
~\
• I·~.._

.... l}J:-~
,~;--\

·~~I· • ,('~r

HULTIMICROPROCESSOR RESOURCE ALLOCATION

--

' I f, I r>

tFf:: ,.__;·

DAVID WYNNE
~\

Department of Information Science

University of Tasmania

1983

PAGE INDEX.

Abs tract . . • • • • . • • • • . • • . . • . . • . . • • • . • • • . • • • • . . . • . • • . . 1

Chapter (1)

1.1
1. 2
1. 3
1.4
1.5
1.6
1. 7
1. 8
1.9
1.10

Introduction ••.•.•.....•....••••.•••
Resource allocation applications
Concurrent programs ••...•.••.•....•.•
Computer architecture••.••.
Resource allocation .••.•..•.
High level languages .•••••.•
Architecture specification ••..•.
Program specification ..•.•••••••.•.
The topics researched .••••••••••..••
Chapter survey

Chapter (2)

2.1 An overview of resource allocation
2.1.1. Examples of resource allocation

2.2 Resource allocation aspects
2.2.1 Low level details ..•.••.
2.2.2.
2.2.3
2.2.4
2.2.5

Process to processor allocation •.•••••...••.•.•••
Degradation due to memory interference .•••....••.•
Allocation interactions •...••. • ..••••...
Resource allocation failure.......•..•.

2.3 Some resource allocation applications
2.3.l Picture processing .••.••••••..•.•
2.3.2 Cm* type computer architecture
2.3.3. Systolic architecture ••••••••.•••

Chapter (3)

3.1 Information specification language ••.•.•••.•••.
3.1.1 Underlying information structure

3.2 Overview of the ISL graph operations

Chapter (4)

4.1 Using the information specification language graphs
4.2 Basic computer architecture specification .•.•..

4. 2 .1 A simple system •..
4.2.2 Specifying memory
4.2.3 Multiple memories •••..••.••
4.2.4 Use of procedure definitions

4. 3 Vertex names ..•.•..........•...
4. 4 Shared memory ..•.•••...•••..•..

4.4.1 Memory access interference
4. 4. 2 Dependent shared memory

4.4.2.1. Memory bank switching •••...•....••
4.4.2.2. Memory map system ..••••••.....•••
4.4.2.3. Multilevel memory mapping schemes

2

2
2
3
4
5
7
8
9
10
12

13

13
15
20
20
20
20
23
23
24
24
25
27

29

29
29
32

35

35
36
36
37
41
43
45
45
48
48
49
51
54

4.5 Snowflake architecture .••..•..•.•.......•.•.•..••••...•.... 56
4. 6 Input, output and interrupts • • • . • • • • • . • . • 60

4. 6. 1 Input and output • • • . . • . • . . . • . • • • • • • . . . • 60
4.6.1.1 Memory mapped input and output •..•.•...•...•.•.•.... 60

.4.6.1.2 Separate address space Input/Output .•.....••.•...... 62
. 4. 6. 2 Interrupts • • • . . • • . . • • 64
4.6.3 Specification of variable addresses •.•................ 65

4. 7 Conditionals . . • • . . . • . . • • • . • • 66
4.7.1 Use of conditional selection directives .••............ 66
4. 7.2 Simple selection example • . . • . • . . . • . • • • . .• •. . . •. . . 67
4. 7.3 Multiple selection citerion .••.•.....•.•........•...•• 68

Chapter (5) . • • . • . . • • . • • • • • • • . . . • • • • . • • • . • • . . • • . • • . • . • . . • . 70

5.1 User constraint specification . • • . • • . • • • • • • . . . • • • . • . . • • 70
5.2 Specification of resource elements ..•••........•.••.••.•.•• 70
5.3 Specification of the program elements ••••.•••..•.••.•.•..•• 71

5.3.l Path names ...••....•.•......•.•••.•...•....•...•.....• 71
5.3.2 With blocks . .••.•.•. .•..•...•. •• •••. ...•...• .•..•• .•.• 72
5.3.3 Process code elements•••..•••••..•.•••..•.•• 74
5.3.4 Object definitions and assignments ..•..•.•..•...•...•. 74
5. 3. 5 Program specification block • . • . • • . • . • . • . . • • • • • • 76

5. 4 Constraint specification . • . • • • . • • • • • . . • • . . . • . . . • . . . • . • • 77
5.4.1 General constraints •••. .•. . .•••.••..•.••. .•.•••.... ..•• 77

5.4.1.1 Assignment constraints ..•..•...•..•...•..•.•••....• 78
5.4.1.2 Proximity constraints •..••••••••.•..•...•.••.•...•. 79

5.4.2 Address constraints • • • .• • . • . . . • • • .• • • • • • • • • . • • • • 81
5.4.2.1 I/O variable addresses .•.••.•••.•.••.••••..•••..••• 81
5. 4. 2. 2 Interrupt calls . . • • . . • • • . • • • • . • • . • • • • • • . . • . • . . 82

5.4.3 Multiple constraints ..•••....•••••••..•...•••.•.•.•...• 83
5. 5 Final syntax • . . • . . • . . • . . • • • . • • • • • • • . . . • • • . . • . . . • . • 84

Chapter (6) 85

6.1 The calculation of throughput • • • • . • • • • • • • 85
6.2 Analytic probabilistic throughput model ••.....•...••.....•. 85

6.2.1. Model description .•.••......•...••.••...•••....•...... 86
6. 2. 2. Simplifications in the model • • • • • • • • • . • • . • . • • • 88

6.3 Derivation of the conflict function •••••.•.•.•.••.......•.• 90
6.4 Deriving the probabilistic equations •••••..••.••.••.......• 95
6. 5 Obtaining processor utilization . . • • . . • • • . . • • . . • • 100
6.6 Numerical iteration solution for the throughput 101

6.6.1 Sununary of iteration steps .•. .••••.•••....••..... ...•.. 104
6. 7 Experimental results . • • . • • . . • . . . • • . • • 106

6. 7 .1 Model verification . . • . . . • . • . • . • . . • • • • . • . • • . . • • • • 106
6.7.2 Implementation of the simulator ..••.•.••.•••.•.•••..•. 109
6. 7. 3 Execution times • • . • . • • • • • • • • • . . • • . . • • • • . • . • • . . • • 110
6. 7. 4 Summary . . . • . • • • . • . • • . . • . • • • . • • . . • • • 111

Chapter (7) • • • • 112

7.1 Introduction to the allocation alogrithims••.•......•. 112
7. 1. 1 Previous work • . . • • . . • 112
7 .1. 2 Approach used . • • • • . • . . . • . . . • • • . . . • • . • • . 113

7.2 The input information to the allocator .•••.•.•••.•.•.••.... 115
7.2.1 Computer architecture structure •.••••••••...•.......•• 115
7. 2. 2 Specification of the program . • • • . • . . . • • . • • • . 117
7.2.3 Constraint specification •.•.••••.••.•••••....•...•.••. 118
7. 2. 4 Example map allocation • • • • • • . • • . • • • • . • • • • • • . • . • • . • . • • • 120

7. 3 The allocator search technique . • . . . • • . • • • • . • . . . • . . • . . • . . • • . • 122
7. 3 .1 Detection of unprofitable searches.. • • . . • • . • • . . 122

7. 3.1.1 Detecting illegal maps ..••....•.••••.•.••••...•.•...• 123
7.3.l.2 Detecting inefficient maps .•••...•...•••.••.•.•..••.. 124

7.3.l.2.l Improving the throughput calculations •.....•..... 127
7.3.2 Producing efficient mappings early in the search •.......• 129

7.3.2.1. Process and memory ordering ••...•••..•..............• 130
7.3.2.2 Processor and store ordering ••.••••.•..•...••.......• 131

7.4 Sunnnary •.•••••••.•..••.....••.••••.•••••••••.•..••••.••.•... 136
7. 5 Constraint reduction • • • • • • . • • • • • • • • • • • • . • . • • . • • • . . • • • • • . • • . • 136

7.5.1 Constraint reduction using store size information ••.•.••. 137
7.5.2 Constraint reduction based upon accessibility ...•••••.•.• 141
7.5.3 Proximity constraint information ••.•••••..•••••.••••..••• 142
7.5.4 Elimination of symmetrical searches ••••....••••..••••.•.• 146

7.5.4.1 Definition of a symmetrical allocation •.•.•••••••.•.• 147
7.5.4.2 Detecting equivalence •.•••.•••••••••...••••.•.•...•.• 148
7.5.4.3 Speeding up the partitioning operation .•••••...••.••. 151
7.5.4.4 Performing the constraint reductions•.••.•••••••. 151

7.5.4.4.1 Example symmetry reduction •...••.••••.•••.•.••.•• 152
7.5.4.5 Restrictions in the implementation •.••••.••.••...•.•• 153

7.5.5 Constraint reduction propagation •.••••.•.....••....•..•.• 154
7. 6 Experimental results • • • . • . . • . • • • • • • • . . • • . . . • . • • • • . • • • . 156

7. 6.1 Demonstration problem • • • • • . . • • • • • . • • • • • • • . • . • • • • • • • • • • • • • 157
7. 6. 2 Larger problems • • . . • . • • • • • • . • • • • . • • • • • • • • • • • • • • • . . • • . . • • • 158
7.6.3 Size of the architecture and program ••••••••.••.••••...•. 162
7.6.4 Structure of the computer architecture ••.•.....••••.••.•• 162
7.6.5 The choice of the throughput factor •••••.•••.•••.•...•.•• 165
7.6.6 User imposed contraints .•.•.•••.•••..•••..•.••...•••..... 166
7. 6. 7 Maximum probelm sizes •.•••.••.•.•..••.•••....•.•••..•..•. 168
7. 6. 8 Sunnnary •..•.•..•..••..••..•...•..•..••..•.••.•....••..••• 169

Chapter (8) 170

8.1 Conclusions ••......•••.•••..•..•••••••••••..•..••.•••••.•••. 170

Appendix (A) • . . • . . • • . • . • • • • . • • • • • • • . • • • . • • • . . • • • • • • • . . • • 173

A.l Construction of the static access array .•••...•....••••...•• 173

Appendix (B) • 175

B .1 Calculating the conflict function • • • • • • • • • • • . • . . • • • . . . • • 175

Appendix (C) •.....•.•.....•...•.•.....•.•.•.•.••••..•..............•• 177

C.l Propagation table 177

Appendix (D) ••.••••••..•.•...••.•...........•.•..........•........... 181

D.l
D.l.l
D. l. 2
D.l. 3

Algorithms and map operators . . . • • • . . . • • . • • • • • . • . 181
Synunetry redundancy removal algorithm •.••.••••.••.••••..••. 181
The search algorithm ..••.•••.•..••.••••••....•.•...•..•...• 185
Operator names • . • . • . • . • • • • • • • . . • . • • • • • . • • • • . . . • . . . • • • • • • • • . 188

Appendix (E)

E.l Infonnation specification language••...•.•••••
E. 2 Statements ..•...••..••..•.••••..•.•.•.•

E.2.1 Assignment statements .•.•.•••.••••.
E.2.2 Operator definitions
E. 2. 3 References •.•••.••......••.

E.2.3.l
E.2.3.2
E.2.3.3
E.2.3.4
E.2.3.5
E.2.3.6
E.2.3.7

Reference syntax
Selector references .•••...•.•.•
Using reference set variables
More than one selector reference
Bracketed references .•....•••••.•
Conditional references •......•
Conditional selector examples

E.2.4 Attach statements
Index ordering ••••••...•••••.•..••.••
Order of vertices after an attach
Multiple attach statements .•..••••
New operation

E.2.4.1.
E.2.4.2
E.2.4.3
E.2.4.4
E.2.4.5 Bracketed attach statements

Initial construction of a graph E.2.5
E.2.6
E.2.7

Repetition construct
If statements .••••••

E.3 Declarations •••.•.
E.3.1
E. 3. 2
E.3.3

Constant identifiers
Vertex identifiers .•.••.•
Variable identifiers

E.3.4 Procedure definitions
E.3.4.1
E.3.4.2
E.3.4.3

Parameter lists
Procedure semantics .••.•••....•••.•
Examples .•.•.•••••••••••••..••••.••

E.4 Bringing the declarations and statements together
E.4.1 Scope of identifiers

Appendix (F)

193
193
194
195
197
198
198
200
201
202
203
206
209
210
213
214
214
217
218
218
222
223
223
224
224
225
226
227
228
230
231

232

F.l Short complete specification program•..•...•..••..•..••.. 232

References 236

Acknowledgements

I wish to acknowledge the assistance to Professor A. Sale, University of

Tasmania, for his help at the start of my research, Professor J. Keedy and

Dr J. Rosenberg, Monash University, for their comments and suggestions on

my work, Dr E. Gehringer, visitor to Monash University from Carnegie-Mellon

University, for suggesting the research topic, the staff at the University

Computing Centre, and finally Dr C. Keen, University of Tasmania, for his

invaluable supervision of my research and his assistance in producing the

final thesis.

ABSTRACT

This thesis investigates the problems of allocating the data and

code address spaces of a concurrent program onto the stores of a given

multiprocessor computer architecture, and the allocation of the

processes of the program to the processors of the architecture.

The minimum required of this resource allocation is to produce a

legal mapping of the resources onto the multiprocessor computer. It will

also attempt to give the most efficient mapping, and allow the user to

guide this activity. This thesis describes the methods developed to

implement this, which includes the specification of the structures of

both the program and the computer architecture in a machine

understandable form, and the design of algorithms to perform the

allocation.

With the resulting techniques the emphasis is upon small scale

multiprocessor computer architectures running dedicated concurrent

programs. The resource allocation scheme results in a fixed allocation

of the parts of a single program to a possibily nonstandard and

specially tailored multiprocessor architecture. This would find little

application with large regular mainframe multiprocessor computers

executing time shared operating system programs, where the allocation of

resources is highly dynamic and unknown at compile time.

CHAPTER (1)

(1.1) INTRODUCTION

This thesis investigates the problems of allocating the data and

code address spaces of a concurrent program onto the stores of a given

multiprocessor computer architecture, and the allocation of the

processes of the program to the processors of the architecture. For the

remainder of the thesis this activity is called resource allocation.

(1.2) RESOURCE ALLOCATION APPLICATIONS

======================================

Such a resource allocator will be useful in many applications. At

present there are numerous inexpensive microprocessor chips available,

some of which are described in [1,7,71,86,95,97], and it is

economically feasible to construct from them multimicroprocessor

systems. Such systems would be useful for dedicated and special purpose

applications. In the past these applications may have been either too

expensive to implement, or else the only choice available would have

been to use custom designed discrete hardware logic or a general purpose

minicomputer. The possibility of using microprocessor systems is

attractive in these areas since such systems will be easier to design

than dedicated hardware logic and less expensive than a minicomputer.

Using a multiple microprocessor machine also gives the considerable

advantage of allowing many operations to be performed in parallel, thus

offering the potential of much faster solutions. There is also the

·possibility of constructing fault tolerant computer systems. A recent

overview of these applications appears in [20].

The multiprocessor computer

purposes of this research would

systems being considered for the

be constructed from off the shelf

microprocessor and memory chips, and be connected together by straight

forward bus. technology. Special purpose networks such as delta networks

C 70) and dynamically reconfigurable or partitionable networks [80,84)

are not explicitly included. Such systems

that is difficult or impossible to

2

have special purpose hardware

construct in the above way.

Having decided to use such a computer system, the user is now

confronted with the problem of getting software to run on these

architectures. Some of these difficulties are described in [35,37,94].

Generally the use of high level languages -allow the coding to be done

relatively easily, and there are a number of concurrent programming

languages becoming available that may be used [32,36,56,76,90,92).

However, given a concurrent application program written to use several

processes, there is also now the problem of deciding where on the

computer system the processes and address spaces of the program are to

go. The requirements are to produce both a Legal mapping and an

efficient mapping. They can be achieved by introducing as Little

overhead as possible in the way of memory conflicts, avoiding the

overcrowding of processors and by the reduction of excessive scheduling

overheads. Only with these will the maximum work be obtained from the

multip~ocessor system.

One approach to achieve this is the static allocation of the program

to the architecture. Thus memory contention can be avoided where

possible by allocating the Logical address spaces into physically

separate memory modules. Processes can be distributed uniformly across

the available processors, and the scheduling requirements will generally

be confined to the processes on each single processor. Such an

arrangement is particularly suitable in small computer systems where

there may be only a minimal operating system resident to support the

program. Alternatively, even if the architecture and operating system

form a moderately sized system, the minimization of memory contention

and process scheduling overheads can still be important, as it is in

StarOS system [26].

To aid ~he discussion in the main part of this thesis some terms are

now defined or explained explicitly in the following.

(1.3) CONCURRENT PROGRAMS

--

A concurrent program consists of a number of sequential processes

that have the capability of being executed simultaneously. As these

processes execute they will access their code and they will also access

their variables and perhaps procedure invocation stacks and dynamic

heaps. This data_ information is collectively known as the logical

3

apdress space of the program. Processes and address spaces together arc

known as the elements of the program, thus a concurrent program consists

of process elements and address space elements.

In such a concurrent program the processes will not have equal

access to all of the available address space elements. Instead this

access pattern will be highly irregular, with some address space

elements being accessed much more than others, and some processes will

perform many more such accesses than other processes. This is referred

to as the access pattern of the program, and information about this is

conveyed by the number of cycles performed between each process and

address space.

C1.4) COMPUTER ARCHITECTURE

--

The program will execute upon some computer architecture. The

architectures considered in this research are all multiprocessor

architectures having more than one ha~dware processor. A processor

provides the physical capability of executing one process at a time,

while the address space elements of the program reside upon the physical

memory stores of the system. The processors and stores need not be all

be identical; both homogeneous and heterogeneous architectures are

allowed. In a heterogeneous architecture the processors may be of

different kinds or the stores provided may be of different sizes and

access speeds. Collectively the processors and stores of the computer

architecture are known as its resource elements, and thus an

architecture consists of processor elements and store elements (or

physical memory elements).

As does the program, the

interconnection structure. Processors

computer architecture

are connected to the

has an

physical

stores in a manner that may or may not be uniform. This interconnection

structure is represented by access paths between processors and stores,

by the cycle speeds of the stores themselves and the access times of the

interconnection hardware. Processors can only communicate to other

processors via the use of these common stores. Many kinds of

interconnection structures are possible, as are discussed in [4,22,79].

The interconnection structure can result in memory contention. This

results from two processors simultaneously attempting to access the same

store or to use the same connection hardware. Such interference is

discussed in [8,9,44J and it is very important in determining how

efficiently the resources of the computer architecture are used in

supporting the program application. This efficiency is measured by the

throughput of the program executing upon the architecture. In this

context the throughput is the number of times the program can execute

a given program workload. Thus If a process Is specified _to make 445 refer­

ences to a particular address space in some time period, and if in the

implementation it accesses this address space at the rate of 44 references

per second, then the throughput measure is 0.1. An allocation mapping that

is twice as efficient as this will have a throughput of 0.2.

(1.5) RESOURCE ALLOCATION

--

Finally there is

architecture together.

the action of bringing the program

This resource allocation applies to' all

and the

of the

program elements, which must be assigned to some subset of the resource

elements of the computer. The assignment or allocation of an individual

program element to a resource entails-

This

Specifying upon which hardware processor a process is to

execute, and

Specifying upon which physical memory an address space is to be

placed.

specification or resource

conditions, and preferably it is

constraints under which the

also

mapping

to be

must satisfy legality

efficient. The legality

resource allocator must work are

Each process must be assigned somewhere, and must be assigned

so that it is executed by only one processor.

5

User

User

Program

Code for the
multiprocessor

Compiler

User Description of
the processes
and memories.

Execution on a
normal computer

Constraints

Multiprocessor architecture
specifications

Resource allocation

Resource
Mapping

Linker Loader

Execution on the
multiprocessor

Figure 1.1

6

Number of
cycles data

Each address space must be assigned to some single physical

memory space. There can be no overlap with any other

simultaneously present address space.

Each process must execute from a processor which can access ell

of the stores to which the address spaces accessed by the

process have been allocated.

This concludes the definition of the basic terminology. The concept

of resource allocation and is application areas have been introduced.

Given such a utility and starting with a suitable application there are

a number of stages involved in using it in order to implement a problem

onto a multiple microprocessor. Figure(1.1) represents this information

flow digrammatically.

(1.6) HIGH LEVEL LANGUAGES

--

Firstly the problem needs to be implemented as a concurrent program.

The advantages of using a high level Language for any programming is

well documented [15,18,35,93,94). In view of this, and the fact that

the resource allocator would itself be a complex program utility

designed to aid program production, it is reasonable to

developm~nt of the user program will always utilize

Language. Thus the resource allocator will always be

compiler.

assume that the

a high Level

preceded by a

A suitable high level language will contain all of the standard

features associated with such Languages, as is found in Languages like

Pascal, Algol, Fortran, Cobol and the like. Furthermore, since the

target architecture is a multiprocessor architecture, the language must

have the capability for specifying concurrent processes and for

controlling their execution. Some examples of this kind of Language are

Pascal Plus [10,92), Concurrent Pascal [34,36,39,76,82), Path Pascal

[31,32,63], Concurrent Euclid [56J, Modula 2 [29,90) and ADA [2,96].

There is no restriction implied upon the number of different compilers

or languages that may be used, provided some means is available to link

together at some stage the codes and data spaces produced by the

different compilers.

7

All of the languages in this last list allow the specification of

concurrent processes. The languages also provide some mechanism for

communicating between two processes and for the sharing of data. Most of

these languages that include processes will also have modules. The

definition of a module is different for each author and language~ with

some examples being presented in [16,41,49,64,67,68,69]. However in

most cases the compiler can implement the module as a collection of

procedures and variable spaces. So generally the use of modules has no

effect upon the application of a resource allocator, which deals with

variables and procedures and the access paths between these. However if

the computer architecture supports modules directly, as in the Monads

architecture [50,51] or the StarOS system [25,26], this poses no

essential problems. In this case the resource allocator would deal with

modules that have access paths between modules, as well as variables and

processes. Nevertheless, to simplify the research, modules are not

considered further.

(1.7) ARCHITECTURE SPECIFICATION

--

When used the allocator requires the specification of the structure

of both the program and the architecture. The program structure is best

described by the compiler in terms of its process and address space

elements and the access paths between these. The num~er of cycles

information for the throughput calculations will be obtained by running

the program on a normal uniprocessor computer. The code would be

argumented with statements to gather statistics about the number of

accesses made. This step is important as without the number of cycles

information there is no feasible method for the resource allocator to

obtain relative efficiencies of differing resource allocations.

The user is required to give a description of the computer

architectu~e to the allocator. The information that needs to be conveyed

concerns such things as-

The kinds of processors, including their cycle speeds and

microprocessor type.

The sizes and access times of the physical memories.

8

The locatfons of memory mapped I/O, end the port addresses of

nonmemory mapped I/O, as well as the processors which have

access to these.

The addresses of interrupts, end the processors to which these

interrupts occur.

The interconnection pattern between the processors and their

stores. This will cover hardware buses and also the locations

in the addressing range of a processor of its attached

memories.

Only this level of information is required. Greater detail

about the hardware, as is given in many computer hardware design

languages (a survey of these is given in [59,87J) is not required by

the allocator end so is not supplied in this specification.

(1.8) PROGRAM SPECIFICATION

===========================

The specifications of the computer architecture need only be

produced once per architecture, and used for the allocation of all

programs to this architecture. Extra information is however required for

each program. The user can interact with the resource allocator to guide

it in its allocation strategy. The initial starting point for this is

the description in [26, section 11J of the SterOS resource directives.

These constraints may be to ensure that some conditions external to the

allocator ere achieved, or to guide the allocator in its global strategy

to achieve the most efficient mapping. The interaction takes place by

the means of constraints placed upon the allocation. These constraints

may be to

Ensure that processes execute upon processors that have

hardware access to the appropriate I/O ports,

Ensure that variables of e program which are used to access

memory mapped I/O ports ere placed et the correct address in

the appropriate physical memory module.

9

Allocate selected processes and address spaces onto the same

processor or store, or upon separate processors or stores. This

ability is useful when using a multiprocessor to provide

greater degree of computing reliability, one example of such a

multiprocessor design being described in [6J. If different

parts of a program are allocated upon separate physical

resources, then a failure of one resource will only bring down

one part of the program.

Allocate processes with special requirements to processors that

possess special execution capabilities, such as a floating

point accelerator.

Finally the resource allocator will operate upon this information

and produce a resource mapping, or

possible. If the allocator succeeds
'

mapping. This would be used for1a

load the program onto the machine.

(1.9) THE TOPICS RESEARCHED

--

perhaps indicate that no mapping is

then it will generate an allocation

subsequent linker stage to actually

The research area and its application have been defined. The aim of

this thesis is to investigate this problem, concentrating on the

following topics

A) The computer specification language.

The design of the input computer architecture specification

language to support the specification of the computer and to

allow the user interactions is outlined. These specifications

need to deal with a wide variety of architectures, since the

actual hardware may be connected in many ways. However at the

same time it is recognized that most architectures will be

regular and involve repetitive constructions. Thus the

specification language allows for the natural expression of

such structures. They also allow for the easy extraction of

information from the specification for use by the user in

writing the user constraints.

10

B) The throughput of the allocation mapping.

For its allocation activity the allocator will need to derive

the throughput of an allocation, to decide if the allocation is

efficient or not. Thus a general purpose throughput calculation

algorithm is derived, which takes into account the effects of

memory contention. Two different versions of this are

implemented and examined. The original starting point for this

work is from [44J which describes a general throughput

calculation model that takes into account memory interference

produced by a number of independent nonconcurrent programs

executing on a multiprocessor. The thesis work extends this to

include the effect of differing store cycle speeds, the effect

of bus contention and bus cycle speeds, and to provide the

throughput for a single concurrent program.

C) The allocation algorithms.

Finally the allocation algorithms themselves have been designed

and an implementation produced to demonstrate them. This

research borrowed ideas from search techniques developed in

other areas, such as parallel searches in game trees [62J. It

builds on the need for resource usage directives as described

by [26J for the StarOS project.

A list of the original research performed follows •.

A) The design of the computer specification language is the

authors own.

8) The original memory interference model is taken from [44J. The

authors own original research is to modify this to suit the

requirements of a resource allocator.

C) The starting point for the resource allocator research is

[26J. The design of the constraint specifications and the

design and implementation of the allocation algorithms are all

original research by the author.

11

(1.10) CHAPTER SURVEY

=====================

The remainder

description of

activity in more

of the thesis is concerned with an expanded

this work. Chapter 2 introduces the resource allocation

detail and describes some of the problems encountered

in performing this.

Chapter 3 is concerned with the design of the specification

language. This language is based upon a graph structure description of

the computer architecture and allows the specification of the

multiprocessor at the level of its processors, stores and bus

interconnections. Chapter 4 discusses how this Language is used to

describe to the allocator the various kinds of computer architectures

that are Likely to be encountered.

Chapter 5 then describes how the computer program that is to be

mapped onto the architecture is specified to the resource allocator. The

extra information required of the user to guide the allocator is also

introduced. No implementation of the specification language was

attempted. While the ideas presented are important for the use of a

resource allocator, ther·e are essentially no new difficulties in

implementing such a Language once it has been designed.

given a particular resource allocation

be calculated. Two alternative ways of

one by a simulation model and one by a

implementing both were developed to

Chapter 6 describes how,

mapping, its throughput may

computing this is presented,

probabilistic model. Programs

demonstrate their validity.

Chapter 7 is concerned

solutions. This is basically

search pattern designed to

satisfactory solutions.

with the search method used to find

a tree search with a heuristically ordered

increase the probability of obtaining

Finally chapter 8 presents the conclusions.

12

CHAPTER (2)

===========

(2.1) AN OVERVIEW OF RESOURCE ALLOCATION

==

Simple applications of the resource allocation problem addressed by

this thesis are described in the following.

The simplest example of resource allocation is the implementation of

a program to execute on a uniprocessor system possessing a uniform

memory structure. Even for concurrent programs this is readily achieved.

The processes of the program execute on the same processor and can be

managed by an appropriately written scheduler. Memory allocation schemes

for a linear memory are well understood.

The addition of more processors, thus creating a multiprocessor

computer architecture addressing a common memory, can also be handled

relatively easily. One method is to construct a scheduler which

allocates

of the

time slices on different hardware processors to the processes

program as they become ready to execute. In this approach, the

the computer programming system need not even be aware of the

to a multiple processor architecture. Unfortunately, as the

rest of

change

number of processors attach~d to a common physical memory increases, the

amount of memory contention also increases. Eventually there comes a

point of diminishing returns where the addition of an extra processor to

the hardware will add only a marginal improvement to the throughput.

Many techniques may be used to alleviate this problem. Interleaved

memories; separate memory modules, cache memories or memories that are

faster than the processors are some possibilities. Hany of these memory

designs are more applicable to large computers because of the cost of

the associated hardware required to implement them. As well these

solutions have the common characteristic of ignoring the specific

structure of the programs being executed.

For illustration of this last point, consider a program consisting

of two processes that access separate variables. The logical address

spaces for these variables can be placed in a common physical memory

module and the two processes can execute on separate processors. In this

13

Process 0 Process 1

KEY

Processor 0 Processor 1 0
Processor

D Store
Memory 0 1

Common store G Process

fl Address space
Process Process 1 Processor to

Processor 0 Processor 1 store access

Process to
address space

Memory 1
access

Memory 0 (memory)
Store 0 Store 1

store

Figure 2.1

case there will be memory access conflicts when the two processors

attempt to access the same store simultaneously in order to refer to

their own memories. This situation is seen in the figure(2.1,top).

The memory interference may be reduced by the harcware techniques

discussed above. Alternatively, if the structure of the program can be

taken into account, on a suitable computer architecture the variable

spaces could be placed into separate memory. blocks, as in

figure<2.1,bottom). Now the interference due to accessing these memories

will be nonexistent.

This example illustrates how a knowledge of the program may be used

to optimize its execution without the use of sophisticated hardware

techniques. The information utilized here was that the accesses of the

processes of the program were to independent address spaces and this

allows the derivation of the more efficient allocation solution. However

for a large computer system such information about address access

patterns is awkard to obtain since there will be many different programs

executing, and these will be changed often. To attempt the optimal

allocation of every program based upon its individual address accessing

14

patterns will be impractical. The research emphasis on medium sized

statically allocated programs is a consequence of this.

(2.1.1) EXAMPLES OF RESOURCE ALLOCATION

As an example

computer system

of resource allocation a simple instrument monitoring

is used. This system i~ to monitor a number of

instruments, and record their values in such a way that they can be

retrieved upon command and displayed on a terminal. One way to structure

a program to perform this action is to have an ind·ividual process obtain

the results from each instrument and put these into a common table.

Another process would be used to maintain the terminal display based

upon the information in the table and according to user entered

commands.

If it is assumed that the program work required to monitor a single

instrument requires a significant part of the execution time of one

individual processor, then a possible hardware implementation will have

one processor for each of the instrument monitoring processes, and one

more for the command process. This will give the best execution time

performance for the complete program. Each processor can be supplied

with its own private me~ory and also some global memory in common with

all the other processors. For such an architecture as much as possible

of the local address space of each process of the program would be

assigned to the local physical memory of the processor. This will reduce

the memory contention to the obligatory minimum, reducing it down to

conflicting accesses by the processes to the address space that is

shared with other processes. This hypothetical structure is depicted in

the figure(2.2).

NOTE. In this figure, and in others, a computer architecture is

depicted by using circles to represent processors and squares

(or rectangles) to represent physical store modules. An access

path between a processor and a store is represented by a line

drawn between the circle representing the processor and the

square representing the store. Thus figure(2.3,left) represents

a computer architecture of two processors and three stores.

PROCESSOR_1 accesses STORE_1 and PROCESSOR_2 accesses STORE_2.

15

Processors

Private Stores

Global Store

Instrument Monitoring Multiprocessor

Figure 2.2

Processors Processors

Stores Stores

Figure 2.3

Both processors access STORE_3.

In order to avoid visual clutter in diagrams containing a large

number of processors and stores, the following convention is

adopted. If a line is drawn from a square representing a store

to a second store square, then the first store is considered to

be accessed by all of the processors that access the second

store. Thus in figureC2.3,right), a line is drawn between

STORE_1 and STORE_2. STORE_1 is accessed by PROCESSOR_1 and so

the line between the two stores shows that PROCESSOR_1 can also

access STORE_2. Thus the architecture of figureC2.3,right) is

identical to that of figure(2.3,left).

16

In figure(2.2) a homogeneous architecture has been proposed. It

could be possible to use different sized stores for each of the

processors, and even to use different kinds of processors, thus creating

a heterogeneous architecture. However it wil L generally be preferred to

design and use homogeneous architectures, both because of an easier

design stage, and also because such designs will more readily transfer

to other projects.

To this structure the instrumentation input and output ports will be

connected, with the ports for each individual instrument being connected

to a separate processor.

Given nine instruments, a

application is

PROGRAM MONITOR ;

COMMON DEFINITIONS ;

COMMON VARIABLES ;

PROCESS COMMAND ;

PROCESS INSTRUMENT_1

PROCESS INSTRUMENT __ 2

PROCESS INSTRUHENT_9

END ;

;

;

;

possible skeleton program for this

Each process will have a number of private variables and procedures,

and the instrument processes communicate to the command process via a

common table and common table access procedures.

If this program were to be implemented upon a normal computer

architecture then either the compiler or a subsequent Linker would be

able to allocate the program onto the computers memory store, using

standard techniques. When using the architecture of figure(2.2), one

process can be assigned to each of the processors. This has the

advantage of incurring no scheduler overheads. As well, the private

address space of each process can be allocated to the private stores of

the corresponding processors. This gives the advantages of conflict free

access to these address spaces. In these circumstances it is not

17

Processors

Stores

Shared Stores

Global Store

Figure 2.4

appropriate to use a general purpose scheduler which allocates a ready

process to a free processor as one becomes available.

If all of the I/O ports are not available from every processor then

the user will be required to indicate to which processors the instrument

monitoring processes are to be assigned. This is to ensure that each

process is capable of accessing its correct instrument I/O ports. If

this specification is imposed, then the resource allocator would then

allocate the remaining control process to the best processor for it,

which in this case will be the only unused processor available.

Otherwise, if there are no such specifications, the allocation program

allocate the program so as to obtain the best throughput, which in this

computer architecture will imply one process per processor. At the

conclusion of this activity the resource allocator will insert linking

information into the compiler generated code to allow the code of the

processes to access correctly their memory address spaces.

For this example the process to processor allocation can be simple,

particularly if the user specifies the process all~cations. The memory

allocation is also straight forward. The allocator needs to allocate the

private variables and code blocks that are referred to the most into the

private store of each processor, and allocating all common address

spaces and the left over private address spaces (if any) into the common

store. Thus memory contention, a product of the number of accesses by a

process to a

accessing this

physical memory and the number

memory, can be reduced to

of different processes

an unavoidable minimum.

The resource allocator problem may easily become more complicated

with only a few changes to the target architecture. For example a

computer system with only six processors, each of which has access to

all the required input ports, may be available to implement this

program. Furthermore the memory may be arranged with a equal sized

private memory attached to. each processor. Then each group of three

processors would share a common memory block, and all processors would

share a common global memory block. Such a design is given in

figure(2.4).

The intent of constructing a computer system with these different

levels of shared memory is twofold.

1. To increase the total amount of physical memory without

exceeding the memory addressing range of any individual

processor.

2. To allow the possibility of greater memory sharing between

processors and yet still reduce memory contention.

In demonstration of this last point, processors 1, 2 and 3 can

communicate between each other via the shared store 123 without

interfering with processors 4, 5 and 6 in their accessing of their own

shared store 456.

In this situation all that the resource allocator needs to know from

the programmer is the addresses of the input ports that are to be used

by each individual process. These addresses would be inserted into the

appropriate I/O routines of the process codes. This information could

not now have any affect upon the allocation of processes to processors,

since each processor now accesses all of the input ports. From this

information the resource allocator will be able to go ahead and allocate

the program.

19

(2.2) RESOURCE ALLOCATION ASPECTS

=================================

Now some of the factors that may affect the resource allocation

placements will be considered.

(2.2.1) LOW LEVEL DETAILS

Firstly the resource allocation may be influenced by some machine

Level details, such as the programmer inserting simple assembler

Language routines to control input/output ports. Such information is not

directly accessible to the resource allocator, but instead the user

programmer will need to impose constraints upon the permissible mappings

to guide the allocation activity in this area.

(2.2.2) PROCESS TO PROCESSOR ALLOCATION

In the instrument monitoring example, where the architecture of

figure(2.4) is used, there are ten processors to be static~Lly assigned

to the six processors. The allocator will tend to allocate the Longest

running processes to separate processors, with the other Less time

consuming processes placed where ever they fit. The Length of the run

time of the processes is obtained by the execution of the program upon a

normal computer and gathering statistics. However an allocation made in

this way may not be optimal, depending on the combination of the

particular program and computer architecture being used. So it will not

always be the arrangement selected. This will be influenced by the

effects of memory interference, different memory cycle times. of each

physical memory block and of each shared memory bus, the size of the

logical address space accessed by each process and the size of the

physical memory shared by each processor.

(2.2.3) DEGRADATION DUE TO MEMORY INTERFERENCE

The Inappropriate allocation of processes may lead to serious execution

time Inefficiencies by the action of memory contention. In the example

architecture of figure (2.4) this can be demonstrated by considering two

20

process A process B

process c

,,.
I
I

' \ -
\
\
\

" ' ' ' '

'

process C process V

Global Store

Figure 2.5

process A process B

3

\. I
\ I
\ I

' I
\ I
\ I
\ I
\ I

. _.....----
....... -.. __ /

Figure 2.6

21

...,.-/

6 Processors

Private
Stores

Stores
KEY
rl memory

0 process

proc~ss D

6 Processors

\
\
\ Private

I Stores

I
I

/
/ Stores

/
/

Global store

201\8
bytes

2048
bytes

Processors

bytes
2048
bytes

Figure 2.7

bytes 2048
bytes

Figure 2.8

Stores

Stores

KEY
m Hcprcsents
llR a 2000 byte

memory clement

0 Represents
one process

pairs of .processes, each pair their own heavily used 1 data ·section. The

pair A and B could be assigned to any of the processors 1, 2 or 3, and

their shared data\ space A placed upon the shared store of these

processors. The other pair can be similarly assigned to the processors

4, 5 or 6. With such an allocation the pairs of processes can access

their own shared address spaces without interference. This situation is

represented in figure(2.5).

However, if each process had been assigned so that the first process

of the pair is in the processor group 1 to 3, and the second process of

the pair is in the other processor group, as 1n figure(2.6), then the

common shared data\ will have to be assigned to the global memory store.

This assig~ment will inevitably result in greater memory conflict.

Thus after the preference of processor execution speed and process

execution times, the possibility of execution degradation arising from

memory interference has to be considered.

22

<2.2.4) ALLOCATION INTERACTIONS

A final difficulty in the allocation process is the interactions

that occur between individual allocations of program elements to

resources. These interactions frequently prevent any straight forward

allocation strategy, and will often prevent the most efficient usage of

the computer architecture. As an example, for a two process program the

best allocation onto a two processor architecture is to have a process

assigned to each processor, shown in figure(2.7).

However the common address space element may not be allowed onto the

common store. This will happen if the size of the common address space

is larger than the size of the common store. Therefore the common

address space now has to go into one of the private physical memories.

In order to access this, both processes will then end up on the same

processor, with the othe~~processor idling. This is depicted in

figure<2.8), where the common store has a reduced size of 1024 bytes.

A similar situation can occur easily with the allocation of address

spaces to stores. The difficulties also increase when memory and bus

contention is to be taken into account. These interactions may be caused

by other factors, and can affect the allocation strategy of the whole

program.

Because of these interactions the allocation problem is nonlinear,

it is not possible to work out the allocation for individual parts of

the given problem and then to combine these to give a complete

allocation. In most cases it will unfortunately turn out that the

allocations for one part will inter.act with the allocations in all of

the other parts, so completely invalidating any such divide and conquer

solution.

(2.2.5) RESOURCE ALLOCATION FAILURE

The resource allocator can fail to find a legal mapping for a

particular problem if there exists the situation where

23

The total physical memory space of the computer exceeds the

size of the program.

The physical memory addressing range of a processor exceeds the

address space sizes of all the processes that are required to

execute upon it.

A process is assigned to a processor so that it cannot access

the stores to which its address spaces have been assigned.

A process or address space element is

where it cannot access its I/O ports

ports).

(2.3) SOME RESOURCE ALLOCATION APPLICATIONS

===

assigned to a resource

(or memory mapped I/O

The introductory examples given so far have given some of the basic

requirements, and some of the problems confronting a resource allocator

have been demonstrated. In the following more example applications are

introduced.

(2.3.1) PICTURE PROCESSING

------------~-------------

One feasible application of a multiprocessor architecture is in

picture processing. Special purpose hardware designs exist for this

[72,80]. However, for the purpose of this example, a design using

standard microprocessors and memories is considered. For such an

architecture the picture processing program could be structured as one

or more main processes which deal with the overall control of the

program. This would be the input and outpu~ of picture data, the

initialization and the termination of the picture processing algorithms.

Then there could be any number of small individual processes, each

designed to 'operate independently upon one small area of the picture

information. A decision to choose this structure can be made because it

can be efficiently implemented as one or more main processors accessing

a global store, and a series of smaller processors capable or performing

picture type operations. A suitable computer architecture for this is

24

Main
Processors .

Local
Memory

Local
Memory

given in figure(2.9).

Global Memory

Figure 2.9

The user will need to provide constraints which will place the

picture processes onto the picture processors, and supply the additional

information that the code for the picture processors has to be compiled

into a different instruction set from the code for the main processors.

The user is also required to supply specifications of the computer

architecture. Then using these user directives and the specifications,

the resource allocator will be able to perform the rest of the·

allocation for a suitably constructed program automatically.

(2.3.2) CH* TYPE COMPUTER ARCHITECTURE

Another example where resource allocation is useful is when using a

computer architecture similar to the Cm* computer system[26J. In such e

computer there are a number of processors, each accessing its own local

memory. In figure(2.10) the local memory of processor 1 is store 1, and

so on for the other three processors.

25

Processors

Stores

Figure 2.10

These processors are grouped together into clusters, and the

processors of each cluster can access the local memories of all the

other processors in the same cluster, but at a greater access time

penalty compared to accessing the processors own localmemory. In the

diagram processors 1 and 2 form one cluster and processors 3 and 4 form

the 'other. Processor 1 can access the local memory of processor 2 via

the number 1 bus. Finally each processor in a cluster can access the

memories of any processor in another cluster, but with a still higher

access time penalty. Thus processors 1 or 2 can access the stores of the

other cluster via the number 3 bus. However these accesses are now in

possible conflict with ~hree other processors.
I

Such a structure would be specified to the resource allocator by

giving information about the processors, the memories and the bus

interconnection network between these. From the point of view of the

resource allocator, this computer system consists of a large number of

processors each capable of accessing the entire memory. Some of these

accesses will be direct end some by the means of intermediate buses.

Therefore in this architecture there is no impediment to treating the

memory as one common memory and allocating processes to processors as

they become available. However the execution time will, naturally, be

degraded by both memory interference end slow access times to nonlocel

•emory. So in allocating a program onto this architecture it will be

26

Processor

store

Processor

store

Common
store

Common
store

Processor

Processor

store

Processor

Private
store

Figure 2.11

Processor Processor

store

Common
store store

Common
store

Figure 2.12

Processor

Private
store

Processor

Common
store

Processor

important_

allocation

to produce an efficient

will be mainly concerned

implementation. The resource

with reducing the possibility of

memory conflicts.

(2.3.3) SYSTOLIC ARCHITECTURE

A systolic architecture, as described in [55J, is one where data

flows down a series of computer elements, each computer accepting

information from its neighbour on one side, operating on it and sending

it on to its neighbour on the other side. A design that fits this

definition is given in figure(2.11), where the computing elements have

27

their own private stores, and communicate with their right and Left hand

neighbours via the common physical memory elements. Such architectures

are useful when the applications problem can be split into a number of

stages of roughly equal computing load, and each stage can follow on

from the one before it. One such application is in three dimensional

computer graphics, where a program may be divided into processes to

Perform object ordering in depth first order.

Elimination of objects entirely out of view.

Removal of polygon faces facing the wrong way.

Three dimension to two dimensional coordination transformation.

Hidden line elimination.

Final drawing of the lines onto the screen.

If there are seven processors in the architecture, then the resource

allocator can simply allocate a process to each processor. The resource

allocator would be even more useful when there are less than this number

of processors, since now some processes have to share a processor with a

neighbouring process. These processes will be selected upon the basis of

their workloads. An alternative systolic architecture could be

constructed as is shown in figure(2.12) with two processors at each

stage. This would make the resource allocation even more nontrivial.

28

CHAPTER (3)

===========

(3.1) INFORMATION SPECIFICATION LANGUAGE

==

The information specification language (ISL) allows a machine

understandable definition of a computer architecture to be constructed.

It also provides the user with the facilities to guide the resource

allocation activity.

This chapter will describe the basic underlying graph structure of

this language, and introduce the parts of the Language concerned with
~

the definition of a computer architecture. The reference text used for

the basic graph theory is [48J.

(3.1.1) UNDERLYING INFORMATION STRUCTURE

Starting with a denumerable set X=<X1,X2, ••• Xn} and a mapping H of X

into X, a graph is the pair G=<X,H).

The ISL associates two functions with the set of elements of such a

graph. One function is a mapping Fv from the set

V=<null,V1,V2, ••• }. This is called the value

X to the set V, where

function. The other

function is a mapping Fn from the set X to the set N, where

N=<null,N1,N2, ••• }. This is called the name function.

A graph can be represented on paper by drawing vertices and arcs. A

vertex is drawn as a point and corresponds to an element in X. A

directed arc is drawn as an arrow from one vertex to another vertex. A

directed arc exists from vertex Xi towards Xj if Xj is in the set M(Xi).

The value and name of each vertex may be represented also. If the

name function fn(Xi) of vertex Xi is nonnull, it is written alongside

the vertex. If the value function Fv(Xi> of vertex Xi is nonnull, it is

also written alongside the vertex. If both the name and value functions

are nonnull, then the

followed by an = and

representation of the name is

then the written representation

29

written first,

of the value.

KEY
Vertex 0

Arc !
X6

D=6 A

Figure 3.1

The graph of figure(3.1) provides an example representation of

G=<X,H), where

X = < X1, X2, X3, X4, XS, X6 }

H(X1) = { X2, X3, X5 } Fv(X1) = null FnCX1) = null

H<X2) = { } FvCX2) = null FnCX2) = c
HCX3) = { } Fv(X3) = null Fn(X3) = B

HCX4) = { } FvCX4) = 6 FnCX4) = D

HCX5) = { X4, X6 } FvCX5) = null FnCX5) = B

HCX6) = { X4 } FvCX6) = null Fn(X6) = A

Note that the function Fn does not necessarily give a unique name to

each vertex. This graph has the name of the element from the set X

written next to each vertex. In general this set identification is not

needed in subsequent discussions about the ISL and so will rarely be

mentioned after this section.

A directed arc U is represented by the pair CXi,Xj). Xi is called

the initial extremity of the arc and Xj is called the terminal

extremity. An arc U is connected to e yertex Xi if U=<X,,Xn) or if

U=(Xn,Xi), Xi<>Xn. A directed path is a finite sequence of arcs

(U1,U2, ... Ux) such that the final extremity of arc Un conincides with

the initial extremity of arc Um, where m=n+l. A path is represen~ed by the

vertices which It contains, thus (X1,X5,X6) ls a path in flgure(3.1), and

has the arcs (X1,X5) and (X5,X6).

)0

A vertex Xj is attached to vertex Xi if Xj is a member of H(Xi). The

attached vertices of Xi are ell Xj such that this condition holds.

Given a vertex Xi, the connection set C of Xi is the set of all the

vertices Xj, Xj<>Xi, such that there exists a directed path from Xi to

Xj. In the figure some connection sets are

C(X1) = < X2, X3, X4, X5, X6 }

C(X2) = { }
C(X5) = { X4, X6 }

C(X6) = { X4 }

Any vertex Xi in the graph G, which is not in any set H(Xj), is

called a root of the graph. That is there are no arcs whose terminal

extremity coincide with a root vertex. In the example graph of

figure(3.1), the vertex X1 is the root.

The graphs used by the ISL have some common properties. There is

always one and only one root. If Xi is a vertex in the graph G, then

there will always exist a directed path from the root vertex to Xi. Thus

the connection set C(Xr)=X, where Xr is the root vertex. For the root

vertex Xr, Fn(Xr)=null and Fv(Xr)=null. For all Xi where Xi<>Xr,

Fn(Xi)<>null and Fv(Xr) can be null or nonnull •

. In the following there ls a brief overview of how the ISL may be used to

construct a graph structure, and how to access such a graph once it exists.

In appendix E a more detailed description appears. Chapter 4 continues with

a discussion on how the ISL may be used to specify a computer architecture.

31

(3.2) OVERVIEW OF THE ISL GRAPH OPERATIONS
===

In the ISL there are operations that allow a graph to be constructed, and

sets of vertices from this graph to be specified. There are also the more

conventional high level language features which provide for arithmentical

expressions, program flow control and the like.

A graph defined by the ISL always starts from a root vertex, which Is

denoted by a @character. Other vertices, which may be directly or indirect­

ly attached, can only be accessed via this root vertex. The simplest

selection reference is

@

which will produce a reference set containing only the root vertex. The

reference

@.N

will select all those vertices of name N that is attached to the root vertex.

Reference set variables may also be used, thus

V := @.N

will assign to the reference set Vall the vertices named N that are attached

to the root vertex. Now the reference expression

V.M

will generate the set of all the vertices of name M that are attached to any

of the vertices in the reference set V. This is equivalent to the reference

set expression

@.N.M

Instead of selecting all the vertices of a given name, a subset of these may

be chosen, depending upon some additional criterion. For example

32

@.A.<NOT_EMPTY (@.B)>

will select only those vertices of name A Which are attached to the root

vertex, which themselves have one or more vertices of name B attached.

Another example Is

@.A.<NUMBER (@.B) = 2>

which will select only those A vertices which have exactly two B vertices

attached.

Having selected a set of vertices, they may be used to create new edges

in the graph, as in

@.A.B -> @.A.C

This will attach every C vertex defined in the second reference set

expression to every B vertex defined in the first reference expression.

Figure E.8 shows a diagram of this.

As well, new vertices may be created by using the NEW operation, as in

@ -> NEW (A=3)

which will create a new A vertex, give it a value of 3, and attach it to the

root vertex. Another example is

@ -> (NEW(A), NEW(A), NEW(B))

which will create two new A vertices and one new B vertex, and attach them

to the root vertex.

Program flow control constructs are provided to Implement FOR loops and IF

conditionals. As an example, the creation of three new D vertices might be

achieved by

FOR I := 2 TO 4 DO

@.C(I) -> NEW(D)

END ;

33

Each new D vertex will be attached to one of the C vertices numbered 2 to 4.

An example of a conditional statement Is

IF 1 > 2 THEN

@ -> NEW(A}

END ;

Finally the graph manipulation statements of the ISL may be grouped into

procedure blocks and these procedures invoked by using call statements.

34

CHAPTER (4)

(4.1) USING THE INFORMATION SPECIFICATION LANGUAGE GRAPHS

===

Computer architecture specifications are used to specify the

architecture of a (possibily multiprocessor) computer to the resource

allocator. This information allows the allocator to deal with the

allocation of code and data parts of a program onto the hardware

processors and memory elements of the computer system.

For this purpose the

of the computer

resource allocation algorithms required a model

system which contains information about the

Address ranges and sized of the physical memory elements,

The names of the processors,

The cycle speeds of the memories and processors,

The interconnections between processors and memories,

Information about the I/O system and interrupt addresses,

However there is no need for further knowledge of the system

architecture in terms of registers, data and address buses or detailed

knowledge of the input and output logic.

Consequently the user enters the information, by the means of the

information specification language, in terms of the processor elements

and memory blocks of the system, and their interconnections. All of this

is standard information directly operated upon by the resource allocator

algorithm. Extra user defined information may also be inserted and

specifications written to operate on these. This is useful to aid the

allocator in its global allocation strategy. It allows the programmer to

specify information not easily accessible to the allocator.

35

(4.2) BASIC COMPUTER ARCHITECTURE SPECIFICATION

===

(4.2.1) A SIMPLE SYSTEM

The simplest computer system is one processor connected to a single

memory unit. This can be described by

GRAPH

BEGIN

S -> NEW (PROCESSOR) -> NEW (ADDRESS) ;

END ;

This specifies to the resource allocator that a computer

architecture has a processor and a memory module. The address range

which the processor refers to the memory unit will be given by extra

vertices attached to the address vertex. In subsequent specifications,

to refer to the processor the reference used is

~.PROCESSOR

and to refer to the address range the reference used is

&.PROCESSOR.ADDRESS

The resource allocator will recognize the PROCESSOR identifier to be

one of the standard identifiers which in

hardware processor. Such processors

directly understood by the allocator.

this case refers to an actual

can have properties that are

This information includes the

processors name and its cycle speed and this is represented by vertices

attached to the PROCESSOR vertex. These have the standard names NAME and

CYCLE. They may be defined for the example system as

GRAPH

BEGIN

i -> NEW (PROCESSOR) ->

(NEW (ADDRESS) ,

NEW (NAME = 'BRANDX') ,

36

NEW (CYCLE = 2.5)) ;

END ;

The PROCESSOR -definition is as before. This vertex now has attached

to it two new vertices, one called NAME and the other called CYCLE. They

convey information about the name of this processor, BRANDX, and its

cycle time, 2.5 microseconds. These values can be referenced by

VALUE (@.PROCESSOR.NAME)

VALUE (i.PROCESSOR.CYCLE)

(4.2.2) SPECIFYING MEMORY

Vertices named ADDRESS and PROCESSOR are directly understood by the

allocator. It expects the ADDRESS vertex to have two further standard

vertices attached. One vertex is called START and this has an integer

value giving the start address at which the processor accesses the first

memory byte of the memory module. The other vertex is called MEMORY and

this vertex represents information about the physical memory module.

This vertex has attached to it two further vertices, calle~ ACCESS and

SIZE. The ACCESS value gives the access time of the memory in

microseconds, while the SIZE value gives the size of the memory in

bytes. The ACCESS and SIZE vertices are not attached directly to the

ADDRESS vertex, since different processors may have different address

ranges in which they access this same memory.

As an example

already defined

a memory unit of 4096 bytes for the computer system

can be specified by the addition of the statements

i.PROCESSOR.ADDRESS ->

(NEW (START = 0) , NEW (MEMORY)) ;

This attachs two new vertices to the ADDRESS vertex. They are START

and MEMORY, the START vertex has the value of O. Information for the

MEMORY vertex is further specified by

i.PROCESSOR.ADDRESS.MEHORY ->

(NEW (SIZE = 4096) , NEW (ACCESS = 0.45)) ;

37

Name = 'BRANDX'
Cycle time = 2.5

PROCI:SSOR

STORE

Size = 4096
Access time = 0.45
Starting address = 0

Root vertex

Address

Memory

Size=4096 Access=0.45

Figure 4.1

so specifying a memory -with a size of 4096 bytes and a 450ns access

time.

This, combined with the earlier specifications and set out in a

slightly different way, results in the complete specification program

like

GRAPH

CONST NAME_VALUE = 'BRANDX' ,

CYCLE_VALUE = 2.5 ; ·

BEGIN

6l -> NEW (PROCESSOR) ->

(NEW (CYCLE = CYCLE_VALUE

NEW (NAME = NAME_VALUE)

NEW (ADDRESS) ->
(NEW (START = 0) ,

NEW (HEMORY) ->

) ,
,

(NEW (SIZE = 4096) ,

NEW (ACCESS = 0.45)

38

Address

An Address Triangle ~

Figure -4.2

Address Address

Size=z
Start=s

--

Size=z

Figure 4.3

Name= Cycle=2.5
'BRANDX'

Figure 4.4

39

Memory

Access=0.45

Root vertex

Start=O
Size=4096

•·

)

)

END ;

)

Start=s
Size=z

.·

Processbr

Address

Memory

Size=z Access=0.45

Figure 4.5

Root vertex

Start=O
Size=4096

Figure 4.6

Thus this represents a computer architecture with a processor called

BRANDX having a processor cycle time of 2.5 microseconds. This processor

has access to 4096 bytes of 0.45 microsecond store attached, with the

store occupying the first 4096 bytes of the processors addressing range.

The graph representation of this is shown in figureC4.1>.

40

To reduce the size of the graph diagrams in the following text, a

visual shorthand representation is used. A triangle like that of

figure(4.2) is called an address triangle. It is taken to represent an

ADDRESS vertex and all of the vertices that are shown in figure(4.1) to

be attached to this ADDRESS vertex. Its equivalent graph is given in

figure(4.3), using this the graph of figure(4.1> can be redrawn as shown

in figure(4.4). The SIZE and ADDRESS vertex values are given under the

triangle. These are only specified in the following graphs if their

values are important for the ISL example being demonstrated. Otherwise

they are not explicitly mentioned.

An even more compact representation of the graph of figureC4.1> is

provided by using a processor triangle defined as in figureC4.5). In

figureC4~'6) the graph of figure(4.1> has been redrawn this way. As with

the memory triangle, the values of the vertices that have values
,

attached are only explicitly provided if it is required for the example

demonstration.

C4.2.3) MULTIPLE MEMORIES

In more complex computer systems a processor may access mor.e than

one memory module. This is represented in the specifications by

attaching more than one ADDRESS vertex to the same PROCESSOR vertex. The

address vertices

address ranges

modules.

of a particular processor must

and will generally have access

have nonoverlapping

to different memory

An extra memory may be added to the computer system defined above by

adding the specificat~on

&.PROCESSOR ->

(NEW (ADDRESS) ->

) ;

(NEW (START = 4096) ,

NEW (HEHORY) ->

(NEW (SIZE = 4096) , NEW (ACCESS = 0.45))
)

There are now two vertices attached to the PROCESSOR vertex, both

41

Root vertex

Processors

Processor
Stores

Figure 4.7

with name ADDRESS. This is depicted in figure(4.7>.

Note that here the extra memory is represented by attaching the

address triangle to the PROCESSOR vertex to which the processor Triangle

is attached Address vertices are always attached to the processor

vertex if that processor accesses the memory, so this is possible.

The reference

S.PROCESSOR.ADDRESS

will refer to both address vertices, and the reference

S.PROCESSOR.ADDRESS.HEHORY

will refer to both of the memory modules.

To refer to only one of the address vertices indexing may be used.

Thus to refer to the second memory module requires the reference

&.PROCESSOR.ADDRESS(2).HEHORY

42

(4.2.4) USE OF PROCEDURE DEFINITIONS.

The length of the specifications will become long and thus their

production tedious for any computer system having more than a few memory

modules. Procedures may be advantageously used here. For an example a

procedure defining a standard memory is given,

PROCEDURE STANDARD_MEHORY (

C : SET ; START_VALUc , SIZE_VALUE

VAR HEH : SET ;

BEGIN

HEH := NEW (ADDRESS) ->

(NEW (START = START_VALUE

NEW (HEHORY) ->

(NEW (SIZE = SIZE_VALUE

NEW (ACCESS = 0.45

)

) ;

C -> HEH ;

END ;

) ,

) ,

INTEGER) ;

PROCEDURE ONE_PROCESSOR (C , PSR

BEGIN

SET) ;

PSR := NEW (PROCESSOR) ;

C -> PSR ->

(NEW (CYCLE= 2.5) , NEW (NAME..= 'BRANDX')) ;

END ;

The first procedure creates a new ADDRESS vertex and attachs to this

the vertices needed for a memory subgraph. This ADDRESS vertex is

assigned to the HEH reference set variable. In the Last statement of the

procedure this vertex is attached to whatever vertices appear in the C

formal parameter. If the memory subgraph had been directly attached to

the C formal parameter, as in

C -> NEW (ADDRESS) ->

(etc) ;

43

.. Stores

Name=
'BRANDX'

Figure 4.8

Root vertex

Processor

Start=O Start=
4096

Si'ze=4096 Size=
4096

Start=
8192

Size=
4096

then there may be more than one subgraph created. If the procedure

is called with three vertices in the actual parameter corresponding to

the C parameter, there would be three such subgraphs created. The way

that is choosen will result in only one subgraph being created and this

will be attached to all of the vertices in the C parameter.

The second procedure creates a processor subgraph. This· is attached

to whatever vertices appear in the C parameter. The PSR formal parameter
I)

will contain the newly created PROCESSOR vertex upon the procedures

return. This allows the memory informat4on for the newly created

processors to be attached to the correct PROCESSOR vertex.

These procedures contain all of the information needed to declare a

processor and a memory. Thus the catls

ONE_PROCESSOR (& , PSR) ;

STANDARD_HEHORY (PSR , 0 , 4096) ;

will produce the graph of figure(4.1>. Therefore the ISL equivalent

of the processor triangle in figureC4.5) is these two statements above.

Alternatively, to declare a computer architecture with three

standard memories attached requires

44

ONE_PROCESSOR (Ql , PSR) ;

STANDARD_MEMORY (PSR , 0 , 4096) ;

STANDARD_MEMORY (PSR , 4096 , 4096) ;

STANDARD_MEMORY (PSR , 8192 , 4096) ;

and this will produce the graph of figure(4.8).

(4.3) VERTEX NAHES

==================

In the specifications so far only

used. These are directly understood by

be defined· by the user. A list

SIZE

HEMORY

PORT

WRITE_PORT

NAHE

ACCESS

BANK

HEHORY_ACCESS

predefined vertex names have been

the allocator, and do not need to

of the predefined names are

START

ADDRESS

INTERRUPT

CYCLE

PROCESSOR

READ_PORT

READ WRITE_PORT USER_ADDRESS

Those in the second part of the list have not yet been discussed.

The user does not define these names, but does have to define any new

names that may be used. For exampl~, in the following the name

SUB_SYSTEH is used. This is defined by

VERTEX SUB_SYSTEH ;

(4.4) SHARED MEHORY

So far the specification of a uniprocessor system has been

described. The specifications may be expanded to deal with a computer

architecture of two or more processors. The simplest way is to merely

define two subsystems-

s := NEW (SUB_SYSTEH) ;

til -> s . ,
ONE_PROCESSOR (s , PSR) . ,
STANDARD_HEHORY (PSR 0 8192) . , , ,

45

Root vertex

Processors

Processor

Global
store

Start=O
Size=8192

Figure 4.9

S := NEW (SUB_SYSTEH) ;

Q -> s ;
. . . ONE_PROCESSOR (S , PSR)

STANDARD_HEHORY (PSR , 0 ,

,
8192) ;

Start=8192
Size=8192

Start=O
Size=8192

These directives describe two independent processors, each with 8192

bytes of unshared memory. The use of shared memory is easily described

by attaching the same memory vertex to the two separate address vertices

of each processor that accesses this memory. The common m~mory for this

is defined by

STANDARD_HEHORY (S , 8192 1 8192) ;

This is referenced be a.ADDRESS. - The processors can then be defined

as

FOR 2 DO

s := NEW (SUB_SYSTEH) . ,
a -"> s ;
ONE_PROCESSOR (s , PSR) . ,
STANDARD_HEMORY (PSR , 0 8192) . , ,

END ;

S.SUB_SYSTEH.PROCESSOR -> &.ADDRESS ;

46

In this definition the two subsystems are created as before. The

extra memory created by the first call to the standard memory procedure

is attached to both of these new processors. The specifications now

describe an architecture with two processors, each accessing their own

local store, and both accessing a common global store. The graphs and

computer structures produced by both of these examples are shown in

figure(4.9). This pattern may be generalized to any number of processors

accessing the same memory units-

PROCEDURE SUB SYSTEH_PROCEDURE (C , PSR

VAR S : SET ;

BEGIN

s .- NEW (SUB_SYSTEH) ;

c -> s ;
ONE_PROCESSOR (s , PSR) ;

STANDARD_HEHORY (PSR , 0 , 8192) ;

END ;

SET) ;

The macro defines a new computer architecture portion which is given

the name SUB_SYSTEM. The processor of •this accesses its own' local memory

which is defined by the call to STANDARD_MEHORY. The SUB_SYSTEH vertex

is attached to whatever vertices are in the reference set variable C.

The PSR variable will contain the new PROCESSOR vertex, upon the return

of the procedure.

From here the statements

STANDARD_MEHORY (@ , 8192 , 8192) ;

FOR 10 DO

SUB_SYSTEH_PROCEDURE (C ,.PSR) ;

PSR -> @.ADDRESS ;

END ;

will create the common memory and 10 new subsystems. Each time

through the loop a new SUB_SYSTEH will be created and the @.ADDRESS

vertex will be attached to its new processor vertex.

47

Local
store

Common Stores

Processor
(+local

store)

Local
store

Root vertex

(The common stores)

Figure 4.10

(4.4.1) MEMORY ACCESS INTERFERENCE

store)

In the above system there are ten processors accessing the same common

memory. Consequently there is the probability that two or more processors

will attempt to access the memory at the same time. This requires memory

arbitration logic whose function is to detect such clashes and to delay

processor memory requests until the memory is free. How this is managed in

the hardware is of no concern to the resource allocation problem. If two

or more processors are specified to access the same memory then the resource

allocator will assume that there is some kind of memory arbitration. This

will result in memory contention, affecting the execution performance of

the system. When performing the resource allocation the allocator will model

this interference and take this information into account.

(4.4.2) DEPENDENT SHARED MEMORY

Consider the situation where there are two common memory blocks,

perhaps defined as

48

STANDARD_HEHORY (QI , 8192 , 8192) ;

STANDARD_HEHORY (QI , 8192 , 16384) ;

FOR 2 DO

ONE_PROCESSOR (lil , PSR) ;

STANDARD_MEMORY (PSR , 0 , 8192) ;

PSR -> QI.ADDRESS ;

END ;

and depicted in figure(4.10).

The common memories are defined by the first two calls to the

STANDARD_HEMORY procedure. Each processor vertex created by the

procedure has access to these, as well as access to a separate local

memory vertex. This is defined for each processor by the call to the

STA~DARD_HEHORY procedure in the FOR loop. In this system each common

memory is accessed independently by the processors, one busy common

memory will not block the other common memory. The specifications

described so far can readily describe this architecture.

However now consider the situation where a memory access to one of

the common memories will block accesses by other processors to the other

common memories. Such a situation could arise from a number of different

kinds of architectures. Two possibilities are considered here. One is

where a processor or group of processors access a number of memory

blocks via bank switching. This is where each memory resides in the same

memory addressing region of the processor and the appropriate memory

bank is selected by a bank select instruction. The other possibility

considered is a computer system built up with a number of processors,

each having direct access to their own Local memory by a dedicated bus,

and each processor also having slower access to all the memories of the

system via a common bus. These are considered in turn.

<4.4.2.1) MEMORY BANK SWITCHING

Hemory bank switching is specified by attaching the memory vertices

to a common vertex. This vertex is given the name BANK and is similar in

use to an ADDRESS vertex in that it has attached to it a START vertex.

This therefore implies that the different memory blocks are in the same

memory range. An example is

49

Processors

Stores

FOR 2 DO

ONE PSR (@ , PSR)

Procc:ssor

Size=
10240

Figure 4.11

PSR -> NEW (BANK) -> NEW(START = 0)

END

FOR 2 DO

@.PROCESSOR(l) .BANK -> NEW(MEMORY) ->

Root vertex

Access=
0.45

Size=
10240

(NEW (SIZE= 10240) , NEW (ACCESS= 0.45))

END

@.PROCESSOR (2). BANK-> @.PROC~SSOR(l) .BANK.MEMORY

50

Processor.

Access=
0.45

1.r

and this is depicted in figure(4.11).

Each processor now has access to two memory blocks, accessible in the

addressing range of 0 to 10239. A memory bank select instruction has to

be executed by the executing code to select which particular memory bank

is to be used. The resource allocator inserts the appropriate bank

selection instructions into the code in its linking stage.

(4.4.2.2) MEMORY HAP SYSTEM

The other possible memory structure requires the use of another

predefined property name, MEHORY_ACCESS. This standard vertex name is

used to represent the connection of several processors to a single

memory system, where only one access at a time can be performed. Thus it

indicates where memory arbitration is applied to a number of memory

blocks, and not just to one memory block. To demonstrate the directives,

a computer system with 4 processors and 4 memories is specified,

GRAPH

INDEX I ;

VAR PSR SET ;

PROCEDURE STANDARD_MEMORY (

C : SET ; START_VALUE , SIZE_VALUE : INTEGER) ;

VAR HEH : SET ;

BEGIN

HEH := NEW (ADDRESS) ->

(NEW (START = START_VALUE) ,
NEW (MEMORY) ->

(NEW (SIZE = SIZE_VALUE

NEW (ACCESS = 0.45
)

) ;

·C -> HEH ;

END ;

PROCEDURE ONE_PROCESSOR (C , PSR

BEGIN

51

) ,

SET) ;

Cycle

Start

Size

Root vertex

Figure ~-12

PSR := NEW (PROCESSOR) ;

C -> PSR ->

Processors

Stores

(NEW (CYCLE = 2.5) , NEW C NAME = 'BRANDX')) ;

END ;

PROCEDURE HAP (PSR SET) ;

VAR HE, p : SET ;

I : INTEGER ;

BEGIN

HE -> NEW (HEHORY_ACCESS) ;

PSR -> HE . ,

52

ycle

I := 1 ;

FOR P := EACH (PSR) DO

HE -> NEW (ADDRESS) ->

(NEW (START = 8192 * I) , P.ADDRESS.MEMORY) ;

I := I + 1 ;

END ;

END ;

BEGIN

FOR 4 DO

ONE_PROCESSOR (i , PSR) ;

STANDARD_MEHORY (PSR , 0 , 8192) ;

END ;

MAP (&.PROCESSOR) ;

END ;

The first procedure defines a standard memory module. The second

procedure is a definition for one processor which accesses a standard

memory. The third procedure defines the map structure, it creates a new

MEMORY_ACCESS vertex and attaches it to the processor vertices. Then it

attaches the MEMORY vertex of each processor to this MEMORY ACCESS vertex

via a new ADDRESS vertex. Thus, as is shown in figure(4.12), each processor

ends up with direct access to its own local memory and indirect access to

all the other memories of the computer architecture.

The address range of the local memory block is in the range of 0 to

8191. The addresses by which each processor accesses the nonlocal

memories is in increments of 8192, starting at 8192 for the first

nonlocal memory. Note that according to this description each processor

has access to its_own local memory twice, once through the local address

range, and once through the nonlocal address range. In situations like

this the resource allocator will assume that address accesses to the

local memory are to be made in the most direct manner possible.

At any one time each memory may be servicing only one memory

request. This request may come from the local processor, and at any one

time all the processors may be accessing their own local memories. This

request may also come from some other processor via the memory mapping

logic. In this case only one such nonlocal request may· be in progress,

in the entire system, at one time.

53

(4.4.2.3) MULTILEVEL MEMORY MAPPING SCHEMES

...

The specification above can easily be extended to a computer system

with a two Level memory mapping hardware. Such a computer system will

have a number of processors, each with their own Local memory on a

dedicated bus, and each processor will have access to all of the

nonlocal memory units on a shared bus. This access is extended from that

of a one level map by dividing the processor and Local memory pairs into

groups. A memory access request from a processor to a nonlocal memory

which is within the same group can be made independently of other such

accesses in other groups. One example of such a design is the Cm*

computer architecture [26].

T~us there are three grades of accesses. The fastest are from a

processor to its own local memory, and all processors in the computer

system may make such requests simultaneously. The second in speed is

from a processor to a nonlocal memory within the same group. There may

be one such request within each group. The slowest is a request from a

processor to a nonlocal memory not in its own group, and only one of

these requests may be made at one time.

The degradation in speed in these requests may come about because of

delays introduced by the memory arbitration logic used to connect

numbers of memories and processors together. Host likely, however, the

main degradation will come from memory contention, and this contention

is what the resource allocation tries to minimize.

The following specification follows the same pattern used in the

specification of a single level map, using HEHORY_ACCESS vertices to

indicate dependent memory access paths.

Firstly a GROUP vertex name definition is added to the

specifications and then the processors and stores of the computer

architecture are defined by

FOR 4 DO

G := NEW (GROUP) ;

iii -> G ;

FOR 4 DO

KEY

G Processor
and local
store.

0 Common
store

Processors

P=3 snowflake

level = 1
architecture

(the interconnecting
bus)

External processor

r
I
...

'

'
'

P=3 snowflake '
level = 2 '
architecture

External
processor

55

Common store

P=3 snowflake architecture~
the processor and memory arrangement

Figure 4.13

I

I

I

..
)

I External

-> can be
represented as

Figure 4.14

ONE_PROCESSOR (G , PSR) ;

STANDARD_MEMORY (PSR , 0 , 8192) ;

END ;

END ;

This creates four GROUP vertices, each with four processors and

their own local memory. Now to create the map structure requires

FOR G : = EACH (@.,GROUP·) DO

MAP (G.PROCESSOR) ;

END ;

HAP (@.GROUP.PROCESSOR) ;

In the first statement the map procedure is applied separately to

each GROUP vertex of the information structure and this will place the

processors of each group into a single map. In the second statement the

map procedure is applied to a reference which refers to all the

processors of the architecture. This results in all of these processors

being placed into a fifth map.

(4.5) SNOWFLAKE ARCHITECTURE ____________________________ ,

The snowflake architecture, as described in [21], is defined using

the ISL in the following. This provides an example specification of a

nontrivial computer architecture.

A first Level snowflake has P processors and a single bus connecting

these. Here this bus is provided by the P processors accessing a common

memory. Figure(4.13) shows a first level snowflake for P equal 3.

A second Level snowflake is constructed from P first level

snowflakes and an extra bus. One processor from each first Level

snowf Lake is connected to this new bus. Another processor from each

first level snowflake becomes the external processor. The remaining P-2

processors are internal processors. An external processor is used when a

third level snowflake is constructed, with the bus for the third level

being connected to these external processors. Thus a second level

snowflake is shown in figure(4.14,left).

56

Root vertex

Figure 4.15

he thr~e processors

store
interconnecting bus)

In figure<4.14,right), only the external processors of the snowflake

have been drawn, the remainder of the snowflake is hidden in the dashed

circle in the middle. This looks like the P=3 level 1 snowflake in
"' figure<4.13). From this it can be seen how the construction of a

snowflake for the next level up can be achieved.

The definitions required for a P=3 snowflake are now developed.

Firstly the level one snowflake is just three processors, each with

their own memory, and each with access to another common memory. This is

specified by a procedure definition

PROCEDURE FIRST_LEVEL (c SET) ;

VAR L , PSR : SET ;

BEGIN

L := NEW (LEVEL) ;

c -> L • ,
FOR 3 DO

ONE_PROCESSOR (L , PSR) ;

STANDARD_HEMORY (PSR , 0 , 8192) ;

END ;

STANDARD_MEMORY (L.PROCESSOR , 8192 , 1024) ;

END ;

57

The first statement creates a new LEVEL vertex. This is attached to

the vertices in the C reference set. Then three processor subgraphs are

constructed and attached to this LEVEL vertex. Each processor vertex has

a memory subgraph attached to it. This indicates that the processors

have 8192 bytes of local memory. The last statement will attach another

memory subgraph to all three processor vertices. This common memory has

1024 bytes capacity and its starting address is 8192.

The architecture specified by this FIRST_LEVEL snowflake is as shown

in figure(4.13). The specification graph for this is shown in

figure(4.15). Note the the LEVEL vertex has the three processors

attached.

To construct a level N snowflake, three level N-1 snowflakes are

used. A new bus is created, and one processor from each of these N-1

snowflakes is attached to it. Another processor from each of the N-1

snowflakes is marked as being an external processor, by attaching it to

the LEVEL vertex. Thus the procedure definition is

PROCEDURE SNOWFLAKE (C

VAR L : SET ;

BEGIN

IF LEVEL_NO = 1 THEN

FIRST_LEVEL (C) ;

ELSE

L := NEW (LEVEL) ;

C -> L ;

FOR 3 DO

SET ; LEVEL_NO

SNOWFLAKE (L , LEVEL_N0-1) ;

END ;

FOR I := 1 TO 3 D

L -> L.LEVEL(l).PROCESSOR(1) ;

END ;

BUS (L) ;

END. ;

END ;

INTEGER) ;

Here the LEVEL_NO constant in the procedure parameter list indicates

the level that is to be constructed. If this is a first level snowflake,

58

Root vertex

(the vertex for the level=2
snowflake)

(the level
vertices for the level

=1 snowflakes)

The stores
for each level
one snowflake

The store for the level 2 snowflake

Figure 4.16

then the IF statement will select the call to the FIRST_LEVEL procedure.

Otherwise a new LEVEL vertex is created and three calls to the snowflake

procedure are made. These construct the N-1 level snowflakes. After this

the first processor of each N-1 level is attached directly to this

level. These processors are the external processors that may be used to
~

attach to buses to create higher level snowflakes. Finally a call is

made to the BUS procedure. This will create the bus for this level end

attach the correct processors to it. The definition of this bus is

PROCEDURE BUS (L

VAR ADR SET ;

BEGIN

STANDARD_MEHORY (

SET) ;

L.LEVEL.PROCESSOR (2) , 9216 , 1024) ;

END ;

59

This procedure creates the common memory subgraph and attachs this

to each of the three processors. These processors are choosen to be the

second processor of each of the three attached N-1 Level snowflakes.

Notice that at each Level the LEVEL vertex has attached to it the

three LEVEL vertices of the N-1 Level, the ADDRESS vertex of the memory

used for the bus at this Level, and the three processors which may be

used in a Level N+1 snowflake. To show this a'Level 2 snowflake is

represented in the graph of figure<4.16).

(4.6) INPUT, OUTPUT AND INTERRUPTS

--

In this section the specifications for hardware input, output and

interrupts are described. The directives for this information will only

describe the addresses and read/write status of input and output ports,

addresses of interrupts and addresses of variables. All other hardware

specific information is not modelled at this Level.

(4.6.1) INPUT AND OUTPUT

The two kinds of input and output hardware structures modelled are

memory mapped I/O and I/O ports that are accessed with a separate

address space. In both cases the port may be read only, write only or

both, and the port will have an address.

<4.6.1.1) MEMORY MAPPED INPUT AND OUTPUT

The information to specify a memory mapped input or output port is

specified by vertices attached to the MEMORY vertex which represents the

memory module within which the memory mapped port appears. These

vertices may have one of the reserved names

READ_PORT WRITE_PORT READ_WRITE_PORT

and will have an attached value which gives the address. This

address is not relative to the processors addressing ranges, but

60

Root vertex

The processors The processors

Local
stores

Common store
with memory
I/O

Access=
0.45

Figure 4.17

Size= Read-port
1024 =210

Write-port
=211

relative to the start of the memory module. Address 0 being the first

location in the memory module. Thus to specify a memory mapped read port

at location 210 in memory module STORE_1 requires

i.STORE_1.ADDRESS.MEMORY ->NEW (READ_PORT = 210) ;

This directive attachs a new vertex of name READ_PORT and value 210

to the indicated memory vertex. Similarly to specify a write port

requires

i.STORE_1.ADDRESS.HEMORY ->NEW (WRITE_PORT = 211) ;

This information can be used by the allocator in the placement of

variables from the user program which are to be used as input and output

ports. The memory mapped input port is associated with the memory vertex

information, and is equally accessible to any processor that can access

the memory module.

61

An example of this structure is given for a computer architecture

with two processors each accessing a common store. This store is part of

a memory mapped I/O system and has a read port at 210 and a write port

at 211. The specifications for this are

GRAPH

VAR PSR : SET ;

PROCEDURE STANDARD_MEMORY ; ••• etc as before ;

PROCEDURE ONE_PROCESSOR ; ..• etc as before ;

BEGIN

FOR 2 DO

ONE_PROCESSOR (i , PSR) ;

STANDARD_MEHORY (PSR , 0 , 8192) ;

ENO ;

STANDARD_MEHORY (@ , 8192 , 1025) ;

@.PROCESSOR -> @.ADDRESS ;

@.ADDRESS.MEMORY ->

(NEW (READ_PORT = 210) , NEW (WRITE_PORT = 211)) ;

END ;

This specification is represented in figure<4.17).

<4.6.1.2> SEPARATE ADDRESS SPACE INPUT/OUTPUT.

In memory

attached to a

mapped input/output the information .about the ports is
" memory. Separate address space refers to ports accessed

directly by the processor, and in these specifications information is

attached to a vertex given the reserved name PORT. Thus to specify a

input port number 12 requires

i -> NEW (PORT) -> NEW (REAO_PORT = 12) ;

The information about extra input/output ports may be attached to

the same port vertex, or to different ones. Thus either of the following

can be used

S -> NEW (PORT) ->

(NEW (READ_PORT = 12) , NEW (WRITE_PORT = 13)) ;

62

Access
to the
read

The local stores

The processors

Access to
the write
port

Root vertex

Port

Read-port=12 Write-port=13

Figure Lt.18

' i ->

(NEW (PORT) -> NEW C READ_PORT = 12) ,

NEW C PORT) -> NEW C WRITE_PORT = 13)) ;

to specify two ports, one input and the other output. The vertices

are then attached to the processor vertex that represents the processor

which accessed these input and output ports. Thus an example may be

GRAPH

;

BEGIN

FOR 2 DO

ONE_PROCESSOR (iil , PSR) ;

STANDARD_HEHORY (PSR-, 0 , 102Lt) ;

END ;

S.PROCESSORC1) -> NEW (PORT) -> NEW (READ_PORT = 12) ;
,

iil.PROCESSORC2> -> NEW (PORT) -> NEW (WRITE_PORT = 13) ;

END ;

This gives a system of two separate processors, one accessing a read

port and the other accessing a write port. The graph and computer

architecture are represented in figureCLt.18).

63

For the memory mapped I/O situation, two processors accessing the

same memory containing a memory mapped port are regarded as both being

capable of accessing this identical port. For separate address I/O

ports, the meaning is somewhat different. Generally an I/O operation of

this kind performed by one processor will access a different port from

an I/O operation performed by another processor, even if the I/O port

numbers are the same. To specify this, the usual occurrence, the same

PORT vertices would not be attached to different processors. If,

however, the ports of identical numbers on different processors are

connected to the same hardware circuits so that they transmit and

receive identical information, then this they can be regarded as one

port shared by two processors. This is modelled in the graph structure

by the same port vertex attached to more than one processor vertex. This

is analogous to having a memory mapped information structure attached to

more than one processor.

(4.6.2) INTERRUPTS

The resource allocator provides for the modelling of a user

accessible interrupt structure. This takes the form of a hardware

generated interrupt calling a user designated procedure. Providing the

procedure code, and ensuring that the procedure returns before the next

interrupt might be generateG, is the users responsibility.

To specify the information about an interrupt requires a vertex with

the reserved name INTERRUPT, and attached to it a constant value giving

the address of the hardware interrupt. The b~nding between the interrupt

and the high Level Language procedure it is to call is made by the

Linker stage.

Thus an example is

GRAPH

BEGIN

FOR 2 DO

ONE_PROCESSOR (m , PSR) ;

STANDARD_HEHORY (PSR , 0 , 1024) ;

END ;

64

i.PROCESSOR(1) -> NEW (INTERRUPT = 32) ;

END ;

For an interrupt that jumps to address 32. If there is only one

interrupt possible on a processor then the interrupt number may be left

out. If the hardware that generates interrupts is also capable of

producing an argument to go with the interrupt (as, for example, an

interrupt made to a single address location which is given an interrupt

number parameter), then this argument can be passed to the high level

procedure via its parameter list.

These interrupt vertices are

representing the hardware processor

attached

that

to the

accesses

processor vertex

this interrupt. A

processo~ may have more than one interrupt. The converse is true also,

the same interrupt may be attached to more than one processor. This is

interpreted to mean that the hardware generating this interrupt sends

the interrupt signals to the same interrupt addresses in all of these

processors. Thus a program relying on this interrupt may reside upon any

of these processors to work correctly. However the situation of

identical interrupts being connected to differing interrupt addresses in

different processors is not covered.

(4.6.3) SPECIFICATI0N OF VARIABLE ADDRESSES

Almost always the actual hardware addresses of variables will be

assigned by the resource allocator. In the rare ~ases when the user

requires to explicitly locate a variable th1s can be done by inserting

into the information graph the required address and memory module. This

information is then accessed by other constraint directives to bind the

required variables to these

place variables at address

addresses. As an example, to

starting from 34 in memory

S -> NEW (USER_ADDRESS = 34) ;

be able to

A, requires

where S is a reference set variable that contains the memory A
'

vertex. Now to refer to this address the reference

S.USER_ADDRESS

65

is used. Hore than one such vertex can be added, as in

S -> NEW (USER_1) -> NEW (USER_ADDRESS = 34) ;

S -> NEW (USER_2) -> NEW (USER_ADDRESS = 35) ;

Here the USER_1 and USER_2 are user defined vertex names, and the

USER_ADDRESS vertex is the reserved name. Either address can now be

referred to by

S.USER_1.USER_ADDRESS

S.USER_2.USER_ADDRESS

(4.7) CONDITIONALS

'<4.7.1) USE OF CONDITIONAL SELECTION DIRECTIVES

The directives are used to specify the structure of the computer

system. They are also used to examine this structure and select resource

units which obey certain constraints. These constraints are supplied by

the user when specifying how the elements of a program are to be

allocated to the resources of the computer.

A user defined constraint indicates a program element or elements

and Lists the computer resources that the elements may be mapped to. An

element is either a storage requirement of the program for code, data,

stack or heap space, or it is a processing requirement for a process of

the program. The resource this is mapped to can then be either a

collection of physical memory modules onto which the program memory is

allowed, or a collection of processors that are permitted to execute the

process.

The selection of the elements and their specifications is described

in chapter 5, as are the constraint directives themselves. Here the

selection of the resource elements that are to be used for any one

constraint directive is demonstrated. This involves selecting suitable

processor or memory vertices from the entire system which satisfy the

required conditions.

66

The selection directives are now described below in detail.

<4.7.2) SIMPLE SELECTION EXAMPLE

As an example the previous computer system defined with a two level

map structure is used (given in section 4.4.2.3). This system is to be

extended with the addition of disk I/O ports to some of the processors.

To specify the addition of a disk unit to one of the processors

requires the definition of an additional vertex name, and a reference

like

Q.GROUP(4).PROCESSOR(2) -> NEW (HAS_DISK = TRUE) ;

This indicates that the 2nd processor of the 4th group has a disk

attached. If there are a number of such directives, then to select any

processors in this system that have a disk

the actual group and processor numbers,

attached, without specifying

requires references like

i -> NEW (PROCESSOR_WITH_DISK) ->

S.GROUP.PROCESSOR.<VALUE(i.HAS_DISK)=TRUE> ;

which attachs all processor vertices which have a HAS_DISK vertex

with a value true to the newly created PROCESSOR_WITH_DISK vertex. For

the specification program to be legal this vertex name has to be defined

in the vertex list of the specification block. In the examples following
~

the need for this definition will not mentioned.

So now the processors that are in the system with a disk attached

can be accessed directly with the reference

S.PROCESSORS_WITH_DISK.PROCESSOR

which will

processors m~y

referenced in

access all such processors. Any

have, for example their memory

the usual fashion starting from

67

properties that these

descriptions, can be

the above reference.

(4.7.3) MULTIPLE SELECTION CRITERION

Hore than one vertex can be specified in the selection criterion.

For example some of the processors in the above system may be more

reliable than others. This vertex can be specified by the reference

S.GROUP(1).PROCESSOR -> NEW (IS_RELIABLE = TRUE) ;

which will attach to all the processors in group 1 a unique

IS_RELIABLE vertex of the indicated value.

Now to select all those processors with an I/O disk unit attached

which are also reliable is achieved by the reference-·

S.GROUP.PROCESSOR.< VALUE(w.HAS_DISK)=TRUE AND

VALUE(w.IS_RELIABLE)=TRUE > ;

Another example is where the disk units may have additional

properties, such as disk access speed and storage size. These properties

may be described and attached to the processor vertices by the following

specifications

PROCEDURE DISK_UNIT (

C : SET ;

DISK_SPACE_VALUE

DISK_SPEED_VALUE

BEGIN

INTEGER ;

REAL) ;

C -> NEW (DISK) ->

(NEW (DISK_SPACE = DISK_SPACE_VALUE) ,

NEW (DISK_SPEED = DISK_SPEED_VALUE)) ;

END_;

And this procedure is used to specify that some of the processors

have disks,

DISK_UNIT (GROUP(3).PROCESSOR(5) , 512 , 2) ;

DISK_UNIT (GROUP(3).PROCESSOR(6) , 512 , 2) ;

DISK_UNIT (GROUP(4).PROCESSOR(1) , 1024 , 1) ;

68

DISK_UNIT (GROUP(5).PROCESSOR(3) , 2048 , 4) ;

DISK_UNIT (GROUP(5).PROCESSOR(4) , 128 , 0.5) ;

Here the first number could be interpreted as the number of blocks

in a disk and the second number is the number of milliseconds needed to

access an average block. In this specification only 5 of the processors

have disks attached.

With this specification a reference that will access all processors

with disks attached can be

@.GROUP.PROCESSOR. < NOT EMPTY (@.DISK) >

and to reference all processors with a disk attached of size 1024

blocks or bigger and an access time of 1ms or less requires

@.GROUP.PROCESSOR.< NOT EMPTY (i.DISK) > •

< VALUE(i.DISK.DISK_SPACE) = 1024 AND

VALUE(i.DISK.DISK_SPEED) <= 1 >

This reference will still work when there are two or more disks

attached to a processor vertex, the result will be any processor vertex

with at Least one disk attached that satisfies the constraint.

69

CHAPTER(5)

(5.1) USER CONSTRAINT SPECIFICATION

--

The user constraint directives specify constraints upon the

placement ~f program elements onto the computer architecture. Generally

the resource allocator will perform its task of generating a legal and

efficient mapping without user intervention. However additional user

constraints, based on application specific information, may be imposed

by the programmer to guide the allocator.

There , are several forms of constraints. They operate upon a

collection of program elements and a collection of resource elements.

The' following sections will discuss

How to specify the resource elements of. a constraint.

How to specify the program elements of a constraint.

How to specify the constraint action itself.

(5.2) SPECIFICATION OF P.ESOURCE ELEMENTS

--

Firstly the specification of the resource elements is outlined.

The computer architecture is specified by the ISL graph structure,

and so the specification of resources uses this structure. Each resource

of the computer is represented by a PROCESSOR, MEMORY, PORT or INTERRUPT

vertex in the graph. Therefore a reference can be used to access these.

Thus the resource references are a restricted form of the general ISL

graph reference. They can be described by the syntax

Resource Reference = "i" . - ,
{ ".", Vertex_Name, [Vertex_Index J } ;

Vertex_Name = Identifier ;

Vertex_Index = "(", Number, ")" ;

70

An example is

~.GROUP.PROCESSOR(2)

(5.3) SPECIFICATION OF THE PROGRAM ELEMENTS

===

Now the specification of the program elements is given.

Program elements may be processes, variables, procedures and,

depending upon the kind of computer architecture, modules. Only those

elements which are named in the program are accessible to a constraint.

This name is always the· identifier that is given to the element in its

definition or declaration. Such elements are specified by a path name

constructed from information in the program text. There is one path name

per-element, and these are combined together into collections called

objects. It is these objects that are used in a constraint directive.

(5.3.1) PATH NAMES

All program elements are accessed within the high Level Language

program by their names,·and so the specification uses these names also.

However due to the scoping rules of many Languages, these names may not

be unique throughout the whole program. The technique adopted here is to

construct a path name for each element. This path name consists of the

name of the element, and the name of every enclosipg scope. These are

combined into one reference using the record dot notation (as used in

Pascal).

The syntax for a path name is

Path_Name =
< Scope_Name, "." }, Element_Name, [

Indication= 11
:

11
,

11CODE 11 !11 STACK11

Scope_Name = Identifier ;

Element_Name = Identifier ;

A path name Like

71

.Indication J ;

Element_Name1

refers to an element in the program which is in the outer most

scope. A path name like

Scope_Name1.Element_Name1

refers to an element named Element_Name1 which is defined in a scope

called Scope_Name1.

Thus to refer to the integer variable in the following Pascal code

PROCEDURE DEMONSTRATE

VAR I : INTEGER ;

PROCEDURE NUMBER ONE

VAR I : I NT EGER

BEGIN ... END

BEGIN ... END;

requires one of the following two references

DEMONSTRATE.I DEHONSTRATE.NUMBER_ONE.I

depending on whether or not the first or the second occurrence of

the I integer is wanted.

If this ls a recursive procedure, then the ~eference will refer to all

instances of the variable. Consequently the variable will occupy the same

address for all invocations. The other local variable of the procedure will

be allocated as normally expected.

CS.3.2) WITH BLOCKS

Since these path names can rapidly become very long with deeply

nested programs, a WITH block is allowed in the specification

directives.This encloses a syntactically complete collection of resource

72

allocator specifications and allows the first part of a long path name

to be specified.

With_Block = "WITH", Path_Name, "DO",

< Object_Assignment I With_Block }, "END", ";" ;

(Object_Assignment is to be defined, contains Path_Names).

A With_Block like

WITH Path_Name1 DO

Path_Name2

END WITH ;

is equivalent to

Path_Name1.Path_Name2

if this path name is able to refer to an element. If, however, this

path name does not refer to any elements in the program, then this is

equivalent to

Path_Name2

in other words the path name inside the With_Block is used without

alteration.

As an example

PROGRAM DEMONSTRATION ;

PROCEDURE NUMBER_ONE ;

PROCEDURE NUHBER_TWO ;

PROCEDURE NUHBER_THREE ;

VAR

A , B , C , D , E

BEGIN ••• END ;

.BEGIN ••• END ;

BEGIN ••• END ;

BEGIN ••• END •

13

DATA_TYPE ;

Here the variables A to E may be referred to- inside a resource

allocator specification by the following

WITH DEMONSTRATION.NUMBER_ONE.NUMBER_TWO.NUMBER_THREE DO

use the identifiers A, B, C, D or E.

END ;

(5. 3. 3) PROCESS CODE AND' STACK ELEMENTS

Consider a path name to a process called P in some program. This

will be Like S1.S2 ••.. P, where S1, S2 •.. are the surrounding scope

names. Now is this path name a memory element referring to the code of

the process, or is it a process element referring to

executes the process? To resolve this, a

the processor that

path name Like

S1.S2 •••• P

will always refer to a process element by

to indicate the code of the process,

S1.S2 •••. P:CODE·

default. If it is required

then the path name is

Variables never contain executable code, and so this type of

specification is not needed when using path names to refer to a

variable. Similarly a procedure or module element. is always a memory

element, since the execution of the code of a procedure or module is

performed by a process.

To refer to all of the local variables of a process the following is used,

Sl .S2 •••• P:STACK

(5.3.4) OBJECT DEFINITIONS AND ASSIGNMENTS

--

A Path_Name is used to refer to a particular program element. The

resource allocator generally uses collections of elements when it is

performing its allocation. A collection of program elements is called an

object. Objects are defined in the resource allocation Language, and are

used in the user constraints. Object_Assignments are used to specify

which elements these objects refer to. An object can contain many

74

program elements, but each object can contain process elements only, or

memory elements only.

Program elements may only be assigned to objects that have already

been defined. An object definition consists of the name of the object

and its kind, either a process object or a memory object. The syntax is

Object_Definition_Part =
"DEFINITION", { Object_Definition }, "END",

Object_Definition =
"·" . , ,

Object_Name, { ",", Object_Name },

Object_Name = Identifier ;

Object_Kind = "PROCESS" I "MEMORY" ;

". " . , Object_Kind ;

For example

DEFINITION

OBJECT_1 PROCESS ;

OBJECT_2 , OBJECT_3 : MEMORY ;

END ;

will create three objects, the first object will contain processes

and the next two will contain program memory elements.

After the Object_Definition_Part appears the

Object_Specification_Block. This contains Object_Assignments which

specify the elements that each object is to refer to. An object may
,,

appear in only one Object_Assignment, and program elements can also only

appear in one Object_Assignment. The syntax for this is

Thus

Object_Specification_Block = "SPECIFICATION"

{ Object_Specification }, "END",

Object_Specification =
"·" . , ,

Object_Name, ":=", "[", Program_Path_List, "]",

Program_Path_List = Path_Name, { ",", Path_Name } ;

OBJECT_1 := [DEMONSTRATION.PROCESS_A J ;

75

"·" . , ,

will result in OBJECT_1 referring to the indicated process in the

program,

OBJECT_2 := [DEMONSTRATION.A , DEMONSTRATION.B J ;

OBJECT_3 := [DEMONSTRATION.PROCEDURE_ONE:CODE] ;

OBJECT 4 := [DEMONSTRATE.PROCESS_A:STACKJ;

and the above two assignments will result in OBJECT_2 referring to

the variables A and B and in OBJECT_3 in referring to the code of the

procedure.

(5.3.5) PROGRAM SPECIFICATION BLOCK

The Object definition and specifications

Object_Specification block, whose syntax is

Object_Specification_Block =
"OBJECT",

Object_Definition_Part,

Object_Specification_Block,

"END", "·" . , ,

appear in a complete

A complete example, bringing together the separate examples of the

last section, is

OBJECT

DEFINITION

OBJECT_1 : PROCESS ;

OBJECT_2, OBJECT_3

END ;

SPECIFICATION

MEMORY ;

OBJECT_1 := [DEHONSTRATION.PROCESS_A J ;

OBJECT_2 := [DEMONSTRATION.A , DEHONSTRATION.B J ;

OBJECT_3 := [DEHONSTRATION.PROCEDURE_ONE:CODE J ;

OBJECT 4 := [DEMONSTRATE.PROCESS_A:STACK];

END ;

END ; •

_,

(5.4) CONSTRAINT SPECIFICATION

==============================

Finally the constraints themselves are described. There are two main

types of user constraints. These are

A) General constraints. These specify to which group of resource

elements a program element may be assigned.

B) Address constraints. These allocate variables and interrupt calls

to specific addresses within physical memory modules.

The syntax and usage of these are described in the following.

(5.4.1) GENERAL CONSTRAINTS

A general constraint will specify the processors of the architecture

to which the given process elements of the program can be assigned, or

it will specify the physical memory resources to which the given program

memory elements may be assigned. There are two kinds of general

constraints, which are

A) Assignment constraints. These specify a list of

to which the indicated program elements

resource elements

may be assigned.

8) Proximity constraints. These impose constraintG upon the placement

of program elements depending on the locations of other already

placed program elements. The two types of proximity constraints

may be to either place the program elements onto the same

resources as some other program elements, or to place them onto

different resources from some other program elements.

Firstly the assignment constraint are described, followed by the

proximity constraints.

11

CS.4.1.1) ASSIGNMENT CONSTRAINTS

................................

An assignment constraint has the syntax

Assign_Constraint =
"ASSIGN", Object_List, "->", Resource_List, ";" ;

Object_List = "(", Object_Name, { " " , , Object_Name }, ")" ;

Resource_List =
"(", Resource_Reference, {

Object_Name = Identifier ;

" " , , Resource_Reference }, ")" ;

An assignment statement like

ASSIGN (Object_Name1) ->

(Resource_Reference1, ••• Resource_ReferenceN) ;

w~ll indicate to the resource allocator that all the program

elements specified by the Object_Name1 object will be assigned only to

some resource element which is a member of the resource list. The types

of the program elements in· the object must agree with the types of the

resources in the resource list. That is program elements that are

processes can only be assigned to resource elements that ar~ processors.

Similarly program memory elements are only assigned to physical memory

resources.

An assignment like

ASSIGN (Object~Name1, ••• Object_NameN) -> Resource_List1 ;

is equivalent to the separate assignments

ASSIGN (Object_Name1) -> Resource_List1 ;

ASSIGN (Object_NameN) -> Resource_List1 ;

while two assignments like

78

ASSIGN (an object list containing program element X >

-> Resource_List1 ;

ASSIGN (an object list containing program element X)

-> Resource_List2 ;

will specify two constraints upon the program element X. In this

case the intersection of the resource list sets gives the constraint for

X. Thus the constraint on X is

ASSIGN (an object containing only X) ->

a resource set equal to Resource_List1 AND Resource_List2 ;

Conflicting constraints can be detected at this stage if the

combined resource of an element becomes empty. This indicates that the

element can not be assigned to any resource without violating one or

another of the constraints imposed upon it.

(5.4.1.2) PROXIMITY CONSTRAINTS

Program elements may also be constrained to locations depending upon

the proximity of the assignment of other program elements. There are

only two degrees of proximity allowed, either a program element may be

assigne-d to

be assigned

the same resource as some other program element, or it may

to a different resource. The syntax for these are

Proximity_Constraint =
"ASSIGN", Object_List, "->",.

("SAME" I "DIFFERENT"), Proximity_Resource_List,

Proximity_Resource_List =
"(", Proximity_Resource_Reference,

<: ",", Proximity_Resource_Reference} ;

Proximity_Resource_Reference = "fil",

"·" . , ,

{ "a", Vertex_Name, ["(", (Number "*"), ")"] } ;

A proximity constraint like

ASSIGN Object_List1 ->

SAME (Proximity_Resource_Reference1 ,

19

Proximity_Resource_ReferenceN) ;

will ensure that each program element in the object list will go to

the same group of elements from amongst

Proxirnity_Resource_Reference1

resource

to Proximity_Resource_ReferenceN.

Alternatively a proximity constraint Like

ASSIGN Object_L ist1 -> .

DIFFERENT (Proximity_Resource_Reference1 ,

Proximity_Resource_ReferenceN) ,

will ensure that each program element in the object list will each

be ~Llocated to a different group of resource elements.

The references used may be similar to those used in the assignment

constraints. Alternatively the references may also have a "*" character

in the vertex indices. In a reference like

Vertex_Name1. Vertex_NameX(*). Vertex_NameN

the "*" character ih the index reference is used to represent all

possible index values. If this vertex has a possible index range of 1 •• 5

then the reference above is equivalent to the references

Vertex_Name1. Vertex _NameX(1). •. .,, Vertex_NameN ,

Vertex_Name1. Vertex_NameX(2). Vertex_NameN ,
Vertex _Name1. Vertex_NameX(3). Vertex_NameN ,

Vertex_Name1. Vertex_NameX<4>. Vertex _NameN ,
Vertex_Name1. Vertex _NameX(5). Vertex_NameN

and thus this notation is a shorthand method of writing out the

resource reference lists.

An example of a proximity constraint is

ASSIGN Object_List1 ->

SAHE (GROUP(1).PROCESSOR , GROUP(2).PROCESSOR) ;

Bo

(using the graph definition of section<4.4.2.3". This will ensure

that, however the resource allocator performs is allocation, all of the

processes in the Object_List1 will always end up in either the

processors of GROUP(1) or the processors of GROUP(2). Another example is

ASSIGN Object_List1 ->

DIFFERENT (GROUP(*).PROCESSOR(*)) ;

This is equivalent to the expanded constraint

ASSIGN Object_List1 ->

DIFFERENT (GROUP(1).PROCESSOR(1) , GROUP(1).PROCESSOR(2) ,

GROUP(1).PROCESSOR(3) , GROUP(1).PROCESSOR(4) ,

GROUP(2).PROCESSOR(1) , GROUP(2).PROCESSOR(2) ,

GROUP(4).PROCESSOR(3) , GROUP(4).PROCESSOR(4)) ;

assuming 4 groups and 4 processors per group. Thus this constraint

will ensure that each process in the object list will end up in a

processor by itself. Note that if there are more processes in the object

list than there are processors in the resource list, then the constraint

can not be satisfied for· all processes simultaneously, and so the

resource allocation mapping will fail.

(5.4.2) ADDRESS CONSTRAINTS

The constraint directives described above are applicable to the

control of the over all allocation strategy of the resource allocation

by the user. The Location directives now described are used to _specify

explicitly the interrupt addresses ~or procedure calls and the addresses

of normal variables and I/O variables.

(5.4.2.1) I/O VARIABLE ADDRESSES

To access memory mapped input/output information a variable of the

correct size can be positioned at the memory mapped I/O address. This

variable can be used within the program exactly Like any other variable.

The only difference, from a high level language point of view, is if

81

this variable is in a local procedure declaration space. In this case

each activation of the procedure will access that same variable address,

instead of having a new variable created on the procedure invocation

stack each time. From the point of view of the hardware, the variable

address corresponds to a memory mapped I/O port.

The syntax is

Location_Constraint = "LOCATE", "(", Variable_Path_Name, ")",

"->", "(", Resource_Reference, ")", "·" . , ,
Variable_Path_Name = Path_Name ;

and an example is

LOCATE < Variable_Path_Name1) -> (Resource_Reference1) ;

Here the variable referenced by the variable path name will be

allocated to the address given for the input/output port specified by

the resource reference in the information graph. A variable path name is

used.instead of an program element reference, since usually the address

of only one variable at a time needs to be set. A variable can only be

assigned to one location and so the resource element has to refer to one

store module only.

(5.4.2.2) INTERRUPT CALLS.

Interrupts that are to be accessed explicitly by the programmer are

implemented as external calls to a user written procedure. This

procedure is written according to the usual high Level Language

conventions. An interrupt call to it is equivalent, at the programming

language level, to a call from an anonymous process written in the

language.

In the following the resource interrupt reference refers to a memory

address spe~ification in the information graph. The syntax to indicate

the binding between the procedure in the program and the interrupt call

is

62

Interrupt_Constraint -> "INTERRUPT", "(", Procedure_Path_Name,

")", "->", "(", Resource_Reference, ")",

Procedure_Path_Name = Path_Name ;

and so an interrupt constraint is like

"•" . , ,

INTERRUPT (Procedure_Path_Name1) -> (Resource_Reference1) ;

where the procedure specified by the path name will be called

whenever there is the appropriate interrupt to the processor.

(5.4.3) MULTIPLE CONSTRAINTS

If a program element appears in more

final allocation for that element must

than one constraint, then the

satisfy all such constraints

simultaneously. For example the constraints

ASSIGN Object_List1 -> (Reference1) ;

ASSIGN Object_List2 -> (Reference2) ;

ASSIGN Object_List3 -> SAHE (Reference3) ;

ASSIGN Object_List4 -> DIFFERENT (Reference4) ;

will ensure that if program element X is in all four object Lists,

then the assignment of X to the architecture architecture will be such

that

X is assigned to a resource in Reference1.

X is assigned to a resource in Reference2.

X is assigned to the same resource in Reference3 as all the

other program elements in Object_List3.

X is assigned to a different resource in Reference4 from all

the other process elements of Object_List4.

If such a resource does not exist, then the map allocation will

fail.

83

(5.5) FINAL SYNTAX

==================

The syntax for the entire allocation

Allocation_Program =
"ALLOCATION",

Graph_Specification_Block,

Object_Specification_Block,

Constraint_Block,

"END", '' ,, . ,

Constraint_Block =

specification program is

,"CONSTRAINT", { Constraint >, "END", ";" ;

Constraint = Assign_Constraint I Location_Constraint

Interrupt_Constraint I Proximity_Constraint ;

A complete example using the specification Language is given in

Appendix(F).

84

CHAPTER (6)

(6.1) THE CALCULATION OF THROUGHPUT

===================================

An allocation program needs to be able to produce efficient mappings

of programs onto computer architectures. An efficient implementation of

a program can include many factors, such as using the minimum memory

space, executing in the fastest time or having maximum reliability. When

an allocation program is ~sed it is presented with an already written

program and a fixed architecture. The most important efficiency measure

it can influence is the execution speed of the program. Decreasing the

memory usage is outside its capabilities, because this depends upon the

de~ign of the program. Increasing reliability, by placing important data

and processes onto reliable memory modules or processors, is not

directly carried out by the allocation program. Instead the user imposes

these requirements with the aid of constraints. Thus the sole efficiency

measure that can be optimized by the allocation program is the

execution time or throughput of the final allocation. Consequently it

needs to be able to obtain an estimation of this throughput for any

allocation mapping.

This execution time estimation may be produced in two different

ways, either by solving an analytic probability model or by running a

simulation program. For this thesis an analytic model was derived from

work by [44J. The model described will CAlculate the general memory

interference in a multiprocessor computer involving bus conflicts and

bus induced delays. The results obtained from this model were tested by

using a simulation model, a brief description of this model is also

given. This chapter finishes with a discussion on the relative

performance of both the simulation and the analytic model solutions.

(6.2) ANALYTIC PROBABILISTIC THROUGHPUT MODEL

===

In the following an analytic probabilistic model is described which

can be used to calculate the throughput of a concurrent program to be

executed on a multiprocessor system. The basic mathematical model comes

from [44J which takes into account the effects of memory interference.

85

To this has been added extensions to allow for different store cycle

times and to include the effects of common store access buses.

The original model assumed that each processor was running an independent

program. This implies that a processor only idles when it is waiting on a

busy memory. This idling will occur on a cycle by cycle basis. However for

the allocator problem this is no longer true, the processors execute code

that is part of the single program. Thus the processors may spend some of

the time idling, not because of memory contention, but because they are

waiting on semaphore locks until some useful work becomes available. This

kind of idling will occur over a much longer time scale than the first type.

Accordingly the model has also been adapted to this requirement.

(6.2.1) MODEL DESCRIPTION

The model assumes a multiprocessor computer containing a number of

processors and store modules. In the model any processor may access any

store, although some access paths between processors and store modules

may not utilized by the actual computer architecture hardware, and some

access paths may go through common store access buses. The store modules

and processors may have different access times and processor cycle

times. The common buses may introduce access time overheads.

Each store has an access time followed by a reco~ery time. The

access time is the time required to fetch or store one memory value. The

recovery time is the time required by the memory to become ready for the

next request. During this time the processor is released and may do

useful work. Generally only older magnetic core memory technology will

have nonzero recovery times. In the model there are M stores, and the

stores are referenced by the index S.

Each processor has an average single instruction processing time

during which it does not access the memory. This is followed by a memory

fetch cycle, in which the processor idles until the memory request has

been completed. It is assumed that the single instruction time is

greater than the store recovery time. Thus a processor does not issue a

memory request before the store has recovered from the last one. The

model assumes that there are N processors, the index P is used to refer

to a particular processor.

86

A processor may not be able to directly access a store, but has to

access it through an intermediate common bus in competition with other

processors. Such a bus will introduce an access overhead which is its

bus delay. In the model the buses are referenced by a bus index called

B

The model is supplied with an array which gives a value for each

processor store pair. This value is the number of memory accesses the

processor makes to the store in an arbitrary time. For some pairs this

will be zero, indicating the processor never accesses that particular

store. This array, when normalized, will give the probability access

pattern of the processors. The array is represented by

Ni (P , S >

where Ni is the input number of cycles, P is the processor number and S

is the store number. rt can be normalized by a constant factor C such that

M

c * I Ni (P ' s) ~ 1
s = 1

••• (1)

where for some P the summation equals one. As an example,

an input number of cycles array could be

processors

stores

4

3

6

5

For this the normalization factor is 0.1, giving the normalized

array

processors

stores

0.4 0.6

0.3 0.5

row summation (per processor)

1.0

0.8

This array gives the access probability pattern of the processors.

Thus the first processor spends 0.4 of its time accessing the first

store, and 0.6 of its time accessing the second store. The second

processor spends 0.3 of its time accessing the first store, 0.5 of its

87

time accessing the second store and the remaining 0.2 of its time

idling.

As its solution the model will produce an actual number of cycles

array. This will give the calculated number of accesses between each

processor and store in a unit time. The pattern of accesses will be the

same as for the input number of cycles array, and so the two arrays will

differ only by a multiplicative constant. This constant is used as the

throughput. It represents the number of times per unit time period that

the computer architecture can execute the given input number of cycles

information. It is expressed as

Ni*Tp = Na

••• (2)

where Tp is the throughput and Na is the actual number of cycles array.

As an example, the actual number of cycles array may be

stores

processors 440 660

330 550

This differs by a factor of 110 from the input number of cycles

array. Thus the computer can

processor and the first store

this is therefore 110.

execute the 4 accesses between the first

110 times a second. The throughput for

As a final note, the probabilities used in the model are concerned

with the probability that some action will be proceeding in a given time

period. This probability will be equivalent to the fraction of the time

that the action is proceeding. If a unit time period is used, then this

fraction of time will equal the actual time spent in the activity.

Accordingly in the derivation either the probability or the time

interpretation is used. This depends upon which is the most convenient.

(6.2.2) SIMPLIFICATIONS IN THE HODEL

In an executing processor, the address sequences will not be random

but will display some serial correlation. This is especially the case

for instruction fetching, where the addresses will be predominantly

consecutive. (44J demonstrates that this effect is not important in

88

most circumstances. Consequently in this model

throughput obtained from a random distribution

good approximation to the throughput obtained if

serial correlation were taken into account.

it is assumed that the

of addresses will be a

the effects of address

Another inaccuracy is due to the probability methods used, which

assume that all time periods are infinitely divisible. However in the

actual hardware the time over which the memory is actually accessed, or

a processor executes a single. cycle, comes in discrete time units of one

processor or store cycle. The effect of this simplification is only

noticeable over a Large time period in special circumstances. One case,

for example, is with two processors accessing a common store. Each

processor has a one microsecond instruction execution time, and the

store also has a one microsecond access time. In this situation, after a

possible initial clash, the two processors will execute in lock step.

They will alternate in using the store and executing an instruction.

Thus there will be no conflict, even though the model predicts a

degradation in the throughput of 12.5 percent compared to the actual

throughput obtainable from the system. This difference becomes less when

there are a larger number of processors and stores, and when the

instruction execution times are not constant.

As well,, there is an ·inaccuracy not present in Hoogendoorns original

work. There the processors are assumed to be executing thdir instruction

streams independently of each other. Thus the probability model assumes

the processors are statistically independent. This is no longer true

when the processors contain processes which communicate to each other.

Thus two processors may be specified as having a 1000 memory fetches

each to the same store, which by the model will cause execution time

degradation via memory contention. However in actual practice the

processors may be executing in turns, communicating between themselves

via semaphores as to which processor is to execute next. In this

situation the observable throughput will not be as predicted by a

straight memory interference model.

Assume that the same processors and store are as used in the

preceding example. When the processes on the processors execute

independently, the processors will be in lcckstep and the store will be

occupied 100 percent of the time. If the processors operate dependently

with turns of 1000 cycles each, then the store will be occupied only 50

89

percent of the time. If the

dependencies, then it will

model makes no allowances for processor

assume simultaneous execution. Thus its

estimation throughput will be twice as large as the actual throughput

obtained when the processors execute in turns.

Notice, however, that for this to occur requires a program making no

use at all of the parallelism possible with two processors. Most

programs will have greater parallelism than this between their

processes, and so there will greater overlap in the execution of

different processors. Programs with large numbers of semaphores,

executing on architectures with more than two processors and more than

one store, will show less of this effect. Therefore this behaviour is

not taken into account in the throughput models, it is assumed that the

str~ight probability model will provide a sufficiently adequate

throughput measure for the allocators purposes.

This leads to the f lnal assumption made in this model. A set of processes

cooperting in a single program synchronized by semaphores will have the

overall rates of progress of the individual processes fixed by the application.

This overall rate is used to define the throughput of the program. It is

assumed that from this actual number of cycles array can be derived by the

application of a single multiplicative factor, and that this has relevance

on a cycle by cycle basis. This assumption is represented in equation 2.

In general the cycle by cycle behaviour of the program will not reflect

this, since each processor will execute at f~l speed until it reaches a

synchronization event, then block. The time period over which this occurs

contains many processor cycles. The model and simulator both make use· of

this as~u1nption, therefore the results from these can only be approximate.

However note that any real program can show considerable variances in its

execution time performance due to the dynamic nature of its environment, thus

any estimate of the throughput will always be an approximate anyway.

(6.3) DERIVATION OF THE CONFLICT FUNCTION

===

Calculating the throughput of a concurrent program requires a means

of working out the effects of processor access conflicts. In this

section a general conflici model is derived.

on

The general conflict model assumes a number of users requesting

service from a number of common resources. To develop this model the

simple case of a number of processors accessing a number of stores is

used for illustration. Each processor spends a certain proportion of its

time accessing the store. This is called the combined probability and

comprises the fraction of ti•e that the processor waits while the store

is busy servicing requests from other processors, plus the actu~l store

access time. This last is the proba~ility that the processor is actually

accessing the store successfully. From this it can be assumed that

Pa(P,S) = Pc(P,S) * Cf(P,S)

••• (3)

Here the probability array Pa represents the probability of processor P

accessing store S successfully in a unit time period. The combined proba­

bility array Pc represents the probabili~y of processor P accessing the

store Sor attempting to access the store S in unit time. The conflict

function Cf is some value with a lower bound tending towards 0 and an upper

bound of 1. This function can be regarded as representing the fraction of

the total combined probability that any store request from a processor is

actually able to successfully access the store.

If there are no competing processors, this function is equal to 1.

If there are other processors, then this function is dependent upon the

time spent by these other processors in at!empting to also access the

same store. Thus ~ith N processors,

Pa(P,S) =

Combined probability of processor P accessing the store s
(successfully of not) *

Combined probability that no other processors are accessing the

store S (successfully or not).

+ 1/2 Combined probability of processor P accessing the store s
(successfully or not) *

The combined probability that one other processor is accessing

the store S <successfully or not>.

91

+ 1/3 Combined probability of processor P accessing the store S

(successfully or not) *
The combined probability that two other processors are

accessing the store S (successfully or not).

+ •••

+ 1/N Combined probability of processor P accessing the store S

(successfully or not) *
The combined probability that all other N-1 processors are

accessing the store S (successfully or not).

. .• (4)

The first term gives that part of the probability when the processor

is the only processor accessing the store. The second term gives the

probability when one other processor is accessing the store. Since only

one request is allowed at a time, and it is assumed that the store

chooses new requests in an unbiased way, then either processor P or the

other processor is randomly choosen 1/2 of the time. Thus this term has

a 1/2 in front of it. The terms continue in this fashion until the Last

term, where the processor has 1/Nth of a chance of

when processor P and all other N-1 processors

attempting to access it.

accessing the store

are simultaneously

Expansio~ of this function gives

Pa(P,S) =

Combined Probability of processor P accessing the store

S (successfully or not) *
(Combined probability that no other processors are

accessing store S (successfully or not)

+1/2 Combined probability that one other processor is

accessing store S (successfully or not)

+1/3 Combined probability that two other processors are

accessing store S (successfully or not)

+1/N Combined probability that all N-1 other processors are

accessing store S (successfully or not))

••• (5)

92

Therefore when this equation is compared with equation(3) it can be

seen that the part in the brackets is the conflict function. Thus the

conflict function can be written as

N
Cf(P,S) = L Pt(K,P,S)/K

K=l

••• (6)

The probabil lty term functions Pt inside the brackets represent the

probability that K-1 processors are accessing the store (successfully or

not) out of a total of N-1 processors. This probability is given by

rmax
Pt (k ,P ,S) I

r=l
Tt
P'=l
p•;tp

Fkrn(P')
0 Pc (P' 1 S)

0 1 - Pc (P ' 1 S)

••• (7)

The function Fkrn represents the sequence of all permutation lists

of N-1 elements, each element being either 0 or 1. There are K-1 zeroes

each permutation List, and R gives the permutation index number, for
"

some given ordering of the permutation Lists. The value Fkrn(P') gives

the P' element in a permutation List, where each permutation List is of

the form

Fkrn = (Fkrn(1), Fkrn(2), ••• Fkrn(P-1), Fkrn(P+1), .•• Fkrn(N))

••• (8)

There is no element corresponding to the Pth index. Thus this

function produces the probability of K-1 actively accessing processors

out of N-1 processors in total. Using equations 6 and 7

expansion of the conflict function is now

93

, the full

Cf(P,S) I ~
k=l k

rmax

I
r=l

it
P'=l
p•;tp

Fkrn(P' f~
;t

OPc(P',S)

01 - Pc(P' ,S)

... (9)

As an example, the conflict function for the first processor of a

system of three processors is

Cf(l,S) = (1-Pc(2,S)) * (1-Pc(3,S) +
! ((1-PcX2,S)) * Pc(3,S) + (1-Pc(3,S)) * Pc(2,S)) +
~
3 (Pc (2,S) * Pc(3,S))

and similarly for the con~lict functions for processors 2 and 3. The

implementation algorithm used to derive a conflict function is described

in appendix(B).

0 a

0 b

Note, this means to use the value of a if the expression X has a value
of O, and to use the value b if the expression X is not equal to o.

94

COMBINED-PROBABILITY Processors

BUS-PROBABILITY

PROBABILITY

Figure 6.1

(6.4) DERIVING THE PROBABILISTIC EQUATIONS

--

The computer architecture to be modelled has a number of processors

accessing a number of store blocks, both directly and via common store

buses. In the following the full memory interference model for such a

system is developed, using the conflict function derived above for the

simple case.

Host of the time that a processor spends in attempting to access a

store will be spent in waiting because other processors are blocking

access. This conflict occurs at two places,

A) at the bus Level where the processor is competing with the

other processors to access the necessary bus,

8) and at the store Level, where the processor now in control of

the bus has to compete with the other buses to access the

actual store.

This is represented in figure(6.1).

In view of this structure the mathematical model for such a system

is developed in steps. It starts by deriving the amount of time that is

spent by the processor in accessing store and from this is derived the

amount of time wasted in waiting for the pus to become free, and the

amount of time wasted while the store is occupied by other users.

Finally some refinements are added.

The conflict for bus function Cb gives the conflict f~ctor due to the

interference of all the other processors accessing the same bus. If the

processor has direct access to the store without any intervening buses then

this factor is one.

Pb (P ,S) = Pc (P ,S) * Cb (P ,S)

•.• (10)

The CONFLICT_FOR_BUS function gives the conflict factor due to the

interference of all the other processors accessing the same bus. If the

processor has direct access to the store without any intervening buses

then this factor is one.

To derive the value of this conflict for bus function all of the

other processors accessing the same bus are examined. The processor P is

disregarded, since this is the processor to which the conflict function

is applied to. Each of the other processors will access one or more

stores through the bus. For any one processor the time spent in

accessing the bus will be the summation of the total combined

probability spent in accessing each of these stores through this bus.

These bus probability terms are then used to generate the conflict

function value. Thus

n 1
Cb(P,S) = I -

K=l k

rmax

l
r=l

96

n
lT

0 Pbt(P' ,Bn(P,S))
Fkrn (P')

P'=l
P'~P 0 1 - Pbt(P' ,Bn(P,S))

••• (11)

where the bus probability term Pbt will be

Pbt(P' ,B) =

All S ' , where
B=Bn (P' ,S •)

Pc (P' ,s ')

••• (12)
and where the bus number function Bn returns the index of the bus that the

processor is to use to access the indicated store.

The resulting

bus. Now the

value is the time spent

time spend successfully

Pa(P,S) = Pb(P,S) * Cs(P,S)

successfully

accessing

accessing

the store

the

is

••. (13)

The conflict for store function Cs represents the conflict produced by

all of the other buses that access the store. The total amount of time

spent by any one of these other buses in accessing the store is given 'by

the summation of the times each processor using it spends in

successfully controlling the bus to access the store. This value from

each bus is added together to give the conflict function value.

Cs(P,S) = ~
k=l

1
k

rmax

I
r

and the bus conflict terms Cbt are

Cbt(B' ,S) = I
All P ' , where
Bn (P' ,S) =B'

97

Pb(P',S)

0 Cbt(B' ,S)
Fkrn (B')

Q 1-Cbt (B 1
1 S)

..• (14)

••• (15)

This gives the probability equation for a system with processors

competing for buses and stores. It has been derived assuming zero bus

delay times. To include these, assume that the bus delay is modelled as

an extra amount of time that a processor has to spend in the bus on top

of the delays introduced by bus conflicts. Thus the equations above are

modified to include this time by subtracting the time spent in the bus

delay itself from the bus probability. Thus the new equation is

Pb(P,s) Pc(P,S) * Cb(P,S) - Tbd(Bn(P,S)) * Na(P,S)

••• (16)

where the actual number of cycles array Na(P,S) ls the number of accesses

that the ,processor P makes to store S in unit time, and the bus delay Tbd

is the amount of delay introduced by the bus. Therefore the bus probability

time is now the time spent in successfully controlling the bus and being

able to actually request a store.

The final addition to this model for such a system is to include the

circumstance where the store has a finite recovery time during which the

processor is free to continue its processing but the store is still

unavailable. This refinement is only required for older magnetic core

stores which have a rewrite time, but is included to be in Line with the

original model of Hoogendoorns. In the original this time is modelled as

if the processor was still in control of the store for this rewriting

time. Thus the store cycle time is taken to be the store access time

plus the store rewrite time and the cycle time of the processor is

adjusted to be the processor cycle time minus the store rewrite time. In

the current model this approach acts as if the processor is accessing

the store, and thus holding the bus, for the access time plus the

rewrite time. But in the actual hardware the time the processor is

successfully accessing the store is the store access time, and the bus

is only held for this amount of time. Consequently, to adjust the model

for the provision of a store rewrite time requires subtracting the

rewrite time from the total access time before the calculation of the

bus access time, and then adding it back again later. Thus outside of

the bus the model is as in the original. Inside the bus the bus

98

conflicts are calculated only in terms of the actual time the bus is

held.

Thus the final equation for the bus probability

Pb(P,S) = (Pc(P,S) - Sr(S) * Na(P,S)) * Cb(P,S) +
Tsr (S) * Na(P,S) - Tbd(Bn(P,S)) * Na(P,S)

time is now

••• (17)

where Tsr is the store rewrite time. As well, the ffnal equation for the

bus probability term of equation(12) is now

Pbt (PI ,B) L
all s,where
B=Bn (P 1

, S ')

The complete equation

Pc(P',S') - (Sr(S') * Na(P' ,S'))

••• (18>

for the probability of processor p

successfully accessing store S is found by combining equations 13 end

17, giving

Pa(P,S) = Cs(P,S) * [Tsr(S) * Na(P 1 S) --Tbd(Bn(P,S))*Na(P,S) +
(Pc(P,S) - Tsr(S) * Na(P,S)) * Cb(P,S)]

••• (19)

99

(6.5) OBTAINING PROCESSOR UTILIZATION

=====================================

In the following the probability equation derived above will be used

to calculate the number of accesses a processor P makes to a store S in

unit time, and the amount of time the processor idles.

The probability of successfully accessing a store is the same as the

fraction of time that the processor spends using the store. If this time

is divided by the store access cycle time then the result is the number

of store accesses and thus the number of cycles the processor spends in

accessing that store. Thus

Na(P,S) = Pa(P,S)/Tsa(S)

••• (20)

where the store access time Tsa does not include the store rewrite time.

From this equation the total number of processor cycles is the

summation of the number of accesses to each individual store of the

processor, thus

M
Nap(P) = ~ Na(P,S)

S=l

•
where Nap is the actual number of cycles per processor.

• .. (21)
'

The time spent by the processor in doing useful work while not

referencing store is the number of processor cycles multiplied by the

average adjusted processor cycle ti~e. This last quantity is the average

processor cycle time minus the store rewrite time. Thus the time spent

on useful work after accessing store S is

Tpsr(P,S) ~ Na(P,S) * Tcy(D) - Tsr(S))

•.. (22)
where Tpsr is the processing time and Tcy is the processor cycle time.

This can be summed over all the stores that the processor accesses

to obtain the total amount of useful time spent by the processor while

not accessing store or atte•pting to access store. Now the

100

combined probability time gives the fraction of time that is spent in

access1ng end attempting to access store, and so adding these two

together will give the total amount of time the processor spends in

accessing store and in execution. For a fully occupied, processor this

time should equal one. However in this model each processor is

constrained in the amount of work that may be done in relation to all

the other processors. Usually only one processor will be fully occupied,

the other processors will have varying amounts of idle time. Thus

M
Ti(P) = 1 - ~ Tpsr(P,S) + Pc(P,S)

S=l

where Ti is the idling time per processor.

(6.6) NUMERICAL ITERATION SOLUTION FOR THE THROUGHPUT

===

••• (23)

Combining equation(19) with equation(20) gives the probability of

processor P su~cessfully accessing store S.

Pa(P,S) = Cs(P,S) * [(Cp(P,S) - Tsr(S) * Pa(P,S)/Tsa(S)) * Cb(P,S) +
Tsr(S) * Pa(P,S)/Tsa(S) -
Tbd(Bn(P,S))*Pa(P,S)/T'sa(S)]

... <24)

This equation has the probability term on both sides. This is due to

the introduction of the actual number of cycles information into the

derivation of the probability. The number of cycles in turn is related

directly to the probability value. If this equation is rewritten with all

the probability terms brought together, then the following is obtained.

Pa(P,S) Pc(P,S) * Cg(P,S)

••. (25)

where Cg is the global conflict function and is derived by

Cg(P,S) =
l+Cs(P,S)*(Tsr(S)*Cb(P,S)-Tsr(S) + Tbd(Bn(P,S)))/Tsa(S)

••• (26)

Using this definition of the probability, and combining equations 2,

20 and 25, gives

Ni(P,S)*Tp = Pc(P,S) * Cg(P,S)/Tsa(S)

... (27)

Rearranging this results in

Pc(P,S) Ni(P,S)* Tp * Tsa(S)/Cg(P,S)

•.. (28)

This equation gives the combined probability in terms of the several

known values, plus the throughput and the global conflict value. When

producing a numerical solution the global conflict function is defined

in terms of the conflict for store and conflict for bus functions. These

in turn are defined using the combined probability values. To make the

numerical solution possible, the previous function values of the

combined probability are used to calculate these conflict functions.

This produces a new combined probability for a processor store pair as

predicted by all of the other old combined probabilities. However at

this stage the common throughput factor Tp is unknown.

This is found by making use of the constraint imposed upon the

combined probability value by equation(23). This equation can be

combined with eqaution(20) and equation(22) to produce

1~

M
1-Tidle(P) I

S=l

Pc(P,S) + (Tcy(P) - Tsr(S))*Pa(P,S)
Tsa(S)

... (29)

Using equation(26) to substitute for the probability term, and equation(28)

for the combined probability terms, produces

M
1-Tidle(P)= ~

S=l

Ni(P,S)*Tsa(S)*Tp +
Cg(P,S)

Ni(P,S)*Tsa(S)*Tp* (Tcy(P) - Tsr(S))
Tsa(S)

... (30)

If the idle time is temporary assumed to be zero, then this can be

rearranged into

Tp(P)
M

1/(I Tpt(P))
S=l

where the throughput term Tpt is

(1 + Tcy(P)-Tsr(S))
Tp(P)=Ni(P,S)*Tsa(S)* Cg(P,S) Tsa(S)

... (31)

... (32)

and there is now a separate throughput term for each processor. When

a program is running, only the busiest processor will be occupied fully.

ALL the others will have some nonzero idling time. Any of the other

processors, if allowed to run full speed without any idling, will

naturally have a greater throughput than when they are forced to idle

for some of the time. Therefore the busiest processor will have the

smallest throughput when using the equation above. This is used as the

throughput of the whole system.

Finally to obtain a new value of the combined probability function,

equation(28) is used.

To explain why this should converge, consider the situation when one

of the combined probability terms is too large. This corresponds to a

processor making too many accesses to a store. This leads to greater

interference for the other processors, and so the conflict function

values for these other processor store pairs will decline. Thus the

calculated throughput for these other processors will be Lower. The

minimum throughput is always choosen, and so if some of the throughputs

of the processors are decreasing, then possibily the minimum throughput

will also decrease. Thus the new value of the combined probability,

obtained via equation(28), will also be Lower. Briefly, equation(28)

adjusts the individual values of the combined probability, while

obtaining the minimum throughput from equation(31) will adjust up or

down the whole array so that there is one processor with zero idle time.

(6.6.1) SUMMARY OF ITERATION STEPS

The iteration solution proceeds as follows

Step 1.An initial value for the combined probability array is made, perhaps

by taking th~ normalized value of the input number cycles array

Step 2.An initial value of 0 is assumed for the last throughput.

Step 3.A new value for the throughput is found by applying equation(31).

If this differs by less than the error difference from the last

throughput, then the iteration is finished.

Step 4.0therwise a new value for the combined probability array is found by

using equation(28).

Step 5.Last throughput := throughput

Step 6.Go to step 3.

NO BUS ARCHITECTURE

ONE BUS ARCHITECTURE

BUS HIERARCHY
ARCHITECTURE

Processors

(interconnections
between processors
and memories)

Memories

Processors

(interconnections between
processors and memories)

Memories

Processors

(interconnections between
processors and memories)

Busses

Memories

The three different kinds of
architecture used

Figure 6.2

105

(6.7) EXPERIMENTAL RESULTS

==========================

The performance and validity of the analytic general memory

interference model was investigated by producing an implementation in

Pascal. The performance of this was compared with a simulation program

for a variety of input computer architectures. Originally the model was

implemented according to the method described by Hoogendoorn. The

results so obtained agreed exactly with those in his article [44J.

Subsequently the model and simulation where altered to conform to the

model developed in this thesis.

In the following text the verification results for the model are

discussed. The accuracy and execution times of both the model and

simulation are compared and it is found that, depending on the

application, either the simulation or model may be the preferred

implementation means of deriving the throughput

allocator.

(6.7.1) MODEL VERIFICATION

for use by the

In the trials three kinds of demonstration architectures were used.

The first architecture has each processor directly accessing its stores

without any intervening buses. The second has every processor connected

to every store through a single common bus. In the third architecture

each processor has direct access to its own store, shares a bus with one

other processor to enable it to access that others store, shares another

bus with three other processors enabling it to access the stores of

those processors and so on. These architectures are pictured in

figure(6.2).

The number of processors and stores in each architecture for each
trial was successively increased from 2 to 10. The input number of cycles

array was randomly filled with either 0 (half of the time) or with a

number in the range 0 to 1.0. Similarly the speeds of the stores and

processors were randomly selected over a small range. The bus delay time

1~

7% I One Bus

6% \ I

5% \ I

\ I
4% I
3% I

No Bus

\',

2% \\\,,,,.)

1% ' v'\ . Bus Hierarchy I '
'

2 3 4 s 6 7 8 9 10

Number of processors and stores.

Percentage djffercnce between the
simulation and analytjc models.

Figure 6.3

for each bus was selected to be 0 for a bus Linking a single processor

to one store, and then increasing in proportion to the number of stores

and processors that access the bus.

The verification trials were run with the models error difference

set to 8 percent, this being adequate for, the purposes of the allocator

program. The error difference is the difference between two consecutive

results obtained from the iteration algorithms used in the model.

Figure(6.3) gives the difference between the predicted throughput of

the model and the actual throughput obtained from the simulation. As can

be seen most of the differences are within this Limit. The model

generally converges within 2 iterations, and this explains why the

results are generally much better than 8 percent •• <The first iteration

easily get~ to within the required accuracy, but a second iteration is

needed to obtain another throughput value for the error difference

comparsion).

107

-
0
CX>

40%

35%

No Bus
30%

25% I \ /\._

'TI
U) 20% I c: ,
(1)

0-.
~

15% 1\
8 10

10% J"'\\

5%

0% J ~===~~.~~s ... •
100 200 300 400 500 600

Number of simulated clock cycles

40%

35%

30%

25% J \

20% I \. \

15% J \

10% ~ ~\

5%

0%

100 200

\ I

\ 'I..

'\.

40%

35%

Bus Hierarchy
0 3015

\ I. \ 25%

\ \""-. 20%

\ ~ 15%

\ //'\. "" ~10%

5%

One Bus

0% t '>~ ::::-3 ""'- '
300 400 500 600

Number of simulated clock cycles

100 200 300 400 500 600

Number of simulated clock cycles

The percentage difference between the two implementations, for an architecture with 2 to 10 processors and stores.

(6.7.2) IMPLEMENTATION OF THE SIMULATOR

The original simulation for Hoogendoorns model is straight forward

to implement, but for the model developed in this thesis, some

extensions are required. When the processors are executing independent

programs the simulation is written so that as soon as each processor

finishes an execution cycle it makes a store fetch to start a new one.

However when the processors work loads are dependent upon each other,

provision has to be allowed to decide after each processor cycle if an

idle cycle needs to be inserted or not. This is done in two different

ways in the implementation of the simulation. The first,approximate,

method is to run the analytic model first and have it produce a

static access array, giving the probability that a processor will access

a particular store. The cumulative p~obability of accessing the stores

is one for the busiest processor, and less than one for the other

processors. This difference represents the idle time for the other

processors, and the simulation will choose between fetching a store and

inserting an idle cycle accordingly. The derivation of the static access

array is given in appendix(A). This relies upon the assumption about the

relevance of the input number of cycles array on a cycle by cycle basis, as

discussed in section 6.2.2.

An alternative method ·that does not rely on results produced by

running the model first is to simply count the number of cycles of each

processor and compare them to the input number of cycles array.Whenever a

processor has done enough cycles it is idled until all of other

processors have caught up wit~ it. Then all of the processors are

allowed to execute again. This can generate a better answer, since it

reflects somewhat more closely the actual pattern of processor execution

when synchronized by semaphores. As can be seen in figure(6.4) the results

are just passable with a simulation run of 300 clock cycles (with the error

difference ranging from 0 percent to 45 percent) and reasonable for a simu­

Jat ion run of 600 clock cycles.

1~

60

so

40

30

20

10

0

60 60

No Bus Bus Hierarchy One Bus
so so

40 40

30 30

20 20

10
Simulator

10

0 0

2 3 4 s 6 7 8 9 10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

Number of processors and stores. Number of processors an<l stores. Number of processors and stores.

Execution times in seconds for the .1.iruulator and model.

Figure 6.5

(6.7.3) EXECUTION TIMES

During' the test runs a record was kept of the execution time

consumed by each. This information is presented in figure(6.5). As can

be seen, the models execution time increases much faster than that for

the simulation. This can be explained by comparing the number of basic

operations required by each.

For the model, consider the case where the architecture has no buses

and there are N processors and N stores. In this case the number of

processor store combinations is NA2, and the conflict function is called

once for each of these, and this functions implementation requires

operations proportional to NA2. (Here the character is used to

represent the exponential operator). Thus in this situation the model

requires operations in proportion to NA4 for a constant number of

iterations.

O~ the other hand the simulation, for a constant number of clock

cycles, needs to select a random combination of processors each cycle,

done in a maximum of NA2 operations, and then to select a random store, .
achievable in time LogN. Thus the total is a maximum of CNA2)LogN. This,

in the limit, is much less than the time for the model.

110

(6.7./,,) SUHHARY

,

The simulation and probabilistic models differ in their execution

times and accuracy of results. These are summarized here

A) Execution times.

The simulation model has a much slower rate of execution time

increase for increasing N compared to the analytic model. For

the implementations used in this thesis, the crossover point is

at N equal to 5 or 6, for N processors and N stores. Below this

point the analytic model is marginally faster, above this point

the simulation is much faster.

B) Accuracy of results.

Both models introduce inaccuracies into the results. The

results from the simulation model will be inaccurate due to

1) The approximate method used to include the effects of

dependent processor execution workloads.

2) The approximations due to the use of random functions in

the simulation model.

The probabilistic model can be inaccurate for some special

cases, as for example when two processors are able to execute

in lockstep without memory interference. This case is described

in section(6.2.2).

Furthermore both models are equally inaccurate due to the

influences of interactions between processors via semaphores.

This is also discussed in section(6.2.2).

111

CHAPTER (7)

(7.1) INTRODUCTION TO THE ALLOCATION ALGORITHMS

==

In this chapter the algorithms for the allocation of a program to a

computer architecture are described. These produce a final allocation by

utilizing

A) information obtained from the description of the computer, as

specified by the architecture specifications,

B) compiler supplied information about the memory and process

elements of the program,

C) the constraint information derived from the constraint

specifications,

D) the throughput estimation obtained from the input number of

cycles information.

The overall information flow of the allocation can be seen by

referring back to figure(1.1).

(7.1.1) PREVIOUS WORK

The StarOS research reported by [26] deals with specifying to an

allocator the computer architecture and the allocation constraints.

However no allocation algorithms were implemented to actually perform

the allocation.

Another research paper, this time by [33], deals with the

partitioning of computational objects onto a distributed computer

system. Here the computer system consists of computer modules

communicating via some interconnection system. This imposes a constant

communication cost between each module. Their aim is to reduce the

communication times for a system of programs which may need to run on a

number of computer modules (e.g. need to access a disk from one module,

112

and a terminal from another module). The method is to obtain

trace of the execution of a program. This is then used to

partition of the programs components so as to minimize the

approximate graph optimization method is used.

a run time

generate a

costs. An

This model does not apply very well to the allocation problem of

this thesis. The model concentrates on separate computer modules whic~

communicate between each other. Whereas in this thesis the computer

architecture is modelled, not

processors and stores. The

as computer modules, but as individual

costs to be minimized deal not with

communication costs between computer modules, but with processing time

within the processors and the store accessing times. As well their model

has no provision to allow the effects of memory and bus contention to be

taken into account.

(7.1.2) APPROACH USED

The algorithmic basis choosen for this research is to successively

try out alternative allocation mapping solutions, calculating the

throughput for each. A Legal map with all program elements allocated is

called a feasible solution. Whenever such a feasible solution is found,

its throughput is compared with the throughput of the best feasible

solution found so far. If it is better then this map becomes the

incumbent solution. When the search terminates, the incumbent will be

the optimal feasible solution, and becomes the allocation mapping for

the program.

Since most of the program elements will be allocatable to more than

one resource, then the enumeration of all possible mapping solutions

will result in a tree pattern search. Thus to simply generate each

possible combination of process to processors and memory to stores and

then to check its Legality is exponentially time consuming. Instead

possible solutions are enumerated by starting with an initially

unallocated program and assigning its elements one by one. At each such

step the L~gality of the partial map solution and is execution time

efficiency is examined. If it can be shown that no Legal solutions can

be derived from this partial solution, or that all possible solutions

derived by completing this partial solution are Less efficient than that

incumbent, then this partial solution can be discarded. This allows all

113

of the solutions, feasible or otherwise, that can be completed from this

partial mapping to be discarded without examination. If enough partial

solutions can be rejected in this way then the search space will be

reduced to manageable proportions. In general, for all but the most

trivially sized programs and computer architectures, this reduction in

the search space size will be necessary to allow the generation of any

feasible solutions at all. Thus the bulk of the allocation algorithms

are concerned with the problem of detecting illegal or inefficient maps

as early as possible.

This algorithm method is known as implicit enumeration with

backtrack, and is described in [27]. The term implicit enumeration

arises because the solutions of a partial map that are rejected can be

considered to have been implicilty enumerated. This is in contrast to

the other complete solutions that have been explicitly enumerated.

The following text will expand upon this introduction. Firstly the

starting information for the allocation algorithms is described. The

means of computing the though put is discussed, and the search method

used is then introduced. Lastly the allocation map evaluation algorithms

are detailed.

Finally a point on ·the notation. In the following discussion the

terms

1) process 2) memory 3) processor 4> store

are used. These are taken to refer to

1) the process elements of a program.

2) the address space elements of a program.

3) the hardware processor resources of a computer architecture.

4) the hardware memory resources of a computer architecture.

114

<7.2) THE INPUT INFORMATION TO THE ALLOCATOR

--

The specification of the computer architecture, program structure

and user required constraints have been discussed previously. This

information is converted by a preprocessor and supplied to the

allocation algorithms in a simplified form. This is outlined in the

following.

The construction of the preprocessor, which would be part of the

complete allocation package, poses no new problems and its design is not

discussed, nor was an implementation produced.

(7.2.1) COMPUTER ARCHITECTURE STRUCTURE

The computer architecture specified by the ISL program would be

converted into a simplified architecture graph. In this, the information

that is kept is concerned with the ~escription of the processors,

stores, banks and buses, along with the access paths between these. This

information is

A) For processors, cycle times and kinds are retained.

B) For stores, access speeds, starting address locations and

address ranges are retained.

C) For banks, the bank access time is retained.

D) For buses, the bus access time is retained.

As well, the arcs connecting the vertices representing this

information are rearranged. If a processor, bus or bank accesses a

store, bus or bank, then there exists a direct arc between these two

vertices.

The rest of the information in the original architecture

specification graph is not required at this stage in the allocation

activity. It has already been used in the production of the simplified

architecture graph and in the construction of allocation constraints.

115

Root vertex

Processors

Processor

Stores
(size = 512 bytes)

Figure 7.1

The resulting graph is available to the allocator, which can extract

several kinds of information from it. Firstly the accessibility of one

kind of vertex from another can be obtained by a function of the form

ACCESS_X_FROM_Y ((Y J)

Here X and Y represent any of the four kinds of vertices PROCESSOR,

STORE, BANK and MAP. The function takes an input set of one type of

vertex and returns the set of all vertices of the other type that can be

accessed from this input set, or accessed by this input set. As an

example, consider the computer system as set out in figure(7.1). In this

both a pictorial representation and a graph representation is given. For

this structure, the following function calls would give the indicated

results.

ACCESS_STORE_FROM_PROCESSOR ([PROCESSOR_1 J)

gives [STORE_1, STORE_2, STORE_3]

ACCESS_STORE_FROH_PROCESSOR ([PROCESSOR_1, PROCESSOR_2])

gives [STORE_1, STORE_2, STORE_3, STORE_~.]

ACCESS_PROCESSOR_FROH_STORE ([STORE_1])

gives [PROCESSOR_1 J

116

processes

memories

100 200 300 400 (size in bytes)

Figure 7.2

There are also functions that return the size of a store vertex, the

cycle time of a processor or the access time of a store, bank or bus.

The implementation of such a graph structure on a computer is

straight forward and is not discussed any further.

(7.2.2) SPECIFICATION OF THE PROGRAM

Also supplied to the allocator is an information graph depicting the

structure of the program. This information is produced by the compiler

and it is represented as a simple two Level graph structure containing

process vertices and memory vertices. An arc from a process to a memory

vertex represents the use of that memory by ~he process. Each memory

vertex has associated with it the size of,the memory.

Also associated with each process memory combination is the number

of memory accesses that the process makes to the memory in a given time

unit. This information is obtained by compiling the program on an

ordinary computer and executing it to gather memory access statistics.

This is required to allow the production of the throughput estimations.

To access this graph structure, there are access functions of the

form

ACCESS_X_FROM_Y ([Y J)

117

which are used in the, same way as the ones for the architecture

specifications. There are also the functions to extract the memory size

and number of memory accesses between a given process and memory.

As an example figure(7.2) represents a program with three processes

and four memories. The directed arcs represent access from a process to

a memory. Also given are the sizes of the memories, and the number of

accesses between a process and a memory. From this can be extracted the

information

ACCESS_PROCESS_FROH_HEHORY ([HEHORY_1 J)

gives [PROCESS_1, PROCESS_2 J

ACCESS_PROCESS_FROH_HEHORY ([HEMORY_1, HEHORY_3 J)

gives [PROCESS_1, PROCESS_2, PROCESS_3 J

SIZE_OF_MEHORY ([HEHORY_1, HEHORY_2 J)

gives 300

PROCESS_HEHORY_NUHBER_CYCLES (PROCESS_1, HEMORY_1) ·

gives 30

(7.2.3) CONSTRAINT SPECIFICATION

Finally, simple constraints are derived from the user supplied
' object specifications, constraint specifications and the computer

architecture specifications. There are three forms of constraints.

One constraint form

resources that a process

specifies the set of processor or store

is allowed to be mapped to. or memory element

This can be represented as

~ -> [y J

where X refers to a process or memory element and [YJ refers to a

set of the appropriate resource elements. This information is accessed

by a function Like

118

ALLOWED_X_FROM_Y ([Y J)

Where X represents the name of either a resource element kind such

as PROCESSOR or STORE, or a program element kind such as PROCESS or

MEMORY. The Y refers to the corresponding program element or resource

element kind name. This function returns the set of resource elements

that the program elements.in the set [YJ are allowed to be assigned to,

or it returns the set of program elements that are allowed to the given

resource elements of the set.

For example, if some process constraints are

PROCESS_1 -> [PROCESSOR_1, PROCESSOR_2 J

PROCESS_2 -> [PROCESSOR_1 J

PROCESS_3 -> [PROCESSOR_2 J

then two function calls and their results may be

ALLOWED_PROCESSOR_FROH_PROCESS ([PROCESS_2 J)

gives [PROCESSOR_1 J

ALLOWED_PROCESS_FROM_PROCESSOR ([PROCESSOR_1 J)

gives [PROCESS_1, PROCESS_2 J

This function may act as its own inverse for some possible input

values. As an example

ALLOWED_PROCESSOR_FROM_PROCESS (

[PROCESS_1, PROCESS_2, PROCESS_3 J)

gives [PROCESSOR_1, PROCESSOR_2 J

ALLOWED_PROCESS_FROM_PROCESSOR (

[PROCESSOR_1, PROCESSOR_2 J)

gives [PROCESS_1, PROCESS_2, PROCESS_3 J

The second constraint imposes a proximity constraint upon a set of

process or memory elements. The relation may be to allocate each element

to a different set of resources, or to the same set of resources. These

constraints are known as Different_Constraints or Same_Constraints, and

may be represented as

119

[X J -> DIFFERENT [[Y1 J , [Y2 J , J

[X J -> SAME [[Y1 J , [Y2 J , J

Where [XJ is the set of program elements upon which the proximity

constraint is to be applied, and the right hand side Lists the sets of

target resources [YJ to which the elements may be mapped. An example

Different_Constraint is

[PROCESS_1, PROCESS_2 J ->

DIFFERENT [[PROCESSOR_1 J, [PROCESSOR_2 J J

This will ensure that the two processes will go to the two different

processors. Thus if PROCESS_1 ends up on PROCESSOR_1, then the only

legal assignment for PROCESS_2 is to PROCESSOR_2. An example of a

Same_Constraint is

[MEMORY_1, MEMORY_2, MEMORY_3 J ->

SAHE [[STORE_1, STORE_2 J, [STORE_3, STORE_4] J

This constraint will enforce the condition that the

will all be assigned to either the first two stores or

stores.

three memories

the second two

The proximity constraint specifications are accessible by several

functions which retrieve either a specific proximity constraint, or all

constraints that contain a given resource or program element.

Thirdly there are the address constraints. These act to fix a

program element to s6me specific physical store address. Thus this can

be treated as a nonproximity constraint acting on the program element.

(7.2.4) EXAMPLE HAP ALLOCATION

The allocation program, if it is successful, will produce an

allocation mapping for the program onto the computer architecture. An

example legal mapping is developed below to give a demonstration of a

final map.

120

The computer architecture of figure(7.1) and the program in

figure(7.2) are used. The constraints imposed by the user are those

given in the examples above, and repeated below.

PROCESS_1 -> [PROCESSOR_1, PROCESSOR_2]

PROCESS_2 -> [PROCESSOR_1]

PROCESS_3 -> [PROCESSOR_2 J

[PROCESS_1, PROCESS_2 J ->

DIFFERENT [[PROCESSOR_1 J, [PROCESSOR_2 J J

[HEHORY_1, HEMORY_2, MEHORY_3] ->

SAME [[STORE_1, STORE_2 J, [STORE_3, STORE_4 J J

Firstly it is seen that processes PROCESS_2 and PROCESS_3 are

already fixed to their final processors. From this the

Different_Constraint specifies that PROCESS_1 has to go to PROCESSOR_2,

since PROCESS_2 is already assigned to PROCESSOR_1.

Next the memories are assigned. MEMORY_1 is accessed by both

PROCESS_1 and PROCESS_2. Therefore it has to be assigned so that

PROCESSOR_2 and PROCESso·R_1 can access it (since the processes are

assigned to those processors). Thus the only allowable stores are

STORE_2 and STORE_3. This results in the constraint

HEHORY_1 -> [STORE_2, STORE_3 J

A similar exercise will produce
,

the constraints for the other

memories

MEMORY_2 -> [STORE_2, STORE_~, STORE_4]

HEMORY_3 -> [STORE_2, STORE_3 J

HEHORY_4 -> [STORE_1, STORE_2, STORE_3]

The Same_Constraint specifies that the first three memories can go

to either stores 1 and 2, or stores 3 and 4. If the arbitrary choice of

stores 3 and 4 is made, then MEMORY_1 becomes fixed in STORE_3. ALL

three memories cannot go to this store because they will not fit, and

one possible assignment is

121

HEHORY_1 -> [STORE_3]

MEMORY_2 -> [STORE_4]

HEMORY_3 -> [STORE_3]

Finally the MEMORY_4 element has three possible stores, so a

selection Like

MEMORY_4 -> [STORE_1]

can be made. Thus a final Legal allocation mapping has been

generated. This is probably not the most efficient. In the following

sections the systematic method of finding Legal and efficient mappings.

developed during this research is described.

(7.3) THE ALLOCATOR SEARCH TECHNIQUE

--

The allocation search algorithm must be able to find a Legal and

efficient solution in as few trials as possible. How the search is

carried out can greatly affect this. In this section the two techniques

that can be used for search optimization are introduced. Basically these

are to attempt the removal of unprofitable search branches, and strive

to achieve Legal and efficient mappings, as early as possible in the

search.

(7.3.1) DETECTION OF UNPROFITABLE SEARCHES

During the enumeration of the solutions for a particular program,

partial solutions will be discarded wherever possible. This occurs when

A) the current partial mapping solution can never be completed

to produce a feasible solution, or

B) all possible feasible solutions produced by completing this

par.tial map will have a throughput Less than the

throughput of the best feasible solution found so far.

122

(7.3.1.1) DETECTING ILLEGAL MAPS

................................

The first, of predicting if a current partial mapping will ever Lead

to the generation of a feasible solution, is based upon the principle

that once an illegal partial solution has been produced, all subsequent

complete mappings derived from this will be illegal. An illegal map is

one where the constraints upon a program element will prevent it from

being assigned to any comp~ter resource. These constraints arise from

the amount of space Left in the memory blocks, and the accessibility

between processes and memories. Accordingly the assignment of any other,

as yet unassigned, program elements can never remove any of these

constraints. Thus this prevents any Legal solution from ever being

derived from an illegal partial solution.

The detection of such illegal partial maps is achieved by making use

of the allocation constraint associated with each process and memory

element. This constraint is originally just the user supplied

constraint, when one is specified. For example

PROCESS_1 -> [PROCESSOR_1 , PROCESSOR_2 J

where the process element PROCESS_1 is allowed to the processors

PROCESSOR_1 and PROCESSOR_2. The technique is to reduc~ at each step

this allowable constraint on each element as much as possible. This is

done with the aid of constraint reduction operations. Sometimes the

constraint may be narrowed down to only one resource, in which case the

element has just become allocated to its final position. In most cases

it will only be possible to reduce the constraint by a small amount, or

not at all. However it might also be possible to reduce the set to the

null set, that is under the current partial mapping there are no Legal

resources that the element may be assigned to. In this case the map

allocation fails, and the current search branch can be dropped.

As an example of this consider the allocation mapping derived in

section(7.2.4) above. As each user constraint was applied, the

constraints on the program elements were reduced. The constraint for the

PROCESS_1 element was originally

123

PROCESS_1 -> [PROCESSOR_1, PROCESSOR_2 J

but through the actions of the other two constraints for the

processes, and the Different_Constraint, this was reduced down to

PROCESS_1 -> [PROCESSOR_2 J

If there had been the additional constraint

[PROCESS_1, PROCESS_3 J ->

DIFFERENT [[PROCESSOR_1 J, [PROCESSOR_2J, [PROCESSOR_3 J J

then since PROCESS_3 has already be assigned to PROCESSOR_2, the

constraints are now in conflict. Both PROCESS_1 and PROCESS_3 are

assigned to PROCESSOR_2, contary to the Different_Constraint. Thus in

this situation the constraint on PROCESS_1 would be reduced to the empty

set

PROCESS_1 -> [J

and the partial allocation can be rejected.

(7.3.1.2) DETECTING INEFFICIENT HAPS

The second means of detecting unprofitable searches is to check the

calculated throughput of the current incomplete map at each search step.

This is compared with the throughput of the best final map allocation

found so far. If this throughput is Less then the partial map of this

current search can be terminated, ~ince it will not Lead to any final

solution with a better throughput. Even better is to select only those

incomplete maps that show a definite improvement over the best map

found, such as a 10 percent greater throughput. This percentage is

called the throughput factor. Using this would prevent the examination

of a long series of almost identically performing allocations.

This method relies upon two principles-

A) For any partial solution a throughput can be found.

124

B) The throughput of any solution derived from a partial map can

never exceed the throughput of the partial map. This is

satisfied if the maximum upper bound throughput of each

successive partial map is a monotonically decreasing function.

Thus the throughput of a partial map will be the maximum upper

bound upon the throughput of the final complete map.

The throughput of an allocation can be found by using the general

memory interference model. This requires an INPUT_NUMBER_CYCLES array.

Given the PROCESS_MEMORY_NUMBER_CYCLES array and the allocation of

processes to processors and Logical address spaces to memories, the

input number of cycles array can be calculated by

FOR ALL PROCESSOR DO

FOR ALL STORE DO

INPUT_NUMBER_CYCLE[PROCESSOR,STOREJ := 0 ;

FOR ALL PROCESS FIXED TO PROCESSOR DO

FOR ALL MEMORY FIXED TO STORE DO

INPUT_NUMBER_CYCLE[PROCESSOR,STOREJ :=

INPUT_NUMBER_CYCLE[PROCESSOR,STOREJ +

PROCESS_MEMORY_NUMBER_CYCLES[PROCESS,MEMORYJ ;

END ;

END ;

END ;

END ;

This calculation provides the throughput for a complete solution.

The throughput for a partial solution can also be defined by this. This

just implies that, since some of the processes and memories of the

program are not yet assigned, then some of the

PROCESS_MEMORY_NUMBER_CYCLES values will not be included.

This throughput for the partial solution has yet to be shown to be

the maximum upper bound throughput. Consider some partial allocation

mapping. Thls has a throughput that can be defined for each processor as

THROUGHPUT(PROCESSOR) =
CONFLICT_FACTOR(PROCESSOR) I THROUGHPUT_TIHE<PROCESSOR)

125

Processor 1

Store 1

1 us processor
cycle time

1 us store
access time

Process 1

memory 1 memory 2

Figure 7.3

(number of
cycles)

where the THROUGHPUT_TIHE is given by

THROUGHPUT_TIHE(PROCESSOR) =

For all STORE

INPUT_NUHBER_CYCLE(PROCESSOR,STOR[) *
(PROCESSOR_CYCLE_TIHE(PROCESSOR) +

STORE_ACCESS_TIHE(STORE) +

BUS_DELAY_TIHE<PROCESSOR,STORE))

The summation represents the time spent in each processor cycle and

each memory fetch cycle, assuming no memory interference. The

interference is represented by the conflict function , which is 1 for

no interference and 0 for complete interference. The throughput of the

complete system will be the mini~um of the throughput terms above. Note

that this conflict factor is not directly ,given by' any of the equations

derived in chapter 6 on the analytic probability model.

The memory interference can only decrease if the number of memory

accesses is decreased. However when successively allocating processes

and memory address spaces, the number of memory accesses will always

increase. Thus the memory interference is always increasing, and so the

conflict factor is a monotonically decreasing function. Similarly the

INPUT_NUHBER_CYCLES values can never decrease in this situation. Thus

the summation will be a monotonically increasing function. Therefore the

throughput function will be a monotonically decreasing function.

The minimum throughput function for any partial allocation mapping

is taken to be the throughput estimation. The throughput estimation for

126

a complete allocation solution is the actual estimated throughput. Since

the function is monotonically decreasing, then any throughputs of

partial solutions must therefore be a maximum upper bound throughput.

To demonstrate this with an example, consider the architecture and

program in figure(7.3). If the program has been partially allocated so

that PROCESS_1 has been assigned to PROCESSOR_1 and MEMORY_1 has been

assigned to STORE_1, then the calculated throughput will be

ThroughPut = 1000000 I (Time to execute 100 memory accesses)

in microseconds)

= 1000000 I < (1+1) * 100)

= 5000

where the instruction cycle time is 1 microsecond and the store

access time is also 1 microsecond. If MEMORY_2 is also allocated, then

the throughput calculations will now give

= 1000000 I ((1+1) * (100+100))

= 2500

In other words this calculated throughput is half that of the first

throughput. Adding more memories will always decrease the throughput.

Similarly with the addition of extra processes.

(7.3.1.2.1) IMPROVING THE THROUGHPUT CALCULATIONS

The throughput is calculated from the partial map at each search

step. At shallow Levels in the search

and memories allocated and thus the

will generally be an over estimation

there will only be a few p~ocesses

throughput calculated from these

of the throughput of the final
'

complete map. For example, in the first partial allocation of the

example immediately above,

PROCESS_1 -> [PROCESSOR_1]

HEHORY_1 -> [STORE_1]

the throughput is only calculated upon the accesses that PROCESS_1

makes to MEHORY_1. The other accesses to other memories are ignored, and

127

thus the program will seem to run faster than it actually would. In the

following is discussed a means of increasing the throughput accuracy for

the initial stages of a map allocation.

Consider the case where there is only one process and memory

allocated so far in a partial map. The throughput can only be calculated

based upon the number of times the process accesses this memory. If the

process spends an equal amount of time accessing ten other not yet

assigned memories as well, then this throughput will be an over

estimation by a factor of ten at Least. The work Load represented by the

accesses to these memories may be partly incorporated if, for the

purposes of calculating the throughput, each memory is assumed to be

residing in a separate new store by itself. These stores are to be

directly accessible to each processor of the computer, and they have

cycle times that are as fast as the fastest normal store. The processors

accessing these stores will suffer memory interference, but only with

other processors accessing the same memory in this store. Thus only the

absolutely unavoidable memory interference is included. The throughput

calculated under these conditions will never be lower than the final

actual throughput. Indeed it will provide a better maximum upper bound

for the calculated throughput. These stores are called phantom stores,

since they do not exist in the actual computer architecture and can

never have any memory elements assigned to them by the allocation

program. Instead the throu9hput algorithms use these stores to hold any

unassigned memories whenever it calculates the throughput of a partial

map.

Exactly the same technique is applied to unassigned processes. Each

unassigned process is assumed by the throughput algorithms to reside in

a phantom processor which is as fast as the fastest real processor in

the system, and is directly connected to every store in the system. Thus

for a partial map with only one process and one memory assigned, the

phantom stores hold all of the other memories to which the process may

access, and the phantom processors hold all of the other unassigned

processes. These processes will access both the assigned memory and the

unassigned memories. Thus the effect of memory interference will be

incorporated into the calculated throughput from both the assigned

processes and memories and the unassigned processes and memories.

128

Another way of Looking at this is to regard the phantom processors

and stores as implementing an ideal computer architecture. Each

processor is as fast as the fastest real processor. Each phantom store

is as fast as the fastest real store. Each processor has direct access

to each store without any intervening buses. Finally there is a store

and processor for each memory and process element in the program. Thus

this provides a theoretical upper bound to the throughput for the

particular program.

Finally, in the implementation of the allocation program,

phantom store for each memory was not implemented. This is

a separate

because the

number of memory elements in a program is generally greater than the

number of stores or processors. Therefore adding a phantom store for

each memory will significantly increase the total number of stores and

processors that the throughput algorithms have to deal with. This

increases the execution time. To reduce this only one phantom store is

used. The simulator is modified so that each processor accessing this

store can do so without any store interference from any other processor

that may also be accessing it at the same time. This implies that the

derived throughput no Longer ref Lects the memory contention between

different processors accessing the same unassigned memory element.

However it still includes the affect of the time taken by a single

processor to access these unassigned memories. Hence it is still

sufficient in providing an improved upper bound upon the throughput.

(7.3.2) PRODUCING EFFICIENT MAPPINGS EARLY IN THE SEARCH

Another way of increasing the chances ~f producing good solutions is

to order the search so as to maximize the chance of getting an efficient

and Legal mapping early in the search.

This can be achieved by selecting for assignment the busiest

processes and the most heavily used memories early in the search, and

Leaving the processes with the Least work to Last. As well, at any step

a process or memory is generally assigned first to the fastest processor

or store that is allowed to it. This ordering will allow the most

important processes and memories, from the viewpoint of execution time

efficiency, to be assigned early in the search to the fastest processors

129

and stores. This is not guaranteed to generate legal maps or the most

efficient maps, but only to increase the chances of doing so. The

details of this ordering will now be discussed.

(7.3.2.1) PROCESS AND MEMORY ORDERING

Firstly the processes and memories of the program are ordered into a

process memory list. The first element in this list is the process which

makes the most memory accesses to all of the programs memories. That is

the process with the maximum of the function

NUMBER_CYCLES_PER_PROCESS(PROCESS) =

~ PROCESS_HEMORY_NUMBER_CYCLES[PROCESS,MEMORYJ)

all memory

Thereafter the elements are selected one by one and appended to the

list. The criterion used in this selection is based upon the evaluation

of the following functions at each selection.

NUMBER_ACCESSES_BY_PROCESS(PROCESS) =

~ PROCESS_MEMORY_NUMBER_CYCLES (PROCESS,MEMORY)

All memory

in the list·

NUMBER_ACCESSES_BY_MEMORY(MEMORY) =

PROCESS_MEMORY_NUMBER_CY~LES (PROCESS,MEMORY)

All processes

in the list

These values are computed for all the processes and memories that

are not in the list. The element which has the highest NUMBER_ACCESS

value is the one choosen.

As an example the program in figure(7.2) is used. The process with

the most overall memory accesses is PROCESS_2, with 318 accesses. This

becomes the first in the list. The next element will be a memory, and

130

MEMORY_4 is the one that PROCESS_2 accesses the most. The number of

accesses between the elements of the list is 212. MEMORY_1 will be

choosen for the third element, it increases the number of accesses by

80. The fourth element will be a process, PROCESS_1, since it increases

the accesses the most with 30. The list would continue to be constructed

in this manner, resulting in

PROCESS_2(0), MEMORY_4(212), MEMORY_1(80), PROCESS_1(30),

MEMORY_2<40), PROCESS_3(33), HEHORY_3(73).

The numbers in brackets represent the increment added to the total

number of accesses for each element.

(7.3.2.2) PROCESSOR AND STORE ORDERING

The ordering for processes and memories is done only once for the

entire allocation. However at each search step an ordered processor or

store list is required for the element that is to be assigned next. The

resources in this ordered list come from the allowed processor or store

set of the element. To demonstrate this, the first element of the

process memory list above might have the allocation constraint

PROCESS_2 -> [PROCESSOR_1, PROCESSOR_2 J

if the architecture of figure(7.1) is used. The second element is a

memory and might have

MEMORY_4 -> [STORE_1, STORE_2, STORE_3, STORE_4 J

These resource element sets may be reduced by various constraint

reductions, but until that happens the resource sets as shown will be

used. They may be ordered either

A> by calculating the throughput obtainable when

as~igned to each resource element in turn, and

sort the list of resource elements, or

the element is

using this to

B) by ordering the processor or store list using some heuristic

principle.

131

Processors

Stores

Homogeneous architecture

Figure 7.4

No definite algorithm providing optimal performance in all cases was

found. Instead the methods used to sort the lists were choosen on the

basis of what appeared to give the best results. The performance of

these methods depend crucially upon the kind of computer architecture

that is being used. Of course they will also be infLuenced by the

structure of the program. However this structure will vary widely

between different programs, while the computer architectures being used

will show much less variation. Consequently, only the structure of the

computer architecture is taken into account. In this application the

kinds are best divided into two classes-

A) Homogeneous architectures, where every processor has access

(directly or indirectly) to every store of the computer system.

An example is the architecture in figure(7.4>. A homogeneous

architecture implies that a process may' be assigned to any

processor and still be able to access any of its memories,

regardless of what stores they may end up being assigned to.

Therefore processes can initially be assigned to any processor

and still have a good chance of obtaining a legal, complete

mapping. So in this case a good approach is to ignore the

memories and to attempt to assign a process to the processor

which has the least number of other processes already assigned

to it or allowed to be assigned to it. In other words in a

homogeneous architecture the processors are sorted upon the

number of processes that are allowed to them.

For an example of this, assume the following constraints

132

PROCESS_1 -> [PROCESSOR_1, PROCESSOR_2, PROCESSOR_3]

PROCESS_2 -> [PROCESSOR_1, PROCESSOR_2 J

PROCESS_3 -> [PROCESSOR_1 J

In this situation only PROCESS_1 can ever be assigned to

PROCESSOR_3 and so this is the best choice for this process

(without knowing any additional information). On the other hand

PROCESSOR_1 can have all three processes assigned to it, and so

there is a greater chance, for any process being assigned here,

of having to share the processor with another process. So this

processor should be last in any list. With this in mind the

processor list can be constructed. The processors have the

following numbers of processes able to be assigned to them-

PROCESSOR_1 3, PROCESSOR_2 2, PROCESSOR_3 1

and so the processor list for PROCESS_1 is

(PROCESSOR_3, PROCESSOR_2, PROCESSOR_1)

and the list for PROCESS_2 is

(PROCESSOR_2, PROCESSOR_1)

Given this ordering for processors, the ordering stragety used

for store list of a memory element is to order on the

throughput information. That is, the memory is assigned to each

of the stores in turn and the throughput obtained from the

resulting partial allocation map is used for sorting.

B) Nonhomogeneous architecture, where the processors can only

access some of the stores. This is the case for the

architecture of figure(7.1), where STORE_1 and STORE_4 are not

accessible to PROCESSOR_2 and PROCESSOR_1 respectively. In this

situation it was found to be better to order the store List of

each memory element in the following manner. The stores are

ordered so that the stores that are closest to the processors

are first in the list. Here the closeness of a store is taken

133

to mean the number of processors that can access the store.

Thus a store that has only one processor accessing it will be

closer to that processor than a store that is accessed by this

processor and one other processor. By example, the store

STORE_1 is closer to PROCESSOR_1 (figure(7.1)) than is store

STORE_2. This is because the first store is only accessed by

the processor, while the second store is accessed by both

processors.

The rational for this choice is that a memory placed upon a

close store is Less Likely to be subject to memory interference

from the memory accessing patterns of other processors.

Furthermore close stores are more Likey to be directly

accessible to the processor, and thus have faster access times,

while distant stores are Likely to be accessed via buses, and

be slower to access.

Having ordered the store

of a process element

information.

List in this way, the processor List

is ordered using the throughput

The ordering of each store or processor List is carried out by

actually obtaining the allocation map for each possible assignment. This

is done by starting with the current partial allocation map and

assigning the memory or process to each of its allowed stores or

processors. A new partial map is obtained in each case and these are

ordered using the techniques discussed above. An example is where an

allocation has proceeded to where the first element in the process

memory List, PROCESS_2, has been assigned. The next element is to be

MEMORY_4 and it may be assigned t·o the stores as shown-

MEHORY_4 -> [STORE_1, STORE_2, STORE_3 J

(ignoring other constraints). From here the partial map

corresponding to each of these stores is constructed, and the through

throughput computed. Thus

134

Partial maps

PROCESS_2 -> [PROCESSOR_1]

MEMORY_4 -> [STORE_1]

PROCESS_2 -> [PROCESSOR_1]

MEMORY_4 -> [STORE_2 J

PROCESS_2 -> [PROCESSOR_1]

MEMORY_4 -> [STORE_3]

throughput = 2x

throughput = 1x

throu~hput = 1x

where the throughput is in multiples of some constant x. (To obtain

this throughput pattern it is assumed that the store STORE_1 is faster

than the other stores.) From this, the stores may be ordered, which will

produce

(STORE_1, STORE_2, STORE_3)

In this case the order is the same for both methods.

The throughput for each map is always calculated, irrespective of

which method is used to order the resources. It is used to discard any

map whose throughput is less than the throughput of the best final map

produced so far. To illustrate, the example immediately above is used.

If it had so happened that in some previous search a final mapping had

been found, then its throughput will have been kept. If this was 1.Sx

then the two partial maps above for the stor~s STORE_:_2 and STORE_3 will

be excluded from any further searches. They have a throughput that is

less than 1.Sx, so no matter

solution that has a better

what happens they will never generate a

throughput 'than the one already found.

After this elimination stage, the first element in the newly ordered

list is choosen and the map that was derived for this is used as the

basis of the next search step. The other maps are not discarded but are

retained and used for subsequent assignments at this search level, after

backtracking. This can be regarded as a one level deep breadth first

search performed at each search step to calculate and order the most

profitable search paths to follow next.

135

(7.4) SUMMARY

=============

In summary the search pattern choosen is a modified depth first

search with backtrack. This is based upon the method of implicit

enumeration. The general memory interference model and constraint

reduction are used at each partial allocation to reduce the number of

branches traversed. The order of the elements is choosen to obtain fast

and Legal allocations as early as possible in the search. In the

following sections the constraint reduction rules are described in

depth.

(7.5) CONSTRAINT REDUCTION

--

Constraint reduction involves examining each process and memory

element. If there are any restrictions derivable from the information in

the current mapping then this can be used to reduce the element~

allocation constraint. Ideally, using a perfect constraint reduction

algorithm, such restrictions would result in an optimal final mapping

without the necessity for any backtracking searches. Unfortunately such

an algorithm is not known, instead it is a case of constructing a set of

examination and reduction rules which can be applied easily.

The rules that have been investigated utilize the following

information

Memory and store size information.

Accessibility information.

The same and different constraint information.

From this information it is possible to derive rules to

Reduce the constraints

constraints.

Reduce the constraints

136

to prevent the creation of illegal

by removing redundant allocations.

Processor

1021~ bytes 1024 bytes

900
bytes

Figure 7.5

Process

memories

bytes bytes

A discussion of these techniques, as demonstrated in the thesis

research, is given in the following.

(7.5.1) CONSTRAINT REDUCTION USING STORE SIZE INFORMATION

In assigning memory elements to stores, only enough space to hold

the memory is used. Also successive memory assignments are allocated to

successive regions in the store. Furthermore there is no provision in

the allocator algorithms for a memory element to straddle a store

boundary. Thus the unused space in a store for a particular partial

mapping is easily obtained, and only memories that will fit into this

space are able to be assigned to that store. Consequently this can be

used to restrict the allowable store set of a memory constraint. This is

done by calculating the intersection of the allowable store set of each

memory element with the set of all the stores that currently have enough

space to accept this memory. In the demonstration program this is called

the ALLOWED_MEMORY_SIZE constraint reduction operation.

As an example consider the computer architecture and program in

figure(7.5). The initial constraints for the memories are

HEHORY_1 -> [STORE_1, STORE_2 J

HEMORY_2 -> [STORE_1, STORE_2 J

HEHORY_3 -> [STORE_1, STORE_2 J

If the HEHORY_1 element is assigned to the STORE_1 resource, then

the remaining free space in this store is only 124 bytes. This is not

137

Processors Processes

Stores memories

1024 1024 1024 (l>yte size 512 512 1024 512 512

Figure 7.6

enough for the other two memories, and so their constraints will be

reduced down to

HEHORY_2 -> (STORE_2 J

HEHORY_3 -> (STORE_2 J

A similar situation exists for the allocation of processes to

processors. A processor accesses a number of stores, and these will have

varying amounts of unused space. The processor may also have a number of

processes already fixed to it, and these processes may access memory

that has not yet been fixed. Thus the total unused store space available

to a processor is found by summing its unused store and subtracting the

space that will be occupied by all of the unfixed memory of those fixed

processes. Thus any unassigned process whose combined unassigned memory

size is Larger than this total unused store space will not be able to be

assigned to this processor. Note that there is still no guarantee that

the process will fit even if the unused store space is big enough, since

here the sizes of the individual memories and stores are not taken into

account.

This constraint

intersections in the

reduction. In the

ALLO~ED PROCESS_SIZE.

reduction is

same fashion

program this

performed

as the

operation

by obtaining

memory size

is given

the set

constraint

the name

To demonstrate this reduction, the architecture and program of

figure(7.6) is used. Assume an initial assignment of PROCESS_1 to

PROCESSOR_1 and HEHORY_3 to STORE_2. The nonfixed memory of PROCESS_2

will now be HEHORY_~ and HEHORY_S, giving a nonfixed memory size of

138

(512+512). The size of the unused store space attached to PROCESSOR_1

will be 1024 from STORE_1. However the two memories HEHORY_1 and

HEHORY_2 that PROCESS_1 accesses have to be allocated to this store

space, and so the size of the unused store space of PROCESSOR_1 is

(1024-512-512), which is zero. Thus PROCESS_2 with a nonfixed memory

size of 1024 can not go to this processor. Thus its allocation

constraint is modified by

PROCESS_2 -> [PROCESSOR_1, PROCESSOR_2 J - [PROCESSOR_1 J

-> [PROCESSOR_2 J

which in this case fixes the process.

Another constraint reduction

mismatches is concerned with the

Same_Hemory_Constraint like

based upon the detection of

Same_Constraints. If there

[HEHORY_1 , HEHORY_2 J -> SAHE

[[STORE_1 , STORE_2 J , [STORE_3 , STORE_4 J J

size

is a

then the summation of all of the unused space in each of the same

target sets (there are two in this example, one containing STORE_1 and

STORE_2 and the other containing STORE_3 and STORE_4) has to be greater

than or equal to the size of all the nonfixed memory elements in the

same constraint. Otherwise these memories will not fit into the stores

of the same target ~et as required by the constraint. For example, if

STORE_1 and STORE_2 do not have enough combined space to fit all of the

currently unfixed memory in the memory set~ then this target store set

can be eliminated and thus the constraint becomes

[HEHORY_1 , HEHORY_2] -> SAHE [[STORE_3 , STORE_4 J J

This is named

demonstration program.

is also provided,

SAHE_HEHORY_SIZE constraint reduction in the

An analogous operation called SAHE_PROCESS_SIZE

which works in a similar way on

Same_Process_Constraints.

Finally there is one more reduction operation based upon the

examination of memory and store sizes which is applicable. This uses a

set of memory elements that can be allocated to a set of store resource

139

elements. If both of these sets are choosen so that none of the memory

elements are assignable outside of this store set, then the total size

of all the unfixed memory elements has to be less or equal to the total

size of the unused space in this store set. If not then any further

attempts to assign the memory elements will be bound to fail. The

current map search can be terminated at this point. An example map

allocation where this is applicable can be

MEMORY_1 -> [STORE_1, STORE_2 J

MEMORY_2 -> [STORE_1, STORE_2, STORE_3 J

MEMORY_3 -> [STORE_2 J

Here the store set is [STORE_1, STORE_2, STORE_3J and the memory set

is [MEMORY_1, HEMORY_2, MEMORY_3J.

Partitioning the memory elements into sets like these - is easily

achieved. To start, any memory element not yet fixed is selected, and

the set of all its allowable store is obtained. Then from this store set

the set of all unfixed memory that can be assigned to this is derived.

If this memory set is identical to the starting memory set then a

partition has been found. If not the process is repeated and eventually

a partition will be found. Given such a partition, it is a simple step

to check the sizes of the memories and stores. If there are any memories

Left over that are not in any partition found so far, then this

algorithm is repeated.

As an example

obtained. The

the partition sets for the constraints

starting point is taken to be the

HEMORY_1 -> [STORE_1, STORE_2 J

above will be

first constraint

Now the memories that can be allocated to STORE_1 are

[HEHORY_1, HEHORY_2J and the memories that can be allocated to STORE_2

are [MEMORY_1, MEMORY_2, HEHORY_3J. The union of these gives

[MEHO~Y_1, HEMORY_2, MEMORY_3 J

The stores that these may go to are [STORE_1, STORE_2J,

[STORE_1, STORE_2, STORE_3J and [STORE_2J respectively. The union of

these sets gives

140

Processors

Stores Memories

Figure 7.7

[STORE_1, STORE_2, STORE_3 J

This activity is repeated, and will give the same two sets. Thus the

partition sets have been found.

This method is similarly applicable to processes. In the program

these two operations are known as HEMORY_PARTITION_SIZE and

PROCESS_PARTITION_SIZE.

(7.5.2) CONSTRAINT REDUCTION BASED UPON ACCESSIBILITY

Any process in the program which accesses a particular memory must

be able to reach this memory when the progrpm is running on the

architecture. Thus the store to which this memory is assigned must be

accessible by the processor onto which the process has been assigned.

Conversely the processor to which a pro~ess is assigned must also be

able to access the store to which a memory of this same process is

assigned.

This condition is used as the basis of a constraint reduction

operation. If this constraint is to be applied to a memory element, then

the first step is to find the set of all process~s that access this

memory. The set of all processors to which these processes may be

assigned is found by using this process set. Next the set of all stores

accessed by all of these processors is obtained. The resulting set of

stores represents all the stores to which the memory can be assigned.

The set intersection of this with the current set of allowable stores

141

Processors

Stores

Figure 7.8

for this memory will then provide the new and possibily reduced

allowable store set.

This constraint reduction proceeds similarly for an initial process

element. These operations are known as the ALLOWED_MEMORY_SET and the

ALLOWED_PROCESS_SET reduction operations. As an example the computer and

program of figure(7.7> are used. If PROCESS_1 is assigned to

PROCESSOR_1, then MEMORY_1 has to be assigned so that it is accessible

from PROCESSOR_1. The only stores satisfying this are [STORE_1, STORE_2]

and so the constraint on HEMORY_1 is

HEHORY_1 -> [STORE_1, STORE_2]

Under the circumstances where the computer architecture design is

such that every processor is able to access every store (either directly

or indirectly via buses), then this constraint reduction operation will

never result in any changes in the constraints. Thus the application of

this operation may be avoided as an implementation efficiency measure.

The architecture of figure(7.8). is a typical example. No matter

where a process may be positioned, it can access every store and so

there is no restrictions on the allowed store sets. The same applies to

allowed processor sets.

(7.5.3) PROXIMITY CONSTRAINT INFORMATION

A Same_Constraint like the following

142

[MEMORY_1 , MEHORY_2 J ->

SAHE [[STORE_1 , STORE_2 J , [STORE_3 , STORE_4 J J ;

requires that both HEMORY_1 and MEMORY_2 must be allocated either to

the stores in first target set or to the stores in the second target

set. However if it so happens that any one of the memories can not be

assigned to any of the stores STORE_1 and STORE_2 of the first target

set, then this Same_Hemory_Constraint can be modified by eliminating

this now redundant target store set. This results in

[MEHORY_1 , MEMORY_2] -> SAME [[STORE_3 , STORE_4] J ;

Such reductions are equally applicable to both

Same_Process_Constraints and Same_Memory_Constraints, and are known as

SAME_PROCESS_SET_INDIVIDUAL and SAME_MEMORY_SET_INDIVIDUAL reductions.

A similar kind of operation is possible with Different_Constraint

sets. Given

[MEMORY_1 , MEMORY_2 J -> DIFFERENT

[[STORE_1 , STORE_2 J , [STORE_3 , STORE_4]] ;

then if none of the memories can be assigned to the stores STORE_1

and STORE_2, this target store set may be removed from the constraint.

Again this is applicable to processes, and these two operations have the

names DIFFERENT_MEMORY_SET_INDIVIDUAL and

DIFFERENT_PROCESS_SET_INDIVIDUAL.

The difference in these operations upon the same and the different

constraint arise because a Same_Constra~nt specifies that all of its

elements are to be allocated into the same resource target set. Whereas

a Different_Constraint specifies that only one element is to be assigned

to any one target set.

These operations will reduce the constraint sets of the proximity

constraints. There are several reduction operations that work in the

opposite direction, and reduce the constraints of elements based upon

the information in the proximity constraints. This kind of reduction is

demonstrated in the following,

SAME [MEMORY_1 , MEMORY_2] -> SAME

[[STORE_1 , STORE_2 J [STORE_4 , STORE_S]]

MEMORY_1 -> [STORE_1 , STORE_2 , STORE_3 , STORE_4 , STORE_S]

MEMORY_2 -> [STORE_1 , STORE_2 , STORE_3 , STORE_4 , STORE_5]

In this example the Same_Constraint restricts the two memory

elements to being either on stores 1 and 2, or stores 4 and 5. STORE_3

is never possible, and so this store can be removed from the two

following memory constraints. In general this is achieved by finding the

union of all of the constraint sets in the Same_Constraint, and then

obtaining the intersection of this with the memory constraint set. This

produces the new memory constraint set. The above reduction operations

are equally applicable to processes and memories, and to different and

same proximity constraints. Their names, as used in the implementation,

are SAME_PROCESS_SET, SAME_MEMORY_SET, DIFFERENT_PROCESS_SET and

DIFFERENT_MEMORY_SET.

A reverse activity, of reducing the same sets to correspond to the

memory element constraint sets, is also possible. For example consider

[MEMORY_1 , ...] ->SAME

[[STORE_1 , STORE_2 , STORE_3] ••. J

MEMORY_1 -> [STORE_1 , STORE_2]

Here the STORE_3 resource can never be assigned to the MEMORY_1

element and so can safely be eliminated- from the Same_Constraint.

However the proximity constraints are only used to restrict the element

constraints, they are not used to generate any element constraint

directly. Thus it turns out that any superfluous resources in the

constraints sets Like in the above do not matter and so their reduction

is not carried out.

To make this clearer, consider an example of a SAME_MEMORY_SET

constraint reduction. It initially starts with the constraints

[MEMORY_1, MEHORY_2 J ->

SAME [[STORE_1, STORE_2 J, [STORE_3, STORE_4], [STORE_SJ]

HEHORY_1 -> [STORE_1, STORE_2, STORE_S, STORE_6 J

MEMORY_2 -> [STORE_3, STORE_4, STORE_S, STORE_6 J

144

The SAME_MEMORY_SET constraint will reduce the constraints for the

memories to

MEMORY_1 -> [STORE_1, STORE_2, STORE_S J

MEMORY_2 -> [STORE_3, STORE_4, STORE_S]

since STORE_6 is not in the Same_Constraint. If now it is assumed

that some other constraint results in the STORE_S resource being removed

from the memory constraints,

MEMORY_1 -> [STORE_1, STORE_2]

MEMORY_2 -> [STORE_3, STORE_4 J

then this store could also be removed

However irrespective of whether or not

SAME_MEMORY_SET constraint reduction will

constraints in any way. Thus there is

from the Same_Constraint.

STORE_S is present, the

not influence the memory

no need to remove it.

Finally there are some extra constraint reductions applicable only

to the Different_Constrain~s. Starting with a constraint of the form

[PROCESS_1 , PROCESS_2 J -> DIFFERENT

[[PROCESSOR_1 , PROCESSOR_2] , [PROCESSOR_3 J J

If the PROCESSOR_3 target

reduction step, there will

Consequently the two processes

set is removed in some other constraint

be only - one target set remaining.

can not be assigned to different targets

sets and so the current mapping will fail. This reduction operation, of

counting and comparing the number of elements, is valid for both· process

and memory Different_Constraints and is known as

DIFFERENT PROCESS_NUMBER and DIFFERENT_MEMORY_NUMBER.

Alternatively, using the same example, if in some previous search

move the PROCESS_2 element had been assigned to PROCESSOR_3, then any

other processes in this constraint can not be assigned to the same

target set containing this processor. This fact is recorded by removing

the PROCESS_2 element from the process set and removing the target set

containing PROCESSOR_3. Thus the Different_Constraint set now Left is

145

Processors

(The computer
architecture)

Local Stores

Common Store

Figure 7.9

Processes

(The program
structure)

Local Memories

Common Memory

[PROCESS_1] -> DIFFERENT [[PROCESSOR_1 , PROCESSOR_2]]

This operation and its partner are called DIFFERENT_PROCESS_REHOVE

and DIFFERENT_MEMORY_REMOVE.

(7.5.4) ELIMINATION OF SYMMETRICAL SEARCHES

Consider a computer architecture of three identical processors. Each

processor has its own identical Local memory and all processors access a

common global memory. To be allocated to this architecture is a program

with two processes, each accessing a Local memory and both processes

accessing a common memory. These are depicted in figure(7.9>.

If the search method so far described is used, then the first

process of the program will be assigned to one of the processors,

followed by an attempt to assign all of the others. At the completion of

this search a successful assignment may have been found, in which case

it will have been recorded. The search will then proceed by reassigning

the first process to the second processor, and carrying out the search

again to find a new assignment. This would be repeated and another

assignment found for the third processor. In this. situation, however,

the three processors and their memory structures are identical. The

final map produced at the completion of any of the three searches can

only have identical efficiencies. Thus the subsequent two searches are

unnecessary. The first process can be correctly assigned to only one of

the processors without eliminating any significant search branches.

In the following the detection of such symmetries or redundancies in

the search, and their removal, is described. This is divided into the

topics

Under what conditions do symmetries exist?

How can they be detected?

How can they be eliminated from the search?

How can the detection o~ symmetries be made more efficient?

(7.5.4.1) DEFINITION OF A SYMMETRICAL ALLOCATION •

.

A symmetrical allocation situation exists for a program element if

two or more of its allowable resource elements are judged to be

equivalent. The conditions for a pair of resource under which this

equivalence exists are

They are the same kind, either BANK, BUS, PROCESSOR or STORE.

They have identical properties, depending on the kind. For example

stores must have identical rewrite and access times and be of the

same size.

They are conn~cted to other resources in an identical pattern. For

example if one processor has access to two stores, then any other

equivalent processor will also have access to two stores.

They are connected to equivalent resources, that is, in the

previous example, the two stores of :the first processor need to be

equivalent to the, two stores of the second processor.

Finally if two processors (or stores) are identical then the sets

of processes (or memories) that can be allocated to these

resources must be identical.

To demonstrate these conditions, the simple computer structure

defined at the start of this section is used.

147

The three processors and the three local stores have identical

properties. Thus the three processors of figure(7.9) are identical since

they are the same kind, have the same properties, are each connected to

one Local store and one global store, and each Local store is also

equivalent. Similarly the three Local stores are equivalent. It can be

seen that the definition for equivalence is recursive, since the

processors are only equivalent if their attached stores are, and the

stores are only equivalent if their accessing processors are.

The last conditionr-'Listed for equivalence has not been mentioned in

this example. To demonstrate this condition, consider

figure (7.9). If the user had imposed the constraint

only allowed to be allocated onto either PROCESSOR_1

the program of

that PROCESS_1 is

or PROCESSOR_2,

then the three processors are no longer equivalent. This arises from the

observation that if PROCESS_2 is fixed to PROCESSOR_3 then it can never

be in the same processor as the other process. If PROCESS_2 is allocated

to PROCESSOR_1 or PROCESSOR_2, then it may eventually be assigned to the

same processor as the other process. In these two cases, the execution

speeds of the final map allocations will be different.

Thus in this situation only the processors

PROCESSOR_2 are equivalent. This therefore implies

STORE_1 and STORE_2 are equivalent, since now STORE_3

processor not equivalent to the processors accessing

stores.

(7.5.4.2) DETECTING EQUIVALENCE

PROCESSOR_1 and

that only stores

is accessed by a

the first two

A set of equivalent resource "elements is called an equivalent

partition set. To find these sets the whole resource graph is examined.

For any architectures four initial partitions are always produced, one

e~ch for all the bus, bank, store and processor resource elements in the

resource graph. These sets are then split up into further separate sets

on the basis of information such as the cycle speeds and store sizes of

each particular architecture. This information is called nontopological

information. Any resource element that ends up in a partition set by

itself has no equivalents.

left after this stage,

If there are any nonsingleton partition sets

then the sets are further partitioned using

1L8

topological information. Topological information is information gained

from considering the connection patterns of the computer architecture.

To achieve· the topological partitioning, every resource element that still

has a chance of being equivalent to some other is examined. A list of all

the other resource elements that it accesses or is accessed by it is produced.

These attached resource elements are described by the current partition

they belong to. This allows the elements of the same partition to be.

compared on the basis of their attachments, and any two elements that differ

in this are no longer in the same partition and are separated. This

comparison of every likely resource element is repeated until no further

partit ion reductions are made, or until every resource element is in its

own partition. The resulting partition sets contain the equivalent resources.

As an example of this the step by step derivation of the equivalence

partitions of the architecture in diagram(7.9) is given. This exercise

assumes that the user has imposed a constraint of fixing a process to

the PROCESSOR_1 resource.

At first the partitions are

1. [PROCESSOR_1 , PROCESSOR_2 , PROCESSOR_3 J

2. [STORE_1 , STORE_2 , STORE_3 , STORE_4 J

where the numbers represent an arbitrary unique labeling of the

sets.

The only nontopological information applicable here is the fact that

PROCESSOR_1 already has a process element assigned to it (via the

assumed user constraint). Therefore PROCESS_1 is different from both

PROCESS_2 and PROCESS_3, thus the new partitions are

1. [PROCESSOR_1 J

2. [PROCESSOR_2 , PROCESSOR_3 J

3. [STORE_1 , STORE_2 , STORE_3 , STORE_4 J

Now the topological information is applied by constructing the

attached sets. In the following list the resource element appears on the

tefthand side. The set of attached resources that it accesses or is

149

accessed by is in the middle. On the right is a List representation of

this set containing the Labeling of the partition set which the resource

element belongs to.

PROCESSOR_1 [STORE_1 , STORE_4] (3 , 3)

PROCESSOR_2 [STORE_2 , STORE_4] (3 , 3)

PROCESSOR_3 [STORE_3 , STORE_4] (3 , 3)

STORE_1 [PROCESSOR_1] (1)

STORE_2 [PROCESSOR_2] (2)

STORE_3 [PROCESSOR_3 J (2)

STORE_4 [PROCESSOR_1 ,

PROCESSOR_2 ,

PROCESSOR_3] (1 , 2 , 2)

From this it can be seen that STORE_1 and STORE_4 are different from

the other stores and from each other, so the new derived partition sets

are

1. [PROCESSOR_1]

2. [PROCESSOR_2 , PROCESSOR_3]

3. [STORE_1]

4. [STORE_2 , STORE_3]

5. [STORE_4]

And so redoing th~ accessibility sets gives

PROCESSOR_1 [STORE_1 , STORE_4] ..(3 , 5)

PROCESSOR_2 [STORE_2 , STORE_4] (4 , 5)

PROCESSOR_3 [STORE_3 , STORE_4] (4 , 5)

STORE_1 [PROCESSOR_1] (1)

STORE_2 [PROCESSOR_2] (2)

STORE_3 [PROCESSOR_3] (2)

STORE_4 [PROCESSOR_1 ,
PROCESSOR_2 ,
PROCESSOR_3] (1 , 2 , 2)

This now indicates that PROCESSOR_2 and PROCESSOR_3 are equivalent

and that STORE_2 and STORE_3 are equivalent, with no other equivalencies

existing. Since this agrees with the Last derived partitioning, the

process can terminate with this as the final partition.

150

(7.5.4.3) SPEEDING UP THE PARTITIONING OPERATION

.. -..

This partitioning into equivalence sets can be speeded up. This is

done by making use of the observation that generally there will not be

any equivalent resource

the initial stages of

elements already fixed

elements found. This particularly applies after

the map allocation search, where the program

to a resource will by definition make that

resource no longer equivalent to any other resource. Thus the detection

of nonequivalence as soon as possible is the best policy. This is

achieved by initially only considering the nontopological information

such as memory and store size and the like. This does not consume much

time. If the target resource elements are not reduced to singleton

partition sets, then the full partitioning operation has to be applied.

(7.5.4.4> PERFORMING THE CONSTRAINT REDUCTIONS

After producing the partition sets of a program element, the next

step is to use these sets to reduce the elements constraint. Since the

partition sets are produced by considering the entire architecture, they

may contain resources to which the program element can not be allocated.

These are removed at this stage by producing the intersection of the

program elements allocation constraint set with the partition sets of

the appropriate kind and then using these resulting sets. For example if

a constraint is

PROCESS_1 -> [PROCESSOR_1, PROCESSOR_2, PROCESSOR_3 J

and the equivalence partition set ls

[PROCESSOR_2, PROCESSOR_3, PROCESSOR_4 J

then this partition set is reduced to the set

[PROCESSOR_2, PROCESSOR_3 J

In this reduction, some of these partition sets

representing sets of equivalent resource elements

151

may now be empty,

that the program

element can not be assigned to. These are discarded, along with all

partition sets containing only one element. From the remainder one set

is choosen and used for the reduction. This will contain a collection of

resource elements to which the program element may be assigned with

equivalent effects, and so all but one of these resources may be

removed. This is done by simply deleting one element from the partition

and set subtracting the resulting set from the constraint. So for the

partition of [PROCESSOR_2, PROCESSOR_3J, one of the processors is

removed, perhaps resulting in CPROCESSOR_3J, and this is subtracted from

the PROCESS_1 constraint above, giving

PROCESS_1 -> [PROCESSOR_1, PROCESSOR_2 J

At this stage other partition sets possessing more than one element

may still exist. These can not be used to reduce the constraint straight

away, since the first reduction may have interacted with other

constraints to change the allocation of still other elements. Two

resources are only equivalent if they have the same elements able to be

allocated to them, and thus this interaction may result in two

originally equivalent resources becoming nonequivalent. Therefore the

entire symmetry detection operation is repeated for each reduction step.

(7.5.4.4.1) EXAMPLE SYMMETRY REDUCTION

A complete example of symmetry removal

figure(7.9) is developed. It is assumed

imposed constraints.

for the original

tnat there are

problem in

now no user

The starting point will be the constraint set for the PROCESS_1

element,

PROCESS_1 -> (PROCESSOR_1 , PROCESSOR_2 , PROCESSOR_3 J

Working on this, the symmetrical partition set produced will be

(PROCESSOR_1 , PROCESSOR_2 , PROCESSOR_3 J

152

In other words the three processors are regarded as being identical.

In this example PROCESSOR_1 is choosen to be the one used, and so the

constraint set for PROCESS_1 is

PROCESS_1 -> [PROCESSOR_1]

Now the redundant removal operation is repeated for the PROCESS_2

element, and will result in the symmetrical partition sets

[PROCESSOR_1 J [PROCESSOR_2 , PROCESSOR_3]

Disregarding the first

reducing the second set by

set of

[PROCESSOR_2 J

set since it only has one element, and

removing PROCESSOR_2, results in a partition

This is subtracted from the PROCESS_2 constraint allocation, and so

the constraint now applicable is

PROCESS_2 -> [PROCESSOR_1 , PROCESSOR_2 J

If there had been a third process element to be assigned, the

partition sets for it will be

[PROCESSOR_1] [PROCESSOR_2 J [PROCESSOR_3 J

and so no symmetrical reduction would have been possible for it.

(7.5.4.5) RESTRICTIONS IN THE IMPLEMENTATION

One factor influencing the equivalence of resource elements not

discussed in the above is their membership in Same_Constraints or

Different_Constraints. In the general case these may be taken into

account also, but the implementation was simplified by regarding any

resource in such a constraint to be nonequivalent to any other.

Processors

(The computer
architecture)

Stores
(1024 bytes)

Conunon Store
(1024 bytes)

Figure 7.10

(7.5.5) CONSTRAINT REDUCTION PROPAGATION

Processes

(The program
structure)

Memories
(1024 bytes)

Conunon Memory
(1024 bytes)

So far the constraint reduction operations have mostly been

developed independently of each other. However it will often happen that

reducing the constraint of one element will thereby make possible the

constraint reduction of other elements. In extreme cases the changes due

to just one constraint reduction may propagate and resul% in all of the

remaining elements being fixed and thus producing a final map

allocation. More commonly the changes will either not propagate so far,

or just result in the production of an illegal map.

In the Literature one example of constraint propagation is given by

[23). This is for a graph problem whose vertices may take on values

from a value set. Constraints are imposed' upon the values that vertices

connected by a common arc may take on. The problem is to derive a value

mapping where all constraints are satisfied. This compares with current

research where the constraint relations are imposed by the reduction
-

operations, with the goal of having all constraints satisfied

corresponds to a Legal mapping.

As a demonstration of change propagation the following example has

been constructed, using the architecture and program depicted in

f igure<7 .10).

The reduction operations are carried out as follows.

At the start the constraints are

1.54

PROCESS_1 -> [PROCESSOR_1 , PROCESSOR_2]

PROCESS_2 -> [PROCESSOR_1 , PROCESSOR_2]

MEMORY_1 -> [STORE_1 , STORE_2 , STORE_3]

MEMORY_2 -> [STORE_1 , STORE_2 , STORE_3]

MEMORY_3 -> [STORE_1 , STORE_2 , STORE_3]

The only applicable operation is the symmetry removal operation.

If this is applied to PROCESS_1 first, then the constraint set for

this element will be reduced to

PROCESS_1 -> [PROCESSOR_1]

and now no futher reductions based upon symmetry are possible.

Following this the ALLOWED_MEMORY_SET reduction operation will

result in

MEMORY_1 -> [STORE_1 , STORE_3]

MEMORY_3 -> [STORE_1 , STORE_3 J

because these memories are accessed by PROCESS_1 and when this

element is fixed to PROCESSOR_1 the only stores accessible are

STORE_1 and STORE_3.

From here the

produce

ALLOWED_PROCESS_SIZE reduction operation will

PROCESS_2 -> [PROCESSOR_2 J

because the amount of space taken up by PROCESS_1 on PROCESSOR_1

is 2048. The total store space on PROCESSOR_1 is only 2048 and so

PROCESS_2 can no longer fit there.

Now the ALLOWED_MEMORY_SET operation will reduce the constraint

set of the MEMORY_3 element, since it has to be accessible to both

PROCESS_1 and PROCESS_2, which are now on different processors.

Thus

MEMORY_3 -> [STORE_3 J

which means that ALLOWED_MEMORY_SIZE will operate on the

constraint sets of MEMORY_1 and MEMORY_2. This produces

MEMORY_1 -> [STORE_1 J

HEHORY_2 -> [STORE_2 J

and this completely fixes the program to the architecture without

any searches being necessary. Of course in the general situation

this rapid conclusion will rarely occur.

In the allocation program the change propagation is implemented by

organizing the constraint reductions into passes. Each pass performs all

of the required reduction operations, and a record is kept of all

elements and proximity constraints which actually change. At the end of

each pass this information is used as the basis for choosing which

elements are to be examined in the next pass. This process is terminated

when a pass does not generate any changes. Deciding which elements to

inspect in the next pass are is fairly straightforward. For example, if

a process is fixed to a processor, then there may be stores that this

processor cannot access. Therefore the memories of the process can no

Longer be assigned to these stores. Thus in the next pass all the

memories of all processes that have just been fixed need to be examined

by the ALLOWED_MEMORY_SET constraint reduction operation. The complete

list of such rules is described in greater detail in appendix(C).

(7.6) EXPERIMENTAL RESULTS

==========================

An implementation in Pascal was produced to demonstrate the

allocation search algorithms. This implementation worked as expected in

producing Legal allocations from a reduced search space. However the

reduction.achieved in the search space was only sufficient to allow the

optimal allocation of small programs.

1~

Processors
cycle speed = 1.0 microseconds

Stores
access time = 1.0 microseconds
size = 4000 bytes

access time = 4.0 microseconds
10000 bytes

Figure 7.11

(7.6.1) DEMONSTRATION PROBLEM

A typical demonstration problem was the allocation of a three

process eleven memory program to a three processor four store computer

architecture. In this architecture each processor has' its own local

store and all the processors access the fourth global store, as is shown

in figure(?.11). The program used was the following-

Size of the memories, randomly generated.

MEMORY_O 237

MEMORY_4 663

MEMORY_1 848

MEMORY_5 507

MEMORY_2 1406 MEMORY_3 540

MEMORY_6 397 MEMORY_? 1277

MEHORY_8 2117 HEHORY_9 1348 HEMORY_10 1656

Number of process to memory accesses, randomly generated such that

the accesses are zero, and the other h~lf are between 0 and 5000.

PROCESS_O P_ROCESS_1 PROCESS_2

MEMORY_O 1786 0 2214

HEHORY_1 582 3054 0

HEHORY_2 0 0 2825

HEHORY_3 1909 0 0

HEHORY_4 0 3232 0 •

MEHORY_5 2246 0 3763

HEHORY_6 4226 0 0

HEHORY_? 1324 2634 0

HEHORY_8 0 0 1061

157

half of

MEMORY_9

MEMORY_10

4610

0

0

1849

2123

0

Here this information

convenience.

is presented in an array format for

For this example the total number of possible final allocations,

ignoring all size and access constraints for the moment, is

3 11 8 Three processes to three processors

3 * 4 = 10 (approximately) Eleven memories to four stores.

but the number of actual search steps performed by the allocation

program was only 11 for the particular program specified. The total

execution time required for this (on a Burroughs B6800) was 130 seconds

or about 12 seconds per search step. Of this time 60 percent was spent

within the simulator code obtaining throughput estimations. The

allocation map found was

PROCESS_O -> [PROCESSOR_1 J PROCESS_1 -> [PROCESSOR_O J

PROCESS_2 -> [PROCESSOR_1 J

MEMORY_O -> [STORE_1] MEHORY_1 -> [STORE_3]

HEMORY_2 -> [STORE_1] HEMORY_3 -> [STORE_3]

HEMORY_4 -> [STORE_O] MEMORY_S -> [STORE_1]

MEMORY_6 -> [STORE_1] MEMORY_? -> [STORE_3]

HEMORY_8 -> [STORE_3] MEHORY_9 -> [STORE_1]

MEMORY_10-> [STORE_O]

The throughput calculated for this wa~ 14.2.

, (7 .6.2) LARGER PROBLEMS

Unfortunately, for Larger problems the allocation program does not

complete t~e search in a reasonable time period. The graphs in

figure(7.12) presents the times to completion for a range of computer

architecture sizes and program sizes. The architecture used for this is

shown in figure(7.13,left). The size of each memory of the program was

choosen randomly, as were the number of cycles value between each

process and memory.

158

1800

1600

1400

1200 Cj) ,,
1000 ·d

[~

800
i:.::
()

·d
p

600 -J
(J

<LI

1100
x
14

200

1800

1600

1400

1200
Cj)

1000 Ii
.;

• (-c

800 i:.::
0
.-1

600 +-'
;j

u
(I)

400 x
i.:i

200

1800

1600

11.jQQ

1200
(I)

1:
1000 d

(~

i:.::
800 0

·d
I-'

GOO ;J
u
(I)

400 x
w

200

11

'l'hroughput
factor = 100%

1800

1600

1400

1200

1000

800

600

Throur,hput
f.ictor = 50%

180(

160

100

40

200

Throughput
factor = 25%

3 4 5 6 8 3 4 5 6 7 8 3 4 5 6 7· B
Three processors, four stores, the given number of processes and 11 memories.

1800 1800

Throughput 1600 Throughput 1GOO Throughput
factor = 100%

1400
factor = 50%

11100
factor = 25%

1200 1200

1000 1000

800 800

/\; 600 60

/'V 400 400

200 200

3 I~ 5 6 3 4 5 6 3 4 5 6
(I~) (5) (6) (7) (4) (5) (6) (7) (4) (5) (6) (7)
The given number of ·processo1•s (and stores), 6 processes and 11 memories.

180 1800

160 160

1400

Throughput Throughput 1200 Throughput
factor = 100% factor = 50% 1000 factor = 25%

BOO

600

400

20 200

26
.

~G
.

~1 Hi n 31 41 11 lG :fa ..il :!u 41 11 6 21 26 31 36 41
Thr•ce processors, fout' stores, three processes ancl the given number of memories.

Figure 7.12

Processors

•••

•••
Stores

Global
store

P processors, P+l stores

Figure 7.13

There were three sets of trials

• ••
P processors, P stores

performed. They were for

1) An architecture with 3 processors and 4 stores. A program with

11 memories and a number of processes that is varied from 3 to

8.

2) An architecture where the number of processors is varied from 3

to 6~ and the corresponding number of stores is varied from 4

to 7. A program with 11 memories and 6 processes.

3) An architecture with 3 processors and 4 stores. A program with

3 processes and a number of memories that is varied from 11 to

41 by fives.

Each of these three trials was performed with the throughput factor

having the values 100 percent, 50 percent and 25 percent. This

throughput factor specifies how much better a partial solution has to be

in comparsion to an already obtained fi~al solution before it is

investigated any further. Thus if the throughput factor is 100 percent,

only those partial solutions that

of the throughput of the latest

further.

have a throughput that is twice that

final msp will be considered any

It can be seen that even for the smallest of these trials the

execution time is high, and this increases with increasing problem size.

It does not increase in a uniform manner, since the variations in the

programs and architectures allow the search algorithms to perform better

than usual in some cases.

Also presented below is a table showing the number of search steps

needed for the searches shown in figure(?.12), and the maximum possible

number of search steps.

160

Problem kind

Problem 1

3 processors

4 stores

11 memories

N processors

Problem 2

N processors

N+1 stores

11 memories

6 processes

Problem 3

3 processors

4 stores

3 processes

N memories

N = 3

N = 4

N = 5

N = 6

N = 7

N = 8

N = 3

N = 4

N = 5

N = 6

N = 11

N = 16

N = 21

N = 26

N = 31

N = 36

N = 41

Number of search steps

of the trial with a

throughput factor of

100 50 25

8

7

4

14

10

10

14

26

9

15

8

11

24

16

22

27

34

8

7

4

19

10

13

19

36

9

25

8

11

42

16

37

87

69

10

7

4

23

10

17

23

47

13

41

10

11

56

20

79

200

72

Maximum possible

search Length

(approximately)

10"3

10"4

10"4

10"4

10"5

10"5

10"4

10"5

10"6

10"7

10"3

10"'4

10"6

10"'7

10"9

10"10

10"'12

One reason why the allocation is so slow is the Length of time

needed for one step, which in these trials ranges from 15 to 40 seconds.

Little attempt was made to improve the efficiency of the implementation

code used for the search algorithms. It is :therefore quite possible that

this execution time per search step can be substantially improved.

For comparsion, the total number of possible search steps to find a

solution using enumeration alone is also listed in this table. This

number is computed by assu~ing that each process may be assigned to any

processor, and that each memory may be assigned to only two stores. A

memory can only be assigned to the global store, or to the store that is

Local to the processor that accesses that memory. This explains why the

memory is not assumed to be assignable to all stores. It is readily seen

that there are sizable reductions in the search space size for all

trials.
161

The execution time of the allocation program will vary depending

upon the following factors

1) Number of processors and stores in the architecture, and the

number of processes and address spaces in the program.

2> The structure of the computer architecture.

3) The choice of the throughput factor.

4> The user specified constraints.

These are discussed in turn.

(7.6.3) SIZE OF THE ARCHITECTURE AND PROGRAM

Firstly the effects due to the numbers_ of the resource and program

elements have already been displayed in figure(7.12). It is easy to see

why the size of the problem will generally increase the execution time.

For example, if there are P processors and C processes, then the number

of combinations of process to processor allocations is PAC. In most

cases the actual number of combinations will be less than this maximum

due to restrictions

processors. Some example

placed upon

restrictions

the assignment

will be due

of processes to

to user specified

constraints, accessibility constraints and memory size constraints. It

is for this use that the constraint reduction operations are provided.

(7.6.4) STRUCTURE OF THE COMPUTER ARCHITECTURE

Secondly, the structure of the co111puter architecture can be

important. As one example, for P identical processors and C processes,

the maximum number of different combinations possible for the process to

processor allocations is

c !
P! * PA(C-P)

if c <= p

if c > p

and these values are less than the value PAC used in the section

above. This decrease is made possible by symmetry redundancy removal.

Thus for C processes, C less than P, the first process will only have

162

one processor to be assigned to, since all the others are identical. The

second process will have 2 processors to be assigned, since there is one

processor with a process already assigned, and P-1 other identical

processors. Thus the total number of combinations is C!J If the number

of processes is greater than the number of processors, then the

remaining processes can be allocated to any processor, and so there are

p~(C-P) possible combinations for these remaining processes. Thus when

there are more processes than processors, the total number of

combinations is P! * p~(C-P).

This reduction can be large and can mean the difference between a

practical search and a computationally impossible one. However if the

processors are not identical, as with differing processor cycle times,

or if the stores are not identical, as with differing access times or

store sizes, then the processors will no Longer be identical. The

symmetry reduction operations will not be possible. Therefore the more

uniform the architecture the better the chances of obtaining a complete
;

search.

There are

influence the

other ways

allocation

in which the

program time. In

computer architecture may

figure(?.13) the number of

processors is the same and the number of stores is almost the same for

both architectures. However, given an initial process to processor

allocation, the choice of possible stores for the address spaces of the

processes in the first architecture is much more Limited in comparsion

to the second architecture. In the second architecture each store is

accessible to each processor, and so even after a process has been fixed

to a processor, there are no extra constraints applied upon its

memories. The execution time difference can be seen in the table below.

In each example pair here the two computer architectures have the same

number of processors, and there are the same number of processes and

address spaces in the program. As expected the time for the bus

architecture is longer.

Number of search steps

Problem kind with a throughput factor of

100 50 25

Architecture 1, problem 1 130 130 160

Architecture 2, problem 1 130 160 310

Architecture 1, problem 2 220 220 220

Architecture 2, problem 2 380 380 380

Architecture 1, problera 3 170 170 170

Architecture 2, problem 3 160 200 >1000

For this table, Architecture 1 is that in figure(7.13,Left),

Architecture 2 is that in figure<7.13,right),

Problem 1 has 3 processes and 11 memories,

Problem 2 has 3 processes and 16 memories,

Problem 3 has 4 processes and 11 memories.

In some circumstances the computer architecture may allow the

program size to be increased with only a Linear degradation in the

execution time of the allocation. This occurs in special cases where it

becomes possible to divide the program and architecture into separate

sub problems and to solve these independently. This is most Likely to

happen wher·e there is in effect two different kinds of computer

architectures Linked together. An example is ,shown in figure(2.10). Here

the picture processor has several general purpose processors, with their

own stores. As well there are the special purpose picture processing

computer modules. In this circumstance the ~tructure of the program will

164

be written to reflect this design. Thus the main processes of the

program will only run on the general purpose processors, and the picture

processes will run on the special purpose processors. This division

would be specified by the use of user constraints.

(7.6.5) THE CHOICE OF THE THROUGHPUT FACTOR

The allocation search will generally not find the theoretical

optimal allocation mapping with respect to the throughput, but it will

produce a result that can be made arbitrary close to it. How close is

determined by the throughput factor. This gives the percentage by which

the throughput of any subsequent solutions must exceed the throughput of

the incumbent solution before they are investigated. If the throughput

factor is set at 5 percent, then many more solutions will have to be

examined than if only 100 percent precision is needed. This arises

because there will gene'.ally be a larger number of soluticns that vary

only slightly in this throughput estimation.

The accuracy of the throughput estimation itself will also be

important. If the throughput for an initial allocation map at the start

of a search is close to the final optimal throughput, then fewer partial

solutions will be examined. This is most clearly seen in an example

where the throughput factor is set at 100 percent. If the initial

throughput estimation is within a factor of 2 of the final optimal

throughput, then the allocation will generally be able to derive the

first solution without backtrack. Thereafter, since the throughput of

this is within 100 percent of the initial throughput, no other solutions

need be examined.

This also demonstrates another way in which

architecture structure may determine the search

architectures will produce a better initial throughput

others. The throughput of an initial unalloc~ted map

the computer

length. Some

estimation than

is found by

assuming the program is mapped to an architecture that is ideal for it.

Thus the further away from such an ideal machine the actual computer

architecture is, the more inaccurate will the initial throughput guess

be.

165

(Each processor can access
every store in the
subsystem)

Common global store

Figure 7.14

(7.6.6) USER IMPOSED CONSTRAINTS

Processors

Local
stores

Lastly, the user constraints may impact upon the search length. User

imposed constraints may effect-the allocation by

A) Changing the size of the solution space that needs to be

searched.

8) Changing the length of the search needed to find the solutions.

None of the user constraints will ever increase the size of the

solution space, however some constraints may increase the search length,

and others may reduce it.

The size of the solution s~ace is determined by the number of

program elements that need to be allocated, and the number of resources

that may be choosen for these. No constraints can increase either of

these, and so constraints can never increase the solution space size.

However constraints can reduce the number of allowed resources for each

program element, and so they may certainly · reduce the size.

Unfortunately decreasing the solution space will not always reduce

the search Length. If the search is to cover as little as possible of

the solution space, and still implicilty examine the whole space, then

the various means developed for reducing the s~arch length must work to

166

their best ability. These are the constraint reduction and symmetry

redundancy removal operations, the heuristic search ordering techniques

and the throughput estimation algorithms. The imposition of process to

processor and memory to store constraints will generally not degrade

their performance. An exception may be the symmetry redundancy removal

operations. Constraining the elements to reduced resource target sets

may make previously identical elements different. Thus this may inhibit

symmetry reductions. In general the nonproximity constraints will reduce

the search length. The judicious use of these may make the allocation

larger problems feasible, with only minimal effort from the user.

As an example of this, consider the architecture of figure(7.14).

This can be regarded as being two separate computer subsystems able to

communicate with each other by the common global memory. Program

allocations to this architecture may be performed in the same way as for

any other architecture. Alternatively, if a programmer is writing a

program specifically for this computer structure, then to achieve the

best results it is probable that the program structure produced will

reflect this structure. That is there will be two separate subsystems of

processes, and these will communicate via common code and common

variables having a small address space size. Thus in this circumstance

the programmer can tmpose the constraints that the processes of one

subsystem of the program are to be allowed only to the processors of one

subsystem of the architecture, and similarly for the other subsystems.

Little extra effort is required of the programmer for this, since the

knowledge to achieve this is implicit in the program design. Therefore

the complete allocation problem resolves into two smaller allocation

problems of allocating a half sized program to a half sized

architecture.

The imposition of proximity constraints will, however, degrade the

performance of both types of constraint reduction operations. They

impose higher Level constraints between the individual process and

memory constraints. Thus the constraint reduction of nonproximity

constraints can no Longer proceed independently but will interact. The

action of tHese constraints upon the search will be to arbitrary remove

some final mappings from the search space. This happens when the final

mappings violate the proximity constraint. Since the implementation does

not order its searches to take this possibility into account, then these

reductions may occur at any position in the search. If they occur at a

167

shallow Level, then not much time will be spent in finding and

eliminating the map allocations prohibited by these proximity

constraints. If however these constraints are applied at points deep in

the search, then a large amount of time may be wasted in backtracking up

the search tree to try new searches •

(7.6.7) MAXIMUM PROBLEM SIZES

As indicated by figure(7.12) the practical maximum for a complete

search with this type of architecture is about 4 processors and stores,

for small programs of about 4 processes and 40 address spaces. Similar

times apply to other styles of architecture.

In almost all cases the allocation program finds an initial solution

straight away with Little or no backtracking. Thereafter no better

solutions are found, or the subsequent solutions that are found are

generally not significantly better. This good behaviour is partly a

result of the heuristically provided search order, and it also arises

because only uniform architectures are used in the examples. This

behaviour allows the use of the allocation program for larger problems,

even when it does not complete a full search in a practical time period.

Thus there is no proof that this is the best solution. However

examination of the estimation throughput for the initial map will give

an maximum upper bound to the throughput. From this it is known how much

the given solution falls below this.

Another method to allow the allocation of Larger programs is to

clump together some of the separate address spaces of the program into

single address spaces. Some of the address spaces will be procedure

invocation stacks for processes and large global arrays. These would not

be combined together with others. However there will also exist many

small procedure code bodies, and many small size global variables.

In general, if groups of these are combined then it may reduce the

allocation programs chance of performing some possible optimizations.

For example the combined address space may be just slightly too large to

fit into any one available space, whereas its individual memory

components would have. Alternatively the individual address spaces may

be accessed by only one process each. Thus they could be assigned to

168

storage which is local to the appropriate processors. However the combined

memory element would need to be accessed by every one of the accessing

processes, and so could only be assigned to global stores that are accessible

to all of the appropriate processors.

To minimize these problems, a suitable clumping strategy would be to

only combine small address spaces into combined address spaces that do

not exceed the size of the available stores by a suitably small factor.

A possible value would be 10 percent. This would decrease the chance of

the combined memory elements from being too Large to fit anywhere. As
c

well only memory elements that have the same set of accessing processors

should be combined. This would imply·that the combined memory element

can be allocated to exactly the same set of stores that each of its

individual components could be.

Using these rules, and assuming a program with many small memory

elements, then a Large decrease in the number of memory elements could

be achieved. For example, if this was by a factor of ten, then a medium

sized program with up to 400 memory elements (before clumping) could be

handled by the present allocation program implementation.

(7.6.8) SUMMARY

The constraint reduction and search ordering algorithms work in

reducing the size of the search space to be examined and in producing

legal final maps. However for all but very s~all programs the allocation

still takes an excessive amount of time to perform a complete search.

However final Legal maps which are good approximations to the optimal

final map can still be found even with an incomplete search. Furthermore

the user may speed up the allocation by the imposition of suitable

constraints. Hence it

with user guidance,

programs.

is quite feasible to use the allocation program,

to find good solutions for small to medium sized

CHAPTER (8)

(8.1) CONCLUSIONS

In the introduction to this thesis the concept of a resource

allocator was introduced and its application areas discussed. The

methods of specifying the computer architecture and the program

structure to the allocator were described. Also detailed were the means

whereby the user can guide this allocation activity.

The work that is described by the thesis proper falls into three

main parts. These are the sections on the information structure

Language, the general memory interference model and the allocator

algorithms.

A) Information Structure Language

The information structure Language is used to specify the

structure of a multiprocessor computer architecture to the

resource allocator. It is also used to specify the structure of

the program and to enter the user constraints. The research

work was to develop this Language. The thesis derives a

Language definition and describes in detail how it is to be

used for its intended purpose. The Language syntax is borrowed

from other Languages, but the definition of the semantics of

the Language for the use in a resource allocator is new.

B) General Memory Interference Model:

The general memory interference model is used by the resource

allocator in its production of the throughput estimation of a

resource allocation. The original memory interference model

used was taken from the Literature. The research consisted of

developing this model to fit the resource allocator

requirements. This resulted in an analytic model capable of

generating the required throughput. As well it was shown how a

simulation model will produce the throughput estimation in a

shorter time than this analytic model.

170

C) Allocator Algorithms

Finally the allocator algorithms are those that actually

perform the allocation of the program elements to the resources

of the computer architecture. The research was to find and

develop suitable algorithms to perform this. The basic solution

relies on a simple tree search on the whole solution space. To

make the search more practical, an algorithm called implicit

enumeration with backtrack is used to minimize the search path

length. With this as a start other methods were also found to

reduce the size of the search. These are based upon the

ordering of the search to increase the chances of quickly

finding an acceptable solution, and the use of constraints upon

the program elements to decide if partial solutions can be

rejected.

A large Pascal program was written to implement and demonstrate

these algorithms. Trial runs using this demonstrated that the constraint

reduction algorithms, the implicit enumeration and the use of

probability ordering of the search will reduce the size of the search,

and find solutions.

The aim of the research was the development of a resource allocator

for medium size

architectures. The

programs onto

thesis describes and

multi microprocessor computer

demonstrates how this may be

final allocator algorithms can done. However the implementation of the

produce allocations for only some allocation problems. It can not,

without user guidance, perform a complete search to find the optimal

solution in a practical time for reasonable sized computer architectures

or programs. Nor have the effect of proximity constraints been properly

included.

The research that needs

feasible for production

to be done to make the resource allocator

programs can be divided into two areas-

A) The development of the allocator algorithms to cope with Larger

computer architectures and Larger programs. This can be done by

improving the existing techniques for ordering searches, and by

adding more constraint reduction operations. It can also be

171

done by using a more complex search algorithm, to allow the

incorporation of specialized information into the allocation

activity. For example the optimal search strategy of a systolic

computer architecture could be made different from the optimal

search strategy for other architectures. The allocator would

need the ability to determine what kind of architecture it is

using, and to select the appropriate search strategies.

B) The implementation of an actual allocator system, capable of

starting

code to

with a concurrent program and converting this into

run on a multiprocessor architecture. This would

required converting an existing compiler to generate suitable

code, the implementation of the information structure Language,

and the provision of a Linker loader to place the code and data

elements of the program onto the architecture as dictated by

the resource allocation mapping.

172

APPENDIX (A)

(A.1) CONSTRUCTION OF THE STATIC ACCESS ARRAY

===

This section describes the algorithm used within the analytic model to

construct the static access array for the simulation program, in the

situation where the simulation is to be run in its accurate mode.

The static access matrix is used by the simulation program to obtain

the next store fetch for a processor. The probability of processor P

picking a store S is given by

Sa(P,S)

and for the busiest processor

M

I Sa(P' ,S) = 1
S=l

P' ,

where Sa represents the static access.

•.• (33)

the following equation holds

. .. (34)

However in general the above equation is more correctly expressed as

M

I Sa(P,S).~1
S=l

•.. (35)

where the summation equals 1 for the busiest processor, and less

than 1 for all others. These processors perform idle cycles, and the

model knows how much idle time is spent, this is given in equation<30).

Thus

Tidle(P)
M

1- l Sa (P ,S) *Tcy (P)
S=l

•.. (36)

This corresponds to the simulation using the static access terms for

the probability, and since the summation of these is less than one, then

on the occasions when no store is picked, it just executes an idle

processor cycle.

173

This static access matrix is derived directly from the actual number of

cycles array used in the model,

Sa(P,S) Na(P,S) * D(P)

where D is the adjustment factor. • •. (37)

The number of cycles array gives the unnormalized probability

distribution for the processor to store access pattern. Thus in the

above the adjustment factor normalizes each row (one row per processor)

to give the static access array. Using the above two equations gives

D(P) = ~cy(P) ~ Tidle(P))/(Tcy(P)*Nap(P))

•.• (38)

where Nap is the actual number of cycles per processor array. So the

static access matrix can be calculated from the actual number of cycles

array and the idle time array, which are both known to the probability model.

1~

APPENDIX (B)

(B.1) CALCULATING THE CONFLICT FUNCTION

=======================================

The algorithm used in the implementation of the probability model to

produce the conflict function is taken directly from [44J. To

illustrate how it works, consider the following version of the conflict

function

n
Cf = L

k=l

1
k

fmax

[
r=l

n

TT
f=l

[

= 0 F(!E)
Fkrn(f)

~ 0 1-F (f)

... (39)

Here the probability terms are represented by the F function. The

expansions of the conflict function for 1, 2 or 3 F function terms are

CONFLICT_FUNCTION = (1-A) + 1/2(A)

CONFLICT_FUNCTION = (1-A)(1-B) + 1/2((1-A)B + A(1-B)) + 1/3AB

CONFLICT_FUNCTION = (1-A)(1-B)(1-C) +

+ 1/2((1-A)BC + A(1-B)C + AB(1-C))

+ 1/3((1-A)(1-B)C + (1-A)B(1-C) + A(1-B)(1-C))

+ 1/4(ABC)

where A= F(1), B = F(2) and C = F(3). If the second expansion is

taken and Listed as a series of terms-

L(O) = (1-A)(1-B)

L(1) = <1-A)B + A(1-B)

L(2) = AB

then multiplying each term by (1-C) to produce one new series, and

by C to produce another new series, will result in

LCO) = (1-A)(1-B)(1-C)

L(1) = (1-A)B(1-C) + A<1-B)(1-C)

L(2) = AB(1-C)

L(Q) = (1-A)(1-B)C

L(1) = (1-A)BC + A<1-B)C

L(2) = ABC

From inspection it can be seen that adding L(n) from the first

series immediately above to L(n-1) of the second series will produce the

terms of the third conflict function expansion.

Thus the recursive definition of this is

new_L(n) = old_L(n) (1-F(f)) + F(f) old_L(n-1)

... (40)

where L(Q) = 1 - F(1) and L(1) = F(1). Thus the complete algorithm

to generate the conflict function were there are N function terms is

OLD_L(O) := 1-F(1) ;

OLD_L(1) := F(1) ;

FOR J := 2 TO N DO

NEW_L(O) ·- OLD_L(O) * (1-F(J)) ;

OLD_L(J) ·- 0 ;

FOR M := 1 JO J DO

NEW_L(M) := OLD_L(M) * (1-F(J)) + F(J) * OLD_L(M-1) ;

END ;

OLD_L ·- NEW_L ;

END ;

This will result in the L arrays containing the terms of the

conflict function. Now all that is needed is to combine these together

CF : = 0 ;

FOR J ·- 0 TO N DO

CF·:= CF + OLD_L(J)/(J+1) ;

END ;

CONFLICT_FUNCTION ·- CF ;

176

APPENDIX (C)

(C.1) PROPAGATION TABLE

=======================

The reduction operations can alter a mapping by reducing the

constraint set of s process or memory element, or by altering a

Same_Constraint or Different..:_Constraint. In all cases the changes are

ref Lected in the sets

JUST_CHANGED_PROCESS_SET

JUST_CHANGED_MEMORY_SET

JUST CHANGED DIFFERENT PROCESS_CONSTRAINT_SET

JUST_CHANGED_DIFFERENT_MEMORY_CONSTRAINT_SET

JUST_CHANGED_SAME_PROCESS_CONSTRAINT_SET

JUST_CHANGED_SAME_MEMORY_CONSTRAINT_SET

Which records all of the changes produced in the Latest pass of the

constraint operations. Any element which becomes fixed is also recorded

in the sets

JUST FIXED_PROCESS_SET

JUST_FIXED_MEMORY_SET

A newly fixed Same_Constraint or Different_Constraint is detected,

in the implementation, by accessing each such constraint and determining

how many constraint elements they possess.

If any of these sets are not empty at·the end of a pass, then the

information is transferred to the sets

JUST_CHANGED_PROCESS_SAVE_SET

JUST_CHANGED_MEMORY_SAVE_SET

JUST_FIXED_PROCESS_SAVE_SET

JUST_FIXED_MEMORY_SAVE_SET

JUST_CHANGED_DIFFERENT_PROCESS_CONSTRAINT SAVE SET

JUST_CHANGED_DIFFERENT_MEMORY_CONSTRAINT_SAVE_SET

JUST_CHANGED_SAME_PROCESS_CONSTRAINT_SAVE_SET

JUST_CHANGED_SAME_HEHORY_CONSTRAINT_SAVE_SET

177

and this

elements are

follows,

information is used in the next pass to select which

to be examined for constraint reduction. This is done as

ALLOWED_HEMORY_SIZE

All nonfixed memory that can be assigned to a store that contains

a just fixed memory element are examined.

ALLOWED_PROCESS_SIZE

All nonfixed processes that can be assigned to a processor that

contains a just fixed

that contains a just

SAME_MEHORY_SIZE

process element or which accesses a store

fixed memory element are examined.

All Same_Memory_Constraints that are not fixed and contain a

reference to a store which has just had a memory element fixed to

are examined. <A fixed Same_Constraint or Different_tonstraint is

one where all of the constraints have been removed and so it is an

empty constraint).

SAME_PROCESS_SIZE

All Same_Process_Constraints that are not fixed and contain a

reference to a processor which has just had a process element

fixed to it, or which accesses a store which has just had a memory

element fixed to, are examined. . .

MEMORY_PARTITION_SIZE

ALL nonfixed memory elements are examined.

PROCESS_PARTITION_SIZE

ALL nonfixed process elements are examined.

ALLOWED_MEMORY_SET

178

All nonfixed memory elements that are accessed by processes which

access a just changed memory element are examined.

ALLOWED_PROCESS_SET

All nonfixed process elements that access memory elements which

are accessed by just changed process elements are examined.

SAME MEMORY SET_INDIVIDUAL

All nonfixed Same_Memory_Constraints which contain a just changed

memory element are examined.

SAME_PROCESS_SET_INDIVIDUAL

All nonfixed Same_Process_Constraints which contain a just changed

process element are examined.

DIFFERENT_MEMORY_NUMBER

All just changed Different_Memory_Constraints are examined.

DIFFERENT_PROCESS_NUMBER

All just changed Different_Process_Constraints are examined.

DIFFERENT_MEMORY_REMOVE

All nonfixed Different_Memory_Constraints which contain a just

fixed memory element are examined.

DIFFERENT_PROCESS_REMOVE

All nonfixed Differcnt_Process_Constraints which contain a just

fixed'process element are examined.

DIFFERENT_MEMORY_SET

All just changed nonfixed Different_Memory_Constraints are

179

examined.

DIFFERENT_PROCESS_SET

ALL just changed

examined.

nonfixed Different_Process_Constraints are

SAME_MEMORY_SET

ALL just changed nonfixed Same_Memory_Constraints are examined.

SAME_PROCESS_SET

ALL just changed nonfixed Same_Process_Constraints are examined.

DIFFERENT_MEMORY_SET_INDIVIDUAL

ALL nonfixed Different_Memory_Constraints which

changed memory elements are examined.

DIFFERENT_PROCESS_SET_INDIVIDUAL

contain just

ALL nonfixed Different_Process Constraints which contain just

changed process elements are examined.

180

APPENDIX (D)

(D.1) ALGORITHMS AND HAP OPERATORS

==================================

In the following the symmetry redundancy removal algorithm and the

search algorithm are described. The Pascal language is used, with upper

case text representing actual Pascal coding. Lower case text represents

pseudocode that has not been expanded all the way into actual Pascal

code.

After this is a list of all the operators that can be used to access

the state of a partial or complete map allocation.

(D.1.1) SYMMETRY REDUNDANCY REMOVAL ALGORITHM

TYPE

VAR

REDUNDANCY_SET_TYPE <* This is a set of resources, it contains

resources that are equivalent to each other, or

resources that have not yet been shown to be

nonequivalent *)

LIST_TYPE <* This contains a list of redundant sets,

In this list, the ordinal number of the first redundancy

set is 1~ the second is 2 and so on *>

LIST LIST_TYPE ;

Create four redundancy sets, one each for PROCESSOR, STORE, BUS

and BANK. Initialise each set lO contain all the processors,

stores, buses and banks -of the architecture ;

LIST := empty list ;

Insert these four redundant sets into LIST ;

PROCEDURE REHOVE_SYMHETRY_REDUNDANCIES ;

BEGIN

REPEAT

NONTOPOLOGICAL_SEPARATION ; (* Separate the redundancy sets

into subsets to make further redundancy sets, depending

upon nontopologicsl information *>

181

WHILE any redundancy sets in LIST with more than one element

remain DO BEGIN

TOPOLOGICAL_SEPARATION ; (* Separate the redundancy sets

into further subsets depending upon topological

information *)

IF no changes where made in Last step THEN

exit while Loop ;

END ;

REDUCE_SETS ; (* Based upon the contents of the

redundancy sets, reduce the allowed constraints *)

UNTIL no reductions were made in the Last repeat Loop ;

END ;

PROCEDURE NONTOPOLOGICAL_SEPARATION ;

VAR

WORK_LIST : LIST_TYPE ;

NEW_REDUNDANCY , OLD_REDUNDANCY

BEGIN

REDUNDANCY_SET_TYPE ;

Put all redundancy sets into a List called WORK_LIST ;

Initialise LIST to be empty ;

WHILE the WORK_LIST is nonempty DO BEGIN

OLD_REDUNDANCY := a redundancy set extracted from WORK_LIST;

Initialise the set NEW_REDUNDANCY to empty ;

FOR all elements in the OLD_REDUNDANCY, except for the first

element DO BEGIN

IF NONTOPOLOGICAL_DIFFERENT (* if the properties

of the first element differ from this element *) THEN

BEGIN

Extract this element from the OLD_REDUNDANCY, insert

it into NEW_REDUNDANCY set ;

END ;

END ;

IF NEW_REDUNDANCY set is nonempty THEN BEGIN

Place it into the WORK_LIST ;

END ;

Insert OLD_REDUNDANCY into LIST ;

END ;

END ;

182

PROCEDURE TOPOLOGICAL_SEPARATION ;

VAR

WORK_LIST : LIST_TYPE ;

NEW_REDUNDANCY , OLD_REDUNDANCY

BEGIN

REDUNDANCY_SET_TYPE ;

REPEAT

Put all redundancy sets into a list called WORK_LIST ;

Initialise LIST to be empty ;

WHILE the WORK_LIST is nonempty DO BEGIN

OLD_REDUNDANCY := a redundancy set extracted from

WORK_LIST ;

Initialise the set NEW_REDUNDANCY to empty ;

FOR all elements in the OLD_REDUNDANCY set, except for

the first element DO BEGIN

IF TOPOLOGICAL_DIFFERENT (* if the properties of

the processors, banks, buses and stores that access

or are accessed by this element are different

from the kind and properties of those of the first

element *) THEN BEGIN

Extract this element from the OLD_REDUNDANCY set,

insert it into the NEW_REDUNDANCY set ;

END ;

END ;

IF NEW_REDUNDANCY set is nonempty THEN BEGIN

Place it into the WORK_LIST ;

END ;

Insert OLD_REDUNDANCY into LIST ;

END ;

UNTIL no new redundancy sets are created in the last loop ;

END ;

PROCEDURE NONTOPOLOGICAL_DIFFERENCE

BEGIN

CASE kind of element OF

processor element

Two processors are different if they have different

cycle speeds,

brand names,

number of stores attached,

total size of all the stores attached,

process sets, as allowed by the process to processor

constraints.

store element:

Two stores are different if they have different

access speeds,

rewrite recovery times,

memory sets, as allowed by the memory to store

constraints,

number of accessing processors.

bus element:

Two buses are different if they have different

number of processors accessing them,

number of attached stores,

bus delay times.

bank element:

Two banks are different if they have different

bank access times.

END ;

END ;

FUNCTION TOPOLOGICAL_DIFFERENCE

Two elements are different if they have different

attachments Lists. The attachment set of a processor

element is found by using PROCESSOR_ATTACHMENT,

similarly for the others.

PROCEDURE PROCESSOR_ATTACHMENT

BEGIN

Create an initially empty processor attachment List.

FOR all stores that the pro.cessor accesses DO BEGIN

Insert the ordinal number of the redundancy set that

contains the store element into the attachment List.

END ;

FOR all buses that the processor accesses DO BEGIN

Insert the ordinal number of the redundancy set that

contains the bus element into the attachement List.

END ;

FOR all banks that the processor accesses DO BEGIN

Insert the ordinal number of the redundancy set that

contains the bank element into the attachement List.

END ;

Order the attachment List

END ;

PROCEDURE REDUCE_MEMORY_SETS ;

VAR

MEMORY : MEMORY_SET_TYPE ;

POSSIBLE_REDUNDANT_STORES STORE_SET_TYPE ;

STORE : STORE_SET_TYPE ;

REDUNDANCY_SET

BEGIN

RESOURCE_SET_TYPE ;

FOR MEMORY := all memory DO BEGIN

FOR REDUNDANCY_SET := all redundancy sets containing store

elements DO BEGIN

POSSIBLE_REDUNDANT_STORES :=

ALLOWED_STORE_FROM_MEMORY (MEMORY) *
REDUNDANCY_SET ;

IF number of elements in POSSIBLE_REDUNDANT_STORES > 1

THEN BEGIN

STORE := first element from

POSSIBLE_REDUNDANT_STORES ;

Change the allowed stores from MEMORY to

ALLOWED_STORE_FROM_MEMORY (memory) -

POSSIBLE_REDUNDANT_STORES + STORE ;

Exit procedure (* a reduction has been made *)

END ;

END ;

END ;

END ;

Similarly for the processes.

(D.1.2) THE SEARCH ALGORITHM

TYPE

HAP_TYPE (* This will contain one partial or complete

map allocation. This includes the process to

processor and memory to store constraints, and the

185

VAR

proximity constraints. *)

PROCESS_HEHORY_LIST_TYPE (* This is a list of process and

memory elements *)

ELEMENT_TYPE <* Will contain either a process element

or a memory element *)

RESOURCE_TYPE (* Will contain either a processor resource element

or a store resource element *)

MAP_ELEHENT_TYPE = RECORD

MAP : MAP_TYPE ;

RESOURCE : RESOURCE_TYPE ;

THROUGHPUT : REAL ;

END ;

MAP_LIST = list of MAP_ELEMENT_TYPE ;

BEST_EVER_THROUGHPUT : REAL ; (* This contains the throughput

of the best ever final map so far found. If no such map

has been found yet, it contains 0 *)

GLOBAL_SUCCESS : BOOLEAN ; (* This is set to true when a

complete solution is found *)

FINAL_HAP : MAP_TYPE ; (* This will contain the best complete

solution found, if one is found at all *)

PROCEDURE ALLOCATION ; VAR

PROCESS_HEHORY_LIST

MAP : HAP_TYPE ;

PROCESS_MEMORY_LIST_TYPE ;

BEGIN

GLOBAL_SUCCESS := FALSE ;

Initialise the PROCESS_MEMORY list, by

inserting all the process and memory elements into

the list, then sorting them into order.

HAP := Initial input map as specified by the user constraints ;

SEARCH (MAP , PROCESS_MEHORY_LIST) ;

END ;

PROCEDURE SEARCH (

VAR

MAP : MAP_TYPE ;

PROCESS_MEMORY_LIST PROCESS_MEMORY_LIST_TYPE) ;

HAP_LIST MAP_LIST_TYPE ;

NEXT_ELEMENT : ELEHENT_TYPE ;

TEMPORARY : MAP_ELEMENT_TYPE ;

HAP_ELEMENT : MAP_ELEMENT_TYPE ;

RESOURCE RESOURCE_TYPE ;

BEGIN

IF empty_list (PROCESS_MEMORY_LIST) THEN BEGIN

GLOBAL_SUCCESS := TRUE ;

BEST_EVER_THROUGHPUT ·- Throughput (MAP) ;

FINAL_MAP := MAP ;

ENO ELSE BEGIN

NEXT_ELEHENT := First element in PROCESS_MEMORY_LIST ;

MAP_LIST := empty list ;

FOR RESOURCE ·- all resources to which NEXT_ELEMENT may be

assigned, as specified by MAP DO BEGIN

BEGIN

TEMPORARY.HAP :=MAP ;

Using TEMPORARY.MAP, constrain NEXT_ELEMENT to RESOURCE ;

IF legal map created (TEMPORARY.MAP) THEN BEGIN

IF throughput (TEMPORARY.MAP) >

THROUGHPUT_FACTOR * BEST_EVER_THROUGHPUT THEN BEGIN

TEMPORARY.THROUGHPUT := throughput (TEMPORARY.MAP) ;

TEMPORARY.RESOURCE := RESOURCE ;

Insert TEMPORARY into MAP_LIST ;

END ;

END ;

ENO ;

(* MAP_LIST now has a List of the possible resources for the

NEXT_ELEMENT, together with their associated map allocations

and throughputs *)

IF the computer has a homogeneous architecture THEN BEGIN

IF NEXT_ELEMENT is a process THEN BEGIN

Sort the MAP_LIST upon

number of processes in the set (

ALLOWED_PROCESS_FROM_PROCESSOR (

MAP_LISTA.RESOURCE))

END ELSE BEGIN

Sort the MAP_LIST upon MAP_LISTA.THROUGHPUT ;

Reverse the List ; (*puts the maps with the

highest throughput first *)

187

END ;

END ELSE BEGIN
IF NEXT_ELEHENT is a memory THEN BEGIN

Sort HAP_LIST upon

number of processors in the set (

ACCESS_PROCESSOR_FROH_STORE (

HAP_LIST~.RESOURCE))

END ELSE BEGIN

Sort the HAP_LIST upon MIP_LIST~.THROUGHPUT;

Reverse the List ; (*puts the maps with the

highest throughput first *)

END ;

END ;

_,.(* Have now sorted the HAP_LIST so that the most

promising resource targets for NEXT_ELEHENT come first in

the List *)

FOR HAP_ELEHENT := all map elements in HAP_LIST DO BEGIN

IF HAP_ELEHENT.THROUGHPUT >

> THROUGHPUT_FACTOR * BEST_EVER_THROUGHPUT THEN BEGIN

SEARCH (HAP_ELEHENT.MAP ,

PROCESS_HEHORY_LIST - NEXT_ELEHENT) ;

END ;

END ;

END ;

(D.1.3) OPERATOR NAMES

In the List that appears below the names and uses of the operators

that have been mentioned in the thesis are given. These operators are

implemented as Pascal functions that return set type values. Since

Pascal functions can not actually return set types, these are modified

accordingly in the actual Pascal program coding.

ALLOWED_HEHORY FROH_STORE (HAP : HAP_TYPE ;

STORE : STORE_SET_TYPE) : HEHORY_SET_TYPE ;

This returns the set of all memory elements H such that

there exists at Least one store S in the STORE set where

H is~allowed to be assigned to S.

188

I

ALLOWED_STORE_FROH_HEHORY (MAP : HAP_TYPE ;

MEMORY : HEHORY_SET_TYPE) : STORE_SET_TYPE ;

This returns the set of all store resources S such that

there exists at least one memory H in the MEMORY set where

H is allowed to be assigned to S.

ALLOWED_PROCESS_FROH_PROC~SSOR

ALLOWED_PROCESSOR_FROH_PROCESS

Similar to the above.

ACCESS_PROCESSOR_FROH_STORE (STORE : STORE_SET_TYPE) :

PROCESSOR_SET.:.,.TYPE ;

Jfhis returns the set of all processor resources P such that

there exists at least one store S in the STORE set where

processor P can access store S.

ACCESS_STORE_FROH_PROCESSOR (PROCESSOR : PROCESSOR_SET_TYPE) :

STORE_SET_TYPE ;

This returns the set of all store resources S such that
~

there exists at least one processor P in the PROCESSOR set

where processor P can access store S.

ACCESS PROCESSOR_FROH_BUS

ACCESS_PROCESSOR_FROM_BANK

ACCESS_STORE_FROM_BUS

ACCESS_STORE_FROH_BANK

ACCESS_BUS_FROH_BANK

ACCESS_BUS_FROM_PROCESSOR

ACCESS_BUS_FROM_STORE

ACCESS_BANK_FROH_BUS

ACCESS_BANK_FROH_PROCESSOR

ACCESS_BANK_FROH_STORE

Similar to the above two definitions.

FIXED_MEHORY (MEMORY : MEMORY_SET_TYPE) : MEMORY_SET_TYPE ;

This returns all memory H that are in the MEMORY set and

have been allocated to a single store.

FIXED_PROCESS

Similar to the above.

SIZE_UNUSED_STORE (HAP : HAP _TYPE ; STORE : STORE_SET) .: INTEGER

This returns the size of the unused memory space in the

stores of the STORE set.

SIZE_NONFIXED_HEHORY (HAP : HAP_TYPE ;

MEMORY : HEHORY_SET_TYPE) : INTEGER ;

This returns the size of all the nonfixed memory elements

in the HEHORY set.

SIZE_PROCESSOR_U~USED_STORE (HAP : HAP_TYPE ;

,PROCESSOR : PROCESSOR_SET_TYPE) : INTEGER ;
·'

This returns the size of all the unused memory space of

~~ all the stores that are accessible by the processors in the

PROCESSOR set.

SIZE_NONFIXED_HEHORY_OF_PROCESS_FIXED_TO_PROCESSOR (

HAP : HAP_TYPE ;

PROCESS.OR :•!PROCESSOR_SET_TYPE) : INTEGER ;

This returns the size of all the nonfixed memories ,

that are accessed by all the processes that are

fixed t6 the processors in the PROCESSOR set.

SIZE_NONFIXED_HEHORY_OF_NONFIXED_PROCESS (MAP HAP_TYPE ;

PROCESS : PROCESS_SET_TYPE) : INTEGER ;

This returns the size of all the noflfixed memories

that are accessed by all the nonfixed processes that

are in the PROCESS set.

SIZE_THIS_PROCESSOR (HAP : HAP_TYPE ;

PROCESSOR_SET_TYPE) : INTEGER ;

This returns the total store space in all the stores

that the processors of the PROCESSOR set can access.

NONFIXED_SAHE_PROCESS_CONSTRAINT (HAP : HAP_TYPE ;

SAHE_PROCESS_CONSTRAINT :

SAHE_PROCESS_CONSTRAINT_SET_TYPE) :

SAHE_...PROCESS_CONSTRAINT_SET_TYPE ;

190

·· ... ··

This returns all the SAHE_PROCESS proximity constraints

that are in the SAHE_PROCESS_CONSTRAINT set end which

contain processes that ere not yet fixed.

NONFIXED_SAHE_MEHORY_CONSTRAINT

NONFIXED_DIFFERENT_PROCESS_CONSTRAINT

NONFIXED_DIFFERENT_HEHORY_CONSTRAINT

Similar to the above

PROCESS_FROM_SAME_PROCESS_CONSTRAINT (HAP : HAP_TYPE ;

SAHE_PROCESS_CONSTRAINT : SAHE_PROCESS_CONSTRAINT_TYPE) :

PROCESS_SET_TYPE ;

This returns with ail processes P such that P

is mentioned in at least one of the SAHE PROCESS proximity
.1' -

constraints in the SAHE PROCESS_CONSTRAINT set.

HEHORY_FROH_SAHE_HEHORY_CONSTRAINT

PROCESS_FROH_DIFFERENT_PROCESS_CONSTRAINT

HEHORY_FROH_DIFFERENT_HEHORY_CONSTRAINT

Similar to the above

ORED_PROCESSOR_FROH_SAHE_PROCESS_CONSTRAINT (MAP : MAP_TYPE ;

SAHE_PROCESS_CONSTRAINT : SAHE_PROCESS_CONSTRAINT_SET_TYPE) :

PROCESSOR_SET_TYPE ;

This returns the set of all prpcessors P such that P

is in at least one of the target processor sets of

at least one SAHE_PROCESS constraint in the

SAME_PROCESS_CONSTRAINT set. ~

ORED_STORE_FROH_SAHE_MEHORY_CONSTRAINT

ORED_PROCESSOR_FROH_DIFFERENT_PROCESS_CONSTRAINT

ORED_STORE_FROH_DIFFERENT_HEHORY_CONSTRAINT

Similar to the above.

ALL_DIFFERENT_PROCESS_CONSTRAINTS_WITH_PROCESS (HAP HAP_TYPE ;

PROtESS : PROCESS_SET_TYPE) :

DIFFERENT_PROCESS_CONSTRAINT_SET_TYPE ;

This returns with all the DIFFERENT_PROCESS proximity

constraints in the map that contain at least one of the

proce-ssors P, where P is also in the PROCESS set.

191

ALL_DIFFERENT_HEHORY_CONSTRAINTS_WITH_HEHORY

ALL_SAHE_PROCESS_CONSTRAINTS_WITH_PROCESS

ALL_SAHE_HEHORY_CONSTRAINTS_WITH_HEHORY

Similar to the above.

ALL_DIFFERENT_PROCESS_CONSTRAINTS_WITH_PROCESSOR (

HAP : HAP_TYPE ;

PROCESSOR : PROCESSOR_SET_TYPE) :

DIFFERENT_PROCESS_CONSTRAINT_SET_TYPE ;

This returns with all of the DIFFERENT_PROCESS constraints

in the map that mention processor P, where P is also

a member of t~e PRQCESSOR set.

ALL_DIFFERENT_HEHORY_CONSTRAINTS_WITH_STORE

ALL_SAHE_PROCESS_CONSTRAINTS_WITH_PROCESSOR

ALL_SAHE_HEHORY_CONSTRAINTS_WITH_STORE

Similar to the above.

FIXED_PROCESS_FROH_PROCESSOR (HAP : HAP_TYPE ;

PROCESSOR :.1,PROCESSOR_SET_TYPE) : PROCESS_SET_TYPE ;

This returns ell the processes P such that process

P is fixed to processor PSR, where PSR is a member of

the PROCESSOR set.

FIXED_HEMORY_FROH_STORE

Similar to the above.

192

APPENDIX (E)

===========~

(E.1) INFORMATION SPECIFICATION LANGUAGE
==

The information specification language (ISL) allows a machine understand­

able definition of a computer architecture to be constructed. It also

provides the user with the faclltleis to guide the resource allocation , t

activity.

This appendix will describe in detail the basic structure of this J1anguage,

and introduce the.parts of the Janguage concerned with the definition of a

computer arc~itecture. It starts with a section on reference, or how to _,.
access a particular vertex from a given starting vertex. After this the

I

operatJ~ns of creating new vertices and attaching them to the existing graph

are explained. These allow the construction of an ISL graph structure.

Eventually other parts of the ISL, which deal with the declaration of the

names used In the language and the grouping of the ISL statements, are

described •

. (E,.2) STATEMENTS

================

An ISL program consists of statements and definitions. Statements

are used to perform the actions of creating a graph. Definitions are

used to define various identifiers that are used by the statements. In

the following statements will be described first, followed by

definitions.

193

Firstly, the syntax of a stete•ent block is

,

Statement_Block = < Statement }- ;

Statement = Assignment_Statement

Attach_Statement

For_Statement

If Statement - '

Procedure_Call_Statement ;

T~~se statement kinds are discussed in turn.

·\ ('~.2.1) ASSIGNMENT STATEMENTS
I

----·------------------------

An assignment statement will assign a value to a variable. The

syntax is

Assignment_Statement =
Variable_Identifier,

Expression =

":=", Expression,
'

Simple_Expression, ~

"·" . , ,

C Comparis\on_Operator, Simple_Expression J _;

Compar{~fon_Operator = "<" I ">" I "<=" I ">="
·.: / ~ -

Simple..:_Expression =

"=" I "<>" ;

[Unary_Operator J, Term, { Term_Operator, Term } ;

194

I

Unary_Operator = "+" I "-" ;

Term_Operator = "OR" I "+" I "-" ;

Term = Factor, < Factor_Operator, Factor) ;

Factor_Operator = "*" I "/" I "AND" ;

Factqr = Unsigned_Constant I Variable_Identifier

Reference I Special_Function I
Bracketed_Expression Not_Factor ;

Not.:_Factor = Not_Operator, Factor ;

Not_Operator = "NOT" ;

Bracketed_Expression = "(", Expression, ")" ;

Unsigned_Constant = Constant_Identifier I String I
Unsigned_Number ;

This syntax definition allows standard arithmetical expressions

using integers, reals, booleans

provides for scalar variables and

and strings to be constructed. It

constants in these expressions. It

also provides References and Special_Functions. These are used in

statements that access a graph structure.

(~.2.2) OPERATOR DEFINITIONS

The operators used in an expression are given below, in their

precedence order.

Comp~~i·P~Operator < > <= >= <> =
Term_Operator OR +
Factor_Operator * I AND

Not_Operator NOT

195

The Not_Operator is a monadic operator, it accepts one argument to

generate its result. The two Unary_Operators are also monadic. The other

operators are dyadic operators, they accept two arguments to generate

one result. Each operator requires arguments of the appropriate type.

Furthermore for dyadic operations the types of the two arguments used

must be identical. The type of the output result may depend upon the

type of the arguments.

The allowable types of an expression are INTEGER, REAL, STRING,

BOOLEAN and SET. The first four have the standard properties, while the

SET type refers to sets of vertices of a graph.

The operators with their allowed argument

corresponding result types are listed in

Operator Argument type

< > <= >= Integer, Real

= <> Integer, Real, String

= <> Set, Boolean

OR Boolean

+ Integer

+ Real

+ Set

* I Real, Integer

* Set

AND Boolean

NOT Boolean

unary + - Integer

unary + - Real

The operations that are specific to the ISL are

SET type arguments. Such sets contains vertices

the

types

table

and the

below.

Result type

Boolean

Boolean

Boolean

Boolean

Integer

Real

Set

Real

Set

Boolean

Boolean

Integer

Real

those concerned with

of the graph. The

operations of set union, set subtraction and set intersection which are

defined upon these have the usual set semantics.

196

Root vertex

1

M
--~

Figure\~.2

~~.2.3) REFERENCE~

----·-------------
~

Given an information graph structure, a means of accessing

individual elements within this is required. The use of references for

this purpose will now be described.

For a graph G=CX,H), the attached name set of a vertex Xi, for the

name N, can be defined. It is the set of all vertices Xj that are

attached to Xi and which have a name function FnCXj) of N. This set is

represented by the notation Fattach(Xi,N).

The vertices in an attached name set are ordered, forming the

attached name list CXj1,Xj2,Xj3, •••). Generally the vertices are ordered

in the same sequence in which they are created, this is discussed fully

in section<ei.2.4>, on attach statements. Any vertex in an attached name

set can be referred to uniquely by giving its ordinal position in the

attached name list. This is called the index of the vertex Xj with

respect to Xi. This is represented by the notation Findex(Xi,Xj).

Jn the graph of figure<EL2> the vertices in the attached name set of

the vertex A, for the name N, are circled. The numbers on the arcs

leading to these vertices represent their index values.

Every reference starts from some vertex or set of vertices. This set

is called the starting set of the reference. The reference will refer to

the vertices of this starting set, or it will refer to vertices that are

197

ettached to the vertices of this starting set. T~e vertices that the

reference refers to ere called the reference set of the reference.

I
(~~2.3.1) REFERENCE SYNTAX

..........................

The syntax for a reference is

Reference =
Reference_Start, < If II . , Selector_Reference > ;

Reference_Start = "&" I Reference_Se.t_Variable_Identifier ;

Se{ector_Reference = Vertex_Selector

Conditional_Selector

Bracketed_Reference .
I

Bracketed_Reference = "(", Reference_Set_Expression, ")" ;

Reference_Set_Expression = Expression ;

Vertex_Selector = ".", Vertex_Name_Identifier, [Selector_Index l;

Selector_Index = "(", Integer_Value, ")" ;

CEL2.3.2) SELECTOR REFERENCES

The simplest reference is

a

and this will refer to all of the vertices in the references

starting set. This starting set may be the root vertex of the graph, in

which case this reference will refer to just the root vertex.

NOTE. The BNF format used to define the syntax follows the

British Standard BS 6154 as described in [77J. In the

following syntax definitions integers are never used in the

metaidentifiers of a definition. In an example of a definition

a metaidentifier may appear with an integer immediately after

198

The

it. This refers to an actual (unspecified) example of the

metaidentifier. Thus a syntax definition may be

A = B, C, B ;

B = "bb" "bbb" ;

C = "cc" "ccc" ;

Two specific examples of an A are

bb cc bbb

bb cc bb

A generalized example of an A could be

B1 cc B2

where 81 and B2 refer to some (unspecified) actual expansion of

B. In the following

B1 cc 81

B1 refers to the same (unspecified) expansion of B in both

cases.

next simplest reference is by using a Vertex_Selector,

8.Vertex_Name_Identifier1

This reference will produce a reference set which contains the

vertices

Fattach(Xr1,Vertex_Name_Identifier1)

Fattach(Xr2,Vertex_Name_Identifier1)

Fattach(XrN,Vertex_Name_Identifier1)

where the set < Xr1, Xr2, ••• XrN > is the reference set of the simple

reference &. In other words, the reference set contains all vertices of

•.

199

Root vertex Root vertex

Figure .E~3

name Vertex_Name_Identifier1 that are attached to all the vertices of

the starting set.

Using a Selector_Index creates the reference

a • Vertex_Name_Identifier1 (Integer_Expression1)

This produces the reference set< Xn1, Xn2, ••• XnN >where

Xni is an element of the reference set of

&.Vertex_Name_Identifier1, for all i from 1 to N.

For some Xrj that'is an element of the reference set &,

Findex(Xrj,Xni) is equal to Integer_Expression1.

Informally, a Selector_Index will give a reference set which

contains only vertices that have the indicated index· value with respect ,,
to the vertices in the starting set to which they are attached.

As an example, the reference sets of the following two references

are indicated in figure~E.3>.

8.N

8.NC2>

(•• 2.3.3) USING REFERENCE SET VARIABLES

.......................................

A reference set variable may be used in a reference to supply its

starting set. Given an assignment like

200

The vertices
in the reference

@.A.B(l).C

"

The vertices in
reference

@.A.B.C

the

vertex

The vertices in
the reference

@.A(3).B(2) .C(l)

Figure _E-4

Vertex_Name_Set_Identifier1 := 8

then the reference

The vertices in
the reference

@.A.B.D

Reference_Set_Variable_Identifier1 c Selector_Reference1

will be equivalent to the reference

8 • Selector_Reference1

As an example,

REF := 8 ;

REF.C is now equivalent to s.c

(E~2.3.4) HORE THAN ONE SELECTOR REFERENCE

..

A Reference may have any number of Selector_References to it. A

reference 'like

201

fil .• Selector_Reference1 • Selector_Reference2 •

Selector_ReferenceN • Selector_ReferenceH

where H = N+1, will produce a reference set. This will be equivalent

to the reference set produced by the following reference

S • Selector_ReferenceH

where S is a reference set variable, and its contents is specified

by the assignment

S := fil •. Selector_Reference1 • Selector_Reference2

Selector_ReferenceN

Some example references with more than one Selector_Reference are
,

given in figure(3.4>.

(~.2.3.5) BRACKETED REFERENCES

· A reference expression may be bracketed.

the references inside t~e brackets, that

reference that is placed in front of the

reference is like

&. < Reference_Expression1)

The starting ·set for all

use a; is supplied by the

brackets. If a bracketed

then this will give the same reference set as the expression

'
Reference_Expression1

If the bracketed reference is

S • (Reference_Expression1)

where S is either a reference set variable or a reference, and

Reference_Expression1 contains the factors

Reference1, Reference2, ••• ReferenceN, •••

202

then the bracketed reference will generate the same reference set as

the expression

Reference_Expression1 '.

where each reference ReferenceN that starts with a &I has this

replaced with S.

Thus

i.A.B

has the root vertex as its starting set.

&l.X.Y. (&l.A.B)

However here the reference S.A.B has the reference set of &l.X.Y as

its starting set. This reference is equivalent to the reference

i.X.Y.A.B

Another example is

&l.X.Y. (&l.A.B + &l.C.D * &l.E.D)

Here each of the references i.A.B, i.C.D and &l.E.D has the reference

set of &l.X.Y as its starting set. This reference produces the same

reference set as the reference

S.X.Y.A.B + &l.X.Y.C.D * i.X.Y.E.D

(E.2.3.6) CONDITIONAL REFERENCES

A conditional selector is a means of selecting vertices from a

reference set which satisfy some given conditions. It is written .
according to the syntax

Conditional_Selector = "<", Boolean_Expression, ">" ;

Boolean_Expression = Expression ;

203

The simple conditional references

Reference1.< True>

Reference2.< False >

will generate either the

case, or the empty

reference

reference

set of

set

Reference1 in

in the second

the first

example.

A general Conditional_Selec~or of the form

Reference1 • < Boolean_Expression1 >

will produce the reference set given by the expression

S1.< Boolean_Expression1 > +
S2.< Boolean_Expression1 > +

Sn.< Boolean_Expression1 >

..

where Si is a reference set variable that is equal to <Xi>, and the

set <X1,X2, ••• X~> is the reference set of the reference Reference1.

That is the boolean expression is evaluated for each of the vertices

in the reference set of Reference1, and if it comes out true that vertex

will be placed into the result reference set. The evaluation of the

Boolean_Expression proceeds like any other expression, except that

Reference1 provides the starting set for any reference that may appear

in it.

Several special purpose functions are provided which are useful in

this' context. Their syntax is

Special_Function = Number_Function I Empty_Function I
All_Value_Function I Any_Value_Function

Value_Function ;

Number _Function = "NUMBER", "(", Reference_Expression, ")"

Empty_Function = "EMPTY" "(", Reference_Expression, ..) " ,
Value_Function = "VALUE" "(", Reference_Expression, ")" ,
Any_Value_Function = "ANY_VALUE",

204

. ,
;
. ,

"(", Reference_Expression, Comparsion_Operator,

Simple_Expression, ")" ;

All_Value_Function = "ALL_VALUE",

"(", Reference_Expression, Comparsion_Operator,

Simple_Expression, ")" ;

A function like

NUMBER (Reference_Expression1)

will return the integer number of vertices in the reference set of

Reference_Expr~ssion1. A function like

VAlUE (Reference_Expression1)

,
assumes that there is one only vertex in the reference set of

Reference_Expression1, and this vertex has a value. The function will

return this value, the type of the result being the same as the type of

the value. If the initial assumption is false, then this is treated as

an error. A function like

EMPTY (Reference_Expression1)

will return the same result as the equivalent. expression

(NUMBER (Reference_Expression1) = 0)

A function of the kind

will

ALL_VALUE (Reference_Expression1 Comparsion_Operator1

Simple_Expressiont)

return the same result as the equivalent

)\

(VALUE (S1 Comparsion_Operator1 Simple_Express ion~\~~)
VALUE (sz Comparsion_Operator1 Si mple_Express ion ~7)

expression

AND

AND

VALUE (SN Comparsion_Operator1 Simple_Expression1·>)

205

where S1,S2, ••• SN are reference set variables such that

S1 is equal to < X1 } ,

S2 is equal to < X2 } ,

SN is equal to < XN }

and the set < X1, X2, ••• XN } is the reference set of the reference

Expression_Reference1. Thus this gives a true result if every vertex in

the reference set satisfies the comparsion. It returns a false value if

the reference- set of Reference1 is empty. The last function is

ANt_VALUE (Reference_Expression1 Comparsion_Operator1

Simple_Expression1)

and this returns a boolean type result equal to

'·

(VALUE (S1 Comparsion_Operator1

VALUE (S2 Comparsion_Operator1
Simple_Expressif!'i~i,) OR
Simple_Expression1 > OR

; .

VALUE (SN Comparsion_Operator1 Simple_Expression1 > >

In other words, it returns a true result if any one of the vertices

in the reference set of Expression_Reference1 satisfies the condition If

the reference set is empty, it returns the f~-lsej result.
-- --......-- < ~t.

<El2.3.7) CONDITIONAL SELECTOR EXAMPLES

.......................................

In the following some examples using the above syntax definitions

are given.

A reference like

Reference1. < NOT EMPTY (Reference2) >

will produce a reference set of all vertices Xr which satisfy the

conditions

2o6

@.A. <NOT EMP'l'Y(@.B)>

Root· vertex

@.A.<NUMBER(@.B)=2>.

c B B

Root vertex

Figure E\.5

@.A.<ANY-VALUE
(@.B)=7>

B=7

Figure Ei.6

Root vertex

B B B C

Figure El. 7

·207

c

Root vertex

B=8 B=7 B=9

Xr Is In the reference set of Reference1 and

The reference set of Ser. (Reference2) Is nonempty.

Sxr Is a reference set variable and Is equal to the reference set {Xr}.

A specific example is

i . < NOT EMPTY (til.A) >

This will select the root vertex if it has a A vertex attached. If

it does not, then it returns vith an empty reference set. If the

expression is

a ~· A • < NOT EMPTY (til.B) >

,
then this will select all vertices A attached to vertices in the

starting set such that each vertex A has one or more attached B

vertices. Thus this expression selects the vertices as shown in

figure(3.5).

· An example reference using an arithmetical comparsion is

& . A • < VALUE (til) = 6 >

This assumes that all vertices A have a nonnull value function

result, and will select all such vertices whose value is equal to 6.

Another example is

&.A. < ANY_VALUE (S.B) = 7 >

This will select all vertices A_ which

whose value is 7. These two examples are

Another example is the reference

&.A.< NUMBER C&.B) = 2 >

have an attached vertex B
'

depicted in figure(3.6).

which will select all the

This is shown in figureC3.7>.

A vertices with two B vertices attached.
)

208

Root vertex Root vertex vertex

B C

B c· c c
1be solid lines represent the orginal arcs, the dashed lines represent the
new arcs· added by the statement@.A.B -> @.A.C

Figure S.8

.·(•• 2.4> ATTACH STATEMENTS

The attach op~ration will attach a vertex X1 to another vertex X2.

Its syntax is

Attach_Statement = Attach_Operation,

Attach_Operation =

"·" . I I

Attach_Reference, < "->", Attach_Reference >- ;
Attach_Reference = Reference_Expression I New_Operation ,

Bracketed_Attach_Reference ;

Bracketed_Attach_Statement =
"(", Attach_Operation, < ",", Attach_Operation >, ")" ;·

Reference_Expression = Expression (t giving e SET type result t) ;

An attach statement like

Reference1 -> Ref erence2

will create directed arcs of the form CXr1,Xr2>, if Xr1 is a member

of the reference set of Reference1 end Xr2 is a member of the reference

set of Reference2, and the arc does not already exist.

209

',_,

Root vertex

@.A(2)

1

,, ' B , '
. I I ,_,

Fattach(@.AC+>, B) Fattach(@.A(2), B)

Figure El.9

As an example, the effects of the statement

lil.A.B -> &.A.C

are shown in the graph of figureCE.8>.

NOTE. In order to show the effects of the attach statements

with graphs, the following convention is adopted. If the graph

is demonstrating an attach statement

Reference1 -> Reference2

which generates the new arcs (Xc1,Xr1>,CXc2,Xr2>, •••• then

these arcs may be drawn with dashed lines in the graph.

Similarly in a graph newly created vertices may be drawn with

dashed circles.

<El2.4.1) INDEX ORDERING

The vertices Xr2 will now have index values with respect to the

vertices Xr1 that they have just been attached to. These are the indices

used in Vertex_Selector_References. How these are ordered is described

in this' section.

Define the function

X, such that FnCXi)

Fname to be the set of vertices Xi from the set

equals a given name N. This is represented by

Fname (X,N)

and is called the name set. It is a generalized. version of an

attached name set, where an attached name is the name set of a single

vertex. Thus

Fattach CXi,N) = Fname CXi,N) , where Xi is a single vertex.

As an example, in the graph of figufe(~.9), the attached name set of ,·
a.AC1> and of a.AC2) are indicated. The set union of these reference

sets form the name set of a.A.

Just as an attached name set has an attached name list, then a name

set has a name list. This name list is represented by

C Xf1, Xf2, XfN)

where Xf1.:Xf~ are elements of the
' ~

rules used to o~der this is given.

-~

name set. In the following the.

Each of the vertices Xf1 is a member of Reference2. Therefore there

will be a reference like

&.N1(11).N2CI2) •••• NmCim)

which will reference each Xfi. Here Im is the index of Xfi with

respect to the vertex to which it is attached, and Nm is the name of

Xfi. Thus each Xfi will have associated with it one or more lists

C I1, I2, ••• Im)

The ordering function is defined on

CI1,I2, ••• Im) can be defined to

CJ1,J2, ••• Jn),

these index lists. An index list

be less than the index list

@.C.B

Root vertex

@.F(1) .B
@.F(2).B

B

@.E.F .B(2)

Figure· E~ 10

F

If Ik = Jk for ell k = 1 to p, p<n and p<m, and Ip+1<Jp+1 or

If Ik = Jk for ell k = 1 to m end n>m.

If the index lists for two vertices ere equal, then there are two

possibilities. Either the vertices ere identical, _ _,in which case the

Lowest index List is used to order this vertex with respect to others.

Alternatively the two vertices may be different. Jn this case the order

is undefined.

Using these ordering rules, the vertices of a reference when it is
,.,.

used in en attach statement can now be ordered.

Informally, the order of the vertices in one attached name set is

given by its indices. If two attached names sets ere combined together,

then the vertices in one attached name set will come first. Which

attached name set comes first is choosen on the basis of the index
' ordering of the parent vertices of the attached name sets. If there are

more attached name sets, then each is ordered in a similar manner.

Finally a Yertex appearing in more than one attached name set is given

the Lowest ordering possible.

As an example, the graph of figure<EI. 10) provides the fol Lowing

index lists.

212

(1,1) for the vertex referenc~d by S.C.B

(1, 1) for the vertex referenced by i.D.B

<1,1,1) for the vertex referenced by lil.E.F.8(1)

(1,1,2) for the vertex referenced by fil.E.F.8(2)

(1,1) for the vertex referenced by S.FC1>.B

(2,1) for the same vertex as the above referenced by S.F(2).B

The index list of the reference til.F(2).B will be ignored since the

same vertex is referenced by a smaller index list (1,1). The remaining

index lists will be ordered like

<1,1) (1,1) (1,1) (1,1,1) (1,1,2)

where the order of the first three vertices will be undefined.

CS.2.4.2) ORDER OF VERTICES AFTER AN ATTACH

Using the ordering definition, an alternative definition of the

actions of an attach statement can be given. Assume that the attached

name set of a vertex Xr1 for the name N in Reference1 is Xa. Then after

the execution of the statement

Reference1 -> Reference2

the attached name set of a vertex Xr1 for name N will be .,,

Xa + Fname (reference set of Reference2 , N)

The attached name list can be correspondingly defined as

(Xa1, Xa2, ••• XaN, Xf1, Xf2, ••• XfH)

where Xfi is an element of the name set of Reference2 and Xf1 is not

a member ot Xa. This list defines uniquely the index value of a newly

attached vertex with respect to its parent vertex.

213

Root vertex

B c

Figure_ E.11

i'I
(S.2.4.3) HULTIPLE'ATTACH STATEMENTS

'

Given a statement like

D

Reference_Expression1 -> Reference_Expression2 -> •••

Reference_ExpressionN ;

for some N, then the action of

Reference_Expression1 -> Reference_Expression2 ->

Reference_ExpressionN -> Reference_ExpressionH ;

will be to create all the arcs of the form (Xrn,Xrm>, if such an arc

does not already exist, where Xrn is a member ·of the ReferenceN

reference set, and Xrm is in the Reference_ExpressionH set. Thus the

graph of figure(E~11> shows the result of the statement

&.B -> &.C -> &.D

<EL2.4.4> NEW OPERATION

A new vertex can be created by a NEW statement. This has the syntax

New_Operation =
"NEW", "(", Vertex_Name, C "=", Expression J, ")" ;

214

A statement like

& -> NEW (Vertex_Name1)

where & represents in this case the root vertex, will create a new

vertex, give it the indicated name, set its value function to null, and

attach it to the root vertex.

If an attach statement is like

Reference1 -> NEW (Vertex_Name1)

then this is equivalent to

S1 -> Xnew1

S2 -> Xnew2

SN -> XnewN

S1 is the set < Xr1 }

S2 is the set < Xr2 }

SN is the set < XrN }

In this, S1,S2, ••• SN are reference set variables

given in the rig~t hand side. The set <Xr1,Xr2, ••• Xrn}

whose values are

is the reference

set of the reference Reference1, and Xnew1 •• XnewN are distinct new

vertices, each having the name Vertex_Name1 and a null value.

If an Attach_Statement is like

Reference1 -> NEW (Vertex_Name1) -> Reference2 ;

then this would be equivalent to the actions

Reference1 -> NEW (Vertex_Name1) ;

S1 -> Reference2

S2 -> Reference2

S1 is the set < Xnew1 }

S2 is the set < Xnew2 }

SN -> Ref erence2 SN is the set < XnewN }

where S1,S2, ••• SN are reference set

< Xnew1, Xnew2, ••• XnewN } contains all of the

the attach statement

215

variables. The set

new vertices created by

Root vertex

9
I
I
I

,'1,
'" A

Root vertex

9

I

)\
·r A,

I

I
I

A

Root vertex Root vertex Root vertex

9-> NEW(A)
{~ B (\ B B

@-> NEW(A)-> @.A -> NEW(B) @-> NEW(A) -> B @. A(2) -> NEW(B)
NEW(B)

Figure EL12

Reference1 -> NEW (Vertex_Name1) ;

Another kind of NEW operation is

NEW < Vertex_Name1 = Expression1)

which will also create a new vertex and attach it, except that the

value of the vertex will not be null, it will be set to the indicated

expression. This expression has to give a type of INTEGER, REAL, STRING

or BOOLEAN. The SET type is not allowed.

An example is

Q -> NEW (A = 3)

Once a vertex has been created, its name and value can not be

changed. A vertex can not be destroyed. The operation of attaching the

new vertex to the context base is also irreversible.

Finally, if an attach statement is like

Q -> NEW (Vertex_Name1) ;

and creates an arc (Xr1,Xr2), then

?16

Findex (Xr1,Xr2) = Number of vertices in the set
Fattech (Xr1,Vertex_Name1)

In other words the vertices are numbered in the order in which they

are created.

('>

The graphs of figure<~.12) demonstrate some possible examples.

(~.2.4.5) BRACKETED ATTACH STATEMENTS

.....................................

An attach statement of the form

Att'ach_ReferenceO -> (Attach_Operation1) ;

can also be represented as

Attach_ReferenceO -> (Attach_Reference1-> ••• Attach_ReferenceN)

where the Attach_Operation has be expanded into its separate

Attach_Reference parts. This statement is equivalent to the following

Attech_ReferenceO'-> Attach_Reference1 -> Attech_ReferenceN ;

A general attach statement of the form

Attach_Reference1 -> (Attach_Operation1, •• A~tach_OperationN) ; - ~

is equivalent in its actions to the separate attach statements

S := Attach_Reference1 ;

S -> (Attach_Operation1) ;

S -> (Attach_OperationN) ;

where S is a reference set variable.

217

Root vertex

Figure e:.13

(E11.2.5) INITIAL CONSTRUCTION OF A GRAPH

The initial graph available, before any vertices have been created,

has only one vertex. This is the root vertex, which is the vertex used

in the default context of a reference or statement. Thus to create a

graph like that in figure(E~13>, requires the operations· shown below

8 -> (NEW (A) , NEW (A) , NEW (B)) ;

&.A -> NEW (C) ;

&.A(1).C -> NEW (D) ;

(Ei.2.6) REPETITION CONSTRUCT

The action of a single statement may be repeated a number of times.

This achieved by a For_Statement, defined by the syntax

For_Statement = For_Head, Statement_Block, "END",

Statement_Block = < Statement } - ;

For_Head =

"·" . , ,

"FOR", < For_Number I For_Iteration I For_Each >, "DO" ;

For_Number = Integer_Expression ;

218

Root vertex

c c c c c

Figure E!.14

Root vertex

c c

D D D

Figure El.15

Root vertex

c c

D D D

' Figure El.16·

219

For_Iteration = Variable_Identifier, ":=",
lnteger_Expression, "TO", Integer_Expression ;

For_Each =
Reference_Set_Variable_Identifier, ":=",

"EACH", "(", Reference_Expression , ")" ;

A For_Statement like

FOR lnteger_Expression1· DO Statement_Block1 END ;

is equivalent to the reference

Statement_Block1 ; Statement_Block1 ; Statement_Block1 ;

w~ere the number of Statement_Blocks is as given by the integer

expression in the FOR statement. An example is

FOR 5 DO

& -> NEW C C) ;

END ;

Starting with an uninitialized graph containing .
vertex, this For_Statement will create the graph of

For_Statement like

FOR Variable_ldentifier1 :=

lnteger_Expression1 TO Integer_Expr~ssion2 bO

Statement_Block1 END ;

is equivalent to

Variable_Identifier1 := Integer_Expression1 ;

Statement_Block1 ;

only the root

figure(E:.14>. A

Variable_Identifier1 := lnteger_Expression1 + 1 ;

Statement_Block1 ;

Variable_ldentifier1 := lnteger_Expression2 ;

Statement_Block1 ;

220

Here the statement block is called once for each different value of

the index variable. This takes on the values from Integer_Expression1 to

Integer_Expression2 inclusive.

An example of this is

FOR I := 2 TO 4 DO

8.C(I) -> NEW (0) ;

END ;

If this For_Statement starts with the gr.aph of figure<El.14> then the

graph of figure~~~15> will be constructed.

A For_Statement like

FOR Reference_Set_Variable_Identifier :=

EACH (Reference_Expression) DO

Statement_Block1 END ;

will be equivalent to the following statements

Statement_Block1 ;

Statement_Block1 ;

Stetement_Block1 ;

Reference_Set Variable_Identifier1 is < X1 >
Reference_Set_Variable_Identifier.1 is < X2 >

Reference_Set Variable_ldentifier1 is { XN >

where the text in the right hand side is not part of the ISL but

indicates what value the Reference_Set_Variable_ldentifier1 has. The set

< X1, X2, ••• XN > if equal to the reference set obtained from Reference1.

In other words, this sets the Refer.ence_Set_Variable_Identifier to each

of the vertices in the reference, performing the Statement_Block once

for each. An example is the statement

FOR S := EACH (S.C.< NOT EHPTY (&.D) >) DO

S.D -~ S ;

END ;

which, if it starts with the graph in figure<S.15), will create the

graph of figure;<E.16>.

',221:

(~.2.7) IF STATEMENTS

A conditional statement may be used to govern the execution of a

statement block. The syntax of an If_Statement is

If_Statement = "IF", Conditional_Expression,

"THEN", Statement_Block, ["ELSE", Statement_Block l ;

An if statement like

IF Conditional_Expression1 THEN Statement_Block1 ;

will be· equivalent to the following

Statement_Block1

if the condition is true. If the condition is false then the

If_Statement has no action. An if statement like

IF Conditional_Expression1 THEN Statement_Block1

ELSE Statement_Block2 END ;

is equivalent in its results to

Statement_Block1 ;

if the condition is true. If the condition is false then the

If_Stetement is equivalent to

Statement_Block2 ;

An example IF statement is

IF I > 2 THEN

& -> NEW (A) ;

END ;

If I is greater than 2, then this statement will create a new A

vertex. Another example is

222 '

Root vertex

A A

B B

t>---.---
D C=2 C=3 D

Figure Ej.17

IF NOT EMPTY (S.A.B.< ANY_VALUE(&.C)=3 >) THEN

&.A.B.C -> NEW (D) ;

END ;

which will create a new D Vertex for the C vertices in the reference

A.B.C only if there exists at least one C vertex vith a value of 3. The

action of this is visible in the graph of figure(~.17).

C~.3) DECLARATIONS

==================

In the preceding sections

statements have been defined.

identifiers. In the following

the

These

the

used to define these names is given.

<E~3.1) CONSTANT IDENTIFIERS

basic' graph creation and access

statements have used various kinds

syntax of the declarations that are

The constant definition pert defines identifiers that represent

constant values. There after these identifiers •ay be used in the

specifications in place of an actual constant value. The constants may

be real, integer, string or boolean.

223

The syntax of a constant definition part is

Constant_Definition_Part =
"CONST", One_Constant_Definition,

< ",", One_Constant_Definition }, ";" ;

One_Constant_Definition = Identifier, "=", Constant_Value ;

Constant_Value = C Unary_Sign l Unsigned_Integer

C Unary_Sign l Unsigned_Real I
String

True False ;

An example constant definition part is

CONST A=3.4, 8=2, C='string', O=True;

<EL3.2) VERTEX IDENTIFIERS
I

The vertex definition defines identifiers that may be used as the

names of vertices in NEW operations. As well the ISL may provide some

predefined vertex names, depending upon the requirements of the resource

allocator application. Only names defined by the user or predefined

names may be used to create and to refer to vertices. The syntax is

Vertex_Definition_Part =

"VERTEX", Identifier, <

and an example is

VERTEX A , B , C ;

<EL3.3) VARIABLE IDENTIFIERS

" " , , Identifier >, H •II • , ,

The variables are defined in a Variable_Declaration_Part with the

syntax

224

Varieble_Declaretion_Part =

"VAR", < Var_Declaration_List, ";" }- ;

Var_Declaretion_List =

Identifier, < ",", Identifier }, ":", Var_Type, ;

Var_Type = "INTEGER" I "STRING" I "REAL" I "BOOLEAN" I "SET" ;

An example is

VAR

A, B INTEGER ;

S SET ;

which will define two integer variables of names A and B, and define

a reference set variable of name S.

(E.3.4) PROCEDURE DEFINITIONS

A procedure defines a Statement_Block and gives it a name.

Thereafter this statement block may be invoked by using this name. The

syntax of a procedure definition is

Procedure_Definition =
"PROCEDURE", Procedure_Name_Identifier,

[Formal_Parameter_List J, Local_Definition_Part,

"BEGIN" Statement Block "END" "·" • , - , , , ,

Local_Definition_Part = [Constant_Definition_Part J,

[Vertex_Definition_Part J,

[Variable_Definition_Part] ;

Formal_Parameter_List = "(", One_Formal_Paremeter,

< "," , One_Formal_Parameter >, ")" ;
One_Formal_Parameter = Identifier_List, ":", Var_Type ;

Identi.fier_List =Identifier,<",", Identifier};

The procedure may be called by using a procedure call statement. The

syntax of this is

225

Procedure_Call =
Procedure_Name_Identifier, [Actual_Parameter_List] II• It • , , ,

Actual_Parameter_List = "(", Actual, <
Actual = Expression ;

" " , , Actual >, ")" ;

<El3.4.1> PARAMETER LISTS

..........................

A procedure defined without a formal parameter list, as in

PROCEDURE Identifier1 ; ,.
BEGIN Statement_Block1 END ;

can be called with a procedure call without any actual parameters.

Thus

Identifier1 ;

A procedure -defined with a formal parameter list containing a

One_Formal_Paremeter like

Identifier1, Identifier2, ••• IdentifierN : Ver_Type1

is equivalent to a procedure defined with a formal parameter list

like ~

Identifier1 : Var_Type1 ; Identifier2 Var_Type1 ;

••• IdentifierN : Var_Type1 ;

A procedure defined with a nonempty formal parameter list such as -

PROCEDURE Identifier1

< Identifier1 Var_Type1 ;

Identifier2 : Var_Type2 ;

IdentifierN : Var_TypeN) ;

Statement_Block1

END ;

is called by a Procedure_Call of the form

Identifier1 (Actual1, Actual2, ActualN) ;

where there are the same number of Actual parameters as there ere

formal parameter identifiers. Furthermore the types of the corresponding

actual and formal parameters must agree.

(E~3.4.2> PROCEDURE SEMANTICS
I

.............................

Given a procedure of the form

PROCEDURE Identifier1 Formal_Parameter_List1 ;

Local_Definition_Part1

BEGIN

Statement_Block1

END ;

then a procedure call to this procedure like

Identifier1 Actual_Paremeter List1 ;

will have the same actions as an equivalent group of statements

constructed by modifying the statements of Statement_Block1. If there is

a formal parameter IdentifierF in the procedure declaration, then there

will also be a corresponding actual parameter ActualP. The equivalent ..
statements are constructed by replacing every mention of IdentifierF by

ActualP.

All the identifiers defined inside the procedure and thus used in

the above equivalent statements will need to be defined in equivalent

definitions. Thus every identifier in the Local_Definition_Part of the

procedure will be defined with the same type in the equivalent

definitions.

227

-(El.3.~.3) EXAMPLES

..................

An example procedure definition is

PROCEDURE P (S : SET) ;

BEGIN

S := i.A.<&.C=6> ;

END ;

end this may be called by

This will return e reference set variable which refers to ell ,

vertices in the reference

&l.A.<&.C=6>

Another example is

PROCEDURE P (VALUE : 6TRING ; S : SET) ;

BEGIN

S -> NEW (C = VALUE) ;

END ;

If this is celled with the reference

P ('string' , a.A) ;

then this reference is equivalent to

8.A -> NEW (C = 'string') ;

Procedures may be celled recursively. Thus e procedure may be

defined as •

PROCEDURE TREE (S : SET ; LEVEL INTEGER) ;

SET L ;

BEGIN

228

Root vertex

A=3 A=3 A=3 A=3 A=3 A=3 A=3 A=3

, .
B B B B B B B B

Figure E.18

IF LEVEL <= HAX_LEVEL THEN

L := NEW (A = LEVEL) . ,
S -> L . ,
TREE (L (EVEL+1) . , ,
L := NEW (A = LEVEL) . ,
S -> L . ,
TREE (L LEVEL+ 1) . , ,

END . ,
END . ,

In this the L set reference set variable is used as a temporary

reference to the new A vertex. Each A vertex is created, attached to the

reference set S, and then used in a further recursive call to the TREE

procedure. lf Hax_Level is equal to 3 and the procedure is called as in

the following,

TREE (S , 1) ;

will be equivalent to the Attach_Statements

229

til -> ?

(NEW(A=1) ->

(NEWCA=2> ->

),

(NEWCA=3) , NEWCA=3)),

NEWCA=2) ->

(NEWCA=3) , NEWCA=3))

NEWCA=1) ->

(NEW(A=2) ->

,·)

) ;

(NEWCA=3) , NEWCA=3)),

NEWCA=2) ->

(NEW(A=3) , NEWCA=3))

The actions of the statements

TREE (Q , 1) ;

&.A.A.A -> NEW (B) ;

are shown in figure~,.18). /

(E/.4) BRINGING THE DECLARATIONS AND STATEMENTS TOGETHER

===

The part of the

specification block.

definitions which

ISL that creates graphs is. contained in one

This contains the"' references and identifier

have been discussed above. Its syntax is

Graph_Specification_Block =
"GRAPH",

[Constant_Definition_Part l ,

[Vertex_Definition_Part J ,

[Variable_Def inition_Part J ,

< Procedure_Definition >,
"BEGIN"

Statement_Block,

"END", "." . I I

230

A example graph definition is

GRAPH

CONST HAX_LEVEL = 3 ;

VERTEX A,B ;

PROCEDURE TREE ••• as in the above definition ••• ;

BEGIN

END ;

TREE (Q , 1) ;

a.A.A.A -> NEW (B) ;

and this is a complete legal definition to obtain the graph

structur~ of the figure(E\.18).

(EL4.1) SCOPE OF IDENTIFIERS

The various identifiers defined in the specifications have defined

scopes over which they may ·be used. An identifier may be defined

globally with respect to the graph specification block. Such identifiers

are those defined as constants, vertex names, procedure names and

variables. Alternatively identifiers may be defined locally w~th respect

to a procedure. These are the formal parameter identifiers, and the

identifiers in the local definition part.

A global identifier may be only defined once. Once defined it
~

retains this definition and may be used through out the graph

specification block. A global identifier can not be redefined as'e local

identifier inside a procedure.

A local identifier may not be redefined with the same procedure. The

definition of a local identifier is local to the procedure only, and

different procedures using the same local identifiers have independent

definitions for the identifier. The scope of a local identifier is the

whole of the procedure block.

231

APPEND IX (f~

<~.1) SHORT COMPLETE SPECIFICATION PROGRAM

==

In the following a complete

similar to the instrument

example will be developed for a problem

monitoring problem introduced in the

introduction. Firstly the computer architecture is described

ALLOCATOR

GRAPH·

VERTEX

INPUT_OUTPUT I TTY_ATTACHED ;

VAR

J : INTEGER ;

PSR : SET ;

PROCEDURE STANDARD_HEHORY (

C : SET ; START_VALUE , SIZE_VALUE : INTEGER) ;

VAR HEH_ : SET ;

BEGIN

HEH := NEW (ADDRESS) ->

(NEW (START = START_VALUE) ,
NEW (HEHORY) ->
(NEW (SIZE = SIZE_VALUE) ,

NEW (ACCESS = 0.45
)

) .
I

c -> HEH . ,
END ;

PROCEDURE ONE_PROCESSOR (C , PSR SET) ;

BEGIN

PSR := NEW (PROCESSOR) ;

C -> PSR ->

(NEW (CYCLE = 2.5) , NEW (NAME = 'BRANDX')) ;

END ;

PROCEDURE HAP (PSR : SET) ;

VAR HE, P : SET ;
I : INTEGER ;

BEGIN
HE -> NEW (HEHORY_ACCESS) ;

PSR -> HE ;

I := 1 ;

FOR P := EACH C PSR) DO

HE -> NEW (ADDRESS) ->

(NEW (START = 8192 * I) , P.ADDRESS.HEHORY) ;

- I := I + 1 ;

END ;

END ;

BEGIN

FOR 10 DO

ONE_PROCESSOR < a , PSR)

STANDARD_HEHORY (PSR , 0

END . ,
HAP (&.PROCESSOR) ;

fil -> NEW (INPUT_OUTPUT) ;

FOR J := 11 TO 20 DO

;

8192) . , ,

&.INPUT_OUTPUT -> NEW (READ WRITE_PORT = J) ;

END ;

&.PROCESSOR ->

(NEW (INTERRUPT = 0) , fil.INPUT_OUTPUT) ;

FOR J := 1 TO 2 DO
&.PROCESSOR(J) -> NEW C TTY_ATTACHED) ->

NEW (PORT) -> NEW (READ_WRITE_PORT = 4) ;

END ;

"ii -> NEW C TTY_PROCESSOR) ->

->&.PROCESSOR. <NOT EHPTY (&.TTY_ATTACHED) >;

END ;

This defines a computer system with ten processors. Each accesses a

local memory of 8096 bytes end has indirect access via a common bus to

all the other memories of the system. Each processor also has an

interrupt at address 0. Each processor can access the same group of

input/output ports which are numbered 11 to 20. As well.processors 1 and

2 have a TTY port attached,. indicated by the TTY_ATTACHED vertex. To

allow direct reference to these two processors, their vertices are

attached to the TTY_PROCESSOR vertex.

The instrument monitoring program takes the form

PROGRAM INSTRUHENT_HONITOR ;

PROCESS INSTRUMENT_1 ;

PROCESS INSTRUMENT_2 ;

. . ..
PROCESS INSTRUHENT_10 ;

HAIN PROCESS

(which accesses the TTY ports)

END ;

END;<* this text
0

is separate from the allocation specification*>

Here it is assumed for the sake of the example that the main process

is the only process that accesses the TTY ports. The user programmer

will now need to provide the constraint spe~ification to insure that the

main process is assigned to a processor that accesses this TTY port.

Thus an object specification is required to indicate this,

OBJECT

DEFINITION

HAIN_PROCESS : PROCESS ;

END ;

SPECIFICATION

HAIN_PROCESS := [INSTRUMENT.MAIN J ;

END ;

END ; <* this is part of the allocation specification *>

234

This object specification is used in a constraint block like

CONSTRAINT
ASSIGN (HAIN_PROCESS) -> [TTY_PROCESSOR J ;

END ;
END (* of complete allocation specification *) ;

The main process will be assigned to either one of the first two

processors. The other processes and all the memories, ·which have not

been mentioned in any directives, will be assigned by the allocator to

achieve .the maximum throughput.

235

REFERENCES

[1] Am2900 Bipolar Microprocessor family

Proceedings Micro 8, 8th Workshop on microprocessors, Page 75.

[2) Preliminary Ada Reference manual, Rationale for the

Design of the ADA programming language.

ACM Sigplan Notices, Vol 14, No 6(June 79).

[3] L.H.Anderson, R.H.Larsen

Distribu~ed intelligence microcomputer systems for

industrial control

Hi~roprocessor InfoTech State of the Art Report, No 35(1977>.

[4J G.A.Anderson, E.D.Jensen

Computer interconnection structures, taxonomy, characteristics

and examples.

Computer surveys, Vol 7, No 4CDec 77), Page 197.

[5] B.Appelbe, H.Kroening

Concurrent programming on microprocessors.

Sigsmall newsletter, Vol 15, No 2(1979).

[6] J.Armstrong

Fault diagnosis in a boolean N cube of microprocessors.

IEEE transactions on computers<Aug a1i, Page 587.

[7J D.Aspinall

Comparsion of microprocessors:

Instruction processor level,

Processor memory switch level.

Microprocessor InfoTech State of the Art Report, Vol 2,

No 35(1977>.

[8) F.BasRett, A.J.Smith

Interference in multiprocessor systems with interleaved

memories.

Communications of the ACM, Vol 19, No 6(June 76), Page 327.

236

C9l G.J.Burnett, E.G.Coffman

Analysis of interleaved memory system using blockage buffers.

Communications of the ACH, Vol 18, No 12(1975), Page 91.

[101 D.W.Bustard

Pascal Plus Users Manual

Queens University of Belfast (Aug 78).

C11J A.Celentano, et al

Seperate compilation and partial specification in Pascal.

IEEE Software Engineering, Vol 6, No 4CJuly 80).

[121 O.Cert
,)

Parallelism, control and synchronization expressions

in a single assignment language.

Sigplan Notices, Vol 13, No 1(Jan 78).

[13] E.G.Coffman

Operating system theory C1973).

[141 E.L.Daglees

A multimicroprocessor : CYBA-H*.

IFIP (1977), P~ge
0

843.

C15l O.J.Dahl, E.W.Dijkstra, C.A.R.Hoare

Structured programming (1973).

[16] J.B.Dennis

Modularity

Lecture notes in computer science, No 30(1975).

[17J A.H.Despain, D.A.Patterson

X Tree, a tree structured multiprocessor computer

architecture.

5th Annual symposium on computer architecture (1978>, Page 144.

C18J E.W.Dijkstra

A Discipline of programming C1976).

C19l D.J.Farber
Software considerations in distributed architectures.

Computer, Vol 7, No 3(Har 74>, Page 31.

C20l E.T.Fathi, H.Krieger

Multiple microprocessor systems: What, Why, and When.

Computer, Vol 16, No 3CHar 83), Page 23.

C21l R.A.Finkel, H.H.Solomon

~rocessor interconnection strategies.

IEEE Transactions on Computers, Vol C29, No SCHay 80>, Page 362.

C22l H.J.Flynn

Some computer organizations and their effectiveness.

IEEE Transactions on Computers, Vol C21, No 9CSept 72), Page 948.

C23l E.C.Freuder

Synthesizing constraint expressions.

Communications of the ACM, Vol 21, No 11CNov 78), Pag~ 958.

C24l S.H.Fuller, et al

Hultimicroprocessors: an overview and working example.

Proceedings of the IEEE, Vol 66, No 2CFeb 78>, Page 216.

C25l E.F.Gehringer, et al

Cm* test bed.

Computer (Oct 82), Page 40.

' C26l E.F.Gehringer, R.J.Chansler

StarOS user and system structure manual.

Department of computer science, Carnegie-Mellon university,

Pittsburg, Pennsylvania C1981).

C27J AeM.Geoffrion

Integer programming by implicit enumeration and Balas method.

SIAM Review, Vol 9, No 2CApril 67), Page 178.

C28l H.Georgeff

Strategic search.

·~a

Australian computer science communications, Vol 2,

No 1<Jan 80).

C29J R.Gleaves

Hodula 2 Users Manual (Nov 82).

C30J A.Gottlieb, J. T .Schwartz

Networks and algorithms for very large scale parallel

computers.

Computer, Vol 15, No 1(Jan 82), Page 27.

[31] A.N.Habermann

Path expressions

carneige Mellon Tech Report (1975).

,
C32J A.N.Habermann, Campbell

The specification of process synchronization by path

expressions.

Lecture notes in computer science, Vol 16(1974), Page 89. _

C33J K.Haessig,C.Jenny

Partitioning and allocating computational objects in

.\ distributed computer systems.

IFIP 80(1980), Page 593.

C34J P.B.Hansen

Concurrent Pascal Report (June 75).

[35] P.BaHansen

Distributed processes, a concurrent pr~gramming concept.

Communications of the ACH, Vol 21, No 11<Nov 78), Page 934.

C36l P.B.Hansen

The programming language Concurrent Pascal

IEEE transactions on software engineering, Vol 1, No 2<June 75).

C37J P.B.Hansen

A multiprocess program.

IEEE Computer science and applications conference,·

Chicago, Illinois (Nov 77).

2.39

[38] P.B.Hansen
Operating system principles (1973).

[391 A.C.Hartmann
A concurrent Pascal compiler for mini computers.

Lecture notes in computer science, No 50(1977>.

C40l L.S.Haynes, R.L.Lau, D.P.Siewiorek, W.Hizell

A survey of highly parallel computing

Computer, Vol 15, No 1(Jan 82>, Page 9.

C41l C.A.R.Hoare ,.
·Monitors, an operating system concept.

Communications of the ACH, Vol 17, No 10(0ct 74>, Page 549.

C42J C.A.R.Hoare,R.H.Perrott

Operating systems techniques (1972>.

C43J C.A.R.Hoare

·Communicating sequential processes.
/

Communications of the ACH, Vol 21, No 8(Aug 78), Page 666.

C44l C.Hoogendoorn

A general model for memory interference in multiprocessors.

IEEE Transactions on computers, Vol c-26, No 10(0ct 77>,

Page 998. ~

C45l J.G.Hunt
l

Interrupts.

Software Practice and Experience, Vol 10<1980), Page 523.

C46l A.K.Jones, R.Chansler, I.Durham, P.Feiler, K.Schwans

Software management on Cm*- a distributed multiprocessor.

AFIPS conference proceedings, Vol 46C1977>, Page 657.

C47l A.K.Jones, P.Schwarz

Experience using multiprocessor systems: a status report.

ACH Computing Surveys, Vol 12, No 2(June 80).

240

[~8J A.Kaufmann

Graphs, dynamic programming and finite games (1967).

{49J J.l.Keedy

On structuring operating systems with monitors.

Australian computer journal, Vol 10, No 1(1978).

[50J J.L.Keedy

The Monads operating system

Proceedings of the 8th Australian computer conference

in Canberra.

[51J J.L.Keedy
J

The influence of the information hiding principle on the

Monads operating system.

Proceedings of the Australian University Computer Science

Seminar, University of New South Wales (1978).

[52J P.B.Kieburtz,J.L.Hennesy

Tomal, a high level language for micro processor

Control application •.

Sigplan Notices, Vol 11, No 4CApril 76), Page 127.

[53) W.A.Kornfeld

Combinatorially implosive algorithms.

Communications of the ACM, Vol 25, No 10(0ct 82).

[54J B.Kumar, E.S.Davidson

Performance eva~uation of highly concurrent computers by

deterministic simulation.

Communications of the ACM, Vo(21, No 11CNov 78), Page 904.

[55J H.T.Kung

Why systolic architectures.

Computer, Vol 15, No 1(Jan 82), Page 37.

[56) B.W.Lampson, J.J.Horning, R.L.London, J.G.Hitchell

Report on the programming language Euclid.

Acm Sigplan Notices, Vol 12, No 2CFeb 77).

241

[57J E.J.lau,D.Ferrari
Program restructuring in a multilevel virtual memory.

IEEE Transactions on Software Engineering, Vol SE-9,

No 1(Jan 83).

[58l W.Y.P.Lim

HIDSL a structure description language.

Communications of the ACH, Vol 25, No 11(Nov 82).

[59] G.J.Lipovski

Hardware description languages,

Computer~ Vol 10, No 6(June 77), Page 14.

J'

[60J A.H.Lister

Fundamentals of operating systems (1975).

[61] H.D.Haples, E.R.Fisher

Real time micro computer applications using LLL Basic.

Computer, Vol 10, No 9(Sept 77>, Page 15.

[62] T.A.Harsland,H.Campbell~
/

Parallel search of strongly ordered game trees.

ACH Computing Surveys, Vol 14, No 4(Dec 82).

[63] T.J.Hiller, R.H.Campbell

A Path Pascal Language

Department of Computer Science, Univer~ity of Illinois at

Champaing-Urbana, Urbana-Illinois 61801, No 217-333-0215

(April 78).

[64J J.Hontuelle, J.Hossiere, J.L.Chevel, F.Cristian, S Krakowiak

An experiment in modular program design,

IFIP (1977), Page 23.

[65] K.T.Nareyena, V.R.Prasad, H.Joseph

Some aspects of concurrent programming in Concurrent Pascal

Software Practice and Experience, Vol 9, No 9(1979>, Page 749.

C66J J.K.Ousterhout, D.A.Scelze, S.S.Pradeep

MEDUSA, an experiment in,distributed operating system

242

structure.

Communications of the ACM, Vol 23, No 2(1980), Page 92.

[67] D.L.Parnas

A technique for software module specification

Communications of the ACM, Vol 15, No 5(1972), Page 330.

[68] D.L.Parnas

Information distribution aspects of design methodology

IFIP (1971>.

C69l D.L.Parnas

On the criterion to be used in the decomposition of systems
,·

into modules.

Communications of the Acm, Vol 15, No 12(1972), Page 1053.

[701 J.H.Patel

Processor memory interconnecti~ns for multimicroprocessor,

performance.

IEEE transactions on computers, C30, No10(0ct 81), Page 771.

C71l B. Peuto

Z8000 Architecture, Cpu and memory management unit.

Computer, Vol 12, No 2(Feb 79>, Page 10.

[721 J. L. Potter

Image processing on a massively parall.,el processor.

Computer, Vol 16, No 1(Jan 83), Page 62.

[73] E.M.Reingold,J.Nievergelt

Combinatorical algorithms (1977).

[74J E.S.Roberts et al

ADA task control.

Software Practice and Experience (Oct 81>, Page 1019.

[751 H.Satyanarayanan

Hultiprocessors: a comparative study.

243

/

C76J F.B.Schneider, A.J.Bernstein

Scheduling in Concurrent Pascal.

Operating System review, Vol 12, No 2(Apr 78).

C77J R.S.Scowen

An introduction and handbook for the standard syntactic

metalanguage.

NPL Report DITC 19/83(Feb 83).

C78l R.J.Shan,S.H.Fuller,D.P.Siewiorek

Cm*, e modular multimicroprocessor.

AFIPS Conference Proceedings, Vol 46(1977), Page 637.

C79J H.J.Siegel

A model of SIHD machines, and a comparsion of ·various

interconnection networks.

Proceedings of the IEEE transactions on computers, No 12,

Vol C-28<Dec 79), Page 907.

C80] H.J.Siegel·

Partionable SIHD/HIHD system for image processing and

pattern recognition

IEEE transactions on computers, Vol C30, No 12(Dec 81), Page 934.

C81l D.P.Siewiorek, D.E.Thomas, D.L.Scharfetter

The use of LSI modules in computer structures, trends and

li111itations.

Computer, Vol 11, No 7(July 78), Page 16.

C82J A.Silberschatz, R.Kieburtz, A.Bernstein

Extending Concurrent Pascal to allow dynamic resource

management.

IEEE transactions on software engineering, Vol SE-3, No 3(Hay 77).

C83l·A.J.Smith

Multiprocessor memory organization and memory interference

Communications of the ACH, Vol 20, No 10(0ct 77>, Page 754.

C84l L.Snyder
Introduction to the configurable highly parallel computer.

Computer, Vol 15, No 1(Jan 82>, Page 47.

C85l J.H.Stewart

LOGAL: A computer hardware description language

for logic design and synthesis of computers.

Computer, Vol 10, No 6(June 77>, Page 18.

C86l E.Stritter

Hotorolla 68000 architecture

Computer, Vol 12~ No 2<Feb 79>, Page 43.

C87l S.Y.H.SU

A survey of computer hardware description languages in the

U.S.A.

Computer, Vol 7, No 12CDec 74>, Page 45.

C88l P.R.Torrigiani, H.W.Shields, P.E.Lauer '

Cosy, a system specification language based upon paths

and processes

Acta Informatics, Vol 12, No 2(1979), Page 109.

[89] N.I.Vilenkin

Combinatorics <1971>.

C90l I.C.Wand, J.Holden

Experience with the programming language Hodula

IFAC/IFIP real time programming workshop (1977>.

C91l A.J.Weissberger

Application ideas for microprocessors.

Instrument control syst~m, Vol 48, No 10(0ct 75>, Page 19 •

.
C92l J.Welsh, D.W.Bustard

Pascal plus

Software Practice and Experience, Vol 9, No 11(Nov 79>, Page 947.

)

C93l N.Wirth

Hoduta, a language for modular Multiprogramming

Software, Practice and Experience, No 7(1977), Page 3.

C94l N.Wirth

Toward a discipline of real time programming.

Communications of the ACM, Vol 20, No 8(Aug 77>, Page 577.

C95l !>.Wright

Microcomputers, Fundamentals and applications,

"Hicropr~cessor survey" (1974>.

C96l S.J·.Young

An introduction to ADA (1983).

C97l S.Zeigler

Intel 432 microcomputer supports ADA language.

Computer(June 81), Page 47.

246 ,,

