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Abstract

The deflection of light by massive bodies has been of interest to mathematicians

and physicists from time to time since Newton suggested the possibility in his

1704 work, “Opticks”. This deflection was calculated in the late eighteenth and

early nineteenth centuries, treating light as a classical particle. The deflection was

again calculated by Einstein in the early twentieth century, using his new general

theory of relativity, to be twice the previous classical result. The measurement of

the deflection of light passing close by the Sun was widely publicized as a dramatic

confirmation of general relativity, in the now famous 1919 expeditions.

In the last three decades, gravitational lensing has become an important tool for

astrophysicists, especially in searching for dark matter and exoplanets. By 1991,

astrophysicists were suggesting that exoplanets could be found using microlensing,

and since 2004 at least ten planets have been found in this way. In microlensing,

light from a background star passes close to the lensing system, and is deflected

around the lens. Because of this, more light rays reach the observer, producing

magnification of the background source. This magnification changes over time, as

the source, lens and observer move into and out of alignment. The details of the

magnification over time are plotted in a ‘light curve’, which is simply intensity

versus time. A planet orbiting a lensing star can make changes in the light field at

the observer’s plane (”magnification map”). Such changes show up as variations

to the shape of the simple light curve.
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This thesis presents a mathematical model for the paths taken by light rays near

a massive object such as a star or black hole. I begin the thesis by considering the

spacetime around a non-rotating, uncharged, spherically symmetric object. Such

a spacetime is described by the Schwarzschild metric equation. After considering

the deflection angle and travel-time delay in such a system, I derive an acceleration

vector for the massless particle (“photon”). This acceleration vector is used to plot

the light paths of many photons passing through a binary system using numerical

integration, resulting in a magnification map very similar to those currently in

use by astrophysicists. In the following chapter I consider a linear approximation

of the acceleration vector just mentioned, considering the light path as a small

perturbation about a straight line. Such an approach results in a linear third order

ordinary differential equation, but with non-constant coefficients. Unexpectedly,

a closed-form solution is found, resulting in path equations accurate to first order

in the relevant small parameter. This allows for very rapid computation of the

magnification map. Some examples are presented and compared against the fully

non-linear numerical results of the previous chapter, and also against a simpler

approach used by some other authors.

The final section of results of the thesis is given to consideration of the effect of

rotation of the lensing object. In considering the Kerr metric which describes

such a system, I follow an approach similar to that used in previous chapters.

Thus, an acceleration vector is derived, which is used to plot a magnification

map for a binary system containing a rotating object. Rotation causes bending

and asymmetry in the magnification map. This is illustrated for certain cases of

interest. A second order approximation is also considered, as well as application

of the equatorial special case to calculation of travel time delay. This delay is

compared to that expected for a non-rotating object.
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Chapter 1

Introduction

1.1 Historical Background

The deflection of light by massive bodies has been of interest to mathematicians

and physicists since Newton suggested the possibility in the form of a question

for further study in Book 3 of his ”Opticks”. He suggests that like any material

object, light too, should be deflected by the gravitational attraction of all other

matter. ”Do not Bodies act upon Light at a distance, and by their action bend

its Rays; and is not this action strongest at the least distance?” (Newton, 1704).

This appears to have been a prevailing view in the eighteenth century, as stated by

clergyman and scientist, John Michell in his paper (Michell, 1784) on determining

the distances to stars as well as their magnitudes.

Let us now suppose the particles of light to be attracted in the same

manner as all other bodies with which we are acquainted; that is, by forces

bearing the same proportion to their vis inertiae, of which there can be no

reasonable doubt, gravitation being, as far as we know, or have any reason

to believe, an universal law of nature. Upon this supposition then, if any one

1



Chapter 1. Introduction 2

of the fixed stars, whose density was known by the above-mentioned means,

should be large enough sensibly to affect the velocity of the light issuing from

it, we should have the means of knowing its real magnitude, &c.

Later in the same paper Michell gives a description of an hypothetical star so

massive that light would be unable to escape its surface, and which consequently

would be invisible to us. This appears to be the first mention of a black hole in

the literature. In the same method of reasoning, Johann von Soldner published

a paper in 1801, which by careful calculation, determined the deflection of light

from a distant star as it passes near to the sun. He thus found the deflection to be

0.84 arcseconds. With the limits of precision of astronomical observations at the

time, Soldner concludes ”that nothing makes it necessary, at least in the present

state of practical astronomy, that one should take into account the perturbation of

light rays by attracting celestial bodies” (see the commentary and translation of

Soldner’s paper by Jaki (1978), as well as the note by Treder & Jackisch (1981),

who provide additional clarification).

In the early twentieth century, an approximation of the deflection of light passing

close to the sun was again calculated by Einstein, using his new general theory

of relativity. This deflection was found to be twice the previous classical result.

By this time, astronomical measurement was sufficiently precise to measure such

small deflections, and the measurement of the deflection of light passing close by

the sun by Eddington and Dyson was widely publicized as a dramatic confirmation

of general relativity, in the now famous 1919 expeditions. Einstein considered the

”Lens-like action of a star” due to this deflection in a paper in 1936, but concluded

by saying that the chance of actually observing the phenomena was exceedingly

remote, due to the very close alignment required between source, lens and observer

(Einstein, 1936).



Chapter 1. Introduction 3

In the last three decades, following the discovery of the first known double imaged

quasar in 1979, gravitational lensing has become an important tool for astrophysi-

cists. In a paper published in 1986, Paczyński suggested that it may be practical to

observe microlensing events produced by dark lenses in the galactic halo, by means

of an observing program designed to monitor the brightness of several million stars

in neighbouring galaxies over a two year period. At least, such a program would

put constraints on the masses of the intervening halo objects (Paczyński, 1986).

By 1991, astrophysicists were suggesting that exoplanets could be found using

microlensing (Mao & Paczyński, 1991). The first found using this method was

discovered in 2003 (Bond et al., 2004) with several more discovered since (Sumi et

al., 2010). While far more planets are discovered by other methods such as radial

velocity measurement or light dimming due to transiting planets, micro-lensing

complements these methods, being more sensitive to planets with larger orbits

(Mao, Kerins & Rattenbury, 2007).

1.2 Gravitational Lensing

When light from a background star passes close to a heavy object or distribution of

matter, it is deflected towards this ‘lens’. Because of this, more light rays reach the

observer, producing magnification and distortion of the background source image.

A distinction is made between Strong Lensing and Microlensing, in that a Strong

Lensing event separates the different images to an observable extent. That is,

separate images of the background object can be seen. A typical strong lens would

be a cluster of galaxies, lensing a more distant galaxy. Microlensing events produce

images that are so close together that they cannot be distinguished, resulting only

in an apparent brightening of the background source. Typically, the lens would
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be a stellar system, a black hole, or a planet, and the source would be a single

star. The approach in this study can be used for either sort of lensing, but most

of the discussion will relate to microlensing and the resultant magnification maps

and light intensity curves. The magnification thus produced changes over time,

as the source, lens and observer move into and out of alignment. The details of

the magnification over time are plotted in a ‘light curve’, which is simply intensity

versus time. A planet orbiting a lensing star can make changes in the magnification

pattern at the observer’s plane. Such changes show up as variations to the shape

of the simple light curve.

This phenomenon, known as gravitational lensing, is used by astrophysicists in

identifying characteristics of the lensing object. Such an approach is useful in

searching for dark matter, as suggested by Paczyński (1986). The presence of

such planets in the lensing system can cause caustics in the magnification map.

These caustics are described by Gould & Loeb (1992). Various techniques can be

used to model caustic patterns.

Interpretation of these light curves is difficult, as this is an inverse problem, in

which observers seek to determine the details of the lensing system which gave rise

to the observed data. In particular, researchers are often trying to find planets

in the lensing system, and to determine characteristics of such planets, primarily

orbital radius and mass. Details on reproducing a model of such a multi-body lens

were outlined at least as early as 1996 (Wambsganss, 1997). For an introduction

including a brief history, background, theory and application of gravitational lens-

ing, the following works are recommended: Schneider, Ehlers & Falco (1992), Mao

et al. (2007), or the excellent recent reviews by Gaudi (2012), Bennett (2008), and

Ellis (2010).
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1.3 Lensing Models

It is customary (Wambsganss, 1997) to use a ‘thin lens’ model, in which the effect of

the lensing system is confined to the plane containing the lensing objects (the ‘lens

plane’), this plane being normal to the line from source to observer. A deflected

light ray thus consists approximately of two straight lines, with an abrupt angle

change in the lens plane. The magnitude of this change is given by the Einstein

deflection angle: ∆θ = 2rs/r0 where r0 is the point of closest approach of the light

ray to the star or planet and rs is the Schwarzschild radius, rs = 2MG/c2. Here,

M is the mass of the star, G is Newton’s gravitational constant and c is the speed

of light in a vacuum. Note that this is sometimes given as ∆θ = 2rs/b, where b

is the impact parameter. The values of b and r0 only differ by an amount of the

order of the small ratio rs/r0, so that to first order in this small parameter, these

two estimates are equivalent. For a description of this method, see for example

Schneider & Weiss (1986). As the deflection involved is very small (which means

that the photon passes through areas of weak gravitational fields only), such a

”first order” approach is a very accurate approximation.

Current methods (for example, see Zabel & Peterson (2003) and Wambsganss

(1997)) shoot rays from the observer to the lens plane, deflect by the angle as cal-

culated above, and then draw the ray from there to the source plane. Equivalently,

light rays may be followed from the source to the observer, mimicking more closely

the actual physics. The density of rays at the source plane (or, alternatively, the

observer’s plane) is thus mapped. By tracing various linear paths across this map,

to simulate the relative movement of the source star, light curves are generated.

The aim is to find a light curve that is a good fit to the empirical data.
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For an observer travelling across the plane normal to the line joining lens and

source (the ‘observer’s plane’), the amplification can be plotted as a function of

time. Fig. 1.1 shows schematically the method for mapping the amplification

for an observer travelling at constant speed in the observer’s plane, not passing

through the origin (that is, the intersection of the lens-source line with the ob-

server’s plane). Passing through the origin in this point-source-point-lens model

(PSPL) would result in an infinite magnification (a more realistic non-point source

would not exhibit such pathology, (see Witt & Mao (1994) and as later discussed

in Mollerach & Roulet (2002) p.41). The relative intensity I for a PSPL model is

given by I = (u2 + 2)/(u
√
u2 + 4), where the dimensionless variable u is a mea-

sure of the impact parameter (Gould & Loeb (1992) and Wambsganss (1998)). A

model light curve generated using this formula is shown in the lower panel of Fig.

1.1. Light curves based on collected intensity data can provide information about

the mass of the lensing object, provided that the distance to lens and distance to

source can be estimated. If the lens is a binary system, there are deviations from

this simple light curve.

The purpose of a microlensing model is to produce a magnification map at the

observer’s plane due to light from the source (alternatively, a map at the source

plane due to light rays from the observer) being deflected at the lens plane. The

light curve is then a one dimensional cut through the magnification map. A

magnification map such as this can be produced by shooting rays from the source,

through the lens and plotting where the ray intersects with the observer’s plane,

using the deflection angle predicted by general relativity. This approach is shown

in the top panel of Fig. 1.1. In reality, the path will be a smooth curve rather

than two straight line segments. Even so, the majority of the deflection occurs

very close to the lens plane.
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Figure 1.1: Thin Lens Approach and Typical Light Curve. The top panel
is a schematic representation of a point-source-point-lens scenario, showing the
path of the observer across an imaginary plane normal to the line through source
and lens (the ‘observer plane’). The lower panel shows an ideal light curve of
I versus t generated by the intensity formula I = (u2 + 2)/(u

√
u2 + 4), where

u =
√
rmin + t2. In this case rmin = 1. Note that if rmin = 0, the resultant

intensity at t = 0 is infinite.
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At each small area on the observer’s plane, the brightness is proportional to the

number of rays passing through that area. A line is then drawn across the ob-

server’s plane, representing the passage of the earth relative to lens and source.

Along that line, the brightness is sampled and a light curve is the resulting bright-

ness as a function of time for the observer travelling along that line. Note that

every such magnification map allows for arbitrarily many light curves, depending

on the location of the observer’s path across the plane. Because of this, it is, in

general, a difficult matter to find a model to fit an observed light curve for a lens
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involving more than one mass (that is, a binary or planetary system). The prob-

lem becomes much more difficult when the lens involves more than two objects

(Mao et al., 2007).

1.4 Kinematical Approach

While Newtonian gravity is a very accurate theory for almost all calculations used

in modern life, the deflection of light is an example where it is clearly insufficient.

Indeed, as noted above, it predicts a value approximately half of that predicted by

general relativity, the relativistic prediction having been confirmed by experiment

to high accuracy (Robertson, Carter, & Dillinger, 1991). However, the non-linear

equations of General Relativity have not admitted many closed-form solutions,

and only a handful of exact solutions are known, for very simple systems with a

high degree of symmetry. This has led to several approximations to General Rela-

tivity, such as the Weak-Field Approximation and the Post-Newtonian formalism.

Additionally, other theories of gravity have been developed which do predict a

deflection of light in line with experimental values, and some lensing models have

been developed using such theories; for example, see Mortlock &Turner (2001).

It is the purpose of this thesis to consider gravitational lensing using an alternative

approach. This approach can be described as an equivalent classical kinematical

formulation, which nevertheless replaces Newton’s formula for gravitational accel-

eration with formulae derived from two of the known solutions of general relativity.

The first of these is the Schwarzschild metric, which describes space-time around

a spherically symmetric uncharged non-rotating mass. The second is the Kerr

metric which describes space-time around an uncharged point-mass, rotating or

otherwise. An acceleration vector will be developed using these solutions. The
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approximation taken for systems consisting of multiple masses will be to calculate

the acceleration vector due to each mass and sum these vectors to derive an over-

all acceleration for the light ray, analogously with Newtonian physics. Using this

kinematical approach, each curved light ray is traced from the source to the plane

of the observer, rather than using the simple angle change formula commonly used

in lensing models. Numerical approaches will be explored, as well as analytical

solutions to suitable approximations of the light paths.

This novel approach is intended to be complementary to the thin-lens approach and

other methods of analysing gravitational lenses. It will be shown in chapter 4, that

this new approach can be useful in easily generating known results for deflection

and travel-time delay, as well as in producing at least one new result. As a new

tool for such analysis, it is hoped that others will find this approach useful beyond

the material in this brief thesis, and will use it to simplify calculations in situations

where the kinematical method is more convenient than other approaches.

It has been the author’s experience that viewing the predicted effects of a grav-

itational lens from within different frameworks, such as the thin-lens approach,

the kinematical method, and its first order approximation, has been enlightening.

As a simple example, the consideration of the distinction between the distance

of closest approach, the impact parameter, and the angular momentum term has

been clarified by contemplation of these different methods. It is hoped that others

will find some such value, pedagogical or otherwise, in this alternative approach.



Chapter 2

Light paths near a non-rotating

body

2.1 Introduction

The simplest non-trivial solution to the equations of Einstein’s theory of general

relativity was discovered by the accomplished German physicist Karl Schwarzschild

while serving on the Russian front in 1915. This ‘Schwarzschild metric’ describes

the geometry of space-time in the vacuum surrounding a spherically symmet-

ric, non-rotating, uncharged mass. The kinematic approach of this thesis begins

by examining this simplest solution to Einstein’s equations. In this chapter the

Schwarzschild metric is used to derive an effective refractive index and acceleration

vector that account for relativistic deflection of light rays, in an otherwise classical

kinematic framework. The new refractive index and the known path equation are

integrated to give accurate results for travel time and deflection angle, respectively.

A new formula for acceleration is derived which describes the path of a massless

10
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test particle in the vicinity of a spherically symmetric mass density distribution.

A standard ray-shooting technique is used to compare the deflection angle and

delay time predicted by this new formula with the previously calculated values,

and with standard first order approximations. Finally, the ray shooting method

is used in theoretical examples of strong and weak lensing, reproducing known

observer-plane caustic patterns for multiple masses.

We will start by considering the path predicted by the Schwarzschild metric for a

massless test particle (”photon”) near a massive body. The changes in angle along

this path will be integrated to give the deflection of the light ray predicted by

general relativity. As a check, we will compare this result with the known formula

for approximating the deflection to first order in the relevant small constant. Next

we will derive an ‘effective refractive index’ due to the massive body. Integration

will be used to predict the Shapiro delay, which will also be checked against the

known first order prediction of general relativity. A new acceleration formula will

then be derived and tested against these known values for the deflection and delay

using a forward integration method. Finally, we will describe and exemplify a

procedure for using the new acceleration formula to produce magnification maps

for multi-body lenses.

2.2 Light Paths in a Schwarzschild System

As stated in Section 2.1 above, the Schwarzschild metric describes spacetime out-

side a non-rotating, electrically neutral, spherically symmetric mass M and is

taken as a valid approximation for local space-time structure in the vicinity of

any massive spherical body (stellar systems, including black holes, but also plan-

ets) having negligible charge and angular momentum. In spherical coordinates
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the metric components are given in terms of the invariant interval dl2 as (Misner,

Thorne & Wheeler, 1973)

dl2 =
r − rs
r

c2dt2 − r

r − rs
dr2 − r2(sin2 θdφ2 + dθ2), (2.1)

where rs = 2MG/c2 is the Schwarzschild radius, G is Newton’s constant, and c

is the constant speed of light in vacuum. Here r , θ, φ are the Schwarzschild

coordinates which correspond to standard spherical coordinates in the reference

frame of an observer at rest far from the system.

Light travels on null geodesics with dl = 0, so equation (2.1) becomes

cdt =
r

r − rs

√
dr2 + r(r − rs)(sin

2 θdφ2 + dθ2). (2.2)

Applying Fermat’s principle, that light follows a path that extremizes travel time

T , we can consider the functional:

T =

∫
dt =

1

c

∫
r

r − rs

√
dr2 + r(r − rs)(sin

2 θdφ2 + dθ2). (2.3)

To illustrate the use of equation (2.3) we firstly derive a path equation which is

equivalent to the usual trajectory equations for null geodesics, and numerically

integrate it to give the deflection of a light ray according to general relativity.

Without loss of generality, for a single light ray, the coordinates can be oriented

so that the ray is in the plane θ = π/2. Then dθ = 0 in equation (2.3), which

consequently may be re-arranged to give

T =
1

c

∫
r

r − rs

√
1 + r(r − rs)φ′2dr (2.4)
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adopting the notation φ′ = dφ/dr . Let F be the integrand in equation (2.4), that

is:

F (r, φ, φ′) =
r

r − rs

√
1 + r(r − rs)φ′2. (2.5)

Then the Euler-Lagrange equation is

∂F

∂φ
− d

dr
(
∂F

∂φ′
) = 0. (2.6)

It can be seen in equation (2.5), that there is no explicit dependence of F upon φ

so clearly ∂F/∂φ = 0. Therefore this term vanishes in equation (2.6) which then

has the immediate first integral

∂F

∂φ′
=

r2φ′

√
1 + r(r − rs)φ′2

= K,

in which K is a constant. Now 1/φ′ = dr/dφ, so rearrangement yields the first

order separable ODE

dr

dφ
= ±

√
r4

K2
− r(r − rs).

This constant K can be determined. At the point of closest approach to the mass

(call this point r = r0), the radius is at a minimum, that is, dr/dφ = 0, so it

follows that:

K2 =
r30

r0 − rs
.

Thus the path is defined by:

dr

dφ
= ±

√
r4(r0 − rs)

r30
− r(r − rs). (2.7)

It can be easily seen that substituting u = 1/r followed by differentiation gives

the well known second order equation as (Capozziello et al, 1997)
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d2u

dφ2
+ u =

3rs
2
u2. (2.8)

From equation (2.7), an integral can easily be written to evaluate the total deflec-

tion of light passing a massive object, which will be twice the deflection from the

perihelion out to infinity:

△φ = 2

∞∫

r0

dr√
r4(r0 − rs)/r

3
0 − r(r − rs)

,

This elliptic integral cannot be evaluated with a finite number of simple algebraic

terms. Numerical integration could be used to evaluate the deflection. However,

the integrand is infinite at r = r0, making the accuracy of any numerical evaluation

questionable. By using a substitution r = 1/ cos(2ψ) , the singularity can be

removed. After simplification we obtain:

△φ = 4

√
2r0
rs

π/4∫

0

dψ√
2r0/rs + 2− 4 cos2 ψ − sec2 ψ

.

This integrand is well behaved over the interval, so it can be numerically integrated

to any desired accuracy, for example, by Gaussian quadrature. An undeflected ray

will have △φ = π, so the deflection for a ray will be δ = △φ−π. The deflection is

usually very small, so in order to avoid a ‘loss of significance error’, this subtraction

should be performed in the integrand. For readability, let α = 2r0/rs, and let

β = 2 − 4 cos2 ψ − sec2 ψ. In this notation, the deflection δ can therefore be

expressed as

δ = 4
√
α

π/4∫

0

(
1√
α + β

− 1√
α
)dψ.
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The two terms in the integrand are combined, so that the subtraction can be

performed explicitly. This yields:

δ = 4

π/4∫

0

(
−β√

α + β(
√
α +

√
α + β)

)dψ. (2.9)

For the purposes of this calculation, we take the solar radius to be 696 000

kilometres, and the solar Schwarzschild radius to be 2.95 kilometres. Numeri-

cal integration of equation (2.9) for a ray passing near the surface of the sun

(rs/r0 = 2.95/696000))gives a deflection angle of 1.74851634161261 arcseconds.

As the path equation contains all of the information about the general relativistic

path of the photon, this is the deflection angle predicted by general relativity to

the level of precision shown. This deflection angle will be used later to confirm

the accuracy of the kinematic approach. As a check, we can consider Einstein’s

estimate for the deflection angle(Schneider et al. (1992), page 3)

2rs
r0

= 1.74850913341648 arcseconds. (2.10)

This estimate is found to correspond to our calculated value to first order in rs/r0,

as expected.

2.3 New Refractive Index & Travel Time Delay

The approach presented here makes use of an expression for the refractive index,

n. The Schwarzschild metric from Section 2.2 will be used to derive an ‘effective’

refractive index. As suggested above, the functional (2.3) can be arranged in the

form T =
∫
dt =

∫
(dt/ds)ds, where s is an arbitrary parametrization of the ray
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path. By choosing ds to be the element of arc-length along the path, the speed is

then v = ds/dt, and thus the refractive index is n = c/v = cdt/ds, and we obtain

finally T = 1/c
∫
nds, with the refractive index then having the form

n =
r

r − rs

√
r′2 + r(r − rs)(sin

2 θφ′2 + θ′2),

where r′ = dr/ds, θ′ = dθ/ds and φ′ = dφ/ds. (Note that there is no suggestion

here of any physical effect on the speed of light - indeed, any local measurement

of coordinate velocity is guaranteed to result in the usual speed c).

Taking again the two dimensional (2D) case, with θ = π/2, the refractive index

has the form

n =
r

r − rs

√
r′2 + r(r − rs)φ′2. (2.11)

As an example, the delay can be calculated for light to travel from an object at

earth radius, skim past the sun, and back out to earth radius. This is the calcu-

lation needed for the radar echo delay test (the famous ”fourth test of relativity”

proposed by Shapiro (1964)). (In fact, for that test, it would be necessary to have

another satellite (such as Venus or Mars), and the calculation would need to be

performed for each leg of the journey. For the purposes of this calculation, it is

simpler to imagine a reflecting satellite at the same orbit as the earth). The prob-

lem can be pictured as in Fig. 2.1, not to scale. The deflection is small, so that the

path appears as a straight line. In fact the curved path that the photon takes is

derived above in equation (2.7). The path is symmetric about the point of closest

approach (r0), so that exactly half the delay can be obtained by integrating from

r0 to re, the radius of the earth’s orbit. If the sun had no effect on the light path,

the distance from perihelion to earth would be the straight line distance
√
r2e − r20.
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Figure 2.1: Photon path near the sun. The distance to perihelion is designated
r0, and re is the distance to the earth.
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The delay can be calculated using the new refractive index, equation (2.11), and

multiplying by ds so that

nds =
r

r − rs

√
dr2 + r(r − rs)dφ2 =

r

r − rs

√
1 + r(r − rs)(

dφ

dr
)2dr.

Again, (dφ/dr)2 is given by the path equation (2.7). The time taken for the trip

will be twice the time to go from the point of closest approach to the sun, r0 to

the earth’s orbit, re, that is

T =
2

c

∫ re

r0

nds =
2

c

∫ re

r0

r

r − rs

√
1 +

r(r − rs)

r4(r0 − rs)/r
3
0 − r(r − rs)

dr.

The integrand is infinite at r = r0, so before integrating, we make the substitution

cos(ψ) = r0/r. After rearrangement we get:
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T =
2r20
c

∫ arccos(r0/re)

0

dψ

cos2 ψ(r0 − rs cosψ)

√
(r0 − rs)(1 + cosψ)

(r0 − rs)(1 + cosψ)− rs cos2 ψ
.

(2.12)

This integrand is perfectly well behaved over the interval, so it can be integrated

to arbitrary precision by using, for example, Gaussian Quadrature. As for the

deflection, the delay is very small, so it is important to subtract the straight-line

time before integrating. The straight-line time can be written as:

T0 =
2

c

√
r2e − r20 =

2r0
c

∫ arccos(r0/re)

0

dψ

cos2 ψ
. (2.13)

The delay is obtained by subtracting equation(2.13) from equation(2.12) to give:

△t = 2r0
c

∫ arccos(r0/re)

0

(1− γ)dψ

γ cos2 ψ
(2.14)

where

γ =
(
1− (rs/r0) cosψ

)
√

1− rs cos2 ψ

(r0 − rs)(1 + cosψ)

This expression (2.14) is now in a form that minimizes errors caused by subtraction

of large terms. Performing this calculation in MatLab gives a delay of 129.0896086

µs. As for the deflection, this calculation can be performed to arbitrary precision,

and accurately describes the delay predicted by general relativity.

For comparison, Weinberg (1972), pages 201 - 203, gives the following formula for

the delay, to first order in rs/r0:

△t = rs
c

[
2 ln

(
re +

√
r2e − r20
r0

)
+

√
re − r0
re + r0

]
. (2.15)
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This gives a delay of 129.0894053 µs. The fractional difference between this and

the delay calculated above using equation (2.14) is:

129.0896086− 129.0894053

129.0896086
= 1.57x10−6,

which is of the same order as rs/r0 = 2.95/696000 ≃ 4.24x10−6, as expected. Note

that equation (2.15) is usually further approximated and simplified (Weinberg

(1972), page 203, Kenyon (1990), pages 95-96) by saying that r0 << re. This

gives:

△t = rs
c

[
2 ln

(
2re
r0

)
+ 1

]
,

which is significantly less accurate, giving a delay of 129.1350325 µs.

We now turn to a kinematic approach, and consider differential equations that

relate position, velocity and acceleration. In a Newtonian system, the acceleration

would be given by Newton’s law of gravitational attraction, g = −c2rs/2r2er,

with unit vector e
r
pointing radially outward from the mass source. This simple

formula is not appropriate for the present application, and a new form will now

be derived from the present relativistic approach.

2.4 A New Acceleration Formula

By combining the metric equation (2.1) with the path equation (2.7) for a photon in

a Schwarzschild orbit, the velocity and acceleration of the photon due to the nearby

mass are now derived. Here the meaning is that of a coordinate acceleration. As

a freely falling particle, the photon does not experience any locally measurable

force. Beginning with the path equation (2.7), and making the substitutions
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A =
r0 − rs
r30

and µ(r) = 1− rs
r
, (2.16)

the path equation becomes

(
dr

rdφ

)2

= Ar2 − µ. (2.17)

Next, considering equation (2.1), setting dl2 = 0, θ = π/2 and dividing through

by dt2, we have

c2µ2 = ṙ2 + µ(rφ̇)2 (2.18)

where ṙ = vr is the radial velocity component and rφ̇ = vφ is the tangential

velocity component. Using the path equation (2.17), we can solve for vr and vφ in

turn, to get:

vr = ṙ = ±cµ
√

1− µ

Ar2
(2.19)

vφ = rφ̇ = ± cµ√
Ar2

(2.20)

Thus the velocity vector of the photon along its path is

v = vrer + vφeφ = ±cµ
[√

1− µ

Ar2
er ±

1√
Ar2

eφ

]
.

To determine the acceleration vector, take the derivative with respect to time:

a = v̇rer + vrėr + v̇φeφ + vφėφ

In polar coordinates, the derivatives of the unit vectors are ėr = φ̇eφ and ėφ =

−φ̇er, and so the acceleration components ar and aφ are

ar = v̇r − φ̇vφ,



Chapter 2. Light paths near a non-rotating body 21

aφ = v̇φ + φ̇vr.

Differentiating vr in equation (2.19) yields:

v̇r = ±cṙ
r2

[
rs

√
1− µ

Ar2
+

µ(2r − 3rs)

2Ar2
√

1− µ/Ar2

]
.

Equations (2.19) and (2.20) are now used to eliminate the square root terms, so

that v̇r simplifies to

v̇r = ± 1

r2

[
rsv

2
r

µ
+ (r − 3

2
rs)v

2
φ

]

The radial acceleration component is therefore

ar = v̇r − φ̇vφ = v̇r −
v2φ
r

= ± 1

r2

[
rsv

2
r

µ
+ (r − 3

2
rs)v

2
φ

]
−
v2φ
r
. (2.21)

The acceleration must be related directly to the Schwarzschild radius rs of the

mass. There are two terms in equation (2.21) that do not have an rs coefficient.

These two terms cancel if the positive sign is chosen. Thus, the correct form for

the radial acceleration is:

ar =
rs
r2

[
v2r
µ

−
3v2φ
2

]
.

A similar treatment for tangential acceleration component yields

aφ = v̇φ + φ̇vr =
rs
r2
vrvφ
µ

.

Thus the acceleration vector for a photon near a Schwarzschild mass is:

a =
rs
r2

[[v2r
µ

−
3v2φ
2

]
er +

vrvφ
µ

eφ

]
. (2.22)

It is interesting to note that the radius for light to remain in a circular orbit about
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the mass can immediately be derived from this acceleration. In a circular orbit,

there is no radial velocity, and so

a =
rs
r2

[
−3v2

2

]
er (2.23)

In addition, an object moving in a circular orbit in a classical kinematical frame-

work has centripetal acceleration vector

a = −v
2

r
er (2.24)

When equations (2.23) and (2.24) are equated, we obtain

r =
3rs
2

(2.25)

Thus, a photon at the ‘3/2’ radius given in equation (2.25) is trapped in a circular

orbit about the mass, in accordance with the known result predicted by general

relativity (Carroll (2004), p 212).

2.4.1 Kinematic Ray Shooting

With known acceleration components, it is now possible to set up a standard sys-

tem of differential equations for ray tracing in polar coordinates. The kinematical

system is

d

dt




r

φ

vr

vφ




=




vr

vφ/r

ar + v2φ/r

aφ − vrvφ/r




(2.26)
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This new system (2.26) makes use of the new acceleration formula in equation

(2.22). Such a system can be solved using forward integration. Initial conditions

for the photon have initial position at perihelion of 696 000 kilometres about a mass

with Schwarzschild radius of 2.95 kilometres, zero radial velocity, and tangential

velocity vφ = c/n = c
√
µ to the right. The speed of light is taken to be c = 300 000

kilometres/second. Using MatLab’s ODE45 routine (an explicit Runge-Kutta 4-5

method) produces the path shown in Fig. 2.2 for the section shown; beyond this,

the path is almost a straight line and so is not shown. The slope of the line between

the last integration point before the photon reaches earth orbit, and the first point

after is 1.74851634 ± 10−8 arcseconds. The time delay is calculated in the same

integration, and is found to be 129.089609±10−6 µseconds. The uncertainty is due

to limitations on the precision of MatLab’s ODE45 routine. Both of these values

correspond well with the predictions from general relativity (as calculated above),

more closely than the first order approximations, and use of a higher precision

computation will allow a more accurate result, should such be required. Accuracy

beyond first order is not commonly required, but these results give confidence that

the acceleration vector presented here does accurately embody the effect on the

photon due to a single Schwarzschild-type mass.

Using the values found for position and radial and tangential velocities when the

photon reaches earth orbit, we can send the photon along the path from earth

orbit past the sun and back out to earth orbit. The central section is shown in

Fig. 2.3. Note that the scales differ by a factor of 106.

The values for the deflection angle and the Shapiro delay calculated by this forward

integration ray shooting are compared with the predictions from general relativity

and the usual first order approximations (as calculated earlier) in Table 2.1, and

demonstrate that the kinematic ray shooting method presented in this chapter
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Figure 2.2: Path of photon from perihelion, plotted in MatLab using 2D
kinematic ray shooting.
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Figure 2.3: Path of photon past perihelion. The scales differ by a factor of
106.
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Approach Deflection (arcsec) Delay (µs)

Gen. Rel. prediction by integration
along path (eqns. 2.9 and 2.14) 1.74851634161261 129.0896086

Usual approximations to first order
in rs/r0 (eqns. 2.10 and 2.15) 1.74850913341648 129.0894053
Forward integration using
new acceleration formula 1.74851634± 10−8 129.089609± 10−6

Table 2.1: A Comparison of the new method with accurate predictions from
general relativity, and the common first order approximations.

is an accurate representation of the effect of the gravitational field of a single

Schwarzschild body on the motion of a photon, giving us some confidence in using

this method for more complicated systems.

2.4.2 Magnification Maps

When considering a multi-body system, such as a planetary system, it must be

stressed that there is no known metric. That is, there is no known exact solution

to Einstein’s equations for such a system. Some sort of approximation is there-

fore required. Use of the ‘weak-field metric’ is one such approximation, as is the

addition of the deflection angles due to each body (the method generally used in

microlensing models). Here, we choose to approximate by adding the acceleration

components due to each body in the system.

This approximation is analogous to the summation of acceleration components in

a classical Newtonian regime. However, in the framework of General Relativity,

there is no a priori justification for such an approach. In the case of the thin-lens

approach, the contributions of deflection due to multiple masses are summed in

a similar way, but this is a direct consequence of the linearised gravity approach,

and so is justified (Bartelmann (2010), p.17). It is beyond the scope of this work to
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provide justification for the current approximation, or to attempt to quantify the

errors involved in doing so, but such a study would be an interesting and valuable

topic for future research.

Having tested the radial and tangential acceleration components described above,

it is a simple matter to set up a three dimensional ray tracing system for a planetary

system. At each integration point along each ray, the acceleration components

due to each massive body are calculated. This is done by a translation to put

the massive body at the origin, followed by three rotations to place the photon’s

position vector and its velocity vector in the same plane as the massive body,

with θ = π/2. The radial and tangential velocities are then used to calculate

the radial and tangential acceleration components. The three rotations are then

reversed, and the resultant Cartesian acceleration components are added to the

acceleration components due to any other masses in the system to determine the

overall acceleration of the photon.

As a very simple (and artificial) example of this process, we first consider a two

dimensional system, consisting of two very massive bodies in close proximity, and

plot the path of the photon through this binary system. The smaller and larger

stars represent bodies of 20 million and 50 million solar masses respectively (similar

to the system described by Boroson and Lauer (2009), although in the present

example we imagine that the system has decayed to the point where the black

holes are only a billion kilometres apart). This example is purely to demonstrate

the versatility of the present approach. We are making the gross simplification

that the black holes are stationary throughout the period when the ray is passing

through the system, and so the acceleration of the two masses towards each other

is therefore being ignored. For the purpose of demonstrating the procedure used

here, we are ignoring such limitations. The present model is clearly a coarse
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Figure 2.4: Path of a photon through a super-massive binary black hole sys-
tem. The black holes are indicated on the diagram with asterisks, and they are

located at (-946.08,-315.36) and (0,23.652)
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approximation in this extreme case. The light ray comes in from the far left, and

is deflected by the summed acceleration components due to each mass. The path

is shown in Fig. 2.4.

We now consider a more commonly modelled lensing system, the planetary lens.

In describing a lensing system, it is common to use a parameter called the Einstein

radius. This is the angular radius at which observers perfectly aligned with the

point source and point lens would see a ring of light about the lens. Specifically, the

system is designed as follows: a point source is at (−8000, 0, 0) and the observer

is at (+8000, 0, 0). The lens star is placed at the origin, having Schwarzschild

radius: rs = 99 ∗ 10−8. A planet is placed at (0, 0.1208, 0) (in micro-lensing terms,

it is at 1.35 times the Einstein radius), with rs = 1 ∗ 10−8. For simplicity in this

model, we ignore the motion of the planet. Rays are sent through the system, near
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the Einstein radius, and in the vicinity of the planet. Due to symmetry in the

cases here, it is only necessary to calculate half the rays and plot the result both

above and below the axis of symmetry. During the numerical integration, each

ray is broken into several small sections, with the size of each section becoming

smaller as the photon nears the lens star. This is important to ensure that the

integration routine does not take too large a step and miss the strong deflection

altogether. For the simulations presented in this chapter, each ray is broken into

36 segments. The result of this process is a light density map, or magnification

map (that is points in (y, z) where the rays cross the plane x = 8000). These

simulations were run on MatLab version 6.1, under Windows XP, on an Athlon

64 3500+ processor with 1GB of ram. Running times will be discussed as an

indication, but no measures have been made to optimise the code for efficiency.

Fig. 2.5 shows the magnification map produced when a rectangular array of rays

(222 by 205) is sent through the lens system. The bending of the light towards

the planet is clearly visible. This, combined with the bending caused by the lens

star, produces the characteristic diamond shape for a system with a single planet

outside the Einstein radius (Wambsganss, 1997). The running time was 26 hours.

In Fig. 2.6, many more rays have been used (approximately 106 000 rays). In order

to view the resulting density, it is necessary to colour or shade regions according

to how many rays pass through each small area. The code used to do this was

‘smoothhist2d’, (Perkins, 2006). The running time was approximately 50 hours.

This result clearly shows the caustic diamond structure.

This diamond structure is the expected shape for the magnification map, and

suggests that the method used here can be considered as an alternative method

for modeling a thin lens.
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Figure 2.5: Caustic structure due to planet with mass 1% of star’s mass,
located at 1.35 Einstein radii, using over 40,000 rays
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2.5 Conclusion and Discussion

We have considered the path of a photon near a Schwarzschild-type body. Using

the Schwarzschild metric, a new refractive index has been derived. Integrating

the angle along the path gives the total deflection angle, and integrating the new

index along the path gives the travel time delay. These values for the delay time

and deflection can be calculated, using the formulae here, to arbitrary precision.

This is because these formulae are derived directly from the Schwarzschild metric.

As a check, it was shown that the standard first order approximations used for the

deflection and delay agree with these results to first order.

A new formula for acceleration of a photon was derived by combining the path

equation with the Schwarzschild metric, and differentiating. This new acceleration

formula was tested with a ray shooting approach, using the new refractive index to
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Figure 2.6: Magnification density plot; same parameters as in Fig. 2.5, using
106000 rays
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provide the initial conditions for the velocity components. The deflection and delay

values were found to be in excellent agreement with the precise values calculated

earlier.

By making the approximation that the acceleration on the photon is the sum of the

individual acceleration components due to each massive body, a simple microlens-

ing model was developed to demonstrate a use of the new acceleration formula for

a binary system. Sample light fields on an observer plane have been computed us-

ing this new approach, and reproduce the expected figures. No attempt has been

made here to speed computations, since that was not the purpose of the present

work, but future developments may address such issues of computational efficiency.

In the next chapter, an alternative approach will be pursued, an approximation
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that leads to an analytic solution, allowing for much faster computation of light

paths and magnification patterns.

In summary, this work provides a ‘classical’ way of accurately describing the grav-

itational effect on a photon due to a single mass, and provides an alternative

method for approximating the course of a photon through a complicated mass

distribution. The approach presented here provides an insight into the effect of

gravitating bodies on light rays that can be grasped without requiring a deep un-

derstanding of general relativity, and yet is still quantitatively accurate for a single

mass, and can be used for approximating more complicated systems. As for the

standard thin lens ‘deflection angle’ method, this approach to gravitational lensing

may be used by applied mathematicians, computer modellers and others without

requiring specialist knowledge of general relativity. Because this approach retains

the ‘delay’ information as well as the deflection, it might conceivably be useful

in analysing systems where the time delay plays a role, such as a pulsar source

being lensed, should we observe such an event. It is also hoped that the formulae

presented here will prove useful in producing models of more complicated mass

distributions, such as galaxy clusters. Such models could be produced using the

same method used here, simply by adding more bodies to the model.



Chapter 3

Linear Approximation of Light

paths near a non-rotating body

3.1 Introduction

In Chapter 2 new kinematic formulae were presented for ray tracing in gravi-

tational lensing models. Such an approach can generate caustic maps, but is

computationally expensive. Here, a linearized approximation to that formulation

is presented. Although still complicated, the linearized equations admit a remark-

able closed-form solution. As a result, linearized approximations to the caustic

patterns may be generated extremely rapidly, and are found to be in good agree-

ment with the results of full non-linear computation. The usual Einstein angle

approximation is derived as a small angle approximation to the solution presented

here.

For ease of reference, it is convenient to reproduce the acceleration vector, equation

(2.22) derived in Chapter 2,

32
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a =
rs
r2

[[v2r
µ

−
3v2φ
2

]
er +

vrvφ
µ

eφ

]
. (3.1)

and the kinematic system described there (2.26) is

d

dt




r

φ

vr

vφ




=




vr

vφ/r

ar + v2φ/r

aφ − vrvφ/r




(3.2)

This system of equations can be solved numerically, although doing so is computa-

tionally expensive. In Chapter 2 this system was used to study the effect of a mass

on a light ray, and showed that it could produce the caustic patterns expected from

such a gravitational lens. The aim of the current chapter is to produce a linearized

approximation to this, which will require much less computational processing.

3.2 Zeroth Order Solution

It is necessary first to derive the zeroth order solution (R0(t),Φ0(t)) to the kine-

matic system (3.2). In this solution, the photon path is simply a straight line. This

is obtained by setting rs = 0, thus ignoring any acceleration due to the massive

body. In this case, with the acceleration terms ar and aφ being zero,the kinematic

equations for r and φ reduce to

r̈

r
= φ̇2 and 2ṙφ̇+ rφ̈ = 0. (3.3)
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Figure 3.1: Photon path in empty space. r(t) is the distance to the origin, r0
is the distance from origin to perihelion.

The second equation in (3.3) is readily rearranged to give 2ṙ/r = −φ̈/φ̇, and then

integrated to show that 2 ln |r| = − ln
∣∣∣φ̇
∣∣∣+ constant. Thus

φ̇ = ±c1/r2. (3.4)

Substituting this into the left equation in (3.3) gives r̈ = c21/r
3. On multiplication

by 2ṙ this yields 2ṙr̈ = 2c21ṙ/r
3, which can immediately be integrated to ṙ2 =

−c21/r2+ c2. This is a first-order separable differential equation, and it has general

solution

r(t) =
√
c2

√
(
c1
c2
)2 + (t− t0)2

The minimum value of r is taken to be r0 and to occur at t = t0, so that r0 =

c1/
√
c2. Considering the straight path as in Fig. 3.1, we can identify

√
c2 = c, the

speed of light in empty space. Thus the zeroth order solution for r becomes

R0 =
√
r20 + (c(t− t0))2 (3.5)
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We can now calculate φ̇ from equation (3.4):

φ̇ = ±cr0/r2 = ± cr0
r20 + c2(t− t0)2

. (3.6)

Integration of equation (3.6) gives the zeroth order solution for φ

Φ0 = ± arctan

(
c(t− t0)

r0

)
+ constant. (3.7)

The sign will be negative for a ray passing the origin in a clockwise direction and

positive for a ray passing in an anticlockwise direction. Note that R0 is symmetric

about t− t0, while Φ0 is antisymmetric. In what follows, it will be convenient to

make the substitutions u = (t− t0)
2, D = r0/c and τ =

√
D2 + u.

3.3 Linearisation

In this section, a linearized approximation to the equations describing the path of

the photon is derived, based on the assumption that the path deviates only slightly

from the straight line solution (R0,Φ0) obtained in Section 3.2. It is appropriate

to define the small parameter ǫ = rs/r0, where r0 is the point of closest approach,

and form the perturbation expansions

r = R0 + ǫR1 +O(ǫ2) and φ = Φ0 + ǫΦ1 +O(ǫ2). (3.8)

Putting these into equation (3.1) gives two equations for the two components of

the acceleration vector, the first of which is

R̈0 + ǫR̈1 − (R0 + ǫR1)(Φ̇0 + ǫΦ̇1)
2 = ǫ

[
r0Ṙ

2
0

R2
0

− 3r0
2

Φ̇2
0

]
+O(ǫ2).
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After expanding the left hand side in terms of τ and u, the zeroth-order terms

cancel in view of equations (3.5) and (3.7). Retaining only terms to first order in

ǫ gives

τ 4R̈1 = D2R1 + 2cDτ 3Φ̇1 + r0u−
3r0
2
D2. (3.9)

After rearranging for Φ̇1, and differentiating and multiplying by τ 2, this becomes

2cDτ 5Φ̈1 = τ 6
...
R1 + τ 4

√
uR̈1 −D2τ 2Ṙ1 + 3D2

√
uR1 + r0

√
u(τ 2 − 15

2
D2). (3.10)

The equation for the second component of the acceleration vector is

2ṙφ̇+ rφ̈ = ǫ
r0ṙφ̇

r
. (3.11)

The perturbation series (3.8) are substituted into equation (3.11), and terms to

order ǫ are retained. This gives rise to the linearized form

R1Φ̈0 +R0Φ̈1 =
r0Ṙ0Φ̇0

R0
− 2Ṙ0Φ̇1 − 2Ṙ1Φ̇0 (3.12)

Substituting the values for R0 and Φ0 from equations (3.5) and (3.7) gives

2cDτ 5Φ̈1 = 2D2r0
√
u+ 4D2R1

√
u− 4BDτ 3

√
uΦ̇1 − 4D2τ 2Ṙ1

Equating this with equation (3.10) allows the elimination of Φ1 from the equation,

arriving at a third-order differential equation for R1:

τ 6√
u

...
R1 + 3τ 4R̈1 +

3D2τ 2√
u

Ṙ1 − 3D2R1 = r0(τ 2 +
9

2
D2) (3.13)
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To convert this into an equation in u, let R(u) = R1(t) and R′ = dR/du. Then

equation (3.13) becomes

8τ 6uR′′′ + 12τ 4(τ 2 + u)R′′ + 6τ 2(τ 2 +D2)R′ − 3D2R = r0(τ
2 +

9

2
D2). (3.14)

Equation (3.14) is the linearized differential equation for the deflection of the light

ray from the zeroth-order solution. It is a third-order non-constant coefficient,

inhomogeneous differential equation. Nevertheless it has a closed form solution,

as will be found in the next section. Finally, by substituting this solution into

equation (3.9), a solution for Φ1 will be obtained. These solutions for R1 and Φ1,

together with the zeroth-order solutions (3.5) and (3.7) will give the first-order

approximation of the path of the photon in a system with a single massive body

at the origin.

3.4 Closed Form Solution

Equation (3.14) has the form of an ordinary differential equation (ODE) with a

regular singular point when τ 2 = D2 + u ≡ 0. This therefore suggests the change

of variable R(u) = τnF (u). When this is substituted into equation (3.14), it is

found appropriate to choose the index n = −1. Thus the change of variables

R(u) = F (u)/τ reduces equation (3.14), after some algebra, to

8τ 5uF ′′′ + 12τ 5F ′′ = r0(τ
2 +

9

2
D2) (3.15)

Remarkably, equation (3.15) is now a first order ODE in the variable F ′′, and

admits of a closed form solution. This then promises the desired approximate

method for calculating the intersection of the photon’s path with the observer’s
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plane extremely rapidly, without the need for exact ray tracing as was used in

Chapter 2. The equation can be re-written

u3/2F ′′′ +
3

2
u1/2F ′′ =

r0
√
u

8τ 5
(τ 2 +

9

2
D2)

which can immediately be integrated once to

u3/2F ′′ =

∫
r0
√
u

8τ 5
(τ 2 +

9

2
D2)du

Using substitutions and integration by parts we can integrate twice more to find

F to be

F = −r0
√
u ln(

√
D2 + u+

√
u)− r0

2

√
D2 + u+ 4k1

√
u+ k2u+ k3

in which k1, k2, k3 are constants of integration. Now R(u) = F (u)/τ , so

R1(t) = R(u) = −r0
2
+

−r0
√
u ln(

√
D2 + u+

√
u) + 4k1

√
u+ k2u+ k3√

D2 + u

It is a straight-forward matter to differentiate this expression three times with

respect to t, and thus confirm that it does indeed satisfy equation (3.13).

This expression for R, in conjunction with equation (3.9) can be used to determine

Φ1, which is found to be

Φ1 =
D

cτ 2

[
r0(

τ
√
u

D2
− ln(τ +

√
u)) + 4k1 + (k2 −

k3
D2

)
√
u

]
+ constant.

It can be shown that these formulae for R1 and Φ1 fulfil the first order kinematic
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relations (3.9) and (3.12). The path equations may now be constructed to first-

order in ǫ, using the equations in (3.8):

r = R0 + ǫR1 = cτ − rs
2
+

−rs
√
u ln(τ +

√
u) + 4ǫk1

√
u+ ǫk2u+ ǫk3

τ

(3.16)

The constants k1, k2 and k3 can be identified in terms of rs, r0 and c, as follows.

The path is symmetric about perihelion (r = r0) so at that point, t = t0 (and thus

u = 0 and τ = r0/c), and so equation (3.16) becomes

r0 = r0 −
rs
2
+

ǫk3
r0/c

so

ǫk3 =
r0rs
2c

.

Also, at perihelion, r is a minimum so that ṙ = 0. Taking the derivative of equation

(3.16) thus gives

4ǫk1 = rs ln(D)

When u becomes very large, τ goes to
√
u, D/u goes to 0 and ṙ goes to c, the

constant speed of light far from the mass, so the derivative of equation (3.16)

becomes:

c =
c
√
u√
u

+
1

u3/2

[
ǫk2

√
u(u)− ǫk3

√
u− rsτ

√
u− rs(r0/c)

2 ln(τ +
√
u)

]

= c + ǫk2
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So k2 = 0. Thus we can rewrite the equation for r as:

r = cτ − rs
2
+

−rs
√
u ln(τ +

√
u) + rs

√
u ln(r0/c) + r0rs/2c

τ

=
√
r20 + c2u− rs

[
1

2
+

√
u ln

(
τ/D +

√
u/D

)
− r0/2c

τ

]

For readability, let ψ(t) be the change in φ in the straight line solution for a ray

passing the origin in an anti-clockwise direction, that is, tanψ = −c√u/r0. Then

r = r0 secψ − rs

[
1− cosψ

2
+ sinψ

[
ln
(1 + sinψ

cosψ

)]]
(3.17)

Similarly for φ:

φ = φ0 ±
{
ψ + ǫ

[
sinψ − sin 2ψ

4
− cos2 ψ

[
ln
(1 + sinψ

cosψ

)]]}
, (3.18)

the positive or negative sign corresponding to the ray passing the mass in a clock-

wise or anti-clockwise direction, respectively. Now φ−φ0 should be anti-symmetric

about t = t0 (that is, β = 0). Already, ψ is antisymmetric and has range −π/2 to

π/2, and therefore so is sinψ and sin 2ψ. The symmetry of the logarithmic term

may not be immediately obvious, but rearrangement yields

ln(
1 + sinψ

cosψ
) = ln(

√
1 + sinψ√
1− sinψ

)

which is in fact antisymmetric, since its sign changes if ψ is replaced by −ψ. It can

then also immediately be seen that r is symmetric about perihelion, as expected.
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3.5 Application: Ray Shooting

We will first check that the first order formulae (3.17) and (3.18) for r and φ above

give expected results for the well known deflection and delay for a photon passing

close by the sun.

The usual approximation for the total deflection due to the sun (or any mass that

is spherically symmetric, uncharged and having negligible angular momentum) is

2rs/r0. The normal change in φ for an undeflected ray is π, so from equation

(3.18), it can be easily seen that the deflection from perihelion (ψ = 0) out to

infinity (ψ = π/2) is ǫ, so the total deflection for a photon passing close to the sun

is 2ǫ = 2rs/r0, in agreement with the standard approximation.

The first order approximation for the Shapiro delay is more involved. As in Chap-

ter 2 (where the precise delay was found to be 64.5448043 µs, for each leg of the

journey from perihelion to earth orbit), we consider a photon having perihelion at

696 000 km, and reaching earth orbit at 1.5 ∗ 108 km. The sun’s Schwarzschild

radius is taken to be 2.95 km. We find that a time of 499.99468211573345 seconds

in equation (3.17) gives a value for r of the required 1.500000000 ∗ 108 km. The

‘straight line’ time for light to travel from perihelion to the earth, without any

gravitational effect, is
√
r2e − r20/c = 499.9946175710294 seconds, giving a delay of

64.54470398µseconds. Weinberg (1972), (p.202) uses the standard Schwarzschild

coordinates so the result in this chapter can be compared directly with his approx-

imation:

△r = rs ln

[
r +

√
r2 − r20
r0

]
+
rs
2

√
r − r0
r + r0

(3.19)
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To calculate the delay, Weinberg then divides this distance by c, which, with the

values used here for r, r0, and rs, gives a delay of 64.54470267 µs. In fact, as shown

in Chapter 2, the apparent speed of light in this Schwarzschild coordinate system

(which corresponds to a standard spherical system plus time as measured by an

observer at rest far from the origin) is actually c(1 − rs/r)
√
1 + rsr

3
0/r

3(r0 − rs).

While the measured speed of light for any local observer will always be c, the time

delay represents the increased travel distance (in a curved Space–time model) or

the retardation of light (in a flat space model, such as the standard spherical

coordinate system). Interestingly, dividing △r in equation (3.19) by this value for

the speed of light brings this delay to 64.54470394 µs, which is much closer to the

delay from the first order approach presented in this chapter. In any case, to first

order, the first order approximation in this chapter agrees with Weinberg’s first

order approximation.

Next the new formulae are used to produce the caustic magnification patterns

typical of a planetary system. Considering a photon with known position and

velocity components in plane polar coordinates, the solution in equations (3.17)

and (3.18) may be differentiated to give

ṙ

c
= sinψ − rs cosψ

2r0

[
sin 2ψ

2
+ sinψ + cos2 ψ ln

[1 + sinψ

cosψ

]]
(3.20)

φ̇

c
= ∓cos2 ψ

r0

[
1− rs

r0

(
cos 2ψ

2
− sin(2ψ) ln

[1 + sinψ

cosψ

])]
(3.21)

For a photon at a distance L from the mass, without loss of generality, the coordi-

nate system can be rotated so that the source is at (−L,0) and the positive angle

α indicates the angle from the x-axis to the tangent vector of the ray, as in Fig.

3.2. Then the ray is passing the mass in a clockwise direction, which indicates the
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positive sign in equation (3.18) and the negative sign in equation (3.21). In that

case, the point (−L,0) must lie on the curve at some time ψ0. So equations (3.17)

and (3.18) reduce to

L = r0 secψ0 − rs

[
1− cosψ0

2
+ sinψ0 ln

[1 + sinψ0

cosψ0

]]
(3.22)

π = φ0 +

{
ψ0 + ǫ

[
sinψ0 −

sin 2ψ0

4
− cos2 ψ ln

[1 + sinψ0

cosψ0

]]}
(3.23)

at that point. The third equation specifies the initial angle α of the ray: |ṙ tanα| =

r|φ̇| = L|φ̇|. This is combined with equations (3.20) and (3.21) to give

tanα

{
sinψ0 −

rs cosψ0

2r0

[
sin 2ψ0

2
+ sinψ0 + cos2 ψ0 ln

[1 + sinψ0

cosψ0

]]}

= sign(φ0)L
cos2 ψ0

r0

[
1− rs

r0

(
cos 2ψ0

2
− sin 2ψ0 ln

[1 + sinψ0

cosψ0

])]
(3.24)

The three parameters r0, φ0 and ψ0 are thus determined as the solutions to the

three algebraic equations (3.22)-(3.24). Consistently with the perturbation expan-

sions (3.8), a solution is now obtained to equations (3.22)-(3.24), accurate to first

order in rs. At zeroth order, the approximation would simply be

r0 = L sinα; φ0 = α + π/2; ψ0 = −α + π/2

and is obtained by setting rs = 0. The first order solutions to (3.22)-(3.24) are

now determined in the form
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r0 = L sinα+ rsR1 +O(r2s)

φ0 = α + π/2 + rsΦ1 +O(r2s)

ψ0 = −α + π/2 + rsΨ1 +O(r2s) (3.25)

Equations (3.25) are substituted into equations (3.22)-(3.24) and solved for the

three unknowns R1,Φ1 and Ψ1 to give

r0 = L sinα + rs
sin3 α− 1

2
+O(r2s)

and

φ0 = π/2 + α− rs
2 + sin2 α

2L sinα
+O(r2s)

At some later time, say ψ = ψ2, the ray crosses the observer’s plane. For the

purposes of simplifying the mathematics, suppose that the observer’s plane is the

same distance from the mass as the source, but on the other side, that is, at x = L.

Considering Fig. 3.3, the following first order approximations will be used:

r2 = L
√

1 + 4 tan2 α + rsR2 +O(r2s)

φ2 = arctan(2 tanα) + rsΦ2 +O(r2s)

ψ2 = arctan(2 tanα)− α− π/2 + rsΨ2 +O(r2s)

These approximations for r and φ are implemented in equations (3.17) and (3.18).



Chapter 3. Linear Approximation 45

Figure 3.2: Photon path from source at (−L, 0). The point of closest approach
(r0,Φ0) is determined to first order.

−L L

α φ
0

r
0

A third equation is given by the path crossing the observer’s plane at x = L, that

is, L = r2 cosφ2. Again, having three equations and three unknowns, the system

is solved for R2,Φ2 and Ψ2 to first order in rs. The results for R2 and Φ2 are:

R2 = −cosα(2 + 3 sin2 α)
√
1 + 3 sin2 α + 2 + 5 sin2 α + sin4 α

cos2 α(1 + 3 sin2 α)

and

Φ2 = −cosα(2 + 3 sin2 α)
√
1 + 3 sin2 α + 2 + 5 sin2 α + sin4 α

2L sinα(1 + 3 sin2 α)3/2
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Figure 3.3: Photon path from source at (−L, 0) to observer’s plane at x = L.
The point of intersection with the observer’s plane (r2,Φ2) is determined by the

linearised equations.

−L L

α φ
2

−ψ
2r

0

r
2 2L tanα

This expression enables easy calculation of the position at which the photon crosses

the observer’s plane, being at (L, r2 sin φ2).

As this is a first order solution, we will now compare the results with those of

the usual first order approximation, where the photon’s path is taken to be two

straight lines with a deflection angle of 2rs/r0. Calling the deflected distance in

the y component at the observer’s plane, △y, and considering Fig. 3.4, the values

for △y predicted by the usual formula will be compared with the one presented in

this chapter.

Calculating the deflection △y using the standard deflection formula 2rs/r0 gives

the result △y = 2rs(1+sin2 α)/ cos2 α sinα+O(r2s). This is represented in Fig. 3.5,

which shows △y/rs against values of α, as a dotted curve. The deflection predicted
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in this chapter is △y = r2rsΦ2 = rsLΦ2(1 + 3 sin2 α)/ cos2(α) + O(r2s), which is

shown in Fig. 3.5 as a solid curve. The two values agree for small values of α,

but diverge for larger values. The reason for this becomes apparent by considering

that when α = π/2, the photon is ‘starting’ at perihelion, so it has already been

deflected by half the total expected value, so the remaining deflection should only

be rs/r0, according to the standard deflection method. This half deflection value

is plotted as a dashed curve. It can be seen that the formula presented in this

chapter accounts well with both formulae, as it agrees closely with the standard

formula for small α (top panel in Fig. 3.5)and with half that amount for large α

(bottom panel in Fig. 3.5).

As the stated aim of this exercise was to provide a faster method for generating

caustic images than the previous kinematic method, it is important to compare

the processing time using the new method, the previous kinematic method, and

the simple angle change method. Fig. 3.6 was produced using the three different

methods. Fig. 3.6(a) shows the caustic produced using the standard thin lens

formula, Fig 3.6(b) used the linearised approach presented in the current chapter,

and Fig. 3.6(c) was produced using the forward integration method of Chapter 2.

Processing time using the kinematic ray tracing method was approximately 3000

seconds. Using the method in this chapter and the simple angle change method

took 0.485 seconds and 0.468 seconds, respectively, on the same computer system.

So the method in this chapter is some 6000 times faster than the ray tracing

method, but still slightly slower than the simple angle method.

The planetary configuration is the same as used in Chapter 2: a point source is

at (−8000, 0, 0) and the observer is at (+8000, 0, 0). The lens star is placed at

the origin, having Schwarzschild radius: rs = 99 × 10−8. A planet is placed at

(0, 0.1208, 0) (1.35 times the Einstein radius), with rs = 1 × 10−8. For simplicity,
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Figure 3.4: Two approaches for determining the deflection at the observer’s
plane, x = L. The total deflection △y can be determined by simple geometry
either by the deflection from straight line by angle 2rs/r0 (Einstein angle), or
by the method presented in this chapter where the photon is deflected from the

straight line solution by rsΦ2, relative to the origin.
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α

r
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Φ
2

θ

∆ y

the motion of the planet is ignored. Rays are sent through the system, near the

Einstein radius, in the vicinity of the planet. Due to symmetry in the cases here,

it is only necessary to calculate half the rays and plot the result both above and

below the axis of symmetry.

Using one of these magnification maps, it is a straight-forward procedure to gener-

ate a light curve (magnification over time), corresponding to a chosen path across

the map. This is done by sampling the number of light rays passing through a nar-

row strip of the magnification map. For a simple point-source-point-lens system
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Figure 3.5: Comparison of deflection predicted by the two different first-order
approximations. The approach presented here is represented by a solid curve.
The dotted curve represents the Einstein angle deflection formula, which agrees
closely for small α (top panel). The dashed curve represents the half Einstein
deflection formula, suitable for a photon ‘starting’ at perihelion. This curve
agrees closely for large values of α (bottom panel). α is the initial angle of
the light ray. α = 0 would represent a light ray directed straight towards the
lensing mass, α = π/2 would represent a light ray initially tangential to the

lensing mass. For typical lensing observations, α is very small.
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Figure 3.6: The caustic pattern for a single planetary system, the planet
being at 1.35 Einstein radii. The three figures show calculations based on: (a)
the standard thin lens formula; (b) the linearised method of this chapter; (c)

forward integration using the full acceleration formula of Chapter 2.
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(PSPL), the light curve has a smooth symmetric form, whereas a binary lensing

system may produce significant deviations from the simple light curve, although

these are typically of short duration, depending on the relative speed of source,

lens and observer. A comparison of such light curves is shown in Fig. 3.7. The

upper panel shows a light curve due to the simple PSPL magnification map, and

the lower panel shows the deviation due to the caustic structure in Fig. 3.6.

3.6 Conclusion and Discussion

In this chapter, we have considered a linearization of the kinematical system of

equations discussed in Chapter 2. This gives a difficult, although linear, differ-

ential equation of third order, with non-constant coefficients. Remarkably, this

equation admits an exact solution in closed form. This has been presented here,

and the corresponding path equations have been described. This resulted in the

sought-after decrease in processing time for producing magnification maps due to

planetary systems, and has been found to be in good agreement with the results

of ray tracing in the fully non-linear model of Chapter 2. Although this approach
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Figure 3.7: Typical light curves for point-source-point-lens model (left), and
for a binary system (right). The horizontal axis ”Time” corresponds to the
distance that the observer has travelled across the magnification map. Intensity

is relative to the un-lensed intensity of the background star.
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in some sense repeats the rapid approximate results already available with other

methods, such as the thin lens formula of Wambsganss (1997), it nevertheless does

so in an elegant and coherent fashion from the full kinematic equations, without

the need to assume that deflections are confined only to a single plane containing

the mass. The thin lens formula appears as a small angle approximation to the

solution presented here. That being so, the method presented here can never be

quite as fast as the thin lens method, due to the fact that the terms in the thin

lens method formula are a subset of the terms in the formula derived here.

For small angles (which covers pretty much all observable lensing events), the thin

lens method can be seen to be an excellent approximation to the approach pre-

sented here. Nevertheless, the approach of this chapter represents a rigorous and

formal linearization of the non-linear ray path equations arising from the use of

the Schwarzschild metric. As such, this approach can be viewed as a novel formal

foundation for the usual thin lens formula. Since the resulting approximation here

gives rise to a linear differential equation, the superposition principle allows sys-

tems containing multiple masses to be treated by simple addition of their effects.



Chapter 4

Rotating lenses

4.1 Introduction

In Chapter 1, lensing models were discussed and it was noted that the simplest

model uses a thin-lens approach, deflecting the photon’s path by the deflection

angle predicted by Einstein (1936). In Chapter 2 a new approach was taken, in

which the Schwarzschild metric was used to derive kinematic type laws for the

propagation of light rays through a lensing system. It was found that the accel-

eration vectors thus derived gave results in close agreement with those obtained

using the simpler model described above. In Chapter 3 a linearized approxima-

tion was considered, in which the light rays were assumed to deflect only slightly

from an otherwise straight-line path. These linearized equations were shown to

admit an exact closed-form solution which agreed well with the fully non-linear

simulations.

In this chapter, the approach of Chapter 2 is generalized to include the effects of

relativistic frame dragging due to rotation of the lensing object, as described by

53
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the Kerr metric. The Kerr geodesic equations for massless particles are used to

derive an acceleration vector in both Boyer-Lindquist and Cartesian coordinates.

A kinematic description is given where it is found that converting to Cartesian

co-ordinates simplifies the description of the light paths, by removing all acceler-

ation terms at zeroth order. As a special case, the Schwarzschild acceleration due

to a non-rotating mass has a particularly simple and elegant form in Cartesian

coordinates. The non-rotating (Schwarzschild) case is examined in the new coor-

dinate system, and rotation effects, which become significant at second order in

the Schwarzschild radius, are considered. Using forward integration, these equa-

tions are used to plot the caustic pattern due to a system consisting of a rotating

point mass with a smaller non-rotating planet. Additionally, first and second order

approximations to the paths are identified, which allow for fast approximations of

paths, deflection angles and travel-time delays. Finally, application to delay of

pulses in a binary pulsar model is presented, followed by concluding remarks and

an appendix containing equations relevant to this chapter.

4.2 Light Rays in a Kerr System

The Kerr metric describes spacetime outside an uncharged point mass, rotating or

otherwise. The Schwarzschild solution is contained as a special case wherein the

mass has no angular momentum. Such a solution has spherical symmetry, whereas

for a rotating body, the system is axi-symmetric only. For any light path other than

one confined to the equatorial plane, a fully three dimensional description of the

path is required. This is different than for the Schwarzschild case, where any path

is confined to a plane, and can thus be treated as a two dimensional problem.

We therefore begin with the Kerr metric given in Boyer-Lindquist coordinates
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(the conversion is described in Section 4.2.1 below), as written in Chandrasekhar’s

thorough mathematical treatment of black holes (Chandrasekhar, 1983).

dl2 =
∆

ρ2
[dt− (a sin2 θ)dφ]2 − sin2 θ

ρ2
[(r2 + a2)dφ− adt]2

− ρ2

∆
(dr)2 − ρ2(dθ)2. (4.1)

From this metric, the equations of motion can be derived. In this thesis, we are

interested in the paths of light rays, so we consider the null geodesics dl = 0 for a

Kerr spacetime (Chandrasekhar (1983), pp. 346-7):

ρ4ṙ2 = r4 + (a2 − L2 −Q)r2 + rsr(Q+ (L− a)2)− a2Q (4.2)

ρ4θ̇2 = Q + a2 cos2 θ − L2 cot2 θ (4.3)

ρ2φ̇ =
1

∆
(rsar +

(ρ2 − rsr)L

sin2 θ
) (4.4)

ρ2ṫ =
1

∆
((r2 + a2)2 − rsarL). (4.5)

Here, the Schwarzschild radius is rs = 2MG/c2, t is the time coordinate in the

reference frame of the mass, a = J/Mc is the angular momentum term, and the dot

indicates differentiation by a parameter, which we will call τ ′. The other symbols

are defined as: ρ2 = r2 + a2 cos2 θ; ∆ = r2 + a2 − rsr; M is the mass of the body;

and J is the angular momentum of the body. We are using geometrized units,

that is, c = G = 1. Finally, L and Q are constants of the motion, related closely

to the angular momentum of the particle. The first of these, L, comes from the

first integral of the Euler-Lagrange equation for φ̇, and the second, Q, is Carter’s
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constant, which is derived from the separation of the Hamilton-Jacobi equation

for geodesic motion (Chandrasekhar (1983), p. 342).

4.2.1 Acceleration Components

Solving equations (4.2) and (4.3) for ṙ and θ̇ introduces square roots, for which the

sign (±) is ambiguous (that is, either sign may be chosen). Additionally, it was

found that numerical integrators such as the Runge-Kutta method find singular

solutions such as closed orbits when integrating these equations, and so do not

always find the path of unbound photons. To remove these difficulties, we will

take derivatives, producing acceleration components which have a simpler form

than the first derivatives. As the parameterisation is arbitrary, for simplicity we

first re-parameterise in order to remove the ρ2 terms at the beginning of each

equation. We choose a parameter τ such that r2 d
dτ

= ρ2 d
dτ ′

. This has the result

that each instance of ρ on the left of the geodesic equations above becomes r. Re-

using the dot-notation for d/dτ and differentiating gives the following equations:

r̈ =
L2 +Q− a2

r3
− 3rs

2r4
(Q+ (L− a)2) +

2a2Q

r5
(4.6)

θ̈ =
cos θ

sin3 θ
(L2 − a2 sin4 θ)− 2ṙθ̇

r
(4.7)

φ̈ =
aṙ

r2∆2
(rsa

2 − rsr
2 + aL(2r − rs))−

2L cos θ

r2 sin3 θ
θ̇ − 2ṙφ̇

r
(4.8)

In order to describe the path of a particle through a system consisting of more than

a single body at the origin, it is convenient to express the acceleration components

in Cartesian co-ordinates. The conversion is given by the following substitutions
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(Chandrasekhar (1983), pp. 306-7):

x = (r cos ϕ̃+ a sin ϕ̃) sin θ

y = (r sin ϕ̃− a cos ϕ̃) sin θ

z = r cos θ (4.9)

where ˙̃ϕ = φ̇− aṙ/∆. These equations provide an implicit definition of r as:

r4 − r2(x2 + y2 + z2 − a2)− a2z2 = 0

Notice that if there is no rotation, that is, a = 0, then this degenerates to a con-

version from spherical co-ordinates, as expected. Differentiating the first equation

in (4.9) twice gives the following expression for ẍ:

ẍ =
1

a2 + r2

[
(x+

rsay

∆
)(rr̈ +

a2 − r2

a2 + r2
ṙ2) + rṙ

(
ẋ+

rsaẏ

∆
− rsa(2r − rs)yṙ

∆2

)]

− ẏφ̇− yφ̈− xθ̇2

sin2 θ
+
ẋθ̇ + xθ̈

tan θ
. (4.10)

In this equation, ṙ, θ̇ and φ̇ are obtained from the conversion equations (4.9) by

differentiation. A similar approach for y and z will give expressions for ÿ and z̈

respectively. Substituting in equations (4.6)-(4.8) for r̈, θ̈ and φ̈ and simplifying
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leads to a system of the form

ẍ =
−3rsx(L

2 +Q)

2r5
+ aFx(x, y, z, ẋ, ẏ, ż)

ÿ =
−3rsy(L

2 +Q)

2r5
+ aFy(x, y, z, ẋ, ẏ, ż)

z̈ =
−3rsz(L

2 +Q)

2r5
+ aFz(x, y, z, ẋ, ẏ, ż) (4.11)

The constant a has a valid range from −rs/2 to rs/2. It is therefore reasonable to

say that the angular momentum term a is of the same order of magnitude as the

Schwarzschild radius rs. It may then be said that because the functions Fx, Fy and

Fz are of order rs, the first term in each of the equations in (4.11) is of first order,

and the remainder is second order and higher. The full acceleration components

in equation (4.11) are given in Section 4.7.

4.3 Schwarzschild Acceleration in the Cartesian

Co-ordinate System

We can see that for the non-rotating (Schwarzschild) case, that is, a = 0, we obtain

the elegant result:

r̈ =
−3rs(L

2 +Q)

2r5
r (4.12)

where r = [x, y, z] is the position vector, and r = ||r|| =
√
x2 + y2 + z2 is its

Euclidean distance from the origin. From the non-rotating (a = 0) versions of
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equations (4.3) and (4.4) and the conversion equations (4.9), we can write

L = xẏ − yẋ

Q = (xż − zẋ)2 + (zẏ − yż)2. (4.13)

We can now say that L2 + Q is the square of the impact parameter, which is

the perpendicular distance of the initial (straight-line) path of the photon from

the point lens. Equation (4.12) is presented in a form similar to the standard

Newtonian gravitational equation

r̈ =
−rs
2r3

r.

However, it should be noted that the parameter in equation (4.12) differs in that

it includes the time dilation factor, that is, ṫ = r/(r − rs). It will be helpful

to explore the Schwarzschild solution in this coordinate system before continuing

on to the more general Kerr solution. Expanding equation (4.12) into the three

components gives the equality:

ẍ

x
=
ÿ

y
=
z̈

z
,
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which can be integrated to give the angular momentum conservation equations,

analogously with classical mechanics:

xẏ − yẋ = Lz

xż − zẋ = Ly

yż − zẏ = Lx.

In these equations the constants Lx, Ly and Lz are the three components of angular

momentum. From equations (4.4) and (4.13), we can identify L with Lz. Taking

the inner product of equation (4.12) with ṙ and integrating gives

||ṙ||2 = 1 +
rs(L

2 +Q)

r3
,

after the integration constant has been determined by the boundary condition

||ṙ|| → 1 as r → ∞. Further use of the identity (4.13) enables this to be expressed

in the final form

(xẋ+ yẏ + zż)2 = x2 + y2 + z2 − (L2
x + L2

y + L2
z) + rs

L2
x + L2

y + L2
z√

x2 + y2 + z2
. (4.14)

Equation (4.14) permits us to identify Q with L2
x + L2

y and we arrive back at the

non-rotating version of (4.6). We have identified Q and L in the non-rotating case

with the angular momentum of the particle. In the rotating case, we will see that

while there are conserved quantities, Q and L, they are not identical with L2
x+L

2
y

and Lz above. Due to the spherical symmetry of the Schwarzschild system, L and

Q only appear in the form L2 + Q. For readability in the Schwarzschild analysis

to follow, it is convenient to introduce the non-negative constant K = L2 +Q.



Chapter 4. Rotating lenses 61

4.3.1 Linearized Schwarzschild Expansion

We can approximate the path taken by photons in the Schwarzschild system, using

the expansions:

x = X0 + rsX1 + r2sX2 +O(r3s)

y = Y0 + rsY1 + r2sY2 +O(r3s)

z = Z0 + rsZ1 + r2sZ2 +O(r3s) (4.15)

where rs is considered small, relative to the distance of closest approach. Matching

terms of corresponding order in rs will give the zeroth, first and second order

solutions. Differentiating the first equation in (4.15) twice and equating with the

x-component of equation (4.12) yields:

Ẍ0 + rsẌ1 =
−3rsxK

2r5
+O(r2s),

where instances of x, y and z in the right side must also be expanded. Matching

up the zeroth-order terms gives Ẍ0 = 0 (and similarly Ÿ0 = 0 and Z̈0 = 0).

Integrating twice gives us the zeroth order solution

X0 = C1τ + C2

Y0 = C3τ + C4

Z0 = C5τ + C6 (4.16)
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for some constants of integration C1 to C6. As is expected, this solution describes

a straight line. In order to solve the first-order and second-order equations, it will

be necessary to expand r and K = L2 + Q in powers of rs using equation (4.15).

We write r = R0 + rsR1 + r2sR2 + O(r3s) and then the zeroth order term for r is

given by

R2
0 = X2

0 + Y 2
0 + Z2

0

= Aτ 2 + 2Bτ + C

where we have introduced three constants for readability:

A = C2
1 + C2

3 + C2
5

B = C1C2 + C3C4 + C5C6

C = C2
2 + C2

4 + C2
6 . (4.17)

However, we note that in the zeroth order solution, the speed of the massless

particle (=
√
C2

1 + C2
3 + C2

5 ) is 1, so that A = 1. The zeroth order term for K is

K0 = (X0Ẏ0 − Y0Ẋ0)
2 + (X0Ż0 − Z0Ẋ0)

2 + (Z0Ẏ0 − Y0Ż0)
2

= C − B2

Terms of first order in the small parameter rs are now equated and we obtain

Ẍ1 =
−3X0K0

2R5
0

.
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We can now use the substitution τ + B =
√
K0 tan γ and integrate twice. This

gives the first-order corrections to the light paths

X1 =
X0

2R0
− R0

K0
(C2 −BC1) + C11τ + C21

Y1 =
Y0
2R0

− R0

K0
(C4 −BC3) + C31τ + C41

Z1 =
Z0

2R0
− R0

K0
(C6 −BC5) + C51τ + C61 (4.18)

Consequently, the first-order velocity components are:

Ẋ1 =
C1

2R0

− X0(τ +B)

2R3
0

− τ +B

R0K0

(C2 − BC1) + C11

Ẏ1 =
C3

2R0

− Y0(τ +B)

2R3
0

− τ +B

R0K0

(C4 − BC3) + C31

Ż1 =
C5

2R0

− Z0(τ +B)

2R3
0

− τ +B

R0K0

(C6 − BC5) + C51 (4.19)

Choosing the initial position for the light ray gives us the three constants C2, C4

and C6. We then specify the initial angle of the ray by choosing two of ẋ, ẏ and ż,

and the third of these can be identified using the geodesic equations (4.2), (4.3),

and (4.4) to determine the speed:

ẋ2 + ẏ2 + ż2 = ṙ2 + r2 sin2 θφ̇2 + r2θ̇2 = 1 + rsK/r
3. (4.20)

This gives the constants C1, C3 and C5. We can then solve for C11 to C61 in

the same way using the equations in (4.18) and (4.19) and the speed equation

(4.20). We now have complete path equations for the first order approximation.

Converting the velocity given by equations (4.2)-(4.4) (with a = 0) to Cartesian

co-ordinates gives a constraint on the constants of integration which will be useful
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later:

C1C11 + C3C31 + C5C51 = 0.

4.3.2 Magnification map - binary system

We are now in a position to determine the caustic map due to photons travelling

through a system consisting of one or more non-rotating masses, either by tracing

their paths using forward integration of equation (4.12) or by solving the first order

equations as above. Unsurprisingly, tracing such paths through a system consisting

of a central mass and a single planet produces the same diamond caustic pattern,

similar to that seen later in the top part of Fig. 4.4, which was described by

Wambsganss (1997), and was also plotted previously using 2-dimensional polar

co-ordinates in Chapters 2 and 3. Interestingly the computations were slightly

quicker with this new Cartesian system, as it was not necessary to rotate each ray

into the x, y or r, φ plane, and also because the zeroth order terms of ẍ, ÿ and z̈

in equation (4.12) are now all zero (whereas those of r̈ and φ̈ are not). This leaves

only small acceleration terms which the numerical integration routine can process

more rapidly. Solving the first order equations (4.18), calculated above, gives a

caustic map indistinguishable from that obtained using forward integration, but

in a much shorter time.

4.3.3 Total Deflection Angle - first order approximation

The well known total deflection for a light ray passing near to a spherically sym-

metric mass can now easily be estimated to first order in rs. Due to the spherical

symmetry of the space-time around the non-rotating mass, we can choose a ray
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Figure 4.1: Approximating deflection and delay to the light path near a mas-
sive object, located at the origin. For ease of calculations, the light path is

chosen so that the ray is horizontal as it crosses the y-axis.

y
i

Lens
Mass

confined to the equatorial plane, without loss of generality. At τ = 0, let the ray

cross the y-axis parallel to the x-axis, at some value yi, as shown in Fig. 4.1.

Solving for the speed of the particle at τ = 0, (where ẏ = 0), it can be seen that

ẋ2 = 1 + rsK/r
3. Also, at that point, x = 0 and y = yi. It is straightforward to

solve for the zeroth-order constants and obtain C1 = 1, C2 = 0, C3 = 0, C4 = yi.

The first-order constants can then be calculated to give C11 = 0, C21 = 0, C31 = 0,

C41 = 1/2. Having the full first-order path equations, the total deflection is given

by the difference in arctan(ẏ/ẋ) as τ → ∞ and arctan(ẏ/ẋ) as τ → −∞. This

gives the result 2rs/yi + O(r2s), which is consistent with the well known Einstein

deflection angle. In this case, yi is the point of closest approach (often referred

to as r0), and also the zeroth-order approximation to the impact parameter, often

referred to as b. Thus to first-order in rs, 2rs/yi = 2rs/b.
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4.3.4 Travel Time Delay - first order approximation

Using the first-order equations again, it is a simple matter to compute the travel-

time for a photon from any initial point and time (xi, yi, τi) to any other point

and time (xf , yf , τf ). For ease of computation, and without loss of generality, we

may use the same arrangement, and therefore the same constants as described in

the angle calculation illustrated in Fig. 4.1 (Section 4.3.3). In order to measure

the travel-time to a point of given radius rf , we solve for τf by means of the path

equations with the constraint x2f + y2f = r2f . This will simplify the calculation of

the travel time delay for a light ray passing close to the sun. This delay has been

calculated to first order previously, and will serve as a check on this new method.

We note that yi is the closest approach to the sun, which is usually designated r0,

Then, at the final point, τ = τf , so X0 = τf and Y0 = r0, so that at that point,

R0 =
√
τ 2f + r20. The first order terms are

X1 =
τf

2
√
τ 2f + r20

Y1 =
r0

2
√
τ 2f + r20

−

√
τ 2f + r20

r0
+

1

2
.

To obtain the first-order delay term, we solve for τf , and then convert to co-

ordinate time t by equation (4.5), giving

r2f = x2f + y2f

=

[
τf +

rsτf

2
√
τ 2f + r20

]2
+

[
r0 + rs

(
r0

2
√
τ 2f + r20

−

√
τ 2f + r20

r0
+

1

2

)]2
+O(r2s)

= τ 2f + r20 + rs(r0 −
√
τ 2f + r20) +O(r2s). (4.21)
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This is a quadratic equation in
√
τ 2f + r20. After solving, we see that

τf = ±
√
r2f − r20(1 +

rs
2(rf + r0)

) +O(r2s).

Solving equation (4.5) to first order and integrating gives t = τ+rs ln((τ+R0)/r0)+

O(r2s), the constant of integration being determined by letting t = 0 when τ = 0.

Substituting this into equation (4.21) gives the total travel time

tf = ±
(√

r2f − r20 +
rs
2

√
rf − r0
rf + r0

+ rs ln
rf +

√
r2f − r20

r0

)
+O(rs)

2. (4.22)

The first term on the right hand side of equation (4.22) is the straight-line time,

and the rest constitutes the delay. This delay is in complete agreement with the

well known first order delay (for example, see Weinberg (1972) p.202).

4.3.5 Second Order Schwarzschild Expansion

Frame dragging effects due to rotation do not occur at first order, so it will be

necessary to consider the Kerr metric equations at second order. Before doing

so, it will be worth identifying the second order expansion of the Schwarzschild

system. The advantage of this approach is that we can follow the same procedure

as above while dealing with fewer terms than in the full rotational model.

The second-order terms X2, Y2 and Z2 in the expansion (4.15) are now considered.

First it is necessary to expand r =
√
x2 + y2 + z2 and the constant K to first

order in rs, that is, r = R0 + rsR1 + O(r2s) and K = K0 + rsK1 + O(r2s). From

Section 4.3.1, it is straightforward to establish that
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R1 = −1

2
+

1

R0
(BRτ + CR)

K1 = 2(CR − BRB)

where we have introduced two more constants, BR and CR for readability. These

are named according to their similarity with the constants B and C in equations

(4.17). They are

BR = C1C21 + C2C11 + C3C41 + C4C31 + C5C61 + C6C51

CR = C2C21 + C4C41 + C6C61.

In a manner similar to the first order expansion of Section 4.3.1, we can now

expand ẍ to second order, and equation (4.12) yields

Ẍ0 + rsẌ1 + r2sẌ2 =
−3rs(X0 + rsX1)(K0 + rsK1)

2(R0 + rsR1)5
+O(r3s).

Expanding and matching terms with coefficient r2s gives

Ẍ2 =
−3K0

2R5
0

(
X1 − 5X0R1/R0 +K1X0/K0

)

=
−3K0

2R5
0

(
3X0

R0
− R0

K0
(C2 −BC1) + C11τ + C21 −

5X0

R2
0

(BRτ + CR) +
K1

K0
X0

)
.

Integrating twice gives the equation for X2:
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X2 =
X0

R0
F1 +

C1√
K0

F2 +
C1B − C2

K0
F3 −

C21 − C11B

K0
R0

+
C11τ + C21

2R0
+ C12τ + C22. (4.23)

The intermediary functions F1, F2 and F3 are given by:

F1 =
9

16R0

− BRτ + CR

2R2
0

F2 =
BRR0√
K0

+
9

16
arctan

τ +B√
K0

F3 = 2R0
BRB − CR

K0
+
BRτ + CR

R0
+

15

16

τ +B√
K0

arctan
τ +B√
K0

Due to the spherical symmetry of the Schwarzschild space-time, the equations for

Y2 and Z2 have a similar form:

Y2 =
Y0
R0
F1 +

C3√
K0

F2 +
C3B − C4

K0
F3 −

C41 − C31B

K0
R0

+
C31τ + C41

2R0
+ C32τ + C42

Z2 =
Z0

R0
F1 +

C5√
K0

F2 +
C5B − C6

K0
F3 −

C61 − C51B

K0
R0

+
C51τ + C61

2R0

+ C52τ + C62 (4.24)

As in Section 4.3.1, we can identify the constants, C12, C32 and C52 by solving for

Ẋ2, Ẏ2 and Ż2 at τ = 0, and likewise to determine C22, C42 and C62 we solve for

X2, Y2 and Z2 at τ = 0. We can now compare the paths taken by light rays as

calculated using the following three methods:
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(i) forward integration of equation (4.12);

(ii) zeroth-order path equations (4.16) with first-order corrections (4.18); and

(iii) zeroth-order path equations (4.16) with first-order corrections (4.18) and

second-order corrections (4.23) and (4.24).

As the paths within the Schwarzschild system are contained within a plane, we can

compare our different solutions in two dimensions without loss of generality. This

is illustrated in Fig. 4.2 with rs = 0.2, where the three different methods have

been applied to five rays originating from (0,-10) with different starting angles,

and each being deflected by the mass at the origin. The three methods agree well

in the weak gravity regime at the top of the diagram, and the second order solution

does not diverge much from the exact solution until the deflection becomes quite

large, that is for rays passing close to the mass.

4.3.6 Deflection angle - second order approximation

Following the earlier procedure for the first order approximation of the total de-

flection angle in Section 4.3.3, we can now easily determine the second order cor-

rection. Of the second order constants, only C32 will appear in this calculation,

and by noting that ẏ = 0 at τ = 0, its value is found to be C32 = 0. The deflection

angle is again given by the difference in arctan(ẏ/ẋ) as τ → ∞ and arctan(ẏ/ẋ) as

τ → −∞. In the system described in Section 4.3.3, and represented in Fig. 4.1,

this is approximated by

∆Φ = 2
ẏ

ẋ

∣∣∣∣
τ→∞

= 2
Ẏ0 + rsẎ1 + r2s Ẏ2

Ẋ0 + rsẊ1 + r2sẊ2

∣∣∣∣
τ→∞

+O(r3s).
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Figure 4.2: Comparison of first and second order path approximations against
numerical integration of the full acceleration vector. Rays originate at (-10,0)
and are deflected by the mass at (0,0) of Schwarzschild radius 0.2. Five different
initial trajectories are chosen, each of which is computed using: forward inte-
gration (red); first order approximation (black); second order approximation
(blue). In each case, the deflection is greatest with the forward integration of

the acceleration vector, and least with the first order path equations.
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In the system under consideration, Ẋ0 = 1, Ẏ0 = 0 and Ẋ1 → 0 as τ → ±∞ so

that

∆Φ = 2(rsẎ1 + r2s Ẏ2)|τ→∞ +O(r3s)

=
2rs
C4

[
1 +

rs
2C4

+
15π

32

rs
C4

]
+O(r3s)

=
2rs
r0

[
1 +

rs
2r0

+
15π

32

rs
r0

]
+O(r3s)

=
2rs
b

[
1 +

15π

32

rs
b

]
+O(r3s)

where b =
√
K0 + rsK1 + O(r2s) = C4 + rsC4/2 + O(r2s) is the impact parameter.

This deflection to second order is found to be in complete agreement with that

calculated by Fishbach & Freeman (1980).
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4.3.7 Travel Time Delay - second order approximation

As for the first-order delay calculation, we can calculate the time for the ray to go

from r0 to rf by solving

r2f = x2f + y2f

= X2
0 + Y 2

0 + 2rs(X0X1 + Y0Y1) + r2s(X
2
1 + Y 2

1 + 2X0X2 + 2Y0Y2)

for the time parameter τf at the final point. The initial point allows us to calculate

the second order constants as C12 = −1/(2r20), C22 = 0, C32 = 0, C42 = −9/(16r0).

Solving for τf as in Section 4.3.4, but including terms to second order in rs gives

τf =
√
r2f − r20 +

rs
2

√
rf − r0
rf + r0

+
3r2s
8r0

arctan

√
r2f − r20

r0
− r2s

8(rf + r0)

√
rf − r0
rf + r0

+O(r3s). (4.25)

Converting from τ to t by integrating equation (4.5), but this time solved to second

order, results in

t = τ + rs ln
τ +

√
τ 2 + r20
r0

+
r2s
2r0

(
3 arctan

τ

r0
− τ√

τ 2 + r20

)
+O(r3s). (4.26)

This allows the second order approximation of travel time delay to be written as

∆T =
rs
2

√
rf − r0
rf + r0

+ rs ln
rf +

√
r2f − r20

r0

+ r2s

(
15

8r0
arctan

√
r2f − r20

r0
−

√
rf − r0
rf + r0

(
1

2r0
+

1

8(rf + r0)

))
. (4.27)
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In order to check this result, we may compare it to the delay (∆t) calculated

numerically to high precision using Gaussian quadrature with the formula given

in Chapter 2. For a ray starting at earth orbit, grazing the sun (r0 = 696000km and

rs = 2.95km) and reaching earth-orbit again, the travel time delay is calculated

accurately for a range of orbital distances. In Fig. 4.3 the delay is shown, along

with the residuals from the first order and second order approaches. While the first

order approximation has a relative error (that is, (∆t−∆T )/∆t) of approximately

rs/r0 ≈ 10−6, the second order approximation has a relative error of approximately

(rs/r0)
2 ≈ 10−11. Distance is shown in astronomical units (‘AU’), and time in

micro-seconds (‘µs’).

4.4 Rotating lens

Having explored the Schwarzschild solution in the Cartesian co-ordinate system,

we are ready to move on to the rotating (Kerr) case. We may start by adding

the rotational terms of the acceleration equations (4.29) which are given in the

appendix. These equations can be solved numerically using forward integration

to produce a magnification map at the plane containing the observer. As the

rotational terms are at second order and greater, the light rays must pass very

close to the massive object to make a noticeable change to the trajectory. This is

illustrated here by placing the light source close behind the massive lens. In order

to observe the change in the pattern, the light source and planet have been placed

approximately 3rs away from the black hole, which is clearly not a tenable position

for any massive object, but is chosen only to highlight the effect of rotation on the

caustic pattern. The top picture in Fig. 4.4 shows the normal diamond caustic

without rotation as described by Wambsganss (1997), and calculated here using
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Figure 4.3: The top picture shows Shapiro delay (”the delay”) as calculated
using Gaussian Quadrature. The Middle picture shows the difference between
the delay and the delay calculated using the first order approximation, and the
lower picture shows the difference between the delay and that calculated using
the second order approach. The vertical scale is in micro-seconds, the horizontal

scale is in astronomical units (AU).
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the numerical procedure described in Chapter 2. This was generated using almost

15,000 simulated light rays in a numerical integration of equation (4.12). The

lower figure uses the same procedure, but with the addition of the rotational terms.

While the diamond caustic pattern is still recognizable, it has clearly undergone

a twisting, with the bottom of the shape pushed further over to the right side of

the diagram.

4.4.1 Second order Kerr expansion

For a black hole, physically sensible values for the rotational constant a lie between

−rs/2 and +rs/2. Therefore it is reasonable to consider a to be of order rs,

that is a = αrs where α is a constant between −1/2 and 1/2. In the appendix,

equation (4.29) has been approximated to second order, resulting in equations

(4.30). Expanding the first of these equations using the expansions (4.15), yields

Ẍ0 + rsẌ1 + r2sẌ2 =
−3rs(X0 + rsX1)K0 + rsK0)

2(R0 + rsR1)5

+ rsa

(
Ẏ0
R3

0

+ 3(Y0Ż0 − Z0Ẏ0)
Z0

R5
0

+
Y0
R4

0

+ 2Ẏ0
Ṙ0

R3
0

− 4Y0
Ṙ2

0

R4
0

)

+ a2
2Ẋ0Z0

R5
0

(2Z0Ṙ0 − R0Ż0) +O(r3s).

In these equations, it can be seen that the first term on the right hand side is

the Schwarzschild acceleration discussed in some detail in Section 4.3, which we

have already integrated to obtain second-order path equations. It therefore re-

mains to integrate the remaining two terms and to add them to the second-order

Schwarzschild solution. The integration is straightforward, and following the same
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Figure 4.4: Caustic patterns due to central mass and single planet, using
forward numerical integration of the full equations (4.12). The top figure has
a non-rotating central body, whereas in the bottom diagram the central body
is rotating maximally (that is, with a = rs/2). The light source is located on
the x-axis at −3× 10−6. The primary mass is at the origin with Schwarzschild
radius rs = 9.9×10−7, and a planet is located on the z-axis at 3.3×10−6 having

rs = 10−8. The observer’s plane is located at x = 8000.
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procedure for y and z, we arrive at the second-order path equations.

x = C1τ + C2 + rsX1 + r2sX2 + rsa

(
Lx0FRS +

C3R0

K0
− Y0

2R2
0

)
− a2C1FA +O(r3s)

y = C3τ + C4 + rsY1 + r2sY2 + rsa

(
Ly0FRS − C1R0

K0
+

X0

2R2
0

)
− a2C3FA +O(r3s)

z = C5τ + C6 + rsZ1 + r2sZ2 + rsaLz0FRS − a2C5FA +O(r3s)

in which X1, Y1, Z1 and X2, Y2, Z2 are described in Sections 4.3.1 and 4.3.5. The

remaining terms are

FRS = 2R0
C6 −BC5

K2
0

− Z0

R0K0

FA =
Q0(τ +B)− 2C5K0Z0

2R2
0K0

+
Q0

2K
3/2
0

arctan
τ + b√
K0

Lx0 = C4C5 − C3C6

Ly0 = C2C5 − C1C6

Lz0 = C2C3 − C1C4

Q0 = L2
x0 + L2

y0.

In order to estimate travel-time delays, as above we write co-ordinate time t as a

function of τ . Expanding ṫ to second order in rs, and integrating yields

t = τ + rs log

(
τ +B +R0

B +
√
C

)
+

3
2
r2s + a2√
K0

arctan
τ
√
K0

Bτ + C

− rsτ
rs(BRB − CR) + aLz0

K0R0
+O(r3s).

Again, the constants of integration have been determined by setting t = 0 when

τ = 0.
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4.4.2 Second order expansion - equatorial case

It is clear that in the equatorial case (z = ż = 0, which also means that C5 =

C6 = Q0 = Lx0 = Ly0 = 0 and K0 = L2
z0) the above equations simplify to

x = C1τ + C2 + rsX1 + r2sX2 + rsa

(
C3R0

L2
z0

− Y0
2R2

0

)
+O(r3s)

y = C3τ + C4 + rsY1 + r2sY2 − rsa

(
C1R0

L2
z0

− X0

2R2
0

)
+O(r3s)

Interestingly, while terms involving r2s , rsa and a2 are all of second order in the

expansion parameter, and terms with coefficients r2s and rsa appear in these equa-

torial equations, there are no such terms with coefficient a2.

4.4.3 Total Deflection angle - second order equatorial Kerr

approximation

We can now add the second order term due to rotation to the earlier total deflection

angle calculation. As for the earlier scenario (see Fig. 4.1), C1 = 1 and C3 = 0 so

that as τ goes to ±∞, R0 → ∞, and so ẏ → rsẎ1 + r2s Ẏ2 − rsaτ/(R0L
2
z0). Then

the deflection becomes

∆Φ = 2

(
rsẎ1 + r2s Ẏ2 − rsa

1

L2
z0

)∣∣∣∣
τ→∞

+O(r3s)

=
2rs
r0

(
1 +

rs
2r0

+
15π

32

rs
r0

− a

r0

)
+O(r3s)

=
2rs
b

(
1 +

15π

32

rs
b
− a

b

)
+O(r3s).

This deflection is found to be in complete agreement with that calculated by Edery

& Godlin (2006).
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4.4.4 Travel Time Delay - second order equatorial Kerr

approximation

As before, but including the rotational components of x and y, the travel time for

the ray to go from r0 to rf can be calculated by solving

r2f = x2f + y2f

= X2
0 + Y 2

0 + 2rs(X0X1 + Y0Y1) + r2s(X
2
1 + Y 2

1 + 2X0X2 + 2Y0Y2)

+ rsa

(
X0(

C3R0

L2
z0

− Y0
2R2

0

)− Y0(
C1R0

L2
z0

− X0

2R2
0

)

)
+O(r3s)

= X2
0 + Y 2

0 + 2rs(X0X1 + Y0Y1) + r2s(X
2
1 + Y 2

1 + 2X0X2 + 2Y0Y2)

+ rsa
R0

Lz0

+O(r3s) (4.28)

for the overall time τf . As previously, the initial point allows us to calculate the

second order constants. With rotation these constants become C12 = −1/(2r20),

C22 = a/(2rsr0), C32 = −a/(2rsr20), C42 = a/(rsr0) − 9/(16r0). The solution for

τf now includes a rotational term (dependent on a), and becomes

τf =
√
r2f − r20 +

rs
2

√
rf − r0
rf + r0

+
3r2s
8r0

arctan

√
r2f − r20

r0

− r2s
8(rf + r0)

√
rf − r0
rf + r0

+
rsa

r0

√
rf − r0
rf + r0

+O(r3s).

The conversion from τ to t also now includes rotational terms

t = τ + rs ln
τ +

√
τ 2 + r20
r0

+
3r2s + 2a2

2r0
arctan

τ

r0
+ rsτ

2a− rs

r0
√
τ 2 + r20

+O(r3s).
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This allows us to write the second order approximation of travel time delay as

∆T =
rs
2

√
rf − r0
rf + r0

+ rs ln
rf +

√
r2f − r20

r0
+

(
15r2s
8r0

+
a2

r0

)
arctan

√
r2f − r20

r0

+ rs

√
rf − r0
rf + r0

(
a

rf
+

4a− rs
2r0

− rs
8(rf + r0)

)
.

This delay is the same for a ray travelling from perihelion r0 to rf on the right (t

positive) as for a ray travelling from rf on the left (t negative) to r0. So the total

delay for a ray passing the massive object at the origin is twice the amount ∆T

stated above. It can be seen in this example, that if a is positive (that is, the mass

has anti-clockwise angular momentum), the motion of the particle is opposite to

the frame-dragging effects, and the travel time delay is increased. Conversely, if

a is negative the travel time delay is decreased. Dymnikova (1986) has calculated

the delay to second order in the limit rf >> r0. The delay given here in the last

equation is in agreement with Dymnikova’s result in the same limit, but it also

gives the second order delay for all values of rf .

4.5 Modelling delay for a binary pulsar system

The regularity of pulses from a millisecond pulsar provides an interesting possi-

bility for observing the effect of rotation on the travel time of the light pulses. A

system such as the double pulsar binary system J0737-3039 described by Burgay

et al. (2003) may provide interesting possibilities for observing the delay due to a

rapidly rotating massive object. We will construct a simpler mathematical model

by replacing one of the pulsars in that system with a black hole (with rotation also

in the same plane as the orbit and observer) so that there is confidence in using
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the Kerr metric equations. Thus we consider here a binary system consisting of a

millisecond pulsar and a rotating black hole with the orbital plane aligned so that

the observer and the two bodies are within the same plane. We also ignore any

atmospheric or magnetospheric interference which may introduce complications

in measurements in the real system mentioned above. Finally we will ignore the

modulation of the pulse timing due to the spinning of the pulsar. This last effect

is expected to be small for a millisecond pulsar with an orbital period of hours or

days, such as we are considering.

Additionally, it must be pointed out that in this simulation, we are ignoring the

effect of the mass of the pulsar on the trajectory and travel-time of the light rays.

Any effect on the travel-time for photons climbing out of the pulsar’s gravity well

would be expected to be the same for every photon, and as the photons are emitted

radially there would be no initial effect on the trajectory. However, this system

is actually a two body system, so there will be some effect, however small, due to

the mass of the pulsar, which is not quantified in the present work.

Having designed this system with the orbital plane and the observer in the equa-

torial plane of the black hole, we can use the simpler two dimensional equatorial

equations of Section 4.4.2 to describe the paths of light rays from the pulsar to

the observer. This is for simplicity and clarity only; another arrangement using

the full three dimensional equations is only slightly more difficult to describe and

to code. In order to determine the delay of pulses due to the rotating black hole,

we will send light rays back from the observer past the black hole using forward

integration of the equatorial equations, stopping the integration procedure when

the rays meet the orbital distance of the pulsar. As the time coordinate has been

reversed, note that this also entails reversing the direction of spin of the black hole
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(which is decided arbitrarily in this model, but should be considered when using

data from a real system).

Fig. 4.5 shows the last section of rays as they reach the circular orbit of the pulsar.

Due to the large difference between the vertical and horizontal scales, and because

only a small section of the orbit is shown, the endpoints of the rays appear to

be in a line, but they do in fact form a circular arc. All distances shown are in

light-seconds and times for the delays are in seconds. The Schwarzschild radius

(rs) of the black hole is 2×10−4 light-seconds, equivalent to approximately 20 solar

masses. The delay increases in an almost linear relationship with mass of the lens,

so that a black hole of 10 solar masses would have approximately half the delay

times as those shown in Fig. 4.6. In a different study of travel time delay in a

binary pulsar system, Laguna & Wolszczan (1997) note that in order for the binary

system to have sufficient longevity for a reasonable chance of observation, there are

limitations on the proximity of the pulsar to the black hole, with approximately

5 solar radii being near optimum compromise between longevity and magnitude

of the delay effect. We therefore place the circular orbit at 11.6 light-seconds,

approximately 5 solar radii. This orbit induces a delay term in the straight-line

time from −11.6 seconds when the pulsar is closest to the observer, to +11.6

seconds when it is furthest from the observer. However, in the present study, we

are interested in the additional asymmetric delay due to rotation. The orbital

delay is symmetric about the point of superior conjunction, or occultation, which

occurs when the lensing body is directly between the pulsar and the observer. For

this reason, the orbital delay will be ignored here.

Along with the equatorial equations, we also integrate equation (4.5) to keep track

of the time coordinate. Comparing the time taken with the time light would take

to travel in a straight line from pulsar to observer without any lensing object
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Figure 4.5: Rays from observer to pulsar orbit at radius of 11.6 light-seconds,
using forward integration past a maximally rotating central body (rs = 2 ×
10−4). Only the final sections of the rays are shown. Rays passing very close
to the mass, and experiencing large deflection, are not shown here because the

images produced by such rays are extremely faint.
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gives the delay, shown in Fig. 4.6. The solid curve represents the delay due to a

rotating black hole, and was calculated using forward integration of the equatorial

equations (4.31) given in the appendix. This delay is plotted against the angle

from superior conjunction. That is, a zero angle represents the system with the

black hole in between the pulsar and observer, while all three are in a line. The

dashed line represents the delay due to a non-rotating black hole, calculated using

the Schwarzschild acceleration, equation (4.12). The part of the delay due to

rotation is small, and so to highlight the difference between the delays shown, a

magnified portion near the intersection is shown in the lower figure.

Finally the delay due to maximal rotation of the black hole is subtracted from

the delay due to a black hole of the same mass without rotation. The difference

between these delays gives the delay due solely to rotation, which provides a small

asymmetry in the delay curve in the rotational case. This difference is shown in

Fig. 4.7. The upper and lower lines represent the delay difference for the two

different images of the source, one passing to the left of the mass, the other to the
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Figure 4.6: Delay due to black hole. Four curves are present for rays passing
on each side of the black hole, and in the cases where the black hole is rotating
(solid lines) or not rotating (dashed lines). The change in delay due to rotation
is small so the curves in each pair are very close together. The lower figure
shows a magnification of the central section, which allows the different delays

to be seen.
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right. One of these images is dominant prior to conjunction, and the other image

becomes dominant after conjunction.

The delays due to lensing in this system are of the order of 10−3 seconds, while

the asymmetric part of the delay that is due to rotation is of the order of 10−6

seconds. Assuming other effects on travel time can be adequately accounted for,

these rotational delays may be measurable, and could possibly be used to estimate

the angular momentum of the lens.
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Figure 4.7: Difference in travel-time delay between rotating and non-rotating
cases, plotted against orbital position of the pulsar. Each curve corresponds
to rays passing the black hole on either the left (opposed to the black hole’s

rotation) or right side (aligned to the rotation).
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4.6 Conclusion and Discussion

In this chapter, we have presented Cartesian acceleration components for photons

using the Kerr metric. While these components are somewhat complicated, they

allow easy modelling of systems in Cartesian coordinates, with the advantage that

the components are normally very small. This allows for rapid numerical integra-

tion, and a new result (the caustic shape due to a binary system with rotating

mass) has been presented. In order to approximate the light paths near a rotating

black hole, we have built up the approximations in stages, beginning with the ze-

roth order and first order expansions, followed by the second order Schwarzschild

expansion and finally the second order Kerr expansion. At each point, the versa-

tility of this approach has been demonstrated by the ease of calculating deflection

and travel time delay, which are found to match previously calculated amounts.

In addition, a new formula for delay due to spinning black holes was presented.

It may prove possible in some practical astrophysical circumstances to measure

directly the delay due to rotation of the lensing object, and so to infer the angular
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momentum, using the formulae presented here. This awaits future experimental

observation.

4.7 Appendix to Chapter 4

In this appendix, the Cartesian acceleration components are written out in full.

The dot denotes differentiation by the chosen parameter τ . These equations are

followed by their second order approximations. Next the x and y acceleration

components for the equatorial special case are presented, followed by their second

order approximations.

4.7.1 Three-Dimensional Acceleration Components

Expanding and simplifying equation (4.10) for ẍ and following the same procedure

for ÿ and z̈, we can derive the following forms of the acceleration components:

ẍ = −3rsx

2r3
Q+ (L− a)2

r2 + a2
− a2ṙẋ

r

(
1

a2 + r2
+

z4

r2(r2 − z2)2

)
+

ax

r2 + a2
G1 +

ay

∆
G2

ÿ = −3rsy

2r3
Q + (L− a)2

r2 + a2
− a2ṙẏ

r

(
1

a2 + r2
+

z4

r2(r2 − z2)2

)
+

ay

r2 + a2
G1 −

ax

∆
G2

z̈ = −3rsz(Q + (L− a)2)

2r5
+

2a2z(Q− z2)

r6
. (4.29)

The functions G1 and G2 are functions of x, y, z, ẋ, ẏ, ż and are of order rs. The

axi-symmetry of the system may be seen in the signs in the equations for ẍ and

ÿ. That is, the equations are invariant under a rotation of the system about the
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z-axis such as given by the transformations x → y, y → −x. The functions G1

and G2 are expressed below:

G1 = aṙ2
(

2

a2 + r2
+
z4(a2z2 + r4)

r4(r2 − z2)3
− z2

r2(r2 − z2)

)
+
azṙż(r6 − a2z4 − 2r4z2)

r3(r2 − z2)3

− a

r6
(2a2z2 + r4 + 2r2z2) +

aL2

r4

(
r2 + z2

r2 − z2
+

2r3rs
∆(r2 − z2)

− a2(a2 + r2)

∆2

)

− rs
r∆

(
a2 + r2 − r2ṙ

)[
2L

(
1

r2 − z2
− a2

∆r2

)
+ a

rs
r∆

(
1− r2ṙ

a2 + r2

)]
+
aQ

r4

G2 = rs
2r2(Q+ L2 − a2) + 4a2Q− 3rrs(Q+ (L− a)2)

2r4(a2 + r2)

+
2z(zṙ − rż)

r3(r2 − z2)

(
r3rsṙ

a2 + r2
+ aL− rrs

)

+
rsṙ

2

a2 + r2
(
a2 − r2

∆
+

2a2

a2 + r2
)− ṙ

r2∆

(
rs(a

2 − r2) + aL(2r − rs)
)

+
aṙ

r2

(
r2 − 2z2

(r2 − z2)2
− a2

r2(a2 + r2)

)(
rsa+

∆Lr

r2 − z2
− a2L

r
− ar2rsṙ

a2 + r2

)

The constants of motion L and Q and also r and ∆ can be expressed as the

following functions of x, y, z, ẋ, ẏ, ż:

r =

√
x2 + y2 + z2 − a2 +

√
(x2 + y2 + z2 − a2)2 + 4a2z2

2

L =
r(r2 − z2)

r4 − rsr3 + a2z2

(
r∆

xẏ − yẋ

x2 + y2
− rsa(1−

r2ṙ

a2 + r2
)

)

Q =
r2(zṙ − rż)2 + L2z2

r2 − z2
− a2z2

r2

∆ = a2 + r2 − rsr
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4.7.2 Second Order Approximation

In order to approximate ẍ, ÿ and z̈ to second order in rs, it is only necessary to

approximate G1 and G2 to first order in rs, as they are multiplied by a, which is of

order rs. We first express the intermediary functions to first order in rs. Ignoring

terms of second order and higher in rs, where a is of order rs, we have the following

simplifications:

L = Lz +O(r2s) = xẏ − yẋ+O(r2s)

r =
√
x2 + y2 + z2 +O(r2s)

Q = L2
x + L2

y +O(r2s) = (yż − zẏ)2 + (xż − zẋ)2 +O(r2s)

∆ = r2 − rsr +O(r2s)

So that G1 and G2 can be approximated by:

G1 = aṙ2
(

2

r2
+

z4

(r2 − z2)3
− z2

r2(r2 − z2)

)
+
arṙzż(r2 − 2z2)

(r2 − z2)3
+

2rsL

r

ṙ − 1

r2 − z2

+
a

r4

(
Q + L2 r

2 + z2

r2 − z2
− r2 − 2z2

)

G2 =
rs(Q+ L2)

r4
+

2z(zṙ − rż)

r3(r2 − z2)

(
rrs(ṙ − 1) + aL

)
− rsṙ

r2
(ṙ − 1)

− 2aL
ṙ

r3
+ aLrṙ

r2 − 2z2

(r2 − z2)3

We can then write the acceleration components, ẍ, ÿ, z̈ as:
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ẍ = −3rsx

2r5
(Q + L2 − 2aL)− a2ṙẋ

r3

(
1 +

z4

(r2 − z2)2

)
+
ax

r2
G1 +

ay

r2
G2 +O(r3s)

ÿ = −3rsy

2r5
(Q+ L2 − 2aL)− a2ṙẏ

r3

(
1 +

z4

(r2 − z2)2

)
+
ay

r2
G1 −

ax

r2
G2 +O(r3s)

z̈ = −3rsz(Q + L2 − 2aL)

2r5
+

2a2z(Q − z2)

r6
+O(r3s)

After some algebra, these may be written as:

ẍ = −3rsx

2r5
(Q + L2) + rsa

(
ẏ

r3
+ 3(yż − zẏ)

z

r5
+
y

r4
+ 2ẏ

ṙ

r3
− 4y

ṙ2

r4

)

− a2
2ẋz

r5
(2zṙ − rż) +O(r3s)

ÿ = −3rsy

2r5
(Q+ L2)− rsa

(
ẋ

r3
+ 3(xż − zẋ)

z

r5
+
x

r4
+ 2ẋ

ṙ

r3
− 4x

ṙ2

r4

)

− a2
2ẏz

r5
(2zṙ − rż) +O(r3s)

z̈ = −3rsz

2r5
(Q+ L2)− rsa

3Lz

r5
+ a2

2z(Q− z2)

r6
+O(r3s) (4.30)

4.7.3 Equatorial Equations

From equation (4.29), we can see that a particle in the x−y plane has no component

of acceleration in the z direction. That is, if z = 0, then z̈ = 0. If such a particle

also has no velocity component in the z direction it must remain within the plane.

Thus there is a 2-D special case. The equations are derived by setting z and ż

to zero. This also means that Q is zero. Then we have the following acceleration

components:
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ẍ = −3rsx

2r3
(L− a)2

r2 + a2
− a2ṙẋ

r

1

a2 + r2
+

ax

r2 + a2
G1 +

ay

∆
G2

ÿ = −3rsy

2r3
(L− a)2

r2 + a2
− a2ṙẏ

r

1

a2 + r2
+

ay

r2 + a2
G1 −

ax

∆
G2 (4.31)

where G1 and G2 are now given by:

G1 = aṙ2
(

2

a2 + r2

)
− a

r2
+
aL2

r4

(
1 +

2rrs
∆

− a2(a2 + r2)

∆2

)

− rs
r∆

(
a2 + r2 − r2ṙ

)[2L
r2

(
1− a2

∆

)
+
rsa

r∆

(
1− r2ṙ

a2 + r2

)]

G2 =
rs

a2 + r2

[
ṙ2
(

a2

a2 + r2
+
a2 − r2

∆

)
+

2r(L2 − a2)− 3rs(L− a)2

2r3

− ṙ

r∆
(aL(r − rs) + rsa

2)

]
+

ṙ

r∆
(rsr − aL).

Here, r, ṙ and L are given by

r2 = x2 + y2 − a2

ṙ =
xẋ+ yẏ

r

L =
1

r − rs

(
r∆

xẏ − yẋ

x2 + y2
− rsa(1−

r2ṙ

a2 + r2
)

)
.

4.7.4 Equatorial Case: Second Order Approximation

Discarding terms of order higher than r2s (where again, a is of order rs), we obtain

the following acceleration components:

ẍ = −3rsx

2r5
(L2 − 2aL)− a2ṙẋ

r3
+
ax

r2
G1 +

ay

r2
G2

ÿ = −3rsy

2r5
(L2 − 2aL)− a2ṙẏ

r3
+
ay

r2
G1 −

ax

r2
G2
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where G1 and G2 are now given by:

G1 = aṙ2
(

2

r2

)
− a

r2
+
aL2

r4
− 2rsL

r3
(
1− ṙ

)

G2 =
rsṙ

r2

[
1− ṙ +

L2

r2

]
− aLṙ

r3
.

In these expressions, r, ṙ and L are given by

r2 = x2 + y2

ṙ =
xẋ+ yẏ

r

L = Lz +O(r2s) = xẏ − yẋ+O(r2s)

After some algebra, in which all the terms associated with a2 cancel out, ẍ and ÿ

may be written as:

ẍ = −3rsx

2r5
L2 + rsa

(
ẏ

r3
+
y

r4
+ 2ẏ

ṙ

r3
− 4y

ṙ2

r4

)
+O(r3s)

ÿ = −3rsy

2r5
L2 − rsa

(
ẋ

r3
+
x

r4
+ 2ẋ

ṙ

r3
− 4x

ṙ2

r4

)
+O(r3s) (4.32)
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Conclusion

This work has presented an alternative approach to identifying the path a photon

should travel in proximity to massive objects. The study began with the simplest

non-trivial solution to Einstein’s equations of General Relativity, the Schwarzschild

metric. A simple formula was written which allowed the total deflection to the

path of a photon passing near a spherically symmetric body, to be computed

numerically to arbitrary accuracy. Next an effective refractive index was developed

which accurately describes the effect of space-time on the photon’s path. This

refractive index was used to write a new and simple integral for the travel-time

delay (‘Shapiro delay’), allowing the delay to be computed to arbitrary accuracy.

A new acceleration vector in plane polar co-ordinates was identified which accu-

rately describes the path of a photon in a Schwarzschild space-time. It was shown

that the well known radius for circular orbit for a photon is an obvious outcome

of this acceleration vector. Using this acceleration vector, a kinematic system of

equations was used to model numerically the path of a photon passing close to

the sun. The values for deflection and delay thus derived were found to match
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those previously calculated. Making the approximation that the total acceleration

on the photon is the sum of the individual acceleration vectors due to each mass,

light paths through systems containing two bodies were modelled. This resulted

in the diamond caustic patterns expected for such binary systems, demonstrating

the versatility of this new approach.

A formal linearisation for the light path in a Schwarzschild space-time was devel-

oped in Chapter 3. Starting with the acceleration vector described in Chapter 2, a

perturbation expansion about a straight line was performed, using an appropriate

small parameter. This resulted in a third-order differential equation, surprisingly

yielding a closed-form solution. This allowed the path of the photon to be de-

scribed, accurate to first order in the small parameter. It was shown that this

solution matches the simplest first order solution in the limit of large source-to-

lens and observer-to-lens distances. As this solution was linear, the superposition

principle allows calculation of deflection due to multiple masses, simply by sum-

ming the small perturbations due to each mass. In this way, caustic maps were

produced, which are indistinguishable from both the simplest first order approach,

as well as from the figure produced by integration of the acceleration vectors as in

Chapter 2.

The effect of the rotation of massive objects upon light rays was considered in

Chapter 4. Beginning with the Kerr metric, the acceleration components were

identified. Due to the fully three-dimensional nature of the path of light through

a Kerr space-time, Cartesian co-ordinates were chosen. This meant that all zeroth

order components of acceleration would be zero, which has advantages in solving

the linearised equations, as well as improvements in efficiency of numerical com-

putations. The linearised solution was developed in stages. Starting with a new

elegant form of the Schwarzschild acceleration vector, first order and second order
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components were identified. At each point it was demonstrated that the deflection

and delay can be easily computed with the new equations, and shown to match

known estimates, where such estimates already exist. The clear and straight-

forward way in which these known results can be replicated (and extended, in one

case), demonstrates the versatility of this new method, and suggests that there

may be more situations in which this new approach may be useful.

It was shown that inclusion of the second-order rotational components is now

a straight-forward matter, following naturally from the linearised Schwarzschild

expansion. Again deflection and delay are calculated to second order accuracy,

and shown to match known values, as well as generalising an existing formula for

calculating delays. The new formulae were used to model delays of pulsar signals

past a rotating black hole.

The assumption used in this work, that the effect on a light ray due to multiple

massive objects can be approximated by summation of the individual acceleration

components is analogous to the same assumption in Newtonian gravity. Testing

of this assumption by comparison with numerical solutions of the full Einstein

equations would be a fascinating topic for future study. It may also be possible

to make some analytical comparisons with solutions that have been proposed for

systems of multiple masses, such as the double Kerr solution (Dietz & Hoenselaers,

1985). Chapter 4 of the current study has implicitly assumed that the composition

of accelerations is valid to at least second order in the Schwarzschild radius, and

it would be of great interest to know whether this is so, both from a practical

viewpoint for the use of the techniques presented here, and also informing how

valid is such an analogy with Newtonian gravity.

Other topics for future research include more detailed comparison with the thin
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lens approach, identifying situations where there is a measurable difference be-

tween the two approaches, and thus where the kinematic method may be more

useful. Additionally, modelling of light paths through a thicker lens, with compar-

ison to the multi-layer thin-lens approach would be interesting. Finally, modelling

of systems where we drop the assumption that the masses are static during the

passing of the light ray would be of interest. These suggestions for future study

have been kindly suggested by the examiners of this thesis.

The approach presented in this thesis provides a new way to model light paths,

including deflection angles and travel time delays, for rays passing near to massive

objects. The method has proved versatile and robust, allowing simple and accurate

calculations to be made, and providing a new way to produce caustic maps. In this

work, the focus has been on micro-lensing, but areas for future study could also

include strong lensing models, mapping images at the source plane to distorted

versions at the observer’s plane. Another subject for study could be to look for

efficient ways to model light paths passing near or through more complicated

distributions of matter, such as galaxies or clusters of galaxies, using the linearised

formulae presented here.
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