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ABSTRACT 

----------------

This thesis investigates the problems of allocating the data and 

code address spaces of a concurrent program onto the stores of a given 

multiprocessor computer architecture, and the allocation of the 

processes of the program to the processors of the architecture. 

The minimum required of this resource allocation is to produce a 

legal mapping of the resources onto the multiprocessor computer. It will 

also attempt to give the most efficient mapping, and allow the user to 

guide this activity. This thesis describes the methods developed to 

implement this, which includes the specification of the structures of 

both the program and the computer architecture in a machine 

understandable form, and the design of algorithms to perform the 

allocation. 

With the resulting techniques the emphasis is upon small scale 

multiprocessor computer architectures running dedicated concurrent 

programs. The resource allocation scheme results in a fixed allocation 

of the parts of a single program to a possibily nonstandard and 

specially tailored multiprocessor architecture. This would find little 

application with large regular mainframe multiprocessor computers 

executing time shared operating system programs, where the allocation of 

resources is highly dynamic and unknown at compile time. 



CHAPTER (1) 

----------------------

(1.1) INTRODUCTION 

------------------------------------

This thesis investigates the problems of allocating the data and 

code address spaces of a concurrent program onto the stores of a given 

multiprocessor computer architecture, and the allocation of the 

processes of the program to the processors of the architecture. For the 

remainder of the thesis this activity is called resource allocation. 

(1.2) RESOURCE ALLOCATION APPLICATIONS 

====================================== 

Such a resource allocator will be useful in many applications. At 

present there are numerous inexpensive microprocessor chips available, 

some of which are described in [ 1,7,71,86,95,97], and it is 

economically feasible to construct from them multimicroprocessor 

systems. Such systems would be useful for dedicated and special purpose 

applications. In the past these applications may have been either too 

expensive to implement, or else the only choice available would have 

been to use custom designed discrete hardware logic or a general purpose 

minicomputer. The possibility of using microprocessor systems is 

attractive in these areas since such systems will be easier to design 

than dedicated hardware logic and less expensive than a minicomputer. 

Using a multiple microprocessor machine also gives the considerable 

advantage of allowing many operations to be performed in parallel, thus 

offering the potential of much faster solutions. There is also the 

·possibility of constructing fault tolerant computer systems. A recent 

overview of these applications appears in [ 20]. 

The multiprocessor computer 

purposes of this research would 

systems being considered for the 

be constructed from off the shelf 

microprocessor and memory chips, and be connected together by straight 

forward bus. technology. Special purpose networks such as delta networks 

C 70) and dynamically reconfigurable or partitionable networks [ 80,84) 

are not explicitly included. Such systems 

that is difficult or impossible to 
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have special purpose hardware 

construct in the above way. 



Having decided to use such a computer system, the user is now 

confronted with the problem of getting software to run on these 

architectures. Some of these difficulties are described in [ 35,37,94]. 

Generally the use of high level languages -allow the coding to be done 

relatively easily, and there are a number of concurrent programming 

languages becoming available that may be used [ 32,36,56,76,90,92). 

However, given a concurrent application program written to use several 

processes, there is also now the problem of deciding where on the 

computer system the processes and address spaces of the program are to 

go. The requirements are to produce both a Legal mapping and an 

efficient mapping. They can be achieved by introducing as Little 

overhead as possible in the way of memory conflicts, avoiding the 

overcrowding of processors and by the reduction of excessive scheduling 

overheads. Only with these will the maximum work be obtained from the 

multip~ocessor system. 

One approach to achieve this is the static allocation of the program 

to the architecture. Thus memory contention can be avoided where 

possible by allocating the Logical address spaces into physically 

separate memory modules. Processes can be distributed uniformly across 

the available processors, and the scheduling requirements will generally 

be confined to the processes on each single processor. Such an 

arrangement is particularly suitable in small computer systems where 

there may be only a minimal operating system resident to support the 

program. Alternatively, even if the architecture and operating system 

form a moderately sized system, the minimization of memory contention 

and process scheduling overheads can still be important, as it is in 

StarOS system [ 26]. 

To aid ~he discussion in the main part of this thesis some terms are 

now defined or explained explicitly in the following. 

(1.3) CONCURRENT PROGRAMS 

--------------------------------------------------

A concurrent program consists of a number of sequential processes 

that have the capability of being executed simultaneously. As these 

processes execute they will access their code and they will also access 

their variables and perhaps procedure invocation stacks and dynamic 

heaps. This data_ information is collectively known as the logical 

3 



apdress space of the program. Processes and address spaces together arc 

known as the elements of the program, thus a concurrent program consists 

of process elements and address space elements. 

In such a concurrent program the processes will not have equal 

access to all of the available address space elements. Instead this 

access pattern will be highly irregular, with some address space 

elements being accessed much more than others, and some processes will 

perform many more such accesses than other processes. This is referred 

to as the access pattern of the program, and information about this is 

conveyed by the number of cycles performed between each process and 

address space. 

C1.4) COMPUTER ARCHITECTURE 

------------------------------------------------------

The program will execute upon some computer architecture. The 

architectures considered in this research are all multiprocessor 

architectures having more than one ha~dware processor. A processor 

provides the physical capability of executing one process at a time, 

while the address space elements of the program reside upon the physical 

memory stores of the system. The processors and stores need not be all 

be identical; both homogeneous and heterogeneous architectures are 

allowed. In a heterogeneous architecture the processors may be of 

different kinds or the stores provided may be of different sizes and 

access speeds. Collectively the processors and stores of the computer 

architecture are known as its resource elements, and thus an 

architecture consists of processor elements and store elements (or 

physical memory elements). 

As does the program, the 

interconnection structure. Processors 

computer architecture 

are connected to the 

has an 

physical 

stores in a manner that may or may not be uniform. This interconnection 

structure is represented by access paths between processors and stores, 

by the cycle speeds of the stores themselves and the access times of the 

interconnection hardware. Processors can only communicate to other 

processors via the use of these common stores. Many kinds of 

interconnection structures are possible, as are discussed in [ 4,22,79]. 



The interconnection structure can result in memory contention. This 

results from two processors simultaneously attempting to access the same 

store or to use the same connection hardware. Such interference is 

discussed in [ 8,9,44J and it is very important in determining how 

efficiently the resources of the computer architecture are used in 

supporting the program application. This efficiency is measured by the 

throughput of the program executing upon the architecture. In this 

context the throughput is the number of times the program can execute 

a given program workload. Thus If a process Is specified _to make 445 refer­

ences to a particular address space in some time period, and if in the 

implementation it accesses this address space at the rate of 44 references 

per second, then the throughput measure is 0.1. An allocation mapping that 

is twice as efficient as this will have a throughput of 0.2. 

(1.5) RESOURCE ALLOCATION 

--------------------------------------------------

Finally there is 

architecture together. 

the action of bringing the program 

This resource allocation applies to' all 

and the 

of the 

program elements, which must be assigned to some subset of the resource 

elements of the computer. The assignment or allocation of an individual 

program element to a resource entails-

This 

Specifying upon which hardware processor a process is to 

execute, and 

Specifying upon which physical memory an address space is to be 

placed. 

specification or resource 

conditions, and preferably it is 

constraints under which the 

also 

mapping 

to be 

must satisfy legality 

efficient. The legality 

resource allocator must work are 

Each process must be assigned somewhere, and must be assigned 

so that it is executed by only one processor. 
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Each address space must be assigned to some single physical 

memory space. There can be no overlap with any other 

simultaneously present address space. 

Each process must execute from a processor which can access ell 

of the stores to which the address spaces accessed by the 

process have been allocated. 

This concludes the definition of the basic terminology. The concept 

of resource allocation and is application areas have been introduced. 

Given such a utility and starting with a suitable application there are 

a number of stages involved in using it in order to implement a problem 

onto a multiple microprocessor. Figure(1.1) represents this information 

flow digrammatically. 

(1.6) HIGH LEVEL LANGUAGES 

----------------------------------------------------

Firstly the problem needs to be implemented as a concurrent program. 

The advantages of using a high level Language for any programming is 

well documented [ 15,18,35,93,94). In view of this, and the fact that 

the resource allocator would itself be a complex program utility 

designed to aid program production, it is reasonable to 

developm~nt of the user program will always utilize 

Language. Thus the resource allocator will always be 

compiler. 

assume that the 

a high Level 

preceded by a 

A suitable high level language will contain all of the standard 

features associated with such Languages, as is found in Languages like 

Pascal, Algol, Fortran, Cobol and the like. Furthermore, since the 

target architecture is a multiprocessor architecture, the language must 

have the capability for specifying concurrent processes and for 

controlling their execution. Some examples of this kind of Language are 

Pascal Plus [ 10,92), Concurrent Pascal [ 34,36,39,76,82), Path Pascal 

[ 31,32,63], Concurrent Euclid [ 56J, Modula 2 [ 29,90) and ADA [ 2,96]. 

There is no restriction implied upon the number of different compilers 

or languages that may be used, provided some means is available to link 

together at some stage the codes and data spaces produced by the 

different compilers. 
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All of the languages in this last list allow the specification of 

concurrent processes. The languages also provide some mechanism for 

communicating between two processes and for the sharing of data. Most of 

these languages that include processes will also have modules. The 

definition of a module is different for each author and language~ with 

some examples being presented in [ 16,41,49,64,67,68,69]. However in 

most cases the compiler can implement the module as a collection of 

procedures and variable spaces. So generally the use of modules has no 

effect upon the application of a resource allocator, which deals with 

variables and procedures and the access paths between these. However if 

the computer architecture supports modules directly, as in the Monads 

architecture [ 50,51] or the StarOS system [ 25,26], this poses no 

essential problems. In this case the resource allocator would deal with 

modules that have access paths between modules, as well as variables and 

processes. Nevertheless, to simplify the research, modules are not 

considered further. 

(1.7) ARCHITECTURE SPECIFICATION 

----------------------------------------------------------------

When used the allocator requires the specification of the structure 

of both the program and the architecture. The program structure is best 

described by the compiler in terms of its process and address space 

elements and the access paths between these. The num~er of cycles 

information for the throughput calculations will be obtained by running 

the program on a normal uniprocessor computer. The code would be 

argumented with statements to gather statistics about the number of 

accesses made. This step is important as without the number of cycles 

information there is no feasible method for the resource allocator to 

obtain relative efficiencies of differing resource allocations. 

The user is required to give a description of the computer 

architectu~e to the allocator. The information that needs to be conveyed 

concerns such things as-

The kinds of processors, including their cycle speeds and 

microprocessor type. 

The sizes and access times of the physical memories. 
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The locatfons of memory mapped I/O, end the port addresses of 

nonmemory mapped I/O, as well as the processors which have 

access to these. 

The addresses of interrupts, end the processors to which these 

interrupts occur. 

The interconnection pattern between the processors and their 

stores. This will cover hardware buses and also the locations 

in the addressing range of a processor of its attached 

memories. 

Only this level of information is required. Greater detail 

about the hardware, as is given in many computer hardware design 

languages (a survey of these is given in [ 59,87J) is not required by 

the allocator end so is not supplied in this specification. 

(1.8) PROGRAM SPECIFICATION 

=========================== 

The specifications of the computer architecture need only be 

produced once per architecture, and used for the allocation of all 

programs to this architecture. Extra information is however required for 

each program. The user can interact with the resource allocator to guide 

it in its allocation strategy. The initial starting point for this is 

the description in [ 26, section 11J of the SterOS resource directives. 

These constraints may be to ensure that some conditions external to the 

allocator ere achieved, or to guide the allocator in its global strategy 

to achieve the most efficient mapping. The interaction takes place by 

the means of constraints placed upon the allocation. These constraints 

may be to 

Ensure that processes execute upon processors that have 

hardware access to the appropriate I/O ports, 

Ensure that variables of e program which are used to access 

memory mapped I/O ports ere placed et the correct address in 

the appropriate physical memory module. 
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Allocate selected processes and address spaces onto the same 

processor or store, or upon separate processors or stores. This 

ability is useful when using a multiprocessor to provide 

greater degree of computing reliability, one example of such a 

multiprocessor design being described in [ 6J. If different 

parts of a program are allocated upon separate physical 

resources, then a failure of one resource will only bring down 

one part of the program. 

Allocate processes with special requirements to processors that 

possess special execution capabilities, such as a floating 

point accelerator. 

Finally the resource allocator will operate upon this information 

and produce a resource mapping, or 

possible. If the allocator succeeds 
' 

mapping. This would be used for1a 

load the program onto the machine. 

(1.9) THE TOPICS RESEARCHED 

------------------------------------------------------

perhaps indicate that no mapping is 

then it will generate an allocation 

subsequent linker stage to actually 

The research area and its application have been defined. The aim of 

this thesis is to investigate this problem, concentrating on the 

following topics 

A) The computer specification language. 

The design of the input computer architecture specification 

language to support the specification of the computer and to 

allow the user interactions is outlined. These specifications 

need to deal with a wide variety of architectures, since the 

actual hardware may be connected in many ways. However at the 

same time it is recognized that most architectures will be 

regular and involve repetitive constructions. Thus the 

specification language allows for the natural expression of 

such structures. They also allow for the easy extraction of 

information from the specification for use by the user in 

writing the user constraints. 
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B) The throughput of the allocation mapping. 

For its allocation activity the allocator will need to derive 

the throughput of an allocation, to decide if the allocation is 

efficient or not. Thus a general purpose throughput calculation 

algorithm is derived, which takes into account the effects of 

memory contention. Two different versions of this are 

implemented and examined. The original starting point for this 

work is from [ 44J which describes a general throughput 

calculation model that takes into account memory interference 

produced by a number of independent nonconcurrent programs 

executing on a multiprocessor. The thesis work extends this to 

include the effect of differing store cycle speeds, the effect 

of bus contention and bus cycle speeds, and to provide the 

throughput for a single concurrent program. 

C) The allocation algorithms. 

Finally the allocation algorithms themselves have been designed 

and an implementation produced to demonstrate them. This 

research borrowed ideas from search techniques developed in 

other areas, such as parallel searches in game trees [ 62J. It 

builds on the need for resource usage directives as described 

by [ 26J for the StarOS project. 

A list of the original research performed follows •. 

A) The design of the computer specification language is the 

authors own. 

8) The original memory interference model is taken from [ 44J. The 

authors own original research is to modify this to suit the 

requirements of a resource allocator. 

C) The starting point for the resource allocator research is 

[ 26J. The design of the constraint specifications and the 

design and implementation of the allocation algorithms are all 

original research by the author. 
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(1.10) CHAPTER SURVEY 

===================== 

The remainder 

description of 

activity in more 

of the thesis is concerned with an expanded 

this work. Chapter 2 introduces the resource allocation 

detail and describes some of the problems encountered 

in performing this. 

Chapter 3 is concerned with the design of the specification 

language. This language is based upon a graph structure description of 

the computer architecture and allows the specification of the 

multiprocessor at the level of its processors, stores and bus 

interconnections. Chapter 4 discusses how this Language is used to 

describe to the allocator the various kinds of computer architectures 

that are Likely to be encountered. 

Chapter 5 then describes how the computer program that is to be 

mapped onto the architecture is specified to the resource allocator. The 

extra information required of the user to guide the allocator is also 

introduced. No implementation of the specification language was 

attempted. While the ideas presented are important for the use of a 

resource allocator, ther·e are essentially no new difficulties in 

implementing such a Language once it has been designed. 

given a particular resource allocation 

be calculated. Two alternative ways of 

one by a simulation model and one by a 

implementing both were developed to 

Chapter 6 describes how, 

mapping, its throughput may 

computing this is presented, 

probabilistic model. Programs 

demonstrate their validity. 

Chapter 7 is concerned 

solutions. This is basically 

search pattern designed to 

satisfactory solutions. 

with the search method used to find 

a tree search with a heuristically ordered 

increase the probability of obtaining 

Finally chapter 8 presents the conclusions. 
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CHAPTER (2) 

=========== 

(2.1) AN OVERVIEW OF RESOURCE ALLOCATION 

======================================== 

Simple applications of the resource allocation problem addressed by 

this thesis are described in the following. 

The simplest example of resource allocation is the implementation of 

a program to execute on a uniprocessor system possessing a uniform 

memory structure. Even for concurrent programs this is readily achieved. 

The processes of the program execute on the same processor and can be 

managed by an appropriately written scheduler. Memory allocation schemes 

for a linear memory are well understood. 

The addition of more processors, thus creating a multiprocessor 

computer architecture addressing a common memory, can also be handled 

relatively easily. One method is to construct a scheduler which 

allocates 

of the 

time slices on different hardware processors to the processes 

program as they become ready to execute. In this approach, the 

the computer programming system need not even be aware of the 

to a multiple processor architecture. Unfortunately, as the 

rest of 

change 

number of processors attach~d to a common physical memory increases, the 

amount of memory contention also increases. Eventually there comes a 

point of diminishing returns where the addition of an extra processor to 

the hardware will add only a marginal improvement to the throughput. 

Many techniques may be used to alleviate this problem. Interleaved 

memories; separate memory modules, cache memories or memories that are 

faster than the processors are some possibilities. Hany of these memory 

designs are more applicable to large computers because of the cost of 

the associated hardware required to implement them. As well these 

solutions have the common characteristic of ignoring the specific 

structure of the programs being executed. 

For illustration of this last point, consider a program consisting 

of two processes that access separate variables. The logical address 

spaces for these variables can be placed in a common physical memory 

module and the two processes can execute on separate processors. In this 
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case there will be memory access conflicts when the two processors 

attempt to access the same store simultaneously in order to refer to 

their own memories. This situation is seen in the figure(2.1,top). 

The memory interference may be reduced by the harcware techniques 

discussed above. Alternatively, if the structure of the program can be 

taken into account, on a suitable computer architecture the variable 

spaces could be placed into separate memory. blocks, as in 

figure<2.1,bottom). Now the interference due to accessing these memories 

will be nonexistent. 

This example illustrates how a knowledge of the program may be used 

to optimize its execution without the use of sophisticated hardware 

techniques. The information utilized here was that the accesses of the 

processes of the program were to independent address spaces and this 

allows the derivation of the more efficient allocation solution. However 

for a large computer system such information about address access 

patterns is awkard to obtain since there will be many different programs 

executing, and these will be changed often. To attempt the optimal 

allocation of every program based upon its individual address accessing 
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patterns will be impractical. The research emphasis on medium sized 

statically allocated programs is a consequence of this. 

(2.1.1) EXAMPLES OF RESOURCE ALLOCATION 

As an example 

computer system 

of resource allocation a simple instrument monitoring 

is used. This system i~ to monitor a number of 

instruments, and record their values in such a way that they can be 

retrieved upon command and displayed on a terminal. One way to structure 

a program to perform this action is to have an ind·ividual process obtain 

the results from each instrument and put these into a common table. 

Another process would be used to maintain the terminal display based 

upon the information in the table and according to user entered 

commands. 

If it is assumed that the program work required to monitor a single 

instrument requires a significant part of the execution time of one 

individual processor, then a possible hardware implementation will have 

one processor for each of the instrument monitoring processes, and one 

more for the command process. This will give the best execution time 

performance for the complete program. Each processor can be supplied 

with its own private me~ory and also some global memory in common with 

all the other processors. For such an architecture as much as possible 

of the local address space of each process of the program would be 

assigned to the local physical memory of the processor. This will reduce 

the memory contention to the obligatory minimum, reducing it down to 

conflicting accesses by the processes to the address space that is 

shared with other processes. This hypothetical structure is depicted in 

the figure(2.2). 

NOTE. In this figure, and in others, a computer architecture is 

depicted by using circles to represent processors and squares 

(or rectangles) to represent physical store modules. An access 

path between a processor and a store is represented by a line 

drawn between the circle representing the processor and the 

square representing the store. Thus figure(2.3,left) represents 

a computer architecture of two processors and three stores. 

PROCESSOR_1 accesses STORE_1 and PROCESSOR_2 accesses STORE_2. 
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Both processors access STORE_3. 

In order to avoid visual clutter in diagrams containing a large 

number of processors and stores, the following convention is 

adopted. If a line is drawn from a square representing a store 

to a second store square, then the first store is considered to 

be accessed by all of the processors that access the second 

store. Thus in figureC2.3,right), a line is drawn between 

STORE_1 and STORE_2. STORE_1 is accessed by PROCESSOR_1 and so 

the line between the two stores shows that PROCESSOR_1 can also 

access STORE_2. Thus the architecture of figureC2.3,right) is 

identical to that of figure(2.3,left). 

16 



In figure(2.2) a homogeneous architecture has been proposed. It 

could be possible to use different sized stores for each of the 

processors, and even to use different kinds of processors, thus creating 

a heterogeneous architecture. However it wil L generally be preferred to 

design and use homogeneous architectures, both because of an easier 

design stage, and also because such designs will more readily transfer 

to other projects. 

To this structure the instrumentation input and output ports will be 

connected, with the ports for each individual instrument being connected 

to a separate processor. 

Given nine instruments, a 

application is 

PROGRAM MONITOR ; 

COMMON DEFINITIONS ; 

COMMON VARIABLES ; 

PROCESS COMMAND ; 

PROCESS INSTRUMENT_1 

PROCESS INSTRUMENT __ 2 

PROCESS INSTRUHENT_9 

END ; 

; 

; 

; 

possible skeleton program for this 

Each process will have a number of private variables and procedures, 

and the instrument processes communicate to the command process via a 

common table and common table access procedures. 

If this program were to be implemented upon a normal computer 

architecture then either the compiler or a subsequent Linker would be 

able to allocate the program onto the computers memory store, using 

standard techniques. When using the architecture of figure(2.2), one 

process can be assigned to each of the processors. This has the 

advantage of incurring no scheduler overheads. As well, the private 

address space of each process can be allocated to the private stores of 

the corresponding processors. This gives the advantages of conflict free 

access to these address spaces. In these circumstances it is not 
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appropriate to use a general purpose scheduler which allocates a ready 

process to a free processor as one becomes available. 

If all of the I/O ports are not available from every processor then 

the user will be required to indicate to which processors the instrument 

monitoring processes are to be assigned. This is to ensure that each 

process is capable of accessing its correct instrument I/O ports. If 

this specification is imposed, then the resource allocator would then 

allocate the remaining control process to the best processor for it, 

which in this case will be the only unused processor available. 

Otherwise, if there are no such specifications, the allocation program 

allocate the program so as to obtain the best throughput, which in this 

computer architecture will imply one process per processor. At the 

conclusion of this activity the resource allocator will insert linking 

information into the compiler generated code to allow the code of the 

processes to access correctly their memory address spaces. 

For this example the process to processor allocation can be simple, 

particularly if the user specifies the process all~cations. The memory 

allocation is also straight forward. The allocator needs to allocate the 

private variables and code blocks that are referred to the most into the 

private store of each processor, and allocating all common address 

spaces and the left over private address spaces (if any) into the common 

store. Thus memory contention, a product of the number of accesses by a 



process to a 

accessing this 

physical memory and the number 

memory, can be reduced to 

of different processes 

an unavoidable minimum. 

The resource allocator problem may easily become more complicated 

with only a few changes to the target architecture. For example a 

computer system with only six processors, each of which has access to 

all the required input ports, may be available to implement this 

program. Furthermore the memory may be arranged with a equal sized 

private memory attached to. each processor. Then each group of three 

processors would share a common memory block, and all processors would 

share a common global memory block. Such a design is given in 

figure(2.4). 

The intent of constructing a computer system with these different 

levels of shared memory is twofold. 

1. To increase the total amount of physical memory without 

exceeding the memory addressing range of any individual 

processor. 

2. To allow the possibility of greater memory sharing between 

processors and yet still reduce memory contention. 

In demonstration of this last point, processors 1, 2 and 3 can 

communicate between each other via the shared store 123 without 

interfering with processors 4, 5 and 6 in their accessing of their own 

shared store 456. 

In this situation all that the resource allocator needs to know from 

the programmer is the addresses of the input ports that are to be used 

by each individual process. These addresses would be inserted into the 

appropriate I/O routines of the process codes. This information could 

not now have any affect upon the allocation of processes to processors, 

since each processor now accesses all of the input ports. From this 

information the resource allocator will be able to go ahead and allocate 

the program. 
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(2.2) RESOURCE ALLOCATION ASPECTS 

================================= 

Now some of the factors that may affect the resource allocation 

placements will be considered. 

(2.2.1) LOW LEVEL DETAILS 

Firstly the resource allocation may be influenced by some machine 

Level details, such as the programmer inserting simple assembler 

Language routines to control input/output ports. Such information is not 

directly accessible to the resource allocator, but instead the user 

programmer will need to impose constraints upon the permissible mappings 

to guide the allocation activity in this area. 

(2.2.2) PROCESS TO PROCESSOR ALLOCATION 

In the instrument monitoring example, where the architecture of 

figure(2.4) is used, there are ten processors to be static~Lly assigned 

to the six processors. The allocator will tend to allocate the Longest 

running processes to separate processors, with the other Less time 

consuming processes placed where ever they fit. The Length of the run 

time of the processes is obtained by the execution of the program upon a 

normal computer and gathering statistics. However an allocation made in 

this way may not be optimal, depending on the combination of the 

particular program and computer architecture being used. So it will not 

always be the arrangement selected. This will be influenced by the 

effects of memory interference, different memory cycle times. of each 

physical memory block and of each shared memory bus, the size of the 

logical address space accessed by each process and the size of the 

physical memory shared by each processor. 

(2.2.3) DEGRADATION DUE TO MEMORY INTERFERENCE 

The Inappropriate allocation of processes may lead to serious execution 

time Inefficiencies by the action of memory contention. In the example 

architecture of figure (2.4) this can be demonstrated by considering two 
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pairs of .processes, each pair their own heavily used 1 data ·section. The 

pair A and B could be assigned to any of the processors 1, 2 or 3, and 

their shared data\ space A placed upon the shared store of these 

processors. The other pair can be similarly assigned to the processors 

4, 5 or 6. With such an allocation the pairs of processes can access 

their own shared address spaces without interference. This situation is 

represented in figure(2.5). 

However, if each process had been assigned so that the first process 

of the pair is in the processor group 1 to 3, and the second process of 

the pair is in the other processor group, as 1n figure(2.6), then the 

common shared data\ will have to be assigned to the global memory store. 

This assig~ment will inevitably result in greater memory conflict. 

Thus after the preference of processor execution speed and process 

execution times, the possibility of execution degradation arising from 

memory interference has to be considered. 
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<2.2.4) ALLOCATION INTERACTIONS 

A final difficulty in the allocation process is the interactions 

that occur between individual allocations of program elements to 

resources. These interactions frequently prevent any straight forward 

allocation strategy, and will often prevent the most efficient usage of 

the computer architecture. As an example, for a two process program the 

best allocation onto a two processor architecture is to have a process 

assigned to each processor, shown in figure(2.7). 

However the common address space element may not be allowed onto the 

common store. This will happen if the size of the common address space 

is larger than the size of the common store. Therefore the common 

address space now has to go into one of the private physical memories. 

In order to access this, both processes will then end up on the same 

processor, with the othe~~processor idling. This is depicted in 

figure<2.8), where the common store has a reduced size of 1024 bytes. 

A similar situation can occur easily with the allocation of address 

spaces to stores. The difficulties also increase when memory and bus 

contention is to be taken into account. These interactions may be caused 

by other factors, and can affect the allocation strategy of the whole 

program. 

Because of these interactions the allocation problem is nonlinear, 

it is not possible to work out the allocation for individual parts of 

the given problem and then to combine these to give a complete 

allocation. In most cases it will unfortunately turn out that the 

allocations for one part will inter.act with the allocations in all of 

the other parts, so completely invalidating any such divide and conquer 

solution. 

(2.2.5) RESOURCE ALLOCATION FAILURE 

The resource allocator can fail to find a legal mapping for a 

particular problem if there exists the situation where 
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The total physical memory space of the computer exceeds the 

size of the program. 

The physical memory addressing range of a processor exceeds the 

address space sizes of all the processes that are required to 

execute upon it. 

A process is assigned to a processor so that it cannot access 

the stores to which its address spaces have been assigned. 

A process or address space element is 

where it cannot access its I/O ports 

ports). 

(2.3) SOME RESOURCE ALLOCATION APPLICATIONS 

=========================================== 

assigned to a resource 

(or memory mapped I/O 

The introductory examples given so far have given some of the basic 

requirements, and some of the problems confronting a resource allocator 

have been demonstrated. In the following more example applications are 

introduced. 

(2.3.1) PICTURE PROCESSING 

------------~-------------

One feasible application of a multiprocessor architecture is in 

picture processing. Special purpose hardware designs exist for this 

[ 72,80]. However, for the purpose of this example, a design using 

standard microprocessors and memories is considered. For such an 

architecture the picture processing program could be structured as one 

or more main processes which deal with the overall control of the 

program. This would be the input and outpu~ of picture data, the 

initialization and the termination of the picture processing algorithms. 

Then there could be any number of small individual processes, each 

designed to 'operate independently upon one small area of the picture 

information. A decision to choose this structure can be made because it 

can be efficiently implemented as one or more main processors accessing 

a global store, and a series of smaller processors capable or performing 

picture type operations. A suitable computer architecture for this is 
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The user will need to provide constraints which will place the 

picture processes onto the picture processors, and supply the additional 

information that the code for the picture processors has to be compiled 

into a different instruction set from the code for the main processors. 

The user is also required to supply specifications of the computer 

architecture. Then using these user directives and the specifications, 

the resource allocator will be able to perform the rest of the· 

allocation for a suitably constructed program automatically. 

(2.3.2) CH* TYPE COMPUTER ARCHITECTURE 

Another example where resource allocation is useful is when using a 

computer architecture similar to the Cm* computer system[ 26J. In such e 

computer there are a number of processors, each accessing its own local 

memory. In figure(2.10) the local memory of processor 1 is store 1, and 

so on for the other three processors. 
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These processors are grouped together into clusters, and the 

processors of each cluster can access the local memories of all the 

other processors in the same cluster, but at a greater access time 

penalty compared to accessing the processors own localmemory. In the 

diagram processors 1 and 2 form one cluster and processors 3 and 4 form 

the 'other. Processor 1 can access the local memory of processor 2 via 

the number 1 bus. Finally each processor in a cluster can access the 

memories of any processor in another cluster, but with a still higher 

access time penalty. Thus processors 1 or 2 can access the stores of the 

other cluster via the number 3 bus. However these accesses are now in 

possible conflict with ~hree other processors. 
I 

Such a structure would be specified to the resource allocator by 

giving information about the processors, the memories and the bus 

interconnection network between these. From the point of view of the 

resource allocator, this computer system consists of a large number of 

processors each capable of accessing the entire memory. Some of these 

accesses will be direct end some by the means of intermediate buses. 

Therefore in this architecture there is no impediment to treating the 

memory as one common memory and allocating processes to processors as 

they become available. However the execution time will, naturally, be 

degraded by both memory interference end slow access times to nonlocel 

•emory. So in allocating a program onto this architecture it will be 
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(2.3.3) SYSTOLIC ARCHITECTURE 

-----------------------------

A systolic architecture, as described in [ 55J, is one where data 

flows down a series of computer elements, each computer accepting 

information from its neighbour on one side, operating on it and sending 

it on to its neighbour on the other side. A design that fits this 

definition is given in figure(2.11), where the computing elements have 
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their own private stores, and communicate with their right and Left hand 

neighbours via the common physical memory elements. Such architectures 

are useful when the applications problem can be split into a number of 

stages of roughly equal computing load, and each stage can follow on 

from the one before it. One such application is in three dimensional 

computer graphics, where a program may be divided into processes to 

Perform object ordering in depth first order. 

Elimination of objects entirely out of view. 

Removal of polygon faces facing the wrong way. 

Three dimension to two dimensional coordination transformation. 

Hidden line elimination. 

Final drawing of the lines onto the screen. 

If there are seven processors in the architecture, then the resource 

allocator can simply allocate a process to each processor. The resource 

allocator would be even more useful when there are less than this number 

of processors, since now some processes have to share a processor with a 

neighbouring process. These processes will be selected upon the basis of 

their workloads. An alternative systolic architecture could be 

constructed as is shown in figure(2.12) with two processors at each 

stage. This would make the resource allocation even more nontrivial. 
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CHAPTER (3) 

=========== 

(3.1) INFORMATION SPECIFICATION LANGUAGE 

======================================== 

The information specification language (ISL) allows a machine 

understandable definition of a computer architecture to be constructed. 

It also provides the user with the facilities to guide the resource 

allocation activity. 

This chapter will describe the basic underlying graph structure of 

this language, and introduce the parts of the Language concerned with 
~ 

the definition of a computer architecture. The reference text used for 

the basic graph theory is [ 48J. 

(3.1.1) UNDERLYING INFORMATION STRUCTURE 

Starting with a denumerable set X=<X1,X2, ••• Xn} and a mapping H of X 

into X, a graph is the pair G=<X,H). 

The ISL associates two functions with the set of elements of such a 

graph. One function is a mapping Fv from the set 

V=<null,V1,V2, ••• }. This is called the value 

X to the set V, where 

function. The other 

function is a mapping Fn from the set X to the set N, where 

N=<null,N1,N2, ••• }. This is called the name function. 

A graph can be represented on paper by drawing vertices and arcs. A 

vertex is drawn as a point and corresponds to an element in X. A 

directed arc is drawn as an arrow from one vertex to another vertex. A 

directed arc exists from vertex Xi towards Xj if Xj is in the set M(Xi). 

The value and name of each vertex may be represented also. If the 

name function fn(Xi) of vertex Xi is nonnull, it is written alongside 

the vertex. If the value function Fv(Xi> of vertex Xi is nonnull, it is 

also written alongside the vertex. If both the name and value functions 

are nonnull, then the 

followed by an = and 

representation of the name is 

then the written representation 
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Figure 3.1 

The graph of figure(3.1) provides an example representation of 

G=<X,H), where 

X = < X1, X2, X3, X4, XS, X6 } 

H(X1) = { X2, X3, X5 } Fv(X1) = null FnCX1) = null 

H<X2) = { } FvCX2) = null FnCX2) = c 
HCX3) = { } Fv(X3) = null Fn(X3) = B 

HCX4) = { } FvCX4) = 6 FnCX4) = D 

HCX5) = { X4, X6 } FvCX5) = null FnCX5) = B 

HCX6) = { X4 } FvCX6) = null Fn(X6) = A 

Note that the function Fn does not necessarily give a unique name to 

each vertex. This graph has the name of the element from the set X 

written next to each vertex. In general this set identification is not 

needed in subsequent discussions about the ISL and so will rarely be 

mentioned after this section. 

A directed arc U is represented by the pair CXi,Xj). Xi is called 

the initial extremity of the arc and Xj is called the terminal 

extremity. An arc U is connected to e yertex Xi if U=<X,,Xn) or if 

U=(Xn,Xi), Xi<>Xn. A directed path is a finite sequence of arcs 

(U1,U2, ... Ux) such that the final extremity of arc Un conincides with 

the initial extremity of arc Um, where m=n+l. A path is represen~ed by the 

vertices which It contains, thus (X1,X5,X6) ls a path in flgure(3.1), and 

has the arcs (X1,X5) and (X5,X6). 
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A vertex Xj is attached to vertex Xi if Xj is a member of H(Xi). The 

attached vertices of Xi are ell Xj such that this condition holds. 

Given a vertex Xi, the connection set C of Xi is the set of all the 

vertices Xj, Xj<>Xi, such that there exists a directed path from Xi to 

Xj. In the figure some connection sets are 

C(X1) = < X2, X3, X4, X5, X6 } 

C(X2) = { } 
C(X5) = { X4, X6 } 

C(X6) = { X4 } 

Any vertex Xi in the graph G, which is not in any set H(Xj), is 

called a root of the graph. That is there are no arcs whose terminal 

extremity coincide with a root vertex. In the example graph of 

figure(3.1), the vertex X1 is the root. 

The graphs used by the ISL have some common properties. There is 

always one and only one root. If Xi is a vertex in the graph G, then 

there will always exist a directed path from the root vertex to Xi. Thus 

the connection set C(Xr)=X, where Xr is the root vertex. For the root 

vertex Xr, Fn(Xr)=null and Fv(Xr)=null. For all Xi where Xi<>Xr, 

Fn(Xi)<>null and Fv(Xr) can be null or nonnull • 

. In the following there ls a brief overview of how the ISL may be used to 

construct a graph structure, and how to access such a graph once it exists. 

In appendix E a more detailed description appears. Chapter 4 continues with 

a discussion on how the ISL may be used to specify a computer architecture. 
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(3.2) OVERVIEW OF THE ISL GRAPH OPERATIONS 
=========================================== 

In the ISL there are operations that allow a graph to be constructed, and 

sets of vertices from this graph to be specified. There are also the more 

conventional high level language features which provide for arithmentical 

expressions, program flow control and the like. 

A graph defined by the ISL always starts from a root vertex, which Is 

denoted by a @character. Other vertices, which may be directly or indirect­

ly attached, can only be accessed via this root vertex. The simplest 

selection reference is 

@ 

which will produce a reference set containing only the root vertex. The 

reference 

@.N 

will select all those vertices of name N that is attached to the root vertex. 

Reference set variables may also be used, thus 

V := @.N 

will assign to the reference set Vall the vertices named N that are attached 

to the root vertex. Now the reference expression 

V.M 

will generate the set of all the vertices of name M that are attached to any 

of the vertices in the reference set V. This is equivalent to the reference 

set expression 

@.N.M 

Instead of selecting all the vertices of a given name, a subset of these may 

be chosen, depending upon some additional criterion. For example 
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@.A.<NOT_EMPTY (@.B)> 

will select only those vertices of name A Which are attached to the root 

vertex, which themselves have one or more vertices of name B attached. 

Another example Is 

@.A.<NUMBER (@.B) = 2> 

which will select only those A vertices which have exactly two B vertices 

attached. 

Having selected a set of vertices, they may be used to create new edges 

in the graph, as in 

@.A.B -> @.A.C 

This will attach every C vertex defined in the second reference set 

expression to every B vertex defined in the first reference expression. 

Figure E.8 shows a diagram of this. 

As well, new vertices may be created by using the NEW operation, as in 

@ -> NEW ( A=3 ) 

which will create a new A vertex, give it a value of 3, and attach it to the 

root vertex. Another example is 

@ -> (NEW(A), NEW(A), NEW(B)) 

which will create two new A vertices and one new B vertex, and attach them 

to the root vertex. 

Program flow control constructs are provided to Implement FOR loops and IF 

conditionals. As an example, the creation of three new D vertices might be 

achieved by 

FOR I := 2 TO 4 DO 

@.C(I) -> NEW(D) 

END ; 
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Each new D vertex will be attached to one of the C vertices numbered 2 to 4. 

An example of a conditional statement Is 

IF 1 > 2 THEN 

@ -> NEW(A} 

END ; 

Finally the graph manipulation statements of the ISL may be grouped into 

procedure blocks and these procedures invoked by using call statements. 
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CHAPTER (4) 

----------------------

(4.1) USING THE INFORMATION SPECIFICATION LANGUAGE GRAPHS 

========================================================= 

Computer architecture specifications are used to specify the 

architecture of a (possibily multiprocessor) computer to the resource 

allocator. This information allows the allocator to deal with the 

allocation of code and data parts of a program onto the hardware 

processors and memory elements of the computer system. 

For this purpose the 

of the computer 

resource allocation algorithms required a model 

system which contains information about the 

Address ranges and sized of the physical memory elements, 

The names of the processors, 

The cycle speeds of the memories and processors, 

The interconnections between processors and memories, 

Information about the I/O system and interrupt addresses, 

However there is no need for further knowledge of the system 

architecture in terms of registers, data and address buses or detailed 

knowledge of the input and output logic. 

Consequently the user enters the information, by the means of the 

information specification language, in terms of the processor elements 

and memory blocks of the system, and their interconnections. All of this 

is standard information directly operated upon by the resource allocator 

algorithm. Extra user defined information may also be inserted and 

specifications written to operate on these. This is useful to aid the 

allocator in its global allocation strategy. It allows the programmer to 

specify information not easily accessible to the allocator. 
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(4.2) BASIC COMPUTER ARCHITECTURE SPECIFICATION 

=============================================== 

(4.2.1) A SIMPLE SYSTEM 

The simplest computer system is one processor connected to a single 

memory unit. This can be described by 

GRAPH 

BEGIN 

S -> NEW ( PROCESSOR ) -> NEW ( ADDRESS ) ; 

END ; 

This specifies to the resource allocator that a computer 

architecture has a processor and a memory module. The address range 

which the processor refers to the memory unit will be given by extra 

vertices attached to the address vertex. In subsequent specifications, 

to refer to the processor the reference used is 

~.PROCESSOR 

and to refer to the address range the reference used is 

&.PROCESSOR.ADDRESS 

The resource allocator will recognize the PROCESSOR identifier to be 

one of the standard identifiers which in 

hardware processor. Such processors 

directly understood by the allocator. 

this case refers to an actual 

can have properties that are 

This information includes the 

processors name and its cycle speed and this is represented by vertices 

attached to the PROCESSOR vertex. These have the standard names NAME and 

CYCLE. They may be defined for the example system as 

GRAPH 

BEGIN 

i -> NEW ( PROCESSOR ) -> 

( NEW ( ADDRESS ) , 

NEW ( NAME = 'BRANDX' ) , 
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NEW ( CYCLE = 2.5 ) ) ; 

END ; 

The PROCESSOR -definition is as before. This vertex now has attached 

to it two new vertices, one called NAME and the other called CYCLE. They 

convey information about the name of this processor, BRANDX, and its 

cycle time, 2.5 microseconds. These values can be referenced by 

VALUE ( @.PROCESSOR.NAME ) 

VALUE ( i.PROCESSOR.CYCLE ) 

(4.2.2) SPECIFYING MEMORY 

Vertices named ADDRESS and PROCESSOR are directly understood by the 

allocator. It expects the ADDRESS vertex to have two further standard 

vertices attached. One vertex is called START and this has an integer 

value giving the start address at which the processor accesses the first 

memory byte of the memory module. The other vertex is called MEMORY and 

this vertex represents information about the physical memory module. 

This vertex has attached to it two further vertices, calle~ ACCESS and 

SIZE. The ACCESS value gives the access time of the memory in 

microseconds, while the SIZE value gives the size of the memory in 

bytes. The ACCESS and SIZE vertices are not attached directly to the 

ADDRESS vertex, since different processors may have different address 

ranges in which they access this same memory. 

As an example 

already defined 

a memory unit of 4096 bytes for the computer system 

can be specified by the addition of the statements 

i.PROCESSOR.ADDRESS -> 

( NEW ( START = 0 ) , NEW ( MEMORY ) ) ; 

This attachs two new vertices to the ADDRESS vertex. They are START 

and MEMORY, the START vertex has the value of O. Information for the 

MEMORY vertex is further specified by 

i.PROCESSOR.ADDRESS.MEHORY -> 

( NEW ( SIZE = 4096 ) , NEW ( ACCESS = 0.45 ) ) ; 
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Name = 'BRANDX' 
Cycle time = 2.5 

PROCI:SSOR 

STORE 

Size = 4096 
Access time = 0.45 
Starting address = 0 

Root vertex 

Address 

Memory 

Size=4096 Access=0.45 

Figure 4.1 

so specifying a memory -with a size of 4096 bytes and a 450ns access 

time. 

This, combined with the earlier specifications and set out in a 

slightly different way, results in the complete specification program 

like 

GRAPH 

CONST NAME_VALUE = 'BRANDX' , 

CYCLE_VALUE = 2.5 ; · 

BEGIN 

6l -> NEW ( PROCESSOR ) -> 

( NEW ( CYCLE = CYCLE_VALUE 

NEW ( NAME = NAME_VALUE ) 

NEW ( ADDRESS ) -> 
( NEW ( START = 0 ) , 

NEW ( HEMORY ) -> 

) , 
, 

( NEW ( SIZE = 4096 ) , 

NEW ( ACCESS = 0.45 ) 
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Figure 4.4 
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) 

) 

END ; 

) 

Start=s 
Size=z 

.· 

Processbr 

Address 

Memory 

Size=z Access=0.45 

Figure 4.5 

Root vertex 

Start=O 
Size=4096 

Figure 4.6 

Thus this represents a computer architecture with a processor called 

BRANDX having a processor cycle time of 2.5 microseconds. This processor 

has access to 4096 bytes of 0.45 microsecond store attached, with the 

store occupying the first 4096 bytes of the processors addressing range. 

The graph representation of this is shown in figureC4.1>. 
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To reduce the size of the graph diagrams in the following text, a 

visual shorthand representation is used. A triangle like that of 

figure(4.2) is called an address triangle. It is taken to represent an 

ADDRESS vertex and all of the vertices that are shown in figure(4.1) to 

be attached to this ADDRESS vertex. Its equivalent graph is given in 

figure(4.3), using this the graph of figure(4.1> can be redrawn as shown 

in figure(4.4). The SIZE and ADDRESS vertex values are given under the 

triangle. These are only specified in the following graphs if their 

values are important for the ISL example being demonstrated. Otherwise 

they are not explicitly mentioned. 

An even more compact representation of the graph of figureC4.1> is 

provided by using a processor triangle defined as in figureC4.5). In 

figureC4~'6) the graph of figure(4.1> has been redrawn this way. As with 

the memory triangle, the values of the vertices that have values 
, 

attached are only explicitly provided if it is required for the example 

demonstration. 

C4.2.3) MULTIPLE MEMORIES 

In more complex computer systems a processor may access mor.e than 

one memory module. This is represented in the specifications by 

attaching more than one ADDRESS vertex to the same PROCESSOR vertex. The 

address vertices 

address ranges 

modules. 

of a particular processor must 

and will generally have access 

have nonoverlapping 

to different memory 

An extra memory may be added to the computer system defined above by 

adding the specificat~on 

&.PROCESSOR -> 

( NEW ( ADDRESS ) -> 

) ; 

( NEW ( START = 4096 ) , 

NEW ( HEHORY ) -> 

( NEW ( SIZE = 4096 ) , NEW ( ACCESS = 0.45 ) ) 
) 

There are now two vertices attached to the PROCESSOR vertex, both 
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Root vertex 

Processors 

Processor 
Stores 

Figure 4.7 

with name ADDRESS. This is depicted in figure(4.7>. 

Note that here the extra memory is represented by attaching the 

address triangle to the PROCESSOR vertex to which the processor Triangle 

is attached Address vertices are always attached to the processor 

vertex if that processor accesses the memory, so this is possible. 

The reference 

S.PROCESSOR.ADDRESS 

will refer to both address vertices, and the reference 

S.PROCESSOR.ADDRESS.HEHORY 

will refer to both of the memory modules. 

To refer to only one of the address vertices indexing may be used. 

Thus to refer to the second memory module requires the reference 

&.PROCESSOR.ADDRESS(2).HEHORY 
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(4.2.4) USE OF PROCEDURE DEFINITIONS. 

-------------------------------------

The length of the specifications will become long and thus their 

production tedious for any computer system having more than a few memory 

modules. Procedures may be advantageously used here. For an example a 

procedure defining a standard memory is given, 

PROCEDURE STANDARD_MEHORY ( 

C : SET ; START_VALUc , SIZE_VALUE 

VAR HEH : SET ; 

BEGIN 

HEH := NEW ( ADDRESS ) -> 

( NEW ( START = START_VALUE 

NEW ( HEHORY ) -> 

( NEW ( SIZE = SIZE_VALUE 

NEW ( ACCESS = 0.45 

) 

) ; 

C -> HEH ; 

END ; 

) , 

) , 

INTEGER ) ; 

PROCEDURE ONE_PROCESSOR ( C , PSR 

BEGIN 

SET ) ; 

PSR := NEW ( PROCESSOR ) ; 

C -> PSR -> 

( NEW ( CYCLE= 2.5 ) , NEW ( NAME..= 'BRANDX' ) ) ; 

END ; 

The first procedure creates a new ADDRESS vertex and attachs to this 

the vertices needed for a memory subgraph. This ADDRESS vertex is 

assigned to the HEH reference set variable. In the Last statement of the 

procedure this vertex is attached to whatever vertices appear in the C 

formal parameter. If the memory subgraph had been directly attached to 

the C formal parameter, as in 

C -> NEW ( ADDRESS ) -> 

( etc ) ; 
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then there may be more than one subgraph created. If the procedure 

is called with three vertices in the actual parameter corresponding to 

the C parameter, there would be three such subgraphs created. The way 

that is choosen will result in only one subgraph being created and this 

will be attached to all of the vertices in the C parameter. 

The second procedure creates a processor subgraph. This· is attached 

to whatever vertices appear in the C parameter. The PSR formal parameter 
I) 

will contain the newly created PROCESSOR vertex upon the procedures 

return. This allows the memory informat4on for the newly created 

processors to be attached to the correct PROCESSOR vertex. 

These procedures contain all of the information needed to declare a 

processor and a memory. Thus the catls 

ONE_PROCESSOR ( & , PSR ) ; 

STANDARD_HEHORY ( PSR , 0 , 4096 ) ; 

will produce the graph of figure(4.1>. Therefore the ISL equivalent 

of the processor triangle in figureC4.5) is these two statements above. 

Alternatively, to declare a computer architecture with three 

standard memories attached requires 
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ONE_PROCESSOR ( Ql , PSR ) ; 

STANDARD_MEMORY ( PSR , 0 , 4096 ) ; 

STANDARD_MEMORY ( PSR , 4096 , 4096 ) ; 

STANDARD_MEMORY ( PSR , 8192 , 4096 ) ; 

and this will produce the graph of figure(4.8). 

(4.3) VERTEX NAHES 

================== 

In the specifications so far only 

used. These are directly understood by 

be defined· by the user. A list 

SIZE 

HEMORY 

PORT 

WRITE_PORT 

NAHE 

ACCESS 

BANK 

HEHORY_ACCESS 

predefined vertex names have been 

the allocator, and do not need to 

of the predefined names are 

START 

ADDRESS 

INTERRUPT 

CYCLE 

PROCESSOR 

READ_PORT 

READ WRITE_PORT USER_ADDRESS 

Those in the second part of the list have not yet been discussed. 

The user does not define these names, but does have to define any new 

names that may be used. For exampl~, in the following the name 

SUB_SYSTEH is used. This is defined by 

VERTEX SUB_SYSTEH ; 

(4.4) SHARED MEHORY 

--------------------------------------

So far the specification of a uniprocessor system has been 

described. The specifications may be expanded to deal with a computer 

architecture of two or more processors. The simplest way is to merely 

define two subsystems-

s := NEW ( SUB_SYSTEH ) ; 

til -> s . , 
ONE_PROCESSOR ( s , PSR ) . , 
STANDARD_HEHORY ( PSR 0 8192 ) . , , , 
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S := NEW ( SUB_SYSTEH ) ; 

Q -> s ; 
. . . ONE_PROCESSOR ( S , PSR ) 

STANDARD_HEHORY ( PSR , 0 , 

, 
8192 ) ; 

Start=8192 
Size=8192 

Start=O 
Size=8192 

These directives describe two independent processors, each with 8192 

bytes of unshared memory. The use of shared memory is easily described 

by attaching the same memory vertex to the two separate address vertices 

of each processor that accesses this memory. The common m~mory for this 

is defined by 

STANDARD_HEHORY ( S , 8192 1 8192 ) ; 

This is referenced be a.ADDRESS. - The processors can then be defined 

as 

FOR 2 DO 

s := NEW ( SUB_SYSTEH ) . , 
a -"> s ; 
ONE_PROCESSOR ( s , PSR ) . , 
STANDARD_HEMORY ( PSR , 0 8192 ) . , , 

END ; 

S.SUB_SYSTEH.PROCESSOR -> &.ADDRESS ; 
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In this definition the two subsystems are created as before. The 

extra memory created by the first call to the standard memory procedure 

is attached to both of these new processors. The specifications now 

describe an architecture with two processors, each accessing their own 

local store, and both accessing a common global store. The graphs and 

computer structures produced by both of these examples are shown in 

figure(4.9). This pattern may be generalized to any number of processors 

accessing the same memory units-

PROCEDURE SUB SYSTEH_PROCEDURE ( C , PSR 

VAR S : SET ; 

BEGIN 

s .- NEW ( SUB_SYSTEH ) ; 

c -> s ; 
ONE_PROCESSOR ( s , PSR ) ; 

STANDARD_HEHORY ( PSR , 0 , 8192 ) ; 

END ; 

SET ) ; 

The macro defines a new computer architecture portion which is given 

the name SUB_SYSTEM. The processor of •this accesses its own' local memory 

which is defined by the call to STANDARD_MEHORY. The SUB_SYSTEH vertex 

is attached to whatever vertices are in the reference set variable C. 

The PSR variable will contain the new PROCESSOR vertex, upon the return 

of the procedure. 

From here the statements 

STANDARD_MEHORY ( @ , 8192 , 8192 ) ; 

FOR 10 DO 

SUB_SYSTEH_PROCEDURE ( C ,.PSR ) ; 

PSR -> @.ADDRESS ; 

END ; 

will create the common memory and 10 new subsystems. Each time 

through the loop a new SUB_SYSTEH will be created and the @.ADDRESS 

vertex will be attached to its new processor vertex. 
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(4.4.1) MEMORY ACCESS INTERFERENCE 

store) 

In the above system there are ten processors accessing the same common 

memory. Consequently there is the probability that two or more processors 

will attempt to access the memory at the same time. This requires memory 

arbitration logic whose function is to detect such clashes and to delay 

processor memory requests until the memory is free. How this is managed in 

the hardware is of no concern to the resource allocation problem. If two 

or more processors are specified to access the same memory then the resource 

allocator will assume that there is some kind of memory arbitration. This 

will result in memory contention, affecting the execution performance of 

the system. When performing the resource allocation the allocator will model 

this interference and take this information into account. 

(4.4.2) DEPENDENT SHARED MEMORY 

Consider the situation where there are two common memory blocks, 

perhaps defined as 
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STANDARD_HEHORY ( QI , 8192 , 8192 ) ; 

STANDARD_HEHORY ( QI , 8192 , 16384 ) ; 

FOR 2 DO 

ONE_PROCESSOR ( lil , PSR ) ; 

STANDARD_MEMORY ( PSR , 0 , 8192 ) ; 

PSR -> QI.ADDRESS ; 

END ; 

and depicted in figure(4.10). 

The common memories are defined by the first two calls to the 

STANDARD_HEMORY procedure. Each processor vertex created by the 

procedure has access to these, as well as access to a separate local 

memory vertex. This is defined for each processor by the call to the 

STA~DARD_HEHORY procedure in the FOR loop. In this system each common 

memory is accessed independently by the processors, one busy common 

memory will not block the other common memory. The specifications 

described so far can readily describe this architecture. 

However now consider the situation where a memory access to one of 

the common memories will block accesses by other processors to the other 

common memories. Such a situation could arise from a number of different 

kinds of architectures. Two possibilities are considered here. One is 

where a processor or group of processors access a number of memory 

blocks via bank switching. This is where each memory resides in the same 

memory addressing region of the processor and the appropriate memory 

bank is selected by a bank select instruction. The other possibility 

considered is a computer system built up with a number of processors, 

each having direct access to their own Local memory by a dedicated bus, 

and each processor also having slower access to all the memories of the 

system via a common bus. These are considered in turn. 

<4.4.2.1) MEMORY BANK SWITCHING 

Hemory bank switching is specified by attaching the memory vertices 

to a common vertex. This vertex is given the name BANK and is similar in 

use to an ADDRESS vertex in that it has attached to it a START vertex. 

This therefore implies that the different memory blocks are in the same 

memory range. An example is 
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PSR -> NEW ( BANK ) -> NEW( START = 0 ) 

END 

FOR 2 DO 

@.PROCESSOR(l) .BANK -> NEW(MEMORY) -> 

Root vertex 

Access= 
0.45 

Size= 
10240 

( NEW ( SIZE= 10240 ) , NEW (ACCESS= 0.45 )) 

END 

@.PROCESSOR (2). BANK-> @.PROC~SSOR(l) .BANK.MEMORY 
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and this is depicted in figure(4.11). 

Each processor now has access to two memory blocks, accessible in the 

addressing range of 0 to 10239. A memory bank select instruction has to 

be executed by the executing code to select which particular memory bank 

is to be used. The resource allocator inserts the appropriate bank 

selection instructions into the code in its linking stage. 

(4.4.2.2) MEMORY HAP SYSTEM 

The other possible memory structure requires the use of another 

predefined property name, MEHORY_ACCESS. This standard vertex name is 

used to represent the connection of several processors to a single 

memory system, where only one access at a time can be performed. Thus it 

indicates where memory arbitration is applied to a number of memory 

blocks, and not just to one memory block. To demonstrate the directives, 

a computer system with 4 processors and 4 memories is specified, 

GRAPH 

INDEX I ; 

VAR PSR SET ; 

PROCEDURE STANDARD_MEMORY ( 

C : SET ; START_VALUE , SIZE_VALUE : INTEGER ) ; 

VAR HEH : SET ; 

BEGIN 

HEH := NEW ( ADDRESS ) -> 

( NEW ( START = START_VALUE ) , 
NEW ( MEMORY ) -> 

( NEW ( SIZE = SIZE_VALUE 

NEW ( ACCESS = 0.45 
) 

) ; 

·C -> HEH ; 

END ; 

PROCEDURE ONE_PROCESSOR ( C , PSR 

BEGIN 
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PSR := NEW ( PROCESSOR ) ; 

C -> PSR -> 

Processors 

Stores 

( NEW ( CYCLE = 2.5 ) , NEW C NAME = 'BRANDX' ) ) ; 

END ; 

PROCEDURE HAP ( PSR SET ) ; 

VAR HE, p : SET ; 

I : INTEGER ; 

BEGIN 

HE -> NEW ( HEHORY_ACCESS ) ; 

PSR -> HE . , 
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I := 1 ; 

FOR P := EACH ( PSR ) DO 

HE -> NEW ( ADDRESS ) -> 

( NEW ( START = 8192 * I ) , P.ADDRESS.MEMORY ) ; 

I := I + 1 ; 

END ; 

END ; 

BEGIN 

FOR 4 DO 

ONE_PROCESSOR ( i , PSR ) ; 

STANDARD_MEHORY ( PSR , 0 , 8192 ) ; 

END ; 

MAP ( &.PROCESSOR ) ; 

END ; 

The first procedure defines a standard memory module. The second 

procedure is a definition for one processor which accesses a standard 

memory. The third procedure defines the map structure, it creates a new 

MEMORY_ACCESS vertex and attaches it to the processor vertices. Then it 

attaches the MEMORY vertex of each processor to this MEMORY ACCESS vertex 

via a new ADDRESS vertex. Thus, as is shown in figure(4.12), each processor 

ends up with direct access to its own local memory and indirect access to 

all the other memories of the computer architecture. 

The address range of the local memory block is in the range of 0 to 

8191. The addresses by which each processor accesses the nonlocal 

memories is in increments of 8192, starting at 8192 for the first 

nonlocal memory. Note that according to this description each processor 

has access to its_own local memory twice, once through the local address 

range, and once through the nonlocal address range. In situations like 

this the resource allocator will assume that address accesses to the 

local memory are to be made in the most direct manner possible. 

At any one time each memory may be servicing only one memory 

request. This request may come from the local processor, and at any one 

time all the processors may be accessing their own local memories. This 

request may also come from some other processor via the memory mapping 

logic. In this case only one such nonlocal request may· be in progress, 

in the entire system, at one time. 
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(4.4.2.3) MULTILEVEL MEMORY MAPPING SCHEMES 

........................................... 

The specification above can easily be extended to a computer system 

with a two Level memory mapping hardware. Such a computer system will 

have a number of processors, each with their own Local memory on a 

dedicated bus, and each processor will have access to all of the 

nonlocal memory units on a shared bus. This access is extended from that 

of a one level map by dividing the processor and Local memory pairs into 

groups. A memory access request from a processor to a nonlocal memory 

which is within the same group can be made independently of other such 

accesses in other groups. One example of such a design is the Cm* 

computer architecture [ 26]. 

T~us there are three grades of accesses. The fastest are from a 

processor to its own local memory, and all processors in the computer 

system may make such requests simultaneously. The second in speed is 

from a processor to a nonlocal memory within the same group. There may 

be one such request within each group. The slowest is a request from a 

processor to a nonlocal memory not in its own group, and only one of 

these requests may be made at one time. 

The degradation in speed in these requests may come about because of 

delays introduced by the memory arbitration logic used to connect 

numbers of memories and processors together. Host likely, however, the 

main degradation will come from memory contention, and this contention 

is what the resource allocation tries to minimize. 

The following specification follows the same pattern used in the 

specification of a single level map, using HEHORY_ACCESS vertices to 

indicate dependent memory access paths. 

Firstly a GROUP vertex name definition is added to the 

specifications and then the processors and stores of the computer 

architecture are defined by 

FOR 4 DO 

G := NEW ( GROUP ) ; 

iii -> G ; 

FOR 4 DO 
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ONE_PROCESSOR ( G , PSR ) ; 

STANDARD_MEMORY ( PSR , 0 , 8192 ) ; 

END ; 

END ; 

This creates four GROUP vertices, each with four processors and 

their own local memory. Now to create the map structure requires 

FOR G : = EACH ( @.,GROUP· ) DO 

MAP ( G.PROCESSOR ) ; 

END ; 

HAP ( @.GROUP.PROCESSOR ) ; 

In the first statement the map procedure is applied separately to 

each GROUP vertex of the information structure and this will place the 

processors of each group into a single map. In the second statement the 

map procedure is applied to a reference which refers to all the 

processors of the architecture. This results in all of these processors 

being placed into a fifth map. 

(4.5) SNOWFLAKE ARCHITECTURE ____________________________ , 
----------------------------

The snowflake architecture, as described in [ 21], is defined using 

the ISL in the following. This provides an example specification of a 

nontrivial computer architecture. 

A first Level snowflake has P processors and a single bus connecting 

these. Here this bus is provided by the P processors accessing a common 

memory. Figure(4.13) shows a first level snowflake for P equal 3. 

A second Level snowflake is constructed from P first level 

snowflakes and an extra bus. One processor from each first Level 

snowf Lake is connected to this new bus. Another processor from each 

first level snowflake becomes the external processor. The remaining P-2 

processors are internal processors. An external processor is used when a 

third level snowflake is constructed, with the bus for the third level 

being connected to these external processors. Thus a second level 

snowflake is shown in figure(4.14,left). 
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In figure<4.14,right), only the external processors of the snowflake 

have been drawn, the remainder of the snowflake is hidden in the dashed 

circle in the middle. This looks like the P=3 level 1 snowflake in 
"' figure<4.13). From this it can be seen how the construction of a 

snowflake for the next level up can be achieved. 

The definitions required for a P=3 snowflake are now developed. 

Firstly the level one snowflake is just three processors, each with 

their own memory, and each with access to another common memory. This is 

specified by a procedure definition 

PROCEDURE FIRST_LEVEL ( c SET ) ; 

VAR L , PSR : SET ; 

BEGIN 

L := NEW ( LEVEL ) ; 

c -> L • , 
FOR 3 DO 

ONE_PROCESSOR ( L , PSR ) ; 

STANDARD_HEMORY ( PSR , 0 , 8192 ) ; 

END ; 

STANDARD_MEMORY ( L.PROCESSOR , 8192 , 1024 ) ; 

END ; 
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The first statement creates a new LEVEL vertex. This is attached to 

the vertices in the C reference set. Then three processor subgraphs are 

constructed and attached to this LEVEL vertex. Each processor vertex has 

a memory subgraph attached to it. This indicates that the processors 

have 8192 bytes of local memory. The last statement will attach another 

memory subgraph to all three processor vertices. This common memory has 

1024 bytes capacity and its starting address is 8192. 

The architecture specified by this FIRST_LEVEL snowflake is as shown 

in figure(4.13). The specification graph for this is shown in 

figure(4.15). Note the the LEVEL vertex has the three processors 

attached. 

To construct a level N snowflake, three level N-1 snowflakes are 

used. A new bus is created, and one processor from each of these N-1 

snowflakes is attached to it. Another processor from each of the N-1 

snowflakes is marked as being an external processor, by attaching it to 

the LEVEL vertex. Thus the procedure definition is 

PROCEDURE SNOWFLAKE ( C 

VAR L : SET ; 

BEGIN 

IF LEVEL_NO = 1 THEN 

FIRST_LEVEL ( C ) ; 

ELSE 

L := NEW ( LEVEL ) ; 

C -> L ; 

FOR 3 DO 

SET ; LEVEL_NO 

SNOWFLAKE ( L , LEVEL_N0-1 ) ; 

END ; 

FOR I := 1 TO 3 D 

L -> L.LEVEL(l).PROCESSOR(1) ; 

END ; 

BUS ( L ) ; 

END. ; 

END ; 

INTEGER ) ; 

Here the LEVEL_NO constant in the procedure parameter list indicates 

the level that is to be constructed. If this is a first level snowflake, 
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then the IF statement will select the call to the FIRST_LEVEL procedure. 

Otherwise a new LEVEL vertex is created and three calls to the snowflake 

procedure are made. These construct the N-1 level snowflakes. After this 

the first processor of each N-1 level is attached directly to this 

level. These processors are the external processors that may be used to 
~ 

attach to buses to create higher level snowflakes. Finally a call is 

made to the BUS procedure. This will create the bus for this level end 

attach the correct processors to it. The definition of this bus is 

PROCEDURE BUS ( L 

VAR ADR SET ; 

BEGIN 

STANDARD_MEHORY ( 

SET ) ; 

L.LEVEL.PROCESSOR (2) , 9216 , 1024 ) ; 

END ; 
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This procedure creates the common memory subgraph and attachs this 

to each of the three processors. These processors are choosen to be the 

second processor of each of the three attached N-1 Level snowflakes. 

Notice that at each Level the LEVEL vertex has attached to it the 

three LEVEL vertices of the N-1 Level, the ADDRESS vertex of the memory 

used for the bus at this Level, and the three processors which may be 

used in a Level N+1 snowflake. To show this a'Level 2 snowflake is 

represented in the graph of figure<4.16). 

(4.6) INPUT, OUTPUT AND INTERRUPTS 

--------------------------------------------------------------------

In this section the specifications for hardware input, output and 

interrupts are described. The directives for this information will only 

describe the addresses and read/write status of input and output ports, 

addresses of interrupts and addresses of variables. All other hardware 

specific information is not modelled at this Level. 

(4.6.1) INPUT AND OUTPUT 

The two kinds of input and output hardware structures modelled are 

memory mapped I/O and I/O ports that are accessed with a separate 

address space. In both cases the port may be read only, write only or 

both, and the port will have an address. 

<4.6.1.1) MEMORY MAPPED INPUT AND OUTPUT 

The information to specify a memory mapped input or output port is 

specified by vertices attached to the MEMORY vertex which represents the 

memory module within which the memory mapped port appears. These 

vertices may have one of the reserved names 

READ_PORT WRITE_PORT READ_WRITE_PORT 

and will have an attached value which gives the address. This 

address is not relative to the processors addressing ranges, but 
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relative to the start of the memory module. Address 0 being the first 

location in the memory module. Thus to specify a memory mapped read port 

at location 210 in memory module STORE_1 requires 

i.STORE_1.ADDRESS.MEMORY ->NEW ( READ_PORT = 210 ) ; 

This directive attachs a new vertex of name READ_PORT and value 210 

to the indicated memory vertex. Similarly to specify a write port 

requires 

i.STORE_1.ADDRESS.HEMORY ->NEW ( WRITE_PORT = 211 ) ; 

This information can be used by the allocator in the placement of 

variables from the user program which are to be used as input and output 

ports. The memory mapped input port is associated with the memory vertex 

information, and is equally accessible to any processor that can access 

the memory module. 
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An example of this structure is given for a computer architecture 

with two processors each accessing a common store. This store is part of 

a memory mapped I/O system and has a read port at 210 and a write port 

at 211. The specifications for this are 

GRAPH 

VAR PSR : SET ; 

PROCEDURE STANDARD_MEMORY ; ••• etc as before ; 

PROCEDURE ONE_PROCESSOR ; ..• etc as before ; 

BEGIN 

FOR 2 DO 

ONE_PROCESSOR ( i , PSR ) ; 

STANDARD_MEHORY ( PSR , 0 , 8192 ) ; 

ENO ; 

STANDARD_MEHORY ( @ , 8192 , 1025 ) ; 

@.PROCESSOR -> @.ADDRESS ; 

@.ADDRESS.MEMORY -> 

( NEW ( READ_PORT = 210 ) , NEW ( WRITE_PORT = 211 ) ) ; 

END ; 

This specification is represented in figure<4.17). 

<4.6.1.2> SEPARATE ADDRESS SPACE INPUT/OUTPUT. 

In memory 

attached to a 

mapped input/output the information .about the ports is 
" memory. Separate address space refers to ports accessed 

directly by the processor, and in these specifications information is 

attached to a vertex given the reserved name PORT. Thus to specify a 

input port number 12 requires 

i -> NEW ( PORT ) -> NEW ( REAO_PORT = 12 ) ; 

The information about extra input/output ports may be attached to 

the same port vertex, or to different ones. Thus either of the following 

can be used 

S -> NEW ( PORT ) -> 

( NEW ( READ_PORT = 12 ) , NEW ( WRITE_PORT = 13 ) ) ; 

62 



Access 
to the 
read 

The local stores 

The processors 

Access to 
the write 
port 

Root vertex 

Port 

Read-port=12 Write-port=13 

Figure Lt.18 

' i -> 

( NEW ( PORT ) -> NEW C READ_PORT = 12 ) , 

NEW C PORT ) -> NEW C WRITE_PORT = 13 ) ) ; 

to specify two ports, one input and the other output. The vertices 

are then attached to the processor vertex that represents the processor 

which accessed these input and output ports. Thus an example may be 

GRAPH 

; 

BEGIN 

FOR 2 DO 

ONE_PROCESSOR ( iil , PSR ) ; 

STANDARD_HEHORY ( PSR-, 0 , 102Lt ) ; 

END ; 

S.PROCESSORC1) -> NEW ( PORT ) -> NEW ( READ_PORT = 12 ) ; 
, 

iil.PROCESSORC2> -> NEW ( PORT ) -> NEW ( WRITE_PORT = 13 ) ; 

END ; 

This gives a system of two separate processors, one accessing a read 

port and the other accessing a write port. The graph and computer 

architecture are represented in figureCLt.18). 
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For the memory mapped I/O situation, two processors accessing the 

same memory containing a memory mapped port are regarded as both being 

capable of accessing this identical port. For separate address I/O 

ports, the meaning is somewhat different. Generally an I/O operation of 

this kind performed by one processor will access a different port from 

an I/O operation performed by another processor, even if the I/O port 

numbers are the same. To specify this, the usual occurrence, the same 

PORT vertices would not be attached to different processors. If, 

however, the ports of identical numbers on different processors are 

connected to the same hardware circuits so that they transmit and 

receive identical information, then this they can be regarded as one 

port shared by two processors. This is modelled in the graph structure 

by the same port vertex attached to more than one processor vertex. This 

is analogous to having a memory mapped information structure attached to 

more than one processor. 

(4.6.2) INTERRUPTS 

The resource allocator provides for the modelling of a user 

accessible interrupt structure. This takes the form of a hardware 

generated interrupt calling a user designated procedure. Providing the 

procedure code, and ensuring that the procedure returns before the next 

interrupt might be generateG, is the users responsibility. 

To specify the information about an interrupt requires a vertex with 

the reserved name INTERRUPT, and attached to it a constant value giving 

the address of the hardware interrupt. The b~nding between the interrupt 

and the high Level Language procedure it is to call is made by the 

Linker stage. 

Thus an example is 

GRAPH 

BEGIN 

FOR 2 DO 

ONE_PROCESSOR ( m , PSR ) ; 

STANDARD_HEHORY ( PSR , 0 , 1024 ) ; 

END ; 
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i.PROCESSOR(1) -> NEW ( INTERRUPT = 32 ) ; 

END ; 

For an interrupt that jumps to address 32. If there is only one 

interrupt possible on a processor then the interrupt number may be left 

out. If the hardware that generates interrupts is also capable of 

producing an argument to go with the interrupt (as, for example, an 

interrupt made to a single address location which is given an interrupt 

number parameter), then this argument can be passed to the high level 

procedure via its parameter list. 

These interrupt vertices are 

representing the hardware processor 

attached 

that 

to the 

accesses 

processor vertex 

this interrupt. A 

processo~ may have more than one interrupt. The converse is true also, 

the same interrupt may be attached to more than one processor. This is 

interpreted to mean that the hardware generating this interrupt sends 

the interrupt signals to the same interrupt addresses in all of these 

processors. Thus a program relying on this interrupt may reside upon any 

of these processors to work correctly. However the situation of 

identical interrupts being connected to differing interrupt addresses in 

different processors is not covered. 

(4.6.3) SPECIFICATI0N OF VARIABLE ADDRESSES 

Almost always the actual hardware addresses of variables will be 

assigned by the resource allocator. In the rare ~ases when the user 

requires to explicitly locate a variable th1s can be done by inserting 

into the information graph the required address and memory module. This 

information is then accessed by other constraint directives to bind the 

required variables to these 

place variables at address 

addresses. As an example, to 

starting from 34 in memory 

S -> NEW ( USER_ADDRESS = 34 ) ; 

be able to 

A, requires 

where S is a reference set variable that contains the memory A 
' 

vertex. Now to refer to this address the reference 

S.USER_ADDRESS 
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is used. Hore than one such vertex can be added, as in 

S -> NEW ( USER_1 ) -> NEW ( USER_ADDRESS = 34 ) ; 

S -> NEW ( USER_2 ) -> NEW ( USER_ADDRESS = 35 ) ; 

Here the USER_1 and USER_2 are user defined vertex names, and the 

USER_ADDRESS vertex is the reserved name. Either address can now be 

referred to by 

S.USER_1.USER_ADDRESS 

S.USER_2.USER_ADDRESS 

(4.7) CONDITIONALS 

------------------------------------

'<4.7.1) USE OF CONDITIONAL SELECTION DIRECTIVES 

The directives are used to specify the structure of the computer 

system. They are also used to examine this structure and select resource 

units which obey certain constraints. These constraints are supplied by 

the user when specifying how the elements of a program are to be 

allocated to the resources of the computer. 

A user defined constraint indicates a program element or elements 

and Lists the computer resources that the elements may be mapped to. An 

element is either a storage requirement of the program for code, data, 

stack or heap space, or it is a processing requirement for a process of 

the program. The resource this is mapped to can then be either a 

collection of physical memory modules onto which the program memory is 

allowed, or a collection of processors that are permitted to execute the 

process. 

The selection of the elements and their specifications is described 

in chapter 5, as are the constraint directives themselves. Here the 

selection of the resource elements that are to be used for any one 

constraint directive is demonstrated. This involves selecting suitable 

processor or memory vertices from the entire system which satisfy the 

required conditions. 
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The selection directives are now described below in detail. 

<4.7.2) SIMPLE SELECTION EXAMPLE 

--------------------------------

As an example the previous computer system defined with a two level 

map structure is used (given in section 4.4.2.3). This system is to be 

extended with the addition of disk I/O ports to some of the processors. 

To specify the addition of a disk unit to one of the processors 

requires the definition of an additional vertex name, and a reference 

like 

Q.GROUP(4).PROCESSOR(2) -> NEW ( HAS_DISK = TRUE ) ; 

This indicates that the 2nd processor of the 4th group has a disk 

attached. If there are a number of such directives, then to select any 

processors in this system that have a disk 

the actual group and processor numbers, 

attached, without specifying 

requires references like 

i -> NEW ( PROCESSOR_WITH_DISK ) -> 

S.GROUP.PROCESSOR.<VALUE( i.HAS_DISK)=TRUE> ; 

which attachs all processor vertices which have a HAS_DISK vertex 

with a value true to the newly created PROCESSOR_WITH_DISK vertex. For 

the specification program to be legal this vertex name has to be defined 

in the vertex list of the specification block. In the examples following 
~ 

the need for this definition will not mentioned. 

So now the processors that are in the system with a disk attached 

can be accessed directly with the reference 

S.PROCESSORS_WITH_DISK.PROCESSOR 

which will 

processors m~y 

referenced in 

access all such processors. Any 

have, for example their memory 

the usual fashion starting from 
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(4.7.3) MULTIPLE SELECTION CRITERION 

-----------------------------------

Hore than one vertex can be specified in the selection criterion. 

For example some of the processors in the above system may be more 

reliable than others. This vertex can be specified by the reference 

S.GROUP(1).PROCESSOR -> NEW ( IS_RELIABLE = TRUE ) ; 

which will attach to all the processors in group 1 a unique 

IS_RELIABLE vertex of the indicated value. 

Now to select all those processors with an I/O disk unit attached 

which are also reliable is achieved by the reference-· 

S.GROUP.PROCESSOR.< VALUE( w.HAS_DISK)=TRUE AND 

VALUE( w.IS_RELIABLE)=TRUE > ; 

Another example is where the disk units may have additional 

properties, such as disk access speed and storage size. These properties 

may be described and attached to the processor vertices by the following 

specifications 

PROCEDURE DISK_UNIT ( 

C : SET ; 

DISK_SPACE_VALUE 

DISK_SPEED_VALUE 

BEGIN 

INTEGER ; 

REAL ) ; 

C -> NEW ( DISK ) -> 

( NEW ( DISK_SPACE = DISK_SPACE_VALUE ) , 

NEW ( DISK_SPEED = DISK_SPEED_VALUE ) ) ; 

END_; 

And this procedure is used to specify that some of the processors 

have disks, 

DISK_UNIT ( GROUP(3).PROCESSOR(5) , 512 , 2 ) ; 

DISK_UNIT ( GROUP(3).PROCESSOR(6) , 512 , 2 ) ; 

DISK_UNIT ( GROUP(4).PROCESSOR(1) , 1024 , 1 ) ; 
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DISK_UNIT ( GROUP(5).PROCESSOR(3) , 2048 , 4 ) ; 

DISK_UNIT ( GROUP(5).PROCESSOR(4) , 128 , 0.5 ) ; 

Here the first number could be interpreted as the number of blocks 

in a disk and the second number is the number of milliseconds needed to 

access an average block. In this specification only 5 of the processors 

have disks attached. 

With this specification a reference that will access all processors 

with disks attached can be 

@.GROUP.PROCESSOR. < NOT EMPTY ( @.DISK ) > 

and to reference all processors with a disk attached of size 1024 

blocks or bigger and an access time of 1ms or less requires 

@.GROUP.PROCESSOR.< NOT EMPTY ( i.DISK ) > • 

< VALUE( i.DISK.DISK_SPACE ) = 1024 AND 

VALUE( i.DISK.DISK_SPEED ) <= 1 > 

This reference will still work when there are two or more disks 

attached to a processor vertex, the result will be any processor vertex 

with at Least one disk attached that satisfies the constraint. 
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CHAPTER(5) 

--------------------

(5.1) USER CONSTRAINT SPECIFICATION 

----------------------------------------------------------------------

The user constraint directives specify constraints upon the 

placement ~f program elements onto the computer architecture. Generally 

the resource allocator will perform its task of generating a legal and 

efficient mapping without user intervention. However additional user 

constraints, based on application specific information, may be imposed 

by the programmer to guide the allocator. 

There , are several forms of constraints. They operate upon a 

collection of program elements and a collection of resource elements. 

The' following sections will discuss 

How to specify the resource elements of. a constraint. 

How to specify the program elements of a constraint. 

How to specify the constraint action itself. 

(5.2) SPECIFICATION OF P.ESOURCE ELEMENTS 

--------------------------------------------------------------------------------

Firstly the specification of the resource elements is outlined. 

The computer architecture is specified by the ISL graph structure, 

and so the specification of resources uses this structure. Each resource 

of the computer is represented by a PROCESSOR, MEMORY, PORT or INTERRUPT 

vertex in the graph. Therefore a reference can be used to access these. 

Thus the resource references are a restricted form of the general ISL 

graph reference. They can be described by the syntax 

Resource Reference = "i" . - , 
{ ".", Vertex_Name, [ Vertex_Index J } ; 

Vertex_Name = Identifier ; 

Vertex_Index = "(", Number, ")" ; 
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An example is 

~.GROUP.PROCESSOR(2) 

(5.3) SPECIFICATION OF THE PROGRAM ELEMENTS 

=========================================== 

Now the specification of the program elements is given. 

Program elements may be processes, variables, procedures and, 

depending upon the kind of computer architecture, modules. Only those 

elements which are named in the program are accessible to a constraint. 

This name is always the· identifier that is given to the element in its 

definition or declaration. Such elements are specified by a path name 

constructed from information in the program text. There is one path name 

per-element, and these are combined together into collections called 

objects. It is these objects that are used in a constraint directive. 

(5.3.1) PATH NAMES 

All program elements are accessed within the high Level Language 

program by their names,·and so the specification uses these names also. 

However due to the scoping rules of many Languages, these names may not 

be unique throughout the whole program. The technique adopted here is to 

construct a path name for each element. This path name consists of the 

name of the element, and the name of every enclosipg scope. These are 

combined into one reference using the record dot notation (as used in 

Pascal). 

The syntax for a path name is 

Path_Name = 
< Scope_Name, "." }, Element_Name, [ 

Indication= 11
:

11
,

11CODE 11 !11 STACK11 

Scope_Name = Identifier ; 

Element_Name = Identifier ; 

A path name Like 
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Element_Name1 

refers to an element in the program which is in the outer most 

scope. A path name like 

Scope_Name1.Element_Name1 

refers to an element named Element_Name1 which is defined in a scope 

called Scope_Name1. 

Thus to refer to the integer variable in the following Pascal code 

PROCEDURE DEMONSTRATE 

VAR I : INTEGER ; 

PROCEDURE NUMBER ONE 

VAR I : I NT EGER 

BEGIN ... END 

BEGIN ... END; 

requires one of the following two references 

DEMONSTRATE.I DEHONSTRATE.NUMBER_ONE.I 

depending on whether or not the first or the second occurrence of 

the I integer is wanted. 

If this ls a recursive procedure, then the ~eference will refer to all 

instances of the variable. Consequently the variable will occupy the same 

address for all invocations. The other local variable of the procedure will 

be allocated as normally expected. 

CS.3.2) WITH BLOCKS 

Since these path names can rapidly become very long with deeply 

nested programs, a WITH block is allowed in the specification 

directives.This encloses a syntactically complete collection of resource 
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allocator specifications and allows the first part of a long path name 

to be specified. 

With_Block = "WITH", Path_Name, "DO", 

< Object_Assignment I With_Block }, "END", ";" ; 

( Object_Assignment is to be defined, contains Path_Names ). 

A With_Block like 

WITH Path_Name1 DO 

Path_Name2 

END WITH ; 

is equivalent to 

Path_Name1.Path_Name2 

if this path name is able to refer to an element. If, however, this 

path name does not refer to any elements in the program, then this is 

equivalent to 

Path_Name2 

in other words the path name inside the With_Block is used without 

alteration. 

As an example 

PROGRAM DEMONSTRATION ; 

PROCEDURE NUMBER_ONE ; 

PROCEDURE NUHBER_TWO ; 

PROCEDURE NUHBER_THREE ; 

VAR 

A , B , C , D , E 

BEGIN ••• END ; 

.BEGIN ••• END ; 

BEGIN ••• END ; 

BEGIN ••• END • 

13 

DATA_TYPE ; 



Here the variables A to E may be referred to- inside a resource 

allocator specification by the following 

WITH DEMONSTRATION.NUMBER_ONE.NUMBER_TWO.NUMBER_THREE DO 

use the identifiers A, B, C, D or E. 

END ; 

(5. 3. 3) PROCESS CODE AND' STACK ELEMENTS 

--------------------------------------

Consider a path name to a process called P in some program. This 

will be Like S1.S2 ••.. P, where S1, S2 •.. are the surrounding scope 

names. Now is this path name a memory element referring to the code of 

the process, or is it a process element referring to 

executes the process? To resolve this, a 

the processor that 

path name Like 

S1.S2 •••• P 

will always refer to a process element by 

to indicate the code of the process, 

S1.S2 •••. P:CODE· 

default. If it is required 

then the path name is 

Variables never contain executable code, and so this type of 

specification is not needed when using path names to refer to a 

variable. Similarly a procedure or module element. is always a memory 

element, since the execution of the code of a procedure or module is 

performed by a process. 

To refer to all of the local variables of a process the following is used, 

Sl .S2 •••• P:STACK 

(5.3.4) OBJECT DEFINITIONS AND ASSIGNMENTS 

------------------------------------------

A Path_Name is used to refer to a particular program element. The 

resource allocator generally uses collections of elements when it is 

performing its allocation. A collection of program elements is called an 

object. Objects are defined in the resource allocation Language, and are 

used in the user constraints. Object_Assignments are used to specify 

which elements these objects refer to. An object can contain many 
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program elements, but each object can contain process elements only, or 

memory elements only. 

Program elements may only be assigned to objects that have already 

been defined. An object definition consists of the name of the object 

and its kind, either a process object or a memory object. The syntax is 

Object_Definition_Part = 
"DEFINITION", { Object_Definition }, "END", 

Object_Definition = 
"·" . , , 

Object_Name, { ",", Object_Name }, 

Object_Name = Identifier ; 

Object_Kind = "PROCESS" I "MEMORY" ; 

". " . , Object_Kind ; 

For example 

DEFINITION 

OBJECT_1 PROCESS ; 

OBJECT_2 , OBJECT_3 : MEMORY ; 

END ; 

will create three objects, the first object will contain processes 

and the next two will contain program memory elements. 

After the Object_Definition_Part appears the 

Object_Specification_Block. This contains Object_Assignments which 

specify the elements that each object is to refer to. An object may 
,, 

appear in only one Object_Assignment, and program elements can also only 

appear in one Object_Assignment. The syntax for this is 

Thus 

Object_Specification_Block = "SPECIFICATION" 

{ Object_Specification }, "END", 

Object_Specification = 
"·" . , , 

Object_Name, ":=", "[", Program_Path_List, "]", 

Program_Path_List = Path_Name, { ",", Path_Name } ; 

OBJECT_1 := [ DEMONSTRATION.PROCESS_A J ; 
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will result in OBJECT_1 referring to the indicated process in the 

program, 

OBJECT_2 := [ DEMONSTRATION.A , DEMONSTRATION.B J ; 

OBJECT_3 := [ DEMONSTRATION.PROCEDURE_ONE:CODE ] ; 

OBJECT 4 := [DEMONSTRATE.PROCESS_A:STACKJ; 

and the above two assignments will result in OBJECT_2 referring to 

the variables A and B and in OBJECT_3 in referring to the code of the 

procedure. 

(5.3.5) PROGRAM SPECIFICATION BLOCK 

The Object definition and specifications 

Object_Specification block, whose syntax is 

Object_Specification_Block = 
"OBJECT", 

Object_Definition_Part, 

Object_Specification_Block, 

"END", "·" . , , 

appear in a complete 

A complete example, bringing together the separate examples of the 

last section, is 

OBJECT 

DEFINITION 

OBJECT_1 : PROCESS ; 

OBJECT_2, OBJECT_3 

END ; 

SPECIFICATION 

MEMORY ; 

OBJECT_1 := [ DEHONSTRATION.PROCESS_A J ; 

OBJECT_2 := [ DEMONSTRATION.A , DEHONSTRATION.B J ; 

OBJECT_3 := [ DEHONSTRATION.PROCEDURE_ONE:CODE J ; 

OBJECT 4 := [DEMONSTRATE.PROCESS_A:STACK]; 

END ; 

END ; • 
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(5.4) CONSTRAINT SPECIFICATION 

============================== 

Finally the constraints themselves are described. There are two main 

types of user constraints. These are 

A) General constraints. These specify to which group of resource 

elements a program element may be assigned. 

B) Address constraints. These allocate variables and interrupt calls 

to specific addresses within physical memory modules. 

The syntax and usage of these are described in the following. 

(5.4.1) GENERAL CONSTRAINTS 

A general constraint will specify the processors of the architecture 

to which the given process elements of the program can be assigned, or 

it will specify the physical memory resources to which the given program 

memory elements may be assigned. There are two kinds of general 

constraints, which are 

A) Assignment constraints. These specify a list of 

to which the indicated program elements 

resource elements 

may be assigned. 

8) Proximity constraints. These impose constraintG upon the placement 

of program elements depending on the locations of other already 

placed program elements. The two types of proximity constraints 

may be to either place the program elements onto the same 

resources as some other program elements, or to place them onto 

different resources from some other program elements. 

Firstly the assignment constraint are described, followed by the 

proximity constraints. 
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CS.4.1.1) ASSIGNMENT CONSTRAINTS 

................................ 

An assignment constraint has the syntax 

Assign_Constraint = 
"ASSIGN", Object_List, "->", Resource_List, ";" ; 

Object_List = "(", Object_Name, { " " , , Object_Name }, ")" ; 

Resource_List = 
"(", Resource_Reference, { 

Object_Name = Identifier ; 

" " , , Resource_Reference }, ")" ; 

An assignment statement like 

ASSIGN ( Object_Name1 ) -> 

( Resource_Reference1, ••• Resource_ReferenceN ) ; 

w~ll indicate to the resource allocator that all the program 

elements specified by the Object_Name1 object will be assigned only to 

some resource element which is a member of the resource list. The types 

of the program elements in· the object must agree with the types of the 

resources in the resource list. That is program elements that are 

processes can only be assigned to resource elements that ar~ processors. 

Similarly program memory elements are only assigned to physical memory 

resources. 

An assignment like 

ASSIGN ( Object~Name1, ••• Object_NameN ) -> Resource_List1 ; 

is equivalent to the separate assignments 

ASSIGN ( Object_Name1 ) -> Resource_List1 ; 

ASSIGN ( Object_NameN ) -> Resource_List1 ; 

while two assignments like 
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ASSIGN ( an object list containing program element X > 

-> Resource_List1 ; 

ASSIGN ( an object list containing program element X ) 

-> Resource_List2 ; 

will specify two constraints upon the program element X. In this 

case the intersection of the resource list sets gives the constraint for 

X. Thus the constraint on X is 

ASSIGN ( an object containing only X ) -> 

a resource set equal to Resource_List1 AND Resource_List2 ; 

Conflicting constraints can be detected at this stage if the 

combined resource of an element becomes empty. This indicates that the 

element can not be assigned to any resource without violating one or 

another of the constraints imposed upon it. 

(5.4.1.2) PROXIMITY CONSTRAINTS 

Program elements may also be constrained to locations depending upon 

the proximity of the assignment of other program elements. There are 

only two degrees of proximity allowed, either a program element may be 

assigne-d to 

be assigned 

the same resource as some other program element, or it may 

to a different resource. The syntax for these are 

Proximity_Constraint = 
"ASSIGN", Object_List, "->",. 

( "SAME" I "DIFFERENT" ), Proximity_Resource_List, 

Proximity_Resource_List = 
"(", Proximity_Resource_Reference, 

<: ",", Proximity_Resource_Reference} ; 

Proximity_Resource_Reference = "fil", 

"·" . , , 

{ "a", Vertex_Name, [ "(", ( Number "*" ), ")" ] } ; 

A proximity constraint like 

ASSIGN Object_List1 -> 

SAME ( Proximity_Resource_Reference1 , 
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Proximity_Resource_ReferenceN ) ; 

will ensure that each program element in the object list will go to 

the same group of elements from amongst 

Proxirnity_Resource_Reference1 

resource 

to Proximity_Resource_ReferenceN. 

Alternatively a proximity constraint Like 

ASSIGN Object_L ist1 -> . 

DIFFERENT ( Proximity_Resource_Reference1 , 

Proximity_Resource_ReferenceN ) , 

will ensure that each program element in the object list will each 

be ~Llocated to a different group of resource elements. 

The references used may be similar to those used in the assignment 

constraints. Alternatively the references may also have a "*" character 

in the vertex indices. In a reference like 

Vertex_Name1. Vertex_NameX(*). Vertex_NameN 

the "*" character ih the index reference is used to represent all 

possible index values. If this vertex has a possible index range of 1 •• 5 

then the reference above is equivalent to the references 

Vertex_Name1. Vertex _NameX(1). •. .,, Vertex_NameN , 

Vertex_Name1. Vertex_NameX(2). Vertex_NameN , 
Vertex _Name1. Vertex_NameX(3). Vertex_NameN , 

Vertex_Name1. Vertex_NameX<4>. Vertex _NameN , 
Vertex_Name1. Vertex _NameX(5). Vertex_NameN 

and thus this notation is a shorthand method of writing out the 

resource reference lists. 

An example of a proximity constraint is 

ASSIGN Object_List1 -> 

SAHE ( GROUP(1).PROCESSOR , GROUP(2).PROCESSOR ) ; 
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(using the graph definition of section<4.4.2.3". This will ensure 

that, however the resource allocator performs is allocation, all of the 

processes in the Object_List1 will always end up in either the 

processors of GROUP(1) or the processors of GROUP(2). Another example is 

ASSIGN Object_List1 -> 

DIFFERENT ( GROUP(*).PROCESSOR(*) ) ; 

This is equivalent to the expanded constraint 

ASSIGN Object_List1 -> 

DIFFERENT ( GROUP(1).PROCESSOR(1) , GROUP(1).PROCESSOR(2) , 

GROUP(1).PROCESSOR(3) , GROUP(1).PROCESSOR(4) , 

GROUP(2).PROCESSOR(1) , GROUP(2).PROCESSOR(2) , 

GROUP(4).PROCESSOR(3) , GROUP(4).PROCESSOR(4 ) ) ; 

assuming 4 groups and 4 processors per group. Thus this constraint 

will ensure that each process in the object list will end up in a 

processor by itself. Note that if there are more processes in the object 

list than there are processors in the resource list, then the constraint 

can not be satisfied for· all processes simultaneously, and so the 

resource allocation mapping will fail. 

(5.4.2) ADDRESS CONSTRAINTS 

The constraint directives described above are applicable to the 

control of the over all allocation strategy of the resource allocation 

by the user. The Location directives now described are used to _specify 

explicitly the interrupt addresses ~or procedure calls and the addresses 

of normal variables and I/O variables. 

(5.4.2.1) I/O VARIABLE ADDRESSES 

To access memory mapped input/output information a variable of the 

correct size can be positioned at the memory mapped I/O address. This 

variable can be used within the program exactly Like any other variable. 

The only difference, from a high level language point of view, is if 
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this variable is in a local procedure declaration space. In this case 

each activation of the procedure will access that same variable address, 

instead of having a new variable created on the procedure invocation 

stack each time. From the point of view of the hardware, the variable 

address corresponds to a memory mapped I/O port. 

The syntax is 

Location_Constraint = "LOCATE", "(", Variable_Path_Name, ")", 

"->", "(", Resource_Reference, ")", "·" . , , 
Variable_Path_Name = Path_Name ; 

and an example is 

LOCATE < Variable_Path_Name1 ) -> ( Resource_Reference1 ) ; 

Here the variable referenced by the variable path name will be 

allocated to the address given for the input/output port specified by 

the resource reference in the information graph. A variable path name is 

used.instead of an program element reference, since usually the address 

of only one variable at a time needs to be set. A variable can only be 

assigned to one location and so the resource element has to refer to one 

store module only. 

(5.4.2.2) INTERRUPT CALLS. 

Interrupts that are to be accessed explicitly by the programmer are 

implemented as external calls to a user written procedure. This 

procedure is written according to the usual high Level Language 

conventions. An interrupt call to it is equivalent, at the programming 

language level, to a call from an anonymous process written in the 

language. 

In the following the resource interrupt reference refers to a memory 

address spe~ification in the information graph. The syntax to indicate 

the binding between the procedure in the program and the interrupt call 

is 
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Interrupt_Constraint -> "INTERRUPT", "(", Procedure_Path_Name, 

")", "->", "(", Resource_Reference, ")", 

Procedure_Path_Name = Path_Name ; 

and so an interrupt constraint is like 

"•" . , , 

INTERRUPT ( Procedure_Path_Name1 ) -> ( Resource_Reference1 ) ; 

where the procedure specified by the path name will be called 

whenever there is the appropriate interrupt to the processor. 

(5.4.3) MULTIPLE CONSTRAINTS 

If a program element appears in more 

final allocation for that element must 

than one constraint, then the 

satisfy all such constraints 

simultaneously. For example the constraints 

ASSIGN Object_List1 -> ( Reference1 ) ; 

ASSIGN Object_List2 -> ( Reference2 ) ; 

ASSIGN Object_List3 -> SAHE ( Reference3 ) ; 

ASSIGN Object_List4 -> DIFFERENT ( Reference4 ) ; 

will ensure that if program element X is in all four object Lists, 

then the assignment of X to the architecture architecture will be such 

that 

X is assigned to a resource in Reference1. 

X is assigned to a resource in Reference2. 

X is assigned to the same resource in Reference3 as all the 

other program elements in Object_List3. 

X is assigned to a different resource in Reference4 from all 

the other process elements of Object_List4. 

If such a resource does not exist, then the map allocation will 

fail. 
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(5.5) FINAL SYNTAX 

================== 

The syntax for the entire allocation 

Allocation_Program = 
"ALLOCATION", 

Graph_Specification_Block, 

Object_Specification_Block, 

Constraint_Block, 

"END", '' ,, . , 

Constraint_Block = 

specification program is 

,"CONSTRAINT", { Constraint >, "END", ";" ; 

Constraint = Assign_Constraint I Location_Constraint 

Interrupt_Constraint I Proximity_Constraint ; 

A complete example using the specification Language is given in 

Appendix(F). 
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CHAPTER (6) 

----------------------

(6.1) THE CALCULATION OF THROUGHPUT 

=================================== 

An allocation program needs to be able to produce efficient mappings 

of programs onto computer architectures. An efficient implementation of 

a program can include many factors, such as using the minimum memory 

space, executing in the fastest time or having maximum reliability. When 

an allocation program is ~sed it is presented with an already written 

program and a fixed architecture. The most important efficiency measure 

it can influence is the execution speed of the program. Decreasing the 

memory usage is outside its capabilities, because this depends upon the 

de~ign of the program. Increasing reliability, by placing important data 

and processes onto reliable memory modules or processors, is not 

directly carried out by the allocation program. Instead the user imposes 

these requirements with the aid of constraints. Thus the sole efficiency 

measure that can be optimized by the allocation program is the 

execution time or throughput of the final allocation. Consequently it 

needs to be able to obtain an estimation of this throughput for any 

allocation mapping. 

This execution time estimation may be produced in two different 

ways, either by solving an analytic probability model or by running a 

simulation program. For this thesis an analytic model was derived from 

work by [ 44J. The model described will CAlculate the general memory 

interference in a multiprocessor computer involving bus conflicts and 

bus induced delays. The results obtained from this model were tested by 

using a simulation model, a brief description of this model is also 

given. This chapter finishes with a discussion on the relative 

performance of both the simulation and the analytic model solutions. 

(6.2) ANALYTIC PROBABILISTIC THROUGHPUT MODEL 

============================================= 

In the following an analytic probabilistic model is described which 

can be used to calculate the throughput of a concurrent program to be 

executed on a multiprocessor system. The basic mathematical model comes 

from [ 44J which takes into account the effects of memory interference. 
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To this has been added extensions to allow for different store cycle 

times and to include the effects of common store access buses. 

The original model assumed that each processor was running an independent 

program. This implies that a processor only idles when it is waiting on a 

busy memory. This idling will occur on a cycle by cycle basis. However for 

the allocator problem this is no longer true, the processors execute code 

that is part of the single program. Thus the processors may spend some of 

the time idling, not because of memory contention, but because they are 

waiting on semaphore locks until some useful work becomes available. This 

kind of idling will occur over a much longer time scale than the first type. 

Accordingly the model has also been adapted to this requirement. 

(6.2.1) MODEL DESCRIPTION 

The model assumes a multiprocessor computer containing a number of 

processors and store modules. In the model any processor may access any 

store, although some access paths between processors and store modules 

may not utilized by the actual computer architecture hardware, and some 

access paths may go through common store access buses. The store modules 

and processors may have different access times and processor cycle 

times. The common buses may introduce access time overheads. 

Each store has an access time followed by a reco~ery time. The 

access time is the time required to fetch or store one memory value. The 

recovery time is the time required by the memory to become ready for the 

next request. During this time the processor is released and may do 

useful work. Generally only older magnetic core memory technology will 

have nonzero recovery times. In the model there are M stores, and the 

stores are referenced by the index S. 

Each processor has an average single instruction processing time 

during which it does not access the memory. This is followed by a memory 

fetch cycle, in which the processor idles until the memory request has 

been completed. It is assumed that the single instruction time is 

greater than the store recovery time. Thus a processor does not issue a 

memory request before the store has recovered from the last one. The 

model assumes that there are N processors, the index P is used to refer 

to a particular processor. 
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A processor may not be able to directly access a store, but has to 

access it through an intermediate common bus in competition with other 

processors. Such a bus will introduce an access overhead which is its 

bus delay. In the model the buses are referenced by a bus index called 

B 

The model is supplied with an array which gives a value for each 

processor store pair. This value is the number of memory accesses the 

processor makes to the store in an arbitrary time. For some pairs this 

will be zero, indicating the processor never accesses that particular 

store. This array, when normalized, will give the probability access 

pattern of the processors. The array is represented by 

Ni ( P , S > 

where Ni is the input number of cycles, P is the processor number and S 

is the store number. rt can be normalized by a constant factor C such that 

M 

c * I Ni (P ' s) ~ 1 
s = 1 

••• ( 1) 

where for some P the summation equals one. As an example, 

an input number of cycles array could be 

processors 

stores 

4 

3 

6 

5 

For this the normalization factor is 0.1, giving the normalized 

array 

processors 

stores 

0.4 0.6 

0.3 0.5 

row summation (per processor) 

1.0 

0.8 

This array gives the access probability pattern of the processors. 

Thus the first processor spends 0.4 of its time accessing the first 

store, and 0.6 of its time accessing the second store. The second 

processor spends 0.3 of its time accessing the first store, 0.5 of its 
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time accessing the second store and the remaining 0.2 of its time 

idling. 

As its solution the model will produce an actual number of cycles 

array. This will give the calculated number of accesses between each 

processor and store in a unit time. The pattern of accesses will be the 

same as for the input number of cycles array, and so the two arrays will 

differ only by a multiplicative constant. This constant is used as the 

throughput. It represents the number of times per unit time period that 

the computer architecture can execute the given input number of cycles 

information. It is expressed as 

Ni*Tp = Na 

••• (2) 

where Tp is the throughput and Na is the actual number of cycles array. 

As an example, the actual number of cycles array may be 

stores 

processors 440 660 

330 550 

This differs by a factor of 110 from the input number of cycles 

array. Thus the computer can 

processor and the first store 

this is therefore 110. 

execute the 4 accesses between the first 

110 times a second. The throughput for 

As a final note, the probabilities used in the model are concerned 

with the probability that some action will be proceeding in a given time 

period. This probability will be equivalent to the fraction of the time 

that the action is proceeding. If a unit time period is used, then this 

fraction of time will equal the actual time spent in the activity. 

Accordingly in the derivation either the probability or the time 

interpretation is used. This depends upon which is the most convenient. 

(6.2.2) SIMPLIFICATIONS IN THE HODEL 

In an executing processor, the address sequences will not be random 

but will display some serial correlation. This is especially the case 

for instruction fetching, where the addresses will be predominantly 

consecutive. ( 44J demonstrates that this effect is not important in 
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most circumstances. Consequently in this model 

throughput obtained from a random distribution 

good approximation to the throughput obtained if 

serial correlation were taken into account. 

it is assumed that the 

of addresses will be a 

the effects of address 

Another inaccuracy is due to the probability methods used, which 

assume that all time periods are infinitely divisible. However in the 

actual hardware the time over which the memory is actually accessed, or 

a processor executes a single. cycle, comes in discrete time units of one 

processor or store cycle. The effect of this simplification is only 

noticeable over a Large time period in special circumstances. One case, 

for example, is with two processors accessing a common store. Each 

processor has a one microsecond instruction execution time, and the 

store also has a one microsecond access time. In this situation, after a 

possible initial clash, the two processors will execute in lock step. 

They will alternate in using the store and executing an instruction. 

Thus there will be no conflict, even though the model predicts a 

degradation in the throughput of 12.5 percent compared to the actual 

throughput obtainable from the system. This difference becomes less when 

there are a larger number of processors and stores, and when the 

instruction execution times are not constant. 

As well,, there is an ·inaccuracy not present in Hoogendoorns original 

work. There the processors are assumed to be executing thdir instruction 

streams independently of each other. Thus the probability model assumes 

the processors are statistically independent. This is no longer true 

when the processors contain processes which communicate to each other. 

Thus two processors may be specified as having a 1000 memory fetches 

each to the same store, which by the model will cause execution time 

degradation via memory contention. However in actual practice the 

processors may be executing in turns, communicating between themselves 

via semaphores as to which processor is to execute next. In this 

situation the observable throughput will not be as predicted by a 

straight memory interference model. 

Assume that the same processors and store are as used in the 

preceding example. When the processes on the processors execute 

independently, the processors will be in lcckstep and the store will be 

occupied 100 percent of the time. If the processors operate dependently 

with turns of 1000 cycles each, then the store will be occupied only 50 
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percent of the time. If the 

dependencies, then it will 

model makes no allowances for processor 

assume simultaneous execution. Thus its 

estimation throughput will be twice as large as the actual throughput 

obtained when the processors execute in turns. 

Notice, however, that for this to occur requires a program making no 

use at all of the parallelism possible with two processors. Most 

programs will have greater parallelism than this between their 

processes, and so there will greater overlap in the execution of 

different processors. Programs with large numbers of semaphores, 

executing on architectures with more than two processors and more than 

one store, will show less of this effect. Therefore this behaviour is 

not taken into account in the throughput models, it is assumed that the 

str~ight probability model will provide a sufficiently adequate 

throughput measure for the allocators purposes. 

This leads to the f lnal assumption made in this model. A set of processes 

cooperting in a single program synchronized by semaphores will have the 

overall rates of progress of the individual processes fixed by the application. 

This overall rate is used to define the throughput of the program. It is 

assumed that from this actual number of cycles array can be derived by the 

application of a single multiplicative factor, and that this has relevance 

on a cycle by cycle basis. This assumption is represented in equation 2. 

In general the cycle by cycle behaviour of the program will not reflect 

this, since each processor will execute at f~l speed until it reaches a 

synchronization event, then block. The time period over which this occurs 

contains many processor cycles. The model and simulator both make use· of 

this as~u1nption, therefore the results from these can only be approximate. 

However note that any real program can show considerable variances in its 

execution time performance due to the dynamic nature of its environment, thus 

any estimate of the throughput will always be an approximate anyway. 

(6.3) DERIVATION OF THE CONFLICT FUNCTION 

========================================= 

Calculating the throughput of a concurrent program requires a means 

of working out the effects of processor access conflicts. In this 

section a general conflici model is derived. 
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The general conflict model assumes a number of users requesting 

service from a number of common resources. To develop this model the 

simple case of a number of processors accessing a number of stores is 

used for illustration. Each processor spends a certain proportion of its 

time accessing the store. This is called the combined probability and 

comprises the fraction of ti•e that the processor waits while the store 

is busy servicing requests from other processors, plus the actu~l store 

access time. This last is the proba~ility that the processor is actually 

accessing the store successfully. From this it can be assumed that 

Pa(P,S) = Pc(P,S) * Cf(P,S) 

••• (3) 

Here the probability array Pa represents the probability of processor P 

accessing store S successfully in a unit time period. The combined proba­

bility array Pc represents the probabili~y of processor P accessing the 

store Sor attempting to access the store S in unit time. The conflict 

function Cf is some value with a lower bound tending towards 0 and an upper 

bound of 1. This function can be regarded as representing the fraction of 

the total combined probability that any store request from a processor is 

actually able to successfully access the store. 

If there are no competing processors, this function is equal to 1. 

If there are other processors, then this function is dependent upon the 

time spent by these other processors in at!empting to also access the 

same store. Thus ~ith N processors, 

Pa(P,S) = 

Combined probability of processor P accessing the store s 
(successfully of not) * 

Combined probability that no other processors are accessing the 

store S (successfully or not). 

+ 1/2 Combined probability of processor P accessing the store s 
(successfully or not) * 

The combined probability that one other processor is accessing 

the store S <successfully or not>. 
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+ 1/3 Combined probability of processor P accessing the store S 

(successfully or not) * 
The combined probability that two other processors are 

accessing the store S (successfully or not). 

+ ••• 

+ 1/N Combined probability of processor P accessing the store S 

(successfully or not) * 
The combined probability that all other N-1 processors are 

accessing the store S (successfully or not). 

. .• (4) 

The first term gives that part of the probability when the processor 

is the only processor accessing the store. The second term gives the 

probability when one other processor is accessing the store. Since only 

one request is allowed at a time, and it is assumed that the store 

chooses new requests in an unbiased way, then either processor P or the 

other processor is randomly choosen 1/2 of the time. Thus this term has 

a 1/2 in front of it. The terms continue in this fashion until the Last 

term, where the processor has 1/Nth of a chance of 

when processor P and all other N-1 processors 

attempting to access it. 

accessing the store 

are simultaneously 

Expansio~ of this function gives 

Pa(P,S) = 

Combined Probability of processor P accessing the store 

S (successfully or not) * 
( Combined probability that no other processors are 

accessing store S ( successfully or not) 

+1/2 Combined probability that one other processor is 

accessing store S ( successfully or not) 

+1/3 Combined probability that two other processors are 

accessing store S ( successfully or not) 

+1/N Combined probability that all N-1 other processors are 

accessing store S ( successfully or not) ) 

••• (5) 
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Therefore when this equation is compared with equation(3) it can be 

seen that the part in the brackets is the conflict function. Thus the 

conflict function can be written as 

N 
Cf(P,S) = L Pt(K,P,S)/K 

K=l 

••• (6) 

The probabil lty term functions Pt inside the brackets represent the 

probability that K-1 processors are accessing the store (successfully or 

not) out of a total of N-1 processors. This probability is given by 

rmax 
Pt (k ,P ,S) I 

r=l 
Tt 
P'=l 
p•;tp 

Fkrn(P') 
0 Pc (P' 1 S) 

0 1 - Pc (P ' 1 S) 

••• (7) 

The function Fkrn represents the sequence of all permutation lists 

of N-1 elements, each element being either 0 or 1. There are K-1 zeroes 

each permutation List, and R gives the permutation index number, for 
" 

some given ordering of the permutation Lists. The value Fkrn(P') gives 

the P' element in a permutation List, where each permutation List is of 

the form 

Fkrn = ( Fkrn(1), Fkrn(2), ••• Fkrn(P-1), Fkrn(P+1), .•• Fkrn(N) ) 

••• (8) 

There is no element corresponding to the Pth index. Thus this 

function produces the probability of K-1 actively accessing processors 

out of N-1 processors in total. Using equations 6 and 7 

expansion of the conflict function is now 
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Cf(P,S) I ~ 
k=l k 

rmax 

I 
r=l 

it 
P'=l 
p•;tp 

Fkrn(P' f~ 
;t 

OPc(P',S) 

01 - Pc(P' ,S) 

... (9) 

As an example, the conflict function for the first processor of a 

system of three processors is 

Cf(l,S) = (1-Pc(2,S)) * (1-Pc(3,S) + 
! ( (1-PcX2,S)) * Pc(3,S) + (1-Pc(3,S)) * Pc(2,S)) + 
~ 
3 (Pc (2,S) * Pc(3,S)) 

and similarly for the con~lict functions for processors 2 and 3. The 

implementation algorithm used to derive a conflict function is described 

in appendix(B). 

0 a 

0 b 

Note, this means to use the value of a if the expression X has a value 
of O, and to use the value b if the expression X is not equal to o. 
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COMBINED-PROBABILITY Processors 

BUS-PROBABILITY 

PROBABILITY 

Figure 6.1 

(6.4) DERIVING THE PROBABILISTIC EQUATIONS 

------------------------------------------------------------------------------------

The computer architecture to be modelled has a number of processors 

accessing a number of store blocks, both directly and via common store 

buses. In the following the full memory interference model for such a 

system is developed, using the conflict function derived above for the 

simple case. 

Host of the time that a processor spends in attempting to access a 

store will be spent in waiting because other processors are blocking 

access. This conflict occurs at two places, 

A) at the bus Level where the processor is competing with the 

other processors to access the necessary bus, 

8) and at the store Level, where the processor now in control of 

the bus has to compete with the other buses to access the 

actual store. 



This is represented in figure(6.1). 

In view of this structure the mathematical model for such a system 

is developed in steps. It starts by deriving the amount of time that is 

spent by the processor in accessing store and from this is derived the 

amount of time wasted in waiting for the pus to become free, and the 

amount of time wasted while the store is occupied by other users. 

Finally some refinements are added. 

The conflict for bus function Cb gives the conflict f~ctor due to the 

interference of all the other processors accessing the same bus. If the 

processor has direct access to the store without any intervening buses then 

this factor is one. 

Pb (P ,S) = Pc (P ,S) * Cb (P ,S) 

•.• ( 10) 

The CONFLICT_FOR_BUS function gives the conflict factor due to the 

interference of all the other processors accessing the same bus. If the 

processor has direct access to the store without any intervening buses 

then this factor is one. 

To derive the value of this conflict for bus function all of the 

other processors accessing the same bus are examined. The processor P is 

disregarded, since this is the processor to which the conflict function 

is applied to. Each of the other processors will access one or more 

stores through the bus. For any one processor the time spent in 

accessing the bus will be the summation of the total combined 

probability spent in accessing each of these stores through this bus. 

These bus probability terms are then used to generate the conflict 

function value. Thus 

n 1 
Cb(P,S) = I -

K=l k 

rmax 

l 
r=l 
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n 
lT 

0 Pbt(P' ,Bn(P,S)) 
Fkrn (P') 

P'=l 
P'~P 0 1 - Pbt(P' ,Bn(P,S)) 

••• ( 11 ) 



where the bus probability term Pbt will be 

Pbt(P' ,B) = 

All S ' , where 
B=Bn (P' ,S •) 

Pc (P' ,s ') 

••• ( 12) 
and where the bus number function Bn returns the index of the bus that the 

processor is to use to access the indicated store. 

The resulting 

bus. Now the 

value is the time spent 

time spend successfully 

Pa(P,S) = Pb(P,S) * Cs(P,S) 

successfully 

accessing 

accessing 

the store 

the 

is 

••. ( 13) 

The conflict for store function Cs represents the conflict produced by 

all of the other buses that access the store. The total amount of time 

spent by any one of these other buses in accessing the store is given 'by 

the summation of the times each processor using it spends in 

successfully controlling the bus to access the store. This value from 

each bus is added together to give the conflict function value. 

Cs(P,S) = ~ 
k=l 

1 
k 

rmax 

I 
r 

and the bus conflict terms Cbt are 

Cbt(B' ,S) = I 
All P ' , where 
Bn (P' ,S) =B' 
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Pb(P',S) 

0 Cbt(B' ,S) 
Fkrn (B') 

Q 1-Cbt (B 1 
1 S) 

..• (14) 

••• (15) 



This gives the probability equation for a system with processors 

competing for buses and stores. It has been derived assuming zero bus 

delay times. To include these, assume that the bus delay is modelled as 

an extra amount of time that a processor has to spend in the bus on top 

of the delays introduced by bus conflicts. Thus the equations above are 

modified to include this time by subtracting the time spent in the bus 

delay itself from the bus probability. Thus the new equation is 

Pb(P,s) Pc(P,S) * Cb(P,S) - Tbd(Bn(P,S)) * Na(P,S) 

••• (16) 

where the actual number of cycles array Na(P,S) ls the number of accesses 

that the ,processor P makes to store S in unit time, and the bus delay Tbd 

is the amount of delay introduced by the bus. Therefore the bus probability 

time is now the time spent in successfully controlling the bus and being 

able to actually request a store. 

The final addition to this model for such a system is to include the 

circumstance where the store has a finite recovery time during which the 

processor is free to continue its processing but the store is still 

unavailable. This refinement is only required for older magnetic core 

stores which have a rewrite time, but is included to be in Line with the 

original model of Hoogendoorns. In the original this time is modelled as 

if the processor was still in control of the store for this rewriting 

time. Thus the store cycle time is taken to be the store access time 

plus the store rewrite time and the cycle time of the processor is 

adjusted to be the processor cycle time minus the store rewrite time. In 

the current model this approach acts as if the processor is accessing 

the store, and thus holding the bus, for the access time plus the 

rewrite time. But in the actual hardware the time the processor is 

successfully accessing the store is the store access time, and the bus 

is only held for this amount of time. Consequently, to adjust the model 

for the provision of a store rewrite time requires subtracting the 

rewrite time from the total access time before the calculation of the 

bus access time, and then adding it back again later. Thus outside of 

the bus the model is as in the original. Inside the bus the bus 
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conflicts are calculated only in terms of the actual time the bus is 

held. 

Thus the final equation for the bus probability 

Pb(P,S) = (Pc(P,S) - Sr(S) * Na(P,S) ) * Cb(P,S) + 
Tsr (S) * Na(P,S) - Tbd(Bn(P,S) ) * Na(P,S) 

time is now 

••• (17) 

where Tsr is the store rewrite time. As well, the ffnal equation for the 

bus probability term of equation(12) is now 

Pbt (PI ,B) L 
all s,where 
B=Bn (P 1 

, S ' ) 

The complete equation 

Pc(P',S') - (Sr(S') * Na(P' ,S')) 

••• ( 18> 

for the probability of processor p 

successfully accessing store S is found by combining equations 13 end 

17, giving 

Pa(P,S) = Cs(P,S) * [Tsr(S) * Na(P 1 S) --Tbd(Bn(P,S))*Na(P,S) + 
(Pc(P,S) - Tsr(S) * Na(P,S)) * Cb(P,S)] 

••• (19) 
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(6.5) OBTAINING PROCESSOR UTILIZATION 

===================================== 

In the following the probability equation derived above will be used 

to calculate the number of accesses a processor P makes to a store S in 

unit time, and the amount of time the processor idles. 

The probability of successfully accessing a store is the same as the 

fraction of time that the processor spends using the store. If this time 

is divided by the store access cycle time then the result is the number 

of store accesses and thus the number of cycles the processor spends in 

accessing that store. Thus 

Na(P,S) = Pa(P,S)/Tsa(S) 

••• (20) 

where the store access time Tsa does not include the store rewrite time. 

From this equation the total number of processor cycles is the 

summation of the number of accesses to each individual store of the 

processor, thus 

M 
Nap(P) = ~ Na(P,S) 

S=l 

• 
where Nap is the actual number of cycles per processor. 

• .. (21) 
' 

The time spent by the processor in doing useful work while not 

referencing store is the number of processor cycles multiplied by the 

average adjusted processor cycle ti~e. This last quantity is the average 

processor cycle time minus the store rewrite time. Thus the time spent 

on useful work after accessing store S is 

Tpsr(P,S) ~ Na(P,S) * Tcy(D) - Tsr(S)) 

•.. (22) 
where Tpsr is the processing time and Tcy is the processor cycle time. 

This can be summed over all the stores that the processor accesses 

to obtain the total amount of useful time spent by the processor while 

not accessing store or atte•pting to access store. Now the 
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combined probability time gives the fraction of time that is spent in 

access1ng end attempting to access store, and so adding these two 

together will give the total amount of time the processor spends in 

accessing store and in execution. For a fully occupied, processor this 

time should equal one. However in this model each processor is 

constrained in the amount of work that may be done in relation to all 

the other processors. Usually only one processor will be fully occupied, 

the other processors will have varying amounts of idle time. Thus 

M 
Ti(P) = 1 - ~ Tpsr(P,S) + Pc(P,S) 

S=l 

where Ti is the idling time per processor. 

(6.6) NUMERICAL ITERATION SOLUTION FOR THE THROUGHPUT 

===================================================== 

••• (23) 

Combining equation(19) with equation(20) gives the probability of 

processor P su~cessfully accessing store S. 

Pa(P,S) = Cs(P,S) * [(Cp(P,S) - Tsr(S) * Pa(P,S)/Tsa(S)) * Cb(P,S) + 
Tsr(S) * Pa(P,S)/Tsa(S) -
Tbd(Bn(P,S))*Pa(P,S)/T'sa(S)] 

... <24) 

This equation has the probability term on both sides. This is due to 

the introduction of the actual number of cycles information into the 

derivation of the probability. The number of cycles in turn is related 

directly to the probability value. If this equation is rewritten with all 

the probability terms brought together, then the following is obtained. 



Pa(P,S) Pc(P,S) * Cg(P,S) 

••. (25) 

where Cg is the global conflict function and is derived by 

Cg(P,S) = 
l+Cs(P,S)*(Tsr(S)*Cb(P,S)-Tsr(S) + Tbd(Bn(P,S)))/Tsa(S) 

••• (26) 

Using this definition of the probability, and combining equations 2, 

20 and 25, gives 

Ni(P,S)*Tp = Pc(P,S) * Cg(P,S)/Tsa(S) 

... (27) 

Rearranging this results in 

Pc(P,S) Ni(P,S)* Tp * Tsa(S)/Cg(P,S) 

•.. (28) 

This equation gives the combined probability in terms of the several 

known values, plus the throughput and the global conflict value. When 

producing a numerical solution the global conflict function is defined 

in terms of the conflict for store and conflict for bus functions. These 

in turn are defined using the combined probability values. To make the 

numerical solution possible, the previous function values of the 

combined probability are used to calculate these conflict functions. 

This produces a new combined probability for a processor store pair as 

predicted by all of the other old combined probabilities. However at 

this stage the common throughput factor Tp is unknown. 

This is found by making use of the constraint imposed upon the 

combined probability value by equation(23). This equation can be 

combined with eqaution(20) and equation(22) to produce 
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M 
1-Tidle(P) I 

S=l 

Pc(P,S) + (Tcy(P) - Tsr(S))*Pa(P,S) 
Tsa(S) 

... (29) 

Using equation(26) to substitute for the probability term, and equation(28) 

for the combined probability terms, produces 

M 
1-Tidle(P)= ~ 

S=l 

Ni(P,S)*Tsa(S)*Tp + 
Cg(P,S) 

Ni(P,S)*Tsa(S)*Tp* (Tcy(P) - Tsr(S)) 
Tsa(S) 

... (30) 

If the idle time is temporary assumed to be zero, then this can be 

rearranged into 

Tp(P) 
M 

1/( I Tpt(P)) 
S=l 

where the throughput term Tpt is 

( 1 + Tcy(P)-Tsr(S)) 
Tp(P)=Ni(P,S)*Tsa(S)* Cg(P,S) Tsa(S) 

... (31) 

... (32) 

and there is now a separate throughput term for each processor. When 

a program is running, only the busiest processor will be occupied fully. 

ALL the others will have some nonzero idling time. Any of the other 

processors, if allowed to run full speed without any idling, will 

naturally have a greater throughput than when they are forced to idle 

for some of the time. Therefore the busiest processor will have the 

smallest throughput when using the equation above. This is used as the 

throughput of the whole system. 



Finally to obtain a new value of the combined probability function, 

equation(28) is used. 

To explain why this should converge, consider the situation when one 

of the combined probability terms is too large. This corresponds to a 

processor making too many accesses to a store. This leads to greater 

interference for the other processors, and so the conflict function 

values for these other processor store pairs will decline. Thus the 

calculated throughput for these other processors will be Lower. The 

minimum throughput is always choosen, and so if some of the throughputs 

of the processors are decreasing, then possibily the minimum throughput 

will also decrease. Thus the new value of the combined probability, 

obtained via equation(28), will also be Lower. Briefly, equation(28) 

adjusts the individual values of the combined probability, while 

obtaining the minimum throughput from equation(31) will adjust up or 

down the whole array so that there is one processor with zero idle time. 

(6.6.1) SUMMARY OF ITERATION STEPS 

The iteration solution proceeds as follows 

Step 1.An initial value for the combined probability array is made, perhaps 

by taking th~ normalized value of the input number cycles array 

Step 2.An initial value of 0 is assumed for the last throughput. 

Step 3.A new value for the throughput is found by applying equation(31). 

If this differs by less than the error difference from the last 

throughput, then the iteration is finished. 

Step 4.0therwise a new value for the combined probability array is found by 

using equation(28). 

Step 5.Last throughput := throughput 

Step 6.Go to step 3. 
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(6.7) EXPERIMENTAL RESULTS 

========================== 

The performance and validity of the analytic general memory 

interference model was investigated by producing an implementation in 

Pascal. The performance of this was compared with a simulation program 

for a variety of input computer architectures. Originally the model was 

implemented according to the method described by Hoogendoorn. The 

results so obtained agreed exactly with those in his article [ 44J. 

Subsequently the model and simulation where altered to conform to the 

model developed in this thesis. 

In the following text the verification results for the model are 

discussed. The accuracy and execution times of both the model and 

simulation are compared and it is found that, depending on the 

application, either the simulation or model may be the preferred 

implementation means of deriving the throughput 

allocator. 

(6.7.1) MODEL VERIFICATION 

for use by the 

In the trials three kinds of demonstration architectures were used. 

The first architecture has each processor directly accessing its stores 

without any intervening buses. The second has every processor connected 

to every store through a single common bus. In the third architecture 

each processor has direct access to its own store, shares a bus with one 

other processor to enable it to access that others store, shares another 

bus with three other processors enabling it to access the stores of 

those processors and so on. These architectures are pictured in 

figure(6.2). 

The number of processors and stores in each architecture for each 
trial was successively increased from 2 to 10. The input number of cycles 

array was randomly filled with either 0 (half of the time) or with a 

number in the range 0 to 1.0. Similarly the speeds of the stores and 

processors were randomly selected over a small range. The bus delay time 
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for each bus was selected to be 0 for a bus Linking a single processor 

to one store, and then increasing in proportion to the number of stores 

and processors that access the bus. 

The verification trials were run with the models error difference 

set to 8 percent, this being adequate for, the purposes of the allocator 

program. The error difference is the difference between two consecutive 

results obtained from the iteration algorithms used in the model. 

Figure(6.3) gives the difference between the predicted throughput of 

the model and the actual throughput obtained from the simulation. As can 

be seen most of the differences are within this Limit. The model 

generally converges within 2 iterations, and this explains why the 

results are generally much better than 8 percent •• <The first iteration 

easily get~ to within the required accuracy, but a second iteration is 

needed to obtain another throughput value for the error difference 

comparsion). 
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(6.7.2) IMPLEMENTATION OF THE SIMULATOR 

The original simulation for Hoogendoorns model is straight forward 

to implement, but for the model developed in this thesis, some 

extensions are required. When the processors are executing independent 

programs the simulation is written so that as soon as each processor 

finishes an execution cycle it makes a store fetch to start a new one. 

However when the processors work loads are dependent upon each other, 

provision has to be allowed to decide after each processor cycle if an 

idle cycle needs to be inserted or not. This is done in two different 

ways in the implementation of the simulation. The first,approximate, 

method is to run the analytic model first and have it produce a 

static access array, giving the probability that a processor will access 

a particular store. The cumulative p~obability of accessing the stores 

is one for the busiest processor, and less than one for the other 

processors. This difference represents the idle time for the other 

processors, and the simulation will choose between fetching a store and 

inserting an idle cycle accordingly. The derivation of the static access 

array is given in appendix(A). This relies upon the assumption about the 

relevance of the input number of cycles array on a cycle by cycle basis, as 

discussed in section 6.2.2. 

An alternative method ·that does not rely on results produced by 

running the model first is to simply count the number of cycles of each 

processor and compare them to the input number of cycles array.Whenever a 

processor has done enough cycles it is idled until all of other 

processors have caught up wit~ it. Then all of the processors are 

allowed to execute again. This can generate a better answer, since it 

reflects somewhat more closely the actual pattern of processor execution 

when synchronized by semaphores. As can be seen in figure(6.4) the results 

are just passable with a simulation run of 300 clock cycles (with the error 

difference ranging from 0 percent to 45 percent) and reasonable for a simu­

Jat ion run of 600 clock cycles. 
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(6.7.3) EXECUTION TIMES 

During' the test runs a record was kept of the execution time 

consumed by each. This information is presented in figure(6.5). As can 

be seen, the models execution time increases much faster than that for 

the simulation. This can be explained by comparing the number of basic 

operations required by each. 

For the model, consider the case where the architecture has no buses 

and there are N processors and N stores. In this case the number of 

processor store combinations is NA2, and the conflict function is called 

once for each of these, and this functions implementation requires 

operations proportional to NA2. (Here the character is used to 

represent the exponential operator). Thus in this situation the model 

requires operations in proportion to NA4 for a constant number of 

iterations. 

O~ the other hand the simulation, for a constant number of clock 

cycles, needs to select a random combination of processors each cycle, 

done in a maximum of NA2 operations, and then to select a random store, . 
achievable in time LogN. Thus the total is a maximum of CNA2)LogN. This, 

in the limit, is much less than the time for the model. 
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(6.7./,,) SUHHARY 

, 

The simulation and probabilistic models differ in their execution 

times and accuracy of results. These are summarized here 

A) Execution times. 

The simulation model has a much slower rate of execution time 

increase for increasing N compared to the analytic model. For 

the implementations used in this thesis, the crossover point is 

at N equal to 5 or 6, for N processors and N stores. Below this 

point the analytic model is marginally faster, above this point 

the simulation is much faster. 

B) Accuracy of results. 

Both models introduce inaccuracies into the results. The 

results from the simulation model will be inaccurate due to 

1) The approximate method used to include the effects of 

dependent processor execution workloads. 

2) The approximations due to the use of random functions in 

the simulation model. 

The probabilistic model can be inaccurate for some special 

cases, as for example when two processors are able to execute 

in lockstep without memory interference. This case is described 

in section(6.2.2). 

Furthermore both models are equally inaccurate due to the 

influences of interactions between processors via semaphores. 

This is also discussed in section(6.2.2). 
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CHAPTER (7) 

----------------------

(7.1) INTRODUCTION TO THE ALLOCATION ALGORITHMS 

================================================ 

In this chapter the algorithms for the allocation of a program to a 

computer architecture are described. These produce a final allocation by 

utilizing 

A) information obtained from the description of the computer, as 

specified by the architecture specifications, 

B) compiler supplied information about the memory and process 

elements of the program, 

C) the constraint information derived from the constraint 

specifications, 

D) the throughput estimation obtained from the input number of 

cycles information. 

The overall information flow of the allocation can be seen by 

referring back to figure(1.1). 

(7.1.1) PREVIOUS WORK 

The StarOS research reported by [ 26] deals with specifying to an 

allocator the computer architecture and the allocation constraints. 

However no allocation algorithms were implemented to actually perform 

the allocation. 

Another research paper, this time by [ 33], deals with the 

partitioning of computational objects onto a distributed computer 

system. Here the computer system consists of computer modules 

communicating via some interconnection system. This imposes a constant 

communication cost between each module. Their aim is to reduce the 

communication times for a system of programs which may need to run on a 

number of computer modules (e.g. need to access a disk from one module, 
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and a terminal from another module). The method is to obtain 

trace of the execution of a program. This is then used to 

partition of the programs components so as to minimize the 

approximate graph optimization method is used. 

a run time 

generate a 

costs. An 

This model does not apply very well to the allocation problem of 

this thesis. The model concentrates on separate computer modules whic~ 

communicate between each other. Whereas in this thesis the computer 

architecture is modelled, not 

processors and stores. The 

as computer modules, but as individual 

costs to be minimized deal not with 

communication costs between computer modules, but with processing time 

within the processors and the store accessing times. As well their model 

has no provision to allow the effects of memory and bus contention to be 

taken into account. 

(7.1.2) APPROACH USED 

The algorithmic basis choosen for this research is to successively 

try out alternative allocation mapping solutions, calculating the 

throughput for each. A Legal map with all program elements allocated is 

called a feasible solution. Whenever such a feasible solution is found, 

its throughput is compared with the throughput of the best feasible 

solution found so far. If it is better then this map becomes the 

incumbent solution. When the search terminates, the incumbent will be 

the optimal feasible solution, and becomes the allocation mapping for 

the program. 

Since most of the program elements will be allocatable to more than 

one resource, then the enumeration of all possible mapping solutions 

will result in a tree pattern search. Thus to simply generate each 

possible combination of process to processors and memory to stores and 

then to check its Legality is exponentially time consuming. Instead 

possible solutions are enumerated by starting with an initially 

unallocated program and assigning its elements one by one. At each such 

step the L~gality of the partial map solution and is execution time 

efficiency is examined. If it can be shown that no Legal solutions can 

be derived from this partial solution, or that all possible solutions 

derived by completing this partial solution are Less efficient than that 

incumbent, then this partial solution can be discarded. This allows all 
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of the solutions, feasible or otherwise, that can be completed from this 

partial mapping to be discarded without examination. If enough partial 

solutions can be rejected in this way then the search space will be 

reduced to manageable proportions. In general, for all but the most 

trivially sized programs and computer architectures, this reduction in 

the search space size will be necessary to allow the generation of any 

feasible solutions at all. Thus the bulk of the allocation algorithms 

are concerned with the problem of detecting illegal or inefficient maps 

as early as possible. 

This algorithm method is known as implicit enumeration with 

backtrack, and is described in [ 27]. The term implicit enumeration 

arises because the solutions of a partial map that are rejected can be 

considered to have been implicilty enumerated. This is in contrast to 

the other complete solutions that have been explicitly enumerated. 

The following text will expand upon this introduction. Firstly the 

starting information for the allocation algorithms is described. The 

means of computing the though put is discussed, and the search method 

used is then introduced. Lastly the allocation map evaluation algorithms 

are detailed. 

Finally a point on ·the notation. In the following discussion the 

terms 

1) process 2) memory 3) processor 4> store 

are used. These are taken to refer to 

1) the process elements of a program. 

2) the address space elements of a program. 

3) the hardware processor resources of a computer architecture. 

4) the hardware memory resources of a computer architecture. 
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<7.2) THE INPUT INFORMATION TO THE ALLOCATOR 

----------------------------------------------------------------------------------------

The specification of the computer architecture, program structure 

and user required constraints have been discussed previously. This 

information is converted by a preprocessor and supplied to the 

allocation algorithms in a simplified form. This is outlined in the 

following. 

The construction of the preprocessor, which would be part of the 

complete allocation package, poses no new problems and its design is not 

discussed, nor was an implementation produced. 

(7.2.1) COMPUTER ARCHITECTURE STRUCTURE 

The computer architecture specified by the ISL program would be 

converted into a simplified architecture graph. In this, the information 

that is kept is concerned with the ~escription of the processors, 

stores, banks and buses, along with the access paths between these. This 

information is 

A) For processors, cycle times and kinds are retained. 

B) For stores, access speeds, starting address locations and 

address ranges are retained. 

C) For banks, the bank access time is retained. 

D) For buses, the bus access time is retained. 

As well, the arcs connecting the vertices representing this 

information are rearranged. If a processor, bus or bank accesses a 

store, bus or bank, then there exists a direct arc between these two 

vertices. 

The rest of the information in the original architecture 

specification graph is not required at this stage in the allocation 

activity. It has already been used in the production of the simplified 

architecture graph and in the construction of allocation constraints. 

115 



Root vertex 

Processors 

Processor 

Stores 
( size = 512 bytes ) 

Figure 7.1 

The resulting graph is available to the allocator, which can extract 

several kinds of information from it. Firstly the accessibility of one 

kind of vertex from another can be obtained by a function of the form 

ACCESS_X_FROM_Y ( ( Y J ) 

Here X and Y represent any of the four kinds of vertices PROCESSOR, 

STORE, BANK and MAP. The function takes an input set of one type of 

vertex and returns the set of all vertices of the other type that can be 

accessed from this input set, or accessed by this input set. As an 

example, consider the computer system as set out in figure(7.1). In this 

both a pictorial representation and a graph representation is given. For 

this structure, the following function calls would give the indicated 

results. 

ACCESS_STORE_FROM_PROCESSOR ( [ PROCESSOR_1 J ) 

gives [ STORE_1, STORE_2, STORE_3 ] 

ACCESS_STORE_FROH_PROCESSOR ( [ PROCESSOR_1, PROCESSOR_2 ] ) 

gives [ STORE_1, STORE_2, STORE_3, STORE_~.] 

ACCESS_PROCESSOR_FROH_STORE ( [ STORE_1 ] ) 

gives [ PROCESSOR_1 J 
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There are also functions that return the size of a store vertex, the 

cycle time of a processor or the access time of a store, bank or bus. 

The implementation of such a graph structure on a computer is 

straight forward and is not discussed any further. 

(7.2.2) SPECIFICATION OF THE PROGRAM 

Also supplied to the allocator is an information graph depicting the 

structure of the program. This information is produced by the compiler 

and it is represented as a simple two Level graph structure containing 

process vertices and memory vertices. An arc from a process to a memory 

vertex represents the use of that memory by ~he process. Each memory 

vertex has associated with it the size of,the memory. 

Also associated with each process memory combination is the number 

of memory accesses that the process makes to the memory in a given time 

unit. This information is obtained by compiling the program on an 

ordinary computer and executing it to gather memory access statistics. 

This is required to allow the production of the throughput estimations. 

To access this graph structure, there are access functions of the 

form 

ACCESS_X_FROM_Y ( [ Y J ) 
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which are used in the, same way as the ones for the architecture 

specifications. There are also the functions to extract the memory size 

and number of memory accesses between a given process and memory. 

As an example figure(7.2) represents a program with three processes 

and four memories. The directed arcs represent access from a process to 

a memory. Also given are the sizes of the memories, and the number of 

accesses between a process and a memory. From this can be extracted the 

information 

ACCESS_PROCESS_FROH_HEHORY ( [ HEHORY_1 J ) 

gives [ PROCESS_1, PROCESS_2 J 

ACCESS_PROCESS_FROH_HEHORY ( [ HEMORY_1, HEHORY_3 J ) 

gives [ PROCESS_1, PROCESS_2, PROCESS_3 J 

SIZE_OF_MEHORY ( [ HEHORY_1, HEHORY_2 J ) 

gives 300 

PROCESS_HEHORY_NUHBER_CYCLES ( PROCESS_1, HEMORY_1 ) · 

gives 30 

(7.2.3) CONSTRAINT SPECIFICATION 

Finally, simple constraints are derived from the user supplied 
' object specifications, constraint specifications and the computer 

architecture specifications. There are three forms of constraints. 

One constraint form 

resources that a process 

specifies the set of processor or store 

is allowed to be mapped to. or memory element 

This can be represented as 

~ -> [ y J 

where X refers to a process or memory element and [YJ refers to a 

set of the appropriate resource elements. This information is accessed 

by a function Like 
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ALLOWED_X_FROM_Y ( [ Y J ) 

Where X represents the name of either a resource element kind such 

as PROCESSOR or STORE, or a program element kind such as PROCESS or 

MEMORY. The Y refers to the corresponding program element or resource 

element kind name. This function returns the set of resource elements 

that the program elements.in the set [YJ are allowed to be assigned to, 

or it returns the set of program elements that are allowed to the given 

resource elements of the set. 

For example, if some process constraints are 

PROCESS_1 -> [ PROCESSOR_1, PROCESSOR_2 J 

PROCESS_2 -> [ PROCESSOR_1 J 

PROCESS_3 -> [ PROCESSOR_2 J 

then two function calls and their results may be 

ALLOWED_PROCESSOR_FROH_PROCESS ( [ PROCESS_2 J ) 

gives [ PROCESSOR_1 J 

ALLOWED_PROCESS_FROM_PROCESSOR ( [ PROCESSOR_1 J ) 

gives [ PROCESS_1, PROCESS_2 J 

This function may act as its own inverse for some possible input 

values. As an example 

ALLOWED_PROCESSOR_FROM_PROCESS ( 

[ PROCESS_1, PROCESS_2, PROCESS_3 J ) 

gives [ PROCESSOR_1, PROCESSOR_2 J 

ALLOWED_PROCESS_FROM_PROCESSOR ( 

[ PROCESSOR_1, PROCESSOR_2 J ) 

gives [ PROCESS_1, PROCESS_2, PROCESS_3 J 

The second constraint imposes a proximity constraint upon a set of 

process or memory elements. The relation may be to allocate each element 

to a different set of resources, or to the same set of resources. These 

constraints are known as Different_Constraints or Same_Constraints, and 

may be represented as 
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[ X J -> DIFFERENT [ [ Y1 J , [ Y2 J , J 

[ X J -> SAME [ [ Y1 J , [ Y2 J , J 

Where [XJ is the set of program elements upon which the proximity 

constraint is to be applied, and the right hand side Lists the sets of 

target resources [YJ to which the elements may be mapped. An example 

Different_Constraint is 

[ PROCESS_1, PROCESS_2 J -> 

DIFFERENT [ [ PROCESSOR_1 J, [ PROCESSOR_2 J J 

This will ensure that the two processes will go to the two different 

processors. Thus if PROCESS_1 ends up on PROCESSOR_1, then the only 

legal assignment for PROCESS_2 is to PROCESSOR_2. An example of a 

Same_Constraint is 

[ MEMORY_1, MEMORY_2, MEMORY_3 J -> 

SAHE [ [ STORE_1, STORE_2 J, [ STORE_3, STORE_4 ] J 

This constraint will enforce the condition that the 

will all be assigned to either the first two stores or 

stores. 

three memories 

the second two 

The proximity constraint specifications are accessible by several 

functions which retrieve either a specific proximity constraint, or all 

constraints that contain a given resource or program element. 

Thirdly there are the address constraints. These act to fix a 

program element to s6me specific physical store address. Thus this can 

be treated as a nonproximity constraint acting on the program element. 

(7.2.4) EXAMPLE HAP ALLOCATION 

The allocation program, if it is successful, will produce an 

allocation mapping for the program onto the computer architecture. An 

example legal mapping is developed below to give a demonstration of a 

final map. 
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The computer architecture of figure(7.1) and the program in 

figure(7.2) are used. The constraints imposed by the user are those 

given in the examples above, and repeated below. 

PROCESS_1 -> [ PROCESSOR_1, PROCESSOR_2 ] 

PROCESS_2 -> [ PROCESSOR_1 ] 

PROCESS_3 -> [ PROCESSOR_2 J 

[ PROCESS_1, PROCESS_2 J -> 

DIFFERENT [ [ PROCESSOR_1 J, [ PROCESSOR_2 J J 

[ HEHORY_1, HEMORY_2, MEHORY_3 ] -> 

SAME [ [ STORE_1, STORE_2 J, [ STORE_3, STORE_4 J J 

Firstly it is seen that processes PROCESS_2 and PROCESS_3 are 

already fixed to their final processors. From this the 

Different_Constraint specifies that PROCESS_1 has to go to PROCESSOR_2, 

since PROCESS_2 is already assigned to PROCESSOR_1. 

Next the memories are assigned. MEMORY_1 is accessed by both 

PROCESS_1 and PROCESS_2. Therefore it has to be assigned so that 

PROCESSOR_2 and PROCESso·R_1 can access it (since the processes are 

assigned to those processors). Thus the only allowable stores are 

STORE_2 and STORE_3. This results in the constraint 

HEHORY_1 -> [ STORE_2, STORE_3 J 

A similar exercise will produce 
, 

the constraints for the other 

memories 

MEMORY_2 -> [ STORE_2, STORE_~, STORE_4 ] 

HEMORY_3 -> [ STORE_2, STORE_3 J 

HEHORY_4 -> [ STORE_1, STORE_2, STORE_3 ] 

The Same_Constraint specifies that the first three memories can go 

to either stores 1 and 2, or stores 3 and 4. If the arbitrary choice of 

stores 3 and 4 is made, then MEMORY_1 becomes fixed in STORE_3. ALL 

three memories cannot go to this store because they will not fit, and 

one possible assignment is 
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HEHORY_1 -> [ STORE_3 ] 

MEMORY_2 -> [ STORE_4 ] 

HEMORY_3 -> [ STORE_3 ] 

Finally the MEMORY_4 element has three possible stores, so a 

selection Like 

MEMORY_4 -> [ STORE_1 ] 

can be made. Thus a final Legal allocation mapping has been 

generated. This is probably not the most efficient. In the following 

sections the systematic method of finding Legal and efficient mappings. 

developed during this research is described. 

(7.3) THE ALLOCATOR SEARCH TECHNIQUE 

------------------------------------------------------------------------

The allocation search algorithm must be able to find a Legal and 

efficient solution in as few trials as possible. How the search is 

carried out can greatly affect this. In this section the two techniques 

that can be used for search optimization are introduced. Basically these 

are to attempt the removal of unprofitable search branches, and strive 

to achieve Legal and efficient mappings, as early as possible in the 

search. 

(7.3.1) DETECTION OF UNPROFITABLE SEARCHES 

During the enumeration of the solutions for a particular program, 

partial solutions will be discarded wherever possible. This occurs when 

A) the current partial mapping solution can never be completed 

to produce a feasible solution, or 

B) all possible feasible solutions produced by completing this 

par.tial map will have a throughput Less than the 

throughput of the best feasible solution found so far. 
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(7.3.1.1) DETECTING ILLEGAL MAPS 

................................ 

The first, of predicting if a current partial mapping will ever Lead 

to the generation of a feasible solution, is based upon the principle 

that once an illegal partial solution has been produced, all subsequent 

complete mappings derived from this will be illegal. An illegal map is 

one where the constraints upon a program element will prevent it from 

being assigned to any comp~ter resource. These constraints arise from 

the amount of space Left in the memory blocks, and the accessibility 

between processes and memories. Accordingly the assignment of any other, 

as yet unassigned, program elements can never remove any of these 

constraints. Thus this prevents any Legal solution from ever being 

derived from an illegal partial solution. 

The detection of such illegal partial maps is achieved by making use 

of the allocation constraint associated with each process and memory 

element. This constraint is originally just the user supplied 

constraint, when one is specified. For example 

PROCESS_1 -> [ PROCESSOR_1 , PROCESSOR_2 J 

where the process element PROCESS_1 is allowed to the processors 

PROCESSOR_1 and PROCESSOR_2. The technique is to reduc~ at each step 

this allowable constraint on each element as much as possible. This is 

done with the aid of constraint reduction operations. Sometimes the 

constraint may be narrowed down to only one resource, in which case the 

element has just become allocated to its final position. In most cases 

it will only be possible to reduce the constraint by a small amount, or 

not at all. However it might also be possible to reduce the set to the 

null set, that is under the current partial mapping there are no Legal 

resources that the element may be assigned to. In this case the map 

allocation fails, and the current search branch can be dropped. 

As an example of this consider the allocation mapping derived in 

section(7.2.4) above. As each user constraint was applied, the 

constraints on the program elements were reduced. The constraint for the 

PROCESS_1 element was originally 
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PROCESS_1 -> [ PROCESSOR_1, PROCESSOR_2 J 

but through the actions of the other two constraints for the 

processes, and the Different_Constraint, this was reduced down to 

PROCESS_1 -> [ PROCESSOR_2 J 

If there had been the additional constraint 

[ PROCESS_1, PROCESS_3 J -> 

DIFFERENT [ [ PROCESSOR_1 J, [ PROCESSOR_2J, [ PROCESSOR_3 J J 

then since PROCESS_3 has already be assigned to PROCESSOR_2, the 

constraints are now in conflict. Both PROCESS_1 and PROCESS_3 are 

assigned to PROCESSOR_2, contary to the Different_Constraint. Thus in 

this situation the constraint on PROCESS_1 would be reduced to the empty 

set 

PROCESS_1 -> [ J 

and the partial allocation can be rejected. 

(7.3.1.2) DETECTING INEFFICIENT HAPS 

The second means of detecting unprofitable searches is to check the 

calculated throughput of the current incomplete map at each search step. 

This is compared with the throughput of the best final map allocation 

found so far. If this throughput is Less then the partial map of this 

current search can be terminated, ~ince it will not Lead to any final 

solution with a better throughput. Even better is to select only those 

incomplete maps that show a definite improvement over the best map 

found, such as a 10 percent greater throughput. This percentage is 

called the throughput factor. Using this would prevent the examination 

of a long series of almost identically performing allocations. 

This method relies upon two principles-

A) For any partial solution a throughput can be found. 
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B) The throughput of any solution derived from a partial map can 

never exceed the throughput of the partial map. This is 

satisfied if the maximum upper bound throughput of each 

successive partial map is a monotonically decreasing function. 

Thus the throughput of a partial map will be the maximum upper 

bound upon the throughput of the final complete map. 

The throughput of an allocation can be found by using the general 

memory interference model. This requires an INPUT_NUMBER_CYCLES array. 

Given the PROCESS_MEMORY_NUMBER_CYCLES array and the allocation of 

processes to processors and Logical address spaces to memories, the 

input number of cycles array can be calculated by 

FOR ALL PROCESSOR DO 

FOR ALL STORE DO 

INPUT_NUMBER_CYCLE[PROCESSOR,STOREJ := 0 ; 

FOR ALL PROCESS FIXED TO PROCESSOR DO 

FOR ALL MEMORY FIXED TO STORE DO 

INPUT_NUMBER_CYCLE[PROCESSOR,STOREJ := 

INPUT_NUMBER_CYCLE[PROCESSOR,STOREJ + 

PROCESS_MEMORY_NUMBER_CYCLES[PROCESS,MEMORYJ ; 

END ; 

END ; 

END ; 

END ; 

This calculation provides the throughput for a complete solution. 

The throughput for a partial solution can also be defined by this. This 

just implies that, since some of the processes and memories of the 

program are not yet assigned, then some of the 

PROCESS_MEMORY_NUMBER_CYCLES values will not be included. 

This throughput for the partial solution has yet to be shown to be 

the maximum upper bound throughput. Consider some partial allocation 

mapping. Thls has a throughput that can be defined for each processor as 

THROUGHPUT(PROCESSOR) = 
CONFLICT_FACTOR(PROCESSOR) I THROUGHPUT_TIHE<PROCESSOR) 
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where the THROUGHPUT_TIHE is given by 

THROUGHPUT_TIHE(PROCESSOR) = 

For all STORE 

INPUT_NUHBER_CYCLE(PROCESSOR,STOR[) * 
( PROCESSOR_CYCLE_TIHE(PROCESSOR) + 

STORE_ACCESS_TIHE(STORE) + 

BUS_DELAY_TIHE<PROCESSOR,STORE) ) 

The summation represents the time spent in each processor cycle and 

each memory fetch cycle, assuming no memory interference. The 

interference is represented by the conflict function , which is 1 for 

no interference and 0 for complete interference. The throughput of the 

complete system will be the mini~um of the throughput terms above. Note 

that this conflict factor is not directly ,given by' any of the equations 

derived in chapter 6 on the analytic probability model. 

The memory interference can only decrease if the number of memory 

accesses is decreased. However when successively allocating processes 

and memory address spaces, the number of memory accesses will always 

increase. Thus the memory interference is always increasing, and so the 

conflict factor is a monotonically decreasing function. Similarly the 

INPUT_NUHBER_CYCLES values can never decrease in this situation. Thus 

the summation will be a monotonically increasing function. Therefore the 

throughput function will be a monotonically decreasing function. 

The minimum throughput function for any partial allocation mapping 

is taken to be the throughput estimation. The throughput estimation for 
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a complete allocation solution is the actual estimated throughput. Since 

the function is monotonically decreasing, then any throughputs of 

partial solutions must therefore be a maximum upper bound throughput. 

To demonstrate this with an example, consider the architecture and 

program in figure(7.3). If the program has been partially allocated so 

that PROCESS_1 has been assigned to PROCESSOR_1 and MEMORY_1 has been 

assigned to STORE_1, then the calculated throughput will be 

ThroughPut = 1000000 I ( Time to execute 100 memory accesses ) 

in microseconds ) 

= 1000000 I < (1+1) * 100 ) 

= 5000 

where the instruction cycle time is 1 microsecond and the store 

access time is also 1 microsecond. If MEMORY_2 is also allocated, then 

the throughput calculations will now give 

= 1000000 I ( (1+1) * (100+100) ) 

= 2500 

In other words this calculated throughput is half that of the first 

throughput. Adding more memories will always decrease the throughput. 

Similarly with the addition of extra processes. 

(7.3.1.2.1) IMPROVING THE THROUGHPUT CALCULATIONS 

The throughput is calculated from the partial map at each search 

step. At shallow Levels in the search 

and memories allocated and thus the 

will generally be an over estimation 

there will only be a few p~ocesses 

throughput calculated from these 

of the throughput of the final 
' 

complete map. For example, in the first partial allocation of the 

example immediately above, 

PROCESS_1 -> [ PROCESSOR_1 ] 

HEHORY_1 -> [ STORE_1 ] 

the throughput is only calculated upon the accesses that PROCESS_1 

makes to MEHORY_1. The other accesses to other memories are ignored, and 
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thus the program will seem to run faster than it actually would. In the 

following is discussed a means of increasing the throughput accuracy for 

the initial stages of a map allocation. 

Consider the case where there is only one process and memory 

allocated so far in a partial map. The throughput can only be calculated 

based upon the number of times the process accesses this memory. If the 

process spends an equal amount of time accessing ten other not yet 

assigned memories as well, then this throughput will be an over 

estimation by a factor of ten at Least. The work Load represented by the 

accesses to these memories may be partly incorporated if, for the 

purposes of calculating the throughput, each memory is assumed to be 

residing in a separate new store by itself. These stores are to be 

directly accessible to each processor of the computer, and they have 

cycle times that are as fast as the fastest normal store. The processors 

accessing these stores will suffer memory interference, but only with 

other processors accessing the same memory in this store. Thus only the 

absolutely unavoidable memory interference is included. The throughput 

calculated under these conditions will never be lower than the final 

actual throughput. Indeed it will provide a better maximum upper bound 

for the calculated throughput. These stores are called phantom stores, 

since they do not exist in the actual computer architecture and can 

never have any memory elements assigned to them by the allocation 

program. Instead the throu9hput algorithms use these stores to hold any 

unassigned memories whenever it calculates the throughput of a partial 

map. 

Exactly the same technique is applied to unassigned processes. Each 

unassigned process is assumed by the throughput algorithms to reside in 

a phantom processor which is as fast as the fastest real processor in 

the system, and is directly connected to every store in the system. Thus 

for a partial map with only one process and one memory assigned, the 

phantom stores hold all of the other memories to which the process may 

access, and the phantom processors hold all of the other unassigned 

processes. These processes will access both the assigned memory and the 

unassigned memories. Thus the effect of memory interference will be 

incorporated into the calculated throughput from both the assigned 

processes and memories and the unassigned processes and memories. 
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Another way of Looking at this is to regard the phantom processors 

and stores as implementing an ideal computer architecture. Each 

processor is as fast as the fastest real processor. Each phantom store 

is as fast as the fastest real store. Each processor has direct access 

to each store without any intervening buses. Finally there is a store 

and processor for each memory and process element in the program. Thus 

this provides a theoretical upper bound to the throughput for the 

particular program. 

Finally, in the implementation of the allocation program, 

phantom store for each memory was not implemented. This is 

a separate 

because the 

number of memory elements in a program is generally greater than the 

number of stores or processors. Therefore adding a phantom store for 

each memory will significantly increase the total number of stores and 

processors that the throughput algorithms have to deal with. This 

increases the execution time. To reduce this only one phantom store is 

used. The simulator is modified so that each processor accessing this 

store can do so without any store interference from any other processor 

that may also be accessing it at the same time. This implies that the 

derived throughput no Longer ref Lects the memory contention between 

different processors accessing the same unassigned memory element. 

However it still includes the affect of the time taken by a single 

processor to access these unassigned memories. Hence it is still 

sufficient in providing an improved upper bound upon the throughput. 

(7.3.2) PRODUCING EFFICIENT MAPPINGS EARLY IN THE SEARCH 

Another way of increasing the chances ~f producing good solutions is 

to order the search so as to maximize the chance of getting an efficient 

and Legal mapping early in the search. 

This can be achieved by selecting for assignment the busiest 

processes and the most heavily used memories early in the search, and 

Leaving the processes with the Least work to Last. As well, at any step 

a process or memory is generally assigned first to the fastest processor 

or store that is allowed to it. This ordering will allow the most 

important processes and memories, from the viewpoint of execution time 

efficiency, to be assigned early in the search to the fastest processors 
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and stores. This is not guaranteed to generate legal maps or the most 

efficient maps, but only to increase the chances of doing so. The 

details of this ordering will now be discussed. 

(7.3.2.1) PROCESS AND MEMORY ORDERING 

Firstly the processes and memories of the program are ordered into a 

process memory list. The first element in this list is the process which 

makes the most memory accesses to all of the programs memories. That is 

the process with the maximum of the function 

NUMBER_CYCLES_PER_PROCESS(PROCESS) = 

~ PROCESS_HEMORY_NUMBER_CYCLES[PROCESS,MEMORYJ ) 

all memory 

Thereafter the elements are selected one by one and appended to the 

list. The criterion used in this selection is based upon the evaluation 

of the following functions at each selection. 

NUMBER_ACCESSES_BY_PROCESS(PROCESS) = 

~ PROCESS_MEMORY_NUMBER_CYCLES (PROCESS,MEMORY) 

All memory 

in the list· 

NUMBER_ACCESSES_BY_MEMORY(MEMORY) = 

PROCESS_MEMORY_NUMBER_CY~LES (PROCESS,MEMORY) 

All processes 

in the list 

These values are computed for all the processes and memories that 

are not in the list. The element which has the highest NUMBER_ACCESS 

value is the one choosen. 

As an example the program in figure(7.2) is used. The process with 

the most overall memory accesses is PROCESS_2, with 318 accesses. This 

becomes the first in the list. The next element will be a memory, and 
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MEMORY_4 is the one that PROCESS_2 accesses the most. The number of 

accesses between the elements of the list is 212. MEMORY_1 will be 

choosen for the third element, it increases the number of accesses by 

80. The fourth element will be a process, PROCESS_1, since it increases 

the accesses the most with 30. The list would continue to be constructed 

in this manner, resulting in 

PROCESS_2(0), MEMORY_4(212), MEMORY_1(80), PROCESS_1(30), 

MEMORY_2<40), PROCESS_3(33), HEHORY_3(73). 

The numbers in brackets represent the increment added to the total 

number of accesses for each element. 

(7.3.2.2) PROCESSOR AND STORE ORDERING 

The ordering for processes and memories is done only once for the 

entire allocation. However at each search step an ordered processor or 

store list is required for the element that is to be assigned next. The 

resources in this ordered list come from the allowed processor or store 

set of the element. To demonstrate this, the first element of the 

process memory list above might have the allocation constraint 

PROCESS_2 -> [ PROCESSOR_1, PROCESSOR_2 J 

if the architecture of figure(7.1) is used. The second element is a 

memory and might have 

MEMORY_4 -> [ STORE_1, STORE_2, STORE_3, STORE_4 J 

These resource element sets may be reduced by various constraint 

reductions, but until that happens the resource sets as shown will be 

used. They may be ordered either 

A> by calculating the throughput obtainable when 

as~igned to each resource element in turn, and 

sort the list of resource elements, or 

the element is 

using this to 

B) by ordering the processor or store list using some heuristic 

principle. 
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No definite algorithm providing optimal performance in all cases was 

found. Instead the methods used to sort the lists were choosen on the 

basis of what appeared to give the best results. The performance of 

these methods depend crucially upon the kind of computer architecture 

that is being used. Of course they will also be infLuenced by the 

structure of the program. However this structure will vary widely 

between different programs, while the computer architectures being used 

will show much less variation. Consequently, only the structure of the 

computer architecture is taken into account. In this application the 

kinds are best divided into two classes-

A) Homogeneous architectures, where every processor has access 

(directly or indirectly) to every store of the computer system. 

An example is the architecture in figure(7.4>. A homogeneous 

architecture implies that a process may' be assigned to any 

processor and still be able to access any of its memories, 

regardless of what stores they may end up being assigned to. 

Therefore processes can initially be assigned to any processor 

and still have a good chance of obtaining a legal, complete 

mapping. So in this case a good approach is to ignore the 

memories and to attempt to assign a process to the processor 

which has the least number of other processes already assigned 

to it or allowed to be assigned to it. In other words in a 

homogeneous architecture the processors are sorted upon the 

number of processes that are allowed to them. 

For an example of this, assume the following constraints 
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PROCESS_1 -> [ PROCESSOR_1, PROCESSOR_2, PROCESSOR_3 ] 

PROCESS_2 -> [ PROCESSOR_1, PROCESSOR_2 J 

PROCESS_3 -> [ PROCESSOR_1 J 

In this situation only PROCESS_1 can ever be assigned to 

PROCESSOR_3 and so this is the best choice for this process 

(without knowing any additional information). On the other hand 

PROCESSOR_1 can have all three processes assigned to it, and so 

there is a greater chance, for any process being assigned here, 

of having to share the processor with another process. So this 

processor should be last in any list. With this in mind the 

processor list can be constructed. The processors have the 

following numbers of processes able to be assigned to them-

PROCESSOR_1 3, PROCESSOR_2 2, PROCESSOR_3 1 

and so the processor list for PROCESS_1 is 

( PROCESSOR_3, PROCESSOR_2, PROCESSOR_1 ) 

and the list for PROCESS_2 is 

( PROCESSOR_2, PROCESSOR_1 ) 

Given this ordering for processors, the ordering stragety used 

for store list of a memory element is to order on the 

throughput information. That is, the memory is assigned to each 

of the stores in turn and the throughput obtained from the 

resulting partial allocation map is used for sorting. 

B) Nonhomogeneous architecture, where the processors can only 

access some of the stores. This is the case for the 

architecture of figure(7.1), where STORE_1 and STORE_4 are not 

accessible to PROCESSOR_2 and PROCESSOR_1 respectively. In this 

situation it was found to be better to order the store List of 

each memory element in the following manner. The stores are 

ordered so that the stores that are closest to the processors 

are first in the list. Here the closeness of a store is taken 
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to mean the number of processors that can access the store. 

Thus a store that has only one processor accessing it will be 

closer to that processor than a store that is accessed by this 

processor and one other processor. By example, the store 

STORE_1 is closer to PROCESSOR_1 (figure(7.1)) than is store 

STORE_2. This is because the first store is only accessed by 

the processor, while the second store is accessed by both 

processors. 

The rational for this choice is that a memory placed upon a 

close store is Less Likely to be subject to memory interference 

from the memory accessing patterns of other processors. 

Furthermore close stores are more Likey to be directly 

accessible to the processor, and thus have faster access times, 

while distant stores are Likely to be accessed via buses, and 

be slower to access. 

Having ordered the store 

of a process element 

information. 

List in this way, the processor List 

is ordered using the throughput 

The ordering of each store or processor List is carried out by 

actually obtaining the allocation map for each possible assignment. This 

is done by starting with the current partial allocation map and 

assigning the memory or process to each of its allowed stores or 

processors. A new partial map is obtained in each case and these are 

ordered using the techniques discussed above. An example is where an 

allocation has proceeded to where the first element in the process 

memory List, PROCESS_2, has been assigned. The next element is to be 

MEMORY_4 and it may be assigned t·o the stores as shown-

MEHORY_4 -> [ STORE_1, STORE_2, STORE_3 J 

(ignoring other constraints). From here the partial map 

corresponding to each of these stores is constructed, and the through 

throughput computed. Thus 
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Partial maps 

PROCESS_2 -> [ PROCESSOR_1 ] 

MEMORY_4 -> [ STORE_1 ] 

PROCESS_2 -> [ PROCESSOR_1 ] 

MEMORY_4 -> [ STORE_2 J 

PROCESS_2 -> [ PROCESSOR_1 ] 

MEMORY_4 -> [ STORE_3 ] 

throughput = 2x 

throughput = 1x 

throu~hput = 1x 

where the throughput is in multiples of some constant x. (To obtain 

this throughput pattern it is assumed that the store STORE_1 is faster 

than the other stores.) From this, the stores may be ordered, which will 

produce 

( STORE_1, STORE_2, STORE_3 ) 

In this case the order is the same for both methods. 

The throughput for each map is always calculated, irrespective of 

which method is used to order the resources. It is used to discard any 

map whose throughput is less than the throughput of the best final map 

produced so far. To illustrate, the example immediately above is used. 

If it had so happened that in some previous search a final mapping had 

been found, then its throughput will have been kept. If this was 1.Sx 

then the two partial maps above for the stor~s STORE_:_2 and STORE_3 will 

be excluded from any further searches. They have a throughput that is 

less than 1.Sx, so no matter 

solution that has a better 

what happens they will never generate a 

throughput 'than the one already found. 

After this elimination stage, the first element in the newly ordered 

list is choosen and the map that was derived for this is used as the 

basis of the next search step. The other maps are not discarded but are 

retained and used for subsequent assignments at this search level, after 

backtracking. This can be regarded as a one level deep breadth first 

search performed at each search step to calculate and order the most 

profitable search paths to follow next. 
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(7.4) SUMMARY 

============= 

In summary the search pattern choosen is a modified depth first 

search with backtrack. This is based upon the method of implicit 

enumeration. The general memory interference model and constraint 

reduction are used at each partial allocation to reduce the number of 

branches traversed. The order of the elements is choosen to obtain fast 

and Legal allocations as early as possible in the search. In the 

following sections the constraint reduction rules are described in 

depth. 

(7.5) CONSTRAINT REDUCTION 

----------------------------------------------------

Constraint reduction involves examining each process and memory 

element. If there are any restrictions derivable from the information in 

the current mapping then this can be used to reduce the element~ 

allocation constraint. Ideally, using a perfect constraint reduction 

algorithm, such restrictions would result in an optimal final mapping 

without the necessity for any backtracking searches. Unfortunately such 

an algorithm is not known, instead it is a case of constructing a set of 

examination and reduction rules which can be applied easily. 

The rules that have been investigated utilize the following 

information 

Memory and store size information. 

Accessibility information. 

The same and different constraint information. 

From this information it is possible to derive rules to 

Reduce the constraints 

constraints. 

Reduce the constraints 
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A discussion of these techniques, as demonstrated in the thesis 

research, is given in the following. 

(7.5.1) CONSTRAINT REDUCTION USING STORE SIZE INFORMATION 

In assigning memory elements to stores, only enough space to hold 

the memory is used. Also successive memory assignments are allocated to 

successive regions in the store. Furthermore there is no provision in 

the allocator algorithms for a memory element to straddle a store 

boundary. Thus the unused space in a store for a particular partial 

mapping is easily obtained, and only memories that will fit into this 

space are able to be assigned to that store. Consequently this can be 

used to restrict the allowable store set of a memory constraint. This is 

done by calculating the intersection of the allowable store set of each 

memory element with the set of all the stores that currently have enough 

space to accept this memory. In the demonstration program this is called 

the ALLOWED_MEMORY_SIZE constraint reduction operation. 

As an example consider the computer architecture and program in 

figure(7.5). The initial constraints for the memories are 

HEHORY_1 -> [ STORE_1, STORE_2 J 

HEMORY_2 -> [ STORE_1, STORE_2 J 

HEHORY_3 -> [ STORE_1, STORE_2 J 

If the HEHORY_1 element is assigned to the STORE_1 resource, then 

the remaining free space in this store is only 124 bytes. This is not 
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enough for the other two memories, and so their constraints will be 

reduced down to 

HEHORY_2 -> ( STORE_2 J 

HEHORY_3 -> ( STORE_2 J 

A similar situation exists for the allocation of processes to 

processors. A processor accesses a number of stores, and these will have 

varying amounts of unused space. The processor may also have a number of 

processes already fixed to it, and these processes may access memory 

that has not yet been fixed. Thus the total unused store space available 

to a processor is found by summing its unused store and subtracting the 

space that will be occupied by all of the unfixed memory of those fixed 

processes. Thus any unassigned process whose combined unassigned memory 

size is Larger than this total unused store space will not be able to be 

assigned to this processor. Note that there is still no guarantee that 

the process will fit even if the unused store space is big enough, since 

here the sizes of the individual memories and stores are not taken into 

account. 

This constraint 

intersections in the 

reduction. In the 

ALLO~ED PROCESS_SIZE. 

reduction is 

same fashion 

program this 

performed 

as the 

operation 

by obtaining 

memory size 

is given 

the set 

constraint 

the name 

To demonstrate this reduction, the architecture and program of 

figure(7.6) is used. Assume an initial assignment of PROCESS_1 to 

PROCESSOR_1 and HEHORY_3 to STORE_2. The nonfixed memory of PROCESS_2 

will now be HEHORY_~ and HEHORY_S, giving a nonfixed memory size of 
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(512+512). The size of the unused store space attached to PROCESSOR_1 

will be 1024 from STORE_1. However the two memories HEHORY_1 and 

HEHORY_2 that PROCESS_1 accesses have to be allocated to this store 

space, and so the size of the unused store space of PROCESSOR_1 is 

(1024-512-512), which is zero. Thus PROCESS_2 with a nonfixed memory 

size of 1024 can not go to this processor. Thus its allocation 

constraint is modified by 

PROCESS_2 -> [ PROCESSOR_1, PROCESSOR_2 J - [ PROCESSOR_1 J 

-> [ PROCESSOR_2 J 

which in this case fixes the process. 

Another constraint reduction 

mismatches is concerned with the 

Same_Hemory_Constraint like 

based upon the detection of 

Same_Constraints. If there 

[ HEHORY_1 , HEHORY_2 J -> SAHE 

[ [ STORE_1 , STORE_2 J , [ STORE_3 , STORE_4 J J 

size 

is a 

then the summation of all of the unused space in each of the same 

target sets (there are two in this example, one containing STORE_1 and 

STORE_2 and the other containing STORE_3 and STORE_4) has to be greater 

than or equal to the size of all the nonfixed memory elements in the 

same constraint. Otherwise these memories will not fit into the stores 

of the same target ~et as required by the constraint. For example, if 

STORE_1 and STORE_2 do not have enough combined space to fit all of the 

currently unfixed memory in the memory set~ then this target store set 

can be eliminated and thus the constraint becomes 

[ HEHORY_1 , HEHORY_2 ] -> SAHE [ [ STORE_3 , STORE_4 J J 

This is named 

demonstration program. 

is also provided, 

SAHE_HEHORY_SIZE constraint reduction in the 

An analogous operation called SAHE_PROCESS_SIZE 

which works in a similar way on 

Same_Process_Constraints. 

Finally there is one more reduction operation based upon the 

examination of memory and store sizes which is applicable. This uses a 

set of memory elements that can be allocated to a set of store resource 
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elements. If both of these sets are choosen so that none of the memory 

elements are assignable outside of this store set, then the total size 

of all the unfixed memory elements has to be less or equal to the total 

size of the unused space in this store set. If not then any further 

attempts to assign the memory elements will be bound to fail. The 

current map search can be terminated at this point. An example map 

allocation where this is applicable can be 

MEMORY_1 -> [ STORE_1, STORE_2 J 

MEMORY_2 -> [ STORE_1, STORE_2, STORE_3 J 

MEMORY_3 -> [ STORE_2 J 

Here the store set is [STORE_1, STORE_2, STORE_3J and the memory set 

is [MEMORY_1, HEMORY_2, MEMORY_3J. 

Partitioning the memory elements into sets like these - is easily 

achieved. To start, any memory element not yet fixed is selected, and 

the set of all its allowable store is obtained. Then from this store set 

the set of all unfixed memory that can be assigned to this is derived. 

If this memory set is identical to the starting memory set then a 

partition has been found. If not the process is repeated and eventually 

a partition will be found. Given such a partition, it is a simple step 

to check the sizes of the memories and stores. If there are any memories 

Left over that are not in any partition found so far, then this 

algorithm is repeated. 

As an example 

obtained. The 

the partition sets for the constraints 

starting point is taken to be the 

HEMORY_1 -> [ STORE_1, STORE_2 J 

above will be 

first constraint 

Now the memories that can be allocated to STORE_1 are 

[HEHORY_1, HEHORY_2J and the memories that can be allocated to STORE_2 

are [MEMORY_1, MEMORY_2, HEHORY_3J. The union of these gives 

[ MEHO~Y_1, HEMORY_2, MEMORY_3 J 

The stores that these may go to are [STORE_1, STORE_2J, 

[STORE_1, STORE_2, STORE_3J and [STORE_2J respectively. The union of 

these sets gives 
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[ STORE_1, STORE_2, STORE_3 J 

This activity is repeated, and will give the same two sets. Thus the 

partition sets have been found. 

This method is similarly applicable to processes. In the program 

these two operations are known as HEMORY_PARTITION_SIZE and 

PROCESS_PARTITION_SIZE. 

(7.5.2) CONSTRAINT REDUCTION BASED UPON ACCESSIBILITY 

Any process in the program which accesses a particular memory must 

be able to reach this memory when the progrpm is running on the 

architecture. Thus the store to which this memory is assigned must be 

accessible by the processor onto which the process has been assigned. 

Conversely the processor to which a pro~ess is assigned must also be 

able to access the store to which a memory of this same process is 

assigned. 

This condition is used as the basis of a constraint reduction 

operation. If this constraint is to be applied to a memory element, then 

the first step is to find the set of all process~s that access this 

memory. The set of all processors to which these processes may be 

assigned is found by using this process set. Next the set of all stores 

accessed by all of these processors is obtained. The resulting set of 

stores represents all the stores to which the memory can be assigned. 

The set intersection of this with the current set of allowable stores 
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for this memory will then provide the new and possibily reduced 

allowable store set. 

This constraint reduction proceeds similarly for an initial process 

element. These operations are known as the ALLOWED_MEMORY_SET and the 

ALLOWED_PROCESS_SET reduction operations. As an example the computer and 

program of figure(7.7> are used. If PROCESS_1 is assigned to 

PROCESSOR_1, then MEMORY_1 has to be assigned so that it is accessible 

from PROCESSOR_1. The only stores satisfying this are [STORE_1, STORE_2] 

and so the constraint on HEMORY_1 is 

HEHORY_1 -> [ STORE_1, STORE_2 ] 

Under the circumstances where the computer architecture design is 

such that every processor is able to access every store (either directly 

or indirectly via buses), then this constraint reduction operation will 

never result in any changes in the constraints. Thus the application of 

this operation may be avoided as an implementation efficiency measure. 

The architecture of figure(7.8). is a typical example. No matter 

where a process may be positioned, it can access every store and so 

there is no restrictions on the allowed store sets. The same applies to 

allowed processor sets. 

(7.5.3) PROXIMITY CONSTRAINT INFORMATION 

A Same_Constraint like the following 
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[ MEMORY_1 , MEHORY_2 J -> 

SAHE [ [ STORE_1 , STORE_2 J , [ STORE_3 , STORE_4 J J ; 

requires that both HEMORY_1 and MEMORY_2 must be allocated either to 

the stores in first target set or to the stores in the second target 

set. However if it so happens that any one of the memories can not be 

assigned to any of the stores STORE_1 and STORE_2 of the first target 

set, then this Same_Hemory_Constraint can be modified by eliminating 

this now redundant target store set. This results in 

[ MEHORY_1 , MEMORY_2 ] -> SAME [ [ STORE_3 , STORE_4 ] J ; 

Such reductions are equally applicable to both 

Same_Process_Constraints and Same_Memory_Constraints, and are known as 

SAME_PROCESS_SET_INDIVIDUAL and SAME_MEMORY_SET_INDIVIDUAL reductions. 

A similar kind of operation is possible with Different_Constraint 

sets. Given 

[ MEMORY_1 , MEMORY_2 J -> DIFFERENT 

[ [ STORE_1 , STORE_2 J , [ STORE_3 , STORE_4 ] ] ; 

then if none of the memories can be assigned to the stores STORE_1 

and STORE_2, this target store set may be removed from the constraint. 

Again this is applicable to processes, and these two operations have the 

names DIFFERENT_MEMORY_SET_INDIVIDUAL and 

DIFFERENT_PROCESS_SET_INDIVIDUAL. 

The difference in these operations upon the same and the different 

constraint arise because a Same_Constra~nt specifies that all of its 

elements are to be allocated into the same resource target set. Whereas 

a Different_Constraint specifies that only one element is to be assigned 

to any one target set. 

These operations will reduce the constraint sets of the proximity 

constraints. There are several reduction operations that work in the 

opposite direction, and reduce the constraints of elements based upon 

the information in the proximity constraints. This kind of reduction is 

demonstrated in the following, 



SAME [ MEMORY_1 , MEMORY_2 ] -> SAME 

[ [ STORE_1 , STORE_2 J [ STORE_4 , STORE_S ] ] 

MEMORY_1 -> [ STORE_1 , STORE_2 , STORE_3 , STORE_4 , STORE_S ] 

MEMORY_2 -> [ STORE_1 , STORE_2 , STORE_3 , STORE_4 , STORE_5 ] 

In this example the Same_Constraint restricts the two memory 

elements to being either on stores 1 and 2, or stores 4 and 5. STORE_3 

is never possible, and so this store can be removed from the two 

following memory constraints. In general this is achieved by finding the 

union of all of the constraint sets in the Same_Constraint, and then 

obtaining the intersection of this with the memory constraint set. This 

produces the new memory constraint set. The above reduction operations 

are equally applicable to processes and memories, and to different and 

same proximity constraints. Their names, as used in the implementation, 

are SAME_PROCESS_SET, SAME_MEMORY_SET, DIFFERENT_PROCESS_SET and 

DIFFERENT_MEMORY_SET. 

A reverse activity, of reducing the same sets to correspond to the 

memory element constraint sets, is also possible. For example consider 

[ MEMORY_1 , ... ] ->SAME 

[ [ STORE_1 , STORE_2 , STORE_3 ] ••. J 

MEMORY_1 -> [ STORE_1 , STORE_2 ] 

Here the STORE_3 resource can never be assigned to the MEMORY_1 

element and so can safely be eliminated- from the Same_Constraint. 

However the proximity constraints are only used to restrict the element 

constraints, they are not used to generate any element constraint 

directly. Thus it turns out that any superfluous resources in the 

constraints sets Like in the above do not matter and so their reduction 

is not carried out. 

To make this clearer, consider an example of a SAME_MEMORY_SET 

constraint reduction. It initially starts with the constraints 

[ MEMORY_1, MEHORY_2 J -> 

SAME [ [ STORE_1, STORE_2 J, [ STORE_3, STORE_4 ], [STORE_SJ ] 

HEHORY_1 -> [ STORE_1, STORE_2, STORE_S, STORE_6 J 

MEMORY_2 -> [ STORE_3, STORE_4, STORE_S, STORE_6 J 
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The SAME_MEMORY_SET constraint will reduce the constraints for the 

memories to 

MEMORY_1 -> [ STORE_1, STORE_2, STORE_S J 

MEMORY_2 -> [ STORE_3, STORE_4, STORE_S ] 

since STORE_6 is not in the Same_Constraint. If now it is assumed 

that some other constraint results in the STORE_S resource being removed 

from the memory constraints, 

MEMORY_1 -> [ STORE_1, STORE_2 ] 

MEMORY_2 -> [ STORE_3, STORE_4 J 

then this store could also be removed 

However irrespective of whether or not 

SAME_MEMORY_SET constraint reduction will 

constraints in any way. Thus there is 

from the Same_Constraint. 

STORE_S is present, the 

not influence the memory 

no need to remove it. 

Finally there are some extra constraint reductions applicable only 

to the Different_Constrain~s. Starting with a constraint of the form 

[ PROCESS_1 , PROCESS_2 J -> DIFFERENT 

[ [ PROCESSOR_1 , PROCESSOR_2 ] , [ PROCESSOR_3 J J 

If the PROCESSOR_3 target 

reduction step, there will 

Consequently the two processes 

set is removed in some other constraint 

be only - one target set remaining. 

can not be assigned to different targets 

sets and so the current mapping will fail. This reduction operation, of 

counting and comparing the number of elements, is valid for both· process 

and memory Different_Constraints and is known as 

DIFFERENT PROCESS_NUMBER and DIFFERENT_MEMORY_NUMBER. 

Alternatively, using the same example, if in some previous search 

move the PROCESS_2 element had been assigned to PROCESSOR_3, then any 

other processes in this constraint can not be assigned to the same 

target set containing this processor. This fact is recorded by removing 

the PROCESS_2 element from the process set and removing the target set 

containing PROCESSOR_3. Thus the Different_Constraint set now Left is 
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[ PROCESS_1 ] -> DIFFERENT [ [ PROCESSOR_1 , PROCESSOR_2 ] ] 

This operation and its partner are called DIFFERENT_PROCESS_REHOVE 

and DIFFERENT_MEMORY_REMOVE. 

(7.5.4) ELIMINATION OF SYMMETRICAL SEARCHES 

Consider a computer architecture of three identical processors. Each 

processor has its own identical Local memory and all processors access a 

common global memory. To be allocated to this architecture is a program 

with two processes, each accessing a Local memory and both processes 

accessing a common memory. These are depicted in figure(7.9>. 

If the search method so far described is used, then the first 

process of the program will be assigned to one of the processors, 

followed by an attempt to assign all of the others. At the completion of 

this search a successful assignment may have been found, in which case 

it will have been recorded. The search will then proceed by reassigning 

the first process to the second processor, and carrying out the search 

again to find a new assignment. This would be repeated and another 

assignment found for the third processor. In this. situation, however, 

the three processors and their memory structures are identical. The 

final map produced at the completion of any of the three searches can 

only have identical efficiencies. Thus the subsequent two searches are 

unnecessary. The first process can be correctly assigned to only one of 

the processors without eliminating any significant search branches. 



In the following the detection of such symmetries or redundancies in 

the search, and their removal, is described. This is divided into the 

topics 

Under what conditions do symmetries exist? 

How can they be detected? 

How can they be eliminated from the search? 

How can the detection o~ symmetries be made more efficient? 

(7.5.4.1) DEFINITION OF A SYMMETRICAL ALLOCATION • 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A symmetrical allocation situation exists for a program element if 

two or more of its allowable resource elements are judged to be 

equivalent. The conditions for a pair of resource under which this 

equivalence exists are 

They are the same kind, either BANK, BUS, PROCESSOR or STORE. 

They have identical properties, depending on the kind. For example 

stores must have identical rewrite and access times and be of the 

same size. 

They are conn~cted to other resources in an identical pattern. For 

example if one processor has access to two stores, then any other 

equivalent processor will also have access to two stores. 

They are connected to equivalent resources, that is, in the 

previous example, the two stores of :the first processor need to be 

equivalent to the, two stores of the second processor. 

Finally if two processors (or stores) are identical then the sets 

of processes (or memories) that can be allocated to these 

resources must be identical. 

To demonstrate these conditions, the simple computer structure 

defined at the start of this section is used. 

147 



The three processors and the three local stores have identical 

properties. Thus the three processors of figure(7.9) are identical since 

they are the same kind, have the same properties, are each connected to 

one Local store and one global store, and each Local store is also 

equivalent. Similarly the three Local stores are equivalent. It can be 

seen that the definition for equivalence is recursive, since the 

processors are only equivalent if their attached stores are, and the 

stores are only equivalent if their accessing processors are. 

The last conditionr-'Listed for equivalence has not been mentioned in 

this example. To demonstrate this condition, consider 

figure (7.9). If the user had imposed the constraint 

only allowed to be allocated onto either PROCESSOR_1 

the program of 

that PROCESS_1 is 

or PROCESSOR_2, 

then the three processors are no longer equivalent. This arises from the 

observation that if PROCESS_2 is fixed to PROCESSOR_3 then it can never 

be in the same processor as the other process. If PROCESS_2 is allocated 

to PROCESSOR_1 or PROCESSOR_2, then it may eventually be assigned to the 

same processor as the other process. In these two cases, the execution 

speeds of the final map allocations will be different. 

Thus in this situation only the processors 

PROCESSOR_2 are equivalent. This therefore implies 

STORE_1 and STORE_2 are equivalent, since now STORE_3 

processor not equivalent to the processors accessing 

stores. 

(7.5.4.2) DETECTING EQUIVALENCE 

PROCESSOR_1 and 

that only stores 

is accessed by a 

the first two 

A set of equivalent resource "elements is called an equivalent 

partition set. To find these sets the whole resource graph is examined. 

For any architectures four initial partitions are always produced, one 

e~ch for all the bus, bank, store and processor resource elements in the 

resource graph. These sets are then split up into further separate sets 

on the basis of information such as the cycle speeds and store sizes of 

each particular architecture. This information is called nontopological 

information. Any resource element that ends up in a partition set by 

itself has no equivalents. 

left after this stage, 

If there are any nonsingleton partition sets 

then the sets are further partitioned using 
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topological information. Topological information is information gained 

from considering the connection patterns of the computer architecture. 

To achieve· the topological partitioning, every resource element that still 

has a chance of being equivalent to some other is examined. A list of all 

the other resource elements that it accesses or is accessed by it is produced. 

These attached resource elements are described by the current partition 

they belong to. This allows the elements of the same partition to be. 

compared on the basis of their attachments, and any two elements that differ 

in this are no longer in the same partition and are separated. This 

comparison of every likely resource element is repeated until no further 

partit ion reductions are made, or until every resource element is in its 

own partition. The resulting partition sets contain the equivalent resources. 

As an example of this the step by step derivation of the equivalence 

partitions of the architecture in diagram(7.9) is given. This exercise 

assumes that the user has imposed a constraint of fixing a process to 

the PROCESSOR_1 resource. 

At first the partitions are 

1. [ PROCESSOR_1 , PROCESSOR_2 , PROCESSOR_3 J 

2. [ STORE_1 , STORE_2 , STORE_3 , STORE_4 J 

where the numbers represent an arbitrary unique labeling of the 

sets. 

The only nontopological information applicable here is the fact that 

PROCESSOR_1 already has a process element assigned to it (via the 

assumed user constraint). Therefore PROCESS_1 is different from both 

PROCESS_2 and PROCESS_3, thus the new partitions are 

1. [ PROCESSOR_1 J 

2. [ PROCESSOR_2 , PROCESSOR_3 J 

3. [ STORE_1 , STORE_2 , STORE_3 , STORE_4 J 

Now the topological information is applied by constructing the 

attached sets. In the following list the resource element appears on the 

tefthand side. The set of attached resources that it accesses or is 
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accessed by is in the middle. On the right is a List representation of 

this set containing the Labeling of the partition set which the resource 

element belongs to. 

PROCESSOR_1 [ STORE_1 , STORE_4 ] ( 3 , 3 ) 

PROCESSOR_2 [ STORE_2 , STORE_4 ] ( 3 , 3 ) 

PROCESSOR_3 [ STORE_3 , STORE_4 ] ( 3 , 3 ) 

STORE_1 [ PROCESSOR_1 ] ( 1 ) 

STORE_2 [ PROCESSOR_2 ] ( 2 ) 

STORE_3 [ PROCESSOR_3 J ( 2 ) 

STORE_4 [ PROCESSOR_1 , 

PROCESSOR_2 , 

PROCESSOR_3 ] ( 1 , 2 , 2 ) 

From this it can be seen that STORE_1 and STORE_4 are different from 

the other stores and from each other, so the new derived partition sets 

are 

1. [ PROCESSOR_1 ] 

2. [ PROCESSOR_2 , PROCESSOR_3 ] 

3. [ STORE_1 ] 

4. [ STORE_2 , STORE_3 ] 

5. [ STORE_4 ] 

And so redoing th~ accessibility sets gives 

PROCESSOR_1 [ STORE_1 , STORE_4 ] ..( 3 , 5 ) 

PROCESSOR_2 [ STORE_2 , STORE_4 ] ( 4 , 5 ) 

PROCESSOR_3 [ STORE_3 , STORE_4 ] ( 4 , 5 ) 

STORE_1 [ PROCESSOR_1 ] ( 1 ) 

STORE_2 [ PROCESSOR_2 ] ( 2 ) 

STORE_3 [ PROCESSOR_3 ] ( 2 ) 

STORE_4 [ PROCESSOR_1 , 
PROCESSOR_2 , 
PROCESSOR_3 ] ( 1 , 2 , 2 ) 

This now indicates that PROCESSOR_2 and PROCESSOR_3 are equivalent 

and that STORE_2 and STORE_3 are equivalent, with no other equivalencies 

existing. Since this agrees with the Last derived partitioning, the 

process can terminate with this as the final partition. 
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(7.5.4.3) SPEEDING UP THE PARTITIONING OPERATION 

.............................................. -.. 

This partitioning into equivalence sets can be speeded up. This is 

done by making use of the observation that generally there will not be 

any equivalent resource 

the initial stages of 

elements already fixed 

elements found. This particularly applies after 

the map allocation search, where the program 

to a resource will by definition make that 

resource no longer equivalent to any other resource. Thus the detection 

of nonequivalence as soon as possible is the best policy. This is 

achieved by initially only considering the nontopological information 

such as memory and store size and the like. This does not consume much 

time. If the target resource elements are not reduced to singleton 

partition sets, then the full partitioning operation has to be applied. 

(7.5.4.4> PERFORMING THE CONSTRAINT REDUCTIONS 

After producing the partition sets of a program element, the next 

step is to use these sets to reduce the elements constraint. Since the 

partition sets are produced by considering the entire architecture, they 

may contain resources to which the program element can not be allocated. 

These are removed at this stage by producing the intersection of the 

program elements allocation constraint set with the partition sets of 

the appropriate kind and then using these resulting sets. For example if 

a constraint is 

PROCESS_1 -> [ PROCESSOR_1, PROCESSOR_2, PROCESSOR_3 J 

and the equivalence partition set ls 

[ PROCESSOR_2, PROCESSOR_3, PROCESSOR_4 J 

then this partition set is reduced to the set 

[ PROCESSOR_2, PROCESSOR_3 J 

In this reduction, some of these partition sets 

representing sets of equivalent resource elements 
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element can not be assigned to. These are discarded, along with all 

partition sets containing only one element. From the remainder one set 

is choosen and used for the reduction. This will contain a collection of 

resource elements to which the program element may be assigned with 

equivalent effects, and so all but one of these resources may be 

removed. This is done by simply deleting one element from the partition 

and set subtracting the resulting set from the constraint. So for the 

partition of [PROCESSOR_2, PROCESSOR_3J, one of the processors is 

removed, perhaps resulting in CPROCESSOR_3J, and this is subtracted from 

the PROCESS_1 constraint above, giving 

PROCESS_1 -> [ PROCESSOR_1, PROCESSOR_2 J 

At this stage other partition sets possessing more than one element 

may still exist. These can not be used to reduce the constraint straight 

away, since the first reduction may have interacted with other 

constraints to change the allocation of still other elements. Two 

resources are only equivalent if they have the same elements able to be 

allocated to them, and thus this interaction may result in two 

originally equivalent resources becoming nonequivalent. Therefore the 

entire symmetry detection operation is repeated for each reduction step. 

(7.5.4.4.1) EXAMPLE SYMMETRY REDUCTION 

A complete example of symmetry removal 

figure(7.9) is developed. It is assumed 

imposed constraints. 

for the original 

tnat there are 

problem in 

now no user 

The starting point will be the constraint set for the PROCESS_1 

element, 

PROCESS_1 -> ( PROCESSOR_1 , PROCESSOR_2 , PROCESSOR_3 J 

Working on this, the symmetrical partition set produced will be 

( PROCESSOR_1 , PROCESSOR_2 , PROCESSOR_3 J 
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In other words the three processors are regarded as being identical. 

In this example PROCESSOR_1 is choosen to be the one used, and so the 

constraint set for PROCESS_1 is 

PROCESS_1 -> [ PROCESSOR_1 ] 

Now the redundant removal operation is repeated for the PROCESS_2 

element, and will result in the symmetrical partition sets 

[ PROCESSOR_1 J [ PROCESSOR_2 , PROCESSOR_3 ] 

Disregarding the first 

reducing the second set by 

set of 

[ PROCESSOR_2 J 

set since it only has one element, and 

removing PROCESSOR_2, results in a partition 

This is subtracted from the PROCESS_2 constraint allocation, and so 

the constraint now applicable is 

PROCESS_2 -> [ PROCESSOR_1 , PROCESSOR_2 J 

If there had been a third process element to be assigned, the 

partition sets for it will be 

[ PROCESSOR_1 ] [ PROCESSOR_2 J [ PROCESSOR_3 J 

and so no symmetrical reduction would have been possible for it. 

(7.5.4.5) RESTRICTIONS IN THE IMPLEMENTATION 

One factor influencing the equivalence of resource elements not 

discussed in the above is their membership in Same_Constraints or 

Different_Constraints. In the general case these may be taken into 

account also, but the implementation was simplified by regarding any 

resource in such a constraint to be nonequivalent to any other. 
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(7.5.5) CONSTRAINT REDUCTION PROPAGATION 

Processes 

( The program 
structure ) 

Memories 
(1024 bytes) 

Conunon Memory 
(1024 bytes) 

So far the constraint reduction operations have mostly been 

developed independently of each other. However it will often happen that 

reducing the constraint of one element will thereby make possible the 

constraint reduction of other elements. In extreme cases the changes due 

to just one constraint reduction may propagate and resul% in all of the 

remaining elements being fixed and thus producing a final map 

allocation. More commonly the changes will either not propagate so far, 

or just result in the production of an illegal map. 

In the Literature one example of constraint propagation is given by 

[ 23). This is for a graph problem whose vertices may take on values 

from a value set. Constraints are imposed' upon the values that vertices 

connected by a common arc may take on. The problem is to derive a value 

mapping where all constraints are satisfied. This compares with current 

research where the constraint relations are imposed by the reduction 
-

operations, with the goal of having all constraints satisfied 

corresponds to a Legal mapping. 

As a demonstration of change propagation the following example has 

been constructed, using the architecture and program depicted in 

f igure<7 .10). 

The reduction operations are carried out as follows. 

At the start the constraints are 
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PROCESS_1 -> [ PROCESSOR_1 , PROCESSOR_2 ] 

PROCESS_2 -> [ PROCESSOR_1 , PROCESSOR_2 ] 

MEMORY_1 -> [ STORE_1 , STORE_2 , STORE_3 ] 

MEMORY_2 -> [ STORE_1 , STORE_2 , STORE_3 ] 

MEMORY_3 -> [ STORE_1 , STORE_2 , STORE_3 ] 

The only applicable operation is the symmetry removal operation. 

If this is applied to PROCESS_1 first, then the constraint set for 

this element will be reduced to 

PROCESS_1 -> [ PROCESSOR_1 ] 

and now no futher reductions based upon symmetry are possible. 

Following this the ALLOWED_MEMORY_SET reduction operation will 

result in 

MEMORY_1 -> [ STORE_1 , STORE_3 ] 

MEMORY_3 -> [ STORE_1 , STORE_3 J 

because these memories are accessed by PROCESS_1 and when this 

element is fixed to PROCESSOR_1 the only stores accessible are 

STORE_1 and STORE_3. 

From here the 

produce 

ALLOWED_PROCESS_SIZE reduction operation will 

PROCESS_2 -> [ PROCESSOR_2 J 

because the amount of space taken up by PROCESS_1 on PROCESSOR_1 

is 2048. The total store space on PROCESSOR_1 is only 2048 and so 

PROCESS_2 can no longer fit there. 

Now the ALLOWED_MEMORY_SET operation will reduce the constraint 

set of the MEMORY_3 element, since it has to be accessible to both 

PROCESS_1 and PROCESS_2, which are now on different processors. 

Thus 



MEMORY_3 -> [ STORE_3 J 

which means that ALLOWED_MEMORY_SIZE will operate on the 

constraint sets of MEMORY_1 and MEMORY_2. This produces 

MEMORY_1 -> [ STORE_1 J 

HEHORY_2 -> [ STORE_2 J 

and this completely fixes the program to the architecture without 

any searches being necessary. Of course in the general situation 

this rapid conclusion will rarely occur. 

In the allocation program the change propagation is implemented by 

organizing the constraint reductions into passes. Each pass performs all 

of the required reduction operations, and a record is kept of all 

elements and proximity constraints which actually change. At the end of 

each pass this information is used as the basis for choosing which 

elements are to be examined in the next pass. This process is terminated 

when a pass does not generate any changes. Deciding which elements to 

inspect in the next pass are is fairly straightforward. For example, if 

a process is fixed to a processor, then there may be stores that this 

processor cannot access. Therefore the memories of the process can no 

Longer be assigned to these stores. Thus in the next pass all the 

memories of all processes that have just been fixed need to be examined 

by the ALLOWED_MEMORY_SET constraint reduction operation. The complete 

list of such rules is described in greater detail in appendix(C). 

(7.6) EXPERIMENTAL RESULTS 

========================== 

An implementation in Pascal was produced to demonstrate the 

allocation search algorithms. This implementation worked as expected in 

producing Legal allocations from a reduced search space. However the 

reduction.achieved in the search space was only sufficient to allow the 

optimal allocation of small programs. 

1~ 
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(7.6.1) DEMONSTRATION PROBLEM 

A typical demonstration problem was the allocation of a three 

process eleven memory program to a three processor four store computer 

architecture. In this architecture each processor has' its own local 

store and all the processors access the fourth global store, as is shown 

in figure(?.11). The program used was the following-

Size of the memories, randomly generated. 

MEMORY_O 237 

MEMORY_4 663 

MEMORY_1 848 

MEMORY_5 507 

MEMORY_2 1406 MEMORY_3 540 

MEMORY_6 397 MEMORY_? 1277 

MEHORY_8 2117 HEHORY_9 1348 HEMORY_10 1656 

Number of process to memory accesses, randomly generated such that 

the accesses are zero, and the other h~lf are between 0 and 5000. 

PROCESS_O P_ROCESS_1 PROCESS_2 

MEMORY_O 1786 0 2214 

HEHORY_1 582 3054 0 

HEHORY_2 0 0 2825 

HEHORY_3 1909 0 0 

HEHORY_4 0 3232 0 • 

MEHORY_5 2246 0 3763 

HEHORY_6 4226 0 0 

HEHORY_? 1324 2634 0 

HEHORY_8 0 0 1061 
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MEMORY_9 

MEMORY_10 

4610 

0 

0 

1849 

2123 

0 

Here this information 

convenience. 

is presented in an array format for 

For this example the total number of possible final allocations, 

ignoring all size and access constraints for the moment, is 

3 11 8 Three processes to three processors 

3 * 4 = 10 (approximately) Eleven memories to four stores. 

but the number of actual search steps performed by the allocation 

program was only 11 for the particular program specified. The total 

execution time required for this (on a Burroughs B6800) was 130 seconds 

or about 12 seconds per search step. Of this time 60 percent was spent 

within the simulator code obtaining throughput estimations. The 

allocation map found was 

PROCESS_O -> [ PROCESSOR_1 J PROCESS_1 -> [ PROCESSOR_O J 

PROCESS_2 -> [ PROCESSOR_1 J 

MEMORY_O -> [ STORE_1 ] MEHORY_1 -> [ STORE_3 ] 

HEMORY_2 -> [ STORE_1 ] HEMORY_3 -> [ STORE_3 ] 

HEMORY_4 -> [ STORE_O ] MEMORY_S -> [ STORE_1 ] 

MEMORY_6 -> [ STORE_1 ] MEMORY_? -> [ STORE_3 ] 

HEMORY_8 -> [ STORE_3 ] MEHORY_9 -> [ STORE_1 ] 

MEMORY_10-> [ STORE_O ] 

The throughput calculated for this wa~ 14.2. 

, (7 .6.2) LARGER PROBLEMS 

Unfortunately, for Larger problems the allocation program does not 

complete t~e search in a reasonable time period. The graphs in 

figure(7.12) presents the times to completion for a range of computer 

architecture sizes and program sizes. The architecture used for this is 

shown in figure(7.13,left). The size of each memory of the program was 

choosen randomly, as were the number of cycles value between each 

process and memory. 
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There were three sets of trials 

• •• 
P processors, P stores 

performed. They were for 

1) An architecture with 3 processors and 4 stores. A program with 

11 memories and a number of processes that is varied from 3 to 

8. 

2) An architecture where the number of processors is varied from 3 

to 6~ and the corresponding number of stores is varied from 4 

to 7. A program with 11 memories and 6 processes. 

3) An architecture with 3 processors and 4 stores. A program with 

3 processes and a number of memories that is varied from 11 to 

41 by fives. 

Each of these three trials was performed with the throughput factor 

having the values 100 percent, 50 percent and 25 percent. This 

throughput factor specifies how much better a partial solution has to be 

in comparsion to an already obtained fi~al solution before it is 

investigated any further. Thus if the throughput factor is 100 percent, 

only those partial solutions that 

of the throughput of the latest 

further. 

have a throughput that is twice that 

final msp will be considered any 

It can be seen that even for the smallest of these trials the 

execution time is high, and this increases with increasing problem size. 

It does not increase in a uniform manner, since the variations in the 

programs and architectures allow the search algorithms to perform better 

than usual in some cases. 

Also presented below is a table showing the number of search steps 

needed for the searches shown in figure(?.12), and the maximum possible 

number of search steps. 
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Problem kind 

Problem 1 

3 processors 

4 stores 

11 memories 

N processors 

Problem 2 

N processors 

N+1 stores 

11 memories 

6 processes 

Problem 3 

3 processors 

4 stores 

3 processes 

N memories 

N = 3 

N = 4 

N = 5 

N = 6 

N = 7 

N = 8 

N = 3 

N = 4 

N = 5 

N = 6 

N = 11 

N = 16 

N = 21 

N = 26 

N = 31 

N = 36 

N = 41 

Number of search steps 

of the trial with a 

throughput factor of 

100 50 25 

8 

7 

4 

14 

10 

10 

14 

26 

9 

15 

8 

11 

24 

16 

22 

27 

34 

8 

7 

4 

19 

10 

13 

19 

36 

9 

25 

8 

11 

42 

16 

37 

87 

69 

10 

7 

4 

23 

10 

17 

23 

47 

13 

41 

10 

11 

56 

20 

79 

200 

72 

Maximum possible 

search Length 

(approximately) 

10"3 

10"4 

10"4 

10"4 

10"5 

10"5 

10"4 

10"5 

10"6 

10"7 

10"3 

10"'4 

10"6 

10"'7 

10"9 

10"10 

10"'12 

One reason why the allocation is so slow is the Length of time 

needed for one step, which in these trials ranges from 15 to 40 seconds. 

Little attempt was made to improve the efficiency of the implementation 

code used for the search algorithms. It is :therefore quite possible that 

this execution time per search step can be substantially improved. 

For comparsion, the total number of possible search steps to find a 

solution using enumeration alone is also listed in this table. This 

number is computed by assu~ing that each process may be assigned to any 

processor, and that each memory may be assigned to only two stores. A 

memory can only be assigned to the global store, or to the store that is 

Local to the processor that accesses that memory. This explains why the 

memory is not assumed to be assignable to all stores. It is readily seen 

that there are sizable reductions in the search space size for all 

trials. 
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The execution time of the allocation program will vary depending 

upon the following factors 

1) Number of processors and stores in the architecture, and the 

number of processes and address spaces in the program. 

2> The structure of the computer architecture. 

3) The choice of the throughput factor. 

4> The user specified constraints. 

These are discussed in turn. 

(7.6.3) SIZE OF THE ARCHITECTURE AND PROGRAM 

Firstly the effects due to the numbers_ of the resource and program 

elements have already been displayed in figure(7.12). It is easy to see 

why the size of the problem will generally increase the execution time. 

For example, if there are P processors and C processes, then the number 

of combinations of process to processor allocations is PAC. In most 

cases the actual number of combinations will be less than this maximum 

due to restrictions 

processors. Some example 

placed upon 

restrictions 

the assignment 

will be due 

of processes to 

to user specified 

constraints, accessibility constraints and memory size constraints. It 

is for this use that the constraint reduction operations are provided. 

(7.6.4) STRUCTURE OF THE COMPUTER ARCHITECTURE 

Secondly, the structure of the co111puter architecture can be 

important. As one example, for P identical processors and C processes, 

the maximum number of different combinations possible for the process to 

processor allocations is 

c ! 
P! * PA(C-P) 

if c <= p 

if c > p 

and these values are less than the value PAC used in the section 

above. This decrease is made possible by symmetry redundancy removal. 

Thus for C processes, C less than P, the first process will only have 
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one processor to be assigned to, since all the others are identical. The 

second process will have 2 processors to be assigned, since there is one 

processor with a process already assigned, and P-1 other identical 

processors. Thus the total number of combinations is C!J If the number 

of processes is greater than the number of processors, then the 

remaining processes can be allocated to any processor, and so there are 

p~(C-P) possible combinations for these remaining processes. Thus when 

there are more processes than processors, the total number of 

combinations is P! * p~(C-P). 

This reduction can be large and can mean the difference between a 

practical search and a computationally impossible one. However if the 

processors are not identical, as with differing processor cycle times, 

or if the stores are not identical, as with differing access times or 

store sizes, then the processors will no Longer be identical. The 

symmetry reduction operations will not be possible. Therefore the more 

uniform the architecture the better the chances of obtaining a complete 
; 

search. 

There are 

influence the 

other ways 

allocation 

in which the 

program time. In 

computer architecture may 

figure(?.13) the number of 

processors is the same and the number of stores is almost the same for 

both architectures. However, given an initial process to processor 

allocation, the choice of possible stores for the address spaces of the 

processes in the first architecture is much more Limited in comparsion 

to the second architecture. In the second architecture each store is 

accessible to each processor, and so even after a process has been fixed 

to a processor, there are no extra constraints applied upon its 

memories. The execution time difference can be seen in the table below. 

In each example pair here the two computer architectures have the same 

number of processors, and there are the same number of processes and 

address spaces in the program. As expected the time for the bus 

architecture is longer. 



Number of search steps 

Problem kind with a throughput factor of 

100 50 25 

Architecture 1, problem 1 130 130 160 

Architecture 2, problem 1 130 160 310 

Architecture 1, problem 2 220 220 220 

Architecture 2, problem 2 380 380 380 

Architecture 1, problera 3 170 170 170 

Architecture 2, problem 3 160 200 >1000 

For this table, Architecture 1 is that in figure(7.13,Left), 

Architecture 2 is that in figure<7.13,right), 

Problem 1 has 3 processes and 11 memories, 

Problem 2 has 3 processes and 16 memories, 

Problem 3 has 4 processes and 11 memories. 

In some circumstances the computer architecture may allow the 

program size to be increased with only a Linear degradation in the 

execution time of the allocation. This occurs in special cases where it 

becomes possible to divide the program and architecture into separate 

sub problems and to solve these independently. This is most Likely to 

happen wher·e there is in effect two different kinds of computer 

architectures Linked together. An example is ,shown in figure(2.10). Here 

the picture processor has several general purpose processors, with their 

own stores. As well there are the special purpose picture processing 

computer modules. In this circumstance the ~tructure of the program will 
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be written to reflect this design. Thus the main processes of the 

program will only run on the general purpose processors, and the picture 

processes will run on the special purpose processors. This division 

would be specified by the use of user constraints. 

(7.6.5) THE CHOICE OF THE THROUGHPUT FACTOR 

The allocation search will generally not find the theoretical 

optimal allocation mapping with respect to the throughput, but it will 

produce a result that can be made arbitrary close to it. How close is 

determined by the throughput factor. This gives the percentage by which 

the throughput of any subsequent solutions must exceed the throughput of 

the incumbent solution before they are investigated. If the throughput 

factor is set at 5 percent, then many more solutions will have to be 

examined than if only 100 percent precision is needed. This arises 

because there will gene'.ally be a larger number of soluticns that vary 

only slightly in this throughput estimation. 

The accuracy of the throughput estimation itself will also be 

important. If the throughput for an initial allocation map at the start 

of a search is close to the final optimal throughput, then fewer partial 

solutions will be examined. This is most clearly seen in an example 

where the throughput factor is set at 100 percent. If the initial 

throughput estimation is within a factor of 2 of the final optimal 

throughput, then the allocation will generally be able to derive the 

first solution without backtrack. Thereafter, since the throughput of 

this is within 100 percent of the initial throughput, no other solutions 

need be examined. 

This also demonstrates another way in which 

architecture structure may determine the search 

architectures will produce a better initial throughput 

others. The throughput of an initial unalloc~ted map 

the computer 

length. Some 

estimation than 

is found by 

assuming the program is mapped to an architecture that is ideal for it. 

Thus the further away from such an ideal machine the actual computer 

architecture is, the more inaccurate will the initial throughput guess 

be. 
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(7.6.6) USER IMPOSED CONSTRAINTS 

Processors 

Local 
stores 

Lastly, the user constraints may impact upon the search length. User 

imposed constraints may effect-the allocation by 

A) Changing the size of the solution space that needs to be 

searched. 

8) Changing the length of the search needed to find the solutions. 

None of the user constraints will ever increase the size of the 

solution space, however some constraints may increase the search length, 

and others may reduce it. 

The size of the solution s~ace is determined by the number of 

program elements that need to be allocated, and the number of resources 

that may be choosen for these. No constraints can increase either of 

these, and so constraints can never increase the solution space size. 

However constraints can reduce the number of allowed resources for each 

program element, and so they may certainly · reduce the size. 

Unfortunately decreasing the solution space will not always reduce 

the search Length. If the search is to cover as little as possible of 

the solution space, and still implicilty examine the whole space, then 

the various means developed for reducing the s~arch length must work to 
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their best ability. These are the constraint reduction and symmetry 

redundancy removal operations, the heuristic search ordering techniques 

and the throughput estimation algorithms. The imposition of process to 

processor and memory to store constraints will generally not degrade 

their performance. An exception may be the symmetry redundancy removal 

operations. Constraining the elements to reduced resource target sets 

may make previously identical elements different. Thus this may inhibit 

symmetry reductions. In general the nonproximity constraints will reduce 

the search length. The judicious use of these may make the allocation 

larger problems feasible, with only minimal effort from the user. 

As an example of this, consider the architecture of figure(7.14). 

This can be regarded as being two separate computer subsystems able to 

communicate with each other by the common global memory. Program 

allocations to this architecture may be performed in the same way as for 

any other architecture. Alternatively, if a programmer is writing a 

program specifically for this computer structure, then to achieve the 

best results it is probable that the program structure produced will 

reflect this structure. That is there will be two separate subsystems of 

processes, and these will communicate via common code and common 

variables having a small address space size. Thus in this circumstance 

the programmer can tmpose the constraints that the processes of one 

subsystem of the program are to be allowed only to the processors of one 

subsystem of the architecture, and similarly for the other subsystems. 

Little extra effort is required of the programmer for this, since the 

knowledge to achieve this is implicit in the program design. Therefore 

the complete allocation problem resolves into two smaller allocation 

problems of allocating a half sized program to a half sized 

architecture. 

The imposition of proximity constraints will, however, degrade the 

performance of both types of constraint reduction operations. They 

impose higher Level constraints between the individual process and 

memory constraints. Thus the constraint reduction of nonproximity 

constraints can no Longer proceed independently but will interact. The 

action of tHese constraints upon the search will be to arbitrary remove 

some final mappings from the search space. This happens when the final 

mappings violate the proximity constraint. Since the implementation does 

not order its searches to take this possibility into account, then these 

reductions may occur at any position in the search. If they occur at a 
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shallow Level, then not much time will be spent in finding and 

eliminating the map allocations prohibited by these proximity 

constraints. If however these constraints are applied at points deep in 

the search, then a large amount of time may be wasted in backtracking up 

the search tree to try new searches • 

(7.6.7) MAXIMUM PROBLEM SIZES 

As indicated by figure(7.12) the practical maximum for a complete 

search with this type of architecture is about 4 processors and stores, 

for small programs of about 4 processes and 40 address spaces. Similar 

times apply to other styles of architecture. 

In almost all cases the allocation program finds an initial solution 

straight away with Little or no backtracking. Thereafter no better 

solutions are found, or the subsequent solutions that are found are 

generally not significantly better. This good behaviour is partly a 

result of the heuristically provided search order, and it also arises 

because only uniform architectures are used in the examples. This 

behaviour allows the use of the allocation program for larger problems, 

even when it does not complete a full search in a practical time period. 

Thus there is no proof that this is the best solution. However 

examination of the estimation throughput for the initial map will give 

an maximum upper bound to the throughput. From this it is known how much 

the given solution falls below this. 

Another method to allow the allocation of Larger programs is to 

clump together some of the separate address spaces of the program into 

single address spaces. Some of the address spaces will be procedure 

invocation stacks for processes and large global arrays. These would not 

be combined together with others. However there will also exist many 

small procedure code bodies, and many small size global variables. 

In general, if groups of these are combined then it may reduce the 

allocation programs chance of performing some possible optimizations. 

For example the combined address space may be just slightly too large to 

fit into any one available space, whereas its individual memory 

components would have. Alternatively the individual address spaces may 

be accessed by only one process each. Thus they could be assigned to 
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storage which is local to the appropriate processors. However the combined 

memory element would need to be accessed by every one of the accessing 

processes, and so could only be assigned to global stores that are accessible 

to all of the appropriate processors. 

To minimize these problems, a suitable clumping strategy would be to 

only combine small address spaces into combined address spaces that do 

not exceed the size of the available stores by a suitably small factor. 

A possible value would be 10 percent. This would decrease the chance of 

the combined memory elements from being too Large to fit anywhere. As 
c 

well only memory elements that have the same set of accessing processors 

should be combined. This would imply·that the combined memory element 

can be allocated to exactly the same set of stores that each of its 

individual components could be. 

Using these rules, and assuming a program with many small memory 

elements, then a Large decrease in the number of memory elements could 

be achieved. For example, if this was by a factor of ten, then a medium 

sized program with up to 400 memory elements (before clumping) could be 

handled by the present allocation program implementation. 

(7.6.8) SUMMARY 

The constraint reduction and search ordering algorithms work in 

reducing the size of the search space to be examined and in producing 

legal final maps. However for all but very s~all programs the allocation 

still takes an excessive amount of time to perform a complete search. 

However final Legal maps which are good approximations to the optimal 

final map can still be found even with an incomplete search. Furthermore 

the user may speed up the allocation by the imposition of suitable 

constraints. Hence it 

with user guidance, 

programs. 

is quite feasible to use the allocation program, 

to find good solutions for small to medium sized 



CHAPTER (8) 

----------------------

(8.1) CONCLUSIONS 

------------------------------------

In the introduction to this thesis the concept of a resource 

allocator was introduced and its application areas discussed. The 

methods of specifying the computer architecture and the program 

structure to the allocator were described. Also detailed were the means 

whereby the user can guide this allocation activity. 

The work that is described by the thesis proper falls into three 

main parts. These are the sections on the information structure 

Language, the general memory interference model and the allocator 

algorithms. 

A) Information Structure Language 

The information structure Language is used to specify the 

structure of a multiprocessor computer architecture to the 

resource allocator. It is also used to specify the structure of 

the program and to enter the user constraints. The research 

work was to develop this Language. The thesis derives a 

Language definition and describes in detail how it is to be 

used for its intended purpose. The Language syntax is borrowed 

from other Languages, but the definition of the semantics of 

the Language for the use in a resource allocator is new. 

B) General Memory Interference Model: 

The general memory interference model is used by the resource 

allocator in its production of the throughput estimation of a 

resource allocation. The original memory interference model 

used was taken from the Literature. The research consisted of 

developing this model to fit the resource allocator 

requirements. This resulted in an analytic model capable of 

generating the required throughput. As well it was shown how a 

simulation model will produce the throughput estimation in a 

shorter time than this analytic model. 

170 



C) Allocator Algorithms 

Finally the allocator algorithms are those that actually 

perform the allocation of the program elements to the resources 

of the computer architecture. The research was to find and 

develop suitable algorithms to perform this. The basic solution 

relies on a simple tree search on the whole solution space. To 

make the search more practical, an algorithm called implicit 

enumeration with backtrack is used to minimize the search path 

length. With this as a start other methods were also found to 

reduce the size of the search. These are based upon the 

ordering of the search to increase the chances of quickly 

finding an acceptable solution, and the use of constraints upon 

the program elements to decide if partial solutions can be 

rejected. 

A large Pascal program was written to implement and demonstrate 

these algorithms. Trial runs using this demonstrated that the constraint 

reduction algorithms, the implicit enumeration and the use of 

probability ordering of the search will reduce the size of the search, 

and find solutions. 

The aim of the research was the development of a resource allocator 

for medium size 

architectures. The 

programs onto 

thesis describes and 

multi microprocessor computer 

demonstrates how this may be 

final allocator algorithms can done. However the implementation of the 

produce allocations for only some allocation problems. It can not, 

without user guidance, perform a complete search to find the optimal 

solution in a practical time for reasonable sized computer architectures 

or programs. Nor have the effect of proximity constraints been properly 

included. 

The research that needs 

feasible for production 

to be done to make the resource allocator 

programs can be divided into two areas-

A) The development of the allocator algorithms to cope with Larger 

computer architectures and Larger programs. This can be done by 

improving the existing techniques for ordering searches, and by 

adding more constraint reduction operations. It can also be 
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done by using a more complex search algorithm, to allow the 

incorporation of specialized information into the allocation 

activity. For example the optimal search strategy of a systolic 

computer architecture could be made different from the optimal 

search strategy for other architectures. The allocator would 

need the ability to determine what kind of architecture it is 

using, and to select the appropriate search strategies. 

B) The implementation of an actual allocator system, capable of 

starting 

code to 

with a concurrent program and converting this into 

run on a multiprocessor architecture. This would 

required converting an existing compiler to generate suitable 

code, the implementation of the information structure Language, 

and the provision of a Linker loader to place the code and data 

elements of the program onto the architecture as dictated by 

the resource allocation mapping. 
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APPENDIX (A) 

------------------------

(A.1) CONSTRUCTION OF THE STATIC ACCESS ARRAY 

============================================= 

This section describes the algorithm used within the analytic model to 

construct the static access array for the simulation program, in the 

situation where the simulation is to be run in its accurate mode. 

The static access matrix is used by the simulation program to obtain 

the next store fetch for a processor. The probability of processor P 

picking a store S is given by 

Sa(P,S) 

and for the busiest processor 

M 

I Sa(P' ,S) = 1 
S=l 

P' , 

where Sa represents the static access. 

•.• (33) 

the following equation holds 

. .. (34) 

However in general the above equation is more correctly expressed as 

M 

I Sa(P,S).~1 
S=l 

•.. (35) 

where the summation equals 1 for the busiest processor, and less 

than 1 for all others. These processors perform idle cycles, and the 

model knows how much idle time is spent, this is given in equation<30). 

Thus 

Tidle(P) 
M 

1- l Sa (P ,S) *Tcy (P) 
S=l 

•.. (36) 

This corresponds to the simulation using the static access terms for 

the probability, and since the summation of these is less than one, then 

on the occasions when no store is picked, it just executes an idle 

processor cycle. 
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This static access matrix is derived directly from the actual number of 

cycles array used in the model, 

Sa(P,S) Na(P,S) * D(P) 

where D is the adjustment factor. • •. (37) 

The number of cycles array gives the unnormalized probability 

distribution for the processor to store access pattern. Thus in the 

above the adjustment factor normalizes each row (one row per processor) 

to give the static access array. Using the above two equations gives 

D(P) = ~cy(P) ~ Tidle(P))/(Tcy(P)*Nap(P)) 

•.• (38) 

where Nap is the actual number of cycles per processor array. So the 

static access matrix can be calculated from the actual number of cycles 

array and the idle time array, which are both known to the probability model. 

1~ 



APPENDIX (B) 

------------------------

(B.1) CALCULATING THE CONFLICT FUNCTION 

======================================= 

The algorithm used in the implementation of the probability model to 

produce the conflict function is taken directly from [ 44J. To 

illustrate how it works, consider the following version of the conflict 

function 

n 
Cf = L 

k=l 

1 
k 

fmax 

[ 
r=l 

n 

TT 
f=l 

[

= 0 F(!E) 
Fkrn(f) 

~ 0 1-F (f) 

... (39) 

Here the probability terms are represented by the F function. The 

expansions of the conflict function for 1, 2 or 3 F function terms are 

CONFLICT_FUNCTION = (1-A) + 1/2(A) 

CONFLICT_FUNCTION = (1-A)(1-B) + 1/2((1-A)B + A(1-B)) + 1/3AB 

CONFLICT_FUNCTION = (1-A)(1-B)(1-C) + 

+ 1/2( (1-A)BC + A(1-B)C + AB(1-C) ) 

+ 1/3((1-A)(1-B)C + (1-A)B(1-C) + A(1-B)(1-C)) 

+ 1/4( ABC ) 

where A= F(1), B = F(2) and C = F(3). If the second expansion is 

taken and Listed as a series of terms-

L(O) = (1-A)(1-B) 

L(1) = <1-A)B + A(1-B) 

L(2) = AB 

then multiplying each term by (1-C) to produce one new series, and 

by C to produce another new series, will result in 



LCO) = ( 1-A)( 1-B)( 1-C) 

L( 1) = (1-A)B(1-C) + A<1-B)(1-C) 

L(2) = AB(1-C) 

L(Q) = (1-A)(1-B)C 

L( 1) = (1-A)BC + A<1-B)C 

L(2) = ABC 

From inspection it can be seen that adding L(n) from the first 

series immediately above to L(n-1) of the second series will produce the 

terms of the third conflict function expansion. 

Thus the recursive definition of this is 

new_L(n) = old_L(n) (1-F(f)) + F(f) old_L(n-1) 

... (40) 

where L(Q) = 1 - F(1) and L(1) = F(1). Thus the complete algorithm 

to generate the conflict function were there are N function terms is 

OLD_L(O) := 1-F(1) ; 

OLD_L(1) := F(1) ; 

FOR J := 2 TO N DO 

NEW_L(O) ·- OLD_L(O) * (1-F(J)) ; 

OLD_L(J) ·- 0 ; 

FOR M := 1 JO J DO 

NEW_L(M) := OLD_L(M) * ( 1-F(J) ) + F(J) * OLD_L(M-1) ; 

END ; 

OLD_L ·- NEW_L ; 

END ; 

This will result in the L arrays containing the terms of the 

conflict function. Now all that is needed is to combine these together 

CF : = 0 ; 

FOR J ·- 0 TO N DO 

CF·:= CF + OLD_L(J)/(J+1) ; 

END ; 

CONFLICT_FUNCTION ·- CF ; 
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APPENDIX (C) 

------------------------

(C.1) PROPAGATION TABLE 

======================= 

The reduction operations can alter a mapping by reducing the 

constraint set of s process or memory element, or by altering a 

Same_Constraint or Different..:_Constraint. In all cases the changes are 

ref Lected in the sets 

JUST_CHANGED_PROCESS_SET 

JUST_CHANGED_MEMORY_SET 

JUST CHANGED DIFFERENT PROCESS_CONSTRAINT_SET 

JUST_CHANGED_DIFFERENT_MEMORY_CONSTRAINT_SET 

JUST_CHANGED_SAME_PROCESS_CONSTRAINT_SET 

JUST_CHANGED_SAME_MEMORY_CONSTRAINT_SET 

Which records all of the changes produced in the Latest pass of the 

constraint operations. Any element which becomes fixed is also recorded 

in the sets 

JUST FIXED_PROCESS_SET 

JUST_FIXED_MEMORY_SET 

A newly fixed Same_Constraint or Different_Constraint is detected, 

in the implementation, by accessing each such constraint and determining 

how many constraint elements they possess. 

If any of these sets are not empty at·the end of a pass, then the 

information is transferred to the sets 

JUST_CHANGED_PROCESS_SAVE_SET 

JUST_CHANGED_MEMORY_SAVE_SET 

JUST_FIXED_PROCESS_SAVE_SET 

JUST_FIXED_MEMORY_SAVE_SET 

JUST_CHANGED_DIFFERENT_PROCESS_CONSTRAINT SAVE SET 

JUST_CHANGED_DIFFERENT_MEMORY_CONSTRAINT_SAVE_SET 

JUST_CHANGED_SAME_PROCESS_CONSTRAINT_SAVE_SET 

JUST_CHANGED_SAME_HEHORY_CONSTRAINT_SAVE_SET 
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and this 

elements are 

follows, 

information is used in the next pass to select which 

to be examined for constraint reduction. This is done as 

ALLOWED_HEMORY_SIZE 

All nonfixed memory that can be assigned to a store that contains 

a just fixed memory element are examined. 

ALLOWED_PROCESS_SIZE 

All nonfixed processes that can be assigned to a processor that 

contains a just fixed 

that contains a just 

SAME_MEHORY_SIZE 

process element or which accesses a store 

fixed memory element are examined. 

All Same_Memory_Constraints that are not fixed and contain a 

reference to a store which has just had a memory element fixed to 

are examined. <A fixed Same_Constraint or Different_tonstraint is 

one where all of the constraints have been removed and so it is an 

empty constraint). 

SAME_PROCESS_SIZE 

All Same_Process_Constraints that are not fixed and contain a 

reference to a processor which has just had a process element 

fixed to it, or which accesses a store which has just had a memory 

element fixed to, are examined. . . 

MEMORY_PARTITION_SIZE 

ALL nonfixed memory elements are examined. 

PROCESS_PARTITION_SIZE 

ALL nonfixed process elements are examined. 

ALLOWED_MEMORY_SET 
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All nonfixed memory elements that are accessed by processes which 

access a just changed memory element are examined. 

ALLOWED_PROCESS_SET 

All nonfixed process elements that access memory elements which 

are accessed by just changed process elements are examined. 

SAME MEMORY SET_INDIVIDUAL 

All nonfixed Same_Memory_Constraints which contain a just changed 

memory element are examined. 

SAME_PROCESS_SET_INDIVIDUAL 

All nonfixed Same_Process_Constraints which contain a just changed 

process element are examined. 

DIFFERENT_MEMORY_NUMBER 

All just changed Different_Memory_Constraints are examined. 

DIFFERENT_PROCESS_NUMBER 

All just changed Different_Process_Constraints are examined. 

DIFFERENT_MEMORY_REMOVE 

All nonfixed Different_Memory_Constraints which contain a just 

fixed memory element are examined. 

DIFFERENT_PROCESS_REMOVE 

All nonfixed Differcnt_Process_Constraints which contain a just 

fixed'process element are examined. 

DIFFERENT_MEMORY_SET 

All just changed nonfixed Different_Memory_Constraints are 
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examined. 

DIFFERENT_PROCESS_SET 

ALL just changed 

examined. 

nonfixed Different_Process_Constraints are 

SAME_MEMORY_SET 

ALL just changed nonfixed Same_Memory_Constraints are examined. 

SAME_PROCESS_SET 

ALL just changed nonfixed Same_Process_Constraints are examined. 

DIFFERENT_MEMORY_SET_INDIVIDUAL 

ALL nonfixed Different_Memory_Constraints which 

changed memory elements are examined. 

DIFFERENT_PROCESS_SET_INDIVIDUAL 

contain just 

ALL nonfixed Different_Process Constraints which contain just 

changed process elements are examined. 

180 



APPENDIX (D) 

------------------------

(D.1) ALGORITHMS AND HAP OPERATORS 

================================== 

In the following the symmetry redundancy removal algorithm and the 

search algorithm are described. The Pascal language is used, with upper 

case text representing actual Pascal coding. Lower case text represents 

pseudocode that has not been expanded all the way into actual Pascal 

code. 

After this is a list of all the operators that can be used to access 

the state of a partial or complete map allocation. 

(D.1.1) SYMMETRY REDUNDANCY REMOVAL ALGORITHM 

TYPE 

VAR 

REDUNDANCY_SET_TYPE <* This is a set of resources, it contains 

resources that are equivalent to each other, or 

resources that have not yet been shown to be 

nonequivalent *) 

LIST_TYPE <* This contains a list of redundant sets, 

In this list, the ordinal number of the first redundancy 

set is 1~ the second is 2 and so on *> 

LIST LIST_TYPE ; 

Create four redundancy sets, one each for PROCESSOR, STORE, BUS 

and BANK. Initialise each set lO contain all the processors, 

stores, buses and banks -of the architecture ; 

LIST := empty list ; 

Insert these four redundant sets into LIST ; 

PROCEDURE REHOVE_SYMHETRY_REDUNDANCIES ; 

BEGIN 

REPEAT 

NONTOPOLOGICAL_SEPARATION ; (* Separate the redundancy sets 

into subsets to make further redundancy sets, depending 

upon nontopologicsl information *> 
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WHILE any redundancy sets in LIST with more than one element 

remain DO BEGIN 

TOPOLOGICAL_SEPARATION ; (* Separate the redundancy sets 

into further subsets depending upon topological 

information *) 

IF no changes where made in Last step THEN 

exit while Loop ; 

END ; 

REDUCE_SETS ; (* Based upon the contents of the 

redundancy sets, reduce the allowed constraints *) 

UNTIL no reductions were made in the Last repeat Loop ; 

END ; 

PROCEDURE NONTOPOLOGICAL_SEPARATION ; 

VAR 

WORK_LIST : LIST_TYPE ; 

NEW_REDUNDANCY , OLD_REDUNDANCY 

BEGIN 

REDUNDANCY_SET_TYPE ; 

Put all redundancy sets into a List called WORK_LIST ; 

Initialise LIST to be empty ; 

WHILE the WORK_LIST is nonempty DO BEGIN 

OLD_REDUNDANCY := a redundancy set extracted from WORK_LIST; 

Initialise the set NEW_REDUNDANCY to empty ; 

FOR all elements in the OLD_REDUNDANCY, except for the first 

element DO BEGIN 

IF NONTOPOLOGICAL_DIFFERENT (* if the properties 

of the first element differ from this element *) THEN 

BEGIN 

Extract this element from the OLD_REDUNDANCY, insert 

it into NEW_REDUNDANCY set ; 

END ; 

END ; 

IF NEW_REDUNDANCY set is nonempty THEN BEGIN 

Place it into the WORK_LIST ; 

END ; 

Insert OLD_REDUNDANCY into LIST ; 

END ; 

END ; 
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PROCEDURE TOPOLOGICAL_SEPARATION ; 

VAR 

WORK_LIST : LIST_TYPE ; 

NEW_REDUNDANCY , OLD_REDUNDANCY 

BEGIN 

REDUNDANCY_SET_TYPE ; 

REPEAT 

Put all redundancy sets into a list called WORK_LIST ; 

Initialise LIST to be empty ; 

WHILE the WORK_LIST is nonempty DO BEGIN 

OLD_REDUNDANCY := a redundancy set extracted from 

WORK_LIST ; 

Initialise the set NEW_REDUNDANCY to empty ; 

FOR all elements in the OLD_REDUNDANCY set, except for 

the first element DO BEGIN 

IF TOPOLOGICAL_DIFFERENT (* if the properties of 

the processors, banks, buses and stores that access 

or are accessed by this element are different 

from the kind and properties of those of the first 

element *) THEN BEGIN 

Extract this element from the OLD_REDUNDANCY set, 

insert it into the NEW_REDUNDANCY set ; 

END ; 

END ; 

IF NEW_REDUNDANCY set is nonempty THEN BEGIN 

Place it into the WORK_LIST ; 

END ; 

Insert OLD_REDUNDANCY into LIST ; 

END ; 

UNTIL no new redundancy sets are created in the last loop ; 

END ; 

PROCEDURE NONTOPOLOGICAL_DIFFERENCE 

BEGIN 

CASE kind of element OF 

processor element 

Two processors are different if they have different 

cycle speeds, 

brand names, 

number of stores attached, 



total size of all the stores attached, 

process sets, as allowed by the process to processor 

constraints. 

store element: 

Two stores are different if they have different 

access speeds, 

rewrite recovery times, 

memory sets, as allowed by the memory to store 

constraints, 

number of accessing processors. 

bus element: 

Two buses are different if they have different 

number of processors accessing them, 

number of attached stores, 

bus delay times. 

bank element: 

Two banks are different if they have different 

bank access times. 

END ; 

END ; 

FUNCTION TOPOLOGICAL_DIFFERENCE 

Two elements are different if they have different 

attachments Lists. The attachment set of a processor 

element is found by using PROCESSOR_ATTACHMENT, 

similarly for the others. 

PROCEDURE PROCESSOR_ATTACHMENT 

BEGIN 

Create an initially empty processor attachment List. 

FOR all stores that the pro.cessor accesses DO BEGIN 

Insert the ordinal number of the redundancy set that 

contains the store element into the attachment List. 

END ; 

FOR all buses that the processor accesses DO BEGIN 

Insert the ordinal number of the redundancy set that 

contains the bus element into the attachement List. 

END ; 

FOR all banks that the processor accesses DO BEGIN 

Insert the ordinal number of the redundancy set that 



contains the bank element into the attachement List. 

END ; 

Order the attachment List 

END ; 

PROCEDURE REDUCE_MEMORY_SETS ; 

VAR 

MEMORY : MEMORY_SET_TYPE ; 

POSSIBLE_REDUNDANT_STORES STORE_SET_TYPE ; 

STORE : STORE_SET_TYPE ; 

REDUNDANCY_SET 

BEGIN 

RESOURCE_SET_TYPE ; 

FOR MEMORY := all memory DO BEGIN 

FOR REDUNDANCY_SET := all redundancy sets containing store 

elements DO BEGIN 

POSSIBLE_REDUNDANT_STORES := 

ALLOWED_STORE_FROM_MEMORY ( MEMORY ) * 
REDUNDANCY_SET ; 

IF number of elements in POSSIBLE_REDUNDANT_STORES > 1 

THEN BEGIN 

STORE := first element from 

POSSIBLE_REDUNDANT_STORES ; 

Change the allowed stores from MEMORY to 

ALLOWED_STORE_FROM_MEMORY ( memory ) -

POSSIBLE_REDUNDANT_STORES + STORE ; 

Exit procedure (* a reduction has been made *) 

END ; 

END ; 

END ; 

END ; 

Similarly for the processes. 

(D.1.2) THE SEARCH ALGORITHM 

TYPE 

HAP_TYPE (* This will contain one partial or complete 

map allocation. This includes the process to 

processor and memory to store constraints, and the 
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VAR 

proximity constraints. *) 

PROCESS_HEHORY_LIST_TYPE (* This is a list of process and 

memory elements *) 

ELEMENT_TYPE <* Will contain either a process element 

or a memory element *) 

RESOURCE_TYPE (* Will contain either a processor resource element 

or a store resource element *) 

MAP_ELEHENT_TYPE = RECORD 

MAP : MAP_TYPE ; 

RESOURCE : RESOURCE_TYPE ; 

THROUGHPUT : REAL ; 

END ; 

MAP_LIST = list of MAP_ELEMENT_TYPE ; 

BEST_EVER_THROUGHPUT : REAL ; (* This contains the throughput 

of the best ever final map so far found. If no such map 

has been found yet, it contains 0 *) 

GLOBAL_SUCCESS : BOOLEAN ; (* This is set to true when a 

complete solution is found *) 

FINAL_HAP : MAP_TYPE ; (* This will contain the best complete 

solution found, if one is found at all *) 

PROCEDURE ALLOCATION ; VAR 

PROCESS_HEHORY_LIST 

MAP : HAP_TYPE ; 

PROCESS_MEMORY_LIST_TYPE ; 

BEGIN 

GLOBAL_SUCCESS := FALSE ; 

Initialise the PROCESS_MEMORY list, by 

inserting all the process and memory elements into 

the list, then sorting them into order. 

HAP := Initial input map as specified by the user constraints ; 

SEARCH ( MAP , PROCESS_MEHORY_LIST ) ; 

END ; 

PROCEDURE SEARCH ( 

VAR 

MAP : MAP_TYPE ; 

PROCESS_MEMORY_LIST PROCESS_MEMORY_LIST_TYPE ) ; 

HAP_LIST MAP_LIST_TYPE ; 



NEXT_ELEMENT : ELEHENT_TYPE ; 

TEMPORARY : MAP_ELEMENT_TYPE ; 

HAP_ELEMENT : MAP_ELEMENT_TYPE ; 

RESOURCE RESOURCE_TYPE ; 

BEGIN 

IF empty_list ( PROCESS_MEMORY_LIST ) THEN BEGIN 

GLOBAL_SUCCESS := TRUE ; 

BEST_EVER_THROUGHPUT ·- Throughput ( MAP ) ; 

FINAL_MAP := MAP ; 

ENO ELSE BEGIN 

NEXT_ELEHENT := First element in PROCESS_MEMORY_LIST ; 

MAP_LIST := empty list ; 

FOR RESOURCE ·- all resources to which NEXT_ELEMENT may be 

assigned, as specified by MAP DO BEGIN 

BEGIN 

TEMPORARY.HAP :=MAP ; 

Using TEMPORARY.MAP, constrain NEXT_ELEMENT to RESOURCE ; 

IF legal map created ( TEMPORARY.MAP ) THEN BEGIN 

IF throughput ( TEMPORARY.MAP ) > 

THROUGHPUT_FACTOR * BEST_EVER_THROUGHPUT THEN BEGIN 

TEMPORARY.THROUGHPUT := throughput ( TEMPORARY.MAP ) ; 

TEMPORARY.RESOURCE := RESOURCE ; 

Insert TEMPORARY into MAP_LIST ; 

END ; 

END ; 

ENO ; 

(* MAP_LIST now has a List of the possible resources for the 

NEXT_ELEMENT, together with their associated map allocations 

and throughputs *) 

IF the computer has a homogeneous architecture THEN BEGIN 

IF NEXT_ELEMENT is a process THEN BEGIN 

Sort the MAP_LIST upon 

number of processes in the set ( 

ALLOWED_PROCESS_FROM_PROCESSOR ( 

MAP_LISTA.RESOURCE ) ) 

END ELSE BEGIN 

Sort the MAP_LIST upon MAP_LISTA.THROUGHPUT ; 

Reverse the List ; (*puts the maps with the 

highest throughput first *) 
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END ; 

END ELSE BEGIN 
IF NEXT_ELEHENT is a memory THEN BEGIN 

Sort HAP_LIST upon 

number of processors in the set ( 

ACCESS_PROCESSOR_FROH_STORE ( 

HAP_LIST~.RESOURCE ) ) 

END ELSE BEGIN 

Sort the HAP_LIST upon MIP_LIST~.THROUGHPUT; 

Reverse the List ; (*puts the maps with the 

highest throughput first *) 

END ; 

END ; 

_,.(* Have now sorted the HAP_LIST so that the most 

promising resource targets for NEXT_ELEHENT come first in 

the List *) 

FOR HAP_ELEHENT := all map elements in HAP_LIST DO BEGIN 

IF HAP_ELEHENT.THROUGHPUT > 

> THROUGHPUT_FACTOR * BEST_EVER_THROUGHPUT THEN BEGIN 

SEARCH ( HAP_ELEHENT.MAP , 

PROCESS_HEHORY_LIST - NEXT_ELEHENT ) ; 

END ; 

END ; 

END ; 

(D.1.3) OPERATOR NAMES 

In the List that appears below the names and uses of the operators 

that have been mentioned in the thesis are given. These operators are 

implemented as Pascal functions that return set type values. Since 

Pascal functions can not actually return set types, these are modified 

accordingly in the actual Pascal program coding. 

ALLOWED_HEHORY FROH_STORE ( HAP : HAP_TYPE ; 

STORE : STORE_SET_TYPE ) : HEHORY_SET_TYPE ; 

This returns the set of all memory elements H such that 

there exists at Least one store S in the STORE set where 

H is~allowed to be assigned to S. 
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I 

ALLOWED_STORE_FROH_HEHORY ( MAP : HAP_TYPE ; 

MEMORY : HEHORY_SET_TYPE ) : STORE_SET_TYPE ; 

This returns the set of all store resources S such that 

there exists at least one memory H in the MEMORY set where 

H is allowed to be assigned to S. 

ALLOWED_PROCESS_FROH_PROC~SSOR 

ALLOWED_PROCESSOR_FROH_PROCESS 

Similar to the above. 

ACCESS_PROCESSOR_FROH_STORE ( STORE : STORE_SET_TYPE ) : 

PROCESSOR_SET.:.,.TYPE ; 

Jfhis returns the set of all processor resources P such that 

there exists at least one store S in the STORE set where 

processor P can access store S. 

ACCESS_STORE_FROH_PROCESSOR ( PROCESSOR : PROCESSOR_SET_TYPE ) : 

STORE_SET_TYPE ; 

This returns the set of all store resources S such that 
~ 

there exists at least one processor P in the PROCESSOR set 

where processor P can access store S. 

ACCESS PROCESSOR_FROH_BUS 

ACCESS_PROCESSOR_FROM_BANK 

ACCESS_STORE_FROM_BUS 

ACCESS_STORE_FROH_BANK 

ACCESS_BUS_FROH_BANK 

ACCESS_BUS_FROM_PROCESSOR 

ACCESS_BUS_FROM_STORE 

ACCESS_BANK_FROH_BUS 

ACCESS_BANK_FROH_PROCESSOR 

ACCESS_BANK_FROH_STORE 

Similar to the above two definitions. 

FIXED_MEHORY ( MEMORY : MEMORY_SET_TYPE ) : MEMORY_SET_TYPE ; 

This returns all memory H that are in the MEMORY set and 

have been allocated to a single store. 



FIXED_PROCESS 

Similar to the above. 

SIZE_UNUSED_STORE ( HAP : HAP _TYPE ; STORE : STORE_SET ) .: INTEGER 

This returns the size of the unused memory space in the 

stores of the STORE set. 

SIZE_NONFIXED_HEHORY ( HAP : HAP_TYPE ; 

MEMORY : HEHORY_SET_TYPE ) : INTEGER ; 

This returns the size of all the nonfixed memory elements 

in the HEHORY set. 

SIZE_PROCESSOR_U~USED_STORE ( HAP : HAP_TYPE ; 

,PROCESSOR : PROCESSOR_SET_TYPE ) : INTEGER ; 
·' 

This returns the size of all the unused memory space of 

~~ all the stores that are accessible by the processors in the 

PROCESSOR set. 

SIZE_NONFIXED_HEHORY_OF_PROCESS_FIXED_TO_PROCESSOR ( 

HAP : HAP_TYPE ; 

PROCESS.OR :•!PROCESSOR_SET_TYPE ) : INTEGER ; 

This returns the size of all the nonfixed memories , 

that are accessed by all the processes that are 

fixed t6 the processors in the PROCESSOR set. 

SIZE_NONFIXED_HEHORY_OF_NONFIXED_PROCESS ( MAP HAP_TYPE ; 

PROCESS : PROCESS_SET_TYPE ) : INTEGER ; 

This returns the size of all the noflfixed memories 

that are accessed by all the nonfixed processes that 

are in the PROCESS set. 

SIZE_THIS_PROCESSOR ( HAP : HAP_TYPE ; 

PROCESSOR_SET_TYPE ) : INTEGER ; 

This returns the total store space in all the stores 

that the processors of the PROCESSOR set can access. 

NONFIXED_SAHE_PROCESS_CONSTRAINT ( HAP : HAP_TYPE ; 

SAHE_PROCESS_CONSTRAINT : 

SAHE_PROCESS_CONSTRAINT_SET_TYPE ) : 

SAHE_...PROCESS_CONSTRAINT_SET_TYPE ; 
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·· ... ·· 

This returns all the SAHE_PROCESS proximity constraints 

that are in the SAHE_PROCESS_CONSTRAINT set end which 

contain processes that ere not yet fixed. 

NONFIXED_SAHE_MEHORY_CONSTRAINT 

NONFIXED_DIFFERENT_PROCESS_CONSTRAINT 

NONFIXED_DIFFERENT_HEHORY_CONSTRAINT 

Similar to the above 

PROCESS_FROM_SAME_PROCESS_CONSTRAINT ( HAP : HAP_TYPE ; 

SAHE_PROCESS_CONSTRAINT : SAHE_PROCESS_CONSTRAINT_TYPE ) : 

PROCESS_SET_TYPE ; 

This returns with ail processes P such that P 

is mentioned in at least one of the SAHE PROCESS proximity 
.1' -

constraints in the SAHE PROCESS_CONSTRAINT set. 

HEHORY_FROH_SAHE_HEHORY_CONSTRAINT 

PROCESS_FROH_DIFFERENT_PROCESS_CONSTRAINT 

HEHORY_FROH_DIFFERENT_HEHORY_CONSTRAINT 

Similar to the above 

ORED_PROCESSOR_FROH_SAHE_PROCESS_CONSTRAINT ( MAP : MAP_TYPE ; 

SAHE_PROCESS_CONSTRAINT : SAHE_PROCESS_CONSTRAINT_SET_TYPE ) : 

PROCESSOR_SET_TYPE ; 

This returns the set of all prpcessors P such that P 

is in at least one of the target processor sets of 

at least one SAHE_PROCESS constraint in the 

SAME_PROCESS_CONSTRAINT set. ~ 

ORED_STORE_FROH_SAHE_MEHORY_CONSTRAINT 

ORED_PROCESSOR_FROH_DIFFERENT_PROCESS_CONSTRAINT 

ORED_STORE_FROH_DIFFERENT_HEHORY_CONSTRAINT 

Similar to the above. 

ALL_DIFFERENT_PROCESS_CONSTRAINTS_WITH_PROCESS ( HAP HAP_TYPE ; 

PROtESS : PROCESS_SET_TYPE ) : 

DIFFERENT_PROCESS_CONSTRAINT_SET_TYPE ; 

This returns with all the DIFFERENT_PROCESS proximity 

constraints in the map that contain at least one of the 

proce-ssors P, where P is also in the PROCESS set. 
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ALL_DIFFERENT_HEHORY_CONSTRAINTS_WITH_HEHORY 

ALL_SAHE_PROCESS_CONSTRAINTS_WITH_PROCESS 

ALL_SAHE_HEHORY_CONSTRAINTS_WITH_HEHORY 

Similar to the above. 

ALL_DIFFERENT_PROCESS_CONSTRAINTS_WITH_PROCESSOR ( 

HAP : HAP_TYPE ; 

PROCESSOR : PROCESSOR_SET_TYPE ) : 

DIFFERENT_PROCESS_CONSTRAINT_SET_TYPE ; 

This returns with all of the DIFFERENT_PROCESS constraints 

in the map that mention processor P, where P is also 

a member of t~e PRQCESSOR set. 

ALL_DIFFERENT_HEHORY_CONSTRAINTS_WITH_STORE 

ALL_SAHE_PROCESS_CONSTRAINTS_WITH_PROCESSOR 

ALL_SAHE_HEHORY_CONSTRAINTS_WITH_STORE 

Similar to the above. 

FIXED_PROCESS_FROH_PROCESSOR ( HAP : HAP_TYPE ; 

PROCESSOR :.1,PROCESSOR_SET_TYPE ) : PROCESS_SET_TYPE ; 

This returns ell the processes P such that process 

P is fixed to processor PSR, where PSR is a member of 

the PROCESSOR set. 

FIXED_HEMORY_FROH_STORE 

Similar to the above. 
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APPENDIX (E) 

===========~ 

(E.1) INFORMATION SPECIFICATION LANGUAGE 
======================================== 

The information specification language (ISL) allows a machine understand­

able definition of a computer architecture to be constructed. It also 

provides the user with the faclltleis to guide the resource allocation , t 

activity. 

This appendix will describe in detail the basic structure of this J1anguage, 

and introduce the.parts of the Janguage concerned with the definition of a 

computer arc~itecture. It starts with a section on reference, or how to _,. 
access a particular vertex from a given starting vertex. After this the 

I 

operatJ~ns of creating new vertices and attaching them to the existing graph 

are explained. These allow the construction of an ISL graph structure. 

Eventually other parts of the ISL, which deal with the declaration of the 

names used In the language and the grouping of the ISL statements, are 

described • 

. (E,.2) STATEMENTS 

================ 

An ISL program consists of statements and definitions. Statements 

are used to perform the actions of creating a graph. Definitions are 

used to define various identifiers that are used by the statements. In 

the following statements will be described first, followed by 

definitions. 
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Firstly, the syntax of a stete•ent block is 

, 

Statement_Block = < Statement }- ; 

Statement = Assignment_Statement 

Attach_Statement 

For_Statement 

If Statement - ' 

Procedure_Call_Statement ; 

T~~se statement kinds are discussed in turn. 

·\ ('~.2.1) ASSIGNMENT STATEMENTS 
I 

----·------------------------

An assignment statement will assign a value to a variable. The 

syntax is 

Assignment_Statement = 
Variable_Identifier, 

Expression = 

":=", Expression, 
' 

Simple_Expression, ~ 

"·" . , , 

C Comparis\on_Operator, Simple_Expression J _; 

Compar{~fon_Operator = "<" I ">" I "<=" I ">=" 
·.: / ~ -

Simple..:_Expression = 

"=" I "<>" ; 

[ Unary_Operator J, Term, { Term_Operator, Term } ; 
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Unary_Operator = "+" I "-" ; 

Term_Operator = "OR" I "+" I "-" ; 

Term = Factor, < Factor_Operator, Factor ) ; 

Factor_Operator = "*" I "/" I "AND" ; 

Factqr = Unsigned_Constant I Variable_Identifier 

Reference I Special_Function I 
Bracketed_Expression Not_Factor ; 

Not.:_Factor = Not_Operator, Factor ; 

Not_Operator = "NOT" ; 

Bracketed_Expression = "(", Expression, ")" ; 

Unsigned_Constant = Constant_Identifier I String I 
Unsigned_Number ; 

This syntax definition allows standard arithmetical expressions 

using integers, reals, booleans 

provides for scalar variables and 

and strings to be constructed. It 

constants in these expressions. It 

also provides References and Special_Functions. These are used in 

statements that access a graph structure. 

(~.2.2) OPERATOR DEFINITIONS 

The operators used in an expression are given below, in their 

precedence order. 

Comp~~i·P~Operator < > <= >= <> = 
Term_Operator OR + 
Factor_Operator * I AND 

Not_Operator NOT 
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The Not_Operator is a monadic operator, it accepts one argument to 

generate its result. The two Unary_Operators are also monadic. The other 

operators are dyadic operators, they accept two arguments to generate 

one result. Each operator requires arguments of the appropriate type. 

Furthermore for dyadic operations the types of the two arguments used 

must be identical. The type of the output result may depend upon the 

type of the arguments. 

The allowable types of an expression are INTEGER, REAL, STRING, 

BOOLEAN and SET. The first four have the standard properties, while the 

SET type refers to sets of vertices of a graph. 

The operators with their allowed argument 

corresponding result types are listed in 

Operator Argument type 

< > <= >= Integer, Real 

= <> Integer, Real, String 

= <> Set, Boolean 

OR Boolean 

+ Integer 

+ Real 

+ Set 

* I Real, Integer 

* Set 

AND Boolean 

NOT Boolean 

unary + - Integer 

unary + - Real 

The operations that are specific to the ISL are 

SET type arguments. Such sets contains vertices 

the 

types 

table 

and the 

below. 

Result type 

Boolean 

Boolean 

Boolean 

Boolean 

Integer 

Real 

Set 

Real 

Set 

Boolean 

Boolean 

Integer 

Real 

those concerned with 

of the graph. The 

operations of set union, set subtraction and set intersection which are 

defined upon these have the usual set semantics. 
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Root vertex 

1 

M 
--~ 

Figure\~.2 

~~.2.3) REFERENCE~ 

----·-------------
~ 

Given an information graph structure, a means of accessing 

individual elements within this is required. The use of references for 

this purpose will now be described. 

For a graph G=CX,H), the attached name set of a vertex Xi, for the 

name N, can be defined. It is the set of all vertices Xj that are 

attached to Xi and which have a name function FnCXj) of N. This set is 

represented by the notation Fattach(Xi,N). 

The vertices in an attached name set are ordered, forming the 

attached name list CXj1,Xj2,Xj3, ••• ). Generally the vertices are ordered 

in the same sequence in which they are created, this is discussed fully 

in section<ei.2.4>, on attach statements. Any vertex in an attached name 

set can be referred to uniquely by giving its ordinal position in the 

attached name list. This is called the index of the vertex Xj with 

respect to Xi. This is represented by the notation Findex(Xi,Xj). 

Jn the graph of figure<EL2> the vertices in the attached name set of 

the vertex A, for the name N, are circled. The numbers on the arcs 

leading to these vertices represent their index values. 

Every reference starts from some vertex or set of vertices. This set 

is called the starting set of the reference. The reference will refer to 

the vertices of this starting set, or it will refer to vertices that are 
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ettached to the vertices of this starting set. T~e vertices that the 

reference refers to ere called the reference set of the reference. 

I 
(~~2.3.1) REFERENCE SYNTAX 

.......................... 

The syntax for a reference is 

Reference = 
Reference_Start, < If II . , Selector_Reference > ; 

Reference_Start = "&" I Reference_Se.t_Variable_Identifier ; 

Se{ector_Reference = Vertex_Selector 

Conditional_Selector 

Bracketed_Reference . 
I 

Bracketed_Reference = "(", Reference_Set_Expression, ")" ; 

Reference_Set_Expression = Expression ; 

Vertex_Selector = ".", Vertex_Name_Identifier, [ Selector_Index l; 

Selector_Index = "(", Integer_Value, ")" ; 

CEL2.3.2) SELECTOR REFERENCES 

The simplest reference is 

a 

and this will refer to all of the vertices in the references 

starting set. This starting set may be the root vertex of the graph, in 

which case this reference will refer to just the root vertex. 

NOTE. The BNF format used to define the syntax follows the 

British Standard BS 6154 as described in [ 77J. In the 

following syntax definitions integers are never used in the 

metaidentifiers of a definition. In an example of a definition 

a metaidentifier may appear with an integer immediately after 
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The 

it. This refers to an actual (unspecified) example of the 

metaidentifier. Thus a syntax definition may be 

A = B, C, B ; 

B = "bb" "bbb" ; 

C = "cc" "ccc" ; 

Two specific examples of an A are 

bb cc bbb 

bb cc bb 

A generalized example of an A could be 

B1 cc B2 

where 81 and B2 refer to some (unspecified) actual expansion of 

B. In the following 

B1 cc 81 

B1 refers to the same (unspecified) expansion of B in both 

cases. 

next simplest reference is by using a Vertex_Selector, 

8.Vertex_Name_Identifier1 

This reference will produce a reference set which contains the 

vertices 

Fattach(Xr1,Vertex_Name_Identifier1) 

Fattach(Xr2,Vertex_Name_Identifier1) 

Fattach(XrN,Vertex_Name_Identifier1) 

where the set < Xr1, Xr2, ••• XrN > is the reference set of the simple 

reference &. In other words, the reference set contains all vertices of 

•. 
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Root vertex Root vertex 

Figure .E~3 

name Vertex_Name_Identifier1 that are attached to all the vertices of 

the starting set. 

Using a Selector_Index creates the reference 

a • Vertex_Name_Identifier1 ( Integer_Expression1 ) 

This produces the reference set< Xn1, Xn2, ••• XnN >where 

Xni is an element of the reference set of 

&.Vertex_Name_Identifier1, for all i from 1 to N. 

For some Xrj that'is an element of the reference set &, 

Findex(Xrj,Xni) is equal to Integer_Expression1. 

Informally, a Selector_Index will give a reference set which 

contains only vertices that have the indicated index· value with respect ,, 
to the vertices in the starting set to which they are attached. 

As an example, the reference sets of the following two references 

are indicated in figure~E.3>. 

8.N 

8.NC2> 

( •• 2.3.3) USING REFERENCE SET VARIABLES 

....................................... 

A reference set variable may be used in a reference to supply its 

starting set. Given an assignment like 
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The vertices 
in the reference 

@.A.B(l).C 

" 

The vertices in 
reference 

@.A.B.C 

the 

vertex 

The vertices in 
the reference 

@.A(3).B(2) .C(l) 

Figure _E-4 

Vertex_Name_Set_Identifier1 := 8 

then the reference 

The vertices in 
the reference 

@.A.B.D 

Reference_Set_Variable_Identifier1 c Selector_Reference1 

will be equivalent to the reference 

8 • Selector_Reference1 

As an example, 

REF := 8 ; 

REF.C is now equivalent to s.c 

(E~2.3.4) HORE THAN ONE SELECTOR REFERENCE 

.......................................... 

A Reference may have any number of Selector_References to it. A 

reference 'like 
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fil .• Selector_Reference1 • Selector_Reference2 • 

Selector_ReferenceN • Selector_ReferenceH 

where H = N+1, will produce a reference set. This will be equivalent 

to the reference set produced by the following reference 

S • Selector_ReferenceH 

where S is a reference set variable, and its contents is specified 

by the assignment 

S := fil •. Selector_Reference1 • Selector_Reference2 

Selector_ReferenceN 

Some example references with more than one Selector_Reference are 
, 

given in figure(3.4>. 

(~.2.3.5) BRACKETED REFERENCES 

· A reference expression may be bracketed. 

the references inside t~e brackets, that 

reference that is placed in front of the 

reference is like 

&. < Reference_Expression1 ) 

The starting ·set for all 

use a; is supplied by the 

brackets. If a bracketed 

then this will give the same reference set as the expression 

' 
Reference_Expression1 

If the bracketed reference is 

S • ( Reference_Expression1 ) 

where S is either a reference set variable or a reference, and 

Reference_Expression1 contains the factors 

Reference1, Reference2, ••• ReferenceN, ••• 
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then the bracketed reference will generate the same reference set as 

the expression 

Reference_Expression1 '. 

where each reference ReferenceN that starts with a &I has this 

replaced with S. 

Thus 

i.A.B 

has the root vertex as its starting set. 

&l.X.Y. ( &l.A.B ) 

However here the reference S.A.B has the reference set of &l.X.Y as 

its starting set. This reference is equivalent to the reference 

i.X.Y.A.B 

Another example is 

&l.X.Y. ( &l.A.B + &l.C.D * &l.E.D ) 

Here each of the references i.A.B, i.C.D and &l.E.D has the reference 

set of &l.X.Y as its starting set. This reference produces the same 

reference set as the reference 

S.X.Y.A.B + &l.X.Y.C.D * i.X.Y.E.D 

(E.2.3.6) CONDITIONAL REFERENCES 

A conditional selector is a means of selecting vertices from a 

reference set which satisfy some given conditions. It is written . 
according to the syntax 

Conditional_Selector = "<", Boolean_Expression, ">" ; 

Boolean_Expression = Expression ; 
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The simple conditional references 

Reference1.< True> 

Reference2.< False > 

will generate either the 

case, or the empty 

reference 

reference 

set of 

set 

Reference1 in 

in the second 

the first 

example. 

A general Conditional_Selec~or of the form 

Reference1 • < Boolean_Expression1 > 

will produce the reference set given by the expression 

S1.< Boolean_Expression1 > + 
S2.< Boolean_Expression1 > + 

Sn.< Boolean_Expression1 > 

.. 

where Si is a reference set variable that is equal to <Xi>, and the 

set <X1,X2, ••• X~> is the reference set of the reference Reference1. 

That is the boolean expression is evaluated for each of the vertices 

in the reference set of Reference1, and if it comes out true that vertex 

will be placed into the result reference set. The evaluation of the 

Boolean_Expression proceeds like any other expression, except that 

Reference1 provides the starting set for any reference that may appear 

in it. 

Several special purpose functions are provided which are useful in 

this' context. Their syntax is 

Special_Function = Number_Function I Empty_Function I 
All_Value_Function I Any_Value_Function 

Value_Function ; 

Number _Function = "NUMBER", "(", Reference_Expression, ")" 

Empty_Function = "EMPTY" "(", Reference_Expression, .. ) " , 
Value_Function = "VALUE" "(", Reference_Expression, ")" , 
Any_Value_Function = "ANY_VALUE", 
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"(", Reference_Expression, Comparsion_Operator, 

Simple_Expression, ")" ; 

All_Value_Function = "ALL_VALUE", 

"(", Reference_Expression, Comparsion_Operator, 

Simple_Expression, ")" ; 

A function like 

NUMBER ( Reference_Expression1 ) 

will return the integer number of vertices in the reference set of 

Reference_Expr~ssion1. A function like 

VAlUE ( Reference_Expression1 ) 

, 
assumes that there is one only vertex in the reference set of 

Reference_Expression1, and this vertex has a value. The function will 

return this value, the type of the result being the same as the type of 

the value. If the initial assumption is false, then this is treated as 

an error. A function like 

EMPTY ( Reference_Expression1 ) 

will return the same result as the equivalent. expression 

( NUMBER ( Reference_Expression1 ) = 0 ) 

A function of the kind 

will 

ALL_VALUE ( Reference_Expression1 Comparsion_Operator1 

Simple_Expressiont ) 

return the same result as the equivalent 

)\ 

( VALUE ( S1 Comparsion_Operator1 Simple_Express ion~\~~) 
VALUE ( sz Comparsion_Operator1 Si mple_Express ion ~7 ) 

expression 

AND 

AND 

VALUE (SN Comparsion_Operator1 Simple_Expression1·> ) 

205 



where S1,S2, ••• SN are reference set variables such that 

S1 is equal to < X1 } , 

S2 is equal to < X2 } , 

SN is equal to < XN } 

and the set < X1, X2, ••• XN } is the reference set of the reference 

Expression_Reference1. Thus this gives a true result if every vertex in 

the reference set satisfies the comparsion. It returns a false value if 

the reference- set of Reference1 is empty. The last function is 

ANt_VALUE ( Reference_Expression1 Comparsion_Operator1 

Simple_Expression1 ) 

and this returns a boolean type result equal to 

'· 

( VALUE ( S1 Comparsion_Operator1 

VALUE ( S2 Comparsion_Operator1 
Simple_Expressif!'i~i,) OR 
Simple_Expression1 > OR 

; . 

VALUE ( SN Comparsion_Operator1 Simple_Expression1 > > 

In other words, it returns a true result if any one of the vertices 

in the reference set of Expression_Reference1 satisfies the condition If 

the reference set is empty, it returns the f~-lsej result. 
-- --......-- < ~t. 

<El2.3.7) CONDITIONAL SELECTOR EXAMPLES 

....................................... 

In the following some examples using the above syntax definitions 

are given. 

A reference like 

Reference1. < NOT EMPTY ( Reference2 ) > 

will produce a reference set of all vertices Xr which satisfy the 

conditions 
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@.A. <NOT EMP'l'Y(@.B )> 

Root· vertex 

@.A.<NUMBER(@.B)=2>. 

c B B 

Root vertex 

Figure E\.5 

@.A.<ANY-VALUE 
(@.B)=7> 

B=7 

Figure Ei.6 

Root vertex 

B B B C 

Figure El. 7 
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Xr Is In the reference set of Reference1 and 

The reference set of Ser. ( Reference2 ) Is nonempty. 

Sxr Is a reference set variable and Is equal to the reference set {Xr}. 

A specific example is 

i . < NOT EMPTY ( til.A ) > 

This will select the root vertex if it has a A vertex attached. If 

it does not, then it returns vith an empty reference set. If the 

expression is 

a ~· A • < NOT EMPTY ( til.B ) > 

, 
then this will select all vertices A attached to vertices in the 

starting set such that each vertex A has one or more attached B 

vertices. Thus this expression selects the vertices as shown in 

figure(3.5). 

· An example reference using an arithmetical comparsion is 

& . A • < VALUE ( til ) = 6 > 

This assumes that all vertices A have a nonnull value function 

result, and will select all such vertices whose value is equal to 6. 

Another example is 

&.A. < ANY_VALUE ( S.B ) = 7 > 

This will select all vertices A_ which 

whose value is 7. These two examples are 

Another example is the reference 

&.A.< NUMBER C&.B) = 2 > 

have an attached vertex B 
' 

depicted in figure(3.6). 

which will select all the 

This is shown in figureC3.7>. 

A vertices with two B vertices attached. 
) 
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Root vertex Root vertex vertex 

B C 

B c· c c 
1be solid lines represent the orginal arcs, the dashed lines represent the 
new arcs· added by the statement@.A.B -> @.A.C 

Figure S.8 

.·( •• 2.4> ATTACH STATEMENTS 

The attach op~ration will attach a vertex X1 to another vertex X2. 

Its syntax is 

Attach_Statement = Attach_Operation, 

Attach_Operation = 

"·" . I I 

Attach_Reference, < "->", Attach_Reference >- ; 
Attach_Reference = Reference_Expression I New_Operation , 

Bracketed_Attach_Reference ; 

Bracketed_Attach_Statement = 
"(", Attach_Operation, < ",", Attach_Operation >, ")" ;· 

Reference_Expression = Expression (t giving e SET type result t) ; 

An attach statement like 

Reference1 -> Ref erence2 

will create directed arcs of the form CXr1,Xr2>, if Xr1 is a member 

of the reference set of Reference1 end Xr2 is a member of the reference 

set of Reference2, and the arc does not already exist. 
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',_, 

Root vertex 

@.A(2) 

1 

,, ' B , ' 
. I I ,_, 

Fattach( @.AC+>, B ) Fattach( @.A(2), B ) 

Figure El.9 

As an example, the effects of the statement 

lil.A.B -> &.A.C 

are shown in the graph of figureCE.8>. 

NOTE. In order to show the effects of the attach statements 

with graphs, the following convention is adopted. If the graph 

is demonstrating an attach statement 

Reference1 -> Reference2 

which generates the new arcs (Xc1,Xr1>,CXc2,Xr2>, •••• then 

these arcs may be drawn with dashed lines in the graph. 

Similarly in a graph newly created vertices may be drawn with 

dashed circles. 

<El2.4.1) INDEX ORDERING 

The vertices Xr2 will now have index values with respect to the 

vertices Xr1 that they have just been attached to. These are the indices 

used in Vertex_Selector_References. How these are ordered is described 

in this' section. 



Define the function 

X, such that FnCXi) 

Fname to be the set of vertices Xi from the set 

equals a given name N. This is represented by 

Fname ( X,N ) 

and is called the name set. It is a generalized. version of an 

attached name set, where an attached name is the name set of a single 

vertex. Thus 

Fattach CXi,N) = Fname CXi,N) , where Xi is a single vertex. 

As an example, in the graph of figufe(~.9), the attached name set of ,· 
a.AC1> and of a.AC2) are indicated. The set union of these reference 

sets form the name set of a.A. 

Just as an attached name set has an attached name list, then a name 

set has a name list. This name list is represented by 

C Xf1, Xf2, XfN ) 

where Xf1.:Xf~ are elements of the 
' ~ 

rules used to o~der this is given. 

-~ 

name set. In the following the. 

Each of the vertices Xf1 is a member of Reference2. Therefore there 

will be a reference like 

&.N1(11).N2CI2) •••• NmCim) 

which will reference each Xfi. Here Im is the index of Xfi with 

respect to the vertex to which it is attached, and Nm is the name of 

Xfi. Thus each Xfi will have associated with it one or more lists 

C I1, I2, ••• Im ) 

The ordering function is defined on 

CI1,I2, ••• Im) can be defined to 

CJ1,J2, ••• Jn), 

these index lists. An index list 

be less than the index list 



@.C.B 

Root vertex 

@.F(1) .B 
@.F(2).B 

B 

@.E.F .B(2) 

Figure· E~ 10 

F 

If Ik = Jk for ell k = 1 to p, p<n and p<m, and Ip+1<Jp+1 or 

If Ik = Jk for ell k = 1 to m end n>m. 

If the index lists for two vertices ere equal, then there are two 

possibilities. Either the vertices ere identical, _ _,in which case the 

Lowest index List is used to order this vertex with respect to others. 

Alternatively the two vertices may be different. Jn this case the order 

is undefined. 

Using these ordering rules, the vertices of a reference when it is 
,.,. 

used in en attach statement can now be ordered. 

Informally, the order of the vertices in one attached name set is 

given by its indices. If two attached names sets ere combined together, 

then the vertices in one attached name set will come first. Which 

attached name set comes first is choosen on the basis of the index 
' ordering of the parent vertices of the attached name sets. If there are 

more attached name sets, then each is ordered in a similar manner. 

Finally a Yertex appearing in more than one attached name set is given 

the Lowest ordering possible. 

As an example, the graph of figure<EI. 10) provides the fol Lowing 

index lists. 
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(1,1) for the vertex referenc~d by S.C.B 

(1, 1) for the vertex referenced by i.D.B 

<1,1,1) for the vertex referenced by lil.E.F.8(1) 

(1,1,2) for the vertex referenced by fil.E.F.8(2) 

(1,1) for the vertex referenced by S.FC1>.B 

(2,1) for the same vertex as the above referenced by S.F(2).B 

The index list of the reference til.F(2).B will be ignored since the 

same vertex is referenced by a smaller index list (1,1). The remaining 

index lists will be ordered like 

<1,1) (1,1) (1,1) (1,1,1) (1,1,2) 

where the order of the first three vertices will be undefined. 

CS.2.4.2) ORDER OF VERTICES AFTER AN ATTACH 

Using the ordering definition, an alternative definition of the 

actions of an attach statement can be given. Assume that the attached 

name set of a vertex Xr1 for the name N in Reference1 is Xa. Then after 

the execution of the statement 

Reference1 -> Reference2 

the attached name set of a vertex Xr1 for name N will be .,, 

Xa + Fname ( reference set of Reference2 , N ) 

The attached name list can be correspondingly defined as 

( Xa1, Xa2, ••• XaN, Xf1, Xf2, ••• XfH ) 

where Xfi is an element of the name set of Reference2 and Xf1 is not 

a member ot Xa. This list defines uniquely the index value of a newly 

attached vertex with respect to its parent vertex. 
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Root vertex 

B c 

Figure_ E.11 

i'I 
(S.2.4.3) HULTIPLE'ATTACH STATEMENTS 

' .................................... 

Given a statement like 

D 

Reference_Expression1 -> Reference_Expression2 -> ••• 

Reference_ExpressionN ; 

for some N, then the action of 

Reference_Expression1 -> Reference_Expression2 -> 

Reference_ExpressionN -> Reference_ExpressionH ; 

will be to create all the arcs of the form (Xrn,Xrm>, if such an arc 

does not already exist, where Xrn is a member ·of the ReferenceN 

reference set, and Xrm is in the Reference_ExpressionH set. Thus the 

graph of figure(E~11> shows the result of the statement 

&.B -> &.C -> &.D 

<EL2.4.4> NEW OPERATION 

A new vertex can be created by a NEW statement. This has the syntax 

New_Operation = 
"NEW", "(", Vertex_Name, C "=", Expression J, ")" ; 
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A statement like 

& -> NEW ( Vertex_Name1 ) 

where & represents in this case the root vertex, will create a new 

vertex, give it the indicated name, set its value function to null, and 

attach it to the root vertex. 

If an attach statement is like 

Reference1 -> NEW ( Vertex_Name1 ) 

then this is equivalent to 

S1 -> Xnew1 

S2 -> Xnew2 

SN -> XnewN 

S1 is the set < Xr1 } 

S2 is the set < Xr2 } 

SN is the set < XrN } 

In this, S1,S2, ••• SN are reference set variables 

given in the rig~t hand side. The set <Xr1,Xr2, ••• Xrn} 

whose values are 

is the reference 

set of the reference Reference1, and Xnew1 •• XnewN are distinct new 

vertices, each having the name Vertex_Name1 and a null value. 

If an Attach_Statement is like 

Reference1 -> NEW ( Vertex_Name1 ) -> Reference2 ; 

then this would be equivalent to the actions 

Reference1 -> NEW ( Vertex_Name1 ) ; 

S1 -> Reference2 

S2 -> Reference2 

S1 is the set < Xnew1 } 

S2 is the set < Xnew2 } 

SN -> Ref erence2 SN is the set < XnewN } 

where S1,S2, ••• SN are reference set 

< Xnew1, Xnew2, ••• XnewN } contains all of the 

the attach statement 
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Reference1 -> NEW ( Vertex_Name1 ) ; 

Another kind of NEW operation is 

NEW < Vertex_Name1 = Expression1 ) 

which will also create a new vertex and attach it, except that the 

value of the vertex will not be null, it will be set to the indicated 

expression. This expression has to give a type of INTEGER, REAL, STRING 

or BOOLEAN. The SET type is not allowed. 

An example is 

Q -> NEW ( A = 3 ) 

Once a vertex has been created, its name and value can not be 

changed. A vertex can not be destroyed. The operation of attaching the 

new vertex to the context base is also irreversible. 

Finally, if an attach statement is like 

Q -> NEW ( Vertex_Name1 ) ; 

and creates an arc (Xr1,Xr2), then 
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Findex (Xr1,Xr2) = Number of vertices in the set 
Fattech (Xr1,Vertex_Name1) 

In other words the vertices are numbered in the order in which they 

are created. 

('> 

The graphs of figure<~.12) demonstrate some possible examples. 

(~.2.4.5) BRACKETED ATTACH STATEMENTS 

..................................... 

An attach statement of the form 

Att'ach_ReferenceO -> ( Attach_Operation1 ) ; 

can also be represented as 

Attach_ReferenceO -> ( Attach_Reference1-> ••• Attach_ReferenceN ) 

where the Attach_Operation has be expanded into its separate 

Attach_Reference parts. This statement is equivalent to the following 

Attech_ReferenceO'-> Attach_Reference1 -> Attech_ReferenceN ; 

A general attach statement of the form 

Attach_Reference1 -> ( Attach_Operation1, •• A~tach_OperationN ) ; - ~ 

is equivalent in its actions to the separate attach statements 

S := Attach_Reference1 ; 

S -> ( Attach_Operation1 ) ; 

S -> ( Attach_OperationN ) ; 

where S is a reference set variable. 
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Root vertex 

Figure e:.13 

(E11.2.5) INITIAL CONSTRUCTION OF A GRAPH 

The initial graph available, before any vertices have been created, 

has only one vertex. This is the root vertex, which is the vertex used 

in the default context of a reference or statement. Thus to create a 

graph like that in figure(E~13>, requires the operations· shown below 

8 -> ( NEW ( A ) , NEW ( A ) , NEW ( B ) ) ; 

&.A -> NEW ( C ) ; 

&.A(1).C -> NEW ( D ) ; 

(Ei.2.6) REPETITION CONSTRUCT 

The action of a single statement may be repeated a number of times. 

This achieved by a For_Statement, defined by the syntax 

For_Statement = For_Head, Statement_Block, "END", 

Statement_Block = < Statement } - ; 

For_Head = 

"·" . , , 

"FOR", < For_Number I For_Iteration I For_Each >, "DO" ; 

For_Number = Integer_Expression ; 
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For_Iteration = Variable_Identifier, ":=", 
lnteger_Expression, "TO", Integer_Expression ; 

For_Each = 
Reference_Set_Variable_Identifier, ":=", 

"EACH", "(", Reference_Expression , ")" ; 

A For_Statement like 

FOR lnteger_Expression1· DO Statement_Block1 END ; 

is equivalent to the reference 

Statement_Block1 ; Statement_Block1 ; Statement_Block1 ; 

w~ere the number of Statement_Blocks is as given by the integer 

expression in the FOR statement. An example is 

FOR 5 DO 

& -> NEW C C ) ; 

END ; 

Starting with an uninitialized graph containing . 
vertex, this For_Statement will create the graph of 

For_Statement like 

FOR Variable_ldentifier1 := 

lnteger_Expression1 TO Integer_Expr~ssion2 bO 

Statement_Block1 END ; 

is equivalent to 

Variable_Identifier1 := Integer_Expression1 ; 

Statement_Block1 ; 

only the root 

figure(E:.14>. A 

Variable_Identifier1 := lnteger_Expression1 + 1 ; 

Statement_Block1 ; 

Variable_ldentifier1 := lnteger_Expression2 ; 

Statement_Block1 ; 
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Here the statement block is called once for each different value of 

the index variable. This takes on the values from Integer_Expression1 to 

Integer_Expression2 inclusive. 

An example of this is 

FOR I := 2 TO 4 DO 

8.C(I) -> NEW ( 0 ) ; 

END ; 

If this For_Statement starts with the gr.aph of figure<El.14> then the 

graph of figure~~~15> will be constructed. 

A For_Statement like 

FOR Reference_Set_Variable_Identifier := 

EACH ( Reference_Expression ) DO 

Statement_Block1 END ; 

will be equivalent to the following statements 

Statement_Block1 ; 

Statement_Block1 ; 

Stetement_Block1 ; 

Reference_Set Variable_Identifier1 is < X1 > 
Reference_Set_Variable_Identifier.1 is < X2 > 

Reference_Set Variable_ldentifier1 is { XN > 

where the text in the right hand side is not part of the ISL but 

indicates what value the Reference_Set_Variable_ldentifier1 has. The set 

< X1, X2, ••• XN > if equal to the reference set obtained from Reference1. 

In other words, this sets the Refer.ence_Set_Variable_Identifier to each 

of the vertices in the reference, performing the Statement_Block once 

for each. An example is the statement 

FOR S := EACH ( S.C.< NOT EHPTY ( &.D ) > ) DO 

S.D -~ S ; 

END ; 

which, if it starts with the graph in figure<S.15), will create the 

graph of figure;<E.16>. 
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(~.2.7) IF STATEMENTS 

A conditional statement may be used to govern the execution of a 

statement block. The syntax of an If_Statement is 

If_Statement = "IF", Conditional_Expression, 

"THEN", Statement_Block, [ "ELSE", Statement_Block l ; 

An if statement like 

IF Conditional_Expression1 THEN Statement_Block1 ; 

will be· equivalent to the following 

Statement_Block1 

if the condition is true. If the condition is false then the 

If_Statement has no action. An if statement like 

IF Conditional_Expression1 THEN Statement_Block1 

ELSE Statement_Block2 END ; 

is equivalent in its results to 

Statement_Block1 ; 

if the condition is true. If the condition is false then the 

If_Stetement is equivalent to 

Statement_Block2 ; 

An example IF statement is 

IF I > 2 THEN 

& -> NEW ( A ) ; 

END ; 

If I is greater than 2, then this statement will create a new A 

vertex. Another example is 
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Figure Ej.17 

IF NOT EMPTY ( S.A.B.< ANY_VALUE(&.C)=3 > ) THEN 

&.A.B.C -> NEW ( D ) ; 

END ; 

which will create a new D Vertex for the C vertices in the reference 

A.B.C only if there exists at least one C vertex vith a value of 3. The 

action of this is visible in the graph of figure(~.17). 

C~.3) DECLARATIONS 

================== 

In the preceding sections 

statements have been defined. 

identifiers. In the following 

the 

These 

the 

used to define these names is given. 

<E~3.1) CONSTANT IDENTIFIERS 

basic' graph creation and access 

statements have used various kinds 

syntax of the declarations that are 

The constant definition pert defines identifiers that represent 

constant values. There after these identifiers •ay be used in the 

specifications in place of an actual constant value. The constants may 

be real, integer, string or boolean. 
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The syntax of a constant definition part is 

Constant_Definition_Part = 
"CONST", One_Constant_Definition, 

< ",", One_Constant_Definition }, ";" ; 

One_Constant_Definition = Identifier, "=", Constant_Value ; 

Constant_Value = C Unary_Sign l Unsigned_Integer 

C Unary_Sign l Unsigned_Real I 
String 

True False ; 

An example constant definition part is 

CONST A=3.4, 8=2, C='string', O=True; 

<EL3.2) VERTEX IDENTIFIERS 
I 

The vertex definition defines identifiers that may be used as the 

names of vertices in NEW operations. As well the ISL may provide some 

predefined vertex names, depending upon the requirements of the resource 

allocator application. Only names defined by the user or predefined 

names may be used to create and to refer to vertices. The syntax is 

Vertex_Definition_Part = 

"VERTEX", Identifier, < 

and an example is 

VERTEX A , B , C ; 

<EL3.3) VARIABLE IDENTIFIERS 

" " , , Identifier >, H •II • , , 

The variables are defined in a Variable_Declaration_Part with the 

syntax 
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Varieble_Declaretion_Part = 

"VAR", < Var_Declaration_List, ";" }- ; 

Var_Declaretion_List = 

Identifier, < ",", Identifier }, ":", Var_Type, ; 

Var_Type = "INTEGER" I "STRING" I "REAL" I "BOOLEAN" I "SET" ; 

An example is 

VAR 

A, B INTEGER ; 

S SET ; 

which will define two integer variables of names A and B, and define 

a reference set variable of name S. 

(E.3.4) PROCEDURE DEFINITIONS 

A procedure defines a Statement_Block and gives it a name. 

Thereafter this statement block may be invoked by using this name. The 

syntax of a procedure definition is 

Procedure_Definition = 
"PROCEDURE", Procedure_Name_Identifier, 

[ Formal_Parameter_List J, Local_Definition_Part, 

"BEGIN" Statement Block "END" "·" • , - , , , , 

Local_Definition_Part = [ Constant_Definition_Part J, 

[ Vertex_Definition_Part J, 

[ Variable_Definition_Part ] ; 

Formal_Parameter_List = "(", One_Formal_Paremeter, 

< "," , One_Formal_Parameter >, ")" ; 
One_Formal_Parameter = Identifier_List, ":", Var_Type ; 

Identi.fier_List =Identifier,<",", Identifier}; 

The procedure may be called by using a procedure call statement. The 

syntax of this is 
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Procedure_Call = 
Procedure_Name_Identifier, [ Actual_Parameter_List ] II• It • , , , 

Actual_Parameter_List = "(", Actual, < 
Actual = Expression ; 

" " , , Actual >, ")" ; 

<El3.4.1> PARAMETER LISTS 

.......................... 

A procedure defined without a formal parameter list, as in 

PROCEDURE Identifier1 ; ,. 
BEGIN Statement_Block1 END ; 

can be called with a procedure call without any actual parameters. 

Thus 

Identifier1 ; 

A procedure -defined with a formal parameter list containing a 

One_Formal_Paremeter like 

Identifier1, Identifier2, ••• IdentifierN : Ver_Type1 

is equivalent to a procedure defined with a formal parameter list 

like ~ 

Identifier1 : Var_Type1 ; Identifier2 Var_Type1 ; 

••• IdentifierN : Var_Type1 ; 

A procedure defined with a nonempty formal parameter list such as -

PROCEDURE Identifier1 

< Identifier1 Var_Type1 ; 

Identifier2 : Var_Type2 ; 

IdentifierN : Var_TypeN ) ; 

Statement_Block1 

END ; 



is called by a Procedure_Call of the form 

Identifier1 ( Actual1, Actual2, ActualN ) ; 

where there are the same number of Actual parameters as there ere 

formal parameter identifiers. Furthermore the types of the corresponding 

actual and formal parameters must agree. 

(E~3.4.2> PROCEDURE SEMANTICS 
I 

............................. 

Given a procedure of the form 

PROCEDURE Identifier1 Formal_Parameter_List1 ; 

Local_Definition_Part1 

BEGIN 

Statement_Block1 

END ; 

then a procedure call to this procedure like 

Identifier1 Actual_Paremeter List1 ; 

will have the same actions as an equivalent group of statements 

constructed by modifying the statements of Statement_Block1. If there is 

a formal parameter IdentifierF in the procedure declaration, then there 

will also be a corresponding actual parameter ActualP. The equivalent .. 
statements are constructed by replacing every mention of IdentifierF by 

ActualP. 

All the identifiers defined inside the procedure and thus used in 

the above equivalent statements will need to be defined in equivalent 

definitions. Thus every identifier in the Local_Definition_Part of the 

procedure will be defined with the same type in the equivalent 

definitions. 
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-(El.3.~.3) EXAMPLES 

.................. 

An example procedure definition is 

PROCEDURE P ( S : SET ) ; 

BEGIN 

S := i.A.<&.C=6> ; 

END ; 

end this may be called by 

This will return e reference set variable which refers to ell , 

vertices in the reference 

&l.A.<&.C=6> 

Another example is 

PROCEDURE P ( VALUE : 6TRING ; S : SET ) ; 

BEGIN 

S -> NEW ( C = VALUE ) ; 

END ; 

If this is celled with the reference 

P ( 'string' , a.A ) ; 

then this reference is equivalent to 

8.A -> NEW ( C = 'string' ) ; 

Procedures may be celled recursively. Thus e procedure may be 

defined as • 

PROCEDURE TREE ( S : SET ; LEVEL INTEGER ) ; 

SET L ; 

BEGIN 
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IF LEVEL <= HAX_LEVEL THEN 

L := NEW ( A = LEVEL ) . , 
S -> L . , 
TREE ( L (EVEL+1 ) . , , 
L := NEW ( A = LEVEL ) . , 
S -> L . , 
TREE ( L LEVEL+ 1 ) . , , 

END . , 
END . , 

In this the L set reference set variable is used as a temporary 

reference to the new A vertex. Each A vertex is created, attached to the 

reference set S, and then used in a further recursive call to the TREE 

procedure. lf Hax_Level is equal to 3 and the procedure is called as in 

the following, 

TREE ( S , 1 ) ; 

will be equivalent to the Attach_Statements 
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til -> ? 

( NEW(A=1) -> 

( NEWCA=2> -> 

), 

( NEWCA=3) , NEWCA=3) ), 

NEWCA=2) -> 

( NEWCA=3) , NEWCA=3) ) 

NEWCA=1) -> 

( NEW(A=2) -> 

,·) 

) ; 

( NEWCA=3) , NEWCA=3) ), 

NEWCA=2) -> 

( NEW(A=3) , NEWCA=3) ) 

The actions of the statements 

TREE ( Q , 1 ) ; 

&.A.A.A -> NEW ( B ) ; 

are shown in figure~,.18). / 

(E/.4) BRINGING THE DECLARATIONS AND STATEMENTS TOGETHER 

======================================================= 

The part of the 

specification block. 

definitions which 

ISL that creates graphs is. contained in one 

This contains the"' references and identifier 

have been discussed above. Its syntax is 

Graph_Specification_Block = 
"GRAPH", 

[ Constant_Definition_Part l , 

[ Vertex_Definition_Part J , 

[ Variable_Def inition_Part J , 

< Procedure_Definition >, 
"BEGIN" 

Statement_Block, 

"END", "." . I I 
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A example graph definition is 

GRAPH 

CONST HAX_LEVEL = 3 ; 

VERTEX A,B ; 

PROCEDURE TREE ••• as in the above definition ••• ; 

BEGIN 

END ; 

TREE ( Q , 1 ) ; 

a.A.A.A -> NEW ( B ) ; 

and this is a complete legal definition to obtain the graph 

structur~ of the figure(E\.18). 

(EL4.1) SCOPE OF IDENTIFIERS 

The various identifiers defined in the specifications have defined 

scopes over which they may ·be used. An identifier may be defined 

globally with respect to the graph specification block. Such identifiers 

are those defined as constants, vertex names, procedure names and 

variables. Alternatively identifiers may be defined locally w~th respect 

to a procedure. These are the formal parameter identifiers, and the 

identifiers in the local definition part. 

A global identifier may be only defined once. Once defined it 
~ 

retains this definition and may be used through out the graph 

specification block. A global identifier can not be redefined as'e local 

identifier inside a procedure. 

A local identifier may not be redefined with the same procedure. The 

definition of a local identifier is local to the procedure only, and 

different procedures using the same local identifiers have independent 

definitions for the identifier. The scope of a local identifier is the 

whole of the procedure block. 
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APPEND IX (f~ 

------------------------

<~.1) SHORT COMPLETE SPECIFICATION PROGRAM 

========================================== 

In the following a complete 

similar to the instrument 

example will be developed for a problem 

monitoring problem introduced in the 

introduction. Firstly the computer architecture is described 

ALLOCATOR 

GRAPH· 

VERTEX 

INPUT_OUTPUT I TTY_ATTACHED ; 

VAR 

J : INTEGER ; 

PSR : SET ; 

PROCEDURE STANDARD_HEHORY ( 

C : SET ; START_VALUE , SIZE_VALUE : INTEGER ) ; 

VAR HEH_ : SET ; 

BEGIN 

HEH := NEW ( ADDRESS ) -> 

( NEW ( START = START_VALUE ) , 
NEW ( HEHORY ) -> 
( NEW ( SIZE = SIZE_VALUE ) , 

NEW ( ACCESS = 0.45 
) 

) . 
I 

c -> HEH . , 
END ; 

PROCEDURE ONE_PROCESSOR ( C , PSR SET ) ; 

BEGIN 

PSR := NEW ( PROCESSOR ) ; 

C -> PSR -> 

( NEW ( CYCLE = 2.5 ) , NEW ( NAME = 'BRANDX' ) ) ; 

END ; 



PROCEDURE HAP ( PSR : SET ) ; 

VAR HE, P : SET ; 
I : INTEGER ; 

BEGIN 
HE -> NEW ( HEHORY_ACCESS ) ; 

PSR -> HE ; 

I := 1 ; 

FOR P := EACH C PSR ) DO 

HE -> NEW ( ADDRESS ) -> 

( NEW ( START = 8192 * I ) , P.ADDRESS.HEHORY ) ; 

- I := I + 1 ; 

END ; 

END ; 

BEGIN 

FOR 10 DO 

ONE_PROCESSOR < a , PSR ) 

STANDARD_HEHORY ( PSR , 0 

END . , 
HAP ( &.PROCESSOR ) ; 

fil -> NEW ( INPUT_OUTPUT ) ; 

FOR J := 11 TO 20 DO 

; 

8192 ) . , , 

&.INPUT_OUTPUT -> NEW ( READ WRITE_PORT = J ) ; 

END ; 

&.PROCESSOR -> 

( NEW ( INTERRUPT = 0 ) , fil.INPUT_OUTPUT ) ; 

FOR J := 1 TO 2 DO 
&.PROCESSOR(J) -> NEW C TTY_ATTACHED ) -> 

NEW ( PORT ) -> NEW ( READ_WRITE_PORT = 4 ) ; 

END ; 

"ii -> NEW C TTY_PROCESSOR ) -> 

->&.PROCESSOR. <NOT EHPTY ( &.TTY_ATTACHED ) >; 



END ; 

This defines a computer system with ten processors. Each accesses a 

local memory of 8096 bytes end has indirect access via a common bus to 

all the other memories of the system. Each processor also has an 

interrupt at address 0. Each processor can access the same group of 

input/output ports which are numbered 11 to 20. As well.processors 1 and 

2 have a TTY port attached,. indicated by the TTY_ATTACHED vertex. To 

allow direct reference to these two processors, their vertices are 

attached to the TTY_PROCESSOR vertex. 

The instrument monitoring program takes the form 

PROGRAM INSTRUHENT_HONITOR ; 

PROCESS INSTRUMENT_1 ; 

PROCESS INSTRUMENT_2 ; 

. . .. 
PROCESS INSTRUHENT_10 ; 

HAIN PROCESS 

( which accesses the TTY ports ) 

END ; 

END;<* this text
0

is separate from the allocation specification*> 

Here it is assumed for the sake of the example that the main process 

is the only process that accesses the TTY ports. The user programmer 

will now need to provide the constraint spe~ification to insure that the 

main process is assigned to a processor that accesses this TTY port. 

Thus an object specification is required to indicate this, 

OBJECT 

DEFINITION 

HAIN_PROCESS : PROCESS ; 

END ; 

SPECIFICATION 

HAIN_PROCESS := [ INSTRUMENT.MAIN J ; 

END ; 

END ; <* this is part of the allocation specification *> 
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This object specification is used in a constraint block like 

CONSTRAINT 
ASSIGN ( HAIN_PROCESS ) -> [ TTY_PROCESSOR J ; 

END ; 
END (* of complete allocation specification *) ; 

The main process will be assigned to either one of the first two 

processors. The other processes and all the memories, ·which have not 

been mentioned in any directives, will be assigned by the allocator to 

achieve .the maximum throughput. 
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