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ABSTRACT 

The present study deals with the stability behaviour of 

cellular-walled cylindrical shells subjected to simultaneous loading 

of axial compression and external pressure. In particular, the 

effect of high fluid pressure within the cells on the buckling 

behaviour of the shell is considered. 

The form of cellular-walled shell originated from a 

consideration of fossil shell remains belonging to the Nautiloid 

Cephalopod group. These extinct animals (relatives to the modern 

day pearly nautilus) grew to about 300mm in length and had an 

exoskeleton in the form of a conical shell with a small apex angle. 

However, the unique feature of the shell of this fish was that it 

contained small closely spaced holes running longitudinally in the 

shell wall. Interest 'in these fossil shells originated from 

discussions with Dr. M.R. Banksl, a paleontologist at the University 

of Tasmania. Dr. Banks was interested to discover why the 

shellfish should want to build its shell in such a particular form. 

Other than for the obvious conclusion that a cellular wall has 

better bending stiffness than a solid wall of the same mass, there 

appeared to be no particular reason for the specific form of this 

shell. From a strength point of view, there appears to be no 

advantage in the shell having longitudinal holes over 

circumferential or spiral holes, and spiral holes would be easier for 

the shell fish to manufacture. This study showed both theoretically 

and experimentally that a possible answer lies in the stability 

behaviour of this particular form of shell. 
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The cellular-walled cylindrical shell can be 

characterized as a pseudo-orthotropic cylindrical shell with the 

principal directions axially and circumferentially oriented. 

Different effective Young's moduli had to be used for tension and 

bending. A theoretical analysis, based on Flugge's linear buckling 

theory, resulted in simple interaction formulas for buckling under 

external pressure, axial c01~1pression and cell pressure. 

Cellular-walled model shells have been made out of 

epoxy by an adaptation of the spin casting process developed by 

Tennyson6. These shells have 360 longitudinal holes each of 0.7mm 

diameter, shell internal diameter 153mm, wall thickness 1.2mm and 

length 245mm. The tests of the model shells were carried out on a 

rigid test machine with parallel platens. Since the shells are cast 

with a free surface on the inside they are internally reflective. An 

optical system making use of the reflective surface was used to 

monitor buckling and prebuckling deformations. Test data was 

logged into a PC. Southwell plots were then employed to predict 

axial buckling loads. Because of the likelihood of the shell 

shattering on buckling, actual collapse loads were the final values 

obtained. Test data confirmed the theoretical predictions. 

Both theoretical and experimental results showed that 

shells of this type with pressurized cells exhibit significantly 

improved stability, hence they appear to have potential m 

engineering applications, particularly in marine situations. 
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CHAPTER 1 

INTRODUCTION 

The present study was undertaken with the objective of 

investigating the buckling behaviour of a form of cellular shell 

suggested by fossil shell remains belonging to the Nautiloid 

Cephalopods group. 

Nautiloid Cephalopods are a family of interesting fossil 

shellfish. These extinct animals, relatives of the modern day Pearly 

Nautilus, grew to about 300mm in length and had an exoskeleton 

in the form of a conical shell with a small apex angle. However, 

the unique feature of the shell of this fish was that it contained 

small, closely spaced holes running longitudinally in the shell wall. 

Interest in these fossil shells originated from discussions with Dr. 

M.R. Banksl, a paleontologist at the University of Tasmania. The 

problem encountered by Dr. Banks was to discover the reason the 

shell is built in such a particular form. Aside from the obvious 

conclusion that a cellular wall has better bending stiffness than a 

solid wall of the same mass, there appeared to be no particular 

reason for the specific form of this shell. Animal structures are 

usually very efficient, and a cellular wall made with circumferential 

or spiral cells would have similar bending stiffness while providing 

an easier path for the manufacture of the shell. 

Figure 1.1 shows an artist's impression of the living 
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Figure 1.1 

Artists impression of Nautllold cephalopod 

and section of sne\\ wa\\ 
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shell fish together with a sketch of a section through the shell wall. 

This sk~tch is taken from actual fossil specimens. The structure is .. _ 

essentially a thin-walled circular shell with small, closely spaced 
' 

holes running longitudinally through the wall. In addition, there 

are a large number of considerably smaller holes connecting these 

longitudinal channels with the outside of the shell. The purpose of 

the longitudinal holes and the smaller connecting holes is not clear. 

One likely explanation is that the longitudinal holes were filled 

__ __with muscle while the v~ry ~ip.all connecting hol~~ may -~av_~_ be_e1_1 

for some form of nerve tissue (i.e., sensing element). 

From a strength point of view, there appears to be no 

advantage 1n the shell having longitudinal holes over 

circumferential or spiral holes. However, if the small longitudinal 

holes contained muscle then it can be observed that by contracting 

the muscle, pressure could be applied to the inside of the holes. 

Large pressures could be achieved with muscle contraction, which 

appear to be equivalent to small pressures applied to the inside of 

the shell. 

It is well known that by applying pressure to the inside 

of a thin, solid-walled cylindrical shell, its axial buckling load can 

be increased2,3,4. One contributing factor could be that the 

pressure tends to make the shell more nearly circular and hence 

reduces the sizes of geometric defects. Internal pressure obviously 

must also increase the external buckling pressure. Since it was 

expected that high cell pressure would act in a similar fashion to 
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much lower internal pressure, it was thought that the purpose of 

the cells may have been to provide such high pressure through 

muscle contraction. The contraction would have been triggered by 

the nerve "sensing element" attached directly to the muscle and 

connected through the secondary holes to the outside of the shell. 

If the shell did function in this manner, then it seems 

likely that nature had provided a solution which may have an 

engineering significance, hence the reason for this investigation. 

The equivalent structure which appeared to have possibility as a 

submarine containment shell was a thin-walled cylindrical shell 

with closely spaced longitudinal holes and with high fluid pressure 

applied inside the holes. Such a structure could be made somewhat 

lighter than a uniform shell. It could have smooth external and 

internal surfaces, and the inside of the shell could be maintained at 

relatively low pressure, e.g. suitable for human occupation. 

Since the shell wall consists of a section containing a 

large number of circular closely spaced longitudinal holes, the line 

of this investigation was to consider it in a similar fashion to a 

longitudinal stringer-stiffened shell with the stringers closely 

spaced. Thus the shell wall construction was treated as 

homogeneous and pseudo-orthotropic, with the principal directions 

along the shell generators and circumference. Local variations in 

wall properties were ignored in determining buckling loads. Also it 

may be observed that axial in-plane stiffness and bending stiffness 

would be greater than the same properties measured in the hoop 
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direction. Average wall properties had to be established from a 

consideration of local wall geometry. 

Since the shell form originated from a marine animal, 

and also since the most likely application of the shell form would 

be as a submarine structure; this investigation concentrated_ on the 

load condition of axial compression and external pressure. 

The theoretical buckling analysis presented in this 

thesis was based on Flugge's linear elastic theory5. The shell was 

treated as homogeneous and pseudo-orthotropic. A simple form of 

solution for the buckling of cellular-walled cylindrical shells under 

simultaneous loading of axial compression and external pressure 

was derived, which can be simplified to the form of exact 

orthotropic shells, and further to the form of isotropic shells. The 

effect of cell pressure on the buckling load of the shell was 

considered. 

The shell models have been made by an adaptation of 

the ~pin casting process developed by Tennyson6. I have been able 

to consistently produce shells with an internal diameter of 153mm, 

wall thickness 1.2mm, length 24.Smm. These shells had 360 holes 

each of 0.7mm diameter. The radius to thickness ratio for these 

shells is around 65. Thus they should be considered as relatively 

thick shells. Unfortunately, it does not appear possible to make 

shell models by our current technique with walls that are much 

thinner. Tests of the shell models on buckling load capacity have 
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been carried out on a rigid compression testing machine with 

parallel platens and incorporated with the optical examination 

system. 

The first three chapters in the thesis, including this 

one, are introductory. Chapter Two gives a survey of the 

developments in research on the buckling behaviour of isotropic 

cylindrical shells loaded in axial compression, external pressure, or 

a combination of the two; while in Chapter Three, a review of the 

buckling behaviour of orthotropic cylindrical shells under various 

load conditions is presented. Some necessary background for the 

work presented in the thesis is provided in these chapters. 

The next three chapters deal with theoretical 

investigations. In Chapter Four, theoretical buckling analysis of 

orthotropic and cellular-walled circular cylindrical shells are 

presented. Buckling solutions for both orthotropic ·a~d-; cellular­

walled shells under simultaneous loading of axial compression and 

external pressure are derived. A conventional simply-supported 

boundary condition is used in the analysis. The difference in 

boundary conditions used in the buckling analysis and in the shell 

models test (built-in) is noted. A numerical analysis is presented in 

Chapter Five, which determines the effects of cell pressure. Cell 

pressure was considered to be the same as an internal pressure 

when the radial displacements of midsurface were the same in both 

cases. The empirical relations are established to link the effect of 

cell pressure to that of internal pressure. The average wall 
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properties of cellular-walled cylindrical shells were established 

using the energy method, from a consideration of local wall 

geometry. These properties were used m the theoretical 

performance of cellular-walled cylindrical shells, which is 

presented 1n Chapter Six. The buckling of shells with different 

geometric configurations were presented and compared. The 

effects of shell geometric configurations on buckling were 

discussed. In particular, l_ _ the effects of cell pressure to the 

buckling of shells were demonstrated. 

The experimental work of this thesis is presented in 

Chapters Seven, Eight and Nine. In Chapter Seven, the model shell 

manufacture and the main problems experienced in the processes 

are described. Experimental set-up, the optical examination 

system, end rings design, loading frame, data logging board and 

PCLAB program used in the test are described in Chapter Eight. 

The results of the tests on buckling loads are presented in Chapter 

Nine. 

Chapter Ten provides the conclusion to the thesis. 

8 



CHAPTER 2 

BUCKLING OF ISOTROPIC 
CYLINDRICAL SHELLS 

- HISTORICAL 
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CHAPTER 2 

BUCKLING OF ISOTROPIC CYLINDRICAL SHELLS 

- HISTORICAL BACKGROUND 

The problem of cylindrical shell buckling bas been a 

widespread topic of research interest over several decades, and the 

results have been reported in innumerable publications. Certain 

aspects of cylindrical shell buckling have been emphasized, namely 

the effect of boundary conditions and nonlinear prebuckling 

deformations, external loading conditions (axial compression, 

external pressure, torsion), postbuckling behaviour and 

accompanying imperfection sensitivity, and the role of material 

properties (isotropic, orthotropic, anisotropic). 

In general, thin-walled shell structures are stiff in axial 

or in-plane deformations but flexible in bending. When they are 

subjected to axial or in-plane forces they often lose stability at very 

low stress levels, resulting in large bending deformations. Thus, 

examining the buckling problem and ' determining the critical 

load has been one of the most important investigations in the 

development of light-weight structures. 

The type of buckling to which an axially compressed· 

cylinder is susceptible depends on the ratio of its length to its 

radius, L/R, and on the ratio of its radius to its thickness, R/t. 
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Relatively thick-walled shells buckle into the axisymmetric "ripple" 

pattern illustrated in Figure 2.1. This type of buckling usually 

leads to yielding. Very short, thin-walled cylinders behave like flat 

plates that are supported along the loaded edges and are free along 

the unloaded edges. They buckle into a single half sine wave in the 

axial direction with no waves in the circumferential direction as 

shown in Figure 2.2a. By comparison, very long cylinders with 

small diameters buckle like Euler columns with minimal distortion 

of the circumferential cross-section (Fig. 2.2b). A third group 

consists of moderately long cylinders that fail by local buckling. 

The surface of these cylinders buckles into a series of diamond 

shaped dimples which are well known as Yoshimura patterns (Fig. 

2.2c). 

Figure 2.1 Inelastic axial ripple buckling (Foster38) 

(No.2011 Aluminium cylinder R= 12.70mm, t=0.50mm) 
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(o.) Very short cylinder 

(c) Modero. tely long cylinder 

(b) Long 
cylinder 

Figure 2.2 Buckling of thin cylindrical shells 
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The Batdorf parameter Z is normally used to separate 

short cylindrical shells from moderately long cylindrical shells 7 

Z= (L/R)2(R/t)~ (2.1) 

where µ is Poisson's ratio. Those cylindrical shells with Z < 2.85 can 

be characterised as very short cylindrical shells and those with 

Z > 850 as very long cylindrical shells. Cylindrical shells with Z 

between 2.85 and 850 can be considered as moderately long. 

The single most important characteristic of moderately 

long cylindrical shells is that they often fail at loads well below the 

critical load obtained using classical linear theory. It is with this 

group of cylindrical shells that this thesis is mainly concerned. The 

major developments in both theoretical and experimental work on 

buckling of moderately long cylindrical shells are summarized m 

the following sections. 

2.1 CLASSICAL LINEAR THEORY 

Within the limits of elastic small-deformation linear 

theory, the behaviour of unstiffened isotropic cylindrical shells is 

usually considered to be governed by Donnell's equation8,9, i.e., 

(2.2) 
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where D = Et3 /[12(1-µ2)] is the flexural rigidity, E Young's 

modulus, t shell thickness, R shell radius, ax axial stress, x 

coordinate in axial direction, w displacement in radial direction; 

V2= aa:2 + ::2 is biharmonic operator; V4 signifies the application 

of v2 twice and vs four times. When there is only axial stress 

applied on a shell, ::- Donnell's equation (2.2) becomes: 

For moderately long cylindrical shells, the critical stress can be 

obtained by solving equation (2.3): 

E 
O'er = [3(1-µ2)]1/2 (t/R) (2.4) 

According to St. Venant's principle, only the surface adjacent to the 

loaded edges of the cylinder is affected by the restraint along those 

edges. Hence the critical stress for a cylindrical shell of 

intermediate length, given by equation (2.4 ), is valid for clamped or 

built-in as well as simply supported edges. 

The equation (2.4) is regarded as a classical solution. 

It was first obtained in 1910-1911 by Timoshenko, Lorentz and 

Southwe1110,11 who applied the energy method in a cylindrical shell 

assuming axisymmetrical buckling. However, buckling experiments 

over the next 50 years were unable to attain much more than 50% 
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of this value. This discrepancy between theory and experiment has 

led to a great deal of research both theoretically and 

experimentally. The cause of this discrepancy is generally believed 

to be the unstable post-buckling behaviour of the shell, which 

causes the shell to be extremely sensitive to even small initial 

geometrical imperfections. 

2.2 DEVELOPMENT OF LARGE-DISPLACEMENT THEORY 

The first attempt to explain the discrepancy between 

theory and experiment was made in 1934 by Donnell8,9 who 

introduced a set of simplified non-linear equations for the large 

deflection analysis of cylindrical shells. Donnell's theory is based 

on the assumptions of the Kirchhoff-Love hypotheses ·and shallow 

shell approximations. The latter assumption restricts the validity 

of the theory to situations in which the normal deflection 

predominates over the in-plane displacements. Despite its limits of 

applicability, owing to its relative simplicity and practical accuracy 

for short and moderately long cylinders, Donnell's theory has been 

widely used for analysing both buckling and post-buckling 

problems of cylindrical shells. A more complete non-linear theory 

without the limitation of the shallow shell approximation was 

developed around the same time by Flugge5. Flugge's theory is 

considered to be more refined and is often employed to check the 

accuracy of Donnell's equations or in situations where the latter is 

not applicable. Both Donnell's and Flugge's non-linear theories 
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were followed by numerous theoretical and experimental 

investigations, which have led to a more complete understanding of 

the phenomenon of shell buckling and post buckling. 

A major breakthrough to explain the discrepancy 

between theory and experiment was made in 1941 by Von Karman 

and Tsien12-15 who demonstrated that an analysis of the buckling of 

thin shells by means of the small-displacement linear theory is 

insufficient to establish the practical limits of the load-carrying 

capacity of thin shells. Instead, they used Karman-Donnell type 

large displacement equations and for the first time showed that the 

highly unstable post-buckling behaviour of axially compressed 

cylindrical shells was the main cause of the large discrepancy 

between theory and experiment. They found that, subsequent to 

reaching the critical load, the load that an initially perfect shell can 

support drops sharply with increasing deformations. As indicated 

in Figure 2.3, the post-buckling behaviour of the shell is in sharp 

contrast to the way a simple column buckles. Whereas the load 

that a column can support subsequent to the onset of buckling 

remains fairly constant before 
. . 
rncreasrng again with large 

deflections, the load-carrying capability of the shell drops 

precipitously once buckling begins. 

The unstable post-buckling behaviour of cylindrical 

shells discovered by Von , Karman anq Tsien indicates that 

equilibrium is possible in a deformed configuration at loads well 

below the critical load of the classical theory. It was recognized 
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that the presence of initial imperfections, or that of external 

disturbances, would cause the shell to jump to these lower 

equilibrium positions before reaching the critical load. As 

illustrated in Figure 2.3, the initially imperfect shell never reaches 

the critical load given by the linear theory for a perfect shell. 

Instead, the initially imperfect shell exhibits a maximum load that 

is considerably lower than the critical load of the perfect shell. 

Loa.d 

ColuMn 
Peri--~~~~~~~~~~~~~~~ 

cylinder 

\: !Mperfect cylinder 

La. tera.l deflection 

Figure 2.3 

Post-buckling curves for column and axially compressed 

cylindrical shell 
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Many investigators followed in the footsteps of Von 

Karman and Tsien. Most of them attempted to obtain more 

accurate results for the cylindrical shell under axial compression16-

18, in particular finding the minimum load that the shell can 

support in the buckled state. It was then proposed that this 

minimum post-buckling load could be taken as the safe design load, 

on the grounds that the shell could always support at least this 

much load and that even imperfections would not reduce the 

postbuckling load below this value. However, by increasing the 

number of terms used to express the. deflection and minimizing the 

total potential energy with respect to the thickness to radius ratio 

as well as the wave number parameter, lower and lower values of 

the minimum post-buckling load were produced; until Hoff, Madsen 

and Mayers19 showed that as the number of terms used to express 

the deflection is increased indefinitely, the minimum load required 

to maintain the post-buckled state approaches zero, the thickness 

to radius ratio of the shell tends to zero, and the deflection pattern 

approaches the exact Yoshimura pattern (a series of diamond 

shaped facets). 

The Yoshimura pattern was attributed by YoshimuraZO 

who described the buckled surface of the cylindrical shell in axial 

compression as a near developable surface. He suggested that the 

observed buckling pattern can be approximated by a concave 

polyhedron made up of triangular facets which can be obtained by 

an inextensional transformation from the original cylindrical 

surface, then explained the physical reason for the presence of 
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postbuckling equilibrium states with lower energy than the 

prebuckled state. Since the stiffness of the shell is proportional to 

the cube of its thickness, to a thin shell, the energy involved in 

bending is small, and the total strain energy contained in the 

buckled configuration is much smaller than the extensional strain 

energy in the compressed state just before buckling. This explains 

the sudden snapping with loud report caused by the release of 

energy and the small value of the load required to maintain the 

buckled shell. Obviously, if the thickness were vanishingly small, 

the resistance to bending would be negligible; hence the shell 

would buckle to the exact Yoshimura pattern, and no load would be 

required to maintain this shape. 

2.3 EFFECT OF INITIAL IMPERFECTIONS 

The effect of initial imperfections on the buckling 

behaviour of axially compressed cylindrical shells has posed 

baffling problems to engineering in the past several decades. Much 

research has been carried out on the subject and many review 

papers have been published21-28. 

' When cylindrical shells are subjected to certain loads, 

the shells buckle at stresses lower then those predicted by classical 

theory. The reasons for this discrepancy are manifold; such as 

nonuniform shell thickness, nonuniform loading, 

modelled boundary conditions, influence of 

inaccurately 

pre buckling 

deformations (nonmembrane prebuckling stress), and deviations 
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from perfect shell geometry. The item that is most important is the 

last: geometric imperfections. This buckling behaviour was 

qualitatively displayed by Babcock27. Figure 2.4 is reproduced 

from that source, where each influence is displayed for a cylindrical 

shell under axial compression. Elastic buckling is assumed. The 

horizontal axis is artificially scaled to reflect the reasonable 

magnitudes of the "imperfections". This figure demonstrates that 

geometric imperfections are extremely important. 

1 

0.9 
Pre buckling Stress_/ / 

0.8 
Ul 
Ul 
c.> 
;... 0.7 ...,) 

Stress Variation J 
Boundary Stiffness 

Thickness Variation 
en 
~ 
.:: 0.6 -.!.: 
CJ - 0.5 -c::: 

"CJ 
c.> 0.4 N - Geometric~ 
~ 

E 0.3 
0 z 

0.2 

0.1 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Imperfection 

Figure 2.4 

Effect of "imperfection" on critical stress 

of cylindrical shells under axial compression (Babcock27) 
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In 1945, Koiter29 developed a general theory of post­

buckling behaviour which confirms the conclusions aforementioned, 

i.e., initial geometric imperfections are responsible for the fact that 

failure loads are significantly lower than the classical buckling 

load. Classifying the bifurcation point into three types, stable 

symmetric, asymmetric and unstable symmetric, Koiter showed that 

imperfection sensitivity of a shell depends on the type of 

bifurcation point associated with it (See Figure 2.5, here 

reproduced from reference 21). The load corresponding to the 

bifurcation point of the perfect shell is commonly called the 

classical buckling load and is denoted here by P cl· In each of the 

three cases, the prebuckling state of the perfect shell is stable for 

P < P cl and is unstable for P > P cl where it is shown as a dotted 

curve. Case one illustrates a shell with a stable postbuckling 

behaviour which can support loads in excess of the classical 

buckling load P cl in the buckled state. The behaviour of a slightly 

imperfect version of the same shell is described by the dashed 

curve. Case two is an example of a shell which goes into a stable or 

unstable postbuckling behaviour depending on whether the load 

mcreases or decreases following bifurcation. An initial 

imperfection is all that is needed to influence the deflection one 

way or the other. If an imperfection causes a positive buckling 

deflection, the load-deflection curve of Case two has a limit load 

P 5 , the buckling load of the imperfect shell, which is less than the 

bifurcation load of the perfect shell P cl· Case two is an example of 

asymmetric branching behaviour, while Case three illustrates a 

shell whose buckling behaviour is symmetric with respect to the 
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buckling deflection and in which initial postbuckling behaviour is 

always unstable under prescribed loading conditions. 

Based on the work of Koiter and that of Budiansky and 

Hutchinson21-23, the concept of imperfection sensitivity has been 

developed. In accordance with this theory, one is able to calculate 

a parameter which is a measure of the steepness of the post­

buckling curve. This parameter can then be used to estimate the 

degree to which initial imperfections reduce the strength of a shell 

below its classical critical load. In other words, the deeper the 

post-buckling curve, the greater will be the imperfection sensitivity 

of the shell and the further below the critical load will be the 

maximum load that the shell can support. Using an analysis of this 

type, it can be shown that axially compressed cylindrical shells are 

highly imperfection sensitive. Even very small initial imperfections 

can cause these shells to fail at loads well below the critical load 

given by the linear theory. A quantitative measure of the 

sensitivity of the shell to axisymmetric geometric imperfections can 

be calculated. 

A particular case of a cylindrical shell under 

compression was solved completely by Koiter30 in 1963. He showed 

that small imperfections made in the shape of the classical 

axisymmetric buckling mode can significantly reduce the buckling 

load, and presented an analytically derived formula from which the 

ratio of the practical buckling stress to the theoretical critical 

stress can be computed when the magnitude of the deviation from 
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the exact cylindrical shape is known. 

Koiter's asymptotic theory was later extended to the 

case of general random imperfections by Hansen31 using a 

probabilistic approach. Hansen's studies have indicated that on the 

buckling of axially loaded cylindrical shells, non-axisymmetric and 

general random imperfections can have a greater degrading effect 

then axisymmetric imperfections. 

Experimental verification of Koiter's predictions on the 

effect of axisymmetric imperfections was obtained by Tennyson and 

Muggeridge32, who conducted an extensive testing program on 

accurately made spun-cast epoxy shells containing various types of 

axisymmetric imperfections. Their studies indicated that minimum 

buckling load is obtained when the wavelength of the axisymmetric 

imperfection is equal to that of the classical axisymmetric buckling 

mode. 

The effect of actual imperfections was first investigated 

by Arbocz and Babcock33-36. Their theoretical predictions for the 

buckling load were obtained by representing the actual initial 

deviations of the shell wall as a Fourier series and were in 

reasonable agreement with observed test values. 

The effect of local imperfections on cylindrical shells 

was investigated recently by Krishnakumar37 using Foster's space 

frame analysis38-44 based on the geometry of the Yoshimura 
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pattern. The load carrying capacity of cylindrical shells with 

diamond-shaped defects similar to the facets of a buckled cylinder 

can be estimated. He also experimentally investigated the effect of 

changes in the defect size on the collapse load and the influence of 

more than one defect. 

2.4 EFFECT OF PREBUCKLING DEFORMATION AND 

BOUNDARY CONDITIONS 

Several researchers45-54 have investigated the effect of 

boundary conditions and the prebuckling bending deformation 

caused by edge restraints. The linear theory of cylindrical shells 

assumes that only membrane stresses and no bending stresses exist 

in the shell prior to buckling. In other words, the shell is free to 

expand laterally along its entire length prior to buckling and will 

consequently have the same shape. Actually, cylindrical shells are 

usually prevented from expanding at their ends by the supports and 

bending stresses do exist prior to buckling. However, it was shown 

by Stein47 in 1962 that the effect of these prebuckling bending 

stresses is small and that their omission in the classical theory is 

therefore not a primary reason for the difference between the 

theoretical predictions and actual collapse loads. 

The classical linear theory also assumes zero 

displacements at the edges, not only in a direction normal to the 

shell but also in the tangential direction. It has been shown by 
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Almroth53 that cylinders whose edges are free to move in the 

tangential direction buckle at a stress one half as large as that 

given by equation (2.4). Since this edge condition rarely exists in 

actual shells, initial imperfections and not boundary conditions are 

believed to be responsible for the discrepancy between classical 

theory and test results. 

2.5 EXPERIMENTS ON. NEAR PERFECT SHELLS 

Up to now, considerable advances have been made m 

experimental techniques. It is possible to subject the shell to 

uniform loading conditions without the problems of misalignment 

and eccentricity by using sophisticated testing equipment. With 

advanced manufacturing techniques such as electroplating55,56 and 

spincasting6,44,57,58, geometrically "near-perfect" cylindrical shells 

could be made. 

Prior to 1960, the conclusion that initial imperfections 

are responsible for the discrepancy between linear theory and 

actual buckling loads was based primarily on theoretical studies. 

However, experimental verification of the role that imperfections 

play has been obtained as well. Tennyson6,57,58 in 1963, by careful 

fabrication procedures, manufactured geometrically "near-perfect" 

circular cylindrical shells. Using these "near-perfect" circular 

cylindrical shells and clamped end constraints, he was able to 

obtain experimental buckling loads equal to 0.9aci. thus minimising 

the effect of initial imperfections. His test results are in close 
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agreement with the reduced theoretical value taking into account 

the edge restraints and prebuckling bending deformations and 

confirmed that the classical theory is valid for perfect cylindrical 

shells. 
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CHAPTER 3 

BUCKLING OF ORTHOTROPIC AND ANISOTROPIC­
CYLINDRICAL SHELLS 

- A REVIEW OF CURRENT LITERATURE 

Aerospace structure design, by its very nature, requires 

the engineer to strive for minimum weight configurations. This in 

turn has led to the development of a variety of advanced thin-

walled structures. These include stiffened thin-walled shell 

structures which are fabricated from a wide variety of light-weight 

materials, bonded constructions with honeycomb or foam cores, and 

laminated composite shells. The material behaviour of these shells 

can be considered as orthotropic. 

Although for isotropic cylindrical shells in the elastic 

domain, the problem of buckling may now be considered to be 

solved completely. However, for orthotropic and anisotropic 

cylindrical shells, due to their co-mplexity, both theoretical and 

experimental investigations still lag far behind -those for isotropic 

shell structures. 

Orthotropic shells have gained widespread usage 

because of the many unique advantages they offer. In advanced 

composite materials for instance, primarily because of their high 

stiffness/weight and strength/weight ratios, considerable weight 
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savings can be achieved. The designer has the advantage of being 

able to tailor his material and structure properties to meet specific 

requirements. It is necessary to develop an adequate background 

for analysing orthotropic structures that can result from the 

assembly of these material systems into various· structural 

configurations. 

A review of main developments in this field is 

presented in the following sections. 

3.1 CLASSICAL BUCKLING THEORIES PERFECT 

CYLINDRICAL SHELLS 

In general, classical buckling theories assume linear 

relationships between stress/strain and strain/ displacement. 

Furthermore, a membrane prebuckled shape is often considered in 

order to satisfy, either partially or completely, various end 

boundary conditions, although an "infinite" length shell model can 

also be employed. There have been many buckling analyses of 

orthotropic cylindrical shells. 

Theoretical buckling analysis of homogeneous 

orthotropic cylindrical shells was started as early as in 1945 by 

March59 in which torsional buckling of a plywood cylinder was 

studied. Studies of buckling under combined loading were 

performed by Thielemann et aJ.60 and Hess61 at an early stage, in 

which simply supported boundary conditions were partially 
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satisfied. An early general buckling analysis of anisotropic 

cylindrical shells was presented by Cheng and Ho62 who derived the 

buckling characteristic equation for cylinders subjected to 

combined axial compression, external pressure, and torsion with 

arbitrary boundary conditions. Their general analysis was later 

applied to obtain numerical results for buckling under these kinds 

of loadings: external radial pressure63 combined radial pressure 

and torsion63, axial compression64, combined axial compression and 

external radial pressure64, torsion65, combined torsion and axial 

compression65, · bending65, combined bending and axial 

compression65, combined bending, axial compression, external 

radial pressure and torsion66. 

It is worth noting that Cheng and Ho employed Flugge's 

linear theory which is considered to be more refined then the linear 

Donnell-type stability theory adopted by many authors such as 

Tasi67, Martin and Drew68, although considerable numerical 

analysis is required to obtain the critical loads. Tasi investigated 

in more detail the effect of heterogeneous composition on the axial 

compression buckling load of laminated composite cylinders, 

compared his results with data obtained for the same problem using 

Cheng and Ho's theory and found negligible difference. In Martin 

and Drew's analysis, a set of Donnell-type linear stability equations 

was used for the case of radial pressure. A comparison was made 

with Cheng and Ho's analysis. The difference between the two 

theories was negligible for the configurations considered. Another 

interesting comparison with Cheng and Ho's theory has been made 
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by Chao69 usmg Timoshenko's buckling equilibrium equations. 

Combined loading of external pressure and torsion with different 

boundary conditions were considered. Similar agreement was also 

found. A modified form of Cheng and Ho's analysis was presented 

by Lei and Cheng64 who investigated the buckling of orthotropic 

laminated shells including the effects of simply supported and 

clamped boundary conditions corresponding to the membrane 

prebuckled state. Buckling results were then obtained for various 

combinations of boundary conditions and varying length-to-radius 

ratios. Axial compression, radial pressure and combined loading 

were considered. 

Other investigations of buckling of anisotropic 

cylindrical shells have also been published. Holston 70 studied the 

effect of the length-to-radius ratio on the axial compressive 

buckling load. By neglecting coupling between shearing and 

extensional strain, he showed that there are no significant effects 

on the buckling load for ratio values greater than 1.5. In buckling 

due to bending, U gural and Cheng 71 found that coupling between 

in-plane stretching and bending had an important effect on the 

buckling loads, while in Holston's analysis66, which was based on 

Cheng and Ho's work, it was shown that the pure bending buckling 

stress was essentially equal to the uniform compression value. An 

interesting study was done by Pagano et al.7-2. They showed both 

theoretically and experimentally that buckling was possible in 

anisotropic cylinders subjected to axial tension. This seemingly 
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strange phenomenon is really a shear-type buckle due to the 

induced torque arising from the presence of end constraints. 

For buckling of orthotropic cylindrical shells, two types 

of basic equations, corresponding either to Flugge-type or Donnell­

type linear equations for isotropic shells, have been formulated in 

the literature. In either case, a resulting single eighth-order 

differential equation may be deduced. A common difficulty with 

these eighth-order equations in isotropic or orthotropic shell theory 

is that their general solutions remain unknown because of the 

algebraic complexities involved. However, the eighth-order 

equation for orthotropic shells is more complicated than the 

corresponding one for isotropic shells. Recently, Cheng and He 73 

have proposed a pair of complex conjugate fourth-order partial 

differential equations that govern the deformation of orthotropic 

circular cylindrical shells. Subsequently, Xiao and Cheng 74 applied 

these equations to orthotropic cylinders loaded in local external 

pressure. This pair of equations is deduced from a set of basic 

equations that is based on the Kirchhoff hypothesis, that is: 

(a) The transverse normal stress is negligibly small, and 

(b) Sections normal to the middle surface of the shell remam 

normal to the middle surface and undergo no change in 

length during deformation. 

The pair of equations is as accurate as equations can be 

within the scope of the Kirchhoff assumptions. From the pair of 

equations, a number of simplified fourth-order governing equations 
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can be systematically and explicitly deduced. These fourth-order 

equations for orthotropic cylindrical shells are of practical 

importance because they can be easily solved in closed forms and 

yet retain practically the same accuracy as the original eighth-order 

equation. Using these fourth-order equations, a particular problem 

of loss of stability of cylindrical shells due to pressure applied on 

part of their surfaces has been solved by Xiao and Cheng 74. The 

critical loads of orthotropic shells under this particular 

configuration were compared with those calculated from the 

corresponding equations given by Flugge5. Results show that the 

difference between the two equations is negligibly small. 

3.2 LIMITATIONS IN THE CLASSICAL BUCKLING THEORIES 

All of the theoretical works mentioned so far 

considered classical buckling theories undergoing small deflections 

in which several limitations were involved. Firstly, a linear stress 

and strain relation was used in basic equations. Secondly, 

membrane pre buckled shape is assumed, i.e., the effect of boundary 

conditions on the prebuckling stress state is ignored. Thirdly, the 

difference between the elastic moduli in tension and compression is 

ignored. Lastly, a geometrically "perfect" shell is always applied in 

classical buckling theories. 

As far as the linear stress/strain relations are 

concerned, it is well known that for many composite materials, 

linearity may not exist for all types of stress and strain. Material 
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property tests on 'Scotchply' Type 1002 preimpregnated epoxy/ glass 

were performed by Tennyson75. His results show that although the 

axial tension and compression data in the main exhibit linearity, 

the shear behaviour is quite nonlinear. Hence some difficulty 

could arise in comparing torsional buckling loads with predicted 

values based on a constant shear modulus, although the initial load 

curve can be approximated reasonably well by a linear relation. 

In the multitude of classical theories, prebuckling 

deformations caused by different boundary conditions are not 

included in the analysis, although buckling loads are affected by 

prebuckling deformations. However, for certain boundary 

conditions, such as the clamped case, the load reduction associated 

with the prebuckling displacements may only amount to 5%-10%. 

One assumption generally made is that of a constant 

elastic modulus to describe both tension and compression. Jones76 

has shown that variations in these material coefficients can cause 

significant differences in buckling loads, at least for the case he 

considered. 

However, similar to the behaviour of isotropic 

cylindrical shells, geometric imperfections play a major role in 

reducing the buckling loads of orthotropic cylindrical shells. A 

discussion of this is presented in the next section. 
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3.3 BUCKLING OF GEOMETRICALLY IMPERFECT 

ORTHOTROPIC CYLINDRICAL SHELLS 

The effect of geometric shape imperfections on the 

buckling strength of isotropic cylindrical shells has been well 

known for some time. However, by comparison, relatively few 

studies have been done to investigate shape imperfection effects on 

the stability of orthotropic shells. 

A theoretical analysis has been published by Khat 77-79 

based on the anisotropic shell theory for axial compression. A 

Donnell-type of analysis including nonlinear strain/displacement 

relations was employed using an initial shape imperfection having 

the form of the assumed buckling mode. The total potential energy 

was minimized to yield the buckling loads. Load/ deflection curves 

were then obtained as a function of the imperfection amplitude. 

Khot's results indicated that any orthotropic cylindrical shell is less 

imperfection sensitive then an isotropic one. Experimental data 

on orthotropic cylindrical shells, which is presented in the ·next 

section, supported Khot's prediction. 

Koiter's imperfection shell theory was first applied to 

anisotropic cylindrical shells by Card80 in 1969. In his analysis, 

Koiter's theory was employed to examine the imperfection 

sensitivity of laminated orthotropic cylindrical shells based on a 

perturbation technique applied to a 'perfect' shell at the inception 

of instability. Furthermore, the prebuckling deformations 
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associated with simple and clamped boundary conditions were 

considered. Experimental data for filament-wound and glass-epoxy 

cylindrical shells under axial compression were carried out and 

compared with perfect shell prediction. The variation was 63% to 

91 %. Calculations of the imperfection sensitivity were made for 

qualitative comparison with the experiments, but smce no 

measurements of actual imperfection distributions were done, a 

quantitative buckling loads comparison was not possible. 

Also by usmg Koiter's theory, Tennyson et al.81 

performed an axisymmetric imperfection analysis to determine the 

effect of imperfect amplitudes on the axial compression buckling 

load of anisotropic circular cylindrical shells as a function of fibre 

orientation. The effect of_ boundary conditions was neglected. 

Numerical results were presented only on orthotropic three-ply, 

glass-epoxy composite cylindrical shells. They indicated that the 

axisymmetric shape imperfection has a dominant effect on the axial 

compress10n buckling load of orthotropic composite cylindrical 

shells. For a perfect composite cylindrical shell, axial buckling 

load can be increased by changing the fibre orientation, but it will 

be accompanied by a corresponding increase in imperfection 

sensitivity. So from a design point of view, it was suggested that 

there is no significant advantage in selecting optimum fibre 

orientations that would give maximum buckling load for a perfect 

shell if there is some inherent axisymmetric shape imperfection 

introduced in the manufacture process. Subsequently, axial 

compression buckling tests were performed by Tennyson and 
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Muggeridge82 on three-ply, glass/ epoxy cylindrical shells. 

Experimental results were compared with predicted values which 

was based on the analysis of Reference 81, and a good agreement 

was found. 

Investigation of the effect of local shape defects on the 

buckling of orthotropic' cylindrical shells was just started by Muir83. 

He tested three sets of 4-ply carbon-fibre epoxy composite 

cylindrical shells in axial compression for lamina orientations of 30, 

45 and 60 degrees. Diamond-shaped defects were imposed on the 

shell wall. However, because only a few shells were tested, no 

clear conclusions have arrived. 

3.4 EXPERIMENTAL DATA ON ORTHOTROPIC CYLINDRICAL 

SHELLS 

Preliminary experimental data on orthotropic plywood 

cylindrical shells under axial compression was published in 1943 by 

Norris and Kuenzi84. Card and Peterson85 and Card86 reported on 

the results of 51 tests of filament-wound glass/ epoxy circular 

cylindrical shells under axial compression. The experimental 

buckling loads averaged approximately 85% of analytical 

predictions based on a Donne.II-type orthotropic analysis. Tasi et 

aI.87 have -also investigated the buckling behaviour of filament­

wound glass/ epoxy cylindrical shells under axial compression and 

compared their test data with solutions obtained by using Cheng 
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and Ho's linear theory. Their experimental buckling loads were 

found to range from 66 % to 85 % of analytical predictions. 

Buckling under external pressure of orthotropic 

fiberglass cylindrical shells has been studied by Schneider and 

Hofeditz88. Test data on 53 glass fibre orthotropic cylindrical 

shells were reported and compared with theoretical buckling 

pressure. All of the experimental buckling external pressures were 

found to be more than 85 % of theoretical predictions. 

Torsional buckling of orthotropic filament-wound glass­

epoxy cylinders was studied by Wall and Card89 who compared their 

test data with the theoretical analysis by Chao69. About 67% of the 

theoretical predictions were found in their experimental buckling 

results. Tennyson 75 has also conducted experiments on the 

torsional buckling of preimpregnated type wound glass-epoxy 

cylindrical shells. Experimental torsional loads were compared 

with the theoretical predictions which were based on the linear 

Donnell-type equations. A very good agreement was obtained; all 

of the experimental values were more than 80% of the theoretical 

predictions with an average of 90%. 

For buckling under combined loading, an extensive 

study of filament-wound glass-epoxy cylindrical shells was 

undertaken by Hoston et aI.90 for various loading modes, including 

axial compression, torsion, bending, combined torsion and axial 

compression, and combined bending and axial compression. Using 
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linear buckling theory based on the work by Cheng and Ho, axial 

compression values were found to be 67%-90% of the theoretical 

predictions while bending critical loads were essentially equal to 

the axial compression values. 

It should be pointed out that the experimental 

buckling results on orthotropic cylindrical shells mentioned above 

agrees with Khot's prediction, that is, any orthotropic cylindrical 

shell is less imperfection sensitive than an isotropic one. 
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CHAPTER 4 

THEORETICAL BUCKLING ANALYSIS OF 

ORTHOTROPIC AND CELLULAR-WALLED CIRCULAR 

CYLINDRICAL SHELLS 

As described in the last chapter, there have been many 

buckling analyses of orthotropic shells. Among them, Cheng and 

Ho's63 theory was represented as a general theory of buckling of 

heterogeneous anisotropic cylinders under combined loading with 

arbitrary boundary conditions. Although it is based on a very 

accurate Flugge-type shell theory which is considered to be more 

refined than the linear Donnell-type stability theory, their analysis 

is rather lengthy; considerable numerical analysis is required to 

obtain the critical load. 

The intention of this chapter is to develop simple 

formulae for buckling critical loads of orthotropic circular 

cylindrical shells under combined loading of axial compression and 

external pressure, so they can be used practically. This analysis is 

based on a Flugge-type linear shell theory. A simply supported 

boundary condition SS3: w= 0, Mu= 0, Nu= 0, v= 0 is considered. In 

practice, a clamped or built-in boundary is most commonly used 

which is represented by the following conditions: FF3: w = 0, 

w'u = 0, Nu= 0, v = 0. As mentioned previously, boundary conditions 

have little effect on buckling loads compared to other factors such 

as shape imperfections. Some numerical results have shown64 that 
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in moderately long cylindrical shells there is almost no difference 

in buckling loads between these two boundary conditions. Thus, 

the solution for buckling loads presented in this report has a 

practical significance. 

First, a general orthotropic cylindrical shell was 

considered. Based on Flugge's linear theory _ for isotropic 

cylindrical shells, a general buckling solution under combined axial 

compression and external pressure was derived in this chapter. For 

moderate-length orthotropic cylindrical shells loaded in either 

external pressure or axial compression, buckling loads are 

formulated in a simple form. 

Subsequently, the buckling criterion for a cellular­

walled circular cylindrical shell under combined loading was 

developed. The cellular wall was modified to approximate a 

uniform orthotropic form. The modified wall was then treated as 

pseudo-orthotropic. 

4.1 BUCKLING CRITERION OF AN OTHOTROPIC CIRCULAR 

CYLINDRICAL SHELL UNDER COMBINED LOADING OF 

AXIAL COMPRESSION AND EXTERNAL PRESSURE 

4.1.1 BASIC EQUATIONS 

Consider an orthotropic cylindrical shell under 

combined loading of axial compression P and external pressure p. 
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Let R be the radius of the midsurface of the shell; x,y,z the axial, 

circumferential, and radial coordinates; and a,{3,-y the 

dimensionless coordinates of x, y and z (a= x/R, {3 = y /R, 'Y = z/R). 

The three displacement components ua., u~ and Uy of an arbitrary 

point of the shell can be expressed in terms of midsurface 

displacements u, v and w as follows5 : 

where 

Uy= W 

aw 
oa' 
aw 

w~ = (atf- v), 

(4.1) 

Now, let <la. and u~ be the normal stresses along a ,{3 respectively; 

Ta.~ be the shear stress in the a,{3 plane; ea. and e~ be the normal 

strains and 'Ya.~ be the shear strain. The stress-strain relations for 

orthotropic materials91,92 are 

(4.2) 

where· E 1, E 2 are the moduli of elasticity along the principal 

directions a and {3, respectively; G12 is the shear modulus that 
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characterizes the change of angles between principal directions a 

and {3; µ 1 = µpa is the Poisson's ratio that characterizes the 

decrease in a direction due to tension applied in {3 direction, and 

µ 2 = µa.J3 is the Poisson's ratio that cha~acterizes the decrease in {3 

direction due to tension applied in the a direction. Among these 

material constants there exists a relation91: 

(4.3) 

The components of strain at any arbitrary point of the shell are 

related to the midsurface displacements by5 

1 av 1 a2w 
ep = R <a{3 + w)-R(l+'Y) <a(32 + w), 

The bending ( T/a., 77p) and twisting strains ( 77a.p) are 

1 a2w 
T/ - -­

et. - - R 2 aa2' 

(4.4) 

(4.5) 

Let t be the wall thickness; K1,K2 the extensional stiffnesses and D 1 
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and D 2 the bending stiffnesses along the principal directions a and 

{3 respectively, 

and we let 

E2 
k =-E 

1' 

Ezt3 
Dz = -12-(-l--µ-1µ_2_) ' (4.6) 

(4.7) 

Let Na. and Np be the normal stress resultants, Sa. and Sp the shear 

stress resultants, Ma. and Mp the bending moments, Ma.p and Mpa. 

the twisting moments, and Oa. and Op the transverse stress 

resultants. Under the combined loading of axial compression P and 

external pressure p, the equations of static equilibrium are (see 

figure 4.1): 
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Figure 4.1 Shell element 
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In the equations (4.8), these stress resultants (N,S,Q) 

and couples (M) per unit length of the midsurface are related to 

the midsurface displacements through the stress-strain relations as: 

t/2 

[N a.,Sa.,MwMa.p] = f ([<Ta., T a.p ,Z<Ta.,ZT a.pD [ 1 + z/R] dz 
-t/2 

t/2 

[N p,Sp,Mp,Mpa.] = f ([ <1p, rpa.,Z<1p ,zrpa.Ddz 
-t/2 

t/2 

[Qa.,Op] = J ([Ta.z,Tpz])dz 
-t/2 

which resulted in 
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t2 
in which c2 = lZR2 , and 

(tanh-1'1Jc-'1Jc) 
0 = -h -1 \/3.c3 

- 2 [.!. .!_ - h 2 ! -h 4 l - 9c 5 + 7(\./3 c) + 9(\./3 c) + ...... 

4.1.2 BUCKLING UNDER COMBINED LOADING 

Substituting these stress resultants (N,S,Q) and couples 

(M) in equation ( 4.10) into the equation of static equilibrium ( 4.8), 

a system of three differential equations is obtained for the three 

basic displacement functions (u,v,w) 

a1 a1 a1 
[(l-q2) aa2 + {k1[1+c2(1+o)] -q1}a.s2Ju + (k1+µ1)aaa.Bv 

a a3 a3 
+ {(µ1 + qi)aa - c2[aa3 - ki(l+o)aaae2n w = 0, 

a2 a2 a2 
[(k1+µ1)aaaeJu +{(k-q1)ae2 + [k1(1+3c2) - q1Jaa2}v 

a a3 
+ [(k - qi) a.s - c2(3k1 + µl) aa2aelw = 0, (4.11) 
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a a3 a3 a a3 
(µ1 +qi) acx -c2[acx3-k1 (1 + o) acxa.a2]u + [(k-q1) a.a-c2(3k1 + µl) acx2a.slv 

a1 a1 a4 a4 
+ {k + qia.a2 + q2aa2 + c2[aa4 + ( 4k1+2µ1 + ok1) acx2a.a2 

a1 
+ k(l + o)(a.B2+1)2]}w = o 

in which q1 and q2 are dimensionless loads, 

( 4.12) 

It may be observed ·that these load parameters are 

small quantities. We introduce a solution for equation ( 4.11) of 

the form: 

where 

u = A cos(t,a)cos(m.B) 

v = B sin(f..a)sin(m.B) 

w = C sin(f..cx)cos(m.B) 

n11"R 
A =L, 

(4.13) 

and n is an integer. The solution describes a buckling mode with n 

half- waves along the length of the cylinder and with 2m half-waves 

around its circumference. We assume the edges of the cylinder to 

be at ex= 0 and a =L/R. We can see that at the ends v = w = 0 and 

from the stress resultants that Na.= 0, Ma.= 0. Thus, the solution 

represents the buckling of a shell whose edges are supported in 
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tangential and radial directions but are neither restricted in the 

axial direction nor clamped. (This has been classified as one of the 

simply-supported boundary conditions, namely SS3, by Lei & 

Cheng2). 

When the solution (4.13) was introduced into the 

differential equations ( 4.11), the trigonometric functions drop out 

entirely and we are left with the following equations: 

A [-A.2(1-q2) - m2{ki[l+c2(1+o)] -qi}]+ B [A. m(ki +µi)] 

+ c [A.(µi + qi) - c2{- A,3 + ki(l + o)A. m2}] = 0, 

A [A. m(ki + µi)] + B [-m2(k-qi) - A. 2{ki(l + 3c2) - q2}] 

+ C [-m(k - qi) - c2(3ki + µi) mA.2] = 0, 

A [A. (µi + qi) + c2{ A,3 -ki(l + o)A. m2}] + B [-m(k - qi) 

- c2(3ki + µi)m A.2] + C[-k + qi m2 + q2 A. 2 

( 4.14) 

- c2{ A.4 + (4ki+2µi+oki)m2 f.2 + k(l+o)(m2-1)2}] = o 

These are three linear equations with the buckling 

amplitudes A,B,C as unknowns and with the brackets as 

coefficients. These equations admit in general, since they are 

homogeneous, only the solution A = B = C = 0, indicating that the 

shell is not in neutral equilibrium. Only if the determinant of the 

nine coefficients equals zero is a nonvanishing solution A,B,C 

possible. Thus the vanishing of this determinant is the buckling 

condition of the shell. The coefficients of the above equations are 

linear functions of c2, qi and q2. The expanded determinant is, 
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therefore, a polynomial of the third degree in these parameters. 

Since they are very small quantities, it is sufficient to keep only the 

linear terms and to write the buckling condition as: 

( 4.15) 

The coefficients c1 ... c4 of equation ( 4.15) may be found by 

expanding the determinant of equation ( 4.14 ): 

c2 = A.8k1 -A. 6m2(µ12-k-4k12) 

- 2 A. 4m4 ( 4k1 µ 12 + 4k12µ 1-3kk1 + µ1 3-kµ1) 

- A.2m6k(µ 12-k-4k12) + m8k2k1-2 A.2m4k(k-µ 12 + 4k12-k1µ 1) 

-2A. 4m2(3kk1 + kµ 1-4k1 µ 12-µ 13-4k12µ 1) 

- A.2m2k( µ 12-k-4k12+2k1µ1) -2 A. 6k1 µl 

-2m6k2k1 - A. 4k1 (3 µ 12-4k) + m4k2k1 

c3 = A.2m4(k-2k1µ 1-µ 12) + m6kk1 + A. 2m2(2k1µ 1 + µ 12-kk1-k) 

-m4kk1 + A. 4m2k1+2k1µ 1 A. 4 

C4 = A.6k1 + A.4m2(k-2k1µi- µ12) + A.2m4kk1 

+ A,2m2kk1 + A_4(k+kk1- µ 12) 

( 4.16) 

Since c1 turns out to be proportional to A.4, we may drop the term 

with A. 4 in all other coefficients. By using the relation E 1µ 1 = E2µ 2, 

and an approximate relation93 
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( 4.17) 

in which ~ and ~ are geometric mean values for the 

Youngs modulus E and Poisson's ratio µ, respectively, it may be 

shown that 

(2k1 + µ1)2 = 4k12 + µ12 + 4k1µ1 

G2(l-µ1µ2) 2 G(l-µ1µ2) 
= 4 E 2 + µ12 + 4 E µ1 

1 1 

= k (1-~)2 +µ12 + '1k 2µ1(1-~) 
=['1k.(1-~) +µ1J2 

= k ( 4.18) 

and 

( 4.19) 

By substituting the above equations ( 4.18) and ( 4.19) into equation 

( 4.16), the four coefficients can be further simplified as: 

c2= ki( '1,2 + '1km2 )4 -2 '1,6k1 µ1 -6kk1 '1,4m2 

-2'1.2m4kk1 ( 4'1k - µ1) - 2m6k2k1 

+ 2 '1,2m2kk1 (2'1k. - µ1) + m4k2k1 
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These co-efficients are still relatively complicated. 

Under combined loading of axial compression and external 

pressure, the buckling condition, equation ( 4.15), not only depends 

on material properties (Eb E2, µ1' µ 2, G12) but also on the 

buckling mode (m,n), i.e., number of waves along axial and 

circumferential directions. 

4.1.3 BUCKLING UNDER EXTERNAL PRESSURE ONLY 

Now, if an orthotropic cylindrical shell was loaded 

under external pressure alone, i.e. when q2 = 0. Then the equation 

( 4.15) yields 

where 

C1 -
- = (k- µi 2)k1 /.. 4 / {k1 m2( )..2 + \jk m2 )2 
C3 

C2 

- k1(2~ + k)t..2m2 -m4kk1} 

{k1 (t..2 + '.fkrn.2 )4 -2 /.. 6k1µ1 -6kk1 /.. 4m2 

-2/..2rn.4kk1 ( 4~-µ1)-2m6k2k1+2)..2rn.2kk1(2..Jk-µ1) 

+ rn4k2k1} / {k1 m2()..2 + ~rn.2)2 -k1 (2..jk + k)t..2m2 
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It may be shown by analyzing equation ( 4.22) that a minimum 

value of q1 is obtained when A. or n (the number of half-

wavelengths in the axial direction) has its smallest value; namely 

n = 1, hence A.= A. 1 = '11"R/L. As a consequence, a circular cylindrical 

shell under external pressure buckles into a single half-wavelength 

in the axial direction. For moderate-length cylinders, it may ~e 

assumed that 

( 4.23) 

as used by Gerard94 for isotropic cylinders. Thus, equa.tion ( 4.22) 

reduces to: 

= (k-µ12)k1 A.14 /m6kk1 

µ12 
= (1-T) A.14/m6 

= (l-µ1µ2) A.14/m6 

= km2 

So, equation (4.21) becomes 

where 

ql = (l-µ1µ2) A.1 4/m6 + (km2)c2 

= H/x3 + (kx)c2, 

H 
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( 4.25) 

x = m2 
' 



and the minimum value of q1 will occur when 

( 4.26) 

which results in: 

So the critical load qcr is: 

PcrR 
qcr = --

Ki 

= [kc2r/4 

H 3H + [3Hr4 

k kc2 .c2 

= ~ (3H)l/4 (kc2)3/4 ( 4.27) 

and the critical external pressure load for a moderate-length 

cylindrical shell is: 

= 
4?r( l-µ 1µ2)1/4D1 k3/4 

33/4R2Lcl/2 ( 4.28) 

This formula can be used as long as the condition of equation 

( 4.23) for moderate-length cylinde.rs is satisfied. This result exactly 

agrees with the result derived by Xiao and Cheng74 using a quite 

different approach. In the case of isotropic cylinders under 
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uniform external pressure, the preceeding formula ( 4.28) becomes: 

2?rEt2 ~ {I_ 
Per = 3'\.f6(1-µ.2)3/4RL -\jR ( 4.29) 

4.1.4 BUCKLING UNDER AXIAL COMPRESSION ONLY 

For an orthotropic cylindrical shell loaded with axial 

compression alone, the buckling condition of equation ( 4.15) 

becomes: 

In which 

( 4.30) 

{(t..2 +'1km2)4 -2/..6 µ. 1 -6k t..4m2 -2 t..2m4k(4\.fk- µ. 1) 

- 2m6k2 + 2 t..2m2k(2'./k- µ. 1) + m4k2} 

/[t..2()\2 + '1km2)2 + t..2m2k] ( 4.31) 

In general, this buckling condition is again complicated. However, 

there are two special cases in which the condition can be further 

considered (or simplified). These cases are represented by }..2 

being either much less or much greater than unity. 

Case 1: t..2< < 1. 1.e. n?rR/L < < 1, for very long 
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cylinders. We may neglect :h2 compared with 1 or m2, but in the 

first term ( c1/ c4) we must do so separately for the term without the 

small factor c2. We thus obtain the approximate relation 

= 

= 

(k-µ 12):h 4+ c2m4k2(m4-2m2 + 1) 

:h2m2k(m2+ 1) 

(1-µ 1µ 2):h4+ c2m4k(m4-2m2+ 1) 

:h2m2(m2+ 1) 

from which we see that 

m2(m2-1)2 c-Jk 
+ m2+ 1 . :h2\)l-µ1µ2 

( 4.32) 

(4.33) 

This is a unique expression describing the non-dimensional axial 

buckling load q2 modified by the quantity c\)(1-µ 1µ2)k in terms of 

.,_2~fii- and the number of circumferential waves in the buckling 
-µ1µ2 

pattern. From the definitions of k,c and A we find that 

c-}k 

( 4.34) 

Case 2: :h2 > > 1, i.e. n 7rR/L > > 1, cylinder length is 

short compared to the product of radius and number of axial ,half­

waves. In this case, we may simplify equation ( 4.30) by neglecting 1 
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compared with A.2. This yields the formula 

= 
(k-µ 12)A. 4 + c2(A.2--Jk.m2)4 

A.2(A.2 +-Jk.m2)2 

which may be written as 

q2 

(A.2 + ;Jkm2)2 c 

+ >..2 . \)k(l-µ1µ2) 

( 4.35) 

( 4.36) 

The left-hand term represents the non-dimensional axial buckling 

load, while on the right-hand side one term is the reciprocal of the 

other. We now must distinguish three further sub cases: 

Case 2a: moderately long cylinders. In this case we 

~k(l-µ1µ2) 
have the condition of m > 0, and (n 7rR/L)2 < c or L/nR 

71"-JC W . . 1 d f. d > [k(l-µ
1
µ

2
)]1/4· e may permit m to vary contmuous y an m 

the minimum value of q2 by differentiating equation ( 4.36) with 

respect to (A.2 + '1k.m2)2. The differentiation leads to the conclusion 

that 

jk(l-µ1µ2) = 1..2~--­
' c 

Substituting in equation ( 4.36), we find 
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= 2 ( 4.38) 

from which we get the critical axial compression load for 

moderately long cylinders 

( 4.39) 

For isotropic cylinders, the above equation ( 4.39) can be reduced 

to the classical buckling load: 

Et2 
= --;:===--

'13(1-µ2) R 
( 4.40) 

Case 2b: 
y.--k(-1--µ l-µ.-2) 

very short cylinders, i.e., m = 0 and (n7rR/L)2 

> or c 
'7rvc 

acceptable as long as equation ( 4.37) yields a reasonable value of 

m2. In this case, equation ( 4.37) no longer exists; thus equation 

( 4.36) may be written as 

(4.41) 

Thus the critical axial load modified by the quantity cy(l-µ 1µ 2)k 

1 [(l-µ1µ2)k]1/4 
as before can be expressed in terms of either A ~ 

L 12(1-µ 1µ 2)R2E2 
or -r ]1/4 n7rRL 2E1 . 
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>J<l-µ1µ2)k 
Case 2c: m = 0 and (L/n7rR)2 = c 

For this case, equation ( 4.37) always exists and from equation 

( 4.36) we get the same result as in equation ( 4.38), i.e., 

= 2. 

4.2 BUCKLING CRITERION OF A CELLULAR-WALLED 

CIRCULAR CYLINDRICAL SHELL UNDER COMBINED 

LOADING OF AXIAL COMPRESSION AND EXTERNAL 

PRESSURE 

A cellular-walled circular cylindrical shell was 

considered in this section under the same loading conditions, i.e. 

axial compression and external pressure. In order to make use of 

those equations on orthotropic shells, the cellular-walled shell wall 

has to be approximated as an homogeneous orthotropic wall (or 

pseudo-orthotropic). All the basic equations developed in the 

section 4.1 fo~ general orthotropic shells exist except that the 

bending stiffness of the shell wall D1 and D2 in the equation ( 4.6) 

have to be redefined while extensional stiffness K1 and K2 can still 

remain the same. They are expressed as follows: 

Ki 
E 1 t 

K2 
E2t 

l -µ1µ2 1-µ1µ2 

Di* 
Eb1t3 

D2* 
Eb2t3 

= = 12(1-µ1µ2) 12(1-µ1µ2) 
(4.42) 
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where Ehl and Eh2 are effective Young's moduli of bending in the 

axial and hoop direction which are to be determined in the next 

chapter. 

4.2.1 BUCKLING UNDER COMBINED LOADING 

Since the cellular-walled shell wall is treated as 

pseudo-orthotropic, the buckling condition of a general orthotropic 

cylindrical shell, equation (4.15), may still be applied. We 

represent it as follows: 

(4.43) 

Coefficients c1 ... c4 may be determined in the same way as in the 

last section: 

Eh1 Eh2 
c2 = )..8k1 E1 + m8kk1 E1 

. Eb1 Eb1 Eb2 
-A6m2[(µ12-k) E1 -4k12+k1(µ1 E1 _µ2 E1 )] 

Eb1 Eb2 
-A 4m4[ 4k1µ12 + (2k1µ1+µi2-k)(µ1 E1 + µ2 E1 ) + 8k12µ1 

Eb1 Eb2 
-4kk1-k1(k Ei + Ei )] 

Eb2 Ehl Eb2 
-A2m6[(µ 12-k + 2k1µ1) Ei -4kk12-kk1 (µ1 Ei + µ2 Ei)] 

Eb2 
-A2m4[(2k-k1µ1) Ei -2kµ1 2 + 8kk12-3kk1µ1 

Eb1 Eb2 
+ kk1(µ1 E1 +µ2 E1 )] 
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Eb1 Eb2 
-A. 4m2[6kk1 + (k-k1µi-µ12)(µ1 E1 + µ2 E1 )-6k1µ12-8k12µ1 

Eb1 Eb2 
+ ki(k E1 - E1 )] 

Eb1 
-zm6k2k1 - f..6k1µ1(l + E1) 

Eb2 
-f..2m2[ E1 (k1µ1 + µ12-k) + k(k1µ1-4k12)] 

Eb2 
-A. 4k1 (3µ 12-4k) + m4kk1 Ei 

( 4.44) 

It may be noted that due to Ebl and Eb2 being introduced, the 

buckling condition of a cellular-walled cylindrical shell is more 

complicated than the one of a general orthotropic cylindrical shell. 

The equation (4.43) describes a straight line in the q1' q2 plane, 

and the limit of the stable region is a polygon consisting of sections 

of straight lines for different pairs m,n (buckling mode). The 

details of the theoretical performance of a cellular-walled 

cylindrical shell will b~ discussed in Chapter Six. 

4.2.3 BUCKLING UNDER EXTERNAL PRESSURE ONLY 

Under external pressure alone ( q2 = 0), the buckling 

condition, equation ( 4.43 ), becomes 

( 4.45) 
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where the coefficients ci,c2 and c3 are represented by equation 

( 4.44 ). For moderate-length cylindrical shells., assumptions defined 

by the equation (4.23) exist, i.e., 

( 4.23) 

By using the above condition, the coefficients 1n the equation 

( 4.45) can be simplified as: 

( 4.46) 

By using the same procedure of Section 4.1.3, i.e. substituting the 

equation ( 4.46) into the equation ( 4.45) then minimizing the 

function q1 to m2, the following critical external pressure for 

moderate-length cellular-walled cylindrical shells may be derived: 

Eb2 
4?r( l-µ1µ2)1/4 D1 * (Ei)3/4 

Per = 33/4R2Lcl/2 ( 4.47) 

In the case of general orthotropic cylindrical shells, we have 

Eb1 =E1 Eb2=E2 and D1* = D1. Thus the above equation (4.47) 
' 

reduces to the formula ( 4.28), i.e., 

Per = 
4?r( l-µ1µ2)1/4D1ki3/ 4 

33/4R2Lcl/2 ( 4.28) 

4.2.2 BUCKLING UNDER AXIAL COMPRESSION ONLY 
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Under axial compression load alone ( q1 =0), the 

buckling condition, equation (4.43), becomes 

( 4.48) 

where the coefficients c1,c2 and c4 are represented by equation 

( 4.44 ). Due to complexity, equation ( 4.48) could not be further 

simplified. 
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A,B,C: 

c2: 

NOTATION 

Amplitudes of a set of displacement functions u,v,w 
t2 

= 12R2 

cvc2,c3,c4: Coefficients in the buckling condition, refer to 

equations (4.15),(4.16),(4.20) 

D: Flexural rigidity of isotropic shells, D 
Et3 

D1,D2: Bending stiffness of orthotropic shells; 

E1t3 E2t3 
D1=12(l-µ1µ 2)' D2=12(l-µ1µ2) 

D1 * ,D2 *: Bending stiffness of cellular-walled shells; 

Eb1t3 Eb2t3 
D1=12(l-µ1µ2)' D2=12(l-µ1µ2) 

Young's moduli of extension in axial and 

circumferential respectively 

Young's moduli of bending in axial and circumferential 

respectively 

Orthotropic shear modulus that characterized the 

change of angles between principal directions ex and {3 
E1t E2t 

Extensional stiffness, K1 = l-µ
1
µ

2
, K2 = l-µ

1
µ

2 

k: = E2/E1 
G(l-µ1µ2) 

= 

Length of a cylindrical shell 

Bending moments per unit length of the middle surface 

of the shell 

Ma.~,M~a.: Twisting moments per unit length of the middle surface 
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n: 

P: 

Per: 

p: 

R: 

t: 

u,v,w: 

of the shell 

Number of half waves along circumferential direction 

Normal stress resultants per unit length of the middle 

surface of the shell 

Number of half-waves along axial direction 

Axial compressive load 

Classical axial buckling load 

Critical axial buckling load 

External pressure 

Critical external pressure load 

Transverse stress resultants per unit length of the 

middle surface of the shell 

Non-dimensional axial compression load 

Non-dimensional external pressure load 

Radius of the midsurface of the cylindrical shell 

Shear stress resultants per unit length of the middle-

surface of the shell 

Shell wall thickness 

Midsurface displacements m x, y and z directions, 

respectively 

ua.,u~,Uz : Displacement components of an arbitrary point of the 

x,y,z: 

cylindrical shell 

Axial,circumferential and radial coordinates of the 

cylindrical shell 
aw 
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et,/3,"(: 

o: 

µ: 

Dimensionless coordinates of x,y,z, et= x/R, {3 = y /R, 'Y = 

z/R 

Normal strains in et,{3 directions, respectively 

Shear strain in et,/3 plane 

( tanh-l)J c-fl c) 
= ..j3.c3 -1 

Bending strains 

Twisting strain 
n7rR 

= r:-
Poisson's ratio of an isotropic shell 

µ 1 = µpa: Poisson'~ ratio of Orthotropic shells that characterizes 

the decrease in et direction due to tension applied in {3 

direction 

µ2 = µap: Poisson's ratio of Orthotropic shells that characterizes 

the decrease in {3 direction due to tension applied in et 

direction 

Normal stress in et ,{3 directions, respectively 

Shear stress in et -{3 plane 
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CHAPTER 5 

NUMERICAL ESTIMATION OF AVERAGE CELLULAR­

WALLED SHELL PROPERTIES 

In developing the buckling criterion of cellular-walled 

cylindrical shells in the last chapter, the following shell properties 

were used, and they are to be determined in this chapter: 

E 1: Young's modulus of extension in axial direction, 

E2: Young's modulus of extension in hoop direction, 

Ebl: Young's modulus of bend_ing in axial direction, 

Eb2 : Young's modulus of bending in hoop direction, 

µ 1: Poisson's ratio that characterizes the decrease in 

circumferential direction due to tension applied in axial 

direction, 

µ 2 : Poisson's ratio that characterizes the decrease in axial 

direction due to tension applied in circumferential 

direction, 

G 12: Shear modulus. 

Where E 1 and E 2 are involved in extensional stiffnesses K1 and K2 : 

(5.1) 

and Ebv Eb2 are involved in the bending stiffnesses D 1 and D2 : 
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(5.2) 

The shear modulus (G12) can be estimated from the following 

approximate relation: 

= >fElE2 
2(1 +'.fµ1µ2) 

(5.3) 

A diagram of a shell model, a cellular-walled circular 

cylindrical shell, is shown in Figure 5.1. It has overall uniform wall 

thickness. Since the shell wall consists of a section containing a 

large number of circular, closely spaced longitudinal holes, the line 

of this investigation was to consider it in a similar fashion to a 

longitudinal stringer-stiffened shell with the stringers closely 

spaced. Thus the cellular wall construction was treated as 

homogeneous and pseudo-orthotropic. Local variations in wall 

properties were ignored in determining buckling loads. Average 

wall properties had to be established from a consideration of local 

wall geometry. Once these material properties were established, 

they could be used in the determination of buckling loads. 

When a high fluid pressure is applied within the cells of 

the sh-ell, it causes a similar effect as that of an internal pressure of 

the shell. In that sense, the cell pressure can be treated as 

equivalent to the internal pressure in the buckling analysis. The 

relation between the cell pressure and the internal pressure had to 

be determined before the shell properties were established. 
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x y 

L 

Figure 5.1 

Diagram of shell model 
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5.1 DETERMINATION OF EQUIVALENT CELL PRESSURE TO 

INTERNAL PRESSURE 

5.1.1 STRUCTURE ANALYSIS AND ELEMENTS 

In the shell model of Figure 5 .1, let L be the length of 

the shell, R the radius of the midsurface of the shell, t the wall 

thickness and S the hole spacing (measuring from the midsurface ). 

Assume that the shell is loaded in axial compression, external 

pressure and pressure within the cells. Since cell pressure 

(pressure applied within the cells) would have the same effect as 

that of internal pressure of the shell, i.e., to cause expansion and 

produce positive radial displacement of the shell wall, the local 

load cell pressure can be treated as global load internal pressure. 

In that case the loading system of the shell is axially symmetric. It 

should also be noted that the cells are very closely spaced in the 

shell wall. If local geometric variations are ignored and the shell 

wall treated as homogeneous, then the shell is geometrically axial 

symmetric. Only an average shell wall unit which represents 

characteristics of the shell wall need to be considered in the 

structural analysis. 

The finite element model illustrated in Figure 5.2 was 

used for the analysis. This model covered a section of the shell 

wall between the centre of the cell and the centre of the solid wall 

between adjacent cells, since these locations represented planes of 

symmetry in the circumferential sense. Thus the model was 
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Figure 5.2 

Finite element model of shell wall 

essentially a wedge with a very small wedge angle, so small that 

the sides of the wedge are almost parallel. One side of the wedge 

had a semi-circular cut out which corresponded with the cell. A 

constraint was placed on the model in which the angle of the wedge 

remained constant and the model remained linear along the planes 

of symmetry. When the load was applied (cell pressure or internal 

pressure), the model moved outwards, and the width of the wedge 
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increased. Thus, small circumferential expansions corresponded 

with substantial outward radial displacements. The finite element 

model consisted of sixteen three dimensional 20-node isoparametric 

brick elements. A software package called STRAND-595 was used 

in the analysis. 

5.1.·2 THE EMPIRICAL RELATIONS OF THE EFFECT OF CELL 

PRESSURE TO THAT OF INTERNAL PRESSURE 

In this analysis, the effect of cell pressure p 1 was 

considered to be the same as that of an internal pressure p 2 when 
' 

the radial displacements of the midsurface were the same in both 

cases. The radial displacements of the midsurface under unit cell 

pressure and internal pressure were calculated for different 

geometric configurations. The ratios of the radial displacements 
W1 Wz W1 
(-, - and -) were plotted against the geometric variables (S/t, 
ws ws wz 

R/t and 2r /t). By analysing the calculated data, the following 

empirical relations were established linking the effect of cell 

(5.4) 
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Table 5.1 Shell geometry for Calculation 

S/t R/t 2r/t 

0.80 10 0.20 0.40 0.60 

0.80 30 0.20 0.40 0.60 

0.80 60 0.20 0.40 0.60 

0.80 100 0.20 0.40 0.60 

0.80 300 0.20 0.40 0.60 

0.80 600 0.20 0.40 0.60 

1.00 10 0.10 0.20 0.30 0.40 0.50 0.60 0. 70 0.80 

1.00 30 0.10 0.20 0.30 0.40 0.50 0.60 0. 70 0.80 

1.00 60 0.10 0.20 0.30 0.40 0.50 0.60 0. 70 0.80 

1.00 100 0.10 0.20 0.30 0.40 0.50 0.60 0. 70 0.80 

1.00 300 0.10 0.20 0.30 0.40 0.50 0.60 0. 70 0.80 

1.00 600 0.10 0.20 0.30 0.40 0.50 0.60 0. 70 0.80 

1.40 10 0.20 0.40 0.60 

1.40 30 0.20 0.40 0.60 

1.40 60 0.20 0.40 0.60 

1.40 100 0.20 0.40 0.60 

1.40 300 0.20 0.40 0.60 

1.40 600 0.20 0.40 0.60 

1.60 10 0.20 0.40 0.60 

1.60 30 0.20 0.40 0.60 

1.60 60 0.20 0.40 0.60 

1.60 100 0.20 0.40 0.60 

1.60 300 0.20 0.40 0.60 

1.60 600 0.20 0.40 0.60 
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Where w1 is the radial displacement due to a unit of cell pressure, 

w2 is the radial displacement due to a unit of internal pressure and 

w5 is the radial displacement of a shell with a solid wall of the same 

thickness due to a unit of internal pressure. 

The values of w1 and w2 are calculated for different 

geometric configurations by changing the variables S/t, R/t and 

2r /t. Five values of S/t were selected, i.e. S/t = 0.8, 1.0, 1.2, 1.4, 

1.6. For each value of S/t, different values of R/t were selected 

from 10 to 600, i.e. R/t = 10, 30, 60, 100, 300, 600. Furthermore, for 

each case of R/t, different values of 2r /t were selected. Totally, 

102 different geometric cases were calculated. The details of the 

calculated cases are listed in Table 5 .1. The calculated data of 
W1 W2 W1 

w1,w2, w , - and - are presented in of Appendix A. Functions 
s Ws W2 

W1 W2 W1 -
-, - and - were plotted against the three variables S/t, R/t and 
Ws Ws W2 , 

2r /t. These plots are also contained in Appendix A. 

The constants a1,a2,a3 and b1 etc. in the equation (5.4) 

were determined by least squares fitting to the calculated data. 

The program used in least squares fitting is listed in Appendix B. 

Values of the constants are given as follows, f1,£2 and f3 are 

polynomials in 2r /t 

a1 = 0.0967 

Cl = 2.8276 

a2 = 0.9570 
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bi = -0.6933 

di = -0.9960 

b1 = -0.2720 



C2 = 2.9360 

a3 = -0.0907 

d3 = -1.0160 

d2 = 0.0130 

b3 = 0.7861 

f1 = -0.3540 - 2.2400 (2r/t) + 1.7430 (2r/t)2 

f2 = 0.3280 - 2.4660 (2r /t) + 2.5630 (2r /t)2 

f3 = -0.1790 - 2.6160 (2r/t) + 2.5240 (2r/t)2 

Figure 5.3 summarises this data for the particular case of wifw5 

with S/t = 1.0 and is typical of these relations. 

5.2 DETERMINATION OF AVERAGE PROPERTIES OF 

CELLULAR-WALLED CIRCULAR CYLINDRICAL SHELLS 

5.2.1 DETERMINATION OF AVERAGE YOUNG'S MODULUS 

E1 

Figure 5.4 shows an average wall unit, taken from the 

cellular-walled cylindrical shell. E is denoted as the Young's 

modulus of the materials. Then the extensional stiffness of the unit 

in the axial direction can be written as EAm = E(St-7rr2). On the 

other hand, when the unit is treated as homogeneous orthotropic 

and E 1 is denoted as the modified Young's modulus in the axial 

direction, then its extensional stiffness can be written in another 

form, E 1A = E 1(St). Obviously, these two extensional stiffnesses 

with differe-nt expressions must be the same, i.e. 

E(St-7rr2) = E 1(St) (5.5) 
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Figure 5.3 

Ratios of deflections for internal pressure loading on cellular­

walled and solid-walled shell of the same thickness (S/t= 1.0) 
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Figure 5.4 An average shell wall unit 
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Figure 5.5 Diagram for shell under internal pressure 

80 



So, the modified Young's modulus in the axial direction of a 

homogeneous cellular-walled shell can be written as 

E(St-7rr2) 
St (5.6) 

5.2.2 DETERMINATION OF AVERAGE YOUNG'S MODULUS 

E2 

As shown in Figure 5.5, for a cellular-walled cylindrical 

shell under internal pressure p2, the radial displacement of the 

midsurface wp2 can be expressed as: 

(5.7) 

while wp2 also can be expressed as 

W2 
Wp2 = W2P2 = w

5 
Ws P2 (5.8) 

where w5 = R2/Et is the radial displacement of a solid-walled shell 

due to unit internal pressure. Substituting it into the equation 

(5.8) and comparing the two equations of (5.7) and (5.8), we get: 

(5.9) 

By substituting equation (5.4) into the equation (5.9), the modified 

Young's modulus of the cellular-walled shell in the circumferential 

direction can be finally expressed as 
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(5 .10) 

5.2.3 DETERMINATION OF POISSON'S RATIOS /L1AND µ 2 

As shown in Figure 5.6, by definition, Poisson's ratio µ 2 

can be written as 

ez 
/L2 = - e1 ' (5.11) 

where e1 and e2 are the strains in 1 and 2 directions. Denoting S 

as the unit length in 2 direction,"~·· the deformation in 2 direction 

dS can be written as, 

and also, 

in which, 

dS = -Se2 = S µ 2 e1 , 

dSm = S Vm /Lmei 

dSh· = s vh µhei 

(5.12) 

(5.13) 

where V m' Vh are the volume percentage occupied by m (mass) and 

h (hole), and they have V m + V h = 1; µm, /Lh are Poisson's ratios for 

m and h. Substituting the above dSm and dSh into equation (5.13), 

then using equation (5.12), we have: 

(5.14) 
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Figure 5.6 A shell wall unit under tension 
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Figure 5. 7 A shell wall unit under pure bending 
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During deformation µ1i = µm = µ , so we have: 

(5.15) 

From the relation of shell properties µ 1 E1 = µ 2 E 2 , we have 

(5.16) 

5.2.4 DETERMINATION OF AVERAGE YOUNG'S MODULUS 

Eb1 

Consider again the average wall unit shown in Figure 

5.4. First, if we consider a unit of a solid :walled shell with a 
- E(St 3 ) :-... 

thickness t, its bending stiffness will be Il(f-:.. µ ~)_ "A~d ~th_: bending 

stiffness of a solid cylinder with diameter 2r is\
1 

-.-E.<3rcr ~ _' Combining 
12(1-µ) 

, the above two stiffnesses, the average bending stiffness of a 
•--- I 

cellular-walled cylindrkal shell I :Eb1 ($()i; can be obtained: 
12(1- µ 2 ): 

= E(St3) - E(3'lrr4), 

then 

= 

( 5 .17) 

(5.18) 

5.2.5 DETERMINATION OF AVERAGE YOUNG'S MODULUS 

Eb2 

It should be noted that the shell we are considering is 

84 



thin walled, i.e., the shell radius R is very large compared to the 

shell thickness t and cell radius r. So curved-edges of the shell 

wall section can be approximately treated as straight lines, and 

the shell unit can be treated as a plate, as shown in Figure 5.7. 

Under the pure bending moment M, we assume that 

only the stress ay exists and its distribution along z direction is 

linear, so it can be written as 

= c(y)z 

When y < r, at any section, 

1 
-M 2 = 

t/2 

= f c(y)z2dz 

~r2-y2 

and when y > r, at any section 

1 
-M 2 = 

t/2 

J ayzdz = 
0 

c(y) 3 
= 24L 

t/2 

f c(y)z2dz 
0 

(5.19) 

(5 .20a) 

(5.20b) 

Thus, the distribution of stress ay m equation (5.19) can be 

determined: 

c(y) 
12M 

(when y<r) (5.21a) 

and, 
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c(y) = 
12M 

t3 (when y> r) (5.21b) 

The potential energy of this isotropic plate produced by the 

moment M can be written as: 

u = (5 .22) 

Now, if we assume the plate consists of uniform orthotropic 

material, and its_ bending stiffness is Eb2, its potential energy 

produced by the moment M can be expressed as: 

Cly 

I 

2 

= 2Eb2 dA 

A 

S/2 

= 1 f 12M 2 
2Eb2 C13) dy 

0 

3M2 
= Eb2t3 (S/2) 

S/2 t/2 
J c2(y)dy J z2dz 
0 0 

t/2 
Jz2dz 
0 

(5.23) 

Since they are produced by the same moment M, the above two 

potential energies U and U 1 of the equations (5 .22) and (5 .23) must 

be equal, i.e.: 
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= (5.24) 

From the above equation, we can get 

3ESM2 J 2 
Eb2 = t3 I <ly dA (5 .25) 

A 

where 

S/2 

J u~ dA 

A J
t/2 

+ l c2(y)z2dydz 

r 

S/2 

f 
6M2 

+ t3dy 

r 

6M2 
dy + tJ (S/2-r) (5.26) 

In the above equation (5.26), the first term of the right hand side 

can not be evaluated. An approximation was made as follows: 

= (5.27) 
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The above approximation could lead to a small error, for a shell 

configuration of 2r /t = 0.50 and S/t = 1.0, may cause a possible error 

up to 3% of above equation. As the consequence, up to 1.5% error 

could be introduced in the equation (5 .25) for the same shell 

configuration. 

Finally, Young's modulus for bending m circumferential direction 

Eb2 is obtained as: 

= 
3ESM2 6M2 6M2 

t3 /[~ (S/2-r) + t3-3{jr3 r] 

2r/S 
(5.28) = E / [1-2r/S + bfJ._ ] 

1- 8 (2r/S)3 
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NOTATION 
Cross-section area of an average shell wall unit 

ai,bi,ci,di: Coefficients (i= 1,2,3), refer to the equations (5.4) 

D 1,D 2 : Bending stiffness in axial and circumferential direction, 

E: 

f 1.f2,f3: 

G11: 

Ki,K2: 

L: 

p: 

r: 

R: 

S: 

t: 

. Eb1 t3 Eb2t3 
respectively, D 1 = 120 _µ

1
µ

2
) , D.2 = 12(l-µ

1
µ

2
) 

Young's Modulus of an isotropic solid-walled shell 

Young's moduli of extension in axial and 

circumferential direction, respectively 

Young's moduli of bending in axial and circumferential 

direction, respectively 

Polynomials in 2r /t, refer to equation (5 .4) 

Shear modulus 

Shell extensional stiffness in axial and circumferential 

. . E 1 t E2 t 
direction, K1 =

1 
, K1 = 

1 -µ1µ2 -µ1µ2 

Length of cylindrical shell 

Lateral pressure, positive inward 

cell pressure 

cell radius 

Shell radius 

Cell spacing in circumferential direction 

Thickness of shell wall 

Potential energies 

Midsurface radial displacements due to unit cell 

pressure and unit lateral pressure, respectively 

wp 2 : Midsurface radial displacement due to lateral pressure 

of p2 
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x,y,z: 

Midsurface radial displacement of a solid walled shell 

due to unit lateral pressure 

Axial, circumferential and radial coordinates of the 

shell 

Poisson's ratio of an isotropic shell 

Poisson's ratio that characterizes the decrease in 

circumferential direction due to tension applied in axial 

direction 

Poisson's ratio that characterizes the decrease in axial 

direction due to tension applied in circumferential 

direction 

Normal stress m circumferential direction, positive for 

compression 
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CHAPTER 6 

THEORETICAL PERFORMANCE OF CELLULAR­

WALLED CIRCULAR CYLINDRICAL SHELLS 

6.1 BUCKLING UNDER AXIAL COMPRESSION AND 

EXTERNAL PRESSURE 

The buckling criterion for a cellular-walled circular 

cylindrical shell under combined loading of axial compression and 

external pressure, i.e., equation ( 4.43), was developed in Chapter 

Four. For the sake of convenience, we rewrite it here: 

(6.1) 

In which q1 q2 are non-dimensional external pressure and axial 
' 

\ 

compression loads, respectively, and c2 is a non-dimen~,ional 

geometric parameter, 

p 
q2 = Ki' (6.2) 

The coefficients c1 ... c4 of the equation (6.1) were presented in the 

equation ( 4.44) of Chapter Four. They are related to the shell wall 

properties (E11 E2, Eb1, Eb2, µ 1, µ2 , G12) and buckling mode (m,n). 

The shell wall properties have been determined in Chapter Five. 

Denoting Per as the critical external pressure and Per as the critical 

axial compression load (N /M), and by letting q1 =0 and q2 = 0 in 

eqn. ( 6.1), we get: 
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p = (6.3) 

p = (6.4) 

The above functions have two variables, m and n. Any pair of m,n 

presents a load. The critical buckling loads Per and Per are the 

minimum values of the functions (6.3) and (6.4). Dividing equation 

(6.1) by PerPeP we obtain: 

c1 + czc2 

PerP er 
= 

where Rp and Rx are the notations introduced as 

R = _E_ 
P Per 

p 
R - -

x - Per 

We rewrite the eqn. ( 6.5) simply as 

In the above, we have introduced the notations 

01 = 
C3R 

KiPer 02 = 
C4 

KiPer 

c1 + c2c2 
Q = PerP er 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

Like c1 ... c4, the coefficients Q 1,Q2 and Q are also related only to 

material properties and buckling mode, i.e. the numbers of half-
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waves in the axial direction (m) and the numbers of waves In the 

circumferential direction (n). From eqn. ( 6. 7), we get: 

(6.9) 

It can be seen that RP is a function of Rx and the 

buckling mode m,n. When the variable Rx is given, the value of RP 

depends only on the buckling mode (m,n). The minimum value of 

RP can be determined by minimizing the above function (6.9) to 

m,n. To do that, a small program was written which was prepared 

by calling a procedure named POWELL from the suit of programs 

"Numerical Recipes" 96. The program is listed in Appen-dix C. 

From the formula ( 6.9), the buckling interaction curve 

may be easily constructed. Some examples are given in Figure 

(6.1) to Figure (6.10) for different shell geometries. In Figure 6.1, 

the geometry parameters represent a shell close the shells to be 

tested which is described as follows: 

L = 200mm, 

2r=0.70mm, 

R=76.80mm, 

S= 1.34mm 

t= 1.15mm, 

and the non-dimensional geometric parameters can be calculated: 

R/t = 66. 7826, 

S/t= 1.1652, 

L/R = 2.6040. 

2r /t-:;:. 0.6087, 

In Figure 6.2 to Figure 6.9, geometric parameters were modified 

from that of Figure 6.1. The following conclusions may be drawn 

from the figures: (the coupled numbers in figures are buckling mode m.n): 
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a. a: 

-0.5 

-1 
-1.5 

R =76.80mm R/t =66.7826 
L =200mm L/R =2.6040 
t =1.15mm S/t = 1.16522 
r =0.70mm 2r/t =0.6087 
s =1.34mm z =452.84 

-1 -0.5 0 0.5 

Rx 

Figure 6.1 

Buckling interaction curve 
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a. 
a: 

0 

-0.5 

-1 
-1.5 

R/t =200 
L/R =2.6040 
S/t = 1.1652 
2r/t =0.6087 
z =1356.16 

-1 -0.5 0 

Rx 

Figure 6.2 

Buckling interaction curve 
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a. a: 

0 

R/t 
L/R 
S/t 

-0.5 2r/t 
z 

=333.9130 
=2.6040 
= 1.1652 
=0.6087 
=2264.20 

(J'I 

I\.) 
a 

(J'I 

I\.) 
~ 

(J'I 

c.u a 

-1'--~~~-'--~~--J'--~~---'-~~~-----'-~~~-----'--'--'-~~---' 

-1.5 -1 -0.5 0 

Figure 6.3 

Buckling interaction curve 
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0. 
a: 

0 

-0.5 

-1 
-1.5 

R/t 
L/R 
S/t 
2r/t 
z 

-1 

=333.9130 
= 1.1650 
= 1.1652 
=0.6087 
=453.00 

-0.5 0 

Rx 

Figure 6.4 

Buckling interaction curve 
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a. 
a: 

1.5 

1 

0.5 

0 

....I. 

R/t =333.9130 I\) 

~ 
L/R =0.5100 
S/t = 1.1652 

-0.5 2r/t =0.6087 
z =86.8500 

-1L--~~~-'-~~~-'-~~~-'-~~~-'-~~~-'-'--'-~-'-~ 

-1.5 -1 -0.5 0 

Figure 6.5 

Buckling interaction curve 
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a. 
c: 

1.5 

1 

-0.5 

-1 
-1.5 

R/t 
L/R 
S/t 
2r/t 
z 

-1 

=66.7826 
=2.6040 
=0.900 
=0.6087 
=452.84 

-0.5 0 

Rx 

Figure 6.6 

Buckling interaction curve 
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a. a: 

1.5 

1 

0.5 

0 

-0.5 

-1 
-1.5 

R/t 
L/R 
S/t 
2r/t 
z 

-1 

=66.7826 
=2.6040 
=1.400 
=0.6087 
=452.84 

-0.5 0 

Rx 

Figure 6. 7 

Buckling interaction curve 
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a. 
a: 

0.5 

0 

R/t =66.7826 
L/R =2.6040 
S/t = 1.1652 

-0.5 2r/t =0.400 
z =452.84 

-1'--~~---''---~~--'-~~~----'-~~~--'-~~~~~-'---'----' 

-1.5 -1 -0.5 0 

Figure 6.8 

Buckling interaction curve 
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c. 
0: 

-0.5 

-1 
-1.5 

R/t 
L/R 
S/t 
2r/t 
z 

-1 

=66.7826 
=2.6040 
=1.1652 
=0.800 
=452.84 

-0.5 0 

Figure 6.9 

Buckling interaction curve 
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a. a: 

3 

2.5 

2 

1.5 

1 

0.5 

0 

-0.5 

-1 
-1.5 

With 7000kPa cell pressure 

No cell pressure 

~ 
...... 
0 

~)' 

R/t =66.7826 
L/R =2.6040 
S/t = 1.1652 ~~ 

...... 
2r/t =0.6087 0 

z =452.84 

-1 -0.5 0 0.5 1 1.5 

Rx 

Figure 6.1 O 

Buckling interaction curve with cell pressure 
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a. Under axial compression load and external pressure, the 

limit of the stable region for the shell is a polygon 

consisting of sections of straight lines for different 

buckling modes. 

b. Although the load and the basic stress system have axial 

symmetry, the buckling mode does not (m ~ 0). The 

number of buckling modes increases as RP increases and 

is higher for shorter or thinner sheils. 

c. The buckling mode has a sudden change as curves 

approach Rx= 1, and the buckling curve becomes almost a 

straight line near the Rx axis. As a consequence, an 

internal pressure (Rp < 0) does not perceptibly increase 

the axial load Rx, while an axial tension (Rx< 0) increases 

considerably the resistance offered to an external 

pressure. 

d. The length parameter which is defined as Z = L2 /(Rt), 

does not totally control the shell buckling mode. As can 

be seen, shells in Figure 6.1 and Figure 6.4 have the same 

length parameter Z = 453, 

buckling modes. 

but have very different 

e. The length of the shell has little effect on the axial 

buckling load, but it does affect buckling external 

pressure. As shell length decreases, the external buckling 

pressure increases. 
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6.2 BUCKLING INCLUDING CELL PRESSURE 

The effect of cell pressure p 1 has been considered to be 

the same as that of an internal pressure p 2, when the radial 

displacements of the midsurface produced by them were the same 

in both cases. In equation (5.4) of Chapter Five, the empirical 

relations were established linking the effect of the cell pressure to 

that of internal pressure 

(6.10) 

where w1, w2 are radial displacements due to a unit cell pressure 

and unit internal pressure. r is the cell radius, R the shell radius, 

S the circumferential cell spacing and t the wall thickness. The 

coefficients a3,b3,d3 and f3 are as follows: 

a3 = -0.0907 b3 = 0. 7861 

d3 = -1.0160 

f3 = -0.1790 - 2.6160 (2r/t) + 2.5240 (2r/t)2 

If we assume that the ends of the shell wall are sealed 

while applying cell pressure p 1, then tension in the axial direction 

is created. The tension stress P' due to a cell pressure p 1 may be 

calculated: 

P' = 
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7r 
= p1 * 4 *(2r/t)2 *(t/S) (6.11) 

and the equivalent internal pressure p' of pressure p 1 can be 

determined: 

p' 

( 6.12) 

From equation ( 6. 7), the buckling condition of shells with cell 

pressure p1 can be written as: 

( 6.13) 

The buckling interaction curve for the shell containing 

cell pressure may be generated from that of a shell without cell 

pressure: first moving the curve by __L along the RP axis, then 
Per 

P' 
moving the curve by p along the Rx axis. As demonstrated in 

er 

Figure 6.10, as the cell pressure increases, the buckling interaction 

curve moves further outwards, and the critical buckling load 

increases. 

To see the effects of cell pressure more clearly, 

buckling loads of a cellular-walled shell with and without cell 

pressure were calculated. An isotropic cylinder with the same 

mass as the cellular one, which has the same length and radius but 
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thinner in thickness was considered. Its critical buckling load also 

was calculated and compared. 

6.3 CALCULATION OF BUCKLING LOADS 

Taking the shell used in Figure 6.1 as an example, the 

geometric configurations of the shell are: 

L= 200mm, R=76.80mm, t=l.15mm 

2r=0.70mm, S= l.34mm 

and the non-dimensional parameters: 

R/t = 66.7826, 

S/t= 1.1652, 

L/R = 2.6040, 

2r /t = 0.6087 

The shell is assumed to be made of epoxy: Young's 

modulus can be determined experimentally, here taking the average 

value of Young's modulus from a few tested shell models 

E=3.45GPa. The Poisson's ratio is given by µ=0.35. By 

minimizing the equations ( 6.3) and ( 6.4) to m,n, critical buckling 

loads of both axial compression and external pressure were 

calculated as follows: 

Per• = 24. 79 kPaM, per = 3 0. 7 4 kP a 

In order to make a comparison, let us now consider a 

solid-walled shell which has the same mass of the above cellular-

Per is the force per unit -;--1~~1, the total axial compression load should be 

2nRP er· 
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walled shell by keeping the same length and radius of the shell but 

reducing the thickness: 

L 5 =200 mm, R 5 = 76.80 mm, t5 =0.86 mm 

Its classical axial buckling load and external buckling pressure can 

be calculated by using equations ( 4.40) and ( 4.29) from Chapter 

Four: 

Et2 s = 20.48 kPaM, 
= 3'°11-µ2 Rs 

Obviously, even without pressure applied within the cells, the 

cellular-walled shell has considerably higher buckling loads than a 

solid one with the same mass. 

Now, let us apply the cell pressure p1 =7 ,OOOkPa to the 

cellular-walled shell. The maximum cell pressure which could be 

applied to the epoxy cellular-walled shell model is 35,000kPa. The 

equivalent internal pressure created by p 1 may be calculated from 

the equations (6.12). 

W1 
p' = p 1 - = 34.08 kPa 

W2 

and the additional tension load from equation (6.11): 

P' = = 2.01 kPaM 
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By comparing the above calculations, the advantages of 

cellular-walled over solid walled shells are quite obvious. With no 

cell pressure applied, the buckling axial load of a cellular-walled 

shell with the same geometry as in Figure 5.1 can be. increased by 

21 %, and the buckling external pressure by 85%. With one-fifth of 

the maximum potential cell pressure, the axial buckling 

compression load can be further increased by 8.1 %, and the 

external buckling pressure can be more than doubled. 

Therefore, from the theoretical performance of 

cellular-walled circular cylindrical shell demonstrated in this 

chapter, it may be concluded that by applying substantial pressure 

to the cells within the wall, the buckling load due to external 

pressure can be considerably increased and somewhat increased in 

axial compression. Thus the analysis supports the possibility of 

using this form of shell as an engineering structure, particularly in 

marme situations. To verify this theoretical prediction, 

appropriate tests on cellular-walled shell models had to be done. 

The experimental work including manufacture of the shell models, 

experiment set-up and the test results are presented in the next 

three chapters. 
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D: 

NOTATION 

Coefficients, refer to equation 6.10 
t2 

Non-dimensional geometric parameter, c2 = 12R2 

Et3 
Flexural rigidity of isotropic shells, D = 12(l-µ

1
µ

2
) 

Eb1t3 Eb2t3 
Bending stiffness, D1 = 12(l-µ

1
µ2), D2=12(1-µ

1
µ

2
) 

Young's moduli of extension in axial and 

circumferential respectively 

Young's moduli of bending' in axial and circumferential 

respectively 

G12: Shear modulus that characterized the change of angles 

between principal directions a and (3 
E 1t E 2t 

Extensional stiffness, K1 = l-µ
1
µ

2
, K2 = l-µ

1
µ

2 
E2 

k: = E1 

G(l-µ1µ2) 
=----

E1 

L: Length of the cylindrical shell 

m: Number of waves around the shell circumferential 

n: Number of half-waves along the shell length 

p: Lateral pressure, positive inward 

P: Axial load, positive inward 

Pc= Cell pressure, pressure applied within the cells 

P c1: Classical axial buckling load of an isotropic cylindrical 

shell 
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Pel: Classical external pressure buckling load of an isotropic 

cylindrical shell 

Per: Critical load of axial compression when no other load is 

applied 

Per: Critical load of external pressure when no other load is 

applied 

Non-dimensional external pressure 

compression load, respectively, ql = k~ , q2 

Q: ( C1 + C2c2) / (PerP er) 

01: C3R/(K1Per) 

Q2: c4/ (K1Pcr) 

r: Radius of cells 

R: Shell radius 

and 
p. 

- Ki 

axial 

RP: External pressure ratio; ratio of external pressure 

present to critical external pressure when no other load 

is applied 

Rx: Axial compression load ratio; ratio of direct axial load 

present to critical axial compressive load when no other 

load is applied 

S: Cell spacing in the circumferential direction 

t: Thickness of shell wall 

Midsurface radial displacements,due to unit cell 

pressure and unit lateral pressure 

w 5 : Midsurface radial displacement of a solid walled shell 

due to unit lateral pressure 

112 



CHAPTER 7 

MANUFACTURE 
OF 

MODEL SHELLS 

113 



CHAPTER 7 

MANUFACTURE OF MODEL SHELLS 

The model shells for the experimental work were 

manufactured by a spin-casting technique from an epoxy resin 

(Araldite LC 261 and LC 249, mass ratio 10:3). In order to make 

longitudinal cells in the shell wall, a special nylon line cage was 

used. The cage with nylon lines was first cast in the shell wall. 

After curing, the nylon lines were cut and removed from the shell 

wall, leaving a cellular-walled shell. The details of the 

manufacture process are described in the following sections. 

7.1 NYLON LINE CAGE 

The nylon line cage consisted of two brass nngs with 

longitudinal spacers. Each of the rings held a number of short pegs 

near the circumference and a series of machined nicks on the 

external corner. Figure 7.1 shows an enlarged section of one of the 

rings before winding the lines. Nylon lines were wound around the 

pegs and guided by the nicks between the rings to form the cage. 

Nylon fishing lines· with 0.70mm diameter were used for the 

present work, which provide 22.6kg of guaranteed knot strength. It 

was noted that substantial forces were required to pull the nylon 

lines straight while winding. After the nylon lines were wound, a 

release agent (Klingerfon PTFE Lubricant) was sprayed evenly over 

• Commercial fishing lines manufactured by Pro-Line. 
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Figure 7.1 Section of brass rings for nylon line cage 
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Figure 7 .2 Cage of nylon line ready for insertion in former 

the surface of the lines. Figure 7.2 shows a cage with nylon lines in 

place and ready for use. 

7.2 MODEL SHELL CASTING 

Once the nylon line cage was prepared, the shell was 

rea dy to be cast. A spin casting technique was use d in this process, 

which was first developed by Tennyson6 who employed it 

successfully to manufacture near perfect shells with buckling loads 

close to the theoretical value. The equipment used in the present 
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work was developed by Foster44, which is an improvement over that 

used by Tennyson. 

Figure 7 .3 shows this equipment. It consisted of a steel 

cylindrical former with an open end cantilevered from a rotating 

shaft which was supported on a rigid structure with bearing 

clearance minimised. The steel former was spun at a relatively 

high speed (about 1000rpm) approximately on the axis of the 

former. A liquid mixture of Dow Corning 20 Release Coating and 

Trichloroethylene (mass ratio 1: 15) was applied as a release agent. 

An epoxy resin (Araldite LC 261 and LC 249, mass ratio 10:3) was 

warmed separately in an oven to about 65 ° C and placed in the 

spinning former to produce a true cylindrical surface concentric 

with the shaft axis. Once the liner was cured sufficiently, the liquid 

mixture of release agent was again poured into the former and 

allowed to dry for about one hour. The end cover of the former 

was removed and the previously prepared nylon line cage was 

inserted. Two strips of thin brass shim were inserted between the 

. cage and the liner at both ends to help the cage concentric with the 

liner. When the cage was inserted in the former, epoxy was added 

to cover the nylon lines and cured while spinning. Any additional 

epoxy was added to the former to form a cylindrical shell of 

remarkably uniform shell thickness. Clearly the cage need to be 

well balanced or uneven wall thickness would result. This was 

achieved through care m machining the brass components and 

through a regular winding pattern for the nylon fishing line. To 

add the epoxy mix to the former, a hypodermic syringe was used so 
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that the volume of the epoxy could be measured accurately. During 

the first eight or nine hours of this casting process, a 2400 W 

domestic fan heater was used to heat the former to speed up the 

curing process and maintain low viscosity of the epoxy while being 

placed. The former w~s allowed to spin for another fifteen or 

sixteen hours without heating (making a total spinning time of the 

former about twenty-four hours). A typical spin-casting program is 

shown in Table 7.1. The shells manufactured by this technique had 

a reasonably smooth and highly reflective inner surface. 

It should be pointed out that three different types of 

release agents have been used during the shell casting of~this work. ,_ 

Initially, Klingerfon PTFE Lubricant was used as a release agent :;, 

and was found to be the most effective one. However, this 

Klingerfon spray was soon banned for environmental reasons 

because it contained fluorocarbons. Since no other type of similar 

release agent was available, a new type of release agent: was tried: ~ 

a liquid mixture of Dow Corning 20 Release Coating and 

Trichloroethylene. Liquid mixtures with different compositions 

have been tested in making solid-walled shells. Satisfactory results 

were obtained when a mixture of Dow Corning 20 Release Coating 

and Trichloroethylene in a mass ratio of 1: 15 was used between the 

liner and the shell. However, this mixture was less satisfactory on 

the surface of the fishing lines. Luckily, when the Klingerfon was 

banned, we still had four tins left: they were saved to use on the 

surface of the fishing lines. A small glass measuring cup was used 

to pour the liquid release agent mixture onto the surface of the 
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Table 7.1 

A typical program of shell casting 

Time Program 

9:00am Former started spinning, fan heater 

turned on. 

9:10am Liquid release agent poured onto the 

former. 

Pre-warmed Araldite mixed then 

10:10am injected into the former with a syringe 

to form the liner. 

11 :1 Oam Release agent applied on the surface 

of the liner. 

12:10pm End cover of the former removed, 

previously prepared nylon line cage 

inserted. 

12:30pm Epoxy mixture injected to cover the 

nylon lines and to form the first layer of 

the shell. 

2:00pm Any additional epoxy mixture injected 

to form the rest of the shell. 

6:00pm Heater turned off; fan kept on. 

Spinning speed reduced to half. 

9:00am Former stopped; fan turned off. The 
(Next day) shell and cage were ready to be 

extracted. 
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liners. Later, a new spray release agent named Teflon TUF-E­

COAT Lubricant which is considered ozone safe became available. 

However, this spray was found to decompose fairly readily when 

heated. Therefore, the fan heater had to be reduced to lower 

setting while casting, and a longer curing time was needed to 

ensure the shell cured sufficiently. 

7 .3 FINISHING WORK 

After curmg, the shell, the liner and the cage were 

removed from the former with the aid of an extractor. The 

extractor was basically a screw thread with a plate attached to it. 

The screw thread was positioned at the centre of the bottom of the 

former while the plate was placed against the end ring of the cage. 

The screw was turned slowly to extract the cage. After the cage 

was removed, the liner was carefully cut away. The fishing lines 

were cut at an angle of about 60 degrees to the line axis. Then the 

fishing lines were gently pulled through the shell wall. Because the 

shell wall is thin and fragile, great care had to be taken in cutting 

the fishing lines and pulling them through the shell wall. The 

thickness of the shell wall was only about 1.2 mm. After taking 

away the 0. 7 mm diameter fishing line, the epoxy remaining out 

side of the hole is only about 0.25 mm in thickness. Any sudden 

pulling would easily break the shell wall or leave broken fishing 

line in the shell wall. After all of the fishing lines were pulled out, 

a cellular-walled shell remained. The edges of the shell were 

trimmed while the shell was positioned in a specially designed 
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circular support frame. The inner diameter of the frame was 

slightly larger than the outer diameter of the shell. Gummed paper 

was stuck on the surface of the shell so that the shell could be 

firmly positioned inside of the frame. A piercing saw was used to 

cut away the edges. In that manner, the edges were flat and cleanly 

cut. A photograph of part of a section of the cellular-walled 

cylindrical shell wall is shown in Figure 7.4. The cells were located 

at the centre of the middle surface of the shell within an accuracy 

of about 10% of the wall thickness. 

Shells were consistently produced with an internal 

diameter of 153 mm, wall thickness 1.2 mm and length 24'5mm. 

These shells had 360 holes each of 0.7 mm diameter. The radius to 

thickness ratio for these shells ranged from 60 to 67. Thus they 

should be considered as relatively thick shells. Unfortunately, it 

does not appear possible to make model shells by our current 

technique (with the same former) with walls that are much thinner. 

The former used for the manufacture of the shells had a diameter 

of about 154 mm. The actual internal diameter of the shell was 

measured with vernier callipers before it was removed from the 

former. For measuring the wall thickness, the shell was placed on a 

machined steel mandrel to which a dial gauge with a resolution of 

0.001 mm attached. By rotating the shell over the mandrel and 

moving it along the axis, thickness measurements were taken over 

the entire surface of the shell. Most of the shells manufactured 

had a thickness variation of less than 3.4%. 
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Figure 7.4 Section of shell wall 

Inner free surface 

Contra.ctted when curring 

Figure 7.5 Ribbed appearance on free surface 
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Since the shells are cast with a free surface on the 

inside, they are internally reflective. However, epoxy contracts 

slightly on curing causing the thickness of the shell between the 

cells to be slightly less than that over the cells, as illustrated in 

Figure 7.5. This difference is not readily detected because it is 

small, but the inside surface bas a ribbed appearance. The 

difference in thickness due to this contraction was of the order of 

O.OOlmm. 

124 



CHAPTER 8 

EXPERIMENTAL SET UP 



CHAPTER 8 

EXPERIMENTAL SET UP 

Experimental data on the buckling behaviour of these 

cellular-walled cylindrical shells was obtained on a specially 

designed loading frame incorporating an optical examination 

system based on the reflective moire technique. The optical system 

and the loading frame used in the current work was that used by 

Foster38,97 and Krishnakumar37 modified to accept the different 

type of shell. Pre-buckling data was digitised into a personal 

computer (PC), and was used to predict the axial critical load with 

the aid of a Southwell technique. 

8.1 OPTICAL SYSTEM 

Foster97 developed a whole field optical technique for 

the measurement of radial deformations over the entire surface of 

a cylindrical shell. Central to the technique is the use of a conical 

mirror which provides a complete view of the internal surface of 

the shell. The reflection of a grid on the internal surface of the 

shell wall is viewed through this conical mirror, which essentially 

transforms the cylindrical surface of the shell to a plane surface 

(polar coordinates) to be photographed. Foster employed the inner 

surface of a large hollow cone to view the inside of the shell. He 

successfully obtained the whole field image of the surface of 

cylindrical shells. However, the manufacture of this hollow cone 
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and the polishing of its inner surface required considerable time 

and effort. The optical system was later modified by 

Krishnakumar37 who replaced the large hollow cone by a compact 

solid conical mirror of shallow angle made from aluminium whose 

outer surface is used for reflecting the shell wall. The machining of 

the conical mirror and the polishing of its outer surface to mirror 

finish is relatively easy. 
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Figure 8.1 Schematic of optical system 
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The reflective inner surface of the shell models was 

used to monitor shell deformation. The optical system used in the 

current work for monitoring is shown in Figure 8.1. The image of a 

cylindrical grid placed at the centre along the shell axis was 

reflected from the shell wall and the conical mirror at the base of 

the shell, and viewed along the axis of the shell. Thus a whole field 

two dimensional image was obtained from which the deformations 

of the entire shell could be observed. Using the optical system, the 

image of the surface of cylindrical shells is formed in the conical 

mirror. It is photographed by a camera with a long focal length 

lens via a plane mirror positioned at the top and at a 45 degree 

angle to the grid axis. 

Three types of grids were used in the present work, one 

axial grid (longitudinal lines) with a pitch of 2.50 mm, one 

circumferential grid consisting of equi-spaced circles with a pitch of 

9.00 mm, and one spiral grid with equi-spaced helical lines- having a 

normal pitch of 2.40 mm and a helix angle of 74.5 degrees. The 

grid with circumferential lines produces an image of concentric 

circles and the helical lines on the spiral grid appear as spiral lines 

on the image plane, while the axial grid is transformed to a set of 

radial lines. Deviations in line geometry represent changes in 

slope of the shell surface. The axial grid responds only to slope 

changes in the circumferential direction on the shell surface, while 

the circumferential grid is sensitive mainly to slope changes in the 

axial direction with some dependence on the circumferential slope. 

The spiral grid is sensitive to slope variations in both directions, 
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effectively combining the qualities of the other two. It is 

impossible to detect axisymmetric defects with the axial grid, 

difficult to see with the circumferential grid and usually easy to 

detect with the spiral grid. Thus all three grids are usually 

necessary for any investigation. 

The grids were basically aluminium rods with black 

lines painted on a white background on the surface. All three grids 

were of the same size with a radius of 9.6 mm. The grid was 

illuminated by lights from a circular light source positioned on the 

top of the shell. The light source consisted of two circular arrays 

of lights (24 V vehicle tail lights). Each light was placed in an 

aluminium panel. The panels were so arranged that the grid was 

able to be illuminated by the light sources directly and the light 

was baffled so that it did not shine on the surface of the shell itself. 

This arrangement provided good contrast, making the grid lines 

sharp and clear in the photographs. 

The camera· used to photograph the image reflected by 

the plane mirror at the top of the loading frame was placed at a 

distance of about 4300 mm from the conical mirror. The 

photographs were recorded on 35 mm black and white film** using a 

F16 aperture and an exposure period of 6 seconds. The negatives 

* Pentax KlOOO camera (35 mm format) attached with a 400 mm focal length 
telephto lens. 
Kodak Technical Pan 2415 (125 ASA). 
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were developed for 5 minutes using Kodak D-19 developer and 

fixed for 5 minutes with Kodak X-ray fixer. 

One of the main applications of the optical system was 

to record the presence of initial imperfections in the shell. The 

location as well as its size, i.e., that of the area on the shell surface 

covered by the imperfection, could be gauged from the extent of 

the distortion of the lines in the recorded photographs. Figure 8.2 

shows typical Images obtained with this system on an unloaded 

shell. None of the images shown in Figure 8.2 clearly shows the 

effect of the waviness on the internal surface, but careful 

examination of the image recorded with the spiral grid shows a 

certain fuzziness on the edge of the lines. This fuzziness is due to 

the surface waviness and is not normally observed in images of 

either of the other grids. At about the 3 o'clock position in the 

images made with the circumferential and spiral grids there is some 

deviation of the grid lines near the shell mid length. This line 

deviation is best seen in the image with the axial grid. 

The optical system is remarkably sensitive to small 

deformations so that defect growth could be observed during the 

loading process. Because the shells are likely to shatter on 

buckling, collapse of the shells was avoided. The axial buckling 

loads were predicted by employing Southwell plots based on the 

axial pre-buckling loads and deformations which were logged in the 

PC during loading (the Southwell plot is described in Section 8.5). 

The maximum load applied to the shell was often very critical in 
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(a) (b) 

(c) 

(a) Ci rcu mf erential 

grid lines 

(b) Axial grid lines 

(c) Spiral grid lines 

Figure 8.2 Photographic images taken from unloaded shell 
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predicting the buckling load. Thus the optical system was found 

particularly useful in monitoring the growth of deformations and 

hence to determine when to stop loading. 

On the few occasions when the shell buckled without 

shattering, the optical system was used to record the buckled 

patterns over the entire surface of the collapsed shell. From these 

photographs the number of facets arou n d the circumference as well 

as the size and regularity of the facets could be observed. Figure 

8.3 shows an image of a buckled shell taken with the 

circumferential grid in place. Clearly this shell had buckled into 5 

circumferential lobes with one single tier of lobes at the centre of 

the shell's length . 

Figure 8 .3 Photographic images of buckled she ll 
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8.2 END RINGS 

The design of the rings supporting the ends of the shell 

proved a challenging task. It was the most time consuming part of 

the testing programme. For quite a long time no progress in testing 

was possible because of failures of various forms of end rings. The 

failed end rings were made from steel. A typical design is that 

shown in Figure 8.4. The system consisted of two steel rings. The 

grooves were made in the steel rings to transfe~ the load between 

the epoxy and the ring. It was realized that the bond between 

epoxy and steel was not adequate to prevent leakage of pressurising 

fluid. A seal had to be placed under the epoxy filling. The seal ... , 

was provided by a band of silicon sealant which was placed with the ,> 

aid of a solvent to ensure it covered the complete width of the 

groove. The major problem with this system was one of obtaining a 

satisfactory seal to contain the relatively high pressure encountered 

within the cells. This seal had to be incorporated within the end 

rings providing the built in support. The system was abandoned 

when it was found that silicon sealant could not form an adequate 

seal. In fact when the silicon sealant was cured, it contracted 

leaving a void. Because the space between the shell wall and steel 

rings is very small, it was very difficult to observe the silicon 

sealant when it was cured. 

The system that was successfully used in the shell 

models testing is shown in Figure 8.5. The system is basically made 

of three parts: the bottom steel ring and two epoxy rings. The steel 
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Figure 8.4 A typical design of failed end ring 
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Figure 8.5 The end rings successfully used 
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ring and each of the two epoxy rings were connected by using a set 

of 24 equi-spaced locating screws. Between the steel ring and the 

epoxy rings, two "O" rings are used as mechanical seals. The steel 

ring contained a channel. Fluid was conveyed through the channel 

to the end of the shell, and this channel was connected to a hand 

operated hydraulic pump. Circular grooves between the shell wall 

and the rings were filled with the same LC 261/249 epoxy mixture 

as that used for making the shells. Thus once the epoxy in the 

grooves were cured, a unique epoxy ring was formed at the top part 

of the end rings. Since the three parts, i.e., the shell wall, epoxy 

rings and epoxy filling in the grooves were all made from epoxy, 

they bonded well to each other: 

The epoxy nngs were cast from comprising "west 

system" epoxy and micro-fibre cotton. The epoxy and the hardener 

were warmed to about 65° C and mixed thoroughly. Then the 

micro-fibre cotton was gradually added and mixed gently with the 

epoxy mix. The micro-fibre cotton was added to improve the 

stiffness of the end rings. As much of the micro-fibre cotton was 

added as the epoxy mixture could absorb. Small amounts of epoxy 

were used each time, to ensure the micro-fibre _cotton was mixed 

thoroughly with the epoxy. The mixture of micro-fibre cotton and 

epoxy was poured into a previously prepared disk-shaped container. 

After the epoxy was properly cured, the disk was ready for 

machining. Complete curing of the epoxy required about 48 hours 

at room temperature. 
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In mounting the shells, the following procedure was 

adopted to ensure that the ends of the shell were parallel: with the 

end rings fitted, the shell was first placed upside down in the 

loading frame, i.e., with the top end ring resting on the base plate. 

After aligning the shell properly, the end of the shell was "potted" 

into this end ring using the epoxy mix. \Vhen the epoxy was cured 

the shell was inverted with the bottom end ring fitted. The cross­

head of the loading frame was then lowered and the top end ring 

secured to the loading plate under the cross-head using a set of 

eight equi-spaced locating screws while the other end of the shell 

was sitting in the bottom end ring and located centrally over the 

conical mirror. The bottom end was then potted with the epoxy 

mix. It should be noted that complete curing of the epoxy in the 

end rings at room temperature normally required 48 hours. After 

the tests were completed on each shell, the epoxy from the grooves 

of the end rings was machined out, and they were further cleaned 

by hand before using them again on the next shell. 

8.3 LOADING FRAME 

The· apparatus used for the testing is shown in Figure 

8.6. The rigid loading frame had a capacity of 20 kN. The 30 mm 

thick cross-head was supported by a pair of linear bearing on two 

32 mm diameter parallel guide rods fixed between the 30 mm thick 

base plate and the 20 mm thick top plate of the machine. The 32 

mm diameter loading screws, having a 5 mm pitch, were driven by a 

hand wheel via a 50: 1 worm reduction unit and a chain and 
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Figure 8.6 The experimental set-up 
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sprocket arrangement. A motor was also attached to the hand 

wheel for quicker movement in raising and lowering the cross-head. 

However the loading of the shells was always done manually by 

turning the hand wheel. The drive motor had insufficient torque to 

collapse a shell. 

The calibration plot for the loading system is shown in 

Figure El of Appendix E. The system provided a sensitivity of 

0.00714 7 N /Microstrain. The strains were measured on a strain 

indicator*. The end-shortening was measured by means of a 

Differential Current Displacement Transducer .. with a sensitivity 

of 1.3115 V /mm. The calibration plot of the transducer is shown in 

Figure E2 of Appendix E. The outputs from the strain indicator 3 

and the Displacement Transducer were connected with an analog­

to-digital interface in a PC to record the axial load and 

deformation during the tests. At the same time they were fed :.:. 

directly into an X-Y plotter··· to record load-deflection curves. 

To apply external pressu!e to the shell, a rubber jacket 

was made and fitted over the end rings. A silicon sealant was used 

on the contact surface of the rubber jacket. A pair of hose clamp 

fasten the rubber jacket to the end rings. 'A hand operated air 

pump (car tyre pump) was used to supply the air pressure. A low 

Bruel and Kjaer, type 1526. 
Hewlett Packard, Model 7 DCDT-050, Serial No. EM. 
Hewlett Packard, 7004 B. 
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range pressure transducer· with a sensitivity of 0.02488 Volt per 

kPa was used to record the external pressure in the analog-to­

digital interface in the PC. The calibration plot of the external 

pressure transducer is shown in Figure E3 of Appendix F. A volt­

meter was used to read the external pressure. Cell pressure was 

supplied via a channel in the end ring by a hand operated hydraulic 

pump attached to a high range pressure transducer··. The 

calibration plot of the cell pressure transducer is shown in Figure 

E4 of Appendix E. The sensitivity of the transducer is 2.9323E-04 

Volt per kPa. A second volt-meter was used to read the cell 

pressure. Two stabilised power supplies··· were used for the two 

pressure transducers. All four channels, i.e., the axial compression 

load measured by the strain indicator, the end-shortening measured 

by the displacement transducers, external pressure and cell 

pressure measured by the pressure transducers were connected to 

the data logging interface in the PC. 

8.4 DATA LOGGING 

A Data Translation DT2818 analog-to-digital interface 

board in a 386PC was used for data logging. The DT2818 uses a 

simultaneous sample and holds a A/D converter, which permits up 

to four A/D channels to be sampled simultaneously. The A/D 

( analog to digital) converter system of the DT2818 has 12 bits of 

Robinson-Halpan, Model 155A-130G, Serial No. 973. 
M.B. Electronics, Model 510A, Serial No. 52516. 
B.W.D Electronics, Model 272A. 

139 



resolution, i.e., 0.024% resolution. The calibration of the DT2818 

board was done by inputting voltage to the four channels 

simultaneously. Calibration data from the DT2818 board is 

presented in Figure ES of Appendix E. The sensitivity of DT2818 

was found to be 204.1 per Volt. 

The four channels used in the current work were 

designated as channel 0 to channel 3. The arrangement for data 

logging is shown in Table 8.1. Channel 0 was used for recording 

axial load (N). The axial load was initially measured by strain 

gauges attached on the load cell and re.corded by a strain indicator 

in microstrain. The strain indicator was then connected to the 

DT2818 board. So the converting factor of Channel 0 had to be 

calculated by considering all the steps involved: N - microstrain 

(load cell), microstrain - Volts (strain indicator), Volts - digit 

number (DT2818 board). The converting factor was found to be 

16.67 N /Digit number. The calibration plot of the strain indicator 

is shown in Figure E.6 of Appendix E. Channel 1 was used for 

recording end shortening of the shell as measured by the 

displacement transducer. Channel 2 was used for recording cell 

pressure from the high range pressure transducer. Channel 3 was 

used for external pressure recording measured by the low range 

pressure transducer. 

A small program was written to log data. The program 

allowed data collection in two modes, either by single point m 

which the sampling was manually controlled by hitting a key or 
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Table 8.1 

The Arrangement for Data Logging 

CHANN. MEASURING TRANSDUCER CONVERSION 

FACTOR 

Electric 16.67 

0 Axial load resistance strain (N/Digit num) 

(N) gauge 

1 End shortening Displacement 3. 73E-03 

(mm) transducer (mm/Digit num) 

2 External pressure Low pressure 0.1969 

(kPa) transducer (kPa/Digit num) 

3 Cell pressure High pressure 16. 71 

(kPa) transducer (kPa/Digit num) 

continuously in which the data was collected automatically at a 

specified rate. The program listing is presented in Appendix D. 

Data from the acquisition program was placed in a file, which was 

then transferred to the MAT-LAB~- software package98, where the 

calibrations were applied and axial buckling loads were predicted 

using the Southwell plot. 

8.5 SOUTHWELL PLOT 
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The Southwell plot99 is a well known technique used to 

predict the collapse load of a structure. The technique was 

originally applied to columns, the load-deformation curve for a 

column is basically a rectangular hyperbola with an asymptote at 

the classical buckling load. The Southwell technique changes this 

hyperbola into a straight line by plotting the parameter CHANGE 

OF DEFORMATION/LOAD against DEFORMATION. For this 

technique any measurable deformation may be used, and the 

critical load is the reciprocal of the slope of the straight line. The 

intercept of the abscissa is often used as an estimate of the initial 

crookedness of the column. Theoretically, the Southwell's 

technique can be used with any other structure as long as the load­

deformation curve is an hyperbola. However, no real structure will 

behave in this manner. Even columns exhibit a stiffening beyond 

the Euler load when very large deformations are encountered. The 

technique works for columns because when these large 

deformations are ignored the load-deformation curve is very nearly 

hyperbolic. FosterlOO investigated the validity of Southwell's 

technique on buckling of stringer stiffened epoxy cylindrical shells. 

He employed the technique to estimate buckling loads of non­

linear collapse of cylindrical shells, the estimated were compared 

with the actual collapsed loads and satisfactory results was 

obtained. His study shown that non-linear effects associated with 

large deformations in shells can be tolerated. For the cellular­

walled shells tested in this study, it was found that provided only 

those deformations are considered which are associated with loads 

considerably less than the buckling load, the load-deformation 
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curve 1s sufficiently close to hyperbolic to render the technique 

satisfactory. 

The use of a Southwell plot is illustrated in Figure 8.7. 

The solid straight lines represent the behaviour of a perfect elastic 

cylindrical shell, while the thinner curve represents th.e behaviour 

of a real shell, i.e., a shell with defects. P and o are axial load and 

axial deformation of the shell respectively, Pc is the classical 

buckling load of the perfe"ct elastic cylindrical shell and do is the 

difference of the deformations. The expression of do is 

P/Pc 
do - 1-P /Pc a, (8.1) 

where a is the initial crookedness. From equation (8.1), we obtain 

do 1 a 
-P = -P do+ -

c Pc 
(8.2) 

Equation (8.2) represents a straight line in the coordinates of do­

do/P. The plot shown in Figure 8.8 is known as the Southwell plot 

on measured axial deformation. 
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CHAPTER 9 

MEASURED BEHAVIOUR OF MODEL SHELLS 

The geometric data of the shells tested are presented in 

Table 9.1. The radius to thickness ratio for these shells ranged 

between 60 and 67. Thus they should be considered as relatively 

thick shells. Unfortunately, with our current technique and 

equipment, it does not appear possible to make the walls of model 

shells much thinner. Each shell had the same cell diameter of 0.70 

mm. H'owever, shells 6 to 14 had 400 cells each and the rest of the 

shells had only 360 cells each. Five model shells ( 1-5) were tested 

under combined loading of axial compression, external pressure 

and cell pressure with new end rings as shown in Figure 8.5. 

Twelve model shells ( 6-17) were tested with the initial design end 

rings as shown in Figure 8.4. Because the end rings leaked at very 

low pressures, only axia,l compression buckling loads were 

measured. However, all shells were mounted into end-rings as 

described in Chapter 8, so the boundary conditions were considered 

to be built-in support. 

A full set of experimental results (including axial 

compress10n, external pressure and cell pressure at three cell 

pressures - 0 kPa, 25.38 kPa and 50.76 kPa) was obtained from 

shells 1 to 5. 
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Table 9.1 

Geometric Data of Shells Tested 

Shell R t Max. L 2r R/t 2r/t S/t L/R 

No. mm mm At/t mm mm 

1 76.68 1.25 0.8% 200 0.70 61.34 0.56 1.07 2.61 

2 76.72 1.19 7.5% 200 0.70 63.47 0.59 1.12 2.61 

3 76.67 1.20 3.4% 160 0.70 63.89 0.58 1.12 2.15 

4 76.69 1.20 2.1% 200 0.70 63.91 0.58 1.12 2.61 

5 76.67 1.28 2.3% 200 0.70 59.90 0.55 1.05 2.61 

6 76.73 1.25 1.0% 125 0.70 61.40 0.56 0.97 1.63 

7 76.83 1.15 1.1% 125 0.70 66.81 0.61 1.05 1.63 

8 76.78 1.15 1.1% 125 0.70 66.77 0.61 1.05 1.63 

9 76.83 1.15 1.1% 125 0.70 66.81 0 .. 61 1.05 1.63 

10 76.77 1.16 1.1% 125 0.70 66.18 0.60 1·.04 1.63 

1 1 76.77 1.16 1.2% 125 0.70 66.18 0.60 1.04 1.63 

12 76.60 1.23 2.4% 125 0.70 62.28 0.57 0.98 1.63 

13 76.54 1.23 2.4% 125 0.70 62.23 0.57 0.98 1.63 

14 76.70 1.20 2.0% 125 0.70 63.92 0.58 1.00 1.63 

15 76.69 1.22 2.5% 200 0.70 62.86 0.57 1.10 2.61 

16 76.69 1.23 2.4% 200 0.70 62.35 0.57 1.09 2.61 

17 76.71 1.28 1.6% 200 0.70 60.88 0.56 1.06 2.61 
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9.1 TEST PROCEDURE 

The test procedure used can be summarized as follows: 

(1) The shell was set up in the testing system (including loading 

frame, optical system, end-rings and data logging which were 

described in Chapter 8). 

(2) Three photographs of the shell image (with axial, 

circumferential and spiral oriented grids) were taken to 

record any initiai imperfections of the unloaded shell. 

(3) Initial data from all four channels were logged into the PC 

(single point mode). 

( 4) A cell pressure followed by an external pressure was applied. 

(5) Data was logged again using single point mode to record the 

initial pressures. 

( 6) Axial load on the shell was continuously increased and the 

data was logged into the PC. At the same time, the image of 

the shell was being observed to monitor the development of 

deformations. Axial load was increased until the pre-cursor 

to the buckling pattern appeared. 

(7) Another three photographs of the image were taken to record 

the final deformation pattern. 

Because epoxy creeps under compression load, it was 

necessary that each test be conducted fairly quickly. Eight hours 

were allowed between successive tests permitting the shell to 

recover since immediate retesting would give a lower buckling load. 

This recovery period appeared to be adequate as the test results 
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were always repeatable after this interval and no permanent 

damage was detected. 

After the data logging was complete, the data was 

transferred to the M~'!'_-~~B- __ · software package for analysis, and 

the axial buckling load was predicted by the Southwell technique. 

The series of transformations applied with MAT-LAB·,~ · is listed in 

Appendix F. Figure 9.1 shows a typical load-deformation curve for 

a shell with very small initial defects (shell 1, without cell-pressure 

and external-pressure). The asymptote to the load-deformation 

curve was determined by linear regression on the selected points 

marked with "o". The slope· of the asymptote was used to 

determine Young's modulus for the shell. At low loading, the shell 

may not have been fully supported by the end rings or the end rings 

may not have been completely in contact with the base, so the slope 

of that part of the curve is much smaller. Those points were 

ignored in deriving the Southwell plot. The point at which the shell 

became fully supported was estimated, and the points beyond that 

were used to fit a straight line in the Southwell plot as shown in 

Figure 9.2. This line did not pass through the origin but had an 

intercept on the deformation axis of about 6.0xlQ-6 m, which 

indicates the magnitude of the shell axial deformation defect. 

It must be pointed out that the measured Young's 

modulus of the shell depends on the number of points (with "o" 

Deviations from the fitted straight line were mainly due to vibration of the 

displacement transducer. 
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marked) taken. A certain amount of judgement was involved in 

selecting the points. A common way was to try different number of 

points and to find the maximum value of the Young's modulus. 

Figure 9.3 illustrated how Young's modulus changed through fitting 

a straight line to a different number of the points of the load­

deformation curve in Figure 9.1. In this case, the maximum value 

of Young's modulus was found to be 3.06 GPa when 75 points were 

taken. 

3.2 
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Figure 9.3 Effects on Young's modulus with different points taken 
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9.2 SHELL PERFORMANCE UNDER COMBINED LOADING: 

AXIAL COMPRESSION, EXTERNAL PRESSURE AND CELL 

PRESSURE 

The results from shells under combined loading of axial 

compression, external pressure and cell pressure are summarised in 

Figures 9.4 to 9.8, where the predictions of Southwell plots are 

compared with calculations using equation ( 6.13 ). Each shell has a 

buckling load which is used to compare the Southwell plot 

prediction and theoretical predictions. In the figures, Pc represents 

cell pressure; and "*", "o" and "+" represent the test results at cell 

pressure of I' :0.0 ·Mpa,, L?:Mpa and~2:4.Mpa respectively.'~~-----__ - ' 

Shell 1 finally collapsed at Pc= 2:4 Mpa·- L'.• p = 28kPa and 

P = 6520N. The predicted axial buckling load from Southwell plot 

was P = 6680N - a discrepancy of 2.5%. Shell 2 collapsed at P = 

8500N under axial load alone, compared with the Southwell plot 

value of 8720N - a 2.6% discrepancy. Shell 3 collapsed at P = 9860N 

under axial compression load alone compared with the predicted 

lOOOON of Southwell plot - a discrepancy of 1.4%. Shell 4 and 5 

collapsed under external pressure loading with no cell pressure or 

axial load applied. 

Compared with other shells tested, the performance of 

shell 1 (Fig. 9.4) was remarkably good. The shell had a very 

uniform thickness - the deviation of overall thickness being as low 

as 0.8%. The three interaction curves of axial-load and external-

pressure are very distinct. The higher the cell pressure applied, the 
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more stable the shell becomes. This clearly shows that an increase 

of the cell pressure results in an increase of stiffness and 

consequently an increase of buckling load of the shell. The shell 

benefits in gaining stability from the application of cell pressure in 

the shell wall, particularly under low external pressure loading 

conditions. For the Pc~~.2_Mpa '.. curve, when the external 

pressure increases from 0 to about 10 kPa the axial buckling load 

retains a value of 12400 N. Similar behaviour appears in the curve 

of ·_£c~~4 Mp~ when the external pressure increases from 0 to 15 

kPa, the axial buckling load remains almost constant (13000 N). 

By contrast, shell 2 (Fig. 9.5), the thinnest of the 5 

shells, showed a poor performance. There was a considerable 

discrepancy between the measured buckling loads and theoretical 

predictions. In such a case, even increasing the cell pressure 

minimally improved the stability of the shell. The reason for such a 

poor performance may be found in the record of the geometric data 

of the shell. Shell 2 has a thickness deviation of 7.5 % which should 

be considered as very non-uniform. Because of this non-uniformity, 

the shell showed a marked tendency to buckle locally, which can be 

clearly identified in images of the shell deformation under loading. 

Figure 9.9 shows the images of shell 2 under loading of Pc=2.-1 .51 

Mpa , Per= 8.85 kPa and Per= 8560 N. The shell tended to buckle 

locally in the lower part of the images: this is particularly easy to 

identify in Figure 9.9(a), the image taken with the circumferential 

grid. 
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(a) 

(c) 

(a) 

(b) 

Circumferential 

grid lines 

{b) Axial grid lines 

(c) Spiral grid lines 

Figure 9.9 Photographic images of Shell 2 

(Load condition: Pc=2.1 Mpa , Per= 8.85kPa , Per= 8560N) 
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For shells 3 and 4, it was found that some of the holes 

were not centrally located in the shell wall. Shell 4 actually leaked 

through the shell wall when the cell pressure increased to _}j- Mpa-=­

Defects of the shells obviously weaken the measured stability. 

However, the patterns with different levels of cell pressure were 

still identifiable. They clearly demonstrated that the cellular­

walled shell is stronger than the solid-walled one with the same 

mass and that the stability can be significantly improved by 

applying substantial cell pressure within the shell wall. 

For shell 5, only one curve was measured with 

pc= O.OkPa. One of the end rings leaked at a low cell pressure of 

25 kPa. It was found later that the screws on the end ring had not 

been tightened, so the "O" ring in the end ring did not seal 

properly. 

The Young's modulus E for each shell was measured 

based on the slope of the load-deformation curve of the shell under 

axial compression load alone. The Poisson's ratio µ for each shell 

was assumed to be 0.35. The Young's modulus and Poisson's ratio 

were used in the theoretical predictions. 

From Figures 9.4 to 9.8, it can be seen that all the 

measured buckling loads are lower than the corresponding 

theoretical predictions. The difference became more significant 

when the cell pressure was higher. This is mainly because in the 

theory the effects of the end-rings were ignored; in other words, the 
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shell was allowed to expand freely while the cell pressure was 

applied. Expanding due to cell pressure would make the shell 

stronger in standing against axial compression and especially 

external pressure. However, during model shell testing both ends 

of the shell was largely constrained by the end-rings. It is 

reasonable to expect that if the constraint from the end-rings 

vanished during testing, the measured buckling loads would be 

further increased, and the agreement between theoretical 

predictions and measured buckling loads would be significantly 

improved. 

Comparisons between buckling conditions for cellular­

walled shells and solid-walled circular cylindrical shells were made 

for shells 1 to 4. One solid-walled shell had the same mass as the 

cellular-walled one. Another had the same thickness and, of 

course, increased mass. Both solid-walled shells had the same 

length and radii as the cellular-walled shells. In the figur.es, it is 

clearly seen that the cellular-walled shell is much stronger than the 

solid-walled shell with the same mass even with no cell pressure 

applied. Although the cellular-walled shell without cell pressure is 

weak compared with the solid-walled shell with the same thickness, 

much greater stability can be achieved by applying substantial cell 

pressure. For instance, shell 1 became stronger than a solid-walled 

shell with considerably greater mass when 2.4 Mpa· cell pressure was 

applied. It should be pointed out that for this epoxy shell, the 
--

maximum cell pressure that could be applied within the cells is 35 Mpa 

In that sense, the cellular-walled shells have a considerable 
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potential to mcrease stability. The limitation was mainly due to 

end fixity. If this problem could be overcome even better 

performance should be anticipated. 

The buckling modes from theoretical predictions are 

marked in the figures. Unfortunately, not one buckled image of the 

5 shells tested under combined loading was recorded, because all 

the shells shattered immediately after buckling. However, images 

very close to the buckled pattern were recorded. Figure 9.10 shows 

the images of shell 1 under a loading of Pc= _ 2.4 Mpa_(, Per= 21.10 

kPa and Per= 9915 N. It is easy to see that a buckling pattern with 

5 circumferential lobes and a single lobe at the centre of the shell's 

length was about to form; In other words, the measured buckling 

mode will be (5,1) for the shells tested, while the theoretical 

predicted buckling mode under the same loading condition was 

( 4, 1), which also indicates that the measured behaviour of the 

shells agrees fairly well with the theoretical predictions. 

Details of the test data for shells 1 to 5 are listed m 

Tables 9.2 to 9.6. 
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(a) 

(c) 

(b) 

(a) Ci rcu mf erentia I 

grid lines 

(b) Axial grid lines 

(c) Spiral grid lines 

Figure 9.10 Photographic images of Shell 1 
(Load condition: Pc=2.4Mpa Per= 21.10kPa, Per= 9915N) 
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Cell 

Pressure 
Pc(kPa) 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

25.38 

25.38 

25.38 

25.38 

25.38 

25.38 

50.76 

50.76 

50.76 

50.76 

50.76 

50.76 

Table 9.2 Test Data for Shell 1 (6187) 

(E = 3.06 GPa, µ = 0.35) 

External Critical 

Pressure Axial Load Remarks 
Pcr(kPa) Pcr(N) 

0.00 12000 The shell had a remarkably 

3.35 11140 uniform thickness; 

6.50 10140 

9.85 8970 No detectable initial 

13.20 7800 imperfections were found. 

16.95 6970 

19.70 6350 

21.30 5200 

0.00 12480 

2.95 12370 

6.90 12190 

13.40 9690 

20.70 7800 

23.60 6740 

0.00 13040 

7.10 12810 

14.40 12190 

21.10 9915 

28.00 6680 

28.00 6520* * The collapsed load condition 
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Cell 

pressure 
p0 (kPa) 

0.00 

0.00 

0.00 

0.00 

0.00 

25.38 

25.38 

25.38 

25.38 

25.38 

50.76 

50.76 

50.76 

50.76 

Table 9.3 Test Data for Shell 2 (6168) 

(E = 3.03GPa, µ = 0.35) 

External Critical 

pressure Axial Load Remarks 
Pcr(kPa) P cr(N) 

0.00 8720 

7.70 8500* * Collapsed load condition. 

7.70 5750 

11.60 4230 

17.33 2330 

0.00 8830 The shell had large thickness 

4.55 8600 deviations. 

7.10 8020 

14.00 6365 

21.90 2950 

0.00 8830 Oil leaked from one of the end 

8.85 8560 rings when the cell pressure 

13.20 7355 reached 72.5 kPa. 

22.90 2515 
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Cell 

Pressure 
Pc(kPa) 

0.00 

0.00 

0.00 

0.00 

0.00 

25.38 

25.38 

25.38 

25.38 

25.38 

50.76 

50.76 

50.76 

50.76 

50.76 

Table 9.4 Test Data for Shell 3 (6165) 

(E = 3.06GPa, µ = 0.35) 

External Critical 

Pressure Axial Load Remarks 
Pcr(kPa) P cr(N) 

0.00 10000 

0.00 9860* * Collapsed load condition. 

6.90 8160 

14.60 6400 

20.90 4400 

0.00 12000 

6.70 12000 

13.20 10000 

20.50 7700 

26.60 2800 

0.00 12600 Some holes were not centrally 

6.70 12300 located in the shell wall. 

13.20 11250 

20.90 8180 

24.15 5000 
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Cell 

Pressure 
Pc(kPa) 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

25.38 

25.38 

25.38 

25.38 

25.38 

50.76 

50.76 

50.76 

50.76 

50.76 

50.76 

Table 9.5 Test Data for Shell 4 (6179) 

(E = 2.93GPa, µ. = 0.35) 

External Critical 

Pressure Axial Load Remarks 
Pcr(kPa) Pcr(N) 

0.00 8610 

3.95 7450 

8.10 6200 

13.10 4550 

16.55 3790 

31.20 0.00* * Collapsed load condition 

0.00 8680 

5.12 8610 

7.48 7510 

12.80 6030 

20.27 4080 

0.00 8815 Oil leaked through the shell wall 

4.75 8815 when the cell pressure reached 

7.50 8760 72.5 kPa. A few holes were 

13.20 7160 found too close to the inner 

20.28 5230 surface. 

23.60 3870 
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Cell 

Pressure 
Pc(kPa) 

0.00 

0.00 

0.00 

0.00 

0.00 

Table 9.6 Test Data for Shell 5 (6192) 

(E = 2.98 GPa, µ = 0.35) 

External Critical 

Pressure Axial Load Remarks 
Pcr(kPa) Pcr(N) 

0.00 12700 Oil leaked through one of the 

6.90 11020 end rings when the cell 

10.00 9580 pressure reached 25 kPa. 

19.90 6610 

37.20 0.00* * Collapsed load condition. 

9.3 TESTS ON AXIAL COMPRESSION 

A summary of the buckling loads for the 12 model 

shells in axial compression buckling is given in Table 9.7. The 

measured critical loads for each shell presented in the table are the 

actual buckling loads rather than that predicted from a Southwell 

plot. The measured critical loads were compared with theoretical 

predictions calculated from equation ( 6.3). The Young's modulus 

of each shell was determined from the slope of the load­

deformation curve and was used in the theoretical calculations. 

The Poisson's ratio used in calculations for all shells was again 

assumed to be 0.35. Values of maximum D.t/t represent thickness 
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deviations and values in the range of 1.0% - 2.5 % indicate that the 

shells had very uniform thicknesses. 

However, localized buckling was found in the tests of 

shells 11 and 12, and both had very low buckling loads. For shell 

11, when the end rings were opened, it was found that the shell had 

been loosely fitted on the guide spigot of the end ring during 

testing. In other words, the shell was partially supported by the 

ends, and this uneven loading caused localized buckling. For shell 

12, the end rings were not properly seated on the base and caused 

uneven loading. Figure 9.11 shows deformation images at an 

advanced pre-buckling stage (Fig. 9.1 la) and buckled stage (Fig. 

9.11 b) of shell 11, from which the localized deformations or 

buckling pattern can be clearly seen. Figure 9.12 shows the 

localized buckling pattens of shell 12. 

Apart from shells 11 and 12, measured critical buckling 

loads were in good agreement with theoretical predictions. The 

obtained knock down factors were high, ranging from 0.78 to 0.86. 

This indicates that the shells were of high quality and had small 

imperfection sizes. 
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Shell Max. 

No. At/t 

6 1.0% 

7 1.1% 

8 1.1% 

9 1.1% 

10 1.1% 

11 * 1.2% 

12** 2.4% 

13 2.4% 

14 2.0% 

15 2.5% 

16 2.4% 

17 1.6% 

Table 9. 7 Test Data of Axial Buckling 

( µ = 0.35 ) 

E Measured Calculated 

Critical load Critical load 
(GPa) P cr(N) P cr(N) 

3.52 12540 15050 

3.35 10000 11600 

3.55 10360 12290 

3.60 10670 12640 

3.48 10310 12320 

--- 6320 12390 

--- 1870 14370 

3.05 10770 12500 

3.50 10670 13500 

3.08 10660 12450 

3.10 11430 12790 

3.06 10500 13400 

Knock 
Down 

Factor 

0.83 

0.86 

0.84 

0.84 

0.84 

0.51 

0.13 

0.86 

0.79 

0.86 

0.89 

0.78 

It was found later that the ends of the shell were improperly seated in the 

end-rings, i.e., the shell was not fully supported by the end-rings. The 

calculated Per was based on the average Young's modulus E=3.50GPa. 

•• The end rings were not square with the base, i.e., the shell was unevenly 

loaded. 
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a. Advanced pre-buckling deformation image 

b. Localized buckled image 

Figure 9.11 Deformation images in uneven loading (shell 11) 
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Figure 9 .12 Localized buckling patten of shell 12 
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CHAPTER10 

CONCLUSIONS AND RECOMMENDATIONS 

9.1 CONCLUSIONS 

The results of this investigation constitute the first known 

theoretical and experimental investigation of buckling of cellular-walled 

cylindrical shells under simultaneous loading of axial compression, external 

pressure and cell pressure. 

Theoretically, the cellular-walled shell was characterized as a 

pseudo-orthotropic cylindrical shell with the principal directions axially and 

circumferentially oriented. Different effec_tive Y oung's moduli were used for 

tension and bending. Reliable interaction formulas for cellular-walled 

cylindrical shells under axial compression and external pressure including the 

effects of cell pressure have been derived from a buckling analysis based on 

Flugge's linear buckling theory. The effect of high fluid pressure within the cells 

on the buckling loads was considered to be the same as that of an internal 

pressure when the radial displacements of the midsurface were the same in both 

cases. Although the buckling formulas are based on a conventional simply­

supported boundary condition which is different from the one commonly used in 

practice, i.e., a clamped or built-in boundary, they are, nevertheless, quite useful 

since in moderately long cylindrical shells Lei and Cheng64 showed that there is 

very little difference iri buckling loads between these two boundary conditions. 

Cellular-walled model shells were made out of epoxy by an 

adaptation of the spin casting process developed by Tennyson6. These shells 
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had 360 longitudinal holes each of 0.7mm diameter, shell internal diameter 

153mm, wall thickness 1.2mm and length up to 245mm. The tests of the model 

shells were carried out on a rigid test machine with parallel platens. 

Based on theoretical and experimental results for cellular-walled 

cylindrical shells, it is evident that high fluid pressure within the cells can 

significantly increase the buckling loads, in particular external pressure. Hence, 

shells of this type appear to have potential in engineering applications, 

particularly in submarine structures. 

9.2 DISCUSSIONS AND RECOMMENDATIONS 

Because this investigation was based on a naturally occurring -

though extinct - animal structure, it was thought that this study may shed some 

light on the reasons for the animal's demise. It seems possible that one reasons 

may have been brittleness in bending in the circumferential direction. On 

several occasions, isotropic shells made of the same material were dropped on a 

concrete floor and in every case they have bounced without damage. However, 

on the one occasion that one of the cellular-walled shells was dropped with the 

axis tilted the shell shattered. It is clear that the existence of the cells reduces 

the local bending stiffness, so that concentrated or dynamic loads may lead to 

catastrophic failure. However, the bending stiffness can be improved by 

reinforcing around holes, e.g. by adding circumferential fibres around the holes. 

It is also possible to use so called "smart" materials to fill in the holes, which 

would expand after passage of a electric current to pressurise the holes. 
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It is suggested that future work in this field should study the effect 

of local loading and dynamic loading. Different ways of constructing shells 

should be studied to improve the local bending stiffness around the holes and to 

improve the method of pressurization. Finally, it is also suggested that tests on 

large model shells should be conducted, since only small model shells were 

tested in this investigation. 
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TABLE A: 

CALCULATED DATA OF RADIAL DISPLACEMENTS w1 AND w2 

FOR VARIOUS GEOMETRIC CONFIGURATIONS 

2r/t W1 

0.10 0.800E-04 

0.20 0.350e-03 

0.30 0.750E-03 

0.40 0.140E-02 

0.50 0.240E-02 

0.60 0.350E-02 

0.70 0.550E-02 

0.80 0.850E-02 

2r/t W1 

0.10 0.340E-03 

0.20 O.lOOE-02 

0.30 0.226E-02 

0.40 0.410E-02 

0.50 0.680E-02 

0.60 0.107E-01 

0.70 0.164E-01 

0.80 0.254E-01 

S/t= 1.0, R/t= 10 
w5 = R2/(E1) = 0.05 mm 

w1/ws W2 

0.160E-02 0.495E-01 

0.700E-02 0.525E-01 

0.150E-01 0.580E-01 

0.280E-01 0.670E-01 

0.470E-01 0.785E-01 

0.700E-01 0.965E-01 

0.1100 0.1250 

0.1700 0.1780 

TABLE A CONTINUE 

S/t= 1.0, R/t= 30 
w5 = R2/(Et) = 0.45 mm 

w1/ws W2 

0.760E-03 0.452 

2.220E-03 0.483 

5.000E-03 0.534 

9.llOE-03 0.615 

1.510E-02 0.725 

2.380E-02 0.890 

3.640E-02 1.155 

5.640E-02 1.644 
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w2/ws W1/W2 

0.990 1.620E-03 

1.050 0.670E-02 

1.160 1.290E-02 

1.340 2.090E-02 

1.570 2.990E-02 

1.930 3.630E-02 

2.500 4.400E-02 

3.560 4.780E-02 

w2/ws W1/W2 

1.004 0.752E-03 

1.037 2.070E-03 

1.187 4.213E-03 

1.367 6.670E-03 

1.611 9.380E-03 

1.978 1.202E-02 

2.567 1.420E-02 

3.653 1.545E-02 



2r/t W1 

0.10 0.540E-03 

0.20 0.190E-02 

0.30 0.432E-02 

0.40 0.800E-02 

0.50 1.350E-02 

0.60 2.150E-02 

0.70 3.350E-02 

0.80 5.lOOE-02 

2r/t W1 

0.10 0.111E-02 

0.20 0.340E-02 

0.30 0.750E-02 

0.40 0.138E-01 

0.50 0.230E-01 

0.60 0.358E-01 

0.70 0.548E-01 

0.80 0.840E-01 

TABLE A CONTINUE 

S/t= 1.0, R/t= 60 
w5 = R2/(E1) = 1.80 mm 

w1/ws Wz 

0.300E-03 1.850 

0.106E-02 1.945 

0.240E-02 2.220 

0.440E-02 2.480 

0.750E-02 3.010 

1.190E-02 3.590 

1.861E-02 5.210 

2.83E-02 6.590 

TABLE A CONTINUE 

S/t= 1.0, R/t= 100 
w5 = R2/(Et) = 5.00 mm 

w1/ws Wz 

0.222E-03 5.100 

0.680E-03 5.420 

0.150E-02 6.000 

0.276E-02 6.900 

0.460E-02 8.135 

0.716E-02 10.020 

0.llOE-01 12.840 

0.168E-01 18.320 
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wz/ws W1/Wz 

1.028 0.298E-03 

1.080 0.977E-03 

1.233 1.950E-03 

1.378 3.230E-03 

1.672 4.485E-03 

1.994 5.980E-03 

2.894 6.430E-03 

3.661 7.740E-03 

w2/ws W1/W2 

1.020 0.218E-03 

1.084 0.627E-03 

1.200 0.125E-02 

1.380 0.200E-02 

1.627 0.283E-02 

2.004 0.357E-02 

2.568 0.427E-02 

3.664 0.459E-02 



2r/t Wl 

0.10 0.364E-02 

0.20 1.045E-02 

0.30 2.278E-02 

0.40 4.155E-02 

0.50 6.880E-02 

0.60 0.1068 

0.70 0.1640 

0.80 0.2555 

2r/t W1 

0.10 0.560£-02 

0.20 0.204£-01 

0.30 0.453E-01 

0.40 0.816E-01 

0.50 0.1371 

0.60 0.2132 

0.70 0.3255 

0.80 0.5105 

TABLE A CONTINUE 

S/t= 1.0, R/t= 300 
w5 = R2/(Et) = 45 mm 

w1/ws Wz 

0.768E-04 46.050 

2.320E-04 49.080 

5.060E-04 54.450 

9.230E-04 62.220 

1.530E-03 73.600 

2.370E-03 90.150 

3.640E-03 116.800 

5.680E-03 165.800 

TABLE A CONTINUE 

S/t= 1.0, R/t= 600 
w5 = R2/(Et) = 180 mm 

w1/ws Wz 

0.310E-04 184.130 

0.113E-03 196.210 

0.252E-03 216.450 

0.453E-03 249.100 

0.762E-03 294.100 

0.118E-02 360.200 

0.181E-02 468.200 

0.284£-02 664.000 
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wz/ws W1/W2 

1.023 0.750E-04 

1.090 2.120E-04 

1.210 4.184E-04 

1.380 6.680E-04 

1.636 9.350E-04 

2.003 1.185E-03 

2.596 1.400E-03 

3.680 1.541E-03 

wz/ws W1/W2 

1.023 0.168£-04 

1.090 1.038£-04 

1.203 2.093E-04 

1.384 3.270E-04 

1.634 4.660E-04 

2.001 5.920E-04 

2.601 6.950E-04 

3.689 7.690£-04 



2r/t W1 

0.20 0.430E-03 

0.40 1.700E-03 

0.60 4.SOOE-03 

2r/t W1 

0.20 0.127E-02 

0.40 0.505E-02 

0.60 1.350E-02 

2r/t W1 

0.20 0.255E-02 

0.40 1.020E-02 

0.60 2.700E-02 

TABLE A CONTINUE 

S/t= 0.80, R/t= 10 
Ws = R2/(E1) = 0.05 mm 

w1/ws W2 

0.860E-02 0.535E-01 

3.400E-02 0.685E-01 

9.000E-02 0.991E-01 

TABLE A CONTINUE 

S/t= 0.80, R/t= 30 
Ws = R2/(Et) = 0.45 mm 

w1/ws W2 

0.282E-02 0.4890 

1.122E-02 0.6330 

3.000E-02 0.9170 

TABLE A CONTINUE 

S/t= 0.80, R/t= 60 
ws = R2/(Et) = 1.80 mm 

w1/ws W2 

0.142E-02 1.978 

0.567E-02 2.555 

1.500E-02 3.698 
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w2/ws W1/W2 

1.070 0.804E-02 

1.370 2.480E-02 

1.982 4.540E-02 

w2/ws w1/w2 

1.0867 0.260E-02 

1.4067 0.800E-02 

2.0380 1.470E-02 

w2/ws W1/W2 

1.099 0.129E-02 

1.419 0.399E-02 

2.055 0.730E-02 



2r/t W1 

0.20 0.430E-02 

0.40 1.700E-02 

0.60 4.520E-02 

2r/t W1 

0.20 0.125E-01 

0.40 0.510E-01 

0.60 1.338E-01 

2r/t W1 

0.20 0.02575 

0.40 0.13000 

0.60 0.26650 

TABLE A CONTINUE 

S/t = 0.80, R/t = 100 
w5 = R2/(E1) = 5.0 mm 

w1/ws W2 

0.860E-03 5.495 

3.400E-03 7.078 

9.000E-03 10.160 

TABLE A CONTINUE 

S/t= 0.80, R/t= 300 
w5 = R2/(Et) =45 mm 

w1/ws W2 

0.277E-03 49.470 

1.133E-03 63.950 

2.973E-03 93.030 

TABLE A CONTINUE 

S/t= 0.80, R/t= 600 
w5 = R2/(Et) = 180 mm 

w1/ws W2 

0.143E-03 201.100 

0.569E-03 259.200 

1.480E-03 372.300 
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W2/Ws w1/w2 

1.0990 0.783E-03 

1.4156 2.402E-03 

2.0320 4.450E-03 

w2/ws w1/w2 

1.099 0.252E-03 

1.421 0.797E-03 

2.067 1.438E-03 

w2/ws w1/w2 

1.117 0.128E-03 

1.440 0.382E-03 

2.068 0.716E-03 



2r/t W1 

0.20 0.28E-03 

0.40 0.95E-03 

0.60 2.40E-03 

2r/t W1 

0.20 0.850E-03 

0.40 3.000E-03 

0.60 7.350E-03 

2r/t W1 

0.20 0.169E-02 

0.40 0.600E-02 

0.60 1.485E-02 

TABLE A CONTINUE 

S/t= 1.4, R/t= 10 
w5 = R2/(E1) = 0.05 mm 

w1/ws W2 

0.560E-02 0.515E-01 

1.900E-02 0.625E-01 

4.BOOE-02 0.890E-01 

TABLE A CONTINUE 

S/t= 1.4, R/t= 30 

w5 = R.2/(E1) = 0.45 mm 

w1/ws W2 

0.189E-02 0.4735 

0.667E-02 0.5780 

1.633E-02 0.8250 

TABLE A CONTINUE 

S/t= 1.4, R/t= 60 

w5 = R2/(Et) = 1.80 mm 

w1/ws W2 

0.939E-03 1.913 

3.333E-03 2.315 

8.250E-03 3.300 
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w2/ws W1/W2 

1.030 0.544E-02 

1.250 1.520E-02 

1.780 2.700E-02 

w2/ws W1/W2 

1.0522 0.180E-02 

1.2844 0.519E-02 

1.8333 0.890E-02 

w2/ws W1/W2 

1.063 0.883E-03 

1.286 2.592E-03 

1.833 4.SOOE-03 



2r/t W1 

0.20 0.283E-02 

0.40 1.001E-02 

0.60 2.470E-02 

2r/t W1 

0.20 0856E-02 

0.40 3.000E-02 

0.60 7.430E-02 

2r/t W1 

0.20 0.160E-01 

0.40 0.602E-01 

0.60 1.488E-01 

TABLE A CONTINUE 

S/t= 1.4, R/t= 100 
w5 = R2/(Et) = 5.00 mm 

w1/ws W2 

0.566E-03 5.315 

2.002E-03 6.455 

4.940E-03 9.202 

TABLE A CONTINUE 

S/t= 1.4, R/t= 300 
w5 = R2/(Et) =45 mm 

w1/ws W2 

0.190E-03 47.940 

0.667E-03 58.150 

1.651 E-03 83.020 

TABLE A CONTINUE 

S/t= 1.4, R/t= 600 
w5 = R2/(E1) = 180 mm 

w1/ws W2 

0.890E-04 191.700 

3.344E-04 233.000 

8.266E-04 331.900 
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w2/ws w1/w2 

1.063 0.532E·03 

1.291 1.551E-03 

1.840 2.684E-03 

w2/ws W1/W2 

1.065 0.179E-03 

1.292 0.516E-03 

1.845 0.895E-03 

w2/ws W1/W2 

1.065 0.680E-04 

1.294 2.583E-04 

1.844 4.483E-04 



2r/t W1 

0.20 0.265E-03 

0.40 0.888E-03 

0.60 2.250E-03 

2r/t W1 

0.20 0.760E-03 

0.40 2.650E-03 

0.60 6.550E-03 

2r/t W1 

0.20 0.156E-02 

0.40 0.533E-02 

0.60 1.320E-02 

TABLE A CONTINUE 

S/t= 1.6, R/t= 10 
w5 = R2/(E-t) = 0.05 mm 

w1/ws W2 

0.530E-02 0.0510 

1.780E-02 0.0610 

4.400E-02 0.0840 

TABLE A CONTINUE 

S/t= 1.6, R/t= 30 
w5 = R2/(Et) = 0.45 mm 

w1/ws W2 

0.169E-02 0.470 

0.589E-02 0.560 

1.456E-02 0.775 

TABLE A CONTINUE 

S/t= 1.6, R/t= 60 
w5 = R2/(E-t) = 1.80 mm 

w1/ws W2 

0.867E-03 1.895 

2.960E-03 2.245 

7.333E-03 3.145 

199 

w2/ws W1/W2 

1.020 0.520E-02 

1.220 1.456E-02 

1.680 2.620E-02 

wz/ws W1/W2 

1.044 0.162E-02 

1.244 0.473E-02 

1.722 0.845E-02 

w2/ws W1/W2 

1.053 0.823E-03 

1.247 2.374E-03 

1.747 4.197E-03 



2r/t W1 

0.20 0.258E-02 

0.40 0.890E-02 

0.60 2.170E-02 

2r/t W1 

0.20 0.776E-02 

0.40 2.700E-02 

0.60 6.590E-02 

2r/t W1 

0.20 0.01550 

0.40 0.05335 

0.60 0.13060 

TABLE A CONTINUE 

S/t= 1.6, R/t= 100 
w5 = R2/(Et) = 5.0 mm 

w1/ws W2 

0.516E-03 5.280 

1.780E-03 6.280 

4.340E-03 8.750 

TABLE A CONTINUE 

S/t= 1.6, R/t= 300 
w5 = R2/(Et) = 45 mm 

w1/ws W2 

0.172E-03 47.560 

0.600E-03 56.820 

1.464E-03 78.850 

TABLE A CONTINUE 

S/t= 1.6, R/t= 600 
w5 = R2/(Et) = 180 mm 

w1/ws Wz 

0.860E-04 190.400 

2.963E-04 226.700 

7.255E-04 315.500 
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W2/Ws W1/W2 

1.056 0.489E-03 

1.256 1.417E-03 

1.750 2.480E-03 

wz/ws W1/Wz 

1.057 0.163E-03 

1.263 0.475E-03 

1.752 0.836E-03 

wz/ws w1/w2 

1.0578 0.814E-04 

1.2594 2.353E-04 

1.7528 4.139E-04 



FIGURES 
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W1IW2 AND W1/Ws AGAINST 

GEOMETRIC PARAMETERS 
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PROGRAM LISTING 

USED IN THE NON-LINEAR LEAST-SQUARES FITTING 

8.1 PROCEDURE POWELL1 

FUNCTION f1dim( x: real): real; 
VAR 

j: integer; 
xt: glnarray; 

BEGIN 
{ $ifdef diag } 
writeln( 'f1dim ', x:10:4 ); 
{$endif} 

FOR j : = 1 TO n DO 
BEGIN 
xtD] : = pcomD] + x * xicomLJ]; 
END; 

f1dim : = func( xt ); 
END; 

PROCEDURE mnbrak( VAR ax, bx, ex, fa, fb, fc: real); 
LABEL 1; 
CONST 

gold = 1.618034; 
glimit = 100.0; 
tiny = 1.0e-20; 

VAR 
ulim, u, r, q, fu, dum: real; 

FUNCTION max( a, b: real): real; 
BEGIN 
IF (a> b) THEN max :=a ELSE max := b 
END; 

FUNCTION sign( a, b: real): real; 
BEGIN 
IF (b > = 0.0) THEN sign : = abs(a) ELSE sign : = -abs(a) 
END; 

BEGIN 

1 This procedure is written by William H. Press, et. in the book of "Numerical recipes" - the art 
of scientific computing [Cambrige university press 1988]. The procedure was also used in 
determine theoratical critical loads. It is listed here for the sake of convenience in reading. 
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fa:= f1dim( ax ); 
fb: = f1dim( bx); 
IF ( fb >fa) THEN 

BEGIN 
dum := ax; 
ax :=bx; 
bx:= dum; 
dum := fb; 
fb: =fa; 
fa:= dum; 
END; 

ex : = bx + gold * (bx - ax); 
fe: = f1dim( ex); 

1: IF (fb > = fe) THEN 
BEGIN 
r: = (bx-ax)*(fb-fe); 
q : = (bx-ex)*(fb-fa); 
u : = bx - ( (bx-ex)*q - (bx-ax)*r) 

/ ( 2.0*sign( max(abs(q-r),tiny), q-r) ); 
ulim := bx+glimit *(ex-bx); 
IF ((bx-u)*(u-ex) > 0.0) THEN 

BEGIN 
fu : = f1 dim(u); 
IF (fu<fe) THEN 

BEGIN 
ax :=bx; 
fa:= fb; 
bx:= u; 
fb := fu; 
GOT01 
END 

ELSE 
IF (fu > fb) THEN 

BEGIN 
ex:= u; 
fe: = fu; 
GOTO 1 
END; 

u: = ex+ gold*(ex-bx); 
fu : = f1 dim(u) 
END 

ELSE 
IF ((ex-u)*(u-ulim) > 0.0) THEN 
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BEGIN 
fu : = f 1 dim ( u ) ; 
IF (fu < fc) THEN 

BEGIN 
bx:= ex; 
ex:= u; 
u: = cx+gold*(cx-bx); 
fb: = fc; 
fc: = fu; 
fu : = f1 dim ( u ) 
END 

ELSE 
IF (u-ulim)*(ulim-cx) > = 0.0 THEN 

BEGIN 
u := ulim; 
fu : = f1 dim(u) 
END 

ELSE 
BEGIN 
u: = cx+gold*(cx-bx); 
fu : = f1 dim(u) 
END; 

ax :=bx; bx:= ex; ex:= u; 
fa:= fb; fb := fc; fc := fu; 
GOTO 1 
END 

END; 
END; 

Function brent( ax, bx, ex, tol: real; VAR xmin: real): real; 
LABEL 1,2,3; 
CONST 

itmax=100; cgold=0.3819660; 
{ zeps = 1.0e-10;} 
zeps =1e-8; 

VAR 
a, b, d, e, etemp: real; 
fu, fv, fw, fx: real; 
iter: integer; 
p, q, r, to11, tol2: real; 
u, v, w, x, xm: real; 

FUNCTION sign(a,b: real): real; 
BEGIN 
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IF (b > = 0.0) THEN sign:= abs(a) ELSE sign : =-abs(a) 
END; 

BEGIN 
IF ax <ex THEN a:= ax ELSE a:= ex; 
IF ax > ex THEN b: = ax ELSE b: = ex; 
v :=bx; w :=v; x :=v; e := 0.0; 
fx : = f1 dim(x); fv : = fx; fw : = fx; 
FOR iter : = 1 TO itmax DO 

BEGIN 
xm : = 0.5*(a+ b); 
tol1 := tol*abs(x)+zeps; 
tol2 : = 2.0*tol1; 

{$ifdef diag } 
writeln('BRENT', iter, ':', x:10:3, xm:10:3, 

to11 :10:3, to12:10:3 ); 
{$endif} 

IF (abs(x-xm) < = (to12-0.5*(b-a))) THEN GOTO 3; 
IF (abs(e) > tol1) THEN 

BEGIN 
r: = (x-w)*(fx-fv); 
q : = (x-v)*(fx-fw); 
p : = (x-v)*q-(x-w)*r; 
q : = 2.0*(q-r); 
IF (q > 0.0) THEN p : = -p; 
q := abs(q); 
etemp := e; e := d; 
IF ((abs(p) > = abs(0.5*q*etemp)) OR (p < = q*(a-x)) 

OR (p > = q*(b-x))) THEN GOTO 1; 
d := p/q; 
u:=x+d; 
IF (((u-a) < tol2) OR ((b-u) < to12)) THEN 

d : = sign(to11, xm-x); 
GOT02 
END; 

1: IF (x > = xm) THEN e: = a - x 
ELSE e : = b - x; 
d : = egold*e; 

2: if (abs(d) > = tol1) THEN u: = x + d 
ELSE u: = x + sign(to11,d); 
fu : = f1 dim(u); 
IF (fu < = fx) THEN 

BEGIN 
IF (u > = x) THEN a : = x 
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ELSE b := x; 
v : = w; fv : = fw; w : = x; 
fw := fx; x := u; fx :=fu 
END 

ELSE 
BEGIN 
IF (u < x) THEN a:= u ELSE b := u; 
IF ((fu < = fw) OR (w=x)) THEN 

BEGIN 
v: = w; fv: = fw; w: = u; fw: = fu; 
END 

ELSE 
IF ((fu < = fv) OR ( v = x) OR (v =w)) THEN 

BEGIN 
v : = u; fv : = fu; 
END 

END; 
{ write('End of iteration'); readln; } 

END; 
writeln( 'pause in routine BRENT - too many iterations'); 

3: xmin := x; 
brent := fx 
END; 

PROCEDURE linmin( VAR p, xi: glnarray; n: integer; VAR fret: real); 
CONST 

tol= 1.0e-04; 
VAR 

j: integer; 
xx, xmin, fx, fb, fa, bx, ax: real; 

BEGIN 
ncom := n; 
FOR j : = 1 TO n DO 

BEGIN 
pcom [j] : = p [j] ; 
xicom[j] : = xi[j] 
END; 

ax := 0.0; xx := 1.0; bx :=2.0; 
mnbrak( ax, xx, bx, fa, fx, fb ) ; 
fret : = brent( ax, xx, bx, tol, xmin ) ; 
FOR j : = 1 TO n DO 

BEGIN 
xiO] : = xmin * xi[j]; 
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p[j] : = p[j] + xiO]; 
END 

END; 

PROCEDURE powell( VAR p: glnarray; 
VAR xi: glnpbynp; 
n, np: integer; 
ftol: real; 
VAR iter: integer; 
VAR fret: real ) ; 

LABEL 1,99; 
CONST 

itmax = 200; 
VAR 
j, ibig, i: integer; 
t, fptt, fp, del: real; 
pt, ptt, xit: glnarray; 
BEGIN 

{$ifdef diag} 
writeln ('procedure powell start: ftol = ', ftol ); 

{$endif} 
fret : = func( p ); 
FORj :=1 TO n DO 

BEGIN 
ptU] : = pDJ 
END; 

iter := O; 
{ while ...... do} 

1 : iter : = iter + 1 ; 
{$ifdef diag} 

writeln ('Iteration number', iter ); 
{$endif} 

fp: =fret; 
ibig := O; 
del := 0.0; 
for i : = 1 TO n DO 

BEGIN 
FOR j : = 1 TO n DO 

BEGIN 
xit[j] := xiu,i] 
END; 

fptt : = fret; 
linmin( p, xit, n, fret); 
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99: 

IF (abs( fptt-fret) > del) THEN 
BEGIN 
del : = abs( fptt-fret ); 
ibig := i 
END 

END; 
IF (2.0*abs(fp-fret) < = ftol*(abs(fret))) THEN 

begin 
writelnCConverge at fp = ', fp:10:4, 'fret = ', fret:10:4 ); 
GOT099; 
end; 

IF (iter = itmax) THEN 
BEGIN 
write( 'pause in routine POWELL'); 
write(' too many iterations'); readln; 
GOT099; 
END; 

FOR j : = 1 TO n DO 
BEGIN 
ptt[j] : = 2.0*p[j] - pt[j]; 
xit[j] : = p[j] - pt[j]; 
pt[j] : = p[j] 
END; 

fptt : = func(ptt); 
IF (fptt > = fp) THEN GOTO 1; 
t : = 2.0*( fp - 2.0*fret+fptt) * 

sqr( fp-fret-del ) - del*sqr( fp-fptt); 
IF (t > = 0.0) THEN GOTO 1; 
linmin( p, xit, n, fret); 
FOR j : = 1 TO n DO 

BEGIN 
xi[j, ibig] := xit[j ]; 
END; 

GOTO 1; 

END; 

8.2 MAIN PROGRAM LISTINGS 

PROGRAM MAIN; 

CONST 
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n=7; 
np=7; 
m=72; 
ftol : real= 1.0E-06; 
XDATA='XDATA'; 
YDATA = 'YDATA'; 
ZDATA='ZDATA'; 
FIDATA='FIDATA'; 

TYPE 
glnarray=ARRAY[1 .. n] OF real; 
glnpbynp=ARRAY[1 .. np,1 .. np] OF real; 
dataarray= ARRAY[1 .. m] OF real; 

VAR 
i,j,iter,ncom: integer; 
p,pcom,xicom: glnarray; 
x,y,z,fi: dataarray; 
xi: glnpbynp; 
fret: real; 
filename, ident: string; 
f, fout: text; 

FUNCTION func(VAR p: glnarray): real; 
VAR 

j: integer; 
xj,xx:real; 
fx,fy,fz,sum: real; 
p1 ,p2,p3,p4,p5,p6,p7: real; 

BEGIN 
p1 : =p[1]; 
p2: =p[2]; 
p3 :=p[3]; 
p4 :=p[4]; 
p5: =p[5]; 
p6 :=p[6]; 
p7 :=p[7]; 
sum :=0.0; 

writeln( 'func p4 ', p4 ); 
FOR J :=1 TO m DO BEGIN 

xj: = x[j]; 
xx: = xj*xj; 
fx : = p1 + p2*xj + p3*xx; 
fy : = p4 * In ( y [j] ) ; 

{ write('funcj :', j:2, 'y', y[j]:4:1, ln(y[j] )); } 
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fy : = exp( fy ); 
fz: = exp( (p5+ p6*xj+ p7*xx)*ln(z0])); 
sum:= sum + sqr(fiO]-fx*fy*fz); 
END; 

writeln; writeln( fout, 'func', sum); 
func :=sum; 
END; 

{$i powell.pas} 

FUNCTION READARRAY (VAR x: dataarray; m: integer; ident: string): 
boolean; 
var s : string; 

i: integer; 
begin 
repeat 

readln( f, s); 
until s = ident; 
writeln( fout, ident, 'array'); 
for i : = 1 to m do 

begin 
read( f, x[i] ); 
write(fout, x[i]:10:3 ); 
if (i mod 8) = O then write( fout ); 
END; 

writeln (ident, 'data read OK'); 
ReadArray: =true; 
END; 

BEGIN {Main program} 
writeln( 'LEAST SQUARE FITTING'); 
write( 'INPUT DATA FILE NAME:'); 
read ( filename ) ; 
assign( f, filename + '.dat' ); 
reset( f); 
assign( fout, filename + '.out'); 
rewrite (fout ) ; 
if READARRAY( x, m, XDATA) THEN 

IF READARRAY ( z, m, ZDATA) THEN 
IF READARRAY ( fi, m, FIDATA) THEN 

BEGIN 
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writeln ( 'ALL DATA READ OK' ) ; 
END; 

writeln( fout, 'Initial values of pO], j = 1, ', n); 
FOR j:= 1 TO n DO BEGIN 

read(f, p[j]); 
write(f, p[j]:9 ); 
if O mod 8) = O then writeln; 
END; 

writeln( fout ); 
writeln( fout, 'Initial values of xi[i,j], i = 1 .. ', n, ', j = 1 .. ', n); 
FOR i : = 1 TO n DO 

BEGIN 
FORj:= 1 TO n DO 

begin 
read (f, xi [i ,j]) ; 
write( fout, xi[i,j]:9 ); 
end; 

writeln( fout ); 
END; 

writeln( 'DATA INPUT COMPLETE'); 
writeln( fout, 'DATA INPUT COMPLETE'); 
close( f ); 
write( 'Convergence tolerance ( ', ftol, ') '); 
readln ( ftol ); 
writeln( fout, 'Convergence tolerance', ftol ); 
powell ( p, xi, n, np,ftol, iter, fret); 
writeln; 
writeln(Minimum function value= ',fret); 
writeln; 
writelnC Minimum found at:'); 
writeln; 
writeln( fout, 'Iterations:', iter); 
writeln( fout ); 
writeln(fout, 'Minimum function value=', fret); 
writeln( fout ); 
writeln( fout, 'Minimum found at:'); 
writeln( fout ); 
FOR i : = 1 TO n DO 

BEGIN 
write( p[i]:10 ); 
write (fout, p[i]:10:4); 
END; 

{ FORj :=1 TO m DO 
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BEGIN 
WRITE( fw0]:10 ); 
write( fout, fw0]:10:4); 
END;} 

CLOSE( fout ); 
END. 

229 



APPENDIX C 

PROGRAM LISTING USED IN 
DETERMINE 

THEORETICAL BUCKLING 
LOAD AND MODE 

230 



PROGRAM LISTING USED IN 

DETERMINE THEORETICAL BUCKLING LOAD AND MODE 

PROGRAM MAIN; 

LABEL 1; 

CONST 
n=2; 
np=2; 
ftol : real= 1.0e-003; 
dt=0.6087; 
Rt=333.913; 
St=1.1652; 
LR=1.165; 
per= 3.5026E-07; 
Ncr= 1.42236E-03; 
pi=3.1415926535; 
fu1s=0.008857; 
fu2s = 1.4286; 

1YPE 
glnarray =ARRAY[1 .. n] of real; 
glnpbynp=ARRAY[1 .. np, 1 .. np] of real; 

VAR 
ppcr, NNcr, ZOU, func1: real; 
i,j,iter,ncom: integer; 
mwa,nwa,pcom,xicom: glnarray; 
xi: glnpbynp; 
fret: real; 
filename, ident: string; 
f, fout: text; 

FUNCTION func(VAR mwa: glnarray): real; 
CONST 

E =1.00; 
mu=0.35; 
a1 =0.09671; 
b1 =-0.6933; 
c1 =2.8276; 
d1 =-0.9960; 
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a2=0.9570; 
b2 = -0.2720; 
c2=2.9360; 
d2=0.0130; 
a3 = -0.0907; 
b3=0.78614; 
d3=-1.016; 

VAR 
mw,nw: real; 
f1, f2, f3: real; 
AfA, AmA: real; 
fw1s, fw2s: real; 
E1, E2, Eb1, Eb2, mu1, mu2: real; 
k, ks, k1, namda, lnamda: real; 
k1 s, mws, namdas, mu1 s : real; 
mum, mumu, e11, e21 : real; 
cp1, cp2,cp3,cp4,cp5,cp6,cp7 : real; 
cc1, cc2, cc3, cc4: real; 
G1, G2, Q1, Q2, Q3, Q4: real; 

BEGIN 
mw: =abs(mwa[1]); 
nw :=abs(mwa[2]); 
IF ( mw < 1 ) THEN mw : = 1; 
IF ( nw < 1 ) THEN nw: = 1·; 
f1 : =-0.3540-2.240*dt + 1. 7 430*dt*dt; 
f2 : = 0.3280-2.4660*dt + 2.5630*dt*dt; 
f3 : =-0.1790-2.6160*dt + 2.5240*dt*dt; 
AfA: =pi*dt*dt/(4*St); 
AmA : = 1-AfA; 
fw1s := (a1 +b1*dt+c1*dt*dt)*exp(d1*1n(Rt))*exp(f1*1n(St)); 
fw2s: = (a2+ b2*dt+c2*dt*dt)*exp(d2*1n(Rt))*exp(f2*1n(St)); 
E1 :=E*AmA; 
E2 :=E/fw2s; 
G1 : = dt/St*1/(1-0.6495*exp(3*1n(dt)))+1-dt/St; 
Eb2:=E/G1; 
Eb1: = E*(1-3*pi/16*exp(4*1n(dt))/St); 
mu1 : = mu*fu2s/fw2s; 
mu2 :=mu; 
mu1s: =mu1 *mu1; 
k :=E2/E1; 
ks: =sqrt(k); 
k1 : =0.5*ks*(1-sqrt(mu1 *mu2)); 
k1s:=k1*k1; 
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mws : = mw*mw; 
namd~ : = pi*nw /LR; 
namdas: = namda*namda; 
lnamda: =ln(namda); 
e11 :=Eb1/E1; 
e21 : = Eb2/E1; 
mum : = mu1 *e11-mu2*e21; 
mumu: = mu1 *e11 + mu2*e21; 
cc1 := (k-mu1*mu1)*k1*exp(4*1namda); 
cp1 : = k1 *e11 *exp(8*1namda)-exp(6*1namda)*mws*((mu1 s-k)*e11 

-4*k1s +k1*mum); 
cp2 : = -exp(4*1namda)*exp(4*1n(mw))*(4*k1 *mu1 s + (2*k1 *mu1 

+ mu1 s-k) *mumu + 8*k1 s*mu1-4*k1 *k-k1 *(k*e11 + e21 )) ; 
cp3 : = -namdas*exp(6*1n(mw))"((mu1s-k+ 2*k1 *mu1)*e21-4*k*k1s 

-k*k1 *mumu) + exp(8*1n(mw))*k*k1 *e21; 
cp4 : = -namdas*exp(4*1n(mw))*((2*k-k1 *mu1 )*e21-2*k*mu1 s 

+ 4*k*k1 s -3*k*k1 *mu1 + k*k1 *mumu); 
cp5 : = -exp(4*1namda)*mws*(6*k*k1 + (k-k1 *mu1-mu1 s)*mumu 

-6*k1 *mu1 s -8*k1 s*mu1 + k1 *(k*e11-e21 )); 
cp6 : = -2*exp(6*1n(mw))*k*k*k1-exp(6*1namda)*k1 *mu1 *(1 + e11) 

-namdas*mws*(e21 *(k1 *mu1 + mu1 s-k) + k*(k1 *mu1-4*k1 s)); 
cp7 : = -exp(4*1namda)*k1 *(3*mu1 s-4*k) + exp(4*1n(mw))*k*k1 *e21; 
cc2: = cp1 + cp2 + cp3 +cp4 +cp5 +cp6 +cp7; 
cc3 : = k1 *mw*mw*sqr(namda*namda + ks*mw*mw) 

+ k1 *(2*ks + k)*namda*namda*mw*mw-exp(4*1n(mw))*k*k1; 
cc4 : = namda*namda*k1 *sqr(namda*namda + ks*mw*mw) 

+ namda*namda*mw*mw*k*k1; 
Q1 : = (cc1 + cc2/(12*Rt*Rt))/(pcr*Ncr); 
Q3: = (cc3*Rt*(1-mu1 *mu2))/(E1 *Ncr); 
Q4 :=cc4*(1-mu1*mu2)/(E1*pcr); 
NNcr: = (Q1-Q3*ppcr)/Q4; 

func: = NNcr; 
END; 

{$i powell.pas} 

BEGIN {MAIN PROGRAM} 
ZOU : = Rt*sqr(LR); 
writeln( 'FINDING BUCKLING MODE'); 
write ('INPUT DATA FILE NAME:'); 
read ( file name ) ; 
assign (f, filename + '.dat' ); 
reset ( f ); 
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assign( fout, filename +'.out'); 
rewrite (fout ) ; 
writeln (fout, 'BUCKLING INTERCURVE OF A CELLULAR WALLED 

SHELL'); 
WRITELN (FOUT); 
WRITELN (fout, 'S/t =',St); 
writeln (fout, '2r /t = ', dt); 
writeln (fout, 'R/t = ', Rt); 
writeln (fout, 'L/R = ', LA); 
writeln (fout, 'Z = ', ZOU); 
writeln (fout, 'per = ', per); 
writeln (fout, 'Ncr = ', Ncr); 
writeln (fout); 
writeln (fout, 'INITIAL VALUE OF mwaLJ], j=1, ', n ); 
FOR j := 1 TO n DO BEGIN 

read(f, mwa[j]); 
write(fout, mwa[j]:9 ); 
if O mod 8) = O then writeln; 
END; 

write In ( fout ) ; 
writeln(fout, 'lnitialvalueofxi[i,j], i=1 .. ', n, ',j=1 .. ', n); 
FOR i : = 1 TO n DO 

BEGIN 
FOR j : = 1 TO n DO 

BEGIN 
read (f, xi[i,j]); 
write( fout, xi[i,j]:9 ); 
END; 

writeln( fout ); 
END; 

writeln( 'DATA INPUT COMPLETE'); 
writeln (fout, 'DATA INPUT COMPLETE'); 
close( f); 
write ('Convergence tolerance ( ', ftol, ') '); 
readln( ftol ); 
writeln(fout, 'Convergence tolerence ', ftol ); 
ppcr :=1.10; 

1: ppcr: =ppcr - 0.10; 
powell ( mwa, xi, n, np, ftol, iter, fret); 
writeln; 
writeln('ppcr = ', ppcr); 
writeln; 
writeln('Minimum function value (NNcr) = ',fret); 
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writeln; 
writeln('Minimum found at (m, n): '); 
writeln( fout ); 
write In ( fout ) ; 
writeln( fout, 'ppcr = ', ppcr); 
writeln( fout ); 
writeln( fout, 'Iterations:', iter); 
writeln( fout ); 

{ writeln( fout, 'Minimum function value NNcr =',fret); 
write In ( fout ) ; 
writeln( fout, 'Minimum found at m, n: '); 
write In ( fout ) ; 
FOR i : = 1 TO n DO 

BEGIN 
write( mwa[i]: 10 ); 
write( fout, mwa[i]: 10:4); 
writeln( fout ); 
END; } 

nwa[1] : = lnt(mwa[1] + 0.5); 
if ( mwa[2] < = 1.0) then nwa[2] : = 1.0 

else nwa[2] : = lnt(mwa[2] + 0.5); 
func1 : = func ( nwa ) ; 
writeln( fout ); 
writeln( fout, 'Minimum function value NNcr = ', func1 ); 
writeln( fout ); 
writeln( fout, 'Minimum found at m, n (buckling mode):'); 
write In ( fout ) ; 
FOR i : = 1 TO n DO 

BEGIN 
write( nwa[i]: 10:4 ); 
write(fout, nwa[i]: 15:9); 
writeln ( fout ) ; 
END; 

if ( ppcr > -1.0) Then goto 1; 
close ( fout ) ; 

END. 

235 



APPENDIX D 

PROGRAM LISTING 
USED IN 

DATA LOGGING 
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PROGRAM LISTING USED IN DATA LOGGING 

PROGRAM READDATA; 

USES PCLDEFS, PCLERRS, CRT; 

canst N = 2000; 

VAR 

i,j,error : INTEGER; 
data: ARRAY[1 .. N] OF WORD; 
DDATA: STRING [20]; 
OK: BOOLEAN; 
DFILE : TEXT; 

function ConverterSetup: boolean; 
var error : integer; 
begin 
error : = Initialize; 
if error < > O then 

begin 
writeln('lnitialize returns', error); 
end; 

(* ConverterSetup : = error = O; *) 
converterSetup : = true; 

end; 

var outfile : text; 

function OpenFile : boolean; 
var 

shell_id : integer; 
id, fn: string[20]; 

begin 
write('Shell Number?'); readln( shell_id ); 
str( shell_id, id); 
fn : = 'c:\lab\sh' + id + '.dat'; 
assign ( outfile, fn ) ; 
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rewrite ( outfile ) ; 
writeln( 'Your data will be in file[', fn, ']' ); 
OpenFile : = true; 
end; 

procedure CloseFile; 
begin 
close( outfile ) ; 
end; 

function CollectData: boolean; 
canst 

min _channel = O; 
max _channel = 3; 
gain= 1; 

var 
i, error : integer; 
x : array[min _channel .. max _channel] of WORD; 

begin 
for i : = min channel to max channel do - -

begin 
error : = Ade_ Value( i, gain, x[i] ) ; 
if error < > O then 

writeln( 'Error', error,' on channel', i ); 
end; 

for i : = min channel to max channel do - -
begin 
write( outfile, x[i]:6 ); 
end; 

writeln( outfile ); 
(* CollectData : = error = O; *) 
collectdata : = true; 

end; 

var c: char; 
rate: real; 
ms : integer; 

BEGIN 
clrscr; 
writeln ('DATA LOGGING OF SHELL BUCKLING PERFORMANCE WITH 
DATA TRANSLATION'); 
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writeln ('DT2818 SIMULTANEOUS SAMPLING BOARD.'); 
writeln; 
write('Sampling rate'); readln( rate); 
ms:= round( 1000.0/rate ); 
writeln('Sampling every', ms,' ms'); 
writeln ('Enter S to collect single data'); 
writeln('Enter C to collect continue data'); 
writeln('Enter Q to quit'); 
if ConverterSetup then 

begin 
if OpenFile then 

begin 
repeat 

c : = Read Key; 
c: = upcase( c ); 
if c = 'c' then 

begin 
writeln('Continue data collection'); 
repeat 

if not CollectData then 
begin 

writeln('Error collecting data'); 
end; 

delay( ms); 
until KeyPressed; 
end; 

else if c = 's' then 
begin 
writeln('Single data collection'); 

if not CollectData then 
begin 

end; 
until c = 'Q'; 
Close File; 
end; 

end; 
end. 

writeln('Error collecting data'); 
end; 
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CALIBRATION OF DATA LOGGING BOARD DT2818 

VOLTS CHAN. CHAN. CHAN. CHAN. 

0 1 2 3 

-10 6 6 7 6 

-9 210 210 211 210 

-8 414 414 415 415 

-7 619 619 620 619 

-6 823 823 824 823 

-5 1026 1025 1027 1026 

-4 1230 1230 1230 1230 

-3 1434 1434 1435 1434 

-2 1639 1638 1638 1638 

-1 1841 1842 1842 1842 

0 2047 2046 2048 2047 

0 2047 2047 2048 2047 

1 2251 2252 2252 2252 

2 2456 2456 2456 2456 

3 2660 2660 2660 2659 

4 2864 2863 2864 2864 

5 3068 3067 3068 3068 

6 3271 3271 3271 3270 

7 3476 3476 3476 3476 

8 3678 3678 3679 3678 

9 3883 3882 3883 3882 

10 4088 4087 4087 4086 
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APPENDIX F 

PROCEDURE LISTING USED IN PC-MATLAB 

idata=[ 

2142 2043 2045 2155 

2143 2043 2044 2154 

2149 2044 2044 2154 

2153 2046 2044 2155 

2156 2046 2045 2155 

2157 2047 2043 2156 

2159 2048 2044 2154 

...... ]; 
[n,m] = size(idata); 

[Data collected from 

data logging board] 

cellpressure = (idata(n,3)-idata(1,3))/204.1 /2.02181 Be-03 

externalpressure = (idata(n,4)-idata(1,4))/204.1)/0.171571 

n1 = idata(:, 1); 

n2 = idata(:,2); 

disp = (n1-n1 (1 ))/204.1 /1.3115*1.0e-03; [Axial displacement] 

newton = (((n2-n2(1))/204.1 +0.0078)/0.0021)*7.143; [Axial load] 

numO = 65; 

num1 = 142; 

dis = disp(numO:num1); 

new = newton(numO:num1); 

for j= 1:2 

A 1 (:,j) =dis." (2-j); 

end; 

c = A1\new; 

c1 = c(1,1); 

c2 = c(2,1); 

slope= c1; 

pi=3.14159; 

R = 76.Se-03; 

t= 1.25e-03; 
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deflection curve] 



r=0.35e-03; 

L=200.00e-03; 

A = 2*pi*R*t-360*pi*r*r; . 

E = c1*L/A 

x= (3e-4:0.1e-4:19e-4)'; 

y= polyval(c,x); 

no= num1; 

disp1 = (newton(nO:n) - c2)/c1; 

ddisp = disp(nO:n) - disp1; 

dnewton = ddisp./newton(nO:n); 

for j = 1 :2 

81 (:,j) =ddisp." (2-j); 

end; 

e = 81\dnewton; 

axialload = 1/e(1,1); 

u= (-1e-5:0.1e-5:2e-5)'; 

v= polyval(e,u); 

plot(disp,newton,'+',x,y,'-',dis,new,'o'); 

grid; 

[Calculating Young's 

modulus of the shell] 

[Calculating change of displacement] 

[Calculating change of displacement 

/axial load] 

title('ESTIMATION OF BUCKLING LOAD - SHELL010000'); 

xlabel('AXIAL DISPLACEMENT (M)'); 

ylabel(' AXIAL LOAD (N)'); 
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