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Abstract

Within the yacht testing community there has been a continuing interest in and

concern with, the effectiveness of techniques used to extrapolate model scale resis-

tance tests to full scale values. While there are many aspects which influence the

effectiveness of scaling results from model yacht experiments; this thesis has inves-

tigated the use of hot-films to characterise boundary layer state so as to provide

guidance in selection of model scale. A primary focus of this thesis was to ensure

the method selected to characterise the boundary layer was suitable for commercial

testing programs. The methodology included a robust technique for the installation

and application of glue-on hot-film sensors and a modified data analysis method.

The hull form used for this research was based on an International America’s Cup

Class yacht. The hull type has several features desirable in researching yacht hy-

drodynamics including; non-immersed transom, minimal distortion to the hull lines

and high aspect ratio foils.

From data obtained from the hot-film sensors a series of conclusions were made.

With turbulence stimulation, the on body flow was found to be fully turbulent

for all Froude numbers tested (0.05 to 0.46). This implies that with appropriate

boundary layer stimulation, the state of the boundary layer is not a limiting factor

in the testing of a 1/8th scale IACC yacht model. The hot-film data also showed

that the change in Cf due to waves generated by the hull were half that of the

change due to natural transition. The lower limits of applicability of the Grigson

flat plate friction line were also examined using this experimental data. For the

1/8th scale model tested these limits lie at a model ReL = 2.6× 106 (Froude num-

ber of 0.27) as opposed to that reported in his paper as ReL = 1.5 × 106 (Froude

number of 0.15).

In general it was concluded that if a yacht hull-form is slender with fair lines and no

immersed transom and testing is at model speeds above 1.28 m/s (Froude number

of 0.27) then it is possible to use a simple analytical approach to decide the correct

model scale. If there is concern that there might be an issue with transition be-

haviour it has been shown that it is possible and relatively simple to use hot-films

to verify the boundary layer state.
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Chapter 1

Introduction

From the earliest work of William Froude, for example (19), (20), (21) and (22),

there has been a continuing interest in and concern with, the effectiveness of the

techniques used to extrapolate model scale resistance tests to full scale values. This

concern has not been limited to the commercial world; with significant research into

the various aspects of the model to full scale correlation of sailing vessels. A re-

view of yacht model testing through history is provided in Debord etal.(12) and

Kirkman(28).

One of the key components of a test program is the determination of the model’s

scale. From a purely theoretical standpoint the bigger the model the better but

“...budget, time, program objectives and towing tank dimensions need to be eval-

uated jointly to achieve a practical compromise” Fassardi(18). Van Oossanen(42)

suggests a more prescriptive approach is to establish the model scale based on

achieving a minimum Reynolds number of 1x105 for the average chord length of

the smallest foil (i.e. establish the required chord of the smallest foil to achieve the

Reynolds number and then determine the rest of the model parameters from this

value).

The supposed requirement to test with large models has been perpetuated by

stories of unsuccessful vessel performance purportedly associated with incorrect

1



extrapolation of towing tank data conducted with small models. The most high

profile of these, at least in the sailing community, is the case of Mariner an Interna-

tional 12 Metre racing yacht. She was designed with an unusual aft hull form. The

model tests showed that the hull shape was effective. However, on launching and

subsequent full scale testing against other 12 Metre class yachts it was found that

Mariner exhibited poor performance. This apparent lack of correlation between

tank and full-scale performance has been used as the reason to test large models;

but it was shown by Brown(7) that the relatively poor performance of Mariner

was to be expected based on the experimental results. In their paper they show a

comparison of the results for both Mariner and Courageous which were both tested

by the same facility. The comparison of the test results reveal that Mariner was in

fact a poor candidate hull when compared to Courageous, a result which was also

displayed at full-scale. Unfortunately this comparison was not able to be revealed

at the time of the test due to confidentiality clauses between the test facility and

the two separate America’s Cup teams.

It should be noted that some of the figures and text that appears within this

chapter have previously been published in Hutchison etal.(24).

1.1 Research Objectives

From the beginning of this project several core aims, both theoretical and physical,

were identified:

1. Establish changes in forces and moments due to model scale for an IACC

yacht hull.

2. Identify both the qualitative and quantitative flow regime around an IACC

yacht hull.

3. Relate the identified flow regime to the forces and moments.
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4. Incorporate methodologies developed to achieve item 1, 2 and 3 into standard

experimental test procedures.

Determination of the forces and moments was undertaken using two geosims of an

IACC yacht. Each of the geosim hulls was fully appended with rudder, keel strut

with trim tab and a ballast bulb with wings. A matrix of test configurations were

investigated with variation of heel angle, yaw angle, trim tab angle, rudder angle

and model velocity. The test matrix was conducted on both models.

During the tests for force and moments, flow regime data was collected for the

smaller model via sensors attached to the exterior of the hull. The sensors pro-

vided the necessary information to describe the flow in both qualitative, time and

frequency domain voltage values, as well as quantitative values described in terms

of intermittency.

The correlation of the force, moment and intermittency results made it possible to

describe the nature of the flow with respect to the forces and moments. The corre-

lated data was then used to demonstrate how the on-body flow regime influences

the extrapolated data.

The quantitative measurement of forces and moments and especially fluid flow be-

haviour required care be taken at each stage of the installation, measurement and

analysis process. For the measurements to become part of standard experimental

procedures the techniques need to be robust and repeatable. In terms of the acqui-

sition of forces and moments, the focus was placed on improving model alignment

techniques to reduce the model set-up time as well as long-term repeatability. For

the measurement of the fluid flow, the priority was both the application technique

of the sensitive measuring instruments and establishing a relatively simple means

to quantify the on-body flow state from the collected data.
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1.2 Testing Techniques and Measurements

There are a number of reasons to make the decision to test yacht models in a towing

tank. Three key reasons listed in Debord etal.(13) are:

1. Direct determination of hydrodynamic force data for use in performance pre-

dictions.

2. Collection of force data, flow visualization and special data for verification of

analytic techniques.

3. Confirmation of results from other design studies, in the presence of a real

free surface, and without simplifying assumptions.

The two main techniques for testing of model yachts are the semi-captive and

“equilibrium” methods Debord etal.(12), Murdey(35) and Van Oossanen(42). The

first technique involves ballasting the model to its scale displacement and correct

trim and then restraining it so that it has only two degrees of freedom; heave and

pitch. A range of heel, and yaw angles are tested over a range of speeds. The

second technique is to tow the model from the theoretical centre of effort of the

sails, with the model allowed three degrees of freedom; heave, pitch and yaw. The

model is ballasted to the correct scale displacement and its trim and vertical centre

of gravity are also adjusted to correspond to full-scale vessel. The model is towed

by the carriage which is connected to a sliding frame on the model. The connection

point on the frame is located at the centre of effort of the sails. The longitudinal

position of the frame is adjusted by servos to ensure that the model achieves a

steady yaw angle. The requirement to dynamically adjust the tow point is one of the

key disadvantages of the ‘equilibrium’ method. This adds considerable cost to the

model set-up as well as requiring sophisticated electronics. This complexity does

mean that less runs are required to establish performance as the model is achieving

the correct heel angle and thus only requiring a series of runs at different speeds

and yaw angles. In comparison the semi-captive technique is quite simple from an
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equipment perspective; but with the disadvantage that a large number of runs are

required to adequately establish performance values. These runs are required to

fill out a test matrix made up of a range of speeds, heel angles, yaw angles, rudder

angles and even trim tab angles for every displacement and expected longitudinal

trim angle. For this thesis all experiments, at both scales, were conducted using

the semi-captive method.

1.3 Scaling Procedures

Commonly scaling is undertaken using the Froude assumption that resistance is

made up of frictional and residuary resistance. The calculation of the frictional

component typically involves the use of the ITTC 1957 line. Armstrong(2) states

that it is important to note that the ITTC 1957 line, Equation (1.1), is not a flat

plate friction line but a model ship correlation line. The ITTC 1957 line is in fact

a version of the empirical Schoenherr formula, modified below ReL = 1× 107, such

that there is an improved correlation in the estimation of the friction coefficients

from both large and small models, Date & Turnock(11) and Grigson(23).

CF−ITTC′57 =
0.075

(log10ReL − 2)2
(1.1)

As part of this thesis investigates the viscous components of scaling model yacht test

results, any scaling of data will be performed using a ‘true’ flat plate friction line.

The work of Grigson(23) established two equations, reproduced here as Equation

(1.3) and Equation (1.4) which are based on his formulation for a turbulent flat

plate friction line Bose(6). The equations are applied as simple multipliers of the

ITTC 1957 line as shown in Equation (1.2). The application of the equations

improves the estimation of the friction coefficient and are now in common use

within the yacht testing community. It is of note that each of Grigson’s equations

is used for a different range of length Reynolds numbers and that there is a lower

limit of applicability of ReL = 1.5 × 106. A brief discussion of the development
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of Grigson’s equations including an interpretation of how to directly calculate the

friction line is also provided in Bose(6).

CF−Grigson = CF−ITTC′57 ×G (1.2)

Where for 1.5× 106 < Re < 20× 106;

G = 0.9335 + 0.147 [logReL − 6.3]2

− 0.071 [logReL − 6.3]3
(1.3)

and for 20× 106 < Re < 6× 109;

G = 1.0096 + 0.0456 [logReL − 7.3]

− 0.013944 [logReL − 7.3]2

+ 0.001944 [logReL − 7.3]3

(1.4)

It has been suggested that to reliably scale the results of drag, there is a need

to separate the viscous components due to the hull and appendages described as

the stripping technique (13), (14) and (18). For the foils, data from numerical

calculations or results obtained from specific tests in a wind tunnel can be used.

For the hull a flat plate friction formula and a form factor is used. The form factor

aims to add the 3D hull effects. The form factor is commonly obtained using the

method described by Prohaska(39). A problem with this form factor approach is

that if the form factor is used with the ITTC 1957 friction line, the form factor is

effectively added to a ‘friction’ line that already has a form factor inbuilt. Hence,

an approximation is added on top of another approximation. The methodology

chosen and its implementation for this study are discussed in Chapter 3.

1.4 Model and Facility Testing Limitations

To better understand potential limitations of testing and how they relate to scale,

an analysis was performed for a vessel with a nominal full-scale waterline length of

6



18.4 metres using Equation (1.5). The equation relates the two principal dimen-

sionless parameters, Reynolds and Froude number, to the scale factor and was used

to show how the scale and Froude number limit the model scale Reynolds number.

ReL =
λ−1.5L1.5

P

√
gFrP

ν
(1.5)

Where:

ReL is length Reynolds number of the model

λ is model scale factor

LP is waterline length of prototype

g is acceleration due to gravity

FrP is length Froude number of prototype

ν is kinematic viscosity

The data from the analysis was then plotted as model scale with variation in model

scale Reynolds number for a range of Froude numbers, Figure 1.1. Three additional

lines have also been added which represent the upper and lower limits, 4.0 m/s and

0.5 m/s respectively, of the testing range for the Austalian Maritime College towing

tank carriage. Higher and lower speeds are possible but at higher speeds the length

of data acquisition time is reduced and at lower speeds any errors in carriage ve-

locity are magnified. A third line representing a carriage speed of 2.5 m/s has been

included which represents the previous upper speed used for testing 1/8th IACC

scale models. A carriage speed of 2.5 m/s was based on the vessel’s operational

profile and the structural limitations of the model. From this simple analysis we

can see that a scale factor of eight is the only viable option, assuming the range

of Froude numbers illustrated is required, for testing in the towing tank at the

Australian Maritime College.

On examination of Figure 1.1 the one third scaling option appears to lie exactly
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Figure 1.1: A demonstration of the effect of upper and lower towing tank carriage
speed on model scale selection. Note ‘X’ and ‘Y’ axes are on a log scale.

within the speed limits set. The reasoning for such a scale working so well can be

readily seen. However, it can also be seen that it is possible to reduce the scale

factor to eight and still maintain reasonable testing speeds and Reynolds numbers.

The added benefits of reduced costs and increased runs, make the smaller scales

even more appealing when conducting test programs.

Now, the assumption that is generally used for towing tank tests is that the flow is

fully turbulent over the length of the vessel at any speed. The importance of this

assumption is revealed if we now replot the data from the previous figure as shown

Figure 1.2.

In this figure velocity is plotted with variation with respect to scale factor for a

range of Froude numbers; but there are four additional lines which represent the

value of Reθ = 320 at four positions along each of the scale models. Reθ is the mo-

mentum Reynolds number, which is simply a Reynolds number where the length

scale is defined by the momentum thickness of the boundary layer. Also as the

8



0 1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

10

11

12

13

Model Velocity (m/s)

Sc
al

e 
Fa

ct
or

 (
λ)

Theoretical lower limit of transition

 

 

Fr 0.1
Fr 0.2
Fr 0.3
Fr 0.4
Fr 0.5
Re

θ
 320 at 100% Aft of FP

Re
θ
 320 at 50% Aft of FP

Re
θ
 320 at 20% Aft of FP

Re
θ
 320 at 5% Aft of FP

Re
θ
 162 at 5% Aft of FP

Student Version of MATLAB
Figure 1.2: The theoretical lower limit of transition Reθ = 320 at various locations
on a model for a range of speeds and model scales.

boundary layer grows along the model the value of Reθ increases. It was reported

in Preston(38) and Dyer(15) that Reθ = 320 is the theoretical lower limit below

which there is insufficient energy in the boundary layer to enable the flow to remain

fully turbulent; that is, there is not enough energy transfer through the boundary

layer to be able to naturally transition from laminar to turbulent flow.

Examining the two model scales in question, 1/8th and 1/3rd, the importance of

scale and flow stimulation is apparent. For the 1/3rd scale even at 5% (approxi-

mately 300mm) aft of the forward end of the waterline the flow has an Reθ value of

at least 320 even at a Froude number of 0.1. This indicates that the flow may natu-

rally transition but will definately transition at any line of stimulators 5% aft of the

forward end of the waterline. For the 1/8th case the situation appears more com-

plex. It is not until a Froude number of 0.35 that the flow achieves a Reθ value of at

least 320 at this forward location. This illustrates that the stimulatation device will

not only have to produce disturbences to trip the flow but also provide additional

momentum to the flow. This implies that stimulators will definately be required
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as there is no chance of the flow tranistioning naturally. At speeds above Froude

number of 0.35 the transition behaviour is shown to be as for the 1/3rd scale model.

To further understand what might occur at the lower Froude numbers at 1/8th

scale an additional line for Reθ = 162 at 5% aft has been added. This line is diffi-

cult to see on the plot as it lies close to and is almost obscured by the Reθ = 320 at

20% aft line. It is stated in Preston(38) that above a value of Reθ = 162 and with

stimulation of the flow there should be sufficient disturbance to start the transition

close behind the stimulators. For the 1/8th case, even at the lowest Froude number,

the Reθ = 162 line lies to the left of the data point suggesting that with stimulation

that there should be sufficient disturbance to start the transition to fully turbulent

flow. This implies that with stimulation a 1/8th scale model will experience fully

transitioned turbulent flow at the desired range of test speeds.

All of the above discussion and calculations are based on flat plate values and

as such three dimensional effects will alter the transition behaviour. However, the

plot does give a solid first pass understanding of the limitations of particular model

scales based on flow physics.

10



Chapter 2

Background

2.1 Laminar to Turbulent Transition in Model

Testing

The level of background turbulence is a key element with regard to transition of

the on-body flow from laminar to turbulent. Parson & Pallard(36) highlighted the

importance of a “rough-up” run prior to undertaking tests and then keeping to a

regular run schedule. For small models (i.e. less than approximately 2 m length

waterline) there is both insufficient model speed and generation of background

turbulence to ensure transition. Above this size, the combination of adequate

background turbulence combined with a sufficiently large model (i.e. travelling fast

enough) is enough to ensure transition. This was discussed by Debord etal.(13)

and they found that:

Circulation and large-scale turbulence after repeated angle-of-attack

tests has been found to be present in certain tanks but not others, and

the characteristics of these problems can vary.
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2.2 Model Scale and Velocity

The influence of model scale in defining the final test speeds has been discussed in

Section 1.4; particularly within the framework of a test facilitie’s capabilities. It is

important to recognise there is also a significant effect on the fluid behaviour due

to a change in model scale. As the scale is reduced or model becomes larger, the

velocity at which it must be tested increases to maintain a given Froude number. As

the test speed increases the Reynolds number of the model also increases, reducing

the potential for differences in the small and large scale fluid phenomena between

model and full-scale. Small scale items include on-body flow regime, boundary

layer thickness and spray size; while large scale would include the wave making

behaviour. This thesis will investigate some of the small scale items, in particular

the state of the boundary layer through the use of glue-on film probes.

2.3 Flow Stimulators

The experiments contained in this work were conducted both with and without

flow stimulators applied to the hull. For the tests with stimulators a number

of alternatives were considered including: Hama triangles, wires, sand strips and

cylindrical studs. For the 1/8th tests using stimulators, a series of cylindrical stud

type stimulators were applied to the model. They were approximately 3.2 mm in

both diameter and height, placed at 20 mm centres and in two rows 200 mm apart

around the model. The forward most row was placed 200 mm aft of the forward

perpendicular which is located 28 mm forward of station zero. This arrangement

represents a typical approach to yacht turbulence stimulation at the test facility.

2.4 Towing Tank

The towing tank at the Australian Maritime College has a length, breadth and

depth of; 100 m, 3.5 m and 1.5 m respectively. For the tests conducted for this
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thesis the water depth was reduced to 1.3 m to provide sufficient air draught for

the model under the carriage structure. An electrically powered carriage running

on rails attached to either side of the tank provided both the motive force and

attachment point for the model. A schematic of the towing tank with carriage and

model is shown in Figure 2.1.

Figure 2.1: Schematic of Australian Maritime College towing tank, carriage and
the IACC model used for the tests.

2.5 Yacht Models

The hull and appendages are a geosim of 1/3rd scale model which had been used

in a previous series of tests conducted on behalf of BMW Oracle Racing by the

Canadian National Research Council Institute of Ocean Technology (NRC-IOT).

Hull and appendage files were supplied along with ballast and trim information

from the earlier tests. The hull form is that of a generic v5 IACC hull used for

baseline testing. A photograph of the model during testing at the Australian Mar-

itime College is shown in Figure 2.2.
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Figure 2.2: 1/8th geosim of a v5 IACC yacht being towed at the Australian Maritime
College towing tank.

This hullform was chosen as it was regularly used for bench marking tests at 1/3rd

scale and as such there was sufficient force and moment data that could be used

for comparison with the tests on the 1/8th scale model conducted as part of this

research. The model’s principal particulars are provide in Table 2.1 and a lines-

plan of the model is included in Appendix B. Unfortunately, it was not possible to

include additional hull definition data within this document beyond the included

linesplan and the principal particulars. This was due to restrictions agreed to at

the outset of the project between the author and the organisations which supplied

the hull-form.

Limited information about the manufacture and materials used for the 1/3rd scale

model was available other than that it was produced using CAD/CAM and that it

is a geosim of the 1/8th scale model.

The 1/8th scale model was constructed using carbon foam sandwich inside female
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Table 2.1: 1/8th scale model principal particulars.

Item Value Units
LOA 3.14 m
LWL 2.31 m
BMAX 0.46 m
BWL 0.42 m
dCANOE BODY 0.09 m
WSACANOE BODY 0.83 m2

∆SAILING 49.96 kg
CP 0.58

hull moulds. The hull moulds were constructed on male plugs that had been CNC

cut. The foils were CNC machined from solid aluminium stock. Significant care was

taken during the manufacture to achieve dimensional tolerances as low as possible

and certainly within that described by the ITTC procedure. It was not possible

to undertake a complete three-dimensional mapping of the surfaces of the model’s

hull and appendages. Instead the hull was measured at both the sheer line and

the keel line and the appendages at a range of sections along each body. The mea-

surements at the model’s sheer were taken at each station and measured the beam

at each station. The measurements along the keel line were canoe body drafts

at the centreline for each station. The recorded measurements were compared to

the as designed measurements which showed that both the hull centreline profile

and sheer line were within ± 0.5 mm of the designed values. The foils were CNC

machined to a tolerance of ± 0.1 mm which was confirmed via measurement using

digital callipers with two decimal place precision.

2.6 Test Program

Testing of the 1/8th model was undertaken for 18 conditions which made a total

of 358 individual runs. An overview of the test conditions is provided in Table 2.2

with further details contained in Appendix A. So as to enable comparison between

the geosims, the test conditions were based around those for which the 1/3rd scale

model had been tested. For the tests at 1/8th scale, each test was conducted with

and without turbulence stimulation.
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Chapter 3

Forces and Moments

3.1 Introduction

Typically one of the key items of a model test program is the determination of full-

scale force data. Often the scaled results are used as inputs into velocity prediction

programs or as a method of validating numerical studies, Larsson(30). In the plan-

ning stage of a model test program it is critical to understand the end use of the

results along with items such as lead times and budget. Understanding the impor-

tance of each of these will help enable designers and engineers to make informed

decisions. One of the key outcomes of these discussions is to ascertain which scale

should be used for the model test. The typical thought is that a smaller model

will be able to predict which candidate from a range of hull forms will provide the

best performance; where best performance has been defined by the designer and/or

client. The issue that arises is that the results from a smaller model are expected

to be less representative of the full scale values than that possible when a larger

model is used. The known compromise is that the smaller models give relative

results at a significantly lower cost, not only the cost of model production but due

to being able to test in a smaller more efficient test facility. If cost and time taken

to change configurations is deemed less important then it is typical for designers to

choose the largest scale model that is allowed, in the case of specific class rules, or
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that which fits into a given facility. The thinking behind this is that as model size

increases the flow physics become closer to that of the full scale vessel. While it

is widely accepted that these compromises exist what is not so well understood is

the magnitude of the change and how this would influence the outcome of the test

program. As could be imagined if the final extrapolated values from either scale

model are the same within uncertainty levels then it would be appropriate for a

greater number of tests to be conducted at small scale. These limitations have also

been discussed previously in Chapter 1.

The data contained within this chapter was obtained in two separate facilities;

the first located in St. John’s, Newfoundland and Labrador, Canada was used for

testing the 1/3rd scale model and the second was the towing tank located at the

Australian Maritime College, in Launceston, Australia which was used for the 1/8th

scale model tests. For details of the two facilities and the models see Section 2.4

and Section 2.5 respectively.

Results from testing of the 1/3rd scale model along with hull and appendage surfaces

were generously supplied by the Canadian National Research Council Institute of

Ocean Technology (NRC-IOT) on behalf of BMW Oracle Racing. The model was

tested using the yacht dynamometer designed by the facility; the design of the

dynamometer is discussed in Parsons & Pallard(36). Details of the force balance

and data acquisition system used for the 1/8th scale model tests are detailed in the

following section.

3.2 Test Equipment

3.2.1 1/8th Model Set-up

The model was attached to the towing tank carriage via two carbon fibre posts, one

forward and one aft which were free to heave and located within the six-component
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force balance. The force balance was rigidly attached to the towing carriage. The

forward post connected to an indexed heel fitting allowing the heel angle to be set

in a quick and repeatable manner for heel angles ranging from negative 35 degrees

to positive 35 degrees in five degree increments. The connection to the heel fitting

was made via a spigot which was inserted inside the post and series of four bearings

with their axis orientated athwartships. The aft post was attached via universal

joint and slide, orientated fore and aft. The combination of the fore and aft posts

and their attachments constrained the model in surge, sway, heel and yaw but al-

lowed it to be free in heave and pitch. Figure 3.1 shows both the heel fitting and

the aftslide arrangement.

(a) Heel fitting showing spigot and indexed
holes for heel angle

(b) Aft slide and universal joint

Figure 3.1: Tow post attachment details for 1/8th scale model.

Both the heel fitting and the aftslide were rigidly mounted to the model via an

aluminium alignment plate. This plate, after alignment runs have been performed,

was permanently bolted to the model’s internal framing. The connection between

the two fittings and the plate were made in such a way that they could be removed

either for servicing or use on another model and then reinstalled in the same loca-

tion with an accuracy of ± 0.1 mm. This method of attachment was undertaken

so as to facilitate future research using this model as well as future comparisons to
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the current test results. Figure 3.2 shows the relative location of the heel fitting

and the aft slide and their overall location within the model and on the baseplate.

Figure 3.2: General view of 1/8th model showing the relative location of fore and
aft post attachment points.

3.2.2 Data Acquisition

The speed of the towing carriage was measured using a Red Lion Rotary Pulse

Generator attached to a dedicated wheel. This instrument was not specifically

calibrated for the tests but it is the same item used for commercial testing. As

such it is expected that the speed of the model was measured to the tolerances

recommended by the ITTC procedures(27) which states the speed of the model

should be measured to within 0.1% of the maximum speed or to within 3 mm/s,

whichever is the larger.

Sinkage fore and aft was measured using two Schaevitz 5000 DC-EC linear vari-

able differential transformers (LVDTs). The running trim was calculated from the

measured running sinkage forward and aft.

The water temperature was measured for the calculation of viscosity. It was mea-

sured at a depth of approximately half of the model draught using a mercury
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thermometer. It was assumed that the water temperature was constant through-

out the tank. Temperature measurements were recorded at least once per day, with

daily variations expected to be less than ± 0.2 ◦C.

A six-component force balance was used to measure the hydrodynamic forces and

moments. The force balance was designed as part of a previous research program

at the Australian Maritime College; full details of the design, verification and ac-

curacy of the balance are detailed in Appendix A of Binns(4). In summary the

balance has a maximum load rating of 220 kg with an accuracy of alignment of

at least 0.05 degrees. For loads up to 65 kg there will be a maximum crosstalk of

0.15% of which only 1% will be nonlinear.

Calibration of the six-component force balance occurred prior to the commence-

ment of the tests to remove both the linear components of the cross talk and the

influences of items within the data acquisition chain. The calibrations included all

items of the measurement chain, including signal conditioner, amplifier, filter and

analogue to digital converter. To ensure that the expected loads occurred within

the linear region of the calibration the calibration was undertaken with a range of

values greater than expected to be measured in the experiments. The linearity and

repeatability of the calibration points were checked to quantify the accuracy of the

calibration factor.

The signals from each instrument were recorded using a HP computer via a Na-

tional Instruments PCI-6251M Multifunction Data Acquisition Card which was

controlled by Labview. Post processing of the signals was performed using both

MATLAB and Excel software. Data was sampled at 8192 Hz, with each run being

recorded for 20 seconds and an analogue low-pass filter frequency set to 1000 Hz.

This combination provided a sufficiently high sample rate to capture the predom-

inant signal from all instruments whilst still having a low-pass filter to prevent

aliasing of the signal.
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3.3 Data Reduction

The conventional assumption made is that the full scale vessel will have a fully

turbulent boundary layer. To attempt to recreate this at model scale, turbulence

stimulating devices are required. Stud type simulators were used for the experi-

ments undertaken; the size and location of which are detailed in Section 2.3. While

the addition of the studs should provide the necessary energy to the flow to ensure

transition, there is an associated increase in drag beyond that of the turbulent flow.

To account for this increase it is necessary to undertake a correction for stud drag.

The procedure used was as described in Molland etal.(34). This approach considers

three aspects: increase to the model drag due to the studs; change in momentum

thickness of the boundary layer due to the studs and the area forward of the studs

which is expected to be laminar.

An assessment of the required correction to velocity to account for blockage was

undertaken for the 1/8th scale model using the method developed by Tamura and

listed in the guidelines provided in ITTC procedures 7.5-02-02-01(27). The re-

quired velocity correction was found to be 0.003 m/s. As the required correction

was an order of magnitude less than the increments of speed adjustment for set-

ting the carriage speed, 0.01 m/s, the velocity correction was not included in the

extrapolation procedure. For reference the the cross-sectional information of the

two towing tanks and the models, 1/8th and 1/3rd, is included in Table 3.1. It

should also be noted that the results presented are for the upright condition. This

is significant as it represents the ‘worst case’; as the model is heeled, which is the

case for the majority of the conditions, the ratios of model draught to water depth

as well as model waterline beam to tank width will reduce. Also, no correction was

undertaken for the 1/3rd scale model tests as there was less blockage than for the

1/8th scale model.

It is necessary as part of the extrapolation procedure to include the three-dimensional

influences on the friction coefficient. The process undertaken was as described in

Prohaska(39) whereby a series of low speed runs at Froude numbers ranging from
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Table 3.1: 1/8th and 1/3rd towing tank cross-section information with respect to
model size.

Item 1/8th 1/3rd

Tank Width (m) 3.55 12.00
Waterline Model Beam (m) 0.417 1.112
Ratio Model Beam to Towing Tank Width 0.12 0.09
Tank Depth (m) 1.30 7.00
Model Total Draught (m) 0.51 1.37
Ratio Model Total Draught to Water Depth 0.39 0.20
Tank Cross Sectional Area (m2) 4.62 84.00
Model Immersed Cross Sectional Area (m2) 0.04 0.28
Ratio Model CSA to Towing Tank CSA 0.009 0.003

0.13 to 0.25 at five heel angles were undertaken so as to calculate the form factor

or value of 1 + k. These runs were undertaken as part of the testing of the 1/3rd

scale model. As the vessel is a yacht with a large appendage area it was neces-

sary to account for this area as part of the calculation of the form factor. The

technique known as appendage stripping, was performed as described in Debord

& Teeters(14). In this procedure the resistance due to the foils, including the keel

bulb and wings, is removed. This is an essential process so as to ensure that the

calculated form factor is only a function of the hull shape. The calculated form

factors are presented in Figure 3.3 demonstrating a change in form factor occurs

with a change in heel angle.

In the case of a flat plate the value of 1 + k would be one. Any value greater than

one indicates that three-dimensional effects are influencing the frictional compo-

nents of the hull drag. The relatively high value of 1 + k at zero degrees heel is

indicative of the hull form being less like a flat plate in the upright condition as

compared to that when heeled. As the vessel heels the hard turn of bilge towards

the stern becomes immersed, while at the same time the rotation of the midsec-

tions of the hull lead to a reduction in waterline beam; there is also an increase

in the length of the waterline. In order to simplify the data reduction procedure,

an average value of form factor has been used for the extrapolation of both the

1/8th and 1/3rd results. Using an average value for the form factor will have an

affect on the magnitude of the extrapolation but it is not of importance to this
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Figure 3.3: Variation of form factor with respect to model heel angle along. The
average form factor applied in the data analyses is also included as a dashed hori-
zontal line.

study which is focused on the relative behaviour due to model scale. The error

bands in Figure 3.3 represent 95% confidence intervals, which were obtained using

a boostrapping technique as described in Efron & Tibshirani(17).

The moments measured at the force balance at the 1/8th scale were transferred

to the equivalent point as the 1/3rd cases to allow comparison of the results. Yaw

and heel moments were then extrapolated from the model test results using Equa-

tion (3.1).

MomentS = MomentM ×
ρSR4

ρM
(3.1)
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3.3.1 Uncertainty Analysis

The background to the uncertainty calculations are contained in Appendix C. The

uncertainty was calculated to be ± 0.0008 for CT which when propagated through

calculations gives a maximum ± 2% for the forces. When these uncertainty bars

are added to the standard scale plot they are smaller than the points representing

the data. Due to this, no error bars are shown on any plots as the uncertainty does

not affect the conclusions.

3.4 Results and Discussion

This section includes a sample of results with discussion of the forces, lift and drag,

from both the 1/8th scale experiments and 1/3rd scale experiments. Comparisons

are made between the 1/8th scale experimental results, both with and without

turbulence stimulators, to the 1/3rd scale experimental results. For further insight

cross plots of CD variation with respect to CL
2 are included in Section 3.4.5. An

extended set of force and moment data is included in Appendix F and Appendix G

respectively.

3.4.1 Drag Force

For this study, drag force was defined as the force acting parallel to the path

along which the vessel travels; i.e. it is described in flow fixed coordinates. As

such it is a vector sum of the vessel fixed ‘X’ and ‘Y’ forces acting parallel to the

vessels direction of travel. Drag has been extrapolated from the model test using

a combination of Grigson’s flat plate friction formulation, foil stripping and form

factor corrections. For further explanation of the techniques used see Section 1.3

and Section 3.3. The drag data is presented as non-dimensional drag force (CD)

and was non-dimensionalised using Equation (3.2).

CD =
RTP

0.5 ρ V2
P WSAP

(3.2)
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Where:

CD is the coefficient of drag

RTP is the total drag or resistance of the prototype

ρ is the density of sea water at 20◦C as per ITTC 7.5-02-01-03

VP is the velocity of the prototype

WSAP is the wetted surface area of the canoe body of the prototype

Note that the designation prototype refers to the full scale values.

The first plot in Figure 3.4, Figure 3.4(a), shows a plot of CD with respect to

variation in Froude number. The data presented is for the 1/8th tests with and

without studs as well as 1/3rd case. Unfortunately there was only one data point

available from the 1/3rd tests that could be used for comparison as no speed sweep

data was available. The speed sweep covers velocities from a Froude number of

0.05 to 0.46 equating to a range in full-scale velocity of 1.4 to 12 knots. This speed

range was selected to ensure that all typical upwind velocities would fall within

this range. Drag increase was quadratic with speed for the 1/8th tests. The agree-

ment between the 1/8th with and without studs cases is within uncertainty levels

except at the lowest test speed; with the singular 1/3rd case being approximately

15% less than either of the 1/8th cases. The CD results from the 1/8th scale with

studs reduces consistently with reduction in Froude number, until Froude number

of 0.10 (∼ 0.5 m/s at 1/8th model scale) before increasing with decreasing Froude

number. The increasing values of CD could indicate that the studs are producing

a higher drag relative to the velocity and surface area. As previously mentioned a

calculation for stud correction was undertaken but may have underestimated the

contribution of the studs at low speeds. The CD results from the 1/8th scale with-

out studs observes a similar behaviour to the with studs case except at the lowest

Froude number for which CD decreases. The reduction in CD at the lower speeds

indicates that laminar flow may be present reducing the CD value. This behaviour

was also identified by McCarthy etal.(32) but discussed in terms of CR.
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The second and third plot in Figure 3.4, Figures 3.4(b) and 3.4(c), show a plot

of CD with respect to variation in trim tab angle. Two cases are provided as the

first was a heeled case at moderate velocity while the second was upright at high

velocity. Both plots contain data for the 1/8th tests with and without studs as well

as 1/3rd case. In the first Figure 3.4(b) the CD values for the 1/3rd tests are an

average of 15% less than those from the 1/8th tests. For 1/3rd results there is also

a 4% relative increase in CD with each two degrees of increased trim tab angle. For

1/8th there is no change in CD between four and six degrees of trim tab angle but

there is then a 5% relative increase from six degrees to eight degrees of trim tab

angle. In the second Figure 3.4(c) the CD values for the 1/3rd tests are an average

of 21% less than those from the 1/8th tests. For 1/3rd results there no increase

in CD with increased trim tab angle. For 1/8th results there is no change in CD

between zero and two degrees of trim tab angle but there is then a 3% relative

increase from two degrees to four degrees of trim tab angle.

3.4.2 Lift Force

Lift force is defined as the force acting perpendicular to the path along which the

vessel travels; i.e. it is described in flow fixed coordinates. As such it is a vector sum

of the vessels fixed ‘X’ and ‘Y’ forces acting perpendicular to the vessels direction

of travel. Lift was extrapolated from the model test results to full scale using the

assumption that non-dimensional lift force (CL) was independent of scale. The lift

data is presented as non-dimensional lift force and was non-dimensionalised using

Equation (3.3).

CL =
LTP

0.5 ρ V2
P APP

(3.3)
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Where:

CL is the coefficient of lift

LTP is the total lift of the prototype

ρ is the density of sea water at 20◦C as per ITTC 7.5-02-01-03

VP is the velocity of the prototype

APP is the profile area including foils of the prototype

Note that the designation prototype refers to the full scale values.

The first plot in Figure 3.5, Figure 3.5(a), shows a plot of CL with respect to

variation in Froude number. The data shown is for the 1/8th tests with and with-

out studs as well as the 1/3rd case. Unfortunately there was only one data point

available from the 1/3rd tests that could be used for comparison as no speed sweep

data was available. The speed sweep covers velocities from Froude number of 0.05

to 0.46 equating to a range in full-scale velocity of 1.4 to 12 knots. This speed

range was selected to ensure that all typical upwind velocities would fall within

this range. For Froude numbers greater than 0.10 the test cases with and without

studs as well as with the 1/3rd result agreed within uncertainty levels. For Froude

numbers of 0.05 and 0.10 there was a difference of 10% and 15% respectively be-

tween the with and without stud cases.

The second and third plot in Figure 3.5, Figures 3.5(b) and 3.5(c), show a plot

of CL with respect to variation in trim tab angle. The two conditions are provided

as the first is a heeled case at moderate velocity while the second is upright at

high velocity. Both plots contain data for the 1/8th tests with and without studs

as well as 1/3rd case. CL was shown to be linear with increasing trim tab angle

for both test conditions with agreement between results being within uncertainty

levels. The linear change in CL with respect to variation in trim tab angle was

expected due to low angles of attack.
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3.4.3 Heel Moment

Heel moment is defined as the moment about the ‘X’ axis. Where available results

from the 1/3rd scale experiments are plotted along with those of the 1/8th test data.

The heel moment data is presented as non-dimensional heel moment (L′) and was

non-dimensionalised using Equation (3.4).

L′ =
L

0.5 ρ V2
P WSAP dCANOEBODY

(3.4)

Where:

L′ is non-dimensional heel moment

L is heel moment of the prototype

ρ is the density of sea water at 20◦C as per ITTC 7.5-02-01-03

VP is the velocity of the prototype

WSAP is the wetted surface area of the canoe body of the prototype

dCANOE BODY is draft of the canoe body of the prototype

Note that the designation prototype refers to the full scale values.

The first plot in Figure 3.6, Figure 3.6(a), shows a plot of L′ with respect to change

in Froude number. The data shown is for the 1/8th tests with and without studs

as well as 1/3rd case. The speed sweep covers velocities from Froude number of

0.05 to 0.46 equating to a range in full-scale velocity of 1.4 to 12 knots. This speed

range was selected to ensure that all typical upwind velocities would fall within

this range. Except for a Froude number of 0.05 the L′ was found to be, within un-

certainty levels, the same for the cases with and without studs as well as the 1/3rd

case. The general trend of the L′ is very similar to the that shown in Figure 3.5(a)

and discussed in the Section 3.4.2. The similarity was likely due to an increase in

lift, which is generated below the centre of heel , creating an increased heel moment.
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The second and third plot in Figure 3.6, Figures 3.6(b) and 3.6(c), show a plot

of L′ with respect to variation in trim tab angle. The two cases are provided as the

first was a heeled case at moderate velocity while the second was upright at high

velocity. Both plots contain data for the 1/8th tests with and without studs as well

as the 1/3rd case. L′ was linear with respect to change in trim tab angle for all

cases. For both Figure 3.6(b)and Figure 3.6(b) the magnitude of the differences in

L′ between 1/8th and 1/3rd cases was within experimental uncertainty.

3.4.4 Yaw Moment

Yaw moment is defined as the moment about the ‘Z’ axis. Where available results

from the 1/3rd scale experiments are plotted along with those of the 1/8th test data.

The yaw moment data is presented as non-dimensional yaw moment (N′) and was

non-dimensionalised using Equation (3.5).

N′ =
N

0.5 ρ V2
P APP LWL

(3.5)

Where:

N′ is non-dimensional yaw moment

N is yaw moment of the prototype

ρ is the density of sea water at 20◦C as per ITTC 7.5-02-01-03

VP is the velocity of the prototype

APP is the profile area including foils of the prototype

LWL is the waterline length of the prototype

Note that the designation prototype refers to the full scale values.

The first plot in Figure 3.7, Figure 3.7(a), shows a plot of N′ with respect to
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change in Froude number. The data shown is for the 1/8th tests with and without

studs as well as 1/3rd case. Unfortunately there was only one data point available

from the 1/3rd tests that could be used for comparison as no speed sweep data was

available. The speed sweep covers velocities from Froude number of 0.05 to 0.46

equating to a range in full-scale velocity of 1.4 to 12 knots. This speed range was

selected to ensure that all typical upwind velocities would fall within this range.

The agreement between the 1/8th with and without studs cases was within un-

certainty levels except for a Froude number of 0.1; but it was not clear why this

discrepancy exists. The singular 1/3rd case was approximately 80% less than either

of the 1/8th cases. This large difference was suprising as the results for the same

Froude number for CL, CD and L′ were within uncertainty. This suggests that the

difference is due to a different drag centre being used. In light of the difference the

set-up of the model and extrapolation procedure for the 1/8th results was verified;

but it was not possible to verify the 1/3rd test set-up.

The second and third plots in Figure 3.7, Figures 3.7(b) and 3.7(c), show a plot of

N′ with respect to variation in trim tab angle. The two cases are provided as the

first was a heeled case at moderate velocity while the second was upright at high

velocity. Both plots contain data for the 1/8th tests with and without studs as well

as the 1/3rd case. N′ for all cases was linear with variation in trim tab angle and

the 1/8th data with and without studs was within uncertainty values for all trim

tab angles. For the Froude number of 0.27, Figure 3.7(b), the lower slope of N′

of the 1/3rd case is due to the previously discussed incorrect centre of yaw; with

the vertical offset due to an incorrect drag centre. For the Froude number of 0.40,

Figure 3.7(c), the lower slope of N′ of the 1/3rd data was again due to the incorrect

centre of yaw; but as this was a test condition with no heel or yaw angle it did not

exhibit the same offset due the incorrect drag centre seen in Figure 3.7(b).

3.4.5 Cross Plots of Non-Dimensional Components

This section contains cross plots comparing non-dimensional properties. The first

plot in Figure 3.8, Figure 3.8(a), shows a plot of CD with respect to variation in
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CL
2 at three tab angles. The data presented is for the 1/8th tests with and without

studs as well as 1/3rd case. For the 1/3rd results there is a 4% relative increase

in CD with each two degrees of increased trim tab angle. For 1/8th there is no

change in CD between four and six degrees of trim tab angle but there is then a

5% relative increase from six degrees to eight degrees of trim tab angle. There is

also an average of 15% reduction in CD values for the 1/3rd tests as compared to

the 1/8th tests. There is an approximately 45% increase in CL
2 for each two degree

increase in trim tab angle. The greater increase in CL
2 as compared to increase in

CD for increasing trim tab angle shows the efficiency of the trim tab in generating

lift.

The second plot in Figure 3.8, Figure 3.8(b), shows a plot of CD with respect

to variation in CL
2 at four tab angles. The data presented is for the 1/8th tests

with and without studs as well as 1/3rd case. CD values for the 1/3rd tests are

an average of 21% less than those from the 1/8th tests. For 1/3rd results there no

increase in CD with increased trim tab angle. For 1/8th results there is no change in

CD between zero and two degrees of trim tab angle but there is then a 3% relative

increase from two degrees to four degrees of trim tab angle. The 80% reduction

in CL
2 at four degrees trim tab angle as compared to the above case is due to a

reduction of the yaw and rudder angle from one to zero degrees. The increase in CD

of approximately 35% as compared to Figure 3.8(a) is due to the increased Froude

number.
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Figure 3.4: Plots of drag coefficient with respect to variation in Froude number
and trim tab angle. Drag increase was quadratic with speed with the 1/3rd result
being ≈15% less than the 1/8th. For Froude numbers of 0.05 and 0.1 the influence
of the stud correction and laminar flow are evident. CD did not change, within
uncertainty limits, with increasing tab angle; but the 1/3rd results reduced by 15%
and 20%.
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Figure 3.5: Plots of lift coefficient (CL) with respect to variation in Froude number
and trim tab angle. For Froude numbers greater than 0.10 results agreed within
uncertainty levels. For Froude numbers of 0.05 and 0.10 there was a difference of
10% and 15%. For increasing trim tab angle the change in CL was linear.
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Figure 3.6: Plots of non-dimensional heel moment (L′) with respect to variation
in Froude number and trim tab angle. The general trend of the L′ is very similar
to the that shown in Figure 3.5(a) with the similarity due to changing lift causing
an changed heel moment. L′ was linear with respect to change in tab angle for all
cases.
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Figure 3.7: Plots of non-dimensional yaw moment (N′) with respect to variation in
Froude number and trim tab angle. The 1/8th data was within uncertainty levels
except Froude number of 0.1 and the 1/3rd data was ≈80% lower than either of the
1/8th cases. N′ was linear with variation in trim tab angle. With the vertical offset
due to an incorrect drag centre and a lower slope of due to an incorrect centre of
yaw
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Figure 3.8: Plots of CD with respect to variation in CL
2 . In the first plot CD

remains the same within uncertainty levels; with an approximately 45% increase in
CL

2 for each two degree increase in trim tab angle. In the second plot CD remains
the same for changing trim tab angle. The 80% reduction in CL

2 at 4 degrees trim
tab angle relative to the above case is due reduction of the yaw and rudder angle
from one to zero degrees. The increase in CD as compared to first plot is due to
the increased Froude number.
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3.5 Chapter Summary

As a foundation to the investigation of the influence of scale on force and moment

prediction from yacht tests in this thesis, a series of experiments were conducted on

both 1/3rd and 1/8th geosims of a fully appended IACC yacht. The experimental

data was recorded for a matrix of test cases including variation of: velocity, yaw

angle, heel angle, trim tab angle and rudder angle. In addition the 1/8th experi-

ments were also conducted both with and without turbulence stimulation.

The change in non-dimensional drag (CD) with respect to speed was seen to be

quadratic for the 1/8th tests from a Froude number of 0.10 to 0.46 with result of

the 1/3rd value at a Froude number of 0.27 being approximately 15% less. For a

Froude number of 0.05 CD increased for the 1/8th case with studs as compared with

the 1/8th case without studs. These changes are possibly due to underestimation

of the contribution of the studs to drag and laminar flow respectively. It was also

shown that CD increased between 0-4% for each two degrees of additional trim tab

angle for both the 1/8th and 1/3rd geosims with the 1/3rd values being between

15% and 21% less than the 1/8th values.

For Froude numbers greater than 0.10 non-dimensional lift (CL) changed approx-

imately linearly for the 1/8th data, with the 1/3rd value at a Froude number of

0.27 being the same as the 1/8th value at the same speed. For Froude numbers

of 0.05 and 0.10 there was a difference of 10% and 15% respectively between the

1/8th with and without stud cases. CL was also shown to be linear with increasing

trim tab angle for the 1/8th case with studs and without studs.

Except for a Froude number of 0.05 the non-dimensional heel moment (L′) was

found to be, within uncertainty levels, the same for the cases with and without

studs as well as the 1/3rd case. The general trend of L′ was very similar to that

for CL due to a change in lift being reflected in a change in heel moment. L′ was

linear with respect to change in trim tab angle for all cases.
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For the 1/8th with and without studs cases non-dimensional yaw moment (N′)

was within uncertainty levels except for a Froude number of 0.1; but it was not

clear why this discrepancy exists. The 1/3rd case at a Froude number of 0.27 was

approximately 80% less than either of the 1/8th cases. It was expected that the

difference is due to a different drag centre being used. N′ for all 1/8th and 1/3rd

data was linear with variation in trim tab angle. For the Froude number of 0.27,

the lower slope of N′ of the 1/3rd case is suspected to be due a different centre of

yaw; with the vertical offset due to a different drag centre. For the Froude number

of 0.40 the lower slope of N′ of the 1/3rd data was again due to a different centre of

yaw; but as this was a test condition with no heel or yaw angle it did not exhibit

the same offset due to a different drag centre.

From cross plots of CD with variation of CL
2 the following was established. With

increasing trim tab angle there was a moderate increase in CD of between 0-4%

for each two degrees of additional trim tab angle. There was also approximately

a 45% increase in CL
2 for each two degree increase in trim tab angle. The greater

increase in CL
2 as compared to increase in CD for increasing trim tab angle shows

the efficiency of the trim tab in generating lift. Increasing Froude number from

0.27 to 0.40 and removing heel, yaw and rudder angle decreased CL
2 by 80% and

increased CD by approximately 35%. There was also a 15% and 21% reduction in

the value of CD for the 1/3rd tests as compared to the 1/8th case for the two cases

presented.
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Chapter 4

Flow Dynamics

4.1 Introduction

The state of the boundary layer around the hull of a model, for a given velocity,

has a profound affect on the resistance of the vessel. With quantitative knowledge

of the boundary lay state it is possible to both assess the effectiveness of any tur-

bulence stimulation and also calculate a CF value to be used in model to full scale

extrapolation.

Traditionally the boundary layer state has been assessed with visual techniques

such as the use of dye films or dye injection. A review of dye films and dye injection

techniques is provided in Merzkirch(33) and a general review of flow visualisation

techniques is presented in Clayton & Massey(10). Visual techniques were found

to provide relatively coarse boundary layer information along with a significant

increase in testing times, noted by Townsin(41). This increase in time was also

reported by Campbell & Claughton(8) in that both ink-bleed and dyed oil were

too time consuming to be of use in a typical yacht test program. These issues led

to the search for an alternative and ultimately the use of constant temperature

anemometry utilising glue-on hot-films was investigated.
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The use of glue-on hot-films for marine based model testing, while not novel in

itself, has previously been relegated to projects that have both vast budgets and

relatively low restrictions on the test program. Campbell & Claughton(8) note

that due to the time consuming nature of the use of hot-films that they were not

routinely used for yacht testing. There are a number of challenges in the use of

hot-films on hull surfaces under water including: the waterproofing of the film and

it’s electrical connections; the application of the film to the hull; the running of the

leads that connect the hot-film to the data acquisition system; survivability and

reliability of the hot-films during the test session and analysis of the collected data.

This chapter details how each of these potential obstacles have been overcome pro-

viding a robust, simple, relatively cost effective method of obtaining and analysing

hot-film data. Along with the methodology a comparison is also made between

results from tests of a 1/8th scale model of an IACC yacht both with and without

turbulence stimulation.

4.2 Test Equipment and Set-up

4.2.1 Hot-film Details

The probes were Dantec Dynamics 7100S47 glue-on fibre-film probes which visually

resemble a glue-on strain gauge. The hot-films were based on the standard 55R47

glue-on probe with an additional film coating to ensure they were waterproof. The

probes are 16 mm long 8 mm wide and 0.1 mm thick. The sensor is nickel and is

0.9 mm long and 0.1 mm wide on a 0.05 mm thick polyimid foil. There is a 2 µm

quartz coating on the film sensor. Additional details of the probe can be found in

the Dantec Dynamics online catalogue(16). A constant current is supplied to the

sensor wire, the wire heats up and the resistance of the system increases until the

wire reaches a prescribed constant temperature. Through convection to the sur-

rounding environment the resistance of the sensor wire changes producing a change
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in voltage which can be measured by a data acquisition system. Due to it’s chaotic

nature, turbulent flow is better able to transfer heat away from the sensor than

laminar flow which, due to change in voltage, enables definition of the flow regime,

Perry(37).

To supply the power to and measure the changes of the hot-films it was neces-

sary to connect them to a constant temperature anemometer (CTA). A Dantec

Dynamics model 54N80 CTA was used which was designed with a series of internal

dip switches to define the operating parameters of each hot-film. The settings of the

switches was based on the resistance of the items in the analysis chain, including the

hot-film sensor, along with the desired operating and environmental temperature.

The low-pass filter within the CTA was set to open, effectively no low-pass filter,

for the tests as there was an analogue low pass filter used further along the data

collection chain. Details of the overheat ratios for each of the hot-films, including

the resistance and temperature information, along with the calculation method are

included in Appendix E.

4.2.2 Location and Installation of Hot-films

Ideally the sensor film, the wire that is in the flow, is located perpendicular to the

fluid flow. For the probes used in this research all probes were orientated so as to

be perpendicular to the model’s centreline such that in the case of zero yaw they

would be aligned perpendicular to the flow. This assumed that the flow would

not be affected by the three dimensional shape of the hull. Due to this alignment

datum, the sensors were not perpendicular to the flow for cases in which the model

was yawed relative to the free stream.

Location of Hot-Films

The location of the hot-films, both on the model and with respect to each other

was carefully considered. The final arrangement was designed to both give an over-

view of the flow on the body including the influence of heel, while at the same time
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minimising any downstream disturbance. The thickness of the hot-film was approx-

imately 0.1 millimetres which is less than the expected boundary layer thickness of

0.4 millimetres at the forward most film. This boundary layer thickness is based

on the flat plate Blassius solution for laminar flow as described in White(43) and

used a length Reynolds number of 3.5×106. This Reynolds number corresponds

to a Froude Number of 0.36 which is the expected speed at which the theoretical

lower limit of transition Reθ = 320 is reached for this location on the model (see

Figure 1.2 for comparisons of model scale, Froude number and transition points).

At lower speeds and positions further aft the laminar boundary layer is thicker and

at higher speeds the boundary layer becomes turbulent and at least an order of

magnitude thicker. Note also that the thickness of the hot-film is approximately

3% of the height of the studs used for turbulence stimulation.

To help visualise the location of the hot-films a schematic showing the layout of

hot-film sensors and turbulence stimulators is included in Figure 4.1.

CL

st 0st 1

PORT

st 2st 5 st 4

STARBOARD

st 3

HF 2

HF 3

50

11
0

231

11
0

136
200 172

462

HF 5
HF 4

HF 1 TURBULENCE
STIMULATORS

Figure 4.1: Schematic showing layout of hot-film sensors and turbulence stimula-
tors. All dimensions shown are model scale millimetres.

Hot-film five was placed ahead of all turbulence stimulators to provide a common

reference between the stimulated and unstimulated cases. Hot-film four was located

directly aft of the turbulence stimulators so that a clear difference in intermittency

would be observable between the with and with-out stud cases if the studs were in

fact influencing the flow regime. Hot-films one, two and three were placed around

the hull parallel and 50 millimetres forward of station five. The location of these

hot-films was considered to be sufficiently aft to allow any turbulent energy due
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to hot-film four in the no studs case to be mixed into the flow; but by being in

an array around the hull could be used to help understand the flow on the hull in

both the heeled and yawed condition.

Hot-Film Installation Methodology

There were two primary requirements in mounting the hot-films; the first was the

attachment of the film to the hull surface and the second was how to lead the

two connecting wires. Prior to attaching the hot-films to the model, arrangements

needed to be made for the leading of the sensor wires in a manner to minimise

influence of the boundary layer flow. The simplest method was to drill two small

holes through the hull, pass the wires through and then ensure the holes were

watertight. As the model used for the experiments was of foam cored construction

extra precautions were required to ensure a water-tight seal around the wires.

The quickest, simplest method was to drill a larger hole, in this case 8 mm in

diameter, through only the outside skin, remove a small amount of core material

≈2 mm greater than the hole diameter. The hole was then back filled with a epoxy

resin/fibre mix to a level 0.5 mm above the hull surface. This extra height allowed

for minor shrinkage of the filler material and also allowed sufficient material for

careful sanding of the filler so that it was flush with the model’s surface. Two

small holes of approximately one millimetre in diameter are then drilled through

the solid resin ‘plug’ through which to pass the sensor wires. The hot-films were

then glued to the hull using contact adhesive and the wires passed through the hull.

The small holes were sealed with a small amount of liquid epoxy resin. Figure 4.2

shows the installed hot-film number four. The sensor wire is highlighted at ‘A’

and the connecting wires are highlighted at ‘B’. In the same figure the whitish-blue

material is epoxy resin/fibre filler.

Due to the fragile nature of the connecting wires built into the hot-films it was

necessary to isolate them from any forces. This was especially important as it was

a requirement that the model be removed from the tank and carriage after each
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Figure 4.2: Close-up view of installed hot-film sensor number 4. Sensor wire high-
lighted at A and points where wire penetrates hull at B.

days testing. The isolation method consisted of two parts; a small connector pad

and a rigidly mounted BNC connection. The small connector pad was attached to

the inside of the hull, shown in Figure 4.3 and Figure 4.4, which provided a rigid

connection point of the hot-film wire to the wire coming from the BNC connector.

The addition of the rigidly mounted BNC connector, shown in Figure 4.5, ensured

easy repeatable connection of the hot-films to the data acquisition system.

Figure 4.3: General view of internal connector.
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Figure 4.4: Detailed view of internal connector. The wires from the hot-film are
connected to the right and the wires to left run to a BNC connector shown in
Figure 4.5.

Figure 4.5: BNC connector array. Each of the five connectors is hard wired to one
of the five hot-films.

46



4.2.3 Data Acquisition

The analysis chain included the hot-films, connecting leads, signal conditioner all

of which was connected to a Hewlett-Packard PC. The PC recorded signals from

each instrument via a National Instruments PCI-6251M Multifunction Data Ac-

quisition Card controlled by Labview. No calibration of the glue-on hot-films was

undertaken. Calibration of the hot-films would have required the hot-films to be

attached (glued) to a fixture to enable calibration to take place. They would have

then needed to be removed and then attached to the hull of the model. It was

felt due to the fragile nature of the hot-films that the removal process had a high

likelihood of causing them damage. Further, the purpose of the tests was to un-

derstand the flow regime which is possible without the explicit knowledge of the

shear stress. Determination of the flow regime was possible and was measured in

terms of intermittency.

During the set-up phase a series of runs were undertaken to assess the relative

merits of different sampling frequencies and analogue low-pass filter settings. From

the analysis of both time and frequency domain data of these runs, it was deter-

mined that the most suitable settings were a sample frequency of 8192 Hz with 1000

Hz analogue low-pass filter. This combination provided a sufficiently high sample

rate to capture the predominant signal from all instruments whilst still having a

low-pass filter to prevent aliasing.

4.2.4 Data Analysis

A quantitative method was required to describe the on-body flow regime. Solomon(40)

describes a concept known as ‘transitional intermittency’ whereby the flow state

on the body is described in terms of how turbulent it is on a scale of 0 to 1; with

1 being fully turbulent. Solomon(40) also notes that the calculation of the inter-

mittency can be achieved using one of two broad analysis categories; either the

kurtosis method or direct method. It has also been reported in Atencio(3) and
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based on Abu-Ghannam & Shaw(1) that intermittency in the range of 0.25 to 0.75

is the region in which transition is occurring.

The kurtosis method relies on the statistical distribution of the data points, with

a fully turbulent flow being represented by a Gaussian distribution and a kurto-

sis of three. The direct method in essence involves counting the individual values

that are above a threshold, which is set either manually or as a non-dimensional

parameter. An extended overview of the method including different application

techniques is provided by Solomon(40).

Both the kurtosis and direct method require a level of subjective input whether

it be high-pass filter values for use in the kurtosis method or detector function,

windowing and threshold levels for the direct method. As such both the kurtosis

and direct method have merit with the final choice of method being made with the

desired outcomes in mind. For the work in this thesis it was hoped to not only

obtain results of academic value but to also highlight a technique that would make

intermittency analysis viable as part of more general research and commercial test-

ing.

The intermittency calculations were undertaken following the procedure outlined

in Binns etal.(5) with a change in the way in which the high-pass filter value was

determined. This change was necessary due to an insufficient number of films

arranged along the centreline of the model to accurately predict a value for the

required high-pass filter as per their paper. This shortfall in sensors was a conse-

quence of attempting to minimise any interference between the sensors; something

that Binns etal.(5) was not faced. The revised method first required calculation

of intermittency at hot-film four for all the Froude numbers in condition 13 us-

ing nine separate high-pass filter values. For reference, condition 13 was a speed

sweep with no turbulence stimulation which ensured that the transition would oc-

cur ‘naturally’. The calculated intermittency data was then plotted with variation

of Froude number, for each of the nine high-pass filter frequencies. Next, a cubic
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spline was fit through each of the nine data series and the R2 value of fit of each of

the splines calculated. The values of R2 were then plotted with respect to variation

of high-pass frequency to give Figure 4.6.
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Student Version of MATLABFigure 4.6: R2 values for curves fit through no-stud speed sweep calculated at a
range of frequencies.

The goal was to identify the high-pass filter frequency at which the R2 value reached

a maximum value as the highest value indicates the best fit. From the figure it

can be seen that a high-pass filter value of 4 Hz gave the maximum value. This

high-pass filter value was then used in the intermittency calculation process for the

remainder of the test conditions.

A selected range of high-pass filter data plotted as intermittency against Froude

number is included in Figure 4.7. A visual inspection of the data points generated

using a 4 Hz high-pass filter show a steady change in intermittency with Froude
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number from approximately zero at a Froude number of 0.10 to a value of one at

a Froude number of 0.29. Several of the alternative high-pass filter values gave

similar results however their lower quality of fit to the regression line discounted

them. Note that the lowest Froude number of 0.05 was discounted when under-

taking the spline fit. This was due to the high calculated level of intermittency of

approximately 0.9; this value is highly unlikely as at this speed the flow should be

laminar as evidenced by the low level of intermittency at a Froude number of 0.10.

This erroneous level of intermittency at a Froude number of 0.05 was a result of a

very low signal to noise ratio. This signal to noise ratio meant that the primary

signal was random noise. As random noise tends to a Gaussian distribution the

analysis method interprets the signal as mostly transitioned flow.
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Student Version of MATLABFigure 4.7: Condition 13 intermittency for hot-film four plotted with respect to
variation in Froude number for a select range of high-pass filter values and a direct
calculation method.

Calculations were also performed to assess the differences between the kurtosis and

direct method and to provide a method of establishing the validity of the results of
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the intermittency calculations. A modified version of the direct method outlined in

Clarke etal.(9) was used to undertake the calculations with the related data points

shown in Figure 4.7. The modification made to the method used by Clarke etal.(9)

was to replace a peak-valley counting (PVC) algorithm with a simple smoothing

function. The smoothing function averages bins or windows of data from the de-

tector function. A simple sliding window was also implemented as it was reported

by Solomon(40) to improve results. From the tests undertaken there appeared to

be only 0.02 difference in the calculated intermittency when comparing the win-

dowing approach to the sliding average results and it is unclear from the analysis

which provided the better answer. The results of the direct method were within the

expected range; but were sensitive to both the window period and the threshold

values; this sensitivity was also noted by Koyabu and Tsukiji(29). The method

was also found to be time consuming during the data analysis process and made

reporting of the values used throughout the calculation difficult (threshold values

changed for each velocity). Considering the assessed difficulties of implementation

along with the desire to have a simple robust intermittency calculation method,

it was determined that a kurtosis method would provide the best solution for this

project.

4.2.5 Uncertainty Analysis

The background to the uncertainty calculations are contained in Appendix C.3

with the results in Table C.2. The magnitude of the results were sufficiently small,

that if included on the hot-film plots the uncertainty bars would be approximately

the same size of the data points, as such uncertainty bars have not been included.
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4.3 Results and Discussion

The discussion of the results has been broken into six parts. The first section

uses qualitative analysis of the time and frequency domain results. The remaining

five sections discuss the quantitative intermittency results looking at each of the

following areas of influence: velocity, heel angle, yaw angle, trim-tab angle and

finally rudder angle. The plots included in the five sections were chosen as they

either showed the clearest trends or were representative of the general behaviour;

an extended set of results are included in Appendix H.

4.3.1 General Trends

As part of the initial analysis procedure checks were made of the time and frequency

domain results. The time domain results, were also examined during the test

program as a way to quickly establish whether the hot-films were functioning or

otherwise.

Time Domain

Figure 4.8 and Figure 4.9 show time domain plots of the same model set-up except

that in Figure 4.8 (Run 107) shows results with studs attached whilst Figure 4.9

(Run 239) was without. There is good correlation at hot-film five (located 6%

aft of forward perpendicular) between both runs which suggests that there was

consistency between the two tests and there was no clear change in background

turbulence level; this allows the results from the other hot-films to be compared

with confidence. At hot-film four, located immediately aft of the studs and 20%

aft of the forward perpendicular, there is a clear difference between the with and

without studs case. With studs attached there is a continuous high frequency signal

indicating turbulent flow where as for case without studs there are voltage spikes

in the signal representing the existence of turbulent bursts. It is important not to
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compare the magnitude of the signals from each plot rather just the general shape

of the time trace due to differences in resistance of each sensor channel. There is

very good similarity in the behaviour of the time domain data between hot-film

three, two and one (50% aft of the forward perpendicular). This shows that at the

further aft position and for this speed that flow has transitioned. This is interesting

as it correlates well with Figure 1.2 which shows at the 50% aft postion that the

flow should undertake natural transition. This correlation between the theoretical

limits based on flat plates and the actual test provides support as to validity of

theoretical methods as at least a first pass solution to determine model scale.
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Figure 4.8: Time domain plot of zero meaned data of all hot-films for Run 107 (Yaw
1 degrees, Heel 10 degrees, Tab 4 degrees, Rudder 2 degrees and Froude number
0.15 with turbulence stimulation). The data shows laminar flow at hot-film five
and turbulent flow at all other hot-film locations.
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Figure 4.9: Time domain plot of zero meaned data of all hot-films for Run 239 (Yaw
1 degrees, Heel 10 degrees, Tab 4 degrees, Rudder 2 degrees and Froude number
0.15 without turbulence stimulation). The data shows laminar flow at hot-film five,
transitioning flow at hot-film four and turbulent flow at all other hot-film locations.
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Frequency Domain

Frequency domain results were assessed as they provide a qualitative method of

understanding the change in the flow state with respect to speed. The results are

qualitative in that they provide a way in which to show that the flow is indeed

changing with speed; but cannot provide the absolute level of intermittency.

Condition 13 was of particular interest in the identification of the nature of the

boundary layer with changing velocity as it was a speed sweep with no studs at-

tached. From observation of the plots for the range of velocities tested, there was

a clearly observable difference between Run 239 (Froude number of 0.15) and Run

244 (Froude number of 0.31); Figures 4.10 and 4.11 respectively. Each plot presents

the signal response with variation of frequency for each of the five hot-films for the

respective run and includes data traces with and without the digital high-pass filter.

The frequency results for hot-film five (6% aft) have both an earlier roll-off and

reduced energy relative to the hot-films located further aft on the model. The

earlier roll-off and reduced energy indicate either laminar or ‘bursty’ transitioning

flow which is confirmed with inspection of the actual intermittency as shown in

Figure 4.13.

We will now compare the relative behaviour of the signals at hot-film four (20%

aft). For Run 239 (Froude number of 0.15), Figure 4.10, the magnitude of the signal

rolls off quickly from approximately 4 Hz reducing by two orders of magnitude by

approx 30 Hz; with 4 Hz being in the range of the natural frequency of the carriage

structure. The roll off indicates that there is little energy transfer at this lower

speed which is in turn indicative of laminar flow. The ‘bump’ at approximately

500 Hz may be due to the natural frequency of the sensor and hull; but will not

influence the results as it is two orders of magnitude less than the primary signal.

For the same hot-film but during Run 244 (Froude number of 0.31), Figure 4.11,

the roll off is delayed to approximately 40 Hz. This indicates additional energy has

been added to the system at the higher speed from the transitioned turbulent flow
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on the hull.

The remaining hot-films, three, two and one will be discussed as a group as they are

all located at 50% aft of the forward perpendicular. All three hot-films show sim-

ilar results for a given velocity. For Run 239 (Froude number of 0.15), the roll-off

frequency is delayed relative to hot-film four indicating an increase in intermittency

due to increased energy in the signal. For Run 244 (Froude number of 0.31) there

is no quantifiable difference to the roll-off frequency at hot-film four. This shows

that the flow state has stabilised indicating transition has already occured at or

forward of hot-film four.
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Figure 4.10: LogLog plot of amplitude with respect to frequency of zero meaned
data of all hot-films with and without a 4 Hz high pass filter applied for Run 239
(Yaw 1 degrees, Heel 10 degrees, Tab 4 degrees, Rudder 2 degrees and Froude num-
ber 0.15 without turbulence stimulation). A quicker roll-off of the signal indicates
lower turbulence levels. So, hot-film five has the lowest turbulence followed by
hot-film four and then three, two and one show the highest turbulence.
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Figure 4.11: LogLog plot of amplitude with respect to frequency of zero meaned
data of all hot-films with and without a 4 Hz high pass filter applied for Run 244
(Yaw 1 degrees, Heel 10 degrees, Tab 4 degrees, Rudder 2 degrees and Froude
number 0.32 without turbulence stimulation). The quicker roll off of hot-film five
indicates lower levels of turbulence compared to the remaining hot-films.
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4.3.2 Effect of Model Velocity

The effects of model velocity on intermittency are presented using Figure 4.13. In

this figure intermittency is plotted with respect to variation of Froude number at

each hot-film with data from both with and with out stud cases.

At hot-film 5 (6% aft), there is good general agreement in levels of intermittency

for Froude numbers at or above 0.15. The location of this hot-film forward of the

line of studs when fitted, made it particularly susceptible to background turbu-

lence levels which could explain the differences, especially at the lower velocities.

The forward location did however provide a method to establish whether there was

consistency between two runs with and without studs.

The effectiveness of the studs in tripping the flow to turbulent is highlighted in

Figure 4.13. This is most obvious at hot-film four and becomes less so at the

measurement points further aft. In the case with studs fitted, full transition has

occurred a Froude number of 0.10 where as with out studs the flow is fully turbu-

lent until a Froude number of 0.29.

In Section 1 a means of establishing, a priori, the expected transition behaviour

on the model was introduced. The conclusions were made based on the data con-

tained in Figure 1.1 and Figure 1.2; with Figure 1.2 repeated below as Figure 4.12

for reference.

With the results presented in Figure 4.13, the concepts and conclusions made ear-

lier can be re-assessed. First, the test data reinforces the initial hypothesis that

a scale factor of eight is a viable option, assuming the range of Froude numbers

considered, for testing in the towing tank at the Australian Maritime College.

Previously the value of Reθ = 320 was introduced as the level below which there

is insufficient energy transfer through the boundary layer for the flow to naturally

transition from laminar to turbulent flow. Another threshold was also introduced
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Figure 4.12: The theoretical lower limit of transition Reθ = 320 at various locations
on a model for a range of speeds and model scales.

located at Reθ = 162. Preston(38) notes that above this level, with stimulation,

there should be sufficient disturbance to start the transition close behind the stim-

ulators. In Figure 4.12 Reθ = 162 is shown for the position 5% aft of the forward

perpendicular. The slope of this line shows a noticeable steepening as compared

to the Reθ = 320 at the same longitudinal position. Hence, as Reθ is reduced the

slope of the Reθ line increases. So, in the same way, the line representing a position

20% aft of the forward perpendicular would also move to the left for Reθ = 162.

This shows that it was expected that there would be sufficient disturbance from

the studs to initiate the transition to fully turbulent flow for a 1/8th scale model.

It is shown in Figure 4.13 that the studs have a major influence on transition. For

the case without studs transition does not occur at hot-film 4 (20% aft) until a

Froude number of approximately 0.29 while with studs the model will experience

fully transitioned turbulent flow at the desired range of test speeds except the low-

est Froude number of 0.05. Note that this lowest Froude number is a speed outside

the normal range of interest. The correlation between transition behaviour and the

anticipated Reθ values implies that if the value of intermittency is less than one,
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then Reθ can also be expected to be less than 320. This is reflected in a value of

at least Reθ = 320 being required for fully transitioned flow.

Due to the three-dimensional hull shape it was expected that the laminar flow

would exist at higher speeds than on a flat plate due to the negative pressure gra-

dient. However, the results of the experiments have not detected the difference

between tripping on a flat plate and tripping on the 3D body. This flow behaviour

is likely a function of the fair and low curvature hull lines creating gradual changes

in pressure along the body as well as the studs being particular effective at gener-

ating the required levels of flow stimulation.

The high level of intermittency observed in Figure 4.13, at the two lowest speeds

for hot-film 5 (6% aft) and the lowest speed for hot-film 4 (20% aft), are unrealistic.

From an inspection of the time domain results for these speeds a very low signal

was observed. It is believed this low signal resulted in a very low signal to noise

ratio at these speeds. This had the effect that the primary signal was random noise

which tends to a Gaussian distribution. As the intermittency calculation method

interprets a Gaussian distribution as fully turbulent flow an incorrect estimate of

the level of intermittency was made. This highlights one of the limitations of the

method employed for the intermittency analysis.

4.3.3 Effect of Heel angle

Figure 4.14 shows intermittency plotted with respect to variation in heel angle for

yaw angle of 0 degrees, trim-tab angle of 8 degrees, rudder angle of 2 degrees and

Froude Number of 0.29. At hot-film four the results show that studs are required.

With studs there is no difference in intermittency with heel but without studs there

is a decrease in intermittency of approximately 17% with heel angle increased from

five to ten degrees. At the other measurement locations there is no significant

variation between heel angles for the with and without studs test cases.
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4.3.4 Effect of Yaw Angle

Figure 4.15 shows intermittency plotted with respect to variation in yaw angle

for Heel 0 degrees, Tab 0 degrees, Rudder 0 degrees and Froude Number 0.40 for

both the with and with out stud cases. For hot-film five there was an increase

in intermittency of approximately 30% for both one degree positive and negative

yaw angle. The increased intermittency may have been caused by accelerated flow

around the hull body plan. With increasing yaw angle the flow becomes increasingly

perpendicular to the hull sections. This change in angle combined with decrease

in radius, relative to the curvature of the model’s centreline profile, will cause

the flow to be increasingly accelerated at each successive station forward. The

accelerated fluid velocity would increase energy in the flow which in turn increases

the momentum thickness and turbulence. This behaviour would be increased at

each section closer to the forward perpendicular due to decreasing section radius.

At hot-films three, two and one, all at the same most aft position, the difference in

intermittency levels between the three transverse locations are within uncertainty.

This is due to the flow being fully developed at this location.

4.3.5 Effect of Trim-Tab Angle

Figure 4.16 shows intermittency plotted with respect to variation in trim-tab angle

for yaw angle of 0 degrees, heel angle of 0 degrees, rudder angle of 0 degrees and

Froude Number 0.40. There is no significant relationship shown between the trim-

tab angle and intermittency level. The trim-tab was located aft of all measurement

points and as such would not be expected to influence the flow behaviour in the

forward portion of the hull.

4.3.6 Effect of Rudder Angle

Intermittency is plotted with respect to variation in rudder angle for yaw angle

of -2 degrees, heel angle of 20 degrees, trim-tab angle of 10 degrees and Froude
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Number 0.33 in Figure 4.17. There is no significant relationship shown between

the rudder angle and intermittency level, however there were differences in level of

intermittency between stimulated and non-stimulated cases at hot-film four. The

difference in intermittency level between the stimulated and non-stimulated cases

is contrary to what was shown in speed sweep in Figure 4.13; where flow was tur-

bulent for cases with and without studs. While the data in that plot was for the

same Froude number range as Figure 4.17 it is important to note that the tests in

Figure 4.17 were conducted at a greater heel angle, 20 degrees, and different yaw

angle, -2 degrees. The different transition behaviour is likely due to the increased

heel angle which was shown in Figure 4.14 to delay transition.

Although the results in Figure 4.17 do not show the influence of rudder angle

the data for hot-film four shows that turbulence stimulation is required. It is un-

clear why there is one point for the non-stimulated case at hot-film four that does

not follow the trend. As the rudder is located towards the aft end of the submerged

portion of the hull it would not be expected to influence the flow behaviour in the

forward portion of the hull where the hot-films were located.
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Figure 4.13: Intermittency plotted with respect to variation in Froude number of
all hot-films (Yaw 1 degrees, Heel 10 degrees, Tab 4 degrees, Rudder 2 degrees).
Hot-film five which was forward of the studs shows both increasing intermittency
with increased Froude number and consistency between runs with and without
studs. Hot-film four shows the effectiveness of the studs in tripping the flow.
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Figure 4.14: Intermittency plotted with respect to variation in heel angle of all
hot-films (Yaw 0 degrees, Tab 8 degrees, Rudder 2 degrees, Froude Number 0.29).
The reduced intermittency without studs four hot-film four, especially at 10 degrees
heel, indicates that studs are required.
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Figure 4.15: Intermittency plotted with respect to variation in yaw angle of all
hot-films (Heel 0 degrees, Tab 0 degrees, Rudder 0 degrees, Froude Number 0.40).
The increased intermittency for hot-film five is due to accelerated flow and the
lower values for the unstimulated case at hot-film four are possibly due to flow
separation.

67



−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

In
te

rm
itt

en
cy

 H
F

5

 

 

Without Studs
With Studs

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

In
te

rm
itt

en
cy

 H
F

4

 

 

Without Studs
With Studs

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

In
te

rm
itt

en
cy

 H
F

3

 

 

Without Studs
With Studs

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

In
te

rm
itt

en
cy

 H
F

2

 

 

Without Studs
With Studs

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

Trim Tab Angle (degrees)

In
te

rm
itt

en
cy

 H
F

1

 

 

Without Studs
With Studs

Student Version of MATLAB

Figure 4.16: Intermittency plotted with respect to variation in trim tab angle of
all hot-films (Yaw 0 degrees, Heel 0 degrees, Rudder 0 degrees, Froude Number
0.40). Due to the trim tab being located aft of the measurement points, it has not
influenced the flow behaviour.
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Figure 4.17: Intermittency plotted with respect to variation in rudder angle of all
hot-films (Yaw -2 degrees, Heel 20 degrees, Tab 10 degrees, Froude Number 0.33).
The reduced intermittency at hot-film four without studs demonstrates the need
for flow simulation in this case.
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4.4 Chapter Summary

This chapter has detailed the method and results of a series of experiments con-

ducted using glue-on hot-films on a 1/8th scale IACC model yacht hull. The method

included the development of a robust hot-film installation technique as well as the

adaptation of an existing intermittency analysis technique to suit the specifics of

model testing. Intermittency calculations were undertaken using a method based

on the kurtosis of the hot-film signal including the development of an alternative

method to establish the high-pass filter value required by the method.

No calibration of the glue-on hot-films was undertaken due to the potential to

cause damage during the removal and re-application of the films required as part

of the calibration process. Throughout the testing all hot-films continued to work

highlighting the robustness of both the installation and experimental procedure.

It was shown that the time and frequency domain plots of the hot-film data were

effective as an initial method of understanding the flow behaviour. Further analysis

using the level of intermittency, which quantifies the state of the on-body flow at

each of the hot-films for each run, enabled comparisons of a range of independent

variables.

Velocity, heel angle and yaw angle were all shown to effect the level of turbulence

on the model’s fore body region for the unstimulated cases; but only a change in

yaw angle was able to influence the flow for both the stimulated and unstimulated

cases. Trim-tab and rudder angle were shown to have no affect on the turbulence

levels

With studs fitted there was transitioned flow for all Froude numbers tested (0.05-

0.46) at each of the five measurement locations. For the two lowest Froude numbers

tested, 0.05 and 0.10, the analysis method incorrectly described the flow state for

the no stud case which was a function of a low signal to noise ratio. With in-

creasing velocity and constant yaw angle, the flow state, i.e. completely turbulent,
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along the body was as predicted by flat plate theory despite the model having a

three-dimensional shape which could be expected to delay transition. This flow be-

haviour is likely a function of the fair and low curvature hull lines creating gradual

changes in pressure along the body as well as the studs being particular effective

at generating the required levels of flow stimulation.

Without studs fitted several observations were made with respect to variation of

Froude number. Laminar flow was observed at and below Froude numbers of 0.1

for all measurement locations. Partial laminar flow was observed to exist at hot-

film five (6% aft of the forward perpendicular) and four (20% aft of the forward

perpendicular), for Froude numbers between 0.10 and 0.29. For Froude numbers

from 0.29 and above, the flow was fully turbulent except at hot-film five.

The influence of heel angle, for the unstimulated cases, on the flow state may

have been a function of a changed pressure gradient due to accelerated flow. It is

also possible that local wave behaviour contributed to the change in intermittency

as the two measurement points where the effect was measured were the forward

most points and were both in the region of the bow wave. The local wave behaviour

is examined in detail in the following chapter with comparisons made between ex-

perimental flat plate data and the 1/8th scale data.

Yaw angle was shown to increase the level of intermittency, for the unstimulated

cases, at the forward most measurement point which was thought to be a function

of the cross sectional shape, at this position along the vessel, increasing the trans-

verse flow velocity and thereby increasing the energy in the flow.

The results show that with turbulence stimulation the on-body flow became fully

turbulent for all Froude numbers tested, which highlights that with appropriate

boundary layer stimulation, the state of the boundary layer is not a limiting factor

in the testing of a 1/8th scale IACC yacht model.
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Chapter 5

Correlation of Forces and

Moments with Flow Dynamics

5.1 Introduction

This chapter investigates the two primary dependent variables of the drag extrapo-

lation procedure, friction coefficient (CF) and residuary resistance coefficient (CR).

Conventionally CF is calculated using one of a number of so called flat plate friction

lines, sometimes modified to try and better represent flow on a three-dimensional

body. An alternative method of calculating CF is presented based on the recorded

on-body flow state, with comparisons made to experimental flat plate data and

Grigson’s(23) flat plate friction line. The second part of this chapter will examine

results of CR including coupling to the results of CF. The coupling of the two

coefficients is a function of their relation through the fundamental extrapolation

equation, CT = CF + CR.
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5.2 Direct Determination of the Model Scale Fric-

tion Coefficient

In Chapter 1 the concept of basing model scale on flat plate Reθ values was intro-

duced and demonstrated through Figures 1.1 and 1.2. This provided a means of

establishing where the limits may lie, with respect to model scale, for the testing

of the IACC yacht model. It was shown from the extrapolated drag and lift data

in Chapter 3, in Figures 3.4 and 3.5 respectively, that stable trends existed for ex-

perimental data from the model scale (λ = 8) resulting from the established limits.

This nicely supports the suggestion that the empirical method is a useful first pass

tool in defining a suitable model scale for a known range of test speeds and facility

limitations.

The hot-film data in Chapter 4 showed that for the 1/8th model fitted with studs,

transition can be expected to occur from behind the studs from the highest to low-

est speeds tested. The transition behaviour is clearly shown in Figure 4.13 where

at each of the hot-film measurement locations aft of the studs (4, 3, 2 and 1) there

were levels of intermittency of one; with a value of one indicating fully turbulent

flow.

Traditionally, indeed even within the forces and moments section of this thesis,

estimation of CF is undertaken using equations based on regression analysis of

tank test results on flat plates. For this work estimation of CF used Grigson’s(23)

flat plate friction line (see Section 1.3 for details of Grigson’s method and its ap-

plication). The addition of a form factor, based on Prohaska’s(39) method, was

included in the extrapolation process in an attempt to better account for three-

dimensional effects. Generally these equations rely solely on the model’s waterline

length to give a length based Reynolds number, with the length scale being the

static or dynamic waterline length. The assumptions tend to work best on slender

hull-forms, which are the closest to flat plates. This effect was clearly shown in

Section 3.3 where as the model heeled and became more slender the form factor

73



decreased; i.e. the three-dimensional effects on drag reduced as the model became

more like a flat plate. This says that for yacht testing, if using slender hull forms,

particularly when heeled, which is the upwind case, that it may be possible to use

traditional methods to calculate CF. However, when the vessel is upright, or of a

fuller form a different approach is needed. This is also the case for a hull with a

submerged transom, for which Prohaska’s(39) method is not ideally suited.

So what can be done to improve the CF estimation? The simplest answer is to

directly calculate the value from the flow over the model. The first technique

considered was to use stereo particle image velocimetry (SPIV) as undertaken by

Marquardt(31). This methodology introduces a number of technical challenges

including health and safety restrictions associated with the use of lasers, particle

seeding in a model test facility as well as the transformation of the particle velocity

data to values of CF. While none of these challenges are insurmountable, they add

significant complication to the test program and are not easy to integrate into a

typical commercial test program. As an alternative experimental method, direct

determination of CF from the hot-films was considered and provided a number of

advantages. It required no additional safety procedures to be implemented, had no

affect on the operation of the test facility in terms of additional equipment beyond

what would be used in routine testing and provided a relatively simple method

through which to calculate the CF values.

The method used to establish the Cf values from the hot-films resembles the pro-

cess used in computational fluid dynamics; whereby a series of local Cf values are

established. The individual values are then combined to give a total CF value for

the model for a given speed. It should be noted that the nomenclature of Cf and

CF is deliberate; with the former describing the local skin friction coefficient where

as CF is the friction coefficient for the entire model. Adapting the technique to

use with the data from the glue-on hot-films required a number of discrete steps.

First the hull static wetted surface was divided into four longitudinal zones, with

associated wetted surface areas. Each zone was bounded at the forward and aft
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end by transverse stations located at series of measurement points along the model.

The zones and the associated stations are as follows: zone one was bounded by the

forward perpendicular (FP) and hot-film 5; zone two by hot-film 5 and hot-film

4; zone three by hot-film 4 and hot-film 2 and zone four by hot-film 2 and the

aft perpendicular. Next the proportion of the flow to be considered turbulent was

determined using the intermittency information from the hot-films at each longi-

tudinal location. The Cf value was then calculated using flat plate laminar and

turbulent equations, Equation 5.1 and Equation 5.2 reproduced from White(43),

with a proportional value of Cf being attributed for the amount laminar and tur-

bulent flow found at each location.

Cf = 0.664× Re
− 1

2
X (5.1)

Cf = 0.027× Re
1
7
X (5.2)

Where:

Cf is the skin friction coefficient

RX is Reynolds number using the longitudinal position on the surface

A Cf value for each zone was then calculated as a simple mean of the values ob-

tained at the forward and aft ends of the zone. In doing so this process assumed

that the change in intermittency was linear between each successive longitudinal

position. The area of each zone was then used to weight the Cf value for the zone

to provide values that were then summed to give a total CF for the model at the

particular test condition. This method of calculating CF was undertaken for both

the stimulated and unstimulated cases. For all calculations it was assumed that

intermittency and by definition CF was zero at the forward perpendicular. The re-

sults of this analysis procedure have been plotted along with those obtained using

Grigson’s flat plate friction line, as CF with variation in Froude number, Figure

5.1.
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Figure 5.1: Plot of CF with respect to variation in Froude number (Yaw 1 degrees,
Heel 10 degrees, Tab 4 degrees, Rudder 2 degrees). Highlights influence of laminar
flow on calculation of CF.

In trend terms there was agreement, within uncertainty limits, between the CF

values obtained from the hot-film data, Grigson’s flat plate friction line and the

turbulent flow values for Froude numbers of 0.27 to 0.46. However both the hot-

film data and Grigson’s flat plate friction line show an offset of the trend lines

of approximately 3% as compared to the fully turbulent calculation. The offset

is a consequence of the inclusion of natural transition in the Grigson equation

and the results from the hotfilms including a small measured amount of laminar

flow from the forward end of the vessel. Below a Froude number of 0.27 (model

ReL = 2.6×106) the divergence of the CF values of the the hot-film data relative to

those obtained from using Grigson’s flat plate friction line provides experimental

evidence of the limitations of the traditional methods used for estimating CF. It is

important to note that the value of CF at a Froude number of 0.05 for the unstimu-

lated case is erroneous. As was shown in Figure 4.13 and discussed in the previous

chapter, the level of intermittency was incorrectly estimated at a Froude number of
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0.05 due to the method assessing the random noise in the signal as tubulent flow.

As the CF value calculated from the experiments used the level of intermittency

to determine the proportion of laminar and turbulent flow to be assigned at each

location; then the incorrect, high levels of intermittency lead to the incorrect high

level of CF at this speed.

One of the effects of a vessel’s hull is to increase the flow velocity around the

hull creating a favourable pressure gradient. The variation in pressure distribution

along the hull, higher at the bow and stern and lower amidships, causes a peak

to form at the bow and stern and a trough to form at amidships. An image of

the 1/8th scale model under tow at the Australian Maritime College towing tank

demonstrating this phenomena is included in Figure 5.2. Although the peaks and

trough shown in Figure 5.2 were obvious visually, it was not possible to quantify

the effect on Cf from these observations, particularly in comparison to changes in

Cf due to transition behaviour.

Figure 5.2: 1/8th geosim of a v5 IACC yacht being towed at the Australian Maritime
College towing tank showing bow and stern waves and a trough amidships.
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The influence of the peak and trough wave pattern on Cf was investigated by

Marquardt(31), who conducted an extensive survey of the submerged surface of

a surface piercing flat plate. The work utilised stereo particle image velocimetry

(SPIV) which enabled calculation of a range of flow velocity information including

θ values. The tests were undertaken at a carriage velocity of 1.37 m/s which for

the 1/8th scale IACC model equates to a Froude number of 0.27. Marquardt(31)

recorded measurements at a number of cross-sections vertically and longitudinally.

There were two conditions tested, one in calm water and one with a generated

Stokes wave. The Stokes wave was generated by a submerged foil and had a peak

at the leading and trailing edge of the plate and trough aligned with the middle of

the plate. For both cases θ values ranged from ≈ 0.001 at 25% aft of the leading

edge of the plate to ≈ 0.002 at 75% aft. These θ values equate to Reθ = 1234 and

Reθ = 2501 respectively. As these values are an order of magnitude larger than

Reθ = 320, the theoretical lower limit below which there is insufficient energy in

the boundary layer to enable the flow to remain fully turbulent Preston(38), then

the flow was certainly fully turbulent.

Marquardt(31) also provides Cf values for both the calm water and the Stokes wave

case. The Cf values for the no wave case ranged from approximately 4.4 × 10−3

at the 25% aft location, 4.1 × 10−3 at the 50% aft location and 3.6 × 10−3 at the

75% aft location. With the Stokes wave Cf ranged from 4.4× 10−3 at the 25% aft

location, 4.5×10−3 at the 50% aft location and 3.5×10−3 for the 75% aft location.

The Marquardt data as well as the turbulent and hot-film generated values of Cf

have been combined and plotted in Figure 5.3.

With respect to non-dimensional length, the Cf values calculated by Marquardt

show two trends. The first is that the inclusion of a wave increases Cf and the sec-

ond is that Cf reduces with longitudinal position. The increase in Cf with a wave

trough (≈ 5× 10−4), is a reflection of the increased flow velocity in the trough. At

the forward and aft measurement points, located at 25% and 75% aft, the wave

height of the Stokes wave was equal to the calm water level. As such the flow
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Figure 5.3: Plot of Cf with respect to variation in non-dimensional longitudinal
position for a model test speed of 1.36 m/s (Froude number of 0.29) for both 1/8th

scale model and a flat plate. Shows the relative changes due to a large wave and
transitioning flow. Note that a non-dimensional length of 0 indicates the forward
perpendicular and 1 the aft perpendicular.

velocity and consequently the value of Cf were the same with and with out a wave

at these two locations.

The variation of Cf due to a large wave (wave height was 18.5% of the draft of

the plate) is clear from Marquardt’s work; however the magnitude of the changes,

5×10−4, were only half of the change due to natural transition 1×10−3, Figure 5.3.

This shows that transition behaviour has a greater impact on the value of Cf than

hull generated waves; highlighting that quantifying the behaviour of the on body

flow is critical to the selection of model scale.
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5.3 Influence of Friction Coefficient on the Resid-

uary Resistance Coefficient

The following discussion is separated into high and low speed comparisons. The

delineating speed for the ‘high’ and ‘low’ speed ranges is a Froude number of

0.35; this is the point at which the wave making drag of vessel begins to increase

dramatically as shown previously in Figure 3.4(a).

5.3.1 High-Speed Comparison

As part of the extrapolation procedure a stud correction factor was included which

aimed to account for the increase in drag due to the studs. The expectation of the

technique is that the results from two separate tests, one with and one without

studs, the resulting value of CR would be the same as long as the with out studs

case had developed turbulent flow. It was shown previously from the intermittency

levels, Figure 4.13, that at Froude numbers of at least 0.35 the on-body flow was

fully turbulent for both the with and without stud cases. As such, the agreement

within uncertainty at high-speeds between the CR values for the with and without

stud cases, Figure 5.4, indicates that the stud correction technique was successful.

The CF values obtained using the hot-film data, Figure 5.1, were consistent between

the with and with out studs cases for the high speeds. All values were an order

of magnitude smaller than CR, highlighting the relatively small influence of the

friction component of resistance at these speeds.

5.3.2 Low-Speed Comparison

At low-speeds, CR values for the with and without stud cases were found to be

in agreement within uncertainty levels, Figure 5.4, except for the lowest Froude
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number. It was shown previously from the intermittency levels, Figure 4.13, that

apart from the lowest Froude number the on-body flow was fully turbulent for the

with studs case. As seen in the high speed cases, the existence of fully turbulent

flow implies that if the stud correction factor was correct then CR should be the

same for both the with and with out stud runs. This was indeed the case except

for the lowest speed which was shown to have a large portion of laminar flow on

the forward sections of the model. The difference in CR values of 4.0 × 10−3, be-

tween the with and without studs case at Froude number 0.05 is a consequence

of using the the Grigson flat plate friction line when laminar flow exists. Laminar

flow reduces the measured drag value, or drag coefficient (CT) in non-dimensional

terms, relative to a run with turbulent flow. When the CF value obtained using

Grigson’s flat plate friction line, which is the same value for both the stimulated

and unstimulated cases, is subtracted from CT the resultant lower CR value reflects

the lower CT.
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Poor correlation was found between the CR values for the 1/3rd and 1/8th results;

with the 1/3rd values 44% less than the 1/8th values. This difference is significant in

terms of the extrapolation procedure as CR is considered to be scale independent

when undertaking the extrapolation procedure. Extensive checking of the data,

both supplied and experimentally obtained, as well as the analysis did not show a

reason for this difference.

There is a clear discrepancy in CF obtained using the hot-film data, between the

with and without stud cases below Froude number of 0.20, Figure 5.1. As such

studs are necessary to ensure correct values of CF are calculated from the hot-film

data. The high CF value at a Froude number of 0.05 for the no studs case is erro-

neous due to a low-signal to noise ratio. It has been shown previously that at this

speed the flow is laminar and thus the calculated CF value, based on the flat plate

CF calculation, should not exceed 1.5× 10−3.

5.4 Chapter Summary

The two primary dependant variables of the drag extrapolation procedure, friction

coefficient CF and residuary resistance coefficient CR have been investigated. An

alternative method of calculating CF was presented based on the recorded on-body

flow state, with comparisons made to experimental flat plate data and Grigson’s

flat plate friction line. Results of CR including coupling to the values obtained for

CF have been made.

In trend terms there was excellent agreement between the CF values obtained from

the hot-film data, Grigson’s flat plate friction line and the turbulent flow values

from a Froude number of 0.27 to 0.46. However both the hot-film data and Grig-

son’s flat plate friction line show an offset of the trend lines of approximately 3%

as compared to the fully turbulent calculation.
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The lower limits of applicability of the Grigson flat plate friction line have been

examined experimentally. For the 1/8th scale model tested these limits lie at a

model ReL = 2.6× 106 (Froude number of 0.27) as opposed to that reported in his

paper as ReL = 1.5 × 106 (Froude number of 0.15). Below ReL = 2.6 × 106 the

values of CF increased relative to those obtained from using the hot-film data.

The influence of the primary wave system was examined with the Cf from the

current tests being compared to experimental flat plate data using SPIV from lit-

erature. It was possible to see the influence of a wave on Cf, with a change of

5× 10−4; but this was only half of the change due to natural transition, 1× 10−3.

For Froude numbers of 0.35 and above, CR for both the with and without stud

cases for the 1/8th scale experiments were the same within uncertainty levels. At

Froude numbers below 0.35 the CR values for both the with and without stud cases

were found to be in agreement within uncertainty levels, except for the lowest

Froude number of 0.05. Poor correlation was found with the 1/3rd results, with

extensive checking of the data and analysis methodology providing no source of

this difference.
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Chapter 6

Conclusions

Within the yacht testing community there has been a continuing interest in and

concern with, the effectiveness of the techniques used to extrapolate model scale

resistance tests to full scale values. While there are many aspects which influence

the effectiveness of scaling results from model yacht experiments; this thesis has

investigated the use of hot-films to characterise boundary layer state so as to provide

guidance in selection of model scale.

6.1 Experimental Outcomes

As a foundation to the research, a series of experiments were conducted on both

1/3rd and 1/8th geosims of a fully appended IACC yacht. The experimental data

was recorded for a matrix of test cases including variation of: velocity, yaw angle,

heel angle, trim tab angle and rudder angle. In addition, the 1/8th experiments

were also conducted both with and without turbulence stimulation.

6.1.1 Drag

The change in non-dimensional drag (CD) with respect to speed was seen to be

quadratic for the 1/8th tests from a Froude number of 0.10 to 0.46 with the 1/3rd

value at a Froude number of 0.27 being approximately 15% less. For a Froude

number of 0.05, CD increased for the 1/8th case with studs as compared with the

1/8th case without studs. These changes are possibly due to underestimation of the
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contribution of the studs to drag and laminar flow respectively. It was also shown

that CD increased between 0-4% for each two degrees of additional trim tab angle

for both the 1/8th and 1/3rd geosims with the 1/3rd values being between 15% and

21% less than the 1/8th values.

6.1.2 Lift

Lift was shown to change linearly with change in angle of attack; whether due

to change in yaw or trim tab angle. For Froude numbers greater than 0.10 non-

dimensional lift (CL) changed approximately linearly for the 1/8th data, with the

1/3rd values matching within uncertainty levels. For Froude numbers of 0.05 and

0.10 there was a difference of 10% and 15% respectively between the 1/8th with

and without stud cases. CL was also shown to be linear with increasing trim tab

angle for both 1/8th and 1/3rd data, with agreement between results being within

uncertainty levels.

6.1.3 Hot-films

During the tests for force and moments, flow regime data was collected for the

1/8th scale model via sensors attached to the exterior of the hull. The sensors

provided the necessary information to describe the flow in qualitative, time and

frequency domain voltage values, as well as quantitative values described in terms

of intermittency.

As part of the process it was necessary to develop a robust hot-film installation

technique as well as adapt an existing intermittency analysis technique to suit

the specifics of model testing. Intermittency calculations were undertaken using a

method based on the kurtosis of the hot-film signal including the development of an

alternative method to establish the high-pass filter value required by the method.

No calibration of the glue-on hot-films was undertaken due to the potential damage

during the removal and re-application of the films required to undertake calibration.

Throughout the testing all hot-films continued to work highlighting the robustness

of both the installation and experimental procedure.
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Velocity, heel angle and yaw angle were all shown to affect the level of turbulence

on the model’s fore body region for the unstimulated cases; but only a change in

yaw angle was able to influence the flow for both the stimulated and unstimulated

cases. Trim-tab and rudder angle were shown to have no affect on the turbulence

levels.

For all Froude numbers tested (0.05-0.46) at each of the five measurement loca-

tions, there was transitioned flow when turbulence stimulation was used. For the

two lowest Froude numbers tested, 0.05 and 0.10, the analysis method incorrectly

described the flow state for the no stud case which was a function of a low signal

to noise ratio. Without studs fitted several observations were made. Laminar flow

was observed at and below Froude numbers of 0.1 for all measurement locations.

Partial laminar flow was observed to exist at hot-film five (6% aft of the forward

perpendicular) and four (20% aft of the forward perpendicular), for Froude num-

bers between 0.10 and 0.29. For Froude numbers from 0.29 and above, the flow

was fully turbulent except at hot-film five.

The reduction in intermittency with increased heel angle for the unstimulated cases,

approximately 17% at hot-film four, may have been a function of a changed pres-

sure gradient due to accelerated flow. It is also possible that local wave behaviour

contributed to the change in intermittency as the two measurement points where

the effect was measured, were the forward most points and were both in the region

of the bow wave.

A one degree increase in yaw angle was shown to increase the level of intermit-

tency by approximately 30% at the forward most measurement point, hot-film five,

for both the stimulated and unstimulated cases. This was a function of the cross

sectional shape, at this position along the vessel, increasing the transverse flow

velocity and thereby increasing the energy in the flow. At hot-films three, two and

one, all located at 50% aft of the forward perpendicular, the difference in intermit-
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tency levels between the three transverse locations are within uncertainty. This is

due to the flow being fully developed at this location.

6.1.4 Correlation

The two primary dependent variables of the drag extrapolation procedure, friction

coefficient (CF) and residuary resistance coefficient (CR) were investigated. An

alternative method of calculating CF was presented based on the recorded on-body

flow state, with comparisons made to experimental flat plate data and Grigson’s

flat plate friction line. Results of CR including connections to the values obtained

for CF were made.

In trend terms there was excellent agreement between the CF values obtained from

the hot-film data, Grigson’s flat plate friction line and the turbulent flow values

from a Froude number of 0.27 to 0.46. Both the hot-film data and Grigson’s flat

plate friction line showed a reduction in CF of approximately 3% as compared to

the fully turbulent calculation.

The lower limits of applicability of the Grigson flat plate friction line have been

examined experimentally. For the 1/8th scale model tested these limits lie at a

model ReL = 2.6× 106 (Froude number of 0.27) as opposed to that reported in his

paper as ReL = 1.5× 106 (Froude number of 0.15).

The influence of the primary wave system was examined with the Cf from the

current tests being compared to experimental flat plate SPIV data from literature.

It was possible to see the influence of a wave on Cf, with a change of 5× 10−4; but

this was only half of the change due to natural transition, 1× 10−3.

For Froude numbers of 0.35 and above, CR for both the with and without stud

cases for the 1/8th scale experiments were the same within uncertainty levels. At

Froude numbers below 0.35 CR values for both the with and without stud cases

were found to be in agreement within uncertainty levels, except for the lowest
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Froude number of 0.05. The 1/3rd results were 44% less than the 1/8th scale data;

extensive checking of the data and analysis methodology provided no clear source

for this difference.

6.2 Guidance for Scaling

With turbulence stimulation the on-body flow became fully turbulent for all Froude

numbers tested, which implies that with appropriate boundary layer stimulation,

the state of the boundary layer is not a limiting factor in the testing of a 1/8th

scale IACC yacht model.

The lower limits of applicability of the Grigson flat plate friction line have been

examined experimentally. For the 1/8th scale model tested these limits lie at a

model ReL = 2.6 × 106 (Froude number of 0.27) which is higher than reported in

his paper, ReL = 1.5 × 106 (Froude number of 0.15). Also, the change in Cf due

to waves generated by the hull was demonstrated to be half that due to natural

transition.

It has been demonstrated that it is possible to use a simple analytical approach

to determine the correct model scale for a yacht hull-form as long as it is slender,

with fair lines and no immersed transom and testing is at model speeds above 1.28

m/s (Froude number of 0.27). If there is concern that there might be an issue with

transition behaviour it has been shown that it is possible and relatively simple to

use hot-films to verify the boundary layer state.
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Chapter 7

Further Work

In a research program it is inevitable that there will be items which, with benefit

of hindsight, may have been approached differently. Reflecting upon the work of

this thesis a number of items of interest were revealed; which have been loosely

separated into two groups; important or desirable.

The two key areas of further work to address would be to find a method to cal-

ibrate the hot-films in-situ and also to re-do the 1/3rd tests with hot-films. The

development of a means of calibrating the hot-films would enable direct calculation

of the shear stress from the measured on-body flow; while the testing at 1/3rd scale

would be both interesting from an academic and operational perspective. While

it may seem desirable to test with a smaller model to help establish the minimum

scale, the author believes that the 1/8th is the smallest size model to be feasible

for the tests conducted. This limit is due to the physical limitations that smaller

models impose. This is especially the case for the foils and their operation and

the installation of the hot-film sensors where, even at 1/8th scale, access into the

model for installation of the hot-films was restricted. Through obtaining experi-

mental data at 1/3rd scale a much more detailed comparison of the flow behaviour

due to scale would be possible. This is especially important in light of the find-

ings with regard to the importance of turbulence stimulation on ensuring that the
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flow has fully transitioned. From an operational stand point it would be interest-

ing to see whether the techniques used with the hot-films that were successful at

1/8th scale, installation and operational, are also relevant to the larger models or

whether there are factors that might hamper their use on such models. This is of

particular interest to the author as one of the tenets of the work was to ensure

that any techniques developed should be suitable for use in a commercial testing

environment. It would also be instructive while undertaking these measurements to

record the levels of background turbulence within the towing tank. While normal

test methods attempt to maintain consistency across a series of tests, for example

maintaining a consistent interval between runs, it would be very useful to be able

to gather information of one of the key external influences on transition.

There were a number of items that fall into what might be best described as

desirable. Throughout the data analysis some of the limitations of the test matrix

selected became obvious. The test matrix used was based on that of the supplied

1/3rd data which had been originally planned to be used as an input into a velocity

prediction program. As such the test matrix covers a large part of the design space;

but in less detail than would be ideal for research purposes. With the hindsight

provided from the 1/8th scale test results the first priority for additional runs would

be to undertake additional heel and yaw sweeps as these were the two variables

that were shown to have an influence on transition. The addition of surface pres-

sure sensors would also provide useful data to help quantify the pressure gradients

around the hull, potentially providing experimental confirmation of some of the hy-

potheses of this thesis. These tests and the 1/3rd tests could be further leveraged

if PIV was utilised to examine the flow around the body, especially downstream

of the keel. Care would be required in particle sizing so as to capture the near

body flow behaviour and the far field data. If possible PIV measurements should

be taken at the same time as the hot-film data to provide greater certainty in the

comparisons between techniques.

Experiments utilising flat plates were evaluated at the early stages of the research
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program. After consideration they were deemed to add too much time, complexity

and cost to the test program while not providing any data for heel and yawed mod-

els. This is especially pertinent with the knowledge obtained from the 1/8th model

that heel and yaw had noticeable influence on transition behaviour. Notwithstand-

ing this knowledge; a set of experiments using the PIV techniques outlined in the

work of Marquardt(31), along with hot-film and drag measurements on a paramet-

ric set of flat plates, would add to the research community. This data would have

significant value beyond scaling as it would provide an extremely detailed set of

data for validation of CFD calculations.

As a longer term project it would be instructive to see whether computational

fluid dynamics is able to replicate the measured results. With the ever increasing

computer power it may be possible to undertake a detailed study of the flow. The

computational resources required are likely to be vast as an investigation of this

kind should include detailed modelling of the boundary layer.
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Appendix A

Test Program

The table below provides the complete list of the test runs included in the force,

moment and hot-film analyses of the 1/8th scale model. The choice of the specific

test conditions was based around the data supplied from the 1/3rd tests such that

wherever possible they matched those from the 1/3rd tests. Unfortunately due to

some of the specific rudder, heel and vertical force specified in the supplied data

there was less overlap in the results than would have been desired.

A-1



Condition Details Run # Date Time Water Temperature Set Speed Yaw Angle Heel Angle Tab Angle Rudder Angle

degrees C m/s degrees degrees degrees degrees

5 Speed Sweep 105 11/07/2012 10:05 15.80 0.26 1 10 4 2

5 Speed Sweep 106 11/07/2012 10:14 15.80 0.48 1 10 4 2

5 Speed Sweep 107 11/07/2012 10:24 15.80 0.71 1 10 4 2

5 Speed Sweep 108 11/07/2012 10:35 15.80 0.90 1 10 4 2

5 Speed Sweep 109 11/07/2012 10:46 15.80 1.11 1 10 4 2

5 Speed Sweep 111 11/07/2012 11:00 15.80 1.28 1 10 4 2

5 Speed Sweep 114 11/07/2012 11:42 15.80 1.37 1 10 4 2

5 Speed Sweep 115 11/07/2012 11:53 15.80 1.51 1 10 4 2

5 Speed Sweep 116 11/07/2012 12:07 15.80 1.71 1 10 4 2

5 Speed Sweep 117 11/07/2012 12:19 15.8 1.92 1 10 4 2

5 Speed Sweep 118 11/07/2012 12:32 15.80 2.02 1 10 4 2

5 Speed Sweep 119 11/07/2012 12:44 15.80 2.21 1 10 4 2

5 Speed Sweep 123 11/07/2012 13:49 15.80 1.28 1 10 4 2

5 Speed Sweep 124 11/07/2012 14:04 15.80 1.37 1 10 4 2

6 Incorrect Model Set-up

7 Incorrect Model Set-up

8 125 11/07/2012 14:18 15.80 1.92 1 0 0 0

8 126 11/07/2012 14:28 15.80 1.92 1 0 -2 0

8 128 11/07/2012 14:50 15.80 1.92 0 0 0 0

8 129 11/07/2012 15:02 15.80 1.92 0 0 2 0

8 130 11/07/2012 15:12 15.80 1.92 0 0 4 0

8 131 11/07/2012 15:25 15.80 1.92 -1 0 4 0

8 132 11/07/2012 15:35 15.80 1.92 -1 0 2 0

continued on next page
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continued from previous page

Condition Details Run # Date Time Water Temperature Set Speed Yaw Angle Heel Angle Tab Angle Rudder Angle

degrees C m/s degrees degrees degrees degrees

8 133 11/07/2012 15:45 15.80 1.92 -1 0 0 0

8 134 11/07/2012 15:55 15.80 1.92 -1 0 -2 0

8 135 11/07/2012 16:10 15.80 1.92 -2 0 4 0

8 209 13/07/2012 12:01 15.95 1.92 0 0 -2 0

9 136 11/07/2012 16:24 15.80 1.37 -2 5 4 4

9 137 11/07/2012 16:34 15.80 1.37 -2 5 6 2

9 138 11/07/2012 16:44 15.80 1.28 -2 5 6 2

9 139 11/07/2012 16:55 15.80 1.28 -2 5 8 2

9 140 11/07/2012 17:05 15.80 1.37 -2 5 8 2

9 141 11/07/2012 17:20 15.80 1.28 0 5 8 2

9 142 11/07/2012 17:30 15.80 1.37 0 5 8 2

9 143 11/07/2012 17:40 15.80 1.37 0 5 6 2

9 144 11/07/2012 17:50 15.80 1.28 0 5 6 2

9 145 11/07/2012 18:01 15.80 1.28 0 5 4 2

9 146 11/07/2012 18:10 15.80 1.37 0 5 4 2

9 147 12/07/2012 08:55 15.90 1.37 1 5 4 2

9 148 12/07/2012 09:05 15.90 1.28 1 5 4 2

9 149 12/07/2012 09:15 15.90 1.28 1 5 6 2

9 150 12/07/2012 09:25 15.90 1.37 1 5 6 2

9 151 12/07/2012 09:36 15.90 1.37 1 5 8 2

9 152 12/07/2012 09:46 15.90 1.28 1 5 8 2

10 153 12/07/2012 10:00 15.90 1.37 1 10 8 2

10 154 12/07/2012 10:10 15.90 1.28 1 10 8 2

10 155 12/07/2012 10:20 15.90 1.28 1 10 6 2

10 156 12/07/2012 10:30 15.90 1.37 1 10 6 2

10 157 12/07/2012 10:40 15.90 1.37 1 10 4 2

continued on next page
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continued from previous page

Condition Details Run # Date Time Water Temperature Set Speed Yaw Angle Heel Angle Tab Angle Rudder Angle

degrees C m/s degrees degrees degrees degrees

10 158 12/07/2012 10:50 15.90 1.28 1 10 4 2

10 159 12/07/2012 11:02 15.90 1.28 0 10 4 2

10 160 12/07/2012 11:13 15.90 1.37 0 10 4 2

10 161 12/07/2012 11:23 15.90 1.37 0 10 6 2

10 162 12/07/2012 11:33 15.90 1.28 0 10 6 2

10 163 12/07/2012 11:43 15.90 1.28 0 10 8 2

10 164 12/07/2012 11:53 15.90 1.37 0 10 8 2

10 165 12/07/2012 12:04 15.90 1.37 -2 10 8 2

10 166 12/07/2012 12:14 15.90 1.28 -2 10 8 2

10 167 12/07/2012 12:24 15.90 1.28 -2 10 6 2

10 168 12/07/2012 12:33 15.90 1.37 -2 10 6 2

10 169 12/07/2012 12:44 15.90 1.37 -2 10 4 4

11 170 12/07/2012 13:34 15.90 1.65 -2 20 8 3

11 171 12/07/2012 13:44 15.90 1.65 -2 20 8 5

11 172 12/07/2012 13:54 15.90 1.65 -2 20 8 6

11 173 12/07/2012 14:04 15.90 1.65 -2 20 10 6

11 174 12/07/2012 14:15 15.90 1.56 -2 20 10 6

11 175 12/07/2012 14:24 15.90 1.65 -2 20 10 5

11 176 12/07/2012 14:35 15.90 1.56 -2 20 10 5

11 177 12/07/2012 14:45 15.90 1.56 -2 20 10 3

11 178 12/07/2012 14:55 15.90 1.65 -2 20 10 3

11 179 12/07/2012 15:05 15.90 1.65 -2 20 10 1

11 180 12/07/2012 15:15 15.90 1.56 -2 20 10 1

11 181 12/07/2012 15:29 15.90 1.65 0 20 10 1

11 182 12/07/2012 15:39 15.90 1.65 0 20 10 3

11 183 12/07/2012 15:49 15.90 1.65 0 20 10 5

11 184 12/07/2012 15:59 15.90 1.65 0 20 10 6

continued on next page
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Condition Details Run # Date Time Water Temperature Set Speed Yaw Angle Heel Angle Tab Angle Rudder Angle

degrees C m/s degrees degrees degrees degrees

11 185 12/07/2012 16:09 15.90 1.65 0 20 8 6

11 186 12/07/2012 16:20 15.90 1.65 0 20 8 5

11 187 12/07/2012 16:30 15.90 1.65 0 20 8 3

11 188 12/07/2012 16:46 15.90 1.65 0 20 8 1

11 189 12/07/2012 16:56 15.90 1.65 0 20 6 1

11 190 12/07/2012 17:06 15.90 1.65 0 20 6 3

11 191 12/07/2012 17:16 15.90 1.65 0 20 6 5

11 193 12/07/2012 17:40 15.90 1.65 1 20 6 6

11 194 12/07/2012 17:50 15.90 1.65 1 20 6 5

11 195 12/07/2012 17:59 15.90 1.65 1 20 6 3

11 197 12/07/2012 18:21 15.90 1.65 1 20 6 1

11 198 13/07/2012 08:47 15.95 1.65 1 20 6 1

11 199 13/07/2012 08:57 15.95 1.65 1 20 8 1

11 200 13/07/2012 09:07 15.95 1.65 1 20 8 3

11 201 13/07/2012 09:17 15.95 1.65 1 20 8 5

11 202 13/07/2012 09:27 15.95 1.65 1 20 8 6

11 203 13/07/2012 09:38 15.95 1.65 1 20 10 6

11 204 13/07/2012 09:47 15.95 1.65 1 20 10 5

11 205 13/07/2012 09:58 15.95 1.65 1 20 10 3

11 207 13/07/2012 10:19 15.95 1.65 1 20 10 1

11 208 13/07/2012 11:24 15.95 1.65 0 20 6 6

12 213 13/07/2012 14:12 15.95 1.28 -1 -10 -4 -2

12 214 13/07/2012 14:23 15.95 1.28 -1 -10 -4 -2

12 215 13/07/2012 14:35 15.95 1.28 -1 -10 -4 -2

12 216 13/07/2012 14:46 15.95 1.28 -1 -10 -4 -2

12 217 13/07/2012 14:56 15.95 1.28 -1 -10 -4 -2

12 218 13/07/2012 15:06 15.95 1.28 -1 -10 -4 -2

continued on next page
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continued from previous page

Condition Details Run # Date Time Water Temperature Set Speed Yaw Angle Heel Angle Tab Angle Rudder Angle

degrees C m/s degrees degrees degrees degrees

12 219 13/07/2012 15:16 15.95 1.28 -1 -10 -4 -2

12 220 13/07/2012 15:26 15.95 1.28 -1 -10 -4 -2

12 221 13/07/2012 15:36 15.95 1.28 -1 -10 -4 -2

12 222 13/07/2012 15:46 15.95 1.28 -1 -10 -4 -2

12 224 13/07/2012 16:35 15.95 1.65 1 20 6 6

12 225 13/07/2012 16:45 15.95 1.65 1 20 6 6

12 226 13/07/2012 16:55 15.95 1.65 1 20 6 6

12 227 13/07/2012 17:05 15.95 1.65 1 20 6 6

12 228 13/07/2012 17:14 15.95 1.65 1 20 6 6

12 229 13/07/2012 17:24 15.95 1.65 1 20 6 6

12 230 13/07/2012 17:35 15.95 1.65 1 20 6 6

12 231 13/07/2012 17:47 15.95 1.65 1 20 6 6

12 232 13/07/2012 17:56 15.95 1.65 1 20 6 6

12 233 13/07/2012 18:06 15.95 1.65 1 20 6 6

12 234 14/07/2012 10:11 16.00 1.65 1 20 6 6

12 235 14/07/2012 10:21 16.00 1.65 1 20 6 6

12 236 14/07/2012 10:31 16.00 1.65 1 20 6 6

13 237 14/07/2012 15:01 16.00 0.26 1 10 4 2

13 238 14/07/2012 15:10 16.00 0.48 1 10 4 2

13 239 14/07/2012 15:20 16.00 0.71 1 10 4 2

13 240 14/07/2012 15:30 16.00 0.90 1 10 4 2

13 241 14/07/2012 15:40 16.00 1.11 1 10 4 2

13 242 14/07/2012 15:50 16.00 1.28 1 10 4 2

13 243 14/07/2012 16:00 16.00 1.37 1 10 4 2

13 244 14/07/2012 16:10 16.00 1.51 1 10 4 2

13 245 14/07/2012 16:20 16.00 1.71 1 10 4 2

13 246 14/07/2012 16:32 16.00 1.92 1 10 4 2

continued on next page
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continued from previous page

Condition Details Run # Date Time Water Temperature Set Speed Yaw Angle Heel Angle Tab Angle Rudder Angle

degrees C m/s degrees degrees degrees degrees

13 247 14/07/2012 16:43 16.00 2.02 1 10 4 2

13 248 14/07/2012 16:54 16.00 2.21 1 10 4 2

13 249 14/07/2012 17:04 16.00 1.28 1 10 4 2

13 250 14/07/2012 17:14 16.00 1.37 1 10 4 2

14 251 14/07/2012 17:29 16.00 1.92 1 0 0 0

14 252 14/07/2012 17:39 16.00 1.92 1 0 -2 0

14 253 14/07/2012 17:49 16.00 1.92 0 0 -2 0

14 254 14/07/2012 17:59 16.00 1.92 0 0 0 0

14 255 14/07/2012 18:09 16.00 1.92 0 0 2 0

14 256 14/07/2012 18:18 16.00 1.92 0 0 2 0

14 257 14/07/2012 18:28 16.00 1.92 0 0 4 0

14 258 14/07/2012 18:40 16.00 1.92 -1 0 4 0

14 259 14/07/2012 18:50 16.00 1.92 -1 0 2 0

14 260 14/07/2012 19:00 16.00 1.92 -1 0 0 0

14 261 14/07/2012 19:10 16.00 1.92 -1 0 -2 0

14 262 14/07/2012 19:23 16.00 1.92 -2 0 4 0

15 263 14/07/2012 19:35 16.00 1.37 -2 5 4 4

15 264 14/07/2012 19:44 16.00 1.37 -2 5 6 2

15 265 14/07/2012 21:04 16.00 1.28 -2 5 6 2

15 266 14/07/2012 21:13 16.00 1.28 -2 5 8 2

15 267 14/07/2012 21:23 16.00 1.37 -2 5 8 2

15 268 14/07/2012 21:34 16.00 1.37 0 5 8 2

15 269 14/07/2012 21:43 16.00 1.28 0 5 8 2

15 270 14/07/2012 21:53 16.00 1.28 0 5 6 2

15 271 14/07/2012 22:03 16.00 1.37 0 5 6 2

15 272 14/07/2012 22:13 16.00 1.37 0 5 4 2

continued on next page
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continued from previous page

Condition Details Run # Date Time Water Temperature Set Speed Yaw Angle Heel Angle Tab Angle Rudder Angle

degrees C m/s degrees degrees degrees degrees

15 273 14/07/2012 22:23 16.00 1.28 0 5 4 2

15 274 14/07/2012 22:34 16.00 1.28 1 5 4 2

15 275 14/07/2012 22:44 16.00 1.37 1 5 4 2

15 276 14/07/2012 22:54 16.00 1.37 1 5 6 2

15 277 14/07/2012 23:03 16.00 1.28 1 5 6 2

15 278 14/07/2012 23:13 16.00 1.28 1 5 8 2

15 279 14/07/2012 23:22 16.00 1.37 1 5 8 2

16 280 15/07/2012 11:15 16.00 1.28 1 10 8 2

16 281 15/07/2012 11:25 16.00 1.37 1 10 8 2

16 282 15/07/2012 11:34 16.00 1.37 1 10 6 2

16 283 15/07/2012 11:45 16.00 1.28 1 10 6 2

16 284 15/07/2012 11:55 16.00 1.28 1 10 4 2

16 285 15/07/2012 12:05 16.00 1.37 1 10 4 2

16 286 15/07/2012 12:16 16.00 1.37 0 10 4 2

16 287 15/07/2012 12:25 16.00 1.28 0 10 4 2

16 288 15/07/2012 12:35 16.00 1.28 0 10 6 2

16 289 15/07/2012 12:46 16.00 1.37 0 10 6 2

16 290 15/07/2012 12:55 16.00 1.37 0 10 8 2

16 291 15/07/2012 13:06 16.00 1.28 0 10 8 2

16 292 15/07/2012 14:35 16.00 1.28 -2 10 8 2

16 293 15/07/2012 14:45 16.00 1.37 -2 10 8 2

16 294 15/07/2012 14:55 16.00 1.37 -2 10 6 2

16 295 15/07/2012 15:05 16.00 1.28 -2 10 6 2

16 296 15/07/2012 15:15 16.00 1.37 -2 10 4 4

17 297 15/07/2012 15:31 16.00 1.65 -2 20 8 3

17 298 15/07/2012 15:39 16.00 1.65 -2 20 8 5

continued on next page
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continued from previous page

Condition Details Run # Date Time Water Temperature Set Speed Yaw Angle Heel Angle Tab Angle Rudder Angle

degrees C m/s degrees degrees degrees degrees

17 299 15/07/2012 15:49 16.00 1.65 -2 20 8 6

17 300 15/07/2012 16:00 16.00 1.65 -2 20 10 6

17 301 15/07/2012 16:12 16.00 1.56 -2 20 10 6

17 302 15/07/2012 16:22 16.00 1.56 -2 20 10 5

17 303 15/07/2012 16:32 16.00 1.65 -2 20 10 5

17 304 15/07/2012 16:42 16.00 1.65 -2 20 10 3

17 305 15/07/2012 16:52 16.00 1.56 -2 20 10 3

17 306 15/07/2012 17:03 16.00 1.56 -2 20 10 1

17 307 15/07/2012 17:13 16.00 1.65 -2 20 10 1

17 308 15/07/2012 17:25 16.00 1.65 0 20 10 1

17 309 15/07/2012 17:35 16.00 1.65 0 20 10 3

17 310 15/07/2012 17:45 16.00 1.65 0 20 10 5

17 311 15/07/2012 17:55 16.00 1.65 0 20 10 6

17 312 15/07/2012 18:06 16.00 1.65 0 20 8 6

17 313 15/07/2012 19:20 16.00 1.65 0 20 8 5

17 314 15/07/2012 19:30 16.00 1.65 0 20 8 3

17 315 15/07/2012 19:40 16.00 1.65 0 20 8 1

17 316 15/07/2012 19:50 16.00 1.65 0 20 6 1

17 317 15/07/2012 20:00 16.00 1.65 0 20 6 3

17 318 15/07/2012 20:10 16.00 1.65 0 20 6 5

17 319 15/07/2012 20:21 16.00 1.65 0 20 6 6

17 320 15/07/2012 20:33 16.00 1.65 1 20 6 6

17 321 15/07/2012 20:43 16.00 1.65 1 20 6 5

17 322 15/07/2012 20:53 16.00 1.65 1 20 6 3

17 323 15/07/2012 21:03 16.00 1.65 1 20 6 1

17 324 15/07/2012 21:13 16.00 1.65 1 20 8 1

17 325 15/07/2012 21:23 16.00 1.65 1 20 8 3

17 326 15/07/2012 21:33 16.00 1.65 1 20 8 5

continued on next page
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continued from previous page

Condition Details Run # Date Time Water Temperature Set Speed Yaw Angle Heel Angle Tab Angle Rudder Angle

degrees C m/s degrees degrees degrees degrees

17 327 15/07/2012 21:43 16.00 1.65 1 20 8 6

17 328 15/07/2012 21:54 16.00 1.65 1 20 10 6

17 329 15/07/2012 22:03 16.00 1.65 1 20 10 5

17 330 15/07/2012 22:13 16.00 1.65 1 20 10 3

17 331 15/07/2012 22:24 16.00 1.65 1 20 10 1

18 332 16/07/2012 08:55 16.05 1.28 -1 -10 -4 -2

18 333 16/07/2012 09:05 16.05 1.28 -1 -10 -4 -2

18 334 16/07/2012 09:15 16.05 1.28 -1 -10 -4 -2

18 335 16/07/2012 09:25 16.05 1.28 -1 -10 -4 -2

18 336 16/07/2012 09:35 16.05 1.28 -1 -10 -4 -2

18 337 16/07/2012 09:45 16.05 1.28 -1 -10 -4 -2

18 339 16/07/2012 09:55 16.05 1.28 -1 -10 -4 -2

18 340 16/07/2012 10:05 16.05 1.28 -1 -10 -4 -2

18 341 16/07/2012 10:15 16.05 1.28 -1 -10 -4 -2

18 342 16/07/2012 10:25 16.05 1.28 -1 -10 -4 -2

18 349 16/07/2012 11:39 16.05 1.65 1 20 6 6

18 350 16/07/2012 11:49 16.05 1.65 1 20 6 6

18 351 16/07/2012 11:58 16.05 1.65 1 20 6 6

18 352 16/07/2012 12:08 16.05 1.65 1 20 6 6

18 353 16/07/2012 12:17 16.05 1.65 1 20 6 6

18 354 16/07/2012 12:28 16.05 1.65 1 20 6 6

18 355 16/07/2012 12:38 16.05 1.65 1 20 6 6

18 356 16/07/2012 12:48 16.05 1.65 1 20 6 6

18 357 16/07/2012 12:58 16.05 1.65 1 20 6 6

18 358 16/07/2012 13:08 16.05 1.65 1 20 6 6

A-10



Appendix B

Lines Plan

As noted in Section 2.5 it was not possible to include additional hull definition

data within this document beyond the linesplan in this appendix and the principal

particulars in Section 2.5. This was due to restrictions agreed to at the outset of

the project between the author and the organisations which supplied the hull-form.
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Appendix C

Uncertainty Analysis

The purpose of this chapter is to provide the detail behind the uncertainty cal-

culations, explain the uncertainty analysis process and also provide the ‘value’ of

uncertainty that is applied to data from both sets of testing. Uncertainty calcula-

tions for the forces and moments as well as the hot-film calculations are included.

C.1 1/8thACC Yacht Model Forces and Moments

The uncertainty calculations for the 1/8th model were performed using the ITTC

‘Standard Form for Documenting Uncertainty Analysis, Resistance (CT)’(25). The

rationale behind the values selected for use in the calculations are included in the

following sections as is a copy of the Excel sheets.

C.1.1 Total Drag Coefficient Values

Uncertainty was calculated based on repeat runs at two different velocities. The

Total drag coefficient (CT) values from each set was analysed independently and

the largest error from the two test cases was applied to all runs. In this way the

error presented is a ‘worst case’ with regard to expected uncertainty values.
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C.1.2 Wetted Surface

It was not possible to undertake a complete three-dimensional mapping of the

surfaces of the model’s hull and appendages. Instead the hull was measured at both

the sheer line and the keel line and the appendages at a range of sections along

each body. The measurements at the model’s sheer were taken at each station and

measured the beam at each station. The measurements along the keel line were

canoe body drafts at the centreline for each station. The recorded measurements

were compared to the as designed measurements which showed that both the hull

centreline profile and sheer line were within ± 0.5 mm of the designed values. The

foils were CNC machined to a tolerance of ± 0.1 mm which was confirmed via at a

series of cross-sections measurement using digital callipers with two decimal place

precision.

C.1.3 Speed

The uncertainty value used is the maximum that is allowed by the ITTC(27) for

resistance tests. All commercial tests conducted at the Australian Maritime College

are reported to be conducted to this level of uncertainty. As this work used the

same carriage and speed sensors used in the commercial tests it was assumed that

this same level uncertainty exists for the tests carried out for this thesis.

C.1.4 Resistance

The work of Binns(4) included the design and validation of the six-component force

balance used for the tests conducted for the work in this thesis. Part of the design

process included rigorous uncertainty assessments of the levels of linearity and

cross talk inherent to the force balance. It was concluded from those tests that the

force balance had a maximum load rating of 220 kg with an accuracy of alignment

of at least 0.05 degrees. Also for loads up to 65 kg there will be a maximum
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crosstalk of 0.15% of which only 1% will be nonlinear. During the testing for the

current research the maximum force measured was 6.7 kg, two orders of magnitude

less than maximum load limit and one order of magnitude less than the level of

associated with the crosstalk and linearity. This confirms that the experiments

were undertaken well within the limits of the force balance. To establish the errors

to be used for the forces and moments an assessment was made from the calibration

data taken prior to the experimental program. The calibration was undertaken with

all components of the measurement chain connected with error values provided in

Table C.1.

Table C.1: Force balance error estimate.

Force/Moment Max Error Min Error Assumed Error Units
X 0.014 -0.031 ±0.031 kg
Y 0.023 -0.027 ±0.027 kg
Z 0.022 -0.013 ±0.022 kg
L 0.005 -0.009 ±0.009 kgm
M 0.013 -0.019 ±0.019 kgm
N 0.015 -0.020 ±0.020 kgm

C.1.5 Model Basin Water Properties

The temperature of the towing tank water was recorded each day during the testing.

Over the duration of the tests there was a maximum variation of 0.25◦C. Based

on the values provided in ITTC 7.5-02-01-03(26), this gives a variation in water

density of 0.03 kg/m3.
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1. General information

2. Data reduction equations

3. Single or multiple test uncertainty

4. Input variables

5. Uncertainty analysis equations

6. Bias Limits

     6.1 Wetted surface

     6.2 Speed

     6.3 Resistance

     6.4 Model basin water properties

     6.5 Sensitivity coefficients

     6.6 Total bias of resistance coefficient CT   

7. Precision limit

8. Total uncertainty

1. General information

Statement of Purpose:

Facility:

Type of ship:

Period of tests performed:

References:

2. Data Reduction Equations

3. Single or Multiple Test Uncertainty

Enter # of tests (1 = single, >1 = mult.) 10

For single test, enter average measured CT and best available standard deviation of CT 

CT CT(15 deg C)

Measured CT (Single Test)

Std Dev, σCT (Single Test)

STANDARD FORM FOR DOCUMENTING UNCERTAINTY ANALYSIS

RESISTANCE (CT) (4/11/02)

The purpose of this spreadsheet is to calculate 

the Uncertainty for the model Resistance CT 

using single or multiple test method.
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For multiple test, enter CT for each test

Test # CT CT(15 deg C)

1 0.077467178 0.077467178

2 0.078221698 0.078221698

3 0.077778151 0.077778151

4 0.077005646 0.077005646

5 0.078514378 0.078514378

6 0.076440042 0.076440042

7 0.076163217 0.076163217

8 0.077243753 0.077243753

9 0.077489339 0.077489339

10 0.076164012 0.076164012

11   

12   

13   

14   

15   

Average CT (Multiple Test) 0.077248742 0.077248742

Std Dev, σCT (Multiple Test) 0.000816665

4. Input Variables

Ship Particulars

Definitions Symbol Ship model Units

Length along waterline LWL 2.31 m

Beam B 0.418 m

Draft, even keel T 0.094 m

Wetted surface incl. rudder S 0.841 m^2

Constants

Definitions Symbol Value Units

Gravity g 9.81 m/s^2

Density, model basin water ρ 1000 kg/m^3

Kinematic viscosity, model basin water ν 1.1154E-06 m^2/s

Form Factor k 0.11812 -----

Frictional resistance coefficient at 15 deg C CF(15 deg C) 0.003836656 -----

Coverage factor for standard deviation K 2.262 -----

Measured Values

Definition Symbol Value Units

Model Speed V 1.274 m/s

Froude Number Fr 0.267626389 -----

Mass, total resistance in x-direction Mx 5.374366283 kg

Resistance (average) Rx 52.72253323 N

Total Resistance Coefficient (average @ 15 deg C) CT 0.077248742 -----

Water Temperature tw 15.95 deg C

Frictional resistance coeff. at measured temp, tw CF

tw

0.003836656 -----
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5. Uncertainty Analysis Equations

6. Bias Limit

6.1 Wetted Surface

units % of (BS)
2

BS1 (Assumed error in hull form): 0.00000025 m^2 0.015597577

BS2 (Error in displacement): 0.00002002 m^2 99.98440242

Wetted Surface Bias units % of S

BS (Wetted Surface): 2.00176E-05 m^2 0.002380211

6.2 Speed

units % of V

BV (Speed): 0.003 m/s 0.235478807

6.3 Resistance

units % of (BMx)
2

BMx1 (Calibration): 0.031 kg 100

BMx2 (Curve fit bias): 0 kg 0

BMx3 (Load cell misalignment): 0.000 kg 1.44987E-11

BMx4 (Towing force inclination): 0 kg 0

units % of Mx

BMx (Total Resistance Mass): 0.031 kg 0.576812193

6.4 Model Basin Water Properties

units % of tw

Btw (Water Temperature): 0.25 deg C 1.567398119

units % of ρ

Bρρρρ: (Water Density): 0.03 kg/m^3 0.003
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6.5 Sensitivity Coefficients

units

θθθθS (Wetted Surface): -0.091853438 1/m^2

θθθθV (Speed): -0.12126961 1/(m/s)

θθθθMx (Total Mass Resistance): 0.014373554 m/N*s^2

θθθθρρρρ (Water Density): -7.72487E-05 m^3/kg

θθθθρρρρtwρρρρ (Water Temperature): 0.153175 1/deg C

6.6 Total Bias of Resistance Coefficient CT   units % of CT

15 deg C

BCT (Resistance Coefficient CT): 0.000575265 ----- 0.744691671

7. Precision Limit

units

σσσσCT (Standard Deviation of CT): 0.000816665 -----

M(1 for Single, else Multiple): 10 -----

units % of CT

15 deg C

PCT (Resistance Coefficient CT): 0.000584166 ----- 0.756214577

8. Total Uncertainty

units % of UCT

15 deg C

BCT (Resistance Coefficient CT): 0.000575265 ----- 49.23231537

PCT (Resistance Coefficient CT): 0.000584166 ----- 50.76768463

Total Uncertainty units % of CT

15 deg C

UCT
15 deg C

 (Resistance Coefficient CT): 0.000819866 ----- 1.061332263
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C.2 1/3rdIACC Yacht Model Forces and Moments

Insufficient data was available to undertake an uncertainty analysis of the 1/3rd

testing and results. It has therefore been assumed that uncertainty for the 1/3rd

cases was the same as for the 1/8th tests.

C.3 1/8thIACC Yacht Model Hot-Films

The uncertainty levels as shown in Table C.2 were established using the results from

Conditions 12 and 18. The two conditions were identical except that Condition 12

was conducted with studs whilst Condition 18 was without studs; this gave four

groups that could be used for analysis. Each test group contained 10 runs which

provided sufficient information to undertake a statical analysis of the standard

deviation in measured intermittency about the mean of the repeated runs. The

estimate of the 95% condfidence level was undertaken using Equation C.1.

Uncertainty range = ±t s√
n

(C.1)

where:

t = T critical value = 2.262

s = standard deviation

n = number of samples

The magnitude of the uncertainty levels were sufficiently small that if included on

the hot-film plots the uncertainty bars would be approximately the same size of

the data points. As such uncertainty bars have not been included on the hot-film

plots.
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Table C.2: Results of calculation of 95% confidence intervals from repeat runs in
Conditions 12 and 18. The values shown are the maximum and minimum variation
in intermittency for the 95% confidence interval.

Condition HF 1 HF 2 HF 3 HF 4 HF 5
Condition 12, Runs 213-222 ±0.02 ±0.01 ±0.02 ±0.02 ±0.04
Condition 12, Runs 224-236 ±0.01 ±0.02 ±0.01 ±0.01 ±0.04
Condition 18, Runs 332-342 ±0.02 ±0.02 ±0.02 ±0.03 ±0.03
Condition 18, Runs 349-358 ±0.01 ±0.03 ±0.02 ±0.03 ±0.03

Maximum Values ±0.02 ±0.03 ±0.02 ±0.03 ±0.04
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Appendix D

Model Measurement Datums

The image on the following page shows the location of the zero point of the force

balance coordinates relative to the model zero point and the tow point.
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Appendix E

Overheat Calculations

This section contains screen shots of the overheat calculation information and

the associated dip switch settings. These calculations were undertaken using an

Excel spreadsheet program supplied by Dantec Dynamics which is available at:

http://www.dantecdynamics.com/Admin/Public/DWSDownload.aspx?File= %2fFiles

%2fFiler %2fProducts+and+Services %2fMiniCTA Excel spreadsheet 7a.XLS

Mini-CTA Excel spreadsheet

54T42 MiniCTA - Overheat calculations.

Probe identification Probe 1 ch.10

Insert probe specific parameters etc.    Click box below to select cable length.

Sensor resistance, R20 10.49 Ω See  probe box (Standard: 4 (4-10) meters)

Sensor lead resist., RL 0.20 Ω On probe box 4 meters

Support resistance, Rs 0.40 Ω Non standard

Cable resistance, Rc 0.20 Ω Cable 9006A1863

Sensor TCR, α20 0.31% /K

Desired sensor temp., Tw 55 °C Sensor temperature . 

Temperature of flow 16 °C Temperature during measurement

           Set decade controls as follows:

Calculated sensor operating resistance etc.     (grey dot indicates switch in down position)

Over temperature, ∆T 40 °C

Operating resist., Rw 11.63 Ω

Total resistance, RT 12.43 Ω 1 •••• •••• •••• ••••
Overheat ratio, a 0.11 0 •••• •••• •••• •••• •••• •••• •••• ••••
Bridge ratio, M 1:20 - 4 3 2 1 4 3 2 1 4 3 2 1

Decade resistance, RD 248.6 Ω SW1 SW2 SW3

Obtained wire temp., Tw °C

NOTE

Max. recommended sensor temperature Tw = 60 °C in water at atmospheric conditions (1 bar) 

OH Adjustment

Figure E.1: Overheat data and dip switch setting information for hot-film one.
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Mini-CTA Excel spreadsheet

54T42 MiniCTA - Overheat calculations.

Probe identification Probe 2 ch.11

Insert probe specific parameters etc.    Click box below to select cable length.

Sensor resistance, R20 11.91 Ω See  probe box (Standard: 4 (4-10) meters)

Sensor lead resist., RL 0.20 Ω On probe box 4 meters

Support resistance, Rs 0.40 Ω Non standard

Cable resistance, Rc 0.20 Ω Cable 9006A1863

Sensor TCR, α20 0.36% /K

Desired sensor temp., Tw 55 °C Sensor temperature . 

Temperature of flow 16 °C Temperature during measurement

           Set decade controls as follows:

Calculated sensor operating resistance etc.     (grey dot indicates switch in down position)

Over temperature, ∆T 40 °C

Operating resist., Rw 13.41 Ω

Total resistance, RT 14.21 Ω 1 •••• •••• •••• •••• ••••
Overheat ratio, a 0.13 0 •••• •••• •••• •••• •••• •••• ••••
Bridge ratio, M 1:20 - 4 3 2 1 4 3 2 1 4 3 2 1

Decade resistance, RD 284.2 Ω SW1 SW2 SW3

Obtained wire temp., Tw °C

NOTE

Max. recommended sensor temperature Tw = 60 °C in water at atmospheric conditions (1 bar) 

OH Adjustment

Figure E.2: Overheat data and dip switch setting information for hot-film two.

Mini-CTA Excel spreadsheet

54T42 MiniCTA - Overheat calculations.

Probe identification Probe 3 ch.12

Insert probe specific parameters etc.    Click box below to select cable length.

Sensor resistance, R20 9.82 Ω See  probe box (Standard: 4 (4-10) meters)

Sensor lead resist., RL 0.20 Ω On probe box 4 meters

Support resistance, Rs 0.40 Ω Non standard

Cable resistance, Rc 0.20 Ω Cable 9006A1863

Sensor TCR, α20 0.33% /K

Desired sensor temp., Tw 55 °C Sensor temperature . 

Temperature of flow 16 °C Temperature during measurement

           Set decade controls as follows:

Calculated sensor operating resistance etc.     (grey dot indicates switch in down position)

Over temperature, ∆T 40 °C

Operating resist., Rw 10.95 Ω

Total resistance, RT 11.75 Ω 1 •••• •••• •••• •••• •••• •••• ••••
Overheat ratio, a 0.12 0 •••• •••• •••• •••• ••••
Bridge ratio, M 1:20 - 4 3 2 1 4 3 2 1 4 3 2 1

Decade resistance, RD 235.1 Ω SW1 SW2 SW3

Obtained wire temp., Tw °C

NOTE

Max. recommended sensor temperature Tw = 60 °C in water at atmospheric conditions (1 bar) 

OH Adjustment

Figure E.3: Overheat data and dip switch setting information for hot-film three.
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Mini-CTA Excel spreadsheet

54T42 MiniCTA - Overheat calculations.

Probe identification Probe 4 ch.13

Insert probe specific parameters etc.    Click box below to select cable length.

Sensor resistance, R20 10.84 Ω See  probe box (Standard: 4 (4-10) meters)

Sensor lead resist., RL 0.20 Ω On probe box 4 meters

Support resistance, Rs 0.40 Ω Non standard

Cable resistance, Rc 0.20 Ω Cable 9006A1863

Sensor TCR, α20 0.32% /K

Desired sensor temp., Tw 55 °C Sensor temperature . 

Temperature of flow 16 °C Temperature during measurement

           Set decade controls as follows:

Calculated sensor operating resistance etc.     (grey dot indicates switch in down position)

Over temperature, ∆T 40 °C

Operating resist., Rw 12.05 Ω

Total resistance, RT 12.85 Ω 1 •••• •••• •••• ••••
Overheat ratio, a 0.11 0 •••• •••• •••• •••• •••• •••• •••• ••••
Bridge ratio, M 1:20 - 4 3 2 1 4 3 2 1 4 3 2 1

Decade resistance, RD 257.1 Ω SW1 SW2 SW3

Obtained wire temp., Tw °C

NOTE

Max. recommended sensor temperature Tw = 60 °C in water at atmospheric conditions (1 bar) 

OH Adjustment

Figure E.4: Overheat data and dip switch setting information for hot-film four.

Mini-CTA Excel spreadsheet

54T42 MiniCTA - Overheat calculations.

Probe identification Probe 5 ch.14

Insert probe specific parameters etc.    Click box below to select cable length.

Sensor resistance, R20 11.18 Ω See  probe box (Standard: 4 (4-10) meters)

Sensor lead resist., RL 0.20 Ω On probe box 4 meters

Support resistance, Rs 0.40 Ω Non standard

Cable resistance, Rc 0.20 Ω Cable 9006A1863

Sensor TCR, α20 0.35% /K

Desired sensor temp., Tw 55 °C Sensor temperature . 

Temperature of flow 16 °C Temperature during measurement

           Set decade controls as follows:

Calculated sensor operating resistance etc.     (grey dot indicates switch in down position)

Over temperature, ∆T 40 °C

Operating resist., Rw 12.55 Ω

Total resistance, RT 13.35 Ω 1 •••• •••• •••• •••• ••••
Overheat ratio, a 0.12 0 •••• •••• •••• •••• •••• •••• ••••
Bridge ratio, M 1:20 - 4 3 2 1 4 3 2 1 4 3 2 1

Decade resistance, RD 267.0 Ω SW1 SW2 SW3

Obtained wire temp., Tw °C

NOTE

Max. recommended sensor temperature Tw = 60 °C in water at atmospheric conditions (1 bar) 

OH Adjustment

Figure E.5: Overheat data and dip switch setting information for hot-film five.

E-3



Appendix F

Supplementary Force Data

This section contains plots of the coefficient of lift (CL) and drag (CD) with varia-

tion in Froude number, rudder angle and trim tab angle. In addition plots of the

coefficient of drag (CD) with respect to variation in CL
2 data have been included.

Where available results from the 1/3rd model tests are plotted along with those of

the 1/8th test data.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.1: Yaw 1 degrees, Heel 10 degrees, Tab 4 degrees, Rudder 2 degrees.
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Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.2: Froude number 0.40, Yaw -2 degrees, Heel 0 degrees, Rudder 0 degrees.

F-3



−6 −4 −2 0 2 4 6 8 10
0

0.04

0.08

0.12

0.16

Trim Tab Angle (degrees)

C
L

Tab Angle vs Cl 3

 

 

1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.3: Froude number 0.40, Yaw -1 degrees, Heel 0 degrees, Rudder 0 degrees.
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Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.4: Froude number 0.40, Yaw 0 degrees, Heel 0 degrees, Rudder 0 degrees.
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Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.5: Froude number 0.40, Yaw 1 degrees, Heel 0 degrees, Rudder 0 degrees.
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Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.6: Froude number 0.29, Yaw -2 degrees, Heel 5 degrees, Rudder 4 degrees.
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Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.7: Froude number 0.27, Yaw -2 degrees, Heel 5 degrees, Rudder 2 degrees.
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Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.8: Froude number 0.29, Yaw -2 degrees, Heel 5 degrees, Rudder 2 degrees.
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Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.9: Froude number 0.27, Yaw 0 degrees, Heel 5 degrees, Rudder 2 degrees.
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Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.10: Froude number 0.29, Yaw 0 degrees, Heel 5 degrees, Rudder 2 degrees.
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Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.11: Froude number 0.27, Yaw 1 degrees, Heel 5 degrees, Rudder 2 degrees.
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Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.12: Froude number 0.29, Yaw 1 degrees, Heel 10 degrees, Rudder 2 de-
grees.
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Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.13: Froude number 0.27, Yaw 1 degrees, Heel 10 degrees, Rudder 2 de-
grees.
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Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.14: Froude number 0.29, Yaw 1 degrees, Heel 10 degrees, Rudder 2 de-
grees.
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Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.15: Froude number 0.27, Yaw 0 degrees, Heel 10 degrees, Rudder 2 de-
grees.

F-16



−6 −4 −2 0 2 4 6 8 10
0

0.04

0.08

0.12

0.16

Trim Tab Angle (degrees)

C
L

Tab Angle vs Cl 16

 

 

1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

C
L
2

C
D

Cd vs Cl2 16

 

 

1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.16: Froude number 0.29, Yaw 0 degrees, Heel 10 degrees, Rudder 2 de-
grees.
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Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.17: Froude number 0.27, Yaw -2 degrees, Heel 10 degrees, Rudder 2
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

C
L
2

C
D

Cd vs Cl2 18

 

 

1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.18: Froude number 0.29, Yaw -2 degrees, Heel 10 degrees, Rudder 2
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.19: Froude number 0.29, Yaw -2 degrees, Heel 10 degrees, Rudder 4
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Coefficient of lift plotted against variation in rudder angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Coefficient of drag plotted against variation in rudder angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.20: Froude number 0.32, Yaw -2 degrees, Heel 20 degrees, Tab 10 degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.

−6 −4 −2 0 2 4 6 8 10
0

0.005

0.01

0.015

Trim Tab Angle (degrees)

C
D

Tab Angle vs Cd 21

 

 

1/8th Scale Without Studs
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.21: Froude number 0.34, Yaw -2 degrees, Heel 20 degrees, Rudder 1
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.22: Froude number 0.34, Yaw -2 degrees, Heel 20 degrees, Rudder 3
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.23: Froude number 0.34, Yaw -2 degrees, Heel 20 degrees, Rudder 5
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.24: Froude number 0.34, Yaw -2 degrees, Heel 20 degrees, Rudder 6
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.25: Froude number 0.34, Yaw 0 degrees, Heel 20 degrees, Rudder 1 de-
grees.

F-26



−6 −4 −2 0 2 4 6 8 10
0

0.04

0.08

0.12

0.16

Trim Tab Angle (degrees)

C
L

Tab Angle vs Cl 26

 

 

1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.26: Froude number 0.34, Yaw 0 degrees, Heel 20 degrees, Rudder 3 de-
grees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.27: Froude number 0.34, Yaw 0 degrees, Heel 20 degrees, Rudder 5 de-
grees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.28: Froude number 0.34, Yaw 0 degrees, Heel 20 degrees, Rudder 6 de-
grees.

F-29



−6 −4 −2 0 2 4 6 8 10
0

0.04

0.08

0.12

0.16

Trim Tab Angle (degrees)

C
L

Tab Angle vs Cl 29

 

 

1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.29: Froude number 0.34, Yaw 1 degrees, Heel 20 degrees, Rudder 1 de-
grees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.30: Froude number 0.34, Yaw 1 degrees, Heel 20 degrees, Rudder 3 de-
grees.

F-31



−6 −4 −2 0 2 4 6 8 10
0

0.04

0.08

0.12

0.16

Trim Tab Angle (degrees)

C
L

Tab Angle vs Cl 31

 

 

1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.31: Froude number 0.34, Yaw 1 degrees, Heel 20 degrees, Rudder 5 de-
grees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.32: Froude number 0.34, Yaw 1 degrees, Heel 20 degrees, Rudder 6 de-
grees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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1/8th Scale Without Studs
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.33: Froude number 0.27, Yaw -1 degrees, Heel -10 degrees, Tab -4 degrees,
Rudder -2 degrees.
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1/8th Scale Without Studs
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Student Version of MATLAB(a) Coefficient of lift plotted against variation in trim tab angle.
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Student Version of MATLAB(b) Coefficient of drag plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(c) Coefficient of drag plotted against variation in coefficient of lift squared.

Figure F.34: Froude number 0.34, Yaw 1 degrees, Heel 20 degrees, Tab 6 degrees,
Rudder 6 degrees.
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Appendix G

Supplementary Moment Data

This section contains plots of non-dimensional yaw (N′) and heel moment (L′) with

variation in Froude number, rudder angle and trim tab angle. Where available

results from the 1/3rd model tests are plotted along with those of the 1/8th test

data.
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1/8th Scale Without Studs
1/8th Scale With Studs
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Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in Froude number.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in Froude number.

Figure G.1: Yaw 1 degrees, Heel 10 degrees, Tab 4 degrees, Rudder 2 degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.

−6 −4 −2 0 2 4 6 8 10
0

0.03
0.06
0.09
0.12
0.15
0.18
0.21
0.24
0.27

Trim Tab Angle (degrees)

L
′

Trim Tab Angle vs Non−Dim Heel Mmt 2

 

 

1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.2: Froude number 0.40, Yaw -2 degrees, Heel 0 degrees, Rudder 0 degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.3: Froude number 0.40, Yaw -1 degrees, Heel 0 degrees, Rudder 0 degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.4: Froude number 0.40, Yaw 0 degrees, Heel 0 degrees, Rudder 0 degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.5: Froude number 0.40, Yaw 1 degrees, Heel 0 degrees, Rudder 0 degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.6: Froude number 0.29, Yaw -2 degrees, Heel 5 degrees, Rudder 4 degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.7: Froude number 0.27, Yaw -2 degrees, Heel 5 degrees, Rudder 2 degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.8: Froude number 0.29, Yaw -2 degrees, Heel 5 degrees, Rudder 2 degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.9: Froude number 0.27, Yaw 0 degrees, Heel 5 degrees, Rudder 2 degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.10: Froude number 0.29, Yaw 0 degrees, Heel 5 degrees, Rudder 2 degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.11: Froude number 0.27, Yaw 1 degrees, Heel 5 degrees, Rudder 2 degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.12: Froude number 0.29, Yaw 1 degrees, Heel 10 degrees, Rudder 2
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.13: Froude number 0.27, Yaw 1 degrees, Heel 10 degrees, Rudder 2
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.14: Froude number 0.29, Yaw 1 degrees, Heel 10 degrees, Rudder 2
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.15: Froude number 0.27, Yaw 0 degrees, Heel 10 degrees, Rudder 2
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.16: Froude number 0.29, Yaw 0 degrees, Heel 10 degrees, Rudder 2
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.17: Froude number 0.27, Yaw -2 degrees, Heel 10 degrees, Rudder 2
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.18: Froude number 0.29, Yaw -2 degrees, Heel 10 degrees, Rudder 2
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs
1/3rd Scale

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.19: Froude number 0.29, Yaw -2 degrees, Heel 10 degrees, Rudder 4
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in rudder angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in rudder angle.

Figure G.20: Froude number 0.32, Yaw -2 degrees, Heel 20 degrees, Tab 10 degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.21: Froude number 0.34, Yaw -2 degrees, Heel 20 degrees, Rudder 1
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.22: Froude number 0.34, Yaw -2 degrees, Heel 20 degrees, Rudder 3
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.23: Froude number 0.34, Yaw -2 degrees, Heel 20 degrees, Rudder 5
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.24: Froude number 0.34, Yaw -2 degrees, Heel 20 degrees, Rudder 6
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.25: Froude number 0.34, Yaw 0 degrees, Heel 20 degrees, Rudder 1
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.26: Froude number 0.34, Yaw 0 degrees, Heel 20 degrees, Rudder 3
degrees.

G-27



−6 −4 −2 0 2 4 6 8 10
0

0.003

0.006

0.009

0.012

0.015

0.018

0.021

Trim Tab Angle (degrees)

N
′

Trim Tab Angle vs Non−Dim Yaw Mmt 27

 

 

1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.27: Froude number 0.34, Yaw 0 degrees, Heel 20 degrees, Rudder 5
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.28: Froude number 0.34, Yaw 0 degrees, Heel 20 degrees, Rudder 6
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.29: Froude number 0.34, Yaw 1 degrees, Heel 20 degrees, Rudder 1
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.30: Froude number 0.34, Yaw 1 degrees, Heel 20 degrees, Rudder 3
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.31: Froude number 0.34, Yaw 1 degrees, Heel 20 degrees, Rudder 5
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.32: Froude number 0.34, Yaw 1 degrees, Heel 20 degrees, Rudder 6
degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.33: Froude number 0.27, Yaw -1 degrees, Heel -10 degrees, Tab -4 degrees,
Rudder -2 degrees.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(a) Non-dimensional yaw moment plotted against variation in trim tab angle.
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1/8th Scale Without Studs
1/8th Scale With Studs

Student Version of MATLAB(b) Non-dimensional heel moment plotted against variation in trim tab angle.

Figure G.34: Froude number 0.34, Yaw 1 degrees, Heel 20 degrees, Tab 6 degrees,
Rudder 6 degrees.
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Appendix H

Supplementary Hot-Film Data for

4 Hz High-Pass Filter

This section contains plots of the hot-film data analysed using a 4 Hz high-pass

filter.
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Figure H.1: Intermittency plotted with respect to variation in Froude number. Yaw
1 degrees, Heel 10 degrees, Tab 4 degrees, Rudder 2 degrees.
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Figure H.2: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.40, Yaw -2 degrees, Heel 0 degrees, Rudder 0 degrees.
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Figure H.3: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.40, Yaw -1 degrees, Heel 0 degrees, Rudder 0 degrees.
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Figure H.4: Froude number 0.40, Yaw 0 degrees, Heel 0 degrees, Rudder 0 degrees.
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Figure H.5: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.40, Yaw 1 degrees, Heel 0 degrees, Rudder 0 degrees.
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Figure H.6: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.29, Yaw -2 degrees, Heel 5 degrees, Rudder 4 degrees.
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Figure H.7: Intermittency plotted with respect to variation in trim tab angle.
Velocity 1.28 m/s, Yaw -2 degrees, Heel 5 degrees, Rudder 2 degrees.
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Figure H.8: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.29, Yaw -2 degrees, Heel 5 degrees, Rudder 2 degrees.

H-9



−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

In
te

rm
itt

en
cy

 H
F

5

 

 

Without Studs
With Studs

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

In
te

rm
itt

en
cy

 H
F

4

 

 

Without Studs
With Studs

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

In
te

rm
itt

en
cy

 H
F

3

 

 

Without Studs
With Studs

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

In
te

rm
itt

en
cy

 H
F

2

 

 

Without Studs
With Studs

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

Trim Tab Angle (degrees)

In
te

rm
itt

en
cy

 H
F

1

 

 

Without Studs
With Studs

Student Version of MATLAB

Figure H.9: Intermittency plotted with respect to variation in trim tab angle.
Velocity 1.28 m/s, Yaw 0 degrees, Heel 5 degrees, Rudder 2 degrees.
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Figure H.10: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.29, Yaw 0 degrees, Heel 5 degrees, Rudder 2 degrees.
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Figure H.11: Intermittency plotted with respect to variation in trim tab angle.
Velocity 1.28 m/s, Yaw 1 degrees, Heel 5 degrees, Rudder 2 degrees.
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Figure H.12: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.29, Yaw 1 degrees, Heel 10 degrees, Rudder 2 degrees.
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Figure H.13: Intermittency plotted with respect to variation in trim tab angle.
Velocity 1.28 m/s, Yaw 1 degrees, Heel 10 degrees, Rudder 2 degrees.
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Figure H.14: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.29, Yaw 1 degrees, Heel 10 degrees, Rudder 2 degrees.
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Figure H.15: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.27, Yaw 0 degrees, Heel 10 degrees, Rudder 2 degrees.
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Figure H.16: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.29, Yaw 0 degrees, Heel 10 degrees, Rudder 2 degrees.
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Figure H.17: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.27, Yaw -2 degrees, Heel 10 degrees, Rudder 2 degrees.
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Figure H.18: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.29, Yaw -2 degrees, Heel 10 degrees, Rudder 2 degrees.
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Figure H.19: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.29, Yaw -2 degrees, Heel 10 degrees, Rudder 4 degrees.
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Figure H.20: Intermittency plotted with respect to variation in rudder angle.
Froude number 0.32, Yaw -2 degrees, Heel 20 degrees, Tab 10 degrees.
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Figure H.21: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.34, Yaw -2 degrees, Heel 20 degrees, Rudder 1 degrees.
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Figure H.22: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.34, Yaw -2 degrees, Heel 20 degrees, Rudder 3 degrees.
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Figure H.23: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.34, Yaw -2 degrees, Heel 20 degrees, Rudder 5 degrees.
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Figure H.24: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.34, Yaw -2 degrees, Heel 20 degrees, Rudder 6 degrees.
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Figure H.25: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.34, Yaw 0 degrees, Heel 20 degrees, Rudder 1 degrees.
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Figure H.26: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.34, Yaw 0 degrees, Heel 20 degrees, Rudder 3 degrees.
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Figure H.27: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.34, Yaw 0 degrees, Heel 20 degrees, Rudder 5 degrees.
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Figure H.28: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.34, Yaw 0 degrees, Heel 20 degrees, Rudder 6 degrees.
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Figure H.29: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.34, Yaw 1 degrees, Heel 20 degrees, Rudder 1 degrees.
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Figure H.30: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.34, Yaw 1 degrees, Heel 20 degrees, Rudder 3 degrees.
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Figure H.31: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.34, Yaw 1 degrees, Heel 20 degrees, Rudder 5 degrees.
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Figure H.32: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.34, Yaw 1 degrees, Heel 20 degrees, Rudder 6 degrees.
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Figure H.33: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.27, Yaw -1 degrees, Heel -10 degrees, Tab -4 degrees, Rudder -2
degrees.
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Figure H.34: Intermittency plotted with respect to variation in trim tab angle.
Froude number 0.34, Yaw 1 degrees, Heel 20 degrees, Tab 6 degrees, Rudder 6
degrees.
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Figure H.35: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.27, Heel 5 degrees, Tab 4 degrees, Rudder 2 degrees.
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Figure H.36: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.27, Heel 10 degrees, Tab 4 degrees, Rudder 2 degrees.
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Figure H.37: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.27, Heel 5 degrees, Tab 6 degrees, Rudder 2 degrees.
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Figure H.38: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.27, Heel 10 degrees, Tab 6 degrees, Rudder 2 degrees.
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Figure H.39: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.27, Heel 5 degrees, Tab 8 degrees, Rudder 2 degrees.
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Figure H.40: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.27, Heel 10 degrees, Tab 8 degrees, Rudder 2 degrees.
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Figure H.41: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.29, Heel 5 degrees, Tab 4 degrees, Rudder 2 degrees.
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Figure H.42: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.29, Heel 10 degrees, Tab 4 degrees, Rudder 2 degrees.
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Figure H.43: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.29, Heel 5 degrees, Tab 6 degrees, Rudder 2 degrees.
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Figure H.44: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.29, Heel 10 degrees, Tab 6 degrees, Rudder 2 degrees.
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Figure H.45: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.29, Heel 5 degrees, Tab 8 degrees, Rudder 2 degrees.
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Figure H.46: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.29, Heel 10 degrees, Tab 8 degrees, Rudder 2 degrees.
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Figure H.47: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.34, Heel 20 degrees, Tab 6 degrees, Rudder 1 degrees.
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Figure H.48: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.34, Heel 20 degrees, Tab 6 degrees, Rudder 3 degrees.
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Figure H.49: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.34, Heel 20 degrees, Tab 6 degrees, Rudder 5 degrees.
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Figure H.50: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.34, Heel 20 degrees, Tab 8 degrees, Rudder 1 degrees.
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Figure H.51: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.34, Heel 20 degrees, Tab 8 degrees, Rudder 3 degrees.
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Figure H.52: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.34, Heel 20 degrees, Tab 8 degrees, Rudder 5 degrees.
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Figure H.53: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.34, Heel 20 degrees, Tab 8 degrees, Rudder 6 degrees.
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Figure H.54: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.34, Heel 20 degrees, Tab 10 degrees, Rudder 1 degrees.
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Figure H.55: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.34, Heel 20 degrees, Tab 10 degrees, Rudder 3 degrees.
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Figure H.56: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.34, Heel 20 degrees, Tab 10 degrees, Rudder 5 degrees.
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Figure H.57: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.34, Heel 20 degrees, Tab 10 degrees, Rudder 6 degrees.
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Figure H.58: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.40, Heel 0 degrees, Tab -2 degrees, Rudder 0 degrees.

H-59



−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

In
te

rm
itt

en
cy

 H
F

5

 

 

Without Studs
With Studs

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

In
te

rm
itt

en
cy

 H
F

4

 

 

Without Studs
With Studs

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

In
te

rm
itt

en
cy

 H
F

3

 

 

Without Studs
With Studs

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

In
te

rm
itt

en
cy

 H
F

2

 

 

Without Studs
With Studs

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.25
0.5

0.75
1

Yaw Angle (degrees)

In
te

rm
itt

en
cy

 H
F

1

 

 

Without Studs
With Studs

Student Version of MATLAB

Figure H.59: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.40, Heel 0 degrees, Tab 0 degrees, Rudder 0 degrees.
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Figure H.60: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.40, Heel 0 degrees, Tab 2 degrees, Rudder 0 degrees.
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Figure H.61: Intermittency plotted with respect to variation in yaw angle. Froude
number 0.40, Heel 0 degrees, Tab 4 degrees, Rudder 0 degrees.
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Figure H.62: Intermittency plotted with respect to variation in heel angle. Froude
number 0.27, Yaw 0 degrees, Tab 4 degrees, Rudder 2 degrees.
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Figure H.63: Intermittency plotted with respect to variation in heel angle. Froude
number 0.27, Yaw 1 degrees, Tab 4 degrees, Rudder 2 degrees.
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Figure H.64: Intermittency plotted with respect to variation in heel angle. Froude
number 0.27, Yaw -2 degrees, Tab 6 degrees, Rudder 2 degrees.
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Figure H.65: Intermittency plotted with respect to variation in heel angle. Froude
number 0.27, Yaw 0 degrees, Tab 6 degrees, Rudder 2 degrees.
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Figure H.66: Intermittency plotted with respect to variation in heel angle. Froude
number 0.27, Yaw 1 degrees, Tab 6 degrees, Rudder 2 degrees.
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Figure H.67: Intermittency plotted with respect to variation in heel angle. Froude
number 0.27, Yaw -2 degrees, Tab 8 degrees, Rudder 2 degrees.
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Figure H.68: Intermittency plotted with respect to variation in heel angle. Froude
number 0.27, Yaw 0 degrees, Tab 8 degrees, Rudder 2 degrees.
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Figure H.69: Intermittency plotted with respect to variation in heel angle. Froude
number 0.27, Yaw 1 degrees, Tab 8 degrees, Rudder 2 degrees.
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Figure H.70: Intermittency plotted with respect to variation in heel angle. Froude
number 0.29, Yaw -2 degrees, Tab 4 degrees, Rudder 4 degrees.
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Figure H.71: Intermittency plotted with respect to variation in heel angle. Froude
number 0.29, Yaw 0 degrees, Tab 4 degrees, Rudder 2 degrees.
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Figure H.72: Intermittency plotted with respect to variation in heel angle. Froude
number 0.29, Yaw 1 degrees, Tab 4 degrees, Rudder 2 degrees.
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Figure H.73: Intermittency plotted with respect to variation in heel angle. Froude
number 0.29, Yaw -2 degrees, Tab 6 degrees, Rudder 2 degrees.
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Figure H.74: Intermittency plotted with respect to variation in heel angle. Froude
number 0.29, Yaw 0 degrees, Tab 6 degrees, Rudder 2 degrees.
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Figure H.75: Intermittency plotted with respect to variation in heel angle. Froude
number 0.29, Yaw 1 degrees, Tab 6 degrees, Rudder 2 degrees.
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Figure H.76: Intermittency plotted with respect to variation in heel angle. Froude
number 0.29, Yaw -2 degrees, Tab 8 degrees, Rudder 2 degrees.
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Figure H.77: Intermittency plotted with respect to variation in heel angle. Froude
number 0.29, Yaw 0 degrees, Tab 8 degrees, Rudder 2 degrees.
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Figure H.78: Intermittency plotted with respect to variation in heel angle. Froude
number 0.29, Yaw 1 degrees, Tab 8 degrees, Rudder 2 degrees.
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