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CHAPTER 1 

INTRODUCTION 

A. Solar Radio Emissions 

During the last two solar cyclesi solar radio emissions 

in the observable frequency range have been observed to come from 

both thermal and nonthermal sources in the solar atmosphere. 

The thermal emission consists of two components (Kundu, 1965): 

(1) The quiet sun component, the radiation emitted in the 

absence of localized sources in the solar atmosphere and originating 

in the corona where the temperature is of the order of 106 °K, 

0 or from the chromosphere whose temperature varies between 6,000 K 

and 30,000 °K; 

(2) The slowly varying component which originates thermally 

from high density regions of the corona with a temperature of about 

6 0 2xl0 K; these regions exist over sunspots and plage regions. 

The nonthermal emissions are generally associated with solar 

flares and originate from all levels of the solar atmosphere 

beoieen the lower chromosphere (millimetre and centimetre waves) 

and the outer corona to heights of several solar radii (metre and 

decametre waves). The equivalent brightness temperature of the 

nonthermal emission source can reach as high as 1012 °K. The 

bursts at centimetre wavelengths are simplest in spectral 

appearance and consist of three distinct types: impulsive bursti 

post burst and gradual rise and fall. The bursts in decimetre 

wavelength region show a great variety of fastdrifting. elements 



superimposed on a background continuum. The bursts at metre and 

decametre wavelengths are characterized by great variety and 

complexity. Depending on their spectral characteristics, they 

are designated as types I, II~ III, IV and V (Wild et al., 1963). 

Examples of the principal spectral types of solar radio bursts 

are illustrated in Fig. 1.1. The main characteristics of these 

radio bursts are summarized in the figure captions. 

To utilize radio observations for studying the structures 

and processes in the upper layers of the solar atmosphere, it 

is necessary to develop consistent theories of solar radio 

emissions. The thermal radio emission theory proposed by -~ 

Ginzburg (1946), Shklovskii (1946) and Martyn (1946) explains 

a series of phenomena related to the radio emission of the 

quiet Sun and gives important information on the temperature 

and censity of the solar corona and chromosphere (Kundu, 1965). 

However, theories of many observed solar burst emissions have 

not yet been fully developed although many suggestions have been 

2. 

put forward. Many existing theories of solar radio burst emissions 

are either based on some assumptions that require both experi­

mental and theoretical verifications or lack quantitative 

analysis. 

only. 

Consequently, many of these theories are speculative 

To put forward a successful theory, we need to study the 

theory in great detail and in a quantitative way. Since most 

of the observed burst emissions come from the corona which is 
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FIG. I· 1 EXAMPLES OF THE PRINCIPAL SPECTRAL TYPES OF SoLAR RADIO BURSTS AT METER WAVELENGTHS 

The main figure shows records taken with the Dapto Solar Radio Spectrograph (near Sydney, Australia). The records chosen show 
typical examples of the six main types of events observable at meter wavelengths. Frequency is measured vertically and time hori­
zontally, the intensity is given by the shade: intense bursts appear white, weak ones grey, and the background is black. The bright 
lines which are observed at a constant frequency are interference from radio transmitters. 

The bottom figure shows in the same form, an idealization of the most complete sequence of events which can follow a major flare. 
Other detai ls of the particular event~ are as follows: 

Type I (22- 12-59 record starts 0210 U.T.) . This is a typical "noise storm" which may last for hours . This particular event oc­
curred simultaneously with a large number of type III bursts (see below) which should not be confused with t he type I. 

Type I I (30-11-5\1 record starts 0251 U.T. ) This is also culled a slow-<lrift burst. The direction of drift is always the same and the 
rate of drift does not vary greatly. 1ote, particularly near the end , the two pairs of bands, one at twice the frequency of the other. 

Type III (7-lCHlO record starts 0547 U.T .) These are also called fast-<lrift bursts. Each of the individual0almost vertical lines is 
a separate burst. The direction of drift is the same as for type II bursts. 

1'ype I V (11-11--00 record starts 0408 U.T.) The example shows a form of continuum rad iation (so called for its slow variation with 
frequency and time) which commonly follows type II bursts. It is sometimes called " type IV," but the term has been loosely applied 
to various forms of continuum. 

Type V (4-2--00 record starts O.J.22 U.T.) This is a continuum event, of much shorter duration, which follows immediately after a 
group of type III bursts. 

Dnflin g pair• (D.P. ) (12-2--00 record starts 0422 U.T.) A drifting 7Xlir is a pair of short-duration, narrow-bandwidth bursts, very 
similar to one another, which occur separated in time by about two seconds. Both parts drift rapidly in frequency, either from high to 
low frequencies ("forwarcl-<lrift prurs") or from low to high ("reverse-d rift pairs"). This record shows a portion of a particularly dense 
:torm of drifting pnirs und includes drifts of both senses. 

(Recorded with t he Dapto Had io Spectrograph of the Division of Radiophysics C. S. I. R. 0., University Grounds, Sydney, Australia. 
Courtesy, Paul Wild.) (Aftc..., Ati..v, 1%.H 



3. 

a fully ionized gas, any interpretation of the observed solar 

radio emissions is tightly linked to the consideration of 

generation and propagation of radio waves in a fully ionized 

plasma. Therefore, in this chapter we shall describe briefly 

the propagation and generation of electromagnetic waves in a 

fully ionized plasma. Gaussian units will be used in this 

thesis. 

B. Propagation of Electromagnetic Waves in A Magnetoactive 

Plasma 

A plasma may be defined as an electrically charged gas 

consisting of ions and electrons. It is macroscopically neutral 

but microscopically ionized. When the plasma is located in a 

constant magnetic field, the plasma is said to be magnetoactive. 

A fully ionized plasma consists of i-,ons _and .el.ectroris _:the s.uin 

of _wh~se_~harges gives zero. 

(a) Dielectric Tensor and Dispersion Equation 

The propagation of small amplitude waves results in small 

amplitude variations in the physical quantities characterizing 

the plasma. To obtain waves that can propagate in a plasma, 

one must require that the electromagnetic field associated with 

the wave is caused by current and space charge which, in turn, 

result from the action of these fields on the plasma. Therefore, 

the study of the behaviour of the propagating waves in a plasma 

is a self-consistent electromagnetic field problem. 



When the particle interactions are neglected, the collision-

less Boltzmann equation which describes the time behaviour of 

the distribution function of the plasma particles of species i 

in the phase space and time fi(r,v,t) under the action of an 

external electromagnetic field can be written as (Delcroix, 

1965, p.165) 

cti F --- -:- -or mi 
(1.1) 

where F = q
1
. [E + l v X(B + B )] 

c 0 

qi and mi are the charge and the mass of the particle of species 

i. B is the static magnetic induction of the magnetoactive 
0 

plasma. The equation (1.1) is obtained by assuming that the 

particle densities are low enough not to affect the external 

field. The macroscopic current density j and space charge 

density p representing the ~espond of the plasma to the electro-

magnetic field of the wave are determined by 

and 

3 er, t) = l 

p ·- l 
i 

vcr,t) t.<r,v,t) dv 
1 

(1.2) 

respectively, while the electromagnetic field itself satisfies 

the Maxwell's equations 

B- 4n -:- + l aE 'IJX = - J - -
c c at ' 

4. 



5. 

· - __ 1 "'B 
svixE = .a.::. 

c at ' 
(1.3) 

~.E = 4~p, B = n . 

For small amplitude waves 9 the system of equations (1.1) - (1.3) 

can be linearized and, in a number of cases, these equations can 

be solved by means of Fourier methods. In the perturbation 

treatment, the distribution function and other physical quantities 

* in the plasma are written in the form of plane waves 

and 
f - - I - -

f (r,v,t) = f (v~k,w) exp(ik.r - i~t) 

where f is the unperturbed distribution function, k is the wave 
0 

vector and w is the angular wave frequency. The perturbation 

' f due to the presence of the wave is assumed to be much smaller 

' than the unperturbed value, i.e. f << f • 
0 

Then the electric 

field vector associated with the wave can be written as 

E(r,t) = E(k,w) exp [i(kz - wt) + (qz - 6t)l , 

-where k denotes the wave number and is related to the wavelength 

A and the refractive index n by 

* In this thesis, unless otherwise stated, we assume that the wave 

is in the fonn exp(ik.r - iwt) with w~ve vector k lying on x-z 

plane of a Cartesian coordinate system and the static magnetic 

field directs along the z-axis. 



k = 21T = nw 
A. c ' 

w being the real part of the angular wave frequency. q and o 
are the imaginary parts of the complex quantities k, w 

respectively, z is the path length in the direction of propaga-

tion. The phase velocity and the group velocity for the wave 

are given by (Ginzburg, 1964, p.262) 

w aw v =- andv =-
ph k ' g ()k 

respectively. 

' Having determined f from (1.1) and (1.3), we can express 

the Fourier component of the current density resulting from the 

action of the electromagnetic field in a homogeneous unbounded 

plasma as 

where 

ja (k,w) 

Ka.a (k,w) 

= -iw Kaa Ea(k,w) 

= I - i e> J dj;0 J va (t) [c1 k.v0 )dFo 

w a o Pa 

(1.4) 

+Va k • a o "F-0 J 
w ap 

0 

t 

x exp [iwt - ik.f 
0 

v<t')dt' J dt (1.5) 

is the polarizability tensor (Shafranov, 1967, p.79). The 

summation is carried out over all particle species (electrons 

and ions). The subscript ".o" denotes the quantity at the 

time t = o. e is the charge of an electron and n
0 

is the 

6. 



7. 

particle number density. The unperturbed distribution function 

in the momentum space F (p) is normalized to unity, i.e. 
0 

J F
0

(p)dp = 1~ where p is the momentum of the particle. Usuallyp 

the electromagnetic properties of the plasma is characterized by 

the dielectric tensor EaS(kjw) which is related to the current 

density j through the equation a 

(1.6) 

where Da is the electric induction. From (1.4), (1.5) and 

{l.6)j it can be found that 

(1.7) 

where oaS is the Kroneckervs delta. The dependence of the 

dielectric tensor on the frequency defines the frequency 

dispersion while the dependence on the wave vector k defines 

the spatial dispersion of the plasma. 

Nowp Maxwell's equations (1.3) can be reduced to three 

linear homogeneous equations for the three components of 

These equations have non-trivial solutions only if 

the determinant of their coefficients vanishes. This statement 

gives the most general dispersion equation which relates the 

angular wave frequency w and the wave vector k in the form 

{1.8) 



a. 

In general. !Aas (k,w) I ·is a complex quantity; the imaginary 

part is associated with the absorption or growth of the electro­

raagnetic wave in the plasma and arises from the anti-hermitian 

part of the dielectric tensor (Rukhadze and Silin, 1962; 

Sitenko and Kirochkin, 1966). In the transparency region of 

the plasma (ioe. the region of w and k in which the anti­

hermitian part of the dielectric tensor is small compared with 

the hermitian part)~ the dispersion equation can be approximately 

written in the form 

(1.9) 

Since the dispersion equation involves only the dielectric 

tensor, once the distribution functions for the constituent 

plasma particles are kno~m~ the wave modes and the behaviour of 

the waves in a plasma will be well defined. Such a description 

of the electromagnetic phenomena in a plasma by means of the 

Boltzmann equation and the self-consistent fi2ld equations is the 

most rigorous and complete one. However, these equations are 

extremely complicated and may not always be necessary in many 

cases of practical interest, For a qualitative description 

of the relation between w and k, a macroscopic approach is 

sufficient. 

In the macroscopic approach, the plasma is treated as a 

continuous fluid and its state is specified by certain macro­

scopic quantities such as density 9 mean particle velocity vector. 



9. 

The changes of these macroscopic parameters due to the presence 

of an external electromagnetic field are described by the two 

basic transport equations obtained by taking the first two 

moments of the linearized Boltzmann-Vlasov equation (Delcroix, 

1965, p.210). 

The macroscopic theory does not reveal those electromagnetic 

phenomena which depend on the microscopic distribution of 

particle velocity; in particular, the Landau damping and the 

cyclotron resonance absorption of waves due to the thermal 

motions of the plasma particles (see Chapter VI). Moreover, 

it gives qualitatively correct description of the behaviour of 

the waves in a plasma only if the phase velocities of the waves 

are greater than the mean thermal speed of the plasma particles 

such that the number of resonant particles moving in synchronism 

with the wave is small and hence the damping is weak. 

(b) High Frequency Waves in A Magnetoactive Plasma 

In the Cartesian coordinate system in which the static 

magnetic field B -is along the z-axis and k lies on the x-z 
0 

plane, the dispersion equation (1.8) can be expanded as 

An 
4 + Bn

2 + C = 0 (1.10) 

or A ( ck ) 4 + B ( ck ) 2 + C = 0 w w ~ 

2 2 where A = Ell sin 6 + 2 E13 sin6 cos0 + € 33 cos 6 ~ 

2 2 2 
+ 8 13 - (€11 8 22 + 8 12 )sin e 

+ 2(£12 £23 - £13 E22 )cose sine , 



and 0 is the wave-normal angle; angle between k and B 
0 

10. 

For cold and collisionless homogeneous magnetoactive plasma, 

the dielectric tensor components (1.7) are tunctioue of wave 

frequency only and the dispersion equation (1.10) is quadratic 

2 in n • The plasma transmits only four different wavesi two 

hydromagnetic waves in the low frequency region (f < fHi, where 

f = w/2w and fHi is the ion gyrofrequency) and two high 

fr~quency electromagnetic waves (f >> fHi). When the plasma 

temperature is not absolutely zero, two additional longitudinal 

waves (or pressure waves) may propagate in a magnetoactive plasma. 

These longitucinl waves de~end partly on the elastic force 

resulting from compression of the plasma (either as a whole or 

the electron gas alone) and make their appearance when the thermal 

motions of the plasma particles are taken into account. One 

of these longitudinal waves appears at hydromagnetic frequencies 

and the other occurs in the high frequency domain. 

Although low frequency waves may be important in the solar 

ppysics, they are not important in the study of generation and 

propagation of solar radio emissions observed on the Earth 

since the electromagnetic radiation in the low frequency region 

is unable to escape from the Sun. Therefore only the high 

frequency waves will be coneidered in this thesis. 



.,.. ..... 

In the high frequency domain, the effects of the ions on 

the propagation of waves in the magnetoactive plasma can be 

neglected and only the electron component of the plasma needs to 

be taken into account in the dispersion equation. In the 

solar corona 9 the mean thermal speed of the plasma electrons 

i~ small 9 i.e. $1 m (KT/m0c2)~ << 1, where Keis the Boltzmann 

constant, T is the plasma temperature in degree Kelvin and m
0 

is the electron rest mass, the coronal plasma can be·considered 

as cold and collisionless almost everywhere. With this 

assumption, the dispersion equation (1.10) gives two roots of 

2 2 n for the two normal waves; extraordinary wave (n
1

) and 

2 ordinary wave (n2). 

For 0 1 0, ~/2, the polarization of the normal wave is 

elliptical. The polarization ellipses associated with the 

extraordinary and ordinary waves are ident~cal 1n shape with 

the major and the minor axes interchanged and the senses of 

rotation reversed. 
I 

The sense of rotation of the electric 

I 
I 

'1 

l 
I 

- · field vec~o~,.. of ,th~.e~t_raordinary __ way~J,s ·_that __ o.f _the _electron ___ ~ ------· ------------- ,... - - - -- - - -- -- - - ~ ... 

relative to the static magnetic field,i.e.right-handed sense 
(S~rr/0 

relati~e to ~he direction of propagatio?\.For longitud~nal 

propagation (0 = O),the characteristic polarization of the 

two normal two waves is~ circular while for transverse 

propagatio~ (0 = ~/2),the two waves are linea~ly polarized. 

-w1th -the -spatial -dispersion -of- -the plasma -taken into ac~-----------
, 2 

count, a third wave known as a longitudinal plasma wave (n3) 



2 appears in the regions near the plasma resonance where n1 or 

2 n2 tends to infinity as ST~ 0 (Gershman, 1953; 1957; Sitenko 

and Stepanov, 1957). Strictly speaking, electromagnetic waves 

in a magnetoactive plasma cannot be separated into longitudinal 

and transverse components except where 6 = 0 (Shafranov, 1967~ 

p.7). However, in the regions near the plasma resonance, 

the electromagnetic wave becomes almost a pure longitudinal 

electric wave even for 8 # 0 (Sitenko and Kirochkin, 1966). 

The dispersion curves of the three high frequency waves 

are illustrated in Fig. 1.2 for Y = fH/f = ~and T = 106 °K 

and for arbitrary angle of propagation a, where 

12. 

fH = lel H
0

/2Tim
0

c is the magnitude of the electron gyrofrequency 

and H
0 

is the static magnetic field intensity. The full and 

dashed lines of Fig. 1.2 represent the limiting cases 

corresponding to longitudinal and transverse propagation. 

Intermediate values of 8 give dispersion curves lying in the 

shaded area between. 

The propagation regions are n2 ~ O. 2 For n >> 1, the 

dispersion curves represent the longitudinal plasma waves. 

It can be seen that the plasma wave gradually changes its 

~hysical character from a pure longitudinal wave (n2 >> 1) to a 

transverse electromagnetic wave. When the phase velocity of the 

plasma wave is reduced to the point where the wavelength 

becomes about as small as the Debye length D given by 

KT ~ 
D=(--) 

4Tie2n 
0 



12a. 

102 

n2 , , 

10 

....... 
0 

O·O 0·2 0·4 I 0·6 O·B 1·0 1·2 1·4 I 1-6 
1-~ 1tWH 

UJ 
X• wp2/c.u2 w 

F'i,o;.1.2 The disnersion curves foJ' the ordinary (o), 

extradinar;v ( e) an<l pl11.sma ( n) waves in a plasma, assum­

in,o; T = in6 °K 11.nd Y = 1t. LonB:ituoinal nropagation is 

sh°'m thus --- transverse thus ------. Tn general 

the' 01irves lie in the hatched arP.as. The J ine kD = 1 

corresnonos to the wave nurnh8t' P.011al to the recinrocal 

of the Deb:ve len,o;th. 

(Wild et al.,1963, with modifications) 
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where n
0 

is the electron number density, then the wave becomes 

completely disorganized by the thermal motions and can no longer 

be supported. 

For wave-normal angles different from zero, the refractive 

2 2 indices for the extraordinary and ordinary waves (n1 and n2) 

2 2 vanish at the points X = f /f = 
p 

the electron plasma frequency f 
p 

1 ± Y and X = 1 respectively; 

2 ~ is given by f = (e n /Trm ) • 
p 0 0 

Hence, the critical frequencies of a layer for the two normal 

waves will be 

and r: = f 2 p 

(extraordinary) 

(1.12) 

(ordinary) • 

Moreover, along each branch of dispersion curve, the sense of 

polarization reverses on passing through the point X = 1 

(Ginzburg, 1964, p.104). 

For a given homogeneous magnetoactive plasma characterized 

2 2 by the quantities A = f p/fH and BT~ the dispersion curves can 

also be presented as nj vs ~ = f /fH (normalized frequency) (see 

Fig. 2.1). It is found that for a given wave-normal angle e, 

each wave is represented by two branches of dispersion curves; 

each branch can be labelled as a mode. Hence electromagnetic 

waves in six different modes in different frequency regions can 

propagate in a magnetoactive plasma; these are the z-mode and 

th~ x-mode (extraordinary wave), the whistler mode and the 

o-mode (ordinary waye) and the two longitudinal p-modes (plasma 
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wave) appearing in the vicinities of the plasma resonance 

frequencies. 

For transverse electromagnetic waves, the plasma behaves 

as a dielectric and the waves can exist outside of the plasma. 

The propagation of longitudinal plasma waves is connected to the 

energy transport of tha plasma particles and hence the 

longitudinal plasma waves cannot exist in the vacuum (Denisse 

and Delcroix~ 1963, p.54). 

C. Generation of High Frequency Waves in A Magnetoactive Plasma 
(Wild et al.~ 1963; Smerdj 1968) 

The solar radio emissions observed on the Earth are the 

distant fields due to currents in the coronal plasma. The 

14. 

radiation processes can be classified as radiation from uniformly 

moving electrons and radiation due to electron acceleration. 

(a) Radiation from uniformly moving Electrons 

A charged particle moving with constant velocity through 

a medium (such as a plasma) along a rectilinear trajectory can 

radiate if its velocity exceeds the phase velocity of light in 

the medium, The radiation process is called Cerenkov radiation. 

Owing to its faster-than-light motion~ the charged particle temp-

orar±ly · produces an asymmetric polarized wake in the medium 

which radiates the electromagnetic energy. 

The direction of emission is governed by the Cerenkov 

condition 

cos e c = ~-v n. (1.13) 
J 



15. 

where v is the magnitude of the charged particle velocity 

(For a gyrating charged particle, v is taken to be the speed 

of the guiding centre motion.), 8 is the angle between the 

direction of the emission and that of the charged particle 

motion (or guiding centre motion). For v < c, the Cerenkov 

radiation can be emitted only in the electron plasma mode, z-mode 

and the whistler mode and in the forward hemisphere witb respect 

to the electron motion (or the guiding centre motion). 

(b) Radiation from accelerated electrons 

At large distances from an accelerated electron~ the 

acceleration field makes the main contribution to the observed 

radiation intensity which is proportional to the square of the 

electron 1 s acceleration (Jackson, 1962, p.464). The radiation 

processes due to the electron acceleration are bremsstrahlung, 

cyclotron radiation and synchrotron radiation. 

The bremsstrahlung emission (or braking radiation) occurs 

when the Coulcn'IP force of individual ions deflects the electron 

in electron-ion encounters. Because of the random motion of 

the electrons, the observed bremstrahlung emission will be 

randomly polarized. 

A single electron gyrating along a helical path in a 

magnetoactive plasma will experience centrifugal acceleration 

and emit electromagnetic radiation at harmonics of the 

' Dopple.r-abif ted gyTofrequeucy fH , 
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(1.14) 

h (1 o2-~ w ere y = - µ J , S = v/c is the normalized speed of the 

electron and 0 is the electron pitch angle; angle between the 

electron velocity vector and the magnetic field line. s is the 

harmonic number. 

When the electron speed is mildly relativistic (electron 

energy covering a range between a few keV to a few hundreds of 

keV), the radiation energy is concentrated within the first few 

harmonics which may be clearly resolved. For s~O, the radiation 

from this mildly relativistic gyrating electron is generally 

called cyclotron radiation (or gyro-radiation). The anomalous 

Doppler-shifted radiation (s < O) is emitted when the electron 

guiding centre velocity is greater than the wave phase velocity, 

as for Cerenkov radiation (Giuzburg, 1960; Giu;;burg et al., 

1962). Hance, the Cerenkov and anomalous cyclotron radiations 

do not occur in the vacuum. 

When the speed increases to highly relativistic (electron 

energy greater than 1 McV), the emission is mainly concentrated 

within a cone of half-angle - y; the axis of the emission cone 

is along the instantaneous velocity vector of the electron. 

An observer located in the orbital plane of the electron will 

2 receive short sharp pulse, each of duration ~T - y /2nfHsin0 , 

only when the instantaneous velocity of the electron is towards 

h:fun. These pulses recur with a frequency - yfH/sin20 . 
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The macroscopic spectrum emitted from an assemblage of highly 

relativistic electrons is essentially a continuum. This 

radiation usually known as synchrotron radiation (Wild et al., 

1963). 

A group of radiating electrons, under favourable conditions~ 

radiate electromagnetic energy coherently rather than individually. 

The intensity level, the polarization character and the polar 

diagram of the coherent radiation from a system of radiating 

electrons may differ greatly from those of the summation of 

radiation powers from all individual electrons. Therefore, 

in this thesis~ coherent radiation processes will be con-

sidered. 

D. Outline of The Thesis 

All radiation processes described above can take place in 

the solar corona~ depending on different physical characters of 

the radiating electrons and the coronal plasma, such as 

electron energy~ electron pitch angle and the magnitude of 

2 2 the ratio f p/fH of the medium in the region where the radiators 

reside. On the other hand 9 the observed spectral features of 

a solar radio emission are determined by both the mechanism 

responsible for the emission and the propagation conditions of 

electromagnetic waves in th~ solar corona. Thus, the observed 

dynamic spectra of the solar radio emissions reveal essentially 

the physical conditions of the solar corona during the emission 
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periods. 

The emissions of narrow bandwidth type III bursts and 

drift pair bursts have been proposed as the consequence of plasma 

radiation caused by electron streams in the isotropic corona, 

which is understood to refer to electromagnetic radiation 

extracted from Cerenkov plasma waves through scattering or wave­

mode coupling {Ginzburg and Zheleznyakov, 1958; Roberts, 1958; 

Wild et al., 1963; Zheleznyakov, 1965). However, many 

observed spectral characteristics of the type III bursts and its 

related U bursts, the drift pairs and the newly discovered hook 

bursts clearly indicate that it is necessary that the sunspot 

magnetic field be taken into account in the theories. So far 

the conditions of plasma radiation by electron streams in a 

magnetoactive plasma have not been investigated in detail 

and consequently» many characteristics of these emission events 

remain unexplained. In this thesis, we begin by formulating 

the theory of plasma radiation in a magnetoactive plasma 

{Chapter II and Chapter V). The theory is then applied to the 

interpretation of the polarized type III burst and U burst 

emission event and the drift pair and hook burst emission event 

in Chapter VI and Chapter VII respectively. 

The origins of various components of the complicated type 

IV emission have been interpreted as the results of synchrotron 

radiation by relativistic electrons trapped in the sunspot 

magnetic field configurations {Boischot and Denisse, 1957; 



Takakura and Kaip 1961; Kai~ 1964; etc.). However, without 

taking into account the effects of the medium on the radiation 

process, previous theories encounter various difficulties and 

fail to account for the outstanding polarization characters of 

the type IV emission. In order to set up a satisfactory 

theory of type IVA emission, we study? for the x-mode and the 

o-mode, the power spectra from single electrons, the process of 

amplification of cyclotron radiation in a stream-plasma system 

and the escapa conditions in detail in Chapter III and Chapter 

VIII. Cyclotron radiation of electromagnetic waves in the 

x-mode and the o-mode and the Cerenkov excitation of plasma 

waves by helical electron streams moving at the base of the 

solar corona is proposed as the origin of the type IVA 

emission. It is found that most of the important character-

istics of the emission can be well accounted for by the theory. 

In Chapter IX, coherent synchrotron radiation from a 

system of relativistic electrons is studied taking into account 

the effects of the ambient plasma. The originsof some broad 

band solar continuum emissions are also discussed. 

In the final chapter, a conclusion of the thesis is given 

and further researches are suggested. 
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CHAPTER II 

RADIATION OF PLAS~1A WAVES BY AN ELECTRON 

STREAM IN A MAGNETOACTIVE PLASMA 

A. Introduction 

The radiation of electromagnetic waves in various modes 

by charged particles in the magnetoactive plasma is of great 

importance to the study of radio emissions from the Earth's 

magnetosphere and the solar corona. By assuming that the 

magnetoactive plasma is cold and collisionless, Eidmman (1958p 

1959) obtained both the frequency spectra and the polar 

diagrams of the radiation power emitted from a single charged 

particle based on the fundamental Hamiltonian method. 

theory was subsequently revised by Liemohn (1965) who included 

* relativistic effects in the calculation • On the other hand, 

Mansfield (1967) treated the problem by means of the Fourier 

method in which the fields are expanded in plane waves via 

Fourier transforms. 

When spatial dispersion of the plasma is taken into 

20. 

account, radiation of plasma waves by a moving electron is also 

possible. The general form of the dispersion equation (1.10) is 

* Using the Eidman-Liemohn theory 9 the characteristics of the 

cyclotron radiation in the x-mode and the o-mode from a single 

electron will be studied in Chapter VIII. 
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extremely complicated. However~ under the typical solar 

corona conditions, (ST ~ 10-2) weakly damped plasma waves with 

phase velocities which satisfy the inequality n2 S~ cos2e << 1 can 

be generated by mildly relativistic electrons and the dispersion 

equation for such weakly damped plasma waves can be greatly 

simplified except for the case of double resonance (see dis-

cussion in Section F). Although Eidman (1962), using the Fourier 

transform method, obtained expressions for the total energy loss 

of a moving charged particle due to emission of weakly damped 

plasma waves, the numerical study of the characteristics of 

the radiation in the weakly damped plasma mode has not been at-

tempted. Moreover, when the charged particles are organized as 

a stream with small momentum spread» they will radiate coherently 

with a radiation intensity much higher than the sum of the in-

dividual particle radiations. 

In an isotropic plasma, weakly damped plasma waves are 

emitted only at the frequencies close to the plasma frequency 

by an electron stream through the Cerenkov process (Ginzburg and 

Zheleznyakov, 1958). In a magnetoact:':ze plasma, weakly damped 

plasma waves at frequencies in the vicinities of the plasma 

resonance frequencies which are in general different from the 

plasma frequency can be excited by helical electron streams 

through the Cerenkov and cyclotron processes. Therefore, inter-

pretation of the solar radio burst emission as the consequence 

of the generation of plasma waves by electron streams in the 
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magnetoactive coronal plasma requires a quantitative study of the 

angular and frequency spectra of the plasma waves excited by 

helical electron streams. 

In the present chapter, after briefly reviewing the theory 

of propagation of plasma waves in a magnetoactive plasma in 

Section B, we derive the angular and frequency spectra of the 

weakly damped plasma waves emitted by a single electron and the 

rate of growth of the weakly damped plasma wave in the stream-

plasma system explicitly in Section C and Section D. The 

expressions obtained are studied numerically with parameters 

appropriate to the active solar corona conditions in section E. 

Finally, a short discussion on the limitation of the theory is 

given in Section F. 

B. Propagation of Longitudinal Plasma Waves in A Magnetoactive 

Plasma 

The high frequency longitudinal plasma waves will be 

weakly damped when the following conditions are satisfied 

(Ginzburg9 19649 p.140): 

2 << 1, 2 62 2 1, (2.1) (kvT sin0/wH) n T cos 9 << 

(1 - wi/w2)3 >> 2 
ST' (1 - 4wi/w

2
) >> 2 

BT • (2.2) 

In general, the conditions (2.1) are satisfied simultaneously 

in a plasma with fairly strong magnetic field. The conditions 

(2.2) indicate that only those plasma waves with frequencies 



sufficiently far from the resonances f ~ fH and f ~ 2fH will be 

weakly attenuated. When (2.1) and (2.2) hold and for very 

large value of refractive index, the dispersion equation (1.10) 

is approximated by (Sitenko and Stepanov, 1957; Sitenko and 

Kirochkin, 1966) 

~4 (k,w) = 

2 + 3cos 8 
2 w 

The refractive index for the ~eakly damped plasma wave will be 

From (2.1), (2.2) and (2.3), we can see that the weakly damped 

plasma waves exist . at the frequencies near the plasma 

resonance frequencies 

only. However, from (2.4), when f ~ f± , n3 will tend to zero 

and the approximate dispersion equation (2.3) will no longer be 
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(2 .3) 

(2.5) 

valid. On the other hand, when the plasma wave frequency differs 

2 2 2 from f± greatly, the weakly damped condition n
3 

ST cos 8 <<1 may 

not hold. Therefore, in order that (2.3)and (2.4) may be 
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applicable, it is necessary that (2.1) and (2.2) are satisfied 

with the condition (Gershman, 1957; Sitenko and Stepanov, 

1957) 

f32 << 
T I « l. (2.6) 

The variation of the refractive index n.(j = 1,2,3) with 
J 

normalized frequency ~ = f/fH for various cases is given in 

Fig. 2 .1. For convenience, those plasma waves with normalized 

frequency ~ > 1 ~Till be designated as upper p-mode while those 

with ~ < 1 as lower p-mode. The dispersion curve of the upper 

p-mode goes asymptotically over into the dispersion curve of the 

z-mode while that of the lower p-modc into the whistler mode 

dispersion curve. For a given wave-normal angle, the phase 

velocities of the upper p-mode and the lower p-mode waves 

are always less than those of the z-node and the whistler 

node waves respectively. 
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C. Radiation of Plasma Waves by A Single Charged Particle 

moving in A Magnetoactive Plasma 

In deriving the plasma wave power spectra radiated by 

a single charged particle moving in a homogeneous magnetoactive 

plasma, we neglect the effects of the presence of the source 

charges on the description of the plasma and the interaction 

between the plasma particles. We further assume that the 

velocity vector of the moving charged particle is constant 

in tiae and space. 

The average instantaneous radiated power from a 

gyrating charged particle is given by (Shafranov~ 1967, 

p.104) 

P = -2Re oof J (2. 7) 

0 -co 

where, for longitudinal plasl!la waves, 

E\\(k,w) is the longitudinal component of the dielectric 

constant and Ka = ka/k the polarization vector for the 

longitudinal plasma wave. For a single gyrating charged 

particle, 
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2 - _ ,9__ 
G 0 (k,w) - 3 a.., 8'1T ' 

(2 .8) 

1f(s) = v2 J'i(X) 
yy .L s ' 

s=-m 

s 2 
i -x V.J. J (X)J '(X) ' s s 

'IT(s) = -'IT(s)= - iv ~,1 J (X)J'(X)i (2.9) 
yz zy :.L s s 

'IT(s) = 'IT(s) = Xs v.IJ v. J2(X) 
xz zx .... s 

J (X) and J'(X) are Bessel function and its first derivative with s s 

the argument X = kJ. v..J../Y°ll· s is the harmonic number and 

2 2 2 2 ~ 2 2 ~ y = (1 - v.l../c -v,, Jc ) = (1 - 13...1.. - all ) is the relativistic 

correction factor. The subscripts..!.» ll i~dicate the perpend-

icular and parallel components of the particle velocity with 

respect to the static magnetic field. In (2.7), the element of 

the wave vector space dk is replaced by k2 dkdcos0 dW , where ~ 

is the azimuthal angle, and the delta function can be reduced to 

When the weakly damped conditions (2.1) and (2.2) are meti the 

real part of En (k,w) is given by the left handed side of (2.3). 

Then after integration over cos8 and k by using the delta 

1 function (2.10) and the equality Re ( €) = m5(li ) , the 

" 
frequency power spectrum of the plasma wave for the s-th harmonic 
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radiated by a single electron is readily obtained, 

and w and 0 have to satisfy the equation (Doppler equation } s s 

(2 .12} 

simultaneously. (2.11} can also be obtained from the expression 

(17} of Eidman (1962). 

The angular spectrum of the radiation in the plasma mode, 
-dP s , i.e. the power density in watts per steradian, can be 

dn 

obtained by carrying out the integration over frequency in (2.1). 

- 2 Writing the element of the wave vector space dk as k dkdn and 

carrying out integration over frequency and over wave number k, 

we find 

-dP 
dns = e

2w2J!(x}/2ncn3 A1 

where w (0 } satisfies (2.12). s s 

W=W (0 } , 
s s 

(2 .13} 

For an electron travelling along the external magnetic 

field, f3J. = 0 9 there are no normal and anomalous cyclotron 
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radiations. ,The Cerenkov radiation angular power spectrum, in 

this case, is 

... 
dP s --c 
dQ W=W (S ) • (2.14) 

s s 

In the other limiting case, ~f = O, radiation of weakly damped 

plasma wave occurs at the frequency and the wave-normal angle a s 

such that w = syw.. = w+<a ) is due to normal cyclotron effect s --tt - s 

(s > O). Then (2.11) and (2.13) are applicable only for 

sy = ~t ~ 1,2. When the intensity of the static magnetic field 

is small, the radius of curvature of the electron's rotation is 

sufficiently large, the radiation for a~ n3 > 1 and f3fl = 0 can 

be approximated as Cerenkov radiation of plasma wave in an 

isotropic plasma. 

D. Excitation of Plasma Waves in A Charged Particle Stream-

Plasma System 

In the presence of a charged particle stream in the 

ambient plasma, waves in various modes emitted by individual 

stream charged particles in this stream-plasma system would be 

unstable. Autoexcitation results in the amplification of 

amplitudes of the waves. The excitation of longitudinal plasma 

waves in the stream-plasma system in the isotropic corona has 

been discussed by Ginzburg and Zheleznyakov (1958). Recently, 
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Zayed and Kitsenko (1968a), assuming a system comprising the 

cold and collisionless magnetoactive plasma and a helical 

charged particle stream, obtained the rate of growth for the 

longitudinal plasma oscillation. In this section, taking into 

account of the effect of the stream particle's longitudinal 

temperature, we calculate the rate of growth for the plasma 

wave in the helical electron stream-plasma system. We assume 

that the density of the electron stream is very small compared 

with t~at of the ambient plasma and the whole is electrically 

neutral. We consider excitation of the weakly damped plasma 

waves in the stream-plasma system during the initial stage of 

the process so that the linearized kinetic equation can be em-

ployed to find the rate of growth (see Section D, Chapter III). 

Based on the classical kinetic equation, the problem 

of instability in a charged particle stream-plasma system is 

solved by writing the dielectric tensor for the stream-plasma 

system in the form (Stepanov and Kitsenko, 1961): 

where e:(o) (k,w) is the dielectric tensor for the aiD.bient plasma al3 

and e:~a(k,w) - oal3 is due to the presence of the charged 

particle stream. The dispersion equation for the longitud~nal 

plasma wave in the stream-plasma system becomes 

(o) - -e: 
11 

(k,w) + e:;
1 

(k,w) - 1 = o. (2 .16) 



For weakly damped plasma waves, G~o)(k,w) is given by the left­

handed side of (2.3) and 

= e' sin2e + e' cos2e + 2 E' sin0 cos6 • xx zz xz 
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Making use of the integration by parts and assuming that the 

unperturbed charged particle distribution function F (p) tends to 
0 

zero as the transverse momentum component PJ.. or the absolute 

value of the longitudinal momentum component rP. I tends to " -

infinity, from (1.7) we obtain the dielectric tensor components 

for the growing waves in the stream~ 

CXI CXI 2 ,2 ) ' 

I f s m (JLW (wm-~. P14 J J F 
E' = l-41T o H p . s s o dB 
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E1 = E1 E' = -E' E' = -E1 
zx xz ' zy yz ' yx xy 

where R = wm-k P. - sc w.... ; w' is the angular plasoa frequency 
ltl1 OH p 

of the streac particle; k and kL are the wave vector components 
II 

along and perpendicular to the static magnetic field. J J' s' s 

are the Bessel function and its first derivative with respect to 

the argument X = k~p!/m0~ • When the relativistic effects are 

included the mass of the charged particle is a function of its 

momentum components 

2 2 2 2 2 2 o = m. + p, /c + p /c • 
0 .... " 

A_._ general form of the unperturbed distrl bution 

function for a helical charged particle stream can be represented 

by 

- - 0 2 2 0 2 2 -F0 (p)dp "'Cexp[ -ell. -p..1..) /a.L-<~. -~l) /a 11 J dp, (2.18) 
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longitudinal temperatures of the stream particles. 0 0 PJ.. and p 11 

are the values of p, and p at which the distribution function 
06. u 

reaches its maximum. The constant C is determined by the 

normalization condition J F
0

(p}dp = 1. The momentum spread 

of the stream is specified by the parameters a .J. and a
11

• When 

T,! and T,'1 are sufficiently small, each exponential function 

involved in (2.18) can be approximated by the delta function 

0 0 (p - p ) • For the sake of simplicity, we assume that a~~ 0 

and T;1 = T9 .::_Ti where T is the ambient plasma temperature. 

Then (2.18) can be approximated by 

F (-)d- = l o( 0
) [ ( - p0

)
2 /a2.,] dp-. (2.19) o P P 2iT3/2 .o p.J. - P.1. exp - Pll II 

aupi. 

Substituting (2.18) into (2,17), we carry out integra-

tion over p~ along the real axis from 0 to ~ and over p 
II 

along the real axis from -co to ~ bypassing from above or 

below the poles of the integrand. Since we assume the 

density of the stream is very small in comparison with the 

ambient plasma density, from (2.16) and (2.17), it can be 

seen that E~ 1(k,w) should be necessarily taken into account 

only when the term w-k11v,1 - syU>i! is small. In the real 

k-method, i.e. we assume the wave vector is real and the 

frequency is complex in order to find the growth rate of the 

electromagnetic wave , we let 

(2.20) 
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where a is a complex quantity with very small magnitude compared 

with lwl. For an electron stream with small momentum spread, 

the method of carrying out the integration over the longitudinal 

momentum component involved in (2.17) has been developed by 

Zheleznyakov (1960). Then, adopting Zheleznyakov's method, we 

carry out the integration over the longitudinal momentum 

component in (2.17) and retain terms proportional to 
_

2 
-llJ.e '11Uftlb.€r 

sy°1f) and~l. Making use of the approximation (2.19), 

we evaluate the integrals over transverse oomentum co~ponent and 

finally get the expressions for the dielectric tensor components 

of a helical electron stream 

E i 
zz 

,2 2(k2 -w 2, 2) 9Y'"gWP V,1Js II c 3 2 2 E; -i. = - __ _. ___ 2_2 ________ (1 - 2 y f3~ ) ' 
k_t. w a 

(2.21) 

2 !.::: 
where f3 1 = (KT '/m c ) 2 is the normalized thermal speed of the T o 

stream electron. The angular plasma frequency w' in the 
p 

laboratory system has been replaced by w' = (4'1Te2n' /m )~,where 
p 0 0 

• 
n 7 is the number density of the stream electrons in the system of 

0 
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reference in which the electron stream is at rest~ since the 
I 

plasma frequency is a.Lorentz-.invariant quantity(Cha,./la ·and Unz,1966).' -

From (2.3). (2.15) and (2.21)» we write the dispersion 

equation in the form 

(2.22) 

with AP(k,w) = 

.8 -and A (k,w) = -

6! 2 2 3 2 2 2 2 
+ (-Sli" ) y {l - rr 6~ )vii cos e} • (2 .24) 

In writing down (2.24), we have used the assU1:1ption 6.f ~ pT. In 

the absence of the stream, for weakly damped plasma waves, we 

have 

Now we expand the left-handed side of (2.22) in the neighbourhood 

of the point w = w + o and k = k + n, where o is assumed to be s 0 

complex and n real and lol << lwl, n + O and !ol +Oas 

I w + 0, 
p 



\ 

The derivatives are evaluated at w m w and k = k • 
s 0 

Eliminating 

o in (2.25) by the relation a= o - n ~1 cos a, we get a cubic 

equation with real coefficients for a, 

(Wn+nv .. cos0 

(~~p) 
N+U) = O , (2.26) I 

i 

I 2 ((JA5
) 2(aA

5
) 2 El -where W .. a Clk , N = a aw , U = a A (k

0
,w) aud ------/ 

is the component of the group velocity of 
I 

the-plasma wave in the direction of wave propagation. Assuming 

this equation has complex roots for~ ,the rate of growth of the 

plasma wave is given by the absolute value of the imaginary part 

of ~at a real wave vector. Solving (2.26) for~ by Carden's 

method,we find the second-term in (2.26) is unimportant,and hence 
. 

for simplicity we put~ = 0 and rewrite (2.26) in the form 

( .L. )3 + a( .L ) + b = 0 , w w . 

K= 

8 s 

4 4 2 2 2 2 2 2 1 2 
~ sin 6+(~ -1) cos 6+n3STcos 0~ B 

~2 (~2-1)2 

(2.27) 

I 
t 
! 

I 



[(l _ 1~2D,2) s 8 2D,2)2 G = 4 , ..,T - n 3 11 
cos y ..,T , 

tho 
The i::ate of growth of plasma wave can then be solved from 

(2.27): 

Im ( ~ ) = :!: ~ (D 1 I 3 -F 1 I 3) , 
s 

(2. 28) 

b b2 3 i b b2 a3 ~ 
where D = - 2 + ( 4 + ;7 )~, F = - 2 - ( 4 + 27 ) 

For sufficiently small streams density ~ << 1, then 

:nn ( ~ ) ~ ~a113 [J!(cos2e - l/n;)G/2~2KJ 11~ (2.29) 
s 

38. 

Thus, the growth factor for the plasma wave radiated by a single 

electron of the stream is exp( ltmolt), where t is the interaction 

* time • We should remark that the method of obtaining the 

dielectric tensor components (2.21) is applicable under the 

condition m!Imol >> ka (Zheleznyakov, 1960). In other words 11 

the rate of growth must be very much greater than kv~ • Since 

IIm .§__I is proportional to a1/~this imposes a restriction on 
ws 

the density of the stream. For example if a ~ 10-4 

* We assume that the interaction time is of the sa~e order of 

magnitude of the characteristic time for non-linear transfer of 

the plasma wave across the spectrum (see Section G of Chapter VI). 



and n
3 

valid. 

-3 ~ 10 9 then 8~ cannot exceed 10 in order that {2.28) is 

It is obvious that {2.21) is applicable only to the 

initial stage of the excitation process during_~hich the stream 

can be assumed to be cold (Shapiro~ 1963). 

E. Numerical Illustrations 

In this section, we make use of the expressions (2.11) 9 

(2.13)·and (2.28) to study the characteristics of the plasma 

waves excited by electron streams moving in the magnetoactive 

corona. 

(a) Emitted Frequency Range from Electrons 

The emitted frequency and the wave-normal angle e can 

be determined by solving a quartic equation which is obta~ned by 

substituting the refractive index n3 (expression (2.4)) into 

(2.12L 

8~(~-sy) 2 (3;6-21~4+10;2-4) 
where A = ------------

- o <~2_4> c;2_1>2 

(2.30) 

2 2 2 
38TA<;-sy) c; -1> 2 
-------- +A811 , 

~2 

2 2 2 2 2 [ ls~4-n2+4 J 
Bo=~.; c; -A-l)+BTA<~-sy) (~2-4){;2-1)2 , 

3;2aiA(;-s:r'2 
c = - ---------

0 '(~2-4) 
and 

39. 



The square of the cosine of the emission angle is given by 

2 + 
cos e- = 

s 
± (B2 - 4A C )~] /2A • 

0 0 0 0 
(2.31) 

40. 

For a given set of parameters a » $T~ A~ E and s, the permissible 
tt 

2 + 
emission frequency ~ must satisfy the condition that cos a­s 

is real, positive and~ 1. For anomalous cyclotron and 

+ 
Cerenkov radiation (s ~ O), the wave-normal angle is 0 2_ a; 2_ ~/2. 

For normal cyclotron radiation, a < n/2 for ~ > sy and s-

a > ~12 for ~ < sv. s- We should emphasize that in some cases, 

the solutions given by (2.31) would violate the condition 

n2 >> 1 and are not applicable. 

The solutions for a and ~ from (2.30) with parameters 

A= 0.6~ ST= 10-
2

, $ 0 = 0.1, f4. = 0.2, s = 0, -1 are shown in 

Fig. 2.2. The plasma resonance frequencies ~± with the same 

value A are also plotted against the wave-normal angle e. 

(b) The Power Spectra in !he p-Mode Radiated by A 

Single Electron 

The normalized emit~ed frequency and the corresponding 

wave-normal angle a obtained from (2.30) are used to calculate 

the frequency and angular power spectra in the plasma mode 

radiated from a single electron moving in the magnetoactive 

plasma. For electron energy E = 50 keV, A• 0.6,6, s = 0 9 ±1,2,3 

~ 0 0 0 0 and electron pitch angle ~ ~ 0 , 30 , 45 , 60 , the polar 
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diagrams and the frequency power spectra, (2.13) and (2.11), 

are presented in Fig. 2.3 and Fig. 2.4 respectively. The 

gyrofrequency is taken to be 100 MHz for A = 0.6 and 20 MHz for 

A = 6. In Fig. 2.4(d), the fluctuation parts of the frequency 

spectra of the backward normal cyclotron radiation in the plasma 

mode have been smoothed out by taking the mean values of the 

power. In these spectra, the minima should go to zero. For 

the sake of clarity, the lines are drawn continuously. 

These spectra demonstrate several properties of the 

emission power in the plasma mode. Firstly, the main plasma 

wave power is radiated within a cone whose thickness is inversely 

proportional to the electron pitch angle. Secondly, in the case 

a.= O, the Cerenkov radiation has a very broad polar diagram. 

Thirdly, there is no cyclotron radiation in the plasma mode 

in the direction around tha static magnetic field line. 

However, Cerenkov radiation in the plasma mode is always emitted 

in the direction parallel to the static magnetic field line and at 

the frequency in the neighbourhood of the plasma frequency f • 
p 

Fors~ O,·the phase velocity of the plasma wave- emitted from 

the electron decreases to velocities comparable to the mean 

thermal speed of the plasma electrons as e ~ ~12 and emission of 

weakly damped plasma waves will no longer be possible since the 

plasma can support only those plasma waves with phase velocities 

greater than the mean thermal speed of the plasma electrons. 
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(c) Growth of Plasma Waves in The Stream-Plasma System 

At the onset of the excitation process, the rate of 

growth of the plasma wave with time in the stream-plasma system 

can be computed by (2.28) with ST = O. The variation of the 

growth rate I Im .2_ I with the wave-normal angle for the upper 
WH 

p-mode and the lower p-mode is demonstrated in Fig. 2.5 with 

parameters as given iu Fig. 2.3 and Fig. 2.4. It can be seen 

that, in general~ the growth rate peaks in the vicinity of the 

direction in which the single electron radiation in the plasma 

mode reaches its maximum. Studying the cases for s = O~tl,2,3, 

we can conclude that under the same ~onditions, 

:i) the Cerenkov radiation in the plasma mode grows 

more rapidly than the corresponding anomalous and normal 

cyclotron radiations; 

(ii) in general 9 the rate of growth for the Cerenkov 

radiation in the plasma mode increases with the electron's 

longitudinal velocity component, while for the cyclotron 

radiation in the plasma mode with the electron's transverse 

veloc~ty component. 

Whenever generation of the Cerenkov radiation in both the 

upper and lower plasma modes is possible, the plasma waves at the 

frequencies near the plasma frequency and propagating in the direc-

tions around the ~agnetic field line will grow at the greatest rate 

(Fig.2.5(c) and Fig.2.6). On the other hand, when.A is large, 

Cerenkov plasma waves can be emitted only at the frequencies 



I 

'90° 
.... -------~ 

(a) 

A= O.S 
s =-1 
s = 0 

~ > 1 

90° 

e 

(b) 
A=6 
s =-1 
s = 0 
~ > 1 

e 

-- -~ -

' 

- - _ _p:_ -3no ' ...... 
-::!Y- - ......... 

45° -- ...... :; ' ----- "\. A5° -, ~ 
'\.. \\ 

_60° \\I 
cf- .... " ll 

00 --- -~ - -........ 

' ' 30° ___ 3Q_ ''\ 
0 ......... \ 
~ 45° ...... , ---- ,, 

c:100 ........ ~ 
.J---:::i::..- ..lll ' \ 

60° -- - ........ '\..~ 
'\\ 
"~, 

I -~ I I X~\ lcf 
=* 20 

I 

/ 

"---~e.~~ ~~/ ·O ~ef?~/ 
1 I 

l
l b I 2 I I 

m"\ (• 1o-'l 3 . 

/ 

'------' 

0 

5 llm~l 
10 

{x 10-S) 
15 

Fig.?..5. - The denendence of the growth rate jrm~I on wave-normal angle 9 for 
o..' Q -2 -6 d. 0 0 
pr= 0, ~T= 10 ,O-= 10 ,electron energy~= 50 keV,electron pitch angle~= 0 ,30 , 

0 6 0 45 , 0 and for 

(a) A = 0.6; (b) A = 6. -+::>. 
CD 

k · --~--~ .. ___ --"~--~----- .... - ___ ,._,___...,----·---~----- -----.. h--~----·---r;-;-.... -~-------~------~---, --



9 

5 ~ 1 

go" 90° 
~~~ .~-.--

A=0.6 5=2-
A= 6 s:3---

)( 
I ' \ 

cf~/ 3 \ 
\ 
\ 
~ 

A=0-6 -­
A= 6. 

s =-1 

s< 1 
9 

r/J = 45° 

~-
scf 

/ ' 45° I ;60° 
I I 

I 
/ 

/ 
// 

0 - -

1802 ,_5 1 0.5 0 
I~ I I 10°· 
1 

j1m~ul (x 10-3) 

Pig.2.5. - ~he denendence of the growth rate 
P. 1 tl -2 -6 
t-'T = o, 1-'T= 10 , <T = 10 ,electron energy 8 

0 0 45 ,60 and for 

1·5 2 

llm ~I (x10-
3

) 

lrm ~I on wave-normal angle e for 

50 keV,electron nitch angle~ 

(c) s = 2, A = o.6 ( ) and s = 3, A = 6 (------ ). 
(d} s = ~1, A= 0.6 ( ), A= 6 ( ----- ). 

2·5 

0 0 
() , 30 ' 

3 

..j::>. 

'fJ 



, __ :r -

I 

j 
j 

, I 
\ 

\ - ·--- -

' - I 

90° 

1 

- " I -- . .,.. - - --· 

( e) 

A= 0.2 
s = 0 
f2) = 00 

E = 18 keV 

1·5 2 

l1m~11\ (><10-3) 

6 

2·5 3 

. . 

Fi~.?.5 (e) The ~ependence of the p:rowth rate \Im~\ on 
I e A.' -- () Q. ()-2 -6 wave-normal anP-"le for t"T , , ~T = 1 -, a- = 10 , electron 

' r/.. o a a 6 0 ener,,f!Y F.: = 18 ke V, e 1 ectron pitch' anp.-le 1-' = 0 , 30 , 45 , 0 

and for lowAr p-mode ( ) R.nd unner u-mocle (-------), 

A = 0.2, s = O 



Fig. 2.6 Power gain versus normalized frequency ~ for electron 

energy E = 50 keV and ~lectron pitch angle 0 = o0
, 30°, 45°, 

0 ~ ~ 60 , ST = O~ ST = 10 , a = 10 and interaction time 

t = Sxl0-5 sec and for 

(a) A = 0.6» fH = 100 MHz, s = 0»-1; 

(b) A = 6, fH = 20 MHz, s = 0,-1,1. 
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Fig. 2.6 Power gain versus normalized frequency ~ for electron 

energy E = 50 keV and electron pitch angle 0 = o0
, 30°, 45°, 

0 -2 -6 60 , BT = O, ~ = 10 , a = 10 and interaction time 

t = Sxl0-5 sec and for 

(c) A = 0.6, fH = 100 MHz, s = 0,-1,2; 

(d) A = 6, fH = 20 MHz, s c -1,3. 
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~ 

f .) fH and maximize:. at the frequency f ~ fp. Thus, we can 

conclude that even in the presence of the static magnetic fields 

most of the energy of the radiation in the plasma mode from an 

electron stream will be emitted in the direction of the electron 

guiding centre motion and at the frequency near the plasma 

frequency through the Cerenkov process. 

F. Conclusion 

Using the linearized kinetic equation approach, the 

rate of growth of the plasma wave in a stream-plasma system 

has been studied in previous sections. It is found that the 

intensity of the coherent radiation in the plasma mode is 

greater than that in the x-mode and the o-mode (see Chapter VIII). 

Hence it is believed that generation of plasma waves by electron 

streams in the active solar corona will play an important part 

in the solar radio emissions. 

However, the expressions obtained in this chapter are 

applicable only to the case of excitation of weakly damped 

plasma waves by the low density electron stream during the 

initial stage of the process (see Section D, Chapter III). 

When the weak damping conditions (2.2) are violated, double 

resonances (i.e. f ~ f± = sfH' s = 1 9 2) occur and the dispersion 

equation (2.3) and hence the theories given in sections C and D can 

no longer be valid. The dispersion equation for the plasma 

w~ve_ and the generation of plasma waves in the case of double 



hy 
resonances have been studied by Stepanov (1960) and Pakhomov 

and Stepenov (1963) respectively. However, since weakly 

damped plasma waves at the frequencies f ~ f P emitted by 

54. 

an electron stream are of greatest intensity 9 it is not difficult 

to see that the theories given in this chapter can be applied 

to the consideration of coherent generation of plasma waves 

by low density electron streams everywhere in the active 

solar corona except the layers where A ~ 1,4. 
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CHAPTER III 

EXCITATION OF CYCLOTRON RADIATION IN THE SUBLUMINous• 

MODE IN A'STREAM-PLASMA SYSTEM 

A. Introduction 

In Chapter II, we have studied the excitation of 

longitudinal plasma waves with phase velocities less than the 

free space light speed in a system comprising a low density 

helical electron stream and the background magnetoactive plasma. 

In such a combined system, excitation of electromagnetic radiation 
I 

in the subluminous mode can also occur and is very important 

for the theory of solar radio emission, si~ce radiation with 

0 < n < 1 can escape from the solar corona directly without 

preliminary transformation into other types of normal waves. 

The problem of radiative instability in a stream-plasma 

system can be studied by assuming the wave vector to be real 

and solving the dispersion equation for complex wave frequency; 

separating the dielectric tensor components of the system into 

two parts - one due to the ambient magnetoactive plasma and the 

other due to the presence of the stream. This:method was 
I 

initiated by Stepanov and Kitsenko (1961) and recently adopted 

'by Zayed and Kitsenko (1968a, 1968b) to investigate the excitation 

of cyclotron harmonics in various cases. 

Since the general form of the dispersion equation for the 

electromagnetic wave:. in a helical stream-plasma system is 

I 

*The subluminous mode of the electromagnetic wave is defined h~re 

as the electromagnetic wave whose phase velocity v in the medium 
p 

is greater than the guid-ing centre speed of the electron who 

gener,ates it {i.eo in the region of normal ~oppler effect). 
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extremely complicated, Zayed and Kitsenko (1968a) obtained only 

the rate of growth of the electromagnetic wave. in the combined 

system for certain particular cases in which the dispersion 

equation can be simplified. However, in order to study the 

characteristics of the cyclotron radiation in the subluminous 

mode from a gyrating electron stream, one requires an explicit 

expression for the rate of growth of electromagnetic radiation 

in the combined system which is applicable to general cases. 

In this chapter, we derive the essential mathematical expression 

explicitly. The expression obtained will be applied in the theory 

of solar type IVA burst emission in Chapter VIII. 

B. Formulation 

For soa.11 amplitude waves of the form exp(iK.r - iwt) 

in an unbounded homogeneous medium consisting of a cold and 

collisionless magnetoactive plasma and a system of non-equilibrium 

electrons, the dispersion equation for the wave is given by 

(1.10) with the dielectric tensor components (2.15). We 

assume the whole system is electrically neutral and the number 

density of the non-equilibrium electrons is much smaller than 

that of the ambient plasma. 

The dielectric tensor components for the cold and 

collisionless magnetoactive plasma alone, E(o) 
aa , are given by 

2 2 2 
(o) = E(o) 

w 
E(o) w (o) i~w 

Ell = l -
p = l _ __£_ £ - p (3.1) 22 2 2 ~ 33 2 ' 12 - 2 2 ' w -w W 'W(W -WH) H 



£(0) = £(0) = 0 
13 23 

The components £~a - 6aa are the small corrections to 

the dielectric tensor components of the ambient plasma due to 

the presence of non-equilibrium electrons. If the non-

equilibrium electrons form a stream with a sufficiently small 

momentum spread, the distribution function for the electron 

stream (2.18) can be approximated by 

F (p)dp = ~1~ o(p -p0
) 6(~ -p0 )dp. 

0 21Tpf .J. ~ II 11 
(3.2) 
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Using (3.2) in (2.17)~ we obtain the dielectric tensor components 

for the electron stream 

2 . 12 ) t 2s ywHw (w-k
1 

v
1 

J J p I I S S 

2 
k.J. w v.J. a 

' 

' E33 = 1 -

t 2 2 I 2w k v11 J J {w-k v' P._ SS 111( 

w2y~v.i.ct 
, 
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1? s s s '1 + p s s -;, 

2 2 
w a kJ.. v_e> n 

,2 ' 2 2 2 isyw...w V.L J J {k11 -w I c ) + UH p s s 
2 2 

k-1. w et 

.2 2 2 2 2 syw...w Vj1 J (k1,-w I c ) 
11 p s ' 

iw'
2v

11
J J'(w-k

1
v,,) 
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2 
w v.:.l. Cl 

t2 I 
iw k 11v.1 J J 

p s s 
,2 '( 2 2, 2) iW V, v11 J J k11-W C p ... s s 

iin 

For cyclotron radiation in the 

(3.3) 

subluminous mode, the harmonic number s is a non-zero positive 

integer. 2 ' ~ w' = ( 4~e no) is the angular plasna frequency 
p 

m 
0 

9 of the stream electron, n being the stream electron density 
0 

in system of reference in which the electron stream is at rest. 

J , J' and J" are the Bessel function and its first two s s s 
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derivatives of s-th order with the argument X = k~~Y°1J . 

For a single electron gyrating in the magnetoactive 

plasmaj the frequency w and the wave-normal angle 8 of the s 

normal cyclotron radiation satisfy the Doppler equation 

simultaneously, 

w - k v case - syw.. = 0 • 
S 0 II Ii 

(3,4) 

We assume that the number density of the stream electrons is 

much smaller than that of the ambient plasma while the 

magnitude of a is a very small quantity compared with the 

magnitude of the angular wave frequency w • The presence of 

the electron stream introduces only very small corrections to 

the dielectric tensor components for the ambient plasma. 

Neglecting the terras proportional to the second and 

2 third powers of w' , we express the dispersion equation of the 
p 

stream-plasma system as 

F(k,w) + F'(k,w) = O , (3.5) 

where F(k~w) = A n4 + B n2 + C 
0 0 0 

59. 
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By direct substitution and rearrangement 1 we express F' as a 

' ' ' -1 sum of o1 and o2~where D1 takes the terms proportional to a 

' -2 while D
2 

takes those proportional to a , i.e. 

where 
I 14 12 I 

D2 = A n + B n + C , 

n{ = A11n
4 + B11n

2 + c11
, 

w '2it 
with A ' = - p 4 J

2 h 2 
r.u2a2 s 3 

w2 J - -;J h 1 + h2 + R, ' 



wv2h 
c I - - ~p....,,,..4_ 

- 2 2 
w a. 

61 .. 

2w '
2
sin0 COS0 { ( ) tk.1. VH (J J"+J '

2
)h5 V J Jt'h5 ] 

B " = -ie: 0 s s s + II s s + ~ v J J v 
w2a. 12 YU\i v.l. 1 ..t s s 

2w~2h 2 
2 J (o) p 5( 

9 
ywH 2 J'2 + ~t~IJs + €33 2 k J J'+cos S w a. :i.. v.L s s s 

2 
+ k.J. V..1..COS 8 J 1 J" ) 

ywH s s 

2w'
2

h 2 

+ p 5 e:(o) ( 
8 

Ytl\J J J' + Jv2 + k.J.v~ J' J")sin2e 
w2et 11 ~ v.L s s s Y'°u s s 

' 
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' 

In the absence of the electron streaop F(k,w) • 0 

and the ref=active index of the two characteristic waves 

nj(j = 1,2) in the cold and collisionless ambient raagnetoactive 

plasoa will be given by 

2 2A(~2 - A) nl ,2 = 1 - _____ __,......_ _ __.. __________ • (3 .6) 

2~2 c~2-A)-~2sin2e +/'~4sin48+4~2 c~2-A) 2cos2e 



Now, taking (3.2) and (3.4) into account, we expand the left-

handed side of the dispersion equation (3.5) by Taylor series 

in the neighbourhood of the point k , w and obtain a cubic 
0 s 

ex equation in w , 
s 

( ~ ) 3 + p( ~ ) 2 + a( £_ ) + b = 0 , w (L) (L) 
s s s 

a = -;} V (F 1+H2) + w nV (H1v11 cos8 + L1) 
s s 

aF V=w -s aw v'= g 

(3. 7) 

, 
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The derivatives are evaluated at the point k
0

, w
6

• In the real 



I\ 
I 
I 
I 

\ 

k-method, we assume n = k - k is real and o = w - w is 
0 s 

complex. We also assume that lol << !wl and I ~ I << 1, and 

lol ~ 0 9 n ~ 0 as w92 ~ 0. In (3.7), we have eliminated o 
p 

64. 

by the relation a = o - n ~1 cose • Thus, all the coefficients 

a,b and p in the equation (3.7) are real. Assuming that the 

a equation (3.7) has complex roots for~ , then the imaginary w s 

part of a gives the temporal rate of growth of electromagnetic 

radiation in the stream-plasma system. However, we cannot 

obtain the rate of growth in an explicit form from (3.7) 

directly without further simplification of the equation. We 

note that the quantities 

aw2 

to~ 
w2 

, L2 
s 

o = n '/n • 
0 0 

proportional 

F2 Fl 
2 ' w w s s 

<JW2 
to -12.. 

ko 

H2 
are proportional ' wand n1 

s 

aw2 

and L1 
__p_ 

to w k , where 
s 0 

It is not difficult to see that each of the coefficients 

p,a,b consists of two types oi terms; one proportional to 

and the other proportional to .!!_ 
ko 

w2 
(a --1!. ) 

w2 
s 

TI or k. 
0 

With the 

present assumption that I ~ I << 1 and a << 1, we can omit 

terms proportional to 
w2 

(<J J!. ) .!L 
w2 ko 

s 

in the coefficients a,b and p. 

The complex roots of the equation (3.7) are determined by the 
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coefficients a,b and p. However, solving the equation (3.7), 

we find that the coefficient p is unimportant. In view of 

these facts~ for simplicity~ we assume n = 0 and omit the second 

term in (3.7). Then~ after some tedious evaluations, we 

express (3.7) as 

0 3 cS ( - ) + a( - ) + b = 0 , 
Lll w (3.8) 

s s 

where a= U/V, b = M/V, 

M = .Q! 
~2 

2 2 4 2 [nj(S-J
5

)-W] Q4, V = (T-4A0)~j + (L-2B
0
)nj + ~' 

---~ 
) 

' 



+ i (3E;2-l)J}~ 

K = 2 {!... (e:(o)2+e:(o)2) + !_ e:(o)[2F,2Q + !_(JF,2-l)J} 
;2 11 12 h3 33 5 (- ' 

2 A 
sinOJ J' 

a' = _ _!L_ ( s s 
F,2 nj s..L. 

2 2 
+cos e J ), s 

b ' 20'A { (o) (o) !Y. '/ e 2) = T sin8 cose [-ie:l2 Ks+e:33 F, (2sSuJ SJ s s..:cot J s ] 

F, 
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2 2 
Q5 = ~ - A - 1~ Q6 = 2~ - 2A - 1, h = ~2 - 1, 

J J' + J2 
s s s 7 

2 
K = L J J

1 + (J ' 2+xJ'J")cos2e 
2 x s s s s s 

2 
K3 = .!_ J J' + J·'2 + XJ'J" x s s s s s 

K = J 12 +J Jn + !. J J' 
4 S SS X SS 

The temporal rate of growth (normalized by the angular 

gyrofrequency) is readily obtained 

b Jb
2 

a
3 

where MP c - 2 + 4 + 27 , 

N = - b - Jb2 + £_ 
p 2 4 27 

(3.9) 

The cubic equation (3.8) yields complex solution for 

0 b2 a3 
only when 4 + l] > O. We should remark that, .in 

ws 

obtaining the dispersion equation (3.5) 7 we haVS'omitted·terms 

w'4 w'4 
proportional to -i-, ~ and the other' higher order terms. 

a tin 
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This is possible provided that 

( _§__) > 02/3 
w s 

or c L > > f:.02/3 
on 
th12 

Therefore, the present formulation of rate of growth of 

68. 

(3.10) 

electromagnetic radiation in the stream-plasma system is valid 

only when the number density of the stream electrons is very 

small compared with that of the ambient plasma. 

The distribution function (3.2) is the idealized one 

and more convenient in application due to the simplicity of the 

corresponding dispersion equation (3.5). A more realistic 

distribution function for a helical electron stream will be of 

the form (2.18). However, it is expected that if the dispersion 

of momentum is sufficiently small, the general behaviour of the 

stream-plasna system in the real situation will not differ 

from that given by the present formulation significantly. 

c. Negative AbSO!J?tion Coefficient and Conditions for Amplification 

Ucing the classical kinetic approach, we have studied 

the radiative instability of a system comprising the ambient 

plasma and an ensemble of non-equilibrium electrons in Section 

Band in Chapter II (Section D). The same problem can also 

* be solved by means of the quantum treatment • 

* The quantum treatment of the synchrotron instability of a 

system consisting of the background magnetoactive plasma and a 

group of relativistic electrons is illustrated in Chapter IX. 



The interaction of a radiation field with a system, consisting 

of a set of incoherent radiating centres with two states, may 

be characterized by three elementary processes: spontaneous 

emission, stimulated absorption and stimulated (induced) 

emission. The absorption coefficient for a radiation field 

in this system can be derived by using the Einstein transition 

probabilities and the relations for spontaneous emission, 

stimulated absorption and stimulated emission (Wild et al., 

1963). In this treatment, the absorption coefficient is the 

algebraic sum of all stimulated transitions between energy 

states whose energy difference is iiw, where1i is Planck's · 

constant. Amplification of waves occurs when the absorption 

coefficient is negative, i.e. the processes of the stimulated 

emission of photons (or plasmons) prevail over the stimulated 

absorption of photons {or plasmons). In this case, the 

system of charged particles does not take in energy from the 

waves, on the contrary, it gives the energy to them (negative 

absorption). 

Srnerd (1963) derived the general expression for the 

absorption coefficient and obtained conditions for negative 

absorption in terms of energy distribution of the radiating 

electrons and the mean emissivity. Hence Smerd found that 

the bremsstrahlung cannot lead to amplf~ati~n regardless of 

any energy distribution and that for thermodynamic equilibrium 

plasma, the absorption coefficient is always positive for any 

69. 
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emitting process. Therefore, corresponding to various types 

of spontaneous emission processes, collisional and non-

collisional absorptions of electromagnetic waves can take place 

in a Maxwellian magnetoactive plasma (cf. Chapter VI and 

Chapter VII). 

For other types of energy distribution, negative 

absorption would occur under favourable condition. Amplification 

of Cerenkov plasma waves in an electron stream is due to the 

fact that the longitudinal plasma waves are compressional 

waves in which at any instant, the electrons are bunched around 

the peaks of the wave. The electrons trapped by such wave 

tbroegithe electrostatic force eE transfer energy to the wave 

when the electron velocity exceeds the wave phase velocity. 

Hence in an isotropic plasma (or electrons. moving along 

magnetic field), the condition for wave growth is that there 

should be more fast particles than slow particles for a given 

velocity range, i.e. 

> 0 (3.11) 

where vph is the phase velocity of the plasma wave and F
0

(vk) 

is the distribution function of the electrons in the stream for 

the projection vk of the velocity v in the direction of wave 

vector k (Ginzburg and Zheleznyakov, 1958). The strong 

wave-particle interaction is carried out by the resonant 
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particles with velocities v ~ vph • 

In the case of amplification of cyclotron radiation from 

electrons in helical orbit along the static magnetic field, 

the Lorentz force involved in the wave-particle interactions is 

e [ E + (vXB)/c] and the condition for negative absorption is 

(Smerd, 1963; 1968) 

()F aF 
A. O + A O Q (3 12) 
upJr. (}p.J. up,, apu < • • 

The changes of momentum components tip" , llp.J. due to the 

emission of a single quantum must satisfy the conservation of 

energy and momentum (cf. Bekefi, 1966, p.60). Only those 

resonant electrons which find the wave frequency in their 

frame of reference to be a multiple integral of theDoppleJ;rl.. 

shifted electron gyrofrequency fH will participate in the 

strong wave-particle interaction. Thus, the cyclotron 

resonant velocity of the electron will be 

For a helical electron stream with momentum distribution 

function given by (2.18), the condition of amplification 

(3.12) becomes (Smerd, 1968) 

< 0 (3.13) 



According to this condition (3.13), it can be shown that 

negative absorption of waves occurs not only in the stream­

plasma system but also in a system consisting of electrons 

with temperature anisotropy (i.e. '.ll,~ ~\). The instability 

of a homogeneous plasma due to temperature anisotropy has 

been investigated by Sagdeev and Shafranov (1961). 

D. Conclusion 

Both the quantum treatment and classical linearized 

kinetic approach of solving the problem of the instability of 

the homogeneous and unbounded stream-plasma system suffer 

the same limitations; they are valid only for the onset of 

the instability and for the system comprising an ambient 

plasma and a low density stream. 

In the quantum treatment, one derives the absorption 

coefficient under the condition that the initial state is 

incoherent; this allows one to sum the number of the radiated 

and absorbed quanta when determining the radiated and absorbed 

energy in the system of particles (Zheleznyakov, 1959; 

Ginzburg and Zheleznyakov, 1965). The increase of the 

amplitude of the passing wave may be caused only by a change 

in the electron motions under the action of the wave field, 

and therefore result in a distortion of the initial incoherent 

character of the electron radiation process. Moreover, it 

is assumed th1t the emission.and absorption take place in a 
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medium with real refractive index n., i.e. the contribution 
' J 

of the stream electrons to" nj is disregarded. Therefore,the 

quantum approach is useful to the study of the radiation in-

stability of a system consisting of an ambient plasma and a 

very low density stream ( or ensemble of non-equilibrium 

electrons) in the incoherent initial state. 

On the other hand, in the linear k~netic approach, one 

has to assume that the perturbation of distribution function 

is small compared with the unperturbed distribution function 

f (p),and that f (p) does ~ot change with time. These assump-
o 0 

tions hold only for the onset of the excitation process 

during which the growth (or damping) is small and the energy 

of the electrons in the stream is practically constant. 

Moreover,the dispersion equation for the wave in the stream-

plasma system can be simplified-only if the number density 
. I 

of the stream electrons is much smaller·than that of the 

ambient plasma (SectionB). Under the ass~ption \Cw-kv)/k~T\ 2 

<< l,it has been shown that for the case of excitation of 

' Cerenkov plasma waves in a stream-isotropic plasma system 

both ~he quantum approach and the classical kinetic approach 

give the same instability criteria and the same amplifieation 

factor (Ginzburg and Zheleznyakov,1958;1965). However,in the 

case that m\Imo\.>>ka (p.38),the rate of growth cannot be 

treated by the quantum approach. 

The strong wave-particle interaction predicted from the 

linear theory leads to the growth of the amplitude of the 

passing wave in the stream-plasma system with~ut limit. In 



fact, as the wave grows, it is important to take the nonlinear 

effect into account. In the absence of static magnetic field, 

it has been shown that during the initial stage the stream 
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can be assumed to be cold and the passing wave grows in time 

with the growth rate obtained from the linear theory. However, 

the development of the instability causes the kinetic energy 

of the resonant electrons to be converted into electrostatic 

energy associated with the plasma waves and into thermal energy 

of the plasma electrons (Shapiro, 1953). Meanwhile, a small 

part of the energy lost by the stream goes into increasing the 

thermal energy of the streao electrons themselves. As the 

amplitudes of the growing waves increase, the non-linear 

interaction between modes becomes important. For small 

interaction time during the initial stage, the amplitudes of 

the waves grow exponentially with time; when interaction time 

reaches a certain limit, the non-linear mode interaction retards 

the exponential growth. 

Ot~ing to the feed-back effect of the growing waves, 

there is a diffusion of electrons in the stream and in the 

plasma in the velocity space; this tends to smooth the 

distribution function in the region r-here the wave diffusion 

coefficient is nonvanishing and hence to reduce the growth 

rate and to increase the width of the spectrum. The 

quasi-linear theory (Vedenov, Velikhov and Sagdeev. 1961) 

predicts· that the wave growth and the diffusion of resonant 
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electrons continue until a plateau is formed on the distribution 

function for the stream-plasma system. After this point 

the waves no longer grow and a stationary state is established. 

Instability of stream-plasma system leading to 

coherent radiation of electromagnetic waves by electron 

streams can explain the high intensities of various solar 

radio burst emissions that cannot pausibly be accounted for 

as a result of radiation from thermal or non-thermal plasma 

by non-coherent mechanism •. However, in applying the results 

obtained from linear theory to interpretation of the solar 

radio emissions, one has to assume the existence of an 

effective process for preventing the plateau formation in 

the distribution function for the stream-plasma system 

(see Section G of Chapter VI). 



CHAPTER IV 

THE sot.AR ATMOSPHERE AND MODELS OF 

THE SOLAR CORONA 

In order to study the generation and propagation of 

electromagnetic waves in the solar corona in a quantitative 

manner, we need some suitable models for the electron density 

distribution and the sunspot magnetic field configurations in 

the solar atmosphere. In the present chapter, we shall 

briefly describe the observed features of the solar atmosphere 

and hence suggest models for the background corona and the 

active corona. 

A. Radial Distribution of Electron Density in The Solar Corona 

The so1ar atmosphere consists of three main layers -

the photosphere, the chromosphere and the corona. The medium 

of the upper chromosphere and the corona is a fully ionized 

plasma though neutral on a large scale. The well known 

conventional model for the radial distribution of electron 

density in the background (normal, regular) corona is given by 

the Baumbach-Allen formula (Allen, 1947): 

-3 cm (4.1) 

where p • R/R
0

, R is the distance frOlll the centre of the Sun 

and R
0 

• 6.95 x 105 km the photospheric radius. This formula 
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was derived by assuming the spherical symmetry of the corona 

and based on many years' optical observational data. 

The corona overlying the optical centre of activity 

(sunspots and plages) in the photosphere and the chromosphere 

is called the active region. The active region is pet'·meated 

by the sunspot magnetic field and contains enhanced plasma 

density. From optical observations, Newkirk (1961) found that 

* the coronal streamer contains enhanced electron densities about 

two to five times the local background out to the altitude 

R ~ 2R
0 

(Fig. 4.l(a)). 

As is well known, the drifts of the type Ill and 

type II bursts towards lower frequency with increasing time 

are attributed to the excitation of electromagnetic waves 

at the plasma frequency by electron streams travelling 

upward through the corona and by outward moving hydromagnetic 

shock waves respectively (Wild et al., 1963). Radio-interf ero-

meter observations of the type III and type II burst source 

positions suggest that type II and type III burst emission a9urces 

* Coronal streamers are formations of plasma emerging radially 

from the Sun in the active regions and can be observed 

during an eclipse up to~ 12R
0 

(Kundu, 1965, p.17). 
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Fig. 4.Jc.a.)The electron densities deduced from different radio observations com­
pared with those of the Baumbach-Allen model and coronal streamer model of 
Newkirk (after Wild, Sheridan, and Neylan 1959; Morimoto and Kai 1962; 
Erickson 1962; and Warwick 1964). 
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(After Kundu,1965, -p.;24.) 
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may travel physically out along coronal streamers where the 

electron densities increase by a factor about ten over the 

values given by theBaUllbacb-Allen formula (Shain and Uigginsp 

1959; Wild, Sheridan and Neylan, 1959; Morimoto and Kai, 

1962; Weiss 9 1963a; etc.) (Fig. 4.l(a)). Since during 

the past sunspot maximum, the background corona electron 

densities were observed to be some two times the Baumbach-Allen 

values (Newkirk, 1961), the electron densities of the coronal 

streamers are only five times over the bar.kground electron 

densities. 

For the transition region between the upper layer of 

the chromosphere and the base of the solar corona, the radial 

electron density gradient is very large. From a detailed 

analysis of the observational dat-a on. the extreme ult"raviolet 
~ ' ' 

solar radiation, Ivanov-Kholodnyi and Nikol'skii (1962) 

constructed a purely empirical model of the radial distribution 

of the electron density with height in the active-and' undistrubed 
- -

regions of the solar atmosphe':re. This empirical model is 

shown in Fig. 4.l(b). Alternatively, using the results of 
--= 

the eclipse observations in Sr II lines and in the Balmer 
. --., -

continuum ('lhomas and Athay, 1961), Gulyaev, Nikol'skaya 

and Nikol'skii (1963) obtained the :radial electron·density 
' < 

distribution in the lower layer of the solar atmosphere for 
.. 

the altitude greater tha~ 1,000 k1li above the photosphere 

(Table 4.1). The models obtained by both techniques are in 
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Fig.4.1 (b) Distribution of 8lectron concentra­
tion in the transition region; a, u : model for 
active and unnerturbed regions. 

(After Ivanov-KhoJodyni and Nikol'skii, lg6~) 

i1. 1 Distribution of 'l'emperature and the 
Concentration of H and He in tlie So] ar Atmosnhere 

(After Gulyaev et al., 19€)~) 

h,km / 1og r I log ne I log nHI I Jog n He! ilognnell I log nHe III 
: 

Active reg1on 
I 

1000 3.74 11.42 11..35 13 3fi 
21)()11 3.74 11. 21 13.80 12.82 
3000 3.75 10.89 13,35 12.35 
1,00\1 3.7U 10.75 12.8tl 11.8() 
5000 :i. 78 10.5~ 12.10 11 10 
61J1Jll 3. 7H 10.::l5 11.30 10.35 
7t){ll) 3.82 10.19 10.35 H.64 1.30 -0.10 
81){)(1 3.89 10.07 9.50 8.li.O IJ.05 +7.83 
91)00 11. 111 9.98 8.75 7.31 9.00 8.01 

10000 li.3(i 9.90 7.90 G.88 8.85 8.10 
12000, 1,. u7 9.77 6.15 5.GO 8.58 8.20 
1"001) 11. 95 9.64 5.00 3.76 7.98 8.47 
10000 5.20 9.53 4.25 , 1.4{) I 6.48 8.53 
18000 5.39 9.42 3.G5 0.03/ 5.55 8.42 
20000 5.5(i 9.:-14 3.25 4.81 8.34 
25000 5.01 !J.23 2.70 3.67 8.24 
30000 G.20 9.21 2.3U 2.85 8.21 

Undisturbed region 

1000 3.74 11.41 14.20 1:u9 
2000 3 74 11.00 13.55 12.55 
3000 3.75 10.73 12. 75 11. 75 
4000 3.7fi 10.25 11.80 10.80 0.00 
5000 3.78 9.()4 10.70 a.78 8.50 5.94 
()000 3.82 9.G8 9.55 8.39 8.74 G 42 
70(X) 11.20 9.51 8.10 . 7 .67 8.ld 6.48 
8000 4.55 9.39 6.30 G.23 8.33 6.76 
9000 4.83 9.29 5.00 4.42 8.14 7 Ji8 

100)0 5.06 9.20 4.2.5 2.39 6.97 8.08 
1200J 5.'15 9.05 3.25 -0.68 4.93 ' 7 .fJ7 
14000 5. 711 8.93 2.65 3.87 ' 7.87 
16000 5. !Jli 8.83 2.25 3.21 7.7G 
180CXl 6.07 8.75 2.10 2.79 7.67 
20000 6.20 8.68 

' 
1.80 2.49 7.60 



good agreement with each other. 

B. Magnetic Fields of The Sun 

(a) Magnetic Fields of Sunspots 

A sunspot consists of a dark core, an umbra and a 

brighter "Penumbra" surrounding the core. Hale and Nicholson 

(1938) made extensive observation and first discovered intense 

magnetic field exists in the sunspots. The classical picture 

of magnetic field configuration inside the surf ace of a 

regular, single spot can be des~ribed as (Bray and Loughhead, 

1964): 

(1) The magnetic field is symmetrical around the 

axis of the spot. 

(2) It has its maximum value at the centre of the 

umbra, the lines of force at this point being perpendicular to 

the solar surface. 

(3) Away from the centre of the umbra, the field 

becomes smaller and inclined to the vertical. In fact, 

recent measurements led to the conclusion that the field in 

the penumbra is almost everywhere horizontal. Thus, only 

those field lines emerging from the central area of the umbra 

can extend to the outer layers of the solar corona. 

81. 

The magnetic field intensity of the sunspot is 

proportional to the area of the spot. Hale and Nicholson 

(1938) found that the observed intensities range from a maximum 



of about 4,000 gauss for the largest spots down to values of 

the order of 100 gauss for the smallest spots. In general, 

the field intensity decreases only slowly across the umbra 

and drops very sharply across the penumbra (von Kluber, 

1948; Bumba, 1960). 

A number of single sunspots with the same magnetic 

polarity form a unipolar sunspot group. However, in majority 

of cases, sunspots form bipolar groups which are systems of 

two spots in which the leading spot has a polarity opposite 

to that of the following spot. The leading spots of such 

pairs are of opposite polarity in the two hemispheres and these 

polarities are reversed in successive eleven years solar cycle. 

On tbe average, the magnetic field intensity of the leading 

spot is stronger than that of the following spot. The 

two principal spots of a bipolar group separate in longitude 

to a distance of 10° or more (Chapman, 1943). In complex 

spot groups, spots of opposite polarity are mixed together. 

The bipolar pair appears to be the fundamental type. It 

has been pointed out by Bray and Loughhead (1962, 1964) that 

experimental results have indicated that regions of opposite 

polarity may frequently appear even within a single isolated 

spot. No matter how complicated the structure of the sunspot's 

field is, the field line issuing1from one spot can only either 

stretch straight into the corona as coming from a unipolar 

spot, or go up and curve down to join a spot in a bipolar 

82. 



spot group or a region in some spot nearby, or in the leading 

spot itself. 

The observed radial gradient of the sunspot magnetic 

field intensity in the photosphere is very large (cf. Bray 

83. 

and Loughhead, 1964, p.212; Severnyi, 1966). So far 

measurements of the radial gradient of the sunspot magnetic field 

at the corona height are subject to uncertainty. Nevertheless, 

optical observation as well as the measurements of the radio­

wave spectrum of circular polarization radio waves (Hewish, 

1962; Molechanov, 1962) indicate that it is possible that the 

field in the chromosphere and the corona does not vary as 

rapidly with height as in the photosphere itself. The 

intensity of coronal magnetic fields at various coronal 

heights in the active region inferred from various theories 

of solar radio bursts is illustrated in Fig. 4.2. 

(b) Ihe Geperal Hagnetic Field of The Sm.\ 

Outside the active regions, there is a weak magnetic 

field which is somewhat stronger at polar latitudes; an 

upper limit of about 2.5 gauss on the photosphere at the high 

latitude (Hogbom, 1960). This field is sometimes called the 

general magnetic field of the Sun since its nature resembles 

the dipole field of the Earth. The effects of the weak 

general magnetic field on the propagation of high frequency 

electromagnetic waves in the solar corona is insignificant 

and will be neglected. 
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FIG.4.2 The strength of coronal magnetic fields as a function of height above the 
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C • Models of Sunspot Magnetic Field Configurations 

Referring to Fig. 4.3, we assume an imaginary dipole 

buried at a point about 0.1 solar radius beneath the photosphere. 

The axis of the dipole inclines to the radial line of the Sun 

1 700. at an ang e The magnetic field lines originating from 

the dipole pass through the umbral area of the sunspot and the 

intensity along a field line is given by the dipole field 

equation 

M 2 ~ H = 3 (1 + 3sin R.) (4.2) 
r 

where M is the magnetic moment of the dipole and R. is the 

latitude angle with respect to the centre of the dipole. If 

the field line passing through the photosphere at r=d and R.~L, 

then M = H ~3/(1 + 3sin2L)~ gauss-(solar radius) 3 where R s s 

is the magnetic field intensity of the sunspot at the surface 

of the Sun. 

and 

For a dipole field model, we also have 

2 r = r cos R. , 
0 

ds 2 ~ dt = r 0 cost(l + 3sin R.) , 

(4.3) 

(4.4) 

where r
0 

= d/cos2L and ds is the length of a small segment of 

the field line and dt is the corresponding small angular 

interval at latitude R.(Fig. 4.3). The relation between r 

and P is given by 

p2 = (0.1) 2 + r 2 - 0.2rcosµ , (4.5) 
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Fi~.4.). - Geometry illustrating the calculation of a theoretical sunspot ~agnetic 

field confi~rationo 0 is the centre of the Sun and P is ~he centre of the dipole. 

r is the maximun height of the field line above the centre of the dipole. 
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where µ = lso0 
- It - 20°1 • 

The magnetic field intensity along a field line 

emerging from the centre of a .. unipolar SU!_lspot is plotted 

against the distance from the centre of the Sun in term of 

gyrofrequency fH(in MHz) in Fig. 4.4(a) where L = 82° and 

H = 19 000 gauss. We assume two field lines originating from s 

two single spots of opposite polarity joint together at the 

coronal height and form an arch in the solar corona. Taking 

87. 

L = 69°, 75° and H
8 

= 2,000, 150 gauss for the field lines 

emerging from the leading spot and the following spot respectively, 

we show the variation of the magnetic field intensity along a 

bipolar field line in Fig. 4.4(b) (the dashed curve). A 

similar model for a bipolar field line with turning point at 

p = 1.62 is also shown in this figure (the solid curve). 

Since the radial gradient of the sunspot magnetic field 

intensity near the solar surface is very large, the surface 

field intensity Hs may be higher than 2,000 gauss. (In Fig. 

4.S(b), the value of H
8 

has been ,raised to 3,000 gauss~) 

Similarly, other field lines originating from different points 

on the umbra! areas of a bipolar pair can also be constructed. 

Assuming the Baumbach-Allen formula (4.1), the 

variations of the electron density (in term of plasma frequency 

2 2 fp) and the value A = f p/fH with distance from the centre of 

the Sun along the background corona and the coronal streamer 

are also shown in Fig. 4.4. 
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For unipolar spot magnetic field, a simple theoretical 

model has been proposed by Ginzburg and Zheleznyakov (1959). 

The axis of the imaginary dipole is assumed to be coincident 

with the radial line of the Sun and only some lines of force 

from the pole near the photosphere will emerge through the 

umbra! area of the spot. The sunspot field line passing 

through the centre of the sunspot will be the strongest field 

line whose intensity ~t a height p-1 above the photosphere is 

given by 

(4.6) 

where b is the radius of sunspot in units of solar radius and 

H
8 

is the maximum surface field intensity of the spot. 

According to Ginzburg and Zheleznyakov (1959), b is taken to 

be 0.05. 

We should remark that the models of the sunspot 

magnetic field configurations given above are empirical only, 

since at present there is no observational data giving the 

magnitude and the exact nature of the sunspot magnetic field 

above the photosphere. 

D • The Temperature of the Coronal Plasma 

The coronal temperature has been determined by optical 

and radio observations. The detailed studies of the thermal 

89 .. 



radio emission spectrum in combination with simultaneously 

optical measurements of coronal electron density showed that 

the coronal plasma temperature ranges from 1 to 2x106 °K 

(Christiansen et al., 1960; Newkirkp 1961). Recent 

investigations by various authors lead to the conclusion that 

in general the corona maintains a temperature of approximately 

6 0 l.SxlO K with an increase by 20% during sunspot maximum 

{Newkirk, 1967). For the active regions, both the optical 

measurement and the analysis of brightness temperatures 

associated with slowly varying component of radio emissions 

suggest the coronal plasma temperature can reach as high as 

6 0 2xl0 K (Newkirk, 1967, p.248). Thus for altitude within 

one solar radius above the photosphere, the coronal plasma 

temperature is almost constant in the range approximately 

6 0 6 0 from T = 10 K to 2:xJ.O K. This is equivalent to the 

normalized mean thermal speed of the plasma electrons 

-2 -2 
~T = vT/c from l.3xl0 to 1.85~10 • 

90. 
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CHAPTER V 

INTERACTION OF NORMAL WAVES AND TRANSFORMATION OF 

PLASMA WAVES IN THE SOLAR CORONA 

A. Introduction 

Electromagnetic waves originating in the active solar 

corona may be prevented from leaving the Sun through collisional 

and gyro-resonance absorption or through Landau damping in the 

layers where their phase velocities become close to the mean 

thermal speed of the plasma electrons. The coupling between 

different wave modes can, in certain circumstances, increase 

the probability of escape. We shall examine various possible 

coupling processes and their effects on the wave propagation. 

Since each wave is represented by two branches of the 

refractive index curves corresponding to two different modes 

(Fig. 2.1), electromagnetic waves in six different modes can 

propagate in different layers of the solar corona. Assuming 

a unipolar magnetic field model (4.6) with Hs = 3,500 gauss 

-2 (1,500 gauss) and BT = 10 and the electron density distribution 

given by five (two) times the background coronal density, we 

show the variation of the square of refractive index along a 

radial line passing through the centre of the sunspot in Fig. 

5.1. The whistler mode (n2) and the lower p-mode (n3) 

propagate in the layers where f < fH (i.e. Y > 1) and the 
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o-mode (n2) and x-mode(n1) in the layers where 

(5.1) 

respectively. The z-mode wave (n1) propagates only in the 

layers where £ < f 
- x 

the layer f S f ~ f 
p x 

The upper p-mode (n3) wave exists within 

If the sunspot magnetic field intensity 

is very weak such that f P >> fH , the whistler mode and the 

lower p-mode waves propagate with very small phase velocities 

and the layers f = f and f = f are close to one another. x p 

Therefore, in the outer layers where f P >> fH' the coronal 

plasma tends to be isotropic and only the longitudinal plasma 

wave and the transverse electromagnetic wave can propagate. 

From the refractive index curves, we can see·that the x-mode 

wave and the o-mode wave are able to traverse through the 

* solar corona freely while the z-mode wave, the whistler mode 

wave and the p-mode wave can leave the Sun only if they can be 

coupled to the x-mode and the o-mode waves. 

* The x-mode and the o-mode waves can escape from the solar 

corona only if the resonance absorptions at the harmonic layers 

(£ = sfH' s = 1,2,3, ••• ) are insignificant (see Chapter VI). 
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B. Coupling of Normal Waves in The Solar Corona 

The wave equation describing the propagation of the 

electromagnetic wave in an inhomogeneous magnetoactive plasma 

involves a dielectric tensor E~a(w,r), where r is the position 

vector with respect to some origin. The exact solutions of 

this equation» in general, are either entirely unkown or of 

little practical value. However some approximate solutions 
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have been ob·i:ained and these reveal the physical phenomenon of the 

propagation of waves in an inhomogeneous magnetoactive plasma. 

The most important method of solving the wave equations is 

based on the use of the approximation of geometrical optics. 

The applicability of this approximation requires the 

satisfaction of the inequality (Ginzburg, 1964, p.256), 

(5.2) 

dn 
where ~ is the spatial gradient of the refractive index in 

the direction of wave propagation and A
0 

= 2~c/w is the wave-

length in vacuum. For the t10st part of the solar corona, the 

properties of the pla.s1ila vary slowly in space, the refractive 

index changes very little over distance of the order of the 

wavelength, and theinequality (5.2) is generally satisfied. Thus 

for propagation of waves in any relatively small region, the 

layer may then be regarded as being a homogeneous medium with 

2 the corresponding values of nj in that region. When (5.2) 
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holds, the two normal waves are entirely independent and so are 

waves of the same type propagating in opposite directions. 

From (5.2), it is obvious that the geometrical optics 

is invalid when 

7'-o dnj >> 1 • 
271' dr 

(5.3) 

(5.4) 

The inapplicability of geometrical optics in the layer where 

n. m 0 indicates the possibility of total reflection of waves 
J 

(in the absence of absorption), since in this layer the field 

almost completely disappears at a distance of a few wavelengths 

beyond the point nj = 0 and it is clear all the energy must be 

totally reflected. Accordingly, the x-mode, o-mode and z-mode 

waves propagate towards the surf ace of the Sun will be 

reflected from the layers f=fx' f=f • f and f 
0 p z 

respectively. 

For e is not too small, geometrical optics is inapplicableonly 

,to1 the 
/ I' 

o-mode wave at the layer f = f P and so reflection of 
Ii 

the o-mode wave does not affe~t the other waves. 
)' 

The same 

{phenomenon will also happen for the waves of other modes. 

Howeverp when the angle 8 decreases to small values (but not 

exactly equal to zero)~ geometrical optics becomes inapplicable 

to both o-mode and z-mode waves and also to whistler mode and 

z-mode waves in the region f = f 0 = f • 
p 

Both the o-mode and 



the z-mode waves (or whistler mode and z-mode waves) possess 

not only similar phase velocities but also similar states of 

polarization (Fig. 5.1; Fig. 11.12 of Ginzburg, 1964, 

p.108). Thus, as one of the normal waves (o-modep say) 

approaches to the layer f=f , its polarization has to change 
p 

rapidly in order to remain a characteristic o-mode wave, but 

with a small change of polarization 9 it could propagate as 

a .. z-mode wave (Ratcliffe, 1959, p.162) •. Then an o-mode wave 

(or a whistler mode wave) on passing through the points 
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near f=f will partially transform into the z-mode and continue p 

to propagate with that mode. A similar phenomenon also 

occurs when the z-mode wave passing through the layers near 

the point f=f with small wave-normal angle. p 
The parameters 

determining the ef f ieiency of the interaction between normal 

waves near the point f=f have been calculated by means of 
p 

the method of phase integrals (Ginzburg, 1964, p.320) and 

given by 

nwa2 nwe2 
2 o = and 2002 = 

312 
, 01 2ca(l.L.·•/w....) 312 2 (1 I ) -.-w H ea -w "\i 

(5.5) 

, 11 an j 
where a = n ar 0 

o n =N 
, Ne is the electron density in the 

0 c 

coupling region5 and 0 is in radian •. The expressions for the 

transmission coefficient lnl 2 and reflection coefficient IRl 2 

in various.- cases are shown in Fig. 5.3. These expressions 

are valid only for 
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2 
"eff < < fH5in 8/2cos0 (5 .6) 

where "eff is the effective collision frequency. For the 

solar corona, "eff is given by (Ginzburg, 1964; Wild et al., 

1963): 

"eff 

1 
= s.5n ln(220T/n1" )/T3/ 2 

0 0 

(5.7) 

In the active solar corona, if the electron density distribution 

-2 is given by the Newkirk model and ST = 10 , "eff varies from 

50 Hz to 2 Hz for p = 1.1 to p = 2. So the condition (5.6) 

is satisfied even for extremely small values of 0 (but 0 ~ O). 

The most interesting case is the coupling of the z-mode 

wave to the o-mode wave in the active solar corona. For the 

wave frequency f = 50 MHz, the interaction between the z-mode 

wave and the o-mode wave takes place at the layer p = 1.7 (Fig. 

7 -3 5.l(b)) where fp = f, fH = 30 MHz, Ne = 6xl0 (cm ) 

an 
.o 

a;- n =N 
0 c 

< 2x10-4(cm-3)/cm. If the amplitude of the 

z-mode wave is taken to be unity, the square of the amplitude 

of the o-mode wave leaving the interaction region will be 

(Fig. 5.3(B) (b)) 

l»I~ • exp[call:;;::~l/2] (0 in radian) • 
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o o I 12 4 6 If a = 0.5 and 5 , then log10 D ~ -4xl0 and -4xl0 respectively. 

Hence~ under the normal active solar corona condition, coupling 

the z-mode wave to the o-mode wave is entirely inefficient. 

However, if there are some local inhomogeneities, e.g. 

"electron hills" or sharp shock front~ in the interaction region 

such that the value of 
n =N 

0 c 
can reach 1. Iv. lO - 1. 4x .i.02 

-3 -7 (cm )/cm, o-mode radiation with the intensity about 10 of 

that of the incident z-mode radiation will emerge from the 

interaction region. 

As shown in Chapter II, the coherent Cerenkov plasma 

wave emitted by an electron stream is of greatest intensity 

in the direction of the electron guiding centre motion. Thus, 

the Cerenkov plasma wave excited by a stream moving towards 

the Sun will change its physical character from a l.Qngitudinal 

plasma wave to electromagnetic wave in the z-mode (n1 ~ 1) near 

the point f=f , then part of its energy will couple to the 
p 

o-mode wave which after being reflected at f=f p will leave the 

Sun. From Fig. 5.3(B)(c), the efficiency of this coupling 

will be given by lnl~-+\O = l»I~ (1 - jn.1;++-
0
). Since for 

normal active corona conditions, lnl!++o is very small, no 

significant o-mode radiation arising from coupling between the 

p-mode and o-mode waves in the region f ~ f p will emerge from 

the solar corona. 

Interaction between normal waves also occurs in those 
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shaded regions in Fig. 5.1 (a), (c) and (d). 

When e z 0, the waves are to some ex ten• t renamed. This 

2 is illustrated in Fig. 5.2 where nj is plotted against the 

radial distance from the centre of the Sun for wave frequencies 

f=50 MHz and 100 MHz. From this figure~ we see that the 

geometrical optics approximation will be inapplicable only to 

the p-mode at the layer f ~ fp 5 hence the p-mode and o-mode 

waves propagate independently. 

C. Interaction of Normal Waves in The Region Near The 

Boundary of A Layer 

The boundary of a layer is defined as the region 

where f 2/f2 
+ 0 and beyond which the effect of the medium 

p 

" on the propagation of electromagnetic waves is insignificant. 

It has been shown that near the boundary of a layer the 

approximation of geometrical optics is also invalid for the 

x-mode and o-mode waves through the occurrence of polarization 

degeneracy in the vacuum (Ginzburg, 1964» p.257). The 

condition for the approximation of geometrical optics to be 

valid, in the present casep is 

A 
_..£. db.n \I/,. << 1 
21T dr (.J.n ' (5 .8) 

where Near the boundary of a layer, n1 2 + 1, 
' 

(5.8) will then be violated. For transverse propagation, 

6n + 0 even in the region where f;/£2 is not vanishingly small. 
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Cohen (1960) suggested that a breakdown of the geometrical 

optics approximation due to transverse propagation would 

result in an effective interaction between normal waves. This 

interaction is characterized by a coupling parameter 

(5.9) 

which is obtained by means of phase integral method 

(Zheleznyakov and Zlotnik, 1964). Here ~ is the characteristic 

scale of the magnetic field and for typical solar active 

9 10 region, IH ~ 10 - 10 cm • 

Since the magnetic field intensity and the electron 

density in the solar corona decreases away from the Sun, 

electromagnetic waves (x-mcde and o-mode) emitted from a source 

embedded in the active region will traverse the solar corona 
2 

. 12cos0(1-X)I with the quasi-longitudinal propagation condition 
2 

>~ 1 
Ysin 0 

under which the waves are circularly polarized. However 9 when 

the.waves pass through the magnetic field with wave-normal 

angles in the vicinity of ~/2, the quasi-transverse propagation 

condition I 2cosa(~-X) j2<< 1 holds and.the waves-are 
Ysin 9 

linearly polarized (Piddington and Minnett, 1951). According 

to Zheleznyakov and Zlotnik (1964), for circularly polarized 

radiation of unit intensity which penetrates into the quasi-

transverse propagation region (QT region), the emerging 
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radiation will consist of a circularly component and a 

linearly polarized component whose degrees of polarization 

are respectively given by 

= 2e 
-20 

0 1, 

~o ~o 1 

p1in = 2 [e o (1 - e o)]~, 

(5.10) 

(5.11) 

2 2 
where pcir + p~in = 1 • Strong coupling occurs when o

0 
is 

small. This requires that the characteristic polarizations 

change substantially in a distance comparable with that 

required for a Faraday rotation of one radian (Cohen, 1960). 

In general, interaction of normal waves in the region 

f = f P does not give rise to the x-mode wave. 

since the approximation of geometrical optics is also invalid 

for both z-mode and x-mode waves near the point f = f , the x 

z-mode wave can transmit part of its energy to the x-mode wave. 

This transmission process will be efficient only when a = n/2 

(Ginzburg, 1964, p.287). The sense of polarization of the 

transmitted x-m.ode wave is the same as that of the original 

z-mode wave. 

D. Transformation of Plasma Waves into Electromagnetic Waves by 

Scattering on Fluctuations of Electron Density in The Solar 

Corona 

(a) Introduction 
\ 

The high intensity Cerenkov plasma waves which are 
' 



excited by electron streams in the solar corona (Chapter II) 

are important in connection with the observed solar radio 

emission only when these plasma waves can be transformed 

efficiently into electromagnetic waves in the o-mode and the 

x-mode. It has been shown in Section B that under normal 

active solar corona conditions, the transformation of plasma 

waves into o-mode waves through wave-mode coupling in· the 

region near f ~ f is quite inefficient. 
p 

Alternatively 11 
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the plasma waves can also be transformed into the x-rno<le and o-mode 

waves through scattering on the fluctuations of electron 

density and magnetic field intensity existing in a homogeneous 

* magnetoactive plasma • 

The problem of scattering and conversion of waves in 

the equilibrium and non-equilibrium plasmas has been dealt 

with by many authors (e.g• Akhiezer 9 Prokhoda and Sitenko, 

1958; Akhiezer and Sitenko,, 1962~ Rosenbluth and Rostoker 11 

1962; Bass and Blank, 1963; Daneliya and Tsintsadze, 1965; 

Tsintsadze 11 1965; Sitenko and Radzieveskii, 1966; etc.). 

Quantitative application of these theories to the study of radio 

* The term 0 homogeneous plasma" means that a plasma is 

homogeneous "on the average" (in the absence of fluctuations or 

local inhomogeneities). 
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emissions from the planetary atmospheres 9 however, is still 

rare. Ginzburg and Zheleznyakov (1958) and Smerd, Wild and 

Sheridan (1962) have studied the efficiency of the transforma-

tion of longitudinal plasma waves radiated by electron streams 

and applied to the interpretation of unpolarized type III 

bursts. Tidman 9 Birmingham and Stainer (1966) showed that 

the solar type II emission could be the consequence of conversion 

of the plasma wave excited by energetic electrons into electro-

magnetic radiation by scattering on the low frequency ion 

density fluctuations and high frequency electron plasma 

oscillations in a plasma consisting of a thermal electron 

component co-existing with a flux of energetic electrons. 
h~$ 

On the other hand, Zaitsev (1966, 1967) considered 

that the type II bursts_ and the drifting bursts superimposed 

on the type IV continuum at decimetre wavelengths are the 

conseque~ces of conversion of plasma waves generated in the 

shock front which propagates through the solar corona. 

Ondoh (1966) has suggested that the very low frequency hiss 

emitted in the Earth's magnetosphere may be attributed to the 

emission of the plasma waves by fast electron streams travelling 

along the geomagnetic field line. However, ~ost of these applies-

tions are limited to the case of isotropic plasma. In the 

presence of a magnetic field, coherent fluctuation of 

electron density occurs at frequencies close to: plasma 

resonance frequencies (2.5) which, in the general case, do not 
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coincide with the plasma frequency. Furthermore, the 

intensity of the radiation resulting from transformation of a 

given incident plasma wave depends strongly on the ~ave-normal 

angle of the transformed emission. Therefore, in the present 

section we formulate the coefficients for the transformation of 

plasma waves into electromagnetic wav~s by thermal fluctu-

ations of electron density in a magnetoactive plasma. 

(b) Fluctuations of Electron Density in a 
I 

Magnetoactive Plasma 

We consider an unbounded and spatial homogeneous fully 

ionized two component plasma (electrons and ions). The 

state of the plasma is assumed to be stationary with a fairly 

strong imposed magnetic field whose direction is along the 

z-axis. Taking into account of self-consistent interaction 

between electrons and ions~ the spectral distribution for 

the electron density fluctuations in the isothermal Maxwellian 

* plasma is given by (Sitenko and Kirochkin~ 1966) : 

I il2 e 2l el2 i [ 1+4rrKll GH+l67T K
11 

G lJ ] , (5 .12) 

where k and w are the vector and frequency of the fluctuation. 

G~S and G~S are the spectral correlation functions of microcurrent 

density for uncorrelated electrons and ions respectively. 

K~S and K~S are the polarizability tensors of the electron and 

ion components in the plasma and they are related to the 

* A detailed derivation of (5.12) is given in Appendix B. 
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dielectric tensor by 

(5.13) 

The subscript II represents the longitudinal component of the 

corresponding tensor. For an isothermal plasma, the spectral 

correlation functions of the microcurrent density for 

independent electrons and for independent ions can be ex-

pressed in terms of dielectric tensor as 

* * e e i i 
Ge KTW (Ea13-EGa> 

Gi =~ 
(e:a13-e:13a) 

= ' aa (21T)5 2i af3 (21T) 5 2i 
(5 .14) 

Thus, the electron density 

fluctuation spectrum for an isothermal magnetoactive plasma 

is completely determined by the dielectric tensor for the 

plasma. 

The electron density fluctuation spectrum consists of 

a central broad maximum about the origin w = 0 of a~proximate 

i width proportional to kvT 

of the ions. When k < ~ 

, where vi is the mean thermal speed 

2 
41Te n

0 
1z 

= ( KT ) , in addition to the 

central maximum, there are also side bands occurring at 

frequencies w and vectors k for which Re e: 11 (k,w) = O, the 

* i e dispersion equation for weakly damped plasma waves (T=T =T is the 

* For an i3otherm31 oc,-netooctiYe plasma, the electron density 

fluctuation spectrum for a given wave-normal angle 0 is es-

sentially the same as that for an isotropic plasma except that 

the sharp maximum occurs near w = w±(0) instead of w = wp • 
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plasma temperatu~e). The sharp delta-like maximum arises from 

the long range Coulomb interaction. The central maximum is 

associated with electrons in the shield clouds around the ions 

of velocities close to zero. Hence the fluctuations with 

frequencies in the central maximum of the spectrum are as-

sociated with the random motion of the individual ions and» 

for a given k~ the frequency of the fluctuation is not re-

stricted by the dispersion equation for the low frequency wave. 

Owing to the relatively large ion mass, the effect of 

the ions on the dielectric tensor and hence on the electron 

density fluctuation can be neglected in the high frequency 

region. That is~ the ions serve merely to neutralize the 

electron charge density. The spectral distribution for 

coherent fluctuations of electron density is then 

2 
<on >k­ pw 

n k
2 [o(w-w) + o(w+w )] 

0 s s = ~~~~~~~~~~~~~~~-
3 2 2 a -

2 (27T) IcDw 2 Re e:
11 

(kpw) 
aw w=tw 

s 

(5 .15) 

where Re e: 11Ck.~w) is given by the left-handed side of (2. 3) and 

(5.16) 

is the angular frequency at which the sharp delta-like maximum 

occurs and satisfies the dispersion equation Re e:
11
(k,w

8
) = O. 

Then the magnitude of the fluctuation vector becomes 

n3ws 
k = -c~ with n3 given by (2.4), 



'Ihe total electron density fluctuation, obtained by 

integration of < on2 > over all frequencies, is 
k~w 

2 
n (l+kn/k2) 

= --'-o---~--
(27T) 3 (1+2~/k2 ) 

< on2 > 
k 

(5.17). 

From (5ol5) and (5.17), it can be seen that coherent 

fluctuation of electron density at frequency w and vector k 

yields only a small fraction, of the order of k2/~ , of the 

total electron density fluctuation. 
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(c) Transformation of Plasma Waves in A Magnetoactive 

Plasma 

The use of the linearized kinetic equation and the 

Maxwell's equations to describe the electromagnetic properties 

of the plasma leads to the independent propagation of waves 

in various modes. On the other handp the non-linearity of 

the kinetic equation leads to the possibility that each of 

these waves may be scattered or transformed into waves in 

other modes by scattering on the electron density fluctuations 

of either thermal or nonthermal origin existing in the plasma. 

The interaction between the incident wave of frequency w and 
0 

- the 
wave vector k

0 
with electron density fluctuation at frequency 

w and wave vector q would give rise to waves whose frequencjes 

and wave vectors are given by 

... 
W=W +w,k=k +q. 

0 0 
(5 .18) 
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Since w07 k
0 

and w,k have to satisfy their own dispersion 

equations w (k) and w(k) respectively~scattering or-conversion 
0 0 

of the incident wave can take place only when the equation 

has real solution fork (Bass and Blank, 1963; Sitenko, 1967, 

p.152). Therefore, owing to the existence of a broad maximum 

-about w = 0 and side maxima at frequencies equal to electron 

plasma wave frequencies in the electron density fluctuation 

spectrum for the isothermal plasma, the incident plasma wave 

may be transformed into electromagnetic waves by incoherent 

scattering with a small frequency change and by coherent 

(combination) scattering with a change in.frequency by an 

amount equal to.the plasma wave frequency (5.16). 

Actually, in a magnetoactive plasma, fluctuations of 

elect~on density and magnetic field will result in fluctuations 

of the dielectric tensor, i.~. 

where Eae is the d~electric tensor of the plasma in the absence 

of fluctuations and is determined by the system of linearized 

kinetic equation and Maxwell's equations (Chapter I, Section B). 

Thus, propagation of an incident wave E08 (assumed to be a 

first order quantity) in a plasma with fluctuations gives 

rise not only to a linear induced current density signifying 
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the propagation of the incident wave but also to a non-linear 

curr~nt density which is proportional to the product 

oeaa E
0
a and reveals the possibility of formation of the 

* scattered or transformed waves from the incident wave • Since 

** OEaS E
0
a is a second order quantity , it is expected that the 

non-linear current density can be sought from the Maxwell's 

equations for the second order wave field (i.e. scattered or 

transformed wave field) and the second order approximated 

kinetic equation which describes the perturbation of the state 

of the plasma under the action of the second order wave field 

and the action of the incident wave field (cf. Akhiezer, 

Daneliya and Tsintsadze, 1964; Daneliya and Tsintsaq~e, 1965). 

Now the phase velocities of the weakly damped plasma 

waves generated by electron sireams moving in the solar corona 

' * Sca~tering of electromagnetic waves with fluctuations of plasma . 
temperature taken into account has been discussed by Sitenko 

and Gurin (1966). It was found that the fluctuations in 

temperature have a significant effect on long-wavelength 

scattering characterized by small frequency change (i.e. the 

case ~/k2 >> 1), when the effective collision frequency is 

very large. 

** We assume that there are only small random fluctuations 

existing in the plasma~ the electromagnetic radiation 

resulting from multiple scattering is insignificant. 



greatly exceed the mean thermal speed of the plasma electrons. 

Moreover~ the collision frequency of the coronal plasma is 

negligibly small, being of the order of 10 Hz. In this case, 

we can make use of the hydrodynamic equation to find the 

current responsible for the transformation. In the absence 

of external current 9 the system of equations describing the 

behaviour of a homogeneous magnetoactive plasma under the 

action of the electromagnetic field will be 

- 1 a! 4'1T - -curl H - c at = c j (E) , 

curl E + ! ~~ = o, l<E> = en v<i>, (5.19) 

div E = 4'1Ten(E), div ii= 09 

av - - - 1--
mon [at + (v .·'i/) v ) + V-p = en(E + c V>CH), 

an -at + v. (nv) = o» 
(5.20) 

where v,n»T and p are the electron velocity, electron density, 

temperature and electron pressure of the plasma respectively. 

E, Hand j(E) are the electric field, magnetic field and the 

total current density in the plasma due to the presence of the 

wave. By writing 

H = l e:iii(i) 
i=O . 

113. 



114. 

V = l Eiv(i), n = l Ein(i)
9 

j = l Eij(i) 
i=l i=O i=l 

where Eis a small parameter, in (5.19) and (5.20) 11 we obtain 

the equations of the i-th approximation as: 

-(i) 
curl H(i) = .!. aE + 4TI -J.(i)(E(i)) 

c at c ' 

-<1> i ali<1> 
curl E = - c at , 

(5.19a) 

1<1>cE<1 >> = en
0
v<1>cE<1>>9 

-(i) i-1 i-1 -(i-j) 
n [av +l (v(j).V)v(i-j)J+}'. n(j)[_av-.,,...-

o at .J=l j=l at 

i-j-1 . . en 
+ l (v (k) • l\l)v (i-J-k) 1 + .!._ Vp (i) - --2.(E (i) + .!.; (i) xii ) 

~l ~ ~c c o 

en i-1 i-1 
o t -(i-j) -(j) e t (j)(-(i-j) 1 -(i-j) -

- - l v XH - - l n E + - v xu 
m0 c j=l m0 j=l c o 

(5.20a) 

p(i) = 3Kn(i)T
11 

-



The last equation specifies the conservation of the i-th order 

electron density in the plasma. Now let the incident wave and 

the scattered (or transformed) wave be in the forms 

E Cr,t) = l l E Ck ,w > exp(ik .r-iw t)9 
0 0 0 0 0 0 

k w 
0 0 

- - _, -
where E

0
(k

0
,w

0
) and E (k,w) are the Fourier components of 

_, -
electric field vectors of the waves. E (r,t) arises due to 

scattering the indicent wave E (r,t) by the fluctuations with 
0 

frequency w and vector q in the plasma. Solving (5.19a) and 

(5.20a) by the Fourier method and taking (5.18) into account, 

we obtain the equation of the second approximation for the 
_, -

scattered (or transformed) wave E (k,w) as 

2-' - - -' w2 
-' 4~ -' k E - k (k, E ) - 2 E = i c"lr wj , 

_, 
j 

_, 
= en v 

0 

-iwV
1 

+ ~ V(k v9

) 
m w ' 

0 

c (5.21) 

- p = o, (5.22) 
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where P(k,w) = - {
1

m0 (ov.k )v + _mo_o_n_ [-1w v - ~ (E + ! V><ii )1 
e o en

0 
o m

0 
o c o 'J 
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V(k
0

,w
0
), n(k

0
, W

0
) are the electron velocity, induced electron 

density associated with the incident wave. -' - I -v (k,w) and n (k,w) 

are associated with the transformed wave. ov(qjw), on(q,w) 

and 0H(q,w) are the fluctuations of electron velocity, electron 

density and magnetic field in the plasma respectively. 

on(q,w) and ov(q,w) are related by the first order approximation 

of the equation of continuity. 
_, -

The solution for v (k,w) of (5.22) isJ then, 

_ , -
v (k,w) iw "-' iw ,... _ =--KE --KP ne- ne-o 0 

where Kaa(kjw) is defined in (5.14) and K = q/q, Ko = k0 /k0 
• 

The high frequency dielectric tensor Eae(k,w) in the 

hydrodynamic approximation, taking account of the gas-kinetic 

pressure of the charged particles, is given by,(Shafranov, 

1967, p.37) 

1 - xc1 
2 2 2 e: = - 3k vT/w ) , yy 

1 -
2 2 2 2 2 e: = X[ 1 - (wH+3k vTsin 9)/w ] zz 

WH 22 2 2 (5.23) 
e: = -e: = -ix ~ (l-3k v cos 8/w ) ~ xy yx w T 

2 2 cos8/w2) e:xz = E: = X(3k vTsin8 zx , 

2 2 3 e: = -e: = iX(WHk vTsin8 cos8/w ) yz zy , 

2 w 
where x = 2 2 2 2 2 2 2 w -wH-3k vT(l-wHcos 0/w ) 



117. 

Then the equation (5.21) becomes 

k2E-' - - -' w2 A-' = i 4~ wi(n)(E-) - k(k.E ) - '""2 £ E c2 ~ 
0 

, 
c 

(5.24) 

{
im m cSn [ ] 

with 3<n> CE > = iwK -E. Cov.it >v +_e.__ -iw v - !... (E + !. ~ > o - e o en
0 

o m
0 

o c o 

p(l) = 3KTn (k ,W ) 
0 0 

(5.25) 

The non-linear current element j(n)(E) arises due to the 
0 

propagation of the incident wave in a plasma with small random 

fluctuations and is responsible for scattering or transforming 

the incident wave. 
thrz. co,,side.ra.t( Or\ of. 

Since we confine ourselves to seasidGr the transformation of 

plasma waves into electromagnetic waves by the thermal fluctuations 

of electron density, we assume that there exists a longitudinal 
~ 

electric field which induces fluctuations of electron density 

on in the plasma. So that the term proportional to cSii is 

neglected. Making use of the first approximation of (5.20a), 

- - ~ -o~- - - - ~ -we find k
0

.ov = wk
0

tSn(K.KK)/n
0

qKu , where Ku= K.K.K is the 

iongitudinal component of the polarizability tensor ,i(q,w), 



and we can tban~ express the non-linear current density in terms 

of the product of the fluctuation of electron density and the 

incident wave electric field vector, 

where U 
w 

0 =-w 

(5 .26) 

" - "o K(k,w), K (k
0

, w
0

) are the polarizability tensors with 

frequencies W5 w and wave vectors k, k respectively. The 
0 0 
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0 refractive index n
3 

for the incident plasma wave in hydrodynamic 

approximation is given by 

We note that the term associated with ~v.k has the magnitude 
0 

- k 
proportional to wo~ (~ ) and can be omitted in (5.26) when 

Wno q 

- -w ~ 0 and w >> w . 
0 

In the following, we make use of (5.26) 

to consider the efficiency of transformation of plasma waves 

in a magnetoactive plasma by combination scattering and 

incoherent scattering processes respectively. 
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(i) Transformation of Plasma Waves by Combination 

Scattering 

For high frequency weakly damped waves, we can omit 

22 2 ,..._ "0 
terms proportional to k vT/w (<< 1) in K,K and K • The 

average power of the electromagnetic wave in the j-mode emitted 

from unit volume of plasma is (Shafranov» 1967, p.104) 

p = - f -:(n)* _, 
< J .E. 

J 
> dkdw , 

k,w 
(5.28) 

where the angular bracket denotes the ensemble average and 

< j-(n) ~' > d=_f < j{n)*<k~w).Ej'(k~w) > From (5.21)
5 • .c.j k,W 

the Fourier component of the electric field of the transformed 

wave is determined by 

(5.29) 

2 where nj is the square of the refractive index for extraordinary 

wave (j=l) and ordinary wave {j=2) in the cold collisionless 

magnetoactive plasma and a. jg the polarization vector of the 
J 

j normal wave given by (Shafranov~ 1967» p.56); 

ajx(ljJ) = K.(ia cosljJ - sinljJ 
J x ) » 

ajy{ljJ) = Kj(iax sinljJ + cosljJ ) ' (5.30) 

ajz (1/i) = iKja.z 



= - ~cos8/[;2 + A/(n~-1)] t 
J 

a. = -(n~-l)~sin8/(A-~2 ) 
ltj J 
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Thus~ the average energy of the transformed wave radiated into the 

solid angle d!l per unit time from unit volume of plasma becomes 

~ oo k2 
1
-* -(n)l2 

J J 
< 8 j"j > k w 

dP = -i4~ 2 2 2 2 
w(k c /w -nj) 

-00 0 

dkdw dO • (5 .31) 

2 2 2 2 -1 2 2 2 2 Making use of the relation -i(k c /w - nj) + ~o(k c /w -nj) , 

we carry out integration over k and obtain 

<~n2 > - w6n 1-* Q-1 2 dwd~ 
U j aj • ~G ' q,w (5.32) 

where E is the 
0 

. amplitude of the electric field of the 

incident plasma wave, and 

The differential scattering cross-section is defined as ratio of 

the average transformed wave intensity to the incident wave 
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energy flux density in the incident wave vector direction. 

For the incident longitudinal plasma wave, the energy flux 

density is given by 

(5.33) 

That is, from (5.32) 9 (5.33) and (5.15), the differential 

scattering cross-section, crjw' for combination scattering 

will be 

161f2nj~;w6w2 1a~.ql 2 
[&(W-w > + o\w+w)] dw 2 _3 _1 = J s s (cm cm sr ),(5.34) 

o 4 4 
1
-2 a - - I 3n3n c w w -::-

2 
Re E(q,w) _ 

o p Clw H w=±w 
s 

-where w=w
0 

+ w and ws is the plasma wave frequency~-

Now, we define the transformation coefficient as 

v -1 = cr. (8) -
2 

(sr ) , 
JW L 

(5.35) 

where V is the volume of the plasma in which the scattering 

takes place and Lis its linear size. We note that nj(w,6) 

is a dimensionless quantity which specifies the efficiency of 

the transformation. 
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(ii) Transformation of Plasma Waves by Incoherent 

Scattering 

Conversion of plasma waves into electromagnetic waves 

with su:all frequency change in an isothermal plasma is the 

result of scattering of the incident plasma waves by 

fluctuations of electron density with frequen~ies about the 

2 origin w = O where < <Sn >- ""exhibits a broad maximUJll.. q,w 
-as w = w0 >> w , we have 

3 2 02 0 2 wm w n P 

Then, 

0 0 3 T E <Sn(l - U)XK-o 
4 

2 2 0 
(5 .36) 

Tre n 
0 

w o q - Ao-o 
where U = w [l + k (-4TTK.K K )] • The average electroma.gneo-

0 

tic energy radiated per unit time per unit solid angle from 

unit volume of plasma is obtained by inserting (5.36) into 

(5.31) and carrying out integration over k, 

dP -= dO 
9 4 2 o40 4E2 wmn3 PT 

0 0 0 

8 4 4 3 n e c 
0 

00 

-~ 

(5.37) 

In order to find the 

integral scattering cross-section, we replace the frequency 

-w in (5.37) by w = w + w and write the electron density 
0 

fluctuation spectrum (5.12) in the form 



< 

Then, after carrying out complex integration over w 
, 

(Shafra~ov, 1967,' p.134), we obtain the integral scattering 

cross-secticn and the corresponding transformation coefficient 

as 

=~IS = O'j dH' o I-* -,2 a .• Q 
J 
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and -1 (sr ) • (5.39) 

(d) Transf orraation of Plasma Waves in 1he Actiye 

Solar Corona 

As the amplified plasma wave generated by an electron 

stream propagates away from the source region in the outward 

direction, its phase velocity decreases rapidly (see Fig.5.1) 

and collective wave motion becomes completely disorganized. 

However, because of non-linear effects, the plasma wave will 

transfer part of its energy to the electromagnetic radiation 

which may eventually be observed on the Earth. 

In most cases, in the high frequency region, the frequencies 

of the trnnsfornc~ w~ves in the o-oodc nnd the x-~adc nrc of the same 
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order of tha,t of the .plasma wave while the refractive index for 

the plasma wave greatly exceeds those for the o-mode and x-mcde 

waves. Thus, the three vectors k, k
0 

and q can satisfy the 

equality (5.18) only if the directions of k and q represent 

nearly "head-on" collisions (Tidman, Birmingham and Stainer, 

1966). 
.... 0 

According to Fig. 5.4, this implies that ~ = 180 

and e > n/2 while e < n/2, where a and ~ are the wave-normal 
- D-

angle and azimuthal angle of the fluctuation vector q. 
For simplicity, we assume that both k

0 
and q lie on the x-z 

plane*(so that ~can be 180° or o0
) and let q ~ k in la*.qj 2, 

0 j 

then, for coherent scattering, 

(5.40) 

* Strictly speaking, for e different from 0° (or 180°) appreciably, 
~ 0 

we should consider the cases for arbitrary azimuthal anglei. 

... 0 0 
Howeverj for $ ~ 0 , 180 , the mathematics involved in the 

theory of transformation of plasma waves into electromagnetic 

waves by thermal fluctuations in a magnetoactive plasma is ex-

tremely complicated. Since the Cerenkov plasma waves excited by 

an electron stream maximize at a ~ o0 and the scattering of 
0 

plasma waves with 0
0 

~ o0 is independent of the choice of i 
(or w>, the results obtained under the present assumption will 

give the main characteristics of the electromagnetic radiation 

arising from the transformation of Cerenkov plasma waves excited 

by an electron stream. 
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M = E2sin8 (1/; - a) - a cose (1-1/;2), 
0 0 x z 0 

x = E sin8 [_!__+ .!. - a (1 - ~1~)] - a co~e (1- .!_)(1- _!__), 
o 2 o ;

0 
~ x ~~o z o ;2 ~2 

0 

u = (~ ~)/~ +A[F /(~2-1) + F/(€2-1)]/; ' 
0 0 0 

- 2 -F =; [E1sin8 sine+ (1-1/~ )cos8 cos8], 
0 0 0 0 0 

El = ±1 and E2 = cos~ , where ~ is the azimuthal angle of the 

wave vector k and under the present assumption, ~ is either o0 

0 -or 180 • - Since k lie• on the x-z plane (with positive x-axis), 
0 

the sign of E1 is then detel"lilined by the sign of the quantity 

I = E2ksin8 - k sin8 • Substituting (5.40) in (S.34) and 
0 0 

(5.35), we have the coefficient of transformation of tk& plasca wave 

by combination scattering 

where K is defined in (2.27). 

-1 (sr ), 

-

(5.41) 

The frequency w and e satisfy 
' s 

the longitudinal plasma wave dispersion equation ReEi,(6,w
9

) = O. 



For given wave vectors q,k and wave frequencies w and 
0 

w
0

, the wave-normal angle 8 and the wave frequency w of the 

transformed wave can be determined by solving the equations 

(5.18) and the dispersion equation for the transformed wave 

simultaneously, 
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2 2 
k2 = ~ - k2 + q2 + 2k q(cose cos8+e: 1 sin~ sinG), (5.42) 

c2 - o o o o 

and 4 2 
An + B n + C = O. 

0 0 0 
(5.43) 

When the terms proportional to kvT/w in (5.23) are discarded, 

we have 

A 
2 2 = e: sin e + e: cos e 

0 xx zz 

2 2 2 + e: e: (l+cos28)], (5 .44) B = -[ (e: ~ e: )sin 8 
0 xx xy xx yy 

co e:zz(e:!x 
2 = - E ) • xy 

The solution for cos e is then given by 

cos8 
[ 

(e:2 -~ +e: e: )G-e: (e:2 -e:2 )-G2 e: j ~ = + xx xy xx zz zz xx xy xx 
- 2 2 2 (e: -e: )G +G(e: -e: -e: e: ) zz xx xx xy xx zz 

(5 .45) 



From (5.45), we see that transformation is possible if 

lcosal ~ 1. Since the two unkowns w and 0 have to satisfy 

three equations, (5.42) and (5.43) may not yield the required 

solutions for e and w. Furthermore, even (S.42) and (5.43) 

do give real solutions for w and e, we still require that 

Therefore, the incident plasma wave cannot 

be transfOL"I!led into electromagnetic wave with arbitrary 

wave-normal angle and arbitrary wave frequency by combination 

scattering. The sign of cos0 must follow the sign of the 

-quantity k
0
cos0

0 
+ qcose. In practicei we assign the wave 

frequency w and the wave-normal angle e of the transformed 

wave and look for the approximate solutions for the wave 

frequency w and the wave vector q satisfying the equations 

(5.18) as well as Re~~q,w) = O. 

As an example, the approximate solutions for a and 
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w (normalized by gyrofrequency) of the transformed wave in the 

o-mode and the x-mode for A = 4.5 and cos l/J • 1 are shown in 

Fig. 5.5. The incident plasma wave is the Cerenkov plasma 

wave generated by a helical electron stream with a"= 0.1. 

Therefore, the wave-normal angle 0
0 

and the corresponding 

wave frequency ~o are related by the Cerenkov condition 

It is easily seen that the transformed waves 

in the x-mode and in the a-mode are emitted at a similar 

frequency in the same direction. 
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The solutions for ~ and e in Fig. 5.5 are used to 

compute the efficiency of transformation. If the linear size 

of the scattering volume is L ~ 109 cm~ which is a typical 

value for the solar corona, fH = 56 MHz and the corresponding 

electron density n
0 

4 2 8 -3 = 1.24Xl0 fijA ~ 1.75Xl0 cm , the co-

efficient of transformation by combination scattering is 

illustrated in Fig. 5.6 as a function of wave-normal angle e. 

From this figure, we ~ind that the transformed wave in the 

o-mode is strongly emitted in the direction transverse to the 

static magnetic field line while the transformed radiation 

in the x-mode emitted in the direction: e ~ 120°, 60° is of 

0 greater intensity (fore < 10 ). o- For 8 < 10° ~ the maximum o-

efficiency of transformation of the Cerenkov plasma wave 

into the o-mode wave is about a few times higher than that 

into the x-mode wave. 

In the case of tr<ansforwati.Jn of lon.[;itudinal plasna waves 

into electromagnetic waves by incoherent scattering, we 

I-* -,2 assume q ~ k
0 

in aj.Q again. 

transf orma.tion coefficient reads 

and M
0 

is defined in (S.40). 

Then, from (5.39), the 

-1 (sr ) , (5.46) 



The transformed wave frequency can be approximated 

For given K and k , the 
0 

magnitude of the vector q and the angle e of the fluctuation 

can be determined by (5.18), 

A 

q2 = k2 + k
2 

- 2kk coscfi ). 
0 0 0 , 

..,. 
cos e = (kcose - k cose ) /q ~ 

0 0 

where kk is the angle between k and k . 
0 0 

In the absence of static magnetic field, the plasma 

becomes isotropic~ and the refractive indices n~ (plasma wave) 

and n (transverse wave) are related by 

3 02 0 2 
n3 µT = 1 - w2!w2 ~ 

p 0 

2 
n (w) • 

If the electromagnetic wave is of the form exp(ik.r-iwt) and 

k = (ksin8,0,kcos8). where e is the angle between the z-axis 

and wave vec~jr k~ the polarization vector a is represented by 

- 1 -a = - {+icose, 1, ±isin8}. 
12 

For k
0 

>> k, q >> k, then k
0 

~ 

(5.46) are approximated by 

q and the terms Y and M in 
0 
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where <I> is the angle between k and k • 
0 

Then (5.46) can be 

written as 

n(6) 
n4w4 (1+~ /q2)Lsin2$ = ~-PA.-~~·~--..~~~~ 
67T2"3aT(l+2~ I q2

)n
0

6 

-1 (sr ). (5.47) 
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Taking e = o0
, and carrying out the integration over the whole 

0 

space, we have 

n =2J n 

2 4 2 2 2><2x41Te n n (l+kU /q )L 
(8)df2 = 0 

2 2 2 313 m
0
n

0
vT(J+ZkD/q ) 

The {Mtc>r 2 a.rises froM the fa.et tha.t ~·n o.n isotropic plo.siHa., -rite pltUma. 

wa.ve oa ... be tra.nsfo11"'ec:l into two "f'positel_y c.ir'et.tlarrly pola.r'iz.ed. wa.ves .e..r_uttUy. 
Since q < 11>' the transformation coefficient can be further 

simplified as 

(S.48) 

which differs from that obtained by Ginzburg and Zheleznyakov 

4/ r;;- 4 4 I 2 3 (1958) by a factor2n v3 • If n = 1, then n = 3 (41Te n
0
L 3m0vTc ). 

This small discrepancy is due to different methods of 

solving the problem. 

In Fig. 5.6(c), the coefficient of transformation of the 

plasma wave into an o-mode wave (5.46) with the same set of 

parameters corresponding to Fig. 5.5 is illustrated. We note 

that transformation of the plasma wave at the frequency 

w
0 

= wp into an x-mode wave is impossible since the transformed 

wave frequency given by equality (5.18), w = w
0 

= wp, is less 



/ 

•, 

o MODE x MODE o MODE 
A =4-5 (a) 

A =4·5 A= 4-5 
j ~ !.+J. l 2 ~.+i. ( b) ! = l. 

-S cos'/= 1 108 cos'f= 1 9<90" -_10 
C"' e >9cf ---
I-

..... C"' -a 
COS't= 1 

ai 
c- 10 

t-
g tz z 

UJ 
u. UJ ' cr u. u Li: uJ u: 0 u. 
u u. UJ 

UJ 0 
z = o· 0 u 
0 -<! u -9 
- 10 1()" 10 z 
< z 0 

20· ;= 
~ 

0 
i109 

0 Jrf 
~ u. 

(/) 
0 

z ..... 
<I: 

0 Ul u. z 

(c) 

a: Ul <I: 
I- z a: 

<I: .,_ 
a::: 

1ol ///J \~ 
I-

1 a' 
I I I I •• I 

-IO 
10 

Jo' 
... I 

rJ Git 
I 

1&/ 60. g(f 12C1' 150" 18:1' 9rJ 12Ct 150' 
a e 

o· 30° 
iso· 1Scf 

scr sd 
1~ ~ __..-, 

J<'ig.5.6 The coefficient of transformation of the nlasma wave into electromagnetic 
e 

wave in the 

(a) o-mode by combination scattering 

(b) x-mode by combination scattering. 

(c) o-mode hy incohe-rent scattering - - --

is illustrated as a function of wave-normal anB;"le of the transformed wave 9 for 
~ -2 9 8 -~ A= 11..5, 1-'T= 10 , L = 10 cm, n

0 
= 1.75x10 cm and cosc.p= 1. 

,...------~-__::::.-~------------------

... ~ ,,. 

...... 
\Jj 

- ·f\) .. 

-



133. 

than the minimum frequency of the x-mode wave, w == 2irf • x x 

From Fig. 5.6 (a,b)""and (o),it is found that the efficiency of 

transformation of the Cerenkov plasma wave (with 6
0 

a o0 and 

W0 = Wp), excited by the electron stream moving with Bfl = 0.1,into 

the o-mode wave by incoherent scattering is similar to that by 

combination scattering. 

(e) Discussion 

We have used the hydrodynamic equations to formulate the 

coefficients of transformation of incident plasma waves into 

electromagnetic waves by scattering on the coherent and 

incoherent thermal fluctuations. The electron density 

fluctuation spectrum (5.15) and the system of hydrodynamic 

equations are valid only when the weakly damped conditions 

(2.1), (2.2) are met. From the expressions (5.Al) and (5.46), 

it can be seen that when absorption of the plasma wave is weak, 
the 

the efficiency of transformation of plasma. wave into electro-

magnetic waves by electron density fluctuations is also low. 

However, under the weakly damped conditions, Cerenkov 

plasma waves can easily be excited by a stream of electrons 

with energy of a few tens of keV. The intensity of the 

coherent Cerenkov plasma wave emitted in the direction along 

the magnetic field is stronger than the electromagnetic 

radiation in other modes emitted by the same electron stream 

(Chapter II and Chapter VIII). Thus, converting small 
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fraction of the strong Cerenkov plasma waves will result in the 

emission of electromagnetic radiation in the x-mode and the 

o-mode of appreciably intensity. The possibility of observing 

such converted electromagnetic radiation depends not only on 

the intensity of the coherent Cerenkov plasma wave but also on 

the possibilities of escaping the two normal waves from the 

solar corona. Moreover, the spectral characteristics of 

such radio emission from the solar corona will be determined 

by the properties of the radiating electron stream and the 

coronal plasma together with the source position. In the 

next chapter, we shall consider these problems in detail. 



CHAPTER VI 

THEORY OF POLARIZED SOLAR TYPE III BURST 

AND U BURST EHISSIONS 

A. Introduction 

The type III solar radio bursts are characterized by 
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a short duration about 1 to 10 sec and a rapid frequency drift 

with time from high to low frequencies. They regularly occur 

in groups, typically about ten bursts per group in time by 

about 10 sec. The highest frequency of most type III bursts 

or U bursts observed does not exceed 600 MHz, but it seems 

that there is no lower limit for these bursts and they have 

been observed at 1 MHz and 30 kHz by the Venus 2 space probe 

(Slysh, 1967). A statistical study on the starting frequency 

of type III bursts (Malville, 1961) gives the maxima at 100 

MHz and 200 MHz 1 the second being probably due to the harmonic 

(Fig. 6 o 2 (a)). When both the fundamental and second harmonic 

are observed, the harmonic is emitted nearer the centre of the 

Sun (Smerd et al., 1962). 

The type III bursts were first thought to be unpolarized. 

However, Komesaroff (1958) reported that some of the type III 

bursts observed (about 50%) were strongly circularly polarized. 

Akabane and Cohen (1961) observed that type III bursts were 

weakly linearly , or highly elliptically polarized. The type 

III bursts observed by Bhonsle and McNarry (1964) also exhibit 
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similar polarization characteristics. In general, for bursts 

showing harmonic structure 9 the fundamental appears to be more 

strongly polarized than the second harmonic with the left­

handed sense of polarization more frequent than the right-handed 

sense of polarization (Komesaroff, 1958) (Fig. 6.2(b)). 

If it is assuoed the sense of polarization depends on the polarity 

of the magnetic field associated with the source of radiation, 

the bursts showing left-handed sense of polarization should be 

associated with the north-polarity of the magnetic field of 

the leading sunspot. Such polarization is identified as the 

ordinary mode in the magneto-ionic theory. Most of the bursts 

have mean values of the degree of polarization about 5% to 

40% (Gopala Rao, 1965). 

Maxwell and Swarup (1958) first observed that 

inverted-U bursts also appear in the type III burst spectrum 

(Fig. 6.1 (c)). The U bursts are characterized by a rapid 

decrease in frequency followed by an increase with a duration 

of a few seconds ( ~ 8 sec.). In g2neral, U bursts are rich 

in harmonics (Haddock, 1958). 

The type III bursts are the most common of the metre­

wavelength bursts and noroally occur during the active 

period of the flare explosion. Studies of the characteristics 

of the type III burst emission event have been carried out 

both experimentally and theoretically by many authors since the 

first discovery of the type III bursts. Here we have outlined 



only a few distinct characteristics of the type III bursts. 

A detailed description of the type III burst and its related U 

burst emission event is given in the reviews by Wild, Smerd 

and Weiss (1963) and by Maxwell (1963) and in the monograph 

by Kundu (1965). 

Wild (1950) first suggested that the type III burst 

emission is the result of excitation of plasma oscillations 
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by disturbances moving outward through the corona at velocities 

of about 0.2c to 0.8c. Ginzburg and Zheleznyakov (1958) 

interpretated the type III burst as the consequence of radio 

emission arising from transformation of Cerenkov plasca waves 

excited by electron streams moving in the isotropic solar 

corona. Smerd, Wild and Sheridan (1962) further developed 

Ginzburg and Zheleznyakov's theory and many characteristics of 

the type III bursts have been accounted for quantitatively. 

All the interpretations of the type III burst 

emission given in the above mentioned references are based 

on the isotropic solar corona model and the appearance of the 

strong circular polarization of the type III bursts and U 

bursts has not been fully explained. Because of the presence 

of the sunspot magnetic field, it is more realistic to assume a 

magnetoactive coronal streamer model for th~ interpretation of 

the radio emissions originating from the lower layer of the 

active solar corona. Indeed, it is difficult to explain the 

polarization characteristics of the type III bursts if the 
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sunspot magnetic field is disregarded. Komesaroff (1958) 

suggested that the polarization of the type III bursts arises 

in the emission process. Fomichev and Chertok (1968) argued 

that the polarization of the harmonic type III bursts is caused 

only by the conditions for escape and propagation of radio 

emissions from the magnetoactive solar coronal active region. 

We bGlieve, however~ that the effect of the sunspot 

magnetic field should be taken into account in the generation 

as uell as the propagation of electromagnetic waves in the 

solar active coronal region. In the present chapter, the 

results of the theoretical investigations into the generation 

and transformation of the Cerenkov plasma waves in a magnetoactive 

plasma in Chapter II and Chapter V are used to examine the 

radio emissions expected from the solar corona with particular 

reference to the polarized type III bursts and the U bursts. 

B. Radiation of Plasma Waves by An Electron Stream Moving in 

The Coronal Streamer 

It is generally accepted that electron streams 

ejected from the flare region during the flare phase of the 

explosion of a solar flare are responsible for the emission 

of type III bursts and U bursts. We assume that such an 

electron stream can travel along the sunspot magnetic field 

line either following a rectilinear trajectory or a helical 

line with normalized translational speed s\, ~ 0.1 to 0.6. 
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The position measurement of the type III.burst emission 

source height leads to the conclusion that the disturbances 

travel outwards along a coronal streamer where the electron 

density is about five to ten times higher than the background 

corona (~Section A of Chapter IV). Therefore, we assume 

the coronal streamer models given by Fig. 4.5(b) as the regions 

where the type III bursts and U bursts are emitted. For 

these coronal streamer models~ while the plasma frequency fp 

ranges from 100 to 50 MHzj the corresponding value of A along 

the strongest sunspot field line increases from unity to 

fifteen. 

In a magnetoactive plasma, when the 21rofrequency is 

comparable to the plasma frequency, the weakly damped plasma 

wave can propagate in two different frequency ranges: 

(1) f = f _ < fH and (2) f = f+ > fu (6.1) 

where f± are the plasma resonance frequencies given by (2.5). 

It is easy to see that when e = O, f = f for A < 1 and 
- p 

f+ = fp for A > 1. For a given wave-normal angle, the phase 

velocity of the weakly damped plasma wave in the frequency 

range (1) of (6.1) decreases with the increase of the value 

of A. This is demonstrated in Fig. 6.3 where 8T = 10-2, 

0 = 5° and A = 0.2, 0.6, 2,4.5,6. Therefore, when A tends 

to be.large, the weakly damped plasma wave occurs only in the 

frequency range (2) of (6.1) and f+ ~ fp for all wave-normal angles. 
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The features of the coherent radiation of weakly 

damped plasma waves in the frequency ranges (6.1) by an 

electron stream with small momentum spread and moving in a 

magnetoactive plasma have been studied in Chapter II. 

Fig. 6.4(a) and 6.4(b) illustrate, the dependence of the in-

tensity of the Cerenkov plasma wave emitted by a single 

electron and the rate of growth I Im .§._ I of the Cerenkov 
. ~ 

plasma wave in the stream-plasma system with respect to the 

wave-normal angle 00 (~!= 0.3~ a~= 0.2j0.3, fH = 50 MHz, 

-4 A= 4.5 and C1 = 10 ). The normalized wave frequency 

; = f /fH of the Cerenkov plasma wave emitted in the 
0 0 

direction 0
0 

= 0 at which the intensity of the Cerenkov 

plasma wave maximizes can be written as 

36
2 

~o = A~ ( 1 + i ) . 
2611 

(6.2) 

C. The Wave Frequency of The Radio Emission Arising From 

Transformation of The Cerenkov Plasma Wave by The Thermal 

Fluctuations in The Solar Corona 

If the generation of coherent Cerenkov plasma waves 

by an electron stream is the cause of the solar radio emission 

observed on the Earth, it is necessary that the plasma waves 

be transformed into electromagnetic waves through combination 
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scattering or incoherent scattering by the thermal fluctuations 

(Chapter V, Section D). 

The wave frequency and the wave vector of the trans-

formed electromagnetic wave are restricted by the equality 

(5.18). As a result of transformation of the Cerenkov plasma 

wave with the frequency (6.2) by the thermal fluctuations, 

the frequencies of the electromagnetic waves in the x-mode 

and the a-mode will be 

~ 

w ~ w + w± w ~ w o' 0 
(6.3) 

i.e. s ~ ~o + s±. ~ ~ s . 
0 

Transformation of the Cerenkov plasma waves into electro-

magnetic waves would hence occur if f ~ fp' fx• where fx 

is given by (5.1). The phase velocity of the coherent 

fluctuation responsible for the transformation process in 

general is proportional to the phase velocity of the Cerenkov 

plasma wave and hence to ~/· In Fig. 6.5, we demonstrate 

the dependence of the combination frequencies of the 

transformed electromagnetic waves, the Cerenkov plasma wave 

frequency and the minimum x-mode wave frequency f x on the 

value of A for S11 = 0.3, ST= 10-2 , 8
0 

~ O and 6 ~ 90°. It 

can be observed that 

(1) The Cerenkov plasma wave can only be transformed 

into the o-mode wave with small frequency change by incoherent 
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scattering process for all values of A. 

(2) The Cerenkov plasma wave can also be transformed 

into the o-mode and x-mode waves at the normalized wave 

-frequency ~ ~ ~o + ~+ through combination scattering. It 

has been shown in Chapter V, (Fig. 5.5), that for a given 0, 

the combination frequencies of the o-mode and x-mode waves 

are almost identical. However, transformation of the Cerenkov 

plasma wave into the x-mode electromagnetic wave at the 
.. 

frequency ~ ~ ~ + ~ occurs only when A becomes greater 
0 -

than 0.5 at least. 

(3) The possibility of transformation of Cerenkov 

plasma waves into electromagnetic waves at the frequency 
.. 

~ ~ ~o + ~- by combination scattering process depends on a,,. 
The phase velocity of the coherent fluctuation at the 

.. 
frequency ~- and taking part in the transformation process 

is similar to that of the Cerenkov plasma wave and hence to 

all" When A is large, the coherent fluctuation at the 

frequency in the region (1) of (6.1) can propagate only with 

very small phase velocity (see Fig. 6.3). Hence, when A 

and alt are greater than certain values, transformation of the 

Cerenkov plasma wave excited by the electron stream into 

-electromagnetic waves at the frequency ~ ~ ~ + ~ may not 
0 -

be possible. In fact, as A is sufficiently large, the 

weakly damped coherent fluctuations occur at the frequency 
_, 

f ~ f + for all directions and combination scattering of the 
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Cerenkov plasma wave will give rise to electromagnetic 

-waves at the frequency ~ ~ ~o + ~+ ~ 2~0 only. From these 

arguments~ we can conclude that 
\ 

(a) When A is not large (less than 4~ say)~ the 

Cerenkov plasma waves excited by mildly relativistic electrons 

can be transformed into electromagnetic waves at the fre-
'~ - -

quencies f ~ 2f , f 9 f + f 
p p p 

(b) When A is large~ f can only be near the first and 

second harmonics of the plasI!la frequency. 

D. Resonance Absorption and Escape of Transformed 

Electromagnetic Radiations From The Active Solar Corona 

As is well Known from the principle of detail 

balancing, each emission process is associated with a damping 

process. It has been shown that the absorption coefficient 

for the electromagnetic radiation in a Y.1axwellian isothermal 

~lasma is always positive~ for any possible emitting process, 

i.e. damping of the electromagnetic ~aves (Smerd~ 1963). 

Therefore~ in addition to the collisio~al da~ping associated 

with the bremsstrahlung~ the electromasuetic wave with the 

freque~cy-w and"wav~ vector k passing through a Maxwellian 
} : ' < 

maenetoactive plasma will be damped by the resonant electrons 

which are capable of extracting energy from the wave. The 

absorptions of this type are the inverse of the Cerenkov and 

cyclotron emission processes and generally known as the 
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resonance absorptions. Without solving the actual dispersion 

equation, Shafranov (1967) showed that the absorption of 

electromagnetic waves in a plasma is associated with the 

anti-hermitian part of the dielectric tensor which is proportional 

to Hence the resonance 

absorptions will occur in peaks around w = s~, s = 0,1,2,3, ••• 

For s = O, the resonance absorption corresponds to the 

Cerenkov emission from the plasma. As regards the problem 

of emergence of electromagnetic radiation from the solar 

corona 9 the Cerenkov absorption is not of great importance. 

Fors= 1,2,3, ••• , the resonance absorption is the inverse 

process of the cyclotron radiation. It has been shown by 

Ginzburg (1964, p.417) that in the solar corona the 

cyclotron resonance absorption must be taken into account 

only for f = sfH, s = 1,2,3. 

A complete theory of cyclotron resonance absorption 

is given by Gershman (1960). In Gershman's theory, the 

electromagnetic wave propagating in the magnetoactive plasma 

-is described by the form exp(ikz - iwt), where z is the path 

length in the direction of propagation (i.e. wave vector 

-direction) and k = k + iq, k being the wave number and q the 

absorption coefficient. The damping £actor due to absorption 

is then written as exp(-qz}. Starting with the general 



dispersion equation which is obtained by s0lving a linearized 

kinetic equation for the electrons and the self-consistent 

field equations simultaneouslyp and investigating the absorp-

tian iµ the frequency region w ~ swH' Gershman obtained the 

expressions for the first three harmonic specific resonance 

absorption coefficients for 8 ~ O, n/2 as 

(q/k) s=l 
2 1 STcos 6/nJ.X 

= ( - )~ ------=----
TI (2X-2-sin26+2n~sin28) 

{[1-(l 7 2 -J 4 - t;5in 8)X nj 

r~ 1 2 s i 2 2 ~ 2 - i:+X( "48in 6-z) + 4x (2cos28-tan Oj nj 

[ 
3 1 2 2 1 3 2 ;i{. 

+ 1- 2K+ 2x (1 - tan 8) + 7/A tan 8Jj , (6 .4) 

(q/k)s=2 ' (6 .5) 

3 3 4 
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27 TI ~ XBTnjsin e 
(q/k) s=3 = 8 ( 8 ) cos8 

1 -(1-3Y) 
[ 2 l B(Y~)exp 2 2 2 ' (6.6) 

where B(Y) 

2 BTnj cos e. 

Y
2
-1 [ 4 . 2 ~ 2 = ( z--2 ) ~n.si.n 8 + X(~~cos 8 + 

y n. J 

sin2e 
l+Y ) 

J 
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r 2 2 2 2 2 2 2 2 J-1 x j_2(1-Y -X+Y Xcos 8)nj-2(1 - X) ~(l+cos 8)Y X+2Y 

j = 1,2. 

1 
For w = 2~~3~9 we must substitute Y = ~' 3 in (6.5) and 

(6.6) respectively. The expression (6.4) is valid only for 

the inner region of the line Y=l while (6.5) and (6.6) for 

both the inner and the outer regions. 

The actual resonance absorption on passing through 

the layer w = s'"H (s = 1,2,3) dependson the effective thickness 

of the layer which increases with the decrease of the wave-

normal angle. According to Ginzburg and Zheleznyakov (1959), 

the effective thickness is given by 

(6. 7) 

where ~ is the characteristic length of the magnetic field 

of the sunspot (in centimetres). Zheleznyakov (1962) defined 

the characteristic length of the magnetic field as LH = H /gradH ~ 
0 0 

H
0 

being the magnetic field intensity. Then, the power loss 

on passing through the resonance absorption layer (in decibels) 

will be 

lj = 8.68qLj, (j = 1,2) . (6 .B) 

For the outer layer of the coronal streamer, we can 
9 10 10-2. assume 1u ~ 10 - 10 cm and f3T = The power losses 
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for the two characteristic waves at the frequency f = 100 ~1Hz on 

passing through the first three harmonic absorption layers 

are illustrated in Fig. 6,6 for various wave-normal angles. 

The first harmonic resonance absorption for the extraordinary 

wave (z-mode and x-mode) is not shown since the z-mode wave 

cannot escape through the layer X = 1 - Y in the solar corona 

even if it can survive after passing through the level Y = 1. 

The x-mode wave able to escape from the solar corona always 

propagates in the layer above the level Y = 1. From these 

diagrams, it can be seen that the power loss for the x-mode 

wave is at least two orders of magnitude higher than that 

for the o-mode wave. Thus, we can conclude that for wave-

normal angles not too close to zero and for typical active 

solar corona conditions, the first two harmonic resonance 

absorption levels are opaque to both the x-mode and the 

a-mode waves while the third harmonic resonance absorption 

layer is partially transparent to the o-mode wave but remains 

2 2 opaque to the x-mode wave except when X = f /f << 1 and 
p 

grad H
0 

is very large at the layer w = 3~. 

We assume that the electron stream travels along 

the strongest spot field line which extends to the outer layer 

of the solar corona (p ~ 1.5, say) with S\\ ~ 0.3 and generates 

coherent Cerenkov plasma waves. The sunspot magnetic field 

intensity not only decreases with the increase of the height 

above the photosphere but also decreases in the nor~al 
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direction from the strongest field line. Thus, any electro-

magnetic radiation leaving the radiation source will encounter 

regions where the wave frequency is equal to the harmonic 

of the local gyrofrequency i.e. s = 1,2 9 3, ••• (cf. Fig. 16 of 

Fung and Yip, 1966). 

The possibility of observing solar radio emissions 

resulting from the transformation of Cerenkov plasma waves 

requires not only the possibility of transformation as 

discussed in Section C but also that the transformed wave 

frequency be at least greater than the second harmonic of the 

gyrofrequency at the source region. Referring to Fig. 6.5~ 
the 

we note firstly that observation of o-mode electromagnetic 

radiation at the frequency ~ ~ ~ arising from incoherent 
0 

scattering of the Cerenkov plasma waves is impossible unless 

the source is situated in a region where A > 4. Secondly, 

if A < 1 in the source region, any transformed electromagnetic 

radiation will be unable to escape from the solar corona. 

Thirdly only part of the transformed o-mode electromagnetic 

-radiation at the frequencies ~ ~ ~o + ~+ generated in the 

source medium with A lying between 1 and 2 will be able to 

escape from the solar corona. When A > 3 in the source 

region~ the transformed o-mode and x-mode waves at the 

frequency ~ ~ ~ + ~+ can arrive at the Earth without being 
0 -

heavily attenuated since the resonance absorption of 

electromagnetic radiation at the layers w ~ swH with s > 4 



156. 

is insignificant. 

Now, if we assume that at a certain wave-normal angle e, 

the efficiencies of transformation of Cerenkov plasma waves 

excited by an electron stream into electromagnetic waves at 

- -the frequencies fp, fp + f_ and fp + f+ are similar, then it 

can be predicted that 

(a) An electron stream may produce a pair of radio 

- -bursts with instantaneous frequency separation about f+ - f _ 

when it passes through the layers where 1 < A < 4 (We shall 

refer this region as region I later). 

(b) A pair of radio bursts of similar intensities ahd 

with frequency ratio 1:2 generated by the electron stream 

moving in the layer where A~ 4 (region II) could be seen 

on the Earth. 

The value of A along the strongest sunspot magnetic 

field line increases with the height above the sunspot group, 

therefore, the electromagnetic radiation arising from trans-

formation of the Cerenkov plasma waves through scattering 

processes will not be observed on the Earth until the 

electron stream arrives at the layers where A~ 1. This 

restricts the highest possible observed frequency of the type 

III and U bursts. From the model given by Fig. 4.S(b), we 

can find that the upper cut-off frequency of type III bursts 

would not exceed 700 }ffiz. This predicted upper cut-off 

frequency of type III burst agrees with the observational data 



,fairly well (Malville~ 1961). However, if explosion of the 

solar flare takes place in the transitional region between 

the chromosphere and the base of the solar corona (p $ 1.04) 

where the electron density is much higher than that predicted 

by (4.l)i the electromagnetic radiation at the frequency 

- 2£ (about liOOO MHz to 2,000 MHz) can leave the solar 
p 

corona and the type Ill bursts may occasionally be observed 

in the centimetre wavelength region (Hughes and Harkness 9 

1963). Moreover, the absence of distinct lower cut-off 

frequency of the type III bursts can also be realized. 

E. Efficiency of Transformation of Cerenkov Plasma Waves 

into Electromagnetic Waves by Thermal Fluctuations 

157. 

In order to predict the observed spectral characteristics 

of the plasma radiation, we need to investigate the efficiencies 

of transformation of coherent Cerenkov plasma waves into 

electromagnetic waves at different frequencies and in different 

directions. 

In the coronal streamer~ at the height from about 0.5 to 

-2 1 solar radius above the photosphere, we can take BT = 10 , 

linear size of the scattering volume L c:' 109 - 1010 cm and 

fH = 50 ~lliz - 5 MHz. The coefficients of transformation of 

the Cerenkov plasm~ waves excited by electron streams moving 

with S"c: 0.3 into electromagnetic waves by means of combination 

and incoherent scatterings (expressions (5.41) and (5.46))~ are 
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shown as ___ functions of the transformed waves 1 wave-normal angle 

e in Fig. 6.7. The quantity A is assumed to be 4.5 (i.e. 

region II). The small peaks of the coefficients have been 

smoothed out by taking the mean values of njee) (the dotted 

curves and the dashed~dotted curves). 

It is found that the intensity of the transformed waves 

in the x-mode and the o-mode is distributed !With_ .axial _symmetry 

about the scattering centre. For 6 = 0, from (5.41) and 

and (5.46), we can see -that the polar diagrams of the transformed 

waves at the frequencies - f and -2f are completely symmetrical p p 

about the z-axis (i.e. the sunspot magnetic field line). 

For small values of e, the intensity of the o-mode transformed 

wave at frequency ~ 2f will be greatest within a solid cone 
p 

with axis almost transverse to the static magnetic field and 

with a half apex angle - 30°. However, the corresponding 

x-mode transformed wave intensity maximizes in the direction 

e N 60° and 125°. On the other hand 9 most of the energy of 

the o-mode transformed wave of frequency 

the directionsaround e ~ 15°, 170°. 

f is emitted in 
p 

For a given wave-normal angle, the power of the 

combination radiation 

(6.9) 

where P (8 ) is the power of the Cerenkov plasma wave excited c 0 
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Fig.6.7{b) Variation of the coefficient of transformation of 
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by the electron stream in the direction e • 
0 
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Taking 

e = O,A = 4.5, fH =50 MHz, cos~ = 1 and '\\ = 0. 1, 0. 3, 0.5, the 
0 

dependence of the quantity p2f /Pc on the wave-normal angle e 
p 

is present in Fig. 6.8(a). As the speed of the electron 

translational motion increases, the combination radiation 

tends to maximize in the back.ward direction with respect to the 

guiding centre motion. The a-mode electromagnetic radiation 

with frequency slightly higher than the plasma frequency and 

emitted in the direction towards the Sun will be reflected 

immediately on leaving the scattering vol~me. 

If we assume that after reflection, such an o-mode 

wave, initially emitted in the direction n-8, will follow a 

phase path similar to that of o-mode wave emitted in the 

direction e (8 2 7T/2), then we have 

Pf (e) a Pc(8
0
)[ n(7T-8) + n(8)J , 

p 
(6.10) 

where n(7r-8), n(8) are given by (5.46). Corresponding to 

Fig. 6.8(a), we show the variations of the quantities P2f /Pc 
p 

and Pf /Pc as - functionsof 8 (8 ::_ 7T/2) in Fig. 6.8(b). In 
p 

any direction 8 (8 2 7T/2), radio emissions with frequency 

ratio ,...,. 1: 2 and intensity ratio 

= nee> + n<w-8) 
n1 (8) + n2 (8) (6 .11) 

will emerge from the scattering volume simultaneously. From 



Fig. 6.8 9 we also see that 

0 predominates for a < 35 • 

for au~ 0.2,the power pf 
p 

For other directions, P2f 
p 

Moreover 9 the reflection of the backward emission at the 

frequency - 2f will lead to the increase of the number of 
p 

the observed second harmonic components. The type III 

bursts and U bursts might hence be expected to have strong 

second harmonic co~ponents more frequently. 

About 60% of the type III bursts and some of the U 

bursts observed show harmonic structure. The emission of 
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harmonic pairs of the type III bursts or U bursts is attributed 

to the transformation of the Cerenkov plasma waves by incoherent 

and coherent thermal fluctuations. Since the pdlar diagrams 

of the electromagnetic radiations arising from incoherent 

scattering and combination scattering of the Cerenkov plasma 

waves differ from each other, the fundamental and the second 

harmonic components will be of comparable intensity on leaving 

the source region only in the direction for which R is close 

to unity. If we neglect the effect of the differential re-

fraction of the ray paths of waves at different frequencies 

in the solar corona, electromagnetic radiations emitted in this 

direction would arrive at the Earth concurrently and appear 

as a harmonic pair of radio bursts with similar intensities in 

the dynamic spectrum. However, transformed electromagnetic 

radiation at these frequencies emitted in the direction for 



which R differs from unity greatly, would not form a harmonic 

pair of radio bursts in the dynamic spectrum, since in this 
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case the intensities of the two components will be substantially 

different. 

Assuming the sunspot magnetic field line be quasi-radial, 

we can estimate the dependence of the probability of observing 

harmonic pairs of type III (or U) bursts on the source 

latitude. Let us define the quantity H as 

II = (1 - R) / (1 + R) (6.12) 

where R is given by (6.11). H is the measure of the intensity 

ratio of the fundamental to the second harmonic emissions. 

When H < 0 9 the fundamental component predominates while H > O, 

the intensity of the second harmonic emission is greater. 

That is harmonic pairs of transformed electromagnetic radiations 

will be emitted in those directions for which H = O. According 

to Fig. 6.8, we plot H as a function of emission wave-normal 

angle e in Fig. 6.9(c). Under the present assumptions, the 

wave-normal angle 0 in Fig. 6.9(c) can be regarded as the 

source latitude. Thus, it is expected that most of the 

harmonic pairs of the type III (or U)bursts will originate from 

sources situated at b.ti tudes from 40° to 75°. Assuming 

the coronal streamer electron density models Fig. 4.S(b), we 

show the estimated disk positions of the sources of the harmonic 
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pairs of the type III bursts at the frequency 60 MHz (i.e. 

fp = 60 MHz) in Fig. 6.9(a). It is expected that the 

fundamental harmonic components will be found in the position 

closer to the central part of the disk while the second 

harmonic in the positions near or above the solar limb. 

Comparing Fig. 6.9(a)wit~ Fi~. 6.9(b)p we find that the disk 

distribution of harmonic pairs of the type III bursts predicted 

by the present theory agrees well with the observational data 

obtained by Wild et al. (1959). In fact, from the polar 

diagrams of the electromagnetic radiations arising from 

scattering of the Cerenkov plasma wave (Fig. 6.7), we can realize 

that for a limb source the electromagnetic radiation at the 

frequency~ 2fp will dominate when all~ 0.2. 

harmonic pairs will come from a limb source. 

Therefore no 

We should remark 

that Fig. 6.9(a) and Fig. 6.9(~) are only rough theoretical 

estimations of the disk distribution of the harmonic pairs of 

the type III bursts since the differential refraction of the 

ray paths of the first and second harmonics, the reflection of 

the backward emission of the second harmonic and the actual 

curvature of the sunspot magnetic field line have been neglected. 

When reflection of the backward second harmonic is 

taken into account» it is possible for the second harmonic 

backward emission to follow a ray path similar to that of the 

fundamental and if the two components are initially similar in 

intensity, they can form a harmonic pair in the dynamic spectrum.. 
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TO OBSERVER 
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2Ro 
Fip;.6. 9(a.). Theoretical disk posffa-on-:<1of-type III burst 

sources; (a)fundamental harmonic (60 MHz),Df; 
(b)harmonic pair,Dp; 
( c) second harmonic, D.s • 

The solid and dashed levels are the 60 MFz plasma.level 
of the coronal streamers with electron density distribu­
tions given by lOxB;A .. model and 5xB.A. model respectively. 
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In this case 9 it is expected the second harmonic would appear 

a few seconds later than the appearance of the fundamental 

harmonic. The observational data do indicate that in some of 

the harmonic pairs, the second harmonic is delayed with 

respect to the fundamental by 1.5 to 5 seconds (Kundus 1965). 

However 9 because the source of type III bursts is in the coronal 

streamer where the electron density at least a few times 

higher than the background corona~ it is difficult to predict 

the reflection height as well as the ray trajectory of the 

second harmonic backward emission. 

F. Polarization of The Electromagnetic Radiation Arising 

From Transformation of Cerenkov Plasma Waves by Thermal 

Fluctuations of Electron Density 

Having studied the polar diagrams of the transformed 

electromagnetic radiations at the first and the second 

harmonics of the plasma frequency,we can predict the polarization 

characteristics of the polarized type III bursts and U bursts. 

For wave-normal angles not close to zero or ~/2, the electro-

magnetic waves in the x-mode and o-mode are elliptically 

polarized. The axial ratio of the polarization ellipse 

2 -1 depends on the quantity ~(~ -A) which~ for a given frequency 9 

decreases to very small values with the increasing distance 

from the Sun (Piddington and Minnett, 1951). The polarization 

of the electromagnetic radiation emitted from a source in the 



solar corona will change continuously on propagating outward 

* through the corona until the polarization limiting region is 

reached, where the polarization of the radiation is fixed. 

Thus, from the discussion in Section C(a), the fundamental 

harmonic component of type III bursts (or U bursts) is 

strongly polarized in the left-handed sense. On the other 

hand, the transformed electromagnetic radiations with 

frequency - 2f and in the o-mode and the x-mode can be 
p 
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emitted in a given direction. Then, the degree of polarization 

of the second harmonic component of type III (or U) bursts will 

be 

Pzf (6) = 
p 

n1 Ce) - n2 ce> 
n1Ce) + n2 Ce) (6.13) 

We adopt the convention that for 8 ~ ~/2, when p
2

f is negative 
p 

the second harmonic is polarized in the left-handed sense 

with respect to the direction of the magnetic field (i.e. the 

sense of polarization of the o-mode wave). Taking the wave-

normal angle of the Cerenkov plasma wave 8
0 

= 0, Su= 0.1,0.3, 

* The polarization limiting region is the region beyond which 

the magneto-ionic parameters (X,Y) have very small values that 

the state of polarization is no longer affected by the 

change in the direction of the magnetic field. 
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0.5 and cos..P = 1, we show the variation of the degree of 

polarization of the second harmonic component as a function 

of wave-normal angle 0 in Fig. 6.10. 

From Fig. 6.10 and Fig. 6.7, we find that the majority 

of the second harmonic component of type III bursts ~:rill be 

left-handed polarized with a low degree of polarization. 

Because the main power of the second harmonic component is 

emitted at large wave-normal angles, it is possible that some 

electromagnetic radiation at the frequency f ~ 2f p passes through 

the polarization limiting region whe~e the bipolar sunspot 
direc.tion 

field is opposite to that in the source region. Then, re-

£erring to the leading sunspot magnetic field polarity, the 

sense of polarization of the second harmonic component reverses 

on passing through the polarization limiting region (see Fig. 

6.12) and a fraction of the type III bursts will be right-

handed polarized (Komesaroff, 1958; Bhonsle and McNarry, 

1964). From Fig. 6.10, for 0 not close to n/2, the degree of 

polarization of the second harmonic component does not exceed 

60% 

Since the electron density and the magnetic field in-

tensity in the solar corona decreases with the distance from 

the Sun~ electromagnetic waves generated in the active solar 

corona will propagate outward through the corona satisfying 

the quasi-longitudinal propagation condition in all directions 

except at the point where e ~ 7r/2. For a bipolar sunspot 

magnetic field configuration, the electromagnetic 
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wave, after passing through the quasi-longitudinal propagation 

region 9 would subsequently traverse through the quasi-transverse 

propagation region where the interaction between normal waves 

occurs (cf. Fig. 6.12). From the discussion in Section C 

of Chapter V, if a left-handed polarized electromagnetic 

radiation penetrates into the QT region, an electromagnetic 

radiation consisting of a circularly polarized component and 

a linearly polarized component, whose degrees of polarization 

are given by (5.10) and (5.11) respectively, will leave the 

solar corona. 

9 
Taking fp = 30 MHz and LH = 5xl0 cm, fH = 1 MHz and 

2.5 MHz in the QT region, the dependence of the degree of 

linear polarization and degree of circular polarization of 

the emerging radiation on wave frequency f are shown in 

Fig. 6.11 where ft is the transition frequency characterizing 

the QT region. According to Cohen (1960), a left-handed 

circularly polarized radiation with the frequency f > f 
t 

will maintain its original sense of polarization on passing 

through the QT region. On the other hand, if f < ft, only 

weak coupling occurs in QT region and the sense of polarization 

will change since the direction of the magnetic field with 

respect to the direction of wave propagation has reversed. 

Now if the left-handed and right-handed polarized electromagnetic 

raidations with intensities proportional to n2Pc and n1Pb 
respectively penetrate into the QT region, the degree of 
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circular polarization of the electromagnetic radiation 

emerging from the interaction region is given by 

- Pzf 
p 

(6.14) 

where Pzf is given by (6.13). For p2f = -50% (left-handed 
p p 

polarized) 9 the observed degree of polarization of the second 

harmonic component is plotted against the wnve frequency in 
~ 

Fig. 6.ll(b) (dashed curves). Therefore, on passing through 
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the QT region, the degree of polarization of the second harmonic 

component would be reduced and the sense of polarization with 

respect to the direction of the magnetic field in the source 

region will not change if f > ft • 

The second harmonic component emitted at 8 ~ n/2 is 

linearly polarized. Assuming a quasi-radial sunspot magnetic 

field line~ radiation emitted at 8 ~ n/2 will be observed to 

originate from a limb source in which case it is likely that 

it will pass through the polarization limiting region at 

right angles to the sunspot magnetic field. The characteristic 

polarization of such radiation is linear. However, owing to 

the depolarization through Faraday rotation~ the observed 

second harmonic component originating from a limb source would 

be observed as weakly polarized or even unpolarized radio 

signal (Fokker, 1964). The linearly polarized component 

arising from interaction in QT region will also be depolarized 

in this manner. 
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In concludi"9this section, we summarize the discussion 

in the following points: 

(a) Electromagnetic radiation strongly polarized in 

the left-hand sense and at the fundamental plasma frequency 

is expected to be emitted from a central source. 

(b) Most of the weakly polarized or unpolarized 

electromagnetic radiation at the second harmonic plasma 

frequency will be observed to originate from sources lying at 

high latitudes. 

(c) Whenever both the fundamental and second harmonic 

components are observed, the fundamental harmonic component 

will be more strongly polarized than the second harmonic 

component. 

{d) The sense of polarization can be left-handed or 

right-handed. 

These points are illustrated in the schematic drawing 

in Fig. 6 .• 12 where the size of the coronal streamer is based 

on the model suggested by Morimoto (1963). 

We have discussed the polarization characteristics of 

the electromagnetic radiations arising from transf orraation of th• 

Cerenkov plasma wave emitted in the direction 8 = 0. From 
0 

Fig 1 -·6.7, it is not difficult to see that for small e (but 
0 

not equal to zero), the polarization characteristics of the 

transformed electromagnetic radiation remain·' similar to 

those for 6 = O. 
0 

These polarization properties of the 
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transformed radiations, in general 9 agree well with the observed 

polarization characteristics of the type III and U bursts 

(Komesaroff 9 1958; Bhonsle and McNarry, 1964~ Gopala Rao, 

1965; Fomichev and Chertok, 1968). 

G. Conclusion 

The solar type III burst and U burst emissions have been 

recognized as the consequence of the excitation of longitudinal 

plasma waves by electron steams ruo~ing in the solar corona 

(Wild, 1950; Ginzburg and Zheleznyakov, 1958; Wild et al., 

1959; De Jager 9 1960; Smerd et al.s 1962; etc.). A 

comprehensive review on the theories of type III and U burst 

emissions based on the isotropic corona model is given by 

Kundu (1965). In the present chapter, we have explained some 

of the features of the type III and U bursts, which had not 

been considered in detail previously~ taking into account 

the effect of the coronal magnetic field. 

So far, interpretations of the type III burst emission 

have been based on the linear theory of stream-plasma 

instability which is valid only for small perturbations of 

the distribution function of the stream electrons. But the 

strong resonance interaction between the growing plasma wave 

and the stream electrons leads to the formation of a plateau on 

the distribution function for the stream-plasma system and 

subsequent coherent generation of Cerenkov plasma waves will no 



177. 

longer be possible (see Section D of Chapter III). If the 

Cerenkov plasma waves emitted by an individual stream electron 

remain in the stream-plasma system for an appreciable time 

interval and grow continuously, then the energy of the stream 

will be depleted quickly and the electron stream will be unable 

to escape beyond the base of the solar corona. 

Thus, if the interpretation of the type III burst 

emission on the basis of linear kinetic theory is valid, the 

low.cut-off frequency (i.e. very large source height) and 

the duration of the type III and type U bursts imply that there 

is a process for stabilizing the electron stream faster than 

the plateau formation. At present, such a process is not 

clear. Kaplan. and Tsytovich (1968) showed that non-linear 

transfer of the plasma wave across the spectrum with a 

characteristic time much shorter than the plateau formation 

time is a possible mechanism for cutting off the continuous 

resonance interaction between the growing plasma wave and the 

stream electrons. Accordtng to this reference, in the case of 

excitation of plasma wavesby electron streams, the plateau 

formation time Tp is of the order of l/crwp while the characteristic 

time for the non-linear transfer across the spectrum Tn will be 

i 
given by vT/crwpv' where v is the velocity of the stream 

electron. Assuming that these characteristic times are also 

applicable to the case of excitation of plasma waves by 

electron streams in a magnetoactive plasma and 



178. 

-2 -s fp :::: 100 MHz, 1311 :::: 0.2, 13T :::: 10 , we find Tn :::: 2xl0 sec and 

Thus, the plasma wave emitted by the 

individual electrons will grow at the linear growth rate in 

the stream-plasma system only within the time interval of the 

order of 10-S sec during the onset of the excitation process. 

Alternatively, it has been proposed that type III 
I 

burst emission is the consequence of the enhanced bremsstrahlung 

in the medium comprising the thermal ambient plasma and a 

system of energetic electrons (Bekefi» 1966). However, a 

detailed and quantitative study of the type III burst 

emission based on this proposal has not been attempted and 

the interpretation of the type III burst emission on the 

basis of linear theory of radiative instability in the 

stream-plasma system provides a satisfactory approximation. 



CHAPTER VII 

THE ORIGIN OF DRIFT PAIR BURST AND HOOK 

BURST EMISSIONS FROM THE SOLAR CORONA 

A. Introduction 

The low frequency drift pair emission is a rarely 

occurring phenomenon which since its first discovery by 

Roberts (1958) 5 was not reported again for about ten years. 

Maxwell pointed out that the drift pairs were only rarely 

seen on the Harvard spectral record (Maxwell 9 1963). 

However, Ellis and Mcculloch (1967) and Ellis (1969) recently 

reported that a large number of the drift pairs had been 

observed during the period 1966 to 1967. In addition to the 

drift pairs, hook bursts associated with drift pairs have 

also been discovered in spectral records in the frequency 

range from 28 MHz to 40 MHz (Ellis, 1969) (Fig. 7.1 (C)). 

The drift pair is characterized by pair of traces 

starting almost at the same frequency but separated by a time 

about 1.5 to 2 sec in the dynamic spectrum (Fig. 7.l(A) and 
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7.1 (B)). Roberts (1958) and Zheleznyakov (1965) interpreted 

the drift pair as the consequence of the excitation of plasma 

waves by some distrubances travelling in the isotropic regular 

solar corona. The second trace is assumed to be the echo 

of the first 5 reflected at a lower level in the solar corona. 

Kundu (1965) and Zheleznyakov (1965) suggested that the 
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particle streamsp under favourable circumstance, excite 

plasma oscillations responsible for the drift pairs. 
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Although Roberts' theory qualitatively can explain 

several features of the burstsp quantitative agreement 

requires certain assumptions which so far have not been 

justified theoretically. At the same time, certain important 

spectral characteristics, particularly those pointed out by 

Ellis (1969), remain unexplained. 

At present~ there is no definite optical observational 

data of sunspot magnetic field intensity at the coronal 

heightp particularly at the altitude about one solar radius 

above the photosphere. However, various theories of radio 

bursts emitted from the active solar corona suggest that 

there would be sunspot magnetic field of intensity about a 

few gauss at the altitude one solar radius above the sunspot 

group (see Fig. 4.2). Then, if one assumes the regular 

corona, the gyrofrequency at this altitude will be comparable 

with the plas~a frequency and the effect of the magnetic 

field on the propagation and generation of electromagnetic 

waves can no longer be neglected. In fact, as we shall see 

later, some characteristics of the drift pair burst emission 

event cannot be well explained without the magnetic field 

taken into account. The hook bursts, which have spectral 

characteristics similar to those of the drift pairs and will 

probably be generated by the same process, indicate that the 
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exciting disturbances are guided by a bipolar sunspot magnetic 

field line of force. Therefore, in the present charter, we 

shall consider the drift pair as the consequence of radiation 

of plasma waves by electron streams in the magnetoactive 

coronal plasma. 

As we have seen in Chapter VI, the spectral characteristics 

of the plasma radiation depend on the nature of the ambient 

plasma as well as the character of the radiating electron 

stream. If both the type III burst emission and the drift 

pair burst emission are considered as the consequence of the 

excitation of p1asma waves by electron streams in the solar 

corona, then the distinct spectral appearances of these two 

burst emissions reveal that the type III bursts and drift 

pair bursts are emitted by electron streams of different 

characters and under different corona conditions. Moreover, 

the fact that while type III bursts are the most common metre 

wavelength burst emission 9 that the drift pair burst emission 

is only a rarely occurring event clearly indicates that the 

electron streams responsible for these two emissions are of 

different origins. Therefore» in this chapter, we assume an 

active solar corona model and other parameters appropriate to 

the emission of the drift pair burst and hook burst in the 

solar corona to study the characteristics of the plasma 

radiation and hence discuss the possible origin of the 

energetic electrons responsible for the drift pair burst emission. 
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B. Observation Data (Roberts, 1958; Ellis, 1969) 

(i) Frequency Range - Drift pairs and Hook bursts 

are low frequency events; most frequently appearing in the 

frequency range from 40 MHz extending to 25 MHz (Fig. 7.2(a)). 

In general 9 the frequency range of a single burst is only a 

few MHz to ten MHz. But some bursts can extend from 30 MHz 

to 60 MHz (Fig. 7.1 (6)). 

(ii) Frequency Separation and Time Delay - The 

bursts are mostly double; the first element is followed about 

1.5 to 2 sec later by a similar second element. The 

starting and terminating frequencies of the two elements are 

mostly the same (Fig. 7.2(b)). In some examples in which 

the beginning and the end of the traces are observed, the 

second trace was found to start and to terminate at slightly 

higher frequencies than the first trace (Fig. 7.l(B),b). 

In a few cases, the two elements start (or finish) at a 

similar time but at different frequenciess the starting 

(or finishing) frequency separation being 2 MHz to 4 MHz. 

(iii) Frequency Drift Rate - The frequency-time slope 

of the drift pair observed by Roberts in the frequency range 

50 MHz to 40 MHz was about 2 MHz per sec to 8 MHz per sec 

and was positive. The majority of the drift pairs observed 

by Ellis (1969} had a negative frequency drift at a low rate, 

about 1 MHz to 2 ~1Hz per sec. The drift rate of the 

associated type III burst found in the drift pairs spectral 
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record is much higher than that of the drift pair (about 

10 MHz/sec) (Fig. 7.2(t)). 

(iv) Bandwidth - The instantaneous frequency bandwidth 

is only a fraction of a MHz and narrower t:•.!:'!1 that of the type 

III burst. The histogram of the bandwidth of the drift 

pairs measured by Ellis shows that a large majority of drift 

pairs have bandwidths about 0. 3 to 0. 6 MHz (Fig. 7. 2 fd)) • 

(v) Burst Duration - The duration of each element 

can extend from a few seconds to ten seconds. 

(vi) Intensity - The measured flux densities in one 

plane of polarization range from sxio-21 W m-2Hz-l up to 

-20 -2 -1 sxJO W m Hz • The two elements of a pair are similar in 

intensity. 

- (vii) Polarization - The drift pairs were found to be 

not significantly polarized. 

(viii) Association with other types of Bursts - There is 

a tendency for the drift pairs to occur in noise storms 

which last for hours or days. In some cases, the drift 

pair occurs in the type III burst. The intensity of the 

associated type III burst is lower and diffuse. Recent ob-

servation showed that on some occasions split pair bursts 

occur during the period of drift pair emission activity. 

Besides these~ no other ty?e nctivit~eshnve been"found 

related to drift pairs. 



_J 

"'<t w > 

40 

~ ffi 75 
u .... 
1'. ~ 
0 ~so 
Cl: u 
w :i; 
m 
:i; -
::>Cl: 25 
zW 

Q. 

40 

50 

50 

FREQUENCY (Mc/s) 

60 

(a) 

(b) 

60 

FREQUENCY (Mc/s) 

70 BO 

70 60 

186. 

60 

(a) 

40 

;/ 

/ 
20 

40 

20 

0 -2 0 2 4 6 

FREQUENCY DIFFERENCE (Mc/sl 

I 
Fig'.7•2(b}Histograms showing the difference in (a) the starting 
frequency, and (b) the finishing frequency of the two e-lemen~s of 

the observed reverse pairs. (Rob11.vts} 1958)1 

Fig-7·2Cll)To illustrate the range of frequencies covered by the 
reverse pairs. (a) Each reverse pair is represented by a pair of 
contiguous lines which show the frequency extent of the two 
elements of the burst. (b) Histogram showing the prevalence 

of bursts at different frequencies. 
( Robevt.s, 195S) _____________ _ 



.J 
< > a: 

"' ~ 
~ 
u 
"' U1 

a: 
"' .. 
~ 
:i 
- 1 
a: 
"' .. 
U1 

"' U1 
< 10 u 
"-
0 
a: 
w 
Ill 
:i 5 
:J 
z 

-o 

5 

0 

~ 

... 

-

.... 

-
.... 

.... 

40-45 Mc/s 

-~ 

. 

I I 
5 10 

-
45-55 Mc/s 

~ 

I 
I 

5 10 

55-70 Mc/s 

I 

I I 
5 10 

RA.TE OF INCREASE OF FREQUENCY 

/ ' (Mc/s PER SEC) 

Fig.7·2C-The rate of frequency drift in the reverse pairs. 
--· (Roberts, 1958) 

30 

25 

20 
.:!! 
$ 

-" 15 
0 
0 
z 10 

(b) 
(d) 

(c) 

(f) 

Fig.J:~ C Distribution of 
frequency-time slopes for 

(a) type II bursts, 

(b) split pair bursts, 

(c) drift pair bursts, 

(d) fast drift storm bursts, 

(e) type III bursts, and 
5 (f) chains of split pair burbts. _____ _. ___ ~ --- - -- - -

0 I I I I I I r' Ill I I I I I (Ell i. s, l '3 ~ C)) 
0 01 0·1 l·O 10 

Frequency- time slope (MHzscc-1} 
---~ )--~--

/~ 

20 (a) (b) 

~ 15 

j 
0 .g 10 

j / - o o 2 o 4 0·6 

/ ,' _ Bandwidth (MHz) __ . _ __ _ ________ _ 

•
1 

; Fig. ]·2 d. -Bandwidth distribution of {a) fast drift. storm bmsts and {b) duft pairs. _ 
I - - ~ 

08 

(ELLi.s, 1969) I 

_. / ...... 
CD 
CJ'\ 
~ . 



187. 

10 

N 
:r: 
~,c) 1 )> 

\ 

> u z 
w 
:::> 
<3 
w 
0:: + 
lL 

-· 10 10 

, -~-------,.--__._ __ __._ __ ___......__ _ ___., o·l 
1·0 1.4 t8 2.2 

f' 

Fi.g-.7.3 - Variation of the nlasma f:requenc;v fn (using- the 

Baumbach-Allen mod81),p.;vrofreouency fH and A along the 

strongest field line of a binolar snot groun specified by 

H = ?OOO G. The magnetic field intensity in the solar 
s 

corona (in term of gyrofrequenc;v) inferred from theories 

of tyne II and tyne III radio bursts: 

!ill Mo-rimoto (1q63); " Hatanaka (1%6); + Tidrnan et al. (1966). 

----~---- ----- ------·-------·--------------·-·---~ --- --------------------------



188. 

The hook bursts have -:', bandwidths and :" drift rates similar 

to those of the drift pairs. The leading trace drifts 

downward to the turning point frequency and then drifts upward 

iDllllediately to the starting frequency again. Thus the spectral 

appearance of the hook burst is analogous to the VLF hook 

occurring in the Earth's magnetosphere (Fig. 7.1 (C)). 

C. Model of Tbe Solar Corona 

The drift pair burst consists of a pair of smooth 

continuous traces. If the second trace is considered as the 

echo of the radio emission from the corona, the solar corona 

must be in a fairly stationary and regular condition. 

Hence~ we assume during the period of drift pair burst emission 

the electron density distribution along the solar corona is 

given by Baumbach-Allen5 model (4 .1). We further assume that 

two narrow magnetic flux tubes emerging from the leading and 

the following sunspots connect together forming an arch in the 

solar corona. The central field line of the magnetic flux 

tube is assumed to be of greatest intensity. With these 

assumptions, we propose a model of the active solar corona 

during the drift pair burst emission period as shown in Fig. 7.3 

where the electron density and the intensity of the magnetic 

field along the strongest bipolar field line (in terms of· 

plasma frequency and gyrofrequency respectively) are plotted 

against the radial distance from the centre of the Sun. 
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Similarly, a unipolar sunspot magnetic field configuration 

given by Fig. 4.5(a) is also assumed. From these models, 

the quantity A never exceeds four for p 2_ 2.0. 

D. Radiation of Plasma Waves by an Electron Stream moving in 

the Solar Corona 

Now we assume an electron stream with small dispersion 

in momentum components moves along the strongest sunspot 

magnetic field line and generates coherent Cerenkov pl~·ma waves. 

The kinetic energy of the radiating electron is taken to be of 

the order of ten keV. During the initial stage of the ex-

citation ~rocess, the angular power spectrum of the weakly 

damped Cerenkov plasma waves emitted by a single electron 

and the rate of growth I Im ~ I for the Cerenkov plasma 

wave in the stream-plasma system are given by (2.13) and (2.28) 

respectively and illustrated as .:· functions of the wave-normal 

angle for~> 1 and~< 1 in Fig. 7.4(a),(b), where 6..J.. = O, 0.2, 

-2 -4 611 = 0.1, 0.2~ 0.3, A = 2, 6T = 10 , cr = 10 and fH = 10 MHz. 

Taking the interaction time t = 2.lxl0-5 sec* and cr = 10-5 , we 

show the variation of the power gain (in decibels) with the 

normalized wave frequency in Fig. 7.4{c) for the weakly damped 

* . We assume that the interaction time is approximately equal to 

the characteristic time for non-linear transfer of the plasma 

wave across the spectrum (see Section G (10)). 
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Cerenkov plasma waves. The intensity of the coherent 

Cerenkov plasma wave is beamed in the direction along the 

magnetic field line and at the frequency near the plasma 

frequency no matter whether A< 1 or A> 1 (see Fig. 2.6 also). 

The broadness of the cone of emission and the frequency 

bandwidth of the coherent Cerenkov plasma wave are inversely 

proportional to the electron pitch angle. 

E. Transformation of Plasma Waves in A Magnetoactive Plasma 

According to the discussion given in Section B of 

Chapter V9 it is not difficult to see that the radio bursts 

consisting of pair of traces,starting at similar frequencies 

but separated by a time of the order of a second,cannot be 

due to the transformation of plasma waves by wave-mode 

coupling. Only the transformation of plasma waves by scatter-

ing on small-scale thermal fluctuations in the solar corona 

should be considered. 

The Cerenkov plasma wave can be transformed into 

-electromagnetic waves at the frequencies f ~ fp an~ f ~ f 0 + f± 

-(where f 0 is the Cerenkov plasma wave frequency and f ± are the 

plasma resonance frequencies) by means of incoherent scattering 

and combination scattering respectively. However, if the 

solar corona models Fig. 7.3 and Fig. 4.5(a) (for p .s_ 2.0) are 

assumed as the regions where the drift pair burst emissions 

occur 9 the harmonic resonance absorptions at the layers 
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f = sf H (s = 1,2,3) prevent the transformed electromagnetic 

radiation at the frequency f ~ f escaping from the solar 
p 

corona (cf. Chapter VI(D) and Fig. 6.5). Hence we confine 

ourselves to the consideration of transformation of Cerenkov 

plasma waves by combination scattering only. 

The normalized combination frequency arising from 

scattering of the Cerenkov plasma wave emitted in the direction 

eo ~ 0 is given by 

- - ~ 2 ~ -
~ = ~ + ~+ ~A (1 + 313T/a2) + ~+ 

0 - """ -

(7 .1) 

So the combination frequency depends not only on the electron 

tr~nslational speed but also on the mean thermal speed of the 

plasma electrons. This is demonstrated in Fig. 7.5 in which 

- -2 A = 2, ST = {3xl0 , and the normalized combination frequency 

-
~ = ~ + ~ of the o-mode wave is plotted as a function of 

0 + 
wave-normal angle 8 for the ratio r = 13T/a11 = 0.0865, 0.1732, 

0.22. We find that when r is large, (i.e. 811 is small), the 

combination radiation is emitted at slightly higher frequencies 

in the backward direction than in the forward direction with 

respect to the electron guiding centre's motion. 

Furthermore, we note that the Cerenkov plasma wave 

emitted at a single frequency f and at the wave-normal angle 
0 

8 will be transformed into the x-mode and the o-mode waves 
0 

at similar combination frequencies in various directions 

194. 
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(see Fig. 5.5). As a result, the observed frequency. ·bandwidth 

of the combination radiation generated at a point in the solar 

corona depends on the bandwidth of the Cerenkov plasma wave 

spectrum excited by the electron stream. 

We have mentioned in Chapter VI that in a magnetoactive 

plasma the'Cerenkov plasma waves can be transformed into 
.. 

electroinagiletic waves at the frequencies f ~ f 0 + f + and 
.. 

f ~ f + f concurrently when the s'cattering medium is 
0 -

characterized by a value of A less than four, Hence, it is 

expected that two pairs of normal traces,having starting 

.. -
frequencies ~o + f+ arid £

0 
+ f_ respectively, would appear in 

the dynamic·spectrum simultaneously. However, so far·such 

double pairs of bursts were not observed. we - require to 

investigate the efficiencies of transformation of the . / 
I~ ; 

Cerenkov plasma waves into electromagnetic waves at these 

frequencies so that we can determine which of the two pairs 

of bursts will correspon~ to the observed drift pair burst 

and hence to evaluate the delay time between the two elements 

of a pair. 

For A = 2, f = H 10 MHz _, linear size of the scattering 

volume L = 9 
B = 10-2, 1311 = 0 .1 

,- 0 
100' 10 cm, 

T and for eo = 0 ' 

0 20 ~ cos l/J = :!:l~ the variations of the coefficients of 

transformation of the Cerenkov plasma waves into elect~omagnatic 
.. 

waves in the x-mode and the o-mode at frequencies f ~·£ + f+ 
·O - -



·~ 

.Mi') 

> u 
z 
w 
:::> 
a 
w 
oc 
LL 

z 

3.05 

0 3.0 
t--
<t: z 
m 
:L 
0 
u 
0 
w 
N 
-1 

~2.95 
oc 
0 
z 

2·9 

rt 30 60 

l. = 1·48 
f3/f>u = Q ·1732 

1·428 
o.0865 

90 
e 

120" 

196. 

18o" 

Fig.7.5 - The dependence of the normalized combina­
tion frequency .S = .S0 + S+ on wave-normal angle 8 of 
the combination radiation in the o-mode for A c 2,the 
ratio r =Pr/{311 = o.22,o.1732,o.oe65 and f3T=J3- x10-:t. 
~0 is the normalized frequency of the Cerenkov plasma 

wave emitte~ at the wave-normal anRle ~ n 0 by 
electron stream moving with (311 • -: - · 



197. 

by combination scattering on fluctuations of electron density 

(expression (5.41)) with wave-normal angle e are shown in 

Fig. 7.6(a) - (c). Fig. 7.6(d) illustrates the effect of the 

thermal motion of the plasma electron on the polar diagram of 

the combination radiation. 

Before we examine the characteristics of the curves 

in Fig. 7.6, we should recall that the Cerenkov plasma wave 

emitted in the direction close to the static magnetic field 

line carries most of the energy emitted by the electron 

stream (Fig. 7.4). Then the combination radiations arising 

from transformation of the Cerenkov plasma wave with wave­

normal angle lying within the range from o0 to 10° have ' 

greatest intensity. Now» from Fig. 7.6, we can realize that 

(1) Even in the presence of the static magnetic field 

in the plasma, the combination radiation is also mainly 

emitted at the frequency f ~ 2f since the intensity of the 
p -combination radiation at the frequency f ~ f + f is very 

0 -

small in comparison with that at the second harmonic of the 

plasma frequency. When e II is small» the frequency of the 

combination radiation emitted in the back.ward hemisphere with 

respect to the electron guiding centre motion is slightly 

higher than that in the forward hemisphere (Fig. 7.5). 

(2) In general, the flux density of the combination 

radiation in the o-mode is stronger than that in the x-mode. 
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Fi~.7.6 - Coefficient of transformation of the Cerenkov plasma 
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(3) The frequency bandwidth as well as the emission 

cone of the combination radiation is broader when the electron 

pitch angle is small. The axis of the cone of emission of 

the combination radiation in the o-mode is transverse to the 

static magnetic field. 

F. Propagation of The Electromagnetic Radiation in The Solar 

Corona 

In the presence of the static magnetic field in the 

plasma, the extraordinary and ordinary wave packets propagate 

along the paths different from their phase paths and with 

different group velocities. Moreover, for normal penetration, 

the x-mode and the o-mode waves will be reflected at the 

layers where X = 1 - Y and X = l respectively. However, as 

the magnetic field intensity is very weak, with f P >> fH 

(or A>> 1), the x-mode and the o-mode waves are both reflected 

from the level X = l and the wave groups of both modes 

propagate along their phase paths. Since we assume on'ly a 

narrow magnetic flux tube can extend from the umbra of the 

sunspot-at -the photosphere to the outer layers of the solar 

corona, :reflection of the x-mode and the o-mode waves would 

take place in the region.where the effect of the magnetic 

field can be neglected. Hence, in general, omission of the 

sunspot -lragnetic, field would--not lead to significant error 

in 1the estimations ofithe ray_path and the wave group travelling 



time. In this section we shall consider the ray paths, 

wave group travelling times and collisional absorptions of 

the cc Jination radiations at the frequency f ~ 2fp in the 

isotropic solar corona. 

a. Ray Paths of The Combination Radiations in the 

Solar Corona 

According to Jaeger and Westfold (1950), the Snell's 

law for a ray propagating in the spherically symmetrical 

isotropic coronal plasma is written as 

201. 

n p sini = a = constant, (7.2) 

where i is the incident angle, i.e. angle between the ray 

direction and the radial line (Fig. 7.7) and defined in the 

range 0 ~ i ~ ~/2, n(p) is the refractive index for the 

wave at a point at a distance p(in units of solar radius) from 

the centre of the Sun and given by 

2 3 -6 -16 2 n (p) = 1 - 8.lxlO (l.55p + 2.99p )/f , (f in MHz). (7.3) 

The constant parameter a in (7.2) specifies the separation 

between the ray path and the Sun-Earth line at infinite 

distance. A ray of frequency f emitted in the direction 

towards the Sun from a source will be reflected at a lower 

layer where the incident angle i becomes 90°. From (7.2) 
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and (7.3), if p is the position of a source on the radial 
s 

' 
line, the reflection height p ·will be given by the root of 

0 

the equation, 

with a = n(p
5

)p
5 

sin is' is being the incident angle at the 

source level. The angle subtended at the centre of the Sun 

by the ray path below the source level a, (which we shall 

call the central angle), is given by 

(7.5) 
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Any backward ray {i + 0) will subtend a non-zero central angle 
s 

at the centre of the Sun while the forward ray will never 
: ~' ' ~ 

cross the source level again after being emitted. When the 

r.efraction effect is omitted, the incident angles of the 

backward ray and the forward ray at the source level ~' if' 

the central angle a and the source latitude ~ are related by 

(7.6) 

Correspondingly, the constant parameters for the forward and 

the.backward rays emitted from the same source at the position 

{p
9 

,<P) will be 



(forward), 

(7.7) 

(backward) • 

Assuming f = 2.1 f , we show the variations of the 
p 

reflection height p , constant parameters a,b, central angle a 
0 

and the incident angle of the backward ray ib with the source 

latitude for f = 30 MHz and 51 MHz in Fig. 7 .8 and Fig. 1 .9. 

In the limiting source latitude ~m , the forward and the 

backward rays are identical. The central angle reaches its 

0 0 
maximum °'m at 0 - 70 (ib ::: 45 ) and then decreases quickly 

to zero at the limiting source latitude. In Fig. 7.9, the 

absolute angular separation between the forward and the 

backward rays at the source position~$,is defined by 

-1 A 
a = cos I cos Kf ~I , 

- -where Kf and ~ are the unit vectors along the forward and 

A 
the backward rays and Kf ~ is the angle between Kf and ~ • 

So far we-:·have neglected the refraction of the forward 
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ray paths. The refraction of the ray path is insignificant for 

a central ray but becomes noticable for a ray emitted from a 

limb source (see expression (7.2)). 

b. Convergence· of Rays etaitted from A Single Source 

In order that both the forward and the backward 

radiations can be seen on the Earth, the backward radiation 
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backward ray i 0 ,reflection height Po ,central angle o( 

and the absolute initial angular separation between 

the forward and the backward rays P with source 

latitude~ in a·Baumbach-Allen model corona for 
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must be emitted in a particular direction depending on the 

source latitude such .that its ray path meets the forward ray 

at the Earth. OWing to the refraction» the actual incident 

angle of the forward ray if has to be slightly greater than 

the source latitude given by (7.6). 

While the ray paths of the forward radiatiqns emitted 

from a single source will never cross each other, the ray 

paths of the backward radiations at the same frequency ~ill 

cross each other either above or below the source level after 
' ; 

they have been reflected from a lower level. From Fig. 7.8, 

we can see that two backward rays will cross each other above 
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the source level when the source latitude is large (Fig. 7.7). 

Due to the differential refraction of the ray paths with 

different initial incident angles» two backward rays would 
' ' ~ l ' 

meet at very large distance from the Sun. 

c. Wave Group Travelling Time 

In order to investigate the possible time delay 

between the forward a~d the backward radiations emitted from 

a single source and the time delay betl~een the radiations 

at different frequencies emitted at different layers» we have 

to calculate the time taken for the wave packet to travel 

from the source to the observer. For an isotropic coronal 

plasma» the time taken by a wave packet to travel along · 

the trajectory is 

t = g f 
ds 
v , 

g 
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where v = en is the wave group velocity. 
g 

¥.ta.king use of the 

relation 

ds 2 2 2 k 
dp = np/(n p - a ) 2 

the wave group travelling time can be expressed as an integral 

of a function of the distance from the centre of the Sun~ 

p 

f 
pdp 

t = 2. 316 2 2 2 1 

g (n p -a )~ 
PS 

(sec). (7 .8) 

The delay time between the forward and the backward combination 

radiations at the frequency f ~ 2.1 f and emitted from a 
p 

source at the poisition (p ,~) will be s 

b.T ~ 2.316 J
PE pd ~ 

2 2p 2 k (sec). 
(n p -a ) 2 

PS 

(7.9) 

Rerej a~b are the constant parameters for the forward and 

the backward rays and determined by (7.7) and PE is the Sun-

Eart:h distance. The variation of the time delay between 

the two rays with the source latitude is shown in Fig. 7.9 

for f = 30 NHz and 51 MHz. The time delay decreases with 

increasing source latitude because the paths of the two rays 

tend to be identical as the source latitude increases. 

Indeed 9 that the backward radiation arrives at the Earth a 



209. 

few seconds later than the forward radiation is mainly due to 

the fact that the backward radiation has to travel an excessive 

path below the source level with small group velocity. For 

ib > 45°~ 6T decreases rapidly with increasing ib (Fig. 7.9 

and Fig. 7.8). Thus if two backward rays meet at the Earth, 

the time delay between them would be significant owing to the 

difference in their excessive path lengths below the source 

level. For example, two backward rays and a forward ray at 

the frequency f = 30 MHz emitted at incident angles 40°, 

75° and 68° respectively (Fig. 7.7) would arrive at the Earth 

with time delays about 0.9 sec and 1 sec between them. The 

dependence of the time delay between the forward and the 

backward rays on the wave frequency for various latitudes is 

shown in Fig. 7.12. 

Combination radiations at different frequencies emitted 

in the forward direction simultaneously from different source 

levels will also have time delay due to different lengths of 

their ray paths. If two sources situated at p1 and p2 

(p2 > p1) emit combination radiations at the frequencies f 1 

and f 2 (f2 < f 1) respectively, the wave group delay time between 

the two forward rays will be 



210. 

where a1,a2 are constant parameters for the two forward parallel 

rays. Since the combination frequency is a continuous function 

at 
b. t = b.f( at- ) -

g f =f 
(7 .11) 

at 
where f = ~(f 

2 
+ f 1) and af (sec per HHz) is the slope of the 

curve t vs f (expression (7.8)). The dependence of g 

at 
~ on frequency f is shown in Fig. 7.10 for various source 

at 
latitudes. We find that the value of ~depends slightly on 

at 
the source latitude. The average of af is also plotted as 

a function of frequency in Fig. 7.10 for the source latitudes 

0 0 ranging from 50 to 80 (the solid curve). The positive 
at 
~ means that as the combination radiations at the frequencies 

f 1,f2(f1 > f 2) are emitted at different layers in the solar 

corona simultaneously, the higher frequency is emitted at 

deeper layer and arrives at the Earth later. We shall make 

use of this figure in the evaluation of tbeoretical dynamic 
_, 

spectra of the drift pair burst and the hook burst in section H. 

d. Absorption of Electromagnetic Radiation in The 

Solar Corona 
, -

The high frequency electropagnetic waves passing through 

a warm_magnetoactive plasma will be damped by 'the collision 
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process and the harmonic resonance process. Owing to the 

low collision frequency in the solar corona~ collision 

absorption becomes significant only in the layers where the 

wave frequency is close to the plasma frequency and would be 

important for the backward combination radiation. Hence 

only the collision absorption and the third harmonic resonance 

absorption need to be considered. 

Taking ~ = 4xl09 cm and T = 6 0 l.SxlO K, we show the 

power losses of the x-mode and the o-mode waves on passing 

through the layer £ = 3f H as 2 2 functionsof X (=f /f ) in 
p 

Fig. 7.11 (a) for f = 35 rlllz and 8 = 5°, 15°, 45°, 60°~ 75°, 

85°. Only the o-mode wave can survive after passing through 

the layer f = 3fH. 

The combination radiation at the frequency about twice 

the plasma frequency and able to escape from the solar corona 

has to suffer further absorption along the wave group trajectory 

due to the electron-ion collision. If the effect of the 

sunspot magnetic field is neglectedp the integrated collision 

absorption along the paths of the radiation is (Wild et al.P 

1963): 

T = f K ds (7.12) 

and the damping factor is exp (-T)~ where the collision 

2 absorption coefficient K = v(l - n )/en. For the solar corona 
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vis given by (5.7). Then the integrated absorptions along 

the forward and the backward rays are specified by 

x 50 pj no(l-n2)p 
T = 2.316 3/2 2 2 2 ~ dp ' 

T (n P -a ) 2 

PS 

[ 

Ps 2 PE 
50 J n (1-n )P f 

and T = 2.316 ~ 
312 

2 °2 2 2 ~ dp + 
T p (n p -b ) 2 

0 PS 

respectively. Here, n
0 

is the electron number density given 

by (4.1) and a,b are the constant parameters defined by (7.7). 

The variations of the integrated collision absorption 

(in decibels) for the forward ray and the backward ray with the 

source latitude are shown in Fig. 7.11 (b). The collision 

absorption will be comparable with the third harmonic 

resonance absorption only for the backward ray. The collision 

absorption for the backward combination radiation decreases 

as the source is displayed from the centre of the disk. 

Whether the third harmonic resonance process or the collisi<n 

process plays the major role in the absorption of the 

_ backward combination radiation depends on the temperature of the 

coronalplasma and the effective thickness of the third harmonic 

resonance absorption layer. The backward combination radiation 

would suffer more absorption-than the forward radiation at the 

same frequency due to excessive collision absorption. 
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However~ when the third harmonic resonance absorption predominates, 

the observed intensity of the forward radiation would be equal 

to or less than that of the backward radiation if the effective 

thickness of the third harmonic absorption layer for the 

forward ray is greater than that for the backward ray. 

G. Interpretation 

Having studied the generation and the propagation of 

the combination radiations in the magnetoactive coronal plasma, 

we shall interpret the characteristics of the drift pair 

burst and the hook burst emission event. First of all, we 

assume that the drift pair and the hook burst emissions are 

produced by electron streams gyrating along the sunspot 

magnetic field configurations. The electrons each having 

energy of the order of ten keV are assumed to be accelerated 

in the solar corona during the period of the emission of 

the drift pair burst. The interaction of th~ stream 

electrons with the background coronal plasma results in the 

production of a strong coherent Cerenkov plasma wave which in 

turn interacts with the small-scale thermal fluctuations of 

electron density in the solar corona and gives rise to the 

combination radiation at the frequency f ~ 2f • The p 

combination radiation under suitable condition can escape from 

the solar corona and will be observed as a drift pair or a 

hook burst. 
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(1) Frequency Range 

Because of the harmonic resonance absorption, the source 

of the drift pair burst must lie on the layer where A ~ 1 

(Chapter Vl 9 Section D). With the model of the active 

solar corona given in Fig. 7.3, the maximum frequency of the 

combination radiation observed on the Earth would not exceed 

90 MHz. Along the bipolar sunspot magnetic field line, the 

largest value of A does not exceed four, hence in general, the 

electromagnetic radiation at the frequency f = f arising 
p 

from incoherent scattering of the Cer.:nkov plasna imve is unable 

to leak away from the solar corona due to second harmonic 

resonance absorption. Pairs of bursts having frequency 

ratio 1:2 are hence not observed. 

(2) Preferential Source Position 

The double bursts with almost the same starting 

frequency are attributed to the combination radiations at 

similar frequencies emitted in the forward and the backward 

directions from a single source at the same instant but 

arriving at the Earth at different times. A pair of bursts 

can be observed to have similar intensities only when both 

the forward and the backward radiations are emitted in the 

directions within the cone of emission (section E (3)). That 

is the absolute-angular separation between the two rays at the 

•ource pGeition must be stlaller than the apex angle of the 

emission cone. Since the main power of the combination 



radiation will be confined within a solid cone with an apex 

angle about 60° to 80° (Fig. 7.6), from Fig. 7.8P we find the 

preferential source latitude would be (/J > 60°. In fact, 

the forward and the backward radiations of similar intensities 

can also be emitted from a central source provided that the 

sunspot magnetic field line is almost parallel the surface of 

the Sun (see Fig. 7.7). However~ in this case, the bursts 

are expected to show no frequency-time drift (at the most, 

only very slightly drift) and short duration. Thus the 

central area of the disk is not the preferential position 

for drift pair emission. 

(3) Time Delay 

According to Fig. 7.12, in the frequency range 40 MHz 

0 to 25 MHz and for source latitudes r/J ~ 60 , the backward 

combination radiation will arrive at the Earth about 1.5 to 

2.2 sec later than the corresponding forward combination 

radiation. A pair of bursts with frequencjes ranging from f 1 

to f 2aYe radiated by a source moving from the position 

If there is no change in the-source 

latitude along the entire source trajectory (i.e. 01 = ~2), 
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the time delay between the forward and the back.ward combination 

emissions will increase with decreasing frequency (the dotted 

curves in Fig. 7.12). On the other hand, when the source 

latitude as well as source height change continuously along 

the source trajectory, the time delay would be constant or 
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even increase with the frequency. The variation of the delay 

time with the frequency for various observed drift pairs measured 

by Ellis (1969) are re-plotted in Fig. 7.12 (thick solid bars). 

The sources were founn to be situated at the latitudies 

ranging from 55° to 75°. Many burst sources showed no 

changes in the source latitude along their trajectories while 

a few had non-radial motion. 

(4) Rate of Frequency Drift 

The drift rate of the bursts arising from combination 

scattering of the Cerenkov plasma waves excited by an electron 

stream depends on the radial velocity component of the 

electron and radial electron density gradient along the solar 

corona. For the same electron energy, the drift rate of the 

burst emitted by a linear stream travelling radially is 

greater than that emitted by a helical stream gyrating along 

a curved sunspot magnetic field line. The type III bursts 

are attributed to the radiation of Cerenkov plasma waves by 

streams of electrons with energy from 10 to 100 keV ejected 

almost radially from the flare region (Wild et al., 1963; 

Stewart, 1965). As we interpret the drift pair as the result 

of radiation of Cerenkov plasma waves by a helical stream of 

electrons with energy about 10 keV and gyrating along a curved 
the 

sunspot magnetic field line, the drift rate of drift pair is 
th~t of 

lower than the associated type III burst appearing in the same 

spectral record. The theoretical dynamic spectrum given in 
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Section H shows that electrons havirig'guidin~ centre velocity 

abouL O.lc can generate a drift pair with the frequency 

drift rate about 2 MHz per sec in the frequency range·40 to 

28 MHz. The variation of the frequency drift rate along an 

element of a pair arises from the changes of the electron 

pitch angle, the radial electron density gradient along the 

solar corona and also the curvature of the sunspot magnetic 

field line. The slight difference in the frequency-time 

slopes of the first and the second elements of a pair is 

probably due to the variation of the time delay with wave 

frequency as discussed in (3). 

If all the major combination radiations emitted by an 

electron streac,moving from one point on the leading spot 

field line to another point on the following spot field line,can 

reach the Earth 9 the frequency of the burst observed will first 

decrease to the minimum value and then increase again with time. 

Such a continuous emission appears as a hook shape burst in the 

spectral record. Owing to the different curvatures and diffevel't t 

magnetic field intensity gradients along the leading and the 

following spot field lines, the magnitudes as well as the senses 

of the frequency-time slopes of the upward and downward traces 

differ from each other. 

(5) The Difference in The Starting Frequency and The 

Finishing Frequency 

It is shown in Fig. 7.5 that when the electron guiding 



centre velocity is small, the combination frequency emitted 

in the backward hemisphere with respect to the guiding centre 

motion is slightly higher than that in the forward hemisphere. 

Assuming 13
11 

c: 0.1 and ST = 0.22 13 119 we find the normalized 

combination frequencies ecitted in the directions a = 125° 

and 70° are 3.074 and 3.054 respectively. If the actual 

starting frequency of the burst is about 35 MHz, the actual 
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difference in the forward and the backward emission frequencies 

will be - 0.24 MHz. This explains the fact that the second 

element of a negative drift pair starts and terminates at 

slightly higher frequencies than the first element. The 

separation between the starting frequencies of the two elements 

of a pair by several MHz cannot be interpreted as the result 

"' of combination radiat~onsat the frequencies f ~ £
0 

+ f+ and 

"' f ~ f + f from a single source simultaneously because the 
0 -

intensity of the latter is not ~omparable to the former (Fig. 7.6). 

This can be due to the fact that a pair of burs.ts of similar 

intensities emitted from a single source will not be seen until 

the electron stream arrives at the suitable position such that 

both the observed forward and backward rays are emitted in the 

directions within the cone of emission of the combination 

radiation (Fig. 7.7). In other words, the separation between 

two bursts is a time delay and not a frequency separatio~. 

(6) Bandwidth 

The bandwidth of the observed combination radiation is 
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mainly determined by the frequency bandwidth of the Cerenkov 

plasma wave spectrum and the radial extent of the electron 

stream. The frequency bandwidth of the coherent Cerenkov 

plasma wave spectruo excited by an electron stream is inversely 

proportional to the electron pitch angle (Section D and Fig. 

7.4 (c)). Moreover, an electron stream gyrating along a 

curved spot field line will have a radial extent smaller than 

that of a linear stream moving along the radial line of the Sun. 

Consequently~ the observed bandwidth of the drift pair is 

narrower than that of the type III burst. In fact, the 

broadness of the apparent bandwidth of the type III burst is 

also due to its high drift-rate. 

(7) The Mid-point Burst 

The mid-point burst appearing in the drift pair burst 

and the drift pair followed (or preceded ) by a hook burst are 

of the same character (Fig. 7.l(B)~(C)) and expected to arise 

by the same cause. We note that the three bursts have the 
the sa11te 

same frequency-time slope and bandwidth. They either start 

ot finish at almost the same frequency and appear to have been 

generated by the identical exciting agents through the same 

process under the same condition • This would occur when 

two identical electron streams pass through the same position 

consecutively and generate combination radiations. However, 

in this case~ two identical pairs of bursts are expected to 
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be observed more frequently. Therefore, the three elements of 

a triple burst are likely to be caused by the same electron 

stream. Since the time interval between the first and the third 

elements of a triple burst is similar to the characteristic time 

interval between the two elements of a normal pair (see Fig. 

7.1 (C)) 9 the mid-point burst can be attributed to the backward 

combination radiation emitted at an incident angle larger than 

that for the thiLd element (see Fig. 7.7). 

According to the discussion in Section F (b), two back­

ward rays emitted from a source situated at a large latitude 

would meet at the Earth, particularly when there is a slight 

deviation of the spherical symmetry of the radial electron 

density distribution at one of the reflection layers. Of 

course~ convergence of two backward rays at the Earth is 

possible only for a very particular range of source latitude and 

hence the mid-point burst mid-way between the two normal traces 

occurs only occasionally. In view of the facts that the 

preferential drift pair source position and the characteristic 

time interval between the two elements of a pair are also in 

favour of large source latitude ((2) and (3) of this section), 

we suggest that convergence of two backward rays and a forward 

ray at the Earth is a plausible explanation for the appearance 

of a triple burst. 

(8) The Duration of Drift Pair Burst 

The duration of the drift pair is as long as that of the type 
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III burst. We assume that a cut-off mechanism such as that 

suggested by Kaplan and Tsytovich (1968) exists and causes the 

radiating electron stream to retain its identity for a few 

or ten seconds. 

(9) Polarization 

It has been shown in Chapter VI that the polarization 

of the combination radiation at f = 2f P emitted from a source 

situated at a large latitude is insignificant. 

(10) Intensity 

Let us assume that electrons having a11 ~ 0.1 in a volume 

8 18 3 of 10 x10 cm radiate a particular frequency, 30 MHz, say. 

If n 9 is the electron density of the stream, then the maximum 
0 

power of the Cerenkov plasma wave emitted by these electrons 

coherently is about 105 n 9G W/sr, where G is the power gain 
0 

factor in the stream-plasma system. The theoretical flux 

density received on the Earth would then be 1.sx10-25n'Gn 
0 

-2 -1 W m Hz , where n is the coefficient of transformation (per 

steradian). Assuming the electron density of the ambient 

plasma in the drift pair source is Jx106cm-3, a= 10-5 

-3 gives n~ = 3Xl0 cm • Then if the coefficient of transformation 

due to combination scattering is n = 10-lO (per steradian) the 

theoretical flux density would be 4.Sxlo-34G w m-2Pz-1• In 

-20 order to attain the maximum observed flux density (about sx10 

-2 -1 14 Wm Hz ), we need a power gain G = 10 (i.e. 140 dB). From 
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Fig. 7.4(c), the interaction time needed is less than l.Sxl0-5 

sec (The characteristic time for non-linear transfer of the 

-5 plasma wave across the spectrum is - l.&<10 sec). 

The first and the second elements of a pair correspond 

to combination radiations emitted in different wave-normal 

directions and their intensities would be different from each 

other. Collision absorption for the backward ray and the 

third harmonic resonance absorption are the other factors 

causing the variation of the intensities of the two elements 

(Section F (d)). 

H. Theoretical Dynamic Spectra 

The drift pairs and hook bursts can be well accounted 

for as the consequence of the Cerenkov radiation of plasma 

waves by electron streams gyrating along the sunspot 

magnetic field lines. It is expected that the theoretical 

dynamic spectra,which are calculated on the basis of the 

present theory,should well agree with those observed. Here 

we calculate the theoretical dynamic spectra by assuming that 

the magnetic field intensity along the length of the segment 

of the stream,which radiates a particular frequency,is constant 

so that the characteristics of this bunch of electrons may be 

described in terms of a single electron. 

Suppose an electron travels from a point S
0 

to a point 

s1 along the sunspot magnetic field line and causes combination 



radiation at the frequencies from f to f. 
0 

delay between these two frequencies will be 

t = t + 6t e g 

The total time 

(7 .14) 

where te is the electron travelling time from so to a point sl 

and ~tg is the wave group delay time given by (7.10). 

Taking into account of conservation of electron's 

magnetic moment, the variation of the electron guiding centre 

velocity is given by 

2 f H ~ s
11 

= f3(l - sin 0 - ) 
o f 11 

0 

(7.15) 

where ~o and fH are the initial pitch angle and gyrofrequency 
0 

of the electron at the initial point S respectively. The 
0 
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normalized velocity S of the electron is assumed to be constant. 

The travelling time for the electron from so to sl along a 

dipole field line is then 

where 

Sl t 2 ~ 
l J ds J TQCOS~(l+3sin !) dt 

te = ~ BU = 2•316 
£ 8[1-g(l+3sin2i)~/cos6t1 di 

s 0 
0 

2 sin <j> 
0 

(1+3sin2.t )!z 
0 

with r = r cos2£ (in units of solar e o o 

radius) and r
0 

is defined in (4.4). ~and t
0 

are the latitudes 

of the points s1 and S
0 

with respect to the centre of the 
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dipole. 

The combination frequencies emitted from these points, 

according to the discussion in section E~ can be approximated 

as 

{7.17) 

-6 -16 ~ where f (p ) = 90x(l.55p + 2.99p ) MHz. 
p s s s The radial 

distance from the centre of the Sun p and the dipole latitude £ 

are related through the equation (4.5). 

small~ the wave group delay time ~t can be estimated with the 
g 

help of the solid curve in Fig. 7.10. Then we can evaluate 

t.~e total d~lay time between £ and f in the frequency­
o 

ti:rae plnne. 

The second element of a pair can also be plotted by 

assuming that the time delay between the direct and reflected 

rays is about 1.7 sec and the combination frequency emitted in 

the backward hemisphere with respect to the electron guiding 

centre motion is slightly higher than that emitted in the 

forward hemisphere. In the case that two reflected rays meet 

at the Earthj a mid-point burst separated from the first 

element of a normal pair by a time about 0.9 sec also appears 

(see section F (c)). 

The theoretical dynamic spectra of the drift pair bursts 

and hook bursts radiated by streams of electrons with energy 
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Fig~7.13(a)- The theoretical dynamic spectra of drift pair bursts. 
and hook bursts radiated by electron streams 'moving 
along the bipolar snot field line. 
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Fig. 7 .13{b)-The theoretical dynamic spectra of drift pair bu-rsts 
radiated by electron streams moving along unipolar 
snot field line. 
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about ten keV are shown in Fig. 7.13. Table 7.1 and Table 

7.2 show the significant numbers used in deriving the 

corresponding theoretical dynamic spectra in Fig. 7.13. 

Those backward rays reaching the Earth but not carrying 

sufficient observable intensity are represented by dotted 

traces. The average ~alae ef the drift ratesof these 

calculated spectra range1 from 3 MHz per sec to 1 MHz per 

sec in the frequency range from 50 MHz to 28 ~?.. The drift 

rate of the burst depends on the initial source position, 

initial electron pitch angle and the electron energy. The 

good agreement of the theoretical.dynamic spectra with those 

observed suggests that the electron responsible for the drift 
Qn 

pair emission has energy of the order of ten keV and a pitch 

angle mostly greater than 45°. 

I. Conclusion 

Using the theory of Cerenkov radiation of plasma waves 

by electron streams gyrating along sunspot magnetic field 

line~,most of the important characteristics of the drift pair 

and hook burst emissions can be explained if we assume the 

intensity of sunspot magnetic field slowly decreases with 

increasing altitude from the photosphere. The magnitude 

of the sunspot magnetic field intensity at p=2 is assumed to 

be 2 or 3 gauss. Although there are no optical observational 

data supporting such assumptions, theories of solar type II and 



Table 7.1 (Bipolar Sunspot Field Model) 

At 
(:3 !311 ~ f MHz ~2 Burst PS xlO sec 

0.2 1.937 0.07375 68.4° 32.60 0 
1.949 0.08497 65.0° 31. 75 -3.90 
1.966 0.09610 61.3° 30.81 -3.50 

- 1.977 0.10250 59.2° 39.20 -2.35 
1.987 0,10800 57.4° 29. 80 -1.65 
1.996 0.11280 55.7° 29.55 -2.31 

© 2.008 0.11880 53.6° 28.75 -2.20 
2.015 0.12210 52.4° 28.40 -1.59 

1.991 0.11670 54.3° 29.44 4.60 
1.967 0, 11070 56.4° 30.60 4.70 
1,943 0.10390 58.8° 31.80 4.45 
1.920 0.09600 61.4° 33.00 6.80 
1,896 0.08685 64.2° 34.40 4.00 

0.2 1.916 0.5200 75.0° 34.40 0 
1.924 0.06040 72.5° 33.80 -4.84 
1.937 0.07375 68.6° 32.60 -4.02 
1.949 0.08410 65.0° 31. 75 -2.98 

® 
1.966 0 .09610 61.3° 30.81 -3.48 
1.977 0.10250 59.2° 30.21 -2.37 
1.987 0.10800 57.4° 29 .80 -1.62 
1.996 0 .11280 56.0° 29.25 -2.30 
2.008 0.11880 53.4° 28.75 -2.18 
2.015 0.12210 52.4° 28.40 -1.58 

t e 
sec 

0 
0.649 
0.844 
0.507 
0.475 
0.450 
0.640 
0.387 

.. 
0.485 
0.438 
0.563 
0.551 
0.600 

0 
0.462 
0.766 
0.649 
0.844 
0.507 
0.475 
0.450 
0.640 
0.407 

, 
IS'! 

sec 

0 
0.6100 
1.4190 
1.9025 
2. 3610 
2.7880 
3.4060 
3. 7770 

4.2080 
4.6930 
5.3050 
5.8930 
6.5330 

0 
0.4130 
1.1380 
1. 7580 
2.5670 
3.0500 
3.5100 
3.9360 
4.5540 
4.9200 

Mean 
Drift 
Rate 

-1.1 
MHz -sec -1 

2.18 -1 MHz -sec 

-1.22 -1 
11Hz -sec 

I\) 

\.>l 
I-' . 



Table 7.2 (Unipolar Sunspot Field Model) 

f Atg t 
Burst f3 f3 II f/J e 

Ps MHz -2 . sec 
x10 sec 

0.18 1.590 0,0405 77 .o0 58.00 0 0 

1.651 0.0750 65.0° 51,48 -9,10 2.097 

1,699 0.0976 58.0° 46.62 -7 .10 1.330 

1.749 0.1130 51.0° 42.54 -8.36 1.117 

\!.' 1.800 0.1240 46.5° 38.92 -8.50 1.012 

1.852 0.1330 42.5° 35.68 -9.00 0.966 

i.906 0.1400 38.6° 32.68 -9.30 0.913 

1.961 0 .1460 36.0° 29.98 -9.25 0.902 

2.017 0,1510 33.4° 27.53 -1.10 0.890 

·o.1a 1.800 0.0405 77 .o0 40.00 0 0 

1.852 0.0721 66.4° 36.20 10.60 2.368 

@ 1.906 0.0936 58,6° 32.89 10.90 1.517 

1.961 0 .1086 53.0° 30.08 11.10 1.268 

2.017 0.1199 48.5° 27.58 15.60 1.152 

~T 

sec 

0 

2.006 

3,265 

4.300 

5.230 

6.100 

6.920 

7.730 

8.520 

0 

2.262 

3.670 

4.827 ' 

5.823 

Mean 
Drift 
Rate 

3.58 

MHz-sec 
-1 

2.14 

MHz-sec -1 

I\) 

\>I 
I\) . 
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type Ill bursts proposed by various authors do suggest the 

existence of magnetic field of the intensity about a few gauss 

at the altitude p=2 (Morimoto, 1963; Newkirk, 1967) (see 

Fig. 7.3 and Fig. 4.2). 

The very sharp turning point of a hook burst reveals 

that the sunspot magnetic field lines,emerging from the 

leading spot and the following spot radially are joined 
' 

acutely at the altitude about one solar radius above the 

photosphere. This agrees with the optical observational 

fact that the sunspot field lines coming from the umbral area 

incline to the radial line at small angles and the pair of 

spots are separated by a small distance on the photosphere 

(cf. Section B of Chapter IV). 

The most significant characteristic of the drift pair 

is the constancy of the delay time between the two elements of 

a pair over a long period of time. The average delay times 

observed by Roberts (1958) and by Ellis (1969) are almost 

identical c~ 1.7 sec) although the recent observation was 

carried out about ten years after the first observation. 

Any mechanism responsible for the drift pair emission has to 

generate electromagnetic radiations at similar frequencies in 

the forward and backward directions; the backward emission 

would arrive at the Earth after reflection at the layer lower 

than the source level. Then, the high degree of similarity 

of the spectral appearance of the two elements of a pair and 



the constancy of the delay time suggest that during the 

period of the drift pair emission» the electrons were distri­

buted along the solar corona in the most regular form. 

234. 

Hence we infer that during the period of drift pair:: emission, 

a coronal streamer with electron density a few times higher 

than that of the background corona does not exist above the 

sunspot group or does not extend to the height about 0.5 

solar radius above the photosphere. In fact~ the character­

istic delay time and the other spectral features of the drift 

pair can only be explained satisfactorily by the theory of 

Cerenkov excitation of plasma waves by electron streams if we 

assume a regular corona. In view of the facts that the 

drift pair bursts are associated with flares of lesser 

importance and occur solely during fairly quiet period of 

solar activity, a regular solar corona with spherically 

symmetrical distribution of electron density is not improbable. 

The type III bursts whose rates of drift are higher than 

those of drift pairs are also considered to be the result of 

excitation of coherent Cerenkov plasma waves by electron 

streams. The smallness of the drift rate of the drift pair 

can be due to electron streams with either large pitch angles 

or small energy. In Fig. 7.14, the frequency drift rate of 

the combination radiation emitted by a linear electron stream 

moving radially along the regular solar corona is plotted 

against the wave frequency for various electron velocities. 
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It is clear that for drift rates as low as 102 MHz per sec at 

the frequency 35 MHz 9 the velocity of a radially moving stream 

must be less than O.lc, that is less than the velocity limit 

for electrons travelling through the solar corona (0.2c) 

(De Jager, 1960). Moreover, from the discussion given in 

section G (6) 9 the narrow bandwidth of the drift pair,compared 
~~ 

with that of the type III burst,suggests that electron stream 

responsible for the emission of drift pair follows a helical 

trajectory along the sunspot field line rather than a radial 
the 

trajectory. The theoretical dynamic spectrum of drift pair 

with negative drift rate about 1.4 MHz per sec radiated by a 

helical stream of electrons of energy about ten keV requires 

that the initial electron pitch angle is at least greater than 

45°. 

It is believed that energetic electrons with energy 

up to 100 keV in the solar corona can be produced in the 

flare region by a mechanism such as that proposed by Sweet (1958) 

and Gold and Boyle (1959), and ejected upward along lines of 

force on the neutral planes between two magnetic fields of 

opposite polarity. The excitation of plasma waves by thesQ 

electrons results in the type III burst emission. Al-

ternatively~ through the Fermi-like process (Wentzel, 1963; 

Schatzman 9 1963), electrons can also be accelerated to higher 

energy by the magnetohydrodynamic shock wave front ahead of 
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the plasma cloud which is ejected upward from the flare 

* region • Those electrons with large pitch angles found 

in the outer layers of the solar corona are likely to be 

produced by the latter mechanism. The process of acceleration 

of electrons in a shock front proposed by Schatzman (1963) is 

derived from both the Fermi and the betatron mechanisms and 

is able to accelerate a small proportion of electrons to 

high velocity. A particle crossing the magnetohydrodynamic 

shock front perpendicularly will be accelerated. However~ 

the acceleration can take place only when the electron 
a 

density is smaller than certain limit which depends on the 

temperaturej the magnetic field and the shock strength. 

Moreover~ a shock front is not formed in front of the gas cloud 

when the motion of the gas is mostly along the lines of force 

of the magnetic field. Thus the preferential region for 

acceleration is where the magnetic field lines of force are 

perpendicular to or incline at very large angles to the 

direction of the gas motion. Then, the accelerated electrons 

will be ejected from the shock front and trapped in the near-

by strongest sunspot magnetic field line with large initial 

pitch angles. 

If the acceleration takes place in the region where the 

value of A is larger than unity 9 the accelerated electrons 

237. 

* The possibility that the shock wave front originating from the 

Sun would cause geomagnetic disturbance depends on the geometry. 



forming a stream with small momentum spread would produce 

combination radiations at the frequency about double the 

plasma frequency in the forward and the backward directions 

with respect to the electron guiding centre motion. These 

combination radiations will finally be observed as a drift 

pair or a hoo~ burst on the Earth (Fig. 7.15). However~ 

because of the small electron energy and large pitch angle, 

the peak power of the cyclotron radiation in the x-mode and 

the o-mode emitted by the same electron stream will be small, 

and in any case it will be unable to escape from the solar 

corona owing to the second harmonic resonance absorption 

(cf. Chapter VIII). The spectral characteristics of the 

drift pair burst and hook burst have already been explained 

in the previous section. 
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CHAPTER VIII 

A THEORY OF SOLAR TYPE IV EMISSION AT 

CENTiliETRE AND DECil1ETRE WAVELENGTHS 

A. Introduction 

Immediately after the occurrence of large flares, 

long periods of enhanced continuum radiation superimposed 

with fast-drift bursts may be observed. Such emission occurs 

in a frequency range from a few hundred to several thousand 

megahertz and lasts for a period of a few tens of minutes or 

hours. Usually, it is associated with the type IV bursts at 

metre wavelengths (designated as type IVm), which possess 

similar spectral characteristics. Therefore this enhanced 

continuum emission superimposed with variabilities at centi­

metre and decimetre wavelengths is regarded as the first 

phase of the whole type IV emission and is designated as 

type IVA by Kundu (1965), or type IV µ(microwave type IV) by 

Wild et al. (1963), or type IV group A and group A-B by 

Takakura and Kai (1961), while type IVm bursts are regarded 

as the second and the third phase emissions. Here, Kundu's 

nomenclature is used (see Fig. 1.1). Dynamic spectrum and 

single frequency observations in various frequency ranges have 

been reported by Haddock (1959), Takakura (1960a, 1963), 

Kundu {1961). Pick (1961) 9 Young et al. (1961) and 

Thompson and Maxwell (1962). From all the observational 

240. 
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records, the spectral features and the source characteristics 

of type IVA emission can be summarized as follows. 

(i) Frequency Range 

Type IVA continuum occurs from frequencies higher 

than 10,000 Milz and extends down to 200 ~iHz. The frequencies 

of the fast-drift elements that are superimposed on the 

background continuum mostly lie within the range 300-1,000 

MHz (decimetre wavelength region) (Kundu, 1965) (Fig. 8.1). 

(ii) Intensity 

The intensity varies from a barely detectable value of 

-22 -2 -1 -18 -2 -1 about 5xl0 W m Hz to greater than 10 W m Hz 

(Fig. 8.2(A)). For great bursts (associated with type IVm 

bursts), the decimetre wavelength burst intensity is usually 

less than that of the centi~etre or metre wavelength bursts. 

The intensity of the fast-drift burst is high and can reach 

There is some tendency for the intensity 

to decrease with the frequency (Kundu 9 196S)(Fig. 8.2(A)). 

(iii) Bandwidth 

The continuum in centimetre and decimetre wavelength 

regions extends over hundreds of megahertz. Dynamic spectra 

(Kundu et al., 1961; Thompson and Maxwell, 1962) indicate 

that type IVA emission consists of groups of very broad band 

bursts, which occur in ra?id sequence and which may be 

superimposed upon each other or may merge together to form a 

continuum. The bandwidth of decimetre wavelength emission is 

242. 
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narrower than that of centimetre wavelength emission. The 

drifting elements in the decimetre wavelength region have 

bandwidths as narrow as 10 MHz. 

(iv) Variabilit1es 

244. 

The dynamic spectra of the long duration centimetre 

wavelength bursts show a broad band smooth continuum and lack 

complexity~ while in the decimetre wavelength region the smooth 

continuum has very short duration drift bursts superimposed 

on it. 

(v) Frequency Drift 

Only a f aw decimetre wavelength continuum bursts show 

a steady and slow drift from high frequencies towards lower 

frequencies. The drift rate is roughly estimated to be 

200 Mllz/hr. (Takakura, 1963). The drift bursts on the 

other hand may have a frequency drift greater than 2,000 MHz/sec. 

Both senses of drift are observed (Young et al., 1961; Kundu 

and Spencer, 1963) (Fig. 8.2(B)). 

(vi) Duration 

Thompson and Maxwell (1962) reported that typical 

durations of the event are 5 - 40 min in the centimetre wave­

length region and 5 - 120 min in the decimetre wavelength 

region. Individual fast-drift bursts have durations of the 

order of half a second. 

(vii) Polarization 

The centimetre and decimetre wavelength continuum 
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bursts are partially circularly polarized and the sense of 

polarization may change between 2,000 and 4,000 MHz. If 

the leading sunspot is taken to have north polarity, then at 

high frequencies the pola~ization is in the extraordinary mode 

but changes to the ordinary mode at decimetre wavelengths. 

The degree of polarization increases towards lower frequencies 

(Takakura, 1963; Kundu, 1965) (Fig. 8.2(A), (C)). 

(viii) Position and Movement of the Sources 

At all frequencies ranging from 9,400 to 340 MHz the 

source is situated less than 40,000 km above the photosphere. 

Significant movement of the type IVA source has not been 

observed (Kundu, 1959; Kundu and Firor, 1961) (Fig. 8.2(C)). 

(ix) Association with Flares 

The type IVA burst emissions are strongly associated 

with solar flares. The percentage of solar flares that are 

associated with type IV bursts at centimetre wavelengths 

increases with flare importance (reaching near!~ 100% for 

flares of importance 3). The association of flares with 

deqimetre wavelength bursts is not so strong (for flares of 

importance 2 and 3 the association is about 25% and 85% at 

545 MHz, as compared with about 40% and 100% at 3,000 MHz). 

A flare has a greater probability of being associated with a 

type IV burst if the flare area covers the umbra of the active 

region where the flare originates (Fig. 8.2 (E)). The time 

of start of type IVA bursts appears to coincide with the 

246. 
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explosive phase rather than with the commencement of the 

associated flares. In nearly all observable cases there are 

groups of type III bursts almost in coincidence with the 

explosive phase of the flare (Fig. 8.2(D)). Sometimes, for a 

flare of great importance, the type III bursts are followed by 

type II and type IVm bursts. The flares associated with type 

IV without type II bursts are of less importance than those 

associated with type IV-type II bursts (Kundu, 1965). 

When the associated flares are of great importance (2,2+, 

and 3)~ the decimetre wavelength and centimetre wavelength 

continua start more or less simultaneously and of ten reach 

peak intensities at about equal times. Further, their source 

characteristics are very similar. Both the centimetre 

and decimetre wavelength bursts reach their maximum intensities 

before.the flare maximum. 

(x) Association with Metre Wavelength Bursts 

Type IVA bursts can occur with or without type II 

bursts at metre wavelengths. In the frequency range 

250-580 MHz$ type IV emission (decimetre wavelength) in most 

cases occurs a few minutes earlier than the associated type 

II bursts 9 but at frequencies less than 250 11Hz 9 type IV 

emission (metre wavelength) follows the occurrence of type II 

(Fig. 8.2(F)). The centimetre wavelength bursts associated 

with type IV-type II events have stronger intensity and the 

importance of the associated flares is also greater (Kundu, 

1965, p.406). The short duration decimetre wavelength 
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continuum bursts, sometimes with fine structure bursts 

superimposed on it, are in most cases associated with a group 

of type III bursts. 

(xi) Directivity and Angular Size 

Type IVA bursts at centimetre wavelengths do not 

exhibit any directivity, but at decimetre wavelengths they 

show slight directivity towards the centre of the Sun 

(Takakura 9 1963) (Fig. 8.2(H)). The diameter of the source 

is 2-4 min of arc (Wild et al., 1963), which is less than 

that of a type I noise storm (Fig. 8.2(C)). 

Type IV emission at metre wavelengths was first 

discovered by Boischot (1957) and was interpreted as a con­

sequence of incoherent synchrotron radiation from electrons 

of energy of a few million electron-volts gyrating in the 

sunspot magnetic field (Boischot and Denisse, 1957). 

Takakura (1960b, 1960c) and Takakura and Kai (1961) used 

the synchrotron radiation theory to explain the whole type IV 

event in different phases and at different wavelengths. In 

order to explain the reverse of sense of polarization, 

without taking account of differential harmonic resonance 

absorption, Takakura (1962) suggested that the centimetre 

wavelength type IV was associated with synchrotron radiation 

from electrons with energy of the order of a few hundred keV 

accumulated above the leading spot while the decimetre wave­

length type IV source was above the following spot. The 
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type IVA bursts at centimetre and decimetre wavelengths are 

considered to have separate sources. Kundu (1965, p.441) 

pointed out that the narrow bandwidth of decimetre wavelength 

bursts cannot be explaine4 as synchrotron radiation; radiation 

from plasma waves may be a possible mechanism. The drift 

bursts that are superimposed on the smooth continuum are 

considered as plasma radiation induced by passage of dis-

turbnnces travelling outward through the solar corona with 

speed - ~c (Young et al., 1961). 

It was suggested by Kai (1964) that the type IVA 

continuum bursts in both centimetre and decimetre wavelength 

regions may be the consequence of gyro-synchrotron radiation 

by energetic electrons moving along a quasi-circular orbit in 

the sunspot magnetic field configurations. The energy of 

radiating electrons responsible for the centimetre and decimetre 

wavelength components are of the order of 100 keV and of 10 keV 

respectively. Hence, using the general expressions of 

emissivity and absorption coefficient for gyro-synchrotron 

radiation in the tenuous plasma (f << f) obtained by 
p 

Kawabata (1964), Kai showed that the polarization character 

and high intensity of the type IVA continuum burst emission 

may be accounted for by the theory of gyro-synchrotron 

emission if the self-absorption as well as cyclotron resonance 

absorption due to the thermal plasma electrons are taken into 

account. It was believed that the high intensity decimetre 
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wavelength component was associated with the low, harmonic 

cyclotron resonance absorption. Kawabata's general ex-

pressions of the emissivity and the absorption coefficient 

were derived on the assumption that the refractive index for 

the gyro-synchrotron radiation is unity. This assumption 

is valid only if we assume that in the type IVA source region, 

the local gyrof requency is much greater than the local 

plasma frequency (i.e. A<<l) such that the frequency of the 

low harmonic gyro-synchrotron radiation by weakly or mildly 

relativistic electrons satisfies the inequality f >> f • 
p 

Alternatively~ one may assume that the energy of the 

radiating electrons is highly relativistic such that the 

maximum gyro-synchrotron radiation occurs at very high 

harmonics. 

However, interpretation of the type IVA emission 

based on either assumption will meet severe difficulties. 

Since under these assumptions, the plasma becomes so tenuous 

to the gyro-synchrotron radiation that the lower harmonic 

cyclotron resonance absorptions are ineffective for electro-

magnetic waves in both x- and a-modes (see Fig. 6.6, Chapter 

VI), the polarization of the type IVA continuum burst emission 

at both decimetre and centimetre wavelengths is expected to 

be extraordinary mode. We shall see later in this chapter 

that the refractive index associated with the maximum 

cyclotron radiation emitted by electrons with energy in the 



range from a few ten to hundred keV departs from unity 

significantly. Moreover, in general~ it is more realistic 

to assume a helical trajectory for the radiating electron:_ 

rather than a quasi-circular orbit. The Cerenkov plasma 

radiation can be the origin of the drifting elements 

superimposed on the continuum burst but obviously cannot be 

considered to be responsible for the wide bandwidth continuum 

since electromagnetic radiations at different frequencies in 

a very wide frequency range cannot be emitted simultaneously 

from a narrow emission layer in the solar corona by means of 

Cerenkov plasma radiation process (cf. Chapter VI and Chapter 

VII). Therefore 5 it is the purpose of this chapter, by 

adopting the generally accepted model for the evolution of 

the flare phenomena (Kundu, 1965, p. 594), to examine the 

possibility that the cyclotron radiation from a helical 

electron stream moving in the lower solar corona is the 

origin of the type IVA burst emission. 

B. Model of The !ype IVA Emission Source Region 

The observed type IVA emission sources rarely 

extends beyond the altitude about 0.06 solar radius above the 

photosphere. Optical observational data indicate that 

in the transition region between the chromosphere and the 

254. 

base of the solar corona, the electron density and the electron 

density gradient are greater than those predicted by the 
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coronal streamer model (several to ten times the Baumbach-Allen 

formula). Ivanov-Kholodnyi and Nikolvskii (1962), from a 

detailed analysis of observational data, obtained the dis-

tribution of electron density with height in the active and 

undisturbed regions of the solar atmosphere (see Section A, 

Chapter IV). Using their observation results, the plasma 

frequency along the active corona from p = 1.005 to 1.043 

is plotted in Fig. 8.3. The curve is smoothly continued by 

employing the 5XBaumbach-Allen formula. 

Since only a small number of the sunspot magnetic 

field lines normal to the photosphere in the umbral area of 

a sunspot can stretch to the outer layers of the solar corona 

forming a narrow magnetic flux tube, many sunspot field lines 

inclining to the radial line of the Sun at an angle at the 

photosphere will not extend to great height 'but curve quickly 

down to the photosphere forming small loops of bipolar sunspot 

magnetic field lines in the most inner layers of the solar 

atmosphere. Taking the maximum field intensity of the 

leading spot to be H = 3,000 gauss, we set up the model for s 

the sunspot magnetic field intensity as shown in Fig. 8.3. 

If the type IVA emission whose frequencies range from 500 to 

10,000 MHz is the result o,f cyclotron radiation from electron 

streams gyrating along sunspot magnetic field lines, the 

region of emission will be less than 40~000-km above the 

photosphere. Within the type IVA emission source region 9 the 
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quantity A varies from a very small value to about several. 

C. Radiation From Electron Streams In Sunspot 

Magnetic Field 

During the occurrence of a very large flare, electrons 

with energy 10-100 keV (occasionally more) in the form of 

electron streams are expelled from the flare region (De Jager, 

1960). Most of these electron streams will be trapped in the 

neighbouring strong sunspot magnetic field and will interact 

with the ambient plasma. Harmonic cyclotron radiations in 

the ordinary and extraordinary modes from stream electrons 

will grow as they propagate through the stream-plasma system. 

Using the model indicated in Section B for the type IVA 

emission source medium, we shall study the characteristics of 

forward normal cyclotron radiation from streams of electrons 

with energy in the range from a few ten to two hundred keV for 

different electron pitch angles 0. In considering generation 

of coherent cyclotron radiation in the x-mode and the o-mode 

by electron streams, we can ~ssume the coronal plasma is cold 

and collisionless. 

(a) Radiation Freguency 

A single electron spiralling along a magnetic field 

line of force radiates electromagnetic waves at different 

frequencies and in different modes in different directions. 
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The relation between the normalized radiation frequency ~ 

and the wave-normal angle 8 is given by the emission equation: 

(8.1) 

where n. is the refractive index for the ordinary wave {j=2) 
J 

or the extraordinary wave {j=l) in the ambient plasma. For 

a cold and collisionless magnetoactive plasma 

In order to find the normalized radiation frequency in a 

particular direction with respect to the magnetic field, 

equations{8.l) and (8.2) musL be solved simultaneously by the 

algebraic or graphical method {Ellis, 1964). The curves 

of refractive index n. against normalized frequency ~ for 
J 

various values of 8 and s > 0 (normal cyclotron radiation) 

from {8.1) and (8.2) are plotted in Fig. 8.4. :Fig. 8. 5 shows 

the simultaneous solutions for ~and e of {8.1) and {8.2). 

From Fig. 8.5~ we find that there are two types of 

simultaneous solutions for ~ and 8: 

(1) the double-frequency solution, i.e. to each 

wave-normal angle there corresponds two 

normalized frequencies; 

(2) the single-frequency solution, i.e. only one 
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normalized frequency corresponds to one wave-

normal angle. 

The double-frequency solution is possible when 

or 

sy < s 
0 

~ =A (o-mode), 

1 

sy < s = ~[1+(1+4A)~] (x-mode). x 

(8.3) 

Whenever conditions (8.3) are satisfied, the radiation is 
an 

emitted within a cone with apex angle 28 and the magnetic c 

field line as axis. The angle 8 is the angle beyond c 

which there is no radiation at all and is termed the cut-off 

angle. For conditions other than (8.3) we have a single-

frequency solution only. We note that in certain cases, 

e.g. for a very large electron pitch angle or ~o(or sx) >> sy, 

there is no simultaneous solution of any type for s and 8. 

For both o-mode and x-mode, the range of the radiation 

frequency is wider for smaller electron pitch angles. 

{b) Power Spectra radiated by a Single Electron 

Corresponding to the values of normalized frequency s 
and wave-normal angle 8 obtained by solving equations (8.1) 

and (8.2) simultaneously, the radiation power by a single 

electron within unit solid angle can be computed by using the 

equation (Liemohn$ 1965): 
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P(8) 
2 2 2 2 w an. 

= e w n.K. [-f?d"' (a)+(a. s13..t./a+a. s11 )J (a)] (l+ - ~ )/ 
J J s y z s nj ow 

(8.4) 

K = (1 + a. 12 )-~ 
j e 

a' = e 
2 2 -1 2 2 

-cos8/[~ +A(nj - 1) ] ~ a.k_ = -~sin8(nj-l)/(A-~ ), 

Js and J~ are the Bessel function and its derivative with 

respect to the argument a = l3~~sin8n./y 9 and n. is the 
J J 

refractive index given by (8.2). Here the wave is assumed 

to be in the form exp(-ik.r+iwt) with wave vector k lying on 

the y-z plane in a Cartesian coordinate system. For electron 

energy E = 50~ 100, 200 keV, A= 0.04~ l~ s=l,2,3 and electron 

pitch angle~= 60°p 45°, 30°, the power spectra radiated by 

a single electron in the o-mode and the x-mode are presented 

in Fig. 8.6. From these spectra, the following points are 

noted: 

(1) For the double-frequency solution, the radiation 

power peaks sharply at wave-normal angles near 8 • c 

(2) For the single-frequency solution and s = 2,3, 

the o-mode power reaches a maximum at wave-normal angles 

0 0 ranging from 50 to 70 , while for the x-mode the emission 
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cone is very broad. 

(3) For the single-frequency solution~ radiation 

power for both the o-mode and the x-mode is inversely proportional 

to the harmonic number. 

(4) For the same set of values of A, s, ~ and E, 

the peak pcwer in the x-mode radiated by a single electron 

is about one order of magnitude higher than that in the o-mode. 

However~ this difference tends to decrease as the electron 

energy increases (Fig. 8.6(d)). 

(5) When the electron energy increases~ radiation 

power in both modes tends to maximize in the direction of the 

electron velocity vector (Fig. 8.6(d) and (e)). 

(c) Excitation of Cyclotron Radiation in the Stream-

plasma System 

It is known that electromagnetic waves emitted from 

gyrating electrons can be amplified in a stream-plasma system 

if the distribution of the stream electrons has a narrow 

momentum spread. Using the classical kinetic approach, the 

radiative instability problem of a helical stream-plasma 

system for the most general cases has been studied in Chapter 

III. Assuming no dispersion of electron momentum components, 

it is found that the rate of growth of the electromagnetic wave 

in a helical stream-plasma system !Imo! is given by 

(8.5) 
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where M and N are defined in (3.9) (Chapter III). 
p p 

Taking a = 10-6 and various values of the other 

parameters, the rates of growth of cyclotron radiation power 

in the o-mod~ and the x-mode are illustrated in Fig. 8.7, 

Fig. 8.8 and Fig. 8.9. The normalized frequency ~ and the 

wave-normal angle e of the cyclotron radiation satisfy the 

emission equation (8.1). These graphs indicate: 

(1) With the same values of fH' s and cr, radiation 

power in the x-mode grows with time at a rate similar to that 

for the o-mode radiation power when A is small, but as A 

increases the growth rate for the o-mode power exceeds that 

for the x-mode power (Fig. 8.7 and Fig. 8.9). 

(2) For the single-frequency solution and for both 

modes~ the growth rate maximizes at the wave-normal angle 0 

0 0 in the range from 50 to 70 when the electron pitch angle 

0 0 ·< 30 and s > 1. However~ the rates of growth for the 

second and the third harmonic radiations in both modes tend 

to maximize in the direction transverse to the static magnetic 

field line as 0 increases (Fig. 8.7(a)-(f)). 

(3) In the case of a single-frequency solution for 

the x-mode and the o-mode, the growth rate for the third 

harmonic radiation does not exceed that for the second harmonic 

radiation if 0 < 30° and E < 100 keV. But the third harmonic 

radiation would grow more rapidly than the corresponding second 

harmonic radiation when the stream electrons have either pitch 
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0 angle 0 > 30 or electron energy E > 100 keV (Fig. 8.7 

(a) - (c); Fig. 8.8 (a) - (b)). For higher electron energy, 

the maximum coherent cyclotron radiation occurs at higher 

harmonics of the Doppler-shifted gyrofrequency (Fig. 8.8 and 

Fig. 8.9). 

(4) For a given harmonic number~ the cyclotron 

radiation in the subluminous mode (i.e. x-mode and o-mode) 

emitted in the forward direction with respect to the electron 

guiding centre motion will grow more rapidly than that emitted 

in the backward direction (Fig. 8.7 (f) and (g)). 

(5) As the electron energy tends to be highly 

relativistic~ the coherent cyclotron radiation tends to 

maximize in the direction of the instantaneous electron 

velocity vector (Fig. 8.8). 

(6) In Fig. 8.10, the rates of growth for the cyclotron 

radiation in the x-mode and the o-mode in the stream-plasma 

system are shown as functionsof normalized emission 

-6 frequency for A= 0.04, 1.5, cr=lO , E=50,100,200 keV, 

0 0 0 0 s=2,3, 0 = 30 ~45 ,60 and for wave-normal angle a ~ 90 • 

The corresponding rate of growth for the Cerenkov radiation in 

the plasma mode is also illustrated as a function of normalized 

combination frequency ~ = 2~ch' ~eh being the normalized 

Cerenkov plasma wave frequency (dash-dotted lines). Firstly 

we observe that the frequency bandwidth of the coherent cyclotron 

radiation in the forward subluminous mode increases with 
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decreasing electron pitch angle. Secondly~ the maximum 

coherent cyclotron radiation would be emitted at the frequency 

lower than the third harmonic of the gyrof requency only when 

the electron energy is less than 100 keV and when electron 

pitch angle is greater than 60°. 

(7) Finally, comparing Fig. 8.7 with Fig. 8.6, we 

find that in general the cyclotron radiation grows most 

rapidly in the direction close to the direction in which the 

maximum single electron cyclotron radiation power is emitted. 

Therefore~ when the electron energy is less than 100 keV, 

the main coherent cyclotron radiation power in both modes is 

emitted at the second harmonic Doppler-shifted gyrofrequency 

and within a cone whose axis is along the wave-normal 

direction a ~ 65°. The ratio of the x-mode power to the 

o-mode power (denoted by r) does not exceed ten. According 

to the discussion given in (1), the ratio r will decrease with 

increasing value of A. Hence, we conclude thdt the x-mode 

radiation power will predominate when either A is small or 

the electron energy is large. 

D. Resonance Absorption at The First Three Harmonic Laye~s 

Since the radiating electron stream is assumed to 

move along the strongest sunspot magnetic field line, the 

cyclotron radiation at the s-th harmonic of the Doppler-

shifted gyrofrequency will encounter the harmonic resonance 
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Fig 8.1f Varmt10n of harmonic resonance absorpt10n coefficient (q/j) for o-mode and x-mode 
with wave-normal angle 0 for various values of X, f3r = 10-2, and (a) s = 1, (b) s = 2, and 

(c) s = 3. 

TABLE 8·1 
POWER LOST AND TRANS~IITTED BY 0-WAVES AND X-WAVEb OF VARIOU& FREQUENCIES ON PASSING 

THROUGH THE FIRST THREE HAR~IONIC RESONANCE ABSORPTION LAYERS 

J 
Power Loss R1 s p 

l\IHz) 
8 x (dB) (%) 

'· l1 J - 9 J = 1 r=8 r = 5 r = 8 r = 5 - -
--
6000 J 0·0045 l ·04(3)* I- 1(-104) -

2 J ·87(2) 8(3) 2( - Hl) 1(-800) 
3 2·34(-1) 5·6 O<i(-1) 2·76(-1) 2·32 l ·45 40 18·4 

5000 l 0·0064 l ·2!l(3) - 1(-129) -
2 2·55(2) !l·!l(3) 3·12(-26) l(-O!JO) 
3 2·8.:i(-1) 6 0 ·36(-1) 2·5(-1) 2·13 l ·34 36·2 14·5 

3500 l 0 ·0070 l · 1(3) - 1(-110) -
2 2·52(2) 8 ·5(3) 6·3(-26) 1(-850) 
3 2·3(-1) 7·35 0·5(-1) 1·84(-1) 1·55 0·87 21·6 -7·0 

3000 1 0·018 l ·!l8(3) - 1(-198) -
2 4. !;;(2) l · 62(4) 3·16(-42) 1(-1620) 
3 5·04(-l) !Jo!) 8·0(-1) l ·02(-1) O·!l2 0·57 -4·15 -27·4 

2000 I 0·04 3· 12(3) - l(-:Jl2) -
2 ()(2) 2·G4(4) 1(-60) l(-2(i40) 
:J 7·8(-J) I .,;c;( 1) 8 3fi(-l) 2·71i(-2) 0·2(i4 0· 16 -58· l -72·5 

1000 l O· lU (i·!i(:l) - 1(-G(iO) -
2 2·4(3) (i(4) l(-240) 1(-6000) 
:1 I .r; :Hi2(1) 7(-1) :l(-3) 0·0344 0·022 -!l3 -!J,)·5 

* Eaoh numbor m paronthcbos Jti tho common log11r1t.hm of Lho mult1phor; l · 04(3) n1eans 
l ·04 x 103. 1 
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absorption layers f = (s+n)fH(n = 1,2s3s••> on leaving the 

radiation source. The efficiency of the s-th harmonic 

resonance absorption is specified by the coefficient 

q = (q/k) n.w/c (per unit phase path length), (8.6) 
s J 

where for s = 1,2,3,(q/k)s is given by (6.5) and (6.6). 

The dependence of the resonance absorption coefficient (q/f) 

on wave-normal angle a for electromagnetic waves in both 

-2 modes is shown in Fig. 8.11 for ST= 10 ~ s = 1,2,3 and 

for various values of X. For all values of X, the 

resonance absorption is comparatively small when the wave-

normal angle e is less than 30°. For the same harmonic 

number s but higher wave frequency, resonance absorption will 

take place at a layer with stronger magnetic field and hence 

stronger is the resonance absorption. However~ in this 

case, X becomes much smaller for the cyclotron radiation at 

higher frequencies if the electron density gradient is much 

less than the magnetic field intensity gradient. As a 

result~ the resonance absorption for the same harmonic number 

s decreases with increasing frequency. 

The power loss on passing through the resonance 

absorption layer given by (6.8) can be obtained by multiplying 

the value of (q/f) given in Fig. 8.11 by the effective thickness 

of the layer and the wave frequency. For the lower active 
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-2 9 solar corona ST ~ 10 and ~ = 10 cm, the effective thickness 

f h b . 1 L 6Xl06 cm if 8_ -· 65° o t e resonance a sorption ayer ~ ·-

and n. ~ 1. 
J 

Since the electron density gradient in the solar 

corona is much smaller thap the magnetic field intensity 

gra~ient, the plasma frequencies in the first three resonance 

absorption layers for wave frequencies 6,000 - 1,000 MHz are 

similar. Thus, for simplicity, we take f = 400 MHz (see 
p 

Fig. 8,3) and compute the power loss 1. (in decibels) for the 
J 

extraordinary and ordinary waves at frequencies 6,000,5,000, 

3,500, 3,000, 2,000 and 1,000 1'1Hz on passing through the 

first three harmonic.resonance absorption layers (Table 8.1). 

If I. and I. are the powers of the jth normal wave before 
JO J 

and after passing through the s-th harmonic resonance 

absorption layer respectively, the fraction of power emerging 

from this layer is 

R. = I./Ij = 10-Ij/lO 
J J 0 

(8.7) 

The values of R. are shown in Table 8.1. 
J 

For all cases, 12 is 

less than 11 and hence R2 is greater than R1• We note that for 

frequencies 6000 - 1000 MHz in the lower solar corona the 

first two harmonic resonance absorption layers are opaque to 

both extraordinary and ordinary waves. Although the third 

harmonic resonance absorption for the extraordinary wave is 

larger than that for the ordinary wave, for a sufficiently 
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small value of X (i.e. for a sufficiently high frequency or a 

very low electron density) there is an appreciable fraction of 

extraordinary radiation power emerging from the layer f ~ 3f H 

which is transparent to the ordinary wave. As the X value 

increases gradually, the radiation power in the x-mode is cut 

off and only the o-mode wave will carry significant power on 

leaving the layer f ~ 3f H. 

E. Escape of Cyclotron Radiation from The Lower Solar Corona 

After studying the characteristics of forward normal 

cyclotron radiation in both modes from electron streams and 

the propagation of electromagnetic waves in the solar corona, 

we can predict the mode and the degree of polarization of the 

emission observed on the Earth. 

Assuming a spherically symmetrical electron density 

distribution for the solar atmosphere (Fig. 8.3) and neglecting 

the effect of the sunspot magnetic field, we find that the 

true escape level for both modes at a particular frequency is 

higher than the plasma level X = 1 at the limb (Jaeger and 

Westfold, 1950), and so radiation emitted from a limb sour~e 

may not be able to escape from the solar corona. This is 

demonstrated in Fig. 8.12 for waves at the frequencies 400 

and 800 MHz. It can be seen that sources of lower frequency 

emissions will mostly concentra~e in the central area of the 

solar disk. 



Owing to the strong resonance absorption at the layer 

f ~ 2fH' we can assume that the type IVA emissions are emitted 

from a layer above the second harmonic resonance absorption 
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level. Taking into account the characteristics of the coherent 

cyclotron radiation mentioned in Section C and the effect of 

differential resonance absorptions for the x-mode and the o-mode 

waves in the solar corona, it can be found that the x-mode 

waves emitted by electron streams would be of observable 

intensity after escape from the solar corona in the following 

circumstances. 

(a) The x-mode radio emission observed on the Earth 

is the second harmonic cyclotron radiation emitted by a stream 

of electrons of energy less than 100 keV and with small pitch 

0 angle (less than 30 , say). The source must be situated at 

a layer where A is very small such that f >> f at the third 
p 

harmonic resonance absorption layer. 

(b) The observed x-mode radiation corresponds to 

the third (or fourth) harmonic normal cyclotron radiation in 

the x-mode from a stream of electrons having energy higher 

than 100 keV and with electron pitch angle either smaller 

0 or greater than 30 • Again 9 the value A at the source region 

should be small. For if A is not very small in the source 

region,then the maximum third harmonic cyclotron radiation in 

the x-mode is emitted at frequencies less than 3fH by electron 

streams with large pitch angle and the third harmonic resonance 
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absorption layer will prevent the x-mode radiation from escaping. 

Moreover, the rate of growth for the normal cyclotron radiation 

in the a-mode exceeds that for the x-mode when A is greater 

than unity (Fig. 8.7(e) and (g); Fig. 8.9). 

(c) The observed x-mode radiation may also be 

attributed to the fourth harmonic normal cyclotron radiation 

by streams of electrons with energy lees than 100 keV but 

with pitch angle as large as 60°~ since in this case the rate 

of growth for the fourth harmonic is comparable to that for 

the second harmonic (see Fig. 8.8 (b)', and the fourth 

harmonic resonance absorption is insignificant. 

Thus, observability of the normal cyclotron radiation 

in the x-mode generated by the electron stream moving in the 

solar corona depends on the characteristics of the magneto-

active coronal plasma and the nature of the electron stream. 

The source position and the source size of the 

observed type IVA emission reveal that the emission source 

covers only very small radial distance and can emit a very 

wide range of frequencies within a narrow wave-normal angle 

interval ~e. Referring to Fig. 8.5 and Fig. 8.10, this 

suggests that the pitch angle of the stream electrons responsible 

0 for the type IVA emission is small (less than 30 , say). 

It is hence inadequate to interpret that the observed x-mode 

radiation at centimetre wavelengths is emitted from a source 

under the condition (c). 
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With small electron pitch angle but with energy 

greater than 100 keV, the third and the fourth harmonic 

cyclotron radiations in the x-mode are of gre~test intensity 

and will travel away from the solar corona without being 

absorbed significantly. From Fig. 8.3 and Fig. 8.5,we.-see that if 

the source is situated within the flare region 9 the actual fre­

quencies of the third or fourth harmonic normal cyclotron 

radiation in the x-mode range from 15,000 MHz to 7,000 MHz. 

It is clear that these radiations will form the part of type 

~~.~o~tinuum emission at centimetre wavelengths. For s=3 

(or 4), the normal cyclotron radiation power in the x-mode 

emitted by a single electron is about one order of magnitude 

higher than the corresponding radiation power in the o-mode. 

Then, if A << 1 in the source region, the continuum emission 

at high frequencies is expected to be fairly strong~polarized 

in the right-handed sense, referring to the magnetic polarity of 

the leading sunspot in the northern hemisphere. However, the 

type 'IVA burst emission originates from a source lying in the 

transition region between the chromosphere and the base of 

the solar corona where the magnetic field configuration of a 

bipolar sunspot group is extremely complicated. The 

random orientations of the sunspot magnetic field lines of 

force in this region may destroy completely or partly the 

polarization of the radiation emitted from this region. Here 

we should mention that according to Kundu's uomenclature, only 



279. 

those intense centimetre wavelength outbursts but not the weak 

emission of thermal origin are regarded as a component of type 

IVA burst emission. The observed centimetre wavelength 

component of the type IVA burst emission may consist of a 

part of the random polarized bremsstrahlung. As a result, only 

weakly right-handed polarized type IV radio bursts at centimetre 

wavelengths are observed. 

We now compare the second harmonic radiation power in the x-

node escsping fro~ the corona with that in the o-~ode. As 

we have shown that the intensity of the x-mode cyclotron 

radiation is greater than that of the o-mode particularly 

when A is small. However, the predominant cyclotron radiation 

observed on the Earth will not be in the x-mode unless the 

value of X at the layer f ~ 3f H in the solar corona is small 

enough such that the third harmonic resonance absorption is 

not very effective. 

-2 0 ST = 10 » a ~ 65 and r = 5, where r is the ratio of the x-mode 

power to the a-mode power before passing through the layer 

f ~ 3fH (Section C (c), point (7)), the ratio S of the 

x-mode power to the o-mode power leaving this layer is 

greater than unity when the frequency f is greater than 

3,000 MHz. This is illustrated in Table 8.1. For the 

emission at decimetre wavelengths (f ~ 3 9 000 MHz) emitted 

from a source with larger A value» only the a-mode is 
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observed en the Earth, firstly because the growth rate for 

the o-mode exceeds that for the x-mode (Section C (c), point (1)) 

and secondly because of the increase in the value of X, the 

effect of the third harmonic resonance absorption becomes 

great enough to prevent the x-mode wave escaping from the 

solar corona. This explains why the type IVA bursts are 

polarized in the o-mode at decimetre wavelengths but in the 

x-mode at the centimetre wavelengths (leading-spot hypothesis). 

In general, cyclotron radiations in both modes 

emitted by spiralling electron streams are elliptically 

polarized but owing to the propagation effect, the high 

frequency radiation in either modes becomes circularly 

polarized except at e ~ 90° in the boundary region (Piddington 

and Minnett~ 1951). For two independent beams of radiation 

polarized in opposite senses~ the observed degree of circular 

polarization of the resultant radiation is defined by 

p = (le - 1°)/(Ie + 1°) = (S-1)/(S+l), (8.8) 

where le and 1° are the intensities of the x-mode and the 

o-mode waves escaping from the solar corona respectively 

e o 
and S = I /I • Following the hypothesis put forward by 

Weiss (1963b)~ in the northern hemisphere left-handed 

polarization corresponds to emission in the ordinary mode if 

we assume that the sense of polarization is determined by the 

magnetic polarity of the leading spot. Thus the resultant 
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radiation is left-handed polarized when P is negative and is 

right-handed polarized when P is positive. 

we have 
(12-11)/10 

S = rxlO 

From (8.7), 

(8.9) 

The sign of P changes at S=l, that is, when the condition 

(8.10) 

is satisfied. For the second harmonic forward emission, 11 

and 12 are the power losses in decibels due to absorption at 

f ~ 3£H and r < 10. In other words, for a given value of 

r (> 1) and under typical active coroua conditions, there 

exists a frequency such that (8.10) holds. We call this 

frequency the transition frequency ft. 

It has been shown in Section C that the greatest 

second harmonic radiation intensities in the x-mode and in 

the o-mode occur at similar wave-normal angles a ~ 65° and 

at similar frequencies. Thus the radiations in both modes 

will travel outward along nearly identical paths. Again 

0 -2 
taking 0 = 65 , ST = 10 and fp ~ 400-450 MHz, and with the 

help of Fig. 8.9 and equation (8.8~, we can calculate the 

degree of polarization of the resultant radiation at various 

frequencies (Table 8.1). The dependence of the degree of 

polarization on frequency is illustrated in Fig. 8.13. 

Under certain active corona conditions, two points can be 
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observed from Fig. 8.13: (1) forward normal cyclotron 

radiation from electron streams changes the sense of polarization 

at some frequency between 2,000 and 4,000 MHz owing to the 

differential resonance absorption effect; (2) the degree of 

polarization is stronger in the decimetre w:urelen:;th region than 

in the centimetre wavelength region. These properties are 

completely in agreement with the observational data (Tanaka 

and Kakinuma, 1959; Kundu, 1965, p.248). 

F. The Drift Bursts superimposed upon the Continuum Burst 

at Decimetre Wavelengths 

So far we have only considered coherent generation 

of normal cyclotron radiation in the x-mode and the o-mode by 

an electron st~eam (or electron bunch) with narrow momentum 

spread in a cold and collisionless magnetoactive plasma. 

However, when the thermal motion of the plasma electrons is 

taken into account, the weakly damped plasma waves at fre­

quencies near the plasma resonance frequencies can also be 

excited by the same electron stream. It has been found that 

the weakly damped plasma wave is strongly emitted in the 

direction of the electron guiding centre motion and at fre­

·quencies close to the plasma frequency by the electron stream 

through the Cerenkov process (Chapter II). Part of the 

Cerenkov plasma wave energy can be converted into electro­

magnetic radiations by the small-scale thermal fluctuations 

• l 
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existing in the solar corona (Chapter V and Chapter VI). 

In general~ owing to resonance absorption 9 the electromagnetic 

radiation arising from transformation of Cerenkov plasma 

waves can be observed on the Earth provided that the emission 

source lies at the layer where the value of A is greater than 

unity. Referring to Fig. 8.3. within the type IVA burst 

emission source region, A does not exceed three and only the 

combination radiation at the normalized frequency 

-~ ~ c + ~ can escape from the solar corona. S-S~ S+ Although 

the rate of growth for the Cerenkov plasma wave is much 

greater than that for the second harmonic (or third harmonic) 

cyclotron radiation {Fig. 8.10(a)) 9 only a small fraction 

of the Cerenkov plasma wave energy can be transformed into 

the electromagnetic radiation by the coherent thermal 

fluctuationso As a result 9 only the combination radiation 

at the normalized frequency t;, ~ 2v'Awould be observable on 

the Earth. The polar diagram shows that the combination 

radiation at normalized frequency t;, ~ 2./A is confined 

within a cone whose axis is almost transverse to the 

static magnetic field and whose half-apex angle is about 30° 

to 40°. If the intensity of the combination radiation at 

k 
the normalized frequency t;, ~ 2A 2 exceeds that of the second 

harmonic normal cyclotron radiation appreciably~ the com-

bination radiation would appear in the dynamic spectrum as 

narrow bandwidth fast drifting bursts superimposed on the 



broad band continuum at the decimetre wavelengths. Taking 

into account the escape condition for the combination 
1 

radiation at the normalized frequency ~ ~ 2A~, it can be 

seen that the drift bursts occur only in the decimetre 

wavelength region (cf. Chapter VIs Section D). 

The low drift rate of the intermediate drift burst 

compared with the fast drift burst is probably due to the 
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non-radial trajectory of the electron guiding centre motion. 

It is possible that during the early stage of the explosion 

of a large solar flare, a number of.electron bunches (or 

streams) are ejected from the flare region simultaneously 

and trapped in the near-by bipolar sunspot field con-

figurations. The Cerenkov radiation in the plasma mode can 

be generated by these electron bunches concurrently and 

eventually observed on the Earth as a wide bandwidth continuum 

emission superimposed with variabilities at the decimetre 

wavelengths. The complexity of the dynamic spectra of the 

type IVA bursts at the decimetre wavelengths reveals the 

complication of the magnetic field configurations of a bi-

polar sunspot group and the intensiveness of the explosion 

of a large solar flare. 

G. Interpretation of the !ype IVA Burst Emission 

The type IVA emission at centimetre and decimetre 

wavelengths is the first phase of the whole type IV event. 



It starts simultaneously with the explosive phase of a flare 

that is of importance 2 to 3+ and usually covers a large 

fraction of the umbral area of the sunspot group (Kundu, 
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1965, p.423). During the occurrence of the flare phenomenon, 

electrons with energy up to 100 keV or more are ejected from 

the flare region in various directions in the form of 

electron steeams (De Jager, 1960). Those ejected in the 

forward direction radially will travel in the neutral plane 

or along the sunspot magnetic field line and will cause type 

III bursts by plasma radiation (Chapter VI). Most of these 

electron streams (or bunches) are trapped in the neighbouring 

stronger sunspot magnetic field configuration forming helical 

streams with narrow momentum spread. They emit electromagnetic 

waves at different frequencies in both x-mode and a-mode by 

cyclotron mechanism, giving rise to type IVA bursts 

(Fig. 8.14(a)). For certain large flares, such as those 

associated with the type IV phenomena, fragments of plasma 

clouds with hydromagnetic shock wave front are expelled 

intermittently. Each plasma cloud with the shock front 

ahead moves through the active solar corona with a speed 

~ 1,000 km/sec. Arriving at some region where the electron 

density is sufficiently low (f ~ 100 MHz), the shock front 

excites the longitudinal oscillation, which in turn is con­

verted into transverse electromagnetic radiation by incoherent 

scattering and combination scattering~ and is finally observed 
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as type II bursts (Fig. 8.14(b)). Therefore the type IVA 

burst emission occurs several minutes earlier than the type 

II burst emission (Section A(x)). 
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The outermost fie]d lines of the two bipolar pairs 

are highly disturbed by the plasma and merge together forming 

a single loop of a magnetic field line of force (Fig. 8.14(b)). 

Meanwhile, due to the high conductivity of the plasma cloud, 

this newly formed field line is frozen in and brought to a 

level as high as a few solar radii above the photosphere by 

the moving plasma cloud (Fig. 8.14(c)). Some more energetic 

electrons inside this cloud are accelerated to intermediated 

relativistic energies by a Fermi-like mechanism and gyrate 

along the frozen-in field line; radiation from these 

accelerated electrons is responsible for the type IVm 

emission (McLean? 1959; see also the discussion in Chapter 

IX Section D). At a later stage? this stretched field 

line remains in a steady position and eventually the type 

IVm emission may develop into a type I noise storm (Fig. 

8.14 (d)). 

The importance of a flare may be regarded as a 

rough measurement of the speed and quantity of plasma clouds 

ejected from the flare region. For a flare of lesser 

importance, the speed of the plasma cloud would be so low 

that no shock front would be formed or that the associated 

shock front would not be strong enough to excite a type II 
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burst. Hence type IVA bursts associated with a less 

important flare could occur without type II and type IVm 

bursts. On the other hand, type IVm bursts would always 

associated with type IVA and type II bursts. This is 

consistent with the observational data. 

The quantitative studies of the generation of 

electromagnetic waves by electron streams and the conditions 

for escape of the cyclotron radiation from the active solar 

corona in previous sections lead to the following conclusion. 

The centimetre wavelength component of the type IVA continuum 

burst emission is attributed to the third and the fourth 

harmonic cyclotron radiations by streams of electrons with 

energy about 100 keV spiralling along the spot field lines 

in a layer where A<< 1 (Section E (b)). The second 

harmonic cyclotron radiation in the o-mode and the Cerenkov 

plasma radiation at the frequency f = 2£ emitted by streams 
p 

of low energy electrons (about ten to several ten keV) are 

associated with the continuum bursts superimposed with fast 

drifting elements at decimetre wavelengths. Then type IVA 

bursts can be explained as follows. 

(a) Frequency Range and Frequency Drift 

Assuming the model for the lower active corona as 

shown in Fig. 8.3, the lowest S'niuiou frequency of the broad 

band second harmonic radiation can range from 10,000 to 500 MHz. 



The low frequency cutoff is either due to the limit of the 

intensity of the bipolar field line or to A being greater 

than four. For intense narrow bandwidth emission, A must 

be greater than unity and the drift bursts are expected to 

occur in the frequency range from 500 to 2,000 MHz. 

Therefore the variabilities occur only in the decimetre 

wavelength region. 

Due to the large gradients of electron density 

distribution in the transition region, the combination 

radiation caused by the mildly relativistic electron stream 

can drift through a wide range of frequencies within a very 

short time interval. For electron stream with Sit~ 0.2 

travelling from p = 1.01 to p = 1.06 radially, the drift rate 
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of the combination radiation in the frequency range 500 - 2,000 

2 3 MHz will vary from sx10 to sx10 MHz per sec. Since the 

decimetre wavelength burst emission sources showed only 

slight directivity towards the centre of the solar disk, 

electron streams responsible for the emission of drift bursts 

at decimetre wavelengths would travel along a non-radial 

trajectory so that drifting bursts can also be emitted from a 

source near the disk centre (cf. Fig. 7.7 and Chapter VII 

section G(2)). Hence the observed drift rates will be much 

smaller than those estimated above. The extremely slow 

drift occurring in a few decimetre wavelength continuum 
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bursts is probably due to the decrease of magnetic field 

intensity in the source (Takakura~ 1963). This is supported 

by the optical observation that a decrease in the magnetic 

field gradient and sometimes in the magnetic field energy 

occurs during a flare (Severnyi, 1966). 

(b) Duration and Bandwidth 

Whenever the single-frequency solution condition 

is satisfied for the generating process, the second harmonic 

emissions in both modes have a broad bandwidth and a wide cone 

of emission. Many such broad band emissions from the low 

level of the active corona will superimpose upon each other 

to form a long-lived broad band continuum in the centimetr~ and 

decimetre wavelength regions. For the same electron energy, 

pitch angle and the value of A, the actual half-power band­

width is proportional to the local gyrofrequency and hence 

the centimetre wavelength bursts have broader bandwidth. 

The narrow bandwidth combination radiation at decimetre 

wavelengths are grouped together and superimposed on the 

background continuum, appearing as the fine structures or 

patchiness in the dynamic spectrum. The complexity of the 

spectral appearance of the type IVA bursts at decimetre 

wavelengths has been explained in Section F. 

The electron streams trapped in the sunspot magnetic 

field configuration can remain there for a certain time but 

the narrow momentum spread cannot last for a period as long 
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as one hour owing to diffusion of velocity of the stream 

electrons. Thus the long duration of type IVA burst emission 

should be attributed to the continuous expulsion of energetic 

electrons from the flare region. The long duration observed 

in the decimetre wavelength region may be the result of high 

frequency extenoions of type IVm emission (Smerd, 1964). 

(c) Polarization 

The change in polarization modes of type IVA bursts 

is due to differential harmonic resonance absorption. This 

has been discussed in detail in Section E. It should be 

mentioned that the transition frequency depends on the 

lower corona conditions, i.e. electron density and magnetic 

field intensity gradient. 

(d) Angular Size and Directivity 

Michard (1963) indicated thatt!:>.e probability of 

a flare with type IV bursts or a polar blackout increases as 

the distance between spots decreases. Also the type IVA 

bursts are emitted at a low altitude in the corona. Hence 

the diameter of a type IVA emission source is comparatively 

small. 

Since the decimetre wavelength continuum bursts are 

considered to be associated with the second harmonic cyclotron 

radiation in the o-mode emitted from a layer where A > l(A=3, 

say) the frequencies associated with the second harmonic 

cyclotron radiation of greatest intensity ~m ~ 2 are close to 
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the local plasma frequency, i.e. ~ ~IA. m The second 

293. 

harmonic cyclotron radiation in the o-mode emitted from a limb 

source may not be observed (Section E). On the other hand, 

the emission frequencies of the third (or fourth) harmonic 

forward cyclotron radiation in the o-mode and the x-mode 

emitted by electrons with energy ~ 100 keV greatly exceed 

the local plasma frequency when A is very small (A<< 1~ say). 

Consequentlys only the decimetre wavelength continuum bursts 

would show slight directivity toYards the centre of the 

solar disk. 

(e) Intensity 

The second harmonic cyclotron radiation in both 

modes suffers significant third harmonic resonance absorption 

on propagating outwards through the solar corona. That 

is, the intensity of the type IVA bursts at decimetre wave-

lengths will be normally less than that at centimetre 

wavelengths (Kundu, 1965, p.245). 

H. Conclusion 

Adopting the current model for the solar flare 

evolution, type IVA emission is well accounted for by the 

Doppler-shifted cyclotron radiation theory. In spite of 

their distinct source characteristics~ the type IVA and type 

IVm bursts can result from the explosion of the same large 

flare above a complex sunspot group. Radio and optical 
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observations during previous solar cycles lead to the conclusion 

that there are two phases of fast electrons created during a flare 

period (Wild et al., 1963): (1) a succession of bursts of 

electrons ( - 100 keV) proJuced by conversion of magnetic 

energy into kinetic energy owing to plasma instability in the 

magnetic neutral region, and (2) thermal electrons 

accelerated to higher energies by the magnetohydrodynamic 

shock wave front through a Fermi process. The second phase 

is initiated by the first and occurs only in large flares 

associated with type IV phenomena. During the occurrence of 

a very large flare, the electrons of the first phase released 

from the flare region cause type III~ V and IVA burst 

emissions; while those of the second phase arising from the 

* ejection of a plasma cloud radiate type IVm bursts , and the 

associated magnetohydrodynamic shock wave front excites type 

II emission. All these nonthermal radio emissions are 

associated with the same large flare and appear consecutively. 

A satisfactory interpretation of the type IVA 

burst emission event as the consequence of normal cyclotron 

radiation and Cerenkov plasma radiation by electron streams 

moving in the solar corona requires the following as$umptions: 

(1) The plasma frequency is much smaller than the 

gyrofrequency in most part of the type IVA burst emission 

* A discussion on the origins of the type V and type IVm 

burst emissions is given in Chapter IX. 
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source region (i.e. A<< 1). 

(2) The pitch angle of the radiating electron 

0 is less than 30 • The energy of the radiating electron 

ranges from a few tens of keV to slightly higher than 100 keV. 

Optical observations show that the intensity of the 

sunspot magnetic field at the photosphere can reach as high 

as 4i000 gauss (Bray and Loughheadi 1964) and decreases 

with increasing height above the photosphere quickly in the 

chromosphere and at the base of the solar corona; in term 

of frequency, the gyrofrequency over a large sunspot would 

cross below the plasma frequency near 200 to 300 MHz 

(Wild et al., 1963). The sunspot magnetic field intensity 

decreases slowly at greater heights and some of the field 

lines can extend to the height about one solar radius above 

the photosphere (Severnyi, 1966). Thus, the model for 

the type IVA emission source given in Fig. 8.3 and the 

assumption (1) are appropriate to these optical observational 

data. 

The time of start of the type IV bursts at the 

centimetre and decimetre wavelengths has been found to be 

co-incident with the explosive phase of a solar flare and 

almost co-incident with a group of type III bursts (see 

Fig. 8.2 (D)). We believe that the streams or bunches of 

electrons responsible for the type III and type IVA burst 

emissions are produced in the same manner during the period 
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of the explosion of a large solar flare in the transition 

region. The streams or bunches of electrons accelerated in 

the neutral plane bevNeen two spot fields of opposite polarity 

would be trapped in the ne~r-by strong bipolar spot field 

configuration or along the neutral plane. Thus, it seems 

likely that the electron streams produced in this manner 

would be trapped in the field configuration with small pitch 

angle. In fact, Stewart (1965), using the type III burst 

data, showed that the electron stream travelled through the 

solar corona with fairly constant speed - 0.2c - 0.6c 

1 (average - 3 c) and pointed out that the electron streams were 

0 rarely ejected at angles larger than 30 to the radial 

direction. So the assumption (2) is also realistic. 

With the limited optical and other radio observational 

data associated with the explosion of a solar flare, the 

type IV burst emission at centimetre and decimetre wavelengths 

can be explained as the consequence of the excitation of 

cyclotron radiation in the subluminous mode and the Cerenkov 

radiation in the plasma m9de by electron streams in the 

active solar corona. Interpretation of the type IVA burst 

emission event on the basis of this theory can lead to the 

understanding of the physical condition of the base of the 

active solar corona. 



CHAPTER IX 

SYNCHROTRON RADIATION AND SOLAR 

CONTINUUM RADIO EMISSIONS 

A. Introduction 
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So far we have considered the generation of electro­

magnetic radiation by mildly relativistic electrons moving in 

the solar corona. However, relativistic electrons with 

energies up to about 8 MeV were observed at the Earth (Cline 

and McDonald, 1968a). These relativistic electrons, 

either accelerated near the flare regions or accelerated at 

the outer layers of the solar corona, will give'rise to the 

synchrotron radiation which would eventually be observed 

as a wide bandwidth smooth continuum. 

In using the theory of synchrotron radiation in the 

interpretation of radio emissions from the solar corona, the 

effects of the medium on the radiation process, namely the 

reabsorption and Razin effect, have to be taken into account. 

Previous theories of the solar radio emissions on the basis of 

incoherent synchrotron radiation in the vacuum» in general, are 

not satisfactory. In the present chapter, we study the 

synchrotron radiation from an ensemble of monoenergetic re­

lativistic electrons. The possibility of the synchrotron 

radiation as the source of some wide bandwidth solar radio 

emissions is discussed. 
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In deriving the theory of synchrotron radiation in this 

chapter~ we make the following assumptions: 

1. The ambient plasma is cold and collisionless. 

2. The distribution function for the relativistic 

electrons is stationary and uniform 5 i.e. £ {p) (or f (E)) is 
0 0 

a function of electron's momentum (or electron's energy) only. 

3. The number density of the radiating electrons is 

much smaller than that of the ambient plasma, so that the 

refractive index for the wave remains unchanged in the presence 

of the radiating electrons and the electrons radiate independently 

of one another. 

B. Incoherent Synchrotron Radiation from A System of 

Re~_ativistic Electrons 

Let us assume the electromagnetic wave emttted by an 

electron varies as exp(-ik.r+iwt) 5 where the wave vector k 

lies on the y-z plane of a Cartesian co-ordinate system {Fig. 

9.1). For sufficiently high frequencies such that s2 >> 1 

and s2 
>> A~ the magnetoactive plasma tends to be isotropic 

and the transverse electromagnetic wave propagates with the 

phase velocity v = c/n, where 
p 

2 2 
n = 1 - A/s 

and the wave group velocity is g~ven by v v 
p g 

2 =- c .• 

In this case 7 the single electron emissivity tensor 

(9 .1) 
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Fig.9.1. Coordinate system 

for the synchrotron radiation. 
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for the synchrotron radiation will be (Appendix C) 

oo 2 2 ( B2J,2 = \ e w n ~ s 
l 2'1Tc 

s=l if3 J J, (cos8-nBu) 
:J. s s nsin8 

-if3 J J'(cos6-nBtt' 
:.i. s s nsin8 

J2 (cos8-nf3" r 
s ns:tne 

(9 .2) 
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2 2 -k 
.where yv = (1 - B~ - B;;> 2 is the Lorentz factor. J and Jv 

s s 

are the Bessel function of s-th order and its first derivative 

with respect to the argument X = y 9k~v~/~. The trace of 

nij(p} is the mean spontaneous radiation power emitted by a 

single electron at the frequency w per unit frequency 

interval per unit solid angle at any direction, i.e. 

n11 and nz2 are the spontaneous radiation power with the two 

" "' principal polarization directions a1 and e2 (Fig. 9.1}. 

In Fig. 9.2, the quantities n11~ n22 and ln12I are 

plotted as a function of wave-normal angle for 0 = 60°, 

y' = 10 9 25 (electron energy E ~ 4.5, 12 MeV respectively} 9 

A = 15 9 fH = 10 MHz and normalized frequency ~ = 160 (the 
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frequency where n(p) exhibits its maximum). It is clear 

that n11 makes the main contribution to n(p) and ln12 1,n22 

will be comparable with n11 only in the wave-normal direction~ 

where je - 01 becomes large (> 4°, say). Since the angular 

distributions of n11 and n22 are symmetrical about the 

velocity vector, from Fig. 9.2~ we infer that for a single 

relativistic electron, linearly polarized radiation will be 

emitted in the direction a = 0 where the synchrotron radiation 

is of greatest intensity and elliptically polarized radiations 

of equal intensity but with opposite sense of polarization 

are emitted in the direction for which le - 01 is greater 

than a few degrees (Ginzburg and Syrovat-skii, 1966; 

Takakura, 1967). 

Considering synchrotron radiation from a system of 

electrons 9 one defines the volume emissivity as the power 

generated by unit volume of medium per unit frequency 

interval dw per steradian flowing in the direction of the 

ray. Accordingly~ for a system of electrons with stationary, 

homogeneous isotropic momentum distribution function f
0

(p), 

the volume emissivity is 

j (p) = Sp [jij (p)] 

where jij (p) = J nij {p)f o (p)dp (9.4) 
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and nij(p) is given by (9.2). 

space dp can be written as 

The element of the momentum 

E2 
dp = ~ sin0d~dEd~ , (9.5) 

c 

wherej for highly relativistic electrons, E = pc and ~ is 

the azimuthal angle of the electron momentum vector. f (p) 
0 

satisfies the normalization condition ff (p)dp = N', N' 
0 0 0 

being the number density of the radiating electrons. Then 

(9.4) is expressible as 

0 0 

where the momentum distribution function has been replaced by 

the energy spectrum f (E) through the relation 
0 

2 f (p)4np dp = f (E)dE. When the energy spread of a group 
0 0 

of electrons is sufficiently smallj the energy distribution 

function f (E) can be approximated by a monoenergetic energy 
0 

spectrum, 

f (E) = N'o(E - E ), 
0 0 0 

where o(E - E ) is the Dirac delta function. 
0 

(9.7) 

The ene~gy 

spectrum has a narrow width around the maximum energy E • 
0 

Recalling that the intensity of synchrotron radiation 

emitted by a single electron is sharply peaked in the direction 

of the electron velocity vector (i.e. 6 ~~),it is possible 
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to assume that 2nsin~d0 = 21Tsin0d~ in (9.6) (where 

w = ~ - 0). That is, in a given direction, only those 

electr~ns having pitch angles 0 = 0 will make major contribution 

to the volume emissivity. With this fact taken into account, 

it has been shown that (Sazonov and Tsytovich, 1968; 

Ginzburg et al., 1968): 

2n 1 n2w2x, 2 2 1 ~ 
$~J' sin0d0 = - ~WH ~F (z), 

WH s /3 
0 

:rr 
n2ci1 1 

2n J (cose-na 11 )2 J2sin(6d(6 = ! ~ l;;F "Cz) (9.9) 
~ nsine s /3 ~ , 

0 

1T 2 2 
8 (cose-na,,)J J'sin(6d(6 = ! ~ cos0F..Lll(z) 2n J n w y' 

WH ~ nsine s s /3 y' 
0 

3/2 where z = 2y'~l;; /3sin0 , 

00 

F.L'"Cz) = J K513 Cn)dn t K213 Cz), 
z (9.9) 

00 00 

F1U(z) = zK113cz)+ JK113 cn)dn = zK113cz) + 2K213 (z) - JK513(n)dn, 
z 

1 A 
~=-+­

y'2 ~2 ' 

z 

and l\,(z) is the modified Hankel function of v-th order with 

argument z. 
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Using these equalites and (9.7) in (9.6), we obtain 

2 

j22 
e O'Noi;WH 

l; F 11 (z) s (9 .10) = 2 87T /3 nc 

2 

jl2 -j21 -i 
e crN

0
wHcos8 

p-1-lf(z), = = 
47T21.3 nc 

where cr = N'/N and N is the electron number density of the 
0 0 0 

ambient plasma. 

Since we consider synchrotron radiation from a homogeneous 

radiating source, if the source depth along the line of 

observation is L~ we can form a polarization tensor as 

(9 .11) 

Then, the incoherent radiation intensity emerging from the 

source region will be 

(9 .12) 

i.e. the radiation intensity in watts per steradian per unit 

frequency interval per unit area of radiating surface. 

In Fig. 9.3, we show the incoherent radiation intensity 

emerging from a group of monoenergetic electrons as a function 
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of normalized radiation frequency ~ for A= 15, fH = 10 MHzP 

5 0 0 0 -- 10-4 ' L = 10 km, e = 30 , 60 , 85 , a and y = 10, 25, 50. 

The radiation intensity tends to maximize in the direction 

transverse to the magnetic field line of force and the maximum 

occurs at higher frequencies for higher electron energies. 

In order to study the polarization character of the 

synchrotron radiation from an ensemble of electrons, we 

relate the components of the polarization tensor (9.11) to the 

Stokes parameters (I,Q,V,U) for the synchrotron radiation 

emerging from the source in the following way (Korchakov and 

Syrovat-skii, 1962): 

(9.13) 

I is the radiation intensity emerging from the source region 

and is equivalent to that given by (9.12). Q is the 

difference of the intensities of the radiations with the two 

principal polarization axes, ~1 and e2. V gives the-

difference in intensities between two oppositely rotating 

elliptical (circular) components. If the radiation is 

completely polarized, the four Stokes parameters are related 

In the absence of elliptical or 

circular polarization, V=O and for completely random polarization~ 

Q = v = u = o. 
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Since~ for the relativistic electrons, the angular 

distribution of synchrotron radiation emitted by a single 

electron is symmetrical about the electron velocity vector, 

the synchrotron radiation from a system of isotropic and 

homogeneous distributed electrons is linearly polarized 

(Korochakov and Syrovat-skii, 1962). The degree of polariz-

ation of the incoherent synchrotron radiation is defined as 

; 

jll - j22 

Jll + j22 
(9.14) 

Since n11 >> n22 in the direction 8 ~ ~' the synchrotron 

radiation emerging from the source region is almost completely 

linearly polarized on the plane perpendicular to the magnetic 

field. 

C. Reabsorption of Synchrotron Radiation 

If the emission source size is sufficiently large, the 

synchrotron radiation emitted by individual electrons will 

experience absorption by the relativistic electrons in the 

source region. The process of reabsorption leads to a re-

distribution of the intensity over the spectrum of the in-

coherent synchrotron radiation from a system of relativistic 

electrons. When the effect of the ambient plasma is taken 

into account, negative reabsorption of the synchrotron 



radiation can occur and hence the system of relativistic 
than 

electrons amplifies rather attenuates its own synchrotron 

radiation. As a result of negative reabsorption, the inten-

sity level of the synchrot~on radiation from a system of 

relativistic electrons exceeds the summed intensity of the 

spontaneous synchrotron radiation from all individual 

elec~rons, i.e. we have coherent synchrotron radiation. 

However, reabsorption would play a significant role in the 

radio emission from the solar corona only if jaLI ~ 1, where 

a is the reabsorption coefficient. The linear sizes of 

most radiating sources situated in the solar corona are 

observed to be of the order of 105 
km and the sources can be 

regarded to be optically thick if !al ~ 10-5 per km. In 

this section, using the quantum approach, we study the 

reabsorption of synchrotron radiation in a system of m6no-

energetic electrons. 

Firstly we consider the reabsorption of synchrotron 

radiation without taking account of the effects of the 

magnetic field on the propagation of electromagnetic waves 

in the plasma. In this case, the plasma is isotropic and 

there exists two independent modes of transverse electro-
; 

magnetic waves; either the two plane-polarized modes whose 

planes of polarization are mutually perpendicular, or the two 

oppositely rotating circularly polarized modes (Spitzer, 

1962, p.53). The polarization states of the electromagnetic 
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waves in these modes are unchanged and these waves can be 

regarded as the two normal waves in the isotropic plasma. 

In view of the fact that the synchrotron radiation emitted by 

a single electron maximize8 in the direction along the 

principal axis ~l' we may consider that the single electron 

can emit two independent normal waves polarized on the planes 

perpendicular to and parallel to the static magnetic field 

ii with emissivities nJ. and n 11 
• 

0 
Then the reabsorption 

coefficients for the two independent normal waves in a 
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system of isotropic electrons are given by (Bekefi, 1966,p.54) 

81T3c2 J 
a..1.,ll= - 2 2 

n w (9 .15) 

which are obtained by means of the Einstein coefficient method. 

From (9.3) and (9.5), the absorption coefficients a..1.~ 11 can 

be expressible in the form 

a II = -

2 1T 

Tie
2

c f 
nw 

0 

J 
2 2 

dE2TI 
w n y' 2 2 _ _,__ S..L.J' sin(bd(i}, (9.16) 

WH s 
0 

(9 .16) 

With the assumption that f (E) tends to zero rapidly as E tends 
0 

to infinity, and the approximated expressions (9.8) taken into 

account~ (9.16) are reduced to 
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z( ~ - _L)F.l.'Hl dE } (9 .17) 
~2 y•2 -p J 

I aF.1.,ll (z) .L U 
where F..L' 1 (z) = = -K (z) :!: K2' 13 (z) and F ' (z) are 

p az 5/3 

defined in (9.9). For further simplication, we consider 

two limiting cases: (1) w > yew (Region I) and 
p 

(2) w < y'w (Region II). 
p 

In Region I, the influence of the medium on the 

synchrotron radiation is insignificant and the absorption 

coefficient (9.17) reads 

QO 

2 J f (E)2z 
a..L.,11= ~ o [ K (z) 

jj n3 E y'2 5/3 
0 

+ Kl/J (z)] dE (9.18) 

' 2 
where z ~ 2~/3y' sin0. Using the recurrence relations for 

the modified Hankel functions, one can show that 

z[K513(z) - Klt3(z)] = 2[K213 (z) + zK113(z)] , 

and z[K513 Cz) + KlJ~(z)] =.jK113Cz) • 

Since K" (z) is positive.. for all z 1 .etJ."~
11 .are 

always positive regardless of choic~ of energy spectrum. 
I 

With f 
0 

(E) given by (9 •. .7), 
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CXJ..,tl cr~z 
=--~-...-

2/j n3 y'3 
(9.19) 

In Fig. 9.4, the absorption coefficient cx~' 11 for the 

frequency in the Region I ,is:·· shown as a function of 

normalized frequency with y' = 10, A = 15, fH = 10 MHz and 

a= 30°, 60°, 85°. This figure clearly illustrates that 

electrons, which strongly emit synchrotron radiation with 

principal polarization axis ~l and at large wave-normal ungle~, 

also strongly absorb radiation of the same character. 

The condition w < w y' 
p 

(Region II) suggests that 

the medium has a significant effect on the synchrotron 

radiation from the relativistic electrons. Taking this 

~imiting condition, the absorption coefficients (9.17) become 

(9.20) 

Putting (9.7) into (9.20), we 

have 

' 
(9.21) 

where G.L,ll (z) = -(2zFJ.,U + z2F.l..' 11
). 

p 

..I. " Negative reabsorption occurs when G ' (z) > O. In 

Fig. 9.5, the variation of the function GJ.:1t• (z) with z is 

shown. It can be seen that c;l-' 11 (z) > 0 provided that 
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z > zJ.'11 where zJ..'11 is the root of the equation GJ...,ll (z) = O. 
0 0 

Referring to this figure, we find that z ~ 1.38 and z ~ 0.92. 
0 0 

Thus, for a given energy of the electrons, the value of A 

and the wave-normal angle e, there is an upper cut-off 

frequency above which the absorption becomes positive. 

In Fig. 9.6(a), we present the absorption coefficient 

as a function of normalized frequency ~ for A = 15, fH = 10 MHz 
-4 0 0 0 y' = 10, a = 10 and for a = 30 ' 60 , 85 • The synchrotron 

radiation at lower frequencies but at larger wave-normal 

angles will be amplified at a greater rate. Fig. 9 .6 (b) 

shows the variation of the absorption coefficient a.1,ll with the 

normalized frequency for different electron energies 

It can be seen that the synchrotron 

radiation emitted by electrons of higher energy will grow 

at the higher frequencies. However, the rate of growth in space 

decreases with the increase of electron energy although the 

incoherent synchrotron radiation would increase with the 

electron energy (see Fig. 9.J(Q.-)). Moreover, the magnitude 

of er is much greater than that of a.11 • 

The transfer equation describing the variation of the 

intensity of the radiation in one normal mode on passing 

through the radiation source can be written in the form 

(Ginzburg and Syrovat-skii, 1969): 

dI.J. ,If " I II - • ..1..,,, a.1..~I I.L' , _...,,.d_r_ - J - (9.22) 
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h 
. .J.,11 

w ere J = In terms of Stokes parameters, (9.22) 

is re-written in the form 

(9 .23) 

v = u = o, 

where µ = ~ccf + a 11), A = !.a(a.J.. - a.11
), 

Since we consider the intrinsic radiation of the source, we 

take the boundary condition that all the Stokes parameters 

vanish at r=O. Then the solutions of (9.23) are found to be 

;J. J.L • ll _,...llL 
I = (it" (1 - e -a. ) + ~ (1 - e "" ) 9 

(9 .24) 

v = u = 0 • 

The degree of linear polarization is given by 

2 L .I.. II -"'.J..L = (Q )~ = j a (1 - e "" ) 
P I .1.. 11 -a1 L 

j a (1 - e ) 

t1 .l... -a.itL 
-ja(l-e ) 

II ..l. -attL 
+ j a (1 - e ) 

(9.25) 

For an optically thick source, if a.~' 11 -< Op then 



p ~ 
J.1..a 11 (1 - e -a~L) 
/·a II (1 e -a.LL) 

= 1 ) 

since la.LI >> ja. 1'1 · On the other hand, if a..l..' 11 > 0, 

p ~ 

315. 

for both j J.' 
11 and a. J.., 

11 are proportional to n..L' JI • Therefore, 

without taking the birefringence of the medium into account, 

the main synchrotron radiation is either linearly polarized 

or randomly polarized. However, the omission of the effects 

of the magnetic field on synchrotron radiation by relativistic 

electrons is permissible only when the magnetic field is 

very weak such that the plasma can be regarded as isotropic. 

For optically thin source, the intensity and the 

polarization of the synchrotron radiation will be ap-

proximately given by (9.12) and (9.14). 

In a magnetoactive plasma, there are only two normal 

waves; the extraordinary wave and the ordinary wave. 

In general, the electric field vector is not transverse to 

the wave vector but the electric induction is (Shafranov, 

1967~ p.7). Therefore, it is more convenient to define 

the polarization tensor for the electromagnetic radiation 

consisting of the o-mode and the x-mode components as 

(Zheleznyakov, 1968) 
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f .. = D.D~, i,j = 1,2, 
l. J l. •' 

(9.26) 

with 
, o I · <> 

Di = JI 1) . d (.,\j + ) Di~ cl !cJ ' .o.w i. 6w 

e o e o e o e o where k ' , n1 ' , A ' and 0 ' are the wave numbers , 

polarization vectors, arbitrary amplitudes and phases of the 

two normal waves. The bar denotes the average of the 

quantity (over the time). The absorption coefficients of 

the waves in amplitude are related to the absorption 

coefficients in intensity by 

' 
· -e o 

where ~ ' is the angle between the wave vector and the wave 

group velocity vector. Using this definition of the 

polarization(radiation)tensor, Zheleznyakov (1968) obtained 

the radiative transfer equation for the case of homogeneous, 

stationary m.agnetoactive plasma 

(9.27) 

where 

and jij is tlzfined in (9.4). 
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In general, (9.27) is extremely complicated. However, 

for quasi-longitudinal propagation, the two normal waves are 

both circularly polarized with opposite direction of rotation 

of the electric field vector and 

w
2
wHcos8 

ko - ke ::= -P--=-2-- = R, 
w c 

e 1 o 1 and n. = - (l,i), n
1 

= - (i,l). 
l. ri 12 

-e o Moreover, cos~ ' = 1. Taking these into account, (9.27) 

can be greatly simplified as 

dle~o e o e o --- = 'je,o- - a , I ' 
d r 

d ( Q ) 
dr U 

(9.28) 

je,o are the volume emissivities in the x-mode and the o-mode 

respectively. 

Taking the same boundary condition as mentioned above, 

we find the solutions for the Stokes parameters as 

(9.29) 

I = Ie + r0
, 

V = r0 
- Ie, 

(9 .30) 



318. 

Q = -[PQcos(RL) + PUsin(RL)]exp(-aL) + PQ s 

(9.30) 

U = [PQsin(RL) - PUcos(RL)]exp(-aL) +PU' 

Then the degree of polarization and the degree of 

circular polarization will be 

2 2 2!.: 
(Q + v + u ) .2 p = _,_.~~~~~---

I 
(9 .31) 

and 

respectively. When PC is negatives the circularly polarized 

component is in the x-mode. For an optically thick source, 

PC can be approximated as 

or (for ae,o > O). (9.33) 

Since both the volume emissivities je,o and absorption 

coefficients ae,o are proportional to the electron emissivities 

e o in the x-mode and the o-mode n ' s from (9.32), it is not 

difficult to see that the circularly polarized synchrotron 

radiation will be emitted only when the reabsorption co­

efficients are negative and lae - a 0
1 differs from zero 



significantly; the radiation will be polarized in the x-mode 

On the 

other hand,.if ae,o > O, the degree of circular polarization 

given by (9.33) is insignificantly small. 

If the radiation source is optically thin, i.e. 

jae' 0 LI << 1, the solutions of (9.28) for Ieso are 

(9.34) 

and the corresponding degree of circular polarization will be 

PC 
J
.o .e 

= - J (9. 35) 

In this case, the appearance of the strongly circularly 

polarized synchrotron radiation rcquir-es that the volume 

emissivity (or the electron emissivity) polarized in one of 

the two normal modes must be greater than that polarized in 

the other mode significantly. Therefore, once the volume 

emissivities and the absorption coefficients for the two 

normal waves in the magnetoactive plasma are known, the 

characteristics of the synchtron radiation emerging from a 

system of relativistic electrons can be determined. 
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According to (9.28) and (9.13), the electron emissivities, 

the volume emissivities and the absorption coefficients for 

·the case of longitudinal propagation are 



(9.36) 

.e~o 

f 
e o -

J = n ' f (p)dp 
0 

8 3 2 

J 
()f {p) dp 

and e~o 7T c e»o 0 
a = n '3E 2 2 n w 

where the upper sign is for the x-mode-and n .. is given by 
1J 
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(9.2). Using (9.8) and (9.9)~ we find the volume emissivities 

and the absorption coefficients for the synchrotron radiation 

in the case of isotropic electron momentum distribution, 

00 

.e.o J • = J f (E) [~ r,; (F.J.. + F11 ) ± ~ cos8F.l.t~ dE» (9 .37) 
0 y 

0 

2 
e o 1Te wH ooJ 

and a.'= ~ 32 
2v .l n w c 

0 

with ~z (F..L + F11 ) = -2K
513 

(z) ~ 

4cos8 .Lll 
:!: F y' 

+ z( !_ - _2_) 
r;2 y' 2 

(9.38) 



321. 

Then, for monoenergetic electron spectrum. (9.7), we obtain 

2 

je,o = e O'NowH {~l;[F..1.(z)+F''Cz)] ± 4c~7e F.Lll(z)} ' (9.39) 
16ir

2...'3 nc 

e o and a P = 

A 2 a --'- II + z (- - -- ) [ ~- (F- + F ) 
r;2 y'2 az 

± 4cose FJ..ll 
y' 

± 4cose -1 L FLU]} (9 •40) 
y' r; ()z 

Using (9 .10), (9 .39) and (9 .40) in (9 .29). and (9 .30), we can 

study the characteristics of the synchrotron radiation 

emitted from a system of monoenergetic relativistic electrons. 

-3 Taking a = 8~10 , fH = 10 MHz, A = 15 and y' = 10, 

25, 50, 100, we illustrate the variations of the absorption 

e o coefficients a ' with the normalized emission frequency 

in Fig. 9.7(a) and (b). Firstly, negativ~ reabsorption of 

synchrotron radiation in both modes occurs in the lowfre-

quency r~gion of the synchrotron radiation spectrum. The 

variations of ae and a0 with ~ are similar. Secondly, 

e o the magnitudes of a ' increase with the wave-normal angle. 

Thirdly, in general, the magnitude of ae is greater than a0 

and lae - a0 1 decreases with increasing wave-normal angle. 

Finally, the magnitude of the reabsorption coefficient 

decreases with increasing electron energy, but negative 

reabsorption occurs at higher frequencies for higher electron 

energy~ Fig. 9.7 {~).demonstrates the suppression of 
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reabsorption due to the influence of the ionized medium on 

the reabsorption process. For larger valuesof A i.e. 

higher number densities of the ambient plasma and the 

radiating electrons, the absorption coefficients become smaller. 

With the volume emissivities and the absorption co­

efficients given by (9.39) and (9.40) 9 Fig. 9.8(a) emphasizes 

the effec~s of the negative reabsorption on the frequency 

spectrum and the polarization state of the synchrotron 

radiation for a given wave-normal angle while Fig. 9.8(b) 

demonstrates the dependence of the frequency spectrum of the 

synchrotron radiation on the direction of observation. The 

angular distribution of the intensity of the synchrotron 

radiation at a given frequency is shown in Fig. 9.8(c) for 

various values of the number density of radiating electrons 

and for various emission frequencies. 

Fig. 9.9 (a) shows that for an optically thick radiation 

source, the intensity distribution of the synchrotron 

radiation across the spectrum changes greatly if the re-

absorption is taken into account. Furthermore, the peak 

synchrotron radiation in the low frequency region arising 

from negative reabsorption will dominate. In this figure, 

the intensities of the incoherent synchrotron radiationsin 

the x-mode and the o-mode (jeL and j 0 L respectively) are 

also plotted as , function~of emission frequency. Both 



16' -J 
a-•6x10 

-· 10 

"' IE I 
.::s:. I ... I 
I -5 I 

N110 i 
:I: I ... 
I 
L... 
VI 

3:· -6 
-10 

1-1 

10 12 

9 

(a) A= 15 

fH=lOMHz 
9 =60° 
'(': 10 

I --
p ----

-V/I"""" 

14 16 lB 

.5 

325. 

( b) 
-1 

10 A= 15 
fH= 10 MHz 
'( = 10 _, 
o- = Bxl O 

_, 
10 

N 
I;:: 
c 

,""ll 
.::s:. -I I Nl0-3 

< ....... :c ... .... 
I._ 
VI 

~ -· 10 
o. 

t-1 

-5 
10 

Q.4 

-6 

20 10 8 10 12 14 16 lB 
5 

Pig.C).8 Variation of t~e intensity I, 

deg-ree of polariz~tion P and degree of 

circular nolarization -V /I of the s;vnchro­

tron radiation emer~ing from a system oP 

monoenergetic electrons with 

(a) normali7.ed freouenc;v 5 for 8 

6n° and Cf= 6xl0..::3,4xl0- 3 ,?xl0-3 ; 

(h) 

AxlO-) 

( c I 

J4 .<=1.nd 

normali:?.ed frecrnency _$ for er= 
D.. -()0 0 6()0 o and cr = ~ ,45 , ,85 ; 

"lfl.VP.-1".0rmal angle 8 for S 10,1?, 
-2 -) I' -) 

~= 10 ·,sxlO ,oxln 

and for A= 15, fH= JO HHz, 'i'= 10,L 

s • 12 -- km. 



' 

I 

' 
1. 
' 
' 

> 10-5 
I--en 
z 
UJ 
l-
~,o-6 

8 :.60° 

25 

-A=-15 
fH:.10 MHz 
0- ::. 6x10-3 

I 
. jeL --- -
jol -· -· "7 

326. 

L __ .. -···~ ---,-~-- ~-· --·-·--

Fig. 9. q (a) 
I 

Variations of the intensity of coherent synchro-

_j 

· 1 I 
------~T _____ .----.-

tron radiation and the intensities of incoherent synchrotron 

radiations in the x-mode (jeL) and the o-mode ( j 0 1) from a 

Aystem of monoenergetic electTons with normalized frequency 

s for e = 60°, Y' = 10, 25, A= 15, fH = 10 MHz, 0-= 6xl0~ 3 

5 ' I 

and L = 10 km. \ ! 
I 

' I 



l 

I 

1 ~3-------------------------~---------
l_ 

~26a. --

-N 
I E 0-4 
.x 1 -I 
N 
:c 

- 10-5 . 
> . 
~ -(/) 
z 
UJ 
t­
z --

15 
.i._._ 

.... ~ ._,. 

10 

A=15 

e = so0 

fH=10MHz 
0-= 6x10-3 

Y'= 10 
I 
jeL --- -

-V/I-·-·-

1 

101 

I ( ~~~--- . - r 

[ __ _ 

102 

.s 
' 
I , 
1~- ...... 

; I 

Fig-.9.9 (b) Variations of the intensity I and the deg-ree of circular; 

polarization Pc of the coherent s~chrotron radiation, the intensity 

of the incoherent synchrotron radiation in the x-mode j
8 L emerging' ·. 

from a s;vstern of monoenergetic electrons with normali7.ed frenuenc:v .5; 
0 -3 ' for e = 6() L y' = 10, A = 15, 30, 50, fH = 10 MHz, er= 6xl0 and ' 

5 L = 10 km. 

'--" .. •,_, 
\ 



327. 

the coherent and incoherent synchrotron radiation spectra 

have sharp low frequency cut-offs; the cut-off frequencies 

for the coherent and the incoherent synchrotron radiations 

are different. In the case of incoherent synchrotron 

radiation, the low frequency cut-off is due to the influence 

of the ionized medium~ generally referred to the Razin effect. 

For the same system of radiating electrons and the-same-in-

tensity of the magnetic field of the ambient plasma, the cut­

off frequency of the incoherent (or coherent) synchrotron 

radiation spectrum observed at a given direction increases 

with increasing number density of the ambient plasma electrons. 

This is illustrated in Fig. 9.9 (b) where the degree of 

circular polarization is also shown. 

From Fig. 9.7 and Fig. 9.8, it can be seen that for an 

optically thick radiation source, strongly circularly 

polarized synchrotron radiation will be emitted in the 

frequency region where the negative reabsorption occurs. 

The polarization will be in the extraordinary mode. Since 

at any given frequency, the magnitude of the synchrotron 

absorption coefficient and the volume emissivity for the 

x-mode are similar to those for the a-mode~ positive 

reabsorption cannot give rise to strongly circularly 

polarized synchrotron radiation (see expression (9.33)). 

Moreover, the degree of circular polarization of the 

synchrotron radiation emitted from an optically thin radiation 
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source will be insignificant. 

We have studied the characteristics of the synchrotron 

radiation emerging from a radiation source in the solar 

corona. Since the emissi0n frequency of the synchrotron 

radiation satisfies the conditions: 
2 2 s >> 1 and s >> A9 

subsequent propagation from the source to the Earth would not 

cause any significant change of- the spectral characteristics 

of the synchrotron radiation and the observed spectral 

characteristics of the synchrotron radiation from the solar 

corona will be as those mentioned above. 

D. Synchrotron Radiation from Relativistic Electrons in The 

Solar Corona 

During the recent years 5 solar energetic electrons with 

energies from a few tens of keV to a few MeV have been 

observed (Fichtel and McDonald, 1967; Cline and McDonald, 

1968a). However 9 at present the problem of production of 

energetic charged particles in the solar corona has not been 

settled although several suggestions have been put forward. 

The Fermi acceleration or the Sweet mechanism (acceleration 

in the annihilation of anti-parallel magnetic fields) can 

lead to the production of energetic electrons in the solar 

corona. Since the plasma can support hydrodynamic-type 

turbulence as well as high frequency turbulence connected with 

the generation of electron oscillations relative to ions, 
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electrons can be accelerated by longitudinal plasma waves and 

by low frequency hydrodynamic· type oscillations. Tsytovich -

(1966) pointed out that Fermi acceleration is a limiting 

case of acceleration by low frequency hydrodynamic-type 

turbulence and is not the most effective one of all possible 

acceleration mechanisms in a turbulent plasma. 

The quasi-regular appearance of the type III bursts 

indicated that the energetic electrons ejected from the 

flare region are likely to be accelerated by a process 

similar to the Sweet mechanism, Sevcrnyi (l9CO) has reported 

optical evidence in favour of this idea. However, Tverskoi 

(1967), after studying the main properties of Fermi acceler­

ation, showed that observational evidence favoured the idea of 

acceleration of solar energetic electrons by means of the 

Fermi mechanism, Laboratory experiments have shown that 

when an electron beam penetrates into a plasma, some of the 

beam electrons can be accelerated to higher energy by the 

plasma waves excited by the beam itself (Stix, 1964; 

Fainberg, 1968). Since different acceleration processes 

would require different conditions, the solar energetic 

electrons responsible for the radio emissions (or X-ray 

emission) and those observed on the Earth may be acceler-

ated by these processes in different regions of the solar 

corona at different times. The region of acceleration is not 

necessarily restricted to the flare region. 
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The observation of solar relativistic electrons near 

the Earth indicates that their energy spectrum could be 

characterized by a certain power law (Cline and McDonald, 

1968b). If the energy spectrum of the solar relativistic 

electrons is very steep at the high energies, the spectrum 

can be represented by 

f (E)dE = 
0 

{ N~(l+r)E~(l+r>if dE, for El < E < Eo 

O» for E > E
0 

and E < E1 

, 
(9.41) 

where r is a positive number. If r is not small; that is 

most of the electrons have energies close to E
0

, (9.41) can 

be approximated by the monoenergetic spectrum (9.7). So 

far there bas been no observation data suggesting the 

existence of highly anisotropic relativistic electron 

streams in the solar corona. 

Whenever sufficient electrons are accelerated to · 

energies about a few MeV and trapped in the sunspot magnetic 

field, these electrons generate synchrotron radiation which 

would eventually be observed as a broad band smooth continuum 

radio emission on the Earth. Among various spectral types 

of solar radio emissions, the type V and type IV {both 

components A» B» and C) are of wide bandwidth smooth continuum 

emissions. Previously~ these solar radio emissions were 

interpreted as the consequence of synchrotron radiation by 
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relativistic electro~s. However, the simple synchrotron 

radiation theory cannot fully explain the spectral features 

of these radio emissions. In the following paragraphs, we 

shall examine the question of- the origin of these emissions. 

{a) Solar Type V Burst Emission 

The solar type V burst is closely associated with the 

spectral type III burst; it occurs after a type III burst 

(see Fig. 6.1). In most cases~ the type V burst is observed 

at frequencies below 150 MHz and is weakly polarized. 

Usually, the bandwidth is comparable to the centre radiation 

frequency and the intensity may reach values of the order of 

-18 - -2 ' -1 
10 W m Hz which is considerable higher than that of the 

type III burst. A type V burst often occurs as the con-

tinuous diffuse prolongation of a type III burst, lasting 

approximately 0.5 - 3 min. The average source size of the 

type V at half power is about 5' at a frequency of 40 MHz. 

Most of the type V sources are seen near the radio limb. 

The source height in general agrees well with the height of 

the type III sources at the same frequencies. 

The plasma radiation caused by solar electron streams 

has been proposed as the origin of type V burst emission 

(Weiss and Stewart, 1965' Zheleznyakov and Zaitsev, 1968). 

Since at the type V burst emission source height, the variation 

of the coronal electron density is very small, it is difficult to 
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account for the wide bandwidth of the type V burst on the 

basis of the theory of plasma radiation. So the suggestion 

that the type V burst emission is caused by synchrotron 

radiation by relativistic electrons (Wild et al., 1959) should 

be re-examined. 

We assume a group of isotropic monoenergetic electrons 

with energy about 2 - 4 MeV trapped in the sunspot magnetic 

field at altitude about p = 1.9. Taking the model of the 

active solar corona given by Fig. 6.1, we find the value of A 

and the gyrofTequency at this height .-is' about- 15 arid 1.0 MHz 

respe~~.f<'.".~ly,; _ . t:Qese parameters are the same as those used in 
\t :~ .. .r..~, .... -;: !:,;-::.~"{' ... :. -·~,;t~}. ~. -~" 

various figures in this chapter. If these relativistic 

electrons radiate incoherently, then, in order to achieve 

' -18 2 
the observed intensity 10 Watts/m -Hz, the source volume 

10 5 3 must be 10 _ x10 km and the number density of the radiating 

3 -3 electrons is not less than 10 cm • The centre frequency 

of the type V burst and the frequency of the type III burst 

emitted at the same height are widely separate since the 

incoherent synchrotron radiation maximizes at frequencies 

~ ~ 200 for 0 = 85° (Fig. 9.3 (a)) but the type III burst's 

frequency is ~2f = 2v'A = 8 (cf. Chapter VI). 
p 

Hence in 

order for the frequency of the incoherent synchrotron radiation 

of maximum intensity to .be close to'the second harmonic local 

plasma frequency; thllt~~'Qc~(~gyr~f requ~nC-y,--~st- he __ much __ 
~ ; ' • • - 1- ... "" ...... ~ft~.!<·.._ , \ ' " 
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smaller than 10 MHz and the electron energy should be lower 

tI-.an 4. 5 MeV (y' = 10). 

On the other hand, if negative reabsorption is 

important, the peak synchrotron radiation occurs in the low 

frequency interval of the spectrum. From Fig. 9.7 and Fig. 

9.8, the peak intensity is found to occur at ~m ~ 12 which is 

close to the second harmonic of the local plasma frequency. 

(If y' = 5, we find that ~m < 12 but the intensity is greater.) 

The half-power frequency bandwidth will be /:::,,f = /:::,,~xfH ~ 60 MHz. 

However, we should note that the low frequency peak arising 

from negative reabsorption will dominate only if the 

number density of the radiating electrons exceeds sx104 cm-3 and 

5 the source depth must be of the order of 10 km (The source 

10 5 volume may be less than 10 x10 km.) (see Fig. 9.3 and 

Fig. 9.7 (a)). Moreover, when negative reabsorption is 

significant, fraction of the synchrotron radiation emerging 

from the source region will be circularly polarized. At 

present~ observational data are insufficient for definitely 

determining the polarization character of the type V bursts 

(Weiss and Stewart, 1965). 

The difficulty in interpretating the type V burst 

emission as the result of synchrotron radiation by relativistic 

electrons lies in the problem of production of these relativistic 

electrons. There is no observational report suggesting the 
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existence of a sharp shock front in the outer layers of the 

solar corona during the type V bursts emission period. We 

believe that the relativistic electrons responsible for the 

type V burst emission are not produced by the Fermi-like 

mechanism. Alternatively, the occurrence of the type V 

burst immediately after the type III burst leads us to consider 

acceleration of energetic electrons by high frequency plasma 

waves. The electron stream ejected from the flare region 

travels through the solar corona and excites Cerenkov plasma 

waves of which a very small amount of energy is converted into 

electromagnetic radiation by means of combination scattering 

on the thermal fluctuations of the electron density and 

eventually observed as the type IIL burst (cf. Chapter VI). 

Meanwhile, the plasma waves excited by the stream 

are scattered to plasma waves of larger phase velocity and with 

different directions of propagation. Those scattered plasma 

waves with wave vectors transverse to the electron's trajectory 

can accelerate a small fraction of stream electrons to higher 

energy (Tsytovich, 1966). This leads to the diffusion 

of the stream electrons in velocity space and coherent generation 

of Cerenkov plasma waves will terminate. Those accelerated 

electrons trapped in the sunspot magnetic field produce the wide 

bandwidth type V burst through the sy.t1.chrotron r..adiation pPocess. 

Since only a small fraction of the stream electrons (a several 
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to ten per cent, say) can be accelerated,to secure a group of 

relativistic electrons of density 103 - 104 cm-3 requires the 

density of the original electron stream not less than 

5 -3 -2 10 cm (i.e. N'/N = 10 at p ~ 1.9). 
0 0 

Such a large value 

of stream density has been assumed in the theory of type III 

burst emission (Wild, Smerd and Weiss, 1963). Nevertheless, 

a satisfactory theory of type V burst emission on the basis 

of synchrotron radiation by relativistic electrons should 

include a detailed investigation of the possibility of 

accelerating a few per cent of the mildly relativistic stream 

electrons to energies of a few MeV by plasma waves (or by 

other means) and also explanations of other features of the 

type V burst emission. Further observational data concerning 

the polarization of the type V burst would be a great h~lp in 

the development of the theory. 

(b) Solar Type IV Emission 

The type IV burst emission is a very complicated 

phenomenon and occurs after an important solar flare. The 

emission appears dt the centimetre, decimetre, metre and 

decametre wavelengths ·in the spectragraph. According to 

Kundu (1965), this complicated radio emission can be divided 

into three components, namely, type IVA, type !VB (moving) 

and type IVC (stationary). The characteristics of type IVA 

component have been described in Chapter VIII. The major 

features of the type !VB and type IVC components are briefly 
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outlined in Table 9.1. 

Because of their wide bandwidtll!i,all three components 

have been interpreted as the results of synchrotron radia­

tions by relativistic electrons trapped in the sunspot 

magnetic field or embedded in the moving plasma cloud. The 

energies of the electrons responsible for different components 

were assumed to be different (Boischot and Denisse, 1957, 

Takakura and Kai, 1961; etc.). Without the influence of the 

medium taken into account, interpretations on the basis of 

synchrotron radiation theory encounter difficulties in the 

explanation of the polarization of type IV bursts. 

Firstly, in the high frequency region of the type IVA 

spectrum, the burst is weakly polarized in the x-mode and may 

be regarded as combination of the bremsstrahlung and the 

synchrotron radiation produced by relativistic electrons ac­

celerated near the flare region. In the low frequency 

region (from 200 MHz to a few thousand MHz), the polarization 

state varies with the frequency; the radiation is strongly 

polarized in the o-mode in the decimetre wavelength region, 

but the polarization mode changes at the frequency in the 

range from 2~000_MHz to 4,000 MHz. The change in the 

polarization mode along the spectrum may arise from 



Wavelength extent 

Association with type II 
Start relative to type II 

Altitude of emission 

Movement 

Angular size 

Variability 

Polarization 

Polarization mode (assuming field of 
leading spot) 

Duration 

Distribution on the disk 

Place of origin 

Temperature 
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Table 9.1 Tyne IV Emission 

(After Kundu,1965, p,420) 

Type IV B (Moving) 

· Meter and decameter waves 

Occurs u'sually with type II 
A few minutes after type II 

The source does not remain :fixed in 
the corona; maximum altitudes 
vary from 106 to 10 6 km above the 
photosphere or higher 

Usually large movement with a 
velocity of more than 1000 km/sec 

About 10' arc or larger 

Smooth; may have some structure at 
· the start 

Weakly circularly polarized 

Extraordmary 

·lOm to 2h, usually longer than in 
phase A 

Not directive 

Near the flare 

107 lo 1010 0 1{ 

,.• 

Type IV C (Stat1onary) 

l'vfeter and decameter waves 

May occur without type II 
May follow type IV B, tens of min­

utes after type II 
The source is situated low in the 

corona near the corresponding 
plasma level 

No systematic movement of the 
source 

Usually less than 4' arc 

Smooth-occasionally some · br~ad­
band bursts. Type I bursts grad­
ually appear with the aging of the 
continuum 1 

Strongly circularly polarized 

Ordinary 

8everal hours to several days 

Highly directive toward the center 

Near the flare 
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differential positive reabsorption of synchrotron radiations 

in the x-mode and the o-mode. Howeverp according to 

the discussion in the previous section, positive reabsorption 

cannot lead .ta~ str:;,-ngly circularly polarized synchrotron 

radiation no matter whether the emission source is optically 

thick or optically thin. On the other hand, owing to the 

facts that je > j
0 and jae I > la0 I, negative reabsorption can 

give rise to strongly polarized synchrotron radiation in the 

x-mode only. Hence the type 1VA emission cannot be ex­

plained as the result of synchrotron radiation from relativistic 

electrons with energy about a few MeV, at least in the 

decimetre wavelength region. 

Alternatively, we suggest that the resonance ab­

sorption by the thermal coronal plasma electrons would play 

an important part in the determination of the observed 

polarization feature of the type IVA burst emission. In 

other words, the radiating electrons responsible for the type 

- IVA ~miss~9µ should be the low energy component of the 

electrons released from the flare region so that the main 

""'"1'.'adietion· energy-,in the x-mpde and the o-mode concentrates in 

the low harmonics of the Doppler-shifted gyrofrequency. The 

concurrent appearance of the type 111 bursts in the frequency 

range from 600 MHz to a few MHz and the fast drifting elements 

superimposed on the decimetre wavelength continuum suggest that 

"t1i:e·-·~!lcfiy re~ativ:i.st'ic electrons organize as an electron 
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stream gyrating along the strongest sunspot magnetic field 

or ~~avelling·tn the neutral plane between two sunspot 

fields of opposite polarity. Cyclotron radiation in the-

x-mode and the o-mode and Cerenkov radiation in the plasma 

mode by those elect~on streams trapped in the bipolar sunspot 

magnetic field configurations at the base of the solar 

corona result in the type IVA emission (Chapter VIII). 

The moving type IV burst emission is characterized 

by a very large source size and the right-handed polarization. 

Now it is believed that the moving type IV burst is generated 

by electrons embedded in a moving plasma cloud expelled 

from the flare region (Kundu, 1965, p.598). Recently, 

Boischot and Clavelier (1967) observed a moving type IV burst 

at the frequencies 408 MHz and 169 MHz emitted from a single 

5 source having a linear size about several 10 km and moving 

with a speed about 530 km/sec. During the same period, 

relativistic electrons with energies up to 8 MeV were also 

observed at the Earth (Cline and McDonald, 1968a). Thus it 

is possible that the observed relativistic electrons and 

those responsible for the moving type IV burst emission are 

of the same origin. 

Lacombe and Mangeney (1969) showed theoretically 

that the relativistic electrons responsible for this observed 

burst emission were accelerated by the turbulent ion acoustic 

waves generated by a shock wave. According to various 
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figures given in previous sections, we can find that negative 

reabsorption of the synchrotron radiation emitted by these 

relativistic electrons is not required for interpreting the 

observed intensity of the moving type IV burst (of the order 

of lo-20 W: m-2 Hz-1). On the contrary, interpretation of 

the moving type IV burst emission based on the coherent 

synchrotron mechanism requires a higher number density of the 

radiating electrons and stronger magnetic field intensity 

forzen in the moving plasma cloud. However, if the radiation 

source is optically thin, the synchrotron radiation theory 

fails to explain the strong circular polarization (in the 

x-mode) of many observed moving type IV bursts (degree of 

polarization as high as 85% (Kai, 1969)). On the other 

hand, the theory of cyclotron radiation in the o-mode and 

the x-mode by mildly relativistic electron streams trapped in 

some strong magnetic fields frozen in the plasma cloud can 

also account for most of the spectral characteristics of the 

moving type IV bursts. 

The nature of the source and some of the spectral 

characteristics of the stationary type IV emission are re-

markably distinct from those of the moving type IV emission 

although their occurrences are closely correlated. Weiss 

(1963b) suggested that the moving type IV emission and the 

stationary type IV emission should be regarded as separated 

events. The feature of the stationary type IV burst emission 
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in which a wide range of frequency is'- emitted from a 

's'tationary source in the solar corona can be explained by 

the theory of sy0.chrotron radiation. But th~ strong 

polarization in the a-mode of the stationary type IV burst 

rejects the possibility of-synchrotron radiation by relati­

vistic electrons as the origin- of' the emission. The 

cyclotron radiation by mildly relativistic electron bunches 

is likely to be responsible for the stationary type ·1v· 
e1:rtsston. 

If ·we assume the electron energy to b e 20 - 30 keV, 

say, the second harmonic cyclotron radiation in the x-mode 

and the o-mode will dominate. For not too large electron 

pitch angle~ the peak intensity of the second harmonic 

cyclotron radiation will be emitted at the wave-normal 

0 0 angles 6 ~ 50 - 70 (cf. Chapter VIII). m Then the 

cyclotron radiation in the x-mo4e-will be prevented from escap-
-- ' 

ing from the solar corona due to the third harmonic resonance 

absorption. If the coronal plasma where the radiating 

electron bunches reside is characterized by a value of A 

about 3 to 4, the frequencies associated with the peak 

cyclotron radiation will be close to the plasma frequency, 

and generation of the cyclotron radiation at the second 

harmonic Doppler-shifted gyrofrequency and in the x-mode 

by the electron bunch may not be possible. Since the true 

escape level is higher at the solar limb than near the 
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centre of the solar disk (Fig. 8.12), electromagnetic 

radiation at the frequencies close to the plasma frequency 

and emitted from a limb source cannot escape from the solar 

corona. Thus the stationary type IV burst source will be 

highly directive. 

Meanwhilej the same electron bunch can also excite 

Cerenkov plasma waves at the frequencies f ~ f which, after 
p 

being trans:!:ormed into the o-mode waves by incoherent 

a 
scattering, will be observed as narrow bandwidth drifting 

burst superimposed on the smooth continuum emission in the 

o-mode. Since the Cerenkov plasma radiation at the fre-

quencies f ~ fp by the electron stream with s11 ~ 0.1 0.3 

maximizes at small wave-normal angles (Chapter VI), it will 

probably pass through the resonance absorption layers at 

'Small wave-normal angles and harmonic resonance absorption 

may not be important. Consequently, the wide bandwidth 

stationary type IV continuum emission is superimposed with 

fine structures occassionally. 

Although theories of cyclotron radiation and Cerenkov 

plasma radiation by mildly relativistic electron streams can 

satisfactorily explain the spectral characteristics of the 

stationary type IV burst emission~ the origin of these electron 

streams is not clear. These stream electrons cannot be 

regarded as the same electrons responsible for the moving 
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type IV emission since it is unlikely that a system of 

isotropic relativistic electrons can decay into mildly 

relativistic electron streams. On the other hand~ if these 

mildly relativistic electron streams are ejected from the 

flare region near the base of the solar corona, then we 

have to explain why the electron streams cannot give rise to 

any radio emission on passing through the lower layers of 

the active solar corona. 

E. Conclusion 

Synchrotron radiation from a system of monoenergetic 

electrons has been studied in previous sections. There is 

no strongly circularly polarized synchrotron radiation from 

isotropic relativistic electrons unless the source is 

optically thick such that the negative reabsorption is 

important; i.e. the coherent synchrotron radiation is 

dominant. The coherent synchrotron radiation is emitted 

at low frequencies of the spectrum and polarized in the 

x-mode. Referring to the characteristics of the synchrotron 

radiation from electrons with energy about a few MeV, we 

find that the moving type IV bursts can be attributed to the 

result of synchrotron radiation by relativistic electrons 

embedded in the plasma cloud; but it is more appropriate 

to interpret the type IVA and the stationary type IV 

emissions as the consequence of cyclotron radiation by 



mildly relativistic electron streams. 

Finally we should point out that the low frequency 

cut-off of the observed moving type IV burst has been used 

to deduce the coronal magnetic field intensity by assuming 

that this low frequency cut-off ia due to the suppression 

of the synchrotron radiation resulting from the influence 

of the ionized medium (Eoischot and Clavelier, 1967; 

Ramaty and Lingenfelter 9 1968). However, this method of 

deducing the coronal magnetic field intensity is adequate 

only if the observed burst is not circularly polarized 

since otherwise the sharp low frequency cut-off will arise 

from the strong negative reabsorption. 
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CHAPTER X 

CONCLUSIONS 

A. Conclud.ing Remarks 

Based on the kinetic approach, theory of plasma 

radiation by an electron stream in a magnetoactive plasma 

has been formulated. The explicit expressions for the 
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power spectra in the plasma mode emitted from a single electron, 

the rate of growth of the plasma wave in a stream-plasma 

system and the coefficients of transformation of plasma waves 

into electromagnetic waves in the x-mode and the o-mode by 

thermal fluctuations have been obtained. The linearized 

kinetic equation has also been used in the study of the 

excitation of cyclotron r<¥!iation in the subluminous mode in 

the stream-magnetoactive plasma system. On the other hand, 

by means of the quantum treatment, the synchrotron radiation 

from a system of relativistic electrons is studied taking 

into account the influence of the medium. 

With the optical observational data on the structure 

of the solar atmosphere, the quantitative studies of the 

characteritics of the electromagnetic radiations generated 

by solar energetic electrons through various coherent 

radiation processes and the propagation conditions of the 

electromagnetic waves in the solar corona lead to the following 
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conclusions: 

1. The broad band continuum-type emission is caused 

by the mildly relativistic electron stream. moving at the 

base of the corona where the value of A is generally much 

smaller than unity(see Fig. 8,3). The emission is ex-

pected to be right-handed polarized (leading spot hypothesis). 

2. The narrow bandwidth drifting bursts at the 

frequency about (o~ double) the local plasma frequency and 

the continuum-type emission polarized in the left-handed 

sense can be emitted from a helical electron stream con-

currently when the electron stream. spirals through the 

·layers where the value of A is in the range from unity to 

four. These two types of emissions will be superimposed 

upon each ~ther in the dynamic spectral records if the 

0 0 electron pitch angle is small c- 10 - 30 , say) and the 

electron energy is about a few tens of keV to 100 keV. 

3. The mildly relativistic electron stream passing 

through the layers where A ~ 4 will emit a pair of drifting 

bursts with similar intensities and with a frequency ratio 

- 1:2 through the Cerenkov plasma radiation process. The 

first harmonic component is stronger polarized than the 

second harmonic. If the radiation source is located near 

the solar limb, the second harmonic component will dominate 

but its polarization will be insignificant. 
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4. In the outer layers of the solar corona where 

the value of A is expected to be very large, a system of 

relativistic electrons will emit .the wide bandwidth continuum-

type emission by the synchrotron mechanism. The continuum 

emission may be strongly circularly polarized in the right-

handed sense when the radiation source is optically thick; 

this requires the electron energy about a few or ten MeV 

and a comparatively large value of a= n'/n • 
0, 0 

Based on these informations and other observational data, 

consistent theories of the polarized type III burst and U 

burst emission event, the drift pair burst and hook burst 

emission event and the type IVA emission at centimetre 

and decimetre wavelengths have been put forward. The 

phusible mechanisms responsible the type V emission and 

the type IVm emission have also been suggested. 

B. Suggestions for Further Research 

As mentioned in Chapter IIIi the use of the linear 

instability theory in the interpretation of solar radio 

emissions requires a special assumption that the non-

equilibrium features of the electron distribution are maintained 

by an efficient process. On the other hand, the use of non-

linear theory does not require such assumption and would be 
more appropr~ate to the real situation_. Therefore, in-

vestigation of the conditions of non-linear generation of the 



electromagnetic radiation in a magnetoactive plasma (e.g. 

Livshiftz and Tsytovich, 1968) is of great value. This 

does not only allow us to justify the validity of the 

theories of solar radio emissions on the basis of linear 

mechanism but also lead us to investigate the plausible 

origins of some solar radio emissions which are not yet 

understood, e.g. split pairs (Ellis, 1969). 
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The tentative suggestions of the origin of the type 

IVm emission given in Chapter IX need detailed investigations. 

We should firstly investigate the properties of the 

synchrotron radiation from a system of electrons with a 

more realistic energy spectrum and secondly study the 

conditions for the production of the radiating electrons in 

the solar corona. 
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APPENDIX A 

RANDOM FLUCTUATIONS OF PHYSICAL QUANTITIES IN A PLASMA 

AND THE SPECTRAL DISTRIBUTION OF MICROCURRENT DENSITY 

The physical quantities in a plasma may be well 

approximated but not exactly given by their averages. The 

random deviation 6x from its average < x ·> is defined as 

ox .. x - < x > • The mean value of this fluctuation 

vanishes but the mean square deviation is non-vanishing. 

Therefore, macroscopic physical phenomena associated with 

quantities proportional to the mean squares of the fluctuations 

of physical parameters will exist. For instance, the 

fluctuation current due to the random thermal electrons in 

the resistor which is connected across the input terminals of 

a linear amplifier will give rise to a random output signal 

(or "noise") in the amplifier (Nyquist's theorem). In a 

stable plasma, fluctuation of electron density and fluctuation 

of electron current density are responsible for the emission 

of various fluctuation waves. If the plasma is of thermal 

dynamical equilibrium, the amplitude of the fluctuation wave 

is determined by the plasma temperature and the radiation is 

generally known as fluctuation radiation or thermal radiation. 

On the other hand, the energy of an external wave propagating 

in the thermal plasma will be absorbed as in the case that the 
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energy from an impressed periodic voltage will be absorbed 

by an electrical resistor. The absorption of the energy of 

the propagating wa,1e is due to the existence of the anti-

hermitian part of the dielectric tensor for the thermal 

plasma (Sitenko and Kirochkin, 1966). For a general linear 

* dissipative system , the fluctuations are connected to the 

dissipative_ properties of the system. Hence in a thermal 

plasma~ the theI'II".al radiation is expressible in terms of 

anti-hermitian part of the dielectric tensor and the 

temperature as j_n the case of thermal noise of a resistor 

in terms of its resistance and temperature. Rostoker 

(1961) then defined the plasma impedence whose real part is 

associated with the anti-hermitian part of the dielectric 

tensor and he obtained the fluctuation-dissipation theorem for 

pl~smas, in analogy with the well known Nyquist theorem. 

In a non-equilibrium plasma~ in which the electrons and 

ions are characterized by non-Maxwellian distribution functions 

for a _·.ong period of time~ the fluctuations of various 

parameters can also be studied if distribution functions are known. 

*According to Callen and Walton (1951), the system may be said 

to be dissipative if it is capable of absorbing energy when sub-

jected to a time-periodic perturbation. The system may be said 

to be linear if the power dissipation is quadratic in the 

magnitude of the perturbation. 
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The full description of the fluctuations of a quantity 

is given by the correlation function which is defined as the 

mean value of the product of the fluctuations of the quantity 

at different points of space at different instants of time. 

If the state of the unperturbed medium is spatially homo­

geneous and stationary, i.e. there is no preferred origin 

in time and in space for the statistical description of the 

fluctuations, the quadratic space-time correlation function 

will depend only on the relative distance and the absolute 

value of the time interval between the points at which the 

fluctuations are considered. In practice, the Fourier 

transform of the correlation function - spectral distribution 

(or spectral density) - is more important. Using the 

correlation function to describe the averaged macroscopic 

quadratic fluctuations of quantities such as energy, 

radiation intensity~ etc. in an ionized plasma is essentially 

to replace the time average by an average over phase 

(i.e. an average over an ensemble of non-interacting particle). 

This is possible only for a medium having stationary state 

and spatially homogeneous. 

For fully ionized plasma, there are only rare binary 

collision•and each particle is influenced by so many other 

particles in the plasma simultaneously at all times (long 

range interaction) that its correlation~ wtth one other particle 
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(binary interaction) are partially drowned out. In this 

case, the particles remain far from each other at all times 

and the change in momentum that arises in time interval t is 

small. The trajectories of the interacting particles are 

not affected to any great extent. Therefore, the long 

range interaction can be analyzed by assuming that the 

trajectories of the interacting particles are specified 

beforehand and there is no position correlation. Under 

this condition, the spectral distribution of the microcurrent 

density is given by (Shafranov, 1967, p.74) 

2 en 
0 ==-

(21T) 4 

t 

ff 
-ik.J v<t')dt' 

v (t)v0 (0)e a. IJ 0 

- iwt 
F (-0 )dtd-o 

0 p p 

(A.1) 

where the subscript 11
0

11 denotes the quantity at time t = O. 

This expression holds for arbitrary unperturbed distribution 

-o function F (p ) that satisfies stationarity and spatial 
0 

homogeneity for the unperturbed medium. 

For a thermal plasma, 

m ..3/2 E 
F (p) = (-0-r exp{ - -) o 27TKT KT 

2 
with E = ~ , Gaa(k,w) can be obtained from the dielectric 

0 

tensor (1.7) which can be expressed as 
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where cro:a(k,w) 

0 
(A.2) 

It has been shown that (Shafranov, 1967, p.51) 

If we separate the tensors into hermitian and anti-hermitian 

parts in the form 

we can easily show that 

co co --
H _ J J -i(k.R-Wt) 

2oo:a<k,w) = cro:a<R,t)e dRdt. 

Hence, we find 
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CQ CQ 

Gaa<k.,w) = 1 f J G (R,t)e-i(k.R-wt)dRdt 
c2rr> 4 a.a 

-Q) -QO 

QO CQ 

= KT J fa (R~t)e-i(k.R-wt)dRdt, 
(21T> 4 a.a -., 

-oo -QC> ' 

wKT A - WKT <e:aa - e:a~ 
(A.3) = e:a.l3 (k ,w) = 

(27T)5 (21T)5 2 i 

which is of the same form as the Nyquist theorem. The 

microcurrent density (A.3) arises from the random thermal 

motions of the free plasma electrons moving in the free 

space. 
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APPENDIX B 

SPECTRAL DISTRIBUTION OF ELECTRON DENSITY FLUCTUATIONS 

(cf. Sitenko, 1967, Chapter 5; Shafranov, 1967,p.131) 

The expression (A.l) is the spectral density of the 

correlation function for the fluctuation current density of 

one species of independent charged particles in the plasma. 

The interaction: between the particles of the same species 

and that between the particles of di~f erent species have 

been neglected. However, the fluctuation of electric 

fields at some points generated by fluctuations in electron 

and ion current densities will react back on the ions and 

electrons through the self-consistent field equations and 

cause further current densitites in the plasma. 

-e -i Let us assume E and E be the random fields 

inducing the independent fluctuations of electron and ion 

current densities in the plasma and oie and o8i be the 

fluctuations of electric fields produced by the fluctuations 

of electron and ion current densities respectively. From 

(1.4) and the wave equation with source current term, we have 

(B.l) 

and 

(B.2) 
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where \ie is the inverse of the Maxwell's tensor 

ha$' i.e. Aamhme = oaa· Thus the total fluctuation 

electron current density will be 

(B.3) 

Since the ions and the electrons interact through the self-

consistent field equations only, the electron and ion current 

density fluctuations are statistical independent; 

• 

Then the spectral distribution of fluctuations of electron 

current density in a plasma will be expressed in the form 

(B.4) 

The spectral density of the fluctuations of longitudinal 

electron density, obtained by multiplying 

* Kcl:aKrKsKitKm h kr h ms on both sides of (B.4) (Ka being 

ka/k), reads 

< je2 > - = 1 { j 1 + 41TKi f 2Ge + 16 21Kej2Gi } (B 5) 11 k,w I 2 U U 1T 11 II • • 
l El( I 
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Making use of the equation of continuity for electron charge 

density, we find 

e2 k
2 {I il2 e 21 el2 i } < on >k,w = - 2- 2-

1
--2 • 1 + 41TKU G11 + 161T Kii G II • (B.6) 

e w e:lll 

The s~~ctral distribution of the fluctuations of 

electron density (B.6) can be used for any medium with 

distribution function whose state is spatially homogeneous 

and stationary. It was also obtained by the "dressed" test 

particle approach (Bekefi,1966jp.260).Because of screening, 

a test charged particle moving in the plasma can be considered 

as a freely moving particle with a comoving polarization 

cloud of the extent about Debye length D in which there is a 

deficiency of charges of the same type that attached to the 

test charged particle. Such a test particle which includes 

a charge plus its attendant polarization cloud is called a 

"dressed" test particle (or a quasi-particle). The total 

electric field at a point produced by all the charged 

particles of the same species is the sum of the shielded 

fields of all the "dressed" particles when they are 

considered statistically independent 9 i.e. the field given 

by (B.2). It has been pointed out that a test charged 

particle can be considered as carrying a well-established 

screening cloud for most of the time during two successive 

short range collisions if n
0
D3 

>> 1 9 n
0 

is the equilibrium 
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electron density of the plasma (Ichimaru, 1965). This 

condition is generally satisfied for the fully ionized 

plasma. 

Based on the 11dressed" test particle concept, the 

electron density fluctuation spectrum (B.6) may be inter-

preted as being due to the motion of fully dressed electrons 

e (terms proportional to G11 ) and motion of fully "dressed" 

i ions (term proportional ~ 1 ). When k < ~' in the high 

i frequency region, term proportional to K11 is small compared 

with unity and the contribution comes from the collective 

plasma wave-like fluctuations of electron density brought 

about by the long range Coulomb interaction. In the low 

frequency region, the last term is essential. Although 

the main contribution to the central maximum comes from those 

electrons around the ions and acting to screen out the 

Coulomb field of the ions, the fluctuation of electron 

density arises from the random thermal motion of ions. 

Therefore, the width of the central maximum is characteristic 

of the ion thermal motion rather than electron thermal motion. 

In this case 9 collective low frequency magnetic sonic wave 

can be excited at the frequency given by dispersion equation 

for the low frequency wave. However, as long as Te ~ T1 , 

this collective mode is highly damped and cannot be meaning-

fully distinguished from those fluctuations caused by the 

individual ion therl!lal motion. The fluctuations at other 
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frequencies not restricted by the dispersion equation are 

due to the random motion of individual ions (B~hm and 

Gross, 1949; Pines and Bohm, 1952). For k > ~' the 

second term in (B.6) becomes most important. That is 

the main contribution to < on2 > ·k- is caused by random ,w 

motion of the electrons with the comoving polarized clouds 
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and the width of the fluctuation spectrum is characteristic 

of the electron thermal motion. In this case, the wave-

length of the fluctuation is less than Debye length and 

there is no collective mode of fluctuation resulting from 

long range Coulomb interaction and the sharp spike disappears 

in the electron density fluctuation spectrum. 
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APPENDIX C 

ELECTRON EMISSIVITY FOR SYNCHROTRON RADIATION 

Starting with the wave equation with source current 

density, we have 

where a, a = x~y,z are the position co-ordinates. Ea and 

j are the Fourier components of the electric field E0 (r ,t) a P q 

and electron current density ja(rq,t). In the co-ordinate 

system as shown in Fig. 9.1, k = (O,ksin0,kcos0), and when 

(9 .1) holds, the Maxwell's tensor will be 

c-e~ 0 

-n
2si:cose) - 0 2 2 (C.2) " = n c.os e-~ aa 

0 2 2 2 
-n sin0cos6 n sin 0-£.!. 

where £..1..= 1 - w2Jw2 = 1 - A/~2 and n2 = k2c2Jw2• Therefore, 
p 

the Fourier Component of the electric field produced by the 

electron is 

' (C.3) 

with • 



T' = f'l 

0 

2 2 e:.L-sin en 

-n2sin8cos6 
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-n2s~cos8~ 
2 2

0 
. e:.J.-n cos 

(C.4) 

The current density of a gyrating electron can be represented 

by 

J er, t> = qv Ct> ocr - r > , 
q q 

where the instantaneous velocity v (t) and the electron 
' q 

position r (t) are 
q 

v (t) 
q 

°1I wH = (-~sin yr t, v~cos yr t~ v11 ) , 

= ~v.,,.. y' cos °1I t V.i. -C.· si~ t v
11
t), 

(C.5) 

r Ct> q w y' ' w y' , 
H H 

q is the electron charge and the Lorentz factor y' is given by 

y' = c1 - ai - a~>~ . The subscripts f I , .J.. 

denote the components parallel to and perpendicular to H . 
0 

The Fourier transform of the current density becomes 

j (k,w) = ~ f v a(t) o(r-r ) exp(ik.r-iwt)drdt ' 
a (2TI) q q 

= (C.6) 

where J
9 

is the Bessel function of s-th order and with argument 



X = y'k~v~/~ and J~ is its derivative with respect to X. 

Thus, the electric field of the radiation emitted by the 

electron at r = r will be q 

= -i4ifq 
(21T) 3 

oo 41Too 

.L ff f 
-oo 0 0 

T I (S)k2 
f3

• u. 
J J exp(-ik.r +iwt) 

ws.JJn2
-e:.4..) q 

SWH 
x o(w-k,,,,, - r )dkdQdw ' 

where 

= -i4ifq 
(2'IT)3 

Taking (C.4) into 

exp(-ik.r +iwt) 
q 

s~ 
x o(w-k""'' - yr )dkdQdw , (C.7) 
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2 SV.i. 2 2 
-n sin8cos8 X J s + (e:.,1..-n cos 9)vltJs]. 

Now, we transform the electric field Ee(rq,t) to the co-ordinate 

system formsd by the three mutually orthogonal unit vectors 

A A - A - - A 
e1, e2 and K with e2 lying on the k-H

0 
plane and e1 transverse 

to it as shown in Fig. 9.1. ~l and e2 are called the 

principal polariza~ion axes. The transformation tensor is 



(cf. Chisholm and Morries, 1964, p.453) 

0 

-cose 
sin6 

s~ne) 
cos a 

So in the new co-ordinate system, 

i = 1,2,3. 

exp(-ik.r +iwt) 
q 
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2 -1 k2c 2 
In the transparency region, we take i(n -e:.L) =1To(7 - e:.J.). 

Then, 

(C.9) 

and for the synchrotron radiation ( s > O) 
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00 41T 
00 

f f e 2 -- " = --2 l nw [13.J..J~cos(wt-k.r +'IT/2)e1 
4'ITC s=l q 

-(:0 0 

Therefore~ the electric field vector of the electromagnetic 

radiation lies on t.~e plane of polarization (i.e. the 

figure plane Il in Fig. 9.1). 

Since E1 (rq,t) is a transverse electric field, only 

the transverse current density will be responsible for the 

radiation of the transverse wave (cf. Shafranov, 1967, p.55). 

For the sake of complete description of the polarization 

properties of the radiation, it is most convenient to express 

the instantaneous radiation power in the form of a tensor, 

J... -= -qv .Ej(r ,t) , qi q i,j = 1 ~2 (C.10) 

J.. 
where vqi is the electric velocity component perpendicular to 

the wave vector. From (C.8) and (C.10), we have 

(C, 11) 



By means of direct computation~ we can show 

v~exp(-ik.r +iwt) = I w~m)exp [i(s-m) yw~ t] 
q q m=-oo 

where 

Hence, 

P1 . er , t> 
J q 

[iv.iJ' ~ 
m 

= i4'ITq
2

c
2 

(2'IT)3 

. h _ (m) 8 (s)/ 2 
W1 t Qij - W i j C • 

w 
x exp [i(s-m) y~ t] dkdQdw 
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(C .12) 

(C.13) 

wH 
The time factor exp[i(s-m) Y' t] involved in the integrand is 

eliminated by taking the average of P .. (r ,t) over on~ period 
1J q 

of time T = 27ry'/UJi • We find that Pij is non-zero if m = s. 

Therefore P .. is reduced to 
1.J 

P . er ~ t> 
iJ q 



where i 
L(w) = ----

2 w(n -EJ.) 

' 

S2J,2 
l s 

iS J J v (cos8-n@u ) 
.!..: s s nsin8 

-i~ J J, (cos8-nS11 )) 
-..i- s s nsin8 

J2 (cos0-:-nS 11 ) 2 
s nsine 

After summation over the harmonic numbers s by means of the 

delta function~ we find that 

Qij(-w) = Q~j(w) and L(-w) = L*(w) 

Thus~ we can re-write Pij for the positive frequency and 

take the positive harmonic number for the synchrotron 

radiation, 

Then after integration over k by means of the relation 

Re L(w) 
1T = -w 

we obtain 

2 2 
0 (~ - EJ) 

1.1)2 
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.. 

2 
p ij (r q Pt) = ~'ITC 

B'% 
o(w-k11~1 - yr)dQdw 
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(C.16) 

The electron emissivity tensor for the synchrotron radiation 

will be 

dP i . 2 2 00 8'% 
n - -.!J.. - e w n '\' r ~ (w-k v - -y' ) 
ij - dQdw - 2'1Tc s~l ~iju II II (C.17) 
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APPENDIX D \ ' 

STOKES PARAMETERS 

(Zh~le~ny~kov, 1966) 

In this appendix,it is shown that.the Stokes parameters 

I,V defined conventionally b~ (9.13) give the sum and the 

difference of the two oppositely polarized electromagnetic 

radiation in a magnetoactive plasma under the quasi-longi-

tudinal propagation condition. Therefore, we.consider the 

electromagnetic radiation.consisting of x-mode and ·o-mode 

radiations in a cold and collisionless magnetoactive plasma. 

The polarization tensor is ~efined as 

I. = D.D* iq l. q 

.JA 0 n? exp(-i ((} t+iol0 +ik0 .r )d w • 
l. - -At.cJ 

The bar denotes the time average of the quantity. 

and ke,o are defined in Chapter IX (p.316). Then 

D.D"' ]. q 

Ae,o e,o ,n. 
]. 

+ J ) A 
0 

A 
0 'n~n: 1 *exp [-i <iw-eo• )t+i (o<

0
-o<..01 )+i (~0-~0 ') •!:] d w dw' 

A~ AfAJ ' 

I 

\ 



' "". lr, 
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Then the time average of the polarization will be 

D.1F 
l. q =SS ( AeAe'n~n:'*exp[i(QC..e-cl 1 ~+i(~8-~8 •) .. '.!}+ 

A«.itiWl . , . 

; 
+ 

' .,-; 
l" 1 j/'),, ' 

• im - exp[-i("'-w' )t]dtd(Lldw' 
T~~ T . 

-17.t 
I 

= J f{A e A e' n~n:' *exp[i (o<e -o(e') +i (~e -.!fe' >-:1}. " 
6~6~ ' ) 

. \ 

+ 0 0 0 0 [• ( 0 0 ) • ( 0 0 ) ] AA •n.n '*expl.ol(. -oi..' +ik-k' ~.,.. 
' ]. q ' - - -

+ 

~. ... -:~ , 

+ A 
0 

A e 1 n~ne 1 *exp [i (o<, 0 
- ..1

8
' ) +i (k0 -k8 1 ).;"f'Jij6 (w-w• ) d~dQJ1 

iq "'. -- -
' -

' 

+ A A n.n *exp i o( -o( +i k -le ~r e o e o [· ( e o) . ( e o) J 
]. q . . - - -

(D.2). 

f.-

t 

\ 
'· f: 
i' 
I' 

f 
/. 
{. 

,, 
I· 
i 
I 

\ 
t 
r 
i 
I 
i. 
I. 
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The polarization tensors fo~~the x-mode and the o-mode are obtained 

by putting A0 =0 and Ae=O in (D.2) respectively,. 

{D.3) 

Ao2 o o* = n.n • 
l. q 

{D.4) 

In the case of quasi-longitudinal propagation, the polari-

zation vectors for the x-mode and the o-mode electromagnetic 

radiations are , _I 

e 1 e i (D.5) nl = J2 n2 = ./2 

' 

0 i 0 1 (D.6) nl = 72 t n2 = ,/2 .. 

Thus for the case of presence of only one nor~al wave,, 

the x-mode,say,the Stokes parameters I and· V are 

e e ) - n n * l 2 

and the degree of circular polarization is 

-1. 

= ~Ae2, 

Therefore the polarization PC = -1 corresponds to the case that 
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the electromagnetic radiation is completely polarized in the 

x-mode. Similar calculaDion shows that Pc= 1 corresponds to 

the case that the electromagnetic radiation is completely 

polarized in the o-mode. 

Now if tbe electromagnetic radiation consists of both the 
' "'. 

' 
x-mode and the o-mode radiations, the quantities I and v'are 

+iA e Ao exp [i (o1..o -c1..e)+i (~o-!fe) 'r] 

:..iA 0 A e exp[ i (cf...
0 -l)+i (!£0 -!£e )•!] 

Ie + Io 
' 

(D.7) 

V . (I I ) i } . Ae2 . Ao2 AoAe [· (...1 e o) : (ke I o) .,.. = 1 21 - 12 =2{ 1 -i + exp 1 "' -o<. +i - - .S -'.!. 

. 
AoAe [·co e) "(ko 1 e)'.r'·Ae2 .Ao2 AeAo [·< e o) + exp i o/. -o( +1 _ - _s ;L+J. -1 - exp i o<. -o{ 

(D.8) 

Hence w~en/Pc= V/I is negative,the circular component of the 

electromagnetic radiation in polarized in the x-mode while 
'. ' 

it is polarized in th~ o-mode when Pc· is positive. 
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SYMBOLS 

I 

All symbols are defined in the body of the thesis when 

they first occur. Those which are used more extensively and 

which may occur somewhat apart from their definitions are 

listed below: 

a. = polarization vector for the electromagnetic wave in the 
J 

j-mode 

c = speed of light in vacuum 

D = Debye length 

Da = electric induction 

e = charge of an electron 

"' "' ' e1,e2 = principal polarization axes for the transverse wave 

(Fig. 9 .1) 

£ = wave frequency 

~ ~ f = w /2n = (en /~m ) = electron plasma frequency p p 0 0 

frequency 

= plasma resonance frequencies 



384. 

f (p) = particle momentum distribution function normalized to 
0 

particle number density 

£ (E) = particle energy spectrum 
0 

F (p) = particle momentum distribution 
0 

unity 

H = static magnetic field intensity 
0 

function normalized to 

H = magnetic field intensity at the centre of the sunspot s 

I,Q,V 9 U = Stokes parameters 

Ie,o = intensity of electromagnetic radiations in the x-mode 

and the o-mode respectively 

Iij = polarization tensor 

J. = current density a 

jij = volume emissivity tensor 

je,o = volume emissivities in the x-mode and the o-mode 

respectively 

J (X) = Bessel function of s-th order with the argument s 

X = k.1..v~/y~ 

k = wave vector 

kJ.,k11 = transverse and longitudinal components of the wave 

vector k respectively 

Ke~o = absorption coefficients in amplitude for the x-mode and 

the o-mode waves respectively 



385. 

Kae = polarizability tensor 

~jkl = absorption tensor of the plasma 

l\,(z) = modified Hankel function of v-th order with the 

argument z 

L = source depth along the line of observation 

m
0 

= rest mass of an electron 

n
0 

(or N
0

) = electron number density of the ambient plasma 

n' (or N') = electron number density of the non-thermal 
0 0 

electrons 

n. = refractive index 
J 

<on>- = spectral distribution of fluctuations of electron k,w 

density 

P(6) = power of electromagnetic wave 

P = degree of polarization 

P.1_,p
11 

= perpendicular and parallel components of the particle 

momentum p respectively 

(q/k)
8 

= specific s-th hartnonic resonance absorption coefficient 

R
0 

= solar radius 

s = harmonic number 

0 T = temperature in K 

v.i.,v11 = perpendicular and parallel components of a particle 

respectively 



386. 

ae,o = absorption coefficients iu intensity for weves in 

the x-mode and the o-mode respectively 

ST = (KT/m0c2)~ = normalized mean thermal speed of the plasma 

electrons 

2 2 ~ S = (S.L + s,,) 
2 2 -~ y' = (1 - S.i. - Sn) = Lorentz factor 

Y = yv -1 

l~I = temporal growth rate of electromagnetic wave 
WH 

(normalized by angular gyrofrequency) 

o 1,o 2,o = coupling parameters 
0 0 0 

oaS = Kronecker's delta 

Ea13 = aaa + 4~KaS = dielectric tensor of a plasma 

-
~± = £/fH 

r;; = A/~2 + 1/y'2 

~ = arctan<S.1../1311 ) = pitch angle of gyrating particle 

w = azimuthal angle for a vector in a Cartesian coordinate 

system 



w' = angular electron plasma frequency of the stream in the 
p 

387. 

reference frame in which the stream is at rest 

p = R/R
0 

= radiatial distance from the centre of the Sun in 

units of solar radius 

v = electron-ion collisi~~ frequency 

K = Boltzmann constant 

K = k/k 

w = angular wave frequency = 2~£ 

nj = coefficient of transformation of the plasma wave into the 

electromagnetic wave in the j-mode 

nij = electron emissivity tensor 

ne,o = electron emissivity in the x-mode and the o-mode 

respectively 

a= ne/n = N'/N = w'/w 
0 0 0 0 p p 

0 = wave-normal angle; angle between static magnetic field 

and wave vector 


