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Abstract 

Field theories in 2+ 1 space-time dimensions are of interest both intrinsically, due 

to their novel properties such as actions which are topologically non-trivial, and 

also due to their ability to explain of phenomena such as the fractional quantum 

Hall effect and certain behaviour of high Tc superconductors, and for their use in 

conformal field theory in 2D. 

This thesis begins by considering scalar and spinor QED in 2+ 1 dimensions, 

performing perturbation theory to study its behaviour (without allowing the pres­

ence or dynamical generation of a parity-violating photon mass). It is found, as 

first noted by Jackiw and Templeton, that an IR instability prohibits such a 

perturbative study. The gauge technique is adopted as a non-perturbative alter­

native, and the photon is allowed to be "dressed" in a cloud of fermion loops, 

yielding results which encompass the perturbation results in the UV region, whilst 

remaining finite at IR momenta. 

Chern-Simons theory is then considered, where the photon is allowed to ac­

quire a parity-violating mass. In order to use dimensional regularization to handle 

the. apparently UV divergent integrals which appear, a new formulation of the 

theory is proposed, allowing the action to be written in arbitrary D dimensions, 
I 

' 
so that the integrals can be safely evaluated. It is also found that the IR problems 

which plague the conventional theory are no longer present, as the photon prop­

agator behaviour has been "softened" by the photon mass, allowing perturbation 

results to be obtained. 

Finally, the idea of mass generation within these theories is considered in more 

detail, where we see that the presence of a fermion mass will cause a photon mass 

to be dynamically generated, and vice versa. These ideas are then generalized for 

arbitrary odd dimensional parity-violating theories. 
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"As far as we can discern, the sole purpose of human existence is to kindle a light 

in the darkness of mere being." 

- Carl Jung 

"The proof that the little prince existed is that he was charming, that he laughed, 

and that he was looking for a sheep. H anybody wants a sheep, that is a proof 

that he exists." 

- The Little Prince, Antoine de Saint-Exupery 

"Everything that happens once can never happen again. But everything that 

happens twice will surely happen a third time." 

- Proverb 

"'Yes,' said the ferryman, 'it is a very beautiful river. I love it above everything. 

I have often listened to it, gazed at it, and I have always learned something from 

it. One can learn much from a river.'" 

- Siddhartha, Hermann Hesse 

"There's more to you young Haroun Khalifa, than meets the blinking eye." 

- Haroun and the sea of stories, Salman Rushdie 

"The most wasted of all days is that on which one has not laughed." 

- Nicolas Chamfort 
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" ... the river is everywhere at the same time, at the source and at the mouth, 

at the waterfall, at the ferry, at the current, in the ocean and in the mountains, 

everywhere, and ... the present only exists for it, not the shadow of the past, nor 

the shadow 'of the future" 

- Siddhartha, Hermann Hesse 

"The best way to know God is to love many things." 

- Vincent van Gogh 

"That's right. When I was your age, television was called books." 

- The grandfather in 'The Princess Bride' 

"It seems to me, Govinda, that love is the most important thing in the world. It 

may be important to great thinkers to examine the world, to explain and despise 

it. But I think it is only important to love the world, not to despise it, not for 

us to hate each other, but to be able to regard the world and ourselves and all 

beings with love, admiration and respect." 

- Siddhartha, Hermann Hesse 

"He didn't fall? INCONCEIVABLE!" 

"You keep using that word. I do not think it means what you think it means." 

Vizzini and Inigo in 'The Princess Bride' 

"Frank Burns eats worms" 

- Hawkeye Pierce in M*A *S*H 
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Chapter 1 

Introduction 

The purpose of this introductory chapter is to place the subject matter of this 

thesis within a historical perspective. We begin by outlining the progress made 

in the analysis of field theory in three dimensions, then give a review of the gauge 

technique, the non-perturbative technique we will exploit where necessary in our 

calculations. The structure of the thesis is outlined in the final section. 

1.1 Field Theory in (2+1)D 

When studying gauge theories, it seems natural to look at a theory set in 3 + 1 

space-time dimensions, as the physical world is set within such a geometry. Ex­

tensive research has been conducted on such theories, with considerable success. 

Quantum electrodynamics is the simplest gauge theory to be physically mean­

ingful, describing the quantized interactions of photons and electrons. It is an 

abelian theory, being described by the group U(l), and was found to be renor- / 

malizable [1-3], requiring only two renormalization constants [4]. In the non­

abelian case, the electro-weak or SU(2) x U(l) gauge theory [5,6] together with 

spontaneous symmetry breaking [7-9], unifies the electromagnetic and weak in­

teractions, and also places a self-consistent theoretical framework around all of 

the phenomenological weak models. Renormalization has permitted the terms in 

the perturbation expansion to be rendered finite [10], and the identification of the 
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intermediate vector bosons [11-13] has given the theory its necessary verification. 

Another successful theory in (3+1)D is quantum chromodynamics (QCD) [14-17]. 

QCD is the gauge theory of the SU(3) colour group, and is largely accepted as 

the theory describing the strong interaction. It provides a theoretical foundation 

for the quark model [18-21] and can be used to explain the results of deep in­

elastic scattering [22-24]. It is not considered as successful as the above theories 

as it has so far been unable to supply a convincing explanation of confinement, 

which is the process preventing the detection -of single quarks or coloured par­

ticles. It is possible that some insight may be gained by considering a theory 

set in 2 + 1 dimensions. As well as having intrinsically interesting features, it is 

thought that a (2+1)D theory could be used as a "toy" model to study the con­

finement problem [25]. The bound state spectrum of electrodynamics in (2+1) 

dimensions has been studied, and the Bethe-Salpeter equation for the bound 

states has been solved using the quenched ladder approximation and shown to 

display confining behaviour [26]. Also, the (2+1)D theory is known to display the 

finite-temperature behaviour of the corresponding (3+1)D theory [27,28]. In-any 

case, electrodynamics in (2+1)D should be applicable to electrodynamic surface 

effects. 

Field theory in (2+1) dimensions displays many unusual properties. They can 

be unique to (2+1)D and also quite at odds with our preconceptions from (3+1)D. 

First, in (2+1)D the statistics are arbitrary [29-31]. This is because in two space 

dimensions the particle configuration space is multiply connected, so when two 

particles are interchanged, the wave function need not change phase by integer 

multiples of 7r, as they must in (3+1) dimensions. Such particles are known 

as anyons [29, 30, 32, 33], and will be discussed presently. For massless particles 

in 2+ 1 dimensions, spin is also arbitrary [34, 35]. Since spatial rotations have 

only a single generator, J3 , the algebra [J3 , J3 ] = 0 cannot lead to any obvious 

quantization. Another peculiarity that we encounter is that in odd dimensions 

parity is different. Since we have an even number of spatial dimensions, the 

normal inversion of the position vector x ---+ -x will correspond to a rotation, so 
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instead we must define parity as inversion of all but the last spatial coordinate [35]. 

It is this which leads to parity-odd objects, such as the gauge invariant Chern­

Simons term, which as we will see has a profound effect on our theory. 

The simplest theory to consider in (2+ 1) dimensions is just quantum elec­

trodynamics, beginning with the usual Fµvpµv Lagrangian. The problem is that 

when we undertake perturbation calculations, we encounter infrared (IR) diver­

gences. When experienced in (3+ 1 )D, this "IR catastrophe" [36] is handled by 

also considering processes which include the emission of soft photons. The "catas­

trophe" becomes untenable in (2+ 1 )D, as it introduces nonanalytic divergences, 

intractable within perturbation theory. 

We can understand why such IR divergences arise in (2+ 1 )D by considering 

a free field theory in 2+1 space-time dimensions, 

where typically </> is a scalar, 'ljJ is a spinor and Fµv = OµAv - OvAµ is a Maxwell 

gauge field. The dimensionlessness of the action (in natural units) specifies the 

mass dimensions of the fields, 

and with interaction Lagrangians like 

(1.2) 

we find that for D = 3, the coupling constant e has dimension [e] ,..., M 112 • A 

renormalizable theory is one which has only a finite number of divergent Green's 

functions. Electrodynamics in (2+1)D is called a super-renormalizable theory 

since its coupling constant e has units of vfiii,, so since the perturbation expan­

sion is in terms of powers of e2 , higher-order diagrams -become necessarily less 

ultraviolet (UV) divergent, resulting in only a finite number of UV divergent di­

agrams. This very feature, which minimizes the need for renormalization of UV 

singularities, leads to our IR problems. As Jackiw and Templeton noted [37], 
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higher-order terms must result in terms containing higher powers of coupling 

constant divided by higher powers of external momentum. Subsequently, when 

calculating some further diagram which contains the first result as a subgraph, 

and attempting further momentum integrations, the inserted result with a high 

power of momentum in the denominator will add to the degree of IR divergence 

of the momentum integral, leading inevitably to IR divergences. It was as a re­

sult of this failure by perturbation theory to handle this IR "catastrophe" that 

researchers turned to non-perturbative techniques. 

Cornwall and co-workers [38, 39] made one of the first attempts to overcome 

this difficulty. To begin with, they considered a version of the theory where the 

gamma matrices were parity-doubled 4 x 4 matrices. This meant that instead of 

using the ordinary 2 x 2 gamma matrices, which would have resulted in fermions 

whose masses violate parity, they embedded two species of fermions,. with mass 

terms of opposite sign, into 4 x 4 matrices, restoring the parity invariance of the 

massive Lagrangian. They then used the gauge technique ansatz [40] to solve 

the Dyson-Schwinger equations [1,41-43] giving the gauge technique equation for 

the fermion spectral function. They evaluated the fermion self-energy perturba-
l 

tively, i.e. with a bare photon propagator, found an initial approximation for the 

propagator, then obtained a finite solution which now broke the chiral symmetry ":: 

of the theory. It has since been found [44] by comparing this theory with the 

2 x 2 version (see below) [37, 45, 46], that the zero bare mass demands 'P and T 

conservation, forcing this chiral symmetry breaking solution to be discarded. 

Jackiw and Templeton [37] took a different approach. They resorted to using 

the ordinary 2 x 2 gamma matrices, which are proportional to the Pauli spin ma­

trices, and studied massless fermions to avoid generating a photon mass. They 

found that in order to stop the IR catastrophe from occurring, the photon propa­

gator needed to be "softened" , that is its IR behaviour needed to go from being 

of 0(1/k2) to 0(1/k). Instead of using the bare photon, they considered the 

Dyson-Schwinger equation for the photon. This equation relates the full photon 

to a diagram involving full vertices and propagators [1, 41-43], and is correct to 
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any chosen order of expansion. By truncating at a suitable level and obtaining 

an approximation which permitted intermediate states to influence the photon's 

behaviour, they were able to obtain an IR finite answer. Their method was ef­

fectively allowing the photon to be "clothed" in a cloud of massless fermions, 

moving outside perturbation theory by generating terms which were non-analytic 

in e. Guendelman and Radulovic and others, using both perturbative [47,48] 

and non-perturbative [49] techniques, also sought to_ avoid these IR problems by 

dressing the photon propagator. They also wished to avoid the occurrence of 

terms that were non-analytic in e2 • To this end they exploited the residual gauge 

degree of freedom to eliminate the leading IR poles, resulting in a loop expansion 

which was analytic in the coupling constant. They found a limitation in their 

approach, however, since the ~xtra vector field introduced by them was not suf-

ficient to cure all the IR divergences, and quartic and higher-order terms in that ,, 

vector field would need to be introduced at higher orders. 

Practitioners of the ~adder or l/N expansion (where N is the number of 

fermions) also considered this problem [27,28,50-54], applying their non-perturb­

ative scheme to it. By resumming the expansion in terms of l/N they found that 

the IR behaviour of the photon was softened and the theory rendered IR finite. 
- ;;-- -

The problem was that this ·1/N technique attempts to solve the DS equations in -' 

their nonlinear form, making analytic results at even the lowest order extremely 

difficult to obtain. This deficiency was seen by de Roo and Stam [55, 56],who 

wished to find an alternative solution to the DS equations. They saw that 

the gauge technique exploits an ansatz which renders the DS equations linear, 

and hence more easily explored, and attempted to apply the gauge technique in 

(2+l)D but neglected to heed the advice of Jackiw and Templeton [37] in us-

ing the dressed propagator. Needless to say, they found that the IR catastrophe 

persisted, so they went on to explore an-alternative akin to that of Guendelman 

and Radulovic [47, 48], by introducing a gauge transformation to eliminate the 

leading IR poles. In order to test the effectiveness of the gauge technique together 

with a dressed photon propagator in solving the IR catastrophe, Waites and Del-
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bourgo [57] considered the problem in a more systematic way, and were able to 

obtain an IR finite solution, without the need of any extra terms involving powers 

of vector fields. The solution obtained contained the lowest-order perturbation 

theory results within it, and gave the exact IR behaviour in the scalar and spinor 

versions of the theory. 

Several of the calculations described above could have allowed fermion masses 

into the theory, since it is possible to introduce such parity-conserving fermion 

masses when considering the form of the theory exploiting the doubled 4 x 4 

gamma matrices, but in the work of Jackiw and Templeton [37] and Redlich 

[45, 46], fermion masses would dynamically introduce a parity-violating photon 

mass term into the theory, which was, at the time, considered disadvantageous. 

This parity-violating theory [58-61] has subsequently become the focus of a huge 

amount of interest. The theory exploits the fact that we can introduce directly 

into the Lagrangian another gauge-invariant term of the form 

F µ.vAA 
EµvA , 

namely the Chern-Simons (CS) Lagrangian [62,63], which makes it topologically 

non-trivial. Several later works have gone on to consider the pure CS theory, that 

is, CS theory with no Maxwell term present. This theory is found [64, 65] to be 

exactly soluble and to permit an understanding of the Jones polynomial [66,67] of 

knot theory in (2+1)D. The observables of this theory are Wilson lines, and the 

vacuum expectation values of these Wilson lines can be used to define link poly­

nomials [64, 68-71]. Further, these results have been used to explore conformal 

field theory (CFT) in 2D. For a CS theory defined on a compact 2D space, the 

states in the Hilbert space correspond to the conformal blocks of the appropriate 

2D rational conformal field theory [64, 72-74]. Another correspondence has been 

found, namely that the CS gauge theory is equivalent to the current algebra of 

the CFT [64, 75, 76]. This connection can then be used to classify 2D CFTs, since 

any CFT can be obtained by selecting the appropriate gauge group of the CS 

theory, and it has been conjectured that all conformal theories can be classified 

in this way [76]. 

6 



One of the interesting features of field theory in (2+ 1 )D is that it allows 

for the existence of particles with generalized statistics, known as anyons [29, 

30, 32, 33]. The possibility that such particles may actually exist led researchers 

to consider their possible applications. It was found that anyons were precisely 

what was needed to explain the excitations with fractional statistics observed in 

the fractional quantum Hall effect [77...:...79]. It has also been suggested [80-82] 

that anyons possess some of the attributes of high Tc superconductors. The 

quantum mechanics of anyon systems is precisely described in terms of CS gauge 

theory [83, 84]. 

The study of gauge theories such as CS theory often lead us to the calculation 

of momentum integrals, and one is then confronted with UV divergences. These 

divergences are overcome by the use of a regularization scheme, which identi­

fies singularities in an explicit form. There are several schemes which have been 

applied to CS theory, namely Pauli-Villars regularization [60],.analytic regulariza­

tion [85, 86], nonlocal regularization [87] and dimensional regularization [88-92]. 

This thesis will in part consider a new formulation of abelian CS theory which 

permits a consistent application of dimensional regularization [93]. 

1.2 _Th~_Gauge Technique: 

In this section we will outline -the gauge technique (GT), the non-petturb~tive 

technique we will adopt to help overcome the IR problems encountered in (2+1) 

dimensional field theory. 
' 

The GT was originally introduced by Salam and Delbourgo [94,95] in the early 

sixties. They set up an iterative technique which made consistent use of the Ward­

Green-Takahashi (WGT) identities (96-98], ensuring that the scheme preserved 

gauge covariance at aJ:!y order, then solved the Dyson-Schwinger equations [1, 

41-43] for the source propagator, taking two-particle unitarity as their starting 

point. They found that the GT improved the UV behaviour of Feynman integrals, 

removing the need for a )..ef>t 2 </>2 counterterm in scalar electrodynamics (SED), 
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and they also managed to render vector electrodynamics (VED) renormalizable, 

which is impossible within perturbation theory. Strathdee went on (99] to use the 

GT to explore non-perturbative behaviour in spinor electrodynamics (QED). The 

problem with the GT at this stage was that since the DS equations remained in a 

non-linear form, it became difficult to obtain analytic solutions at higher orders, so 

the technique remained largely unexploited. It was not until 1977 that Delbourgo 

and West (40] reformulated the GT, using the Lehmann spectral representation 

[100-102] for the fermion and the WGT identities to obtain a simple ansatz for 

the 3-point photon-amputated Green's function which amazingly rendered the 

DS equations linear, resulting in the first-order GT equation for the fermion 

spectral function in covariant-gauge electrodynamics. They obtained a solution 

of this equation in the Landau gauge, and Slim [103] subsequently obtained a 

solution for an arbitrary covariant gauge. These successes, and the fact that the · 1 

GT yielded almost trivially the exact IR behaviour in QED, SED and ,VED in 

covariant gauges [104, 105], prompted extensive research into applications of the 

GT. 

The gauge properties of the GT solutions in (3+ 1 )D were studied by Del­

bourgo and Keck [106], Slim [103] and Delbourgo, Keck and Parker [107], using 

the Zumino identity for two-point Green's functions to obtain a relationship be­

tween the spectral function in different gauges. It was found [106] that in SED, 

the solution obtained using this gauge covariance relation for the spectral func­

tion, and that obtain:ed by the GT in an arbitrary gauge agreed precisely. In 

QED however, the spectral functions obtained from the GT only satisfied the co­

variance relation in the asymptotic limits [103,107], violating the Zumino identity 

at intermediate momenta (in sharp contrast with perturbation theory), thought 

to be due to the neglect of transverse amplitudes. 

The GT has also been applied to lower dimensional models. Delbourgo 

and Shepherd applied the naive ansatz to the Schwinger model in the Feyn­

man gauge (108], and returned the conventional result, with the gaug~ symmetry 

being dynamically broken. This model was considered for arbitrary gauge by 
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Gardner [109], who found that the naive ansatz was no longer consistent, and so 

introduced a transverse component to solve the problem. Delbourgo and Thomp­

son [110] then showed that this transverse part of the ansatz was unique and com­

plete in (l+l)D. They went on to study the Thirring model, which showed that it 

is possible to apply the GT to a non-gauge theory, as long as it possesses gauge­

type identities. Thompson also applied the GT to a (l+l)D axial model [111], 

where a complete solution was possible. The GT has also been used to address 

the question of dynamical symmetry breaking in various models (112-114]. The 

results have agreed with those obtained by other methods (115], with the benefit 

that the GT managed to avoid the divergences found in these methods. 

Given these successes in various abelian theories it is natural to want to use 

the GT in QCD, where non-perturbative effects ar~ known to be important. The 

difficulty is that the GT utilizes the simplicity of the abelian WGT identities 

and the Lehmann spectral representation to obtain a very simple ansatz. In the 

non-abeli~ theory, the generalizati<;m of the WGT identities, the Slavnov-Taylor 

(ST) identities (116, 117] are more complicated, as they are influenced by the 

presence of ghosts. Their form, which is no longer a simple difference of propa-' 

gators, is not suitable for constructing the GT ansatz. This difficulty has been 

overcome most successfully [118-121] by considering that any physical process, ·y 

such:. as quark, sc~ttering via a single gluon exchange, must be gauge-invariant. 

This implies that if we were to consider all contributions to the gluon self-energy, 

including those which appear to be of higher-order such as multiple-gluon emis-

sions from a single point, the "self-energy" resulting from this resummation would 

be gauge-invariant. Obtaining resummed propagators and vertices in this way, 

it can be shown [118, 121] that since the gauge dependence has become trivial 

(only persisting in the bare gluon propagator), the ST identities become abelian-

like, which allows the GT ansatz to be constructed. This technique, the so-called 

pinch technique, has been used to show interesting features within QCD, such as 
, 

dynamical gluon mass generation [118] and the prediction of the f3 function for 

the running charge, which is not summable perturbatively (121]. 

9 



Despite all these successes of the lowest-order GT, there remained a limitation. 

When considered to only this order, it did not allow for the determination of the 

transverse components of vertices. This limitation had been noted and expounded 

upon by many researchers. In the IR region it is no limitation, since transverse 

effects disappear in electrodynamics at least, but in general these contributions 

need to be considered. In (3+1)D spjnor electrodynamics, the renormalizability 

of the GT equation was not apparent, and it had been conjectured [122, 123] that 

transverse corrections would remove the divergences. It was also thought that 

the non-gauge-covariance of the spectral function in spinor electrodynamics was 

due to the absence of these transverse components. This led to the consideration 

of an extension to the GT, which began when King [124] modified the ansatz in 

the spinor theory, introducing a transverse part. Beginning with perturbation 

theory, and being correct asymptotically up to leading logs, the transverse vertex 

refined the GT. Standard results were obtained in the asymptotic region, but the 

refined GT was still unable to reproduce 0( e4 ) perturbation theory. In search 

of a more sati.sfactory way of improving the GT, Parker [125, 126] considered 

a new approach. Looking at the scalar theory, the DS equation for the three 

point function was used as the starting point and a non-perturbative transverse 

vertex constructed which was consistent with perturbation _theory and correct 

in any momentum region. The only limitation with this technique was that it 

was valid only for the Feynman gauge, and that it incorporated an arbitrary 

constant. Delbourgo and Zhang [127, 128] completed the refinement of the GT. 

They managed to generalize the work of Parker to be valid in arbitrary gauge, 

and also to encompass the spinor theory. Their new GT equations were finite, 

linear in the spectral function, exact to O(e4
) in any gauge, had no ambiguous 

constant, and gave the correct IR solution. 
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I. 

1.3 Structure of the Thesis 

This thesis consists of six chapters, the first of which is an introduction to field 

theory in 2+ 1 dimensions and the gauge technique. 

The main body of the thesis begins in Chapter 2, where a scalar version of elec­

trodynamics in (2+ 1 )D is considered. A framework is established which permits 

both perturbative and non-perturbative study of the theory. The perturbation 

approach is seen to be deficient in handling the infrared woblems inherent in 

such theories, so the gauge technique is used as a non-perturbative tool to study 

the theory. It is found that only by dressing the photon propagator [37] can an 

infrared finite result be obtained. In order to understand the gauge properties 

of the resulting meson spectral function, the gauge covariance relation (which 

links the function in different gauges) is obtained, which confirms that the meson 

spectral function is indeed gauge-invariant. 

In Chapter 3, the full spinorial version of QED is considered, and the calcu­

lations of Chapter 2 are repeated in this theory, with similar findings. We are 

once again required to adopt a non-perturbative approach and dress the photon 

propagator in order to obtain an infrared finite result. The gauge behaviour of 

the resulting fermion spectral functi9n is once again explained by deriving gauge 

covariance relations in the spinor theory. 
. . 

Chapter 4 begins our study of theories which permit the notion of parity 

violation. . In the presence of a Chern-Simons term in the Lagrangian we see 

that even techniques such as dimensional regularization, which seem universally 

applicable, have difficulty being applied. We_ forego the usual naive "solution" to 

this problem·, which involves an unnatural splitting of the D-dimensional space, 

and instead develop a reformulation of the theory which exists in 21+1 dimensions 

and is consistent for arbitrary l, so that dimensional regularization may safely be 

applied. The perturbation expansion is considered and we find that in contrast 

to the previous two theories, Chern-Simons theory is infrared stable, enabling, the 

calculation of the spectral function perturbatively. 
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Dynamical mass generation is the topic of Chapter 5. We consider in detail 

the effect of a mass term which violates the parity invariance of the theory. It is 

found that the presence of either a fermion or photon mass in the initial theory 

will engender the other when quantum corrections are considered. These ideas are 

then generalized, by considering the effects of parity-violating terms in arbitrary 

odd dimensions. The induced topological mass term is calculated in arbitrary odd 

dimensions, and interestingly, the purely topological theory in odd dimensions 

greater than three is found to be distinctive in that no one loop fermion mass is 

generated, due to the absence of a bare propagator for the photon. 

Finally, Chapter 6 is made up of a summary of the thesis together with sug­

gestions for further study. 

In addition, at the end of the thesis, several appendices are included, giving 

the Feynman rules used, detailing some of the calculational techniques employed, 

and discussing Dirac 1-matrices in odd dimensions. Reference is made to these 

appendices where appropriate in the text of the thesis. 

12 



Chapter 2 

Scalar Electrodynamics in 

(2+1)D 

This chapter will begin our study of gauge theories in 2+ 1 dimensions by consid­

ering the electrodynamics of a scalar field. This theory has the advantage that 

it remains relatively simple, by avoiding the multiplication of terms encountered 

when taking the trace of products of 'Y matrices, as occurs in the spinorial version 

of the equivalent theory. We begin by detailing the formalism of Delbourgo [129], 

which considered the equivalent theory in (3+1)D, and make modifi~ations where 

.. neces~ary to apply_ the formalism to (2+1)D. We use this framework to study 

the theory using perturbation theory, and see explicitly the infrared singulari- -

ties encountered in such an expansion. Then we exploit the GT, which due to 

its non-perturbative nature is able to overcome these infrared difficulties. Fi­

nally we study the gauge covariance rela_tions of the spectral function, to try and 

understand its gauge (in)dependence. 

2,,,1 Background/Introduction 

We consider a simple scalar model with the usual Maxwell Lagrangian, with no 

Chern-Simons term, that is, the (2+1)D counterpart of ordinary (3+1)D scalar 
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electrodynamics (SED). The Lagrangian in this case-will be of the form 

( [(8µ + ieAµ)<Pr[(8µ + ieAµ)<P] ~ m2 <Pt<P- ~pµv Fµ 11 ) + 2_(8µAµ) 2 

4 2e 
- Co+ LaF, (2.1) 

where <P is the scalar field, Aµ is the gauge field and pµv = aµ A 11 
- 811 Aµ is the 

field strength. The last term in (2.1), the gauge-fixing term LaF, is introduced to 

eliminate the residual gauge degrees of freedom of the action, and so permit the 

inversion of the gauge field propagator. From (2.1) we can generate the Feynman 

rules of the theory by taking functional derivatives of£ with respect to the fields. 

For example, the (inverse) gauge propagator is 

n-1 µv 
s2.c, 

8Aµ8A 11 

- -TJµvk2 + (1 - e)kµkv, . (2.2) 

which may now be safely inverted. This is done using the condition that the 

product of the propagator and its inverse should result in T/µv· Selecting a propa­

gator consisting of all possible two-index tensor forms, each carrying an unknown 

constant, then solving for these constants, we obtain 

(2.3) 

Similarly, the meson propagator and the meson-meson-photon vertex can be de­

termined. The complete set of Feynman rules for SED is given in Appendix 

A. 

Since this is a gauge theory, we must ensure that we preserve the gauge sym­

metry. One way to do this is via the Ward-Green-Takahashi (WGT) identi­

ties [96-98] connecting successive source Green functions. The WGT identities 

can be derived by considering the effect of a set of transformations on the gen­

erating functional, W[J]. We can see that £ 0 in (2.1) is invariant under these 

transformations, which take the form of the infinitesimal gauge variation, 
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Aµ(x) ---+ Aµ(x) - 8µA(x)/e 

<P(x) ---+ <P(x) + iA(x)<P(x) 

<Pt(x) ---+ <Pt(x) - iA(x)<Pt(x), 

where A(x) is a real infinitesimal scalar function. We consider the effect these 

transformations have on the generating functional W, which must also be invari­

ant under them. If we define the action S as 

(2.4) 

where the source term Cs is given by 

(where j'-', 17t, 17 are the sources of Aµ, <P, <Pt respectively) then the vacuum 

generating functional is 

(2.5) 

and further W, the generating functional of the Green's functions, is defined by 

Considering the variation of the gauge-fixing and source terms (since !:::..£0 = 0), 

and demanding the invariance of Z under this variation then implies 

(2.6) 

which is the fundamental functional gauge identity. In terms of Wit takes the 

form 

(2.7) 
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We take the Legendre transform of (2. 7) via 

which relates the one-particle-irreducible generating functional r to W, resulting 

lil 

[
8

2
8µ.Aµ-oµhT(x) of(x),1.( )- ,1,.f( )of(x)l = e z SAµ + e o<f>( x) 'f' x e'f' x o<f>t( x) O. (2.8) 

This contains all the information we need to obtain any of the WGT identities 
I 

within this theory. To obtain the WGT identity which involves the meson propa­

gator, we need to take the functional derivative of (2.8) with respect to </>(x) and 

its conjugate, i.e St/J(Yl;.Pt(z), which yields 

Now we need to make the identification that SA,.(:z:):;[u)sq,t(z) = fµ(x;y,z) is the 

full photon-meson-meson vertex and sq,(rj~~t(y) = _b.-1 (x,y) is the inverse meson 

propagator, so our relation becomes 

Finally, transforming this to momentum space, we obtain the familiar expression 

(2.9) 

Similarly, by taking suitable functional derivatives of (2.8) al;>ove, we may derive 

WGT identities for the photon :field and higher-order Green's functions. 

By choosing a function which satisfies its associated WGT identity, we pre­

serve the gauge symmetry of the theory. It is possible to begin with the lowest 

order WGT identity in its usual form, (2.9), then solve for r µ in terms of _b.-1 . 

This is the technique used in the original references on the GT (94, 95, 99, 122) and 

by Ball and Chiu (130, 131) and subsequent workers (132-134). The problem with 

this approach is that it produces a nonlinear equation for b. - 1 . When substituted 

into the relevant Dyson-Schwinger equation, things become very complicated to 

solve, and we find ourselves no better off computationally than practitioners of 
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the ladder approximation, which is a severe limitation. Instead we follow Del­

bourgo [129] and manipulate equation (2.9) by multiplying it on the left by .6.(p) 

and on the right by .6.(p - k), giving us 

kµ .6.(p)r µ(P, P - k).6.(p - k) = .6.(p - k) - .6.(p). (2.10) 

In order to set up an iterative way of solving for the particle propagators, we 

will utilize the Lehmann spectral representation of the meson [100-102], namely 

.6.(p) =Joo e(w)dw .. -oo p2 
- w2 + ie 

(2.11) 

We use this form of dispersion relation rather than the conventional 

as the spectral function in three dimensions naturally takes a form involving 

#, as will become apparent. By observing that the difference 

J (2p - k)µkµe(w)dw 
.6.(p- k) - .6.(p) = (p2 -w2)[(p- k)2 - w2]' (2.12) 

Delbourgo [129] saw that a very simple, though not unique, solution of (2.10)° is , 

to take the longitudinal Green's function as 

J (2p - k)µe(w)dw 
.6.(p)r µ(p,p - k).6.(p - k) = (p2 -w2)[(p- k)2 - w2)" . (2.13) 

It is clear that this is exact only up to an arbitrary transverse function, which 

could be added to (2.13) without violating the gauge identities, since any trans­

verse function will be annihilated when contracted with kµ. 

Now, to find the lowest-order corrections to the bare propagators, we consider 

the Dyson-Schwinger (DS) equations [1,41-43] for the propagators. We find it 

convenient to work in momentum space, and if we assume Aµ(k) and jµ(k) are 

the Fourier transforms of Aµ(x) and jµ(x), and similarly for all other quantities, 
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then we can obtain the Fourier transform of the action (2.4) explicitly, giving 

S = j il3k [-!Fµ
11
(k)Fµ 11(-k) - kµkvAµ(k)A

11

(-k) + (k2 - m 2)</>t(-k)</>(k) 
4 ' 2~ 

-e j il3p (p - k)µ</>t(p)Aµ(-p - k)</>(k) 

+e2 J a3p a3p' <Pt (p )Aµ( -p - p' - k )Aµ(p')<P( k) 

-qt(k),P(-k) -,Pt(k)q(-k)- i"(k)Aµ(-k)], (2.14) 

where we now adopt the convention that il3p = <f3p/(27r)3 , which we will use 

throughout this thesis. The DS equations result from the fact that the vacuum 

expectation value of the functional derivative of the action with respect to any of 

its field operators is identically zero, for example, 

O = j[d</>d</>tdAµ] (o</>~k) exp[iS]) 

= _ j[d</>d</>tdAµ] [(k2
_ - m 2)</>t(-k) - e j i13p(p - k)µ</>t(p)Aµ(-p - k) 

+e2 j i13pi13p'</>t(p)Aµ(-p-p' -k)Aµ(p')-17t(-k)l exp[iS] .(2.15) 

Noting from (2.5) that 

and 

i ojµ(~Z+ k) = j[d</>d</>td4µ].{lµ(-p- k) exp[iS], 

we can express (2.15) as 

which in terms of the generating functional W is 
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(2.16) 

Equation (2.16) may be used to generate the DS equation for any photon-amp­

utated Green's function G. For example, if we wish to generate the DS equation 

for the meson, we take the functional derivative of (2.16) with respect to 77t(q). 

We then set the sources to zero, and note that 

due to the absence of spontaneous breaking of charge symmetry or Lorentz in­

variance. This results in 

(2.17) 

We now define the (n+2)-point unrenormalized Green's function (with n external 

photon lines) by 

(
T:rr )µ.1 .. ·JJ.n( ' . )c( ') _ ·nH 8n+

2
W[O] 

"" u p ' •.. , p, •.• u p + ... - p - z c (- ) c t( ) c . c . ' 
U'1] p' U'1] p U}µ. 1 • • • UJµ.n 

in terms of which (2.17) becomes (after integrating out the 8 functions) 

1 = (k2 -m5).6.u(k) + ieoja3 p(p-k)v(Wu)11 (k,p) + ie5.6.u(k) Ja3 pgµ.v(Du)JL"'(p) 

-ie5 J i!3 p a3p1gµ.v(Wu)µ. 11 (p,p1
, k - p - p'; k), (2.18) 
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where the u subscripts denote unrenormalized quantities. We wish to write this in 

terms of the photon-amputated Green's functions, G = .6.f .6., which are defined 

by 

( TAT )µ1···µn( I • )"( ') _ "" v. p ' ... 'p, ... 0 p + ... - p -

·n+3( )n(D )µ1111 (D )µnlln(G ) ( I ) 
Z -eo u • • • u u 111 ... 11n P · · · P · · · , 

and using this we obtain 

1 = (k2 
- m~).6.u(k) - ie~ j a3p (p- k) 11 (Du)µ 11(k - p)(Gu)v(k,p) 

+ie~.6.v.(k) j a3p gµ 11 (Dv.)µ 11 (p) (2.19) 

+eci f a3 p a3p'(Dv.t°'(p')(Dv.t13 (k-p-p')( Gu)a13(p, p', k-p-p'; k ). 

If we renormalize this equation multiplicatively, using 

and write it in terms of the vertex functions (or f's), we achieve the meson DS 

equation given in (2.21) below. A similar approach would also yield the photon 

DS equation. 

The DS equations are not part of perturbation theory, as they involve full 

propagators instead of a bare loop expansion, but they are consistent with it " 

to any order of expansion in e, and the lowest-order perturbation result can be 

regained by putting e<0>(w) = 8(w - m). We adopt this form only to allow a 

consistent approach in the next two sections. The first in the infinite series of 

complete DS equatio_ns for the photon reads 

n;:(k) = (-TJµ11k 2 + (1- e)kµk 11 )ZA + 2ie2Z J T/µ 11 .6.(p)a3p 

-ie2 z j il3p .6.(p )r µ(p, p - k ).6.(p - k )(2p - k )11 

+2e4 z j .6.(p )r 1t11(P, k; p', k').6.(p')D:( k')a3pa3 p' 

_ -(-TJµ 11k2 + (1 - e)kµ.k11 )ZA + ITµ11(k), (2.20) 

where Z is the source renormalization constant, ZA is that of the photon and r µ 11 

stands for the meson-photon scattering vertex with the momentum arguments 
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stated. We may also represent equation (2.20) in terms of Feynman diagrams, 

which we do in Figure 1 below. 

-1 -1 

~ = VVVVVVV\/V' 

~ 
I I 

+ 2 vvWw<fvvv. + 2 

Figure 1: Photon DS equation in SED 

In Figure 1, (and Figure 2 below) a wavy line corresponds to a photon, a dashed 

line represents a meson, a dot corresponds to a vertex, and a shaded "blob" 

indicates that the propagator is regarded as full, i.e. exact to all orders. Similarly, 

the lowest DS equation for the scalar meson (assuming for the present that it h~s 

a non-zero bare mass m0), is 

Zi1 = (p2 
- m5).6.(p) - ie2 J iJ3 k .6.(p)f v(p,p - k).6.(p- k)D1w(k)(2p-:- k)µ 

e• _ ·-· • • +~e2.6.(p) j D,f(k)i13 k-... _.~ ~ . _ _ _ _ ... 

+2ej .6.(p)f µv(P, k; p~p+p' +k).6.(p+p' +k)Dµ>.(k)Dv>.(k')i13p~3p~ (2.21) 

which may also be 'represented diagramatically, .as shown in Figure 2. 

These equations hold to all orders, since they involve the full propagators and 

vertex functions, making them potentially very powerful. Within this frame­

work, that is,· using the ansatz (2.13) to linearize the DS equations, the photon 

polarization is given by 

• 2 j () J 3 [ (2p-)•)µ(2p-k)v 2'f/µv] 
ITµv(k) = -ie Z {] w dw il P (p2 _ w2 )[(p- k)2 -w2] - p2-w2 (2.22) 

+ 2-meson - I-photon terms 

21 



-1 --·-- -1 --0--
__ o __ +2--A---, .......... 

+ 

Figure 2: Meson DS equation in SED 

and the meson propagator obeys the equation 

z;t - (p2 - m~)~(p) 

-! ( )d . 21 il3k [(2p - k)µ.(2p - k)vflP.V(k) _ D "'(k)l 
f1 w w ie (p2 - w2)[(p- k)2 - w2] µ. 

+ 2-photon - 1-meson terms 

(p2 - m~)~(p) + j e~w)~L:(p,w), 
p -w 

(2.23) 

or, upon using the renormalization condition m_2 = m~ - :E(m,m) [122] we find 

0 = J w2 - m2 + L:(p,w) ~ L:(w,w) e(w)dw. 
p2 -w2 + ic 

(2.24) 

Since this :E is still the full meson self energy, we must be careful in taking the 

imaginary part of (2.24). If we are taking the discontinuity of some integral 

Jdw J(w) 
p2 -w2' 

then we obtain two contributions, 

Jdw SSJ(w) 
p2 -w2 

and j dw~f(w)o(p2 - w2
). 

Returning to (2.24), we find that 

SS[/ L:(p,w) - L:(w,w) aw] = Jaw:E1(p,w) -f dw:E1(w,w) 
p2 _ w2 p2 _ w2 p2 _ w2 

+ J dw[L:R(p,w) - L:R(w,w)] O(p2 -w2
), (2.25) 
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where E1 = ~~E(p, w) is the discontinuity of the meson self energy for a mass w 

meson, and ER = ~~E is its real part. The second integral on the right hand side 

is obviously zero, since we know that the self-mass E(m, m) is real, and the final 

term will not contribute since the 8 function will cause its two parts to cancel. 

This means we may write the imaginary part of (2.24) as 

(p2 - m2) J e(w)dw 
2
# e(p) = 2 2 E1(p,w). 

p p -w 
(2.26) 

We now have the necessary tools to permit the consistent study of SED using 

both perturbative and non-p-erturbative techniques. We will begin ,in the next 

section, by considering perturbation theory. 

2.2 Perturbation Theory 

In this seCtion we will consider the suitability of using perturbation theory to ex­

plore the properties of super-renormalizable theories, in particular (2+1)D SED. 

Perturbation theory involves approximating physical quantities through a 

power expansion in orders of coupling constant, and summing the Feynman dia­

grams at each order. In (3+1)D electrodynamics it has been incredibly successful,· 

since the small effective coupling constant results in finite terms in the perturba­

tion expansion. We begin our study of SED in (2+ 1 )D by considering the. first - · 

order correction to the bare photon propagator, the vacuum polarization IIµ 11 , 

which involves the calculation of the Feynman diagram shown in Figure 3. 

p 
-~ ...... 

,,... ' 
/ \ 

k I \ 

~ Wvvv 
µ . I V 

\ I 
\ ' -~/ ......... ~_,,,,,,, 

p-k 

+ 

.2 ...... 
/ \ 

I I 
\ I 
~ 

k k 

Figure 3: Photon vacuum polarization contributions in SED 
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As intimated in the previous section this perturbation expression is equivalent 

to setting e(o)(w) = 8(w - m) in (2.22), giving 

II (k) = _ · 2 J i13 [(2p - k)µ.(2p - k)v - 217µ.v[(p - k) 2 - m2
]] 

µ.v ie . P (p2 _ m2)[(p _ k)2 _ m2] · (2.27) 

We wish to explore the UV convergence of this integral, which we can do using 

power counting. This is a method of seeing the superficial degree of divergence 

of an integral by comparing the power of momentum in the numerator and de- c' 

-- nominator. If the total power of momentum in the numerator (allowing for the 

dimension of the momentum integration) is larger than that in the denominator, 

then at large momenta the integral will diverge, whereas a larger power of mo­

mentum in the denominator will have the converse effect, yielding a UV finite 

result. It can be seen that in the above integral, equation (2.27), the effective mo­

mentum is (3+2)-4 = 1 so the numerator dominates, and the integral appears to 

be UV divergent. A regularization scheme is required to evaluate the momentum 

,integral, and render any residual singularities into an amenable form, ready for 

renormalization techniques. We choose dimensional regularization [135-139], for 

several reasons. First, it is convenient, since any infinities encountered appear 

simply as poles in r functions. Also, it is simple to use, since the propagators 

retain their inverse quadratic form, making the integrations relatively easy· to 

compute. Finally, it preserves the gauge invariance of the theory, which is vital 

if results in a general covariant gauge are required. The technique of dimensional 

regularization is outlined in Appendix B, where (2.27) is evaluated explicitly, 

g1vmg 

rr •• (k) = - 1~:(-q .. + k~:·) [4m + ( #-~)In G: ~ ~) l · (2.28) 

Notice that the rE:'.sult is strictly finite, which is ensured by gauge invariance. If we 

study the asymptotic behaviour of (2.28) we see that, provided m =/:- 0, as k ~ 0, 

II tends to e2k2 /67rm, and otherwise it equals -e2~/16. Alternatively, it 

is possible to evaluate (2.27) using the technique outlined in Appendix C, which 

involves determining the discontinuity of the momentum integral, then expressing 

the full integral as a dispersion relation involving its discontinuity. This method 
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also yields (2.28). It will be useful to incorporate this photon self-energy in the 

full photon propagator via a dispersion relation (37]. We do this by finding an 

asymptotic approximation of (2.28) valid both for k--+ 0 and k--+ oo and which 

becomes exact for m = O; explicitly 

n-1 ( kµk11) (k2 ~k2 
) µ11 ~ - -TJµ11 + k2 + ~?rm _ V-JC2 · (2.29) 

Taking the.discontinuity of the inverse of this equation yields 

<;SD (k) - -(- kµk11) ( e2 3m?r 8(k2)) 
µ11 - - 17µ11 + k2 16Jk2(k2 + c2) + 2c (2.30) 

h 3 e2Th . w ere c = 2?rm + 16 • en, usmg 

kµk11 [00 p(µ )dµ 
Dµ11(k) = -(-17µ11 + k2) Jo k2 _ µ2 

(2.31) 

and noting that 

( kµk11)_( ) _ 2µ~n ( ) -11µ11 + k2 p µ = -;-;.s µ11 µ 

= (-q_. + k~;') [c;~:, + 3m (;c 8(µ) - c' ~ µ')], 
we obtain (up to a ZA. scale factor) the spectral representation (m # 0) of the 

dressed photon propagator, 

' kµk11 [(2c [00 dµ 1 3m?rl kµk11 ( ) 
.Dµ11(k) = (11µ11. - k2) -;.- 3m) Jo k2 _ µ2 µ2 + c2 + 2ck2 -ek4. 2.32 . 

Note the dangerous pole at k2 = 0 is lurking in (2.32) when m # 0. 

We now turn to the meson self-energy, :E(p, m), within perturbation theory. 

This is equivalent to evaluating the Feynman diagram in Figure 4. 

We obtain the expression for :E(p, m) from equation (2.23) by limiting ourselves 

to the bare photon propagator, 

( ) 
17µ11 kµk 11 

Dµ11 k = -/;2 + °"k4(1 - e), (2.33) 

resulting -in the expression 

:E(p, m) = -ie2 j a3 k (2p - k)µ(2p - kY [- 11µ11 + kµk11 (l _ e)] 
(p-k)2-m2 k2 k4 

_ . 2 J :t3k 1 + e ie u k2 • (2.34) 
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Figure 4: Contributions to meson .self-energy in SED 

The second integral in equation (2.34) obviously disappears in dimensional regu­

larization, since within that scheme, 

-if iJ3k = 
k2 

lim - . a3 k(k2f 
Tr;-_-,,i - z J ( k2 - Af2)E 

lim (-1f-Er(l + T)r(E - l-T) 
Tr;-.:-01 ( 47r )lr(Z)r(E)(M2)E-l-T 
0. (2.35) 

We now evaluate (2.34) using the techniques associated with dimensional regu­

larization, yielding 

_ e
2 (p2 + m2

) [m + #] e2m , E(p, m) - ..Jij2 log # -
2 

, 
47r p m - p 7r 

the imaginary part of which is 

e2 
Er(p,m) = H(p2 + m2)0(p2 - m2), 

47r p ' 

where O(p2 - m2 ) is just the unit step function, defined by 

O(x) = { ~ x>O 

x < 0. 

(2.36) 

(2.37) 

Notice that both (2.36) and (2.37) happen to be gauge independent in three 

dimensions. The explanation for this is given in Appendix C, where we summarize 

the relevant calculations in any dimension. 

Since Er in (2.37) above is of order e2 , equation (2.26) may be used iteratively 

to give the perturbation expansion for (}, taking the form 

co 

e(w) = L: e(i>(w). 
i=O 
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Putting the ith order expression for g in the right hand side of (2.26) will give 

the ( i + 1 )th order term in the expansion on the left hand side If we now do this, 

by beginning with the lowest-order result, g<0l(w) = 8(w - m), we arrive at the 

first order ( e2) spectral function 

2 2 + 2 
(1)( ) _ .:_ P m ( 2 _ 2) e P - 27r (p2 - m2)2 0 P w . (2.38) 

Attempting to carry out the perturbation expansion to the next order shows how 

things can go wrong if we do not allow for photon-line corrections in our O(e4 ) 

calculations. We are confronted with the following integral 

(2.39) 

which is clearly divergent at both ends of integration, and near w = m we meet 

the so-called "infrared catastrophe". In (2+1)D it is more like a "cataclysm" 

since unlike SED in (3+1)D, the divergence is not logarithmic but linear. 

2.3 The Gauge Technique 

In this section, we will consider non-perturbative methods to try to overcome 

this IR difficulty. The first alternative is that it may be possible to continue 

studying (2.26), but instead of a perturbation expansion, recast (2.26) into the 

form (m = 0) 

/2(2p) = j Er(p,w]- E21(p,p) g(w)dw + Er(p,p)~(p), 
p -w 

(2.40) 

then try a power law selection of ~(p) to avoid the singularity. Equation (2.40) 

looks to be in a more well-behaved form, but our work suggests that this naive 

hope is unlikely to succeed as we find that a p = w singularity in the integration 

region persists. 

The only way we know to effect a cure is to exploit the GT and also, following 

Jackiw and Templeton [37], allow the photon propagator to become dressed in 

order to cure the divergences of equation (2.39). In this context we use the WGT 
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identity in the form of (2.13) to determine the photon propagator, and go on to 

evaluate the meson self-energy using this dressed photon propagator. Evaluating 

IIµv(k) from (2.22) we firstly obtain a non-perturbative estimate of the photon 

self-energy, 

·before attempting to determine the meson self-energy. Since as yet we know 

nothing about the non-perturbative behaviour of e(w), we will assume a finite 

mass m threshold as a starting point and put e(w) = S(w - m) to return to the 

perturbation result (2.28) for II. Later, having determined the behaviour of e(w), 

we may return to (2.41) to refine our result, since the dressing of the photon line 

is the only source of nonlinearity in the GT. 

Let us see why the question of mass is so important in our calculations. As­

sume for a moment that we take m =/:- 0, which means using the massive dressed 

version (2.32) of the photon propagator. This would result in our meson self­

energy taking the form 

't""I( ) = _. 2f "'3k(2p-k)µ(2p-k)" 
LJ p, m ze u ( k) 2 2 x p- -m 

[ 
kµ.kv ( 2c {°" dµ 1 3m7r) _ kµkv] 

x (T/µ.v - k2) (-;- 3m) lo k2 - µ2 µ2 + c2 + 2ck2 - ~k4 ' 

which, after some calculation yields a- discontinuity 

-e2 · 2 2 e4 [7r(p2 _ w2)2 (p2 _ w2)2 
E1(p,w) = 47rv9(3p + w ) + 327r2JP2 2c3 c2( ff - w) + 

(p2 w2 ( p2 w2" p2 w2 l + \ ~ 1 - ~ }) arctan( ~ ) . (2.42) 

Notice that once again this result is gauge-invariant. Al~o, it is important to 

notice that only the first term in (2.42) lacks a factor of p2 -w2 • _This means that 

when we insert (2.42) into (2.26),-only this part will retain a factor of p2 - w2 in 

the denominator. It was this factor that led to our IR problems in perturbation 

theory, so with one such term, and no others to cancel it, we see that we will still 

have an IR catastrophe. This is simply a reflection of the fact that if the source 
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spectral function has support away from the origin, the low-energy part of II will 

still be proportional to k2 and contribute to the photon renormalization constant 

ZA without softening the k --+ 0 behaviour. 

It seems that our only hope to effect a cure is to assume the existence of some 

massless intermediate state in II. Let us therefore fix upon some scalar source 

with renormalized. mass m = 0, which clothes the bare photon propagator to 

kµkv) 2c 100 dµ 1 kµkv 
Dµv(k) = (TJµv - -k2 - k2 2 2 + 2 -J-k4 ; 7r 0 -µ µ c 

c = e2 /16. (2.43) 

Using such a dressed photon propagatora and dropping the 2-photon-1-meson 

graphs which are separately gauge-invariant, our meson self-energy discontinuity 

becomes 

L:r(p, w) e
2
c [ 2p

2 + 2w
2 + c2 (H -w) 

2 
r::::r arctan 

47r yp2 c c 

(p2 -w2)2 {7r (H -w)} + - - arctan 
c3 2 c 

G. (p2 - w2)2 l 2 2 
+yp--w- c2(vfr-w) O(p -w ), (2.44) 

which once again remains independent of e. Notice that if we allow c --+ 0, we 

find 
. e2 

L:r(p, w) ,...., 47r#(p2 + w2)0(p2 - w2), 

which is exactly (2.37), so the perturbation theory result is still contained within 

(2.44). More significantly, L:r(p,p) = 0, and this is an infrared panacea! Return­

ing to (2.26) we can now attempt to solve this linear equation for the spectral 

function, which has the form 

(2.45) 

a More generally we easily see that the constant c = N e2 /16, where N is the total number 

of charged zero-mass particles that can couple to the photon. 
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Due to the complicated nature of this equation a complete analytic solution isn't 

possible, so we look at the behaviour in various asymptotic regimes. Since at IR 

momenta, i.e. ( #, - m) ~ e2 , we may make the approximation 

(#-m) H-m (#-m)3 (H-m) 5 

arctan "' - c3 + 0 2 , 
c c 3 e 

the self-energy becomes 

which to leading order in (p2 - w2 ) is 

and the equation, 

p{!(p) ,...., -e2 [P e(w)dw; 
2 7r2c Jo 

is readily solved to give a spectral function for the meson which behaves as 

(2.46) 

Similarly, if we study the UV behaviour of (2.45) above, i.e. assuming ( #'­
m) ~ e2 , it is quite valid to make the approximation 

(
# - m) 7r c ea ( e2 ) 

5 
arctan ,...., - - + + 0 , c 2 #-m 3(#-m)3 H-m 

so that the self-energy takes the UV form 

e2c [-(p2 + w2)7r G err 2(p2 + w2) 
,...., +(yp2-w)--+---==---
- 47r2# c 2 H-w 

(p2 _ w2)2 c2 l 
-(#-w)3 + #-w)' 

with leading large-p behaviour 
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We now need merely to solve the eql!ation,, 

. e(p) -e2 loP 
p- "" - e(w)dw, 

- 2 47rp 0 

which yields the result 

(2.4 7) 
-

We can see that in both momentum regimes the meson spectral function remains 

gauge-invariant. 

2.4 Gauge Covariance Relations 

In order to understand why the spectral function is gauge-invariant in both the 

GT and to order e2 in perturbation theory, we will now study the .general x-space 

behaviour of the spectral function following the technique of references~[106,107], ~· 

yielding the gauge covariance relations in (2+1)D for the spectral function. We 

wish to determine the behaviour of our propagators under the gauge transforma-

tion 

(2.48) -

</> ~ <f>exp(ieA(x)).-- -

We follow Zumino [140] (using his notation) and begin by considering the gener- -

-ating functi~nal Z, which transforms via (2.48) as 

or, in differential form, 

.8Z - (a ·µ _§_ t~) z -
z SA - µJ + e11 811 - e11 811t • (2.49) 

Let us consider the gauge changes corresponding to a change in the generating 

functional defined by 

(2.50) 
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where M(x) is an arbitrary infinitesimal function, even in its argument. Now we 

can think of Z as dependent on some new function F( x) in such a way that the 

infinitesimal change M(x) = oF(x) induces the change given in (2.50). If we now 

set TJ = T}t = 0, we may exploit (2.49) in obtaining 

or, ·in finite· form 

The photon propagator is defined as 

(2.53) 

giving in this case 

(2.54) 

or if we take the Fourier transform of this equation we finally obtain 

(2.55) 

where M(k) is the Fourier transform of M(x). Similarly, we may also derive 

the effect of a gauge transformation on the meson propagator. In terms of the ,, 

generating functional Z, the meson is defined as 

-i s2z 
~(x,y) = z DTJ(y)oqt(x)' 

and so -it varies according to 

~(M)(x,y;jll) = exp(ie2[M(x -y)- M(O)] +' 

(2.56) 
/ 

+ie2j [M(x - z) - M(y - z)]8µjµdz) ~(o)(x, y;l'), (2.57) 

or when we then set j = 0 

~(M)(x) =exp (ie2[M(x) - M(O)]) ~(o)(x), (2.58) 

as was found previously by various authors (140-144]. 
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Using the Lehmann spectral representation 

(2.59) 

we can recast (2.58) into the form 

_6.(M)(x) - j p(M)(w).6.c(x,w)dw 

- exp(ie2[M(x) - M(O)]) j p<0)(w).6.c(x,w)dw. (2.60) 

Formally we know M ( k) = -e / k4 , and using this we can readily find the gauge 

factor exponent of the meson propagator [106, 107] in three dimensions by taking 

the Fourier transform 

e2 [M(x) - M(O)] = 2 J ""3k ik.:z: e -e
2e J ::f'3k a a ik·:z: e 

-e u e k4 = 4(3/2 - 2) u f)kµ. okµ. e k2 

_ _ e
2e# = -K g. (2.61) 87r - v xM, 

where we have recognized in (2.61) the causal massless propagator, 

J 
3 eik·:z: -i.fi 

a kk2 = 47r3/2V-X'i' 

·and have replaced (;k)2 by x2. The divergence present in the integral of (2.61) is 

removed using dimensional regularization. We have also defined K, which ii? the 

constant corresponding to a choice of gauge function M. Now we are ready to 

take the Fourier transform of (2.60). Noting that .6.(plK) =I a3 xeip·:Z:_6.(M)(x), 

and rewriting p(M)(w) ~ p(wlK) to enable all gauge dependence to be expressed 

in terms of K, we obtain 

Since in SED, the free meson propagator (mass w) can be written as 

(2.63) 

and .6.(p) has a Lehmann spectral representation (in any gauge K), 

.6.(plK) = j p(wlK).6.c(p,w)dw, (2.64) 
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we can write (2.62) in the explicit form 

p(wlK) 2 2 = p(wlO)dw a3x eip·xe-iKVxZ - e . J dw J J ( -w.,r-:;'l) 
p -w 47l"# 

(2.65) 

By making a Euclidean rotation, the x-integration is easily evaluated to be 

J 
. e-i(K+w)v9° 1 

- ~x~~ = ' 
47r# p2 - (K + w)2 

(2.66) 

so that we have 
~- J J{ dw J p(wlO)dw 

p(wl ) p2 _ w2 = p2 _ (w + K)2 · (2.67) 

From the discontinuity, we arrive at the covariance relation for the spectral func-

tion, 

p(w + KIK) = p(wlO). (2.68) 

This covariance relation implies that p(wlK) is a function only of (w - K). For 

some function a we thereby define the pole and cut contributions for any K, 

p(alb) = o(a - b- m) + a(a - b- m), (2.69) 

and end up with the invariant combination 

p(w + KIK) = o(w - m) + a(w - m). (2.70) 

This establishes that the spectral function is independent of the gauge parameter, 

in agreement with perturbation theory (2.38), and the GT solutions (2.46) and 

(2.47). As we will soon see, the covariance relation is more involved when we 

come to t_he fermion spectral function. 
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Chapter 3 

Spinar Electrodynamics in 

(2+1)D 

In this chapter, we will be considering a more useful theory, namely spinorial 

quantum electrodynamics ( QED). The present work most closely resembles that 

of Delbourgo and West [40], who considered the equivalent theory in (3+1)D, 

and once again we have made the necessary modifications to (2+1)D. We will 

follow the analysis of the previous chapter, and begin by setting up a framework 
' 

for consistent study using perturbative and non-perturbative techniques. Then 

we will consider a perturbation expansion, and see its inability to generate finite 

IR behaviour. The next section will show how the GT together with a dressed 

photon propagator can solve these shortcomings, and finally we will study the 

gauge covariance relations of the spinor theory. 

3.1 Background 

In QED, the Lagrangian is of the form 

where 'I/; and i[J are the spinor field and its conjugate, Aµ is the gauge field and 

pµv = aµ. AV - av Aµ is the field strength. As in the scalar case, we have included 
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the gauge-fixing term, scaled by the gauge parameter e, which allows us to safely 

invert the gauge propagator. Once again the Feynman rules are obtained by 

taking functional derivatives of the Lagrangian with respect to the relevant fields. 

These rules are given in Appendix A. There is some choice in selecting the gamma 

matrix structure associated with the /µ above. We could assume that we have N 

species of fermions, and use the 2 x 2 form of the matrices, related to the Pauli 

spin matrices by 

as J ackiw and Templeton [37] and others have done. The problem here is that if 

we allow the fermions to acquire a mass, parity would be violated, which would 

then induce parity-violating photon masses which we wish (for the moment) to 

avoid. We can simply see the effect of the fermion mass term (which would be of 

the form mifnp) on the parity symmetry by considering a parity operation on 

(3.2) 

In even D, the parity operator, P, corresponds to an inversion of _all the spatial 

coordinates, since that is an improper transformation. However when D is odd it 

should be regarded as a reflection of all the space coordinates except the very last 

one, xn-i, in order to ensure that the determinant of the transformation remains 

negative. In 2+ 1 dimensions this corresponds to the unitary change, 

(3.3) 

Applying this transformation for spinor fields to (3.2) we find 

From our definition of the Dirac 1-matrices, we find (11 ) 2 = -1, and since we 

are integrating over a measure and ifnp is symmetric we can change -x1 -7 -xi, 

so parity is indeed violated, since P Jp-1 =-I. 

Instead of allowing this to happen, in the following we shall assume that all 

fermion species are doubled appropriately (with opposite sign mass terms) in such 
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a way that the parity invariance of the massive Lagrangian can be restored [27,28]. 

The net effect is to enlarge the gamma matrices from 2 x 2 to 4 x 4, so that they 

take the form 

,o = ( 0'3 0 ) ' 
0 -0'3 

At the same time we notice that since no Chern-Simons term has been in-

troduced into the Lagrangian and we have adopted the parity-doubled gamma 

matrices, no photon mass will appear in our calculations. Given these assump­

tions, the analysis is carried out in the same manner as in the previous chapter. 

We start with the lowest-order Ward-Green-Takahashi (WGT) identity (96-98] 

for the fermions. Once again we forego the form which relates the vertex function 

to inverse fermion propagators, 

opting instead for the form which relates the Green's function to the fermion 

propagators, namely 

kµS(p)f µ(p,p- k)S(p- k) = S(p- k) - S(p). (3.4) 

Then we use the spinor form of the Lehmann spectral representation (100-102], 

S = j p(w)dw , 
(p) p-w + iee(w) 

(3.5) 

where p is used to denote 1·p. Here we have explicitly indicated the ie, which from 

now on will be suppressed, and so should be assumed present in all denominators. 

Using .tJ:iis spectral form, the difference of propagators in the right hand side of 

(3.4) takes the form 

J 1 1 
S(p- k) - S.(p) = p(w)dw ~-·-w , p-,-w. (3.6) 

Finally, since both sides of (3.4) now contain a factor of kµ, we may now remove 

it to obtain the spinor form of the GT ansatz [40], 

J 1 1 
S(p)r µ(p,p - k)S(p - k) = p(w)dw P _ w (µ p-'JC _ w · (3.7) 
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Once again, it should he noted that this equation definitely satisfies (3.4), but 

is exact only up to an arbitrary transverse function, sillce k,_,.T,.,. = 0 for any 

transverse function Tµ, so it will have no effect on the WGT identity. Again we 

need to find the spectral function via the pair of Dyson-Schwinger (DS) equations 

[1,41-43], which in the spin.or version of the theory (with bare fermion mass m0 ) 

take the simpler form 

n;;(k) = (-77,.,.11 k
2 + (1 - e)kµ.k,,)ZA 

+ie2 Z j a3p tr["yµ.S(p)I' ,,(p,p-:-- k)S(p- k)] 

- (-17,.,.11 k2 + (1 - e)kµ.k,,)ZA + IT,.,.,,(k), (3.8) 

for the photon, which can be represented diagramatically as shown in Figure 5. 

-1 -1 

~ = VVVVVVVVV' 

Figure 5: Photon DS equation in QED 

Similarly, the fermion satisfies its own DS equation, 

z-1 = (p- m 0 )S(p) - i!:.~ j a3k S(p)I',,(p,p - k)S(p- k)D,.,."(khw (3.9) 

which is equivalent to the diagrams in Figure 6. In Figure 5 and Figure 6, wavy 

lines still represent photons and vertices remain as dots, but now the solid lines 

are introduced to signify the fermion propagators. 

-1 -1 
--~--

Figure 6: Fermion DS equation in QED 
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Equation (3.8) introduces Ilµ.v, the photon vacuum polarization, and using the 

ansatz (3. 7) to obtain a linear solution of (3.8), the vacuum polarization reduces 

to 

Ilµ.v(k) = ie2
Z j p(w)dw j il3

ptr [/µ.p~w Iv p-~-w] · 
Similarly, the fermion Green's function obeys 

(3.10) 

z-1 = (p ~ mo)S(p) - j p(w)dw ie2 j il3 k p l w /v p-~ -w {µ.Dµ.v(k) 

J p(w)dw 
(p - m0 )S(p) + p - w E(p,w), (3.11) 

which defines E(p, w ), the fermion self-energy. This equation can be written in 

renormalized form, yielding 

0 = j w - m0 + E(p,w) p(w)dw = j w - m + E(p,w) - E(w,w) p(w)dw. (3_12) 
p-w p-w 

Taking the discontinuity of this equation yields 

J p(w')dw' 
(w - m)p(w) = Er(w,w'), 

w-w' 
(3.13) 

where we write Er(w,w') = ~8'E(w,w') to represent the discontinuity of the 

fermion self-energy for a mass w' fermion. Often it is convenient to expand this 

equation in terms of its odd and even parts, to facilitate the evaluation of the 

self-energy. The spectral function can only be odd or even in w, so we write 

(3.14) 

Similarly, since E has no tensor indices, it can only have terms proportional to p 
(proportional to a 'Y matrix), or proportional to a scalar such as w or #, so we 

can make the decomposition 

(3.15) 

Using (3.14) and (3.15), we c_~n then split (3.13) into the coupled pair of spinor 

GT equations (40, 104, 129], 

1
00 dw2 

(p2 - m2)p1(P2) = 2 2 [(p2p1(w2) + mp2(w2))EII(P2,w2) 
m2 p -W 

+ (w2 P1 (w2) + mp2(w2))E2I(P2, w2)] (3.16) 
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and 

l oo /w2 2 [(mp1(w2) + P2(w2))p2E11(p2,w2) 
m2 p -W 

+ (mw2p1(w2) + p2p2(w2))E21(p2,w2)]. (3.17) 

We will use this pair of equations in the next two sections, where we will explore 

first the perturbative, and then the non-perturbative behaviour of the spinor 

theory. 

3.2 Perturbation Theory 

Once again, this section will be devoted lo exploring QED using perturbation 

theory, involving a bare loop expansion in powers of e2 in order to see if the IR 

perturbative behaviour of the spinor theory is more well behaved. The lowest 

order ( e2 ) perturbation correction to the photon propagator, the vacuum polar­

ization, is shown in Figure 7 below. 

-P 

k 

µ v 

p-k 

Figure 7: Photon vacuum polarization in QED 

To obtain it we use (3.10), and as the starting point for the perturbation expan­

sion we use the lowest order results for p1 and P2, namely 

p~o)(w2) - 8(w2 - m2) 

p~0)(w2 ) - w 8(w2 
- m 2

). 

Using (3.14) to combine these, (3.10) yields 

ITµv(k) = ie
2 j i1

3
p tr[/µ P~ m /v p-:- m]. 
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If we write this integral in 21 dimensional form, then exploit the properties of 

products of gamma matrices, and traces of these products, which are outlined in 

Appendix D, we are able to write the vacuum polarization as the product of a 

scalar integral and the transverse projector, -TJµv + kk;", giving 

II (k) = ie2 
( _ kµk,,) j il21 [21 m

2 + (2 - 2l)p · (p - k)] 
µv 2 T]µv k2 P (p2 - m2)[(p - k)2 - m2] ' (3.19) 

which we evaluate once again using the techniques which we associate with di­

mensional regularization, to obtain (once we have safely taken the limit l-+ 3/2) 

II (k) = _e2(T/µvk2 - kµk,,) [(# 4m2) In (2m + y'iii) -4m] . (3.20) 
µv 87r + Vf2 2m - ffi 

As in the scalar theory, this does not soften the IR behaviour of the photon 

propagator unless m = 0. Similarly, the first-order fermion self-energy is obtained 

by evaluating the diagram in Figure 8. 

µ v 

p p 

p-k 

Figure 8: Contribution to fermion self-energy in QED 

Since this is a perturbation calculation, we use the bare photon propagator, 

T]µv kµkv ( ) 
D µv ( k) = -12 + k4 1 - e , 

yielding the integral 

( ) · 21 ::t3k µ (p-~+m) ,, [ 1/µv kµkv ( c)] 
E p, m = -ie u - I (p - k )2 - m2 / - k2 + k4 1 - .,, . (3.21) 

This integra!__is then split, according to (3.15), into two pieces, 

E1(p,m) - ie2jk2[(p-a;~_m2] [(P;2k(2-e)-e)-2(1-e)(~~:t] 
and 

E2(p,m) - ie2j k2((p-a;~-m2](2+e), 
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which are evaluated to yield 
' 

E1(p, m) (3.22) 

(3.23) 

the imaginary parts of which are found to be, 

E11(p,m) (3.24) 

(3.25) 

Now we have all we need to investigate the perturbative behaviour of the 

spinor theory. Once again, as in the previous chapter, we may use (3.16) and 

(3.17) iteratively. Substituting for E11 and E21, without clothing the photon, we 

obtain the GT equations within this "quenched" approximation, 

and 

Notice that, as in the scalar theory, the left hand side and right hand side differ 

by a factor of e2• This means that if we expand p1 and p2 in orders of e2, we can 

introduce them at some order in the right hand side and obtain the next order 

on the left hand side. To obtain the first order result, we use 

and 

which yields the results 

(1) 2 e
2 

( e 4m
2 

) 
Pt (p ) = S7ry'p2 2p2 - (p2 _ m2)2 (3.28) 
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and 
(1)( 2) - -e2m 2(m2 + p2) 

P2 P - S w ( 2 2)2 · 7ryp- p -m 
(3.29) 

To the next order of approximation (e4 ), we see that we are confronted (to first 

order in e) with 

and 

and it can-easily be seen that, as in the scalar case, the above equations contain di­

vergences at both ends of integration including the IR "cataclysm" when w -+ m. 

Once again the perturbation expansion has been unable to obtain a finite result; 

since it left the photon undressed, so we consider once again non-perturbative 

solutions to the problem. 

3.3 The Gauge Technique 

We begin our non-perturbative analysis by considering an approach suggested 

recently [54, 133, 134]; one which 'modifies the non-linear approximation of Ball 

and Chiu [130, 131]. It is constructed as a way of bridging the gap between 

perturbative QCD and low-energy phenomenology, but it is also applied to QED 

in (2+1) dimensions [133,134]. Here they operate in the quenched approximation, 

and introduce a general vertex function ansatz containing a parameter a, which 

controls the magnitude of the transverse contribution, then calculate a physical 

(hence gauge-invariant) quantity, the fermion condensate (./f;'!/J). By varying a, 

they find the value at which (at least for 0 < ~ < 1) the gauge dependence is at 

a minimum, which turns out to be for a= 0.53 [133]. 
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The problem with the analysis as outlined by Roberts and Williams [134] 

stems from the criterion used to test the gauge invariance of their own and others' 

ansatze, namely 

(3.32) 

Within the quenched approximation, this condition is equivalent to demanding 

the propagator satisfies 

. 2 J ddq i{. (p - q) 
1=1.-y · pS(p) + ee (27r)d (p _ q)4 [S(p) - S(q)], (3.33) 

-
which is equation (3.97) from [134]. We wish to consider what implications this 

equation (3.33) has for the theory. Perhaps the easiest way to see these effects 

is to consider for a moment the transformation (3.68), which is discussed in the 

next section, and which takes the form 

S(xJM) = exp(ie2 [M(x) - M(O)])S(xJO). 

Operating on this expression with i fJ we generate 

i fJS(xJM) = i fJS(xJO)exp(ie2 [M(x)- M(O)]) 

+ie2S(xJO)exp(ie2[M(x)-M(O)]) fJM(x) 

i f)S(xJO)exp(ie2 [M(x)-M(O)]) + ie2S(xlM) fJM(x),(3.34) 

then transforming to momentum space by identifying i fJ -+ p we obtain 

pS(M)(p) = -i J dqS(0>(q) efK(p - q) . 

+e2 j dq(p-ef)M(p - q)S(M)_(q), (3.35) 

where K(p-q) is the Fourier transform of the convolution exp(ie2[M(x)-M(O)]). 

We know however from section 2.4 that we can write M explicitly as 

- e 
M(p - q) = ( )4' p-q 

so our relation takes the form 

pS(M)(p) = -i j dqS(0 )(q) fiK(p- q) + e2e j dq (p-i) .3(M)(q). (3.36) 
'(p-q)4 
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We now want to compare this with (3.33) above. First notice that in (3.33), we 

may pull the factor of S(p) out of the integral, yielding a term 

S(p)ee2 j ddq if. (p - q) 
(211")d (p-q)4 ' 

which within dimensional regularization is sure to disappear, so we may re-write 

(3.33) as I 

. J.S( ) ·c 21 ddq (p-{) S( ) 
i p p = 1 + i~e ( 211")d (p _ q)4 q . (3.37) 

By comparing this expression with (3.36) above, we see that for (3.37) to hold, 

the expression 

J ddq 3(o)(q) gK(p - q) 
(211" )d 

must be equal to unity. In essence, this condition is equivalent to saying that 

in the Landau gauge (M = 0), the "full" quenched fermion propagator must 

be equal to the bare propagator, 1/ p, which is true to order e2
, but not to 

next order [145], where the gauge at which the bare propagator becomes exact is 

shifted. This suggests that the claims made in [134] may only hold to order e2 • 

So, to elicit our own non-pertur~ative solution we will need, once again within 

the GT, to dress the internal photon line, and this is done in precisely the same 

way as in section 2.3. In fact, aside from a factor of 2, the photon polarization in 

QED is identical to the scalar result. Since we need to weaken the 1/k2 singularity 

in the photon propagator we use the photon self energy, which comes from (3.10), 

once the momentum integration has been evaluated. It takes the form 

TIµv(k) = ::c~µv - k~:")j dwp(w) [ (v'k' + ~) log(t ~ ~)-4w], {3.38) 

and once again we find that avoiding the IR catastrophe requires that we take 

a zero mass threshold. As a first step in this iterative process, we will assume 

p(w) = 8(w) and obtain a photon line dispersion relation 

( ) ( 
kµk 11 2c loo dµ 1 kµk 11 

D µ11 k = T/ µ11 - -k2 )- k2 2 2 + 2 - e-k4 
71" 0 -µ µ c 

which is of the same form as (2.43), but now c = e2 /8. Using this as our dressed 

photon propagator we evaluate the fermion self energy, resulting in absorptive 
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parts of the form 

p2.Ell(P2' w2) = e2 [(p2 - w2)2 ( 1 - ~ { 7r - arctan( .JPi - w )}) 
87r# 1C"e H -w e 2 e 

e( 2 2 e G. e2 H -w l +-
2 

P +w )- -(yp2 -w) +-arctan( ) 
1C" 7r e 

(3.39) 

.E21(p2, w2
) = - 87r~ [ ~ arctan (He- w) + e] , (3.40) 

which have then to be substituted into (3.16) and (3.17), or (3.13) to solve for 

the fermion spectral function. It is useful at this point to notice that if we take 

the perturbative limit c--)- 0, we find that 

e2e ( m2) .E11(p, m) "' - 1 + -
. l67rff p2 

(3.41) 

e2 
.E21(p, m) "' 87r#(2 + e), (3.42) 

which are exactly (3.24) and (3.25), so our solution still contains the exact per­

turbation ·result to this order. If we now recombine (3.39) and (3.40) using (3.15) 

to obtain 

.E1(w,w') - -- arctan - - - + -'-----'--e
2 

[ (w - w') { e
2 

4w' (w
2 

- w
12

)
2

} 

87rw e 1C"W 7r 7rwc2 

c(w - w') e(w - w')2 

- + ~-----'-
7rW 2w 

(w2 - w'2)2 (w2 - w'2)(w· + w')] 
2 + ' 2we 7rCW 

(3.43) 

then in order to obtain the fermion spectral function we must solve 

w2p(w) - - arctan - - - + -'-----'--e
2 j p(w')dw' [ (w -w') { c

2 
4w' (w

2 
- w

12
)

2
} 

87r w - w' c 7rW 7r 7rwc2 

e(w - w') e(w - w')2 

7rW + - 2w 
(w2 - w'2)2 (w2 - w'2)(w + w')] 

2 
2 + . (3.44) 

we 7rCW 

An exact analytic solution of (3.44) is too difficult to obtain, so rather than 

obtaining a numerical solution we resort to exploring the behav~our of the spinor 

spectral equation in various asymptotic limits. At infrared momenta, i.e. (p -

m) ~ e2 , we can once again make the approximation 

(
#-m) .jpi-m (vr-m)3 (#-m)5 

arctan "' - 3 _~ + 0 2 , 
. c c <..- e 
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so that the imaginary part of our self-energy behaves as 

~ ( ') _ (w - w')
2 (c 8w 4w'w) P"'I( ')3 

LJ[ w, w - "' + - - -- + v w - w . 
2w 7rC c2 . 

(3.45) 

It is important to note that if e f:. 0, the term in (3.45) proportional to e is the 

leading term, so that to leading order the self-energy behaves as 

(3.46) 

resulting in a spectral function equation of the form 

e2e law wp(w) ~ dw'p(w')(w - w'). 
l67rw2 o 

(3.47) 

Differentiating this integral equation twice we obtain the differential form, 

( 
e

2e ) w2 p"(w) + 6wp'(w) + 6 -
16

7rw p(w) = 0, (3.48) 

the solution of which is related to a Hankel function of the second kind [146] by 

(3.49) 

To see the approximate behaviour of this function we may then take the limiting 

form v_alid when the argument is large, finally giving us 

1 4 (3i7r fe.2{) 
. p(w) "" w9/4 ie(1l"e)1/2 exp 4 + V ~ . (3.50) 

If on the other hand we consider the possibility that e = 0, the leading term 
- - l -

becomes 
- ' e2(w - w')2 

E1(w,w') ~ 
2 

, 
7r cw 

(3.51) 

and the spectral function equation becomes 

e2 1w -wp(w) ~ -
2
- dw'p(w')(w - w'), 

11" cw 0 
(3.52) 

which has the power-law solution 

(3.53) 
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Similarly, in the ultraviolet region, (p - m) ~ e2 , we find that 

~r(w, w') ~ __::___ [e(w - w')2 - 2w' + 0( e2 )] , 
s~w 2w w 

(3.54) 

so that once again, if e =J. 0, its behaviour is dominated by the e term, 

(3.55) 

resulting in a spectral function equation of the form 

e2e 1w wp(w) ~ 
6 2 

dw'p(w')(w - w'), 
1 ~w o 

(3.56) 

exactly as in the IR case. Its solution is still related to a Hankel function of the 

second kind [146] by 

(3.57) 

but for UV momenta the argument of the Hankel function is small, so its ap­

proximate behaviour is given by taking the small argument limiting form, giving 

us 
1 rw;: 

p(w),..., w2v~· (3.58) 

Finally, if we consider the case that e = 0 in the UV limit, we find that the 

fermion behaviour is dominated by 

-e2w' 
~r(w,w') ~ -

4
--, 
~w 

giving an integral equation of the form 

e2 Jw wp(w) ~ 4~w2 p(w')dw'w'. 

A solution of this equation is 

e4 ( e2 ) , 
p( w) ~ 32~2w3 exp 4~w ' 

(3.59) 

(3.60) 

(3.61) 

where we have adjusted the (arbitrary) normalization constant so that by taking 

the limit e2 ~ 0, that is, by returning to the perturbation approximation, we 

ensure that p(w) ~ 8(w) and S(p) ~ 1/ p. So, once again we have managed to 
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obtain a non-perturbative result which contains the order e2 perturbation result, . 

but is free of IR singularities and whose behaviour can be obtained at asymptotic 

limits. 

It would be nice to see how (3.61) compares with the results of others, which 

we can do by evaluating the fermion propagator, which (in the UV limit) gives 

(3.62Y 

where Ei(x) is the exponential integral. For small (negative) argument, as we 

have here, Ei behaves as [146] 

Ei(-x) ~I+ i7r + log(x), 

where I is Euler's constant. Also, for large w, exp (4~w) -+ 1, so S(p) takes the 

form 
1 e4 ( e2 ) S w ~ -- log - . 

( ) w l67r2w3 47rw 
(3.63) 

Let us compare the behaviour of (3.63) with the results of Guendelman and 

Radulovic [47]. They obtain an expression for the (2n)th term in the expansion 

of the fermion self-energy to be 

e4n , e2 
E(2n) ~ pA(2n)_ logn(-), 

p2n p 

where the A (2n) are constants. Since higher order terms become less leading in 

behaviour, we consider the dominant first term (E<1> = 0 in the Landau gauge), 

e4 e2 
E(2> ~ --- log( - ), 

487r2p p 

so that if we expand the propagator binomially, 

1 
S(p) = p-E 

1 e4 e2 

"' p - 487r2p3 log( p ), (3.64) 

plus higher-order terms in log(~). This equation is of the same form as (3.63), 

differing only by a factor of 4 in the second term. 
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We may also look at the asymptotic behaviour of the fermion propagator 

found in Ref. [37], which has the form 

S(w) = ~ [1 + Z~) exp[Z2(w)] erfc[Z(w)]- y'1rZ(w)exp[-Z2(w)]], (3.65) 

where 
w 

Z(w) = \1'2(e4/4871"2)log(w/e2)" 

For w-+ oo, Z(w) also approaches oo, so we may use the approximation [146] 

y'1rzeZ2erfc(Z) 1 + ~ (-l)m 1.3 · · · (2m - l) 
- ~1 (2z2)m 

"' 1 + O(l/Z2
), (3.66) 

and since the term of the form Z/ exp(Z2) in (3.65) will be dominated by the 

term containing l/Z2, we obtain the approximation 

S(w)"' ~ + 2(~)2log2(w/e2). 
w w3 

(3.67) 

This result does not agree with those of Guendelman and Radulovic [47] above or 

the present work. It is correct to within a factor of e4 log(w/e2), but the second 

term in (3.67) is of the same order as the next contribution in Ref. [47] and 

the present work, suggesting that their approach misses some of the asymptotic 

behaviour of S. 

3.4 Gauge Covariance Relations 

In order- to comprehend the gauge dependence of the spectral functions away from 

threshold, we will once again examine their gauge covariance relations. As in the 

scalar theory, we use gauge transformation properties [140-144], which link the 

variation in the photon propagator given by 

to that of the fermion propagator, namely 

S(xlK) = exp(ie2 [M(x) - M(O)])S(xlO) 

= exp(-iKv'x2)S(xlO), 
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where K = e2e/87r and M(x) = -I<#. In obtaining the gauge behaviour of 

the fermion spectral function, we once again follow references [106, 107] and begin 

by using the Lehmann spectral representation in position space, 

S(xlI<) = j p(wjI<)Sc(x,w)dw, 

to rewrite (3.68) as 

S(xjI<) = exp(-iI<v9°) j p(wlO)Sc(x,w)dw. 

Using the fact that the free fermion propagator (mass w) equals 

-wr-;'I 
Sc(x,w)=-(ii'+w)e vfx2, 

47r x 2 

and since S(p) has a Lehmann spectral representation (in any gauge I<), 

S(pjI<) = j p(wjI<)Sc(p,w)dw,' 

we can take the Fourier transform of (3.70), giving 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

j p(wlK) p ~ w - - j p(wlO)dw j i13x e;•·"e-iK&(i /I+ w) ( •::;-) 

1 J [ p2 pf{ 
- p2 p(wjO)dw p-(w+I<) - p-(w+I<) 

- pI< log(K + w - iF?)] (3.73) 
2# K +w+iF? ' 

where we have evaluated the x-integration by making a Euclidean rotation. Those 

terms proportional to p can be combined and written as a dispersion relation, 

finally giving the general covariance relation, 

J 1 J [ 1 100 

21{ dµ l p(wjI<)dwp-w = p(wjO)dw p-(w+I<)- w+K(p2 -µ 2 )(p+µ) · (3.74) 

Rationalizing this equation, by splitting p(w) into odd and even parts 

and separating odd and even terms in p, we get to first order in K: 
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and 

j p2 ~ w2 [c(w)w(p2(w2IK) - P2((w - K)2IO) - 2Kw28(w)p1 (w2 IO)] 

= -2Kj dw2p1(w2IO) O(p2 - (w + K)2); (3.76) 
p2-(w+K)2 . 

whereupon, taking the discontinuity of these equations we obtain 

-Pi(P2IK) + P1((p - K)2 IO) + 2Kp~(P2 IO) 

= -2K j_: dwp2(w2IO) [ 4~ O(p2 - w2
)] c(w) (3.77) 

and 

(3.78) 

We may now use these equations to check the consistency of our perturbation 

theory results (3.28), (3.29) which when written to order e2 take the form 

8( 2 2) e
2 

( e 4m
2 

) 
- p - m - 87r# 2p2 - (p2 - m2)2 (3.79) 

2 2 e2m 2(m2 + p2) 
- P 8(p - m ) + 8 H ( 2 2)2 · 7r p p -m 

(3.80) 

Substitution of these spectral relations into our covariance relations shows that 

the results reassuringly satisfy them for all e. Likewise, we may expand our GT 

results (in any asymptotic region) in powers of e2, and to order e2 we similarly 

find that the covariance relations are satisfied. 
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Chapter 4 

Chern-Simons Field Theory 

In this chapter, we will allow for the first time the presence of a parity-violating 

photon mass in our theory, taking the form of a Chern-Simons (CS) term in the 

Lagrangian. We begin by outlining the elements of these CS theories, and the 

specific problems associated with performing calculations in such theories. We 

will then go on to discuss how we overcome the problem of regularization in this 

theory, then perform lowest ordeJ: perturbation theory to see if the IR problems 

which plague SED and QED occur here as well. 

4.1 - Background 

As we outlined in the Introduction, there has been much recent interest in CS the­

ories in three dimensions, due to their unusual behaviour and their applicability 

to such diverse areas of physics. 

The pure CS theory, studied first by Witten [64] and consisting of only the 

term 

A.\pµ.11 
f.µ11.\ ' 

was found to be exactly soluble [64,65]. The observables of this theory are Wilson 

lines, which are gauge-invariant and allow the action to remain independent of 

the metric [64]. The vacuum expectation values of the Wilson lines were found 
"\ 

to correspond [64, 68-71] to the link invariants in the Jones theory [66, 67] and 
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its generalizations. Also, quite unexpectedly, Witten observed that CS theories 

in 3D are intimately related to rational conformal field theories (CFT's) in 2D. 

This connection can be understood by studying the CS theory on a manifold of 

the form :E x R, where the non-compact direction R is interpreted as time and 

can be quantized, and the :E is some 2D space. The 2D CFT is then recovered 

in two related ways. First, if :E is compact, the states of the Hilbert space 1-f.r; 

correspond to the conformal blocks of the rational CFT [64, 72-74]. Alternatively, 

by quantizing the theory on a space with a boundary, the Hilbert space becomes 

infinite dimensional, and corresponds to a representation of the chiral algebra of 

the 2D rational CFT [64, 75, 76). This has been extended so that one can organize 

all known rational CFT's by choosing the appropriate gauge group and coupling 

constants [76). 

By coupling CS theory to sources, we can generate particles with generalized 

statistics, known as anyons [29, 30, 32, 33]. Such particles were precisely what 

was needed in explaining the fractional quantum Hall effect, where there exist 

excitations displaying fractional statistics [77-79]. It is also believed that anyons 

may play a role in explaining the magnetic properties of layered copper-oxide 

compounds, which are known to display high Tc superconductivity [80-82]. CS 

gauge theory [83,84] has been shown to precisely describe the quantum mechanics 

of anyons. 

We will begin our study of CS theory by considering normal QED, as studied 

in chapter 3~ but now use the 2 x 2 form of the gamma matrices, since parity will be 

violated in this theory anyway [37,45,46]. If we perform perturbative calculations 

within this theory, we find that the presence of a fermion mass causes the photon 

to dynamically acquire a topological mass term, suggesting that we should include 

such 'a CS term directly into the Lagrangian. This extra gauge-invariant ~erm 

results in our Lagrangian taking the form 

£ = .T.(i ~ - m - e"'µ A )·1• - !pµv F + _!_(8 Aµ) 2 + !!:..€ ,pµv A,\ 
'P >'-' , µ 'P 4 µ.v 4e µ 4 µv,.. ' 

which is identical to that given in equation (3.l), apart from the extra CS contri­

bution. As usual, the Feynman rules are obtained by taking functional derivatives 
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of the Lagrangian with respect to the relevant fields, and the most interesting re­

sult here is that the photon propagator (once inverted) takes the form 

(4.1) 

which behaves (when e = 0) in the IR sector, k ~ 0, as l/k. The full set of 

Feynman rules are given in Appendix A. Given these Feynman rules, the next 

step is to calculate Feynman diagrams, and when we attempt to do so we find 

(not surprisingly) superficial UV divergences. 

An important consideration when studying any theory is the method employed 

to regularize these UV divergent integrals. Several attempts have been made to 

successfully regularize CS theory. Pauli-Villars regularization has, for instance, 

been applied to the theory [60]. This is where the UV divergence of a momentum 

integral is handled by introducing a mass-like regulator M which has. the effect 

J a
3
p J 3 ( 1 1 ) - J 3 1m2 

2 1 ( ) 
2 2 ~ a P 2 2 - 2 M2 = a P . dµ ( 2 2)2, 4·2 

p-m p-m p- M2 p-µ 

rendering the apparently divergent integral into a tenable form. Setting M ~ oo 

, after doing the momentum integral would return the required result. The problem 

with this approach is that it has no physical interpretation, it is no good in 

a massless theory, and it is not in general applicable to a non-abelian theory. 

Another technique is analytic regularization [85, 86]. This involves analytically 

continuing the exponent of the propagators so that 

(4.3) 

which once again allows the momentum integration to be performed. Here, on 

the other hand, the problem is that the gauge symmetry of the theory is broken. 

Once again, the form of the denominator has no physical interpretation when 

analytically continued away from'e = 0, and the new Feynman rule for the fermion 

propagator complicates the evaluation of the integral. The problem has also been 

considered [87] using nonlocal regularization [147]. This relatively new method 

involves altering the interaction part of the classical action by "smearing" the 
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fields, using an operator which involves derivatives of the fields. In the limit this 

method returns the correct results, but its disadvantage is that it complicates 

the Feynman rules of the theory by introducing a four-point interaction and a 

fermion measure factor. Finally, dimensional regularization has been applied to 

Chern-Simons theory [88-92], using methods we will discuss below. 

The various techniques described above have not yielded a conclusive result. 

We wish to consider the calculation using dimensional regularization, as it avoids 

the UV divergences in a very natural and unobtrusive way, without complicating 

the Feynman rules, and allows simple access to higher orders of perturb-ation 

theory. Once we have obtained our result, we will discuss the reasons for the 

apparent disparity in the results of others. 

4.2 Dimensional Regularization 

Dimensional regularization involves setting up the field theory in arbitrary n­

dimensional space-time. This is done to exploit the fact that by analytically 

continuing away from physical dimensions, the momentum integration becomes 

tenable, and any persistent divergence is seen as a pole in gamma functions. 

A problem arises however whenever a theory involves objects whose properties 

depend explicitly on the dimension, such as 15 matrices in even dimensions, and 

€ tensors in odd-dimensional theories such as the one we are now considering. 

In (3+1)D, this problem has been overcome by replacing the 15 by the fourfold 

antisymmetric product of the other gamma matrices [148], and axial vectors by 

threefold antisymmetric tensors 

where the f's are just the 21-dimensional generalization of the normal 'Y matrices, 

so that µ, v, u, and T run from 0 to 2[ _:--1. 

In (2+1)D, things are not quite as simple. Even if no€ term is included in the 

Lagrangian, it has the potential to be generated dynamically, so in a dimensional 

context the € tensor must be generalized to exist within 21 + 1 dimensions. It 
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is not good enough to leave it as f..µv>. and continue to 2 + 1 + c dimensions as 

several authors have done [89-92]. This technique involves purportedly going to 

arbitrary D dimensions, but retaining the normal f..µv>. tensor, which is defined to 

be "essentially" 3 dimensional. This is achieved by defining 

to be the D-dimensional metric, where [/µv is the projection of gµv onto the 3 

dimensional Minkowski space and fJµv is the projection onto the orthogonal D-3 

space. If u defines a D dimensional vector, and uµ = uµ ffi uµ, then 

(4.4) 

and 

(4'.5) 

The problem is that this method leads to a host of complicated structures, split­

ting all tensorial objects into their projections onto the two spaces, only at the 

end returning to the simple results we expect. The technique works to one loop, 

but we would expect it to at that order since the term proportional to c does not 

need to be regularized, as can be seen by power counting. 

The problem is that if we wish instead for the c tensor to become truly (21+1 )­

dimensional, it must have 21 + 1 indices, only three of which would be used by 

the usual AF, so must decide what to do with the extra indices. Several methods 

to "soak up" these extra indices suggest themselves. We could write the Chern­

Simons contribution to the Lagrangian as 

A µ1 pµ2µ3 ••• pµ2zµ2z+1 
f.µ1µ2µ3···µ2zµ21+1 ' 

retaining Aµ as the natural gauge potential and pµv as its associated field strength. 

This would indeed be a genuine (21 + 1 )-dimensional term, yielding the correct 

(2+1)D limit. Unfortunately this approach requires the consideration of new 

processes and diagrams, since each F corresponds to an extra photon line. The 

effect of this can be seen most easily by considering a few examples. If we were 
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attempting to calculate the one loop vacuum polarization of the photon, and 

attempted to regularize using this scheme, we would be faced with two diagrams 

which contribute in 2l + 1 dimensions, shown in Figure 9. In the first diagram, 

1:. b) 

a) 

Figure 9: Contributions to the vacuum polarization. 

Figure 9a., the complication is only moderate, involving integration over a loop 

with l external legs. In Figure 9b however we are faced with a far more challenging 

task, having to integrate over l - 1 internal loops. Similarly, the fermion self­

energy would receive a contribution from Figure 10 below, which also involves 

Figure 10: Contribution to the fermion self-energy. 

integration over an arbitrary number of momentum loops. 

Calculations within this framework become extremely complicated, even when 

only considering processes to one loop in the original theory, and would be akin 

to using a {s which is the antisymmetric product of all { matrices for treating 

the chiral anomaly. (Although, we will be forced to consider such calculations 

when we study higher-odd-dimensional theories in the next chapter). 

Instead we will depart from the normal approach and regard the "gauge" field 

as an !-component antisymmetric tensor [93]. (Of course, in a nonabelian theory 
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we would encounter extra gauge degrees of freedom, necessitating consideration 

of a nest of ghost-for-ghost mechanisms.) Now the Chern-Simons term retains 

the bilinear form 

(4.6) 

where 

is the antisymmetric curl of AJJ.1 ···JJ.1• Our Chern-Simons term has the advantage 

that even in 21 + 1 dimensions, the processes of the theory are unchanged. Also, 

this formalism, adopted within dimensional regularization, continues to work in 

topological theories, in contrast to the conventional approach. It is not obvious 

however what the physical significance of the AJJ.1 ···µ.1 is, particularly as it couples 

to a non-conserved tensor current 'l/J/[µ.1 · · · /µ.1]'1/J, but it is not crucial to visualize 

it for arbitrary l since it reverts to a bona fide gauge field in l = 1, Le. in three .\.-

dimensions. 

We therefore generalize the Chern-Simons (CS) Lagrangian in (2+1)D, 

.C(2+1)D = if;( i ~ - m - e1µ. Aµ.)'l/J - ~ Fµ.v Fµ.v + 
4
1e ( 8µ.Aµ.) 2 + : Eµ.v>.Fµ.v A>., ( 4. 7) 

to arbitrary (21+1) dimensions by making the extension described above, which 

yields 

" (-1)' p>.1···>.1+1p + µ p>.1···>.1+1A>.1+2···>.21+1 
~ = 2(1+1)! >.1···>.1+1 2(1+1)! (1!)2 f.>.1···>.21+1 

- ( 2~)' ( 8uAuv1 ···vi-1 )2 +if;( i ~ - m - e1[µ.i ···µ.r] Aµ.
1 

••• µ.
1 
)'l/J, ( 4.8) 

where /[µ.i···µ.iJ = /[µ.1 /µ.2 · · · /µ.i]/l! is the antisymmetric product of l /µ., 's, which 

themselves are just the 21 non-parity-doubled (2' x 2') 1-matrices; as well as the 

full "15", which acts as the last one, 12z+i, as outlined in Appendix D. Taking 

functional derivatives with respect to AJJ.1 ···µ.1 and Av1 ···vi, we obtain the inverse 

propagator for this tensor field 

82£ 
8AJJ.1 .. ·JJ.18AJJ.1 ···µ.1 

- (-1)' (k2'f/µ.1(v1 ·· ·'f/µ.iv11-(1- z)krµ.1'l/µ.2CV2 · · ·'f/µ.iJv1kv1:::i) 

(4.9) 
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where the [] in 7]µ1 [111 • • "T/µ.wi] denote antisymmetry in the vi's and the [] and C:J 

in k[µ. 1 T/µ2 cv2 • • • 1]µ.i]v1 kv1 ::i denote antisymmetry in the µi's and v/s respectively. 

Operations such as inverting this generalized propagator have become more com­

plicated due to the extra tensor structure involved, but it is still possible, yielding 

(4.10) 

This will reduce to the normal (2+1)D gauge propagator, D1.w by collapsing to 

l = 1, yielding the standard result [60, 61]. It should be noted that if l is even, 

the photon propagator becomes tachyonic. This would be a serious problem, 

but it can be seen that for even l, ( 4.6) becomes a total divergence and will not ,, 

contribute to the theory. Similarly we obtain from ( 4.8) a 'gauge'-fermion-fermio:i;i 

vertex which takes the form 

(4.11) 

and is not conserved unless l = 1. 

Having set up this system for extending CS theory to arbitrary 21 + 1 dimen­

sions, we may now test its suitability to dimensional regularization, by considering 

some perturbation calculations. 

4.3 Perturbation Theory 

In this section we will investigate this generalized, arbitrary-dimensional version 

of abelian CS theory using dimensional regularization, and use the results ob­

tained to investigate the IR behaviour of CS theory within a perturbative frame­

work. __ Using the usual free fermion propagator, we may now calculate the vacuum 

polarization, the one-loop correction to the bare "gauge" propagator, 

(4.12) 
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-121+1 

(k) - ( )[tl · 2 f a- P [ ( ] IIµ. 1 • .. µ.i,v1 ···v1 - -1 ze }(
2

7r)2l+I tr /(µ. 1 ···µ.i]S p+k)/[v1 ···vz]S(p) . (4.13) 

Here [~] is just the integer part of ~· Using the methods associated with di­

mensional regularization, including introduction of a Feynman parameter, and 

evaluating the (214- 1 )-dimensional momentum integral, we find an expression for 

the "vacuum polarization", 

Here, 

and 

e2(-2) 1+1f(~-l) [1 daa(l-a) 
- (47r)1+! lo (m2_- k2a(l - a))~-l 

e2(--l)[tJ21r(~ - l) 11 da ((-1)1(1 - a) - a) 

- (47r)1+! lo (m2-k2a(l-a))~-l 

m2 (~ -1)(1 + (-1)1))· 
(m2 - k2a(l-a))2-1 

We would like IIµ.v to satisfy the Ward identity for the vacuum polarization, 

kµ.ITµ.v = 0, when l = 1. We would also have liked our IIµ. 1 ···µ.i,v1 ···vi to obey this 

relation, but that cannot be for arbitrary l, since the current to which A couples is 

not conserved except for l = 1. I~ (4.14) above, kµ.1 TJ~~··µ.i.vi···vi and kµ.1 TJ~~··µ.1 , 111 ••• v, 

are always equal to zero, but kµ. 1 TJ~~··µ.z,v1 ···vi persists and Ila = 0 only if l = 1. 

This can be summarized by saying that effectively kµ. 1 IIµ.i ···µ.i,v1 ···vi contains an 
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evanescent factor of (l -1). The important point is that in odd dimensions, since 

II17 II2 and II3 do not contain 1/(l -1) divergencesa, the Ward Identity is always 

satisfied in the limit, and the theory is free of anomalies. It should also be noted 

that if l is even, II2 contains a factor of (1 - 2a), which causes the t:: contribution 

to IIµv to disappear. This is to be expected, since Ccs becomes a total divergence 

for even l, as we discussed earlier. 

Since the Ward identity becomes satisfied, we can indeed calculate the gauge­

invariant 3D vacuum polarization by letting l -+ 1 without fear. After performing 

the a integration, IIµv reduces to 

(4.15) 

where 

Studying the asymptotic behaviour of IIµv, we find that as k-+ 0, and provided 

m =F 0, 
e2k2 

II1(k2} = l27rm' 

We also note that if m = 0 

II (k2) = - e2-V-k2 
1 16 ' 

(4.16) 

(4.17) 

but since the coefficient of II2 contains a factor of m, the II2 contribution dis-
- -

appears, and we are left with the equivalent of the usual parity-doubled vacuum 

polarization [37]. 

To place these results in perspective we will now look briefly at the asymptotic 

behaviour of the IIµv obtained by others. Firstly, Stam's [56] expressions for 

II1 and II2 correspond exactly to ours. The lIµv obtained by Pimentel, Suzuki 

aJust such a divergence leads to the axial Adler-Bell-Jackiw anomaly in 4D chiral gauge 

theory. 
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and Tomazelli [85], using analytic regularization, also shows exactly the same 
' 

behaviour as ( 4.16) and ( 4.17) above provided that the limiting procedure is 

properly undertakenb. Hand and Moffat similarly obtain the correct limiting 

behaviour for IT, using analytic regularization [86] and nonlocal regularization 

[87]. The results of Appelquist, Bewick, Karabali and Wijewardhana are also of 

precisely the same form as the present work [149]. Finally, comparing with the 

work of Deser, Jackiw .and Templeton [60], who used Pauli-Villars regularization, 

we find some interesting differences. Again II1 shows the usual behaviour, but 

their € contribution does not disappear for m = 0. It has been suggested that 

this is a product of the Pauli-Villars regularization scheme, but it is our belief 

that it arises due to their method of expanding Il1 and II2 around p2 = 0, and 

discarding the II2(0) term-believed to be zero-which in actuality cancels this 

persistent termc. We fully agree with the absorptive parts of their integrals, but 

these discontinuities do not specify the subtraction constants-indeed none are 

needed, since all integrals are ultraviolet convergent. In that .connection one can 

work out other amplitudes perturbatively ( including pure odd-photon-number 

processes which do not vanish in this model) and easily find that no infinite 

renormalization constants are needed as l -+ 1. Having considered all these 

methods, we have found that, aside from two minor oversights, all the methods ,~ 

in fact yield consistent results. This is reassuring since the integral considered is 

UV finite, so we would hope for agreement. 

Having safely evaluated the vacuum polarization, we now wish to test the IR 

stability of the theory as we have done for SED and QED. To be able to do this 

we must first calculate the fermion self-energy. Despite the addition of the CS 

Lagrangian the theory still obeys the fermion Dyson-Schwinger equation given in 

equation (3.11), since the fermionic part of the Lagrangian remains unaltered, so 

blnstead of setting k2 - 0 in their vacuum polarization, then letting A - 0, the correct 

behaviour is seen by performing the momentum integration, letting A - 0, and then taking 

asymptotic limits. 
eThis aspect of the analysis in Ref. [60], and its problems, have been alluded to in the 

non-abelian case by Pisarski and Rao [150]. 
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the fermion self-energy may still be written as 

Since we want to remain within perturbation theory we will use the bare pho­

ton propagator and vertex, and since we -are using dimensional regularization to 

evaluate this integral, we must use the (21 + 1 )-dimensional forms for both the 

photon propagator and vertex function, so that we must actually evaluate 

where fl/.Li···µi.11t···v1 is given in equation (4.10). 

Since we find this integral finite when evaluated using dimensional regulariza­

tion, and the limit l -+ 1 may be safely taken, we obtain our (2+ 1 )D results for 

the components of the self-energy discontinuity to be 

EII(P2,w2) - 87r(;:)3/2 [~(w2 + p2)0(p2 -w2) - ( wµ + ~2) O(p2 - (w + µ)2) 

+ 2~2 (w2 - p2)2 (O(p2 - (w + µ)2) - O(p2 - w2)) 

+: (w2 - p2) (B(p2 - (w + µ)2) - O(p2 -w2)) l (4.18) 

and 

(4.19) 

We wish to ascertain whether the fermion self-energy discontinuity given by (4.18) 

and (4.19) will result in an equation for the fermion spectral function which is 

soluble within perturbation theory. Probably the easiest way to determine this is 

to consider the various terms above in turn to see how they affect the behaviour 

of the spinor GT equations, (3.16) and (3.17) which we need to solve. Obviously 
' 

those terms in E11 and E21 above which contain at least one power of (w2 - p2) 

in the numerator will result in a zero contribution to E1(p2 ,p2
), so they will not 
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cause any IR problems. Similarly, if we combine those terms proportional to e 
via equation (3.15) we obtain 

E}(p,w) = 87r(;:)3/2 ;(w2 - p2)0(p2 -w2), 
, . 

which also contains a factor of (w2 -p2), and so will not lead to any IR problems. 

Now we are only left with terms such as 
2 

811"#. 20(p2 - (w + µ)2), (4.20) 

none of which has a factor of (p2 - w2), but all of which have a () function with 

argument p2 - (w + µ) 2 rather than'. p2 - w2, and it is this argument which is 

important. Consider the effect of this term, if we take an integral such as"(3.13) 

and' substitute ( 4.20) for E 1, giving -

e2 100 dwp<0)(w) (p - m)p(l)(p) = - O(p2 - (w + µ)2). 
47rp m p-w 

(4.21) 

Inserting p<0)(w) = 6(w2 - m 2 ) and evaluating the integral we obtain 

( ) 
(1)( ) e2 O(p2 - (m + µ)2) 

p-mp p=-4 ' 7rp p- m 
( 4.22) 

or 
p<1)(p) = __::__ O(p2 - (m + µ)2). 

47rp (p - m)2 
( 4.23) 

Inserting this again into (3.13) to go to the next order, we are confronted with 

e4 j dwO(p2 - (w + µ) 2
) (p - m)p(2)(p) = O(w2 

- (m ..L µ) 2
) 

l67r2p2 (p- w)(w - m)2w ' 
e4 1p-µ dw 

- l67r2p2 m+µ (p-w)(w - m)2w. 
(4.24) 

Our integration region now avoids the areas of IR instability and it appears that 

we may safely evaluate this integral and obtain the behaviour of p(w). If we 

combine (4.18) and (4.19) to give the full self-energy discontinuity, then insert it 

into (3.13), we are faced with 

(w-m)p(i+I)(w) = _::.___ jP(i)(w')dw' [i(w - w')O(w2 -w'2 ) 
87rw2 2 

(2ww' + µ(w + w') + µ2 /2) O( 2 ( , )2) - w - w +µ 
w-w' 

~2 w~) l + -
2 

(w+w'+2µ)[0(w 2 
- (w'+µ) 2

) - O(w2 -w'2)] • 
2µ 
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Taking p(0)(w') = 8(w' - m) we find that 

p(I)(w) = ~ [{e(w2 - m2) - (2wm + µ(w + m) + µ2 /2) O(w2 - (µ + m)2) 
87rw2 2 (w - m)2 

(w2 m2) l + 2~2 (w + m + 2µ)[8(w2 - (µ + m)2) - 8(w2 
- m2)] . 

and by inspection we can see that· to the next order we will only encounter terms 

such as those discussed above, so the integral will indeed be finite. Furthermore, 

each successive iteration can be seen to introduce an extra shift by µ into the 

cut of p(i), so that we can predict that at higher orders, cuts in p(i)(w) will be at 

w = m + iµ and w = m. 
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Chapter 5 

-Dynamical Mass Generation in 

Odd Dimensions 

In this chapter we will explore in more detail the idea of dynamical mass gen­

eration. This is the process where a particle develops a term proportional to 

some mass scale through quantum corrections to its propagator. We will deal 

first with the (2+1)-dimensional theory, then go on to consider theories in other 

odd dimensions [151]. 

5.1 Mass Generation in (2+1)D 

We will begin our discussion of dynamical mass generation by considering the 

(2+1)-dimensional case, looking in detail at what happens when we allow the 

presence of particle masses into a non-parity-doubled theory, as intimated in 

section 4.1 above. 

We first consider a theory containing a kinetic term and an interaction with 

massive fermions. This means we begin with the Lagrangian 

(5.1) 

and recall from Chapter 3 that this term of the form m"faef; will result in a violation 

of the parity invariance of the theory. We want to see the effect this parity-
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violating fermion mass will have on the photon, so we work out the photon 

vacuum polarization within perturbation theory, 

IIµ.v(k) ie2Z j a3ptr['yµ.S(p)fv(P,P-k)S(p-k)] 

~ . 2 ja3 tr['yµ.(p+m)fv(P-/C+m)] 
ie p (p2 - m2)[(p - k)2 - m2] . (5.2) 

We evah1:ate this by introducing Feynman parameters, then doing, the momentum 

integration to give 

- (kµ.k11 -k2'f/µ.v)~j a:(l-a:)da: 
27r Jm2 - k2a:(l - a:) 

. >. e2 j do: +imf>.µ.vk - , 
47r .jm2 - k2a:(l - a:) 

(5.3) 

or, once we evaluate the a-integration, 

ITµ.v(k) = 1~: (~""- k~:·) [(Vk>+ %)inG:~::)-4m] 
e

2 
( 2m + vfk2) +imfµ.vuku -Jk2 ln vfk2 . 

47r k2 2m - k2 
(5.4) 

This result is identical to that of ( 4.15) above, which is not surprising since the 

interaction Lagrangian is the same in both cases, and the calculation of IIµ.v 

involves no photon propagators. The important thing to note is that Ilµ.v has a 

term proportional to m, so we have effectively induced a photon mass through 

the presence of the fermion mass, as we expected to do [37, 45, 46]. This result 

is ill' sharp contrast to Chapter 3, where a mass was present, but parity was not 

violated due to the 4 ·x 4 {matrices, which have 

whereas here we have 

as we have explained in Appendix D. A similar straightforward calculation of the 

fermion self-energy graph produces the result 

E p _ .i:__ j dw [.£ _ 4m l 
( ) - 1671" w(p- w) w (w - m)2 · (5.5) 
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It should be noted that if we were to set m = 0, i.e. make the fermions 

massless, we would remove the parity violation, preventing the photon mass from 

being generated in (5.4). We can understand why this one loop correction to 

the photon mass (5.4) is all there is. If we consider a gauge transformation 

8A ~ ox, our Lagrangian, EAF changes by a pure divergence, so the action 

remains invariant for all field configurations that vanish at oo. If we then allow 

a four.th_order.,interaction,-.·which 0would-correspond to a term like 

Aµ.F">.F. Fa/3 Eµ.v>. a/3 ' 

' 
the invariance under the change of gauge will be broken, and similarly for higher-

order interactions, so no other contributions are permitted. The absence of such 

corrections has been proven rigorously for the (2+ 1 )-dimensional theory by Cole­

man and Hill [152]. The dynamical generation of this photon mass raises the 

question of whether the converse is true, that is, does the presence of a parity­

violating photon mass term generate a fermion mass? There are two possible La­

grangians to consider; one with a Maxwell term together with the Chern-Simons 

term, the other the purely topological theory. We will consider each in turn. 

First we consider a theory with Lagrangian 

which is the same as in that in the previous chapter, but with zero bare fermion 

mass. Note that in (5.6) both the second and third terms are bilinear in the 

gauge field A, so the contribution from the Chern-Simons term will combine with 

the kinetic term in the bare photon propagator, giving 

( ) -1 [( kµ.kv) i µ >.] ekµkv 
Dµv k = k2 _ µ2 'T/µv - -y:;2 + k2Eµv>.k - ~· 

Using this and the bare fermion propagator, 

1 
S(p) = -, p 

we can now calculate the one-loop correction for the fermion, :E(p), giving, 
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E(p) - ie2 J il3 k /v p~JC/µDµv(k) 
e2 p [p4 _ µ4 µ + p 2(p2 _ µ2) 7rp2.;-:::r 3 ~1 

- -- ln (--)- + - -7rey-p2 
l67rp2 µ2p µ - p µ µ2 2 

e2 [p2 _ µ2 µ + p ~1 +- ln (--) - 2µ + 7ry-p2 . 
8µ7r p µ - p 

(5.8) 

(This expression could have been directly evaluated by regarding t:AF as an 

interaction, rather than combining it with the bare photon propagator as we 

have done.) It is the second term in (5.8) above, the one proportional to e2 /8µ7r, 

which behaves as the "mass" for the fermion. 

We should notice that in the limit of smallµ, the expression above reduces to 

E(p) = e
2 p [µ _ 37reJ=P2] + e

2
µ 

47rp2 2 s 8.;-:::r' 
and further, this expression will disappear when µ -+ 0 in the LandaU' gauge. To 

understand this result, it is easiest just to evaluate E for µ -+ 0 in the Landau 

gauge, which means taking 

and checking that 

Now we shall consider what happens when the initial Lagrangian has no gauge 

field ki~etic energy but starts off life instead as a pure Chern-Simons Lagrangian 

interacting with massless fermions. In this case the Lagrangian takes the form 

(5.9) 

that is, the same as in (5.6) minus the second term. We want to quantize this 

theory using the canonical formalism [72,153,154]. We consider (5.9) as a Chern­

Simons Lagrangian £ 0 plus fermion term £.p and gauge-fixing term LaF, then for 
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simplicity consider only 

(5.10) 

The field equation of (5.10) takes the form µtµ 11>.Fµ. 11 = 0, which implies that 

Fµ 11 vanishes. Taking the 3D manifold 1\1 to be the direct product of a Riemann 

surface :E and a real time axis, and selecting the Weyl gauge Ao = 0 lets us 

re-express the Lagrangian in the simple form 

µ ... 
Co= -t··A'A1 

4 '1 ' 
(5.11) 

which gives the Euler-Lagrange equations, Ai = 0. The Gauss' law constr-aint is 

obtained from the variation of the action with respect to the zeroth component 

of the connection A0
, giving 

Of course, if we included sources then the Gauss' law constraint would acquire 

an inhomogeneous term 

which would lead to anyonic statistics [32, 33]. 

Equation (5.11) is first order in time derivatives, which leads to the non­

vanishing quantum commutator 

(5.12) 

Returning to (5.9), we find that in 2+1 dimensions, the pure CS term is this still 

bilinear in the gauge field, making it capable of launching a propagator, 

• k>. k k D - ZEµ.11>. - t...J:.....!:.. 
µ.11 - µk2 "' k4 ' (5.13) 

where we have taken account of gauge-fixing by introducing a parameter e. Eval­

uating the fermion self-energy now yields, 

(5.14) 
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once again containing a term proportional to the mass scale (e2FPJ)/µ where 

none previously existed. In the same vein we may compute the vacuum polariza­

tion correction to (5.13) and arrive at 

II (k) · 2t j :t3 /µ Plv(p-Jt) ( k2 k k ) e
2 

µv = ie r u p 2( k)2 = - 1/µv + µ v r--17i' 
P p- 8v·-k2 

(5.15) 

which has the effect of leaving D(k) ,..., l/k. In higher orders of perturbation 

theory we may expect to find that 

and 

e2 e2 ~ e2 e2 
~(p) =pf( 1::2,-) + y-p2 g(v'-il,-), 

y-p- µ -p µ 

e2 e2 
ITµv = (-k21]µv + kµkv) 7r( ye'k2' -), 

-k2 µ 

where f, g and 71' are scalar functions of their arguments. 

Both of the above results for ~' (5.8) and (5.14), have been obtained by 

considering a single theory containing a conventional kinetic term weighted by 

a factor Z. The Maxwell+ Chern-Simons theory would correspond to Z = 1, 

while the purely topological theory is obtained by taking the limit Z -+ 0. 

5.2 QED in Higher Odd Dimensions 

The results of the previous section are not peculiar to 2+ 1 dimensions. In fact, 

in any odd dimension we might assume that we could induce a topological mass 

term. This section will generalize the results of the previous section to other odd 

dimensions. We begin as before with massive fermion QED, and by generalizing 

eq-µations (1.1) and (1.2) to arbitrary D dimensions we obtain 

jdDx [((8<P)2-µ·2<P2)/2 + i{;(if.o- m)'l/J -Fµv Fµv/4+ei/;1.A'l/J + (fJµ<P)t(ieAµ<P)], 

(5.16) 

and since we require a dimensionless action we find that the fields have mass 

dimension, 

[<P], [A],..., MD/2-1, ['l/J] ,..., Af(D-1)/2, 
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leading to a coupling constant with dimensions [e] ,...., M 2-D/2• We can see that 

if we consider odd D dimensions, the coupling e has an odd VM scale, but this 

does not matter much for electrodynamics since we meet powers of e2 in the 

perturbation expansion. 

Generalising the discrete operations to arbitrary odd dimensions we find that 

a charge conjugation operator C with the property 

C C-1 ( l)[(r+l)/2]( )T 
l[J.1H'2•••J.1r] = - l[J.11J.12•••J.1r] l (5.17) 

which always exists in even dimensions, cannot be defined at the odd valu,es 

D = (5, 9, 13, ... ). As for parity P, we can generalize (3.3) above to arbitrary odd 

dimensions, yielding 

P,,P(xo, x1, .. , xn-2, xn-1)P-1 = -iTJ(o/n-1'1/J(xo, -xi, .. , -xn-2, xn-1) 

= 1/'Y1···1n-2'1/J(xo, -x1, .. , -xn-2, xn-1), (5.18) 

where 1/ is the intrinsic parity of the fermion field. Using this result one can easily 
- I 

check that a mass term like m-$,,P, which violated parity in (2+1)D, will continue 

to do so for arbitrary odd D. In arbitrary 21 + 1 dimensions we find that the 

topological term induced by this parity-violating fermion mass takes·the form of ,, 

an n-point function, 

- C.c A"'1 pµ2µ3 ••• pJ.121J.121+1. 
"'J.11J.12•••J.121+1 ' n=l+l. (5.19) 

Note that this induced term conforms perfectly with the idea of charge conjuga­

tion above. When 21 + 1 = 3 and C is conserved, the topological term involves an 

even number n-= 2 of photons. When D = 5 and [e2
],...., M-1 , we encounter three 

photon lines but then C is no longer valid. When D = 7, C-invariance becomes 

operative again and the number of photon lines is n = 4, and so on. 

The result for the induced topological term in (2+ 1 )D has already been quoted 

in Eq.(5.4). Looking at the next odd dimension, D = 5, the relevant one-loop 

graphs are shown in Figure 11, leading to the induced vertex, 

r (k k') = -2· 3fcts trbv(P + m)'Yµ(Jl'+/C + m)r,x(p-/C' + m)] 
-\µv ' ze }' P (p2 _ m2)((p + k)2 + m2)((p _ k')2 _ m2) · 

73 



k',v 

+ 

k',v k,µ 

Figure 11: One-loop induction of a Chern-Simons amplitude in 5 dimensions. 

Introducing Feynman parameters in the usual way to combine denominators and 

picking out the term with five gamma-matrices in the trace, we end up with 

f (k k') = _16 . 3 fa5 dadf3d18(1- Cf. - {J - 1)€>.µvptrkPkftT 
>.µ11 ' ie m P[p2 - m2 + k2a(3 + k'21a + (k + k')2f31]3 

e3mc)..µvptrkPk'tr. {1 dad{Jd18(1 - Cf. - {J - I) 
= - 871"2 lo (m2-k2af3 - k'21a - (k + k')2(31 )t · (

5
•
20

) 

One can regard this amplitude as the five-dimensional description of the pro­

cess 7!"0 --+ 21, because one of the indices ( 4) of the Levi-Civita tensor just cor­

responds to the standard pseudoscalar and the residual four indices (0 to 3) are 

the normal 4-vector ones. Just as with 2+1 QED, we see that the induced term 

in 4+ 1 QED vanishes with the fermion mass m. 

We are now in a position to evaluate the topological vertex induced by the 

fermion mass term in arbitrary odd dimensions. This is given by considering the 

Feynman diagram shown in Figure 12, which represents the integral 

f>.µ1µ 3···µ21+i (ki, k2, ···,kn)= -(n - l)!ieja21+ip x 

n-1 

tr[(p + mhµ1 (p+/C1 + m)Tµ3 · · · (p + L /Ci + mhµ2z+1l 
x~~~~~~~~~~~~~~~i-=~1~~~~~-

n-1 (5.21) 

(p2 _ m2)((p + k1)2 + m2) ... [(p + l:ki)2 _ m2] 
i=l 

The only terms in (5.21) which will contribute to our induced mass term are those 

which contain 2l + 1 gamma matrices. We pick out all possible terms of this form 

from ,the numerator, then perform the trace operation on each. Combining the 

results, we find that all of the terms containing the internal momentum pin the 

numerator cancel, and we are left only with a term proportional to 

(5.22) 
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Since this is independent of p, we may ignore it while considering the momentum 

integration. We introduce n = l + 1 Feynman parameters, cr1 ..• an, one for each 

internal line in Figure 12, and the momentum integral becomes 

(IT dak) 8(1- cr1 - cr2 • • • - an)r(n) J a2l+Ip k=I . n 

( t,a;[(p + ~k; )2 - m2]) 

(5.23) 

If we let the denominator be equal to In, then we can factorize all the terms in I ,­

containing p, and usihg the fact that Ei=t ai = 1, we obtain 

I = p'-m2 + 2t,a;p · f,k; + t.a; (f,k; )' 
- (p+ t.a; f,k;)'- m

2
- (t.a; f,k;r + t."' (f,k;r(5.24) 

We now use the usual method associated with Feynman parametrization, that 

is, we make the shift p--+ p - Ei=t ai E~:i ki. Then, by combining the last two 

terms in (5.24) and defining the quantity kab = E't;{ ki - I:f~J ki, we can obtain 

the simple form 
n 

I= p2 
- m 2 + 2: kljaiaj. 

i<j=l 

(5.25) 

The quantity kii can be thought of as the momentum flow across the line which 1, 

cuts the lines with parameters ai, ai. If we return to (5.23) and substitute (5.25) 

for I, we are left with an integral which has the form 

a21+ip 

f (p2-M2)n' 

where M is independent of p, so we can evaluate it, finally producing the result, 

(5.26) 

One may readily check that this collapses to the results (5.3) and (5.20) for D = 3 

and D = 5 respectively. It corresponds to the Chern-Simons term (5.19) where 

C = en/2n!(47r)n-I if one goes to the soft photon limit, always assuming m =f:. 0. 
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Figure 12: One-loop induction of a Chern-Simons term in 21+1 dimensions. 

This result is still the only correction to the photon mass, since interactions 

like 

N 2:: 1, (5.27) 

are forbidden by gauge-invariance and thus cannot be produced. Similarly, any 

two-loop contribution to the fundamental topological term would correspond to 

an integration of (5.27), with N = 1, over one of the photon momenta. Since 

we have just concluded that (5.27) must be absent, we deduce that the induced 

topological term (5.19) cannot receive any two-loop (or higher-loop) quantum 

corrections. This means that our result gives the induced mass contribution 

exactly. This is similar to the Adler-Bardeen theorem for the axial anomaly, 

but in this case it is of little use as the theory becomes unrenormalizable for 

D 2:: 5, due to the mass dimensions of e2, except of course when the space-time 
-, 

is compact, e.g. in some Kaluza-Klein geometries. 

Once again we will consider the possibility of the converse, that is, the gen­

eration of a fermion mass, through the presence of a photon mass, this time in 

higher odd dimensions. As in the previous section, we first consider a theory with 

both a Maxwell term and a Chern-Simons term, which has a Lagrangian of the 

form 
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In such a theory we can be certain that the gauge field will propagate at the 

bare level in any number of dimensions, thanks to the Maxwell term. It is now 

necessary to regard the Chern-Simons contribution as an interaction, since forc 

l > 1, it is no longer bilinear and cannot be incorporated into the bare propagator. 

Any fermion mass will appear in the calculation of the fermion self-energy, which 

to first order in C engenders a term of the form shown in Figure 13 below. If we 

c 

Figure 13: Induction of a fermion mass term through a topological interaction. 

consider D = 5 to first order in C €AF F, we find 

E(p) = _ • 3c J jJ21+1 k jJ21+1 k'€µ.11>.a{JkOI kl{J,.,1"1.1.(p - k - k')/111.(p - k h). 
ie k2k12(k + k')2(p - k - k')2(p - k)2 

3I'(2 - 2l)p4e3C 
(16)371'4 

(5.29) 

which contains a non-zero mass term and no kinetic term. Notice that if in (5.29) 

we let C--+ 0, removing the parity-violating photon mass, the fermion mass will 

also disappear. Unfortunately this five dimensional self-energy is divergent as l--+ 

2, which is not too surprising since e2 "' M-1 , and the theory is unrenormalizable. 

There is likewise a 2-loop contribution of the same type to the photon self-energy, 

but this cannot add a parity-violating part to II because such a term would violate 

, gauge-invariance for D = 5 as we have already explained above. 

Finally we turn to the purely topological theory in 21+1 dimensions, where 

the Lagrangian takes the form 

Such theories have been considered (155-159], mainly in regard to their quanti­

zation and connections to conformal field theory. We wish instead to continue to 
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pursue our perturbative investigation, since if l 2:: 2, that is, if the theory is in 

five or more dimensions, then the situation becomes radically different from the 

previous theory (5.28), since the Chern-Simons term is. no longer bilinear in the 

gauge field and alone cannot give rise to a propagator for the photon. Instead we 

must resort to quantum corrections to generate photon propagation. ff we con­

sider the ( 4+ 1 )-dimensional theory to first order we may obtain a contribution 

from the vacuum polarization graph (with massless fermions), namely 

This produces a hard quantum loop contribution 

D (k) = (- 1]µ.11 kµ.k11) 51271" _ t kµ.k 11 • 
µ.11 k2 + k4 3e2~ "' k4 

(5.30) 

Taken with the trilinear Chern-Simons interaction this can produce a further 
' 

vacuu~ polarization effect from the gauge field itself, namely 

(k) - . (5127rC)2! l15kl kak/(3 pu-y5k k' 
ITµ.11 - z 3e2 ( k'2( k - k')2)3/2 f.µ.pua(3 f.11 'Y 5, 

which corresponds to the Feynman diagram shown in Figure 14. To evaluate this, 

Figure 14: Gauge field contribution to vacuum polarization. 

we first take advantage of gauge-invariance to extract a factor (-TJµ. 11 + kµ.k11/k2), 

which we are always permitted to do. Then, by contracting 

f. f. T pU'"fb = TJ'YT]b _ TJ'YT]b -r puaf3 a f3 f3 a 

we are left with an integral of the form 

. (5127rC)
2

( kµ.k11)j il
5
k' (k2k12 (k k')2) 

IIµ.11 = z 3e2 TJµ.11 - J;2 (k'2(k - k')2)3/2 - . . (5.31) 
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Since there are no particle masses in this expression, it is straightforward to 

evaluate (5.31) by the usual method, i.e. introducing Feynman parameters and 
' 

evaluating first the momentum integral, then the (in this case trivial) parametric 

integral. Doing this yields 

Interestingly though, (5.30) will no longer give birth to a mass-like fermion self­

energy at one loop level, since five gamma matrices are now needed to obtain 

that. This means we have to consi'der two loop effects, either to order e4 or 

to first order in the Chern-Simons coupling C, as sketched in Figure 13. Quite 

generally we may anticipate in 4+ 1 dimensions that the fermion and photon will 

behave as 

and 

However, we must remember that higher-order contributions in e2 and Care very 

likely unrenormalizable again here and so probably of academic interest. Still, 

our discussion does indicate the nature of the parity-violating contributions in 

these models and how they arise from a single source. 
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Chapter 6 

Conclusion 

6.1 Summary 

In this thesis we have endeavoured to examine gauge theory in three dimensions. 

We have used both perturbation theory and non-perturbative techniques, and 

witnessed some of the unusual behaviour one encounters in such theories. 

Chapter 2 served as an introduction to some of the problems of three di­

mensional theories. The IR catastrophe was seen to prevent the perturbation 

expansion from providing a finite result, so we were forced to dress the photon 

propagator with massless fermions within the gauge technique to allow calcu­

lations. We found that using this non-perturbative approach, we were able to 

obtain a IR finite spectral function for the mes9n, which turned out to be gauge 

invariant. In order to understand this we derived the gauge covariance relation 

between mesons in two covariant gauges, and found that this equation agreed 

with our result. 

The spinor version of QED was considered in Chapter 3, and the IR behaviour 

of the perturbative approach investigated again. As in the scalar case, it was 

found that using the perturbation expansion led irrevocably to the IR catastrophe, 

so the photon was dressed, and the fermion behaviour probed through the GT. 

The gauge covariance relations were obtained once again, and the expressions for 

the fermion spectral function obeyed these relations in both the perturbative and 
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non-perturbative case. 

In Chapter 4, we relaxed the notion of parity conservation in order to permit 

the presence of a Chern-Simons term in the Lagrangian. We found that due to 

the presence of the Levi-Civita tensor, f.µ.v>., which is inherently 3-dimensional, 

the analytic continuation required i,n dimensional regularization became difficult. 

To solve this we recast the Lagrangian into a form which exists in arbitrary 

21 + 1 dimensions, permitting the theory to be regularized, and perturbation 

calculations to be performed. - Chern-Simons theory was found to be different 

from those considered earlier in that the perturbative approach proved successful, 

and so we obtained an IR stable result. 

Dynamical mass generation was considered in Chapter 5. We found that if 

we allowed a parity-violating fermion mass to be present, a corresponding photon 

mass was generated through quantum corrections. Conversely, if a topological 

photon mass term was present, either on its own or together with a kinetic term, 

it engendered a mass in the fermion, through dynamical effects. We then went on 

to consider a generalization of these results to arbitrary odd dimensions. We found 

that once again the presence of a fermion led to a topological mass term, and that 

in a theory with a topological photon mass term plus a kinetic term, we generated 

a fermion mass term. The interesting thing was that in the purely topological 

theory in greater than three dimensions, no fermion mass was generated at the 

one loop order, due to the absence of a bare photon propagator. 

6.2 Outlook 

This thesis has looked at various different abelian theories in 2+ 1 (and higher) 
-

dimensions, but the fact that it was necessary to use the word abelian raises 

an obvious question. What about non-abelian theories? This question leads 

to several unsolved problems since calculations in non-abelian theories are more 

complicated, due mainly to the presence of the ghost sector. 

If we consider extending the present work to its non-abelian counterpart and 
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performing similar calculations, we would need to find a non-abelian form of the 

GT. This is difficult since in an abelian theory it is the simple form of the WGT 

identity that allows the ansatz for the vertex to take such an elegant form. In the 

non-abelian theory, the generalized WGT or Slavnov-Taylor identities [116, 117] 

involve ghost contributions which complicate their form, no longer permitting 

the construction of an ansatz such as (2.13). Several researchers of the GT in 

QCD [160-163] have avoided the use of the spectral representation altogether, 

constructing their ansatz for the three-gluon vertex through various different 

means, but their results have been contradictory. Cornwall offered an alternative· 

in the pinch technique [38, 39] which is in a sense more satisfactory, since he re­

arranged diagrams contributing to physical (gauge-invariant) processes in such a 

way that corrections to the effective gluon propagator became gauge-invariant, 

maki~g effective quantities obey abelian-like WGT identities. This· procedure 

would facilitate the use of the spectral form of the GT. 

Assuming for the moment that we could satisfactorily set up a consistent 

structure for studying the non-abelian generalizations of our theories, we are still 

faced with an obstacle. If we were to study a non-abelian CS theory, and wanted 

as in Chapter 4 to use dimensional regularization, the formulation of the theory, 

now with a Lagrangian of the form 

becomes extremely difficult. The solution we put forward for the abelian theory 

is not readily generalized since if we let the gauge field develop l indices and the f 

tensor become 21+1 dime~sional, 'the second term in the above expression will not 

be consistent away from l = 1, so another approach is required. Our approach to 

CS theory could however be extended to so-called BF theories [164, 165], where 

only the auxiliary B field. would be extended (although we would still need to 

consider an I-fold nest of ghost-for-ghost mechanisms). This may also be a useful 

test of the logic of extending the labels of one or more of the fields. 

82 



Appendix A: Feynman Rules 

In this appendix, Feynman rules are given for some of the theories considered in 

this thesis. 

Scalar Electrodynamics 

First we give the Feynman rules for the scalar version of quantum electrody­

namics, shown below. 

µ v 

p 

·----~---- .. z 
p2 - m2 +if 

Figure 15: Feynman rules for SED. 

They are obtained from the Lagrangian 
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by taking suitable functional derivatives with respect to the fields. Only internal 

lines are included, and all internal momenta must be integrated over. 

Spinor Electrodynamics 

Here we give the Feynman rules for the spinor version of quantum electrody­

namics, which are obtained from the Lagrangian 

and given in Figure 16 below. 

k 

~ 
µ v 

• 
p 

> • 
i 

p-m+ic 

Figure 16: Feynman rules for QED. 

Once again, all internal momenta must be integrated over, and also a factor of 

-1 must be added for each fermion loop. 
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Chern-Simons Theory 

In this theory, we use the Lagrangian 

to obtain our Feynman rules, and the rules for the fermion and for the vertex are 

equivalent to those given for QED above. Only the photon changes, becoming as 

shown in Figure 17. 

k 

~ 
A v 

Figure 17: Feynman rule for the Chern-Simons photon. 
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Appendix B: Dimensional Regularization 

The purpose of this appendix is to illustrate the steps involved in using dimen­

sional regularization [135-139] to evaluate apparently UV divergent momentum 

integrals. To do so, we will first take an explicit example, equation (2.27) from 

section 2.2, namely 

and outline the steps in obtaining its solution, following the technique as it is 

outlined in [139]. The first step is to rewrite the integral in an arbitrary 21 

dimensional form. In this case it is straightforward, but the discussion of a more 

difficult case is given in Chapter 4. The integral becomes 

II (k) = _. 2 J <121 [(2p - k)µ(2p - k)v - 21Jµv[(p - k)
2 

- m
2
]] (B:l) 

µv ie P (p2 _ m2)((p _ k)2 _ m2] · 

The gauge invariance of the vacuum polarization ensures that we can r:ewrite this 

integral as the product of a scalar integral and a tensor, namely 

(B.2) 

where 

II(k2) - (21~1) rr:(k) 

_ ie
2 J <1 21 [ (2p - k) · (2p - k) 21 l (B ) 

21 - 1 P (p2 - m2)[(p _ JC)2 _ m2] - (p2 _ m2) · ·3 

The first term above is still too complicated. We need to write the denominator 

in a different form, which we do by utilizing the identity [166] 

N f(vr) - ( 11 
Vr-ld ) 8(1- 0:1 - .. :_ aN)f(v1 + ... + VN) IT-- IT a O:r 

Avr 0 r [A1a1 + • · · + ANaN]vi+ .. +vN ' r=l r r 

(B.4) 

which introduces the Feynman parameters, ar. In equation (B.3) above, we need 

only the lowest in this series of equations, which takes the visually less disturbing 

form, 
1 [1 da 

AB =Jo [Aa + B(l - a)]2' 
(B.5) 
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which in terms of the denominators in the first term in_(B.3) becomes, after 

factoring terms containing p, 

1 [ 1 da 
(p2 - m2)[(p - k) 2 - m2] - lo [(p-- ka) 2 + k2a(l - a) - m2]2' (B.6) 

I 

so that (B.3) becomes 

ie2 j el21p da (2p- k) · (2p- k) 
21 - 1 ((p- ka)2 + k2a(l - a) - m 2]2 

2lie2 j ll21
p 

21 - 1 (p2 - m2)° 
(B.7) 

Since we are integrating over all values of the internal momentum p, from -oo --+ 

+oo, we may perform the shift (in the numerator as well) p --+ p + ka. The 

denominator is now of the form (p2 - M 2 ) 2 , where M is a notional "mass" con­

taining no p dependence, and this permits us now to discard terms which are odd 

in p, since they will ~ancel in the two halves of the integration region. Terms 

which are even in pare simplified according to 

(and also using 

when terms containing four indices occur) so that only terms of the form 

remain. In our explicit example, (B.7) becomes 

~j el21p da (4p2 + k2(1-2a.) 2
) 

21 - 1 (p2 + k2a(l - a) - m2]2 

2lie2 j ll 21
p 

- 2l - 1 (p2 -=- m2)' (B.8) 

This momentum integral can now be evaluated (139] via 

·j 21 (p2f (-lf-Ef(l + T)f(E -T- l) 
- i a P[p2 _ M2]E = ( 47r)1 r(l)r(E)(M2)E-T-z , (B.9) 
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which results in 

-e2 j da [ -4/f(l - l) k2(1 - 2a.)2f(2 - l) l 
- 21 - 1 (47r)1 [m2 - k2a.(1 - a.)]1-1 + [m2 - k2a.(1 - a.)]2-1 

2le2f(l - l) 
(21- 1)(47r)1(m2)1-I . 

(B.10) 

Having safely evaluated the momentum integrals, we may now take the limit 

l-+ 3/2, and obtain the result for II, yielding 

which is just (2.28) above. 
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Appendix C: A Dispersive Calculation 

It is instructive to work out the discontinuities of some of the Feynman integrals 

in QED in arbitrary 21 dimensions using a dispersion relation approach in order 

to understand what is peculiar to 21 = 3, as well as seeing an alternative to the 

method explained in the previous appendix. We interpret the rules of dimensional 
-

continuation in the usual way, taking 

.6 (. ) = (m)'-1 
K1-1(mr). r2 = -x2 

i c x r (27r )' , (C.1) 

and 
1 

6c(P) = 2 2 • p -m 
(C.2) 

The general phase space integral is the p2 discontinuity of the integral 

(C.3) 

that is 

~S'F(p) = 271" j a21 k h"+[(k - p)2 
- m 2

] h"+[k2 
- µ2

]. (C.4) 
71" . 

Now we make the hyperbolic polar decomposition (analogous to ordinary spher-

ical polars) 

transforming our integral into 

J k
21

-
1dk d02,_1 sinh021-2d021-2 · · · sinh

21
-

2 
01d01 0 [(k _ )2 _ 2] 0 [k2 _ 2] 

(27r )21-1.2µ + p m + µ ' 

where 01 • • • 021-2 run from 0 to 7r and 021-1 runs from 0 to 271". We use the 

h"+[k2-µ2] to evaluate the,k integration, choose p such that k·p = vfk2# cosh 01 , 

and exploit the fact that JC: sinh2µ.0 dO = B(l/2, µ + 1/2) to evaluate all but the 

last angular integration, yjelding 

1 
-S'F(p) 
7r 
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where D.2 = p4 + m4 + µ4 
- 2m2µ2 - 2µ 2p2 - 2m2p2 is the usual triangle function. 

Also it should be noted that the charge coupling e has dimensions M 2- 1, given the 

usual dimensionality of meson and fermion fields. Straightforward calculations 

use (C.5) to yield the following results. Defining IIµ,,(k) = (TJµv - k%~")7r(k2 ), the 

polarization function II receives the contributions 

(C.6) 

from the charged scalar meson (mass m) and the (doubled) charged fermion (mass 

m) respectively, where a = 1 for odd dimensions, a = 0 for even dimensions. The 

absorptive parts of these contributions are 

(C.7) 

22[1+al(k2 4 2)1-t 
-e - m {2m2 + (l - l)k2}0(k2 - 4m2) . 
(167r)1-tffir(Z + f) 

The formulae (C.6), (C.7) are of course consistent with one another bearing in 

mind that 

1 
-<;SF(a b· c· z) 
7r ' ' ' 

f(c)O(z - l)(z - l)c-a-b 
f(a)f(b)f(l -a-b+ c)F(c- a,c- b;c- a- b+ 1; 1- z) 

F(a b·a·z) = ' ' ' 
(1- ztb 

F(a b· a - 1 · z) -'' ' - [1-(1- a~ 1) z] (1-ztI-b. 

One may similarly evaluate the complete expressions for the meson and fermion 

self-energies due to (massless) photon emission and reabsorption. We shall not 

quote the complete result but only the discontinuities of those expressions which 

are of direct interest. To order e2 the meson self-energy has the discontinuity, 

1 2e2(p2)1-1(p2 - m2)21-3(p2 + m2)[l - 21 + e(2l - 3)] 
-<;SE(p) - O(p2 -m2

) (C 8) 
7r - (167r)1-tr(Z - ~) . 
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and the fermion self-energy has the discontinuity, 

As mentioned in Chapter 2, we can see why the meson self energy discontinuity 

is gauge invariant to this order, since in (C.8), the term containing e happens to 

carry a factor of 21 - 3. 
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Appendix D: Dirac Gamma Matrices in Odd 
Dimensions 

In order to evaluate integrals involving Dirac 1-matrices we require knowledge 

of their behaviour through certain identities, which we will outline below. 

In any dimension D, the algebra of Dirac 1-matrices is generated by 

(D.l) 

where µ and v run from 0, · · · , D - 1 and our metric is defined by 

'f/µ11 = diag(l, -1, -1, · · ·). 

The identity (D.l) above permits us to write down some properties of 1-matrices 

in any dimension. 

First, we can write the contractions of i's in D dimensions, 

etc. 

D 

(2-D)/11 

21f31a + (D - 2)/al{J 

4'f/a{3 + (D - 4)/a{{J 

(D.2) 

It is also possible in arbitrary D dimensions to write the trace of an even 

number of i's as 

1 
2D/2 tr[/µ111) - 'f/µ11 

1 

2
v;2 tr['Yµ/vlalfJ] = 'f/µ11'f/a{3 - 'f/µaT/11{3 + T/µ{JT/av· 

(D.3) 

More complicated trace expressions are sometimes required, which we obtain 

from Akyeampong and Delbourgo [148]. In order to explain them we define the 

antisymmetric product, 

l(µ1l/.L2 · ""lµr] = L (-l)Plµ1l/.L2 ·· 0 l/.Lrl 
/.Lrperm 
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for which 

This definition lets us express the results, 

and 

2J/2 tr[1'(µ1 IJL2 • • • lµr]/alv111/2 • · · lvrl{J] = 

= (-1)(3r/2] [T/ f35[(v1 •.. 5vr]] _ 5(1117//3[ 5112 ••• 5vr]] _ 5{3(v1T/ ( 5v2 ••• 5vr]]]. 
a JL1 JLr a JL1 JL2 JLr a J.l.1 JL2 JLr 

Now we wish to consider properties dependent on the "oddness" of the dimen­

sionality. When D is even it is well-known that the '1' have size 2[D/2l x 2[D/2l 

and there exists a '15 ' matrix which is the product of all the different D i's and 

which anticommutes with each 1µ; one can always arrange it to have square -1, 

like all the space-like I· It is not so well-known that in one higher dimension, 

there are two choices when realizing the algebra (D.l). The first choice is to let 

the size of the i's remain the same, merely letting the '15 ' matrix become the 

last element of the D Dirac matrices. For instance, in three dimensions one can 

take the two-dimensional Pauli matrices /o = u3 , 11 = iu1 and simply append 

12 = 'is' = i1011 = -iu2 to complete the set, without altering the size of the rep­

resentation. Similarly, in five dimensions one can take the usual four-dimensional 

ones and just append Is = loll 1213 as the fifth component. 

It is important to notice that it is possible to get a non-zero trace from the 

product of an odd number of gamma-matrices, if there are exactly D 'i's, since 

at least 

It is exactly this property which permits the generation of a Chern-Simons term 

in 3 dimensions. Another property worth remembering in odd dimensions is 

that if one constructs suitably normalized antisymmetric products of r matrices, 

/[µu• 2 ···µr] (the total set of these from r = 0 tor= D generates a complete set into 
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which any 2fD/2l x 2(D/2l matrix can be expanded) then there exists the relation, 

i(D-1)/2 
"I _ .c [µr+iµr+2···µD] 
1[µ1µ2···µr] - (D _ r)! '-µ1µ2···µDf 

This often helps in simplifying products of matrices. 

The other option is to use the so-called parity-doubled form of the Dirac 

matrices. This was discussed for the 3 dimensional case in Chapter 3, and can 

easily be generalized to the arbitrary odd dimensional case. Basically, it involves 

embedding the 'Y matrices of the first approach within a 2D x 2D basis, so that 

where µ still runs from 0 · · · D - 1. In this basis, the parity invariance of particle 

masses has been restored, preventing Chern-Simons terms being generated. In 

this case, ·the trace of any odd number of f's is equal to zero. 
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