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Abstract

An eddy-permitting (44 km at 50°S) numerical model of the open ocean south
of Australia is combined with satellite altimetry data in an assimilation study of
Southern Ocean dynamics. The domain chosen is from 110 to 190° East and 30
to 70° South, encompassing both the Southeast Indian and Macquarie Ridge com-
plexes. This region is thought to play an important role in the momentum balance
of the Antarctic Circumpolar Current (ACC) and meridional heat and freshwater
exchanges.

The Hamburg Ocean Primitive Equation (HOPE) model (Wolff et al. 1997) is
'an implicit free-surface primitive-equation model discretised on an Arakawa E-grid.
It is modified to operate in an open boundary configuration. For the barotropic
mode, the open boundary condition is based on characteristic variables and extends
the condition proposed by Flather (1976). The boundary condition preserves water
volume while allowing the transmission of shallow-water gravity waves, an impor-
tant feature with sequential data assimilation. Volume transports normal to the
boundaries are required. Across the ACC, these are determined adaptively through
a thermal wind calculation. On the northern boundary, prescribed transports model
the Leeuwin Current and East Australia Current. For the baroclinic velocities, a
modified Orlanski-type (Orlanski 1976) radiation condition is applied on the east-
ern boundary, while a zero-gradient condition is applied on the northern boundary.
Because of the staggered grid in HOPE, the baroclinic velocities on the western
boundary can be calculated prognostically as in the interior. For tracers a combina-
tion of relaxation towards climatology for inflow and upstream advection on outflow
is applied along all the open boundaries. The model undergoes considerable drift

in a forty-year spinup run. This results from a lack of sea-ice in the model, and
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inadequate surface forcing and deep-water formation.

The reduced-order optimal interpolation System for Ocean Forecasting and
Analysis (SOFA) of De Mey (1999) is integrated with HOPE to perform the assimila-
tion. The order-reduction applies a transformation in the vertical between observed
sea-level anomalies and the internal density structure, preserving both water-mass
properties and potential vorticity on isopycnals (Cooper and Haines 1996). Such a
model of water-column variability is consistent with that observed in repeat hydro-
graphic sections of the WOCE SR3 line through the model domain. A dynamical
analysis of the vertical projection scheme in an assimilation context shows that it
excites primarily barotropic topographic Rossby waves.

One year of data from the TOPEX/POSEIDON satellite mission is used in
a series of trial assimilation runs. The assimilation system produces reasonable
analyses of sea-level anomaly, and improved estimates of meridional eddy heatflux.
A comparison with a WOCE hydrographic section succesfully captures a significant
eddy feature, but at a reduced level. A trial is made of a modification to the vertical
projection scheme that includes a degree of barotropic variability. This modification
provides small but significant improvements to statistics of forecast performance and

patterns of sea-level variability.
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CHAPTER 1

Introduction

It is the attempt to understand the Earth’s global climate system that ulti-
mately motivates much current oceanographic research. The oceans play a
pre-eminent role in this system. Of the solar radiation incident on the planet,
the atmosphere absorbs between 19 and 25% (Wallace and Hobbs 1977; Peixoto
and Oort 1992; Moran and Morgan 2002) and the hydrosphere around 38%
(Sgrenson 1979, Figure 97). The annual average internal heat content of the
oceans is several orders of magnitude greater than the atmosphere!, and the
annual cycle about this average is five times greater (~ 8 x 10?2J) than for
the atmosphere (~ 1.5 x 10%2J). Satellite radiometer observations of the an-
nual variation in the global net radiation flux at the top of the atmosphere are
almost entirely explained by the change in oceanic heat storage (Ellis et al.
1978). In its 1995 Second Assessment Report, the Intergovernmental Panel on
Climate Change noted the crucial role of the oceans in climate change scenarios
(IPCC 1995):

Because of the thermal inertia of the oceans, only 50-90% of the eventual
equilibrium temperature change [under various greenhouse gas emission
scenarios] would have been realized by 2100 and temperature would
continue to increase beyond 2100, even if concentrations of greenhouse
gases were stabilized by that time.

Given the very large reservoir of heat contained in the oceans, it is no surprise
that the storage and transport of heat by ocean currents gives rise to significant
climate and weather effects.

Higher temperatures in equatorial regions with respect to the poles sets
up a net poleward heat transport. This process may be regarded as a ther-
modynamic heat engine (Peixoto and Oort 1992), with the resulting work
producing the weather and current dynamics which are such important fea-
tures of the biosphere. Though difficult to measure directly, particularly in
the oceans, estimates of the annual mean poleward heat transport is roughly
the same for the oceans as the atmosphere (see figure 1.1). In the Northern
Hemisphere, the oceans dominate at low latitudes, transporting almost 4 PW

1Peixoto and Oort (1992, Chapter 13) give the respective global average heat content per
unit surface area as 4.52 x 10'2Jm =2 for the oceans and 1.8 x 10°Jm~? for the atmosphere.
As well, the surface area of the world’s oceans is around 70% of the planet.
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Figure 1.1: Meridional profiles of zonally-averaged northwards heat transport.
The three curves show the atmospheric (74) and oceanic (Tp¢) components,
and the total (from Peizoto and Oort (1992)).

(4 x 10'W) of heat northwards at 25°N — about double that transported by
the atmosphere at the same latitude (Carissimo et al. 1985). The oceans also
dominate in the Southern Hemisphere at latitudes of the Antarctic Circumpo-
lar Current (ACC), around 60°S, where again the heat carried by the oceans
is roughly double that carried by the atmosphere.

Broecker (1991) in his now famous account described the global scale
thermohaline circulation of the ocean as a giant conveyor (see Figure 1.2,
and also Schmitz (1995), Rossby (1996), Macdonald and Wunsch (1996), and
Broecker (1997)). The Gulf Stream and its North Atlantic Current extension
transports warm salty waters north to the Labrador, Greenland and Norwegian
Seas. Along-path cooling and deep convection transforms these warm surface
waters into the cold and dense North Atlantic Deep Water (NADW) which
subsequently spreads south in a deep western boundary current before filling
much of the deep South Atlantic basin. At high southern latitudes NADW
is entrained into the ACC, where mixing produces Circumpolar Deep Wa-
ter (CDW). Very cold and salty Antarctic Bottom Water (AABW) is formed
along the Antarctic coast during wintertime sea-ice growth. AABW mixes
with CDW in the circumpolar region and spreads north into each of the major
ocean basins. Some of this deep water upwells in the south-eastern Pacific
before turning westwards and entering the Indian Ocean via the Indonesian
Throughflow (Schmitz 1995). Both throughflow waters and deep waters up-
welled in the Indian Ocean return to the Atlantic around the southern tip of
Africa — the so-called “warm-water path” for return flow into the North At-
lantic. This closes the meridional overturning circulation through renewal of
NADW. A second renewal path (the “cold-water path”) is via Drake Passage.

This present-day thermohaline circulation has significant influence on lo-
cal climatic conditions. Without the warm Gulf Stream, for instance, the cli-
mate of most of western Europe would be substantially cooler (Broecker 1991;
Rahmstorf 1997; Broecker 1997; Bunyard 1999). Numerous studies (Marotzke
and Willebrand 1991; Weaver and Sarachik 1991; Power and Kleeman 1993;
Maier-Reimer et al. 1993), however, have indicated the likelihood of multiple
stable thermohaline circulation patterns. Stommel (1961) found two distinct
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Figure 1.2: The great ocean conveyor of Broecker (1991) (graphic from Wolff
et al. (1991))

solutions even under the same surface boundary conditions. It is likely that
some decadal to centennial climatic variability is due to changes in the ther-
mohaline circulation of the oceans. :

1.1 The Southern Ocean and the global ther-
mohaline circulation

The Southern Ocean plays an important role in the global thermohaline cir-
culation. The ACC is the only current joining all three major basins. Both
the cold- and warm-water routes for renewal of NADW rely on the Southern
Ocean for their existence. In addition, deep and bottom waters formed in
the circumpolar region are crucial components of the global conveyor. Hoffert
(1990) estimates that an increase in global mean temperature of four degrees
Celsius could shut down the seasonal sea-ice pump around Antarctica, and
therefore AABW formation and the global thermohaline circulation. Less dra-
matically, AABW and Antarctic Intermediate Water (AAIW) together affect,
through mixing and circulation, over 50% of the world’s ocean volume (Wor-
thington 1981; England 1993; Marsh et al. 2000)); both of these water masses
are formed in the Southern Ocean.

1.2 Eddy heat flux

In addition to the large-scale quasi-stationary thermohaline circulation, the
dynamics of the Southern Ocean play a very significant role in the climate
system. Nowlin and Klinck (1986) (from the work of de Szoeke and Levine
(1981)) noted that the mean geostrophic heat flux across a circumpolar path
is zero, whereas that associated with eddy processes is likely to dominate the
overall poleward heat budget. This budget consists of a balance between the
ocean-to-atmosphere heat exchange south of the ACC (@), and the poleward
oceanic fluxes associated with Ekman transport (Fegmen), Mmean geostrophic
flow (Fieost), eddy processes (Feqqy), and deep boundary currents (Fj.):

Q = FEk'man + Fgeost =+ Feddy + F. (11)
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For the left-hand-side of equation (1.1), de Szoeke and Levine (1981)
noted an estimate by Gordon of 0.3 PW. This was a revision of an earlier
published estimate (Gordon and Taylor 1975) of 0.4 PW. A later publication
(Gordon and Owens 1987) maintained the figure of 0.3 PW. The oceanic heat
loss at high latitudes should exactly balance the net heat gain of lower latitude
waters. Hastenrath (1980) had calculated the latter as 0.35 PW at 53°S, the
mean latitude of the Polar Front. Alternatively, Trenberth (1979) had inferred
a poleward oceanic heat flux of 1 PW in the 50-60°S latitude band from
atmospheric data. Nowlin and Klinck thus used Gordon’s estimate for ¢ of
0.3 PW, with large uncertainty (+30-50%).

For the right-hand-side of equation (1.1), de Szoeke and Levine (1981)
had estimated the total (baroclinic plus barotropic) mean geostrophic heat
flux (Fyeost) to be 0+ 0.33 PW. This was calculated along a path that closely
followed the mean position of the Polar Front. For the Ekman component
(FEkman), they had estimated -0.15 PW (that is, directed equatorwards) with
a large, but uncalculated, error. For the total balance, therefore, Nowlin and
Klinck (1986) estimated that together eddy processes and deep boundary cur-
rents, Feqqy + Fpc, must account for a mean poleward heat flux of 0.45 PW.
de Szoeke and Levine’s equivalent figure included an error estimate of per-
haps £0.3 PW. As an extreme estimate of the contribution by deep boundary
currents, they calculated 0.15 PW for 20 Sv of bottom-water production with
an average temperature of -0.5°C. Despite the considerable uncertainties in-
volved, this leaves eddy processes as the largest component (between 0.3 and
0.45 PW) in the above heat budget.

1.2.1 In-situ observations

To date there have been only a few in-situ observational studies of eddy heat
fluxes across the ACC: in Drake Passage (Bryden 1979; Sciremammano 1980;
Nowlin et al. 1985), southeast of New Zealand (Bryden and Heath 1985) and,
recently, south of Australia (Phillips and Rintoul 2000; Phillips 2000).
Bryden (1979) analysed data from an array of six moorings spread across
Drake Passage, collected in 1975 and 1976 during the International Southern
Ocean Studies (ISOS) program of the International Decade for Ocean Explo-
ration (IDOE). From the measurements, he found the eddy heat flux at 2700
m to be 6.7 kW/m? directed poleward, and statistically significant. If this
value was extended throughout the average water depth (4000 m), and around
the circumpolar length of the ACC (20 000 km), it would lead to an average
poleward heat flux of 0.5 PW. Sciremammano (1980) extended Bryden’s time-
series by two years, including additional moorings in the central part of Drake
Passage, and found results largely consistent with Bryden’s for the common
moorings. The additional central moorings, however, recorded highly variable
heat fluxes. The range over three years for depths greater than 1000 m was
9-28 kW/m? with a mean and standard deviation of (17 £ 7) kW/m?. These
values were significantly higher than the deep measurements of Bryden. Bry-
den performed a spectral analysis to find the fluxes were due to motions with
timescales longer than ten days. Sciremammano found most of the heat flux
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was due to discrete events with timescales of 5-60 days, occurring several times
per year. A third study in Drake Passage was published by Nowlin, Worley and
Whitworth (1985). They analysed data collected from an array of moorings in
place during 1979. They noted several potential problems with previous anal-
yses: mooring “blowover” could lead to heat flux over-estimates as great as
20%, long-period “non-eddy” signals could contaminate the estimates, and the
local analysis direction should be “cross-frontal” rather than “poleward” due
to the changing direction of the front. Applying solutions to these problems,
they calculated an average across-stream eddy heat flux for all instruments of
3.7 kW/m? poleward, with a range of 1 to 17 kW/m?. Extending this along
the entire ACC yields a total heat flux of 0.3 PW.

The measurements taken southeast of New Zealand (Bryden and Heath
1985) were, in part, motivated by a concern that the relatively high meridional
temperature gradients in Drake Passage might lead to greater than average
eddy heat fluxes. They obtained variable results, as high as 35 kW/m?, but
none significantly different from zero, statistically. Due to the long timescales
involved, they concluded longer records would be needed.

Very recently, Phillips and Rintoul (2000) have analysed mooring data
collected south of Australia during 1993 and 1994. They corrected for tides and
mooring motion, and used a local cross-frontal co-ordinate system to analyse
eddy heat fluxes. They found statistically significant depth-averaged across-
stream fluxes of 11 kW/m? poleward for variability with timescales between
two and 90 days. This is three times larger than the bandpassed Drake Passage
result of 3.7 kW/m? (Nowlin et al. 1985). For the all-frequency variability,
they obtained an across-stream eddy flux of 41 kW/m?, which again is much
larger than either of the non-filtered Drake Passage results (6.7 kW/m? and
17 kW/m?) or the results southeast of New Zealand.

In all of these results, observed eddy heat flux has been directed poleward,
and has been sufficient to balance the ocean-to-atmosphere heat loss south of
the ACC, if extended circumpolarly. Wunsch (1999) concluded from a range
of data that the eddy heat flux in the Southern Ocean was moderate compared
to the mid-latitude western boundaries, but, due to the ACC’s zonal extent,
probably dominated the Southern Ocean heat balance.

As will be seen below, the meridional eddy heat flux is intimately con-
nected with the other great question of Southern Ocean dynamics — that of
the momentum balance of the ACC. Essentially, this assumes that the ACC
is in a quasi-steady state so that there exists a dynamical balance between its
momentum sources and sinks. The most significant source of momentum is
the eastwards wind which circles the globe at these latitudes. The question of
the momentum sinks, on the other hand, is less clear.

1.3 Momentum balance of the ACC

Nowlin and Klinck (1986) provide, amongst other things, a detailed history
of theories and models of the ACC. The summary here contains only the key
developments.
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By 1950, the theory of the wind-driven circulation of the ocean was
largely known, through the work of Sverdrup (1947), Munk (1950) and Stom-
mel (1948). In essence the theory provides that a net meridional transport is
induced to preserve absolute vorticity due to vortex-tube shrinking or stretch-
ing associated with Ekman pumping:

(Vx71)k
ﬂ )
where [ is the meridional gradient of Coriolis parameter, T is applied wind-
stress, and the mass transport pV is called the Sverdrup transport. Sverdrup
dynamics apply in a closed basin, with continuity requiring a compensating
non-Sverdrup flow. This occurs as a narrow western boundary current where
friction dominates.
Two early attempts to model the ACC regarded the current as purely
zonal with no blocking topography — as is the case at latitudes of the Drake
Passage. Thus, Sverdrup dynamics were not held to apply.

pV = (1.2)

1.3.1 Hidaka’s dilemma

Hidaka and Tsuchiya (1953) used a steady-state geostrophic channel model
with both horizontal and vertical viscous mixing, forced by a constant surface
windstress. For reasonable values of applied windstress and horizontal viscos-
ity, they obtained a mass transport almost two orders of magnitude too large.
The value of the vertical viscosity did not much affect the calculation. To ob-
tain reasonable transports, a horizontal mixing parameter unrealistically large
was required. These results have come to be called “Hidaka’s dilemma” (Wolff
et al. 1991). In Hidaka and Tsuchiya’s results, horizontal velocity vanished at
the bottom.

1.3.2 Topographic form drag or Sverdrup dynamics?

An earlier model proposed by Munk and Palmén (1951), explicitly relied on
the bottom velocity being non-zero to limit the transport to reasonable values.
Their model, like that of Hidaka and Tsuchiya, assumed a balance between
surface windstress and lateral friction, but was applied to the vertically inte-
grated flow. Like Hidaka and Tsuchiya after them, Munk and Palmén obtained
a mass transport one hundred times too large, for reasonable values of hori-
zontal viscosity. They offered two solutions to the discrepancy. The first was
the same as the solution of Hidaka and Tsuchiya — to assume an unreason-
ably large value of lateral viscosity. They preferred a second solution which
has come to be called topographic form drag. In net terms, this mechanism
proposes that the circumpolar eastwards surface windstress, rather than being
balanced by lateral friction, instead is exactly balanced by the zonal integral
of zonal pressure gradients across topographic features along the path of the
ACC. This happens if, on the average, the bottom pressure on the up-current
side of a topographic obstacle exceeds the pressure on the lee-side, and corre-
sponds to a transfer of momentum to the solid earth (see Figure 1.3). They
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Figure 1.3: Topographic form drag proposes a balance between windstress and
pressure gradient over topography (after Johnson and Bryden (1989)).

calculated that an average pressure difference equivalent to four centimetres of
dynamic height across each of the four major ridges encountered by the ACC
(i.e. the Kerguelen, South Pacific and Macquarie ridges, and the South Antil-
lean arc) is sufficient to balance the observed surface windstress. The authors
did not offer an estimate of the strength of the ACC based on their theory.

Unlike these two earlier studies, Stommel (1957), and later Baker (1982),
Godfrey (1989) and Chelton et al. (1990a), proposed that canonical Sverdrup
dynamics could be used to estimate the mass transport of the ACC. They
noted that, rather than progressing directly eastwards along its zonal path,
the ACC instead veers south by around 10° of latitude in its course from the
western South Atlantic to the eastern South Pacific. They noted that this
is entirely consistent with a Sverdrup balance with the prevailing negative
windstress curl. The required frictional western boundary current was held
to be the strong northwards flowing Falkland Current, off the eastern coast
of South America. Integrating the Sverdrup relation (equation (1.2)) along a
zonal path excluding the Drake Passage-Falkland Current zone of return flow,
transports very close to that observed through Drake Passage are obtained.
For instance, Baker (1982) obtained transports of 173 and (190 + 60) Sv for
two different sets of wind data, along latitude 55°S. Godfrey (1989), along
54°S, obtained 128 Sv, and Chelton et al. (1990a) obtained 114 Sv along 55°S.
For comparison, current meter records in Drake Passage (Whitworth et al.
1982) recorded an average transport of 130 Sv.

Recently, vigorous debate has occurred (Warren et al. 1996; Hughes 1997;
Warren et al. 1997; Olbers 1998; Warren et al. 1998) on whether the form drag
mechanism of Munk and Palmén or a Sverdrup balance is the more correct
description both of the strength of the ACC and its overall momentum balance.

As noted by Munk and Palmén (1951), topographic form drag requires
that the stress input at the ocean surface by the wind somehow be manifested
at the ocean floor in order that it be balanced by pressure differences across
submarine ridges. They offered two suggestions as to how this might occur.
A net northwards transport in the surface layers (to around 1000 m depth,
say) would export absolute angular momentum (due to planetary rotation)
away from the circumpolar region, exactly balancing the angular momentum
input by the eastwards wind. (A northwards flow roughly equivalent to that
observed, due primarily to the Benguela and Peru Currents, could effect such



1.3 Momentum balance of the ACC 8

a balance.) Mass conservation then demands an equivalent volume of flow
southwards at depth. For absolute angular momentum to be conserved for
this southwards flow, there must also be eastwards flow at depth (increasing
with latitude). It is the topographic form drag acting against this eastwards
flow that completes the overall stress balance. Properly seen, and in the con-
text of the form drag vs Sverdrup balance debate, this seems rather to be a
statement of planetary-scale absolute angular momentum conservation than a
constraint on the size of the ACC. The absolute angular momentum of the
Southern Ocean associated with planetary rotation is at least two orders of
magnitude greater than that associated with ACC transport (see, for exam-
ple Ponte and Rosen (1994) and references therein). Indeed, proponents of a
Sverdrup balance claim (Warren et al. 1996) that form drag “is really just a
statement that northward Ekman transport in the circumpolar Drake Passage
zone is compensated by deep southward geostrophic flow” and therefore “is
actually irrelevant to the magnitude of the [Antarctic Circumpolar Current]
itself”.

Those who favour form drag have developed further the second suggestion
offered by Munk and Palmén for the mechanism by which a surface windstress
might be manifested at the seafloor. This mechanism is akin to topographic
form drag but acts on isopycnal surfaces down through the water column
rather than solid topography. As proposed by Munk and Palmén, “[e]Jach layer
induces, by turbulent interchange, motion in the layer beneath, and in this
manner the wind stress is transmitted to the sea bottom”. Johnson and Bryden
(1989) developed the theory in more detail and pointed out the equivalence
between a downwards flux of eastward momentum and a poleward eddy heat
flux. The time-mean zonal integral of this interfacial form stress at some depth
is given by:

where p’ is the pressure perturbation at an isopycnal height perturbation (',
and the contour integral is performed around a circumpolar path. Integrating

by parts, this is equivalent to:
~op'
- ot

Assuming geostrophy, (1/p0)0p'/0z = fv , and small isopycnal displacements
so that ' = —6'/6,, the above equation can be rewritten:

o, v'e
—j(gt—a;dw—]{ _ezdx

Thus, a downwards flux of eastwards momentum (the interfacial form stress)
is equivalent to a poleward eddy heat flux.

Johnson and Bryden (1989) assumed that the surface windstress was
transmitted in this manner undiminished to the seafloor (to be balanced there
by topographic form stress):

101
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They tested the implied balance between meridional eddy heat flux and surface
windstress using current meter data collected in Drake Passage during the
ISOS program. The measured eddy heat fluxes were larger than the mean
windstress, though generally within the errors. Spatial variations of eddy
heat flux along the ACC, and divergence of Reynolds stresses, a<g;j”'>, were
suggested as possible contributors to the discrepancy.

Compared with other regions of the world oceans, there is a significant
paucity of hydrographic data for the Southern Ocean (Levitus and Boyer 1994).
This is due to the logistic difficulty and expense of conducting dedicated marine
science cruises in this region, and the lack of merchant shipping routes pro-
viding platforms from which to collect upper-ocean measurements. As noted
earlier, in-situ timeseries measurements have been limited to a few studies in
only three locations. Consequent to this lack of in-situ data, satellite measure-
ments and numerical modelling have become pivotal tools in studying Southern
Ocean dynamics.

1.4 Satellite altimetry

The development of satellite remote-sensing technology has provided valuable
new sources of data for investigating the oceans. Ocean colour sensors give biol-
ogists information on chlorophyll concentration and biological activity; infrared
radiometers provide measurements of sea-surface temperature; microwave in-
struments measure surface winds (scatterometers) and albedo (passive mi-
crowave radiometers). Satellite altimeters provide regular accurate measure-
ments of sea-level on a global basis.

Unlike sea-surface temperature measurements, altimetric measurements
of sea-level are not compromised by the presence of atmospheric cloud cover. In
addition, the altimeter is unique in providing an integrated picture of the ocean
— sea-level responds to both barotropic and baroclinic dynamics. Satellites
are limited to observing surface properties of the ocean; sea-level alone contains
the signature of sub-surface processes. In addition, the gradients of sea-level
relative to the earth’s gravitational equipotential (the geoid) provides directly
the surface geostrophic flow field?.

The books by Stewart (1985), Jones (1993), Robinson (1994), and Fu and
Cazenave (2000) provide broad introductions (and extensive reference lists)
to the use of satellite remote-sensing, including altimetry, in oceanography.
The volume edited by Rummel and Sansd (1993) concentrates on altimetry.
Fu and Cheney (1995) reviewed the application over one decade of satellite
altimetry to circulation studies (including the western boundary currents and
tropical oceans, as well as the general circulation) and ocean variability on
both the large-scale and meso-scale. Wunsch and Stammer (1998) recently
have reviewed the technology and its use in determining the ocean circulation,
both stationary and time-variable. They make particular reference to the
TOPEX/POSEIDON mission.

2Surface Ekman flow, which directly balances windstress via the Coriolis force in steady-
state (Gill 1982, §9.2), has no sea-level signature except through Ekman pumping,.
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Figure 1.4: Schematic of satellite altimeter geometry. The altimeter measures
the distance h to the sea-surface. From knowledge of the satellite’s orbit, O,
and the geoid, N, the dynamic topography 7 may be determined.

In principle, the altimeter’s operation is straightforward (Figure 1.4):
timed radar pulses are used to measure the distance, h, between the satellite
platform and the instantaneous sea surface. With knowledge both of the satel-
lite’s orbit relative to the earth’s reference ellipsoid, O, and the geoid, N, the
sea-surface height (SSH) relative to the geoid is then known:

n=0-N-h

To be useful, the SSH should be determined to O(cm) accuracy, placing severe
requirements on geoid knowledge, the altimetric radar, and knowledge of the
satellite’s orbit.

As mentioned above, the geoid is the earth’s gravitational equipotential.
It is that surface that would be made by a uniform-density ocean at rest and
in the absence of tides, currents, winds and atmospheric pressure variations.
The most accurate geoid compiled to date is the Earth Geopotential Model 96
(EGM96), with an RMS accuracy of better than 12 cm over water at spatial
scales larger than a few thousand kilometres (Lemoine et al. 1997).

To achieve sufficient altimeter accuracy, several corrections must be made
to the measured SSH. Delays in the altimeter signal are caused both by tropo-
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spheric water vapour and ionospheric free-electron content, both of which vary
in space and time and must be corrected for. The radar pulse transmitted from
the altimeter has a “footprint” diameter of several kilometres. Over this area,
the reflected signal is affected by the sea-state: maximum energy in the return
pulse generally does not correspond to reflection from the mean sea-surface.
These so-called electromagnetic bias effects contribute significant errors that
are difficult to correct. Local atmospheric pressure loading on the ocean pro-
duces changes in sea-level of the order of one cm per millibar. This “inverse
barometer” effect must be compensated accordingly. Finally, the ocean’s tides
are generally ignored for oceanographic problems, so must be modelled and
removed from the measured SSH signal.

Two of the earliest satellite altimeters were GEOS-3 and SEASAT, with
combined altimeter and orbit accuracies of O(m). These missions greatly
improved knowledge of the marine geoid, but were not useful for oceanographic
purposes (Wunsch and Stammer 1998). The US Navy launched Geosat in 1985
in a classified mission to improve the geoid for military purposes. Two and a
half years of the mission, however, was run in an unclassified mode. Initial orbit
errors were around 2 m, but this was reduced to around 10 cm following release
by the US Navy in 1993 of additional tracking data (Fu and Cheney 1995).
The total Geosat error budget was reduced to around 15 cm. The European
Space Agency in 1991 launched ERS-1, the first satellite altimeter dedicated
to marine science. Though failure of an onboard PRARE tracking system
initially hampered the mission, laser tracking of the satellite later enabled
orbit errors to be reduced to around 15 cm (Fu and Cheney 1995; Scharoo and
Visser 1998). An identical satellite, ERS-2, was launched in 1995. The joint
French-US mission, TOPEX/POSEIDON, was launched in August 1992, and
has achieved a remarkable orbit accuracy of around 2 cm.

1.4.1 Altimetry and the Southern Ocean

See the reviews by Fu and Cheney (1995) and Wunsch and Stammer (1998),
and references therein, for specific ocean studies utilising altimeter measure-
ments. The following is a selection of work relevant to Southern Ocean and
ACC dynamics.

Chelton et al. (1990b) used 26 months of unclassified Geosat data to
examine variability of SSH and surface currents in the Southern Ocean. Both
mean flow and variability were found to be strongly controlled by bathymetry.
By calculating empirical orthogonal functions (EOFs), large-scale structure of
the variability was investigated. They found only 33% of variance explained
by the first three modes, implying a generally local rather than circumpolar
pattern to variability.

Morrow et al. (1992) also used Geosat data to calculate components of
surface velocity variance at satellite crossover points in the Southern Ocean,
averaged over 3° x 3° bins. They found a largely isotropic eddy momentum flux,
except in regions where the mean flow interacts with topography, for example
over the Macquarie Ridge complex. A higher resolution analysis southeast
of Australia showed that the principal axes of velocity variance were strongly
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steered by topography. A calculation of surface Reynolds stresses u/v’ showed
several regions of convergence around the circumpolar band — regions where
eddies were acting to accelerate the mean flow. The zonally averaged eddy
momentum flux was divergent and roughly 5 cm?/s, far smaller than the 100
cm?/s required to balance the eastwards wind stress by laterally divergent
momentum fluxes alone. These results have been confirmed by other authors
(Johnson et al. 1992; Morrow et al. 1994; Wilkin and Morrow 1994; Gille 1995;
Gille 1997).

Stammer (1998) used TOPEX/POSEIDON altimeter data to estimate
global kinetic energy, and eddy variability length and time scales. Using a
baroclinic instability model for the variability, the estimates were used to es-
timate meridional eddy fluxes of salt and heat. For the Southern Ocean, a
zonally integrated poleward eddy heat flux of around 0.28 PW at 40°S was
found.

Gille and Kelly (1996) used Geosat data to estimate length and time
scales of Southern Ocean sea-level variability, and to investigate large-scale
coherence of these fluctuations. They found spatial decorrelation scales of
around 85 km and timescales of 34 days. Empirical orthogonal functions cal-
culated for the time-varying surface transport provided no evidence for coher-
ent global-scale variability that might be expected from large-scale changes
in wind forcing. By contrast, Mestas-Nufiez et al. (1992) found a significant
correlation between sea-level observed by altimeter and that calculated from
satellite scatterometer winds assuming a barotropic Sverdrup model for the
South Pacific.

Jacobs et al. (1993) used two years of Geosat altimetry in the Pacific
Ocean to extract evidence of Rossby waves. They fitted the Geosat data to
the known dispersion relation for both barotropic and first-order baroclinic
Rossby waves and found statistically significant results throughout the basin.
Elevated levels of Rossby wave variability were detected in the ACC, as well
as the Kuroshio and East Australian Currents.

Hughes (1995) examined TOPEX /POSEIDON data for evidence of Rossby
waves in the Southern Ocean. He noted that uncertainties in the mean flow
hindered the use of dispersion relations to identify Rossby waves. Instead he
used a complex principal components technique capable of analysing travelling
disturbances. Extracting wave speeds, periods and wavelengths, he obtained
results consistent with the existence of Rossby waves in parts of the Southern
Ocean, with wave structure able to be resolved in the southeast Pacific.

1.5 Computational modelling

A second widely used tool for studying ACC dynamics is numerical modelling.
With increasing computer power and more sophisticated techniques, compu-
tational results are becoming more realistic and are being used with growing
confidence to verify physical models. Clearly, any problem that can be formu-
lated in mathematical terms is a candidate for being solved with the help of
computers. Applications in geophysical fluid dynamics have consistently been
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among the foremost users of the latest high-end computing technology®. In
oceanography, a numerical model can act as proxy for the real ocean which is
impossible to sample as easily in time and space. Ocean models can provide
insight into oceanic processes on various scales, or play an important role (to-
gether with atmospheric circulation models) in coupled models of the earth’s
climate. Combined with real observations, ocean models may aid in estimating
fluxes that are difficult to measure, or enable predictions of synoptic circulation
patterns.

Semtner (1995) reviews the history of computational modelling of ocean
circulation. The volume edited by O’Brien (1986a) provides extensive coverage
of the state of the art in 1985. The monographs by Kowalik and Murty (1993)
and Kantha and Clayson (2000) are excellent references on ocean models and
the numerical techniques used. Marchuk and Sarkisyan (1988) provide a more
mathematical review, with extensive references to the Russian literature. A
recent review by Griffies et al. (2000) provides an excellent summary of the
major ocean modelling trends and most models in widespread use.

Some of the earliest ocean modelling efforts were those undertaken at the
Geophysical Fluid Dynamics Laboratory (GFDL) in the United States by Kirk
Bryan and Michael Cox in the 1960s (Bryan 1969). These models discretised
the equations of motion and tracer (heat and salt) conservation on a finite-
difference grid with tracer gridpoints offset from velocity points. Both the
hydrostatic and Boussinesq approximations were made. The finite-difference
advection formulations conserved momentum and second-order moments of
velocity and tracers. The time differencing for the momentum equations was
an explicit leap-frog scheme (with an occasional Euler step) for the pressure,
nonlinear and viscous terms, and implicit for the Coriolis term. This allowed
a timestep longer than the inertial period. A centred-in-space explicit scheme
was used for tracer advection and diffusion. For the external mode, a rigid-lid
assumption was used, leading to a prognostic Poisson equation for transport
streamfunction being solved each timestep. The vertical velocity was diagnosed
from the continuity equation. This early model has become a mainstay of ocean
modelling with derivatives (the “GFDL model” (Cox 1984) and the “Modular
Ocean Model”, MOM (Pacanowski et al. 1991)) still being widely used today.
One significant modification was the substitution of a free-surface formulation
in place of the rigid-lid (Killworth et al. 1991; Dukowicz and Smith 1994).

The Bryan-Cox model is an example of a primitive-equation (PE) model,
so called because it is a finite-difference implementation of the primitive equa-
tions. (These are the basic equations of motion and tracer conservation under
the hydrostatic assumption, and are an approximation to the fundamental
Navier-Stokes equations of fluid flow. See section 2.1.1.) These models in-
corporate sub-grid scale effects via diffusive parametrizations. Typically, a

3Since June 1993, each of the bi-annual lists of the top 500 supercomputers (Meuer
et al. 2001) maintained at the internet address http://www.top500.orghas ranked Weather
among the top eight application areas, by number of installations; beating such other areas
as defence, electronics and energy. In addition, the broad field of Geophysics has rated
similarly highly. Ranked by total maximal computing power, Weather has been the top
application area since November 1996.
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very large amount of computer memory is required in order to model basin-
or global-scale circulations at eddy resolution. The eddy parametrizations of
coarser resolution primitive equation models fail to accurately reproduce the
effects of eddies: currents are too diffuse, and meridional fluxes are incorrect.
In order to better resolve these eddy processes with limited-memory comput-
ers, quasi-geostrophic (QG) models were developed - notably by Bill Holland
(Holland 1978; Holland 1986). Pedlosky (1964; 1987) develops the QG theory
_ in detail. The QG model is formulated by expanding the primitive equations in
powers of the Rossby number. The zeroth-order terms provide the geostrophic
approximation. Retaining in addition the first-order terms leads to an equa-
tion for conservation of potential vorticity. The model can be extended to a
three-dimensional stratified fluid, with a series of layers in the vertical. Con-
servation of potential vorticity in each layer provides a prognostic equation for
the quasi-geostrophic streamfunction. The QG model filters out gravity waves,
and can be used only if assumptions of small Rossby number, small bottom
slope and small isopycnal slopes are satisfied.

Most ocean general circulation models today are either of the primitive-
equation or quasi-geostrophic varieties. However, shallow-water models are of-
ten used for modelling tides and storm surges where barotropic dynamics are
most important (Kantha and Clayson 2000, Chapters 6 and 7). Other major
differences relate to co-ordinate systems, finite-difference schemes, parametriza-
tions, and surface forcing.

1.5.1 Co-ordinate systems

Numerous co-ordinate systems, in both the horizontal and vertical, have been
used in ocean models. The so-called zlevel models use layers of fixed thickness.
Unless special provision is made, these models represent topography only at the
resolution of the layer depths. They also typically represent diffusion separably
in the horizontal and vertical. Isopycnal models resolve the vertical dimension
along isopycnal surfaces (see for example the Ocean isoPYCnal model (OPYQC)
(Oberhuber 1993)). Such models better represent diffusion, which occurs pref-
erentially along density surfaces (Redi 1982; Gent and McWilliams 1990). o-
coordinate models resolve the vertical in a terrain-following co-ordinate (e.g. the
Princeton Ocean Model (POM) (Blumberg and Mellor 1987) and the Spectral
Primitive Equation Model (SPEM) (Haidvogel et al. 1991)) and have partic-
ular advantage for regions of steep topography. In the horizontal, the earliest
models used Cartesian co-ordinates based on latitude and longitude. Further
development led to curvilinear co-ordinates which could be aligned to follow
local coastlines, for instance. Conformal mappings allowed the construction of
Cartesian grids which place the poles over land, thus avoiding singularities as-
sociated with convergence of meridians in the Arctic Ocean. These grids may
also be chosen to provide enhanced resolution over regions of interest within
the model domain. Murray (1996) discusses horizontal co-ordinate systems.

The numerical schemes used to implement various processes in ocean
models are not unique to these models. Many of them are straightforward
applications of known results in numerical methods.



1.5 Computational modelling 15

1.5.2 Finite-difference schemes

Explicit (forward Euler) time-differencing, for instance, is known to be unsta-
ble (Press et al. 1992, §16.6) under certain circumstances. The well-known
Courant-Friedrichs-Lewy (CFL) stability criterion provides an upper-limit to
the allowable timestep for an advective or wave process. In free-surface ocean
models, which resolve surface gravity waves with phase velocity (gH )2 (where
H is water depth), timesteps for the external mode must be an order of magni-
tude smaller than for the internal modes. Alternatively, an implicit formulation
of the external mode sacrifices accurate representation of surface gravity waves
for stability at longer timesteps. Implicit differencing schemes, however, de-
mand considerable additional complexity in their implementation. Either an
iterative solution must be calculated, or a very large sparse matrix must be
solved. Predictor-corrector schemes (Press et al. 1992) provide a compromise,
first using an explicit (predictor) step to calculate new spatial derivatives,
which are then substituted in the right-hand-side for a second (corrector) step.
Consider the following partial differential equation for a variable ¢ for example:

Op

where F is some operator. Then the n-th predictor-corrector time step may
be written as follows:

¢ = ¢+ ALF(¢)
Pt = "+ AT (¢h),

where At is the timestep. (In fact, predictor-corrector schemes are explicit
and therefore prone to instability, but are more accurate than forward Euler
schemes (Press et al. 1992, §16.7)). Time-differencing schemes are discussed
in more detail by Mesinger and Arakawa (1976) and O’Brien (1986b).

Like time-differencing, space-differencing may be implemented in many
different ways. Five different spatial arrangements of grid variables were anal-
ysed by Arakawa and Lamb (1977) for their error properties under geostrophic
adjustment. The vast majority of ocean models today use one or other of
these five grids, identified universally according to Arakawa’s labelling (“A”
through “E”). For example, the GFDL series of models use the B-grid, while
the Princeton Ocean Model (POM) (Blumberg and Mellor 1987) uses the C-
grid. Arakawa also developed momentum advection formulations that preserve
both kinetic energy and enstrophy (Arakawa 1966). The requirement to ac-
curately represent advective processes has led to a variety of schemes being
developed for tracer advection. Whilst only first-order accurate, the physically-
motivated upwind differencing scheme, for instance, is known to perform better
than centred-in-space differencing for advective processes.

1.5.3 Sub-grid-scale parametrizations

One of the largest areas of active research in ocean modelling is the attempt
to better parametrize unresolved processes. The basic equations describe mo-
tions from the microscopic to the ocean-basin scale. As well, stochastic and
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nondeterministic processes exist at all scales. In practice, physical processes
on various time and space scales remain unresolved in any given ocean model.
Due to nonlinearities, interactions occur across the entire range of scales in the
real world, so that unrepresented processes may have serious consequences for
the degree of realism achieved. Gargett (1986) and Wolff (1999) review some
of these parametrization efforts. A recent volume (Chassignet and Verron
1998) provides a broad summary of progress to date. For primitive equation
models, sub-grid scale turbulent processes are parametrized as eddy diffusiv-
ities for momentum and tracers in the horizontal and vertical. The simplest
parametrization uses Fickian eddy diffusivities and viscosities which are con-
stant in space and time. More sophisticated closure schemes* represent the
effects of unresolved processes by diffusivities and viscosities which vary accord-
ing to properties of the resolved flow, such as shear (Pacanowski and Philander
1981). For zlevel models, rotated diffusion tensors better represent isopycnal
and diapycnal mixing (Redi 1982; Gent and McWilliams 1990). Sub-grid scale
parametrization in quasi-geostrophic models focusses on the representation of
eddy fluxes of quasi-geostrophic potential vorticity (Wolff 1999).

1.5.4 Model forcing

Ocean models are generally forced at the surface by both winds and buoyancy
fluxes. While the precise mechanisms of wind forcing are not perfectly un-
derstood, and certainly depend on sub-grid scale processes (Wolff 1999), wind
forcing is generally represented as a body force in the upper layer of the model.
The wind stress is related to the square of the wind speed with the use of a drag
coeflicient (Gill 1982, §2.4). Typically, winds are not used directly, but rather
windstresses previously diagnosed from atmospheric analyses. Surface buoy-
ancy forcing in the simplest case may be performed by relaxing temperature
and salinity in the upper layer to climatological values (known as Newtonian,
or modified Haney (after Haney (1971)), relaxation). While this is physically
reasonable in the case of temperature, there is no physical basis for the re-
laxation of salinity (it is not salt that is physically fluxed across the ocean
surface). Alternatively a freshwater flux may be specified as the excess of
precipitation over evaporation, independent of surface salinity. Relaxation of
surface temperature, with prescribed freshwater fluxes for surface salinity forc-
ing, is referred to as mized boundary conditions. Bryan (1986) showed that a
model under restoring boundary conditions may be unstable upon a transition
to mixed boundary conditions. Other authors (Marotzke and Willebrand 1991;
Weaver and Sarachik 1991; Tziperman et al. 1994) have investigated the prob-
lem and the “multiple equilibria” of the thermohaline circulation associated
with it.

4S0-called because the unknown second-order correlations of the sub-grid scale turbulent
fluctuations must be given some prescribed form in order to produce a closed set of equations.
See, for example, Pedlosky (1987, §4.2). An attempted analytical expression for the second-

order moments will, because of nonlinearities, require an infinite hierarchy of third- and
higher-order terms.
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1.5.5 Limited-area modelling

The restrictions of limited computational resources have necessitated the de-
velopment of techniques for limited-area modelling. These represent domains
smaller than the whole globe — basin-scale or smaller regional domains, for
instance. Such models inevitably have one or more boundaries as open ocean,
rather than land. Consequently, the straightforward free-slip® boundary con-
ditions applicable at land boundaries must be replaced by open boundary con-
ditions (OBCs) for all prognostic model variables. There is a considerable lit-
erature on OBCs in ocean models, though ultimately many of the approaches
developed are ad-hoc mechanisms applicable to the specific problem at hand.
Oliger and Sundstrém (1978) have shown that the primitive equations are ill-
posed under local pointwise open boundary conditions. (In practice, stable
OBCs can be found for PE models, perhaps at the expense of foregoing the
hydrostatic assumption, or some other relation, at the boundaries. Theoretical
ill-posedness, however, underscores the difficulties.) For QG models, a com-
monly used OBC is that developed by Charney et al. (1950), where stream-
function is prescribed along all open boundaries, and vorticity at boundary
inflow points. Clearly the first requirement for an OBC is that it remain sta-
ble throughout the model integration. Beyond that, OBCs may be required to
satisfy additional constraints, depending on the problem at hand. They may,
for instance, be required to be non-reflective to certain wave processes, to con-
serve water volume (or other integral properties) within the model domain,
or to specify certain tidal or other known mass transports. Rged and Cooper
(1986) reviewed a range of OBCs used in ocean models. Palma and Matano
reviewed and evaluated OBCs for both the barotropic (Palma and Matano
1998) and baroclinic (Palma and Matano 2000) components of a PE model.

1.5.6 Southern Ocean modelling

Applications of modelling in oceanography extend across the range of spatial
scales from convection processes (Marshall and Schott 1999), to regional mod-
els (e.g. De Mey and Robinson (1987), Bryan and Holland (1989), Wolff et al.
(1991), Griffiths (1995)), and on to global climate models (e.g. Anderson and
Willebrand (1992), Wolff (1994)). For the Southern Ocean and ACC, mod-
elling may be central to answering some of the most interesting questions; for
example the role of eddies in the meridional heat transport and zonal momen-
tum balance. Some large-scale phenomena (e.g. Antarctic Circumpolar Wave,
topographic effects etc.) may only be understood through modelling, because
of the impracticality of taking measurements as densely as required in time
and space. Conversely, ACC modelling may have particular benefits for model
development. For example, Killworth et al. (2000) have shown that annual
mean surface temperatures and heat fluxes are significantly biased in regions
of strong advection like the ACC, under surface tracer relaxation boundary
conditions. Similarly, Jiang et al. (1999) examined equilibrium solutions of

50nly the normal component of velocity is specified to be zero. The alternate “no-slip”
boundary condition for viscous flow sets both components of velocity to zero at the boundary.
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a coarse resolution GFDL model under several surface boundary conditions
and diffusion parametrizations. They show that ACC poleward heat trans-
ports are too large with a conventional diffusion scheme, but were realistic if
a Gent-McWilliams scheme (1990) was used.

Numerous ACC modelling activities have focussed on questions of dy-
namics; particularly the interaction of the mean flow with topography, and
the role of eddies in both momentum balance and heat transport. A selection
of ACC modelling studies is reviewed below.

McWilliams et al. (1978) employed a wind-driven two-layer quasi-geostrophic
model at eddy-resolution to investigate eddy effects in a periodic zonal chan-
nel. The initial configuration was a 1000 km square zonal periodic flat-bottom
channel, forced by an eastwards sinusoidal windstress. The grid resolution was
20 km. An equilibrium volume transport of over 900 Sv was reached after
1000 days. The addition of a partial meridional barrier (with a gap of 310
km) caused this to drop to 400-600 Sv, still much larger than observed values.
The channel was then lengthened to 2000 km, retaining the meridional bar-
rier, with no change in equilibrium volume transport. The final experiment
was the inclusion of a topographic ridge beneath the gap in the meridional
barrier. The height of the ridge had to be sufficient to close the f/H contours
for the lower layer, yet still satisfy the quasi-geostrophic constraints. A height
of 500 m was chosen. The volume transport decreased by a factor of five to
less than 100 Sv when the ridge was included. Thus, topography was found to
play a major role in regulating ACC transport, consistent with the topographic
form drag theory of Munk and Palmén (1950). The authors also analysed the
momentum balance and found that the momentum input by the wind in the
upper layer was transferred to the lower layer by interfacial form drag where it
was balanced by bottom friction, or topographic form drag in the case of the
topographic ridge. In addition the eddies were found to concentrate the upper
layer jet.

Wolff et al. (1991) used a similar model, but extended it to include ex-
periments with various topographic obstacles, including one with a realistic
bathymetry representing the Macquarie Ridge Complex. The two-layer QG
model used a gridsize of 20 km in a periodic zonal channel of length 4000
km and width 1500 km. No meridional barrier was included. The authors
carried out detailed analyses of the momentum balance for all their experi-
ments. They found an overall balance the same as that of McWilliams et al.
(1978): momentum input by the wind in the upper layer was transferred to
the lower layer through interfacial form stress, and was removed by either bot-
tom friction over a flat bottom or topographic form stress over topography.
The location of topographic obstacles determined whether standing or tran-
sient eddies dominated in contributing to interfacial form stress. In the case of
realistic topography, the standing eddies dominated. The authors also found
that Reynolds stresses in the upper layer acted to strengthen the main jet.

A two-layer QG model was recently employed by Witter and Chelton
(1998) to further investigate the effects of topography on the spatial distribu-
tion of the eddies, and eddy-mean flow interaction. The model was a periodic
zonal channel of length 4320 km and width 1200 km, with 20 km grid resolu-



1.5 Computational modelling 19

tion, forced by an eastwards sinusoidal windstress. A uniform zonal ridge of
width 800 km and height 400 m extended the length of the channel. In two
additional experiments, first the ridge width and then both width and height
were varied midway along its length. The latter was intended to represent
an idealised model of the Australian-Antarctic Discordance of the Southeast
Indian Ridge south of Australia. The time-mean flow consisted of a zonal jet
which was steered by the topography in the cases of variable ridge height and
width. An analysis of eddy kinetic energy showed very significant enhance-
ments downstream of the variation in topography for the second two exper-
iments. A detailed analysis of instability processes revealed an unexpected
discrepancy - the flow was most unstable where time-mean baroclinic shear
was smallest. This was resolved by showing that topography has a strong sta-
bilizing effect on the flow. Specifically, stability is increased where topographic
slope increases the ambient potential vorticity gradient (e.g. along the northern
flank of a zonal ridge in the southern hemisphere). The authors also carried out
analyses of energy and vorticity balances, and concluded that improved eddy
parametrizations may result if based on considerations of potential vorticity
and topography.

A number of other studies have used QG models in idealised channel
studies of ACC dynamics, e.g. McWilliams and Chow (1981), and Treguier
and McWilliams (1990).

Primitive-equation models have also been used to investigate ACC dy-
namics. Principal amongst these is the Fine Resolution Antarctic Model
(FRAM), developed collaboratively by 17 researchers under the joint title of
the “FRAM Group” (The FRAM Group 1991; Webb et al. 1991). The model
extended around the globe southwards of 24°S, with a resolution of 0.5° in
longitude and 0.25° in latitude, and with 32 levels in the vertical. The open
boundary condition of Stevens (1991) was used along the northern boundary.
The model was initialised with uniform cold (-2°C), salty (36.69 psu) water
which was relaxed to Levitus climatology during the first six years of the run
— the so-called “robust diagnostic scheme” of Sarmiento and Bryan (1982).
Wind-forcing was initially zero, but was linearly increased during the third year
to equal the Hellerman and Rosenstein (1983) annual mean wind climatology
for the next three years. After six years, seasonal wind forcing was introduced,
as well as surface buoyancy forcing through relaxation to annual mean Levitus
surface temperature and salinity. After the six year robust diagnostic period,
the model was free-run for another ten years. The numerical output was made
available to the broader oceanographic community, and a large number of
authors have published analyses of ACC dynamics from FRAM output. Kill-
worth (1992) found a large barotropic character in both time-mean and eddy
components of flow in FRAM. Thompson (1983) calculated meridional heat
transport and found an eddy component of 0.12 PW southwards. Both the
Ekman and mean geostrophic components were negligible in the model. The
momentum budget of the ACC in FRAM has been analysed by several authors
(Killworth and Nanneh 1994; Ivchenko et al. 1996; Stevens and Ivchenko 1997).
To leading-order, these analyses all have confirmed the balance of Munk and
Palmén of windstress being transmitted downwards through the water column
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by interfacial form stress to be balanced on the bottom by topographic drag.
Ivchenko et al. (1997) analysed the energy budget in FRAM. They found that
the main balance was between kinetic energy input by the wind and mean
potential energy stored in the density structure. Eddy kinetic energy arose
through internal instability, primarily baroclinic.

With increasing computer memory and power, recent primitive equation
models have modelled the global circulation at a higher resolution than FRAM.
For example, Stammer et al. (1996) extended the 1/2° Semtner-Chervin model
(Semtner and Chervin 1992) to 1/4° globally in the “Parallel Ocean Climate
Model” (POCM). POCM output, together with FRAM output, was analysed
by Hughes et al. (1999) to look for evidence in models of a proposed large-
scale barotropic mode for ACC transport. Webb et al. (1997) have formulated
the 1/4° global “Ocean Circulation and Climate Advanced Modelling” project
(OCCAM) model. Maltrud et al. (1998) have developed a free-surface GFDL-
type model at an average resolution of 1/6° globally, the “Parallel Ocean Pro-
gram” (POP) model. Output from this model, together with FRAM output,
was analysed by Best et al. (1999) in an investigation of ACC eddy dynamics
in models.

There have been very few regional ACC modelling studies with realistic
bathymetry. Wolff et al. (1991) was mentioned above. Vogeler and Schroter
(1995; 1999) have used a limited-area QG model in an assimilation study
located in the African sector of the Southern Ocean. Several studies have
included the Atlantic sector of the ACC in basin-scale simulations of the South
Atlantic (Ezer and Mellor 1997; Gan et al. 1998; Barnier et al. 1998; Treguier
et al. 1999; Treguier et al. 2000).

In the work presented here, a limited-area model of the Southern Ocean is
developed. Such a model has the advantage of allowing higher resolution than
would otherwise be possible for given computational resources. The model’s
primitive equation formulation includes realistic bathymetry, allowing better
representation of the topographic interactions known to be important in the
Southern Ocean.

1.6 Data assimilation

The paucity of data from the Southern Ocean was mentioned earlier. Logis-
tical complexity and expense prevent the taking of measurements sufficient
in time and space to describe fully the dynamics of the ACC along its cir-
cumpolar path. Despite already having played a significant role in developing
our understanding of these dynamics, computational models nevertheless re-
main imperfect. They may suffer from unresolved physics (e.g. sub-grid scale
processes), imperfect physics (e.g. simplified equation of state, rigid-lid approx-
imation), poor forcing (e.g. surface relaxation), or inaccurate numerics (e.g. in-
ferior advection schemes, inappropriate grid dispersion properties). Certainly
they cannot, unconstrained, diagnose or predict the synoptic ocean state.
Data assimilation attempts to combine data and models to produce es-
timates of the ocean state that are dynamically consistent, and consistent
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also with the measured data. Under the broadest definition, the term “data
assimilation” may be used to describe a wide range of activities. Insofar as in-
verse methods attempt to optimise a steady solution subject both to data and
constraints (model), they may be regarded as data assimilation techniques. In-
deed, general circulation models (GCMs) have been used together with clima-
tological data to obtain optimised steady circulations (Marotzke and Wunsch
1993; Lee and Marotzke 1997). The robust diagnostic method of Sarmiento
and Bryan (1982) has been referred to as a “very simple data assimilation
methodology” (Malanotte-Rizzoli and Tziperman 1996). Generally speaking,
however, data assimilation in oceanography is used to refer to techniques which
combine GCMs and synoptic data to produce dynamical estimates of the ocean
state. This more limited definition should be understood in the discussion that
follows.

In data assimilation, the model may be regarded as dynamically interpo-
lating the data, and the data may partially compensate for model inadequacies.
The applications are very broad and include nowcasting® and/or forecasting,
model improvement, and state estimation (for process studies, for example).
Of course, there is a long history of data assimilation in meteorology where it is
a fundamental component of numerical weather prediction systems (Bengtsson
et al. 1981).

For the Southern Ocean, there is great potential for data assimilation in
the detailed investigation of synoptic variability. The first baroclinic Rossby
radius is typically smaller than 1/5° throughout the Southern Ocean (Chel-
ton et al. 1998). Thus, model variability is unlikely to approach that of the
real ocean with resolutions coarser than 1/10°. Data assimilation, therefore,
may be able to increase the level of variability in Southern Ocean models,
and therefore improve estimates of eddy heatflux and processes of zonal mo-
mentum balance. In order to achieve this, the assimilated data needs to have
a high density in both space and time. Spaceborne instruments are the most
promising candidates for data sources. Currently both sea-level and sea-surface
temperature are measured, though the latter suffers through cloud cover.

1.6.1 Assimilation studies

Ezer and Mellor (1994) used Geosat altimeter data and a high-resolution model
of the Gulf Stream area to nowcast mesoscale Gulf Stream dynamics during
1987-1988. While the system improved estimates of the 500 m temperature
only by around 15-30%, estimates of the Gulf Stream axis location were im-
proved by up to 75%. Stammer (1997a) also used Geosat data with a quasi-
geostrophic model of the eastern North Atlantic to estimate synoptic fields in
1988-1989. He found a significant correlation between estimated fields and hy-
drographic observations from the same period. In a similar region, Gavart et al.
(1999) used TOPEX/POSEIDON and ERS-1 altimeter data together with an
open ocean primitive equation model of the Azores Current at high resolution.
Data from 1993 were assimilated and significant correlations were obtained

6Nowcasting refers to forming an accurate estimate of the synoptic ocean state at the
present time.
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between estimated velocity fields and surface drifter data. In an evaluation
of forecast ability, Mellor and Ezer (1991) obtained good forecast skill out
to 10-20 days by assimilating simulated Geosat altimetry data. Carnes et al.
(1996) described a sophisticated assimilation system for real-time nowcasts and
forecasts of the north Pacific Ocean. The model is a six-layer high-resolution
primitive equation model and data assimilated include IR imagery, altimetry
and XBT data. The system ultimately is intended for operational naval use.

A particularly promising application of data assimilation is to improve
ocean general circulation models. Schroter (1989) demonstrated how it is
possible to retrieve diffusion and other parameters of a simple 1-D advection-
diffusion model through assimilation of noisy observations of tracer concentra-
tion. Later, Schréter et al. (1993) used a two-layer quasi-geostrophic model
of the Gulf Stream extension area to assimilate Geosat altimeter data. In a
series of preliminary experiments, they were able to retrieve fairly well the fric-
tion parameter of an earlier model run by assimilating simulated Geosat SSH
(sea-surface height) observations. Assimilation runs with real data produced
viscosities which improved the model’s tracking of the data, but which were
mostly negative. However, they suggested that physically reasonable values
may result from longer assimilation periods. Fu et al. (1993) were able to
obtain a slight improvement to the synoptic winds used to drive an equatorial
wave model by assimilating Geosat altimeter observations. Oke et al. (2000)
have assimilated surface velocity data derived from coastal radar arrays into
a very high resolution shelf model of the Oregon coast. By examining the
corrections to the model induced by the assimilation scheme, they were able
to determine that both surface winds and bottom stress may have been inad-
equate.

The estimation of ocean state using data assimilation is extremely pow-
erful, allowing models to dynamically interpolate/extrapolate measurements
. to locations and times void of data. Assimilation of altimetry data is a prime
example, with surface measurements being used to estimate subsurface fields
(Hurlburt 1986; De Mey and Robinson 1987; Haines 1991; Morrow and Mey
1995). Ishikawa et al. (1996) used drifting buoy and altimetric data to cor-
rect small-scale mean SSH estimates — otherwise limited to geoid accuracy
— in an idealised model of the North Pacific. This is particularly useful in
the region of strong western boundary currents where spatial changes of mean
SSH may be as large as changes in time. Although dynamical processes can
be investigated using models alone, there is added benefit through performing
analysis on the four-dimensional fields estimated via data assimilation. These
should better characterise the evolution of the real ocean.

1.6.2 Data sources

A range of data has been assimilated into ocean models. Mentioned already
have been climatological temperature and salinity (Marotzke and Wunsch
1993; Lee and Marotzke 1997), drifting buoy data (Ishikawa et al. 1996), and
surface velocity data (Oke et al. 2000). Also used for assimilation has been
deep float data (De Mey and Robinson 1987), and simulated surface temper-
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ature (Cooper and Haines 1996), airborne XBT (Moore 1991), and acoustic
tomography (Fukumori and Malanotte-Rizzoli 1995) measurements. Unique
among data sources for its global and homogeneous density of coverage in
space and time is the satellite altimeter. It is no surprise that satellite al-
timetry is therefore one of the most prevalent and promising data sources for
combining with models through assimilation techniques. Most of the studies
already mentioned have used altimetry data.

The verification of assimilation studies is most important, particularly
if it is assumed that the assimilation improves model output realism in an
objective sense. One important verification is a type of compatibility check:
to ensure that the assimilation can at least improve estimates under the as-
sumption of a perfect model. To this end, the so-called “twin experiment”
paradigm has proven useful. In such an experiment, a free-running model is
first used to generate artificial data representative of a particular sensor or
measurement technique. The simulated data are then used in a second run
with the same model to test the assimilation scheme. The assimilation run
will generally use a different initialisation or different model parameters so
that the model trajectory would otherwise differ from the sampled run. A
useful assimilation technique will reduce this difference. In addition to many
of the authors mentioned above, the twin experiment technique has been used
to validate assimilation methodologies by Haines (1994), Dombrowsky and De
Mey (1992), and Fukumori et al. (1993). A more salient test is to compare
estimated fields from an assimilation of actual data with independent observa-
tions. Thus, altimetry assimilation results have been tested against indepen-
dent hydrographic (Oschlies and Willebrand 1996; Dombrowsky and De Mey
1992), current meter (Fukumori 1995; Stammer 1997a), and subsurface drifter
(Schroter et al. 1993; Gavart et al. 1999) measurements. A third important
verification method is to monitor the norms of the innovation vectors (i.e. the
differences between as-yet-unassimilated observations and model equivalents).
Any useful assimilation scheme will reduce these differences. This statistic is
examined in the assimilation experiments reported in chapter 5.

A very thorough review of assimilation techniques in meteorology and
oceanography was provided by Ghil and Malanotte-Rizzoli (1991). Anderson
et al. (1996) review techniques and applications to tropical oceanography, the
Gulf Stream, acoustic tomography and for improving model parameters. They
also cover assimilation of altimetry data, and for wave modelling. Fu and Ch-
eney (1995) cite numerous applications of altimetry assimilation in their review
of the use of satellite altimetry in oceanography. The volumes edited by Ander-
son and Willebrand (1989), Brasseur and Nihoul (1994) and Malanotte-Rizzoli
(1996) include both reviews and numerous applications of data assimilation in
oceanography. Fukumori (2000) provides a detailed introduction to altimetry
assimilation in a recent volume. For meteorology, see Bengtsson et al. (1981).
In addition, the special volume of Dynamics of Atmospheres and Oceans (1989,
13, No. 3-4) was dedicated to data assimilation.

Brief descriptions of the major assimilation techniques will now be given.
These have in,common the objective of combining some form of data with a
dynamical circulation model. Broadly, assimilation techniques can be classified
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either as sequential (sometimes statistical) or variational. The former applies
corrections to the model state at specific analysis times during a model run
while the latter attempts to optimise an entire model run to match observa-
tions. In fact, the methods are strongly related to each other and may produce
the same solutions (Ghil and Malanotte-Rizzoli 1991; Fukumori et al. 1993).
The method chosen is largely dependent on practical considerations.

1.6.3 Sequential assimilation

Sequential assimilation techniques may be modelled symbolically (at analysis

time) as follows:
w® = w! + K(y° — Hw), (1.3)

where w represents the model state vector (all gridpoint model variables).
The superscript a refers to the corrected model at analysis time, f refers to
the model forecast prior to correction. The observations are represented by y°
and H is an operator which generates equivalent observations from the model
state. K is a weight matrix. The various sequential assimilation techniques
differ primarily in the form of K. The analysis, w?, forms the initial state of
the model in a subsequent integration (or forecast) until the next analysis time,
when the evolved model state is used as the model forecast, w/. This analysis-
forecast cycle is continued throughout the assimilation period. In practice, the
model-data misfits, y° — Hw, may be accumulated throughout the forecast
synoptically with the data.

Direct insertion and nudging

The simplest sequential assimilation technique is direct insertion, where model
variables are substituted directly for their observed values (K is effectively the
identity or a trivial spatial interpolation matrix). See Hurlburt (1986), Berry
and Marshall (1989) and Haines (1991) for examples.

A more useful technique is nudging, where every model timestep is ef-
fectively an analysis time, with model variables continually relaxed towards
observations. Equation (1.3) is more conventionally cast as an addition of
forcing terms to the model prognostic equations:

0
—a—? = (physics) + K (y° — Hw). (1.4)
Examples of nudging can be found in Holland and Malanotte-Rizzoli (1989),

Haines (1991), Verron (1992) and Stammer (1997a).

Successive corrections

The successive corrections technique applies corrections (1.3) at intermittent
analysis times with weights in K that decrease with increasing distance in
space and time between model variables and data location. The scheme may
be used iteratively each analysis time, with successively smaller spatial scales
used in K each iteration. An example of this technique is the study by Moore
et al. (1987). Daley (1991) described successive corrections methods in detail.
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Optimal interpolation

None of the sequential assimilation schemes described so far explicitly take into
account either model or observation errors. Optimal interpolation (OI), on the
other hand, assumes that both the observations, y°, and the model forecast,
w, will be in error with respect to the true ocean state, w’ say. Denote the
covariances of these errors by C° and C/ respectively:

C° = Elly* - Hu')(y* ~ Hw")"
¢/ = Blw - w)(w’ - w)

Then optimal interpolation weights the model forecast, w’, and the observa-
tions, ¢°, in inverse proportion to their respective errors, at analysis time. The
weight matrix takes the form:

K=C'HYHC'H" +C°)™". (1.5)

The technique is optimal in the sense that it minimizes the analysis error
E[||lw* —w'||?]. (Derivations may be found in Gelb (1974), Gustafsson (1981),
Ghil and Malanotte-Rizzoli (1991), Mellor and Ezer (1991) and Daley (1991).)
The formalism provides an estimate of the analysis error covariance:

C° = E[(w® - w')(w® — w")")| = (I - KH)C". (1.6)

This can be written in the alternate form (see Gelb (1974) or Ghil and Malanotte-
Rizzoli (1991) for a derivation):

(C)'=(C) "+ HY(C)'H,

providing the intuitive interpretation that analysis accuracy is the sum of fore-
cast accuracy and observation accuracy. Typically, some fixed functional form
is assumed for the structure of the forecast and observational error covariances
(Gustafsson 1981). A common approximation for the forecast error covariance
is the form:
¢! = (D'):c(DY),

where C is a time-independent spatial correlation matrix and D/ is a diagonal
matrix of forecast error variances (Ghil and Malanotte-Rizzoli 1991; De Mey
and Benkiran 2002). These forecast error variances may be constant in time, or
may be based upon the analysis error variances, diag(C*®), with some empirical
growth rate over time. Of course, if C¥ is allowed to vary in time, then both the
weight matrix, K (1.5), and the analysis error covariance, C* (1.6), will also
be time-varying. OI has been widely used in meteorological data assimilation.
Examples of its use in oceanography may be found in Derber and Rosati (1989),
Mellor and Ezer (1991), Dombrowsky and De Mey (1992) and Ezer and Mellor
(1994).

Kalman filtering

Optimal interpolation is an approximation to the Kalman filter, which derived
originally from engineering control theory (Kalman 1960). Instead of the OI
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assumption of an a-priori structure for the forecast error covariance, C7, the
Kalman filter evolves it in time according to the model dynamics. Writing
M for the model dynamics (assumed linear here), and introducing explicit
time-dependence, then the model evolution from times t;_; to ¢ is written:

f_ a
wk — Mk_lwk_l.
This is assumed to capture the evolution of the true ocean with some error:
t _ M t
wk = ]C_lwk_l + Er—1-

Writing the model error covariance E[exef| = Qy, then the Kalman filter pro-
vides the following formula for optimally evolving the forecast error covariance:

Cl = M;_,C{_ M | + Qy_1. (1.7)

Thus, the forecast error is the sum of the previous analysis error, as propagated
by the model dynamics, and the intrinsic model error. As with time-varying
O], both the weight matrix and the analysis error covariance evolve in time ac-
cording to (1.5) and (1.6) respectively. The engineering literature refers more
suggestively to the weight matrix, K, and the model-data misfits, y° — Hw,
as the Kalman gain matrix and the innovation vector respectively. In prac-
tice, it is not feasible to implement the full Kalman filter (1.3), (1.7), (1.5),
and (1.6) for an ocean GCM. If the size of the model state is O(N) then Cf
has storage requirements of O(N?) and computing its evolution (1.7) requires
O(N) times more operations than a normal model integration. A moderate-
sized model of 10° gridpoint variables taking an hour to run would require 10
gigawords storage and a decade for the assimilation! Much effort, therefore,
has been put into developing suboptimal approximations to the Kalman fil-
ter. OI may be regarded as one such approximation. Other more sophisticated
approaches to order reduction may be found in Fu and Fukumori (1993), Fuku-
mori and Malanotte-Rizzoli (1995), Oschlies and Willebrand (1996), Faucher
et al. (2002) and De Mey (2002), and are reviewed by De Mey (1997). The
Kalman filter as described above is limited to linear models M. The eztended
Kalman filter (EKF) has been developed for nonlinear models and proceeds
by successively linearizing the model about the forecast each timestep. By
substituting the linearized model for M in the Kalman filter equations, the
evolution of the forecast error covariance, C’, remains correct to first order
(Ghil and Malanotte-Rizzoli 1991).

1.6.4 Variational methods

In contrast to the sequential data assimilation methods described above, the
variational methods seek to optimise an entire model run by choosing val-
ues of the model initialisation or other control variables that will minimize the
difference between the model trajectory and observations (Ghil and Malanotte-
Rizzoli 1991). More specifically, a scalar cost function (usually quadratic) is
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defined measuring the difference between the model trajectory and the obser-
vations; for example,

J= /[(fw — y°)TA(w — y°)]|dzdt. (1.8)

(Note that notation now has been switched so that the model state and
observations are continuous vector functions of space and time’, e.g. w =
[T,S,u,v,w]*(z,t).) The weighting functions, A(z,t), reflect the accuracy
of observations. In the discrete case, for instance, they may be taken as the
inverse of the observational error covariance matrix (Thacker 1988; Marotzke
and Wunsch 1993). The variational approach to data assimilation then asks
the question: what are the values of the initial conditions, model parameters,
or other control variables that will minimze J, subject to w being a solu-
tion of the model? Thus, this is a problem of constrained optimisation. The
constraint is simply the time-evolution of the model, written here as:

w(z,t) = M(w(z,t),u(x, t), z,1), (1.9)

where the dot notation represents time derivation and w is a vector of con-
trol variables (which may include model initialisation, forcing fields, mixing
parameters etc.). It is well known that the solution to such problems can be
obtained through the use of Lagrange’s undetermined multipliers (Riley 1974;
Le Dimet and Talagrand 1986; Schroter et al. 1993). The method proceeds by
forming the Lagrange function,

L(w,u,A) = J+/AT(M — w)dzdt,

with the Lagrange multipliers, A = A(=,t), being as yet undetermined func-
tions of space and time. A necessary condition for J to be minimized is that
the Lagrange function be stationary, which requires its derivatives all to be
Z€ro:

oL
e = 0 (1.10)
oL
7o =0 (1.11)
oL
5 = O (1.12)

Equation (1.12) retrieves the model equations (1.9), while (1.10) leads to the
adjoint equations after integration by parts. Equation (1.11), while not gen-
erally used directly, must be verified for an optimal solution. (However, if the
controls are a function of time, u = u(t), and included in the cost function,
then (1.11) solves for them (Speedy et al. 1970).) The adjoint equations can
alternatively be found directly by applying a result from the calculus of varia-
tions (Riley 1974). This states that a functional F = [ F(y, s, ¥y, . . ., %:)dz,

"In the case of observations at discrete times, t,, then y° = Zyf6(t — t;).
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(where y = y(z1, . ..,%,) and y; = 0y/0z, etc.) may be minimized by solving
the Fuler-Lagrange equations,

OF _ 0 (OF\_ & (OF\ . @& oF
oy 0Oz, \Oy; Oz;0z; \ Oy, 0z; -+ 0%i, \OYinn )’

which in turn provide equivalent differential versions of the stationarity condi-
tions (1.10), (1.11) and (1.12) if F = L. By way of specific example, consider
a simple one-dimensional advection-diffusion model:

Sw Ow 0w

—_— = —

ot = Car T FaE

where c is the advective velocity and £ the coefficient of diffusion. Using a
quadratic measure for the cost function, the Lagrange function takes the form

ow  Ow A%w
— 940 2 —_—— e e =
L(w, A) = / [(w y°)°+ A < 5 " Cag k&c? )} dzdt /dedt,

and the FEuler-Lagrange equations are

(1.13)

oL

o = 0 (1.14)
oL o (0L d ( dL 0> ( oL

ow ot (3_wt) * 52 (8ww) 922 (8wm) ' (1.15)

The first of these retrieves the model (1.13), while the second gives directly
the adjoint equation

ox  0A D)

= B 8$+ 52 (1.16)

The adjoint equations are partial differential equations (PDEs) in the Lagrange
multipliers, or adjoint variables, A(z,t). They must be integrated backwards
in time for stability (notice the negative diffusion coefficient in (1.16)), and are
forced by a non-homogeneous term in model-data misfits (the LHS of (1.16)).
The detail of the forcing term depends on the form chosen for the cost function.
The boundary conditions emerge in the derivation of the adjoint equations from
(1.10), and are homogeneous (Tziperman and Thacker 1989):

A(z,t) = 0 for  on the boundaries,
A(z,tf) = 0 at the final time, t;.

In principle, the forward model together with the adjoint equations (that is,
equations (1.13) and (1.16) for the 1-D advection-diffusion model) is a system
of coupled PDEs that jointly can be solved subject to their respective boundary
conditions to yield the optimal solution to the variational problem. In all
but the simplest problems, however, such a direct method is impractical or
impossible (Le Dimet and Talagrand 1986; Thacker and Long 1988; Ghil and
Malanotte-Rizzoli 1991).
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A more tractable approach is a particular iterative technique, which has
come to be known as the adjoint method for data assimilation. The adjoint
method starts by assuming some estimate uy for the controls. The forward
model is then run, accumulating the model-data misfits in the form required for
the adjoint model (cf. equation (1.16)). The adjoint model is then integrated
backwards in time, forced by the calculated misfits. The values of the adjoint
variables so calculated may then be used, it turns out, to calculate the gradient
of the cost function with respect to the controls, VJ,. Thus a gradient-descent
algorithm may be used to modify the controls in the direction of the minimum:

ul = Uy — PVJu:

where p is a step size suitably chosen for stability (Moore 1991). The whole
process is iteratively repeated using the new estimates of the control variables
until the cost function J has been minimized adequately. It must be noted
that in this iterative approach, the adjoint model is used only to calculate
the gradient of the cost function. In principle this could be done also, for
example, by successively applying small variations du to the control variables,
integrating the forward model and calculating the corresponding variation in
the cost function, §J. In practice, however, it is cumbersome, requiring many
integrations of the forward model to calculate a single gradient VJ,. It was
used by Schroter and Oberhuber (as described in Schréter (1989)) to find a
global mixed layer model, and increased computation time almost by a factor
of 100 over a single forward integration. The relationship between the adjoint
variables, A, and the gradient of the cost function, V J,, depends on the choice
of control variables. It can be shown in general (Schroter 1989; Schréter et al.

1993) that
vJu:ﬂ+/>\T oM — w) dadt.
ou ou

For the case of control variables which are the model initialisation, v =
w(z,0), the gradient of the cost function is equal to the value of the ad-
joint variables at initial time (Tziperman and Thacker 1989; Moore 1991; Le
Dimet and Talagrand 1986; Schroter 1989),

VJw(m,o) = A(:l}, 0).

More generally, Hall and Cacuci (1983) have shown that the value of the i-th
adjoint variable, )\,, at time 7 gives the response of the cost function with
respect to a small perturbation in the model variable w, made at time 7.
Schroter (1989) has shown how to calculate from the adjoint variables the gra-
dients of the cost function with respect to the diffusion coeflicient and both a
constant or time-varying advection velocity in a 1-D advection-diffusion model.
Schroter et al. (1993) also did this with a two-layer quasi-geostrophic model
for control variables that included initial streamfunction, Rossby radius, dif-
fusion coefficients, and wind-stress amplitude. Tziperman and Thacker (1989)
used diffusion parameters and wind-forcing as control variables in a barotropic
vorticity equation model and similarly developed appropriate expressions for
V J, in terms of the adjoint variables.
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For further discussion of the theory of variational assimilation and the
adjoint method see Le Dimet and Talagrand (1986), Talagrand and Courtier
(1987) and Schroter et al. (1993). Examples of the adjoint method may
be found in Tziperman et al. (1992), Vogeler and Schrdter (1995), Lee and
Marotzke (1997) and Wenzel et al. (2001), as well as works already referenced.

A disadvantage of variational assimilation wvis-d-vis sequential methods
is that no error analysis emerges from the solution®. In reality, an estimate
of oceanic fields without some estimate of the error is of limited value. Varia-
tional assimilation methods often have been applied with no mention of error
estimates, nor even a discussion of the computational difficulties. Thacker
(1989) has shown how estimates of model-data error covariances can be made
from the inverse of the Hessian matrix, H = §°J/0u,0u,. In addition, the
magnitudes and distribution of the eigenvalues of the Hessian determine the
convergence rate of the adjoint method. In practice, this matrix is very ex-
pensive to compute, requiring as many integrations of the forward and adjoint
models as there are control variables (Schroter 1989). Marotzke and Wunsch
(1993) used a simplified method to estimate just the diagonal elements of H in
their variational estimate of steady-state North Atlantic circulation. Despite
the computational burden of their simplified approach, the results of the er-
ror analysis were “not wholly satisfactory”. Schréter (1989) discussed matrix
conditioning in the inversion of the Hessian, and suggested using a truncated
set of control variables for the inversion, based on a singular value decomposi-
tion. Tziperman and Thacker (1989) examined the resolution question, rather
than an explicit error analysis. This indicates how well the control variables
are resolved by the data. They calculated the Hessian at a coarser resolution
than the full model in order to produce the resolution matrix. The analysis
showed that their (pseudo) observations of streamfunction were insufficient to
resolve the windstresses they used as control variables. Schroter (1994) reviews
various approaches to computing the Hessian matrix.

The question of how the adjoint model is produced in practice has not yet
been addressed. Until recently, the computer code for the adjoint of a given
model had to be produced manually. It has conventionally been accepted
that this should be an adjoint implementation of the original (forward) finite-
difference model, rather than a finite-difference discretisation of the continu-
ous adjoint equations (Le Dimet and Talagrand 1986; Tziperman and Thacker
1989; Moore 1991; Schréter et al. 1993). Although Sirkes and Tziperman
(1997) have recently questioned this in some cases, it remains the method of
choice in variational assimilation. Schroter (1989) described a recipe to pro-
duce the adjoint code for a finite-difference model. It consists, first, of writing
an adjoint subroutine for every subroutine in the forward model. The adjoint
model is then run by calling the adjoint subroutines in reverse order. The
technical complexity of manually producing adjoint models has been blamed

8Variational assimilation as presented here requires the solution to match exactly the
model equations. This is the so-called strong-constraint formulation. However, a weak-
constraint formulation also exists, where the model equations are not required to be satisfied
exactly, and which allows a-posteriori estimates of analysis error. See Chua and Bennett
(2001) and references therein for details.
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by Sirkes et al. (1996) for the dearth of studies using adjoint primitive equation
GCMs. Very recently, so-called “adjoint compilers” have been developed to
automatically generate adjoint models (Giering and Kaminski 1998; Marotzke
et al. 1999) from the forward code. This is likely to significantly advance the
use of variational assimilation.

1.6.5 Initialisation

In the case of sequential assimilation techniques, the possibility occurs of gener-
ating dynamical disturbances in the model due to the impulsive changes intro-
duced each analysis time. The linear shallow-water equations admit two classes
of wave solutions — the fast inertia-gravity waves and the slower Rossby waves
(LeBlond and Mysak 1978). Generally, it is only the slower waves that are of
interest, both theoretically and practically (e.g. forecasting). The introduction
of non-dynamical changes (i.e. changes not defined by the model dynamics)
into a model may excite unwanted energetic fast-wave responses. For meteo-
rological forecasts, these responses may overwhelm the mesoscale dynamics of
interest at periods of hours to days (Daley 1981; Daley 1991); certainly they
can make the prediction significantly more noisy. Thus, a tremendous amount
of effort has been expended on the so-called initialisation problem, whereby the
changes at analysis time are modified to eliminate these induced fast-responses.
See Daley (1991) and references therein for a review of the meteorological liter-
ature. For sequential assimilation in oceanography, there has been little work
done. There are several reasons for this. First, quasi-geostrophic models do
not admit inertia-gravity waves, and so the problem does not exist for this
class of model. Second, primitive-equation models often make the rigid-lid
approximation, which also eliminates fast waves. Thus it is only sequential
assimilation studies with free-surface primitive-equation models that may be
expected to display initialisation effects. Malanotte-Rizzoli et al. (1989) found
even in this case that such effects were small and that relatively simple ini-
tialisation strategies could be employed to significantly suppress gravity wave
noise. Hurlburt (1986) also found a simple initialisation procedure (i.e. ensur-
ing the modified fields were geostrophically balanced) was sufficient in a study
with a two-layer PE model. Clearly, the requirement for initialisation will de-~
pend on the details of the model and assimilation technique, and the purpose
for which assimilation is being performed. Discussions of initialisation in ocean
data assimilation can be found in Ghil (1989) and Ghil and Malanotte-Rizzoli
(1991).

1.6.6 Assimilation in the Southern Ocean

There have been few studies of data assimilation in the Southern Ocean. Vo-
geler and Schréter (1995) assimilated Geosat SSH data using an adjoint method
into an open ocean QG model of the African sector of the Southern Ocean.
The control variables were the model initial streamfunction. The assimila-
tion was found to work well for timescales of 20 days or less, but the open
boundary conditions were found to influence the results more than the initial
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conditions for longer timescales. A later study (Vogeler and Schriter 1999)
included the boundary values of streamfunction and vorticity amongst the
control variables. While this produced an improvement, there was still a dif-
ference between shorter and longer assimilation periods; while an SSH error of
less than 5 cm could be achieved with a short assimilation period, a longer term
assimilation produced an error of 10-12 cm. Evensen and van Leeuwen (1996)
assimilated gridded Geosat altimetry into a two-layer quasigeostrophic model
of the Agulhas Current region south of Africa. They employed the Ensemble
Kalman Filter, which uses a Monte Carlo method for estimating the forecast
error covariance. In essence the method integrates forward an ensemble of
states having the sample mean equal to the previous analysis. The covariances
between this ensemble of forecasts is then used as an estimate of the forecast
error covariance for the Kalman gain matrix in the next analysis. They ob-
tained analyses consistent with the data, and found that the method was able
to reproduce eddy shedding which is normally too slow in QG models due to
the lack of ageostrophic effects. Seiff et al. (1997) employed a nudging tech-
nique to assimilate Geosat altimeter data into a circumpolar eddy-resolving
QG model of the Southern Ocean. Convergence to observations was fast in
the case of a twin experiment, but less successful with real data. However,
the variability of the model was improved with real data. A QG model of the
South Atlantic ocean was used by Florenchie and Verron (1998) in a two-year
assimilation of TOPEX/POSEIDON and ERS-1 altimeter data using a nudg-
ing method. The model was strongly influenced by the assimilated data. A
resolution of 1/6° allowed the authors to track individual Agulhas rings, four-
teen of which were shed during the assimilation period. Grotov et al. (1998)
assimilated hydrographic data from the WOCE S4 section, together with cli-
matological data, into a model using a variational method to reconstruct the
large-scale circulation of the Amundsen and Bellingshausen Seas. Stutzer and
Krauss (1998) assimilated surface drifter data into a PE model of the South At-
lantic to improve surface flow. The subtropical gyre circulation was improved,
though little impact on basin-scale integrated quantities was found.

A recent sequential assimilation of TOPEX/POSEIDON and ERS-1 al-
timetry data into a 1/4° global PE model was performed by Fox et al. (2000a;
2000b). A twin-experiment run achieved significant improvements through
assimilation (error reductions of greater than 50% for upper ocean currents af-
ter five months of assimilation). Problems were found in the Southern Ocean
with temperature and salinity fields being adversely impacted initially. This
was thought to be due mainly to the relatively large barotropic component
of Southern Ocean variability being incompatible with the assimilation tech-
nique, which assumed no change in bottom pressure. An assimilation with real
data allowed improvements in SSH prediction over most areas of the ocean,
with the exception of the ACC.
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1.7 Present study

In this thesis, a regional primitive equation model of the Southern Ocean is
implemented and then used for assimilation of altimetry data using an optimal
interpolation scheme.

The region chosen is one that is rich in eddy variability, and where to-
pography is thought to play a major role in the ACC’s momentum balance.
There is also a concentration of in-situ data in the region, including some six
repeats of a WOCE hydrographic section, XBT data, and several multi-year
current mooring records.

The work presented here includes several novel elements. Few other
primitive equation models include an implicit free-surface formulation. Open
boundary conditions for such models have not previously been investigated in
detail.

This work also represents one of the first dedicated Southern Ocean as-
similation studies using either a primitive equation model or TOPEX /POSEIDON
altimetry data. Other sequential assimilation studies in the Southern Ocean
have generally employed nudging rather than a more sophisticated technique,
such as optimal interpolation, as used here. While sea-level variability in the
Southern Ocean is known to include a barotropic component, previous South-
ern Ocean assimilation studies have not explicitly addressed this issue.

The remainder of this thesis is structured as follows: chapter 2 introduces
the Hamburg Ocean Primitive Equation (HOPE) model and describes the
configuration used here; chapter 3 discusses the modifications made to allow
it to operate with oceanic open boundaries; chapter 4 discusses the model’s
performance in a forty-year spinup run; and chapter 5 reports assimilation
results. A summary and conclusions are provided in chapter 6.



CHAPTER 2

Numerical model

2.1 The Hamburg Ocean Primitive Equation
(HOPE) model

The Hamburg Ocean Primitive Equation (HOPE) model (Wolff et al. 1997)
is a state-of-the-art FORTRAN ocean modelling code developed primarily by
Ernst Maier-Reimer at the Max-Planck Institute for Meteorology in Hamburg,
Germany. It has recently been used in studies of the El-Nifio Southern Oscilla-
tion (ENSO) (van Oldenborgh et al. 1999; Venzke et al. 2000a; van Oldenborgh
2000), paleo-climate (Kim et al. 1998; Kim and Crowley 2000), North Pacific
decadal variability (Xu et al. 1998; Venzke et al. 2000b), watermasses in the
equatorial Indian and Pacific oceans (Rodgers et al. 2000) and the Southern
Ocean (Kim and Stdssel 1998), and sea-ice (Marsland and Wolff 1998; Stossel
et al. 1999). Notable features of the model include an exact representation of
model bathymetry at gridpoints, a prognostic sea-level, and momentum advec-
tion which conserves second-order quantities (kinetic energy and enstrophy).
These features in part motivated the choice of the HOPE model for altimetry
assimilation in the Southern Ocean. In particular, topography is known to
play a significant role in Southern Ocean dynamics (Treguier and McWilliams
1990; Gille 1997; Witter and Chelton 1998). Therefore its accurate represen-
tation is likely to be important in a regional assimilation study. For certain
assimilation techniques (direct nudging, for example) and altimetric data, a
prognostic sea-level is required. Although direct-nudging was not applied in
this study, a prognostic sea-level is likely, nevertheless, to carry some ben-
efits for altimetric assimilation. For example, irrespective of any projection
of sea-level anomaly data into the ocean interior, geostrophic adjustment will
ensure that the mass transport reflects assimilated sea-level at length scales
larger than the barotropic Rossby radius. A prognostic sea-level also allows
immediate comparison with altimetric data rather than it having to be diag-
nosed. Finally, the frontal regions of the Antarctic Circumpolar Current are
expected to be highly nonlinear so that accurate momentum advection will be
needed to represent adequately the eddy dynamics. In addition, ready access
to other users of the HOPE model and the expertise of one of its developers
(Dr Jorg-Olaf Wolff) was an important factor guiding its choice for this study.

34
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2.1.1 Model physics
Basic equations

Newton’s second law of motion for a material element of a viscous fluid provides
the Navier-Stokes equations. In a rotating reference frame under gravity these

may be written:

Du 1
Y i xu=—Vp—g+ 2.
foT X u P p—g+ F, (2.1)

where v = {u, v, w}(z,t) is the three-dimensional velocity vector in Cartesian
co-ordinates € = {z,y,z}, € is the angular velocity of the rotating frame,
p = p(z, t) is the pressure field, p = p(x, t) is the fluid density, g is acceleration
due to gravity, and F' is viscosity (for molecular viscosity this takes the form
F =vV2uy). Notation for the material derivative has been used:
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The primitive equations of geophysical fluid dynamics simplify the Navier-
Stokes equations by making two approximations. The first is the hydro-
static approzimation (Gill 1982; Pedlosky 1987; Kantha and Clayson 2000).
This recognises that vertical velocities in the ocean and atmosphere are much
smaller than horizontal velocities, so that the material derivative term is ne-
glected in equation (2.1) for the vertical velocity. Horizontal components of
gravity are neglected, g = gk. Finally, the vertical component of the Coriolis
term, £ X u, and molecular viscosity are much smaller than other terms and so
also are neglected. Thus, equation (2.1) for vertical momentum conservation
is replaced by a hydrostatic balance:

% =g (2.2

The second approximation of the primitive equations is the Boussinesq
approzimation (Boussinesq 1903; Spiegel and Veronis 1960), which recognises
that density variations are small over typical motions: their effects on horizon-
tal momentum are neglected, but not on buoyancy. It amounts to taking the
density to be a constant, p(x,t) = po, in equations (2.1) for horizontal compo-
nents of velocity, but retaining density variations in calculating pressure from
the hydrostatic relation (2.2).

In component form, then, the primitive equations are the hydrostatic
balance equation (2.2) and the two horizontal momentum equations:

ou ou Ju ou 1 0p
E+u%+va—y+w5— vo= —%a'f‘Fz (23)
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The Coriolis parameter f = 2|Q|sin ¢, where ¢ is latitude.
The nonlinear equation of state for seawater depends on pressure and the
material thermodynamic quantities temperature, T', and salinity, S:

p=p(T,S,p). (2.5)
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Conservation equations may be written for these quantities if temperature is
replaced by the conservative property potential temperature, . This is the
temperature a parcel of fluid would have if it were moved adiabatically to
some reference pressure (usually 1 bar). The conservation equations for § and
S reflect advection-diffusion physics:

Do

T); = —OV.u+ F (26)
DS
.D_t = —SV.au+ Fs, (27)

where Fy and Fs are the diffusivities for potential temperature and salinity,
respectively (for molecular diffusion these take the form Fy = (8k)/(C,Tp)V*T
and Fs = kpV2S where k is thermal conductivity, C, is specific heat at
constant pressure, T' is temperature, and kp is the diffusivity of salt in water
(Gill 1982; Pedlosky 1987)).

The basic equations are completed with the equation of volume conser-
vation (or continuity) for an incompressible fluid:

V.u = 0. (2.8)

Since the prognostic momentum equation for the vertical velocity, w, is re-
placed in the primitive equations with the hydrostatic relation, w may instead
be calculated diagnostically by integrating the continuity equation vertically
through the water column:

w(z) = — /_; Virup(2)d2', (2.9)

where z = —H(z,y) represents the model bathymetry and the subscript h
represents horizontal components.

Sub-grid-scale parametrizations

While the set of equations (2.2); (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8) is
complete for a continuous fluid, discretisation of these equations prevents the
explicit representation of processes smaller than the grid size. It turns out that
the resolved physics satisfies the primitive equations, with additional viscous
terms (Pedlosky 1987, §4.2):
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The Reynolds stress tensor, T, represents correlations between the unresolved
turbulent velocity fluctuations, {u',v',w'}:

— 7 — Y — 7
Tax = —pu’u y Tyy = —PUV, Tz = —pw’w )
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Toy = Tyz = —,O’LL”U’,
Tez = Tex = _pu,w’a
Tyz = Tay = _pvlwla

While expressions for these stresses can be written down, they depend on
higher-order moments. Expressions for these higher-order moments may also
be written, but they in turn depend on even higher-order terms and so on.
Thus, there is no simple analytical closure scheme for the turbulent (or eddy or
mizing) stresses. As described earlier (section 1.5.3), their parametrization in
terms of resolved quantities represents a very active area of current research in
ocean modelling. Typically, the parametrizations of sub-grid-scale processes
mimic molecular viscosity and diffusion in form, but are larger by several orders
of magnitude and thus the molecular terms are neglected. The HOPE model
parametrizes the turbulent stresses separably in the horizontal and vertical,

{F,,F,} = Fy + Fy. (2.13)

The horizontal turbulent viscosity optionally includes both harmonic and bi-
harmonic terms, as well as a term dependent on the local rate of strain:

Fy = AHV,%U}L -~ BHV;IL’U:h -+ V.(VAT2thh), (214)

where Ay, By and v4 are coefficients of horizontal viscosity and the strain?,
T? = (2 + %5)2. The vertical turbulent viscosity is parametrized as:

1
0 8uh
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where Ay is the coefficient of vertical viscosity.
Similarly, the effects of sub-grid-scale turbulence on tracer conservation

are parametrized as additional diffusive terms:

0 06
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where Dy and vp are coefficients of horizontal diffusivity, and Dy is the coef-
ficient of vertical diffusivity.

The coeflicients of both vertical viscosity and diffusivity may optionally
be formulated with a term depending on the local Richardson number, R
(Pacanowski and Philander 1981), and a mixed layer contribution:

oAy Ay,

o~ MvtA ((1 O R Ot Ab) ’ (2:18)
aDV _ DVo

5t = ADy + X\ max [((1 n ORDRi)z + 6Apr) ,Db] . (2.19)

!Note that T here is different to the temperature, T, used earlier in the expression for
molecular diffusion, Fy.
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In this formulation, A, and D, are constant background values, and Ay, Dy,
Cr,, Cr, are constant parameters. The parameter A defines a “memory”
time-scale. The mixed layer contributions W, are included using the switch
dap, Which is one in the mixed layer and zero elsewhere. The Richardson
number is the ratio of the squares of the buoyancy frequency and the vertical
shear:
< (5)
— Po 2
5+ (@)
The values used for the various sub-grid-scale parametrizations, and other
model parameters, in this thesis are mentioned in section 2.2.3.

Boundary conditions

A no-slip condition is applied to model velocities at all solid boundaries:

’U,(CI:, t) |meo"V = 0’

where 0V represents the bathymetric boundary of the modelled ocean volume
V. This guarantees zero-flux conditions for tracers:

(uf).n =0,
(uS).n =0,

where n 1s a unit vector normal to the solid surface. A Newtonian friction law
is also applied to the velocities near the bottom:

{Fm,Fy} :FV+FH— 6u($’t)|lm—6V|<A’ (220)

with € the coefficient of bottom friction.
At the sea surface, wind stress?, 7, imparts a momentum flux:

ou
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The wind stress 7 = 7(t) is a monthly mean value linearly interpolated in
time.

While HOPE optionally allows the specification of heat and freshwater
fluxes at the surface, the surface boundary condition for tracers used in this
thesis was Newtonian relaxation to climatological values:

0S8 .

= = — 2.22
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Va2, Ag(0, — 6) (2.23)

S, is an annual mean climatological surface salinity, and 6, = 6,(t) is a monthly
mean climatological sea-surface temperature linearly interpolated in time. Ag
and Ay are relaxation strengths.

2Note that T here, used to represent wind stress, is different to that in equations (2.12)
for the viscous stress tensor.
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The sea-surface, z = n(z, y,t), is a material surface which can be repre-
sented by the equation

G(z,y,2,t) = n(z,y,t) —z=0.
Thus for a particle on the surface, G will remain zero:

DG on on on _
Dt 6t+u3x+v8y w=0.

HOPE linearizes this kinematic boundary condition to obtain:

0
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where the continuity equation (2.8) has been used.

The HOPE model also includes an optional dynamic-thermodynamic sea-
ice model (Hibler 1979). This sea-ice model was not used in this study in
order to simplify the open boundary modifications and altimetry assimilation
interface.

For detailed description of the model numerics, the reader is referred
to the HOPE model manual (Wolff et al. 1997). The following two sections
provide an outline of the discretisation of the model equations in space and
time.

2.1.2 Spatial discretisation

The HOPE model solves the equations described above (section 2.1.1) using
a finite-difference procedure. The continuous prognostic variables are approx-
imated by representing them at discrete points on a three-dimensional grid.
Spatial derivatives in the continuous equations are replaced by finite-difference
counterparts and the solutions are advanced in time using a procedure de-
scribed below. There are numerous ways of arranging model variables on
a regular discrete grid and each will represent the continuous solution with
a different degree of accuracy. Five particular arrangements of variables in
the horizontal (Figure 2.1) were analysed for their dispersion properties un-
der geostrophic adjustment by Mesinger and Arakawa (1976) and Arakawa
and Lamb (1977). The grid arrangements have come to be known as the
Arakawa grids, A through E. They concluded that the B- and C-grids most
accurately represent the inertia-gravity waves associated with one-dimensional
geostrophic adjustment. In two dimensions, the C-grid is better if the grid-
spacing is smaller than the Rossby radius, but the B-grid is better otherwise.
(Recently, Randall (1994) has proposed a Z-grid which performs well at all
grid spacings.) Most ocean models today use either the B- or C-grids.

The HOPE model discretises model variables on the Arakawa E-grid in
the horizontal, as shown in Figure 2.2. ‘Scalar’ quantities (6, S, p, p,n) are co-
located and offset from ‘vector’ quantities (u,v). In the vertical, the HOPE
model uses a z—level discretisation with layers of specified thickness, zx, as
shown in Figure 2.3. Most model variables are defined at mid-layer depths,
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E-grid

Figure 2.1: The Arakawa finite-difference grids for the shallow-water equations
(n is sea-level, (u,v) is horizontal velocity)
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Figure 2.2: The horizontal Arakawa E-grid as used in the HOPE model. The
effective resolution is labelled d. The shaded gridpoints represent a land bound-
ary.

but vertical velocities are located at layer interfaces between scalar grid-points.
The three velocity components (u, v, w) are to be interpreted as the fluid veloc-
ities across the faces of grid-boxes whose average tracer (#,.S) values are given
by the enclosed scalar gridpoint. While horizontal diffusivities and viscosities
(Dg, Am, Bg) are constant in space, the vertical mixing parameters (Dy, Ay)
may vary with the local Richardson number, and so are discretised in space.
They are located at layer interfaces in the vertical, and aligned with the rel-
evant grid-point type (scalar for Dy, vector for Ay) in the horizontal. The
local strain rate parameter, 72, is defined at mid-layer depths in the vertical
on scalar grid-points.

The model carries individual grid-box thicknesses for all horizontal grid-
points and vertical layers. In this way, the bathymetry is not restricted by the
choice of layer thicknesses and may instead be resolved exactly. (Adcroft et al.
(1997) have shown that such a scheme provides smoother and more accurate
fields than if topography is limited to layer depths.) From the horizontal
momentum equations (2.3) and (2.4), it is clear that the evolution of horizontal
velocity requires gradients of pressure. This requires that no oceanic velocity
point in the model be immediately adjacent to land. The topography in the
model is therefore adjusted initially by setting the depth of each scalar grid
column to the maximum depth of the four surrounding vector grid columns.

The horizontal grid is Cartesian and specified by the latitude and lon-
gitude locations of grid rows and columns. Calculation of spatial gradients
is facilitated by storing two-dimensional arrays of inter-grid-point distances.
This is necessary with z-derivatives to account for convergence of meridians
with latitude. In principle, it provides the opportunity for HOPE to be ex-
tended to non-Cartesian orthogonal grid systems. In fact HOPE has recently
been reformulated on a non-geographic curvilinear grid in the horizontal (using
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Figure 2.3: The vertical grid used in the HOPE model

an Arakawa C-grid) (MPI 2001).
Successive (latitudinal) grid rows in HOPE are labelled alternately as

ODD or EVEN (Figure 2.2), with all model variables carried accordingly in
two separate arrays. This internal separation of model variables hints at a
more fundamental problem with the Arakawa E-grid: it exhibits a degree of
decoupling in its solutions for centred differencing schemes. The problem may
be seen by considering a solution in geostrophic balance. Values of u on the
EVEN grid, and v on the ODD grid, are determined by centred differences
of pressures at ODD scalar grid-points. Similarly, pressures on EVEN scalar
gridpoints determine ODD « and EVEN v velocities. Thus there are two in-
dependent decoupled systems. A constant sea-level could be added to one of
the two (EVEN/ODD) subgrids, for instance, without upsetting either solu-
tion but introducing a very severe “chequerboard” pattern into the combined
sea-level field. Even with non-equilibrium solutions, it is only the Coriolis,
nonlinear, and mixing terms that couple the two solutions (otherwise, time
evolution of EVEN u and ODD v points is determined by pressure gradients
between EVEN scalar points, while evolution of ODD u and EVEN v is deter-
mined by ODD scalar points). Such a decoupling does not occur with other
Arakawa grids. The point may further be appreciated by noticing that the
E-grid is effectively two overlaid C- (or D-) grids offset diagonally from one
another. While severe grid-point decoupling did not often occur in this study, it
was found to be prudent to examine both EVEN and ODD arrays of grid point
variables to ensure this was the case. With the open boundary investigations
described in section 3, for instance, very severe, but stable, chequerboarding
sometimes occurred indicating potential problems with coding or algorithms.

UNIVERSITY OF TAS Mﬁ%ﬁy
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2.1.3 Time discretisation

The HOPE model solves the prognostic partial differential equations described
above using the method of operator splitting. The following description follows
that in Press et al. (1992). Also known as the method of fractional steps, it
may be applied to problems where the differential operator can be written as
a linear sum:

d¢

= = Lo, (2.25)

Lo=Lip+ Lop+ -+ Lyop.
Suppose a finite-difference algorithm, J,, is available for each of the £ partial
differential equations %‘tﬁ = L, separately:
p™) = Fu(p™)
(™) = Falp(t")

p(™) = Fulp(t™).

Then the original problem (2.25) may be advanced in time from ¢* to t"*! =
t™ + At by applying successively the finite-difference operators for each of the
components:

p(E™R) = Fi(p(t™)
PR = Fy(pet/R))
(™) = Fi(p@tEIky).

Thus the HOPE model applies operator splitting to the various prognos-
tic equations. Table 2.1 lists, in order of their application, the subroutines
used by HOPE to advance the solution each timestep.

Salient features of the differencing schemes used for most of the key
processes are now summarised briefly. For further details, the reader is referred
to the HOPE model manual (Wolff et al. 1997). Specific parameter values used
in this study are given in section 2.2.

Wind forcing (subroutine O0CWIND)

The surface windstress (equation (2.21)) produces an accelerating force per
unit mass (cf. the parametrization of vertical viscosity equation (2.15)):

ou 10T
_—=—— 2.26

ot poz (226)
In HOPE wind forcing is applied as a body force in the upper layer:

Ou 1 7
ot pAz’
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Table 2.1: HOPE timestep subroutines

subroutine physics solved

reference terms/equations

OCTHER thermohaline forcing (2.22), (2.23)
internal pressure (2.27)
convective adjustment® —
vertical mixing coefficients (2.18), (2.19)
OCWIND wind forcing (2.26)
0CVISC vertical momentum advection w%%z:
(2.3), (2.4)
vertical viscosity 2 (Ay2e):
(2.3), (2.4), (2.15)
horizontal viscosity AgViup + V. (vaT?Vyuy):
(2.3), (2.4), (2.14)
bottom friction Eu:
(2.3), (2.4), (2.20)
OCBIHAE  biharmonic viscosity By Viuy:
(2.3), (2.4), (2.14)
OCBIHAR  biharmonic viscosity as above
(rotated operator)
OCIADJ7  horizontal momentum advection ’U,M Q(%Z:
2.3), 2.4
OCMODS barotropic/baroclinic partitioning (2.28), (2.29)
OCCLIT baroclinic solution (2.34), (2.35), (2.36), (2.37)
OCRHSZ calculate barotropic system RHS  (2.41)
ZGAUSS solve barotropic solution (2.42)
OCVTRO new barotropic velocities (2.38), (2.39)
OCVTOT new total velocities (2 28) (2.29)
OCADV/ tracer advection gf):
OCADUP (2 6) (2.7)
horizontal diffusion DgV2(0,5) + V.(vpT?V(8, 5)):
(2 6), (2.7), (2.16), (2.17)
OCVERDI  vertical diffusion (DV a("?’)
(2.6), 2.7), (2.16), (2.17)

®Thermohaline forcing of the surface layer may lead to vertically unstable density profiles
and a convective instability. Physically, convection occurs as a sub-grid-scale process (Mar-
shall and Schott 1999). In the HOPE model, a single vertical sweep downwards through
the water column is performed each timestep. If any layer is found to be less dense than
the layer above, then # and S in both are uniformly mixed in proportion to their respective
layer thicknesses:

Azp_10k_1 + Az

0(zk—1) = 6(2x) =

Azp_1 + Az
Azp_1Skp—1 + AzpSy

S(Zk_l) = S(Zk)

Azp_1 + Az,
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Thermohaline forcing (subroutine OCTHER)

As with wind forcing, surface forcing of tracers (equations (2.22), (2.23)) is
applied in the surface layer of the model.

Vertical momentum advection and vertical viscosity (subroutine 0CVISC)

These are solved together in the HOPE model using an implicit centred-in-
space differencing scheme. A tridiagonal system results which is solved by
Gaussian elimination and backsubstitution (Press et al. 1992).

Horizontal viscosity (subroutine 0CVISC)

Harmonic and strain-dependent horizontal viscosity is solved with an explicit
centred-in-space scheme.

Biharmonic horizontal viscosity (subroutines 0CBIHAE, OCBIHAR)

A five-gridpoint-wide stencil is applied in an explicit scheme for biharmonic
viscosity. Two operators are applied sequentially in these two subroutines: the
second rotated horizontally through 45° with respect to the first.

Horizontal momentum advection (subroutine 0CIADJ7)

The HOPE model uses a kinetic energy- and enstrophy-conserving formula-~
tion of horizontal momentum advection — the finite-difference ‘J; Jacobian’
of Arakawa and Lamb (1977). The procedure involves multiple averaging of
volume fluxes to obtain fluxes at each of the eight (scalar and vector) gridpoints
surrounding the central vector gridpoint. The scheme is explicit in time.

Tracer advection (subroutine O0CADUP or OCADV)

HOPE offers the choice of two three-dimensional tracer advection schemes: an
explicit upwind scheme or a centred-in-space predictor-corrector scheme. It
was expected initially that the upwind scheme may perform better in strong
advection regions. A preliminary trial of both in a coarse (1°) model, however,
proved the predictor-corrector much better at preserving watermass properties.
Figure 2.4 compares salinity sections through 150.2°E for the two schemes
three years after initialisation from climatology. Contours of 34.5 psu and
34.72 psu approximately delineate Antarctic Intermediate Water (AAIW) and
Circumpolar Deep Water (CDW) respectively. Thus the predictor-corrector
scheme was used for this study.

3Tf the independent variables in the two-dimensional advection equation for an incom-
pressible fluid are changed from velocity » to vorticity, { = V x u, and streamfunction,
u = k x Vi, then the advective terms become a Jacobian operator in the resultant vorticity
equation:

Ju  Ou o¢
%9 E—J(Cﬂﬁ)-
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Figure 2.4: Comparison of HOPE’s tracer advection schemes for salinity —
sections along 150.2°F after 3 years. (a) Climatology, (b) upwind, (c) predictor-
corrector.
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Horizontal diffusion (subroutine 0CADUP or OCADV)

Horizontal diffusion is a centred-in-space explicit scheme.

Vertical diffusion (subroutine OCVERDI)

As with vertical momentum advection and viscosity, vertical diffusion is solved
with a centred-in-space implicit scheme.

Internal pressure (subroutine OCTHER)

Integrating the hydrostatic relation (2.2) downwards from the sea surface, the
pressure at some depth z may be represented as the sum of two components
— a surface (or ezternal) pressure po, and an internal pressure, p':

pe) =10+ (2) = pogn+ | pla)gd' (2.27)

(In fact, this should include an additional term for the atmospheric pressure,
p, at the sea surface, but atmospheric loading is not included in the HOPE
model.) The internal pressure p’ is calculated from density using the UNESCO
nonlinear equation of state for seawater (Fofonoff and Millard 1983).

Barotropic/baroclinic partitioning (subroutine 0CMODS)

The conventional partitioning of horizontal velocities into barotropic, U =
{U,V}, and baroclinic, v’ = {u',v’}, components is made in HOPE by verti-
cally integrating through the water column:

0
U = / updz (2.28)
-H
U
f = - — 2.2
u Up, H ( 9)

Then substituting this partitioning of velocity (2.28), (2.29) and pressure
(2.27) into the horizontal momentum equations (2.3), (2.4), and using also
the linearized kinematic boundary condition (2.24), prognostic equations are
obtained for the barotropic and baroclinic velocities:

oUu _ 077 1 /0 8p
8V . on 1 O 8p
ou/ op) 1 [° or

o' Op 1 0 Bp ,
—_— — _ —_— e — . 2.
6t+f <8y 7).y )+G (2.33)
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Gv,vy and Gy vy are nonlinear and mixing terms for the barotropic and
baroclinic velocities respectively. Since these terms are solved separately as
described earlier, it only remains to outline HOPE’s method for solving the
homogeneous barotropic and baroclinic momentum equations.

Baroclinic solution (subroutine 0CCLIT)

An implicit differencing scheme is used to solve the baroclinic equations (2.32)
and (2.33):

1 /op™t 1 [° gpnt?
m+l _ m At m+1l _ ~ _ = d 2.34
U U+« [ fv p» < p ") . oz z ( )

m 1 (O™ 1 [° 9p™
+(1~a)At{fv _,0_0(811: "), on dz)}

1 8p/n+1 1 0 8p1n+1
v = ™ 4 At [— wmtt - = ( - dz ) (2.3
f po\ 9y HJ_g 0y (2:35)

, 1 /op™ 1 [0 op™ )}
+(1—-—a)At |—fu™ — — - — dz
( ) {f po(ay H J_g 0y

The centering parameter o determines the degree of ‘implicitness’ in the solu-
tion (a value of one makes the scheme fully implicit, a value of zero is explicit).
Thus it is regarded as a stability parameter. Since the pressure gradients
are needed at the new time-level n + 1, an evolution equation for pressure
is required. This is obtained in HOPE by first making an assumption that
disturbances are small; then density changes may be approximated by

O _ _,9
ot Yoz

Combining this with the time derivative of the hydrostatic equation (2.2), the
following evolution equation is obtained for internal pressure:

>’y 6,0
o927V oz
This is also discretised implicitly in time with another stability parameter £:

a 7\ n+1 a !
TR T

To complete HOPE’s formulation of the baroclinic system, an equation for
w at the new time level is required. This is obtained in HOPE by vertically
integrating the continuity equation (2.8) for the baroclinic velocities:

/ Viu"dz. (2.37)

While this is approximate, the contribution to w from the divergence of the
barotropic velocities is expected to be small after initial geostrophic adjust-
ment.

To solve this implicit system, HOPE uses an iterative technique. The
following steps are repeated until a convergence criterion is satisfied:
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1. 4™t is estimated by solving jointly equations (2.34) and (2.35) (taking
p™+1 = p'™ for the first iteration)

2. w™t! is estimated from (2.37) using the new estimate of u™*!
3. p™*1 is estimated by integrating up equation (2.36) using the new esti-
mate of w™?

A maximum limit of 10 iterations is enforced; typically seven were needed. If
the limit was reached it was indicative of other problems with the model setup.
The baroclinic system accounted for approximately half the CPU time at each
time step.

Barotropic solution (subroutines 0CRHSZ, ZGAUSS, OCVTRO)

Like the baroclinic system, an implicit differencing scheme is used to solve the
barotropic equations (2.30) and (2.31):

n+1 0 s n+1
O A o P
PoJ-g 0T
on™ 1 [° op'™
1—a)At | fVP—gH— — — -
n+1 0 rn+1
Vol = V4 aAt [—fU"“— gH% —% H‘Z—Z dz] (2.39)
ann 1 0 ap/n ]
—|—1—aAt{— U —gH— — — — dz
( ) f Y o0 w oy

The stability parameter « is identical to that used in the baroclinic system.
The internal pressure at the new time level, p™1t1, is available as it has already
been calculated in the baroclinic system. To complete the barotropic system,
an equation for sea-level n at the new time level n + 1 is needed. This comes
from the linearized kinematic boundary condition (2.24) and the definition of
the barotropic velocities (2.28):

on

— =—V,.U.

Bt h
This is discretised implicitly with the same stability parameter 8 used for the
pressure term in the baroclinic system (2.36):

il m ou™tt gy ntl ou™ 8V”)
=y ﬂAt(am + 3 ) (1 ﬂ)At(ax + o ) (2.40)
Thus, the prognostic variables in the barotropic system are the barotropic
velocities and sea-level. Since these are two-dimensional (rather than three-
dimensional like the prognostic quantities in the baroclinic system), it becomes
computationally feasible to solve the system directly rather than with an it-
erative method. To do this, the barotropic velocities at the new time-level
{Untt Y1l are first eliminated from the system equations (2.38), (2.39) and
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Figure 2.5: Finite-difference stencil used for the barotropic system.

(2.40). This results in an implicit elliptic equation for ™! which can be

written symbolically as:
4 =7, (2.41)

where

Fn+1 = Fn+1(”7wwa Ty nyy)

" = T™n,Us, Uy, Va, Vi Moz Neys Tyys Do Doy Pyy)-

The subscripts represent spatial derivatives. The sea-level in I'"*! is defined
at the new time level, while the quantities in I'* (with the exception of the
already calculated internal pressure p') are defined at the old time level n.
Thus, taking the set of sea-level points together, the sea-level equation (2.41)
may be written in matrix form:

Ap"tt =", (2.42)

In HOPE the system matrix A is pre-calculated, triangularised and
stored. The stencil of gridpoints shown in Figure 2.5 is used to calculate
centred second-order differences in the system matrix. For each element of
Q’”‘l, only the eight adjacent surrounding sea-level gridpoints contribute non-
zero coefficients in A. A systematic' ordering of sea-level gridpoints within
n™*! along one of the horizontal grid directions will produce a fixed-width
band in the matrix, symmetric about the diagonal, beyond which all elements
are zero. In HOPE, only this diagonal band of entries is stored to reduce the
computer memory burden. (The triangularisation, with pivots, requires the
same storage.)

The steps used by HOPE to solve the barotropic system each timestep
may be summarised as follows:

1. calculation of the right-hand-side of the matrix equation (2.42) (subrou-
tine OCRHSZ)

2. direct solution of (2.42) for the new sea-level "' using backsubstitution
(subroutine ZGAUSS)
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3. calculation of the new barotropic velocities using equations (2.38) and
(2.39)

The combination of the linearized kinematic boundary condition (2.24)
and the implicit formulation of the barotropic system enables HOPE to use
a barotropic timestep considerably longer than the Courant-Friedrichs-Lewy
(CFL) stability criterion would otherwise allow. Indeed there is no separate
timestep for the barotropic system; all model physics is solved each time step.
This is in contrast, for instance, with both the free-surface Princeton Ocean
Model (Blumberg and Mellor 1987) and the explicit free-surface adaptation of
Killworth et al. (1991) for the GFDL model where the barotropic system is
stepped with many small time increments for each timestep of the complete
system. (Dukowicz and Smith (1994) have recently developed an implicit free-
surface modification for the GFDL model.) The penalty for this time-stepping
advantage is a less accurate representation of shallow-water gravity waves.
Distorting their dispersion properties is not expected to cause problems. Rigid
lid models, for instance, filter out completely these fast motions. The more
relevant barotropic Rossby waves have timescales considerably longer than the
model timestep and will not significantly be affected.

New total velocities (subroutine 0CVTOT)

After the new barotropic and baroclinic velocities have been calculated, they
are combined to produce new total horizontal velocities:

1
up, =u' + EU' (2.43)

2.2 Southern Ocean model configuration

The configuration of the HOPE model for the limited-area Southern Ocean
domain used in this study is now described.

2.2.1 Bathymetry and grid geometry

The model bathymetry is taken from the ETOPOS5 data set (NGDC 1988). It
is shown in Figure 2.6 with the major topographic features labelled. Depths
greater than 6500m are clipped in HOPE; this occurs along the Kermadec
Trench northeast of New Zealand. There is no particular reason for this clip-
ping, but it was already built into the version of code the author used. The
model domain extends meridionally from 30°S to 70°S and zonally from 110°E
to 190°E. This domain was chosen to include eddy-rich locations over the
Southeast Indian Ridge and south of the Campbell Plateau. The location
of the northern boundary permitted the East Australia Current to enter the
domain. All boundaries are open except for the southern boundary where
an artificial wall has been extended eastwards from the Antarctic continental
landmass, closing off the westernmost part of the entrance to the Ross Sea.
The impact on the model of this artificial wall is unlikely to be any worse than
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Table 2.2: Model grid geometry

grid parameter value(s)
zonal gridpoints 133
zonal resolution 0.6°(per subgrid)

meridional gridpoints 100

meridional resolution 0.4°(per subgrid)

number of layers 20

layer thicknesses 20.7 (20.7), 23.3 (44), 26.5 (70.5), 31 (101.5),

(bottom depths), m  37.3 (138.8), 46.7 (185.5), 61.6 (247.1), 85.9 (333),
277 (610), 375 (985), 416 (1401), 434 (1835),
444 (2279), 451 (2730), 455 (3185), 459 (3644),
461 (4105), 463 (4568), 465 (5033), 466 (5499)

Table 2.3: Model surface forcing fields

field dataset/reference
monthly surface windstress, 7(¢) Hellerman and Rosenstein (1983)
annual mean surface salinity, S, Olbers et al. (1992)

monthly mean sea-surface temperature, 6,(t) Levitus and Boyer (1994)

that due to the uncertainty of tracer and flow fields in the region, which would
be needed to force an open boundary here.

Table 2.2 lists the Southern Ocean model grid parameters. A resolution
of 0.6° in longitude and 0.4° in latitude was used for each (EVEN and ODD)
subgrid. This produces approximately square grid cells at 50°S, 44 km per side,
for an effective resolution (‘d’ in Figure 2.2) of around 31 km. A fully-implicit
discretisation in time (o = 1, 8 = 1) was used throughtout this thesis for both
the baroclinic and barotropic systems in order to allow a long timestep.

The layer thicknesses in the vertical were based on those used in the
FRAM model (The FRAM Group 1991; Webb et al. 1991). The uppermost
eight layers are identical, with each successive pair of the remaining 24 in
FRAM combined into a single layer here, for a total of 20 layers.

2.2.2 Forcing fields
Table 2.3 lists the surface forcing data used in this study.

2.2.3 Model parameters

Table 2.4 lists the model parameters used. Both vertical diffusion and vis-
cosity were constant in the configuration used here — the Richardson-number
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Figure 2.6: Model bathymetry. Solid contours represent 1500 m, 4000 m and

5000 m isobaths.
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Table 2.4: Model parameters

parameter symbol  wvalue
horizontal viscosity: harmonic  Ag 300 m3s!
biharmonic By 0 m*s~!
strain-dependent v4 0.5 m?s
vertical viscosity Ay 1.5 cm?s~!
(constant)
horizontal diffusivity: harmonic Dy 150 m?s~*
strain-dependent vp 0 m?s
vertical diffusivity Dy 0.7 cm?s~!
(constant)
surface relaxation timescale {Xsp}~! 30 days
bottom friction € 1077 st
timestep At 3600 s
implicitness centering parameter « 1
implicitness centering parameter [ 1

dependent parametrizations were not used*. Biharmonic viscosity was not
used either, since it preferentially damps smaller scales (Griffies and Hallberg
2000) and these were not found to cause instabilities here.

The numerical values for mixing parameters were chosen after consider-
ing those used in a number of other models of similar resolution. For compari-
son, the values used in FRAM (this study) were 100(200)m?s~! for horizontal
viscosity, 1(1.5)em?s~* for vertical viscosity, 100(150)m?s™! for horizontal dif-
fusion, and 0.5(0.7)cm?s™! for vertical diffusion.

2.2.4 Model initialisation

Model runs starting from an ocean at rest were initialised with climatolog-
ical values of temperature and salinity taken from the Olbers et al. (1992)
climatology.

2.2.5 Computational aspects

The HOPE model has been written to take advantage of vector processing ar-
chitectures of modern supercomputers. All model runs were performed on the
University of Tasmania’s CRAY SV1 supercomputing facility. Postprocessing
was performed on SUN and SGI desktop servers.

The assimilation runs reported in chapter 5 used around 24 hours of
CPU time per model year and required around 50 MW of core memory. With

4This scheme was devised by Pacanowski and Philander (1981) specifically for the equa-
torial ocean where mixing below the thermocline is stronger than in other areas, despite
small vertical temperature gradients. This thesis was not concerned with tropical mixing.



2.2 Southern Ocean model configuration 55

a limited amount of parallel optimisation, and in a multi-user environment,
one year assimilation runs generally executed in around half a day real time.



CHAPTER 3

Open boundary modifications

In order to resolve the dynamics of interest in the Southern Ocean south of
Australia, an eddy-resolving resolution is preferred. The first baroclinic Rossby
radius ranges from roughly 30 km at 40°S to 10 km at 60°S (Chelton et al.
1998). The chosen resolution (effectively 31 km at 50°S) was a compromise
between this ideal and computational affordability, and is comparable to the
resolution of FRAM (35 km X 27.5 km at 50°S). To achieve this resolution,
the model had to be limited to a regional domain. Extending the grid zonally
around the hemisphere at the same resolution would have more than quadru-
pled computer memory requirements and execution time; even linearly tele-
scoping a hemispheric grid to a resolution of 4° zonally would have doubled the
required resources. However, limiting the model to an open domain required
substantial modifications to the HOPE model as it was designed only for closed
or zonally periodic domains. The purpose of this chapter is to describe the
substantial modifications made to the HOPE model to enable it to be used in
an open boundary configuration.

3.1 Theoretical foundations

“The determination of valid and convenient forms of boundary con-
ditions, particularly at points of outflow, constitutes a major, essen-
tially unresolved, problem in the modeling of many hydrodynamic
systems over regional domains.” (Haidvogel et al. 1980)

“The need to prescribe boundary conditions on open lateral bound-
aries is the Achilles heel of regional models, whether they are for the
ocean, the atmosphere, or coupled.” (Kantha and Clayson 2000)

“Failures are sometimes ascribed to such mysterious causes as ‘non-
linear instability’ (a term which is meaningless for lack of a defini-
tion and sounds very much like the Hic sunt leones label attached
to the unexplored land in middle-age maps). In this paper, I will
try to show that in mixed initial- and boundary-value problems
major problems arise if the boundary conditions are not properly
handled.” (Moretti 1969) '

56
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“If a boundary condition is stable then in most cases it will prob-
ably be accurate enough ...” (Miller and Thorpe 1981)

The above quotes serve to demonstrate that open boundary ocean mod-
elling is certainly not a mature field. Little attention appears to have been
paid to the theoretical foundations of the problem by modelling practitioners.
The reasons for this are clear enough. First, the majority of the theoretical
contributions have been of a rather abstract and obtuse nature. The ocean
modeller, however, requires pragmatic solutions. Second, the link between
theoretical well-posedness proofs on the one hand, and their implications for
specific model implementations on the other, is often difficult to see. For in-
stance, Kreiss and others (Kreiss 1971; Gustafsson et al. 1972; Gottlieb et al.
1982; Trefethen 1983) have developed sophisticated theory for examining the
stability of boundary conditions under specific finite-difference implementa-
tions. The purpose of this section is not to attempt to bridge the gap between
theory and practice, but to indicate the types of considerations that ought
to be borne in mind by the ocean modeller confronting an open boundary
problem. As should be expected, appropriate boundary conditions depend
heavily on the form of the underlying partial differential equations. The dis-
cussion here will focus on theoretical results. Later sections dealing with the
implementation of open boundaries in HOPE, will refer back to this discus-
sion as needed. Useful texts elaborating these ideas in greater detail are those
of Garabedian (1964), Courant and Friedrichs (1976), Sod (1985), Kreiss and
Lorenz (1989) and Gustafsson et al. (1995). In addition, see the paper by
Oliger and Sundstréom (1978). Numerous papers covering both theoretical and
practical issues are collated in the proceedings of a 1981 NASA symposium on
numerical boundary condition procedures (NASA 1981).

3.1.1 Nature of the problem

Any ocean modeller would be aware that a given set of partial differential
equations has, in general, an infinite set of solutions, and that it is only by
constraining the set through suitable boundary conditions (including initial
conditions for time-dependent problems) that a unique solution may be ob-
tained. Thus the proper formulation of such boundary conditions is fundamen-
tally important. The subject becomes particularly relevant when an artificial
computational boundary is imposed in a numerical scheme.

Just as there is considerable flexibility in formulating the finite-difference
procedures in the interior, there is, in principle, great freedom in choosing the
boundary numerics. Consider, for instance, the linearized one-dimensional
shallow water equations:

ou on
o e = O
on  O(Hu)
5t g = O (3.1)

Suppose a finite-difference scheme were used to solve these equations. One



3.1 Theoretical foundations 58

such scheme might use centered differences for the spatial derivatives:

8{HU, 77} ~~ {Hu, 77}1+1 - {HU’; 77}7,—1
Or , 20z '

At the endpoints of the finite-difference grid, however, such a scheme is not
possible. One might instead apply a one-sided difference, e.g.

6{HU’ 77} ~ {HU: n}z+1 - {HU; n}i
Ox , Az

for the left-most boundary. In this manner, one may imagine that no boundary
conditions are needed at all — the equations themselves can be discretised
and solved for v and 7 at the boundaries (albeit using a slightly different
discretisation to the interior). On the other hand, one could just as easily
prescribe values of uw and n at the boundaries. Indeed this could be done
quite arbitrarily, without any reference to the equations. Such “freedom”
exists also in HOPE’s barotropic system (equations (2.38), (2.39) and (2.40)),
where it certainly is possible, for instance, to derive approximations to the
spatial derivatives at the boundaries. It is also possible to devise schemes in
HOPE that enable one (naively) to prescribe boundary values of the prognostic
variables U, V' and 7 independently and arbitrarily at each timestep.

Faced with such (apparent) freedom at artificial boundaries, the obvious
question is: what should one do? Or, more incisively: what do the underlying
equations require one to do? This is a question of mathematics, not engi-
neering, and one would hope the answer would be largely independent of any
specific discretisation, as indeed it will be seen to be. One might use physical
intuition to suggest an answer. Surely one ought to be allowed, for instance,
to prescribe u at the boundaries for the one-dimensional shallow-water model.
Physical intuition, however, is no proof. And intuition becomes progressively
less reliable as complexity grows. On physical grounds, it is difficult to decide
whether one can likewise prescribe both u and 1 at the boundaries. Remark-
ably, such considerations have received scant attention in the literature by
open ocean modellers. Commenting on a similar phenomenon in the field of
compressible fluid dynamics, Moretti (1981) wrote:

“. .. many authors have shown a total lack of constructive curiosity,
in not inquiring whether numerical methods, which should interpret
the physics of a problem, really require more boundary conditions
than the physics itself. The answer to the question, of course,
should be an unqualified No.”

Wang and Halpern (1970) used a coarse mesh hemispheric model to obtain
boundary conditions for a limited-area barotropic model, prescribing all vari-
ables along the boundaries of the fine-mesh model. Small-scale oscillations in
their results are due to overspecification of the boundary conditions (Elvius and
Sundstrom 1973; Camerlengo and O’Brien 1980) and not numerical instabili-
ties as suggested by Shapiro and O’Brien (1970). Wang and Jungclaus (1996)
undertook a study of various open boundary conditions using the Princeton
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Ocean Model (POM) and stated “(f)or the barotropic flow, OBC’s are needed
for three variables”, which they proceeded to implement independently. This
is inappropriate from an appreciation of the relevant theory discussed in the
next section. Blumberg and Kantha (1985) developed a radiating boundary
condition for tidally forced flows. They claimed (without demonstration) that
the boundary condition could be applied to any one of the prognostic variables
U, V, or n and that “(t)hese various formulations are equivalent as long as the
equations are linearized on the open boundaries”. Again, application of the
theory of characteristics described below shows this claim to be false. In a re-
cent paper by Beckers (1999), an incorrect application of boundary conditions
was found to be the real explanation for anomalous stability behaviour of a
finite-difference scheme examined by Deleersnijder and Campin (1993).

Assuming for the moment that one has an answer to the mathematical
question of well-posed boundary conditions for a given set of partial differential
equations, a second issue which arises is the stability of their finite-difference
implementation. Consider, for example, the simple one-dimensional advection
equation:

O0s  Os
ot~ oz’

where ¢ represents velocity. The general solution is a wave travelling with
velocity ¢ in the negative z direction, s(z,t) = f(z + ct). Suppose now the
well-known leap-frog scheme (Press et al. 1992) is used to solve this on a finite-
difference grid:

(3.2)

n+l _ . n-—1 no __ on
5 i £ N '
2At 2Az
. At
n+l __ n—1 n _.n
siT = g +c———Ax(sj+1 851)5

where the superscripts are a time index, and the subscripts a spatial index.
For the left-most boundary, a one-sided difference could be used:

e 2c§—i(s§-’+1 —57),
for j = 0. It turns out, however, that this boundary scheme (with leap-frog
in time) is unstable. Figure 3.1 shows the results of applying this model to
a triangular wave centered initially at £ = 45 and with parameters ¢ = 1,
Az =1, At = 1. The scheme can be stabilised by using forward Euler, instead
of leap-frog, differencing in time for the boundaries:

At
S = o+ en (T — o).
In summary, both mathematical well-posedness, and numerical stability
are required for reasonable boundary conditions. The following two sections
address these issues.
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Figure 3.1: Boundary finite-difference schemes: unstable leap-frog scheme
(left), and the stable forward Euler scheme (right).
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3.1.2 Mathematical well-posedness

As foreshadowed above, the question of mathematical well-posedness for bound-
ary conditions is determined by the partial differential equations themselves.
This is discussed in detail by Oliger and Sundstréom (1978) and Kreiss and
Lorenz (1989), and in a rather difficult theoretical paper by Kreiss (1970).

A distinction must first be made between a pure initial value or Cauchy
problem, and an initial-boundary value problem. Consider again the advection
equation (3.2). If the domain of interest is the real-line £ = (—o0, c0), then
this is a pure initial value (or Cauchy) problem: one is interested in deter-
mining s = s(z,t) for all ¢ > 0 given initial values s(z,0) = so(z). We are
interested in determining what form the initial conditions sq should take to
ensure the problem has a unique, well-behaved solution. If, on the other hand,
the domain is limited to, say, z = [0, 1] then one is interested in determining
the solution subject to the initial conditions and additional boundary condi-
tions s(0,t) = go(%) and s(1,t) = g1(t); the problem is now an initial-boundary
value problem. Again, we wish to discover what form should be taken for the
boundary conditions go and g; to guarantee a well-posed problem.

Well-posed initial and boundary conditions for these respective problems
depend on the nature of the equations. A general second-order system of n
partial differential equations in r space dimensions may be written in matrix

form as:
0s U

LI=

where s = (s1(x,t),...,8.(z, )T, © = (a;l,...,a;r), and the real coefficient
matrices A;, = A,(z,t), B, = B,(x,t), C = C(z,t), and inhomogeneous
forcing function f = f(x,t) may vary in space and time. If the matrices A,;,
B; and C were also dependent on s, the system would be nonlinear — we
consider here only linear systems, which may be obtained from a nonlinear
system by linearizing about a mean state. The above system is sufficiently
general to cover the range of physics (suitably linearized) that are modelled
in HOPE, with the exception of the biharmonic viscous terms (2.14). Note,
however, that these viscous terms were zero in all integrations described in this
thesis (see Table 2.4). If all coefficient matrices are diagonal, then the system
represents n uncoupled scalar partial differential equations.

The general system (3.3) may be classified as parabolic or hyperbolic ac-
cording to the form of the matrices A,, and B;. Criteria for well-posed bound-
ary conditions depend on which of these forms the system takes. For present
purposes, the system will be said to be parabolic if

A;, = diag(pr), pe >0, k=1,...,n
It will be said to be hyperbolic for A;, = 0 if B, is symmetric:
B! = B,.

Thus the one-dimensional shallow-water equations (3.1) are seen to be hyper-
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bolic (after introducing n' = /g/Hn), while the diffusion equation
0s
2 k2 2
5 V<s

is parabolic. These definitions are much stricter than required for the well-
posedness proofs in Kreiss and Lorenz (1989) that will be cited here, but they
are sufficient for this discussion and avoid technical complications arising from
greater generality.

Some key results on well-posedness of various systems of equations will
now be summarised.

Cauchy problems

The Cauchy problems look for solutions of (3.3) subject to initial conditions
s(z,0) = h(z).

If the coefficients, A;,, B,, C, forcing functions, f, and initial conditions, h,
are periodic in each space dimension, then the Cauchy problems for parabolic
and hyperbolic systems are well-posed and have unique solutions (Kreiss and
Lorenz 1989, Theorems 6.1.1, 6.2.2).

Initial-boundary value problems

Consider first the parabolic system, but now restricted to the region 0 < z; <
1, ¢ > 0. As above, periodicity in the other space dimensions is assumed.
Initial conditions are given:

s(z,0) = h(z).

Then the resultant initial-boundary value problem is well-posed under the fol-
lowing general inhomogeneous boundary conditions (Kreiss and Lorenz 1989,
Theorem 8.1.3):

Os
Lp, s(z,, x4, t) + LN’@T(%’ T, t) = g,(z,t), 2, =0,1, (3.4)
1
where x, has been used to represent (z,,...,z,) and the coefficient vectors,

Lp, = Lp,(x,t), and Ly, = Ly,(x.,t) may vary in space and time. Some
combination of the variables, s, and their derivatives normal to the boundaries,
0s/0z;, must be specified on the boundaries. The special case

.LDzs == g'[,

represents pure Dirichlet conditions, while pure Neumann conditions are given
by
Os

N’a_ml = G-
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An additional requirement for smooth solutions is that compatibility cond:i-
tions must be satisfied by the initial and boundary data, h, g, and the forcing
function f. For instance, the following relations must hold at initial time:

Lp h(z;,z.) + LN,a—h(xi, z.) = g.(x4,0).
8$1
A sufficient condition is that h,g, and f vanish in some neighbourhood of
(0,z,) and (1,x,) at t = 0.
For the hyperbolic system in the region 0 < z; < 1, the system can be
diagonalised along the dimension z, since by definition B, is symmetric:

P7'B P = A =diag()\y,...,\),

where A, = Aj(x.,t) are the (real) eigenvalues of By. The columns of the
transformation matrix P are the eigenvectors of B;. Transforming also the
independent variables s, one obtains the characteristic variables

§'(z,t) = P"ls = PTs. (3.5)

Thus, the characteristic variables are the original variables transformed by the
eigenvectors of Bj.

To motivate the significance of the characteristic variables, consider a
hyperbolic system in one dimension with no forcing or zeroth order terms:

0s 0s

— —-B—.

ot Oz
Making the transformation s’ = P~'s (with the columns of P the eigenvectors
of B), the equations can be written in diagonal form (or characteristic form):

os’' os’' i

E = A'a—x", A= dlag()\l, ey )\n),
where \; are the eigenvalues of B. Because A is diagonal, the above equation
is an uncoupled system of n partial differential equations:

ds, s,
E = )\z (.’L‘ s t)g
For the total derivatives of the characteristic variables s’, we have:
d , Os, dz0s,
Zd ().t = =T
i ot ' dt oz
.. dz
= Olf—%:—‘ —Ai(z, t).
Thus, s; is constant along the characteristic curve defined by ‘fi—f ==X If X\

is constant, the solution may be written s, = h;(z + A\,t) — a wave travelling in
the negative (positive) z-direction for positive (negative) A;. This is illustrated
in Figure 3.2 for the region z € [0,1]. At each boundary, the characteristic
variables may be described as incoming or outgoing according to their direction
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Figure 3.2: Characteristic curves in one dimension. Positive eigenvalue J;
corresponds to outgoing characteristics at £ = 0 and incoming characteristics
at £ = 1; negative eigenvalue J);, corresponds to outgoing characteristics at
z =1 and incoming characteristics at x = 0.
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of propagation ‘fi—”t‘ = —; relative to the respective boundary. The solution is
determined by prescribing values of all characteristic variables initially and
those that are incoming at each boundary. Now extend the one-dimensional
system by including zeroth-order and forcing terms:

0s ds
— B_
N % +Cs+ f.
Then diagonalising as above, we obtain the system
os' os'
— =A—+P'CPs'+ P!
o P + CPs' + 1,

which can be written as a system of ordinary differential equations

48 _ p-igps’ + P-lf
dt
along each of the characteristic curves dt = —); respectively. Thus, the original
system of partial differential equations is transformed to a simpler system of
ordinary differential equations along the characteristic curves. This property
is exploited in the so-called method of characteristics for solving hyperbolic
systems (Freeman 1951; Garabedian 1964; O’Brien and Reid 1967; Courant
and Friedrichs 1976; Rged and O’Brien 1983).
Having motivated the importance of characteristics, we will now revert
to the general hyperbolic system in r dimensions with zeroth order and forcing
terms:

Z B + Cs+f. (3.6).

Suppose that B; is nonsmgular; then diagonalise it as above and partition the
characteristic variables according to the signs of the eigenvalues:

A=%D ) diag(a_) <0, diag(A,) > 0,
0 A,

I/
s = ( 5= ) :
S+
As for the parabolic system earlier, initial conditions are given:

s(z,0) = h(x).

Assuming as before periodicity and compatibility conditions on initial, bound-
ary and forcing functions, then the hyperbolic initial-boundary value problem
is well-posed under the following inhomogeneous boundary conditions (Kreiss
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and Lorenz 1989, Theorem 8.2.2)%:

s (0,x,,t) = QoS (0,x,,1t) + go(xs, 1),
si(l,z,t) = Qs (1,24 1t) + gi(x4, 1). (3.8)

At each boundary, the incoming characteristic variables are defined in terms
of the outgoing characteristic variables. The problem remains well-posed if
B; is singular due to a single zero eigenvalue (Kreiss and Lorenz 1989, The-
orem 8.2.8). Appropriate boundary conditions for a hyperbolic system must
provide a number of conditions at each boundary exactly equal to the num-
ber of incoming characteristic variables. They must provide values for each of
these variables. Values must not be prescribed for either outgoing characteris-
tic variables, or those corresponding to zero eigenvalues. It must be expected
that physical accuracy of solutions will be compromised by overprescribing
boundary conditions — for example, by applying radiation conditions to all
prognostic variables independently at the boundaries.

For the one-dimensional shallow-water equations (3.1) there are two char-
acteristic variables corresponding to a positive and negative eigenvalue of the
system matrix. One boundary condition only must be applied at a boundary.
The answer to the question posed in section 3.1.1, therefore, is that u and 5
may not both be prescribed independently at an open boundary.

Characteristic variables have been used to construct nonreflecting and
other boundary conditions by Wurtele et al. (1971), Bennet (1976), Hedstrom
(1979), Nordstrém (1995) and Kar and Turco (1995).

An example: the linearized barotropic shallow-water equations

For the sake of definiteness, the above theory is applied here to the example
of the nonlinear two-dimensional barotropic shallow-water equations:

ou ou ou on
5—£+u£+v%—fv+ga—z =0
v ov v on
E—i—u%-{—va—y%—fu—i-gg—y— =0
On  O[(H+mn)ul  O[(H+np] _
T~ = 0, (3.9)

where (u,v) are the horizontal velocity components, 1 is sea-level, and H is
the water-depth. These equations are first linearized by perturbing about a

!The matrices Qo = Qo(z«,t) and Q; = Q1(z«,t) must satisfy an additional technical
“smallness” criterion:

|Qol +1@Q1] < &, (3.7)
where k depends on Bj in general. The spectral-norm of a matrix is defined as
Q| = max{|Qs| : |s] = 1}.

See Appendix A for an example of how this constraint restricts the allowable boundary
conditions.
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mean state constant in space and time:
u(z,y,t) = w+v'(z,y,1)
v(z,y,t) = T+ (z,y,t)
n(z,y,t) = 1+7(zy1).

Substituting in (3.9) and neglecting terms quadratic in the perturbations, the
linearized equations may be written in matrix form as:

U u 0 g U v 0 0 U
%v =—0§0§—v—059§—v
n How/%\yg 0 Hwv)%
0 —-f 0 U —fu
-1 f 0 O v | — fu , (3.10)
o n u.V,H

where primes have been dropped for convenience, @ = (%,v), and V,, is the
horizontal gradient operator. The mean sea-level, 77, has been taken to be zero.

Finally, in order to symmetrize the hyperbolic parts, we make the substitution
n = +/(H/g)n*. Then (3.10) becomes:

U u 0 ¢ U v 00 U
% v = —| 0w 9 % v -1 0 v ¢ %
\ n* c 0 w n* 0 ¢ v *
0 —f 1lcoH U
5o % JH '(u.ViH) N
—fT
- fu (3.11)
%(ﬁ.vhH)

where ¢ = /gH is the shallow-water gravity-wave speed. Equation (3.11) is
now in the form of equation (3.6) and well-posed boundary conditions may be
formulated. Consider the case of boundaries at z = ¢ and z = b (a < b). To
derive the characteristic variables, we must diagonalise the coefficient matrix

u 0 ¢
B,=—\| 0 %7 0
c 0w

This has the following eigenvalues and eigenvectors:
0

A =-T 1 (3.12)

0
1
M=-TU—c : 0
1
1

)\3 =—-Uu-+c 0 5
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The characteristic variables are (see equation (3.5)):

s = w

! * c
S = u+n =u+ﬁ77
! * c
8 = u—mn :u—ﬁn.

Consider now the left boundary (z = a). The incoming characteristic variables
are those associated with negative eigenvalues (see Figure 3.2). There are two
cases to consider: where the mean flow is into the domain (% > 0), and where
the mean flow is exiting the domain (7 < 0). In the first case, both \; and
Ao will be negative and A3 will be positive (note that we will always have
[z] < ¢ for oceanic flows?). The characteristic variables v and u + * are both
incoming. Two boundary conditions are needed, providing values for these
variables. Referring to equations (3.8), the most general forms for well-posed
boundary conditions are:

- U= dagg (u—1") + 9oy
U+ = oy (U—1") + Gay (3.13)

where g, are arbitrary coefficients and g, allow for prescribed values. Taking
dags = 0 is equivalent to prescribing v independently. Taking g,,, = —1
is equivalent to prescribing u, while g,,, = 1 allows one to prescribe 7* (or,
equivalently, ). Oliger and Sundstrom (1978) point out, however, that the
latter condition is, in fact, ill-posed — the criterion (3.7) is not satisfied. Con-
tinuing the analysis for @ > 0, the right boundary (z = b) will therefore be
an outflow boundary for the mean flow. Well-posed boundary conditions must
provide values for characteristic variables corresponding to positive eigenval-
ues. There is only one of these, A3, so only one boundary condition must be
provided. The most general boundary condition takes the form

u—n*= Py ¥V T Gbs, ) (u+ ) + Gb,- (3.14)

Appropriate choices of the coefficients allows the condition to prescribe either
u or * independently. Either of these choices is demonstrated in Appendix
A to provide well-posed boundary conditions using a technique known as the
energy method. We have considered the case @ > 0. The case © < 0 fol-
lows analogously, with the roles of the two boundaries reversed. Summarising,
the linearized shallow-water equations require two boundary conditions at an
inflow boundary (including one which specifies the tangential velocity compo-
nent), and one condition at an outflow boundary.

Oliger and Sundstrém (1978) considered the boundary condition problem
for several fluid dynamical systems, including the shallow-water equations and
the primitive equations. For the latter, they concluded that no pointwise
well-posed boundary conditions could be constructed. Bennett and Kloeden

2The case |u| > ¢ occurs in gas dynamics where c is the speed of sound and the flow
is then supersonic. It can also occur for baroclinic modes, where c represents the reduced
gravity shallow water gravity wave speed.
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(1978) reached the same conclusion. The problem is due to the fact that in a
hydrostatic baroclinic ocean, the total flow field can be separated into vertical
modes, each of which satisfies the reduced-gravity shallow-water equations. At
a boundary point, for a given mean flow, the flow may be “subcritical” for low-
order modes (i.e. slower than the reduced-gravity shallow-water wave speed)
and “supercritical” for high-order modes. The number of boundary conditions
required for well-posedness depends on the signs.of the eigenvalues of the
system matrix, but these will be different for the two cases (see equations (3.12)
— the sign of A3 depends on whether the flow is subcritical or supercritical).
Unless the system is decomposed into vertical modes and boundary conditions
constructed for each mode, some modes may be overprescribed while others
may be underprescribed. Boundary conditions which are local and pointwise in
the vertical, as implemented in most models, are ill-posed. If such conditions
are successfully implemented in a primitive equation model it can only be
through an incorrect prescription, with some consequent sacrifice either of the
physics or smoothness of the solution at the boundaries. One should not be
surprised by difficulties that arise in attaining stability or reasonable solutions.
This is discussed by Mahadevan and Archer (1998) and Bennett and Chua
(1999).

3.1.3 Numerical stability

Reviewing the previous section, the pure initial value (Cauchy) problem is
well-posed for both parabolic and hyperbolic systems. For initial-boundary
value problems, parabolic systems are well-posed under Neumann or Dirichlet
boundary conditions while hyperbolic systems are well-posed with boundary
conditions that prescribe values for incoming characteristic variables at the
boundaries. The one-dimensional advection equation (3.2) is a hyperbolic
equation already in characteristic form. The variable s is incoming at the
right boundary and outgoing at the left boundary. Thus s must be prescribed
at the right boundary, but not at the left. The numerical scheme used at the
left boundary must be a simple discretisation of the advection equation. As
shown in Figure 3.1, however, not all discretisations are numerically stable.

Numerical stability of finite-difference boundary conditions for hyperbolic
systems has been examined by Kreiss and collaborators (Kreiss 1971; Gustafs-
son et al. 1972) and some sophisticated theory (now known as the “GKS”
theory, after the authors of the 1972 paper) has been developed. Varah (1971)
extended the theory to parabolic systems. A detailed presentation of this
theory will not be provided here, but rather a descriptive summary of its gen-
eral approach and interpretation is given, as well as some results. The theory
parallels for the discrete case the normal mode analysis developed by Kreiss
(1970) for proving well-posedness of boundary conditions in the continuous
case. (Note that this is very different from, and should not be confused with,
the normal mode decomposition of vertical structure that can be done in hydro-
static models.) In practice, the stability of finite-difference implementations
of boundary conditions is easy to verify experimentally — failures tend to be
explosive.
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Typically, a finite-difference method for integrating an initial-boundary
value problem consists of a numerical scheme for the interior and one for the
boundaries. Implicit in the development of the GKS stability theory is the
assumption that the interior difference scheme is stable for the Cauchy prob-
lem. This question may be examined with the classical von Neumann stability
analysis for finite-difference schemes (Forsythe and Wasow 1960; Press et al.
1992). In practice, any useful interior scheme will be Cauchy-stable.

To determine the stability of the initial-boundary value problem, the
GKS approach seeks to decide whether the combined (interior and bound-
ary) difference scheme admits any eigensolutions that grow in time. By this
method Gustafsson et al. (1972) show, for instance, that any finite-difference
extrapolation procedure for estimating boundary values from interior values is
unstable with a leap-frog in time scheme used for the interior. Further exam-
ples of the application of the GKS theory to examine finite-difference boundary
condition stability may be found in Gustafsson and Kreiss (1979), Abarbanel
and Murman (1981) and Higdon (1994).

The theory as formulated by Gustafsson et al. (1972) is rather technical
and difficult to apply. Trefethen (1983) offered a physical interpretation of
the theory which facilitates intuitive application. He demonstrated that the
stability criterion could be interpreted in terms of group velocity: if the inte-
rior and boundary finite-difference schemes support a set of waves with group
velocities entering the domain, then the scheme is unstable. This easier inter-
pretation was used to generalize certain known stability results. The example
illustrated in Figure 3.1 was included. Durran et al. (1993) developed nonre-
flecting boundary conditions and used Trefethen’s group velocity interpreta-
tion to suggest that their scheme was stable since it required outward-directed
group velocities.

Having discussed some theoretical issues relating to open boundary con-
ditions, some specific conditions that have been applied in the literature will
now be reviewed before discussing the implementation of open boundaries in
the HOPE model.

3.2 Radiation conditions

A commonly used family of open boundary conditions are the so-called “ra-
diation conditions”. As discussed later, trials of these were applied to various
components of HOPE. Radiation conditions are motivated by the desire for
an artificial boundary to be nonreflecting to wave phenomena generated in the
interior. The starting point for their development was Sommerfeld’s classical
condition (Sommerfeld 1949) for solutions to the wave equation

-

2 = V*¢. (3.15)

Assuming harmonic solutions ¢ = k(z)e™* then
¢

Er
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and the elliptic equation V2¢ + w?¢p = 0 results. The Sommerfeld radiation
condition states that the solution to this elliptic equation must satisfy

lim \% — we

=00

=0, r=|z|
In one dimension this gives the relation

lim
T—00

Oor Ot

The boundary condition at infinity can be shown to correspond to an outwards
flux of energy (Courant and Hilbert 1962).

Israeli and Orszag (1981) motivated the condition on a finite domain as
follows. Consider the solution to the one-dimensional wave equation (3.15)

é(z,t) = F(z —t) + G(z + 1),

consisting of a right-propagating wave, F', and a left-propagating wave, G. For
outwards radiation we require no incoming waves at |z| > X > 0, so we must
have

G = 0, z>X, (3.16)
F =0, z<-X.
Then the condition 96 o4
—+ -1 =0 A7
ot Oz (317)

ensures no incoming waves at £ = +=X. The condition (3.17) is regarded as an
approximation to the required condition (3.16) on a finite domain. For a wave
with phase velocity c, it may be written

o9 09

5 + Cor = 0. (3.18)
A radiation condition for the barotropic system with ¢ = +/gH is also called
a gravity-wave radiation condition (Chapman 1985; Rged and Cooper 1986;
Palma and Matano 1998).

Israeli and Orszag (1981) considered other alternative approximate radi-
ation conditions, including viscous sponge layers and damping, as methods to
prevent reflected waves from finite boundaries.

Engquist and Majda (1977) considered a hierarchy of higher-order ap-
proximations to prevent reflections in two dimensions, taking account of non-
normal incidence at the boundary. The first order approximation for an z
boundary was precisely (3.17). The second-order approximation, for example,
was

0%¢  0%°¢ 10%¢
ozot o2 20%|,._,

The normal-mode analysis of Kreiss (1970) was used to verify well-posedness
of their conditions for the two-dimensional wave equation.

=0.
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Bennet (1976) attempted to construct radiation conditions for dispersive
waves, but ultimately concluded “(i)f the wave fields are dispersive then the
outgoing radiation conditions are too complex to implement numerically.”

More recently Higdon (1994) had greater success for dispersive waves by
using a product of multiple nondispersive conditions:

i(3-2))o

=1

Well-posedness of the above condition was established with Kreiss’ (1970) nor-
mal mode analysis. The GKS theory (Gustafsson et al. 1972) was used to show
stability for a finite-difference implementation of the condition.

Perhaps the most widely used implementations of the radiation condition
(3.18) derive from Orlanski’s (1976) approximation. He took the approach
first of estimating, at each timestep, the phase velocity c using points near the
boundaries in space and time:

., - (09/81)
cr :FW, (3.19)

where the upper sign is for a right-boundary, and the lower is for a left-
boundary. This estimate of the phase velocity was then used conventionally in
radiation conditions (3.18) at the respective boundaties. In the estimate for
¢, the spatial derivative, (0¢/0z) is calculated using one-sided differencing at
each boundary. In order to satisfy the CFL stability criterion, ¢ was restricted
to the range 0 < ¢ < Az/At where Az is the grid spacing and At the model
timestep. Since ¢ = ¢(¢), the condition is seen to be nonlinear. Orlanski
applied the condition to a collapsing density perturbation in a stratified fluid
and obtained good results. Orlanski’s discretisation of (3.19) used a leap-frog
in time scheme.

A simple variation of Orlanski’s method was developed by Camerlengo
and O’Brien (1980). These authors distinguished between an “inflow” phase
speed (¢ < 0) and an “outflow” phase speed (¢ > 0) calculated as normal with
(3.19). ¢ was then set to 0 for inflow and Az /At for outflow before being used
in the radiation condition (3.18). This is equivalent to no change for inflow,
i.e. gt = ¢7, and pure extrapolation for outflow, i.e. ¢p™ = ¢, ;, where
the subscripts b and b + 1 represent a boundary, and next interior, gridpoint
respectively, and the superscript = is a time index®. In a two-layer model, this
simplified condition produced no reflection for a Kelvin wave simulation, but
slight reflection for a Rossby wave.

Miller and Thorpe (1981) replaced Orlanski’s leap-frog-in-time scheme
with one more suited to forward Euler differencing. Their discretisation of the
¢ estimator (3.19) was

n _ 4n—1

_ b+l b+1

= T g’ (3.20)
b+2 T Pb+1

8Camerlengo and O’Brien’s discretisations were slightly different as they used a leap-frog
in time differencing scheme.
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where the subscript b + 1 represents the gridpoint one in from the boundary,
and b + 2 the gridpoint two in from the boundary. The radiation condition
(3.18) is written
?‘H_#f —c §+1—¢§,’
At Az

or
;}H = 7"‘1517:4(1 + (1 - 7") b

where r = ¢At/Az and 0 < r < 1. The authors also speculated on improve-
ments to (3.20) including, for instance, the following implicit version

<bn—i—l__ 7
_ b+l b+1

¢?+2 - ¢},1+1 .

Numerous other variations on the discretisations of both the estima-
tor (3.19) and the radiation condition (3.18) were investigated by Tang and
Grimshaw (1996). Their most successful version can be derived essentially by
averaging over the boundary and next interior gridpoint for (0¢/0t) and over
two time levels for (0¢/0x) in both the estimator and the condition, leading
to the final (implicit) condition

1 1
gt = gy + s(dh — Db,

where
¢’n, _ A4n—1
_ P b2
- n-1 _4n "
b+1 b+2

The choice of discretisation of Orlanski’s condition, (3.19), depends to a
large extent on the model being used and the problem under consideration.
Roed and Cooper (1986) stressed the importance of constructing the boundary
condition according to the problem. Tang and Grimshaw (1996) found that
an implicit implementation worked best in their model for coastally trapped
waves. As will be seen in section 3.4, an implicit implementation is not possible
for the barotropic system in the HOPE model. The literature presents no
unambiguously clear “winner”; indeed there is a lack of a theoretical treatment
of different discretisations examining reflection properties, for instance, in the
same way that Arakawa (1977) examined dispersion properties of various finite-
difference grids. Such a treatment would do much to unify the various ad-hoc
results reported for different numerical implementations.

3.3 Other conditions

While radiation conditions (and their variations) are perhaps the most com-
mon open boundary condition applied to limited-area models, there are others
which feature in the literature. Two rather unsophisticated approaches are the
clamped condition, where

%) ¢

at|,
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and the gradient condition, where

9¢

b

Based on the theory of characteristics, Hedstrom (1979) introduced a
nonreflecting condition which leaves the incoming characteristic variables un-

changed at the boundary:
0s

E b -
where s are the incoming characteristics at the boundary b. This forms the
basis of the Flather condition ultimately adopted for the barotropic mode

in this thesis (section 3.5.4). Rged and Cooper (1987) modified this for the
shallow-water equations to obtain the following conditions*:

0,

ou c 0

5 = JvFgg uten)
ov 20N

ot fu=c Oy

on  Ov 10

5 = —@—55(’“1@7),

where the upper sign is for the right-hand boundary and the lower is for the
left boundary. This condition was also used by Jensen (1998) and Palma and
Matano (1998).

Several authors (Chapman 1985; Rged and Cooper 1986; Rged and
Cooper 1987; Jensen 1998; Palma and Matano 1998; Palma and Matano 2000)
have undertaken evaluation studies of several open boundary conditions for
specific test problems. These papers may serve as reviews of most of the com-
monly used approaches.

3.4 HOPE modifications: introductory remarks

To the extent possible, this thesis attempts to provide an objective catalogue
of results, but it should be emphasized that this is an inaccurate portrayal
of the research experience. In fact, a complete solution has not been found,
insofar as the complex interactions between boundary conditions for the re-
spective subsystems of HOPE have not fully been characterised. The work
was often difficult, with unexpected and frustrating results the norm rather
than the exception. Usually, when studying an unstable system, one has some
theoretical guidance. However, we have seen already that open boundary con-
ditions for a primitive equation model are ill-posed. The absence of a suitable
theoretical framework to guide a rigorous investigation left trial-and-error and
ad-hoc approaches the most scientific of methods available. The size of the ‘pa-
rameter space’ meant that not all combinations of boundary conditions could

4This condition is reviewed in Appendix B together with a discussion of why it appears
to be an invalid extension of Hedstrom’s (1979) method and the theory of characteristics.



3.4 HOPE modifications: introductory remarks 75

Table 3.1: “Canonical” boundary conditions for the limited-area Southern
Ocean assimilation model.

boundary barotropic system baroclinic system tracers
west Flather (nothing needed) upstream advection/relaxation
east Flather Orlanski upstream advection/relaxation
north Flather zero-gradient upstream advection/relaxation

systematically be evaluated; numerous possibilities are available for each of
the physical subsystems (and each of the boundaries) and these interact in
complex ways. It soon became apparent that an almost infinite succession of
variations suggest themselves, each with the promise of fixing some problem
or other, but each introducing further complications and confounding an al-
ready cloudy picture. Ultimately, the fruit of this labour is a set of boundary
conditions that remain stable and reproduce gross aspects of known flow fields.

For reference, the “canonical” set of boundary conditions eventually de-
rived are summarised here in Table 3.1. The following sections of this chapter
discuss, in turn, the respective physical subsystems of HOPE — the barotropic,
baroclinic, and tracer equations — and variations, for each of these subsys-
tems, on the canonical set. This set eventually will be seen to provide the
best overall performance. Of necessity, this thesis cannot describe all of the
variations examined. A set illustrating salient points in the development of
the canonical conditions is included. A number of early experiments using a
zonally connected domain with artificial interpolated topography are not re-
ported here. The results, even using heavy tracer relaxation in the interpola-
tion region, were unrealistic. In addition, numerous additional open boundary
experiments for the baroclinic system were performed, but not reported here.
These included, for instance, different discretisations of the Orlanski radiation
condition. In evaluating the performance of an experiment, both quantitative
and qualitative criteria were used. Graphical software was developed to en-
able the full set of model fields to be examined interactively. Due to space
limitations, however, model fields presented here have been restricted to a few
illustrative cases (mostly sea-level, surface currents, and stream-function).

In a data assimilation study, one should really evaluate open boundary
conditions in the context of assimilation. Modifying model fields may excite
internal inertia-gravity waves, for instance, and the performance of the bound-
ary conditions may be different to a free-running model scenario. However,
it would be far too large a project to jointly examine both assimilation and
boundary condition performance under a suite of different boundary condi-
tions. The approach adopted here was first to derive a set of boundary condi-
tions that performed reasonably in a free-running model, and then simply to
use these in the assimilation study.

Apart from the model physics, other incidental changes are needed to
adapt the model to open domains. These include, for instance, the input
of data fields: topography, wind and surface climatological forcing, etc. Es-
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sentially, any of the numerous parts of the HOPE code where periodicity is
enforced (via subroutines PERIOxx) needs to be modified. These are not de-
scribed here for the incidental changes. So long as sensible and self-consistent
solutions are devised (e.g. ensuring that no oceanic boundary velocity points
are adjacent to land), then problems that occur are due to physics and not
model configuration.

Although open boundary conditions for the primitive equations are nec-
essarily ill-posed due to the hydrostatic assumption, the approach taken here
attempts, at least, to obtain solutions which appear “reasonable” and which
remain stable over timescales of interest — typically up to several years for
assimilation. The approach is guided by well-posedness considerations for var-
ious components of the overall system, as discussed further below.

3.5 The barotropic system

The barotropic system in HOPE (section 2.1.3, page 49) proved to be the
most difficult component of the split system to modify for open-boundary
integration. There are several reasons for this difficulty.

First, since sea-level is a prognostic variable in HOPE, and since the
model is volume conserving, the mean sea-level is susceptible to net imbal-
ances in volume transport across the open boundaries. For the regional South-
ern Ocean domain used in this study, a net imbalance of just 0.7 Sv (i.e. just
one half percent of the ACC flow entering the domain) leads to a change in
mean sea-level of one metre per year. This may not be important in process
studies, but is completely unsatisfactory for altimetry assimilation. The prob-
lem of mass conservation for the domain limits the usefulness of unconstrained
radiation conditions, for example, as described further below.

A second difficulty lies in the decoupling of the barotropic solutions on
the two (EVEN and ODD) subgrids in HOPE’s implementation of the Arakawa
E-grid, as described earlier. Severe (yet stable) grid-point differences are prone
to occur between the two subgrids under open boundary conditions unless the
boundary condition itself strongly couples the degenerate systems. In the
formulations found to be successful here, such coupling generally relied on
averaging between the subgrids along each of the open boundaries.

The third, and most subtle and tedious, of the difficulties results from
the implicit numerics used to solve the barotropic system in HOPE. The most
obvious limitation this imposes is the requirement for any open boundary con-
dition to be linear and constant-in-time with respect to the prognostic vari-
ables. This arises because the (linear) implicit system is solved directly by
backsubstitution, as described earlier. The system matrix is calculated and
triangularised once at the beginning of an integration. It would be far too
expensive, computationally, to recalculate this matrix every timestep. Thus,
open boundary modifications to HOPE’s barotropic system are constrained to
be of the form:

U;,H-l Eu(Un+1, Vn+1, nn+1) + gU(Un, Vn, ,r’n) + f‘g'*‘l (3.21)
VP = Ly (UM VML) 4 Gy (U VL) + R (3.22)
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it = L, (UL VL) 4 G (U, VR ) + FRT, (3.23)

where U and V are zonal and meridional components of depth-integrated veloc-
ity, respectively, and 7 is sea-level. The subscript b indicates a boundary, and
the {£} must be linear and constant-in-time, but the {G} may be nonlinear
and time-varying in general. The forcing functions {F} provide for prescribed
boundary conditions. The {L£} contribute terms to the system matrix A, while
{G} and {F} contribute to the right-hand-side I'*, in equation (2.42). This
limitation prevents the consideration, for example, of implicit formulations of
Orlanski’s classical radiation condition, as considered by Chapman (1985) and
Tang and Grimshaw (1996). The tedium of the limitation stems from the
fact that the implementation of any new boundary condition requires signif-
icant modifications to the model code for the barotropic system. In a solver
with numerics that are explicit in time, all that is required is to overwrite
the boundary values of prognostic variables with those calculated according
to the desired boundary condition. In HOPE, however, each new boundary
condition to be trialled requires a reformulation of the system matrix for grid
points on and adjacent to the boundaries, as well as modifications to the code
for calculating new velocities {U™+!, V"*+1} from the updated sea-level n™+
(equations (2.38, 2.38)). Further, a boundary condition on velocity, for exam-
ple, requires often lengthy algebra to determine its influence on sea-level in
HOPE’s E-grid for incorporation into the system matrix (and subject to the
coupling requirement between subgrids mentioned above — see Appendices C
and D). Consequently, debugging and verification of implementations was an
additional time-consuming and laborious process.

In addition to the requirements already discussed to be satisfied by a
suitable open boundary implementation in HOPE (volume conservation, mini-
mal grid-separation, linearity and time-invariance), it is desirable in the case of
altimetry assimilation for the boundary condition to be non-reflective to waves
generated in the domain interior. For the barotropic system in HOPE, this
requires the transmission of shallow-water gravity waves. Unless the sequen-
tial assimilation system is re-initialised at each analysis time with balanced
barotropic fields, surface gravity waves will be generated. While geostrophic
initialisation is straightforward, even slight imbalances will excite such modes.
Reflection at the open boundaries will lead to unwanted noise primarily in
the sea-level field. Barotropic Rossby waves, which are also admitted by the
system, are dispersive and more difficult to handle with an open boundary
condition under the above constraints.

In the recent review by Griffies et al. (2000) of ocean modelling, five mod-
els other than HOPE are listed as including implicit free surface formulations
of the barotropic system: the CANDIE, MIT, MOM, OPA, and POP models.
The manuals for CANDIE (Wright et al. 2000) and OPA (OPA 8.1 Ocean
General Circulation Model reference manual 1998), however, describe them
both as using a rigid-lid approximation for the barotropic mode. Both POP
and MOM are derivatives of the GFDL model, and both use the implicit free-
surface modification of Dukowicz and Smith (1994) for the barotropic mode.
In the case of the POP model, open boundaries are not permitted, while in
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the case of MOM, the open boundary option is incompatible with the implicit
free-surface formulation. The only other widely available ocean model with an
implicit free-surface is the MIT model (Marshall et al. 1997b; Marshall et al.
1997a). While this model supports open boundary conditions, the formulation
is fully explicit (equivalent to the £ in equations (3.23) all being zero) (4. Ad-
croft, personal communication (2001)). The present study therefore appears
to be one of the first implementations of implicit open boundary conditions in
an implicit free-surface ocean GCM.

3.5.1 Well-posedness requirements

The formulation of HOPE’s barotropic system was discussed in section 2.1.3
(on page 49). The prognostic equations are reproduced here:

U B Bp
%‘:HU = —gH———/ 8pdz+GV
o _ (W v
ot oz Oy )

After making the substitution = ¢~'n* where ¢ = v/gH is the shallow-water
gravity wave speed, the system may be written in matrix form as

U 0 0 ¢ U 0 00 U
2 V]=-1000 3 V91i-100c¢c 2 |4
ot n* c 00 Oz n* 0 ¢c O Oy n*
0 —f —ﬁ% U piofg—’;:dz
- f —~3F 5 V=1 2/%d |- (329
0 0 0 7 0

This is very similar to the linearized shallow-water equations (3.11) discussed
in section 3.1.2 and analysed using the energy method in Appendix A. Differ-
ences occur only in the zeroth-order and forcing terms, and the mean velocities
about which the equations were linearized (these are zero here). In particular,
the eigenvalues of the system (see equations (3.12)) for boundaries parallel to
either axis are 0, ¢ and —c. Thus one boundary condition is required at each
boundary. Well-posed conditions are guaranteed by prescribing values for the
incoming characteristic variables (Table 3.2). Alternatively, one may attempt
to prescribe either normal velocity (U for eastern and western boundaries, V
for northern and southern boundaries) or sea-level, 7. For the shallow-water
equations, prescribing sea-level at an inflow boundary is ill-posed (Oliger and
Sundstrém 1978). The distinction between inflow and outflow boundaries for
the shallow-water equations depends on the sign of the mean velocity about
which they are linearized. HOPE’s barotropic system does not include momen-
tum advection and therefore need not be linearized, so the distinction between
the two types of boundaries does not exist for the purposes of determining
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Table 3.2: Characteristic variables to be prescribed in HOPE’s barotropic
system to guarantee well-posed boundary conditions.

boundary characteristic variable

West U+cn
East U—-cn
North V—cn
South V+en

well-posed boundary conditions. On the other hand, momentum advection is
performed in another part of HOPE. It might be expected, therefore, that pre-
scribing sea-level may cause problems. While not reproduced here, an attempt
to use the energy method to prove well-posedness for prescribing either normal
velocity or sea-level in HOPE’s barotropic system fails. The use of the energy
method to prove well-posedness of boundary conditions is demonstrated in Ap-
pendix A, where it is applied to the shallow-water equations. The limitations
of the method are also seen there. In cases where the energy method fails, a
considerably more complicated technique, such as the normal mode analysis
of Kreiss (1970), is required. No attempt was made here to apply this theory
to HOPE’s barotropic system.

Several open boundary conditions trialled for HOPE’s barotropic system
are now described. Results presented here are for a coarse resolution version of
the model (one degree per EVEN/ODD subgrid). Since length-scales for the
barotropic system are typically several degrees or more, the conclusions from
these experiments are valid for the higher-resolution model used in the assim-
ilation studies, and coarser resolution facilitated rapid evaluation of boundary
conditions. All model parameters are the same as for the higher-resolution
model (see section 2.2.3). In each case, the boundary condition will be eval-
uated against its ability to give sensible flow patterns while at the same time
conserving mean volume and transmitting surface gravity waves. Significant
separation of the solutions on the two subgrids will also be unacceptable.

For the baroclinic system and tracers, the standard boundary conditions
of Table 3.1 (discussed later) were used.

3.5.2 Boundary conditions on normal velocity

First, boundary conditions applied to normal velocity at an open boundary are
considered. Prescribing normal velocity is well-posed for the linearized shallow-
water equations (see section 3.1.2, Appendix A and Oliger and Sundstrém
(1978)). As required by the theory of characteristics, the evolution of the
tangential component of barotropic velocity on the boundaries is governed by
the relevant momentum equation. The conditions trialled here are listed in
Table 3.3. The technical modifications to the model required to implement
these boundary conditions is described in Appendix C.
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Table 3.3: Boundary conditions applied to normal velocity in HOPE’s
barotropic system. The upper sign is for the western boundary, the lower
for the eastern and northern boundaries.

boundary condition equation
clamped oU, Jot =0
gravity-wave U, /ot = ¢(0U,/0x),c = £\/gH
zero-gradient oU,/0x =0

Clamped condition

For the clamped condition, we require

oUu,
5 O

where the normal velocity U; = U for the eastern and western boundaries,
U, =V for the northern boundary. Equivalently, we have

Up,(t) =Ul,, (3.25)

where U, is a prescribed normal velocity and the subscript b represents a
boundary. We allow U, to slowly vary in time, U, , = U, ,(¢) (where timescales
are much longer than the rapid surface gravity-wave timescales). A range of
variations on this condition are discussed, as they also inform the development
of the boundary condition eventually adopted (the Flather condition, section
3.5.4) for the barotropic system.

There is considerable freedom to choose the prescribed depth-integrated
velocities U;,. A common approximation in oceanography is that of a level
of no motion (Gill 1982, p 216). By referencing geostrophic velocities, with
unknown barotropic component, to such a level, the thermal wind relation
allows absolute velocity profiles to be constructed from density sections. Of
course, no uncertainty has been removed by doing this, but the idea of a depth
of no motion may have some physical, or at least intuitive, appeal. Linear
inverse methods may be used to estimate a level on the boundaries of a closed
domain subject to conservation constraints, e.g. (Sloyan and Rintoul 2000).
Without performing such an inverse study, one simple approximation is to
assume a deep reference level, or one at the seafloor in the extreme case. This
latter approach is often taken for forming initial estimates in inverse problems
(Sloyan and Rintoul 2000; Yaremchuk et al. 2001), and is also used here for
the first trial of the clamped boundary condition. While it is certainly not
volume conserving for the domain, it allows the numerical implementation
of the clamped condition to be tested. Volume conserving modifications are
considered in the following pages.

The prescribed normal barotropic velocities are constructed each timestep
by bottom-referencing the geostrophic flow along each boundary. Setting time
derivatives to zero in the prognostic momentum equations (2.30)—(2.33) and
requiring v = 0 and v = 0 at the seafloor 2 = —H along meridional and
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zonal boundaries respectively, we diagnose the bottom-referenced geostrophic
velocities from:

H 8y’ 1 [ 8y
U = == — = | ——dz
° F oyl fJ Oy
H oy 1 [y
= —= — = | =—dz. 2
Vo Tl 7] o dz (3.26)

The model was run for five years with this boundary condition. Figure 3.3(a)
shows the resulting total volume transport across each boundary. While the
evolution is smooth enough for the first two years, significant problems occur
thereafter. Even in the first two years, however, it is clear that the bottom-
referenced transport does not conserve volume in the domain. With no con-
straint on mass divergence over the domain, significant net volume transports
can develop. There is a net outflow of around 50 Sv after one year, rising to
600 Sv just before three years. Figure 3.3(b) shows the mean sea-level, which
changes as expected, at rates up to 800 m per year.

It is apparent also from Figure 3.3(b) that a divergence in sea-level be-
tween the two subgrids evolves over time. The separation is around four metres
after two years. This is despite the fact that the implementation of the bound-
ary condition (described in Appendix C) enforces the same volume transport
into the respective subgrids along each boundary. The reason for the discrep-
ancy in this case is that the subgrids have a different horizontal surface area,
so that a nonzero net inflow or outflow will lead to a differential change in sea-
level between the grids. As discussed earlier, such a separation between the
subgrids (let alone the absolute change over time) is unacceptable for altimetry
assimilation.

At this point, a brief discussion on presentation of model output in this
thesis is in order. It was mentioned earlier that the staggered E-grid of HOPE
allows a degree of independence between the solutions on the two subgrids.
An extreme example of this has just been mentioned. The grid arrangement
also complicates the graphical display of model fields. While either of the
two (EVEN or ODD) subgrids forms a regular array that is easily rendered,
the combined grids for any particular variable have “holes” (see Figure 2.2).
These may be filled by averaging the four surrounding values. Such a proce-
dure immediately reveals any separation of the solution between the subgrids
(sometimes called “chequerboarding”). Sea-level for the combined grids after
two years in the present example is shown in Figure 3.4(a) while the ODD
grid alone is shown in Figure 3.4(b). Where severe chequerboarding does not
occur, the combined subgrids provide a higher resolution image. Results in
this thesis combine the subgrids unless stated otherwise.

Despite the tremendous loss of water from the domain, the flow struc-
ture appears quite reasonable initially. Figure 3.5 shows the near-surface cur-
rents (layer two, 32 m) after two years. Because the HOPE model has a
free-surface rather than a rigid-lid, it is not possible to define a streamfunction
for the barotropic velocities. Throughout this thesis, however, an approximate
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Figure 3.3: (a) Total bottom-referenced geostrophic transport across each
boundary for the clamped condition on normal velocity. The residual net
transport out of the domain is also shown. (b) Mean sea-level on each subgrid.
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Figure 3.5: Surface currents (32 m depth, layer two) after two years with the
bottom-referenced clamped boundary condition on normal velocity.
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Figure 3.6: Streamfunction (EVEN grid) after two years with the bottom-
referenced clamped boundary condition on normal velocity. Increments of 10
Sv are contoured in black.

streamfunction is defined as follows:
y
Y(z,y) = / Ulz,y')dy',
0

where the boundary y = 0 is taken at the Antarctic continent in the south.
This definition is opposite in sign to that conventionally used, but provides
more useful values of total eastwards mass transport at a particular location
integrated from the Antarctic coast. The circulation is cyclonic around lows
of the streamfunction. Figure 3.6 shows this streamfunction after two years.
Both the surface and (to a lesser degree) depth-integrated currents show clearly
a meandering ACC as well as an East Australia Current.

However, the results at the end of five years are very different and very
unrealistic. Figure 3.7 shows the surface currents and streamfunction. Before
abandoning the bottom-referenced clamped condition, it is salient to document
an example of the complex interaction between open boundary conditions for
the various physical subsystems in HOPE. As described in greater detail later
in section 3.7, the boundary condition for tracers is essentially upstream advec-
tion for outflow and relaxation to climatology for inflow. That is the “canoni-
cal” condition eventually used in the assimilation study, and is the condition
used here. It also includes along-boundary advection. However, in the present
experiment, a completely different result emerges if no along-boundary advec-
tion is performed on the northern boundary. The results after five years for
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Figure 3.7: (a) Surface currents, and (b) streamfunction (EVEN), after five
years for the clamped bottom-referenced condition on normal velocity.
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surface currents and streamfunction are shown in Figure 3.8. Not only has
the run been stabilised, it has provided even better results: the streamfunc-
tion after five years is more realistic than after two years with along-boundary
advection of tracers on the northern boundary (Figure 3.6). If the bottom-
referenced clamped condition were all that was available for the barotropic
system, this scheme may be considered acceptable for the tracers. However
there is no other good reason not to include along-boundary advection (section
3.7), and there are numerous other possibilities for the barotropic system yet
to be examined. The results are included here merely to demonstrate just
how sensitive are the interactions between boundary conditions for the various
physical subsystems of HOPE to rather subtle variations.

A significant problem with this clamped boundary condition is the net
volume loss from the domain. Instead of bottom-referencing geostrophic flow
fields, it is possible to derive alternate normal transport profiles along the
boundaries which do conserve volume. It is best to be guided by knowledge of
the flows in the region. For the Antarctic Circumpolar Current, there is some
observational data on total volume transport. From current measurements in
Drake Passage, Whitworth et al. (1982) reported a transport of around 130
Sv while Nowlin and Klinck (1986) found 134 Sv. More recently, Rintoul
and Bullister (1999) found 160 Sv for the geostrophic transport referenced
to the deepest common depth from a winter repeat of the WOCE SR3 tran-
sect between Tasmania and Antarctica (Yaremchuk et al. 2001). From six
occupations of this repeat section, Rintoul and Sokolov (2001) found a mean
transport of 147 &+ 10 Sv. Combining current meter and hydrographic data in
the Subantarctic Frontal region south of Tasmania, Phillips (2000) estimated
the mean transport of the Subantarctic Front to be 116 + 10 Sv. For the
northern boundary, there is roughly 15 Sv net inflow comprised as follows:

e 5 Sv of inflow representing the Leeuwin Current in a zone roughly 1.5°
wide off the coast of Western Australia (Tomczak and Godfrey 1994;
Reason and Pearce 1996) ’

e 30 Sv of inflow representing the Fast Australia Current (EAC) in a zone
around 1.5° wide off the coast of New South Wales (Ridgway and Godfrey
1994; Ridgway and Godfrey 1997; Chiswell et al. 1997; Tsimplis et al.
1998)

e 20 Sv of northwards return flow for the EAC consisting of 15 Sv in a
zone 2° wide adjacent to the EAC with another 5 Sv in a zone 15° wide
further east (Ridgway and Godfrey 1994; Ridgway and Godfrey 1997;
Chiswell et al. 1997; Tsimplis et al. 1998)

An alternative to point-wise bottom-referencing of the geostrophic profiles is
to enforce realistic integrated volume transports along the boundaries.

There are several ways to do this. One is simply to scale the bottom-
referenced transport profiles along each boundary to obtain a zero net out-
flow. This was implemented here by first calculating, at each timestep, the
bottom-referenced profiles along the boundaries as before. These profiles were
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on the northern boundary.
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Figure 3.9: Bottom-referenced geostrophic boundary transport prior to uni-
formly scaling each timestep to 140 Sv (west), 155 Sv (east) and -15 Sv (north).

then uniformly scaled along their respective lengths to obtain 140 Sv inflow
at the western boundary, 155 Sv outflow at the eastern boundary and 15 Sv
inflow at the northern boundary (corresponding to the transport census noted
above). This procedure can be regarded as a very simple inverse approach
that constructs a pseudo-reference level by conserving mass transport at each
timestep, but not tracer fluxes. A full inverse approach would be considerably
more complex, requiring a solution almost every timestep in order to main-
tain mass balance along the boundaries. This simple approach was earlier
used by Treguier et al. (1999; 2000), who noted that Killworth (1992) had
found an equivalent barotropic mode in FRAM. Gan et al. (1998), Ezer and
Mellor (1997), and Barnier et al. (1998) constructed fixed barotropic profiles
along the two meridional Southern Ocean boundaries (south of Africa, and at
Drake Passage) in their respective Atlantic models. The procedure failed here
after approximately 390 days due to the bottom-referenced transport on the
northern boundary approaching zero. Of course an attempt to scale this up
to 15 Sv inflow results in unbounded scaling coefficients. Figure 3.9 shows the
bottom-referenced geostrophic transport along each of the boundaries prior
to the scaling procedure. This should be compared with the results for the
unscaled case, Figure 3.3(a). The differences on the northern boundary arise
through the influence of the altered boundary velocities on the tracer fields.
It is interesting to note that the unscaled transports have evolved similarly
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over the first year for both the eastern and western boundaries, but the north-
ern boundary is indicating a type of positive feedback between the imposed
transport (-15 Sv) and the tracer fields — the bottom-referenced transport
is tending towards negative values at the end of the experiment. Apart from
the failure after 390 days, the procedure works as expected: mean sea-level
remains at zero to within numerical precision. A second serious problem with
this approach is that the transport profile imposed along the northern bound-
ary changes sign from its bottom-referenced value. For most of the first year,
the bottom-referenced transport across the northern boundary is between 5
and 10 Sv outflow. The scaling procedure described here requires that there
be 15 Sv inflow. This is achieved by multiplying the profile by a negative
coeflicient at each timestep. Figure 3.10 shows both the bottom-referenced
transport profile and its scaled version at 30 days into the run. The initial
profile, while representing a net (7.3 Sv) outflow, nevertheless includes around
8.5 Sv of inflow at the location of the EAC. After scaling of the integrated
transport, this becomes around 17 Sv outflow for the entire section; the EAC
has been forced to flow in the wrong direction.

While still using the simple approach of scaling the boundary transport
profiles to obtain zero net outflow, a better method is to separately scale each
of the two continuous sections of open boundary in the model: the first along
the western and northern boundary up to the coast of Western Australia,
and the second along the eastern and northern boundary up to the east coast
of Australia. This will prevent both the problem of scaling a zero northern
boundary transport up to 15 Sv inflow, and the transformation of the EAC to
a strong northwards current. Thus, a five-year run was performed where the
bottom-referenced normal velocity profiles along both continuous sections of
open boundary were scaled each timestep to 160 Sv (inflow for the west/north
boundary section, outflow for the east/north section). Unlike the previous run
which failed after 390 days, this run remained stable for the duration of the
experiment. The surface and depth-integrated flows at the end of five years
are shown in Figure 3.11. While there is a weak EAC at the surface, there is
no evidence of it at depth; in fact Figure 3.12 shows clearly a northwards flow
at 1618 m depth. As intended, there is no net volume loss or gain from the
domain — mean sea-level remains unchanged over the five years. So, while this
scaling procedure has stabilised the run and achieved no net volume change,
the East Australia Current appears to be poorly represented.

The fourth and final method discussed here for producing the prescribed
normal velocities in the clamped condition is to specify an artificial transport
profile along the northern boundary. Based on observed transports (mentioned
earlier) of the Leeuwin Current, and East Australia Current with its return
flow (Ridgway and Godfrey 1994) an artificial profile was constructed, and is
shown in Figure 3.13. The clamped boundary condition prescribed this pro-
file along the northern boundary, while scaling the bottom-referenced profiles
along the western and eastern boundaries to 140 Sv and 155 Sv respectively.
The bottom-referenced transport across the eastern and western boundaries
prior to scaling each timestep is shown in Figure 3.14. Compared with Figure
3.3 for raw bottom-referenced profiles, the model transports have been signifi-
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inflow), barotropic velocity profiles across the northern boundary after 30 days.
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Figure 3.11: (a) Surface currents, and (b) streamfunction (EVEN), after five
years for barotropic profiles scaled along each of the two open boundary sec-

tions.
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cantly stabilised. This is confirmed by examining surface and depth-integrated
currents after five years, Figure 3.15. It is interesting that while the depth-
integrated EAC extends south along the coast of Australia, its surface signature
separates just south of the northern boundary (around 31°S). A clear Tasman
Front is seen extending across the Tasman Sea and around the northern tip of
New Zealand. This is similar to observations with infrared satellite imagery
(Mulhearn 1987). As required, mean sea-level remains at zero within numeri-
cal precision. Compared with the results for scaling the continuous west/north
and east/north boundary sections (Figures 3.11 and 3.12), the artificial profile
along the northern boundary is clearly superior, since it retains an EAC. The
streamfunction shown in Figure 3.15 is for the combined subgrids, and shows
some separation between the subgrids. Grid separation results from other open
boundary condition trials were typically not much better than this. In fact,
if the boundary condition for the barotropic system is not implemented (as
discussed in Appendix C) by interpolating the transport profile into one sub-
grid from the other at the boundaries, the results are considerably worse. The
separation for sea-level is not as severe (Figure 3.16), which is fortunate since
sea-level consistency is more important than streamfunction for assimilation
of altimetry data.

Finally, the performance of the clamped boundary condition is evaluated
against its ability to transmit disturbances generated in the model interior. A
transient gaussian sea-level disturbance was applied in the middle of the model
domain after a short 10 day spinup from rest. This allowed sufficient time for
initial adjustment to occur. A subsequent 10 day integration was compared
with an identical unperturbed run. Both the potential and kinetic energy of
the disturbance, integrated over the domain, were calculated during the second
ten-day interval. These are defined respectively (Gill 1982) by

PFE = //pgn'2 dz dy

KE = / / %(U’2+V’2) dz dy,

where primes represent time perturbation quantities. A timeseries of these
energies over the second ten day period is shown in Figure 3.17. The to-
tal energy of the perturbation settles to around 30% of its initial value after
ten days. While there is a slight oscillatory exchange between potential and
kinetic energy over the first day or so, the total energy smoothly decreases
over the period. Since the clamped boundary condition exactly conserves vol-
ume in the domain, the asymptotic value of potential energy is determined
by the mean size of the sea-level perturbation (and corresponds to the initial
disturbance having flattened out to a uniform level everywhere). Without per-
forming a full energy analysis, the gradual decrease in total energy is probably
due, at least partly, to the well-known numerical dissipation of fully implicit
time-differencing schemes (Richtmyer and Morton 1967; Wolff et al. 1997). Ev-
idence for numerical dissipation may be garnered by performing an identical
experiment using, instead of a fully implicit discretisation (o = 1, 8 = 1 for

and
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Figure 3.17: Potential (PE), kinetic (KE) and total energies of perturbation
over a ten day period for the clamped boundary condition on normal velocity.
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Figure 3.18: Potential (PE), kinetic (KE) and total energies of perturbation
over a ten day period for the clamped boundary condition with partly implicit
time discretisation.

the barotropic stability parameters, equations (2.38), (2.39), (2.40) in section
2.1.3) a discretisation which is only partly implicit (a = 0.5, § = 0.5). The
results for this experiment are shown in Figure 3.18. A much weaker dissipa-
tion of energy can indeed be seen, as well as more vigorous exchange between
potential and kinetic. Nevertheless, the model again retains around 30% of
the initial perturbation energy. Were the numerical scheme not dissipative
and bottom-friction in the model set to zero, the particularly strong exchange
(with timescales associated with surface gravity-waves) between potential and
kinetic energy seen in the first day might be expected to continue undimin-
ished. In an assimilation model, unless perfectly balanced perturbations are
applied, the retention of 30% of the residual unbalanced energy in each analysis
may contaminate the results.

Summarising the clamped condition on normal velocity, an unchanging
mean sea-level can be assured by prescribing volume transports which sum to
zero (net) across the boundaries. This can be achieved by scaling bottom-
referenced geostrophic velocity profiles along the open boundaries to realistic
transport values. A simulated ACC in the model appears reasonably robust
to the details of this procedure, but a realistic EAC is harder to maintain. An
approach found to be successful was to impose an artificial transport profile
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along the northern boundary based on observed total transport values. The
clamped condition was reflective to surface gravity waves, retaining around
30% of the energy of a disturbance in the fully implicit discretisation of HOPE’s
barotropic system used in this study.

Gravity-wave radiation

The gravity-wave radiation condition is a radiation condition (section 3.2) using
a phase speed fixed at the local surface gravity wave speed, ¢ = /gH. In
principle, it should perform better than the clamped condition at transmitting
disturbances. It is written:

88_[;' = :l:cg—z, western (4) and eastern (—) boundaries

oV ov

= —c— : 2
5 c 3y northern boundary (3.27)

A modified scheme including a temporal relaxation term is also considered
later. Since c is constant in (3.27), this condition satisfies the requirements
(3.21)—(3.23) for implementation in implicit form in HOPE’s barotropic sys-
tem. It can be discretised in time with an ‘implicitness’ parameter -, e.g. for
the western boundary:

Ut —Up U = U + (1= ) (U — OF)

At Az ’
Ut = pUS -+ qUp + s, (3.28)
where
T
p - 1_{_7,’_5
_ 1=
7= 1+qr
s = d=r
14+qr’

and r = cAt/Az.

As described in Appendix C, this was implemented with a procedure that
averaged the volume transport along the boundaries between the subgrids.
This ensured that at each timestep any net volume change in the domain
was the same on each subgrid, in an attempt to minimize sea-level divergence
between the grids. It meant that the implicit prognostic equation for ODD sea-
level on the boundaries depended on a horizontal grid-point stencil larger than
that required in the interior. This is illustrated in Figure 3.19. This extension
of the finite-difference stencil has an impact on computational efficiency of the
model. As mentioned earlier (page 50), the barotropic system matrix is ordered
along one or other of the horizontal grid dimensions. Because of the finite size
of the stencil, the matrix has a finite-width of non-zero elements about the
diagonal, limited by the stencil size. Only this central band of entries is stored.
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Normally, sea—level point C would depend implicitly
only on sea—level points NN, NE, EE, SE and SS.
However, for the implicit gravity—wave radiation
condition, the ‘virtual” velocity point W is averaged
from points N and S on the boundary. Since these latter
depend, via the radiation condition, on points NEE and
SEE, the surrounding sea—level points (NNEE, NEEE,
SEEE, SSEE, NE, SE) are also involved implicitly in the
computation. Points NE and SE were already involved:
the inclusion of points NNEE, NEEE, SEEE and

SSEE is new with this condition.

Figure 3.19: Extension of the sea-level finite-difference stencil at a boundary
for the implicit gravity-wave radiation condition.

By increasing the stencil size, as in this boundary condition, a larger central
band needs to be stored. In fact, the size of the matrix needs to be roughly
doubled for the ordering in a north-south direction used here®. Since the
barotropic system matrix accounts for almost one third the model’s memory
requirements (Wolff et al. 1997, Appendix D) in a standard configuration, this
boundary condition carries a penalty on computational resources.

The energy transmission properties of this boundary condition are first
evaluated with a perturbation experiment, as performed for the clamped bound-
ary condition. A fully implicit discretisation of the radiation condition is used
(v = 1 in the discretisation (3.28)). The potential and kinetic energy of the
perturbation are shown in Figure 3.20 for ten days after the perturbation was
applied. One can immediately see that the transmission of energy from within
the domain has been significantly improved in comparison to the clamped con-
dition (Figure 3.17). At around 7.5 days, the total energy of the perturbation
has reduced to around 2% of its original value. Also, the energy decay is domi-
nated here by kinetic energy: the potential energy associated with a perturbed
sea-level decreases rapidly. Of course, unlike the clamped boundary condition,
the gravity-wave condition is not constrained to conserve mean sea-level.

Next, the general performance of the model under this boundary condi-
tion must be examined. Figure 3.21 shows the volume transports integrated
along each boundary until the model failed at around 38 days. With transports
through the western and eastern boundaries of up to 20000 Sv, the gravity-
wave radiation condition clearly is completely useless in this form!

Varying the implicitness of the gravity-wave condition did not improve its
numerical stability. Indeed a fully explicit scheme (v = 0) produced boundary
transports exceeding 40000 Sv and failed after only eight timesteps.

5This can be appreciated by noticing that the new sea-level points NEEE and SEEE
(Figure 3.19) are one whole column further removed from C than the previous most extreme
point EE. Thus an additional two columns of grid-points are needed (one at the eastern
boundary, one at the west), extending the previous stencil by a factor of two. For an east-
west ordering, a similar increase is required due to the extended stencil at the northern (or
southern) boundary.
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Figure 3.20: Potential (PE), kinetic (KE) and total energies of perturbation
over a ten day period for the implicit gravity-wave radiation boundary condi-
tion.
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In an attempt to stabilise the boundary condition, a relaxation term was
added to the right-hand side, e.g.

oUu ou 1

for the western boundary. Such a scheme was proposed by Blumberg and
Kantha (1985) for tidal modelling in order to prescribe a known tidal flow
while allowing the transmission of transients through the boundaries. The
condition’s performance was also reviewed by Chapman (1985) and Palma
and Matano (1998). An ‘implicitness’ parameter, §, was used for the relaxation
term:

Ut —0p _ U =) + (1= )(Upa — UF)

At Az

The relaxation transport profile Uy was set using the scheme found to
be successful in the clamped condition: an artificial profile for the northern
boundary, and bottom-referenced geostrophic profiles scaled to 140 Sv and 155
Sv total for the western and eastern boundaries respectively.

The relaxation term indeed stabilised the model, allowing runs of five
years for various choices of relaxation timescales, 7, and implicitness parame-
ters, v and 4. As with the un-relaxed scheme described earlier (3.28), explicit
discretisations of the gravity-wave part (y = 0) were found to fail. For in-
stance, even with a relaxation timescale as short as one hour, the scheme
failed after eight timesteps. While the value of the parameter §, controlling
the implicitness of the relaxation part, certainly made a difference to results,
no particular value seemed to provide a best choice. For instance, Figure 3.22
shows the streamfunction after five years for a relaxation timescale of one day,
and both a fully implicit (6 = 1) and fully explicit (§ = 0) discretisation. Both
experiments produce very unrealistic flows. The fully explicit case produces a
cyclonic circulation at the western boundary, while the implicit case produces
an anticyclonic circulation.

Reasonable circulation patterns were not obtained unless a very short
relaxation timescale was used. Even a timescale of six hours produced unsat-
isfactory results (Figure 3.23 for § = 0, v = 0.5). Reducing the relaxation
timescale still further, to one hour, gave acceptable flow patterns, as shown in
Figure 3.24. .

This result was for values of the implicitness parameters § = 0 and
v = 0.5. The flow was marginally better than obtained from a fully implicit
discretisation of the gravity-wave part (y = 1). On the other hand, the varia-
tion in mean sea-level is considerably improved. Figure 3.25 shows the mean
sea-level over five years for the half-implicit discretisation (y = 0.5) and two
fully implicit discretisations (y = 1,§ = 0 and v = 1,5 = 1). Again, there
is no real difference for variations of the relaxation implicitness, 4, but the
parameter -, controlling the implicitness of the gravity-wave part, is impor-
tant. Mean sea-level increases steadily up to 20 m for vy = 1 (fully implicit),
while it oscillates between around -4 m and 8 m for v = 0.5. Although the
implicitness parameters 0 and « affect the results, it is clear that their effect
is less significant than that of the relaxation timescale, 7.

1
+-[Uo—0U; 1~ (1-8)U7 ).
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Figure 3.22: Streamfunction after five years for the gravity-wave condition
with a one-day relaxation timescale; (a) fully explicit (6 = 0), (b) fully implicit
(6 = 1). Contours are at intervals of 100 Sv.
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Figure 3.23: Streamfunction (contour interval 100 Sv) after five years for the
gravity-wave condition with a six hour relaxation timescale and § = 0, v = 0.5.

Figure 3.26 shows the integrated volume transports across each of the
open boundaries for 100 days using a relaxation timescale of one hour and
implicitness parameters v = 0.5, 6 = 0 (the combination providing the best
results). The transports across both the eastern and northern boundaries
oscillate with a regular period of around 13 days and peak-to-peak amplitude
around 100 Sv. They are almost in phase (strongest outflow on the eastern
boundary corresponding to strongest inflow on the northern boundary). The
western boundary oscillates with a range of around 50 Sv but with more than
one timescale apparent. This general pattern continues throughout the five
years with slow drifts being responsible for the net change in sea-level (Figure
3.25). It is rather remarkable that despite changes of 100 Sv every 13 days or
so, the oscillations of boundary transport are essentially balanced, apart from
a much slower drift.

Despite these unrealistic transport oscillations across the boundaries, it
remains to be seen whether the imposition of flow relaxation in the gravity-
wave scheme has reduced its effectiveness at radiating disturbances. The earlier
perturbation experiment (see Figure 3.20) was repeated with the gravity-wave
boundary condition including relaxation (with 7 = 1 hour and implicitness
parameters v = 0.5, § = 0). Figure 3.27 shows the energy evolution over
ten days following the perturbation, integrated over the domain. The total
energy decreases to around 20% of its initial value after 10 days. This is much
worse than the pure gravity-wave condition (without relaxation) where only
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Figure 3.24: (a) Near-surface currents, and (b) streamfunction (EVEN), after
five years for the gravity-wave condition with a one hour relaxation timescale.
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Figure 3.25: Mean sea level for the gravity-wave condition with one hour
relaxation and implicitness parameters (a) y =1, § = 0, (b) v = 0.5, § = 0,
and (c) y=1,6=1.
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Figure 3.27: Energy transmission for a gaussian sea-level disturbance under
the gravity-wave boundary condition with one hour flow relaxation.

2% of the energy was retained. However, it is an improvement on the clamped
condition where 30% of the energy was retained (Figure 3.17).

Chapman (1985) found the gravity-wave-with-flow-relaxation scheme to
provide similar transmission properties to the pure gravity-wave scheme, but
that was likely because of the longer relaxation timescale he used (four hours).
However, consistent with the results here, he found both schemes to pro-
vide better transmission performance than the clamped condition. Palma and
Matano (1998) found only a minor reduction in perturbation energy with an
implicit gravity-wave condition.

To summarise the performance of the gravity-wave condition: a formu-
lation which was at least partly implicit in time was needed in order for it
to work at all. However, results were poor unless extremely strong relaxation
to prescribed boundary flows was also used. With relaxation, this condition
transmits around 80% of the energy of a sea-level disturbance applied to the
interior. While this is not as high as the 98% transmitted by the pure gravity-
wave condition, it is an improvement over the 70% transmitted by the clamped
condition. A curious aspect of the condition’s performance was the existence
of continuous rapid (13 day period) transport oscillations of up to 100 Sv
across the boundaries. Despite the large amplitude of these oscillations, the
respective boundaries maintained a close phase relationship so that oscillations
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of net transport into the domain were considerably smaller. The continuous
form of the condition (3.29) does not admit point-wise harmonic solutions,
so the oscillations in integrated transport across the boundaries presumably
arises through coupling between the boundaries, mediated via the barotropic
system dynamics. In other words, the oscillatory behaviour is simply a solu-
tion of the barotropic system equations under the boundary conditions (3.29).
There is not much more to be said on these oscillations without undertaking
more detailed theoretical and numerical investigations.

Zero-gradient

The zero-gradient condition for normal velocity is:

oU
oz
oV
By

=0, (3.30)
{w,E}

= 0.
N

It may be considered a radiation condition (3.18) with infinite phase velocity
c¢. The condition aims to avoid large boundary gradients. It has been used by
Chapman (1985) and Jensen (1998) amongst others.

In implicit form, the condition is written (for the western boundary):

ng+1 = ’YUIZL;? + (1 - 'Y) 1?+1;

where, as before, v is an implicitness parameter. Having implemented the
implicit gravity-wave radiation condition (3.27), it is straightforward to modify
the model code for the implicit zero-gradient condition. This is achieved by
setting the coefficients p = v, ¢ = 0 and s = (1—+y) in the discretisation (3.28).
Both fully implicit (v = 1) and fully explicit (v = 0) discretisations were
trialled. These gave quite different results, neither of which were satisfactory.
The boundary volume transports for both of these are shown in Figure 3.28.
Both cases produced transports of several thousand Sverdrups, the implicit
case failing after around 55 days and the explicit case after around 740 days.

Despite the poor flow patterns, the condition performed surprisingly well
at transmitting a sea-level disturbance, retaining only 1% of the energy of the
perturbation in both cases. This is a very different result to that obtained
by Chapman (1985), who found a zero-gradient condition even more reflective
than a clamped condition. The reason for this discrepancy is not clear, but
may be related to the fact that the fully implicit discretisation of the barotropic
system used here has significant numerical dissipation. Chapman (1985) used
the model of Beardsley and Haidvogel (1981), with an explicit time discreti-
sation for the barotropic system (Platzman 1972). Clearly the behaviour of
the open boundary condition is not independent of the numerical scheme used
for the model. As mentioned earlier, this study appears to be one of the first
examining open boundary conditions in an implicit model.
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Figure 3.28: Integrated volume transport across open boundaries for (a) im-
plicit and (b) explicit discretisations of the zero-gradient condition on normal
‘velocity.
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Figure 3.29: Behaviour of zero-gradient condition with “relaxation”.

As with the gravity-wave condition, a term can be added to the right-
hand side of (3.30) to drive the solution towards prescribed values, e.g.

(Z—Z = —e(Uy = U) (3.31)
for the western boundary. There are no time derivatives here, and so this is not
formally equivalent to Newtonian relaxation, although the parameter € plays
a similar role to a relaxation timescale. The term is motivated by a desire
to ensure that the boundary transport U remains close to the reference value
Uy, in the context of applying a boundary condition on the normal gradient.
Thus if, for instance, the boundary value of U is lower than the reference
Uy, the condition (3.31) attempts to increase the value of U on the boundary
by ensuring the gradient there is negative. This is illustrated in Figure 3.29.
Although the parameter € in (3.31) appears like a spatial decay scale, it is not
since the relation only holds on the boundary and not in the interior.

The condition (3.31) was discretised implicitly in time and applied to
the model. The reference velocities were again taken to be bottom-referenced
geostrophy scaled to 140 Sv and 155 Sv respectively for the western and eastern
boundaries, and an artifical profile for the northern boundary. A “relaxation”
strength of € = 1/(6Az) was used (around (1/430) km~'). The boundary
transports were indeed stabilised, with the model running for the full five
years of the experiment. The resultant boundary transports for the first 200
days, and the mean sea-level for the full five years, are shown in Figure 3.30.
An oscillation of transport across the northern and eastern boundaries very
similar to the gravity-wave-with-relaxation condition was produced. The sur-
face and depth-integrated flows at the end of five years were very realistic,
except for a noticeable lack of a depth-integrated EAC. This was despite the
use of the artificial profile on the northern boundary, and different to previous
cases where such a profile was used. The net flow into the domain remained
roughly constant and lead to a mean sea-level increase of around 30 m, with
significant separation between subgrids, after five years. The performance in
a perturbation experiment was also very similar to that obtained with the
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gravity-wave condition with flow relaxation (Figure 3.27); around 20% of the
energy was retained after 10 days.

Summarising the performance of the zero-gradient condition on normal
velocity, it was found to fail for the regional Southern Ocean model unless a
pseudo-relaxation to prescribed velocity profiles was used. While the very good
energy transmission properties were reduced by such a procedure, they were
still improved relative to the clamped boundary condition. In many respects,
the overall performance of the zero-gradient condition with pseudo-relaxation
was similar to the gravity-wave condition with relaxation.

3.5.3 Boundary conditions on sea-level

From the analysis in section 3.5.1, it is clear that for well-posed boundary con-
ditions only one condition must be applied at each open boundary in HOPE’s
barotropic system. In the previous section, various boundary conditions ap-
plied to normal velocity were examined. In this section, we consider conditions
applied to sea-level. For the shallow water equations with mean advection, a
boundary condition on sea-level is ill-posed (section 3.5.1 and Oliger and Sund-
strém (1978)). In HOPE’s barotropic subsystem, there is no momentum ad-
vection, but it is not possible to theoretically prove (using the energy method,
at least — see section 3.5.1 and Appendix A) well-posedness for prescribing
sea-level.

For the sake of brevity, a description of the required technical modifi-
cations to HOPE’s barotropic system numerics for a boundary condition on
sea-level is not provided, but the details follow a similar approach to that de-
scribed in Appendix C for a condition on velocity. This should not be taken to
imply the exercise is a trivial extension of the latter case. On the contrary, as
much effort is required to implement an open boundary condition on sea-level
as it is on velocity. The details are omitted here precisely because of their
excessively cumbersome nature.

Clamped condition

As with the clamped condition on normal velocity (page 80) we require in this
case that sea-level remain unchanged on the boundary:

on
o - O
wt) = .

Although, as with the normal velocity case, we allow the prescribed sea-level
1o to vary slowly in time.

There is, again, considerable flexibility in choosing the reference sea-level
profiles along the boundaries. The approach taken first with the normal ve-
locity case was to assume bottom-referenced geostrophy. We use the same
approach here. For zero normal flow at the bottom, the along-boundary gra-
dient of bottom pressure must be balanced by the sea-level gradient:

O _ _op

= eastern and western boundaries
8y 8y z=—H
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oo _ 3_10'

5= e . northern boundary. (3.32)

(This can also be obtained by setting time derivatives and bottom velocity to
zero in the prognostic momentum equations (2.30)—(2.33).) Equations (3.32)
fix the sea-level gradient along each boundary, but undetermined constants
must also be chosen. Sea-level is required to be continuous at each corner,
thus tying together the respective boundaries. In addition, mean sea-level
along the entire open boundary (north, west and east) was chosen to be zero.
In this manner the reference sea-level 7, is fully determined.

This condition was stable for a run of five years. The resultant bound-
ary transport and mean sea-level timeseries are shown in Figure 3.31. Forcing
the mean sea-level around the boundaries to remain at zero has strongly con-
strained the mean sea-level over the domain to remain near zero. It is apparent,
however, that differences occur between the two subgrids. The numerical im-
plementation of the condition tied the two subgrids together, by averaging
‘virtual’ sea-level points for the EVEN grid from adjacent sea-level points on
the ODD grid around the boundaries, in a scheme analogous to the averaging
procedure used for a boundary condition on normal velocity (see Appendix
C). The technique was less successful here than for normal velocity boundary
conditions. While the mean sea-level was almost the same on the two subgrids
at the end of five years, there were localised differences of up to 0.3 m, most
noticeably in the Tasman Sea.

The depth-integrated and near-surface flow patterns after five years are
shown in Figure 3.32. While the ACC is represented reasonably well, it lies
considerably north of its position with the normal velocity boundary condi-
tions (compare, for example, Figure 3.15 for the clamped velocity condition
with an artificial transport profile along the northern boundary). Along the
east coast of Australia, a very strong northwards flow of over 50 Sv has re-
placed the southwards flowing EAC. A weak southwards EAC is present only
at the surface, where it separates from the coast just south of the northern
boundary and continues as a weak Tasman Front across the Tasman Sea. The
very strong northwards surface flow around the southeastern corner of Tas-
mania is very unrealistic. As with sea-level, considerable separation between
the subgrids occurs with the depth-integrated velocity — over 50 Sv between
adjacent gridpoints in several broad regions within the domain, much greater
than the maximum 20 Sv differences shown in Figure 3.15 for the clamped
velocity boundary condition.

The clamped sea-level condition performed very well on a sea-level per-
turbation experiment to examine its reflection characteristics. Figure 3.33
shows the energy of the perturbation for ten days following its application.
After ten days, around 1% of the perturbation energy has been retained. This
result is surprising given the very high energy retention of the clamped velocity
condition (Figure 3.17). It is also different to results obtained by Chapman
(1985) with a time-explicit model, who found almost complete reflection for
a clamped sea-level boundary condition. To determine to what extent this
discrepancy may be related to the numerical dissipation of the implicit dif-
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after five years for the clamped sea-level boundary condition.
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ferencing scheme used here for the barotropic system, an attempt was made
to perform an identical perturbation experiment using stability parameters
a = 0.5 and § = 0.5. (Figure 3.18 shows the results of such an experiment
for the clamped velocity condition.) However, the model was unstable under
the clamped sea-level condition with this degree of explicitness. The stability
parameters had to be raised to around 0.7 in order to maintain stability. With
these values, there was only slightly lower energy dissipation than in the fully
implicit case. While an extensive study was not performed, it is possible that
the ill-posedness of a clamped sea-level condition for the shallow-water equa-
tions (Oliger and Sundstrém 1978) contributes to the instability for numerical
schemes that are not fully implicit in time.

A similar range of variations could be trialled for a sea-level boundary
condition as were described earlier for the normal-velocity condition (e.g. zero-
gradient, gravity-wave, relaxation etc.). While some of these were examined,
they performed no better than the clamped sea-level condition just described.

3.5.4 Characteristic (Flather) boundary condition

In contrast to the previous two sections which applied boundary conditions
on either of the primitive variables (normal velocity or sea-level), this sec-
tion trials a condition applied to a combination of those primitive variables.
From the introductory discussion in section 3.1.2, we have seen that well-
posed boundary conditions must be formulated in terms of the characteristic
variables, with precisely one boundary condition being required for each in-
coming characteristic variable at a boundary. Conditions on normal velocity
or sea-level can be developed within this framework by writing the incoming
characteristic variables in terms of the outgoing characteristic variables (page
68). Well-posedness of such conditions is not necessarily guaranteed. On the
other hand, boundary conditions which prescribe the incoming characteristic
variables are always well-posed.

Hedstrom (1979) proposed a nonreflecting boundary condition which
leaves the incoming characteristic variables unchanged at a boundary. For
HOPE’s barotropic system, the incoming characteristic variables are (section
3.5.1):

Uzxcn,  western (+) and eastern (—) boundaries;
V —cn, northern boundary.

Considering the western boundary, Hedstrom’s condition thus becomes

%(U +cn) =0, (3.33)
r U(t) + en(t) = Uy + cno. (3.34)

An identical condition was proposed independently by Flather (1976) for
tidal modelling on a continental shelf. The condition has since been used for
similar modelling studies by numerous authors, e.g. Oey and Chen (1992),
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Davies and Lawrence (1994) and Lee et al. (2000). It has also been used in
more general contexts by e.g. Shulman (1997) and Palma and Matano (1998).
Palma and Matano noted it could be derived by combining the gravity-wave
radiation condition (3.27) with a one-dimensional continuity equation. For a
western boundary we have

ou  oU

Bt~ “on
and

on  oU

8t oz’

from which we can write directly Hedstrom’s condition (3.33). With this inter-
pretation, we anticipate that the condition may be useful both for transmitting
surface gravity waves as well as conserving volume.

Clearly, the condition requires co-located sea-level and velocity points.
This is not the case in HOPE, and so careful thought must be given to its nu-
merical implementation. Appendix D discusses the technical implementation
of the condition in HOPE’s barotropic system.

As originally proposed by Flather, the condition was intended to drive
a coastal model with known tidal forcings at the boundaries. Thus (3.34)
becomes

U(t) + en(t) = Up(t) + cnpo(2). (3.35)

The reference profile Uy was constructed along the boundary by Flather us-
ing an iterative technique. First, given observations of tidal elevation, 7,s(t),
on the boundary, the model was run with Uy = 0 and 79 = 7ops. Successive
iterations of model runs substituted the calculated velocity on the boundary,
U(t), for the reference velocity, Uy, until convergence was reached, at which
point the calculated sea-level on the boundary, n(t), closely followed the ob-
served tidal signal n,(t). In Palma and Matano’s (1998) recent comparison
of the condition with other open boundary conditions, they assumed constant
values Uy = 1y = 0 for their model with an initial state of no motion and short
duration perturbation experiments.

It is important to note a fundamental difference between Flather’s condi-
tion (3.35) and Hedstrom’s condition (3.34). Flather allowed, indeed required,
potentially quite large-amplitude and rapid time variation, while Hedstrom
specifically prescribed constant values for the incoming characteristic variables.
Thus, while Hedstrom’s condition is explicitly designed to be passive, i.e. non-
reflective to wave phenomena, Flather’s condition is intended to be active, i.e.
to drive a model with tidal forcing at the boundaries. In fact the only com-
monality between the two is the fact that they both prescribe values for the
incoming characteristic variables. Despite this, recent papers (Shulman 1997,
Palma and Matano 1998) have identified conditions on characteristic variables
with Flather’s condition, even for constant reference values. While the refer-
ence values in this thesis are not constant, neither do they vary as rapidly as
Flather’s. In keeping with the recent trend (but despite the important differ-
ences), the boundary condition as implemented in this thesis will be referred
to as a ‘Flather condition’.
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Figure 3.34: Volume transport across boundaries associated with Flather ref-
erence velocity profiles Uy, Vg (derived from bottom-referenced geostrophy).

Reference profiles from bottom-referenced geostrophy

An obvious method for constructing Uy, Vi and 179 is to apply the methods
of the previous two sections for the clamped conditions on normal velocity
and on sea-level: to make an assumption of bottom-referenced geostrophy and
calculate fixed Uy, Vy and 7, according to equations (3.26) and (3.32).

A trial run using this approach was stable for five years. Figure 3.34
shows the integrated volume transport across each boundary associated with
the reference profiles Uy and V;, as well as the residual transport out of the
domain that would result if the modelled velocities on the boundaries followed
these reference profiles exactly. The variation over the five years is due to
the evolution of the density fields along the boundaries. Clearly, there is a
significant residual outflow from the domain associated with these reference
profiles.

We must examine to what extent the modelled velocities on the bound-
aries (arising from the Flather condition (3.34)) follow these reference profiles.
Figure 3.35(a) shows the actual volume transports across each boundary, while
Figure 3.35(b) shows the residual outflow from the domain. First, it is clear
that the actual boundary velocities do not track closely the reference boundary
velocities. The reference transport across the western boundary, for instance,
is below 160 Sv for most of the five years of the run, while the actual transport
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is greater than 200 Sv. This is seen also in the residual transport out of the do-
main. While the reference transport profiles have a net loss of well over 50 Sv
for most of the run, the actual boundary transports have a residual very close
to zero and lower than 0.2 Sv. This is a remarkable feature of the Flather con-
dition. While the respective boundaries are coupled only through the model
dynamics in the interior, and not the boundary conditions themselves, the
Flather condition nevertheless maintains an almost perfect conservation of
mass for the domain. This is despite the actual transport through the various
boundaries varying by over 50 Sv during the five year run, Figure 3.35(a). Sim-
ilar, but less spectacular, examples of emergent coupling between independent
boundary conditions were previously seen in both the gravity-wave condition
on normal velocity, with flow relaxation (Figure 3.26) and the zero-gradient
condition on normal velocity with pseudo-relaxation (Figure 3.30) where, in
both cases, the transports across the eastern and northern boundaries oscil-
lated rapidly with amplitudes around 100 Sv, but almost balanced each other.
This result was not entirely unexpected for the Flather condition since, as
mentioned earlier, Palma and Matano (1998) pointed out that the condition
could be derived using conservation of mass. It is, nevertheless, pleasantly -
surprising in its effectiveness. Figure 3.36 shows the resultant change in mean
sea-level associated with the small, but non-zero, net outflow from the domain.
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The near-surface and depth-integrated flow fields after five years are
shown in Figure 3.37. While the ACC is reproduced reasonably well, the
flow in the region of the east coast of Australia is more disappointing. A
strong surface and depth-integrated (50 Sv) northwards flow breaks off from
the ACC and extends around the southeastern corner of Tasmania, continu-
ing north along the coast of eastern Australia. It joins a weaker EAC before
hugging the northern boundary of the model domain. As found in previous
sections, a realistic EAC flow is harder to reproduce in the model than the
ACC.

Finally, we examine the performance of the Flather condition under a
sea-level perturbation experiment. As in previous sections, a gaussian sea-
level perturbation is applied to the model after a short (10 day) spinup from
rest. The energy of the perturbation is integrated over the domain for an-
other 10 days to determine the ability of the boundary condition to transmit
disturbances. Figure 3.38 shows this timeseries. At the end of 10 days, the
total energy of the perturbation has reduced to less than 2% of its original
value. This is a result essentially as good as any of the results in the previ-
ous sections using boundary conditions on either normal velocity or sea-level.
It was expected that the Flather condition should be nonreflective to surface
gravity-wave disturbances because it can be derived from a combination of
the continuity equation and a gravity-wave radiation condition. That its per-
formance is as good as a pure gravity-wave condition on normal velocity is a
pleasing result.

The Flather condition with reference profiles calculated from bottom-
referenced geostrophy clearly performs very well at conserving volume and
transmitting surface gravity waves. It is less satisfactory at reproducing real-
istic flow patterns and strengths. We now consider two alternative methods
for constructing the reference profiles in an attempt to improve this aspect of
the condition’s performance.

Reference profiles by timestepping 7

As mentioned in the introduction to the Flather boundary condition, as orig-
inally proposed by Flather, the condition was used in an iterative scheme
to derive time-varying mutually consistent reference profiles Uy, V4 and 7.
We saw above that simply bottom-referencing these profiles produces bound-
ary volume transports very different from the reference profiles. Motivated by
Flather’s original approach to the tidal problem, we trial an alternative method
for constructing the profiles. Instead of calculating 7 from bottom-referenced
geostrophy, we prescribe it each timestep according to the model solution on
the boundaries:

=

We again construct Uy from bottom-referenced geostrophy, but replacing the
profile V5 on the northern boundary with the artificial profile discussed in
section 3.5.2 (see Figure 3.13). Anticipating that the timestepping scheme
for 1y will cause the model to more closely follow the reference profiles, we
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Figure 3.37: (a) Near-surface (layer two, 32 m depth), and (b) depth-integrated
flows after five years using the Flather condition with bottom-referenced

geostrophy for the reference profiles.
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Figure 3.38: Potential (PE), kinetic (KE) and total energy of an initial sea-level
perturbation for 10 days with the Flather boundary condition using bottom-
referenced geostrophy for the reference profiles.
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also scale the bottom-referenced profiles for Uy on the western and eastern
boundaries to 140 Sv and 155 Sv respectively, as done in earlier sections.

The model was stable for the five year duration of the experimental run.
The actual transports across the open boundaries are shown in Figure 3.39,
together with the mean sea-level. The timestepping method for ny has indeed
caused the model to track almost perfectly the reference velocity profiles Uy
and V. The transport across the western boundary has decreased from over
200 Sv to a value of 140 Sv, consistent now with the reference profile. After
the first three months, the residual transport out of the domain stays in the
range -0.01 to 0.01 Sv, resulting in the mean sea-level varying by less than 0.5
cm. With the exception of the clamped condition on normal velocity, this is
by far the best result yet seen for conserving volume in the domain.

The flow fields after five years for this boundary condition are shown
in Figure 3.40. The currents are considerably improved, and almost identical
to those obtained with the clamped boundary condition on normal velocity
with the same prescribed boundary velocities (Figure 3.15). In particular, the
depth-integrated and surface representations of the EAC are now satisfactory.

Since the condition now appears to be performing much the same as
the clamped normal-velocity condition, it is necessary to confirm whether it
retains the ability to transmit surface gravity-wave disturbances. A sea-level
perturbation experiment was again performed, with Figure 3.41 showing the
energy timeseries. The boundary condition has become much more reflective,
retaining around 20% of the energy of the perturbation after 10 days. This
is not as bad as the 30% retained by the clamped normal-velocity condition,
but it is much worse than the 2% retained with the bottom-referenced Flather
condition.

Thus, the flow fields have been improved with the timestepping method,
but the nonreflective properties of the boundary condition have been compro-
mised.

Reference profiles using relaxation

As a tradeoff between reference transport profiles which change only very
slowly (the bottom-referenced profiles) and profiles that change rapidly (timestep-
ping 7o), a third variation is trialled where the profiles are relaxed with a
timescale 7, e.g.

0 1
5E(Uo +cno) = ;[(Uogeost +em) — (Uo + cno)]

for the western boundary, where Uy,,,, is the bottom-referenced velocity profile
of the last section, and 7, is the model-derived boundary sea-level which was
used to timestep 7o in the last section. The artificial profile, V4, of Figure 3.13
is used on the northern boundary.

A relaxation timescale of two days was used to trial this variation of the
Flather condition. The energy timeseries for a repeated sea-level perturbation
experiment is shown in Figure 3.42. The nonreflective properties have clearly
been restored. The total energy after ten days is reduced to only 2% of the
initial energy of the perturbation.
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Figure 3.39: (a) Volume transports across boundaries, and (b) mean sea-level,
over five years for the Flather boundary condition with a timestepped 7 ref-
erence profile.
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timestepped 7 reference profile.



3.5 The barotropic system 132

10 T T T T T T T T T

Joule

0 1 2 3 4 5 6
day after perturbation

Figure 3.41: Potential (PE), kinetic (KE) and total energy of an initial sea-
level perturbation for 10 days with the Flather boundary condition using a
timestepped 7, for the reference profiles.



3.5 The barotropic system 133

10 T T T T T T T T T

Joule
[4)]
1

0 1 2 3 4 5 6 7 8 9 10
day after perturbation

Figure 3.42: Potential (PE), kinetic (KE) and total energy of an initial sea-
level perturbation for 10 days with the Flather boundary condition using two
day relaxation for the reference profiles.
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The flow fields after five years are shown in Figure 3.43. The realism
of the flows, particularly in the region of the EAC, has been maintained in
comparison to the Flather condition using a timestepped 7.

The excellent volume conservation property of the timestepped condition
has been reduced somewhat. The residual flow out of the domain, rather than
varying by 40.01 Sv has increased to a range of +0.04 Sv, leading to mean
sea-level variations over the course of the five year run of up to &1 cm, after
an initial drop of around 15 cm (Figure 3.44).

Using a longer timescale only lead to decreased realism of flow patterns,
and reduced volume conservation. An even shorter relaxation timescale would
lead to improved volume conservation but increased reflective properties. A
variation in mean sea-level of 1 cm over five years is entirely adequate for the
purposes of this project.

3.5.5 Summary

For the barotropic system, only one boundary condition must be applied at
each open boundary. It was found to be possible to apply a boundary condi-
tion to either normal velocity or sea-level in a stable manner, as well as the
characteristic combination. While volume conservation was possible with a
boundary condition on normal velocity, significant separation between subgrids
occurred with a sea-level condition. Boundary conditions found to be successful
at reducing reflections included radiation type conditions and a zero-gradient
condition on normal velocity. In order for these to remain stable, however, re-
laxation to prescribed flows was also required. A clamped sea-level condition
was also found to be nonreflective. While the ACC was found to be relatively
easy to reproduce in the model, a realistic EAC was much more difficult. In
all boundary conditions found to successfully reproduce an EAC, an artificial
barotropic velocity profile had to be imposed along the northern boundary.
The best performance of all conditions was one based on characteristics. This
" allowed almost perfect volume conservation, realistic flow patterns, as well
as excellent transmission of surface gravity-wave disturbances. While similar
to the condition of Flather (1976), and also that of Hedstrom (1979), it was
extended here to include a relaxation term on the reference values of the char-
acteristic variables. This allowed an explicit tradeoff between enforcement of
the reference values (and therefore realism of flows and volume conservation)
and radiation of surface gravity waves out of the domain.

3.6 The baroclinic system
The baroclinic system in HOPE solves the baroclinic momentum equations:
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Figure 3.43: (a) Near-surface (layer two, 32 m), and (b) depth-integrated
(EVEN) flows after five years for the Flather boundary condition using a two
day relaxation timescale for the reference profiles.
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change in mean sea-level, over five years with the Flather boundary condition
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The terms Gy and Gy, represent both momentum advection and viscosity.
The hydrostatic relation is combined with the continuity equation to obtain a
prognostic equation for pressure:

a2p/ _ w@
otoz 0 Bz

Horizontal viscosity is parametrized with harmonic, biharmonic, and strain-
dependent terms (see section 2.1.1). The various components of the baroclinic
system are solved separately in HOPE’s operator splitting procedure.

3.6.1 Well-posedness requirements

As mentioned previously (section 3.1.2), it is not possible to formulate well-
posed boundary conditions that are point-wise in the vertical for the baroclinic
system due to the hydrostatic assumption. In the absence of topography, baro-
clinic fields may be decomposed in a series of vertical modes, each of which
satisfies reduced-gravity shallow-water equations®. Well-posed boundary con-
ditions for these separate modes depend on the flow speed relative to the
reduced-gravity shallow-water wave speed. No such decomposition in the ver-
tical was attempted here. The solution of the coupled normal modes for the
model each timestep would be completely impractical, requiring to solve an
eigenvalue problem the size of the model. For simplicity, an ad-hoc approach
was preferred, with the aim of finding boundary conditions that remained
stable and produced relatively smooth fields near the boundaries. Separate
conditions are required for each of the components of the baroclinic system in
HOPE’s operator splitting scheme.

3.6.2 Prognostic momentum equation

Figure 3.45 shows a limited portion of HOPE’s staggered E-grid. Velocity
points marked in blue are those for which surrounding pressure points all
exist, and which, therefore, may be solved conventionally with the prognos-
tic momentum equations. Similarly, the pressure points marked in green are
those for which surrounding (u,v) points all exist, and at which vertical ve-
locities may therefore be calculated (from continuity). The update of pressure
on these points may be performed as usual. Thus it is apparent that baro-
clinic velocities may be calculated prognostically on the western boundary.
Open boundary conditions for the baroclinic velocities u, v are required for
the northern, eastern and southern boundaries (though the latter is land in
the present model).

Radiation condition

Radiation conditions have been widely used for baroclinic velocities in open
ocean modelling (Orlanski 1976; Oey and Chen 1992; Jensen 1998; Palma and
Matano 2000). Both Gan et al. (1998) and Ezer and Mellor (1997) recently

6The presence of topography couples the modes.
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Figure 3.45: HOPE’s staggered E-grid showing boundary points that cannot
be calculated prognostically.

applied Orlanski-type radiation conditions to the baroclinic velocities at open
boundaries in the Southern Ocean of Atlantic models. Barnier et al. (1998)
and Treguier et al. (2000) have also applied radiation conditions to baroclinic
velocities in the Southern Ocean, and included relaxation to geostrophy.

The version implemented here used Miller and Thorpe’s (1981) two time-
level modification of Orlanski’s leapfrog condition (see section 3.2). Thus, for
the unknown baroclinic velocities on the boundaries (those marked in black in
Figure 3.45), the following boundary condition was applied:

¢Z+1 =(1- 7")¢2 + qulr)l-i—lv

where ¢ represents either u or v, the subscript b represents the boundary
gridpoint, and b + 1 means the gridpoint one in from the boundary. The
radiation phase speed, r, is estimated as

_ ¢g+1 - d’:+_11
n—1 __ n-1"
b+2 b+1
In addition, r is clamped to the range 0 < r < 1.

Together with the scheme for viscosity on the boundaries described below,
this radiation condition proved to be stable. Figure 3.46 shows a partial section
of normal velocity v along the northern boundary in the region of the EAC
after 30 days’. While the radiation condition has certainly given rise to vertical
structure, the separation of the EAC into two jets, one at the surface, and one
at depth, seems unrealistic. With the radiation condition, this feature persisted
throughout a five year run. Given the difficulties of maintaining a reasonable

"The full resolution assimilation model was used here instead of the coarse resolution
model used for investigating barotropic open boundary conditions in section 3.5. Model
parameters were listed in section 2.2.
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Figure 3.46: EAC baroclinic flow after 30 days using a modified Orlanski
radiation condition on the northern boundary.

EAC already noted in the discussion of barotropic boundary conditions, a zero-
gradient condition was used here and found to provide more realistic results.

Zero-gradient at northern boundary

The zero-gradient condition for v and v on the northern boundary simply sets
the baroclinic velocities equal to those one gridpoint in from the boundary:

{u, U}QH = {u, U}?—H'

The usual dynamical balance for the surface Ekman velocity is between the
accelerating wind stress and the Coriolis force. Since the momentum equa-
tion, including Coriolis terms, is replaced by the zero-gradient condition on
the northern boundary, no wind forcing is performed on the northernmost
gridpoints either. If wind forcing is included, then extremely high surface ve-
locities result. Figure 3.47 shows the EAC after 30 days using the zero-gradient
condition. The double-jet structure of the EAC has successfully been replaced
by a more realistic structure. Since density modifications made through as-
similation (described in chapter 5) are typically broader in scale than the first
baroclinic Rossby radius, the geostrophic adjustment process will not strongly
radiate internal gravity waves (Gill 1982). The dynamic modes excited through
assimilation will be predominantly the slower, westwards travelling Rossby
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Figure 3.47: EAC baroclinic flow after 30 days using a zero-gradient condition
on the northern boundary.

waves. It is therefore not expected that replacing the radiation condition at
the northern boundary with a zero-gradient condition will lead to significant
reflection of internal gravity waves under altimetry assimilation.

3.6.3 Viscosity

We may consider viscosity as a process separate from the baroclinic momen-
tum equations, consistent with HOPE’s operator splitting methodology, for the
purposes of developing well-posed boundary conditions. First, vertical viscos-
ity may of course be performed on all lateral boundaries. Horizontal viscosity
is parametrized in HOPE with harmonic, biharmonic and strain-dependent
terms, although the biharmonic term was not included in the Southern Ocean
model constructed here. Both the harmonic and strain-dependent terms are
parabolic in form, and so a mathematically well-posed problem results by
specifying either Dirichlet or Neumann boundary conditions (section 3.1.2).
Neumann conditions were used here, with the normal gradient of baroclinic
velocities specified to be zero. Thus in the discretisation of the Laplacian

%{u, v} = AnV{u, v}

at a boundary, whenever the value of a nonexistent velocity point outside
the domain is required, it is taken to be equal to the velocity just inside the
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Figure 3.49: Required velocities for calculating momentum advection.

boundary. Compared with other terms in the momentum equations, horizon-
tal mixing is numerically small. Nevertheless it is required to avoid instability.
Trial experiments omitting viscosity on the boundaries developed strong and
unstable gradients. Similar behaviour was noted by Stevens (1991) who also
used a zero normal gradient condition for the nonexistent velocity points out-
side the computational grid.

3.6.4 Momentum advection

The numerical implementation of momentum advection in HOPE uses the ‘J,
Jacobian’ of Arakawa and Lamb (1977). This conserves second order quantities
(kinetic energy and enstrophy). For advecting momentum at a given velocity
point, the formulation calculates volume transport fluxes at each of the eight
immediately surrounding (scalar and vector) gridpoints, forming an enclos-
ing cell as shown in Figure 3.48. Omitting the details, in order to calculate
these fluxes, an extended stencil of gridpoints is used, as shown in Figure 3.49.
For simplicity, it was decided to neglect momentum advection on the bound-
aries. This approach is common in open ocean modelling (e.g. Stevens (1991)).
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However, because of the extended stencil, velocity gridpoints one in from the
boundary require access to nonexistent velocity points outside the domain in
order to calculate the required volume transport fluxes. As with viscosity, a
zero-gradient condition was applied, so that the nonexistent velocities were
assumed equal to those just inside the boundary.

It should be noted that advection is a hyperbolic process in characteris-
tic form. Therefore, for mathematical well-posedness, the advected quantity
should be specified whenever flow is into the domain, with upstream advection
used for outflow. The deliberate ignoring of momentum advection here was
based on the fact that the small changes that would result are insignificant
compared with the boundary conditions used for the prognostic momentum
equation described above.

3.6.5 Summary

In summary, the open boundary conditions for the baroclinic system used a
modified Orlanski radiation condition for the eastern boundary, together with
a zero-gradient condition for the northern boundary. Viscosity was performed
on all boundaries, using a Neumann condition to allow calculation of harmonic
terms. Momentum advection was ignored on the boundaries.

3.7 'Tracers
The physics of tracers in HOPE is governed by advection and diffusion:
d¢

where ¢ represents either salinity or potential temperature. Diffusion, Fy, is
parametrized with harmonic and strain-dependent terms.

3.7.1 Advection

As mentioned above, advection is a hyperbolic process where the character-
istic variables are equivalent to the advected quantity. They are ‘incoming’
for flow into the domain. Thus, boundary conditions must be applied to tem-
perature and salinity whenever flow is into the domain. The usual advection
must be performed when flow is out of the domain. The boundary conditions
implemented here on all open boundaries used a combination of relaxation to
climatology for inflow, and upstream advection for outflow. Where a boundary
lies along a characteristic curve, no boundary condition should be applied, that
is tracers should be advected tangentially along the boundaries as usual. The
relaxation timescale for inflow increased with depth, as detailed in Table 3.4.
The longer timescales at depth were motivated by the more slowly evolving
fields, and smaller velocities in the deeper ocean. It is similar to the increas-
ing relaxation timescales with depth used in the robust diagnostic method of
FRAM (The FRAM Group 1991) (180 days for the top 140 m, and 540 days



3.8 Open boundary conditions: a summary 143

Table 3.4: Relaxation timescales for temperature and salinity under inflow.

model layer relazation timescale (days)
1 (20 m) 30
92-8 (20-330 m) 60
9-11 (3301400 m) 180
12-20 (1400-5500 m) 360

for the deeper levels). Early experiments indicated that if short (e.g. 30 day)
relaxation was used throughout the water column, then unrealistically strong
boundary currents flow along the western boundary.

3.7.2 Diffusion

As with viscosity, well-posed boundary conditions for laplacian diffusion are
obtained by applying a Neumann condition of zero-gradient across the bound-
aries for salinity and potential temperature. Wherever diffusion on a bound-
ary tracer point required nonexistent values outside the domain, these were
assumed equal to the first point just inside the boundary.

3.7.3 Summary

The boundary conditions for tracers depended on the local flow direction: for
inflow, relaxation to climatology was used, while for outflow, upstream advec-
tion was used. For diffusion, a Neumann condition of zero normal gradient
was applied.

3.8 Open boundary conditions: a summary

The most sensitive component of HOPE, and the most difficult to implement,
were open boundary conditions for the barotropic system. A modified Flather
boundary condition, based on the characteristic variables, proved to be the
best of all considered. It provided excellent volume conservation as well as
the ability to transmit surface gravity waves. Reference profiles of normal
volume transport (or barotropic velocity) were needed along the boundaries.
These were obtained by bottom-referencing and scaling the geostrophic flow
for the western and eastern boundaries, while an artificial profile based on
observed flows was used for the northern boundary. For the baroclinic system,
a radiation condition was used along the eastern boundary. A similar technique
produced unrealistic flows on the northern boundary, and so a zero-gradient
condition was applied instead. For the tracers, there is little freedom, and an
obvious physically motivated approach of relaxation towards climatology for
inflow with upstream advection for outflow was applied.

The examination of boundary conditions here for the barotropic system
appears to be one of the first with implicit numerical schemes. Previous studies
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of open boundary condition performance (Chapman 1985; Rged and Cooper
1986; Rged and Cooper 1987; Jensen 1998; Palma and Matano 1998) have
used numerical schemes explicit in time. While significantly complicating the
technical implementation, implicit numerics appear also to change the nature
of the results. The findings here that both a clamped sea-level condition and
zero-gradient velocity condition are nonreflective are surprising, and at odds
with results reported by Chapman (1985), Rged and Cooper (1986), Rged and
Cooper (1987) and Jensen (1998). The discrepancy may at least partly be
related to the numerical dissipation of implicit schemes. (Interestingly, Israeli
and Orszag (1981) proposed sponge layers to dampen reflections at boundaries
by introducing artificial numerical dissipation.) Further investigation of the
differences between boundary conditions for explicit and implicit numerical
schemes would require more detailed energy analyses, as well as comparisons
of results across the full range of ‘implicitness’ (o and § in HOPE covering the
full range 0 to 1).

The general performance of the assimilation model under these boundary
conditions in a spin-up run is analysed in the following chapter.



CHAPTER 4

Model performance

Chapter 3 described the implementation of open boundaries in the HOPE
model for the limited-area Southern Ocean configuration developed in this
thesis. Numerous boundary conditions were trialled by analysing results from
short (five year) runs of the model, with a one degree grid used for the
barotropic experiments. This chapter provides a more detailed analysis of the
model on a 0.6° x 0.4° grid. This is the configuration used for the assimilation
experiments in the next chapter.

The analysis serves several purposes. First, the general usefulness of the
model for this region needs to be determined. From the boundary condition
experiments in chapter 3, we know the model is capable at least of reproduc-
ing major current structures (ACC, EAC) for up to five years. The realism of
the model in other respects and for a longer integration time is analysed here.
Second, variability of subsurface model fields is analysed to guide the imple-
mentation of the altimetry assimilation scheme discussed in the next chapter.
The assimilation scheme modifies subsurface properties based only on sea-level
measurements. While physical arguments strongly constrain the types of sub-
surface modifications that can be made, an analysis of subsurface variability
of the model and its surface expression aids the development of the assimi-
lation scheme. Third, initial conditions for an assimilation of real altimetry
data must be determined. The analysis here suggests a sensible starting point.
Finally, while an assimilation of real altimetry may be verified against inde-
pendent (e.g. hydrographic) data, it is of interest to know how other aspects
of the modelled circulation (e.g. heat flux etc.) have been influenced by data
assimilation.

A 40 year run of the model forms the basis of the analysis in this chap-
ter. The model parameters were detailed earlier (section 2.2), and the previ-
ous chapter described the conditions applied at open lateral boundaries (sum-
marised in Table 3.1). The model was started from rest, initialised with the
Olbers (1992) climatology. Monthly climatological wind forcing (Hellerman
and Rosenstein 1983) and surface relaxation of tracers to climatological fields
(Olbers et al. 1992; Levitus and Boyer 1994) were performed throughout the
run.

The analysis of the 40 year run in this chapter is separated by timescale
into characteristics which evolve slowly (described as the model climatology)

145
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and more rapid (sub-annual) variations (described as model variability). Com-
plete model fields were stored every 30 days over the course of the run. In
addition, a few diagnostic parameters were calculated at every timestep.

4.1 Model climatology

It is usual for general circulation models of both the atmosphere and ocean to
exhibit some drift. For example, Saunders et al. (1999) discuss in some detail
drift in the OCCAM global model. This simply reflects the fact that models
are an imperfect and incomplete representation of the real world. For a model
with artificial boundaries, such as that implemented here, the problem may be
exacerbated by the artificial constraints imposed on the boundaries as well as
the fundamental ill-posedness of the primitive equations under any pointwise
open boundary condition. This section examines drift in the model. While not
“climate drift” in the conventional sense (timescales are of decades rather than
millenia), it represents slow evolution of the model which influences decisions
on how and when to attempt data assimilation.

4.1.1 Thermodynamics
Layer averages

Volume averaged potential temperature and salinity were calculated by layer
throughout the 40 year run. Figures 4.1 and 4.2 show timeseries of the dif-
ferences between the model values and the Olbers et al. (1992) climatology
from which the model was initialised. In addition, Table 4.1 lists by layer the
volume averaged tracer values for both the climatology and the final year of
the 40 year run. Changes are most apparent in the uppermost layers where
the model has both cooled and freshened with respect to the climatology.

‘Watermass census

Examining temperature and salinity separately by layer does not indicate how
the changes affect the density structure. It is perhaps more useful to anal-
yse the density modifications induced by these changes. Bindoff and Church
(1992), Bindoff and McDougall (1994) and Wong et al. (1999) have used hy-
drographic data to analyse climatological changes of temperature and salinity
in density classes, in both the Pacific and Indian Oceans. A less sophisticated
analysis is performed here, which counts by density class the total water vol-
ume throughout the 40 year run. To avoid complications associated with the
choice of a reference level for potential density, the analysis was performed
using neutral density, v* (McDougall 1987). The density classes chosen are in-
tended to correspond approximately to various recognised watermasses, listed
in Table 4.2 together with the density ranges. Figure 4.3 plots the total volume
of water in each class over the 40 years of the run. To gain more insight into
the changes in watermass properties, Figure 4.4 shows sections of potential
temperature and salinity along 160° E from the beginning and end of the 40
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Table 4.1: Volume averaged temperature and salinity by layer: climatological
values, and difference for mean of year 40.

layer mid-depth (m) climatology difference (year 40 mean)

0 (°C) S (psu) | 0 (°C) S (psu)
1 10 11.36  34.637 | -1.84 -0.025
2 32 11.00 34.647 | -1.83 -0.040
3 o7 10.06  34.653 | -1.30 -0.066
4 86 8.97  34.671 | -0.52 -0.093
) 120 8.33 34.691 | -0.14 -0.113
6 162 8.03 34.703 | -0.07 -0.120
7 216 7.75 34.702 | -0.03 -0.111
8 290 7.31 34.679 0.11 -0.083
9 472 6.32 34.602 0.29 -0.032
10 798 4.74  34.523 0.02 0.005
11 1193 3.00 34.540 0.12 0.029
12 1618 2.17  34.633 0.19 0.006
13 2057 1.72  34.695 0.12 -0.004
14 2505 1.37  34.717 | 0.08 -0.008
15 2958 1.06 34.720 0.05 -0.004
16 3415 0.81 34.716 0.01 -0.001
17 3875 0.61 34.711 0.04 0.001
18 4337 0.48 34.708 0.10 0.002
19 4801 0.53 34.707 | 0.08 0.004
20 5266 0.52 34706 | 0.05 0.004

Table 4.2: Watermass classes and their defined range of density used in per-
forming volume census (Schmitz 1995; Bindoff et al. 2000).

watermass density range (y")
Subantarctic Mode Water (SAMW) 26.5-27.2
Antarctic Intermediate Water (AAIW) 27.2-27.5
Circumpolar Deep Water (CDW) 27.7-27.9

Antarctic Bottom Water (AABW) > 28
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Figure 4.3: Volume census by watermass class over 40 year run of the model
(EVEN grid used).
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Figure 4.4: Sections of potential temperature (left) and salinity (right) near
the beginning (after 30 days), and after 40 years, of the run. Potential density
contours delineating watermasses are overlaid.

year run. From these sections, the dominant mode of change appears to be a
lifting of isopycnals in the north of the domain and a lowering of isopycnals in
the south. From visual inspection, tracer properties are more or less conserved
within density layers. The decrease in SAMW volume over time is due to
significant lifting of isopycnals north of around 50° S, with outcropping at the
surface. The increase in volume of AAITW and CDW almost compensates the
loss of AABW and arises through significant lowering of isopycnals south of
around 52° S, with stretching south of around 62° S. The layer average tracer
differences tend to mask these changes. For example, at around 1200 m depth
(layer 11 in the model), there is almost one degree C of cooling in the north,
while the waters in the south have warmed by a similar amount. Likewise,
salinity increases of up to 0.2 psu occur in the north, with similar decreases in
the south. The layer averaged changes of potential temperature and salinity
(Table 4.1) are only 4+0.12° C and +0.029 psu respectively. The sections along
160° E suggest an intuitive explanation for what is occuring: lack of bottom
water formation along the Antarctic coast leads to a reduction in AABW over
time, with a consequent southwards migration of the ACC and general slump-
ing of isopycnals in the south. In the north of the domain, the loss of warm
and salty subtropical waters at the surface leads to a lifting of density surfaces.
The following two sections examine the vertical and horizontal circulation in
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greater detail.

4.1.2 Meridional circulation

Because the model is not zonally periodic, a streamfunction for the meridional
overturning circulation cannot be defined. Zonally integrating the continuity

equation gives
' (Ov  Ow
L. (5o+ 52 do = ~lu(az) ~ u(aw))

Vertical divergences are balanced by the zonal transport difference between
the eastern and western boundaries; only if this were zero could a meridional
overturning transport streamfunction be defined. Instead of a streamfunction,
Figure 4.5 shows the zonally integrated meridional volume transport (in Sv)
by layer for each successive five year mean of the 40 year run:

ZE Zkp,
‘/;Wot = / / 5(3;’ Y, Z) dy d.’B,
Tw

zklow

where the overbar represents a five-year mean, and where the k—th layer ex-
tends in depth from z,  to z,,. Figure 4.6 similarly shows the zonally inte-
grated vertical volume transport:

ZE 2k,
Whioe :/ / w(z,y, z) dy dz.
Iw klow

zZ,

The most significant feature of these diagrams is the lack of a strong overturn-

ing circulation adjacent to Antarctica associated with deep water formation.
In addition there is evidence of upwelling at intermediate depths north of 50°
S. These observations are consistent with the intuitive picture formed above
from an examination of meridional tracer and density sections. Lack of bot-
tom water formation in the model is not surprising since no sea-ice model is
included and the surface relaxation scheme uses climatological fields that are
heavily biased towards summer observations.

4.1.3 Horizontal circulation

The open boundary conditions applied to the model were seen in the last
chapter to provide reasonable surface and depth-integrated flow patterns for
up to five years in a trial run. The circulation is examined here for a run of 40
years. Figures 4.7 and 4.8 show mean surface and depth-integrated currents
for each successive period of five years in the 40 year integration. The realistic
circulation obtained in the first 10 years of the run progressively deteriorates so
that by the final five years, some very unrealistic current patterns are evident.
Specific problems include

e the southwards migration of the Antarctic Cirumpolar Current,

e the strong retroflection at 60° S, south of New Zealand,
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Figure 4.5: Zonally integrated meridional volume transport (Sv) in each layer,

by depth (metres) for five-year means of the 40 year run (EVEN grid).
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Figure 4.6: Zonally integrated vertical volume transport (Sv) in each layer, by
depth (metres) for five-year means of the 40 year run (EVEN grid).
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Figure 4.7: Near surface (layer 2, 32 m depth) average currents (cm/s) for each
successive five year period of the 40 year run.



4.1 Model climatology 156

Years 21 - 25 mean

Years 1 -5 mean

[+
°
£
120 140 160 180 120 140 160
Years 6 - 10 mean Years 26 - 30 mean
o4}
el
%
140 160 180 120 140 160 180
Years 11 - 15 mean Years 31 - 35 mean
L]
e
£

120 140 160 180

120 140 160 180
Years 16 — 20 mean Years 36 - 40 mean

latitude

120 140 160 180 120 140 160 180
longitude longitude

Figure 4.8: Average barotropic streamfunction (Sv) for each successive five

year period of the 40 year run.
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e the strong northwards flow around the southeastern corner of Tasmania
and up along the east coast of Australia,

e an artificial boundary current southwards along the western open bound-
ary, and

e an enhanced eastwards flow along the Antarctic continental shelf.

The southwards migration of the ACC was seen earlier in meridional tracer
and density sections, and hypothesized to be at least partly due to the lack of
sea-ice around Antarctica.

The peculiar flow south of New Zealand developing from year 15 or so is
clearly related to the topography. The flow encounters the Southwest Pacific
Basin (see Figure 2.6) at around 160° E and 57° S, and is steered southwards by
vortex tube stretching and conservation of potential vorticity. It is not obvious,
however, why topographic steering at this location becomes more pronounced
later into the 40 year run. While the general southwards migration of the
ACC may partly be responsible (thus leading to the current impinging on
the Southwest Pacific Basin to a greater extent than the elevated Campbell
Plateau), it may also be caused by an enhanced barotropic character to the
flow. Recall from Figure 4.4 that the isopycnals tend to flatten out. This
implies that the flow is more barotropic and thus more likely to interact with
topography.

The unrealistic strong flow around the southeastern corner of Tasmania
and on northwards along the east coast of Australia is consistent with the tracer
sections seen earlier. At 160° E it was apparent that surface waters in the north
of the domain were becoming cooler and fresher — the warm salty waters from
the subtropics were not being replaced. The EAC, while persisting in the
model after a fashion, appears only to be maintained by the barotropic flow
imposed with the artificial boundary condition along the northern boundary.
It is less effective by the end of the run at maintaining the surface watermass
properties in the Tasman Sea.

An artificial southwards flow along the western boundary was found pre-
viously when a strong relaxation to climatology was applied to tracers at the
western boundary (section 3.7). While it did not appear in sufficient strength
to degrade results in the five year trial runs of open boundary conditions, it
is stronger in this longer model integration, and likely to affect the overall
circulation. It is not clear to what extent this may contribute to the general
southwards migration of the ACC.

An enhanced eastward flow along the Antarctic continental margin is
evident after 20 years. This is likely to be due to both the southwards migra-
tion of the ACC and a reduced westwards flow associated with bottom-water
production.
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4.1.4 Meridional heat flux

Introducing the conventional notation (Peixoto and Oort 1992)

), 2:1) / f (2,9, 72,1)d

for a zonal average!, then any field can be decomposed zonally into zonal mean
and standing eddy components:

f(z,y,2,t) = [flly, 2, t) + f(z,9, % 1).
Similarly introducing the notation

1 f2
(t2 —11) J;

for a time average, then any field can also be decomposed into time mean and
transient components:

.f($7y7z)t) :?(miy)z) +fl(z7y,zit)'

Decomposing both temperature and meridional velocity in this manner, we
may write

f(CU Y,z ) f(xayrzat)dt

T = T+T,

v = T+,
Further decomposing the time-mean components zonally, we have

T(z,y,2,t) = [T] (v, 2) +T*(x,y, 2)+T'(z,y,2,1),
v(z,y,2,t) = [O)(y,2) +7(z,y,2) +9'(z,y, 2,t).

The zonally integrated time-mean northwards heat flux at some latitude is
given by

) = [ 1w 2)me Tz

where ¢, is the specific heat of seawater and [(y, z) is the total oceanic path
length at latitude y and depth z. Using the above decompositions, the in-
tegrand can be written as the sum of mean meridional, standing eddy and
transient eddy components respectively:

T = @I[T] + 0T + '),

'When calculating a zonal average with model data discretised in vertical layers, the
definition must be modified to account for the intersection of a layer by topography. The
zonal average of a quantity in model layer & is given by

1 o2
($2 - xl) 1

where hy(z,y) is the thickness of the model grid at (z,y) in layer k as a fraction of the
nominal layer thickness dy.

[f]k(y)t) = fk(z)y)t)hk(z7y) diE,
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Under this decomposition for the integrand, the heat flux is said also to be
decomposed into these three components. The mean meridional and standing
eddy components of meridional heat flux are analysed here, with the transient
eddy heat flux examined in section 4.2.2.

Figure 4.9 shows both the mean meridional and standing eddy compo-
nents of meridional heat flux averaged over each successive five-year period
throughout the 40 year run. The expected total (mean meridional + standing
eddy + transient eddy) oceanic meridional heat flux integrated around the
globe was shown earlier (Figure 1.1) and is negative in the Southern Ocean
ranging from around 1-2 PW for the latitude band of interest here. It is clear
that the mean meridional heat flux in the model is large by comparison and
of opposite sign. On the other hand, the standing eddy component is of the
correct sign and would integrate to a reasonable value if extended around the
globe. The high positive values of mean meridional heat flux obtained here
are not too disturbing since the domain is not zonally periodic. Integrated
zonally, there can be a net northwards flow if the ACC enters the domain at
a higher latitude than it exits for instance. This is precisely the same reason
an overturning streamfunction could not be defined earlier. Figure 4.5, show-
ing sections of zonally-integrated meridional transport by layer, suggests that
indeed this is the case. Figure 4.10 sums these meridional volume transports
vertically to show the total northwards volume transport at each latitude, av-
eraged again over successive five year periods. The large northwards volume
transport produces, not surprisingly, a large mean northwards heat flux term
Fym- Of course in a model extending around the globe, there would be zero
net northwards transport and this term would be much smaller.

4.1.5 Sea-level

As will be discussed further in the next chapter, assimilation of altimetry data
must use an a-priori mean sea-level against which the anomalies observed by
the satellite are referenced. It is important, therefore, to examine how the
modelled sea-level varies with time. It is possible, for example, that assimi-
lation using a fixed reference sea-level may assist with reducing model drift.
Figure 4.11 shows sea-level averaged over five-year periods throughout the 40
year run. It is clear that the model drift seen with various other diagnostics
‘above also has a signature in sea-level. The steady drift southwards of the
ACC is seen, together with the northwards advection of subpolar waters into
the Tasman Sea. The diffusion of circumpolar frontal structure and slumping
of isopycnals gives rise to a sea-level that becomes flatter with time.

The Flather open boundary condition for the barotropic system appears
to be performing adequately at conserving volume in the domain. Figure 4.12
shows that the mean sea-level changes by around 10 cm over the 40 years
of the run. An examination of the differences between the ODD and EVEN
subgrids shows that the mean sea-level differs by less than 3 mm throughout
the integration (and by less than 1 mm for the final 30 years).
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