 41-150mm) the diet consists almost entirely of 

E. superba. Based on these observations, the G. braueri specimens 

(standard length 77-93mm) included in the study of Phleger et al. (1999a) are 

more likely to forage upon euphausiids. By contrast, the smaller sized 

specimens included in this study (TL 35-47mm) are far more likely to 

consume copepods, supporting the observations of stomach content 

analysis. Again, the variation in DHA and EPA content between the 

66 



CHAPTER 2 LIPID COMPOSITION OF MIDWATER FISH 

Macquarie and Elephant Island populations of G. braueri could lie in these 

dietary differences. 

Gymnoscopelus nicholsi 

Total lipiq contents of G. nicholsifrom the 'Kerguelen Plateau 

(18.0±2.3%WW) and Weddell-Scoti~ Seas (23.3%WW) are considerably 

higher than that of the Macquarie Island population (this study, , 

7.1±2.0%WW) despite similar TW and TL. Lipid class composition was 

reasonably consistent, characterised by high TAG (>90%) at both Elephant 

Island and the Kerguelen Plateau. The lower TAG levels from this study , 

(80.7±6.2%) is most likely a consequence of the elevated FFA (17.6±11.3%) 

in the Macquarie Island populations relative to the two other locations. 

Reinhardt and Van Vleet (1986) reported that flesh of G. nicholsi from the 

Croker passage contained considerable amounts of WE (19.6%), a lipid class 

not detected in the other populations. This is likely .to be a consequence of 

the same methodological error suggested by Phleger et al. (1997) in relation 

to E. antarctica. 

Fatty acid composition varies greatly between each of the sampling locations. 

G. nicho/si from Bird Island (Brown et al. 1999) are distinguished by a high 

PUFA content (40.8%), mainly levels of DHA (12.3%), EPA (12.6%) and 

20:4co3 (3.8%), that far exceed those from the other populations (DHA <9%; 

EPA <7%; 20:40J3 <1 %). The fatty acid composition of G. nicholsi in this 

study most closely matches that of Elephant ·Island, with some variation in 

MUFA (Elephant Is. 58.9%; Macquarie Is. 69.5±0.3%) and SFA (29.2%; 

17.9±0.3%). The PUFA content of the Kerguelen Plateau (17.5±0.5%) 

population is considerably higher than Macquarie Island (this study, 

11.7±0.2%), especially EPA (Kerguelen Plateau 6.7±1.1%; Macquarie Is. 

2.1±0.1%). 

The variation in fatty acid composition, especially PUFA, suggests the 

possibility of significant geographical variation in the diet of G. nicho/si. 
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However, euphausiids almost totally dom_inate the diet of most populations 

(Williams 1985; Kozlov and Tarverdiyeva 1989; Oven et al. 1990; 

Sabourenkov 1990). An exception is the study of Pakhomov (1996) who 
' 

suggested that euphausiid consumption by G. nicholsi, rather than a 

continuous event, only occurs during certain periods and within specific 

regions. The diet of G. nicholsi in the .study of Pakhomov (1996) is in~tead 

dominated by copepods. The diet of G. nicholsi at Macquarie Island is 

unclear due to the high proportion (>50%) of unidentified crustacea in the 

stomach contents (Gaskett et al. 2001 ), making it difficult to conclude 

whether regional variations in diet may have influenced fatty acid 

composition. 

Gymnoscopelus fraseri 

The two studies incorporating G. fraserifrom Macquarie Island reveal 

differing total lipid contents (7'.6±4.4% in this study versus 3.6±0.4% Lea et 

al. 2002). This is most likely a consequence of the larger specimens 

analysed in the current study (TL 83.0±15. 7mm in this study versus 

50.7±1.2mm). The high total lipid content of G. fraserifrom the Kerguelen 

Plateau (11.6±2.9%) similarly reflects the larger size of these specimens (TL 

71.7±5.8mm) relative tb those analysed by Lea et al. (2002). 

Lipid class composition is consistent between the .two Macquarie Island 

studies, characterised by high levels of TAG (>40%), PL (>24%) and FFA 

(=20%) and small quantities of WE (<1%). Consequentially, the lipid class 

composition of G. fraseri from this study also contrasts with that of the 

Kerguelen Plateau (TAG 78.1±5.4%, FFA 7.1±1.4% and PL 12.4±4.0%). As 

suggested by Lea et al. (2002), the higher FFA levels in specimens from 

Macquarie Island are probably the result of differences in storage conditions 

rather a direct dietary influence. 

Fatty acid composition of G. fraseri also varies with location and between the 

two Macquarie Island studies and is most likely due to the range of G. fraseri 

sizes. PUFA is highest in the Macquarie Island study of Lea et al. (2002) 
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(36.6±1.1 %), followed by the current study (25.2±1.4%) and then finally the 

Kerguelen Plateau (23.4±2.3%). DHA is responsible for the greatest 

variation, ranging from 20.5±0.1 at Macquarie Island (Lea et al. 2002) to 

8.8±1.2% at the Kerguelen Plateau. MUFA content is greatest in this study 

(total MUFA 48.9±3.4%; primarily 18:1 co9C, 17.6±1.4%), followed by the 

Kerguelen Plateau (46.4±6.5%; 18:1 co9c, 13. 7±0.8%) and then Macquarie 

Island (Lea et al. 2002) (33.8±3.4%; 18:1m9c, 13.3±0.4%). Overall PUFA 

content, therefore, increases with increasing size of G. fraseri, associated 

with a concomitant decrease in MUFA. The diet of G. fraseri in regions other 

than Macquarie Island is currently unknown, making it impossible to 

speculate whether or not dietary differences may have contributed to the 

observed variation in fatty acid composition. 

Protomyctophum bolini 

P. bolini contains far more lipid at Macquarie Island (11 .0±3:4%WW) than the 

Weddell-Scotia Sea population (4.0%WW), despite similar sized specimens. 

The lipid class composition of P. bolini from Croker Passage contrasts 

strongly with the results of this study. For instance the levels of WE in Croker 

Passage specimens (7.7%) exceed those detected in Macquarie Island fish 

(1.0±1.0%). PL content is conversely higher in this study (28.3±21.2%) 

compared to Croker Passage (10.0%). The variation in TAG (Macquarie Is. 

49.8±2f 0%; Croker Passage 82.3%) can be explained in part by the­

elevated FFA levels of Macquarie Island P. bolini ( 17. 7±1 ~ .2%). 

A comparison with the fatty acid composition of P. bolini from lie de la 

Possession (Raclot et al. 1998) reveals minor variations in both MUFA and 

PUFA. The specimen from lle de I.a Possession contains slightly higher levels 

of DHA (11.7%) and EPA (6.3%), and a lower content of 18:1co9c (15.7%) 

than fish from the Macquarie Island population (DHA 8.8±2.8%; EPA 

5.6±1.4%; 18:1 m9c 22.1±1.4%). 
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The diet of P. bolini varies greatly with region. The diet of fish from Macquarie 

Island population is dominated by euphausiids (Gaskett et al. 2001 ), whilst 

specimens collected below South Africa near the sub-tropical convergence 

consume mainly copepods (Pakhomov et al. 1996). The varied fatty acid 

composition of P. bolini from Macquarie Island and lle de la Possession could 

conceivably be due to a similar difference in diet between these two regions. 

Bathylagus antarcticus 

A regional comparison of lipid class data is limited to just one other region, 

Croker Passage (R~inhardt and Van Vleet 1986). The l~vel of PL in the 

specimen from Croker Passage (34.2%) is similar to the levels observed in 

juvenile Bathylagus antarcticus in the present study (44.9±5.6%). Levels of 

TAG (Croker Passage, 60. 7%) are, however, closer to values for adult 

specimens included in the current study (82.9±5.4%). The content of WE 

(Croker Passage, 5.1 %) is higher than in either the juveniles (1.6±0. 7%) or 

adults (no WE) from Macquarie Island. Little potential dietary information can. 

be gained from these results, compounded by the fact that the stomach 

contents of populations other than Macquarie Island are yet to be examined. 

2.5 CONCLUSIONS 

The wide-ranging lipid composition of midwater fish from the Macquarie 

Island region may reflect diversity in both the biological function of lipid in this 

fish assemblage, as well as diet. The potential dietary overlap of many 

species, suggested by stomach content analysis and in many cases 

confirmed by-fatty acid data, has significant implications for the region and 

underlines the inclusive nature of marine ecosystems. 
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CHAPTER3 

LIPID COMPOSITION OF SQUID FROM THE MACQUARIE 

ISLAND REGION: BIOLOGICAL FUNCTION AND 

IMPLICATIONS FOR DIETARY INTERACTIONS 

3.1 INTRODUCTION 

Despite their importance, many biological, physiological and ecological 

asp.ects of Southern Ocean squid, including species composition, distribution 

and biomass, are poorly understood (Redhouse 1989; Lu and Williams 

1994a). Squid are widely distributed in this vast region of ocean and in 

certain areas, namely the Antarctic Polar Frontal Zone, are thoug~t to occupy 

the ecological niche usually dominated by epipelagic fish (Redhouse and 

White 1995). This lack of knowledge is due in part to the well documented 

ability of squid to escape nets (Piatkowski and Hagen 1994), the logistically 

difficult study environment of the Southern Ocean and the limited range of 

commercially viable squid species, traditionally a valuable source of research 

data and material. 

Equally apparent is the lack of research directed towards the dete~mination of 

biochemical compounds, including lipids. The almost singular reliance of 

squid on amino acid metabolism (Lee .1994) has meant that the role played 

by lipids in cephalopods is often overlooked (Navarro and Villanueva 2000). 

This is especially surprising given the high levels of lipid found in the 

digestive gland tissue of several species. For example, the digestive glands 

of several Northern Hemisphere gonatid squid contain high levels of 

diacylgylceryl ethers (DAGE) that are thought to play a major role in 

buoyancy regulation and/or energy storage (Hayashi et al. 1985; Hayashi 

and Yamamoto 1987; Hayashi 1989; Hayashi and Kawasaki 1990; Hayashi 
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et al. 1990). The large lipid stores present in many cephalopod species are 

thought to be essential to the proper functioning of mechanisms as diverse 

as neurological development during early life (Navarro and Villanueva 2000), - -

functioning of the central nervous system (Dumont et al. 1992; Dumont et al. 

1994), reproduction (Blanchier and Boucaud-Camou 1984), buoyancy 

(Clarke et al. 1979) and energy storage (Castro et al. 1992; Semmens 1998). 

Lipid composition may also be useful as a descriptive tool in the evaluation of 

certain nutritional, metabolic and energetic parameters (Lawson et al. 1998). 

For instance it has been suggested that the lipid content of squid digestive 

glands is a proxi~al indicator of the trophicity, or lipid potential, of the 

collection region (Abolmasova et al. 1990; Semmens 1998). An increase in 

the relative lipid content of this organ would therefore be correlated to an 

increase in the availability of dietary lipid in a given region. 

Squid are recognized as important prey for a number of Macquarie Island 

predators. Amongst these are Southern Elephant seals (Green and Burton 

1993), Fur seals (Green et al. 1990), Hooker's sea lions (McMahon et al. 

1999), and Patagonian toothfish (Goldsworthy et al. 2002). The diet of a 

variety of seabird species from Macquarie Island also include squid 

(summarised in Goldsworthy et al. 2001 d). Squid are also important dietary 

components of these predators in other regions of the Southern Ocean, 

including Patagonian toothfish (Arrizaga et al. 1996; Garcfa de la Rosa et al. 

1997; Pilling et al. 2001; Xavier et al. 2002), whales (Nemoto et al. 1985; 

Clarke and Goodall 1994; Slip et al. 1995; Clarke and Roeleveld 1998; 

Clarke and Roper 1998), seabirds (Cherel and Ridoux 1992; Thompson. 

1994; Chere! et al. 1996; Rodhouse et al. 1998; Cherel and Weimerskirch 

1999), and marine mammals (Rodhouse et al. 1992). 

Lipid profiling techniques are rapidly finding a use as a means of determining 

aspects of diet. Assessment of squid diet is essential in furthering the 

understanding of trophic interactions within food webs, as well as the broader 

implications of energy flow within oceanic systems. In spite of this need, diet 

has so far received only rudimentary attention for most squid species. 

Moreover, diet is usually assessed by stomach content analysis, a technique 
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with a number of inherent and well acknowledged shortcomings if used in 

isolation. These include a failure to identify with any certainty long-term 

dietary composition and bias due to differential digestion of prey-items 

(Antonelis et al. 1987; Harwood and Croxall 1988; Rodhouse et al. 1992; 

Jackson 1995; Redhouse and Nigmatullin 1996; Phillips et al. 2001 ). The use 

of lipid compounds, including fatty acids, fatty alcohols and glyceryl ether 

dials as an adjunct to traditional techniques of dietary determination has 

gained increasing interest in recent times, including for Southern Ocean 

squid species. For example Phillips et al. (2001) used fatty acids to explore 

the trophic interactions between the squid Moroteuthis ingens and myctophid 

fish in the Macquarie Island region. 

This chapter examines the lipid composition of six squid species collected 

from the Macquarie Island region; Moroteuthis ingens, Mastigoteuthis sp., 

Histioteuthis eltaninae, Kondakovia longimana, Galiteuthis glacialis and 

Gonatus antarcticus, representing squid from five different families. For a 

number of these species (K. longimana, Mastigoteuthis sp., H. f!ltaninae), 

this study represents the first time that lipid composition has been reported. 

For others (M. ingens, G. antarcticus, G. g/acialis) the data presented is an 

expansion of the current understanding regarding the lipid composition of 

these squid, especially in relation to the influence of temporal, growth and 

geographical factors. The main aims of this study are twofold. Firstly, the lipid 

composition of these s.quid will be related to it's possible role in biological 

function, particularly in relation to buoyancy and energy storage. Secondly, 

potential dietary interactions will be explored by comparison of the fatty acid 

composition of squid and their prey, mainly myctophids, and identifying 

$imilarities. 

3.2 MATERIALS AND METHODS 

Sample description and preparation 

All squid were collected from the Macquarie Island region (54°30'8; 

158°55'E) between 1995 and 1998 by operations of the commercial trawler 
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Austral Leader (Austral Fisheries Pty. Ltd., Fremantle, Western Australia). 

The duration of net tows ranged from 4-5 hours at varying trawl depths. A 

total of 19 specimens were collected from 6 species of varying total lengths, · -

mantle lengths and total weights (Table 3.1 ). Stomachs were removed for 

content analysis and the remainder of the sample stored in -20 ° C freezers 

until analysis. Samples were analysed within 3 months where possible. 

Whole specimens of Moroteuthis ingens, Histioteuthis eltaninae, 

Mastigoteuthis sp. and Galiteuthis glacialis were thawed and ground before 

removal of a 1-2g sub-sample for lipid extraction. Two of the three specimens 

of K. longimana were dissected into mantle, tentacle and digestive gland 

tissue (DG) which were ground separately before removal of 1-2g for lipid 

extraction. The remaining specimen of K. longimana was ground whole. 

The digestive glands were already ruptured in four of the five Gonatus 

antarcticus specimens, therefore these samples were analysed as whole 

animals. Sub-samples of tissue were obtained from blended whole 

specimens (referred to as ~hole animal tissue). The intact DG and mantle of 

the remaining specimen were separated and blended independently. 

Lipid extraction 

Total lipids were extracted overnight from a sub-sample (approximately 1 g) of 

squid tissue using the modified one-phase Bligh-Dyer (1959) method. After 

phase separation total lipids were recovered from the lower chloroform phase 

and concentrated in vacua (rotary evaporator, 40°C). Samples were stored at 

-20°c prior to analysis. 

Lipid class determination 

Lipid class profiles were determined by TLC-FID using an latroscan MkV 

TH1 O analyser (Volkman and Nichols 1991 ), using the method described in 

Nelson et al. (2001 ). Wax ester (WE), triacylglycerol (TAG), free fatty acid 

(FFA), sterol (ST), diacylglycerol (DG) and polar lipid (PL) were resolved in a 

polar solvent system of hexane-diethyl ether-acetic acid (60:17:0.2 v/v). The 

presence of WE and diacylgylceryl ether (DAGE) was confirmed by the use 

74 . 



CHAPTER 3 LIPID COMPOSITION OF SQUID 

of a non-polar solvent system (hexane-diethyl ether; 96:4 v/v). Peak areas 

were quantified using commercially available chromatography software 

(DAPA Scientific Software, Kalamunda, Western Australia, Australia). 

Fatty acid and glyceryl ether diol determination 

Fatty acid methyl esters (FAME) were prepared by addition of 

MeOH/HCl/CHCl3 (3ml 10:1 :1, v/v, 80°C/2hr) to an aliquot of the total lipid. 

After the addition of 1 ml of water, FAME were extracted (3x 2ml) with 4:1 v/v 

hexane/CHCl3_ Chlo~oform containing C19 FAME internal standard was then 

added. FAME fractions were treated with N,0-bis-(trimethylsilyl) 

trifluoroacetamide (BSTFA SOµL, 60°C, overnight) to convert glyceryl ether 

dials (derived from DAGE), alcohols (derived from WE) and ST to their 

corresponding trimethylsilyl (TMS) ethers. 

Gas chromatographic analysis was performed on a Hewlett Packard 5890A 

GC equipped with a flame ionisation detector, a cross-linked methyl silicone 

(HP5) fused silica capillary column (50 m length x 0.32 µm internal diameter), 

employing hydrogen as the carrier gas. Samples were injected (HP7673 

auto-injector) at 50°C in the splitless mode, with a 2-min. venting time 

(Nichols et al. 1993). The injector and detector were maintained at 290°C and 

310°c respectively. The temperature of the oven ~as increased after 1 min. 

to 1 so0 c at 30°C min-1
, then to 2so0 c at 2°c min-1 and finally to 300°C at 

5°C min-1 (Nichols et al. 1993). Peak areas were quantified using Millennium 

32 Chromatography Manager (Waters Corporation, Milford, Massachusetts, 

USA). Identification of individual fatty acids was based upon a comparison of 

relative retention times with those obtained for authentic and laboratory 

standards. GC-mass spectrometry (Fisons MD800 system and Finnigan 

Thermoquest GCQ fitted with an on-column injector, both configured as 

above) was used for confirmation of components from representative 

samples (Nichols et al. 1993). 
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Potential prey species 

The fatty acid compositions of several myctophids ( Gymnoscopelus traseri, 

G. nicholsi, G. bolini, G. braueri, Electrona antarctica, E. carlsbergi, 

Protomyctophum bolini and Lampanyctus archirus) and the bathylagid 

Bathylagus antarcticus were compared to those of squid. A number of these 

myctophids and Bathylagus antarcticus have previously been identified by 

Phillips et al. (2001) as potentially important prey species for squid 

(Moroteuthis ingens) in the Macquarie Island region. All potential prey 

specimens were collected from the Macquarie Island region and were 

analysed as per above (refer to Chapter 2 for further details). 

Statistical analysis 

All statistical analyses were performed using SYSTAT 9 (SYSTAT, Inc, 

Evanston, IL, USA). Non-metric multi-dimensional scaling (MOS; Kruskall 

loss function) was employed to compare fatty acid, glyceryl ether dial and 

lipid class composition in two dimensions between the various body sections 

\ of Gonatus antarcticus and Kondakovia Jongimana. 

MOS was also employed to compare the total fatty acid profiles of squid and 

potential prey species. Potential prey that clustered close to squid using MOS 

were then compared using linear discriminant analysis (LOA; tolerance=0.01, 
. -

classification and jackknifed classification matrix, Wilk's lambda, automatic 

forward stepping [F to enter=4, F to remove=3.9]) of total fatty acid profiles. 

LOA allowed for the identification of those fatty acids (predictors) most 

responsible for differences between Patagonian toothfish and potential prey. 

The jack-knifed classification matrix is included as a means of cross­

validating the normal classification matrix. Considerable difference in the 

percentage of correct classifications between these two matrices would 

suggest potential difficulties in correctly classifying the data. 
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3.3 RESULTS 

Squid size 

Squid sizes varied greatly across the species examined (Table 3.1 ). Both 

total length (TL, mantle and tentacles) and total weight (TW, minus stomach 

mass) was greatest in a specimen of Kondakovia longimana (1050mm, 

2131 g) and lowest in a specimen of Galiteuthis glacialis (280mm, 35g), 

although TL was not measured in Mastigoteuthis sp. or Histioteuthis 

eltaninae. Mantle length (ML) ranged from a low of 11 Omm in Galiteuthis 

glacialis to 190mm in Gonatus antarcticus although ML was not determined, 

once again, in Mastigoteuthis sp. or H. eltaninae as well as K. longimana. 

The largest range of size within a species was observed in Moroteuthis 

ingens that varied greatly in TL (325-1 OOOmm), ML (180-360mm) and TW 

(145-686g). 

G. antarcticus and K. longimana both contained prominent digestive glands 

(DG). The DG of the single specimen of G. antarcticus in which the gland 

was still intact accounted for 64g (34% by mass) of the total wet weight 

(187g). The weights of the DG from the two K. longimana specimens were 

not measured. 

Total lipid content and lipid class composition 

Whole specimens 

The total lipid content (wet weight, WW) of whole specime'ns ranged from a 

low of 2.6±0.6% WW (range 1.9-2.7%) in Galiteuthis glacialis to a high of 

17.5±7.2% WW in G. antarcticus (Table 3.2). The lipid contents of K. 

longimana (13.5% WW) and M. ingens (mean 8.4±2.9% WW, range 4.6-

12.1 %) were also high, whilst those of H. eltaninae (mean 5.6±1.6% WW, 

range 3.4-6.9/fo) and Mastigoteuthis sp. (mean 3.4% WW) were lower. 

Variations in lipid content within species were minimal, with the exception of 

G. antarcticus (range 8.1-27. 7%). A positive correlation between increasing 

total lipid content and TW of G. antaltticus was also observed. 
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()) Table 3.1 Comparison of cephalopod (squid) species analysed from the Macquarie Island region including total length (mantle and 

tentacles) and total wet weight of specimens (data presented as range of values) 

Family Species Common name n Total length (mm) Mantle length (mm) 
Onychoteuthidae Moroteuthis ingens Warty Squid 5 325-1 OOO 180-360 

Kondakovia /ongimana 3 700-1 050 
Mastigoteuthidae Mastigoteuthis sp. 1 
Histioteuthidae Histioteuthis eltaninae Jewel Squid 3 
Cranchiidae Galiteuthis glacialis 2 280-450 110-290 
Gonatiidae Gonatus antarcticus 5 340-470 190-300 

Total weight (g) 
145-686 

226-2321 
37 

62-91 
35-152 
132-217 

Table 3.2 Distribution of total lipid content (% composition of tissue, wet weight) and lipid class composition (% composition of total 

lipid content) throughout whole and body sections of various squid species from the Macquarie Island region (data presented as 

mean ± standard deviation) 

Body Total lipid Li12id class 
S12ecies section n content WE DAGE TAG FFA ST PL Total 
M. ingens Whole 5 8.4±2.9 2.2±0.8 0.0 41.1±18.5 26.1±10.6 4.7±2.6 25.9±11.3 100.0 
Mastigoteuthis sp. Whole 1 3.4 0.0 0.0 21.4 5.2 6.4 67.0 ' 100.0 
H. eltaninae Whole 3 5.6±1.6 1.2±0.8 0.0 32.4±19.9 20.4±6.4 8.1±2.1 37.9±22.7 100.0 
G. glacialis Whole 2 2.3±0.6 0.1±0.2 0.0 1.4±0.5 1.7±1.0 14.9±1.8 81.8±3.5 100.0 
K. longimana Whole 1 13.5 0.8 0.0 44.4 38.3 2.8 13.7 100.0 

Tentacle 2 1.3±0.0 0.0 0.0 4.1±3.9 4.0 ± 3.7 15.3 ± 0.7 76.7 ± 8.4 100.0 
Mantle 2 1.4±0.3 0.0 0.0 2.5 ± 1.1 6.2 ± 0.4 13.5 ± 1.6 77.8±1.0 100.0 
Digestive Gland 2 38.0±1.3 3.1±0.0 0.0 71.2 ± 4.6 21.4 ± 7.0 1.5 ± 0.2 3.0 ± 2.1 100.0 

G. antarcticus Whole 4 17.5±7.2 0.8±0.2 60.5±10.3' 14.3±6.7 12.3±8.1 6.0±3.4 6.1±6.5 100.0 
Mantle 1 3.2 0.0 0.0 21.6 10.6 13.9 60.7 100.0 
Digestive Gland 1 47.7 0.6 71.0 4.0 12.1 9.7 2.6 100.0 

WE=wax ester, DAGE=diacylglyceryl ether, TAG=triacylglycerol, FFA=free fatty acid, ST =Sterol (predominantly cholesterol, may also contain trace amounts of 
diacylglycerol), PL=polar lipid, n=number of samples 
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Lipid class composition varied considerably between species, as well as 

between individuals of the same species (Table 3.2). This is supported by the 

wide scattering of data produced by MOS (Figure 3.1 ). The majo-rity of the 

differences in lipid class composition between species can be attributed to 

variations in the levels of TAG and PL with the exception of G. antarcticus, 

the only species that contained DAGE (mean 60.5±10.3%, range 49.4-

74.3%}. The remaining squid species can be broadly separated into two 

groups based upon the levels of TAG and PL in whole specimens. The first 

group consists of those species containing high levels of TAG and includes 

M. ingens (mean 41.1±18.5%, range 18.5-63.7%) and K. longimana. 

(44.4%). The second group contains species in which PL represented the 

dominant lipid class and comprises Mastigoteuthis sp. (67.0%), H. eltaninae 

(mean 37.9±22.7%, range 24.5-64.1%) and G. glacia/is (mean 81.8±3.5%, 

range 79.4-84.3%). 

The relative levels of FFA also contributed greatly to differences between the 

species. M. ingens, H. eltaninae and K. longimana contained FFA levels in 

excess of 20%, whilst in the remaining species FFA content was <13%. WE 

was present in all species with the exception of Mastigoteuthis sp., although 

levels were <3% in all whole specimens. ST was a minor component of all 

squid (<10% of total composition), with the exception of G. glacialis (mean 

14.9±1 .8%; range 13. 7-16.2%). In addition, lipid class composition was 

particularly variable between individuals of M. ingens and H. eltaninae, 

especially with respect to levels of TAG, FFA and PL. 

Gonatus antarcticus 

The total lipid content of G. antarcticus varied considerably between DG and 

mantle tissues, ranging between 47.7% WW in the DG and 3.2% WW in the 

mantl~, compared. to 17.5±7.2%WW in whole specimens (Table 3.2). 

The lipid class composition of G. antarcticus DG reflected that of whole 

specimens whereas the composition of mantle tissue was considerably 

different (Table 3.2), an observation supported by MOS (Figure 3.2). Both the 
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Figure 3.1 Scatterplot of multidimensional scaling (MOS) based upon the 

lipid class composition of whole specimens of various squid from the 

Macquarie Island region 
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Figure 3.2 Scatterplot of multidimensional scaling (MOS) based upon the 

lipid class composition of various body sections of Gonatus antarcticus from 

the Macquarie Island region 
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DG (71.0%) and whole specimens (60.5%) were characterized by high levels 

of diacylglyceryl ether (DAGE), a lipid class absent from the mantle. Similarly, 

WE was present in smalt quantities (;..1 %) in both whole specimens and the 

DG, but was undetected in mantle tissue. In comparison, high PL levels 

(60.7%) distinguished the mantle from either the DG (2.6%) or whole 

specimens. ST levels were also higher in the mantle (13.9%) compared to 

whole specimens (6.0%) and the DG (9.7%). Triacylglycerol (TAG) levels 

were higher in both mantle tissue (21.6%) and whole specimens (14.3%) 

than the DG (4.0%). Both body regions and whole specimens contained FFA 

at levels between -10-12%. 

Kondakovia longimana 

Lipid content varied substantially between the body sections of K. longimana, 

and was greatest in the digestive gland (mean 38.0±1.3% WW; range 37.1-

38.9%), well above the whole specimen (13.5% WW), and lowest in the 

tentacle (mean 1.3±0.0%WW) and mantle (mean 1.4±0.3% WW, range 1.2-

1.6%) (Table 3.2). 

A marked variation in lipid class composition between the body sections of K. 

longimana was also observed. MOS produced a close association between 

the mantle and tentacle, whilst the DG was further separated (Figure 3.3). 

None of the body sections shared lipid class compositions matching that of 

the whole specimen. The DG was dominated by TAG (71.2 ± 4.6%; range 

67.9-74.4%) and FFA (21.4±7.0%; range 16.4-26.3%). This contrasted with 

the tentacle and mantle, where PL accounted for >76% of the lipid class 

composition and TAG and FFA were each <6%. 

Fatty acid composition 

Whole specimens 

The fatty acid composition of whole specimens varied considerably across 

the species analysed (Tables 3.3-3.5). In particular G. antarcticus (Table 3.4) 
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Figure 3.3 Scatterplot of multidimensional scaling (MOS) based upon the 

lipid class composition of various body sections of Kondakovia longimana 

from the Macquarie Island region 

did not contain several fatty acids (16:1 ro7t, 18:1, 20:1 co11 c, 22:1 co7c, 

24:1 ro11 c, 24:1 ro9c, 18:3co6) that were generally present in most other 

species. Within-species variation was minimal. 

MUFA dominated the composition of all species, with the exception of G. 

glacialis, and was highest in G. antarcticus (mean 68.7±5.9%) and lowest in 

G. g/acialis (20.9±0.7%). Included amongst the major constituent MUFA (>1% 

of total fatty acid composition) common to all species (only whole specimens) 

were 16:1 ro7c (range across all species 1.6-4.7%), 18:1 ro9c (range 13.1-

30.4%), 18:1 co7c (range 3.4-5.1 %), 20:1 co9c (range 4.5-15.8%), 22:1 co11 

(excepting G. glacialis and K. longimana, range 0.2-7.9%) and 22:1 ro9c 

(excepting K. longimana, range 0.8-4.3). Other major MUFA included 24:1 ro9c 

(mean 1 %) and 24:1 co11 c (mean 1 %) in Mastigoteuthis sp., 20:1 co11 c in H. 

eltaninae (mean 1.4±0.2%), G. g/aciafis (mean 1.2±1.7%) and Mastigoteuthis 

sp. (mean 1.0%), and 16:1 co9c in H. eltaninae (mean 6.3±2.2%) and 

Mastigoteuthis sp. (mean 2. 7%). 
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Table 3.3 Fatty acid composition (% composition of total fatty acids) of 

various squid species (whole specimens) included in this study from the 

Macquarie Island region (data presented as mean± standard deviation) 

Sguid s1:1ecies 
Fatty Moroteuthis Mast(qoteuthis Histioteuthis Galiteuthis 
Acid ingens sp. eltaninae glacialis 

(n=5) (n=1) (n=3) (n=2) 
14:0 3.1 ±0.6 0.7 0.8 ± 0.2 2.7±0.4 
15:0 0.4 ± 0.1 0.2 0.2±0.0 0.4 ± 0.0 
16:0 19.2 ± 2.2 16.5 12.7 ± 1.8 24.9±1.7 
17:0 0.4 ± 0.1 0.6 0.5 ± 0.1 0.4 ± 0.1 
18:0 3.6 ±0.5 4.3 3.5±1.1 2.4±0.1 
20:0 0.1 ±0.0 0.2 0.3 ± 0.1 0.0 ± 0.0 
22:0 0.0±0.0 0.1 0.1±0.0 0.0 ± 0.0 

14:1 oo5c 0.1 ±0.0 0.0 0.1±0.0 0.2 ± 0.1 
16:1oo9c 0.5 ± 0.4 2.7 6.3 ± 2.2 0.5 ±0.1 
16:1 oo7c 4.1 ±0.9 2.2 3.2± 0.3 1.6±0.1 
16:1 oo7t 0.6±0.4 0.1 0.2± 0.0 0.0 ± 0.0 
16:1 oo5c 0.2±0.0 0.1 0.2±0.0 0.2±0.0 
17:1 0.3 ± 0.1 0.2 0.3 ± 0.1 0.0±0.0 
18:1 oo9c 19.3±2.1 13.1 13.3 ± 0.5 5.3±1.0 
18:1oo7c 4.0 ±0.7 3.9 3.7 ± 0.4 3.5 ±0.5 
18:1 oo5c 0.7 ± 0.1 0.6 0.7±0.2 0.3 ± 0.0 
18:1 0.3 ± 0.1 0.3 0.2±0.0 0.0±0.0 
19:1 0.4 ± 0.1 0.6 0.4 ± 0.1 0.0±0.0 
20:10011 c 0.9±0.2 1.0 1.4±0.2 1.2 ± 1.7 
20:1 oo9c 7.9±1.2 12.0 7.8 ± 0.4 6.3±1.8 
20:1 oo7c 0.5 ± 0.1 0.6 0.4± 0.0 0.2±0.0 
22:10011 c 2.4 ± 0.5 3.0 3.4± 0.5 0.2±0.0 
22:1oo9c 1.6 ± 0.3 4.3 3.1 ±0.3 1.0 ± 0.0 
22:1 oo7c 0.4 ± 0.3 1.2 6.0±4.8 0.1±0.1 
24:1 oo11c 0.5 ± 0.1 1.0 0.8 ± 0.1 0.0 ±0.0 
24:1 oo9c 0.8 ± 0.1 1.0 0.7± 0.2 0.2 ±0.0 

18:3006 0.0±0.0 0.3 0.0± 0.0 0.0 ±0.0 
18:4003 0.7 ± 0.1 0.1 0.5 ± 0.1 0.0 ±0.0 
18:2006 1.0 ± 0.2 0.7 0.7 ± 0.1 0.3 ±0.0 
AA 1.0 ± 0.2 1.1 0.9±0.2 1.9 ± 0.4 
EPA 8.6±1.4 10.2 9.9±1.5 19.3±1.1 
20:3006 0.2±0.0 0.1 0.1 ±0.0 0.0 ±0.0 
20:4003 0.6±0.2 0.4 0.5± 0.0 0.2±0.0 
20:2006 0.4 ± 0.1 0.8 0.9 ± 0.1 0.5 ± 0.1 
C21 PUFA 0.2 ± 0.1 0.2 0.2± 0.0 0.0 ±0.0 
22:5006 0.1 ±0.0 0.2 0.2 ± 0.0 0.0±0.0 
DHA 13.3 ± 2.2 13.6 14.1±1.5 25.6 ±4.4 
22:4006 0.1±0.0 0.1 0.1±0.0 0.0 ±0.0 
DPA 0.7±0.3 0.7 0.8 ±0.0 0.3 ±0.0 

SFA 26.9 ±2.5 22.7 18.0 ± 2.9 30.8±2.2 
BR 0.6 ± 0.1 0.8 0.7±0.3 0.4 ± 0.0 
MUFA 45.4 ± 5.3 48.1 . 52.3±5.5 20.9±0.7 
PUFA 27.0 ±3.0 28.4 29.0 ±2.8 48.0 ± 2.9 

TOTAL 100.0 100.0 100.0 100.0 
AA=arachidonic acid, EPA=eicosapentaenoic acid, DHA=docosahexaenoic acid, 
DPA=docosapentaenoic acid, SFA=saturated fatty, acid BR=branched fatty acid, 
MUFA=monounsaturated fatty acid,PUFA=polyunsatured fatty acid, C=cis double bond 
orientation, t=trans double bond orientation, n=number of specimens 
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Table 3.4 Fatty acid composition (%composition of total fatty acids) of 

various body sections of Gonatus antarcticus included in this study from the 

Macquarie Island region (data presented as mean-± standard deviation) 

Body section 
Whole Specimen Digestive Gland Mantle Tissue 

Fatty Acid (n=4) (n=1) (n=1) 
14:0 2.3±1.2 1.9 0.3 
15:0 0.1 ±0.0 0.1 0.2 
16:0 4.7±1.0 4.2 7.9 
17:0 0.3 ± 0.1 0.2 0.5 
18:0 1.7±0.2 . 1.9 2.6 
20:0 0.2 ± 0.1 0.1 1.1 
22:0 0.2±0.0 0.1 0.1 

14:1ro5c 0.1 ±0.0 0.1 0.0 
16:1 ro9c 0.3 ±0.1 0.9 0.2 
16:1ro7c 4.7±1.2 5.0 2.1 
16:1 ro5c 0.1 ±0.1 0.1 0.1 
17:1 0.3 ±0.1 0.3 0.2 
18:1ro9c 30.4 ±6.5 40.2 20.7 
18:1ro7c 5.1±0.5 6.7 4.5 
18:1ro5c 0.2 ± 0.1 0.2 . 0.3 
19:1 0.2±0J 0.3 0.0 
20:1ro9c 15.8±2.4 12.4 13.2 
20:1oo7c 0.1 ±0.1 0.7 0.1 
22:1ro11c 7.9±3.9 3.2 3.1 
22:1ro9c 3.0 ±0.7 1.8 3.0 

18:4oo3 0.6 ±0.1 0.7 1.2 
18:2006 1.5 ±0.3 1.5 0.5 
AA 0.8±0.2 0.9 1.9 
EPA 5.7±1.3 5.2 11.4 
20:3006 0.3 ±0.1 0.4 0.3 
20:4oo3 1.0 ± 0.3 1.1 0.6 
20:2006 0.6 ± 0.1 0.9 1.2 
C21 PUFA 1.1 ± 1.5 0.4 0.3 
22:5ro6 0.1 ± 0.1 0.1 0.2 
DHA 8.9±1.6 7.3 21.4 
22:4006 0.1±0.0 0.0 0.1 
DPA 1.1 ± 0.4 1.1 0.9 

SFA 9.5 ±2.2 8.5 12.7 
BrFA 0.1 ± 0.1 0.1 0.0 
MUFA 68.7±5.9 71.9 47.5 
PUFA 21.7±3.9 19.6 39.9 

TOTAL 100.0 100.0 100.0 
AA=arachidonic acid, EPA=eicosapentaenoic acid, DHA=docosahexaenoic acid, 
DPA=docosapentaenoic acid, SFA=saturated fatty acid, BR=branched fatty acid, 
MUFA=monounsaturated fatty acid, PUFA=polyunsatured fatty acid, C=cis double bond 
orientation, t=trans double bond orientation, n=number of specimens 
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Table 3.5 Fatty acid composition (%composition of total fatty acids) of 

various body sections of Kondakovia longimana included in this study from 

the Macquarie Island region (data presented as mean± standard-deviation) 

Body section · 
Fatty Acid Whole Mantle. Tentacle Digestive Gland 

(n=1) (n=2) (n=2) (n=2) 
-14:0 3.3 2.9±1.3 2.8±0.6 5.6 ± 2.1 
15:0 0.5 0.4± 0.0 0.4 ± 0.0 ·0.3 ± 0.0 
16:0 27.5 29.8 ± 3.0 29.3±1.2 18.3 ± 0.2 
17:0 0.7 0.6 ± 0.1 0.5 ± 0.1 0.3±0.2 
18:0 2.4 3.6±0.0 3.6±0.2 2.7 ± 0.1 
20:0 0.2 0.1 ±0.0 0.1 ±0.0 0.1±0.0 

14:1ro5c 0.1 0.1±0.1 0.1±0.0 0.2 ± 0.1 
16:1 ro9c 0.6 0.4±0.1 0.4 ± 0.1 1.0 ± 0.6 
16:1 ro7c 4.3 2.0±0.3 1.9±0.2 7.0 ±0.3 
16:1 ro7t 0.4 0.3 ±0.0 0.3±0.0 0.5 ±0.5 
16:1 ro5c 0.4 0.2±0.0 0.2 ±0.0 0.4±0.0 
17:1 0.6 0.4 ± 0.1 0.3 ±0.0 0.5±0.0 
18:1ro9c 20.5 6.9±0.2 6.8±1.6 25.0 ±2.9 
18:1ro7c 3.4 5.0±1.7 4.9±1.4 7.1 ±0.9 
18:1ro5c 1.1 0.6±0.2 0.6 ±0.3 0.7±0.3 
18:1 0.4 0.2±0.0 0.1 ±0.0 0.3 ± 0.0 
19:1 0.5 0.1 ±0.0 0.1±0.0 0.3 ±0.0 
20:1 ro11 c 0.6 2.2± 3.1 0.0 ±0.0 0.7±0.4 
20:1ro9c 4.5 6.1±4.8 8.8±1.3 7.1±1.9 
20:1ro7c 0.5 0.3 ±0.1 0.3 ± 0.1 0.5±0.0 
22:1 ro11 c 0.8 0.5 ± 0.1 0.5±0.2 1.9 ± 1.1 
22:1ro9c 0.8 1.7 ± 0.3 1.7±0.3 1-.2 ± 0.3 
22:1ro7c 0.5 0.4 ± 0.3 0.3±0.2 1.3 ± 0.6 
24:1ro11c 0.1 0.2±0.0 0.2 ± 0.1 0.4 ± 0.2 
24:1 ro9c 0.4 0.2±0.2 0.3 ± 0.1 0.4 ± 0.2 

18:3ro6 0.1 0.0 ±0.0 0.0±0.0 0.1 ±0.0 
18:4ro3 2.1 0.3 ±0.0 0.3±0.0 0.8±0.0 
18:2ro6 1.3 0.6 ±0.2 0.5 ± 0.1 1.7±0.7 
AA 0.5 2.2±0.2 2.2±0.0 0.6 ± 0.1 
EPA 9.5 13.3 ± 0.3 13.7 ± 1.4 5.8±1.8 
20:3ro6 0.2 0.1 ±0.0 0.1 ±0.0 0.2±0.1 
20:4ro3 0.6 0.2±0.0 0.2±0.0 0.6 ± 0.1 
20:2ro6 0.5 1.3 ±0.2 1.1±0.2 0.4± 0.1 
C21 PUFA 0.5 0.1±0.1 0.2 ± 0.1 0.2±0.0 
22:5ro6 0.1 0.1 ±0.0 0.1±0.0 0.3±0.0 
DHA 8.2 15.7 ±3.0 16.1 ±0.1 4.0±0.2 
22:4ro6 0.0 0.1 ±0.0 0.2±0.0 0.0 ± 0.0 
DPA 0.3 0.6 ±0.0 0.6 ± 0.1 0.5 ± 0.0 

SPA 34.5 37.2 ±4.1 36.7± 1.5 27.5±2.2 
BR 1.2 0.4± 0.2 0.2±0.3 0.9±0.1. 
MUFA 40.6 27.7±0.1 27.6 ± 2.4 56.4±4.9 
PUFA 23.8 34.6±3.7 35.5±1.2 15.2 ± 2.8 

TOTAL 100.0 100.0 100.0 100.0 
AA=arachidonic acid, EPA=eicosapentaenoic acid, DHA=docosahexaenoic acid, 
DPA=docosapentaenoic acid, SFA=saturated fatty acid, BR=branched fatty acid, 
MUFA=monounsaturated fatty acid, PUFA=polyunsatured fatty acid, c=cis double bond 
o~ientation, t=trans double bond orientation, n=number of specimens 
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PUFA dominated the fatty acid composition of G. glacialis (mean 48.0±2.9%) 

and was the second most prevalent group in the remaining squid species (all 

species 21. 7-48.0%, whole specimens· on1y) with the exception of K. 

longimana and G. glacialis (both SFA). PUFA composition was lowest in G. 

antarcticus (mean 21.7±3.9%). Oocosahexaenoic acid (OHA, 22:6ro3, range 

across all species 8.2-25.6%) and eicosapentaenoic acid (EPA, 20:5ro3, 

range 5.7-19.3%) were major PUFA of all species. Other major PUFA 

included arachidonic acid (AA, 20:4ro6) in M. ingens (mean 1.0±0.2%), 

Mastigoteuthis sp. (mean 1.1 %) and G. glacialis (mean 1.9±0.4%), 18:2ro6 in 

M. ingens (mean 1.0±0.2%), K. /ongimana (mean 1.3%) and G. antarcticus 

(mean 1.5±0.3%), 20:4ro3 (mean 1.0±0.3%), C 21 PUFA (mean 1.1 ±1.5%) 

and docosapentaenoic acid (OPA, 22:5ro3, mean 1.1±0.4%) in G. antarcticus 

and 18:4ro3 in K. longimana (mean 2.1 %). A positive correlation was also 

observed, across all species examined, between PL and the relative 

proportions of EPA and OHA. 

The importance of SFA (range across all species 9.5-34.5%) was slightly less· 

than that of PUFA for all species, with the exception of K. longimana (mean 

34.5%, whole specimen only) in which SFA was greater than PUFA. SFA 

content was lowest in G. antarcticus· (mean 9.5±2.2%). The major SFA of all 

species examined were 16:0 (range across all species 4.7-27.5%, whole 

specimens only) and 18:0 (range 1. 7-4.3%). 14:0 was also a major 

component of all species (range 0.7-3.3%) with the .exception of 

Mastigoteuthis sp. and H. eltaninae. BrFA accounted for <1 % of the total fatty 

acid composition of all species with the.exception of K. longimana (mean 

1.2%). 

MOS confirmed the range of fatty acid compositions across the range of 

species (Figure 3.4). With the exception of H. eltaninae, MOS clustered those 

species with more than one specimen in close proximity to one another. 
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Figure 3.4 Scatterplot of multidimensional scaling (MOS) based upon the 

fatty acid composition of whole specimens of various squid from the 

Macquarie Island region 

Gonatus antarcticus 

Comparison of the fatty acid composition of the OG and mantle of G. 

antarcticus revealed considerable differences (Table 3.4). The fatty acid 

composition of the OG was comparable to that of whole specimens, with 

MUFA (71.9%) and PUFA (19.6%) dominating, while SFA (8.5%) were 

present at lower levels. Major constituent fatty acids of the OG included 

18:1 m9c (40.2%), 20:1 ro9c (12.4%), OHA (7.3%), EPA (5.2%), 16:1 ro7c 

(5.0%), 16:1 ro7c (5.0%), 16:0 (4.2%) and 22:1 ro11 c (3.2%), the levels of 

which are similar to those observed in whole specimens. 

This contrasted sharply with the fatty acid composition of the mantle, which 

differed appreciably from that of both the OG and whole specimens. This is 

confirmed by MOS analysis whereby the mantle separated from both whole 

specimens and the OG (Figure 3.5). The fatty acid composition of the mantle 

is dominated by comparable levels of MUFA (47.5%) and PUFA (39.9%), 

with lower levels of SFA (12.7%) and an absence of branched fatty acids. 

The relative proportion of PUFA in the mantle is roughly double that of the 
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Figure 3.5 Scatterplot of multidimensional scaling (MOS) based upon the 

fatty acid composition of various body sections of Gonatus antarcticus from 

the Macquarie Island region 

DG and whole specimens. The major components of the mantle included 

DHA (21.4%), 18:1 ro9c (20.7%), 20:1 ro9c (13.2%), EPA (11.4%) 1 ~:O (7.9%), 

22:1 ro11 c (3.1 %), 22:1 ro9c (3.0%) and 18:0 (2.6%). In particular, levels of 

DHA and EPA far exceed those of the DG or whole specimens, whilst the 

MUFA is considerably lower. 

Kondakovialongimana 

Following the trend observed in G. antarcticus, the fatty acid composition of 

K. longimana varied substantially between body sections (Table 3.5). The 

composition of the tentacles and mantle were almost indistinguishable, and 

were dominated by approximately equal levels of SFA (tentacle 36. 7±1.5%; 

mantle 37.2±4.1%) and PUFA (tentacle 35.5±1.2%; mantle 34.6±3.7%). 

MUFA levels were of slightly less importance (tentacle 27.6±2.4%; mantle 

27.7±0.1 %) and BrFA contributed <0.5%. The composition of individual fatty 

acids was similarly comparable. Major components (> 1 % of total fatty acid 

composition) included 16:0 (tentacle 29.3±1.2%; mantle 29.8±3.0%), DHA 

88 



CHAPTER 3 LIPID COMPOSITION OF SQUID 

(16.1±0.1 %; 15. 7±3.0%), EPA (13. 7±1.4%; 13.3±0.3%), 18:1 ro9c (6.8±1.6%; 

6.9±0.2%), 20:1 ro9c (8.8±1.3%; 6.1"±4.8%), 18:1 ro7c (4.9±1.4%; 5.0±1.7%), 

18:0 (3.6±0.2%; 3.6±0.0%), 14:0 (2.8:t0.6%;_ 2.9±1.3%), AA (2.2±0.0%; 

2.2±0.2%), 16:1 ro7c (1.9±0.2%; 2.0±0.3%), 22:1 ro9c (1.7±0.3%; 1.7±0.3%), 
' - , 

20:2ro6 (1.1 ±0.2%; 1 .3±0.2%) and, in mantle only, 20:1 ro11 c (2.2±3.1 %). 

The fatty acid composition of the DG was considerably different to that of 

either the mantle or tentacles (Table 3.5 and Figure 3.6). Composition was 

dominated by MUFA (56.4±4.9%), followed by SFA (27.5±2.2%), PUFA 

(15.2±2.8%), and BrFA contributed <1.0%. Major fatty acids included 

18:1 ro9c (25.0±2.9%), 16:0 (18.3±0.2%), 20:1 ro9c (7.1 ±1.9%), 18:1 ro7c 

(7.1±0.9%), 16:1ro7c (7.0±0.3%), EPA (5.8±1.8%), 14:0 (5.6±2.1%), DHA 

(4.0±0.2%), 18:0 (2.7±0.1 %), 22:1 ro11 c (1.9±1.1 %), 18:2ro6 (1.7±0.7%), 

22:1 ro7c (1 ,3±0.6%), 22:tro9c (1.2±0.3%) and 16:1 ro9c (1.0±0.6%). The 

levels of DHA and EPA in particular were substantially lower in the DG 

compared to the mantle and tentacles, whilst 18:1 ro9c was higher. 
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Figure 3.6 Scatterplot of multidimensional scaling (MOS) based upon the 

fatty acid composition of various body sections of Kondakovia longimana 

from the Macquarie Island region 
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Glyceryl ether diol composition derived from DAGE 

The glyceryl ether dial (GED) composition of whole specimens of G. 

antarcticus and the DG were similar (Table 3.6 and Figure 3.7). Both 

contained high levels of saturated GED (whole specimens, mean 54.4%±3.5; 

DG 48.0%) and monounsaturated GED (mean 43.2%±3.3; 49.2%), whilst the 

proportions of branched and polyunsaturated GED were low. The overall 

GED profile was similar and major GED included 16:0 (whole specimen, 

mean 38.0%±3.4; DG 33.0%), 18:1 ro9 (mean 23.2%±4.3; 29.4%) and 18:0 

(mean 11.4%±1.1; 8.9%). , 

Table 3.6 Glyceryl ether diol composition (% composition of total glyceryl 

ether dials) of Gonatus antarcticus from the Macquarie Island region with 

respect to various tissues (data presented as mean± standard deviation) 

Whole Specimen Digestive Gland 
Glyceryl ether diol (n=4) (n=1) 
14:0 3.1±1.3 4.2 
15:0 0.8±0.0 1.1 

. 16:0 38.0 ± 3.4 33.0 
17:0 1.0 ± 0.1 0.7 
18:0 11.4±1.1 8.9 
19:0 0.1±0.1 0.2 

i17:0 0.8 ± 0.1 1.1 
a17:0 0.7±0.2 1.1 
i18:0 0.5 ± 0.1 0.6 

16:1 2.2±1.0 2.1 
18:1 ro9 23.2±4.3 29.4 
18:1 co? 7.8± 0.6 9.4 
18:1 5.4±2.0 2.5 
19:1 0.1±0.1 0.2 
20:1 4.6 ± 1.1 5.6 

18:2 0.4± 0.2 0.0 

Saturates 54.4 ± 3.5 48.0 
Branched 2.0±0.3 2.7 
Monounsaturates 43.2±3.3 49.2 
Polyunsaturates 0.4± 0.2 0.0 

TOTAL 100.0 100.0 
i=iso branching, a=anteiso branching 
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Figure 3.7 Scatterplot of multidimensional scaling (MOS) based upon the 

glyceryl ether diol composition of various body sections of Gonatus 

antarcticus from the Macquarie Island region 

Comparison with potential prey species 

Multidimensional scaling 

MOS of fatty acid profiles for all squid and a number of potential prey species 

produced two main groupings (Figure 3.8). The first group consisted of the 

squid G. antarcticus clustering close to the myctophid G. bolini, and to a 

lesser extent with the myctophids G. nicholsi, G. braueri and E. antarctica. 

These species were characterised by levels of MUFA >60%. Those that 

cluster closest to G. antarcticus (G. bolini and G. nicholst) shared high levels 

of certain fatty acids, including 18:1 ro9c (- 20-30%) and 20:1 w9c (- 15-20%). 

The second group identified by MOS contained two squ id, M. ingens and K. 

longimana, clustered with the myctophids P. bolini, G. fraseri, E. carlsbergi, 

L. archirus and adults of the bathylagid Bathylagus antarcticus. These 

species were characterised by MUFA levels accounting for - 40-50% of total 
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Figure 3.8 Scatterplot of multidimensional scaling (MOS) based upon the 

total fatty acid composition of various squid species and potential fish prey 

included in this study from the Macquarie Island region 

composition and approximately equal proportions of PUFA (-20-30%) and 

SFA (- 25-35%). Major fatty acids common to all these species included 

18:1 ro9c (- 20%) , 16:0 (- 15-25%), OHA (- 10-20%) and EPA (- 5-10%). The 

squid species H. eltaninae, Mastigoteuthis sp. and G. glacialis were also 

separated from all other squid as well as other potential prey using MOS. 

Linear discriminant analysis 

LOA was used to compare those squid (i.e. G. antarcticus, M. ingens, K. 

longimana) and fish species that grouped together using MOS (Table 3.7). 

The dissimilarity in fatty acid composition was of such a magnitude that LOA, 

in all cases, classified a low proportion (0%) of squid and potential prey into 

the same group. The exact composition and number of fatty acids predictors 

leading to this classification varied between each of the squid species, 

however, relatively few were major components (> 1 % of total composition). 
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Table 3.7 Comparison of the percentage of correctly classified squid and 

potential .fish prey by linear discriminant analysis (normal and jackknifed 

classification, automatic, forward stei:>ping, F to enter=4, F= to remove=3.9) 

relative to total fatty acid composition 

Squid Potential Prey' LDA2 JK3 Predictors" 

Moroteuthis ingens Gymnoscopelus fraseri 0 0 18:1 ro7c*, 22:1 ro11 c*, 24:1 ro9c 
Electrona carlsbergi 0 0 14:0*, 20:0, 20:1 co7c, 18:3co6 
Protomyctophum bolini 0 0 15:0, 20:0, 14:1 ro5c, 16:1 ro7t, 

22:1 co9c*, 22:1 co7c, 20:4co3, 
20:2ro6, DPA 

Lampanyctus archirus 0 0 16:1 ro7t, 24:1 co9c, 20:2ro6 
Bathylagus antarcticus 0 0 16:1ro9c, 20:1co7c, 18:2co6*, 

22:5ro6 

Kondakovia/ongimana Gymnoscopelus fraseri 0 .75 18:1, DHA* 
Electrona carlsbergi 0 0 14:1 ro5c, 18:4co3* 
Lampanyctus archirus ID ID ID 
Protomyctophum bolini 0 0 16:0, 17:1, 18:1, 18:3co6, AA, 

EPA*, 22:4ro6 
Bathy/agus antarcticus 0 0 22:0, 22:1 ro9c, 18:4co3* 

Gonatus antarcticus Gymnoscopelus. bolini 0 29 22:0. 16:1 ro7t, 20:1 ro11 c 

Gymnoscopelus braueri 0 0 17:0, 20:0 

Gymnoscopelus nicholsi 0 0 22:0, 18:3ro6 

Electrona antarctica 0 43 22:1 co7c, 18:3ro6, 22:4ro6 
1closest grouping prey determined from multidimensional scaling of entire fatty acid profile; 
21inear discriminant analysis, normal classification (0%=no similarity between squid and 
prey); 3jack-knifed classification; 4representing fatty acids most responsible for differences 
between squid and potential prey; *major fatty acids of respective squid species; 
ID=insufficient data 

M. ingens and L. archirus were separated by three fatty acids, although none 

represented major components. Similarly, M. ingens could be differentiated 

from G. fraseri by just three fatty acids. However two of these, 18:1 ro7c · 

(4.0%) and 22:1 m11 c (2.4%), represented major components. Both E. 

carlsbergi and Bathylagus antarcticus were separated from M. ingens by four 

fatty acids. In both cases, only one of these fatty acids represented, a major 

component, namely 1, 4:0 (3.1 %) in E. carlsbergi and 18:2co6 (1 %) in 

Bathylagus antarcticus. The fatty acid composition of P .. bolini differed from 

that of M. ~ngens by a large number (n=9) of predominately minor 

components, with the exception of 22:1 ro9c.(1 .6%). 
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K. /ongimana differed from potential fish prey by small numbers of fatty acids, 

many of these were major components. For instance, although K. longimana 

and G. fraseri only differed by two fatty acids, one -of these was DHA (8.2%) - -

an important component. Similarly, P. boliniwas separated from K. 

longimana by a number of mainly minor fatty acids with the exception of EPA 

(9.5%). Bathylagus antarcticus and E. carlsbergi were differentiated from K. 

longimana by just three and two fatty acids respectively, however included 

amongst these components was 18:4ro3 (2.1 %). 

In contrast to the other two squid species, only minor fatty acids were 

responsible for the separation of G. antarcticus and the potential prey 

species G. bolini, G. braueri, G. nicholsi and E. antarctica (Table 3.7). G. 

antarcticus and G. bolini, the closest clustering prey, were separated based 

on two minor SFA (17:0 and 20:0). 

· --" 3.4 DISCUSSION 

Although lipid compositional data is available for a number of squid, the 

majority of species studied so far have been from the Northern Hemisphere. 

The general biology of Southern Ocean squid species is poorly understood 

with only broad geographic distribution and population size structures given 

sufficient attention to date (e.g. Nemoto et al. 1985; Lu and Williams 1994a; 

Jackson 1995). The paucity of information has left.·a large gap in the 

understanding of metabolic energy flow in the oceans of the Southern 

hemisphere, especially given the important role played by squid in these 

regions. The few studies which have determined the lipid content of Southern 

Ocean squid species (e.g. Vlieg 1984; Piatkowski and Hagen 1994) have 

focussed primarily on proximate and lipid class composition, with little or no 

attention given to either the specific fatty acid composition or its distribution 

throughout various tissues. The recent work of Phillips et al. (2001 ; 2002) has 

for the first time provided detailed lipid and fatty acid data on several squid 

species in the Macquarie Island region for incorporation into comprehensive 

trophic studies. 
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The difficulty faced in obtaining squid samples for analysis is the principal 

reason for the lack of lipid data currently available. More recently, heightened 

interest in the health benefits of seafood, including fish and squid; has lead to 

the targeting of previously marginal fish species by commercial ventures in 

the Southern Ocean (Redhouse 1989). Lipid information is now available for 

Southern Ocean species, both targe~s and by-catch, previously overlooked 

(e.g. Sinclair et al. 1992; Nichols et al. 1994b; Dunstan et al. 1999). With 

specific reference to the Macquarie Island region, deepsea trawling 

operations for the Patagonian toothfish (Dissostichus e/eginoides) have 

resulted in the capture of squid as by-catch and is the source of the samples 

obtained for this study. However, the vast majority of commercial species ·are 

from temperate, inshore environments, ·umiting the available study material to 

species from these regions. The availability of squid samples for this study, 

although limited, is therefore symptomatic of the recent shift towards 

exploration of distant, sub-Antarctic and Antarctic fisheries. 

Distribution of lipid between squid body sections 

Although only the body sections of G. antarcticus and K. Jongimana were 

examined in this study, several important aspects of lipid composition are 

apparent. Namely, G. antarcticus and K. longimana are characterised by 

prominent, lipid rich-digestive glands (>38%) and comparatively lipid-poor 

(<4%) mantles and, for K. longimana· only, tentacles. The lipid class and fatty 

acid composition of the mantle-tentacle and the DG of these two species also 

differs markedly, most obvious in·the high level of PUFA (especially EPA and· 

DHA), mainly incorporated into PL, in the mantle compared to the DG. 

The absence of appreciable quantities of lipid in the mantle and tentacles is 

an apparently ubiquitous characteristic of squid, one that has historically lead 

researchers to the general conclusion that lipids perform little or no energetic 

function in squid (e.g. Hochachka et al. 1975; Lee 1994). Nonetheless, the 

extraordinary lipid content of G. antarcticus and K. longimana observed in 

this and other studies is adding to the growing reevaluation of the importance 

of lipids in the biology of squid. Recent investigation has revealed that 
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prominent, lipid-rich DGs may be a more common feature of squid than 

previously thought (e.g. Phillips et al. 2001; Phillips et al. 2002). 

Comparison with previous studies 

DAGE-rich squid 

The lipid-rich, DAGE dominated DG of G. antarcticus is unusual amongst the 

majority of squid species analysed to date. However, a number of noteworthy 

exceptions to the general notion that squid are low in both oil content and 

DAGE have been previously observed, including for several other species of 

gonatid squid. Phillips et al (2002) reported substantial quantities of DAGE in 

the digestive glands of two species collected in the Macquarie Island region, 

Moroteuthis robsoni (5.0%) and Todarodes spp. (16.4%). G. antarcticus was 

also examined in the study of Phillips et al. (2002), however a description of 

the lipid class composition of either the mantle or the DG were not included. 

All three species contained substantial ql:Jantities of lipid in the DG. The DGs 

of M. rpbsoni and Todarodes spp. contained 22.3% and 29.7% lipid (wet 

weight) respectively, whilst the lipid content of G. antarcticus (54.3%) was 

comparable to that observed in this study (47._7%). Fatty acid composition of 

the DG in these three species was dominated by MUFA (range across all 

species 47.0-66.1%), PUFA (22.8-32.4%) and SFA (10.7-23.1%). In contrast, 

mantle tissue was dominated by PUFA (range across all species 53.0-

58.1 %), with smaller proportions of MUFA (13.6-21.8%) and SFA (19.9-

29.7%). Total lipid content of G. antarcticus mantle was 1.6%, lower than that 

observed in the current study (3.2%). The overall fatty acid compositions of 

the DG of G. antarcticus in the current study and that of Phillips et al. (2002) 

are comparable, although some conspicuous differences are apparent with 

regards to the mantle. PUFA levels in the mantle of G. antarcticus were 

higher in the stupy of Phillips et al (2002) compared to this study, due mainly 

to elevated levels of DHA (36.3% versus 21.4% in this study). This may partly 

be a consequence of the lower lipid content of the mantle in the study of 

Phillips et al. (2002), due to the fact that the proportion of PUFA-rich PL 
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generally increases with decreasing lipid content. This cannot be confirmed 

as the lipid class composition of the mantle was not reported. 

The lipid composition of G. antarcticus is also comparable to that previously 

reported for numerous Northern hemisphere squid, including the gonatids 

Berryteuthis magister (Hayashi et al. 1985), Gonatopis makko (Hayashi and 

Kawasaki 1990) and Gonatopsis borea/is (Hayashi 1989), as well as the 

Onychoteuthidae Morotheuthis robusta (Hayashi et al. 1990). All species 

contain digestive glands (livers) relatively high in lipid (range across all 

species 16.7-54.5%) and DAGE (10.3-84.7%) and mantle tissue containing 

low lipid (0.5-1.5%). The proximate composition of two further lipid rich 

gonatid species, Gonatus fabricii (Clarke et al. 1979; Lawson et al. 1998) and 

Gonatus steenstrupi (Clarke et al. 1985) have been investigated in relation to 

energy density and buoyancy. 

Potential dietary source of DAGE in the digestive gland of Gonatus 

antarcticus 

The fatty acid composition of G. antarcticus differed substantially from that of 

the other squid species, but was similar to that of the myctophids E. 

antarctica, G. bolini, G. braueri and G. nicholsi. From the limited information 

available, the diet of G. antarcticus is dominated by Euphausia superba, at 

least in the Antarctic (Nemoto et al. 1988). Although the diet of G. antarcticus 

at Macquarie Island is unknown, the predatory capabilities of this species are 

likely to match those of other large squid such as M. ingens. It is therefore 

plausible that G. antarcticus forage upon such prey as myctophids. 

The possibility of DAGE originating in the diet of G. antarcticus appears 

unlikely. Significant quantities of DAGE do not occur in any of the potential 

prey species from Macquarie Island, including myctophids, and the DAGE­

containing Antarctic pteropod species reported by Phleger et al. (2001) are 

similarly not known to contribute directly to the diet of G. antarcticus. The 

formation of large DAGE deposits is therefore surprising given the limited 
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dietary source of DAGE in the Southern Oc~an as well as the limited capacity 

for lipid synthesis by squid. 

A possible alternative source of DAGE is the conversion of dietary derived 

wax ester to glyceryl ethers via an unspecified metabolic pathway in the 

digestive gland of .squid, analogo1:1s to that found in the liver of dogfish 

(Squalus acanthias) by Malins and Sargent (1971 ). For instance a study of 

Berryteuthis magister, a species containing up to 60% DAGE of the total 

lipids in the digestive gland, found 41 % wax ester in the stomach contents 

compared to only 3% DAGE (Hayashi and Yamamoto 1987). Unlike DAGE, 

large quantities of WE are found in many myctophid and copepods (e.g. 

Kattner et al. 1994) species in the Southern Ocean. Three of the four 

myctophid species that have fatty acid compositions comparable to that of G. 

antarcticus (E. antarctica, G. bolini and G. brauen) also contain >60% of their 

total lipid as WE, similar to the levels of DAGE observed in G. antarcticus. 

Additionally, the composition of major fatty alcohols (derived from WE) in two 

of the WE-containing myctophid species (E. antarctica and G. brauen) and 

the glyceryl ether dials (derived from DAGE) in G. antarcticus are also 

comparable (Figure 3.9). A third myctophid, G. bolini, contained lower 16:0 

GED and higher 20:1 GED than G. antarcticus and the other myctophids. 

This difference suggests that G. bo/ini is may be of less dietary importance to 

G. antarcticus than the other two species. Conversion of the WE obtained 

from these potential dietary components is conceivably the source of DAGE 

present in the digestive gland of G. antarcticus. 

Other lipid-rich squid 

Lipid-rich DG have also been reported for numerous other squid species. For 

example, the offal (incorporating digestive organs) of Nototodarus s/oanii, 

Sepioteuthis bilineata and M. ingens collected from New Zealand contains 

lipid in excess of 30% WW (Vlieg 1984) and lipid-rich digestive glands are 

also common in Northern hemisphere species, such as Watasenia scintillans 

(Kawasa~i et al. 1994). The lipid-rich DG of K. Jongimana (38.0%) examined 
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Figure 3.9 Comparison of the composition of major fatty alcohols (derived 

from wax esters) in selected myctophids and glyceryl ether dials (derived 

from diacylglyceryl ethers) in the squid Gonatus antarcticus 

in this study is the first time this characteristic has been reported for this 

species. 

Contrasting with the gonatids, TAG dominates the lipid composition of many 

of these squid and they contain little or no DAGE. For instance, the level of 

lipid stored in the digestive gland of M. ingens ranges between - 40% (Heard 

Island) and - 30% (Macquarie Island) mainly in the form of TAG (75-90%) 

(Phillips et al. 2001 ). Although TAG also dominated the lipid composition of 

the M. ingens specimens examined in the current study (41 .5%), they did not 

contain prominent digestive glands, perhaps pointing to the influence of 

seasonal , developmental or dietary factors. The different approaches taken 

by each of these studies (i.e. whole specimens in this study versus 

separation into DG and mantle) does not allow for direct comparison of either 

lipid class or fatty acid composition . However, the lipid content of whole 

specimens of M. ingens in the current study (8.4%) was substantially higher 
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than that of the mantle tissue (1.5%) observed by Phillips et al. (2001 ). This 

suggests that substantial quantities of lipid are stored by the M. ingens 

specimens examined in this study in tissues other than the mantle, most 

likely the digestive gland. In addition, the fatty acid and lipid class 

compositions of whole specimens of M. ingens closely resembles that of the 

DG, adding support to the assumption that the majority of the lipid in the 

specimens examined in this study actually res ides in the digestive gland. 

Lipid-poor squid 

Whether or not such high levels of lipid in the digestive gland are generally 

atypical for squid, or how these levels are influenced by factors such as the 

time of year, age and sexual maturation is largely unknown. From the limited 

available data, temperate species residing in the southern hemisphere 

appear to be less likely to store such immense quantities of lipid. The DG of 

adults and juveniles of the loliginid Sepioteuthis lessoniana, collected from 

the waters of far-north Queensland, contained approximately 10% lipid 

(Semmens and Moltschaniwskyj 2000). Sex and sexual maturity also appear 

to have no effect on the amount of lipid stored in the DG of S. lessoniana 

(Semmens 1998). The DG of another loliginid, Sepioteuthis australis 

collected from Tasmanian waters, contained <10% lipid, mainly in the form of 

PL (Phillips et al. 2002). 

Lipid-poor squid are also found in Antarctic and sub-Antarctic waters. Whole 

specimens of the cranchiid Galiteuthis glacialis collected from the Weddell 

Sea contain less than 1 % lipid (Piatkowski and Hagen 1994), lower than the 

levels observed in this study (2.3%). Importantly though , the specimens of G. 

glacialis examined by Piatkowski and Hagen (1994) represented early 

developmental stages (ML <20mm), whereas those included in this study 

represent adult stages (ML 110-290mm). The tendency for lipid content to 

accumulate with increasing size (age) was also observed in this study for G. 

antarcticus. The low lipid contents of Mastigoteuthis sp. (3.4%) and H. 

eltaninae (5.6%) may accordingly reflect the juvenile size of these specimens 

(TW <100g). 
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Role of lipid-rich digestive gland 

The presence of large lipid stores in some species is likely to be partly a 

consequence of the unique foraging ecology of squid. Their rapid growth rate 

has particularly led to the development of an equally voracious diet in order 

to sustain the high metabolism typical of many squ'id (Ballantyne et al. 1981; 

Lee 1994; Rodhouse and Nigmatullin 1996). Assuming that only protein is 

utilised extensively for energy, the excess supply of lipid needs to be either 

directly excreted or stored in an organ or tissue. The prominent digestive 

gland of species such as G. antarcticus (almost 50% lipid and representing 

17% of total body weight) and K longimana suggests that some squid favour 

the deposition and storage of lipid rather than it's excretion. 

Two reasons most likely account for the preference of storage over excretion. 

Firstly, squid. may take advantage of the relatively low density of lipid in a 

passive manner, for example to provide buoyancy (Clarke et al., 1979; 1985). 

The storage of large quantities of low density lipid is one of the strategies 

employed by squid to achieve neutral buoyancy identified by Clarke et al. 

(1985). The remaining methods include gas filled chambers, the substitution 

(within the body) of sulphate ions from seawater with chloride io'ns, the 

presence of large amounts of muscular tissue to enable continuous 

swimming and an elevated concentration of ammonium in mantle tissue. 

Secondly, lipid may be involved more dynamically in squid function, acting as 

an energy store for reproduction or long-term survival. 

Buoyancy 

A link between the presence of large amounts of lipid, whether as a part of 

complex organs or as extracellular reservoirs, and the potential role of these 

lipids in buoyancy, are well documented for a number of marine fish (e.g. 

Phleger 1991 ; Phleger 1998) but are scarce for squid. Although large lipid 

reserves are not uncommon in squid, the majority of research on squid 

buoyancy has focussed on the abundant, ammonium rich species (e.g. 
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Clarke et al. 1979). In particular, the presence of vast quantities of DAGE in 

G. antarcticus presents substantive evidence for its application in buoyancy 

regulation. This is based upon the fact-that DAGE provides more static lift 

than the equivalent amount of TAG (Phleger 1991 ; Phleger 1998) and 'is 

metabolised at a lower rate. In particular, Malins and Barone (1970) 
' 

concluded that DAGE is present in dogfish (Squalus acanthias) primarily as a 

buoyancy regulator. High levels of DAGE are also found in the livers of 

several other species, including deepsea sharks (Hayashi and Takagi 1981; 

Deprez et al. 1990; Bakes and Nichols 1995; Kang et al. 1998), the ratfish 

(Hydrolagus novaezealandiae) (Hayashi and Takagi 1980) and in Antarctic 

pteropods (Phleger et al. 2001 ). For example the DAGE-rich livers of certain 

deepsea shark species contain in excess of 50% total lipid, of which up to 

90% is present as DAGE, despite the limited capacity for DAGE metabolism 

of sharks (Wetherbee and Nichols 2000). 

The degree to which the vast lipid store of K. longimana DG is applied to the 

regulation of buoyancy is not clear. Most lipid is present as TAG, more 

readily associated with the storage of energy. The high levels of ammonium 

found in the tissue of K. longimana (Lu and Williams 1994b) also suggests 

that this squid is unlikely to exclusively rely upon lipid to maintain buoyancy. 

Energy Storage 

The possibility of the lipid-rich DGs of species such as G. antarcticus and K. 

longimana acting as an energy store appears superficially attractive when the 

large amount of lipid present is considered. The actual degree to which 

cephalopods utilise lipid for metabolic purposes, however, varies greatly. The 

cuttlefish Sepia officinalis uses the lipid store of the digestive gland to provide 

energy during short periods of starvation (Castro et al. 1992). Nonetheless, 

the bulk of the metabolic energy is still provided by the muscle proteins, and 

the overall influence of stored lipid is considered to be minimal. This -

contrasts with the loliginid squids Sepioteuthis lessoniana and Photolo/igo 

sp., where lipid is immediately excreted from the digestive gland and appears 

to play no role in providing energy (Semmens 1998). Low levels of lipid do 
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appear to be an essential nutritional requirement of squid, especially at the 

paralarval stage (Navarro and Villanueva 2000), though the levels observed 

in the digestive gland of G. antarcticas and K longimana far exceed these. 

Several other factors count against squid using the lipid of the digestive gland 

as a source of energy. The acknowledged metabolic preference of squid for 
- ' ' 

amino acids (Hochachka et al. 1975; Lee 1994) and their limited capacity for 

fatty acid metabolism (Ballantyne et al. 1981) would appear to limit the use of 

lipid by squid. Additionally, with specific reference to G. antarcticus, it is more 

common for lipid energy stores to consist mainly of TAG, a form that is both 

more energetically favourable and less difficult to metabolise than DAGE. 

Finally, assuming that G. antarcticus converts WE into DAGE in preference 

to storing it unmodified, the transformation of dietary derived lipid in this 

manner is an inefficient and seemingly unnecessary metabolic step. 

Potential role of mantle and tentacle lipids 

The variation in lipid composition observed between the body sections of 

these squid is likely to be significant in the context of physiological function. 

Given that the vast majority of dietary lipid is deposited into the digestive 

gland (Semmens 1998), and that the fatty acid composition of this lipid is not 

reflected in the mantle, certain fatty acids appear to be selectively deposited 

from the digestive gland into the·mantle, specifically into the polar lipid 

portion (Phillips et al. 2001 ). 

The absence of prominent digestive glands in Mastigoteuthis sp. and G. 

glacialis examined in this study also suggests that the bulk of lipid in these 

species must originate from the mantle and tentacles. Although prominent 

DGs were also not observed in M. ingens or H. eltaninae, the higher than 

usual lipid content of these species suggests the presence of a developing 

DG. The relatively low lipid content of Mastigoteuthis sp. and G. glacialis, and 

the low content of tentacle and mantle in G. antarcticus and K. longimana, 

discounts the use of these tissues as a major lipid repository, adding support 

to the apparent metabolic preference of squid for amino acids (Lee 1994). In 
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addition, polar lipids, a class more directly involved in the structure of cell 

membranes than energy storage, dominate the lipid class composition of the 

mantle and are a common feature of numerous squid species. The function 

of lipid in the mantle is unclear, although it is involved in both a structural role 

and most likely a range of biological activities distinct from those performed in 

the digestive gland. The polar lipids and PUFA present in the mantle tissue 

are integral to the development and functioning of various neurological and 

physiological systems. Navarro and Villariueva (2000) found that polar lipids 

and PUFA, particularly DHA, were important to the early development of 

reared European squid Loligo vulgaris due to incorporation of these 

components into cell membranes. The rapid growth rates of most squid 

would also necessitate a constant supply of polar lipid throughout the life 

cycle to allow for the formation of new tissue. High levels of polar lipid, DHA 

and EPA are also found in the central nervous system of the cephalopod _ 

Sepia officinalis, particularly the optic lobes and the supraoesphagael mass 

(Dumont et al. 1992; 1994). 

Dietary implications of lipid composition 

With the exception of M. ingens (Phillips et al. 2001 ), the diet of squid in the 

Macquarie Island region is poorly described. Based upon observations from 

other regions, the diet of squid is generally restricted to medium-sized 

midwater fish (e.g. myctophids) and crustaceans such as euphausiids, 

amphipods and copepods. M. ingens, for example, predominately forages 

upon myctophid fish (mainly of the genus Gymnoscopelus and Electrona) in 

the Macquarie Island region (Phillips et al. 2001 ). 

The fatty acid compositions of available myctophid species and the 

bathylagid Bathylagus antarctiCU$ (see Chapter 2) are similar to that of three 

squid, G. antarcticus, K. longimana and M. ingens. The fatty acid 

compositions of the remaining squid (H. eltaninae, Mastigoteuthis sp. and G. 

glacialis) share less similarity with the potential prey species examined. This 

may indicate a reliance on prey species in these squid for which lipid data 

does not currently exist, such as invertebrates. 
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Both onychoteuthid species, K. longimana and M. ingens, associate with a 

similar range of potential fish prey (using MOS), though the degree of dietary 

overlap between these species is unKnown: M. ingens consumes-many of 

these species at Macquarie Island, including the myctophids G. traseri, P. 

bolini and E. antarctica, and Bathylagus antarcticus (Phillips et al. 2001 ). The 

diet of K. longimana is dominated by euphausiids in Antarctic waters 

(Nemoto et al. 1985; Lu and Williams 1994a; Lu and Williams 1994b), but 

dietary descriptions from sub-Antarctic waters (including Macquarie Island) 

do not exist. Although LOA identified a number of differences in the fatty acid 

compositions of K. longimana and M. ingens and potential fish prey, the 

majority of these differences are due to either minor fatty acid components 

(<1 % of the total fatty acid composition) or components that are easily 

synthesised. 

3.5 CONCLUSIONS 

Several unique characteristics of squid are apparent from the lipid data 

collected. The mantle and tentacles of most of the squid examined in this 

study are characterised by a low lipid content. However, the high lipid content 

of the DGs of G. antarcticus and K longimana is in contrast to the generally 

held view that squid are low in lipid. The presence of large stores of DAGE in 

G. antarcticus also parallels the findings of studies of Northern Hemisphere 

gonatid squid. The role of this DAGE is unclear, especially given the 

preferential metabolism of protein over lipids in squid. Stuc;Jies on other 

species containing DAGE-rich organs, particularly the livers of certain deep­

sea sharks, suggest that DAGE plays a role in maintaining neutral buoyancy 

rather than energy storage. The source of DAGE in the digestive gland of G. 

antarcticus also raises important dietary questions. Assuming that DAGE 

cannot be directly synthesized by G. antarcticus, a possible source is the 

conversion of wax esters in such prey as the myctophids E. antarctica and G. 

braueri. 
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The two onychoteuthidae, M. ingens and K. longimana, share similar fatty 

acid compositions with each other as well as a number myctophid species 

and the bathylagid fish Bathylagus antarcticus. The contrasting fatty acid 

composition of H. eltaninae, Mastigoteuthis sp. and G. glacialis suggests that 

myctophids may not play as important a role in the diet of these 'squid. 

Instead, other fish or invertebrates for which fatty acid data does not currently 

exist may be more commonly consumed. 
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CHAPTER 4 

VARIATION IN LIPID COMPOSITION BETWEEN BODY 

SECTIONS OF PATAGONIAN TOOTHFISH 

4.1 INTRODUCTION 

The large size of Patagonian toothfish (Dissostichus eleginoides}, reaching in 

excess of 200cm and 1 OOkg (Des Ciers et al. 1996), excludes the practical 

use of whole fish samples when determining lipid composition (total lipid, lipid 

class and fatty acid). This necessitates the use of a flesh sub-sample from a 

single body section that, as closely as possible, reflects the lipid composition 

of the entire specimen. The distribution of lipid in many fish, including 

Patagonian toothfish, is poorly described at present. T~is presents a problem 
' I ' 

when it comes to the selection of the tissue or body section that best 

approximates the lipid composition of the ·entire fish. 

Determining whole anirrial profiles is essential when attempting to use lipids 

as dietary tracers as large variation between different tissues is not 

uncommon. Studies on Antarctic toothfish .(Dissostichus mawsom), a closely 

related congener species, suggest that significant variation in lipid 

composition is likely. For example Eastman (1988) and Clarke ef al. (1984) 

describe the presence of several large lipid deposits, concentrated close to 

the centre of buoyancy, in the subcutaneous, white axial muscle and red 

pectoral muscle tissues of Antarctic. toothfish. Whether or not this partitioning 

exists in Patagonian toothfish is unknown. 

The purpose of this chapter is, firstly, to determine the degree to which lipid 

composition differs with body section and, secondly, to ascertain which body 

section most closely approximates the lipid composition of Patagonian 
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toothfish as a whole. Comparison with the results of similar studies of 

Antarctic toothfish and other Southern Ocean fish species will also be made. 

4.2 MATERIALS AND METHODS 

Sample collection and preparation 

A toothfish specimen collected during the 1998-1999 fishing season from the 

Macquarie Island region was dissected into six body sections, specifically 

head, mid and tail sections, skin (including fins) stomach (including contents) 

· ·--- - -----anaovaries (Figure 4.1 ). The lipid composition of each region was then 

determined. 

Head Section Mid Section 

Approximate Position of 

Sub-Sample 

Tail Section 

Figure 4.1. Approximate positions of the main body regions ·analysed for 

lipid composition from Dissostichus eleginoides, including the sub-Saf!lple 

used as a proxy (modified from Gon and Heemstra 1990) 

Lipid extraction and class analysis 

Total lipids were extracted in duplicate using the one-phase method of Bligh 

and Dyer (1959). After phase separation, total lipid was recovered from the 

lower chloroform phase and concentrated in vacuo (rotary evaporator, 40°C). 

Samples were stored at -20°C prior to analysis and analysed within 3 months 

of capture. Lipid class profiles were determined by TLC-FID using an 

latroscan MkV TH10 analyser (Volkman and Nichols 1991). Wax ester (WE), 
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triacylglycerol (TAG), free fatty acid (FFA), sterol (ST), diacylglycerol (DAG) 

and polar lipid (PL) components were resolved in a polar solvent system 

consisting of hexane-diethyl ether-acetic acid (60:17:0.2 v/v). The presence 
-

or absence of WE and diacylglyceryl ethers (DAGE) was confirmed by the 

use of a non-polar solvent system (hexane-diethyl ether; 96:4 v/v). Peak 

areas were quantified using commercially available chromatography software 

(DAPA Scientific Software, Kalamunda). 

Fatty acid analysis 

Fatty acid methyl esters (FAME) were prepared by addition of methanol 

(MeOH), concentrated hydrochloric acid (HCI) and chloroform (CHCla) (3ml 

10:1 :1, v/v/v, 80°C/2hr) to a:n aliquot of the total lipid. After the addition of 

1 ml of water, resulting FAME was extracted (3x) with 4:1 v/v hexane/CHCla. 

Chloroform containing C19 f'.AME internal standard was then added. FAME 

fractions were treated with N,0-bis-(trimethylsilyl) trifluoroacetamide (BSTFA 
-

50µL, -60°c, 2hf) to convert any sterols present to their corresponding 

trimethylsilyl (TMS) ethers. 

Gas chromatographic (GC) analysis was performed on a Hewlett Packard 

5890A GC equipped with a flame ionisation detector, fitted with a cross-
- . 

linked methyl silicone (HP1) fused silica capillary column (50m length x 0.32 

µm internal diameter), employing hydrogen as the carrier gas. Samples were 

injected (HP7673A auto-injector) at 50°C in the splitless mode, with a 2-min .. 

venting time (Nichols et al. 1993). The injector and detector were maintained 

at 290°C and 310°C respectively. After 1 min. the oven was raised to'15Q°C 

at 30°C min-1
, then to 250°C at 2°c min-1 and finally to 300°C at 5°C min-1 

(Nichols et al. 1993). Peak areas were quantified 1.,1sing Millennium 32 

Chromatography Manager (Waters Corporation, Milford, Massachusetts, 

USA). Identification of individual fatty acids and sterols was based upon a 

comparison of relative retention times with those obtained from previous 

studies in addition to laboratory standards. 
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Statistical analysis 

Non-metric multi-dimensional scaling (MOS; Kruskall loss function) was 

employed to compare fatty acid and lipid class composition in two 

dimensions between the various body sections. All statistical analyses were 

performed using SYSTAT 9 (SYSTAT, Inc, Evanston, Illinois, USA). 

4.3 RESULTS 

Toothfish size and apportioning of body sections 

The toothfish specimen analysed had a mass of 292g (total weight) and 

measured 300mm (tip of caudal fin to tip snout) in total length. The mid 

section accounted for the majority of toothfish body mass (34.9%) (Table 

4.1 ). The tail (22.9%), head (19.9%) and skin (16.4%) also represented large 

proportions of the total mass whilst the stomach (2.8%) and ovaries (3.0%) 

contributed only a small proportion of total mass. 

Total lipid content 

Total lipid content varied substantially with- toothfish body section on both a 

wet weight (WW) and dry weight (OW) basis (Table 4.1 ). Lipid content was 

greatest in the mid section (14.2% WW, 54.1% OW) and skin (13.4% WW, 

35.0% OW). The head (4.1% WW, 13.0% DW), ovaries (4.3% WW) and tail 

(4.9% WW, 18.1 % DW) had considerably lower levels of total lipic;f. The lipid 

content of the stomach_ (7.7% WW) was comparable to the calculated value 

of whole fish (9.4% WW). With respect to the main body sections (head1 mid 

and tail) an increase in total lipid content of approximately 10% was observed 

from both the tail and head toward the mid section. 

Lipid class composition 

The body sections analysed can be separated into two main groupings based 

upon their lipid class composition (Table 4.1 ). The first group was dominated 

by high levels of triacylglycerol (TAG, range 89.9-94.3%) and includes the 

skin, head, mid and tail sections. Levels of TAG were highest in the skin 
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Table 4.1. Distribution of total lipid content (% composition of tissue, wet 

weight) and lipid class composition (% composition of total lipid content) 

throughout various body sections.of a Dissostichus e/eginoides specimen 

(data presented as mean of duplicates) 

Body Percent of Lipid Lipid Lipid Class 

Region Body Mass Content (WW) Content (DW) TAG FFA ST PL Total 

Head Section 19.9 4.1 13.0 90.1 5.0 1.6 3.3 100.0 

Mid Section 34.9 14.2 54.1 89.9 3.1 2.1 4.9 100.0 

Tail Section 22.9 4.9 18; 1 90.2 5.3 1.3 3.2 100.0 

Skin 16.4 13.4 35.0 94.3 3.6 1.0 1.1 100.0 

Stomach 2.8 7.7 nd 63.9 9.7 9.6 16.9 100.0 

Ovaries 3.0 4.3 nd 66.3 7.2 8.1 18.4 100.0 

Whole Fish1 100.0 9.4 90.0 3.8 2.0 4.1 100.0 

TAG=triacylglycerol,,FFA=free fatty acic;l, ST=sterol (mainly cholesterol, may contain traces of 
diacylglycerol), PL=polar lipid, WW=wet weight, DW=dry weight, nd=not determined, 1values for whole 
fish were determined using the total lipid content and weight distribution (percent of body mass) of 
each body section 

(94.3%) and lowest in the stomach (63.9%). The stomach and ovaries are 
. , 

categorized into a second group and were characterised by high polar lipid 

levels (PL, 16.9% and 18.4% respectively). PL levels ranged from a high of 

18.4% in the ovaries to a low of 1.1 % in the skin. The stomach also 

contained the greatest levels of both free fatty acid (FFA, 9.7%) and sterols 

(ST, 9.6%). FFA was lowest in the mid section (3.1 %) and ST in the skin 

(1.0%). 

Multidimensional scaling separated the various body sections into three main 

groupings based on lipid class composition (Figure 4.2). The mid section and 

skin were closely correlated with the calculated value of whole fish, whilst the 

head and tail sections were distanced further from whole fish. Once again the 

grouping of the stomach and ovaries is distinct from the other· body sections. 

Fatty acid composition 

A total of 43 individual fatty acids were detected in the toothfish samples. 

Monounsaturated fatty acid (MUFA) dominated the fatty acid composition of 

all the body sections (>57%) with the exception of the ovaries where 
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C\I 
t: 
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skin 
D 

+whole fish 
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• 
1::,. tail section 

Figu~e 4.2. Scatterplot of multidimensional scaling (MOS) based upon the 

lipid class composition of various body sections of Dissostichus eleginoides 

(values for whole fish were determined using the total lipid content and weight 

distribution of each body section) 

saturated fatty acid (SFA) dominate_d (38.3%) (Table 4.2). Levels of MUFA - -

were greatest in the head section (66.2%) and_ lowest in the ovaries (31.3%). 

SFA also contributed a major proportion of the fatty acid composition (>21 % 

in all body sections) and levels were greatest in the ovaries and least in the 

stomach (21.5%). Polyunsaturated fatty acid (PUFA) content was extremely 

variable, ranging ,from a high of 27.6% in the ovaries to a low of 8.6% in the 

head section. The total composition of branched fatty acid (BrFA) was . 

comparable for all body sections (range 2.0-2.8%). As was observed in the 

grouping of body sections relative to lipid class, the head, mid and tail 

sections and skin are very similar in fatty acid composition (high MUFA, 

range 57.0-66.2%) and is distinct from-that of the stomach and ovaries 

(elevated PUFA, 19.5% and 27% respectively). 

The composition of individual fatty acids also varied substantially. Nearly all 

of the variation in fatty acid composition between body sections can be 

attributed to the substantially elevated levels of the PUFA docosahexaenoic 
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Table 4.2. Fatty acid composition (% composition of total fatty acids, wet 

weight) of vari~us body sections of a Dissostichus eleginoides specimen 

(data presented as the mean of duplicates)-

Fatty 
acid 
14:0 
15:0 
16:0 
17:0 
18:0 
20:0 
22:0 

14:1ro5c 
16:1ro9c 
16:1ro7c 
16:1ro5c 
17:1 
18:1ro9c 
18:1ro7c 
18:1ro5c 
18:1 
19:1 
20:1ro11c 
20:1ro9c 
20:1ro7c 
22:1ro11c 
22:1ro9c 
22:1 ro7c 
24:1 ro11c 
24:1ro9c 

C16 PUFA 
18:3ro6 
18:4ro3 
18:2ro6 
AA 
EPA 
20:3ro6 
20:4ro3 
20:2ro6 
C21 PUFA 
DHA 
DPA 

SFA 
arFA 
MUFA 
PUFA 

TOTAL 

Head 
5.1 
0.5 
15.5 
0.2 
1.8 
0.1 

Mid 
4.6 
0.3 
15.3 
0.1 
1.8 
0.1 

0.1 0.1 

0.2 0.2 
0.4 0.4 
10.5 9.5 
0.3 0.3 
0.2 0.2 
40.9 38.1 
3.3 5.7 
0.7 0.7 
0.1 0.1 
0.3 0.3 
0.5 0.5 
5.0 4.8 
0.3 0.3 
1.6 1.9 
0.8 0.8 
0.1 0.1 
0.4 0.4 
0.5 0.5 

0.1 0.1 
0.1 0.1 
0.9 0.9 
2.6 2.7 
0.2 0.3 
1.6 2.2 
0.1 0.1 
0.2 0.3 
0.1 0.2 
0.1 0.1 
2.2 3.9 
0.1 0.2 

23.1 22.3 
2.1 2.0 
66.2 64.7 
8.6 11.0 

100.0 100.0 

Tail 
4.7 
0.4 
15.4 
0.2 
1.8 
0.1 
0.1 

0.2 
0.3 
9.8 
0.3 
0.2 

39.0 
5.8 
0.7 
0.1 
0.3 
0.4 
4.9 
0.3 
1.5 
0.8 
0.1 
0.3 
0.4 

0.1 
0.1 
0.9 
2.4 
0.3 
2.0 
0.1 
0.2 
0.1 
0.1 
3.4 
0.1 

22.6 
2.1 
65.4 
9.9 

100.0 

Body section 
Skin Stomach 
6.4 3.0 
0.6 0.3 

20.0 13.2 
0.2 0.2 
2.3 4.7 
0.1 0.1 
0.1 

0.2 
0.4 
13.3 
0.4 
0.2 
31.6 
0.2 
0.9 
0.2 
0.5 
3.0 
3.7 
0.4 
1.6 
0.9 
0.1 
0.2 
0.2 

0.2 
0.1 
1.1 
2.8 
0.3 
2.0 
0.0 
0.3 
0.2 
0.1 
2.3 
0.1 

29.6 
2.8 
58.0 
9.5 

100.0 

0.1 

0.1 
0.5 
6.6 
0.2 
0.1 
34.4 
6.0 
0.6 
0.1 
0.1 
0.4 
4.2 
0.3 
1.1 
0.6 
0.2 
0.3 
1.0 

0.1 
0.1 
0.6 
2.2 
1.6 
5.1 
0.2 
0.3 
0.2 
0.2 
8.8 
0.3 

21.5 
2.0 
57.0 
19.5 

100.0 

Ovaries 
4.9 
0.7 

27.9 
0.3 
4.3 
0.1 
0.0 

0.1 
0.4 
10.6 
0.4 
0.2 
9.1 
0.2 
1.0 
0.3 
0.1' 
0.4 
5.4 
0.4 
1.0 
0.6 
0.1 
0.1 
0.7 

0.1 
0.1 
1.2 
3.3 
2.0 
9.1 
0.4 
0.7 
0.3 
0.2 
10.0 
0.3 

38.3 
2.8 
31.3 
27.6 

100.0 

Whole Fish1 

5.0 
0.4 
16.5 
0.2 
2.0 
0.1 
0.1 

0.2 
0.4 
10.4 
0.3 
0.2 

36.5 
4.2 
0.7 
0.1 
0.4 
1.1 
4.6 
0.3 
1.7 
0.8 
0.1 
0.3 
0.4 

0.1 
0.1 
0.9 
2.7 
0.4 
2.2 
0.1 
0.3 
0.2 
0.1 
3.5 
0.1 

24.3 
2.2 
62.7 
10.7 

100.0 
AA=arachidonic acid (20:4ro6), EPA=eicosapentaenoic acid (20:5ro3), DHA=docosahexaenoic acid 
(22:6ro3), DPA=docosapentaenoic acid (22:5ro3), SFA=saturated fatty acid, BrFA=branched fatty acid,' 
MUFA=monounsaturated fatty acid, PUFA=polyunsatured fatty acid, c=cis double bond orientation; 
t=trans double bond orientation, 1values for whole fish were determined using the total lipid content and 
weight distribution (percent of body mass) of each body region 
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acid (OHA) and eicosapentaenoic acid (EPA) in the stomach and ovaries. 

OHA comprised 8.8% and 10.0% of the total fatty acids in the stomach and 

ovaries respectively, whilst EPA represented 5.1%-and 9:1%. The MUFA 

18: 1 ro9c was the single most important fatty acid component in all the body 

sections (>31 %) with the exception of the ovaries where 16:0 (27.9%) 

dominated. Levels of 18:1 co9c were greatest in the head section (40.9%) and 

least in the ovaries (9.1 %). Other major components included 16:0 (range 

13.2-27.9%), 16:1co7c (range 6.6-13.3%), OHA (range 2.2-10.0%), EPA 

(range 1.6-9.1 %), 14:0 (range 3.0-6.4%), 18:1co7c (range 0:2-6.0%), 20:1co9c 

(range 3.7-5.4%), 18:0 (range 1.8-4.7%) and 18:2co6c (range 2.2-3.3%). 

MOS analysis produced a spread of data similar to that for lipid class 

composition (Figure 4.3). However in this case the fatty acid compositions of 

the mid and tail sections are those most closely correlated with that of whole 

fish. The ovaries and stomach are once again substantially separated from 
... 
each other and whole fish when compared using MOS. 

C\I 

5 o ovaries 
"iii 
c: 
Q) 

E 
i:5 

Dimension 1 

oskin 

head section + 

tail section 

whole fish + •f). 

mid section 

•stomach 

Figure 4.3. Scatterplot of multidimensional scaling (MOS) based upon the 

fatty acid composition of various body sections of Dissostichus eleginoides 

(values for whole fish were determined using the total lipid content and 

weight distribution of each body region) 
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4.4 DISCUSSION 

Total lipid content 

With the exception of the stomach (7.7% WW), none of the body sections 

contained lipid at levels comparable to that calculated for whole fish (9.4% 

WW, Table 4.1 ). However, the stomach is particularly unsuited as a proxy as 

it's lipid content is inextricably linked to the prey items it contains. Ideally, the 

lipid content of the proxy should remain relatively const~nt, independent of 

exogenous factors such as changes in diet. The lipid content of the stomach 

is therefore affected by both dietary intake and the state of digestion of the 

contents of the stomach. The stomach is, consequently, unlikely to accurately 

reflect the long-term lipid content of the entire fish. For similar reasons, the 

lipid content of the ovary is significantly affected by both reproductive status 

and the stage of maturity, also making it unsuited for use as a proxy. 

On this basis skin (13.4% WW), the body section next closest to the , 

predicted content of whole fi.sh following the stomach, would ap~ear to make 

the best proxy indicator of overall lipid content. The mid section (14.2%) is a 

poor indicator as it's lipid content is considerably greater (4.8% above) than 

that of whole fish. Similarly the content of the head (4.1 %) is less than half 

that of whole fish and would appear to be a poor predictor. The tail section 

however may be of some use as a proxy. Although the lipid content of the tail 

section (4.9%) is also substantially lower than wh<:>le fish (4.5% below), it is 

similar in distance to skin (4.0% above) from the predicted value of the entire 

fish. The .tail section may therefore be equally as applicable as a predictor of 

lipid content than skin and, additionally, it's collection much simpler. 

The high lipid content observed in the skin is comparable, though lower in 

absolute value, to the extensive subcutaneous deposits of lipid (74.1 % WW) 

reported for the Antarctic toothfish, Dissostichus mawsoni (Clarke et al. 

1984). Similarly, the increase in lipid content of approximately 10% from both 

the head and tail towards the mid section (centre of buoyancy) also reflects 

the results of Clarke et al. (1984), suggesting a possible role in buoyancy 

regulation for the lipid deposits of Patagonian toothfish. 
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A comparison of total lipid content with other fish species from the Southern 

Ocean is difficult because of the limited availability of published data. Of 

these studies, even fewer have explored the variation in lipid content 

between different body sections. The limited results available suggest that 

Patagonian toothfish are a relatively lipid rich species. For instance the lipid 

content in white muscle (the tissue most commonly analysed and 

comparable to the head, mid and tail sections of this study) in the majority of 

studied species is almost without exception well below 2.0% WW. Clarke et 

al. (1984), in the same study that included the Antarctic toothfish, examined 

two other Antarctic nototheniid species, Trematomus bernaccchii and 

Pagothenia borchgrevinki. The white muscle of these species contained 

1.1 % WW and 1.9% WW total lipid respectively, considerably lower than in 

either D. eleginoides or D. mawsoni. The lipid content of the skin is also 

lower in P. borchgrevinki (3.5% WW) compared to both toothfish species. 

The lipid contents of muscle tissue from a further two nototheniid, species, 

Notothenia coriiceps (1.2% WW) and Lepidonotothen nudifrons. (0.9% WW) 

(Kamler et al. 2001 ), are also well below the levels determined for 

Patagonian toothfish in this study. 

Data is more readily available for whole fish comparison. Based upon the 

result of several studies, Patagonian toothfish fall within the middle range of 

lipid contents determined for Southern Ocean fish, comparable to several 

species including adult Pleuragramma antarcticum (10.2%WW, Friedrich and 

Hagen 1994), Protomyctophum bolini (8.5%WW, Reinhardt and Van Vleet 

1986), Gymnoscopelus piabilis (9.2%WW, Raclot et al. 1998), and 

Lampichthys procerus (8.8%WW, Raclot et al. 1998). 

Lipid class composition 

Minimal variation in lipid class composition is apparent between body 

sections, with the exception of the stomach and ovaries. The head, mid, tail 

sections and s_kin are almost identical to the calculated lipid class 

composition of whole fish and would appear to be well suited as proxies. The 

stomach and ovaries, besides differing considerably in lipid class-composition 

to whole fish, are rejected as potential proxies for the same reasons 
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mentioned previously with respect to lipid content. MOS identified the mid 

section as the best proxy for determining lipid classes (Figure 4.2). The skin, 

followed by the head and tail, are the body sections next most similar to 

whole fish. The closer clustering of skin is surprising given that both TAG and 

PL differ substantially in skin relative to whole fish whilst in the head and tail 

their levels are comparable. The apparent reason for the closer grouping of 

skin by rvtDS is that levels of FFA in whole fish and skin are comparable, 

whilst in the head and tail sections they are higher relative to whole fish. 

The distribution of lipid composition with body region is similar to that 

· reported tor Antarctic toothfish by Clarke et al. (1984). The skin and 

subcutaneous tissue of Antarctic toothfish contains >95% TAG, similar to the 

levels observed in this study (94.3%). High TAG levels are also present in the 

head, mid and tail sections of both toothfish species, though the relative 

amounts differ considerably (89.9-90.2% in Patagonian toothfish versus 46.6-

68.9% in Antarctic toothfish). The lower levels of TAG in Antarctic toothfish 

are offset by elevated PL levels (20.8-48.2%) relative to Patagonian .toothfist) 

(3.2-4.9%). Additionally the decrease in TAG and increase in PL from the 

snout to the tail reported for Antarctic toothfish was not observed for 

Patagonian toothfish in this study. 

As is the case with lipid content, the majority of studies of lipid class 

composition in Southern Ocean fish are restricted to the examination of ei_ther 

the whole fish or white muscle. Clarke et al. (1984), Reinhardt and Van Vleet 
' -

(1986) and Phleger et al. (1997; 1999a) observed substantial variation in the 

lipid class composition of various body sections (including the skeleton, 

neurocranium, viscera, white muscle/flesh, red muscle, liver, spleen, heart, 

skin, testis and serum) in a number of species. Comparisons with the present 

study are unfortunately restricted to the white muscle/flesh and skin. Of those 

species examined by the various authors only Gymnoscopelus nicholsi 

(Phleger et al. 1999a) contained levels of TAG (93.7%) and PL (2.8%) in the 

white muscle comparable to those present in Patagonian toothfish. In several 

other species, including Bathy/agus antarcticus (60.7%), Electrona carlsbergi 

(75.3% and 74.8%), Gymnoscopelus opisthopterus (75.2%) and 
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Protomyctophum bolini (82.3%) TAG also dominated lipid class composition. 

However, these species also contained significant amounts of WE and/or PL, 

well above the levels determined for Patagonian toothfish. The absence of 

WE in Patagonian toothfish therefore sets it apart from most other Southern 

Ocean deepsea fish. Elevated levels of WE in flesh are believed to be 

associated with buoyancy regulation in many of these species, particularly in 

myctophids (e.g. Phleger et al. 1997; Phleger et al. 1999a). With respect to 

skin, the one species for which analysis of this body section was performed, 

Pagothenia borchgrevinki (Clarke et al. 1984), shows very few similarities 

with the skin of Patagonian toothfish. Levels of PL (42.8%) and free sterol 

(25.8%) are elevated relative to Patagonian toothfish, while TAG is 

substantially reduced (20.0%). 

Fatty acid composition 

As is the case with lipid class composition, the head, mid and tail sections 

are all acceptable proxies of Patagonian toothfish fatty acid composition. This 

contrasts with skin, which varies substantially in S~A content from the 

calculated composition of whole fish (29.6% in skin, 24.3% in whole fish) and 

would make a poor proximal indicator. Once again the stomach and ovaries 

vary dramatically in their fatty acid compositions from the calculated profile of 

whole fish, particularly the elevated levels of DHA and EPA, and are also 

unacceptable proxies. MOS analysis supports these observations. All three of 

the main body sections (head, mid and tail) are closely associated with the 

calculated fatty acid composition of whole fish (Figure 4.3). 

The study of Clarke et al. (1984) did not include fatty acid data for Antarctic 

toothfish, therefore cor:nparison with the results of this study is impossible. 

With regards to other Southern Ocean fish, both the total and constituent 

fatty acid levels of MUFA and PUFA in white muscle show great variation 

across a range of species. However, in general, the white muscle of 

Patagonian toothfish contains relatively lower levels of PUFA and higher 

levels of MUFA in comparJson to other species. For example in a study of 

several Trematomus species by Phleger et al. (Phleger et al. 1999b), white 

muscle PUFA exceeded 33% in all cases (compared to 8.6-11.0% in 
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Patagonian toothfish), predominantly DHA, whilst MUFA (less than 50% in all 

Trematomus species) are well below the levels of Patagonian toothfish (64.7-

66.2%). 

Choice of proxy indicator 

Although the results suggest that no one body section can be relied upon to 

provide an accurate approximation of the overall lipid composition of 

Patagonian toothfish, a reasonable proxy can still be chosen. The large size 

of the majority of the toothfish samples collected for this study requires that 

tissue from only one part of the body can be analysed for lipid compositic;>n. 

Initial analysis sugg~sts that the stomach is the best estimate of total lipid 

content, whilst tissue from the mid section most closely matches both lipid 

class and fatty acid composition (Table 4.3). The proxy indicator to be 

chosen, however, will ideally consist of a single body section in order to 

simplify the processes of collection and analysis. The body section chosen -

from this study will therefore represent a compromise between the degree of 

accuracy that it provides with regard to lipid composition and the ease with 

which it can be sampled. 

A number of factors, directly influencing lipid composition, must additionally 

be considered when choosing the proxy. As previously discussed, reliance 

upon the stomach as an indicator of lipid content is problematic due to the 

influence of the stomach contents. The choice of skin also pre~ents the 

problem of difficult sample collection and preparation. Any of the main body 

sections (head, mid and tail) are acceptable proxies of lipid class and fatty 

acid composition, but are generally unsuited as predictors of lipid content 

(Table 4.3). The tail section though has the advantage of much simpler 

collection and is additionally a better proximal indicator of the total lipid 

con_tent than either the mid or head body sections. On this basis, flesh from 

the tail section is the body section most suited as an overall indicator of lipid 

composition of Patagonian toothfish for this study. 
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Table 4.3. Comparison of body sections best and least applicable as proxy 

indicators of total lipid, lipid class and fatty acid composition in Dissostichus 

eleginoides (based upon closeness to calculated values for whole fish) 

Lipid component 

Total lipid content 

Lipid class 1 

Fatty acid1 

Best proxy indicators 

stomach, skin, tail 

mid, skin, head, tail 

mid, tail, head, skin 
1determined from multidimensional scaling 

4.5 CONCLUSIONS 

Worst proxy indicators 

mid, ovaries, head 

stomach, ovaries 

stomach, ovaries 

In common with other Southern Ocean species such as Antarctic toothfish, 

the lipid composition of Patagonian toothfish is heavily dependent upon the 

location of the tissue within the body. Lipid content in particular varies 

substantially with body section. The marked increase in. lipid content in the 

middle body section suggests that lipid deposits may perform an important 

role in the maintenance of buoyancy. The skin also contains large quantities 

of lipid, consistent with the subcutaneous deposits that are a notable 

characteristic of Antarctic toothfish. Lipid class and fatty acid composition are 

less varied, excepting those body sections that are organs (ovaries and 

stomach). The main body sections, represented by the tail, mid and head, 

provide the bulk of the tissue (78% total body mass) and share similar lipid 

class and fatty acid compositions. Although quantitative (i.e. lipid content) 

differences between the main body sections are apparent, this qualitative 

similarity suggests that the selective deposition of fatty acids into different 

body sections is minimal. 
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CHAPTERS 

VARIATION IN THE LIPID COMPOSITION OF PATAGONIAN 

TOOTHFISH FROM THE MACQUARIE ISLAND REGION IN 

RELATION TO SEVERAL BIOLOGICAL AND SAMPLING 

PARAMETERS 

5.1 INTRODUCTION 

The Patagonian toothfish (Dissostichus e/eginoides) is an important 
- ' 

compon~nt of the sub-Antarctic fish community. It's large size, well 

characterised _distribution and high market value have seen a steady increase 

in the commercial catch of this species in the last decade, particularly in the 

waters of the sub-Antarctic islands that support the vast majority of this 

species (Williams and Lamb 2001 ). Several biological features leave 

toothfish prone to over-exploitation including low fecundity, late onset of 

sexual maturity (Chikov and Mel' nikov 1991,)longevity and a moderate 

growth rate (Horn 2002). A direct result has been a marked decrease in 

toothfish biomass in ~any areas of the s.outhern Ocean (e.g. Haedrich et al. 

2001; Tuck et al. 2om. b) th.rough the combined action of sanctioned fishing 

operations (regulated by government bodies) and illegal, unregulated and 

unreported fishing that may account for up to 50% of the total catch (Willock 

2002). 

The complex system of seamounts and canyons surrounding Macquarie 

Island is home to a commercially exploited toothfish population. In 1997 the 

Fisheries Research Development Corporation (FROG) commissioned a study 

into the potential of developing an ecologically sustainable fishery for 

toothfish around Macquarie Island (He and Furlani 2001 ). An important 

component of -the FROG study was establishing the ecological interactions of 
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toothfish with both their prey and potential predators, essential to attaining an 

understanding of trophic structures within regional food webs and 

consequently ensuring the proper management of-the fishery. The Macquarie - -

Island region is well suited to a comparative study of toothfish diet. The 

population is split between two main regions separated by a distance of 

approximately 60km, one to the west of the island, the other to the north on 

the Macquarie Ridge (Goldsworthy et al. 2002). On the basis of both genetic 

(Reilly et al. 2001) and tag-recapture studies (Williams and Lamb 2001 ), 

each of these geographically isolated regions are thought to support distinct, 

non-migratory sub-populations of toothfish. The influence on toothfish diet of 

this separation is therefore potentially significant. 

Toothfish have previously been identified as important dietary components of 

Hooker's sea lions in the Macquarie Island region (McMahon et al. 1999). 

The FROG study sought to expand the assessment of trophic interactions 

between toothfish and potential predators to include various seal and seabird 

species and (Goldsworthy et al. 2001 d). The results suggest that Macquarie 

Island seals and seabirds do not prey upon toothfish to any great extent. 

The exact dietary composition of toothfish is, however, less certain. Current 

dietary information available for toothfish from the Macquarie Island region is 

based upon the examination of stomach contents (Goldsworthy et al. 2001 c; 

Goldsworthy et al. 2002), a technique that has a number of inherent 

problems. Amongst these is a failure to identify with any certainty long-term 

dietary composition and bias due to differential digestion of prey items . 

problems (Antonelis et al. 1987; Harwood and Croxall 1988; Chou et al. 

1995). More recently, underwater video observation has been used to 

observe the foraging of toothfish in situ, though these observations are 

restricted to mainly scavenging events rather than true predation (e.g. Collins 

et al. 1999; Yau et al. 2002). Despite these disadvantages, the complexity of 

intermediary trophic interactions for sub-Antarctic species has limited dietary 

determination in the majority of fish species to traditional techniques. 
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The use of alternate and complementary methods may help overcome the 

disadvantages of traditional methods of determining diet. The analysis of fatty 

acid composition is one- technique that has received growing recognition as a 

potentially simple and effective means of determining diet. At the present 

time, the fatty acid compositions of relatively few marine species from sub­

Antarctic regions have been determined (Piatkowski and Hagen 1994). 

Previous studies into the use of fatty acids as dietary tracers in Southern 

Ocean ecosystems have so far been restricted primarily to either top-level 

marine predators (namely seals and whales) (e.g. Raclot et al. 1998; Brown 

et al. 1999), primary producers (phytoplankton, bacteria) (e.g. Nichols et al. 

1993; Graeve et al. 1994) and lower-end consumers (zooplankton) (e.g. 

, Kattner et al. 1994; Kattner and Hagen 1995). , 

Lipid studies of large, mid to top-level predatory fish in the Southern Ocean 

have predominantly been of Antarctic species such as the Antarctic toothfish, 

Dissostichus mawsoni (Ohno et al. 1976; Clarke et al. 1984; Eastman 1985; 

Nachman 1985; Eastman 1988). These investigations concentrated on,the, 

role of lipids in the maintenance of neutral buoyancy rather than their use as 

dietary indictors. Few truly inclusive dietary studies, incorporating traditional 

, methods in addition to fatty acids, have been attempted for Southern Ocean 

fish. A comparative study of myctophids and mackerel icefish 

( Champsocephalus gunnan) by Lea et al. (2002) used fatty acids to examine 

dietary interactions within the Macquarie and Kerguelen Islands food-webs. 

Phillips et al. (2001) assessed the predation upon myctophids by the squid 

Moroteuthis ingens in the Macquarie Island region by similar means. Brown 

et al. (1999) linked the diets of Southern elephant seals and toothfish in the 

South Georgia region based on comIT'!on fatty acid compositions. 

More recently, heightened interest in the health benefits of fish and the 

increasing commercialisation of previously marginal marine species 

(including toothfish) has combined to provide some lipid compositional 

information (e.g. Sinclair et al. J 992; Nichols et al. 1994a; Dunstan et al. 

1999). However, the vast majority of commercial fish species are from 

temperate, inshore environments and their use in dietary studies is limited to 
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these regions. Reinhardt & Van Vleet (1986) and Friedrich & Hagen (1994) 

have studied a number of non-commercial Antarctic fish species, 

emphasising the possible influence of diet on lipid -composition, but these 

studies were hampered by the lack of lipid data available for prey species. 

The use of fatty acids as signature lipids may therefore contribute to an 

expansion in current understanding of toothfish diet in the Macquarie Island 

region. The main objectives of this study are·firstly to determine the total lipid 

content, lipid class and fatty acid composition of toothfish in the Macquarie 

Island. Secondly, variations in lipid-composition relative to a number of 

sampling parameters, namely toothfish size, fishing ground, fishing season, 

fishing depth, time of day and sex, will be assessed using statistical analysis. 

5.2 MATERIALS AND METHODS 

Sampl~ collection 

Toothfish ·Samples were collected as part of commercial fishing activities of 

the Austral Leader, a deep-sea trawler operated by Austral Fisheries Pty. Ltd. 
(Fremantle, Western Australia). Fishing took place over the Southern 

Hemisphere summers of 1997-1998 and 1998-99 in fishing grounds of the 

Macquarie Island region (54Q30'S; 158Q55'E), approximately 1500km SW of 

Tasmania. Samples were collected from two main fishing grounds, one to the 

North of Macquarie Island in the area of the Northern Valleys, encompassing 

the Colgate Valley and Grand Canyon (northern fishing-ground), and the 

other to the west of Macquarie Island, dominated_ by the Aurora Trough 

(southern fishing ground) (Figure 5.1 ). 

Fish of varying sizes were collected from trawls over a range.of trawl depths, 

locations and times of day (Table 5.1 ). A total of 259 samples were c.ollected 

for lipid analysis, 83 from season 1997-1998 and 178 from season 1998-

1999. Samples from the lower tail section (1-2g) were removed for lipid 

analysis, frozen at -20°C and analysed within 3 months when possible. 

Previous investigation (Chapter 4) 
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Table 5.1 Summary of Dissostichus eleginoides samples collected from the 

Macquarie Island Region during the fishing seasons 1997/1998 and 

1998/1999 from two fishing grounds at various times of the day 

Fish ing Samples (n) Trawls (n) Time of Day 

Season N s Total N s Total Depth Range (m) Night Day 

1997/1998 83 0 83 18 0 18 770-1253 51 32 

1998/1999 119 57 176 15 5 20 622-1855 81 95 

Total 102 57 259 33 5 38 622-1855 132 127 

N=northern fishing ground; S=southern fishing ground ; 1 night (1 800-0600hr) day (0600-1800hr); 2refer 

to main body of text for location of fi sh ing grounds 

found that lower tail flesh was an acceptable proxy for overall toothfish lipid 

composition (total lipid content, lipid class and fatty acid composition) . 

Determination of size, stomach contents, age, sex and sexual maturity 

Upon capture biological data including toothfish length , weight, sex and 

stomach fullness were recorded. Both total (tip of snout to tip of caudal fin) 

and standard (tip of snout to base of caudal fin) lengths were determined. 
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Weight measurements were of total wet landing mass, before the removal of 

any biological material. Stomachs were removed for the analysis and 

identification of prey matter. Sexual maturity was assessed in fish from 

season 1998/1999 according to Kock and Kellermann's (1991) five-point 

scale of gonad state (points 1 & 2 denoting sexual immaturity, 3-5 sexual 

maturity) . Otoliths were also removed to assess the age of toothfish at the 

time of capture. Samples were stored at -20°C and analysed within 3 months 

where possible. 

Lipid extraction and class determination 

Total lipids were extracted using the one-phase Bligh and Dyer method 

(1959). After phase separation , total lipids were recovered from the lower 

chloroform phase and concentrated in vacua (rotary evaporator, 40°C). Lipid 

class profiles were determined by TLC-FID using an latroscan MkV TH10 

analyser (Volkman and Nichols 1991 ). Wax ester (WE), triacylglycerol (TAG) , 

free fatty acid (FFA) , sterol (ST) and polar lipid (PL) components were 

resolved in a polar solvent system consisting of hexane-diethyl ether-acetic 

acid (60:17:0.2 v/v). The presence or absence of WE and diacylglyceryl 

ethers (DAGE) was confirmed by the use of a non-polar solvent system 

(hexane-diethyl ether; 96:4 v/v). Peak areas were quantified using 

commercially available chromatography software (DAPA Scientific Software, 

Kalamunda, Western Australia) . 

Fatty acid determination 

Fatty acid methyl esters (FAME) were prepared by addition of methanol 

(MeOH), concentrated hydrochloric acid (HCI) and chloroform (CHCl3) (3ml 

10:1 :1 , v/v/v, 80°C/2hr) to an aliquot of the total lipid. After cooling and the 

addition of 1 ml of water, resulting FAME were extracted (3x) with 4:1 v/v 

hexane/CHC13. Chloroform containing C19 FAME internal standard was then 

added. FAME fractions were treated with N,0-bis-(trimethylsilyl) 

trifluoroacetamide (BSTFA, 50µL, 60°C, 2hr) to convert any sterols present to 

their corresponding trimethylsilyl (TMS) ethers. 
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Gas chromatographic (GC) analysis was performed on a Hewlett Packard 

5890A GC equipped with a flame ionisation detector, a cross-linked methyl 

silicone (HPS) fused silica capillary column \50 m length x 0.32 µm internal 

diameter), employing hydrogen as the carrier gas. Samples were injected 

(HP7673A auto-injector) at 50°C in the splitless mode, with a 2-min. venting 

time (Nichols et al. 1993). The injector and detector were maintained at 

290°C and 310°C respectively. After 1 min. the oven was raised to 150°C at 

30°C min-1
, then to 250°C at 2°c min-1 and finally to 300°C at 5°C min-1 

(Nichols et al. 1993). peak areas were quantified using Millennium 32 

Chromatography Manager (Waters Corporation, Milford, Massachusetts, 

USA). Identification of individual fatty acids and sterols was based upon a 

comparison of relative retention times with those'obtained from previous 

studies in addition to authentic and laboratory standards. GC-mass 

spectrometry (FISONS M0800 system and Finnigan Thermoquest GCQ fiited 

with an on-column injector, both configured as above) was used for 

confirmation of components from representative samples (Nichols et al. 

1993). 

Statistical analyses 

Statistical analyses were performed using SYSTAT 9 (SYSTAT, Inc, 

Evanston, Illinois, USA). Variations in total lipid content, lipid class and 

individual fatty acid compositions in relation to the various sampling 

parameters were compared using two-sample t-tests (95% confidence 

interval). 

Multivariate statistics were also used to analyse total fatty acid and lipid class 

composition. Non-metric multi-dimensional scaling (MOS; Kruskall loss 

function) was employed to compare the fatty acid and lipid class composition 

of toothfish in two dimensions to assess whether groupings existed within the 

data set. 

Linear discriminant analysis (LOA; tolerance=0.01, complete estimation, 

classification and jackknifed classification matrix, Wilk's lambda) was used to 
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determine which, if any, of the sampling parameters were likely to be 

responsible for the observed grouping of toothfish fatty acid and lipid class 

data. LOA also enabled the identification of those variables (fatty acids and 

lipid classes) most responsible for the differences amongst groups. , _ 

Automatic forward stepping (F to enter=4, F to remove=3.9) was used when 

analysing fatty acid composition. The jack-knifed classification matrix is 

included as a means of cross-validating the normal classification matrix. 

Considerable difference in the percentage of correct classifications between 

these matrices would suggest potential difficulties in correctly classifying the 

data. 

The scale of LOA classification is between O and 1 00%. A classification of 

0% means that there is no similarity in the lipid class or fatty acid composition 

of toothfish taken from the two grouping variables (e.g. fish sampled from 

northern or southern grounds). A classification of 100% means that toothfish 

from both grouping variables have the same lipid class or fatty acid 

composition. 

5.3 RESULTS 

Toothfish size 

Examination of length-frequency and weight frequency (combined seasons) 

reveals a relatively normal (unimodal) size distribution and emphasises the 

prevalence of smaller sized fish (total length <1 OOOmm, total weight <5000g) 

in this study (Figure 5.2). Most of the too~hfish analysed fall within the length 

range 350-1 OOOmm with the greatest length frequency (n=33) occurring in 

the 650-700mm class. Weight distribution is also skewed toward the smaller 

size classes, particularly between 2000-SOOOg, and few toothfish weighing 

over 12000g have been included in this study. The weight class 2000-2500g 

contains the greatest number of toothfish (n=30). 

A comparison of size distribution between the fishing seasons reveals that 
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Figure 5.2 Weight-frequency and length-frequency distribution of 

Dissostichus eleginoides samples included in this study from the Macquarie 

Island region 
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toothfish were of significantly larger length and weight in the 1997/1998 

season (Table 5.2). Mean total weight was almost double of that of toothfish 

from season 1998/1999 (t-test, 95% confidence interval , p<0 .001) and total 

lengths were significantly longer (p<0.001 ), including both the heaviest 

(26900g) and longest (1354mm) sample analysed. The smallest toothfish 

analysed , from season 1998/1999, measured 300g total weight and 31 Omm 

total length. 

Total lengths differed significantly between the northern and southern fishing 

grounds (p<0.01 ), although total weights (p=0.114) did not (Table 5.2). The 

depth of capture significantly affected both total length and weight (p<0.001 ). 

Differences in toothfish length in relation to both the time of day (p=0.157) 

and sex (p=0.630, season 1998/1999 only) were not significant. Differences 

in weight attributed to toothfish sex (p=0.848) were similarly not significant. 

However, weight was significantly greater in toothfish collected during the 

night (p<0.01 ). Positive correlations were also observed between toothfish 

total length and weight (Figure 5.3) , in addition to fishing depth and size 

(Figure 5.4). 

Toothfish sex 

Sex was only determined for toothfish in the 1998/1999 fishing season, 

where the ratio of male to females was approximately equal (Table 5.2). The 

sexual maturity of toothfish from the same season was also assessed. Of 

176 toothfish, 162 were at Stage 1 of development (immature) and the 

remaining 14 at Stage 2 (developing or resting). Thus, none of the fish 

analysed in this season were deemed to be sexually mature. 

Total lipid content 

Total lipid content averaged 12.0% WW (wet weight) over all toothfish 

analysed (n=246) and ranged from 0.8-24.8% WW (Table 5.3). Lipid content 

was highly influenced by several of the sampling parameters. Significant 

differences in lipid content based upon sex (p<0.001 ), total weight (p<0.001 ), 

total length (p<0.001 ), time of day (p<0.01 ), fishing depth (p<0.001) and 

fishing ground (p<0.001 ) were detected by t-tests. Lipid content did not vary 
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Table 5.2 Total length and weight of Dissostichus eleginoides from the Macquarie Island region included in this study with respect 

to toothfish sex and various fishing parameters (data presented as mean± standard deviation) 

(i) T oothfish sex 

Toothfish 
Size 

Parameter1 

Length (mm) 
Weight (g) 

~I Se~ 
Toothfish Male Female 
(n=259) (n=91) (n=85) 
642±180 609±147 597±191 

3421±3116 2815±2158 2888±2841 

(ii) Fishing parameters 

ns 
ns 

Toothfish All Fishing Season , Fishing Ground;i TTrne ofl::lay4 Fishing Depth 
Size Toothfish 1997/1998 1998/1999 t North South t Day Night t <1000m >1000m 

Parameter1 (n=259) ___lrl_=83) . (n=176). ___ (n=?Q?L__ (n=57) u(n=127) (n=132) _Jn=79) (n::180) 
Length (mm) 642±180 723±175 603±169 s 664±161 564±220 s 626±132 657±216 ns 534±201 689±147 s 
Weight (g) 3421 ±3116 4630±3871 2850±2504 s 3591 ±3053 2816±3286 ns 2862±1856 3958±3900 s 2332±2955 3898±3072 s 

t=two-sample t-test, 95% confidence interval; s=significant (p<0.05); ns=non-significant (p>0.05); n=number of samples; 1total length and total wet weight; 2sex 
only determined in fishing season 1998/1999; 3refer to 111ain body of text for location of fishing grounds; 40600-1 SOOhrs (day) 1800-0600hrs (night) 
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Table 5.3 Total lipid content (percent composition, wet weight) of Dissostichus eleginoides from Macquarie Island in relation to 

various biological and fishing parameters (data presented as mean± standard deviation): 

(i) Biological Parameters 

All Total Length Total Weight Sex1 

Toothfish <500mm >500mm t <1 OOOg >1 OOOg t Male Female t 
(n=246) (n=56) (n=188) (n=51) (n=193) (n=90) (n=83) 

Total Lipid (ww) 12.0±5.7 5.3±4.8 13.9±4.2 s 4.8±4.4 13.9±4.3 s 13.7±5.6 10.1±6.4 s 

(ii) Fishing Parameters 

Fishing Season Fishing Ground2 Time of Day3 Fishing Depth 
1997 /1998 1998/1999 t North South t Day Night t <1 OOOm > 1 OOOm t 

(n=71) (n=175) (n=187) (n=57) (n=118) (n=126) (n=79) (n=165) 
Total Lipid (ww) 12.0±4.0 12.0±6.2 ns 13.3±4.8 7.7±6.3 s 13.1±4.6 10.9±6.3 s 7.7±5.9 14.0±4.2 s 
t=two-sample t-test, 95% confidence interval; s=significant (p<0.05); ns=non-significant (p>0.05); n=number of samples; ww=wet weight; 1sex only <determined 
in fishing season 1998/1999; 2refer to main body of text for location of fishing grounds; 30600-1 BOOhrs (day) 1800-0BOOhrs (night) 
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CHAPTER 5 LIPID COMPOSITION OF PATAGONIAN TOOTH FISH 
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Figure 5.3 Rel~tionship between the total length and weight of Dissostichus 

eleginoides analysed in this study from the Macquarie Island region (n=:=259) 

significantly between fishing seasons (p>0.05). Variations in lipid content 

were greatest in relation. to increasing total length and weight (Figure 5.5). A 

positive correlation was also observed between fishing depth and lipid 

content (Figure 5.6). 

Lipid class composition 

A total of 230 toothfish samples were analysed for lipid class composition 

(Table 5.4). Triacylglycerol (TAG) dominated class composition (mean 

91.6±11.6%, range 33.0-98.9%, all toothfish), followed by free fatty acid 

(FFA; mean 6.1 ±8.8%, range 0.6-54.1 %), polar lipids (~L; mean 1.6±3.0%, 

range 0.0-25.1 %) and sterols (ST, primarily cholesterol; mean 0.7±1.5%, 

range 0.0-13.7%). 

Significant differences (t-test, p<0.05) existed in the content of all lipid 

classes on the basis of time of day, fishing ground, fishing season, fishing 

depth, total length and total weight, with the exception of PL in relation to 

fishing season (p=0.082). The sex of toothfish did not significantly influence 
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30000 
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weight) included in this study with increasing fishing depth in the Macquarie 

Island region 
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Figure 5.5 Relationship between the total lipid content, total length and 

weight of Dissostichus eleginoides included in this study from the Macquarie 

Island region 
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Figure 5.6 Total lipid content (% wet weight, averaged over 1 OOm depth 

intervals, bars represent standard deviation) versus fishing depth (m) for 

Dissostichus eleginoides samples included in this study from the Macquarie 

Island region 

the composition of any lipid classes (p>0.1 ). A positive correlation was 

observed between TAG content and increasing length, weight and fishing 

depth, whilst FFA content was negatively correlated. Levels of PL and ST 

remained constant, regardless of variations in size and fishing depth. 

MOS analysis of lipid class composition revealed one major grouping of 

toothfish, with a wide scattering of the remaining samples (Figure 5.7). LOA 

identified fishing ground (normal classification 15%; jackknifed classification 

15%), fishing depth (classification 15%; jackknifed classification 16%), total 

length (classification 9%; jackknifed classification 11 %) and total weight 

(classification 7%; jackknifed classification 7%) as having a significant 

influence on lipid class composition. The sex of toothfish, however, did not 

significantly influence lipid class composition (classification 43%; jackknifed 

45%). 
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Table 5.4 Lipid class composition (percentage of total lipid content) of Dissostichus eleginoides from the Macquarie Island region in 

relation to various biologi<?al and fish.ing parameters (data' presented as mean± standard deviation) 

(i) Biological Parameters 

Lipid 
Class 

TAG 
FFA 

ST/DG 
PL 

Total 

All Total Length Total Weight Sex1 

Toothfish <500mm >500mm t <1 OOOg > 1 OOOg t Male Female t 
(n=230) (n=39) (n=189) (n=33)' (n=195) (n=78) _(n=67) 

91.6±11.6 75.2 ± 19.6 94.9 ± 4.4 s 72.1 ± 19.8 94.8 ± 4.4 s - 91.2 ± 13.1 89.0 ± 15.0 ns 
6.1±8.8 18.3±14.9 3.5±3.6 s 20.5±15.1 3.6±3.6 -s 6.1 ±9.5 8.0±11.7 ns 
0.7±1.5 2.1 ± 2.5 0.5 ± 1.0 s 2.4 ± 2.7 0.5 ± 0.9 s 0.9 ± 1.8 1.0 ± 1.9 ns 
1.6±3.0 4.4±6.0 1.1 ±1.4 s 5.0±6.3 1.1 ±1.4 s 1.8±3.4 1.9±3.7 ns 
100.0 100.0 100.0_ 100.0 100.0 100.0 100.0 

(ii) Fishing Parameters 

Lipid Fishing Season Fishing Ground2 
.-. -Time of Day3 Fishing Depth 

Class 1997 /1998 1998/1999 t North South · t Day Night t <1 OOOm > 1 OOOm 

TAG 
FFA 

ST/DG 
PL 

Total 

(n=83) (n=147) (11=185)_ (n=43) _ (n=110)__ (n=_1_1fil__ (n=55) (n~173) 

93.9±4.9 90.2±14.0 s 94.3±5.1 79.7±21.1 s 89.0±14.0 94.3±5.4 s 81.3±19.4 94.8±3.7 
4.5±4.3 7.0±10.6 .s 4.1 ±4.2 14.6±16.1 s 7.8±11.3 4.2±4.6 s 13.7±·14.8 3.7±3.4 
0.4±0.3 1.0±1.8 s 0.5 ± 1.0 1.8 ± 2.5 s 1.0 ± 2.0 > 0.5 ± 0.4 s 1.6 ± 2.3 0.5 ± 1.0 
1.3±1.8 1.9±3.6 ns 1.1 ± 1.5 3.8 ± 5.8 . s 2.2 ± 4.0 1.0 ± 1.2 s 3.5 ± 5.2 1.1 ± 1.5 
100.0 100.0 100.0 .100.0 100.0 I 100.0 100.0 100.0 

TAG=triacylglycerol; FFA=free fatty acid; ST =Sterol; DG=diacylglycerol; PL=polar lipid; n=number of samples; f= two-sample t-test, 95% confidence interval; 
s=significant (p<0.05); ns=non-significant (p>0.05); n=number of samples; 1sex only determined in fishing season 1998/1999; 2refer to main body of text for 
location of fishing grounds; 30600-1 BOOhrs (day) 1800-0600hrs (night) · 
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Figure 5.7 Scatterplqt of multidimensional scaling (MOS) based upon the 

lipid class composition of Dissostichus e/eginoides included in this study from 

Macquarie Island region (n=230) 

LOA also re'(ealed that TAG was the lipid class most responsi_ble, and PL the 

least responsible, for the classification of toothfish into separate groupings for 

all the sampling parameters examined, with the exception of total length. FFA 

and ST were the most and least responsible lipid classes respectively for 

classification by total length. 

Fatty acid composition 

All toothfish 

Examination of the fatty acid profile of toothfish from both seasons revealed a 

total of 45 identifiable components. The profile is dominated by 

monounsaturated fatty acids (MUFA), accounting for on average 65.6±7.6% 

(range 27.4-75.8%) of the total fatty acids (Table 5.5, all toothfish). Saturated 

(SFA; mean 22.1 ±1.8%, range 16.4-27.8%) and polyunsaturated fatty acids 

(PUFA; mean 11.6±7.3%, range 0.7-47.9%) were present at lower levels, 
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Table 5.5 Fatty acid composition (% composition of total fatty acids) of 

Dissostichus eleginoides included in this study from the Macquarie Island 

region with respect to various biological parameters (data presented as mean 

± standard deviation) 

All Total Weight Total Length Sex 
Fatty Acid Toothfish <1000g >1000g <500mm >500mm Male Female 

(n=259) (n=47) (n=212) (n=56) (n=203) (n=91) (n=85) 
14:0 3.5 ± 1.1 2.8±1.2 3.7±1.0 3.0±1.3 3.7±1.0 3.2±1.2 3.2±1.2 
15:0 0.4 ±0.2 0.4±0.1 0.4± 0.3 0.4 ± 0.1 0.4 ± 0.3 0.4 ± 0.4 0.4 ± 0.1 
16:0 14.4±1.2 15.3±1.3 14.1 ± 1.1 15.2±1.3 14.1 ± 1.0 14.3±1.2 14.6 ± 1.4 
17:0 0.5 ± 0.1 0.4 ± 0.1 0.5 ± 0.1 0.4± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 
18:0 3.0±0.6 3.3±0.8 2.9±0.5 3.2± 0.8 2.9 ±0.5 2.9 ±0.5 3.2±0.6 
20:0 0.1±0.1 0.1 ±0.0 0.1±0.1 0.1±0.0 0.1±0.1 0.1 ±0.0 0.1±0.1 
22:0 0.2 ± 0.4 0.3±0.4 0.2 ±0.4 0.3 ±0.4 0.2 ±0.4 0.2±0.4 0.3±0.6 

14:1 co5c 0.2±0.2 0.2±0.5 0.2± 0.1 0.2 ± 0.4 0.2 ± 0.1 0.1±0.1 0.2 ± 0.4 
16:1 co9c 0.4 ± 0.1 0.4± 0.2 0.4±0.1 0.4±0.2 0.4 ± 0.1 0.4 ± 0.1 0.4±0.2 
16:1co7c 8.1±1.6 6.4±2.6 8.5±0.9 6.7±2.6 8.5 ±0.9 7.8±1.4 7.6±2.1 
16:1 co7t 0.5 ± 0.1 0.4±0.1 0.5 ± 0.1 0.4 ± 0.1 0.5±0.1 0.5 ± 0.1 0.5±0.1 
16:1 co5c 0.2 ±0.0 0.3 ±0.0 0.2±0.0 0.3±0.0 0.2±0.0 0.2±0.0 0.2 ±0.0 
17:1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ±0.1. 0.6 ± 0.1 
18:1 co9c 32.9 ±5.3 25.9 ± 7.4 34.3 ± 3.3 27.6±8.0 34.2 ±3.2 33.3 ±5.5 31.3 ± 6.7 
18:1 co7c 5.2±0.6 5.3±0.6 5.2±0.6 5.3±0.6 5.2±0.6 5.5 ±0.5 5.4±0.8 
18:1 co5c 0.7±0.4 0.6 ±0.1 0.7±0.4 0.6 ± 0.1 0.7±0.4 0.7±0.6 0.7±0.1 
18:1 0.3 ± 0.1 0.3 ±0.0 0.3 ± 0.1 0.3 ± 0.1 0.3±0.1 0.3 ± 0.1 0.3 ± 0.1 
19:1 0.4 ± 0.0 0.4± 0.0 0.4±0.0 0.4±0.1 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 
20:1co11c 0.7 ±0.3 ,0.6 ±0.2 0.7±0.3 0.6 ± 0.2 0.7±0.3 0.7±0.3 0.6±0.3 
20:1co9c 7.4±1.5 6.8±1.7 7.5±1.4 6,.7±1.8 7.6±1.3 7.7±1.6 7.4±1.8 
20:1co7c 0.6 ±0.2 ' 0.4 ± 0.1 0.7±0.2 0.4 ± 0.1 0.7±0.2 0.6±0.2 0.6±0.2 
22:1co11c 3.2 ±0.9 2.5 ±0.9 3.6±2.6 2.5 ±0.9 3.7±2.7 3.5 ±2.6 2.9±0.9 
22:1co9c 1.9 ± 0.7 1.4± 0.4 2.1 ±0.7 1.3 ± 0.4 2.1 ±0.7 1.9 ±0.8 1.7 ± 0.6 
22:1co7c 0.2 ± 0.1 0.1 ±0.0 0.3± 0.1 0.1±0.1 0.3 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 
24:1co11c 0.8 ±0.3 0.6±0.2 0.8±0.3 0.6 ±0.2 0.8 ±0.3 0.7±0.3 0.7±0.3 
24:1co9c 1.0 ± 0.4 1.0 ± 0.3 1.0 ± 0.4 1.0 ± 0.4 1.0 ± 0.3 1.0±0.4 0.9±0.4 

18:3co6 0.1 ±0.0 0.1±0.0 0.1 ±0.0 0.1±0.0 0.1 ±0.0 0.1 ±0.0 0.1 ±0.0 
18:4co3 0.9 ±0.2 0.9±0.2 0.9±0.2 0.9±0.2 0.9 ±0.2 0.8±0.2 0.8±0.2 
18:2co6 1.3±0.2 1.4 ± 0.2 1.2±0.2 1.4± 0.2 1.2 ±0.2 1.3 ± 0.2 1.3±0.2 
AA· 0.7 ±0.6 1.3 ±0.9 0.5 ±0.4 1.2 ± 0.9 0.5 ±0.4 0.6 ±0.6 0.8±0.6 
EPA 2.8±1.6 5.1 ±2.4 2.3 ±0.7 4.6±2.5 2.3±0.8 2.7±1.8 3.4±1.9 
20:3co6 0.1±0.0 0.1 ±0.0 0.1 ±0.0 0.1±0.0 0.1 ±0.0 0.1 ±0.0 0.1 ±0.0 
20:4ro3 0.3 ± 0.1 0.4 ± 0.1 0.3 ±0.1 0.4±0.1 0.3 ± 0.1 0.3 ± 0.1 0.3±0.1 
20:2co6 0.2 ± 0.1 0.2±0.0 0.2± 0.1 0.2±0.0 0.2 ± 0.1 0.2 ± 0.1 0.2±0.1 
C21 PUFA 0.1±0.0 0.1 ±0.0 0.1 ±0.0 0.1±0.0 0.1 ±0.0 0.1 ±0.0 0.1±0.0 
22:5co6 0.1±0.1 0.2 ± 0.1 0.1±0.1 0.1 ±0.1 0.1 ±0.1 0.1±0.1 0.1 ± 0.1 
DHA 4.8±5.0 12.0 ±8.0 3.2±1.4 10.7±8.0 3.2±1.4 4.5±4.9 6.4±6.7 
22:4co6 0.0 ±0.0 0.1±0.1 0.0±0.0 0.1±0.1 0.0 ± 0.0 0.0 ± 0.1 0.0±0.0 
DPA 0.3 ±0.2 0.5 ±0.2 0.3 ± 0.1 0.4±0.2 0.3 ±0.1 0.3 ±0.2 0.4±0.2 

SFA 22.1±1.8 22.6±1.6 22.0±1.8 22.5±1.6 22.0±1.8 21.6 ±2.0 22.3 ±2.0 
BrFA 0.8 ±0.5 1.1±0.4 0.7±0.5 1.0±0.4 0.7±0.5 0.9 ± 0.5 1.0 ± 0.5 
MUFA 65.5 ±7.6 54.1 ± 11.6 68.1 ± 2.7 56.0 ± 11.8 68.1 ±2.7 66.3 ± 8.1 62.6 ± 9.7 
PUFA 11.6 ± 7.3 22.2 ± 11.4 9.2 ± 2.5 20.4± 11.5 9.2±2.5 11.3 ±7.5 14.1 ± 9.4 

TOTAL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
AA=arachidonic acid; EPA=eicosapentaenoic acid; DHA=docosahexaenoic acid; 
DPA=docosapentaenoic acid; SFA=saturated fatty acid; BrFA=branched fatty acid 
MUFA=monounsaturated fatty acid; PUFA=polyunsatured fatty acid; C=Cis double bond orientation; 
t=trans double bond orientation; 1sex only determined in fishing season 1998/1999 
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whilst branched fatty acids (BrFA) comprised a minor component (mean 

0.8±0.5%, range 0.2-2.2%). Major fatty acids, those representing > 1 % of total 

composition, and in descending order of importance (composition), included - -

18:1 ro9c (mean 32.9±5.3%, range 11.5-42.4%), 16:0 (mean 14.4±1.2%. 

range 11.6-18. 7%), 16:1 ro7c (mean 8.1 ±1.6%, range 2.2-16.9%), 20:1 ro9c 

(mean 7.4±1.5%, average 2.9-13.3%), 18:1ro7c (mean 5.2±0.6%, average 

0.5-6.7%), docosah~xaenoic acid (DHA [22:6ro3], 4.8±5.0%, range 0.0-

31.5%), 14:0 (mean 3.5±1.1 %, range 0.2-5.5%), 22:1 ro11 c (mean 3.2±0.9%, 

range 0.4-7.2%), 18:0 (mean 3.0±0.6%, range 1.8-5.1%), EPA 

(eicosapentaenoic acid [20:5ro3], mean 2.8±1.6,% range 0.0-10.7%), 

22:1 ro9c (mean 1.9±0.7%, range 0.6-7.4%), 18:2ro6 (mean 1.3±0.2%, range 

0.0-2.0%) and 24:1 ro9c (mean 1.0±0.4%, range 0.0-2.0%). Combined, these 

12 fatty acids represented -90% of the total composition. The variation in 

fatty acid composition was principally due to DHA and 18:1 ro9c, the levels of 

which fluctuated by over 30%. Of the major PUFA, levels of DHA and EPA 

were positively correlated with PL (Figure 5.8). 

MOS analysis of toothfish fatty acid composition demonstrates a single, large 

grouping of toothfish (n=212), with significant variation in the distribution of 

the remaining samples (Figure 5.9). 

Fatty acid variation relative to toothfish size 

The size of toothfish, measured by total weight (TW) and length (TL), hqd a 

marked influence on fatty acid composition (Table 5.5). Increases in TW and 

tL were the parameters most closely associated with variations in fatty acid 

composition. In particular levels of total PUFA were considerably greater, and 

total MUFA lower, in toothfish less than 1000g/500mm compared to those 

weighing greater than 1000g/500mm. Levels of DHA, for example, were 

approximately 10% greater in toothfish <1000g/500mm, whilst levels of 

18:1 ro9c approximately 10% lower. 
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Figure 5.8 Comparison of the percent composition of polar lipid versus DHA 

(docosahexaenoic acid, 22:6w3) and EPA (eicosapentaenoic acid, 22:5w3) in 

Dissostichus eleginoides samples from Macquarie Island included in this 

study 
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Figure .5.9. Scatterplot of multidimensional scaling (MOS) based upon the 

fatty acid composition of Dissostichus e/eginoides included in this study from 

the Macquarie Island region (n=259) 

The results of t-test analysis indicate significant variation in the composition 

of 33 of the 45 fatty acids relative to changes in TW, whilst 31 of the 45 fatty 

acids also varied significantly with increasing TL (Tables 5.6). All PUFA 

(excepting 18:3ro6, 18:4ro3, 20:2ro6 and C21 PUFA), MUFA (excepting 

14:1 ro5c, 16:1 co9c, 16:1 ro5c, 18:1, 19:1 and 24:1 ro9c), SFA and BrFA 

(excepting i15:0 and a15:0) varied significantly with increasing TW, 

amounting to 96.1 % of the total fatty acid composition. The fatty acids 

exhibiting differences relative to TL are also similar to those varying with 

respect to TW. These include the same BrFA, as well as most of the same 

PUFA (in addition to 20:2ro6), MUFA (excluding 17:1, 18:1 role, 18:1 ro5c and 

including 19:1) and SFA (excluding 22:0), totaling 90% of the total fatty acid 

composition. 

MOS supports the clear separation of toothfish based upon TW and TL 

(Figure 5.10). LOA revealed that similarity in the fatty acid composition of 

toothfish from the two weight groups (3%) and length groups (4%) is low, 
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Table 5.6 Results of t-tests (two-sample, 95% confidence interval) for 

individual fatty acids o_f Dissostichus eleginoides included in this study from 

the Macquarie Island region in relation to various sampling parameters 

Fatty 
Acid 

, Fishing 
Season 

Fishing 
Ground1 

Time of 
Day2 

Fishing 
Depth 

Total 
Length 

Total 
Weight 

Toothfish 
Sex3 

14:0 
15:0 
16:0 
17:0 
18:0 
20:0 
22:0 

i15:0 
a15:0 
i16:0 
i17:1 
i17:0 
a17:0 

14:1ro5c 
16:1 ro9c 
16:1 ro7c 
16:1ro7t 
16:1 ro5c 
17:1 
18:1 ro9c 
18:1 ro7c 
18:1ro5c 
18:1 
19:1 
20:1ro11c 
20:1 ro9c -
20:1 ro7c 
22:1 ro11 c 
22:1 ro9c 
22:1 ro7c 
24:1 ro11 c 
24:1ro9c 

s 
ns 
ns 
ns 
ns 
ns 
ns 

s 
s 
s 
s 
s 
s 

ns 
ns 
s 
s 
ns 
ns 
s 
s 
ns 
s 
s 
s 
s 
s 
ns 
ns 
s 
s 
s 

s 
s 
s 
s 
s 
ns 
s 

ns 
ns 
s 
s 
s 
s 

s 
ns 
s 
ns 
ns 
s 
s 
ns 
s 
ns 
ns 
ns 
ns 
s 
s 
s 
s 
s 
s 

ns 
ns 
ns 
ns 
s -
ns 
ns 

s 
s 
ns 
ns 
ns 
ns 

ns 
ns 
s 
s 
ns 
s 
s 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
s 
s 

s 
s 
s 
s 
s 
ns 
s 

ns 
ns 
s 
s 
s 
s 

ns 
s 
s 
s 
ns 
s 
s 
s 
ns 
ns 
ns 
ns 
ns 
s 

,5 

s 
s 
s 
ns 

s 
s 
s 
s 
s 
s 
ns 

ns 
ns 
s 
s 
s 
s 

ns 
ns 
s 
s 

ns 
ns 
s 
ns 
ns 
ns 
s 
s 
s 
s 
s 
s 
s 
s 
ns 

s 
s 
s 
s 
s 
s 
s 

ns 
ns 
s 
s 
s 
s 

ns 
ns 
s 
s 
ns 
s 
s 
s 
s ' 
ns 
ns 
s 
s 
s 
s 
s 
s 
s 
ns 

ns 
ns 
ns 
ns 
s 
ns 
ns 

ns 
ns 
s 
s 
s 
ns 

ns 
ns 
ns 
ns 
ns 
s 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
s 
ns 
s 
ns 
ns 

18 :3ro6 ns s s s ns , ns ns 
18:4ro3 s s ns ns ns ns s 
18:2ro6 s s ns s s s ns 
AA ns s s s s s ns 
EPA s s s, s s s s 
20 :3ro6 s s s s s s s 
20:4ro3 s s s s s s ns 
20:2ro6 ns s ns s s ns ns 
C21 PUFA ns s ns s ns ns ns 
22:5ro6 ns s ns s s s ns 
DHA s s s s s s s 
22:4ro6 s s s s s s ns 
DPA s s s s s s ns 

AA=arachidonic acid; EPA=eicosapentaenoic acid; DHA=docosahexaenoic acid; 
DPA=docosapentaenoic acid; PUFA=polyunsaturated fatty acid; n=significant difference (p<0.05); 
ns=non-significant difference (p>0.05); c=cis double bond orientation; t=trans double bond orientation; 
i=iso branching; a=anti-iso branching; 1northern and southern ground (see main body of text for 
location of grounds); 2day (0600-1800hrs) night (1800-0600hrs); 3sex only determined in season 
1999/1999 
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Figure 5.1 O Scatterplots of multidimensional scaling (MOS) based on the total 

fatty acid composition of Dissostichus eleginoides included in this study from 

Macquarie Island in relation to various biological and fishing parameters (A = 

toothfish weight; B = toothfish length; C =fishing season; D =fishing ground; 

E =fishing depth; F =time of day; G = toothfish sex; refer to main body of text 

for details of each parameter) 
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primarily due to variations in several MUFA and PUFA (Table 5.7). A number 

of major fatty acids (predictors) were responsible for the dissimilarity (EPA, 

DHA, 24:1m9c, 20:1ro9c, 18:1ro7c, 18:0) .. · 

Further refinement of this separation is demonstrated by the ability to place 

toothfish within four arbitrary size groupings, determined from MOS (Figure 

5.11 ). The size of toothfish contained within each grouping was as follows; 

group 1 (mean TL 346±18mm, range 323-365mm; mean TW 350±41 g, range 

300-400g); group 2 (mean TL 363±29mm; range 310-418mm; mean TW 

433±105g, range 300-650g), group 3 (mean TL 423±64mm; range 363-

61 Omm; mean TW 760±489g, range 400-2350g) and group 4 (mean TL 

681±159mm; range 376-1354mm; mean TW 3852±3121g, range 450-
' ' 

26900g). LDA identified a low degree of similarity (2%) in the fatty acid 

composition of toothfish from each of these four size groups (Table 5.8). Only 

five predictors contributed to this segregation, including two major PUFA, 

EPA, and DHA. Examination of only EPA and DHA using LDA produced a 

comparable classification (Table 5.8). This was further supported by the 

direct comparison of EPA and DHA levels (Figure 5.12) that revealed the 

grouping of toothfish by size similar to that obtained by MOS. 

Fatty acid variation relative to toothfish sex 

Fatty acid composition does not appear'to differ considerably between male 

and female toothfish (Table 5.5). This is supported by the fact that t-testing 

identified only 11 of the 45 fatty acids as differing significantly between male 

and female toothfish (Table 5.6). The specific sources of variation were 

several PUFA (18:4ro3, EPA, 20:3m6, DHA), MUFA (17:1, 22:1 m11 c, 

22:1 ro7c), BrFA (i16:0, i17:1, i17:0) and the SFA 18:0. These fatty acids 

represented only 16% of the total fatty acid composition, although several 

were major fatty acids (EPA, DHA, 18:0). 

Little separation of male and female toothfish into could be distinguished from 

the plot of MOS (Figure 5.10). Discriminant analysis of toothfish from the 

145 



CHAPTER 5 LIPID COMPOSITION OF PATAGONIAN TOOTHFISH 

OToothfish Group 1 t;. Toothfish Group 2 <> Toothfish Group 3 OToothfish Group 4 

6 

D 
6 N 0 6 c: D 6 0 

"iii D 6 6 c: 
Q) 

66 E 
0 6 6 6 

6 66 

6 

0 

Dimension 1 

Figure 5.11 Scatterplot of multidimensional scaling (MOS) based on the total fatty 

acid composition of Oissostichus eleginoides emphasising the separation of 

toothfish into various size groups (group 1 = mean 346mm/350g, group 2= mean 

363mm/433g, group 3= mean 423mm/760g, group 4= mean 681 mm/3852g) 
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Figure 5.12 Comparison of the relative percent composition of EPA and DHA of 

12 

Dissostichus eleginoides emphasis ing the separation of toothfish into various size 

groups (group 1 = mean 346mm/350g, group 2= mean 363mm/433g, group 3= mean 

423mm/760g, group 4= mean 681 mm/3852g) 
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Table 5.7 Comparison of the results of linear discriminant analysis (automatic 

forward stepping, F to enter=4, F to remove=3.9) of the fatty acid composition 

of Dissostichus eleginoides in relation to various fishing and biological 

parameters {0%~no similarity in fatty acid composition) 

Parameter Normal 
Toothfish Weight 3% 

Toothfish Length 4% 

Toothfish Sex 36% 

Fishing Season 1% 

Fishing Ground 10% 

Time of Day 35% 

Jack-knifed 
4% 

4% 

39% 

0% 

11% 

35% 

Fatty Acid Predicfors 
EPA'\ DPA, 22:1 ro7c, 20:30J6, 
20:1 co9c'\ 18:3ro6, 24:1 co9c'\ 18:0'\ 
22:1 ro11 C, 20:2ro6, 22:4ro6 

DPA, DHA'\ 22:1 ro7c, 22:4ID3, 
20:3ro6, 20:4ro3, 18:1 ro7c4

, 

24:1 co9c4
, 20:2ro6, 19:1 

18:04
, 22:4ro6, 22:1 ro7c, AA 

a15:0, i15:0, i16:0, i17:1, a17:0, 
20:3ro6, 18:4ro3, 14:04

, 18:04
, 22:0, 

24:1 ro11 c, 22:1 ro11 c, 20:1 ro7c, 
20:2ro6, 19:1 

20:1 ro7c, 24:1 co9c4
, 24:1 ro11 c, 

20:4ro3, 18:4ro3, 16:1 co9c, 20:30J6, 
18:3ro6, 18:1, 22:0 

16:1 ro7t, 18:1 co9c4 

Fishing Depth 9% 10% 20:3ro6, i17:0, 24:1 co9c4
, 16:1 ro9c, 

20:1 ro7c, 18:3ro6, 22:1 co9c4
, 

20:1 co9c4
, 18:1, EPA4

, 20:20J6, DPA 
4representing major fatty acids (> 1 % total fatty acid composition) 

Table 5.8. Comparison of the percentage of correctly classified Dissostichus 

eleginoides (separated into various size groups) by linear discriminant 

analysis (normal and jackknifed classification, automatic, forward stepping, F 

to enter=4, F to remove=3.9) relative to total fatty acid composition and DHA 

and EPA only 

T oothfish Size 
Group1 

1 
2 
3 
4 

Total 
Predictors 

All Fatty Acids 
Normal Jackknifed 

0 25 
0 0 
7 2 ' 
1 1 
2 3 

18:3ro6, EPA, DHA, 22:40J6, 
DPA 

EPA and DHA Only 
Normal Jackknifed 

0 25 
0 0 
7 7 
1 2 
2 2 

EPA, DHA 

1group 1=mean 346mm/350g; group 2=mean 363mm/433g; group 3=mean 423mm/760g; 
group 4=mean 681 mm/3852g 
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1998/1999 season further supports the results oft-testing (Table 5.7). 

Significant differences in the fatty acid composition of male and female 

toothfish could not be detected using LOA. A high proportion of male and 

female toothfish shared similar fatty acid compositions (normal classification 

36%; jack-knifed classification 39%). The predictors responsible for this 

classification were predominantly minor components, with only 18:0 

representing a major fatty acid. 

Fatty acid variation relative to fishing season 

The fatty acid composition of toothfish varies considerably with fishing 

season (Table 5.9). Basis of the results of t-testing, significant variations 

were observed in 27 of the 45 component fatty acids (Table 5.6). All the BrFA 

and the majority of both PUFA (with the exception of 18:3ro6, AA, 20:2ro6, C21 

PUFA and 22:5ro6) and MUFA (excepting 14:1 ro5c, 16:1 <o9c, 16:1 ro5c, 17:1, 

18:1 ro5c, 22:1 ro11 c and 22:1 ro9c) accounted for the significant differences 

detected. Of the SFA, however, only 14:0 varied significantly. Combined, 

these 27 fatty acids amounted to 72.9% of the total composition. 

Comparison of the fatty acid composition of toothfish from northern and 

southern fishing grounds using LOA reveals little similarity (Table 5.7), due to 

a large number of fatty acids, of which only 2 (14:0, 18:0) were major 

components. A clear separation based on season was also apparent from 

MOS plotting (Figure 5.10). 

Fatty acid variation relative to fishing ground 

Large variations are apparent in the fatty acid composition of toothfish from 

northern and southern fishing grounds (Table 5.9). T-tests indicate that 34 of 

the 45 fatty acids differed significantly between grounds (Table 5.6). 

Specifically, all PUFA, all SFA with the exception of 20:0 and several MUFA 

(14:1 ro5c, 16:1 ro7c, 17:1, 18:1 ro9c, 18:1 ro5c, 20:1 ro7c, 22:1 co11 c, 22:1 ro9c, 

22:1 ro7c, 24:1 co11 c & 24:1 ro9c) are significantly different in_ toothfish from the 
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Table 5.9 Fatty acid composition (%composition of total fatty acids) of 

Dissostichus eleginoides included in this study from the Macquarie Island. 

region in relation to various fishing parameters (data presented as mean± 

standard deviation) 

Fishing Season Fishing Ground 1 
Time Of Da:t 

2 Fishing Depth 
Fatty Acid 1997/1998 1998/1999 Northern Southern Night Day <1000m >1000m 

(n=83} (n=176} · (n=201} (n=58) (n=132) (n=127) (n=79} (n=180) 
14:0 4.2±0.4 3.2±1.2 3.7±1.0 2.8±1.1 3.4±1.1 3.6±1.1 2.9±1.2 -3.8± 1.0 
15:0 0.4±0.0 0.4 ± 0.3 0.4 ± 0.3 0.3± 0.1 0.4 ± 0.1 0.4±0.3 0.4 ± 0.1 0.4±0.3 
16:0 14.2± 0.9 14.4± 1.3 14.3±1.0 14.5±1.7 14.3 ± 1.3 14.4 ± 1 .1 14.6±1.5 14.2±1.0 
17:0 0.5± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.1 0.5 ±0.1 0.5±0.2 0.4±0.1 0.5 ± 0.1 
18:0 2.8±0.5 3.1±0.6 2.9 ±0.5 3.3±0.6 3.1 ±0.6 2.9±0.5 3.2±0.7 ·2.9 ± o.5 
20:0 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1 ±0.0 0.1±0.1 0.1±0.1 
22:0 0.2 ± 0.1 0.2 ± 0.5 0.2 ±0.3 0.4± 0.7 0.3±0.5 0.2±0.3 0.3±0.6 0.2±0.3 

14:1ro5c 0.2±0.0 0.1 ±0.2 0.2± 0.2 0.1±0.1 0.1±0.1 0.2±0.3 0.2±0.4 0.2 ±0.1 
16:1ro9c 0.4± 0.1 0.4± 0.2 0.4 ± 0.1 0.5±0.2 0.4± 0.1 0.4 ± 0.1 0.5±0.2 0.4 ± 0.1 
16:1ro7c 8.8±0.7 7.8±1.8 8.5±1.1 6.5±2.0 7.7± 1.8 8.5±1.3 6.9±2.2 8.6±0.8 
16:1 ro7t 0.4± 0.2 0.5 ± 0.1 0.5 ± 0.1 0.4± 0.1 0.4 ± 0.1 0.5 ± 0.1 0.4 ± 0.1 0.5 ± 0.1 
16:1ro5c 0.2±0.0 0.2±0.0 0.2±0.0 0.2±0.0 0.2± 0.0 0.2±0.0 0.2±0.0 0.2±0.0 
17:1 0.6± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.5±0.1 0.6 ± 0.1 0.6±0.1 0.6±0.1 0.6 ±0.1 
18:1ro9c 33.8 ± 3.0 32.4 ± 6.2 34.3 ±3.8 27.3 ± 6.8 31.4 ± 6.3 34.2 ± 3.8 28.3 ± 6.6 34.7±3.2 
18:1ro7c 4.9 ± 0.4 5.4 ± 0.6 5.2±0.6 5.3 ±0.6 5.2±0.6 5.3±0.7 5.4±0.6 5.2±0.7 
18:1ro5c 0.6±0.0 0.7 ± 0.4 0.7 ± 0.4 0.6 ± 0.1 0.6 ± 0.1 0.7±0.5 0.6 ± 0.1 0.7 ± 0.4 
18:1 0.3±0.0 0.3 ± 0.1 0.3 ±0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ±0.1 
19:1 0.4± 0.0 0.4 ± 0.0 0.4±0.0 0.4 ± 0.1 0.4 ± 0.1 0.4±0.0 0.4±0.1 0.4±0.0 
20:1ro11c 0.7±0.2 0.7±0.3 0.7 ±0.2 0.7±0.3 0.7±0.3 0.7±0.3 0.7±0.3 0.7±0.2 
20:1ro9c 7.1±1.1 7.5±1.7 7.3±1.2 7.7±2.3 7.5±1.8 7.3±1.2 7..6±2.2 7.3±1.1 
20:1ro7c 0.7±0.2 0.6±0.2 0.6±0.2 0.5±0.2 0.6±0.2 0.6±0.2 0.5±0.2 0.6±0.2 
22:1 ro11c 3.9±3.2 3.2±2.0 3.5±2.7 3.0±1.2 3.5±2.7 3.4±2.1 3.0±1.1 3.6±2.8 
22:1ro9c 2.2±0.5 1.8 ± 0.7 2,0±0.7 1.6 ± 0.6 1.9 ± 0.6 2.0±0.8 1.6 ± 0.5 2.1 ±0.7 
22:1ro7c 0.3 ± 0.1 0.2± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ±0.1 0.2 ± 0.1 0.3 ±0.1 
24:1ro11c 1.0 ± 0.2 0.7 ± 0.3. 0.8 ±0.3 0.7±0.3 0.8±0.3 0.8±0.3 0.7±0.3 0.8±0.3 
24:1ro9c 1.2 ± 0.2 0.9 ± 0.4 1.0 ±0.3 1.1 ± 0.4 1.1 ± 0.4 1.0 ± 0.3 1.1 ± 0.4 1.0 ± 0.3 

18:3ro6 0.1 ±0.0 0.1±0.0 0.1 ±0.0 0.1 ±0.0 0.1±0.0 0.1 ±0.0 0.1 ±0.0 0.1 ±0.0 
18:4ro3 0.9±0.2 0.8 ±0.2 0.9±0.2 0.8±0.2 0.8± 0.2 0.9±0.2 0.8±0.2 0.9±0.2 
18:2ro6 1.2±0.3 1.3 ± 0.2 1.2±0.2 1.3 ± 0.2 1.3 ± 0.2 1.3 ± 0.2 1.4± 0.2 1.2 ± 0.2 
AA 0.6±0.5 0.7± 0.6 0.5 ±0.4 1.1 ± 0.8 0.8 ± 0.7 0.5±0.4 1.0 ± 0.8 0.5 ± 0.4 
EPA 2.2±0.7 3.0± 1.9 2.3±1.0 4.5±2.2 3.2±2.0 2.4±1.1 4.2±2.2 . 2.1±0.7 
20:3ro6 0.1 ±0.0 0.1 ±0.0 0.1 ±0.0 0.1±0.0 0.1 ±0.0 0.1 ±0.0 0.1 ±0.0 0.1 ±0.0 
20:4ro3 0.3 ± 0.1 0.3 ±0.1 0.3 ± 0.1 0.4 ± 0.1 0.3 ± 0.1 0.3 ±0.1 0.4 ± 0.1 0.3 ± 0.1 
20:2ro6 0.2±0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2± 0.1 0.2 ± 0:1 0.2± 0.1 0.2± 0.1 
C21 PUFA 0.1±0.0 0.1±0.0 0.1±0.0 0.2±0.0 0.1 ±0.0 0.1 ±0.0 0.2±0.0 0.1±0.0 
22:5ro6 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 
DHA 3.5± 1.2 5.4±5.9 3.4 ± 2.1 9.9±8.1' 6.0± 6.3 3.5±2.4 8.9±7.4 3.0± 1.2 
22:4ro6 0.0±0.0 0.0± 0.0 0.0 ±0.0 0.1±0.1' 0.0 ± 0.0 0.0±0.0 0.1 ±0.1 0.0±0.0 
DPA 0.3 ± 0.1 0.4 ± 0.2 0.3± 0.1 0.5±0.2 0.4± 0.2 0.3 ± 0.1. 0.5±0.2 0.3 ±0.1 

SFA 22.4 ± 1.2 21.9 ± 2.0 22.1 ±'1.7 21.9 ±2.2 22.1±1.8 22.1±1.8 22.0 ±2.0 22.1±1.8 
BrFA 0.5 ± 0.1 0.9±0.5 0.8 ±0.5 0.9±0.5 0.7±0.4 0.9±0.5 1.0 ±0.5 0.7 ± 0.5 
MUFA 67.6 ± 2.5 64.5 ± 9.0 67.7±4.0 57.8± 11.9 63.8 ± 9.5. 67.3 ± 4.6 59.1 ± 11.1 68.3 ± 2.7 
PUFA 9.5±2.5 12.6±8.5 9.5 ±3.6 19.3 ± 11.2 13.4 ± 9.1 9.8±4.0 17.8 ± 10.5 8.9±2.3 

TOTAL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
AA=arachidonic acid; EPA=eicosapentaenoic acid; DHA=docosahexaenoic acid; 
DPA=docosapentaenoic acid; SFA=saturated fatty acid; BrFA=branched fatty acid 
MUFA=monounsaturated fatty acid; PUFA=polyunsatured fatty acid; c=cis double bond orientation; 
t=trans double bond orientation; 1 refer to main body of text for location of fishing grounds; 20600~ 
1800hrs (day) 1800-0600hrs (night) 

149 



CHAPTER 5 LIPID COMPOSITION OF PATAGONIAN TOOTHFISH 

northern and southern grounds. These 34 fatty acids amounted to 84.5% of 

the total composition. 

Discriminant analysis similarly points to a significant variation in fatty acid 

composition with fishing ground (Table 5.7), an observation also supported 

by MOS analysis (Figure 5.10). Only one major fatty acid (24:1 ro9c) was 

included amongst the predictors of this classification. 

Fatty acid variation relative to time of day 

Toothfish caught at different times of the day exhibited an intermediate 

variation in fatty acid composition, relative to the other sampling parameters 

(Table 5.9). T-tests indicated that 17 of the 45 fatty acids detected differ 

significantly in toothfish caught during the day compared to the night (Table 

5.6). Fatty acids responsible were a number of PUFA (18:3ro6, AA, EPA, 

20:3m6, 20:4ro3, DHA, 22:4ro6, DPA) and MUFA (16:1 ro7c, 16:1 ro7t, 17:1, 

18:1 m9c, 24:1 ro11 c, 24:1 ro9c) and 18:0, equal to 56.3% of the total 

composition. 

LOA also failed to reveal as strong an association, as was observed for other 

parameters, between the time of day at which toothfish were collected and 

fatty acid composition (Table 5.7). A relatively high degree of similarity in fatty 

acid composition was-observed in toothfish collected during the day and night 

(normal classification 35%; jack-knifed classification 35%). Classification was 

due to two fatty acids, of which only 18-:1 ro9c represented major components. 

MOS also failed to clearly separate too,thfish (Figure 5.10). 

Fatty acid variation relative to fishing depth 

A strong relationship existed between fatty acid composition and the depth at 

which toothfish were caught (Tables 5.9). Significant differences were 

detected in 33 of the 45 fatty acids by t-testing (Table 5.6). Specifically the 

majority of PUFA (excepting 18:4ro3), SFA (excluding 20:0), MUFA (aside 
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from 14:1 ro5c, 16:1 ro5c, 18:1 co5c, 18:1, 19:1, 20:1 ro11 c, 20:1 ro9c & 24:1 ro9c) 

and BrFA (excepting i15:0 & a15:0) differed significantly with increasing 

fishing depth. Combined, these 33 fatty acids amounted to 87.?o/o- of total 

composition, including a large number of major components. 

LOA supports this correlation (normal classification 9%; jack-knifed 

classification 10%) due to differences in many MUFA and PUFA and the 

BrFA i17:0 (Table 5.7). Amongst these fatty acids were three major MUFA 

(20:1 ro9c, 22:1 ro9c and 24:1 ro9c). MOS analysis, however, failed to 

distinguish clear differences in fatty acid composition between the two fishing 

depths (Figure 5.10). 

5.4 DISCUSSION 

The toothfish examined in this study show significant variation in total lipid 

content, fatty acid composition and, to a lesser extent, lipid class 

composition. In an attempt to determine which factors may have contributed 

to these variations, the effect of several different sampling parameters on 

lipid composition was assessed. The majority of biological (size, to a lesser 

extent sex) and fishing related parameters (ground, season, time of day, 

depth) examined in this study were associated with considerable variations in 

lipid composition. However, the fishing parameters investigated, on their own, 

are unlikely to have has such a dramatic and direct effect on lipid 

composition. 

Rather, it is the size of toothfish (total length and weight) that exerts the 

greatest influence on lipid composition. Toothfish included in this study were 

chosen with the aim of, as closely as possible, serving as an accurate 

reflection of the Macquarie Island toothfish population. Of particular 

importance is size structure, especially given the possibility that toothfish diet, 

and therefore the intake of dietary lipids, is likely to vary significantly with 

size. However, several of the fishing parameters examined in this study are 

associated with significant differences in toothfish size, particularly season 
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and depth. The disproportionate size distribution of toothfish between the 

different seasons, grounds and fishing depths is the more likely cause of the 

variation observed. When examining differences in lipid composition in 

relation to the various fishing parameters, it is therefore essential to consider 

the size distribution of toothfish included in this study. 

Variation in toothfish size in relation to various fishing parameters 

The overwhelming majority of toothfish specimens analysed in this study are 

substantially smaller than the known maximal size of toothfish .. Few toothfish 

measuring over 1 OOOmm were analysed and the length of the longest fish 

(1354mm) is considerably lower than the known maximum length attained by 

toothfish (-2000mm). The mass of the heaviest fish analysed (-26kg) is 

similarly substantially less than the upper size limit of toothfish (-1 OOkg). 

Notwithstanding, the length and weight of toothfish analysed are consistent 

with the size distribution previously determined for the entire Macquarie 

Island toothfish population during 1998 (Constable et al. 2001 ). Catches in 

this season were dominated by fish of less than 11 OOmm, mostly between 

500-900mm, similar to the overall distribution of toothfish included in this 

study (Figure 5.2). 

Several other results are consistent with the known biology of toothfish. In 

agreement with studies of other toothfish populations, where the occurrence 

of sexual dimorphism is yet to be encountered, sex has no influence on size. 

Similarly, the significant size increase of toothfish with increasing depth in 

this study (Table 5.2 and Figure 5.4) is similar to the findings from several 

other toothfish populations. However a number of the other significant, and to 

some extent unexpected, variations in toothfish size require further 

explanation. Due to sampling and logistical constraints, a relatively small 

number of toothfish were included in this study (n=259), calling for a cautious 

assessment of size distribution. Although the results of this study suggest 

that the size of toothfish differ significantly in relation to season and location, 

such an assessment should be treated with care. For example although 

toothfish are significantly larger in the 1997/1998 season compared to 

1998/1999, this is most likely a consequence of sampling bias. In particular, 
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studies of other toothfish populations (as well as the toothfish sampled in this 

study) have determined that toothfish size increases with fishing depth (e.g. 

Williams and de la Mare 1995; Agnew et al: 1999), meaning thaf variations in 

trawl depth will significantly effect overall size distribution. Examination of 

trawl depths in each fishing season reveals that in the 1997 /1998 season 

over 90% of trawls were greater than 1 OOOm, whilst in 1998/1999 this figure 

dropped to -60%. The substantial bias toward deeper trawl depths in the 

1997/1998 season is therefore reflected in the significantly larger size of 

toothfish in this season relative to those from 1998/1999. Other potential 

sources of bias include differences in the sample sizes for each season 

(1997/1998 n=83; 1998/1999 n=176). The same is true with regards to the 

significant difference in toothfish length between the northern and southern 

fishing grounds. In the northern ground, -90% of all fish were sampled from 

trawl depths in excess of 1 OOOm, whilst in the southern ground all toothfish 

were taken from trawl depths of less than 1 OOOm. Once again, this is 

reflected in the presence of significantly longer and considerably heavier fish 

in the northern ground compared to the southern. Alternatively, if each of the 

fishing grounds is highly localised, as genetic (Reilly et al. 2001) and tag­

release (Williams and Lamb 2001) studies suggest, then regional differences 

could conceivably lead to differences in size distribution. However, the 

maximum depths of each fishing ground are similar (-4000m), suggesting 

that size distribution in relation to depth between grounds would be 

comparable. The uneven size distribution of toothfish relative to several of 

the sampling parameters included in this study must therefore be taken into 

account when considering the reasons behind the observed variations in lipid 

composition. 

Age and sexual maturity 

The age-length relationship formulated by Constable et al. (2001) for 

toothfish at Macquarie Island places the age of toothfish analysed in the 

current study in the range 3 to 22 years. Based upon an age estimate of 12-

15 years for sexual maturity (equivalent to approximately 900mm), -90% · 

(n=229) of the toothfish samples analysed in this study are likely to be 
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sexually immature. This virtually precludes the influence that reproductive 

potential may or may not have on lipid composition. The absence of sexually 

mature gonads in toothfish from the 1998/1999 season supports this 

assumption. Although the gonad state of fish from season 1997-1998 was 

not assessed, it seems likely that all but the larger fish analysed from this 

season (i.e. those longer than 900mm) are sexually immature. 

Total lipid content and lipid class composition 

With the exception of fishing season, all the parameters assessed in this 

study produced a significant variation in total lipid content. The greatest 

influence on this variation appears to be the length and weight of toothfish. 

Total lipid content increased by an average of approximately 10% (range 1-

25% wet weight) from the smallest to the largest sized specimens, indicating 

that proportionally more lipid is being deposited into storage tissue as 

toothfish age. Assuming that size is the primary influence on lipid content, the 

variations in lipid content observed with respect to the other parameters are 

largely a reflection of differences in toothfish size. For instance, the 

significant difference in lipid composition between the two fishing grounds 

can be partly explained by the predominance of larger, lipid-rich toothfish in 
\ 

the northern ground (Tables 5.2 and 5.3) rather than simply a dietary 

influence specifically related to geographical separation. 

Lipid deposits are dominated by TAG (mean=91.6%) although. lipid class 

composition varies mark~dly in relation to many of the sampling parameters 

examined. Once again, many of the significant variations in lipid class · 

observed are likely to be mainly a consequence of toothfish size. TAG 

content varies by approximately 20% (range 33-99%) relative to toothfish 

size and is associated with a concomitant variation in FFA levels (Table 5.4). 

Rather than a direct dietary influence however, the high FFA content of 

smaller toothfish may be due to degradation of these samples post-storage. 
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Role of lipid in buoyancy regulation 

The trend of increasing levels of TAG-rich lipid with increasing size is 

observed in many southern ocean species, including a number of 

nototheniids. For example the lipid content of toothfish is comparable to the 

levels observed in whole specimens of the nototheniid Pleuragramma 

antarcticum (Friedrich and Hagen 1994) and the Myctophidae Electrona 

carlsbergi and Protomyctophum bolini (Reinhardt and Van Vleet 1986). 

Accumulation of lipid in these and other Southern Ocean species is thought 

to be related to the regulation of neutral buoyancy, due mainly to the low 

density of lipid relative to seawater (e.g. Eastman 1988; Friedrich and Hagen 

1994; Phleger 1998). Neutral buoyancy allows fish to maintain a constant 

position in the water column without the n~ed to actively swim, a distinct 

energetic advantage (Phleger 1998). Many fish achieve neutral buoyancy by 

employing a swimbladder, a structure-absent in toothfish (Eastman 1993). 

Toothfish consequently require an alternate means of attaining ~nd 

sustaining neutral buoyancy, specifically an adaptation in one or more body 

systems (Eastman 1988). The deposition of lipid could conceivably fill this 

requirement, particularly because the total lipid content of larger toothfish is _ 

at the higher end of the spectrum for Southern Ocean fish species. The 

increase in lipid content with toothfish size (also observed in several fish 

species analysed in Chapter 2) may reflect the need to compensate for the 

greater density of larger fish, in order to ensure the maintenance of neutral 

buoyancy (Friedrich and Hagen 1994) 

TAG as a store of energy 

Although the large lipid stores of toothfish could easily provide the static lift 

needed for neutral buoyancy, other factors must also be considered. For 

example, many of the fish that are assumed to use lipids as buoyancy 

regulators, including myctophids, favour the depos}tion of WE over TAG (e.g. 

Phleger et al. 1997; Phleger et al. 1999a). This is thought to be because of 

the slower metabolic turnover of WE relative to TAG, along with the fact that 

155 



CHAPTER 5 LIPID COMPOSITION OF PATAGONIAN TOOTHFISH 

WE provides more static lift than the equivalent amount of TAG. However, 

nototheniids, as a rule, do not contain appreciable amounts of WE. In 

contrast, toothfish may store significant quantities of TAG-rich lipid within 

tissue for use as an energy reserve when the availability of food is limited. 

The annual variation in primary production in the Macquarie Island region is, 

however, less dramatic than the episodic seasonal production of polar 

regions (Goldsworthy et al. 2001 a). This seemingly excludes the availability 

of food as a limiting factor in toothfish survival. Significantly though, the 

proportion of toothfish captured in the Macquarie Island region with stomachs 

containing prey items is low. Goldsworthy et al. (2002) found that, based on 

the results of 3 fishing seasons at Macquarie Island (1995/96, 1997/1998, 

1998/1999) on average only 58.6% of the toothfish sampled contained 

stomach contents and, of these, only 1 % of contents were classified as·fresh. 

Although this can be explained in part by the tendency of toothfish to 

regurgitate their stomach contents during capture (Pilling et al. 2001 ), 

foraging events may in fact be episodic, necessitating a reserve of energy in 

the form of lipid. 

Influence of sex on lipid content 

The onset of sexual maturity is also accompanied by a proportionally greater 

increase in the lipid content of one sex compared to the other in several fish 

species, including the nototheniids Bathydraco marri (Friedrich and Hagen 

1994) and Notothenia coriiceps (Kamler et al. 2001 ). This enrichment is 

primarily due to the increased energy demand involved in gonad 

development. The lipid content of male toothfi~h is significantly greater than 

that of females, suggesting that sex influenced the total lipid content of 

toothfish 'included in this study. However, of the 176 toothfish from the 

1998/1999 season for which sex was determined, none were found to be 

sexually mature. The variation observed can also not be explained by size 

, differentiation between the sexes (Table 4.2). The variation observed may 

conceivably be due to a difference in the lipid demand of sexually immature 

males compared to females, related to factors such as relative gonad size or 

energetic requirements. 
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Fatty acid composition 

Fatty acid composition is affected by the same sampling bias observed with 

respect to lipid content and class composition. Apparent differences in fatty 

acid composition due to the fishing parameters examined are predominantly 

a reflection of size-disparity. This is supported by statistical evidence that 

shows that the composition of not only the vast majority of fatty acids differs 

between small and large toothfish, but that these fatty acids in the main are_ 

major components. As expected sex had no significant effect on fatty acid 

composition and, unlike the fishing parameters, this parameter was not 

influenced by size differences between male and females. 

The major trend observed is a decrease in total PUFA and proportional 

increase in total MUFA with increasing toothfish size. The greatest variation 

apparent is the significant decrease in the relative proportions of EPA and 

DHA in larger toothfish, both of which varied by approximately 10%. As 

previously discussed in relation to midwater fish from Macquarie Island 

(qhapter 2), variations in essential PUFA could be related to a ~hange in diet 

as toothfish mature. The likelihood of this is discussed further in Chapter 7. 

However,_ factors other than those related to diet cannot be discounted. 

Decreases in PUFA can partially be explained by the increase in total lipid 

content, and accompanying proportional drop in PL levels (Figure 5.8), in 

these larger specimens. Marine fish tend to selectively deposit PUFA such as 

DHA and EPA into the PL fraction in order to maintairy membrane fluidity 
·-

(Dun~tan et al. 1999; Cahu et aL 2000). The increased deposition of TAG~ 

rich lipid in aging toothfish leads to a concomitant decrease in 
1
PL and with it 

the relative levels of PUFA. A similar size-related shift in fatty acid 

composition has been reported for other wild fish populations (e.g. Budge et 

al. 2002; Iverson et al. 2002), including those of Stomias graci/is, Bathylagus 

antarcticus and Borostomias antarcticus examined in this study from 

Macquarie Island (Chapter 2). 

Comparison with the results of previous studies is difficult given that the fatty 

acid composition of toothfish has only rarely been reported. Nichols et al. 

(1994a) determined the fatty acid composition of toothfish from Heard Island. 

157 



CHAPTER 5 LIPID COMPOSITION OF PATAGONIAN TOOTHFISH 

Although the TL and TW of this specimen was not reported, EPA (8.4%) and 

DHA (20.3%) levels are at the higher end of the results range determined in 

the current study (corresponding to a specimen with approximately 450g TW - · 

and 400mm TL), suggesting that similarly high levels of PUFA exist in 

toothfish populations other than Macquarie Island. Brown et al. (1999) 

determined the fatty acid composition of a single toothfish specimen (1189.0g 

TW) as part of a signature lipid study of Antarctic fur seals (Arctocephalus 

gaze/la) and Southern elephant seals (Mirounga leonina). The level of DHA 

in this specimen (5.0%) is roughly equivalent to that of similar sized toothfish 

in the current study (approximately 3.2 ± 1.4%). However, the· relative 

proportion of EPA (9.8%) in the specimen examined by Brown et al. (1999) 

exceeds the levels of equivalent sized toothfish in the current study (2.3 ± 

0. 7%) and is more in line with EPA levels observed in specimens of less than 

1 OOOg TW (5.1 ± 2.4%). Whether or not this difference in fatty acid 

composition could be a consequence of regional variations in toothfish diet is 

difficult to assess given the limited sample size of Brown et al. (1999). 

5.5 CONCLUSIONS 

The lipid composition of Patagonian toothfish from the Macquarie Island 

region was examined in relation to a number of fishing and biological 

parameters. Although total lipid content, lipid class composition and fatty acid 

composition appear to vary significantly in relation to many of these 

parameters,..the majority of the variation observed is a consequence a · 

disproportionate distribution of toothfish sizes within these parameters. 

Determining the potential impact of the various fishing parameters, 

particularly fishing season, ground and depth, is therefore difficult with the 

current data set. The overriding influence of si?e is evidenced by the fact that 

variation in all aspects of lipid composition is greatest in relation to variations 

in toothfish TL and TW. 
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The accumulation of TAG-rich lipid with increasing size is a common feature 

of marine fish and is most likely related to maintaining neutral buoyancy in 

swimbladder-less species such as toothfish: The dramatic increase in MUFA 

and decrease in PUFA in larger fish may point to a possible dietary influence. 

This is particularly true with regards to the large variations in the levels of 

essential PUFA such as DHA (up to 30%) and EPA (up to10%) that must 

have originated from mainly dietary sources. 
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CHAPTER 6 

LIPID COMPOSITION OF ANTARCTIC TOOTHFISH: 

COMPARISON WITH PATAGONIAN TOOTHFISH AND 

POTENTIAL PREY 

6.1 INTRODUCTION 

Fish of the family Nototheniidae dominate the fish fauna of the Antarctic, 

representing approximately 100 predominately endemic species. The largest 

of this group is the Antarctic toothfish (Dissostichus mawsom). The immense 

size of D. mawsoni, capable of reaching lengths of up to 175cm in length and 

1 OOkg in weight (Eastman and De Vries 2000; La Mesa and Vacchi 2001) is 

comparable to that of it's sub-Antarctic congener, Dissostichus eleginoides 

(Patagonian toothfish), but is unusual amongst the majority of Antarctic and 

sub-Antarctic fish. 

Populations of Antarctic and Patagonian toothfish are sharply divided along 

the boundary of the Antarctic Convergence, though a small degree of overlap 

has resulted in misidentification in some regions (Vukhov 1972). Detailed 

catch data on D. mawsoni is lacking, however distribution appears to be 

circumpolar. Large populations are thought to aggregate in polar waters 

close to the Antarctic continent south of 60°. Populations in the Weddell Sea 

and particularly McMurdo Sound have provided much of the information 

currently available for this species. Biomass appears to vary greatly between 

summer and winter. Ekau (1990) reported an almost complete absence of D. 

mawsoni in the southern Weddell Sea during winter compared to the 

relatively high numbers observed during summer. Within the water column, 

D. mawsoni does not appear to reach the great depths inhabited by 
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Patagonian toothfish. In summer, D. mawsoni is found at depths of between 

420-670m in the Weddell Sea (Ekau 1990). 

Due to their relatively large size, predation on D. mawsoni is thought to be 

restricted mainly to marine mammals. Weddell seals consume D: mawsoni in . 

McMurdo Sound (Dearborn 1965; Eastman 1988; Burns et al. 1998Y and, 

more occasionally, in the Weddell Sea (Plotz 1986). The extent of predation 

by Weddel seals varies greatly, although most studies agree that the 

nototheniid Pleuragramma antarcticum far outweighs D. mawsoni in dietary 

iniportance (e.g. Testa et al. 1985). Other mammalian predators include Killer 

whales in McMurdo Sound (Eastman 1985; Eastman 1988) and Sperm 

whales closer to the Antarctic Convergence (Vukhov 1972). 

Classified as a mid-water predator, D. mawsoni is believed to rely on a low 

diversity of prey species including a range of fish, cephalopods and 

epibenthic species such as mysid and caridean shrimps (Vukhov 1972; 

Eastman 1988). P. antarcticum is the main species consumed by weight in 

McMurdo Sound (Eastman 1985). In contrast to most other Antarctic 

nototheniids, reliance upon krill (Euphausia superba) by adult fish is thought 

to be low (Eastman 1985). 

Like D. eleginoides, determining the lipid composition of D. mawsoni may 

potentially expand current understanding of the dietary interactions of this 

species in the Southern Ocean. The growing threat posed by commercial 

fishing (e.g. Horn 2002; Parker et al. 2002; Willock 2002) adds to the need 

for investigation into all aspects of D. mawsoni biology in order to minimise 

negative impacts on the Antarctic ecosystem. The lipid composition of D. 

mawsoni has been investigated almost entirely with respect to the role these 

compounds play in functions such as the maintenance of buoyancy (Clarke 

et al. 1984; Eastman 1985; Eastman 1988). Research to date has focussed 

primarily on proximate composition (lipid class and content) and its 

distribution thoughout the body rather than the identification of fatty acids. As 

a consequence, the fatty acid composition of D. mawsoni has been 

determined only rarely (e.g. Ohno et al. 1976; Nachman 1985). 
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The purpose of this study is therefore to determine the lipid composition of 

Dissostichus mawsoni from waters adjacent- to Casey Station, Antarctica and 

assess the applicability of these findings to dietary studies. This will firstly 

involve comparison with the lipid composition of potential prey species from 

the high-Antarctic. Secondly, the effect of regional differences in diet will be 

assessed using a comparison of the lipid composition of the cogeneric 

species Dissostichus eleginoides from the Macquarie Island region. 

6.2 MATERIALS AND METHODS 

Sample Collection 

Dissostichus mawsonisamples (n=12) were collected as part of scientific 

activities of the Australian Antarctic Division (AAD, Kingston, Tasmania, 

Australia). Fishing took place over the Southern Hemisphere summer of 

1998-99 in waters adjacent to Casey Station (66°1 ?'S; 110°32'E), a research 

base located on the Antarctic continent and maintained by the AAD. 

After collection, whole specimens·were frozen at -20°C and analysed within 3 

months where possible. Approximately 1-2g of white muscle from aUhe base 

of the caudal fin was later removed for lipid analysis. Care was taken to avoid 

the thick subcutaneous oil layer. 

Lipid extraction and class determination 

Total lipids were extracted using the one-phase Bligh and Dyer method 

(1959). After phase separation, total lipids were recovered from the lower 

chloroform phase and concentrated in vacuo (rotary evaporator, 40°C). 

Samples were stored at -20°c prior to analysis. Lipid class profiles were 

determined by TLC-FID using an latroscan MkV TH1 O analyser (Volkman 

and Nichols 1991). Wax ester (WE), triacylglycerol (TAG), free fatty acid 

(FFA), sterol (ST) and polar lipid (PL) components were resolved in a polar 

solvent system consisting of hexane-diethyl ether-acetic acid (60:17:0.2 v/v). 

The presence or absence of WE and diacy.lglyceryl ethers (DAGE) was 
? 
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confirmed by the use of a non-polar solvent system (hexane-diethyl ether; 

96:4 v/v). Peak areas were quantified using commercially available 

chromatography software (DAPA Scientific Software, Kalamunda, Western 

Australia). 

Fatty acid determination 

Fatty acid methyl esters (FAME) were prepared by addition of methanol 

(MeOH), concentrated hydrochloric acid (HCI) and chloroform (CHCls) (3ml 

10:1 :1, v/v/v, 80°C/2hr) to an aliquot of the total lipid. After cooling and the 

addition of 1 ml of water, resulting FAME were extracted (3x) with 4:1 v/v 

hexane/CHCb. Chloroform containing C19 FAME internal standard was then 

added. FAME fractions were treated with N,0-bis-(trimethylsilyl) 

trifluoroacetamide (BSTFA, 50µL, 60°C, 2hr) to convert any sterols present to 

their corresponding trimethylsilyl (TMS) ethers. 

Gas chromatographic (GC) analysis was performed on a Hewlett Packard 

5890A GC equipped with a flame ionisation detector, fitted with a cross­

linked methyl silicone (HP5) fused silica capillary column (50 m length x 0.32 

µm internal diameter), employing hydrogen as the carrier gas. Samples were 

injected (HP7673A auto-injector) at 50°C in the splitless mode, with a 2-min. 

venting time (Nichols et al. 1993). The injector and detector were maintained 

at 290°C and 310°C respectively. After 1 min. the oven was raised to 150°C 

at 30°C min-1
, then to 250°C at 2°C min-1 and finally to 300°C at 5°C min-1 

(Nichols et al. 1993). Peak areas were quantified using Millennium 32 

Chromatography Manager (Waters Corporation, Milford, Massachusetts, 

USA). Identification of individual fatty acids and sterols was based upon a 

comparison of relative retention times with those obtained from previous 

studies in addition to authentic and laboratory standards. GC-mass 

spectrometry (Finnigan Tliermoquest GCQ fitted with an on-column injector 

and configured as above) was used for confirmation of compon~nts from 

representative samples. 
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Statistical analyses 

Statistical analyses were performed using SYSTAT 9 (SYSTAT, Inc, 

Evanston, Illinois, USA). Variations in total lipid content, lipid class and 

individual fatty acid compositions between Antarctic and Patagonian toothfish 

were compared using two-sample t-tests (95% confidence interval). 

Multivariate statistics were also-used to analyse fatty acid composition. Non­

metric multi-dimensional scaling (MOS; Kruskall loss function) was employed 

to compare the fatty acid composition of Antarctic toothfish in two dimensions 

to assess whether groupings existed within the data set. MOS was also used 

as a comparative tool for examining differences in fatty acid composition 

between Antarctic and Patagonian toothfish. 

Linear discriminant analysis (LOA; tolerance=0.01, complete estimation, 

classification and jackknifed classification matrix, Wilk's lambda) was used to 

determine if Antarctic and Patagonian toothfish could be differentiated on the 

basis of fatty acid profiles alone. LOA also allowed for the identification of 

those variables (fatty acids and lipid classes) most responsible for the 

differences amongst groups. Automatic forward stepping (F to enter=4, F to 

remove=3.9) was used when analysing fatty acid composition. The jack­

knifed classification matrix is included as a means of cross-validating the 

normal classification matrix. Considerable difference in the percentage of 

correct class!fications between these matrices would suggest potential 

difficulties in correctly classifying the data. 

6.3 RESULTS 

Size of Antarctic toothfish 

The total weight (TW, wet weight) of Antarctic toothfish analysed. ranged 

from 88.2 to 376.1g. Total length (TL, measured from the tip of snout to the 

tip of the caudal fin) ranged from 240 to 370mm. A linear relationship 

between TL and TW was observed (Figure 6.1 ). 
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Figure 6.1 Relationship between total length (TL) and total weight (TW) of 

Dissostichus mawsoni samples from waters adjacent to Casey Station, 

Antarctica 

Lipid content and class composition 

Total lipid content was low across all D. mawsoni samples analysed, (mean 

1.0±0.2%; range 0.7-1.3%) and appears to be independent of both TL and 

TW (Table 6.1). 

The lipid class composition of all specimens (Table 6.1) was deminated by 
c • 

triacylglycerol (TAG, mean 77.8±5.1%). The relative level of TAG ranged 

380 

from 66.2 to 84.6%. Polar lipids (PL) contributed from 6.5-27.0% of the 

overall composition (mean 13.1 ±5.9%), whilst sterols (ST, predominantly free 

cholesterol based upon GC analysis) were present in smaller amounts (mean 

6. 7±1.1 %). Wax ester (WE) was also present as a minor component (mean 

2.4±1.2%; range 1.1-4.7%). FFA was not detected in any of the specimens 

analysed. No relationship was observed between either TL or TW and the 

content of any lipid class. 
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Table 6.1 Size (wet weight),- total lipid content (percent composition, wet 

weight) and lipid class composition (percentage of total lipid content) of 

Dissostichus mawsoni from waters adjacent to Casey Station, Antarctica 

Specimen Size Lipid content and class 
number TL TW % Lipid WE TAG ST PL 

1 310.0 228.2 1.3 n/a n/a n/a n/a 
2 310.0 236.5 0.7 1.8 75.6 8.9 13.7 
3 290.0 184.8 1.0 2.0 79.5 7.8 10.7 
4 220.0 79.9 0.9 1.6 83.5 6.8 8.1 
5 305.0 179.3 '0.9 2.9 84.6 6.1 6.5 
6 295.0 185.9 0:8 1.8 74.9 8.0 15.3 
7 340.0 345.7 1.0 1.4 78.2 6.3 14.1 
8 . 240.0 88.2 1.0 4.2 79.4 6.1 10.3 
9 240.0 112.8 1.0 1.8 66.2 5.0 27.0 
10 280.0 189.8 1.3 4.7 79.0 7.2 9.1 
11 310.0 201.4 0.9 2.8 81.4 6.2 9.6 
12 370.0 376.1 1.0 1.1 73.6 5.8 19.6 

Mean±SD 292.5±42.9 200.7±90.4 1.0±0.2 2.4±1.2 77.8±5.1 6.7±1.1 13.1±5.9 
WE=wax ester; TAG=triacylglycerol; ST =sterol (predominantly cholesterol, may also contain trace 
amounts of diacylglycerol); PL=polar lipid; SD=standard deviation; n/a=not analysed; TL=total length 
(mm); TW=total weight (g) 

Fatty acid composition 

Fatty acid composition was dominated by polyunsaturated fatty acids (PUFA, 

mean 56.5 ± 5.5%; range 45.9-63.0%), the proportion of which varied 

considerably between specimens (Table 6.2). The separation of specimens 

by multidimensional scaling (MOS) supports this observation and is 

principally due to differences in the composition and relative levels of PUFA 

(Figure 6.2). The PUFA 22:6ro3 (DHA, docosahexaenoic acid) was both the 

most prevalent fatty acid (mean 32.7 ± 5.0%) and accounted for the majority 

of variation between specimens (range 26.0-39.1%). EPA.(eicosapentaenoic 

acid, 20:5co3) also represented an important PUFA (mean 17.9 ± 1.9%), 

although levels varied considerably less than for DHA (range 14.7-18.9%). 

Monounsaturated fatty acids (MUFA, mean 21.7 ± 5.8%; range 16.4-34.0%) 

and saturated fatty acids (SFA, mean 21.6 ± 3.0; range 18.6-23.9%) 

contributed approximately equal portions to the total fatty acid composition. 

The MUFA 18:1co9c (mean 8.8 ± 2.6; range 5.5-12.7%), 18:1co7c (mean 5.3 ± 
0.5%; range 4.8-6.4%) and 16:1 co7c (mean 3.1 ± 1.3%; range 1.8-5.2%) 
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Table 6.2 Fatty acid composition (%composition of total fatty acids) of 

Dissostichus mawsoni specimens included in this study from waters adjacent 

to Casey Station, Antarctica 

Fatty 

acid 

14:0 
15:0 
16:0 
17:0 
18:0 
20:0 
22:0 

16:1ro9c 
16:1ro7c 
16:1 ro7t 
16:1ro5c 
17:1 
18:1ro9c 
18:1ro7c 

Dissostichus mawsoni specimen 

2 3 4 5 6 7 8 9 10 

1.1 0.7 0.6 0.2 1.1 0.5 1.4 0.6 1.6 1.0 
0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 
13.1 16.3 16.7 16.5 14.7 15.6 13.9 18.6 23.6 15.3 
0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 
3.2 3.8 3.8 3.4 3.3 3.9 2.9 4.0 3.8 3.3 
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

11 12 

0.8 1.2 
0.2 0.1 
18.7 16.1 
0.2 0.2 
4.0 3.9 
0.0 0.0 
0.0 0.0 

Mean 

±sd 

0.9 ± 0.4 
0.2 ±0.0 
16.6 ±2.8 
0.2 ± 0.1 
3.6 ±0.4 
0.0 ± 0.1 
0.0 ± 0.1 

0.2 0.1 0.1 0.1 
3.4 3.5 1.9 1.8 
0.4 0.2 0.2 0.2 
0.3 0.2 0.2 0.2 
0.3 0.0 0.0 0.0 
12.7 7.3 8.1 5.5 
5.0 4.8 4.5 5.8 

0.2 0.2 0.2 0.1 
3.1 1.9 4.2 1.9 
0.3 0.2 0.3 0.2 
0.3 0.3 0.2 0.3 
0.0 0.0 0.0 0.0 
7.9 6.1 12.4 6.5 
5.0 5.2 5.0 5.3 

0.1 0.2 0.2 0.4 0.2 ± 0.1 
2.4 5.2 2.5 5.2 3.1 ± 1.3 
0.2 0.4 0.3 0.2 0.3 ± 0.1 
0.3 0.3 0.2 0.2 0.3 ± 0.0 
0.0 0.0 0.0 0.0 0.0 ± 0.1 
7.8 11.2 7.4 12.4 8.8 ± 2.6 
5.9 6.4 5.1 5.2 5.3 ± 0.5 

18:1ro5c 0.4 0.1 0.1 0.2 
0.0 0.0 0.3 
0.2 0.3 0.2 
0.1 0.1 0.1 
1.0 1.4 0.6 
0.1 0.1 0.3 
0.3 0.1 0.0 
0.1 0.2 0.1 
0.0 0.1 0.2 
0.9 0.9 0.7 
0.1 0.0 0.1 

0.2 0.2 
0.2 0.2 
0.2 0.2 
0.1 0.1 
0.9 0.7 
0.2 0.2 
0.1 0.0 
0.2 0.2 
0.1 0.1 
0.9 0.9 
0.0 0.0 

0.2 
0.2 
0.3 
0.2 
1.9 
0.2 
0.2 
0.3 
0.1 
0.9 
0.0 

0.2 0.2 0.3 0.2 0.2 
0.2 0.2 0.4 0.2 0.3 
0.2 0.1 0.3 0.2 0.3 
0.1 0.1 0.2 0.1 0.2 
0.7 0.9 1.2 0.7 1.5 
0.2 0.1 0.7 0.2 0.2 
0.1 0.1 0.1 0.1 0.2 
0.2 0.3 0.2 0.2 0.4 
0.1 0.1 0.0 0.1 0.1 
0.4 0.4 0.4 0.4 0.6 
0.0 0.0 0.1 0.0 0.0 

0.2 ±0.1 
0.2 ± 0.1 
0.2 ± 0.1 
0.1±0.1 
1.5±1.7 
0.3 ±0.2 
0.2±0.5 
0.3 ±0.2 
0.1 ±0.0 
0.6 ±0.3 
0.1 ±0.2 

18:1 0.3 
19:1 0.3 
20:1 ro11 c 0.3 
20:1ro9c 6.6 
20:1ro7c 0.4 
22:1ro11c 1.7 
22:1-())9C 0.8 
22:1ro7c 0.2 
24:1 ro11 c 0.0 
24:1ro9c 0.8 

18:3ro6 0.1 1.0 1.1 0.5 1.2 0.7 1.7 0.1 0.1 0.1 0.1 0.2 0.6±0.6 
18:4ro3 0.9 0.1 0.1 0.1 0.2 0.1 0.2 0.7 1.2 1.4 0.9 1.9 0.7±0.6 
18:2ro6 1.1 1.2 0.9 0.6 0.8 0.7 1.0 0.8 1.5 0.9 0.8 1.5 1.0±0.3 
AA 1.5 2.2 2.2 2.3 2.1 3.2 1.7 2.0 1.2 1.9 2.2 2.4 2.1 ± 0.5 
EPA 14.7 22.5 17.9 18.9 17.3 19.7 16.2 17.6 17.7 18.7 16.8 17.2 17.9±1.9 
20:3ro6 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 ± 0.0 
20:4ro3 0.2 0.3 0.3 0.2 0.2 0.2 0.4 0.2 0.2 0.4 0.2 0.4 0.3 ± 0.1 
20:2ro6 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.0 o.o. ± 0.1 
C21 PUFA 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 ± 0.2 
22:5ro6 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 ± 0.1 
DHA 26.0 30.5 37.5 39.1 37.4 36.7 31.7 37.2 28.2 27.1 34.9 26.1 32.7±5.0 
22:4ro6 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 ± 0.0 
DPA 1.0 0.9 0.1 1.0 0.9 1.3 0.8 0.9 0.7 1.1 1.0 0.9 0.9±0.3 

SFA 
BrFA 
MUFA 
PUFA 

TOTAL 

18.6 21.2 21.4 20.5 19.5 20.3 18.6 23.6 29.5 20.1 23.9 21.5 21.6 ± 3.0 
1.5 0.1 0.0 0.1 0.2 0.1 0.4 0.1 0.2 0.4 0.6 0.1 0.3 ± 0.4 

34.0 18.9 18.3 16.4 20.0 16.7 26.9 16.7 19.3 27.6 18.2 27.6 21.7±5.8 
45.9 59.7 60.2 63.0 60.3 63.0 54.0 59.6 51.0 51.9 57.3 50.7 56.4 ± 5.5 

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 ± 0.0 

AA=arachidonic acid (20:4m6); EPA=eicosapentaenoic acid (20:5ro3); 
DHA=docosahexaenoic acid (22:6ro3); DPA=docosapentaenoic acid (22:5ro3); 
SFA=saturated fatty acid; BrFA=branched fatty acid MUFA=monounsaturated fatty acid; 
PUFA=polyunsatured fatty acid; c=cis double bond orientation; t=trans double bond 
orientation; sd=standard deviation 
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represented major fatty acids. SFA content was dominated by 16:0 (mean 

16.6 ± 2.8%; range 13.1-23.6%) and 18:0 (mean 3.6 ± 0.4%;range 2.9-4.0%). 

Branched fatty acid· (BrFA) was a minor contributor to the total fatty acid 

composition of all specimens (~1.5%). 

The limited sample size did not allow for the exploration of fatty acid variation 

with size, however general trends in the content of predominant fatty acids 

could be ascertained. Levels of the MUFA 16:1 ro7c and 18:1 ro9c showed a 

general increase with increasing size (TL and TW), DHA, 18:1 m7c and 16:0 

. tended to decrease, whilst EPA and 18:0 remained relatively constant. 
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Figure 6~2 Scatterplot of multidimensional scaling (MOS) based upon the 

complete fatty acid composition of Dissostichus mawsoni specimens from 

waters adjacent to Casey Station, Antarctica (numbers refer to individual 

specimens listed in Table 6.1) 
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6.4 DISCUSSION 

The collection of cogeneric species such as Dissostichus eleginoides and 

Dissostichus mawsoni provides a unique opportunity to compare the effect of 

dietary differences on lipid composition. Although distribution of both toothfish 

species overlaps in certain regions (e.g. northern Ross Sea, Horn 2002), for 

the most part they are geographically isolated. This is likely to be the case for 

the toothfish populations compared in this study, with specimens collected 

from Macquarie Island (D. eleginoides) and Casey Station (D. mawsom). A 

direct result of this separation of sample collection areas is that the diet of 

each toothfish species differs greatly, reflecting local differences in available 

prey. Added to this is the well-acknowledged influence of the high-Antarctic 

on fatty acid composition, including the elevated production of omega-3 

polyunsaturated fatty acids (PUFA) by primary producers that are 

subsequently transferred up the foodweb to higher predators (e.g. Dunstan et 

al. 1999). The influence of regional differences in diet would therefore be 

anticipated to produce large variations in the fatty acid composition (derived 

from the diet) of Antarctic and Patagonian toothfish. 

Morphologically, Patagonian and Antarctic toothfish are almost identical. 

Principal features include a prominent mouth, large eyes and enormous 

frame. Both species lack a swimbladders, in common with all nototheniids 

(e.g. Clarke et al. 1984). Physiological differences are, by comparison, 

significant. The extreme cold of high-Antarctic waters in particular has 

necessitated the development of many physiological adaptations in D. 

mawsoni. Most notable is the presence of antifreeze glycopeptides in the 

blood (AFGP) (DeVries et al. 1974; Eastman 1993; Metcalf et al. 1999). The 

effect of these adaptations on lipid composition, through either selective 

metabolism or modification of dietary fatty acids is unknown. 

Total lipid content and lipid class composition 

Large lipid stores are a common feature of many high-Antarctic fish, including 

Antarctic toothfish. Accumulation of lipid is linked to biological purposes as 

diverse as the development of gonads (e.g. Donnelly et al. 1990; Friedrich. 
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and Hagen 1994; Montgomery et al. 1999; Kamler et al. 2001 ), the storage of 

energy (e.g. Crockett and Sidell 1992; Lund and Sidell 1992; Bakes et al. 

1995; Hagen et al. 2000)', the transfer of oxygen to cells (e.g. Sidell 2001) 

and the maintenance of buoyancy (e.g. Phleger 1991; Phleger 1998). 

A number of previous studies have explored the abundant and extensive 

distribution of lipid within various tissues of D. mawsoni. The complex system 

of subcutaneous and intra-muscular lipid stores found in D. mawsoni is 

thought to principally assist in the maintenance of neutral buoyancy (Clarke 

et al. 1984; Eastman 1985_; Eastman 1988). Clarke et al. (198~) reported high 

total lipid contents (wet weight) in tissues including the skin (74%), liver 

(21 %), red muscle (16-33%) and white muscle (7-23%). The large quantity of 

predominantly triacylglycerol (TAG) rich lipid contained within these stores 

provides the static lift that helps maintain buoyancy. 

The lipid content of white muscle in the present study (Table 6.1, average 

1.0±0.2%) is far exceeded by the levels observed by Clarke et al. (1984). The 

large discrepancy may be a consequence of the increasing lipid content of 

white muscle from the tail to the centre of buoyancy observed by Clarke et al 

(1984). The sub-samples of white muscle used in.the current study were 
' 

taken from the base of the caudal fin, a body section in which Clarke et al. 

(1984) reported a rapid decline in total lipid content toward the tail (also 

observ'?d for Patagonian toothfish, refer to Chapter 4). Therefqre, the total 
. ' 

lipid content determined in this study does not necessarily reflect the true 

content of whole specimens. Secondly, the specimens analysed in the 

present study are of D. mawsoni of less than· 40cm TL, considerably smaller 

than the maximum size attained by this species (170cm TL, La Mesa and 

Vacchi 2001.). lncreasing'TL is associated with increasing total lipid content in 

a number of Antarctic fish (e.g. Eastman 1988; Donnelly et al. 1990; Friedrich 

and Hagen 1994). The TL of the D. mawsoni specimens analysed by Clarke 

et al. (1984) were unfortunately not specified, making it impossible to 

determine whether size differences contributed to the lower total lipid levels 

seen in the present study. 
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The low amounts of total lipid present in the D. mawsoni specimens analysed 

in the present study would appear to largely discount the primary use of this 

store for either energy or buoyancy. The influence-of gonad development can - -

also be discounted as the specimens analysed in the current study are well 

below the age of sexual maturity (8 yrs, TL 90-1 OOcm) reported by La Mesa 

and Vacchi (2001) and Eastman and De Vries (2000). 

The domination of TAG (average 77.8±5.1 %) is in keeping with most other 

Antarctic nototheniids, as well as previous studies of D. mawsoni (Ohno et al. 

1976; Clarke et al. 1984; Nachman 1985). The presence of wax ester (WE), 

although a minor component (average 2.4±1.2%), is more unusual in 

nototheniids. Nachman (1985) reported low levels of WE (0.6%) in the 

specimen of D. mawsoni collected from McMurdo Sound, whilst the 

specimen of Ohno et al. (1976) was free of WE . The role of WE in the 

maintenance of buoyancy for several Southern Ocean fish is well described 

(see Phleger 1991; Phleger 1998). The small amounts of WE present in the 

specimens examined in this study could reflect a mechanism by which young. 

fish utilise small amounts of WE to assist in the provision of buoyancy until 

total lipid content reaches a level that allows for the use of TAG-rich stores 

(e.g. the onset pf sexual maturity). However, the presence of WE may once 

again reflect the large variation in lipid content (and possibly lipid class 

composition) within white muscle and the possible differences in lipid 

composition associated with this. 

Comparison of total lipid content and lipid class ·composition with · 

Patagonian toothfish of equivalent size 

The total lipid content of equivalent sized D. e/eginoides {TL <400mm, n=27, 

average 2. 7±3.2% wet weight) is higher than for D. mawsoni, although much 

more variable (range 0.8-15.9%). Comparison of lipid class compositions of 

the two toothfish species is complicated by the fact that D. eleginoides of the 

same size are characterised by high free fatty acid levels (FFA, average 

30.4±15.3%), a lipid class absent in D. mawsoni (Figure 6.3). The high FFA 

levels present in those smaller D. e/eginoides specimens used in this 
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D. eleginoides D. mawsoni 

Figure 6.3 Comparison of the lipid class composition (percentage of total 

lipid content) of Dissostichus eleginoides (n=27) from the Macquarie Island 

region and Dissostichus mawsoni (n=12) from waters adjacent to Casey 

Station, Antarctica 

comparison suggest a degree of deterioration either pre- or post-storage. 

Thus although TAG levels are significantly lower in D. eleginoides 

(56.4±16.7% versus 77.8±5.1 %; t-test, 95% confidence interval , p<0.001 ), 

this is most likely due to sample degradation. Levels of sterol (ST) also differ 

significantly between both toothfish species {t-test, p<0.05) , whilst the 

content of polar lipid (PL) is comparable {t-test, p>0.05). As previously 

mentioned an almost total reliance on TAG lipid storage is a characteristic 

common to all nototheniid species analysed so far, a feature that is also 

observed in both Antarctic and Patagonian toothfish . 

Fatty acid composition: comparison with previous studies 

PUFA dominated the fatty acid composition of D. mawsoni (total PUFA 

56.4±5.5%) examined in this study. This finding contrasts with the results of 

Ohno et al. (1976) in which monounsaturated fatty acids (MUFA, 66.9%; 

PUFA 9.3%) were the major components of skeletal muscle. A study by 

Nachman (1985) on the fatty acid composition of a whole specimen of D. 
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mawsoni similarly reported high levels of MUFA (60.7%) and low levels of 

PUFA (9.1 %). Particularly noticeable are elevated levels of DHA and EPA in 

the current study relative to those reported by Ohno et al. (1976) or Nachman 

(1985). 

Neither the size of the specimen analysed by Ohno et al. (1976) or the 

location from which it was collected are available, making a comparison 

difficult. Nachman (1985) examined a large specimen (150cm TL) , far in 

excess of the largest specimen examined in this study (370mm), caught in 

close proximity to McMurdo Station. The decrease in PUFA with increasing 

size observed in a number of Southern Ocean fish (e.g. Chapter 2) appears 

to also apply to D. mawsoni, although such an observation is qualified by the 

low sample size available for comparison. The influence that different body 

sections and fish age may have on fatty acid composition is unknown with 

regards to D. mawsoni, but has been explored for other Southern Ocean fish. 

For example, fatty acid composition varies between different body sections, 

including the head, tail and skin, of Patagonian toothfish (Chapter 4) as well 

as with age (Chapter 5). Similarly, Lund and Sidell (1992) observed 

variations in the constituent fatty acids of serum, oxidative muscle and 

adipose tissue in nototheniids Trematomus newnesi and Notothenia 

gibberifrons. The differences in the fatty acid composition between the 

current study and Ohno et al. (1976) may therefore be reflecting differences 

in the age of fish , the type of tissue examined and the locations from which 

specimens were collected. 

The high levels (~10%) of both DHA and EPA in the white muscle of D. 

mawsoni are characteristic of numerous Antarctic fish . These include the 

channichthyid Champsocephalus gunnari (Nichols et al. 1994a), and the 

nototheniids Dolloidraco longedorsalis, Trematomus lepidorhinus (Hagen et 

al. 2000), T. bernacchii, T. newnesi, T. hansoni, T. pennellii (Phleger et al. 

1999b), Notothenia gibberifrons (Lund and Sidell 1992), N. coriiceps and 

Lepidonotothen nudifrons (Kamler et al. 2001 ). The high levels of DHA and 

EPA present in these species has largely originated from dietary sources, 

due to the limited capacity of fish to synthesise long chain omega-3 PUFA 
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(e.g. Sargent et al. 1993; Ruyter et al. 2000). For instance Lund and Sidell 

(1992) related the domination of various fatty acids, including DHA and EPA, 

in the composition of the-nototheniids ·N. gibberifrons and T. newnesito 

similarly high levels of these fatty acids in the diet provided by various 

euphausiids, amphipods and polychaetes. The elevated DHA and EPA levels 

of D. mawsoni observed in this study suggests a similarly significant dietary 

source of these components. 

Fatty acid composition: comparison with potential prey 

The diet of D. mawsoni in the region of Casey Station is currently unknown, 

but is better understood in regions such as McMurdo Sound (De Vries et al.· 

197 4; Eastman 1985; Eastman 1993). Although the diet of D. mawsoniis 

comprised of a relatively low diversity of prey (Eastman 1993), dietary 

composition is likely to be heavily dependent upon location and seasonal 

factors such as the fluctuation in sea ice cover. D. mawsoni are. thought to 

follow the advancing sea ice northwards (toward the Antarctic Convergence) 

during winter, where· reliance on prey such as squid may increa~e (Eastman 

and DeVries 2000). Similarly, the diet of Antarctic toothfish is heavily 

influenced by age. In the Commonwealth and Kosmonautov Seas, 

Antarctica, the diet of juvenile'O. mawsoni (standard length 80-120mm) was 

dominated by euphausiids (estimated at 75% of diet, primarily Euphausia 

superba and Thysanoessa macrura), contrasting with the complete absence 

of euphausiids in fish >400mm standard length (Pakhomov 1997). 

Based upon the findings of Pakhomov (1997), the diet of D. mawsoniwithin 

the size range of specimens analysed in this study (TL·240-370mm) is 

dominated by varying proportions of Trematomus eu/epidotus (up to 60% of 

diet), Pleuragramma antarcticum (up to 40%), other fish (up to 60%, mainly 

the myctophids Electrona antarctica and Gymnoscopelus spp.) and small 

amounts of E. superba (up to 10%). 

Comparison with the available fatty acid profiles of potential prey species is 

difficult due to both a lack of data relating to certain species ( T. eulepidotus) 

as well as the potential impact of regional differences in those species for 
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which lipid compositional data is available. However, for comparative 

purposes several Antarctic Trematomus spp., previously examined by 

Phleger et al. (1999b), have been substituted for T-. eulepidotus, and only 

Antarctic specimens of the remaining prey species have been included. 

Whilst many of these prey are high in total PUFA (with the exception of P. 

antarcticum), large differences in fatty acid composition are apparent. 

Significantly, the relative levels of DHA and EPA, identified as the most 

important dietary fatty acids, shows great variation between D. mawsoni and 

selected potential prey species (Figure 6.4). 
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Figure 6.4 Comparison of the percent composition of docosahexaenoic acid {!;)HA) 

and eicosapentaenoic acid (EPA) in Dissostichus mawsonifrom waters adjacent to 

Casey Station, Antarctica and major prey species identified from stomach contents 

(Pakhomov 1997) Numbers 1-12 denote individual specimens of D. mawsoni (see 

Table 6.1 ); EA=Electrona antarctica, 1 Eastern Antarctica population, 2Elephant 

Island, Antarctica population (Phleger et al. 1997); GN=Gymnoscopelus nicholsi and 

GO=G. opisthopterus (Phleger et al. 1999a); PA=Pleuragramma antarcticum 

(Hagen et al. 2000}; TP= Trematomus pennellii, TN= T. newnesi, TH= T. hansoni and 

TB= T. bernacchii (Phleger et al. 1999b); ES=Euphausia superba 3average of adult 

male and females (Phleger et al. 1998); EPA=eicosapentaenoic acid; 

DHA=docosahexaenoic acid 
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Although Trematomus spp. and E. superba contain EPA at levels equivalent 

to or greater than D. mawsoni, levels of DHA in all potential prey are 

considerably lower. The fatty acid composition of P. antarcticum, the main 

prey consumed by adult D. mawsoni, contrasts strongly with that of Antarctic 

toothfish , especially in the content of PUFA (Hagen et al. 2000). This perhaps 

underlines the lower importance of P. antarcticum in the diet of the juvenile 

(TL <400mm) D. mawsoni analysed in this study. Similarly, the myctophids E. 

antarctica and Gymnoscopelus spp. contain much lower amounts of PUFA 

than D. mawsoni and possibly only represent a minor dietary component. 

Only E. superba and Trematomus sp. contain PUFA levels approaching 

those found in Antarctic toothfish. The lipid composition of E. superba is also 

known to vary considerably in relation to factors included sex, time of year 

and location (e.g. Phleger et al. 1998). DHA and EPA are substantially higher 

in female than male E. superba, and in juveniles compared to adults. Thus, 

levels of PUFA in E. superba could conceivably be much higher in the waters 

adjacent to Casey Station, accounting for the elevated levels of DHA and 

EPA in D. mawsonifrom this region. Without lipid compositional data of prey 

from the Casey Station region , further exploration of the dietary composition 

of Antarctic toothfish from this region cannot be determined. 

Fatty acid composition: comparison with Patagonian toothfish 

Fatty acid composition varies considerably between Patagonian and 

Antarctic toothfish, due mainly to variations in PUFA (primarily DHA and 

EPA) and MUFA (primarily 18:1 ro9c and 20:1 ro9c) (Figure 6.5) . 

Multidimensional scaling produces a distinct separation of D. eleginoides and 

D. mawsoni (Figure 6.6). Linear discriminant analysis (LOA) supports these 

observations, with 100% of specimens correctly classified as either D. 

mawsoni or D. eleginoides based on fatty acid composition alone. The fatty 

acids contributing the most to discrimination of the two toothfish species 

include 18:0, 20:0, 16:1ro7c, 17:1 , 18:1ro5c, 19:1 , 24:1ro9c, 18:4ro3, EPA and 

20:3ro6. 
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Figure 6.5 Comparison of selected fatty acids (percent composition) of 

Dissostichus eleginoides (n=27) from the Macquarie Island region and 
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Antarctica 
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Figure 6.6 Scatterplot of multidimensional scaling (MOS) based upon the 

total fatty acid composition of Dissostichus eleginoides (n=27) from the 

Macquarie Island regions and Dissostichus mawsoni (n=12) from waters 

adjacent to Casey Station, Antarctica 
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Although the major fatty acids (>3% total composition) of both toothfish are 
" -

similar, the relative proportions of a number of these fatty acids varies 
- -

significantly, particularly the contents-of DHA (D. mawsoni32.7±5.0% and D. 

e/eginoides 16.8±7.5%), EPA (17.9±1.9% and 6.4±2.2%) and 18:1 ro9c 

(8.8±2.6% and 21.6±5.6%) (Figure 6.6 and Table 6.3). 

6.5 CONCLUSIONS 

The contrasting fatty acid compositions of Antarctic and Patagonian toothfish 

provides further evidence of the dietary differences, a direct consequence of 

the immense distance separating Macquarie Island and the Antarctic 

continent, apparent in these cogeneric species. Even taking into account the 

effect that cold-adaptation may have on the lipid composition of D. mawsoni, 

it also highlights the' dramatic impact that differences in diet can have on the 

fatty acid composition of two predator species that are,-in many regards, 

identical. 
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CHAPTER 7 

DIETARY IMPLICATIONS OF A COMPARATIVE STUDY OF 

THE FATTY ACID COMPOSITION OF PATAGONIAN 

TOOTHFISH AND POTENTIAL PREY FROM THE MACQUARIE 

ISLAND REGION 

7.1 INTRODUCTION 

The sub-Antarctic islands of the Southern Ocean, including Macquarie Island, 

support a complex assemblage of phytoplankton, zooplankton, cephalopods, 

fish, marine mammals, and seabirds. Despite the recent encroachment of 

commercial fishing into many of these regions (e.g. Willock 2002), surprising 

little is known of the potentially deleterious impacts that these anthropogenic 
, r • • -

activities may have on ecosystem integrity. Kock (2001) reviewed the 

impacts of fishing and fishery-related activities in the Southern Ocean, but 

concentrated primarily on the effects of these activities on marine mammals 

and seabirds. The effect of fishing on species diversity at the lower end of the 

food web is not as well described. This is. partly because macrofauna such as 

. marine mammals and seabirds are, more conspicuous, making it far easier to 

detect changes in the~e populations. 

Recent development of a fishery for Patagonian toothfish (Dissostichus 

eleginoides) in the Macquarie Island region prompted the Fisheries Research 

and Development Corporation (FRDC) to commission a report into the 

ecological sustainability of such a fishery (He and Furlani 2001 ). A major aim 

of the FRDC study was the identification of food chain linkages between the 

fishery, toothfish and the main bird and mammal species; primarily through 

the examination of stomach and faecal contents (Goldsworthy et al. 2001 b; 

Goldsworthy et al. 2001 c; Goldsworthy et al. 2001 d; Goldsworthy et al. 
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2002). A thorough understanding of the dietary interactions that exist 

between pr~dators and prey is fundamental to the continued conservation of 

marine ecosystems. These dietary studies have revealed the direct link that - -

toothfish provide between species near the base of the food web (e.g. 

zooplankton) and those at the top (e.g. marine mammals). In common with 

populations from other regions (South Georgia, Pilling et al. 2001 ), 

Macquarie Island toothfish are opportunistic carnivores that prey upon a wide 

range of midwater fish, crustaceans and cephalopods. When consumed by 

predators such as marine mammals, toothfish and other midwater fish are 

therefore participating in the transfer of energy from lower to higher trophic 

levels (Kozlov 1995; Pakhomov et al. 1996; Gaskett et al. 2001 ). 

Consequentially, total or even partial removal of toothfish from the ecosystem 

has the potential .to severely impede this energy transfer. 

Determining diet using the examination of stomach contents, however, has a 
- -

number of inherent problems (e.g. Antonelis et al. 1987; Harwood and 

Croxall-1988; Pierce and Boyle 1991 ). Stomach contents fail to determine, 

with any certainty, long-term diet and only reflect recent foraging events. 

Additionally, by relying on the identification of hard body parts (squid beaks, 

otoliths and statoliths), this technique fails to detect prey lacking these 

features. The slower rate of passage of squid beaks through the digestive 

system can also lead to an overestimation in the importance of this prey 

group in the diet. The low proportion of toothfish stomachs containing 

identifiable prey from Macquarie Island (Goldsworthy e.t al. 2002), possibly 

due to regurgitation during capture (Pilling et al. 2001 ), also adds to the. 

inherent difficulties of applying this technique to dietary studies. 

The use of alternate and complementary methods can overcome the 

disadvantages associated with the examination of stomach contents. One 

method is the use of fatty acids. Although aspects of lipid composition 

contribute valuable insights into the biology of a species, fatty acid 

composition provides the greatest scope for the exploration of dietary 

interactions. The ability of vertebrates from higher trophic levels, including 

marine fish, to either modify or synthesise polyunsaturated fatty acids (PUFA) 
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de novo is particularly limited (e.g. Dunstan et al. 1999). For instance, the 

production of omega-3 PUFA is limited to primary producers, especially 

phytoplankton. This necessitates the-reliance on dietary sources-tor these 

essential fatty acids. Many of these dietary derived fatty acids are readily 

transferred from predator to prey with little or no modification and therefore 

represent, to some extent, a temporal integration of diet. 

An initial attempt at assessing dietary interactions and the long-term diet of­

Macquarie Island toothfish, using a comparison of the fatty acid profiles of 

toothfish and potential fish and squid prey by various statistical methods, was 

included in the FRDC investigation (Wilson and Nichols 2001 ). The current 

comparative study is an extension of this initial research into dietary fatty 

acids, and is based upon a significantly expanded number of toothfish 

samples as well as an -increase in the number of potential fish and squid 

species available for comparison. 

7.2 MATERIALS AND METHODS· 

Fatty acid compositions 

The fatty acid compositions used in this comparative study are derived from 

the results of previous chapters. Specifically, 21 species of potential fish prey 

(Chapter 2) and 6 species of potential squid prey (Chapter 3) were compared 

to Patagonian toothfish {Chapter 5). All fatty acid data used in comparisons 

were in percent composition f9rm. For the purposes of comparison, 

Patagonian toothfish were split into four size (length) groupings based on 

results previously obtained from multidimensional scaling and linear 

discriminant analysis (Figure 5.11 ). Size group 1 consists of toothfish with a 

mean total length of 346±1 Smm (range 323-365mm), group 2 (mean 

363±29mm; range 310-418mm)', group 3 (mean 423±64mm; range 363-

610mm) and group 4 (mean 681±159mm; range 376-1354mm). 
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Statistical analysis 

All statistical analyses were performed using SYSTAT 9 (SYSTAT, Inc, 

Evanston, Illinois, USA). Non-metric multidimensional scaling (MOS, Kruskall - -

loss function) was used to compare the total fatty acid composition of all 

Patagonian toothfish (separated into four size groupings) and potential prey 

species in two dimensions. This allowed for the identification of potential prey 

that most closely resembled the fatty acid composition of one or more of the 

various toothfish size groups. A plot of eicosapentaenoic acid (EPA) versus 

docosahexaenoic acid (OPA) was also used to explore the grouping of prey 

with toothfish. 

Potential prey that clustered close to one or more toothfish size groupings 

based on either MOS analysis or the relative proportions of EPA and OHA 

were then compared using linear discriminant analysis (LOA; tolerance=0.01, 

classification and jackknifed classification matrix, Wilk's lambda, automatic 

forward stepping [F to enter=4, F to remove=3.9]). In cases where the 

specimens belonging to a single prey species were spread between more 

than one toothfish size group, these prey -Were split into two or more groups 

and compared with their corresponding toothfish groups individually. 

Similarly, where a single species of prey clustered closely together, but 

straddled two toothfish size groups, all specimens of this prey were included 

in a comparison with both toothfish size groups. 

LOA allowed for the identification of those fatty acids (predictors) most 

responsible for differences or similarities between Patagonian toothfish and 

potential prey. The jack-knifed classification matrix is included as a means of 

cross-validating the normal classification matrix. Considerable difference in 

the percentage of correct classifications between these two matrices would . 

suggest potential difficulties ir:i correctly classifying the data. 

LOA was based upon several combinations of fatty acids. To assess the 

overall similarity of toothfish and prey, total fatty acid composition was 

compared. Those fatty acids most likely to have originated from the diet were 

compared by analysis of polyunsaturated fatty acids (PUFA) exclusively. 
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Finally, the composition of EPA and OHA were compared. EPA and OHA 

were previously identified as the fatty acids most responsible for the variation 

in fatty acids composition observed between the various toothfish size groups 

(Chapter 5). 

7.3 RESULTS 

Comparison of the fatty acid composition of potential prey and 

toothfish 

T oothfish and Myctophidae 

A comparison of total fatty acid composition using MOS (Figure 7.1 ), and the 

relative proportions of OHA and EPA (Figure 7.2) , showed that several 

~ .. .. , 
.../ 

-. 

myctophid species clustered close to toothfish of all sizes, with the exception .• 

of toothfish belonging to size group 1. Each of the comparative methods (i.e. 

MOS and relative amounts of EPA and OHA) produced similar trends in the 

grouping observed , though subtle differences are apparent. For example, two 

specimens of both Gymnoscopelus bolini and G. fraseri clustered close to 

toothfish group 2 using MOS, whilst the remaining specimens of these 

myctophids are placed at a considerable distance from any of the toothfish 

groups. Comparison of levels of EPA and OHA, however, clustered all G. 

bolini specimens with group 4 toothfish. 

A number of myctophids also associated with more than one toothfish size 

group. For instance, G. braueri clusters with toothfish size groups 2, 3 and 4. 

Protomyctophum bolini are placed equidistantly between toothfish groups 2 

and 3 using MOS, as well as group 4 based on the relative composition of 

EPA and OHA. Similarly, whilst Lampanyctus archirus was placed closest to 

toothfish size group 3 using MOS, based upon EPA and OHA levels it 

clustered with group 2. 

185 

. ' 



CHAPTER 7 FATTY ACIDS AS DIETARY INDICTORS OF TOOTHFISH 

a 
a . 

a 
a 

b. 

a Toothfish Group 1 b. 

N 
b. Toothfish Group 2 c 

0 
'iii <> Toothfish Group 3 c 

<D 
E o Toothfish Group 4 
i5 

• Gymnoscopelus fraseri 

.t. Gymnoscopelus nicholsi 

• Gymnoscopelus braueri 

O Gymnoscopelus bolini 

X Lampanyctus archirus 

X Electron a carlsbergi 

O Electron a antarctica 

- Protomyctophum bolini 

0 
0 

"' 
"'"'"' "' 

• 

• 
• "' --

"' "' 
"' "' -
"' b. 

• 

• 

Dimension 1 

• • x 

• 

<> 

<> ~ <> <> 0-0 
• <> <> o<> <> <>~ 

<> 01<> 
- <> 00 % 

• • 

Cb 0 

0 

00 

0 

Figure 7.1 Scatterplot of multidimensional scaling (MOS) based upon the 

total fatty acid composition of Dissostichus eleginoides (refer to text for 

details of toothfish size groups) and Myctophidae included in this study 

from the Macquarie Island region 
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size groups) and Myctophidae included in this study from the Macquarie 
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The remaining myctophid species, G. nicholsi, Electrona antarctica and E. 

carlsbergi, clustered closest to group 4 toothfish using MOS, though once 

again at a considerable distance (Figure 7.1 ). OHA and EPA composition of 

these three species placed G. nicholsi within toothfish group 4, E. antarctica 

clustered with toothfish group 3, an~ E. carlsbergi split between groups 2 and 

3 (Figure 7.2). 

LOA reveals vastly different classification matrices using comparisons of the 

various combinations of fatty acids (Tables 7.1 and 7.2). No statistical 

similarity in total fatty,acid composition was observed between myctophids 

and toothfish (i.e. 0% overlap in the fatty acid composition of myctophids and 

closest clustering toothfish size groups). This is especially true for a number 

of species that differed in composition from toothfish by at least 1 0 fatty 

acids. These species include G. braueri (compared to toothfish size group 4), 

G. nicholsi, G. bolini (toothfish group 4), L. archirus (toothfish group, 3), P. 

bolini (toothfish group 4), E. antarctica (toothfish group 4) and E. carlsbergi 

(toothfish group 4). The fatty acids most responsible fo'r the observed 

differences (predictors) varied wit_h myctophid species, but consisted of 

combinations of saturated fatty acids (SFA}, monounsaturated fatty acids 

(MUFA) and PUFA. Amongst these fatty acids components at greater than 

1 % of total fatty acid composition, including 16:0, 18:0, 16:1 ro7c, 18:1 ro7c, 

20:1 ro9c, 22:1 ro11 c, 18:2ro6, EPA and OHA. The remaining myctophids 

differed from toothfish due to differences in the composition of a smaller 

number of fatty acids, the majority of which represent only minor components 

(less than 1 % of total fatty acid composition). 

Comparison of PUFA by LOA also produced little similarity between toothfish 

and myctophids, once again due to differences in the composition of major 

fatty acids such as 18:2ro6, EPA and OHA. However, the jack-knifed 

classification of several species, specifically G. braueri (compared to 

toothfish size groups 4 and 2), G. bolini (toothfish size group 4) and L. 

archirus (toothfish size group 2), varied considerably from normal 
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Table 7.1 Comparison of the percentage of correctly classified Myctophidae (genus Gymnoscopelus) with size groupings of 

Dissostichus e/eginoides by linear discriminant analysis, relative to different combinations of fatty acids 

Toothfish Correct classification {%} of QOtential Mi'.ctoQhidae Qrei'. {genus Glmnoscoe_e/us} 
Myctophidae species size All fatty acids PUFAonly EPA and OHA only 

grou~ 1 LOA JK Predictors LOA JK Predictors LOA JK Predictors 
Gymnoscope/us fraseri 3*" 0 0 22:1 ro11 c, 22:1 ro7c, 24:1 ro11 c, 24:1 ro9c, 18:3ro6 0 0 18:3ro6, 18:2ro6, 20:3ro6, 0 100 EPA 

20:4ro3, OPA 

2 0 0 16:1 ro7t, 18:3ro6, 18:4ro3, 18:2ro6 0 0 18:3ro6, 18:4ro3, C21 PUFA 13 0 OHA 

Gymnoscope/us braueri 4" 0 0 16:0, 17:0, 16:1 ro9c, 18:1, 20:1 ro7c, 22:1 ro11 c, 22:1 ro7c, 0 33 18:4ro3, 20:4ro3, 20:2ro6, 0 33 
24:1 ro11c, 24:1 ro9c, AA, 20:4ro3, OHA, OPA C21 PUFA, DHA, OPA 

3" 0 0 18:1, 19:1, 18:4ro3, AA 0 0 18:4ro3 100 100 

2" 0 0 18:0, 14:1 ro5c, 16:1 ro7t, 18:1 co9c, 18:1, 20:1 ro7c, 0 50 18:3co6, 18:4ro3, 18:2co6, 0 0 OHA 
22:1 co9c, EPA 20:3co6 

Gymnoscopelus nicholsi 4 0 0 14:0, 18:0, 20:0, 16:1 co9c, 20:1 co9c, 20:1 ro7c, 18:2co6, 0 0 18:3co6, 18:4ro3, 18:2co6, 100 100 
20:3ro6, 20:4ro3, OHA 20:3co6, 20:4ro3, OPA 

Gymnoscopelus bolini 4* 0 0 16:0, 17:0, 14:1co5c, 16:1co9c, 16:1co7t, 18:1, 19:1, 0 0 18:3co6, 18:4ro3, EPA, 100 100 
20:1 co9c, 18:3ro6, EPA, 20:3co6, 20:4ro3, 20:2co6, C21 20:3ro6, 20:4ro3, 20:2ro6, 
PUFA, DHA, OPA C21 PUFA, OHA, DPA 

4" O 0 16:0, 17:0, 16:1 co7t, 18:1 co7c, 18:1, 19:1, 22:1 co7c, O 100 18:3ro6, EPA, 20:3co6, 100 100 ' 
18:3co6, EPA, 20:3ro6, 20:4co3, C21 PUFA, OHA, 22:4co6, 20:4ro3, C21 PUFA, OHA, 
OPA 22:4co6, OPA 

2" 0 0 20:0, 22:0, 22:1 co9c, 20:2co6 0 0 ~ 8:3co6, 20:2ro6 0 0 OHA 
1closest clustering toothfish size group (refer to text for details on toothfish sizing) determined from multidimensional scaling of entire fatty acid profile (Figure 7.1) except for 
*determined from a plot of OHA versus EPA (Figure 7.2); "comparison based upon the separation of myctophid specimens into two or more groups, each corresponding with a 
different toothfish size group; PUFA=polyunsaturated fatty acid; AA=arachidonic acid (20:4ro6); EPA=eicosapentaenoic acid (20:5ro3); OHA=docosahexaenoic acid (22:6ro3); 
OPA=docosapentaenoic acid (22:5ro3); LOA=linear discriminant analysis classification (0%=no similarity in fatty acid composition, of toothfish and prey); JK=jack-knifed LOA 
classification 
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Table. 7.2 Comparison of the percentage of correctly classifie-d Myctophidae with size groupings of Dissostichus eleginoides by 

linear discriminant analysis, relative to different combinations _of fatty acids 

Toothfish Correct classification (%} of QOtential MyctoQhidae Qrey 
Myctophidae species Size All fatty acids PUFA only EPA and OHA only 

GrouQ1 LOA JK Predictors LOA JK Predictors LOA JK Predictors 
Lampanyctus archirus 3 0 0 16:1 ro7c, 18:1 ro9c, 19:1, 20:1 ro11 c, 22:1 ro11 c, 24:1 ro11 c, 0 1 oo 18:3ro6, 1 S:4ro3, C21 PUFA 0 100 OHA 

. 24:1 ro9c, 18:3ro6, 18:2ro6, 20:4ro3. 

2* 0 0 19:1, 22:1ro11c, 22:1ro9c,·18:3ro6, 18:2ro6 0 0 18:3ro6, 18:4ro3, 18:2ro6 100 100 

Protomyctophum bo/ini 4*" 0 0 16:0, 16:1 ro9c, 16:1 ro7t, 16:1 ro5c, 17:1, 24:1 ro11 c, 0 0 18:4ro3, AA, EPA,,20:4ro3, 0 0 EPA 
24:1 ro9c, 18:4ro3, EPA, 20:3ro6, 20:4ro3, OHA, 22:4ro6 22:4ro6 

3 0 0 17:0, 14:1ro5c, 16:1ro9c, 16:1ro7t, 16:1ro5c, 18:1.ro9c, 0 0 18:4ro3, AA, EPA, 20:4ro3, 40 50 EPA, 
18:1 ro7c, 20:1 ro7c 22:5ro6 OHA 

2 0 0 17:0, 18:0, 16:1ro7t, 18:1ro5c, 19:1, 22:1ro7c, 18:4ro3, 0 0 2.0:2ro6, C21 PUFA, OHA, 10 10 OHA 
C21 PUFA . · OPA 

Electrona antarctica 4 0 0 14:0, 16:0, 17:0, 16:1 ro7c, 16:1 ro7t, 18:1, 20:1 ro7c, 0 0 18:4ro3, 20:3ro6, C21 PUFA 0 0 EPA, 
22:1 ro7c, 24:1 ro9c, 18:3ro6, AA, 20:3ro6, 22:5ro6, OHA, OHA 
22:4ro6, OPA 

3* 0 0 17:0, 16:1 ro7c, 18:1 ro7c 0 0 18:4ro3, 18:3ro6, EPA 100 100 

Electrona carslbergi 4 0 0 18:0, 16:1ro7c, 16:1ro7t, 18:1ro9c, 18:1ro7c, 19:1, 0 0 18:3ro6, 18:4ro3, 18:2ro6, 0 0 EPA, 
22:1 ro11 c, 24:1 ro9c, 18:3ro6, 18:4ro3, 20:3ro6, 20:2ro6, EPA,. 20:3ro6, 20:2ro6, C21 OHA 
C21 PUFA, 22:5ro6 PUFA 

3*" 0 0 . 19:1,20:1ro11c, 18:3ro6,20:3ro6 0 0 18:3ro6, 20:3ro6, 20:2ro6 50 50 EPA, 
OHA 

2*" 0 0 18:1 ro7c, 18:1 ro5c, 19:1, 20:1 ro7c, 24:1 ro11 c, 24:1 ro9c, 0 0 18:3ro6, 18:4ro3, 18:2ro6 100 100 
18:3ro6, 18:2ro6 

1closest clustering toothfish size group (refer-to text for details on toothfish sizing) determined from multidimensional scaling of entire fatty acid profile (Figure 7.1) except for 
*determined from a plot of OHA versus EPA (Figure 7.2); "comparison based upon the separation of myctophid specimens into two or more groups, each corresponding with a 
diijerent toothfish size group; PUFA=polyunsaturated fatty acid; AA=arachidonic acid (20:4ro6); EPA=eicosapentaenoic acid (20:5ro3); OHA=docosahexaenoic acid (22:6ro3); 
OPA=docosapentaenoic acid (22:5ro3); LOA=linear discriminant analysis classification (0%=no similarity in fatty acid composition of toothfish and prey); JK=jack-knifed LOA 
classification 
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· CHAPTER 7 FATIY ACIDS AS DIETARY INDICTORS OF TOOTHFISH 

classification. The disparity in the percentage of correctly classified suggests 

difficulty in comparing these species. 

Contrasting with the low similarity of both total fatty acid and PUFA profiles 

between myctophids and toothfish,_ comparison of only EPA and DHA 

revealed a greater degree of similarity. Statistical difference in the relative 

composition of EPA and DHA could not be distinguished in several 

specimens of G. braueri (compared with toothfish size group 3), G. nicholsi 

(toothfish group 4), G. bolini (toothfish group 4), 'L. archirus (toothfish group 

2), E. antarctica (toothfish group 3) and E. carlsbergi (toothfish group 2). 

Additionally a degree of overlap with toothfish was observed for P. bolini 

(toothfisn group 3) and E. carlsbergi (toothfish group 3). 

Notwithstanding, the composition of EPA and DHA in several myctophids 

showed little or no statistical similarity to that of toothfish, including G. fraseri 

(compared to toothfish groups 2 and 3), G. braueri (toothfish groups 2 and 4), 

G. bolini (toothfish group 2), P. bolini (toothfish groups 2 and 4), E. ·antarctlca 

(toothfish group 4) and E. carlsbergi (toothfish group 4). 

Toothfish and other fish 

MOS analysis (Figures 7.3 and 7.4) and comparison of EPA and OHA 

composition (Figures 7.5 and 7.6) suggest a large degree of overlap in the 

fatty acid composition of many fish species and all four of the toothfish size 

groups. In contrast to myctophids, a number of other fish species group with 

the smallest sized toothfish (comprising group 1 ), including Poromitra 

crassiceps, and Sternoptyx sp. The single specimen of Phosichthys 

argenteus is also placed equidistantly between toothfish size groups 1 and 2 

by MOS analysis (Figure 7.3), though comparison of EPA and OHA levels 

reveals little similarity with any toothfish sizes (Figure 7.5). Juveniles of both 

Bathylagus antarcticus and Borostomias antarcticus (MOS analysis only) 

clustered close to group 1 toothfish, though several juvenile specimens also 

cluster with group 2 toothfish, especially on the basis of EPA a_nd OHA 

composition (Figures 7.4 and 7.6). In addition, adults and juveniles of these 
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eicosapentaenoic acid (EPA, 20:5co3) and docosahexaenoic acid (DHA, 22:6co3) 
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adults and juveniles of various fish species (refer to text for details of sizing) 

included in this study from the Macquarie Island region 
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two species, as well as Stomias gracilis, cluster with larger and smaller sized 

toothfish respectively. 

None of the remaining fish species clustered exclusively with toothfish from 

size groups 2 or 3. Specimens of Melanostigma gelatinosum are split 

between these two toothfish sizes, based on both MOS analysis and EPA 

and OHA levels. The single specimen of Echiodon cryomargarites is 

equidistantly placed between toothfish groups 2 and 3 using MOS analysis, 

though is closer to group 2 when only EPA and OHA levels are compared. 

The two specimens of Chauliodus s/oani are split between toothfish size 

groups 3 and 4 using both MOS analysis and a comparison of EPA and OHA 

levels. 

Several fish species, Labichthys yanoi, Diplophos rebainsi and Stomias boa 

boa, associated exclusively with the largest sized toothfish (group 4), based 

on both MOS analysis and, especially, the relative levels of EPA and OHA. 

All three specimens of Cyclothone sp. grouped together tightly, though at 

some distance from toothfish. They clustered closest to toothfish size.group 4 

using MOS analysis and group 2 toothfish when EPA and OHA levels were 

compared. 

Continuing the trend observed for comparisons with the myctophid species, 

LOA revealed little si.milarity in either total fatty acid or PUFA ·composition 

between the various fish species and their corresponding toothfish size 

groups (Table 7.3). A number of species, particularly L. yanoi (compared to 

toothfish size group 4), E. cryomargarites (toothfish group 3), adult S. gracilis 

and Cyclothone sp (toothfish group 4), differ from their corresponding 

toothfish size groups by large differences in the relative composition of 8 or 

more fatty acids (based on a comparison of total fatty acid profiles). 

Differences are due to various combinations of SFA, MUFA and PUFA 

including a number of major fatty acids such as 16:0, 16:1 ro7c, 18:1 ro9c, 

18:1 ro7c, 20:1 ro9c and EPA. 
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~I Table 7.3 Comparison of the percentage of correctly classified various fish species with size groupings of Dissostichus e/eginoides (') 
::t 
> 

by linear discriminant analysis, relative to different combinations of fatty acids 
.,, 
-I 
m 

Toothfish Correct classification (%} of QOtential fish 12rey :::0 
..... 

Fish species size All fatty acids PUFA only EPA and OHA only .,, 
grou121 LOA JK Predictors LOA JK Predictors LOA JK Predictors ~ Poromitra. crassiceps 1 0 0 19:1,DPA 0 0 AA, 22:5ro6 100 100 

Sternoptyx sp. 1 0 0 18:3ro6, 20:4ro3 0 
)> 

0 18:3ro6, 20:4ro3 0 0 EPA 0 
B 

Phosichthys argenteus 2 0 0 17:0, 22:0, EPA 0 100 EPA, 20:2ro6, 22:5ro6 0 100 EPA, DHA (/) 

)> 

0 0 20:0, DPA 0 0 18:2ro6, EPA 0 0 EPA 
(/) 

0 

Labichthys yanoi 4 0 0 16:0, 17:0, 18:0, 18:1 ro7c, 18:1, 20:1 ro9c, 20:1 ro7c, 0 0 18:3ro6, EPA, 20:3ro6, 0 50 DHA 
m 
);! 

22:1 ro11 c, 22:1 ro9c, 24:1 ro9c, 18:3ro6, 18:4ro3, 20:4ro3, 20:4ro3, C21 PUFA, DHA JJ 
C21 PUFA, 22:4ro6 -< 

z 
Melanostigma gelatinosum 3" 0 0 22:0, 14:1 ro5c, 18:1 ro5c, 20:1 ro7c, 20:3ro6, 20:2ro6, C21 0 0 18:4ro3, 20:3ro6, 20:4ro3, 100 100 0 

PUFA 20:2ro6, C21 PUFA C5 
)> 

2" 0 0 15:0, 17:0, 18:0, 16:1 ro9c, 22:1 ro7c, 22:4ro6 0 0 18:3ro6, 18:4ro3 100 100 d 
JJ 

Echiodon cryomargarites 3 0 0 16:0, 17:0, 16:1 ro7c, 16:1 ro5c, 18:1 ro9c, 18:1, 0 100 EPA 0 100 EPA 
(/) 

0 
20:1 ro11 c, 18:2ro6, AA, 22:5ro6 

.,, 
cl 2 0 0 17:0, 18:0, 22:0, 18:1ro5c, 19:1, 20:1ro11c, 24:1ro11c 0 0 18:4ro3, 18:2ro6, AA, 100 100 0 

20:3ro6, 20:2ro6, C21 ' --i :r: 
PUFA, 22:5ro6, DHA 

.,, 
en 

Diplophos rebainsi 4 0 0 16:0, 17:0, 18:0, 14:1 ro5c, 16:1 ro9c, 16:1 ro7c, 16:1 ro7t, 0 100 EPA, 20:4ro3, C21 PUFA, 100 100 :r: 

17:1, 18:1 ro9c, 18:1 ro7c, 18:1, 18:3ro6 22:4ro6 

Cyclothone sp. 4 0 0 15:0, 16:0, 17:0, 18·0, 20:0, 14:1 co5c, 16:1 co9c, 0 0 18:3co6, 18:4ro3, 18:2co6, 0 0 EPA 
16:1ro7c, 18:1, 19:1, 22:1ro11c, 18:4ro3, 18:2co6, AA, 
EPA, 20:3ro6, 20:4co3, 20:2ro6, C

21 
PUFA, 22:4ro6, DPA 

AA, EPA, 20:3ro6, 22:4co6 

2* 0 0 16:0, 20:0, 18:1, 20:2ro6, 22:5ro6 0 0 EPA, 20:4ro3 0 0 EPA, DHA 

Table 7.3. continued next page 



Table 7.3 Continued from previous page 

Toothfish Correct classification (%} of ~otential fish Qrey 
Fish species size All fatty acids PUFA onl~ EPA and OHA onl~ 

grouQ
1 LOA JK Predictors LOA JK Predictors LOA JK Predictors 

Chauliodus sloani 411 0 100 16:0, 16:1ro9c, 16:1ro7c, 20:3ro6, 20:4ro3, C21 PUFA, 0 100 18:4ro3, EPA, 20:3ro6, 0 100 DHA 
DPA 20:4ro6, C21 PUFA 

311 0 0 17:0, 18:1, 18:4ro3, 22:4ro6 0 100 20:4ro3, 20:2ro6 100 100 

Stomias boa boa 4 0 50 16:0, 16:1 ro9c, 16:1 ro5c, 18:1, 18:3ro6, 18:4ro3, 20:3ro6, 0 0 20:3ro6, 22:4ro6 100 100 
22:4ro6 0 :c 

Stomias graci/is J 2 0 0 0 50 100 
)> 

16:0, 22:1 ro7c, 24:1 ro11 c 18:3ro6, 18:4ro3 100 "a 
-I 

Stomias. gracilis A 4 0 0 17:1, 18:1 ro9c, 24:1 ro11 c, 18:2ro6, 20:3ro6, 20:4ro3, C21 0 0 20:3ro6, 20:4ro3, C21 100 100 
m 
:0 

PUFA, 22:4ro6 PUFA, 22:4ro6 .... 
II 

Bathylagus antarcticus J 211 0 0 17:0, 14:1 ro5c, 24:1 ro9c, 18:3ro6, 22:5ro6 0 0 18:3ro6, 18:4ro3, C21 100 100 
)> 

~ PUFA, 22:5ro6, DHA 
)> 

111 0 0 16:1ro9c, 18:2ro6 0 0 18:2ro6 0 0 EPA () 

a 
Bathylagus antarcticus A 2 0 0 16:1 ro7t, 20:1 ro7c, 20:3ro6, 20:2ro6 0 0 18:3ro6, 18:4ro3, C21 0 0 DHA 

(/) 

)> 
PUFA, 22:5ro6, DHA (/) 

Borostomias antarcticus J 
0 

2* 0 0 20:0, 14:1 ro5c, 16:1 ro9c, 18:1, 20:1 ro9c, 22:1 ro7c, 0 0 18:4ro3, 20:3ro6, 33 33 EPA m 
24:1 ro11 c, 18:3ro6, 20:4ro3 22:5ro6 ~ 

:n 
211 0 0 20:0, 16:1 ro9c, 17:1, 18:1 ro7c, 20:1 ro9c, 22:1 ro11 c, 0 0 18:3ro6, 18:4ro3, 40 40 EPA -< 

22:1 ro7c, 18:3ro6, 18:4ro3 20:4ro3, DHA z 
0 

111 0 0 20:0, DPA 0 0 20:3ro6, OPA 0 0 EPA 
0 
)> 
-I 

Borostomias antarcticus A 4 0 100 17:0, 18:0, 17:1, 18:1 m9c, 18:1 ro7c, 20:1 fuse, 20:1 ro7c, 0 100 EPA, 20:4ro3, 20:2ro6, 0 100 OHA 0 
:n 

C21 PUFA, DPA C21 PUFA, DHA, DPA CJ) 

1closest clustering toothfish size group (refer to text for details on toothfish sizing) determined from multidimensional scaling of entire fatty acid profile (Figures 7.3 a~d 7.5) 0 
II 

except for *determined from a plot of OHA versus EPA (Figures 7.4 and 7.6.); "comparison based upon the separation of fish specimens into two or more groups, each -i 
corresponding with a different toothfish size group; PUFA=polyunsaturated fatty acid; AA=arachidonic acid (20:4m6); EPA=eicosapentaenoic acid (20:5ro3); 0 

0 
DHA=docosahexaenoic acid (22:6ro3); DPA=docosapentaenoic acid (22:5ro3); LDA=linear discriminant analysis classification (0%=no similarity in fatty acid composition of -i :::c 

~I 
toothfish and prey); JK=jack-knifed LOA classification; J=juvenile specimens; A=adult specimens (refer to main body of text for details on sizing) II 

Ci5 
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Although total fatty acid and PUFA composition of the remaining fish species 

and toothfish showed little statistical similarity, the differences observed were 

due to a much smaller number of fatty· acids that, in the main, constituted 

relatively minor components. These include P. crassiceps, Sternoptyx sp., ,P. 

argenteus (toothfish size group 1 }, M. gelatinosum (toothfish groups 2 and 3), 

juvenile S. gracilis and Bathylagus antarcticus (adults and juveniles). 

Similarly, whilst the total fatty acid composition of D. rebainsi differed 

substantially from toothfish, the disparity of normal and jack-knifed 

classification suggests difficulty in comparing the fatty acid composition of 

these species. This holds for several other species including C. sloani 

(compared to toothfish size group 4), S. boa boa and adult Borostomias 
r 

antarcticus. Comparison using only PUFA also produced large differences in 

normal and jack-knifed classification in the aforementioned species 

(excluding S. boa boa) in addition to P. argenteus (in comparison to toothfish 

size group 2), E. cryomargarites (toothfish group 3), C. sloani (toothfish 

groups 3 and 4), and juvenile S. gracilis. 

The relative composition of EPA and DHA in several fish did, as was 

observed with a number of myctophids, concur with the levels of various 

sized toothfish using LOA. These species included P. crassiceps, M. 

gelatinosum (toothfish size groups 2 and 3), Echiodon cryomargarites 

(toothfish group 2), D. rebainsi, C. sloani (toothfish group 3), S. boa boa, S. 

gracilis (adult and juvenile), and juvenile Bathylagus antarcticus. A degree of 

statistical similarity in EPA and DHA composition was also observed between 

juvenile Borostomias antarcticus and toothfish of size group 2. Disparity was, 

once again, observed in the normal and jack-knifed classification of P. 

argenteus (toothfish group 2), L. yanoi, E. cryomargarites (toothfish group 3), 

C. sloani (toothfish group 4) and adult Borostomias antarcticus. 

Toothfish and squid 

A comparison of the total fatty acid composition of squid and toothfish by 

MOS (Figure 7.7) and the relative composition of EPA and DHA (Figure 7.8) 
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Figure 7.7 Scatterplot of multidimensional scaling (MOS) based upon the total 

fatty acid composition of Dissostichus eleginoides (refer to text for details of 

toothfish size groups) and various squid species included in this study from the 

Macquarie Island region 
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Figure 7.8 Relative composition (percentage of total fatty acids) of 

eicosapentaenoic acid (EPA, 20:5ro3) and docosahexaenoic acid (DHA, 22:6ro3) 

in Dissostichus eleginoides (refer to text for details of toothfish size groups) and 

various squid species included in this study from the Macquarie Island region 
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reveals clustering of several potential prey and the predator. Of the six squid 

species, only Moroteuthis ingens and Gonatus antarcticus clustered close to 

toothfish. The five specimens of M. ingens were split between toothfish size - -

groups 2 and 3 by both MOS and the levels of EPA and OHA. All four 

specimens of G. antarcticus were distanced from toothfish size group 4 by 

MOS analysis, but the relative compositions of EPA and OHA placed them at 

closer proximity to toothfish size group 3. 

The remaining squid clustered at a greater distance from toothfish. Both 

specimens of Galiteuthis glacialis are separated, by a large distance, from 

toothfish size group 1 using both MOS and levels of EPA and OHA. The 

single specimen of Mastigoteuthis sp. clustered closest to toothfish size 

group 2 using both comparative methods. MOS analysis placed the single 

specimen of Kondakovia longimana equidistantly from toothfish size groups 2 

and 3, whilst the relative proportions of EPA and DHA cluster K. longimana 

closer to toothfish group 3. All three specimens of Histioteuthis eltaninae are 

placed equidistantly from toothfish size groups 1 and 2 by MOS and closer to 

toothfish group 2 based on levels of EPA and DHA. 

LOA of the total fatty acid and PUFA profiles, as well as EPA and DHA levels, 

suggests little statistical similarity in the fatty acid compositions of squid and 

toothfish (Table 7.4). For instance, based upon a comparison of total fatty 

acids, G. antarcticus (compared to toothfish size group 4) and M. ingens 

(toothfish group 2) differ from their respective toothfish groups in the 

composition of a total of 17 and 14 fatty acid respectively. Additionally, many 

of these differences are due to varying combinations of major fatty acids such 

as 16:0, 18:1 ro9c, 18:1 ro7c, 22:1 ro11 c, 22:1 ro9c and 18:2ro6. Similarly, 

differences in PUFA composition between M. ingens and G. antarcticus and 

toothfish size groups 2 and 4 respectively are due to several major 

components including 18:2ro6, EPA and OHA. Comparison using only EPA 

and DHA also revealed little statistical similarity. 

Although little similarity existed in the total fatty acid composition of toothfish 

and remaining squid, the differences observed were not as great as those for 
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Table 7.4 Comparison of the percentage of correctly classified squid species with size groupings of Dissostichus eleginoides by 

linear discriminant analysis, relative to different combinations of fatty acids (100%=no similarity between prey and toothfish) 

Toothfish Correct classification (%} of Qotential sguid Qre~ 
Squid species size All fatty acids PUFA only EPA and OHA only 

group1 LOA JK Predictors LOA JK Predictors LOA JK Predictors 
Mastigoteuthis sp. 2 0 0 16:1 ro9c, 22:1 ro9c, 22:1 ro7c 0 0 18:3ro6, 18:4ro3, 18:2ro6 0 0 EPA 

Kondakovia Jongimana 2 0 0 16:1 ro5c, 18:1 ro5c, 20:1 ro11 c, 20:1 ro9c, 22:1 ro7c, C21 0 0 18:4ro3, C21 PUFA 0 0 EPA,OHA 
PUFA 

3 

Gonatus antarcticus 4 25 25 14:0, 16:0, 17:0, 18:0, 18:1ro9c, 19:0, 20:1ro11c, 25 25 18:3ro6, EPA, 20:3ro6, 0 0 EPA, OHA 
22:1 ro11 c, 22:1 ro9c, 22:1 ro7c, 24:1 ro11 c, 18:3ro6, 20:4ro3, C21 PUFA, DHA, 
20:4ro3, 20:2ro6, C21 PUFA, 22:4ro6, DPA 22:4ro6, OPA 

3* 0 0 14:1 ro5c, 18:1, 24:1 ro9c 0 0 18:4ro3, 20:2ro6 25 25 EPA, DHA 

Moroteuthis ingens 3" 0 0 16:1 ro7t, 17:1, 24:1 ro11 c, 24:1 ro9c 0 0 20:2ro6 0 O' EPA,OHA 

2" 0 0 16:0, 16:1 ro9c, 16:1 ro7t, 17:1, 18:1 ro9c, 18:1 ro7c, 0 0 18:2ro6, 20:2ro6, C21 PUFA 20 20 EPA, DHA 
18:1 ro5c, 20:1 ro11 c, 22:1 ro9c, 18:3ro6, 18:2ro6, 
20:3ro6, 20:2ro6, DPA 

Histioteuthis eltaninae 2 0 0 16:1 ro9c, 20:1 ro7c, 22:1 ro9c, 22:1 ro7c, 18:3ro6, 0 0 18:3ro6, 20:2ro6 0 0 EPA,OHA 
20:2ro6 

0 0 16:1 co9c, 18:1 ro9c, 20:1 ro11 c 0 0 20:4ro3, 20:2ro6, DHA, DPA 0 0 OHA 

Galiteuthis glacialis 1 0 0 15:0, 18:1 co5c, OPA 0 0 18:3ro6, AA, OPA 0 0 EPA 
1closest clustering toothfish size group (refer to text for details on toothfish sizing) determined from multidimensional scaling (Figure 7.7) except for *determined from a plot of 
OHA versus EPA (Figure 7.8); "comparison based upon the separation of squid specimens into two or more groups, each corresponding with a different toothfish size group; 
PUFA=polyunsaturated fatty acid; AA=arachidonic acid (20:4ro6); EPA=eicosapentaenoi~ acid (20:5co3); OHA=docosahexaenoic acid (22:6ro3); OPA=docosapentaenoic acid 
(22:5ro3); LOA=linear discriminant analysis classification (0%=no similarity in fatty acid composition of toothfish and prey); JK=jack-knifed LOA classification 
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CHAPTER 7 FATIY ACIDS AS DIETARY INDICTORS OF TOOTHFISH 

M. ingens (compared to toothfish group 2) and G. antarcticus (toothfish group 

4). Comparison of G. antarcticus with toothfish size group 3 rather than group 

4 reveals greater statistical dissimilarity, but separation is based on a smaller --

number of fatty acids, of which only 24:1 ro9c represented a major component 

(> 1 %). Differences between toothfish and squid based on small numbers of 

relatively minor fatty acids were also observed for Mastigoteuthis sp. 

(16:1 ro9c, 22:1 ro9c, 22:1 ro7c), M. ingens (one specimen only compared to 

toothfish size group 3, 16:1 ro7t, 17:1, 24:1 ro11 c, 24:1 ro9c), and G. glacialis 

(15:0, 18:1 ro5c, DPA). H. eltaninae varied from toothfish size group 2 with 

respect to mainly minor fatty acids (16:1 ro9c, 20:1 ro7c, 22:1 ro7c, 18:3ro6, 

20:2ro6), but also with regards to one major fatty acid (22:1 ro9c). Similarly, 

whilst H. eltaninae differed from toothfish group 1 in the composition of only 3 

fatty acids, these included the major fatty acid 18:1 ro9c. 

The PUFA composition of all of the aforementioned squid also differed from 

their corresponding toothfish size groups with respect to PUFA. However, for 

the most part, these differences were due to limited numbers of minor 

constituent PUFA. Exceptions included Mastigoteuthis sp. and H. eltaninae 

that differed from toothfish with respect to the major PUFA 18:2ro6 and DHA 

respectively. The normal and jack-knifed classification of M. ingens 

(compared to toothfish size group 3) also varied considerably. 

I ' -

Large differences in the composition of EPA and DHA between toothfish and 

squid are also apparent. G. antarcticus, M. ingens (compared to toothfish 

size group 2 only), H. eltaninae and G. g/acialis show little statistical similarity 

(normal and jackknifed classification) to their corresponding toothfish in the 

composition of EPA and DHA. A large discrepancy, however, in the normal 

and jack-knifed classification of Mastigoteuthis sp., K. longimana and M. 

ingens (compared to toothfish size group 3 only) suggests difficulty in the 

comparison of these squid species. 
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7.4 DISCUSSION 

Determining diet necessitates the amalgamation of various factors, including 

species habitat and general biology, to reach a conclusion based on all 

aspects of foraging ecology. For example, despite the limitations of stomach 

content analysis this technique provides a base from which to speculate on 

the diet of toothfish. Assessing diet using fatty acids requires more than the 

comparison of predators and potential prey profiles and searching for 

~imilarities. It also requires careful consideration of the interaction of species 

within the biological constraints of the marine environment. In particular, 

understanding the relative distribution of species to each other, both 

geographically and within the water column, is an essential part of predicting 

predator-prey interactions. Equally relevant_is the influence that 

environmental adaptation and numerous physiological processes can have 

on fatty acid composition, adding to the complexities involved in determining 

predator-prey interactions using only lipid compositional data. 

Toothfish diet determined from stomach content analysis 

Potential fish prey 

Fish represent the major prey group consumed by toothfish in the Macquarie 

Island region both by frequency of occurrence (65%) and prey biomass 

(58%), based upon the analysis of stomach contents (Goldsworthy et al. 

2002). These findings are directly applicable to the current study. The mean 

total length of toothfish investigated by Goldsworthy et al. (2002) (600-

700mm) is comparable to samples examined for fatty acids in this study 

(642mm). Toothfish from both studies were also collected during the same 

seasons (excluding season 1995/1996) from the same grounds, and were 

caught at a similar range of fishing depths. Potential differences in the diet of 

toothfish examined in this study and that of Goldsworthy et al. (2002), due to 

any of these factors, can accordingly be excluded. 
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Eleven of the twenty-one species of midwater fish examined for fatty acids in 

this study are consumed by toothfish at Macquarie Island according to 

stomach content analysis (Goldsworthy et al. 2002). In particular, Bathylagus - · 

sp. (represented by Bathylagus antarcticus) is the group of fish most 

commonly consumed by toothfish in terms of frequency of occurrence (14%) 

and biomass (14%). Although the total proportion of fish in the diet is 

independent of toothfish size, the relative proportions of individual fish 

species do vary. This is particularly evident in relation to the dietary 

importance of Myctophidae. In two of the three fishing seasons (1995/1996 

and 1997/1998) examined by Goldsworthy et al. (2002) myctophids account 

for a small proportion of toothfish diet in terms of frequency of occurrence 

(10%), and biomass (3%). Additionally, the proportion of myctophids in the 

diet of toothfish from these two seasons is independent of toothfish size and 

fishing ground. However, in the third season examined (analogous to the 

1998/1999 fishing season of this study), the diet of small toothfish (<450mm 

total length) from the southern ground was dominated by myctophids (>65% 

prey biomass). This holds considerable significance for the current study. Of 

those toothfish measuring <450mm that were analysed for fatty acid 

composition (n=42), the majority of specimens (n=27, 64%) were collected 

from the southern fishing ground during the 1998/1999 season. Five of the 

myctophid species analysed for fatty acid composition in this study are 

represented in the stomach contents of Macquarie Island toothfish; Electrona 

carlsbergi, Gymnoscope/us braueri, G. fraseri, G. nicholsi and Lampanyctus 

archirus. The remaining myctophids examined, G. bolini, Protomyctophum 

bolini and E. antarctica, were not detected in toothfish stomachs. 

A host of other fish represent minor contributors to toothfish diet in both 

frequency of occurrence (combined contribution 4%) and biomass (5%). Of 

those fish analysed for fatty acids in this study, Labichthys yanoi, Stomias sp. 

(represented by S. gracilis and S. boa boa), Borostomias sp. (represented by 

Borostomias antarcticus) and Poromitra sp. (represented by P. crassiceps) 

are included in this category. 
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Although not amongst those species identified in the stomach contents of 

toothfish, the remaining fish species for which fatty acid compositions were 

determined are likely to ·be included in the category of 'unidentified fish'. 

Unidentified fish potentially includes the following species; Chauliodus sloani, 

Sternoptyx sp., Echiodon cryomargarites, Phosichthys argenteus, Cyclothone 

sp., Diplophos rebainsi, and Melanostigma gelatinosum. Unidentified fish 

form a major component of toothfish diet, both in terms of frequency of 

occurrence (36%) and biomass (15%). 

Squid 

Squid represent, on the basis of .stomach contents, the second most 

important prey group (after fish) for toothfish in the Macquarie Island region 

(Goldsworthy et al. 2002). Squid occur in 35% of toothfish stomachs and 

account for 32% of the prey biomass. All six squid species included in this 

study are consumed by toothfish. Gonatus antarcticus is the single most 

, important prey species consumed by toothfish, representing 16% of the total 

prey biomass (frequency of occurrence 8%). The remaining five squid 

species are less commonly consumed by toothfish. Mastigoteuthis sp. 

(frequency of occurrence 5%; biomass 2%) and M. ingens (frequency of 

occurrence 2%; biomass 4%) are minor prey items. Galiteuthis glacialis and 

Histioteuthis eltaninae are grouped together as part of 'other cephalopods' 

(frequency of occurrence 3.6%; biomass 2.2%). The importance of squid in 

the diet increases with toothfish size, their presence being uncommon in 

toothfish <550mm, but accounting for -40% of biomass in -toothfish >550mm. 

Fatty acid composition of toothfish as evidence of dietary variation 

The application of fatty acid tracers to a dietary study of a voracious and 

seemingly opportunistic predator as toothfish would initially appear to be 

limited. Toothfish from many populations consume a range of prey from 

several different trophic levels, inclu~ing fish, cephalopods and invertebrates. 

The complex combination of fatty acids provided by these prey species 

means that tracking the source of fatty acids through the food web becomes 

more difficult as the trophic level at which toothfish forage similarly increases. 
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Determining which fatty acids are provided by exactly which prey in a near 

top-level predatpr such as toothfish could prove a difficult task. 

Against this background though, the diet of toothfish from regions such as 

Crozet and Kerguelen Islands (Duhamel and Hureau 1985), South Georgia 

Island (Garcia de _la Rosa et al. 1997; Pilling et al. 2001) and the Argentinian 

slope (Garcia de la Rosa et al. 1997) varies considerably with size, as well as 

fishing depth and location. The partitioning of diet between different sizes is a 

common feature of fish and is most likely an adaptation aimed at minimising 

intra-species competition for resources. The consequence of this partitioning 

is that each developmental stage of toothfish can, for dietary purposes," be 

treated as separate predatory entities. That is, small and large toothfish are 

most likely foraging (with a certain amount of overlap) within different trophic 

niches. This, in turn, limits the range of prey species that small and large 

toothfish consume, narrowing the potential source of dietary fatty acids. 

Separating toothfish into dietary groups based upon size therefore simplifies 

the process of trying to identify trophic links solely using fatty, acid 

composition. 

This shift in diet with maturation may be reflected in the consideraqle 

variation of fatty acid composition in relation to size (analogous to age) of 

Macquarie Island toothfish, especially in the composition of EPA and DHA 

(see Chapter 5). However, the diet of Macquarie Island toothfish appears to 

be more homogeneous than other populations. Variations in toothfish diet are 

typically observed between years and location but not age, fishing depth or 

time of day (Goldsworthy et al. 2001 c; Goldsworthy et al. 2002). This would 

seem to largely discount the influence of diet as a major factor leading to the 

disparate fatty acid composition of small and large toothfish. Significantly 

though, the majority of small (<450mm) toothfish analysed in this study were 

collected from southern fishing ground during the 1998/1999 fishing season, 

a ground and season that corresponds with the atypical predominance of 

myctophid in the diet of this size class. Combined with the virtual absence of 

squid, the diet of the majority of small toothfish analysed in this study is 

considerably different to that of larger toothfish (>450mm). This size-related 

204 



CHAPTER 7 FATIY ACIDS AS DIETARY INDICTORS OF TOOTHFISH 

partitioning of diet may account for the variation in fatty acid observed. To 

test whether this variation is r~flected in the range of fatty acids provided by 

the diet requires examination of potential prey species. 

The ability to separate toothfish in a number of dieta~y groups based upon . 

size presents certain advantages when attempting to simplify the 

determination of foraging ecology. However, complications still arise-. 

Although the diet of toothfish shifts with age, the likelihood that toothfish 

forage upon a wide range of prey at all stages of their life history is high. The 

larger the range of prey consumed by toothfish, the more difficult it becomes 

to recognise the signatures of prey in the fatty acid composition of toothfish. 

Each of the fatty acids contributing to the composition of toothfish could have 

been supplied by a countless number of prey, or unlimited combinations of 

prey. Therefore, similarity in the fatty acid composition of toothfish and prey 

may not necessarily indicate a direct dietary relationship. Different 

combinations of prey can produce the same fatty acid compositions in 
- -

predator~. For instance, the reliance upon one or many differen~ prey species 

that share a common fatty acid composition (by virtue of a shared diet) will 

produce the same combination of fatty acids in the predator. In the same 

way, even if the majority of toothfish diet is composed of just one or two 
. . 

species, the influence of minor, oil-rich prey species may lead to the 

corruption' of the fatty acid signatures of these major prey such that they are 

no longer recognisable. 

Comparison of the fatty acid composition of toothfish ·and potential 

prey species 

Limitations of the data set 

A major restriction of this comparative study is th~ absence of fatty acid data 

pertaining to a number of important species identified ih the stomach 

contents of toothfish (see Goldsworthy et al. 2002). In particular, data is 

lacking for fish species belonging to the families Macrouridae 

(Coryphaenoides sp. and Cynomacrurus pirie1), Moridae (Halargyreus 
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johnsonii and Lepidion sp.) and Nototheniidae (Lepidonotothen squamifrons 

and Paranotothenia magellanica). The combined dietary srgnificance of these 

species amounts to -20% of prey biomass. The Macquarie Island region also - -

supports a range of prawn-like crustaceans, including euphausiids and 

mysids, for which no fatty acid data exists. Crustaceans can contribute up to 

9% of the prey biomass in the diet of toothfish. The lack of available fatty acid 

data for species that contribute close to 30% of the prey biomass of toothfish 

represents a potentially large oversight. 

A similar problem applies to the range of toothfish samples analysed. 

Although the toothfish examined in this study are representative of the overall 

size-distribution of the Macquarie Island population, fatty acid compositional 

data for toothfish TL <300mm and > 1300mm is lacking. In addition, most 

toothfish (77%) examined in,this study are >500mm TL, meaning that the 

lipid composition of small fish (i.e. <500mm TL) may not properly represent 

the true variation in fatty acid composition that exists. 

The use of arbitrary toothfish size groups, for comparative purposes, also 

presents difficulties. The large and abrupt change in PUFA levels in toothfish 

<500mm TL means that separating the fatty acid compositions of these 

toothfish into a number of clusters inevitably leads to the artificial smoothing' 

of variations within the data set. This can accentuate differences in fatty acid 

composition between toothfish and prey, leading to statistical errors. This is 

especially the case when the fatty acid composition of prey is intermediate to 

two toothfish size groups (i.e. where a prey straddles two toothfish size · 

groups). 

Total fatty acid composition 

In general, the total fatty acid composition of toothfish and potential prey are 

statistically dissimilar. Much of this dissimilarity is, however, due to fatty acids 

that are easily created by the modification of related fatty acids, or those 

readily synthesised from non-lipoidal sources (e.g. protein and carbohydrate). 

Many MUFA belong to one or both categories (e.g. 16:1 ro?c, 18:1 ro9c, 
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18:co7c), whilst most saturates belong to the latter (e.g. Allen 1976; Arts et al. 

2001 ). Several factors affect the rate of fatty acid synthesis and modification. 

For instance, the synthesis of fatty acids in fish generally decreases with 

increasing dietary lipid intake, due to the suppression of lipogenic enzymes 

such as fatty acid synthetase, malic enzyme and glucose-6-phosphate 

dehydrogenase (e.g. Regost et al. 2001 ). Thus, when the dietary intake of 

lipids is sufficient to meet physiological demands, the synthesis of fatty acids 

is repressed. Whether or not lipid intake is a limiting factor in the diet of 

toothfish is currently unknown. Similarly, the rate of elongation and 

desaturation of Cm fatty acids in the liver hepatocytes of Atlantic salmon 

( Sa/mo salar) is regulated by the presence or absence of certain fatty acids in 

the diet (Ruyter et al. 2000). 

Whilst elevaJed levels of long-chained MUFA (20:1 and 22:1) in Northern 

hemisphere marine organisms are often cited as evidence of a diet high in 

wax ester-rich copepods (e.g. Hagen et al. 2000), it is difficult to apply this 

observ'ation to the present study. The lipid composition of copepods from the 

sub-Antarctic generally and Macquarie Island specifically are poorly 

described, making it impossible to test the validity of this assumption. 

Although saturates and MUFA are unquestionably consumed and integrated 

into storage tissue by fish, biosynthetic activity can elevate the levels of these 

fatty acids above those of the diet or, where modification occurs, substantially 

lower them. In spite of the fact that LOA analysis separates toothfish and 

potential prey (i.e. fish and squid) into different classification groups, in the 

majority of cases this separation is due primarily to fatty acids that are not 

- strictly of dietary origin. 

Polyunsaturated fatty acid composition -

Due to the various changes that may affect SFA and MUFA, as described 

above, the fatty acid components that hold the greates~ potential for use as 

dietary indictors are PUFA. Whilst PUFA are essential to the proper 

functioning of a range of biochemical activities and mechanisms, many fish 
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are either unable to synthesise PUFA or can only do so in extremely small 

quantities (e.g. Dunstan et al. 1999). This restriction to biosynthesis means 

that the vast majority of fish obtain PUFA almost exclusively from the diet. 

However, the differences in PUFA composition observed in toothfish and 

potential prey are still great enough that they are separated by LOA (Tables 

7.1-7.4), making it difficult to assign predator-prey relationships based only 

on PUFA composition. 

EPA and DHA composition 

Any examination of differences also has to take into accounfwhat proportion 

of the total composition these fatty acids represent. In fact, most of the PUFA 

responsible for differences amongst toothfish and potential prey are minor 

components, representing less than 1 % of total fatty acids (e.g. 18:3ro6, 

18:4ro3, 20:4m3). Relatively small differences in the compositions of these 

minor PUFA can produce statistically significant results. They are also more 

sensitive to metabolic pressures. The relative proportions of minor fatty acid 

components are more rapidly decreased, in comparison to major 

components, by metabolic processes. 

Given the influence of these factors on the interpr'etation of lipid data, the 

approach taken in this study was to focus attention on PUFA that are both 

major fatty acid components and vary to an extent that suggests a significant 

dietary influence. Previous examination reveals that the size-related variation 

in toothfish fatty acid composition can be attributed t.o just two PUFA, EPA 

and DHA (Chapter 5). Because DHA and EPA mainly originate from the diet, 

coupled with variation in the composition of these fatty acids of around 10% 

of total fatty acids, comparable levels of these PUFA in toothfish and 

potential prey species could indicate atrophic link. Diminishing levels of EPA 

and DHA are associated with increasing dietary distance between the source 

of these PUFA (primary producers) and the predator species (Dunstan et al. 

1999). The shift in EPA and DHA observed therefore adds further support to 

the assumption that larger toothfish occupy a higher trophic level than that of 

smaller toothfish. 
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A range of potential fish and squid contain similar proportions of EPA and 

OHA to toothfish (separated into various size classes). In general, the 

compositions of EPA and OHA detected in fish correlate more closely with 

toothfish than those of squid. Fish also associate with all four toothfish size 

groups, though the make-up of species that associate with each size group 

differs markedly. This equates with the consistent presence of fish in the diet 

of toothfish (regardless of toothfish size) detected by stomach content 

analysis, as well as the shift in the species composition of fish consumed by 

toothfish as they mature. In.particular, the Myctophidae, L. archirus, E. 

antar_,ctica and E. carlsbergi contain levels of EPA and OHA comparable to 

that of small to medium toothfish (size groups 2 and 3) using LOA. G. braueri 

also associates with toothfish from size group 3, however, the large variation 

in fatty acid composition (including EPA and DHA) of this species meant that 

this association was limited to only 3 of 8 specimens. The closeness of EPA 

and DHA levels is consistent with the predominance of myctophids in the diet 

of the majority of smaller toothfish included in this study. This contrasts 

sharply with the secondary importance of myctophids in the diet of larger 

toothfish (>450mm, corresponding to toothfish size group 4). The similarity of 

two myctophids, G. nicholsi and G. bolini, to larger toothfish therefore 

seemingly contradicts the findings of stomach content analysis. This 

closeness rafses the possibility that myctophids are of greater dietary 

importance to larger Macquarie Island toothfish than previously thought, or 

that they share (at least in part) a common diet. 

Although Bathylagus antarcticus was identified by stomach content analysis 

as being of major dietary importance across all sizes of toothfish, EPA and 

OHA levels are closest to intermediately-sized toothfish (group 2). The range 

of sizes and fatty acid compositions necessitated the separation of 

Bathylagus antarcticus into juveniles and adults. Juveniles straddled toothfish 

size groups 1 and 2, though only those Bathylagus antarcticus clustering with 

group 2 were identified by LOA having comparable levels of EPA and OHA to 

toothfish. Adult Bathylagus antarcticus and toothfish are separated using 

LOA by differences in OHA composition. 
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In concurrence with the close association observed between several 

myctophid species and toothfish, the majority of the remaining fish contain 

EPA and OHA at levels comparable to intermediate sized toothfish (toothfish - -

size groups 2 and 3). These species include E. cryomargarites, juvenile S. 

graci/is, juvenile Borostomias antarcticus (toothfish size group 2) and C. 

sloani (size group 3). In addition, M. ge/atinosum straddles both toothfish size 

groups 2 and 3. The high levels of OHA and EPA present in the smallest 

toothfish analysed in this study (size group 1) are only matched by P. 

crassiceps, although levels in Sternoptyx sp. are approaching those of 

toothfish from size group 1 (though not confirmed by LOA). The largest 

toothfish (size group 4) associates with three species, adult S. gracilis, S. boa 

boa and D. rebainsi. Whilst S. gracilis, S. boa boa, P. crassiceps and 

Borostomias antarcticus have been identified in the stomach contents of 

Macquarie Island toothfish (as minor constituents of the diet), the same does 

not hold for the latter species. It is likely that they are amongst the large 

proportion of unidentified fish remains, the dietary importance of which may 

have previously underestimated by stomach content analysis. 

Several prey species differ considerably in fatty acid composition to toothfish. 

Although L. yanoi, P. bolini and G. fraseri cluster with medium-large toothfish 

based on MOS and EPA and OHA levels, they show great.dissimilarity based 

on LOA. Both L. yanoi and G. fraseri have been identified in the stomach 

contents of toothfish, however, the dietary importance of these species is­

small based on stomach content analysis. LOA also reveals a substantial 

difference in the fatty acid composition of all six squid species examined and 

toothfish. In general, the EPA levels of all squid exceeded that of 

corresponding toothfish, especially in G. glacialis (approximately 10% higher 

than small toothfish). Differences in the relative levels of a number of other 

major fatty acid were also identified. The absence of a strong correlation 

between squid and toothfish is surprising, though it could support certain 

dietary observations. For instance, the dissimilarity of small-medium toothfish 

(size groups 1,2,3) arid squid fatty acid compositions may partly reflect that 

squid are rarely consumed by toothfish <550mm. However, given that based 

on stomach content analysis the dietary importance of squid rises to -40% of 

210 



CHAPTER 7 FATIY ACIDS AS DIETARY INDICTORS OF TOOTHFISH 

prey biomass in toothfish >550mm, a greater degree of similarity in the fatty 

acid composition of large toothfish and squid (especially G. antarcticus) 

would be expected. Although a comparison-of EPA and OHA leve·1s and, to a 

lesser extent, MOS do cluster G. antarcticus with larger size toothfish 

(straddling size groups 3 and 4), LOA does not support these observations. 

The importance of squid in the diet of large toothfish from Macquarie Island 

could be well below that suggested by Goldsworthy et al. (2002), more in line 

with toothfish populations from other regions (e.g. Garcia de la Rosa et al. 

1997; Pilling et al. 2001 ). However, the small number of squid samples 

available for analysis means that the extent of within-species variation in fatty 

acid composition (due to age and seasonaLfactors) presently cannot be 

properly ascertained. Additionally, the simultaneous consumption of MUFA­

rich fish (e.g. myctophids) or other prey could account for the reduction in 

PUFA (especially EPA) observed in toothfish, even if squid are a large 

portion of the diet. 

Physiological factors influencing the fatty acid composition of toothfish . . 
A number of fundamental difficulties arise when attempting to use biologically 

active compounds, such as fatty acids, as dietary tracers. The processes 

governing the biosynthesis and modification of fatty acids previously outlined 

are generally well understood. In contrast, the manifold physiological 

processes responsible for regulating the function and utilisation of fatty acids 

are poorly understood within wild fish populations (e.g. Sidell 1.991 ). The 

cumulative influence of these processes on the fatty acid composition of 

toothfish holds great relevance to their use as dietary tracers. Current 

understanding of these processes is based upon the investigation of species 

principally reared in artificial environments (e.g. Navas et al. 1998; Cahu et 

al. 2000; Ruyter et al. 2'000; Gapasin and Duray 2001; Koven et al. 2001; 

Regost et al. 2001 ). Whilst the findings of these studies are important, the 

level to which they can be applied to wild fish populations is unknown. 
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Rate of fatty acid turnover 

Although dietary fatty acids are likely to be deposited into storage with little or · · 

no modification, the relatively low lipid content of small toothfish suggests 

that the capacity to store lipid on a long-term basis is limited to more mature 

toothfish only. Ongoing physiological processes, including metabolism, 

modification and incorporation into structural components (e.g. cell 

membranes, visual and neural organs) mean that the turnover of fatty acids 

in fish may be as little as three weeks (Kirsch et al. 1998). Turnover of lipid in 

small toothfish would also be expected to exceed that of larger fish. The 

higher lipid content of larger toothfish means that a greater proportion of 

dietary lipid is initially directed into storage rather than physiological activities. 

The constituent fatty acids of fish are consequently a temporal integration of 

diet spanning weeks rather than the months observed in, for example, marine 

mammals, though this still represents a significant advancement over 

stomach content analysis. This is of little importance if dietary intake is 

consistent as the fatty acid_ composition will be the same regardless of when 

fish are sampled. In situations where the composition of prey consumed is in 

flux though, for example during seasonal shifts in diet from one prey to , 

another, constituent fatty acids reflect a transitional state rather than a clear 

integration of diet. The blurring' of fatty acid signatures creates obvious 

difficulties in applying this information to the identification of dietary links. 

Seasonal shifts in diet are apparent in the diet of toothfish from Macquarie 

Island (Goldsworthy et al. 2002). However, detection of any shift in fatty· acid 

composition associated with these seasonal differences was obscured by the 

overriding influence of size-related dietary variation within this population 

(Chapter 5). Regardless, variation in diet over the relatively short period in 

which the toothfish analysed in this study were collected (approximately 2 

months) is likely to be minimal. 
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Influence of total lipid content of potential prey 

The impact of the total lipid content of a prey organism on the fatty acid 

composition of toothfish also needs to be considered. Given two prey of 

equal dietary importance to toothfish (in terms of biomass), the lipid-rich prey 

will exert disproportionately greater influence on fatty composition compared 

to the lipid-poor prey species. The dietary importance (in terms of biomass) _ 

of many of the lipid-rich species (>10% lipid content), including adult S. 

gracilis (14.2%), S. boa boa (10.2%), D. rebainsi (17.0%), E. antarctica 

(17.5%) and G. bolini (14.5%) and the squid G. antarcticus (17.5%) and K. 

longimana (13.5%) may therefore be overestimated as they have a masking 

effect on low· lipid containing species. Conversely, the importance of the lipid­

poor species such as P. argenteus (1.0%), P. crassiceps (1.3%), E. 

cryomargarites (2.0%), and juvenile Bathylagus antarcticus (2.2%), may be 

underestimated. 

The unique lipid storage mechanism of squid also adds a level of complexity. 

Phillips et al. (2002) observed that the fatty acids stored in the prominent, 

lipid-rich digestive glands of some squid, including. M. ingens (26.8% lipid 

content, Phillips et al. 2001) and K. longimana (38.0%) and G. antarcticus 

(47.7%) from the current study, is a more direct measure of diet than the lipid 

stores of fish. As most squid depend more on amino acids rather than fatty 

acids for metabolic energy, the vast majority of lipid consumed by squid is 

directed into the digestive gland for storage, with little or no modification. This 

warehouseing' of lipid makes it more difficult to distinguist:l between the fatty 

acid composition of the prey species of squid and the composition of squid 

mantle tissue. 

Size-related and seasonal variation in fatty acid composition of potential prey 

The size-related variation in fatty acid composition of toothfish (i.e. increase 

in PUFA in larger fish) is also apparent in several fish species analysed in the 

current study, namely Bathylagus antarcticus, Borostomias antarcticus and 

S. gracilis. The ability of a prey species to express a range of fatty acid 
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profiles at different ages complicates the identification of predator-prey 

interactions. Determining the likelihood of a predator-prey interaction is only 

partially possible in the absence of details on_ the extent of fatty acid variation - · 

within a prey species. Many species may also experience seasonal changes 

in fatty acid composition. It is currently not possible to speculate on whether 

substantial shifts in the fatty acid composition of potential prey are likely in 

the Macquarie Island region. Detection of these potential fluxes, by sampling 

from different times of the year, has not been undertaken. 

Selective metabolism, mobilisation and partitioning of fatty acids 

Added to the factors noted above are other physiological influences on the 

fatty acid composition of toothfish. The potential for the selective mobilisation 

of certain fatty acids, for either metabolic or physiological needs, is an 

important consideration. The ability of fish to selectively deposit lipid and fatty 

acids into different tissues is well-acknowledged (Navarro et al. 1995; 

Phleger et al. 1997; Phleger et al. 1999a; Phleger et al. 1999b; Kamler et al. 

2001), including for toothfish (Chapter 4). The type of tissue in which lipids 

are stored also influences the rate at which fatty acids are metabolised. 

When energy is required, fatty acids contained within oxidative muscle, 

adipose tissue and organs including the liver are depleted at a far greater 

rate (e.g. Lund and Sidell 1992; Friedrich and Hagen 1994) than in tissues 

located in organs such as the brain and eyes (e.g. Navarro et al. 1995). In 

addition, MUFA such as 18:1 co9c and 16:1 ro7c may be metabolised in 

preference to PUFA (Sidell 1991; Lund and Sidell 1992). However, Crockett 

and Sidell (1992) question the preferential metabolism of MUFA over PUFA, 

and suggest that fatty acids such as EPA and DHA should be considered as 

equally important substrates for energy metabolism. 

The combination of this disparate, tissue-specific and fatty acid-specific 

metabolism is that fatty acids present in metabolically resistant tissues can 

impart a disproportionately greater influence on overall.fatty acid­

composition. However, the vast majority of lipid in toothfish is stored within 
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tissues readily exposed to metabolic processes (Chapter 4), mitigating the 

influence of these processes on overall fatty acid composition. 

Influence of environmental adaptation on fatty acid composition 

Environmental adaptation also plays a role in the pattern of fatty acid 

distribution within fish. The best described is the tendency for fish from colder 

environments to accumulate PUFA, especially in the PL fraction, in order to 

maintain membrane fluidity (e.g. Dunstan et al. 1999; Cahu et al. 2000). The 

deposition of PUFA (particularly EPA and DHA) into PL rather TAG stores 

(e.g. Medina et al. 1995; Guerden et al. 1997; Montgomery et al. 1999; 

Hagen et al. 2000) in part explains the domination of EPA and DHA observed 

in the smaller, more PL-rich toothfish analysed in this study. The effect of this 

process is exacerba~ed by the coincidental increase in total lipid content in 

the form of TAG (and associated decrease in the relative proportion of PL) as 

toothfish mature. 

Relevant biological and enviro·nmental factors 

Assessing the likelihood of predator-prey interactions also requires 

consideration of environmental and biological factors that can exert 

significant influence on diet. Similarity in the fatty acid composition of 

toothfish and potential prey does not necessarily imply the presence of a 

simple predator-prey relationship. Overlapping fatty acid compositions could 

imply a similar diet or that the predator-prey relationship is reversed, such 

that toothfish are in fact consumed by potential prey. Thus, knowing the size 

of prey is essential in order to determine the likelihood of predation by 

toothfish and information regarding prey diet is required to assess the 

likelihood of dietary overlap. A further consideration is how prey are 

distributed within the water column; do the habitats of toothfish and potential 

prey overlap to an extent suggesting that foraging is a real possibility? 
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Distribution within the water column 

The distribution of a potential prey species within the water column provides - -

an indication as to the probability that they are available for consumption by 

toothfish. Assuming the size related stratification of toothfish into different 

depth zones is associated with minimal vertical movement of toothfish within 

the water column, only those prey within the distribution range of toothfish 

are likely to be consumed. Such a situation is complicated by diurnally 

migrating fish (e.g. myctophidae), that may be consumed by toothfish of 

differing sizes at different times of the day. Figure 7.9 presents the 

approximate depth distribution pattern, at Macquarie Island, of toothfish 

(determined from trawl depth) and potential fish prey (determined from 

Williams 1985; Gon and Heemstra 1990; Oven et al. 1990; Kock 1992; Miller 

1993; Williams et al. 2001) included in this study. As the distribution of fish 

within the water column is heavily influenced by factors including time of year 

(related to depth of primary production) and water temperature, the patterns 

presented in Figure 7.9 can only be used as an approximate guide. The 

majority of fish included in the current study are meso-bathypelagic in 

distribution, ·although_ most myctophids are also found in the upper water 
. ' 

column (epi-mesopelagic), and are thus well within the reach of toothfish. 

Significantly, the peak distribution of most myctophids does not overlap 

significantly with that of toothfish >500mm TL, supporting dietary and fatty 

acid observations. Of those fish that group with toothfish <500mm TL based 

on DHA and EPA levels, most are distributed at depths that overlap with 

toothfish_ of this size. These species include P. crassiceps, M. gelatinosum, 

S. gracilis, Bathylagus antarcticus, E. cryomargarites, C. s/oani and the 

myctophids L. archirus, E. carlsbergi, and G. braueri. An exception is E. 

antarctica, a myctophid not present in the stomach contents of toothfish, 

which is mainly found at shallower depths. In the same way, those fish that 

group with toothfish >500mm TL, S. gracilis, S. boa boa and D. rebainsi, all 

reside in water at depths that coincide with large toothfish. The lower depth 

limit of the myctophids G. nicholsi and G. bolini at Macquarie Island is not 

known. The ability of toothfish >500mm to consume these species is 

therefore unknown. 
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The distribution of squid within the water column is not as well defined and is 

usually inferred from their presence in the stomach contents of predators that 

forage at known depths (e.g. Nemoto et al. 1985; Thompson 1994; Cherel 

and Weimerskirch 1999). In general , the presence of squid below 1 OOOm is 

rare (i .e. mainly epi-mesopelagic) although certain species, such as G. 

glacialis, gradually migrate into the deeper bathypelagic depths as they 

mature (Piatkowski and Hagen 1994). M. ingens has also been collected 

from depths of 500-1200m in the Macquarie Island region (Phillips et al. 

2001 ). 

Size of potential prey 

A mean increase in the size of prey caught by predators as they grow is a 

feature commonly encountered in fish (e.g. Kozlov and Tarverdiyeva 1989). 

Taking into account the large size of toothfish relative to the majority of 

Southern Ocean fish species, and the fact that they are capable of 

consuming prey measuring up to 50% of their total length (McKenna Jr 

1991 ), few fish are out of the reach of even smaller sized toothfish. Of the 

potential fish prey examined in this study, none exceed the TW of the 

smallest toothfish (300g) and most weight less than 20g. Although the TL of 

Labichthys yanoi (460-61 Omm) is greater than that of the smallest toothfish 

(31 Omm) , TW is not (4.9-23.5g) . The small size of potential fish prey 

examined therefore places them well within the predatory capacity of even 

the smallest toothfish included in this study. 

Several squid, however, are larger than toothfish. In particular, the largest 

specimens of M. ingens (TL 1 OOOmm, TW 686g) and K. longimana (TL 

1050mm, TW 2321 g) examined far exceed the smallest toothfish in both total 

weight and length. The ability of squid to consume prey approaching or even 

exceeding their own size is well documented (e.g. Clark 1996). The absence 

of squid in the diet of small toothfish ( <550mm TL) could be due, in part, to 

the combination of the large size of many squid and the fact that they are 

voracious predators. However, the ability of toothfish to predate upon squid is 

likely to improve with increasing size. For instance, South Georgian toothfish 
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consume K. longimana with a mean mass of over 4000g, including the 
' 

consumption of a 13.4kg squid by a 5.5kg toothfish (Xavier et al. 2002). 

Dietary overlap · 

In the same way, similarities in the diet of toothfish and potential prey may be 

reflected by similarities in fatty acid composition. A certain degree of overlap 

is likely between toothfish and the larger squid species such as M. ingens, G. 

antarcticus and K. /ongimana, although dietary information is scarce. The diet 

of M. ingens in the Macquarie Island region is similar to that of small-medium 

toothfish, and includes the myctophids E. carlsbergi, E. subaspera, 

Krefftichthys anderssoni, G. nicholsi and G. fraseri, and the bathylagid 
' ' -

Bathylagus antarcticus (Phillips et al. 2001 ). Although not supported by LOA, 

both EPA-and.DHA levels and MDS'of fatty acid profiles cluster M. ingens -

and small to medium toothfish together. -This clustering may indicate the 
.. 

existence of a complex dietary interaction between M. ingens and toothfish, -

involving a combination of a shared diet as well as the mutual predation of 

each species on the other. Limited information regarding the diet of other 

squid species is available. The diets of K. longimana (Nemoto et al. 1985) 
- . 

and G. glacialis (Lu and Williams 1994a) are apparently dominated by 

Euphausia surperba, although these studies only apply to squid from 

Antarctic waters. If the diets of these squid are similarly dominated by 

euphauslids in the ·Macquarie Island regiori, overlap would be considered 

minimal as crustaceans only contribute -10% of prey biomass in the diet of 

toothfish (Goldsworthy et al. 2002). 

Although ~he diet of th_e vast majority of fish ~pecies fncluded in this are 

unknown, a substantial overlap in diet between toothfi~h and many of these 
. ' 

species can immediately be discounted because of .the large size gap 

previo.usly mentioned. Of the mesopelagic and bathylpelagic fish from the 

Macquarie Island for which diet has been determined (Gaskett et al. 2001 ), 

several may potentially share elements of their diet with toothfish. An overlap 

in the diets of toothfish and pis.civorous fish such as E. cryomargarites, G. 
\ . . ·~ 

bolini, Borostomias antarcticus, P. argenteus and S. gracilis is possible. 
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However, the species composition of the fish that form the diet of these 
' 

species could not be ascertained, due in part to the advanced state of 

digestion of much of the stomach contents. In addition, copepods and 

euphausiids dominate the diet of many of the myctophids included in this 

study, namely E. antarctica, E. carslbergi, G. braueri, G. fraseri, G. nicholsi 

and P. bolini. Athough crustaceans are acknowledged prey of toothfish in the 

Macquarie Island region, the minimal dietary overlap b~tween toothfish and 

myctophids would not be expected to lead to a great similarity in fatty acid 

composition. Dietary overlap between toothfish and Bathyl~gus antarcticus, 

L. archirus and M. gelatinosum is also unlikely as these ~pecies principally 

consume amphipods (Gaskett et al. 2001 ), a crustacean group contributing 

<0.1 % of the prey biomass of toothfish (Goldsworthy et al. 2002). 

Significant overlaps in diet of toothfish and potential prey, leading to the 

observed similarity in EPA and DHA composition, are in most cases unlikely. 

Squid area possible exception; their large size (even relative to toothfish), 

voracious predatory ability and reliance on many of the same fish consumed 

by toothfish (e.g. M. ingens and myctophids) could point to a considerable 

dietary overlap. In contrast, the diets of most fish do not coincide with that of 

toothfish. Overlap is possible with the larger piscivorous fish species such as 

S. gracilis, E. cryomargarites, G. bolini, P. argenteus and B. antarcticus, 

however the exact species composition of their diet is currently unknown. 

7.5 CONCLUSIONS 

Although many differences are apparent in the fatty acid composition of 

toothfish and potential prey, correspondence in the composition of PUFA 

such as DHA and EPA may point to the existence of a number of authentic 

dietary interactions. These are particularly evident in relation to small­

medium toothfish that group with many species of fish and myctophids. The 

fatty acid composition of squid and toothfish in comparison show a number of 

differences, contrasting with the dietary importance of squid suggested by 

stomach content analysis. 

220 



CHAPTER 7 FATTY ACIDS AS DIETARY INDICTORS OF TOOTHFISH 

However, the limitations associated with the use of fatty acids a~ dietary 

indicators must be acknowledged. Various physiological process,·including 

selective metabolism and biosynthesis of fatty acids, and complicating factors 

such as vast differences in total lipid content of prey complicate the origins of 

the fatty acids contributing to the overall lipid composition of toothfish. The 

decrease in PUFA with increasing toothfish size can also be partly attributed 

to the concomittant decrease in PL levels. Finally, this study also highlights 

the limitations of current statistical methods. Interpretation of the results of 

statistical methods such as LOA and MDA require careful consideration of 

the various factors that contribute to fatty acid composition. 

Nonetheless, the significant impact of toothfish size on fatty qcid composition, 

especially the large variations in PUFA such as DHA and EPA, most, likely 

represents an underlying dietary influence. This contrasts to some extent with 

the generally constant diet of toothfish, independent of size, inferred from 

stomach content analysis. Significantly though, -the variations in fatty acid 

composition coincides with the atypical disparity in diet, determined from 

stomach contents, that was observed between large and small fish in the 

season from which the majoirty of the specimens analysed in this study were 

collected. 

221 



CONCLUSION.S 

Emphasis on the diet of top-level mammalian predators in regions such as 

Macquarie Island has meant that the ecological importance of those species 

at lower trophic levels, including midwater fish, squid and invertebrates, is 

often overlooked. This includes information related to chemical composition, 

including lipids. Lipids perform a range of important biological functions in 

marine organisms, including the regulation of buoyancy. Lipids also facilitate 

the transfer of metabolic energy from lower to higher trophic levels through 

the complex dietary interactions of the food-web. It is this transfer of lipids, 

particularly the constituent fatty acids, from prey to predators that allows for 

the tracking of certain aspects of dietary interaction. 

This study represents the first significant study of the lipid composition of 

Macquarie Island fish, particularly Patagonian toothfish (Dissostichus 

eleginoides), and also expands current understanding of the composition of 

squid in the region. The wide-ranging lipid class compositions and contents 

observed across the species examined highlights several aspects of 

biological function. For instance, the vast quantities of WE (Electrona 

antarctica, Gymnoscopelus bolini, G. br8:ueri, Labichthys yanoi, Cyclothone 

sp., Diplophos rebains1) and DAGE (Gonatus antarcticus) stored in a number 

of species most likely to contributes to the maintenance of buoyancy. The 

TAG-rich stores of other species (e.g. Kondakovia longimana; 

Protomyctophum bolini, Stomias gracilis) may also jointly function as both · 

buoyancy regulators as well as long-term stores of energy. The increase in 

lipid content observed for toothfish in relation to both increasing size and 

fishing depth suggests that, in the absence of a swimbladder, lipids may also 

play a role in maintaining buoyancy. 
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CONCLUSIONS 

The variation in fatty acid composition obser\ted generally reflects the varying 

diet of fish and squid in the Macquarie Island region. However, large 

differences in the fatty acid composition of small aFld large Patagonian 

toothfish point to a more extensive shift in diet with age than was inferred 

fr9m stomach contents. This disparity may be a consequence of the 

acknowledged biases of stomach content analysis, biases possibly avoided 

by the examination of dietary fatty acids. 

However, limitations on the use of fatty acids as dietary indictors also exist. 

Biologically active compounds such as fatty acids are exposed to a multitude 

of physiological processes of modif~cation and biosynthesis, all of which alter 

the original composition (or signature) of fatty acids obtained from the diet. 

These biases can be partly overcome by-placing particular importance on the 

use of fatty acids that are of strictly dietary origin and more likely to be 

incorporated directly into storage with fTlinimal modification (such as EPA and 

DHA). The limitations of this technique are therefore potentially significant 

and need to be acknowledged. 

The application of fatty acids to dietary studies is therefore at it's most 

effective when used in combination with traditional techniques such as 

stomach content analysis. In the context of the present study stomach 

contents suggest that, in general, the diet of toothfish in the Macquarie Island 

population is broad but is· not significantly influence by variations in factors 

such as size. Fatty acid analysis appears to detect a much more pronounced 

shift in diet as toothfish age. This shift perhaps reflects an increasing dietary 

importance of larger, MUFA-rich fish accompanied by a decrease in the 

dietary importance of PUFA-rich prey such as squid. The ecological 

implications of such a shift in diet are potentially substantial, underscoring the 

importance of toothfish as an important marine predator at all levels of the 

Macquarie Island foodweb. 
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