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Thesis Abstract 

The overall aim of this thesis was to integrate the ecophysiology and population 

dynamics of the mussel Perna perna in Southern Brazil into a model that can ultimately be 

used for carrying capacity analysis in a tropical environment. The first chapter quantified 

and modelled the filter-feeding behavior of mussels feeding on natural seston. Models 

were generated that described each step of the feeding process and produced a predictive 

model of rates of food uptake. Feeding experiments using the biodeposition approach were 

conducted with mussels ranging in shell height from 3.94 to 9.22 cm of three sites, 

including turbid and clear water environments. Among the feeding steps characterized and 

modelled were filtration rate, rejection rate, organic selection efficiency, the organic 

content of ingested matter, absorption efficiency, and absorption rate. The coupling of the 

equations that described filter-feeding processes produced a robust model with relatively 

low complexity and specificity. The model can predict the P. perna feeding behavior in 

turbid or clear water and can be used with different species if the correct coefficients are 

used. 

In the second chapter, growth and mortality rates using size frequency 

distributions of P. perna in suspended culture in two locations were studied. Growth 

rates were used as forcing functions in a model to predict size class distributions on one 

meter mussel ropes. Settlement of new individuals was included in the model using the 

unique settlement rate observed in each location. Mortality rates were estimated at 0.06 

year-1 in the populations at both locations. The integration of growth and mortality data 
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in a predictive model resulted in good predictions of size frequency distributions at two 

locations in Brazil. 

The third chapter coupled the feeding model developed earlier with a model of 

energy balance and scope for growth. This model was divided in four sectors to facilitate 

description and explanation of the functions controlling feeding and metabolic responses 

to varying food availability and seawater temperature. The seston sector included 

characteristics of seston likely to influence food and energy acquisition in mussels. It 

also included relationships that estimated the energy content of phytoplankton and 

detritus, the main components of mussel diet. The feeding sector described suspension­

feeding behavior using natural seston as described in the first chapter. In the energy 

allocation sector, absorbed matter was transformed to absorbed energy using estimates of 

energy content of food provided in the seston sector. After accounting for the 

maintenance requirements of the mussels (heat loss, excretion, and mucus production), 

the scope for growth was directed to the growth sector. The growth sector included 

byssus, organic shell, and soft tissue production based on energy pa,rtitioning estimated 

from monthly measurements of tissue (somatic and reproductive) and shell growth. The 

model successfully predicted mussel shell length and dry tissue weight during the 

simulation period and estimated the response of mussels to food acquisition, energy 

expenditure, and allocation to growth. 

In the fourth and last chapter, mussel population dynamics and ecophysiology 

were coupled to model feedbacks from the bivalve population to the environment. These 
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feedbacks included population level estimates of the rates of filtration, excretion, and 

biodeposition. Seston (TPM, POM and CHL a) dynamics were investigated in three 

temporal scales: biweekly for four years, weekly for eight months, and tidally (neap and 

spring tides). Characterization of the study area enabled an estimation of bivalve 

standing sock, total surface area, and volume of the area. Measurements of water level 

across tides allowed estimates of tidal water renewal inside the area. Some aspects of 

interest for carrying capacity analysis presented in the last chapter were the water mass 

residence time for the area, bivalve clearance time (the time needed for the total bivalve 

biomass to filter a volume of water equivalent to the system volume), and phytoplankton 

production time (the time it takes for the primary production within the system to replace 

the phytoplankton biomass within the system). 

Among the important aspects for carrying capacity studies not included in this 

model are the spatial resolution of hydrodynamics_ processes and physical/biological 

processes related to seston dynamics like sedimentation, resuspension, and mineralization 

of organic compounds, interacting together with the population ecophysiology to predict 

the exploitation carrying capacity for this system. Although there was good agreement of 

the model prediction with the observed mussel growth data, the model needs to be tested 

with an independent set of data before it is can be used as a management tool. Therefore, 

it appears that the integration of whole animal models with population models can be 

used in carrying capacity analysis for shellfish culture areas in Brazil. 



Chapter 1 

Development of ecophysiological models for carrying capacity analysis 

in shellfish culture: a case study in Southern Brazil. 

4 
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1.1. Introduction 

Aquaculture production is growing at more than 10% per year, compared with 3% 

for terrestrial livestock and 1.5% for capture fisheries (GESAMP, 2001). Similarly, the 

culture of marine bivalve mollusks has markedly increased in the past two decades. 

Available areas for shellfish farming are becoming limited by access, pollution, 

operational logistics, habitat suitability, and competition by other recreational or 

commercial use (Smaal, 1991). As available culture space becomes occupied, the growth 

rates of individual bivalves may slow and mortality rates increase due to disease 

outbreaks associated with overcrowding (Grant et al., 1993). Reduction in growth rates 

and longer times to reach commercial size due to overstocking has already been reported 

for Hiroshima and Marennes-Oleron bays (Heral, 1993). As the aquaculture industry 

grows there is pressure from government authorities, the general public, and other sea 

users to minimize environmental impacts and develop sustainable practices. 

1. 2. The concept of carrying capacity for bivalve aquaculture 

The sustainable level of shellfish farming is referred to as carrying capacity and is 

generally estimated for an inlet, cove, or bay. There are many definitions of carrying 

capacity based either on ecological and/or economic considerations. To be cost-effective 

estimates of environmental carrying capacity should consider aspects of environmental 

impact likely to occur in a given situation. In principle, it need only be applied to the 

aspect of the environment that becomes limiting first (GESAMP, 2001). The main 
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environmental impacts caused by suspended mussel culture are depletion of 

phytoplankton and accumulation of biodeposits beneath the farms, the second of which 

produces an anoxic environment and impoverishment of fauna (Redhouse & Roden, 

1987, Kaiser et al., 1998). At acceptable levels of farming density, zooplankton grazing 

and associated processes, i.e. excretion of ammonia and deposition of faecal pellets, are 

widely spread in the system. Furthermore, mussel farms influence the organic and 

inorganic nitrogen pools (both on sediment and water column) within a farming area 

(Kaspar et al., 1985). 

Despite these environmental considerations, most carrying capacity analysis for 

shellfish culture is approached from an economic perspective, based on the effect of stock 

size on bivalve growth rate and its resultant yield. For example, carrying capacity has 

been defined as "the total biomass supported by a given ecosystem as a function of the 

water residence time, primary production time and bivalve clearance time." Dame & 

Prins (1998). Carver & Mallet (1990) and James & Ross (1996) define it as the stock 

density at which production levels are maximized without negatively affecting growth 

rates. Smaal et al. (1998) notes that increased stocking rates may both result in low 

individual growth rate and maximal production, however, with undersized individuals. It 

is desirable that whatever the definition used, it should encompass economic as well as 

environmental considerations (Frechette, 1991). Heral (1993), using the exploitation 

carrying capacity defined above, found that in Marennes-Oleron Bay the stock size that 

gives the maximum yield of a marketable cohort is determined by an asymptotic equation 

of the same type as the one used for the growth of the populations, like the Von 
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Bertalanffy equation. Regardless of the definition used it is commonly accepted that an 

inverse relationship between stocking density and individual growth rates has resulted in 

the need to reliably assess the carrying capacity of aquaculture sites (Incze et al., 1981; 

Carver & Mallet; 1990; Raillard & Menesguen, 1994; Dowd, 1997). 

1.3. Carrying capacity models 

The aim of this Ph.D. thesis was to describe and model some aspects of Perna 

perna feeding behavior and physiology, and describe temporal changes, at a range of 

scales, of main seston characteristics allowing an analysis of the response of bivalves to 

dynamic environments. These models are used to develop a larger model that predicts 

the main feedbacks between mussel culture and the environment for mussel culture in a 

subtropical environment like Southern Brazil. The clarification of ecophysiological 

processes of P. perna and their interaction with the culture environment is of significant 

value for the evaluation of exploitable and sustainable levels of mussel farming in 

subtropical regions like Southern Brazil. The approach of this thesis was to focus on 

bivalve population physiological responses coupled with less detailed model of water 

renewal. Although this model runs the risk of becoming too complex to be practicable in 

the management of the industry, this study attempted to describe and model the main 

physiological interactions that occur under culture for the mussel P. perna in Southern 

Brazil. 
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More complex models should describe more accurately the response of a real 

system. However, as more parameters are included in a model the level of uncertainty 

increases. This is because field parameters estimations are never free of errors and these 

errors are carried through into the model contributing to its uncertainty (J0rgensen 1994). 

There is a fine line between generating a simple versus a complex model and what is 

known about the system. As a result modellers usually have to trade-off between 

knowing much about little or little about much about a biological situation. 

The components involved in carrying capacity analysis for mussel culture selected 

for this study were: i) feeding behavior; ii) individual energetic physiology and scope for 

growth, iii) population dynamics, iv) relationships between mussel population 

ecophysiology, primary production and seston availability. These components were 

selected considering the limited information available about P. Perna ecophysiology and 

population dynamics in Southern Brazil. In the following sections a brief overview of 

each component considered as the minill1;um requirements for modelling carrying 

capacity and their associated difficulties will be presented. The first three of these four 

components form the basis of this thesis, the fourth component is outside of the scope of 

the thesis, but has been included for completeness. Details about each of these model 

components will be provided latter on the related chapters of this study. 
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1.4. Mussel physiology (Chapters 2 and 4) 

Most studies of carrying capacity use models of scope for growth of individuals 

(SFG) based on flows of energy or material (Grant, 1993). Scope for growth in bivalves 

is generally a function of food consumed, faeces and pseudofaeces produced, respiration 

and excretion: 

SFG = FR - (PF + F + R + U) 

where: FR = consumption, PF = pseudofaeces, F = faeces, R = respiration, and U = 

excretion. Variations of this equation are found in the literature, depending on the level 

of the detail of the model. Some studies do not include pseudofaeces and/or excretion, 

while other models partition SFG for somatic and reproductive tissues in their analysis. 

It is necessary to identify which variables SFG is most sensitive to allow methods 

measuring these variables to be refined allowing accuracy in estimates (Frechette, 1991). 

SFG will include non-linear components such as allometry and temperature responses. 

Although these terms are related to environmental conditions their sum total in a SFG 

model may not be related in the same way to the same variables (Grant, 1996). Among 

factors that have the greatest impact on bivalve energy budgets, food and temperature are 

considered the most important (Grant, 1996). A simple set of differential equations was 

used by Dowd (1997) to reproduce a generic bivalve physiological model, as a submodel 

in a carrying capacity analysis. He noted that uncertainty in estimates of physiological 

parameters strongly influenced the prediction of allowable stocking density. This was 
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because the carrying capacity model was highly sensitive to variations m the 

physiological sub-model. 

Differences in maximum sustainable stocks sizes among species have been 

explained as a function of interspecific differences in the rates of physiological processes. 

For example, the higher energetic demand of Crassostrea gigas compared with C. 

angulata in Marennes-Oler6n Bay results in a 60% difference in maximum stocking rates 

(Heral, 1993). This finding reinforces the need to determine which bioenergetic 

relationships can be used across species boundaries if the objective is to apply a growth 

model to a wide variety of species and culture situations (Grant, 1996). Therefore, 

development of models that describe how bivalves control feeding behavior in relation to 

food availability, and how this response affects scope for growth, allows comparisons 

between species, and the identification of similar responses to seston quantity and quality. 

If the model reproduces the main energetic relationships, it can be used for different 

species by replacing the equation coefficients with coefficients measured for each 

species. 

Some more detailed SFG models partition the allocation of material into somatic 

tissues, reproductive tissues, and shell (Brylinsky & Sephton, 1991; Scholten & Smaal, 

1998; Pouvreau et al., 2000). These models assume that energy surplus to maintenance 

(respiration and excretion in Pouvreau's model and respiration, excretion and mucus 

production in Scholten's model) was partitioned between body tissues and organic shell. 

However, the rules specifying the bivalve priorities for resources partitioning of surplus 
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energy to somatic and reproductive tissues tissue and organic shell poorly understood 

(Pouvreau et al., 2000; Scholten & Small, 1998). These detailed SFG models differ in 

the rules controlling the partitioning of assimilated material to different body parts and 

shell and mechanisms controlling the excretion rate. 

Furthermore, an important aspect of SFG models is that the use of food and the 

assimilation in the tissues involves several steps w~ch need to be successively simplified 

in the model. Although these simplifications may violate some biological features, they 

are necessary to assist building a model that synthesizes and apply this information in a 

meaningfµl way (Pouvreau et al., 2000; Brylinsky & Sephton, 1991). 

1.5. Population dynamics (Chapter 3) 

Population dynamics of the targeted cultivated species have to be described in 

different areas to compare results given by the growth rate model and observations 

(Heral, 1993). However, most carrying capacity models emphasize ingestion and 

energetics of individuals, rather than population dynamics Grant (1993). Consequently, 

several aspects of population ecology, e.g. recruitment and differential mortality among 

size classes, are neglected. This will directly affect predictions of the feedbacks between 

bivalve populations to the environment, e.g. filtration, excretion, and biodeposition rates. 
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1.6. Hydrodynamics and Seston Characterization 

For hydrodynamic data, simultaneous records of tidal levels as well as precise and 

recent bathymetry are necessary. This information is used to calculate water residence 

time inside the water body, which is the simplest analysis, employed for water and 

associated food renewal. Further increase in details is possible with the formulation of 

one and two-dimensional models. The one-dimensional models include advection and 

diffusion movements of water and suspended particles between adjacent boxes or 

sections of a bay. In contrast the two-dimensional approach includes sedimentation of 

biodeposits, phytoplankton, zooplankton and detritus, as well as resuspension from the 

bottom. Long time series of current velocity and direction are also necessary as current 

speed and wind are the dominant factors controlling energy flow in bivalve systems by 

their action on processes such as advection, diffusion, and resuspension (Frechette, 1993; 

Heral, 1993). Continuous records of salinity and turbidity are also useful to validate 

models of advection and transport processes (Heral, 1993). The temporal and spatial 

scales at which information about physical and biological processes are obtained is 

important as they ultimately have to be linked in one model (Frechette, 1993; Heral, 

1993; Grant 1993). 

Most of the hydrodynamics models developed for carrying capacity analysis use 

the box model concept, whereby the coastal inlet is divided into distinct regions or 

sectors. Exchange of suspended particles between adjacent boxes is assumed to be 

proportional to spatial differences in their respective concentrations, scaled by an 
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exchange coefficient (e.g. Dowd, 1997). Density, differential sinking, and advection 

rates of organic (phytoplankton and detritus) and inorganic (resuspended silt) fractions 

must be known to estimate rates of transport (Scholten et al., 1990). This will allow 

transport rates for the different fractions based on measured vertical gradients of 

inorganic sediment, detritus and phytoplankton. 

Carrying capacity predictions must be temporally and spatial specific otherwise 

estimates can be very misleading (Doering & Oviatt, 1986). Sampling strategies depend 

on the precision needed and the time scale of the model (Heral, 1993). Although food is 

usually estimated using mass measurements like TPM, PIM, and POM, together with 

Chlorophyll a, recent findings suggest that volumetric measurements of food may explain 

the control of food acquisition by some bivalves (Hawkins et al., 2001). Additional 

measurements of particulate organic carbon (POC) and nitrogen (PON) also enable 

conversions from POM to POC and PON, which in turn are necessary to calculate carbon 

and nitrogen intake by bivalves. Although some studies use conversion factors obtained 

for other areas and times, it is likely that these conversion factors vary spatially and 

temporally. Measurements of primary production are also desirable as absolute values of 

instantaneous measurements of chlorophyll a do not predict the total food pool. Probably, 

because of the limits on the number of variables, most carrying capacity models do not 

include a sub-model of primary production in their analysis. 

Despite an urgent need from the aquaculture industry, environmental agencies, 

and other users to develop sustainable use of this common resource, there are no tools 

that can be immediately applied to a range of environments and species. This study aims 
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to contribute towards the development of a carrying capacity model through research 

about a bivalve species intensively farmed in Brazil. This was achieved through 

delivering new information about the ecophysiology of Perna perna in suspended culture 

in Santa Catarina. 



Chapter 2 

Modelling of filter-feeding behavior in the brown mussel Perna perna 

(L.), exposed to natural variations of seston availability in Santa 

Catarina, Brazil. 

15 
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2.1. Abstract 

The aim of this study was to quantify and model the filter-feeding behavior of the mussel 

Perna perna feeding on natural seston. Models were generated that described each step of 

the feeding process and produced a predictive model of rates of food uptake by P. perna in 

culture areas from Southern Brazil. Feeding experiments using the biodeposition approach 

were conducted with mussels ranging in shell height from 3.94 to 9.22 cm of three sites, 

including turbid and clear water environments. Organic content of the seston (OCS, 

fraction) decreased as total particulate matter (TPM, mg L"1
) increased. The maximum 

filtration rate (FR, mg L"1
) measured for an individual mussel was 156.7 mg h-1 and was 

recorded when TPM was 33.9 mg L-1 and OCS was 0.18. Rejection rate of particles had a , 

strong positive relationship with TPM, and an inverse relationship with OCS. Maximum 

rejection rate recorded was 124.1 mg h-1 and was measured under the same seston 

conditions as maximum filtration rate. Net organic selection efficiency by mussels 

(NOSE, fraction) was related to the amount of particulate org~ic matter (POM, mg L"1
) 

and particulate inorganic matter (PIM, mg L"1
) available in the water. NOSE was 1positive 

below PIM values of 2 mg L-1
, but had negative values when POM was above 3 mg L-1 and 

PIM between 2 and 15 mg L-1
, and positive values when POM was below 3 mg L-1 and 

PIM above 15 mg L- 1
• Maximum NOSE was 1.71, when PIM was 1.02 mg L-1 and POM 

was 0.67 mg L-1
• Oiganic content of ingested matter (OCI, fraction) had a positive 

relationship with NOSE and TPM. Maximum OCI was 1.24 and was measured when TPM 

was 33.9 mg L-1
, OCS was 0.18, FR was 151.30 mg h-1

, and NOSE was 1.30. The net 

absorption efficiency of ingested organics (NAEIO) increased with increasing OCI in a 

hyperbolic relationship. The net organic absorption rate (NOAR, mg h"1
) increased with 
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both FR and OCI. The coupling of the equations that described filter-feeding processes for 

P. perna in the STELLA software environment produced a robust model with relatively 

low complexity and specificity. The model can predict the P. perna feeding behavior in 

turbid or clear water and can be used with different species if the correct coefficients are 

used. The coupling of this feeding model with future models of energy budget, population 

dynamics, seston hydrodynamics, and primary production will be valuable for the 

evaluation of shellfish carrying capacity. 
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2.2. Introduction 

Assessing carrying capacity, the environmental capacity for shellfish culture, is 

generally approached using ecophysiological modelling (e.g.; Brylinsky & Sephton, 

1991; Newell & Campbell, 1998; Scholten & Smaal, 1998). The inclusion of processes 

relative to rates of selectivity, rejection, and absorption by mollusk filter feeders is of 

primary importance for both ecosystem and local scales models (Smaal et al., 1998). 

Sessile suspension-feeders obtain energy by selectively feeding on seston, which includes 

a variable mixture of algae, detritus, and silt. Not only does the seston have a small 

fraction with nutritional value (Smaal & Haas, 1997), but the composition changes on 

time scales of minute to months (Grant, 1993). The available organic content of the 

seston ranges from 5 to 80% (Bayne & Hawkins, 1990). Such nutritional variability in the 

seston forces sessile organisms like mussels to maximize their energy intake, and 

ultimately their net energy balance, by varying rates of feeding and digestion in response 

to seston concentration and organic content (Bayne et al., 1993). 

The literature describing bivalve rates of filter-feeding and digestion is extensive 

(see reviews by Bayne & Newell, 1983; Griffiths & Griffiths, 1987; Bayne, 1993). 

However, recent findings suggest that previous studies have limited application because 

they used artificial diets and it is unclear to what extent artificial diets provide a realistic 

representation of "in situ" feeding behavior (Bayne & Hawkins, 1990). Normal feeding 
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processes and behavior are better measured in experiments where the animals are allowed 

to feed on natural seston (Hawkins et al., 1996; Wong & Cheung, 2001; Gardner, 2002). 

Most research on the ecophysiological processes in shellfish has focused on 

temperate species (e.g .. Mytilus edulis), and there has been limited work on tropical 

species and their environments (Hawkins et al., 1998a; Wong & Cheung, 2001). 

Although bivalves use the same general selective mechanisms for food acquisition 

(Hawkins et al., 1998b), there are both intra- and inter-specific differences in feeding 

rates (Navarro et al., 1991). Describing the physiological responses characteristic of each 

species is needed, rather than extrapolating data ·from other species (Gardner & 

Thompson, 2001; James et al., 2001). There are likely to be a number of significant 

differences in tropical environments. Our understanding of the feeding physiology of 

Perna perna (Linnaeus, 1758) (Berry & Schleyer, 1983; Bayne et al., 1984; van Erkon 

Schurink & Griffiths, 1992) is limited to laboratory experiments using microalgae 

monocultures or a mix of microalgae species and silt. Furthermore, these studies were 

carried out in South Africa where cold south Atlantic currents are predominant; in 

contrast, the Brazilian coast has warm waters brought by central Atlantic currents. Such 

differences in temperature and productivity, and consequently in food availability and its 

organic content, will be reflected in ecophysiological differences of these filter feeders. · 

The aim of this study was to generate a model to predict food uptake by P. perna 

in culture areas of Southern Brazil, based on measurements of the filter -feeding process 

using natural sestop. The model reproduce the sequential passage of food through the 
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feeding steps of filtration, selection, rejection, ingestion and absorption, and the 

calculation of each step is based on relationships either with quantity and quality of 

seston or with some of the preceding steps on the food processing sequence. Mussel 

aquaculture is a fast growing industry in Brazil and problems regarding the 

environmental capacity of this industry may occur in the near future. This research will 

have the capability to deliver information that can be incorporated into models of energy 

budget and growth as a function of stocking density, for use in planning and managing 

strategies of growing areas. 

2.3. Methods 

Feeding experiments were conducted at three sites within mussel farms in 

Southern Brazil; Brito Cove (48° 37' W, 27° 46' S), Porto Belo (48° 33' W, 27° 8' S), and 

Arma9ao de Itapocoroi (48° _38' W, 26° 58' S). Rope-cultured P. perna were collected 

from mussel farms at each site immediately before the exper4nents. All experiments 

were done on one to three occasions at each site and were exposed to natural differences ~c.-• .., 
=--.::: 

in concentration and organic content of seston at each site and time (Table 2.1). Each site 

was arbitrarily classified as turbid or clear, based on total particulate matter (TPM). The 

clear site had TPM < 5 mg L-1 (Porto Belo), while the turbid sites had TPM between 10 -

40 mg L-1 (Brito Cove and Arma9ao do Itapocoroi). The use of multiple seston conditions 

was not intended to make comparisons of the mussel's feeding response at these sites, but 

rather, to characterize their feeding response across a variety of different environments 

and provide an equation that could be broadly used in carrying capacity studies. 
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The experiments were conducted on a raft containing a tray with ten individual 

350 mL plastic chambers. Eight individual mussels, cleared of epibiotic growth, were 
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Table 2.1. Summary of environmental parameters and mussel size range for each day the experiments were run. Data of 

environmental characteristics are the mean± SD. TPM: total dry particulate mass; POM: total particulate organic matter; 

OCS=organic content of TPM; ND= no data. 

Environmental characteristics n=l2 Mussels 
Experiment days Location TPM POM ocs Temperature Turbidity Shell length Dry weight 

(mgL-1
) (mgL-1

) (fraction) (QC) (NTU) (cm) (g) 
14/03/01 Brito Cove 29.6 ± 11.9 4.7 ±3.7 0.15 ± 0.05 25.7 ± 0.5 ND 5.05- 8.90 0.398 - 3.522 
14/04/01 Brito Cove 12.4 ± 3.0 1.2 ± 0:3 0.10 ± 0.02 25.5 ± 0.5 7.7 ± 1.7 5.70- 8.16 0.485 - 2.034 
05/06/01 Brito Cove 9.8±3.1 1.0 ± 0.1 0.11±0.03 22.2 ± 0.3 4.5 ± 1.6 5.72- 8.27 0.628 - 2.517 
07/02/01 Porto Belo 1.7 ± 0.3 0.7 ±0.3 0.41±0.17 29.0 ± 0.4 0.5 ± 0.2 5.74- 8.28 1.177 - 3.257 
31/03/01 Porto Belo 1.6 ± 0.4 0.3 ± 0.1 0.20 ± 0.08 26.5 ± 0.4 1.0 ± 0.1 5.05- 9.22 0.618-3.103 
07/07/01 Porto Belo 1.2 ± 0.3 0.4 ± 0.1 0.36 ± 0.09 18.3 ± 0.0 0.3 ± 0.1 4.11- 8.22 0.343 - 2.757 
26/05/01 A. Itapocoroi 4.6 ± 0.7 2.3 ± 0.4 0.10 ± 0.08 21.3 ± 0.2 2.8 ± 0.8 6.00- 8.49 0.857 - 3.087 
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placed in separate chambers, with two chambers left empty to act as blanks. Seawater 

was pumped into the chambers with flow r_ates in each compartment between 150 and 

200 mL min-1
, these were adjusted at the beginning of the experiment. A baffle between 

the mussel and the inflow water provided a homogeneous distribution of water flow 

inside the feeding chambers (Fig. 2.1). The mussels were initially left undisturbed for 

one hour to acclimate, after which time all biodeposits on the bottom of the chambers 

were removed. Once the experiment started the mussels were allowed to feed for four 

hours, during which time all faeces and pseudofaeces for each mussel were separately 

collected using a pipette immediately after being released. For each individual mussel 

the faeces and pseudofaeces collected in each hour were stored in separate test tubes on 

ice. A 2 L sample of inflow seawater was collected every 20 minutes for the 

determination of seston concentration and organic content. Water temperature and 

salinity were monitored every hour during the experiment. 

After five hours of feeding the experiment was terminated and the mussels and 

samples were transported back to the laboratory on ice. Biodeposit samples were 

homogenized by repeat-pipetting and filtered onto pre-ashed and weighed Whatman GFC 

filters (25 mm or 47 mm diameter). The samples were rinsed with 15 mL distilled water 

to remove salts and dried at 60°C for 48 hours before re-weighing and calculation of the 

total sample dry weight. Each sample was then ashed at 450°C for 4 h prior to final 

weighing,- allowing calculation of both of the ash (inorganic) and ash-free (organic) mass 

of each filtered sample. To account for settled material in the chamber, the mean organic 

and inorganic weight of sediment material collected from the blank chambers was 
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Figure 2.1. Schematic diagram of the feeding tray used in the biodeposition experiments. 
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subtracted from the mean organic and inorganic weight of the collected faeces and 

pseudofaeces. To determine seston concentration and organic content, three 300 - 400 

mL samples from the 2 L of inflow seawater collected were filtered onto pre-ashed and 

weighed Whatman GFC filters (25 mm diameter) and dried, ashed, and weighed in the 

same way as the biodeposit samples. The mean of the three values was calculated. The 

seston concentration and organic content for each hour was calculated as an average of 

the three 2 L samples taken during that hour. 

To determine the lag time between when food was consumed by the mussels and 

when faeces and pseudofaeces production occurs mussels starved for one day in the 

laboratory were fed green microalgae. Green faeces were observed within an hour of 

feeding therefore we assumed the gut transit time to be 1 hour. Green pseudofaeces were 

seen within minutes of the microalgae being added. Therefore, in the analysis of the field 

data the quantity and content of the faeces was correlated with seston concentration and 

organic content in the preceding hour. No time lag was assumed in correlation with 

pseudofaeces production. Feeding and absorption parameters were defined and 

calculated (Table 2.2) using procedures outlined in Hawkins et al. (1996, 1998b), and 

using the mean of the hourly feeding rate obtained for each mussel throughout the 

experiment. Similarly, all abbreviations and terms used in the feeding behavior 

description came directly from his work. For the regression analysis, seston concentration 

and organic content were the means of the hourly values obtained during each 

experimental run. 



From each mussel used in the experiments, total length was measured and soft 

tissue removed, dried at 60° C for 48 hours, and weighed. To standardize findings and 

26 
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Table 2.2. Definitions and descriptions of the calculations used in each component of 
feeding behavior. 

Parameter Acronym Units Calculation 

Particulate Inorganic Matter PIM Ash free dry we'1ght ofTPM 

Particulate Organic Matter POM TPM-PIM 

Organic Content of Seston ocs fraction POMITPM 

(mg inorganic matter egested both as true faeces and 

Clearance Rate CR lh"1 pseudofaeces h"1
) - (mg morganic matter available r 

1 seawater) 

Total Filtrat10n Rate FR mgh-1 (mg inorganic matter egested both as true faeces and 
pseudofaeces h"1

) + (1-0CF) 

Organic Filtrat10n Rate OFR mgh"1 CR x mg total particulate organic matter r 1 seawater 

Inorganic Filtration Rate IFR mgh-1 CR x mg total particulate inorganic matter r1 

seawater 

Organic Content of Filtered matter OCF fract10n OFR.,.FR 

ReJect10n Rate RR mgh"1 mg total pseudofaeces egested h"1 

Inorganic IRR mgh"1 RR- ash free mg total pseudofaeces egested h-1 

Rejection Rate 

Organic Rejection Rate ORR mgh"1 RR-IRR 

Net Organic Select10n Efficiency NOSE fraction (!-(organic fract10n withm pseudofaeces) + (OCS)] 

Ingestion Rate IR mgh"1 FR-RR 

Organic Ingest10n Rate OIR mgh"1 OFR-ORR 
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Inorganic Ingestion Rate IIR mgh"1 IFR-IRR 

Net Organic Ingestion Rate NOIR mgh" 1 [FR x (OCS)]- [RR x (organic fract10n withm 
pseudo faeces)] 

Organic Content oflngested matter OCI fraction NOIR..,. (FR-RR) 

Net Absorpt10n Efficiency from NAEIO fraction NOAR+NOIR 
Ingested Organics 

Net Organic Absorption Rate NOAR mgh"1 NOIR- [(mg total true faeces egested h"1
) x 

(organic fraction withm true faeces)] 
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feeding behavior to allow comparison of results with other studies, feeding responses 

were expressed per 1 g dry weight using Ys = (W/We) b * Ye, where Ys is the 

corrected parameter, Ws is the standard weight (1 g), We is the weight or length of the 

experimental animal, Ye is the uncorrected parameter, and b is the average size 

exponent (Hawkins et al., 2001). However, given the absence of spawning 

synchronicity (Marques et al., 1991), there is high variability in mussel dry weight 

within the same population in every time of the year. Therefore, we used the shell 

length equivalent of 1 g dry weight (6.26 cm) and the power exponent that scales the 

feeding rates with shell length (b ~ 1.85). The power exponent has previously been 

used for Mytilus galloprovincialis (Perez Camacho & Gonzales 1984; Navarro et al., 

1996) and for P. perna (Berry & Schleyer, 1983). 

All statistical analysis was done using SPSS for Windows, Version 10 (SPSS 

Inc.) and Sigma Plot. Multiple regression models were fitted using the step-wise 

technique, entering the most significant independent variable at the first step and then 

adding or deleting independent variables until no further variables could be added to 

improve the overall fit. The coupling of the equations to produce an integrated 

feeding model and the posterior sensitivity analysis was done using STELLA research 

software (High Performance Systems, Inc.). 

2.4. Results 

Organic content of seston (OCS) decreased as TPM increased (Fig. 2.2., Table 

2.3). Clearance rate of mussels decreased from 10 to 5 L h-1 as TPM increased from 
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<5 to 30 mg L-1 and OCS increased from< 0.15 to 0.40. The parabolic relationship 

(Fig. 2.3.A), suggests that P. perna pumps more water under low TPM (<10 mg L-1
) 

and OCS (<0.20) conditions. 

Filtration rate (FR, mg h-1
), rejection rate (RR, mg h-1), ingestion rate (IR, mg 

h-1
), and net organic absorption rate (NOAR, mg h-1

) were all related to TPM and 

OCS (Table 2.3., Fig. 2.3.B, C, D and E). The maximum filtration rate measured was 

156.7 mg h-1 when TPM was 33.9 mg L-1 and OCS was 0.18. Rejection rate had 

strong positive relationship with TPM and inverse relationships with OCS. The 

maximum rejection rate recorded was 124.1 mg h-1
, which represented 83% of 

filtered matter, and was measured under the same seston conditions as the maximum 

filtration rate. Pseudofaeces production was observed when TPM levels were as low 

as 2 mg L-1
, suggesting a very low threshold for pseudofaeces production in this 

species. 

Net organic selection efficiency (NOSE, fraction) was controlled qy the 

proportion of particulate organic and inorganic matter in the water (POM, mg L-1 and 

PIM, mg L-1 respectively). Higher NOSE values were observed on the lower and 

higher extremes of PIM. Negative NOSE values, a minimum of -0.56, were recorded 

at intermediate values of PIM and POM, and positive values were recorded when 

POM was below 3 mg L-1 and PIM above 15 mg L-1
• Maximum NOSE was 1.71 

when PIM was 1.02 mg L-1 and POM was 0.67 mg L-1 (Fig. 2.3.F, Table 2.3). 

Organic content of ingested matter (OCI, fraction) had a positive relationship with 

NOSE and it was not strongly affected by TPM. Maximum OCI was 1.24 when TPM 

was 33.9 mg L-1
, OCS was 0.18, 
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Figure 2.2. The relationship between average organic content (OCS, fraction) and 

average total particulate mass (TPM, mg L-1
) of seston in the experimental feeding 

conditions. Data are the mean of three replicate determinations per condition. Refer 

to Table 2.3 for equation. 
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Figure 2.3. The relationship between total particulate matter (TPM, mg L-1
) and 

organic content of seston (OCS, :fraction) and (A) clearance rates (CR 1 h-1
), (B) 

filtration rate (FR, mg h-1
), (C) rejection rate (RR, mg h-1

), (D) Ingestion rate (IR, mg 

h-1
), (E) net organic absorption rate (NOAR, mg h-1

). Net organic selection efficiency 

is plotted against particulate organic and inorganic matter (PIM and POM, mg L-1
). 

Refer to Table 2.3 for equations and statistics. 
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FR was 151.3 mg h-1
, and NOSE was 1.30 (Fig. 2.4.A, Table 2.3). The net organic 

ingestion rate (NOIR, :fraction) was below 10 mg h- 1 when mussels were feeding on 

TPM levels below 5 mg L-1
, but this increased to 25 mg h-1 when TPM was above 30 

mg L-1 and ingestion rate was ea. 50 mg h-1 (Fig. 2.4.B, Table 2.3). 

Both the net absorption efficiency of ingested organics (NAEIO, fraction) and 

the net organic absorption rate (NOAR, mg h-1
) had a hyperbolic relationship with the 

organic content of ingested matter (Fig. 2.4.C and 2.5., Table 2.3). 1 NOAR was 

essentially controlled by quantity (filtration rate) and quality (OCI) of food passing 

through the digestive system (Fig. 2.4.C, Table 2.3). The absorption rate across the 

experiments varied from 21.84 mg h-1 (TPM 33.18 mg L-1
, OCS 0.18) to -0.69 mg h-1 

(TPM 10.09 mg L-1
, OCS 0.10). 

The differential equations, logical functions, and starting values of the state 

variables used to couple the equations describing the filter-feeding processes for P. 

perna in STELLA are listed on Table 2.4. We produced a robust model with 

' 
' relatively low complexity and specificity. Figure 6A depicts the conceptual diagram 

of the P. perna feeding process as a function of TPM and OCS. The sub-model 

inserted inside the "ingested matter" variable (Fig. 2.6B) reproduces the absorption of 

organic matter and the passage of inorganic matter as inert material through the gut. 

As the model was based on natural seston in both turbid and clear environments and 

feeding rates measured in these environments, we believe that it has incorporated 

feeding adaptations by P. perna for both kinds of environments. Model predictions 

and observed data of FR, RR, IR, 
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Figure 2.4. The relationship between (A) net orgamc selection efficiency (NOSE, 

fraction), total particulate matter (TPM, mg L-1
) and organic content of ingested (OCI, 

fraction); (B) ingestion rate (IR, mg h- 1
), TPM and net organic ingestion rate (NOIR, 

mg h-1
); (C) net organic absorption rate (NOAR, mg h- 1

), filtration rate (mg h-1
) and 

OCI. Refer to Table 2.3 for equations and statistics. 
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Table 2.3. Equations describing the relationships between the different steps of the filter-feeding mechanism in P. perna and the 
environmental variables TPM (mg L-1

) and OCS (fraction). Refer to Table 2.2 for acronyms and rate calculations. 

Variables Equation Equation 

OCS, TPM OCS=l/(2.55+0 47 x TPM) 

CR, TPM and ocs CR=13 83(±2.91)- 0.65(±0.17) x TPM-47.85(± 22.82) x ocs+o.011(± 0.004) TPM2 +83.8(± 43.02) OCS2 

FR, TPM and OCS FR=68.77(±21.45)-0 12(±1.28) x TPM-370.10(± 167.72) x OCS+0.07(± 0.03) TPM2 +565.8(± 330 89) OCS2 

RR, TPM and OCS RR=52.43(±14.90)- 0.97(±0.89) x TPM- 362.47(± 116.54) x OCS+0.02(± 0.02) TPM2 +589.79(± 229.92) OCS2 

IR, TPM and ocs IR=24.14(±6 96)-0.62(±0.41) x TPM- 117.37(± 54.46) x ocs+o.03(± 0.01) TPM2 +203.97(± 107.45) OCS2 

AR, TPM and OCS 'AR=-! 93(±2.42)- 0 006(±0.14) x TPM- 13.35(± 18.97) x OCS+0.01 (± 0.003) TPM2 -3 62(± 37.44) OCS2 

NOSE, PIM and NOSE=0.30(±0.08)- 0.21(±0.05) x PIM+ 1.03(± 0.24) x POM+0.01(± 0 004) PIM2 -0.20(± 0.08) POM2 

POM 

OCI, TPM and OCI=O 13 (±0.03)-0.001(±0.005) x TPM+ 0.27(± 0.06) x NOSE+0.0002(± 0.0001) TPM2 +0.19(±0.05) NOSE2 

NOSE 

NOIR, TPM and IR NOIR=l.37 (±0 50)-0.23(±0.06) x TPM+ 0.11(± 0.06) x IR+o 01(± 0.001) TPM2 +0.004(±0.001) IR2 

NOAR, OCI and FR NOAR=-2 62 (±0.55)- 0.012(±0.011) x FR+ 15.73(± 0.06) x OCI+0.0006(± 0.0001) FR2 -9.22(±1.93) OCr2 

NAEIO, OCI NAEI0=2.08(±0 33) OCV (! +o.22 (±0.26) OCI) 

(!) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

Statistical information 

r2 = 0.37, F=l4.85,df=l,25, 
P<0.001 

r2 = 0.27, F=7.57, df=4,80, 
P<0.0001 

r2 = 0.70, F=45.85, df=4,80, 
P<0.0001 

r2 = 0.72, F=52. l 6, df=4,80, 
P<0.0001 

r2 = 0.54, F=23.83, df=4,80, 
P<O 0001 

r2 = 0.79, F=75 85, df=4,80, 
P<0.0001 

r2= 040, F=l3.41, df=4,80, 
P<0.0001 

r2 = 0.75, F=62.58, df=4,80, 
P<0.0001 

r2 = 0.92, F=223 74, df=4,80, 
P<0.0001 

r2 = 0.90, F= 196.31, df=4,80, 
P<0.0001 

r2 = 0.42, F=57.64, df=4,80, 
P<0.0001 



36 

Table 2.4. Equations used in the formulation of feeding physiology model in STELLA. 

TPM = GRAPH (time-series) 
OCS = 1/(2.55 + 0.47 x TPM) 
PIM= 0.22 + 0.81 x TPM 
POM = TPM-PIM 
FR= 68.77 - 0.12 x TPM - 370.10 x ocs + 0.07 x TPM2 + 565.80 x OCS2 

Filtered matter (t) =Filtered matter (t - dt) + (FR - RR - IR) x dt 
INIT Filtered matter= 219.81 
RR= 52.43 + 0.97 x TPM - 362.47 x ocs + 0.02 x TPM2 + 589.79 x OCS2 

Pseudofaeces (t) = pseudofaeces (t - dt) +(rejection) x dt 
IR =filtration-rejection 
Ingested (t) =ingested (t - dt) +(ingestion' - NIIR - NOIR) x dt 
INIT ingested= 36.46 
NOIR = 1.37-0.23 x TPM + O.llx IR + O.Olx TPM2 + 0.004 x IR2 

NIIR = ingested-NOIR 
Inorganic (t) =inorganic (t - dt) + (NIIR - IM on gut) x dt 
Organic (t) =organic (t - dt) + (NOIR- OM on gut) x dt 
OM on gut= organic · 
IM on gut = inorganic 
INIT organic = 13 .17 
INIT inorganic = 23 .29 
Ingested matter = food on gut + organic + ingested + inorganic 
Food on gut (t) =food on gut (t - dt) +(OM on gut+ IM on gut - absorption' - egestion') 
x dt INIT food on gut = 0 
NOSE= 0.30-0.21 x PIM+ 1.03 x POM + 0.01 x PIM2 

- 0.20 x POM2 

OCI = 0.13-0.00lx TPM+ 0.27 x NOSE+ 0.0002 x TPM2 + 0.19 x NOSE2 

NOAR = -2.62 + 0.012 x FR+ 15.73 x OCI + 0.0001 x FR2
- 9.22 x OCI2 

Absorption' = NOAR 
Absorption = absorption' 
Absorbed matter (t) =absorbed matter (t - dt) +(absorption) x dt 
INIT absorbed matter = 0 
Egestion' =IM on gut+ (NOIR-NOAR) 
Egestion = egestion' 
Faeces (t) =faeces (t - dt) + (egestion) x dt 
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Figure 2.5. The relationship between the organic content of ingested (OCI, fraction) and 

the net absorption efficiency from ingested organics (NAEIO, fraction). Refer to Table 2.3 

for equations and statistic. 
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Figure 2. 6. (A) Diagram of the feeding processes of a general filter-feeding bivalve, used 

on the modelling of P. perna feeding physiology. (B) Diagram of the sub-model of a 

mussel gut showing the absorption of organic matter and faeces production. Refer to 

Tables 2.2 and Table 2.3 for variables and acronyms and Table 2.4 for logical and 

differential equations. 
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NOSE, OCI, and AR of mussels in a range of TPM between 2 and 40 mg L-1
, are shown in 

Fig. 2. 7 A, B, C, D, E and F respectively, showing that predicted values satisfactorily 

reproduce the main trends of feeding behavior observed in P. perna. 

Bivalve feeding behavior is mainly controlled by concentration and organic content 

of seston (Hawkins et al., 1998b ). Therefore, it is likely that this model is sensitive to 

these forcing functions (TPM and OCS). In order to verify the model sensitivity to 

changes in the coefficients of the equation that predicts OCS as a function of TPM, we ran 

the model three times, varying the coefficients values. Each coefficient (equation (1 ), 

Table 2.3, Fig. 2.2) was varied by± 10% from its standard value, and the sensitivity was 

measured by the following equation: 

S = [ax/x]/[8P/P] (Equation 1) 

where (S) is a measure of sensitivity, x refers to model outputs at the end of the integration 

period in the standard model, and ax is the change in the value of x brought about by 

varying the model coefficient. Similarly, the denominator measures the variation in the 
\ 

coefficient of interest divided by its standard value. This equation compares the 

percentage change in the model outputs with a given percentage change in 'one of the 

model parameters .. The value of (S) was averaged for positive and negative variations and 

the results of the model outputs (absorbed matter, pseudofaeces and faeces produced) for 

the coefficients relating TPM and OCS are shown in Table 2.5. The output most sensitive 

to variation in the relationship between seston TPM and OCS was pseudofaeces 

production, as a result of increased or decreased rejection rate. 
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Figure 2.7. Predictions of the P. perna filter-feeding model produced on STELLA. (A) 

filtration rate (FR, mg h-1
), (B) rejection rate (RR, mg h-1

), (C) ingestion rate (IR, mg h-1
), 

(D) selection efficiency (NOSE, fraction), (E) organic content of ingested matter (OCI, 

fraction), and (F) net organic absorption rate (NOAR, mg h- 1
), in the range of total 

particulate matter (TPM, mg L-1
) observed in this study. 
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Table 2.5. Sensitivity analysis of absorbed matter, pseudofaeces and faeces production for 

the coefficients a and bin the equation OCS = 11 (a+ b*TPM). 

a 

b 

Absorbed 
matter 
0.202 

0.232 

2.5. Discussion 

Pseudo faeces Faeces 

0.637 0.118 

0.734 0.136 

This study showed that P. perna, like other mussels, controlled its feeding 

mechanisms to achieve an optimum organic absorption rate independent of fluctuations in 

seston concentration and quality. It is important to note that the range of TPM recorded 

were within normal values during the year for other bivalve aquaculture locations in . 

Southern Brazil (Suplicy, unpub. data). Therefore, the TPM range experienced in the 

experiments and included in _the model are directly applicable to Brazilian shellfish farms 

conditions. Although seasonal changes in feeding physiology were not examined in this 

study time series data of TPM, POM, and OCS from 1998 to 2002 do not suggest strong 

seasonal changes in food availability in the sub-tropical waters of Santa Catarina, (Chapter 

5). Similarly, the condition index of P. perna does not follow a seasonal trend, as seen in 

Mytilus edulis (Navarro & Iglesias, 1995), because spawning occurs throughout the year 

with small peaks in summer, autumn and spring (Marques et al., 1991). Therefore, we 

believe that the findings reported here can be used to predict feeding physiology 

throughout the year. 

Food availability (TPM and OCS) was the main forcing function of the models 

produced, therefore characterizing the available seston is of primary importance to 
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generate a model to predict food uptake by P. perna. Data for Southern Brazil showed that 

the organic content of available food decreased as TPM increased, a common pattern in 

many estuaries and sheltered bays both in temperate and tropical waters (Hawkins et al., 

1996, 1998b ). This reduction of the organic proportion is a function of the dilution of 

organic particles when resuspended silt increases particulate inorganic matter on the water 

column (Frechette & Grant, 1991; Widdows et al., 1979) 

The methods used in this study to estimate clearance rates of filter feeders were 

less accurate than the methodology proposed by Hawkins et al., (1998b; 1999) for 

measurements using natural seston. The most appropriate method to accurately measure 

clearance rates by bivalves is controversial (Cranford, 2001; Riisgard, 2001; Widdows, 

2001). As new methods are being developed, new models about how these animals 

control their food uptake are being produced. It is agreed that mussels do not always filter , 

at their maximal rate in their natural environment (Riisgard, 2001; Widdows, 2001). This 

may be due to a regulation of feeding processes in response to changes in quantity and 

quality of suspended particles, salinity, temperature and the presence of poll~tants in the 

water (Widdows, 2001). This study was only able to explain 27% of the variation in 

clearance rates of mussels using TPM and OCS as independent variables, and POM did 

not explain a significant proportion of the remaining variance in clearance rate. However, 

in their experiments, Hawkins et al. (1999), increased the amount of the variability in 

clearance rate explained from 13% to 53% when they included Chl a and TPM as 

independent variables instead of only PO:rv1;. Although all precautions proposed by Iglesias 

et al. (1998) in.the use of the biodeposition method for suspension-feeding measurements 

were taken in this study, it seems that the new methodology proposed by Hawkins et al. 

(1998b; 1999) is more appropriate for studies using natural seston. It appears that 
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qualitative features of seston may be just as important as availability of food in mediating 

feeding responses (Hawkins et al., 1998b ). However, the general trend for decreasing 

clearance rates as seston concentrations increase is seen in other studies (Hawkins et al., 

1999; 1998b; Wong & Cheung, 2001). There are many methods to quantify concentration 

and organic content of seston in feeding experiments. Most use mass measurements of 

total particulate matter available in the seston (TPM, mg L-1
), particulate organic matter 

available in the seston (POM, mg L-1
), and the ratio between these two variables, which is 

the organic content of seston (OCS, fraction). Recent findings suggest that clearance rate 

is primarily dependent upon seston availability measured in terms of total volume, rather 

than mass. This helps to explain the confusing variation in clearance rate reported by 

many studies and stresses a need to consider volumetric constrains in bivalve feeding 

studies (Hawkins et al., 2001). More det~il about the seston organic fraction can be 

obtained if the carbon:nitrogen ratio is measured, which can vary from < 4 to > 26 (Bayne 

& Hawkins, 1990). The measurement of the biologically available organic carbon and 

nitrogen in the water and in associated biodeposits can provide, not only more accurate 

measurements of the clearance rate, but also important information about the a?sorption of 

· these elements by filter feeders. 

The biodeposition approach demands that the gut residence time is correctly 

calculated to generate accurate physiological feeding rates. As starved animals were used 

to estimate gut passage time this may have over-estimated the normal pas_sage time. 

However, our estimates are comparable to those from other biodeposition studies using 

Perna canaliculus, in which the gut passage time for non-starved mussels was 80 minutes, 

and no delay time was assumed for Perna viridis (Hawkins et al., 1998a). 
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Perna perna appeared to selectively enrich the organic content of ingested matter 

by rejecting particles of higher inorganic content before ingestion. This selection 

efficiency was a function both of filtration rate and the proportion between inorganic and 

organic particulate matter available in the water. The increase in selection efficiency at 

higher filtration rates is important, because this helps to maintain nutrient acquisition 

independent of fluctuations in seston organic content (Hawkins et al., l 998a). Extreme 

values of net organic selection efficiency measured in this study (NOSE > 1 or <O) must be 

considered with caution as they are probably measurement errors associated inadvertently 

with collecting settled sediment when collecting biodeposits. This would effectively alter 

the organic ratio of pseudofaeces. Extreme values were observed in 15% of measurements. 

Nevertheless, NOSE values recorded in thi,s study (>0.7) suggest that P. perna is 

extremely efficient in selecting organic particles available in the seston. Hawkins et al. 

(1996) recorded NOSE values of up to 0.5 in M edulis, and Hawkins et al. (1998) report 

maximum NOSE of 0.7 for P. viridis. 

Maximum net organic ingestion rate (NOIR) recorded for P. perna_was 24.05 mg 

h-1 and occurred when TPM was 33.93 mg L-1 and OCS was 0.18. This is similar to values 

obtained for P. canaliculus in New Zealand, which showed maximum organic ingestions 

rate of 27.3 ± 6.3 mg h-1 (Hawkins et al., 1999), and for P. viridis in Malaysia with a 

recorded rate of 24.8 ± 3.6 mg h-1 (Hawkins et al., 1998a). However, these rates are 

considerably higher than the maximum organic ingestion rate of 6.5 mg h-1 reported for M 

edulis (Hawkins et al., 1997). The growth rates of P. perna in Southern Brazil are among 

the fastest reported for mussels in the Perna genus, reaching commercial size (80 mm) in 

8-10 months (Chapter 3). This rapid growth is probably related to higher weight-specific 
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rates of energy acquisition and higher water temperatures in the sub-tropical waters of 

Southern Brazil. 

Data from this study suggested that P. perna takes advantage of the abundant 

organically rich seston available in Brazilian waters throughout the year by maintaining 

high ingestion rates. There is evidence that when ingestion rate is high absorption 

efficiency is high and gut residence time is short (Bayne et al., 1988). Furthermore, the 

proportion of gut volume occupied by ingesta may vary, thereby facilitating an increase in 

absorption efficiency with little change in the gut passage time (Bayne et al., 1987). 

Widdows et al. (1979) report that absorption efficiency declines as ingestion rate increases 

and food progresses from the digestive gland to the intestine. However, this pattern may 

be counterbalanced by elevated organic content of ingested matter due to selection 

processes (this study; Hawkins et al., 1999) that positively increase the absorption 

efficiency and ultimately the absorption rate. Similarly to the considerations raised for 

NOSE values, negative absorption rate values are not biologically meaningful and must be 

considered with caution as these could be caused by collection of inorgan~c sediment 

together with mussel faeces. Negative absorption rates were measured in 7% of 

measurements. 

The integration of all equations from Table 2.4 with STELLA software resulted in 

a reductive and deterministic non-linear model that reproduces the feeding processes of P. 

perna in both clear and turbid environments. The general conceptualization of the diagram 

was based on the description of the bivalve filter-feeding process provided at the 

TROPHEE workshop (Bayne, 1998; Hawkins et al., 1998b), and final equations were 

based on intensive measurements that enabled calibration of the outputs. This feeding 
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model may not be a perfect reproduction of the bivalve feeding process, but the objective 

was to provide a useful tool to understand and predict feeding processes of this species. 

The model includes a complete sequence of steps in the feeding process that may cause an 

accumulation of predictive error (Grant & Bacher, 1998). However, its value lies in the 

ability to provide an understanding of the interaction between a mussel farm and the 

environment, for example the amount and organic content of biodeposits released into the 

water column and sediment beneath the farm. 

Sensitivity analysis indicated that model predictions of absorbed matter and faeces 

production were less affected by changes in the relationship between TPM and OCS than 

models prediction of pseudofaeces production. This suggests that predicted absorption 

would stay reasonably invariable if the model is applied to environments with different 

seston concentration and organic content. Therefore, mussels maintain a reasonably 

constant organic ingestion rate in varying seston conditions by compensating for low 

organic content of the seston through adjusting selection efficiency and rejection of 

inorganic matter as pseudofaeces. 

This feeding model can be used as an important tool for the understanding of how 

P. perna interact with the culture environment. Current studies are under way to integrate 

this feeding model with energy budget and population dynamics of P. perna. Further 

coupling of the P. perna biological models with physical models of seston hydrodynamics 

and models of primary production are also planned, and this approach will allow the 

development of carrying capacity analysis for suspended mussel culture in sub-tropical 

environments like the southern Brazilian coast. -



Chapter 3 

Modelling growth and population dynamics of the brown mussel 

Perna perna (L.) in suspended culture in Santa Catarina, Brazil. 

47 
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3 .1. Abstract 

Growth and mortality rates using size frequency distributions of the brown mussel 

Perna perna in suspended culture in two locations were studied in Santa Catarina, 

southeast Brazil. Shell length data were fit to a Von Bertalanffy growth function, with Loo 

= 8.3 cm and k = 0.34 for Brito Cove, and Loo = 8.8 cm and k = 0.28 for Porto Belo. 

Increase in wet weight was plotted on a Gompertz growth curve with Woo= 61.6 g and k = 

3.4 for Brito Cove, and Woo= 39.6 g and k = 1.8 for Porto Belo. In Brito Cove the size 

(shell length) frequency distribution of the population after eight months was 66.4 % 

harvestable (>7.5 cm), 21.1 % large (5.5 - 7.49 cm) and 10.18 % medium (3.5-5.49 cm). 

In Porto Belo this distribution after seven months was 39.8%, 51.8% and 8.4% 

respectively. Attachment rates of new seeds after the installation of the ropes in both 

locations were higher in summer months; 10% of rope population in Brito Cove and close 

to 1 % in Porto Belo. Mortality rates were estimated at 0.06 year-1 in the populations at 

both locations. The integration of growth and mortality data in a predictive ~odel using 

STELLA® software resulted in good predictions of size frequency distribution for both 

Brito Cove and Porto Belo. This model already has practical applications, but its full 

potential in applied ecology will be increased once it has been integrated with models for 

scope for growth, primary production, and hydrodynamics resulting in a model of carrying 

capacity analysis for mussel farming. 



49 

3.2. Introduction 

Growth rates of individuals in a population directly affect predictions of 

survivorship, mortality, and production when dynamic population models are used. 

Therefore, estimates of growth parameters occupy a central role in estimating harvest from 

a stock assessment when using dynamic models (Tomalin, 1995). Although mussel 

growth rates in suspended culture conditions have been previously reported (e.g. Marques 

et al., 1998), most of the available knowledge about mussel population dynamics is 

derived from natural mussel beds (e.g. Hickman, 1979; Stillman et al., 2000; Hicks et al., 

2001). The development of aquaculture population models based on growth models is 

desirable both for economic and environmental reasons. Particularly as optimum yield and 

water filtration rates, based on culture densities, can be obtained as outputs from such 

models, and this information can be directly applied to carrying capacity analysis of · 

shellfish farms. 

Once estimations of growth, mortality, and production are available they can be 
\ 

integrated in a dynamic population model useful for fisheries and aquaculture stock 

management. Even when mussel seed of homogeneous size are used in a mussel farm, 

genetic differences among individual mussels often result in differences in growth rates. 

Therefore, realistically mussel farmers will not be able to harvest the entire crop at once. 

Population dynamic models based on growth rates can be used to predict the percentage of 

mussels in each size class after a given period of growout (Stillman et. al, 2000). This 

allows for more accurate estimates of production and the timing of production to better 

meet market demand, as well as better planning of reseeding, labor needs, and purchase of 

equipment associated with the growout phase. 



50 

The culture of the brown mussel Perna perna (Linnaeus, 1758) is a rapidly growing 

industry in Brazil (Suplicy, 2001). As the industry grows the requirement to minimize 

environmental impacts and develop sustainable practices has come from authorities, the 

general public, and other -resource users. This paper aims to describe growth and 

population dynamics of P. perna on commercial culture systems in Southern Brazil. 

These data are then used to develop a model that predicts size frequency distribution and 

growth in economic and environmental modelling studies. Advances in computer sciences 

have led to the development of new versatile and easy-to-use modelling software like 

STELLA® (Costanza et al., 1998). This software enables the use of models to understand 

a natural system and learn about it by visualizing the dynamics between its main 

components rather than simply coding the observed behavior and representing it using 

differential equations (Costanza_ et al., 1998). Although STELLA® has been previously 

used to model copepod population dynamics (Marin, 1997), this study is the first to use 

this software to model mussel population dynamics in commercial aquaculture. 

3.3. Methods 

Two mussel farm areas of Santa Catarina, Southern Brazil were selected for this 

study; Brito Cove (48° 37' W, 27° 46' S) and Porto Belo (48° 33' W, 27° 8' S) (Fig. 3.1). 

Brito Cove, with a total area of 3.7 km2
, is an intensively farmed area where 43 growers 

have a total standing crop of 1,370 tones in 16.2 ha of culture leases. In contrast, Porto 

Belo, in the sheltered side of Joao Cunha Island is less intensively farmed with four 

growers maintaining a standing crop of 20 tones in 2.4 ha. 
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Fig. 3.1. The Santa Catarina State coast line indicating the position of Brito Cove and 

Porto Belo, and the location of the study locations. 
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3.3.l Growth, mortality, and production 

Over a 7 month period (November 2000 to May 2001) growth rates, mortality rates, 

generated from size frequency distributions were obtained monthly from mussel ropes at 

both locations. At each location, 24 one-meter long mussel ropes were seeded with 200 

small mussels (3.5 - 4.5 cm shell length). All mussels used were obtained from natural 

seed recruitment on collectors previously installed in a third mussel farming area, in an 

attempt to minimize the effect of different genetic stocks in the assessment of growth rates. 

There were 45 long lines in the Brito Cove study area and there was a possibility that 

estimates of growth rates may be affected by the position of mussel ropes within the lease. 

Therefore, eight mussel ropes were randomly allocated at each of the three positions 

within the growing lease; inside - on the first long line facing the shoreline, centre - in the 

middle of the farm, and outside - on the last long line facing the cove entrance. At Porto · 

Belo there were no more than ten long-lines and variability among the long-lines was not 

considered to be a problem in obtaining estimates of growth rates and mortality, therefore 

all mussel ropes were installed in a single long-line in the midole of the farm. 

Once a month three mussel ropes from each location (in Brito Cove one rope from 

each position) were randomly selected and their total wet weight was measured before 

removing and counting all the mussels. The shell length of each mussel was measured 

with calipers (0.01 cm) and the whole wet weight of 12 random individuals. Shell length 

data was put into size classes based on categories used by the industry, small (<1-3.49 cm), 

medium (3.5-5.49 cm), large (5.5-7.49 cm), and harvestable (>7.5 cm). These size classes 

were chosen because of their significance for commercial mussel culture. 
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Growth rates were estimated by plotting the modal shell length of the mussels from 

each of three ropes obtained each month and fitting a Von Bertalanffy model (Equation 1) 

over the seven months of available data (Tomalin, 1995). 

(1) 

where Lt is length at time t, Loo is a estimate of the asymptotic length, k a constant 

representing the rate at which the asymptotic length is approached, and to a third constant 

representing time when Lt= 0. The parameters were estimated by minimizing the residual 

sums of squares. 

Mussel wet weight growth curves using 12 individuals sampled in each month 

were fitted using a Gcimpertz function (Equation 2) 

Wi = W
00 

x e [-e (-(t-to)/k)] (2) 

where Wt is weight at time t, Woo is a constant representing the asymptotic weight, k 

a constant representing the rate at which the asymptotic weight is approached, and to a 

third constant representing time when Wi = 0. The parameters were estimated by 

minimizing the residual sums of squares. 

To separate the initial cohort of mussels placed on the ropes from those individuals 

that attached during the study (i.e. second cohort), we assumed that the size of all mussels 

from the initial cohort in Brito Cove would lie within a size range defined by the mean 

length predicted by Equation (1) ± l.73*SE (giving 90% confidence limits, n=22). The 

same procedure was used to separate the cohorts in Porto Belo, however multiplying the 

standard errors by 1.75 (n=l8). When estimating average survivorship, mussels that 
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attached after the study commenced were excluded from the count. Mussel rope standing 

' crop (kg m-1
) was estimated by multiplying the number of surviving mussels by the mean 

wet weight in the corresponding month. Production in each consecutive month was the 

cumulative increase in biomass through time. Instantaneous mortality (Z), which included 

mussels that fell off, were predated, or died naturally over the period, was estimated as per 

(Crisp, 1984) by plotting log10 density (N) against time (Equation 3): 

Z = 2.303 x d(log 10N)/dt (3) 

where d(log10N)/dt is the slope of log1o density (N) against time, and annual mortality rate 

is equal 1-e -z. 

3 .3 .2. Model development -

The relative growth rate using wet weight (Equation 2) was used as the main forcing 

function of a population dynamics model, developed using the software' STELLA® 

Research (High Performance Systems Inc, Hanover, USA.). STELLA® facilitated the 

modelling process as it enabled the construction of a conceptual diagram with building 

blocks, allowing the visualization of material flows (mass or individuals) between state 

variables (population mass or size classes), and parameter behavior. An initial conceptual 

diagram and an underlying set of differential equations were developed based on practical 

farm experience and preliminary observations (unpublished). The initial model was then 

calibrated with data on rates of growth, seed attachment, and mortality measured in Brito 
I 

Cove. This model was then validated with data from Porto Belo. 



55 

Sensitivity of model parameters, e.g. rates of mortality, seed attachment, and 

growth, was determined by running the model three times, changing the parameter 

values by± 10% from its standard value. The sensitivity was calculated using Equation 

4 (fargensen, 1994): 

S = [ Oxlx ]/[BP IP] (4) 

where (S) is a measure of sensitivity, x refers to model outputs at the end of the integration 

period in the standard model, and ax is the change in the value of x brought about by 

changing the model coefficient. Similarly, the denominator measures the variation in the 

coefficient of interest divided by its standard value. This equation compares the 

percentage change in the model outputs (percent frequency of individuals in each size­

class) with a given percentage change in one of the model parameters. 

3.3. Results 

3 .3 .1. Growth, mortality, and production 

At Brito Cove, using pooled data from the three ropes, after 7 months 66.4% of the 

seeded mussels reached commercial size(> 7.5 cm), 21.1% were in the large size class, 

and 10.2 % were on the medium size class (Fig. 3.2.A). New mussel seed (<1.5 cm) was 

observed in all months of the study with highest numbers in December, January, and 

February. The month with highest seed attachment was January, when 19 individuals 

represented 3.3 % of the rope population. At Porto Belo, 6 months of sampling was 

carried out because the mussel ropes went missing in the last month. At 6 months the size 
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frequency distribution at Porto Belo was not significantly different from Brito Cove 

(x2=1.65, df=2, P=0.438), with 8.4% of mussels in the medium size class, 51.83% were in 

the large size class and 39.8% greater than commercial size (Fig. 3.2.B). The mussel ropes 

in Porto Belo also had new individuals attached in almost all months of the study, although 

in lower numbers per rope. Highest settlement occurred in January and February with 3 

and 4 new individuals respectively, which represented 0.7% of the rope population. 

Equation 1 predicted average mussel shell lengths of 7.9 cm in Brito Cove after 7 

months (Fregress1on=147.79, df=2, 20, P<0.001) (Fig. 3A) and 8.2 cm in Porto Belo after 6 

months (Fregression=463.23 df=2, 16, P<0.001) (Fig. 3B). As the 95 % confidence limits of 

the growth curves overlapped, we assumed no significant difference in growth rates 

between Brito Cove and Porto Belo. Equation 2 predicted that on average mussels would 

reach 47. 9 g after 7 months in Brito Cove (Fig. 3C) (Fregression=257.91, df=2, 88, P<0.001) 

and 36.6 g after 6 months in Porto Belo (Fig. 3D) (Fregression=125.l 1, df=2, 69, P<0.001). 

Despite the initial uniformity in seed shell length ( 4 ± 0.5 cm) we observed 

increasing variability in shell length of individuals within ropes. Variability in shell length 

within each rope was greater in Brito Cove than in Porto Belo (t=3.32, df=21, P=0.003), 

with variances as much as 40 % of the mean (Fig. 4). 

Standing crop, survivorship, and mussel biomass increased at both locations 

(Table 1 ). The weight of mussels after 6 months was greater in Brito Cove than in Porto 

Belo (t=2.26, df=l 1, P=0.04), resulting in a greater monthly standing crop and production 

over the culture period. The mortality rate (Z) was 0.04 during 7 months at Brito Cove and 
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0.03 in the 6 months at Porto Belo (Fig. 3.5), which correspond to 0.06 year-1 at both 

locations. 
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Fig. 3 .2. Size class percent frequency distribution of Perna perna under suspended culture 

in Brito Cove (A) and Porto Belo (B). Small (<1-3.49 cm), medium (3.5-5.49 cm), large 

(5.5-7.49 cm), and harvestable (>7.5 cm). Data are from the three ropes pooled. 
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Fig. 3 .3. Von Bertalanffy growth curves of shell length (cm) for Brito Cove (A) and Porto 

Belo (B). Gompertz growth curves of wet weight (g) for Brito Cove (C) and Porto Belo 

(D). 
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Fig. 3 .4. Shell length coefficient of variation for mussels within a single farming rope at 

Brito Cove (A) and Porto Belo (B), during the study period. Symbols are superimposed in 

the first month in (A), and on the last month, one rope went missing at Brito Cove and two 

went missing at Porto Belo. 
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Table 3.1. Growth, survivorship, and production of P. perna mussels under suspended culture in two locations in Southern Brazil, 
Brito Cove (A), and Porto Belo (B) with attachments subsequent to the first cohort removed. Table adapted from Crisp, (1984). 

A 

Product10n 
Months Shell length Mean individual Average Standing Average . Average Decrease in Increase in Increase in throughout the 

after mode (cm) wet weight (g) population crop value of individual population weight per production per study penod 
seeding n=3 n= 12 density (kg m-1

) Nm-1 wet weight per rope mussel (g) rope (kg) (kg m-1) 

(Nm-1
) over over period (-1'!.N) (~w) (Afl=N ~w) l 

period (g) "L~P 
0 

0 4.08 (± 0.08) 8.35 (± 1.72) 200 1.67 --- --- --- --- --- ---

1 4.92 (± 0_22) 13.20 (± 3.07) 181 2.39 190.5 10.78 19 4.85 0.92 0.92 
2 6.34 (± 0.19) 21.97 (± 4.30) 175 3.84 178 17.59 6 8.77 1.56 2.48 
3 6_71 (± 0.36) 25.33 (± 4.62) 169 4.28 172 23.65 6 3.36 0.58 3.06 
4 7.29 (± 0.39) 34.46 (± 4.26) 159 5.48 164 29.90 10 9.13 1.50 4.56 
5 7.55 (± 0.55) 39.52 (± 7.58) 157 6.20 158 36.99 2 5.06 0.80 5.36 
6 7.64 (± 0.65) 42.12 (± 6_51) 151 6.36 154 40.82 6 2_60 0.40 5.76 
7 8.00 (± 0.67) 48.73 (± 5.07) 150 7.31 150.5 45.43 1 6.61 0.99 6.75 

B 

Production 
Months Shell length Mean individual Population Standing Average Average Decrease in Increase in Increase in throughout the 

after mode (cm) weight (g) density crop value of individual population weight per production per study period 
seeding n=3 n= 12 (Nm-1) (kg m- 1

) Nm-1 wet weight per rope mussel (g) rope (kg) (kg m- 1
) 

over over penod (-1'!.N) (~w) (Afl=N ~w) l 

period (g) "LM 
0 

' 0 4.05 (± 0.06) 8.12 (± 1.80) 200 1.62 ---- --- --- --- --- ---

l 5.06 (± 0.16) 11.62 (± 2.41) 191 2.22 195.5 9.87 9 3.50 0.68 0.68 
2 6.05 (± 0.19) 17.95 (± 2.60) 180 3.23 185.5 14.79 11 6.33 1.17 1.85 
3 6.92 (± 0.21) 28.09 (± 3.67) 169 4.75 174.5 23.02 11 10.14 1.77 3.62 
4 7.34 (± 0.17) 31.43 (± 5. 74) 167 5.25 168 29.76 2 3.34 0.56 4.18 
5 7.47 (± 0.06) 31.63 (± 6.72) 164 - 5.19 165.5 31.53 3 0.20 0.03 4.22 
6 8.16 38.29 (± 4.93) 163 6.24 163.5 34.96 l 6.66 1.09 5.31 
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3.4.2. Model structure 

In the population dynamics model (Table 3 .2, Fig. 3 .6) attachment of new individuals 

was set at 10% of the rope population at Brito Cove and at 1 % at Porto Belo, based on 

measurements in this study. Attachment events by new individuals were controlled by a simple 

pulse function with attachment first occurring in month three and with an interval of two 

months between further attachments. This function was used to produce two or three peaks of 

spat settlement during the growth period, which is a common pattern in P. perna reproduction 

(Rojas, 1969; Lasiak and Barnard, 1995). Given the model calculation time step of half a day, 

our estimates of mortality rates were converted to 1x10·4 half-day·1
, and this value was used in 

the small, medium, and large size classes. 

Relative growth rates as a function of animal mass were incorporated as a forcing 

function into a mass conservative population dynamics model. As different size classes used 

different portions of the relative growth rate curve, the coefficients that controlled growth rates 
I 

were different between individuals in small, medium and large size classes (Table. 3 .2). In the 

model, the increase in biomass in any size class was controlled by multiplying the relative 

growth rate by the number of individuals in that size class. Individuals moved to the next size 

class when the average weight of individuals, i.e. the total biomass in the size class divided by 

its population number, reached a target value (medium=7 g, large=l 7 g and harvestable = 50 g). 

These weight targets were calculated using the weight growth curves at the time when the 

individuals reached shell length commercial size-classes in the length growth curve. 
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Fig.3.5. Log survivorship curves for estimation of mussel mortality rates at Brito Cove and 

Porto Belo. 

2 32 

• Porto Belo 
-- Porto Belo Z=O 03 

0 Brito Cove 
2 28 · Brito Cove Z=O 04 

2.24 

• 

r 2 20 
0 

(Cl 

0 

z 
2.16 

2.12 ~---r---.-----,.----.--.-------,---,---,------, 

0 2 3 4 6 7 8 

months 



64 

Table 3.2. Initial values of state variables, differential equations, functions and parameters of 

the population dynamics model developed for P. perna under suspended culture. 

Initial values of state variables 
Small mussel population (S) = 0 
Small mussels mass = 0 
Medium mussel population (M) = 200 
Mass of medium population = 1400 
Large mussel population (L) = 0 
Mass of large population = 0 
Harvested population = 0 
Mass of harvested population= 0 

Differential equations 
Small Population (t) =Small Population (t - dt) +(adding small ones - graduating to 
medium population - mortality small) x dt 
Mass of Small Population (t) =Mass of Small Population (t - dt) +(adding small mass+ 
growing - moving mass to medium population - mass loss small) x dt 
Medium Population (t) =Medium Population (t - dt) +(graduating to medium population 
- graduating to large population - mortality medium) x dt 
Mass of Medium Population (t) =Mass of Medium Population (t - dt) +(moving mass to 
medium population+ growing M- moving mass to large- mass loss medium) x dt 
Large Population (t) =Large Population (t - dt) +(graduating to large population -
harvesting - mortality large) x dt 
Mass oflarge Population (t) =Mass oflarge Population (t - dt) +(moving mass to large+ 
growing L - moving mass to harvested - mass loss large) x dt 
Harvested Population (t) =Harvested Population (t - dt) +(harvesting) x dt 
Mass of harvested population (t) =Mass of harvested population (t - dt) +(moving mass 
to harvested) x dt 

Functions and parameters 
Adding small ones= PULSE (((10 x whole population)/100), 90, 60) 
Adding small mass = adding small ones x average mass per small one 
Average mass per small one= 1.5 
Growing S =if (Small Population> land graduation fraction <0.02) then (individual 
growth S x Small Population) else (0) 
Individual growth S =((average mass of small population x growth rate for small 
population) + average mass of small population) 
Growth rate for small population= if (Small Population> 1 and graduation fraction<0.02) 
then (0.0095 x exp (-0.0519 x average mass of small population) + 0.0059 x exp (0.0519 
x average mass of small population)) else (0) 
Graduation fraction= GRAPH (average mass of small population) 
(3.50, 0.0102), (3.85, 0.011), (4.20, 0.0117), (4.55, 0.0128), (4.90, 0.0138), (5.25, 
0.0152), (5.60, 0.0164), (5.95, 0.0172), (6.3_0, 0.0184), (6.65, 0.0191), (7.00, 0.02) 
Average mass of small population = if (Small Population> 1) then (Mass of Small 



Population/Small Population) else (0) 
Mass loss small = mortality small x 3 
Mortality small = Small Population x mortality rate S 
Mortality rate S = 0.0001 
Graduating to medium population= if (average mass of small population >=7) then 
(Small Population x graduation fraction) else (0) 
Moving mass to medium population = graduating to medium population x average mass 
of small population 
Growing M =if (graduation fraction M <0.03) then (individual growth M x Medium 
Population) else (0) 
Graduation fraction M =GRAPH (average mass of medium population) 
(7.00, 0.0001), (8.00, 0.0039), (9.00, 0.006), (10.0, 0.0081), (11.0, 0.0117), (12.0, 
0.0153), (13.0, 0.0178), (14.0, 0.0204), (15.0, 0.0217), (16.0, 0.0241), (17.0, 0.03) 
Individual growth M = ((growth rate for medium population x average mass of medium 
population) + average mass of medium population) 
Growth rate for medium population = if (Medium Population > 1 and graduation fraction 
M <0.03) then (0.0517 x exp (-0.0515 x average mass of medium population)- 0.0366 x 
exp (-0.0515 x average mass of medium population)) else (0) 
Average mass of medium population= if (Medium Population> 1) then (Mass of Medium 
Population/Medium Population) else (0) 
Mass loss medium = mortality medium x 7 
Mortality medium = Medium Population x mortality rate M 
Mortality rate M = 0.0001 
Graduating to large population = if (average mass of medium population >= 17) then 
(Medium Population x graduation fraction M) else (0) 
Average mass of large population = if (Large Population > 1) then (Mass of large 
Population/Large Population) else (0) 
Individual growth L =((average mass oflarge population x growth rate for large 
population) + average mass of large population) 
Growth rate for large population = if (Large Population> 1 and graduation fraction 
L<0.01) then (0.0115 x exp (-0.0552 x average mass oflarge population)+ 0.0058 x exp 
(-0.0552 x average mass oflarge population)) else (0) 
Growing L =if (Large Population >1 and graduation fraction L <0.01) then (individual 
growth L x Large Population) else (0) 
Moving mass to large = graduating to large population x average mass of medium 
population 
Graduation fraction L ==GRAPH (average mass of large population) 
(21.0, 0.00), (23.9, 0.0003), (26.8, 0.00115), (29.7, 0.00235), (32.6, 0.00375), (35.5, 
0.0047), (38.4, 0.00605), (41.3, 0.00705), (44.2, 0.00795), (47.1, 0.00915), (50.0, 0.01) 
Mortality large = Large Population x mortality rate L 
Mass loss large= mortality large x 30.6 
Mortality rate L = 0.0001 
Harvesting = if (average mass of large population>=50) then (Large Population x 
graduation fraction L) else (0) 
Moving mass to harvested = harvesting x average mass of large population 

65 
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Fig. 3.6. Schematic diagram of the mass conservative population dynamics model developed for Perna perna on STELLA® software. 

Transparent bi-directional flows in the centre of the diagram represent the link between population and biomass. 
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curves at the time when the individuals reached shell length commercial size-classes 

in the length growth curve. 

The transition of individuals into the next size class continued until all mussels 

reached harvestable weight. Mortality rates, acted not only on the population size, but 

also on the loss of mass associated with mortality in each population. To achieve this 

mortality rates were multiplied by the weights 3, 7, and 30 g that were representative of 

mussels in small, medium, and large size classes respectively. To avoid all mussels being 

transferred to the next size class at the same time a graduation factor was included, which, 

reproduced a normal growth pattern observed on mussel leases. The graduation factor 

was the proportion of individuals in any size-class that will actually move to the next size­

class in each time step of the model. This graduation factor was obtained from observed 

data, by calculating the percentage of mussels in a size class that progressed to the next 

size class as the target weight was approached (Fig. 3.7). The graduation factor was only 

calculated for the transition from medium to large size classes and from l~rge to 

commercial size classes, because it was not possible to accurately distinguish the 

progression of small mussels to the medium size class. Therefore it was assumed that 

proportion of individuals moving from one size class to the next was constant across all 

sizes. The model ran for 8 months with a calculation time step of half-a-day. This time 

step was chosen to facilitate coupling of the population dynamics model with future 

hydrodynamics and physiological models, where tidal cycles may have an important role 

in food renewal. 
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The size frequency distribution predicted by the model for Brito Cove was 

different from that observed in the study (x2=376.407, df=3 l, P<0.001), with 25% of the 

size classes across the study incorrectly estimated. This was largely a function of the 

model having problems estimating the proportion of small mussels in the populations (Fig 

3.8A). The model also had problems in month 6, where it underestimated the proportion 

of large mussels and overestimated the proportion of harvestable in the population. 

Although the predictions in these size classes were accurate in the final month. Although 

the model produced a different size frequency from the observed at Porto Belo 

Cx2=397.96, df=27, P<0.001), with 13% of the size class across the study incorrectly 

estimated this was not due to the small size class. Instead the proportion of medium and 

large mussels in the population were poorly predicted in months 3 and 6 (Fig 3.8B). Like 

Brito Cove the model for Porto Belo over-estimated the proportion of harvestable mussels 

in month 6 (Fig 3.8.B). 

The model was most sensitive to rates of seed attachment, followed by the 

graduation factor, individual growth rates, and mortality rates (Table 3 .3). Both the 

growth rate and graduation factor relate to the number of animals that move from one size 

class to the next. As a consequence, the proportion of harvestable individuals was 

relatively more sensitive to changes in parameters because the wet weight at age is highly 

variable particularly in individuals in the large size class. Conversely, the proportion of 

individuals in the smallest size-class was less affected by changes in the main parameters 

of the model, because the size at age of these individuals in less variable. 
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Fig. 3.7. Graduation factor for medium (A) and large size classes (B). 
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Fig. 3.8. Observed and predicted mussel size frequency distributions for Brito Cove (A) 

and Porto Belo (B). 
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Table 3.3. Sensitivity analysis of the percentage of the population in each of the four shell 

length size classes to changes of ± 10% in the parameters of the population 

dynamics model. 

Sensitivity of model outputs at the end 

of the integration period 

Percentage of Percentage of Percentage of Percentage of 

Parameter small mussels medium mussels large mussels harvestable musselt 

Graduation fraction Small 0.259 0.633 0.104 1.941 

Graduation fraction Medium 0.000 0.201 0.342 3.249 

Graduation fraction Large 0.000 0.142 0.062 1.557 

Mortality 0.000 0.076 0.087 0.818 

Seed attachment 1.121 1.686 1.326 3.849 

Growth rate S 0.000 0.025 0.028 0.989 

Growth rate M 0.000 0.000 0.081 1.733 

Growth rate L 0.000 0.038 0.040 1.734 
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3.5. Discussion 

Shell length growth rates of P. perna in Southern Brazil estimated in this study 

are the fastest reported for this species and are comparable to other fast-growing mussel 

species farmed in coastal upwelling areas (e.g. Mytilus galloprovincialis in Saldanha Bay, 

South Africa (Heasman et al., 1998). The influence of temperature on mussel growth is 

well known (Bayne and Newell, 1983), but factors like seed origin, i.e. from spat 

collectors or rocky shores (Babarro et al., 2000; Aquini and Ferreira, 2000), food 

availability (Bayne and Worrall, 1980), parasites, dissolved oxygen, and water current 

speed may also influence growth rates (Marques et al., 1998). It is likely that growth 

rates are governed collectively by all these parameters and stocking density. Perna perna 

seed from collectors grow up to 46% faster than seed obtained from rocky shores (Aquini 

and Ferreira, 2000). In this study using seed from commercial collectors 81.1-84.7 % of 

mussels were > 55 mm after 3 months. In comparison, P. perna grown at the same 

temperatures as this study (19 -29 °C), but collected from the rocky shores (initial size 20 

- 40 mm), take 6-8 months for 80% of the population to reach 50 mm (Marques et al., 

1998). 

The decrease in growth rate with increase in length is well documented for 

various mussel species (forgensen, 1976). This is explained as a gradual decrease in 

feeding efficiency resulting from the increased energy requirements of a larger body 

(Hickman, 1979). The growth rates of P. perna in Santa Catarina were 25 to 400% faster 

than the same species in other locations (Table 3.4). Furthermore, in a comparison of 
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growth rates among cultured mussels (M. edulis, P. viridis, M galloprovincialis and P. 

pernal growth rates ranged from 0.06 to 0.25 mm day" 1 (Marques et al., 1998). These 

rates are all, well below the rates of 0.34 and 0.38 mm day· 1 reported here for Brito Cove 

and Porto Belo respectively. 

Table 3.4. Monthly growth rate of P. perna available on the literature. 

Country 

South Africa 
South Africa 

Angola 
Venezuela 

Brazil 

Growth rate 
(mm month-1

) 

2.4 
6.2 
8.6 
8.1 
10.0 

Source 

van Erkon Schurink and Griffiths, 1993 
Berry, 1978 

Mota and Machado, 197 4 
Carvajal, 1969 

this study 

Our results demonstrate that mussels from the same rope grow at different rates, 

which may be a function of genetic differences among individuals (Hawkins and Bayne, 

1991, 1992) and/or competition for food and space (Frechette _et al., 1992). Although 

seed was collected from one site we cannot differentiate between these two processes. 

The variability in shell length will affect the evaluation of the economical feasibility of a 

mussel farm business plan, as growers should not expect to harvest 100% of the stock 

after a growing period. It will be necessary to reattach the slower growing animals (as 

much as 3 0% of the crop) for a second harvest a few months later, or sell these mussels 

for a lower price. It is not recommended that harvest is delayed to ensure that a greater 

proportion of mussels reach commercial size because of the loss of mussels that fall off 

culture ropes after 9 months (Marques et al., 1998). Using anti-slough discs and plastic 

pegs has helped to reduce losses due to mussels falling off (Scarratt, 2000). If reattached 
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mussels can increase their growth rates in conditions of lower density and match the 

growth rate of the fastest growing individuals, a second harvest could occur in two or 

three months. However, it may take longer if natural variability in growth is driving the 

rate at which animals reach commercial size. 

Under standard farming practices in the shallow waters of Santa Catarina, (2 m 

ropes, on long lines with an average of 80 ropes, and up to 40 long lines ha-1
), our results 

estimate productivity, defined as the potential rate of incorporation of biomass under 

ideal conditions, of 325 tones ha-1 yea{1 and a standing crop of 80 tones ha-1
• This is 

similar to the farming load currently used in Brito Cove (84.6 tones ha-1
). However, the 

sustainable carrying capacity of Brito Cove must be carefully evaluated as the extension 

of the growing period to allow animals to reach commercial shell length has been 

observed in the last few years (industry, personal communication). It is thought that this 

is a function of the intensification of the farming effort (industry, personal 

communication). 

Variability in shell length frequency distribution as reported in this study is also 

important for studies of carrying capacity. Existing models assume that all mussels grow 

at the same pace. However, filtration rate is generally calculated using allometric 

equations based on shell length (Powell et al., 1992), therefore the population filtration 

rate is often erroneously calculated. A more accurate model for predicting total 

population filtration rate will only be achieved if population size distribution is 

considered, rather than using the average filtration rate for all size classes. In a review of 
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previous studies relating shell length (mm) to filtration rate (1 h-1
), Powell et al. (1992) 

proposed a general relationship to estimate filtration rates in unstudied species. If we 

apply this equation to a range of mussel shell lengths, we find that mussels of 3, 5, and 8 

cm shell length filter 0.49, 1.04, and 2.14 1 h-1 respectively. If we apply these filtration 

rates to a rope of 200 mussels m-1
, these values are increased to 97, 208 and 428 1 h-1

• 

The error associated in assuming filtration rate of only one size class can be enormous if 

we consider a farming area like Brito Cove were we estimate the number of mussels to be 

23 .3 million. 

There· are many similarities between this work and another population dynamics 

model developed for oyster culture in Thau lagoon, France (Gangnery et al., 2001). 

These authors used the same methodology to estimate growth rate, using simultaneous 

introduction of homogeneous sets of individuals and measuring shell increase over time. 

They also relied on industry inquiries about seeding periods to set an appropriate input of 

new individuals in the system. Constant seeding of new mussels occurred all year, except 

during summer when it was zero. These authors also used weight classes, with the model 

simulating the variation in time of the abundances in each weight class. Similarly, the 

movement of individuals between weight classes was controlled by target weight for each 

class until they reach a minimum weight s~t for harvest. 

Variability in growth and growth equation has over estimated growth of large 

individuals. A species that is growing so quickly may require more intense temporal 

sampling that would provide a better estimate of the transition ra~es between size classes. 
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More intense temporal sampling can also improve estimates of the graduation factor, a 

fundamental parameter of the model that acted together with growth rate to move mussels 

between size classes. It is possible that variation in growth rates within a lease will be 

problematic in estimating growth, suggesting the model may need to take into account the 

position in large leases. The development of a population dynamics model based solely 

on the coefficients from the Gompertz growth curve and its associated relative growth 

rate gave realistic size frequency distributions in some months for both Brito Cove and 

Porto Belo. The model will be improved if the relative growth rate employed here is 

replaced by a dynamic scope for growth model for individual mussels including features 

like energy intake, expenditure, and allocation into soft tissues, and organic shell. This 

approach was used in an oyster population dynamics model (Gnaiger et al., 2001), where 

growth rate was controlled by an allometric function of chlorophyll a and individual 

weight. 

The model generated was sensitive to rates of seed attachment, mortality and 

growth. Therefore, we used location specific rates when generating predicted popplation 

size structures for Brito Cove and Porto Belo. Given the sensitivity of the model to these 

rates, we recommend that this model can be applied to other tropical locations provided 

that these population parameters are obtained. It appears that of these only seed 

attachment rates are temporally variable (Acufia, 1977; Berry, 1978) and it will be 

necessary to obtain this information over a longer time period. The rate of seed 

attachment is an important factor that appears to be unique for each location. The model 

was sensitive to rates of seed attachment and therefore it was important to assume an 

order of magnitude difference in tpis rate at Brito Cove and Porto Belo to generate 
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realistic population predictions. This study presents valuable information about P. perna 

population dynamics, both for aquaculture purposes as well as for further development of 

models for carrying capacity analysis in mussel farms. With this objective in mind, this 

model will be integrated with models of mussel energy physiology, primary production, 

and hydrodynamics to estimate sustainable stocking densities for mussel farming in 

Brazil. 



Chapter 4 

An ecophysiological model for the brown mussel Perna perna grown 

under suspended culture in Santa Catarina, Brazil. 

78 
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4.1. Abstract 

A dynamic simulation ecophysiological model of suspension-feeding, energy allocation, 

and growth is presented for Perna perna grown under suspended culture in Santa 

Catarina, Brazil. The model was divided in four sectors; seston, feeding, energy 

allocation, and growth. This facilitated descriptions and explanations of the functions 

controlling feeding and metabolic responses to changing food availability and seawater 

temperature. The seston sector included time-series of seston variables likely to 

influence food and energy acquisition in mussels. It also included relationships among 

these seston variables to estimate the energy content of phytoplankton and detritus, the 

main components of mussel diet. The feeding sector described mussel suspension­

feeding behavior measured using natural seston. Rates of filtration, rejection, ingestion, 

and absorption were directly related to the quantity and quality of available seston. In the 

energy allocation sector absorbed matter was transformed to. absorbed energy using 

estimates of energy content of food provided in the seston sector. After accounting for 

the maintenance requirements of the mussels (heat loss, excretion, and mucus 

production), surplus energy, or the scope for growth, was directed to the growth sector. 

The growth sector included byssus, organic shell, and soft tissue production based on 

energy partitioning estimated from monthly measurements of tissue (somatic and 

reproductive) and shell growth. The model successfully predicted mussel shell length 

and dry tissue weight during the study and provided estimates of the response to food 

acquisition, energy expenditure, and allocation to growth. This was the first attempt to 

model the ecophysiology of this fast growing tropical and sub-tropical mussel. Given the 
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results obtained in the growth predictions, we suggest that it can be used in furthering 

studies of carrying capacity analysis of shellfish culture in Brazil. 

4.2. Introduction 

As the mollusk aquaculture industry grows there is increasing demand for new 

farming leases, this combined with over-stocking of existing areas may depress of growth 

rates of bivalves (Grant et al., 1993). The exploitable carrying capacity of shellfish farms 

is defined here as the stock size at which maximum yield of the marketable cohort is 

achieved (Smaal et al., 1998). Many predictive models of carrying capacity have been 

developed both at ecosystem and local scales in the last twenty years. However, there is 

increasing consensus that modelling of ecophysiological processes is of primary 

importance in these predictive models (Smaal et al., 1998). Some general relationships in 

the feeding physiology of suspension-feeding bivalves have been described (Hawkins et 

al., 1998b). However, there are subtle yet significant interspecific differences' in the 

response of feeding activity to changing quantity and quality of seston (Hawkins et al., 

2002). Similarly, important interspecific differences in bivalve physiology related to 

energy balance directly affect scope for growth (e.g. van Erkon Schurink & Griffiths, 

1992). 

Although the pathways by which bivalves consume food and produce biomass 

are complex and still the subject of debate in the literature, predicting bivalve growth 

through simulation modelling is becoming an increasingly important tool in the 
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management of cultured stock (Grant & Bacher, 1998). These models generally attempt 

to reproduce the physiological responses of bivalves to changing availability of food 

quantity and quality to predict the scope for growth. Scope for growth, in these models, 

is calculated as the net result of energy gain by feeding and energy loss by maintenance 

(respiration and excretion) and reproduction (Scholten & Smaal, 1998). Such models are 

valuable because they enable the integration of ecophysiological knowledge for a given 

species, the identification of knowledge gaps, and can be used as a management tool in 

eutrophication and carrying capacity studies (Scholten & Smaal, 1998). 

Most mussel ecophysiological models have been developed for Mytilus edulis, a 

temperate species that experiences marked seasonal changes in food availability and 

temperature (e.g. Scholten & Smaal, 1999; Brylinski & Sephton, 1991; Van Haren & 

Kooijman, 1993; Campbell & Newell, 1998). As a result, M. edulis displays distinct 

seasonal variation in feeding, absorption, and use of available energy (Hawkins & Bayne, 

1985), which is reflected in clear annual cycles of gametogenesis and spawning Q3ayne, 

1976). In contrast, closer to the equator there are less pronounced seasonal changes in 

food availability and temperature. Therefore different environmental forcing functions 

will have an effect on primary production at different latitudes (Taylor et al., 1997). 

There is a need to specifically develop models that use environmental forcing functions 

appropriate for tropical environments. The physiological energetics of Perna perna 

(Linnaeus, 1758), in relation to body size, ration, and temperature are described for South 

African conditions (van Erkon Schurink & Griffiths, 1992). However, it is unclear if 

these can be applied in a general way to all tropical environments. In Brazil mussel 
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farming is an important socio-economic activity with production increasing from 150 to 

12,000 tones in the last decade (Suplicy, 2001). 

The aim of this study was to generate a model that simulated food uptake, 

energy balance and therefore predicted growth for this mussel species in tropical waters. 

This will then allow management of this industry based on the biological characteristics 

of the growing areas in tropical and sub-tropical environments. This was achieved by 

integrating the available knowledge about P. perna physiology to produce a responsive 

ecophysiological model for mussels kept under suspended culture conditions in a sub­

tropical environment. A focus was given in the characterization of physiological outputs 

and feedbacks to the environment and its effect on mussel gi:owth. STELLA® software 

(High Performance System, Hanover, USA) was used to model the interaction between 

the bivalve energy budget and the feeding environment. 

Modelling bivalve ei;;ophysiology using STELLA® software is increasi~g (e.g. 

Grant & Bacher, 1998; Pouvreau et al., 2000; Hawkins et al., 2002). This multi-level, 

hierarchical environment for constructing c,ind interacting with models, facilitates 

modelling for both model producers and users, and provides a valuable learning 

environment. An initial conceptual diagram was developed based on the model 

developed for Mytilus edulis (Scholten & Small, 1998, 1999), and for Chlamys farreri 

(Hawkins et al., 2002). This conceptual diagram was simplified and adapted given the 

available physiological information for Perna perna in a model with a time step of 0.5-
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day. To facilitate analysis and explanation the model was divided into four sectors; 

seston, feeding, energy balance, and growth (Fig. 4.1). 

Figure 4.1. The relationship between the four sectors in the ecophysiological model. 

Thick arrows represent material flow between sectors and thin arrows represent feedback 

between sectors. (1) absorbed matter (mg), (2) scope for growth (J), (3) reabsorption (J), 

(4)TPM and OCS, (5) absorbed matter, (6) water temperature and food energy, (7) water 

temperature, (8) dry body weight, (9) heat loss, excretion, and mucus production. 
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The feeding model was entirely reproduced from an earlier study (Chapter 1). 

All model sectm:s were intrinsically connected by feedback loops of parameters, model 

outputs, and forcing variables. As STELLA® is an iconographic modelling environment 

the functions and diagrams for each sector are provided. The relationships between 
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model parameters and state variables as well as associated statistical validation and 

explanations are described in the text. 

4.3. Methods 

4.3.1.-Study site 

Brito Cove, an intensive mussel P. perna farming area of Santa Catarina, 

Southern Brazil (27° 46' S, 48° 37' W), was selected for this study (Fig. 4.2). The cove 

has a total area of 3.7 km2 and 43 farmers produced 1,370 tones of mussels in 16.2 ha of 

culture leases. The average and maximum depth were 1.5 and 3 meters respectively and 

mussels were grown on 1-m ropes suspended from long-lines. Mussel density in these 

farms was 300-500 mussels m-3 with a distance between long lines of 2-3 m. Strong 

south winds and tidal currents periodically resuspended the cove sediment (Suplicy, 

unpublished data) that produced considerable turbidity (6.72 ± 4.94 NTU, n = 60). 

4.3.2. Data acquisition for the seston sector 

Characteristics of the seston measured were total particulate matter (TPM, mgL-

1 ), particulate organic and inorganic matter (POM and PIM, mg L-1), and chlorophyll a 

(CHL, µgL- 1
). These parameters were measured weekly between November 2000 and 

May 2001 from 2 L seawater samples taken 0.5 m below the surface. 

To determine TPM, PIM, and POM three 300-400 mL aliquots from each water 

sample were filtered onto pre-ashed and weighed Whatman GF IC filters (25 mm 
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diameter). Filters were rinsed with 15 mL distilled water to remove salts and dried at 

60°C for 48 h before re-weighing allowing calculation of the total sample dry weight. 
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Figure 4.2. Sampling area in Brito Cove, Southeast Brazil. 
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Each filter was ashed at 450°C for 4 h prior to final weighing, allowing calculation of 

both ash (inorganic) and ash-free (organic) mass. Chlorophyll-a was determined from 

100 mL aliquots of the water sample, filtered in triplicate on 25 mm Whatman GF/C 

filters, fixed with potassium chlorite, and analyzed using a Turner Designs AU-10 

fluorometer. Additionally, surface water temperature was monitored weekly where the 

mussel ropes were installed. 

4.3.3. Modelling the seston sector 

This included the time-series and calculations of the forcing functions of the 

model (Fig. 4.3, Table 4.1). Daily values of the measured seston variables were 

generated by applying an eight day moving average function to the weekly data. The 

organic content of seston (OCS) was calculated as POM/TPM. 

Energy content of POM was partitioned into a phytoplankton and a detritus 

component (Grant & Bacher, 1998; Hawkins et al., 2002). The phytoplankton carbon 

content was estimated by multiplying Chlorophyll by 50, based on values measured in 

nutrient-rich surface waters (Taylor et al., 1997). This conversion factor is in accordance 

with C:Chl of 48 reported for estuarine areas in Southern Brazil (Proern;a et al., 1994). 

Phytoplankton carbon was divided by 0.38 to estimate phytoplankton organic matter, 

based on an average conversion for natural algal blooms in near-shore waters (Platt & 

Irwin, 1973). The energy content of phytoplankton organic matter was assumed to be 

23.5 J mg-1 (Slobodkin & Richman, 1961). As the energy content of detritus is highly 
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Table 4.1. Forcing variables, functions and parameters of the seston sector from the 
ecophysiological model for Perna perna. 

Seston sector 

Forcing variables 

Chlorophyll a= (time-series) (µg r 1
) 

POM =(time-series) (mg r 1
) 

TPM =(time-series) (mg r1
) 

Water temperature= (time-series) (°C) 

Functions and parameters 

POC = POM x POM: POC 

POM: POC = 0.5 

EPOM = ((0.62 + (0.086 x (POC + (POM x 1000)) x 100)) x 4.187) (J mg-1 POM) 

Phytoplankton organic carbon= chlorophyll a x 50 (µg r 1
) 

Phytoplankton organics= (phytoplankton organic carbon+ o:38) + 1000 (mg r 1
) 

Phytoplankton energy= (phytoplankton organics x 23.5) (J mg-1
) 

Detritus energy= ((POM x EPOM) - phytoplankton energy))+ detritus organics (J 

Detritus organics= POM - phytoplankton organics (mg r 1
) 

Food energy= if (detritus energy> 0) then (detritus energy+ phytoplankton energy) 

else (phytoplankton energy) (J mg-1
) 

Organic content of seston = POM + TPM (fraction) 
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Figure 4.3. The seston sector showing the calculation of forcing variables in the model based on TPM (mg r 1
), POM (mg 1"1

), CHL 
(µg r1), POC (µg r1

), and water temperature. Refer to Table 1 for equations. Measured forcing variables are marked with(~) 
inside the icon. 

phytoplankton organic carbon 

0 
water temperature 

food energy 

organic content of seston 

EPOM 



90 

variable (Hawkins et al., 2002), we used a standard factor (1 mg POM = 20.78 J) to 

calculate energy content of POM (EPOM, J mg POM-1
) (Crisp, 1971), and detritus 

energy was calculated as the difference between EPOM and phytoplankton energy 

Detritus energy= [EPOM- (phytoplankton organics x 23.5)] (Equation 1) 

Food energy (J mg-1
) was estimated by summing phytoplankton and detritus 

energy. To avoid negative values of detritus energy caused by high values of 

phytoplankton energy associated with algae blooms the following function was used: 

Food energy= if (detritus energy> 0) then (detritus energy+ phytoplankton energy) else 

(phytoplankton energy) (Equation 2) 

Daily surface seawater temperature generated by applying an eight day moving 

average function to data collected weekly was also included in this sector. 

4.3.4. Data acquisition for the feeding sector 

All field experiments for characterization of suspension feeding behavior of P. 

perna exposed to natural variations of quantity and quality of seston are provided in 

Chapter 1. 
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4.3.5. Modelling the feeding sector 

Although experiments of feeding behavior are not presented here, it was 

necessary to reproduce succinctly the model of the feeding physiology developed for 

Perna perna (Chapter 1), which described the feeding sector of this physiological model 

(Fig. 4.4., Table 4.2). This sector started with filtration (FR, mg h-1
) and rejection rates 

(RR, mg h-1
), which were dependent on seston quantity (TPM) and quality (OCS) 

according to Equations 3 and 4 (Chapter 1). 

FR = 68.77 - (0.12 x TPM) - (370.10 x OCS) + (0.07 x TPM2
) + (565.8 x OCS2

) 

(Equation 3) 

RR= 52.43 - (0.97 x TPM) - (362.47 x OCS) + (0.02 x TPM2
) + (589.79 x OCS2

) 

(Equation 4) 

Ingestion rate (IR, mg 0.5-dai1
) was inserted in the model as FR- RR, and FR 

and RR values were multiplied by 12 hours to obtain 0.5-day rates. 

Food entering the gut was divided into ingestion rates of organic arid inorganic 

material. Net organic ingestion rate (NOIR, mg p.5-day-1
) is dependent on TPM and total 

ingestion rate (IR) (Equation 5): 

NOIR = 1.37 - (0.23 x TPM) + (0.11 x IR) + (0.01 x TPM2
) + (0.004 x IR2

) 

(r2 
actj = 0.92) (Equation 5) 
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Table 4.2. Forcing variables, functions and parameters of the feeding sector and sub­

model from the ecophysiological model developed for Perna perna. Details of 

the sub-model Food in gut are provided in Chapter 1. 

Feeding sector 

Forcing functions 

TPM =(time-series) (mg r1) {from the Seston sector} 

Organic content of seston = POM + TPM (fraction) {from the Seston sector} 

Dry body weight = gonad dry weight + somatic dry weight (g) {from the Growth 

sector} 

State variables and associated derivations 

Initial filtered matter= 219.81 (mg) 

Filtered matter (t) =filtered matter (t - dt) +(filtration - rejection - ingestion) x dt 

(mg) 

Faeces (t) =faeces (t - dt) + (egestion) x dt (mg) 

Filtration= (68.77 - 0.12 x TPM - 370.10 x organic content of seston + 0.07 x TPM 2 

+ 565.80 x organic content of seston 2) x 12 x ((dry body weight+ 1) 0 62
) (mg 0.5-

day-1) 

Rejection= (52.43 + 0.97 x TPM - 362.47 x organic content of seston + 0.02 x TPM 

2 + 589.79 x organic content ofseston2
) x 12 x ((dry bodyweight+ 1) 062

) (mg 0.5-

day-1) 

Ingestion= filtration - rejection (mg 0.5-day-1
) 



Egestion = egestion' (mg 0.5-day-1
) {roll-up from sub-model Food in gut} 

Absorption= absorption' (mg 0.5-day-1
) {roll-up from sub-model Food in gut} 

Initial faeces = 0 (mg) 

Sub-model Food in gut 

State variables and associated derivations 

Initial food in gut= 36.46 (mg) 
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Food in gut (t) =food in gut (t - dt) +(organic matter in gut+ inorganic matter in gut 

- absorption' - egestion') x dt (mg) {absorption' and egestion' are roll-downs from the 

main feeding model} 

Organic matter in gut = organic (mg) 

Inorganic matter in gut= inorganic (mg) 

Organic (t) =organic (t - dt) +(net organic ingestion rate - organic matter in gut) x dt 

(mg) 

Initial organic= 13.17 (mg) 

Inorganic (t) =inorganic (t - dt) +(net inorganic ingestion rate - inorganic matter in 

gut) x dt (mg) 

Initial inorganic = 23 .29 (mg) 

Ingested (t) =ingested (t - dt) +(ingestion' - net inorganic ingestion rate - net organic 

ingestion rate) x dt (mg) {ingestion' is a roll down from the main feeding model} 

Initial ingested= 36.46 (mg) 

Ingested matter= food in gut+ organic+ ingested+ inorganic (mg) 

Ingestion'= ingestion (mg 0.5-day-1
) {roll down from the main feeding model} 
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Absorbed matter (t) =absorbed matter (t - dt) +(absorption - energy absorption) x dt 

(mg) 

Initial absorbed matter= 10 (mg) 

Absorption =net organic absorption rate (mg 0.5-day-1
) 

Egestion =Inorganic matter in gut+ (net organic ingestion rate - net organic 

absorption rate) (mg 0.5-day-1
) 

Net inorganic ingestion rate= ingested - net organic ingestion rate (mg 0.5-dai1
) 

Net organic ingestion rate= 1.37 - 0.23 x TPM + 0.11 x ingestion+ 0.01 x TPM2 + 

0.004 x ingestion2 (mg 0.5-day-1
) 

Net organic absorption rate= -2.62 + 0.012 x filtration+ 15.73 x organic content of 

ingested+ 0.0001 x filtration 2 
- 9.22 x OCI2 (mg 0.5-day-1

) 

Function and parameters 

Inorganic matter= 0.22 + 0.81 x TPM (mg r 1
) 

Organic matter= TPM - inorganic matter (mg r 1
) 

Net organic selection efficiency= 0.30-0.21 x inorganic matter+ 1.03 organic matter 

+ 0.01 x inorganic matter 2 
- 0.20 x organic matter2 (fraction) 

Organic content of ingested = 0.13 - 0.001 x TPM + 0.27 x net organic selection 

efficiency+ 0.0002 x TPM2 + 0.19 x net organic selection efficiency 2 (fraction) 
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Figure 4.4. The feeding sector showing the flow of food, faeces, and pseudofaeces, including state variables and parameters used to 
predict absorption of filtered matter in Perna perna. Refer to Table 4.2 for equations. 
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Inorganic ingestion rate was calculated as the difference between IR and NOIR. 

Net organic selection efficiency (NOSE, fraction) varied with organic and inorganic 

matter available in the seston in a relation described by a parabolic equation: 

NOSE= 0.30- (0.21 x PIM)+ (1.03 x POM) + (0.01 x PIM2
)- (0.20 x POM2

) 

(r2
actj. = 0.40) (Equation 6) 

where POM and PIM are particulate organic and inorganic matter (mg L-1
) respectively. 

Organic content of ingested matter (OCI, fraction) is dependent on NOSE and TPM as 

described in Equation 7: 

OCI = 0.13 - (0.001 x TPM) + (0.27 x NOSE)+ (0.0002 x ~PM2) + (0.19 x NOSE2
) 

(r2 
adJ. = 0.75) (Equation 7) 

The net organic absorption rate (NOAR, mg 0.5-day-1
) is dependent on OCI and filtration 

rate (FR) (Equation 8): 

NOAR = -2.62 - (0.012 x FR)+ (15.73 x OCI) + (0.0006 x FR2
)- (9.22 x OCI2 

(r2
adj = 0.90) (Equation 8) 
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The net absorption efficiency from ingested organics (NAEIO, fraction) was 

positively related to OCI as described in Equation 9: 

NAEIO = 2.08 x OCI I (1+0.22 x OCI) (r2 
adj = 0.42) (Equation 9) 

4.3 .6. Modelling the energy balance sector 

In the energy balance sector (Fig. 4.5, Table 4.3) absorbed energy was estimated 

by multiplying absorbed food by the energy content of food and by NAEIO. Energy 

content of food was the sum of phytoplankton and detritus energy content (Equation 3). 

Energy losses were partitioned into heat loss and excretion. Heat loss was calculated 

using values established for Mytilus edulis and other animals (Hawkins et al., 1989) and 

previously used in the model proposed for Clamys farreri by Hawkins et al. (2002). The 

maintenance energy cost was 4.005 J h-1 g·1 dry soft tissue and active heat loss was 

linearly related to energy intake and associated with costs of feeding (Equation 10): 

Heat loss = 4.005 + (0.23 x energy absorption) (Equation 10) 

Energy loss by excretion was estimated from the allometric relationship 

(Equation 11) describing ammonia-N excretion in Perna perna, (van Erkon Schurink & 

Griffiths 1992): 

' 0 73 2 NH4 (µg) = 24.38 x dry weight (r = 0.97) (Equation 11) 
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Table 4.3. Forcing variables, functions and parameters of the energy balance sector from 

the ecophysiological model developed for Perna perna. 

Energy balance sector 

Forcing variables 

Water temperature= (time-series) (0 C) (from the Seston sector} 

Food energy= if (detritus energy> 0) then (detritus energy+ phyto energy) else 

(phyto energy) (J mg-1
) (from the Seston sector} 

Rejection (mg 0.5-day-1
) {from the Feeding sector} 

Dry body weight = gonad dry weight + somatic dry weight (g) {from the Growth 

sector} 

State variables and associated derivations 

Initial absorbed energy= 100 (J) 

Absorbed energy (t) = absorbed energy (t - dt) + (energy absorption+ reabsorption -

heat losses - excretion rate - surplus - mucus production) x dt (J) 

Energy absorption = absorbed matter x food energy = if (detritus energy > 0) then 

(detritus energy+ phyto energy) else (phyto energy) (J 0.5-dai1
) 

Energy absorption rate= absorbed energy x (time) - absorbed energy x (time - dt) (J 

0.5-day-1
) 

Heat losses= 0.23 x energy absorption+ maintenance heat loss (J 0.5-day-1
) 

Excretion rate= (((24.38 x dry body weight excretionallometric b) x 0.024) x 12) (J 0.5-day-
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I) 

Mucus production= 0.1 x rejection (J 0.5-day-1) 

Surplus= absorbed energy - (excretion rate+ heat losses+ mucus production) (J 0.5-

dail) 

Energy for growth (t) =energy for growth (t - dt) +(surplus - soft tissues allocation­

organic shell allocation - byssus production) x dt (J) 

Initial energy for growth = 0 (J) 

Energy surplus rate= energy for growth x (time) - energy for growth x (time - dt) (J 

0.5-dai1
) 

Reabsorption =if ((excretion rate+ heat losses)> absorbed energy) then ((excretion 

rate+ heat losses+ mucus production) - absorbed energy) else (0) (J 0.5-day-1
) {from 

the Growth sector} 

Functions and parameters 

Excretion allometric b = 0.73 

Respiration allometric b = 0.72 

Temperature effect on heat loss= exp (0.074 x water temperature)+ exp (0.074 x 23) 

Maintenance heat loss= 4.005 x 12 x temperature effect on heat loss x (dry body 

weight+ l) resprral!onallometncb (J 0.5-day-1) 
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Figure 4.5. The energy balance sector showing the flow of absorbed energy, energy expenditure by heat loss, excretion rate, and 
mucus production, including state variables and parameters used to predict energy surplus for growth in Perna perna. Refer to Table 
4.3 for equations 
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using the conversion 1 mg NH4-N = 24.87 J (Elliot & Davison, 1975), to obtain 

Equation 12: 

Excretion rate (J 0.5-day - 1
) = (((24.38 x dry weight 0·

73
) x 0.024) x 12) (Equation 12) 

A correction factor was calculated that described the effect of temperature on heat 

loss using a standard Q 10 of 2.1 and water temperature of 23°C, (Equation 13), (Hawkins 

et al., 2002): 

Temperature effect= exp (0.074 x 'I)+ exp (0.074 x 23) (Equation 13) 

The amount of mucus production was directly related to rejection rate (Urrutia et 

al., 2001). In the absence of information about energy loss due to mucus production in 

bivalves we assumed this loss to be proportional to pseudofaeces production and used 0.1 

x rejection rate (J 0.5-day-1
) (U~tia et al., 2001). Surplus energy for growth was 

calculated as the difference between energy absorbed and energy used for maintenance 

metabolism (i.e. heat loss, excretion, and mucus production). 

Mucus production, excretion, and heat loss equations were derived from other 

studies, (Urrutia et al., 2001; van Erkon Schurink & Griffiths 1992; Hawkins et al., 1989) 
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based on empiric measurements with Perna perna and other bivalves, and they were not 

verified in this study. This information was available in the separate papers listed above 

and it has never integrated with other components of bivalve physiology, like food uptake 

and assimilation, to produce an energy budget model applied to a time series of food 

quantity and quality. By applying physiological information available in the literature in 

a predictive integrated model it is now possible to predict the physiological responses of 

Perna perna to a range of environmental conditions. 
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4.3.7. Data acquisition for the growth sector 

Mussel shell and soft tissue growth were measured monthly over 7 months using 

mussels grown using suspended culture methods. These measurements were obtained 

from mussel growth measurements in a population dynamics study where 24 1-m ropes 

were seeded with 200 mussels (3.5 - 4.5 cm shell length). Each month 12 mussels from 

the ropes were randomly sampled, externally cleaned, and shell length and whole live 

weight measured and shell and soft tissues separated. For six of these mussels the 

somatic and reproductive tissues were separated. Soft tissues and shell were dried for 48 

hours at 60 °C and weighed to the nearest mg. Using the dry weight the condition index 

(Cl) was calculated (Equation 14): 

Cl= (dry soft tissue weight (g) x 1 OOO) + internal shell cavity (g) (Equation 14) 

where internal shell cavity is the difference between dry shell weight (g) and whole live 

weight (g) (Crosby & Gale, 1990). 

4.3.8. Modelling the growth sector 

In the growth sector (Fig. 4.6, Table 4.4) energy allocation for organic shell, soft 

tissues, and byssus was calculated from the increase in soft tissue dry weight and organic 

shell weight, multiplied by the calorific content of Perna perna tissues (Berry, 1978; 
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Table 4.5). Byssus production was estimated using Equation 15 (Berry, 1978), relating 

acid treated dry byssus weight to shell length in P. perna in the size range 2 - 11 cm: 

Byssus weight (g) = 7.22 x 10-4 x shell length (cm) 3
·
06 (n = 660, r2 = 0.93) (Equation 15) 
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Figure 4.6. Growth sector showing the flow of surplus energy to organic shell, byssus, soft tissues, somatic, and gonad tissues m 

Perna perna. Refer to Table 4.4 for equations. 
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Table 4.4. Forcing variables, functions, parameters and outputs of the growth sector 

from the ecophysiological model developed for Perna perna. 

Growth sector 

Forcing functions 

Water temperature= (time-series) (°C) (from the Seston sector} 

State variables and associated derivations 

Initial organic shell = 4643 (J) 

Organic shell (t) =organic shell (t - dt) +(organic shell allocation) x dt (J) 

Organic shell allocation = energy for growth xshell energy percentage allocation (J 

Initial soft tissues = 21415 (J) 

Soft tissues (t) = soft tissues (t - dt) + (soft tissues allocation - somatic energy 

allocation- gonad energy allocation) x dt (J) 

Soft tissues allocation = energy for growth x soft tissue percentage energy allocation 
\ 

Gonad tissue (t) =Gonad tissue (t - dt) +(gonad energy allocation - spawning) x dt 

Initial somatic tissue= 15961 (J) 

Somatic tissue (t) = somatic tissue (t - dt) +(somatic energy allocation - reabsorption) 

x dt 

Somatic energy allocation= soft tissues x somatic energy percentage (J 0.5-day-1
) 

Initial gonad tissue = 5454 (J) 

Spawning = if (condition , index > maximum condition index) and (water 
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temperature> 22) then (gonad tissue x 0.9) else (0) (J 0.5-day-1
) 

Gonad energy allocation= soft tissues - somatic energy allocation (J 0.5-day-1
) 

Byssus production= energy for growth x byssus percentage energy allocation (J 0.5-

dai1) 

Functions and parameters 

Byssus percentage energy allocation= 0.02 (fraction) 

Shell percentage energy allocation= 0.27 (fraction) 

Soft tissues percentage energy allocation= 0.7 (fraction) 

Somatic percentage energy allocation= 0.8 (fraction) 

Condition index= (1000 x dry body weight)+ (live weight - shell weight) 

Maximum Cl = 120 

Model outputs 

Shell length= 8.41+2.28 x log N (organic shell+ 18997) (cm) 

Shell weight= exp (0.34 x shell length) (g) 

Live weight= exp (0.44 x shell length) (g) 

Gonad dry weight= gonad tissue energy+ 21774 (g) 

Somatic dry weight = somatic tissue + 1733 6 (g) 

Dry body weight = gonad dry weight + somatic dry weight (g) 
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Somatic and gonadal tissue energy allocation was estimated from the 

relationship between the energy content of the respective tissues and the total energy of 

total soft tissue. 

4.3.9. Reabsorption 

Reabsorption is the mobilization of metabolic reserves when insufficient 

absorbed energy is available for heat loss, excretion, and mucus production (Bayne & 

Newel, 1983; Scholten & Smaal, 1999). A function was inserted into the model that 

controlled reabsorption of somatic tissue in conditions oflow energy intake (Equation 16). 

Reabsorption (J 0.5-day-1
) =if ((excretion rate+ heat losses)> absorbed energy) 

then ((excretion rate+ heat losses)-absorbed energy) else (0) (Equation 16) 

4.3.10. Condition index and spawning 

In our model a simple function involving maximum condition index and water 

temperature was used to trigger a spawning event (Scholten & Smaal, 1999). In this 

function at the maximum condition index (120) and at water temperature> 22 °C (Velez 
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& Epifania, 1981) spawning resulted in loss of gonad tissue, otherwise no loss occurred 

(Equation 17) 

Spawning (J 0.5-day"1
) = if (condition index > 

temperature> 22) then (gonad tissue) else (0) 

4.3 .11. Effect of mussel size 

maximum Cl) and (water 

(Equation 17) 

The model included feedback-reinforcing loops between mussel dry body weight 

and functions in the feeding and energy balance sectors. In the feeding sector, filtration 

and rejection rates were corrected to mussel size by standardizing these rates for an 

equivalent mussel of 1 g dry soft tissue weight using the formula Ys = (W/Wp)b xYp, 

where Ys is the standardized parameter, Ws is the standard weight (1 g), Wp is the weight 

of dry soft tissue predicted by the model, Yp is the uncorrected parameter, and b, is the 

allometric exponent. An exponent of 0.62 was used for filtration and rejection rates 

(Hawkins et al., 2001). Another feedback loop between growth and energy balance 

- sectors was used to account for the positive relationships between soft tissue dry weight 

and each of heat loss and excretion rates, using the allometric equations presented in 

section 2.4. 
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4.3 .12. Sensitivity analysis 

To determine the sensitivity of the model to changes in the forcing variables and 

main parameters we ran the model three times. Each time the forcing variables or main 

parameters values were changed by ± 10% from the parameter values generated by the 

model. The average percentage change in the model outputs i.e. shell length, live weight, 

dry soft tissue weight, somatic and gonad weight produced from these changes were used 

as a measure the sensitivity of the model. 

4.4. Results 

4.4.1. The seston sector 

Phytoplankton blooms between days 120 - 150 and 180 - 200 were responsible 

for the variability in the time-series of TPM, POM and POC (Fig. 4.7). 'Water 

temperature ranged from 17 °C at the beginning of winter (day 190) to 29 °C in the 

middle of summer (day 50) (Fig. 4.7). Estimated energy content of food (J mg-1
) varied 

between 2 - 82 J mg-1
, while phytoplankton energy content was in the range 1.2 - 25 J 

-1 mg. 
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4.4.2. The feeding sector 

Rates of filtration, rejection, ingestion, and absorption all varied positively with 

TPM (Fig. 4.8A and 4.8B). Ingestion and absorption rates were not strongly affected by 

variation in TPM because of the food selection efficiency of mussels (Chapter 1). 

Filtration rates ranged between 47 - 936 mg 0.5-dai1
, and rejection rates between 0 - 748 

mg 0.5-dai1
, representing up to 75% of filtered matter. Ingestion rate ranged between 7 

- 188 mg 0.5-dai1 and absorption rate ranged between 0.5 - 101 mg 0.5-dai1 with the 

model predicting values between 3 - 40 mg 0.5-day-1 for most of the observed periods. 

Organic content of ingested matter (OCI) varied negatively with organic content of seston 

(OCS) (Fig. 4.8C). 
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Fig. 4.7. Seston variables CHL (µg r1), TPM (mg r1), POM (mg r 1
), and water 

temperature (°C) in Brito Cove and the moving average used to obtain daily values that 
were used as forcing variables in the ecophysiological model. Arrows indicate times of 
algae blooms. 
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Fig. 4.8. Model predictions for the feeding sector. (A) filtration rate (FR, mg 0.5-day-
1), rejection rate (RR, mg 0.5-day-1

), and total particulate matter (TPM, mg r 1
); (B) 

ingestion rate (IR, mg 0.5-day·1), absorption rate (AR, mg 0.5-day-1
) and TPM; and 

(C) organic content of seston (OCS, fraction), and organic content of ingested matter 
(OCI, fraction). 
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4.4.3. The energy balance sector 

Predicted energy absorption (3.5 - 2004 J 0.5-day-1
) followed the oscillation in 

food energy (Fig. 4.9A). Heat losses and excretion rates ranged from 0-100 and from 6-

17 J 0.5-day-1 respectively (Fig. 4.9B and 4.9C). The amount of energy lost due to mucus 

production was intermediate between energy loss associated with heat loss and excretion 

rates, with a maximum of 75 J 0.5-day-1 (Fig 4.9D). Maximum surplus energy for growth 

was 1608 J 0.5-day-1
• Reabsorption rates of 0 - 25 J 0.5-dai1 occurred a number of time 

during the study when filtration rates and food energy were smallest (Fig. 4.9E). The 

model predicted maximum values of energy absorption and energy surplus for growth 

during the largest algae bloom recorded during the study, with secondary peaks 

associated with high levels of detritus energy (Fig. 4.9A and 4.9E). 

4.4.4. The growth sector 

Energy increases in shell, byssus, and soft tissues were estimated at c. 0.27, 0.02, 

and 0.70 % of energy allocated for growth respectively, derived from linear equations 

(Fig. 4.1 OA). The relationship between soft tissue energy content and somatic and 

gonadal tissues energy content was c. 0.8 and 0.2 % of energy allocated for soft tissue 

growth respectively (Fig. 4.1 OB). 
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Fig. 4.9. Model predictions for the energy balance sector. (A) energy absorption (J 0.5-
day-'), (B) heat loss (J 0.5-day-1), (C) excretion rate (J 0.5-day-1

), (D) mucus production (J 
0.5-day-1

), and (E) energy surplus for growth and energy reabsorption from somatic tissue 
(J 0.5-day-1

). 
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Fig. 4.10. Energy surplus for growth partitioned into (A) total dry soft tissue, organic 
shell, and byssus and (B) allocation of energy for somatic and gonad tissues from the 
energy allocated to total soft tissues Data measured from mussels 5-10 cm shell length. 
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Predicted values of shell length, live weight, and shell weight were obtained from organic 

shell weight (Fig. 4. llA) and shell length (Fig. 4.1 lB and 4.11 C), based on shell 

measurements in Brito Cove to obtain the equations on Table 4.6. The weight of organic 

shell, byssus, somatic, and gonad tissues were calculated by dividing the energy allocated 

to these state variables by their energy content (Table 4.5). Total dry body weight was 

calculated by summing somatic and gonad weight, and predicted condition index was 

calculated using Equation 1. The model was able to predict values of somatic dry weight, 

total dry weigh, live weight, and shell length that were comparable to the values obtained 

in the study (Fig. 4.12). However the model failed to produce gonad weights that 

matched the real data (Fig. 4.12). 

4.4.5. Sensitivity analysis 

The model was sensitive to changes in the both forcing functions and parameters 
I 

(Table 4.7). TPM was the forcing function that appeared to be the most sensitive, 

causing 3-26% changes in the model outputs. POM and chlorophyll a were the second 

most important inputs of the model, leading to changes of 0 - 11 % and 0 - 4% 

respectively in the model outputs. 

The parameters the model was most sensitive to was the percentage energy 

allocated to shell and soft tissue, particularly in predictions of gonad tissue dry weight 



118 

Table 4.5. Calorific content of Perna perna somatic tissue, gonad tissue and organic shell. Reproduced from Table 6 in Berry 

(1978). 

Mean energy content (J g-1
) -Range (J g-1) Coefficient of variation (%) 

20277 17336 - 23205 9.57 
Flesh 

Gametes 21774 20116 - 23675 8.80 

Organic shell 18997 18997 - 19762 3.51 

Byssus 19679 19217 - 20286 2.79 



119 

Table 4.6. Perna perna. Equations from the relationships plotted on Fig. 4.12A and 4.12B, used to calculate shell length (cm), hve 

weight (g), and shell weight (g) from organic shell weight (mg). 

Equation 

Shell length= 8.41 +2.28 x log N (organic shell 

weight) 

Live weight =exp (0.44 x shell length) 

Shell weight = exp (0.33 x shell length) 

Statistics 

r2= 0.89, df 1,81, F = 714.90, 

P<0.001 

r2= 0.90, df 1,46, F = 465.49, 

P<0.001 

r2
= 0.89, dfl, 46, F = 399.67, 

P<0.001 
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Table 4.7. Model sensitivity analyses, calculated as the average percentage change in the model outputs resulting from adjustments 

of± 10% in the forcing functions and main parameters (refer to Methods). 

Model forcing functions Original value Average percentage change in model output to ± 10 % adjustments 

Shell length Whole live Soft body dry Somatic tissue Gonad tissue 
weight weight dry weight dry weight 

Total Particulate Matter (TPM) 3.7 mg L- 10 11 3 10 26 

Chlorophyll a 7.8 µg L-1 1 2 0 2 4 

Particulate Organic Matter (POM) 1.3 mg L-1 2 2 0 2 11 

Water temperature 24.5°C 0 I 0 1 2 
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Model parameters Parameter Shell Whole live Soft body dry Somatic tissue Gonad tissue 

value length weight weight dry weight dry weight 

Ratio of chlorophyll to carbon 50 1 2 0 2 4 

Phytoplankton organic energy content 23.5 J mg-1 1 1 0 1 4 

Feeding allometric exponent 0.62 4 4 1 4 11 

Heat loss allometric exponent 0.72 0 0 0 0 2 

Shell % energy allocation 0.27 2 1 2 7 46 

Soft tissues % energy allocated 0.70 3 1 2 9 54 
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Fig. 4.11. Relationships between (A) organic shell weight (g) and shell length (cm), (B) 
shell length and shell weight (g), and (C) shell length and live weight (g). 
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Fig. 4.12. Model predictions of gonad tissue weight, somatic tissue weight, total dry 
tissue weight, shell length and live weight (-), together with observed data of mussel 
growth in Brito Cove (•). Graphs on the right are scatterplots of observed against 
predicted values, with 95% confidence limits on the slope of the plot. If the 
confidence limits encompass one, then this was evidence that the model provided a 
close fit of the observed values 
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( 46% and 54% respectively). The feeding allometric exponent also provided changes in 

the range of 1 - 11 % (Table 4.7). Variations in the ratio of chlorophyll to carbon, and in 

the energy content of phytoplankton organic matter caused a maximum change of 4% in 

the outputs, observed in predictions of gonad dry weight. The model was not sensitive to 

variations in the heat loss allometric coefficient at a level of 10% change. 

4.5. Discussion 

The model produced was successfully able to predict the average size shell and 

body tissues of cultured mussels in Brito Cove through time. We wanted to maintain a 

low level of complexity in the model structure, but include the full range of physiological 

compensations available to bivalve mollusks to optimize energy acquisition in spite of 

fluctuations in seston quantity and quality. The use of food and the incorporation of 

energy into bivalve tissue involved several steps all of which were simplified. As a result 

our model did not include detailed aspects of mussel physiology, like absorption 

efficiency as a function of gut residence time, protein recycling, and protein turnover 

rates. . Although these simplifications may violate some biological features it was 

necessary to assist in the building and application of the model (Pouvreau et al., 2000). 

Furthermore, gaps in our knowledge about mussel ecophysiology hindered building a 

model with all the physiological steps between food acquisition and growth. In 

particular, little is known about the allocation of energy to different body compartments 

and mucus production, and the physiological controls of gametogenesis and spawning 

(Scholten & Smaal, 1998). Nevertheless, keeping the model simple is important if the 
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final purpose is to apply physiological and growth rate predictions to environmental 

studies of carrying capacity, where the number of variables and complexity will be 

significantly increased. Furthermore, as the model becomes over-parameterized it 

becomes harder to perform calibrations, sensitivity analysis, and detect important forcing 

variables and feedback loops in the model structure (Scholten & Smaal, 1998, 1999). 

The development of this model made use of the STELLA® software concept of 

mass/energy conservation, instead of using only parameters and mathematical formulas. 

An exception was the seston sector had no flows or state variables and as a result all 

calculations were based on parameters. Estimating food energy content based on POM 

data was problematic because of the complexity of organic suspended particles in the 

water (Grant & Bacher, 1998). However the close agreement between predicted and 

observed shell length suggested that our estimate of food energy content based on POM 

was probably a realistic estimate of energy content of seston. Detritus energy comprised 

20-90% of the total energy content of seston in the Clamys farreri model of Haw.kins et 

al. (2002), a value similar to our model predictions (14-95%). Given that detritus 

comprises up to 94% of the diet of mussels (Berry & Schleyer, 1983) it is likely that 

Perna perna is predominantly a detritivore. Therefore, characterizing suspended food, 

particularly the detrital portion, is important. A disadvantage of calculating organic 

content of seston (OCS) by assuming an inverse relationship with TPM was that when 

TPM was high, due to algae blooms, unrealistically low values of OCS were obtained. 

Despite this, the organic content of ingested matter increased with increasing chlorophyll 

because of the positive effect of the blooms on POM. The high organic content of 
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ingested matter when the organic content of seston was low suggests that sorting between 

organic poor and rich particles was occurring under these conditions. 

In the feeding sector, basic relationships reported as being general patterns in the 

feeding behavior of bivalves were included (Hawkins et al., 1998b ). The application of 

the feeding model enabled further validation of the set of equations describing the feeding 

physiology of Perna perna using a time series of forcing variables. This allowed a 

description of the responses in the feeding sector through time, rather than static values 

reported in Chapter 2. As the feeding model was developed on values of P. perna 

feeding on natural seston, the feeding rates reported should be realistic and accurately 

describe the response of mussels to varying food quantity and quality. The filtration and 

rejection rates covaried in such a way as to maintain ingestion rates relatively constant 

and independent of fluctuations in food availability. Filtration rates above the point that 

production of pseudofaeces occurred did not limited ingestion rate to a maximum as 

previously reported (Griffiths & Griffiths, 1987; Widdows et al., 1979), but it further 

increased substantially during the algae bloom. The series of equations describing and 

quantifying suspension-feeding behavior in P. perna successfully reproduced the 

enrichment of ingested food in relation to the organic content of seston and filtered 

matter, following a common pattern in bivalve feeding (Bayne, 1998). Sector outputs of 

pseudofaeces and faeces are important when integrating the ecophysiological model with 

a population dynamics model (Chapter 3), because it allows the production ofbiodeposits 

released during a growing season to be estimated. The importance of sedimentation and 
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remineralization of biodeposits as a bivalve feedback to the surrounding environment will 

depend on the residence time of water in them (Doering et al., 1986). 

Energy absorption rate predicted by this model is similar to values reported for 

Mytilus californianus (Bayne & Newell, 1983). Suggesting that estimating absorbed 

energy by multiplying absorbed matter by the estimated energy content of phytoplankton 

and detritus was successful. However, one of the most difficult issues to deal with when 

modelling energy gains is the relationship between temporal variation in food supply, 

ingestion rates, and ultimately growth rates (Grant, 1996). The prediction of energy 

acquisition, expenditure, and resultant scope for growth did predict the amount of surplus 

energy with reasonable precision based on the agreement between predicted and observed 

growth of shell and dry body weight. Indeed, the scope for growth predicted by the 

model is similar to previous calculations for Perna perna (252-1224 J 0.5-day-1
) (van 

Erkon Schurink & Griffiths, 1992). Ammonia excretion contributed c. 5-10% of energy 

losses as previously reported for Mytilus edulis (Bayne & Neweil, 1983), and respiration 

rate was positively associated with temperature and feeding activity as reported in many 

studies of bivalve physiology (Bayne & Newell, 1983). 

Reabsorption of nutrient reserves from tissues to accommodate periods of low 

energy does occur in a number of bivalves (Hawkins et al., 1985; Bayne & Newell, 1983) 

and is included in mussel physiological models (Scholten & Small, 1998; 1999). This 

physiological response is used in conditions of food limitation. Periods of high 

temperatures associated with low TPM, as observed in this study, represent a severe 
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physiological stress in mussels (Gabbott & Bayne, 1973), and will force them to use 

energy reserves. Our model predicted a linear rate of net energy deposition in tissues in 

relation to the rate of energy acquisition and resultant scope for growth as seen for 

Mytilus edulis by Hawkins & Bayne (1991). 

Parameter values produced by this model are only suitable for the site from which 

the data were collected. Applying this model to other sites will require estimates of 

seston energy content and energy partitioning among tissues, shell, and byssus. When 

this model was applied to another site in Brazil, with lower TPM and POM values, the 

model failed to reproduce the observed growth of mussels. Suggesting that it is necessary 

to accurately characterize available seston energy and mussel energy acquisition and 

balance under conditions of lower food availability. This model was the first to model 

the physiology of Perna perna under conditions of varying food and temperature and 

refinement will occur as the physiology of this species is elucidated, particularly 

processes controlling gametogenesis and spawning. 
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Chapter 5 

Modelling ecophysiological feedba_cks between mussel Perna perna 

populations and the ecosystem: a preliminary investigation of carrying 

capacity for bivalve aquaculture in Santa Catarina, Brazil. 
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5 .1. Abstract 

In this chapter, information previously provided about mussel population dynamics 

and ecophysiology were integrated in a population level ecophysiological model. 

This enabled the quantification of important relationships between mussel population 

and the environment such as rates of filtration, excretion, and biodeposition. 

Measurements of bay area and volume, associated with oceanographic measurements, 

enabled the calculation of water residence time inside the bay and the time required 

by the mussel population to filter a volume of water relative to the volume of the bay. 

In periods without seed attachment, the average population clearance rate was much 

lower than estimates derived by summing the different clearance rates observed in 

each size class. Collection of long time-series of selected seston parameters did not 

revealed strong seasonal patterns in primary production and particulate matter in the 

water column. Instead, particulate matter in this shallow system appears to be mainly 

influenced by resuspension caused by wind and current action. An attempt to apply 

the model in a carrying capacity analysis was partially hampered by the lack of 

information about other steps in the nitrogen cycle. Important aspects to be 

investigated in Brito Cove are rates of sediment remineralization, other natural and 

anthropogenic fluxes of nitrogen, and zooplankton grazing on phytoplankton. 
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5.2. Introduction 

Mussel farming in Southern Brazil is a fast growing ind~stry with production 

increasing by more than 6000% in the last ten years. As sessile organisms, mussels are 

dependent on the availability of food brought by wind or current, which is generated by 

local primary production or by resuspension of detritus and benthic algae from the bottom 

(Sobral & Widdows, 2000). Filter feeders play a major role in estuarine and coastal 

ecosystems because they remove large quantities of suspended material from the water 

column, excrete abundant amounts of reactive nutrients, and enhance the vertical particle 

flux as they reject non-ingested material as phytodetritus (Dame, 1993; Proern;a & 

Schettini, 1998). High density mussel farming and poor food replenishment can reduce 

growth rates of mussels and increase the time taken to reach marketable size. Sites under 

these extreme conditions are said to have reached their exploitation carrying capacity 

(Smaal et al., 1998). 

Local authorities and aquaculture decision makers need to the right tools to 

evaluate the exploitation carrying capacity of bivalve shellfish farms to avoid economic 

and, in more extreme cases, environmental losses (Dankers, 1993). At a local scale 

carrying capacity depends on physical constrains such as substrate, shelter, and food 

supply by tidal currents. Therefore, predictive models of carrying capacity are 

characterized by details of hydro and geodynamic processes coupled with sub-models of 

· organism and population levels processes (Smaal et al., 1988). To avoid growing 
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bivalves at densities that result in food depletion models of local environmental patterns 

involved in organic seston production and transport need to include both tidal and 

seasonal variation (Frechette et al., 1991 ). Data at both these temporal scales can be used 

to generate a model that predicts food availability under different mussel stocking rates 

through out the growing period. 

Most of the available information about seston dynamics is for temperate mussel 

farms, consequently, most bivalve carrying capacity studies have been developed for 

temperate latitudes (e.g. Incze et al., 1981; Carver & Mallet, 1990; Brylisnky & Sephton, 

1991; Raillard & Menesguen, 1994; Dowd, 1997), with few examples in tropical latitudes 

(e.g. Pouvreau et al., 2000). Temperate waters are characterized by spring and summer 

phytoplankton blooms followed by low food availability in autumn and winter (Smaal & 

Haas, 1997; Widdows et al, 1979). In the semi-tropical waters of Southern Brazil, this 

pattern is not so obvious and food is available throughout the year (unpublished data). 

Therefore, carrying capacity models applied to bivalve aquacultlire in these environments 

needs to use patterns of food availability described for semi-tropical environments. 

The total biomass supported by a given ecosystem is a function of the water residence 

time, primary production time, and bivalve clearance time (Dame & Prins 1998). From 

an economic perspective the exploitation carrying capacity must consider the stock size at 

which a maximum yield of the marketable cohort is achieved (Smaal et al. 1998). It is 

possible that at high stocking rates maximal yield may occur, but due to low individual 

growth rates the stock is largely made up of undersized individuals. Sub-models of water 
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transport, population dynamics, and bivalve physiology are necessary for development of 

exploitation carrying capacity models (Smaal et al., 1998). Any model or 

conceptualization of the role of bivalve filtration in coastal waters should account for 

system water mass residence time, phytoplankton primary production or replacement 

time, and clearance time by the majority of filtering organisms (Bacher et al., 1998). 

This chapter aims to integrate models of population dynamic and mussel physiology 

previously developed for Perna perna (Linnaeus, 1758) with preliminary measurements 

of primary production and water renewal in Brito Cove, a mussel farming area in 

Southern Brazil. In this chapter, information previously provided about mussel 

population dynamics and ecophysiology was integrated in a population level 

ecophysiological model. This will deliver valuable information about seston dynamics 

on different time scales, primary production, and major feedbacks between the bivalve 

population and the environment. In this way rates of clearance, biodeposition, and 

excretion by the culture population Can be incorporated in a detailed environmental 

model of seston dynamic for this location. Additionally, this study provides important 

site-specific information relating to carrying capacity analysis such as bay clearance, 

water residence, and phytoplankton turnover time (Dame & Prins, 1998). 

5 .3. Methods 

5 .3 .1. Site characterization 

Brito Cove, (48° 34' W, 27° 46' S) is a small embayment (3.7 km2
) in Southern Brazil 

where mussels have been intensively cultivated for the last 10 years. It was specifically 
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selected for this study because local growers are reporting that an increase in stocking 

density is already reducing mussel growth rates (industry, personal communication). The 

cove is at the south part of Florian6polis Bay, which is characterized by two 

interconnected basins separated by a narrow passage, with each basin having its own 

opening to the ocean (Fig. 5.1 ). The southern part of the bay has an average depth of 3 .5 

m and a non-uniform bathymetry with a number of channels and shoals and is linked to 

the ocean through a very narrow entrance. Inside Brito Cove there are four farm leases 

shared by 44 mussel growers. 

The mussel standing stock inside Brito Cove was estimated from the dimensions of 

the four leases and the number of long lines in each lease. The length of mussel culture 

ropes, the distances between the mussel culture ropes, and the distances between long 

lines were also measured. The coordinates of the shoreline, vortices of the mussel farm 

leases, and position of oceanographic instruments were determined using GPS with 20 m 

precision. Additionally, a bathymetric profile of the whole cove, to calculate its volume 

and surface area, was obtained using an echosounder. 

5.3 .2. Seston characterization 

Water samples (2 L) were taken next to the long-lines inside lease B (Fig. 5.2) 

from near surface and bottom waters, stored on ice, and taken to the laboratory within 2 

hours of collection. Seston parameters measured included turbidity (TURB, NTU), total 
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particulate matter (TPM, mg L-1), particulate organic and inorganic matter (POM and 

PIM respectively, mg L-1
), organic content of seston calculated as OCS (POM/TPM, 
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Figure 5.1. Location and bathymetry of Florian6polis Bay, Brazil. Brito Cove is the area 

indicated by the black circle. 
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fraction), and chlorophyll-a (CHL, µg L-1
). Triplicate aliquots of water samples (50 and 

200 ml) were filtered through pre-ashed and weighed Whatman GF/C filters (25 mm). 

These were rinsed with 15 mL distilled water to remove salts and dried at 60°C before re­

weighing and calculation of the total sample dry weight per sample. Each sample was 

ashed at 450°C for 4 h prior to final weighing, allowing calculation of both ash 

(inorganic) and ash-free (organic) mass of each filtered sample. Chlorophyll-a was 

determined from triplicate 100 mL aliquot water samples filtered through Whatman GF/C 

filters (25 mm), then fixed with potassium chlorite and analyzed using a Turner Designs 

AU-10 fluorometer. 

Seston sampling was carried out at three temporal scales; two hourly, weekly, and 

fortnightly, allowing the identification of seasonal and tidal influences on seston variables 

important for bivalve physiology and growth. Fortnightly measurements of both surface 

and near bottom waters inside lease B (Fig. 5.2) were taken from September 1998 to 

August 2002. Weekly measurements were taken from September 2000 until August 

2002, on the first long-line (outside) furthest from shore and on the last long-line closest 

to the shore (inside), both inside lease B (Fig 5.2). The distance between the two stations 

was ea. 200 m and depth was 2 and 1.2 m respectively. Additionally, water temperature 

and salinity were measured at each sampling station. Incident solar radiation data was 

obtained from the local meteorological station. 

To evaluate tidal influence on seston, TPM, POM, and CHL were measured at 

lease B every 2 hours for 24 hours on two occasions, during a spring (June 6, 2001) and a 
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Fig. 5.2. (A) Position of the four mussel farm leases inside Brito Cove. The white triangle indicates the position of the water level 
recorder, current meter, and outside sampling station. The black triangle indicates the inside sampling station. (B) Three 
dimensional plot of Brito Cove used to calculate the volume of the cove. Axes are coordinates in UTM. 
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neap tide (July 12, 2001). Every 30 minutes over each 24 h period wind velocity was 

recorded with a portable anemometer (Simerl Instruments), water current velocity and 

direction recorded using a mini current meter (Sensordata SD-6000), and tidal height was 

recorded using a water level recorder (Aanderaa Instruments WLR-7). Additional 

oceanographic data in the same site was also collected over longer periods in 2001, from 

June 5 to July 13 (tide level), and from October 8 to October 23 (tide level and current 

speed). 

5.3.3. Primary production measurements 

Primary production was estimated using the incubation method using a high 

dilution technique adapted from Gallegos & Vant (1996). High dilution was necessary to 

exclude zooplankton grazing during the incubation period and was achieved by diluting 

2.4 L of seawater (screened through 230 µm) in 40 L of filtered (1 µm) seawater. Two 

liter aliquots of the diluted sample were incubated for 24 hours in six bottles; three 

submerged close to the surface and three close to the bottom at 1.8 m. A rack with the 

incubation bottles was attached to a long line in a lease in the bay. At To 200 mL samples 

from the bottles were collected to quantify CHL, ammonium, nitrate, and phosphate. 

After 24 hours a further 200 mL were collected for analysis of the same variables. 

Surface and bottom primary production were averaged to give a value representative of 

the water column. Incubation experiments were conduced once a month between 

November 2002 and December 2002. Phytoplankton growth rate was calculated 

(Equation 1): 
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G =(I/Lit) x ln ((Co+ '1.C)/Co) (Eq. 1) 

where Lit = 1 d, Co = initial phytoplankton biomass (µg chlorophyll a L-1
), '1.C = daily 

increase of phytoplankton biomass due to production. This equation is derived from the 

exponential growth equation and is commonly used to calculate growth rates from 

biomass or cell count data (Brush et al., 2002). 

5.3.4. Model structure 

To estimate clearance time (time needed by the mussels to filter all the cove 

volume), water residenc~ time, and phytoplankton turnover rate, the model included 

population dynamics, mussel physiology, and general hydrodynamics of Brito Cove. The 

model reproduced the mussel population ecophysiology during a growing season when 

the mussels reached commercial size within 7-8 months. The population dynamics model 

for P. perna, standardized to one meter of culture rope, included in this canying capacity 

analysis was developed using data acquired in Brito Cove (Chapter 3). The physiological 

model for P. perna, including response to variation in seston quantity and quality as 

presented in Chapter 4. Detailed characterization and modelling of feeding behavior of 

this species is presented in Chapter 2. In the model of P. perna population dynamics in 

suspended culture, the transition of mussel between size classes (see Chapter 3) was 

determined by growth rates measured in the field and used average lifetime values. In 

this model the predicted growth rates of individuals in each of the three size classes was 
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dependent upon the environmental conditions experienced, i.e. the quantity and quality of 

food and water temperature. 

Mussel standing stock inside the cove was calculated by integrating the number 

and wet weight of individuals in each size class (small, medium, large, and harvestable), 

multiplied by the quantity of culture rope (in meters) inside each lease. The size of the 

population could increase through natural attachment of new seed and farm seeding. 

Farm seeding was estimated to be directly related to harvest rates, on the assumption that 

available space inside the lease would be restocked with new mussel culture ropes. 

Model predictions included feedbacks between the bivalve population and the ecosystem 

i.e. clearance time, excretion, and biodeposition rates. Individual mussel clearance rates 

were calculated by dividing predicted filtration rates (L.0.5-dai1) by total particulate 

matter (TPM mg L-1). These individual clearance rates were integrated over the size 

classes and multiplied by the mussel standing stock to obtain total clearance rate (m3 0.5-

day-1). Clearance time (days) by the cultured mussel population was defined as the time 

taken for the total mussel biomass within an ecosystem to filter particles from a volume 

of water equivalent to the total system volume (Dame & Prins, 1998). This was 

estimated by dividing the volume of water in the cove by the bivalve clearance rate. 

Excretion rates of the total cultured mussel population (g NH4 day-1) was based 

on an allometric equation proposed for individual P. perna (van Erkon Schurink & 

Griffiths, 1992). Excretion rates for a mussel culture rope was calculated by applying 

this equation to the soft tissue dry weight predicted for individuals in each size class, 
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multiplied by the number of mussels in each of the three size classes (µg NH4 m of rope-I 

day-I). This value was then multiplied by the length of mussel culture rope in the cove 

(sum ofrope meters in the four leases) to obtain the cultured mussel population excretion 

rate. Similarly, biodeposition rates for the same population were calculated by 

integrating the quantity of faeces and pseudofaeces produced by each individual mussels, 

multiplied by the number of individuals in each size class (mg of biodeposits m of rope-I 

day-I), and multiplied by total length of culture rope to give the population biodeposition 

rate (tones day-I). Biodeposition rates on the sediment beneath the mussel leases (g m -z 

day-I) were calculated by dividing the population biodeposition rate by the total lease 

surface area. 

The rate of water renewal in the cove (m3 day"1
) was calculated by multiplying 

the cove surface area (m2 xl 06
) by tidal height (m). Tidal height, measured as the water 

level recorded both on spring and neap tide, estimated variability in water renewal, and a 

time series of tidal heights in Brito Cove was used as a forcing function in the model. 

Two small creeks enter the bay, however freshwater input was assumed to have had a 

minimal contribution to water renewal, which was considered to be predominately 

controlled by tidal exchange. Water mass residence time (days) for the cove was 

calculated by dividing cove volume (m3 * 106
) by the rate of daily water renewal. 

The pnmary production model was driven by phytoplankton growth rates 

measured between November and April 2002. Phytoplankton growth rates acted as a 
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forcing function in a Lotka-Volterra predator-prey equation, describing the relationship 

between phytoplankton biomass and the filter-feeding population (Equation 2): 

Pl~t = P (kp-mp) - P x F x B -P/RT + PJRT (Eq. 2) 

where P =phytoplankton biomass (µg chlorophyll a L-1
); M = 1 d, B = filter feeding 

population (g fresh weight m-3
), kp =phytoplankton growth rate (d-1

), mp =mortality rate 

of phytoplankton resulting from causes other than grazing by mussels (dai1
), F = 

biomass-specific clearance rate of mussels (m3 g fresh weight of animar1 dai1
), RT = 

water mass residence time (days), and Pe = phytoplankton concentration in advected 

water (here assumed to be 5 µg r 1
) (Herman, 1993; Dame & Prins, 1998). Grazing by 

mussels is directly proportional to algal concentration and suspension feeder biomass, but 

local depletion and larger spatial gradients are not taken into account (Herman, 1993). 

Primary production time describes the time taken for primary production within the 

system to replace the standing crop biomass of phytoplankton within the system (Dame & 

Prins, 1998). Primary production time was defined as the ratio of phytoplankton biomass 

(P) to phytoplankton primary production (P x kp) within the system. 
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5.4. Results 

5.4.1. Area and volume of Brito Cove 

A 3-dimensional plot of coordinates (UTM) and depth calculated the volume (6.3 

m3 x 106
) and surface area (2.7 m2 x 106

) for Brito Cove (Fig 5.2). The area used for 

mussel farming was 162.2 m2 x 103
, which was equivalent to 6% of the total cove area. 

Assuming 200 mussels of 45 g per meter of culture rope the esfimated harvestable 

standing stock inside the cove was 1367.8 tones, which corresponded to 27.3 x 103 

individual mussels. 

5.4.2. Seston dynamics at different time scales 

CHL, measured in the fortnightly seston samples taken between 1998 and 2002, 

varied from <1 to 8 µg L-1
, and there was a weak seasonal pattern with peaks in late 

summer and spring (Fig. 5.3A). TPM ranged between 2-35 mg L-1 and POM was <1-6 

' 
mg L-1

• Seasonal patterns in TPM and POM from the fortnightly measurements were not 

evident (Fig. 5.3B and 5.3C). Both water temperature and solar radiation followed a 

seasonal pattern and ranged between 16-30°C and 180-400 Cal respectively (Fig. 5.3.D 

and 5.3F). Water salinity ranged from 28 to 33 %0 and there was no evidence of major 

seasonal patterns (Fig. 5.3E). 

In the weekly series of data there were no differences between the two positions 

in the lease for CHL (t=0.72, df 61, P=0.47), TPM (t=l.78, df 54, P=0.08), POM (t=0.83, 
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df 54, P=0.40), and OCS (t=0.94, df 54, P=0.34) concentrations (Fig. 5.3). During the 

year highest CHL concentrations were observed in March, confirming the late summer 

bloom observed in the longer time-series. The two CHL peaks observed in March and 

April contributed to the increase in POM and TPM during these months (Fig. 5.4.A, 

5.4.B and 5.4.C). In spite of this, OCS did not increase substantially during the algae 

bloom (Fig. 5.4.D). This was due to probably a positive correlation between PIM and 

wind speed (Pearson correlation = 0.64, n = 33, P<0.001) causing a dilution effect as 

sediments are resuspended by wind driven water movement (Fig. 5.5.B). CHL was 

inversely related to the availability of total dissolved nitrogen (Fig. 5.5.A) in a common 

pattern where nitrogen is either associated with phytoplankton organic matter or available 

as dissolved nutrient. Ammonium was the major form of nitrogen in water inside the 

mussel lease, representing 72% of total dissolved nitrogen. 
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Fig. 5.3. Results of the long time-series (1998-2002) of seston parameters (A) CHL, (B) 
TPM, (C) POM, and other environmental parameters (D) water temperature, (E) water 
salinity and (F) solar radiation likely to influence algae production recorded fortnightly 
measurements. Solar radiation was plotted using monthly average values from daily 
measurements. 
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Fig. 5.4. Results of the short time-series (2000-2001) of weekly measurements of seston 
parameters (A) CHL, (B) TPM, (C) POM, and (D) OCS for the two sampling stations 
indicated in Fig. 5.2. TPM, POM and OCS samples between months June and July were 
lost. 
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Pearson's correlation analysis on both the weekly and fortnightly series of seston 

measurements revealed a positive correlation between TPM at near surface and bottom 

samples (Table 5.2). There was also a strong correlation between TPM and PIM (Table 

5.2), suggesting that most of the total particulate matter suspended in the water column 

was inorganic matter (PIM), which corresponded to an average of 79.4% (± SD 11.4, 

n=30) of TPM in the short weekly series. CHL at surface and bottom waters were 

correlated in both series of measurement and in surface waters only, while CHL was 

weakly correlated with POM (Table 5.2). 

Over a 24 h period there were no significant correlations between wind, current 

speed, and tide level and TPM, possibly because of the limited number of observations 

(N=13). However, Fig. 5.6 and 5.7 suggested evidence of a non-linear association 

between these variables and the availability of TPM. Evidence of resuspension was 

indicated by a positive correlation between bottom turbidity an<l wind speed during the 

spring tide (r = 0.80, n=13 P = 0.001). 
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Fig. 5.5. Selected seston parameters from the short time-series of weekly measurements. 
(A) Surface CHL, N03, and NH4 , and (B) PIM and wind speed. Samples of PIM between 
months June and July were lost. 
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Table 5 .1. Area, standing stock, and mussel population (assuming 200 mussels perm of 

rope) in the four commercial mussel leases inside Brito Cove. 

Lease Area (m2 x 103
) Standing stock (Tones) Number of mussels (x 10°) 

A 31. l 288.8 5.7 

B 101 818.7 16.4 

c 10.5 91.1 1.8 

D 19.5 169.2 3.4 

Total 162.2 1367.8 27.3 
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Table 5.2. Pearson correlation coefficients calculated for CHL, TPM, PIM, and POM 
measured at near surface and bottom waters. Series refer to long biweekly 
(1998-2002) and short weekly (2000-2001) series. All correlations are 
significant at P<0.001. The number of samples is provided next to each 
correlation factor. 

Series R (n) 
CHL (surface) vs CHL (bottom) (1998-2002) 0.712 (90) 

(2000-2001) 0.544 (32) 
CHL (surface) vs TPM (surface) (1998-2002) 0.295 (80) 

CHL (surface) vs POM (surface) (1998-2002) 0.314 (78) 

(2000-2001) 0.474 (29) 
TPM bottom vs surface (1998-2002) 0.510 (79) 

(2000-2001) 0.550 (30) 
TPM (bottom) vs PIM (bottom) (1998-2002) 0.997 (78) 

(2000-2001) 0.996 (31) 
TPM (bottom) vs POM (bottom) (1998-2002) 0.870 (78) 

(2000-2001) 0.778 (31) 
PIM (surface) vs TPM (surface) (1998-2002) 0.998 (79) 

(2000-2001) 0.976 (30) 
PIM (surface) vs PIM (bottom) (1998-2002) 0.508 (79) 

PIM (surface) vs POM (bottom) (1998-2002) 0.369 (78) 

(2000-2001) 0.508 (30) 
PIM (bottom) vs POM (surface) (1998-2002) 0.830 (78) 

(2000-2001) 0.727 (31) 
TPM (surface) vs POM (surface) (1998-2002) 0.314 (78) 

(2000-2001) 0.474 (29) 
POM (surface) vs POM (bottom) (1998-2002) 0.510 (78) 

(2000-2001) 0.718 (30) 
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Fig. 5.6. TPM measurements presented with wind and current speed, and tide height 
during a spring tide cycle. 
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Fig. 5.7. TPM measurements presented with wind and current speed, and tide height 
during a neap tide cycle. 
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Fig. 5.8. Tide height and current and wind speed in Brito Cove in (A and B) June -
July, 2001 and (C) tide height and current speed in October, 2001. 
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Tidal height measured over three spring and neap tides cycles in June-July 

ranged from 180 to 310 cm (Fig. 5.8A). When multiplied by cove surface area this 

corresponded to a water mass renewal ranging between ea. 5.5 - 10.5 m3 x 106 day-1
. 

Wind and current speed data recorded every half an hour were transformed applying a 

moving average with a period of 13 h to give average values over half a day. 

Maximum wind speed recorded over June-July was 16 m s-1
, and the significant, but 

weak, correlation between wind and current (r = 0.20, n = 1818, P<0.001) was due to 

the large number of records (Fig 5.8B). A weak correlation was also detected 

between tide and current speed over neap and spring tides in October (r = 0.41, n = 

620, P<0.001), particularly during spring tides (Fig. 5.8C). 

The variation of biweekly and weekly data of seston concentration was 100% 

and 50% greater than the variation in tidal measurements in surface waters (Table 

5.3). The coefficients of variation for bottom samples were similar for all temporal 

scales and this was interpreted as a result of common forcing variables acting in the 

dynamics of these seston concentrations, more specifically the action of wind and 

currents re-suspending the sedimer:it in this shallow bay. The coefficients of variation 

for seston concentration measured at three temporal scales (tidally, weekly, and 

fortnightly) for different periods (24 h, eight months, and four years) are presented in 

Table 5.3. 

Phytoplankton growth rate varied between 0.63-1.03 and 0.42-1.04 µg CHL r 
1 day-1

, in surface and bottom samples respectively. Greater primary production was 

observed in December, February, and March with values declining towards April (Fig 
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5.9A). Water temperature peaked at 29°C in March, total dissolved inorganic nitrogen 

(DIN) peaked in April (6.13 µM r 1
), and ammonium peaked in December (1.96 µMr 

1
) (Fig 5.9B). 

Table 5.3. Coefficient of variation of seston concentrations (CV, %), measured in 
different temporal scales at near surface and near bottom waters: Weekly 
(2000-2001), biweekly (1998-2002) and spring and neap tides (24 h). 

Spring tide Neap tide Weekly Biweekly 

s B n s B n s B n s B n 

TPM 48 53 13 28 69 13 78 68 30 104 69 80 

PIM 49 54 13 28 88 13 82 71 30 107 70 80 

POM 43 48 13 50 80 13 68 57 30 93 71 80 

ocs 23 20 13 50 110 13 53 40 30 61 42 80 

CHL 37 29 13 38 30 13 62 58 32 59 64 90 
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5 .4.3. Model predictions 

Bivalve population size predicted by the population dynamics model (Chapter 

2) varied between 6.2 and 7.5 million mussels inside the cove (Fig. 5.IOA). The 

decrease in population was due to natural mortality of 0.006 ~ndividuals.day-1 

(Chapter 3) and an increase in population size occurred when the model predicted 

natural settlement of spat. Total biomass increased from < 200 t to ea. 1 OOO t during 

the growing season (Fig. 5.IOB). Predicted CHL concentrations were greater than 

observed values during 83% of the growing period (Fig 5.1 OC). Chlorophyll a 

concentrations ranged between 0.4-8.07 µg r1in the observed values and between 

0.84-6.86 µg r1 in the predicted values. Although observed and predicted CHL series 

were different (F = 5.76, df = 2, 210, P<0.001), model predictions reproduced the 

main patterns of phytoplankton dynamics in this system, with highest concentrations 

occurring in March (approximately day 120) (Fig. 5.IOC). 

The model of the culture rope population dynamics predicted that the total 

mussel population size decreased from 200 to 11 o· mussels m-1
, then stabilized after 

six months (Fig. 5.1 lA). An assumption in the model was that all growers would 

seed their lease until fully stock at time 0, which does not reflect the real lease 

management practiced in Brito Cove. Therefore, the number of mussels .on the ropes 

is realistic and reflects a situation where leases are not always at maximum stocking 

density and seeding and harvesting are carried out a number of times throughout the 

year. The model also showed that initially small mussels irt the population were 

responsible for most of the water clearance. Large mussels were dominant in the 
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population close to harvesting time and clearance rates were a function of their 

abundance. The contribution of small mussels to the total population clearance rate 

was limited to short periods just after the spawning season (Fig. 5.llB). The model, 

using average clearance rates, predicted elevated clearance activity by the mussel 

population during the seed attachment season. In periods without seed attachment, 

the average population clearance rate was much lower than estimates derived by 

summing the different clearance rates observed in each size class (Fig. 5.11 C). 

Bivalve feedbacks to the system predicted by the model included population 

clearance rate (5 - 35 m3 x 106 daiI) (Fig. 5.12A), biodeposition rate (0.5 - 9 tones 

day-I) (Fig. 5.12B), and excretion rate (1.8 - 2.2 g NH4 dai1
) (Fig. 5.12C). The 

clearance and biodeposition rates of the mussel population tracked changes in the 

quantity and quality of seston. However, population excretion rates were 

predominantly influenced by predictions of total bivalve biomass as the model did not 

considered excretion rate to be controlled by any variable other than mussel dry body 

weight and the number of individuals (Fig. 5.lOA). Excretion rates inside mussel 

leases ranged between 0.38 - 0.5 µmol NH4 m3 dai1
. Cultured mussel population 

biodeposition rates divided by total lease surface area ranged between 3 - 5 g 

biodeposits m-2 day-I. 
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Fig. 5.9. Surface and bottom phytoplankton growth rate (µg CHL r 1 day-1
) measured 

through 24 hours incubation between November and April in Brito Cove (A). Water 
temperature, dissolved inorganic nitrogen (DIN) and ammonium measured during the 
incubation experiments (B). 
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Fig. 5.10. Model predictions of total bivalve population (A), total bivalve biomass 
(B), and chlorophyll a (C). 
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Fig. 5.11. Mussel size class density distribution in one meter of rope (A), clearance 
rate separated by size class (B), and mussel rope clearance rate calculated averaging 
clearance rate across size classes (average clearance) and calculated considering 
mussel size class distribution (predicted clearance) (C). 
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Fig. 5.12. Model predictions of population clearance rate (A), biodeposition rate (B), 
and excretion rate (C). 
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Fig. 5.13. Model predictions of water residence time (A), primary production time 
(B), and bay clearance time (C). 
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Relevant factors for analysis of carrying capacity predicted by the model were water 

mass residence time (0.6 - 1.1 day) (Fig. 5.13A), primary production time (1.0 - 1.6 

days) (Fig. 5.13B), and bay clearance time (0.1 - 1 day) (Fig. 5.13C). Water 

residence time was influenced by water renewal both in spring and neap tides (see 

methods), however the frequency of tide amplitude was set to vary more smoothly 

than the real semidiumal cycle that would be harder to visualize in the graph. Primary 

production time was mainly controlled by the growth rate measured by the primary 

production incubation experiments. Bay clearance time was a function of bivalve 

population and standing stock subject to the control mechanisms observed in the 

filter-feeding behavior of mussels to optimize the organic content of ingested food in 

seston with varying quantity and quality conditions. 

Sensitivity analysis of the model was provided separately for P. perna 

feeding behavior (Chapter 2), population dynamics (Chapter 3), and ecophysiology 

(Chapter 4), and it will not be provided here as the main model outputs: 1) bivalve 

population feedback to the system and 2) water residence, p"rimary production, and 

clearance times, are obviously controlled by the coupling of population dynamics, 

feeding and ecophysiology model~, and by tidal height and measured pnmary 

production respectively. 
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5.5. Discussion 

In general the smaller the basin the shorter the water mass residence time 

(Bacher et al., 1998). This is true for Brito Cove where the whole water mass is 

renewed up to twice daily and is less than the primary production time. This normally 

implies that the ecosystem is overwhelmingly dominated by tidal forces (Dame & 

Prins, 1998). Mussel clearance times were less than water residence and primary 

production times. This suggests that phytoplankton must be advected into the cove 

for the cultured mussel -population in this system to be sustained. This is 

characteristic of ecosystems where phytoplankton abundance is controlled by bivalves 

(Dame & Prins, 1998). In coastal ecosystems with dense bivalve populations, these 

organisms represent a major functional component that consumes large amount of 

phytoplankton and couples benthic and water column processes (Dame, 1996). 

The population biodeposition rates predicted by the model means that two 

tones of biodeposits were released per day inside the four mussel leases in Brito Cove. 

Although current and wind may spread this material, most of it settles beneath the 

mussel farms. This affects benthic fauna, which becomes dominated by polychaete 

worms and scavenging gastropods (Stenton-Dozey et al., 1999; Kaspar e~ al., 1985), 

and phytoplankton detritus in form of phaeophytin. Biomass in the sediment can be 

increased by a factor of three compared to a reference site as a result of biodeposition 

associated with bivalve aquaculture (Kaspar et al., 1985). This material, together with 

microphytobenthic biomass, will be resuspended by strong tidal currents and winds, 

making it available to suspension-feeders (Heral, 1985). By grazing particulate 

organic nitrogen present in phytoplankton and excreting ammonium, the form of 
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nitrogen preferentially taken up by phytoplankton, bivalves can short-circuit pelagic 

nutrient processing and rapidly recycle nitrogen in a process which benefits both 

phytoplankton and bivalves (Dame, 1996). 

The strong feedback between shellfish culture and the plankton ecosystem, 

through phytoplankton consumption and nutrient regeneration, implies that estimates 

of carrying capacity need to applying toofs that quantify these feedbacks (Ross et al., 

1999). Much of the effort in developing carrying capacity models is taken up in 

determining the rates at which concentrations of food change throughout the marine 

system (James & Ross, 1996). However, the processing of nitrogen is a complex 

sequence of biological processes. Nitrogen undergoes numerous transformations. in 

addition to state changes as it cycles through the environment, making measurements 

difficult and most of the tirq.e incomplete (Dame, 1996). 

This model tried to couple primary production with nitrogen recycled by 

mussels. Unfortunately predictions were poor due to lack of information about many 

other physical and biological components involved in modelling nitrogen budgets 

applied to phytoplankton growth. Particularly information about sediment 

remineralization rates, other natural and anthropogenic fluxes of nitrogen, and 

zooplankton grazing on phytoplankton in Brito Cove. The successful modelling of 

this feedback loop between the role of bivalves in the nutrient cycle and primary 

production is vital to developing exploitation carrying capacity models. As these 

processes act together under the influence of bivalve standing stock and local 

hydrodynamics to allow predictions of stocking density at which production of 

marketable mussels is maximized. Although the relationship between stocking 
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density and growth reduction is a desirable in developing carrying capacity models, 

this is a surprisingly rare output in most studies (Grant, 1999), probably related to the 

difficulty in closing this feedback loop. 

This study provided a first attempt to elucidate the main interactions between 

bivalve filter feeders populations and the environment in an aquaculture system in 

Southern Brazil. The predictions of biodeposition and excretion rates presented here 

for P. perna are important infonuation that can be readily incorporated in more 

complex model of nitrogen budget applied to carrying capacity analysis. The 

coupling of P. perna feeding and energetic physiology with population dynamics 

enabled estimations of physiological feedbacks of mussel populations to the system. 

Oceanographic measurements associated with a detailed characterization of the cove 

enabled an understanding of how fast \Yater is exchanged in this ecosystem. Finally, 

the integration of all these information indicated that the reduction in growth rate 

observed in the recent years, are likely to be associated with the increased culture 

density and the depletion of food before it can be replaced by primary production or 

advection from boundary areas. 
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Chapter 6 

Thesis Conclusion 
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The investigation of phytoplankton dynamics as a mussel food source is 

complex and depends on various biological, physical, and chemical processes which 

operate over a large range of spatial and temporal scales. The sustainable production 

of mussels in suspended culture depends on the understanding of how these processes 

and their multiple feedbacks act together as a function of farm density. Models that 

reproduce these interactions can be used to evaluate the effect of farm densities on 

mussel growth and sediment dynamics. The present study described and modelled 

some aspects of Perna perna feeding behavior and physiology, in an attempt to 

understand the main mechanisms controlling growth of this species in the semi­

tropical waters of South Brazil. Important feedbacks between mussel populations and 

the environment resultant from grazing and metabolism were presented like filtration, 

biodeposition and excretion rates. 

Short and long time-series of chlorophyll-a presented here demonstrated that 

seasonal patterns in primary production are much weaker in semi-tropical than in 

temperate environments. Indeed, instead of strong seasonal patterns, phytoplankton is 

relatively abundant throughout the year. Food abundance associated with reduced 

temperature amplitude throughout the year directly reflects in higher growth rates as 

reported here. As food abundance and bivalve growth rate are crucial components in 

modelling carrying capacity, the findings reported here are significant as they provide 

ground knowledge to further studies of carrying capacity in Southern Brazil. 
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Mussels accelerate nutrient cycling by removing phytoplankton from the 

column and encapsulating it as biodeposits that sink rapidly. Filtration at large seston 

concentrations leads to the production of large amount of biodeposits (Chapter 2). 

This intense sedimentation of organic matter can transform sediments from a net sink 

of dissolved nitrogen in a source with increased ammonium release (Hatcher et al., 

1994). Ammonium is also the main excretory product of mussels as it is the nitrogen 

compound preferentially utilized by phytoplankton to promote growth. Ammonium 

plays an important role in the nitrogen cycle in mussel farms and any model of 

exploitable carrying capacity in these systems depends of the successful modelling of 

this benthic-pelagic coupling. 

The increase of ammonium concentration inside mussel farms as a result of 

excretion and biodeposition rates has been documented by Kaspar et al., (1985). 

They report that although nitrate and nitrite pools were similar in sediments from a 

mussel farm and a reference site, the ammonium pool was twice as high in farm 

sediment. Measurements of nitrogen availability in the ·water column reports 

ammonium concentrations in the column up to 73 % higher than in a reference site 

(Souchu et al., 2001). Nitrogen fluxes at the water-sediment interface under bivalve 

farms in a shallow lagoon in France, were 1-5 times higher for ammonium in the farm 

area compared to a reference site (Mazouni et al., 1996). Herman & Scholten, (1990) 

also report tha,t in Marennes-Oleron (France), a doubling of nutrient loadings is 

balanced by no more than a 2.5% increase in suspension-feeders biomass, which 

further confirms the important role of bivalves in the nitrogen cycle of coastal areas. 
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When calculating the carrying capacity on the basis of annual average budgets, 

a large number of assumptions have to be made. Given the time scale and the steady 

state assumption, it was not possible to include feedback mechanisms between mussel 

populations and the environment (Smaal, 1991). Furthermore, models with a one year 

time scale are not suitable to predict growth of Perna perna, a mussel that attains 

commercial size within months in the semi-tropical waters of Brazil. Models with 

shorter time scales reproducing dynamic interactions between bivalves, water column, 

and sediment are crucial in studies in these fast growing conditions. 

The models of scope for growth and population dynamics presented here can 

be used as a tool for studies in similar sites. Although there was good agreement of 

the model prediction with the observed mussel growth data, the model needs to be 

tested with an independent set of data before it is can be used as a management tool. 

The model structure can be used, with minor modifications in the coefficients and 

parameters, to describe the scope for growth and population dynamics of other bivalve 

species. The physical aspects involved in c~ing capacity analysis, like import and 

export of phytoplankton by tidal action,_ demand more detailed models of 

hydrodynamics and resuspension by wind, which are site specific and depend of 

intense measurements in every new site investigated. This makes the applicability of a 

general carrying capacity model questionable. 

Mechanisms such as sediment resuspension and nitrogen cycling involve , 

complex models because there are often orders of magnitude differences in the 

standing stocks of organic matter in sediments. There is a model that simulates 

changes in standing stocks and flows of organic matter resulting from sediment 
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resuspens10n m shallow coastal environments (Wainright & Hopkinson 1997). 

However, the integration of this model with the mussel ecophysiology and population 

dynamics presented in this study would generate an excessively complex model. 

Although the model becomes a more realistic reproduction of natural interactions, 

there is in an increasing loss of accuracy as new variables are added. As a result, 

more complex model becomes less precise in their estimates of maximum densities in 

exploitable mussel culture. The model produced in this thesis lacks details of how 

mussels control the nitrogen cycle both within the water column and sediment. Given 

the importance of nitrogen, future work needs to quantify the relationships between 

nitrogen release by mussel population and the sediment, primary production, and food 

availability (Fig. 6.1 ). The prediction of sustainable mussel biomass must account for 

the direct and indirect effects of mussel physiological activities on remineralization 

and local primary production. 

Despite the number of studies about carrying capacity modelling, there is no 

general model that can be readily employed at different sites without extensive studies 

of local hydrodynamics, nutrient cycling and primary production. In spite of this, 

there is a demand for model that can be used to plan the development of mussel 

industry and minimize the deleterious effects of high densities in bivalve farming. 

This demand is particularly high in many developing countries where marine 

aquaculture is becoming an increasingly important alternative of income. As the 

development of the bivalve aquaculture is inevitable and currently underway bivalve 

farmers should observe guidelines of minimum distances between culture ropes, long 

lines and leases to avoid local food depletion and accumulation ofbiodeposits beneath 

culture sites. A precautionary approach associated with continuous monitoring of 
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food abundance and fluxes of standing stocks between water column and sediment 

should guide decisions of further increase or reduction in standing stocks, while a 

predictive model of carrying capacity with broad application is not available. 
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Figure 6.1. Main components involved in modelling the feedback between bivalve population 
ecophysiology and food renewal. The black arrow represents the feedback of nitrogen 
generated by mussel excretion and sediment release to primary production and food 
availability. 
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