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Thesis Statement 

 
Deep-sea mount and shelf locations are defined as Vulnerable Marine Ecosystems (VMEs); 

isolated areas of high biodiversity and productivity. Corals are one of the main habitat-

forming taxa on seamounts providing the ecological framework upon which the ecosystem is 

based.  The recent discovery of field-like aggregations of deep-sea stylasterid coral reefs in 

the Antarctic benthos highlights their conservation importance, and VME classification un-

der the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) 

recognises that the conservation of these reefs is crucial to the maintenance of biodiversity. 

 

Images of coral fields of Errina spp. in the Dumont d’Urville Sea discovered during the 

CEAMARC research cruise in 2007/2008. This area is listed as a VME by CCAMLR. Image 

AAD ©. 
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Abstract 
 

Large aggregations of sylasterid corals have been identified throughout the offshore 

waters of the Antarctic, Sub-Antarctic and South America. These biodiverse regions are in-

terspersed by deep trenches, channels, sedimentary plains and isolated rocky habitat, which 

may facilitate or inhibit dispersal over evolutionary and ecological time scales. Deep-sea 

sampling has increased exponentially, across these benthic habitats, due to collaborative pro-

jects such as the Census of Antarctic Marine Life (CAML). Consequently, it is now possible 

to attempt to combine genetic and taxonomic expertise, explore evolutionary relationships 

and assess this data in relation to environmental change – both past and future.  

The biogeographic distribution of stylasterid corals is representative of population 

isolation, based on the discovery of dissimilar species aggregations throughout sampled re-

gions. To further investigate this biogeographic pattern, I sampled all 33 of the known sty-

lasterid species documented from the Antarctic, Sub-Antarctic, South West Atlantic and Pat-

agonian fiord regions across depths (~10 m - > 2000 m), geographic spatial scales (~10 km – 

10, 000 km), and habitat types (shelf, slope, seamount and fiords). Genetic relationships 

were investigated using DNA sequence data from multiple gene regions including: The mi-

tochondrial ribosomal subunit (16S), cytochrome c oxidase subunit 1 (CO1), and the nuclear 

Internal Transcribed Spacer (ITS).  This data was assigned to four research components to 

determine 1) the biogeographic distribution of Antarctic and Sub-Antarctic stylasterids (n = 

33 species, 14 genera). 2) Phylogenetic relationships based on morphology and genetics (n = 

12 species, 8 genera). 3) Phylogenetic relationships incorporating the fossil record, to assess 

the evolutionary history of stylasterid populations in the Drake Passage (n = 7 species, 6 

genera), and lastly, 4) genetic and demographic connectivity between populations to inform 

conservation management regimes (n = 7 species, 4 genera).  

Morphological taxonomy combined with mitochondrial DNA sequence data produced 

a well aligned phylogenetic cladogram. The genetic variability seen in stylasterid 16S and 

CO1 sequences was comparatively higher than other coral and hydrozoan studies, offering 

potential for these gene regions in DNA barcoding. This has practical implications including 

the discovery of new species, cataloguing of Antarctic biodiversity and identification of spec-

imens that are impossible to determine by taxonomic means. However, phylogenetic and tax-

onomic alignment was only achieved through the incorporation of systematic expertise in 

species identification, and inter-species relationships remain unresolved when compared to 
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the nuclear ITS gene region. Therefore, the incorporation of more gene regions for study, and 

the use of molecular taxonomy as a complementary tool, rather than a replacement for tradi-

tional systematics is recommended for future studies.  

When the mitochondrial phylogeny was calibrated with the fossil record, phylogenetic 

topology represented an evolutionary scenario in which stylasterid ancestors’ speciated in the 

Drake Passage during the Eocene/Oligocene transition boundary from calcite to aragonite sea 

conditions (~ 34 MYA). The phylogeny also suggests that skeletal bi-mineralogy may have 

played a central role in the speciation process. The presence of calcite in some genera and 

literature on the utility of either calcite or aragonite through oceanic time suggest a succes-

sional progression toward aragonite mineralogy in response to modern oceanic conditions 

(Oligocene => modern). Further research in this area may lead to the identification of accli-

mation states in stylasterid corals, and information on their ability to buffer impending ocean 

acidification, as the chemical state of the Southern Ocean shifts towards calcite sea condi-

tions in the near future.  

When investigating genetic population connectivity in the Sub-Antarctic, and across the 

Polar Front into South America, estimates demonstrate limited to no gene-flow across spatial 

scales of 300 - > 1000 km. Large scale comparisons were clearly subdivided, and genetic 

subdivision was evident both among populations either side of, and north of the Polar Front 

based on CO1 data. However, disparate gene-flow estimates derieved from 16S signify that 

populations were connected through evolutionary linkages, and connectivity south of the Po-

lar Front may be amplified by the presence of the Antarctic Circumpolar Current (ACC).  For 

fine scale comparision, local estimates of connectivity (~ 200 km) between two Errina spp. 

fiord populations in Patagonia, Chile, showed no evidence of genetic subdivision (FST = 0, p 

= 0.6). Similarly, Errina spp in East Antarctica also showed no evidence of genetic subdivi-

sion (ITS-1 FST = 0.03 P = 0.165 and ITS-2 FST = 0.002, P = 0.27). However, despite a lack of 

genetic differentiation in ITS Errina population comparisons, haplotype networks typify a 

pattern of adaptive radiation from a common ancestor, and upon comparing nucleotide poly-

morphism in CO1 (π =0.012 – 0.11), 16S (π =0 – 0.05), ITS-1 (π 0 - 0.002) and ITS-2 (π 0.02 

– 0.03) it was determined that relative variability in 16S and ITS represented historic connec-

tions, whilst CO1 being more variable, may also be more recent. 

Taken together, results suggest that a multitude of factors influence stylasterid coral 

populations, and temporal variation is particularly important in the context of this study. It is 

recommended that researchers focus on contemporary measures of connectivity, preserve 

specimens with genetic research in mind (> 90% ethanol preservation at the time of collec-
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tion), and incorporate more loci to test connectivity across multiple spatial scales and species. 

The potential use of CO1 or 16S as barcoding genes will help in this process. However, until 

funding towards more deep-sea Antarctic sampling and molecular information emerges, the 

data presented in this thesis has ascribed a measure of localised geographic segregation, his-

toric isolation and a limited capacity to recover following benthic disturbance. Substantiating 

that stylasterid corals congregate in diminutive and isolated populations. Therefore, to pre-

empt anthropogenic damage to coral ecosystems, patterns of geographic isolation need to be 

incorporated into the design of Antarctic Marine Protected Areas (MPAs) - to preserve essen-

tial habitat, buffer climate change, mitigate the effects of ocean acidification, and combat lo-

calised impacts such as destructive fisheries which pose a direct threat to coral populations, 

and their associated taxa. 
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  Thesis Introduction 
 

The Southern Ocean covers an area of 34.8 million km
2 

and the deepest parts of it 

possess unique environmental features including a deep continental shelf and the formation 

of abyssal currents (Brandt et al., 2007). These features provide habitat for an extraordinary 

biota which has evolved over the last 100 million years in the coldest, most isolated region of 

the ocean (Clarke & Johnston, 2003). This isolation, combined with evolutionary drivers such 

as glaciation, has led to the evolution of rare genomic, physiological and ecological life histo-

ry traits (Thatje, 2012). Antarctic species may be connected to surrounding deep oceans, but 

limited in their dispersal capacity. Hence, there is a high prevalence of endemics and species 

show unique biogeographic distributions (De Broyer et al., 2014a).  These irreplaceable spe-

cies and habitats are highly threatened, so much so that their demise may occur before sci-

ence and conservation managers can identify and ascertain how to protect them (Kaiser et al., 

2013). 

 

1.1 Antarctic Deep-Sea 

Further investigation, documentation and conservation of the Antarctic deep-sea has 

become vital in light of recent evidence on the vulnerability of deep-sea ecosystems (UNEP, 

2006) combined with current estimates on the susceptibility of the Antarctic benthos to rapid 

climate change (IPCC, 2013). Such environments are often associated with strong ocean cur-

rents and are dominated by filter feeders (de Forges & Koslow, 2000). These organisms, such 

as corals and their associated fauna, are typically long-lived and slow growing (Adkins et al., 

2004) with apparent low reproductive capacities and limited dispersal (Samadi et al., 2006). 

Such a life-history strategy conveys high susceptibility to anthropogenic disturbance, particu-

larly for endemics (McClain, 2007). If isolated deep-sea environments are in fact composed 

mainly of endemics (UNEP, 2006), a lack of external recruitment could significantly reduce 

their potential to recover following disturbance. 

 

The Antarctic Benthic Environment  

The Southern Ocean contains unique species assemblages with comparatively high 

diversity and richness estimates (Arntz & Rios, 1999; Clarke & Johnston, 2003). Speciation 

occurs when a species cohort becomes isolated either geographically or by some event that 

reduces the gene flow of a species. The benthic environment is thermally isolated from other 

oceans by the Antarctic Circumpolar Current (ACC). The ACC formed after the break-up of 
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Gondwana (Boger, 2011), and subsequent cooling ~28 – 41 MYA (Lawver & Gahagan 

2003). A number of studies have linked this isolation with the presence of rare species and 

evidence of cryptic speciation (e.g., Matschiner et al., 2009; De Broyer & Danis, 2011) and 

unique phenomena such as gigantism (Brandt et al., 2007) and dwarfism (Ramirez-Llodra et 

al., 2010) in Antarctic waters. A faunal isolation hypothesis provides a theory to describe 

Antarctic biodiversity (Brandt, 2007), and states that oceanic barriers limit the dispersal and 

migration potential of larvae. This results in structured populations with high levels of ende-

mism, local radiation and adaptation (Hunter & Halanych, 2008; Thornhill et al., 2008). 

However, despite evidence confirming these trends, there are studies which dispute them (see 

Thatje, 2012 for a current summary).  Ultimately, the majority of the Antarctic benthos is 

poorly understood. Often the mere existence of a species is undocumented.  

 

 Information on benthic structure and biological processes operating in Antarctic ma-

rine ecosystems has only been reported in the last decade (Kaiser et al., 2013). For the major-

ity of described species, data are limited to presence/absence records which do not provide 

information regarding ecological processes such as connectivity, genetic diversity, or popula-

tion structure (Grant & Linse, 2009; Griffiths, 2010).  Nor do these data give us any idea of 

basic biology e.g., reproduction, growth, and species interactions such as predation and com-

petition, etc. The cold temperatures and seasonal fluctuation in food supply tend to favour A 

selected life history characteristics, as outlined by Greenslade (1983), as a strategy for organ-

isms adapted to severe, but stable and predictable, environments such as the polar regions. 

Key A selected traits in the Southern Ocean include; seasonal breeding, longevity, reproduc-

tion through brooded larvae over extended periods of time and low fecundity. A number of 

Antarctic species illustrate these traits (Thatje, 2012). However, the extent to which these 

traits are selected for in the Southern Ocean remains unknown for the majority of fauna.  

 

To address our lack of knowledge of faunal assemblages, their distribution, abun-

dance and the life history characteristics of Antarctic marine life, a long-term, collaborative 

study was undertaken between 2005/06 - 2011/12 to produce an inventory of life in the 

Southern Ocean under the umbrella of the Census of Marine Life (CoML). The Antarctic 

component, the Census of Antarctic Marine Life (CAML) was a collaboration involving mul-

tiple countries, scientists and institutes, and aimed to establish base-line information on di-

versity to preserve the Antarctic environment in a time of rapid climate change (De Broyer & 

Danis, 2011). This exploration exponentially increased Antarctic sampling and, to date, over 
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one million distribution records have been collected. The current Registry of Antarctic Ma-

rine Species (RAMS) lists 99,956 taxa (as of 26/10/14) (De Broyer et al., 2014b).  Organisms 

that epitomise the typical A selected life-history traits associated with the Southern Ocean, 

and have been described in comparative detail following CAML sampling expeditions, in-

clude echinoderms (Hunter & Halanych, 2008), pycnogonids (Arango et al., 2011), amphi-

pods (Baird et al., 2011, 2012), and cephalopods  (Strugnell et al., 2008), to name a few. 

However, key information is still lacking in relation to the taxonomy of a number of groups 

and the majority of collected specimens await description due to a lack of taxonomic exper-

tise, identification tools for shipboard identification, and out-dated (or non-existent) reference 

material, especially in relation to deep-sea species (Griffiths, 2010).  Nevertheless, our level 

of knowledge on the Antarctic benthos has increased and it has been stated that science is 

now, through the advent of molecular tools, in a position to address important questions relat-

ing to species evolution, population connectivity and genetic adaptation (Clarke & Johnston, 

2003).   

 

Antarctic Benthic Population Connectivity and Isolation and Endemism 

The Antarctic benthos is composed of multiple habitat types extending to a maximum 

depth of 4000 m. These habitats include; the Antarctic continental shelf which extends to ~ 

800 m, and is a dominant bathymetric feature surrounding the continent and deep-sea mounts 

such as the Scotia Arc Sea mount and island chain (Brandt et al., 2007), and the Larsen ice 

shelf (Fig 1).  Multiple ecosystems have been discovered in these habitats comprised of deep-

sea reefs (Post et al., 2010), sponge gardens (Janussen & Tendal, 2007), bryozoan fields 

(Barnes, 2004), brittle star cities (Hunter & Halanych, 2008), polycheate dominated mud hab-

itats and thriving isopod communities (Brandt et al., 2007). Areas of high biodiversity are 

interspersed by deep troughs, basins, sedimentary plains and rocky outcrops, which may fa-

cilitate or inhibit dispersal. In this manner, the deep-sea is composed of interconnected local-

ised meta-populations (McClain, 2007). The extent to which dispersal occurs between popu-

lations has serious implications for species re-colonisation following disturbance (Gutt et al., 

2011). Therefore, a greater knowledge of connectivity is vital in order to successfully con-

serve marine biodiversity in the Antarctic deep-sea.  
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Figure 1. Selection of images from the Larsen Ice shelf illustrating high biodiversity habitats 

in the deep Southern Ocean (image © Laura Fillinger AWI).   

 

Deep-sea mount and shelf locations are defined as Vulnerable Marine Ecosystems 

(VME); characteristically, isolated areas of high biodiversity and productivity (Le Goff-Vitry 

et al., 2004; Samadi et al., 2006).  Connectivity between deep-sea mount and shelf popula-

tions may operate over varying spatial and temporal scales, with varying levels of dispersal 

and recruitment between regions (Cowen et al., 2000). Until recently, the Southern Ocean, 

with the present-day ACC, was regarded as a type of conveyer belt for species dispersal. The 

clockwise circulation of the ACC around the Antarctic continent has the potential to transport 

larvae across great distances (Nowlin & Klinck, 1986; Clarke & Johnston, 2003), but pan-

mixia (the capacity for random mating between populations), or homogenous species assem-

blages appears to be low or lacking (Thornhill et al., 2008).  Thatje (2012) discusses early life 

history as the predominant factor defining the distribution of Southern Ocean benthic inver-

tebrates, citing a direct relationship between dispersal capacity and speciation rate (inferring a 

negative correlation between endemism and dispersal). Dispersal potential is unknown for the 

majority of Antarctic deep-sea fauna, and the ability to disperse between meta-populations 

will potentially buffer the effects of disturbance and maintain genetic diversity between iso-
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lated populations (de Forges et al., 2000). If dispersal is limited, as it appears to be, extinction 

in a changing environment is probable for a number of endemic invertebrates (Barnes et al., 

2009).  

 

High levels of regional endemism and diversity are frequently discussed in the Ant-

arctic literature ( Linse et al., 2006; Brandt et al., 2007; Strugnell et al., 2009). For example 

endemism is particularly high in a number of invertebrates including: amphipods (Baird et al, 

2012), pycnogonids (Munilla & Soler Membrives, 2009), isopods (Brandt et al., 2007), and 

certain echinoderm classes (Piepenburg, 2005). However, the mechanisms promoting ende-

mism leading to speciation and demographic connectivity patterns in the Southern Ocean are 

rarely tested and remain hypothetical. Research into understanding connectivity on a regional 

scale in Antarctica is urgently needed (CAML scientific statement), and Marine Protected 

Area (MPA) proposals require estimates of demographic exchange between populations (Pa-

lumbi, 2003).  However, only two studies have been able to assess connectivity at small spa-

tial scales in the Antarctic benthic environment (< 10 - 100 Km) (Baird et al., 2012; Leese et 

al, 2010).  At broader spatial scales (> 500 km), the majority of connectivity research has fo-

cused on near shore species from the Scotia Arc and Antarctic Peninsula (Hunter & 

Halanych, 2008; Wilson et al., 2007; 2009). These studies, although informative, do not in-

corporate vast areas of the sea floor, and have found unique and often conflicting results.  

 

For example, demographic connectivity estimates across local spatial scales, of < 10 

km in the East Antarctic near shore benthos, suggest genetic structure exists between popula-

tions of the brooding amphipod Orchomenella franklini (Baird et al., 2012).  Whilst, Hunter 

and Halanych (2008) found significant genetic connectivity across a broad geographic scale 

(> 500 km) in brooding brittle star populations of Astrotoma agassizii from the Antarctic 

Peninsula, indicating that neither reproductive mode nor geographic distance present a dis-

persal barrier for this species. In contrast, Wilson et al. (2007) conducted a study in the same 

region as Hunter and Halanych (2008), with some of the same sample locations, and found 

significant genetic structure between populations of the free spawning crinoid Promachocri-

nus kerguelensis. These results were somewhat unexpected based on the species’ reproduc-

tive biology (Wilson et al., 2007; Hunter & Halanych, 2008) and limited geographic barriers 

to dispersal (Baird et al., 2012), illustrating that dispersal is often species or regionally specif-

ic and further research on multiple species within and between areas is needed to more accu-

rately assign a measure of demographic connectivity in Antarctica.  
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1.2 Antarctic Deep-Sea Stylasterid Corals  

Corals are one of the main habitat-forming taxa in the Antarctic deep-sea, and speci-

mens have been known from depths of > 494 m in Antarctica since 1841 when the Erebus 

expedition sampled the Ross Sea (Cairns, 1983). However, since this time very few attempts 

to describe the diversity of Antarctic coral fauna have been made (Cairns, 1982; 1983). Sty-

lasterid corals are a species-rich taxonomic group with over 247 known species world-wide 

(Cairns, 2011). Twenty nine morphological species of Stylasteridae coral are described from 

the Antarctic and Sub-Antarctic. Eighteen of these are found near the Antarctic continent 

with 33 – 54.5% listed as endemic (Cairns, 1983).  As a result of the recent CAML studies, 

stylasterid coral collections are available in a number of invertebrate collections world-wide 

but, until now these collections have remained unsorted, unidentified and unpublished. This 

means there remain many gaps in our understanding of abundance, distribution and popula-

tion structure. There are no reproductive data available for any Antarctic Stylasterid species 

and very little morphological data have been formally documented since the 1980’s when Dr 

Stephen Cairns identified and compiled museum specimens (Cairns, 1983).  Cairns (1992) in 

his review of stylasterid distributions suggests that they may be sensitive to fluctuating salini-

ty, high sediment, competition (e.g., from the other stony coral group Scleractinia) and nutri-

ent levels due to sediment build-up in polyps. He further states that substrate type may be the 

key limiting factor, as stylasterids require a hard substrate to settle, and show a preference for 

vertical surfaces.   

 

Stylasterid Coral Fields 

Research using stylasterid corals is particularly informative for population level anal-

ysis as they are abundant, widespread, and a species rich taxonomic group (Cairns, 2011). 

Deep-sea reefs are usually dominated by a single structural genus, such as Lophelia (e.g., Flot 

et al., 2013), Desmophyllum (e.g., Miller et al., 2011) and Errina (e.g., Häussermann & 

Försterra, 2007) and tend to have a more extensive geographic range than shallow water cor-

als (Freiwald, 2002), which may be because shallow reef environments are composed of sev-

eral species occupying various niches that relate to light (Veron, 1983). 

 

The stylasterid genus Errina has been identified as a key structural habitat-forming 

coral in numerous locations including New Zealand and Chile’s fiords (Miller et al., 2004; 

Häussermann & Försterra, 2007), and East Antarctica (Post et al., 2010).  The recent discov-

ery of field-like aggregations of Errina on the Antarctic continental shelf indicates that deep-
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sea stylasterid coral populations form important ecosystems in the Southern Ocean.  Conse-

quently, Errina spp. aggregations in the Dumont d'Urville Sea have been listed as a Vulnera-

ble Marine Ecosystem (VME), and Errina spp. are listed as VME indicator taxa through The 

Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) (Post et 

al, 2010 thesis statement image). This status provides a frame work through which these eco-

systems are given conservation significance and protection from anthropogenic threats.   

 

Post et al., (2010) outlined contrasting distribution patterns of the stylasterid coral 

Errina spp. near the George V continental slope in the Dumont d’Urville Sea. However, 

while they suggest that they may not have fully captured their distribution, they speculate that 

distributions may be related to a number of physical factors such as salinity, depth and nutri-

ent availability and that Errina may not occur above 430 m. The majority of Errina spp. in 

the Dumont d'Urville Sea are distributed between 570 - 950 m, which is below the region of 

ice scour. However, during a recent German voyage at the Larsen B ice shelf east of the Ant-

arctic Peninsula, a shallow community was discovered with 14 - 26 colonies m
-2

 at 160 and 

240 m depth, respectively (Gutt pers.com.). In addition, benthic distributions in fiord regions 

extend from 10 m depth (Häussermann & Försterra, 2007), suggesting that Errina spp. has a 

eurybathic distribution. Therefore, research on stylasterids allows for study across broad geo-

graphic and bathymetric ranges.  

 

Errina antarctica has been found in vast field-like aggregations in shallow waters (10 

– 30 m) off the southern Chilean fiords between the Central Patagonian Zone (48°S) and 

Tierra del Fuego (55°S). This morphotype of E. antarctica is characterised by large, erect 

branching colonies inhabiting rocky substrate, characteristic of the Patagonian fiord system. 

The extensive abundance (±80% coverage) in this region (Häussermann & Försterra, 2007), 

combined with the video footage estimating similar abundance in the Southern Ocean (D 

Bowden, pers.com), confirms the importance of Errina spp. corals to the Antarctic and Pata-

gonian ecosystems.  

1.3 Potential Threats to Antarctic Deep-sea Coral Ecosystems 

The existence of high biodiversity stylasterid coral fields emphasises the conservation 

importance of the Antarctic benthos, under the jurisdiction of the Antarctic treaty system, 

managed by CCAMLR (Cordonnery, 1998), in combination with their Protocol on Environ-
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mental Protection to the Antarctic Treaty (The Madrid Protocol) (Grant et al., 2012 Fig 2). 

Under article II of the Madrid Protocol, the area of land and sea south of 60° S is dedicated in 

the interests of all people as a natural reserve, devoted to peace and science. However, the 

reality of the modern era, dictates that such a designation is idealistic. In a time of rapid envi-

ronmental change, decreasing global resource availability and increasing social and economic 

interest in Antarctica, detrimental impacts to sensitive and vulnerable ecosystems are increas-

ing (De Boyer et al., 2014a). To mitigate these impacts, it is vital that scientifically accurate 

data are incorporated into conservation management regimes. Corals possess a number of life 

history characteristics (e.g., long lived, slow growing, limited dispersal etc.) that make them 

particularly vulnerable to extinction (Miller et al., 2004), and there are many immediate, di-

rect anthropogenic and natural threats to Antarctic corals including, but not limited to, the 

following:  

 

Grounded Icebergs (Ice Scours) 

Natural sources of coral mortality include iceberg scours, from iceberg transport 

along the benthos, which is reported to cause damage to 400 m depth (Massom et al., 2009). 

An ice scour is the grinding of the seabed by the bottom of icebergs broken from the sea ice. 

This grinding can cause gouges in the benthos similar to the effect of a glacier carving out a 

valley on land (Gutt & Piepenburg, 2003). Ice scours pose a localised threat to deep-sea reefs 

and sponge gardens nearest to the Antarctic continent (Beaman & Harris, 2005). This type of 

disturbance regulates the diversity of the Antarctic benthos (Gutt & Piepenburg, 2003). How-

ever, global warming is expected to increase the number and frequency of ice berg scours 

(Beaman & Harris, 2005). We have observed this increase in recent years with the collapse of 

the Larson ice shelf in 1995 (Larsen A) (Rott et al., 1996), 2002 (Larsen B) (Scambos et al., 

2003) on the Antarctic Peninsula, and in East Antarctica with the Mertz glacier calving in 

2010 (Tamura et al., 2012).  Increased ice-berg scour, if combined with other anthropogenic 

influences, threatens to remove or damage fragile coral skeletons, eliminate substrate suitable 

for larval settlement, and allow more competitive taxa to colonise the available space, thus, 

out competing stylasterids and substantially altering ecosystem structure.   

 

Deep-Sea Bottom Trawling 

Deep-sea trawling has a significant negative, wide-reaching impact on the entire ben-

thic ecosystem (documented globally UNEP, 2006). Bottom trawling and deep-sea fishing 

activities are regulated by CCAMLR who have prohibited bottom trawling in the Southern 
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Ocean, due to documented impacts to non-target species, including deep-sea corals (UNEP, 

2006). As a result, CCAMLR conservation measure 22-06 (2008) and conservation measure 

22-07 (2009a), pertaining to VMEs (CCAMLR, 2012), only allow mid-water trawls, and long 

line fisheries to < 550 m (CCAMLR, 2009b). While occasional exceptions are made for sci-

entific collection (Hosie et al., 2011), bottom trawling is unlikely to pose a significant threat 

to sea mount and shelf locations in CCAMLR regulated territory.  Nonetheless, bottom trawl-

ing was used for the mackerel ice fishery (Champsocephalus gunnari) at Herd Island (Kock 

1991), up until the 1980’s, and the state of the trawled region has not been assessed. It is un-

likely to have recovered to a healthy state; in the decades since trawling began recovery has 

not been documented anywhere in the world (Clark & O’Driscoll, 2000; Collie et al., 2000). 

Furthermore, while there are currently no reports of illegal bottom trawling in the Southern 

Ocean, nor a legal trawl fishery in the region, global fish stocks are decreasing (Clark, 2009), 

so it should be noted as a substantial threat. CCAMLR fisheries regulations are open to dis-

cussion which means they may change in the future and this could mean devastation for 

deep-sea coral ecosystems in the Southern Ocean.   

 

Long Line Fisheries  

Long line fisheries use a long mainline set in the water, with many baited hooks, and 

heavy weights. These weights cause the line to drag along the benthos creating a significant 

disturbance and a considerable amount of by-catch, including corals, which are dragged to 

the surface when a line is retrieved (Pauly, 2008). There are regulated and Illegal, Unreported 

and Unregulated (IUU) long line fisheries operating in Antarctica (Fabra & Gascón, 2008). 

Long line fishing for the two Antarctic toothfish species (Dissostichus eleginoides and/or D. 

mawsoni) is regulated by CCAMLR and approved by the Marine Stewardship Council 

(MSC) as a sustainable fishery. The regulated fishery in the Ross Sea collects scientific data, 

has a fisheries observer program and records and preserves by-catch (Parker & Bowden, 

2009). CCAMLR regulated tooth fisheries also operate at South Georgia, South Sandwich 

Islands, Heard and McDonald Islands, Macquarie Island, Crozet Islands and Kerguelen Is-

lands (Fig 2). CCAMLR fisheries adhere to catch restrictions and the move-on rule, where 

fishing is halted and prohibited within a 1nm radius of a VME area if VME taxa e.g., corals, 

sea pens, sponges and bryozoans, are encountered (CCAMLR, 2009a).  Argentina and Chile 

regulate fisheries within their respective Exclusive Economic Zones (EEZ), and within the 

CCAMLR boundary (between 45°S and 60°S). There are no published data on the impact of 

these fisheries on benthic habitat. However, even regulated fisheries that operate over an ex-
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tensive area will likely affect fragile benthic fauna such as corals (Roberts et al., 2006), more 

so if combined with impact from IUU fisheries. 

 

 

Figure 2. Southern Ocean FAO fishing area boundary regulated by CCAMLR. Image © 
CCAMLR.  

 

Ocean Acidification 

Deep-sea calcifying organisms such as corals face a significant, global threat known 

as ocean acidification (Guinotte & Fabry, 2008). The latest IPCC assessment on climate 

change states; “ while the effects of observed ocean acidification on the marine biosphere are 

as yet undocumented, the progressive acidification of oceans, is expected to have negative 

impacts on marine shell-forming organisms (e.g., corals) and their dependant species” (IPCC, 

2013). Scleractinian corals form the majority of the deep-sea reef structure and rely on arago-

nite to deposit their calcium carbonate (CaCO3) skeletons. Organisms that utilise aragonite 

are thought to be the most vulnerable to changes in oceanic pH (Feely et al., 2004).  Corre-

spondingly, nearly 70% of the world’s known deep-sea coral reefs are predicted to fall below 

the Aragonite Saturation Horizon (ASH), the region in the water column where aragonite cal-

cification may no longer occur, by 2100. 15% of scleractinian corals already subsist below 
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the ASH (Guinotte et al., 2006). Due to the chemistry of CO2 in cold water, Antarctica is 

predicted to be the region of the world where the effects of ocean acidification are most prev-

alent (Guinotte & Fabry, 2008).  

 

Current estimates suggest that over one third of the total CO2 emitted into the atmos-

phere has been absorbed by the ocean (Sabine et al., 2004). Around 40% of the global inven-

tory of anthropogenic CO2 can be found in the Southern Ocean. This equates to a total pH 

decrease of 0.14 in the Southern Ocean since the industrial era (Feely et al., 2004). The long-

term consequences of ocean acidification are unknown. As oceanic pH decreases, the depth 

of the saturation horizon in the water column becomes shallower, changing the range and 

composition of deep-sea ecosystems (Orr et al., 2005). Guinotte & Fabry (2008) suggest the 

ASH, which is currently estimated at ~ 1000 m (Feely et al., 2004), may rise to surface wa-

ters in the Southern Ocean by 2100. Experimental results indicate that calcifying organisms 

do not readily acclimatise to decreasing carbonate saturation states (Orr et al., 2005; Guinotte 

& Fabry, 2008; Hall-Spencer et al., 2008). If this holds true under natural conditions, the ge-

ographical range of some coral species may be reduced while others could become extinct. 

Stylasterid skeletons have been shown to contain both aragonite and calcite (Cairns & Mac-

Intyre, 1992). The Calcite Saturation Horizon (CSH) is much deeper (> 2000 m deeper in 

some parts of the Southern Ocean) than the ASH (Barnes & Peck, 2008). Therefore, a calcifi-

er which has the ability to utilise both aragonite and calcite may have a greater capacity to 

acclimate to changing oceanic pH than purely aragonite calcifiers. This makes the study of 

stylasterid corals all the more relevant to the maintenance of Antarctic biodiversity, as they 

may survive predicted climate change scenarios.   

 

1.4 Thesis Objectives and Outline 

This study aims to clarify relationships among deep-sea populations in the Antarctic, using 

stylasterid corals as an ecological model to investigate patterns of biodiversity, and ecology 

on deep-sea reefs. Stylasterid population structure, species relationships and diversity are un-

known, due in part to the expense and inaccessibility of their habitat.  As a result of recent 

Antarctic expeditions and the CAML initiative, coral collections are available for study in a 

number of invertebrate collections world-wide. Until now these collections have remained 

unsorted, unidentified and unpublished. Correspondingly, this is the first study to investigate 

stylasterid species molecular relationships in Antarctica and incorporates the following four 

research chapters and their corresponding aims:  
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Chapter 2: The Census of Antarctic Marine Life (CAML) Scientific Committee of Antarctic 

Research and Marine Benthic Information Network (SCAR-MarBIN) compiled a Biogeo-

graphic Atlas of the Southern Ocean to combine data collected during the CAML 2007/08  - 

2012/13 time period. The Stylasteridae (Coelenterata: Hydrozoa) form a chapter within this 

publication. This paper aims to summarise the current state of knowledge of the biogeogra-

phy of stylasterid corals in Antarctica and the Sub-Antarctic.   

Bax N. N., Cairns, S. D., (2014) Stylasteridae (Cnidaria; Hydrozoa). In: De Broyer C., 

Koubbi P., Griffisths H. J., Raymond B., Biogeographic Atlas of the Southern 

Ocean. Cambridge Press: SCAR, 107-112. 

 

Chapter 3: A multi-disciplinary analysis of Antarctic and Sub-Antarctic stylasterid coral 

species relationships: do molecular and taxonomic relationships align? 

This chapter aims to clarify the inter- and intra-species relationships of Antarctic stylasterid 

species using genetic and morphological identification to delineate phylogenetic connections. 

 

Chapter 4: Evolutionary relationships of Drake Passage Stylasterid corals.  

This chapter combines mitochondrial phylogenetic data with the ancient fossil record (~65 - 

50 MYA) to investigate evolutionary relationships and determine the patterns and processes 

that may have shaped speciation in Antarctic and Sub-Antarctic stylasterids, using the Drake 

Passage as a case study.  

 

Chapter 5:  Connectivity and Conservation of Stylasterid corals in the Antarctic and Sub-

Antarctic. 

This chapter aims to determine the level of genetic exchange between stylasterid coral popu-

lations in Antarctica by comparing intra-specific variation within (local scale connectivity) 

and between (large scale connectivity) regions, and resolve Circum-Antarctic patterns of 

population connectivity, focusing on seven relatively common species; Errina fissurata Gray, 

1872, Errina laterorifa Eguchi, 1964, Errina antarctica (Gray, 1872), Errinopsis fenestrata 

Cairn, 1983, Stylaster densicaulis Moseley, 1879, Cheiloporidion pulvinatum Cairns, 1983 

and Conopora verrucosa (Studer, 1878).  
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The Census of Antarctic Marine Life SCAR-Marine Biodiversity 

Information Network Biogeographic Atlas of the Southern Ocean: 

Stylasteridae (Cnidaria, Hydrozoa) 

The Census of Antarctic Marine Life SCAR-Marine Biodiversity Information Net-

work Biogeographic Atlas of the Southern Ocean was published in 2014 to synthesise Ant-

arctic Biogeographic information to date. The following statement is provided as an abstract 

to give background to this publication, to which the Stylasteridae (cnidarian, Hydrozoa) 

forms a component:

‘The “Biogeographic Atlas of the Southern Ocean” is a legacy of the International Po-

lar Year 2007-2009 (www.ipy.org) and of the Census of Marine Life 2000-2010 

(www.coml.org), contributed by the Census of Antarctic Marine Life (www.caml.aq) and the 

SCAR Marine Biodiversity Information Network (www.scarmarbin.be; 

www.biodiversity.aq). The scope of the Biogeographic Atlas of the Southern Ocean is to pre-

sent a concise synopsis of the present state of knowledge of the distributional patterns of the 

major benthic and pelagic taxa and of the key communities, in the light of biotic and abiotic 

factors operating within an evolutionary framework. Each chapter has been written by the 

most pertinent experts in their field, relying on vastly improved occurrence datasets from re-

cent decades, as well as on new insights provided by molecular and phylogeographic ap-

proaches, and new methods of analysis, visualisation, modelling and prediction of biogeo-

graphic distributions.’ 

Bax N. N., Cairns, S. D., (2014) Stylasteridae (Cnidaria; Hydrozoa). In: De Broyer C.,
Koubbi P., Griffisths H. J., Raymond B., Biogeographic Atlas of the Southern
Ocean. Cambridge Press: SCAR, 107-112.

This chapter has been removed for 
copyright or proprietary reasons.

http://www.scarmarbin.be/
http://www.biodiversity.aq/
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A Multi-Disciplinary Analysis of Antarctic and Sub-Antarctic 

Stylasterid Coral Species Relationships: Do Molecular and 

Taxonomic Relationships Align? 

This study uses a multi-disciplinary taxonomic approach, combining genetics and 

morphology, to assess species relationships among stylasterid corals in the Antarctic and 

Sub-Antarctic. DNA sequences of the mitochondrial ribosomal subunit (16S), cytochrome c 

oxidase subunit 1 (CO1) and the nuclear Internal Transcribed Spacer (ITS) were obtained 

from 131 stylasterid corals collected from the waters of Antarctica, the Sub-Antarctic, 

Patagonia and the South West Atlantic. The nuclear ITS gene region was included for some 

taxa as a more variable gene region for comparison, and showed markedly different intra-

species relationships compared to mitochondrial data for Errina and Errinopsis species. 

Mitochondrial trees suggest congruence between morphology and genetics for CO1 and 16S 

gene regions and phylogenetic clade compositions indicate that generic and species level 

morphological complexity correlate well with genetic similarity for Errina, Errinopsis, and 

Cheiloporidion species.  However, based on current morphological delineations, in order to 

most accurately align genetics and morphology, a re-examination of the derived character 

state is suggested to resolve discrepancies between phylogenetic topology. The basal clade in 

CO1 and 16S comparions was Conopora verrucosa, a species identified morphologically by 

its cyclosystem and lack of gastrostyle. The gastrostyle is considered a basal morphological 

character, and the comparable phylogenetic placement of Stellapora echinata, Sporadopora 

dichotoma and Stylaster densicaulis can be attributed to this synapomorphy. Therefore, it is 

recommended, based on these genetic data sets, that the cyclosystem be attributed as a basal 

character state and the gastrostyle be attributed as more derived in future studies.  

Furthermore, CO1 and 16S mitochondrial markers may be useful DNA barcoding genes for 

stylasteridae, and where taxonomic expertise is not available, genetic data may substitute 

traditional species taxonomy to facilitate the quantification of stylasterid diversity in the 

Antarctic and Sub-Antarctic benthos. 
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Introduction 
 

Studies on deep-sea corals, some of the dominant taxa on seamount and shelf loca-

tions globally, are often limited by inadequate taxonomic data. This hinders the understand-

ing of biodiversity in these important ecosystems (Baco & Cairns, 2012). Quantification of 

diversity is particularly important in isolated geographic locations such as the understudied 

deep Antarctic Ocean, where the majority of benthic life is either undescribed or undiscov-

ered. Corals, broadly defined as cnidarian sessile benthic invertebrates formed from a colony 

of polyps ‘having continuous or discontinuous calcium carbonate or horn-like skeletal ele-

ments’(Cairns, 2007), are ubiquitous throughout the world’s deep oceans (Freiwald et al., 

2004; Cairns, 2011). Morphological characters are traditionally used to classify coral species, 

but morphological characters are not always informative at the species level of classification 

(Knowlton, 2000). Coral species identification is complicated by a number of factors. Corals 

can be polymorphic in form, have overlapping morphologies, few diagnostic characters, can 

utilise different reproductive strategies even within species, and often occur within close 

proximity to other closely related individuals. As a result, species boundaries are often un-

clear (Veron, 1995; Willis et al., 1997; Forsman et al., 2009). 

Coral Species Relationships – from Tropical Corals to Deep-sea Corals  

Coral species are typically separated based on morphology, reproductive behaviour, 

and/or genetics (e.g., Orbicella annularis species complex in Fukami et al., 2008, Budd et 

al., 2012, Acropora species complex in Van Oppen et al., 2001). However, such characteris-

tics can be conflicting (Miller & Babcock, 1997; Miller & Benzie, 1997). Coral skeletal mor-

phology is often associated with factors separate to reproductive isolation or evolutionary di-

vergence, such as phenotypic plasticity, hybridisation and incomplete lineage sorting (van 

Oppen et al., 2001). Hence, many aspects of coral species relationships remain unclear de-

spite the application of molecular and morphological methods (Medina & Szmant, 1999; 

Aguilar & Sanchez, 2007). This means workable descriptions for most coral species are lack-

ing (e.g., the Pocillopora spp. review in Schmidt-Roach, 2012; 2013), as is the applicability 

of genetic initiatives, such as DNA barcoding - where DNA identification is used either in 

place of, or as a complementary tool to morphological taxonomy (DeSalle et al., 2005). Fur-

ther, the majority of genetic studies focus on reef-building, shallow water, zooxanthellate 

(with photosynthetic algal symbionts) corals, principally within the order Scleractinia (Kita-

hara et al., 2010). The literature on deep-sea or cold water azooxanthallate (lacking photosyn-
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thetic algal symbionts) coral species is increasing (Miller et al., 2010; McFadden et al., 

2011). However, until the last decade, they have been largely ignored outside of the North 

Atlantic (Freiwald et al., 2004), due to their comparative inaccessibility and the high cost of 

conducting research. The exception is the gorgonian corals, the principal octocoral group in 

the deep-sea (Watling et al., 2011), for which a reasonable amount of molecular literature 

exists (McFadden et al., 2006; 2011; Watling et al., 2011).  

 

It is surmised that the total area of reef structure in the deep ocean could surpass 

known shallow water coral distribution, and coral reef structure provides the heterogeneous 

environment that many organisms rely upon (Guinotte & Fabry 2008). In the deep-sea the 

lack of available hard substrate for recruitment is critical to population persistence (Davies & 

Guinotte, 2011; Yesson et al., 2012). However, competition for light, an important limiting 

resource on tropical coral reefs (Mundy & Babcock, 2000), is absent in the deep-sea. The 

photic zone ends at ~ 200 m, and corals are known from depths below 6000 m (Keller, 1976). 

The deep-sea is considered a seasonally stable environment; where salinity, pressure and 

temperature rarely fluctuate, and nutrient input is cyclic (Kiriakoulakis et al., 2009). This 

means generation times are likely to be long, which could result in limited selective pressure. 

The literature on deep-sea corals indicates that deeper sea species may be more easily differ-

entiated from one another by molecular methods than their shallow water relatives (Kitahara 

et al., 2010; Miller et al., 2011), but exceptions remain e.g., Narella spp. (Baco & Cairns, 

2012). If low intra-specific genetic variability exists in deep-sea corals, it may be easier to 

determine independent morphological relationships and their comparative genetic taxonomy.  

 

Under this hypothesis a coral species recruiting into a new deep benthic habitat (es-

tablishing a founder population) may maintain the same morphology as its parental popula-

tion and genetic divergence or differentiation may not occur among isolated populations, due 

to a lack of selective pressure. To date, some studies substantiate this theory of low genetic 

and morphological variation. For example Miller et al., (2011) quantify minor (but still statis-

tically significant) morphological variation in the coral Desmophyllum dianthus across the 

entire Southern Hemisphere despite marked genetic differences related to geography and 

depth. In the Northern Hemisphere, Addamo et al., (2012) document the opposite result, with 

marked morphological variation, but genetically Desmophyllum dianthus and Lophelia per-

tusa were nearly indistinguishable. Flot et al., (2013) found close to no genetic difference 
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across ~ 7500 km in Lophelia pertusa, and studies on Madrepora oculata (Lin et al., 2012) 

and Paragorgia aborea (Herrera et al., 2010; 2012) corroborate findings of lower than ex-

pected genetic variation across broad spatial scales. These studies benefit from the cosmopol-

itan distribution of their chosen coral taxa, but are limited by the conundrum that such studies 

must address – do these species constitute one species with a wide geographic distribution, or 

are there obscure levels of speciation? Given that marine speciation is a complex process 

with numerous drivers, the division is often unclear (Knowlton, 2000). Furthermore, the term 

cosmopolitan species does not apply to the majority of benthic fauna (McClain, 2007). In the 

deep-sea, singletons (a solo sample per species) and endemics are common, baseline levels of 

variability are lacking and the application of molecular techniques to differentiate deep-sea 

coral species is an emerging and important field of research.  

 

Molecular Tools Provide Information on Species Relationships 

The development of new molecular techniques provides mechanisms to investigate 

deep-sea coral relationships. Molecular data from related, widely distributed species at multi-

ple rapidly evolving loci can be used to approximate species evolutionary history by provid-

ing phylogenetic reconstruction of species relationships (McCook et al., 2009; Steneck et al., 

2009).  Due to increased deep-sea sampling and advances in molecular genetic tools recent 

studies have obtained genetic data for many deep-sea coral groups; Sclearactinia (Kitahara et 

al., 2010), Octocorallia (McFadden et al., 2006; 2011; Baco & Cairns, 2012), Antipatharia 

(Brugler & France, 2007), and stylasterid corals (Lindner et al., 2008).  Of these, stylasterids 

remain the least studied (Table 1), despite their abundance in deep-sea collections, their eco-

logical importance in benthic habitats, the availability of morphological taxonomic literature 

(Cairns, 1983), and a relatively good fossil record for the group (Lindner et al., 2008).  
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Table 1. Genetic literature available per coral group, illustrating that stylasterid corals are the 

least studied of the deep-sea corals. Number of publications sourced from Web of Science 

based on topic searches including publications post-1945 (as of August 2014).   

*Antipatharians are not listed from Antarctica.  

Coral Group Publications Genetic Publications Antarctic Publications Antarctic Genetic Publications 

Scleractinia 

(Order) 202 28 20 0 

Gorgonacea 

(order) 219 19 11 1 

Antipatharia* 

(order) 104 12 - - 

Stylasteridae 

(family) 37 2 4 0 

 

Stylasterid Corals 

Stylasterids are calcified hydrozoans and, as such, are unique amongst deep-sea cor-

als. Three hundred and twenty five species are described world-wide, the majority from the 

Southern Hemisphere (Cairns, 2011). Stylasterids preferentially select insular distributions on 

deep rocky habitat with pristine high-flow water masses (Cairns, 1992). A predominantly 

deep living family (only 10% of species live shallower than 50m Cairns, 1992), they are en-

tirely azooxanthallate (Cairns, 2011), and considered monophyletic within Hydrozoa (Cart-

wright et al., 2008). The only molecular phylogenetic analysis available for comparison is 

Lindner et al., (2008), which include shallow and deep-sea stylasterid corals from temperate 

and tropical oceans. There are no genetic data available for stylasterids from Antarctica. Only 

two Sub-Antarctic specimens were used in the study by Lindner et al., (2008).  

 

There are a number of morphological revisions available for stylasterids world-wide 

(see Cairns, 2011 for a summary). The last morphology-based geographic study in the Ant-

arctic and Sub-Antarctic was Cairns (1983), in which species are well described based on in-

creasing morphological complexity, from most derived to most complex. Recent deep-sea 

sampling in the Southern Ocean, developed through collaborative projects such as the Census 

of Antarctic Marine Life (CAML), have increased the availability of Antarctic specimens for 

study (Grant & Linse, 2009; De Broyer et al., 2014). Consequently, it is now possible to at-

tempt to combine genetic and taxonomic expertise to delineate relationships within this un-

derstudied family of corals.  
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This study employs a multidisciplinary approach to the reconstruction of species rela-

tionships, combining genetic data with morphologically identified species from multiple loca-

tions. The taxonomic groupings for Southern Hemisphere stylasterid corals are well docu-

mented in Cairns (1983; 1991). However, the addition of multiple samples over the past ~ 30  

years from a wide geographic range, combined with evidence that a number of species occur 

in sympatry with closely related species and genera (Bax & Cairns, 2014), allows for a de-

tailed investigation into their species relationships. Molecular identification of specimens 

combined with morphological taxonomic delineations will enable us to determine if groups 

identified based on genetic data agree with groups identified based on morphological data. 

This is often in disagreement in corals (e.g., Octocorals McFadden et al., 2011). Similar dis-

crepancies may exist within Stylasteridae, as illustrated in the phylogeny presented in Lind-

ner et al., (2008), which shows unrelated morphological genera within clades from the tropi-

cal and temperate regions. Comparable disagreements may exist in Antarctic and Sub-

Antarctic species.   

 

Closely related species may be genetically dissimilar, but morphologically the same 

(Addamo et al., 2012), and vice versa (Baco & Cairns, 2012; Flot et al., 2011). Either may be 

the case in stylasterid corals. For example Bax and Cairns (2014) outline the co-occurrence of 

Errina fissuarata, Errina laterorifa, Errina gracilis and Inferiolabiata labiata in field-like 

aggregations. These species have very few morphological characters to differentiate them 

from one another without detailed microscopic examination, and even then some confusion 

can remain depending on the quality of the preserved sample (pers. obs.). Further, the closely 

related genera of Errinopsis and Errina are thought to form a genus complex based on their 

mineralogy and shared derived characteristics (synapomorphies) (Cairns & MacIntyre, 1992).   

With these species and generic associations in mind, this study aims to determine a consensus 

phylogenetic tree based on congruence between the morphological and genetic divergence of 

Antarctic and Sub-Antarctic stylasterid corals. In order to substantiate such a consensus, three 

focus questions are addressed 1) Is there a difference between species groupings based on 

morphology and genetics? 2) Are genetic differences among species equivalent across differ-

ent gene regions? And consequently, 3) is there potential for DNA barcoding as a tool for the 

unambiguous identification of stylasterid species? 
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Methods 
 

Study Area, Collection and Samples 

Tissue from deep-sea stylasterid coral samples was obtained in four ways:  1) through 

existing research collections from; the Smithsonian National Museum of Natural History 

(NMNH), British Natural History Museum (NHM), the Museum National d’Histoire Na-

turelle (MNHN), National Institute for Water and Atmospheric Research (NIWA) and, Aus-

tralian Antarctic Division (AAD) and through the Instituto Español de Oceanografía, Centro 

Oceanográfico de Gijón. 2) By personal or collaborative collection at sea during recent Ant-

arctic research voyages from; three Nathaniel B Palmer research voyages; NBP11-03, NBP 

11-05 and NBP 08-05 to the Antarctic Peninsula and Drake Passage, and a voyage through 

the Collaborative East Antarctic Marine Census (CEAMARC) to the Dumont d'Urville Sea 

associated with the Census for Antarctic Marine Life (CAML). 3) from by-catch through co-

operation with the New Zealand Ministry of Fisheries (MFish), MFish Observers and Ob-

server Program staff under MFish Projects ANT200801, ANT200901 and ANT201001. 

Samples from voyages were obtained either by beam trawl or epibenthic sled from depths of 

130 m to a maximum sampling depth of 2149 m. In addition, Errina antarctica fiord mor-

photypes were collected by SCUBA, and remotely operated vehicle (ROV) from the Chilean 

fiords in collaboration with the Alfred Wegener Institute (AWI) on the Explorador II. Sample 

number, replicate, location, latitude, longitude, morphological identification and voyage were 

recorded for all study specimens (Appendix Table 1). Specimens were collected from a geo-

graphic range spanning from 200 - > 8000 km encompassing the offshore waters of Antarcti-

ca, the Sub-Antarctic and South America including the South West Atlantic and Patagonia 

(Fig 1). 

 

Morphological Identification of Species 

Samples were identified to species based on morphology. A dissecting microscope 

was used to examine skeletal structures and digital photographs were taken of each individu-

al. An assessment of morphology was made based on available keys and literature (Cairns, 

1983; Cairns, 2011). Morphological characters including the gastrostyle, dactylostyle and cy-

closystem were visualised with Scanning Electron Microscopy (SEM) and compared to type 

material where possible. SEM photographs were used as a reference to identify fine scale 

morphological characters for a subset of specimens. Skeletal samples were bleached to re-



59 

 

move coral tissue, rinsed in water and air dried before coating in bronze for visualisation un-

der SEM.  

 

Figure 1. Antarctic Map of the geographic regions where stylasterid corals were collected for 

this study: Ross Sea and Dumont d'Urville Sea in East Antarctica. The Drake Passage and 

Scotia Arc island chain in the Sub-Antarctic. The range of some Sub-Antarctic species ex-

tended into the South West Atlantic, and Patagonia, these species are also included in the 

study (Appendix Table 1). Map edited from the AAD data centre.  

 

Molecular Protocols 

For the recent collections, material was preserved as close to the time of collection as 

possible in > 90% ethanol specifically for genetic analysis. DNA extraction and sequencing 

was attempted for all recently collected specimens. DNA extraction and amplification was 

trialled for some older samples from museum collections during the course of this study but 

they proved unsuitable for genetic analysis due to either their lack of quality (i.e., degraded 

sample) or preservation method (i.e., formalin). Specimens which showed evidence of con-

tamination, poor-identification or questionable morphological accuracy were removed from 

analysis.  Genomic DNA was extracted from coral specimens following the standard extrac-

tion procedure using the Qiagen DNeasy protocol for the purification of total DNA from an-
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imal tissues (QIAGEN). The procedure was modified to include an overnight incubation at 

56ºC to completely lyse coral tissue.  

 

Two mitochondrial regions, Cytochrome c oxidase subunit I (CO1) and the 16S Ribo-

somal Subunit (16S rDNA) were targeted. The CO1 mitochondrial DNA is the most com-

monly used gene region for DNA barcoding through initiatives such as the Barcode of Life 

(BOLD) (www.barcodeoflife.org). CO1 has proved highly effective in identifying a number 

of animal groups (Grant & Linse, 2009), including some corals (Kitahara et al., 2010). How-

ever, it is often considered problematic for cnidarian species due to its slow rate of evolution 

in lower metazoans (Geller et al., 2013). This is the first study to test CO1 on Antarctic sty-

lasterid corals, thus it was hoped that CO1 amplification would provide a conservative meas-

ure of stylasterid coral species relationships.  16S is the large subunit ribosomal RNA gene in 

the mitochondrial DNA.  This region was chosen for three reasons: 1) it is considered to be 

relatively conserved, evolving at a slower rate than the mitochondrial genome as a whole; 2) 

it is a relatively large fragment (> 500 bp); and 3) it has proven useful in a number of phylo-

genetic studies on shallow and deep-sea corals (Romano & Palumbi 1997; Le Goff-Vitry et 

al., 2004), to identify species level differences in Stylasteridae (Lindner et al., 2008) and to 

reveal variability between populations that have been isolated for long periods (Benzie, 

1999).   

 

A third marker, the Internal Transcribed Spacer (ITS) nuclear region is a non-coding 

portion of RNA, with a high copy rate, extensive intra-specific variation, and a rapid rate of 

substitution (Vollmer & Palumbi, 2004). ITS is one of the most commonly used molecular 

marker for shallow water Scleractinian corals (Medina & Szmant, 1999; Vollmer & Palumbi 

2004; Forsman et al., 2006) and it has been successfully utilised to infer relationships at or 

below the species level of identification (e.g., cryptic species) (Forsman et al, 2006). This is 

the first study to apply ITS primers to stylasterid coral species, and the hyper-variability of 

the marker may reveal hidden differences not apparent in the more conservative 16S and 

CO1 gene regions.  

 

Extracted DNA was used as a template in Polymerase Chain Reactions (PCR). Hy-

drozoan 16S, universal ITS primers, and Metazoan specific CO1 primers were used in this 

study (summarised in Table 2). Each 12.5 μl Polymerase Chain Reaction (PCR) reaction con-

tained Promega GoTaq® Green Master Mix, 0.5μl of a 10 μM solution of forward and re-

http://www.barcodeoflife.org/
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verse primer pairs, < 250 ng of DNA template and nuclease-free water. The thermal cycling 

profile varied by gene region. For ITS and CO1 this consisted of an initial denaturation at 

95ºC for 2 minutes, then 40 cycles of a three step program 95ºC for 30 sec, 40-60ºC for 45 

sec (annealing temperatures varied Table 2) and 72ºC; for one minute, with a final extension 

at 72ºC, this was modified for CO1 to include 40 cycles. The 16S protocol was taken from 

Lindner et al., (2008). A positive control of E. fissurata amplified by Bax (2009) was used to 

identify the validity of PCR reactions. Sufficient master mix was retained for each PCR trial 

to be used as a negative control which contained all listed reagents, but no template DNA in 

order to control for contamination and the amplification of non-target DNA. Successful PCR 

reactions were purified using the Qiagen MinElute purification kit designed to produce high 

end-concentrations of DNA. To elute the DNA, 30 μl of milliQ was used in place of a buffer. 

To increase the overall DNA yield prior to sequencing, two PCR reactions were purified for 

each sample. The two purified PCRs were then combined into one micro-centrifuge sample 

to make a total concentration 3-6 ng/uL for sequencing. Samples were sequenced in both di-

rections at the Australian Genome Research Facility (AGRF) in Brisbane using the ABI plat-

form.  

 

Table 2. Details of PCR primers and annealing temperatures used to amplify DNA from 

eleven species of deep-sea stylasterid coral. The resulting, or expected amplicon size (in base 

pairs) is indicated. 

DNA Region & 
Primers 

Direction Primer Sequence Annealing 
Temp (°C) 

Fragment Size 
(bp) 

Reference 

16S            

SHA 5'-3' TCGACTGTTTACCAAAAACATAGC 35-60 ~600 Cunningham & 
Buss, 1993 

SHB 3'-5' ACGGAATGAACTCAAATCATGTAAG 35-61 ~600   

ITS           

ITS-5 5'-3' GGAAGTAAAAGTCGTAACAAGG 56 ~600 White et al., 1990 

ITS-4 3'-5' TCCTCCGCTTATTGATATGC 56 ~600   

CO1           

jgHCO2198-1 5'-3' TABACYTCBGGRTGBCCRAARAAYCA  50-60 ~200 Geller et al., 2013 

jgLCO1490-1 3'-5' TBTCBACBAAYCAYAARGAYATTGG 50-61 ~200  
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Data Analysis 

Sequences for each species were edited and checked for errors using the software 

program Molecular Evolutionary Genetic Analysis (MEGA) 5.0 (Tamura et al., 2011). Con-

sensus sequences were generated for each specimen using forward (5’–3’) and reverse (3’–

5’) primer sequences (Table 1). Occasionally it was not possible to obtain sequences in both 

directions. In these cases, sequence data were only used if the sequences were clean and reli-

able. All sequences generated in this study will be lodged with GenBank (###).  

 

Basic Local Alignment Search Tool (BLAST; NCBI; www.ncbi.nlm.nih.gov) search-

es were performed on each sequence to confirm that each sequence was in fact a stylasterid 

coral, and the appropriate DNA region had been amplified. Additionally, multiple alignments 

across all samples were used to identify outliers within the data set; these outliers may have 

been the result of contamination and were removed prior to analysis. Sequence quality varied 

among samples; some sequences were longer than others, and some groups of sequences had 

a greater number of comparative base pair differences. Hence it was appropriate to select the 

most parsimonious data set that optimised both sequence length and species comparison. 

 

Phylogenetic Analysis 

Initial tree topology was determined in MEGA using Neighbour Joining and Mini-

mum Evolution phylogenetic alignments to determine bootstrap support and topologies. Final 

analyses were conducted in Mr Bayes using the following models determined in jModelTest 

(Possada, 2008); a GTR + G + I model for 16S data, and a HKY +  G+ I model for CO1 data, 

the concatenated data set was run with a partition under a GTR + G + I model with state fre-

quencies set to account for maximum variability. ITS was run under a HKY model. DNA 

evolutions (the estimated change in sequence composition over time) ran over 100,000,000 

generations or until split frequency distribution was below < 0.002.  Bayesian probability 

values were comparative to bootstrap values calculated in MEGA based on maximum likeli-

hood. Dendrograms were edited in Fig Tree 1.4.0 (Rambaut, 2006). The final trees combined 

concatenated and the most parsimonious individual alignments for each gene region in the 

following five data sets: 1) mitochondrial CO1 DNA sequence data from 47 specimens, 8 

species and 289 base pairs; 2) Mitochondrial 16S DNA sequence data from 72 specimens, 12 

species and 137 base pairs, to align the maximum number of species available for study; 3) 

Mitochondrial 16S DNA sequence data from 57 specimens, 9 species and 293base pairs, to 

align the maximum sequence overlap; 4) Concatenated partition analysis of mitochondrial 

http://www.ncbi.nlm.nih.gov/
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CO1 and 16S DNA sequence data from 33 specimens, 7 species and 872 base pairs, to align 

maximum parsimony in tree topology; and 5) Ribosomal ITS-2 DNA sequence data from 45 

specimens, 6 species and 142 base pairs.  A DNA sequence of Hydricthella epigorgia 

(Ptilocodiidae) was used as an outgroup species. This species is in the superfamily Hydrac-

tinoidea, which also contains Stylasteridae, and the species has been shown to occupy a line-

age basal to Stylasteridae (Cartwright, 2008).   

To further assess the relative genetic difference between species by gene region, hap-

lotype networks were generated to compare shared and unshared ITS, CO1 and 16S haplo-

types (GenAlEx v6.501) (Peakall & Smouse, 2006), to obtain a graphical representation of 

relationships using the program Network v4.5.1.6 (www.fluxus-technology.com). Parameters 

defined the median-joining algorithm with default settings including gaps and indels and a 

95% plausible connection limit (Bandelt et al., 1999). This analysis tested inter-genetic spe-

cies relationships in CO1 (n = 17, 289bp), 16S (n = 24, 293bp) and ITS (n= 44, 142bp) in 

species sequenced for all three gene regions in Errina and Errinopsis species. Data sets were 

used to determine the correlations and/or discrepancies which may exist between morpholog-

ical and genetic delineations in Antarctic and Sub-Antarctic stylasteridae.  

Results 
 

Phylogenetic Relationships Inferred from CO1 and 16S Data 

All 33 known stylasterid taxa from Antarctica and the Sub-Antarctic were collected 

during the course of this study (see Bax & Cairns, 2014). Twelve of the most common 

Southern Ocean species amplified successfully; Errina fissurata Gray, 1872, Errina 

laterorifa Eguchi, 1964, Errina antarctica (Gray, 1872), Errina gracilis von Marenzeller, 

1903 Errinopsis fenestrata Cairns, 1983, Errinopsis reticulum Broch, 1951, Inferiolabiata 

labiata (Moseley, 1879), Sporadopora dichotoma (Moseley, 1876), Stylaster densicaulis 

Moseley, 1879, Stellapora echinata (Moseley, 1879), Cheiloporidion pulvinatum Cairns, 

1983 and Conopora verrucosa (Studer, 1878). The final sample set spanned from the South 

West Atlantic to East Antarctica (> 7500 km) (Fig 1) (Appendix Table 1). Sequence quality 

was variable by gene region, and the potential data set of > 700 individuals was greatly re-

duced to 119 mtDNA sequences in total. 16S had the highest amplification success (n = 72), 

for twelve species. CO1 sequenced less reliably (n = 47), for nine species. There was suffi-
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cient overlap between the 16S and CO1 data to analyse a concatenated data set (for 7 species) 

as well as for each gene region independently.  

 

Genetic groupings are generally consistent with species groupings based on morpho-

logical delineations. Both CO1 and 16S gene regions differentiate well between genera, as 

clades are distinct with well supported Bayesian probability values (~ 100%) (Figs 3 - 6). The 

genetic variability between species, illustrated in haplotype networks (Fig 7), is higher in 

CO1 comparisons than in 16S comparisons, and phylogenetic clades are more distinct (Fig 

3). Cairns (1983) described primitive to derived species listings which place Sporadopora as 

the least derived genus and Stylaster and Conopora as the most derived. In contrast, the ge-

netic data suggests that Conopora is the least derived genus along with Sporadopora (Figs 3 

– 5). Therefore, the overall magnitude of genetic divergence does not correlate entirely with 

what we might expect based on linear morphological assessments from Cairns (1983). 

 

The genetic phylogenies presented here are morphologically aligned for some species 

but not others. Both CO1 and 16S phylogenies suggest that Errina and Errinopsis are closely 

related in well supported separate clades (Figs 3 - 6). These two genera have a number of 

synapomorphies, and are described as a genus complex (Cairns & McIntyre, 1992). There-

fore, the pairings of Errinopsis reticulum and Errinopsis fenestrata, and the Errina spp. (Figs 

3 - 6) correspond well with their morphologies (Cairns, 1983). However, molecular level re-

lationships differ for some morphology-based relationships (Cairns, 1983). For example; 

Cheiloporidion pulvinatum is most closely related to the Errina species (Figs 3 - 6). This re-

lationship is potentially more resolved in the concatenated data set (Fig 6), where C. pulvina-

tum is the basal clade; nevertheless, more gross morphological similarities exist between E. 

reticulum and C. pulvinatum. Both genera have fenestrate branching morphology and speci-

mens of the three species (E. fenestrata, E. reticulum, C. pulvinatum) are so similar that 

without differences in colouring (white, orange and pink respectively) they could be superfi-

cially confused (pers. obs.). Further, Inferiolabiata labiata was expected to fall close to the 

Errina clade, but it is more closely related to Stylaster densicaulis (Fig 4). Stellapora echina-

ta is an expected basal group (Fig 4), however, 16S, CO1 and concatenated phylogenetic 

alignment place S. echinata as most closely related to S. densicaulis (Figs 3, 5 & 6). Align-

ments also show S. dichotoma and C. verrucosa as most divergent to the other clades (Figs 3 

- 5). These pairings are counter to synapomorphies, and based on morphological delineations 

C. verrucosa should align with S. densicaulis, and S. dichotoma and S. echinata share more 



65 

 

resemblances (Fig 2). With these discrepancies in mind, morphological similarity does not 

appear to be in alignment with genetic similarity based on traditional taxonomic views for all 

species (see Cairns 1983, 1987; Cairns & McIntyre, 1992), and a reanalysis of the derived 

character state may be needed to explain genetic associations.  
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Figure 2. Morphological variation from primitive to derived character states (Cairns, 1983). Sporadopora is considered to be the least complex, 

and Stylaster is most derived, above C. verrucosa, which lacks a gastrostyle (A), and dactylostyles (B). SEM images are taken from Cairns, 

(2011) to show the fine scale diversity of (A) gastrostyles, (B) dactylopores and (C) cyclosystems. Species listed from left to right in row (A) 

include; Sporadopora dichotoma, Stellapora echinata, Inferiolabiata labiata, Errina fissurata, Errina laterorifa, Errina antarctica, Errina gra-

cilis, Cheiloporidion pulvinatum, Errinopsis reticulum, Errinopsis fenestrata and Stylaster densicaulis. The gastrostyle is shared across 11 spe-

cies, the dactylopore spine is shared by nine species (B), and the cyclosystem, the most derived character (C), is only found in S. densicaulis and 

C. verrucosa. Images also referenced in cladograms (Fig 3 - 7). E. antarctica (© Mathias Hune), E. laterorifa and E. reticulum (© Greg Rouse), 

other images are the authors own.  
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Figure 3. Phylogenetic relationships of stylasterid corals based on mitochondrial CO1 DNA sequence data (total alignment length = 289 bp). 

Percent values are Bayesian posterior probabilities.
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Figure 4. Phylogenetic relationships of stylasterid corals based on mitochondrial 16S DNA sequence data (total alignment length = 137 bp). 

Percent values are Bayesian posterior probabilities.
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Figure 5. Phylogenetic relationships of stylasterid corals based on mitochondrial 16S DNA sequence data (total alignment length = 293bp). Per-

cent values are Bayesian posterior probabilities.
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Figure 6. Phylogenetic relationships of stylasterid corals based on concatenated mitochondrial CO1 and 16S DNA sequence data (total align-

ment length =  872 bp). Values are percent Bayesian posterior probabilities.
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Species Relationships in the Errina/Errinopsis Complex Inferred from ITS Data 

ITS phylogenetic topology was markedly different to 16S and CO1 in regards to spe-

cies arrangement (Fig 7). As with 16S and CO1 all 33 stylasterid taxa from Antarctica and 

the Sub-Antarctic were trialled during the course of this study. However, due to sequencing 

issues associated with the nuclear ITS region amplification success was low (n=44), and it 

was only possible to obtain portions (18S, ITS-1, 5.8S, ITS-2, 28S) rather than the complete 

670bp of the ITS region. The final ITS tree is based on mainly ITS-2, the region with the 

highest variability and included the following species: Errina fissurata, Errina laterorifa, 

Errina antarctica, c.f Errina gracilis n.sp, Errinopsis fenestrata and Errinopsis reticulum. 

Species clades are well supported, with minimal within-species discrepancy, except in the 

case of the E. antarctica clade which includes cf E. gracilis n.sp, and E. fenestrata (Fig 7). 

These three species were collected from different geographic regions. Errina antarctica is 

from the Patagonian fiords in Chile, E. fenestrata is from the Scotia Arc, in the Sub-

Antarctic, and cf Errina gracilis n.sp. is from the Shackleton Ice Shelf in East Antarctica. 

These locations are separated by 1000s of km and, despite synampomorphies, clear species-

specific morphological structure is evident. Contamination is unlikely as specimens were col-

lected on different voyages and sequenced in different laboratories. Therefore, the genetic 

similarity of these three species implies nuclear ITS relationships are not as resolved as the 

mitochondrial phylogenies based on 16S and CO1.     

 

Due to the different levels of variation apparent in 16S, CO1 and ITS comparisons, 

the three gene regions were compared in a haplotype network including all available Errina 

spp. and Errinopsis spp. sequence data. 16S and CO1 haplotype networks do not corroborate 

with ITS network connections, and place Errina and Errinopsis in groupings reflective of 

their morphological relationships (Fig 8).  In the ITS network, similarly to the ITS phyloge-

netic tree (Fig 7), Errina laterorifa is extremely divergent to E. fissurata (Fig 8). These two 

taxa are described as sister species (Cairns, 1983), but inter-specific variation is high enough 

to consider either a synonymization of the genera Errina and Errinopsis, or the separation of 

E. fissurata and E. laterorifa to different genera (Fig 7), based on comparative levels of var-

iation within ITS in the coral literature (Table 3). 
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Figure 7. Phylogenetic relationships of stylasterid corals based on ribosomal ITS DNA sequence data from (total alignment length = 142 bp, 

mostly ITS-2). Values are percent Bayesian posterior probabilities.
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Figure 8. Haplotype networks based on ITS rDNA (n = 44, 142bp), 16S mtDNA (n = 24, 293bp), CO1 mtDNA (n = 17, 289bp) sequence data. 

Each node at a branch joining point represents a parallel mutation between a median vector (a triangle or square configuration in the network), 

each node on a branch represents a base pair mutation (represented numerically where there are >5bp mutations). Triangles represent indels. 

Haplotypes are sized according to abundance.   
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Table 3. Summary of ITS sequence variation reported in coral taxa. Edited from Miller et al., (2006), and updated based on literature to 2014.  

Taxonomic group Sequence length Among genera 
Among congeneric  

species 
Within  

species 
References 

Paracyanthus steamsii 275 (ITS-1)   <1% Beauchamp & 

Powers, 1996 

Balanaphyllia elegans 279 (ITS-1)   <5% Beauchamp & 

Powers, 1996 

Madracis spp. ~613 (Full ITS)  ~6% 3.3 - 3.5% Diekmann et al., 
2001 

Platygyra spp. 539 (Full ITS) ~17% ~14% <1.2% Lam & Moreton., 

2003 

Scleractinians 104-369 (ITS-2) >60%  1.3 - 23% Lam & Moreton., 
2003 

Montastrea annularis, M. 
fraksi and M. faveolata 704 (ITS-1 - ITS-2)  1%  

Lopez & Knowl-
ton., 1997 

Montastraea annularis 665 (Full ITS)   <3% Medina et al., 

1999 

Stichopathes spp. 670 (Full ITS)  13.60% ~1% Miller et al., 

2006 

Parantipathes spp. 710 (Full ITS)  12.8 2.50% Miller et al., 

2006 

Solenosmila spp.  393 (ITS-1) 325 (ITS-2)   nil Miller et al., 

2006 

Madrepora spp. 330 (ITS-1) 270 (ITS-2)   12-15%  30% Miller et al., 
2006 

Stephanocyathus spp. 653 (Full ITS)   12.50% 2.30% Miller et al., 
2006 

Acropora valida ITS-1   29% Odorico & Mil-
ler., 1997 



75 

 

Plesiastrea versipora 409 (Full ITS)   <4%  Rodriguez-

Lanetty., 2001 

Acropora longicyanthus 490 (ITS-1 + 5.8S)   
25% & 11% 

(ITS-1 only) 
Takabayashi et 

al., 1998 

Goniopora tenuidens 810 (ITS-1 + 5.8S)   15% (ITS-1 only) Takabayashi et 

al., 1998 

Heliogungia actiniformis 740 (ITS-1 + 5.8S)   2% (ITS-1 only) Takabayashi et 

al., 1998 

Stylophora pistillata 850 (ITS + 5.8S)   31% (ITS-1 only) Takabayashi et 

al., 1998 

 142 (ITS-2) 32% 52% 3.6 -5% This study 

Errina laterorifa 142 (ITS-2) 32% 52% 0.72% This study  

Errina antarctica 142 (ITS-2) 31% 52% <1% This study  

Errinopsis fenestrata 142 (ITS-2) 14% 20% 10% This study  

Errinopsis reticulum 142 (ITS-2) 26% 20% 0 This study  

Acropora spp 405  (Full ITS)  0- 5.2%  
Van Oppen et al., 

2000 

Pseudopterogorgia elisa-

bethae 
ITS 562bp   7.30% Gutiérrez-

Rodríguez et al., 

2009  

Lophelia pertusa 603 (ITS2)   0% Flot et al., 2013 

Goniastrea spp.      0 - 098%   Huang et al., 
2014  
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Discussion 
 

Genetic differentiation among morphological stylasterid species was well defined, 

though morphological disagreement regarding inter-species clade arrangement exists. If char-

acters are assessed from primitive to derived as outlined in Cairns (1983, 1984) (Fig 2), Spo-

radopora or Stellapora would be the most basal clade and Conopora or Stylaster would be 

the most derived, or most closely related, and they are not (Figs 3 - 6). Such discrepancies are 

well documented in corals (Flot et al., 2011; Baco & Cairns, 2012), speciation is not a linear 

process (Clarke & Johnson, 1996; 2003), and 16S and CO1 loci are known to be conservative 

in cnidarians (Forsman et al., 2006; 2010). Thus, it is to be expected that relationships are not 

aligned in totality and a more variable gene region may clarify fine scale intra-species level 

differences not apparent within mitochondrial data. For this reason the nuclear ITS was used 

as a comparison, and showed differentiation between species which contradict the mitochon-

drial cladograms (Fig 7).  Only Errina and Errinopsis species amplified successfully for 

comparison (Fig 8). A number of the other available genetic markers; 54kDa (SRP54 Bax, 

2009), the mitochondrial displacement loop (D-Loop Bax, 2009), and calmodulin (Lindner et 

al., 2008) have been trialled on the group with varying levels of success. To date the markers 

used in this study show the highest amplification success and appear to be the most informa-

tive available.  

Is there a difference between stylasterid morphology and genetics? 

I propose that stylasterid genetic and morphological relationships are evolutionarily 

sound based on synapomorphies. However, the configuration of synapomorphies differs from 

the character states described in morphological literature (see Cairns, 1983) (Fig 2). Key to 

this hypothesis is the gastrostyle, a calcareous structure thought to aid in the protection of the 

polyp.  The gastrostyle may be more recently derived than stated in morphological delinea-

tions (Cairns, 2011). Six of the studied genera (Errina, Errinopsis, Cheiloporidion, Inferiola-

biata, Stellapora and Stylaster) contain gastrostyles, have overlapping distributional records 

and a similar spine structure (Cairns, 1983) (Fig 2). If a lack of morphological complexity is 

to correlate with the basal (ancient) state the least morphologically complex coral Spora-

dopora dichotoma would fall out at the base of the phylogenetic tree (Cairns, 1983), and it 

did for most alignments (Figs 3 - 5). However, note that S. dichotoma aligned with C. verru-

cosa at the base of cladograms (Figs 3 - 5), an unexpected result based on C. verrucosa as 
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one of the most morphologically complex and S. dichotoma as least morphologically com-

plex amongst the species included here (Fig 2).   

 

In the CO1 alignment (Fig 3), S. dichotoma shows a similar branch length to Stylaster 

densicaulis. Stylaster is one of the more morphologically complex and speciose genera (110 

described species world-wide, compared to 9 species of Sporadopora (WoRMS, 2012). Sty-

laster species complexity is largely attributed to the morphological structure called a cy-

closystem. Cairns (2011) described the cyclosystem as a ‘well-coordinated functional unit’ 

potentially developed to improve feeding efficiency as well as polyp/larval protection and 

defence.  Stylaster densicaulis and C. verrucosa are the only species included herein with cy-

closystems (Fig 2). The presence of C. verrucosa as basal in the CO1 and 16S phylogenies 

(Figs 3 - 5), a species which lacks a gastrostyle, adds significant evidence to support a re-

examination of these species relationships, and the definition of the cyclosystem as a derived 

character may need to be reconsidered.  

 

Cyclosystems have a distinct skeletal structure, and form an important basis of current 

phylogenetic delineations (see Cairns, 1983 and 2011 for a summary).  Both cyclosystemate 

and non-cyclosytemate fossil forms co-occur throughout the paleo-record (Cairns, 2011, 

Lindner et al., 2008). The phylogenies presented here indicate that cylosystems evolved sepa-

rately (either once with two losses Fig 4 or twice Fig 6). Cairns (2011) suggested that phy-

logeny presented in Lindner et al., (2008), is composed of three distinct clades. Clade 1) con-

tains double-chambered cyclosystemate species, including Conopora spp. which lack a gas-

trostyle (Fig 2), Plibothrus spp. with no observed gastrostyle (Cairns, 1983) and Lepidopora 

microstylus, which in contrast to the other two genera has a rudimentary gastrostyle (Lindner 

et al., 2008).  Clade 2) contains Stylaster spp. (with both cyclosystems and gastrostyles). 

Clade 3) contains the other stylasterid taxa (some cyclosystemate and some not). This sug-

gests that the common ancestor to all stylasterid clades had cyclosystems. The molecular 

phylogenies presented here support this hypothesis.  

 

The oldest known stylasterid appears to be Conopora (Jell et al., 2011), therefore its 

placement as the basal clade (Figs 3 - 5), rather than the derived clade (Fig 7), is a parsimoni-

ous conclusion and a review of the literature on cyclosystems confirms the importance of this 

morphological character trait in stylasterid evolution. The skeletal arrangement of cyclosys-

tems often varies by species (e.g., sympodial vs. even arrangement in Stylaster sp. (see 
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Cairns, 1983), and cyclosystems are known to regenerate rapidly on broken colony branches 

(i.e. Stylantheca californicus (surmised in Brook & Stone, 2007).  In Conopora species, re-

productive ampullae are associated with cyclosystems (Cairns, 1983). Further, some stylas-

terid species (e.g., Errinopora) have pseudocyclosystems, defined as cyclosystem-like struc-

tures with a gastropore surrounded by dactylopores, lacking the same level of structural fu-

sion (Cairns & Lindner, 2011). This indicates that structural compartmentalisation of essen-

tial characters is a common adaptive strategy in stylasterids.  Therefore, the variations seen in 

cyclosystem arrangement and complexity may have been selected for independently in multi-

ple species through evolutionary time.  

 

Is there a difference between the results from ITS, CO1 and 16S gene regions?  

ITS is traditionally the most variable region available for coral studies (Forsman et 

al., 2006). However, the multiple issues associated with ITS such as homoplasy (Nei & Ku-

mar, 2000), incomplete lineage sorting (or reticulate evolution) and introgressive hybridisa-

tion (Veron, 1995) often limit the utility of ITS data in coral phylogenetics (Vollmer & Pa-

lumbi, 2004). These factors lead to high intra-individual variability in ITS sequence data, and 

variability is known to vary between species depending upon species specific mutation rates 

(summarised in Table 3). Sample amplification was unsuccessful across all three gene re-

gions for the majority of samples, and it was impractical to compare nuclear and mitochon-

drial data within a concatenated phylogeny. Based on the comparative variability found in 

this study between ITS, CO1 and I6S, it is likely that nuclear mitochondrial discordance 

would limit the applicability of concatenation even if sufficient data were available for com-

parison.  

 

Network connections show that ITS variation at the species level is evident in distinct 

haplotype groupings of Errina fissurata, Errina laterorifa, Errinopsis fenestrata and Errin-

opsis reticulum (Fig 8). However, species relationships differ markedly from what we might 

expect based on morphology (Cairns, 1983), and 16S and CO1 phylogenetic relationships, 

which place E. fissurata as either separate from Errinoposis spp, or sister to other Errina spe-

cies (Figs 3 - 6). Counterintuitively, of the six species included in the ITS parsimony net-

work, E. laterorifa and E.fissurata are the most genetically divergent.  When investigating 

the levels of intra- and inter-specific sequence variation in Errina spp. the amount of varia-

tion apparent between E. fissurata and E. laterorifa sequences suggests they are different 
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genera (~32% Table 3), rather than congeneric species as described in Cairns (1983), (we ex-

pect ~ 0.5 - 14% variation Table 3), and suggests a synonymisation of the genus Errinopsis 

under the senior synonym of Errina, or the separation of Errina species into different genera. 

It is unexpected to have such a large amount of genetic difference between morphologically 

described similar species, and morphological characteristics show a higher support for 16S 

and CO1 genetic relationships (Cairns, 1983).  Therefore, the relationships presented herein 

can be considered reliable for 16S and CO1 based on significant genetic differentiation, 

whilst inter-species relationships inferred from ITS are questionable in comparison.  

 

How do results compare to Antarctic hydrozoan and coral groups and is there potential 

for DNA barcoding in stylasterids?  

The cnidarian mitochondrial genome is considered stable in comparison to other 

metazoans and is characterized by low rates of evolution that make it often impossible to 

distinguish species using mtDNA sequences (Van Oppen et al., 2000; 2001).  For example, in 

the deep sea sclearactinian coral Madrepora oculata intra-specific differences were so low 

that when the genome of the species was examined in full only the arrangement of genes 

differed by geographic clade, whilst the sequence alignments were the same (Lin et al., 

2012). It is intriguing to find clear segregation between stylasterid genera and in most cases 

species for the CO1 and 16S gene regions. Given that mitochondrial differentiation was much 

higher than expected, this may have important implications regarding our understanding of 

the evolution and biodiversity of the Antarctic benthos, with specific applications to coral 

genomics. For example, mitochondrial markers are more advantageous than nuclear markers 

for a number of reasons; haploid markers are cheaper, easier to sequence and there are no 

heterozygosity issues. This is particularly helpful when studying smaller populations as 

mitochondrial markers coalesce faster, alleviating problems associated with shared ancestral 

polymorphism, and we can assume a genetic asymptote of selection (Flot et al., 2013).   

 

CO1 is the most commonly used DNA barcoding gene (DeSalle et al., 2005), and 

proved more reliable than 16S and ITS at differentiating fine scale relationships here, with a 

higher variability (Fig 8). For example CO1 showed a clear differentiation between two 

clades of E. fissurata (Fig 3), whereas posterior probability values in 16S show the lowest 

support when differentiating between the closely related E. fissurata, E. laterorifa and E. 

gracilis (Fig 4). Similarly, C. pulvinatum and S. densicaulis inter-species clades show a high-

er differentiation in CO1 than 16S (Fig 3 vs. Fig 4 & 5).  Very few hydrozoan studies use 
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CO1 (Govindarajan et al., 2005; Geller et al., 2013), as standard primers are known to have 

amplification difficulties (Peña Cantero et al., 2009). The primers used in this study were re-

cently developed by Geller et al., (2013), and offer potential for future studies, but sequenc-

ing issues remain. Despite multiple attempts, a smaller subset of samples amplified here for 

CO1 than 16S, and although less variable than CO1, 16S also successfully differentiates be-

tween genera and species. Therefore, 16S may prove to be a better barcoding gene for stylas-

terids. Studies on other hydrozoan groups substantiate its utility at genera level for some taxa 

(Govindarajan et al., 2005), including Antarctic genera (Peña Cantero et al., 2009).  

Conclusion 
 

Stylasterids are an understudied family of corals, with little to no genetic data 

available for many species. This study presents a general congruence between morphology 

and genetics based on mitochondrial DNA and the reassignment of synapomorphies. ITS 

relationships are unfavourable at the inter-species level when compared to mitochondrial 

topography, and more research is needed to determine the applicability of the region to 

stylasterids. However, intra-species overlap is highly conserved, and the possibility remains 

that ITS variability is phylogenetically informative. The genetic differences between 

described sister species was so substantial, and comparatively so justifiably explained by 16S 

and CO1 data that a synonymisation of Errina spp. and Errinopsis spp., or the separation of 

Errina fissurata and Errina laterorifa as separate genera is not recommended without further 

evidence.  

 

The differentiation apparent in CO1 and 16S is considered substantial in comparison 

to other Anthozoan and Hydrozoan groups. Therefore, there is potential for DNA barcoding 

in stylasterids. This has a number of practical implications - the discovery of new species, 

cataloguing of Antarctic marine life and identification of specimens that cannot be 

determined by taxonomic means.   However, the results of this study were only achieved 

through the incorporation of taxonomic expertise in species identification. Intra and inter-

species relationships remain unresolved across the three gene regions, CO1 amplification 

success was low, and 16S inter-species relationships were the least resolved where closely 

related species are concerned. Therefore, the incorporation of molecular taxonomy as a 

complementary tool, rather than the elimination of traditional species taxonomy is 
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recommended to future and ongoing collaborative initiatives such as the CAML and BOLD 

to most accurately quantify stylasterid diversity in the Antarctic and Sub-Antarctic benthos.  
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Evolutionary Relationships of Drake Passage Stylasterid Corals 
 

Stylasterid corals are widely distributed in field-like abundance throughout the Drake 

Passage. These coral fields are predominantly deep (> 500 m), found on rocky substrate in 

isolated patches off seamount and shelf locations, and their ability to predominate in select 

habitats is likely driven by a number of evolutionary and ecological factors. A Bayesian 

mitochondrial phylogeny (CO1 and 16S) was combined with the fossil record and 

mineralogy data to investigate stylasterid evolution in the Drake Passage, and to test if 

selection towards either calcite or aragonite carbonate mineralogy has a phylogenetic 

component. The estimation of divergence dates based on a Bayesian relaxed clock and fossil 

calibration provide evidence that stylasterids may have radiated within the Drake Passage 

following de-acidification of the world’s oceans linked to the Eocene/Oligocene boundary (~ 

34 MYA). Subsequently their speciation may correspond to adaptations linked to skeletal 

mineralogy. Aragonite is the predominant and likely ancestral calcium carbonate mineralogy 

of Drake Passage stylasterids, whilst the two most derived genera, Errinopsis and 

Cheiloporidion, have predominately calcite skeletons, at some locations and depths. The 

evolutionary scenarios that may have led to calcite in some genera and the utility of either 

calcite or aragonite are discussed in the context of both paleo-environmental and future 

climate change. This information provides valuable insight into the evolution of stylasterids 

in the Antarctic benthos, and offers a basis for future research of this understudied group of 

diverse and ecologically important bi-mineralic corals. 
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Introduction 
 

Evolution in the Antarctic and Sub-Antarctic Environment  

Benthic communities throughout the Antarctic and Sub-Antarctic waters are highly 

biodiverse (Rogers et al., 2007), and the Antarctic region has a remarkable history 

characterised by tectonic shifts, fluctuating glacial cycles and high species richness in 

patchily distributed habitats (Clarke, 2003). Species richness among taxonomic groups likely 

arises due to a balance between factors such as species formation, the rate of extinction, and 

evolutionary time (Thatje et al., 2012). Evolutionary processes include speciation e.g., 

vicariance (geography related species formation), dispersion, immigration, isolation, 

selection, adaptation, extinction and climate change (Mora et al., 2006; Glor, 2010; Rogers et 

al., 2012). Genetic studies reveal that isolation and adaptive radiation are common (Wilson et 

al., 2007; Baird et al., 2011; Strugnell et al., 2011), and vicariant speciation associated with 

tectonic transformations is well documented (e.g., Patarnello et al., 1996; Crame, 1999; 

Matschiner et al., 2011).  

 

Adaptive radiation in the Antarctic benthos is often linked to the history of the region, 

and geography has important implications for the evolution of marine benthic fauna. At the 

end of the Jurassic era (157 – 130 MYA) the supercontinent Gondwana began to separate 

(Boger, 2011). By the Eocene (~ 50 MYA) a rift had formed between Antarctica and 

Australasia, and Antarctica and South America were divided by ocean (Livermore et al., 

2007). At the end of the Eocene (~ 35 MYA) the Drake Passage had opened and Antarctica 

became isolated by the formation of the Antarctic Circumpolar Current (ACC) (Aronson et 

al., 2007).  Following the formation of the ACC extreme climate forcing produced the 

Antarctic ice sheet, and climatic fluctuations resulted in periodic glacial and inter-glacial 

cycling (see Clarke & Crame, 1992).  

 Glacial formation and retreat is a frequently cited driver of speciation in Antarctica 

(Wilson et al., 2009; Griffiths et al., 2010). Glacial-interglacial (cold-warm) cycles are 

thought to contribute to the exceptionally high incidence of cryptic speciation and adaptive 

radiations in Antarctica (Wilson et al., 2007; 2009 Baird et al., 2011; 2012). This has been 

seen in recent studies of the biota of the Ross and Weddell Sea shelves, which were 

completely iced over during the last glacial maximum 22-18 thousand years ago (Denton & 

Hughes, 2002). These areas were more recently colonised by benthic fauna (e.g., Wilson et 
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al., 2007; Hunter & Halanych, 2010), potentially allowing for niche specialisation. Currently, 

the Southern Ocean is considered stable within seasons (winter/summer), in an extended 

inter-glacial period. However, the apparent stability we see today has only been in place for 

the last 10,000 years, and the climate has undergone substantial geological and oceanic 

change prior to this time. Furthermore, the Antarctic climate is predicted to change 

dramatically in the coming decades (IPCC, 2013), and understanding how ecosystems have 

responded to past climate events may help us understand what will happen in the future. 

Ocean Acidification Threatens Deep-Sea Antarctic Corals 

One of the most important discoveries in recent years is the climate association 

phenomenon of ocean acidification (Guinotte & Fabry, 2008). The chemistry of the oceans is 

changing at an unprecedented rate due to the influx of anthropogenic carbon dioxide (CO2) 

into the atmosphere (Feely et al., 2004). Current estimates suggest that over one third of the 

total CO2 emitted into the atmosphere, around 118 million tonnes of CO2, has been absorbed 

by the ocean. Acidification of ocean waters due to the influx of carbon dioxide from the 

atmosphere penetrates slowly to the deep-sea over time scales of several centuries (Guinotte 

et al., 2006). Surface pH (< 300 m) is largely buffered by the high ambient concentrations of 

carbonate ions. In deeper waters (> 500 m), respiratory CO2 eliminates available carbonate, 

thereby reducing the buffering capacity of those waters.  pCO2 (carbon dioxide partial 

pressure) is highest in cold water (Aronson et al., 2011), and it is predicted that deep-sea 

corals will be the first to experience the detrimental effects of ocean acidification (Turley et 

al., 2007; Guinotte & Fabry, 2008).  Around 40% of the global inventory of anthropogenic 

CO2 can be found in the Southern Ocean. This equates to a total pH decrease of 0.14 in the 

Southern Ocean since the beginning of the industrial era (Feely et al., 2004), and laboratory 

and in situ coral studies indicate that pH decreases may induce sub-lethal effects by slowing 

metabolic processes, growth rate, and calcification (e.g., Orr et al., 2005; Kleypas et al., 

2006; Kline et al., 2012).  

The saturation horizon in the deep-sea is defined as the point below which 

calcification is inhibited due to the unavailability of essential carbonate ions (Feely et al., 

2004). The level of the saturation horizon differs depending upon the type of carbonate 

mineral calcifying organisms utilise (aragonite or calcite) to deposit their skeletons. For the 

majority of deep-sea corals this mineral is aragonite although some coral species have been 

shown to produce skeletons comprised both of aragonite and calcite (Cairns & MacIntyre, 
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1992; Thresher et al., 2011). The saturation horizon for calcite (CSH) is much deeper (> 3000 

m in some parts of the Southern Ocean) than the aragonite saturation horizon (ASH) (~ 1000 

m). Therefore, corals that utilise calcite may be able to occupy deeper habitats than aragonite 

calcifiers, and better adjust to undersaturation.  

Paleo-Environmental Change and Coral Calcification 

On paleo-oceanic time scales, calcifiers have either predominated or perished in 

response to changes in calcite or aragonite saturation states through geological time (Honisch 

et al., 2012). This environmental variation in the paleo-Antarctic is extremely difficult to 

assess. However, despite limitations, a substantial literature has emerged on the broad 

oceanic processes driving calcite and aragonite fluctuations through geological time 

(summarised in Porter, 2010; Ries, 2010), thus inferring paleo-Antarctic patterns from what 

is known about the global ocean through time. Much of this literature stems from the Stanley 

and Hardie (1998) model, which outlines how calcite and aragonite dominant seas have 

fluctuated from ~ 550 MYA through to the modern era. In their model five time periods are 

defined to explain when oceanic conditions were either most favourable for aragonite 

(aragonite seas I, II, III), or calcite (calcite seas I, II). In many cases, evolutionary succession 

defined as the process by which a species assemblage successively advances toward an 

evolutionary stable climax, is in concert with these paleo-oceanographic transitions from 

calcite to aragonite seas (Honisch et al., 2012; Porter et al., 2010).  

The predominance of the aragonite coral order Scleractinia during aragonite seas, and 

the rudist bivalves during calcite seas provides a good example of this type of succession. 

The fossil record, and what is known about the calcification strategies of these two calcifying 

families, shows that during the Triassic ~ 240 MYA (aragonite sea II), scleractinians were 

abundant throughout the world oceans. The progression from aragonite to calcite sea 

conditions during the Cretaceous ~175 MYA (calcite sea II), signalled scleractinian 

population declines (Simpson et al., 2011). This decline in Scleractinia aligns with an 

increase in the rudist bivalves. When oceanic chemistry reverted to an aragonite sea in the 

Oligocene (aragonite sea III), the rudist bivalves became extinct (Steuber et al., 2002), and 

Scleractinians diversified. This renewed benthic dominance is evident on modern oceanic 

coral reefs (Perrin & Bosellini, 2012). Stanley and Hardie (1998) explain this pattern of 

calcification and succession through ontogeny. In this way calcifying animals either 

predominate or decline based on the favourable conditions in which they arose, as opposed to 
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those in which they currently live (see Reis, 2010; Porter, 2010). Therefore, as the oceans 

change in our current era of ocean acidification, succession may cause population declines in 

aragonite corals as they may not have the capacity to adapt their mode of calcification to 

changing saturation states (Porter, 2010), predicted to be more similar to Eocene conditions 

by 2100 (IPCC, 2013).  

There is evidence to suggest that corals may have adjusted to decreasing saturation 

states in the paleo-ocean. Some coral lineages are non-calcifying (see Lin et al., 2014), with 

ancient representatives which may have existed in an anemone state without calcified 

skeletons during the Cretaceous (see Fine & Tchernov 2007; Fautin et al., 2009). Some 

Antarctic coral families have bi-mineralic representatives (Stylasteridae Cairns & MacIntyre, 

1992; Isididae Thresher et al., 2010), which may be able to alternate their calcification 

strategy in response to ocean chemistry (Reis et al., 2010). Therefore patterns of calcification 

and succession linked to changing saturation states may hold true on broad taxonomic, 

temporal and geographic scales (as outlined by Honisch et al., 2012), but not at finer scales, 

such as within and between Antarctic coral species assemblages.  

The calcification responses of Antarctic corals are currently unknown for all species, 

in fact there is very little data on Antarctic coral species beyond taxonomic descriptions (see 

Cairns, 1982; 1983). The only exception being the cosmopolitan aragonite scleractinian coral 

Desmophyllum dianthus, for which a reasonable literature relating to ocean acidification 

exists (see Miller et al., 2011; Jantz et al., 2013; Fillinger & Ritcher, 2013). Most of these 

studies are based on extant D. dianthus populations outside of Antarctica, predominantly 

within the Chilean fiords. Only one study by Margolin et al., (2014) provides any historic 

information on this species in Antarctica, and only within the last ~100,000 years, in the 

Drake Passage. Margolin et al., (2014) did not address ocean acidification specifically; 

however they did find evidence of unique environmental requirements liked to productivity, 

oxygen concentration and carbonate saturation state. Paleo-oceanographic studies often find 

synergistic interactions between common variables - e.g., oxygen, carbon, and nitrogen 

(Coggon et al., 2010). Therefore, our ability to predict adaptation, acclimation or past 

ecosystem succession in response to decreasing saturation states is hampered by an inability 

to tease apart the inter-relational factors linked to calcification. 
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Ocean Acidification and Deep-sea Coral Mineralogy 

Due to the vulnerability of deep-sea calcifiers, especially habitat forming species such 

as deep-sea corals (Orr et al., 2005; Guinotte et al.,2006; Turley et al., 2007), recent literature 

has focused on carbonate mineralogy to determine the capacity of corals to deal with ocean 

acidification (Thresher et al., 2011; Thiagarajan et al., 2013; Margolin et al., 2014). This is 

based, in part, upon the hypothesis that corals which utilise calcite may be less susceptible to 

decreases in pH, as they can potentially persist in deeper habitats below the ASH (~ 1000 m), 

and above the CSH (~ 3000 m) (Feely et al., 2004). However, substantiating such a 

hypothesis, especially in the understudied deep Antarctic Ocean is extremely challenging. 

Geographic and bathymetric distribution patterns are limited and due to collection protocols 

(e.g., mainly trawling) depth data are usually non-specific. Variability in saturation states 

within and between geographic regions on geological time scales is not well understood. If 

biogeographic data is available (see de Broyer et al., 2014 for a current synthesis), 

corresponding coral mineralogy data is often lacking (Cairns & MacIntyre, 1992 provide the 

only reference for Antarctica to date), and oceanographic information is either regionally 

restricted or inferred from broad scale oceanographic data sets which lack fine scale 

resolution applicable to the Antarctic benthos. For example, saturation horizon data is only 

available in East Antarctica (Poisson et al., 1987; Moy et al., 2009), or inferred from global 

data sets (Feely et al., 2004). When investigating these processes from a paleo-oceanic 

perspective, studies are further restricted as information is sparse in spatial and temporal 

coverage, and fine-scale biological data are lacking and only available by proxy (e.g., ice 

cores, fossils etc. ) (IPCC, 2013).  

Case study: Stylasterid coral mineralogy and phylogenetic relationships in the Drake 

Passage 

The Drake Passage benthic environment is characterised by geographic and oceanic 

change over millions of years. The heterogeneity of seamount, shelf and slope habitats 

through time may have increased skeletal mineral plasticity in certain stylasterid taxa, leading 

to a fixed functional mineralogy and/or a certain calcification strategy. The Drake Passage 

and Scotia Arc region is described as the most species rich locality for stylasterids within the 

Antarctic region. Of the 33 known Antarctic stylasterids, 12 genera are found in this vicinity 

(16 species) (Bax & Cairns, 2014). According to Cairns and MacIntyre (1992) two genera, 

Errinopsis and Errinopora, have a predominantly calcite skeleton and nine genera, including 

Adelopora, Crypthelia, Inferiolabiata, Lepidopora, Stylaster, Stellapora, Cheiloporidion, 
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Sporadopora and Conopora, have predominantly aragonite skeletons. One genus, Errina is 

described as bi-mineralic: whereby some species have mostly aragonite and some species 

have primarily calcite skeletons. This combination of high stylasterid diversity and variety of 

calcium carbonate skeletal form, suggests that the Drake Passage may be an epicenter of 

diversity for Stylasteridae, and that calcium carbonate polymorphism may have been 

important in the evolution of some genera. This claim is further substantiated by the 

distribution of either aragonite or calcite polymorphs within stylasterid CaCO3 skeletons, in 

alignment with their morphological species relationships (Cairns & MacIntyre, 1992). Thus, 

Cairns and MacIntyre (1992) predict phylogenetic carbonate determinism. 

The Eocene/Oligocene boundary was the last paleo-oceanic transition from calcite to 

aragonite seas, following a time of historically high acidification and warm temperatures 

termed the Paleocene-Eocene Thermal Maximum (PEMT) (Honisch et al., 2012). If 

stylasterid mineralogy is phylogenetically determined, then we might expect species that 

arose during periods of differing ocean chemistry to have evolved contrasting mineralogies. 

For example, Stanley and Hardie (1998) hypothesise that either side of the Eocene/Oligocene 

boundary different calcification strategies were more favourable. Before ~ 34 MYA calcite 

calcification was favoured (termed a calcite sea). After ~ 34 MYA aragonite was favoured 

(termed an aragonite sea). This time period 34 MYA is also linked to a rapid de-acidification 

of the world’s oceans, and deepening of the CCD from a paleo-depth of ~ 3000 m (Pusz et 

al., 2011), to its modern depth of ~ 4000 m (Broecker, 2008). During this time the ASH (~ 

1000 m) and CSH (~ 3000) were correspondingly set to their modern depths (Broecker, 

2008), potentially opening up new deeper habits for benthic calcifiers and facilitating 

diversification. To best assess this evolutionary scenario in stylasterids, phylogenetic 

relationships are considered alongside skeletal composition of species to investigate if 

changes in mineralogy correlate with the Eocene/Oligocene period of evolutionary 

divergence ~ 34 MYA. In addition, phylogenetic relationships are overlain with the available 

depth and location data to examine links between calcite mineralogy and environmental 

conditions. Evidence that stylasterids have adapted to changing environmental conditions in 

the past will have important implications for long-term survival through future changes in 

ocean acidification and chemistry (IPCC).  
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Methods 
 

Study Area, Collection and Samples 

Coral samples were collected mainly by Hein and Blake trawl, and in some cases in 

dredge and core samples (Waller & Robinson NPB1103 cruise report, 2011). Samples were 

obtained from depths of 130 m to a maximum sampling depth of 2,149 m. Sample number, 

replicate, location, latitude, longitude, morphological identification and voyage were 

recorded for all study specimens (Appendix Table 2). Samples are housed at the Darling 

Harbour Marine Lab in Maine, USA and a reference collection will be deposited at the 

Tasmanian Museum and Art Gallery (TMAG), Hobart, Tasmania. 

 

Tissues from deep-sea stylasterid coral samples were obtained by collaborative 

collection at sea during three recent Antarctic research voyages on the Nathaniel B Palmer; 

NBP11-03, NBP 11-05 and NBP 08-05 to the Antarctic Peninsula and Drake Passage. 

Material was preserved as close to the time of collection as possible in > 90% ethanol 

specifically for genetic analysis. Coral species identification based on morphology was 

determined based on the available keys and literature (Cairns, 1983), and Scanning Electron 

Microscopy (SEM) was used in some cases to examine fine scale structure. Seven stylasterid 

coral taxa where chosen for this study due to an established phylogenetic congruence 

between their morphology and genetic relationships based on two mitochondrial DNA gene 

regions (CO1 and 16S) (out-lined in chapter 2), their abundance in the Drake Passage across 

a diverse number of habitat types and depths (Waller et al., 2011), and comparative 

information on their mineralogy and age based on fossil studies (Stolarski, 1998, Lindner et 

al., 2008 Table 2, Emily Ciscato unpublished data). These seven species are: Errinopsis 

fenestrata Cairns, 1983, Errinopsis reticulum Broch, 1951, Sporadopora dichotoma 

(Moseley, 1876), Stylaster densicaulis Moseley, 1879, Stellapora echinata (Moseley, 1879), 

Cheiloporidion pulvinatum Cairns, 1983 and Conopora verrucosa (Studer, 1878). The final 

sample set spanned six sites within the Drake Passage; depth distribution was compared to 

scleractinian records in the following regions from video assays outlined in Waller et al., 

(2011) and scleractinian collections from Margolin et al., (2014).  
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Figure 1. Map of the geographic locations where stylasterid corals were collected for this 

study in the Drake Passage. High densities of scleractinian corals have also been sampled 

from these locations (Waller et al., 2011, Margolin et al, 2014), and biogeographic data are 

available for stylasterid corals (Bax & Cairns, 2014). Map provided by Kathryn Scanlon 

WHOI. 

 

Drake Passage Locations 

Burdwood Bank 

The Burdwood Bank is a continental plateau connected to the South American shelf 

within the Argentine Exclusive Economic Zone (EEZ) (Cusminsky & Whatley, 2000). An 

aqueous boundary between the Antarctic Intermediate Water (AAIW) and Upper 

Circumpolar Deep Water (UCDW) at 1000 m was identified by Margolin et al., (2014), along 

with a substantial drop in oxygen at 500 m. Scleractinian solitary corals have been collected 

from 120 m – 1879 m from sediment habitat (Margolin et al., 2014), and large aggregations 

of the habitat forming stylasterid coral Errinopsis reticulum have been collected in this region 

(Bax & Cairns, 2014). 

 

Cape Horn 

Cape Horn is a rocky substratum at the tip of South America within both the Chilean 

and Argentine EEZs. At Cape Horn the AAIW occurs above 1000 m and the UCDW flows 
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below 1000m (Margolin et al., 2014). Stylasterid corals have been recorded in great 

abundance from 500 m – 1400 m on rocky outcrops where octocorals were also present 

(Waller & Robinson, 2011, Fig 2), and solitary scleractinians were present on sediment 

locations. 

 

 

Figure 2. Stylasterid corals recorded in high density at Cape Horn during the NBP-1103 

research voyage in 2011 (image from Waller & Robinson, 2011). Based on subsequent 

identifications these corals are specimens of either Stylaster densicaulis or Conopora 

verrucosa (pers. identification).  

 

Sars Seamount 

Sars Seamount lies within the Chilean EEZ south of the Polar Front and consists of 

predominantly gravel habitat. Video image surveys conducted by Waller and Robinson 

(2011) from 490 – 610 m, document stylasterids as a dominant component of the benthic 

fauna (present in 96% of images), second only to sponges (99% of images). Scleractinians 

are comparatively rare, and were found in only 6% of images from 600 m – 1900 m with the 

majority of specimens above 1000 m (Margolin et al., 2014).  

 

Interim Seamount 

Interim seamount is composed of three peaks along an extended bathymetric track 

where deeper depths vary from 1030 m – 1175 m with mainly gravel habitat interspersed 

with bedrock and very little sedimentation (Waller et al., 2011). Scleractinian corals have 

been collected within a restricted depth range from 1000 – 1300 m (Margolin et al., 2014), 
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and primnoid octocorals predominate over stylasterids in image surveys (95% vs. 31% of 

images) (Waller et al., 2011).  

 

Shackleton Fracture Zone 

The Shackleton Fracture Zone (SFZ) is an oceanic transverse ridge. The ACC is more 

restricted at the SFZ and semi-enclosed eddies exist within the ACC constraining Antarctic 

Bottom Water (ABW) (Livermore et al., 2004). Habitat is predominantly gravel, but rocks 

and sediment are also present. Stylasterids and octocorals seem to share an equally high 

abundance in the region (~ 86% of images from Waller et al., 2011), and scleractinian corals 

have been collected from 700 m – 2295 m (Margolin et al., 2014).  

  

West Antarctic Peninsula – site AA 

Site AA is located on the West Antarctic Peninsula (WAP) shelf; the WAP is a 

sediment slope with an average depth of ~ 450 m, with numerous deviations and a steep drop 

off. Only one stylasterid sample was recovered from this site; scleractinians were recovered 

from 500 m – 600 m. However, very few biological samples are documented, and the only 

reference for this site is the NBP-1103 cruise report consequently there is very little 

information for this location. 

 

Molecular Protocols 

DNA was extracted following the standard procedure using the Qiagen DNeasy 

protocol for the purification of total DNA from animal tissues (QIAGEN), modified to 

include an overnight incubation at 56ºC to completely lyse the tissue. Two mitochondrial 

regions, Cytochrome c oxidase subunit I (CO1) and the 16S Ribosomal Subunit (16S rDNA) 

were used for phylogenetic analysis. Extracted DNA was used as a template in Polymerase 

Chain Reactions (PCR). Hydrozoan primers were used for 16S, metazoan-specific primers 

were designed by Geller et al., (2013) for CO1 (summarised in Table 1.). Each 12.5 μL PCR 

reaction contained Promega GoTaq® Green Master Mix, 10 μM solution of forward and 

reverse primer pairs, < 250 ng of DNA template and nuclease-free water. The thermal cycling 

profile varied by gene region. For CO1 this consisted of an initial denaturation at 95ºC for 2 

minutes, then 40 cycles of a three step program 95ºC for 30 sec, 40 - 60ºC for 45 sec 

(annealing temperatures varied Table 1.) and 72ºC for one minute, with a final extension at 

72ºC for five minutes. The 16S protocol was taken from Lindner et al (2008). A positive 

control of E. fissurata amplified by Bax (2009) was used to confirm PCR success. Sufficient 
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master mix was retained for each PCR trial to be used as a negative control which contained 

all listed reagents, but no template DNA to control for contamination and the amplification of 

non-target DNA. Successful PCR reactions were purified using the Qiagen MiniElute 

purification kit designed to produce high end-concentrations of DNA. To elute the DNA, 30 

μL of milliQ was used in place of a buffer. To increase the overall DNA yield prior to 

sequencing, two PCR reactions were purified for each sample. The two purified PCRs were 

then combined into one microcentrifuge sample to make a total concentration 3 - 6 ng/μL 

which was prepared for sequencing. Samples were sequenced in both directions at the 

Australian Genome Research Facility (AGRF) in Brisbane using the ABI platform.   

 

Table 1. Details of PCR primers and annealing temperatures used to amplify two mitochondrial 

DNA regions from eleven species of deep-sea stylasterid coral. The resulting, or expected amplicon 

size (in base pairs) is indicated. 

DNA Region & 

Primers 
Directio

n 
Primer Sequence Annealing 

Temp (°C) 
Fragment Size 

(bp) 
Reference 

16S            

SHA 5'-3' TCGACTGTTTACCAAAAACATAGC 35-60 ~600 Cunningham & 

Buss, 1993 

SHB 3'-5' ACGGAATGAACTCAAATCATGTAAG 35-61 ~600   

CO1           

jgHCO2198-1 5'-3' TABACYTCBGGRTGBCCRAARAAYCA  50-60 ~200 Geller et al., 

2013 

jgLCO1490-1 3'-5' TBTCBACBAAYCAYAARGAYATTGG 50-61 ~200  

      

      

Phylogenetic Analysis and Estimation of Divergence Time 

The final data set included CO1 and 16S concatenated alignments run in Mr Bayes 

using a Gamma + HKY model (Hasegawa, Kishino & Yano, 1985) chosen as the most 

appropriate model in Jmodeltest (Bazinet et al., 2014). A DNA sequence of Hydricthella 

epigorgia (Ptilocodiidae) was used as an outgroup. This species is in the superfamily 

Hydractinoidea, which also contains stylasteridae, and the species has been shown to occupy 

a lineage basal to Stylasteridae (Cartwright, 2008).  

The 872 base pair alignment of a majority rule consensus of 33 16S and CO1 DNA 

sequence alignments (from Mr Bayes alignments in chapter 3) were analysed in BEAST 

(Bayesian Evolutionary Analysis Sampling Trees) v1.8 (Drummond & Rambaut, 2012). The 

xml files for BEAST were created in BEAUTi (Bayesian Evolutionary Analysis Utility) v1.8 
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(Drummond et al., 2012). The Yule birth-rate process was chosen as the appropriate prior, 

where extinction and speciation are equally likely under a normal distribution (with 10% of 

standard error), with a lognormal relaxed clock among lineages. The HKY model (Hasegawa, 

Kishino, Yano 85 model) was selected for molecular clock estimation over sixty million 

generations, saved every 6,000 generations to calculate phylogenetic relationships and 

posterior probabilities (the first 6,000 were discarded as burn-in). Chain convergence, node 

ages and highest posterior density (HPD) intervals were visualised in TRACER v1.6 

(Rambaut & Drummond et al., 2013). 

 

Fossil Record, Mineralogy and Age Estimates 

The fossil record for the Stylasteridae was tabulated in Lindner et al., (2008). 

Stylasterid fossils can be traced back to the late Cretaceous 65 million years ago and the 

earliest Antarctic fossil (Conopora mariae) was dated to the Eocene ~ 50 million years ago 

(Stolarski, 1998). BEAST analysis calibrated the oldest stylasterid fossil dated to ~ 65 MYA 

to allow for maximum divergence time. Node constraints were assigned a normal prior 

distribution with an absolute upper bound of 65 MYA at the clade root to signify the most 

recent common ancestor (MRCA) to Stylasteridae. Additional priors were set as default, and 

where required a normal distribution was assigned to allow for maximum uncertainty in the 

calibration estimates (Ho, 2012). The uncorrelated relaxed clock model (Ho et al., 2005) was 

estimated based on a minimum value of 1.0 substitutions per site per million years due to an 

unknown rate of evolution in stylasterid corals, and cnidarians generally (see Shearer et al., 

2002 for a summary in Anthozoans).   

 

Carbon dated fossil age estimates and mineralogy (calcite/aragonite) were taken from 

the available literature (Lindner et al., 2008; Cairns & MacIntyre, 1992), and skeletal 

composition estimates from the Drake Passage were made available by Emily Ciscato and 

Dr. Laura Robinson (unpublished data) using established methods (Burke et al., 2010; 

Margolin et al., 2014) for six of the seven stylasterid species collected from the same sample 

locations as the extant species used here (Ciscato et al., in prep.). This information is also 

used to indirectly assess if there is any evidence to suggest coral calcification may be limited 

below the Aragonite Saturation Horizon (ASH). 
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Results 
 

Three key patterns emerge from phylogenetic analysis, when overlaid with 

mineralogy, depth and location data from Drake Passage stylasterid corals:  

 

1) Aragonite is likely to be the ancestral and predominant skeletal composition of 

stylasterids. 

 

The placement of Conopora verrucosa as the basal ancestor is consistent with the 

fossil record (Fig 3). This conclusion is based on the Lindner et al., (2008) calibration, dating 

Conopora arborescens from the Faske formation to ~ 65 MYA. The oldest and only 

stylasterid fossil from Antarctica is also a congeneric species, Conopora mariae, dated to ~ 

50 million years (Stolarski, 1998). To account for a margin of error associated with 

Conopora fossil estimates, a range of ~ 10 million years is shown in the phylogeny, placing 

the MRCA to Drake Passage stylasterids at 70 – 60 million years (Fig 3). This time frame 

also allows for the possibility that stylasterid ancestors evolved outside of Antarctica and is 

further substantiated by the presence of all six studied genera prior to the formation of the 

ACC that isolated Antarctica from the rest of the southern ocean areas around 35 MYA 

(Livermore et al., 2005).  

 

Differential carbonate composition and phylogenetic tree topology suggests that 

ancestral stylasterids were predominantly aragonite (from > 90 - ~ 40 MYA), and species 

producing calcite skeletons arose more recently (~ 40 - 30 MYA) (Fig 3). Therefore, the 

common ancestor to Drake Passage stylasterids most likely had an aragonite skeleton. The 

presence of aragonite as the dominant polymorph in four of the six sampled genera, including 

the oldest genus, substantiates this monophyletic ancestral state (plesiomorphy) in Stylaster, 

Conopora, Stellapora and Sporadopora.  

 

2) Radiation within the Drake Passage stylasteridae does not appear to be linked to 

major geological events, but oceanic chemistry may have influenced radiation within 

stylasterids ~ 40 - 30 MYA.  

 

Four of the six genera studied here (Errinopsis, Cheiloporidion, Stylaster and 

Sporadopora) likely diverged during the latter half of the Eocene, around 40MYA. This time 
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period is after the initiation of the Drake Passage (50 MYA) and the PETM (55 MYA) (Fig 

3) suggesting these two events had little influence on speciation in Drake Passage 

stylasterids. Divergence dates align more closely with substantial paleo-oceanic change in the 

Drake Passage within the suggested time of ACC initiation (~ 28 - 41 MYA Lawver & 

Gahagan 2003), strongly associated with oceanic de-acidification during the 

Eocene/Oligocene epoch boundary, the lowering of the CCD by ~1km ~34 MYA (Coxall et 

al., 2005; Rea & Lyle, 2005; Merico et al., 2008), and the most recent switch from calcite to 

aragonite seas (Stanley & Hardy, 1998) (Fig 3). This temporal correlation suggests that 

oceanic change had the most substantial effect on stylastrid populations. However, 

divergence dates have a large margin of error (~ 10 million years). Consequently, skeletal 

composition linked to oceanic chemistry may have been instrumental in the speciation 

process, but more research would be needed to pin point divergence times, and link 

divergence to paleo-chemical drivers. 

 

3) The two most derived genera; Errinopsis and Cheiloporidion were characterized by 

calcite forms. Two phylogenetic interpretations exist for when these calcite forms 

likely arose: 

 

Scenario 1): Eocene - an evolutionary character state 

 

Calcite may have arisen once as a carbonate character state during the latter half of 

the Eocene, when the MRCA to Cheiloporidion and Errinopsis first diverged from Stellapora 

and which coincides with a calcite sea (Fig 3). Subsequently in both genera there has been a 

switch back to the ancestral aragonite condition in some species/locations during subsequent 

aragonitic sea conditions, possibly reflecting phenotypic plasticity. This interpretation would 

be the most parsimonious in that calcitic forms are monophyletic (i.e., calcite arose once) and 

it supports the ontongenetic calcification hypothesis (Spencer & Hardie, 1998) in that the 

evolution of species with different skeletal mineralogy can be linked to ocean chemistry.  

 Scenario 2): Miocene - a recent character state 

  

An alternative interpretation of calcite acquisition in Cheiloporidion and Errinopsis is 

that calcite acquisition evolved recently, and arose independently in these two genera during 

the Miocene (Fig 3). This explanation is less parsimonious in the context that calcite arose 

twice (i.e. is paraphyletic) and there is no link to ocean chemistry as conditions during the 
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Miocene reflected an aragonitic sea. In this instance, it is possible that other environmental 

conditions lead to the evolution of calcite forms, for example geography or bathymetry. 

Divergence of the two forms of C. pulvinatum occurred around ~ 10 MYA which was during 

a period of geographic change across the Scotia Arc (Fig 3), Thus, it is possible that the 

isolation of the Burwood Bank (calcitic forms) from the Sars Seamount (aragonite forms) led 

to the divergence in C. pulvinatum mineralogy. However, there was no equivalent pattern 

found in E. fenestrata, which occurs both at Burdwood Bank and Sars Seamont, where 

mineralogy is consistent in both locations, although the low replication across locations limits 

geographic inference.   
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Figure 3. Bayesian phylogenetic tree for CO1 and 16S compiled in BEAST (Rambaut & Drummond, 2007), under the HKY85 model of sequence evolution. 

Scale is in millions of years from 0 (present) to 100 million years with the most recent common ancestor estimated at 65 MYA and represented by (•) on the 

cladogram. To illustrate fossil calibrated divergence between stylasterid species, the margin of error (~ 10 million years, shown in yellow) is stated along the 

time line starting with 1) the thermal isolation of Antarctica and initiation of the Drake Passage region ~ 50 MYA (•), 2) ACC formation (~35MYA) and 3) 

the lowering of the CCD of the Southern Ocean ~34MYA, and 4) the switch from calcite to aragonite seas (based on the Spencer & Hardie (1998) model of 

calcite/aragonite seas (•), and 5) geological shifts across the Scotia Arc (~15MYA) (based on Strugnell et al., 2008)  (•). The PETM, a time frame linked to 

the reformation of calcite and aragonite in surface waters world-wide is also indicated at 55 MYA. Calcite = C (pink), or Aragonite = A (blue) is indicated at 

clade nodes. In the Eocene calcite (Scenario 1) or aragonite (Scenario 2) is indicated at the node ~40MYA.
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Discussion 
 
Calcium Carbonate Composition of the Drake Passage Stylasteridae  

This study has shown that the common CaCO3 polymorph ancestor to stylasterids was 

aragonite, and that the predominant calcium carbonate polymorph in modern Drake Passage 

stylasterids is also aragonite. The majority of stylasterid species have maintained their 

ancestral aragonite skeletal form, inherited from the MRCA to the basal clade of Conopora 

verrucosa (Fig 3). All records suggest that this genus is aragonite in both modern and fossil 

forms (Cairns & MacIntyre, 1992; Stolarski, 1998; Jell et al., 2011). The closest calcifying 

hydrozoan relatives to Stylasteridae are also aragonite, and aragonite is the predominant and 

ancestral bio-mineral in stylasterids studied in Cairns and MacIntyre (1992). Furthermore, 

Cairns & MacIntyre (1992) present information on genera not included in this analysis, and 

describe aragonite skeletal mineralogy in four of the six Sub-Antarctic genera, confirming 

that Drake Passage Stylasterids conform to the mineralogy common of stylasteridae world-

wide. Given that these conclusions are well supported from genetic and morphological data, 

the existence of an atypical calcite skeletal minerology in the most derived phylogenetic 

clade, containing Errinopsis and Cheiloporidion ~ 40 – 30 MYA, is surprising (Fig 3). Two 

possible evolutionary explanations of this unusual pattern are considered here. 1) The use of 

calcite arose during the Eocene when the MRCA of these two genera arose, or 2) evolution of 

the use of calcite is a more recent adaptation, seen in multiple lineages during the Miocene.   

 

Radiation in Drake Passage Stylasteridae during the Eocene/Oligocene Boundary  

The closest paleo-environmental event to the estimated period of divergence of most 

of the extant stylasterid genera recorded in the Drake Passage is the Eocene/Oligocene 

boundary ~ 34 MYA (e.g., Rea & Lyle 2005; Coxall et al., 2005; Merico et al., 2008). There 

was a transition from calcite to aragonite seas during this time period (Stanley & Hardie, 

1998; Porter, 2010; Ries, 2010).  In contrast, there is a comparative lack of divergence in 

stylasterids during other geological events such as the PETM (~ 55 MYA) (Zubarev et al., 

2013), and the opening of the Drake Passage (> 50 MYA) (Livermore et al., 2005), 

suggesting that stylasterid radiation was most influenced by oceanic change ~ 34 MYA (Fig 

3).  Strugnell et al., (2008b) suggest a lineage of deep-sea octopus arose in the Drake Passage 

during the Eocene (33 MYA), reinforcing that this time period may have been instrumental in 

the evolution of Antarctic invertebrate groups, and the opening of new deep habitat. 

However, divergence estimates in Strugnell et al., (2008b) place the height of octopus 
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radiation at ~ 15 MYA. Comparatively, minimal radiation is documented in stylasterids 

during this time (Fig 3).  Strugnell et al., (2008 a,b,c) provide the only evolutionary 

phylogenetic study for comparison pre 15 MYA in the Drake Passage, and it is likely that 

sessile calcifying benthic fauna, such as corals, were differentially affected compared to 

pelagic molluscs.  

 

In the Eocene, 56 to 34 MYA, oceanic conditions were more acidic than the modern 

ocean (Coxall et al., 2005), the oceanic state was more favourable for calcite skeletal forms 

(Porter, 2010) and consequently I propose that Errinopsis and Cheiloporidion, which 

appeared during this time, are calcitic as a consequence of the oceanic state in which they 

arose (Scenario 1 Fig 3).  However,  Stylaster densicaulis and Sporadopora distichotoma also 

diverged from their MRCA within the Eocene (Fig 3), but these species retained the ancestral 

condition of aragonite skeletons hence it appears that oceanic chemistry affected stylasterid 

lineages in different ways.  

 

Of interest is that both Errinopsis and Cheiloporidion have more recently switched 

their mineralogy from the hypothesized natal calcite to the ancestral aragonite, which may 

reflect the oceanic state of the Oligocene to the present day (aragonite). The presence of both 

skeletal minerologies within a single species is uncommon compared to most invertebrates 

studied to date (although see literature on bi-mineralic shells in modern molluscs in Feely et 

al., 2004, and reviews in Porter, 2010; Honisch et al., 2012). However, ex-situ experiments 

on modern scleractinian species have shown that such a switch in mineralogy was possible in 

the Cretaceous (Ries, 2010; Higuchi et al., 2014). Laboratory experiments on the shallow 

water corals, Acropora tenuis (Higuchi et al., 2014), Acropora cervicornis, Montipora 

digitata and Porites cylindrical (Ries, 2010), showed that skeletal growth is faster in 

aragonite favourable conditions, whilst growth (at a lower rate) was also documented during 

calcite favorable conditions, along with the precipitation of calcite to form bi-mineralic 

skeletons. Ries (2010) suggests this bi-mineralogy may have been a beneficial calcification 

strategy, enabling scleractinian corals to survive through the Cretaceous (calcite sea), and 

then prosper in the Oligocene (aragonite sea). This may also be the case in stylasterid corals, 

which are bi-mineralic across most species (Cairns & MacIntyre, 1992), and represented by 

fossil forms in the Cretaceous (Lindner et al., 2008). However, the adaptive benefit of bi-

mineralogy remains to be tested on stylasterids, and studies suggest an evolutionary 

constraint on mineralogy adaptation, potentially relating to energy cost (Reis, 2010; Higuchi 
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et al., 2014).  Such a constraint further supports the hypothesis that calcite in Errinopsis and 

Cheiloporidion is an evolutionary character state, with subsequent divergence toward 

aragonite as the most plausible explanation for the patterns observed here (i.e. scenario 1, Fig 

3).      

 

The Errina, Errinopsis, Errinopora + Cheiloporidion Genus Complex 

The phylogeny of Cairns and MacIntyre (1992) reported a switch to calcite 

mineralogy in the clade including Errina, Errinopisis, Errinopora and Cheiloporidion. The 

timing of this switch was previously unknown, and is estimated here from genetic data at ~ 

45 – 35 MYA (Fig 3). In the morphological cladogram of Cairns and MacIntyre (1992), this 

switch followed divergence from Stellapora (based on morphological similarity), and the 

genetic data here agrees with their conclusion (Fig 3). Three genera, Errinopsis, Errinopora 

and Errina, are described by Cairns and MacIntyre (1992) as a genus complex based on 

divergence both in morphology and mineralogy. Based on genetic (Chapter 3), morphological 

(Cairns, 1983), and mineral similarity (Cairns & MacIntyre, 1992) C. pulvinatum qualifies 

for inclusion within the Errina/Errinopsis/Errinopora complex. Due to sequencing and 

sampling limitations mtDNA data were unavailable for Errinopora and only 16S DNA was 

available for Errina, negating incorporation into the final BEAST phylogeny. However, 

despite limited comparative data, 16S phylogenetic alignment shows that Errina species are 

closely related to Errinopsis and Cheiloporidion as would be expected based on morphology 

(Chapter 3).  Therefore, shared characteristics unique to these genera, such as mineralogy, 

may be maintained as either an evolutionary by-product, or due to some adaptive advantage. 

 

The dominant field-forming Antarctic genus is Errina (Post et al., 2010; Bax & 

Cairns, 2014). Errina species have been identified as bi-mineralic by Cairns & MacIntyre 

(1992), with some species containing mostly calcite, while some contain mostly aragonite. 

Most of the field-forming species in Antarctica have a calcite mineralogy (Cairns & 

MacIntyre, 1992; Riddle pers. com.), as do other field-forming Errina species outside of 

Antarctica; for example, the three species of Errina which form aggregations in the New 

Zealand fiords (Cairns & MacIntyre, 1992). In contrast, some of the Errina spp. known to 

contain aragonite are listed as having a limited distribution, and do not occur in high 

abundance (e.g., Errina kerguelensis Bax & Cairns, 2014). Errinopsis is also documented as 

a field forming genus, identified in field-like abundance at Burdwood Bank (Bax & Cairns, 
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2014). Similarly, Cheiloporidion pulvinatum is a habitat-forming species in the South West 

Atlantic (Bax et al., unpublished data). Therefore, calcite mineralogy may be instrumental in 

allowing species within this genus complex to predominate in selected habitats, leading to 

high coral coverage.  

 

However, counter to this hypothesis, Errinopora is a rare and endemic coral that does 

not, to our knowledge, form field-like aggregations (Bax & Cairns, 2014). In addition, Errina 

antarctica forms dense aggregations in the Patagonian fiords (Häussermann & Försterra, 

2007), but has an aragonite mineralogy (Cairns & MacIntyre, 1992). Furthermore, aragonite 

corals have also been recorded in large aggregations (e.g., Stylaster densicaulis/Conopora 

verrucosa pers. identification from Waller & Robinson, 2011 Fig 2). Therefore, calcite 

mineralogy may or may not contribute to the ability of stylasterids to form field-like 

aggregations in select habitats, and further research will be needed to substantiate the utility 

of mineralogy in the Errina/Errinopsis/Errinopora + Cheiloporidion genus complex.  

 

Location and Depth Related Mineralogy Differences  

The alternate explanation for the existance of aragonite and calcite skeletal 

minerology in Cheiloporidion and Errinopsis is that this character state arose more recently 

(during the Meiocene) and independently in both genera (Scenario 2, Figure 3). However, 

other data from this study do not provide strong support for this alternate hypothesis. Recent 

evolution of calcite forms could be linked to modern day environmental conditions. For 

example, Cheiloporidion pulvinatum samples from Burdwood Bank are distinct from those at 

Sars Seamount based on minerology and genetics, and this may signify isolation and 

subsequent divergence through localised adaptation (Fig 3). However, there was no 

equivalent genetic or minerology differences between E. fenestrata populations sampled 

across a similar geographic range, providing little support for this hypothesis.    

 

Lastly, it was expected that aragonite would be favoured in shallow waters above the 

ASH (~ 1000 m), and that calcite would be favoured in deeper habitats below the ASH (Feely 

et al., 2004). This hypothesis of calcite minerology at deeper depths is unsupported in 

Errinopsis and Cheiloporidion, which appear to be eurybathic either side of the ASH (300 m 

- > 2000 m appendix).  Furthermore, Stylaster and Sporadopora (which occur across similar 

depths as Errinopsis and Cheiloporidion) diverged from their MRCA around the same time 
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period as the calcite genera, but both retain aragonite skeletons below the predicted depth of 

the ASH (Fig 3, appendix). In combination, these results are counterintuitive to any evidence 

of calcite selection in deeper waters, negating an adaptive ability for stylasterids to exist 

below the ASH, or out-compete aragonite calcifiers in the Drake Passage.   

Conclusion 
 

Evolution is a complex process in any group of organisms, and there is unlikely to be 

a single driver for such a diverse fauna as the Antarctic benthos (Clarke et al., 2004). For 

corals, the combined effect of oceanographic chemistry and productivity during climatic 

events likely had a substantial effect on their biogeography (Margolin et al., 2014). In 

stylasterids this has resulted in adaptations linked to morphology and mineralogy (Cairns & 

MacIntyre, 1992). The main period of phylogenetic radiation in Drake Passage stylasterids 

correlates with oceanic de-acidification during the Eocene/Miocene transition boundary from 

calcite to aragonite seas. Future acidification conditions may lead to an inverse pattern of 

divergence as the oceans shift from aragonite seas to calcite sea conditions (e.g., Parker et al., 

2010; Pandolfi et al., 2011; Ries, 2011), culminating in potential extinctions within Antarctic 

populations. This could shift the competitive advantage towards non-calcifiers (Guinotte et 

al., 2006), or as outlined here – calcifiers that can adapt their mineralogy. However, optimism 

in this regard will need to be substantiated in future studies, and the unprecedented rates of 

change in IPCC (2013) predictions do not bode well given the slow rate of evolution in these 

species. Furthermore, ocean acidification not only poses a significant threat to deep-sea 

corals, but all associated fauna, and studies on a variety of taxa across multiple habitats are 

needed to predict ecosystem succession both in the past, and of increasing relevance, under 

future climate scenarios. Until this time, conservation of coral habitats, and their dependent 

ecosystems should be assigned the highest priority. 
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Estimates of Deep-Sea Stylasterid Coral Connectivity 

 
Stylasterid corals are an important, abundant and diverse component of sessile benthic 

fauna in the deep-sea, with a eurybathic depth range (~ 10 – 2000 m +) in fiord, seamount 

and shelf locations. Connectivity between coral habitats is maintained through gene flow, 

which   counteracts the effects of disturbance through the maintenance of genetic diversity 

and incoming recruitment, ensuring population survival. However, genetic studies of shallow 

water stylasterids corals have revealed considerable structure, indicating restricted gene flow 

and isolation or selection, and this has important consequences for conservation and 

management of coral populations generally. There are no data on gene flow among deep 

water populations of stylasterids and consequently we do not know if similar patterns of 

isolation exist at depth. Levels of connectivity were indirectly measured in deep-sea 

stylasterids using DNA sequence data of the mitochondrial ribosomal subunit (16S), 

cytochrome c oxidase subunit 1 (CO1)  and Internal Transcribed Spacer (ITS) among circum-

polar, Sub-Antarctic, Patagonian and South-West Atlantic Ocean populations of seven 

species. Circum-Antarctic connectivity estimates were statistically limited due to low sample 

size. To account for this, population connectivity was assessed in two main geographic 

regions in 1) Antarctic Peninsula and South America, and 2) East Antarctica.  

 Both regions were investigated across different spatial scales: among geographic 

locations (1000s of km), and within geographic locations (10 - 100s of km). Genetic 

separation among populations within the Drake Passage, where benthic habitats are separated 

by up to 500 km, and between the Drake Passage and South America where populations are 

separated by > 2000 km. was found for three species: Conopora verrucosa, Errina laterorifa 

and Cheiloporidion pulvinatum. When investigating dispersal estimates across the Polar 

Front, the species Stylaster densicaulis and Errinopsis fenestrata showed no genetic 

differentiation based on 16S haplotypes, whist CO1 data showed genetic subdivision among 

Drake Passage populations. In contrast, little to no genetic subdivision was evident in the 

Errina species at any spatial scale in the Ross Sea and Patagonian fiords based on ITS DNA 

sequence data.  

 The results presented here demonstrate that inference of  subdivision and gene flow 

between populations vary by species, molecular marker, study region and spatial scale, 

suggesting that a multitude of factors influence population connectivity within stylasterid 

coral populations. Identifying that some regions and populations are isolated whilst others 
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may be effectively panmictic is critical to the effectual management of these deep-sea 

populations. 

Introduction 
 

Connectivity in the Ocean 

Connectivity (and the inverse, isolation) has become a central topic in marine ecology 

and connectivity research has developed to incorporate the scale and mechanism by which 

gene flow operates within and between geographically separated populations. Gene flow, 

defined as genetically effective migration (Bohonak, 1999), helps counter the effects of 

inbreeding and genetic drift, and contributes to the maintenance of genomic diversity 

(Carlon, 1999; Ayre & Hughes, 2000; Almany et al., 2009).   

For benthic marine invertebrates, such as corals, gene flow and connectivity are 

achieved through larval dispersal. Ocean currents may link areas of high productivity (e.g., 

nutrient upwelling around seamount and continental shelves), and enable dispersal and 

maintain gene flow, if larvae have the capacity for pelagic dispersal (Botsford et al., 2009; 

Saenz-Agudelo et al., 2009). Larvae of benthic marine invertebrates can have a pelagic phase 

during which they feed (planktotrophic) allowing them to remain in the water column for 

days, weeks, or even months (Siegel et al., 2003; Sale et al., 2005), with the potential to 

disperse across large distances during this time (1000s of km, Kinlan & Gaines, 2003). 

However, some species have only a provisional amount of food from their parents 

(lecithotrophic) and can only remain in the water column until their natal food supply is 

exhausted (Siegal et al, 2003), while some benthic marine species lack a pelagic larval phase 

altogether (Thatje et al., 2012).  

 

The dispersal capacity of a species is often correlated with reproductive mode, 

particularly pelagic larval duration (PLD) whereby the longer a larva spends in the water 

column, the greater the likelihood and distance of dispersal (Hellberg, 2009). In contrast, 

marine species that lack a planktonic phase are thought to have limited dispersal capabilities, 

often recruiting within their natal population (Carlon & Olson, 1993). However, there are a 

number of cases where the PLD (Bowen et al., 2006) or reproductive type (Miller & Ayre, 

2008) do not function as good predictors of population structure. Weersing and Toonan 
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(2009) reviewed the current literature on the subject and found that PLD alone does not 

correlate well with genetic structuring between populations, to the extent that the authors 

question if there is a relationship at all. Hence, conservation managers cannot rely on 

assumptions based on a species reproductive mode, and a multidisciplinary approach is 

needed to assess connectivity in the marine environment to effectively manage marine 

ecosystems. 

 

A good example of a multi-disciplinary approach to connectivity is the field of 

seascape genetics (Galindo et al., 2006), whereby population genetic techniques typically 

applied to terrestrial environments (landscape genetics) are used to measure marine 

connectivity. This approach incorporates a species’ ecology (i.e. life history), genetic 

population structure, and physical barriers to dispersal (i.e. geographic features such as ridges 

or land masses, oceanographic features such as fronts and eddies).  In general, isolation tends 

to increase with distance in oceanic environments (Slatkin, 1993), with a greater 

differentiation between populations on a larger scale (> 2000 km) (Richards, 2007; Cowen & 

Sponaugle, 2009). Local scale genetic connectivity patterns are often characterised by 

‘chaotic genetic patchiness’ (Toonon & Grosberg, 2010), because over small spatial scales 

(10s of km), levels of gene flow are often confounded by spatial and temporal variation in 

recruitment (Magalon et al., 2005; Hunter & Halanych, 2008). Only a few studies to date 

have found fine scale genetic structure (< 100 m Miller & Ayre, 2008; Miller et al., 2009), 

although most studies do not consider such small spatial scales.  Using the seascape genetics 

approach Selkoe et al., (2010) were able to determine a spatial marine management strategy 

for a 2135 km area of Southern California, illustrating that through collaboration between 

scientific disciplines (such as population genetics, oceanographic modelling and ecology) the 

seascape genetics approach may elucidate local scale connectivity and effectively aid in the 

designation of Marine Protected Areas (MPAs).  

 

Connectivity and Conservation Management 

Population persistence is dependent upon stock (established adult population) and 

supply (recruitment of juveniles from within and outside of the population) to maintain 

genetic diversity (Almany et al., 2009).  Interconnected populations are more likely to 

recover following a disturbance as incoming recruits recolonise the region and re-establish 

populations (Steneck et al., 2009). In contrast, isolated or closed populations that rely on 

internal recruitment are more vulnerable to reduced genetic diversity and genetic drift which 
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can lead to extinction if their populations become depleted (Botsford, 2009). Depleted 

populations may experience a decrease in fitness at low densities, termed the Allee effect 

(Stephens et al., 1999). The premise of the Allee effect is often applied in conservation 

genetics to avert ecosystem collapse, assess MPAs and identify sites of conservation 

importance; as the ability of a population to adapt to change is highly dependent upon genetic 

diversity, determined by population size and the inflow of allelic diversity.  

 

The marine environment is exposed to an array of anthropogenic pressures, including 

fisheries, resource mining and exploration, climate change, pollution, introduced species and 

habitat destruction/modification (see Costello et al., 2010; Ramirez-Llodra et al., 2010). With 

so many pressures and potential threats to consider, understanding and maintaining the 

ecological processes, including connectivity, are especially important for conservation 

management. Sustainable resource use should be, and in a most cases is, the goal of 

management regimes. The implementation of MPAs to ensure prolonged ecosystem survival 

is one such strategy employed to maintain connectivity in species rich shallow water 

environments world-wide (e.g., tropical coral reefs Botsford et al., 2009), and more recently 

in deep-sea ecosystems in the Atlantic, Mediterranean, Southern Indian Ocean and the 

Southern Ocean (© FAO 2007-2014).  

 

MPA implementation is particularly challenging in the deep-sea due to limitations 

regarding accessibility, high research cost, ease of scientific study and where fisheries is 

concerned - a lack of defined oceanographic boundaries, and international resource 

competition. Coined ‘the tragedy of the commons’ (Hardin, 1968), international fisheries 

compete for the same limited resource, often a single desired fish species (e.g., the Orange 

Roughy Hoplostethus atlanticus (Clark & Driscoll, 2000; Morato & Watson, 2004; Clark & 

Rowden, 2009) and subsequently deplete its availability rather than fish sustainably. Such 

competition for resources in deep-sea ecosystems and the  use of destructive fishing 

technologies such as benthic trawling (Koslow et al., 2001, Hall-Spencer & Fossa, 2002), has 

resulted in ecosystem damage and population declines on seamounts world-wide. For 

example Tasmania (Koslow et al., 2001), the UK and Ireland (Grehan et al., 2005, Wheeler 

et al., 2005), Alaska (Stone, 2006), Florida (Reed et al., 2007), and New Zealand (Probert et 

al., 1997) among others (Koslow et al., 2000).   
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Southern Ocean fisheries are subject to regulations under the Committee for the 

Conservation of Antarctic Marine Living Resources (CCAMLR 2008 – 2012 summarised in 

Table 1), and to date all regulated deep-sea bottom fishing involves long line fisheries, not 

benthic trawling (Gianni, 2004). However, there remains a considerable threat from illegal, 

unreported and unregulated (IUU) fishers. By-catch, including benthic invertebrates such as 

corals, is associated with long line fisheries and trawling restrictions are open to discussion in 

the future (Parker & Bowden, 2009, CCAMLR, 2008).  With decreasing fish stocks world-

wide pressure and investment in Southern Ocean fisheries is expected to increase (Collins et 

al., 2010). Therefore, understanding benthic ecosystems, before fisheries impact, is of the 

utmost conservation importance. In order to prevent fisheries impact, the precautionary 

approach is advocated under CCAMLR through the classification of high biodiversity 

locations as Vulnerable Marine Ecosystems (VMEs). These areas are protected from fisheries 

and VME indicator species, including taxonomic groups such as corals, sponges, bryozoans 

echinoderms and molluscs (currently 27 taxon, CCAMLR, 2009), within these regions are 

classified as VME indicator taxa.  

If a VME indicator taxon, such as a coral, is caught on a fisheries long line whilst 

fishing within a legal fishing area the move on rule is put into effect and a one nautical mile 

radius is declared a no take zone (Parker et al., 2009).   Fourty six VMEs are presently listed 

under CCAMLR conservation measure 22-06 and 22-07 (Table 1) and for the management of 

these multiple VMEs it is important to consider that demographic change, such as 

replenishing a population following fisheries impact (Botsford  2003), requires recruitment 

through connectivity to maintain population fitness (Burridge et al., 2012). Recruitment can 

occur either from within or external to an impacted population (Botsford, 2003). If 

connectivity exists between VME networks, populations are more resilient to change, than 

isolated populations without external recruitment. Therefore, understanding connectivity 

processes will be central to future management and conservation of these important 

ecosystems, and would need to be taken into account when forming management plans for 

Antarctic VMEs.   
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Table 1. CCAMLR Conservation measures implemented to mitigate the impact of bottom 

fishing in the Southern Ocean.  

Conservation Measure Regulation 

22 – 05 (CCAMLR, 2008) Prohibits bottom trawling south of the CCAMLR boundary at 60°S 

22 – 06 (CCAMLR, 2008) 
Requires CCAMLR members to report evidence of VME areas to prevent 

fisheries impact on VMEs.  

22 – 07 (CCAMLR, 2009) 
Requires CCAMLR members to report VME taxa caught as by-catch to 

prevent fisheries impact on VMEs. Includes the move on rule, and the 

designation of a 1nm VME conservation area where VME taxa are 

encountered as by-catch.  

22 – 08 (CCAMLR, 2009) Prohibits exploratory bottom fishing in waters less than 550m. 

22 – 09 (CCAMLR, 2012) Outlines measures for the registration and protection of VMEs identified 

within the CCAMLR boundary.  

 

Connectivity in Antarctica and the Sub-Antarctic 

Antarctic benthic marine invertebrate communities are dominated by brooders that 

arguably do not have a pelagic larval phase (Thatje et al., 2012). Therefore, the mechanisms 

that maintain circum-Antarctic populations of many species are unclear and the scale of 

larval dispersal and gene flow is in need of further study. The Antarctic Circumpolar Current 

(ACC) is thought to act as a ‘conveyer belt’ facilitating dispersal of invertebrate larvae in an 

Easterly direction (Nikula et al., 2010). The inshore Antarctic Coastal Current flows mainly 

westward, and contains a number of eddies and gyres associated with continental bathymetry 

not subject to a unitary flow like the ACC (Moffat et al., 2008).  However, despite the more 

localised flow of the inshore Antarctic Counter Current, gene flow is generally claimed to be 

homogenous among populations of Antarctic fauna (Griffiths, 2010). There are a number of 

Antarctic invertebrate species which show this pattern of circum-polar connectivity e.g., the 

brittle star Astrotoma agassizii (Hunter & Halanych, 2008), and the nemertean worm 

Parborlasia corrugatus (Thornhill et al., 2008), among others (summarised in Thatje et al., 

2012). Therefore, despite the heterogeneous benthic environment, Antarctic invertebrates 

continue to be defined as a somewhat homogenous unit (e.g., Hedgpeth 1969; Dayton 1990). 

This homogenous nature is based on three pervading assumptions in the literature: 1) that 

strong circumpolar currents promote the distribution of juveniles, 2) that ecological 

conditions are favourably similar along the Antarctic coast, and 3) that most invertebrate 

species have a circumpolar distribution (see Gutt, 2013).  However, more recent efforts to 
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understand benthic biodiversity support a more sub-divided bio-geographic pattern (Brandt et 

al., 2007; Clarke, 2008). 

Recent studies refute the over-simplification of circum-Antarctic connectivity 

(Wilson et al, 2009; Baird et al., 2011). Studies have emerged suggesting local scale isolation 

of Antarctic invertebrate populations (~ 100 m Baird et al., 2012), independent of life history 

mode in some cases (e.g., Wilson et al., 2007). Presenting congruence with a brooding or 

spawning dispersal strategy in some (e.g., Hart et al., 2006), and the opposite of what might 

be expected by reproductive mode in others (see Thatje et al., 2012). Additional variables, 

including; iceberg scour (Griffiths et al., 2010), nutrient supply (Post et al., 2010), historic 

glaciation (Leese et al., 2008; Baird et al., 2011) and reproductive mode (Brandt et al., 2007, 

Arango et al., 2011, Baird et al, 2012) have all been linked to genetic diversity and 

population structure. Further, cryptic speciation, described as reproductively isolated 

populations within a species (see Held, 2003), appears to be extremely common in the 

Southern Ocean (Wilson et al, 2007; Baird et al, 2011). These factors have led many to argue 

for a revision of the Antarctic paradigm of circumpolar connectivity linked to the ACC – 

largely due to genetic research which suggests connectivity estimates are often specific to 

species or geographic locality (e.g., Wilson et al, 2007; 2009; Miller et al, 2010; Baird et al, 

2011; 2012). 

Most connectivity studies in Antarctica have been focused primarily on large scale 

hydrodynamic features, and have been centred on the relatively accessible areas of the 

Antarctic Peninsula (Wilson et al., 2009). Southern Ocean populations are often viewed as 

independent of those in surrounding regions such as Patagonia, the Drake Passage, Scotia 

Arc, South America and South West Atlantic Ocean (Brandt et al., 2007). This biogeographic 

separation is attributed to the presence of the Polar Front (also cited as the Antarctic 

Convergence, Eastman 1993), which provides a strong physical and thermal barrier (a 3- 4º C 

temperature differential) to dispersal (Barnes & Peck, 2008). However, studies show that 

dispersal does occur across the Polar Front between Antarctica and the sub-Antarctic, South 

America, and some sub-Antarctic islands (e.g., Wilson et al., 2007; Jörger et al., 2014).  

Therefore, the ACC both enables dispersal for some species and acts as a barrier to dispersal 

to others on either side of the Polar Front (e.g., Antarctic near shore fauna) (Clarke et al., 

2005; Wilson et al., 2007; Hunter & Halanych, 2008). Therefore, the ACC may not be the 

predominant factor in defining species connectivity.   
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Connectivity and Conservation of Antarctic and Sub-Antarctic Deep-sea Corals 

The recent discovery of field-like aggregations of stylasterid corals and a high 

abundance of associated fauna such as brittle stars, polycheates and crinoids in East 

Antarctica (Post et al., 2010), vividly illustrates ecosystem diversity in the Antarctic benthos. 

These coral fields are now documented in a number of locations (Bax & Cairns, 2014). The 

Antarctic and Sub-Antarctic benthic environment is composed of a myriad of habitat types 

extending to a maximum depth of 4000 m (Clarke & Johnson, 2003), and oceanic links and 

taxonomic affinities have been documented in surrounding regions such as Patagonia 

(Häussermann & Försterra, 2007), and the South West Atlantic (Spalding et al., 2007). 

However, sampling has been generally restricted to depths above 500 m due to limitations on 

infrastructure limitations, accessibility and research funding (Wilson et al., 2007), presenting 

a number of gaps in our knowledge on species distribution and connectivity in the deep 

Southern Ocean.  

Although connectivity in shallow water corals has been studied extensively using 

modern genetic methods, our understanding of the spatial scale of gene flow is adequate for 

only a few species (see Jones et al., 2009 for the most recent review). There are few genetic 

studies on the connectivity of deep-sea coral populations (Le Goff-Vitry et al., 2004, Miller 

et al., 2010; 2011), and none on Antarctic species. The genetic data we have suggests local 

recruitment of larvae, and limited gene flow in deep-sea corals generally (e.g., Le Goff-Vitry 

et al., 2004). Within the Sub-Antarctic region the only published genetic study on deep-sea 

corals examined scleractinian coral populations and found genetic differentiation across 

depths, consistent with the stratification of the Sub-Antarctic Mode Water, Antarctic 

Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern 

Ocean (Miller et al., 2011) indicating vertical stratification in larval dispersal, and 

bathymetric isolation. However, without imperical testing across coral groups and geographic 

regions, patterns of connectivity between Antarctic coral populations remain hypothetical.  

Stylasterids: A Model for Understanding Connectivity  

Stylasterid corals occur in great abundance from Antarctica (CCAMLR, 2009) to the 

Patagonian fiords (Häussermann & Försterra, 2007), the South West Atlantic (Bax & Cairns, 

2014) and the Drake Passage (Waller & Robinson, 2011).  Depths of occurrence vary 

between 10 m (fiord populations only) (Häussermann & Försterra, 2007) and 2000 + m 

(throughout the South West Atlantic, Drake Passage and Southern Ocean regions) (Cairns, 

2011). They have been recorded in dense aggregations (Post et al., 2010) that support 
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biodiversity equivalent to that found in tropical reef systems (e.g., Cairns & Lindner, 2011) 

and occupy diverse habitats including sea mounts, shelf and fiord locations. Recent 

biodiversity discovery efforts such as the Census of Antarctic Marine Life (CAML) have 

started to reveal the importance of stylasterid corals in Antarctic and Southern Ocean benthic 

ecosystems (Post et al., 2010; Hosie et al., 2011; Kaiser et al., 2013).  

 

Stylasterid corals are a species-rich taxonomic group with over 247 known species 

world-wide (Cairns, 2011), of which 13% are described from the Sothern Ocean (Bax & 

Cairns, 2014). Little is known about their ecology and life history. We only have a handful of 

publications on reproduction in deep-sea coral species world-wide (Waller & Tyler, 2005; 

Flint et al., 2006; Brook & Stone, 2007), and only one publication for deep-sea Antarctic 

species (Waller et al., 2008). Reproductive mode is known for only three scleractinians in the 

sub-Antarctic (Flabellum thouarsii, F. curvatum, F impensum), and all are brooding species 

(Waller et al., 2008). However, there are no data on reproduction for Antarctic octocoral or 

stylasterid species, and no studies on dispersal in these species. It is theorised by Stratford 

(2002) that the most likely method of reproduction in Antarctic/deep-sea stylasterids would 

be brooding larvae that settle close to adult colonies. The limited existing data on stylasterids 

suggest an insular dispersal capacity. Like many Antarctic species, stylasterids appear to 

brood their larvae. One of the earliest studies on stylasterid reproduction was for Allopora 

californica which has a brooded larva with a short lecithotrophic stage (Ostarello, 1973). 

Brook and Stone (2007) summarised information about all the stylasterid species studied to 

date, and found most of them were classified as gonochoristic (separate sexes) brooders (one 

species S. roseus may be hermaphroditic (Goedbloed, 1962) and recent investigations on 

Brazillian species of Errina have found the same (Cordeiro pers. com.). Errina 

novaezealandiae broods larvae which crawl from cavities in parent colony branches and 

settle within 24 hours and less than one meter from parent colonies (Stratford, 2004). 

Stratford (2002) also documented the presence of microscopic mucus covered hairs covering 

the larval body. He speculated that these mucus hairs may function like parachutes in strong 

currents, enabling larvae to transport themselves away from parent colonies via current-aided 

dispersion. However, subsequent genetic studies have shown that E. novaezelandiae has 

highly subdivided populations throughout the New Zealand fiords, consistent with the 

production of larvae that settle close to parental colonies (Miller et al., 2004). Therefore, the 

known reproductive modes exhibited in stylasterid corals are indicative of limited dispersal 

potential often associated with highly structured, patchily distributed, isolated populations, 
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common of the Antarctic benthos (Clarke & Johnston, 2003; Thatje, 2012). Given their 

apparent circum-Antarctic distributions and likely limited dispersal capacity, stylasterids 

represent an excellent model organism with which to test widely held predictions of circum-

Antarctic connectivity. 

 

This study incorporates DNA sequence data from seven morphologically diverse 

stylasterid coral species to indirectly measure connectivity among benthic invertebrate 

populations in the waters of the Antarctic, sub-Antarctic and South America. Connectivity is 

assessed within the Antarctic Peninsula and South American regions to investigate dispersal 

across the Polar Front, and in East Antarctica and the Patagonian fiords to assess connectivity 

between field-like aggregations of Errina spp. Regions are assessed at two scales 1) across 

large spatial scales > 1000 km (i.e. between regions) and 2) across local spatial scales ~ 10 – 

300 km (i.e. within locations). It is predicted that genetic connectivity will decrease with 

increasing geographic distance (i.e. connectivity between seas < within seas). The results of 

this study will be used to inform conservation managers of the connectivity in deep-sea coral 

populations across multiple habitats (e.g., seamounts, shelf and fiords ecosystems) and seas.  

Methods 
 

Study Area, Collection and Samples 

Antarctic benthic samples were collected either by beam trawl, epibenthic sled or as 

by-catch in regulated fisheries. Samples were obtained from depths of 130 m to a maximum 

sampling depth of 2149 m. Sample number, replicate, location, latitude, longitude, 

morphological identification and voyage were recorded for all study specimens (Appendix 

tables 3 & 3.1).  

 

Tissue from deep-sea stylasterid coral samples was obtained in four ways;  1) 

Through existing research collections including; the Smithsonian National Museum of 

Natural History (NMNH), British Natural History Museum (NHM), the Museum National 

d’Histoire Naturelle (MNHN), National Institute for Water and Atmospheric Research 

(NIWA) and, Australian Antarctic Division (AAD) and through the Instituto Español de 

Oceanografía, Centro Oceanográfico de Gijón. 2) By personal or collaborative collection at 

sea during recent Antarctic research voyages including; three Nathaniel B Palmer research 



 

124 

 

voyages; NBP11-03, NBP 11-05 and NBP 08-05 to the Antarctic Peninsula and Drake 

Passage, and a voyage through the Collaborative East Antarctic Marine Census (CEAMARC) 

to the Dumont d’Urville Sea associated with the Census for Antarctic Marine Life (CAML). 

3) through cooperation with the New Zealand Ministry of Fisheries (MFish), MFish 

Observers and Observer Programme staff under MFish Projects ANT200801, ANT200901 

and ANT201001 and 4) Errina antarctica was collected by SCUBA and remote operated 

vehicle from the Chilean fiords in collaboration with the Alfred Wagner Institute (AWI) on 

the Explorador II. 

 

For the recent collections, material was preserved as close to the time of collection as 

possible in > 90% ethanol to facilitate genetic analysis. Study species were chosen based on 

their ecological relevance and abundance in collections. All specimens are known, or 

speculated, to be field-forming species based on their abundance in Antarctic collections and 

video/photographic images. Some stylasterid species are considered highly insular in their 

distribution (e.g., Errinopsis fenestrata (Cairns, 1983) and samples included here were 

replicated across as wide a geographic range as possible. However, due to both their insular 

distribution in the Southern Ocean and the difficulties associated with Antarctic sampling 

geographic comparisons were limited for some species/regions.  In total seven species were 

included in this study; Errina fissurata Gray, 1872, Errina laterorifa Eguchi, 1964, Errina 

antarctica (Gray, 1872), Errinopsis fenestrata Cairn, 1983, Stylaster densicaulis Moseley, 

1879, Cheiloporidion pulvinatum Cairns, 1983 and Conopora verrucosa (Studer, 1878). 

Specimens were either from sea mounts (Drake Passage), Antarctic shelf locations (East 

Antarctica, Bransfield Strait on the Peninsula), fiords (Chilean Patagonia), or the South 

American plateau (Burdwood Bank), enabling comparison across a broad range of habitats. 

The final sample set spanned from the South West Atlantic to East Antarctica (> 7500 km) 

(Fig 1). 
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Figure 1a. Map of the distribution 

of the Sub-Antarctic Front (SAF), 

ACC boundary, the Southern 

Temperate boundary (ST) and the 

Polar Front  (PF). The two main 

geographic regions where 

stylasterid corals were collected for 

this study are highlighted, 1) The 

Sub-Antarctic and South America, 

and 2) East Antarctica. Within these 

regions genetic connectivity was 

independently assessed within the 

Drake Passage, Ross Sea (Fig 1b) 

and Patagonia (Fig 1c). (Appendix 

Table 3 & 3.1). Map edited from 

Orsi (1995). 
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Figure 1b. Locations in the Drake Passage, Ross and Dumont d’Urville Sea.  Drake Passage 

locations include six sites between ~ 300 – 500 km apart. In the Ross Sea there are 13 stations in total, 

distances between stations vary from 10 – 73km. The Ross Sea and Dumont d’Urville Sea are 

separated by > 2000 km. Sample depths spanned 103 – 1930 m (Appendix Table 3 & 3.1). Drake 

Passage map provided by Kathryn Scanlon (WHOI). East Antarctica map edited from the SCAR 

database.  
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A    B    C 
Figure 1c. Local scale connectivity was assessed among fiords in the Chilean Region of Patagonia 

based on the A) presence/absence of E. antarctica (© Laura Fillinger), which occurs in large 

aggregations along vertical walls in the fiords B) E. antarctica coral at 18 m (© Mathias Hune). C) 

Map of study sites in the central Patagonian zone. Study sites: C1-C14 (2005) and D1-D19 from 

Häussermann & Försterra, 2007, triangles show where E. antarctica was found. Sample sites Canal 

Copihue D11 and Grupo Dacres D2 designate the two sampling sites compared by AMOVA in this 

study (~ 200 km apart). Note these sites were all approximately 10 - 30 m deep, due to Deep Water 

Emergence (DWE).  
 

Molecular Protocols 

Genomic DNA was extracted from coral specimens following the standard DNA 

extraction procedure using the Qiagen DNeasy protocol for the purification of total DNA 

from animal tissues (QIAGEN), the procedure was modified to include an overnight 

incubation at 56ºC to completely lyse the tissue. This study uses mitochondrial DNA 

sequence data of the mitochondrial ribosomal subunit (16S) and cytochrome c oxidase 

subunit 1 (CO1), and the nuclear Internal Transcribed Spacer (ITS) region. ITS data sets were 

analysed with all possible combinations of ITS-1 and ITS-2 to assess various sequence length 

and individual comparisons. Metazoan specific CO1 primers were designed by Geller et al 

(2013), universal primers were used to amplify ITS and hydrozoan primers were used for 16S 

(summarised in Table 1). Each 12.5 μl Polymerase Chain Reaction (PCR) reaction contained 

Promega GoTaq® Green Master Mix, 0.5μl  of a 10 μM solution of forward and reverse 

primer pairs, < 250 ng of DNA template, and nuclease-free water. The thermal cycling profile 
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varied by gene region. For ITS this consisted of an initial denaturation at 95ºC for 2 minutes, 

then 35 cycles of a three step program 95ºC for 30 sec, 40-60ºC for 45 sec (annealing 

temperatures varied Table 1.) and 72ºC for one minute, with a final extension at 72ºC. This 

protocol was modified for CO1 by running 40 cycles of the same three step program. The 

16S protocol was taken from Lindner et al (2008). A positive control of E. fissurata was used 

to identify the validity of PCR reactions. Sufficient master mix was retained for each PCR 

trial to be used as a negative control which contained all listed reagents, but no template 

DNA in order to control for contamination and the amplification of non-target DNA. 

Successful PCRs were purified using the Qiagen MinElute purification kit designed to 

produce high end concentrations of DNA. To elute the DNA, 30 μl of milliQ was used in 

place of a buffer. To increase the overall DNA yield prior to sequencing, two PCR reactions 

were purified for each sample. The two purified PCRs were then combined into one 

microcentrifuge sample to make a total concentration 3-6 ng/uL which was prepared for 

sequencing. Samples were sequenced in both directions at the Australian Genome Research 

Facility (AGRF) in Brisbane using the ABI platform.   

 

Table 2. Details of PCR primers and annealing temperatures used to amplify three DNA 

regions from the seven species of deep-sea stylasterid coral. The resulting, or expected 

amplicon size (in base pairs) is indicated. 

DNA Region & 
Primers 

Direction Primer Sequence Annealing 
Temp (°C) 

Fragment Size 
(bp) 

Reference 

16S            

SHA 5'-3' TCGACTGTTTACCAAAAACATAGC 35-60 ~600 Cunningham & 
Buss, 1993 

SHB 3'-5' ACGGAATGAACTCAAATCATGTAAG 35-61 ~600   

ITS           

ITS-5 5'-3' GGAAGTAAAAGTCGTAACAAGG 56 ~600 White et al., 1990 

ITS-4 3'-5' TCCTCCGCTTATTGATATGC 56 ~600   

CO1           

jgHCO2198-1 5'-3' TABACYTCBGGRTGBCCRAARAAYCA  50-60 ~200 Geller et al., 2013 

jgLCO1490-1 3'-5' TBTCBACBAAYCAYAARGAYATTGG 50-61 ~200  
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Data Analysis 

Sequences for each species were edited and checked for errors using the software 

program Molecular Evolutionary Genetic Analysis (MEGA) 5.0 (Tamura et al, 2011). 

Contiguous sequences were generated for each specimen using forward (5’–3’) and reverse 

(3’–5’) primer sequences (Table 4.). Occasionally it was not possible to obtain sequence in 

both directions. In these cases, sequence data were only used if the sequences were clean and 

reliable. All sequences generated in this study will be lodged with GenBank (###). Basic 

Local Alignment Search Tool (BLAST; NCBI; www.ncbi.nlm.nih.gov) searches were 

performed on each sequence to confirm that 1) each sequence was in fact a stylasterid coral, 

and 2) the appropriate DNA region had been amplified. Additionally, multiple alignments 

across all samples were used to identify outliers within the data set; these outliers may have 

been the result of contamination and were removed prior to analysis. Two Sub-Antarctic 

samples from Lindner et al., (2008) were used as a check (C. verrucosa EU645274 and 

EU645273) and compare alignment against 16S sequences within the final data set 

confirming accurate identifications for these species. If sequences contained only a small 

fraction of double peaks then ambiguity codes were assigned based on fasta DNA codes 

(www.boekhoff.info/Data/FASTA DNA Codes), which prevented distortion of genetic 

signal. To further combat misalignment associated with ITS hypervariablity the genetic 

alignment program G blocks (http://www.phylogeny.fr) was used to investigate all possible 

ITS alignments. The most parsimonious data sets that optimised both sequence length and 

species comparison were used in the final analysis (Table 3 and 4).  

 

Population Level Analysis 

To assess intra-specific genetic diversity, the frequency of haplotypes for each of the 

three DNA regions (ITS, CO1 and 16S) was summarised for each morphological species 

using GenAlEx v6.501 (Peakall & Smouse, 2006). Haplotype networks were generated to 

resolve the geographic distribution of shared and unshared ITS, CO1 and 16S haplotypes, 

where applicable and informative to do so (e.g., where there were > 3). These data were used 

to obtain a graphical representation of haplotype relationships using the program Network 

v4.5.1.6 (http://www.fluxus-technology.com) using the median-joining algorithm (Bandelt et 

al., 1999), a 95% plausible connection limit, and with gaps treated as missing data.  

Analysis of Molecular Variance (AMOVA), calculated using Arlequin v3.01 

(Excoffier et al, 2005) was used to determine the level of population subdivision and test for 

http://www.ncbi.nlm.nih.gov/
http://www.boekhoff.info/
http://www.boekhoff.info/?pid=data
http://www.phylogeny.fr/version2_cgi/one_task.cgi?task_type=gblocks
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departures from panmixia among populations. Significance of the F-statistics were assessed 

with permutation tests using 10,000 iterations, at the 95% level of significance. Data sets 

were compiled to compare connectivity between seas (large scale connectivity), and within a 

sea or fiord system (local scale connectivity) for each species where possible (Table 2.). 

Large-scale, qualitative, geographic comparison was possible for all seven coral species. 

However, low sample sizes limited statistical analysis and AMOVA was not possible for all 

data sets. AMOVA was only applied to populations with ≥ 3 individuals (Table 2). Shared 

and unique haplotypic diversity was assessed where sample sizes were too small for 

statistical comparison, or where AMOVA was not necessary due to a lack of shared 

haplotypes between regions 

To establish the amount of genetic exchange between seas, gene flow among 

populations was estimated as Nem = (1/FST – 1)/4 (effective number of migrants per 

generation). This model assumes that 1) all loci are selectively neutral; 2) genetic drift and 

gene flow are in equilibrium; and 3) there is random mating. Populations are maximally 

divergent when Nem = 0 and FST = 1 (Freeland, 2005). Gene flow estimates based on FST are 

limited by the underlying assumption of the island model (Wright 1978), which assumes that 

all populations exchange migrants. To account for this bias, a rarefaction curve (the most 

commonly used method for population estimates) was considered, but was deemed 

inappropriate due to an inability to measure sampling effort over approximately eighteen 

research voyages and through multiple international collaborations to collect in the deep-sea. 

Instead, a summary of Antarctic connectivity research is presented in the discussion for 

comparison to show that the sample sizes included here are within the range possible for such 

studies (Appendix Table 3). 

 

 

 

 

 

 

 



 

131 

 

 Table 3. Summary of samples used to 

explore genetic similarities among 

different seas, and across the Polar Front  

(a potential oceanographic barrier to 

dispersal). Geographic abrivieviations 

from left to right include: Arigentinian 

Shelf (AF), Burdwood Bank (BB), Cape 

Horn (CH), Bransfield Strait (BS), 

Shackleton Fracture Zone (SFZ), Sars 

Seamount (SARS), Ross Sea (RS), 

Dumont d’Urville Sea (DDU). Sample 

listing is included in the appendix table 3. 

Map edited from the AAD data centre. * 

Multiple data-sets based on ITS-1, 18S, 

ITS-2 alignments were compared.  

Species 
DNA 

region 
South America 

South of the 

PF  
Ross 

Sea 
Dumont d’Urville 

Sea 

Conopora verrucosa 16S 4 7 - - 

Cheiloporidion 

pulvinatum 
16S 12 2 - - 

Errina fissurata ITS - - 5-19* 2-12* 

Errina laterorifa 16S 3 2 1 - 
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 Table 4. Summary of samples used to 

assess genetic differences among sites 

within seas. AMOVA was used to 

statistically compare among sites where 

n>=3 for each species. Geographic 

abrivieviations from left to right include: 

Canal Copihue (CC), Grupo Dacres 

(GD), Burdwood Bank (BB), Cape Horn 

(CH), Interim Seamount (INT), 

Bransfield Strait (BS), Shackleton 

Fracture Zone (SFZ), Sars Seamount 

(SARS), Ross Sea (RS).   Sample listing 

is included in the appendix table 3.1 See 

figure 1b and 1c for sample station/site 

locations. Map edited from the AAD 

data centre. 

Species DNA region    

  Geographic location – Patagonia 

  Canal Copihue Grupo Dacres  

Errina antarctica ITS 9 7  

  Geographic location – Drake Passage 

  Sars Seamount  Interim Seamount  

Errinopsisfenestrata 16S 3 3  

Errinopsis fenestrata CO1 2 4  

  Geographic location – Drake Passage 

  Interim Seamount Cape Horn Burdwood Bank 

Stylaster densicaulis 16S 2 5 5 

Stylaster densicaulis CO1 2 3 4 

  Geographic location – Drake Passage 

  Sars Seamount Cape Horn Burdwood Bank 

Cheiloporidion 
pulvinatum 16S 2  2  4 

Cheiloporidion 
pulvinatum CO1  - 2 4 

    Geographic location – Drake Passage 

    Cape Horn Shackleton Fracture 
Zone 

 

Conopora verrucosa 16S 3 7  
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Conopora verrucosa CO1 4 7  

  Geographic location – Drake Passage 

  Bransfield Strait Burdwood Bank  

Errina laterorifa 16S 2 3   

Species DNA 

region           

  
Geographic location – Ross 

Sea stations     
 

  154 157 82 78 116 112 150 156 277  

Errina laterorifa ITS 3 5         

Errina fissurata  ITS 3 4 2 6 2 1 1 1 1  

  
Geographic location – Ross 
Sea stations     

 

Errina fissurata  CO1 23 24 27 28 41      

    3 2 3 2 1          

            

 

 

 

 

 

 

 

 

 

 

 



 

134 

 

Results 
 

Unfortunately, genetic amplification success was hindered by a number of potential 

variables (e.g., preservation type and method), and sequence quality was variable by gene 

region with a final genetic data set from just 151 specimens of a total of > 700 samples. To 

try to improve the quality of sequencing in poorly preserved or degraded samples alternative 

extraction, PCR protocols, primers, final elution and sequencing methods were tested, but 

these proved no more successful than the original methods used. Sequencing issues 

associated with the nuclear ITS region revealed multiple copies, and it was only possible to 

sequence portions (18S, ITS-1, 5.8S, ITS-2, 28S) rather than the complete 670 base pair 

alignment of the ITS region. The final ITS data sets were only comparable for Errina species 

(n = 57), and ITS-2 had the highest variability. In general 16S sequenced most effectively 

across species (n = 57). CO1 sequenced reliably for a small subset of samples, but proved to 

be a more difficult region to amplify overall (n = 40). CO1 was generally more variable than 

16S; the proportion of variable sites ranged from 3.56 to 25.40% in CO1, and 0 to 10.1% in 

16S (Tables 5 - 11). Similarly, nucleotide diversity was higher in CO1 compared to 16S, and 

polymorphism estimates ranged from 0.012 to 0.11 in CO1 and 0 to 0.05 in 16S (Table 5 - 

11). Concatenated data sets were only available for a few individuals, and to capture the 

maximum comparative variation it was more appropriate to compile final data sets based on 

individual DNA regions, and to assess each geographic region independently (Tables 3 & 4). 

Small and varying sample sizes for each species and the associated uncertainty when 

examining genetic relationships should be noted, and consequently the capacity for 

comprehensive connectivity assessments were limited.  Therefore, this results section 

addresses four aspects of connectivity in the Antarctic region: 

 

1) A brief assessment of regional scale (> 6000 km) connectivity estimates 

based on only one species, Errina laterorifa and one gene region 16S.  

2) Connectivity estimates across the Polar Front between South America and 

Antarctica (~ 1000 km) based on five species and mitochondrial 16S and 

CO1 DNA, as well as connectivity among seamount sites north of the Polar 

Front (South American) and among seamount sites south of the Polar Front 

(300 - 900 km) (Antarctic).  
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3) Connectivity in Errina antarctica in the Chilean Patagonian fiords based on 

the rapidly evolving ITS nuclear DNA sequences (~ 200 km) to provide fine 

scale connectivity estimates across a local scale. 

4) Connectivity across East Antarctica including large scale connectivity 

between the Ross and Dumont d’Urville Sea (~ 2000 km), and local scale 

connectivity among seamounts within the Ross Sea (~ 10 – 70 km) based on 

two species within the genus Errina and using ITS sequence data.  

1) Regional Scale Connectivity Estimates 

 

There were genetic differences between Errina laterorifa from the Ross Sea, 

Antarctic Peninsula and South America, locations that are separated by a maximum of ~ 6000 

km. The six available 16S sequences revealed four unique haplotypes, and none were shared 

between regions. The haplotype network contains a median vector between regional 

haplotype associations, signifying a hypothetical ancestral sequence, suggesting a substantial 

level of separation (Bandelt et al., 1999) (Fig 2). However, although this provides some 

evidence of genetic separation, this result is based on a single individual from the Ross Sea 

and more sampling would be needed to properly understand if there are any links or shared 

haplotypes between regions.     
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Table 5. The 16S haplotype distribution and abundance of Errina laterorifa populations in three regions: South America, the Antarctic 

Peninsula and Ross Sea. Percent variation is the proportion of variable sites in DNA sequences; π signifies nucleotide diversity, used as a 

measure of DNA polymorphism in sequences for each species. Table includes information on the base pair number (bp), sample size and number 

of haplotypes per site (n). Antarctic map depicts the distribution and abundance of haplotypes for each species, pie charts sized according to 

relative sample size; all haplotypes are unique to their designated region. Maps edited from the AAD data centre. 

  

Haplotype bp n South America Antarctic Peninsula Ross Sea 

 

 
 

  

E.laterorifa   485               

16S 
h1 

 

3 3 
 

 
   

  
n = 6 h2 

 

1 
 

1 
    

(10.10% variation)  h3 

 

1 
 

1 
    

 π 0.05 h4   1     1       

 

Figure 2. Haplotype network based on 6 16S DNA sequences from Errina 

laterorifa (total alignment length = 485 bp). Each node at a branch joining 

point represents a parallel mutation between a median vector (a triangle or square 

configuration in the network), each node on a branch represents a base pair 

mutation (represented numerically where there are >5bp mutations). Haplotypes 

are sized according to abundance.  
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2) Genetic Differences among Regions in the Sub-Antarctic and South America 
 

2.1 Dispersal across the Polar Front  

Genetic comparisons among stylasterid populations in the Drake Passage and South 

America from six locations (Fig 1b) across spatial scales ranging from > 300 -  900 km, show 

evidence of genetic subdivision across the Polar Front (PF). This is based on mitochondrial 

sequence data from four species, including: Stylaster densicaulis, Errina laterorifa, 

Conopora verrucosa, and Cheiloporidion pulvinatum. It is evident that the 16S gene region is 

more conserved in stylasterids, than CO1. In all sequence comparisons, the proportion of 

variable sites and estimated sequence polymorphism is higher in CO1 than 16S (Tables 6 – 

11; Figs 4 - 7). In some instances, this resulted in evidence of genetic structure in CO1 at 

spatial scales of > 300 - 500 km, whilst no genetic structure was evdent in the 16S data.  For 

example in S. densicaulis populations, there is a clear pattern of genetic sub-division across 

the PF between South America (Burdwood Bank and Cape Horn), and Interim Seamont south 

of the PF, based on a lack of shared CO1 haplotypes. However, most 16S haplotypes are 

shared across these locations (Table 10, Fig 7).  

 

At larger spatial scales (~ 900 km), 16S proved sufficiently variable to differentiate 

the two most distant sampling sites of Bransfield Strait and Burdwood Bank based on a lack 

of shared haplotypes in E. laterorifa sequence comparisons (Table 6, Fig 3). However, in this 

instance, CO1 was not available for comparison, and inadequate sampling from the 

Bransfield Strait limits the ability to make meaningful conclusions.   

 

At spatial scales > 500 km, genetic subdivision was evident for two species, C. 

pulvinatum and C. verrucosa based on an absence of shared haplotypes in pooled data from 

South America and populations south of the PF (Table 7). The haplotype networks for C. 

verrucosa and C. pulvination re-affirm genetic differences (Fig 4). Individual location 

information (un-pooled data) further illustrates genetic structure across the PF in these 

species, based on the absence of shared haplotypes between Cape Horn, north of the PF, and 

the Shackleton Fracture Zone, south of the PF (~ 500 km). In this instance, both CO1 and 16S 

were sufficiently variable to identify genetic difference in C. verrucosa and C. pulvinatum 

populations (Table 8 & 9).  Overall, the finding that all species had unique haplotypes on 

either side of the PF strongly suggests the absence of connectivity across this oceanic feature 

(Table 6 - 11). 
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2.2 Dispersal among Sites on Either Side of the Polar Front 

 Genetic comparisons among stylasterid populations north of the Polar Front provide 

evidence of limited connectivity. Cape Horn and Burdwood Bank (both north of the Polar 

Front) are separated by ~ 300 km and there were no shared CO1 haplotypes in either S. 

densicaulis or C. pulvinatum sequence comparisons (Tables 9 & 10). However, where this 

result is well supported in CO1 sequence data for both species, genetic differences were 

apparent in 16S data only for C.pulvinatum (Table 9), but not S. densicaulis (Table 10). 

AMOVA between Cape Horn and Burdwood Bank indicated no genetic differentiation 

between sites north of the PF for S. densicaulis populations (16S FST  = 0.1, P = 0), with an 

Nem of 3.33 (Table 10). Comparisons based on 16S in C. pulvinatum included only a single 

individual at Cape Horn (Table 9), therefore smaller sample sizes in C. pulvinatum 

populations limited statistical comparison (Table 9, Fig 6). Nevertheless, genetic differences 

are apparent among sites north of the PF for both species. 

There was limited evidence of genetic subdivision across distances of ~ 300 km between 

two populations at Sars and Interim seamounts, south of the PF in the Drake Passage for 

Errinopsis fenestrata. There were no variable sites and no evidence of polymorphism in 16S 

data (all individuals had identical haplotypes; Table 11).  Variation in CO1 was low at 3.56% 

and nucleotide polymorphism was 0.012, with shared haplotypes at Interim and Sars 

seamounts, and two unique haplotypes at Interim Seamount (Table 11). Low replication made 

AMOVA between sites and a haplotype network impracticable. A greater sampling for this 

species is needed to confirm gene flow between populations; nonetheless data suggests 

connectivity may exist between E. fenestrata populations south of the PF within the 

confluence of the ACC system (Fig 1). The presence of shared 16S and CO1 haplotypes in C. 

pulvinatum at Sars seamount (Table 9), adds further evidence to suggest that factors 

controlling connectivity either side of the PF, may differ at the scales tested in stylasterid 

coral populations.  
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Figure 3. Haplotype network based on 5 x 16S DNA sequences from Errina laterorifa 

(total alignment length 16S = 485 bp). Each node at a branch joining point represents a 

parallel mutation between a median vector (a triangle in the network), each node on a branch 

represents a base pair mutation (represented numerically where there are >5bp mutations). 

Haplotypes are sized according to abundance.  
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Table 6. The distribution and abundance of 16S haplotypes of Errina laterorifa in the Drake Passage. Percent variation is the proportion of 

variable sites in DNA sequences; π signifies nucleotide diversity, used as a measure of DNA polymorphism in sequences for each species. 

Geographic locations are abbreviated as follows: Burdwood Bank (BB) and Bransfield Strait (BS).  Table includes information on the base pair 

number (bp), sample size and number of haplotypes per site (n). The Polar Front is drawn to show coral populations in relation to the Polar Front. 

Pie charts are sized according to relative abundance. Maps edited from the AAD data centre. 

Errina laterorifa Haplotype Bp n BB BS 

    485       

16S n = 5 h1   3 3   

(9.90% variation) h2 
 

1 

 

1 

π = 0.05 h3 
 

1 

 

1 
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Figure 4. Conopora verrucosa and Cheiloporidion pulvinatum haplotype networks based 

on 16S (n = 11/12) DNA sequence data (total alignment length 16S = 544/607).  Each 

node at a branch joining point represents a parallel mutation between a median vector (a 

triangle or square configuration in the network), each node on a branch represents a base pair 

mutation (represented numerically where there are >5bp mutations). Haplotypes are sized 

according to abundance.   
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Table 7. The 16S haplotype distribution and abundance of Cheiloporidion pulvinatum and Conopora verrucosa populations in the Drake 

Passage and South West Atlantic region of South America. Percent variation is the proportion of variable sites in DNA sequences; π signifies 

nucleotide diversity, used as a measure of DNA polymorphism in sequences for each species. Table includes information on the base pair 

number (bp), sample size and number of haplotypes per site (n).  Antarctic maps depict the distribution and abundance of haplotypes for each 

species, pie charts sized according to relative sample size. The estimated boundary of the Polar Front is designated by a line. Maps edited from 

the AAD data centre. 

  Haplotype bp N South America South of PF       

C. pulvinatum 

 
607 

  

 

 
 

   16S n = 13 h1 
 

1 1 

 

 

  (9.88% variation) h2 
 

1 1 
 

   π 0.02 h3 
 

1 1 
 

   

 

h4 
 

1 1 
 

   

 

h5 
 

1 1 
 

   

 

h6 
 

2 2 
 

   

 

h7 
 

2 
 

2 

   

 

h8 
 

1 1 
 

   
  h9   1 1      

C. verrucosa 

 
544 

   

 

  

16S n = 12 h1 
 

2 2 

 

 

 
 

  (6.98% variation) h2 
 

1 1 
 

   π = 0.02 h3 
 

3 
 

3 

   

 

h4 
 

4 
 

4 

   

 

h5 
 

1 1 
 

     h6   1 1         
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Figure 5. Haplotype network based on 10 16S and 8 CO1 DNA sequences from 

Conopora verrucosa (total alignment length 16S = 544 bp CO1 = 306 bp). Each node at a 

branch joining point represents a parallel mutation between a median vector (a triangle or 

square configuration in the network), each node on a branch represents a base pair mutation 

(represented numerically where there are >5bp mutations). Haplotypes are sized according to 

abundance.  
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Table 8. The distribution and abundance of CO1 and 16S haplotypes of Conopora verrucosa in the Drake Passage. Percent variation is the 

proportion of variable sites in DNA sequences; π signifies nucleotide diversity, used as a measure of DNA polymorphism in sequences for each 

species. Geographic locations are abbreviated as follows: Cape Horn (CH) and the Shackleton Fracture Zone (SFZ).  Table includes information 

on the base pair number (bp), sample size and number of haplotypes per site (n). The Polar Front is included on maps of the Drake Passage to 

show coral populations either South of the Polar Front or North of the Polar Front in the South American region. Pie charts are sized according 

to relative abundance. The Polar Front is drawn to show coral populations in relation to the Polar Front. Pie charts are sized according to relative 

abundance. Maps edited from the AAD data centre.  

 

Haplotype bp n CH SFZ 
   

Conopora verrucosa   544       
 

 

 

16S n = 10 h1 
 

1 1 

   

  

(6.80% variation) h2 
 

1 1 

  

   

 π = 0.015) h3 
 

3 

 

3 

  

  

  h4 
 

4 

 

4 

  

  

  h5 
 

1 1 
   

  

Conopora verrucosa   306       
   

CO1 n = 8            
   

(22.55% variation) h1 
 

1 1 

  

 

  

π = 0.069 h2 
 

1 

 

1 

 

   

   h3 
 

1 

 

1 

  

  

  h4 
 

1 

 

1 

  

  

  h5 
 

 2  

 

2 

  

  

  h6 
 

1 1 

   

  

  h7   1 1         
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Figure 6. Haplotype network based on 7 16S and CO1 DNA sequences from 

Cheiloporidion pulvinatum (total alignment length 16S = 599 bp CO1 = 424 bp). Each 

node at a branch joining point represents a parallel mutation between a median vector (a 

triangle configuration in the network), each node on a branch represents a base pair mutation 

(represented numerically where there are >5bp mutations). Haplotypes are sized according to 

abundance. 
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Table 9. The distribution and abundance of CO1 and 16S haplotypes of Cheiloporidion pulvinatum in the Drake Passage. Percent 

variation is the proportion of variable sites in DNA sequences; π signifies nucleotide diversity, used as a measure of DNA polymorphism in 

sequences for each species. Geographic locations are abbreviated as follows: Burdwood Bank (BB), Sars Seamount (SARS) and Cape Horn 

(CH).  Table includes information on the base pair number (bp), sample size and number of haplotypes per site (n). The Polar Front is drawn to 

show coral populations in relation to the Polar Front. Pie charts are sized according to relative abundance. Maps edited from the AAD data 

centre.  

Cheiloporidion pulvinatum  Haplotype Bp n BB SARS CH 
  

16S n = 7   599         
 
 

(9.06% variation) h1 
 

1 1 

   π = 0.03 h2 
 

1 1 

 
 

 
 

h3 
 

2 2 

 
 

 
 

h4 
 

2 
 

2 

  
 

h5 
 

1 

  

1 

 
Cheiloporidion pulvinatum  

      

  

    424         
 
 

CO1 n = 7 h1 
 

1 
  

1 

 (17.45% variation) h2 
 

1 1 

   π = 0.07 h3 
 

1 1 

   
 

h4 
 

1 1 

   
 

h5 
 

2 
 

2 

    h6   1     1   
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Figure 7. Haplotype network based on 12 16S and 9 CO1 DNA sequences from Stylaster 

densicaulis (total alignment length 16S = 600 bp CO1 = 308 bp). Each node at a branch 

joining point represents a parallel mutation between a median vector (a triangle configuration 

in the network), each node on a branch represents a base pair mutation (represented 

numerically where there are >5bp mutations). Haplotypes are sized according to abundance.  
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Table 10. Distribution and abundance of CO1 and 16S haplotypes of Stylaster densicaulis in the Drake Passage. Percent variation is the 

proportion of variable sites in DNA sequences; π signifies nucleotide diversity, used as a measure of DNA polymorphism in sequences for each 

species. Geographic locations are abbreviated as follows: Burdwood Bank (BB), Interim Seamount (INT) and Cape Horn (CH).  Table includes 

information on the base pair number (bp), sample size and number of haplotypes per site (n) FST, P and Nem based on AMOVA. The Polar Front 

is drawn to show coral populations in relation to the Polar Front. Pie charts are sized according to relative abundance. Maps edited from the 

AAD data centre.  

  Haplotype bp n BB INT CH FST P Nem 

Stylaster densicaulis   600         0.1 <0.001 3.33 

16S n = 12 h1   2     2     
  

  

  
(2.83% variation) h2 

 
1 1 

    
 

π = 0.008 h3 
 

6 2 2 3 

  
 

  h4 
 

1 1 

    
 

  h5 
 

1 1 

    
 

  h6 
 

1 

  

1 

  
 

  
         

Stylaster densicaulis   308         
   

  h1 
 

1 
 

1 
  

  
  

CO1 n = 9 h2 
 

1 

  

1 

  
 

(25.40% variation) h3 
 

1 

 

1 

   
 

π = 0.11 h4 
 

1 1 

   

 

 
  h5 

 
1 1 

    
 

  h6 
 

1 1 

    
 

  h7 
 

1 

  

1 

  
 

  h8 
 

1 

  

1 

  
 

  h9  
 

1 1 
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Table 11. The distribution and abundance of CO1 and 16S haplotypes of Errinopsis fenestrata in the Drake Passage. Percent variation is 

the proportion of variable sites in DNA sequences; π signifies nucleotide diversity, used as a measure of DNA polymorphism in sequences for 

each species. Geographic locations are abbreviated as follows: Sars Seamount (SARS) and Interim Seamount (INT).  Table includes information 

on the base pair number (bp), sample size and number of haplotypes per site (n). The Polar Front is drawn to show coral populations in relation 

to the Polar Front. Pie charts are sized according to relative abundance. Maps edited from the AAD data centre.  

 

Haplotype bp N SARS INT 

Errinopsis fenestrata   608       

16S n= 6  h1   6 3 3  

(0% variation)   
 

   π = 0    
 

     
    

 

Errinopsis fenestrata   487       

CO1 n=6  h1   1   1 

(3.56% variation) h2 
 

1 

 

1 

π = 0.012 h3   4 2 
2  
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3) Connectivity across the Chilean Fiords of Patagonia 

 

Errina antarctica populations from the two Chilean fiords in Patagonia separated by 

~200km (Fig 1c), were genetically similar. The proportion of variable sites within ITS-2 data 

sequences was low compared to mitochondrial data sets for other species (Tables 6 – 11), at 

2.37%, and nucleotide diversity was 0.003 (Table 12).  There were three ITS-2 haplotypes in 

the final data alignment, and two of these were common to both fiords (Table 12, Fig 9). 

Statistical comparisons indicated no genetic difference between fiords (FST  = 0, p = 0.6).  

 

Figure 8. Haplotype network based on 16 ITS-2 

DNA sequences from Errina antarctica (total 

alignment length = 169 bp). Each node on a branch 

represents a base pair mutation (represented 

numerically where there are >5bp mutations). 

Haplotypes are sized according to abundance.   
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Table 12. Results from AMOVA testing for genetic differences between Errina antarctica populations and the distribution and 

abundance of ITS-2 Errina antarctica haplotypes in the Patagonian fiords of Chile. Percent variation is the proportion of variable sites in 

DNA sequences; π signifies nucleotide diversity, used as a measure of DNA polymorphism in sequences for each species. Fiord locations are 

abbreviated as follows: Canal Copihue (CC), Grupo Dacres (GD). Table includes information on base pair number (bp), sample size and number 

of haplotypes per site (n) FST, P and Nem.  Map depicts the distribution and abundance of haplotypes, black and blue represent shared haplotypes. 

The red haplotype is from a single specimen at Grupo Dacres. Pie charts are sized according to relative abundance. Map edited from the AAD 

data centre. 

 
Haplotype bp n CC GD FST P Nem 

Errina  antarctica    169       0 0.6 0 

ITS-2 n = 16 h1 
 

6 3 3 

 

 
 

 

  
 (2.37% variation)  h2 

 
1 

 

1 

  
  

π = 0.003 h3 
 

9 6 3 
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4. Genetic Differences in the Ross Sea and Dumont d’Urville Sea, East Antarctica 

 

4.1 Large Scale Connectivity between the Ross and Dumont d’Urville Sea (~ 2000 km) 

There was no significant genetic differentiation between Errina fissurata populations 

on shelf regions in the Ross Sea and Dumont d’Urville Sea, two protected field-like 

aggregations, separated by > 2000 km based on AMOVA (ITS-1 FST = 0.03 P = 0.165,and 

ITS-2 FST = 0.002, P = 0.27) (Table 13). The most variable region was the ITS-2, which 

showed the proportion of variable sites at 24%, compared with 4.3% in ITS-1 for a similar 

sequence length. Nucleotide diversity was low, 0.02 in ITS-2 and 0.002 in ITS-1. The 

effective gene flow across generations (Nem) between the Ross Sea and Dumont d’Urville 

Sea was estimated at seven based on ITS-1 data, and126 individuals in ITS-2, suggesting 

sufficient gene flow to prevent genetic divergence (Table 13). ITS-2 and ITS-1 sequence data 

revealed one common haplotype that was abundant in both regions but also the presence of 

unique haplotypes in each location. Five unique haplotypes are only 1 – 2 base pair mutations 

from the main shared/basal haplotype and there is evidence of a star phylogeny in ITS-1, but 

due to a higher number of base pair mutations this pattern is less obvious in ITS-2. In both 

networks, a number of sequences radiate from the common haplotype, and all other 

haplotypes were either rare or unique (Fig 9). 
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Figure 9. Haplotype network based on 30 ITS-1, and 27 ITS-2 DNA sequences from 

Errina fissurata (total alignment length = 114 bp). Each node represents a base pair 

mutation. Haplotypes are sized according to abundance.
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Table 13. Results from AMOVA testing for genetic differences between Errina fissurata populations in the Ross Sea and Dumont 

d’Urville Sea in East Antarctica. Data sets designate the portions of the ITS region aligned (ITS-1, ITS-2), total sequence length in base pairs 

(bp), sample size and number of haplotypes per site (n) FST, P and Nem, π represents nucleotide diversity used as a measure of DNA 

polymorphism compared to percentage of variation within sequences.  Antarctic maps depict the distribution and abundance of haplotypes for 

each species, the most prevalent and shared haplotype is designated in dark blue, all other haplotypes are unique. Pie charts are sized according 

to relative sample size. Maps edited from the AAD data centre. 

 

Haplotype Bp n Dumont D’Urville Ross Sea FST P Nem 

Errina fissurata   114       0.03 0.165 7.47 

ITS-1 h1 

 

1 

 

1 
 

 
  

n = 30  h2 

 

2 2 
   

  

(4.38% variation)  h3 

 

1 

 

1 
  

  

 π 0.002 h4 

 

1 

 

1 
  

  

 

h5 

 

1 1 
   

  

 

h6 

 

23 8 15 
  

  

 

h7 

 

1 1 
   

  

Errina  fissurata   130       0.002 0.27 126.013 

ITS-2  h1 

 

1 

 

 

1 
 

  
  

n = 27  h2 

 

1 1 

 
  

  

(24.62% variation)  h3 

 

2 2 

 

  
  

π 0.02 h4 

 

1 

 

1 
 

 
  

 

h5 

 

1 

 

1 
  

  

 

h6 

 

1 

 

1 
  

  

 

h7 

 

1 

 

1 
  

  

 

h8 

 

1 

 

1 
  

  

 

h9 

 

1 

 

1 
  

  

  h10   17 7 10       
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4.2 Local Scale Connectivity within the Ross Sea (~ 10 – 70km)  

Comparison of E. fissurata specimens and E. laterorifa specimens from 13 stations in the 

Ross Sea separated by ~ 10 – 73 km (Fig 1b) revealed genetic similarity at smaller spatial 

scales. There were only low levels of variation among ITS sequences of E. laterorifa 

specimens (0.28%), and nucleotide polymorphism was 0. In contrast, the ITS-2 region in E. 

fissurata was more variable, with a proportion of variable sites within sequences at 21.97%, 

and nucleotide polymorphism at 0.03. CO1 variation in E. fissurata was intermediate in 

comparison with 1.13% as the proportion variable sites and 0.005 nucleotide polymorphism. 

These estimates are much lower than those seen across laRger geographic divides (> 300 km 

Tables 6 - 11).  

 

There was no evidence of genetic differentiation on a local scale in E. laterorifa 

populations in the Ross Sea. Statistical comparison between E. laterorifa samples from 

stations 154 and 157 suggest gene flow occurs at the scale of ~ 25 km in this species (FST = 

0.15, P = 0.45), with an estimate of effective gene flow (Nem) of 4.75 migrants across 

generations (Table 14, Fig 1b).  Two ITS haplotypes occurred across multiple stations (h2 

and h3). The corals from the sites not included in the AMOVA (116 and 277) had two 

haplotypes; one that was unique to a single station (h1 at site 116), the colony from Station 

277 had an ITS haplotype that was common across three stations, and was the dominant 

haplotype, found in six of the ten individuals (Table 14, Fig 11).   

 

In E. fissurata, AMOVA indicated statistically significant genetic differentiation between 

stations 154, 157 and 78 (FST = 0.18, P = 0.02), with an Nem of 1.14 migrants across 

generations. This comparison was based on more variable ITS-2 data, and a higher sample 

size than E. laterorifa estimates (Table 14).  The ITS-2 E. fissurata network showed that 

most specimens (from four of the five stations) shared a single common haplotype. The most 

divergent haplotypes were represented by singletons, and were found only at station 24, 27 

and 28 (Fig 11).  

 

Estimates of genetic differentiation in E. fissurata from stations 23 & 27 based on CO1 

sequence data were not significantly different from panmixis (FST = 0.15, P = 0.65, Nem = 

1.42) (Table 15). These two stations are geographically adjacent, and separated by only ~ 10 

km) (Fig 1b).  
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Table 14. Results from AMOVA testing between Errina populations and the distribution and abundance of ITS Errina laterorifa and 

Errina fissurata haplotypes from stations in the Ross Sea. Percent variation is the proportion of variable sites in DNA sequences; π signifies 

nucleotide diversity, used as a measure of DNA polymorphism in sequences for each species. Table includes information on base pair number 

(bp), sample size and number of haplotypes per site (n) FST, P and Nem. Refer to Ross Sea station map (Fig 1c) (see Appendix Table 3.1 for 

station listing).  

 
Haplotype bp n 154 157 82 78 116 277 150 156 FsT P Nem 

Errina laterorifa   356                   0.15 0.45 4.75 

 

h1 
 

1 

    

1 

     
  

ITS n = 10 h2 
 

6 1 4 

   

1 

    
  

(0.28% variation) h3 
 

3 2 1 

        
  

π = 0    
            

  

 
  

            
  

Erinna fissurata   130                   0.18 0.02 1.14 

 

h1 

 

1 1 

         
  

ITS-2 n = 17 h2 
 

1 

 

1 

        
  

(21.97% variation) h3 
 

1 

  

1 

       
  

π = 0.03 h4 
 

1 

  

1 

       
  

 

h5 
 

1 

 

1 

        
  

 

h6 
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h7 
 

10 2 
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1 1 

  
  

  h8   1   1                   
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Figure 11. Haplotype network based on ITS-2 (n = 17) and CO1 (n = 11) DNA sequence data from E. fissurata populations, and E. 

laterorifa ITS (n = 10) within the Ross Sea (total alignment length = 130/531/356 bp). Each node represents a base pair mutation. 

Haplotypes are sized according to abundance.  
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Table 15. Results from AMOVA testing for genetic differences and the distribution and abundance of CO1 Errina fissurata haplotypes 

from stations in Ross Sea. Percent variation is the proportion of variable sites in DNA sequences; π signifies nucleotide diversity, used as a 

measure of DNA polymorphism in sequences for each species. Table includes information on base pair number (bp), sample size and number of 

haplotypes per site (n) FST, P and Nem.  Refer to Ross Sea station map (Fig 1c) (see Appendix Table 2. for station listing). 

    Station        

    bp n 23 24 27 28 41 FST P Nem 

  531       0.15 0.65 1.42 

E.fissurata h1  1  1       

CO1 n = 11 h2  6 2 1 1 2     

(1.13% variation) h3  1   1      

π = 0.005 h4   3 1   1   1       
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 Discussion 
 

The results of this study reveal both genetic sub-division and gene flow between 

stylasterid coral populations. Final interpretations vary by species, molecular marker, study 

region and spatial scale, suggesting that a multitude of factors may influence connectivity 

estimates. Conclusions of this study are generally restricted by low sample sizes (Table 3 & 

4). For example, regionally the Ross Sea and Drake Passage are separated by more than ~ 

6000 km, and there is a large genetic differentiation between populations of Errina laterorifa 

(Table 5, fig 2). This finding is unsurprising given the distance between populations, and 

oceanic and geographic barriers to dispersal. However, this result is based on only one 

sample from the Ross Sea, preventing solid conclusions. These limitations are common in 

Antarctic research, and most connectivity studies are similarly affected by low sample size 

(and associated low replication across sites). This restricts our ability to measure species 

richness, and gage if sampling intensity accurately represents a community (Arango et al., 

2011). To emphasize this point a summary of Antarctic connectivity research to date is 

included in the appendix (Appendix Table 3.2). 

 

Genetic Differences among Regions in the Sub-Antarctic and South America 

Dispersal across the Polar Front  

 Gene flow estimates among populations from the Sub-Antarctic and South America 

show evidence of isolation across the Polar Front and a general pattern of genetic sub-

division in stylasterid population assemblages, based on a lack of shared haplotypes (Tables 6 

– 11; Figs 4 - 7). This conclusion holds true across six locations (Fig 1b), and spatial scales 

ranging from ~ 300 ≥ 1000 km in all species available for study, based on CO1 data (Tables 6 

– 11; Figs 4 - 7). These estimates corroborate other invertebrate studies on connectivity in the 

Antarctic peninsula region (e.g., Wilson et al, 2007; Leese et al, 2010; Baird et al, 2011; 

2012), and for the most part connectivity estimates conform to a pattern of isolation within 

self-recruiting populations, common of the Antarctic benthos (Thatje, 2012). However, 

incongruence in connectivity estimates was observed in some instances, and differential 

estimates of gene-flow in mitochondrial DNA sequence data revealed 16S as a more 

conservative gene region, compared to CO1 in all species (Tables 6 – 11; Figs 4 - 7). This 

pattern is common in coral and hydroid genomes (Hellberg, 2006; Cartwright et al., 2008), 

and stylasterids are no exception based on the data contained herein.  
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 The genetic differentiation observed between 16S haplotypes of E. laterorifa in the 

Bransfield Strait (a geographically isolated sample site) and Burdwood Bank across ~ 900 km 

(a pattern not seen across shorter distances in other species based on 16S), supports an 

isolation by distance model of dispersal across the Drake Passage (see Slatkin, 1993) (Table 

6) and suggests that in 16S, more time and geographic distance maybe needed to produce 

genetic changes compared to CO1. Very few migrants are needed to genetically connect 

populations (Hellberg, 1995), and for this reason it seems plausible to explain links (across 

multiple generations) based on 16S data as representing historical connectivity or retention of 

ancestral links. This scenario was detailed by Wilson et al., (2009) to explain their finding of 

higher genetic differentiation in CO1 than 16S in the Antarctic nudibranch Doris 

kerguelensis. Correspondingly, invertebrate connectivity studies by Thornhill et al., (2008) 

and Arango et al., (2011) also found CO1 to be more variable and informative than 16S. All 

three of these studies have sampling locations which overlap regionally (e.g., Antarctic 

Peninsula and Burdwood Bank), substantiating a conclusion of historic connections between 

invertebrate ecosystems in South America and the Sub-Antarctic.  

 

Differential mutation rates in stylasterid mitochondrial DNA regions was exemplified 

in Stylaster densicaulis where 16S haplotypes are shared either side of the PF, between Cape 

Horn, Burdwood Bank and Interim Seamount, whilst CO1 haplotypes were unique at all three 

locations (Table 10). Interim Seamount, south of the PF,  represents a relatively short 

dispersal route across the PF into South America of ~ 300 km, and sea floor bathymetry 

connects this region to Cape Horn (Waller et al., 2011) (Fig 1b), therefore benthic 

connections may enable dispersal between locations. Based on the life history characteristics 

of stylasterid corals (Stratford, 2002; Miller et al., 2004), it is unlikely that current-mediated 

dispersal is common. However, over evolutionary time scales the survival of a small number 

of recruits across the PF could contribute to the prevalence of stylasterids in the Drake 

Passage. Assessment of gene flow in other species provides evidence to suggest that genetic 

sub-division across the PF increases with geographic distance (> 300 km). For example, 

Conopora verrucosa populations at Cape Horn and the Shacklton Fracture Zone (SFZ) 

separated by ~ 500 km, further south than Interim Seamount, were genetically unique at both 

DNA regions (Table 8). Cheiloporidion pulvinatum 16S and CO1 haplotypes are also unique 

at sample locations, including Cape Horn and Sars Seamount, substantiating isolation south 

of the PF at spatial scales > 400 km. However, in C. pulvinatum the estimated dispersal 

distance of > 400 km is not dissimilar to that of S. densicaulis from Cape Horn to Interim 
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seamount, suggesting that factors other than distance may contribute to gene-flow estimates 

across the PF.  

 

 The finding of genetic subdivision at Sars Seamount in C. pulvinatum (Table 9, Fig 

6), and at SFZ in C. verrucosa (Table 8, Fig 5), but not in S. densicaulis at Interim Seamount 

(Table 9, Fig 6 based on 16S) may signify site-specific isolation across the PF (Fig 1b). A 

recent study by Margolin et al., (2014) provides evidence to support this conclusion at Sars 

Seamount. Their study, based on carbon dated scleractian coral age estimates, showed a 

population shift from south to north, including a transition zone at Sars Seamount during the 

Last Glacial Maximum (LGM), ~ 23 - 19 thousand years ago.  Livermore et al., (2004) 

describe the SFZ is a structurally unique oceanic transverse ridge, formed by uplift 8 million 

years ago. The ACC is more restricted at the SFZ forming a ‘pinch point’, where several 

enduring and semi-enclosed eddies exist within the ACC and Antarctic Bottom Water 

(ABW) is restrained. Therefore, restricted dispersal and more isolated faunal assemblages are 

possible at both the SFZ and Sars Seamount. Additionally, these two examples of climactic 

change on evolutionary time scales provide evidence to support an overall conclusion of 

historic gene-flow, and isolation among self-recruiting populations either side of the PF.  

 

 Cold-water coral habitats are extremely dynamic and the opportunity to diversify and 

colonise deep benthic environments may have been frequent through evolutionary time (e.g., 

Lindner et al., 2008), but comparatively low over ecological (recent) time scales (e.g., Le 

Goff-Vitry et al., 2004).  The cosmopolitan distribution of S. densicaulis and C. verrucosa in 

the Sub-Antarctic reflects a biogeographic distribution pattern of dispersal and colonisation 

throughout the Drake Passage and Scotia Arc over time (Bax & Cairns, 2014). Similarly, the 

large aggregation of S. densicaulis and C. verrucosa at Cape Horn (Waller & Robinson, 2011 

pers. identification), and aggregations of C. pulvinatum in the South West Atlantic (Bax et 

al., unpublished data), signal the capacity of these species to predominate in select habitats. 

Therefore, the historical connections present in 16S data may be related to evolutionary 

change effecting the dispersal of many Antarctic animals (e.g., opening of the Drake Passage, 

ACC formation, LGM Clarke et al., 2005), including corals (Margolin et al., 2014). The 

higher variation displayed in CO1 may represent more recent (and therefore more 

ecologically informative) isolation among self-recruiting populations across the PF, at the 

scales tested. 
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Dispersal among Sites on Either Side of the Polar Front 

 The presence of both CO1 and 16S shared haplotypes in Errinopsis fenestrata (Table 

11), substantiate a conclusion of panmixia south of the Polar Front between Interim and Sars 

seamounts. More population comparisons are needed to determine if this pattern is congruent 

with other stylasterid populations documented south of the PF. However, despite limited 

comparative data, genetic connectivity is in alignment with other studies (Gutt et al., 2013), 

and the ACC system is thought to facilitate the transport of larvae around the Antarctic 

continent in a number of invertebrate populations (see Thatje et al., 2012 for a summary). 

Therefore, in E. fenestrata, this biogeographic pattern may reflect geneflow linked to the 

ACC and a heightened ability to disperse through current-aided means, compared to species 

outside of the ACC at similar spatial scales (~ 300 km Table 9 & 10). However, this does not 

preclude that E. fenestrata is a successful primary coloniser in the Antarctic benthos, with a 

circum-Antarctic dispersal capacity. In fact, E. fenestrata is listed as a rare and endemic 

species with a limited geographic range (Bax & Cairns, 2014). Therefore, the exertion to 

which ACC forcing determines stylasterid population connectivity remains to be tested, and 

linkages may be historic rather than ecological.    

Comparisons north of the Polar Front, away from the main confluence of the ACC, 

show a pattern of genetic sub-division in S. densicaulis and C. pulvinatum populations 

between the South American sampling locations of Burdwood Bank and Cape Horn (Table 9 

& 10). This finding is consistent with the pattern of isolation seen in other stylasterid species 

(Tables 6 – 8; Figs 4 - 7), and it seems fair to assume that differences based on the more 

variable CO1 reflect isolation in S. densicaulis populations, despite 16S AMOVA suggesting 

no genetic differentiation between populations (16S FST = 0.1, P = < 0.001) (Table 10). 

Furthermore, the presence of shared 16S and CO1 haplotypes in C. pulvinatum at Sars 

Seamount (Table 9) north of the PF, is similar to the pattern of shared haplotypes at both loci 

in E. fenestrata (Table 11). Therefore, geneflow either side of the PF may differ at the spatial 

scale of ~ 300 km. 

Fine Scale Connectivity in Chilean Patagonian Fiords (~ 200 km) 

Antarctic sampling is extremely challenging; sample sizes and experimental design 

are often less than ideal as a result (Appendix Table 3.2). The shallow coral fields of Errina 

antarctica in the Patagonian fiords provide the unique opportunity to gain insight into the 

dispersal capacity of corals in more inaccessible ecosystems such as sea-mount and 

submarine ridges in the Southern Ocean, and  AMOVA revealed no genetic difference 
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between two Chilean fiords (Table 12). Geographically the Chilean fiords comprise a 

complicated maze of channels, with a steep and narrow topography across an archipelago 

formed during the submersion of a glacial valley encompassing multiple openings towards 

the sea (Marden & Clapperton, 1995). Therefore, this environment is highly dynamic and 

factors controlling larval dispersal are likely complicated. Dispersal may occur through deep 

channels into the surrounding ocean (see Fillinger & Richter, 2013). However dispersal 

within the fiord system would be more complex. Errina antarctica populations in Canal 

Copihue and Grupo Dacres are separated by ~ 200 km (by the most direct dispersal route), 

and a number of dispersal barriers exist between these two regions, including at least five 

island groupings, and fiords which diverge in multiple directions (Fig 1c). Therefore, 

demographic connectivity between the two populations tested appears unlikely, as dispersal 

would involve the capacity of a larva to negotiate a complex maze of dead ends, both strong 

and weak currents and selectively settle in suitable habitats. Furthermore, studies of the 

congeneric E. novazelandiae in the New Zealand fiords (Miller et al., 2004) indicated 

dispersal across such distances within a fiord system was unlikely. 

This is the first study to use ITS DNA sequence data to assess population structure in 

stylasterid corals. A lack of comparative sequences and the complications associated with 

sequencing the gene (e.g., multi-copy and hyper-variability) lead to smaller than anticipated 

sample sizes, and the elimination of the majority of sequences. The only other study on coral 

connectivity in the fiord region of Patagonia was Miller et al., (2011) on the scleractinian 

coral Desmophyllum dianthus. Miller et al., (2011) studied sites separated by ~ 900 km and 

also found no genetic differentiation between fiords based on 16S, ITS or MtC data. 

Therefore, either gene flow exists between fiords, or ITS may not be sufficiently variable to 

pick up fine scale genetic structure in E. antarctica.  

The usefulness of ITS DNA sequence data may be taxon and region specific. For 

example, Flot et al., (2013) studied Lophelia pertusa corals collected 7500 km apart which 

shared identical nuclear ITS-2 and near-identical mitochondrial genomes. However, Miller et 

al (2010) studied ITS sequence data from antipatharian corals and found genetic structure 

across ~500 – 1000 km. Alternate gene regions and primer combinations were trialled over 

the course of this study including variations of the ITS-2, ITS-3, SRP-54 and D-loop (Bax, 

2009). However, amplification success and sequence quality was low, and these regions were 

not useful for further analysis.  It is possible that more variable or more appropriate markers 

(ie. Microsatellites or SNPs) may better clarify connectivity in Patagonian stylasterids.  
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Given the urgent need for conservation managers to have estimates of contemporary gene 

flow (Almany et al., 2009), this area of research should be assigned the highest priority. 

Therefore, despite results suggesting gene flow between E. antarctica populations a 

precautionary approach to conservation management is advised until more ecologically 

informative genetic markers are available for study. This recommendation is especially so 

when we consider the mounting evidence on the fragility of the fiord ecosystem (Fillinger & 

Richter, 2013; Häussermann & Försterra, 2007), the recent observation of devastated E. 

antarcitca fields (Häussermann & Försterra, 2014; Fig 12), and the lack of gene flow in 

similar species found in fiord environments (Miller et al., 2004).  

 

Figure 12. Reef-like aggregations of Errina antarctica were discovered by Häussermann and 

Försterra (2007) in aggregations of  ±80% coverage across a 10,000m² area at Canal Copihue 

(A, B, D). This site was re-visited during a 2012 expedition and coral coverage was already 

depleted (pers. obs.), the entire population has since been reduced to coral rubble ( Fig C 

from Häussermann & Försterra, 2014), and the exact cause is unknown.  

 

Large Scale Connectivity between the Ross and Dumont d’Urville Sea (~2000 km) 

Geographically the Ross Sea and Dumont d’Urville Sea are separated by 

approximately 2100 km and large scale AMOVA analysis of ITS data suggests no genetic 

subdivision among Errina fissurata populations (Table 13). Despite this finding of genetic 

similarity, there were unique haplotypes in both seas. These haplotypes may be common by 

descent, but to effectively assess connectivity estimates it is important to consider other 
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factors that may have contributed to this result. The E. fissurata ITS-1 haplotype network 

illustrates what is described as a star phylogeny (Martins & Housworth, 2002) (Fig 9), and in 

ITS-2 a similar pattern illustrating a branch multi-furcation from a common haplotype, and 

few base pair mutations in unique haplotypes (Fig 9). This pattern is often representative of a 

recent population expansion event from a founder population (e.g., Hellberg, 2006 as an 

example in corals).  

Errina fissurata is described as a circum-Antarctic species (Cairns, 1983; Bax & 

Cairns, 2014), and may have gradually spread around the Antarctic continent through 

evolutionary time. Therefore, ITS sequence data may not reflect ongoing gene-flow between 

geographically distant E. fissurata populations, and may instead represent adaptive radiation 

from a basal lineage (or founder population). In this fashion, a small percentage of larvae 

may be retained within a geographic locality due to factors such as oceanographic conditions, 

nutrient supply etc. ., eventually resulting in unique haplotype diversity through mutation, 

and overtime - specific local adaptations and reproductive isolation (e.g., Arango et al., 

2011). This hypothesis may explain the comparatively high abundance of Errina species in 

the Dumont d’Urville Sea (Post et al., 2010), and regional separation of circum-Antarctic 

stylasterid genera and species in general (Cairns, 1983; Bax & Cairns, 2014).  During 

Antarctic voyages not every trawl survey collects benthic fauna, often across great distances 

of sampled area; this suggests that benthic diversity in the Antarctic deep-sea is sparsely 

distributed, which could lead to isolation among self–recruiting populations at the scale 

tested, and their subsequent radiation is likely dependent upon suitable habitat, a limited 

resource in the Antarctic deep-sea. 

Local Scale Connectivity within the Ross Sea (~ 10 – 70 km)  

Connectivity in the Ross Sea was investigated on a local scale (across ~ 10 – 73 km), 

and similarly to large scale analysis in East Antarctic stylasterid populations, there was a lack 

of significant genetic differentiation. This result is based on both ITS and CO1 sequence 

comparisons (Table 14, 15 & Fig 11) in E. fissurata and E. laterorifa populations. The 

apparent lack of differentiation between Ross Sea stations suggests that populations are not 

self-recruiting and that, at the local scale, there is gene flow between neighboring 

populations. These results maybe reflective of the current systems that operate between the 

patchy distributions of suitable habitat (e.g., Adelie Bottom Water, Post et al., 2010). 

However, despite apparent panmixia, unique haplotypes were present and the Nem values 

between stations in the Ross Sea was comparatively much lower than the estimated number 



 

166 

of migrants between the Ross Sea and the Dumont d’Urville Sea (Nem=1.14 and 4.15 vs.  7 

and 126) (Table 14 vs.  15).  

Estimates of gene flow from shallow water coral studies show similar discrepancies in 

Nem estimates across varying spatial scales. For example, a study of connectivity between the 

Great Barrier Reef and Lord Howe Island (considered a geographically isolated location) 

found estimates of Nem ranged from 0.6 to 6.0 for five brooding corals.  The coral Stylophora 

pistillata had a greater level of genetic connectivity between geographic distances of 500 – 

1200 km (Nem = 1.4) compared to local scale connectivity (< 5 km, Nem = 0.6). Ayre and 

Hughes (2000) concluded that populations with low Nem (0.6 – 3.3) were effectively 

subdivided, regardless of scale, and that the majority of recruitment was local. Based on this 

conclusion, the Ross Sea Errina spp. populations are more distinct at local spatial scales (< 

100 km) than at large spatial scales (> 2000 km). However, variability estimates in CO1 are 

much lower than those seen across lager geographic divides (e.g., > 300 km Tables 6 - 11), 

and there is limited evidence of genetic subdivision at larger geographic scales in East 

Antarctica (> 2000 km) (Table 12). Therefore, variability in ITS and CO1 sequence data may 

not accurately represent fine-scale connectivity within Ross Sea Errina spp. Ayre and 

Hughes (2000) also speculated that long distance dispersal may be more important over 

evolutionary time scales, and it is difficult to determine, without comparative genetic data, if 

the results here are informing ecological or historical connections. Taken together results 

suggest historical connections are more likely across data sets.   

Conclusion 
 

This study found significant population structure across the Polar Front based on CO1 

and, and in most cases for 16S sequence data at scales ranging from ~ 300 – 1000 km, in all 

species available for connectivity estimates in the Sub-Antarctic and South America. In 

contrast, 16S and CO1 data suggest panmixia in Antarctic E. fenestrata populations south of 

the Polar Front across ~ 300 km within the ACC confluence. Whilst, ITS data suggests that 

gene-flow is present between the Ross Sea and Dumont d’Urville in East Antarctica, and 

within the Patagonian fiords in Chile. Therefore, large (~ 1000s of km), and local scale (~ 

100s of km) water masses may enable connectivity between stylasterid populations in East 

Antarctica, Patagonia and on the Antarctic Peninsula within the ACC system, but not in the 
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Sub-Antarctic and South America, due to the presence of the PF and isolating eddies and 

gyres at seamount and shelf locations (see Livermore et al., 2004). However, in regard to 

conservation management, these findings are potentially misleading, as the DNA markers 

used here may insufficiently differentiate ecological from evolutionary connectivity and 

sample sizes were limited. To conclude that gene-flow estimates are representative of present 

day dispersal may be detrimental to conservation goals, as it appears to be the consensus 

within this data set, that genetic connections are historical in origin.   

For specific management outcomes, it is important to consider that a far greater 

number of migrants are needed to make demographic changes such as replenishing a 

devastated population (as in ecological connectivity Botsford 2003) than the number of 

migrants that would aid in the genetic maintenance of a population (as in evolutionary 

connectivity Burridge et al., 2012). Results suggest that ITS, 16S and CO1 gene regions may 

inform connectivity across different temporal scales. ITS estimates of connectivity may help 

us understand adaptive radiation in the Ross and Dumont d’Urville seas, and the Patagonian 

fiords. 16S shared haplotypes may explain historical connections and speciation south of and 

across the Polar Front, potentially linked to time frames such as the LGM (as in Margolin et 

al., 2014), whilst the higher variability in CO1, and a lack of shared haplotypes in most 

species maybe more ecologically informative for stylasterid corals at spatial scales >300 km 

(e.g Sub-Antarctic species), but not at local scales < 100 km (e.g Ross Sea E. fissurata).    

This is the first study to provide genetic data for Antarctic stylasterids, therefore more 

comparative sequences are needed to substantiate a baseline for their genetic diversity. More 

variable markers, and preferably larger sample sizes, are needed before spatial structure can 

be explicitly resolved. It is recommended that future studies focus on the field-forming 

Errina species, for which only ITS data were available for most connectivity assessments. 

These populations are of particular conservation concern as VMEs throughout the Antarctic 

and Patagonian benthos - providing habitat for a diverse fauna. Distinguishing ecological 

from evolutionary connectivity, and recognising the regional and species level differences in 

stylasterid populations will be key to their continued preservation under current CCAMLR 

conservation management regimes (Table 2), and future conservation initiatives in South 

America and Patagonia.  In the interim, a precautionary approach is advocated for stylasterid 

coral population conservation and management - especially when considering the extreme 

fragility of the deep-sea environment to climate change and economic interest in Southern 

Ocean fisheries.  
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Final Discussion and Synthesis to Address the Management 

Questions and Conservation Implications of this thesis 
 

Stylasterids were used as model organisms to understand the diversity, structure and 

function of cold water coral ecosystems within the framework of Antarctic Vulnerable 

Marine Ecosystems (VMEs). Research was focused on biogeographic patterns, species 

identification tools, evolutionary responses to climate change and an assessment of 

connectivity in order to best inform conservation strategies, and contribute to the protection 

of Antarctic coral communities from the multiple threats to their survival. These threats 

include: deep-sea trawl and long-line fisheries which permanently remove coral fauna and 

damage benthic habitat (Clark & Rowden, 2009), and climate change and ocean acidification 

which threaten to inhibit essential biological processes, lower diversity, and cause 

successional shifts in benthic communities (Ingels et al., 2012). This thesis presents several 

key findings that will inform conservation of these poorly understood and threatened coral 

ecosystems:  

• Field-like aggregations of stylasterids are patchily distributed throughout the 

Antarctic, Sub-Antarctic and Patagonia. The biogeographic distribution of these coral 

aggregations and the relatively localised distribution of common species is considered 

to reflect insulated and isolated self-recruiting populations (Chapter 2, Bax & Cairns, 

2014). 

• Phylogenetic mtDNA sequence data was sufficiently variable to resolve genetic and 

morphological relationships in stylasterid corals, and 16S and CO1 sequences may 

work for future DNA barcoding studies. This has important practical implications 

regarding the documentation of new species in the Antarctic deep-sea (Chapter 3).  

• Phylogenetic data combined with the fossil record and skeletal mineralogy show 

stylasterids may have radiated within the Drake Passage following de-acidification of 

the world’s oceans linked to the Eocene/Oligocene boundary (~ 34 MYA). This 

finding may help us predict how stylasterid populations will respond to future ocean 

acidification, and decreasing saturation states in the Sub-Antarctic (Chapter 4).  

• Population structure and limited gene-flow is evident across the Polar Front between 

the Antarctic Peninsula and South America, and among populations north of the Polar 

Front that are separated by ~ 300 km. In contrast, evidence of connectivity was 

apparent among populations south of the Polar Front at similar spatial scales, 
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suggesting connectivity mediated by the Antarctic Circumpolar Current (ACC). 

However, all genetic links were likely ancestral and there is little evidence to suggest 

stylasterid coral populations are connected by ongoing gene-flow (Chapter 5).  

• VME listed Errina fissurata and Errina laterorifa populations in East Antarctica and 

Errina antarctica populations within Patagonia show no evidence of intra-specific 

genetic differences at spatial scales of ~ 10 - 2000 km based on ITS sequence data. 

However, evidence of genetic links may not represent ongoing gene-flow, linked to 

the resolution of the markers used. Haplotype networks indicate an evolutionary 

pattern of adaptive radiation, whereby species gradually disperse from a natal 

population into available habitat, and over time become regionally abundant in 

specialised localities (Chapter 5). 

 

Taken together, the results from this study reveal a diverse, yet isolated Antarctic and Sub-

Antarctic stylasterid fauna that has been affected by past climatic changes, and highlights the 

vulnerability of present day populations. These findings are of considerable scientific and 

conservation value, improving our knowledge of key habitat-forming species that form 

VMEs in the remote and understudied Antarctic deep-sea, and provide invaluable data to 

underpin the management and conservation of ecosystems in the vast Southern Ocean, Sub-

Antarctic and Patagonia. 

6.1 Stylasterid Biogeography 

Chapter two reviewed the biogeography of stylasterid corals in Antarctica and the 

Sub-Antarctic and concluded that Stylasterids are characterised by localised species 

aggregations throughout their geographic range, and suggests the biogeographic distribution 

of stylasterid corals is representative of population isolation and endemicity (Bax & Cairns, 

2014).   

 

The following geographic regions are proposed for conservation consideration:  

Stylasterid coral fields 

1) Isolated areas of particularly high stylasterid occurrence including the coral-fields of 

the Dumont d’Urville Sea (Post et al., 2010) and Ross Sea (Bax & Cairns, 2014), the Larsen 

B ice shelf in the Weddell Sea (Fillinger, 2013), Cape Horn (Waller & Robinson, 2011) and 

Burdwood Bank (Bax & Cairns, 2014). These areas are recommended for priority protection, 

in order to maintain benthic biodiversity, as these field-like aggregations support a diverse 



 

178 

array of associated fauna (see Post et al., 2010; Waller et al., 2011; Kaiser et al., 2013), and 

may provide important ecosystem services such as substrate for attachment, refuge for 

juveniles, aggregation sites for spawning and feeding, and potentially factor in the trajectory 

of deep-water current systems and house economically important fish populations and bio-

medical compounds (see NOAA, 2010). 

Endemic faunal assemblages along the Macquarie Ridge 

2)  The Sub-Antarctic Region south of New Zealand, including Macquarie Ridge, is 

shown to have a potentially endemic fauna (11 species), and may act as a transition region 

between New Zealand and the Antarctic, enabling colonisation either into or out of Antarctic 

waters.  Such transition zones are of high conservation value, providing corridors to dispersal 

(Lenihan & Oliver, 1995; Linse et al., 2008; Jörger et al., 2014) and a buffer against climate 

change (Brandt & Gutt, 2011).  

Stylasterid biodiversity hot-spots at South Georgia and Shag Rocks 

3) South Georgia and Shag Rocks, in the Scotia Arc have the highest documented 

stylasterid diversity (16, of the 33 known Antarctic species), and it would be beneficial to 

include these regions within the already established adjacent South Orkney Islands Marine 

Protected Area (Brooks, 2013), to build on the MPA network scheme advocated under 

regulated fisheries management regimes in the Sub-Antarctic (Rochette et al., 2014).  

 

Marine Protected Areas (MPAs) have been established world-wide to protect marine 

biodiversity and, especially where deep-sea fisheries are concerned, they are considered the 

best conservation model available (Morato et al., 2010; Clark et al., 2012; Grant et al., 2012). 

However, despite this consensus among marine scientists and conservation managers, there 

are only two regional MPAs designated to protect deep-sea VMEs in the world: 1) The 

Charlie Gibbs MPA in the North East Atlantic (O’Leary et al., 2012), and 2) The South 

Orkney Islands MPA in the Sub-Antarctic (Brooks, 2013). There are a number of factors 

limiting MPA designation in the deep-sea such as: a lack of consensus regarding political and 

economic factors (Fabra & Gascón, 2008), incomplete practical descriptions of species 

assemblages, communities, and habitats (Griffiths et al., 2010), and biological and ecological 

functions are unknown for most deep-sea taxa (Rogers, 2004), this is especially true of the 

Antarctic benthos (Brandt et al., 2007; Clarke, 2008).  

 

In the Southern Ocean, the biogeographic atlas publication (De Broyer et al., 2014) 

provides a classification system for Antarctic taxa and habitats, through the synthesis of all 
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available spatial and biological estimates, and compilation of the Census of Antarctic Marine 

Life (CAML) research collections. This information combined with the ecosystem 

management approach, advocated under the Commission for the Conservation of Antarctic 

Marine Living Resources (CCAMLR) governing Antarctic fisheries, provides a political and 

economic pathway for conservation discussion and implementation (Teschke et al., 2014). 

However, despite decadal advances in Antarctic benthic research (including habitat mapping 

and global datasets, see Kaiser et al., 2013), biological and geographic spatial alignment is 

still lacking for many deep-sea invertebrates (De Broyer et al., 2014). Sampling is 

predominantly shallow (rarely below 500 m) (Chapter 5, Appendix table 3.2), and Peninsula 

Antarctica, being the most accessible region is also the most heavily studied (Clarke & 

Johnston, 2003; Linse et al., 2006; Gutt et al., 2011). When making conservation 

management decisions, it is important to note that studies on the Peninsula, and shallow 

continental shelf, may not fully capture the complexity of deeper, more isolated habitats (e.g.,  

stylasterid coral fields in East Antarctica (Post et al., 2010) (Thesis statement image page 6). 

Therefore, although informative, the occurrence data now available for Southern Ocean 

stylasterids (Bax & Cairns, 2014), in and of itself tells us very little about how benthic 

populations interact across spatial and temporal scales. While, molecular data offers to build 

on distribution data and delineate ecologically and evolutionarily informative patterns 

(Chapters 3 - 5).   

 

6.2 Stylasterid Taxonomic and Phylogenetic Relationships  

Chapter three addressed the genetic relationships among morphologically delineated 

Antarctic stylasterid species, and found that morphological and genetic relationships are 

congruent in Antarctic stylasteridae, based on mtDNA (16S and CO1). It appears that the 16S 

gene region is also suitably variable for consideration as a candidate for DNA barcoding (a 

taxonomic method that uses a single short genetic DNA marker, usually CO1, to identify 

species (Hebert & Gregory, 2005). Few hydrozoan studies use CO1 sequence data, due to 

amplification difficulties (Govindarajan et al., 2005: Peña Cantero et al., 2009). The primers 

developed by Geller et al., (2013), amplified successfully in this study (Chapter 3). However, 

only for a limited subset of samples (CO1 n = 47), and only for ~289bp of a 648bp region 

(Hebert & Gregory, 2005). Therefore, the effectiveness of CO1 as a universal barcoding 

gene, may not apply to stylasterids, and 16S, although less variable than CO1, successfully 

differentiates between genera and species, and amplifies more easily (16S n = 72) across a 

similar base pair length of 293bp out of a ~600bp total sequence length (Cunningham & 
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Buss, 1993). Comparitive studies on hydrozoans substantiate the utility of 16S to identify 

genera (Govindarajan et al., 2005; Peña Cantero et al., 2009). Therefore, 16S is 

recommended, above CO1, for future barcoding studies on stylasterids.   

 

This findng has practical implications regarding the identification of species, for 

cataloguing of marine life, and the identification of specimens that lack morphological 

integrity. Ideally, now that the technology and reference material is available, the 

incorporation of molecular taxonomy as a complementary tool to traditional taxonomy can be 

prioritised in future studies on stylasterid corals. However, in studies where time or expertise 

for traditional morphological taxonomy is limited, DNA barcoding offers an efficient method 

for species identification. DNA sequence data generated in this project will also enable the 

incorporation of additional stylasterid sequences in large data sets assessing biodiversity, 

such as the international Barcode of Life (BOLD) initiative, aimed at compiling a 

phylogenetic ‘tree of life’ (Hajibabaei et al., 2007). 

 

While species genetic identification was in alignment with morphology for the 

Antarctic and sub-Antarctic species studied here, phylogenetic clade arrangement is 

counterintuitive to traditional taxonomic assessments of phylogeny (outlined in Cairns, 1983; 

Cairns, 2011). The only other genetic phylogeny of stylasterids available for comparison is 

that of Lindner et al., (2008), and their phylogenetic arrangement also supports a 

reassignment of synapomophies in stylasterids. This conclusion is based on the basal 

placement of genera containing cyclosystems (e.g., Conopora), the derived placement of 

species with gastrostyles (e.g., Stellapora), and the concurrent divergence of genera with both 

gastrosyles and cyclosystems (e.g., Stylaster and Stellapora) in both phylogenies (Chapter 3, 

Lindner et al., 2008). This indicates that the MRCA to stylasteridae was a cyclosystemate 

species, and the fossil record supports this conclusion (Jell et al., 2011; Lindner et al, 2008). 

Therefore, it is recommended based on these genetic data sets, that the cyclosystem be 

attributed as a basal character state, and the gastrostyle be attributed as a more derived 

character in future phylogenetic and morphological assessments.   

 

6.3 Stylasterid Evolution in the Drake Passage 

Mitochondrial phylogenetic data combined with the fossil record (~ 65 – 50 MYA) 

revealed that stylasterids radiated within the Drake Passage following the Eocene/Oligocene 

boundary ~34 MYA (Chapter 4). This time period is linked to a rapid de-acidification of the 
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world’s oceans (Merico et al., 2008), and a shift from calcite to aragonite sea conditions 

(Stanley & Hardie, 1998). Therefore, stylasterid speciation may be linked to changes in ocean 

chemistry affecting carbonate mineralogy. In context, this may inform future research on 

Antarctic corals and ocean acidification.  

 

Most stylasterids have an aragonitic skeletal composition, and this is likely to be the 

ancestral character state in these corals. However, the two most derived genera, Errinopsis 

and Cheiloporidion, have calcite skeletons which likely evolved during the Eocene (< 34 

MYA) when ocean chemistry favoured calcite. Some modern populations of Errinopsis and 

Cheiloporidion contain aragonite, suggesting a return to the ancestral aragonite mineralogy in 

response to oceanic conditions (the favourable calcification state of modern oceans). This 

result suggests at least some capacity for stylasterids to adapt to changing ocean chemistry, 

and further research in this area may help understand their ability to buffer impending ocean 

acidification, as the chemical state of the Southern Ocean shifts rapidly from aragonite to 

calcite sea conditions (IPCC, 2013).  

 

6.4 Estimates of Genetic Isolation among Stylasterid Populations 

Intra-specific genetic relationships among geographically isolated populations of 

stylasterids in the Drake Passage demonstrate limited to no dispersal across the Polar Front 

between Antarctica and South America across spatial scales > 500 km (Chapter 5). However, 

where this finding of genetic structure is evident in CO1 estimates at all spatial scales > 300 

km and in all species studied, genetic structure is not apparent within some 16S comparisons. 

This discordance in connectivity estimates is attributed to the conserved nature of the 16S 

gene region in corals (Miller et al., 2010), and invertebrates generally (Wilson et al., 2009). 

Geneflow estimates from 16S may be explained by heightened historic geneflow linked to the 

ACC south of the Polar Front (e.g., E. fenestrata), or evolutionary linkages which are no 

longer present such as dispersal prior to the Last Glacial Maximum (LGM) (~ 23 - 19 

thousand years ago, e.g., Margolin et al., 2014).  Therefore, apparent genetic similarity 

between stylasterid populations based on 16S may be due to the retention of ancestral 

haplotypes (Wilson et al., 2009; Thornhill et al., 2008; Arango et al., 2011). At the same 

time, CO1 haplotypes confirm a present day pattern of isolation among populations at the 

spatial scales tested.  
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The conclusion of ancestral genetic linkages in stylasterid populations is further 

substantiated in ITS data from Errina species in East Antarctica. Despite estimates of gene 

flow that were not significantly different from panmixia, haplotype networks illustrated a 

phylogenetic configuration representing population expansion from a common ancestor 

(basal haplotype) and subsequent local adaptation and divergence (as in Arango et al., 2011) 

(Chapter 5).  The localised abundance of Errina species in the Dumont d’Urville Sea (Post et 

al., 2010) and the disjunct species distributions common of circum-Antarctic stylasterid 

populations (Cairns, 1983; Bax & Cairns, 2014) fit with this scenario.  Furthermore, during 

benthic sampling expeditions, faunal assemblages were patchily distributed (Bax & Cairns, 

2014; Waller et al., 2011). This could reflect isolation and a subsequent pattern of radiation 

into different habitats. 

 

The interpretation of genetic data to infer radiation from founder populations is 

supported within the limited stylasterid literature available for comparison. Miller et al., 

(2004) provide evidence of low genetic diversity in New Zealand fiord Errina spp., and relate 

their findings to a recent colonisation of the fiord system, ~ 18,000 years ago (Pickrill et al., 

1992; Smith, 2001). In this manner, Errina fiord populations represent satellite populations 

from deeper waters, and Cairns (1991) outline a similar hypothesis describing New Zealand 

as the centre of diversity for the Errina genus, and subsequent radiation into surrounding 

waters. Based on this hypothesis, it is also likely that the shallow water Errina antarctica 

coral populations characteristic of the Patagonian fiord system (Häussermann & Försterra, 

2007), are similarly derived from deep water relatives that colonised the fiords upon glacial 

retreat (Fillinger, 2013). This is substantiated by the presence of E. antarctica in deeper 

waters in the Sub-Antarctic (Cairns, 1983; Bax & Cairns, 2014). Furthermore, the Lindner et 

al., (2008) study which describes stylasterid colonisation from deep-sea ancestors into 

shallower habitats on at least three consecutive occasions over the last ~ 65 MYA, solidifies 

this scenario as the most likely evolutionary trajectory for Errina corals, if not all stylasterid 

coral populations.  To what extent these evolutionary connections are maintained remains to 

be tested. However, in the context of conservation value, stylasterid corals rank as a high 

priority (Post et al., 2010; CCAMLR, 2008 - 2012), therefore in regards to effective 

management - evidence of limited to no gene-flow between modern stylasterid populations 

(Chapter 5), dictates that the maintenance of historic linkages between deep and shallow 

waters is likely minimal.  
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6.5 Future Research Priority - Conservation and Molecular Biology 

The level of genetic exchange between stylasterid coral populations within (local scale 

connectivity) and between (large scale connectivity) regions based on 16S and ITS revealed 

only historic links, whilst the variability of CO1 proved sufficient to determine genetic 

structure in modern Drake Passage populations across spatial scales > 300 km (Chapter 5). 

However, due to limited DNA amplification success, fine scale estimates of gene flow using 

CO1 were not possible, and at spatial scales of 10 – 73 km gene flow estimates were not 

significantly different from panmixia (FST  = 0.15, P = 0.65). To best inform conservation 

strategies it is recommended that future studies focus on fine scale connectivity estimates and 

incorporate microsatellite or Next Generation Sequencing (NGS) techniques to identify 

informative loci for population comparison. More variable markers have been used to 

differentiate genetic structure across smaller spatial scales in Antarctic invertebrates (< 10s of 

km e.g., Baird et al., 2012), and deep-sea corals (> 35 km e.g., Dahl et al., 2012). Therefore, 

the technology is available, and not only does such research directly link to conservation 

goals, it will also benefit the broader research community and fits well within the goals of the 

BOLD project (http://www.barcodeoflife.org/): to increase our available knowledge on a 

unique, ecologically important and rarely studied groups of corals.  

 

The fact that high mitochondrial genetic variability was identified here (Chapter 3 & 5), 

compared to other deep-sea corals (Miller et al., 2010), provides a good basis for additional 

research. Single-Nucleotide Polymorphisms (SNPs) analysis using techniques such as 

restriction-site-associated DNA (RAD) could complement existing CO1 and 16S markers and 

increase resolution in connectivity studies on stylasterids. However, NGS relies upon high 

quality DNA (Shendure & Ji, 2008). The low sequencing yield found here (Chapters 3 - 5) 

and the variability in specimen quality and preservation in Antarctic collections may limit the 

potential for such techniques at this stage. Furthermore, large sample sizes are hindered by 

the expense and inaccessibility of the Antarctic deep-sea (Chapter 5, Appendix Table 3.2). 

This will severely limit statistical rigor, and spatial replication in microsatellite and SNP 

studies.  

 

Microsatellite population genetic studies rely upon sample replication with, ideally, >25 - 

30 individuals per site to accurately estimate allele frequencies (Hale et al., 2012). Only two 

Antarctic studies, Baird et al., (2012) and Leese et al., (2010), have been able to acquire high 

http://www.barcodeoflife.org/
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enough replication across sites to conduct statically informative microsatellite studies on 

Antarctic invertebrates to date. Both these studies were on abundant crustaceans, which are 

easily identifiable as a single animal, in waters from 10 m in Baird et al., (2012), and down to 

200 m in Leese et al., (2010) (Appendix Table 3.2). It is unlikely that studies on Antarctic 

stylasterid corals can replicate these types of sampling protocols, due to: 1) a predominantly 

deep habitat (> 500 m), 2) a skewed population demography (dissimilar species compositions 

across neighbouring sample sites) (Bax & Cairns, 2014) and 3) the only collection methods 

available are destructive and non-selective practices, such as trawling and fisheries by-catch 

(Parker & Bowden, 2009). These methods break coral skeletons and often make it impossible 

to determine a single individual of the same species from the multiple branch fragments in 

collections (pers. obs.). Therefore, without substantial research investment, population 

genetic studies using SNPs and microsatellite data would be best focused on the fiord 

populations of Errina spp., corals which are accessible by SCUBA, in New Zealand (Miller 

et al., 2004), and Chile (Häussermann & Försterra, 2007). These Errina spp., populations 

share affinities with deep-sea populations in Antarctica (Cairns, 1983), and allow for 

selective replication across fiord sites at ~10 – 30 m (Häussermann & Försterra, 2007, 

Chapter 5) (Fig 1).  

 

6.6 Links between Habitat, Ecology and Field-like Aggregations of Errina spp., and 

their Implications for Stylasterid Conservation 

The biogeographic assessment of stylasterid coral fields defined two regions with the 

highest stylasterid aggregations (Bax & Cairns, 2014) the East Antarctic VME in the Dumont 

d’Urville sea (Post et al., 2010); and 2) the Chilean fiord populations of E. antarctica 

(Häussermann & Försterra, 2007; Fillinger, 2013). When these two ecosystems are 

compared, similarity in habitat preference is apparent (Fig 1). The Ross and Dumont 

d’Urville Sea regions of high Errina spp. field-like aggregation are associated with bottom 

currents in regions of strong upwelling (Post et al., 2010; Barnes pers. com.). In Patagonia, 

the highest abundance of Errina antarctica was found along vertical walls, in strong nutrient 

rich currents where there is ample rocky substrate for larval attachment (pers. obs., Fillinger, 

2013). For comparison, Errina novaezelandiae and Errina dendyi are abundant constituents 

on steep rock walls throughout Fiordland in New Zealand and in areas of increased nutrient 

rich current (Miller, pers. com.; Wing & Jack, 2014), and low sedimentation (Grange, pers. 

com.). This suggests that suitable habitat and nutrient availability are essential to stylasterid 

http://pers.com/
http://pers.com/
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colonisation success in the Southern Ocean, Patagonia and New Zealand. These are the only 

Southern Hemisphere Errina spp. aggregations where any information is available, and rocky 

substrate for attachment is a key limiting feature in all three locations. This is in agreement 

with Cairns’ (1992; 2011) reviews of stylasterid distributions world-wide.  Therefore, until 

this hypothesis of habitat preference can be more rigorously tested, conservation resources 

would be best focused on the preservation of habitat which meets these criteria.  

To provide a framework to inform conservation, Miller et al., (2004) conducted the 

only ecological study available for comparison in a regionally accessible environment. Their 

study on the New Zealand Errina spp. populations found evidence of vulnerable life history 

characteristics such as slow growth, longevity and a pattern of natal recruitment within 

genetically isolated populations, and evidence of inbreeding within a 0.93 sq. km
 
marine 

reserve. These characteristics make Errina spp. corals particularly susceptible to disturbance, 

stress and colony damage. Once a population is depleted it will be slow to recover due to 

limited external recruitment, low genetic diversity leading to decreased fitness, and an 

inability to re-establish population density through local reproduction. If the same pattern 

holds true in an Antarctic context, as it likely does, Errina spp. are especially vulnerable to 

the synergistic effects of disturbance from increasing ice-berg scour (Post et al., 2010), 

climate change (Barnes & Souster, 2011), stress from chemical changes in their environment 

linked to ocean acidification (Guinotte et al., 2006; Chapter 4), and colony damage in the 

face of destructive fishing practices such as long lining and trawling (Parker et al., 2009).  
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Figure 1. Distribution and presence (blue) or absence (red) of Errina spp. coral fields in the Patagonian fiords (left), and the Dumont d’Urville 

Sea (right). Errina antarctica is found in field-like abundance in patchily distributed populations in the Chilean fiord region of Patagonia (Figure 

edited from Fillinger 2013). Errina gracilis/Inferiolabiata labiata, Errina fissurata, Errina laterorifa (pictured in boxes from left to right) are 

found in field-like abundance in the Dumont d’Urville Sea, East Antarctica (Bax & Cairns, 2014). This region is listed as a VME, under 

CCAMLR (CCAMLR, 2009a). Image AAD ©.  
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6.7 Future Research Priority - Climate Change and Ecosystem Preservation 

Climate change research is imperative in our current era of dramatic environmental 

degradation (IPCC, 2013). In deep benthic ecosystems this research centres upon the 

response of corals to ocean acidification (Turley et al., 2007; Thresher et al., 2011; Fillinger 

& Richter, 2013). The pattern of bi-minerality of field-forming genera of Errina, Errinopsis 

and Cheiloporidion is intriguing, and worthy of further investigation (Chapter 4). This would 

require the incorporation of habitat-specific data sets linking chemical regimes to calcite and 

aragonite production, a task beyond the scope of this thesis. Future studies investigating 

adaptations in Errina-Errinopsis-Cheiloporidion would benefit from the incorporation of 

other deep-sea coral groups to aid in conservation efforts and gauge responses to decreasing 

saturation states. In particular, the gorgonian corals for which a substantial literature is now 

available (McFadden et al., 2010; Thresher et al., 2010; Watling et al., 2011) and the colonial 

scleractinian corals, such as Solenosmilia and Madrepora (Miller et al., 2010; Williams et al., 

2010). In combination with stylasterid corals, these coral taxa form a dominant component of 

VMEs throughout the Antarctic and Sub-Antarctic (CCAMLR, 2009c), and have been shown 

to have differential carbonate mineralogy (respectively as follows: calcite/aragonite Thresher 

et al., 2011; aragonite Margolin et al., 2014; calcite/aragonite Cairns & Macintyre, 1992). 

Therefore, they may be differentially affected by ocean acidification (see Thresher et al., 

2011). 

 

6.8  Marine Protected Areas (MPAs) in Antarctica 

The Commission for the Conservation of Antarctic Marine Living Resources 

(CCAMLR), the entity managing Antarctic VMEs, recently considered a proposal to 

establish the world’s largest MPA, prohibiting fishing within a 1.25 million sq. km reserve in 

the Ross Sea and a 1.0 million sq. km reserve in East Antarctica (Fig 2), including the 

Dumont d’Urville Errina spp. VME (Fig 1). Unfortunately, this proposal was rejected due to 

a lack of consensus among delegate nations (Teschke et al., 2014). The proposal will 

hopefully be reconsidered again in 2015 (AAD, 2014), and all available evidence indicates 

the proposed MPA is vital to the protection of the Dumont d’Urville VME (Chapters 1 - 5).  
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Figure 2. Map of the proposed CCAMLR MPA in East Antarctica. Image Justin Chambers AAD ©. 
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The results presented in this thesis provide support, and highlight the need for, the 

proposed East Antarctic MPA which would encompass continued priority listing of Errina 

spp. corals as VME taxa, and the elimination of destructive fisheries in habitat where 

stylasterids are prevalent. The vulnerability and need for conservation in Antarctic 

stylasterids is substantiated by data on the vulnerably of stylasterids generally (Stratford, 

2002; Miller et al., 2004; Häussermann & Försterra, 2007; 2014), a lack of ongoing gene-

flow between populations in Antarctica (Chapter 5), a skewed and isolated population 

demography (Chapter 2), and a high susceptibility to climate change (Chapter 4).  Whilst 

most of the inferences in this thesis have focused on Errina spp., due to the comparative 

availability of information and samples within this genus, and the very little information 

beyond morphological data that is available for any other Antarctic stylasterid genera (Cairns, 

1983).  It is highly likely that all stylasterid corals are vulnerable based on shared life history 

characteristics (Chapter 1 - 6), hence it is imperative to conservation goals that the VME 

taxon listing is maintained for all stylasterid corals (CCAMLR, 2009c), to provide a frame 

work through which these ecosystems are given conservation significance and protection 

from anthropogenic threats. 

Conclusion 
 

This study has provided some evidence that skeletal minerology in stylasterids is 

linked with changes in ocean chemistry, and in this context, stylasterids may be able to adapt 

to a changing ocean. However, phylogenetic data (Chapter 4) combined with gene-flow 

estimates (Chapter 5) infer that a species’ ability to adapt or disperse to new benthic habitats 

is limited. Stylasterids are not rapid and successful primary colonisers, the opposite – they are 

sessile with fragile skeletons (Cairns, 2011). Genetic sub-division among populations 

suggests that stylasterids are isolated and largely self-recruiting (Chapter 5). The same pattern 

is evident in more accessible fiord corals (Miller et al., 2004). The study by Häussermann & 

Försterra (2007) which documented fields of isolated E. antarctica (Fig 1) and their 

subsequent complete eradication within one fiord in a 6 - 7 year time frame (Häussermann & 

Försterra, 2014), vividly illustrates that even if adaptation to climate change is possible 

(Chapter 4), it may not occur rapidly enough to combat the multiple threats to coral 

populations in modern oceans (Chapter 1). Stylasterid life history characteristics (e.g., long 

lived, slow growing, late to reproduce Miller et al., 2004; Stratford, 2002) dictate that 
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localised impacts such as destructive fisheries, pose a direct and immediate threat to 

population persistence. Therefore, habitat protection is vital to the continued study, and long 

term survival of Antarctic, Sub-Antarctic and Patagonian coral ecosystems. 
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Appendix 
 

Table 1. Sample information for chapter 3: identification number, morphological species identification, gene region (CO1,16S, ITS), geo-

graphic location, latitude, longitude, depth and voyage recorded for all study specimens. 
ID Species Gene region Location Geographic region Latitude Longitude Depth (m) Voyage Notes 

1 Errina fissurata CO1 Ross Sea  East Antarctica -75.09 176.18 760 NIWA Mfish 

13 Errina fissurata CO1 Ross Sea  East Antarctica -75.05 176.39 707 NIWA Mfish  

19 Errina fissurata CO1 Ross Sea  East Antarctica -75.01 176.45 917 NIWA Mfish  

7 Errina fissurata CO1 Ross Sea  East Antarctica -75.01 176.45 917 NIWA Mfish  

21 Errina fissurata CO1 Ross Sea  East Antarctica -75.09 176.18 760 NIWA Mfish  

15 Errina fissurata CO1 Ross Sea  East Antarctica -75.05 176.26 1054 NIWA Mfish  

8 Errina fissurata CO1 Ross Sea  East Antarctica -74.41 177.04 958 NIWA Mfish  

2 Errina fissurata CO1 Ross Sea  East Antarctica -75.05 176.39 707 NIWA Mfish  

10 Errina fissurata CO1 Ross Sea  East Antarctica -75.05 176.39 707 NIWA Mfish  

4 Errina fissurata CO1 Ross Sea  East Antarctica -75.05 176.26 1054 NIWA Mfish  

3 Errina fissurata CO1 Ross Sea  East Antarctica -75.09 176.18 760 NIWA Mfish  

1C Cheiloporidion pulvinatum CO1 Burdwood Bank South America -54.71 -62.19 660 NBP-11-03  

15C Cheiloporidion pulvinatum CO1 Burdwood Bank South America -54.73 -62.22 804 NBP-08-05  

12C Cheiloporidion pulvinatum CO1 Cape Horn South America -57.32 -66.85 938 NBP-11-03  

19B Conopora verrucosa CO1 Cape Horn Drake Passage -57.21 -66.98 904 NBP-11-03  

20B Conopora verrucosa CO1 Cape Horn Drake Passage -57.17 -67.11 1059 NBP-11-03  

3B Conopora verrucosa CO1 Shackleton Fracture Zone Drake Passage -60.22 -57.69 909 NBP-11-03  

9B Conopora verrucosa CO1 Shackleton Fracture Zone Drake Passage -60.18 -57.85 1038 NBP-11-03  

11A Cheiloporidion pulvinatum CO1 Sars Seamount Drake Passage -59.72 -68.76 817 NBP-11-03  

10A Cheiloporidion pulvinatum CO1 Sars Seamount Drake Passage -59.72 -68.76 817 NBP-11-03  

6A Errinopsis fenestrata CO1 Interim Seamount Drake Passage -60.57 -65.98 950 NBP-11-03  

8A Errinopsis fenestrata CO1 Sars Seamount Drake Passage -59.72 -68.76 817 NBP-11-03  

14A Errinopsis fenestrata CO1 Interim Seamount Drake Passage -60.58 -65.99 884 NBP-08-05  

7A Errinopsis fenestrata CO1 Interim Seamount Drake Passage -60.56 -65.97 793 NBP-11-03  
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ID Species Gene region Location Geographic region Latitude Longitude Depth (m) Voyage Notes 

19A Errinopsis fenestrata CO1 Interim Seamount Drake Passage -60.56 -65.97 896 NBP-08-05  

9A Errinopsis fenestrata CO1 Sars Seamount Drake Passage -59.72 -68.76 817 NBP-11-03  

13C Errinopsis reticulum CO1 Burdwood Bank South America -54.73 -62.22 804 NBP-08-05 cf C. pulvinatum 

18A Errinopsis reticulum CO1 Burdwood Bank South America -54.73 -62.22 804 NBP-08-05  

16A Errinopsis reticulum CO1 Burdwood Bank South America -54.52 -62.23 331 NBP-11-03  

1A Errinopsis reticulum CO1 Burdwood Bank South America -54.46 -62.21 319 NBP-11-03  

4A Errinopsis reticulum CO1 Burdwood Bank South America -54.52 -62.23 331 NBP-11-03  

17B Stylaster densicaulis CO1 Cape Horn South America -57.21 -66.98 904 NBP-11-03  

5B Stylaster densicaulis CO1 Burdwood Bank South America -54.84 -62.13 1930 NBP-11-03  

2B Stylaster densicaulis CO1 Burdwood Bank South America -54.81 -62.17 1538 NBP-11-03  

1B Stylaster densicaulis CO1 Burdwood Bank South America -54.71 -62.19 660 NBP-11-03  

22B Stylaster densicaulis CO1 Cape Horn South America -57.36 -66.69 1420 NBP-11-03  

27B Stylaster densicaulis CO1 Burdwood Bank South America -54.52 -62.23 331 NBP-11-03  

17C Stellapora echinata CO1 Burdwood Bank South America -54.73 -62.22 804 NBP-08-05  

18C Stellapora echinata CO1 Burdwood Bank South America -54.73 -62.22 804 NBP-08-05  

12B Conopora verrucosa CO1 Shackleton Fracture Zone Drake Passage -60.28 -57.53 1597 NBP-11-03  

11B Conopora verrucosa CO1 Shackleton Fracture Zone Drake Passage -60.26 -57.60 1083 NBP-11-03  

13B Conopora verrucosa CO1 Site AA Antarctic Peninsula -63.08 -61.64 642 NBP-11-03  

6B Conopora verrucosa CO1 Shackleton Fracture Zone Drake Passage -60.14 -57.99 1213 NBP-11-03  

16B Conopora verrucosa CO1 Cape Horn South America -57.19 -67.01 1257 NBP-11-03  

4C Sporadopora dichotoma 16S Cape Horn South America -57.19 -67.01 1257 NBP-11-03  

5CA Sporadopora dichotoma CO1 Cape Horn South America -54.78 -62.23 904 NBP-11-03  

9C Stellapora echinata 16S Cape Horn South America -57.31 -66.86 740 NBP-11-03  

23C Stellapora echinata 16S Interim Seamount South America -60.56 -65.97 896 NBP-08-05  

11A Cheiloporidion pulvinatum 16S Sars Seamount Drake Passage -59.72 -68.76 817 NBP-11-03  

10A Cheiloporidion pulvinatum 16S Sars Seamount Drake Passage -59.72 -68.76 817 NBP-11-03  

5A Cheiloporidion pulvinatum 16S Burdwood Bank South America -54.81 -62.17 1538 NBP-11-03  

217 Cheiloporidion pulvinatum 16S South West Atlantic South America -47.19 -59.76 934 PATA1008  
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ID Species Gene region Location Geographic region Latitude Longitude Depth (m) Voyage Notes 

226 Cheiloporidion pulvinatum 16S South West Atlantic South America -43.07 -58.74 1529 PATA0209  

212 Cheiloporidion pulvinatum 16S South West Atlantic South America -42.01 -57.57 485 PATA0210  

15C Cheiloporidion pulvinatum 16S Burdwood Bank South America -54.73 -62.22 804 NBP-08-05  

1C Cheiloporidion pulvinatum 16S Burdwood Bank South America -54.71 -62.19 660 NBP-11-03  

209 Cheiloporidion pulvinatum 16S South West Atlantic South America -42.07 -57.44 1048 PATA0210  

208 Cheiloporidion pulvinatum 16S South West Atlantic South America -42.12 -57.50 1090 PATA0210  

12C Cheiloporidion pulvinatum 16S Cape Horn Drake Passage -57.32 -66.85 938 NBP-11-03  

18A Errinopsis reticulum 16S Burdwood Bank South America -54.44 -62.24 306 NBP-08-05  

16A Errinopsis reticulum 16S Burdwood Bank South America -54.52 -62.23 331 NBP-11-03  

1A Errinopsis reticulum 16S Burdwood Bank South America -54.46 -62.21 319 NBP-11-03  

4A Errinopsis reticulum 16S Burdwood Bank South America -54.52 -62.23 331 NBP-11-03  

15A Errinopsis fenestrata 16S Sars Seamount Drake Passage -59.72 -68.73 914 NBP-08-05  

19A Errinopsis fenestrata 16S Interim Seamount Drake Passage -60.56 -65.97 896 NBP-08-05  

7A Errinopsis fenestrata 16S Interim Seamount Drake Passage -60.56 -65.97 793 NBP-11-03  

8A Errinopsis fenestrata 16S Sars Seamount Drake Passage -59.72 -68.76 817 NBP-11-03  

9A Errinopsis fenestrata 16S Sars Seamount Drake Passage -59.72 -68.76 817 NBP-11-03  

6A Errinopsis fenestrata 16S Interim Seamount Drake Passage -60.57 -65.98 950 NBP-11-03  

37B Errina laterorifa 16S Burdwood Bank South America -54.41 -60.54 151 NBP-11-05  

38B Errina laterorifa 16S Burdwood Bank South America -54.41 -60.54 151 NBP-11-05  

40B Errina laterorifa 16S Burdwood Bank South America -54.41 -60.54 151 NBP-11-05  

120 Errina laterorifa 16S Bransfield Strait Antarctic Peninsula -63.26 -59.90 296 NBP-11-05  

4 Errina gracilis 16S Herdman Bank Scotia Arc -59.90 -32.44 521 NBP-11-05  

5 Errina gracilis 16S Herdman Bank Scotia Arc -59.90 -32.44 521 NBP-11-05  

6 Errina gracilis 16S Herdman Bank Scotia Arc -59.90 -32.44 521 NBP-11-05  

122 Errina antactica 16S Burdwood Bank South America -54.68 -60.93 163 NBP-11-05  

222B Errina antarctica 16S South West Atlantic South America -41.59 -57.58 435 PATA0210  

16B Conopora verrucosa 16S Cape Horn South America -57.19 -67.01 1257 NBP-11-03  

18B Stylaster densicaulis 16S Cape Horn South America -54.73 -62.22 804 NBP-08-05  
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ID Species Gene region Location Geographic region Latitude Longitude Depth (m) Voyage Notes 

27B Stylaster densicaulis 16S Burdwood Bank South America -54.52 -62.23 331 NBP-11-03  

237B Stylaster densicaulis 16S South West Atlantic South America -44.32 -59.37 1478 PAT0209  

1B Stylaster densicaulis 16S Burdwood Bank South America -54.71 -62.19 660 NBP-11-03  

17B Stylaster densicaulis 16S Cape Horn South America -57.21 -66.98 904 NBP-11-03  

32B Stylaster densicaulis 16S Interim Seamount Drake Passage -60.56 -65.96 1008 NBP-11-03  

23B Stylaster densicaulis 16S Cape Horn South America -57.18 -66.51 740 NBP-11-03  

2B Stylaster densicaulis 16S Burdwood Bank South America -54.81 -62.17 1538 NBP-11-03  

5B Stylaster densicaulis 16S Burdwood Bank South America -54.84 -62.13 1930 NBP-11-03  

30B Stylaster densicaulis 16S Interim Seamount Drake Passage -60.56 -65.96 1008 NBP-11-03  

22B Stylaster densicaulis 16S Cape Horn Drake Passage -57.36 -66.69 1420 NBP-11-03  

25B Stylaster densicaulis 16S Cape Horn Drake Passage -57.28 -67.24 1870 NBP-11-03  

2 Inferiolabiata labiata 16S Discovery Bank Scotia Arc -60.12 -34.97 452 NBP-11-05  

7 Inferiolabiata labiata 16S South Orkney Islands Scotia Arc -60.55 -45.37 125 NBP-11-05  

16 Inferiolabiata labiata 16S Discovery Bank Scotia Arc -60.12 -34.97 452 NBP-11-05  

7B Inferiolabiata labiata 16S South Orkney Islands Scotia Arc -60.55 -45.37 125 NBP-11-05  

60B Inferiolabiata labiata 16S Discovery Bank Scotia Arc -65.87 -89.29 403.6 BR09  

10B Conopora verrucosa 16S Shackleton Fracture Zone Drake Passage -60.15 -57.93 1230 NBP-11-03  

16B Conopora verrucosa 16S Cape Horn South America -57.19 -67.01 1257 NBP-11-03  

13B Conopora verrucosa 16S Site AA Antarctic Peninsula -63.08 -61.64 642 NBP-11-03  

3B Conopora verrucosa 16S Shackleton Fracture Zone Drake Passage -60.22 -57.69 909 NBP-11-03  

9B Conopora verrucosa 16S Shackleton Fracture Zone Drake Passage -60.18 -57.85 1038 NBP-11-03  

6B Conopora verrucosa 16S Shackleton Fracture Zone Drake Passage -60.28 -57.53 1597 NBP-11-03  

11B Conopora verrucosa 16S Shackleton Fracture Zone Drake Passage -44.87 -59.64 1248 PAT1108  

12B Conopora verrucosa 16S Shackleton Fracture Zone Drake Passage -60.26 -57.60 1083 NBP-11-03  

7B Conopora verrucosa 16S Shackleton Fracture Zone Drake Passage -44.87 -59.64 1248 PAT1108  

19B Conopora verrucosa 16S Cape Horn South America -57.21 -66.98 904 NBP-11-03  

20B Conopora verrucosa 16S Cape Horn South America -57.17 -67.11 1059 NBP-11-03  

235 Conopora verrucosa 16S South West Atlantic South America -54.71 -62.19 660 PATA  
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235 Conopora verrucosa 16S South West Atlantic South America -44.87 -59.64 1248 PATA0209  

4 Sporadopora dichotoma 16S Cape Horn South America -57.19 -67.01 1257 NBP-11-03  

8C Sporadopora dichotoma 16S Cape Horn South America -57.21 -66.98 904 NBP-11-03  

5CO Sporadopora dichotoma 16S Cape Horn South America -57.21 -66.98 904 NBP-11-03  

17C Stellapora echinata 16S Burdwood Bank South America -54.73 -62.22 804 NBP-08-05  

18C Stellapora echinata 16S Burdwood Bank South America -54.73 -62.22 804 NBP-08-05  

305 Errina antarctica ITS-2 Canal Copihue Chilean Patagonia -50.20  -75. 22 15 Explorador II  

312 Errina antarctica ITS-2 Canal Copihue Chilean Patagonia -50.20 -75.22 15 Explorador II  

314 Errina antarctica ITS-2 Grupo Dacres Chilean Patagonia -51.36 -73.55 20 Explorador II  

316 Errina antarctica ITS-2 Canal Copihue Chilean Patagonia -50.20 -75.22 15 Explorador II  

328 Errina antarctica ITS Isla Solar  Chilean Patagonia -50.98 -74.95 25 Explorador II  

309 Errina antarctica ITS-2 Canal Copihue Chilean Patagonia -50.20 -75.22 15 Explorador II  

310 Errina antarctica ITS-2 Canal Copihue Chilean Patagonia -50.20 -75.22 15 Explorador II  

352 Errina c.f gracilis n.sp ITS Shackleton Glacier East Antarctica -64.27 97.08 1000.3 BR09  

39 Errina fissurata ITS Ross Sea  East Antarctica -54.69 -60.85 151 NBP-11-05  

104 Errina fissurata ITS  Ross Sea  East Antarctica -71.98 172.17 737 TAN0402  

3 Errina fissurata CO1 Ross Sea  East Antarctica -75.09 176.18 760 NIWA Mfish  

111 Errina fissurata ITS  Dumont d'Urville East Antarctica -68.82 142.95 775 CEAMARC  

112 Errina fissurata ITS Dumont d'Urville  East Antarctica -68.82 142.95 775 CEAMARC  

51 Errina fissurata ITS  Ross Sea  East Antarctica -72.11 172.69 495 TAN0402  

113 Errina fissurata ITS  Dumont d'Urville East Antarctica -68.82 142.95 775 CEAMARC  

43-B Errina fissurata ITS  Ross Sea  East Antarctica -71.99 172.20 312 TAN0402  

4 Errina fissurata ITS  Dumont d'Urville East Antarctica -68.82 142.95 775 CEAMARC  

52 Errina fissurata ITS  Ross Sea  East Antarctica -72.11 172.69 495 TAN0402  

53 Errina fissurata ITS  Ross Sea  East Antarctica -72.11 172.60 495 TAN0402  

100 Errina fissurata ITS  Ross Sea  East Antarctica -71.98 172.17 737 TAN0402  

48 Errina fissurata ITS  Ross Sea  East Antarctica -72.06 172.90 526 TAN0402  

116 Errina fissurata ITS  Dumont d'Urville East Antarctica -68.82 142.95 775 CEAMARC  
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54 Errina fissurata ITS  Ross Sea  East Antarctica -72.11 172.60 495 TAN0402  

117 Errina fissurata ITS  Dumont d'Urville East Antarctica -68.82 142.95 775 CEAMARC  

58 Errina fissurata ITS  Ross Sea  East Antarctica -71.99 172.20 675 TAN0402  

66 Errina fissurata ITS  Ross Sea  East Antarctica -72.11 172.69 495 TAN0402  

69 Errina fissurata ITS  Ross Sea  East Antarctica -71.97 171.96 480 TAN0402  

119 Errina fissurata ITS  Dumont d'Urville East Antarctica -68.80 142.95 775 CEAMARC  

120 Errina fissurata ITS  Dumont d'Urville East Antarctica -68.80 142.90 775 CEAMARC  

81 Errina fissurata ITS  Ross Sea  East Antarctica -72.00 172.22 536 TAN0402  

73 Errina fissurata ITS  Ross Sea  East Antarctica -72.00 172.22 536 TAN0402  

65 Errina fissurata ITS  Ross Sea  East Antarctica -72.11 172.69 495 TAN0402  

129 Errina fissurata ITS  Dumont d'Urville East Antarctica -68.80 142.90 775 CEAMARC  

2 Errina fissurata ITS  Dumont d'Urville East Antarctica -68.82 142.95 775 CEAMARC  

5 Errinopsis reticulum ITS Burdwood Bank East Antarctica -54.81 -62.17 1538 NBP-11-03 cf C. pulvinatum 

83 Errina laterorifa ITS  Ross Sea East Antarctica -72.00 172.22 536 TAN0402  

85 Errina laterorifa ITS  Ross Sea East Antarctica -72.00 172.22 536 TAN0402  

107 Errina laterorifa ITS  Ross Sea East Antarctica -71.98 172.17 737 TAN0402  

106 Errina laterorifa ITS  Ross Sea East Antarctica -71.98 172.17 737 TAN0402  

102 Errina laterorifa ITS  Ross Sea East Antarctica -71.98 172.17 737 TAN0402  

86 Errina laterorifa ITS  Ross Sea East Antarctica -65.40 160.88 103 TAN0402  

82-D Errina laterorifa ITS  Ross Sea East Antarctica -72.00 172.22 536 TAN0402  

7 Errinopsis fenestrata ITS Interim Seamount Drake Passage -60.56 -65.97 793 NBP-11-03  

6 Errinopsis fenestrata ITS Interim Seamount Drake Passage -60.57 -65.98 950 NBP-11-03  

16C Stylaster densicaulis 16S Burdwood Bank South America -57.36 -66.69 1420 NBP-11-03  

203 Conopora verrucosa 16S South West Atlantic South America -44.87 -59.64 1248 PATA1108  
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Table 2. Sample information for chapter 4: identification number, morphological species identification, gene region (CO1,16S), geographic 

location, latitude, longitude, depth and voyage recorded for all study specimens. 

ID Species Location Latitude Longitude Depth range (m) Cruise 

3 Cheiloporidion pulvinatum Burdwood Bank -54.90 -62.14 2215-2343 NBP0805 

35 Cheiloporidion pulvinatum Burdwood Bank -54.72 -62.24 720-736 NBP1103 

36 Cheiloporidion pulvinatum Burdwood Bank -54.72 -62.24 720-736 NBP1103 

105 Cheiloporidion pulvinatum Burdwood Bank -54.47 -62.20 310-320 NBP1103 

109 Cheiloporidion pulvinatum Burdwood Bank -54.51 -62.23 323-334 NBP1103 

9 Cheiloporidion pulvinatum Cape Horn -54.73 -62.26 804-828 NBP0805 

80 Cheiloporidion pulvinatum Cape Horn -57.16 -67.09 931-937 NBP1103 

75 Cheiloporidion pulvinatum Sars Seamount -59.70 -69.01 550-650 NBP1103 

84 Conopora verricusa Cape Horn -57.17 -67.11 975-1049 NBP1103 

44 Conopora verricusa Shackleton Fracture Zone -60.18 -57.85 717-822 NBP1103 

46 Conopora verricusa Shackleton Fracture Zone -60.18 -57.83 778-834 NBP1103 

52 Conopora verricusa Shackleton Fracture Zone -60.18 -57.85 952-1045 NBP1103 

103 Errinopsis fenestrata Burdwood Bank -54.90 -62.14 2215-2343 NBP0805 

112 Errinopsis fenestrata Burdwood Bank -54.84 -62.13 1835-1922 NBP1103 

120 Errinopsis fenestrata Interim Seamount -60.57 -65.98 1246-1326 NBP1103 

121 Errinopsis fenestrata Interim Seamount -60.57 -65.98 1246-1326 NBP1103 

123 Errinopsis fenestrata Sars Seamount -59.70 -69.01 550-650 NBP1103 

124 Errinopsis fenestrata Sars Seamount -59.70 -69.01 550-650 NBP1103 

125 Errinopsis fenestrata Sars Seamount -59.70 -69.01 550-650 NBP1103 

126 Errinopsis fenestrata Sars Seamount -59.70 -69.01 550-650 NBP1103 

127 Errinopsis fenestrata Sars Seamount -59.70 -69.01 550-650 NBP1103 

128 Errinopsis fenestrata Sars Seamount -59.70 -69.01 550-650 NBP1103 

10 Errinopsis reticulum Burdwood Bank -54.73 -62.26 804-828 NBP0805 

11 Errinopsis reticulum Burdwood Bank -54.73 -62.26 804-828 NBP0805 

 



 

202 

ID Species Location Latitude Longitude Depth range (m) Cruise 

102 Errinopsis reticulum Burdwood Bank -54.47 -62.19 312-314 NBP0805 

106 Errinopsis reticulum Burdwood Bank -54.51 -62.23 323-334 NBP1103 

108 Errinopsis reticulum Burdwood Bank -54.51 -62.23 323-334 NBP1103 

4 Sporadopora dichotoma Burdwood Bank -54.90 -62.14 2215-2343 NBP0805 

5 Sporadopora dichotoma Burdwood Bank -54.90 -62.14 2215-2343 NBP0805 

17 Sporadopora dichotoma Burdwood Bank -54.51 -62.23 323-334 NBP1103 

26 Sporadopora dichotoma Burdwood Bank -54.72 -62.24 720-736 NBP1103 

27 Sporadopora dichotoma Burdwood Bank -54.72 -62.24 720-736 NBP1103 

30 Sporadopora dichotoma Burdwood Bank -54.72 -62.24 720-736 NBP1103 

33 Sporadopora dichotoma Burdwood Bank -54.72 -62.24 720-736 NBP1103 

38 Sporadopora dichotoma Burdwood Bank -54.83 -62.10 1749-1918 NBP1103 

77 Sporadopora dichotoma Cape Horn -57.16 -67.09 931-937 NBP1103 

81 Sporadopora dichotoma Cape Horn -57.19 -67.01 1188-1257 NBP1103 

89 Sporadopora dichotoma Cape Horn -57.28 -67.24 1869-1877 NBP1103 

91 Sporadopora dichotoma Cape Horn -57.01 -67.57 447-689 NBP1103 

79 Stellopora echinata Cape Horn -57.16 -67.09 931-937 NBP1103 

85 Stellopora echinata Cape Horn -57.36 -66.68 1388-1494 NBP1103 

92 Stellopora echinata Cape Horn -57.01 -67.57 447-689 NBP1103 

12 Stylaster densicaulis Burdwood Bank -54.73 -62.26 804-828 NBP0805 

13 Stylaster densicaulis Burdwood Bank -54.73 -62.26 804-828 NBP0805 

37 Stylaster densicaulis Burdwood Bank -54.72 -62.24 720-736 NBP1103 

82 Stylaster densicaulis Cape Horn -57.17 -67.11 975-1049 NBP1103 

83 Stylaster densicaulis Cape Horn -57.17 -67.11 975-1049 NBP1103 

90 Stylaster densicaulis Cape Horn -57.01 -67.57 447-689 NBP1103 

59 Stylaster densicaulis Interim Seamount -60.56 -65.96 957-1007 NBP1103 

60 Stylaster densicaulis Interim Seamount -60.56 -65.96 957-1007 NBP1103 

40 Stylaster densicaulis Shackleton Fracture Zone -60.17 -57.55 868-888 NBP1103 
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42 Stylaster densicaulis Shackleton Fracture Zone -60.18 -57.85 717-822 NBP1103 

43 Stylaster densicaulis Shackleton Fracture Zone -60.18 -57.85 717-822 NBP1103 

47 Stylaster densicaulis Shackleton Fracture Zone -60.18 -57.83 778-834 NBP1103 

50 Stylaster densicaulis Shackleton Fracture Zone -60.18 -57.83 790-856 NBP1103 

53 Stylaster densicaulis Shackleton Fracture Zone -60.22 -57.69 979-1081 NBP1103 

54 Stylaster densicaulis Shackleton Fracture Zone -60.26 -57.60 1223-1300 NBP1103 
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Table 3. Sample information for chapter 5: identification number, morphological species identification, gene region (CO1,16S, ITS), geographic 

location, latitude, longitude, depth and voyage recorded for all study specimens. 

ID Species Gene region Location Geographic region Latitude Longitude Depth (m) Voyage 

212 Cheiloporidion pulvinatum 16S South West Atlantic South America -42.01 -57.57 485 PATA0210 

152 Cheiloporidion pulvinatum 16S South West Atlantic South America -46.24 -59.47 787 ATL10 

217B Cheiloporidion pulvinatum 16S South West Atlantic South America -47.19 -59.76 934 PATA1008 

209 Cheiloporidion pulvinatum 16S South West Atlantic South America -42.07 -57.44 1048 PATA0210 

208 Cheiloporidion pulvinatum 16S South West Atlantic South America -42.12 -57.50 1090 PATA0210 

226 Cheiloporidion pulvinatum 16S South West Atlantic South America -43.07 -58.74 1529 PATA0209 

5A Cheiloporidion pulvinatum 16S Burdwood Bank South America -54.81 -62.17 1538 NBP-11-03 

1C Cheiloporidion pulvinatum 16S Burdwood Bank South America -54.71 -62.19 660 NBP-11-03 

1C Cheiloporidion pulvinatum CO1 Burdwood Bank South America -54.71 -62.19 660 NBP-11-03 

15C Cheiloporidion pulvinatum 16S Burdwood Bank South America -54.73 -62.22 804 NBP-08-05 

13C Cheiloporidion pulvinatum 16S Burdwood Bank South America -54.73 -62.22 804 NBP-08-05 

13C (1) Cheiloporidion pulvinatum CO1 Burdwood Bank South America -54.73 -62.22 804 NBP-08-05 

13C (2) Cheiloporidion pulvinatum CO1 Burdwood Bank South America -54.73 -62.22 804 NBP-08-05 

15C Cheiloporidion pulvinatum CO1 Burdwood Bank South America -54.73 -62.22 804 NBP-08-05 

11A Cheiloporidion pulvinatum 16S Sars Seamount Drake Passage -59.72 -68.76 817 NBP-11-03 

10A Cheiloporidion pulvinatum 16S Sars Seamount Drake Passage -59.72 -68.76 817 NBP-11-03 

7C Cheiloporidion pulvinatum 16S Cape Horn South America -57.21 -66.98 904 NBP-11-03 

7C Cheiloporidion pulvinatum CO1 Cape Horn South America -57.21 -66.98 904 NBP-11-03 

12C Cheiloporidion pulvinatum 16S Cape Horn South America -57.32 -66.85 938 NBP-11-03 

12C Cheiloporidion pulvinatum CO1 Cape Horn South America -57.32 -66.85 938 NBP-11-03 

19B Conopora verrucosa CO1 Cape Horn South America -57.21 -66.98 904 NBP-11-03 

3B Conopora verrucosa CO1 Shackleton Fracture Zone Drake Passage -60.22 -57.69 909 NBP-11-03 

6B Conopora verrucosa 16S Shackleton Fracture Zone Drake Passage -60.14 -57.99 1213 NBP-11-03 

7B Conopora verrucosa 16S Shackleton Fracture Zone Drake Passage -60.15 -57.93 1230 NBP-11-03 

235 Conopora verrucosa 16S South West Atlantic South America -44.87 -59.64 1248 PATA0209 

203 Conopora verrucosa 16S South West Atlantic South America -44.87 -59.64 1248 PATA1108 
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10B Conopora verrucosa 16S Shackleton Fracture Zone Drake Passage -60.12 -57.43 1425 NBP-11-03 

3B Conopora verrucosa 16S Shackleton Fracture Zone Drake Passage -60.13 -57.41 909 NBP-11-03 

9B Conopora verrucosa 16S Shackleton Fracture Zone Drake Passage -60.18 -57.85 1038 NBP-11-03 

9B Conopora verrucosa CO1 Shackleton Fracture Zone Drake Passage -60.18 -57.85 1038 NBP-11-03 

20B Conopora verrucosa 16S Cape Horn South America -57.17 -67.11 1059 NBP-11-03 

20B Conopora verrucosa CO1 Cape Horn South America -57.17 -67.11 1059 NBP-11-03 

11B Conopora verrucosa 16S Shackleton Fracture Zone Drake Passage -60.26 -57.60 1083 NBP-11-03 

11B Conopora verrucosa CO1 Shackleton Fracture Zone Drake Passage -60.26 -57.60 1083 NBP-11-03 

6B Conopora verrucosa CO1 Shackleton Fracture Zone Drake Passage -60.14 -57.99 1213 NBP-11-03 

16B Conopora verrucosa 16S Cape Horn South America -57.19 -67.01 1257 NBP-11-03 

16B Conopora verrucosa CO1 Cape Horn South America -57.19 -67.01 1257 NBP-11-03 

12B Conopora verrucosa 16S Shackleton Fracture Zone Drake Passage -60.28 -57.53 1597 NBP-11-03 

12B Conopora verrucosa CO1 Shackleton Fracture Zone Drake Passage -60.28 -57.53 1597 NBP-11-03 

312 Errina antarctica ITS-2 Canal Copihue Chilean Patagonia -50.20 -75. 22 15 Explorador II 

307 Errina antarctica ITS-2 Canal Copihue Chilean Patagonia -50.20 -75. 22 15 Explorador II 

299 Errina antarctica ITS-2 Canal Copihue Chilean Patagonia -50.20 -75. 22 15 Explorador II 

303 Errina antarctica ITS-2 Canal Copihue Chilean Patagonia -50.20 -75. 22 15 Explorador II 

305 Errina antarctica ITS-2 Canal Copihue Chilean Patagonia -50.20 -75. 22 15 Explorador II 

309 Errina antarctica ITS-2 Canal Copihue Chilean Patagonia -50.20 -75. 22 15 Explorador II 

310 Errina antarctica ITS-2 Canal Copihue Chilean Patagonia -50.20 -75. 22 15 Explorador II 

316 Errina antarctica ITS-2 Canal Copihue Chilean Patagonia -50.20 -75. 22 15 Explorador II 

308 Errina antarctica ITS-2 Canal Copihue Chilean Patagonia -50.20 -75. 22 15 Explorador II 

320 Errina antarctica ITS-2 Grupo Dacres Chilean Patagonia -51.36 -73. 55 20 Explorador II 

322 Errina antarctica ITS-2 Grupo Dacres Chilean Patagonia -51.36 -73. 55 20 Explorador II 

319 Errina antarctica ITS-2 Grupo Dacres Chilean Patagonia -51.36 -73. 55 20 Explorador II 

318 Errina antarctica ITS-2 Grupo Dacres Chilean Patagonia -51.36 -73. 55 20 Explorador II 

315 Errina antarctica ITS-2 Grupo Dacres Chilean Patagonia -51.36 -73. 55 20 Explorador II 

314 Errina antarctica ITS-2 Grupo Dacres Chilean Patagonia -51.36 -73. 55 20 Explorador II 

326 Errina antarctica ITS-2 Grupo Dacres Chilean Patagonia -51.36 -73. 55 20 Explorador II 



 

206 

ID Species Gene region Location Geographic region Latitude Longitude Depth (m) Voyage 

14A Errinopsis fenestrata CO1 Interim Seamount Drake Passage -60.58 -65.99 884 NBP-08-05 

15A Errinopsis fenestrata 16S Sars Seamount Drake Passage -59.72 -68.73 914 NBP-08-05 

7A Errinopsis fenestrata 16S Interim Seamount Drake Passage -60.56 -65.97 793 NBP-11-03 

7A Errinopsis fenestrata CO1 Interim Seamount Drake Passage -60.56 -65.97 793 NBP-11-03 

9A Errinopsis fenestrata 16S Sars Seamount Drake Passage -59.72 -68.76 817 NBP-11-03 

8A Errinopsis fenestrata 16S Sars Seamount Drake Passage -59.72 -68.76 817 NBP-11-03 

9A Errinopsis fenestrata CO1 Sars Seamount Drake Passage -59.72 -68.76 817 NBP-11-03 

8A Errinopsis fenestrata CO1 Sars Seamount Drake Passage -59.72 -68.76 817 NBP-11-03 

19A Errinopsis fenestrata 16S Interim Seamount Drake Passage -60.56 -65.97 896 NBP-08-05 

19A Errinopsis fenestrata CO1 Interim Seamount Drake Passage -60.56 -65.97 896 NBP-08-05 

6A Errinopsis fenestrata 16S Interim Seamount Drake Passage -60.57 -65.98 950 NBP-11-03 

6A Errinopsis fenestrata CO1 Interim Seamount Drake Passage -60.57 -65.98 950 NBP-11-03 

97-C Errina fissurata ITS Ross Sea East Antarctica -71.29 170. 57 170 TAN0402 

43-B Errina fissurata ITS Ross Sea East Antarctica -71.99 172. 20 312 TAN0402 

69-C Errina fissurata ITS Ross Sea East Antarctica -71.97 171. 96 480 TAN0402 

65-C Errina fissurata ITS Ross Sea East Antarctica -72.11 172. 69 495 TAN0402 

66-B Errina fissurata ITS Ross Sea East Antarctica -72.11 172. 69 495 TAN0402 

51-B Errina fissurata ITS Ross Sea East Antarctica -72.11 172. 69 495 TAN0402 

52-C Errina fissurata ITS Ross Sea East Antarctica -72.11 172. 69 495 TAN0402 

53-D Errina fissurata ITS Ross Sea East Antarctica -72.11 172. 6 495 TAN0402 

54-E Errina fissurata ITS Ross Sea East Antarctica -72.11 172. 6 495 TAN0402 

3 Errina fissurata ITS Dumont d'Urville East Antarctica -65.70 140. 59 500 CEAMARC 

48-A Errina fissurata ITS Ross Sea East Antarctica -72.06 172. 90 526 TAN0402 

49-B Errina fissurata ITS Ross Sea East Antarctica -72.06 172. 90 526 TAN0402 

73-E Errina fissurata ITS Ross Sea East Antarctica -72.00 172. 22 536 TAN0402 

81-E Errina fissurata ITS Ross Sea East Antarctica -72.00 172. 22 536 TAN0402 

68 Errina fissurata ITS Ross Sea East Antarctica -72.32 170. 42 536 TAN0402 

58 Errina fissurata ITS Ross Sea East Antarctica -71.99 172. 20 675 TAN0402 

13 Errina fissurata CO1 Ross Sea East Antarctica -75.05 176.39 707 NIWA Mfish 
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2 Errina fissurata CO1 Ross Sea East Antarctica -75.05 176.39 707 NIWA Mfish 

10 Errina fissurata CO1 Ross Sea East Antarctica -75.05 176.39 707 NIWA Mfish 

91-A Errina fissurata ITS Ross Sea East Antarctica -71.98 172. 17 737 TAN0402 

100-E Errina fissurata ITS Ross Sea East Antarctica -71. 98 172. 17 737 TAN0402 

101-F Errina fissurata ITS Ross Sea East Antarctica -71.98 172. 17 737 TAN0402 

104-I Errina fissurata ITS Ross Sea East Antarctica -71.98 172. 17 737 TAN0402 

1 Errina fissurata CO1 Ross Sea East Antarctica -75.09 176.18 760 NIWA Mfish 

21 Errina fissurata CO1 Ross Sea East Antarctica -75.09 176.18 760 NIWA Mfish 

3 Errina fissurata CO1 Ross Sea East Antarctica -75.09 176.18 760 NIWA Mfish 

2 Errina fissurata ITS Dumont d'Urville East Antarctica -68.82 142. 95 775 CEAMARC 

4 Errina fissurata ITS Dumont d'Urville East Antarctica -68.82 142. 95 775 CEAMARC 

111-A Errina fissurata ITS Dumont d'Urville East Antarctica -68.82 142. 95 775 CEAMARC 

113-C Errina fissurata ITS Dumont d'Urville East Antarctica -68.82 142. 95 775 CEAMARC 

116-F Errina fissurata ITS Dumont d'Urville East Antarctica -68.82 142. 95 775 CEAMARC 

117-G Errina fissurata ITS Dumont d'Urville East Antarctica -68.82 142. 95 775 CEAMARC 

119-I Errina fissurata ITS Dumont d'Urville East Antarctica -68.80 142. 95 775 CEAMARC 

120-J Errina fissurata ITS Dumont d'Urville East Antarctica -68.80 142. 9 775 CEAMARC 

127-Q Errina fissurata ITS Dumont d'Urville East Antarctica -68.80 142. 9 775 CEAMARC 

128-R Errina fissurata ITS Dumont d'Urville East Antarctica -68.80 142. 9 775 CEAMARC 

129-S Errina fissurata ITS Dumont d'Urville East Antarctica -68.80 142. 9 775 CEAMARC 

19 Errina fissurata CO1 Ross Sea East Antarctica -75.01 176.45 917 NIWA Mfish 

7 Errina fissurata CO1 Ross Sea East Antarctica -75.01 176.45 917 NIWA Mfish 

8 Errina fissurata CO1 Ross Sea East Antarctica -74.41 177.04 958 NIWA Mfish 

15 Errina fissurata CO1 Ross Sea East Antarctica -75.05 176.26 1054 NIWA Mfish 

4 Errina fissurata CO1 Ross Sea East Antarctica -75.05 176.26 1054 NIWA Mfish 

86 Errina laterorifa ITS Ross Sea East Antarctica -65.40 160. 88 103 TAN0402 

37B Errina laterorifa 16S Burdwood Bank South America -54.41 -60. 54 151 NBP-11-05 

38B Errina laterorifa 16S Burdwood Bank South America -54.41 -60. 54 151 NBP-11-05 

40B Errina laterorifa 16S Burdwood Bank South America -54.41 -60. 54 151 NBP-11-05 
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ID Species Gene region Location Geographic region Latitude Longitude Depth (m) Voyage 

136 Errina laterorifa 16S Bransfield Strait Antarctic Peninsula -63.26 -59.90 296 NBP-11-05 

155 Errina laterorifa 16S Bransfield Strait Antarctic Peninsula -63.26 -59.90 296 NBP-11-05 

42-A Errina laterorifa ITS Ross Sea East Antarctica -71.99 172. 20 312 TAN0402 

260 Errina laterorifa 16S Ross Sea East Antarctica -71.73 171. 75 451 TAN0402 

82-D Errina laterorifa ITS Ross Sea East Antarctica -72.00 172. 22 536 TAN0402 

83-C Errina laterorifa ITS Ross Sea East Antarctica -72.00 172. 22 536 TAN0402 

85-A Errina laterorifa ITS Ross Sea East Antarctica -72.00 172. 22 536 TAN0402 

102-G Errina laterorifa ITS Ross Sea East Antarctica -71.98 172. 17 737 TAN0402 

106-K Errina laterorifa ITS Ross Sea East Antarctica -71.98 172.17 737 TAN0402 

107-L Errina laterorifa ITS Ross Sea East Antarctica -71.98 172.17 737 TAN0402 

101-F Errina laterorifa ITS Ross Sea East Antarctica -71.98 172.17 737 TAN0402 

103-H Errina laterorifa ITS Ross Sea East Antarctica -71.98 172.17 737 TAN0402 

23B Stylaster densicaulis 16S Cape Horn South America -57.18 -66.51 740 NBP-11-03 

16C Stylaster densicaulis 16S Burdwood Bank South America -54.73 -62.22 804 NBP-08-05 

18B Stylaster densicaulis 16S Cape Horn South America -57.21 -66.98 904 NBP-11-03 

15B Stylaster densicaulis CO1 Cape Horn South America -57.09 -67.05 931 NBP-11-03 

24B Stylaster densicaulis CO1 Cape Horn South America -57.32 -66.85 938 NBP-11-03 

30B Stylaster densicaulis 16S Interim Seamount Drake Passage -60.56 -65.96 1008 NBP-11-03 

32B Stylaster densicaulis 16S Interim Seamount Drake Passage -60.56 -65.96 1008 NBP-11-03 

14B Stylaster densicaulis CO1 Interim Seamount Drake Passage -60.64 -66.04 1513 NBP-11-03 

25B Stylaster densicaulis 16S Cape Horn South America -57.28 -67.24 1870 NBP-11-03 

27B Stylaster densicaulis 16S Burdwood Bank South America -54.52 -62.23 331 NBP-11-03 

27B Stylaster densicaulis CO1 Burdwood Bank South America -54.52 -62.23 331 NBP-11-03 

1B Stylaster densicaulis 16S Burdwood Bank South America -54.71 -62.19 660 NBP-11-03 

1B Stylaster densicaulis CO1 Burdwood Bank South America -54.71 -62.19 660 NBP-11-03 

17B Stylaster densicaulis 16S Cape Horn South America -57.21 -66.98 904 NBP-11-03 

17B Stylaster densicaulis CO1 Cape Horn South America -57.21 -66.98 904 NBP-11-03 

22B Stylaster densicaulis 16S Cape Horn South America -57.36 -66.69 1420 NBP-11-03 

22B Stylaster densicaulis CO1 Cape Horn South America -57.36 -66.69 1420 NBP-11-03 
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ID Species Gene region Location Geographic region Latitude Longitude Depth (m) Voyage 

2B Stylaster densicaulis 16S Burdwood Bank South America -54.81 -62.17 1538 NBP-11-03 

2B Stylaster densicaulis CO1 Burdwood Bank South America -54.81 -62.17 1538 NBP-11-03 

5B Stylaster densicaulis 16S Burdwood Bank South America -54.84 -62.13 1930 NBP-11-03 

5B Stylaster densicaulis CO1 Burdwood Bank South America -54.84 -62.13 1930 NBP-11-03 
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Table 3.1. Sample information for chapter 5: identification number, morphological species identification, gene region (ITS), geographic loca-

tion, Station, latitude, longitude, depth and voyage recorded for all study specimens.  

ID Species Gene region Location Latitude Longitude Depth (m) Station Voyage 

1 Errina fissurata CO1 Ross Sea -75.09 176.18 760 23 NIWA Mfish 

21 Errina fissurata CO1 Ross Sea -75.09 176.18 760 23 NIWA Mfish 

3 Errina fissurata CO1 Ross Sea -75.09 176.18 760 23 NIWA Mfish 

15 Errina fissurata CO1 Ross Sea -75.05 176.26 1054 24 NIWA Mfish 

4 Errina fissurata CO1 Ross Sea -75.05 176.26 1054 24 NIWA Mfish 

13 Errina fissurata CO1 Ross Sea -75.05 176.39 707 27 NIWA Mfish 

2 Errina fissurata CO1 Ross Sea -75.05 176.39 707 27 NIWA Mfish 

10 Errina fissurata CO1 Ross Sea -75.05 176.39 707 27 NIWA Mfish 

19 Errina fissurata CO1 Ross Sea -75.01 176.45 917 28 NIWA Mfish 

7 Errina fissurata CO1 Ross Sea -75.01 176.45 917 28 NIWA Mfish 

8 Errina fissurata CO1 Ross Sea -74.41 177.04 958 41 NIWA Mfish 

2 Errina fissurata ITS Dumont d'Urville -68.82 142.95 775 65 CEAMARC 

4 Errina fissurata ITS Dumont d'Urville -68.82 142.95 775 65 CEAMARC 

111-A Errina fissurata ITS Dumont d'Urville -68.82 142.95 775 65 CEAMARC 

113-C Errina fissurata ITS Dumont d'Urville -68.82 142.95 775 65 CEAMARC 

116-F Errina fissurata ITS Dumont d'Urville -68.82 142.95 775 65 CEAMARC 

117-G Errina fissurata ITS Dumont d'Urville -68.82 142.95 775 65 CEAMARC 

119-I Errina fissurata ITS Dumont d'Urville -68.82 142.95 775 65 CEAMARC 

120-J Errina fissurata ITS Dumont d'Urville -68.82 142.90 775 65 CEAMARC 

127-Q Errina fissurata ITS Dumont d'Urville -68.82 142.90 775 65 CEAMARC 

128-R Errina fissurata ITS Dumont d'Urville -68.82 142.90 775 65 CEAMARC 

129-S Errina fissurata ITS Dumont d'Urville -68.82 142.90 775 65 CEAMARC 

65-C Errina fissurata ITS Ross Sea -72.11 172.69 495 78 TAN0402 

66-B Errina fissurata ITS Ross Sea -72.11 172.69 495 78 TAN0402 

51-B Errina fissurata ITS Ross Sea -72.11 172.69 495 78 TAN0402 

52-C Errina fissurata ITS Ross Sea -72.11 172.69 495 78 TAN0402 
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ID Species Gene region Location Latitude Longitude Depth (m) Station Voyage 

53-D Errina fissurata ITS Ross Sea -72.11 172.60 495 78 TAN0402 

54-E Errina fissurata ITS Ross Sea -72.11 172.60 495 78 TAN0402 

3 Errina fissurata ITS Dumont d'Urville -65.70 140.59 500 79 CEAMARC 

48-A Errina fissurata ITS Ross Sea -72.06 172.90 526 82 TAN0402 

49-B Errina fissurata ITS Ross Sea -72.06 172.90 526 82 TAN0402 

97-C Errina fissurata ITS Ross Sea -71.29 170.57 170 112 TAN0402 

43-B Errina fissurata ITS Ross Sea -71.99 172.20 312 116 TAN0402 

42-A Errina laterorifa ITS Ross Sea -71.99 172.20 312 116 TAN0402 

69-C Errina fissurata ITS Ross Sea -71.97 171.96 480 150 TAN0402 

68 Errina fissurata ITS Ross Sea -72.32 170.42 536 154 TAN0402 

73-E Errina fissurata ITS Ross Sea -72.00 172.22 536 154 TAN0402 

81-E Errina fissurata ITS Ross Sea -72.00 172.22 536 154 TAN0402 

82-D Errina laterorifa ITS Ross Sea -72.00 172.22 536 154 TAN0402 

83-C Errina laterorifa ITS Ross Sea -72.00 172.22 536 154 TAN0402 

85-A Errina laterorifa ITS Ross Sea -72.00 172.22 536 154 TAN0402 

58 Errina fissurata ITS Ross Sea -71.99 172.20 675 156 TAN0402 

91-A Errina fissurata ITS Ross Sea -71.98 172.17 737 157 TAN0402 

100-E Errina fissurata ITS Ross Sea -71.98 172.17 737 157 TAN0402 

101-F Errina fissurata ITS Ross Sea -71.98 172.17 737 157 TAN0402 

104-I Errina fissurata ITS Ross Sea -71.98 172.17 737 157 TAN0402 

102-G Errina laterorifa ITS Ross Sea -71.98 172.17 737 157 TAN0402 

106-K Errina laterorifa ITS Ross Sea -71.98 172.17 737 157 TAN0402 

107-L Errina laterorifa ITS Ross Sea -71.98 172.17 737 157 TAN0402 

101-F Errina laterorifa ITS Ross Sea -71.98 172.17 737 157 TAN0402 

103-H Errina laterorifa ITS Ross Sea -71.98 172.17 737 157 TAN0402 

86 Errina laterorifa ITS Ross Sea -65.40 160.88 103 277 TAN0402 
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Table 3.2. Summary of connectivity research in Antarctic benthic invertebrates tested to date. The majority of genetic connectivity research in 

Antarctica has focused on a single species, and comparisons across multiple spatial scales are uncommon. This study has comparatively more 

species, includes multiple spatial scales (20 – 2000km). Most studies to date focus on a broad spatial scale (>1000km). Samples included herein 

are comparatively deeper, and across a broader depth range (~15-2000m) than the majority of studies to date (predominantly <500m).   To illus-

trate this, studies with more than one species are highlighted in dark grey, low sample sizes (<150 samples) are highlighted in light grey, deeper 

depths (>500m) and studies incorporating a localised spatial scale (<200km) are in bold. (Edited from Thatje, 2012). 

Species Genetic pattern Sample Size Depth (m) Study area 

Spatial Scale 

(estimated km) 

Reproductive 

mode Genetic marker Reference 

Chorismus 

antarcticus 

(Decapoda) 

Panmixia, 

reduced 

haplotype 

diversity, post-

glacial expansion 

2 - 44 samples 

per site (178 

total) 

166 - 2,134 Circum-Antarctic 

(shelf depth) 

> 2,000 Planktotrophic 

larva 

COI, 16S 18S, 

28S 

Raupach et al., 

2010 

Nematocarcinus 

lanceopes 

(Decapoda) 

Panmixia, high 

haplotype 

diversity 

2 - 44 samples 

per site (187 

total) 

166 - 2,134 Circum-Antarctic 

(deep-sea and 

deep continental 

slope) 

> 2,000 Planktotophic 

larva 

COI, 16S 18S, 

28S 

Raupach et al., 

2010 

Lissarca 

notorcadensis 

(Bivalvia) 

Cryptic 

speciation 

2 - 6 samples per 

site (58 total) 
231 - 622 Sub-Antarctic, 

Weddell Sea, 

West Antarctic 

Peninsula, Ross 

Sea 

> 1,000 Brooder COI, 28S Linse et al., 

2007 
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Species Genetic pattern Sample Size Depth (m) Study area 

Spatial Scale 

(estimated km) 

Reproductive 

mode Genetic marker Reference 

Margarella 

antarctica 

(Bivalvia) 

non-restricted 

gene flow 

43 - 48 samples 

per site (414 

total) 

10 - 28 West Antarctic 

Peninsula 
~ 2 - 15,00 Brooder AFLPs Hoffman et al., 

2013 

Nacella spp. (7 

species) 

(Gastropoda) 

Homogenous 

species, 

differentiation at 

population level 

22 - 54 samples 

per site (208 

total) 

2 - 25 Patagonia ~ 200 - 1,000 Brooder CO1 Gonzalez-Wevar 

et al., 2011 

Nacella 

concinna 

(Gastropoda) 

Homogenous 

species, 

differentiation at 

population level 

37 - 48 samples 

per site (405 

total) 

10 - 28 Scotia sea islands, 

West Antarctica 

Peninsula 

~ 2 - 1,500 Planktotrophic 

larva 

AFLPs Hoffman et al., 

2011 

Doris 

kerguelenensis 

(Nudibranchia) 

Rapid post-

glacial 

expansion; 

potentially 

cryptic species 

1 - 25 samples 

per site (144 

total) 

24 - 520 Circum-Antarctic <50 - 6,200 Direct developer COI Wilson et al., 

2009 
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Species Genetic pattern Sample Size Depth (m) Study area 

Spatial Scale 

(estimated km) 

Reproductive 

mode Genetic marker Reference 

Promachocrinus 

kerguelensis 

(Crinoidea) 

Some haplotype 

diversity found; 

intermediate, 

suggesting 

limited pelagic 

dispersal 

3 - 16 samples 

per site (1,888 

total) 

116  - 1,170 West Antarctic 

Peninsula and 

Scotia sea 

500  - >1,000 Short pelagic 

larva (?) 

COI, CytB Wilson et al., 

2007 

Promachocrinus 

kerguelensis 

(Crinoidea) 

Circum-

Antarctic; 

sympatric in 

seven 

mitochondrial 

lineages, 

restricted gene 

flow, East 

Antarctica 

17 - 418 samples 

per site (1,307 

total) 

200 - 1,000 Circum-Antarctic ~20 - 20,000 Short pelagic 

larva (?) 

COI, CytB, 16S, 

28S, ITS 

Hemery et al., 

2012 

Astrotoma 

agassizii 

(Ophiuoridea) 

Homogenous 

population at 

intermediate 

scale (>500?km) 

1 - 18 samples 

per site (118 

total) 

96 - 854 Drake Passage 72 - >500 Brooder, some 

dispersal 

potential shown 

COII, 16S rRNA Hunter & 

Halanych 2008 

Astrotoma 

agassizii 

(Ophiuroidea) 

Evidence for 

likely cryptic 

speciation in 

South America; 

homogenous 

populations in 

Ross Sea 

3 samples per 

site (12 total) 

50 Ross Sea 500 - 5,000 Possibly 

planktonic larva 

in Antarctica, 

brooding in 

South American 

lineages (?) 

COI, 16S Heimeier et al., 

2010 
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Species Genetic pattern Sample Size Depth (m) Study area 

Spatial Scale 

(estimated km) 

Reproductive 

mode Genetic marker Reference 

Ophionotus 

victoriae 

(Ophiuroidea) 

Evidence for 

cryptic 

speciation; some 

genetically 

homogenous 

populations 

5 - 127 per site 

(395 total) 
130 - 648 West Antarctic 

Peninsula, 

Southern Ocean 

Islands 

20 - >1,500 Planktotrophic 

larva (short 

duration?) 

COI, 16S Hunter & 

Halanych 2010 

Odontaster 

species 

(Astyeroidea) 

Multiple species 

found, cross 

ACC distribution 

in O. 

meridionalis, 

restricted 

distribution to 

either side of 

Polar Front in 

other Odontaster 

species. 

1 - 12 per site 

(105 total) 
116 - 1,170 West Antarctic 

Peninsula, sub-

Antarctic/Atlantic, 

Ross Sea 

20 - >1,500 Pelagic larva COI, 16S Janosik et al., 

2011 

Abatus cordatus 

(Echinoidea) 

Significant 

differentiation at 

the population 

level 

41 - 136 per site 

(374 total) 

<10 Kerguelen Islands 

(endemic) 
25 Brooder Microsats, EPIC 

markers 

Ledoux et al., 

2012 
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Species Genetic pattern Sample Size Depth (m) Study area 

Spatial Scale 

(estimated km) 

Reproductive 

mode Genetic marker Reference 

Parbolasia 

corrugatus 

(Nemertea) 

Cryptic 

speciation (but 

low diversity; 

two forms) 

20 - 336 per site 

(1,064 total) 

<16 South Orkney 

Islands; sub-

Antarctic and 

circum-Antarctic 

1 - 15 Planktotrophic 

larva 

COI Rogers et al., 

1998; Thornhill 

et al., 2008 

Eusirus 

perdentatus, 

Eusirus 

giganteus 

(Amphipoda) 

Highly restricted 

gene flow, 

possible cryptic 

speciation and/or 

speciation 

1 - 18 per site 

(125 total) 
163 - 698 Circum-Antarctic 150 - 5,000 Brooder COI, CytB, ITS2 Baird et al., 

2011 

Durvillaea 

antarctica 

(Limnoria 

stephenseni and 

Parawaldeckia 

kidderi 

Amphipoda) 

Single haplotype 

found 

15 - 47 per site 

(151 total) 

~ 1 (kelp 

collected at 

surface) 

Circum-Antarctic 

through rafting on 

kelp 

700 - 8,000 Brooder COI Nikula et al., 

2010 

Orchomenella 

franklini 

(Amphipoda) 

High genetic 

differentiation 

14 - 32 per site 

(718 total) 

<10 East Antarctica <1 - 1,400 Brooder Microsats Baird et al., 

2012 
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Species Genetic pattern Sample Size Depth (m) Study area 

Spatial Scale 

(estimated km) 

Reproductive 

mode Genetic marker Reference 

Acanthaspidia 

drygalskii 

(Isopoda) 

Some evidence 

for cryptic 

speciation 

2 - 9 per site (17 

total) 
668 - 1119 Circum-Antarctic, 

also deep-sea 

>1,000 Brooder 16S Raupach & 

Wägele 2006 

Betamorpha 

fusiformis 

(Isopoda) 

Cryptic 

speciation 

1 - 15 per site 

(50 total) 
1030 - 4696 Deep-sea - 

Weddell Sea up to 

South Africa 

>1,000 Brooder 16S, 18S Raupach et al., 

2007 

Septemserolis 

septemcarinata 

(Isopoda) 

Significant 

genetic 

differentiation 

found, but one 

species still; 

result of recent 

expansion or 

rafting? 

5 - 56 samples 

per site (95 total) 

>200 Scotia sea to 

Bouvet 

>1,000 Brooder COI, Microsats. Leese et al., 

2010 

Glyptonotus 

antarcticus 

(Isopoda) 

Cryptic 

speciation 

1 - 6 samples per 

site (56 total) 
231 - 622 Circum-Antarctic >500 Brooder 16S Held & Wägele 

2005 
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Species Genetic pattern Sample Size Depth (m) Study area 

Spatial Scale 

(estimated km) 

Reproductive 

mode Genetic marker Reference 

         

Ceratoserolis 

trilobitoides 

(Isopoda) 

Cryptic 

speciation 

1 - 5 samples per 

site (28 total) 

~20 -459 Circum-Antarctic >500 Brooder 16S Microsat. Held 2003, 

Leese &Held 

2008 

Macroscapha 

spp. (8 species) 

(Ostracoda) 

Increased 

number of 

cryptic and 

morpho-species 

1 - 78 samples 

per site (219 

total) 

84 - 2893 Circum-Antarctic 

(Weddell Sea, 

Ross Sea) 

>500 Brooder COI, ITS Brandão et al., 

2010 

Nymphon 

australe 

(Pycnogonida) 

Cryptic 

speciation 

9 - 81 samples 

per site (131 

total) 

 Circum-Antarctic 10 - >1,000 Brooder COI, 16S Arango et al., 

2011 

Colossendeis 

megalonyx 

(Pycnogonida) 

Cryptic 

speciation 

1 - 38 samples 

per site (96 total) 
75 - 648 Antarctic and sub-

Antarctic 

>500 Brooder COI Krabbe et al., 

2009 
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Species Genetic pattern Sample Size Depth (m) Study area 

Spatial Scale 

(estimated km) 

Reproductive 

mode Genetic marker Reference 

         

Conopora 

verrucosa 

(Stylasteridae) 

Significant 

differentiation at 

the population 

level 

2 - 7 samples per 

site (20 total) 
660 - 1597 South West 

Atlantic and Sub-

Antarctic 

<500 - 1,000 Brooder CO1, 16S This study 

Chieloporidion 

pulvinatum 

(Stylasteridae) 

Significant 

differentiation at 

the population 

level 

2 - 6 samples per 

site (15 total) 
485 - 1529 South West 

Atlantic and Sub-

Antarctic 

<500 - 1,000 Brooder CO1, 16S This study 

Errina spp. (3 

species) 

(Stylasteridae) 

No significant 

differentiation at 

the population 

level, evidence 

of adaptive 

radiation from a 

basal ancestor 

1 - 11 samples 

per site (61 total) 
15 - 1054 Chilean 

Patagonia, Ross 

Sea and Dumont 

d'Urville Sea, East 

Antarctica 

<10 -2,000 Brooder CO1, ITS This study 

Errinopsis 

fenestrata 

(Stylasteridae) 

Significant 

differentiation at 

the population 

level 

1 - 3 samples per 

site (12 total) 
793 - 950 Sub-Antarctic 200 - 500 Brooder CO1, 16S This study 



 

220 

Stylaster 

densicaulis 

(Stylasteridae) 

Significant 

differentiation at 

the population 

level 

2 - 5 samples per 

site (21 total) 
331 - 1930 Sub-Antarctic 200 - 500 Brooder CO1, 16S This study 

 




