MULTIMICROPROCESSOR RESOURCE ALLOCATION

NN oo S L S S S S S I S o o S eSS e ==m ==

s '

W A
"

ot

t‘ } :’:‘n l' fa
DAVID WYNNE
N
3
ijf" Department of Information Science
RN
V < University of Tasmania

\ 1983

PAGE INDEX.

Abstract ...eececccocrecacaccccoscnanaans e cesereceernsesranecccas 1
Chapter (1) ...cecceccecen e aevececeseennesaacarecescatacsansaneonn 2
1.1 Introductionccccceeceacecnces trccecscasecesersssnacnne 2
1.2 Resource allocation applicationscceeeceecece. ceeees 2
1.3 Concurrent programscccccce.e- e ceeacentesonnenne 3
1.4 Computer architecture e ccseeveersscvsesanoves s 4
1.5 Resource allocationcccccevecen csecececsenans ceces 5
l.6 High level laNQUAaJES ..eeecveeccevececcconrcenvans cececcennn 7
1.7 Architecture specification ceevennns ceceoenans esees 8
1.8 Program specificationccceviiiiieiiianenn. cesecenes 9
1.9 The topics researchedcccc... ceeeseaas coseesesnnss . 1o
1.10 Chapter SUrvey ...ccccecec.. ceesesenns cecescceaceencane eeee 12
Chapter (2) Gecesescenan cecetesetccecsarsacacesaanssensnasenn 13
2.1 An overview of resource allocationceceereeceecenes 13
2.1.1. Examples of resource allocation eececsscvscconse 15
2.2 Resource allocation aspectsc.cccececcceecncrcrescacans 20
2.2.1 Low level detalls .iccececcasecesncaccascancncacncscns 20
2,2.2 Process to processor allocationceeeececcecccccass 20
2.2.3 Degradation due to memory interferencec..c.c.... 20
2.2.4 Allocation interactionscceececcecsccocccorenanne 23
2.2.5 Resource allocation failureccceeveeenccccrenes 23
2.3 Some resource allocation applicationscecceececeecane. 24
2.3.1 Picture processing ..c.ceecececess e cescsscsnnsacennenn 24
2.3.2 Cm* type computer architecturecccceceveceens 25
2.3.3. Systolic architectureceveeececeeccecnenceanans . 27
Chapter (3) ...ecceiecrcacacscensanans e ctetceassececcacaseccannana 29
3.1 Information specification language cecetssccenancanns 29
3.1.1 Underlying information structureccccceue.n.. 29
3.2 Overview of the ISL graph operations ceecesacsesacee . 32
ChapteY (4) ..ccececeeecetccosoeceacceneancecescacosoncesocecsoaccanees 35
4.1 Using the information specification language graphs 35
4.2 Basic computer architecture specificationccccceveen. 36
4.2.1 A simple SYSteM ..cveeeveccecerssccsscsnccansoncsasnocnsas 36
4.2.2 Specifying memoryc.0.. cececscesassacscaconcenns 37
4.2.3 Multiple MEMOYi€S .evvveevrercncorosceeas Cetececnnnena 41
4.2.4 Use of procedure definitionsiiciicveccacncen. 43
4.3 VerteX NamesScceeeierecoacaeacacrssocscsocsoscasscsscnaneas 45
4.4 Shared MEeMOYY .ccveeeerreenacsocncceccasacccescsacnocasascnss 45
4.4.1 Memory access interferenceeecececececenccaann 48
4.4.2 Dependent shared memOryceceveecencccccncenans 48
4.4.2.1. Memory bank switchingccceeee... ceeeeacaasenan 49
4.4.2.2., Memory map SYStem ...eeeececanas e cesevesconensannn 51
4.4.2,3. Multilevel memory mapping schemesccc... see. 54

4.5 Snowflake architecturecccue.... eseerescecssesceenn 56
4.6 Input, output and interruptscccecececrcannnn ceecennns 60
4.6.1 Input and outputc.iiinn... ceceacsevacsencenn 60
4.6.1.1 Memory mapped input and oUutput ...eeccceeeccersccsoncn 60
.4.6.1.2 Separate address space Input/Outputccccce.... 62
.4.6.2 INteXrUPtS .eocevcececeoncccnaooosonscacnsossanncvcasncs 64
4.6.3 Specification of variable addressSesc.cecececceacnns 65
4.7 Conditionals ...eeieceecececcecrersscaacssaccrosccsnnasccnane 66
4,.7.1 Use of conditional selection directives 66
4.7.2 Simple selection examplececeeerocccccrccneccaaasas 67
4.7.3 Multiple selection citerionccceeieceeecinenraan, 68
Chapter (5) e sersrecesasescssaans tesesesessensessrsscacnoas .. 170
5.1 User constraint specificationcceeovvcvecccceanccannns 70
5.2 Specifjcation of resource elementsc.coecveccccccacnce 70
5.3 Specification of the program elementsceeeceeeevecccces 71
5.3.1 Path Nameseceecencrecccreseccasosscscscsoocaancocncs 71
5.3.2 With blocks ...ccveerncnnerencans cesascesccesssecsseas 72
5.3.3 Process code elementsc0cac0c. ceteccsnecesaena 74
5.3.4 Object definitions and assignmentscccceeeeececen 74
5.3.5 Program specification block cececoen et ecnnes 76
5.4 Constraint specificationcvvvven. cecssescsesansncssesns 77
5.4.1 General constraints ceeeecosceraccsansecsnnns 77
5.4.1.1 BAssignment constraintscciieieieiiiieennaan. 78
5.4.1.2 Proximity constraints e ectascscacsnsaacasanen 79
5.4.2 Address constraintsccc0... ceecesseccsse ceeenaecnne 81
5.4.2.1 I/0 variable addreSSES .ecccceccccascscscsccscncasns 81
5.4.2.2 Interrupt calls cecsenenan cetecescscenctves ... 82
5.4.3 Multiple constraints e secsarescanersesaseanses 83
5.5 Final syntaxX ...eccescecrccaraccaas cececesccccsssnences ees-. 84
Chaptel (B) .cviveeeecececeascaaeceeuesacnacecsesosoncecasnsocacsans 85
6.1 The calculation of throughputcccevceeeccncccnencennns 85
6.2 BRnalytic probabilistic throughput model 85
6.2.1. Model descriptiOn .c..iccecieeecescsacassvconcsncnsacncnce 86
6.2.2. Simplifications in the modelc.ccvvervrenecracenne 88
6.3 Derivation of the conflict functioncccviieciccnncannn 90
6.4 Deriving the probabilistic equations ceseceannns . 95
6.5 Obtaining processor utilizationceeecececercenacaacess 100
6.6 Numerical iteration solution for the throughput 101
6.6.1 Summary of iteration stepscccceieriiiiiicieiiinannn 104
6.7 Experimental resSUltSc.cieeicrancaccnncsoacoscoscanccans 106
6.7.1 Model verification ceecen ceceecne Gececesaccssenas 106
6.7.2 Implementation of the simulatorcceveeeecerecceann 109
6.7.3 Execution times cecssescseccnccsctstaansns 110
6.7.4 SUMMAYY ..-e-ececeeececcecocosoascssonaseasosccasasases 111
Chapter (7) i veiienneieeenorosaeaacoaeenenscecaceaseesanaaaneneensaes 112
7.1 1Introduction to the allocation alogrithims 112
7.1.1 Previous workiicciecerencccsocncsocnscssasasas 112
7.1.2 Approach usedceeeeveess sececscaceonrascsseensncen 113
7.2 The input information to the alloCatOrceceeecececeeeeen 115
7.2.1 Computer architecture structurecceeceveececianas 115
7.2.2 Specification of the programievvevcencreecncnnans 117
7.2.3 Constraint specification cescescacsernscssssnsans 118
7.2.4 Example map allocation ...cceieeccecceccss ceecvenaans .. 120

~
.
\1\!\1\1014:
.
\l\l\!\lU’lU’IU’lU‘l

\I\I\I\I\I\I\J\IO\\I

OO OO OO

UUUU
H H o

1 Detection of unprofitable searcheS......ccveeccccccccnacas 122
3.1.1 Detecting illegal MAPS ..veeseccecescncoacvonsansnsnnces 123
.3.1.2 Detecting inefficient mapsccteeecerenecnscennn 124
7.3.1.2.1 Improving the throughput calculations 127
2 Producing efficient mappings early in the search 129
.3.2.1. Process and memory ordering et eececarecncana e 130
.3.2.2 Processor and store orderingieiiiiiireninan. 131
SuMmary-. e ceerecesceeceacacese s saccsenaseer oo anen on 136
Constraint reductionc.c...c0... Ceeiecesecetanseennoas 136
.1 Constraint reduction using store size information 137
.2 Constraint reduction based upon accessibility 141
.3 Proximity constraint informationcc...cceciieeecannn 142
.4 Elimination of symmetrical searchesc.cceeeceecencann 146
.5.4.1 Definition of a symmetrical allocationceeeceves- 147
.5.4.2 Detecting equivalencecc.ceeoueecosasccnaacscssasas 148
.5.4.3 Speeding up the partitioning operationc..... 151
.5.4.4 Performing the constraint reductionscc.eeeeeee. 151
7.5.4.4.1 Example symmetry reductioncecevcinececcecns 152
.5.4.5 Restrictions in the implementation 153
.5 Constraint reduction propagationc..ceciiceniarens 154
Experimental resultsiiiiiiiire e ccantcscccocsenennson 156
1 Demonstration pProblem ..c.ceieececnceascsnccacscssccsescaes 157
2 Larger problems coeeseeccaenen cececescarecananncan 158
3 ©Size of the architecture and programccceceeveeeeecens 162
4 Structure of the computer architecturec.000ce-a. 162
5 The choice of the throughput factor cececeacecaenes 165
6 User imposed contraintsceeeccecee. ceeeeseec s eoanan s 166
7 Maximum probelm SiZeS ..cceiieeeiecrecercsncceccsscsassanna 168
8 SUMMAYY cccvcvecoceoncenosncsessossencoanasasscsacasnssanscs 169
ChapteY (B) cueeeroeeoeseasococasesaeaoacacasoeaceseeacseecoannesnnsens 170
CONCLUSIONS &t eieececseeccsonasansossacossaassecansannasoaeses 170
APPENALX (B) ot ot eeeneenuasucsecscaaesaoenscaoacesesscesesscasesonnaoss 173
Construction of the static access arraycecececeeceecanae 173
) 175
Calculating the conflict functionecceecececceenncecncnns 175
(0 177
Propagation table .. .iiieeeieeceeeececesoscasassetnoeesanennes 177
(D) coceo... Ctetccc ettt osecoaaranen e e ee e tecs s seer et aan o 181
Algorithms and mMap OPEYAtOrS . ..eeereeeececccececocanconoaces 181
Symmetry redundancy removal algorithmoceeveeeons cecanes 181
The search algorithmccuivit ittt nneeeenneeeencaeanans 185

Operator NAMES ..cieeecseseesacnocsoacoarassscanncsans eses... 188

Appendix (E)

E.1 Information specification language-....... ceeccnsenanas 193
E.2 Statementscciceiiiircitcncerrncrcennnes ceceen esseeses 193
E.2.1 Assignment statements....... tcetecacscesvacccseasovransen 194
E.2.2 Operator definitionscccieii ittt eannnans 195
E.2.3 REfEYBNCES . ivcvieeeeceacassocescescasecnasascenocaacsse 197
E.2.3.1 Reference syntaxcc.cce.. cesecccesnscncrnaoensnn 198
E.2.3.2 Selector referencescececessccececscscsscnesans 198
E.2.3.3 Using reference set variables e ecesacnraane 200
E.2.3.4 More than one selector referenceececececeeas 201
E.2.3.5 Bracketed referencescccec-- Cesvcecerossensacens 202
E.2,.3.6 Conditional referencescece... s ecceccescsocnse 203
E.2.3.7 Conditional selector examplesScceecececcencnccee 206
E.2.4 Attach statementsccecceeeeee et cecevscsscanesnnane 209
E.2.4.1. Index ordering ceeaccensans Cetesssceacanenas .. 210
E.2.4.2 Order of vertices after an attachccevvccceeens ee. 213
E.2.4.3 Multiple attach statementsc.cceecvececacanans 214
E.2.4.4 New operation ceccetecsccronacascans ceeensecnas .. 214
E.2.4.5 Bracketed attach statementsecceecevceceecs eeees 217
E.2.5 Initial construction of a graph Cecececaccaasanes 218
E.2.6 Repetition constructc.ceerrceescnncccncceancacansns 218
E.2.7 If statements ...cvciiieriiiinerncacnennn cecesecesnccns 222
E.3 DeclarationS......... St eescccscccsacanans tecsecssnevecons eees 223
E.3.1 Constant identifiers N cecsecens cececne ceccese 223
E.3.2 Vertex identifierscececece.. teecescncccecnanasans 224
E.3.3 Variable identifiersceeeceeecevecccesens ceesccscnenan 224
E.3.4 Procedure definitions ..ccecececeececcencas tecssscccnas e .o 225
E.3.4.1 Parameter listscccceeeee.. teccecancccesacanas 226
E.3.4.2 Procedure semanticsc.cc.c... cesecsesecasacanase ee . 227
E.3.4.3 Examples cesenees cecescssscoanscs ccacceccccsesss 228

E.4 Bringing the declarations and statements together 230
E.4.1 Scope of identifierscccccencecne ceeeccceceecoaa 231
BPPENALIX (F) +.eveeccuconoccoacsoesoacecaceasoscenooneosaocaneacsacenessse 232
F.1 Short complete specification pPrOgramM.....c.oecceeeeeccecacaannn 232

ReferenCeS ..ccuiceeeeneeececncocanncesan et eses s seceececsssaroecnnecs 236

Acknowledgements

| wish to acknowledge the assistance to Professor A. Sale, University of
Tasmania, for his help at the start of my research, Professor J. Keedy and
Dr J. Rosenberg, Monash University, for their comments and suggestions on
my work, Dr E. Gehringer, visitor to Monash University from Carnegie-Mellon
University, for suggesting the research topic, the staff at the University
Computing Centre, and finally Dr C. Keen, University of Tasmania, for his
invaluable supervision of my research and his assistance in producing the

final thesis.

ABSTRACT

This thesis investigates the problems of allocating the data and
code address spaces of a concurrent program ontoe the stores of a given
multiprocessor computer architecture, and the allocation of the

processes of the program to the processors of the architecture.

The minimum required of this resource allocation is to produce a
Llegal mapping of the resourceé onto the multiprocessor computer. It will
also attempt to give the most efficient mapping, and allow the user to
guide this activity. This thesis describes the methods deyeloped to
implement this, which includes the specification of the structures of
both the program and the computer architecture 1in a machine
understandable form, and the design of algorithms to perform the

allocation.

With the resulting techniques the emphasis 1s wupon small scale
multiprocessor computer architectures running dedicated concurrent
programs. The resource allocation scheme results in a fixed allocation
of the parts of a single program to a possibily nonstandard and
specially tailored multiprocessor architecture. This would find little
application with Llarge regular mainframe multiprocessor computers
executing time shared operating system programs, where the allocation of

resources is highly dynamic and unknown at compile time.

CHAPTER (1)

This thesis investigates the problems of allocating the data and
code address spaces of a concurrent program onto the stores of a given
multiprocessor computer architecture, and the allocation of the
processes of the program to the processors of the architecture. For the

remainder of the thesis this activity is called resource allocation.

(1.2) RESOURCE ALLOCATION APPLICATIONS

Such a resource allocator will be wuseful 1in many applications. At
present there are numerous inexpensive microprocessor chips available,
some of which are described 1in t1,7,71,86,95,971, and it is
economically feasible to construct from them multimicroprocessor
systems. Such systems would be useful for dedicated and special purpose
applications. In the past these applications may have been either too
expensive to implement, or else the only choice available would have
been to use custom designed discrete hardware logic or a general purpose
minicomputer. The possibility of wusing microprocessor systems is
attractive 1in these areas since such systems will be easier to design
than dedicated hardware logic and less expensive than a minicomputer.
Using a multiple microprocessor machine also gives the considerable
advantage of allowing many operations to be performed in parallel, thus
offering the potential of much faster solutions. There is also the
‘possibil{ty of constructing fault tolerant computer systems. A recent

overview of these applications appears in [20].

The multiprocessor computer systems being considered for the
purposes of this research would be constructed from off the shelf
microprocessor and memory chips, and be connected together by straight
forward bus _ technology. Special purpose networks such as delta networks
L 701 and dynamically reconfigurable or partitionable networks [80,841
are not explicitly included. Such systems have special purpose hardware

that 1is difficult or impossible to construct in the above way.

Having decided to wuse such a computer system, the user is now
confronted with the problem of getting software to run on these
architectures. Some of these difficulties are described in [35,37,94].
Generally the use of high Llevel languages “altow the coding to be done
relatively easily, and there are a number of concurrent programming
languages becoming available that may be used [32,36,56,76,90,92].
However, given a concurrent application program written to use several
processes, there 4dis also now the problem of deciding where on the
computer system the processes and address spaces of the program are to
go. The requirements are to produce both a Llegal mapping and an
efficient mapping. They can be achieved by dntroducing as Llittle
overhead as possible 1in the way of memory conflicts, avoiding the
overcrowding of processors and by the reduction of excessive scheduling
overheads. Only with these witl the maximum work be obtained from the

multiprocessor system.

One approach to achieve this is the static &allocation of the program
to the architecture. Thus memory contention c¢an be avoided vwhere
possible by allocating the Llogical address spaces 1into physically
separate memory modules. Processes can be distributed uniformly across
the available processors, and the scheduling requirements will generally
be confined to the processes on each single processor. Such an
arrangement is particularly suitable in small computer systems where
there may be only a minimal operating system resident to support the
program. Alternatively, even 1if the architecture and operating system
form a moderately sized system, the minimization of memory contention
and process scheduling overheads can still be important, as it is in

Star0S system [26].

To aid the discussion in the main part of this thesis some terms are

now defined or explained explicitly in the following.

(1.3) CONCURRENT PROGRAMS

P

A concur(ent. program consists of & number of sequential processes
that have the capability of being executed simultaneously. As these
processes execute they will access their code and they will also access
their wvariables and perhaps procedure invocation stacks and dynamic

heaps. This data information is collectively known as the Llogical

address space of the program. Processes and address spaces together are
known as the elements of the program, thus a concurrent program consists

of process elements and address space elements.

In such a concurrent program the processes will not have equal
access to all of the available address space elements. Instead this
access pattern will be highly idrregular, with some address space
elements being accessed much more than others, and some processes will
perform many more such accesses than other processes. This is referred
to as the access pattern of the program, and information about this is
conveyed by the number of cycles performed between each process and

address space.

(1.4) COMPUTER ARCHITECTURE

The program will execute upon some computer architecture. The
architectures considered 1in this research are all multiprocessor
architectures having more than one bardware processor. A processor
provides the physical capability of executing one process at a time,
while the address space elements of the program reside upon the physical
memory stores of the system. The processors and stores need not be all
be didentical; both homogeneous and heterogeneous architectures are
allowved. In a heterogeneous architecture the processors may be of
different kinds or the stores provided may be of different sizes and
access speeds. Collectively the processors and stores of the computer
architecture are known as its resource elements, and thus an
architecture consists of processor elements and store elements (or

physical memory elements).

As does the program, the computer architecture has an
interconnection structure. Processors are connected to the physical
stores 1in s manner that may or may not be uniform. This interconnection
structure is represented by access paths between processors and stores,
by the cycle speeds of the stores themselves and the access times of the
interconnecqion hardware. Processors can only communicate to other
processors via the use of these common stores. Many kinds of

interconnection structures are possible, as are discussed in [4,22,791].

The 1dnterconnection structure can result 1in memory contention. This
results from two processors simultaneously attempting to access the same
store or to use the same connection hardware. Such interference is
discussed in [8,9,44] and it 1is very dimportant in determining how
efficiently the resources of the computer architecture are used 1in
supporting the program application. This efficiency 1is measured by the
throughput of the program executing upon the architecture. In this
context the throughput is the number of times the program can execute
a given program workload. Thus if a process Is specified to make 445 refer-
ences to a particular address space in some time period, and if in the
implementation it accesses this address space at the rate of L4 references
per second, then the throughput measure is 0.1. An allocation mapping that

is twice as efficient as this will have a throughput of 0.2.

(1.5) RESOURCE ALLOCATION

Finally there 1is the action of bringing the program and the
architecture together. This resource allocation applies to' all of the
program elements, which must be assigned to some subset of the resource
elements of the computer. The assignment or allocation of an individual

program element to a resource entails-

Specifying upon which hardware processor a process 1is to

execute, and

Specifying upon which physical memory an address space is to be

placed.
This specification or resource mapping must satisfy Llegality
conditions, and preferably it is also to be efficient. The legality

constraints under which the resource allocator must work are

Each process must be assigned somewhere, and must be assigned

so that it is executed by only one processor.

/

User

User

Constraints

User

Program
¥ Code for the
multiprocessor
Compiler
Code

Description of
the processes
and memories.

Execution on a
normal computer

Number of
cycles data

Resource allocation

Multiprocessor architecture

specifications

Resource
Mapping

'

Linker Loader

Execution on the
multiprocessor

Figure 1.1

Each address space must be assigned to some single physical
memory space. There can be no overlap with any other

simul taneously present address space.

Each process must execute from a processor which can access all
of the stores to which the address spaces accessed by the

process have been allocated.

This concludes the definition of the basic terminology. The concept
of resource allocation and is application areas have been introduced.
Given such a utility and starting with a suiteble application there are
a number of stages dinvolved in using it in order to implement a problem
onto a multiple microprocessor. Figure(1.1) represents this information

flow digrammatically.

(1.6) HIGH LEVEL LANGUAGES

Firstly the problem needs to be implemented as a concurrent program.
The advantages of using a high level tanguage for any programming is
well documented [15,18,35,93,94]). In view of this, and the fact that
the resource allocator would itself be a complex program utility
designed to aid program production, it is reasonable to assume that the
development of the user program will always wutilize a high Llevel
language. Thus the resource allocator will always be preceded by a

compiler.

A suitable high Llevel language will contain all of the standard
features associated with such languages, as is found in languages Llike
Pascal, Algol, Fortran, Cobol and the Llike. Furthermore, since the
target architecture is a multiprocessor architecture, the Language must
have the capability for specifying concurrent processes and for
controlling their execution. Some examples of this kind of Language are
Pascal Plus [10,92], Concurrent Pascal [34,36,39,76,82]), Path Pascal
L 31,32,631, Concurrent Euclid [561, Modula 2 [29,90) and ADA [2,961].
There is no restriction implied upon the number of different compilers
or languages that may be used, provided some means is available to Link
together at some stage the codes and data spaces produced by the

different compilers.

ALL of the Llanguages in this lgst list allow the specification of
concurrent processes. The languages also provide some mechanism for
communicating between two processes and for the sharing of data. Most of
these Llanguages that include processes will also have modules. The
definition of a module is different for each author and language, with
some examples being presented in [16,41,49,64,67,68,69]1. However in
most cases the compiler can implement the module as a collection of
procedures and variable spaces. So generally the use of modules has no
effect upon the application .of a resource allocator, which deals with
variables and procedures and the access paths between these. However if
the computer architecture supports modules directly, as in the Monads
architecture [50,511 or the Star0S system [25,261, this poses no
essential problems. In this case the resource allocator would deal with
modules that have access paths between modules, as well as variables and
processes. Nevertheless, to simplify the research, modules are not

considered further.

(1.7) ARCHITECTURE SPECIFICATION

When used the allocator requires the specification of the structure
of both the program and the architecture. The program structure is best
described by the compiler 1in terms of its process and address space
elements and the access paths between these. The number of cycles
information for the throughput calculations will be obtained by running
the progrem on a normal uniprocessor computer. The code would be
argumented with statements to gather statistics gagbout the number of
accesses made. This step is 1important as without the number of cycles
information there is no feasible method for the resource allocator to

obtain relative efficiencies of differing resource allocations.

The user 1is required to give a description of the computer
architecture to the allocator. The information that needs to be conveyed

concerns such things as-

The kinds of processors, including their cycle speeds and

microprocessor type.

The sizes and access times of the physical memories.

The locations of memory mapped 1/0, and the port addresses of

nonmemory mapped 1/0, as well as the processors which have

access to these.

The addresses of interrupts, and the processors to which these

interrupts occur.

The interconnection pattern between the processors and their
stores. This will cover hardware buses and also the locations
in the addressing range of a processor of dits attached

memor ies.

Only this Llevel of information is required. Greater detail
about the hardware, as dis given 1in many computer hardware design
Languages (a survey of these is given in [59,871) is not required by

the allocator and so is not supplied in this specification.

(1.8) PROGRAM SPECIFICATION

The specifications of the <computer architecture need only be
produced once pef architecture, and used for the allocation of all
programs to this architecture. Extra information is however required for
each program. The user can interact with the resource allocator to guide
it in its allocation strategy. The initial starting point for this is
the description in [26, section 11] of the Star0S resource directives.
These constraints may be to ensure that some conditions external to the
allocator are achieved, or to guide the asllocator in its global strategy
to achieve the most efficient -mapping. The interaction takes place by
the meaﬁs of constraints placed upon the allocation. These constraints
may be to

Ensure that processes execute upon processors that have

hardware access to the appropriate 1/0 ports,

Ensure that variables of a program which are used to access
memory mapped I/0 ports are placed at the correct address in

the appropriate physical memory module.

Allocate selected processes and address spaces onto the same
processor or store, or upon separate processors or stores. This
ability is useful when using & multiprocessor to provide
greater degree of computing reliability, one example of such a
multiprocessor design being described in [6]. If different
parts of a program are allocated upon separate physical

resources, then a failure of one resource will only bring down

one part of the program.

Allocate processes with special requirements to processors that
possess special execution capabilities, such as a floating

point accelerator.

Finally the resource allocator will operate upon this information
and produce a resource mapping, or perhaps 1indicate that no mapping is
possible. If the allocator succeeds then it will generate an allocation
mapping. This would be used foda subsequent Linker stage to actually

load the program onto the machine.

(1.9) THE TOPICS RESEARCHED

The research area and its aspplication have been defined. The s&im of
this thesis is to 1investigate this problem, concentrating on the

following topics
A) The computer specification language.

The design of the input computer architecture specification
Language to support the specification of the computer and to
allow the wuser interactions is outlined. These specifications
need to deal with a wide variety of architectures, since the
actual hardware may be connected in many ways. However at the
same time it is recognized that most architectures will be
reqular and involve repetitive constructions. Thus the
specification language allows for the natural expression of
such structures. They also allow for the easy extraction of
information from the specification for use by the wuser in

writing the user constraints.

10

B)

o

A Llist

A)

B)

(o)

The throughput of the allocation mapping.

For its allocation activity the allocator will need to derive
the throughput of an allocation, to decide if the allocation is
efficient or not. Thus a general purpose throughput calculation
algorithm is derived, which takes into account the effects of
memory contention. Two different versions of this are
implemented and examjned. The original starting point for this
work is from [441 which describes a general throughput
calculation model that takes into account memory interference
produced by a number of independent nonconcurrent programs
executing on a multiprocessor. The thesis work extends this to
include the effect of differing store cycle speeds, the effect
of bus contention and bus cycle speeds, and to provide the

throughput for a single concurrent program.
The allocation algorithms.

Finally the allocation algorithms themselves have been designed
and an implementation produced to demonstrate them. This
research borrowed 1ideas from search techniques developed 1in
other areas, such as parallel searches in game trees [62]. It
builds on the need for resource usage directives as described

by [261 for the Star0S project.
of the original research performed follows..

The design of the computer specification Language is the

authors own.

The original memory interference model is taken from [44]). The
suthors own original research is to modify this to suit the

requirements of a resource allocator.

The starting point for the resource allocator research is
L 261. The design of the constraint specifications and the
design and implementation of the allocation algorithms are all

original research by the author.

1"

(1.10) CHAPTER SURVEY

The remainder of the thesis is concerned with an expanded
description of this work. Chapter 2 introduces the resource allocation

activity in more detail and describes some of the problems encountered

in performing this.

Chapter 3 is concerned with the design of the specification
language. This language is based upon a graph structure description of
the computer architecture and allows the specification of the
multiprocessor at the level of 1its processors, stores and bus
interconnections. Chapter 4 discusses how this Llanguage is used to
describe to the allocator the various kinds of computer architectures

that are likely to be encountered.

Chapter 5 then describes how the computer program that is to be
mapped onto the architecture is specified to the resource allocator. The
extra information required of the user to guide the allocator is also
introduced. No implementation of the specification language was
attenpted. While the ideas presented are important for the use of a
resource allocator, there are essentially no new difficulties 1in

implementing such a language once it has been designed.

Chapter 6 describes how, given a particular resource allocation
mapping, 1its throughput may be calculated. Two alternative ways of
computing this dis presented, one by a simulation model and one by a
probabilistic model. Programs 1implementing both were developed to

demonstrate their validity.

Chapter 7 is concerned with _the search method used to find
solutions. This is basically a tree search with a heuristically ordered
search pattern designed to increase the probability of obtaining

satisfactory solutions.

Finally chapter 8 presents the conclusions.

12

CHAPTER (2)

Simple applications of the resource allocation problem addressed by

this thesis are described in the following.

The simplest example of resource allocation is the implementation of
a program to execute on a uniprocessor system possessing a uniform
memory structure. Even for concurrent programs this is readily achieved.
The processes of the program execute on the same processor and can be
managed by an appropriately written scheduler. Memory allocation schemes

for a Linear memory are well understood.

The addition of more processors, thus creating a multiprocessor
computer architecture addressing a common memory, can also be handled
relatively easily. One method 1is to construct a scheduler' which
allocates time slices on different hardware processors to the processes
of the program as they become ready to execute. In this approach, the
rest of the computer programming system need not even be aware of the
change to a multiple processor architecture. Unfortunately, as the
number of processors attached to a common physical memory increases, the
amount of memory contention also increases. Eventually there comes a
point of diminishing returns where the addition of an extra processor to

the hardware will add only a marginal improvement to the throughput.

Many techniques may be used to salleviate this problem. Interleaved
memories, separate memory modules, cache memories or memories that are
faster than the processors are some possibilities. Many of these memory
designs are more applicable to Llarge computers because of the cost of
the associated hardware required to 1implement them. As well these
solutions have the common characteristic of +ignoring the specific
structure of the programs being executed.

For illustration of this Llast point, consider a program consisting
of two processes that access separate variables. The Llogical address
spaces for these variables can be placed in a8 common physical memory

module and the two processes can execute on separate processors. In this

13

Process 0 Process 1

KEY
Processor O Processor 1 Processor
]
: O
{
]
AN -’ Store
Memory 0 L Ly Memory 1
Common store ® Process

Address space

Process 0 Process 1

Processor to

Processor O Processor 1 store access.
- Process to
address space
} access
Memory 0O h d Memory 1 (memory)
Store 0O Store 1

Common store

Figure 2.1

case there will be memory access conflicts when the two processors
attempt to access the same store simultaneously in order to refer to

their own memories. This situation 1is seen 1in the figure(2.1,top).

The memory interference may be reduced by the harcware techniques
discussed above. Alternatively, if the structure of the program can be
taken into account, on a suitable computer architecture the variable
spaces could be placed dinto separate memory. blocks, as in
figure(2.1,bottom). Now the interference due to accessing these memories

will be nonexistent.

This example dillustrates how & knowledge of the program may be used
to optimize 1its execution without the use of sophisticated hardware
techniques. The dnformation utilized here was that the accesses of the
processes of the program were to independent address spaces and this
allows the derivation of the more efficient allocation solution. However
for a large computer system such 1information about address access
patterns is awkard to obtain since there will be many different programs
executing, and these will be changed often. To attempt the optimal

allocation of every program based upon its 1individual address accessing

1L

patterns will be impractical. The research emphasis on medium sized

statically allocated programs is a consequence of this.

(2.1.1) EXAMPLES OF RESOURCE ALLOCATION

As an example of resource allocation a simple instrument monitoring
computer system 1is used. This system 1is to monitor a number of
instruments, and record their values in such a way that they can be
retrieved upon command and displayed on a terminal. One way to structure
a program to perform this action is to have an individual process obtain
the results from each instrument and put these into a common table.
Another process would be used to maintain the terminal display based
upon the information in the table and according to user entered

commands.

If 4t is assumed that the program work required to monitor a single
instrument requires a significant part of the execution time of one
individual processor, then a possible hardware implementation will have
one processor for each of the instrument monitoring processes, and one
more for the command process. This will give the best execution time
performance for the complete program. Each processor can be supplied
with its own private memory and also some global memory in common with
all the other processors. For such an architecture as much as possible
of the local address space of each process of the program would be
assigned to the local physical memory of the processor. This will reduce
the memory contention to the obligatory minimum, rgducing it down to
conflicting accesses by the processes to the address space that is
shared with other processes. This hypothetical structure is depicted in

the figure(2.2).

NOTE. In this figure, and in others, a computer architecture is
depicted by using circles to represent processors and squares
(or rectangles) to represent physical store modules. An access
path between a processor and a store is represented by a Lline
drawn between the circle representing the processor and the
square representing the store. Thus figure(2.3,left) represents
a computer architecture of two processors and three stores.
PROCESSOR_1 accesses STORE_1 and PROCESSOR_2 accesses STORE_2.

15

Processors

Private Stores

Global Store

Instrument Monitoring Multiprocessor

Figure 2.2
Processors Processors
1 2
1 2 1 2
3 Stores 3 Stores
Figure 2.3

Both processors access STORE_3.

In order to avoid visual clutter in diagrams containing a large
number of processors and stores, the following convention is
adopted. If a Line is drawn from & square representing a store
to a second store square, then the first store is considered to
be accessed by all of the processors that access the second
store. Thus in figure(2.3,right), a Lline 1is drawn between
STORE_1 and STORE_2. STORE_1 is accessed by PROCESSOR_1 and so
the line between the two stores shows that PROCESSOR_1 can also
access STORE_2. Thus the architecture of figure(2.3,right) is
identical to that of figure(2.3,left).

16

In figure(2.2) a homogeneous architecture has been proposed. It
could be possible to use different sized stores for each of the
processors, and even to use different kinds of processors, thus creating
a heterogeneous srchitecture. However it will generally be preferred to
design and use homogeneous architectures, both because of an easier

design stage, and also because such designs will more readily transfer

to other projects.

To this structure the instrumentation input and output ports will be

connected, with the ports for each individual instrument being connected

to a separate processor.

Given nine dinstruments, a possible skeleton program for this

application is

PROGRAM MONITOR ;
COMMON DEFINITIONS ;
COMMON VARIABLES ;

PROCESS COMMAND ;
PROCESS INSTRUMENT_1
PROCESS INSTRUMENT_ 2

L1

N

PROCESS INSTRUMENT_9
END ;

N

Each process will have a number of private variables and procedures,
and the instrument processes communicate to the command process via a

common table and common table access procedures.

If this program were to be implemented upon & normal computer
architecture then either the compiler or a subsequent Linker would be
able to allocate the program onto the computers memory store, using
standard techniques. When using the architecture of figure(2.2), one
process caa be assigned to each of the processors. This has the
advantage of incurring no scheduler overheads. As well, the private
address space of each process can be allocated to the private stores of
the corresponding processors. This gives the advantages of conflict free

access to these address spaces. In these circumstances it is not

17

2 Processors ° @ <6>

1 2 3 Private 4 [6
Stores
123 Shared Stores 56

/

Global Store

Figure 2.4

appropriate to use a general purpose scheduler which allocates a ready

process to a free processor as one becomes available.

If all of the I/0 ports are not available from every processor then
the user will be required to indicate to which processors the instrument
monitoring processes are to be assigned. This 1is to ensure that each
process 1is capable o% accessing its correct dnstrument I/0 ports. If
this specification is 1imposed, then the resource allocator would then
allocate the remaining control process to the best processor for it,
which 1in this case will be the only unused processor available.
Otherwise, if there are no such specifications, the allocation program
allocate the program so as to obtain the best throughput, which in this
computer architecture will imply one process per processor. At the
conclusion of this activity the resource allocator will insert Llinking
information 1into the compiler generated code to allow the code of the

processes to access correctly their memory address spaces.

For this example the process to processor allocation can be simple,
particularly if the user specifies the process allocations. The memory
allocation is also straight forward. The allocator needs to allocate the
private variables and code blocks that are referred to the most into the
private store of each processor, and allocating all common address
spaces and the left over private address spaces (if any) into the common

store. Thus memory contention, a product of the number of accesses by a

18

process to a physical memory and the number of different processes

accessing this memory, can be reduced to an unavoidable minimum.

The resource allocator problem may easily become more complicated
with only a few changes to the target architecture. For example a
computer system with only six processors, each of which has access to
all the required dinput ports, may be available to implement this
program. Furthermore the memory may be arranged with a equal sized
private memory attached to. each processor. Then each group of three
processors would share a common memory block, and all processors would
share a common global memory block. Such a design is given in

figure(2.4).

The intent of constructing a computer system with these different

levels of shared memory is twofold.

1. To 1increase the total amount of physical memory without
exceeding the memory addressing range of any individual

processor.

2. To allow the possibility of greater memory sharing between

processors and yet still reduce memory contention.

In demonstration of this Llast point, processors 1, 2 and 3 can
communicate between each other via the shared store 123 without
interfering with processors 4, 5 and 6 in their accessing of their own

shared store 456.

In this situation all that the resource allocator needs to know from
the programmer 1is the addresses of the input ports that are to be used
by each individual process. These addresses would be inserted into the
appropriate 1/0 routines of the process codes. This information could
not now have any affect upon the allocation of processes to processors,
since each processor now accesses all of the input ports. From this
information the resource allocator will be able to go ahead and allocate

the program.

19

(2.2) RESOURCE ALLOCATION ASPECTS

et o et ot S e ot s S At S e S S P W o At O N M S wm T S o
e e e e e e L it

Now some of the factors that may affect the resource allocation

placements will be considered.

(2.2.1) LOW LEVEL DETAILS

Firstly the resource allocation may be influenced by some machine
level details, such as the programmer 1inserting simple assembler
language routines to control input/output ports. Such information is not
directly accessible to the resource allocator, but 1instead the wuser
programmer will need to impose constraints upon the permissible mappings

to guide the allocation activity in this area.

(2.2.2) PROCESS TO PROCESSOR ALLOCATION

In the 1instrument monitoring example, where the architecture of
figure(2.4) is used, there are ten processors to be statically assigned
to the six processors. The allocator will tend to allocate the longest
running processes to separate processors, with the other Lless time
consuming processes placed where ever they fit. The Llength of the run
time of the processes is obtained by the execution of the program upon a
normal computer and gathering statistics. However an allocation made in
this way may not be optimal, depending on the combination of the
particular program and computer architecture being used. So it will not
always be the arrangement selected. This will be influenced by the
effects of memory interference, different memory cycle times. of each
physical memory block and of each shared memory bus, the size of the
logical address space accessed by each process and the size of the

physical memory shared by each processor.

(2.2.3) DEGRADATION DUE TO MEMORY INTERFERENCE

The inappropriate allocation of processes may lead to serious execution
time inefficlencies by the action of memory contention. In the example

architecture of figure (2.4) this can be demonstrated by considering two

20

process A process B process C process U

1 O 2 3 4 @5 6 Processors

/ /
\ / / | /
\
\ /- { // - Private
1] v 2] s 4l y|s 6 | Stores
/
\ / \
)
memory A @ 123 memory B [ﬁ 456 Stores

Global Store

Figure 2.5
procéss c process A process B process D ‘
1 2 ' 3 4 5 ¢ Processors

7

1 A / »
‘ \ / A\

) ’ \ / J ’ \ Private
! 2 3 \ / 4 5 6 | Stores
| \ | /l

\ 123 456 // Stores

. |1
N 7
\\) A ///
memory e —
~N Global store
\\)@ memory B .
\\f"/
Figure 2.6

21

] Represents
“# 5 2000 byte
memory clement

Stores ©® Pepresents
2018 2048 2048 oNne process
bytes bytes bytes
Figure 2.7

Stores
2048 102 2048
bytes bytes bytes
Figure 2.8

pairs of processes, each pair their own heavily used'data:section. The
pair A and B could be assigned to any of the processors 1, 2 or 3, and
their shared data! space A placed upon the shared store of these
processors. The other pair can be similarly assigned to the processors
4, 5 or 6. MWith such an allocation the pairs of processes can access
their own shared address spaces without interference. This situation is

represented in figure(2.5).

However, if each process had beeé assigned so that the first process
of the pair is in the processor group 1 to 3, end the second process of
the pair 1is in the other processor group, as in figure(2.6), then the
common shared daﬁﬁx will have to be assigned to the global memory store.

This assignment will inevitably result 1in greater memory conflict.
Thus after the preference of processor execution speed and process

execution times, the possibility of execution degradation arising from

memory interference has to be considered.

22

(2.2.4) ALLOCATION INTERACTIONS

A final difficulty in the allocation process is the interactions
that occur between individual allocations of program elements to
resources. These interactions frequently prevent any straight forward
allocation strategy, and will often prevent the most efficient usage of
the computer architecture. As an example, for a8 two process program the
best allocation onto a two processor architecture is to have a process

assigned to each processor, shown in figure(2.7).

However the common address space element may not be allowed onto the
common store. This will happen if the size of the common address space
is larger than the size of the common store. Therefore the common
address space now has to go into one of the private physical memories.
In order to access this, both processes will then end up on the same
brocessor, with the othery- processor idling. This 1is depicted in

figure(2.8), where the common store has a reduced size of 1024 bytes.

A similar situation can occur easily with the allocation of address
spaces to stores. The difficulties also increase when memory and bus
contention is to be taken into account. These interactions may be caused
by other factors, and can affect the allocation strategy of the whole

program.

Because of these 1interactions the allocation problem is nonlinear,
it 1is not possible to work out the allocation for individual parts of
the given problem and then to combine these to give a complete
allocation. In most cases it will unfortunately turn out that the
allocations for one part will interact with the allocations 1in all of
the other parts, so completely invalidating any such divide and conquer

solution.

(2.2.5) RESOURCE ALLOCATION FAILURE

The resource allocator can fail to find a Llegal mapping for a

particular problem if there exists the situation where

23

The total physical memory space of the computer exceeds the

size of the program.

The physical memory addressing range of a processor exceeds the

address space sizes of all the processes that are required to

execute upon it.

A process is assigned to a processor so that it cannot access

the stores to which its address spaces have been assigned.

A process or address space element is assigned to a resource
where it cannot access its I/0 ports <(or memory mapped I/0

ports).

(2.3) SOME RESOURCE ALLOCATION APPLICATIONS

The introductory examples given so far have given some of the basic
requirements, and some of the problems confronting a resource allocator
have been demonstrated. In the following more example applications are

introduced.

(2.3.1) PICTURE PROCESSING

One feasible application of a multiprocessor architecture 1is 1in
picture processing. Special purpose hardware designs exist for this
L 72,80). However, for the purpose of this example, a design using
standard microprocessors and memories 1is considered. For such an
architecture the picture processing program could be structured as one
or more main processes which deal with the overall control of the
program. This would be the input and output of picture data, the
initialization and the termination of the picture processing algorithms.
Then there could be any number of small 4individual processes, each
designed to ‘operate independently upon one small area of the picture
information. A decision to choose this structure can be made because it
can be efficiently implemented as one or more main processors accessing
a global store, and a series of smaller processors capable or performing

picture type operations. A suitable computer architecture for this is

2L

Main
1 Processors .{ 2

Local
1
Memory ! (E:)

Private Picture
Memory Processor

Local 2 2 {:E:>
Memory

Global Memory

Figure 2.9
given in figure(2.9).

The user will need to provide constraints which will place the
picture processes onto the picture processors, and supply the additional
information that the code for the picture processors has to be compiled
into a different instruction set from the code for ihe main processors.
The wuser is also required to supply specifications of the computer
architecture. Then using these user directives and the specifications,
the resource allocator will be able to perform the rest of the

allocation for a suitably constructed program automatically.

(2.3.2) CM* TYPE COMPUTER ARCHITECTURE

Another example where resource allocation is useful is when using a
computer architecture similar to the Cm* computer system[26]. In such a
computer there are a number of processors, each accessing its own local
memory. In figure(2.10) the Local memory of processor 1 is store 1, and

so on for the other three processors.

25

1 2 Processors 3 4

/]
>

1 Busses 3]

1 2 Stores

figure 2.10

These processors are grouped together into clusters, and the
processors of each cluster can access the Local memories of all the
other processors 1in the same cluster, but at a greater access time
penalty compared to accessing the processors own Local memory. In the
diagram processors 1 anq 2 form one cluster and processors 3 and 4 form
the 'other. Processor 1 can access the local memory of processor 2 via
the number 1 bus. Finally each processor in a cluster can access the
memories of any processor in another cluster, but with a still higher
access time penalty. Thus processors 1 or 2 can access the stores of the
other cluster via the number 3 bus. However these accesses are now in

possible conflict with Fhree other processors.

Such a structure would be specified to the resource allocator by
giving information about the processors, the memories and the bus
interconnection network between these. From the point of view of the
resource allocator, this computer system consists of a large number of
processors each capable of accessing the entire memory. Some of these
accesses will be direct and some by the means of intermediate buses.
Therefore 1in this architecture there is no impediment to treating the
memory as one common memory and allocating processes to processors as
they become available. However the execution time will, naturally, be
degraded by both memory interference and slow access times to nonlocal

memory. So in allocating a program onto this architecture it will be

26

Processor Processor Processor Processor

)
)

Common Common

store store
Private Private) Private ’ Private
store store store store

Figure 2.11

Processor Processor Processor Processor
Q M O e
Common Common
store store
Common) Common Common Common
store store store store
Common Common
store store
Processor Procecessor Processor Processor

Figure 2.12

important to produce . an efficient implementation. The resource
allocation will be mainly concerned with reducing the possibility of

memory conflicts.

€(2.3.3) SYSTOLIC ARCHITECTURE

A systolic architecture, as described in [55], is one where data
flows down a series of computer elements, each computer accepting
information from its neighbour on one side, operating on it and sending
it on to its neighbour on the other.side. A design that fits this

definition is given in figure(2.11), where the computing elements have

27

their own private stores, and communicate with their right and left hand
neighbours via the common physical memory elements. Such architectures
are useful when the applications problem can be split into a number of
stages of roughly equal computing load, and each stage can follow on
from the one before it. One such application is 1in three dimensional

computer graphics, where a program may be divided into processes to

Perform object ordering in depth first order.

Elimination of objects entirely out of view.

Removal of polygon faces facing the wrong way.

fhree dimension to two dimensional coordination transformation.
Hidden Lline elimination.

Final drawing of the lines onto the screen.

If there are seven processors in the architecture, then the resource
allocator can simply allocate a process to each processor. The resource
allocator would be even more useful when there are less than this number
of processors, since now some processes have to share a processor with a
neighbouring process. These processes will be selected upon the basis of
their workloads. An alternative systolic architecture could be
constructed as is shown 1in figure(2.12) with two processors at each

stage. This would make the resource allocation even more nontrivial.

28

CHAPTER (3)

- —— o — o
=ty

Pttt § o~ bt~ e e

The dinformation specification language (ISL) allows a machine
understandable definition of a computer architecture to be constructed.

It also provides the user with the facilities to guide the resource

allocation activity.

This chapter will describe the basic underlying graph structure of
this Llanguage, and introduce the parts of the language concernqy with
the definition of @ computer architecture. The reference text used for

the basic graph theory 1is [481].

(3.1.1) UNDERLYING INFORMATION STRUCTURE

Starting with a denumerable set X={X1,X2,...Xn} and a mapping M of X
into X, & graph is the pair G=(X,M). '

The ISL associates two functions with the set of elements of such a
graph. One function is a mapping Fv from the set X to the set V, where
v={null,vi,v2,...>. This 1is c¢alled the value function. The other
function 1is a mapping Fn from the set X to the set N, where

N={null,N1,N2,...3. This is called the name function.

A graph can be represented on paper by drawing vertices and arcs. A
vertex 1is drawn as a point and corresponds to an element in X. A
directed arc is drawn as an arrow from one vertex to snother vertex. A

directed arc exists from vertex Xi towards Xj if Xj is in the set M(Xi).

The value and name of each vertex may be represented also. If the
name function Fn(Xi) of vertex Xi is nonnull, it is written alongside
the vertex. If the value function Fv(Xi) of vertex Xi is nonnull, it is
also written alongside the vertex. If both the name and value functions
are nonnull, then the representation of the name is written first,

followed by an = and then the written representation of the value.

29

X1

KEY
Vertex QO
X2 X3 X5

Arc

X4 X6
D=6 A

Figure 3.1

The graph of figure(3.1) provides an example representation of

6=(X,M), where

X = { X1, X2, X3, X4, X5, X6 3

M(X1) = { X2, X3, X5 % Fv(X1) = null Fn(X1) = null
M(X2) = {2 Fv(X2) = null Fn(x2) = C
M(X3) = £} - Fv(X3) = null Fn(X3) = B
M(X4) = £ 2 Fv(X4) = 6 Fn(X4) =D
M(X5) = { X4, X6 3} Fv(X5) = null Fn(X5) = B
M(X6) = { X4 2} Fv(X6) = null Fn(X6) = A

Note that the function Fn does not necessarily give a unique name to
each vertex. This graph has the name of the element from the set X
written next to each vertex. In general this set identification is not
needed in subsequent discussion; about the ISL and so will rarely be

mentioned after this section.

A directed arc U is represented by the pair (Xi,Xj). Xi is called
the initial extremity of the arc and Xj 4is called the terminal
extremity. An arc U is connected to & vyertex Xi 4f U=(Xi,Xn) or if
U=(Xn,Xi), Xi<>Xn. A directed path is a finite sequence of arcs
(U1,U2, ... Ux) such that the final extremity of arc Un conincides with
the initial extremity of arc Um, where m=n+1. A path is represented by the
vertices which it contains, thus (X1,X5,X6) is a path in figure(3.1), and
has the arcs (X1,X5) and (X5,X6).

30

A vertex Xj is attached to vertex Xi if Xj 1is & member of M(Xi). The

attached vertices of Xi are all Xj such that this condition holds.

Given a vertex Xi, the connection set C of Xi is the set of all the
vertices Xj, Xj<>Xi, such that there exists a directed path from Xi to

Xj. In the figure some connection sets are

C(X1) = € X2, X3, X4, X5, X6 ¥
C(x2) = ¢ 3

C(X5) = { X4, X6 %

C(X6) = < X4 }

Any vertex Xi in the graph 6, which is not 1in any set M(Xj), is
called a root of the graph. That is there are no arcs whose terminal
extremity coincide with a root vertex. In the example graph of

figure(3.1), the vertex X1 is the root.

The graphs used by the ISL have some common properties. There is
always one and only one root. If Xi is a vertex in the graph 6, then
there will always exist a directed path from the root vertex to Xi. Thus
the connection set C(Xr)=X, where Xr is the root vertex. For the root
vertex Xr, Fn(Xr)=null and Fv(Xrd)=null. For all Xi where Xi<>Xr,

Fn(Xi1)<>nutl and Fv(Xr) can be null or nonnull.

.In the following there is a brief overview of how the ISL may be used to
construct a graph structure, and how to access such a graph once it exists.
In appendix E a more detailed description appears. Chapter 4 continues with

a discussion on how the ISL may be used to specify a computer architecture.

3N

(3.2) OVERVIEW OF THE ISL GRAPH OPERAT |ONS

In the ISL there are operations that allow a graph to be constructed, and
sets of vertices from this graph to be specified. There are also the more
conventional high level language features which provide for arithmentical

expressions, program flow control and the like.

A graph defined by the 1SL always starts from a root vertex, which is
denoted by a @ character. Other vertices, which may be directly or indirect-
ly attached, can only be accessed via this root vertex. The simplest

selection reference is

whith will produce a reference set containing only the root vertex. The

reference
@.N
will select all those vertices of name N that is attached to the root vertex.
Reference set variables may also be used, thus
) :=‘@.N

will assign to the reference set V all the vertices named N that are attached

to the root vertex. Now the reference expression

V.M
will generate the set of all the vertices of name M that are attached to any
of the vertices in the reference set V. This is equivalent to the reference
set'expresslon

@.N.M

Instead of selecting all the vertices of a given name, a subset of these may

be chosen, depending upon some additional criterion. For example

32

@.A.<NOT_EMPTY (@.B)>

will select only those vertices of name A Which are attached to the root
vertex, which themselves have one or more vertices of name B attached.

Another example is
@.A.<NUMBER (@.B) = 2>

which will select only those A vertices which have exactly two B vertices

attached.

Having selected a set of vertices, they may be used to create new edges

in the graph, as in
@.A.B -> @.A.C

This will attach every C vertex defined in the second reference set
expression to every B vertex defined in the first reference expression.

Figure E.8 shows a diagram of this.
As well, new vertices may be created by using the NEW operation, as in
@ -> NEW (A=3)

which will create a new A vertex, give it a value of 3, and attach it to the

root vertex. Another example is
@ -> (NEW(A), NEW(A), NEW(B))

which will create two new A vertices and one new B vertex, and attach them

to the root vertex.

Program flow control constructs are provided to implement FOR loops and IF
‘ conditionals. As an example, the creation of three new D vertices might be

achieved by
FOR | := 2 TO 4 DO

@.c(1) -> NEW(D)
END ;

33

Each new D vertex will be attached to one of the C vertices numbered 2 to 4.
An example of a conditional statement is
IF 1 > 2 THEN
@ -> NEW(A)

END ;

Finally the graph manipulation statements of the ISL may be grouped into

procedure blocks and these procedures invoked by using call statements.

*

3k

CHAPTER (4)

- F ol rd St oo e g e g =i pen o]

Computer architecture specifications are wused to specify the
architecture of a (possibily multiprocessor) computer to the resource
allocator. This dinformation allows the allocator to deal with the
allocation of code and data parts of a program onto the hardware

processors and memory elements of the computer system.

For this purpose the resource allocation algorithms required a model

of the computer system which contains information about the

Address ranges and sized of the physical memory elements,
The names of the processors,

The cycle speeds of the memories and processors,

The interconnections between processors and memories,

Information about the I/0 system and interrupt addresses,

However there 1is no need for further knowledge of the system
architecture in terms of registers, data and address buses or detailed

knowledge of the input and output logic.

Consequently the user enters the 1information, by the means of the
information specification language, in terms of the processor elements
and memory blocks of the system, and their interconnections. ALL of this
is standard information directly operated upon by the resource allocator
algorithm. Extra user defined information may also be 1inserted and
specifications written to operate on these. This is wuseful to aid the
allocator in its global allocation strategy. It allows the programmer to

specify information not easily accessible to the allocator.

35

(4.2) BASIC COMPUTER ARCHITECTURE SPECIFICATION

The simplest computer system 1is one processor connected to a single

memory unit. This can be described by

GRAPH
BEGIN

@ -> NEW ¢ PROCESSOR) -> NEW (ADDRESS) ;
END ;

This specifies to the resource s8llocator that a computer
architecture has & processor and a memory modute. The address range
which the processor refers to the memory unit will be given by extra
vertices attached to the address vertex. In subsequent specifications,

to refer to the processor the reference used is
%.PROCESSOR
and to refer to the address range the reference used 1is
8.PROCESSOR.ADDRESS

The resource allocator will recognize the PROCESSOR identifier to be
one of the standard identifiers which in this case refers to an actual
hardware processor. Such processors can have properties that are
directly understood by the allocator. This dinformation includes the
processors name and its cycle speed and this is represented by vertices
attached to the PROCESSOR vertex. These have the standard names NAME and
CYCLE. They may be defined for the example system as

GRAPH
BEGIN
8 -> NEW (PROCESSOR) ->
¢ NEW ¢ ADDRESS) ,
NEW ¢ NAME = 'BRANDX') ,

36

NEW C CYCLE = 2.5)) ;
END ;

The PROCESSOR definition i1s as before. This vertex now has attached
to it two new vertices, one called NAME and the other called CYCLE. They
convey information about the name of this processor, BRANDX, and its

cycle time, 2.5 microseconds. These values can be referenced by

VALUE (a.PROCESSOR.NAME)
VALUE (8.PROCESSOR.CYCLE)

(4.2.2) SPECIFYING MEMORY

Vertices named ADDRESS and PROCESSOR are directly understood by the
allocator. It expects the ADDRESS vertex to have two further standard
vertices attached. One vertex is called START and this has an integer
value giving the start address at which the processor accesses the first
memory byte of the memory module. The other vertex 1is called MEMORY and
this vertex represents information about the physical memory module.
This vertex has attached to it two further vertices, called ACCESS and
SIZE. The ACCESS value gives the access time of the memory in
microseconds, while the SIZE value gives the size of the memory in
bytes. The ACCESS and SIZE vertices are not attached directly to the
ADDRESS vertex, since different processors may have different address

ranges in which they access this same memory.

As an example a memory unit of 4096 bytes for the computer system

already defined can be specified by the addition of the statements

8.PROCESSOR.ADDRESS —>
(NEW (START = 0) , NEW (MEMORY)) ;

This attachs two new vertices to the ADDRESS vertex. They are START
and MEMORY, the START vertex has the value of 0. Information for the

MEMORY vertex is further specified by

8.PROCESSOR.ADDRESS.MEMORY ->
(NEW (SIZE = 4096) , NEW (ACCESS = 0.45)) ;

37

Root vertex

1

Name = 'BRANDX'
Cycle time = 2.5

PROCESSOR Processor

4

O
Cycle=2.5 Name="'BRANDX'

STORE Address

Size = 4096
Access time = 0.45

Starting address = 0

y
M
Start=0 Hemory

4

Size=4096 Access=0.45

Figure 4.1

so specifying a memory .with a size of 4096 bytes and a 450ns access

time.

This, combined with the earlier specifications &and set out 1in a
slightly different way, results in the complete specification program
Like

GRAPH
CONST NAME_VALUE = 'BRANDX' ,
CYCLE_VALUE = 2.5 ; -
BEGIN .
8 => NEW ¢ PROCESSOR) ->
(NEW ¢ CYCLE = CYCLE_VALUE) ,
NEW (NAME = NAME_VALUE) ,
NEW C ADDRESS) ->
¢ NEW (START = 0) ,
NEW (MEMORY) ->
¢ NEW C SIZE = 4096) ,
NEW ¢ ACCESS = 0.45)

38

Address

An Address Triangle fs

Figure 4.2
Address Address
Size=z
Start=s Memory
Start=s
Size=z Access=0.45
Figure 4.3

Root vertex

Name= Address
'BRANDX!
Start=0
Size=4096
Figure 4.4

39

Processor Processor

A:

Start=s
Size=z

Name= Address

'BRANDX!

Cycle=2.5

4
)
Start=s Memory

Size=z Access=0.45

Figure 4.5

- . Root wvertex

Processor

Start=0
Size=4096

Figure 4.6

)
END ;

Thus this represents a compufer architecture with a processor called
BRAND X haviﬁg a processor cycle time of 2.5 microseconds. This processor
has access to 4096 bytes of 0.45 microsecond store attached, with the
store occupying the first 4096 bytes of the processors addressing range.

The graph representation of this 1s shown in figure(4.1).

Lo

To reduce the size of the graph diagrams in the following text, a
visual shorthand representation is wused. A triangle Llike that of
figure(4.2) is called an address triangle. It is taken to represent an
ADDRESS vertex and all of the vertices that are shown in figure(4.1) to
be attached to this ADDRESS vertex. Its equivalent graph is given 1in
figure(4.3), using this the graph of figure(4.1) can be redrawn as shown
in figure(4.4). The SIZE and ADDRESS vertex values are given under the
triangle. These are only specified 1in the following graphs if their
values ére important for the ISL example being demonstrated. Otherwise

they are not explicitly mentioned.

An even more compact representation of the graph of figure(4.1) is
provided by using a processor triangle defined as in figure(4.5). In
figure(4:6) the graph of figure(4.1) has been redrawn this way. As with
the memory triangle, the values of the vertices that have values
attached are only explicitly provided if it is required for the example

demonstration.

(4.2.3) MULTIPLE MEMORIES

In more complex computer systems a processor may access more than
one memory module. This 1is represented 1in the specifications by
attaching more than one ADDRESS vertex to the same PROCESSOR vertex. The
address vertices of a particular processor must have nonoverlapping
address ranges and will generally have access to different memory

modules.

An extra memory may be added to the computer system defined above by

adding the specification

8.PROCESSOR ->
(NEW (ADDRESS) ->
(NEW (START = 4096 > ,
NEW (MEMORY) ->
(NEW (SIZE = 4096) , NEW C ACCESS = 0.45))

) ;
There are now two vertices sttached to the PROCESSOR vertex, both

Y

Root vertex

Processors

Processor Address

Stores

Start=0 Start=4096
Size=4096 Size=4096

Figqure 4.7
vith name ADDRESS. This is depicted in figure(4.7).
Note that here the extra memory 1is represented by attaching the
address triangle to the PROCESSOR vertex to which the processor Triangle

is attached . Address vertices are always attached to the processor

vertex if <that processor accesses the memory, so this 1is possible.
The reference
8.PROCESSOR.ADDRESS
will refer to both address vertices, and the reference
@.PROCESSOR.ADDRESS.MEMORY

will refer to both of the memory modules.

To refer to only one of the address vertices indexing may be used.

Thus to refer to the second memory module requires the reference

8.PROCESSOR.ADDRESS(2) .MEMORY

L2

(4.2.4) USE OF PROCEDURE DEFINITIONS.

The length of the specifications will become Llong and thus their
production tedious for any computer system having more than a few memory
modules. Procedures may be advantageously used here. For an example a

procedure defining a standard memory is given,

PROCEDURE STANDARD_MEMORY (
C : SET ; START_VALUE , SIZE_VALUE : INTEGER) ;
VAR MEM : SET ;
BEGIN
MEM := NEW C ADDRESS) ->
' NEW START = START_VALUE) ,
NEW C MEMORY) ->
(NEW (SIZE = SIZE_VALUE) ,
NEW (ACCESS = 0.45

) ;
C -> MEM ;
END ;

PROCEDURE ONE_PROCESSOR ¢ C , PSR : SET) ;

BEGIN

PSR := NEW ¢ PROCESSOR) ;

C -> PSR ->

(NEW ¢ CYCLE = 2.5) , NEW ¢ NAME = °*BRANDX')) ;
END ;

The first procedure creates a new ADDRESS vertex and attachs to this
the vertices needed for a memory subgraph. This ADDRESS vertex is
assigned to the MEM reference set variable. In the last statement of the
procedure this vertex 1is attached to whatever vertices asppear in the C

formal parameter. If the memory subgraph had been directly attached to

the € formal parameter, as in

C -> NEW (ADDRESS) =->
(etc) ;

L3

Root vertex

o

Processor

1 }Processor

Address

\Address
, Name= Cycle=2.5
2 3 'BRANDX' ’

Start=0 Start= Start=

. .Stores) 4096 8192
Size=4096 Size= Size=
40396 4096

. Figure 4.8

then there may be more than one subgraph created. If the procedure
is called with three vertices in the actual parameter corresponding to
the C parameter, there would be three such subgraphs created. The way
that is choosen will result in only one subgraph being created and this

will be attached to all of the vertices in the C parameter.

The second procedure creates a'processor subgraph. This 1is attached
to whatever vertices appear in‘;he C parameter. The PSR formal parameter
will contain the newly created PROCESSOR vertex wupon the procedures
return. This allows the memory information for the newly created

processors to be attached to the correct PROCESSOR vertex.

These procedures contain all of the ﬁnformation needed to declare a

processor and a memory. Thus the calls

ONE_PROCESSOR ¢ @ , PSR) ;
STANDARD_MEMORY (PSR , O , 4096) ;

will produce the graph of figure(4.1). Therefore the ISL equivalent

of the processor triangle in figure(4.5) is these two statements above.

Alternatively, to declare a computer architecture with three

standard memories attached requires

Lk

ONE_PROCESSOR ¢ 8 , PSR) ;
STANDARD_MEMORY (PSR , 0, 4096) ;
STANDARD_MEMORY ¢ PSR , 4096 , 4096)
STANDARD_MEMORY ¢ PSR , 8192 , 4096)

e

wo

and this will produce the graph of figure(4.8).

(4.3) VERTEX NAMES

In the specifications so far only predefined vertex names have been
used. These are directly understood by the allocator, and do not need to

be defined by the wuser. A Llist of the predefined names are

SIZE NAME START CYCLE

MEMORY ACCESS ADDRESS PROCESSOR
PORT BANK INTERRUPT READ_PORT
WRITE_PORT MEMORY_ACCESS READ_WRITE_PORT USER_ADDRESS

Those 1in the second part of the list have not yet been discussed.
The user does not define these names, but does have to define any new
names that may be used. For example, in the following the name
SUB_SYSTEM is used. This is defined by

VERTEX SUB_SYSTEM ;

(4.4) SHARED MEMORY

So far the specification of a uniprocessor system has been
described. The specifications may Be expanded to deal with a computer
architecture of two or more processors. The simplest way is to merely
define two subsystems-

S := NEW (SUB_SYSTEM)
2 ->8S ;

ONE_PROCESSOR (S , PSR
STANDARD_MEMORY (PSR , 0 , 8192) ;

4

Ne

A d
L 1)

L5

Root vertex

Processors

Local Processor

.Processor
stores

Start=0
Size=8192

*\\\\v////' Start=0
Size=8192

Start=8192
Size=8192

Global
store

4

Figure 4.9

S§ := NEW (SUB_SYSTEM)
8->8;

ONE_PROCESSOR (S , PSR) ; -
STANDARD_ﬂEMORY (PSR, 0, 8192) ;

L1

These directives describe two independent processors, each with 8192
bytes of unshared memory. The use of shared memory is easily described
by attaching the same memory vertex to the two separate address vertices
of each processor that accesses this memory. The common memory for this
is defined by

4

STANDARD_MEMORY ¢ @ , 8192 , 8192) ;

This is referenced be 8.ADDRESS. - The processors can then be defined
as

FOR 2 DO
S := NEW (SUB_SYSTEM)
8 > 8§ ;
ONE_PROCESSOR ¢ § , PSR H
STANDARD_MEMORY ¢ PSR , 0 , 8192) ;
END

8.SUB_SYSTEM.PROCESSOR ~> 8.ADDRESS ;

LY

L

L6

In this definition the two subsystems are created as before. The
extra memory created by the first call to the standard memory procedure
is attached to both of these new processors. The specifications now
describe an architecture with two processors, each accessing their own
local store, and both accessing a common global store. The graphs and
computer structurés produced by both of these examples are shown in
figure(4.9). This pattern may be generalized to any number of processors

accessing the same memory units—

PROCEDURE SUB_SYSTEM_PROCEDURE ¢ C , PSR : SET) ;
VAR S : SET ;

BEGIN
S := NEW (SUB_SYSTEM) ;
C ->5§;

ONE_PROCESSOR (S , PSR
STANDARD_MEMORY (PSR , 0 , 8192) ;
END ;

~
A1)

The macro defines a new computer architecture portion which 1is given
the name SUB_SYSTEM. The processor of ‘this accesses its own local memory
which is defined by the call to STANDARD_MEMORY. The SUB_SYSTEM vertex
is attached to whatever vertices are in the reference set variable C.
The PSR variable will contain the new PROCESSOR vertex, upon the return

of the procedure.
From here the statements -

STANDARD_MEMORY ¢ @ , 8192 , 8192)
FOR 10 DO
SUB_SYSTEM_PROCEDURE (C ,.PSR)
PSR -> @.ADDRESS ;
END

.

LY}

will create the common memory and 10 new subsystems. Each time
through the Lloop a new SUB_SYSTEM will be created and the @.ADDRESS

vertex will be attached to its new processor vertex.

L7

Root vertex

Local
store

Processors
Processor Processor
(+local (+local store)
store)
Common Stores Local

Address
store

(The common stores)
Figure 4.10

(4.4.1) MEMORY ACCESS INTERFERENCE

In the above system there are ten processors accessing the same common
memory. Consequently there is the probability that two or more processors
will attempt to access the memory at the same time. This requires memory
arbitration logic whose function is to detect such clashes and to delay
processor memory requests until the memory is free. How this is managed in
the hardware is of no concern to the resourcg‘allocation problem. If two
or more processors are specified to access the same memory then the resource
allocator will assume that there is some kind of memory arbitration. This
will result in memory contention, affecting the execution performance of
the system. When performing the resource allocation the allocator will model

this interference and take this information into account.

€(4.4.2) DEPENDENT SHARED MEMORY

Consider the situation where there are two common memory blocks,

perhaps defined as

L8

STANDARD_MEMORY (@ , 8192 , 8192) ;
STANDARD_MEMORY ¢ @ , 8192 , 16384) ;
FOR 2 DO
ONE_PROCESSOR ¢ 8 , PSR) ;
STANDARD_MEMORY ¢ PSR , 0 , 8192) ;
PSR -> @.ADDRESS ;
END ;

o

and depicted in figure(4.10).

The common memories are defined by the first two calls to the
STANDARD_MEMORY procedure. Each processor vertex created by the
procedure has access to these, as well as access to a separate local
memory vertex. This is defined for each processor by the call to the
STANDARD_MEMORY procedure in the FOR loop. In this system each common
memory is accessed independently by the processors, one busy common
memory will not block the other common memory. The specifications

described so far can readily describe this architecture.

However now consider the situation where a memory access to one of
the common memories will block accesses by other processors to the other
common memories. Such a situation could arise from a number of different
kinds of architectures. Two possibilities are considered here. One is
wvhere a processor or group of processors access a number of memory
blocks via bank switching. This is where each memory resides in the same
memory addressing region of the processor and the appropriate memory
bank is selected by a bank select instruction. The other possibility
considered 1is a computer system built up with a number of processors,
each having direct access to their own Local memory by a dedicated bus,
and each processor also having slower access to all the memories of the

system via a common bus. These are considered in turn.

€4.4.2.1) MEMORY BANK SWITCHING

Memory bank switching is specified by attaching the memory vertices
to a common vertex. This vertex is given the name BANK and 1is similar in
use to an ADDRESS vertex in that it has attached to it a START vertex.
This therefore implies that the different memory blocks are in the same

memory range. An example is

49

Root vertex

Processors

Processor

The bank memory
switching circuits.

‘ Stores

Start=0

Size= Access= Size= Access=
10240 0.45 10240 0.45
Figure 4.11

FOR 2 DO

ONE PSR (@ , PSR)

PSR -> NEW (BANK) -> NEW(START = 0)
END .
FOR 2 DO

@.PROCESSOR(1) .BANK -> NEW(MEMORY) ->

(NEW (SIZE = 10240) , NEW (ACCESS = 0.45))

END
@.PROCESSOR (2). BANK -> @.PROCESSOR(1).BANK.MEMORY

50

Processor,

and this is depicted in figure(4.11).

Each processor now has access to two memory blocks, accessible in the
addressing range of 0 to 10239. A memory bank select instruction has to
be executed by the executing code to select which particular memory bank
is to be used. The resource allocator dinserts the appropriate bank

selection instructions into the code in its Llinking stage.

€(4.4.2.2) MEMORY MAP SYSTEM

The other possible memory structure requires the use of another
predefined property name, MEMORY_ACCESS. This standard vertex name is
used to represent the connection of several processors to a single
memory system, where only one access at a time can be performed. Thus it
indicates where memory arbitration is applied to a number of memory
blocks, and not just to one memory block. To demonstrate the directives,

a computer system with 4 processors and 4§ memories 1is specified,

GRAPH
INDEX I
VAR PSR : SET ;

we

PROCEDURE STANDARD_MEMORY (
C : SET ; START_VALUE , SIZE_VALUE : INTEGER) ;
VAR MEM : SET ; -
BEGIN
MEM := NEW (ADDRESS) ->
(NEW (¢ START = START_VALUE) ,
NEW (¢ MEMORY) ->
(NEW (SIZE = SIZE_VALUE) ,
NEW (ACCESS = 0.45

) ;
€ -> MEM :

END ;

PROCEDURE ONE_PROCESSOR (C , PSR : SET) ;
BEGIN

Ly

Root vertex

)
Processpr P,roccssor
Name O+ - Name QOw—I) 0 Name +OName
, ToCcessor
Processor — TN Cycle
Cycle O Cycle d S OCycle y
Address ’ Address ¢ S Addressiy AAddress ® () Address
Address Address
; 1 ~Start-..y . Start o e Start
Start ¢ (J., O Start ® (.. O O O tart
Memory Start Memory Memory Memoty
d Q d O O . O g_ .
Size Access Size Access Access Size Access 1z
Processors
\ ‘_/ Bus
“”&ﬂ\Structure
Stores
Figure 4.12 ~
PSR := NEW (PROCESSOR) ;
C -> PSR >)
C NEW C CYCLE = 2.5) , NEW (NAME = °*BRANDX')) ;
END ;

PROCEDURE MAP ¢ PSR : SET) 3
VAR ME, P : SET ;
I : INTEGER ;
BEGIN
ME ~> NEW (MEMORY_ACCESS) ;
PSR -> ME :

’

52

1 :=1;
FOR P := EACH (PSR) DO ‘
ME ~> NEW (ADDRESS) ->
(NEW (START = 8192 * I) , P,ADDRESS.MEMORY) ;
1 :=1+1;
END ;
END ;

BEGIN
FOR 4 DO
ONE_PROCESSOR (& , PSR) ;
STANDARD_MEMORY ¢ PSR , 0 , 8192) ;
END ;
MAP (&.PROCESSOR) ;
END ;

The first procedure defines a standard memory module. The second
procedure is a definition for one processor which accesses a standard
memory. The third procedure defines the map structure, it creates a new
MEMORY_ACCESS vertex and attaches it to the processor vertices. Then it
attaches the MEMORY vertex of each processor to this MEMORY_ACCESS vertex
via a new ADDRESS vertex. Thus, as is shown in figure(4.12), each processor
ends up with direct access to its own local memory and indirect access to

all the other memories of the computer architecture.

The address range of the local memory block is in the range of 0 to
8191. The addresses by which each processor accesses the nonlocal
memories 1s 1in increments of 8192, startiég at 8192 for the first
nonlocal memory. Note that according to this description each processor
has access to its_own local memory twice, once through the local address
range, and once through the nonlocal address range. In situations like
this the resource allocator will assume that address accesses to the

Local memory are to be made in the most direct manner possible.

At any one time each memory may be servicing only one memory
request. This request may come from the local processor, and at any one
time all the processors may be accessing their own lLocal memories. This
request may also come from some other processor via the memory mapping
logic. In this case only one such nonlocal request may be in progress,

in the entire system, at one time.

53

(4.4.2.3) MULTILEVEL MEMORY MAPPING SCHEMES

The specification above can easily be extended to a computer system
with a two level memory mapping hardware. Such a computer system will
have a number of processors, each with their own lLocal memory on a
dedicated bus, and each processor will have access to all of the
nonlocal memory units on a shared bus. This access is extended from that
of a one lLevel map by dividing the processor and lLocal memory pairs into
groups. A memory access request from a processor to a nonlocal memory
which is within the same group can‘be made independently of other such
accesses 1in other groups. One example of such a design is the Cm*

computer architecture [26].

Thus there are three grades of accesses. The fastest are from a
processor to its own Local memory, and all processors in the computer
system may meke such requests simultaneously. The second 1in speed is
from a processor to a nonlocal memory within the same group. There may
be one such request within each group. The slowest is a request from a
processor to a nonlocal memory not in its own group, and only one of

these requests may be made at one time.

The degradation in speed in these requests may come about because of
delays introduced by the memory arbitration Llogic used to connect
numbers of memories and processors together. Most likely, however, the
main degradation will come from memory contention, and this contention

is what the resource allocation tries to minimize.

The following specification follows the same pattern used 1in the
specification of a single Llevel map, using MEMORY_ACCESS vertices to

indicate dependent memory access paths.

Firstly a GROUP vertex name definition is added to the
specifications and then the processors and stores of the computer

architecture are defined by

FOR 4 DO
G := NEW (GROUP) ;
?->6;
FOR 4 DO

oL

KEY

Processors
@® Processor
and local
store.
O Common '
store Local stores

P=3 snowflakg

(the intercennecting
level = 1 bus)
architecture
Common store
P=3 snowflake architecture,
the processor and memory arrangement
Figure 4.13
External processor -0

1
External
processor

=

P=3 snowflake can be
level = 2 f represented as
architecture ,)

External - -

processor

Figure 4.14

55

ONE_PROCESSOR (6 , PSR) ;
STANDARD_MEMORY ¢ PSR , 0 , 8192) ;
END ;
END ;

This creates four GROUP vertices, each with four processors and

their own Llocal memory. Now to create the map structure requires

FOR 6 := EACH (®.GROUP-) DO
MAP (G.PROCESSOR) ;

END ;

MAP (@.GROUP.PROCESSOR) ;

In the first statement the map procedure is applied separately to
each GROUP vertex of the information structure and this will place the
processors of each group into a single map. In the second statement the
map procedure 1is applied to a reference which refers to all the
processors of the architecture. This results in all of these processors

being placed into a fifth map.

(4.5) SNOWFLAKE ARCHITECTURE

The snowflake architecture, as described in [21], is defined using
the ISL in the following. This provides an example specification of a
nontrivial computer architecture.

A first level snowflake has P processors and a single bus connecting
these. Here this bus is provided by the P processors accessing & common

memory. Figure(4.13) shows a first Llevel snowflake for P equal 3.

A second Level snowflake is constructed from P first Llevel
snowflakes and an extra bus. One processor from each first Llevel
snowflake 1is connected to this new bus. Another processor from each
first level snowflake becomes the external processor. The remaining P-2
processors are internal processors. An external processor is used when a
third Llevel snowflake is constructed, with the bus for the third Level
being connected to these external processors. Thus a second Level

snowflake is shown in figure(4.14,left).

56

Root vertex

o

he three processors

The common store
(for the interconnecting bus)

Figure 4.15

In figure(4.14,right), only the external processors of the snowflake
have been drawn, the remainder of the snowflake is hiddep in the dashed
circle in the middle. This looks Like the P=3 Llevel 1 snowflake in
figa}e(4.13). from this it can be seen how the construction of a

snowflake for the next level up can be achieved.

The definitions required for a P=3 snowflake are now developed.
Firstly the Llevel one snowflake is just three processors, each with
their own memory, and each with access to another common memory. This is

specified by a procedure definition

PROCEDURE FIRST_LEVEL ¢ € : SET) ;
VAR L , PSR : SET ;

BEGIN
L := NEW C LEVEL) ;
C->1L;
FOR 3 DO

ONE_PROCESSOR (L , PSR) ;
STANDARD_MEMORY (PSR , O , 8192) ;
END ;

STANDARD_MEMORY (L.PROCESSOR , 8192 , 1024) ;
END

57

The first statement creates a new LEVEL vertex. This 1is attached to
the vertices in the C reference set. Then three processor subgraphs are
constructed and attached to this LEVEL vertex. Each processor vertex has
a memory subgraph attached to it. This indicates that the processors
have 8192 bytes of Local memory. The lLast statement will attach another
memory subgraph to all three processor vertices. This common memory has

1024 bytes capacity and its starting address is 8192.

The architecture specified by this FIRST_LEVEL snowflake is as shown
in figure(4.13). The specification graph for this 1dis shown 1n
figure(4.15). Note the the LEVEL vertex has the three processors

attached.

To construct a level N snowflake, three Llevel N-1 snowflakes are
used. A new bus is created, and one processor from each of these N-1
snowflakes 1is attached to it. Another processor from each of the N-1
snowflakes is marked as being an external processor, by attaching it to

the LEVEL vertex. Thus the procedure definition is

PROCEDURE SNOWFLAKE (C = SET ; LEVEL_NO : INTEGER) ;
VAR L : SET ;
BEGIN
IF LEVEL_NO = 1 THCN
FIRST_LEVEL € C)
ELSE
L == NEW (LEVEL) ;
C->L;
FOR 3 DO
SNOWFLAKE ¢ L , LEVEL_NO-1)
END ;
FOR I := 170 3D
L -> L.LEVEL(I).PROCESSOR(1) ;
END ;
BUS (L) ;
END ;
END ;

Ne

LY

Here the LEVEL_NO constant in the procedure parameter Llist indicates

the level that is to be constructed. If this is a first Level snowflake,

58

O Root vertex

Level (the vertex for the level=2
snowflake)

Level (the level
vertices for the level
=1 snowflakes)

(V. The processors

The stores
for each level
one snowflake

Address

Address »

/\

Figure 4.16

The store for the level 2 snowflake

then the IF statement will select the call to the FIRST_LEVEL procedure.
Otherwise a new LEVEL vertex is created and three calls to the snowflake
procedure are made. These coﬁstruct the N-1 level snowflakes. After this
the first processor of each N-1 Llevel 1is attached directly to this
level. These processors are the external processors that may be used to
attach to buses to create higher Level snowflakes. Finally a call is
made to the BUS procedure. This will create the bus for this level and

attach the correct processors to 1it. The definition of this bus is

PROCEDURE BUS (L = SET) ;
VAR ADR : SET ;
BEGIN
STANDARD_MEMORY (¢
L.LEVEL.PROCESSOR (2) , 9216 , 1024) ;
END ;

59

This procedure creates the common memory subgraph and attachs this
to each of the three processors. These processors are choosen to be the

second processor of each of the three attached N-1 level snowflakes.

Notice that at each level the LEVEL vertex has attached to it the
three LEVEL vertices of the N-1 Level, the ADDRESS vertex of the memory
used for the bus at this Llevel, and the three processors which may be

used in a level N+1 snowflake. To show this a level 2 snowflake is

represented in the graph of figure(4.16).

(4.6) INPUT, OUTPUT AND INTERRUPTS

In this section the specifications for hardware dinput, output and
intérrupts are described. The directives for this information will only
describe the addresses and read/write status of input and output ports,
addresses of interrupts and addresses of variables. ALL other hardware

specific information is not modelled at this Llevel.

(4.6.1) INPUT AND OUTPUT

The two kinds of 1input and output hardware structures modelled are
memory mapped 1/0 and 1/0 ports that are accessed with a separate
address space. In both cases the port may be read only, write only or

both, and the port will have an address.

€(4.6.1.1> MEMORY MAPPED INPUT AND OUTPUT

The 1information to specify a memory mapped input or output port is
specified by vertices attached to the MEMORY vertex which represents the
memory module within which the memory mapped port appears. These

vertices may have one of the reserved names
READ_PORT WRITE_PORT READ_WRITE_PORT

and will have an attached value which gives the_ address. This

address is not relative to the processors addressing ranges, but

60

Root vertex

(:;)The processors The processors

Local Address
\\\\\u//// stores
Common store Memory
with memory Start=
I/0 8192
Access= Size= Read-port Write-port
0.45 1024 =210 =211

Figure 4.17

relative to the start of the memory module. Address 0 being the first
Location in the memory module. Thus to specify a memory mapped read port

at location 210 in memory module STORE_1 requires

8.STORE_1.ADDRESS.MEMORY -> NEW (READ_PORT = 210) ;
This directive attachs a8 new vertex of name READ_PORT and value 210
to the indicated memory vertex. Similarly to specify a write port

requires
8.STORE_1.ADDRESS.MEMORY => NEW (WRITE_PORT = 211) ;

This informaticn can be used by the allocator 1in the placement of
variables from the user program which are to be used as input and output
ports. The memory mapped input port is associated ui}h the memory vertex
information, and is equally accessible to any processor that can access

the memory module.

61

An example of this structure 1is given for a computer architecture
with two processors each accessing a common store. This store is part of
a memory mapped 1/0 system and has a read port at 210 and a write port

at 211. The specifications for this are

GRAPH
VAR PSR : SET ;
PROCEDURE STANDARD_MEMORY ; ... etc as before ;
PROCEDURE ONE_PROCESSOR ; ... etc as before ;
BEGIN
FOR 2 DO
ONE_PROCESSOR ¢ & , PSR) ;
STANDARD_MEMORY ¢ PSR , 0 , 8192) ;
END
STANDARD_MEMORY ¢ & , 8192 , 1025) ;
®.PROCESSOR -> @.ADDRESS ;
28.ADDRESS.MEMORY —>
(NEW C READ_PORT = 210) , NEW (WRITE_PORT = 211)) ;
END ;

This specification is represented in figure(4.17).

(4.6.1.2) SEPARATE ADDRESS SPACE INPUT/OUTPUT.

In memory mapped input/output the dinformation .about the ports is
attached to a memory. Separate address sp;ce refers to ports accessed
directly by the processor, and in these specifications information is
attached to a vertex given the reserved name PORT. Thus to specify a

input port number 12 requires

8 -> NEW C PORT) -> NEW (READ_PORT = 12) ;

’

The information about extra input/output ports may be attached to

the same port vertex, or to different ones. Thus either of the following

can be used

8 -> NEW (PORT) ->
(NEW (READ_PORT = 12) , NEW (WRITE_PORT = 13)) ;

62

Root vertex

The processors

Access Access to
to the] the write processors
read port port

The local stores

Read-port=12 Write-port=13

Figure 4.18

a->

¢ NEW C PORT) -> NEW (READ_PORT = 12) ,
NEW (PORT) -> NEW (WRITE_PORT = 13)) ;
to specify two ports, one input and the other output. The vertices

are then attached to the processor vertex that represents the processor

which accessed these dnput and output ports. Thus an example may be

GRAPH

BEGIN
FOR 2 DO
ONE_PROCESSOR ¢ @ , PSR)
STANDARD_MEMORY ¢ PSR-, O
END ;

(Y]

, 1024)

N8

8.PROCESSOR(1) => NEW (PORT) -> NEW (READ_PORT = 12) ;

@.PROCESSOR(2) -> NEW (PORT) -> NEW (WRITE_PORT = 13) ;
END ;

This gives a system of two separate processors, one accessing a read
port and the other accessing a write port. The graph and computer

architecture sre represented in figure(4.18). -

63

For the memory mapped I/0 situation, two processors accessing the
same memory containing a memory mapped port are regarded as both being
capable of accessing this didentical port. For separate address 1/0
ports, the meaning is somewhat different. Generally an I/0 operation of
this kind performed by one processor will access a different port from
ean 1/0 operation performed by another processor, even if the I/0 port
numbers are the same. To specify this, the wusual occurrence, the same
PORT vertices would not be attached to different processors. If,
however, the ports of identical numbers on different processors are
connected to the same hardware c¢ircuits so that they transmit and
receive identical information, then this they can be regarded as one
port shared by two processors. This is modelled in the graph structure
by the same port vertex attached to more than one processor vertex. This
is analogous to having a memory mapped information structure attached to

more than one processor.

(4.6.2)> INTERRUPTS

The resource allocator provides for the modelling of a user
accessible interrupt structure. This takes the form of a hardware
generated interrupt calling a user designated procedure. Providing the
procedure code, and ensuring that the procedure returns before the next

interrupt might be generated, is the users responsibility.

To specify the information about an interrupt requires a vertex with
the reserved name INTERRUPT, and attached to it a constant value giving
the address of the hardware interrupt. The binding between the interrupt
and the high Llevel Language procedure it is to call is made by the

linker stage.

Thus an example s

GRAPH
BEGIN |
FOR 2 DO
ONE_PROCESSOR (@ , PSR)
STANDARD_MEMORY ¢ PSR , O , 1024) ;
END ;

we

6l

8.PROCESSOR(1) => NEW (INTERRUPT = 32) ;
END ;

For an dnterrupt that jumps to address 32. If there is only one
interrupt possible on a processor then the interrupt number may be left
out. If the hardware that generates interrupts 1is also capable of
producing an argument to go with the interrupt <(as, for example, an
interrupt made to a single address location which is given an interrupt

number parameter), then this argument can be passed to the high level

procedure via its parameter Llist.

These dinterrupt vertices are attached to the processor vertex
representing the hardware processor that accesses this dinterrupt. A
processor may have more than one interrupt. The converse is true also,
the same interrupt may be attached to more than one processor. This is
interpreted to mean that the hardware generating this interrupt sends
the dinterrupt signals to the same interrupt addresses in all of these
processors. Thus a program relying on this interrupt may reside upon any
of these processors to work correctly. However the situation of
identical interrupts being connected to differing interrupt addresses in

different processors is not covered.

(4.6.3) SPECIFICATION OF VARIABLE ADDRESSES

Almost always the actual hardware addresses of variables will be
assigned by the resource allocator. In the rare cases when the user
requires to explicitly Llocate a variable this can be done by inserting
into the information graph the required address and memory module. This
information is then accessed by other constraint directives to bind the
required variables to these addresses. As an example, to be able to

place variables at address starting from 34 in memory A, requires
§ -> NEW (USER_ADDRESS = 34) ;

where S is a8 reference set variable that contains the memory A

vertex. Now to refer to this address the reference

S.USER_ADDRESS

65

is used. More than one such vertex can be added, as in

34)
35)

S => NEW ¢ USER_1) -> NEW (USER_ADDRESS
S => NEW (USER_2) —-> NEW (USER_ADDRESS

Ne

w®

Here the USER_1 and USER_2 are user defined vertex names, and the
USER_ADDRESS vertex is the reserved name. Either address can now be

referred to by

S.USER__1.USER_ADDRESS
S.USER_2.USER_ADDRESS

(4.7) CONDITIONALS

The directives are used to specify the structure of the computer
system. They are also used to examine this structure and select resource
units which obey certein constraints. These constraints are supplied by
the user when specifying how the elements of a program are to be

allocated to the resources of the computer.

A user defined constraint 1indicates a program element or elements
and Llists the computer resources that the elements may be mapped to. An
element is either a storage requirement of the program for code, data,
stack or heap space, or it is a processing ?gquirement for a process of

the program. The resource this is mapped to can then be either a
.coLLection of physical memory modules onto which the program memory is
allowed, or a collection of processors that are permitted to exeéute the

process.

The selection of the elements and their specifications 1is described
in chapter 5, as are the constraint directives themselves. Here the
selection of the resource elements that are to be used for any one
constraint directive is demonstrated. This involves selecting suitable
processor or memory vertices from the entire system which satisfy the

required conditions.

66

The selection directives are now described below in detail.

(4.7.2) SIMPLE SELECTION EXAMPLE

As an example the previous computer system defined with a two level
map structure is used (given in section 4.4.2.3). This system is to be

extended with the addition of disk 1/0 ports to some of the processors.

To specify the addition of a disk unit to one of the processors
requires the definition of an additional vertex name, and a reference
Like

8.GROUP(4) .PROCESSOR(2) -> NEW (HAS_DISK = TRUE) ;
This indicates that the 2nd processor of the 4th group has a disk
attached. If there are a number of such directives, then to select any
processors in this system that have a disk attached, without specifying

the actual group and processor numbers, requires references Like

% -> NEW (PROCESSOR_WITH_DISK) ->
8.GROUP.PROCESSOR.<VALUE(®_HAS_DISK)=TRUE> ;
which attachs all processor vertices which have a HAS_DISK vertex
with a value true to the newly created PROCESSOR_WITH_DISK vertex. For
the specification program to be legal this vertex name has to be defined
in the vertex Llist of the specification block. In the examples following

the need for this definition will not mentioned.

So now the processors that are 1in the system with & disk attached

can be accessed directly with the reference
@.PROCESSORS_WITH_DISK.PROCESSOR
vhich will access all such processors. Any properties that these

processors may have, for example their memory descriptions, can be

referenced 1in the usual fashion starting from the above reference.

61

(4.7.3) MULTIPLE SELECTION CRITERION

More than one vertex can be specified in the selection criterion.
For example some of the processors 1in the above system may be more

reliable than others. This wvertex can be specified by the reference
#.GROUP(1) .PROCESSOR -> NEW (IS_RELIABLE = TRUE) ;

which will attach to all the processors 1in group 1 a unique

IS _RELIABLE vertex of the indicated value.

Now to select all those processors with an 1/0 disk wunit attached

which are also reliable is achieved by the reference—"

8.6ROUP.PROCESSOR.< VALUE(@.HAS_DISK)=TRUE AND
VALUEC @.IS_RELIABLE)=TRUE > ;

Another example 1is where the disk units may have additional
properties, such as disk access speed and storage size. These properties
may be described and attached to the processor vertices by the following

specifications

PROCEDURE DISK_UNIT (
C = SET ;
DISK_SPACE_VALUE : INTEGER ;
DISK_SPEED_VALUE : REAL) ;

BEGIN :
C -> NEW (DISK) ->
(NEW (DISK_SPACE

NEW ¢ DISK_SPEED

DISK_SPACE_VALUE) ,
DISK_SPEED_VALUE)) ;

END _;

And this procedure 1is used to specify that some of the processors

have disks,

DISK_UNIT ¢ GROUP(3).PROCESSOR(5) , 512 , 2)
DISK_UNIT (GROUP(3).PROCESSOR(6) , 512 , 2)
DISK_UNIT C GROUP(4).PROCESSOR(C1) , 1024 , 1) ;

e

LY}

68

DISK_UNIT (GROUP(5).PROCESSOR(3) , 2048 , 4) ;
DISK_UNIT (GROUP(5).PROCESSOR(4)> , 128 , 0.5) ;

Here the first number could be interpreted as the number of blocks
in a disk and the second number is the number of milliseconds needed to
access an average block. In this specification only 5 of the processors

have disks attached.

With this specification a reference that will access all processors

with disks attached can be

8.GROUP.PROCESSOR. < NOT EMPTY (8.DISK) >

and to reference all processors with a disk attached of size 1024
blocks or bigger and an access time of 1ms or less requires
8.GROUP.PROCESSOR.< NOT EMPTY (8.DISK) > .
< VALUEC ®.DISK.DISK_SPACE) = 1024 AND
VALUEC @.DISK.DISK_SPEED) <= 1 >

This reference will still work when there are two or more disks

attached to a processor vertex, the result will be any processor vertex

with at Lleast one disk attached that satisfies the constraint.

69

CHAPTER(S5)

The user constraint directives specify constraints upon the
placement of program elements onto the computer architecture. Generally
the resource allocator will perform its task of generating a legal and
efficient mapping without user intervention. However additional user
constraints, based on application specific information, may be imposed

by the programmer to guide the allocator.

There : are several forms of constraints. They operate upon a
collection of program elements and a collection of resource elements.

The following sections will discuss
How to specify the resource elements of a constraint.
How to specify the program elements of a constraint.
How to specify the constraint action itself.

(5.2) SPECIFICATION OF RESOURCE ELEMENTS

Firstly the specification of the resource elements is outlined.
The computer architecture is specified by the ISL graph structure,
and so the specification of resources uses this structure. Each resource
of the computer is represented by a PROCESSOR, MEMORY, PORT or INTERRUPT
vertex in the graph. Therefore a reference can be used to access these.
Thus the resource references are a restricted form of the general ISL

graph reference. They can be described by the syntax

Resource_Reference = "a",
€ ".", Vertex_Name, [Vertex_Index 1 } ;
Vertex_Name = Identifier ;

Vertex_Index = "(", Number, ")" ;

70

An example is
8.GROUP.PROCESSOR(2)

(5.3) SPECIFICATION OF THE PROGRAM ELEMENTS

Now the specification of the program elements is given.

Program elements may be processes, variables, procedures and,
depending upon the kind of computer architecture, modules. Only those
elements which are named in the program are accessible to a constraint.
This name is always the identifier that is given to the element in its
definition or declaration. Such elements are specified by a path name
constructed from information in the progfam text. There is one path name
per- element, and these are combined together into collections called

objects. It is these objects that are used 1in a constraint directive.

(5.3.1) PATH NAMES

ALl program elements are accessed within the high Level language
program by their names,-and so the specification uses these names also.
However due to the scoping rules of many languages, these names may not
be unique throughout the whole program. The technique adopted here is to
construct a path name for each element. This path name consists of the
name of the element, and the name of every enclosing scope. These are
combined into one reference using the record dot notation (as used in

Pascal).
The syntax for a path name is

Path_Name =
{ Scope_Name, ".")}, Element_Name, [Indication J ;

I 4
Indication = '":'',""CODE'|"'STACK'" ;
Scope_Name = ldentifier ;

EQement_Name = Identifier ;

A path name like

[

Element_Namel

refers to an element in the program which 1is in the outer most

scope. A path name like
Scope_Name1.Element_Name1

refers to an element named Element_Namel which is defined in a scope

called Scope_Namel.

Thus to refer to the integer varisble in the following Pascal code

PROCEDURE DEMONSTRATE ;

VAR | : INTEGER ;
PROCEDURE NUMBER ONE ;
VAR | : INTEGER ;
BEGIN ... END ;

BEGIN ... END ;

requires one of the following two references
DEMONSTRATE.I DEMONSTRATE .NUMBER_ONE. I

depending on whether or not the first or the second occurrence of

the 1 integer 1is wanted.

If this is a recursive procedure, then the reference will refer to all
instances of the variable. Consequently the variable will occupy the same
address for all invocations. The other local variable of the procedure will

be allocated as normally expected.

(5.3.2) WITH BLOCKS

Since these path names can rapidly become very Llong with deeply
nested programs, a WITH block is allowed in the specification

directives.This encloses a syntactically complete collection of resource

72

allocator specifications and allows the first part of a Long path name

to be specified.

With_Block = "WITH", Path_Name, "DO",
{ Object_Assignment | With_Block >, "END", ";" ;

(Object_Assignment is to be defined, contains Path_Names).

A With_Block Like

WITH Path_Namel DO
..... Path_Name2
END WITH ;

is equivalent to

if this path name is able to refer to an element. If, however, this
path name does not refer to any elements in the program, then this is

equivalent to

in other words the path name inside the With_Block is used without

alteration.

As an example

PROGRAM DEMONSTRATION ;
PROCEDURE NUMBER_ONE ;
PROCEDURE NUMBER_TWO ;
PROCEDURE NUMBER_THREE ;
VAR
A,B,C,D,E : DATA_TYPE ;
BEGIN . . . END ;
BEGIN . . . END ;
BEGIN . . . END ;
BEGIN . . . END .

13

Here the variables A to E may be referred to inside a resource

allocator specification by the following

WITH DEMONSTRATION.NUMBER_ONE.NUMBER_TWO.NUMBER_THREE DO
use the identifiers A, B, C, D or E.

END ;

(5.3.3) PROCESS CODE AND STACK ELEMENTS

Consider a path name to a process called P in some program. This
will be Like §1.S2. ... P, where §1, §2... are the surrounding scope
names. Now is this path name a memory element referring to the code of
the process, or is it a process element referring to the processor that

executes the process? To resolve this, a path name like
$1.82. ... P

will always refer to a process element by default. If it is required

to indicate the code of the process, then the path name is
$1.82. ... P:CODE-

Variables never contain executable c¢ode, and so this type of
specification 1is not needed when using path names to refer to a
variable. Similarly a procedure or module element, is always a memory
element, since the execution of the code of a procedure or module is
performed by a process.

-

To refer to all of the local variables of a process the following is used,
S1.S2. ... P:STACK

(5.3.4) OBJECT DEFINITIONS AND ASSIGNMENTS

A Path_Name is used to refer to a particular program element. The
resource allocator generally uses collections of elements when it is
performing its allocation. A collection of program elements is called an
object. Objects are defined in the resource allocation language, and are
used 1in the user constraints. Object_Assignments are used to specify

wvhich elements these objects refer to. An object can contain many

h

program elements, but each object can contain process elements only, or

memory elements only.

Program elements may only be assigned to objects that have already '
been defined. An object definition consists of the name of the object
and its kind, either a process object or a memory object. The syntax is

Object_Definition_Part =
"DEFINITION", { Object_Definition 2, "END", ";" ;
Object_Definition =
object_Name, { ","”, Object_Name 3, ":", Object_Kind ;
Object_Name = ldentifier ;

"PROCESS"™ | "MEMORY" ;

Object_Kind

For example

DEFINITION

OBJECT_1 : PROCESS ;

OBJECT_2 , OBJECT_3 : MEMORY ;
END ;

will create three objects, the first object will contain processes

and the next two will contain program memory elements.

After the Object_Definition Part appears the
Object_Specjfication_BLock. This contains Object_Assignments which
specify the elements that each object is to refer to. An object may
appear in only one Object_Assignment, and pragram elements can also only

appear in one Object_Assignment. The syntax for this is
Object_Specification_Block = "SPECIFICATION"
{ Object_Specification 3, JEND", "o
Object_Specification =
Object_Name, ":=", "[", Program_Path_List, "1", ";" ;
Program_Path_List = Path_Name, { ",", Path_Name)} ;

Thus

OBJECT_1 <= [DEMONSTRATION.PROCESS_A] ;

15

will result 4in OBJECT_1 referring to the 1indicated process 1in the

program,

OBJECT_2 := [DEMONSTRATION.A , DEMONSTRATION.B J ;
OBJECT_3 := [DEMONSTRATION.PROCEDURE_ONE:CODE] ;
OBJECT_ﬁ = [DEMONSTRATE.PROCESS_ﬁ:STACK];
and the above two assignments will result 1in OBJECT_2 referring to
the variables A and B and in OBJECT_3 in referring to the code of the

L 9
procedure.

(5.3.5) PROGRAM SPECIFICATION BLOCK

The Object definition and specifications appear 1in a8 complete

Object_Specification block, whose syntax is

Object_Specification_Block =
"OBJECT",
Object_Definition_Part,
Object_Specification_Block,
"END", 3" g

A complete example, bringing together the separate examples of the

Last section, is

OBJECT
DEFINITION
OBJECT_1 : PROCESS
OBJECT_2, OBJECT_3 : MEMORY ;
END ;
SPECIFICATION
OBJECT_1 := [DEMONSTRATION.PROCESS_A J ;
OBJECT_2 := [DEMONSTRATION.A , DEMONSTRATION.B 1] ;
OBJECT_3 := [DEMONSTRATION.PROCEDURE_ONE:CODE 1 ;
OBJECT_ L := [DEMONSTRATE.PROCESS A:STACK];
END ; -
END ; |

A1)

-7

(5.4) CONSTRAINT SPECIFICATION

Finally the constraints themselves are described. There are two main

types of user constraints. These sare

A) General constraints. These specify to which group of resource

elements a program element may be assigned.

B) Address constraints. These allocate variables and interrupt calls

to specific addresses within physical memory modules.
The syntax and usage of these are described in the following.

(5.4.1) GENERAL CONSTRAINTS

A general constraint will specify the processors of the architecture
to which the given process elements of the program can be assigned, or
it will specify the physical memory resources to which the given program
memory elements may be assigned. There are two kinds of general

constraints, which are

A) Assignment constraints. These specify a list of resource elements

to which the indicated program elements may be assigned.

B8) Proximity constraints. These impose constraints upon the placement
of program elements depending on thé’Locations of other already
placed program elements. The two types of proximity constraints
may be to either place the program elements onto the same
resources as some other program elements, or to place them onto

different resources from some other program elements.

Firstly the assignment constraint are described, followed by the

proximity constraints.

17

(5.4.1.1) ASSIGNMENT CONSTRAINTS

ees s ssesscsossoccacacsse se e s evecenoaes
¢

An assignment constraint has the syntax
Assign_Constraint =

"ASSIGN", Object_List, "->", Resource_List, ";" ;

Object_List = "(", Object_Name, { ",", Object_Name 2, ")" ;
Resource_List =
*(", Resource_Reference, { ",", Resource_Reference », ")" ;

Object _Name = Identifier ;
An assignment statement Like

~ ASSIGN (Object_Namel) ->

(Resource_Referencel, ... Resource_ReferenceN) ;

will indicate to the resource allocator that all the program
elements specified by the Object_Namel object will be assigned only to
some resource element which is a member of the resource Llist. The types
of the program elements in° the object must agree with the types of the
resources in the resource list. That is program elements that are
processes can only be assigned to resource elements that are processors.
Similarly program memory elements are only assigned to physical memory

resources.
An assignment Llike
ASSIGN (Object: Namel, ... Object_NameN) -> Resource_List! ;
is equivalent to the separate ass{gnments

- ASSIGN (Object_Namel) -> Resource_List1

A 1]

ASSIGN (Object_NameN) => Resource_List]

LY}

while two assignments like

78

ASSIGN C an object Llist containing program element X)
~> Resource_List1 ;
ASSIGN (an object List containing program element X)

-> Resource_List2 ;

will specify two constraints upon the program element X. In this
case the intersection of the resource List sets gives the constraint for

X. Thus the constraint on X is

ASSIGN ¢ an object containing only X) ->

a resource set equal to Resource_List1 AND Resource_List2 ;

Conflicting constraints can be detected at this stage if the
combined resource of an element becomes empty. This indicates that the
element can not be assigned to any resource without violating one or

another of the constraints imposed upon it.

(5.4.1.2) PROXIMITY CONSTRAINTS

Program elements may also be constrained to locations depending upon
the proximity of the assignment of other program elements. There are
only two degrees of proximity allowed, either a program element may be
assigned to the same resource as some other program element, or it may

be assigned to a different resource. The syntax for these are

Proximity_Constraint =

"ASSIGN", Object_List, "->",

("SAME"™ | "DIFFERENT"), Proximity_Resource_List, ";" ;
Proximity_Resource_List =

"(", Proximity_Resource_Reference,

¢ ",", Proximity_Resource_Reference } ;
Proximity_Resource_Reference = "a",)

{ ".", Vertex_Name, ["(", ¢ Number | "%"), ™" 11 ;

A proximity constraint Llike

ASSIGN Object_Listl ->

SAME (Proximity_Resource_Referencel ,

19

Proximity_Resource_ReferenceN) ;

will ensure that each program element in the object List will go to
the same group of resource elements from amongst
Proximity_Resource_Referencel to Proximity_Resource_ReferenceN.

Alternatively a proximity constraint like

ASSIGN Object_Listl ->
DIFFERENT (Proximity_Resource_Referencel ,

Proximity_Resource_ReferenceN) ;

will ensure that each program element 1in the object List will each

be allocated to a different group of resource elements.

The references used may be similar to those used 1in the assignment
constraints. Alternatively the references may also have a "*" character

in the vertex indices. In a reference Llike
Vertex_Namel. ... Vertex_NameX(*). ... Vertex_NameN

the "x" character 1in the index reference is wused to represent all
possible index values. If this vertex has & possible index range of 1..5

then the reference above is equivalent to the references

Vertex_Namel. ... Vertex_NameX(1). ... Vertex_NameN ,
Vertex_Namel. ... Vertex_NameX(2). ... Vertex_NameN ,
Vertex_Namel. ... Vertex_NameX(3). ... Vertex_NameN ,
Vertex_Namel. ... Vertex_NameX(4). ... Vertex_NameN ,

Vertex_Namel. ... Vertex_NameX(5). ... Vertex_NameN

and thus this notation 1is a shorthand method of writing out the

resource reference lists.
An example of a proximity constraint is

ASSIGN Object_List1 ->
SAME (GROUP(1).PROCESSOR , GROUP(2).PROCESSOR) ;

80

(using the graph definition of section(4.4.2.3). This will ensure
that, however the resource allocator performs is allocation, all of the
processes in the Object_Listl will always end up in either the

processors of GROUP(1) or the processors of GROUP(2). Another example is

ASSIGN Object_Listl —>
DIFFERENT (GROUP(*).PROCESSOR(X)) ;

This is equivalent to the expanded constraint

ASSIGN Object_List1l ->
DIFFERENT (GROUPC1).PROCESSOR(1) , GROUP(1).PROCESSOR(2) ,
GROUP(1).PROCESSOR(3) , GROUP(1).PROCESSOR(4) ,
GROUP(2) .PROCESSOR(1) , GROUP(2).PROCESSOR(2) ,

GROUP(4) .PROCESSOR(3) , GROUP(4).PROCESSOR(4)) ;

assuming 4 groups and 4 processors per group. Thus this constraint
will ensure that each process in the object List will end up in a
processor by itself. Note that if there are more processes in the object
list than there are processors in the resource Llist, then the constraint
can not be satisfied for’ all processes simultaneously, and so the

resource allocation mapping will fail.

(5.4.2) ADDRESS CONSTRAINTS

v

The constraint directives described above are applicable to the
control of the over all allocation strategy of the resource allocation
by the user. The Llocation directives now described are used to specify
explicitly the interrupt addresses for procedure calls and the addresses

of normal variables and 1/0 varisbles.

(5.4.2.1) 1/0 VARIABLE ADDRESSES

To access memory mapped input/output information a wvariable of the
correct size can be positioned at the memory mapped 1/0 address. This
variable can be used within the program exactly Like any other variable.

The only difference, from a high level language point of view, is if

81

this varisble 1is in a Local procedure declaration space. In this case
each activation of the procedure will access that same variable address,
instead of having a new variable created on the procedure invocation
stack each time. From the point of view of the hardware, the variable

address corresponds to a memory mapped I/0 port.
The syntax is

Location_Constraint = "LOCATE", "(", Variable_Path_Name, ")",

»->", "(", Resource_Reference, ")", ";" ;

Variable_Path_Name = Path_Name ;

and an example is
LOCATE ¢ Variable_Path_Namel) -> (Resource_Referencel) ;

Here the variable referenced by the variable path name will be
allocated to the address given for the input/output port specified by
the resource reference in the information graph. A variable path name is
used instead of an program element reference, since usually the address
of only one variable at a time needs to be set. A variable can only be
assigned to one location and so the resource element has to refer to one

store module only.

(5.4.2.2) INTERRUPT CALLS.

Interrupts that are to be accessed expl{bitly by the progremmer are
implemented as external calls to & user written procedure. This
procedure 1is written according to the usual high Llevel Llanguage
conventions. An interrupt call to it is equivalent, at the programming
language Llevel, to a call from an anonymous process written 1in the

Language.

In the following the resource interrupt reference refers to a memory
address specification in the information graph. The syntax to indicate
the binding between the procedure in the program and the interrupt call

is

82

Interrupt_Constraint -=> "INTERRUPT", "(", Procedure_Path_Name,

"y, "->", "(", Resource_Reference, ")", ";" ;

Procedure_Path_Name = Path_Name ;
and so an interrupt constraint is like
INTERRUPT (Procedure_Path_Namel) —-> (Resource_Referencel) :

where the procedure specified by the path name will be called

whenever there 1is the appropriate interrupt to the processor.

(5.4.3) MULTIPLE CONSTRAINTS

If a program element appears in more than one constraint, then the
final allocation for that element must satisfy all such constraints

simultaneously. For example the constraints

ASSIGN Object_List1 -> (Referencel) ;

ASSIGN Object_List2 -> (Reference2) ;

ASSIGN Object_List3 -> SAME (Reference3) ;
ASSIGN Object_List4 -> DIFFERENT (Reference4) ;

will ensure that if program element X is 1in all four object Llists,
then the assignment of X to the architecture architecture will be such

that

X is assigned to a resource in Referencel.

X is assigned to a resource in Reference2.

X is assigned to the same resource in Reference3 as all the
other program elements in Object_List3.

X is assigned to a different resource in Reference4 from all

the other process elements of Object_Listé4.

If such a resource does not exist, then the map allocation will
fail.

83

(5.5) FINAL SYNTAX

The syntax for the entire allocation
AlLlocation_Program =
"ALLOCATION",
Graph_Specification_Block,
Object_Specification_Block,
Constraint_Block,
"END", "." ;

Constraint_Block =

+"CONSTRAINT", { Constraint }, "END",

Constraint = Assign_Constraint | Location_Constraint |

specification

’ ’

A complete example using the specification language

Appendix(F).

8l

is

program

Interrupt_Constraint | Proximity_Constraint ;

is

given in

CHAPTER (6)

An allocation program needs to be able to produce efficient mappings
of programs onto computer architectures. An efficient implementation of
a program can include many factors, such as using the minimum memory
space, executing in the fastest time or having maximum reliability. When
an allocation program is used it is presented with an already written
program and a fixed architecture. The most important efficiency measure
it can influence is the execution speed of the program. Decreasing the
memory uEage is outside its capabilities, because this depends upon the
design of the program. Increasing reliability, by placing important data
and processes onto reliable memory modules or processors, 1is not
directly carried out by the allocation program. Instead the user imposes
these requirements with the aid of constraints. Thus the sole efficiency
measure that can be optimized by the allocation program is the
execﬁtion time or throughput of the final allocation. Consequently it
needs to be able to obtain an estimation of this throughput for any

allocation mapping.

This execution time estimation may be produced in two different
ways, either by solving an analytic probability model or by running a
simulation program. For this thesis an analytic model was derived from
work by [44]. The model described will calculate the general memory
interference in a multiprocessor computer involving bus conflicts and
bus induced delays. The results obtained from this model were tested by
using a simulation model, a brief description of this modelt 1is also
given. This chapter finishes with a discussion on the relative

performance of both the simulation and the analytic model solutions.

(6.2) ANALYTIC PROBABILISTIC THROUGHPUT MODEL

In the following an analytic probabilistic model is described which
can be used to calculate the throughput of a concurrent program to be
executed on a multiprocessor system. The basic mathematical model comes

from [44] which takes into account the effects of memory interference.

85

To this has been added extensions to allow for different store cycle

times and to include the effects of common store access buses.

The original model assumed that each processor was running an independent
program. This implies that a processor only idles when it is waiting on a
busy memory. This idling will occur on a cycle by cycle basis. However for
the allocator problem this is no longer true, the processors execute code
that is part of the single program. Thus the processors may spend some of
the time idling, not because of memory contention, but because they are
waiting on semaphore locks until some useful work becomes available. This
kind of idling will occur over a much longer time scale than the first type.

Accordingly the model has also been adapted to this requirement.

(6.2.1) MODEL DESCRIPTION

The model assumes a multiprocessor computer containing a number of
processors and store modules. In the model any processor may access any
store, although some access paths between processors and store modules
may not utilized by the actual computer architecture hardware, and some
access paths may go through common store access buses. The store modules
and processors may have different access times and processor cycle

times. The common buses may introduce access time overheads.

Each store has an access time followed by a recovery time. Tﬁe
access time is the time required to fetch or store one memory value. The
recovery time is the time required by the memory to become ready for the
next request. During this time the processor is released and may do
useful work. Generally only older magnetic core memory technology will
have nonzero recovery times. In the model there are M stores, and the

stores are referenced by the index S.

Each processor has an average single idnstruction processing time
during which it does not access the memory. This is followed by a memory
fetch cycle, in which the processor idles until the memory request has
been completed. It is assumed that the single instruction time is
greater than the store recovery time. Thus a processor does not issue a
memory request before the store has recovered from the last one. The
model assumes that there are N processors, the index P is used to refer

to a particular processor.

86

A processor may not be able to directly access a store, but has to
access it through an 1intermediate common bus in competition with other
processors. Such a bus will introduce an access overhead which is its

bus delay. In the model the buses are referenced by a bus 1index called

B .

The model is supplied with an array which gives a value for each
processor store pair. This value is the number of memory accesses the
processor makes to the store in an arbitrary time. For some pairs this
will be =zero, indicating the processor never accesses that particular
store. This array, when normalized, will give the probability access

pattern of the processors. The array is represented by

NiCP,S)

where Ni is the input number of cycles, P is the processor number and S

is the store number. [t can be normalized by a constant factor C such that

M
C * z Ni (P,S) €1
s =1

R .
i N L
!

eael)

vhere for some P the summation equals one. As an example,

an input number of cycles array could be

stores
processors 4 6
3 5

For this the normalization factor dis 0.1, giving the normalized

array

stores row summation (per processor)
processors 0.4 0.6 1.0
0.3 0.5 0.8

re

This array gives the access probability pattern of the processors.
Thus the first processor spends 0.4 of its time accessing the first
store, and 0.6 of dits time accessing the second store. The second

processor spends 0.3 of its time accessing the first store, 0.5 of its

87

time accessing the second store and the remaining 0.2 of its time
idling.

As 1its solution the model will produce an actual number of cycles
array. This will give the calculated number of accesses between each
processor and store in a unit time. The pattern of accesses will be the
same as for the input number of cycles array, and so the two arrays will
differ only by a multiplicative constant. This constant is used as the
throughput. It represents the number of times per wunit time period that
the computer architecture can execute the given input number of cycles

information. It is expressed as

Ni*Tp = Na
e (2)
where Tp is the throughput and Na is the actual number of cycles array.

As an example, the actual number of cycles array may be

stores
processors 440 660
330 550

This differs by a factor of 110 from the 1input number of cycles
array. Thus the computer can execute the 4 accesses between the first
processor and the first store 110 times a second. The throughput for

this is therefore 110.

As a final note, the probabilities used in the model are concerned
with the probability that some action will be proceeding in a8 given time
period. This probability will be equivalent ;o the fraction of the time
that the action is proceeding. If a unit time period is used, then this
fraction of time will equal the actual time spent in the activity.
Accordingly in the derivation either the probability or the time

interpretation is used. This depends upon which 1is the most convenient.

(6.2.2) SIMPLIFICATIONS IN THE MODEL

In an executing processor, the address sequences will not be random
but will display some serial correlation. This is especially the case
for instruction fetching, where the addresses will be predominantly

consecutive. [44] demonstrates that this effect 1is not important in

88

most circumstances. Consequently in this model it 1is assumed that the
throughput obtained from a random distribution of addresses will be a
good approximation to the throughput obtained if the effects of address

serial correlation were taken into account.

Another inaccuracy is due to the probability methods wused, which
assume that all time periods are infinitely divisible. However 1in the
actual hardware the time over which the memory is actually accessed, or
a processor executes a single cycle, comes in discrete time units of one
processor or store cycle. The effect of this simplification 1is only
noticeable over a large time period in special circumstances. One case,
for example, is with two processors accessing a common store. Each
processor has & one microsecond instruction execution time, and the
store also has a one microsecond access time. In this situation, after a
possible initial clash, the two processors will execute in Llock step.
The} will alternate in using the store and executing an instruction.
Thus there will be no conflict, even though the model predicts a
degradation in the throughput of 12.5 percent compared to the actual
throughput obtainable from the system. This difference becomes less when
there are a Llarger number of processors and stores, and when the

instruction execution times are not constant.

As well, there is an ‘"inaccuracy not present in Hoogendoorns original
work. There the processors are assumed to be executing their instruction
streams independently of each other. Thus the probability model assumes
the processors are statistically independent. This is no longer true
when the processors contain processes uhich’communicate to each other.
Thus two processors may be specified as having a 1000 memory fetches
each to the same store, which by the model will cause execution time
degradation via memory contention. However 1in actual practice the
processors may be executing in turns, communicating between themselves
via semaphores as to which processor is to execute next. In this
situation the observable throughput will not be as predicted by a

straight memory 1interference model.

Assume that the same processors and store are as used in the
preceding example. When the processes on the processors execute
independently, the processors will be in Lockstep and the store will be
occupied 100 percent of the time. If the processors operate dependently

with turns of 1000 cycles each, then the store will be occupied only 50

89

percent of the time. If the model makes no allowances for processor
dependencies, then it will assume simultaneous execution. Thus its
estimation throughput will be twice as Llarge as the actual throughput

obtained when the processors execute in turns.

Notice, however, that for this to occur requires a program making no
use at all of the parallelism possible with two processors. Most
programs will have greater parallelism than this between their
processes, and so there will greater overlap 1in the execution of
different processors. Programs with large numbers of semaphores,
executing on architectures with more than two processors and more than
one store, will show less of this effect. Therefore this behaviour is
not taken into account in the throughput models, it is assumed that the
straight probability model will provide a sufficiently adequate

throughput measure for the allocators purposes.

This leads to the final assumption made in this model. A set of processes
cooperting in a single program synchronized by semaphores will have the
overall rates of progress of the individual processes fixed by the application.
This overall rate is used to define the throughput of the program. It is
assumed that from this actual number of cycles array can be derived by the
application of a single multiplicative factor, and that this has relevance

on a cycle by cycle basis. This assumption is represented in equation 2.

In general the cycle by cycle behaviour of the program will not reflect
this, since each processor will execute at fu}l speed until it reaches a
synchronization event, then block. The time period over which this occurs
contains many processor cycles. The model and simulator both make use: of
this assumption, therefore the results from these can only be approximate.
However note that any real program can show considerable variances in its
execution time performance due to the dynamic nature of its environment, thus

any estimate of the throughput will always be an approximate anyway.

(6.3) DERIVATION OF THE CONFLICT FUNCTION

Calculating the throughput of a concurrent program requires a means
of working out the effects of processor access conflicts. In this
section a general conflict model is derived.

~

aQn

The general conflict model assumes a number of users requesting
service from a number of common resources. To develop this model the
simple case of a number of processors accessing a number of stores is
used for illustration. Each processor spends a certain proportion of its
time accessing the store. This is called the combined probability and
comprises the fraction of time that the processor waits while the store
is busy servicing requests from other processors, plus the actual store
access time. This last is the probability that the processor is actually

accessing the store successfully. From this it can be assumed that

Pa(P,s) = Pc(P,S) * C£(P,S)

... (3)

Here the probability array Pa represents the probability of processor P
accessing store S successfully in a unit time period. The combined proba-
bility array Pc represents the probability of processor P accessing the

store S or attempting to access the store S in unit time. The conflict

function Cf is some value with a lower bound tending towards O and an upper
bound of 1. This function can be regarded as representing the fraction of
the total combined probability that any store request from a processor is

actually able to successfully access the store,

If there are no competing processors, this function is equal to 1.
If there are other processors, then this function is dependent upon the
time spent by these other processors in attempting to also access the

same store. Thus with N processors,
Pa(P,S) = '

Combined probsbility of processor P accessing the store §
(successfully of not) *

Combined probability that no other processors are accessing the

store § (successfully or not).

+ 1/2 Combined probability of processor P accessing the store §
(successfully or not) *

The combined probability that one other processor is accessing

the store S (successfully or not).

9N

+ 1/3 Combined probability of processor P accessing the store S
(successfully or not) *
The combined probability that two other processors are

accessing the store S (successfully or not).

+ ...

+ 1/N Combined probability of processor P accessing the store §
(successfully or not) *
The combined probability that all other N-1 processors are

accessing the store § (successfully or not).

... C4)

The first term gives that part of the probability when the processor

is the only processor accessing the store. The second term gives the

probébility vhen one other processor is accessing the store. Since only

one request is allowed at a time, and it is assumed that the store

chooses new requests in an unbiased way, then either processor P or the

other processor is randomly choosen 1/2 of the time. Thus this term has

a 172 in front of it. The terms continue in this fashion until the last
term, where the processor has 1/Nth of a8 chance of accessing the store
when processor P and all other N-1 processors are simultaneously

attempting to access it.
Expansion of this function gives
Pa(p,S) =

Combined Probability of processor P accessing the store
S (successfully or not) %

(Combined probability that no other processors are
accessing store S (successfully or not)

+1/2 Combined probability that one other processor is
accessing store S (successfully or not)

+1/3 Combined probability that two other processors are
accessing store § (successfully or not)

+1/N Combined probability that all N-1 other processors sre

accessing store § (successfully or not))

... (5

92

Therefore when this equation is compared with equation(3) it can be
seen that the part in the brackets 1is the conflict function. Thus the

conflict function can be written as

N
CE£(P,S) =Z Pt(K,P,S) /K
=1

e (6)
The probability term functions Pt inside the brackets represent the
probability that K-1 processors are accessing the store (successfully or

not) out of a total of N-1 processors. This probability is given by

r=1 P'=

rmax = 0 pc(P',S)
Pt(k,P,S) = ﬁ Fkrn (P') [
P'#Pp #01 - Pc(P',S)

e (?)

The function Fkrn represents the sequence of all permutation lists
of N-1 elements, each element being either 0 or 1. There are K~1 zeroes
each permutation list, and R gives the permytation index number, for
some given ordering of the permutation lists. The value Fkrn(P') gives
the P' element in a permutation list, where each permutation Llist is of

the form
Fkrn = ¢ Fkrn(1), Fkrn(2), ... Fkrn(P-1), Fkrn(P+1), ... Fkrn(N))

-..(8)

There 1is no element corresponding to the Pth dindex. Thus this
function produces the probability of K-1 actively accessing processors
out of N-1 processors 1in total. Using equations 6 and 7 , the full

expansion of the conflict function is now

93

k= r=1 P'=]1

rmax = 0 Pc(P*,S)
1 ’

CE(P,S) = E =) ﬁ Fkrn(P')[
P'#p

#01 - Pc(pr',s)

e (9)
As 8n example, the conflict function for the first processor of a

system of three processors is

cf(1,8) = (1-Pc(2,8)) * (1-Pc(3,8) +
4+ ((1-PcX2,8)) * Pc(3,S) + (1-Pc(3,S)) * Pc(2,8)) +

5 (e (2,8) * Pc(3,8))

and similarly for the conflict functions for processors 2 and 3. The

implementation algorithm used to derive a conflict function is described

in appendix(B).

Note, this means to use the

value of a if the expression X has a value
of O,

and to use the value b if the expression X is not equal to O.

9k

COMBINED-PROBABILITY Processors

BUS-PROBABILITY ///

TN Busses
\d/

St
PROBABILITY 0 ores

Figure 6.1

(6.4) DERIVING THE PROBABILISTIC EQUATIONS

The computer architecture to be modelled has & number of processors
accessing a number of store blocks, both directly and via common store
buses. In the following the full memory interference model for such a
system is developed, using the conflict function derived above for the

simple case.

Most of the time that a processor spends in attempting to access a
store will be spent 1in waiting because other processors are blocking

-

access. This conflict occurs at two places,

A) at the bus level where the processor is _competing with the

other processors to access the necessary bus,

B) and at the store level, where the processor now in control of
the bus has to compete with the other buses to access the

actual store.

(o]

This is represented in figure(6.1).

In view of this structure the mathematical model for such a system
is developed in steps. It starts by deriving the amount of time that is
spent by the processor in accessing store and from this is derived the
amount of time wasted 1in waiting for the.bus to become free, and the
amount of time wasted while the store 1is occupied by other users.

Finally some refinements are added.

The conflict for bus function Cb gives the conflict fgctor due to the
interference of all the other processors accessing the same bus. |f the

processor has direct access to the store without any intervening buses then

this factor is one.

Pb (P,S) = Pc(P,S) * Cb(P,S)

.-.010)

The CONFLICT_FOR _BUS function gives the conflict factor due to the
interference of all the other processors accessing the same bus. If the
processor has direct access to the store without any intervening buses

then this factor is one.

To derive the value of this conflict for bus function all of the

other processors accessing the same bus are examined. The processor P is
disregarded, since this is the processor to which the conflict function
is applied to. Each of the other processors will access one or more
stores through the bus. For any one processor the time spent in
accessing the bus will be the summation of the total combined
probability spent din accessing each of these stores through this bus.
These bus probability terms are then used to generate the conflict

function value. Thus

no, ol = 0 Pbt(P',Bn(P,S))
Cb(pP,S) = z X -ﬂ_ Fkrn(P') [
k=1

P
p'#p #0 1 ~ Pbt(P',Bn(P,S))

eea(11)

96

where the bus probability term Pbt will be

Pbt(P',B) = Pc(P',s")

All S', where
B=Bn (P',S')
e (12)
and where the bus number function Bn returns the index of the bus that the

processor is to use to access the indicated store.

The resulting value 1is the time spent successfully accessing the

bus. Now the time spend successfully accessing the store is

Pa(P,S) = Pb(P,S) * Cs(P,S)

.e.C13)

The conflict for store function Cs represents the conflict produced by
all of the other buses that access the store. The total amount of time
spent by any one of these pther buses in accessing the store is given by
the summation of the times each processor using it spends 1in
successfully controlling the bus to access the store. This value from

each bus 1is added together to give the conflict function value.

1 rmax n - = 0 Cbt(B',S)
Cs(p,S) = i X Z U Fkrn(B') [
=]
B'#Bn(P,S)

0 1-Cbt(B',S)

... (14)
and the bus conflict terms Cbt are
Cbt(B',S) = Z Pb(P',S)
All P', where
Bn(P',S) =B' .. (15)

97

This gives the probability equation for a system with processors
competing for buses and stores. It has been derived assuming zero bus
delay times. To include these, assume that the bus delay is modelled as
an extra amount of time that a processor has to spend in the bus on top
of the delays introduced by bus conflicts. Thus the equations above are
modified to include this time by subtracting the time spent in the bus

delay itself from the bus probability. Thus the new equation is

Pb(P,s) = Pc(P,S) * Cb(P,S) - Tbd(Bn(P,S)) * Na(P,S)

... (16)
where the actual number of cycles array Na(P,S) is the number of accesses

that the ,processor P makes to store S in unit time, and the bus delay Tbd
is the amount of delay introduced by the bus. Therefore the bus probability
time is now the time spent in successfully controlling the bus and being

able to actually request a store.

The final addition to this model for such a system is to dnclude the
circumstance where the store has a finite recovery time during which the
processor is free to continue its processing but the store 1is still
unavailable. This refinement is only required for older magnetic core
stores which have a rewrite time, but is included to be in Line with the
original model of Hoogendoorns. In the original this time is modelled as
if the processor was still 4in control of the store for this rewriting
time. Thus the store cycle time 1is taken to be the store access time
plus the store rewrite time and the cycle time of the processor is
adjusted to be the processor cycle time minu; the store rewrite time. In
the current model this approach acts as 1if the processor is accessing
the store, and thus holding the bus, for the access time plus the
rewrite time. But in the actual hardware the time the processor is
successfully accessing the store is the store access time, and the bus
is only held for this amount of time. Consequently, to adjust the model
for the provision of a store rewrite time requires subtracting the
rewrite time from the total access time before the calculation of the
bus access time, and then adding it back again later. Thus outside of

the bus the model 1is as 1in the original. Inside the bus the bus

98

conflicts are calculated only in terms of the actual time the bus is

held.

Thus the final equation for the bus probability time is now

Pb(P,S) = (Pc(P,S) - Sr(s) * Na(p,S)) * Cb(P,S) +
Tsr (S) * Na(p,S) - Tbd(Bn(P,S)) * Na(P,S)

... C17)

where Tsr is the store rewrite time. As well, the final equation for the

bus probability term of equation(12) is now

Pbt (P',B) = }: Pc(P',S') - (Sx(S') * Na(P',S"))

all S,where
B=Bn(P',S")

...(18)

The complete equation for the probability of processor P
successfully accessing store S is found by combining equations 13 and

17, giving

Pa(pP,S) = Cs(P,S) * [Tsr(S) * Na(P,S) - -Tbd(Bn(P,S))*Na(P,S) +
(Pc(P,S) - Tsr(S) * Na(p,S)) * Cb(P,S)]

.19

99

(6.5) OBTAINING PROCESSOR UTILIZATION

In the following the probability equation derived above will be used
to calculate the number of accesses a processor P makes to a store S in

unit time, and the amount of time the processor didles.

The probability of successfully accessing a store is the same as the
fraction of time that the processor spends using the store. If this time
is divided by the store access cycle time then the result is the number
of store accesses and thus the number of cycles the processor spends in

accessing that store. Thus

Na(P,S) = Pa(P,S)/Tsa(s)

-..C(20)

where the store access time Tsa does not include the store rewrite time.

From this equation the total number of processor cycles ds the
summation of the number of accesses to each individual store of the

processor, thus

M
Nap(P) =) Na(P,S)
§=1

where Nap is the actual number of cycles per processor.
... 21

The time spent by the processor in éoing useful work while not
referencing store is the number of processor cycles multiplied by the
average adjusted processor cycle time. This last quantity is the average
processor cycle time minus the store rewrite time. Thus the time spent

on useful work after accessing store $ is

Tpsr(P,S) = Na(P,S) * Tcy(D) - Tsr(S))

...0(22)
where Tpsr is the processing time and Tcy is the processor cycle time.

This can be summed over all the stores that the processor accesses
to obtain the total amount of wuseful time spent by the processor while

not accessing store or attempting to access store. Now the

100

combined probability time gives the fraction of time that is spent in

accessing and attempting to access store, and so adding these two
together will give the total amount of time the processor spends in
accessing store and in execution. For a fully occupied processor this
time should equal one. However in this model each processor s
constrained in the amount of work that may be done in relation to all
the other processors. Usually only one processor will be fully occupied,

the other processors will have varying amounts of 1idle time. Thus

M
"Ti(P) = 1 - Z Tpsr (P,S) + Pc(P,S)
S=1

...€(23)

where Ti is the idling time per processor.

(6.6) NUMERICAL ITERATION SOLUTION FOR THE THROUGHPUT

Combining equation(19) with equation(20) gives the probability of

processor P successfully accessing store S.

Pa(P,S) = Cs(pP,S) * [(Cp(P,S) - Tsx(S) * pa(p,S)/Tsa(s)) * Cb(p,S) +
Tsr(S) * Pa(P,S)/Tsa(S) -
Tbd (Bn(P,S)) *Pa(P,S)/Tsa(S)]

.. (24)

This equation has the probability term on both sides. This is due to
the introduction of the actual number of cycles information into the
derivation of the probability. The number of cycles in turn is related
directly to the probability value. |If this equation is rewritten with all

the probability terms brought together, then the following is obtained.

101

Pa(P,s) = Pc(P,S) * Cg(p,s)

...(25)

where Cg is the global conflict function and is derived by

Cg(P,S) = Cb(P,S) * Cs(p,S)
1+Cs(P,S) * (Tsr(S) *Cb (P,8)-Tsr (S) + Tbd(Bn(P,S)))/Tsa(S)

-a.(26)
Using this definition of the probability, and combining equations 2,

20 and 25, gives

Ni(P,S)*Tp = Pc(P,S) * Cg(P,S)/Tsa(S)

...C27)

Rearranging this results in

Pc(P,S) = Ni(P,S)* Tp * Tsa(S)/Cg(P,S)

..-.(28)

This equation gives the combined probability in terms of the several
known values, plus the throughput and the ’gLobaL conflict value. When
producing a numerical solution the global conflict function is defined
in terms of the conflict for store and conflict for bus functions. These
in turn are defined using the combined probability values. To make the
numerical solution possible, the previous function values of the
combined probability are used to calculate these conflict functions.
This produces a new combined probability for a processor store pair as
predicted by all of the other old combined probabilities. However at

this stage the common throughput factor Tp is unknown.
This is found by making use of the constraint 1imposed upon the

combined probability value by equation(23). This equation can be

combined with eqaution(20) and equation(22) to produce

102

M
1-Tidle (P) = 2 pc(p,s) + TSy (P) - Tsr(s))*Pa(P,s)
. 5=1 Tsa(S)

«.-(29)
Using equation(26) to substitute for the probability term, and equation(28)

for the combined probability terms, produces

M .
1-Tidle (P)= z Ni (P,Sé;'l(‘ls;as(?) *Tp
Ni (P,S) *Tsa (S) *Tp* (Tcy (P) - Tsr(S))

Tsa(S)

... 30D
I1f the 4idle time is temporary assumed to be zero, then this can be

rearranged into

M
Tp(P) = 1/(Tpt (P))
S=1
... 31D
where the throughput term Tpt is
s 1 Tcy (P) -Tsr (S)
Tp (P)=Ni(P,S)*Tsa(S)* (Cg(P,s) + T52(8))
..-(32)

and there is now a separate throughput term for each processor. When
a program is running, only the busiest processor will be occupied fully.
ALL the others will have some nonzero idling time. Any of the other
processors, if allowed to run full speed without any idling, will
naturally have a greater throughput than when they are forced to idle
for some of the time. Therefore the busiest processor will have the
smallest throughput when using the equation above. Thi; is used as the

‘throughput of the whole system.

103

Finally to obtain a new value of the combined probability function,

equation(28) 1is used.

To explain why this should converge, consider the situation when one
of the combined probability terms is too large. This corresponds to a
processor making too many accesses to a store. This leads to greater
interference for the other processors, and so the conflict function
values for these other processor store pairs‘ will decline. Thus the
calculated throughput for these other processors will be Lower. The
minimum throughput is always choosen, and so if some of the throughputs
of the processors are decreasing, then possibily the minimum throughput
will also decrease. Thus the new value of the combined probability,
obtained via equation(28), will also be Llower. Briefly, equation(28)
adjusts the individual values of the combined probability, while
obtaining the minimum throughput from equation(31) will adjust up or

down the whole array so that there is one processor with zero idle time.

(6.6.1) SUMMARY OF ITERATION STEPS

The iteration solution proceeds as follows

Step 1.An initial value for the combined probability array is made, perhaps

by taking the normalized value of the input number cycles array
Step 2.An initial value of 0 is assumed for the last throughput.
Step 3.A new value for the throughput is found by applying equation(31).
If this differs by less than the error difference from the last

throughput, then the iteration is finished.

Step 4.0therwise a new value for the combined probability array is found by

using equation(28).
Step 5.Last throughput := throughput

Step 6.Go to step 3.

104

2 3 4 Processors

(interconnections
between processors
and memories)

2 3 4 Memories

NO BUS ARCHITECTURE

4 Processors

(interconnections between
processors and memories)
Bus

2 3 4 Memories

ONE BUS ARCHITECTURE

2 3 4 Processors

\

(interconnections between
processors and memories)

Busses

2 3 4 Memories

BUS HIERARCHY .
ARCHITECTURE

The three different kinds of
architecture used

Figure 6.2

105

(6.7) EXPERIMENTAL RESULTS

The and of the

inter ference model was

performance validity analytic general memory

investigated by producing an implementation in

Pascal. The performance of this was compared with a simulation program

for a variety of 1input computer architectures. Originally the model was
the method described by Hoogendoorn. The
article [44].

to the

implemented according to

results so obtained agreed exactly with those 1in his

Subsequently the model and simulation where altered to conform

model developed in this thesis.

In the following text the verification results for the model are
discussed. The accuracy and execution times of both the model and
simulation are compared and it 1is found that, depending on the
application, either the simulation or model may be the preferred
implementation means of deriving the throughput for use by the

allocator.

(6.7.1) MODEL VERIFICATION

In the trials three kinds of demonstration architectures were used.

The first architecture has each processor directly accessing its stores
wvithout any intervening buses. The second has every processor connected
to every store through a single common bus. In the third architecture
each processor has direct access to its own store, shares a bus yith one

other processor to enable it to access that others store, shares another

bus with three other processors enabling it to access the stores of
those processors and so on. These architectures are pictured in
figure(6.2).

The number of processors and stores 1in each architecture for each

trial was successively increased from 2 to 10.

The input number of cycles

array was randomly

filled with either O

number in the range 0 to

1.0. Similarly

Chalf of time) or with a

the speeds of

the

the stores and

processors were randomly selected over a small range. The bus delay time

106

[One Bus
6% I\ /

~
o
=

. .~ L

2 i A I A 1 i A d

Number of processors and stores.

Percentage difference between the
simulation and analytic models.

Figure 6.3

for each bus was selected to be 0O for a bus linking a single processor
to one store, and then increasing 1in proportion to the number of stores

and processors that access the bus.

The verification trials were run with the models error difference
set to 8 percent, this being adequate for, the purposes of the allocator
program. The error difference is the difference between two consecutive

results obtained from the iteration algorithms wused 1in the model.

Figure(6.3) gives the difference between the predicted throughput of
the model and the actual throughput obtained from the simulation. As can
be seen most of the differences are within this Ulimit. The model
generally converges within 2 iterations, and this explains why the
results are generally much better than 8 percent. (The first iteration
easily gets to within the required accurécy, but a second iteration is
needed to obtain another throughput value for the error difference

comparsion).

107

gol

7°9 aunbi4

40% . 40%_, 7 8 40% .
35% | ° 35% | 35%
308 | No Bus 30% Bus Hierarchyso%d Cne Bus
25% 25% 25% 4
4
20% | 20% | 20% |
E 10%1
: /N \4
3
\/ﬁ
100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600
Number of simulated clock cycles Number of simulated clock cycles Number of simulated clock cycles

The percentage difference between the two implementations, for an architecture with 2 to 10 processors and stores.

(6.7.2) IMPLEMENTATION OF THE SIMULATOR

The original simulation for Hoogendoorns model is straight forward
to implement, but for the model developed 1in this thesis, some
extensions are required. When the processors are executing independent
programs the simulation dis written so that as soon as each processor
finishes an execution cycle it makes a store fetch to start a new one.
However when the processors work loads are dependent upon each other,
provision has to be allowed to decide after each processor cycle if an
idle cycle needs to be inserted or not. This is done in two different
ways 1in the 1implementation of the simulation. The first, approximate,
method 1s to run the analytic model first and have it produce a
static access array, giving the probability that a processor will access
a particular store. The cumulative probability of accessing the stores
is one for the busiest processor, and Lless than one for the other
processors. This difference represents the idle time for the other
processors, and the simulation will choose between fetching a store and
inserting an idle cycle accordingly. The derivation of the static access
array is given in appendix(A). This relies upon the assumption about the
relevance of the input number of cycles array on a cycle by cycle basis, as

discussed in section 6.2.2.

An alternative method ~that does not rely on results produced by
running the model first is to simply count the number of cycles of each
processor and compare them to the input number Pf cycfes array.Whenever a
processor has done enough cycles it is idled until all of other

processors have caught up with it. Then all of the processors are

allowed to execute again. This can generate a better answer, since it
reflects somewhat more closely the actual pattern of processor execution
when synchronized by semaphores. As can be seen in figure(6.4) the results
are just passable with a simulation run of 300 clock cycles (with the error
difference ranging from O percent to 45 percent) and reasonable for a simu-

lation run of 600 clock cycles.

109

60

50

40

30

20

10

60

No Bus
S0

40

30

20

Simulator 10 -

W 60 |

Bus Hicrarchy

50 |
Model

40

30

20

Simulator 10 |

One Bus

Model

Simulator

ad M v - T .z v

3 4 s 6 7 8 9 10

Number of processors and stores.

2 3 4 5 6 7 8 9 10

Number of processors and stores.

2

v * T v

3 4 5 6 7 8 9 10

Number of processors and stores.

Execution times in seconds for the simulator and model.

Figure 6.5

(6.7.3) EXECUTION TIMES

the test of the execution time

presented in

During runs a record was kept

consumed by each. This information is figure(6.5). As can

be seen, than that for

the models execution time increases much faster
the simulation. This can be explained by the number of basic

operations required by each.

comparing

For the model, consider the case where has no buses

the

processor store combinations is N*2, and the conflict function is called

the architecture

and there are N processors and N stores. In this case number of

once for each of these, and this functions

implementation requires
operations proportional to N"2. (Here the’ ~ character is wused to
represent the exponential operator). Thus in this situation the model
requires operations 1in proportion to N*4 for a constant number of
iterations.
On the other hand the simulation, for a constant number of clock
cycles, needs to select a random combination of processors each cycle,
done in a maximum of N"2

operations, and then to select a random store,
achievablé in time LogN. Thus the total is a maximum of (N"2)lLogN. This,

in the Limit, is much less than the time for the model.

110

(6.7.4) SUMMARY

4

The simulation and probabilistic models differ in their execution

times and accuracy of results. These are summarized here

A) Execution times.

B)

The simulation model has a much slower rate of execution time
increase for increasing N compared to the analytic model. For
the implementations used in this thesis, the crossover point is
at N equal to 5 or 6, for N processors and N stores. Below this
point the analytic model 1is marginally faster, above this point

the simulation is much faster.
Accuracy of results.

Both models 1introduce inaccuracies -+into the results. The

results from the simulation model will be idinaccurate due to

1) The approximate method used to include the effects of

dependent processor execution workloads.

2) The approximations due to the use of random functions in

the simulation model.

The probabilistic model can be 1inaccurate for some special
cases, as for example when two processors are able to execute
in lockstep without memory interference. This case is described

in section(6.2.2).

Furthermore both models are equally 1inaccurate due to the
influences of interactions between processors via semaphores.

This is also discussed in section(6.2.2).

1

CHAPTER (7)

In this chapter the algorithms for the allocation of a program to a
computer architecture are described. These produce a final allocation by

utilizing

A) information obtained from the description of the computer, as

specified by the architecture specifications,

B) compiler supplied information sabout the memory and process

elements of the program,

C) the constraint dinformation derived from the constraint

specifications,

D) the throughput estimation obtained from the input number of

cycles information.

The overall information flow of the allocation can be seen by

referring back to figure(i1.1).

(7.1.1) PREVIOUS WORK

-

The Star0S research reported by [26] deals with specifying to an
allocator the computer architecture and the allocation cons;raints.
However no allocation algorithms were implemented to actually perform

the allocation.

Another research paper, this time by [331, deals with the
partitioning of computational objects onto a distributed computer
system. Here the computer system consists of computer modules
communicating via some interconnection system. This imposes a constant
communication cost between each module. Their aim is to reduce the
communication times for a system of programs which may need to run on a

number of computer modules (e.g. need to access a disk from one module,

112

and 8 terminal from another module). The method is to obtain a run time
trace of the execution of a program. This is then used to generate a
partition of the programs components so as to minimize the costs. An

approximate graph optimization method is used.

This model does not apply very well to the allocation problem of
this thesis. The model concentrates on separate computer modules uhich
communicate between each other. Whereas in this thesis the computer
architecture is modelled, not as computer modules, but as individual
processors and stores. The costs to be minimized deal not with
communication costs between computer modules, but with processing time
within the processors and the store accessing times. As well their model
has no provision to allow the effects of memory and bus contention to be

taken 1into account.

(7.1.2) APPROACH USED

The slgorithmic basis choosen for this research is to successively
try out alternative allocation mapping solutions, calculating the
throughput for each. A legal map with all program elements allocated is
called a feasible solution. Whenever such a feasible solution is found,
its throughput is compared with the throughput of the best feasible
solution found so far. I¥ it is better then this map becomes the
incumbent solution. When the search terminates, the 1incumbent will be
the optimal feasible solution, and becomes the allocation mapping for

the program.

Since most of the program elements will be allocatable to more than
one resource, then the enumeration of all possible mapping solutions
will result 1in &8 tree pattern search. Thus to simply generate each
possible combination of process to processors and memory to stores and
then to check its Llegality 1is exponentially time consuming. Instead
possible solutions are enumerated by starting with an dJnitially
unallocated program and assigning its elements one by one. At each such
step the Llegality of the partial map solution and is execution time
efficiency is examined. If it can be shown that no lLegal solutions can
be derived from this partial solution, or that all possible solutions
derived by completing this partial solution are less efficient than that

incumbent, then this partial solution can be discarded. This allows all

113

of the solutions, feasible or otherwise, that can be completed from this
partial mapping to be discarded without examination. If enough partial
solutions can be rejected 1in this way then the search space will be
reduced to manageable proportions. In general, for all but the most
trivially sized programs and computer architectures, this reduction in
the search space size will be necessary to allow the generation of any
feasible solutions at all. Thus the bulk of the allocation algorithms
are concerned with the problem of detecting illegal or inefficient maps

as early as possible.

This algorithm method 1is known as implicit enumeration with
backtrack, and is described din [27]. The term implicit enumeration
arises because the solutions of a partial map that are rejected can be
considered to have been implicilty enumerated. This dis in contrast to
the other complete solutions that have been explicitly enumerated.

The following text will expand upon this 1introduction. Firstly the
starting dinformation for the allocation algorithms 4dis described. The
means of computing the though put is discussed, and the search method
used is then introduced. Lastly the allocation map evaluation algorithms

are detailed.

Finally & point on -the notation. In the following discussion the

terms

1) process 2) memory 3) processor 4) store

are used. These are taken to refer to g

1) the process elements of a program.

2) the address space elements of a program.

3) the hardware processor resources of a computer architecture.

4) the hardware memory resources of a computer architecture.

14

(7.2) THE INPUT INFORMATION TO THE ALLOCATOR

The specification of the computer architecture, program structure
and user required constraints have been discussed previously. This
information 1is converted by a preprocessor and supplied to the
allocation algorithms 1in a simplified form. This 1is outlined in the

following.

The construction of the preprocessor, which would be part of the
complete allocation package, poses no new problems and its design is not

discussed, nor wvas an implementation produced.

(7.2.1) COMPUTER ARCHITECTURE STRUCTURE

The computer architecture specified by the ISL program would be
converted into a simplified architecture graph. In this, the information
that 1is kept 1is concerned with the description of the processors,
stores, banks and buses, along with the access paths between these. This

information is
A) For processors, cycle times and kinds are retained.

B) For stores, access speeds, starting address Locations and

address ranges are retained.
C) For banks, the bank access time is retained.
D) For buses, the bus access time is retained.

As well, the arcs connecting the wvertices representing this
information are rearranged. If a processor, bus or bank accesses a
store, bus or bank, then there exists a direct arc between these two

vertices.

The rest of the information in the original architecture
specification graph is not required at this stage in the allocation
activity. It has already been used in the production of the simplified

architecture grasph and in the construction of allocation constraints.

115

Root vertex

Processors

Processor Processor

Address

Stores
(size = 512 bytes)

Figure 7.1

The resulting graph is available to the allocator, which can extract
several kinds of information from it. Firstly the accessibility of one

kind of vertex from another can be obtained by a function of the form
ACCESS_X_FROM_Y C L Y 1)

Here X and Y represent any of the four kinds of vertices PROCESSOR,
STORE, BANK and MAP. The function takes an 1input set of one type of
vertex and returns the set of all vertices of the other type that can be
accessed from this input set, or accessed by this input set. As an
example, consider the computer system as set out in figure(7.1). In this
both a pictorial representation and a graph representation is given. For

this structure, the following function calls would give the indicated

results.

ACCESS_STORE_FROM_PROCESSOR ([PROCESSOR_1 1)
gives [STORE_1, STORE_2, STORE_3 1

ACCESS_STORE_FROM_PROCESSOR ([PROCESSOR_1, PROCESSOR 2 1)
gives [STORE_1, STORE_2, STORE_3, STORE_4 .]

ACCESS_PROCESSOR_FROM_STORE ([STORE_1 1)
gives [PROCESSOR_1 1

116

processes

memories

(size in bytes)

Figure 7.2

There are also functions that return the size of a store vertex, the

cycle time of a processor or the access time of a store, bank or bus.

The implementation of such a graph structure on 8 computer is

straight forward and is not discussed any further.

(7.2.2) SPECIFICATION OF THE PROGRAM

Also supplied to the allocator is an information graph depicting the
structure of the program. This dinformation is produced by the compiler
and it is represented as a simple two level graph structure containing
process vertices and memory vertices. An arc from a process to a memory
vertex represents the use of that memory by the process. Each memory

vertex has associated with it the size of.the memory.

Also associated with each process memory combination is the number
of memory accesses that the process makes to the memory 1in a given time
unit. This information 1is obtained by compiling the program on an
ordinary computer and executing it to gather memory access statistics.

This is required to allow the production of the throughput estimations.

To access this graph structure, there are access functions of the

form

ACCESS_X_FROM_Y ¢ L Y 1)

117

wvhich are used in the same way as the ones for the architecture
specifications. There are also the functions to extract the memory size

and number of memory accesses between a given process and memory.

As an example figure(7.2) represents a program with three processes
and four memories. The directed arcs represent access from a process to
a memory. Also given are the sizes of the memories, and the number of
accesses between a process and a memory. From this can be extracted the

information

ACCESS_PROCESS_FROM_MEMORY ¢ [MEMORY_1])
gives [PROCESS_1, PROCESS_2 1]

ACCESS_PROCESS_FROM_MEMORY ¢ [MEMORY_1, MEMORY_3 J)
gives [PROCESS_1, PROCESS_2, PROCESS_3]

SIZE_OF_MEMORY ¢ [MEMORY_1, MEMORY_2 1)
gives 300

PROCESS_MEMORY_NUMBER_CYCLES ¢ PROCESS_1, MEMORY_1)
gives 30

(7.2.3) CONSTRAINT SPECIFICATION

Finally, simple constraints are derived from the wuser supplied
object specifications, constraint specifications and the computer

architecture specifications. There are three forms of constraints.

One constraint form specifies the set of processor or store
resources that a process or memory element 1is allowed to be mapped to.

This can be represented as
X->LyY]3]
where X refers to a process or memory element and L[Y] refers to a

set of the appropriate resource elements. This dinformation is accessed

by a function Llike

118

ALLOWED_X_FROM_Y C L Y 1)

Where X represents the name of either a resource element kind such
as PROCESSOR or STORE, or a program element kind such as PROCESS or
MEMORY. The Y refers to the corresponding program element or resource
element kind name. This function returns the set of resource elements
that the program elements.in the set [Y] are allowed to be assigned to,
or it returns the set of program elements that are allowed to the given

resource elements of the set.

For example, if some process constraints are

PROCESS_1 -> [PROCESSOR_1, PROCESSOR_2 1]
PROCESS_2 -> [PROCESSOR_1 1]
PROCESS_3 -> [PROCESSOR 2 1

then two function calls and their results may be

ALLOWED_PROCESSOR_FROM_PROCESS ([PROCESS_2 1)
gives [PROCESSOR_1 1]

ALLOWED_PROCESS_FROM_PROCESSOR ¢ [PROCESSOR_1 1)
gives [PROCESS_1, PROCESS_2 1

This function may act as 1its own dnverse for some possible input

values. As an example

ALLOWED_PROCESSOR_FROM_PROCESS (
L PROCESS_1, PROCESS_Z2, PROCESS_3 1)
gives [PROCESSOR_1, PROCESSOR_2 1

ALLOWED_PROCESS_FROM_PROCESSOR (¢
[PROCESSOR_1, PROCESSOR 2 1)
gives [PROCESS_1, PROCESS_2, PROCESS_3]

The second constraint imposes a proximijty constraint upon a set of
process or memory elements. The relation may be to allocate each element
to a different set of resources, or to the same set of resources. These

constraints are known as Different_Constraints or Same_Constraints, and

may be represented ss

119

£ XJ->DIFFERENT L L[Y11 ,C¥Y21, ...
C X 1 -> SAME L rcy1r1,cvy21l,...1

Where [X] is the set of program elements upon which the proximity
constraint is to be applied, and the right hand side lists the sets of
target resources L[Y] to which the elements may be mapped. An example

Different_Constraint is

[PROCESS_1, PROCESS_2 1 ->
DIFFERENT [[PROCESSOR_1 3, [PROCESSOR 2] 1]

This will ensure that the two processes will go to the two different
processors. Thus if PROCESS_1 ends up on PROCESSOR_1, then the only
tegal assignment for PROCESS_2 is to PROCESSOR_2. An example of a

Same_Constraint is

L MEMORY_1, MEMORY_2, MEMORY_3 1 ->
SAME [[STORE_1, STORE_2 1, [STORE_3, STORE_4] 1]

This constraint will enforce the condition that the three memories
will all be assigned to éither the first two stores or the second two

stores.

The proximity constraint specifications are accessible by several
functions which retrieve either a specific proximity constraint, or all
constraints that contain a given resource or program element.

Thirdly there are the address constraints. These act to fix 8
program element to some specific physical store address. Thus this can

be treated as a nonproximity constraint acting on the program element.

(?.2.4)> EXAMPLE MAP ALLOCATION

The allocation program, if it is successful, will produce an
allocation mapping for the program onto the computer architecture. An
example legal mapping is developed below to give a demonstration of a

final map.

120

The computer architecture of figure(7.1> and the program in
figure(?.2) are wused. The constraints imposed by the user are those

given in the examples above, and repeated below.

PROCESS_1 -> [PROCESSOR_1, PROCESSOR_2 1
PROCESS_2 -> [PROCESSOR_1 1
PROCESS_3 -> [PROCESSOR_2]

[PROCESS_1, PROCESS_2 1 ->
DIFFERENT [[PROCESSOR_1 1, [PROCESSOR_2 1 1

[MEMORY_1, MEMORY_2, MEMORY_3 1 ->
SAME [[STORE_1, STORE_2 1, [STORE_3, STORE_4 1 1]

Firstly it 1s seen that processes PROCESS_2 and PROCESS_3 are
already fixed to their final processors. From this the
Different_Constraint specifies that PROCESS_1 has to go to PROCESSOR_ 2,
since PROCESS_2 is already assigned to PROCESSOR_1.

Next the memories are assigned. MEMORY_1 1is accessed by both
PROCESS_1 and PROCESS_2. Therefore it has to be assigned so that
PROCESSOR_2 and PROCESSOR_1 can access it (since the processes are
assigned to those processors). Thus the only allowable stores are

STORE_2 and STORE_3. This results in the constraint
MEMORY_1 -> [STORE_2, STORE_3 1]

A similar exercise will produce the constraints for the other

memor ies

MEMORY_2 -> [STORE_2, STORE_3, STORE_4 J
MEMORY_3 -> [STORE_2, STORE_3 1]
MEMORY_4 -> [STORE_1, STORE_2, STORE_3 1

The Same_Constraint specifies that the first three memories can go
to either stores 1 and 2, or stores 3 and 4. If the arbitrary choice of
stores 3 and 4 is made, then MEMORY_1 becomes fixed in STORE_3. AlL
three memories cannot go to this store because they will not fit, and

one possible assignment is

121

MEMORY_1 -> [STORE_3 1]
MEMORY_ 2 -> [STORE_4 13
MEMORY_3 -> [STORE_3 1

Finally the MEMORY_4 element has three possible stores, so a

selection Llike
MEMORY_4 -> L STORE_1 1]

can be made. Thus a final Legal allocation mapping has been
generated. This is probably not the most efficient. In the following
sections the systematic method of finding lLegal and efficient mappings.

developed during this research is described.

(?7.3) THE ALLOCATOR SEARCH TECHNIQUE

The allocation search algorithm must be able to find a Legal and
efficient solution in as few trials as possible. How the search is
carried out can greatly affect this. In this section the two techniques
that can be used for search optimization are introduced. Basically these
are to attempt the removal of unprofitable search branches, and strive
to achieve legal and efficient mappings, as early as possible 1in the

search.

(7.3.1) DETECTION OF UNPROFITABLE SEARCHES

buring the enumeration of the solutions for a particular program,

partial solutions will be discarded wherever possible. This occurs when

A) the current partial mapping solution can never be completed

to produce a feasible solution, or
B) all possible feasible solutions produced by completing this

partial map will have a throughput less than the

throughput of the best feasible solution found so far.

122

(7.3.1.1) DETECTING ILLEGAL MAPS

The first, of predicting if & current partial mapping will ever lead
to the generation of a feasible solution, is based upon the principle
that once an illegal partial solution has been produced, all subsequent
complete mappings derived from this will be illegal. An illegal map is
one where the constraints upon a program element will prevent it from
being assigned to any computer resource. These constraints arise from
the amount of space Lleft in the memory blocks, and the accessibility
between processes and memories. Accordingly the assignment of any other,
as yet unassigned, program elements can never remove any of these
constraints. Thus this prevents any legal solution from ever being

derived from an illegal partial solution.

The detection of such illegal partial maps is achieved by making use
of the allocation constraint associated with each process and memory
element. This constraint 1is originally just the user supplied

constraint, when one is specified. For example
PROCESS_1 —-> [PROCESSOR_1 , PROCESSOR 2 1

where the process ¢élement PROCESS_1 is allowed to the processors
PROCESSOR_1 and PROCESSOR_2. The technique is to reduce at each step
this allowable constraint on each element as much as possible. This is
done with the aid of constraint reduction operations. Sometimes the
constraint may be narrowed down to only one resource, in which case the
element has just pecome allocated to its final position. In most cases
it will only be possible to reduce the constraint by a small amount, or
not at alL. However it might also be possible to reduce the set to the
null set, that is under the current partial mapping there are no legal
resources that the element may be assigned to. In this case the map

allocation fails, and the current search branch can be dropped.

As an example of this consider the allocation mapping derived in

section(7.2.4) above. As each wuser constraint was applied, the
constraints on the program elements were reduced. The constraint for the

PROCESS_1 element was originally

123

PROCESS_1 -> [PROCESSOR_1, PROCESSOR 2 1]

but through the actions of the other two constraints for the

processes, and the Different_Constraint, this was reduced down to
PROCESS_1 -> [PROCESSOR_2 1
1f there had been the additional constraint

[PROCESS_1, PROCESS_3 1 —->
DIFFERENT [[PROCESSOR_1 1, [PROCESSOR_21, [PROCESSOR_3] 1]

then since PROCESS_3 has already be assigned to PROCESSOR_Z2, the
constraints are now 1in conflict. Both PROCESS_1 and PROCESS_3 are
assigned to PROCESSOR_2, contary to the Different_Constraint. Thus in
this situation the constraint on PROCESS_1 would be reduced to the empty

set
PROCESS_1 -> [1]
and the partial allocation can be rejected.

(7.3.1.2) DETECTING INEFFICIENT MAPS

The second means of detecting unprofitable searches 1is to check the
calculated throughput of the current incomplete map at each search step.
This is compared with the throughput of the best final map allocation
found so far. If this throughput is less then the partial map_of this
current search can be terminated, since it will not Lead to any final
solution with a better throughput. Even better 1is to select only those
incomplete maps that show a definite improvement over the best map
found, such as a 10 percent greater throughput. This percentage is
called the throughput factor. Using this would prevent the examination

of a long series of almost identically performing allocations.

This method relies upon two principles-

A) For any partial solution a throughput can be found.

124

B) The throughput of any solution derived from a partial map can
never exceed the throughput of the partial map. This is
satisfied 1if the maximum upper bound throughput of each
successive partial map is a monotonically decreasing function.
Thus the throughput of a partial map will be the maximum upper

bound upon the throughput of the final complete map.

The throughput of an allocation can be found by wusing the general
memory dinterference model. This requires an INPUT_NUMBER_CYCLES array.
Given the PROCESS_MEMORY_NUMBER_CYCLES array and the allocation of
processes to processors and logical address spaces to memories, the

input number of cycles array can be calculated by

FOR ALL PROCESSOR DO
FOR ALL STORE DO
INPUT_NUMBER_CYCLELPROCESSOR,STORE] := 0 ;
FOR ALL PROCESS FIXED TO PROCESSOR DO
FOR ALL MEMORY FIXED TO STORE DO
INPUT_NUMBER_CYCLELPROCESSOR,STORE] :=
INPUT_NUMBER_CYCLELPROCESSOR,STORE] +
PROCESS_MEMORY_NUMBER_CYCLESCPROCESS ,MEMORYJ ;
END ;
END ;
END ;
END ;

This calculation provides the throughput for a complete solution.
The throughput for a partial solution can also be defined by this. This
just implies that, since some of the processes and memories of the
program are not yet assigned, then some of the

PROCESS_MEMORY_NUMBER_CYCLES values will not be included.

This throughput for the partial solution has yet to be shown to be
the maximum upper bound throughput. Consider some partial allocation

mapping. This has & throughput that can be defined for each processor as

THROUGHPUT (PROCESSOR) =
CONFLICT_FACTOR(PROCESSOR) / THROUGHPUT_TIME(PROCESSOR)

125

Processor 1 Process 1

1 us processor
cycle time

100 100 (number of
cycles)

1 us store
access time

Store 1 memory 1 memory 2

Figure 7.3
where the THROUGHPUT_TIME is given by
THROUGHPUT_TIME(PROCESSOR) =

INPUT_NUMBER_CYCLE(PROCESSOR,STORE) *
2 (PROCESSOR_CYCLE_TIME(PROCESSOR) +
For all STORE STORE_ACCESS_TIMECSTORE) +
BUS_DELAY_TIME(PROCESSOR,STORE))

The summation represents the time spent in each processor cycle and
each memory fetch .cycLe, assuming no memory interference. The
interference is represented by the conflict function , which is 1 for
no interference and 0 for complete interference. The throughput of the
complete system will be the minimum of the throughput terms above. Note
that this conflict factor is not directly given by any of the equations

derived in chapter 6 on the analytic probability model.

The memory interference can only decrease if the number of memory
accesses is decreased. However when successively allocating processes
and memory address spaces, the number of memory accesses will always
increase. Thus the memory interference is always 1increasing, and so the
conflict factor is & monotonically decreasing function. Similarly the
INPUT_NUMBER_CYCLES values can never decrease in'this situation. Thus
the summation will be a monotonically increasing function. Therefore the

throughput function will be a monotonically decreasing function.

The minimum throughput function for any partial allocation mapping

is taken to be the throughput estimation. The throughput estimation for

126

a complete allocation solution is the actual estimated throughput. Since
the function 1is monotonically decreasing, then any throughputs of

partial solutions must therefore be a maximum upper bound throughput.

To demonstrate this with an example, consider the architecture and
program in figure(?.3). If the program has been partiatly allocated so
that PROCESS_1 has been assigned to PROCESSOR_1 and MEMORY_1 has been
assigned to STORE_1, then the calculated throughput will be

ThroughPut 1000000 / ¢ Time to execute 100 memory accesses)

in microseconds)

1000000 7 ¢ C(1+1) % 100)
5000

where the dinstruction cycle time 1is 1 microsecond and the store
access time 1is also 1 microsecond. If MEMORY_2 1is also allocated, then

the throughput calculations will now give

1000000 /7 ¢ (1+1) * (100+100))
2500

In other words this calculated throughput is half that of the first
throughput. Adding more memories will always decrease the throughput.

Similarly with the addition of extra processes.

(7.3.1.2.1) IMPROVING THE THROUGHPUT CALCULATIONS

The throughput is calculated from the partial map at each search
step. At shallow levels in the search there will only be a few processes
and memories allocated and thus the throughput calculated from these
will generally be an over estimation of the throughput of the finag
complete map. For example, in the first partial allocation of the

example immediately above,

PROCESS_1 -> [PROCESSOR_1 1
MEMORY_1 -> [STORE_1 1

the throughput 1is only calculated upon the accesses that PROCESS_1

makes to MEMORY_1. The other accesses to other memories are ignored, and

127

thus the program will seem to run faster than it actually would. In the
following is discussed a means of increasing the throughput accuracy for

the initial stages of & map allocation.

Consider the c¢ase where there 1dis only one process and memory
allocated so far in a partial map. The throughput can only be calculated
based wupon the number of times the process accesses this memory. If the
process spends an equal amount of time accessing ten other not vyet
assigned memories as well, then this throughput will be an over
estimation by a factor of ten at least. The work load represented by the
accesses to these memories may be partly incorporated if, for the
purposes of calculating the throughput, each memory 1is assumed to be
residing 1in a separate new store by idtself. These stores are to be
directly accessible to each processor of the computer, and they have
cycle times that are as fast as the fastest normal store. The processors
accessing these stores will suffer memory 1interference, but only with
other processors accessing the same memory in this store. Thus only the
absolutely wunavoidable memory interference is 1included. The throughput
calculated under these conditions will never be Llower than the final
actual throughput. Indeed it will provide a better maximum upper bound
for the calculated throughput. These stores are called phantom stores,
since they do not exist 1in the actual computer architecture and can
never have any memory elements assigned to them by the allocation
program. Instead the throughput algorithms use these stores to hold any
unassigned memories whenever it calculates the throughput of a partial

map.

Exactly the same technique is applied to unassigned processes. Each
unassigned process 1is assumed by the throughput algorithms to reside in
a phantom processor which is as fast as the fastest real processor in
the system, and is directly connected to every store in the system. Thus
for a partial mep with only one process and one memory assigned, the
phantom stores hold all of the other memories to which the process may
access, and the phantom processors hold all of the other unassigned
processes. These processes will access both the assigned memory and the
unassigned memories. Thus the effect of memory interference will be
incorporated into the calculated throughput from both the assigned

processes and memories and the unassigned processes and memories.

128

Another way of Looking at this 1is to regard the phantom processors
and stores as implementing an ddeal computer architecture. Each
processor is as fast as the fastest real processor. Each phantom store
is as fast as the fastest real store. Each processor has direct access
to each store without any intervening buses. Finally there is a store
and processor for each memory and process element 1in the program. Thus
this provides a theoretical upper bound to the throughput for the

particular program.

Finally, in the implementation of the allocation program, a separate
phantom store for each memory was not implemented. This is because the
number of memory elements din & program is generally greater than the
number of stores or processors. Therefore adding a phantom store for
each memory will significantly increase the total number of stores and
processors that the throughput algorithms have to deal uith.\ This
increases the execution time. To reduce this only one phantom store is
used. The simulator 1is modified so that each processor accessing this
store can do so without any store interference from any other processor
that may also be accessing it at the same time. This implies that the
derived throughput no Llonger reflects the memory contention between
different processors accessing the same unassigned memory element.
However it still includes the affect of the time taken by a single
processor to access these wunassigned memories. Hence it s still

sufficient 1in providing an improved upper bound upon the throughput.

(7.3.2) PRODUCING EFFICIENT MAPPINGS EARLY IN THE SEARCH

Another way of increasing the chances of producing good solutions is
to order the search so as to maximize the chance of getting an efficient

and lLegal mapping early in the search.

This can be achieved by selecting for assignment the busiest
processes and the most heavily used memories early in the search, and
leaving the processes with the least work to Last. As well, at any step
a process or memory is generally assigned first to the fastest processor
or store that is allowed to it. This ordering will allow the most
impor tant processes and memories, from the viewpoint of execution time

efficiency, to be assigned early in the search to the fastest processors

129

and stores. This is not guaranteed to generate Legal maps or the most
efficient maps, but only to increase the chances of doing so. The

details of this ordering will now be discussed.

(7.3.2.1) PROCESS AND MEMORY ORDERING

Firstly the processes and memories of the program are ordered into a
process memory Llist. The first element in this Llist is the process which
makes the most memory accesses to all of the programs memories. That is

the process with the maximum of the function
NUMBER_CYCLES_PER_PROCESS(PROCESS) =

jg PROCESS_MEMORY_NUMBER_CYCLESLPROCESS,MEMORY])

all memory

Thereafter the elements are selected one by one and appended to the
List. The criterion used in this selection is based upon the evaluation

of the following functions at each selection.
NUMBER_ACCESSES_BY_PROCESS(PROCESS) =

jg PROCESS_MEMORY_NUMBER_CYCLES (PROCESS,MEMORY)

ALl memory
in the list

NUMBER_ACCESSES_BY_MEMORY(MEMORY) =

jg PROCESS_MEMORY_NUMBER_CYCLES (PROCESS,MEMORY)
AlLL processes

in the Llist

These values are computed for all the processes and memories that
are not in the list. The element which has the highest NUMBER_ACCESS

value is the one choosen.
As an example the program in figure(7.2) is used. The process with

the most overall memory accesses is PROCESS_2, with 318 accesses. This

pecomes the first 1in the Llist. The next element will be a memory, and

130

MEMORY_4 is the one that PROCESS_2 accesses the most. The number of
accesses between the elements of the List is 212. MEMORY_1 will be
choosen for the third element, it 1increases the number of accesses by
80. The fourth element will be a process, PROCESS_1, since it increases
the accesses the most with 30. The List would continue to be constructed

in this manner, resulting in

PROCESS_2¢0), MEMORY_4(212), MEMORY_1(80), PROCESS_1¢30),
MEMORY_2(40), PROCESS_3(33), MEMORY_3(73).

The numbers in brackets represent the increment added to the total

number of accesses for each element.

(7.3.2.2) PROCESSOR AND STORE ORDERING

The ordering for processes and memories is done only once for the
entire allocation. However at each search step an ordered processor or
store list is required for the element that is to be assigned next. The
resources in this ordered list come from the allowed processor or store
set of the element. To demonstrate this, the first element of the
process memory List above might have the allocation constraint

PROCESS_2 -> [PROCESSOR_1, PROCESSOR_2 1

if the architecture of figure(?.1) is wused. The second element is a

memory and might have
MEMORY_4 -> [STORE_1, STORE_2, STORE_3, STORE_4 1]

These resource element sets may be reduced by various constraint
reductions, but until that happens the resource sets as shown will be
used. They may be ordered either

A) by calculating the throughput obtainable when the element is
assigned to each resource element in turn, and using this to

sort the List of resource elements, or

B) by ordering the processor or store Llist using some heuristic

principle.

131

Processors

Stores

Homogencous architecture

Figure 7.4

No definite algorithm providing optimal performance in all cases was
found. Instead the methods used to sort the Llists were choosen on the
basis of what appeared to give the best results. The performance of
these methods depend crucially upon the kind of computer architecture
that is being used. Of course they will also be 1infiluenced by the
structure of the program. However this structure will vary widely
between different programs, while the computer architectures being used
will show much less variation. Consequently, only the structure of the
computer architecture 1is taken into account. In this application the

kinds are best divided into two classes-

A) Homogeneous architectures, where every processor has access
(directly or indirectly) to every store of the computer system.
An examplé is the architecture in figure(7.4). A homogeneous
architecture implies that a process may be assigned to any
processor and still be able to access any of its memories,
regardless of what stores they may end up being assigned to.
Therefore processes can initially be assigned to any processor
and still have a good chance of obtaining a lLegal, complete
mapping. So in this case a good approach is to ignore the
memories and to attempt to assign a process to the processor
which has the Lleast number of other processes already assigned
to it or allowed to be assigned to 1t2 In other words in a
homogeneous architecture the processors are sorted upon the

number of processes that are allowed to then.

For an example of this, assume the following constraints

132

B)

PROCESS_1 => [PROCESSOR_1, PROCESSOR_2, PROCESSOR_3 1]
PROCESS_2 -> [PROCESSOR_1, PROCESSOR_2 1]
PROCESS_3 —-> [PROCESSOR_1 1]

In this situation only PROCESS_ 1 can ever be assigned to
PROCESSOR_3 and so this is the best choice for this process
(without knowing any additional information). On the other hand
PROCESSOR_1 can have all three processes assigned to it, and so
there is a greater chance, for any process being assigned here,
of having to share the processor with another process. So this
processor should be last 1in any list. With this 1in mind the
processor Llist can be constructed. The processors have the

following numbers of processes able to be assigned to them-
PROCESSOR_1 3, PROCESSOR_2 2, PROCESSOR_ 3 1

and so the processor Llist for PROCESS_1 is
(PROCESSOR_3, PROCESSOR_2, PROCESSOR_1)

and the List fsr PROCESS_2 is
(PROCESSOR_2, PROCESSOR_1)

Given this brdering for processors, the ordering stragety used
for store Llist of a memory element dis to order on the
throughput information. That is, th; memory is assigned to each
of the stores 1in turn and the throughput obtained from the

resulting partial allocation map is used for sorting.

Nonhomogeneous architecture, where the processors can only

access some of the stores. This 1is the case for the
srchitecture of figure(7.1), where STORE_1 and STORE_4 are not
accessible to PROCESSOR_2 and PROCESSOR_1 respectively. In this
situation it was found to be better to order the store list of
each memory element 1in the following manner. The stores are
ordered so that the stores that are closest to the processors

are first in the List. Here the closeness of a store is taken

133

to mean the number of processors that can access the store.
Thus a store that has only one processor accessing it will be
closer to that processor than a store that is accessed by this
processor and one other processor. By example, the store
STORE_1 is closer to PROCESSOR_1 (figure(?.1)) than 1is store
STORE_2. This is because the first store is only accessed by
the processor, while the second store 1is accessed by both

processors.

The rational for this choice is that a memory placed upon a
close store is less likely to be subject to memory interference
from the memory accessing patterns of other processors.
Furthermore close stores are more Likey to be directly
accessible to the processor, and thus have faster access times,
while distant stores are Likely to be accessed via buses, and
be slower to access.

Having ordered the store List in this way, the processor Llist
of a process element is ordered using the throughput

information.

The ordering of each store or processor List is carried out by
actually obtaining the allocation map for each possible assignment. This
is done by starting with the current partial allocation map and
assigning the memory or process to each of dits allowed stores or
processors. A new pértiat map 1is obtained in each case and these are
ordered using the techniques discussed above. An example is where an
allocation has proceeded to where the fi;st element 1in the process
memory Llist, PROCESS_2, has been assigned. The next element is to be

MEMORY_4 and it may be assigned to the stores as shown-
MEMORY_4 -> [STORE_1, STORE_2, STORE_3 1
(ignoring other constraints). From here the partial map

corresponding to each of these stores 1is constructed, and the through

throughput computed. Thus

134

Partial maps

PROCESS_2 -> [PROCESSOR_1 1]

MEMORY_4 -> [STORE_1 1 throughput = 2x
PROCESS_2 -> [PROCESSOR_1 1
MEMORY_4 -> [STORE_2 1] throughput = 1x
PROCESS_2 -> [PROCESSOR_1 1
MEMORY_4 -> [STORE_3 1] throughput = 1x

vhere the throughput is in multiples of some constant x. (To obtain
this throuéhput pattern it is assumed that the store STORE_1 is faster
than the other stores.) From this, the stores may be ordered, which will

produce
¢ STORE_1, STORE_2, STORE_3)
In this case the order s the same for both methods.

The throughput for each map is always calculated, irrespective of
which method is wused tq order the resources. It is used to discard any
map whose throughput is less than the throughput of the best final map
produced so far. To illustrate, the example 1immediately above 1is used.
If it had so happened that in some previous search a final mapping had
been found, then its'throughput will have been kept. If this was 1.5x
then the two partial maps above for the stores STORE;Z and STORE_3 will
be excluded from any further searches. They have a throughput that is
less than 1.5x, so no matter what happens they will never generate a

solution that has a better throughput ‘than the one already found.

After this elimination stage, the first element in the newly ordered
List is choosen and the map that was derived for this is used as the
basis of the next search step. The other maps are not discarded but are
retained and used for subsequent assignments at this search level, after
backtracking. This can be regarded as a one level deep breadth first
search performed at each search step to calculate and order the most

profitable search paths to follow next.

135

(7.4) SUMMARY

In summary the search pattern choosen 1is & modified depth first
search with backtrack. This 1is based wupon the method of implicit
enumeration. The general memory interference model and constraint
reduction are used at each partial allocation to reduce the number of
branches traversed. The order of the elements is choosen to obtain fast
and legal allocations as early as possible in the search. In the

following sections the constraint reduction rules are described 1in

depth.

(7.5) CONSTRAINT REDUCTION

Constraint reduction dnvolves examining each process and memory
element. If there are any restrictions derivable from the information in
the current mapping then this can be wused to reduce the elements
allocation constraint. Ideally, using a perfect constraint reduction
algorithm, such restrictions would result in an optimal final mapping
without the necessity for.any backtracking searches. Unforfunately such
an algorithm is not known, instead it is a case of constructing a set of

examination and reduction rules which can be applied easily.

The rules that have been 1investigated utilize the following

information
Memory and store size information.
Accessibility information.
The same and different constraint information.
From this information it is possible to derive rules to

Reduce the constraints to prevent the creation of illegal

constraints.

Reduce the constraints by removing redundant allocations.

136

Processor . Process

1024 bytes | 1 | stores 2 {1024 bytes

900 500 250
bytes bytes bytes
Figure 7.5

A discussion of these techniques, as demonstrated 1in the thesis

research, is given in the following.

(7.5.1) CONSTRAINT REDUCTION USING STORE SIZE INFORMATION

In assigning memory elements to stores, only enough space to hold
the memory is used. Also successive memory assignments are allocated to
successive regions 1in the store. Furthermore there is no provision in
the allocator algorithms for a memory element to straddle a store
boundary. Thus the unused space 1in a store for a particular partial
mapping is easily obtained, and only memories that will fit 1into this
space are able to be assigned to that store. Consequently this can be
used to restrict the allowable store set of a memory constraint. This is
done by calculating the intersection of the allowable store set of each
memory element with the set of all the stores that currently have enough
space to accept this memory. In the demonstration program this is called

the ALLOWED_MEMORY_SIZE constraint reduction operation.

As an example consider the computer architecture and program in

figure(7.5). The initial constraints for the memories are
MEMORY_1 -> [STORE_1, STORE_2)

MEMORY_2 -> [STORE_1, STORE_2 1
MEMORY_3 -> [STORE_1, STORE_2 1

If the MEMORY_1 element 1is assigned to the STORE_1 resource, then

the remaining free space in this store is only 124 bytes. This is not

137

Processors Processes

1 2 3 Stores memories
1024 1024 1024 (byte size) 512 512 1024 512 512
Figure 7.6

enough for the other two memories, and so their constraints will be

reduced down to

MEMORY_2 -> [STORE_2 1]
MEMORY_3 -> [STORE_2 1]

A similar situation exists for the allocation of processes to
processors. A processor accesses a number of stores, and these will have
varying amounts of unused space. The processor may also have a number of
processes already fixed to 1it, and these processes may access memory
that has not yet been fﬁxed. Thus the total unused store space available
to a processor is found by summing its unused store and subtracting the
space that will be occupied by all of the unfixed memory of those fixed
processes. Thus any unassigned process whose combined unassigned memory
size is larger thaﬁ this total unused store space will not be able to be
assigned to this processor. Note that there is st{LL no guarantee fhat
the process will fit even if the unused store space is big enough, since
here the sizes of the individual memories and stores are not taken into

account.

This constraint reduction 1is performed by obtaining the set
intersections 1in the same fashion as the memory size constraint

reduction. In the program this operation is given the name
ALLOWED_PROCESS_SIZE.

To demonstrate this reduction, the architecture and program of
figure(7.6) is wused. Assume an initial assignment of PROCESS_1 to
PROCESSOR_1 and MEMORY_3 to STORE_Z2. The nonfixed memory of PROCESS_Z2
will now be MEMORY_4 and MEMORY_S5, giving a nonfixed memory size of

138

(5124512). The size of the unused store space attached to PROCESSOR_1
will be 1024 from STORE_1. However the two memories MEMORY_1 and
MEMORY_2 that PROCESS_1 accesses have to be allocated to this store
space, and so the size of the unused store space of PROCESSOR_1 is
€1024-512-512), which 1is zero. Thus PROCESS_2 with a nonfixed memory
size of 1024 can not go to this processor. Thus idts allocation

constraint is modified by

PROCESS_2 -> [PROCESSOR_1, PROCESSOR_2] ~ [PROCESSOR_1 1]
-> [PROCESSOR_2 1

which in this case fixes the process.

Another constraint reduction based upon the detection of size
mismatches 1is concerned with the Same Constraints. If there 1is a

Same_Memory_Constraint Like

[MEMORY_1 , MEMORY_2 1 -> SAME
C L STORE_1 , STORE_2 1 , [STORE_3 , STORE_4 1]

then the summation of all of the unused space in each of the same
target sets (there are two in this example, one containing STORE;J and
STORE_2 and the other containing STORE_3 and STORE_4) has to be greater
than or equal to the size of all the nonfixed memory elements in the
same constraint. Otherwise these memories ;ill not fit into the stores
of the same target set as required by the constraint. For example, if
STORE_1 and STORE_2 do not have enough combined space to fit all of the
currently unfixed memory in the memory set, then this target store set

can be eliminated and thus the constraint becomes
L MEMORY_1 , MEMORY_2 1 -> SAME [[STORE_3 , STORE_4 1 1]

This 1is named SAME_MEMORY_SIZE constraint reduction in the
demonstration program. An analogous operation called SAME_PROCESS_SIZE
is also provided, which works in a similar way on

Same_Process_Constraints.
Finslly there is one more reduction operation based upon the

examination of memory and store sizes which is applicable. This uses a

set of memory elements that can be allocated to a set of store resource

139

elements. If both of these sets are choosen so that none of the memory
elements are assignable outside of this store set, then the total size
of all the unfixed memory elements has to be less or equal to the total
size of the unused space in this store set. If not then any further
attempts to assign the memory elements will be bound to fail. The
current map search can be terminated at this point. An example map

allocation where this is applicable can be

MEMORY_1 -> [STORE_1, STORE_2 1
MEMORY_2 -> [STORE_1, STORE_2, STORE_3 1]
MEMORY_3 -> [STORE_2 1

Here the store set is [STORE_1, STORE_2, STORE_3] and the memory set
is [MEMORY_1, MEMORY_2, MEMORY_31].

Partitioning the memory elements into sets Like these 1is easily
achieved. To start, any memory element not yet fixed is selected, and
the set of all its allowable store is obtained. Then from this store set
the set of all unfixed memory that can be assigned to this is derived.
If this memory set is identical to the starting memory set then a
partition has been found. 1If not the process is repeated and eventually
a partition QiLL be found. Given such a partition, it 1is a simple step
to check the sizes of the memories and stores. If there are any memories
left over that are not in any partition found so far, then this

algorithm is repeated.

As an example the partition sets for the constraints above will be

obtained. The starting point 1is taken to be the first constraint
MEMORY_1 -> [STORE_1, STORE_2] ,

Now the memories that can be allocated to STORE_1 are
[MEMORY_1, MEMORY_2] and the memories that can be allocated to STORE_2
are [MEMORY_1, MEMORY_2, MEMORY_3]. The union of these gives

[MEMORY_1, MEMORY_2, MEMORY_3 1
The stores that these may go to are [STORE_1, STORE_21,

LSTORE_1, STORE_2, STORE_3] and [STORE_2] respectively. The wunion of

these sets gives

140

Processors Q Processes

1 2 3 Stores

Figure 7.7

[STORE_1, STORE_2, STORE_3 1]

This activity is repeated, and will give the same two sets. Thus the

partition sets have been found.

This method is similarly applicable to processes. In the progranm
these two operations are known as MEMORY_PARTITION_SIZE and
PROCESS_PARTITION_SIZE.

(7.5.2) CONSTRAINT REDUCTION BASED UPON ACCESSIBILITY

Any process in the program which accesses a particular memory must
be able to reach this memory when the program 1is running on the
architecture. Thus the store to which this memory is assigned must be
accessible by the processor onto which the process has been assigned.
Conversely the processor to which a process is assigned must also be
able to access the store to which & memory of this same process is

assigned.

This condition 1is used as the basis of a constraint reduction
operation. If this constraint is to be applied to a memory element, then
the first step 1is to find the set of all processes that access this
memory. The set of all processors to which these processes may be
assigned is found by using this process set. Next the set of all stores
accessed by all of these processors is obtained. The resulting set of
stores represents all the stores to which the memory can be assigned.

The set intersection of this with the current set of allowable stores

141

Processors

Stores

Figure 7.8

for this memory will then provide the new and possibily reduced

allowable store set.

This constraint reduction proceeds similarly for an 1initial process
element. These operations are known as the ALLOWED_MEMORY_SET and the
ALLOWED_PROCESS_SET reduction operations. As an example the computer and
program of figure(?.7) are used. If PROCESS_1 is assigned to
PROCESSOR_1, then MEMORY_1 has to be assigned so that it is accessible
from PROCESSOR_1. The only stores satisfying this are [STORE_1, STORE_Z2]

and so the constraint on MEMORY_1 is
MEMORY_1 -> [STORE_1, STORE_2 1]

Under the circumstances where the computer architecture design is
such that every p}ocessor is able to access every store (either directly
or indirectly via buses), then this constraint reduction operation will
never result in any changes in the const}aints. Thus the application of

this operation may be avoided as an implementation efficiency measure.

The architecture of figure(7.8). is a typical example. No matter
where a process may be positioned, it can access every store and so

there is no restrictions on the allowed store sets. The same applies to

|

allowed processor sets. ‘

(7.5.3) PROXIMITY CONSTRAINT INFORMATION

A Same_Constraint like the following

142

[MEMORY_1 , MEMORY_2 1 ->
SAME [[STORE_1 , STORE_2 1 , [STORE_3 , STORE_4 1 1 ;

requires that both MEMORY_1 and MEMORY_2 must be allocated either to
the stores 1in first target set or to the stores in the second target
set. However if it so happens that any one of the memories can not be
assigned to any of the stores STORE_1 and STORE_2 of the first target
set, then this Same_Memory_Constraint can be modified by eliminating

this now redundant target store set. This results in
[MEMORY_1 , MEMORY_2 1 -> SAME [[STORE_3 , STORE_4 1 1] ;

Such reductions are equally applicable to both
Same_Process_Constraints and Same_Memory_Constraints, and are known as

SAME_PROCESS_SET_INDIVIDUAL and SAME_MEMORY_SET_INDIVIDUAL reductions.

A similar kind of operation is possible with Different_Constraint

sets. Given

[MEMORY_1 , MEMORY_2 1 -> DIFFERENT
[L STORE_1 , STORE_2 1 , [STORE_3 , STORE_4 1 1 ;

then if none of the memories can be assigned to the stores STORE_1
and STORE_2, this target store set may be removed from the constraint.
Again this is applicable to processes, and these two operations have the
names ‘ DIFFERENT_MEMORY_SET_INDIVIDUAL and
DIFFERENT_PROCESS_SET_INDIVIDUAL.

The difference in these operations upon the same and the different
constraint arise because a Same_Constraint specifies that all of its
elements are to be allocated into the same resource target set. Whereas
a Different_Constraint specifies that only one element is to be assigned

to any one target set.

These operations will reduce the constraint sets of the proximity
constraints. There are several reduction operations that work 1in the
opposite direction, and reduce the constraints of elements based upon
the information in the proximity constraints. This kind of reduction is

demonstrated in the following,

143

SAME [MEMORY_1 , MEMORY_2 1 -> SAME
L C STORE_Y , STORE_2 1 [STORE_4 , STORE_S 1 1

MEMORY_1 -> [STORE_1 , STORE_2 , STORE_3 , STORE_4 , STORE_S 1
MEMORY_2 -> [STORE_1 , STORE_2 , STORE_3 , STORE_4 , STORE_S5 1

In this example the Same_Constraint restricts the two memory
elements to being either on stores 1 and 2, or stores 4 and 5. STORE_3
is never possible, and so this store can be removed from the two
following memory constraints. In general this is achieved by finding the
union of all of the constraint sets in the Same_Constraint, and then
obtaining the intersection of this with the memory constraint set. This
produces the new memory constraint set. The above reduction operations
are equally applicable to processes and memories, and to different and
same proximity constraints. Their names, as used in the implementation,
are SAME_PROCESS_SET, SAME_MEMORY_SET, DIFFERENT_PROCESS_SET and
DIFFERENT_MEMORY_SET.

A reverse activity, of reducing the same sets to correspond to the

memory element constraint sets, is also possible. For example consider

[MEMORY_1 , ... 1 -> SAME
L C STORE_1 , STORE_2 , STORE_3 1 ... 3
MEMORY_1 -> [STORE_1 , STORE_2)

Here the STORE_3 resource can never be assigned to the MEMORY_1
element and so can safely be eliminated from the Same_Constraint.
However the proximity constraints are only used to restrict the element
constraints, they are not used to generate any element constraint
directly. Thus it turns out that any éuperfluous resources in the
constraints sets Llike in the above do not matter and so their reduction

is not carried out.

To make this c¢learer, consider an example of a SAME_MEMORY_SET

constraint reduction. It dnitially starts with the constraints

[MEMORY_1, MEMORY_2 1 ->

SAME [[STORE_1, STORE_2 J, [STORE_3, STORE_4 1, [STORE_5] 3
MEMORY_1 -> [STORE_1, STORE_2, STORE_S, STORE_6 1]
MEMORY_2 -> [STORE_3, STORE_4, STORE_S, STORE_6 1

1Lk

The SAME_MEMORY_SET constraint will reduce the constraints for the

memories to

5

MEMORY_1 -> [STORE_1, STORE_Z2, STORE_5 1
MEMORY_2 -> [STORE_3, STORE_4, STORE_5 1

since STORE_6 is not in the Same _Constraint. If now it 1is assumed
that some other constraint results in the STORE_5 resource being removed

from the memory constraints,

MEMORY_1 -> [STORE_1, STORE_2 J
MEMORY_2 -> [STORE_3, STORE_4 3

then this store could also be removed from the Same_Constraint.
However irrespective of whether or not STORE_S5 1is present, the
SAME_MEMORY_SET constraint reduction will not 1influence the memory

constraints 1in any way. Thus there 1is no need to remove it.

Finally there are some extra constraint reductions applicable only

to the Different_Constraints. Starting with a constraint of the form

[PROCESS_1 , PROCESS_2 1 -> DIFFERENT
L [PROCESSOR_1 , PROCESSOR_2 1 , [PROCESSOR_ 3 1 1]

If the PROCESSOR_3 target set is removed in some other constraint
reduction step, there will be only - one target set remaining.
Consequently the two processes can not be assigned to different targets
sets and so the current mapping will fail. This reduction operation, of
counting and comparing the number of eLeménts, is valid for both process
and memory Different_Constrdints and is known as

DIFFERENT_PROCESS_NUMBER and DIFFERENT_MEMORY_NUMBER.

Alternatively, using the samé example, if in some previous search
move the PROCESS_ 2 element had been assigned to PROCESSOR_3, then any
other processes in this constraint can not be assigned to the same
target set containing this processor. This fact is recorded by removing
the PROCESS_Z2 element from the process set and removing the target set

containing PROCESSOR_3. Thus the Different_Constraint set now left is

3 Processors Processes

(The computer (The program

architecture) structure)

2 3 Local Stores 1 2 Local Memories
4 Common Store 3 Common Memory

Figure 7.9
L PROCESS_1] —> DIFFERENT L [PROCESSOR_1 , PROCESSOR 2 1 1

This operation and its partner are called DIFFERENT_PROCESS_REMOVE
and DIFFERENT_MEMORY_REMOVE.

(7.5.4) ELIMINATION OF SYMMETRICAL SEARCHES

Consider a computer architecture of three identical processors. Each
processor has its own identical local memory and all processors access a
common global memory. To be allocated to this architecture is a program
with two processeé, each accessing a local memory and both processes
accessing a common memory. These are depicted in figure(7.9).

If the search method so far described 1is wused, then the first
process of the program will be assigned to one of the processors,
followed by an attempt to assign all of the others. At the completion of
this search a successful assignment may have been found, in which case
it will have been recorded. The search will then proceed by reassigning
the first process to the second processor, and carrying out the search
again to find a new assignment. This would be repeated and another
assignment found for the third processor. In this. situation, however,
the three processors and their memory structures are identical. The
final map produced at the completion of any of the three searches can
only have identical efficiencies. Thus the subsequent two searches are
unnecessary. The first process can be correctly assigﬁed to only one of

the processors without eliminating any significant search branches.

1L6

In the following the detection of such symmetries or redundancies in

the search, and their removal, is described. This is divided into the

topics

Under what conditions do symmetries exist?
How can they be detected?
How can they be eliminated from the search?

How can the detection of symmetries be made more efficient?

(7.5.4.1) DEFINITION OF A SYMMETRICAL ALLOCATION.

A symmetrical allocation situation exists for a program element if
two or more of its allowable resource elements are judged to be
equivalent. The c¢onditions for a pair of resource under which this

equivalence exists are
They are the same kind, either BANK, BUS, PROCESSOR or STORE.

They have identical properties, depending on the kind. For example
stores must have identical rewrite and access times and be of the

same size.

They are connected to other resources in an identical pattern. For
example if one processor has access to two stores, then any other

equivalent processor will also have access to two stores.

They are connected to equivalent resources, that idis, 1in the
previous example, the two stores of ‘the first processor need to be

equivalent to the, two stores of the second processor.
Finally if two processors (or stores) are identical then the sets
of processes (or memories) that can be allocated to these

resources must be identical.

To demonstrate these conditions, the simple computer structure

defined at the start of this section is used.

147

The three processors and the three Llocal stores have ddentical
properties. Thus the three processors of figure(7.9) are identical since
they are the same kind, have the same properties, are each connected to
one local store and one global store, and each Local store is also
equivalent. Similarly the three lLlocal stores are equivalent. It can be
seen that the definition for equivalence 1is recursive, since the
processors are only equivalent if their attached stores are, and the

stores are only equivalent if their accessing processors are.

The Llast condition “listed for equivalence has not been mentioned in
this example. To demonstrate this condition, consider the program of
figure (7.9). If the user had imposed the constraint that PROCESS_1 is
only allowed to be allocated onto either PROCESSOR_1 or PROCESSOR_Z2,
then the three processors are no longer equivalent. This arises from the
observation that if PROCESS_2 1is fixed to PROCESSOR_3 then it can never
be in the same processor as the other process. If PROCESS_2 is allocated
to PROCESSOR_1 or PROCESSOR_2, then it may eventually be assigned to the
same processor as the other process. In these two cases, the execution

speeds of the final map allocations will be different.

Thus in this situation only the processors PROCESSOR_1 and
PROCESSOR_2 are equivalent. This therefore implies that only stores
STORE_1 and STORE_2 are equivalent, since now STORE_3 1is accessed by a
processor not equivalent to the processors accessing the first two

stores.

(?7.5.4.2) DETECTING EQUIVALENCE

A set of equivalent resource ‘elements is called an equivalent
partition set. To find these sets the whole resource graph is examined.
For any architectures four initial partitions are always produced, one
each for all the bus, bank, store and processor resource elements in the
resource graph. These sets are then split up into further separate sets
on the basis of information such as the cycle speeds and store sizes of
each particular architecture. This information 1is called nontopological
information. Any resource element that ends up in a partition set by
itself has no equivalents. If there are any nonsingleton partition sets

left after this stage, then the sets are further partitioned using

148

topological information. Topological information is information gained

from considering the connection patterns of the computer architecture.

To achieve the topological partitioning, every resource element that still
has a chance of being equivalent to some other is examined. A list of all
the other resource elements that it accesses or is accessed by it is produced.
These attached resource elements are described by the current partition
they belong to. This allows the elements of the same partition to be_
compared on the basis of their attachments, and any two elements that differ
in this are no longer in the same partition and are separated. This
comparison of every likely resource element is repeated until no further
partit ion reductions are made, or until every resource element is in its

own partition. The resulting partition sets contain the equivalent resources.

As an example of this the step by step derivation of the equivalence
partitions of the architecture in diagram(?7.9) is given. This exercise
assumes that the user has imposed a constraint of fixing a process to
the PROCESSOR_1 resource.

At first the partitions are

1. [PROCESSOR_1 , PROCESSOR_2 , PROCESSOR 3 1
2. [STORE_1 , STORE_2 , STORE_3 , STORE_ 4 1

vhere the numbers represent an arbitrary unique Llabeling of the

sets.

-

The only nontopological information applicable here is the fact that
PROCESSOR_1 already has a process element assigned to it <(via the
assumed user constraint). Therefore PROCESS_1 1is different from both

PROCESS_2 and PROCESS_3, thus the new partitions are

1. [PROCESSOR_1 1
2. [PROCESSOR_2 , PROCESSOR 3]
3. [STORE_1 , STORE_2 , STORE_3 , STORE_4 1]

Now the topological information 1is applied by constructing the
attached sets. In the following List the resource element appears on the

lefthand side. The set of attached resources that it accesses or is

1L9

accessed by is in the middle. On the right

is

a list representation of

this set containing the labeling of the partition set which the resource

element belongs to.

PROCESSOR_1
PROCESSOR_2
PROCESSOR_3

STORE_2
STORE_3
STORE_4

C
C
[
STORE_1 C
C
C
r

STORE_1 , STORE_4 1
STORE_2 , STORE_4 1
STORE_3 , STORE_4 1]
PROCESSOR_1]
PROCESSOR_2]
PROCESSOR_3 J
PROCESSOR_1 ,
PROCESSOR_2 ,
PROCESSOR_3 3 (

P a el ol a e

From this it can be seen that STORE_1 and

N N =2 W W W

S

~
W
~

L 4 ~ ~ -

s 2 ,2)

TORE_4 are different from

the other stores and from each other, so the new derived partition sets

are

1.
2.
3.
4.
5.

And so

STORE_1 1]
STORE_Z2 ,
STORE_4 1

[n IR nan BN o BN o BN oo |

redoing the

PROCESSOR_1
PROCESSOR_2
PROCESSOR_3

STORE_?2
STORE_3
STORE_4

C
C
C
STORE_1 C
C
£
€

This now indicates

and that STORE_2 and

existing.

PROCESSOR_1 1
PROCESSOR_2 , PROCESSOR_3 3

STQRE_}]

accessibility sets gives

STORE_1 , STORE_4 1
STORE_2 , STORE_4 1
STORE_3 , STORE_4 1
PROCESSOR_1]
PROCESSOR_2]
PROCESSOR_3 1
PROCESSOR_1 ,
PROCESSOR_2 ,
PROCESSOR_3 ¢

A A N A~ ~
N N = N DN W

1

~
o

~/ s A -

s 2,2

that PROCESSOR_2 and PROCESSOR_3 are equivalent

STORE_3 are equivalent, with no other equivalencies

Since this agrees with the Llast

derived partitioning, the

process can terminate with this as the final partition.

150

(7.5.4.3) SPEEDING UP THE PARTITIONING OPERATION

This partitioning into equivalence sets can be speeded up. This is
done by making use of the observation that generally there will not be
any equivalent resource elements found. This particularly applies after
the initial stages of the map allocation search, where the program
elements already fixed to a resource will by definition make that
resource no longer equivalent to any other resource. Thus the detection
of nonequivalence as soon as possible 1is the best policy. This is
achieved by initially only considering the nontopological information
such as memory and store size and the lLike. This does not consume much
time. If the target resource elements are not reduced to singleton

partition sets, then the full partitioning operation has to be applied.

(7.5.4.4) PERFORMING THE CONSTRAINT REDUCTIONS

After producing the partition sets of a program element, the next
step is to use these sets to reduce the elements constraiat. Since the
partition sets are produced by considering the entire architecture, they
may contain resources to which the program element can not be allocated,
These are removed at this stage by producing the intersection of the
program elements allocation constraint set with the partition sets of
the appropriate kind and then using these resulting sets. For example if

a constraint is

PROCESS_1 -> [PROCESSOR_1, PROCESSOR_2, PROCESSOR 3 3

and the equivalence partition set “is
[PROCESSOR_2, PROCESSOR_3, PROCESSOR_4 1
then this partition set is reduced to the set

[PROCESSOR_2, PROCESSOR_3 1

In this reduction, some of these partition sets may now be empty,

representing sets of equivalent resource elements that the program

151

element can not be assigned to. These are discarded, along with all
partition sets containing only one element. From the remainder one set
is choosen and used for the reduction. This will contain a collection of
resource elements to which the program element may be assigned with
equivalent effects, and so all but one of these resources may be
removed. This is done by simply deleting one element from the partition
and set subtracting the resulting set from the constraint. So for the
partition of [PROCESSOR_2, PROCESSOR_3], one of the processors is
removed, perhaps resulting in [PROCESSOR_3], and this is subtracted from
the PROCESS_1 constraint above, giving

PROCESS_1 -> [PROCESSOR_1, PROCESSOR_2 1]

At this stage other partition sets possessing more than one element
may still exist. These can not be used to reduce the constraint straight
away, since the first reduction may have 1interacted with other
constraints to change the allocation of still other elements. Two
resources are only equivalent if they have the same elements able to be
allocated to them, and thus this dinteraction may result 1in two
originally equivalent resources becoming nonequivalent. Therefore the

entire symmetry detection operation is repeated for each reduction step.

(7.5.4.4.1) EXAMPLE SYMMETRY REDUCTION

A complete example of symmetry removal for the original problem in
figure(7.9) is developed. It is assumed that there are now no user

imposed constraints.

The starting point will be the constraint set for the PROCESS_1

element,
PROCESS_1 -> [PROCESSOR_1 , PROCESSOR_2 , PROCESSOR_3 1] !
Working on this, the symmetrical partition set produced will be

A
[PROCESSOR_1 , PROCESSOR_2 , PROCESSOR_3 1]

152

In other words the three processors are regarded as being identical.
In this example PROCESSOR_1 1is choosen to be the one used, and so the
constraint set for PROCESS_1 is

PROCESS_1 -> [PROCESSOR_1 1

Now the redundant removal operation 1is repeated for the PROCESS_2

element, and will result in the symmetrical partition sets
[PROCESSOR_1] [PROCESSOR_2 , PROCESSOR_3 1]

Disregarding the first set since it only has one element, and
reducing the second set by removing PROCESSOR_2, results in a partition

set of
[PROCESSOR_2 1]

This 1is subtracted from the PROCESS_2 constraint allocation, and so

the constraint now applicable is
PROCESS_2 -> [PROCESSOR_1 , PROCESSOR_2 1]

If there had been a third process element to be assigned, the

partition sets for it will be
[PROCESSOR_1 1 [PROCESSOR_ 2 1 [PROCESSOR 3 J
and so no symmetrical reduction would have been possible for it.
(7.5.4.5) RESTRICTIONS IN THE IMPLEMENTATION
One factor influencing the equivalence of resource elements not
discussed 1in the above 1is their membership 1in Same_Constraints or
Different_Constraints. In the general case these may be taken into

account also, but the implementation was simplified by regarding any

resource in such a constraint to be nonequivalent to any other.

163

)
Processors Processes

(The computer

The program
architecture) (pTog

structure)

1 2 Stores 1 2 Memories
\/ (1024 bytes) \/ (1024 bytes)
3 Common Store 3 Common Memory
(1024 bytes) (1024 bytes)

Figure 7.10

(7.5.5) CONSTRAINT REDUCTION PROPAGATION

So far the constraint reduction operations have mostly been
developed independently of each other. However it will often happen that
reducing the constraint of one element will thereby make possible the
constraint reduction of other elements. In extreme cases the changes due
to just one constraint reduction may propagate and result in all of the
remaining elements being fixed and thus producing a final map
allocation. More commonly the changes will either not propagate so far,

or just result in the production of an illegal map.

In the literature one example of constraint propagation is given by
[231. This is for a graph problem whose vertices may take on values
from a value set. Constraints are imposed upon the values that vertices
connected by a common arc may take on. The problem is to derive a value
mapping where all constraints are satisfied. This compares with current
research where the constraint reLationélare imposed by the.reduction
operations, with the goal of having all constraints satisfied

corresponds to a legal mapping.

As a demonstration of change propagation the following example has
been constructed, using the architecture and program depicted 1in
figure(7.10).

The reduction operations are carried out as follows.

At the start the constraints are

154

PROCESS_1 -> [PROCESSOR_1 , PROCESSOR_2 1
PROCESS_2 -> [PROCESSOR_1 , PROCESSOR_2 1]
MEMORY_1 -> [STORE_1 , STORE_2 , STORE_3 1
MEMORY_2 -> [STORE_1 , STORE_2 , STORE_3]
MEMORY_3 —-> [STORE_1 , STORE_2 , STORE_3 J

The only applicable operation 1is the symmetry removal operation.
1f this is applied to PROCESS_1 first, then the constraint set for

this etement will be reduced to
PROCESS_1 -> [PROCESSOR_1 1]
and now no futher reductions based upon symmetry are possible.

Following this the ALLOWED_MEMORY_SET reduction operation will

result in

MEMORY_1 -> [STORE_1 , STORE_3 1]
MEMORY_3 -> [STORE_1 , STORE_3 1

because these memories are accessed by PROCESS_1 and when this
element is fixed to PROCESSOR_1 the only stores accessible are

STORE_1 and STORE_3.

From here the ALLOWED_PROCESS_SIZE reduction operation will

produce
PROCESS_2 -> [PROCESSOR_2 1]

because the amount of space taken up by PROCESS_1 on PROCESSOR_1
is 2048. The total store space on PROCESSOR_1 is only 2048 and so
PROCESS_2 can no longer fit there.

Now the ALLOWED_MEMORY_SET operation will reduce the constraint
set of the MEMORY_3 element, since it has to be accessible to both
PROCESS_1 and PROCESS_2, which are now on different processors.
Thus

155

MEMORY_3 -> [STORE_3 1

which means that ALLOWED_MEMORY_SIZE will operate on the
constraint sets of MEMORY_1 and MEMORY_2. This produces

MEMORY_1 -> [STORE__1 1]
MEMORY_2 -> [STORE_Z2 1]

and this completely fixes the program to the architecture without
any searches being necessary. Of course in the general situation

this rapid conclusion will rarely occur.

In the allocation program the change propagation 1is implemented by
organizing the constraint reductions into passes. Each pass performs altl
of the required reduction operations, and a record is kept of atl
elements and proximity constraints which actually change. At the end of
each pass this dinformation is used as the basis for choosing which
elements are to be examined in the next pass. This process is terminated
when a pass does not generate any changes. Deciding which elements to
inspect in the next pass are is fairly straightforward. For example, if
a process is fixed to a processor, then there may be stores that this
processor cannot accesé. Therefore the memories of the process can no
longer be assigned to these stores. Thus in the next pass all the
memories of all précesses that have just been fixed need to be examined
by the ALLOWED_MEMORY_SET constraint reduction operation. The complete

List of such rules s described in greéter detail in appendix(C).

(7.6) EXPERIMENTAL RESULTS

An implementation in Pascal was produced to demonstrate the
allocation search algorithms. This implementation worked as expected in
producing Llegal allocations from a reduced search space. However the
reduction achieved in the search space was only sufficient to allow the

optimal allocation of small programs.

Processors
cycle speed = 1.0 microseconds

0 i é Stores
access time = 1.0 microseconds
size = 4000 bytes

3 |Store, access time = 4.0 microseconds
size = 10000 bytes

Figure 7.11

(7.6.1) DEMONSTRATION PROBLEM

A typical demonstration problem was the allocation of a three
process eleven memory program to a three processor four store computer
architecture. In this architecture each processor has'its own tocal
store and all the processors access the fourth global store, as is shown

in figure(?.11). The program used was the following-

Size of the memories, randomly generated.
MEMORY_O0 237 MEMORY_1 848 MEMORY_2 1406 MEMORY_3 540
MEMORY_4 663 MEMORY_5 507 MEMORY_6 397 MEMORY_T7 1277
MEMORY_8 2117 MEMORY_9 1348 MEMORY_10 1656

Number of process to memory accesses, randomly generated such that half of

the accesses are zero, and the other half are between 0 and 5000.

PROCESS_O PROCESS_1 PROCESS_2

MEMORY_DO 1786 0 - 2214
MEMORY_1 582 3054 0
MEMORY_Z2 0 0 2825
MEMORY_3 1909 0 0
MEMORY_4 0 3232 o -
MEMORY_S 2246 0 3763
MEMORY_6 4226 0 0
MEMORY_? 1324 2634 0
MEMORY_S8 0 0 1061

157

MEMORY_9 4610 0 2123
MEMORY_10 0 1849 0

Here this 1information is presented in an array format for

convenience.

For this example the total number of possible final allocations,

ignoring all size and access constraints for the moment, 1is

3 1 8 Three processes to three processors

3 * 4 = 10 (approximately) Eleven memories to four stores.

but the number of actual search steps performed by the allocation
program was only 11 for the particular program specified. The total
execution time required for this <(on a Burroughs B6800) was 130 seconds
or about 12 seconds per search step. Of this time 60 percent was spent
within the simulator code obtaining throughput estimations. The

allocation map found was

PROCESS_O0 -> [PROCESSOR_1 1 PROCESS_1 -> [PROCESSOR_O 1
PROCESS_2 -> [PROCESSOR_1 1

MEMORY_0 -> [STORE_1 1 MEMORY_1 -> [STORE_3]
MEMORY_2 -> [STORE_1] MEMORY_3 -> [STORE_3 1
MEMORY_4 -> [STORE_O 1 MEMORY_S5 -> [STORE_1 1
MEMORY_6 -> [STORE_1 J MEMORY_7 -> [STORE_3 1]
MEMORY_8 -> [STORE_3 1 MEMORY_9 -> [STORE_1 3
MEMORY_10-> [STORE_OD 1)

The throughput calculated for this was 14.2.

« (7.6.2) LARGER PROBLEMS

Unfortunately, for Llarger problems the allocation program does not
complete the search 1in & reasonable time period. The graphs in
figure(7.12) presents the times to completion for a range of computer
architecture sizes and program sizes. The architecture used for this is
shown in figure(7.13,left). The size of each memory of the program was
choosen randomly, as were the number of cycles value between each

process and memory.

158

1800 | 1800 180C
1600 16004 16044
1400 1400 | 1400)
1200 |, 1200 1200
¥
1000 |4 1000 1009
1. Throughput 1 Throughput 1 Throughput
800 |0 factor = 100% 800 factor = 50% 800 factor = 25%
T 1)
600 |2 600 | 600
o . 1
4oo s 400 40Q
— 3 % 5 6 17 8 5 4% 5 6 7 8 3 4 5 6 7 8
Threc processors, four stores, the given number of processes and 11 memories.
1800 | 1800 1800]
1600 4 Throughput 16004 Throughput 1600 Throughput
ot = % d = 9% =
1400 | factor = 100% 1400, factor = 50% 1400, factor = 25%
1200 | 1200 | 1200
]
1000 {5 1000 | 1000
800 |5) 800] 800]
1
600 |5 600 600,
@
400 J% /\/ 400 1400}
200 | .200_1 200/
3 % 5 6 3 4 S5 6 34 5 B
(4) (s) (&) (7) (4) (5) (6) (7) (#) (5) (&) (7)
The given number of ‘processors (and stores), 6 processes and 11 memories.
1800 1800 1800}
1600 | 160Q 1600
1400 1404 1400
1200 Ho Thpoughpu_t 1204 ’l'hr'oughput 12004 'I‘hr‘oughput
1000 hi factor = 100% 100 factor = 50% 1000| factor = 25%
E] p
o
8oo {9 804 800
I
600 {3 604 600,
@
400 |% 409 400
200 204 200]
11 16 21 26 31 356 &1 11 6 21 326 3l 36 L1 11 16 21 26 31 36 1

Three processors, four stores, three processes and the given number of muimorics.

Figure 7.12

18Q

Processors

@90 | | 99 ¢e

Stores
P processors, P stores

Global
store

P processors, P+1 stores

Figure 7.13

There were three sets of trials performed. They were for

1) An architecture with 3 processors and 4 stores. A program with
11 memories and a number of processes that is varied from 3 to

8.

2) An architecture where the number of processors is varied from 3
to 6, and the corresponding number of stores is varied from 4

to 7. A program with 11 memories and 6 processes.

3) An architecture with 3 processors and 4 stores. A program with
3 processes and a number of memories that is varied from 11 to
41 by fives.

Each of these three trials was performed with the throughput factor
having the wvalues ‘100 percent, 50 percent and 25 percent. This
throughput factor specifies how much better a partial solution has to be
in comparsion to an already obtained final solution before it is
investigated any further. Thus 1if the throughput factor is 100 percent,
only those partial soLutioﬁs that have a8 throughput that is twice that
of the throughput of the latest final mdp will be considered any

further.

It can be seen that even for the smallest of these trials the
execution time is high, and this increases with increasing problem size.
It does not increase in a uniform manner, since the variations in the
programs and architectures allow the search algorithms to perform better

than usual in some cases.

Also presented below 1is a table showing the number of search steps
needed for the searches shown in figure(7.12), and the maximum possible

number of search steps.

160

Number of search steps

of the trial with a Maximum possible

Problem kind throughput factor of search length
100 50 25 (approximately)
Problem 1 N =3 8 8 10 10”3
3 processors N =4 7 4 4 1074
4 stores N=5 4 4 4 1074
11 memories N=26 14 19 23 1074
N processors N=27 10 10 10 1075
N=28 10 13 17 1075
Problem 2 N=3 14 19 23 1074
N processors N = 4 26 36 47 105
N+1 stores N=5 9 9 13 1076
11 memories N=26 15 25 41 1077
6 processes
Problem 3 N =11 8 8 10 103
3 processors N =16 11 11 11 1074
4 stores N = 21 24 42 56 106
3 processes N = 26 16 16 20 107
N memories N =31 22 37 79 10°9
N = 36 27 8¢ 200 10710
N = 41 34 69 72 10712

One reason why the allocation is so slow is the Length of time
needed for one step, which in these trials ranges from 15 to 40 seconds.
Little attempt was made to improve the efficiency of the implementation
code used for the search algorithms. It is :therefore quite possible that

this execution time per search step can be substantially improved.

For comparsion, the total number of possible search steps to find a
solution using enumeration alone is also listed 4in this table. This
number is computed by assuming that each process may be assigned to any
processor, and that each memory may be assigned to only two stores. A
memory can only be assigned to the global store, or to the store that is
local to the processor that accesses that memory. This explains why the
memory is not assumed to be assignable to all stores. It is readily seen
that there are sizable reductions in the search space size for all

trials.

161

The execution time of the allocation program will vary depending

upon the following factors

1) Number of processors and stores in the architecture, and the
number of processes and address spaces in the program.

2) The structure of the computer architecture.

3) The choice of the throughput factor.

4) The user specified constraints.
These are discussed in turn.

(?.6.3) SIZE OF THE ARCHITECTURE AND PRdGRAM

Firstly the effects due to the numbers of the resource and program
elements have already been displayed 1in figure(7.12). It is easy to see
wvhy the size of the problem will generally increase the execution time.
For example, if there are P processors and C processes, then the number
of combinations of process to processor allocations 1is P”C. In most
cases the actual number of combinations will be Less than this maximum
due to restrictions .placed upon the assignment of processes to
processors. Some example restrictions will be due to user specified
constraints, accessibility constraints and memory size constraints. I;

is for this use that the constraint reduction operations are provided.

(7.6.4) STRUCTURE OF THE COMPUTER ARCHITECTURE

Secondly, the structure of the computer architecture can be
important. As one example, for P identical processors and C processes,
the maximum number of different combinations possible for the process to

processor allocations is

¢! if ¢ <= P
P! & P~(C-P) ifc>P

and these values are less than the value P*C used in the section
above. This decrease is made possible by symmetry redundancy removal.

Thus for C processes, C Lless than P, the first process will only have

162

oﬁe processor to be assigned to, since all the others are identical. The
second process will have 2 processors to be assigned, since there is one
processor with a process already assigned, and P-1 other didentical
processors. Thus the total number of combinations is C!. If the number
of processes 1is greater than the number of processors, then the
remaining processes can be allocated to any processor, and so there are
P~(C-P) possible combinations for these remaining processes. Thus when
there are more processes than processors, the total number of

combinations is P! x P~(C-P).

This reduction can be large and can mean the difference between a
practical search and a computationaLLy impossible one. However 1if the
processors are not identical, as with differing processor cycle times,
or if the stores are not identica}, as with differing access times or
store sizes, then the processors will no Llonger be identical. The
symmetry reduction operations will not be possible. Therefore the more
uniform the architecture the better the chances of obtaining a complete

search.

There are other ways in which the computer architecture may
influence the allocation program time. In figure(?7.13) the number of
processors is the same and the number of stores is almost the same for
both architectures. However, given an initial process to processor

allocation, the choice of possible stores for the address spaces of the

processes in the first architecture is much more Llimited in comparsion
to the second architecture. In the second architecture each store is
accessible to each processor, and so even after a process has been fixed
to a processor, there are no extra constraints applied upon 1its
memories. The execution time difference can be seen in the table below.
In each example pair here the two computer architectures have the same
number of processors, and there are the same number of processes and
address spaces in the program. As expected the time for the bus

architecture is longer.

163

Number of search steps
Problem kind with a throughput factor of
100 50 25

Architecture 1, problem 1 130 130 160
Architecture 2, problem 1 130 160 310
Architecture 1, problem 2 220 220 220
Architecture 2, problem 2 380 380 380
Architecture 1, problem 3 170 170 170
Architecture 2, problem 3 160 200 >1000

For this table, Architecture 1 is that in figure(7.13,left),
Architecture 2 is that in figure(7.13,right),
Problem 1 has 3 processes and 11 memories,
Problem 2 has 3 processes and 16 memories,

Problem 3 has 4 processes and 11 memories.

In some c¢ircumstances the computer architecture may allow the
program size to be increased with only a Llinear degradation 1in the
execution time of the allocation. This occurs in special cases where it
becomes possible to divide the‘program and architecture 1into separate
sub problems and to solve these independently. This is most Likely to
happen where there 1is in effect two different kinds of computer
architectures linked together. An example is shown in figure(2.10). Here
the picture processor has several general purpose processors, with their
own stores. As well there are the speciasl purpose picture processing

computer modules. In this circumstance the structure of the program will

164

be written to reflect this design. Thus the main processes of the
program willt only run on the general purpose processors, and the picture
processes will run on the special purpose processors. This division

would be specified by the use of user constraints.

(7.6.5) THE CHOICE OF THE THROUGHPUT FACTOR

The allocation search will generally not find the theoretical
optimal allocation mapping with respect to the throughput, but it will
produce a result that can be made arbjtrary close to it. How close is
determined by the throughput factor. This gives the percentage by which
the throughput of an} subsequent solutions must exceed the throughput of
the incumbent solution before they are investigated. If the throughput
factor is set at 5 percent, then many more solutions will have to be
examined than if only 100 percent precision 1is needed. This arises
because there will generally be a larger number of soluticns that vary

only slightly in this throughput estimation.

The accuracy of the throughput estimation dtself will also be
important. If the throughput for an initial allocation map at the start
of a search is close to the final optimal throughput, then fewer partial
solutions will be examined. This is most clearly seen in an example
vhere the throughput factor is set at 100 percent. If the dnitial
throughput estimation is within a factor of 2 of the final optimal
throughput, then the allocation will generally be able to derive the
first solution without backtrack. Thereafter, since the throughput of
this is within 100 percent of the initial th}oughput, no other solutions

need be examined.

This also demonstrates another way in which the computer
architecture structure may determine the search Llength. Some
architectures will produce a better initial throughput estimation than
others. The throughput of an initial unallocated map is found by
assuming the program is mapped to an architecture that is ideal for it.
Thus the further away from such an ideal machine tHe actual computer
architecture is, the more inaccurate will the idinitial throughput guess
be.

165

Processors

Local
stores

e

Subsystem 1 Subsystem 2
(Each processor can access
every store in the
subsystem)

Common global store

Figure 7.14

(?.6.6) USER IMPOSED CONSTRAINTS

Lastly, the user constraints may impact upon the search length. User

imposed constraints may effect the allocation by

A) Changing the size of the solution space that needs to be

searched.

B) Changing the length of the search needed to find the solutions.
None of the user constraints will ever 1increase the size of the

solution space, however some constraints may increase the search length,

and others may reduce it.

The size of the solution space is determined by the number of
program elements that need to be allocated, and the number of resources
that may be choosen for these. No constraints can increase either of
these, and so constraints can never increase the solution space size.
However constraints can reduce the number of allowed resources for each

program element, and so they may certainly " reduce the size.

Unfortunately decreasing the solution space will not always reduce
the search Length. If the search is to cover as little as possible of
the solution space, and still implicilty examine the whole space, then

the various means developed for reducing the search length must work to

166

their best ability. These are the constraint reduction and symmetry
redundancy removal operations, the heuristic search ordering techniques
and the throughput estimation algorithms. The imposition of process to
processor and memory to store constraints will generally not degrade
their performance. An exception may be the symmetry redundancy removal
operations. Constraining the elements to reduced resource target sets
may make previously identical elements different. Thus this may inhibit
symmetry reductions. In general the nonproximity constraints will reduce
the search length. The judicious use of these may make the allocation

larger problems feasible, with only minimal effort from the user.

As an example of this, consider the architecture of figure(7.14).
This can be regarded as being two separate computer subsystems able to
communicate with each other by the common global memory. Program
allocations to this architecture may be performed in the same way as for
any other architecture. Alternatively, if a programmer 1is writing a
program specifically for this computer structure, then to achieve the
best results it 1ds probable that the program structure produced will
reflect this structure. That is there will be two separate subsystems of
processes, and these will communicate via common code and common
variables having a small address space size. Thus in this circumstance
the programmer can impose the constraints that the processes of one
subsystem of the program are to be allowed only to the processors of one
subsystem of the architecture, and similarly for the other subsystems.
Little extra effort is required of the programmer for this, since the
knowledge to achieve this is implicit in the program design. Therefore
the complete allocation problem resolves into two smaller allocation
problems of allocating a half sized ’program to a half sized
architecture.

The imposition of proximity constraints will, however, degrade the
performance of both types of constraint reduction operations. They
impose higher level constraints between the dindividual process and
memory constraints. Thus the <constraint reduction of nonproximity
constraints can no longer proceed independently but will interact. The
action of these constraints upon the search will be to arbitrary remove
some final mappings from the search space. This happens when the final
mappings violate the proximity constraint. Since the implementation does
not order its searches to take this possibility into account, then these

reductions may occur at any position in the search. If they occur at a

167

shallow Level, then not much time will be spent in finding and
eliminating the map allocations prohibited by these proximity
constraints. If however these constraints are applied at points deep in
the search, then a large amount of time may be wasted in backtracking up

the search tree to try new searches .

(7.6.7) MAXIMUM PROBLEM SIZES

As indicated by figure(7.12) the practical maximum for a complete
search with this type of architecture is about 4 processors and stores,
for small programs of about 4 processes and 40 address spaces. Similar

times apply to other styles of architecture.

In almost all cases the allocation program finds an initial soLutjon
straight away with Little or no backtracking. Thereafter no better
solutions are found, or the subsequent solutions that are found are
generally not significantly better. This good behaviour is partly a
result of the heuristically provided search order, and it also arises
because only uniform architectures are used in the examples. This
behaviour allows the use of the allocation program for Llarger problems,
even when it does not complete a full search in a practical time period.
Thus there 1is no proéf that this 1is the best solution. However
examination of the estimation throughput for the initial map will give
an maximum upper bound to the throughput. From this it is known how much

the given solution falls below this.

Another method to allow the allocation of larger programs is to
clump together some of the separate address spaces of the program into
single address spaces. Some of the address spaces will be procedure
invocation stacks for processes and Large global arrays. These would not
be combined together with others. However there will also exist many

small procedure code bodies, and many small size global wvariables.

In general, if groups of these are combined then it may reduce the
allocation programs chance of performing some possible optimizations.
For example the combined address space may be just slightly too large to
fit dinto any one available space, whereas 1its individual memory
components would have. Alternatively the individual address spaces may

be accessed by only one process each. Thus they could be assigned to

168

storage which is local to the appropriate processors. However the combined
memory element would need to be accessed by every one of the accessing
processes, and so could only be assigned to global stores that are accessible

to all of the appropriate processors.

To minimize these problems, a suitable clumping strategy would be to
only combine small address spaces 1into combined address spaces that do
not exceed the size of the available stores by a suitably small factor.
A possible value would be 10 percent. This would decrease the chance of
the combined memory elements from being too large to fit anywhere. As
well only memory elements that have the same set of accessiﬁg processors
should be combined. This would imply:-that the combined memory element
can be allocated to exactly the same set of stores that each of its

individual components could be.

Using these rules, and assuming a program with many small memory
elements, then a Large decrease in the number of memory elements could
be achieved. For example, if this was by a factor of ten, then & medium
sized program with up to 400 memory elements (before clumping) could be

handled by the present allocation program implementation.

(7.6.8) SUMMARY

The constraint reduction and search ordering algorithms work 1in
reducing the size of'the search space to be examined and in producing
legal final maps. However for all but very small programs the allocation
still takes an excessive amount of time to perform a complete search.
However final legal maps which are good approximations to the optimal
final map can still be found even with an incomplete search. Furthermore
the user may speed up the allocation by the 1imposition of suitable
constraints. Hence it 1is quite feasible to use the allocation program,
with user guidance, to find good solutions for small to medium sized

programs.

169

CHAPTER (8)

(8.1) CONCLUSIONS

In the dntroduction to this thesis the concept of a resource
allocator was introduced and 4ts application areas discussed. The
methods of specifying the computer architecture and the program
structure to the allocator were described. Also detailed were the means

whereby the user can guide this allocation activity.

The work that 1is described by the thesis proper falls 1into three
main parts. These are the sections on the information structure
language, the general memory interference model and the allocator
algorithms.

A) Information Structure Language

The information structure Language 1is used to specify the
structure of a multiprocessor computer architecture to the
resource allocator. It is also used to specify the structure of
the program and to enter the user constraints. The research
work was to develop this Language. The thesis derives a
Language definition and describes in detail how 1t is to be
used for its intended purpose. The language syntax is borrowed
from other languages, but the definition of the semantics of

the tanguage for the use 1in a resource allocator is new.
B) General Memory Interference Model*

The general memory interference model 1is used by the resource
allocator in its production of the throughput estimation of a
resource allocation. The original memory interference model
used was taken from the literature. The research consisted of
developing this model to fit the resource allocator
requirements. This resulted in an analytic model capable of
generating the required throughput. As well it was shown how a
simulation model will produce the throughput estimation in a

shorter time than this analytic model.

170

C) Allocator Algorithms

Finally the allocator algorithms are those that actually
perform the allocation of the program elements to the resources
of the computer architecture. The research was to find and
develop suitable algorithms to perform this. The basic solution
relies on & simple tree search on the whole solution space. To
make the search more practical, an algorithm called implicit
enumeration with backtrack is used to minimize the search path
length. With this as a start other methods were also found to
reduce the size of the search. These are based upon the
ordering of the search to 1increase the chances of quickly
finding an acceptable solution, and the use of constraints upon
the program elements to decide if partial solutions can be

rejected.

A Large Pascal program was written to implement and demonstrate
these algorithms. Trial runs using this demonstrated that the constraint
reduction algorithms, the dimplicit enumeration and the use of
probability ordering of the search will reduce the size of the search,

and find solutions.

The aim of the research was the development of a resource allocator
for medium size programs onto multimicroprocessor computer
architectures. The khesis describes and demonstrates how this may be
done. However the implementation of the final allocator algorithms can
produce allocations for only some allocation problems. It can not,
without user guidance, perform a complete search to find the optimal
solution in a practical time for reasonable sized computer architectures
or programs. Nor have the effect of proximity constraints been properly

included.

The research that needs to be done to make the resource allocator

feasible for production programs can be divided into two areas-

A) The development of the allocator algorithms to cope with larger
computer architectures and larger programs. This can be done by
improving the existing techniques for ordering searches, and by

adding more constraint reduction operations. It can also be

1M

B)

done by using @ more complex search algorithm, to allow the
incorporation of specialized informstion dinto the allocation
activity. For example the optimal search strategy of a systolic
computer architecture could be made different from the optimal
search strategy for other architectures. The allocator would
need the ability to determine what kind of architecture it is

using, and to select the appropriate search strategies.

The <implementation of an actual allocator system, capable of
starting with a concurrent program and converting this into
code to run on a multiprocessor architecture. This would
required converting an existing compiler to generate suitable
code, the implementation of the information structure language,
and the provision of a Linker lLoader to place the code and data
elements of the program onto the architecture as dictated by

the resource allocation mapping.

172

APPENDIX (A)

This section describes the algorithm used within the analytic model to
construct the static access array for the simulation program, in the

situation where the simulation is to be run in its accurate mode.

The static access matrix is used by the simulation program to obtain
the next store fetch for a processor. The probability of processor P

picking a store S is given by

Sa(P,S)
...(33)

and for the busiest processor P‘', the following equation holds

M
Y sa(e',s) =1
s=1

where Sa represents the static access. ... (34)

However 1in general the above equation 1s more correctly expressed as

M
z Sa(P,s) .51
S=1

... (35

where the summation equals 1 for the busiest processor, and Lless

than 1 for all others. These processors perform idle c¢ycles, and the

model knows how much idle time is spent, this is given in equation(30).
Thus

Tidle(P) = 1- Sa(pP,S)*Tcy(P)

iA1=

...(36)

This corresponds to the simulation using the static access terms for
the probability, and since the summation of these is less than one, then
on the occasions when no store 1is picked, it just executes an idle

processor cycle.

173

This static access matrix is derived directly from the actual number of

cycles array used in the model,

Sa(P,S) = Na(p,S) * D(P)

where D is the adjustment factor. ... (37

The number of cycles array gives the wunnormalized probability
distribution for the processor to store access pattern. Thus in the
above the adjustment factor normalizes each row (one row per processor)

to give the static access array. Using the above two equations gives

D(P) = {fcy(P) =~ Tidle(P))/(Tcy (P)*Nap (P))

.- (38
where Nap is the actual number of cycles per processor array. So the
static access matrix can be calculated from the actual number of cycles

array and the idle time array, which are both known to the probability model.

174

APPENDIX (8)

The algorithm used in the 1implementation of the probability model to
produce the conflict function s taken directly from [443. To
illustrate how it works, consider the following version of the conflict

function

fmax

0
Hh
I
o
s
wie
—
o
w
H
5
2
A
I
(@]
o
B

1 r=1 f=1

... (39
Here the probability terms are represented by the F function. The

expansions of the conflict function for 1, 2 or 3 F function terms are

(1-A) + 1/2CA)

CONFLICT_FUNCTION

CONFLICT_FUNCTION (1-A)(1-8) + 1/72¢C1-A)B + AC(1-B)) + 1/3AB

(1-A)(1-BX(1-C) +

+ 1/2¢ (1-A)BC + A(1-B)C + AB(1-C))

+ 1/3(C1-A)(1-B)C + (1-A)B(1-C) + A(1-B)(1-C))
+ 1/4C ABC)

CONFLICT_FUNCTION

vhere A = F(1), B = F(2) and C = F(3). If the second expansion is

taken and listed as a series of terms-

L(D) = (1-AX(1-B)
LC1) = (1-A)B + AC1-B)
LC(2) = AB

then multiplying each term by (1-C) to produce one new series, and

by C to produce another new series, will result in

115

L(O) = 1-A(1-BX(1-C)

LC1) = (1-A)B(1-C) + A(1-BI(1-C)
L(2) = AB(1-C)

LB = (1-AX(1-B)C

LC1) = (1-A)BC + AC1-B)C

L(2) = ABC

From inspection it can be seen that adding L(n) from the first
series immediately above to L(n-1) of the second series will produce the

terms of the third conflict function expansion.
Thus the recursive definition of this is

new_L(n) = old_L(n) (1-F(f)) + F(f) old_L(n-1)
... (400
where LC(0) = 1 - F(1) and (1) = F(1). Thus the complete algorithm

to generate the conflict function were there are N function terms is

OLD_L(0) := 1-F(C1) ;
OLD_L (1) == F(1) ;
FOR J := 2 TO N DO
NEW_LC(0) == OLD_LCO)> * (1-F(J)) ;
OLD_L(J) =0 ;
FOR M == 170 J DO
NEW_L(M) == OLD_L(M) * ¢ 1-FCJ)> > + F(J) * OLD_L(M-1) ;
END ;
OLD_L == NEW_L ;
END ;

This will result in the L arrays containing the terms of the

conflict function. Now all that is needed is to combine these together

CF :=0 ;

FOR J4 := 0 TO N DO
CF == CF + OLD_LC(J)/CJ+1) ;

END ;

CONFLICT_FUNCTION := CF ;

’

176

APPENDIX (C)

The reduction operations can alter a mapping by reducing the
constraint set of & process or memory element, or by altering a
Same_Constraint or Different Constraint. In all cases the changes are

reflected in the sets

JUST_CHANGED_PROCESS_SET
JUST_CHANGED_MEMORY_SET
JUST_CHANGED_DIFFERENT_PROCESS_CONSTRAINT_SET
JUST_CHANGED_DIFFERENT_MEMORY_CONSTRAINT_SET
JUST_CHANGED_SAME_PROCESS_CONSTRAINT_SET
JUST_CHANGED_SAME_MEMORY_CONSTRAINT_SET

Which records sll of the changes produced in the latest pass of the
constraint operations. Any element which becomes fixed is also recorded

in the sets

JUST_FIXED_PROCESS_SET
JUST__FIXED_MEMORY_SET

A newly fixed Same_Constraint or Different_Constraint is detected,
in the implementation, by accessing each such constraint and determining

how many constraint elements they possess.

If any of these sets are not empty at-the end of a pass, then the

information is transferred to the sets

JUST_CHANGED_PROCESS_SAVE_SET
JUST_CHANGED_MEMORY_SAVE_SET
JUST_FIXED_PROCESS_SAVE_SET
JUST_FIXED_MEMORY_SAVE_SET
JUST_CHANGED_DIFFERENT_PROCESS_CONSTRAINT_SAVE_SET
JUST_CHANGED_DIFFERENT_MEMORY_CONSTRAINT_SAVE_SET
JUST_CHANGED_SAME_PROCESS_CONSTRAINT_SAVE_SET
JUST_CHANGED_SAME_MEMORY_CONSTRAINT_SAVE_SET

177

and this dinformation 1is used in the next pass to select which
elements are to be examined for constraint reduction. This is done as

follows,
ALLOWED_MEMORY_SIZE

AlLL nonfixed memory that can be assigned to a store that contains

a just fixed memory element are examined.
ALLOWED_PROCESS_SIZE

ALl nonfixed processes that can be assigned to a processor that
contains a just fixed process element or which accesses a store

that contains a just fixed memory element are examined.
SAME_MEMORY_SIZE

ALL Same_Memory_Constraints that are not fixed and contain a
reference to a store which has just had a memory element fixed to
are examined. (A fixed Same_Constraint or Different_Constraint is
one where all of the constraints have been removed and so it is an

empty constraint).

SAME_PROCESS_SIZE
ALl Same_Process_Constraints that are not fixed and contain a
reference to a processor which has just had a process element
fixed to it, or which accesses a store which has just had a memory
element fixed to, are examined.

MEMORY_PARTITION_SIZE
ALL nonfixed memory elements are examined.

PROCESS_PARTITION_SIZE
ALl nonfixed process elements are examined.

ALLOWED_MEMORY_SET

178

ALl nonfixed memory elements that are accessed by

access a just changed memory element are examined.
ALLOWED_PROCESS_SET

ALL nonfixed process elements that access memory

are accessed by just changed process elements
SAME_MEMORY_SET_INDIVIDUAL

ALl nonfixed Same_Memory_Constraints which contain

memory element are examined.
SAME_PROCESS_SET_INDIVIDUAL

ALl nonfixed Same_Process_Constraints which contain

process element are examined.
DIFFERENT_MEMORY_NUMBER

ALL just changed Different_Memory_Constraints
DIFFERENT_PROCESS_NUMBER

ALl just chaﬁged Different_Process_Constraints
DIFFERENT_MEMORY_REMOVE

ALl nonfixed Different_Memory_Constraints which

fixed memory element are examined.
DIFFERENT _PROCESS_REMOVE

ALl nonfixed Different_Process_Constraints which

fixed ‘process element are examined.

DIFFERENT_MEMORY_SET

processes which

elements which

are examined.

a just changed

a just changed

are examined.

are examined.

contain a just

contain a just

ALL just changed nonfixed Different_Memory_Constraints are

179

examined.

DIFFERENT_PROCESS_SET

ALL just changed nonfixed Different_Process_Constraints are

examined.
SAME_MEMORY_SET

ALL just changed nonfixed Same_Memory_Constraints
SAME_PROCESS_SET

ALL just changed nonfixed Same_Process_Constraints
DIFFERENT_MEMORY_SET_INDIVIDUAL

ALL nonfixed Different_Memory_ Constraints which

changed memory elements are examined.
DIFFERENT_PROCESS_SET_INDIVIDUAL

ALL nonfixed Different_Process_Constraints which

changed process elements are examined.

180

are examined.

are examined.

contain just

contain just

APPENDIX (D)

In the following the symmetry redundancy removal algorithm and the
search algorithm are described. The Pascal language is used, with upper
case text representing actual Pascal coding. Lower case text represents

pseudocode that has not been expanded all the way into actual Pascal

code.

After this is a list of all the operators that can be used to access

the state of a partial or complete map allocation.

(D.1.1) SYMMETRY REDUNDANCY REMOVAL ALGORITHM

TYPE

REDUNDANCY_SET_TYPE (* This is a set of resources, it contains
resources that are equivalent to each other, or’
resources that have not yet been shown to be
nonequivalent %)

LIST_TYPE (x This contains a list of redundant sets,

In this Llist, the ordinal number of the first redundancy
set is 1, the second is 2 and so on %)
VAR

LIST = LIST_TYPE ;

Create four redundancy sets, one each for PROCESSOR, STORE, BUS
and BANK. Initialise each set to contain all the processors,
stores, buses and banks -of the architecture ;

LIST == empty list ;

Insert these four redundant sets into LIST ;

PROCEDURE REMOVE_SYMMETRY_REDUNDANCIES ;
BEGIN
REPEAT
NONTOPOLOGICAL_SEPARATION ; (* Separate the redundancy sets
into subsets to make further redundancy sets, depending

upon nontopological information *)

181

WHILE any redundancy sets in LIST with more than one element
remain DO BEGIN
TOPOLOGICAL_SEPARATION ; (% Separate the redundancy sets
into further subsets depending upon topological
information *)
IF no changes where made in last step THEN
exit while Lloop ;
END :
REDUCE_SETS ; (% Based upon the contents of the
redundancy sets, reduce the allowed constraints *)
UNTIL no reductions were made in the last repeat Lloop ;
END ;

PROCEDURE NONTOPOLOGICAL_SEPARATION ;
VAR
WORK_LIST = LIST_TYPE ;
NEW_REDUNDANCY , OLD_ REDUNDANCY : REDUNDANCY_SET_TYPE ;
BEGIN
Put all redundancy sets into a list called WORK_LIST ;
Initialise LIST to be empty ;
WHILE the WORK_LIST is nonempty DO BEGIN
OLD_REDUNDANCY := a redundancy set extracted from WORK_LIST;
Initialise the set NEW_REDUNDANCY to empty ;
FOR all elements in the OLD_REDUNDANCY, except for the first
element DO BEGIN
IF NONTOPOLOGICAL_DIFFERENT (x if the properties
of the first element differ from this element *) THEN
BEGIN
Extract this element from the OLD_REDUNDANCY, insert
it into NEW_REDUNDANCY set ;
END ;
END ;
IF NEW_REDUNDANCY set is nonempty THEN BEGIN
Place it into the WORK_LIST ;
END ;
Insert OLD_REDUNDANCY dinto LIST ;
END ;
END ;

182

PROCEDURE TOPOLOGICAL_SEPARATION ;
VAR
WORK_LIST : LIST_TYPE ;
NEW_REDUNDANCY , OLD_REDUNDANCY : REDUNDANCY_SET_TYPE ;
BEGIN
REPEAT
Put all redundancy sets into a list called WORK_LIST ;

Id

Initialise LIST to be empty ;
WHILE the WORK_LIST is nonempty DO BEGIN
OLD_REDUNDANCY := a redundancy set extracted from
WORK_LIST ;
Initialise the set NEW_REDUNDANCY to empty ;
FOR all elements in the OLD_REDUNDANCY set, except for
the first element DO BEGIN
IF TOPOLOGICAL_DIFFERENT (* if the properties of
the processors, banks, buses and stores that access
or are accessed by this element are different
from the kind and properties of those of the first
element *) THEN BEGIN
Extract this element from the OLD_REDUNDANCY set,
_insert it into the NEW_REDUNDANCY set ;
END ;
END ;
IF NEW_REDUNDANCY set is nonempty THEN BEGIN
Place it into the WORK_LIST ;
END ;
Insert OLD_REDUNDANCY into LIST ;
END ;

-

UNTIL no new redundancy sets are created in the last Lloop ;
END ;

PROCEDURE NONTOPOLOGICAL_DIFFERENCE
BEGIN
CASE kind of element OF
processor element :
Two processors are different if they have different
cycle speeds,
brand names,

number of stores attached,

183

total size of all the stores attached,
process sets, as allowed by the process to processor
constraints.
store element:
Two stores are different if they have different
access speeds,
rewrite recovery times,
memory sets, as allowed by the memory to store
constraints,
number of accessing processors.
bus element:
Two buses are different if they have different
number of processors accessing them,
number of attached stores,
bus delay times.
bank element:
Two banks are different if they have different
bank access times.
END ;
END ;

FUNCTION TOPOLOGICAL;DIFFERENCE
Two elements are different if they have different
attachments lists. The attachment set of a processor
element is found by using PROCESSOR_ATTACHMENT,

similarl} for the others.

PROCEDURE PROCESSOR_ATTACHMENT
BEGIN
Create an initially empty processor attachment list.
FOR all stores that the processor accesses DO BEGIN
Insert the ordinal number of the redundancy set that
contains the store element into the attachment Llist.
END ;
FOR all buses that the processor accesses DO BEGIN
Insert the ordinaL.number of the redundancy set that
contains the bus element into the attachement list.
END ;
FOR all banks that the processor accesses DO BEGIN

Insert the ordinal number of the redundancy set that

18k

contains the bank element into the attachement Llist.
END ;
Order the attachment Llist
END ;

PROCEDURE REDUCE_MEMORY_SETS ;
VAR
MEMORY : MEMORY_SET_TYPE ;
POSSIBLE_REDUNDANT_STORES : STORE_SET_TYPE ;
STORE : STORE_SET_TYPE ;
REDUNDANCY_SET : RESOURCE_SET_TYPE ;
BEGIN
FOR MEMORY := all memory DO BEGIN
FOR REDUNDANCY_SET := all redundancy sets containing store
elements DO BEGIN
POSSIBLE_REDUNDANT_STORES :=
ALLOWED_STORE_FROM_MEMORY (MEMORY) *
REDUNDANCY_SET ;
IF number of elements in POSSIBLE_REDUNDANT_STORES > 1
THEN BEGIN
STORE := first element from
POSSIBLE_REDUNDANT_STORES ;
Change the allowed stores from MEMORY to
ALLOWED_STORE_FROM_MEMORY (memory) -
POSSIBLE_REDUNDANT_STORES + STORE ;
Exit procedure (¥ a reduction has been made *)
END ;
END ;
END ;
END ; T

Similarly for the processes.

(D.1.2) THE SEARCH ALGORITHM

TYPE

MAP_TYPE (* This will contain one partial or complete
map allocation. This includes the process to

processor and memory to store constraints, and the

185

VAR

proximity constraints. %)
PROCESS_MEMORY_LIST_TYPE (* This is a list of process and
memory elements *)
ELEMENT_TYPE (* Will contain either a process element
or a memory element %)
RESOURCE_TYPE (% Will contain either a processor resource element
or a store resource element %)
MAP_ELEMENT_TYPE = RECORD
MAP : MAP_TYPE ;
RESOURCE : RESOURCE_TYPE ;
THROUGHPUT : REAL ;
END ;
MAP_LIST = Llist of MAP_ELEMENT_TYPE ;

BEST_EVER_THROUGHPUT : REAL ; (* This contains the throughput
of the best ever final map so far found. If no such map
has been found yet, it contains 0 %)

GLOBAL_SUCCESS : BOOLEAN ; (* This 1is set to true when a
complete solution is found %)

FINAL_MAP : MAP_TYPE ; (* This will contain the best complete

solution found, if one is found at all *)

PROCEDURE ALLOCATION ; VAR

PROCESS_MEMORY_LIST : PROCESS_MEMORY_LIST_TYPE ;
MAP : MAP_TYPE ;

BEGIN

END

GLOBAL_SUCCESS := FALSE ;
Initialise the PROCESS_MEMORY list, by
inserting all the process and membry elements into
the list, then sorting them into order.
MAP == Initiasl input map as specified by the user constraints ;

SEARCH ¢ MAP , PROCESS_MEMORY_LIST) ;

[4

PROCEDURE SEARCH (

VAR

MAP : MAP_TYPE ;
PROCESS_MEMORY_LIST : PROCESS_MEMORY_LIST_TYPE) ;

MAP_LIST : MAP_LIST_TYPE ;

186

NEXT_ELEMENT : ELEMENT_TYPE ;
TEMPORARY : MAP_ELEMENT_TYPE ;
MAP_ELEMENT : MAP_ELEMENT_TYPE ;
RESOURCE : RESOURCE_TYPE ;
BEGIN
IF empty_list (PROCESS_MEMORY_LIST) THEN BEGIN

GLOBAL_SUCCESS := TRUE ;

BEST_EVER_THROUGHPUT := Throughput (MAP) ;

FINAL_MAP := MAP ;

END ELSE BEGIN

NEXT_ELEMENT := First element in PROCESS_MEMORY_LIST ;

MAP_LIST := empty Llist ;

FOR RESOURCE := all resources to which NEXT_ELEMENT may be
assigned, as specified by MAP DO BEGIN

BEGIN
TEMPORARY.MAP := MAP ;

Using TEMPORARY.MAP, constrain NEXT_ELEMENT to RESOURCE ;
IF Legal map created (TEMPORARY.MAP) THEN BEGIN
IF throughput (TEMPORARY.MAP) >
THROUGHPUT_FACTOR * BEST_EVER_THROUGHPUT THEN BEGIN
TEMPORARY . THROUGHPUT := throughput (TEMPORARY.MAP) ;
TEMPORARY.RESOURCE := RESOURCE ;
Insert TEMPORARY into MAP_LIST ;
END ;
END ;

END ;

(x MAP_LIST now has & List of the possible resources for the
NEXT_ELEMENT, together with thei; associated map allocations
and throughputs *)

IF the computer has a homogeneous architecture THEN BEGIN
IF NEXT_ELEMENT is a process THEN BEGIN

Sort the MAP_LIST upon
number of processes in the set (

ALLOWED_PROCESS_FROM_PROCESSOR (
MAP_LIST~.RESOURCE))
END ELSE BEGIN .

Sort the MAP_LIST upon MAP_LIST”.THROUGHPUT ;

Reverse the list ; (% puts the maps with the
highest throughput first %)

187

END ;
END ELSE BEGIN
IF NEXT_ELEMENT is a memory THEN BEGIN

Sort MAP_LIST upon
number of processors in the set (
ACCE§S_PROCESSOR_FROH_STORE (
MAP_LIST~.RESQURCE))
END ELSE BEGIN
Sort the MAP_LIST upon M/P_LIST”.THROUGHPUT ;
Reverse the list ; (x puts the maps with the
highest throughput first %)
END ;
END ; ; .
L% Have now sorted the MAP_LIST so that the most
promising resource targets for NEXT_ELEMENT come first in
- the Llist *)

FOR MAP_ELEMENT := all map elements in MAP_LIST DO BEGIN
IF MAP_ELEMENT.THROUGHPUT >
> THROUGHPUT_FACTOR * BEST_EVER _THROUGHPUT THEN BEGIN
SEARCH (MAP_ELEMENT.MAP ,
PROCESS_MEMORY_LIST -~ NEXT_ELEMENT) ;
END ;
END ;
END ;

(D.1.3) OPERATOR NAMES

In the Llist that appears below the names and uses of the operators
that have been mentioned 1in the thesis are given. These operators are
implemented as Pascal functions that return set type values. Since
Pascal functions can not actually return set types, these are modified

accordingly in the actual Pascal program coding.

ALLOWED_MEMORY_FROM_STORE (MAP : MAP_TYPE ;
STORE : STORE_SET_TYPE) : MEMORY_SET_TYPE ;
This returns the set of all memory elements M such that
there exists at lLeast one store S in the STORE set where

M is“allowed to be assigned to S.

188

ALLOWED_STORE_FROM_MEMORY (MAP : MAP_TYPE ;
MEMORY = MEMORY_SET_TYPE) : STORE_SET_TYPE ;
This returns the set of all store resources S such that
there exists at least one memory M in the MEMORY set where

M 1s sllowed to be assigned to S.

ALLOWED_PROCESS_FROM_PROCESSOR
ALLOWED_PROCESSOR_FROM_PROCESS

Similar to the above.

ACCESS_PI:\‘OCESSOR_FROM_STORE (STORE : STORE_SET_TYPE) :
PROCESSOR_SET_TYPE 3
4This returns the set of all processor resources P such that
, there exists at least one store $ in the STORE set where

processor P can access store S.

ACCESS_STORE_FROM_PROCESSOR ¢ PROCESSOR : PROCESSOR_SET_TYPE) :
STORE_SET_TYPE ;
This returns the set of all store resources S such that
there existé at lLeast one processor P in the PROCESSOR set

where processor P can access store S.

ACCESS_PROCESSOR_FROM_BUS
ACCESS_PROCESSOR_FROM_BANK
ACCESS_STORE_FROM_BUS
ACCESS_STORE_FROM_BANK
ACCESS_BUS_FROM_BANK
ACCESS_BUS_FROM_PROCESSOR
ACCESS_BUS_FROM_STORE
ACCESS_BANK_FROM_BUS
ACCESS_BANK_FROM_PROCESSOR
ACCESS_BANK_FROM_STORE

Similar to the above two definitions.
FIXED_MEMORY (MEMORY : MEMORY_SET_TYPE) : MEMORY_SET_TYPE ;

This returns all memory M that are in the MEMORY set and

have been allocated to a single store.

189

FIXED_PROCESS
Similar to the above.

SIZE_UNUSED_STORE (MAP : MAP_TYPE ; STORE : STORE_SET) : INTEGER
This returns the size of the unused memory space in the

stores of the STORE set.

SIZE_NONFIXED_MEMORY (MAP : MAP_TYPE ;
MEMORY = MEMORY_SET_TYPE) : INTEGER ;
This returns the size of all the nonfixed memory elements
in the MEMORY set.

SIZE_PROCESSOR_UNUSED_STORE (MAP : MAP_TYPE ;
PROCESSOR = PROCESSOR_SET_TYPE) : INTEGER ;
This returns the size of all the unused memory space of

- all the stores that are accessible by the processors in the
PROCESSOR set.

SIZE_NONFIXED_MEMORY_OF_PROCESS_FIXED_TO_PROCESSOR (
MAP : MAP_TYPE ;
PROCESSOR :='PROCESSOR_SET_TYPE) : INTEGER ;
This returns the.size of all the nonfixed memories
that are accessed by all the processes thaf are
fixed to the processors in the PROCESSOR set.
SIZE_NONFIXED_MEMORY_OF_NONFIXED_PROCESS (MAP : MAP_TYPE ;
PROCESS : PROCESS_SET_TYPE) : INTEGER ;
This returns the size of all the nofifixed memories
that are accessed by all the npnfixed processes that
are in the PROCESS set.

SIZE_THIS_PROCESSOR (MAP : MAP_TYPE ;
PROCESSOR_SET_TYPE) : INTEGER ;
This returns the total store space in all the stores

that the processors of the PROCESSOR set can access.

NONF IXED_SAME_PROCESS_CONSTRAINT ¢ MAP : MAP_TYPE ;
SAME_PROCESS_CONSTRAINT =
SAME_PROCESS_CONSTRAINT_SET_TYPE) :
SAME_-PROCESS_CONSTRAINT_SET_TYPE ;

- 190

’

This returns all the SAME_PROCESS proximity constraints
that are in the SAME_PROCESS_CONSTRAINT set and which

contain processes that are not yet fixed.

NONF I XED_SAME_MEMORY_CONSTRAINT
NONFIXED_DIFFERENT_PROCESS_CONSTRAINT
NONFIXED_DIFFERENT_MEMORY_CONSTRAINT

Similar to the above

PROCESS_FROM_SAME_PROCESS_CONSTRAINT (MAP : MAP_TYPE ;
SAME_PROCESS_CONSTRAINT : SAME_PROCESS_CONSTRAINT_TYPE) :
PROCESS_SET_TYPE ;

This returns with all processes P such that P
ljs mentioned %n at ieast one of the SAME_PROCESS proximity
.constraints in the SAME_PROCESS_CONSTRAINT set.

MEMORY_FROM_SAME_MEMORY_CONSTRAINT
PROCESS_FROM_DIFFERENT_PROCESS_CONSTRAINT
MEMORY_FROM_DIFFERENT_MEMORY_CONSTRAINT

Similar to the above

ORED_PROCESSOR_FROM_SAME_PROCESS_CONSTRAINT (MAP : MAP_TYPE ;
SAME_PROCESS_CONSTRAINT : SAME_PROCESS_CONSTRAINT_SET_TYPE)
PROCESSOR_SET_TYPE ;

This returns the set of all processors P such that P
is in at léast one of the target processor sets of
at lLleast one SAME_PROCESS constraint in the
SAME_PROCESS_CONSTRAINT set. -

ORED_STORE_FROM_SAME_MEMORY_CONSTRAINT
ORED_PROCESSOR_FROM_DIFFERENT_PROCESS_CONSTRAINT
ORED_STORE_FROM_DIFFERENT_MEMORY_CONSTRAINT

Similar to the above.

ALL_DIFFERENT_PROCESS_CONSTRAINTS_WITH_PROCESS (MAP : MAP_TYPE
PROCESS : PROCESS_SET_TYPE) :
DIFFERENT_PROCESS_CONSTRAINT_SET_TYPE ;
This returns with all the DIFFERENT_PROCESS proximity
constraints in the map that contein at least one of the

processors P, where P is also in the PROCESS set.

9

»

>

ALL_DIFFERENT_MEMORY_CONSTRAINTS_WITH_MEMORY
ALL_SAME_PROCESS_CONSTRAINTS_WITH_PROCESS
ALL_SAME_MEMORY_CONSTRAINTS_WITH_MEMORY

Similar to the above.

ALL_DIFFERENT_PROCESS_CONSTRAINTS_WITH_PROCESSOR (
MAP : MAP_TYPE ;
PROCESSOR : PROCESSOR_SET_TYPE) :
DIFFERENT_PROCESS_CONSTRAINT_SET_TYPE ;
This returns with all of the DIFFERENT_PROCESS constraints
in the map that mention processor P, where P is also
a member of the PRQCESSOR set.

ALJL_D IFFERENT_MEMORY_CONSTRAINTS_WITH_STORE
.+ ALL_SAME_PROCESS_CONSTRAINTS_WITH_PROCESSOR
ALL_SAME_MEMORY_CONSTRAINTS_WITH_STORE
Similar to the above.

FIXED_PROCESS_FROM_PROCESSOR (MAP : MAP_TYPE ;
PROCESSOR :..PROCESSOR_SET_TYPE) : PROCESS_SET_TYPE ;
This returns all the processes P such that process
P is fixed to processor PSR, where PSR is a member of

the PROCESSOR set.

FIXED_MEMORY_FROM_STORE

Similar to the sbove.

192

(E.1) INFORMATION SPECIFICATION LANGUAGE

The information specification language (ISL) allows a machine understand-
able definition of a computer architecture to be constructed. It also
provides the user with the faciltieis to guide the resource allocation 1 {

activity.

This appendix will describe in detail the basic structure of this hanguage,
and introduce the parts of the language concerned with the definition of a
computer arqhitecture. li starts with a section on reference, or how to
access a pa;ticular vertex from a given starting vertex. After this the
operatjpﬁs of creating new vertices and attaching them to the existing graph

are explained. These allow the constructien of an ISL graph structure.

Eventually other parts of the ISL, which deal with the declaration of the
names used in the language and the grouping of the ISL statements, are

described.

(El.2) STATEMENTS
Y L4

An ISL program consists of statements and definitions. Statements
are used to perform the actions of creating & graph. Definitions are
used to define various identifiers that are used by the statements. In

the following statements will be described first, followed by

definitions.

193

Firstly, the syntax of a statement block 1is

Statement_Block = { Statement }- ;

Statement = Assignment_Statement |
Attach_Statement |
For_Statement |
If_Statement |
Procéduré_talL_Statement ;

4

These statement kinds are discussed in turn.

L CE.2.1) ASSIGNMENT STATEMENTS
JR

An assignment statement will assign a value to & varisble. The

syntax is

Assignment_Statement =

“r

Variable_lIdentifier, ":=", Expression, ";"

Expression =
Simple_Expression, -
C Compar{?bn_pperator, Simple_Expression] ;

Compaf‘jﬁk_n—operator - N(" I ")" I ll<=" I ">=." I Wt ' "<>" ;

Simple Expression =

[Unary_Operator], Term, { Term_Operator, Term 2} ;

194

= “+" l ", ;

Unary_Operator

Term_Operator = "OR" | "+" | "-" ;

Term = Factor, { Factor_Operator, Factor } ;

Factor_Operator = "#" | "/" | "AND" ;

Factor = Unsigned_Constant | Variable_ldentifier |
Reference | Special_Function |
Bracketed_Expression | Not_Factor ;

Not_Factor = Not_Operator, Factor ;

Not_Operator = "NOT"

ws

Bracketed Expression = "(", Expression, ")" ;

Unsigned_Constant = Constant_ldentifier | String |

Unsigned_Number ;

e

-

This syntax definition allows standard arithmetical expressions
using 1integers, reals, booleans and strings to be constructed. It
provides for scalar variables and constants in these expressions. It
also provides References and Special_Functions. These sare used in

statements that access a graph structure.

(%.2.2) OPERATOR DEFINITIONS

The operators used 1in an expression are given below, din their

precedence order.

PN

Compq?ﬁébﬁ;ﬁperator < > <= > < =
Term_Operator OR + -
Factor_Operator * / AND
Not_Operator NOT

195

The Not_Operator 1is a monadic operator, it accepts one argument to
generate its result. The two Unary_Operators are also monadic. The other
operators are dyadic operators, they accept two arguments to generate
one result. Each operator requires arguments of the appropriate type.
Furthermore for dyadic operations the types of the two arguments used
must be dJdentical. The type of the output result may depend upon the
type of the arguments.

The allowable types of an expression are INTEGER, REAL, STRING,
BOOLEAN and SET. The first four have the standard properties, while the

SET type refers to sets of vertices of a graph.

The operators with their allowed argument types and the

corresponding result types are Llisted din the table below.

Operator Argument type Result type
< > <= >= Integer, Real Boolean
= <O Integer, Real, String Boolean
= <O . Set, Boolean Boolean
OR Boolean Boolean
+ - Integer Integer
+ -) Real Real

+ - Set Set

x / Real, Integer Real

* Set Set

AND Boolean . Boolean
NOT Boolean Boolean
unary + - Integer Integer
unary + - Resal Real

The operations that are specific to the ISL are those concerned with
SET type arguments. Such sets contains vertices of the graph. The
operations of set union, set subtraction and set intersection which are

defined upon these have the usual set semantics.

196

Root vertex

Figure!ﬂ.z

(E.2.3) REFERENCES

6iven an information graph structure, a means of accessing
individual elements within this is required. The use of references for

this purpose will now be described.

For a graph 6=(X,M), the attached name set of a vertex Xi, for the
name N, can be defined. It is the set of all vertices Xj that are
attached to Xi and which have a name function Fn(Xj) of N. This set is

represented by the notation Fattach(Xi, N).

The vertices 1in an attached name set are ordered, forming the
attached name Llist (Xj1,Xj2,Xj3,...). Generally the vertices are ordered
in the same sequence in which they are created, this is discussed fully
in section(EL2.4), on attach statements. Aﬁ; vertex in an attached name
set can be referred to uniquely by giving its ordinal position in the
attached name Llist. This is called the index of the vertex Xj with
respect to Xi. This 1is represented by the notation Findex(Xi,Xj).

In the graph of figure(EL2) the vertices 4in the attached name set of
the vertex A, for the name N, are circled. The numbers on the arcs

leading to these vertices represent their index values.
Every reference starts from some vertex or set of vertices. This set

is called the starting set of the reference. The reference will refer to

the vertices of this starting set, or it will refer to vertices that are

197

attached to the vertices of this starting set. The vertices that the

reference refers to are called the refgrence set of the reference.

CE.2.3.1) REFERENCE SYNTAX

The syntax for a reference is

Reference =
Reference_Start, { “.", Selector_Reference } ;

Reference_Start = "8" | Reference_Set_Variable_Identifier ;

Selector_Reference = Vertex_Selector |
Conditional_Selector |

Bracketed Reference ;

Bracketed _Reference = "(", Reference_Set_Expression, ")" ;

Reference_Set_Expression = Expression ;
Vertex_Selector = ".", Vertex_Name_Identifier, [Selector_Index 1;
Selector_Index = "(", Integer_Value, "™)" ;

(EL2.3.2) SELECTOR REFERENCES

The simplest reference is

and this will refer to all of the vertices 1in the references
starting set. This starting set may be the root vertex of the graph, in

which case this reference will refer to just the root vertex.

NOTE. The BNF format used to define the syntax follows the
British Standard BS 6154 as described in [77). 1In the
following syntax definitions integers are never used in the
metaidentifiers of a definition. In an example of a definition

a wmetaidentifier may appear with an integer immediately after

198

{t. This refers to an actual (unspecified) example of the

metaidentifier. Thus a syntax definition may be

=8, C, B ;
= "bb" ' "bbbll ;
I3 "cc" l "ccc" ;

Two specific examples of an A are

bb cc bbb
bb cc bb

A generalized example of an A could be

)

B1 cc B2

where B1 and B2 refer to some (unspecified) actual expansion of

B. In the following

B1 cc B1

\

81 reférs to the same (unspecified) expansion of B in both

cases.
The next simplest reference 1s by wusing a Vertex_Selector,
8.Vertex_Name_Identifier1

This reference will produce a reference set which contains the

vertices

Fattach(Xr1,Vertex_Name_ldentifier1)
Fattach(Xr2,Vertex_Name_ldentifier1)

Fattach(XrN,Vertex_Name_ldentifier1)

where the set { Xr1, Xr2,...XrN } is the reference set of the simple

reference 8. In other words, the reference set contains all vertices of

.

199

Root vertex Root vertex

Figure E.3

name Vertex_Name_ldentifier1 that are attached to all the vertices of

the starting set.

1

Using a Selector_Index creates the reference

8 . Vertex_Name_ldentifier1 (Integer_Expressioni)
This produces the reference set { Xn1, Xn2,... XnN } where

Xni is an element of the reference set of
8.Vertex_Name_ldentifier1, for alt 1 from 1 to N.
For some Xrj that’'is an element of the reference set 8,

Findex(Xrj,Xni) is equal to Integer_Expressioni.

Informally, a Selector_Index will give a reference set which

contains only vertices that have the indicated index: value with respect

to the vertices 1in the starting set to which they are attached.

As an example, the reference sets of the following two references

are indicated in figure(E.3).

8.N
8.NC2)

(E.2.3.3) USING REFERENCE SET VARIABLES

A reference set variable may be used in a reference to supply its

starting set. Given an assignment Llike

200

Root vertex

.The vertices The vertices in the The vertices in The vertices in
’ in the reference reference the reference the reference
@.A.B(1).C . @.A.B.C _ @.A(3).B(2).C(1) @.A.B.D
Figure E.4

Vertex_Name_Set_Identifierl := @
then the reference

Reference_Set_Variable_ldentifier1 . Selector_Referencel
vill be equivalent to the reference

.8 . Selector_Referencel
As an example,

REF := @ ;

REF.C is now quivalent to 8.C

(5;2.3.45 MORE THAN ONE SELECTOR REFERENCE

A Reference may have any number of Selector_References to it. A

reference Like

201

8 . Selector_Referencel . Selector_Reference2

Selector_ReferenceN . Selector_ReferenceM

where M = N+1, will produce a reference set. This will be equivalent

to the reference set produced by the following reference
S . Selector_ReferenceM

where S is a reference set variable, and its contents 1is specified

by the assignment

S := 8 . Selector_Referencel . Selector_Reference2

Selector_ReferenceN

Some example references with more than one Selector_Reference are

given in figure(3.4).

(£L2.3.5) BRACKETED REFERENCES

A reference expression may be bracketed. The starting 'rset for all
the references dinside the brackets, that use 8; is supplied by the
reference that 1is placed in front of the brackets. If a bracketed
reference is Llike

8. (Reference_Expressioni)

then this will give the same reference set as the expression
Reference_Expression

If the bracketed reference is

S . (Reference_Expressionl)

where § is either a reference set varisble or a reference, and

Reference_Expressioni contains the factors ’

Referencel, Reference2, ... ReferenceN, ...

202

then the bracketed reference will generate the same reference set as

the expression
Reference_Expressionl’

where each reference ReferenceN that starts with a 8 has this

replaced with S.
Thus
2.A.B
has the root vertex as its starting set.

‘Q.X.Y. (8.A.B)

b

However here the reference 8.A.B has the reference set of 8.X.Y as

its starting set. This reference 1is equivalent to the reference
8.X.Y.A.B
Another example is
8.X.Y. (8.A.B + 8.C.0 * R.E.D)

Here each of the references 8.A.B, 8.C.0 and &.E.D has the reference
set of 8.X.Y as dts starting set. This reference produces the same

-~

reference set as the reference

8.X.Y.A.B + 8.X.Y.C.D * 8.X.Y.E.D

(E.2.3.6) CONDITIONAL REFERENCES

A conditional selector is a means of selecting vertices from a
reference set which satisfy some given conditions. It is written

according to the syntax

Conditional_Selector = “<", Boolean_Expression, '">" ;

Boolean _Expression = Expression ;

203

The simple conditional references

Referencel.< True >

Reference2.< False >

will generate either the reference set of Referencel in the first

case, or the empty reference set in the second example.
A general Conditional_Selector of the form
Referencel . < Boolean_Expressionl >

will produce the reference set given by the expression
$1.< Boolean_Expression1 > +
§2.< Boolean_Expressiont > +

Sn.< Boolean_Expressioni >

where Si i1s a reference set variable that is equal to {Xi), and the

set {X1,X2,...XnY 1is the reference set of the reference Referencel.

That is the boolean éxpression is evaluated for each of the vertices
in the reference set of Referencel, and if it comes out true that vertex
will be placed 1into the result reference set. The evaluation of the
Boolean_Expression proceeds Like any other expression, except that
Referencel provides the starting set for any reference that may appear
in it.

Several special purpose functions are provided which are useful 1in

this context. Their syntax is

Special_Function = Number_Function | Empty_Function |
AlLL_Vvalue_Function | Any_Value_Function |

Value_Ffunction ;

Number_Function "NUMBER", "(", Reference_Expression, ")"

"EMPTY" , "(", Reference_Expression, ")" ;

L 1]

Empty_Function

A 1]

Value_Ffunction = “VALUE" , "(", Reference_Expression,)"

Any_Value_Function = "ANY_VALUE",

204

*(", Reference_Expression, Comparsion Operator,
Simple_Expression, ")" ;
ALL_Value_Function = "ALL_VALUE",
(", Reference_Expression, Comparsion_Operator,

Simple_Expression, ")" ;
A function Llike
NUMBER (Reference_Expressionl)

will return the integer number of vertices in the reference set of

Reference_Expressionl. A function Llike
VALUE (Reference_Expressionl)

assumes that there 1is one only vertex in the reference set of
Reference Expressionl, and this vertex has a value. The function will
return this value, the type of the result being the same as the type of
the value. If the initial assumption is false, then this is treated as

an error. A function like .
EMPTY ¢ Re?erencq_Exbression1)
will return the same result as the equivalent. expression
¢ NUMBER (¢ Reference_Expressionl) = 0)
A function of the kind

ALL_VALUE (Reference_Expressionl Comparsjon_Operator?
Simple_Expressionl)

will return the same result as the equivalent expression

A
(VALUE ¢ S1 Comparsion_Operator? SimpLe_Expression1ﬁ) AND
VALUE ($2 Comparsion_Operator1 Simplq_ExpressioniW) AND

VALUE (SN Comparsion Operator1 Simple_Expressioni-))

205

where $1,82,...SN are reference set variables such that

81 is equal to € X1 2},
s2 is equal to € X2 3} ,

SN is equal to € XN 2}

and the set { X1, X2,...XN } 1is the reference set of the reference
Expression_Referencel. Thus this gives a true result if every vertex in
the reference set satisfies the comparsion. It returns a false value if

the reference. set of Referencel s empty. The Llast function is

AN{_VALUE (Reference_Expressionl Comparsion_Operator?

Simple_Expressionl)
and this returns a boolean type result equal to

¢ VALUE (S1 Comparsion_Operator? Simple_ﬁxpressigpﬁ') OR
VALUE (S2 Comparsion Operatori SimplQ_Express16n1') OR

VALUE (SN Comparsion Operator1 Simple_Expréssiont))

In other words, it returns a true result if any one of the vertices
in the reference set of Expression_Referencel satisfies the condition If

the reference set s empty, it returns the false result.

N]

e

(512.3.?) CONDITIONAL SELECTOR EXAMPLES
In the following some examples using the sbove syntax definitions
are given.
A reference Like
Referencel. < NOT EMPTY (Reference2) >

will produce a reference set of all wvertices Xr which satisfy the
conditions

206

Root vertcx'

@.A.<NOT EMPTY(@.B)>

,1.___.,_.

e amv s w e

C
Figure ﬂ.S
Root vertex . Root vertex
. @.A.<ANY-VALUE
. (@.B)=7>

=2 A=3 A=GQS
@.A.<VALUE(@)=6> '

Figure E.6

Root vertex

@.A.<NUMBER(@.B)=2>

Figure EL7

207

Xr is in the reference set of Referencel and
The reference set of Scr. (Reference2) is nonempty.

Sxr Is a reference set variable and Is equal to the reference set {Xr}.

A specific example is (
2 . < NOT EMPTY (8.A) >

This will select the root vertex if it has a A vertex attached. If

it does not, then it returns with an empty reference set. If the

expression is .
8 : A . < NOT EMPTY ¢ 8.B) >
tﬁen this will select all vertices A attached to vertices 1in the
starting set such that each vertex A has one or more attached 8
vertices. Thus this expression selects the vertices as shown 1in
figure(3.5).
An example reference using an arithmetical comparsion is °
8 . A.<VALUE (@) =6>
This assumes that all vertices A have a nonnull value function
result, and will select all such vertices whose value is equal to 6.
Another example is

8.A. < ANY_VALUE (8.B) =7 >

This will select all wvertices A . which have &an attached vertex B

vhose value 1is 7. These two examples are depicted din figure(3.6).
Another example is the reference
8.A.< NUMBER (8.8) = 2 >
vhich will select all the A vertices with two B vertices attached.

This is shown in figure(3.7).

208

Root vertex Root vertex Root vertex

The solid lines represent the orginal arcs, the dashed lines represent the
new arcs-added by the statement @.A.B -> @.A,C

Figure E.S

.‘(ﬁ;2.4) ATTACH STATEMENTS

(The attach operafion will attacﬁv a vertex X1 to another vertex X2.
Its syntax is u

Attach_Statement = Attach_Operation, ";" ;

Attach_Operation
Attach_Reference, { "->", Attach_Reference }- ;
Attach_Reference = Reference_Expression | New_Operation |
Bracketed_Attach_Reference ;
Bracketed_Attach_Statement =
(T, Attach;Operption, {",", Attach_Operation X}, ™)" ;.

Reference_Expression = Expression (x giving a SET type result %) ;

An asttach statement Llike
Referencel -> Reference2
will create directed arcs of the form (Xr1,Xr2), if Xr1 is a member

of the reference set of Referencel and Xr2 is 8 member of the reference

set of Reference2, and the arc does not already exist.

209

Root vertex

@.A(2)

N\

D Y 4 ') Y
,‘:iT"T?::"' T Fattach(@.A(1), B) Fattach(@.A(2), B)

- -

- Figure E.9
As an example, the effects of the statement

8.A.B > 8.A.C

are shown in the graph of figure(ﬂu8).

NOTE. In order to show the effects of the attsch statements
with graphs, the following convention is adopted. If the graph
is demonstrating an attach statement

L4

Referencel -> Reference2
which generates the new arcs (X¢1,Xr1),(Xc2,Xr2),.... then
these arcs may be drawn with dashed Lines 4in the graph.
Similarly 1in a graph newly created vertices may be drawn with
dashed circles.

CEL2.4.1) INDEX ORDERING

The vertices Xr2 will now have index values with respect to the
vertices Xr1 that they have just been attached to. These are the indices
used fin Vertex_Selector_Be?erences} How these are ordered 1is described

in this section.

2104, - .. -

pefine the function Fname to be the set of vertices Xi from the set
X, such that Fn(Xi) equals a given name N. This is represented by

Fname ¢ X,N)

and is called the name set. It dis a generalized. version of an
attached name set, where an attached name is the name set of a single

vertex. Thus
Fattach (Xi,N) = Fname (Xi,N) , where Xi is 8 single vertex.

As an example, in the graph of figueo(ﬂ;9), the attached name set of
®.AC(1) and of 8.A(2) are 1indicated. 'The set union of these reference

sets form the name set of ®&.A.

EH

Just as an attached name set has an attached name Llist, then & name

set has a name list. This name List is represented by

¢ Xf1, Xf2, ... XfN)

¢ v
where Xf1.‘.‘Xfﬁ are elements of the name set. In the following the.

rules used to order this is given.

Each of the vertices Xf1 is a member of Reference2. Therefore there

will be a reference Like
8.N1CI1).N2(12)....Nm(Im)

which will reference each Xfi. Here Im 4is the dindex of Xfi with
respect to the vertex to which it is attached, and Nm 1is the name of

Xfi. Thus each Xfi will have associated with it one or more Lists
11, 12, ... Im)
The ordering function is defined on these index Llists. An index Llist

(11,12,...Im>) can be defined to be Lless than the idindex List
€J1,42,...4n0),

211

Root vertex

@'.E.F.B(l) @.E.F.B(2)

Figure EL10

Jk for all k
Jk for all k

If 1k
If 1k

1 to p, p<n and p<m, and Ip+i<ipt1 or

1 to m and n>m.

If the 1index lists for two vertices are equal, then there are two
possibilities. Either the vertices are didentical, -in which case the
lowest index list 1is used to order this vertex with respect to others.
Alternatively the two vertices may be different. In this case the order

is undefined.

Using these ordering rules, the vertices of a reference vwhen it is

used in an attach statement can now be ordered.

Informally, the order of the vertices in one attached name set is
given by its indices. If two attached names sets are combined together,
then the vertices 1n one attached name set will come first. Which
attached name set comes first is choosen on the basis of the index
ordering of the parent vertices of the attached name sets. If there é}e
more attached name sets, then each 1is ordered in a similar manner.
Finally a vertex appearing in more than one attached name set is given

the Lowest ordering possible.

As an example, the graph of figure(E.10) provides the following
index Llists. ’

212

1,1 for the vertex referenced by 8.C.B
1,1 for the vertex referenced by 8.D.B
1,11 for the vertex referenced by 8.E.F.B(1)
€,1,2) for the vertex referenced by @.E.F.B(2)
(1,1 for the vertex referenced by 8.F(1).B

2,1 for the same vertex as the above referenced by 8.F(2).B
The index list of the reference 8.F(2).B will be dgnored since the
same vertex 1is referenced by a smaller index List (1,1). The remaining
index lists will be ordered Llike
A, ¢, aa,vH 1,1, 1,1,2)

where the order of the first three vertices will be undefined.

(E.2.4.2) ORDER OF VERTICES AFTER AN ATTACH

Using the ordering definition, an alternative definition of the
‘actions of an attach statement can be given. Assume that the attached
name set of a vertex Xr1 for the name N in Referencel is Xa. Then after
the execution of the statement

Referencel -> Reference2

the attached name set of a vertex }r1 for name N will be
Xa + Fname (reference set of Reference2 , N)

The attached name list can be correspondingly defined as
(Xal, Xa2, ... XaN, Xf1, Xf2, ... XfM)

where Xfi is an element of the name set of Reference2 and Xf1 is not

a member of Xa. This list defines uniquely the index value of a newly

attached vertex with respect to its parent vertex.

213

Root vertex

Figure E.11

7) .
(E.2.4.3) MULTIPLE ATTACH STATEMENTS

2
se@ecsveaccsanness o®00avevrnssasasecen

Given a statement like

Reference_Expression1 -> Reference_Expression2 -> ...

Reference_ExpressionN ;
for some N, then the action of

Reference_Expressionl -> Reference_Expression2 -> ...

Reference_ExpressionN -> Reference_ExpressionM ;
will be to create all the arcs of the form (Xrn,Xrm), if such an arc
does not already exist, where Xrn 1is a member -of the ReferenceN
reference set, and Xrm is 1in the Reference ExpressionM set. Thus the
graph of figure(El11) shows the result of the statement

2.8 ~> 8.C -> &.D
(E.2.4.4) NEW OPERATION
A new vertex can be created by a NEW statement. This has the syntax
New_Operation =

"NEW", "(", Vertex_Name, ["=", Expression 1, ")" ;

21

A statement Llike
8 ~> NEW (Vertex_Namel)
vhere 8 represents in this case the root vertex, will create a new
vertex, give it the indicated name, set its value function to null, and
attach it to the root vertex.
1f an attach statement is like

Referencel —> NEW (Vertex_Namel)

then this is equivalent to

b

$1 => Xnew1 $1 is the set { Xr1 2
$2 -> Xnew2 S2 is the set { Xr2 3}
SN -> XnewN SN is the set { XrN 2

In this, §1,82,...SN are reference set variables whose values are
'given in the right hand side. The set {Xr1,Xr2,...Xrn} 1is the reference
set of the reference Refe}ence1, and Xnewl..XnewN sare distinct new
vertices, each having the name Vertex_Namel and a null value.

If an Attach_Statement is Llike

Referencel -> NEW (Vertex_Namei) -> Referencel ;

then this would be equivalent to the actions

Referencel -> NEW (Vertex_Namel)

we

§1 -> Reference?2 $1 is the set { Xnewil 2}
§2 -> Reference2 §2 is the set { Xnew2)
SN -> Reference2 SN is the set { XnewN)
wvhere $1,82,...SN are reference set variables. The set

{ Xnewl, Xnew2,...XnewN } contains all of the new vertices created by
the attach statement

215

Root vertex Root vertex Root vertex Root vertex Root vertex

?

-—=-0

]
: 1 2 3
& 3
AT A A A 1A A
[}] 1
' ' I t
: [} [} i
3-> NEW(A)

é B "l B ({:B Gy

@-> NEW(A) -> @. A -> NEW(B) @-> NEW(A) -> B @. A(2) -> NEW(B)
NEW(B) ,

Figure EL12

Referencel —> NEW (Vertex_Namel) ;

Another kind of NEW operation is

NEW (Vertex_Namel = Expressioni)

which will also create a new vertex and attach 1it, except that the
value of the vertex will not be null, it will be set to the indicated
expression. This expression has to give a type of INTEGER, REAL, STRING
or BOOLEAN. The SET type is not allowed.

An example is

8-> NEW (A=3)

Once a vertex has been created, its name and value can not be
changed. A vertex can not be destroyed. The operation of attaching the
new vertex to the context base is also irreversible.

Finally, if an attach statement is Llike

8 -> NEW (Vertex_Namel) ;

and creates an arc (Xr1,Xr2), then

216

Findex (Xr1,Xr2) = Number of vertices in the set
Fattach (Xr1,Vertex_Namel)

In other words the vertices are numbered in the order in which they

are created.

&
The graphs of figure(E.12) demonstrate some possible examples.

(E.2.4.5) BRACKETED ATTACH STATEMENTS

An attach statement 9f the form
Attach_Reference0 -> (Attach_Operationi) ;
c;n also be represented as
Attach_Reference0 -> (Attach_Referencel->... Attach_ReferenceN)

where the Attach_pperation‘ has be expanded 1into 1its separate

‘Attach_Reference parts. This statement is equivalent to the following
Attach_Referenceb'-> Attach_Referencel => ... Attach_ReferenceN ;
A general attach statement of the form
_ Attach_Referencel -> (Attach_pperatiop1, .. Attach_OperationN) ;
is equivalent in 1its actions to the separate attach statements

§ := Attach_Referencel ;
S => (Attach_Operationl)

L1}

§ => (Attach_OperationN)

L 1]

where S is a reference set variable.

27

Root vertex

Figure E.13

(E.2.5) INITIAL CONSTRUCTION OF A GRAPH

The initial greph available, before any vertices have been created,
has only one vertex. This is the root vertex, which is the vertex used
in the default context of a reference or statement. Thus to create a

graph Like that in figure(E.13), requires the operations . shown below
8§ ->(NEW CA) ,NEWCA), NEWCB) D) ;
8.A-> NEW (C) ;

8.AC1).C => NEW C D) ;

(E.2.6) REPETITION CONSTRUCT

The action of a single stafement may be repeated a number of times.
This achieved by a For_Statement, defined by the syntax
For_Statement = For_MHead, Statement_Block, "END", ";" ;
Statement_Block = { Statement } - ;
For_Head =
"FOR", C For_Number | For_Iteration | For_Each), "DO" ;

For_Number = Integer_Expression ;

218

Root vertex

Figure E.14

Root vertex

Figure EL15

Root vertex

Figure E.16

219

For_lIteration = Variable_ldentifier, ":=",
Integer_Expression, "T0", Integer_Expression ;

for_Each =
Reference_Set_Variable_ldentifier, ":=",
"EACH", "(", Reference_Expression , ")" ;
A For_Statement like

FOR Integer_Expressionl. DO Statement_Block1 END ;

is equivalent to the reference

Statement_Block1 ; Statement_Blockl ; ... Statement_Block1 ;

3

where the number of Statement_Blocks is as given

expression in the FOR statement. An example is

FOR 5 DO
8-> NEW C C) ;
END ; . -

Sterting with an uninitialized graph containing
vertex, this For_ﬁtatément will create the graph of

For_Statement like

FOR variable_Identifier1 :=
Integer_Expression1 TO Integer_Expression2 DO
Statement_Block? END ;

is equivalent to
Variable_ldentifier1 := Integer_Expression1

Statement_Block1 ;
Variable_ldentifier1 := Integer_Expressionl +

Y}

Statement_Blockl ;

Variable_ldentifier1 := Integer_Expression2

ae

Statement_Block1 ;

220 \

by the 1integer

only the root
figure(E.14). A

L 1)

Here the statement block

is called once for each different value of

the index variable. This takes on the values from Integer_Expressionl to

Integer_Expression2 inclusive.

An example of this is

FORI :=2 T0 4 DO
8.CCI) -> NEW C D
END ;

) ;

If this For_Statement starts with the graph of figure(E.14) then the

graph of figure(EL15) will

3

A For_Statement Llike

be constructed.

FOR Reference_Set_Variable ldentifier :=
EACH (Reference_Expression) DO
Statement_Block1 END ;

will be equivalent to the following statements

Statement_Block1 ;
Statement_Block1 ;

Statement_Block1 ;

A

Reference_Set_Variable_ldentifier1 is { X1 2
Reference_Set_Variable_ldentifier1 is { X2 2>

Reference_Set_Variable_Identifier1 is € XN }

4

uhére the text in the right hand side 1is not part of the ISL but

indicates what value the Reference_Set_Variable_Identifier1 has. The set

< X1, X2,...XN } if equal to the reference set obtained from Referencel.

In other vords, this sets

the Reference_Set_Variasble_Identifier to each

of the vertices in the reference, performing the Statement_Block once

for each. An example is the statement

FOR S := EACH (8.C.< NOT EMPTY ¢ 8.D) >) DO

$.D =-> § ;
END

which, if it starts with
graph of figure(E.16).

the graph in figureCE.15), will create the

et .,

(EL2.7) IF STATEMENTS

A conditional statement may be used to govern the execution of a

statement block. The syntax of an If_Statement is

1f_Statement = "IF", Conditional_Expression,
"THEN", Statement_Block, ["ELSE™, Statement_Block] ;

An if statement Llike
IF Conditional_Expression1 THEN Statement_Block1 ;

will bé equivalent to the following

‘-

Statement_Block1

if the condition 1is true. If the condition 1is false then the

If_Statement has no sction. An if statement Llike

IF Conditional Expression1 THEN Statement_Block1
ELSE Statement_BlockZ2 END ;

is equivalent in its results to

Statement_Block1 ;

o

ifq the condition is true. If the condition 1is false then the

If_Statement is equivalent to
Statement_Block2 ;
An example IF statement is
IF I > 2 THEN
8 -> NEW C A

END ;

If 1 4ds greater than 2, then this statement will create a new A

vertex. Another example is

222 .

Root vertex

A A
B B
(e -l

figure E.17

IF NOT EMPTY (8.A.B.< ANY_VALUE(8.C)=3 >) THEN
8.A.B.C => NEW ¢ D) ;
END ;

vhich will create a new D Vertex for the C vertices in the reference
A.B.C only if there exists at least one C vertex with a value of 3. The
action of this 1is visible in the graph of figure(E.17).

(E.3) DECLARATIONS -

In the preceding sections the basic’ graph creation and access
statements have been defined. These statements have used various kinds
identifiers. In the following the syntax of the declarations that are

used to define these names is given.

CE.3.1) CONSTANT IDENTIFIERS

The constant definition part defines identifiers that represent
constant values. There after these didentifiers may be used in the
specifications 1in place of an actual constant value. The constants may

be real, integer, string or boolean.

223

The syntax of a constant definition part is

Constant_Definition_Part =
"CONST", One_Constant_Definition,
< ",”, One_Constant_Definition 3, “;" ;
One_Constant_Definition = Identifier, "=", Constant_Value ;
Constant_Value = [Unary_Sign 1 Unsigned_Integer |
L Unary_Sign] Unsigned Real |
String |

True | False

N

An example constant definition part is

s

CONST A=3.4, B=2, C='string', D=True ;

(EL3.2) VERTEX IDENTIFIERS

The vertex definition defines didentifiers that may be used as the
names of vertices in NEW operations. As well the ISL may provide some
predefined vertex names; depending upon the requirements of the resource
allocator application. Only names defined by the user or predefined

names may be used to create and to refer to vertices. The syntax is

Vertex_blefinition_Part =

L4

"VERTEX", ldentifier, ¢ ","”, ldentifier)}, ";" ;
and an example is
VERTEX A ,B , C ;

(EL3.3) VARIABLE IDENTIFIERS

The variables are defined in a Variable Declaration_Part with the

syntax

22

Variable_Declaration_Part =
“"VAR", € Ver_Declaration_List, ";" }- ;

Var_Declaration List =

ldentifier, € ",", Identifier >, ":", Var_Type, ;
Var_Type = "INTEGER" | "STRING" | "REAL™ | "BOOLEAN"™ | “SET" ;

An example is

VAR
A, B : INTEGER ;

SET ;

vhich will define two integer variasbles of names A and B, and define

a reference set variable of name S.

(E.3.4) PROCEDURE DEFINITIONS

A procedure defines a Statement_Block and gives it a name.
Thereafter this statement block may be invoked by using this name. The

syntax of a procedure definition is

Procedure_befinition =
"PROCEDURE", Procedure_Name_ldentifier,
C Formal_Parameter_List 1, Local_Definition_Part,
"BEGIN", Statement_Block, "END", ";" ;

-

Local_Definition_Part = [Constant_Definition_Part 1,
L Vertex_Definition_Part 3,

C variable_Definition Part 1 ;

Formal_Parameter_List = "(", One_Formal_Parameter,
<"," , One_Formal_Parameter }, ")" ;
One_Formal_Parameter = Identifier_List, ":", Var_Type ;

Identifier_List = Identifier, ¢ “," , Identifier)} ;

The procedure may be called by using a procedure call statement. The

syntax of this is

225

Procedure_Call =

. Procedure_Name_Identifier, [Actual_Parameter_List 1, ";" ;

Actual_Parameter_List = "(", Actual, € ",", Actual >, ")" ;

Actual = Expression ;

CEL3.4.1) PARAMETER LISTS

A procedure defined without a formal parameter Llist, as 1in

PROCEDURE Identifierl ;
BEGIN Statement_Block1 END ;

can be called with a procedure call without any actual parameters.
Thus

Identifier1 ;

A procedure defined with a formal parameter Llist containing a
One_Formal_Psarameter Like ' ~

Identifier1, Identifier2, ... IdentifierN : Var_Typel

is equivalent to a procedure defined with a formal parameter List
Like . .

Identifier1 : Var_Typeil ; ldentif%erz : Var_Typel ;
... ldentifierN : Var_Typel ;

A procedure defined with a nonempty formal parameter Llist such sas

PROCEDURE Identifier1
(Identifier1 : Var_Typel ;
Identifier2 : Var_Type2
IdentifierN : Var_TypeN)
Statement_Block1
END ;

L 1]
[]

L 1)

INL

is called by a Procedure_Call of the form
Identifier1 ¢ Actuall, Actual2, ... ActualN) ;

where there are the same number of Actual parameters as there are
formal parameter identifiers. Furthermore the types of the corresponding

actual and formal parameters must agree.

(5?3'4'2) PROCEDURE SEMANTICS

Given a procedure of the form

PROCEDURE Identifier1 Formal_Parameter_Listl ;
Local_bDefinition_Partl

BEGIN
Statement_Block1

END ;

then a procedure call to this procedure like
Identifier1 ActuaL_ﬁarameter_List1 ;

will have the same actions as an equivalent group of statements
constructed by modifying the statements of Statement_Block1. If there is
a formal parameter Identifierf in the procedure declaration, then there
vill also be a corresponding actual parameter ActualP. The equivalent
statements are constructed by replacing every mention of IdentifierF by
ActualP.

ALl the identifiers defined 4dnside the procedure and thus used in
the above equivalent statements will need to be defined in equivalent
definitions. Thus every didentifier in the Local_pefinition_Part of the
procedure will be defined with the same type in the equivalent

definitions.

227

(E.3.4.3) EXAMPLES

An example procedure definition is

PROCEDURE P (§ : SET) ;
BEGIN

S := 8.A.<8.C=6> ;
END ;

and this may be called by

PCS);

q

Tpis will return a reference set variable which refers to all

vertices in the reference
8.A.<8.C=6>
Another example is

PROCEDURE P ¢ VALUE : STRING ; S : SET) ;
BEGIN)
'S -> NEW ¢ € = VALUE) ;

END ; _

If this is called with the reference

”

P ('string’ , 8.A) ;
then this reference is equivalent to
8.A => NEW (C = °"string’) ;

Procedures may be called recursively. Thus a procedure may be

defined ss

PROCEDURE TREE (§ : SET ; LEVEL : INTEGER) ;
SET L ;
BEGIN

228

Root vertex

Figure E.18

IF LEVEL <= MAX_LEVEL THEN
L := NEW C A = LEVEL) ;
S ~>L;
TREE ¢ L , LEVEL+1)

Ne

L := NEW (A = LEVEL) ;
.S =>1L '
TREE (L , LEVEL+ 1) ;
END ;

END ;

In this the L set reference set variable 1is used as a temporsry
reference to the new A vertex. Each A vertex is created, attached to the
reference set S, and then used in a further recursive call to the TREE

procedure. If Max_Level is equal to 3 and the procedure is called as in
the following,

TREE (8 , 1)

vill be equivalent to the Attach_Statements

229

8->
C NEW(A=1) ->
¢ NEW(A=2) —>
¢ NEW(CA=3) , NEW(A=3)),
NEW(A=2) =->
¢ NEW(A=3) , NEW(A=3))
),
NEWCA=1) ->
¢ NEW(A=2) ->
(NEW(A=3) , NEW(A=3)),
NEW(A=2) ->
(NEWCA=3) , NEW(A=3))
»)
)

+

The actions of the statements

TREE C 8, 1) ;
8.A.A.A -> NEW ¢ B) ;

are shown in figure(E.18). -

(E.4) BRINGING THE DECLARATIONS AND STATEMENTS TOGETHER

By o G P i e G S e e G T e b G B S P e e S iy Y e e e G ST S D S S S - ST S S S vy A o
2=t =+ P P Pttt]

The part of the ISL that creates graphs 1is. contained 1in one
specification block. This contains the “references and identifier

definitions which have been discussed above. Its syntax 1is

Graph_Specification _Block =

"GRAPH",
[Constant_Definition_Part J ,
[Vertex_Definition_Part 1 ,
[varisble_pefinition_Part 1 ,
{ Procedure_Definition),

"BEGIN"
Statement_Block,

"END"' ";ll ;

230

A example graph definition is

GRAPH
CONST MAX_LEVEL = 3 ;
VERTEX A,B ;
PROCEDURE TREE ... as in the above definition ... ;
BEGIN
TREE ¢ 8 , 1) ;
8.A.A.A -> NEW (B) ;
END ;

and this 1is a cbmptete legal definition to obtain the graph
structuré of the figure(E.18).

(EL4.1) SCOPE OF IDENTIFIERS

The various identifiers defined 1in the specifications have defined
scopes over which they may be used. An identifier may be defined
globally with respect to the graph specification block. Such identifiers
are those defined as coﬁstants, vertex names, procedure names and
variables. Alternatively identifiers may be defined lLocally with respect
to a procedure. Theserare the formal parameter ddentifiers, and the

identifiers in the local definition part.

A global didentifier may be only defined once. Once defined it
retains this definition and may be used through out the graph
specification block. A global identifier can not be redefined as ‘a local

identifier inside a p}ocedure.

A local didentifier may not be redefined with the same procedure. The
definition of a local identifier is Llocal to the procedure only, and
different procedures using the same Llocal identifiers have independent
definitions for the identifier. The scope of a Local identifier dis the

whole of the procedure block.

- 231

APPENDIX (FD

In the following a complete example will be developed for a problem
similar to the instrument monitoring problem introduced 1in the

introduction. Firstly the computer architecture is described

ALLOCATOR
GRAPH:
VERTEX
INPUT_OUTPUT , TTY_ATTACHED ;
VAR
J : INTEGER ;
PSR : SET ;

PROCEDURE STANDARD_MEMORY ¢
C : SET ; START_VALUE , SIZE_VALUE : INTEGER) ;
VAR MEM : SET ; ‘ '
BEGIN
MEM := NEW (ADDRESS) ->
¢ NEW (START = START_VALUE) ,
NEW (MEMORY) ->
¢ NEW C SIZE = SIZE_VALUE) ,
NEW ¢ ACCESS = 0.45 .

C -> MEM ;
END ; .

PROCEDURE ONE_PROCESSOR (C , PSR : SET)

-
’

BEGIN

PSR := NEW (PROCESSOR) ;

C -> PSR >

(NEW (CYCLE = 2.5) , NEW (NAME = 'BRANDX')) ;
END ;

232 .

PROCEDURE MAP (PSR : SET) ; "
VAR ME, P : SET
I ¢ INTEGER

L 1]

L1}

BEGIN
ME -> NEW (MEMORY_ACCESS) ;
PSR -> ME ;
1:=1;

FOR P := EACH (PSR) DO
ME -> NEW (ADDRESS) ->
(NEW (START = 8192 * 1) , P.ADDRESS.MEMORY) ;

‘1 :=14+1;
~ END ;
END ;
BEGIN
FOR 10 DO

ONE_PROCESSOR ¢ @ , PSR) ;
STANDARD_MEMORY ¢ PSR , 0 , 8192) ;
END ; :
MAP (8.PROCESSOR) ;

8 =-> NEW (INPUT_OUTPUT) ;
FOR J := 11 TO 20 DO

8. INPUT_OUTPUT -> NEW (READ_WRITE_PORT = J) ;
END

8.PROCESSOR —->
¢ NEW ¢ INTERRUPT = 0) » S.INPUT_OUTPUT) ;

FOR J := 1 TO 2 DO
8.PROCESSOR(J) => NEW (TTY_ATTACHED) ->
NEW ¢ PORT) -> NEW (READ_MWRITE_PORT = 4§) ;
END ;

‘@ -> NEW (TTY_PROCESSOR) ->
=> 8.PROCESSOR. < NOT EMPTY (&.TTY_ATTACHED) > ;

233

"END ;

This defines a computer system with ten processors. Each accesses a
local wemory of 8096 bytes and has indirect access via a common bus to
all the other memories of the system. Each processor also has an
interruﬁt at address 0. Each processor can access the same group of
input/output ports which are numbered 11 to 20. As well processors 1 and
2 have a TTY port attached,, indicated by the TTY_ATTACHED vertex. To
allow direct reference to these two processors, their vertices are
attached to the TTY_PROCESSOR vertex.

7

The instrument monitoring program takes the form
PROGRAM INSTRUMENT_MONITOR ;

PROCESS INSTRUMENT_1 ; ...

PROCESS INSTRUMENT_ 2 ; ...

-

PROCESS INSTRUMENT_10 ; ...
MAIN PROCESS
(which accesses the TTY ports)
END ;
END ;(* this text is separate from the allocation specification *)

Here it is,assumed for the sake of the example that the main process
is the only process that accesses the TTY ports. The user programmer
will now need to provide the constraint specification to insure that the
main process is assigned to 8 processor that accesses this TTY port.

Thus &n object specification is required to indicate this,

OBJECT
DEFINITION
MAIN_PROCESS : PROCESS ;
END ; |
SPECIFICATION
MAIN_PROCESS := [INSTRUMENT.MAIN 1] ;
END ;
END ; (*x this 1is part of the allocation specification *)

234

This object specification dis used 1in a constraint block Like

CONSTRAINT
ASSIGN (MAIN_PROCESS) -> [TTY_PROCESSOR] ;

END ;
END (% of complete allocation specification %) ;

The main process will be assigned to either one of the first two
processors. The other processes and all the memories, 'which have not
been mentioned in any directives, will be assigned by the allocator to

achieve the maximum throughput.

235

£13

£2]

£31

£4]

€51

£6l

()

£8l

REFERENCES

Am2900 Bipolar Microprocessor family

Proceedings Micro 8, 8th Workshop on microprocessors, Page 75.

Preliminary Ada Reference manual, Rationale for the
Design of the ADA programming language.
ACM Sigplan Notices, Vol 14, No 6CJune 79).

L.H.Anderson, R.M.Larsen

Distributed inte}Ligence microcomputer systems for

industrial control

Migroprocessor InfoTech State of the Art Report, No 35(1977).

G.A.Anderson, E.D.Jensen
Computer interconnection structures, taxonomy, characteristics
and examples.

Computer surveys, Vol 7, No 4(bec 77), Page 197.

B.Appelbe, M.Kroening
Concurrent programming on microprocessors.
Sigsmall newsletter, Vol 15, No 2(1979).

J.Armstrong
Fault diagnosis in a boolean N cube of microprocessors.

IEEE transactions on computers(Aug 81), Page 587.

D.Aspinall

Comparsion of microprocessors:

Instruction processor level,

Processor memory switch Level.

Microprocessor InfoTech State of the Art Report, Vol 2,
No 35(¢1977).

F.Baskett, A.J.Smith

Interference in multiprocessor systems with interleaved
memories.

Communications of the ACM, Vol 19, No 6(June 76), Page 327.

236

€93

£101

11

€123

€133

€143

€151

£16l

€171

€181

6.J.Burnett, E.G.Coffman

Analysis of interleaved memory system using blockage buffers.

Communications of the ACM, Vol 18, No 12(1975), Page 91.

D.W.Bustard
Pascal Plus Users Manual
Queens University of Belfast (Aug 78).

A.Celentano, et al
Seperate compilation and partial specification in Pascal.

1EEE Software Engineering, Vol 6, No 4(July 80).

0.Cert

Pé;allelism, control and synchronization expressions
in a single assignment lLanguage.

Sigplan Notices, Vol 13, No 1(Jan 78).

E.G.Coffman

Operating system theory (1973). .
E.L.Daglees

A multimicroprocessor : CYBA-Mx%.

IFIP (1977), Page 843.

0.J;Dahl, E.W.Dijkstra, C.A.R.Hoare
Structured programming ¢1973).

J.B.Dennis
Modularity

Lecture.notes in computer science, No 30¢(1975).

A.M.Despain, D.A.Patterson
X Tree, a tree structured multiprocessor computer

architecture.

S5th Annual symposium on computer architecture (1978), Page 144.

E.W.Dijkstra
A Discipline of programming (1976).

227

€191

£201

213

[221

[23]

[24]

£25]

261

271

£281

D.J.Farber
Software considerations in distributed architectures.

Computer, Vol 7, No 3(Mar 74), Page 31.

E.T.Fathi, M.Krieger ‘
Multiple microprocessor systems: What, Why, and When.
Computer, Vol 16, No 3(Mar 83), Page 23.

R.A.Finkel, M.H.Solomon
Processor interconnection strategies.
1IEEE Transactions on Computers, Vol €29, No 5(May 80), Page 362.

M.h.FLynn .
Some computer organizations and their effectiveness.
IEEE Transactions on Computers, Vol €21, No 9(Sept 72), Page 948.

E.C.Freuder
Synthesizing constraint expressions.
Communications of the ACM, Vol 21, No 11(Nov 78), Page 958.

STH.FuLler, et al
Multimicroprocessors: an overview and working example.
Proceedings of the IEEE, Vol 66, No 2(Feb 78), Page 216.

E.F.Gehringer, et al
Cm%x test bed. P
Computer (Oct 82), Page 40.

E.F.Gehranger, R.J.Chansler

Star0S user and system structure manual.

Department of computer science, Carnegie-Mellon university,
Pittsburg, Pennsylvania (1981).

A.-M.Geoffrion
Integer programming by implicit enumeration and Balas method.
SIAM Review, Vol 9, No 2(April 67¢), Page 178.

M.Georgeff
Strategic search.

238

Australian computer science communications, Vol 2,
No 1CJan 80).

£29]) R.Gleaves
Modula 2 Users Manual (Nov 82).

£30] A.Gottlieb, J.T.Schwartz
Networks and algorithms for very large scale parallel
computers. .
Computer, Vol 15, No 1(Jan 82), Page 27.

[31] A.N.Habermann
Path expressions‘
Carneige Mellon Tech Report (1975).

£32] A.N.Hsbermann, Campbell
The specification of process synchronization by path
expressions.

Lecture notes in computer science, Vol 16(1974), Page 89..

. [33] K.Haessig,C.Jenny

Partitioning and allocating computational objects in
distributed computer systems.
IFIP 80(1980)>, Page 593.

(34) pP.B.Hansen
Concurrent Pascal Report (June 75).

£35] P.B.Hansen
Distributed processes, a concurrent programming concept.
Communications of the ACM, Vol 21, No 11(Nov 78), Page 934.

£361 P.B.Hansen
The progremming language Concurrent Pascal

IEEE transactions on software engineering, Vol 1, No 2(June 75).

{371 P.B.Hansen ,
A multiprocess program.
IEEE Computer science and applications conference, -
Chicago, Illinois (Nov 77).

L 239

£38)

€391

€401

£41]

[421

£433

[44]

C45)

[46]

C471

P.B.Hansen
Operating system principles (1973).

A.C.Hartmann
A concurrent Pascal compiler for mini computers.

Lecture notes in computer science, No 50(1977).
L.S.Haynes, R.L.Lau, D.P.Siewiorek, W.Mizell
A survey of highly parallel computing

Computer, Vol 15, No 1(Jen 82), Page 9.

C.A.R.Hoare

- Monitors, an operating system concept.

Communications of the ACM, Vol 17, No 10(0ct 74), Page 549.

C.A.R.Hoare,R.H.Perrott

Operating systems techniques (1972).

C.A.R.Hoare

"Communicating sequentisl processes.

Communications of the ACM, Vol 21, No 8(Aug ?85, Page 666.

C.Hoogendoorn

A general model for memory interference in multiprocessors.
1EEE Transactions on computers, Vol ¢-26, No 10¢0ct 77),
Page 998. . .

J.6.Hunt
Interrupis.
Software Practice and Experience, Vol 10(1980), Page 523.

A.K.Johes, R.Chensler, 1.Durham, P.Feiler, K.Schwans
Software management on Cmx— a distributed multiprocessor.
AFIPS conference proceedings, Vol 46(1977), Page 657.

A.K.Jones, P.Schwarz

Experieﬁce using multiprocessor systems: a status report.
ACM Computing Surveys, Vol 12, No 2(June 80).

2Lo

[48)

0491

€501

511

[521

£531

0541

£551

[56]

A.Kaufmann N
Graphs, dynamic programming and finite games (1967).

J.L.Keedy
On structuring operating systems with monitors.

Australian computer journal, Vol 10, No 1(1978).

J.L.Keedy
The Monads operating system
Proceedings of the 8th Australian computer conference

in Canberra.

J.L.Keedy

Thé influence of the information hiding principle on the
Monads operating system.

Proceedings of the Australian University Computer Science

Seminar, University of New South Wales (1978).

P.B.Kieburtz,J.L.Hennesy

Tomal, a high level language for micro processor
Control application.,

Sigplan Notices, Vol 11, No 4(April 76), Page 127.

W.A.Kornfeld

Combinatorially implosive algorithms.

Communications of the ACM, Vol 25, No 10(0ct 82).

B.Kumar, E.S.Davidson

Performance evaluation of highly concurrent computers by
deterministic simulation.

Communications of the ACM, Vol 21, No 11(Nov 78), Page 904.

H.T.Kung
Why systolic architectures.
Computer, Vol 15, No 1(Jan 82), Page 37.

B.W.Lampson, J.J.Horning, R.L.London, J.G.Mitchell

Report on the programming lLanguage Euclid.
Acm Sigplan Notices, Vol 12, No 2(Feb 77).

2h1

£571

€581

£59]

£603

€611

£62]

€631

[64]

€651

. £66)

E.J.Lau,D.Ferrari
Program restructuring in a multilevel virtual memory.
IEEE Transactions on Software Engineering, Vol SE-9,

No 1C(Jan 83).

W.Y.P.Lim
HIDSL a structure description language.
Communications of the ACM, Vol 25, No 11(Nov 82).

G6.J.Lipovski
Hardware description languages,
Computer, Vol 10, No é(June 77), Page 14.

A.M.Lister
Fundamentals of operating systems (1975).

M.D.Maples, E.R.Fisher
Real time micro computer applications using LLL Basic.
Computer, Vol 10, No 9(Sept 77), Page 15.

T.A.Marsland, M.Campbell
Parallel search of strongly ordered game trees.
ACM Computing Surveys, Vol 14, No 4(bec 82).

T.J.Miller, R.H.Campbell

A Path Pascal Language

Department of Computer Science, University of Illinois at
Champaing-Urbana, Urbana-Illinois 61801, No 217-333-0215
CApril 78). '

J.Montuelle, J.Mossiere, J.L.Cheval, F.Cristian, S Krakouiak
An experiment in modular program design,
IFIP €1977), Page 23.

K.T.Narayana, V.R.Prasad, M.Joseph

Some aspects of concurrent progremming in Concurrent Pascal
Software Practice and Experience, Vol 9, No 9(1979), Page 749.
J.K.Ousterhout, D.A.Scelza, S.S.Pradeep :
MEDUSA, an experiment in distributed operating system

2h2

L671

[68]

£691]

£v01

£v1]

£v2]

£e3l

C?4]

[?51]

structure.
Communications of the ACM, Vol 23, No 2(1980), Page 92.

D.L.Parnas
A technique for software module specification
Communications of the ACM, Vol 15, No 5(1972), Page 330.

D.L.Parnas

Information distribution aspects of design methodology

IFIP C(1971).

D.L.Parnas

On the criterion to be used in the decomposition of systems
into modules.

Communications of the Acm, Vol 15, No 12(1972), Page 1053.

J.H.Patel

Processor memory interconnections for multimicroprocessor,
performance.

IEEE transactions on computers, €30, No10(Oct 81), Page 771.

B.Peuto .
28000 Architecture, Cpu and memory management unit.
Computer, Vol 12, No 2(Feb 79), Page 10.

J.L.Potter
image processing on a massively parallel processor.

Computer, Vol 16, No 1(Jan 83), Page 62.

E.M.Reingold,J.Nievergelt

~Combinatorical algorithms (1977).

E.S.Roberts et al
ADA task control.
Software Practice and Experience (Oct 81), Page 1019.

M.Satyanarayanan

Multiprocessors: a comparative study.

2L3

T ARG AN 3 x i € f e e sy g e ek L s < ——— -

£76) F.B.Schneider, A.J.Bernstein
Scheduling in Concurrent Pascal.

Operating System review, Vol 12, No 2(Apr 78).

£?77] R.S.Scowen
/ An introduction and handbook for the standard syntactic
metalanguage.
NPL Report DITC 19/83(Feb 83).

£78] R.J.Shan,S.H.Fuller,D.P.Siewiorek
: Cmt, a modular multimicroprocessor. '
AFIPS Conference Proceedings, Vol 46(1977), Page 637.

[791 H.J.Siegel
A model of SIMD machines, and a comparsion of various
interconnection networks.
f Proceedings of the IEEE transactions on computers, No 12,
' Vol C-28(bec 79), Page 907.

£801 H.J.Siegel" .
Partionable SIMD/MIMD system for image processing and
pattern recognition
1EEE transactions on computers, Vol €30, No 12(Dec 815, Page 934.

[81] D.P.Siewiorek, OD.E.Thomas, D.L.Scharfetter
The use of LSI modules in computer structures, trends and
limitations.

Computer, Vol 11, No 7(July 78), Page 16.

[82] A.Silberschatz, R.Kieburtz, A.Bernstein
Extending Concurrent Pascal to allow dynamic resource
management.

1EEE transactions on software engineering, Vol SE-3, No 3(May 77).

[83]-A.J.Smith
L? Multiprocessor memory organization and memory interference
Communications of the ACM, Vol 20, No 10COct 77), Page 754.

2Ll

£84]

£851

C861

£87l

£88l

891

£902

91l

€921

L.Snyder
Introduction to the configurable highly parallel computer.
Computer, Vol 15, No 1(Jan 82), Page 47.

J.H.Stewvart

LOGAL: A computer hardware description language
for logic design and synthesis of computers.
Computer, Vol 10, No 6(June 77), Page 18.

E.Stritter

Motorolla 68000 architecture

Computer, Vol 12, No 2(Feb 79), Page 43.

S.Y.H.SU

A survey of computer hardware description languages in the
U.S.A. ‘

Computer, Vol 7, No 12(bec 74), Page 45.

P.R.Torrigiani, M.W.Shields, P.E.Lauer
Cosy, a system specification language based upon paths

and processes
Acta Informatica, Vol 12, No 2(1979), Page 109.

N.I.Vilenkin
Combinatorics (1971).

I.C.Wand, J.Holden
Experience with the programming language Modula

IFAC/IFIP real time programming workshop (1977).

A.J.Weissberger
Application ideass for microprocessors.
Instrument control system, Vol 48, No 10(0ct 75), Page 19.

J.Heléh, D.W.Bustard
Pascal plus

Software Practice and Experience, Vol 9, No 11(Nov 79), Psage

L5

947.

£93] N.Wirth
Modula, a language for modular Multiprogramming

Software, Practice and Experience, No 7(1977), Page 3.

£94] N.Wirth
Toward a discipline of real time programming.
Communications of the ACM, Vol 20, No 8(Aug 77), Page 577.

[95] D.Wright
Microcomputers, Fundamentals and applications,

"Microprocessor survey” (1974).

[96] S.J.Young
An introduction to ADA (1983).

[97] S.Zeigler

Intel 432 microcomputer supports ADA language.

Computer (June 8&), Page 47.

246 _ ‘

