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Abstract 

Selenium (Se) is a key micronutrient for marine primary productivity in the 

remote ocean. The element is known to be essential for phytoplankton species 

growth, but there is limited information on its role and physiological function. 

This study is the first to investigate basin-scale distributions, speciation and 

biological requirements of Se for phytoplankton in the various water masses of 

the Southern Hemisphere, ranging from the subtropical to the polar oceans. 

The thesis describes the development of a new shipboard method based on 

hydride generation with cryogenic trapping and atomic fluorescence detection for 

the determination of Se species in seawater. A detection limit of 5 pmol r1 Se in a 

10-ml sample was achieved, with precision better than 3.5% for Se(IV) standards 

(0.3-12.7 nmol r 1
). Accuracy was determined by recovery studies on natural 

samples and certified reference seawater. 

An ocean transect from Australia to Antarctica along the meridional CLIV AR I9S 

line (approximately l 15°E) was completed in the austral summer 2004/2005. 

Water column samples were collected in all ocean provinces, with increased 

sampling in the mixed layer and frontal zones. Results show surface Se(IV) 

concentrations increasing towards the south. The Se data has been interpreted 

using ancillary chemical and biological data obtained from the transect. 

Laboratory-based cultures were grown to investigate the effect of varying Se 

concentrations on the productivity and cell health of two temperate and four polar 

oceanic phytoplankton species. The coccolithophore, Emiliania huxleyi, required 

Se obligately for growth, whereas no effect was observed with the 

cyanobacterium, Synechococcus sp. The effect of Se additions on cell 

photosynthetic parameters was reflected by an increase in pigment concentrations 

for three of the polar diatoms. The absolute biological requirement for Se was 

thus demonstrated in laboratory cultures, with varying requirements among 

different species. 
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In order to link the observed oceanic concentrations of Se with the effect on 

community primary productivity, deck-top incubations were carried out in the 

oligotrophic waters of the Tasman Sea, which has very low Se(IV) levels in 

surface waters. Our incubations investigated the influence of additional Se, 

macronutrients and other trace elements on productivity in this region over a 

series of four-day experiments. Our full community incubation results differed 

from those of the single species laboratory cultures, and further work is required 

to understand the differences before we gain a more detailed understanding of the 

role of Se in influencing ecosystem health. 
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Chapter 1 

Introduction 



Introduction 

1.1 Introduction 

Selenium is an element of environmental, biological and toxicological 

significance. It is a Group VI element, displaying many properties similar to 

sulfur, and has properties between those of a metal and a non-metal. It is a 

metalloid, and like S, Se can display four different oxidation states: -II, 0, +IV and 

+VI, each with differing behaviour. The two elements have similar ionic radii, 

redox potentials and electronegativity. However, Se is more polarisable (and 

therefore more nucleophilic), and there is a strikingly different pH-dependence 

between thiols and selenols. Selenols have lower pKa values [l], and are 

chemically reactive at much lower pH, since Se remains in solution as an ionic 

form at these lower pHs. 

1.1.1 Chemical forms of selenium in the environment 

In oxic soils and water, Se is most commonly found in the inorganic forms, 

Se(IV) as Seol-and Se(VI) as Seol-. However, much of the organic and 

inorganic complexation chemistry of Se involves the -II oxidation state [2]. The 

stability of Se species is shown in Figure 1.1. Various pe-pH figures can be drawn 

with differing variables. Figure 1.1 shows species stability for Se activity at a 

concentration ofO.l nM, which is most applicable to the marine environment [3]. 

The pH of soil influences the mobility of Se, with alkaline conditions favouring 

Se(VI), and more acidic conditions favouring Se(IV) [ 4]. Se(VI) has similar 

properties to sulfate (SOl} They are both dominant at high redox potentials, are 

highly soluble with low adsorption and precipitation characteristics, and directly 

compete for uptake by plants [5]. In contrast, Se(IV) is dominant at mid-range 

redox potentials, and its mobility is governed by sorption/desorption processes on 

solid surfaces, such as metal oxyhydroxides, clays and organic matter [6]. Se(-II) 

is formed under anoxic conditions which can reduce Se from the inorganic oxic 

forms to elemental Se (Se(O)), and further to H2Se and metal- and organically­

bound Se(-II) [7]. Se(-II) is stable under strong reducing conditions. Se(O) is 

formed under various reducing conditions and can be stable over a wide pH range 

[3] (Figure 1.1 ). Elemental Se is present as a non-soluble compound, with at least 
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11 different allotropes [6]. These can display quite distinctive colours (red or 

pink), and can be seen at the redoxcline in natural waters or sediments [8, 9]. 

20 - --- -- -~----------~~---. -- ------· 
~ 

llS•O, 

15 

10 

0 

0 2 4 6 8 10 12 14 

pll 

Figure 1.1 Selenium pe-pH diagram at 25°C, 1 bar pressure and zero ionic 

strength at selenium activity of 10 -Io mol r1
• Taken from Seby et al. (2001) [3] 
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Introduction 

In the marine environment, Se is found in: (i) inorganic oxic forms [10]; (ii) 

organic Se species - a result of biological activity - including Se amino acids 

(typically analogues of the S amino acids) [11], and volatile species (such as 

dimethylselenide (DMSe) and other analogues of S species) [12]; and (iii) 

particulate and colloidal forms of Se(O) [ 13]. 

1.1.2 Role of selenium in biological systems - toxicity and essentiality 

Selenium is known to be essential for biological systems, but at levels only three 

to five times above bio-essential concentrations it can also be toxic [14]. It has the 

narrowest biological tolerance range of all the elements [ 15]. The behaviour and 

reactivity of Se depends on its oxidation state and, in general, inorganic forms of 

Se are more toxic than organic forms. For humans and most other mammals, the 

toxicity of inorganic Se increases in the order Se(IV)<Se(VI)<hydrogen selenide 

(H2Se) [16, 17]. Toxicity occurs when Se substitutes for Sin sulfur-containing 

amino acids ( cysteine and methionine). The substitution of Se changes the 

behaviour of the amino acids (and therefore proteins into which they are 

incorporated) [18]. When Se replaces Sin the cysteine molecule, the resulting 

protein function is affected, along with the ionisation pH of the selenol group. 

Reactivity is increased in comparison to the thiol group [1]. Replacing Se for Sin 

methionine has less of an impact, but can influence the enzyme activity if the 

replacement is near the active site of the molecule [19]. 

The importance of Se to human health was first recognised in the late 1950s. 

Maintaining an adequate Se balance is reported to enhance DNA repair processes 

and improve immunological mechanisms [20], as well as protecting against metal 

toxicity from other elements, such as mercury [21]. Deficiency can cause heart 

disease, hypothyroidism, decreased immune response [5] and, in extreme cases, 

juvenile cardiomyopathy (Keshan Disease) [4]. Se deficiency is also thought to 

play a role in chondrodystrophy (Kaschin-Beck Disease) which causes enlarged 

joints, shortened fingers and toes and, in the extreme, dwarfism [4]. It has been 

estimated that ~500-1000 million people worldwide are Se deficient (2001) [4]. 

Humans require at least 40 µg Se d-1 to maintain maximum expression of Se 

enzymes (20 µg Se d-1 can prevent Keshan Disease), and possibly up to 

4 



Chapter 1 

300 µg Se d-1 to decrease cancer risks [4]. The recommended safe upper limit is 

400 µg Se d-1 (World Health Organisation), although it is recognised that this may 

be conservative. Eating a single Brazil nut could exceed the recommended daily 

amount for Se [22]. Excess Se can cause loss of hair and nails. Se accumulates to 

a higher degree in organs compared to muscle tissue [23]. 

In humans, many (at least 25) Se-containing enzymes are known, although the 

function of some remains unknown [19]. Glutathione peroxidase was the first 

enzyme identified with Se as an essential component. It is an antioxidant that 

protects cells by reducing hydroperoxides and free radicals. Se-cysteine is 

commonly regarded as the 21 st amino acid because of its role in glutathione 

peroxidase [ 1]. The selenol group of Se-cysteine plays a fundamental role in the 

protection against free radicals, whilst Se-methionine is involved in the protection 

of cells from radiation and light damage [19]. 

1.1.3 Sources and cycling of selenium 

Selenium is ubiquitous in the environment. It is commonly found as a secondary 

component of heavy metal sulfides because of the similarity in chemical 

properties of the two elements [24, 25]. The average abundance of Se in the crust 

is 0.05-0.09 mg/kg, about l/6000th that of sulfur and of similar abundance to 

cadmium and antimony [20]. Its geographical distribution is highly variable, with 

low Se belts identified along the mid-to-high latitudes in both hemispheres [26]. 

There are regions with extremely high and extremely low Se soil concentrations. 

Soils are typically 0.1-2 µg Se kg-1 
[ 4], but there are regions that are Se-deficient 

(<0.1 µg Se kg-1
) such as Denmark, Finland, New Zealand, eastern and central 

Siberia and a belt from northeastem to south central China, and regions with 

seleniferous soils (>0.5 µg Se kg-1
) such as the Great Plains of the United States 

of America and Canada, Enshi County China, India, Columbia, Venezuela and 

parts of Ireland. These seleniferous areas can have concentrations up to 

1200 mg Se kg-1 [20], but the distance between Se-deficient and seleniferous 

regions can be as little as 20 km, most notably in China and Brazil [ 19]. Australia 

is also reported to have a wide range of Se concentrations. Many areas are Se 
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deficient, with some farm lands (grazing pastures) supplemented with Se 

fertilisers to ensure the health and quality of stock [27]. 

There are no significant Se ores or ore deposits. Se is primarily produced as a by­

product of copper electrolytic refining [19]. Se can be present in high 

concentrations in coal, up to 43 mg Se kg-1 in high S coals (found in parts of USA, 

Russia and China), whilst the world average is 1.6±1.0 mg Se kg-1 for hard and 

brown coal [19]. Coal can be Se-enriched up to 65 times that of the surrounding 

soil, the highest enrichment of all elements [28]. The mining, processing and 

combustion of coal represent the major mobilisation of Se in the natural 

environment. 

Natural atmospheric sources of Se include crustal weathering and the resulting 

dust (inorganic and particulate Se), volcanic emissions (inorganic Se), sea-salt 

spray and emissions from the continental and marine biosphere (organic Se). The 

marine biosphere is thought to be a dominant source of Se, contributing 60-80% 

of the natural emissions [29], and helping to balance the global Se budget [30]. 

Terrestrial biological emissions are dominated by dimethylselenide (DMSe), 

while marine biota produce a range of methyl selenides - predominantly DMSe 

and a mixed Sand Se compound, dimethylselenidesulfide (DMSeS) [31]. 

Anthropogenic Se is estimated to contribute 37-40% of total Se to the atmosphere, 

with coal combustion alone accounting for ~50% of the anthropogenic emissions 

[29], the majority of which are released in the latitudes between 30°N and 90°N. 

Wet and dry deposition returns atmospheric Se to both the terrestrial and marine 

environment. Inorganic selenium is also released into the environment as the 

result of a range of human activities: fossil fuel combustion, fly ash leaching, 

agricultural drainage, nonferrous metal smelting, and sulfide ore, coal and 

phosphate mining [18, 28]. 

In the atmosphere, Se volatiles are likely to be subjected to similar 

transformations and processes as S volatiles, although the concentration of DMSe 

is four orders of magnitude less than DMS [30]. Whilst DMS has been 

extensively studied due to its role in climate [32], DMSe has received less 
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interest. In the North Atlantic, there is a positive relationship between DMS and 

DMSe, indicating both are likely to be by-products of algal processes [31]. The 

low concentration of Se relative to S means it may have a trivial influence on 

atmospheric properties [30], although marine volatile Se species may have an 

influence on the terrestrial environment since the transportation from the ocean to 

land may be a source of Se to Se-depleted regions, possibly analogous to the cycle 

of iodine [33], and thus be important for human health. 

1.1.4 Selenium in the aquatic environment 

In the marine environment, Se is found predominantly as the inorganic oxyanions 

of Se(IV) and Se(VI); it can also be found as elemental Se (Se(O)), as well as 

organic Se (Se(-II)). The term 'organic Se' includes Se-amino acids (such as Se­

methionine, Se-cysteine), Se-proteins, Se-lipids, methylated volatile Se 

compounds and the trimethylselenonium ion [34]. The total Se concentration is 

low (typically less than 1.5 nM), with individual species being less than 1 nM. In 

freshwater systems, total Se concentrations vary depending on the system. Waters 

with anthropogenic inputs are often at toxic levels (for fish >60 nM [19]) whilst 

clean systems are influenced by the geology of the region and can also vary 

greatly [35]. 

Organic Se is found typically only in the upper levels of the oceanic water column 

and is a result of biological activity. Se(IV) species are taken up preferentially by 

living organisms in the marine environment [13] and are converted into organic 

Se, which is the biochemically functional form (Figure 1.2). 
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Figure 1.2 Schematic diagram of the biogeochemical cycling of selenium in the 

marine environment. The dominant species and processes in each region are 

indicated in bold. 
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Oceanographic studies of Se distribution have predominantly been in the Northern 

Hemisphere. The Southern Hemisphere has a lack of measurements, making it 

difficult to discern much information on Se behaviour in the waters of this region, 

and whether inter-hemisphere differences exist related to sources and biological 

processes. The Southern Ocean is a very different environment to the other ocean 

basins, with minimal anthropogenic inputs and active formation of new water 

masses. It is also a high-nutrient, low-chlorophyll (HNLC) region [36]. Low 

chlorophyll indicates low phytoplankton biomass and suggests low primary 

productivity, which in these regions is not limited by a lack ofmacronutrients. 

What limits productivity is not established unequivocally: factors include low iron 

[37-41]; light limitation; and/or a deep mixed layer [42]; with low silicate 

possibly limiting diatom production in some areas [ 43]. While iron has been 

recognised as a major limiting factor, because of its multi-faceted role in the algal 

cell 1, the role of many other trace elements remains relatively unknown, although 

some likely functions have been elucidated [45]. 

Laboratory studies have shown Se to be an essential micronutrient for some 

phytoplankton species and it is routinely added to many culture media [ 46-48], 

but the role it plays is yet to be defined. Whilst Se is recognised as a micronutrient 

and has been investigated in the laboratory for interactions with phytoplankton, 

this has not been followed by studies on how it could affect natural phytoplankton 

communities. The availability of Se may influence the speciation of 

phytoplankton found in an oceanic region, as has been demonstrated for the tiny 

eukaryote, Ostreococcus [49]. Ostreococcus tauri has a gene for a Se-protein, 

whilst Ostreococcus lucimarinus has the same gene except Se-amino acids are 

replaced by non-Se amino acids. Since Se is seen to be required by some but not 

all phytoplankton, certain phytoplankton species in ocean regions with low Se 

concentrations may suffer limitation. 

1 A large number of Fe atoms (22 or 23 atoms [44]) are required for the photosynthetic system and 
Fe is also required as an enzyme cofactor, necessary for the intracellular metabolism of nitrogen 
[45], with no replacement element yet known [46]. 

9 



Introduction 

1.2 Aims of this thesis 

This thesis combines three separate, but linked studies, into Se in the marine 

environment: (i) the distribution and speciation of Se in the open ocean; (ii) the 

effect of Se on individual phytoplankton; and (iii) the effect of Se on a natural 

mixed phytoplankton community. 

Chapter 2 outlines the method development, enabling the measurement of the 

individual Se species at the low concentrations found in the marine environment. 

It covers the analytical technique employed, methods used to overcome 

interferences, the conversion of Se(VI) and organic Se to Se(IV) (which is 

essential for its measurement), and preconcentration methods (which increase the 

sensitivity of the method). 

Chapter 3 details the oceanographic study of Se speciation in the southeast Indian 

Ocean and Australian sector of the Southern Ocean. The Se data are compared to 

various oceanographic parameters to discern which of these parameters influence 

the behaviour of Se. 

The role of Se as a limiting micronutrient for different taxa of marine 

phytoplankton is investigated in Chapter 4. Six phytoplankton strains (two 

temperate and four polar) were grown in laboratory mono-cultures under varying 

Se concentrations and measures made of growth, size and photosynthetic activity. 

Chapter 5 examines the natural phytoplankton assemblage of the northern Tasman 

Sea, and how additions of Se (alone and in combination with iron and nitrogen) 

affect this mixed phytoplankton community. 

Chapter 6 summaries the outcomes of the three areas of study and suggests future 

directions to increase knowledge of the role and biogeochemistry of Se in the 

marine environment. 
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Analytical method for the determination of selenium species in oceanic waters 

2.1 Introduction 

This chapter details the analytical method development and is comprised of two 

sections. The first section details the development of the method for Se species 

determination at expected natural concentrations, and the second outlines 

preconcentration methods, with investigation into co-precipitation. 

2.2 Method development 

2.2.1 Introduction 

2.2.1.1 Methods of determination 

Selenium is present in environmental water samples as inorganic - Se(IV) and 

Se(VI) and organic Se (as outlined in Chapter 1). The determination of selenium 

in natural water samples, including seawater, can be achieved using a variety of 

methods. Those used for seawater include atomic absorption spectroscopy (AAS) 

- batch [1] and flow injection analysis [2]; fluorometry [3, 4]; electron capture 

detection-gas chromatography (ECD-GC) [5]; and differential pulse cathodic 

stripping voltammetry (DPCSV) [6, 7]. 

Several analytical methods are suitable for the speciation of Se and these are 

discussed briefly below. AAS is a well-established technique, with introduction of 

the sample being possible in a number of ways. Hydride generation is commonly 

used for Se work [17-19], and it can be used in batch [l], flow-injection [20] and 

continuous-flow [21] modes. Se hydride is generated by reaction of Se(IV) with 

borohydride, but Se(VI) will not react to form the hydride. Direct injection of the 

sample, for total Se species determination, into a graphite atomizer has also been 

used [22]. DPCSV is an electrochemical method that determines Se(IV) by the 

deposition of a HgSe film on a hanging mercury drop electrode. Dissolved 

organic material affects the efficiency of this method [23]. Fluorometry uses the 

ligand, 2,3-diaminonapthalene or one of its derivatives to form a fluorescent 

complex with Se(IV). Only Se(IV) will react to form the complex so other Se 

species need to be transformed to Se(IV) for detection by this method. GC 

analysis of Se often takes advantage of the same Se complexes as those used for 

fluorometry. GC of these complexes has been coupled to electron-capture 
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detection [5]. Alternatively, volatile Se compounds, for example 

dimethylselenide, can be directly determined by GC. However, concentrations of 

these species are low in the environment and normally sample preconcentration 

techniques are required. Other possible methods for Se analysis are inductively 

coupled plasma-mass spectrometry (ICP-MS) and atomic fluorescence 

spectrometry (AFS). ICP-MS is capable of determining all Se species without 

significant sample pretreatment. This method is potentially sensitive and can be 

used for multi-element detection. However, Se has a high ionization potential, 

which reduces the sensitivity of the method [24] and the most common Se 

isotope, 80Se, suffers from isobaric interferences [25]. Use of a dynamic reaction 

cell or collision cell with ICP-MS improves the sensitivity for Se [26, 27]. AFS is 

used with hydride generation for Se determination with atomization in a flame. 

AFS has been reported to be three orders of magnitude more sensitive than AAS, 

when using the same experimental set up [28]. Of the possible analytical methods 

discussed above, AFS is well-suited for shipboard use as it is a compact system 

that does not have special operational requirements [29]. AAS and ICP-MS both 

have large space requirements, while DPCSV is affected by movement. 

Fluorometry involves lengthy sample treatment and is prone to analytical errors 

[13]. 

AFS offers significant advantages in terms of linearity of dynamic range, 

detection limits and size when compared to other traditional methods [30]. Early 

work with Se and AFS was carried out by Thompson (197 5) [31]. This work 

obtained a detection limit of 0.76 nM Se. AFS has not been used as commonly as 

AAS, because no commercial instrument was available until the early 1990s [32]. 

Recently, AFS has been used predominantly for analysis of the inorganic Se 

species but also for the volatile organic Se species, for example dimethylselenide, 

[33, 34] and Se-amino acids [35]. Some methods couple a chromatographic step, 

typically HPLC, with flow injection and an on-line reduction step to determine 

inorganic Se and Se-amino acids simultaneously [36, 37]. Whilst there are reports 

of batch hydride generation coupled with AAS detection [1, 17], most work with 

AFS has been coupled to continuous flow and flow-injection hydride generation. 

Use of continuous flow and flow-injection AFS for seawater analysis has given 

detection limits at the <0.1 nM level [38, 39]. These levels of detection are in the 
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range applicable to natural marine waters. However, batch hydride generation 

offers the advantage of allowing larger sample volumes and preconcentration, by 

use of a cryogenic trap, to improve detection limits. It also separates the H2Se 

from the excess generated hydrogen, making the peak easier to detect. 

Most methods are only capable of direct determination of Se(IV), so other Se 

species need to transformed to Se(IV) before they can be measured. 

2.2.1.2 Selenium(Vl) determination 

Se(VI) is calculated by subtraction after separate determination of total inorganic 

Se (Se(IV) +(VI)) and Se(IV). Most analytical techniques, including hydride 

generation, are capable of determining only Se(IV) directly, since only Se(IV) can 

form SeH2 by reaction with N aBHi (except under very acidic conditions) [ 4 3, 44]. 

To measure total inorganic Se an appropriate reduction step is needed. There are 

many potential reducing agents but few are suitable for the reduction of Se(VI) to 

Se(IV). Reductants that have a redox potential lower than the redox potential of 

the Se(IV)/Se(O) couple are not suitable for use as in their presence Se(VI) is 

reduced to Se(IV) and then Se(O), which is then precipitated. Even mild 

reductants, such as ascorbic acid and sulfur dioxide, can cause reduction to 

elemental Se under acidic conditions [ 45]. Unsuitable reductants include 

hydrazine and hydrazinium salts [46], hydroxylamine, thiourea, amino acids and 

iodide [47]. Other reductants, such as nitrite, as well as V(IV) and Pd(ll) 

compounds, are also unsuitable owing to their interference with hydride 

formation. 

The most commonly reported method for Se(VI) reduction is a heated acid 

reduction method using HCl at concentrations of 4-6 M. The acid concentration, 

temperature and time of heating will all affect the efficiency of the reduction 

(Table 2.1 ). Use of a heated HCl reduction has been investigated by many 

researchers but consensus on its suitability has not been reached. The acid 

concentration is most commonly between 4-6 M but up to 9 M HCl [ 48] has also 

been used. The heating times vary from 5-6 min [1, 49] to 4 h [50], with 15-30 

min commonly chosen [18, 24, 51, 52]. Temperatures also vary widely, ranging 
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from 60°C [50] to 140°C [21] with 85°C to boiling point being popular [2, 53] 

(Table 2.1 ). 

Table 2.1 Reported conditions for heated HCl digest for selenium(VI) reduction 

Acid concentration Temperature Time Conditions Reference 

S.6M 90°C 30min Open vessels [S4] 

4M Boil lS min Covered with [SS] 

watchglass 

6M 60°C 4h Conical flask [SO] 

SM 8S°C water bath Varied• Sample analysed [2] 

immediately 

6M 70°C 6min Sample analysed [49] 

immediately 

6.8M Boiling water 48 s On-line system [S6] 

bath 

9M 1so0 c 10 min Closed vessel [48] 

4M Boil IOmin NR [S3] 

6M 100°c 20min NR [24] 

6M 140°C NR On-line system, ice [21] 

bath cooled 

6M 100°c lS min NR [S2] 

4M 130°C 1 hr Al block heater [S7] 

SM 9S°C lS min NR [18] 

SM Boiling water 30min NR [Sl] 

bath 

SM Boiling water 20min Bring back to 2Sml [S8] 

bath after cooling 

NR = not reported 
• -10 min for Se(VI) reduction; 180 min for organic Se (Se(-11)) conversion 

An alternative reaction is the use of bromide in an acidic medium. Bromide is a 

stronger reducing agent and is more effective at reducing Se(VI) to Se(IV) [59], 

(about 19 times more effective than chloride [47]). The use of bromide for Se(VI) 

reduction is less commonly used throughout the literature, but there have been 
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many investigations into its use (Table 2.2). It has been favoured for on-line use, 

possibly due to the rapid and efficient conversion of Se(VI) [37, 38, 60-62]. There 

is also a conflicting report suggesting that organic Se compounds are broken 

down when the sample is heated for extended periods [63]. Brindle and Lugowska 

[ 4 7] report on extensive investigations to determine optimal but mild conditions 

for Se(VI) reduction. Their outcomes were pursued further in these investigations. 

Table 2.2 Reported conditions for selenium(VI) reduction by bromide reaction 

Reagent concentrat10n Temperature Time Conditions Reference 

1.8 MHBr 70°C 50-120 min Se-met reduced [63] 

5% KBr & 50% HCl 200°c NR On-line system [37] 

30% w/v NaBr & 3 M HCl NR 1 min On-line system, 210 [38] 

Wmicrowave 

0.42 M NaBr & 1.6 M HCl 70°C 1 h 40 ml sample [39] 

5.8 MHBr 100°c 63 s On-line system [62] 

25% KBr & 5 M HCl 160°C NR On-line system [61] 

10% HBr & 10% HCl NR 28 s On-line system, 100 [60] 

Wmicrowave 

0.18-0.54 M HBr &1.2 M Boil 15 min Se(O) will effect [64] 

HCl value if present 

1.5% KBr & HCl Boil 1 h NR [65] 

0.75 M KBr & 1.2 M HCl NR NR 20 ml sample [66] 

0.3 MKBr 90-100°c 25 min 400 ml sample, pH 1 [67] 

- adjusted with HCl 

1.4 M KBr & 0.48 M HCl Boiling water 17 min 10 ml sample [47] 

bath 

2%KBr&4ml 60°C 30min Mille samples, 2 g, [68] 

1HN03/3HC1 dilute to 50 ml 

4%KBr& 1 MHCl 70°C lh NR [69] 

0.84 M KBr & 1.2 M HCl 85-90°C in 25mm 20 ml sample [70] 

water bath 

NR = not reported 
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2.2.1.3 Total selenium determination 

Total Se can be determined after an oxidation step to convert all Se to inorganic 

Se, and it may need to by followed by a reduction step to convert all Se present to 

Se(IV). Organic Se compounds are very resistant to acid attack and as such a very 

potent reagent (acidic and oxidising) is needed to convert them to Se(IV) [16]. 

The method chosen must not interfere with hydride generation, so nitric acid and 

other strong acids are not preferred. Methods for total Se are quite varied, with 

UV irradiation, heated acid/persulfate and heated bromine reaction being popular. 

2.2.l.3a UVirradiation 

UV irradiation is favoured by many authors, but again conditions vary greatly in 

reports. Some methods claim that only Se(VI) is converted to Se(IV) [71, 72], 

whilst others report that organic Se species are also converted into inorganic Se 

species [73, 74] but not necessarily Se(IV). Investigating the reports for organic 

Se conversion, Cabon and Erler [2] state that the conversion of Se species is very 

dependent on pH, with higher pH yielding greater recoveries [71, 72]. Chemical 

additions to the sample to improve conversion efficiency also vary. Some authors 

add hydrogen peroxide to assist the breakdown of organic material [73-75], while 

Mattsson and colleagues [76] found it was not necessary except for samples 

purged of oxygen or when DOC exceeded 25 mg C r 1
• 

2.2.l.3b Persulfate oxidation 

Persulfate oxidises all dissolved non-volatile Se species to Se(VI), and by adding 

a reduction step, total Se can be determined [77]. The reaction has been reported 

with 1 ml of2% (w/v) potassium persulfate in 4 M HCl, boiled for 1 h [78]. Using 

this acid concentration, the Se(VI) reduction simultaneously occurs. Zhang and 

colleagues [79] showed this reagent to give complete decomposition of organic Se 

compounds even with 15 mg mr1 organic compounds present. Little work has 

been done on testing the validity of this method and most work has tended to 

replicate the early work in this area or to incorporate only minor adjustments. 

2.2.J.3c Hydrogen peroxide oxidation 

Hydrogen peroxide has also been reported to oxidize organic Se compounds [79]. 

This has been reported in a heated reaction [80] but more commonly as an 
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addition during UV irradiation. The use of peroxide, like persulfate, requires a 

reduction step to ensure all Se is present as Se(IV). 

2.2.J.3d Bromine oxidation 

Bromine can be used to break down organic Se compounds, since it has a great 

affinity to cause oxidative addition to these compounds, allowing cleavage of the 

C-Se bond under relatively mild conditions [81]. This reaction will convert all Se 

present in the solution to Se(IV) using HBr and bromine (generated in situ from 

KBr03) and heated at 150°C [82]. KBr03 needs to be present to provide sufficient 

bromine for the complete conversion of organic Se compounds [83]. This method 

has been shown to efficiently convert organic Se compounds (namely trimethyl 

selenonium ion [81], Se-methionine, Se-ethionine and Se-cystine[82, 83]) to 

Se(IV). However, it has the disadvantages that bromine is a possible interferent in 

hydride formation and the method is susceptible to matrix interferences [84]. No 

further investigations into this method were carried out for these reasons. 

2.2.1.4 Preseniation of samples 

The determination of Se in environmental samples is rarely carried out in the 

field, with samples normally being preserved for later analysis. Preservation 

methods vary, with acidification, refrigeration and dark storage being preferred. 

The stability of Se speciation in natural samples is largely unknown, although 

established methods are used for storage (further discussed in Chapter 3), plus 

there is the potential for loss of analyte from the sample. It is important to 

consider these issues for stored and acidified samples. 

It is difficult to discern the best preservation methods as many of the reported 

stability and preservation studies use elevated Se concentrations (an order of 

magnitude or more above natural ocean levels) and artificial matrices [8-11]. 

Freezing of samples has been reported as one of the best methods to preserve 

speciation [12] but this presents some problems. Samples need to be filtered 

before freezing or rupture of cells can result in anomalous results [13, 14]. 

Freezing also requires large storage space and care to ensure samples remain 

frozen until analysis. Acidification is widely accepted for species preservation, 
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however, excessive acid can change the speciation in the sample [l, 9, 10, 13]. 

Chloride has been seen to stabilise the inorganic species, so HCl is the preferred 

acid [10]. Storage of samples is often dictated by convenience. While it has been 

reported that Teflon and borosilicate glass materials are preferable to polyethylene 

[15], it is acknowledged that polyethylene bottles are more commonly used due to 

cost and ease of shipping and handling [16]. Ideally, samples will be analysed as 

soon as possible after collection. On long ocean voyages this requires an 

instrument suited for shipboard use. The methods used previously for seawater 

analysis have typically been shore-based. However, some of these methods could 

also be suitable for shipboard use. 

The work outlined in this chapter describes a method for direct determination of 

selenium in marine waters at environmental levels. It builds on an existing method 

used at sea for arsenic analysis [40, 41]. The method couples batch hydride 

generation and cryog~nic trapping with AFS detection (HG-CT-AFS). This 

method was initially adapted for selenium analysis as part of an earlier project 

[ 42], however, additional development was necessary, including further 

adaptation of the technique for Se(VI) and total Se determination, improving the 

precision at low natural Se levels, and thoroughly evaluating the possible 

interferences. 

2.2.2 Methods 

2.2.2.1 Reagents and standards 

All reagents used were analytical grade, unless otherwise stated. Ultrapure water, 

distilled and purified with a Milli-Q (Millipore) system that had a resistivity of 

> 18 MO. cm, was used throughout. Stock standards (1 OOO mg r1 of Se for Se(IV) 

and Se(VI); 500 mg r 1 of Se for Se-methionine;= 12.66 mM and 6.33 mM) were 

prepared in 30 ml and 125 ml HDPE bottles (Nalgene), which had previously 

been soaked in 10% v/v HCl and rinsed with Milli-Q water. The stock solutions 

were refrigerated at 4°C. Dilute working solutions were prepared daily as 

required. A stock solution of Se(IV) was prepared by dissolving 0.1411 g of 

HiPure (99.999%) Se02 (Spex Industries) in 100 ml of 0.8 M HCI. The reagent 

was oven dried to remove any moisture before the standard was prepared. The 
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standard Se(VI) solution was made from 0.2390 g anhydrous sodium selenate 

(Na2Se04 ; Ultra grade, Sigma) in 100 ml of Milli-Q water. The standard Se­

methionine solution was made from 0.0082 g seleno-L-methionine (Sigma) in 

6.6 ml of Milli-Q water. 

A 2% w/v NaB:Hii solution (AF caplets, 98%; Rohm & Hass) was prepared fresh 

daily in 0.1 M NaOH (BDH Chemicals). Mallinckrodt AR Select HCI was used 

routinely throughout the experimental work. A 2% w/v sulfanilamide (Sigma, 

99% minimum) solution was made by dissolving the 1 g of sulfanilamide in l ml 

of 12 M HCI and then diluting with Milli-Q water. The solution was kept in the 

dark at all times. 

Reduction of Se(VI) to Se(IV) required 1.67 g potassium bromide (Sigma­

Aldrich, 99%+) and 0.4 ml of 12 M HCl (Mallinckrodt); equivalent to 1.4 M KBr 

and 0.48 M HCI for every 10 ml of sample. A 2% w/v potassium persulfate (BDH 

Analar) solution was prepared from recrystallised K2S20 8 dissolved in Milli-Q 

water. Hydrogen peroxide (Aristar, - 30% v/v) was added directly to the samples 

to be UV irradiated (60 µl H20 2 per - 80 ml sample). 

2.2.2.2 Apparatus 

A schematic diagram of the hydride generation-atomic fluorescence system is 

shown in Figure 2 .1 and the operating conditions are summarised in Table 2.3. 

The detector used was a PSA Excalibur atomic fluorescence spectrometer (PS 

Analytical, Orpington, Kent, UK, model 10.033). This was fitted with a boosted 

discharge hollow cathode lamp (Photron, Victoria, Australia, P849SF). 

Measurements were performed at 196.0 nm, the Se resonance line. The 

spectrometer was equipped with a solar blind photomultiplier tube, placed at 90° 

to the incident light, as the detector. A hydrogen-argon diffusion flame formed the 

atom cell. Data were acquired using National Instruments Labview™ Version 6.1 

(Austin, Texas, USA, http://www.ni.com[). Peaks were integrated using the 

software package ORIGIN (Microcal Software Inc, Northampton, MA, USA). 
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Table 2.3 Operating parameters of the HG-CT-AFS system 

AFS detector 

Lamp 

Lamp current 

PMT potentiometer 

Sample volume 

Carrier gas flows 

Supplementary gas flow 

Dry air supply 

Reductant 

Reductant flow rate 

U-trap packing material 

Heating wire 

Heating cycle 

Data logging frequency 

Primary 

Boost 

Hz 

Ar 

Hz 

PSA Excalibur 

Photron BDHCL (Se 196 nm) 

25mA 

25mA 

5.50 (=500 V) 

10 or 20 ml 

70 ml min-1 

400 ml min-1 

20 ml min-1 

21 min-1 

2% w/v NaB!Li in 0.1 M NaOH 

2 ml min-1(for1 min) 

1) 3% OV-101 on Chromosorb W 

A W-DMCS, 45/60 mesh 

2) silanised glass wool 

Nichrome wire with a total resistance 

of 1) 4.3 n; 2) 3.0 n 
0.8 s on/0.2 s off 

Five per s 

All connector tubing used in the system was FEP-lined Tygon® (Cole-Parmer 

Instrument Co., Vernon Hills, Illinois, USA, i.d. 1/8 inch). All glassware used in 

the system was made of borosilicate glass. The surfaces of the glassware were 

deactivated by silylation using the following method. First, the glass was soaked 

in a 5% Extran (Merck Pty Ltd., Kilsyth, Victoria, Australia) solution for 48 h. 

After thorough rinsing with Milli-Q water, the glassware was placed in a 10% 

HN03 (BDH Chemicals, Kilsyth, Victoria, Australia) bath for 24 h. Again the 

glassware was thoroughly rinsed before being placed in an oven to dry for 12 h. 

The internal surfaces of the glassware were coated with Coatasil Glass Treatment 

solution (APS Chemicals, Seven Hills, NSW, Australia). This was 2% w/w 

dimethyldichlorosilane in 98% w/w 1-1-dichloro-1-fluroethane solution. Once the 

surfaces had been coated and allowed to air dry, the glassware was rinsed with 
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anhydrous methanol (Mallinckrodt Baker Inc, Paris, Kentucky, USA). The 

glassware was then placed in an oven to dry at 100°C. 

Initial investigations into heated reductions were conducted using a water bath, 

with samples loosely capped. Routinely, an electronic chilling/heating plate, 

(Torrey Pine Scientific Inc., San Marco, CA, USA, model IC22) with customised 

aluminium sample blocks was used. The heater block was set at 100°C and the 

chiller block at 0°C. 

2.2.2.3 Experimental 

Briefly, this method [85] used batch hydride generation with cryogenic trapping 

and atomic fluorescence detection (HG-CT-AFS). Detection limits for Se were in 

the 5 pM range for a 10 ml sample. The system used was modified from a semi­

automated method for shipboard analysis of arsenic species developed by 

Featherstone et al. (2000) [41]. A number of changes were made to optimise Se 

determination. The system was controlled using a (300 MHz) desktop PC 

connected to the interface box via the computer's standard RS232 serial port. The 

custom interface box provided both the digital and analogue channels required to 

control and monitor the system. The analogue output signal from the AFS 

instrument was digitised using a 12 bit ND converter at a 0.5 s rate. 

The control software was written using Labview™. The software used five digital 

channels to control and monitor the automated system components, time the 

analytical sequence and log the analytical data. A settings panel in the control 

software also allowed the operator to customise th_e timing settings and heating 

rate for individual runs. 

Se(IV) was determined directly (using a 20 ml sample), Se(VI) indirectly (using a 

10 ml sample and calculated from Se(IV) and Se(VI) total) after a heated acid­

bromide reduction; and total Se after UV irradiation and heated acid bromide 

reduction. The difference in volume used was to allow for greater sensitivity at 

the lower concentrations seen when Se(IV) was determined. Details of the choice 

and optimization of the Se(VI) reduction and total Se determination methods are 

discussed in the following sections. 

26 



N 
I 

...... 
Q) 
:; 
a. 
E 
0 
0 

urn1---~,1[([(D[([/£![![![(f)h 

"/[![IJYJ}[/f/l:f]JJl~ 

Q) 
..0 
~ 
I-
m 
~ 
0 
c 
0 

~ z 
...... 
Q) ...... ...... 
t) 
(.) 

:;:; 
Q) Q) 
Q_ c 
E g> 
co ~ 

(f) 

Figure 2.1 Schematic of the HG-CT-AFS system 

Chapter 2 

...... 0 Q) 
:;: ...... 

0 c 
CL 0 
...... 0 
Q) a. - E co 
Q) ~ 
I CL 

27 



Analytical method for the determination of selenium species in oceanic waters 

Prior to analysis each day, the system was conditioned for use. The U-trap was 

heated at 80% for 10 min with all gases flowing. Two samples of high Se 

concentration (=2.53 nM) were run as internal standards, followed by two Milli-Q 

samples. This ensured the system would provide consistent results from the first 

run. For analysis, an acidified sample (300 µl HCl for 10 ml sample) was 

connected to the system. Upon initiation of the computer-controlled sequence, the 

jack raised a liquid nitrogen dewar flask to cool the cryogenic trap. The motorised 

jack operated between two cut-off switches. The peristaltic pump was turned on, 

adding NaBILi for 1 min to the reaction vessel. At the completion of addition, the 

pump switched off and a 30 s wait period began, followed by removal of the 

dewar from the U-trap. Once the dewar was removed the voltage to the heating 

wire was switched on for 125 s. Data logging began and ended with the computer­

controlled sequence. Total time for one analytical cycle was 4.5 min. 

For the reduction of Se(VI) to Se(IV), the 10 ml sample with KBr and HCl was 

placed in a reaction vessel and loosely capped. The reaction vessel was then 

placed in the heated digestion block (equipped with a electronic chilling/heating 

plate, Torrey Pines Scientific Inc., San Marcos, CA, USA, model IC22) for 

20 min. At the end of this time, the sample was transferred immediately to the 

chilled block for 5 min and 0.2 ml sulphanilamide was added. The sample was 

analysed immediately to prevent any back oxidation to Se(VI). Consistent timing 

was needed to ensure consistent results. 

For total Se determination, ~80 ml of sample was placed into quartz glass tubes, 

which were loosely capped. The samples were irradiated for 6 h by a 1200-W 

mercury lamp1
• The samples were left to cool in the UV apparatus. Before 

analysis for Se, the samples were subjected to the Se(VI) reduction step to ensure 

all Se was present as Se(IV). 

For the removal of nitrite interference, 0.1 ml of sulfanilamide solution was added 

to an acidified 10 ml sample. It was allowed to react for 4 min before analysis. 

1 Samples were weighed before and after irradiation to monitor loss by evaporation. 
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For reduced samples, the sulfanilamide was added when the sample was removed 

from the heat and placed to cool. 

2.2.2.4 Modifications for shipboard use 

Some minor changes were made to the system to enable shipboard use. Hydrogen 

was supplied by a hydrogen generator (Domnick Hunter Ltd., Gateshead, UK, 

model 40H). The heating cycle was adjusted to 0.9 s on/0.1 s off for 130 s, to 

ensure complete drying of the U-trap packing between runs. Sample volume for 

Se(IV) determination was altered to 20 ml to increase LOD, the volume ofHCl 

was increased to 0.4 ml per sample and sulfanilamide to 0.2 ml per sample. 

2.2.3 Results and discussion 

2.2.3.1 Interferences 

It has been reported that transition metals, nitrite [86] and other hydride-forming 

elements, in particular arsenic, can interfere in the determination of inorganic Se 

by hydride generation. The effects of nitrite and arsenic on the recovery of Se 

were therefore investigated. Nitrite was found to interfere at concentrations as low 

as 1 µM, but this interference could be removed by the addition of sulfanilamide 

[50, 86]. Sulfanilamide (2% w/v, 0.1 ml per 10 ml sample) was effective at 

concentrations up to 4 µM but did not quantitatively restore the signal at 5 µM 

nitrite. 

Arsenic was tested for interference in the detection of Se. As(V) and As(III) were 

both tested and shown not to interfere at elevated environmental levels, for 

example at concentrations up to 0.27 µM As(V) and 0.04 µM As(III). These 

concentrations were much higher than either species would be seen in clean 

marine waters. Concentrations have been reported in the Southern Ocean as a 

maximum of25 nM for As(III+V), with As(III) levels being less than 0.04 nM 

[87]; and in the North Pacific, As(III+V) at a maximum of23 nM and 0.07 nM for 

As(III) [88]. 

No further studies were undertaken to determine if trace metals would interfere in 

the method. Their levels in uncontaminated marine waters are not expected to 
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interfere [39, 89]. Samples from the Derwent River estuary, Tasmania (an estuary 

severely degraded by metal discharges from industry over 90 years [90]) were 

spiked with inorganic Se and comparison of linearity with calibration curves 

suggested that no other interference was present, even in these samples. 

2.2.3.2 Reproducibility and accuracy 

The reproducibility of the method had previously been determined as a percentage 

relative standard deviation(% RSD) from eight measurements using 1.27 nM and 

12.7 nM standard solutions. It was found to be 3.2% at l.27nM, and 2.2% at 

12.7 nM. Further work was done to determine the reproducibility at lower levels, 

and at 0.32 nM (n=8) it was found to be 2.7% RSD. 

The accuracy of the method was evaluated by analysis of a certified reference 

material, namely open-ocean water NASS-5 (National Research Council of 

Canada, Ottawa, Canada). This reference material is not certified for Se but does 

offer an information value of 0.228 nM 2 (determined by an HG method). Values 

reported in the literature are 0.167±0.037 nM (n=3) [26] and 0.224±0.024 nM 

(n=9) [91]. The Se(IV) concentration of the reference sample was determined to 

be 0.213±0.006 nM(n=5, error is 2s). 

2.2.3.3 Selenium(Vl) reduction 

2.2.3.3a Heated acid reduction 

Reduction of the sample in 6 M HCl at 90°C for 15 min was successful for 

aqueous standards, spiked artificial seawater and spiked deep seawater. However, 

this method of reduction was unsuccessful when Derwent River estuary samples 

were used. Reduction with HCl did not result in quantitative recovery of Se(VI) 

additions. This may be due to organic materials in the sample, which affect the 

reduction step and cause interference [57, 92]. 

2 Only an information value was found for Se in NASS-5, however, Lam and Sturgeon [91], from 
the Institute for National Measurement Standards, National Research Council of Canada - where 
NASS-5 is supplied from, report a certified value of0.228±0.038 nM as well as their measured 
value. No information is given as to where this certified value came from and no other reference 
could be found for it. 
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2.2.3.3b Heated acid bromide reduction 

Use of bromide (with 1.4 M KBr/0.48 M HCl) resulted in the quantitative 

recovery of Se(VI) in spiked Derwent River estuary samples (Table 2.4). As the 

bromide reduction uses less acid and is a milder reaction, it was less likely to 

cause loss of analyte or destruction of the silation coating of the glassware. It was 

also unlikely to affect any organic Se species present in the sample and this is 

discussed later in this chapter (Section 2.2.3.5b). 

2.2.3.3c Re-oxidation 

There are numerous reports of the spontaneous re-oxidation of Se(IV) to Se(VI) 

when samples are left at room temperature [54, 56, 80, 93]. It is thought that this 

re-oxidation may be prevented by purging the sample to removal residual chlorine 

[80]. To remove the need for this extra step, the samples were analysed 

immediately after reduction. After heating, samples were placed in ice or the 

chilled block for 5 min, at which time they were cool enough to be analysed. If 

samples were not analysed immediately, the results were not reproducible. 

2.2.3.4 Application to environmental water samples 

The application of the method to environmental samples was carried out to ensure 

matrix effects did not interfere with Se(IV) determination or the reduction step. 

The samples tested were: coastal seawater collected near Maria Island, Tasmania; 

and estuarine water collected at various locations (salinity 32.8, 31.9, 19.0 and 

4. 7) in the Derwent River Estuary, Tasmania. Analysis of these samples was 

carried out for Se(IV) and Se(VI) (Table 2.4). All samples had sulfanilamide 

added to prevent nitrite interference. To ensure that matrix effects did not 

interfere, the samples were subsequently spiked with either Se(IV), Se(VI) or both 

and then subjected to analysis, or reduction followed by analysis. All samples 

were spiked with 0.63 nM of Se. The results of the recovery experiment are 

summarised in Table 2.4 and indicate that there were no problems with matrix 

effects for inorganic Se determination. 

The successful application of the method to environmental waters of different 

salinities and sources shows that it is capable of reliable detection of the two 

inorganic Se species in natural waters. 
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Table 2.4 Concentration of inorganic selenium species and recovery of inorganic 

selenium spikes (0.63 nM) from some typical marine water samples 

Species Coastal Estuarine water Estuarine water Fresh river water 

seawater (salinity 31.9) (salinity 19.0) (salinity 4.7) 

Se(IV) 0.06nM 0.05 nM O.lOnM 0.08 nM 

Se(VI) 0.27 nM 0.23 nM 0.29nM 0.15 nM 

Recovery of inorganic Se species (0.63 nM addition) 

Se(IV) 

Se(VI) 

101.8% 

100.4% 

99.8% 

98.7% 

2.2.3.5 Organic selenium compounds 

100.1% 

98.2% 

99.0% 

99.3% 

The presence of organic Se compounds in samples and the effect that each stage 

of the analysis has on these were investigated. Exactly which organic Se species 

are found in natural waters is unknown and choice of standards is limited. For this 

work Se-methionine, which is commonly used in the literature, was 

predominantly used. Se-methionine is a Se-amino acid. 

2.2.3.5a Selenium(IV) analysis 

Chatterjee and colleagues have reported that some organic Se compounds, 

including Se-methionine, previously thought unreactive with borohydride, are 

capable of forming borohydride active volatile compounds [94-96]. Se­

methionine recovery was reported to be 19. 7% at low borohydride concentration 

(0.3% w/v), with recovery decreasing as the borohydride concentrations 

increased. To test if this behaviour occurred under the conditions used in the 

present project, solutions were spiked with Se-methionine and subjected to 

standard Se(IV) analysis. Chatterjee et al. [97] propose that Se-methionine forms 

diethyldiselenide from the reaction with borohydride, so this should be seen as a 

separate peak from the main selenium hydride peak, due to their well-separated 
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boiling points. No additional peaks were seen or increases in peak height, even 

when the samples were spiked to a Se high level (1.27 nM and 12.7 nM). Under 

the conditions used, it appears that Se-methionine will not be oxidised to Se(IV). 

With the proposed decomposition mechanisms for the organic Se compounds 

[97], any compounds formed by Se organic compounds would be separate peaks 

to those formed by the Se(IV) and borohydride reaction. No further investigations 

were carried out as these peaks would not affect the concentration of Se(IV) 

determined. 

2.2.3.5b Selenium(VI) reduction 

The effect of the Se(VI) reduction methods on organic Se species that may be 

present in natural water samples have been investigated previously [57]. 

However, HCl or HCl/KBr do not appear to be strong enough reagents to cause 

significant effect on organic Se species reported. However, many reports were 

found that use bromine (in particular HBr/KBr03 or HBr/Br2) as a method of 

oxidising and mineralising organic Se compounds (discussed earlier). The amount 

of bromine in KBr would be expected to be insufficient to cause this conversion. 

Clearly, a significant proportion of bromine in a higher oxidation number [2:: OJ 

than bromide [Br(-1)] is necessarily to provide sufficiently oxidising conditions. 

Contrary to this, it has been reported that under thermal treatment at 85°C in 5 M 

HCl medium, organic Se compounds like Se-methionine could be reduced to 

Se(IV) [2]. To ensure that this was not occurring with the proposed method for the 

current project, a deep seawater sample was spiked with Se(VI) and Se(VI)/Se­

methionine standard solutions and subjected to the chosen HCl/KBr reduction 

method. No increase was seen for the sample to which the Se-methionine had 

been added. A natural surface water sample was spiked with Se-methionine and 

reduced; again no increase in Se concentration was seen compared to an unspiked 

treated sample (data not shown). 
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2.2.3. 6 Total selenium 

Investigations were conducted into the persulfate reaction and UV irradiation for 

total Se determination. 

2.2.3.6a Persulfate reaction 

The persulfate method of Cutter [98] was tested as this method has been used on 

open ocean samples [99-101]. Samples were made to 4 M HCl and had a 2% 

(w/v) potassium persulfate solution added (0.5 ml per 40 ml sample), which was 

boiled on a hot plate for 30 min. The samples were capped with a watch glass to 

minimise vapour loss. The method was tested on standard solutions and on natural 

surface seawater samples (20 ml) spiked with Se-methionine standard solution (at 

0.32 nM). Samples were cooled for 5 min before analysis. This method was found 

to yield irreproducible peaks under the conditions tested. Further investigations 

were not carried out into this method. 

2.2.3.6b UVirradiation 

UV irradiation has been reported to convert Se(VI) to Se(IV), but this is thought 

to be inhibited by dissolved oxygen [102]. When samples are not degassed, a 

reduction step is necessary to ensure all Se is present as Se(IV) [73]. Analysis of 

UV irradiated samples that had not been subjected to a reduction step gave 

inconsistent results. To ensure all Se was present as Se(IV), the bromide/HCl 

reduction was conducted before analysis of all UV irradiated samples. 

Samples tested were natural surface seawater samples spiked with Se(IV) (at 

0.32 nM), Se(VI) (at 0.63 nM) and Se-methionine (at 0.32 nM) plus combinations 

of these. UV irradiation was conducted at natural pH, irradiated for 6 h by a 

1200 W mercury lamp in loosely capped quartz glass tubes ( ~80 ml). The samples 

were allowed to cool in the UV apparatus. Samples were weighed before and after 

to account for any loss by evaporation. Results are given in Figure 2.2, which 

shows the Se peak to be increased after the additional treatment step. When the 

sample was analysed without KBr/HCl treatment, the lower recovery is evident 

that not all Se in the sample was present as Se(IV). 
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Figure 2.2 Illustration of requirement for KBr/HCl reduction of UV irradiated 

samples to fully recover selenium from a coastal water sample 

UV irradiation of coastal seawater samples yielded Se in excess of that 

determined from the bromide/HCI reduction. This suggests that under these 

conditions organic Se species undergo decomposition. The Se standard additions 

were recovered. Addition of hydrogen peroxide ( 60 µl) to the sample did not 

appear to affect the recovery in any way. Peroxide would be needed to help break 

down organic compounds in suboxic waters, or those with a heavy organic load. 

In open ocean waters, it is not expected that peroxide would be needed. Addition 

of persulfate ( l ml of a 2% w/v solution in l 00 ml sample) did not change the 

recovery of Se species after UV irradiation. It was tested on all samples described 

above (data not shown). No further work was done on this variant of the method. 

2.2.4 Conclusions 

The HG-CT-AFS method was found to be suitable for Se species determination in 

marine waters. This robust method was unique in its capacity to operate at sea 
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while offering low detection limits, good precision and the ability to measure 

Se(IV), Se(VI) and total dissolved Se concentrations. The methods for 

determining different Se species were thoroughly tested, as were potential 

interferences and the reproducibility of the system. The possible need to improve 

detection limits for Se(IV) are investigated in the next section. 

2.3 Sample preconcentration 

2.3.1 Literature review 

In the marine environment the total Se concentration is low, with the 

concentration of individual species close to, or below, the limit of detection of 

most commonly used analytical methods, leading to difficulties in quantifying 

individual species. Thus, a preconcentration step is often required in order to 

improve limits of detection. Commonly used methods for preconcentration are: 

solid-phase extraction (SPE), (including solid-phase microextraction (SPME)); 

isotachophoresis (ITP); and co-precipitation and cryogenic trapping (CT). 

Another, more specialised preconcentration approach is electrostacking, which 

involves on-capillary zone compression and is only used with capillary 

electrophoresis. This method will not be considered here but its application to Se 

species has been reviewed recently by Sun et al. [103]. 

This work presents an evaluation of the above preconcentration methods from 

their early stages of development to their current status. The benefits of each 

method and its applicability to the different Se species are considered. 

2.3.J.1 Solid-phase Extraction (SPE) 

SPE is a procedure in which a sorbent is used to preconcentrate analytes (and 

usually also to separate them from the sample matrix). SPE can be applied under 

conditions which preserve the original speciation of the sample and can offer 

good preconcentration factors leading to lower limits of detection, ease of 

automation and the possibility of on-line coupling [104]. Most of the previous 

work for SPE of Se species focuses on the inorganic forms, Se(IV) and Se(VI). In 

some cases, it is used for preconcentration and removal of matrix effects, whilst 
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other studies use it for the separation of the two inorganic species through the use 

of fractional elution. In surface marine waters, the inorganic forms are present as 

oxyanions, Seol- and Seol-[105], so use of an anion-exchange resin is common 

for extraction. In contrast, organic species in surface marine waters are primarily 

thought to be present as Se-amino acids or volatile species and the few reports of 

SPE of these species have used chelating resins for preconcentration. 

SPE methods for the determination of Se are summarised in Table 2.5. Methods 

used vary greatly depending on the Se species targeted, and limits of detection 

obtained range from ~30 pM suitable for analysis of unpolluted open ocean 

waters, to 600+ nM levels. In most cases, the inorganic species (Se(IV) and 

Se(VI)) are extracted and preconcentrated, although there are also some reports 

for SPE of the main Se-amino acids (Se-methionine and Se-cystine), total Se and 

organic Se. 

SPE has also been reported for simultaneous preconcentration of both inorganic 

and organic Se species. Bueno and Potin-Gautier [106] used a chelating and 

anionic sorbent to successfully preconcentrate Se(IV), Se(VI) and Se-cystine from 

lake and mineral waters. Separation was achieved by HPLC, with detection by 

ICP-MS. Se-methionine could only be retained on the resin for standards (albeit at 

lower recoveries), and not with real samples. This was thought to be due to 

competition with other ions present in the matrix, in particular hydrogen 

carbonate ions. Pyrzynska [107] reported another example of coupling different 

columns to determine inorganic and organic Se species. Chelex-100 chelating 

resin in the copper form was used for Se-methionine and Cellex-T, a strong anion 

exchange resin, was used for the inorganic species. 

37 



Table 2.5 Solid-phase extraction procedures for preconcentration of selenium species 

Species LOD0 Sample Sorbent Conditions Elution Detection Ref 

Se(IV) 0.127nM Seawater Sulfonated bismuthiol-11 adjusted to 2 M Hel 20 ml 0.05 M penic1llamine HG-AAS [108] 

Other species loaded Amberlite IRA-400, 1 OOO ml sample 0.2 mlmin"1 

converted to Se(IV) er form, 60-80 mesh 8-lOmlmin-

Se{IV) as ....0.03 nM range Lake and stream PD-102-PE, 10 µm diameter 5 mlmin'1 1 ml toluene (2 ml min'1) Ge-EeD [109] 

piazselenol water 5-100 ml 

Se{IV) ....0.28 nM range River water Fe{IIl)-ehelex 100 pH 4.5 (acetic) 3ml 1 MNaOH DPeSV [110] 
100-200 mesh 

Se(IV) 1.01 nM Seawater, waste dithiocarbamate loaded pH4.5 1 ml isobutyl methyl ketone ET-AAS [111] 
water polyurethane foam 150 ml sample 

37.99nM 2mlmin"1 IeP-AES 

Se{IV) 0.051 nM River, lake and 83 mg of20 µm PTFE fibres 12.4 ml sample 1.5 ml 3% w/v KBH4 in Fl-HG-AFS [112] 
seawater on-line formation of 0.5%w/vKOH 

Se{IV)-PDe in 1 % v/v 
Hel 

Se(IV) 0.127-0.253 nM None listed Sulfonated bismuthiol-11 0.3-0.5 M Hel 0.02 M cysteine or Spectrofluori- [113] 

Se(VI) loaded anion exchange, 100- 2 M Hel + 0.1 M thiourea penicillamine metry 
200mesh 

Se(IV) ....0.1 nMrange None listed Poly( dithiocarbamate) resin, 100 ml sample 3HN03-2H20 2 v/v HG-IeP-AES [114] 
Se(VI) 200mg pH Se{IV) 1.5 

Se(VI) 4.8 

Se(IV) 0.063nM Tap, lake, surface Dowex lx8 pH9 10 ml 0.025 M Hel HG-AAS [115] 

Se(VI) run-off, well water er form, 100-200 mesh 100 ml sample 7.5m15 MHel 

Se(IV) 0.760nM Tap war and on-line Dowex 1x8, er 600 µl sample 600 µl 2M eHOOH Fl-HG-AFS [116] 

Se(VI) haemodialysis form, 200-400 mesh 0.5 mlmin·1 350 µ16MHel 
sample 

Se(IV) 2.03-5.32 nM Salt, tap, river and on-line PRP-XlOO, 10 µm 0.8mlmin·1 80 mM {NH4)2e03 IeP-MS [117] 

Se(VI) 1.01-2.41 nM well water 
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Species LOD0 Sample Sorbent Conditions Elution Detection Ref 

Se(IV) 0.063nM Mineral, spring Amberlite IRA-400 2mlmin"1 pHl DPCSV [118] 

Se(VI) water er form, 20-50 mesh 

Se(IV) 0.633 nM River, rain water Amberlite CG 400 type 2 pH 2.5 (acetic & HCl) 5 ml 0.1 M HCOOH GP-AAS [22] 
Se(VI) (Tested for Olf"form (containing 0.1ml2000 mg 

seawater but too r 1 Pd solution) 
much interference) 

Se(IV) 10.13 nM Tap and ground Activated alumina natural pH 1ml0.1 MNH3 (2 ml min-1) GP-AAS [119] 
Se(VI) 620.57nM water 50-200 µm particle size 100 ml sample 

4 mlmin"1 
6 ml 4 M NH3 (2 ml min-1) 

Se(IV) 0.060nM River, tap, Ti02 pH 3, 100 ml sample 2mlof(6 MHC1+2 mgmr GP-AAS [120] 
Se(VI) 0.080nM seawater and pH 0, 100 ml sample 1 Ni(N03)2) 

drainage sediment 
CRM 

Se(IV) 0.152nM River, well, rain Activated carbon Reduced to elemental Se 2 ml 0.0625 M Br03 Spectrophoto- [46] 
Se(VI) and spring water by 1 g L-ascorbic acid metry 
Total Se 

Se(IV) 0.127nM Mineral and Amberlite IRA-743 natural pH 9 ml 1 M HC104 followed by HPLC-ICP- [106] 
Se(VI) freshwater (lake) 100 ml sample 18 ml MQ (0.4 ml mm-1) MS 
Se Cyst 1-1.8 ml min-1 

Se(IV) 0.020nM CRM (CASS), sea, SAX cartridge in series with pH7-8 25 ml 1 M HCOOH GC-MS [121] 

Se(VI) 0.018 nM lake, river and tap C1s cartridge 1 OOO ml sample 25 ml 3 M HCl (5 ml min-1) 
OrgSe 0.008-11.44 nM water 8 mlmin-1 2 ml CS2 (1 ml min-1) 

Se(IV) 0.022nM River and lake Dowex AG2-X8, 200-400 200 ml sample 15 ml 1 M HCOOH Pluonmetry [122] 

Se(VI) (for total Se) water mesh, er form 4mlmin-1 15ml3 MHCl 
Hydrophobic org Se Amberlite XAD-8, 20-60 

mesh 

SeMet 0.405 nM None listed Cu-Chelex 100 pH9 8ml l.5MNH3 ET-AAS [107] 
iminodiacetic acid exchange 100 ml sample 
groups, 100-200 mesh 2mlmin-1 

a Limits of detection converted to nanomole per litre from values quoted in the original manuscript 
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Most of the methods reported have been validated for real matrix applications in 

fresh or mineral waters [22, 46, 109], with few methods being applied to saline 

waters. The high ionic strength of seawater causes interference in some SPE 

methods (e.g. Kubota & Okutani [22]). Sahin et al. [123] used mercapto-silica as 

the sorbent which was suitable for use with seawater, but only at high Se levels. 

Dithiocarbamate-loaded polyurethane foam has been shown to be suitable for use 

with samples up to 3% NaCl [111], although this sorbent was still unsuitable for 

open-ocean seawater samples (typically 3.5% NaCl). 

Gomez-Ariza et al. [121] coupled two columns, an anion-exchange resin and a 

C18 cartridge, to determine inorganic and volatile Se species. This work was 

tested with sea, river and tap water, as well as a near-shore seawater certified 

reference material (CRM). A limit of detection of <0.02 nM for inorganic Se 

species made it suitable for ambient marine concentrations, when large volumes 

of sample were used, but under these conditions other compounds and ions in the 

matrix could overload the column. The determination of volatile Se species is 

better carried out using a different method because of the poorer reported limits of 

detection. Cryogenic trapping of these latter species offers much better limits of 

detection. Amouroux et al. [33] report a limit of detection of 10 fM for 

dimethylselenide (DMSe) and dimethyldiselenide (DMDSe) using cryogenic 

trapping with gas chromatography coupled with ICP-MS detection (GC-ICP-MS), 

compared to 7.6 pM for DMDSe and 5.07 nM for DMSe using SPE with GC-MS 

detection[ 121]. 

As well as the typical SPE phases, there have been other sorbents used. 

Nanometre-sized Ti02 particles have been used for preconcentration and 

separation of inorganic Se species[l20]. Se(IV) was adsorbed selectively at pH 3 

and Se(VI) at pH 0, giving detection limits below 0.09 nM for both species. This 

approach was therefore suitable for use with seawater as there was no interference 

from the major ions present in the sample matrix (Na+, er, K+, Ca+). 

The use of a polytetrafluoroethylene (PTFE) fibre-packed microcolumn, in a flow 

injection-hydride generation-atomic fluorescence system (FI-HG-AFS), was 

successful for the preconcentration of Se(IV) [112]. The on-line formation of the 
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Se(IV)-pyrrolidinedithiocarbamate (PDC) complex allowed the Se(IV) to be 

sorbed onto the surface of the PTFE fibres. The Se(IV) complex was eluted by 

KBILi, which was an efficient eluent, as well as being necessary for the hydride 

generation step that followed. The limit of detection was 0.05 nM. River, lake and 

seawater were tested and recoveries of spiked samples were in the range 9~ 

108%. While this work is suitable for use with various water types and has a 

sufficient limit of detection, it only allows the preconcentration and detection of 

Se(IV). 

SPE resins have not only been used for preconcentration and extraction but also 

for removal of matrix effects and for storage of the analyte. High levels of 

dissolved organic carbon can interfere in the chromatographic separation and 

subsequent detection of Se. This interference can be removed by passage of the 

sample through a XAD-8 resin prior to the preconcentration step [115]. XAD-8 

and XAD-7 resins (acrylic ester polymers) are suitable for adsorption of fulvic 

acids and will remove organic material, but will not retain inorganic Se[ 109]. 

Adsorbents can also be used to store a sample and to preserve the speciation 

present in the original sample. Here, the sample is passed through the resin 

immediately after sampling in the field and the loaded adsorbent is then stored for 

later analysis. Sugimura et al. [124] used XAD resin to adsorb Se(IV) as the 

Se(IV)-diethyldithiocarbamate (DEDTC) complex whilst at sea. The resin was 

stored and analysed on return to the land-based laboratory. The acidified water 

sample which had been passed through the resin was also retained to allow for 

Se(VI) determination. 

An interesting use of a SPE resin was the method by Carrero and Tyson [ 125] in 

which Se(IV) and tetraborohydride were retained simultaneously on an Amberlite 

IRA-400 (strong anion-exchange) column. H2Se was then generated by the 

passage of acid through the column, followed by detection using atomic 

absorption spectrometry (AAS). 
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2.3.J.2 Solid-phase Microextraction (SPME) 

SPME is a relatively new form of SPE [126] in which a silica fibre coated with a 

polymeric substance of choice is placed into the sample or the headspace above 

the sample to adsorb the analytes. The fibre is then transferred into a heated 

injector port, typically that of a gas chromatograph, where the analyte is desorbed, 

separated and detected. SPME can be used for aqueous or gaseous matrices, with 

headspace sampling being preferred with low boiling point analytes since some 

separation from the sample matrix components has already occurred [127]. SPME 

also is applicable for small sample volumes as the entire sampling device can be 

miniaturised. SPME is an equilibrium-based extraction method; it does not extract 

all the analyte from the sample but allows for a distribution equilibrium to be 

established between the sample and the fibre [128]. The fraction of analyte 

extracted increases as the ratio of the coated surface volume to sample volume 

increases. 

SPME has been used for determination of a wide range of Se species, normally 

with coupling to gas chromatography-mass spectrometry (GC-MS) or GC-ICP­

MS. In reports to date, it normally produces insufficient enrichment to be 

advantageous for determination of natural levels of Se in surface waters. One 

exception has been the method of Guidotti et al. [129] using GC-MS for detection 

of piazselenol complexes after enrichment by SPME. Here, Se(IV) and total Se 

concentrations were quantified. Se(IV) was treated to form the piazselenol 

complex directly, and then the SPME fibre was immersed in the sample for 35 

min. For total Se, the sample needed to be treated to convert all Se to Se(IV), 

which then formed the piazselenol complex. The limit of detection was 0. 76 nM 

(S/N=3). 

A comparison of headspace and direct SPME was conducted by Guidotti [130] by 

first converting Se(IV) to a volatile form (diethylselenide (DESe)) and then 

extracting the DESe onto a polydimethylsiloxane (PDMS) coated fibre, with 

detection by GC-MS. Headspace SPME had a reduced sampling time when 

compared to direct SPME, since diffusion of the analyte was much faster in the 

vapour phase. For both methods, the solution was buffered to pH 4, since this 
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provided optimum recovery in the shortest time. Limits of detection (S/N=3) were 

1.03 nM (for headspace SPME) and 2.10 nM (for direct SPME). 

Vonderheide et al. [131] used SPME for the determination of Se-amino acids (Se­

methionine, Se-ethionine and Se-cystine ). The Se-amino acids were treated with 

isobutylchloroformate to increase volatility. A sol-gel coated PDMS fibre was 

exposed to the sample for 5 min and detection was carried out by ICP-MS. Limits 

of detection were 0.203 nM for Se-methionine, 0.177 nM Se-ethionine, and 

0.367 nM Se-cystine. However, the reproducibility was quite poor (17-23% 

relative standard deviation (RSD)) and this was attributed to irregularities present 

in the sol-gel coating of the fibre. 

Volatile Se species, such as DMSe and DMDSe, have been determined by SPME 

coupled with ICP-MS [127]. These species can be separated at ambient 

temperature in the transfer line by gas chromatographic mechanisms, with no 

need for external heating. However, temperature needs to be applied for 

desorption from the fibre and 200°C was found to be the optimum. The SPME" 

fibre (Carboxen™/PDMS coated) was placed in a headspace vial with 5 ml of 

sample and a stirrer bar, such that there was no contact between the fibre and the 

sample solution. After equilibrium was reached (25 min), the fibre was transferred 

to the desorption unit for measurement. Detection with ICP-MS provided greatly 

improved limits of detection (DMSe 8.87 nM, DMDSe 11.39 nM) compared to 

detection with AAS (DMSe 0.291 µM, DMDSe 0.393 µM). These limits of 

detection were a factor of 106 times higher than those obtained by cryogenic 

trapping preconcentration after purging. Cryogenic trapping uses samples of 1 L 

compared to 5 ml required here. However, the absolute limits of detection are 

3.5 ng DMSe and 4.5 ng DMDSe for SPME compared to 0.8 pg DMSe and 

DMDSe for cryogenic trapping [33]. 

Coupling of SPME with ICP-MS was used by Mester et al. [132] to determine 

Se(IV), as well as arsenic, antimony and tin, after hydride generation. H2Se was 

collected by headspace SPME extraction on a PDMS/Carboxen fibre at room 

temperature. By collecting the hydride on a fibre, SPME permitted removal of the 

excess hydrogen occurring typically with hydride generation. It also offered the 
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advantage of complete gas-liquid separation, so no moisture entered the detector. 

However, the limit of detection of this method was only 67 .1 nM, thus it did not 

possess the required sensitivity for use with most environmental samples. 

2.3.1.3 Jsotachophoresis (ITP) 

Isotachophoresis is an electromigration separation method which offers both good 

preconcentration capability and a high degree of separation of analytes. ITP uses a 

leading and terminating electrolyte to concentrate a target analyte by forcing the 

analyte to migrate as a compressed band under an applied electric field. Use of an 

appropriate pH is most important since this controls the degree of dissociation of 

the analyte, and hence, its effective mobility. If a suitable pH range is selected, it 

is possible to separate anions of weak acids according to their pKa values [133]. 

The use ofITP for Se preconcentration and determination has not been 

widespread. Yoshida and Hida [134] reported an ITP method for inorganic Se 

species using a high pH leading electrolyte containing either a Ni(II)-1,10-

phenanthroline complex or Co(III)-ethylenediamine complex. Separation of 

Se(IV) and Se(VI) was achieved through ion-pairing equilibria between the 

anions and the metal complex in the leading electrolyte. ITP has also been used 

for both inorganic and organic Se species. Grass et al. [135] used ITP to 

preconcentrate Se-methionine, Se-ethionine and Se-cystine using a high-pH 

electrolyte (in view of the high pKa values of Se-amino acids). Of the species 

investigated, Se-cystine gave the best detection limit (1.52 µM), with the detection 

limit for the two other species being approx. 2.91 µM. Separation was 

accomplished by coupling the ITP chip with capillary zone electrophoresis using 

conductivity detection. 

Carbonate resulting from the adsorption of C02 from the air by solutions with a 

high pH can cause a problem in ITP preconcentration [136]. However, this can be 

overcome by choosing a leading electrolyte with a mobility similar to that of 

carbonate [135]. Inorganic Se species may also be preconcentrated and separated 

by miniaturised ITP using a planar polymer chip [137]. In this approach, a lower 

pH leading electrolyte (pH 4.1) can be used, thus avoiding carbonate interference. 
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The separation achieved was faster than for other reports, allowing a throughput 

of 8 samples per h. The miniaturised system was limited by physical constraints, 

only allowing 5 .1 µl injection of sample, resulting in a limit of detection of 

6.59 µM Se(IV) and 8.23 µM Se(VI). Therefore, it can be seen that, at present, 

ITP methods for Se generally lack sufficient sensitivity for application to 

environmental water samples 

2.3.1.4 Co-precipitation methods 

Preconcentration using co-precipitation methods is used when the concentration 

of the analyte in the sample is insufficient to permit direct precipitation. The most 

popular method of co-precipitation functions by the formation of an insoluble 

metal hydroxide which acts as a collector, forming a colloid with the analyte, and 

thereby, co-precipitation. Most commonly, lanthanum(III) is used, which 

precipitates at around pH 9.5 as La(OH)3 and co-precipitates Se(IV) and As(III) 

[138]. 

Originally, co-precipitation could only be used with batch methods, as the use of 

filters to collect the precipitate would increase the pressure in continuous systems. 

However, the recent use of knotted reactors has allowed collection of the 

precipitate in continuous flow and flow-injection systems without an increase in 

flow resistance. The sample solution is mixed with the chosen precipitating 

reagent and the pH of the sample is then adjusted (usually with ammonia since it 

is easy to purify and has a high acid buffering capacity) to permit precipitation. 

After precipitation, the precipitate is collected, dissolved and subjected to final 

analysis. 

Reports of co-precipitation methods apply only to inorganic Se species. Most 

methods report that only Se(IV) is precipitated, so co-precipitation can be used to 

remove Se(IV) from the sample and then Se(VI) can be determined subsequently 

after a reduction step. Tao and Hansen [139] obtained a detection limit of 

0.0127 nM Se(IV) from a 6.7 ml sample of tap or well water using lanthanum 

nitrate (20 mg r1
), followed by quantification using flow-injection analysis 

coupled to hydride generation AAS (FI-HG-AAS). The precipitate was collected 
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in a knotted reactor and this work represents one of the first uses of this device 

with inorganic precipitates. Sun and Yang [140] simultaneously preconcentrated 

Se(IV), As(III) and Sb(lll) by co-precipitation with Pb(PDC)2 (where 

PDC=pyrrolidine dithiocarbamate) over the pH range 2-4. The PDC reagent was 

added to the sample, which was stirred for 5 min and the precipitate then collected 

on a 0.45 µm membrane filter. Quantification was carried out by neutron 

activation analysis. Se(IV) was determined by this method, giving close to 100% 

recovery up to pH 5, but Se(VI) did not co-precipitate under any of the conditions 

evaluated. This method offered good detection limits (0.0127 nM Se(IV)), but 

required a sample volume of 1 L for real samples. Sea, ground and tap waters 

were analysed successfully using this approach. 

2.3.J.5 Cryogenic trapping (CT) 

Cryogenic trapping involves the trapping of volatile species at low temperature, 

with subsequent release for separation and detection. CT has been used in two 

ways for Se analyses: (1) trapping of naturally occurring volatile species collected 

directly onto the cryogenic trap though bubbling of the sample, and (2) trapping 

of generated H2Se. CT is applicable only for the preconcentration of volatile 

species, whether these are naturally occurring or generated. 

Cryogenic trapping usually involves a U-shaped tube which is immersed into 

liquid nitrogen (-196°C), although other liquefied gases have been used [53, 89]. 

The U-tube is often packed with a substrate to increase the surface area and to 

thereby increase adsorption [ 141]. The substrates used for this purpose are 

numerous, but the most common are various forms of Chromosorb phases 

(originally used in wide-bore gas chromatography), quartz or glass wool. 

The collection of volatile species is achieved using a carrier gas stream. For water 

samples, an inert gas (typically helium [142]) is bubbled through the sample and 

then passes through the trap. When used with hydride generation, CT offers the 

advantage of separation from excess generated hydrogen [143] and 

preconcentration of the H2Se, which enables it to enter the detector as a single, 

sharp peak rather than being spread over the time period for which it is generated 
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(Figure 2.3). CT typically provides preconcentration factors of approximately 50 

[ 17]. 
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Figure 2.3 Illustration of the cryogenic separation of hydrogen and hydrogen 

selenide after hydride generation with AFS detection 

CT can also be used to separate different species of Se according to their boiling 

points. As the trap is removed from the liquid nitrogen and warmed, if the species 

have boiling points that are well separated, they will be released sequentially from 

the packing to enter the detector. This condition occurs for some organoselenium 

compounds which have widely separated boiling points, for example, 55°C for 

DMSe and 155°C for DMDSe. 

2.3.1.6 Summary 

The low concentration of Se in the aquatic environment makes it difficult to 

determine this element using traditional detection methods. Use of a 

preconcentration step allows improved limits of detection, but at the same time 
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requires larger volumes of sample and more handling steps. Of the 

preconcentration processes reviewed here, cryogenic trapping allows good 

preconcentration factors with minimal handling, but it is only applicable to 

volatile Se species. It also requires a large volume of samples in order to detect 

the naturally occurring volatile species, but it is currently the best method for their 

determination. Use of cryogenic trapping for other Se species is limited to those 

that can be converted to volatile species. Solid-phase extraction has been 

commonly used and is suitable for the preconcentration of inorganic and some 

organic Se species. Future research needs to be done to identify and quantify 

individual organic Se species in water samples, rather than treating these analytes 

as a single group. Solid-phase microextraction appears to offer significant 

preconcentration benefits with little sample manipulation. However, the method is 

also limited to volatile species or those that will absorb onto the limited range of 

fibres available currently. At the present time, results vary greatly between 

different SPME methods and detection needs to be carried out with ICP-MS to 

obtain sufficient sensitivity. Co-precipitation is suitable for the preconcentration 

of inorganic Se species. Finally, isotachophoresis has not been widely 

investigated for the determination of Se species and currently does not offer the 

limits of detection required for environmental water samples. 

Co-precipitation was chosen as the method most suitable for investigation. It 

allows the preconcentration of inorganic Se, in particular Se(IV), which is the 

biologically important species, and is expected to be depleted in the ocean due to 

biological activity, possibly bringing it near or below the detection limit of the 

HG-CT-AFS method. 

2.3.2 Methods 

2.3.2.1 Reagents and standards 

Lanthanum nitrate hexahydrate (Aldrich, 99.99%) solutions were prepared, for 

2.5%, 5%, 7.5% and 10% w/v, dissolving the appropriate mass in 20 ml ofMilli­

Q water. Ammonium hydroxide (28-30%; Sigma-Aldrich) was used to increase 

the pH of the solutions and cause precipitation. Concentrated HCl (Mallinckrodt 

AR Select) was used routinely throughout. Four litres of 0. 7 M NaCl solution was 
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prepared (40.95 g NaCl (99.9%, Pronalys Analytical Reagent, Biolab) in 1 L of 

Milli-Q). An aged deep seawater sample(> 1500 m) was used for testing the 

method. Standards for Se addition are those described previously (refer to 

2.1.2. l ). 

2.3.2.2 Experimental 

Samples had 2 ml 5% w/v La(N03)3.6H20 solution added to 200 ml of sample in 

a 250 ml HDPE bottle (10% v/v HCl-washed, Milli-Q rinsed). Ammonium 

hydroxide (~2.5 ml) was added to increase the pH and cause precipitation of 

La(OH)3. Samples were shaken to ensure complete mixing of reagents and 

checked to ensure pH~9-10. After 15 min, to ensure complete precipitation had 

occurred, samples were vacuum filtered (0.45 µm cellulose acetate filters; 10% 

v/v HCl-washed, Milli-Q rinsed). The filter was rinsed with Milli-Q (three rinses). 

The filtrate was retained for analysis. No precipitate was seen to have passed 

through the filter. 

To recover the Se(IV), the filter was placed in a reaction vessel, where 300 µl HCl 

and 5 ml Milli-Q was added to dissolve the precipitate. The filter was then 

removed with plastic tweezers (10% v/v HCl-washed, Milli-Q rinsed), it was 

rinsed with 5 ml Milli-Q to ensure all Se remained in the sample. Analysis of the 

sample proceeded as per Se(IV) determination. 

2.3.3 Results and discussion 

Cryogenic trapping is already being utilised in this method, so for additional 

improvement of the limit of detection co-precipitation was the most applicable of 

the preconcentration methods, when the analytical method and desirability of 

shipboard use were considered. Batch co-precipitation was tested for efficiency at 

stripping Se(IV) from the sample. Use of a 200 ml sample allowed for a 20-fold 

preconcentration. Samples used were 0.7 M NaCl and aged deep seawater with Se 

additions (0.063 nM and 0.63 nM), the samples were treated in 250 ml HDPE 

bottles. These bottles are routinely used for field sampling. The samples were 

spiked at the low Se concentration to mimic natural samples, and at the high Se 

concentration to determine if Se(IV) would be quantitatively recovered. Samples 
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were vacuum filtered to recover the precipitate. This was then dissolved in HCl to 

give a final volume and acidity matching those necessary for Se(IV) analysis. 

2.3.3.1 Lanthanum concentration 

Tests were carried out using various concentrations of lanthanum nitrate (2.5-

10.0% w/v) (Table 2.6). All concentrations were seen to cause precipitation at 

elevated pH. Increasing concentration of lanthanum caused increased 

precipitation. Whilst this is not a problem for a batch method, if this work was 

adapted to an on-line method, higher levels of precipitation would make 

collection difficult due to the nature of knotted reactors [139]. 

Table 2.6 Recovery of selenium(IV) additions (0.063 and 0.63 nM) from different 

samples with varying lanthanum concentrations 

Concentration of La 0.7MNaCl Deep seawater 

added 

0.063 nM 0.63 nM 0.063 nM 0.63 nM 

2.5% w/v 98.6% 94.6% 98.8% 92.4% 

5%w/v 99.4% 100.3% 101.2% 98.9% 

7.5% w/v 98.8% 99.4% 100.1% 97.5% 

10% w/v 98.5% 101.7% 99.6% 102.2% 

There was incomplete recovery of the added Se when 2.5% w/v La was used. All 

the other concentrations tested showed good recovery of Se(IV). 5% w/v La was 

chosen as the optimum as it gave good recovery whilst minimizing addition of 

reagents. 

2.3.3.2 pH of precipitation 

The volume of addition of ammonia/ammonium hydroxide was investigated for 

the precipitation of lanthanum hydroxide and Se. The amount added needed to 

raise the pH to over 9 to ensure complete precipitation of Se(IV) [144], even 
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though La(OH)3 begins precipitating at pH~7.8 [145]. Raising the pH further (i.e. 

pH~ 12) did not increase the recovery of Se from the sample. Therefore, the 

minimum amount of ammonia/ammonium hydroxide was added to achieve the 

appropriate pH. The filtrate solution was analysed for Se(IV) to see if some 

remained in solution after precipitation. Se(IV) was undetected in the filtrate, even 

at 0.63 nM Se(IV) addition. 

Unspiked NaCl solution was used to measure contamination from the reagents 

used in the co-precipitation step. No Se(IV) was detected to come from these 

reagents. 

2.3.3.3 Selenium(Vl) 

Samples were spiked with Se(VI) (at 0.63 nM) to determine if it was collected by 

the precipitate. The dissolved precipitate was subjected to the HCl/KBr reduction, 

as was the filtrate, to determine where the Se(VI) was. Se(VI) was seen to be in 

the filtrate, it did not appear to be precipitated under the conditions tested. 

2.3.4 Conclusions 

Co-precipitation is a valid method for Se(IV) preconcentration. Se(IV) is the 

biologically relevant species and is expected to have levels close to the detection 

limit of the HG-CT-AFS method in open ocean surface waters with high 

biological activity. This co-precipitation method has been shown to be capable of 

a 20-fold preconcentration and could be applied readily to the developed 

analytical method for Se determination. 

2.4 Conclusions 

The method developed here has the capability to determine Se species at levels 

seen in the open ocean waters. The various steps necessary for determination of 

Se species have been tested and the method found to be suitable. Investigation 

into preconcentration, in case of lower than expected levels of Se, has shown co­

precipitation to be valid for use with Se(IV). This method will now be applied to 

open ocean samples. 
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The latitudinal distribution of selenium in the Southern Ocean 

3.1 Introduction 

3.1.1 Study region: physical oceanography 

The Southern Ocean covers water masses ranging from subtropical to polar, with 

division into broad oceanic regions separated by frontal zones (Figure 3 .1 ), which 

can be identified by strong surface temperature and salinity gradients. To the 

north, the Subtropical Front (STF), found ~38-41°S, divides the warm salty 

waters of the subtropical region from Southern Ocean waters and the eastward 

flow of the Antarctic Circumpolar Current (ACC) [1]. The STF has been 

identified as a single front but also more broadly as the Subtropical Frontal Zone, 

covering 4-5° latitude which may have several fronts separating relatively similar 

waters [2]. 

South of this frontal region is the circumpolar ACC, which connects the major 

ocean basins. It has three frontal features. To the north is the Subantarctic Zone 

(SAZ), bound by the STF and to the south by the Subantarctic Front (SAF). In the 

Southeast Indian Ocean region it is situated at approximately 46--49°S, as it lies 

just north of the Southeast Indian Ridge [3]. The Polar Front (PF), the southern 

boundary of the Polar Frontal Zone (PFZ), is quite close to the SAF in this region 

and coincides with the Southeast Indian Ridge at ~51°S (Figure 3.2). The PF has 

been identified as two separate fronts, the Northern Polar Front and the Southern 

Polar Front [4], spanning the Antarctic Zone (AZ), which extends south to the 

Southern ACC Front (SACCF), which is the southernmost front of the ACC. 

South of this front is the Southern Zone [5], which contains the southern boundary 

of the ACC (Figure 3.1). 
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Figure 3.1 Front positions in the Southern Ocean. The Subtropical Front (STF) is 

marked by the dashed line; solid lines mark the Subantarctic Front (SAF), Polar 

Front (PF), and Southern ACC Front (SACCF); a dashed line marks the Southern 

Boundary of the ACC (Bdy). The different zones of the region are marked­

Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ), and Antarctic Zone (AZ). 

Image taken from Orsi et al. , 1995 [l] 

The Southern Ocean is a high nutrient-low chlorophyll (HNLC) region, with the 

wind-driven ACC causing the shoaling of nutrient-rich deep waters towards the 

south [6] . The nutrients, nitrate and phosphate, increase sharply in the PFZ, with 

silicate concentrations increasing further to the south in the AZ. 
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Figure 3.2 Frontal locations in the South Indian Ocean. The fronts are the 

Northern and Southern Subtropical fronts (respectively NSTF and SSTF); the 

Agulhas Front (AF); Subantarctic Front (SAF); and Polar Front (PF). The dashed 

line shows the location of the Southern Antarctic Circumpolar Current Front 

(SACCF). The zones of the region are the Subantarctic Zone (SAZ), Polar Frontal 

Zone (PFZ), and Antarctic Zone (AZ). Image taken from Kostianoy et al, 2003 [7] 

Chlorophyll a (chi a) concentrations vary seasonally and spatially but the general 

trend in the Southern Ocean is for higher levels in the SAZ, decreasing to lowest 

levels in the PFZ and then increasing again in the AZ, with higher levels on the 

Antarctic coastal shelf and in the melting sea-ice region in spring [8-11]. The 

changes in nutrient concentrations and chi a are reflected in the structure of the 

phytoplankton communities. The frontal zones act as boundaries for geographic 

variations of phytoplankton size classes and functional groups [ 12, 13], with 

coccolithophores only found north of the SAF and a greater proportion of diatoms 

found south of the PF [14], in waters containing higher silicate concentrations. 

As discussed in Chapter 1, the low productivity of the Southern Ocean is not a 

result of macronutrient limitation (N, P and Si) but other limiting factors ­

possibly low light, low iron, deep mixing or a combination of factors . Iron 

fertilisation, both natural and artificial, has been shown to positively influence 

productivity in HNLC regions [ 15], with various studies in the different regions of 

the Southern Ocean (e.g. [ 16, 17]). Other transition metal elements have also been 
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seen to be essential to microalgal species composition. They function as cofactors 

in metalloenzymes and proteins or vitamins, and those identified include Zn, Cu, 

Ni, Cd, Co, Mn and Mo [ 18]. These elements have different roles in the cells, but 

for some elements, for example Zn, which is essential to select phytoplankton, the 

cells can also substitute an element such as Cd or Co to meet the requirement [ 19, 

20]. Oxyanions, including Se and V, have also been recognised to have important 

roles [21], but their exact biochemical function remains unclear [20]. 

The spatial and seasonal variation of the productivity of the Southern Ocean, 

combined with the infrequency of data collection (particularly for trace metal 

micronutrients ), limits knowledge of all of its regions. The area of study for this 

work was the CLIV AR 19S line (~ l l 5°E) south of Western Australia, which was a 

repeat hydrography program. The 19S section was last occupied in 1994-1995. 

This approximate transect has also previously been studied 10 years earlier, in 

1984 [22]. The line is close to the annual passage of the Japanese Antarctic 

Research Expedition (JARE) resupply vessels, which collect biological data, 

providing a historical record of productivity since 1965 [23]. 

3.1.2 Selenium in the ocean 

The first measurements of Se in seawater reported very high concentrations. Due 

to recent improvements in sampling methods and the sensitivity of analytical 

techniques, we now know such data were incorrect. Work by Schutz and Turekian 

[24] in 1965 presented the first realistic oceanographic Se data as part of a series 

of wide-ranging analyses of oceanic waters for trace elements. Total Se 

concentrations (0.66-1.39 nM) were determined in samples from off Antarctica, 

the East Pacific and Atlantic Oceans, including the Caribbean Sea. More reports 

of Se measurements in seawater began to appear in 197 6, when Sugimura et al. 

[25] reported total Se, and for the first time Se(IV) and Se(VI) concentrations in 

seawater, from the western North Pacific Ocean. Total Se ranged from 0.76-

1.52 nM in the surface waters, remaining uniform throughout the mixed layer and 

was seen to increase with depth (up to a maximum of 2.53 nM). Se(IV) was 

observed throughout the water column, with lowest concentrations in the surface 

mixed layer (0.63-0.76 nM), increasing slightly below this and then remaining 
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constant to depth (0.76-1.14 nM). Se(VI) also showed lower concentrations than 

Se(IV) in the surface mixed layer (0.25-0.38 nM), with increases in deep water to 

the same levels as seen for Se(IV). 

Measures and Burton [26] first linked inorganic Se species to biological 

processes. Their work noted the nutrient-like profiles of the inorganic Se species 

- exemplified by the correlation between Se and macronutrients: Se(IV) with 

silicate, and Se(VI) with phosphate (or to be precise, with phosphate and silicate, 

depending on sample location). 

The general trend reported for the inorganic Se species in the ocean is depletion in 

the surface waters and increases in the region of oxygen minimum [26]. The 

concentration into deeper water then varies only slightly. Concentrations in 

surface waters can be extremely low: Se(IV) below 0.025 nM, and total Se 

between 0.43 and 0.65 nM [26] (Table 3.1). Changes from these expected profiles 

have been reported, but are explained by the presence of various hydro graphic 

features (e.g. Amazon River plume [27], or different origins and history of water 

masses [28]). Measures et al. [29] compared Se values from the three ocean basins 

(all 500+ measurements were made with the same analytical method), finding that 

whilst all ocean basins displayed similar profiles for Se(IV) and Se(VI), the 

Atlantic Ocean had total Se concentrations 30-40% lower than the Pacific and 

Indian Oceans. This represents a good example of trace element inter-ocean 

fractionation of a nutrient-like element, due to the global thermohaline circulation. 

The residence time of inorganic Se has been estimated in deep waters, with a 

mean for residence time for Se(VI), with respect to the oxidation of Se(IV), of 

1500-2000 yr [30]. 

In 1979, a new form of Se was defined in seawater measurements. The 

analytically defmed 'organic Se' was first measured by Suzuki and colleagues 

[31]. Organic Se has not been directly determined and is always calculated by 

difference from total Se and inorganic Se after treatment (see Chapter 2, section 

2.2.1.2 - Total selenium determination). Methods for Se determination vary and 

there are different ideas on the abundance of organic Se in the open ocean. 

Organic Se has been seen in high but variable concentrations (a result of 
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biological and nutrient status of specific sites) in surface waters, but there is some 

disagreement as to whether organic Se is a measure of organically bound Se or an 

artefact of the analytical method. In some studies, organic Se was considered to 

contribute negligibly to the total Se pool in the open ocean, so Se(VI) was 

determined from total Se minus Se(IV), with organic forms of Se included in this 

measurement [26, 32]. Other studies use various methods to distinguish the three 

defined1 oceanic Se species (Se(IV), Se(VI) and organic Se). From these studies, 

organic Se is thought to be dominant in the surface waters in some areas of the 

ocean (e.g., greater than 85% of total Se in the high latitude north Atlantic Ocean 

[28], and 50±11 % of total Se in the equatorial Atlantic Ocean [27]). However, in 

the mesotrophic waters of the far north Atlantic Ocean, levels of organic Se were 

low, which was attributed to relatively low nutrient availability, and thus, 

intermediate levels of productivity of the region [28]. 

3.1.3 Selenium in the Southern Hemisphere oceans 

Oceanic studies of Se have mainly focused on the Northern Hemisphere, and most 

information on Se distribution has been gained from the Pacific and Atlantic 

Oceans. There is a lack of information on Se in the Southern Hemisphere marine 

environment. Very few studies have been carried out, with only a handful of 

isolated stations providing incomplete information on Se in relation to basin-scale 

oceanography. This makes it difficult to draw conclusions on the oceanographic 

behaviour and biogeochemistry of Se. 

Sherrard et al. [34] investigated seasonal Se speciation and phytoplankton 

interactions in subtropical and subantarctic waters to the east of New Zealand. 

They found inorganic Se concentrations dominated the total Se pool for the 

majority of the year, although organic Se persisted in surface waters (average 

values 0.008-0.11 nM). The biological utilisation of Se was linked to the observed 

nutrient-like profiles as previously reported. For example, in the subtropical 

waters, decreases in Se(IV) (the preferred species for biological uptake) and 

increases in organic Se were linked to observed spring phytoplankton blooms. 

1 This definition of the different Se species is an methodological classification, 
which has become common practice [33]. 
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However, in the subantarctic waters, Se speciation trends were found to be 

relatively constant, regardless of phytoplankton seasonal variability. 

The eastern Indian Ocean was sampled at four stations, from l0°S to 40°S, with 

Se measured and compared to macronutrients, temperature and salinity [35, 36]. 

This work reported organic Se to be the dominant Se species at 3 stations at all 

depths, which is contradictory to other published work. The methods used for 

speciation in this study appear to be inconsistent (possibly due to incomplete 

conversion of Se(VI) by the heated acid bromide digest2), resulting in elevated 

organic Se values and reduced values for Se(VI), since organic Se is determined 

by subtraction of total inorganic Se from total Se. If only Se(IV) and total Se data 

is examined in this study, the trends are similar for those reported in other oceans. 

A nutrient-like profile was evident for Se(IV) with very low euphotic layer 

concentrations (0.02-0.12 nM), in the range of0.5 nM to 0.7 nM at 1000 m, and 

with gradual increases to depth attaining a maximum concentration of0.79 nM 

below 2000 m. Se(IV) profiles were similar across all stations. Total Se was 

lowest in surface waters, and the concentrations at the northern stations were 

lower and displayed a slightly different profile. The northern stations had ~0.5 nM 

total Se at the surface, with a rapid increase to a maximum at 1 OOO m. The 

southern stations had ~0.7 nM total Se at the surface with minimal increase until 

1 OOO m, and a maximum at 2000 m. 

There have been a limited number of Se measurements in Antarctic waters. Papoff 

and colleagues [37, 38] used an electrochemical method to measure Se at two 

sites in the Ross Sea, one coastal and one open water. Their study showed Se(IV) 

and total inorganic Se to increase with depth, as has been seen in other oceans. 

Organic Se in the surface water was 0.43 nM, with very low levels of Se(IV) 

(0.067 nM). This study was simply an application of a newly-developed analytical 

method, with no linking of the Se data to other oceanic information. 

2 The use of a heated acid digestion for the conversion of Se(VI) to Se(IV) was 
investigated and discussed in Chapter 2. The time between the reduction step and 
analysis was shown to affect the recovery of Se(VI). 
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Another study in the Antarctic (Prydz Bay, Indian Ocean sector) measured Se in 

29 depth profiles [39]. Total Se in the surface water was 1.31 nM [39]. 

Throughout the water column inorganic Se accounted for 72% of total Se. The 

maximum value of Se(IV) (0.35 nM) was seen in the oxic zone below the mixed 

layer, with low levels at the surface. Se(VI) was dominant throughout the water 

column with small increases with depth. Organic Se had a maximum of 0.42 nM 

at the surface and was not seen below 1 OOO m. 

Generally, Se(IV) is depleted in surface waters, with rapid increase in the oxygen 

minimum zone and a gradual increase to depth. Se(VI) follows the same trend but 

with less depletion in the surface waters and typically higher concentrations 

throughout the water column. Organic Se is only expected to be found in the 

surface waters of the ocean [ 40], although in suboxic and anoxic regions, where it 

may be stabilised (by isolation from oxidative processes of mineralization), it will 

persist and its concentration may increase [ 41]. The distribution of inorganic Se 

species will also be influenced by changes in redox potential in low oxygen water 

masses. 

This study provides information on the concentration and distribution of Se (and 

its different species) in the Indian sector of the Southern Ocean. The data is 

compared to other oceanic parameters--physical, chemical and biological-to 

give a greater understanding of the biogeochemical behaviour of Se. 

3.2 Methods 

3.2.1 Study area and sampling 

Seawater samples were collected on a voyage of the RSV Aurora Australis 

(au0403, V3 2004/2005, 'ORCKA') in the Southern Ocean during the austral 

summer 2004-2005 (December-January). The cruise reoccupied the WOCE 

CLIV AR 19S line (approximately 115°E). A map of the region and the sampling 

locations are shown in Figure 3.3. Samples were collected from the full depth of 

the water column and in each of the oceanic zones, covering all Southern Ocean 

water masses from subtropical to polar, as described in Section 3 .1.1. Sampling 
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took place over a 3-week period so the effect of seasonal variation on samples 

should be minimal. 

20°5 

30°5 

40°5 

50°5 

60°5 

70°5 
90°E 100°E 

®01s 

@o20 
SAZ 

@o28 

@ 032 PFZ 

~5 
037 

04200641 AZ 

@046 

@oso 

1100E 1200E 

500m 

1000m 

2000 m 

3000m 
S-STF 

SAF 

4000m 

PF 

5000 m 

6000m 

1300E 1400E 

Figure 3.3 Map showing station locations in the Southern Ocean, from the 

southwest of Australia at the north to Antarctica at the south, where samples were 

collected for selenium analysis along the CLIV AR 19S transect. Fronts and zones 

are indicated (prepared using Ocean Data View [ 42]) 
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Water samples were collected using 10-1 Niskin bottles (General Oceanics, 

Florida, USA) deployed on a standard conductivity-temperature-depth (CTD) 

rosette. There was no special cleaning of the Niskin bottles, although the rosette 

was wiped with acetone between casts (acetone cleaning was done at the request 

of the CFC samplers). Samples were subsampled from the Niskin bottles into 

acid-cleaned 250-ml HDPE bottles that were rinsed twice with sample before 

filling. The 250-ml samples were acidified with 750 µl ofHCl (Mallinckrodt 

Baker Inc., Paris, Kentucky, USA; 12 M) to pH 1.6 and shaken well. Samples 

were analysed for Se(IV) within one week of sampling. Trace metal clean 

handling procedures, including wearing of polythene gloves, were followed, 

wherever possible. 

3.2.2 Analysis of samples 

Samples were analysed onboard the ship for Se(IV) by hydride generation­

cryogenic trapping-atomic fluorescence spectrometry (HG-CT-AFS). Due to time 

constraints, all Se(VI) and total Se measurements were conducted on return to the 

shore-based laboratory. 

The analytical method used is described in Chapter 2 (section 2.2.2.3) and 

published in Wake et al. (2004) [ 43]. Shipboard modifications necessary for 

operation at sea are described in Chapter 2, section 2.2.2.4. 

The HG-CT-AFS instrumentation has previously been used at sea for As analysis 

[ 44], but this work represented the first use of the modified system for at-sea Se 

analysis. To ensure consistency in the performance of the system, an aged deep 

seawater sample was routinely analysed (at beginning of run and then 

approximately every eight samples) as a charting substandard. 
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3.3 Results and discussion 

3.3.1 Nitrite interference 

Interference by nitrite on the Se method was removed by the addition of 

sulfanilimide to an acidified sample before analysis (see Chapter 2; but only valid 

up to nitrite concentrations of 4 µM). Nitrite was not measured routinely on the 

voyage, but full depth profile samples were collected and measured onboard on 

request to confirm that nitrite would not be above the threshold concentration for 

interference. Nitrite levels were highest in the surface waters, but only reached a 

maximum value of 0.22 µM. Below 140 m depth, nitrite was below the limit of 

detection ( < 0.1 µM). This confirmed previous reports of low nitrite 

concentrations in the Southern Ocean (reported for the Atlantic sector - maximum 

concentrations of <0.4 µM [ 45]), and ensured that it would not be expected to 

interfere with Se determinations. 

3.3.2 Stability of samples 

Shipboard analysis of samples prevents the need for storage. However, in this 

work, not all Se species were analysed on-board ship; and therefore, a stability 

study was undertaken during this voyage to ensure that results were consistent and 

accurate. Se(IV) samples were analysed onboard, but time between collection and 

analysis varied from 1 to 7 days. Acidification has been shown to preserve 

speciation, but Cutter [ 46] reported that acidification was unnecessary up to two 

weeks after collection. Cheam and Agemian [ 47] report that samples, spiked with 

inorganic Se, at 12.7 and 126.6 nM, were stable unacidified, over a 4 month 

study, in polyethylene bottles if stored at 4°C in the dark. Acidification at high 

acid levels can cause species interconversion [ 46, 48], so samples were acidified 

to pH~ 1.6, as is common in the literature [30, 49-52]. Acidification to pH 1.5 is 

reported to remove the effects of the container type and stabilize the sample no 

matter what the matrix is [47]. Se(VI) is believed to be more stable than Se(IV) 

[47, 53, 54], but its exact stability is unknown. 
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Representative samples were collected from surface, mixed layer and deep waters. 

Deep samples are stated to be more stable than surface samples because dissolved 

oxygen, which in general is higher at the surface, speeds the oxidation of Se(IV) 

to Se(VI) in laboratory experiments [55]. No reports were found in the literature 

of open ocean samples being stored unfiltered and acidified for longer than three 

months. The conditions of this work varied from previous reported studies in 

container material (polyethylene instead of glass [27, 30]) and length of storage. 

Sugimura and Suzuki [56] report open ocean unfiltered samples, acidified to 

pH~2, to be stable for at least 5 weeks in polyethylene bottles. The samples were 

left at natural pH or acidified with HCl (3 ml per litre of sample, as per [27]); all 

other storage conditions were the same. Analysis for Se(IV) was done within 24 h 

of collection and then at 3, 7 and 14 days. Se(VI) analysis was conducted at 1 and 

7 days. The samples were again analysed on the return to the shore-based lab (~2 

months and ~6 months after collection). Samples were found to be stable, under 

the conditions tested, for Se(IV) and Se(VI), with differences within the 

confidence limits of the methods (data not shown). 

Analysis for total Se was not possible at sea, and the stability of this component is 

unknown. Most organic Se stability studies are concerned with the volatile species 

(not measured in this study), which are reported to be stable for only 24 hours 

[53]. There have been studies into the stability of various Se-amino acids 

complexes, but at elevated concentrations (e.g. 316 nM and 1.90 µMin a 

freshwater matrix [57]). It is reported that Se-methionine is more stable than 

either of the inorganic Se species, Se(IV) or Se(VI) [58]. Sample acidification is 

standard practice for storage of samples for later measurement of the three Se 

species [27, 34]. No previous reports were found investigating the effect of 

storage of seawater samples under these conditions. 
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3.3.3 Oceanographic conditions 

The voyage crossed a number of fronts, with some delineation between individual 

features (Figures 3.4 and 3.5). The presence of multiple fronts (e.g. the southern 

PF) has been seen repeatedly in the Australian sector of the Southern Ocean [2]. 

Nutrient concentrations increased southward as expected and there was a 

shallowing and weakening of the oxygen minimum zone from north to south 

(Figure 3.4). All supporting data for Se sampled stations can be found in 

Appendix 1, with the complete hydrographic data set in reference [59], also 

available online at http://data.aad.gov.au/aadc/metadata/. 

There were two distinct STF, as is typically seen in this region, the northern-STF 

was located at - 37°S and the southern-STF at - 42°S. The SAF was - 46°S and the 

PF at - 50°S. There were multiple SACCF seen during this voyage. 

Near the Antarctic continent, northward flowing Antarctic Bottom Water 

(AABW) dominates the deep water masses, identified by low salinity and 

temperature (below 0°C) [60] (Figure 3.4a). Lower Circumpolar Deep Water 

(LCDW) is seen throughout the transect in the mid-ocean, identified by higher 

salinity; it shallows from - 3000 mat the northern end of the transect to - 1200 m 

around 60°S. Antarctic Surface Water (AASW) is seen in the upper 300 m in the 

North Polar Frontal region, whilst Antarctic Intermediate Water (AAIW) is seen 

at the northern end of the transect at - 1 OOO m. At the southern end of the transect, 

there was increasing sea-ice cover, with the final station in heavy sea-ice. 
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Figure 3.4 Properties of the full water column along the CLIV AR I9S transect a) temperature b) salinity c) dissolved oxygen d) nitrate e) silicate 
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3.3.4 Biological information 

The phytoplankton biomass of the region can be seen from the satellite image of 

chl a (Figure 3.6) and the chl a data for the voyage (Figure 3.7). The satellite image 

shows higher surface chi a at the northern end of the transect and this is confirmed 

by the measured chl a. Higher levels of chl a biomass were also observed between 

~37-47°S, corresponding to the SAZ, which is known to be a productive region of 

the Southern Ocean. There is again an increase south of 62°S, where the highest 

levels of chi a were seen on the transect (Figure 3.7). This was not seen on the 

satellite image, possibly because of sea-ice or cloud cover. 

Figure 3.6 Monthly composite satellite image of chlorophyll a concentrations in the 

Australian sector of the Southern Ocean for December 2004. Provided by the 

SeaWIFS Project, NASNGoddard Space Flight Center and GeoEye 

(http://oceancolor.gsfc.nasa.gov/cgi/browse.pl - accessed 10 August 2009) 
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Chi a (µgll) 

35"5 4U'5 45"5 5U'5 55"5 6U'5 65"5 

Figure 3.7 Chlorophyll a concentrations measured in the surface waters (upper 

160 m) along the CLIV AR I9S transect (data courtesy of S. Wright, Australian 

Antarctic Division) 

The biological data for this region has been logged over many years, as the I9S line 

is close to the route of the JARE resupply ship. This, along with data from other 

biological surveys in the region, helps discern the trends in phytoplankton speciation 

[23, 61]. Typically for this region, the contribution of the different phytoplankton 

species to chl a is dominated by diatoms in the polar waters; with dinoflagellates 

contributing in the SAZ [61]. Diatom growth would be limited north of the Polar 

Front, because of the depletion of silicate in the surface waters (Figure 3.5e). 

3.3.5 Surface transect 

All Se species showed a general increase in surface water concentrations from lower 

to higher latitudes (35-65 °S) (Figure 3.8). This general latitudinal trend of higher Se 

concentration at higher latitudes has been noted previously by Weiping et al [39] , 

who compared their data (at 63-68°S) to values measured in the equatorial Pacific 

(1.31 nM compared to 1.09 nM). Other than this comparison, there has been a lack of 

high latitude measurements, making it difficult to discern what concentrations of Se 

would be expected in the high latitude Southern Ocean. A summary of surface ocean 

Se concentrations is presented in Table 3.1. 
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Table 3.1 Surface water selenium concentration from the world's oceans 

Region Se(IV) (nM) Se(VI) (nM) Total Se (nM) Ref. 

North Atlantic 0.14±0.05 0.21±0.07 0.49±0.08 [28] 

Atlantic Ocean 

- Northern Hemisphere 0.58±0.06 [51] 

- Southern Hemisphere 0.56±0.07 

Atlantic Ocean <0.025 0.713 0.738 [26] 

North Pacific 0.50-0.80 [62] 

North Pacific [63] 

- western (depth profile) 0.027 0.31 

- east to west transect 0.05-0.40 0.46 

Western North Pacific 0.50-1.01 0.13-0.76 0.76-1.52 [25] 

Western North Pacific 0.53 0.35 1.05 [31] 

South Pacific 

- Subtropical water 0.10-0.19 0.29-0.56 0.61-0.83 [34] 

- Subantarctic surface water 0.14-0.24 0.51-0.69 0.76-0.99 

Southern Ocean, south of 1.31" [39] 

60°S 

Southern Ocean 

- north of SAF* 0.09-0.17 0.32-0.43 0.51-0.64 This 

- south of SAF 0.16-0.35 0.40-0.51 0.64-0.90 stud/ 

average of 42 samples 

* SAF located at ~6°S 

# for samples 0-50 m 

The increase in Se(IV) with latitude was greater than that for Se(VI) (Table 3.1). The 

levels of organic Se were low (the highest level was 0.09 nM) throughout the surface 

waters of the transect (Figure 3.9). The highest levels for organic Se are seen north of 

37°S, in the STZ, and between 45°S and 52°S, in the PFZ. The region of highest chl a 

biomass (Figure 3.7 and 3.9) lies between 37°S and 46°S; the biologically preferred 

Se(IV) was at the lowest levels in the centre of this region, 38°S to 43°S (Figure 3.8 
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and 3.9). The highest levels of organic Se were seen to the north and south of the 

large subsurface chi a maximum (Figure 3.9). 

In summary, surface Se concentration increases southward, with a corresponding 

decrease in the temperature, salinity and chi a (not shown), and an increase in the 

nutrient concentrations (Figure 3.8). The relationship between the macronutrients 

and Se will be discussed further in section 3.3.9. 
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Figure 3.8 Selenium speciation, temperature, salinity and nutrient concentrations in 

surface samples (8-22 m) along the CLIV AR I9S transect 
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3.3.6 Comparison with literature data 

Comparison of the Se surface values (Se(IV), Se(VI) and total Se) for this study with 

those of previous studies show them to be consistent for open ocean regions (Table 

3.1 ). Note, several differing opinions on the role of organic Se presently exist and 

whether organic Se is a by-product of biological productivity, so seasonality of 

studies may affect concentrations [34]. The nearest observations to our study area, 

the South Pacific to the east of New Zealand [34], showed similar concentrations for 

Se in subtropical water, but had higher levels of Se in subantarctic surface waters 

(Table 3.1), which were not seen in this study. The previous study examined water 

masses north and south of the Chatham Rise, which is a bathymetric feature causing 

very sharp gradients in water properties (note both subtropical and subantarctic 

surface waters for this study are listed in the Table 3.1 as north of the SAF). The 

organic Se values for that region (0.10-0.19 nM over the four seasons [34]) were 

similar to those seen in this study (Figure 3.9f, maximum value 0.09±0.04 nM), the 

exception was the value seen in subtropical waters in the summer, 0.31±0.04 nM 

[34](samples collected 18 January to 5 February 2000). The lack of Se data makes it 

difficult to directly compare the studies as seasonality and zonal trends (Pacific 

sector versus Indian sector of the Southern Ocean) could cause these differences. 

Further study is needed to clarify these ideas. 

3.3. 7 Vertical profiles 

The vertical distribution of Se along the transect needs to be considered in the 

context of the model of global overturning circulation (Figure 3.10). The deep water 

masses shoal southward, these water masses transporting higher nutrient levels to the 

surface. The formation of new deep waters around the Antarctic continent causes the 

sinking of surface waters with higher oxygen levels and possibly biologically 

depleted nutrients. 
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Figure 3 .10 The global overturning circulation in the Southern Hemisphere 

http ://www.cmar.csiro.au/news/media/archive/98releases/images/antarctic3d.gif ­

accessed 10 August 2009 

Values for inorganic Se displayed nutrient-like profiles, as has been reported 

previously [26, 31 -33, 63). From low levels in the surface waters, there was an 

increase to the region of oxygen minimum (especially for Se(IV)) and then smaller 

variations with depth. As can be seen in Figure 3.11, the increase in Se 

concentrations southward seen in the surface waters continues throughout the full 

water column. Figure 3.12 illustrates the shallowing of the Se(IV) maximum 

southward. 
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Figure 3.11 Full water column distribution of selenium along the CLIV AR 19S 

transect a) Se(IV) b) Se(VI) c) total Se 

The maximum concentration of Se(IV) is seen to shallow southward (Figure 3.11 a 

and 3.12). This change is more pronounced in Se(IV) species concentration 

(compared to Se(VI)) (Figure 3.12), perhaps reflecting the biological requirement of 

the reduced form, with higher productivity at the northern end of the transect causing 

a drawdown of this species. Smaller changes are seen in the concentration of Se(VI) 

with depth . This has been linked previously to the shallowing of the oxygen 
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minimum zone (Figure 3.4c for this cruise's oxygen data, Figure 3.13 for top 800 m 

of Se species and dissolved oxygen profiles), which is the area of maximum 

regeneration/remineralisation. The regeneration of organic material may be the 

reason for this increase in Se(IV), which is seen more strongly than in the Se(VI) 

profile. 

A striking feature of the Se(VI) transect is the higher concentrations seen at the 

southern end of the transect, with deep water values consistent throughout the 

transect until this increase (Figure 3.11 b ). The cause of this increase is unknown - it 

may be a result of sea-ice formation and brine exclusion or a shelf sediment input. 
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Figure 3.12 Depth profiles of selenium(IV) and selenium(VI) in different zones of 

the Southern Ocean 
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Figure 3 .13 Properties of selenium and dissolved oxygen in the upper 800 m along 

the CLIVAR 19S transect a) Se(IV) b) Se(VI) c) total Se d) dissolved oxygen 
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3.3.8 Selenium(IV) to selenium(VI) ratios 

The ratio of Se(IV) to Se(VI) has previously been reported ([34] and references 

within) and it is suggested that as a water mass ages, its Se(IV)/Se(VI) ratio should 

decrease as the concentration of Se(IV) decreases as it is slowly oxidised to Se(VI) 

[51]. Deep waters that are recently formed, such as those in the North Atlantic and 

regions of the Southern Ocean, would be expected to have a higher ratio relative to 

older deep water masses, such as in the North Pacific. These trends are not clear 

from the current available data (Table 3.2). Previously reported values are highly 

variable, even in the same oceanic region where the total Se concentrations are 

similar (see North Pacific data in Table 3.2). 

The Se(IV)/Se(VI) ratio seen here is lower at the northern end of the transect 

(0.55±0.03 north of the STF), when the total Se concentration was also lower, and 

higher to the south (0.82±0.09 south of the STF (Table 3.2)). The Se(IV) to Se(VI) 

ratio seen north of the STF has similar total Se concentration and Se(IV) to Se(VI) 

ratio to one of the North Atlantic studies [28]. Cutter and Cutter [27] report that 

waters originating from the high latitudes of the Southern Hemisphere have a low 

Se(IV) to Se(VI) ratio, because of the enrichment of Se(VI) in these waters (reported 

ratio ~0.4). Whilst values this low were not seen in this study, at the southern most 

end of the transect, the ratio decreased to 0.68±0.04 (at 63.TS, n = 2) from 

0.88±0.03 (at 60.4°S, n = 7), as a result of the higher Se(VI) values seen close to the 

continent (Figure 3.llb). 
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Table 3.2 Total selenium concentration and ratio of Se(IV) to Se(VI) in deep waters 

North Atlantic 

South Atlantic 

South Pacific 

North Pacific 

Southern Ocean, 

Indian sector 

- north of STF 

- south of STF 

Total Se (nM) 

0.77±0.04 

1.04±0.10 

1.20±0.10 

l.41±0.18a 

1.26±0.04 

1.19# 

1.64±0.18b 

2.26±0.04d 

2.24±0.14e 

0.77±0.03f 

1.00±0.07g 

Table taken from Sherrard et al. [34] 

Se(IV)/Se(VI) 

0.58±0.18 

1.04±0.27 

0.65±0.06 

0.48±0.14a 

0.74±0.10 

0.82# 

0.71±0.03c 

0.55±0.02d 

0.73±0.06e 

0.55±0.03f 

0.82±0.09g 

Values are reporteds as mean±SD; or# average of two values 

a From waters below 2000 m, n = 15 

b From depth of 1990 m, n = 4 

c From waters below 1 OOO m, n = 20 

d From waters below 2000 m, n = 13 

° From waters below 2000 m, n = 6 

rFrom waters below 2000 m, north of the STF (42°S), n = 15 

g From waters below 2000 m, south of the STF (42°S), n = 32 

Reference 

[28] 

[51] 

[26] 

[51] 

[34] 

[30] 

[33] 

This study 

Plotting the ratio of Se(IV) to Se(VI) with depth along the transect (Figure 3.14) 

shows the lowest ratios are typically found in the shallow waters at the northern end 

of the transect. The ratio decreases as Se(IV) is selectively utilised by phytoplankton, 

so it would be expected that surface waters would have lower ratios. However, the 

values at the southern end of the transect only vary slightly over the water column, 

possibly a reflection of the lower productivity and low Se(IV) uptake. The Se(IV) to 

Se(VI) ratio in the surface waters could be dependent on primary productivity of the 

region and the other variables limiting productivity. The values in deep waters are 
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first seen to increase south of the S-STF ( ~42 °S) (Figure 3 .3), they increase 

southward towards parity, which has not been seen elsewhere (Table 3.2). At the 

southern end of the transect, the deep water ratio decreases slightly, possibly 

indicating recently subducted surface waters. 
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Figure 3.14 Ratio of selenium(IV) to selenium(VI) with depth for the CLIVAR 19S 

transect 

3.3.9 Selenium and macronutrients 

Previously it has been reported that Se(IV) is seen to correlate with Si, and Se(VI) 

with P [26]. The data for this transect is shown in Figure 3.15. When both Se(IV) and 

Se(VI) are correlated with Pup to ~0.3 nM Se(IV) and ~0.5 nM Se(VI), there is a 

flattening of the curve as Se continues to increase above these levels, but P has 

reached its maximum concentration. Very similar curves are seen for the Se species 

and N. N and P were very closely linked on this transect and these curves reflect this. 

The flattening of the curve indicates that the remineralisation of Se is continuing 

longer than for these two macronutrients, suggesting Se may be more associated with 

skeletal rather than soft tissues components of the cell. Further investigation into 

where Se is used in the phytoplankton cell is required to see if this theory is valid. 
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There is no flattening of the top of the curve for Si and Se(IV), but both Se species 

are seen to increase (below ~0.2 nM for Se(IV) and ~0.4 nM for Se(VI)) before Si 

concentrations start to increase, resulting in a flattening at the low section of the 

curve. This can be explained because Si concentrations do not rise above l 0 µM in 

the top 50 m of the water column until south of 57°S (Figure 3.15). The Se(VI) curve 

shows a flattening above ~0.6 nM Se(VI), these Se(VI) are from the southern end of 

the transect, in deeper (but not the deepest) water (Appendix 1 ). 
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Figure 3.15 Inorganic selenium species and macronutrient correlations 
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Multiple linear regression (as was previously used to tease out further information on 

this relationship [26]) was applied to the data. The results are presented in Table 3.3. 

The results show that neither inorganic Se species show a strong correlation with Si 

or P. The previous dataset (from Measures et al. 1980 [26]) was from two cruises; 

whilst Measures et al. 1983 [29] was for over 400 measurements from the three 
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ocean basins. There is a large difference between each calculated correlation. The 

data from CLIV AR 19S again provides a different number; further work needs to be 

done to investigate whether the correlation with nutrients varies with water mass and 

the varying biological species present in each region. 

Table 3 .3 Multiple linear regression of selenium and macronutrients 

Equation r (n) Ref. 

Se(IV) = 147.9 + 146.2P +12.lSi + 1.8N 0.67 (242) This study 

Se(IV) = -2.2 + 59.SP + 7.lSi NR [26] 

Se(IV) = 63 + SOP + 4.2Si 0.94 (466) [29] 

Se(IV) = 121.8 + 53.2P + 1.5Si 0.66 (242) This study 

Se(IV) = 38.5 + 13.4Si NR [26] 

Se(IV) = 187.4 + 2.lSi 0.63 (242) This study 

Se(IV) = 55.8 + 138.8P 0.52 (242) This study 

Se(VI) = 375.4 - 3.9P + 0.9Si + 2.4N 0.57 (242) This study 

Se(VI) = 352 + 3.9P + 286Si NR [26] 

Se(VI) = 448 + 181P + 3.3Si 0.83 (409) [29] 

Se(VI) = 370.2 + 35.8P + 0.8Si 0.57 (242) This study 

Se(VI) = 547 + 301P NR [26] 

Se(VI) = 334.0 + 82.8P 0.47 (242) This study 

Se(VI) = 414.3 + 1.2Si 0.53 (242) This study 

NB: Se are pmol r, nutrients are µmol r 
NR - not reported 
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3.3.10 Organic selenium 

The application of different methods, different regions surveyed, the lack of certified 

reference materials, and no international intercalibration of methods has resulted in 

uncertainty in reported Se values. The determination of Se is difficult as many 

methods rely on quantification by difference. There are many different methods of 

detection but more concerning is the different methods for species conversion (as 

was discussed in Chapter 2) and the lack of uniformity. An error in converting total 

Se or Se(VI) to Se(IV) will result in incorrect reporting of Se(VI) and organic Se. 

Much of the literature is best viewed for Se(IV) and total Se, due to the large 

discrepancies in reported values for organic Se. 

Organic Se has been reported in the surface waters, decreasing with depth and not 

observed in deep waters (with the exception of recently subducted surface waters 

[28]). Its residence time has been estimated as 10.3 years in oxic waters [28]. 

However, there are a number of reports where organic Se increases with depth and 

high levels are seen in deep waters [ 62, 63]. This presence of increased organic Se in 

deep waters could be explained by suboxic or anoxic water masses [41], but with a 

reported consistent increase with depth, this is not possible. The lack of information 

on what type of species comprise the organic Se pool and the low levels at which it is 

present in open ocean waters hampers our ability to directly determine organic Se. 

However, Aono et al. [64] determined Se-amino acid compounds, in samples from 

the Bering Sea, using a fractional separation method. Concentrations were low ( 4-

20 pM), and they report that the Se-amino acid compounds account for less than 3% 

of the measured organic Se (measured as difference between inorganic Se species 

and total Se, with total Se measured by HPLC after wet ashing decomposition with 

concentrated nitric and perchloric acids [ 65]) in the same samples. 

The study by Aono et al. [ 64] shows organic Se compounds to be at very low 

concentrations at their study site. Further argument against the high values of organic 

Se seen in some studies, is that the concentration of carbon in seawater is ~ 1 mg r1
, 

and using the relative abundances of the elements, the Se/C ratio is lxl06
, which 

equates to less than 13 pM Ser' as the organic form [26]. Further study is required 
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to clarify what is being measured as 'organic' Se and if it is a species of interest or an 

analytical artefact. 

In this study, organic Se was determined by difference (subtraction of the 

concentration of the inorganic Se species from total Se). The highest value for 

organic Se was 0.09 nM. However, the method analytical uncertainty is ±0.04 nM. In 

the surface waters, organic Se was often seen at a similar concentration to Se(IV), the 

closest values were 89.6 pM organic Se to 94.6 pM Se(IV) at the northern most 

station ( ~35 ° S) , but organic Se never exceeded Se(IV). The amount of organic Se as 

percentage of total Se, was highest at the northern end of the transect and in the 

surface waters (Figure 3.16). It has previously been reported that organic Se was 

28% of total Se in Antarctic coastal waters [39]. This study did not show this higher 

percentage, with Antarctic coastal waters having less than 10% organic Se. 
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Figure 3 .16 Organic selenium as a fraction of total selenium along the CLIV AR 19S 

transect 

The data from our study does not clarify whether organic Se is a significant Se 

fraction or an artefact of the analytical methods used. It appears that organic Se is 

present in the surface waters (Figure 3.9), but is not a major contributor to total Se as 

has been reported elsewhere [ 51]. There does appear to be some 1 ink to surface 

waters, whether a result of productivity or an analytical artefact due to the properties 
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of surface waters. At the southern end of the transect, slight increases are seen in the 

deep water that were not seen elsewhere (Figure 3.16), possibly linked to recently 

subducted surface waters. 

3.4 Conclusions 

The study of Se on the 19S transect provides a new important and comprehensive 

dataset for Se. The transect allowed the collection of samples over the full water 

column in each of the Southern Ocean provinces. The increase of Se concentrations 

southwards indicate Se should not be limiting to biology. This will be further 

investigated in Chapters 4 and 5. 

The link between the 0 2 minimum zone and increasing Se(IV) concentrations was 

not seen as strongly here as it has been in other regions. The ratio of Se(IV) to Se(VI) 

in the deep waters is comparable with previous reports. Lower values were seen in 

the surface waters at the northern end of the transect, creating some doubt about the 

ratio operating, as earlier postulated, for trends with age of water masses, at least in 

the Southern Ocean. The link with the macronutrients did not show as strong a 

correlation as previously. The different water masses present, along with the 

different biological species composition, may have influenced this relationship. 

This dataset provides a significant amount of new Se information, but new 

information raises many more questions about this element for which additional data 

is needed to permit more definitive discussion about its biogeochemical cycling in 

the oceans. Additional studies such as this one are required, under the GEOTRACES 

program (www.geotraces.org). 
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Chapter 4 

4.1 Introduction 

Selenium (Se) is known to be an essential micronutrient for humans, livestock and 

some plants. It is necessary for the formation and function of at least 13 proteins 

[l] in the human body. Se-containing amino-acids, proteins and enzymes have 

been identified, with Se-cysteine being called the 21 st amino acid because of its 

importance in certain enzymes [2-4]. The replacement of Se-cysteine by cysteine 

in enzymes causes a reduction in catalytic activity compared to those containing 

Se [5-7]. Glutathione peroxidase, a Se-enzyme in animals, has been identified as 

both Se-dependent and Se-independent in plants. In plants, the Se-independent 

enzyme has been reported as being significantly larger than the Se-dependent type 

[8]. This has implications for small phytoplanktonic cells. If they can utilise Se to 

increase catalytic activity they will require less enzyme and maintain smaller size 

[6]. 

Se is routinely added to phytoplankton culture media. Work by Keller and 

colleagues in the 1980s [9, 10] developing a new medium for oceanic 

phytoplankton, found Se (and other microelements) to enhance growth. Se(IV) 

was the most significant addition to this medium. The modification of medium 

over the years has been made to more closely match real oceanic water 

concentrations, by adding more of the micronutrients, to ensure optimum growth 

of phytoplankton species. These micronutrient additions may now be necessary 

due to improved quality ofreagents, minimising trace contamination from 

impurities in the reagents that previously provided micronutrients at sufficient 

levels [ 11]. 

Se addition for culturing is commonly Se(IV). Whilst this may not be 

representative of the chemical speciation in the environment (for details of 

oceanic concentrations refer to Chapter 3), Se(IV) has been shown to be the more 

bioavailable of the two inorganic species. Studies of phytoplankton blooms have 

shown greater decreases in surface-water concentrations of Se(IV) than Se(VI) 

[12]-presumably arising from biological uptake. Laboratory studies have 

confrrmed that Se(IV) will be preferentially utilised even when at lower 
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concentrations than Se(VI) [13-15]. In fact, Vandermeulen and Foda [14] suggest 

that Se(VI) is actively excluded from the phytoplankton cells. 

Organic Se may be an important source of Se in the surface waters of the oceans. 

However, whilst organic Se has been measured in these waters, individual species 

have not been identified. The organic Se found in the ocean is a complex mixture 

of many different species [16]. Baines et al. [16] utilised cell lysis to see how cell­

released Se ( ~91 % organic Se) was used by phytoplankton in comparison to 

Se(IV). They found the cell-released Se was taken up to roughly the same degree 

as Se(IV). Therefore, organic Se may also be highly bioavailable, though poorly 

characterised. Conversely, Cutter and Cutter [17] suggest that organic selenide is 

not readily taken up by phytoplankton in oligotrophic surface waters of the 

Atlantic Ocean. This observation was based simply on its abundance in surface 

waters, and no direct culture studies were performed. 

4.1.1 Previous laboratory phytoplankton selenium requirement studies 

Studies for the Se requirement of a wide range of phytoplankton species have 

been reported. Those investigating marine species are summarised in Table 4.1. 

As can be seen, different species within the same taxonomic class often show very 

different Se requirements. 

For many species, growth will not occur when no or low levels of Se are added. 

For this reason Se is routinely added to many culture media, in the range 1-10 nM 

- for both artificial and natural seawater; however, media such as f/2 use natural 

seawater with no addition of Se, so Se occurs at natural levels. Some species 

demonstrate significant response to Se depletion immediately, whilst other species 

show delayed, subtler effects. For two species, the dinoflagellate Katodinium 

rotundatum [18] and the green alga Dunaliella primolecta [19], Se requirement 

was unclear under the conditions tested. 

The biochemical role Se plays in the phytoplanktonic cell is still undefined. Some 

evidence suggests it is important for cell division and maintaining internal 

membrane integrity [20], but its exact function remains unclear. Absence of Se 
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can decrease exponential growth rate and cell yield. The effect of Se on cell shape 

can be variable. Se-depleted conditions have been seen to cause morphological 

changes in Thalassiosira pseudonana [21], where cell elongation was observed 

owing to inability to separate after division. Harrison et al. [ 18] generally 

observed Se-dependent diatoms to increase cell volume, primarily through 

increased cell length (2-5 times), in response to Se-depleted conditions, but the 

pennate diatom Amphipora hyalina decreased in cell width with a resulting 

decrease in cell volume. The marine dinoflagellate Protoceratium reticulatum 

also had morphological changes, including enlarged cell size, but cell shape did 

not appear to be distorted [22]. Conversely, another dinoflagellate Scrippsiella 

trochoidea had no visible morphological changes under Se-depleted conditions 

[18]. 

Many of the beneficial effects of Se might be explained by its role in the enzyme 

glutathione peroxidase [23], which is thought to contain one atom of Se per sub­

unit [24]. Glutathione peroxidase, which requires Se-cysteine as part of its active 

site to catalyse reactions [25, 26], protects cells from damage arising from 

reactive oxygen species (ROS, such as peroxide and hydroxyl radicals) by 

reducing them [27-29]. Glutathione peroxidase activity has been identified in 

some phytoplankton species - marine diatom Thalassiosira pseudonana [30]; 

freshwater Euglena gracilis Z, E. gracilis var. bacillaris and Astasia longa [8, 

31]; freshwater green alga Chlamydomonas reinhardtii [7] - but attempts to 

identify it in other species, for example green alga Dunaliella primolecta and red 

alga Porphyridium cruentum [32, 33], have failed. In these two species, Se 

induced destruction of peroxide by glutathione, though no comment was made on 

the Se requirement of these cells [32]. It has also been identified that an Se­

protein is encoded in DNA, as a UGA opal codon, of Chlamydomonas reinhardtii 

[7]. 

Demonstrated Se requirements are difficult to compare between studies. 

Experimental design can affect whether a species is reported as having a Se 

requirement or not. For example, the diatom Thalassiosira pseudonana did not 

show any signs of limitation until a second transfer into Se-depleted media caused 

changes in growth rate and cell morphology [34, 35]. Work by Doblin and 
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colleagues [36] showed differences in requirement between different strains of 

Gymnodinium catenatum, a dinoflagellate. In the same species, Se requirement 

was dependent upon location and time of isolation, even when the cultures had 

been maintained under the same conditions in the culture collection. Therefore, 

comparison ofreported Se requirements should be done with caution. The use of 

different strains, experimental variables (different media, light and temperature) 

and the absence ofroutine measurement of Se in culture media (to check the 

existence of variable Se background contamination as a result of the equipment 

and reagents used) results in great uncertainty between studies. 

The published studies show that an Se requirement exists for phytoplankton - it 

has been found and corroborated for some species e.g. diatoms. However, it is not 

an exact 'science' because sometimes strains of the same phytoplankton species 

exhibit different requirements. In general, the majority of diatoms, dinoflagellates 

and prymnesiophytes have an Se requirement. There is too little information on 

other classes of phytoplankton to make an assessment. 

Table 4.1 Reported quantitative selenium requirements of various marine 

phytoplankton 

Species No. of Se Ref. 

transfers requirement 

Diatoms 

Amphipora hylalina 2 Yes [18] 

Cerataulina pelagica 3 No [18] 

Chaetoceros c£ tenuissimus 8 No [20] 

Chaetoceros debilis 2 Yes [18] 

Chaetoceros gracilis 5 No [18] 

Chaetoceros pelagica 1 Yes [18] 

Chaetoceros simplex 2 No [18] 

Chaetoceros vixvisibilis 1 Yes [18] 

Corethron criophilum 2 Yes [18] 

Coscinodiscus asteromphalus 2 Yes [18] 

Cylindrotheca closterium 5 No [18] 
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Species No. of Se Ref. 

transfers requirement 

Ditylum brightwellii 1 Yes [18] 

Skeletonema costatum NEPCC strain 18c 2 Yes [18] 

Skeletonema costatum NEPCC strain 611 2 Yes [18] 

Skeletonema costatum NEPCC strain 616 1 Yes [18] 

Stephanodiscus hantzschii var. 1 Yes [37] 

pusillus 

Stephanopyxis palmeriana 3 Yes [18] 

Thalassiosira aestivalis 5 Yes [18] 

Thalassiosira oceanica 2 Yes [18] 

Thalassiosira pseudonana 2 Yes [18, 34] 

Thalassiosira rotula 1 Yes [18] 

Thalassiosira weissflogii 8 No [18] 

Dinoflagellates 

Alexandrium minutum 4 Yes [20] 

Gymnodinium catenatum 2 Yes [20] 

Gymnodinium simplex 5 No [18] 

Gymnodinium sanguineum 2 No [18] 

Protoceratium reticulatum 3 Yes [22] 

Scrippsiella trochoidea 3 Yes [18] 

Prymnesiophytes 

Chrysochromulina brevefilum ? Yes [38] 

Chrysochromulina breviturrita 2 Yes [39] 

Chrysochromulina ericina 3 No [18] 

Chrysochromulina kappa ? Yes [38] 

Chrysochromulina polyepis 3 No [18] 

Chrysochromulina strobilus ? Yes [38] 

Dicrateria inomata ? Yes [38] 

Emiliania huxleyi Yes [40] 

Gephyrocapsa oceanica 1 Yes [40] 

Helladosphaera sp. 1 Yes [40] 

Chlorophytes 

Chiarella sp. No [19] 

Platymonas subcoriformis Yes [19] 
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Species No. of Se Ref. 

transfers requirement 

Cyanophyceae 

Synechococcus sp. 3 No [18] 

Raphidophyceae 

Chattonella verruculosa 2 Yes [41] 

Chrysophytes 
Aureococcus anophagefferens 4 Yes [42] 

4.1.2 This study 

This study was comprised of two areas of work. The first focused on temperate 

phytoplankton species, and the second on Antarctic phytoplankton species. This 

chapter reports the results for the Se requirements for the growth of our selected 

species. This requirement may be seen in Se-depleted media as Liebig limitation -

limitation of maximum biomass; or as Blackman limitation- limitation of the 

short-term growth rate. 

4.1.2.1 Temperate phytoplankton 

Following on from our oceanographic Se studies in the Southern Ocean (Chapter 

3), where the oligotrophic waters of the subtropical zone showed the lowest 

Se(IV) levels in the surface water (shown further in Chapter 5), two temperate 

phytoplankton species-Emiliania huxleyi (E. hux) and Synechococcus sp. (Syn)­

were chosen for laboratory study. The basis for this selection was that E. hux has 

worldwide distribution, excluding the polar regions [ 43], and Syn is dominant in 

many areas of the world oceans, except below 50°S, where the water temperature 

remains below 5°C year round [44]. Many Northern Hemisphere temperate 

oceanic species have previously been studied for Se requirements; this work 

investigated Southern Hemisphere oceanic strains (Table 4.2). In previous studies 
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Northern Hemisphere E. hux has been shown to have an Se requirement [ 40] , 

whilst Syn did not show a requirement [ 18]. 

Emiliania huxleyi is a coccolithophore. Coccolithophores are characterised by an 

external calcium carbonate shell, which is composed of a number of plates, 

coccoliths (Figure 4. la). Coccolithophores are found in the low to mid-latitudes, 

with E. hux the most widespread. Large blooms of E. hux are visible to satellites, 

as the coccoliths, which are shed from the cells, reflect light allowing the blooms 

to be seen (Figure 4.1 b ). 

Figure 4.1 a) Emiliania huxleyi; b) Modis visible image of an Emiliania huxleyi 

bloom, NE Tasmania, Australia (images courtesy of I. Jameson, CMAR, CSIRO) 

Synechococcus sp. (Syn) is a cyanobacterium. It is a member of the picoplankton, 

which is abundant in temperate and tropical coastal and oceanic waters. Syn and 

Prochlorococcus represent most of the cyanobacteria in marine phytoplankton 

[ 45], and they frequently account for half or more of the biomass in oceanic areas. 

The effect of Se on these cells will be measured over a minimum of three transfers 

via cell densities and photosynthetic parameters, an indicator of cell health. 
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4.1.2.2 Antarctic phytoplankton 

Investigations for Se requirement were also made for four Antarctic 

phytoplankton species, diatoms - Fragilariopsis cylindrus, Chaetoceros sp., 

Thalassiosira antarctica; and prymnesiophyte Phaeocystis sp. No previous 

reports were found investigating polar phytoplankton for Se requirements. Many 

diatom species have been investigated for Se requirement previously, with the 

majority having such a requirement (Table 4.1 ). Oceanographic studies of Se have 

found a correlation between Se and Si - which is required for the external 

skeleton of diatoms (Chapter 3 and references within). Se is reported to stimulate 

the formation of siliceous spicules in sponges [ 46], leading to speculation that Se 

may be involved in the enzymatic synthesis ofbiosilica components, although in 

diatom exoskeletons Si deposition is a non-enzymatic process [46]. The Si 

requirement of diatoms and the link between Se and Si leads to the question of 

whether Se would be required by diatoms present in the Southern Ocean. 

Diatoms are unicellular organisms, varying in size from 2 µm to chains of cells up 

to 1000 µm. Diatoms often dominate at temperate and high latitudes [ 43]; they are 

an important phytoplankton group, playing a key role in carbon cycling. Most 

diatom cells are non-motile and sink slowly. Therefore, mixing of the water 

column is needed to prevent them leaving the euphotic zone [47]. There are two 

types of diatoms, pennate and centric. Pennate diatoms often have elongated 

shapes. Centric diatoms are more common; they are shaped concentrically around 

a point. 

Diatoms thrive in high-nutrient regions of the ocean, since with lower surface­

area-to-volume ratios, they cannot compete with the higher bioassimilation 

efficiency of smaller phytoplankton in low-nutrient conditions [48, 49]. Smaller 

diatom species, too, typically have higher growth rates as they appear to out­

compete the large-celled species. 

The diatom species chosen for this study are: Fragilariopsis cylindricus - a sea­

ice pennate diatom, which is used for paleo-reconstructions; Chaetoceros sp. - a 

centric diatom ( ~5 µm); and Thalassiosira antarctica - a centric diatom ( ~8 µm) 

(Table 4.2). 
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Phaeocystis sp., a prymnesiophyte (the same class as E. hux) is found in all 

oceans and is seen to bloom every summer in the Weddell Sea and Ross Sea, 

Antarctica [50, 51]. It forms colonies (single cells of 4-5 µm forming colonies up 

to 1 OOO µm), encased in a mucilaginous matrix, and are known for high DMS 

production [51]. It is also responsible for a large proportion of the C02 drawdown 

in regions of the ocean, where it is a dominant species [50]. 

The effect of Se on these cells will be measured over one transfer via cell 

densities and photosynthetic parameters, an indicator of cell health. 

4.2 Methods and materials 

4.2.1 Phytoplankton 

All strains chosen were unicellular species (Table 4.2), except for Phaeocystis sp., 

which was under colonial form. 

Temperate species 

Cultures were obtained from the Australian National Algal Culture Collection, 

CMAR Research Laboratories, Hobart, Australia. In the culture collection, 

Emiliania huxleyi (CS-809) is maintained in GSe medium; whilst Synechococcus 

sp. (CS-94) is maintained in f72 medium. 

Antarctic species 

Fragilariopsis cylindrus and Thalassiosira antarctica were obtained from 

University of Tasmania, they were isolated by A. Pankowski from Antarctic sea 

ice [52]. Chaetoceros sp. (CS-624) and Phaeocystis D 4-5 (CS-243) were 

obtained from the Australian National Algal Culture Collection. All Antarctic 

strains had been growing in modified AQUIL medium (1 nM Se) for two months 

minimum before this experimental work. 

111 



Selenium requirement for selected temperate and polar phytoplankton 

Table 4.2 Phytoplankton strain information 

Species Origin location Size Source 

Emiliania huxleyi Mercury Passage, Tasmania, 4-7 µm ANA CC 

AUS 

Synechococcus sp. Queenscliff, Victoria, AUS <3 µm ANA CC 

Fragilariopsis 64°S, 116°E 4-6 µm UTAS 

cylindrus 

Thalassiosira 64°S, 116°E 7-9 µm UTAS 

Antarctica 

Chaetoceros sp. Prydz Bay, Antarctica 3-5 µm ANA CC 

Phaeocystis sp. 68° 47.5'S, 73° 30.2'E 4-5 µm, ANACC 

colony <1000 

µm 

ANACC -Australian National Algal Culture Collection; UTAS - University of Tasmania 

4.2.2 Culture conditions 

4.2.2.1 Medium 

An artificial seawater medium was used for this work. Use of an artificial medium 

allows better control and consistency over the course of the experiments. 

Modified AQUIL media was prepared [53] with modifications to the recipe 

summarised in the Table 4.3 (full details on the medium preparation and clean-up 

are in Appendix 2). The chemical speciation in the medium is shown in Table 4.3. 

The major salts were made at 5-fold strength. All stock solutions for 

macronutrients (Chelex-extracted), trace metals, Fe-EDTA and Se(IV) (filtered at 

0.2 µm) were 1000-fold concentrate and stored individually. The vitamin stock 

solution was that used in £'2 media (filtered at 0.2 µm); which was a 1000-fold 

concentrate and stored frozen. 

The medium was prepared as required. The major salts were diluted to the 

required volume in the culture flasks and the macronutrients added, as was the 

buffer solution (H3B03 and NaHC03). The solution was then sterilised by 

microwave-4 cycles of heating on low power (90 W)- reaching a final 
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temperature of96°C. Absence of bacterial contamination after the microwave 

treatment was verified on agar (f72) kept at 20°C. 

After cooling, the micronutrients and vitamin solutions were added. Se 

concentrations were varied according to the experiment and added at 

concentrations ofO nM, 1nMand10 nM Se(IV). Media was prepared at least 5 

days before use to allow equilibration between all chemical forms present. 

Table 4.3 Speciation in the modified AQUIL medium and comparison with 

standard AQUIL and artificial seawater (at pH 7.8) (calculated with MINEQL+, 

version 4.5, ionic strength corrected for pH 7.8). 

Modified AQUIL AQUIL [53] Artificial 

seawater [11, 54] 

Metal Free (M) Labile Free (M) Free (M) 

Co 1.63 x 10-11 2.71x10-11 4.47 x 10-12 1.20 x 10-11 

Cu 9.08 x 10-15 2.03 x 10-14 8.28 x 10-15 na 

Fe (Fe(III)) 8.37 x 10-19 8.45 x 10-9 9.17xl0-19 1.61x10-17 

Se 1.00 x 10-9 1.00 x 10-9 1.00 x 10-8 1.00 x 10-9 

Mn 7.49 x10-9 1.05 x 10-8 7.87 x 10-9 9.20 x 10-7 

Ni 1.14 x 10-13 1.34 x 10-13 na 1.55 x 10-13 

Mo 1.00 x 10-8 1.00 x 10-8 1.00 x 10-7 6.10 x 10-9 

Zn 1.43 x 10-10 2.93 x 10-10 1.04 x 10-11 7.81 x 10-10 

Ionic strength 0.664 0.664 0.561 

na = not added; 
Note: All Se is under its free form in these media 
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4.2.2.2 Growth conditions 

The temperate strain cultures were grown in a 12-h light-dark cycle, at 20°C with 

light intensity 170 µmole photons m-2 s-1
. The Antarctic strains were grown at 

4°C under continuous light (100 µmole photons m-2 s-1
). 

E. hux and Syn were grown for at least 3 transfers; the 0 nM Se experiment was 

commenced at the first transfer of the replete experiments from the 1 nM Se 

culture. Antarctic strains were grown for one transfer only. According to growth 

curves, E. hux was transferred each 6 days and Syn each 5 days, to ensure cells 

were in exponential growth phase. Each experiment was performed at least in 

duplicate. 

For culture transfers, the required volume of the culture was placed in a tube with 

1 mM EDTA and 0.6 M NaCl solution for 5 minutes. This treatment was to 

remove cationic metals (except Fe) sorbed to the cell surface [55]. The solution 

was then gently filtered (2 µm (or 0.2 µm for Syn)) through a membrane filter on 

a Sartorius filter unit with vacuum hand pump (15 mm Hg vacuum maximum), 

and rinsed with chelex-extracted 2.38 mM NaHC03 and 0.6 M NaCl solution (2-

3 ml twice). The filter was placed in a tube and the phytoplankton gently 

resuspended with the required volume of the NaHC03 and NaCl solution. This 

solution was then transferred to the new experimental flasks. Minimal additions 

were made to prevent dilution of the medium, typically a 1-in-20 addition. 

Cultures were grown in 60-ml polystyrene flasks or 125-ml polycarbonate 

Erlenmeyer. Before use, flasks were 10% v/v HCl-washed for 1 week and Milli-Q 

rinsed (7 times). 

Cultures were not axenic, but care was taken to minimize bacterial contamination. 

All manipulations were done under a HEPA laminar flow-hood. All filters, tubes 

and tips used were washed in 10% v/v HCI. 
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4.2.3 Analyses 

4.2.3.1 Growth rate 

All cultures were sampled routinely for cell counts (particle counter - Coulter 

Counter Multisizer II, Beckmann, 50-µm aperture tube). Culture samples (0.2-

1.0 ml depending on cell density) were diluted with 9 ml of electrolyte solution 

(3% m/v NaCl and 0.1 % m/v NaN3). Cell size was also measured by the particle 

counter. 

Phaeocystis sp. was treated slightly differently, as the colonies caused 

inconsistent readings with the particle counter. Thirty micro litres of glutaric 

dialdehyde (50% w/w solution, Aldrich Chemical Company) was added to 1 ml of 

sample and vigorously shaken so as to break the colonies. The sample was stored 

at 4 °C for at least 24 h. It was then shaken, diluted with 9 ml electrolyte solution, 

and counted. 

Growth rate was calculated from changes in cell density, using the formula: 

(d 
_,) InN1 -InN2 µ ay =----

~days 

µ - growth rate, N - cell density 

4.2.3.2 Photosynthetic parameters 

(Eq. 1) 

Photosynthesis is a complex chemical reaction that requires light absorption, 

water and carbon dioxide to produce sugars and other organic molecules. Micro­

organisms, such as autotrophic phytoplankton rely on photosynthesis as their 

carbon source. 

Photosynthesis occurs in the thylakoid membrane, which is in the chloroplast 

(Figure 4.2). It requires two assembled proteins: photosystem I (PSI) and 
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photosystem II (PSII) . PSII consists of a photoreceptor antenna, such as 

chlorophyll a (chl a), which captures photos at 680 nm. PSI is formed from chl a 

associated with various proteins and absorbs light at 700 nm. 

During photosynthesis, photons are captured in the antenna of the photoreceptor 

of PSII; this is the energy absorption step. Some of this energy can be lost as heat 

and/or fluorescence (Figure 4.3). Energy not lost will excite an electron that is 

transferred to a reaction centre composed of two chl a molecules (P6s0) ; this is the 

electron or energy capture step. The plastoquinone (PQ) captures the electron 

from the P680 and transfers them to PSI; the electron or energy transport step. The 

PSII is compensated for the electron loss by water hydrolysis to H+ and 0 2. The 

electron transport from PSII to PSI generates a proton gradient through the 

thylakoid membrane, activating the ATPsynthase generating ATP in the 

chloroplast. 

Cell <ytoplasm 

l/ sugarl 
AOP , .--------. 

RegeneraUoo c
1 

ATP <ycle 
AOP + P, 

ChlorQphut $troma 

Thylakold lumen 

Figure 4.2 Representation of the photosynthesis reaction, including the Calvin 

Cycle (C3 cycle) (image courtesy of S. Grace, University of Arkansas) 
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Photons can also be directly captured by the antenna of PSI. In this case, the 

electron will cause the formation ofNADPH. Both ATP and NADPH are used in 

the second phase of the photosynthesis for the transformation of C02 into more 

complex sugars, which is known as the Calvin Cycle [56] (Figure 4.2). 

hv 

transfer to electron 
___ .., transport chain for 

photosynthesis 

/ 
heat 

(photochemical quenching) 

fluorescence emission 

(non-photochemical quenching) 

Figure 4.3 Possible fate of electrons once captured by chi a. The excited chi a* 

will emit fluorescence and can either transfer its electron to the electron transport 

chain to drive photosynthesis; or lose its electron via heat production. 

The activity of PSII was studied using a PhytoPAM and PhytoWin software 

(version 1.46). Three millilitres of sample was collected in a quartz cuvette (acid 

cleaned) and placed in the PhytoPAM detector. This system uses three different 

light wavelengths to distinguish brown, green and blue algae. It measures the 

fluorescence emitted before (Fo) and during (Fm) short high light excitation 

(10000 µmole photons m-2 s- 1 light pulse for 0.6 seconds). When the light is 

absorbed, chl a becomes excited. The electrons are then transferred to the PQ, 

stabilizing the system. When all PQ is reduced, there are no available electron 

receptors in PSII and all reaction centres are closed. Additional electrons return to 

their stable unexcited state with the emission of a photon, providing either heat or 

fluorescence [57 , 58]. 
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Measurement of rapid light curves and quantum yield were made to assess the 

photosynthetic health of the cells. 

4.2.3.2a Quantum yield measurement 

Cells were dark adapted (60 min), to ensure no electrons remained in the transport 

chain and all chl a were unexcited. A weak measuring light (0.15 µmole photons 

m-2 s-1
) was applied to induce fluorescence emission (Fo) without causing any 

photosynthetic reaction. A light pulse was applied causing all reaction centres to 

capture electrons and remain closed until they transfer along the electron transport 

chain. The fluorescence was measured (Fm). The maximum quantum yield is 

given by: 

(Eq. 2) 

FvfFm is related to the number ofreaction centres participating in the light capture. 

Typically a maximum value of0.65 is measured, with the PhytoPAM, attesting to 

optimal photosynthetic efficiency. 

4.2.3.2b Rapid light curves 

The PhytoPAM possesses an additional light source (actinic light), which allows 

the study of the photosynthetic apparatus under variable light levels (0-

2000 µmole photons m-2 s-1
). Rapid light curves (RLC) present the measurement 

of basal (F') and maximal (F' m) fluorescence levels at increasing light intensities. 

Light intensities are increased, step-wise, at 30-s intervals, each ending with a 

saturating light pulse. The parameters derived from RLC do not represent a steady 

state of PSII as in conventional photosynthetic irradiance curves, but a short term 

response to light stress [58]. 
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Usually quantum yield will decrease and relative electron transport rate (rETR) 

will increase with increasing light intensities until a plateau is reached. Three 

different regions are depicted in a RLC (Figure 4.4): 

a) light-limited where rETR increases linearly with photosynthetic active 

radiation (PAR) 

b) light-saturation where rETR reach a maximal plateau 

c) photo-inhibition, where rETR is diminished due to excess light. 

Region a Region b Region c 

PAR 
Figure 4.4 Example of a rapid light curve indicating the different regions as 

described in the text 

Relative electron transport rate is calculated as follows: 

rETR = [(F' m-F')/F' m]xPAR (Eq. 3) 
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(F' m-F')/F' m is the effective quantum yield, indicating the amount of energy used 

in photochemistry. 

Three main parameters are calculated from the RLC using the automatic non­

linear fitting function of Phyto Win: 

rETRmax - the maxiumum level of rETR (derived from region b of the RLC). 

rETRmax is the maximum rate of electrons being transported through the 

photosynthetic chain. 

a- slope ofregion a, it is proportional to the efficiency of light captures (and thus 

effective quantum yield). 

Ek - minimum saturating light defined as rETR/a.. Ek is related to the quenching 

induced during the RLC, where photochemical quenching dominates below Ek 

and non-photochemical quenching dominates above it. Above Ek the reaction 

centres are saturated so most of the energy from the excited chl a will be lost as 

heat. 

4.2.3.2c Chlorophyll a 

Samples for chl a were collected by filtration of5 ml of sample on 25-mm GF/C 

filter. The filters were stored at -80°C until analysis. Chl a was extracted in low 

light with 9 ml of90% acetone. Samples were sonicated for 15 min in ice, and 

placed in the fridge for 20 h. Samples were then allowed to warm to room 

temperature (30 min in the dark), before being centrifuged (2500 rpm for 5 min). 

Samples were analysed by Fluorometer AU-10 (Turner Designs) with emission 

and excitation filters (Aexcitatton 436nm, Aem1ssmn 680 nm) for non acidified chl a 

determination [59]. The fluorometer was calibrated using certified chl a standard 

solutions (Aqualab Scientific). 
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4.2.3.2d Pigments 

Pigment analysis was carried out for the Antarctic strains. 5 ml of sample was 

filtered through a 25-mm GF/C filter and stored at -80°C until analysis. Samples 

were extracted over 15-18 h in an acetone solution (100%, diluted to 90% for 

analysis, Mallinkrodt, HPLC grade) before analysis by HPLC using a C8 column 

and binary gradient system with an elevated column temperature (55°C) following 

a modified version of the Van Heukelem and Thomas (2001) method [60]. 

Pigments were identified by retention time and absorption spectrum from a photo­

diode array (PDA) detector and concentrations of pigments were determined from 

commercial and international standards (Sigma; DHI, Denmark). 

4.2.3.3 Selenium - dissolved 

Dissolved Se was measured by HG-CT-AFS, as described in Chapter 2. Samples 

were filtered on 0.2 µm polycarbonate filters (acid-cleaned; Sartorius). 

4.2.3.4 Viscosity measurements 

Viscosity measurements were made on some Syn samples to check if 

exopolysaccharides were being produced and causing the observed aggregation of 

cells. Culture subsamples were centrifuged for 10 min at 2000 rpm, 450 x g at 

either 2 or 20°C (Sorvall RT6000, DuPont, Wilmington DE, USA). A 1 ml 

sample was placed in the sample cup of a Brookfield microviscometer (Model 

LVT, Brookfield Engineering Laboratories, Inc., Stoughton MA, USA) connected 

to a recycling water bath (BCT-9090, Thermoline, Smithfield, NSW, Australia), 

which maintained the temperature of the samples at 25°C during viscosity 

measurements. Speed was set at 30 rpm. Sample temperature was allowed to 

equilibrate for 2 min and the viscosity was read three times, once after each of 

3 sets of 10 revolutions. The cup and cone were cleaned with ethanol/water 

solution (70/30; v/v) between samples. 
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4.3 Results and discussion 

4.3.1 Temperate strains 

4.3.1.1 Viscosity measurements 

Syn were seen to be forming aggregates after 6 days (Figure 4.5). The reason for 

this was unknown. This species is routinely grown in f/2 medium (CSIRO Marine 

Algal Collection), which is a richer medium than the modified AQUIL being used 

in these experiments. There are reports of some Synechococcus strains suffering 

from photo-inhibition [61, 62). To ensure this was not occurring, or causing the 

aggregation, a lower light level (80 µmole photons m-2 s- 1
) was tested. The f/2 

and modified AQUIL media were tested at the two different light levels to see if a 

reason for the aggregations could be determined. Viscosity was measured to 

verify whether aggregation was a result of excretion of substance such as 

polysaccharides, that could increase viscosity in the medium [63). The samples 

were tested and compared to stock culture (f/2 medium) for viscosity with no 

significant difference being seen between any of the different Syn culture 

conditions (Table 4.4) 

Figure 4.5 Aggregation of Synechococcus sp. cells 
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Table 4.4 Viscosity measurements of Synechococcus sp. cultures in different 

media and with different light treatments 

Sample Light Media Viscosity ( cpS) 

20°c 2°C 

Control f/2 0.9 

Milli-Q 0.9 

CS-94 f/2 1.1 1.0 

Low f/2 0.9 1.1 

High f/2 1.1 1.3 

1 nMSe Low Modified AQUIL 0.9 0.9 

1 nMSe High Modified AQUIL 1.0 1.0 

1 nM Se High Modified AQUIL 0.9 0.9 

lOnM Se High Modified AQUIL 0.9 1.0 

High light= 170 µmole photons m 2 s 1
; low light= 80 µmole photons m 2 s 1 

No cause for the aggregation could be seen due to increased viscosity in the 

medium. The cells did not show signs of photo-inhibition at the higher light level 

in modified AQUIL medium(µ= 0.50-0.51 d-1 for both light treatments). Syn 

were routinely transferred at 5 days, to ensure the cells were still in exponential 

growth and that aggregation had not started to occur. 

4.3.1.2 Media 

The culture medium was carefully prepared to minimise any possible bacterial or 

trace metal contamination. The medium was tested for Se contamination. Various 

batches were tested in order to ensure consistency across growth experiments. Se 

was below the detection limit of the HG-CT-AFS system (<5 pM). 
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4.3.1.3 Growth rate and cell volume 

The growth rate and maximum biomass of E. hux was reduced when no Se was 

added to the culture media (Figure 4.6 & Table 4.5). No difference was seen 

between additions of 1 nM and 10 nM Se, indicating that the Se growth 

requirement is met by addition of 1 nM Se. Growth rate, in 1 nM and 10 nM Se 

addition media were constant over time, whilst the growth of cells in 0 nM Se 

addition was reduced and continued to decrease. In the previous study of E. hux 

Se requirement [ 40], the strain tested did not show a difference in growth rate 

(between 0 nM and 10 nM Se(IV)), rather growth ceased at 90 h (3.75 d) in Se­

depleted medium. 

Table 4.5 Emiliania huxleyi growth rates 

Treatment µ d-

OnMSe 1 st growth cycle 0.31±0.09 

2nd growth cycle 0.31±0.03 

3rd growth cycle 0.19±0.04 

1 nM All 0.74±0.05 

lOnM All 0.75±0.05 

Add back 1 st growth cycle 0.88±0.01 

2nd growth cycle 0.60±0.22 

Cell volume varied most significantly in cells grown in Se-depleted medium 

(Figure 4.6). This change was most noticeable in the first growth cycle in Se­

depleted medium. It was present in subsequent growth cycles but cells did not 

reach the maximum volume seen in the frrst growth cycle. This might be due to 

the decrease in growth and cell numbers in successive growth cycles. 
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Microscopic observations did not show any variation in the number of coccoliths 

(as layers on the cells) between the Se-replete conditions. However, visually there 

was a difference between the treatments (Figure 4.7). This may be due to an 

increase in the number of shed coccoliths. The Se-depleted condition had 

decreased number of coccoliths but this was thought be due to lower cell density. 

The amount of calcification was not standardised to cell numbers. Work by Fabry 

[64] indicates that for a high calcifying E. hux strain, coccolith formation was at 

least three times higher when grown in medium (K-media) with Se (1-2 nM 

Se(IV)) than in Se-depleted media. The shape and size of the coccoliths was not 

studied, so it is unknown if changes occurred here. 

Small fluctuations in cell volume were seen for Se-replete cells. Cell volume was 

seen to increase in the early stage of the growth curve and then decrease during 

exponential cell growth; this is associated with normal growth. As can be seen in 

Figure 4.6, the fluctuations in cell volume were very similar for the two Se-replete 

conditions. The decrease in growth rate and the increase in cell volume suggest 

that the cells are unable to divide properly when Se-depleted (especially for the 

first growth cycle in these conditions). This has been previously observed for 

diatom Thalassiosira pseudonana [21] and dinoflagellate Protoceratium 

reticulatum [22], but not reported for E hux. This is in contrast to the reported 

effect on cells of other micronutrient limitation. For example, iron limitation was 

shown to diminish diatom cell size [65]. Why this increase in cell size is seen to 

decrease on transfer is unknown - the use of an EDTA wash during the transfer 

may have destabilised the cell, or transfer to new medium may stimulate initial 

growth by the small background contamination of Se in the medium. 
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Figure 4.6 Effect of varying selenium concentration on growth and cell vo lume of 

Emiliania huxleyi (n = 3). NB: 0 nM Se is plotted from day 6 as the experiment 

was commenced at this time. 
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Figure 4. 7 Visual difference between Emiliania huxleyi cultures in different 

selenium concentrations 

The growth of Syn did not appear to be affected by different Se concentrations 

(Figure 4.8). Growth rates were constant among different Se treatments and over 

time(µ= 0.51 - 0.57 d- 1
), as previously observed for this cyanobacteria [18]. 

Small fluctuations in cell volume were seen for all Se treatments (Figure 4.8). 

These were ascribed to normal fluctuations in growth and were similar across all 

Se concentrations. 
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Figure 4.8 Effect of varying selenium concentration on growth and cell volume of 

Synechococcus sp. (n = 3). NB: 0 nM Se is plotted from day 6 as the experiment 

was commenced at this time. 
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4.3.1.4 Add-back experiments 

As Se depletion in natural systems may be transient, the E. hux requirement for Se 

was investigated in additional experiments to see if the cells could recover after 

being Se-depleted. Danbara and Shiraiwa [ 40] reported that E. hux could recover 

from Se-depleted conditions ( ~ 7 d) when transferred to Se-replete medium 

(10 nM Se addition). Diatom Thalassiosira pseudonana was able to recover from 

Se-depletion (two growth cycles, with Se-deficiency not evident until the second 

growth cycle) when transferred to 1 nM Se media, but was often unable to recover 

if Se-depleted for three growth cycles [34, 35]. Of fifteen diatoms found to have a 

Se requirement, Harrison et al. [18] found twelve were able to recover from Se 

deficiency when transferred to 10-nM Se media. 

Cells that had been grown in Se-depleted media for one and two growth cycles 

were transferred to 1 nM Se modified AQUIL. Cells were seen to recover. Those 

that had been Se-depleted for two growth cycles did so to a lesser degree than 

those depleted for one growth cycle (Figure 4.9). This was not tested on cells that 

were Se~depleted for three growth cycles as cell numbers were too low. The 

growth rates of cells Se-depleted for one growth cycle were above those seen 

when cells were continually grown in Se-replete medium. The growth rates of 

those that had been depleted for two growth cycles showed greater variability and 

on average were below that seen for Se-replete cells (Table 4.5). The recovery of 

cells suggests that the deleterious effects of Se-depletion are partially reversible. 

However, following prolonged Se deficiency E. hux will not grow and might be 

unable to develop following Se enrichment. 
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4.3. I. 5 Photosynthetic parameters 

4.3.l.5a Rapid light curve and maximum quantum yield 

The health of cells was investigated by measuring the cells' photosynthetic 

efficiency. Higher maximum quantum yield (to a maximum value of0.65) 

indicates higher photosynthetic efficiency with more reaction centres participating 

in light capture - equating to healthier cells. The values for E. hux from the RLC 

(Table 4.6) will be considered in two sections: first, the cells grown for three 

growth cycles under the same conditions (G3 values), and then the add-back 

experiments (AB). 

For the G3 experiments, the results show that a (the efficiency oflight capture 

under non-steady state) is not significantly different for cells grown in 0 nM and 

1 nM Se. The a value for cells grown in 10 nM Se is slightly different to 0 nM Se, 

indicating less efficient light capture in these cells. The values for rETRmax (the 

maximum rate of electron transport through the system) show that 10-nM Se cells 

have high transport efficiency compared to those Se-depleted cells; again cells 

from 0 nM and 1 nM do not show a difference. Ek values show a similar trend to 

those of rETRmax, with higher values for 10-nM Se cells - indicating higher light 

levels are required to saturate PSII of these cells. The quantum yields do not vary 

significantly between any of the treatments. 
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Table 4.6 Rapid light curve parameters and quantum yield measurements for 

Emiliania huxleyi as a function of the concentration of selenium 

OnMSe OnMSe 1 nM Se 10 nM Se ABGl ABG2 

Gl (n=3) G3 (n=3) (n=2) G3 (n=3) (n=3) (n=3) 

a 0.17±0.01 0.19 ±0.05 0.12 ± 0.03 0.12± 0.01 0.15 ± 0.01 0.16 ± 0.00 

rETRmax 117.8± 222.0± 
94.1±17.7 62.4 ± 14.5 53.4±4.0 136.0± 2.4 

21.3 35.3 

Ek 566.4 ± 354.3 ± 453.1 ± 981.2 ± 1432.3 ± 
859.7 ± 8.2 

100.5 147.5 84.0 73.2 175.2 

Fv/Fm 0.53 ± 0.01 0.50 ± 0.02 0.40± 0.10 0.39± 0.09 0.55 ± 0.01 0.55 ±0.01 

FJFm - maximum quantum yield following dark adaptation; rETRmax - relative maximum electron 
transport rate; a is proportional to efficiency of light capture; Ek - the minimum saturating 
irradiance; G# - growth cycle#; AB - addback experiments, G 1 = one growth cycle in Se­
depleted medium; G2 = two growth cycles in Se-depleted medium 

The add-back experiments showed the cells to have increased growth rate 

compared to those cells grown continuously in Se-replete media (Table 4.5). This 

increase is also seen in the RLC results, with an increase in quantum yield, 

rETRmax and Ek compared to 1 nM Se G3 cells and an increase in rETRmax and Ek 

compared to 0 nM Se (G 1 and G3). These cells show that Se, in this case, 

improves photosynthesis with regard to electron transfer and maximum saturation 

irradiance, whilst light capture efficiency (a) is unchanged (Figure 4.10). 

The previous study on E. hux [ 40] reports 0 2 evolution as a measure of gross 

photosynthesis, which is related to ETR [58], was increased in the Se-depleted 

culture (0 nM Se). On transfer to Se-replete medium (10 nM Se), the values 

returned to those seen for Se-replete cells. This observation was confirmed by this 

study, with a decrease in rETR in Se-depleted media and return was seen upon 

transfer to Se-replete conditions. 
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Figure 4.10 Effect of varying selenium concentration on rapid light curve of 

Emiliania huxleyi. G3 - 3 growth cycles; AB - addback experiments, G 1 - one 

growth cycle in Se-depleted medium, G2 - two growth cycles in Se-depleted 

medium 

The effect of Se on photosynthesis (as seen in the add-back results) was absent for 

cells grown continuously under 0 nM and 1 nM Se. For these cells, the effect of 

Se was seen as a difference in growth rate. From these results, photosynthesis is 

not the first site that Se acts on, as 10-nM Se was required to see a change in 

photosynthetic parameters. 

Syn did not show any significant differences in any of the photosynthetic 

parameters measured (a, rETRmax, Ek and quantum yield) between different Se 

treatments (Table 4.7). It appears that Se did not affect the efficiency of PSII or 

electron transfer for Syn. The quantum yield was much lower than the value 

reported for healthy cells (~0.30 compared to 0.65), although this value was 
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reported for eukaryotic plankton, for example Thalassiosira pseudonana [66]. Syn 

grown in replete conditions and low light (10 µmole photons m-2 s-1
) were 

reported to have a maximum quantum yield of0.45 [67]. These cells were grown 

under high light, which has been reported to reduce maximum quantum yield in 

Syn sp. [68]. Temperature has also been shown to affect quantum yield for 

cyanobacteria, a Trichodesmium strain had a quantum yield ofO.l at l 7°C 

compared to 0.6 at 30°C [69], and Plectonema boryanum UTEX 485 showed 

lower quantum yield when grown at moderate temperature and high light intensity 

[70]. No reports were found on temperature and Syn so it is not known ifthe same 

applies in this case. 

Table 4. 7 Rapid light curve parameters and quantum yield measurement for 

Synechococcus sp. as a function of the concentration of selenium 

0 nM Se (n=4) 1 nM Se (n=3) 10 nM Se (n=3) 

0.16 ± 0.00 

115.9 ± 16.3 

726.3 ± 108.7 

0.29 ± 0.01 

0.15 ± 0.00 

106.3 ± 32.3 

668.3 ± 168.0 

0.28 ±0.01 

0.15 ± 0.01 

98.3 ± 5.0 

657.1±46.1 

0.28 ± 0.01 

FJFm - maximum quantum yield following dark adaptation, rETR.nax - relative maximum electron 
transport rate; a is proportional to efficiency oflight capture; Ek - the minimum saturating 
irradiance 

4.3.1.5b Chlorophyll a 

Chl a was measured and the amount per cell was calculated. For E. hux, Se­

depleted cells had low chl a per cell, with Se-replete cells having higher values 

(Figure 4.11 ). The concentration of chl a per cell was highest in add-back 

experiment cells that had been Se-depleted for 1 growth cycle, with those that had 

been depleted for 2 growth cycles showing chl a levels similar to those that had 

been growing continuously in 1 nM Se medium. 

If electron capture efficiency is related to chl a concentration in E. hux, it would 

be expected that higher a would be seen at higher Se concentration. This was not 

134 



Chapter 4 

seen, suggesting that E. hux relies on additional pigments to serve as antennas and 

capture electrons. However, the level of chi a in the cell give good correlation 

with rETRmax at the same Se treatments. 

Syn did not show any significant difference in the level of chi a per cell in the 

different Se treatments (Figure 4.12). 
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Figure 4.11 Chlorophyll a concentration per cell of Emiliania huxleyi after three 

growth cycles 
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Figure 4.12 Chlorophyll a concentration per cell of Synechococcus sp. after four 

growth cycles, NB: different scale to that on Figure 4.11 
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4.3.2 Antarctic strains 

4.3.2.1 Growth rate 

The Antarctic strains were grown in modified AQUIL with no or 1 nM Se 

addition. The growth of these strains for only one growth cycle will only identify 

strains that have a strong Se requirement and insufficient stored intracellular Se to 

meet this requirement. Results are shown in Figure 4.13. Thalassiosira antarctica 

(µ= 0.30 ± 0.01) andPhaeocystis sp. (µ= 0.21±0.02) did not show a growth 

requirement under these conditions. Chaetoceros sp. showed a large difference in 

growth rates(µ= 0.42 ± 0.02 and 0.21±0.02, in the presence and absence of Se), 

indicating a strong Se growth requirement, and Fragilariopsis cylindrus had a 

smaller but still noticeable difference in growth rates(µ= 0.39 ± 0.00 and 

0.29 ± 0.00 in the presence and absence of Se), showing it also to have a Se 

growth requirement. Both Chaetoceros and Fragilariopsis cylindrus showed 

limitation in the maximum biomass when grown in Se-depleted conditions (a 

decrease from~l.7x106 cells mr1 to ~0.3x106 cells mr1 and from 

2.5x106 cells mr1 to I.3x106 cells mr1 in absence of Se for Chaetoceros sp. and 

Fragilariopsis cylindrus, respectively). Thalassiosira antarctica is the largest cell 

of the strains tested. Its growth rate is slower, meaning less Se will be utilised due 

to a low division rate; it may have a Se growth requirement that was not revealed 

under these conditions. 
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4.3.2.2 Pigments 

Pigments were measured for each of the Antarctic diatom strains to see ifthere 

was any discemable effect of Se. The pigment data shows each of the diatom 

strains had higher chi a and total pigments when Se was present in the culture 

medium regardless of Se growth requirement (Figure 4.14). As discussed 

previously, Thalassiosira antarctica may have an Se growth requirement, unseen 

in the growth rate but displayed here. 

Investigating which pigments were affected by different Se concentration (as 

percentage of total pigment per cell, to account for the higher levels of pigments 

in Se-replete cells) reveals diatoxanthin varied for all strains between Se 

treatments. Diatoxanthin is part of the xanthophyll cycle along with 

diadinoxanthin; the xanthophyll cycle involves the conversion of pigments from 

non-energy quenching forms to energy quenching forms. In diatoms at high light, 

diadinoxanthin is converted to diatoxanthin (by de-epoxidation) to reduce the 

amount of energy reaching the photosynthetic reaction centres. It is a protective 

mechanism to prevent photoinhibition. The light level at which these strains were 

grown (continuous 100 µmole photons m-2 s-1
) was slightly above saturating 

irradiance. Diatoms are reported to need low irradiance and light:dark cycle [71], 

so could be light-stressed during this experiment. 

Iron deficiency has been shown to cause de-epoxidation of the xanthophyll cycle 

in terrestrial plants [72], and in Phaeocystis sp., diatoxanthin content increased 

while diadinoxathin remained similar under Fe-depleted conditions [73]. This 

appears to occur in our experiments, as levels of diadinoxanthin do not vary 

significantly. The ratio of diadinoxanthin to diatoxantion increased in all three 

diatom strains with higher Se in the growth medium (Fragilariopsis- 0.55 to 

0.80; Chaetoceros - 1.35 to 6.60; and Thalassiosira antarctica - 0. 75 to 2.24). 

This result suggests light stress is increased when no Se is added to the growth 

media. This fits well with the finding of decreased rETRmax and Ek (half saturating 

light) observed for Se-depleted E. hux (Table 4.6). 
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Chi c - chlorophyll c; Chlide a - chlorophyllide a; Fuco - fucoxanthin; Viola - violaxanthin; 
Diadino - diadinoxanthin; Diato - diatoxanthin; Zea - zeaxanthin; 
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4.4 Discussion 

Syn did not show any effects from the different Se concentrations on any 

parameter measured. If Syn has a Se requirement it is very low and is met by the 

background levels of Se in the medium(< 5 pM). It is more likely that Syn (at 

least the strain examined in this work) does not have a Se requirement. 

E. hux has a defmite Se requirement for growth. The exact concentration required 

for optimum growth is still undefined, but it is in the region of0.05-1 nM Se(IV). 

This study did not investigate the ability of the cells to utilise other Se chemical 

forms. Previous work with E.hux had shown Se(IV) (as Se02 and Na2Se03) to be 

effective from 1 nM Se whereas Se(VI) was not effective below concentrations of 

1 µM [40]. 

The differences seen in E. hux photosynthetic parameters, where photosynthetic 

efficiency (Fv/Fm) was increased in Se-depleted cells (0 nM G3), suggest that 

short-term depletion of Se may be beneficial to cell health. This is supported by 

the add-back experiment, where both photosynthetic activity and growth were 

greatly enhanced. 

For the Antarctic strains, two of the three diatoms showed a strong Se growth 

requirement. Chaetoceros sp. had a definite Se growth requirement which 

appeared to be met by 1 nM Se (we did not test whether it has a requirement for 

higher Se concentrations). Fragilariopsis cylindrus showed a slight Se growth 

requirement. It is unknown whether this requirement would be more evident in a 

second growth cycle when all intracellular Se supplies have been depleted. This is 

worthy of further investigation. Thalassiosira antarctica, did not show a growth 

requirement, even though there were changes evident in the pigments of the cells. 

Growing the cells for successive growth cycles may reveal a Se growth 

requirement that was met by intracellular Se in this experiment. Similarly, the 

growth of Phaeocystis sp. was not affected at any Se concentration tested here. 

In general, there is a requirement for Se by the majority of diatoms from all 

regions of the ocean. Seven strains of Chaetoceros (this study and [18, 20]) and 
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six strains of Thalassiosira (this study and [18, 20]) have now been tested for Se 

growth requirement. Three of the seven Chaetoceros did not show a requirement, 

whereas only one of the Thalassiosira can be confirmed as not having a 

requirement. Our work on Thalassiosira antarctica can not conclusively rule out a 

growth requirement. Many of the previous growth studies have looked purely at 

growth rate and cell biomass. It would be interesting to investigate further to see if 

there are changes to photosynthetic parameters in those cells. 

The increase in all pigments in the diatoms is an interesting finding. It is hard to 

say why there is an increase, although it may be due to the cells being replete, 

since increased pigment concentrations were seen in Antarctic sea ice diatoms 

between N-replete and N-depleted conditions [74]. This cannot be said 

defmitively here because only two of the strains were shown to have a growth rate 

and biomass limitation. 

What role Se plays in diatom cells needs to be further investigated. There is 

clearly a coupling between dissolved Se and Si in the oceans (as shown in Chapter 

3 and previously reported [75, 76]). Whether this link is a result of interdependent 

requirement by diatoms for both of these elements has yet to be investigated. 

4.5 Conclusions 

This work has investigated the Se requirement of two temperate and four polar 

phytoplankton strains. We investigated the growth of the cells and, for the first 

time, changes in photosynthetic parameters following Se additions. Se was shown 

to affect the photosystem of species with a Se growth requirement, although the 

exact role it has in the phytoplanktonic cell is still unknown. The absolute 

biological requirement for Se was, thus, demonstrated in laboratory cultures, with 

varying requirements among different species. 
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Chapter 5 

5.1 Introduction 

The elemental requirements of phytoplankton vary across species and 

communities, and much remains unknown about the micronutrient requirements 

for a variety of trace elements, including selenium [ 1]. Laboratory culturing 

typically offers information on a single phytoplankton species under very 

controlled conditions. Such experiments do not replicate what is happening in the 

natural oceanic environment, where many phytoplankton species and other micro­

organisms coexist and compete for the available nutrient supply. The role of the 

key micronutrient, iron (it has an essential role in photosynthesis and for the 

metabolism of nitrate [l, 2]) has been investigated in a number of ways for its 

effect on phytoplankton growth. In addition to laboratory culturing studies, 

utilising monocultures, there have been field investigations into the Fe 

requirements of the natural phytoplankton assemblage - artificial and natural in­

situ fertilisation experiments (e.g. [3-5]) and deckboard incubations (e.g. [6-9]). A 

comparison of these two field methods reports that in-situ and ship-board 

incubations display the same trends, with the effects of Fe addition being 

enhanced in the bottle experiments [5]. The in-situ studies into Fe limitation on 

community structure have shown the effect of addition is not seen equally across 

the phytoplankton community, with larger phytoplankton size fractions, such as 

diatoms (8-20 µm), showing the greatest increase in biomass [5]. 

In-situ Fe experiments were originally trialled after results from deckboard 

incubation experiments showed increased growth when Fe was added to low Fe 

waters [10]. The in-situ experiments offer the chance for a longer, and more 

natural, investigation into the addition of Fe on the natural plankton assemblage. 

However, whilst there are many advantages to in-situ additions, these experiments 

are logistically very difficult and resource-consuming. Deckboard experiments 

provide an easier method to gain an insight into micronutrient requirements of 

phytoplankton communities. 
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5.1.1 Deckboard incubations 

Deck incubations have been used previously to test for various macronutrient and 

metal/micronutrient limitations (or co-limitations) [7, 11-15]. Limitation is 

suggested by the elemental requirements of phytoplankton in laboratory cultures, 

combined with the measured concentration of the required element in regions of 

the ocean. 

Iron is the most investigated element for phytoplankton requirements, with studies 

often investigating the addition of Fe in combination with macro- or micro­

nutrients. Calculations of the half-saturation constant for growth (the 

concentration which supports half the maximum uptake rate, reflecting the ability 

of the phytoplankton cells to use low levels of required nutrients [ 16]) can provide 

insight into which phytoplankton species are limited in a region. Half-saturation 

constants vary between different phytoplankton species. For example, the values 

for half-saturation of Fe for a variety of diatoms were found to vary over three 

orders of magnitude [ 17], with small cells generally having the lowest values and 

Antarctic species having values at or above the measured dissolved Fe 

concentration [ 17]. 

Whilst Fe limitation has been proven and additions have shown clear 

enhancement of phytoplankton growth, the investigation of other micronutrients 

has not provided as clearly defined results. Zinc has been investigated in the high 

latitude oceans. In the Pacific sector of the Southern Ocean, where the measured 

bioavailable Zn concentrations suggest possible limitation, Zn additions did not 

stimulate phytoplankton growth [12]. Crawford and colleagues [18] report Zn 

additions in the Northeastem Subarctic Pacific Ocean to increase small diatoms 

and coccolithophores in comparison to control samples. They also see a shift in 

phytoplankton size when comparing combined Zn and Fe additions with only Fe 

additions, with an increase in the chlorophyll of the 0.2-5 µm fraction and a 

decrease in >20 µm fraction, compared to Fe addition alone. 

Cobalt has also been added in deckboard experiments. In the Costa Rica up­

welling region, when added with Fe, it was seen to increase chlorophyll to a 

greater extent than either metal added individually [13]. Any addition of Co was 
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seen to increase the numbers of cyanobacteria Synechococcus, which Fe alone did 

not do. Interestingly, the addition of vitamin B12, which has Co as its metal centre, 

in experiments in the Ross Sea (Antarctica) showed no effect. However, Fe added 

alone increased growth, and B12 in combination with Fe caused even greater 

growth enhancement than single metal additions (in two of three sample sites) 

[ 15]. In this case, the site that did not show the enhancement had high levels of 

bacteria and archaea (thought to supply vitamin B12 to phytoplankton), and had a 

different initial phytoplankton community, with more sea-ice diatoms present. 

The samples with only vitamin B12 addition had decreased numbers of 

Phaeocystis antarctica relative to diatoms, while those samples with only Fe 

addition had increased cell numbers. This indicates that vitamin B12 additions, in 

combination with Fe, affect different phytoplankton species in different ways. 

This study also highlights how the initial community present can affect the 

observed results. 

The effects of manganese have been studied intensively in the Atlantic sector of 

the Southern Ocean [9]. In one set of five experiments, daily Mn additions led to 

increased chlorophyll and a final particulate organic carbon (POC) concentration 

almost equal to that seen with Fe addition. The other four experiments showed 

more modest trends with a slight increase in chlorophyll and decreases in 

macronutrient concentrations, with POC relatively unchanged. 

Other micronutrients are yet to be investigated for their effects on the natural 

phytoplankton assemblage using deckboard incubations, and even fewer studies 

have involved a sequence of additions. As was suggested by Crawford et al. [ 18] 

for Zn and Bertrand et al. [15] for vitamin B12, these elements are thought to 

behave more subtly, influencing individual growth rates and community structure 

as a result of the varied requirements by different phytoplankton species. With Fe 

addition, if a site is initially limited, growth will ensue so long as there are 

sufficient nutrients. Other micronutrients, which are not essential to all 

phytoplankton, may only show results depending on initial community structure, 

and are likely to influence this structure disproportionately, favouring some 

phytoplankton species and enhancing their growth whilst others are unaffected. 
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Deckboard incubations have been criticised for the exclusion of large grazers 

from the incubations bottles. The exclusion of the larger grazers can result in 

higher biomass and chl a, which can be misinterpreted as a result of the macro­

and/or micro-nutrient additions to the bottles [19]. It is a difficult question to 

determine what causes the increased biomass, however, this can be overcome by 

measuring the physiological state of the cells, as this will be unaffected by grazing 

effects [20]. 

5.1.2 This study 

The study of Se speciation in the Southern Ocean (Chapter 3) showed the lowest 

surface water Se(IV) levels were found at the northern end of the transect, in 

temperate waters of the subtropical zone. This study region is not isolated from 

land for reolian and riverine or continental shelf inputs, so it could be expected to 

have higher concentrations because of these inputs. However, the region had 

higher biological productivity, possibly causing the observed decrease in Se 

concentrations. The laboratory culturing studies of two temperate phytoplankton 

species (Chapter 4) showed the coccolithophore Emiliania huxleyi to have a Se 

growth requirement, whilst cyanobacteria Synechococcus sp. did not. Previous 

reported studies have focussed on temperate species, so there is more information 

available on the Se growth requirements of various strains from these regions of 

the ocean (Chapter 4, Table 4.1 ). The laboratory culturing studies for Se have 

shown there to be a wide variety of species I strains that require Se. This growth 

requirement has not been linked to the natural environment, where Se(IV) levels 

are much lower than those used in the requirement studies (0.1 nM compared to 

~ 1 nM or higher). The importance of Se on growth and phytoplankton community 

composition is yet to be demonstrated. Harrison et al. [21] calculated the half­

saturation constant of Se for growth for four diatom strains (three coastal and one 

open ocean) to be ~1 nM for each of these species. They theorised that the growth 

rate of some phytoplankton species may be Se-limited in oligotrophic waters. This 

work investigated what discernable effects the addition of Se had on natural 

phytoplankton assemblages in the temperate ocean, in this case the Tasman Sea. 

152 



Chapter 5 

5.2 Characteristics of the Study Region 

The Tasman Sea lies between Australia and New Zealand, extending northeast to 

the island archipelago of New Caledonia, Vanuatu and Fiji. Near the Australian 

coast, the East Australian Current (EAC) is a strong current, transporting waters 

from the tropics southward along the continental shelf. Along its path eddies peel 

off into the Tasman Sea (Figure 5.1 ). The Tasman Front (TF) is a continuation of 

the EAC; it is a strong eastward flow, at 33°-35°S, but is not a water mass 

boundary. Its path meanders across the Tasman Sea, to the northern tip ofNew 

Zealand, guided by a series of submarine ridges [22], ensuing from a coupling of 

the upper ocean with the bottom topography [23]. The Tasman Sea region is a low 

nutrient, low chlorophyll area, where the plankton community is dominated by the 

smaller size classes. It is possibly a nitrogen-limited region. The main aim of the 

fieldwork was to develop a nitrogen budget for the region. 

There are a number of permanent warm-core eddies, associated with the extension 

of the Tasman Front flow, around the north and east coast of New Zealand ([23] 

and references cited within; Figure 5.1), which may vary in size and strength but 

are found in preferred locations, thought to be dictated by topography. Owing to 

few oceanographic surveys in the region, one of these eddies has only recently 

been formally identified- the Norfolk Eddy ([23]). Its formation is near the 

Norfolk Ridge, and it is centred in the Norfolk Basin. 
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Figure 5. I Illustration of the surface currents and eddies within the Tasman Sea. 

The four components of the separating East Australian Current (EAC) flow are 

designated A-D; B designates the flow associated with the Tasman Front. The 

four quasi -permanent eddies surrounding New Zealand are: I Norfolk Eddy; II 

North Cape Eddy; III East Cape Eddy; and IV Wairarapa Eddy. X and Y 

designate anti-cyclonic recirculation cells associated with the EAC [23]. 

Approximate locations of the study sites are indicated: COST- blue crosses; 

NCycle - red cross. 

5.3 Methods 

5.3.1 Study Area and Sampling 

5.3.1.J Water Sampling 

Water samples were collected from the region in the late austral summer 2005 and 

2006. Initial investigations were conducted in the northern Tasman Sea during 

February 2005, COST voyage (Characterising Oligotrophic Sub-Tropical waters), 

on RV Tangaroa. The COST voyage aimed to identify the limiting factors in the 

oligotrophic waters of the Tasman Sea. It occupied four stations - two north and 
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two south of the Tasman Front. Samples for Se were collected at three stations­

two north of the Tasman Front (Station 1 - 30° 2' S 168° 44' E; Station 2-

280 43' S 171° 7' E) and one south of the Tasman Front ( 36° 36' S 170° 42' E).A 

large internal tide (12 h) was discovered, causing the thermocline and deep 

chlorophyll maximum to move by ~20 m, depending on the tide phase. This tide 

may have transported nutrients from the deeper waters into the euphotic zone. 

On this voyage, samples were collected for Se, by Go-Flo bottles on Kevlar line, 

into acid-cleaned 250-ml HDPE bottles and were stored in the dark unacidified at 

room temperature. Samples were not acidified as they were collected by a third 

party. The correct acid was unavailable onboard. Samples were acidified upon 

arrival in Australia; this was a maximum of three weeks after collection. Samples 

were analysed (after a maximum storage period of 6 months), in the shore-based 

laboratory. The stability of Se speciation in samples is discussed in Chapter 2 and 

samples are shown to be stable under these conditions. 

More detailed investigations and the deckboard incubations were conducted on 

the NCycle voyage during March-April 2006 on RV Tangaroa (TAN0603). The 

NCycle voyage aimed to characterise nitrogen pathways, including supply, 

fixation, mixing and fate, in this region. The voyage hoped to constrain the 

nitrogen cycle in the waters of the region as the FeCycle voyage had achieved for 

Fe in the subantarctic waters south of New Zealand [24]. A single site was 

investigated because of time constraints. It was selected based upon predicted 

current speeds using sea surface height altimetry data supplied by Melissa Bowen 

(NIWA). The chosen site was 29° 30' S 170° 15 'E, north of the Tasman Front, 

where current speeds were ~O. l m s-1
• A thermistor chain drifter buoy was 

deployed to provide a reference point for sampling throughout the 13-d station 

occupation. 

For most deckboard studies, surface seawater is collected and placed into 

containers (1-241), and various additions are made to investigate the desired 

parameters. To ensure the water sampled is uncontaminated, it needs to be 

collected by various specialised trace-metal sampling methods (e.g. [25]). 

Commonly used methods for discrete sampling include GoFlo or Niskin-X bottles 
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suspended on Kevlar hydroline or on a trace-metal-clean rosette, while underway 

sampling can be achieved using a clean sub-surface towfish. Collection of 

samples whilst underway means there may be some small variability between 

samples, and therefore samples should be homogenised before trace metal 

addition. Samples for various parameters are measured at the start of the 

experiment and then at regular time points through the experiment, which can last 

up to 16 days. The length of the experiment is chosen to suit the region in which 

the samples were collected For example, in colder regions, phytoplankton have 

slower growth rates, and therefore, a longer period is needed to see possible 

effects of the additions. 

On this voyage, a towed torpedo-shaped fish (deployed to the starboard side) was 

used for surface water sampling. It pumped water from ~ 1 m depth while RV 

Tangaroa was steaming at 1-12 knots [26]. To prevent trace-metal contamination, 

the fish was epoxy coated, with all LDPE tubing (acid cleaned) and an all-Teflon 

diaphragm pump. The water was pumped into a Class-100 clean air laboratory 

where it was subsampled. Samples were collected for the deckboard incubations 

and dissolved Se analysis. 

Depth samples were collected for dissolved Se from both 10-1 Niskin samplers 

deployed on a standard conductivity-temperature-depth (CTD) rosette, and from 

5-1 Niskin-1010X samplers deployed on a new autonomous 1018 intelligent 

rosette system specially adapted for trace metal work (General Oceanics) [27]. All 

samples were collected into 250-ml acid-cleaned HDPE bottles. 

For the trace-metal clean cast, the rosette was lowered to depth and slowly raised 

to the surface. The bottles were automatically closed at the appropriate depth, 

whilst the rosette was still moving, using a pre-programmed pressure sensor. The 

trace-metal rosette sampled to a maximum depth of 400 m. Once on-board, the 

sampling bottles were plastic-bagged and transferred to a Class-100 clean air 

laboratory for processing. The bottles were pressurised (with N2) and samples 

filtered (0.2 µm cartridges, Sartobran®). Additional samples were taken 

unfiltered, to compare with filtered samples, as samples from the standard CTD 

(on this voyage and 19S, Chapter 3) were not filtered. 
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5.3.1.2 Deckboard incubations 

Two incubation experiments were conducted during the voyage, each for the 

duration of four days. The first experiment investigated the effect of Fe and Se, 

whilst the second experiment looked at N and Se (Table 5 .1 ). The second 

experiment investigated N as other incubation experiments on board showed the 

region to be N-limited. 

Table 5.1 Deckboard incubation experiment treatments 

Treatments 

Incubation 1 Control +Fe +Se +Fe+Se 

Incubation 2 Control +N +Se +N+Se 

Additions to the incubations were at the following levels: 

Fe as F e(III) 

Se as Se(IV) 

N asN03 

2nM 

2nM 

2nM 

Fe atomic absorption standard solution, 

1000 µg r1 in 1 % HN03 (Sigma-Aldrich) 

Se02 (Spex Industries) 

NaN03 (Sigma-Aldrich; Chelex-extracted to 

remove possible metal contamination) 

The samples for the deckboard incubations were pumped directly from the 

towfish into the 4-1 polycarbonate bottles used in the experiment. The samples 

were not pre-filtered to exclude grazing organisms and all treatments were run in 

duplicate. 

To minimise risk of contamination, the bottles were tightly closed, the caps sealed 

with Parafilm and taped before being placed in the incubators. The incubators 

were supplied with flowing surface seawater to maintain the in-situ temperature 
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(~20-21°C) and shaded to ~40% ambient light levels. The bottles were randomly 

placed in the incubators to minimise any bias due to their position. 

Incubated bottles were subsampled each 24 h for the next 4 days. The sampling 

occurred at the same time each day, in the early evening as this was when the 

experiments were first placed in the incubators. The duration of the experiments 

was chosen to allow two sets of incubations to be run during the site occupation, 

thus allowing investigations into questions raised by the first set of incubations. 

In addition, this experimental design allowed for sufficient volume to be taken for 

subsampling each day to measure the desired parameters, whilst minimising the 

possibility of bottle effects having an influence on results. 

For subsampling, the bottles were transferred to the clean laboratory where 

samples were collected daily for flow cytometry counts, nutrients (phosphate, 

nitrate, nitrite and ammonium), Se(IV), and fast repetition rate fluorometry 

(FRRF). The limited volume of water available meant that repeat measurements 

were not possible. 

Samples for Se(IV) were filtered (0.2 µm, Sartobran® cartridge filter) and 

acidified, and stored at ambient temperature in the dark. Analysis was conducted 

on return to the shore-based laboratory, within 4 months of sampling, following 

the methods outlined in Chapter 2. Phytoplankton and bacterial abundance were 

determined by flow cytometry following the procedures of Hall et al. [28]. 

Samples were analysed immediately upon sampling, with Trucount™ beads 

(50 µl) being added to each sample as a tracer. Bacteria, Synechococcus, 

Prochlorococcus and eukaryotic phytoplankton were distinguished in each 

sample. Nutrient measurements were made immediately upon sampling. 

Ammonium determination was by diffusion (of ammonia) through a Teflon 

membrane into a fluorescent reagent with fluorometric detection. Nitrate, nitrite 

and phosphate were determined using a three-channel 'nanomolar-level' 

analytical system with colorimetric analytical techniques, using waveguide 

capillary cells of 2-m path length [29, 30]. Limits of detection and precision for 

this method are reported in Woodward and Rees [30], and for this voyage were 
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nitrate - 1 ± 0.1 nM; nitrite - 0.5 ± 0.03 nM; and phosphate - 2 ± 0.2 nM [31]. 

Silicate was not measured routinely. 

Photosynthetic capacity of the phytoplankton community was measured by FRRF. 

All samples were dark-acclimated for 20-40 min prior to measurement in the dark 

chamber of the FRRF. 

5.4 Results and discussion 

5.4.1 COST results 

The COST voyage was the preliminary investigation of the region. It provided the 

information necessary for the following NCycle voyage. Briefly, chl a was 

typically 0.4-0.6 µg r 1
, with 62-89% of chl a concentration in the <2 µm size 

fraction. This size fraction was seen to dominate at all stations and all depths. 

Nitrate and phosphate concentrations were below LOD in the surface water (N 

s0.07 µM; P s0.03 µM), only detectable below 90 m (except at the southern most 

station, 50 m). The values then rose steadily with depth, to maximum values of 

~35 µMN and ~2.5 µM P. 

Se concentrations were low in the surface waters, with increases with depth (as 

seen in Chapter 3) (Figure 5.2). The highest values for organic Se were seen in the 

station south of the Tasman Front. These were the highest values seen throughout 

the field studies undertaken for this thesis, with a maximum value of 0 .17 nM, 

compared to the highest value seen on the 19S transect of 0.09 nM. The maximum 

value of 0.17 nM accounted for 27.8% of Se at that station depth, with Se(IV) 

being 0.06 nM. 

The precision of the Se measurements for inorganic Se is ±0.02 nM; and for 

organic Se is ±0.04 nM. 
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Figure 5.2 Concentration of Se at three stations during the COST voyage a) full 

water column samples; b) top 500 m samples NB different scale for 

concentrations between a and b, Station 1 and 2 were located north of the Tasman 

Front; Station 3 was south of the Tasman Front. 
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5.4.2 NCycle 

The NCycle voyage was a more thorough approach to the investigation of 

nitrogen cycling in this region. This voyage had the advantage of nanomolar 

nutrient measurements to properly quantify the levels of nitrate, nitrite, 

ammonium and phosphate in the surface waters, which had been below the 

detection limit of traditional nutrient analytical techniques used 'on the COST 

voyage. 

An important source of nitrogen to N-limited regions is from nitrogen fixing 

phytoplankton such as Trichodesmium. A bloom of Trichodesmium occurred 

during this voyage, resulting in nitrogen fixation from the atmosphere. 

5.4.2.1 Filtered vs. unfiltered samples 

The Se data for the Southern Ocean transect presented in Chapter 3, was obtained 

from analysis of unfiltered samples, with an appropriate justification contained in 

that chapter. In this investigation, two sets of samples-unfiltered and filtered­

were collected from the trace-metal clean rosette at selected casts. For this work, 

and the comparison between traditional and clean sampling techniques (5.4.2.2), 

care was taken to ensure samples were collected at similar times of day to avoid 

changes in upper water column concentrations because of the large internal tide. 

The comparison of Se values between the two will show if significant amounts of 

Se are present in the particulate phase that is measured by the HG-CT-AFS 

technique. This is not expected, owing to the low biomass of the sampling region. 

Previous reported Se studies have used various approaches for filtration. These 

include the use of 0.4-µm polycarbonate filter membranes inline for surface 

samples and 0.45-µm filter cartridge for depth samples [32]; underway surface 

samples were 0.4-µm cartridge filtered but for depth profile samples, filtration 

was unreported [33]; and others recorded no information on filtration, presumably 

because there was no filtration done. 
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The comparison of filtered and unfiltered samples showed there to be no variation 

in Se concentration due to filtration (Figure 5.3). In areas with high productivity 

and biomass, filtration may be necessary for those samples but otherwise it 

appears to not be required. This confirms that the results obtained for 19S transect 

are valid (as presented in Chapter 3). 

5.4.2.2 Traditional vs. clean sampling techniques 

The comparison between unfiltered and filtered samples was conducted to see if 

there was a difference in Se concentration as a result of particulate material in the 

samples. A further comparison test was done to test for contamination by 

traditional sampling methods; it used samples collected from the trace-metal-clean 

rosette and the standard CTD rosette. The length of Kevlar line onboard, meant 

the trace-metal-clean rosette could only be deployed to 400 m. The samples were 

unfiltered. For some elements, it is essential that samples are collected by 

specialist 'clean' techniques. Se is not as easily contaminated and has historically 

been sampled by both traditional [32, 34] and clean [33] techniques. 

The two sampling methods did not appear to affect Se concentration in the 

samples in this instance (Figure 5.3). There was some small variability in the 

upper water column samples but this was most likely because of the interval 

between the different samplings. These differences were not significant and may 

even be due to experimental variability. 
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Figure 5.3 Selenium concentrations found in filtered and unfiltered samples from 

the trace-clean rosette and unfiltered samples by traditional sampling techniques 

5.4.2.3 Deckboard incubations 

5.4.2.3a Flow cytometry 

Incubation experiment 1, that of Fe and Se addition (Table 5.1 ), showed no 

difference in numbers of the different phytoplankton types between the control 

samples and any of the treated samples (Figure 5.4). Other incubations conducted 

onboard (data not shown) at the same time as the first incubation experiment, 

revealed there to be a primary limitation of growth because of low nitrogen and a 

possible secondary limitation because of low phosphate in this region. Phosphate 

only became limiting upon addition ofN, which stimulated growth until P was 

exhausted. These experiments showed no responses in any treatments other than 

when N was added. The concentration of nitrogen at the start of incubation 

experiment 1 was 11.8 nM (Figure 5.5b); phosphate, was not as low, at 50.3 nM 

(Figure 5.5a). 
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In incubation experiment 2, nitrogen was added to overcome the N-limitation. In 

this experiment, no change was seen for the eukaryotes during the experiment 

(Figure 5.4a). The larger cells might have needed longer to show growth changes, 

possibly due to a lag phase or simply because of the relatively slower growth rate. 

There was a small increase in Synechococcus for the +N+Se treatment (Figure 

5 .4b ). This was not seen for the single addition of either N or Se. The laboratory 

monoculture experiments (Chapter 4) did not show Synechococcus to have a Se 

growth requirement. Plausible reasons why the combination of N and Se caused 

an increase, while N alone did not, are considered below. 

Prochlorococcus numbers were greatly increased in the N treatment (Figure 5.4c). 

This increase was also seen in the +N+Se treatment, but to a much smaller degree. 

It is not known why the increase was smaller when there was the same level ofN 

added. The results for the N treatment could have arisen from Synechococcus 

being out-competed by Prochlorococcus in the mixed community incubations. 

Whereas, the large increases of Synechococcus in the +N+Se treatment, at the 

apparent expense of Prochlorococcus, might be explained by the Se addition 

having a negative effect on Prochlorococcus; no reports were found for the 

laboratory study of Se and Prochlorococcus, so this effect of Se is unknown, and 

remains to be tested. 

Bacteria appear to be unaffected by any of the treatments of +N+Se, with no 

variation from the control (Figure 5.4d). The experiments were not filtered so 

grazers may have had a role in limiting bacterial increases. 
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5.4.2.3b Nutrient concentrations 

There was no difference in the nutrient concentrations between the different 

treatments, except for when N was added. Silicate was not routinely measured, 

but its concentration was high ( <18 µM) and in excess in this region, and thus not 

considered to limit growth. In the first experiment, N limited growth so there was 

no drawdown of the other macronutrients. 

In the second experiment, when N was added (+N and +N+Se treatments), there 

was a decrease in nitrate (from the addition level of 5 µM to ~2 µM; data not 

shown for +N and +N+Se) and an increase in nitrite over the course of the 

experiment (Figure 5.5c). The control sample showed higher nitrate levels at days 

1 and 2. The reasons behind the observed increase are unknown. There is large 

variability in the measurement on day 2, only one of the control bottles had an 

elevated value. Both of the control bottles had increased cell counts for a 

cyanobacteria, one was elevated for Synechococcus at day 1 and the other for 

Prochlorococcus at day 2 (Figure 5.5b, c).The reason for these elevated counts is 

unknown. 

There was no increase in the ammonium concentration over the 4-d experiment 

(Figure 5.5d). There was a slight drawdown of phosphate with the N treatment 

(from background levels of ~60 nM to ~41 nM for both +N and +N+Se; 

compared to ~53 nM for non-N treated, Figure 5.5a), ifthe experiment had run 

longer than 4 days, this might have become greater. This incubation ran over a 

short time frame, other studies, typically colder regions where productivity rates 

are lower, have run up to 16 days [11]. A study in the northeast Pacific, 

investigating Fe and Zn, ran for 8 d with nutrient drawdown only becoming clear 

at day 4 [14]. 
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5.4.2.3c Photosynthetic activity by fast repetition ratejluorometry 

Quantum yield (Fv!Fm) is a measure of the efficiency of the photosystem of 

phytoplankton cell, or more simply a measure of how healthy the cells are. Higher 

quantum yields indicate more efficient light capture. Quantum yield was 

discussed in Chapter 4, with data presented there obtained from a pulse amplified 

modulation (PAM) fluorometer. PAM fluorometry lacks the sensitivity needed for 

the study of phytoplankton in the open, oligotrophic ocean, whereas FRRF can be 

used with very low chlorophyll a concentrations, <0.1 mg m-3 [35]. Although 

these systems work in different ways, they both measure the photosystem 

efficiency of the cells. The data for quantum yield for the two methods is related 

but in a non-linear fashion [35]; and through the use of a non-linear function, it is 

possible to compare data [36]. 

Previous field experiments have shown quantum yield to be an early indicator of 

limitation in the cell, and it can be seen before a reduction in cell numbers. Boyd 

and colleagues [37] report that Fv!Fm is the "most representative index of iron 

concentrations on algal physiology", as seen for the phytoplankton bloom during 

an in-situ Fe fertilisation experiment in the subarctic Pacific Ocean (measured by 

FRRF). They saw an increase in the quantum yield within 24 h of Fe addition, 

with steady values for 11 d, followed by a decrease as the Fe supply was 

exhausted, demonstrating Fe addition had increased the photosynthetic capacity of 

the cells. 

F 0, the background fluorescence of the cells, gives a representation of the 

concentration of all photosynthetic pigments present in the cells, not just 

chlorophyll a [38]. It shows the light absorbing capacity of the cells. Maximum 

values of 0.65 can be expected for Fv/Fm in nutrient-replete laboratory cultures 

[39]. Coastal samples have been seen to approach 0.60, as have in-situ Fe 

fertilisation experiments [ 40], whereas Fv!Fm rarely exceeds 0.5 in open ocean 

samples [ 41]. 

169 



Afield study exploring phytoplankton community requirement for selenium 

The F vfF m values in the first incubation experiment were all higher than seen in 

the second experiment (Figure 5.6a), but no difference could be seen between any 

of the treatments. In the second experiment, N addition, alone and with Se, caused 

increases in Fv!Fm values. The Se only addition initially showed no effect, but by 

T4 the increases were comparable to those ofN addition. Higher values indicate 

cells are less stressed. The values observed here were not near the maximum that 

can be expected, although oligotrophic waters have been seen to have lower 

values with significant variability between different ocean areas ([ 42] and 

references within). It is unknown if this increase at T4 is representative of the 

effect of Se. It may be that cells take longer to respond to this micronutrient 

addition. Further experiments need to be conducted to confirm that this is the 

case. 

F 0 did vary between treatments, with an increase to almost double the other 

treatments when N was added (Figure 5.6b ). F0 is the direct measure of 

fluorescence of dark-adapted cells, compared to Fv!Fm which is a measure of the 

change between initial and maximum fluorescence. An increase in F0 shows that 

there are more cells, thus higher fluorescence emission. 
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5.5 Conclusions 

The incubation experiments showed small increases in photosynthetic efficiencies 

of the cells for the addition of N and Se. The addition of N also showed a slight 

draw down of P. Increases in picoplankton were seen for N additions. 

The results for the incubations show that, in the short time of these incubations, 

Se(IV) addition did not significantly affect growth rates or photosynthetic 

parameters. The length of the experiments needs to be considered, as to whether it 

was enough time for shifts in the community structure. The presence of surplus 

cellular Se may also have been sufficient not to allow Se-depletion to become 

evident in the limited time of the experiments. The depletion of the additional Se 

may have been the result of Se being taken up into a pool of intracellular Se, 

surplus to requirements, as has been reported in laboratory culturing work [ 43]. 

No measures were made of intracellular Se to confirm this. 

Extending the duration of the incubations, under the current design, may lead to 

more information on Se effects but it introduces the complication of bottle effects. 

A much more detailed experimental plan would need to be in place to determine 

which parameter was causing any observed changes. Either having larger 

incubation bottles, to allow for daily subsampling; or have smaller bottles that are 

sacrificially sampled (needing more bottles to allow for sufficient time points over 

the course of the experiment) could overcome these problems. 

The site chosen was an N-limited region. During the course of the study a 

Trichodesmium bloom occurred. The presence of these nitrogen-fixing 

phytoplankton meant that there was an external source ofN to these waters. This 

additional source ofN may have alleviated some of the N limitation. However, 

these experiments did not show Se to influence growth alone or in combination 

with N. The primary characteristic of the region is N limitation. 

Even though there was no discemable response from Se addition in these 

experiments, they still provide interesting information. Before an experiment like 
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this is attempted again, consideration should be given to responses that we did not 

look for here. The use of other analytical tools, such as pigment analysis or 

microscope counts - to provide more information of what species are present 

through the course of the experiment - could be used for greater understanding of 

possible effects of the various additions. Site selection and timing of the 

experiments are two important points. Four days does not appear long enough in 

this region to see if Se was having an effect. The increase in quantum yield, for 

Incubation 2 at T4, with +Se to the level seen in +N treatments is a tantalising 

data point. If it is a true value, Se may have an important role in this region. 

Unfortunately, the experiments concluded and have left that question unanswered. 

A longer term study, such as that done by Sherrard et al [32], where the Se 

concentrations and site characteristics over different seasons were measured, may 

provide additional insight into the natural cycling of Se in a particular region and 

allow a more informed choice for the appropriateness of addition experiments. 

Further work is required, to overcome the differences between laboratory 

culturing and natural community deck incubations, before the role Se has in 

influencing ecosystem health becomes clear. 
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6.1 Conclusions and future work 

Oceanographic studies of Se have previously involved the collection of samples at 

sea with subsequent measurement upon return to a shore-based laboratory. The 

method developed in this work allows the measurement of Se species onboard a 

research vessel, dispensing with the need for storage of samples. Analysis is by 

use of one compact instrument, with various pretreatments to determine the three 

Se species (Chapter 2). The stability of the Se species influenced the choice of 

pretreatment conditions. The optimised methods have been tested to demonstrate 

that they provide unambiguous results. The analytical methodology was validated 

both in the shore-based laboratory (Chapter 2) and at sea (Chapter 3). 

The AFS instrument is also capable of measuring the volatile Se species (such as 

dimethylselenide and dimethyldiselenide) if samples are analysed immediately by 

a purge-and-trap technique [1] - this was not investigated in this work, but would 

represent an interesting extension. Data on volatile Se species have only been 

reported in the eastern Mediterranean Sea [2], and the North Atlantic Ocean [3], 

where it was shown that the Se gases were closely linked to the S gases. 

Since Se(IV) is both a minor and bio-assimilated species in the surface ocean, and 

it is the directly measured form in HG-CT-AFS, it was anticipated that 

preconcentration could be required in oligotrophic waters. A literature review 

indicated that co-precipitation would be a suitable method, and in particular, using 

lanthanum hydroxide (Chapter 2). This was confirmed through experiments, 

although preconcentration proved unnecessary for the seawater samples measured 

over the course of this work. Subsequently, Tang et al. [4] have published an on­

line preconcentration system for AFS using the same strategy. 

The oceanographic study during the CLIV AR 19S transect in the Indian sector of 

the Southern Ocean generated a new and extensive Se dataset for this ocean 

region (Chapter 3). The lowest values of Se were seen in the subtropical waters at 

the northern end of the transect, increasing southward to the continent 

(corroborated by work in the Tasman Sea, Chapter 5). The relation between Se 

and macronutrients was not as clear in this study as had been shown previously. 
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Further Se data are required to investigate if the biogeochemical links between Se 

and macronutrients in the Southern Ocean are different to those in other areas of 

the ocean. The ratio of Se(IV) to Se(VI), previously reported as a possible tracer 

for water masses, showed deep water values close to unity, higher than previously 

reported. Very few deep-water profiles exist for Se and the comparison between 

deep-water ratios has not been for individual water masses. With the collection of 

more deep samples it would be possible to compare like with like and see how the 

Se(IV)/Se(VI) ratio is related to water-mass properties and age. 

Seasonal changes in the concentration and speciation of Se, in response to 

phytoplankton blooms, is an interesting area that has only recently been studied. 

Sherrard et al. [ 5] reported data indicating seasonal control on Se distributions, 

but over a single year for two stations separated by the Subtropical Front. The 

limited studies on Se need to be expanded to fully understand Se distribution in 

the ocean and its interactions with chemical and physical features. Results should 

be intercalibrated to ensure that published analytical methods are comparable. 

Since most of the data for Se in the ocean are from the GEOSECS era in the 

1970s, it would be beneficial to include Se measurements on a limited number of 

research voyages that form part of the new GEOTRACES program. 

The laboratory culturing study for Se requirement confirmed results from 

previous studies [6, 7], and built on these by exploring other regulatory factors 

(Chapter 4). Emiliania huxleyi was shown to have an absolute growth requirement 

for Se, while Synechococcus sp. did not show a requirement for, nor any observed 

influence of, the metalloid. The investigation into Se requirement of four 

Antarctic phytoplankton species-the first study of this kind-revealed varying 

Se requirements. The Se requirement of phytoplankton appears to be very species­

dependent. 

This work is the first to report on the effect that Se has on the photosynthetic 

systems of phytoplankton. Cellular pigments were seen to change when no growth 

change was detected. The effect of Se is greater than a growth requirement; it 

appears to play a role in the photosystems of phytoplankton cells, possibly 

influencing the ability to deal with excessive irradiance and reactive oxygen 
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species. Se is a known essential component of glutathione peroxidase, an enzyme 

that protects cells from oxidative damage. Whilst this enzyme has been identified 

in only a few phytoplanktonic cells, Se may play a similar role (via different 

chemistry) in many phytoplanktonic cells. 

Studies into the effect of Se on a phytoplankton community assemblage, in a low 

Se region, did not provide conclusive results (Chapter 5). Experiments such as 

this have successfully shown Fe limitation [8], but results for other micronutrients 

are less cl,early defined [9-11]. For these elements and Se, additional thought may 

need to be applied in determining the best experimental design, duration, and 

which are the best monitored parameters to discern their subtle influence over 

surface ocean biogeochemistry. 

The role of Se in the phytoplankton cell is a major question that still needs 

answering. Its requirement by diatoms, and role in enzymatic processes for 

silicate formation in sponges [12], could mean Se has a role in Si skeleton 

formation of diatoms, although with them it is a non-enzymatic process. The need 

for Se by the most abundant of the coccolithophores (E. hux), leads to the 

question of a role in the formation of the carbonate skeleton or coccoliths. Work 

by Fabry [13] showed E. hux to have a Se growth requirement, however, this was 

strongest in the non-calcifying strains. Further investigation is needed to 

determine if Se does have an effect on silicification and calcification rates. 

Another function of Se may be in cell structure and cell division. When E. hux 

was grown in Se-depleted media, the cells reached a very large size (~135 µm3 

compared to ~58 µm3 for Se-replete cells) as they appeared to be unable to divide. 

It has been shown that E. hux have larger cell size under stressful conditions (e.g., 

elevated irradiance [14]) so the increase cell size seen in this work may simply be 

a result of stress. However, Se deficiency has been reported to cause changes in 

cell shape and size for diatom Thalassiosira pseudonana [ 15], and the blockage of 

cell division resulting in enlarged cells. This cellular size increase was also seen 

in a range of diatoms under Se-depleted conditions [7]. The role of Se in 

maintaining cell structure needs to be investigated more fully, with identification 

of Se-containing proteins and their function being an important study. 
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Whatever is the role of Se in the cell, demonstrating its effect on phytoplankton in 

the natural environment will be a more difficult task. In the Southern Ocean, Se 

does not appear to be limiting under current conditions. The subtropical regions 

are more likely to be areas where Se might have a limiting or co-limiting role. 

This role is likely to be a subtle one, influencing community structure, since the 

laboratory culturing studies have shown Se requirement to differ greatly among 

species. The chemical composition of the environment as well as physical 

characteristics will also have an effect on the role of Se, as Se uptake has been 

shown to vary with light [ 16] and nutrient concentrations [ 17]. 

The role and determination of organic Se is the other important question to arise 

from this work. As discussed in 3 .3 .10, reported values for organic Se differ 

greatly and it is unknown what compounds are being measured. Work on 

laboratory cultures, if done with sufficient volume and phytoplankton cell 

concentrations, could allow the measurement of the different compounds present 

in the culture media, or possibly even intracellularly. It has been shown that 

chromatographic analytical techniques are capable of separating and detecting 

many organic Se compounds [ 18], although extremely sensitive detection would 

be required in this instance. Knowledge of the nature of the organic Se complexes 

produced by various phytoplankton species in mono-cultures would allow 

development of experiments to test for these species in the natural environment. 

Recently, marine proteomics studies have discovered seven new Se protein 

families [ 19]. The Se proteins have been found, it is now up to us to determine 

what their role is. 

Anther topic of interest, which has not been touched on in this study, is the link 

between Se and Sin the oceanic cycle. As was mentioned previously, the oceanic 

volatile Se species have been linked to volatile S species. Se has been linked to S 

in terrestrial studies, with studies on the two elements in sediments [20] and with 

bacteria reducing Se in the same way as S [21]. In the ocean, S is present as a 

major ion, sol-, with minor interactions with biology. The other minor forms of 

S, reduced forms and I or organic forms are the ones of greater interest. The areas 

of study that would be interesting are the volatile species and the organic species. 

One of the major volatile Se species is an Se-S compound [3]. The two elements 
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are clearly linked, but the manner in which this occurs would be of great interest. 

It might be a way in which to gain a greater understanding of the nature of the 

organic Se fraction in the ocean, and how it cycles. 
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Appendix 1 

CLIV AR 19S selenium dataset 



station 
2 
2 
2 
2 
2 
2 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

lat long depth Se(IV) Se(VI) Total Se org Se botsalt 
-34.82 115.00 16.03 0.0946 0.3242 0.5128 0.0940 35.8270 
-34.82 115.00 40.87 0.1046 0.3413 0.5215 0.0756 35.8213 
-34.82 115.00 60.20 0.1278 0.3308 0.5349 0.0762 35.7990 
-34.82 115.00 81.44 0.1168 0.3556 0.5572 0.0848 35.8101 
-34.82 115.00 101.47 0.1479 0.3485 0.5477 0.0514 35.8114 
-34.82 115.00 128.84 0.1400 0.3625 0.5514 0.0489 35.8280 
-35.65 115.01 11.36 0.1681 0.4257 0.6362 0.0425 35.8783 
-35.65 115.01 51.13 0.1424 0.3843 0.6155 0.0888 35.6979 
-35.65 115.01 101.91 0.1754 0.3926 0.6475 0.0795 35.4589 
-35.65 115.01 151.66 0.1434 0.4185 0.6523 0.0904 35.2149 
-35.65 115.01 200.85 0.1543 0.4229 0.6489 0.0718 35.0945 
-35.65 115.01 300.42 0.1621 0.4430 0.6536 0.0485 34.8319 
-35.65 115.01 401.96 0.1974 0.4575 0.6845 0.0295 34.7223 
-35.65 115.01 551.10 0.1784 0.4734 0.6737 0.0219 34.5948 
-35.65 115.01 700.55 0.1670 0.4764 0.6834 0.0400 34.4768 
-35.65 115.01 850.55 0.1714 0.4920 0.7220 0.0586 34.3831 
-35.65 115.01 1002.15 0.1945 0.4815 0.7129 0.0369 34.3942 
-35.65 115.01 1302.23 0.2129 0.5012 0.7493 0.0352 34.5132 
-35.65 115.01 1699.28 0.2733 0.4943 0.7592 -0.0083 34.6572 
-35.65 115.01 2100.84 0.2590 0.4831 0.7533 0.0111 34.7160 
-35.65 115.01 2501.00 0.2478 0.4795 0.7303 0.0029 34.7306 
-35.65 115.01 2899.57 0.2549 0.4847 0.7386 -0.0010 34.7321 
-35.65 115.01 3250.58 0.2699 0.4727 0.7403 -0.0024 34.7308 
-35.65 115.01 3500.25 0.2802 0.4521 0.7379 0.0056 34.7282 
-35.65 115.01 3999.55 0.2695 0.4815 0.7457 -0.0052 34.7223 
-35.65 115.01 4502.33 0.2732 0.4973 0.7802 0.0096 34.7135 
-35.65 115.01 4996.79 0.2639 0.4992 0.7721 0.0090 34.7074 
-35.65 115.01 5137.56 0.2793 0.5196 0.8032 0.0043 34.7070 

phos 
0.13 
0.11 
0.15 
0.15 
0.14 
0.14 
0.10 
0.13 
0.33 
0.42 
0.54 
0.85 
1.01 
1.27 
1.67 
2.01 
2.21 
2.39 
2.37 
2.32 
2.29 
2.28 
2.27 
2.26 
2.27 
2.27 
2.27 
2.30 

nit 
0.0 
0.0 
0.0 
0.3 
0.4 
0.4 
0.0 
0.0 
2.1 
4.2 
6.3 

11.2 
14.5 
18.7 
24.9 
29.9 
32.1 
34.1 
33.9 
33.1 
32.7 
32.1 
32.1 
32.4 
32.1 
32.1 
32.3 
32.4 

sil 
2.6 
2.6 
2.7 
2.8 
2.8 
2.8 
2.5 
2.0 
1.8 
1.8 
2.0 
3.1 
4.3 
6.8 

16.2 
30.6 
46.2 
69.2 
88.7 

101.3 
109.1 
114.2 
116.5 
118.9 
121.3 
123.6 
126.2 
126.7 

do temp Chi a 
236.8 20.091 
237.8 20.019 
232.7 19.504 
229.8 19.355 
233.1 19.318 
234.3 
237.0 
251.5 
250.7 
254.5 
254.0 
253.6 
249.6 
237.4 
207.l 
200.9 
193.0 
171.4 
164.5 
172.9 
181.3 
188.4 
194.2 
196.3 
201.0 
209.6 
213.7 

18.986 0.21675 
19.499 
17.065 
14.589 
13.048 
12.136 
10.420 
9.599 
8.693 
7.140 
5.077 
3.883 
3.035 
2.633 
2.271 
1.919 
1.697 
1.523 
1.429 
1.290 
1.059 
0.966 
0.966 

Al-2 



station 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
20 
20 
20 
20 
20 
20 
20 
20 
20 

lat long depth Se(IV) Se{VI) Total Se org Se botsalt 
-39.70 115.00 10.68 0.1390 0.3567 0.5823 0.0867 35.2353 
-39.70 115.00 51.59 0.1304 0.4016 0.5794 0.0474 35.4569 
-39.70 115.00 99.82 0.1235 0.3916 0.5925 0.0773 35.3504 
-39.70 115.00 150.08 0.1416 0.4004 0.5817 0.0397 35.1246 
-39.70 115.00 200.65 0.1453 0.3891 0.5786 0.0441 35.1063 
-39.70 115.00 300.78 0.1549 0.4265 0.6019 0.0204 34.9194 
-39.70 115.00 400.46 0.1605 0.4315 0.6232 0.0312 34.7429 
-39.70 115.00 501.39 0.1788 0.4272 0.6160 0.0101 34.6717 
-39.70 115.00 598.84 0.1786 0.4314 0.6188 0.0088 34.6289 
-39.70 115.00 699.74 0.1678 0.4408 0.6329 0.0242 34.5619 
-39.70 115.00 850.72 0.1838 0.4522 0.6437 0.0077 34.4560 
-39.70 115.00 1000.62 0.1831 0.4818 0.6641 -0.0008 34.3705 
-39.70 115.00 1249.60 0.2703 0.4704 0.7084 -0.0323 34.5094 
-39.70 115.00 1500.06 0.2677 0.4726 0.7315 -0.0088 34.5279 
-39.70 115.00 2000.23 0.2742 0.4944 0.7630 -0.0055 34.6805 
-39.70 115.00 2502.51 0.2792 0.4879 0.7750 0.0079 34.7357 
-39.70 115.00 2999.73 0.2769 0.4886 0.7712 0.0057 34.7414 
-39.70 115.00 3501.82 0.2732 0.4901 0.7763 0.0129 34.7290 
-39.70 115.00 4001.13 0.2839 0.5085 0.7932 0.0009 34.7098 
-39.70 115.00 4810.27 0.2942 0.5495 0.8594 0.0157 34.7041 
-42.51 114.99 10.55 0.1152 0.3640 0.5286 0.0494 34.7096 
-42.51 114.99 55.51 0.1259 0.3514 0.5178 0.0406 34.6950 
-42.51 114.99 100.42 0.1353 0.3858 0.5214 0.0003 34.7477 
-42.51 114.99 154.06 0.1512 0.3746 0.5389 0.0131 34.7221 
-42.51 114.99 201.06 0.1714 0.3872 0.5816 0.0230 34.7119 
-42.51 114.99 302.18 0.2253 0.4208 0.6312 -0.0150 34.7047 
-42.51 114.99 402.26 0.1892 0.3998 0.6342 0.0452 34.6525 
-42.51 114.99 549.40 0.1900 0.4298 0.6515 0.0317 34.6613 
-42.51 114.99 700.40 0.2408 0.4313 0.6723 0.0001 34.5416 

phos 
0.26 
0.24 
0.41 
0.57 
0.59 
0.75 
0.98 
1.07 
1.15 
1.34 
1.77 
1.99 
2.26 
2.37 
2.32 
2.21 
2.18 
2.18 
2.23 
2.25 
0.66 
0.81 
0.82 
0.87 
0.90 
0.95 

1.04 
1.37 

nit 
1.0 
0.6 
4.0 
6.5 
7.1 
9.9 

13.9 
15.7 
17.2 
20.2 
26.3 
30.4 
33.5 
35.l 
33.7 
32.1 
32.0 
31.7 
32.2 
32.5 

9.0 
10.6 
11.8 
13.0 
13.3 
14.0 

15.9 
20.7 

sil 
0.7 
0.9 
2.1 
2.2 
2.4 
3.0 
4.3 
4.9 
5.5 
8.2 

18.0 
29.0 
51.3 
70.5 
88.l 
94.0 

102.2 
112.0 
122.9 
126.9 

1.8 
3.3 
3.4 
4.0 
4.2 
5.1 

5.4 
8.9 

do temp 

65.3 15.851 
270.5 14.393 
252.7 13.496 
256.0 12.144 
260.8 11.857 
263.2 10.829 
254.3 9.771 
254.7 9.280 

8.982 
8.401 
6.845 
5.066 
3.583 
3.025 
2.536 
2.134 
1.720 
1.301 
0.897 
0.856 

Chla 

252.3 
234.4 
205.1 
205.5 
189.6 
169.0 
171.3 
187.2 
197.6 
207.1 
215.9 
217.1 
278.9 
289.0 
271.9 
274.2 
273.4 
271.9 

12.497 0.39009 
10.436 0.49558 
10.016 0.11202 

261.6 
239.3 

9.740 0.01916 
9.579 
9.479 
9.414 
9.186 
8.287 

Al-3 



station 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
28 
28 
28 
28 
28 
28 
28 
28 
28 
28 
28 
28 
28 
28 
28 
28 
28 
28 

lat 

-42.51 
-42.51 
-42.51 
-42.51 
-42.51 
-42.51 
-42.51 
-42.51 
-42.51 
-42.51 
-42.51 
-46.51 
-46.51 
-46.51 
-46.51 
-46.51 
-46.51 
-46.51 
-46.51 
-46.51 
-46.51 
-46.51 
-46.51 
-46.51 
-46.51 
-46.51 
-46.51 
-46.51 
-46.51 

long depth 

114.99 848.72 
114.99 999.87 
114.99 1149.49 
114.99 1351.70 
114.99 1548.66 
114.99 1801.05 
114.99 2100.30 
114.99 2499.37 
114.99 2901.56 
114.99 3700.19 
114.99 4401.10 
115.04 10.68 
115.04 62.19 
115.04 91.52 
115.04 121.21 
115.04 149.17 
115.04 201.21 
115.04 302.34 
115.04 401.00 
115.04 603.03 
115.04 699.77 
115.04 848.62 
115.04 1000.38 
115.04 1201.59 
115.04 1400.97 
115.04 1602.88 
115.04 1899.83 
115.04 2200.44 
115.04 2802.05 

Se(IV) 

0.2497 
0.2737 
0.2656 
0.3105 
0.3007 
0.3311 
0.3466 
0.4017 
0.3753 
0.4001 
0.3901 
0.1559 
0.1566 
0.1461 
0.1489 
0.1960 
0.2191 
0.2084 
0.2365 
0.2973 
0.2977 
0.3435 
0.4392 
0.4332 
0.4356 
0.4481 
0.4672 
0.5062 
0.4836 

Se(VI) 

0.4737 
0.4649 
0.4807 
0.5017 
0.5293 
0.5322 
0.5345 
0.5412 
0.5411 
0.5489 
0.5520 
0.3959 
0.3792 
0.4002 
0.4070 
0.4100 
0.4414 
0.4617 
0.4638 
0.4589 
0.4796 
0.4975 
0.4899 
0.4900 
0.5056 
0.5295 
0.5200 
0.5260 
0.5002 

Total Se org Se botsalt 

0.7188 -0.0045 34.4430 
0.7213 -0.0174 34.5216 
0.7437 -0.0026 34.3353 
0.7933 -0.0189 34.3982 
0.8213 -0.0087 34.4932 
0.8765 0.0132 34.6036 
0.8731 -0.0081 34.6929 
0.9479 0.0050 34.7477 
0.9011 -0.0153 34.7478 
0.9341 -0.0149 34.7121 
0.9219 -0.0202 34.7045 
0.6450 0.0933 34.2182 
0.6296 0.0937 34.4558 
0.6373 0.0910 
0.6403 0.0845 34.4311 
0.6491 0.0431 34.4915 
0.7210 0.0605 34.5207 
0.7196 0.0495 34.4723 
0.7649 0.0646 34.4413 
0.8039 0.0477 34.3870 
0.8298 0.0526 34.3778 
0.8890 0.0480 34.3135 
0.8920 -0.0371 34.3227 
0.9218 -0.0015 34.4093 
0.9430 0.0017 34.4948 
0.9901 0.0125 34.5809 
0.9793 -0.0079 34.6752 
1.0057 -0.0264 34.7310 
0.9519 -0.0320 34.7467 

phos 

1.67 

2.10 
2.27 
2.32 
2.34 
2.23 
2.09 
2.14 
2.24 
2.24 
1.00 
0.89 
1.08 
1.13 
1.12 
1.13 
1.17 
1.25 
1.60 
1.77 
1.98 
2.14 
2.28 
2.33 
2.31 
2.20 
2.13 
2.13 

nit 
26.1 

32.3 
34.7 
36.2 
35.3 
34.0 
31.8 
32.1 
33.3 
33.4 
14.1 
12.4 
14.0 
15.l 
15.5 
15.9 
16.9 
18.5 
24.2 
26.9 
30.1 
32.2 
33.8 
34.4 
34.0 
32.7 
31.4 
31.3 

sil 
16.6 

34.3 
51.8 
64.0 
74.6 
81.2 
83.5 
97.3 

121.0 
125.5 

1.1 
1.8 
2.0 
3.7 
4.6 
5.4 
6.0 
7.0 

14.0 
19.2 
26.7 
36.7 
51.7 
62.9 
69.9 
74.8 
79.1 
96.9 

do 

212.4 
194.7 
180.3 
174.8 
183.1 
197.6 
203.2 
214.2 
216.6 
290.4 
287.5 
291.3 
284.8 
281.1 
277.1 
278.1 
267.9 
235.4 
220.5 
222.8 
214.7 
193.6 
182.l 
180.2 
184.7 
193.8 
204.6 

temp 

6.890 
5.466 
4.226 
3.353 
2.894 
2.629 
2.428 
2.151 
1.722 
0.942 
0.828 

Chia 

9.791 0.28557 
9.836 0.29344 
8.649 0.35112 
8.497 0.13653 
8.652 0.07050 
8.629 
8.251 
7.949 
6.748 
6.000 
4.650 
3.821 
3.262 
2.882 
2.657 
2.478 
2.254 
1.673 

Al-4 



station 
32 
32 
32 
32 
32 
32 
32 
32 
32 
32 
32 
32 
32 
32 
32 
32 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 

lat long depth Se(IV) Se(VI) Total Se org Se botsalt phos nit 
-48.46 115.03 20.79 0.2004 0.4031 0.6439 0.0404 34.1522 1.18 16.3 
-48.46 115.03 86.57 0.1847 0.4211 0.6710 0.0652 34.1917 1.24 16.7 
-48.46 115.03 101.46 0.1902 0.4387 0.6698 0.0409 34.2446 1.30 17.l 
-48.46 115.03 201.36 0.2217 0.4530 0.7050 0.0303 34.2898 1.41 20.2 
-48.46 115.03 301.49 0.2322 0.4742 0.7420 0.0356 34.2111 1.51 22.1 
-48.46 115.03 399.04 0.2566 0.4700 0.7516 0.0250 34.2888 1.71 25.3 
-48.46 115.03 501.55 0.2569 0.4912 0.7902 0.0421 34.3012 1.87 27.7 
-48.46 115.03 600.06 0.2997 0.4800 0.8258 0.0461 34.3120 1.98 29.3 
-48.46 115.03 704.05 0.3438 0.4860 0.8747 0.0449 34.2765 2.09 31.0 
-48.46 115.03 799.61 0.3766 0.4878 0.8908 0.0265 34.3049 2.18 32.3 
-48.46 115.03 1200.80 0.4387 0.5285 0.9744 0.0072 34.5073 
-48.46 115.03 1603.50 0.4583 0.5200 0.9931 0.0148 34.6576 
-48.46 115.03 2004.22 0.4969 0.5370 1.0199 -0.0140 34.7329 
-48.46 115.03 2502.56 0.4923 0.5458 1.0399 0.0018 34.7508 
-48.46 115.03 3201.44 0.5100 0.5671 1.0620 -0.0152 34.7259 
-48.46 115.03 4019.50 0.4820 0.5610 1.0417 -0.0013 34.7149 
-49.99 
-49.99 
-49.99 
-49.99 
-49.99 
-49.99 
-49.99 
-49.99 
-49.99 

115.05 
115.05 
115.05 
115.05 
115.05 
115.05 
115.05 
115.05 
115.05 

11.44 0.1877 0.3972 0.6508 0.0659 33.9510 
82.58 0.1691 0.4137 0.6613 0.0786 33.9813 

101.48 0.1813 0.4407 0.6841 0.0620 34.0187 
199.55 0.2038 0.4568 0.7298 0.0691 34.0488 
299.61 0.2013 0.4890 0.7599 0.0696 34.1416 
402.23 0.2252 0.4816 0.7260 0.0192 34.2035 
500.21 0.2594 0.5020 0.8006 0.0393 34.2777 
600.76 0.3388 0.5245 0.8699 0.0065 34.3549 
700.53 0.3351 0.5369 0.8681 -0.0039 34.4236 

-49.99 115.05 850.74 0.3530 0.5452 0.8948 -0.0035 34.5066 
-49.99 115.05 1001.04 0.3769 0.5414 0.9369 0.0185 34.5877 
-49.99 115.05 2401.19 0.5171 0.5693 1.0638 -0.0226 34.7366 
-49.99 115.05 3852.45 0.4776 0.5492 1.0306 0.0038 34.6962 

2.33 
2.24 
2.14 
2.11 
2.20 
2.24 
1.38 
1.58 
1.58 
1.69 
1.89 
2.04 
2.17 
2.27 
2.31 
2.31 
2.29 
2.15 
2.26 

34.3 
32.9 
31.3 
30.7 
31.8 
32.l 
20.9 
22.3 
22.7 
25.4 
28.6 
30.7 
32.4 
34.3 
34.4 
34.4 
33.7 
31.2 
32.5 

sil do temp Chl a 
1.4 296.9 8.430 0.26374 
1.9 297.1 7.752 0.33113 
3.4 293.0 7.475 0.32768 
7.3 277.6 7.046 0.04736 

10.0 282.0 6.036 
15.7 246.7 5.845 
21.0 232.9 5.221 
26.5 225.6 4.665 
32.7 228.0 3.801 
38.9 218.9 3.514 
66.3 
75.8 
80.9 
92.7 

114.0 
120.0 

1.9 
4.6 
5.9 

14.3 
22.5 
30.3 
40.5 
51.0 
59.0 
66.4 
72.4 

106.2 
127.1 

181.9 
183.4 
195.1 
204.3 
210.1 
216.3 
310.8 
317.3 
310.9 
301.0 
267.4 
245.9 
223.4 
205.2 
192.9 
183.7 
180.9 
207.4 
220.3 

2.818 
2.485 
2.199 
1.777 
1.202 
1.043 
6.462 
4.545 
4.586 
4.050 
3.745 
3.414 
3.101 
2.857 
2.759 
2.635 
2.520 
1.393 
0.628 

Al-5 



station 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
41 
41 
41 
41 
41 
41 
41 
41 
41 

lat long depth Se(IV) Se(VI) Total Se org Se botsalt phos nit 
-51.01 115.07 12.60 0.2361 0.4002 0.7052 0.0689 33.9020 1.55 25.3 
-51.01 115.07 50.59 0.1797 0.3994 0.6700 0.0909 33.9053 1.57 24.9 
-51.01 115.07 85.65 0.1693 0.4361 0.6796 0.0742 33.9362 1.72 25.6 
-51.01 115.07 141.07 0.1756 0.4453 0.6862 0.0653 33.9743 1.84 27.2 
-51.01 115.07 200.54 0.1960 0.4545 0.6854 0.0349 34.0318 1.97 30.0 
-51.01 115.07 304.37 0.1882 0.4495 0.7013 0.0636 34.2217 2.20 33.4 
-51.01 115.07 401.19 0.2183 0.4782 0.7267 0.0303 34.3713 2.31 34.7 
-51.01 115.07 499.40 0.2456 0.4917 0.7384 0.0012 34.4521 2.34 35.5 
-51.01 115.07 601.67 0.2305 0.5185 0.7519 0.0028 34.5462 2.30 34.7 
-51.01 115.07 700.73 0.2578 0.5054 0.7725 0.0093 34.5866 2.30 34.6 
-51.01 115.07 848.76 0.2590 0.5369 0.7949 -0.0010 34.6499 
-51.01 115.07 1003.53 0.2739 0.5214 0.8079 0.0126 34.6886 
-51.01 115.07 1201.47 0.3180 0.5289 0.8520 0.0050 34.7290 
-51.01 115.07 1403.02 0.3614 0.5417 0.8815 -0.0216 34.7465 
-51.01 115.07 1604.04 0.3887 0.5336 0.9048 -0.0175 34.7514 
-51.01 115.07 1800.62 0.4144 0.5275 0.9308 -0.0111 34.7467 
-51.01 115.07 2301.18 0.3861 0.5113 0.9206 0.0233 34.7272 
-51.01 115.07 2596.00 0.3860 0.5239 
-51.01 115.07 3201.21 0.4107 0.5433 
-51.01 115.07 4027.55 0.4807 0.5522 
-53.20 115.00 345.99 0.3290 0.4815 
-53.20 115.00 398.15 0.3635 0.4885 
-53.20 115.00 501.92 0.3823 0.4902 
-53.20 115.00 700.94 0.3795 0.4879 
-53.20 115.00 899.39 0.3747 0.4892 
-53.20 115.00 1500.94 0.3788 0.4800 
-53.20 115.00 2200.07 0.4188 0.5227 
-53.20 115.00 2800.39 0.4209 0.5234 

0.9194 0.0095 34.7153 
0.9682 0.0142 34.6935 
1.0056 -0.0273 34.6856 
0.8723 0.0619 34.4132 
0.8900 0.0380 34.4895 
0.9075 0.0349 34.5701 
0.8897 0.0223 34.6603 
0.8865 0.0226 34.7123 
0.8823 0.0235 34.7453 
0.9319 -0.0096 34.7229 
0.9500 0.0057 34.6950 

-53.20 115.00 3982.26 0.4803 0.5469 1.0247 -0.0025 34.6819 

2.25 
2.20 
2.13 
2.09 
2.09 
2.10 
2.17 
2.21 
2.27 
2.28 

2.33 
2.25 
2.17 
2.12 
2.07 
2.15 
2.20 

33.4 
32.8 
31.5 
30.9 
30.9 
31.0 
31.8 
32.4 
33.0 
32.8 

35.5 
34.6 
33.5 
32.0 
31.0 
31.8 
32.6 
32.8 

sil do temp Chl a 
2.3 328.8 4.431 
2.4 328.4 4.285 0.19118 
6.3 335.0 2.949 0.23113 

18.3 335.4 1.892 0.06750 
30.1 318.7 1.316 
45.9 248.7 2.021 
58.8 206.2 2.284 
66.2 192.7 2.276 
71.1 182.8 2.423 
74.2 181.6 2.315 
77.6 
80.3 
81.3 
85.0 
93.9 
94.2 

110.9 
115.5 
129.7 
133.0 

71.6 
75.0 
79.6 
82.7 
93.5 

112.4 
125.7 
136.4 

183.0 
186.3 
194.6 
200.2 
203.4 
206.6 
210.6 
214.2 
223.7 
226.8 
202.6 
183.8 
180.3 
183.2 
190.7 
204.3 
212.3 
220.6 
229.7 

2.269 
2.170 
2.116 
1.954 
1.804 
1.605 
1.149 
0.916 
0.462 
0.366 
2.032 
2.246 
2.283 
2.220 
2.102 
1.659 
1.047 
0.545 
0.259 

Al-6 



station 
42 
42 
42 
42 
42 
42 
42 
42 
46 
46 
46 
46 
46 
46 
46 
46 
46 
46 
46 
46 
46 
46 
46 
46 
50 
50 
50 
50 
50 

lat 
-53.82 
-53.82 
-53.82 
-53.82 
-53.82 
-53.82 
-53.82 
-53.82 

long 
114.98 
114.98 
114.98 
114.98 
114.98 
114.98 
114.98 
114.98 

-56.20 114.99 
-56.20 114.99 

depth Se(IV) Se(VI) Total Se 
15.85 0.2552 0.4007 0.7189 
50.51 0.2197 0.4326 0.7275 
80.25 0.2420 0.4518 0.7320 

151.43 0.2371 0.4432 0.6905 
200.50 0.2602 0.4575 0.7814 
252.06 0.2852 0.4700 0.7898 
302.67 0.2791 0.4792 0.8311 
351.12 0.3290 0.4662 0.8694 

org Se botsalt 
0.0631 33.8359 
0.0752 33.8398 
0.0381 33.9374 
0.0102 33.9753 
0.0637 34.0802 
0.0346 34.1962 
0.0727 34.3084 
0.0742 34.4101 

16.65 0.2426 0.4571 0.7581 0.0583 33.8294 
51.08 0.2561 0.4818 0.7601 0.0223 33.8324 

-56.20 114.99 80.93 0.2668 0.4664 0.7520 0.0187 33.8554 
-56.20 114.99 149.80 0.3313 0.4667 0.7831 -0.0149 33.9340 
-56.20 114.99 201.59 0.3193 0.4682 0.7917 0.0042 34.0369 
-56.20 114.99 249.70 0.3262 0.4917 0.8278 0.0098 34.1921 
-56.20 114.99 300.31 0.3117 0.5096 0.8664 0.0451 34.3141 
-56.20 114.99 398.05 0.3185 0.5358 0.9027 0.0484 34.4376 
-56.20 114.99 499.35 0.4071 0.5421 0.9603 0.0110 34.5287 
-56.20 114.99 699.46 0.4171 0.5426 0.9967 0.0370 34.6333 
-56.20 114.99 850.03 0.4602 0.5550 1.0300 0.0148 34.6782 
-56.20 114.99 1002.16 0.5219 0.5389 1.0548 -0.0060 34.7115 
-56.20 114.99 1602.40 0.4907 0.5499 1.0292 -0.0114 34.7477 
-56.20 114.99 2502.79 0.4590 0.5540 1.0326 0.0196 34.7143 
-56.20 114.99 3000.24 0.4713 0.5475 1.0063 -0.0125 34.6949 
-56.20 114.99 4584.00 0.4559 0.5565 1.0320 0.0195 34.6711 
-58.63 114.98 141.52 0.2925 0.4591 0.7641 0.0125 33.9833 
-58.63 114.98 202.19 0.2905 0.4702 0.7730 0.0123 34.3061 
-58.63 114.98 301.66 0.3169 0.4812 0.8404 0.0423 34.4895 
-58.63 114.98 403.99 0.3450 0.4881 0.8652 0.0321 34.5828 
-58.63 114.98 502.66 0.3882 0.4947 0.8802 -0.0027 34.6236 

phos 
1.55 
1.56 
1.79 
1.92 
2.05 
2.18 
2.27 

1.43 
1.48 
1.79 
1.89 
2.05 
2.20 
2.29 
2.36 
2.35 
2.26 
2.24 
2.18 
2.11 
2.22 
2.25 
2.27 
1.97 
2.29 
2.38 
2.32 
2.36 

nit 
24.8 
24.9 
26.3 
28.8 
31.1 
33.0 
34.3 

24.8 
25.1 
26.9 
28.5 
31.6 
34.8 
35.3 
35.9 
35.7 
34.1 
33.3 
32.7 
31.5 
32.7 
33.4 
33.4 
29.4 
34.1 
35.2 
34.5 
33.8 

sil 

5.4 
5.4 

14.0 
26.0 
36.7 
47.7 
57.3 

3.6 
4.8 

14.4 
22.1 
33.5 
46.5 
57.0 
66.5 
72.2 
76.8 
80.6 
82.4 
92.9 

116.6 
125.0 
138.5 
39.7 
60.2 
73.8 
79.2 
81.l 

do 
324.6 
326.3 
341.4 
331.7 
295.6 
254.6 
223.8 
198.7 
329.0 
329.7 
335.6 
333.9 
304.1 
254.2 
218.2 
192.4 
180.1 
180.8 
184.3 
190.1 
204.2 
213.2 
221.5 
238.7 
346.2 
228.8 
182.7 
175.9 
177.8 

temp Chl a 
4.866 0.13898 
4.705 0.34416 
2.205 0.45108 
1.289 0.12052 
1.404 
1.708 
1.919 
2.237 
4.380 0.24555 
4.158 0.31735 
2.723 0.39254 
1.609 0.06966 
1.311 
1.752 
2.006 
2.247 
2.342 
2.332 
2.189 
2.116 
1.690 
0.909 
0.532 
0.027 

-0.765 0.05931 
1.455 
2.168 
2.226 
2.210 

Al-7 



station 
50 
50 
50 
50 
50 
50 
50 
50 
53 
53 
53 
53 
53 
53 
53 
53 
53 
53 
53 
53 
53 
53 
53 
53 
53 
53 
51 
51 
51 

lat long depth Se(IV) Se(VI) Total Se org Se botsalt phos nit 
-58.63 114.98 600.87 0.4076 0.4974 0.9011 -0.0039 34.6595 2.24 33.4 
-58.63 114.98 752.92 0.4215 0.5120 0.9386 0.0051 34.6998 
-58.63 114.98 1051.68 0.4509 0.5333 1.0096 0.0253 34.7382 
-58.63 114.98 1151.90 0.4851 0.5291 1.0179 0.0037 34.7431 
-58.63 114.98 1600.56 0.4700 0.5472 1.0047 -0.0126 34.7412 
-58.63 114.98 2699.89 0.4765 0.5500 1.0194 -0.0071 34.6970 
-58.63 114.98 3902.44 0.4780 0.5569 1.0290 -0.0059 34.6772 
-58.63 114.98 4608.05 0.4719 0.5685 1.0582 0.0179 34.6607 
-60.40 114.99 10.63 0.2715 0.4146 0.7550 0.0689 33.8769 
-60.40 114.99 49.95 0.3287 0.4411 0.8619 0.0921 33.9067 
-60.40 114.99 90.57 0.3019 0.4375 0.7862 0.0468 33.9767 
-60.40 114.99 135.80 0.3299 0.4447 0.8296 0.0550 34.0310 
-60.40 114.99 182.88 0.3500 0.4620 0.8214 0.0094 34.2898 
-60.40 114.99 250.94 0.3748 0.4814 0.8675 0.0113 34.4799 
-60.40 114.99 300.68 0.3789 0.4798 0.8929 0.0342 34.5356 
-60.40 114.99 401.59 0.3911 0.4847 0.8738 -0.0019 34.6058 
-60.40 114.99 501.19 0.4187 0.4900 0.9176 0.0089 34.6642 
-60.40 114.99 651.48 0.4216 0.4866 0.9030 -0.0051 34.7076 
-60.40 114.99 802.48 0.4110 0.4892 0.8955 -0.0047 34.7288 
-60.40 114.99 1001.59 0.4198 0.4908 0.9266 0.0160 34.7390 
-60.40 114.99 1502.29 0.4510 0.4893 0.9529 0.0126 34.7329 
-60.40 114.99 1801.28 0.4450 0.4871 0.9352 0.0031 34.7231 
-60.40 114.99 2402.05 0.4598 0.5067 0.9570 -0.0096 34.7001 
-60.40 114.99 3200.52 0.4634 0.5101 0.9726 -0.0009 34.6780 
-60.40 114.99 3900.23 0.4619 0.5177 1.0190 0.0394 34.6737 
-60.40 114.99 4530.24 0.4609 0.5199 0.9828 0.0019 34.6629 
-62.42 114.43 11.14 0.3149 0.4155 0.8049 0.0745 33.8384 
-62.42 114.43 56.30 0.3058 0.4285 0.7952 0.0608 34.0199 
-62.42 114.43 81.47 0.2974 0.4441 0.8123 0.0708 34.1269 

2.19 
2.10 
2.09 
2.11 
2.24 
2.25 
2.25 
1.69 
1.73 
1.97 
2.05 
2.30 
2.41 
2.39 
2.35 
2.28 
2.20 
2.17 
2.15 
2.17 
2.21 
2.27 
2.30 
2.28 
2.28 
1.83 
1.94 
2.05 

33.2 
31.0 
30.7 
31.l 
32.5 
32.4 
32.6 
26.3 
26.7 
28.0 
29.7 
33.6 
34.8 
34.8 
33.9 
32.8 
31.9 
31.4 

31.1 
31.4 
32.4 
32.6 
32.6 
32.4 
27.5 
28.5 
29.9 

sil do temp Chl a 
83.0 180.8 2.149 
86.0 
90.1 
95.9 

103.0 
128.4 
138.3 
138.8 
26.6 
25.6 
33.9 
40.3 
59.3 
73.2 
76.4 
80.6 
83.l 
85.6 
87.4 
91.1 

102.5 
110.7 
123.7 
131.7 
133.6 
138.2 
41.6 
50.9 
57.2 

186.7 
196.6 
198.9 

2.081 
1.903 
1.828 

206.2 1.441 
218.8 0.563 
233.3 0.097 
245.7 -0.101 
346.2 2.060 
350.8 1.497 
353.8 0.075 
337.9 -0.291 
242.6 1.255 
193.3 1.929 
184.6 2.045 
182.3 2.048 
183.3 2.062 
189.5 1.992 
194.7 1.924 
200.0 1.776 
208.2 1.326 
210.l 1.082 
218.1 0.627 

0.221 
237.l 0.026 
242.7 -0.083 
351.0 0.615 
337.7 -0.528 
312.0 -0.555 

Al-8 



station 
57 
57 
57 
57 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 
64 

lat 
-62.42 
-62.42 
-62.42 
-62.42 
-63.66 
-63.66 
-63.66 
-63.66 
-63.66 
-63.66 
-63.66 
-63.66 

long 
114.43 
114.43 
114.43 
114.43 
112.60 
112.60 
112.60 
112.60 
112.60 
112.60 
112.60 
112.60 

depth 

111.60 
171.78 
250.99 
301.43 

10.38 
40.90 
63.89 
87.69 

131.03 
181.63 
251.00 
302.83 

Se(IV) 
0.3058 
0.3245 
0.3503 
0.3340 
0.3387 
0.3295 
0.3179 
0.3004 
0.3264 
0.3887 
0.3977 
0.4144 

Se(VI) 
0.4585 
0.4726 
0.5157 
0.5318 
0.4312 
0.4019 
0.4348 
0.4426 
0.4502 
0.5584 
0.5858 
0.6107 

Total Se 
0.7918 
0.8437 
0.9254 
0.8717 
0.8060 
0.7377 
0.8445 
0.8052 
0.8015 
0.9877 
1.0479 
1.0744 

org Se botsalt 
0.0275 34.3617 
0.0466 34.5166 
0.0594 34.6336 
0.0059 34.6662 
0.0361 34.0072 
0.0064 34.0281 
0.0917 34.3517 
0.0622 34.5479 
0.0248 34.6717 
0.0405 34.7052 
0.0644 34.7219 
0.0494 34.7266 

-63.66 112.60 401.79 0.4588 0.6313 1.1152 0.0251 34.7312 
-63.66 112.60 500.89 0.4635 0.6292 1.1064 0.0136 34.7315 
-63.66 
-63.66 
-63.66 
-63.66 
-64.75 
-64.75 
-64.75 
-64.75 
-64.75 
-64.75 
-64.75 
-64.75 
-64.75 
-64.75 
-64.75 

112.60 801.44 
112.60 1100.40 
112.60 2300.66 
112.60 3335.78 
111.93 8.93 
111.93 29.71 
111.93 55.37 
111.93 69.74 
111.93 89.78 
111.93 119.77 
111.93 200.39 
111.93 250.06 
111.93 302.08 
111.93 400.85 
111.93 500.75 

0.4802 
0.4831 
0.4789 
0.4517 
0.3190 
0.3212 

0.7022 
0.6751 
0.6689 
0.6940 
0.4168 
0.4347 

0.3234 0.4369 
0.3455 0.4577 
0.3758 0.4611 
0.3008 0.4932 
0.3712 0.5791 
0.4124 0.6107 
0.4833 0.7420 
0.4728 0.6842 
0.3711 0.7037 

1.2444 0.0621 34.7156 
1.1841 0.0259 34.7058 
1.1841 0.0362 34.6752 
1.1549 0.0092 34.6554 
0.7927 0.0570 33.8926 
0.8036 0.0477 33.9078 
0.8046 0.0443 34.3231 
0.8457 0.0425 34.4660 
0.8502 0.0133 34.5675 
0.8948 0.1008 34.6313 
1.0036 0.0532 34.6929 
1.0735 0.0504 34.7096 
1.2188 -0.0065 34.7143 
1.1637 0.0067 
1.1283 0.0535 34.7139 

phos 
2.24 
2.29 
2.28 
2.25 
1.85 
1.87 
2.08 
2.21 
2.22 
2.21 
2.20 
2.20 
2.17 
2.18 
2.20 
2.22 
2.27 
2.27 
1.87 
1.88 
2.10 
2.20 
2.24 
2.26 
2.22 
2.22 
2.23 
2.21 
2.22 

nit 
32.9 
33.5 
33.2 
32.8 
28.2 
28.4 
30.9 
32.6 
32.7 
32.5 
32.1 
32.1 
31.9 
31.8 
32.1 
32.5 
33.0 
32.7 
27.5 
27.6 
30.2 
31.6 
32.2 
32.3 
32.2 
32.0 
32.0 
31.8 
31.9 

sil 

70.1 
78.5 
84.4 
86.1 
55.1 
58.3 
73.7 
84.2 
90.2 
92.4 
94.3 
95.5 
98.3 

101.0 
109.0 
114.9 
126.7 
119.3 
65.9 
65.9 
74.1 
79.5 
85.2 
89.0 
93.7 
96.0 
97.4 

100.4 
103.1 

do 
247.7 
210.7 
193.9 
191.8 
347.0 
343.3 
282.2 
229.6 
203.4 
198.0 
198.7 
200.5 
201.8 
203.9 
209.3 
213.6 
232.9 
247.8 
350.6 
349.7 
292.1 
260.0 
234.8 
218.0 
205.3 
204.1 
204.8 
208.8 
210.6 

temp 

0.245 
1.056 
1.589 
1.669 

Chla 

0.276 0.30272 
0.215 0.32716 

-0.480 0.64966 
0.434 0.17194 
1.248 
1.453 
1.478 
1.461 
1.391 
1.309 
1.038 
0.744 
0.005 

-0.299 
-0.091 0.13116 
-0.160 0.16384 
-0.869 0.38032 
-0.270 1.55618 
0.233 0.14198 
0.763 0.07433 
1.191 
1.266 
1.243 
1.150 
1.049 

Al-9 



station lat long depth Se(IV) Se(VI) Total Se org Se botsalt phos nit sil do temp Chia 

64 -64.75 111.93 700.64 0.4347 0.7284 1.1472 -0.0159 34.7027 2.25 32.0 109.3 215.4 0.782 
64 -64.75 111.93 1200.98 0.4480 0.6611 1.1130 0.0039 34.6901 2.27 32.6 121.4 221.0 0.407 
64 -64.75 111.93 1800.44 0.4381 0.6577 1.1083 0.0125 34.6740 2.29 32.6 122.0 232.4 0.044 
64 -64.75 111.93 2277.37 0.4598 0.6328 1.0875 -0.0051 34.6621 2.28 32.6 116.9 242.6 -0.232 

67 -65.22 112.46 10.83 0.2993 0.4345 0.7714 0.0377 33.9098 1.89 28.4 65.1 360.2 -0.357 

67 -65.22 112.46 30.82 0.3527 0.4340 0.7962 0.0096 33.9694 1.91 28.2 64.2 359.5 -0.540 
67 -65.22 112.46 50.80 0.3527 0.4950 0.8976 0.0500 34.0569 1.91 28.3 63.5 358.3 -0.655 
67 -65.22 112.46 100.87 0.3428 0.5160 0.8704 0.0115 34.2279 2.08 30.5 66.8 328.9 -1.703 
67 -65.22 112.46 150.77 0.3785 0.4647 0.8948 0.0516 34.2869 2.13 31.3 67.2 320.7 -1.795 

67 -65.22 112.46 200.96 0.4089 0.4953 0.9280 0.0239 34.4187 2.19 31.8 74.0 282.1 -0.934 

67 -65.22 112.46 251.06 0.4164 0.5314 0.9485 0.0008 34.5295 2.23 32.3 81.3 251.6 -0.035 
67 -65.22 112.46 300.74 0.3980 0.5927 0.9944 0.0036 34.6076 2.26 32.4 86.6 229.8 0.527 
67 -65.22 112.46 350.63 0.5028 0.5109 1.0047 -0.0090 34.6619 2.25 32.4 91.l 218.4 0.901 
67 -65.22 112.46 400.76 0.4873 0.5292 1.0161 -0.0004 34.6652 2.24 32.1 92.6 221.0 0.826 
67 -65.22 112.46 500.83 0.5315 0.5242 1.0237 -0.0321 34.6699 2.25 32.0 97.1 225.5 0.649 
67 -65.22 112.46 1001.47 0.4874 0.5772 1.1001 0.0355 34.6729 2.29 32.6 114.8 228.0 0.248 

67 -65.22 112.46 1327.03 0.4990 0.5967 1.0514 -0.0443 34.6654 2.30 32.7 118.6 237.3 -0.123 
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Appendix 2 - Preparation of modified AQUIL medium 

Preparation of modified AQUIL medium 

The regular AQUIL medium was enriched in Co, Zn, Cu and Ni, while Mo and Se 

concentrations were decreased to fit concentrations in between AQUIL and artificial 

seawater recipes. The concentration ofHC03- and H3B03 was increased 3-fold to buffer 

the pH of the medium at 7.9 (with the addition of acidic trace metal solutions). The 

vitamin stock was modified to the vitamin stock present in f/2 media. Trace metal and 

EDT A concentrations were homogeneously increased as suggest by Price and Morel 

(1988/89) minimizing the effect of possible background contamination on the chemical 

speciation. 

Modified AQUIL composition: 

Inorganic seawater [M] uma g for 5 L g for 5L cone. 5x 

Solution 1: Salt anhydrous 
NaCl 4.20E-01 5.84E+01 1.23E+02 6.14E+02 

Na2S04 2.88E-02 1.42E+02 2.05E+01 1.02E+02 

KCI 9.39E-03 7.46E+01 3.50E+OO 1.75E+01 

NaHC03 7.14E-03 8.40E+01 3.00E+OO 1.50E+01 

KBr 8.40E-04 1.19E+02 5.00E-01 2.50E+OO 

H3B03 1.46E-03 6.18E+01 4.SOE-01 2.25E+OO 

NaF 7.14E-05 4.20E+01 1.SOE-02 7.SOE-02 

Solution 2: Salt hydrated 
MgCl2.6H20 5.46E-02 2.03E+02 5.55E+01 2.78E+02 

CaCl2.2H20 1.0SE-02 1.47E+02 7.72E+OO 3.86E+01 

SrCl26H20 6.38E-05 2.67E+02 8.51E-02 4.25E-01 
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Cone in 
stock 

Enrichment uma 1000 g/100 ml 

Solution 3: Macronutrients 
NaN03 3.00E-04 8.50E+01 3.00E-01 2.55E+OO 

Solution 4: Macronutrients 
NaH2P04.2H20 1.00E-05 1.56E+02 1.00E-02 1.56E-01 

Solution 5: Macronutrients 
Na2Si03.5H20 1.00E-04 2.12E+02 1.00E-01 2.12E+OO 
Solution 6: Fe-EDTA (trace 
metals) mol/L ml/100 ml 
FeCl3 2.00E-06 1.79E-02 2.00E-03 1.12E+01 ml 
NarEDTA 3.55E-05 2.92E+02 3.55E-02 1 04E+OO g 
Solution 7: Trace metals 
ZnCl2 6.00E-07 1.53E-02 6.00E-04 3.92E+OO ml 

CoCl2 1.00E-07 1.70E-02 1.00E-04 5.89E-01 ml 

MnCl2 1.35E-07 1.82E-02 1.35E-04 7.42E-01 ml 

Na2Mo04 1.00E-08 1.04E-02 1.00E-05 9.59E-02 ml 

NiCl2 6.00E-08 1 70E-02 6.00E-05 3.52E-01 ml 
NarEDTA 6.00E-05 2.92E+02 6.00E-02 1.75E+OO g 
CuCl2 1.20E-08 1.57E-02 1.20E-05 7.63E-02 ml 

Solution 8: Selenium 
Na2Se03 1.00E-09 1.27E-02 1.00E-06 7.90E-03 ml 

mg/10 
Solution 9: Vitamin Oml 

1.00E 
Thiamine HCI 2.97E-07 3.37E+02 2.97E-04 1.00E-02 +01 

5.54E 
Biotin 4.09E-09 1.36E+03 4.09E-06 5.54E-04 -01 

3.59E 
812 1.47E-09 2.44E+02 1.47E-06 3.59E-05 -02 

Note: when uma =bold (salt or vitamin from CSIRO culture collection) otherwise from newly 
bought salt (Sigma, all puriss p.a., ACS reagent, or ICP metal standard). 

Medium preparation (in the semi-clean-room): 

All containers and materials (filters, syringe, pipette tips, columns, weigh boat) had to be 

washed with acid; either using an acid bath or a direct rinse with 10% HCI. They were 

rinsed 7-times with Milli-Q and dried under laminar flow hood in the semi-clean room. 

Stock solutions and media were prepared in the semi-clean-room. Solutions were stored 

in the cold room (dark) in double plastic bag (ziplock type) in a plastic box. 

5 I of inorganic seawater (IS; solutions 1 and 2) was made. Solution 1 and 2 were 

prepared separately in 2 1 of each solution. They were then mixed and diluted to 5 I. 200 g 

of clean and activated chelex (see below) was added directly to the IS solution. The 

solution was stirred in presence of the chelex for 1 week at room temperature. The chelex 

was then removed by filtration (0.45 µm, nitrocellulose membrane). 
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Stock solutions ofmacronutrients (solution 3, 4 and 5) were prepared 1000-fold 

concentrate (100 ml in LDPE bottle) and chelexed separately through a plastic 

chromatography column at a flow rate of 1 ml min-1 (see below). 

Stock solutions of trace metals (solution 6 and 7) were not chelexed, they were filtered 

(see below). To prepare these solutions, first the EDTA was dissolved (at slightly basic 

pH ea. 8), then the pH was dropped down to 6-7 (Seastar Baseline concentrated HN03) 

and the metals (from ICP standard) were added and pH was adjusted to ea. 4-5. At this 

pH, the metals and EDT A remain soluble. Selenium was prepared separately (solution 8) 

to facilitate variations in the selenium concentration. Stock solutions had to be 1000-fold 

concentrate. 

Vitamin-mix (solution 9) was prepared 1000-fold concentrate, non-chelexed but filtered 

(see below), and stored in 1.5 ml eppendorftubes in plastic zip-lock bag in the freezer. 

Chelex preparation (in the semi-clean room): 

Chelex had to be regenerated and prepared (at room temperature) as follows, prior to 

being used. For 250 g Na-Chelex-100 or approximately 350 ml used chelex in a 1.5 1 

glass beaker with a large stirrer bar. The conditioning had to be performed under agitation 

in a fume hood. 

1/ Soak for 3-4 hours in methanol (600 ml or at least 2 bed volume) to remove the IDA 

not bound to the resin. 

21 Rinse with 3 x 1 1 Milli-Q. 

31 Soak in 1 M HCl for 3 hours (11 or minimum 2 bed volume) 

41 Rinse with 5 x 1 L Milli-Q and check the pH with pH paper. Do additional rinses if 

required to bring to neutral. 

51 Soak in 2 M NH4 (1 1 or 3 bed volume) for 1 week. Due to change in ionic charge the 

resin increases volume and becomes gelatinous. 

61 Rinse with 5x 1 1 Milli-Q, the smell ofNH3 should not be detectable. 
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71 Soak in 0.1 M HCI for 10 minutes. 

8/ Rinse with 7 x 1 1 Milli-Q and then transfer the wet resin into an acid washed plastic 

bottle. 

91 Rinse with 7 x 1 1 Milli-Q adjusted to pH 7 .8-8.0, equal to the modified AQUIL, with 

NaOH (ultrapure). Keep the resin in pH 8 Milli-Q. Sample the water for NRi and 

conductivity. Conductivity should be less than 5 µSand NRi should be low (below 0.1 

µM). 

Binding characteristics of Chelex 100: binding groups considered = IDA 
(imminodiacetic acid) 

Metal log K 

Zn 6.58 
Co 6.54 
Cu 10.1 
Fe 5.45 
Mg 2.72 
Ca 2.09 
Na 0.36 
H 9.52 
Pb 6.87 
Cd 9.26 
Sr 2.23 

Ionic strength= IM, 25 ° C (NISTver. 8.0) 

Chelexing the solutions (in the semi-clean-room): 

Before its use, the chelex had to be soaked overnight in the same medium that would be 

passed through (2 bed volume minimum). The chelex was rinsed once with 1-2 bed 

volume of the solution that was also discarded. The chelex could then be used to collect 

trace metal clean solutions. 

For the inorganic seawater (IS): ea. 200 g ofresin had to be used in 5 1. The resin was 

directly added to a carboy containing the 5 1 of IS and a large stirrer bar. The resin was 

soaked for 1 week in the IS at room temperature. The resin was then removed by a 0.45 

µm filtration (plastic filtration device). The IS was stored in the dark in the cold room in 
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double plastic bags and a plastic box. Trace metal contamination was then verified by 

ICP-MS. 

For the 100 ml macronutrient stock solutions, trace metal decontamination was performed 

in a plastic column. The plastic column must have been soaked in 0.1 % HCl overnight 

and rinsed 7 times with Milli-Q prior being used. The resin was loaded into the plastic 

columns and excess of solution was passed through and discarded. The solution was 

passed through the column at a flow rate of 1 ml min-1
. Typically, 2-3 g of chelex was 

enough for 100 ml solution (contamination level should be much lower than in the IS, 

since the amount of salt added are much lower). Trace metal contamination was checked 

for each chelexed solution (by ICP-MS). Solutions were stored in the fridge in double 

plastic bags. 

Note: The used chelex was stored in a plastic bottle in Milli-Q at room temperature to be 

regenerated. Allow a maximum of3-4 regenerations. Prior to use, the ability of the chelex 

to remove Cu (50 nM passed at a flow rate of 3 and 1 ml min-1
) would be verified. The 

flow rate of 1 and 3 ml min-1 decrease the Cu concentration by 370- and 40-fold, 

respectively. 

Sterilisation Cin lab culture room and semi clean-room): 

Inorganic seawater enriched with macronutrients needs to be microwaved. The 

microwave used was in the Chemistry lab, close to the laminar flow hood. Sixty millilitre 

of culture media (IS enriched in macronutrients) is microwaved at low intensity (90 W) 

for 4 successive heating steps (3 min, 2 min, 20 s, and 10 s ). The culture flask is sealed 

and shaken between each step. The final temperature is 96°C. Microwave heating was 

adjusted to 3 min, 2 min, 20 s, and 20 s for 75 ml culture media in a polycarbonate 

erlenmeyer (125 ml). The culture flasks were allowed to cool down at room temperature 

in the laminar flow hood. Procedure efficiency was verified using mix of non axenic 

cultures (Emiliana huxleyi, M pusilla, C. muel/eri) in 1: 1: 1 ratio. Subsequent to 

microwaving, no algal or bacterial growth could be seen on agar plate (checked for 2 

weeks at 25°C). In addition, freshly (24 h) sterilized IS with trace metals and vitamin 

addition was spread in a seawater agar plate. No bacterial contamination could be seen 

after 1 week at 25°C. 
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Note: Add 240 µl of solution ofNaHC03 and H3B03 for 60 ml solution and 300 µl for 

75 ml media. This ensures buffered pH of7.9 even after trace metal additions. The 

solution ofNaHC03/H3B03 was chelexed as for macronutrients. This solution needed to 

be added prior to microwaving. 

Trace metals and vitamin solutions were 0.2 µm filtered. Care was taken not to touch the 

solution with the black rubber of the syringe (large Zn contamination). To be done in the 

semi-clean-room. 

Trace metals and vitamins were added after microwave sterilisation of the media. The 

media was stored 1 week at incubation temperature (in double sealed plastic zip bags) to 

allow equilibration. 

Background verification (monthly): 

Contamination was verified on a regular basis by direct application of the medium to an 

agar plate (seawater agar with F/2 enrichment). Medium composition would be checked 

by ICP-MS for trace metals and major nutrient accuracy. 

The rinsing solution, NaCl 0.6 Mand NaHC03 2.38 mM (pH ea. 8), was chelexed. The 

chelexed rinsing solution was also kept for a maximum of 2 months to prevent trace 

metal contamination due to manipulation. 
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