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ABSTRAC

In the time dependent situations, the partial differential equations the most clos-
sely associated with the wave propagation are of hyperbolic type. Their role
in the study of non-linear wave propagation is becoming increasingly important;
and the knowledge of the properties of their solution is of considerable value when
applications to the physical situations are to be made. Non linearity in wave oc-
cur in the evolution of discontinuous solutions from initial data propagates along
their characteristics. To obtain accuracy in numerical integrations, small intervals
and difference formulas are convinient immediatly after crossing the characteris-
tic curve. This work is intended to discussed several numerical solutions, for the
two dimensional non-linear wave equations. The methods will be used involve

successive approximation, characteristics, and finite difference methods.
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PREFACE

Partial differential equations as mathematical models of physical and engi-
neering problems involve continuous functions defined on a continuous domain.
Analytic methods for solving hyperbolic equations are limited to well behaved
problems, in which the partial differential equations involve constant coefficients
and regular boundaries. Often the solution leads to indefinite integrals and infi-
nite series in terms of special functions. For more complex situations numerical
methods which use discrete values of both the function and the domain have been
found to be extremely successful.

Discretizations involve two steps. First, the continuous domain is replaced by
a mesh of discrete points within the domain. Second, the governing equations
which are continuous formulations are replaced by a finite system of equations
which is related to the original infinite system.

Basically, discretizations of partial differential equations may be accomplished
by using one of three methods. The first involves expressing the partial differen-
tial equation in terms of its characteristic coordinates and integrating along the
characteristic directions; this is called the method of characteristic. The second
method approximates the original partial differential equation by a finite differ-
ence equation, and is known as the finite difference method. The third, the finite
element method, uses direct approximation to the solution by a function from a
finite dimensional space of functions. This thesis will deal with these approxi-
mation methods to solve second-order hyperbolic equations involving initial value
problems and boundary value problems. .

The characteristics of a hyperbolic equation will be discussed in Chapterl.
Based on the number of characteristics, of which there may be two, one or no
real characteristic, we may classify the types of a partial differential equation to
parabolic, elliptic and hyperbolic. The classification is a useful concept because
the general theory and methods of solution usually apply only to a given class of

equations.



In physical applications the initial value problem is well known as the Cauchy
problem. If the Cauchy problem involves boundary conditions it will become the
Cauchy Gaursat problem. These problems which describe propagation problems
in mathematical models will be formulated in section 1.3. We will discuss the
difficulties that arise when the Cauchy problem is formulated for a non-hyperbolic
equation. However the Cauchy problem is well posed for hyperbolic equation.

The coordinates of a second order hyperbolic equation, when written in canon-
ical form, are the characteristic directions. Characteristic coordinates are the nai-
ural coordinates of the system in the sense that, in terms of these coordinates,
the equation is much more simplified, and can often be integrated directly. The
methods of successive approzimation will be found useful to solve a Cauchy prob-
lem for hyperbolic equations in the canonical form. Further if the canonical form
of a hyperbolic equation is linear, the Riemann’s method will give the solution of
the Cauchy problem in terms of prescribed Cauchy data.

In physical applications, the wave equation is the prototype and most im-
portant example of hyperbolic equation. Mathematical models for some two-
dimensional wave problems will be given in Chapter 2. We will discuss Cauchy
problems involving steady state boundaries and moving boundaries. The analytical
solutions, if any, will also be discussed.

Chapter 3 will deal with quasi-linear second order partial differential equations.
Since the equation is non-linear in the dependent variable and its first derivatives,
the type of equation is dependent on the solution. Generally it is impossible
to transform the equation into a canonical form. Therefore methods discussed
in Chapter 1 are not applicable to this type of equation. Hence we seek other
methods to solve it, such as the method of characteristics. Basically, the method
is similar to those methods discussed in Chapter 1 in the sense that we deal with
integration problems along the characteristic curves. However in the method of
characteristics we keep the original coordinates while former methods use the

characteristic curves as coordinates. The characteristic curves are represented by



non-linear ordinary equations involving first derivatives of the dependent variables.

Using the method of characteristics, the Cauchy problem for the quasi-linear
second order partial differential equation will reduce to a characteristic system,
involving a system of non-linear ordinary differential equations which have to be
solved simultaneously, using iteration calculation processes. We will explore some
numerical procedures to approximate the grid points of the characteristic curves,
and then find numerical solutions of the partial differential equations at these grid
points.

The finite difference equation as the approximation equation is not unique; it
is dependent on the configuration of the discretization of the continuous domain.
Several finite difference methods will be described in Chapter 4. The boundary

conditions usually determine the methods suitable for solving a particular prob-

lem.



Chapter 1

CAUCHY’S PROBLEMS

1.1 Introduction

Most problems in physics and engineering may be classified into three phys-
ical categories: equilibrium, diffusion and propagation problems. The governing
equations of each type are partial differential equations which differ in character.
In comparison with geometrical terminology they may be classified as parabolic,
elliptic and hyperbolic. Such classifications are a useful because the general theory
and methods of solutions usually apply only to a given class of equations.

In section 1.2 , the characteristic curves of a linear second order equation will
be introduced to classify the type of the equation. Knowledge of the character-
istics is useful in the development and understanding of numerical solutions. Of
particular significance is that in the case of Ayperbolic equations there are two real
characteristics directions at each point. By an appropriate choice of coordinates
the original hyperbolic equation may be transformed into one in which the inde-
pendent coordinates are the characteristic directions. Characteristic coordinates
are the natural coordinates of the system in the sense that, in terms of these co-
ordinates, the equation is much simplified. This often results in forms which may
be integrated directly.

Section 1.3 will discuss the Cauchy problem, the problem of determining the



solution of a second order partial differential equation with data prescribed at
initial points or along an initial curve. We shall discuss the difficulties that arise
when the Cauchy problem is formulated for non-hyperbolic equations. Section
1.4 will show that Cauchy problem for the hyperbolic equation in canonical form,
reduces to solving an integral equation over a region bounded by the initial curve
and characteristic lines.

The length of the initial curve is of importance. In the Cauchy problems, the
initial curve is assumed to be infinite. If it is not then we may impose conditions
at the end points. Disturbance moving along the characteristics will be reflected
or transmitted at the boundaries. In the case of a semi-infinite initial curves, if
beside the initial curve a set of data are given along a characteristic curve we will
have Goursat problems, the problems will be discussed in sections 1.5.

Furthermore by assuming that the initial curve is monotonic decreasing and the
coefficient functions involving the first derivatives is continuous and satisfies the
Lipschitz condition, the Cauchy problem for hyperbolic equation in canonical form
is well posed. Picard’s procedure provides the method of successive approrimations
to solve the Cauchy and the Cauchy Goursat problems. The methods will be given
in section 1.6.

Finally in section 1.7, Riemann’s method will be used to deal with Cauchy
problems for linear hyperbolic equations. Based on Green’s theorem the surface

integral problems are reduced to line integrals along the directions parallel to the

boundary.

1.2 Classification of Equations

In discussing second order partial different equations, the most important and
frequently occurring in physical situations, are the wave equation, the heat equa-
tion and the Laplace equation. These types of equations are different in their
characteristic, hence we may classify them into three different type of equations.

The classification is reflected by the analytic character of their solutions which

=1



is dependent on the type of boundary conditions necessary to determine their

solutions.
The three different types of second order partial different equation on which

the wave equation, the heat equation and the Laplace equation classified into, are

?

Use = Uyy = P1(Z, Y, U, Us, Uy) (1.1)
Uyy = Y3(Z, Y, Uy Ug, Uy), (1.2)

and
Uz + Uyy = P2(Z, Y, U, Uz, Uy). (1.3)

In geometrical terminology, these three canonical forms are known as the hyper-
bolic, parabolic and the elliptic equations, respectively.
In this chapter we will deal with a general form of a second order linear differ-

ential equation in two independent variables, say = and v,
a(xa y)uzx + Qb(x, y)uzy + C(.’ZI, y)uyy = 9(377 Y, U, Ug, uy)' (14)

It is assumed that the coefficients a, b, ¢, g are real-valued and continuously differ-
entiable on a region D of the zy-plane.

Difficulties may occur when we use the equation (1.4) as a model of a physical
problem, since we may have a variety of initial and boundary value problems.
However we shall establish that using an appropriate transformation, the equation
(1.4) may be reduced to one of the three canonical forms above. Hence we can
classify the second order linear differential equation (1.4) into hyperbolic equation,
parabolic equation and elliptic equation. The classification is essential, since often
the general theory and methods of solution is applicable only in a particular type
of equation.

It is useful to write
Liu] = a(z, y)tzs + 26(z, Y)tzy + (2, ¥)uyy (1.5)

where L is the operator consisting of the second order differential operators in

the left hand side of the equation (1.4). This is called the principal part of the

3



differential equation (1.4). Further, we introduce the real function A defined on

D by
A(z,y) = (b(z,y))* — a(z, y)e(z, y)- (1.6)

This function is called the discriminant of the equation (1.4).

The classification of the equation (1.4) can be introduced simply by considering
the effect of performing a change of independent variables. We intend to prove
that the sign of the discriminant (1.6) is unchanged under continuous second order

differentiable one to one real transformations of variables z and y. Let

I3

£ =¢(z,y) 7 =1(z,y) (1.7)

be real-valued functions and continuous second order differentiable on D such that

the Jacobian

(¢, )
) # 0. (1.8)

The functions map the region D of the zy-plane onto a region D* of the {5-plane.

Using the chain rule, calculating the first and second derivatives of u results
in
Uy = u&{z‘ + UnTz
Uy = ufé.y + UnTly
Upr = Uggfi -+ QUE-,,{;-T];- + quﬂz. + uffzz + UpNzz
Uzy = Ugebzly + Uen[Eatly + &) + UnnNeny + Uelay + UnNzy
Uyy = uEEG: + 2ugnéyny + unn’lz + uelyy + UnTyy
Substituting these into the equation (1.4) we have
A(§7 77)“66 + 2B(§7 77)”5"7 + C(é? T])uﬂﬂ = G(éa T]: u, U5, u"l) (19)

as the representation of the equation (1.4) in én variables, where

A(&,n) = abl + 2668, + ¢,
B(&,n) = alenz + blézny + Euz] + cbyny

9



C(¢,m) = ang + 2bnany + cn,
G(&n) =g— [@rr + 2662y + ngy]uf — [@nzz + 2602y + COyy)tg

Referring (1.1), (1.2)and (1.3) we are now able to classify the second order
linear differential equation (1.4) as follows.
The partial differential equation (1.4) is hyperbolic, parabolic or elliptic if there

exists transformations (1.7) such that the equation (1.4) becomes

Ugg — Upy = Gl(é,n’uyufyu'r)), (110)
Uppy = Gz(&%%“&“q% (111)
or
Ugg + Unny = G3(§7 5%, uE:”n)a (112)
respectively.

The discriminant of the principal part in the representation (1.9) is

A* = [B(&,n)]* — A(&,n)C (& n)- (1.13)

LN

Then using (1.6), the equation (1.13) yields
a(ﬁ,n)r
A® = A. 1.14
ke (19
Since the Jacobian (1.8) does not vanish, the equation (1.14) shows that the

discriminants A and A™ are both positive (or zero or negative) at corresponding
points. Therefore, the equation (1.4) can be classified according to the sign of its
discriminant. The classification will not change under such change of variables.
From this result we may conclude that we can achieve the canonical form (1.10),

that (1.4) is a hyperbolic equation, if and only if
b —ac > 0. (1.15)

We can achieve the canonical form (1.11), that (1.4) is a parabolic equation, if

and only if
b* — ac = 0. (1.16)

10



We can achieve the canonical form 1.12, that (1.4) is an elliptic equation, if and
only if
b —ac < 0. (1.17)

The problem now is how to determine ¢ and 7 in (1.7) such that the equation
(1.4) is reduced to one of the three canonical forms above. The problem is straight
forward if the discriminant A has the same sign everywhere on the domain D,

either positive, negative or zero. To do that consider an equation
a®,? + 260,9, + c®,? = 0. (1.18)

Dividing by @3 leads to a quadratic equation

\2 (bz
Lo2 P L
a( (Dy) ..b@y c=0. (1.19)

It is a quadratic equation in %2; hence we have
¥y

2 _b 2 —
@1 +Vb ac (1-20)

and
. 2 _ ac
D, b— /b ac (1.21)

@2y a

®; and @, are independent solutions of (1.18) if (1.20) and (1.21) are distinct.

We only deal with the hyperbolic type so that we wish to reduce (1.4) into the

canonical form (1.10). Taking the transformation (1.7) to be

§= ‘I>1(:z:,y), n= (I)2(m’ y)' (122)

we have in A(¢,n) = C(&,n) = 0. Furthermore since the Jacobian (1.8) does not

vanish, (1.14) gives

11



Since A > 0 and A = C = 0 then the last equation gives B # 0. Substituting
these into (1.9) and neglecting the factor 2B, the equation (1.9) becomes

Uen = G(E;W7U,u€aun)- (123)

To show that this equation also represents a hyperbolic equation such as (1.10),

take

§=¢+m, G={-—7
then the equation (1.23) becomes
Uge — Uy = 1&(5) 7, Uy Ug, uﬁ):

Hence the canonical forms of the hyperbolic equation can be represented by (1.10)
or (1.23).
We shall analyse the solution of equation (1.18) by investigating the level

curves

By(z,y) = ks (1.24)

and
Po(z,y) = ko (1.25)

where k; and k; are arbitrary constants. Differentiating these we have
®,.dz + B1,dy =0,

and

(I)gxdit + <I>2ya,'y = 0.

Hence along each level curves we have

dl . —(Dlz

dz &,
and

d_y _ _‘D'Z:c

dz - (bgy ’



Substituting these into the equations (1.20) and (1.21), respectively, we obtain

dy _ bz,y) + /B(z,9) ~ alz,¥)c(z,¥)

—= e (1.26)
dy _ b(z,y) — \/32(.7:,:1,/) - a(z,y)c(z. y) (1.27)
dz a(z,y)

These two distinct ordinary differential equations are known as the characteris-
tic equations. The solution of the characteristic equations define two families of
characteristic curves in the domain D. Using the notation in the equation (1.22)
, we have at each point of D exactly one curve § = k; and exactly one curve
n = ko. Since the Jacobian does not vanish on D, then the level curves have
distinct slope at each point. The characteristic curves of the same family do not
intersect, so they can be used as a basis for the coordinate grid. See figurel.l.
Along these curves the simplified form of the original equation may be used to

obtain a solution.

a=c2 3 el p=c'2
Q=G T
p=c'3

c

P 0 ‘\

Fig.1.1: The Characteristic curves

1.3 The Cauchy’s Data

Mathematical formulations of physical problems often leads to the problems of
determining the solution of partial differential equations satisfying some conditions

along a given curve. The problem are called initial value problem, while the

13



conditions are called the initial conditions, and the given curve is called the initial
curve. Time is often considered as one of the independent variables, and the term
initial values refers to the fact that the data are assigned at the initial time. In
this case the problem is sometimes called the Cauchy probdlem, while the values at
the initial conditions are also known as the Cauchy data.

We will utilize the Cauchy problem widely to describe the wave propagation
problem. By knowing the initial state of the system, we wish to predict the
subsequent behaviour of the system. In this section we will discuss the Cauchy
problem for the general linear second order equation (1.4). Suppose the partial
differential equation (1.4) is defined over a continuous domain D. We will show
that the type of the equation has a significant influence when we deal with a
Cauchy problem.

To formulate a Cauchy problem for the equation (1.4) we need initial condi-
tions. Initial conditions involve the value of u and u, which are given along an

initial curve, say C, where u, denotes the normal derivative, the derivative in the

direction normal to the curve C. See figure 1.2.

Figure 1.2:The Cauchy problem

Suppose the initial curve C 1s defined parametrically by

z = z(7), y =y(7) (1.28)

14



for a real variable 7, and satisfies
(7)) + @ (7)) #0 (1.29)

sy 0 dz r_ d
with z = 9 and y = L.
Then the Cauchy problem can be defined as follows : given continuously differ-
entiable functions @ and w, determine a solution of the equation (1.4) such that

the initial conditions
u(z(r),y(r)) =w(r), ualz(r),y(7)) = w(r) (1.30)

are satisfied along the initial curve (1.28). The functions z,y,w and w constitute
the Cauchy data of the problem.

It is possible to represent the Cauchy problem where the initial conditions
involve derivatives with respect to an axis. Differentiating u witH respect to T

leads to
dr ~ “dr Vdr

where % and % respectively are the direction cosines of the tangent to the curve

(1.31)

C with slope %. Furthermore by using the first initial condition in (1.30) we have
UpT Uy = (1.32)
along the curve C. The direction cosines of the normal n to curve C are —y' and

—uyt +uzy = /(@) + (¥) . (1.33)

Since (1.29) holds, then these last two equations determine uniquely u, and Uy

!
z , hence we have

along the given curve C. Hence instead of prescribing the values of v and u,, along
the given curve C, the values of u,u, and u, may be prescribed along the curve

C. In this case, the initial conditions (1.30) may be replaced by [§]

wz(r),y(7)) = @(r),  us(e(7),y(r)) = wi(r), wuy(z(r),y(r)) =wa(r) (1.34)

where @,w; and w; are given smooth functions. Therefore the Cauchy problem

can be expressed as follows: given continuously differentiable functions z,y, =,

15



wy and wy, determine a solution of the equation (1.4) satisfying the conditions in

(1.34). Further we can calculate all first derivatives in any direction not tangential

to C.
The Cauchy data now consists of the values of the functions z,y, @, w; and ws.
However @,w; and w; cannot be assigned arbitrarily. From the equations (1.32)

and (1.33), it follows that the relation
wi(r)z (1) + wa()y (7) = @ (7) (1.35)

must hold along the curve C. The normal derivative of u along the initial curve

C is then given by

(g0 ey ()
= e ErE (1.30)

1.4 Hyperbolic Equations

The Cauchy problem formulated for equation (1.4), in the previous section, is
too general. The hypothesis on the coeflicients are too weak, and there may be no
solution of equation (1.4). Furthermore the type of equation must be taken into
account, and it is important to know whether the initial curve is a characteristic
curve. In the present section it will be shown that Cauchy problem is well posed
for the hyperbolic equation.

Consider the hyperbolic equation in the canonical form,

0%u ~

G20y = G(z,Y,u, Uz, Uy). (1.37)

Since equation (1.37) is in canonical form, then the characteristics are

r=ky, y=k (1.38)

where k; and &, are arbitrary constants. As a result we can use either z or y to
replace T as the parameter in the Cauchy data (1.34). Suppose the non parametric

representation for the initial curve C is given by
y = ¥(z) (1.39)

16



which is assumed to be invertible and strictly monotonic. Then the Cauchy data

(1.34) can be written as
u(z, ¥(z)) = @(2,y), vz, ¥(2)) =wr(y), wy(z, ¥(z)) =wa(z). (140

The Cauchy data can not be assigned arbitrarily along one of the characteristics
curves. Since along the characteristic line y = k1, for example, the equation (1.37)
becomes

d(uy) du

—== = G(z, k1, u, ot Uy)

dz

which is an ordinary differential equation for v and u, in their dependence on the
variable z. Hence if the Cauchy data are assigned along one of the characteristics
line y = k;, then they should satisfy the last relation, even so we can not expect
the solution to be unique. This shows that the initial curve cannot be one of
the characteristic curves. Therefore we impose the hypothesis on the initial curve
(1.39) that should nowhere be tangent to a characteristic.

Consider first the Cauchy problem for the homogeneous equation,

O%u

=0 141
0zdy (1.41)
which satisfies the initial conditions (1.40).
Writing (1.41) as
0 ,0u
Em 30 = 0

we see that u. is independent of y, hence we have
uz; = ®(z)
for an arbitrary function ®. Integrating this over z gives

u(z,y) = ¢(z) + P(y). (1.42)

where ¢(z) is the anti derivative of ®(z). Differentiating (1.42) with respect to z

gives
) wa(z) = uz(z)  uz(z)

¢ (z) = us(e) = ——+ ——,

<

L7



and since from (1.31) we have

b b
Y= =0z T Wiz
then , J
/ _ uz(z) - uy;;i
¢ (Q:) - 2 + 2 .

Multiplying this by dz and integrating the result, leads to
6(@) = "D 11 [u(e)dz - & [ (@) (1.43)
Similarly differentiating (1.42) with respect to y gives
¥) = wly) = 240 4 280

and from (1.31) we have

U, = EZE u az

YU dy  Tdy
then J i
teoN uy(y) ﬁ T Uz gy

Multiplying this by dy and integrating the result, leads to
o) = 22+ 2 [y = 1 [ (@) (1.44)
y) == 5 | w(y 5 | U= z. .

Substituting (1.43) and (1.44) into (1.42) results in

ue) + o))+ 5 [, el +5 [ w(nin

v=i(z)

[N

u(z,y) =

and using the initial conditions (1.34), this leads to

T

1

wz,y) = gl + =l +5 [, e

1 rv
d+5 [ d 1.45
A+ 5 [ wam)dn (1.45)
This is the solution of the Cauchy problem for the homogeneous equation (1.41).
In the case of the non homogeneous equation, consider first when the functien

G is independent of u and its first derivatives,

0%y
920y = G(z,y). (1.46)

18



To find the solution of the Cauchy problem for the equation (1.46) we can use
the linearity property of the problem. Suppose v(z,y) is the solution of the non-
homogeneous equation (1.46) where the Cauchy data vanish on the initial curve,
i.e. they satisfy the homogeneous initial conditions, @ = w; = w2 = 0. Sup-
pose w(z,y) is the solution of the homogeneous equation (1.41) with the initial
conditions (1.34). Then the solution of the non-homogeneous equation (1.46) sat-
isfying the initial conditions (1.34) is v = v + w. The solution w was found to

be (1.45). However finding the solution v is becomes finding the solution of the

Cauchy problem for the non-homogeneous equation (1.46) satisfying the initial

conditions
u(z,¥(z)) =0, uz,¥(z))=0, uy(z,¥(z))=0. (1.47)

Suppose we wish to find the solution at a particular point R = (z,y) not
lying on the initial curve C (1.39). Say P = (z1,11) and @ = (z2,y2) are the
intersection points of the initial curve and the two characteristic lines through R,

such that z; = ¥~ (y),y1 =y and z2 = z,y2 = ¥(z). See figure 1.3.

Figure 1.3:The Cauchy problem: hyperbolic equation

Consider (z~,y") an arbitrary point on the segment PQ. Keeping y constant.

integration (1.46) over z from z° to = gives

uy(2,9) ~ (e, y") = [ GlEv)de.
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The initial conditions (1.47) implies that u,(z*,z*) = 0 then we have

uy(z,y) = [ G(&v)dg

Furthermore keeping z constant, integrating the last equation over y from y* to

y ylelds
u(z,) - u(z,y?) = [ [ G(& n)ddn.

y. z*

Again the initial conditions (1.47) implies that u(z*,y*) = 0 then we have

U(x,y)=/y/zG(§,n)d£dn- (1.48)

y. x‘
Since (z*,y*) is an arbitrary point on PQ, then the double integral in the right-
hand side is an integral over a region, say X, bounded by the two characteristic

lines through R = (z,y), £ = z and 7 = y, and the arc PQ), the segment of the

initial curve C, which is intercepted by the characteristic lines. Hence we have
u(z,y) = / G(&,n)dédn. (1.49)

as the solution of the Cauchy problem for the non-homogeneous equation (1.46)

satisfying the homogeneous initial conditions (1.47).

Adding (1.45) and (1.48) gives

—
lolr—a

u(z,y) = S[=(z)+=(y )]+

[\

/ dn+// G(€, n)dedn. (1.50)
pN

This is the solution of Cauchy problem for the non homogeneous equation
(1.46) satisfies the initial conditions (1.40). However, since we have dy = 0 on PR

and dz = 0 on QR then the lines integrals in the last equation can be written as

%/ﬂwl (6)de + 3 /wz(n
=}- wq (€)dE + = /w1 Ydé — %/y

2

- VI

-1 Ji © wonl(n)dn — w(€)de.



As a result, the solution (1.50) can be written as
u(z,) = 3{u(P) +u(Q) ~ 5 [ waln)dn —wn(€)dé + [[ Gle,n)déan. (1.51)
PQ b>

This last result may be generalized to a solution of the equation (1.37). By
assuming that the values of u, u, and u, are known, then the value of the function
G in right-hand side of (1.37) can be considered as given. Hence The solution of

the Cauchy problem for the equation (1.37) at the point R is 9]

u(z(R),y(R) = 3lu(P)+ (@)~ [ (wandn —en(6)de)
PQ
+ [ G(&,n,u, ey un)dédn. (1.52)

The solutions (1.51) and (1.50) show us that the Cauchy data along the arc
PQ together with values of the given function G over the region bounded by ¥ are
sufficient to determine the solution of the Cauchy problem at the point R. For this
reason, the region together with the arc PQ is called the domain of dependence
of the solution u with respect to the point R, while PQ is called the segment of
determination. However the Cauchy data along the segment PQ can influence the
solution only in the region bounded by § characteristic curve through the point
P, z = z(P), and « characteristic curve through the point @, y = y(Q) Such
region is called the range of influence, denoted by R, with respect to the Cauchy

data along the segment PQ), see figure 1.4.
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Figure 1.4:The Domain of dependence and the range of influence

1.5 Goursat Problems

We have mentioned before that the characteristic curves of the hyperbolic

equation (1.37)

6*u
= G(l’, y, U, u-‘l-‘} uy)

d0zdy
are straight lines (1.38)

z=k, y=ke.

Assume that the inital curve C

y = U(z) (1.53)

is monotonically increasing curve and intersects the axes at the origin. Suppose
that besides the Cauchy data (1.34) along the given curve (1.33), we also have
the value of u along a characteristic, say the z-axis. The problem of determining
the solution of the equation (1.37) subject to these mixed boundary conditions
above is called the Goursat problem [9]. In the case when the initial curve (1.53) is
reduced to y axis, hence we have data along the system co-ordinate on which are

the characteristic curves of the equation (1.37). The problem of determining the

[ S
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solution of the equation (1.37) subject to the two characteristic curves is called

characteristic Goursat problem.

Let the point R = (z,y) lie in the region above the z-axis and below the curve
(1.39). Say P = (z:,y1) the intersection point of the characteristic line through
R and the initial curve C. Hence z; = ¥~!(y) and y; = y. Denote by @ and S
respectively, the projection points of R and P onto z-axis, i.e. @ = (z,0) and

S = (z,,0). Hence the straight lines PR, RQ,@S and SP form a rectangular

region , say L. See figure 1.5.

v4 c

S Q X

Figure 1.5:The Gaursat problem

Suppose the function G(z,y,u, us, uy) in the equation (1.37) is continuous at
all points in the region ¥ and satisfies the Lipschitz condition in all bounded sub-

rectangles r of I. Integrating u;, over ¥ reduces to a line integration along the

boundary of ¥, ie. straight lines PR, RQ, QS and SP. Hence
z 0 z1 Y
[ werdan = [ ue(elas + [uplmyin + [ uel)de + [ aln)in,

that is
[ wendian = w(R) - w(P) +u(S) - u(Q). (1.54)

Hence

u(R) = u(P) —u(S) +u(Q) + // G(€, 7, u, ug, un)d€an (1.55)

~
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The last equation shows that the solution at R depends only on Cauchy data
along the arc OP of the initial curve and data along the segment OQ of the
z-axis, where O is the origin.

In the next chapter we will deal with the simple case of the Goursat problem
in which the monotonic curve (1.53) is replaced by an axis, say the z-axis, then

Un, the normal derivative, in the initial condition becomes u,.

1.6 Methods of Successive Approximations

The previous section shows us that solving the Cauchy problem for hyperbolic
equation (1.37) leads to solving the integrodifferential equation (1.51) over the
domain of dependence. Now we wish to establish that the Cauchy problem is
well posed for the hyperbolic equation (1.37) when the initial curve (1.39) is a
monotonic curve. It is possible to assume that the Cauchy data vanish along the

initial curve. Hence we only need to deal with the integrodifferential
u(z,y) = [[ G(&,n,u, ue, ur)dédn (1.56)
3

Furthermore there is no lost of generality if we suppose that the initial curve (1.39)

is the straight line
z+y=0, (1.57)

since a suitable change of the characteristic coordinates such as

or

will transform (1.39) into (1.57).
Using Picard’s procedures we may solve the equation (1.56) by constructing a

sequence of successive approximations u” by the formula

u"(z,y) = // G(&n,u™, ug, uy)dEdn, (1.58)

24



where

u(z,y) = /y G(z,n,u", ugy, up)dn, (1.59)

and
z

n+1(l. y) / G(fiy’u uf) y)d£ (160)

-y
These last two first derivative formulas are found by differentiating (1.58) with

respect to z and y respectively. The first initial guess may be taken to be
uo(z,y) = 0. (1.61)

The iteration will converge , that is the limit

u= limu" = > [ttt — u”] (1.62)
n=0

exist and satisfies the integrodifferential (1.50), if the function G is continuous
at all points in a region R = {(z,y)|z0 <z < z1, Yo <y < y1} for all values of

z,Y, U, Uz, Uy, and to satisfies the Lipschitz condition

|Gz, y,u™, w2, ult) — Gz, y, u™, ul, ul)|

< Mt —u?| + [ult! — o2 + lu;‘”"1 —url] (1.63)

Yy

for some positive number M.
Meanwhile, for the Goursat problem we can generate a sequence of successive

approximations by
e (B) = u(P) = u(S) +u(@) + [[ GlEn, tn ugs wr)den  (164)
z
with the initial approximation
uo(R) = u(P) — u(S) +u(Q). (1.63)

As particular example consider the Cauchy problem for

O%*u du Ou

520y =z+yt+u+ -t 5o

5%t 5 (1.66)




satisfying
-1<=z< 1. (1.67)

~

u(z,y(z)) =~z +y, vylz)=-z,
The characteristic lines and the solution at the intersection points of the charac-

teristic lines are depicted by figures 1.6.a and 1.6.b respectively.

.
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l { -1 , [
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[a] Characteristic grids [b] The solution
The vertical lines indicate

the solution, they are
from the actual size.

Figure 1.6 : Successive approximations

1.7 Riemann’s Methods

In the previous sections, the characteristics has been used as the coordinate
system of hyperbolic equations in the canonical form. The Cauchy problem is
reduced to an integrodifferential equation over the domain of dependence. In
this section we will derive the Riemann’s method of solutions of linear hyperbolic
equations. The method presents the solution in a manner depending explicitly
on prescribed Cauchy data, and using Green’s theorem, the surface integrals are
reduced to line integrals along the directions parallel to the given boundary.

Recall the hyperbolic equation in the canonical form (1.37)

G*u

— = G(z,y,u.u=
520y ( ' ¥ -7uy)
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Assume the function G in the hyperbolic equation (1.37) be continuous at all
points on the regionR = {(z,y)|to < z < z1, Yo < y < y1} for all values of z,y, u,
Uz, Uy, and satisfy the Lipschitz condition (1.63) in all bounded sub rectangles r
of R. Assuming that the equation (1.37) is linear, we may write

5*u u

Ou

Oy

+ e(z,y) 5= + fl=z, y)u = g(z,y). (1.68)

Using the linear operator notation, L, the left hand side of (1.68) can be written

as

0*u Ou du
axay +d(xay)—+6(xay)a—y+fu° (169)

L] = Oz

In order to find a solution of the Cauchy problem for (1.68), we shall use

Green’s Theorem in the form
/ / (Us + V,)dzdy = / n.(U, V)do, (1.70)
T r

where the line integration is evaluated in the counter-clockwise direction over
the closed contour I' bounding the region of integration ¥. The parameter o is
the arc length of the curve I', while n is the unit normal to the curve. The
integrand in the left-hand side of equation (1.70) is the divergence of the vector
(U, V). Hence the aim is to set up such a divergence expression involving the linear
operator L. For this purpose we introduce an operator M[v], for v = v(z,y), an
arbitrary continuously differentiable function. The operator M[v] is defined such

that vL[u] — uM[v] becomes a divergence of the vector (U, V) say, that is
vL[u] —uMp]=U, + V. (1.71)

The operator M satisfying equations (1.71) the adjoint operator to the operator L.

L[u], we may write

If L =M, then L is said to be self-adjoint. Considering the terms in the operator
J%u J*v 8
Y

v —u = — @ —ﬁ u@
9z0y  Ozdy Oy \ dz) Oz \ 0y’
Ou O(vd) 9
vl TV T Bs

uvd) ,

Q%]
-3



and

Ju O(ve) 0
- —_ = . 1.
ve 3y +u 99 3 (uve) (1.72)

Hence the operator M[v] must have the form

v d(vd) _ O(ve)

= 550~ 6% 5yt of (1.73)

M[v]

Furthermore from equation (1.69), (1.71) and (1.73) and using the properties in
the equation (1.72) we have

v

U = uvd — ua, (1.74)
and
V= uve+v%. (1.75)

Notice that the representation of U and V is not unique, but it must satisfy the
Green’s Theorem.

Integrating the equation (1.71) gives

/ (vL[u] — uM[v])dzdy = // Uz + V] dzdy,
b3 >
and using Green’s Theorem[17], this equation becomes

/ / (vL[u] — uM[v])dedy = / n.(U, V)do (1.76)

i r .
where the line integration is evaluated in the counter-clockwise direction over the
closed contour I bounding the region of integration ¥. The parameter ¢ is the
arc length of the curve I, while n is the unit normal to the curve. Suppose I' has

the parametric representation

z = z(9), y=y(o) (1.77)

then the unit normal n is given by
dy dz
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Substituting this into (1.76) results
// (vL[u] — uM{v])dzdy = /(Udy - Vdz). (1.79)
T r

Suppose the Cauchy data are given along initial curve C' with the parametric
representation
z =z(7) y = y(7)- (1.80)
which is assumed to be monotonically decreasing. We wish to find the solution of
the Cauchy problem at the point R = (£,7) above the initial curve. Choose the
region of integration X in (1.79) to be the domain of dependence of the solution of
the Cauchy problem with respect to the point R. Thus the contour I is a closed
curve, enclosing the area X, consisting of the characteristic segment PR , arc PQ

and characteristic segment QR. (See figure 1.7)
A

~<

—p—
X

Figure 1.7: Riemann’s Methods
Since we have dz = 0 on @R and dy = 0 on PR, then equation (1.79) may be

written as

// vL({u] — uM[v]dzdy = / (Udy — Vdz) + / Udy - / Vdz. (1.81)
> PQ QR AP

/Vdm = /(uve-{-v—gﬁ)dx

—/ v——+u——)d:z+/ uve—u—

= [uv]h + / u (ve— %) dz

RP
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= [uv]p — [uv] +/u(ve———):z:

Substituting this into equation (1.81) we get

[uv]p = [uv]P-i-/RPu(ve—%)dz—/;R (vd——)dy—/‘;q (Udy — Vdz)

+ / / (vLfu] — uM[v))dzdy. (1.82)
z

Now our next aim is to select the function v(z,y) such that (1.82) will repre-
sents the solution of the Cauchy problem in terms of Cauchy data along the arc
PQ. Since we wish to eliminate u from the integral over & on (1.82) we have to

choose v(z,y) to be a solution of

M[v]=0. (1.83)
and satisfies
ov
3. = V¢ (1.84)
along PR ( when y = 7),
Ov
- = 1.
e vd (1.85)
along QR ( when z = ¢) and also
v(z,y) =1 ‘ (1.86)

at the point R (when z = €,y = n). Such a function satisfying (1.83), (1.84),
(1.85) and (1.86) is called the Riemann-Green function..
By (1.86), the equation (1.82), at the point R, is reduced to

[ulg = [uy] +/ ve=3 =) —/QRu(vd—g—;)dy—AQ (Udy — Vdz)
+// (vL[u] —uM[v])dmdy. (1.87)

The second and the third terms on the right-hand side are vanish by (1.84) and

(1.85)
v
/ u(ve — a—)d:z = /RP u(ve — ve)dz = 0, (1.88)



ov
/Q R uvd = 5oy = /Q L u(vd = vd)dy = 0. (1.89)

Furthermore using (1.74) and (1.75) we have

= Jog (Udy — Vdz) = —/PQ uvld(z,y)dy — e(z,y)dz] +/ (u—dy -}-v?dm)
(1.90)
while (1.83) gives
// (vL[u] — uM|v])dzdy = // vL{u]dzdy. (1.91)
z z

Substituting (1.88),(1.89), (1.90) and (1.91) into (1.87) we get

[ul, = [uv]p —/;Q uv[d(z,y)dy — e(z,y)dz] +/ ( dy +v%dm>

+// (vL[u]) dzdy.
>

Since L[u] = g(z,y) the last equation can be written as
Ou
[ulp, = [uv]p —/}; uv(d(z, y)dy — e(z, y)dz] +/ <u—dy+v-a—dz>
+ / / (vg) dzdy. (1.92)
>
Hence if the value of 2 is given along the curve C, the equation (1.92) can be

used to find the value of u at the point R.

Suppose is given along the curve C. Since

ol ~loly = [ (%ar s %y

Ov Ou Ov Ou
= ((ua +vo- Jdz + (u 6y va—y)dy>

we have
Ov Ou Ou dv
[uv]p = [uv]y — /PQ (u—xa’x + v—ydy) - /};Q (v—zda: + u—ydy).
Substituting this into the equation (1.92) we get
v (9u
[ulp = [uv]Q - /PQ uv(d(z,y)dy — e(z,y)dz) — /PQ <ua—da: + vz )

+ /[ (vg) dady (1.93)
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Hence if the value of g—; is given along the curve C, the equation (1.93) can be
used to find the value of u at the point R. Furthermore, adding the equations

(1.92) and (1.93) produces

[ulp = -;—([uv]P - [uv]Q) - /PQ uv(d(z, y)dy — e(z,y)dz)
_%/PQ v <Z—Zdy - %dx) - % o u (%dz — Z—Zdy) +/ (vg) dzdy.
3

These results will be found useful in the discussion of the one dimensional wave

equation in Chapter 2.

1.8 Discussions and Conclusions

The values of the solution of the Cauchy problem for the hyperbolic equation
in canonical form at a particular point does not depend on all Cauchy data in
the initial curve but only on the segment of dependence, the segment of the curve
intercepted by the characteristic lines through the point, and the value of the
given function over the domain of dependence, bounded by the characteristic line
and the segment of dependence.

Further if beside the initial curve the data are given along a characteristic curve
then the problem becomes the Goursat problem. The solution of the Goursat
problem at a particular point lying on the region between the characteristic curve
the initial curve, depend on the data along the characteristic and initial curves.

Under the assumption that the hyperbolic equation satisfies the Lipschitz con-
dition, the Cauchy problem for the hyperbolic equation in canonical form is a
stable problem. The methods of successive approximation generates a sequence
of approximate solutions which is converges to the exact solution .

Finally by introducing the Riemann-Green function, Riemann’s method presents
the solution of the Cauchy problem for linear hyperbolic equation, in a manner

depending explicitly on prescribed initial conditions.
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Chapter 2

ONE DIMENSIONAL WAVE
PROBLEMS

2.1 Introduction

In this chapter we will discuss problems involving one dimensional wave equa-
tions. There are several physical situations which can be described by one di-
mensional wave equations, such as transverse vibrations of a string, longitudinal
vibration in a beam, and longitudinal sound waves.

In order to provide an intuitive feeling for expected properties of a solution and
also what appropriate set of initial or boundary condition may be applied, we begin
this chapter with derivation of the wave equation for a simple physical situation,
the linear model of the vibrating string . Non homogeneous wave equations are
found by applying driving forces. After constructing the linearized model for the
motion of a vibrating string, we will give a characterization of the solutions of the
model equations from which many properties of waves can be deduced.

In section 2.4 the D’Alembert solution for the homogeneous one dimensional
wave equations will be derived. This section will illustrate the use of the D’Alembert
solution to describe the motion of an infinite string. In the case of a semi-infinite

string, we have to take into account a disturbance reflected at the boundary; there-
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fore a modification of the D’Alembert solution must be considered. Space-time
interpretations will be discussed using different initial conditions.

In the case of finite string problems, the wave is no longer a travelling wave,
but a standing wave. In section 2.6, the methods of separation of variables will
be used. This method leads to a solution which can be interpreted as an infinite
sum of simple vibrations, which describes a standing wave. In this section we
shall analyse the simple and intuitive system involving wave motion, transverse
vibration of a tightly stretched , elastic string. We will examine some physical
systems, which have different types of boundaries.

The Riemann method which was discussed in the previous chapter, will be

extended to the Riemann-Volterra Solution in section 2.7.

2.2 Vibrating Strings: A Linear model

Consider an elastic string of negligible thickness tightly stretched between end
points = 0 and z = L. Suppose there are no external transverse forces such as
gravity acting on the string, so that the forces acting on the string is only due to
a tension force. The equilibrium position of the string is the interval 0 < z < L.
Suppose that the string is distorted and then at a certain time say y = 0, it is
released and allowed to vibrate only in the direction perpendicular to z-axis, that
is no displacement along the z-axis. Hence the motion of the string takes place
in a fixed plane. The problem is determining the deflection of the string, say u,
at any point and any time y > 0, that is finding u(z,y) for 0 <z < L and y > 0.

We shall construct a model for the motion of the string under the action of
the tension force, say T'(z,y). Since the string is elastic, then the tension force T'
in the string offers no resistance to bending. Hence the tension at each particle of
the string is tangential to the curve of the string. Denoting 6 the angle between
the curve of the string and the z-axis, the components of the tension force in the
direction z and u are Ty = T'cosf and T, = T'sind.

Consider the motion of PQ), a small element of the string, of length ds, in the
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segment [z,z + Az] as shown in figure 2.1.

u
* 0 (x+Ax) T, (x+A%,y)

T, (x,vy) 6 (x) : lTu(x+Ax,y)
V T(x+Ax,y)
Tu (x, Tix, Y)

x X+AX x

Figure 2.1:A linear model of string
Referring to the figure 2.1, the forces acting at the end point P are

Tu(z,y) = T(z,y)sinb(z),
T(z,y) = T(z,y) cosb(z)
and the forces acting at the end point Q) are
Tu(z + Az,y) = T(z + Az,y)sinf(z + Az),
To(z + Az,y) = T(z + Az,y) cos 8(z + Az).
The net force in the u direction, Ty, is given by
T.=T(z+ Az,y)sinb(z + Az) — T'(z,y) sin f(=z).
However since there is no motion in the z-axis direction then
Tu(z,y) = To(z + Az,y) = constant
such that the net force in the z direction is
To(z,y) =T(z + Az, y)cosb(z + Az) — T'(z,y) cosb(z) =0

hence

%(Tcosé’) = 0. (2.1)
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The net forces acting on PQ) is

T(z,y) = Tulz,y)+Te(z,y)
=T(z+ Az,y)sinf(z + Az) — T(z,y) sinb(z), (2.2)

Applying the Newton’s second law gives

T(z + Az,y)sinf(z + Az) — T(z,y)sinf(z) &*u
= pAz—
Az Oy?

where p(z) is the mass per unit length of the string. Dividing by Az and taking

limits as Az — 0 yields
0*u

0 .
—(TSZTLH) = p-a?',

Oz (23)

: _ Ou
Since tand = 37 then

Ou

sinf = —cosd,
Oz
hence

0 } 0 Ou
a—x(Tsan) = %(Tcosaa—m)

g 0u, Oud
= Tcosﬂa—x(a) + %%(Tcose),

and recalling (2.1) results

15} : *u
a(Tsznﬁ) = Tcosﬁﬁ.

Substituting this into (2.3) we get

&%*u 8%u

0— = p—.
T'cos 522 p5y2

Furthermore for small deflection § — 0, cosf =~ 1 and hence

0%*u

g :
(TSZTI.&) ~ T-a?é

T

(2.5)

Using this, the equation (2.4) may be replaced by

o _ o
Oz pay2'

This equation govern the vibrating of the string with small deflection.
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Consider now

length
and
x length )
T = mass X acceleration = ma.s.s. ength _ ™
tzrne? 2
therefore,
T mll )

—_— = ,—— = —2.
p  t?m (t)

Hence % has the dimensions of a velocity squared. Since T' and p are positive, we

can put
r
—=c" 2.7
P ( )

where the real constant c represents a velocity. Using this, the equation (2.6) may

also be expressed as
Py ,0%
— =c—.
Oy? Ozx?

It is well known as the one dimensional wave equation, which arises in many other

(2.8)

physical problem such as one-dimensional compressible fluid flow. Since ¢ # 0 the

wave equation (2.8) may be written in the homogeneous form
q

—-—-c‘z—==0 (2.9)

2.3 Driving Forces

The wave equation (2.9) may be generalize by applying a driving force G along
the string at any value of z and y. If the force G is a function of z and y we have

the non-homogeneous wave equation

*u _, 0%
ﬁ —C 2%5 = G'(:z,y). (210)

The force may also depend on u its first derivatives; in this case

Pu 0%

502~ © wz.G(:c,y,u,uz,uy). (2.11)



Notice that this equation is the hyperbolic equation in the canonical form (1.37).
Using (1.22),

§ = ®:(z,y) 1= (z,y), (2-12)
the equation (2.11) will be transformed into the canonical form (1.37)

o*u
Jdzdy

= G(z,y, U, Uz, Uy). (2.13)

From section 1.2 we know that the functions ®; and @, in (2.12) are chosen to be
the characteristic curves of the equation.

To solve the Cauchy problem for the non-homogeneous wave equation (2.11)
we transform first (2.11) into the canonical form (2.13) and then we may use the
method of successive approximations (see section 1.7 ). If the function G is linear
in the first derivatives, then we may use the Riemann’s method (see section 1.8 ).

Some examples will be given later in section 2.8.

2.4 Travelling Waves

In order to clarify the properties of transverse vibrations of the string consider

first the Cauchy problem for the wave equation
Uyy = CPUgy (2.14)

for —co<z<oand 0 <y < 0.

According to Newtonian mechanics, the natural condition to impose are the
prescription of the initial displacement and the initial velocity. That is, initially
at y = 0 we prescribe the shape and the velocity of the string to be given functions

r(z) and s(z) respectively
u(z,0) = r(z), uy(z,0) = s(z). (2.15)

In this case, the functions r(z) and s(z) are defined over —co < z < 0. Notice
that the set of initial conditions (2.15 ) is a special case of Cauchy data (1.30)
when the initial curve C (1.39) is the straight line y = 0, i.e. z-axis, such that the
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normal derivative u, becomes u,. Then we have the following Cauchy problem:
find the solution of the wave equation (2.14) which satisfies the initial conditions
(2.15).

Since the equation (2.14) is hyperbolic everywhere, a suitable change of inde-
pendent variables will bring it into its canonical form. Taking the transformation
(2.12) to be

E=2z—cy,0.5iny =z +cy (2.16)

the partial differential equation (2.14) is then transformed into canonical form

which is (1.41). From section 1.4. we have found that the general solution of the

partial differential equation (2.17) is given by
u(§,n) = 8(£) + ¥(n) (2.18)

where ¢ and % are arbitrary functions of ¢ and 7 respectively.

Substituting the transformations (2.16) into (2.18) we have
u(z,y) = ¢(z — cy) + ¥(z + cy)- (2.19)

Now we have to determine the functions ¢ and ¥ such that the initial conditions

(2.15) are satisfied. By applying the first initial condition we have

¢(z) + 9(z) = r(z) (2.20)

Differentiating (2.19) with respect to y, and applying the second initial condition,

we obtain
e (@) + c(z) = s(2).

Furthermore by integrating this from, say, zo to z , we have

T

~ed(a) + e(a) = [ s(e)de + K, (2:21)

where K is a constant of integration. Solving equation (2.20) and (2.21) , we have

K

8(e) = 57(z) = 5 [ s(€)d + =

zC Zg
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and
z _[’

9(@) = 5r(z) + 5 [ sO)de ==

Zo

Replacing z on ¢ and ¥ by z — cy and z + cy respectively gives

z— K
Mo—c)=grle—an) -5 [ (@&~ (22
and
1 1 =+ K
vt =grleta)+o [ T s()de + = (2.23)

Substituting these into (2.19) results in

woy) =5 —a) +rera)+ o [ s©d (220

This is the solution of the wave equation (2.14) with the initial conditions (2.15).
The solution is well known as the D’Alembert solution of the one dimensional wave
equation. The D’Alembert solution (2.24) is compatible with the solution (1.45)
found in section 1.4. The solution (2.24) can be found by adopting directly the
solution (1.45).

We know from section 1.4 that for a hyperbolic equation there are two char-
acteristic curves, namely the o characteristic and the S characteristic through
each point on the domain. We wish to examine here some significance influences
the characteristic curves of the wave equation (2.14) into the D’Alembert solution
(2.24).

Consider an arbitrary point R = (zo,yo) in the zy-plane. Obviously the «

characteristic line and the £ characteristic line through the point R are

T —cy = To— CYo (2.25)

z + cy = zo + cYo- (2.26)

respectively. Substituting the coordinates of the point R to (2.24) we get

(o, Yo) = %(r(zo — ¢cyo) + r(zo + cyo)) + 1 / Foew s(€)de. (2.27)

2¢ To—CYo
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This result shows us that the solution at the point R 1s obtained as being the
average of the values of the initial displacement r(z) at points say P = (zo—cyo, 0)
and ¢ = (z¢ + cyo,0) and the initial velocity s(z) along the segment PQ).
Geometrically the point P and @Q are found by backtracking the characteristic
lines (2.25) and (2.26). Referring to the discussion in section 1.4, the triangular
PQR is called the domain of dependence of the solution u with respect to the point

R, and denoted by I, while the interval PQ is called the interval of dependence

of the point R. See figure 2.2. v A

a(P):
X=-Cy=Ccy -Xx

B(Q):

x+cy=cyo+x 0

olQ):

B«p):
/ X—-CYy=C¥p+Xg

x+cy=cy0—x0 DRI S

............. -
D 0 X

Fig.2.2. The characteristics of wave egn.
PO: the domain of determinacy wrt.R

‘Z ,the domain of dependent wrt.R
[C3:R,the range of influence wrt.PQ

Figure 2.2:The domain of dependence and the range of infulence

However the initial values along the interval PQ can influence the solution only
in the region bounded by the § characteristics line through the point P

IT—Cy =20 CYo
and the a characteristic line through the point Q = (z¢ + o, 0)

T+ cy = o+ CYo. (2.28)

The region bounded by these characterisiic lines is the range of influence of the
initial data along the segment PQ). The shaded area in figure (2.2) indicates the
range of influence and denoted by ®. Hence the significance of the characteristic

curves 1s that they form the boundaries of the domain of dependence and the

range of influence.
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Furthermore in order to give a space-ttme interpretation of the D’Alembert
solution (2.24), consider two specific cases of the initial value problems; firstly
when the string has a given non-zero initial displacement and zero initial velocity,
secondly when the string has zero initial displacement and a given non zero initial
velocity.

The first case the initial conditions (2.15) have the form
u(z,0) = r(z), us(z,0) =0 (2.29)
for —oo < z < oo then the D’Alembert solution (2.24) is reduced to
1
u(z,y) = 5(r(z — ay) + r(z + cp)). (2-30)

The equation (2.28) shows that the solution at a point (z,?) may be interpreted
as being the average of the initial displacement r(z) at the point (z — ¢t,0) and
(z + ct,0). The initial displacement r(z) are propagated as time goes on. The
solution represents as a superposing of two travelling waves which has the same
profile and the same velocity ¢, but travelling in the opposite directions along the
z-axis.

The second case when the string has initial displacement zero and a given

initial velocity. The initial conditions (2.15) have the form
u(z,0) =0, us(z,0) = s(z) (2.31)
for —oo < z < 00 . Then the D’Alembert solution (2.24) reduces to

w(z,t) = — / Y s6)de. (2.32)

2¢ Jamcy

-~

Suppose s*(z) is the function such that % = s then we have

u(z,t) = 21—6(.5'(.2 +cy) — s™(z — cy)).

It represents a superimposing of travelling waves 5-s"(z + cy) and —s"(z — cy)

travelling in the opposite directions along the z-axis.
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As a particular illustration of the first case, consider the example below.
Example 2.1.

Find the solution of wave equation

Uyy = Uzz (2.33)
that satisfies the initial conditions
Mmm=r®%={L ol <1 (2.34)
0, |z[>1
and
uy(z,0) = s(z) =0 (2.35)

where —o0 < z < o0.
The characteristics lines at the points (—1,0) and (1,0) divide the zy-plane

into six regions,

={(z,y);z—y>-1Nz+y<1lnz >0},
={(z,y)iz+y < -1},
Ry ={(z,y);z+y>-1Nz+y<1},
Ry={(z,y)z+y>1Nz—-y< -1},
={(z,y);z—y>-1Nz -y <1}
)

Rs = {(z,y);z —y > 1}.

such as shown in figure 2.3.
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Figure 2.3: The regions of example 3.1
The initial values in (2.34) and (2.35) reduce the D’Alembert solution (2.24) to

u(z,y) = 5(r(z = 3) + 1z + ) (236)
that is \
(1 V(z,y) € Ry
0 V(xs y) € Ry
u(z,y) = 05 Vmyeh (2.37)

0 V(z,y) € Ry
05 V(z,y)€ Re

L0 V(z,y)€ Re
We may construct the surface of the solution depicting the motion of the wave as

shown in figure. 2.4.



Figure 2.4: The solution of string with zero initial velocity
The slopes of the surface of motion are shown by its contour, the projection of

the solution onto the zy-plane. (See figure 2.5)

- iy f §
34

N

-
4
+

ol .

-4 -2 0 2 4 s

Figure 2.5:The contour of the solution of string with a zero initial velocity

Corresponding to various values of y, we may construct a series of graphs which

represent the motion of the wave. (See figure.2.6 )



t=0 —— X
! Yy
t=1/2¢
/T \M >
t=1/¢
7 RN
1=3/2¢ V ] ] —p- X
- y
1=2/¢c T X
-1

Figure 2.6:The wave motion of string with zero initial velocity

In the second case, the string has zero initial displacernent and non zero initial
kel

velocity.
Example 2.2

Find the solution of the wave equation (1.21) satisfies the initial conditions

u(z,0) =r(z)=0 (2.38)
and
uy( 0)=s(z)—{ Lol <l (2.39)
o B 0, |[z[]>1 -

As in the previous case, the characteristic lines in points (—1,0) and (1,0) divide
the zy-plane into the regions R, Ro, R3, R4, Rs and Rg, such as shown in figure

2.7.

46



Figure 2.7:Regions example 2.2
Using the initial condition the D’Alembert solution is reduced to

hence

u(z’ 3/) =

u(z,y) =035 [ s(€)de;

=y

( 0.5/2Yde =y, V(z,y) € By
0.5 727 0df = 0, V(z,y) € Ry
0.5/ df =03z +y+1), V(z,v)€ Rs
0.5/%;d¢ =1, V(z,y) € Ry
0.5 f;_ydf =0.5(—z+y+1), V(z,¥) € Rs

L 0.5 [Z2Y 0d¢ = 0, V(z,y) € Rs

This solution may be grawn as shown in figure 2.8.
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20

Figure 2.8: The solution of siring with zero initial displacement
The slopes of the surface of motion are almost linear such as shown in the contours.
(See figure 2.9)

b7

2.5

] DS " : “ _ >
210 -7.5 -5 -2.5 0 2.5 35 7.5 10°%x
Figure 2.2:The contour of tne solution of string with zero initial displacement.

And finally for various values of v, we may also construct a series of graphs which

represent the motion of the weve. (See figure 2. 10)



Figure 2.10Che wave motion of string with zero initial displacement

2.5 DBoundary Conditions Associated with the

Wave Equations

So far the string has been supposed to be unbounded, that is the wave equation
(2.14) is defined over infinite domain ~o < z < oco. The solution appears as

travelling waves moving in opposite directions. Consider now, the portion of the

string in the segment 0 < z < o0
Upy = ey (2.42)

for 0 < z < o0 and 0 < y < oc. Suppose that besides of the initial conditions
(2.15) and (2.16), there are additional conditions which is applied at the end
point of the string. Such conditions are called boundary conditions. Problems
involving the initial and boundary conditions are called boundary value prodlems.
By applying a particular boundary condition, the motion of the waves will be
influenced at the boundary. Disturbance moving along the characteristics will
then be refiected or transmitted at the boundary. In this section we wish to

investigate the corresponding changes in the D Alembert solution.
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Assume that the end point of the string is attached by a linear spring such as

shown in figure 2.11 below.

T_\
\ ~—

—>-
X

Figure 2.11Elastic Attachment on the boundary

The string attachment give rise vertical force proportional to the displacement

u(0,y). Setting the tension force Tu.(0,y), we have -
Tu.(0,y) = ku(0,y)

where k is the spring constant and T is the string tension. Hence the condition

should be satisfied at the boundary is
uz(0,y) — 6u(0,y) =0, 0<y<oo. (2.43)
with § = % When § — co we have
u(0,y) =0, 0O0<y<o (2.44)
the end point is fixed. When 6 = 0 we get
uz(0,y) =0, 0<y<oo, (2.45)

physically, the string at the boundary has no resistance, free to move in the vertical
direction. If the spring attachment is displaced according to the function 1*(y),

see figure 2.12, then the condition should be satisfied at the boundary is
Tuz(0,y) = klu(0,y) — t"(v)].

50



hence we have a non-homogeneous boundary condition
uz(0,y) — 6u(0,y) = t(y), 0<y< oco. (2.46)

with § = % and t(y) = -t%—)— is supposed to be first order continuous differentiable.

ud

A
(N

ity
: >
x
Figure 2.12Non-homogeneous boundary condition
When ¢ in (2.46) is a function of y we have
uz(0,y) — 6()u(0,y) =t(y), 0<y<oco. (2.47)

This is well known as the boundary condition of third kind, while the first and

second kinds
u(0,y)=1(y), 0<y<oo, (2.48)

and
uz(0,y) =t(y), vy20 (2.49)

are well known as the Dirichlet and the Neumann’s boundary conditions respec-
tively. Physically, the Dirichlet boundary condition is due to controlled end the
point, while the Neumann’s boundary condition is due to given force at the end

point, and the boundary condition of third kind is elastic attachment of the end

point.



2.5.1 Controlled end points

Consider first the imposition of a condition such that the solution remains zero
along the boundary. The problem can be formulated as follows: find the solution
of the wave equation (2.42) satisfying the set of initial conditions (2.15), and the
boundary condition (2.44). Notice that since the wave equation (2.42) is defined
over the region R = {(z,y)|0 <z < 00, 0 <y < oo}, then, in this case, the set
of initial conditions (2.15) is defined over finite interval 0 < z < oo.

Using a method similar to the method in solving the infinite string problem,
substituting the set of initial conditions, we have (2.22) and (2.23) which, in this

case, hold everywhere in the first quadrant of the zy-plane. Hence we have to find
o(z — cy) V-oo<z—cy<oo

and

¥(z + cy) V0 < z4cy < oo.

However since the initial data r(z) and s(z) are defined only for z > 0, (2.22) gives
only the value of ¢(z — cy) for z — cy > 0. Hence we still have to find the value of
#(z — cy) in the region z — cy < 0. Geometrically, the wave plane is divided into
two regions, z > cy and z < cy. The characteristic through P = (zo ~ cyo,0) is
reflected at the boundary. The reflection line intersect the characteristic through
the point @ = (z¢ + ¢yo,0) at the point R = (zo,yo) in the region z < cy. Hence
the solution at the point R is influenced by the boundary value. The situation is

depicted by figure 2.13 below.



Y
x<cy
xZ=Ccy
u (XOI Yo)
—ee
Disturbance
reflected X>Ccy
at the odry
(Xp=C¥o:0) (Xp+C¥p,0) X

Fig.2.13: the semi-infinite string

For z < cy, substituting the boundary-condition (2.44) into (2.19), we have

¢(—cy) + ¥(cy) =0, (2.50)
or
o(—cy) = —v(cy)-
Letting z = —cy, the last equation becomes

&(z) = —p(-2),
and replacing z by z — cy gives
¢z ~ cy) = —p(cy — 1), (2.51)

further by using (2.23) we have

; 1 1 re=+oy K i
0z —cy) = —gr(ey —z) + ZLo s(€)de + —. (2.52)
Finally substituting (2.23) and (2.52) into (2.19) we get
1 1 z+cy .
we) = plrieta)—rler -2+ o [T sOdk  (259)

Hence the solution of the wave equation (2.42) satisfying the set of initial condi-
tions (2.15), and the boundary condition (2.44) is
i(r(z —ey) +rlz+ey)) + 5, 25 s(6)dE, 2

: . (2.54)
a(r(z+ ey) —rley —z)) + 5. 15 s(6)el, z <y

u(z,y) = {
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This equation show us that for z > 0 the solution is the same as the D’Alembert
solution for the infinite wave, while for z < 0 the solution is modified due to the
reflection of the wave at the boundary.

Secondly, when the boundary 1s moving in such a way that its displacement is
t(y), a function of y. The problem can be formulated as follows: find the solution
of the wave equation (2.42) satisfying the set of initial conditions (2.15), and the
boundary condition (2.48). However in order the boundary condition (2.48) is

compatible with the set of initial conditions (2.15) it is necessary that
¢(0) = r(0), ¢'(0) = s(0). (2.55)

We solve the problem by using the same procedures such as in the first case. For

z < ¢y, the relations (2.50) and (2.50) become

¢(—cy) + b(ey) = H(y), (2.56)
-and
8z - cy) = t (- 2=5) - p(—(ey - ), (2:57)
respectivelly, therefore (2.53) will be
- ztcy K
d(z—cy)=t (—z . c) - %r(cy —z)+ 21—c/zo+ s(€)de + - (2.58)

Substituting (2.23) and (2.58) into (2.19) we get

way)=t(-T25) + et o) —rla =) + o [ s (259)

Hence the solution of the wave equation (2.42) satisfying the set of initial condi-

r—cC

tions (2.15), and the boundary condition (2.48) is
3(r(z ~cy) +r(z + o)) + 5 o2 s(6)d€, =2 cy

“(x’y)z{t( =) 4 2(7‘(-’C+Cy)—7‘(03/—$))+2cfx+cy5(§)d€’ z<ey
(2.60)

2.5.2 Elastic attachment of the end points

Suppose the end point of the string is attached to the origin by linear spring

and the spring attachment is displaced according to the function of y we have
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the boundary condition of third kind (2.47). As a particular example consider
the following example: find the solution of the wave equation (2.42) satisfying
the set of initial conditions (2.15), and the boundary condition (2.43). However in
order the boundary condition (2.43) is compatible with the set of initial conditions

(2.15) it is necesary that
r' (0) — 6r(0) = 0, s'(0) = 6s(0) = 0. (2.61)
Suppose s(z) = 0, then the equations (2.22) and (2.23) give us
¢z —cy) = %r(cy —z) Vz>cy
and

1
Y(z+cy) = 37*(:1: +cy) Vr>cy.

From subsection 2.5.1. we know that v is constant along the characteristic z+cy =

k, for each constant k. Hence we have
1
Yz +cy) = 3r(z+cy) Vz>cyUz < cy.

Using functional substitution such as in the subsection 2.5.1, we have
B dr(z—cy) +r(z+cy)], 2> cy
uoy) = {%r(x+cy)+¢(x—cy> Vo<oy
Suppose ¢(z —cy) = (jzc_—dl) for some function ®. Writing jf:—cyl =y-—£
then ¢(z —cy) =9 (y - f) . Substituting this into (2.62) we have

(2.62)

1
u(z,y) = sr(z+cy) + @ (t - g) Vz < cy. (2.63)

To determine the function ®(z — cy) we may use the boundary condition (2.43).
Applying the boundary condition (2.43) gives

%r'(cy) - %‘?'(y) - gr(cy) ~ 68(y) = 0.

Hence we have the first order linear ordinary differential equation

®'(y) + c60(y) = 5 [r'(ey) — br(cy)]

[S=1 oY



and the solution 1s
B(y) = 5= /0 "7 (en) = 8r(en)] €*mdy + ke (2.64)

where k = Phi(0). Furthermore from (2.62) and (2.63) we have Phi(0) = 1r(0).

Inserting this into (2.64) we have

_ S by [T - ben 1 —bey
®(y) = 5¢ /(; [7‘ (cn) 5r(cn)] e"dn + 27"(0)6 . (2.65)
Hence
— z —
pz—cy) = @ <—(Tcy—))
cemeyy [T
= _g_e-&c(.Lc_))/ [r (en) — 5r(c77)} efndn + %r(O)e“é"y.
2 o 2
(2.66)
Substituting this result into (2.62) we get
1
u(z,y) = 5[7‘(:1: —cy)+r(z+ey)], z2=cy, (2.67)
and
—(z=cy)
C _go(=lz=cs) z ,
ue,y) = e ™EF [T [ en) - r(en)] erdy
1
+§r(0)e'5°y, Vz < cy. (2.68)

2.6 Standing Waves

So far we have seen that the solution of the one dimensional wave equation for
an unbounded domain appear to be travelling waves. For semi-infinite strings, by
applying boundary at the end of the string the D’Alembert solution was modified.
Now we study the motion of the string in a bounded region, say 0 < ¢ < L, with
both end points z = 0 and = = L are fixed. Due to repeated interactions with the
boundaries, the waves are no longer moving, but appear to be what are known as

standing waves.
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Consider a vibrating string of finite length, L, which may be described by wave

equation

Uyy = gy (2.69)

for 0 < £ < L and 0 < y < oo with boundary conditions
u(0,y) =0, wu(L,y)=0, O0<y<oo (2.70)
and initial conditions
u(z,0) =r(z), uy(z,0)=3(z), 0Lz<L. (2.71)

The motion of the string is composed of two waves continually travelling along it
in opposite directions, and the whole displacement being the resultant of the two
waves and their reflections at the end points. To solve this problem we use the

Method of Separation Variable. Assume that the solution has the form
u(z,y) = X(z).Y(y). (2.72)

Differentiating this and substituting this into the equation (2.69) gives

Y” B XII
2Y X

The left-hand side does not vary with z, therefore the right-hand side cannot vary
with z. Similarly the right-hand side does not vary with y, therefore the left-hand
side cannot vary with y. The result is that both sides must be constant, say A,

hence we have two ordinary differential equations,

"

Y i—2\Y =0
and
X' -AX=0

where —co < A < co. When A > 0, the boundary conditions (2.70) imply trivial
solutions and only A < 0 give feasible solutions. By rewriting A = —u?, the last

two equations become

Y" + (ue)?Y =0 (2.73)
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X" 4+ 12X = 0. (2.74)

The general solutions of these equations are
Y(y) = Asin(pcy) + Beos(ucy) (2.75)

and
X(z) = Csin(uz) + Dcos(uz) (2.76)

respectively. Substituting these into (2.72) we have
u(z,y) = [Csin(uz) + Deos(pz)][Asin(ucy) + Beos(pcy)). (2.77)

Since according to the first boundary condition (2.70) u(0,y) = X(0)Y (y) = 0 and
Y(y) # 0 in general then X(0) = 0 and hence (2.76) leads to D = 0. Furthermore
the second boundary condition u(L,y) = X (L)Y (y) = 0 implies that X (L) = 0.
Putting these into (2.76), we get Csin(uL) = 0. Since we are looking for a non-
trivial solution, C # 0 and

sin(pL) = 0. (2.78)
The solution of this equation are denoted by

nmw

= n=0,1,2,... (2.79)

Substituting these into (2.77) we have an infinite number of solutions

. .nT . .enT enm
up(z,y) = Xp(z)Ya(y) = szn(Tx)[anszn(Ty) + bncos(Ty)]a
n=1,23%..., (280

Since the partial differential equation and the boundary conditions are linear and
homogeneous then any sum of the solutions (2.80) is also the solution, thus we
have the general solution

u(z,y) = f: sz'n(T}J—Waz:)[a,“sin(%7£ )+ bncos(f%{y)]. (2.81)

n=1

Using the first equation in the initial condition (2.71) we have

u(z,0) = r(z) = 3 bnsz‘n(-“L—’rz).

n=1
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This series suggest that b, should be chosen as the coefficient in the half range

Fourier sine series of r(z). Thus we have
b, L/ T)sin n—mdz (2.82)

Differentiating the equation (2.81) with respect to y and using the second equation
in the initial condition (2.70) gives
ad enm nw
uy(2,0) = s(z) = D an(——)sin(—z).
= L L

Again a, should be chosen as the coefficient in the Fourier’s sine series of s(z):

2 L
ap,=— | s(z)sin %dz (2.83)

nwc Jo
Hence equation (2.81) gives the solution of the boundary value problem governed
by equations (2.69) ,(2.70) and (2.71). The coefficients of the solution (2.81) are
given by (2.82) and (2.83).
In particular when the initial velocily is zero, that is s(z) = 0, implies a, =
0,Vn, then equation (2.80) is reduced to

nnw

tn(2,9) = Xa(@)Yaly) = busin(-e)eos(T-v),
n=1,23.... (2.84)

For each n the solution u,(z,y) is a standing wave having the fixed shape X(z) =

sin(Fz) with varying amplitude Y (y) = cos(“f=y). The zeros of X(z) are called

nodes.
Since
nw ent |1 nw . nT
sm(—z)cos(—L—y) = §[szn( 7 (z = cy) + szn(f(:z: + cy)],
then we have
b, . -
un(2,y) = lom((z — cy) + sin((z + )} (2.85)

The right hand side are two travelling waves of equal amplitude but going in

the opposite direction. Hence we may consider the standing wave as a sum two
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travelling waves of equal amplitude but going in the opposite direction, see figure

2.12.

Fig.2.12: the standing wave

Again, since s = 0 then the solution (2.81) is reduced to

i [sin( cy)+ = Zb szn(——(:z: + cy). (2.86)

n—l

l\)lr—-

Notice that these two series are the half range Fourier sine series of » when 7 is a
function of (z — cy) and (z + cy) respectively. Hence the equation (2.86) can be:

written as
u(z,y) = 5l (e = ) + (e + )] (2:87)
where 7" is the odd periodic extension of r with period 2L. This result is known
as the D’Alembert solution for the problem in the case 2 of section 2.3.
As a particular example consider initial value problem below.
Example 2.3. Suppose the boundary value problem govern by equation (2.69),

(2.70) and (2.71) has zero initial velocity the triangular initial deflection

2¢c
T, 0‘<.‘L‘<3

u(z,0) =r(z) = (2.88)
2(L-2z), lz|>1
Then the solution (2.86) gives
1 o0
=3 Z:-: wlsin(—(z —cy) + = 712—:1 b sm(———(z + cy). (2.89)
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which depicted by figure 1.13 below

lf* () u(x, o)
2

- — " u(x,%)
Lex (x=2)

2 ] 2
1, 1 (x,%)
2‘.‘* (x+ 2—) %f* (x—%) \/
=% (x- 9

1 4
=E% (2+ =) 2
2 s » < > u(x,i—)

—_———

Lex (z-1) =1£x (x41)
2 2

u({x,1)

Figure 2.18tanding wave as superimpose two travelling wave

2.7 The Riemann-Volterra Solution

So far the previous sections discussed the Cauchy problem for the wave equa-
tion (2.33), on which the Cauchy data ( the initial conditions) given along the
z-axis. In the present section we deal with the Cauchy problem for the wave
equation .

G*u  u (2.90)
on which the Cauchy data given along an initial curve C' with the parametric
representation

z = z(7) y=y(7). (2.91)

The initial curve C is assumed to be strictly monotonic. Then from section 1.3,
the Cauchy problem can be described as follow: given continuously differentiable

functions = and v, determine a solution of the equation (2.90) such that the initial
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conditions

u(z(r), (1)) = =(7),
un(2(7),9(7)) = w(7) (2.92)

are satisfied along the initial curve (2.91).
Such a problem can be solve by using the Riemann method discussed in section
1.8. However the Riemann method gives the solution of the Cauchy problem for

linear hyperbolic equation in the canonical form (1.66)

82'& +d%+ _aﬁ
Oz 0y Oz eay

The method involves introducing the linear operator L containing the left-hand

+ fu=g(z,y). (2.93)

side terms of the equation (2.93) and the adjoint operator M such that vLu] —
uM[v] becomes a divergence for some continuously differentiable function v =
v(z,y). Taking v as a Riemann-Green function, the method gives the solution in
terms of prescribed values along the given curve and the values of the function g
over the domain of dependence.

In this section we will genéralize the Riemann method to determine the solution

of the Cauchy problem for the linear equation
u O 8*u Ou Ou
52 T o T ooty T as Ty T/ (2.94)

where a,b,c,d, e, f and g are function of z and y. Without transforming this

equation into the canonical form (2.93), the Riemann-Voltera method [17] defines

the operator L by
v F*u *u Ou ou _
—aax2+bay2+Caxay+da—m+ea—y+fu, (290)
and the adjoint operator M([v], by
P*(av) O*(bv) O*(cv) O(dv) I(ev)
= - — 2
9t T oy T owdy bz oy TV (2.96)

for v = v(z,y), an arbitrary continuously differentiable function, such that v.L[u]—

L]

Mlv]

uM[v] becomes a divergence of the vector (U, V) say, that is
vLju] —uMv] =U; + 'V, (2.97)
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Of special interest is the situation where the adjoint operator M, is identical with
the operator L, L = M , the self adjoint operator.
Applying the Green’s Theorem we have !

/ (vL{u] — uM|v]))dzdy = / (U + V,)dzdy

b «
- P

/ n.(U,V)do (2.98)
r

where the line integration is evaluated in the counter-clockwise direction over the
closed contour I bounding the region of integration ¥. The parameter ¢ is the arc
length of the curve I', while n is the unit normal to the curve.

Consider now as an example, the wave equation (2.90). By defining the oper-

ator L
Ou %
= — 2.
I = 55 - 5 (2.99)
then the equation (2.90) may be written as
Liu] =0. (2.100)

Now we wish to find the solution at an arbitrary point R = (zo,¥o). In section
2.3, we have shown that the characteristics curves of the equation (2.90) through
the point R have the forms

z4+y =20+ Yo (2.101)

and

T —y=2Zo— Yo- (2.102)

Denote by P and @) the intersection points between the curve C and these char-

acteristic curves through the point R. (See figure. 2.14)

1the generalized form of Green’s Theorem
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X

Figure 2.14The Riemann Volterra’s Method

Denote by I, the close curve involving the characteristic curves (2.101), (2.102)

and the initial curve (2.91). Suppose I' has the parametric representation

y = y(o). (2.103)

Using the similar procedures as in the Riemann’s method (see section 1.8), we
have

Ou ov
U = 'Ua—x - ua—z (2104)
and
Ou Ov
S = gy — — .
! vay + uay (2.105)

The Green’s function v(z,y) satisfies the conditions

Mlv] = 0, (2.106)
-S;Z =0, V(z,y)€ (PRUQR), (2.107)
and
v(Zo,y0) = 1. (2.108)

If we take v = 1, the conditions (2.106), (2.107) and (2.108) are satisfied, then
we have here

= (2.109)



and

Ou
V=c-—0-. 2.110
- (2.110)
Since Lu] = M[v] = 0 then the equation (2.98) reduces to
/ n.(U,V)do = 0.
r
Substituting (2.109) and (2.110) gives
Ou Ou
!n. (&,—a) do = 0, (2111)

or
Ju Ou
N\ m=y—7 ]| do=0. 2.112
(/;ap +/};Q +/QR> [n (8:1:’ 83/)} 7 ( )
Since the curve I' is given parametrically by (2.103) then the unit normal n is

given by
dy dz

m (2o2). e

On RP, o is an arc-length parameter on the characteristic (2.101), hence we have

dz =1 dy -1

= wA (2.114)
Substituting these into (2.113) gives the unit normal on RP
-1 1
=|—,—]. 2.115
g ( 2 \/§> (2115)

On QR, o is an arc-length parameter on the characteristic (2.102), hence we have

d_:c_—l dy 1
do V2 do

Substituting these into (2.113) gives the unit normal on QR

n= <\/i§ %) . (2.117)

On PQ, ¢ is an arc-length parameter on the initial curve (2.91), the parameter o

(2.116)

is replaced by 7. Hence the unit normal on PQ is

dy dz
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Using (2.115), integration along the characteristic RP gives

/ ou _Ou) gy = [ |- AOv_ L0,
rp \ Bz’ dy / V20z /20y

_ / Ou d:t: ou dy o
bz da By do

—/Pd—uda

= u(P) — u(R). (2.119)

Similarly, using (2.117), integration along the characteristic QR gives

/ 0 (QE _@) do = [L@_L@} o
or \dz’ Oy QrR{V20z /29y
-/ [ @dﬁ_%ﬂ]da
Ozdoc Oydo

= - 0 d—o_dO'

=u(Q) — u(R). (2.120)

Since on P(Q) the parameter o is replaced by 7, integration along PQ becomes

Ou Ou _ dy dz\ [Ou Ou
hom(@-5) % = Lol(#-5) (3-5)]

_ (3u dy 4O Ju d.’r) i

Ozdr  Oydr
Ou ou
= (az dy + 6—d:z> (2.121)

Substituting (2.119), (2.120) and (2.121) into (2.112) results

1 1 Ou ou )

u(R) = 5(u(P) +u(Q)) - 5 / ( 5e+ 50 (2.122)

It is the solution of the Cauchy problem for the wave equation (2.90) satisfies
initial conditions (2.92) along the initial curve (2.91).
For instance if the given curve (2.91) is the z-axes, i.e. y = 0 then the unit

normal on PQ is (0,1), integration along interval PQ is



such that (2.122) is reduced into

L) +u@)+ L [ P (2.123)

u(R) = 2 Jpo Oy

Y]

It is the solution of the Cauchy problem for the wave equation (2.90) satisfies
initial conditions (2.92) along the initial curve (2.91). For the point R = (zo, o),
the characteristic curve (2.99) gives P = (z¢ — yo,0) and the characteristic curve

(2.100) gives @ = (z¢ + yo,0). Hence we have

1 1 fzotwo 9
u(R) = 5(u(ao ~0,0) + ulzo — w0,0)) + 5 [ Foda. (2.124)

Since y = 0, the initial conditions (2.92) becomes
u(z,0) = r(z),uy(z,0) = s(z). (2.125)
The first initial condition gives
u(zo — Yo, 0) = (o — o), (20 — ¥0,0) = (0 + %0),
and the second gives

zotyo O To+
/o O-—ud:z:=/ ’ Os(:z:)d:z:.
Zo—Yo ay Lo —Yo

Substituting these into (2.122), gives
s(z)dz (2.126)

u(R) = =(r(zo — yo) + r(zo + y0)) +

[

!
2 Jao—uo

which is known as the D’Alembert solution (2.27) when ¢ = 1.

2.8 Non-Homogeneous Wave Equations

We have mentioned in section 2.3 that by applying a driving force G, we have
the non-homogeneous wave equations (2.10) or (2.11). In the case of (2.11) G is
dependent on w and its derivatives. By transforming it into the canonical form
(2.13), we may used the methods of successive approximation discussed in section

1.8.
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Consider now the problem determining the solution of the non-homogeneous
wave equation (2.10) defined on the finite interval 0 < z < L. The problem can
be described as follow: find the solution of the wave equation

0z Oy

satisfying the initial conditions

= G(z,y), - L<z<L,0<y<o (2.127)

u(z,0) =r(z), uy(z,0)=s(z), 0ZLz<ZL. (2.128)
and the boundary conditions of the second kind
u(0,y) =t(y), ull,y)=t(y), 0<y<co. (2.129)

Since the equation (2.127) involves the external driving force G(z,y) then the
method of separation variables cannot be used here. In the present section we are
going to use the Cauchy Riemann’s method, discussed in the previous section, to
solve the problem.

From the previous sections we know that the characteristic curves of the wave

equation (2.127) divide the domain into the sub-domains J — IV. See figure 2.13.

vA
T
\4 W
U S
F
E D
> —
P A B Q x

Figure 2.15Sub-domains

Integrating the equation (2.127) over region J bounded by the triangular PQR,

// 82 a d-'“iy —// (€,7)) dédn. (2.130)

PQR

we have
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From the previous section we know that by using the Cauchy Goursat method
the left hand side integration in (2.130) is reduced to (2.112), the line integrations
along initial line PQ), characteristic lines QR and RP. The solution is found to be

(2.126). Hence the solution of the equation (2.127) at the sub-domain I is

z-cy

u(z,y)= 5(rlz— ) +r(e e+ [ s(E)de+ [] cemeen. @z

z—cy

Furthermore we seek the solution of (2.127) at the point F' lie on the sub-
domain IJ. Integrating the equation (2.127) over the region bounded by rectan-
gular CDFE gives

“ dedy = )) déd 2.132
[] 5~ gpeetn= [ ©cmdcan (2132
CDFE CDFE

The left hand side integration in (2.132) is reduced to the line integrations

(o o o) (355 o = i) - wien

—[u(F) — u(D)] + [u(E) — w(F)] - [u(C) - u(E)). (2.133)
Hence the solution of the equation (2.127) at the point F' is
u(F) = u(D) ~u(C) +w(E) 5 [[ (Gle,m)dedn. (2130
CDFE

Furthermore integrating the equation (2.127) over the region bounded by rectan-

gular ABDC gives

u(D) ~u(C) = 51u(C) + u(EN + 3 [ Ta

2 Jas 0y z"% // (G(&,m)) dédn. (2.135)

ABDC
Substituting this into (2.134) we get

u(F) = u(B)fu(C)+ u(B) + 5 [ Sds—3 [ (Glem)dedn.  (2136)
ABFE

The equation (2.134) show us that at the sub-domain 77 the solution is dependent
on the value of u on left boundary and the characteristic through CD. Hence the

problem finding the solution of (2.127) in the sub-domain /J is becomes problem
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finding the solution of (2.127) with the data are prescribed on the characteristic
segment PR and the boundary segment PV which is other than a characteristic,
such problem is called Goursat problem, see section 1.5 page 25. However the
equation (2.135) tell us that the required values along C'D can be replaced by
the initial data along the along AB. The solution at the sub-domain /7] may be
calculated by using a similar procedure such as for the sub-domain 7/.

Finally we seek the solution of (2.127) at the point T lie on the sub-domain I'V.
Integrating the equation (2.127) over the region bounded by rectangular RSTU

gives

// 3—;———dzdy— J[ (€,m)) dean. (2.137)

RSTU
The left hand side 1ntegrat10n in (2.132) is reduced to the line integrations

(Lot Lo+ L o) [ (o 52)] = 9 - i

—[u(T) — w(S)] + [u(U) — w(T)] - [u(R) — w(U)]- (2.138)
Hence the solution of the equation (2.127) at the point T is

1
u(T) = u(S) - u(R) +u(U) - 5 [[ (G&,m)) déd. (2.139)
RSTU
This solution is dependent on the values of u at the points S, R and U which

are lie on the two characteristic through R. Hence problem finding the solution
(2.127) at the sub-domain /V is problem finding the solution (2.127) with data are
given along the two characteristic through R. Such problem is called characteristic

Goursat problem, see section 1.5 page 25.

2.9 Discussions and Conclusions

The D’Alembert solution of the one dimensional wave equation for an un-
bounded domain appear to be travelling waves. For the semi-infinite string, the
motion of wave is influenced by the boundary and the D’Alembert solution must
be modified. Further the motion of a finite string is composed of two waves con-

tinually travelling along it in opposite directions, the whole displacement being
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the resultant of the two waves and their reflections at the end points. The Method
of Separation Variable gives a solution in term of a series of standing waves. Fi-
nally, the Riemann-Volterra solution, produces an explicit solution in which it is
dependent on the prescribed boundary values. When initial conditions are given
along z-axis, the Riemann-Volterra solution is reduced to the D’Alembert solu-
tion. When we deal with a boundary value problem, the domain is divided by
the characteristic lines into four sub-domain. In the first sub-domain, below the
characteristic lines, the problem is reduce into Cauchy problem. In the second
and third sub-domains, in the left and right characteristic lines respectively, the
problems becomes the Goursat problem. In the fourth sub-domain, above the

characteristic lines, the problems becomes the characteristic Goursat problem.
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Chapter 3

METHOD OF
CHARACTERISTICS

3.1 Introduction

In the previous chapter we found that by an appropriate transformation a
linear second order differential equation is reduced to one of three canonical forms
classified as parabolic, elliptic and hyperbolic. In the case of hyperbolic equations,
the discriminant of the principal part of the equation is positive and the fwo
characteristic directions are real and distinct at all points in the domain of interest.
The characteristics are independent of the solution u.

For the sake of variety, we generalize the concept of characteristics for a quasi-
linear equation

a(T,y, U, Uz, Uy ) Uzz + 26(Z, Y, U, Uz, Uy YUzy + C(T, Yy Uy Uzy Uy )Ugy = 9(Z,Y, U, Uz, Uy )-

(3.1)

From section 1.2, we know that the classification of the quasi linear equation (3.1)

depends on the sign of the discriminant of the principal part of the equation, that

is
Az, y, u, Uz uy) = b% — ac (3.2)

However since the coefficient functions a, b, ¢ involve z,y, u,u; and u,, then the
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discriminant depends on u as well as z and y. Hence, the type of equation depends
on a particular solution considered, in a given problem.

Our first objective is to formulate a Cauchy problem to a quasi linear (3.1)
equation which will be analogous to the one already discussed in chapter 1. That is
the Cauchy problem reduces to finding the condition under which the prescribed
values are sufficient to determine the solution along the characteristic curves.
However since the coefficient functions of the second derivatives contain the de-
pendent variable and its first derivatives, then the equation is non linear in the
dependent variable as well as non linear in the first derivative of the dependent
variable. In addition the equation cannot be transformed into one of the three
canonical forms, such that the methods such as the Riemann’s methods, discussed
in section 1.8, is not applicable.

The method of characteristics involves expressing the partial differential equa-
tion in terms of its characteristic coordinates and integrating along the character-
istic directions. The quasi linear hyperbolic equation will reduce to the character-
istic system. The system involves non-linear ordinary differential equations which
should be calculated simultaneously so that to solve the system we will need to
discretize it. Discretization involves approximating the two families of the char-
acteristics curves by characteristic grids and replacing the differential equations
with appropriate finite difference equations.

In the last three sections we are going to explore some methods to approximate
the characteristics curves, and then find the solutions of the partial differential
equation at these characteristic grid points.

First of all, based on the Taylor’s series of order one, the straight line method
will be derived in section 3.4. This method leads to a discretization error O(h).
Geometrically the method approximates the characteristic curves by straight lines.

Secondly based on Taylor’s series of order two, the predictor-corrector meth-
ods will be derived in section 3.5. Geometrically the method approximates the

characteristic curves by parabolic arcs. The use of parabolic arcs give us a more
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accurate approximation, with discretization error O(h?).

Increasing the order of the Taylor’s series may give a betier approximation,
however since we deal Cauchy problem of a second order of quasi linear equation,
we have to avoid the evaluation derivatives of order higher then two. Hence we
seek other method to improve the approximate values.

Since the characteristic curves are governed by first order differential equations,
then we may integrate directly along the characteristic curves. Basically numerical
procedures for solving differential equations can be used to find the characteristic
grids. However since we only have one set of prescribed values as information,
we have to use one step methods, such as the Runge Kutta method. However we
need an interval integration. The approximate values found by the straight line
method will be used to do so.

In section 3.6. we propose two alternative methods to improve the approxi-
mate values. We will use the approximate values calculated by the straight line
approximations as the initial guess. Then the Runge Kutta method will be used
to approximate the value on the characteristic curves. An improved approximate
value will be found as the intersection point of the approximate curves. However
if the approximate curves do not intersect, we may approximate the intersection
point. In this section we approximate the intersection point by say, the method
A and the method B. The method A approximates the intersection point by the
intersection point of the arcs of approximate curves, while the method B approx-
imates the intersection point by the intersection point of the tangents at the end
point of the approximate curves. We will explore how better approximations can

be achieved and compare the results.

3.2 Characteristics system

Suppose we are given a Cauchy data set along the initial curve C which is
given by
z=2z(1) y=y(1), —oc0<T<o00. (3.3)



Suppose that the point P(z,y) lies on the given curve C, then for some Az, Ay,
such that (z + Az,y + Ay) € D, the Taylor’s series expansion gives

1
u(z+ Az, y+ Ay) = ulz,y)+ u Az + u, Ay + E(u:,:_.,,.(A:'c)2
+2uzy Azly + uy (Ay)*) + O[(Az)®, (Az)%], (3.4)

where O[(Az)3, (Az)®] denotes higher order derivative terms.

By differentiating equation (3.1), all third and higher order derivatives at the
point P can be found in terms of u, uz, Uy, Uzs, Uzy and uy,, hence we need only
find ugg, Ugy and u,,. However knowing the values of u, u, and u, is not sufficient
to determine all the second derivatives gy, uzy and u,,. Therefore the problem
reduces to finding the condition under which the known values of u,u,, and u,
are sufficient for the determination of the unique values of uzz, s, and u,, along
the given curve C that satisfy the equation (3.1).

Along the given curve C where u; and u, are prescribed, we know the values
of differentials '

Uy = Ugz T +Usgy Y (3.5)

and

Uy = Uzy T+Uyy Y . (3.6)

These rates of change can be considered as known quantities that are related to

the values of uzs, sy and u,, along the given curve C, while & and ¥ denoting fl-:-,
and %} respectively.

Equations (3.1), (3.5) and (3.6) form a system of linear equations, in uzz, Uz,

and u,,, which has the matrix form

Ax=b (3.7)
a 26 ¢ Ugy g
where A= |2 ¥ 0| ,x=]ugy|,andb=|u,
0 = ¥ Uyy Uy
Using Cramer’s rule, we have
Upg Ugy Uy 1 (3.8)

det(Ay)  det(Az) det(As) det(A)
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where det(A;),7 = 1(1)3, are determinants of the matrixes A with its ith column
replaced by b. From these relations, the system of equations (3.7) will have a
unique solution unless the determinant of matrix A vanishes.

When det(A) = 0, the values of uzz, uz, and u,, will usually be infinite. As a
result the prescribed values, u,u, and u,, will not satisfy the partial differential
equation. However if the compatibility conditions det(A;) = 0 ,Vi = 1(1)3, are
satisfied then u;z,uz, and u,, can be finite and satisfy the partial differential
equation (3.1) [10] . Further if any two A; = 0, the determinants are zero.

Suppose that C is a curve on which det(A) =0, that is
2 . )
a(9) - 2bgs +c(2)* =0,
Dividing by z, we have the quadratic equation
AN
a(—,-) —2bT+C=0,
z z
which is equivalent to the equation

dy 2 dy
—=)* —2b(—== =0. .
a( S5 - 26(ZL) + e =0 (3.9)

Suppose that the curve C is chosen such that the slope of the tangent at every
point on it are the roots of the equations (3.9). Then denoting the roots by a and

B , we have
dy

dz

= =

(b+ Vb% — ac) (3.10)

Q|

and

%=ﬁ= %(b—\/b2—ac), (3.11)

which are equivalent to the equations (1.26) and (1.27) in section 1.2 when the
coefficient functions a, b and ¢ are independent of u,u; and u,. These equations
give the directions of the characteristic curves at any point on C for the given
values u,uz, and u,. A curve which at each of its points has the direction « is
said to be an a characteristic curve, and a curve which at each of its points has

the direction B is said to be a 8 characteristic curve. Then the solution of (3.10)
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and (3.11) define two families of characteristic curves of the quasi linear equation
(3.1).

According to the values of a, b and ¢ at that point, there are two real character-
istic directions if the given partial differential is Ayperbolic, one real characteristic
direction if it is parabolic, and no real characteristic direction if it is elliptic. No-
tice that since a, b, and ¢ are functions of z,y,u,u; and u,, then the type of the
partial differential equation (3.1) may depend on the region in which the solution
is to be found.

Furthermore from the equation (3.8) , we know that if det(A) = 0 and 3k, k €
{1,2,3} such that det(Ay) = 0 then the rest determinants are vanish. Suppose

for example that
det(Az) = O,

that is
auY+cuy,z—gzy =0.
Dividing by = we have '
¥y . .
e Uz +cuy,ygy =0,
which is equivalent to

d
ad—z-d(uz) + ed(u,) — gdy = 0. (3.12)

Assume the quasilinear (3.1) is hyperbolic throughout the domain; by substi-
tuting the characteristic directions from (3.10) and (3.11) into the equation (3.12),

we see that the condition that should be satisfied along the « characteristic is,

o~

aad(uz) + cd(u,) — gdy = 0, (3.13)
and along the B characteristic is,
afBd(u;) + cd(u,) — gdy = 0. (3.14)

These last two equations may be regarded as the representations of the partial

differential equation in the characteristic directions.
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When u does not appear explicitly as an argument of the coefficient functions
a,b,c and d, then the system of equations (3.10), (3.11), (3.13) and (3.14) is
sufficient to determine the solution of the Cauchy problem of (3.1). If a,b,c or d

does depend on u, we can use the relation
du = uzdz + u,dy (3.15)

to determine the solution.

Hence the system of equations (3.10), (3.11), (3.13), (3.14) and (3.15) provides
five equations that govern the way in which the unknown function u and its first
partial derivatives change with the independent variables z and y. The systm
is called the characteristic system. Hence when the quasi-linear equation (3.1)
remains hyperbolic throughout the domain, the Cauchy problem for it reduces to
solving the characteristic system.

Suppose the given curve is other than the characteristic curves, then we have
two families of characteristic curves over the domain D. From the discussion
in section 1.4 we know that since the Cauchy data are propagated along the
characteristic curves, then the solution of the Cauchy problem should be calculated
at the intersection point of the characteristic curves. The intersection point are
called characteristic grid points. The characteristic grid points are obtained by
solving the ordinary differential equations (3.10) and (3.11). Furthermore the
values of the first derivatives of u are calculated by (3.13) and (3.14). Finally the
solution at each characteristic grid point is calculated by (3.15). However since
a, b, ¢, and g are functions of z,y, u, uz, and u, then the equations (3.10) and (3.11)
should be solved simultaneously with (3.13), (3.14) and (3.15). We will require

numerical processes to do so.

3.3 Discretizations
To discretize the problem, let us consider the segment of the initial curves C
z=2z(r0) y=y(7) (3.16)
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The subscript 0 on the parameter 7o indicates that the initial curve C is chosen to
be the zero time level curve where the initial conditions are prescribed. Dividing

the interval into a finite number of, say n, equally spaced sub intervals with the

end points

Too L T0; S 7oy K e < T0psy < TOns

the corresponding points on C are
(Zo.0, y0,0)«, (z10: y1,o)-, vy (Tn-2,00 yn—l,U)’ (zn,0= yn,O)

where (.0, %:.0) = (z(0,), ¥(70,)) for ¢ = 0(1)n.

Figure 3.1:Initial curve

Using the given initial conditions we are able to calculate a set of values in-
volving the exact values of the coordinate points, the solution, the first derivatives
of the solution and the characteristic directions at all points in the initial curve.
These values will be recognized as the given values.

Consider P = (zo,0,¥0,0) and @ = (z10,¥1.0) the first two adjacent points on
the given initial curve (3.16) which is assumed to be not a characteristic curve. The
0’s in the second subscripts of the coordinates points P an ¢ indicate that these
points lie on the initial curve. Suppose the a characteristic curve through the point

P and the f characteristic curve through the point () intersect in an advance point
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R € D, the domain of the equation (3.1). Using the initial values at the points
P and @, we are able to calculate the solution at the point R*. However since
the characteristic curves are governed by ordinary differential equations (3.10)
and (3.11) which are non linear in u and its first derivatives then we are going to
approximate the intersection point R* by R = (z1,1,¥1,1)- The 1’s in the second
subscripts of the coordinates of the point R indicates that the point R is located
in the time level 1. In the next three sections we are going to approximate the
characteristic curves (3.10) and (3.11). The process will result the point R. Some
methods involve iterative procedures, so that the R will be denoted by R* for non
negative integer n.

Furthermore solving the difference representations of the equations (3.13) and
(3.14) will give approximate values of the first derivatives of u at the point A. Fi-
nally the solution at the point R can be calculated by the difference representation
of the equation (3.15).

This process is repeated for each adjacent pair of points on the initial curve
C to obtain a set of grid points in the 1% time level and the solution at these
points. In addition, using the calculated values at grid points in the time level 1
we are able to calculate the solution at the grid points in the time level 2. These
processes are repeated for further time levels.

Suppose that we know the solution at the points (z;;, ¥:,;) and (zis1,5, Yi+1,5) at
the time level j**. The advance point (;41,j41, ¥i+1+1) at the timelevel (+1)* is
found by means of the intersection of the intersection point of the a characteristic
through the point (z;,,¥:;) and the 8 characteristic through the point (z,;, ¥:;)
which are governed by the equations (3.10) and (3.11) respectively. See figure

3.2.a.
When we deal with a boundary value problem the points at the boundaries

are found by means of intersection of the characteristic curve and the boundaries.

Using (3.10), the coordinates of the points (Zo,+1%0,+1), at the left boundary, are
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found to be

Zo,;+1 = 20,05 Yo,,+1 = Yo,; T ﬂl,j(mla — Zg,) (3.17)

where B, is the B characteristic direction at the point (z1;¥1,;), see figure 3.2.b.
Similarly using the equation (3.11), the coordinates of the points (s ,+1¥n,j+1),

at the right boundary, are found to be

Tn,y+1 = Tno, Yng+1 = Yn, + an-l,j(xn,j - xn—l,j) (3.18)

where a,,_; ; is the a characteristic direction at the point (zn_1,,yn-1,,). (See figure
3.2.c.)

Furthermore the solution and its first derivatives along the boundaries are
calculated by using one of the three appropriate boundary conditions mentioned
in section 2.5. In general, the discretization of boundary conditions may be written

as

AUz(Zo,y3+1) + 61(5)U (20,45 + 1) = £1(7) (3.19)

along z = zo, and

Miz(Tn,y) + 82(7)u(@n, y) = t2(7) (3-20)

along z = z,, where y > 0, and A is a constant. A = 0 gives a set of boundary
conditions of the first kind (2.48). and 6:(j) = 82(j) = 0, V5 > 0 gives a set of
boundary conditions of the second kind (2.49), while A = 1 is associated with a

set of boundary conditions of the third kind (2.47).
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Figure 3.2.a Figure 3.2.b Figure 3.2.c

Since the characteristic curves from the same family do not intersect, we have

characteristic grids over the domain D. (See Figure 3.3.)

B=c'1

B=c'2

B=c'3

Fig.3.3:  Characteristic grids

We deal with quasi linear equation ({(3.1) on which the coeficient function
a,b,c, and g are functions of z,y,u,u,, and u,, and hence the system of equations
(3.10), (3.11). (8.13), (8.14) and (3.13) involve non linear equations and should be
solved simultaneously. We will require numerical processes to do so. By substitut-
ing appropriate difference equations into the differential equations in the system of

equations , we are going to derive some numerical procedures to solve the system.



3.4 Straight Line Approximations

Consider P and @ two adjacent points on the initial curve C, which is other
than the characteristic curves. Suppose the o characteristic curve through P and
the B characteristic curve through () intersect at the point R*. We are going to
approximate the characteristic curves by straight lines, such that the point R*
will be approximated by R, the intersection point of the straight lines.

The Taylor’s series expansion for y(zo + Az) about = = zo gives

y(zo + Az) = y(z0) + Az fi—x + O[Az?].

T=zg
Corresponding to the Taylor’s series above, set z, to be z(P), the z-coordinate of
the point P, and z¢ + Az = z(R"), the z-coordinate of the point R". If the point
P is close to the point ) , that the length of the arc PQ) is small, we may expect

that Az small then the Taylor’s series expansion for y(R*) about z = z(P) gives

d
y(B) =y(P)+az 2| +0[Az?),
Z |o=z(P)
which leads to
dy y(R") —y(P)
- + O[Axz] 3.21)
&o| oy~ o(B) —2(P) T ! (
This can be approximated by
@y _yB)-y(P)
Az |pnpy  =(H) - z(P)’

where R is the approximate value of the intersection point R*. Hence (3.10), the
direction of the a characteristic curve through the point P, can be approximated
by

y(R)—y(P) _
m = CX(P), (322)

where the value of a(P) has been calculated,

o(P) = ( )+ /22(P) — a(P)e( )) (3.23)
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Similarly setting zo to be z(Q), that is the x-coordinate of the point ¢, and
setting zo+Axz to be z(R*), the Taylor’s series expansion for y(R*) about z = z(Q)

gives

dyl  _y@®)-¥Q) . i,
T, o 2B = 2(Q) + O[Axz]. (3.24)

Hence the approximate value to the direction of the # characteristic curve through

the point @ is given by

y(R) —y(@) _ -
LR=td -5, (3.25)

where the value of 8(Q)) has been calculated,
5Q) = (4@ - V(@) — a(@e(@)) . (5.26)

Obviously, from (3.21) and (3.24) we know that the approximates values (3.22)
and (3.25) have the discretization error O[Az].

Since we know the values of z(P),y(P),z(Q), y(@),a(P) and B(Q), then solv-
ing the equations (3.22) and (3.25) will give the coordinate point of R. Eliminating
y(R) from (3.22) and (3.25) gives

y(Q) — y(P) + a(P)z(P) — B(Q)z(Q) (3.27)

3 2
=(R) = 2(P) = B(P) '

Substituting (3.27) into the equation (3.22) gives
y(R) = y(P) + o P)(<(R) — =(P)), (3.28)
and substituting (3.27) into the equation (3.25) gives

y(R) =y(Q) + B(Q)(z(R) — =(Q))- (3.29)

Hence we have R, the approximate value to the point B* with the discretization
error O[Az].

Geometrically, the characteristic curves are approximated by their tangents.
Hence intersection point of the curves is approximated by the intersection point

of the tangents. See figure 3.4.
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P 0

Figure 3.4:The straight line method
Furthermore by substituting finite differences for the differentials appearing in the

differential equations (3.13) and (3.14) we have
a(P)e(P)(U=(R)=Us(P))+c(PYUy(R)~Uy (P))-g(P)(y(R)~y(P)) = 0 (3.30)

along the cheracteristic segment PR, and
a(Q)B(Q)U=(R)~U=(Q))+c(@)(Uy(R) - Uy (@) -9(Q)(3(R) -y(Q)) = 0 (3.31)

along the characteristic segment QR. Eliminating U,(R) from these equations

give an approximate value of u.,

U=(R) = [[o(P)e(@)a(P)U=(P) - a(Q)c(P)B(Q)V=(Q)
+e(P)e(@)Uu(P) = Upy(Q)] + [e(@)g(P) — (P)g(Q)]y(R)
+e(@)9(P)y(P) — c(P)g(Q)y(Q)]]

/la(P)e(@)e(P) — a(Q)c( P)B(Q))- (3.32)
By substituting (3.32) into equation (3.30) give the approximate value of uy,

1
c(P)

and substituting (3.32) into equation (3.31) we have

[a(P)a(P)(U:(R) = U=(P)) = 9(P)(y(R) - y(P))], (3.33)

UR) = U@) = 5la(@IBIQUTR) - U-(Q) = o(PY(R) - v @) (3:38)
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In addition, by writing the total differential in a difference form and replacing
the first partial differentials u, and u, by their average values, then along the
characteristic segment PR, we may replace the equation (3.15) by

1
U(R) —U(P) = 5(Us(R)+Us(P))(z(R) — =(P))
1
F2(UR) + U(P)W(R) ~y(P)).  (339)

Similarly along the characteristic segment @R, the equation (3.15) may be re-

placed by
UR)-UQ) = 5(U(R)+ Uo(Q)(=(R) - 2(Q))
5 (U(R) +U(@)@(R) ~¥(Q):  (3:36)

Hence the first approximate value of U at the point R is given by

UR) = U(P)+ 5(UL(R) + Us(P))(a(R) — o(P)

+5(U,(R) + Uy(P)(w(B) — 3(P)), (3.37)

or by
U(R) = U@+ 5(Ux(R) + Uo(Q))(a(B) - =(Q))
3 (U,(R) + Uy(@)(u(R) — (). (3.35)

To construct a characteristic grid net and the solution of the Cauchy and
boundary-value problems for the partial differential equation (3.1) we may use
the procedures in the algorithms A.3.1 and A.3.2, respectively. The algorithms
are given in Appendix .

As particular illustrations, consider Cauchy problem below.

Example 3.1.
Find the solution of

Uge — (1 — 22)Ugy + (22 — 2 — 2)uyy, =0 (3.39)

satisfying

u(z,0) == uy(z,0) = 0. (3.40)
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The straight line method produce the characteristic grids and the solutions

such as shown in figure 3.5.

11

24

Figure 3.5 :The solution by straight line method

The vertical lines indicate the solutions at each intersection points of the charac-

teriostc grids. They are 35 of the actual size.

3.5 Predictor-Corrector Computations

The previous method, the straight line method, gives us the approximate val-
ues of z,y,U, U, and U, at the point R. Knowing these approximate values allows
us to calculate the approximate values of a,b, ¢, and g at this point. Moreover
we are able to calculate first approximate values of the a characteristic direction
and [ characteristic direction at the point B: These approximate values with
discretization error O(h) may be too rough because we have replaced the char-
acteristic curves from the points P and Q by their tangents. Hence the point R
found to be the intersection of the tangents whereas the ’true’ point ought to be
R* the point of intersection between the characteristic curves. In addition, finite
increments have been substituted throughout for the differentials.

In the present method we use parabolic arcs instead of tangents. The use of

parabolic arcs gives us a better approximation with discretization error O(h?);
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hence the approximate values are improved. In order to use the calculated values
as a predicted values in the following calculation, the parabolic arc PR is chosen
to be the average value of the tangent at the given points P and the tangent at
the calculated point R. Similarly the parabolic arc Q) R is chosen to be the average
value of the tangent at the given point ¢ and the tangent at the calculated point
R. The intersection of these arcs gives us corrected values.

The Taylor’s series expansion for y(z + Az) about z = zo gives

+ 0]Az?).

T=xp

dy 2 d%y
y(zo + Az) = y(zo) + Az 1 +(Az)" -3

=z
Set zo to be z(P), the z-coordinate of the point P, and z¢ + Az = z(R*), the
z-coordinate of the intersection point R*, the Taylor’s series expansion for y(R*)

about z = z(P) gives

2
+ (Az)? ey

+ 0[Az?). (3.41)
s=2(P) dz?

z=z(P)

. dy
y(R") = y(P)+ Az o

On the other hand, the Taylor’s series expansion for y(z — Az) about £ = z¢ gives
g

d
y(zo — Az) = y(z0) — Az =

o7 + (Az)? —= —- 0[Az?].

T=zo
Setting zo to be z(R*), and z¢ + Az = z(P), the Taylor’s series expansion for
y(P) about z = z(R*) gives

. dy Az)? d%
y(P)=y(R") — Az . + ( 5 ) Ta? + O[Az?). (3.42)
z=z(R*) z=z(R*)
By subtracting the equations(3.41) and (3.42) we have
Az | dy dy
y(R) —y(P)=— | 7= + —= + 0[Az).
2 |dz r=a(R*) dx‘xm(},)
Dividing it by Az we obtain
*\ . d R
Az 2 | 42|, _o(my dz r=o(P)
Since Az = |z(R*) — z(P)|, we may write this as
y(B) —y(P) _1[dy dy| ] 2
m(Rt) — CL'(P) - 9 de sma(R?) dz — + O[A.’L' ]- (343)
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and its approximate value is

} . (3.44)

Denoted by

x(R(o)), y(R(O)), U(R(O)), Ux(R(O)), Uy(R(O)),
a(R©), b(R®), ¢(R©), e(R®), o(R®), B(R®),

the approximate values found by using the straight line method. The superscripts
(0)’s indicate that these value will be used as the first predicted values. On the
other hand, we use superscripts (1)’s for the first corrected values. Notice that
the terms in the right hand side of (3.44) are the a characteristic directions at the
predicted point R and the fixed point P respectively. Hence using the notation in
equation (3.10), the equation (3.44) can be written as

y(RM) — y(P)
z(RW) — z(P)

= é[a(P) + a(RO)). (3.45)'

This equation approximates the direction of the a characteristic curve drawn from
the fixed point P.
Similarly the direction of the 8 characteristic drawn from the fixed point @ can

be approximated by

y(RM) — y(Q)
z(RM) — z(Q)

Since the values of a(P), a(R®), 8(Q) and B(R®)) are known, then eliminating
y(RM) from the equations (3.45) and (3.46) gives

y(Q) —y(P) + 3 (P)+a(R‘°))] (P) - 3[8(Q) + BEO)](Q)

—[ﬂ( )+ B(RO)]. (3.46)

(R —
e Ta(P) ¥ (RO - H1A(Q) + B(RO]
(3.47)
Substituting (3.47) into the equation (3.45) gives
J(RY) = y(P) + Fo(P) + a(RO[e(BV) —a(P)]  (3.48)
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while substituting (3.47) into (3.46) gives
y(BY) = y(Q) + S[6(Q) + BRON(RY) = 2(@).  (3.49)

These equations gives the first corrected values to coordinates of the desired in-
tersection point R* with the discretization error O[Az?].

Geometrically, a parabolic arc is drawn through the point P by its direction
is chosen to be the average value of the direction of the o characteristic at the
given point P and the direction of the a characteristic at the predicted point
R(©). Another parabolic arc is drawn through the point Q in the direction of the
B characteristic at the given point P and the direction of the 8 characteristic at
the predicted point R(®). The corrected point R(M) is found to be the intersection

point of these arcs.

Figure 3.6: The predictor-corrector method

Substituting finite differences for the differentials appearing in the differential
equations (3.13) and (3.14) we have

S1(R)a(RO) + a( P)a(P)[U(RV) - U(P)] + 5{e(RC)

+elPIU(RM) = Uy(P)] — 5[6(R®) + o(P)]ly(R®) ~ y(P)] = 0
(3.50)
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along the characteristic segment PR(!) and

—[a(R("))ﬂ(R(OHa(Q)ﬂ( QNU=(RV) — U(Q)]+%[0(R(0))

+e(@IU(RD) ~ Uy(@)] - 5l9(B®) + g QIIu(BV) ~ (@) = 0
(3.51)

along the characteristic segment QR(M.
Hence the first corrected value of the first derivative u, can be approximated

by

Us(RD) = [[a(R)a(R®) + a(P)a(P)][e(R) + ¢(Q)]Ua(P)
—[a(R)B(R) + a(Q)B(QN[(RD) + <(P)IUx(Q)

+e(RO) + ¢(P)][e(R®) + (@)U (P) — Uy(Q)]

+((RD) + c(@)]lg(R®) + g(P)] = [e(R) + ¢(P)][g(R®) + ¢(Q)]y(R™)
+e(R) + c(@)][g(R®) + g(P)]y(P) — [«(R) + <(P)]lg(R®) + ¢(y(Q)]
/lla(R)a(R®) + a(P)a(P)][e(R®) + ¢(Q)]

—[a(R)B(R) + a(Q)B(Q))[(R®) + c(P))], (3.52)

while the first derivative u, can be approximated by

U(RY) = UsP) = sy 1 oy BB + a(P)a(PU(EY)
~U(P)] - 5l9(B) + g(P)ly(RP) - y(P)], (3.53)

1 1 0 0) 1
~U(Q)) = 5[0(R) + g(P)y(RY) ~ y(Q)] (3.54)

Finally using (3.15) the solution u at the point R(*) can be approximated by

%[Uz(R(l)) + Us(P))[e(RY) — 2(P)]

URY) = UP)+
+%[Uy(R(l)) + Uy (P))fy(BM) = y(P)), (3.55)
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or by

URM) = U(Q)+ 3Ua(RD) + Un(Q)][=(RY) - =(Q)]

[Uy(RM) + U, (@)ly(RM) — y(Q)). (3.56)

—~~

+

N | —

We may improve the approximate values by means of iterations. Keeping the
points P and @ fixed and using the corrected values in the previous iteration as
the predicted values in the next iteration. However before we proceed to the next
iteration we require updated approximate values of the given coefficient functions
a,b,c,g and the characteristic directions. The iteration is terminated when two
successive approximations agree with the same degree of accuracy.

To calculate the 2nd corrected values for example; Substitute the calculated
approximate values z(R™),y(RW), U(RM), U,(RM), U,(RM) into the given co-

efficient functions

a(:z:, y7 u, u:m uy), b(.’l), y7 u) u;,;, uy)7 c(:c, y’ u,ul‘a uy)’ 6(3:7 ya u7u$7 uy)-

Compute the a and # characteristic directions with

a(RY) = o ;m) [B(R™) + /b(R®)2 — a(RM)c(R®)] (3.57)
and
B(RM) = = ém) [B(RWM) — \/b(R(l))2 — a(RM)c(RW)). (3.58)
Let

z(RM),y(RM),U(RM), U,(RM), U, (RM),
a(R(l))’ b(R(l))a C(R(l))a e(R(l))’ a(R(l))’ IB(R(I))

to be the predicted values for the 2nd iteration, and keep the values of the points
P and @ fixed. Using the calculation procedure above we are able to calculate
the 2nd corrected values. A complete procedure for solving Cauchy problems and

boundary problem will be given below.
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0.

0.

To solve the Cauchy problem of the equation (3.1) we have to construct the
characteristic grid net and find the solution at these points. Similar to the straight
line method we divide the initial curve into a finite number, say n, of equally spaced
sub intervals. Using the given initial conditions we are able to calculate the exact
values of the coordinates, the solution, the first derivatives of the solution and the
characteristic directions at all points along the initial curve. These values will be
recognized as prescribed values.

The procedures for solving the Cauchy and boundary-value problems for the
partial differential equation (3.1), by using the predictor-corrector method , are
given in the algorithms A.3.3 and A.3.4, in Appendix , respectively. The flowchart
of the algorithms are depicted by figure A.3.1 in Appendix .

Using the predictor corrector method , the Cauchy problem in examples 3.1

has solution

84
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Figure 3.7 The solution by predictor-corrector method

3.6 Alternative methods

The straight line method discussed in the previous section uses Taylor’s series
ezxpansion of order one and produces discretization errors of order one, while the

predictor-corrector method uses Taylor’s series expansion of order two produces
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discretization error of order two. We may improve the result by using higher order
Taylor’s series expansion. However we have to avoid the evaluation of derivatives
of order higher that two.

Basically numerical procedures for solving differential equations can be used
to find the characteristic grids. However since we only have one set of prescribed
values as information, then we have to use one step methods, such as the Runge
Kutta method.

In the present section, we use the Runge Kutta method to approximate the
solution along the characteristic curves. The improved values will be found as the
intersection of the approximate curve. In the next two subsections, we propose
two methods to approximate the intersection point, namely the method A and the
method B. The method A approximates the intersection point of the character-
istic curves by intersection point of the arcs of approximate curves found by the
Runge Kutta method. While the method B approximate the intersection point
by intersection point of the tangents at the end point of the approximate curves.

Consider two adjacent points P = (z,,Y0,0) and @ = (z1,0,%1,0) on the given
curve C, which is assumed to be other than the characteristic curves. Denote by
R* the intersection point between the o characteristic through the point P and
the B characteristic through the point @. Suppose the intersection point R* is
approximated by R = (z1,1,y11). Using the straight line method we have already
a first approximate values of R*, say R°. Hence at the point R° we have the values

of

2(R®),y(R?),U(R®), Us(R), Uy (R®),
a(R®), b(R®), ¢(R©), e(R®), o( R®), B(R®).

These values are used as the first predictions.

Furthermore using the Runge Kutta method we integrate along the « char-
acteristic curve (3.10) over the closed interval z(P) < z < z(R©) to get ya,
the approximate value on the a characteristic through P. First of all divide the

interval into finite number, say r;, of equally spaced sub intervals, spa,cing'hl.
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Taking y.(z(P)) = y(P) as the initial value, generate the approximate value of

the o characteristic at the end points of the sub intervals. Generate approximation

Yo, t0 Ya(z(P) + k1) for ¢ =0,1,2,..r; using the recursion formula

where

1
Yoor: = Yo, + = (k12 + 2k12 + 2ky3 + ki4) (3.59)

6

ki = hia(z(P) + k1 * 1, ya,)

.k k
bra = haa(P) + by xi+ 22,y + 21
.k k
kis = ho(@(P) + ha * i+ =, ¥a, + 50)
k14 = hia(z(P) + hy * 1 + h1,Ya, + k13). (3.60)

Denoted by R, = (z(Ra),y(Ra)), the point found by integrating along the «

characteristic from the point P to the point R(®). Hence we have z(R,) = z(R©®)
and y(Ra) = yo(z(R©). The later is found by (3.60).

Similarly in the opposite direction we integrate along the S characteristic

curves in the closed interval z(R(®) < z < z(Q) to get yg, the approximate value

on the f characteristic through Q. First of all divide the interval into finite num-

ber, say rs, of equally spaced sub intervals , spacing k. Taking ys(z(Q)) = y(Q)

as the initial value, generate the approximate value of the 3 characteristic at the

end points of the sub intervals. Generate approximation yg, to ys(z(P)+ thy) for

t=0,1,2,..r; using the recursion formula

where

1
Y61 = Yp, T g(kn + 2kag + 2ko3 + k24) (3.61)

ko = hoB(z(Q) + ha *1,yp,)

. h k
ka2 = hof(2(Q) + ha %1 + ?2,!/6, + —22—1)
. h k
fas = haB(a(Q) + ha i + 2,55+ 22
kog = hzﬁ(ilﬁ(Q) + ho x4+ hg, yg, + k23) (362)
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Denoted by Rs = (z(Rg),y(Rs)), the point found by integrating along the «
characteristic from the point P to the point R(®). Hence we have z(Rg) = z(R®)
and y(Rp) = yp(z(R©®). The later is found by (3.62).

The points R, and Rg should be closed and give an improved approximation
to R*, the intersection point of the a characteristic curve through P and the

characteristic curve through (). In other word, if
lva(2(R)) — yo(2(R?))| < e, (3.63)

where ¢ is the maximum allowed error, then the average value of y(R,) and y(Rp)
is taken to be the first improved value of the y-coordinate of the intersection point.

Hence the improved values of the coordinates of the intersection point is found to

be

(0) (0)
:v(R(l)) = x(R(O)), y(R(l)) = yo(z(R™) ’; ys(z(R )) (3.64)
However if the points R, and Rg are not closed enough, that is
[va(2(R®)) — ys(a(RD))| > e, (3.65)

then we have to approximate further the intersection point.

3.6.1 The Method A

Suppose from the previous calculation, the situation (3.65) occur, that is

[vo(@(R)) — yp(a(RO))| > e,

for some maximum allowed error €. Hence we cannot use equation (3.64) to cal-
culate the first improved value of the point R. Then we have to approximate the
intersection point.

Replace the direction of the « charact;eristic curve by the straight line which
is governed by the equation

Y —va(@(BY) _ z—2(RY)
V(P — yalo(R®) ~ 5(P) = o)

(3.66)
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and replace the direction of the 8 characteristic curve by the straight line which

is governed by the equation

y—ys(@(RY) _ = —2(RY)
¥(P) — yp(a(RO) _ a(P) - z(RO)

The solution of these equation, say R! is a new approximate value of the inter-

(3.67)

section point R*. The points R° and R! should be closed and give an improved

approximation to the intersection point R*. In other word, if
|o(RD) — 2(RO)| <¢, (3.68)

and

[y(BY) - y(R?)| <, (3.69)
then the improved value of the z-coordinate of the point R is taken to be the
average value of z(RM)) and z(R(®)), and the improved value of the y-coordinate
of the point R is taken to be and the average value of y(R®*)) and y(R(®). Hence

we have

o) = L) + oY), () = KEDLEVED) g7

If the points R(*) and R(® are not closed enough, that is the conditions (3.68)

and (3.69) are not satisfied, we have to repeat the calculation process above.
Taking the approximate values at the point R! as the predicted values and keeping
the values at the points P and @ fixed, calculate the corrected values at the
corrected point R%, R3, and soon. The calculation is terminated when at an

iteration say (k + 1)**, where k = 0,1, 2, ...; the Runge Kutta procedures give
[y (2(RD)) ~ ys(a(BO))| <, (3.71)
or R* and R**! are closed enough, that is the set of conditions
o (REH)) — 2(R®)| <6,  [y(R*H) — y(RP)| < (3.72)

are satisfied, for some maximum allowed error &. R**! is found solving the set of

equations
y(R)k+1 - ya(x(R)(")) _ $(R)k+1 _ :z:(R)(k)
y(P) — ya(z(R)R) z(P) — z(R)®

(3.73)
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and :
y(R)*! — yp(a(R)W) _ 2(R)*! — o(R)®

y(@) — yp(x(R)®) — 2(Q)— =(R)W

When the condition (3.71) is satisfied, the improved value of the coordinates of

(3.74)

the point R is found to be

Ya(@(R®)) + ys(2(RM))

2(R) = a(RY), y(R) = : ,

(3.75)

while if the set of conditions (3.72) are satisfied then the improved value of the
coordinates of the point R is taken to be

y(REHD) + y(RW)

o(B) = 5(a(B*) +2(BY)), 3(R) = :

(3.76)

Geometrically, using Straight Line method, the first approximate value of the
point R, say R is found to be the intersection of two straight lines, one is
drawn through the point P in the direction of the a characteristic curve and
another is drawn through the point @ in the direction of the 8 characteristic
curve. Furthermore by applying RungelKutta method on the closed intervals
z(P) < z < z(RW), where k indicates that the point R® is calculated at the
kt* iteration, we get the approximate value y,(z(R®)). Also by applying Runge
Kutta method on the closed intervals z(Q) < z < z(R™) we get approximate
value yg(z(R")). When the condition (3.71) is satisfied the improved value of the
coordinates of the point R is calculated by (3.75), if it is not then R**1) is found
to be the intersection of the straight line drawn from P to R, which is govern by
the equation (3.73), and the straight line drawn from @ to R*), which is govern
by the equation (3.74). If R(**1) and R are closed, that is the set of conditions
(3.72) are satisfied then the improved value of the coordinates of the point R is
calculated by (3.76). The situation is described by figure 3.8 below
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Figure 3.8 Method A
The procedures for solving the Cauchy and boundary-value problems of (3.1),

using Method A, are given in the algorithms A.3.5 and A.3.6, in Appendix ,
respectively. The flowchart of the algorithms are depicted by figure A.3.2 in
Appendix .

Using method A, the Cauchy problem in example 3.1 has the solution depicted
in figure 3.9

Figure 3.9 The solution by method A
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3.6.2 The Method B

This method is quite similar to that in method A except that to obtain cor-
rections to the approximate values of the intersection points, we do not use the
straight lines but the tangent lines of the approximate curves. The improved
value of the coordinates point may be found as the intersection point of these two
tangents.

Suppose from the previous calculation, the situation (3.65) occur, that is
[va(z(B?)) — yo(z(R?))| > ¢,

for some maximum allowed error €. Hence we cannot use equation (3.64) to cal-
culate the first improved value of the point B. Then we have to approximate the
intersection point.
Replace the direction of the a characteristic curve by the tangent line through
the point Ry = (z(R)©,y(R,)) in the direction of & characteristic curve. This
r

line is governed by

4

y — ya(2(R)?) = a(Ra)[z ~ 2(R))]. (3.77)

Similarly replace the # characteristic curve by the tangent line through the point
Rs = (z(R)©,y(Rp)) which govern by equation

y — yp(z(R)) = B(Rp)[z — z(R)®). (3.78)

The solution of these equation, say R! is a new approximate value of the inter-
section point R*. The points R° and R! should be closed and give an improved
approximation to the intersection point R*. In other word, if the conditions (3.68)
and (3.69) are satisfied then the improved value of the z-coordinate of the in-
tersection point is taken to be the average value of z(R®)) and z(R(®), and the
improved value of the y-coordinate of the intersection point is taken to be and the
average value of y(RM) and y(R(®). That are (3.70).

If the points R(*) and R(®) are not closed enough, that is the conditions (3.68)

and (3.69) are not satisfied, we have to repeat the calculation process above.
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Taking the approximate values at the point R! as the predicted values and keeping
the values at the points P and @ fixed, calculate the corrected values at the
corrected point R?, R®, and soon. The calculation is terminated when at an
iteration say (k + 1)**, where k = 0,1,2‘, ....; the Runge Kutta procedures give
(3.71) or R* and R**! are closed enoughi that is the set of conditions (3.72) are
satisfied, where RFt! is found solving the set of equations (3.77) and (3.78).
When the condition (3.71) is satisfied, the improved value of the coordinates
of the point R is found to be (3.75), while if the set of conditions (3.72) are
satisfied then the improved value of the coordinates of the point R is taken to be
(ref3.77.g). The calculation is terminated when two approximate points, say R*
and RFt! for an integer k, are closed enough, that is the condition (3.71) or the
set of conditions (3.72) is satisfied, for some maximum allowed error e.
Geometrically, using Straight Line method, the first approximate value of the
point R, say R©® is found to be the intersection of two straight lines, one is
drawn through the point P in the direction of the o characteristic curve and
another is drawn through the point ¢ in the direction of the S characteristic
curve. Furthermore by applying Runge Kutta method on the closed intervals
z(P) < z < z(R®), where k indicates that the point R*) is calculated at the
k™ iteration, we get the approximate value y,(z(R®¥))). Also by applying Runge
Kutta method on the closed intervals z(Q) < z < z(R®)) we get approximate
value yg(z(R*)). When the condition (3.71) is satisfied the improved value of the
coordinates of the point R is calculated by (3.75), if it is not then R+ is found
to be the intersection of the tangent line drawn line through the point R, in the

direction of the « characteristic
y — Ya(z(R)M) = o[Re)(z — z(R)P]. (3.79)

and the tangent line drawn from the point Rp in the direction of the 3 character-
istic .

y — ys(a(R)®) = BRp)(z — 2(R)™)]. (3.80)
If R*+1) and R® are closed, that is the set of conditions (2.133) is satisfied then
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the improved value of the coordinates of the point R is calculated by (3.76). The

situation is described by figure 3.10 below
0
R

|
?;m ¥10)
P Q
Figure 3.10Che Method B

To construct a characteristic grid net and the solution of the Cauchy and

boundary-value problems we may use the procedures in the algorithms in Ap-

pendix . The flowchart of the algorithms are depicted by figure A.3.3 in Appendix

Using method B, the Cauchy problem in example 3.1 has the solution depicted

in figure 3.11.

0.8%

0.4+

0.27

0.2 = 0.4 ~ 0.6 0.8 1
Figure 3.11The solution of Cauchy problem by method B
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3.7 Comparisons

The predictor corrector method, method A and method B give better approx-
imate values than of the straight line method, since the three former methods are
using truncation error of order two, while the later is using truncation error of
order two. However the methods A and method B give the same approximate
values. For the Cauchy problem in example 3.1, the comparisons are depicted in

figures 3.12, 3.13 and 3.14.

Figure 3.13Comparison solutions : the methods A and B

0.2 0.4 0.6 0.8 1

Figure 3.12 Comparison solutions : the straight line method

and the predictor corrector method
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Figure 3.13Comparison solutions : the straight line method
and methods A, B
The methods A and B faster and give better approximate values than of the

predictor corrector method

0.2 0.4 0.6 0.8 1
Figure 3.14Comparison solutions : the predictor corrector method
and the methods A, B
since the two former methods use the Runge Kutta (of order 4) method while
the later method use the trapezoidal rule which is equivalent to the Runge Kutta
of order 2. However when the characteristic curves are straight lines, then the

method A and method B are reduced into the straight line method.
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3.8 Discussions and Conclusions

The method of characteristics 1nvolves expressing the partial differential equa-
tion in terms of its characterlstlc coordmates and integrating along the character-
istic directions. Solving the quasi linear hyperbolic equation is reduced to solving
the characteristic system. The system involves non-linear ordinary differential
equations which should be calculated simultaneously. Discretization involves ap-
proximating the two families of the characteristics curves by characteristic grids
and replacing the differential equations with appropriate finite difference equa-
tions.

Based on the Taylor’s series of order one, the straight line method gives approx-
imate solutions with discretization error of order one. Geometrically the method
approximates the characteristic curves by straight lines.

Secondly based on Taylor’s series of order two, the predictor-corrector methods
produce approximate solutions with discretization error of order two. Geometri-
cally the method approximates the characteristic curves by parabolic arcs. The
parabolic arcs are chosen to be straight line through the given point and the
calculated approximate point.

Since the methods of characteristic calculate the solution on the characteristic
grid points, which approximate intersectio;l points of the characteristic curve, then
there is no restriction conditions to ensure the stability and convergence of the
numerical methods above [4].

Basically step methods numerical integration, such as the Runge Kutta method,
can be used to find the characteristic grids. Using the Runge Kutta method, the
alternative methods, method A and method B, integrate the characteristic curves
directly. The improved values are found to be the intersection of the approximate
curves. When the approximate curves do dot intersect, the method A approx-
imates the intersection point by the intersection point of their arcs, while the
method B by the intersection point of their tangents.

From our experience, for the problems which have semi-symmetric character-
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istics, the predictor corrector method, the method A and method B are converge,
since at each stage of calculation the characteristic curves remain inside the trian-
gular formed by the tangents of the given points. Generally the predictor corrector
method, the method A and method B givle better approximate values than of the
straight line method. However when the characteristic curves are straight lines,
then the method A and method B are reduced into the straight line method. In
calculation processes, the method A and method B are faster than the predictor
corrector method, since the two former methods use the Runge Kutta (of order
4) method while the later method use the trapezoidal rule which is equivalent to

the Runge Kutta of order 2. '
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Chapter 4

THE FINITE DIFFERENCE
METHOD

4.1 Introduction

Many physical systems lead to complex systems of equations involving discon-
tinuity, non-linearity, non homogeneous domains and irregular boundaries. One
of the main advantages of the use of characteristics is the fact that the disconti-
nuity in the prescribed initial values may be propagated along the characteristics.
For systems which are governed by equations whose solutions are known to be
well behaved, the propagation of discontinuity of the initial values can be handled
accurately by the method of characteristics.

However, systems involving non linear equations and irregular boundaries we
require alternative approximation methods. In this chapter we will use the finite
difference method to solve such problems. The finite difference method involves
discretization of the governing equations, the initial conditions and the boundary
conditions of the continuous domain.

We will deal with the Cauchy problem of a second order linear equation of two
variables. The discretization may be divided into two steps:

Firstly, replace the continuous domain by a mesh passing through discrete interior
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points. In two dimensional problems, the continuous domain may be replaced by
rectangular grids .

Secondly, the governing equations which are continuous formulations are replaced
by finite difference equations as the approximations. The replacement of the
governing equation by a finite difference equation is not unique. It depends on
the configuration of the difference formulas we use.

Based on Taylor’s series, the forward, backward and central difference formulas
will be derived in section 4.2. Using these formulas we may construct some finite
difference schemes that can be used to replace a given partial differential equation.
The boundary conditions usually determine the scheme suitable for solving a
particular problem. Basically the finite difference methods are classified into the
explicit and implicit methods. The von Neumann stability condition will be used

to examine stability of finite difference methods.

4.2 Difference Schemes

The derivative of a function is the limit of a difference quotient, and therefore
the derivative can be approximated as close as desired by taking the points in-
volved in the difference quotient close enough. Hence a partial differential equation
may be replaced by a finite difference equation.

The finite difference equation as an approximate equation is dependent on
the configuration of discretization of the continuous domain. In two-dimensional
problems, the continuous domain in the zy-plane can be replaced by a rectangular
grid with uniform spacing A = Az and k = Ay, as shown in figure 4.1. The space
point (:Ax,jAy) which is also called the grid point (z,7) is surrounded by the
neighbouring grid points. The grid points inside the domain are called interior

points. Hereafter we will use the term grid points to mean interior points.
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Figure 4.1: The rectangular grid
Suppose that the continuous function u(z,y) posses a sufficient number of
partial derivatives, then the Taylor’s series expansion for u(z+ Az,y+ Ay) about

(z,y), gives :

o} 0
u(z+Az,y+4Ay) = u(s,y)+ (Acg-+ A-’E@)U(x, y)

18 5.,
E(A&‘a—z +Ay$) u(z,y)

+§(Az-3—x + Ay%) u(z,y)

1 8 9.
+(n_l)|(A3£+Ay%) u(xay)+Rn

(4.1)

+

where the remainder term is given by

1 0 0.,
R, = ;(Ama—z + Aya) u(z + Az, y + EAy) (4.2)

for 0 < £ < 1. That is
Ry = O[([|Az]| + {[Ay]))"]- (4.3)

There exists positive constant M say, such that

1 Ball < M([|Az]] + [[Ay]])"
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Taking Ay = 0 in the equation (4.1) and assuming that the second derivatives

are bounded, the Taylor’s series expansion for u(z + Az,y) about (z,y) gives
— au(xay) 2
u(z + Az, y) = u(z,y) + AmT + O[((Az)“].

Dividing it by Az we have

Ou(z,y)  u(z +Az,y) —u(z,y)
dr Az +0(Az).

Similarly, the Taylor’s series expansion for u(z — Az,y) about (z,y), gives

Ou(z,y)  u(z,y) —u(z — Az,y)
5. = As + O(Az).

Now we wish to evaluate the first and second derivatives at the grids point
(z:,y,). Suppose z, = 2o+ th and y, = zo + jk, where A = Az and k = Ay. Then
using double subscript notation, the Taylor’s series expansion for u(z; + h,y:)

about (z,,y,) with the second derivatives assumed to be bounded gives

ou 1
. . = E(uz'+1,j - u;,;) + O(h) (4.4)

This equation indicates a formula to evaluate g—;‘ at (z;,y,) by using the values of
u at the points (z;,y,) and (z,+ h, y;). Such formula is called a forward difference
formula. Similarly the Taylor’s series expansion for u(z; — h,y;) about (z;,y;)
with the second derivatives assumed to be bounded gives a backward difference

formula

Qg
Oz

- %—(um —wir;) + O(h). (4.5)

7
which evaluates g—z at (z.,y;) by using the values of u at the points (z;,y;) and
(z; — h,y,). In effect we may replace the value of g—; at the point (z,,y;) by

Ou
Oz

1

= E(uzﬂ;J — Uy,y)

"1]

if we use forward difference formula, and by

8_u
Oz

1

= E(uid — U-1,)

LV
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if we use backward difference formula. These are first order approximations of %
evaluated at (z,,y,) with a truncation error O(h).

Increasing the order of the truncation error in the Taylor’s series expansion
improve the approximate value of g—:. Subtracting the Taylor’s series expansions
for u(z + Az, y) and u(z — Az,y) with fourth derivatives assumed to be bounded

gives
u(z + Az, y) — u(z — Az,y) = 2Ax-a—u%’i) + O[((Az)?).

Note that all even-order terms cancel. Dividing by Az and using double subscript

notation leads to

Ju

1
% = ﬁ‘(ui+1,j — ui_1,5) + O(h?). (4.6)

Y]

This equation provides another formula to evaluate % at (zi,y;), in which we

use the values of u at the points (z;,y;) and (z; + h,y;). Such formula is called a

central difference formula. In effect we may replace the value of g—;‘ at the point

(zi,y;) by
ou

dz

1
ﬁ(uzﬂ,a - ui—l,J)'

i,]
This formula gives a second order approximate value of g—: evaluated at (z:,y;)
with a truncation error O(h?).

Similarly, by taking Az = 0 at the equation (4.1) % can be evaluated at grid

pints (z;,y;), by using forward difference formula

i = 01 — s;) + O(k), (47
or by backward difference formula
% L %(Ui.j = uiy-1) + O(k), (4.8)
or by central difference formula
% N = i(ui,_7+l — tiy-1)+ O(K?). (4.9)
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Now we evaluate the second derivatives, adding the Taylor series expansions

for u(z + Az,y) and u(z — Az,y) with fourth derivatives bounded leads to

u(e + Az,y) + u(z — As,y) = 2u(a,) + (22 T4HY 4 of((ax)

Dividing by (Az)? and using double subscript notation we have a central difference
g g p

formula for 22%‘%’&
*u(z,y)

1
52 = _(ui—l,J - 2'U:i,j + ui-}-l,]) + O(h2)' (4'10)

h?

1,7

. _ )
Similarly we have a central difference formula for Z2Z:4) 5

0%u(z, 1
_g(yz_yl = o (wiion = 20 + wigia) + O(K). (4.11)
1,]
The mixed derivative %’ég;—yl can be obtained by mean of composite way. Using
Ful|  _ 0|0
dzdy|, | Oz _8y .
1 [ou Ou
=== -= + O(h?
2h | Oyligr; 0¥l 9
1,1
= (G (i1 = wigagm) + O(FY))

(g (st 3 = wi-15-1) + O())) + O(8?)

. 2
Hence we have a central difference formula for %;%yl

0u(z,y) 1
dzdy |. = m(ui-m—1 — Uip1,j-1 — Ui—1,541 T Uit1 j+1)
tJ

+O(h?) + O(k?). (4.12)

In conclusion, at the point at point (z;,y;), the value of _@g(;_,zg)_ can be approxi-

mated by
& u(z,y)
Oz?

1
= ﬁ(ui—l,J - 2uz!.7 + ui'*’lvj),
4y

the value of 8—2"—(@ by
Qy

0%u(z,y)

1
By = F(uw—l = 2u,,; + ui,z+1),

LY

112



8%u(x,
and the value of _a:%a—:l by

O%u(z,y 1
—55:—3;‘!—)‘ N = m(“z—l,j—l — Uip1,y-1 — Ui-1,541 T+ Ui+1,j+1)-

These three approximate values have the same truncation error, O(h?).

4.3 Explicit Difference Methods

In this chapter a study is made for the finite difference methods of solving the

Cauchy problem and boundary value problem for linear hyperbolic equation

a(z,y)uzs — (T, Y)Uyy + d(z,Y)us + e(z,y)uy + f(z,y)u = g(z,y). (4.13)

As we have done in the successive approximation method discussed in section 1.7,
to set up the Cauchy problem and the boundary value problem of the equation
(4.13) there is no lost of generality if we suppose that the initial curve (1.39),
on which the Cauchy data are given, is the straight line (1.57). Furthermore by
rotation, we may have z-axis as the initial curve such that the Cauchy problem
can be described as follows: find the solution u(z,y) of the equation (4.13) in the
region

D = {(z,y)| — o0 <z < o0,y 2> 0}

which satisfies the initial conditions:
u(z,0) = r(z),
uy(z,0) = s(z) (4.14)

where r and s are given functions.
The solution of the boundary value problem involves finding the solution

u(z,y) of the equation (4.13) in the region
D = {(z,y)lzo < z < zn,y 2 0}

which satisfies the initial conditions (4.14) in the interval z9 < z < z, as well

as certain conditions at the boundary which are straight lines z = 2y and z =
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Zn. Such as mentioned in section 3.3, in general, the discretization of boundary

conditions may be written as
AUz (%o, Y54+1) + 61(7)U (20,95 + 1) = t1(J) (4.15)

along = = x4, and

Mz(T, y) + 62(7)u(2n, ¥) = 12(7) (4.16)

along ¢ = z,, where y > 0, and A is a constant. A = 0 gives a set of boundary
conditions of the first kind (2.48) and 6:(j) = 62(j) = 0, Vj > 0 gives a set of
boundary conditions of the second kind (2.49), while A = 1 is associated with a
set of boundary conditions of the third kind (2.47).

To find the approximate solution to the Cauchy problem and also the boundary
value problem for the equation (4.13) using finite difference methods we need to
discretize the equation (4.13) and the equations involved in the initial conditions
(4.14) and boundaries conditions (4.15) and (4.16).

First of all cover the domain in the zy-plane by rectangular grid of mesh
points with constant intervals A = Az and &k = Ay. Instead of developing a
solution defined everywhere in the domain we only calculate the approximation
solution in these internal mesh points. Suppose at a point (¢Az,jAy) the ex-
act solution is denoted by u;; = u(¢Az, jAy) and the approximation solution by

U.;j=U(iAz,jAy) for i = ... — 3,-2,-1,0,1,2,3... and j =0,1,2,3, ...

Using the second order central difference formula ,the partial differential equa-

tion (4.13) may be replaced by finite difference equation

1 1
alx]h—z(Ui_lﬁ - 2U1,J + U1+11.7) - cirjP(U‘l:J_l - 2U11.7 + U1)]+1)
1 1
+d., E(Uzﬂu - Ui-—l.J) + ei:Jﬂ(Uihﬂ'l - Ui,J—l) + fiiUiy = 91

or it may be written as

A”y.?‘UZyJ'*‘] + Bl,jUi,J—] + C’|jUi+lyJ + D"v] U"'lyJ + Elv] UZ!J = gly] (4'17)
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where
& [A
A, = =l 2
v PERET
k2 2k’
= % &
§ =52 T
_ Gy Gy
Do =50 g

2‘11,: .,cw

E,= + == + fij- (4.18)

’ h?
Provided % small, hence A, ; # 0, the equation (4.17) can be written explicitly by

gl,j Bi,J C i,J 1] ,J
U= i _Bup  Cup Dy By 419
J+1 AI i A;’J g=1= Az J +1,5 = A;,J 1,7 Ai,] 3J ( )

If we know the value of the approximation solution U;; at all mesh points in
the ( — 1)* and j** horizontal lines, then we can find the solution at all mesh
point in the advanced line (j + 1)**. To visualize the calculation it is useful to

draw a schema such as shown in figure 4.2

1 )i+

Figure 4.2. Explicit method
QO : computed values from previous calculations

O : value to be computed
From the schema above, on each calculation process, the advanced line (5 + 1)
contains only one unknown, such computation is called an ezplicit schema. If
there are two or more unknowns in the (5 + 1) then it will be called an implicit
schema. A finite difference method which has explicit schema is called the ezplicit

method, and is called the implicit method if it has implicit schema.
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4.3.1 Cauchy problems

To find an approximation solution of the Cauchy problem, replace the domain

D = {(z,y)] —oc <z <00 & y =0} by
D* = {(sh,jk)ji = 0,%1,+2,..&j = 0,1,2...} .

In using the initial conditions we need to know the values of the solution in the
first two lines at 7 = 0 and § = 1. To do this we can replace the first derivative
in the initial condition by a forward difference formula or by a central difference

formula . If we use the former we will have
Usp =i, Uiy = ri+ ks, (4.20)

while if we use central difference formula we have

_ Uip—Ui1
Uip =1, 5% = s;. (4.21)

The central difference formula is sometimes preferable: the reasons will be dis-
cussed in the section concerning to error computations.

Furthermore, taking 7 = 0 in equation (4.19) we get

- __ 8o Bio : Cio : D; o E;o :

Uz,l — Ai,o Ai,o Ut,—l Ai,OUH-l,O Ai’oUt—l,O Ai,oUt,O- (4-22)
Eliminating U, —; from the equation (4.22) and the second equation in (4.21) we
get

gi,0 Bi, Cio D; o Eio
i1 == ——==(Uia = 2ks;) — —=Uiy10 — 7= Vi-10 — 7=U;

Uia Aip Az,O( : s:) Az,oUH’O Ai,oU 1o Ai,oU'o
or

(Ao + Bio)Uip = g0+ 2kB, 08; — CioUsiy10 — DioUi—10 — E;oUp
Substituting the first initial condition we get
(Ai,O + Bz,O)Ui,l =G0+ 2sz‘,03i - Ci,07‘1+1 - Di,OT'i—l - Ei,of‘i
Hence the second initial condition (4.21) may be replaced by

1
U, = m(gz,o + 2kB, g8, — Cioriy1 — Dy oriy — Eipri)- (4.23)
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Hence using explicit method, the solution of Cauchy problem for the equation
(4.13) can be calculated by following procedures. Calculate the solutions at each
point in the first line by first equation in (4.20) for ¢ = 0,1, 2, .., n; and second lines
by (4.23) for ¢ = 0,1,2,..,n; and then the j* line by (4.19) for ¢ = 0,1,2,...7 —
1& 3523

4.3.2 The Boundary Value problem

In solving a boundary value problem, we assume that the boundaries are z = 0
and x = 1, since it is always possible to transform the interval [a < z < f] into

[0,1]. Hence the domain becomes
D={(zyl0<z<1,y>0}

and then it is replaced by

i

Dx* = {(zh,]k)lz = Oa 1,2,~°,n7j = 07 132} b

where h and k are grid size in the = and y axes respectively.
Using the forward difference formula the boundary conditions (4.15) and (4.15)
may be replaced by

Us s —Us -
/\_l’]—h'ﬂ + 51] UO'J = tl_,, (424)
and
Un y — UTL— 3
/\—i—h—li + 85,Unj = ta,. (4.25)

Note that A = 0, é;, = 62, = 0 and A =1 correspond to the difference formulas
for the boundary condition of the first, second, and third kind respectively. The
error in using the forward difference formula is O(h).

Hence by replacing the boundary conditions with the forward difference for-
mulas, the solution of boundary value problem for the equation (4.13) can be
calculated by following procedures: Calculate the solutions at each point in the
first line U, for ¢ = 0,1,2,..,n by first equations in (4.20) Furthermore for the
j** line j > 1; calculate Uy, the solution at the left boundary by (4.24), and then
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calculate U,, , ¢ = 1,2,...(n — 1), the solutions at the non boudary points, by
(4.20) when j = 1 and by (4.19) when ;7 > 1, finally calculate U, ,, the solution
at the right boundary by (4.25).

More accurate approximations can be made by replacing the boundary condi-
tions with the central difference formulas. This can be done in two ways.
Ist method: Ezpanding domain
We add two additional vertical lines 7 = —1 and ¢ = n+ 1 such as shown in figure

4.3 and approximate the boundary conditions of the third kind at the grid points
(0,5) and (n, ) by

U, —=U_1; Un - U'n— j
n 2h L+ 61,0, = 11,, o 2h =+ 02,Unj = ta,. (4-26)
A
-1 0 | 2 3 n nel
x=0 x=1

Taking : = 0 in the equation (4.17) we have
Ao,iUo41 + Bo,iUo,j—1 + Co,iUhi + Do,Uor + BoiUo; = g0y, (4.27)
and taking : = n we have
Az iUnyti + Bn,jUnjo1 + CajUnirg + DajUnory + EnjUn = gny- (4.28)
Eliminating U_;,, from (4.27) and the first equation in (4.26) we get

Ao,;Uoy+1 + Bo,sUoy-1 + (Co,y + Do,y )Us,y + (Eo,, + 2061, Do, ) Vs,
= go, + 2hDg ;1;, (4.29)
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and eliminating Up41,, from (4.28) and the second equation in (4.26) we have

An,jUn,]+1 + Bn,jUn,]—l + (Cn,] + -Dn,_y)Un-H,J + (En,j - 2h62]Cn,j)Un,J
= gn,; — 2hDn jts, (4.30)

Further by taking j = 0 in the last two equations gives

Ao,0Uo,1 + Bo,;Uo,—1 4 (Co,0 + Doo)U1,0 + (Eo,o + 2h61,D0,0) Vo 0
= go,0 + 2h Dy t;, (4.31)

and

AnoUni1+ BnolUn -1+ (Cno + Dro)Unt10 + (Enpo — 2h63,Cr0)Unpo
= gn,0 — 2k Dy ota,. (4.32)

Since we use the central difference formula for the boundary conditions, we apply

the central difference formula to the second initial condition on the boundaries,

UO,l - UO,—I _
T = Sy, (433)
and
Ui = Un1
5% = S,. (4.34)

Eliminating Up -1 from (4.31) and (4.33) we get

9o + 2kBopso + 2h Do gt1, — (Coo + Dop)r1 — (Eo,e + 2k61,Do0)r0
(Aoyp + Bo,o)

Uy =
(4.35)
and eliminating U, _; from (4.32) and (4.34) we get

U | = gn,0 + 2th,03n - 2hc’-n,0t2J — (Cn,o + Dn,O)"'n—l - (En,O - 2h620 Cn,O)'rn
" (Ao, + Boy) '

(4.36)

Hence by expanding the domain we are able to replace the boundary conditions
with the central difference formulas. The solution of boundary value problem
for the equation (4.13) can be calculated by following procedures: Calculate the

solutions at each point in the first line U, for ¢ = 0,1,2,..,n by first equations in
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(4.20). When j = 1, calculate Uy, the solution at the left boundary by (4.35),
and then calculate U;; by (4.20), finally calculate Up 1, the solution at the right
boundary by (4.36). Furthermore for the j* line j > 1; calculate Up ;, the solution
at the left boundary by (4.29), and then calculate U;; , i = 1,2,...(n — 1), the
solutions at the non boundary points by (4.19), finally calculate U, ;, the solution
at the right boundary by (4.30).
2nd method : Reducing domain
We shift the boundaries by % such as shown in figure 4.4

'\

0 1 2 3 n
x=0 x=1

Figure 4.4: Reducing domain

The boundary conditions of the third kind are approximated by

17.7 h 0,.7 ' 611 11.7 2 0’-7 —_ tIJ, (4.37)
a,nd
U ni — Un-1,; I Un Un_1,j
2J h 1,3 6‘2J ¥ 2 1, — t2J' (4:.38)

From (4.37) and (4.38) we have

U - (2 + héy,) U, — 2hty,
0.3 (2 — héy,)

(4.39)

and
_ (2 + hé2,)Upn-1,, — 2hty;

Uniy = (2 - héy,)

(4.40)
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Taking j = 1 in the last two equations we have

U _ (2 + h(S]J)U]_,I - 2ht1]
o1 = (2 = héy,)

(4.41)

and

U — (2 + h521)Un—1,1 - 2ht11
™ (2 — hé,,)

Hence by reducing the domain we are able to replace the boundary conditions

(4.42)

with the central difference formulas. The solution of boundary value problem
for the equation (4.13) can be calculated by following procedures: Calculate the
solutions at each point in the first line U, for : = 0,1, 2, ..,n by first equations in
(4.20). The required values ro,7,,S¢ and s, can be calculated by extrapolation.
Hence we can find the values of the approximation solutions on the boundaries.
When j = 1, calculate Uy, the solution at the left boundary by (4.41), and then
calculate U;; by (4.20), finally calculate Uy, the solution at the right boundary
by (4.42). Furthermore for the j** line j > 1; calculate Up,;, the solution at the
left boundary by (4.39), and then calculate U;; , ¢ = 1,2,...(n — 1), the solutions
at the non boundary points by (4.19), finally calculate U, ;, the solution at the
right boundary by (4.40).

4.4 Domain of Dependencies

We mentioned in section 1.4 that the solution of a Cauchy problem for a
hyperbolic differential equation at a particular point depends on the initial values
along the segment of determination, the segment of the initial curve intercepted
by the characteristic curves through the point, and the values over the domain
of dependence of the differential equation with respect to the point. We wish to
examine the domain of dependence of the finite difference solutions for the Cauchy

problem for the homogeneous wave equation

Uyy = Usg | (4.43)
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with initial conditions (4.14). Using the procedures given in the section 4.3, the
partial differential equation (4.43) may be replaced by the implicit difference equa-
tion

Uyt = p*(Uie1,5 + Uigr,3) + 2(1 = p°)U,,; = Usyea, (4.44)

where p = % further the initial conditions are replaced by
U,o = r(ih) (4.45)

and

1
Uia = §P2(ﬁ_1 + ) + (1 = po)r, + ks;. (4.46)

From section 2.4, the D’Alembert solution at a particular point (z,,y;41) is

1 rzty+a

(r(zi = yj41) +7(z +9541)) + 5 g(é)ds.  (447)

2 Ty Y341

DO =

u(xi, y;+1) =

Geometrically this equation shows that the domain of dependence of the differ-
ential equation (4.43) with respect to the point (z;,y,+1) is a triangular bounded
by characteristic lines ¢ —y = z; — y;4+1 and £ + y = z; 4+ y,+1 and the seg-
ment determination is interval z; — y;41 < @, + y;j31. However from (4.45), the
domain of dependence of the difference equation (4.44) with respect to the mesh
point (z,7 + 1) is dependent on the ratio p = f for a segment of determination
-+ <2< (G+ 1A

When p = 1 the two domains of dependency coincide. However when 0 <
p < 1 the domain of dependency of the difference equation includes that for the
differential equation, and the domain of dependency of the difference equation is

inside that for the differential equation if p > 1; see figure 4.5.
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/

R

Figure 4.5: The domain of dependence

4.5 The Truncation Error and Stability

The explicit formula (4.45) has the truncation error

1 dtu 1 0%u
R |2 =122 = (- 1) 4 4.48
gl —Nga+ 3 ~Vam * (448)

The truncation error vanishes completely when p = 1.

A truncation error or any other computational error may lead to numerical
instability. A difference method is said to be stable if the calculation error does
not increase by increasing calculation steps. However if the error is cumulative
the method is said to be unstable. There are several methods for determining the
stability criteria of a difference method. One of the most widely used is called von
Neumann stability.

Von Neumann stability examines the propagation effect of errors along a single
row, say the line j**, on the next calculation processes. The errors are represented

by finite Fourier series of the form
N,
E(z)= ZAJe‘/__l‘“J’
J

where N is the number of mesh points on the J* line. Because of linearity, it is

necessary to consider only a single term eV ~1#1% where y; is any real number and
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the coefficient A is constant and can be neglected. That is each term grows or
decays independently to the others. Each single term is analysed separately and
the complete effect is then obtained by linear superimposing.

To investigate the propagation of the error due to a single term €**1* as y
increases, we need to find a solution of the finite difference equation which reduces

to V=117 when y = 0. Let such a solution be
Ulz,y) = eV Tz egmy (4.49)

where ps = po(p1) is, in general, complex. Then the condition to be satisfied such

that the error introduced in e*** will not grow as y increases,
le”?| <1 (4.50)

for all p,. This condition is well known as the von Neumann condition.

We will use the von Neumann method to examine the stability of various
difference approximations. Let ¢;; be the difference between the exact solution
u;; and the approximate solutionl, ; at a particular mess point (7,7), i.e. €;; =
u;, — Ui,. Let us now examine the stability of the explicit scheme specified by

equation (4.46). Employing the Taylor series into €;, we have
1 o 1 ,
(G- = 2605 + €iga) + O] = (61 — 260, + €u41,5) + O[R7].

Hence the truncation error at a particular mesh point (2,5 + 1) can be written

explicitly as
Euit1 = P (€1 + Eugry) + 2(1 — pP)er; — €051 + OlF'] + O[K?A*]. (4.51)

where the truncation error is given by (4.48).
Along the initial line 3 = 0, €,0 = 0V, replacing the first derivative at the

initial condition gives the truncation error at points along 1st line

€1 = OF). (4.52)
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The von Neumann method will be used to investigate the stepwise stability
of equation (4.51). According to the von Neumann method, we examine the

propagation of a single term, eV=1m7 along the initial line, so that we have

eV Tmih, (4.53)

€0 =

and along the j** line
\/juuheuzjk (4.54)

&,=¢

where A = Az and k = Ay. Using this, the equation (4.51) gives

ek = pP(eVTImh 4 omVImhy 4 o] _ g2y _ gmak, (4.55)
Since
VTt o o =V=Tmih — 9050y b (4.56)
and
h
(1 — cosprh = 2sin (,u; ) (4.57)

then (4.55) becomes a quadratic equation in e*?*,
2u2k 2 ”1h uzk —
e?#2F — 2(1 — 2p*sin?(— 5 e +1=0 (4.58)

which has the solution

e = (1 — 2p*sin? MT \/(2(1 — 2p? szn2(—) -
In order to avoid an increasing error such as j — oo it is necessary that

|e#2¥| < 1 for all real values of u;. Hence we have
h
231 - 2p2sin2(ﬁ;—)2 —4<0,

which gives
2 < ___1____
- sinz(“—;}l)

Hence the condition to be satisfied such that the errors do not increase as j

V,LL].

Increases is

p <1 (4.59)
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4.6 Implicit Methods

So far we have only considered the explicit method, the simplest finite fiiffer-
ence methods. Now we will consider the implicit method, on which a line, say j**,
will contains more than one unknown. However for the sake of simplicity we will
only deal with the wave equation (4.43). Replacing u,, by the second order cen-
tral difference approximation as before and u.. by a linear combination of three
second order central difference approximations each centred at (4,5 — 1), (¢,7) and

(1,7 + 1) then we have

(Uigm1 = 2Ui; + Uiyir) 3 (Uim1,y=1 = 2Uijo1 + Uig1j-1)
k? - h?
(uim1; — 2u;; + iz1,;)
+(1 _ 2/\) J hz] J
) (wic1,j41 — 2uijg1 F Uit1,p41)

h2
(4.60)

for 0 < A < 1. Now we have three unknowns at (j + 1)* line such as shown in

figure 4.6.

._:2;0 i+1,j
2.

Figure 4.6. Implicit method
O : computed values from previous calculations

QO : values to be computed

Taking p = f, the difference equation (4.61) can be written as

(uz,J—l - 211.,;,_7 + u:._7+1) = pz[/\(ut—l,J—l - 2“1._7'—1 + ui+1,_7-1)

+(1 = 2A)(win1,; — 2Usy + Uig1,)
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FAM 1,41~ 2 + Uit j41)]-

(4.61)

Again by employing the Taylor series into 2, , = U; , — u;, the truncation error for

(4.61) is given by

2RI — — 2 8_42 Loy 2/ 2 @
R (5" = 1) M) g T 3ag((P7 = 1) = 30A0°(p" + 1)) 55
Foorenn] (4.62)

Notice that when A = 0, then (4.60) is reduced to the explicit approximation
(4.44), while the truncation error (4.62) is reduced to the truncation error (4.48).
Since 0 < A < 1 then the implicit finite difference approximation (4.60) gives a
better approximate solution then that given by explicit finite difference approxi-
mation (4.44).

Using the von Neumann method such as for the explicit approximation (4.44),

substituting (4.49) into the equation (4.61) gives
er2k _ 9 4 e~H2k p2[/\(e\/——1mh — QeH2k | e—\/—_luzh)
+(1 — 2X)(e#2k — 2  e7#2k)
e\/:Tulh ) e—\/:mh

ek2k - etak + etk

+A( ].

and using (4.56) and (4.57), we obtain

2p% sin? 4k
ek 91—~ ( 2 )h et 11=0 (4.63)
1+ 4)\p? sin® (‘“—)

2

or
2 .2 1 h
2p® sin (L—2

B 1 + 4)2p? sin? (";—h) )

1 2p? sin’ (“;—h)
i2J 21 - 1 + 4)\p?sin® (%ﬁ)

e#zk —

)2 — 4.

Again in order to avoid an increasing error such as j — oo it is necessary that

le#2¥| < 1 for all real value of u;. Hence we have

2p? sin? (%h)

1+ 42p?sin? (42

2(1 -2 ¥ —-4<0.
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In the region of 0 < A < 1, o is real for all real values of yy if

Azi, p>0 (4.64)
or
1
O</\<Z’ 0<p<1_4)\. (4.65)

Then in order to prevent an increase in the error such as j, we have to choose
A and p such that they satisfy the unconditional stability (4.64) or conditional
stability (4.65). Hence von Neumann stability gives unconditionally/conditionally
stable to the implicit method when the central difference approximations in middle
time level is greater/less than the sum of the above and lower time level, the
conditionally stable satisfied when 0 < p < 125.

Since the implicit finite difference equation (4.61) contains nine variables with
only six of them are known, then it is not suitable for solving the pure Cauchy
problem with an unbounded domain. However by using the gi;/en values along
the boundaries as additional known values, we will have a solvable system of
equations.

A particular case when, A = 41, the lower bound for the unconditional stable
approximation, the implicit difference equation (4.61) is reduced into

2

A~

(uz,_y—l - 21},,,] + ui,j-i—l) = [(uz—l,]—l - 2uz,_7—1 + uz'+l,_7—l)

|

+2(u1—1,j - 2ui,] + U2+1,])

F(ti-1,041 = U401 F Ui ,41)]
or may be written as

2
—(wirr i1 + (vic141) +2(1 + ;)E)ULJH = 2[(uig1, + ti-1,5)

2 2
=2(1 - ;)Uza][(“zﬂu—l + uim1-1) — 2(1 + ;5)%',3—1]

(4.66)

This finite difference approximation is stable for all p > 0.
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As in the explicit method, we assumed that the boundaries are z = 0 and

z = 1, such that the continuous domain may be replaced by
Dx = {(ih,jk)|lt =0,1,2,..,n,7 =0,1,2....},

where h and k are grid size in the = axis and y axis respectively. Denote by V; the
solution at the interior mesh points, i.e. mesh points other than boundary points,
along the j* line. For the sake of simplicity, we assume that the boundary values
are zero. Applying the finite difference equation (4.66), a system of equations is

generated . The system has the matrix form
AV,41 = BV, + CV,,4 (4.67)

for j = 1,2,3,... where the matrices A, B and C are

A=—D+4p7%], (4.68)
B =2D +8p7I, (4.69)
C=D-4p7%I, (4.70)

where [ is the identity matrix and D is the tridiagonal matrix,

—2(1 + p?) 1 0 Coe 0 \
1 —2(1 + p?) 1 0 . . 0
0 1 —2(1+p%) 1 0 . 0
D= ( ) (4.71)
0 : . .01 =201+ p%)

Using the initial conditions (4.21) we know the solutions at all points along
the initial line, 7 = 0, and the first line, 7 = 1, that is we have V; and V;. For each
J = 1,2,.. the right hand side of the equation (4.67) is a constant vector, hence

we may rewrite the system of equations (4.67) as
-2(1+ Pz)Ul,J + Uy, = day,
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Uy —2(1 + Pz)U2.j +Us; =d,;

Uz; — 2(1 + p*)Usj + Us,j = ds

Un-3; — 2(1 + p*)Un-2j + Un-1,; = dr;

—2(1 + pz)Un_lvj + Un‘j = dl'j. (472)

To solve the system of equation (4.72) we may use the tridiagonal algorithm.
Basically the tridiagonal algorithm, by Young [10], is based on the Gaussian elim-
ination process. Transform the system (4.72) into upper bidiagonal form, and solve
it for U, ; Vi=2,3,..,n—1

As particular example, suppose the boundary value problem in example 2.3

has initial conditions
iz, 0)= %simrz, g, =0 0<az<] (4.73)
The method of separation variable gives the analytic solution
u(z,0) = gsinmccomry, (4.74)
which may be depicted in figures 4.7 below

Figure 4.7: Analytic solution



The approximate solution by using the explicit method are depicted by figures

4.9.a and 4.9.b below

Figure 4.8.BI'he error by the explicit method

while of the implicit method is depicted by figures 4.9.a and 4.9.b, respectively



and Figure 4.9.8 he error by the implicit method

4.7 Discusion and Conclusion

The finite difference method involves discretization of the continuous domain
by rectangular grids, and the governing equations, the initial conditions and the
boundary conditions by finite difference equations. Using forward, backward and
central difference formulas we may construct some finite difference schemes on
which the partial differential equations are replaced by finite difference equations.

The replacement of the governing equation by a finite difference equation is not
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unique. It depends on the configuration of the difference formulas we use.

We get explicit or implicit methods, depending on the choice of nodes. Re-
placing the second derivative with respect to z by a linear combination of three
second order central difference approximations on three time levels will give an
implicit. The use of a high-order difference approximation to a differential equa-
tion requires the use of an equally high-order approximation to the initial and
boundary conditions. However when we deal with boundary value problems, re-
placing the first derivatives in the boundary conditions by the central difference
formula we have to expand or reduce the domain.

The implicit method is not suitable for solving the pure Cauchy problem with
an unbounded domain; for the initial value problem, the problem is reduced to
solving a system of equations. For instant, when the central difference approxi-
mations in middle time level is equal to the sum of the upper and lower time level
the problem is reduce to solving the tridiagonal system:.

Examining the Cauchy problem for the homogeneous wave equation results
that p, the proportion of grid sizes Ay tol Az have significance influence into the
domains of dependency. When p < 1 domain of dependency of the difference
equation includes that for the differential equation. However the two domains
of dependency are coincide when p < 1,, and the domain of dependency of the
difference equation is inside that for the differential equation if p < 1.

Moreover von Neumann stability gives the condition that the explicit method
will stable, the calculation error does not increase by increasing calculation steps,
if p < 1. The implicit finite difference approximation give a better approximate
solution then that given by explicit one. Then von Neumann stability gives uncon-
ditionally/conditionally stable to the impiicit method when the central difference
approximations in middle time level is equal or greater/less than the sum of the

above and lower time level, the conditionally stable satisfied when 0 < p < ﬁ.
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Chapter 5

CONCLUSION

5.1 Results

Examining the discriminant of a second order linear differential equation, we
find that the number of real characteristic directions at a given point is zero, one or
two according to whether the equation is elliptic, parabolic or hyperbolic. In the
case of hyperbolic type there are two characteristic curves on which will becomes
the coordinates system if the differential equation is in the canonical form . This
fact suggest that we may integrate directly along the characteristic curves. It
is found that Cauchy problem for the hyperbolic equation, the initial curve, on
which the initial data are given, cannot be one of characteristic curves.

The values of the solution of the Cauchy problem for the hyperbolic equation
at a particular point depend only on the segment of dependence, the segment of
the curve intercepted by the characteristic lines through the point, and the value of
the given function over the domain of dependence, bounded by the characteristic
line and the segment of dependence. Further the solution of the Goursat problem,
on which we have some values on a characteristic curve are known, depend on the
data along the characteristic and initial curves.

Under the assumption that the hyperbolic equation satisfies the Lipschitz con-
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dition, the Cauchy problem for the hyperbolic equation in canonical form is a
stable problem, hence methods of successive approximation generates a sequence
of approximate solutions which is converges to the exact solution. By introducing
the Riemann-Green function, the Riemann’s method presents the solution of the
Cauchy problem for linear hyperbolic equation, in a manner depending explicitly
on prescribed initial conditions.

Using the displacement of a stretched string as a model, the D’Alembert so-
lution appear to be travelling waves. When boundary conditions are taken into
account, the solution is composed of two waves continually travelling along it in
opposite directions, the whole displacement being the resultant of two waves and
their reflections at the end points. The method of separation variable gives a
solution in term of a series of standing waves. In the case moving boundary we
have discussed only elastic attachment of the boundaries moving normal to the
wave front.

By applying a driving forces, we have non-homogeneous wave equations; the
Riemann-Volterra solution produces an explicit solution in which it is dependent
on the prescribed initial values. When initial conditions are given along z-axis,
the Riemann-Volterra solution is reduced to the D’Alembert solution. When we
deal with the boundary value problem, we knew that the domain is divided by
the characteristic lines into four sub-domain. In the first sub-domain, below the
characteristic lines, the problem is reduce into Cauchy problem. In the second
and third sub-domains, in the left and right characteristic lines respectively, the
problems becomes the Goursat problem. In the fourth sub-domain, above the
characteristic lines, the problems becomes the characteristic Goursat problem.

In the case of quasi linear, the Cauchy problem is reduced to the characteris-
tic system. The system involves non-linear ordinary differential equations which
should be discretized and calculated simultaneously. Based on the Taylor’s series
of order one, the straight line method gives approximate solutions with discretiza-

tion error of order one. Geometrically the method approximates the characteristic
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curves by straight lines. The predictor-corrector methods produce approximate
solutions with discretization error of order two. Geometrically the method ap-
proximates the characteristic curves by parabolic arcs. The parabolic arcs are
chosen to be straight line through the given point and the calculated approximate
point. These methods are well known.

We have proposed the alternative methods, method A and method B, on
which we integrate the characteristic curves directly. The improved values are
found to be the intersection of the approximate curves. When the approximate
curves do dot intersect, the method A approximates the intersection point by the
intersection point of their arcs, while the method B by the intersection point of
their tangents.

From our experience, for the problems semi-symmetric characteristics, the
predictor corrector method, the method A and method B are converge, since at
each stage of calculation the characteristic curves remain inside the triangular
formed by the tangents of the given points. Generally the predictor corrector
method, the method A and method B give better approximate values than of the
straight line method. However when the characteristic curves are straight lines,
then the method A and method B are reduced into the straight line method. In
calculation processes, the method A and method B are faster than the predictor
corrector method, since the two former methods use the Runge Kutta (of order
4) method while the later method use the trapezoidal rule which is equivalent to
the Runge Kutta of order 2.

The finite difference method involves discretization of the continuous domain
by rectangular grids, and the governing equations, the initial conditions and the
boundary conditions by finite difference equations. Using forward, backward and
central difference formulas we may construct some finite difference schemes on
which the partial differential equations are replaced by finite difference equations.
The replacement of the governing equation by a finite difference equation is not

unique. It depends on the configuration of the difference formulas we use.
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On replacing the partial differential equations by finite difference equations,
we get explicit or implicit finite difference methods, depending on the choice of
nodes. The use of a high-order difference approximation to a differential equation
requires the use of an equally high-order approximation to the initial and boundary
conditions. However when we deal with boundary value problems, replacing the
first derivatives in the boundary conditions by the central difference formula we
have to expand or reduce the domain. The implicit methods contains more than
one unknowns such that it is not suitable for solving the pure Cauchy problem
with an unbounded domain, the boundary values are need. Solving boundary
value problem of the homogeneous wave equation by explicit methods is reduced
into solving tridiagonal system of equations.

Examining the Cauchy problem for the homogeneous wave equation results
that p, the proportion of grid sizes Ay to Az have significance influence into the
domains of dependency. When p < 1 domain of dependency of the difference
equation includes that for the differential equation. However the two domains
of dependency are coincide when p < 1,, and the domain of dependency of the
difference equation is inside that for the differential equation if p < 1.

Moreover von Neumann stability gives the condition that the explicit method
will stable, the calculation error does not increase by increasing calculation steps,
if p < 1. The implicit finite difference approximation give a better approximate
solution then that given by explicit one. Then von Neumann stability gives uncon-
ditionally /conditionally stable to the implicit method when the central difference
approximations in middle time level is equal or greater/less than the sum of the

above and lower time level, the conditionally stable satisfied when 0 < p < ﬁ.

5.2 Further Developments

In the discussion of moving boundaries we may apply elastic attachment
boundaries, moving along the wave front. When velocity of the boundary is

greater then the velocity of the string we will have a supersonic wave, and sub-
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Chapter 6

APPENDICES

The algorithms below are derived for solving Cauchy /boundary-value problems
of the quasi linear second order (3.1). Implementation in computer programs may
vary. We have been used Think Pascal, to solve the second order quasi-linear
partial differential equations. So far, it work well, as long as the equations are
hyperbolic throughout the domain.Reader who interested in our software, may

have it for free.

6.1 Algorithms of Straight Line Method

6.1.1 Cauchy problems

Algorithm 3.1: The straight line method for solving Cauchy problems.

Suppose we have already approximate values at the point

(zlrj’ yzy])’ (x1+11.7’ yi+11.7)'

To calculate the approximate values at the point (Ziy1,j41,¥i+1,,41), We carry out
the following procedures:

1. Compute the z-coordinate of the point by

Yit1 = Yig T CiyTij = Bir1,iTisrs (6.1)

Lit1,j4+1 =
at * — ﬂv
'J 2%
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and the y-coordinate
Yitlg+1 = Yoy F 0 (Tap141 — Tig)- (6.2)
The y-coordinate may also be calculated by
Yitr1,041 = Yot1j F Betr,i(Tidr,i41 — Tiga,)- (6.3)

2. Compute the first derivatives of u: u; by

Uz.+1,J+1 = [a1,1c1+1.3a1,jUr.,J - az+l.Jci.jﬁi+1.jUz.+1,J + c1,Jct+1,j(Uy.,J - Uy.+1,,)

+(Cig1,7€iy — Cij€it1,y)Yig+1 + Coa1,€iyYiy — Cij€it1,iYi41,4]

Jlascit1 i, — @iv1,i6iBit1,)s (6.4)
and u,
: 1
Uyl+1,J+1 = Uy:,, - -CT[ahjai,j(UxH-l,J-i-l - le,]) - eiij(y’+11j+1 - y‘l,J)], (6'5)

2]

or may also by

1
Uy;+1,;+1 = Uyl+1,_1 - E[ai?l,.‘l i+1,.’l'(Uz-+1,;+1 - Uzu+1,;) - 3£,j(yi+1,j+1 - yi+1,j)]
27
(6.6)
3. Compute the first approximate value of u by
1
Ui+11.7+1 = Uir] + E(Uzl-}-l.]'*'l + UI!,J)(z1+1:J+l - m’r])
1
+§(Uyz+1,1+1 + Uy-,;)(yi+1,j+1 - yi,])7 (6'7)
or by
1
U1+1,]+1 = Uz+1,j + '2'(U$.+1,J+1 + U-’L‘.+1,,)($i+1,j+1 - $,+1,j)
1
+§(Uy.+1,,+1 + Upopr, ) Wit1,041 = Yiv1,5)- (6.8)

4. Substitute the calculated approximate values
Tat1,941, Yit1,5+1> Uit 1,541 Unis s> Uzigs
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into the given coeficient functions

a(x’ y’ u) u-’l?) uy)) b(x’ y) u’ uZ’ uy)7 c(x) y, u) u:’:’ uy)’g(z:? y’ u’ uz’ uy)'

5. Compute the o characteristic direction by

1

Qi 41,541

. _ . 2 . .
Qig1,41 = (Bis1041 + /02101 — Givror1CibLa) (6.9)

and [ characteristic direction by

1

Qr41,5+1

:81+1,J+1 = (bi+1,J+l Y b?+1,3+1 - az+1,]+lcz+1,j+l)- (6-10)

6. Repeat the procedure 1, 2, 3 for i=j(1)n.
7. Repeat the procedure 1, 2, 3 for j=1(1)n-1.

6.1.2 Baundary Value problems

Algorithm 3.2.: The straight line method for solving boundary value problems.
Using prescribed values at the point (z:,,y:;) and (zi1,;, Yi+1,;) for ¢ = 0(1)n,
1. Say (zoj+1,Yo0,+1) , for each j, is the coordinates of the point at the left
boundary. zg ;41 = o, for all j, and yo ,41 is computed by (3.17).

The first approximate values Up ,+1 and Uy, are found by substituting

0,5+1
(370,]+1,y0,_7+1) into (319), while Uyo,g+1 =0 Vj
Substitute the calculated approximate values Zo,41,%0,541, Uo,y+15 Uso,yrs Uso i

and Uy, ., into the given coeflicient functions

a(a:, Y, u, Uz, uy)a b(:L', Y,u, Uy, uy)) c(z, Y, U, Ug, uy)ag(za Y, U, Ug, uy)-

Compute the o characteristic direction by (6.9) when ¢ = —1.

2. Compute the coordinates of the non boundary point (21,41, ¥:+1,5+1) for
:=0(1)n — 2 by (6.1) and (6.2).
Compute the first derivatives of u a by (6.4) and (6.5).

Compute the approximate value of u by (6.7) or (6.8).

141



Substitute the calculated approximate values 1,41, Yit1,5+15 Uit1o+1s Uzigr i

and U.

241,41 10t0 the given coefficient functions

a(x, y') u) uz, uy)’ b(x’ y? u’ u-”’ uy)’ c(x7 y’ u, uz, uy)’g(x’ y, u7 uz’ u'y)'

Compute the o and S characteristic directions by (6.9) and (6.10) respectively.
3. Say (Znjt+1,Ynj+1) » for each j, is the coordinates of point at the right
boundary. Zn,+1 = Zn for all j, and y, ;41 is computed by (3.18).

The first approximate values U, ,+; and U; are found by substituting

n,+1

(Zn,341> Yn,g+1) into (3.20), while U, ., = 0V.
Substitute the calculated approximate values &5 41, Yn,y 41, Unyt1, Uz, 4y and Uz, o,

into the given coeflicient functions

a’(m7 y? u’ u-'L" uy)7 b(x’ y’ u’ ux’ uy)) c(x’ y’ u’ uz, uy))g(m’ y’ u) u-’”’ uy)‘

Compute the f§ characteristic direction by (6.10) when ¢ = n — 1.
4. Repeat the procedure 1,2,3,4 for j=1,2,3.... as desired.

6.2 Algorithms of Predictor Corrector Method

6.2.1 Cauchy problems

Algorithm 3.3: Predictor corrector method for solving Cauchy problems of the
quasi linear second order (3.1).

1. Using straight line method we calculate the first approximate values of
m,y7u, Uz, Uy’a" b’ c’g, a’ IB

at the point (241,41, Yet1,,41) - Use this set of values as the initial predictor, that

we have

(0) U(O) U©) (0) b(o (0) (0)

z+1,]+l’yz+1,1+1) 141,741 Y41 541 1+1,_7+1’ 1+1,0+1> 1+1,_1+116i+1,_7+1,

0 0
CYz(+)1,1+1 and ﬂn(+)1,j+1-

142



2. A correction to the approximate value of coordinates of the point

(Zit1,541, Yot1,541) May be calculated by

‘f'l:-;l.‘l)'*'l = (Y1, — Yiy + %(a,ﬂ- + az(-]f-)1,g+1)$m
—g(ﬂm,g + 8% )i
155 + o) = 5o + B85 (610)
and
04D = i+ e, + ol ) — 20) (6.12)
or
g = viny (ﬂm,J + B8, )(@T  — 2 ). (6.13)

3. Furthermore a correction to approximate values to the first partial deriva-

tives, can be calculated by
k+1 (k k
U:l(,‘i-:,_,)+1 = [(a1+1,.7+1a1+)1 J+1 + ai,jai,j)(c§+)l,j+1 + ci+1!j)le,J
k k
1(+)1,J+1131+1,.7+1 + ai+1,aﬁi+l,a)(c§+)1,j+1 +¢ij )Uz.+1,,

k
+ l+1,J+1 + Ci,j)(c§+)1,j+1 + ci+1,j)(Uy.,, - Uy.+1,,)

(k+1)
,.7+1 + c1+1,.1)(61+1 g+ T e’x])yt+l,_7+1

—(a

(e

(cff

( z+1 g+1 T cl,])(efi)1,1+1 + 6i+1,;)yiﬁ,1:)+1
(e

—(c}

+

=+ +1 g+1 T Cz+1,1)(ez+1,g+1 + €:i5)¥i;
k
1+1 g T C:,J)(ez(+)1,g+1 + eir1,5)¥i+1,5)/
k E k
[(a,(+)1 J+1 af+)1,1+1 + ai,jaz,j)(cl('+)1,g+1 + Cz+1,j)

k
( z+1,.7+1ﬂz+1,_7+1) + ai+1,j5i+1,a)(cf+)1,j+1 + Ci,:)],

(6.14)

and

1
k41) _ at® (k) ,
Ué.ﬂ o = Uu, — (C(.I:_)l N +c,j)[[( 1,741 %141 T G0y
T WJ 2y,

1, & k
(U, - Us,,)] - §(ef+)1,j+1 + i) (W B — v,

(6.15)
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or

1 k)
Uzs,k;'l,)ﬂ = Uy-+1,; - (k) [[( 1(+1,.7+1ﬂ1.+1,_7+1 +a1+1,1ﬂ1+1.j)
( Cig1,541 + c’+1,j)
(VD = Upoo )= 2(e¥ o + €)@y = rr)]
Togl,y41 Tht1,; 2 1,+1,J+1 4,7 +1,7+1 +1,7 /)

(6.16)

4. Substitute the calculated approximate values

(k+1) (k+1) (k+1) (k+1) {(k+1)
$1+1:J+1’ y1+1,_7+1’ U1+1,J+1’ U-'b‘.+1 2417 T T4

into the given coefficient functions
a(:z:, Y, Uy Uy, uy)7 b(x’ Y, U, Ug, uy), c(:c, Y, U, Ug, uy)’ 6(.’1,', Y, U, Uz, uy)-

5. Compute the « characteristic direction at the point (Ziy1,j+1,¥i+1,+1) by

(k+1) 1+

Qi1+ =

1)

k k k k
P (5 + (W — ity (67)
trig

and B characteristic direction at the point (z,+1,,+1, Yi+1,,+1) by

(k+1) _ 1 k+1) (k+1 (k+1) (k+1)
ﬁl.'*'lyj?*'l a(k+1) 1+1,_7+1 \/(b1+1,_7)+1 2 — z+1,_7+1c:+1,_7+1) (618)
t+1,5+1

6. Repeat the procedure 1, 2, 3 ,4 and 5, and iterate on k until

D —
iyt gl (6.19)
Yig1,5+1
and
R LR
t+1,7+1 1+1,9+1 <e (6 20)
z .
xz(+)1.:+1

for a given error €.
7. Repeat the procedure 1, 2, 3, 4, 5 and 6 for i=j(1)n.
8. Repeat the procedure 1, 2, 3, 4, 5, 6 and 7 for j=1(1)n-1.
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6.2.2 Baundary Value problems

To construct a characteristic grid net and the solution of boundary value prob-

lem, we calculate the values at the non boundary points by the algorithm 3.3, and

the values at the boundary points by procedures similar to those of the algorithm

3.2. The procedures are described by the flowchart in figure A1 next page.
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6.3 Algorithms of Method A

6.3.1 Cauchy problems

Algorithm 3.4: Method of A for solving a Cauchy problem.

1.a Using straight line method we calculate the first approximate values of
z,Y,u, Uz, Uy, a,b,¢,9,0, 8

at the point (zi41,+1,¥i+1,,+1) - Using this set of approximate values as initial

prediction, we have

20 (0) y©) U(O) a© p(©) 0 (0
z+1]+1’y1+1,_7+1’ 1,041 Y241 5410 z+1,_7+11 1+1,7419 z+1,_7+1’ 1+1,_7+1’

0 0
5+)1 j+1 and ﬂ,(+)1 g1

1.b Suppose for integers k = 1,2.., the k** and (k — 1) iterations give

k k+1
1(+)1 PR B ‘f-*'-;,_?)-f-ll > €, (6.21)
or
k
y1(+)1,1+1 yt(-i-{-,]_.y)-l-l‘ > &, (6.22)

and applying Runge Kutta integration gives

k k
lya($1(+)1,;+1) - yﬂ($1(+)1,_7+1)| > &, (6.23)

for an allowed error ¢.
2.a Caclculate ya(a,fﬁlj),,_l) and yg(:z:l(_';_'{'lj)+1 by (3.63) and (3.65) respectivelly.

2.b If

(k+1)

) - ueEii)| <. (6.24)

Iya Tit1,541
then a correction to the approximate values of coordinates of the point

(Z141,41, Yi+1,,+1) May be calculated by
k 1 k k
Tit1y41 = 5'3;(+)1’ Yt15+1 = §(ya($f+~;1)) + yp(z £+11L1)))- (6.25)
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2.cIf

k+1 k+1
lya($1(+1.1)+1) - yﬁ(‘”£+1,j)+1)l > €, (6.26)
then calculate the approximate value (:z:ffll G4l y,kflld i+1) by solving the equations
k+1 (k) o 25
Yitrg1 — Ya(Tig1 jq1) _ Tit1941 T Tat1,541 6.97
® = —® (6.27)
Yig = Ya(T31,541) Tijj — Tiyly41
and ; ®) k 2®
1 1
yi-rl,JH yﬁ( z+1,J+1) _ xi:1,1+1 Tyt41,5+1 (6 28)
= . )
Yi+1,5 — yﬂ( 1(+)1,J+1) Tit1,y — z(+)1,.1+1
2.d If the set of conditions
k+1 k k+1 k
T — Tin J+1l <&, [itn - v <e (6.29)

are satisfied then a correction to the approximate values of coordinates of the

point (z,41,+1, Yi+1,,+1) 1s calculated by

k+1 (k k+1) k
Topr g1 = =(zid Yo+ l‘;+)1,]+1) Yitl,j41 = (y:(+1,1+1 + yi(+)1,j+1)' (6.30)

l\Dli—'

3. Compute the first derivatives of u by (3.27) and (3.28).
Compute the first approximate value of u by (3.30) or (3.31).
Substitute the calculated approximate values 5 j11, Yn,y41, Unyy1, U, ,py a0d U,

into the given coeflicient functions

a’(z’ y’ u7 uz) U"y)’ b(x’ y’ u)ux’ uy)’ c(x)y7 u, uﬂ:, uy), e(x’ y’u,um) uy)'

4. Compute the a and f characteristic directions by (6.9) and (6.10) respectivelly.
5. Repeat the procedures 2.a, 2.b, 2.c, 3 and 4, iterating on k£ until the condition
(6.24) or the set of conditions (6‘.29)is satisfied. 6. Repeat the procedure 5 for
i=j(1)n.

7. Repeat the procedure 6 for j=1(1)n-1.
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6.3.2 DBaundary Value problems

To construct a characteristic grid net and the solution of boundary value prob-
lem, we calculate the values at the non boundary points by the algorithm 3.4, and
the values at the boundary points by procedures similar to those of the algorithm

3.2. The procedures are described by the flowchart in figure A2 below
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6.4 Algorithms

of Method B

On replacing (6.27), (6.27) by

k+1

k (k)
Y1041 — ya($£+)1,.7+1) =« (Rﬁ)(xf-tll,_7+1 - -7’:+1,j+1) ) (6.31)
k k (k)
y:k-:_ll,j+l - yﬁ(xf'+)1,g+1) =p (Rﬁ)(mtﬂ,jﬂ - $z+1,g+1> (6.32)

respectivel, we have procedures for method B which are described by the flowchart

in figure A3 below
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