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SUMMARY 

This thesis is a theoretical investigation of the steady-

state propagation of galactic and solar cosmic-rays in the inter-

planetary medium. The study is carried out by means of analytic, 

steady-state solutions of the equation of transport for cosmic-rays 

in the interplanetary medium, including the effects of convection, 

diffusion and energy changes. 

In Chapters 2-6, analytic monenergetic-source and mono-

energetic-spectrum solutions of the steady-state equation of transport 

are obtained and these solutions are related to previously obtained 

analytic solutions. 

In Chapter 7, three proofs are given of a result first noted 

by Gleeson (1972), for the mean-time-rate-of-change of momentum for 

cosmic-rays in interplanetary space, reckoned for a fixed volume in 

a reference frame fixed in the solar system. Also discussed in 

Chapter 7, are the proper role of: 

(i) the adiabatic deceleration momentum rate 4>
ad 

introduced 

by Parker (1965), and 

(ii) the mean-time-rate-of-change of momentum, <P 1 >, of 

particles with momentum p' specified relative to the solar wind frame 

of reference, and with position r specified in the fixed frame of 

reference. 

The physical significance of the momentum rate <1.3'> has 

not been understood previously, and it is derived (for the first time) 

in Appendix G, from the transformation of momentum between the fixed 

and solar wind frames of reference. It is shown that Parker (1965) 
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and Jokipii and Parker (1970) have misinterpreted the energy change 

term in the comic-ray continuity equation associated with <15'>, 

due to an insufficient distinction between the two momentum rates 

<P>ad  and <V>. 

The cosmic-ray particle flow and momentum changes are related 

to each other via the continuity or transport equation. 	In order 

to elucidate this relation we introduce the concept of a flow line in 

position momentum space. The flow line is defined as the curve whose 

tangent in position momentum space is given by the ratio of the stream-

ing velocity to the mean-time-rate-of-change-of-momentum in the fixed 

frame of reference. 

In Chapters 8-10, the solutions developed in Chapters 2-6, 

are used to verify most of the principal known features of steady-

state propagation in the solar cavity. Some of these are: the energy 

changes; the relative exclusion of low energy galactic particles; 

the origin within the galactic spectrum of particles of given kinetic 

energy at 1 A.U. say; and the flow of particles in the solar cavity. 

Flow lines for monoenergetic galactic and solar comic-rays are con-

structed by using the monoenergetic-source and monowlergetic-spectrum 

solutions of the equation of transport derived in Chapters 2-6. The 

flow lines show, in some detail, the radical differences in the energy 

changes and flow of galactic and solar cosmic-rays. 	In brief, 

Chapter 8 deals with galactic cosmic-ray propagation, Chapter 9 deals 

with the propagation of monoenergetic solar cosmic-nays, and Chapter 

10 concerns the propagation of galactic cosmic-rays for a special model 

In which a monoenergetic spectrum of particles is specified at the 

boundary of the solar cavity which is located at a finite distance from 

the sun. 
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CHAPTER 1. 

INTRODUCTION.  

1.1 Introduction  

This thesis is a theoretical study of the steady-state 

propagation of galactic and solar cosmic-ray particles in inter-

planetary space. In the next section we sketch the historical back-

ground of the subject. In Section 3 we consider the development 

of the transport equations for cosmic-rays in the interplanetary 

medium. In Section 4 we indicate solutions of these equations, which 

have been used extensively to interpret the observed cosmic-ray 

fluxes and anisotropies, and we discuss in some detail the steady-

state solutions. 	In Section 4 we discuss the fundamental role of 

monoenergetic solutions of the steady-state equation of transport 

in elucidating the physical processes involved, and we give examples 

of the use of the analytic monoenergetic solutions obtained by the 

present author. Finally in Section 6 an outline of the subject matter 

of this thesis is given. 

1.2 Historical background  

Cosmic-ray research originates from the discovery of 'pene-

trating radiation' observed with ionisation chambers early in the 

20th century. This ionisation was such that it increased with increas-

ing altitude in the atmosphere (Hess, 1911, 1912). 	The results of 

early experiments indicated solar and sidereal diurnal variations 

in the cosmic-ray intensity (Hess and Steinmaurer, 1933; Compton 

and Getting, 1935). 

1. 
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In the early 1930's serious attempts were made to provide 

a continuous registration of cosmic-ray intensity. Hess and 

Graziadei (1936) subsequently reported a 27-day recurrence tendency 

in the intensity variations, while Forbush (1937) found that sudden 

decreases in cosmic-ray intensity (Forbush decreases) were accompanied 

by magnetic storms. 

Forbush (1954) also showed that the variation in cosmic-ray 

intensity was in clear anti-correlation with the eleven-year cycle of 

solar activity as measured by the sunspot number. This phenomenon 

is shown in Figure 1.1, which has been reproduced from Forbush (1954). 

It shows the currents for four ground-based ionisation chambers and 

their mean current for the years 1938 to 1952. The sunspot number 

is also plotted with scale reversed, and there is a clear association 

between Increase in solar activity and decrease of ionisation current 

or integral cosmic-ray intensity. 

These time dependent phenomena (i.e., modulations) have been 

studied ever since, with the introduction of the neutron monitor 

(Simpson and Fagot, 1953; Hatton, 1971) in the 1950's being the first 

major attempt to record cosmic-ray intensities at a network of 

stations on a continuous basis. 

Since the advent of balloon and satellite technology the 

variations in the absolute intensities of specific cosmic-ray nuclei 

and electrons could be monitored. Neutron monitor observations deep 

in the atmosphere consist of the registration of secondary atmospheric 

products of near-Earth particles of the whole cosmic-ray abundance 

spectrum. 	Satellite and balloon observations have the additional 

advantage that they are not subjected to atmospheric attenuation, and 
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hence extend to much lower energies than observations in the atmos-

phere. Cosmic-ray proton and alpha particle differential intensity 

spectra, obtained from balloon and satellite experiments have been 

compiled since 1965 (e.g., Gloeckler and Jokipii 1967; Ormes and 

Webber 1968; Hsieh 1970; Freier et al., 1971; Webber and Lezniak 

1973, 1974). Intensity spectra of electrons and positrons have been 

measured extensively since 1965. (e.g., Webber and Chotowski, 1967; 

Beuerman et.aZ.1969; Fanselow et.aZ.,1969; Meyer et.aZ.,1971; 

Burger and Swanenburg, 1971; Fulks et.aZ.,1973; Caldwell et.aZ.,1975). 

The near-Earth differential intensity spectra over solar cycle 

20 of protons and alpha particles are shown in Figure 1.2 for three 

levels of solar modulation corresponding to: (1) sunspot minimum 

(1965); (2) an intermediate level; and (3) sunspot maximum (1970). 

The figure has been reproduced from Webber and Lezniak (1974) and the 

sources of the data are listed in the figure caption. The solid lines 

provide a smoothed best fit to the data at different epochs. The 

near-Earth electron spectra observed during the periods: July 1965 

(Webber and Chotowski, 1967); June-July in the years 1968, 1969 and 

1970 (Meyer et.al. 3 1971); and the galactic electron spectrum (Gold-

stein et.al., 1970a; Burger et.al ., 1971) are shown in Figure 1.3. 

The figure has been reproduced from Urch and Gleeson (1972b). The 

range of energies observed is from 10 MeV/nuc to 1000 GeV/nuc for 

the proton and helium spectra of Figure 1.2 and from 10 MeV to 10 GeV 

for the electrons in Figure 1.3. 	Significant variation in the 

intensity (modulation) occurs only in the range 10 MeV/nuc to 10 cev/ 

nuc for the nuclei and 10 MeV to 10 GeV for electrons, and the work 

of this thesis is therefore concerned with this range. 
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The basis of the theoretical understanding of these 

phenomena can be traced back to the original pioneering work of 

Fermi (1949), Cocconi (1951) and Terletskii and Logunov (1951) on 

the diffusion of cosmic-rays in a stochastic magnetic field. The 

first observational evidence that diffusion was in fact an excellent 

approximation to cosmic-ray motion was given by Meyer et.a. (1956), 

who showed that the intensity-time profile, during a solar flare event 

of particles with rigidities of 2-4GV could be accounted for quanti-

tatively by the solution of a diffusion equation. These ad hoc 

applications to the propagation of cosmic-rays in interplanetary space 

have been put on a firm theoretical and observationall basis since the 

observational confirmation of the existence of a continuous solar wind, 

first suggested by Biermann (1951) from his studies of comet tails 

and developed on a proper basis by Parker (1958a) with his hydrodyn-

amical model of the extension of the solar corona into interplanetary 

space. 

Parker predicted, and it was subsequently confirmed on 

Mariner II, that there would be a continuous radial flow of ionised 

gas (mostly protons and electrons) from the Sun into interplanetary 

space. The radial speed is 21 400 km s
-1 

and there are about 5 protons/ 

c.c. and 5 electrons/c.c. at the orbit of the Earth. This expanding 

plasma carries with it magnetic fields from the sun's surface 

(Parker, 1958a). Due to the sun's rotation the steady—state inter-

planetary magnetic field has the form of an Archimedes spiral on the 

surface of a cone. In addition to the steady-state field there are 

irregular magnetic fields; all are convected radially with the solar 

wind. The irregularities or kinks in the average spinal interplane-

tary magnetic field convected with the solar wind (Parker, 1958a) 
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provide a magnetic configuration for the scattering and consequent 

random walk' of the cosmic-ray charged particles. 

Since 1958 a wealth of literature has been produced on the 

effect of the solar wind on galactic cosmic-rays that have penetrated 

the inner solar system and on the propagation of solar cosmic-rays. 

The reader is referred to the excellent and extensive reviews by 

Axford (1970a, b) on the various models of propagation; to the review 

by Jokipii (1971), and the workshop report edited by Birmingham and 

Jones (1975) on the diffusion of particles in the interplanetary 

magnetic field; to the reviews by Gleeson (1971, 1972) on steady-

state modulation of galactic cosmic-rays; to Wibberenz (1971) on 

solar particle propagation; to McCracken and Rao (1970) on solar 

particle observations; and to the Rapporteur paper by Quenby (1973) 

for an overall view. 

1.3 Development of the cosmic-ray transport equations  

We now give a development from the literature of the trans-

port equations for cosmic-rays in the interplanetary medium which 

have been used extensively to interpret the modulation of galactic 

cosmic-rays and the propagation characteristics of solar particles. 

Parker (1958b) pointed out that the continuous solar wind 

provides a compelling interpretation of the quasi-steady eleven-year 

modulation of galactic cosmic-rays. He argued that the cosmic-rays 

are convected by the magnetic fields carried by the solar wind as they 

diffuse through the solar wind due to scattering with the magnetic 

irregularities. 	He further assumed that the particles did not suffer 

any significant energy changes so that the equation of transport which 

includes the effects of convection and diffusion but neglects energy 
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changes is (Parker, 1963): 

au 
+ v .(V u —K.VU) = 0, 	(1.3.1) 

Dt 	— 	p = 	p 

where U (r,p,t) is the differential number density with respect 
P — 

to momentum p at position r and time t, x is the diffusion tensor 
and V is the solar wind velocity. 

He showed (Parker, 1958b) that with a spherically symmetric 

geometry and with isotropic diffusion the steady-state solution of 

Equation (1.3.1) appropriate for galactic cosmic-rays is 

U (r,p) = U(RP) exp(- IR (V/K) dr), 	(1.3.2) 

where U (R,p) is the differential number density at the boundary of 

the solar cavity which is at heliocentric radius r = R, and K is the 

isotropic diffusion coefficient. He used this simple solution of 

the transport equation to qualitatively account for the quasi-steady 

eleven-year solar-cycle modulation of cosmic-ray intensity. This 

convection-diffusion theory has been widely used when interpreting 

observed cosmic-ray particle spectra and has had some success at high 

and intermediate energies (e.g., Fan et.a., 1965; Silberberg, 1966; 

Gloeckler and Jokipii, 1966, 1967; Badhwar et.a., 1967; O'Gallagher 

and Simpson, 1967; Lockwood and Webber, 1967; Ormes and Webber, 1968; 

Ramaty and Lingfelter, 1969; Wang, 1970). 

The absolute necessity for convection in this theory can be 

seen directly from the steady-state solution (1.3.2) of the convection-

diffusion equation. If V E 0 in the solution (1.3.2) then 

U (r,p) = U (R,p), 

and consequently there is no modulation in the absence of convection. 

The presence of convection ensures that not all galactic particles 
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can penetrate into the inner solar system. 

However Parker (1965,1966) has shown that energy changes of 

cosmic-ray particles in the interplanetary medium are not negligible. 

Parker showed that Fermi acceleration could be neglected and he argued 

that all cosmic-ray particles lose energy (when viewed from a frame 

moving with the solar wind) because of adiabatic deceleration as they 

move with the expanding magnetic field irregularities. The rate of 

change of momentum of particles due to adiabatic deceleration is 

(Parker, 1965; Dorman, 1965), 

<P>ad 	= 
	

- 13 ' (V . V)/3, 	(1.3.3) 

where p' is the particle momentum as seen by an observer moving with 

the solar wind. We note that Singer et.a. (1962) discussed adiabatic 

deceleration in connection with Forbush decreases, and the possibility 

of the importance of energy changes was discussed by Quenby (1965, 

1967). 

The transport equation, which includes the effects of 

convection, anisotropic diffusion and momentum changes is (Jokipii 

and Parker, 1970), 

DU* 

	

1 	3 
rt-P + V. (VU* - IC. 	 -s  . v 	) — 	(v . v) ap , (wup - 0, 

(1.3.4) 

where U* (r,p',t) is the differential number density with respect 
P -- 

to momentum p' as seen in the frame of reference moving with the solar 

wind, and the spatial co-ordinates r are defined in a fixed frame of 

reference. 

Parker (1965) and Jokipii and Parker (1970) argue that the 

energy change term 

a — — v • v 	
' (p' U*), 

	

3 - - ap 	p 
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occurring in the transport equation (1.3.4) is due to adiabatic 

deceleration. However it has been recently noted by the present 

author that this is not the case. In order to see this we write the 

transport equation (1.3.4) in the form 

 

au* 	a --E + v . s* +  (<15'> u*) = at 	 —P 	aP 
(1.3.5) 

where 

S* = V U* - K • v u; , 
P 

(1.3.6) 

is the differential current density or streaming of particles with 

momentum p' (specified relative to the solar wind frame) across a 

fixed surface at position r in the fixed frame of reference, and 

<y>= - 2: V V 3 	• (1.3.7) 

is the corresponding mean-time-rate-of-change of momentum of particles 

with momentum p' at position r. 

The momentum rate <0'> is due to the transformation of 

momentum between the fixed and solar wind frames. It arises because 

the solar wind frame is not an inertial reference frame on a large 

scale. We remark that <y> is not dependent on particle scattering, 

and a derivation of the rate <P>is given, (for the first time) in 

Appendix G. 

The adiabatic deceleration rate < 15>
ad on the other hand is 

only applicable (in the discussion of cosmic-ray energy changes) in 

the case of convective transport or strong scattering, i.e., the 

components of the diffusion tensor x o. The cosmic-rays are then 

effectively constrained to move with the solar wind as they scatter 

between the magnetic field irregularities which behave like the walls 

of a 'magnetic box'. Consequently the particles change momentum at 
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the adiabatic rate (1.3.3) within the expanding 'magnetic box' 

whose walls move at the solar wind velocity V (x). It thus appears 

that Parker (1965) and Jokipii and Parker (1970) have misinterpreted 

the momentum change term in the cosmic-ray continuity equation (1.3.5) 

associated with <i'>, as being due to adiabatic deceleration. A 

further discussion of this matter is given in Chapter 7. 

The differential number density U (rt), defined in a 

fixed frame is a more useful quantity than U* (r,p,t) since all 
P — 

observations are made from the fixed frame. These densities are 

related by (Jokipii and Parker, 1967; Gleeson and Axford, 1968a; 

Forman, 1970). 

U (r,p,t) = U* (r,p,t) [1 + 0(c) ] 
	

(1.3.8) 

where = (pV2 /v2 ) ID tn(U )/ap 	<<1, (v is the particle 

speed). Hence when c << 1 the differential number density as measured 

in the fixed frame U (r,p,t) will satisfy Equation (1.3.4) and it 
P 

can be used to calculate the differential number density in the fixed 

frame of reference, i.e., for c << 1 we have 

3U 	 1 
+ V (VU -K . 	)- —(V . V) — (p U ) = 0, 

at 	P 	P 	3 
(1.3.9) 

as the equation of transport. 

Alternative derivations of the transport equation (1.3.9) 

have also been given by Gleeson and Axford (1967), and by Dolginov 

and Toptygin (1967, 1968). Gleeson and Axford derived the transport 

equation (1.3.9) from the Boltzmann equation in a spherically symmetric 

model of the interplanetary medium. 	In this model the cosmic-rays 

undergo isotropic, hard-sphere scattering with scattering centres 

embedded in a radial solar wind. Dolginov and Toptygin derived the 
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equation of transport from the Boltzmann equation for a hard-sphere, 

small angle scattering model, but their results do not assume 

spherical symmetry about the sun and hence they are able to incorpor-

ate correctly the Archimedean spiral magnetic field (and hence aniso-

tropic diffusion) and the effect of a non radial solar wind velocity. 

These latter authors also derived the transport equation directly 

from Liouville's theorem, for the case of small angle scattering, 

with special forms for the two point correlation tensor of the irregu-

lar component of the interplanetary magnetic field, and for a general 

non-spherically-symmetric model. 

Gleeson and Axford, and Dolginov and Toptygin also derived 

an expression for the differential current density or streaming S 
-P 

per unit momentum interval. Their result can be written as 

S 	= CVU -K.VU, 	(1.3.10) 
-1) 	- P 	P 

where 

	

1 	3 
C = 1 -

• 

	

3 U 	3p `11  upl' 	(1.3.11) 

is the Compton-Getting factor (Compton and Getting 1935, Gleeson 

and Axford 1968a; Forman, 1970) and x is the diffusion tensor. In 
the work of Gleeson and Axford (1967), the diffusion tensor is 

replaced by a radial diffusion coefficient K. Gleeson (1969) has 

obtained the streaming (1.3.10) for a general, non spherically 

symmetric model by generalising the earlier results of Gleeson and 

Axford (1967). We note here that Gleeson and Axford (1968a) and 

Forman (1970), have shown that the Compton-Getting factor C and the 

convective flux C V U are consequences of transforming the streaming 
P 

from the solar wind frame of reference to a stationary frame of 

reference taking into account the momentum spectrum of U . 
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Although the diffusion tensor arises naturally in the 

development of the transport equations using the Boltzmann equation, 

or the Liouville equation development of Dolginov and Toptygin, or 

by using the physical arguments of Jokipii and Parker (1970), these 

treatments do not give the detailed dependence of the diffusion tensor 

on the statistical properties of the interplanetary magnetic field. 

The diffusion tensor K occurring in the transport equations (1.3.9) 

and (1.3.10) is in general derived from the theory of the propagation 

of charged particles in stochastic electromagnetic fields. This 

theory has been developed for both the propagation of cosmic-rays 

in the interstellar medium and in interplanetary space. 

There is an important difference btween the cosmic-ray inter-

action with the magnetic field in the interstellar medium and in 

interplanetary space. In the former case the energy densities of the 

cosmic-rays and magnetic field are approximately the same, and the 

effect of particles on the fields (through emission and absorption 

of various waves) must be taken into account. This requires a self-

consistent solution of the full set of Maxwell-Vlasov equations (e.g., 

Lerche, 1967; Kulsrud and Pearce, 1969; Melrose and Wentzel, 1970). 

The magnetic field in interplanetary space is carried by 

the solar wind. Its energy density is roughly equal to the thermal 

energy density of solar wind particles and is much larger than that 

of cosmic-rays. In contrast to the situation in interstellar space, 

the effect of the cosmic-rays on the magnetic field is negligible, 

and the particles may be assumed to propagate in a given although 

complicated 'external' field (Kaiser, 1973). 

Another characteristic feature of the interplanetary magnetic 



2uT3sn3onTj 	o3 anp aT0T31sd uo wain zwaiol aq3 tioTtim uT 

ainpanoid 1 dea3s wog, 	sT 31 'maojTun ATTeT3vds aq o3 pamnsse sT 

pTaTj 0T3au8sm a2u1arte alp 3noq Xaq sT uoT3emTxo1dde 3s1Tj 

alp uT 3Tqao aToTlied aq3 Aiosto sTql u1 10a1100 wags pTnom 4C10a43 

aeauTTTsenb 'Aea-oTmsoo uaAT2 Aue jo ads amid jo tionm loa 

'suoT3en33nTj 3T3au2em alp jo saT31ad 

-old TepT3sT3e3s aq3 o3 pa3rTai uati3 918 9AUBTOTjja00 uoTsnjjTp emir 

mn3uamom au .AavuoTle 3 8 8T PT 8T3 3T33u2em AirlaurTd1a3uT aftaaAu 

tioTtim UT anuaaajai jo ameij e UT sAva-oTmsoo aql jo uoTleftdoid 

alp lapTsuop o3 eT saTpnls 9s3g3 UT ainpapoid Tiensn au . (TL6T 

'slex pue uemioa !Ufa 'IL6T '0Auatin1mpleZ  !696T 'cL8961 'laved 

Pue TTdTliof .!896T g1a2uTTp1eaN !cli7L6T 'e7L6T 'Emem0 ti7L6T "Tv'q8 

uumioa 	q g eliL6T 'EL6T 'TleS !ctEL6T 'Aquano 	qqam ts7L6T ' 8113181 

!VL6T qpin f.896T 'L96T uT21(2d0I pue  AouT2Toa !7C6T "P'qa ABTA 

!EL6I 'ZL6T ''EL6T 'TIPueS Pue setaTTI !VL6T "lr"qa 	!EL6T 

' flOA !E46T 'egplaq pue TTdT10f !EL6I "27rqe 198TeX !ELIT 'aesTeX 

!cIEL6T 'REL6T 4. 119 . q9 139110f !OM '8961 'zuaiaqqTm pur usmTassell 

!L961 'Ap031n3  S Pue Trell !VL6T 'ZL6T 'IL6T ' 148961 "2961 'L961 

'9961 'TTdPlof !$396T '9961 'JoTaoll "2.a) siomlne jo aaqmnu a2asT 

Aq ATaATsuawca paTpn2s uaaq sqatiTsuMP sT uoT2e2edo1d aT3T31ed 

843 IPTIlm lapun suompuon aq Pue 'P.M;  3T3au2em Aiel‘aueTdia3uT 8143 

UT s3r3T31ed paimp jo anoTAegaq aql jo uoTly2T3s3AuT 

'3uapuad3puT- emT3 ATM wags° By papae231 aq Arm 

PTT j oT33u2em t4Z 'puTm aeTos aq3 43Tm 2uTAom anualajal jo ameij 

UT 8011OH *JTOSAT puTm aq3 jo uvq3 leTTeme  gonm sT puTm alp 

o3 aAT3sTai paads asotim 'swarm uaAjTy AO g EMSETd AUTOS waTnqin3 

alp UT 2uT3ruT2T10 puTm isTos alp oluT uazoij sa1n33na3s oT3s3s 

lalma ale pTaTJ 2y/3one at MOIJ sa1n31sd3p 3 .6113 33ej aq3 sT pTaTg 

•ST 



16. 

magnetic field is evaluated according to q /0  (T) x 8 B(r0 (T)), 

where (r (T), v (T)) is the particle trajectory neglecting the —o 	—o 

effects of the fluctuations. When the interaction is weak, that is, 

the cosmic-ray moves out of a region of statistically correlated 

613 before the fluctuating field largely affects its orbit, the 

particle trajectory does not differ significantly from r (T), 	(T) 

and the approximation is a valid one. However, there are regions 

of phase space for this problem, such as 90 0  pitch angle with respect 

to the average background magnetic field, where the duration of an 

interaction is arbitrarily long, and the theory is therefore generally 

thought to be invalid. It is for these regions of phase space that 

non linear theories have been proposed (e.g., Kaiser, 1973; Kaiser 

et.al ., 1974; Jones et.al ., 1973a, 1973b; Volk, 1973; Volk et.a/.,1974). 

After the momentum-space diffusion coefficients have been 

derived the spatial diffusion coefficients parallel and perpendicular 

to the average magnetic field, K li and 1(1 , can be obtained by 'coarse 

graining' the momentum space description over directions of momentum 

it. 	However there Is a further anti-symmetric component of the 

diffusion tensor, KT , which cannot be obtained by this procedure and 

it is necessary to adopt another technique. Physically the term K T  

provides the current density known as the perpendicular gradient drift. 

A technique to obtain the complete diffusion tensor using 

the quasilinear theory has been developed by Forman et. al. (1974) 

and they show that in the weak scattering limit the diffusion tensor 

0 r I I 0 

0 

K. 

-K
T 

0 

K
T 

(1.3.12) 

when written in components parallel and perpendicular to the magnetic 
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field. In this model the diffusion coefficients K
11' 

K and K
T 

can be expressed in terms of collision times T 11  and T 1  parallel 

and perpendicular to the mean magnetic field, and if the scattering 

is weak, i.e., w
1
>> 1, W T

1 
 >> 1, 

then 2 
v T il  v2  

K 	- K
11 	

- 3 	' 2 1 	, 
3 wT 	(1.3.13) 

Vr 	1 v2 
K
T  

- = 	= 	-.13. 
3 

3w
2 

where 	= qB/m is the gyro-frequency, r g  is the gyro-radius 

and v is the particle speed. 

The collision frequencies 1/T 11 and 1/T 1  in this model are 

related to the power spectrum tensor of the magnetic field irregular-

ities. The collision frequency 1/T 11  is determined by components of 

the power-spectrum tensor at the resonant wave number k = 1/(r cos 0) 

where 0 is the particle pitch angle relative to the average magnetic 

field. The collision frequency 1/T 1  contains a resonant scattering 

term plus a term which represents the power in the magnetic field 

at zero wave number, i.e., k = 0. The power in the magnetic field at 

zero wave number is usually associated with random walk of the mean 

magnetic field (Jokipii and Parker, 1969). 

In typical interplanetary conditions, the condition w T 1  >> 1, 

> 
requires the particle rigidity - 800 MV, or proton kinetic energy 

< 
- 320 MeV, and at these rigidities

' 
 I(1 /K

1I 
- 0.08. At present there 

is no adequate theory available for K and K
T 
below the weak perpendi-

cular scattering limit (Forman et.cd., 1974; Forman and Gleeson, 

1975). It should be noted that the weak scattering condition 

W T 11  >> 1 for the validity of the derivation of K II 
is fulfilled 
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at all energies under typical interplanetary conditions. 

We note that the form of the diffusion tensor (1.3.12) 

had been obtained in the less general analysis of Parker (1965), 

Jokipii and Parker (1969b), Dolginov and Toptygin (1967, 1968) and 

Gleeson (1969). In particular in the small angle scattering models 

of Dolginov and Toptygin (1967, 1968) and the isotropic scattering 

model of Gleeson (1969) with average collision time T, the diffusion 

coefficients are 

= v
2 

T/ 3, K
11 

2 2, 
= K

11
/ (1 + w T 19 

_  
w 

 2,2 ) 
= w TIC 3 	( 	 

l+w2 T
2 

 

(1.3.14) 

In the weak scattering limit, W T >> 1, and the diffusion coefficient 

K is identical to the result (1.3.13) obtained by Forman et. al. 

(1974). 

The above completes our resume of the development of the 

transport equations for cosmic-rays in the interplanetary medium and 

the relation of the diffusion tensor to the properties of the inter-

planetary magnetic field. 

The most extensive and complete studies of the eleven-year 

solar-cycle modulation of cosmic-ray intensity (see Section 2) have 

been carried out by means of spherically-symmetric, steady-state 

solutions of the equation of transport (1.3.9). In these models the 

solar wind is assumed to be radial, and the diffusion tensor is re-

placed by an effective radial diffusion coefficient. 

= K
II 

CO 2 0+ K1 
 sin

2 
0, 

rr  
(1.3.15) 

where 0 is the angle between the outward spiral magnetic field and 

the radial direction. 
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In this thesis we elucidate the basic physical processes 

governing the steady-state propagation of cosmic-rays in inter-

planetary space for spherically symmetric models by using analytic 

solutions of the equation of transport. We remark that at present, 

there is no systematic study of non-spherically symmetric models for 

steady-state propagation incorporating the effects of the complete 

diffusion tensor (1.3.12). 

In the next section we outline the models and solutions of 

the equation of transport that have been developed to describe the 

propagation of cosmic-rays in the interplanetary medium. 

1.4 Solutions of the transport equation  

Since Parker (1965) first obtained the equation of transport 

(1.3.9) considerable effort has been expended in obtaining solutions 

of the equation, with the intention of illustrating and elucidating 

the physical implications of the observed cosirnic-ray intensity vari-

ations and anisotropies. 

There are two basic types of cosmic—ray phenomena usually 

described by the transport equations, namely, the solar-flare events 

and the quasi-steady solar-cycle modulation. 	Solar-flare events are 

described by the full time dependent equation, of transport after the 

initial flare. The typical time scale for diffusive and convective 

effects are of the order of seconds whereas the time scale associated 

with the eleven-year modulation is of the order of 10 8 seconds. Thus 

the eleven-year solar-cycle modulation Is adequately described by 

quasi-steady-state solutions of the transport equation (1.3.9). 

Time-dependent solutions of the equation of transport (some 
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analytic, some numerical) have been obtained by Fisk and Axford 

(1968), Englade (1971a), Forman (1971a, b), Lupton. and Stone (1971, 

1973), Webb and Quenby (1973a), Ng (1972), Ng and Gleeson (1971a, 

1971b, 1975). Probably the most complete model at present for the 

propagation of solar-flare particles is that of Ng and Gleeson (1975) 

Excellent and extensive reviews of this earlier tune-dependent work 

have been given by Axford (1970a, 1970b) and Wibberenz (1971). 

Insight into the quasi-steady-state solar-cycle modulation of 

galactic and solar cosmic-rays has come from solutions of the transport 

equation (1.3.9), which includes the effects of convection, diffusion 

and particle energy changes. Observational evidence for the necessity 

to include the effects of energy changes in the ecp_iation of transport 

when discussing the quasi-steady modulation of the cosmic-ray intensity 

has been provided by Webber (1969) and Lezniak and Webber (1971), from 

an examination of a modulation parameter relevant to cosmic-ray fluxes 

at times t 1 and t2. They found that at kinetic energies below 100 

MeV/nucleon this modulation parameter plotted as a function of rigidity 

P splits into a separate curve for each species. This splitting is 

contrary to the predictions of convection-diffusion, theory without 

energy changes; but it is present in solutions of the steady-state 

equation of transport including the effects of energy changes. 

In the following paragraphs we discuss various steady-state 

solutions of the equation of transport which have been obtained and 

used to describe the eleven-year modulation of galactic cosmic-rays. 

1.4.1 	Steady-state, spherically-symmetric analytic solutions  

The complete steady-state equation of transport (1.3.9) cannot 

in general be solved analytically. Most solutions have been obtained 
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for spherically-symmetric models. 

Prior to the work of this thesis, Parker (1965, 1966), Dolginov 

and Toptygin (1967) and Fisk and Axford (1969) obtained analytic, 

spherically-symmetric solutions for idealised interplanetary conditions: 

the solar wind velocity V was assumed to be radial and constant, and 

the effective radial diffusion coefficient K has restricted functional 
rr 

dependence on heliocentric radius r and momentum p. 

Parker considered thecase K = constant, and steady release of 
rr 

monoenergetic particles from a free escape boundary at radius r = R 

(the solar cavity boundary). He obtained and evaluated a series for 

the differential number density U near r = 0. The results showed 

(for the first time) the effect of energy changes on the propagation 

of cosmic-rays in the solar cavity. Further solutions of this type 

for K = K
o
(p)r

b
, where K(p) is an arbitrary function of momentum p 

rr 

are presented in this thesis (Section 1.5). 

The solutions of Dolginov and Toptygin (1967) and Fisk and 

Axford (1969) show the redistribution of galactic cosmic-rays within 

the solar cavity for a galactic spectrum which is a power law in 

momentum p or kinetic energy T. Such galactic spectra are quite 

realistic at kinetic energies above 1 GeV/nuc for nuclei (Figure 1.2) 

and for T > 1 GeV for electrons. (Figure 1.3). In the solution of 

Dolginov and Toptygin, the differential number density U is a cut-off 

power law spectrum at the boundary of the solar cavity, i.e., 

p > ps , (A constant) 

U(RP) = 
0 	0 < p < p

s
, 

and the radial diffusion coefficient K = constant, within the 
rr 



22. 

modulation region 0 < r < R. The solutions of Fisk and Axford (1969) 

were obtained for a more realistic diffusion coefficient of the 

-form K = K
c 

p
a 

r
b
, where K, a and b are constants with b > 1 and 

rr 	c  

K
c 

> 0. 	These latter solutions were obtained for the case where the 

boundary of the solar cavity was taken to be at infinity, and the 

differential number density U satisfied the boundary conditions: 

(i) U 4 A p 	as r 	=, and 

(ii) U is finite as r 	0. 

The above analytic solutions were quite useful for illustrating 

the redistribution of particles in momentum with heliocentric radius, 

and the effects of varying the diffusion coefficient K 	the 

solar wind speed V in modulation models. Amore detailed study of 

the modulation process has subsequently been carried out by means of 

approximate analytic solutions and numerical solutions, as discussed 

in the following subsections. 

1.4.2 Spherically-symmetric numerical solutions. 

Methods for obtaining spherically-symmetric numerical solutions 

were initially developed by Fisk (1969) and by Urch (1971), and 

solutions obtained numerically on computers have been used by, for 

example, Gleeson and Urch (1971), Lezniak and Webber (1971), Goldstein 

et.cd. (1970b) and Urch and Gleeson (1972a, 1972b). 	Most of the 

important physical phenomena have been discovered by means of these 

numerical solutions. 

The numerical solutions are carried out by specifying the 

galactic differential number density U
T 

(R,T) at a certain radial 

distance r = R, representing the boundary of the solar cavity. We 

note here that only the galactic electron spectrum is known in these 
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models, and this has been deduced from the galactic non-thermal radio 

background radiation.(Goldstein et.a. 1970b; Burger 1971). Boundary 

conditions on the number density U T  or the differential streaming S T  

are specified at a boundary near the sun, and the solar-wind speed, 

V(r), is usually assumed to be radial and essentially constant except 

near the sun where it decreases rapidly to zero at one solar radius. 

Diffusion coefficients are then determined which give the best 

match between calculated intensities and those observed at Earth at 

a specific time. The procedure adopted at present is as follows: 

From electron spectra observed near-Earth and the galactic electron 

spectrum inferred from the non-thermal radio noise from the galaxy, 

trials are made to determine a diffusion coefficient (particularly its 

energy dependence) at each specific time. 

In order to check the modulation model, spectral forms for the 

galactic proton and helium nuclei are chosen which lead to a match 

with the near-Earth spectra during a particular epoch (note that there 

is no direct information about the galactic proton and helium nuclei 

spectra). The near-Earth proton and helium spectra are then predicted 

for different epochs by using these galactic spectra, and the 

diffusion coefficients deduced from the electron observations. Once 

the diffusion coefficient K
rr 
 and the galactic spectra U

T
(R

'
T) are 

known the modulation is determined. So too are other physical 

quantities of interest. 

1.4.3 Three dimensional solutions 

At the Denver International Conference on Cosmic-Rays (1973), 

there was an increased acceptance for the need for three-dimensional 
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models of the modulation (Quenby, 1973). Early indications of the 

probable need for these models was recognized by Parker (1964), 

Krimsky (1964), who considered the effects of a non-spherical solar 

cavity with a boundary closer to the sun at high heliocentric latitudes. 

Subramanian and Sarabhai (1967), suggested that the second harmonic 

of the diurnal variation was due to rising off-ecliptic gradients due 

to a latitude dependence in solar activity. However, Lietti and Quenby 

(1968), were able to account for the variation with no heliolatitude 

dependence of the modulation parameters. 	Owens and Jokipii (1971) 

obtained an approximate analytic solution of the transport equation, 

depending on radial distance r, heliolatitude 0, and the kinetic energy 

T, for a radial magnetic field, finiteK i  and with a latitude dependence 

of K 11  and V, and used it to investigate the particle flow (i.e., the 

anisotropy). 	Belov and Dorman (1969, 1971) have also obtained analytic 

non spherically-symmetric solutions of the equation of transport, which 

describe the modulation of cosmic-rays in a region of space enclosed 

by a cone centred on the sun. In these models, the diffusion coeffic-

ients inside and outside the cone are different, and they simulate 

the effects of the asymmetry in solar activity. 

Some numerical solutions of the transport equation for three 

dimensional models have been explored (Dorman and Milovinova, 1973; 

Dorman and Kobylinksi, 1973; Fisk, 1973). At the just concluded 

Munich International Conference (1975) only four papers on three-

dimensional models were delivered (Moraal and Gleeson, 1975; Cecchini 

and Quenby, 1975; Fisk, 1975; Dorman and Milovinova, 1975). 	As yet 

no systematic study of the properties of such models has been carried 

out. When available such studies should result in a more comprehensive 

picture of cosmic-ray propagation in the solar cavity. 
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1.4.4 	Approximate analytic solutions 

Computer based numerical solutions are time consuming to obtain, 

costly and do not readily show the dependence of the solution on 

the parameters. Approximate analytic solutions provide in a ready 

form, the modulation, its dependence on the parameters of the problem 

and associated quantities such as the gradient with sufficient accur-

acy for the purposes at hand. 

The simplest approximation is to use the convection-diffusion 

solution of Parker (1958b) (Equation (1.3.2)), i.e., to include con-

vection and diffusion processes but exclude energy changes. 	This 

provides a simple and powerful means of rough analysis. 

Gleeson and Axford (1968b, 1968c) have obtained two useful approx-

imate steady-state solutions of the spherically-symmetric equation of 

transport which are valid when the modulation parameter Vr/K(r,p) 

[ K(r,p) is the effective radial diffusion coefficient] is sufficiently 

small, i.e. Vr/K(r,p) << 1. 	In these solutions the spectrum is 

specified at the boundary of the solar cavity at r = R by UT (R,T). 

The first solution (Gleeson and Axford, 19680, is obtained by 

solving the equation of transport by an iterative technique. The 

solution to 0(Vr/K) is 

UT (r,T) = UT (R,T) 
2+ay 

IR  V(x)  

[1 
	dx + 0

(Vr)2 ] 
3  r K(x,T) 	K 	' 

where 

= - atn[i T (R,T)]/3T, 

a = (T + 2E0)/(T + 

and J T (R,T) = v UT (R,T)/41T is the differential intensity spectrum 

on the boundary. From this last result we see that for realistic 
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power law spectra on the boundary (y q,  2.6), that the cosmic-ray 

intensity is reduced below its interstellar value due to solar modu-

lation. A further feature of this approximate solution is that the 

differential current density 
2 

S
T 

= C V U
T 
- K a U

T
/ Dr, 

(Equation (1.3.10) is zero to 0(Vr/K). 

This latter observation that the differential current density is 

zero to 0(Vr/K when Vr/K<< I led to the development of another approxi-

mate analytic solution known as the force-field solution (Gleeson and 

Axford, 1968c). It is obtained by setting the radial differential 

current density 

aF 	aF ) 
0 v. 	o 2 ( 	

+ 	* ar 	3  aP 
S = 	4P K  

(Equation (1.3.10) equal to zero, so that 

aFo 	Vpv DF
o + 0. 3r 	3K 	Dp 

This latter equation is known as the force-field equation, and it has 
aF

o the form of a one-dimensional steady-state (— = 0) Liouville 
at 

equation, with the quantity Vpv/(3K) having the dimensions of force. 

We note that Freir and Waddington (1965) observed that the modulation 

could be reproduced by assuming galactic particles lost energy in a 

force-field. 

The force-field equation has the solution 

F
o
(r,p) = F

o 
(R, p*), 

where p*(r,p,R) is obtained by integrating the characteristic equation 

LIE . 	EY_ 
dr 	3K ' 

from the point (r,p) to the point (R, p*) where the characteristic 

curve cuts the boundary at r = R 	(Urch and Gleeson, 1973). 
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The force-field solution only holds for a sufficiently 

smooth galactic spectrum, and at sufficiently small Vr/K(r,p). Urch 

and Gleeson (1972a) have argued that under typical interplanetary 

conditions, the force-field approximation is probably valid down 

to kinetic energies of 150 MeV/nucleon. We remark that the force-

field solution has proved to be a powerful tool when used in conjunct-

ion with numerical solutions in investigations of the modulation 

process. 

1.5 	The fundamental role of monoenergetic solutions  

The solutions which are investigated in detail in this thesis 

are the monoenergetic-source and monoenergetic-spectrum solutions 

of the steady-state equation of transport. By a monoenergetic-source 

solution we mean that monoenergetic cosmic-rays are injected at a 

steady rate into the interplanetary medium from some fixed heliocentric 

position, whereas in a monoenergetic-spectrum solution, the differ-

ential number density, U , is specified to be a monoenergetic spectrum 

on some boundary. Note that the monoenergetic-spectrum solution is 

quite distinct from the monoenergetic-source solution in that there 

are no sources within the region of position-momentum space for which 

the solution is valid. 

These solutions do not necessarily attempt to fit any given 

observation, but they give very useful insight into the physics 

involved in the modulation process. Solutions in which the boundary 

spectra or sources are not monoenergetic do not display the physics 

so clearly since the resultant redistribution of particles in momentum 
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and position is the combined result of the transport processes and 

the boundary and source conditions. 

The most basic solution is that in which monoenergetic particles 

are released at a steady rate from a fixed heliocentric radius and 

the resulting distribution in energy or momentum is determined as a 

function of position within the solar cavity. Except for a limited 

case noted below, such analytic solutions were first obtained inde-

pendently by Toptygin (1973) and the present author. 

The exception noted above is a solution obtained by Parker (1965, 

1966). He took the case of constant radial diffusion coefficient, 

i.e., K = constant, a constant radial solar wind velocity, V, and 

steady release of monoenergetic particles from a free escape boundary 

at radius r = R (i.e., a monoenergetic-spectrum solution). Numerical 

solutions have also been obtained for the distribution within the 

solar cavity with a boundary at r = R and the differential number 

density there specified to be a narrow Gaussian distribution in kinetic 

energy with half width — 10% of the mean kinetic energy (Goldstein et. 

al. 1970b; Urch, 1971; Gleeson and Urch, 1971). This Gaussian 

distribution represents a monnenergetiC galactic spectrum. This 

numerical work probably shows the redistribution of particles well, 

but it is an approximation and restricted in that, 

(i) the spectrum at r = R is near monoenergetic, 

(ii) extension of the calculations to very law energies has not 

been carried out because of accuracy considerations, and 

• 
(iii) it is not feasible to examine a wide range of parameters. 

These deficiencies are not present in the analytical solutions studied 

in this thesis. 
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We consider in detail models in which the effective radial 

diffusion coefficient K = K0 (p) r
b
, where K0 (p) is an arbitrary function 

of momentum p, and the solar wind velocity V is assumed to be radial 

and constant. We set out below the solutions which we use most intens-

ively in Chapters 8 and 9 to study the modulation. 

With the above model, the spherically-symmetric monoenergetic 

source solution in which: 

(1) particles of momentum p c)  are released at a steady rate of 

N per unit time from a spherical surface at radius r o ; 

(ii) the momentum average distribution function F o (r,p) + 0 as 

r + 

(iii)Fo  is finite as r + 0; 

for the case b 0 1, and given in terms of F
o 

is: 

	

(x 	x2 	
( x241c2) 

F
o  

)n o 	
o 

exp 	4T 
	 I

m 2T 

(x x 
3 N 	o 	

). 

2 	3 2 	x 	T  
64 n v po  ro  In+11 

(1.5.1) 

Here I
m
(z) is a modified Bessel function of the first kind, 

= 2(r p
3/2

)
(1-b)/2 

/ (1-b), 

n = (b+1)/(1-b), 	m = 	ml 

T = 3 fPn  K (z) z
(1-3b)/2dz/(2V), p o 

(1.5.2) 

and x
o 
= x(r,  , p0). The above solution is degenerate in the case 

o  

b = 1 and in this case 

F - exp x-x
o  4T  IT 	
T (x-x) 3N 	1 	o  

64 w 5/2V 3 2  
Po o 

with x = - 141(2r
2
p
3 )/2 is the appropriate solution. The solutions 

(1.5.1) and (1.5.3) are derived in Chapters 3 and 4 and the solution 

(1.5.1) is used in Chapter 9 to study the propagation of monoenergetic 
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solar cosmic-rays. 

The above monoenergetic-source solutions can be used to derive 

a monoenergetic-spectrum solution for galactic cosmic-rays (Chapter 6) 

in which: 

(i) U + N
g 
 6(p-p0) as 	r 4. m. , 

P  

(ii) U is finite as r + 0; 
P 

(iii) the diffusion coefficient K = K0 (p) rb , where K(p) is an 

arbitrary function of momentum p and b > 1. 

In terms of F
o 

it is given by 

3 N K (p ) -3(1+b)/2 g 	p 	1 12\m 
F
o  

o o o 	-x
2 

8 1 V r(m) 	T /4T) 	
exp (TF- ) 

(1.5.4) 

a fairly simple expression, the r dependence of the solution being in 

x and the p dependence in both x and T. Here r(m) denotes the gamma 

function of argument m. 

As an example of the usefulness of these solutions we display 

below some of the principal features of the monoenergetic-galactic-

spectrum solution (1.5.4), which we have reproduced from Chapter 8. 

We consider the case K = K
c 

p r
b
, with K

c 
constant and b > 1, in which 

3 
case (p

o
/N

g
) F

o 
is a function of the dimensionless variables p/p

o 

and Vr/K(r,p0 ). 

Figure 1.4 shows (p
3/N ) F vs p/p

o 
for b = 1.5 and values 

o g o 

0.01, 0.1 and 1.0 of the parameter Vr/K(r,p 0). 

Since the solution depends on p/p o  and Vr/K(r,p 0) the curves 

for different Vr/K(r,p 0) show: 

(i) the redistribution of monoenergetic galactic cosmic-rays 

in momentum at various heliocentric radii; 
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FIGURE 1.4  - The momentum spectrum of the distribution 

function Fo (r,p) for a monoenergetic galactic 

spectrum at infinity, i.e.,U 	N
g 
 15(p-p 0) as 

P  
r =. The figure is drawn for a diffusion 

coefficient K(r,p) =K
c
pr

1.5
, and values 0.01, 

0.1 and 1.0 of the parameter Vr/K(r,p 0). It 

has been reproduced from Figure 8.1 in Chapter 8. 
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(ii) the effect of varying interplanetary conditions through the 

parameters V and K
c on the distribution at fixed r; 

(iii) the effect of varying the source momentum po  for fixed V, 

K
c and r. Thus the solution shows the basic features the propagation 

of monoenergetic galactic cosmic-rays in the solar cavity for a wide 

range of parameters; the features could of course be obtained with 

numerical solutions, but it would be much more difficult to display 

the features for such a wide range of parameters. 

The monoenergetic-galactic-spectrum solution (1.5.4) can also 

be used to study the modulation of galactic cosmic-rays from a general 

galactic spectrum. For cases where the galactic spectrum is specified 

at infinity to be Fo  (=, p c)), the distribution at (r,p) is 

Fo (r,p) = 	fp  F(=, po) G(r,p;p 0) dpo . 	(1.5.5) 

Here the Green's function G(r,p;p 0) is the solution of the equation of 

transport for Fo (r,p) for a monoenergetic spectrum at infinity, i.e., 

G(r,p;p0) 4 6(p-p) as r 	=. 

From the monoenergetic-galactic-spectrum solution (1.5.4) the 

Green's function is given by 
(1-3b)/2 3 K(p) Po 	1 (x2 ) m 	- x

2 
G(r,p;p0) = 

2 V r(m) 	T 4T 	exp 	— 
4T • 

(1.5.6) 

The Green's function is of fundamental importance in modulation studies 

since it contains the modulation properties of the interplanetary 

region independent of the galactic spectrum (Chapter 8). 

Further examples of the usefulness of these solutions are given 

in Chapters 8 and 9. We remark that in regard to the steady-state 

propagation of monoenergetic solar cosmic-rays, that previous studies 

have been carried out by Urch and Gleeson (1971) by means of numerical 
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solutions and by Toptygin (1973) who used an analytic solution. 

These studies however are less extensive than the present study, and 

they do not display fully the physical processes. 

The above completes our discussion of the role of monoenergetic 

solutions in modulation studies and in the next section we indicate 

in more detail the subject matter of this thesis. 

1.6 	Outline of the present thesis  

As noted in the Summary, this thesis is a theoretical study of 

the steady-state propagation of galactic and solar cosmic-rays in the 

interplanetary medium. The thesis can be roughly divided into three 

sections: 

(i) The derivation of analytic monoenergetic-source and 

monoenergetic-spectrum solutions of the steady-state equation of 

transport and the relation of these solutions to previously obtained 

analytic solutions (Chapters 2-6). 

(ii) A clarification of the energy changes experienced by 

cosmic-rays in the interplanetary medium (Chapter 7). 

(iii) In Chapters 8, 9 and 10 we use the solutions developed 

in Chapters 2-6 to verify the principal known features of steady-

state cosmic-ray propagation in the solar cavity as well as eluci-

dating various features of the transport processes which have hitherto 

not been displayed. 

Examples of new results obtained from this study are: 

(a) the particle flow and momentum changes in position-momentum 

space of monoenergetic galactic and solar cosmic-rays by using the 
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results developed in Chapter 7. 

(b) 	the modulation properties of the interplanetary region independ- 

ent of the galactic spectrum are displayed by use of the Green's 

function G(r,p;p0) occurring in the general galactic spectrum solution 

(1.5.5). 

We now discuss briefly the contents of each chapter, and their relation 

to previous work. 

In Chapter 2 we initially investigate the conditions under which 

the steady-state equation of transport is separable. The motivation 

for this study was an attempt to generalise the result obtained by 

Jokipii (1967) and used by Fisk and Axford (1969), that the steady-

state equation was separable for a diffusion coefficient 

K(r,p) = Kc  P/  rb , 

where K
c
, and b are constants and the solar wind velocity V is 

assumed to be radial and constant. We find that the equation is sep-

arable for a model with a radial magnetic field, a diffusion tensor 

(1.3.12) specified by 

K I I = K
0 (p) rb , 	K4/K II  = constant, 

 

T  
;lcT 

	

ao 	po  = 
o, 

(1.6.1) 

where K0 (p) is an arbitrary function of momentum p and the solar wind 

velocity V is radial and constant. Here (r,0,0) are spherical polar 

co-ordinates centred on the sun, with the polar axis along the sun's 

rotation axis. We note again that the effects of anisotropic diffusion 

can be incorporated in spherically symmetric models by defining an 

effective radial diffusion coefficient as in Equation (1.3.15). 

Having separated the steady-state equation of transport with a 
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constant radial solar wind velocity V, and the diffusion tensor (1.6.1), 

we proceed to study the symmetries or group properties of the separated 

equation. We then use these properties to derive analytic, similarity 

solutions of the separated equation. 

In Chapter 3 we use the similarity solutions and the group pro-

perties of the equation of transport given in Chapter 2, to obtain 

monoenergetic-source solutions. In these latter solutions, particles 

of momentum po , say, are released at a steady rate from a spherical 

surface or a point at radius r o •located within the solar cavity. We 

note that the spherically-symmetric monoenergetic-source solutions 

have been derived independently by Top tygin (1973). 

In Chapter 4, the monoenergetic-source solutions of Chapter 3, 

and the monoenergetic-galactic-spectrum solution (1.5.4) in which we 

specify a monoenergetic spectrum at infinity, i.e., U -0- N 6(p-p 0 ) 

as r -0- 0., and U is finite as r 0, are obtained by using a Laplace 

transform technique. We remark that the solutions of Chapter 3 are 

rederived in Chapter 4 by the Laplace transform technique, because it 

is more widely known and more easily understood than the group method. 

In Chapter 5 we use the similarity solutions of Chapter 2 to 

derive spherically symmetric Green's functions, with the intention 

of obtaining solutions in which we can specify the spectrum on two 

boundaries at heliocentric radii r = r
a 

and r = rb . The Green's 

function is the solution for a monoenergetic source of momentum po  

at radius r
o 

and in general with the mean distribution function with 

respect to momentum, Fo , equal to zero at the boundaries r = r a  and 

r = rb . 

In Chapter 6 we obtain analytic solutions in which we specify 



36. 

the spectrum at boundary radii r = r
a 

and r = r
b. 

We also obtain 

the galactic spectrum solution (1.5.5) in which a general spectrum 

is specified as r cp, and we use this latter solution to obtain the 

solutions of Fisk and Axford (1969). These solutions are obtained by 

establishing an appropriate Green's theorem and using the Green's 

functions of Chapter 5. We remark that the Green's theorem technique 

used to obtain these solutions is similar to solving the one dimensional 

heat flow equation by Green's theorem. 

In Chapter 7 we consider the momentum or energy changes of 

cosmic-rays in the interplanetary medium. It was noted by Gleeson 

(1972) and Quenby (1973) that the mean-time-rate-of--change of momentum 

<15> for cosmic-rays in interplanetary space reckoned for a fixed 

volume in a reference frame fixed in the solar system is 

p V 	DU 
<p> = — 	--P- 

3U 	• Dr 
p V . G 

(1.6.2) 3 

where G = (DU /Dr)/U , is the cosmic-ray density gradient. The 

result (1.6.2) for <1.3> is implicit in the discussion of energy changes 

by Jokipii and Parker (1967). However these latter authors did not 

show explicitly the role of <P in the cosmic-ray continuity equation, 

and their discussion of energy changes is limited to the case of con-

vective transport, or strong scattering. 

The result (1.6.2) is proved in three ways: 

(i) by a rearrangement and reinterpretation of the equation of 

transport or continuity equation (1.3.9); 

(ii) from a consideration of particle momentum changes arising 

from the scattering analysis derivation of the equations of transport 

by Gleeson and Axford; 

(iii) by a special model in which the cosmic-rays are trapped in 
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magnetic boxes' moving with the solar wind. In this model the 

particles change momentum as they collide with the rigid walls of 

the box. 

The third method is for a convective strong scattering model. 

It is particularly instructive in showing the relation between the 

expression (1.6.2) for <D> and the adiabatic deceleration formula 

<P  = ad  
- 	 v • V, 
3 — • — 

(1.6.3) 

which is the mean rate at which particles of momentum p, change momen-

tum in an individual 'magnetic box'. This model shows that the concept 

of adiabatic deceleration, as applied to cosmic-ray propagation in 

interplanetary space is only valid for convective transport. 

In Chapter 7 we also discuss briefly the mean-time-rate-of-

change of momentum <17)'> of particles with momentum p' specified 

relative to the solar wind frame of reference, and with position r 

specified in the fixed frame of reference. The physical significance 

of the momentum rate <P> has not been understood previously, and it 

is derived in Appendix G, from the transformation of momentum between 

the fixed and solar wind frames of reference. It is shown that 

Parker (1965) and Jokipii and Parker (1970) have misinterpreted the 

energy change term in the cosmic-ray continuity equation associated 

with <p>, due to an insufficient distinction between the two momentum 

rates <1>ad 	and <1.3'>. 

Having established the result (1.6.2) for < 1'3> we then show 

that the rate at which the cosmic-rays gain energy per unit volume 

and over the whole momentum spectrum from the solar wind is 

dW 	
d Pc (r) 

... 	V  	(1.6.4) 
dt 	dr 
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where P
c
(r) is the cosmic-ray pressure at radius r. This result 

was initially obtained by Jokipii and Parker (1967). 

The cosmic-ray particle flow and momentum changes are related 

to each other via the continuity or transport equation (1.3.9). In 

order to elucidate this relation we introduce the concept of a flow 

line in position-momentum space. The flow line is defined as the 

curve whose tangent in position-momentum space is given by the ratio 

of the streaming velocity 

<i> = 	S / U , 	 (1.6.5) 

to the momentum rate <ii> in the fixed frame of reference (Equation 

(1.6.2)), i.e., 

P 

dr 	<f> 
. — 

dp 	<b> • 
(1.6.6) 

We construct flow lines for monoenergetic galactic and solar cosmic-

rays in Chapters 8 and 9. 

In Chapter 8 we study the steady-state propagation of mono-

energetic galactic cosmic-rays by using the monoenergetic galactic 

spectrum solution (1.5.4) in which U 	N ó(p-p0) as r =, and U 

is finite as r 0. 	From the solution we show the redistribution 

of particles with heliocentric distance, the gradients, the particle 

flow and the momentum changes of monoenergetic galactic cosmic-rays. 

We then consider the structure of the particle flow in position-

momentum space for monoenergetic galactic cosmic-rays, and to eluci-

date the relation between particle flow and momentum changes we con-

struct flow lines in (r,p) space. 

The redistribution of particles from a complete galactic 

spectrum at r = = is obtained from the general galactic spectrum 
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solution (1.5.5). We use it to obtain the near-Earth spectra, 

gradients and anisotropies for different types of galactic spectra, 

and it reproduces some of the results obtained with numerical solu- 

tions, such as the relative exclusion of low energy galactic particles. 

We also use the solution to determine the origin within the galactic 

spectrum of particles observed at Earth with given momentum, and we 

emphasize the role of the Green's function in determining the modu-

lation characteristics of the interplanetary region for a specific 

model, independent of the galactic spectrum. 

In Chapter 9 we study the steady-state interplanetary propaga-

tion of solar cosmic-rays by means of the monoenergetic-source solution 

(1.5.1) developed in Chapters 3 and 4. We also construct flow lines 

in (r,p) space for the solution, and when compared with the flow lines 

for monoenergetic galactic cosmic-rays presented in Chapter 8, they 

highlight the differences between the steady-state propagation of 

galactic and solar particles. 

In Chapter 10 we study the redistribution within the solar 

cavity of monoenergetic galactic cosmic-rays in a model having a free 

escape boundary at r = rb , which corresponds to the boundary of the 

solar cavity. This model differs from the previous study in Chapter 

8 where we considered the propagation of monoenergetic galactic cosmic-

rays released from a boundary at infinity. We use this model to 

show the effects of a finite boundary, and we compare it with the 

results obtained in Chapter 8. 

Three papers have been published on the contents of Chapter 8 

(Webb and Gleeson, 1973; Gleeson and Webb, 1974, 1975) and one paper 

on the propagation of monoenergetic solar cosmic-rays from Chapter 9 



40. 

(Webb and Gleeson, 1974). It is anticipated that at least three 

more will be forthcoming. The first will be an extensive version 

of the work in Chapter 7 on the energy changes of cosmic-rays in the 

interplanetary medium, the second will deal with the particle flow 

and momentum changes of monoenergetic galactic and solar cosmic-rays 

from the work in Chapters 8 and 9, and the third will be concerned 

with the development of the monoenergetic-spectrum and monoenergetic-

source solutions from Chapters 2-6. 
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CHAPTER 2 

GROUP PROPERTIES OF THE STEADY-STATE 

COSMIC-RAY EQUATION OF TRANSPORT  

2.1 	Introduction  

In this chapter we study the group properties of the steady-

state cosmic-ray equation of transport (1.3.9). The interplanetary 

magnetic field is assumed to be radial and the diffusion coefficients 

parallel and perpendicular to the field, denoted by K 11 
 and K are 

given by 

K il 	= K0 (p) r
b

, 	KI /K II  = e, 	(2.1.1) 

where e is a constant, K0 (p) is an arbitrary function of momentum p 

and the effect of the antisymmetric component of the diffusion tensor 

(1.3.12), KT , is assumed to be negligible. 

With a source of monoenergetic particles of momentum p o  released 

at the heliocentric position (r 
o 

 , 0 c 
 , 0 ) the steady-state continuity 

o 

equation (1..3.9) governing the differential number density with respect 

to momentum U (r, 6, 0, p) is 

y_ .( 	up  - x . 	up ) - 	. y.  : 14; ( p up) 
= N  o  0  0  6.(r-r) 60-P) 6 (0-0) 6 (p-p0 ). 

r2 
(2.1.2) 

Here K is the diffusion tensor, V the solar wind velocity, LI = cos 0, 
6(z) is the Dirac delta function of argument z, and N is the number 

of particles released per second per steradian from the source point. 
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The density U is related to the mean distribution function 

Fo (r, 0, 0, p) by 

U 	= 4 n p
2 

F
o

. 	
(2.1.3) 

Here Fo is the isotropic part of the distribution function in position 

momentum space. 

In Section (2), we separate the continuity equation (2.1.2) 

for the case where the solar wind velocity V is constant and radial, 

and the diffusion coefficients K
II 

and K are given by Equation (2.1.1). 

The separation variables in this equation are x, t, U  and 0 where 

x is a function of r and p and t is a function of p. 

The separated form of Equation (2.1.2) obtained in Section (2) 

may be solved analytically by the techniques: 

(i) solution by separation of the variables, 

(ii) solution by Laplace transform technique, 

(iii) solution by group methods. 

The simplest method, including boundary conditions is the Laplace 

transform technique. It however requires boundary conditions on the 

curves x = constant, and since x is a function of radius r and momentum 

p, we cannot obtain solutions with boundaries r = constant, except in 

the special cases of r co. 	Thus these solutions although very use- 

ful are more limited than we would like. They are given in Chapter (4). 

The solution by direct application of separation of variables 

in x and t leads to the same solution as the Laplace transform method , 

since the separation function in t is exp(-st) with s the separation 

constant and the resultant integral over s leads to the weighting 
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functions being identified as an inverse Laplace transform. Because 

of this the separated solution is not given in this chapter. 

The group method is the most useful of the above and it is 

developed in the present chapter. It leads to a reduction in the 

independent variables from four to three and to a further partial diff-

ential equation in three independent variables. This latter partial 

differential equation has separable solutions, and for certain special 

types of diffusion coefficients one of the separation variables is a 

function of radius r only. For these special types of diffusion 

coefficients it is possible to specify boundary conditions (e.g., free 

escape) at boundaries r = ra  and r = rb . The solution of boundary 

value problems in which spectra are specified at radii r = ra  and r = rb  

is developed in Chapters (5) and (6). 

In Section (3) a method is given for finding solutions of a 

system of differential equations S, from a knowledge of the groups of 

continuous transformations that leave S invariant. 

It is noted that the homogeneous, separated, steady-state trans-

port equation obtained in Section (2) is a linear partial differential 

equation of second order in one dependent variable and four independent 

variables. Ovsjannikov (1962) has investigated the group properties 

of the general second order linear partial differential equation in one 

dependent variable and n independent variables. Since the homogeneous, 

separated, steady-state transport equation of Section (2) is a special 

case of Ovsjannikov's work, we use his results in Section (4) to find 

the group of continuous infinitesimal transformations that leave the 

separated transport equation invariant. 

In Section (5) the finite equations of the group and its 
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invariants are used to construct group invariant or similarity 

solutions of the separated transport equation by the methods of 

Section (3). 

2.2 The separable transport equation 

For diffusion coefficients K
II 

and K specified by the express-

ions (2.1.1), neglecting effects due to the antisymmetric component 

of the diffusion tensor, K
T' 
 and assuming a constant, radial solar wind 

velocity V, the steady-state continuity equation (2.1.2) expressed 

in terms of the mean distribution function with respect to momentum p 

F
o 

Cr, 0, 0, p) is 

aF
o  2Vp 

 DF
o Ko(p) r

b+1 32F 2 o 
+ ((2+b) Ko (p)r

b 
- Vr)

ar 3 	3p 3r 
 

[ 

a 2, 

 

aF
o ,  1 	

a2F 
_ 

0 + e Ko (p)r
b-1 

(1-1.1
2

) 
'o 

- 4  3p  ' (1....p 2 )  42 
Dp

2 

N d(r-ro ) (S(p-p0 ) d q. 	6 (P-130 )  

4 IT r p
2 

00 
(2.2.1) 

Introducing variables = “r,p) and t = t(p), and using the 

notation
r  

aciar, c = pc/3p, Equation (2.2.1) may be written 

a
2
F 

2+b 
Ko(p)r

b+1 r2  o  v f  b+1 f, 
2 ' 	"o‘Pir rrr 

DC 

] 3F

o  2Vp  dt aF0 4. (-2-2 & -rc r)v  -2T- +  3 

 

d  at ' 3  P 

(1 	
a
2
F
o  

aF
o 	

2 F o1
1 

+ e K0 (p)r
b-1  

-11 
2 

2 Dp 
Dp (1-1.1

2
) 4

2 

Nlaciar . dt/dpl 6(-00) 6(t-t0 ) 6(.i-1,0) 6(0- 0 0 ) 

4 IT r p
2 

00 (2.2.2) 
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In passing from Equation (2.2.1) to (2.2.2) the transformation 

6(r-ro ) 6(u-110 ) 6 (0-0 0 6 (P-130 ) = 	(5 (E- &0 ) 6(p-11 0 ) 6 (0-00 ) 6 (t- to ), 

has been used, where the Jacobian 

= 1 a (E,t,1-1 ,0)/3(r,P,V,4) 1 	1 aUar 	dtidP1 r=r p=p 
o, 
	

o 

0  = 	 (ro , po) and to  = t (p c) ). 

Equation (2.2.2) is separable if we choose the coefficient of 

3F0/3 to be zero, such that 	satisfies simultaneously the partial 

differential equations 

2+b 
E r 	=0, rr 

(2.2.3) 

3 
	r 	= 0, 

The solution of Equations (2.2.3) is 

= c (rp
3/2 ) -(b+1) 

where c is an arbitrary constant. 	Choosing 

= (rp
3/2

)
-(b+1)  

/ (b+1), 

t = -3 IP  Ko(z) z(1-3b)/2 
dz / 2V, 

(2.2.4) 

Equation (2.2.2) becomes: 

aFo 
at 

DE
2 

2 
DF

o  
D
2
F 

+,e [(b+1)E]
(1 -b)/(1+b) 	

(1- 112 )
-a 

2v ap 	+ 	
1  o 

; 
 

Du 	(1-1.1
2
) 	

34, 2 

- 3 N I  F r.(ro ,p0) I 6(-&.3) 6(t-t0) 6(.1-u0) 6(0-00) 

8w Vp
3 

r 
o o 

(2.2.5) 
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We note that Equation (2.2.5) is separable. 

Introducing the variables : 

if b 0 1, 

3/2 (1-b)/2 
= 2(rp 	) 	/ (1-b) = 2  

and if b = 1, 

= -2,n(2r
2
p
3
)/2 = - tn() / 2, 	(2.2.6) 

we now transform Equation (2.2.5) into two partial differential 

equations in x, t, p, 0 corresponding to the two cases in Equations 

(2.2.6). These partial differential equations are: 

If K
11 

= K
0
(p) r

b
, b 0 1, 	K1 /K 11 = e, 

	

a2Fo2n+1 
aFo 	aFo 	e(n+1) 2 	2 D

2
F
o 	

aF 	D2F o 	1 	o (1-p ) 	2 
ax x

2 ap
2 

1-p
2 2 	ax 	at 	

DO
2 ap 

- 3 N xo  6(x-x0 ) 6(t-to ) 6(p-p0 ) 6(0-00 ) 

8 n V p 3 r 2 In+11 
o o 

(2.2.7) 

and if K I1  = K0 (p)r, b = 1, KI/K II  = e, 

a 2Fo aF
o 	

DF
o 	[ 

ax
2 	

— -- . 	,, 
e 	

2Nap 2 	
2p 	+ 

(1-p
2
) 

Dx 	at 	
a  Fo 	

aF
o 

au ao 2 
1  

2 
a2F

o  

- 3 N d(x-xo ) 6(t-t
0
) 6(p-uo ) 6(0-00 ) 

8 It V p
3 

r
2 

o o (2.2.8) 

where x = x(r , p ), t = t(p0) and if b 0 1, n = (b+1)/(1-b). o  
o o 	o 



a2F
o  

ax2 

Equations (2.2.7) and (2.2.8) may be combined in the equation 

	

) 
aF

o 	
aF 	

o 	1 a
2
F
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aF 	
a2F
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+ a
2 	ax 	a 

+  + a  ) (1.11 ) 	2  2u 	+ 
x
2 2 
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= Z 	6(x-x0) 6(t-to) 6(p-p0) 6(0-00 ), 

where, 

(i) if b 	1, K11  = K0 (p) rb , Ki /K
II 

= e, then 

n = (b+1)/(1-b), 	al  = 2n+1, 	a2 = 0 ' 

a = e(n+1)
2 , 	0 = 0, 

Z = -3 N xo 
/ (8 it V p 3 r

2 
111+1( ), o 	o 

x = 2 (rp 3/2 )
(1-b)/2 / (1-b), 

(2.2.9) 

(2.2.10) 

and 

(ii) if b = 1, K il  

al  = 0, 	a2  = -2, 

a =0, 	8 = e, 

3 2 
= -3N / (8 7 V p o 

ro ) , 

= -2,n (2r 2
p
3
) /2. 

(2.2.11) 

K0(p)r, 	K/KII = e then 

In the following sections we study the group properties and the group 

invariant solutions of the partial differential equation (2.2.9), where 

the parameters al , a 2 , a, a, z are specified in Equations (2.2.10) and 

(2.2.11). 

The group properties and the group invariant solutions of the 
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transport equation (2.2.9) will be used to show the relation between the 

separation variables x and t given in Equations (2.2.4) and (2.2.6) 

and the separation variables 

t = - 3 Kc p
6 / (2 V 6), if 6 = a + 3(1-b) / 2 A 0, 

t = - 3 K
c 

£n(p) / (2 V) 	if 	6 = 0, 

y = =2 V 6 r 1-b  p-a  / (3 KC  (1-b) 2), 

where the diffusion coefficient K(r,p) = K
c 

p
a 

r
b
, which were used by 

Parker (1965), Jokipii (1967), Fisk and Axford (1969) in their work on 

analytic solutions of the steady-state cosmic-ray equation of transport. 

2.3 	Solutions of partial differential equations and Lie Groups  

The application of group theory to the solution of partial 

differential equations was first considered by Lie (1881), and later by 

Ovsjannikov (1962), Muller and Matschat (1962) and Bluman and Cole (1969) 

(for a more complete account of the results of this section see 

Ovsjannikov (1962)). 

A system of differential equations S in m dependent variables 

u and (n-m) independent variables x j  is said to admit a group of continu-

ous transformations G if the system S is transformed into itself when 

the dependent and independent variables are subjected to a transformation 

of G. Hence any solution of S admitting a group G is transformed into 

another solution of S under the action of any transformation of G. 

The group of continuous, infinitesimal transformations 

x' i  = xi  +
x 

(x; u), i = 1(1)  

u
,s 

= u
s 
 + 
	

(x; u), s = 1(1) m, 
	(2.3.1) 



49. 

admitted by S are found as follows. The transformations of the partial 

derivatives of the dependent variables u s  with respect to the indepen-

dent variables x
i
, i.e. Du

s
/Dx

i 
etc. corresponding to the transformations 

(2.3.1) are calculated. We then substitute the derivative transformations 

and the transformations (2.3.1) into the condition of invariance of S 

and eliminate any relations between the partial derivatives implied by 

the equations of S. Equating the coefficients of the partial derivatives 

of 0(E) in the invariance condition yields a set of partial differential 

equations for the functions 

,
s 

, 	i = 1(1) n-m, 	s = 1(1) m. x 	u 

known as the determining equations. 

The finite equations of the group admitted by S are the integral 

form of the infinitesimal transformations (2.3.1), i.e., the solutions 

of the set of ordinary differential equations 

d x du ,s  

U 
(x';u') 

known as the trajectories of the group. 

Invariants of the group with infinitesimal generators (2.3.1) 

are functions J(x,u) such that 

J (x', u') = J (x, u). 	
(2.3.3) 

Substituting the transformations (2.3.1) in Equation (2.3.3) and 

equating terms 0(E) to zero we find 

aJ +
s 	DJ 

'x 	1 D
s 

ax 	u  
(2.3.4) 

= 	de, 	(2.3.2) 

The characteristic equations for the first order partial differential 

equation (2.3.4) are given by the group trajectories (2.3.2). Thus 
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the invariants of the group with generators (2.3.1) are the (n-1) 

functionally independent solutions of the trajectories (2.3.2). The 

above discussion indicates that the finite equations of the group with 

trajectories (2.3.2) may be expressed as 

J T  (X I ; 	= J (x; u), 	T = 1(1) n-1, 

f (x', u', c) = 0, 
	 (2.3.5) 

where J T are the invariants of the group and the function f (x', u', c) 

is determined from the trajectories (2.3.2.) 

Let H be a subgroup of the main group admitted by the system 

S, with a complete set of functionally independent invariants 

/ T = 1 (1) t}. 	The solution u = (1)(x) is known as an invariant H 

solution if the solution is mapped onto itself by the transformations 

of H. A necessary condition for the existence of an invariant H solution 

is that the rank of the matrix 

ii ajr / auk 	T  = 1 (1) t, 	k = 1 (1) m, 

be equal to m (the number of dependent variables). 	An invariant 

H solution of the system S is given by 

k
(J) = 0, 	k = 1 (1) m, 	(2.3.6) 

where the functions 0
k are functionally independent with respect to the 

variables J. 

The transformations of the partial derivatives of the first 

and second order of the dependent variables u s  under the transformations 

(2.3.1) may be calculated as follows: 

We introduce the total differential operators 
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0 
i 

+ u
s 0 

D 
Dx

i 	i 
au

s ax (2.3.7) 

+ u
s 3 D

i 	+U . 
aus 	ij 

3u
s ' ax 

(2.3.8) 

where 

a2 u$ u
ij 

ax Dxj 

Since x 
and C s are functions of x and u, we have 

D x t 
u Is 	= D ( u

s  + c C s  ) 
D x' i  

= 

	

DL
( us  + e C s  ) 	D 	( x' 14  - e C 22; ). 

D x' (2.3.11) 

Here we have used the summation convention and the notation 

u. = 3us 
/ 3x. 	Hence to 0(e) 

1 

 

,s 
u.=u 

• 

+ 	

• 

, 
1 (2.3.12) 

where 

D
i 
 (Cs ) - 	ut 	D. (C) u 	x (2.3.13) 

gives the transformations for the first order partial derivatives. 

By a similar analysis 

,s • u
s + 	;

z
j U . ij (2.3.14) 

where 
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s D 	(4a) - 	u 	D (& ) 1.3 	i 	j 	JR. 	i 	x (2.3.15) 

gives the transformations for the second order partial derivatives to 

Associated with the transformations (2.3.1),(2.3.12) and 

(2.3.14) are the differential operators 

i 	a 	k a x = Ex 	i + u 	k 

	

3x 	3u 

i 	3 	k 	s 	a 
= i 

	

3x 	3 	
c. 

11
k  

au
i 

(2.3.16) 

(2.3.17) 

	

+ &k a 	s a 	s 	3  X = x 	i 	
+ c

i s + cij 	s 	• u k ax 	au 	au. 	Dia. 

	

1 	mj 
(2.3.18) 

Psi 

The operators X and X are called the first and second extended operators 

of the operator X. 	If F is some arbitrary function of the x's and u's 

the function X F is known as the symbol of the group generated by the 

infinitesimal transformations (2.3.1). The functions X F, X F are the 

symbols of the first and second extended groups. 

The general operator X of a Lie group can be expressed as a 

linear combination of a set of basis operators {X a , a = 1 (I) 0 with 

constant coefficients e a , i.e. 

X = 	e
a 
X
a ' 
	

(2.3.19) 

where as usual the summation convention applies. The operators X a  form 

a Lie Algebra with respect to the operation of commutation: 

EX, Xb ] 	= 	Xa  Xb  - XD  Xa  • 	(2.3.20) 

It can be shown (Eisenhart (1933)) that the operators X a  satisfy the 
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relations 

e 
[X 

a' 
X
b
] 	c  X , 	a, b, e = 1 (1) r, 

ab e 

EX, XD ] 	= 	xa ] , 

(2.3.21) 

(2.3.22) 

[[xa , xb i,xc i+E[xb , x.c ], xa] + C[xc  , xa ], xb i = o 
(2.3.23) 

The constants c
ab 

are known as the structure constants of the group and 

the relations (2.3.22) and (2.3.23) are known as the Jacobi relations. 

The results (2.3.21) - (2.3.23) also hold for the first extended operators 

R
' -b' 	. Similarly the nth  extended operators satisfy (2.3.21)- a 	c 

(2.3.23). 

The homogeneous, steady-state, cosmic-ray equation of transport 

(2.2.9) is separable and it is a second order linear homogeneous partial 

differential equation of the form 

G(F) = 	a
i
j (x) + b

i
(x) F + cF Fij 	

1  
= o (2.3.24) 

where aii, b i , c are functions of the independent variables x i  and 

	

= aii . 	The group properties of Equation (2.3.24) have been analysed 

by Ovsjannikov (1962), and we outline his results below. 

Consider the operators 

X =
i 	a 	a + n  , 

ax (2.3.25) 

admitted by Equation (2.3.24). The condition of invariance of Equation 

(2.3.24) under the infinitesimal transformations with operators (2.3.25) 

is 

X G(F) = A G(F) = 0, 	 (2.3.26) 
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where 

a 
X G(F) = a

ik 
ik 

+ b 	+ cn + X(a
ik

) F
ik 

+ X(b
1
) F

i 
+ X(c)F, 

(2.3.27) 

and X is the second extended operator. 

Equating the coefficients of the various partial derivatives of 

F in Equation (2.3.26) to zero yields a set of determining equations 

for the functions
i 

and n.  Ovsjannikov (1962) has shown that the 

determining equations for the infinitesimal transformations admitted 

by Equation (2.3.24), in the case where the equation is not strongly 

degenerate are: 

ri 	= a (x)F + 	(x) 
(2.3.28a) 

'A 	= A (x) , 	 (2.3.28b) 

= a - A, 	 (2.3.28c) 

a
ik acj 

 
+ ajk a 	a

ij 
e = v aij , 	I, j = 1(1)n, 

3x 	ax 	ax 	
(2.3.28d) 

k313 
 

2a
21 

 

	

- a
jk a2 	 +bk 3 

k
ax

j 
3x  ax 	ax 	3x 

i = 1(1)n
' 	(2.3.28e) 

	

+ bi au 	k ac 
ai

j  32a  + 	— + v c = 0, 
(2.3.28f) 3x

i
3x

j 

	

ax 	3x  

a
ij 	32 5/  +b  a51 + c 5/ = 0 

i j 	i 	 (2.3.28g) 3x 3x 	3x 

Equation (2.3.24) is strongly degenerate if in a certain system of 

coordinates y = y(x) it is reduced to the form 

3
2
F 	- a 

+ 	
F

b-- +E F = 0, 
a y 12 	ayl (2.3.29) 
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where b and c are functions of the new coordinates y , y , y , 	y . 

If the function G(F) in Equation (2.3.24) had contained 

an inhomogeneous term -M d(x-x }, where M is a constant and 6(x-x ), is a - -0 	 --o 

Dirac delta function in the n independent variables x i
, then further 

conditions are imposed on the operators (2.3.25). The condition of 

invariance of the source point at x. implies 
-o 

(2.3.30) 

and the n dimensional delta function transforms as 

6(x'-x ) = 6(x-x ) [1 - E iE 	D (C) + 0 (e
2
)] . 1 	i 

(2.3.31) 

Hence we have 

3C(x ) 

	

E 	. 	+ A (x ) = 0, 

	

i= 	
-o 

1 axl  

as a consequence of the invariance condition (2.3.26). 

(2.3.32) 

2.4 	Infinitesimal transformations admitted by the steady state  

cosmic-ray equation of transport. 

The homogeneous, separated,steady-state cosmic-ray equation 

of transport (2.2.9) is a linear homogeneous partial differential equation 

in one dependent variable F o , and four independent variables x, t, 

and (P. 	Ovsiannikov (1962) has investigated the group properties of 

this type of equation and we proceed to use his results, which are out-

lined in Section (3) to find the group of infinitesimal transformations 

admitted by the separated transport equation. 

	

1 	2 	3 	4 

	

Putting (x 	- , 	, x, x) = (x, t, u, 4), Equation (2.2.9) is 

then of the same form as Equation (2.3.24) with 

1 	2 	3 	,n 
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11 	22 
1, 	a a 	4•,  

	
= 0, 

a
33 

= ca + aix2)(1-p
2
), 	a

44 
= ( a +  

(2.4.1) 

aij = 0 if L 0 j, 	j = 1 (1) 4, 

b
1 

= (al  /x + a2), b
2 

-1, 

b
3 	

= -21.4 (a + a/x
2
), 	b

4 	
c = 0, 

From Equations (2.2.10) and (2.2.11) we have: 

(i) if K
11 

= K0  (P) rb
'  b #1, KI 

 /KI 1 = e then 

n = (b+1)/(1-b), 

a1  
= 2n+1, 	a2  = o, 

a = e(n+1) 2
, 0 = 0 

(2.4.2a) 

and 

(ii) if K 11  = K0 (p) r 	and KI/Kli = e then 

a 	= 0, 	a2 = -2 , 
1 	

(2.4.2b) 

a 	= o,  a  = e, 

as the appropriate values of the parameters a
l' 

a
2' a, B to be used in 

Equations (2.4.1). 

Using the results incorporated in Equations (2.3.28) the 

determining equations for the operators admitted by the separated 

transport equation (2.2.9) are: 

1 aE 
2 	= 	 (2.4.3a) 

a
2 

0 , 	 (2.4.3b) 
ax 

1 
3E

3 
a  3E +  +  ( (a  1—p 2 )  o,  (2.4.3c) 

ax 



aa 	a
1

1 	a 

2 	= G(E 1) + + a
2
) . 	(2.4.3j) 

x
2 
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a&4 + ( a  + a) 1 
a x x2 	2 DO = 0, (2.4.3d) 

( 

4. 2L_) (1_ 1.1 2 ) 	. 

x 31.1 2 • (2.4.3e) 

2 
1 

( B 	a>7) 1-11 2 ad)  
= o, (2.4.3f) 

3 
(1_11 2 ) c l 

au 	3 

a 
= 	+ -r-)( 1-P 

2
) • 

„4 	r 3  
(8 4. _.2) [i_2  cc...2_ 	_ 2 ,1 

1p 
L 	. 0, 

2 	au 	4 - 

(2.4.3g) 

(2.4.3h) 

+ 	a 1 	; p(0 + a/x
23 

2( + -S2 ) 	+ 
x 	1-p 	x

3
(1-p

2
) 	(1 u 2 ) 2  

1 
v 	+ 	1_,,2 • (2.4.3i) 

Introducing the differential operator 

	

. a
2 	

4.  ( 
a1 4. a  ) a 	4. 	+ a ) 	f1-1.1 2 \

2 

2 	x 	2 	ax 	at 	" 	x2 

	

3x 	
/
ap 

2p 
3 

+ 	
1 	a 2 ] 

-  
1-p

2 	ao 2 

the remaining determining equations are 

2 
(2.4.3k) • at 
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2 aa 	a 
2 	+ 	71-1  = G(&

3) 4p — + 2 
3 

a  
2 (8 +

•

) 
 

Da 	_ G( 4 ) 
( 2 )

,  
a0 	- 

(1-p
2 ) 

a +  (E 3 	ti 	) 
X 

(2.4.31) 

(2.4.3m) 

G (a) 
	

= 0, 	 (2.4.3n) 

G (SI) 
	

= 0, 	 (2.4.3o) 

The solutions of the determining equations (2.4.3) depend on the 

radial dependence of the diffusion coefficients K
1 	

and K. In the 
1 

models under consideration the diffusion coefficients are of the form 

K11 = K
0 (p) r

b , KI/K II  = e . 	(2.4.4) 

In addition we require compatibility conditions of the form 

a
2 

j 	k 
ax ax 

2i 

k 	j 	' 
ax ax 

to hold. There are three cases to consider. The solutions of the 

determining equations for these cases are given below. 

Case 1. 	K 11 = K (p) r
b , b 0 1, K

1
/ K

11 
= e 

 o 

The solutions are 

= x (a + it) = 	y(t- to) x, 

, 
E 2 = y t

2 + 28t + a = y[(t-t
2  

o
) + ao

] , 

3 = A iTIT7  (b 2  cos 0 - 1) 1  sin 0) 

= A /-17:17 sin 0
o 

sin  

(2.4.5a) 

(2.4.5b) 

(2.4.5c) 



r--1  
4 

= A 1(11 / 11-p )(b2 sin 0 + b1 
cos 0) 	b

3 

	

• 	= A 	/ J1-p )sin 0 0  cos(0-0 0) - cos 00], 

(2.4.5d) 

 

v  =  2a + 2yt = 2 y(t-t o ), 	(2.4.5e) 

	

a 	. 	y[-x2/4-(n+1) t + 6], 	(2.4.5f) 

	

n 	= 	a F + 0(x), 	 (2.4.5g) 

	

A 	. 	a - v, 	 (2.4.5h) 

	

, 2 	
x2) A 	= 	- YU( - xo) /4 - (n+3) y(t-t 0) + 4, , 	(2.4.5i) 

where 
D(x) is any solution of the homogeneous equation (2.2.1), 

2 

	

t
o  = -a/y , 	a

o 
= (cry 	B 2 ) / y , 	(2.4.5j) 

2 
= óy - y(xo  /4 + (n+1) to), 	(2.4.5k) 

(b 1 , b 2 , b 3) = (sin 00  cos 00 , sin 00  sin 4)0 , cos 00 ), 

(2.4.51) 

and 
cos ®. 

Case 2 
	

K II = K(p) r' 
	K 	= 0. 
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i.e. 

The solutions of the determining equations are 

	

1 
= 	K + 6t + (a + it) x, 

	

i.e.
1 

= 	y[x(t-to) + di (t-to) + wi, 

2 , 
y t

2 
+ 2at + a= y[(t-t

0
)
2 
 + a ] , 

v 	= 	26 + 2yt = 2 y(t-to ), 

(2.4.6a) 

(2.4.6b) 

(2.4.6c) 
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a 	= -y x
2/4 + (yt + a — 6/2)x — yt 2 

- (28 + y/2 - 6) t + yp
o

, 

(2.4.6d) 

n 	= aF + Q, 	 (2.4.6e) 

A 	= a - v, 

2 
i.e. 	A 	= 	-y(x

2 
 -x0)/4 + y(t-to)x - 6(x-x0)/2 - y(t-t) 2 

(2.4.6f) 
-(5y/2-6)(t-to ) + E, 

where 

0 (x) is any solution of the homogeneous equation (2.2.1), 

t
o 

= - a/y, 	d 1  = diy , 	= (K + ót)/ Y, 	(2.4.6g) 

and 

E 	= yp
o 

- yx
2 

/4 + yt
2 

- 6x
o
/2 - (y/2-6) t

o
. 

(2.4.6h) 

Case 3 	K 	= K (p)r, K/K
II 

= e 	0 
	 II 	o  

The solutions of the determining equations are 

1 
= yt  a =  

2 
& 	= 6, 

&
3 

= A Vl- P (b
2 

cos cp - b
I sin 4), 

(2.4.7a) 

(2.4.7b) 

(2.4.7c) 

= A sin 00  4-4-11  sin  

E 4  = A [(,/i_2)  (b2 sin + b l  cos 0) - 13 3 ] 

= A [sin 00(4/4-4 2 ) cos(0-0 0) - cos 001,  

v 	= 0 , 	 (2.4.7e) 

a 

	

	= A = yt - yx/2 + k = y(t-t 0) - Y(x-x0)/2 + h, (2.4.7g) 

aF+ 



a 
X 3 = - 	= x

2  a 	
x  

30 	a  1 3x
2 xi  

X
4 

= 
a 
T' 

(2.4.9c) 

(2.4.9d) 
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(x) is any solution of the homogeneous Equation (2.2.1), 

to  = —a/y 
 

h = yt0  - yx0/2 + k, 	(2.4.7h) 

where 

and 

(b 1 , b 2 , b 3) = (sin 0 0 , cos 0 0 , sin 0
0 

sin .
o
, cos 0

o
), 

(2.4.7i) 

P = cos 0.  (2.4.7j) 

In Equations (2.4.5), (2.4.6), and (2.4.7) 0 0  and . 0  are 

arbitrary, but constant polar and azimuthal angles and a, a, y, (5, K, 

p, A and k are arbitrary constants. 

The operators corresponding to (2.4.5)-(2.4.7) can be expressed 

in terms of a linear combination of basis operators [cf. Equation (2.3.19)]. 

For case (1) this decomposition takes the form 

D 
X = E

i 3 
- 	--I ' 	aF 

3x 

= A
l 

X
1 
+ A

2 
X2 + A3 X3 + otX4 + 8X5 + yX6 + y(SX

7 
+ X8' 

(2.4.8) 

where 

/---T 
X = 	-11 	+ 	, cos.. 5-4)  
1 	

dP 

x3 ax2  x2 3x
3 

' 

a  3 -  
X
2 
= ,17.7 cos 4)— 4- 	 sin 0 -a cT 

Dv 

(2.4.9a) 

= x
1 33(3 

x3 	, 
"1 

(2.4.9b) 
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X
5 

= x 	+ 2t — 
ax  at ' 

(2.4.9e) 

X
6 

= xta/Dx + t
2
a/at + F0 (—x

2
14 - (n+1)0a/3F, (2.4.9f) 

X
7 = F a/aF,  (2.4.9g) 

K8  = c(x) a/aF,  (2.4.9h) 

with Al  = Ab l , A2  = A b 2 , A3  = A b 3 , and (x l, x 2 , x 3), 

(A1 ,  A2' A3
) position vectors in a rectangular cartesian coordinate 

system. 

The operators X1 ,  X2' X3 correspond to infinitesimal rotations 

about the xl , x2  and x3  axis respectively; X4  is a translation operator, 

whereas X5 and X 7 are stretching operators. 	A similar decomposition 

can be carried out for the other two cases. 

The commutation relations (2.3.21) for the subgroup with 

operators {X
1 , X2' 

X
3' 

X
4
, X

5' 
X
6' 

X 7 1 defined by Equations (2.4.9) are 

given below: 

TABLE 2.1  

X 1  
X2 X3 X4 

x
5 

X
6 

X
7 

x1 
 

o x
3 -X

2 
o 0 o o 

x2 -X
3 

o x1 
o o o o 

X
3 

X
2 

-X
1  

o o 0 o o 

X
4 

0 0 o o 2X4 X5 
 

-(n+1)X
7 

0 

X
5 

o o o -2X
4 

0 2X
6 0 

X
6 0 0 0 (n+1)X7- 

X
5 

-2X6 0 o 

X7 o o o o o o o 

th 
In the above table the intersection of the i

th row and j column gives 
the commutator [X., X.] 



d E = 4 	 = 1(1)4, 	(2.5.1) 

where(x1 ,x
2
,x

3
,x

4
) = (x,t01,0) and the 	, a and Q are the infinite- 

In this section the finite equations of the main subgroup 

admitted by the separated transport equation (2.2.9) are calculated 

by integrating the group trajectories (2.3.2), i.e. 

dx' dF 
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2.5. Invariant group solutions  

simal generators of the group, which are given in Section (4). We 

find the solutions of Equations (2.5.1) for the main subgroup with 

Q F. 0 since this is sufficient for our purposes. Taking (x,t,11,0) as 

initial values of (x',t 1 ,11 1 ,40) the solutions of the trajectory equations 

(2.5.1) have the form 

J
s
(x',F') = J

s
(x,F), s = 1(1) 4, 	(2.5.2) 

where s (x '
F) are functionally independent invariants of the group. 

An invariant group solution of Equation (2.2.9) has the form 

(cf. Equation (2.3.6)). 

G 1 , J 2' 
J 3' 

J
4
) = 0, 	 (2.5.3) 

where the function G in the relation (2.5.3) is compatible with the 

separable transport equation (2.2.9). Since only one of the invariants 

of Equations (2.5.1), say J 3 (x,F) is a function of, F, (the dependent 

variable), the invariant group solution (2.5.3), if it exists, may be 

put in the form 

J
3 

(x
'
F) = f(J1 

	' 
(x) J2 
 
(x), (x) J

4 
 (x) ) ' 	(2.5.4) 

where the function f in Equation (2.5.4) is compatible with F being a 

solution of the separable transport equation (2.2.9). 

There are three cases to consider since the generators of the 



dt 

(t-t ) x dx 

[(t-t )
2
+ a ] 

(2.5.6a) 
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group admitted by Equation (2.2.9), given in Equations (2.4.5), 

(2.4.6) and (2.4.7) are dependent on the character of the diffusion 

coefficients. 

Case 1 	
K I1 = 

K0(p) r , 	b A 1 	K1/K 11 = e 

Putting p = cos 0 the trajectories of the group with generators 

(2.4.5) are 

de 
dx 	dt 	dF  , 

ykt-to)x y[(t-to )
2
+a

o
] 	y(-x

2
/4 - (n+1)t+6)F 

dO 	d0  
A sin°

o 
sin(0-00 ) 	A[cotO sin0

o 
cos(0-0

o
)-cos0I 

(2.5.5) 

Equations (2.5.5) may be written 

sin 0
o 

sin(0-0o ) 
dO _ 
d0 - (cot 0 sin 0

o 
cos(0-0

0
) - cos 0

o
) 	' 

dF 	(-x
2/4 - (n+l)t + 6)F  

dt 
( (t-t) 2 + a

o 
) 

(2.5.6b) 

(2.5.6c) 

dO 	
A sin 0

o 
sin(-) 	 (2.5.6d) 

dt 	
y[(t-t0 ) 2  + a so ] 

The solutions of Equations (2.5.6a), and (2.5.6b) are 

n (x,t) =ji  - j 	 

  

(2.5.7) 

  

(t-t) 2 + a
o 

J
2 

= cos 0 cos 0 0  + sin 0 sin 00  cos (0-00). (2.5.8) 

1 1, 



65. 

The invariant J
2 

is the cosine of the polar angle in a coordinate 

system with polar axis in the direction (0 0 , 0 0 ). 

From Equations (2.5.7) and (2.5.8) 

2 	2 
=J (T + a

o
), T = 

1 
(2.5.9a) 

sin(0-4,0) = Asin20 sin2  00  - (J2  - cos 0 cos 00 ) 2 ) /sin 0 sin 0. 

(2.5.9b) 

Using Equations (2.5.9) to eliminate x and 0 from Equations (2.5.6c) 

and (2.5.6d) we find Equations (2.5.6c) and (2.5.6d) have the 

solutions 

2 J
3  

= 	F exp(J i  T/4+(n+1)2„n(T 2+a0)/2 -xIT dy/(y 

J
4  

= 	+ (A/y) I
T 
dygy

2
+ad, 

where 
cos 0 - J

2 
cos 0

o (1) 	= t 

„ 2 
 +a0 )), 

(2.5.10) 

(2.5.11) 

(2.5.12) 

(2.5.13a) 

< 0, (2.5.13b) 

(2.5.13c) 

(2.5.13d) 

arcos 
(167--. 7-1) sin (00 ) 

2 

IT  dy/(y2+a0 ) 	= 	artan (T/b)/b 	if ao = b
2 > 0, 

I
T 
dy/(y

2 
 +ao ) 	9tn((T-a)/(T+a))/(2a) if ao  = -a2  

I T dy/y2 	= 	-1/T 	if a
o  

= 	0, 

and 

X 	= 	6 - (n+1) 	to  . 

By simple coordinate geometry the angle 0 can be shown to be the 

azimuthal angle of a spherical polar coordinate system with polar 

axis in the direction (0
o

, ) . 

The invariants J 	J
2' 

J
3' 

J
4 
above satisfy the necessary con- 

dition for the existence of an invariant group solution given in 
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Section (3). 	The invariant group solutions of Equation (2.2.9) 

are of the form (2.5.4), i.e., 

J
3 

= f(J 	J
2' 

J
4
). 	 (2.5.4) 

Using the expression (2.5.10) for J
3 

the invariant group solutions 

(2.5.4.) are 

2 
F = expE-J 1  T/4 - (n+1)Ln(T

2
+a0 )/2 + xf

T
dy(y

2
+a0)] • f(Ji ,J 2 ,J4 ), 

(2.5.14) 

where f(J 	, J4) is the solution of a partial differential equation 

in J J
2' 

J
4 obtained by requiring that the function F in Equation 

(2.5.14) satisfy the separable transport equation (2.2.9). 

Choosing a coordinate system such that 0 0  = 0 0  = 0, and 

putting n = Jl  and w = J 4  we find that the function f satisfies the 

partial differential equation 

2 
a
2
f 	2n+1 af  aon 	A

— 
 af 

2 	n  an 	- 
4 	-  

e(n+1) 2 (
1-P  2) 

2
f 

2 	(  

	

2 211 — + 	2  
3p 
af 	1 	

2 ) 
-

- 	

0 	(2.5.15) 
Dp 	1-p 	w

2 

Note that the problem of solving a partial differential equation for 

F in four variables has been reduced to the solution of a partial 

differential equation for f in three independent variables. 

If A = 0 then w = 0 and Equation (2.5.15) separates, i.e. 

f = P(P) Q(0) R(n),  (2.5.16a) 

where 

2p 	(i(t+1) 	m
2 

P t 	- 	P'(1) + 	P(p) = 0, 
(1-p

2
) 	(1-p

2
) 	(1-p2)2) 

(2.5.16b) 
QiI(0) 4. m2  Q . 

0, 
	 (2.5.16c) 

L 
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2 
[so n 2n+1 

9,(2+1) 	R(n) = 0. 
e(n+1) 2  

12"(n) + 	R'(n) + 	 
n
2 

(2.5.16d) 

Equation (2.5.16b) is Legendre's associated equation, Equation 

(2.5.16c) has solutions in terms of exponential functions, and 

Equation (2.5.16d) has solutions in terms of confluent hypergeometric 

functions or modified Bessel functions, depending on whether a o  0 0 

or a
o 

= 0. 

The separated solutions of Equations (2.5.16) for f are 

= 

	

	exp(-11770  n 2/4) [A.M(x/( 2V--1-0) 4- (1+)/ 2 , 1+Cor-Ton 2/2) 

+ B.0 (x/(21770) + (1+C)/2, 1+C, 1/7- •0  n2/2)]. 

[C.Fulti  (p) + D.Q7 GO] e ±imci) 	(2.5.17) 

or if a
o 

= 0 

= n-n  EA.I (jin) + B.K (/Rn)]. 

EC.P7(u) + D.Q7(1.1)]e Iim°  , 	(2.5.18) 

where 

=1n2 + 	(t+1) (n+1) 2 , 	n = (b+1)/(1-b), 

and 2. and m are integers with m 	Z. The functions M(a,b,x) and 

U(a,b,x) are standard independent solutions of the equation 

xF"(x) + (b-x) F'(x) - aF(x) = 0, 	(2.5.19) 

which is Kummer's confluent hypergeometric equation (see Slater (1960)). 

The functions Im
(x) and K

m
(x) are modified Bessel functions of the 

first and second kind; 	11(p) and QT(p) are associated Legendre 

polynomials. In the applications of the solutions (2.5.17) and (2.5.18) 

the coefficients of the QT(p) terms are put equal to zero since these 



(2.5.21) 

The solution of Equation (2.5.20a) is 

x + d
l 

- e
l 

T 

(T
2 
+ ao ) 
	2 n (x,T) = Ji (x,T) - 
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terms have a singularity at p = 1. 

Case 2 	K 11  = Ko (p) r, 	K
1  = 0 

The generators of the group are given by Equations (2.4.6), 

and the trajectories of the group with Q = 0 are: 

d dx  
"

dt2  
YLx(t- to) + (1 1 (t-to) + w] y[(t-to) + ao

] 

dF 

yF(-x 2/4 + (t-t0-d1 /2)x - t
2 + (2to-1/2 + d

1 
 )r + p 0 ) 

(2.5.20) 

Putting T = t-t o  the trajectories (2.5.20) may be written in the 

alternative form 

xT + d1T + w dx 
dT (T2 + ao ) 

F(-x2/4 + (T-d1 /2)x - T2  + (d1-1/2)T + b l ) 

where 

b1 = Po 	t02 4- (d l - 1/2) to .  

dF _ 
dT (T

2 + ao ) 

(2.5.20a) 

9  (2.5.20b) 

(2.5.20c) 

where e1 = w/ao
. From Equation (2.5.21) we have 

= (T
2 
+ ao) J I  + el  T - d l . 	(2.5.22) 

Substituting for x in the remaining trajectory equation (2.5.20b) 

we obtain a first order differential equation for F in the independent 

variable T, and this equation has the solution 
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J
2 

= F exp En 2
T/4 + (1-e1 /2)

2
T + tn(T

2
+a0)/4 

- n(1-0 1/2) AT2+ao) - c l  IT  dy/(y2+a0 )] , 	(2.5.23) 

where 

c
1  o 

= t2 
o 
+ (d - 1/2)t + (1-e

1
/2) 2a + d2 

/4 + p
o 1 	o 	1 

The invariants J
1 

and J
2 satisfy the necessary condition for 

the existence of an invariant group solution given in Section (3). 

The invariant group solution has the form: 

J
2 

= f(J1 ), 

or 

= f(n) exp[-n 2T/4 - (1-e
1
/2)

2 
T - tn(T

2
+a0 )/4 

+ n(1-e1 
 
/2) /2) V(T

2  +ao) + c
1 	g I

T
dyy

2
420 )], 	(2.5.24) 

where the function f(n) statisfies an ordinary differential equation 

obtained by requiring that the function F be a solution of the separable 

transport equation (2.2.9). 

The differential equation for f(n) is 

d 2 f 
+ (a

o 
n 2/4 - c

1
) f(n) = 0. 

dn
2 

The Equation (2.5. 25) has solutions : 

(2.5.25) 

if a 0 0 

f(n) = exp(-j-ao  n2 /4) [A.M(c 1/(21= -0 ) + 1/4, 1/2, d-ao  n2 /2) 

+ B.U(c 1/(2/=T0) + 1/4, 1/2, J=To  n 2/2)1, 	(2.5.26a) 

and if a
o 

= 0, 

f(n) = A.exp(fEi n) + B.exp(-TET n).  (2.5.26b) 

The functions M(a,b,x) and U(a,b,x) are standard solutions of Kummer's 
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confluent hypergeometric equation (2.5.19), and A and B are 

arbitrary constants. 

Case 3 K = Ko (p) r, K /K = e A 0. 
11 	II  

The generators of the group are given by Equations (2.4.7). 

The trajectories of the group with SI = 0 are 

dx 	dt 	dF  
de 	- 

y(t-to ) 	6 	yF(t-t -x/2+a) 

de 

  

d0 

    

A sin 00  sin(0-00 ) 	A(sin 00  cot 0 cos(0-00)-cos 00 ) ' 

(2.5.27) 

where a = t
o 
+ k/y. 	The integration of the group trajectories 

(2.5.27) falls naturally into two sub-cases according to the parameter 

6, of Equations (2.4.7) is equal or not equal to zero. The case 6 = 0, 

corresponds to the monoenergetic point source solution, in which 

particles of momentum po  are released at a steady rate from the 

heliocentric position (ro , 0, 0 ). The condition 6 = 0 defines the o o 

subgroup of transformations under which the source point (r, 0, 0 ) 
o o o 

remains invariant. 

Without loss of generality we may choose coordinate axis such 

that 0
0 

= 0
o 
= 0 (cf. case (1)), and we use this to simplify the 

algebra in the work below, where we obtain the invariants and the group 

invariant solutions corresponding to the cases : (i) 6 0 0, and 

(ii) 6 = 0. 

Case (i) 6 0 0  

The invariants of the group with Q = 0 are given by the solutions 

of the trajectory equations (2.5.27), which are 



J 	= n(x,t) = x 
1 	26 
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yT
2 

(2.5.28a) 

(2.5.28b) 

(2.5.28c) 

(2.5.28d) 

y (
J
1 	T

2 	
yT3 
16) J 	- a) T - 3  = F exp 	— 

2 	2 	' 

A 
J
4 	+

.T - w 

where 

at = 
o 
+ k/y = t-t

o
, (2.5.28e) 

The similarity solutions are of the form 

J
3 

= f(J 	J
2' 

J
4

) 

or 

[ i (-yT3 
4. T

2 
+ (a - 3-)T 	f(n,p,w). (2.5.29) 

	

= exP  6 	126 	2 	2 

The function f(n,p,w) is the solution of a partial differential 

equation obtained by requiring that the function F in Equation (2.5.29) 

satisfy the separable transport equation (2.2.9). 

The function f satisfies the partial differential equation 

A af -2 -- +  

	

af 	x_ ( 	
,

n-2a) 	—•Dw 5"-T 26 

+ e ((12 
	

3f 	1 
) 2

f  
-11

2
) 

3 f 
- 2p ---+ 	0. 	(2.5.30) 

Dp ap 2 1-0
2 

aw
2 

If A = 0 then w = (I) and Equation (2.5.30) has separable solutions: 

f = P(i.i) Q() R (n), 	 (2.5.31a) 

where 

a 2 f 
an 2 

2p 

 

P(p) = 0, 

(2.5.31b) 

 

2 
Q"(4)) + m 0() = 0 , 

R1 1 0) - 2 R t (n) +HE n 

(2.5.31c) 

1-p
2 

- e 2.(t+1) - 	R(n) = 0. 
(2.5.31d) 
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Equations (2.5.31b), (2.5.31c) have solutions in terms of associated 

Legendre polynomials and the exponential function. By suitable trans-

formations Equation (2.5.31d) can be reduced to Bessel's equation. 

We can show that the general solution for R(n) is 

R(n) = en  fi (A.J 1/3 (2z
3/2

/3) + 
B.J-113 (2z

3/2
/3)) , 

where 

= (y/26)
-2/3 

[ y n/26 - y a/6 - 1 - e  

and J 113 (x) is a Bessel function of order 1/3 with argument x. 

Substituting the solutions for P(p), Q(0) and R(n) in Equation 

(2.5.31a) we obtain 

f = en  r1(A.J113  (2z3/2/3) 	13*.J-1/3 (2z3/2/3)) 

(C Pm(p) + D.Qm  (p))e
tim0 	

(2.5.32) 

where 

= (y/26) -2/3 Cy n /26 - ya/6 - 1 - e Z(k+1)] 

as the separated solution for f. 

Case (ii) 6 = 0  

The invariants of the group with = 0 are given by the solutions 

of the trajectory equations (2.5.27), which are: 

J
1 

= T 

J2 = 

x
2 

T+a ) 
J3  = F exp Ix -4-f  

Ax .  
J. = 0 +  = w . 

y T 

(2.5.33a) 

(2.5.33b) 

(2.5.33c) 

The similarity solutions are of the form 
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J
3 

= f(J 	J
2' 

J
4
), 

or 

x
2 

T+a 
F 	= exp 	—

4T 1-  
x) f(T, p, w). (2.5.34) 

The function f(T,p, w) is the solution of a partial differential 

equation obtained by requiring that the function F in Equation (2.5.34) 

satisfy the separable transport equation (2.2.9). 

The function f satisfies the partial differential equation 

A
2 3 2 f 	2Aa 3f 	af „. , 	a

2 
1  

22 	2 ' 	2 aw - aT ' .L.  
T
2 	

-1 
- - 2T 

1 T aw 	yT 

( 	

, ,2, 	 a 2 f  ) 
1 + e (1-p`) 2.--=- - 2p -V- + 	= 0. (2.5.35) 

aw 2 
P 	(1-p 2

) 314
2 

Taking A = 0 and w = ci) Equation (2.5.35) separates into the ordinary 

(1-p
2
) 	

(L(Z,+1)  

(1-P
2

) 
	 P(P) = 0, 

2p 	
P'(P) + 

 

(2.5.36a) 

Q"(o ) + m2  Q(0) = 0 , 
	 (2.5.36b) 

1 	a
2 

R' (T) + ( 1 + — + e Z(Z+1) - 	) R(T) = 0, 2T 
T
2 

(2.5.36c) 

where 

f = P(P) Q(0) R(T). 	 (2.5.36d) 

Substituting the solutions for P(p), Q(0) and R(T) in 

Equation (2.5.36d) we obtain 

1 	
[ 

-a
2 

f(T,P,O) = 	exp 	- T [1+e 9.(Z+1)] • 
VT 

[A Pm (P) + B.Qm(P)]e
timO 	

(2.5.37) 

as the separated solution for f. 

differential equations 

2 ) 

(1-0
2
)
2 
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The above completes the derivation of the analytic similarity 

solutions of the transport equation, which we use in later chapters 

to obtain solutions for specific boundary and source conditions. 
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CHAPTER 3 

MONOENERGETIC SOURCE SOLUTIONS  

OBTAINED BY THE GMT METHOD  

3.1 	Introduction 

The steady state similarity solutions of the homogeneous 

equation of transport (2.2.9) of Chapter (2) are now used to obtain 

monoenergetic source solutions in which the distribution function F o  

satisfies the boundary conditions 

(a) F 	0 as r 

(3.1.1) 

(b) F
o 
is finite as r 	O. 

The interplanetary magnetic field is assumed to be radial 

and the diffusion coefficients parallel and perpendicular to the 

field, denoted by K il  and K1  are given by 

K
11 	

= 1(
0
(p) r , 	I(1 /K11

I
/
K11 	

= e, 	
(3.1.2) 

where e is a constant and K0 (p) is an arbitrary function of momentum p. 

In this chapter these monoenergetic source solutions are 

obtained by using the group properties of the separable transport 

equation (Equation (2.2.9)). In Chapter (4) these solutions are 

obtained by using a Laplace transform method which is more widely 

known. 

In the first solution the particles of the monoenergetic 

source have momentum p o  and are released from the heliocentric position 

(r, 0 , o
) at a rate of N per second per steradian. This solution 

o o 
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is a function of heliocentric radius r, particle momentum p, and the 

angle 0 which is the polar angle referred to an axis through (0 0 ,00 ). 

If the source is located at the sun or infinity and the 

perpendicular diffusion coefficient K1  0 0, these solutions become 

spherically symmetric due to a diffusive flux perpendicular to the 

magnetic field at the source. For cases where K 1  = 0, the particles 

are channelled in the direction (0o'o).  We also note that if K
1 
 = K

II
, 

then diffusion is isotropic, and in this case the field need not be 

radial. 

In the second solution particles of momentum p o  are released 

at a rate of N per second from a spherical surface at radius r o . This 

latter solution is obtained by integrating the monoenergetic point 

source solution in which N/(4n) particles per second per steradian are 

released from the heliocentric position (r
o' 

0
oo

) with respect to 

the solid angle element d00  = sin 00  dOo  d0 0 , from 00  = 0 to 00  = n 

and from0
0 

= 0 to
o 

= 2n. 

3.2 Derivation of the solutions  

The monoenergetic point source solutions in which particles 

of momentum po  are released at a rate of N per second per steradian 

from the heliocentric position (r, 0, 0 ) are now obtained by using 
o o o 

the group properties of the inhomogeneous equation of transport (2.2.9). 

The infinitesimal generators of the group of transformations 

that leave the inhomogeneous Equation (2.2.9) invariant are a subset 

of the generators for the homogeneous equation (2.2.9) satisfying the 

conditions: 

(i) The source point at (r o , 00 , 0 0) is invariant under 



F
o 
+ 

8n V p 3 r
2 

o o 

3N 5(x-x 0) d(p-po) 6(0-0 0) 
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transformations of G. This condition holds if the infinitesimal 

generators of G, namely 	 (x, t, p, (0), i = 1(1)4, are zero at the 

source point. 

(ii) From Equation (2.3.32) 

n  3 1 (x ) 

axi 
	 + A(x ) = 0. 

i=1 	-o 

The conditions (i) and (ii) restrict the parameters occurring 

in the similarity variable n, and in the general similarity solutions 

of Section (2.5) to values appropriate for monoenergetic point source 

solutions. The boundary conditions (3.1.1) and the normalisation 

conditions: 

If b 0 1 

F 
3N x o 	K-x 0) 601-p 0 ) 

8 n V p 3 r Z In+11 o o 

as T + 0, 
(3.2.1) 

If b = 1 

as T + 0, 
(3.2.2) 

where 

z (1-3b)/2 
= 3 f  K (z) 	dz/(2V), p 	o 

combined with the restrictions (i) and (ii) are sufficient to determine 

the monoenergetic point source solutions. There are two cases to 

consider depending on the radial dependence of the diffusion coefficient. 

Case (1) 	K
II 

= K
0
(p) r

b
, b 0 1

' 
K
1
/K

II 
= e. 

The generators of the group that leave the homogeneous transport 

equation invariant are given by Equations (2.4.5). The parameter 

restrictions (i) and (ii) determining the group generators of the 
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inhomogeneous transport equation (2.2.9) imply 

ao 
= w  = 0 

t
o 	

= t(p0), 	x
o = x(r o  , p). o 

(3.2.3) 

The condition ao = 0, determines the similarity variable 

n(x,t) of Equation (2.5.7) and we have 

where 

= 2(rp3/2 ) (1-b)/2/(1-b). 

T 	= 3 f ° 
 K (z) (1-3b)/2 z 	dz / (2V) 

P 	0  

Using Equations (2.4.5) and (2.5.13d) the condition ty = 0 implies 

= x2/4 + (n+1) to , 

X  = x2o
/4 , 
 (3.2.4) 

in the similarity solution given in Equations (2.5.14) and (2.5.18). 

The boundary conditions (3.1.1): 

Fo 
4- 0 as r 	=; 

Fo 
is finite as r 	0; 

require that coefficient of KJi n) in the similarity solution given 

by Equations (2.5.14) and (2.5.18) be zero. Since I p 1 5 1 the 

coefficient of the Legendre associated function 07(p) in Equation 

(2.5.18) is zero from convergence considerations. Hence, 

-n 
Fo 	

A x  
exp (

2+ 2  xx 

4T L=0 c 2T) 
F I (x,  x° m=1  Camtcos(m0) 

+ bmk sin (m0)] P
m(p) + c k P k

(p)] 
	

(3.2.5) 

gives the form of the monoenergetic point source solution. 

The normalisation condition (3.2.1): 
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3N xo  d(x-x0 ) 661-11 0) 6(0-0 0 ) 
F
o 

± 	  as T + 0, 3 	2 	1 81Vp 	r 	n+1 I 
o o 

(3.2.1 ) 

corresponds to the release of N particles per second per steradian, 

of momentum po  at the source point. 

It is necessary to determine the coefficients a mz , bmz , c z  

to satisfy the condition (3.2.1). To do this we now proceed to obtain 

an expansion for the double Dirac delta function d(p-u 0) d(0-0 0 ) in 

terms of P 9.(11), P(p) cos(m.), p(p)  sin(n4). 	The coefficients a
mk' 

b 	c
k 

satisfy: 

2. 
o(}.'—p o ) 	= 2.1.30  (c z  p z (p) + mE 1  [amz  cos(m4)+ bmz  sin(m0)] 

(3. 2. 6) 

The coefficients c am 
k' 

b
mk are obtained by using the orthogonality 

relations 

f
1 	

Pm(U) 	
r(t+m+1)  i‘ in 	2 

P
s(U) du - F(2.-m+1) 	‘-') 	TITTU (s ts , -1 	2,  

2  
L 
	

P (u) P s (u) (11-1 = 
- 1 	2. 	(22.+1)  

(3.2.7) 

2w  fo  cos(0) cos(nO) 	= f 2no sin(m) sin(n4) = n6 nm 

2n cos(m0) sin(n4) dq = 0 
0 

(Sneddon (1961) Sections (3.15) and (3.22) ) 

where 6k5is  the Kronecker delta symbol and r(z) is the gamma function 

of argument z. 

Using the relations (3.2.7) we find 



(2Z+1)  
4n 	P(LI o ) c

t   

(2t+1) (-1) m  (t-m):  a
mt 

= 	
2n 	(2.+m) 	PT(110) cos(m0 0 ). 

: 

(2t+1) (-1) m  (2.-m):  b
rat 

= 	
11.161o)sin(m4)OL 2n 	(t+m): 

as the expressions for c z , ami , and bmz . 
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(3.2.8) 

Substituting the coefficients cCO arat 
and  b

nit 
from Equations 

(3.2.8) into the expansion (3.2.6) we have 

	

6(P-P0) 6(°-4)o)  = 	24:1 [Pt (P cs) Pt" 

+2 2i (-1)m ()%-m):  Pm(11 ) Pm(P) cos(m(0 -00))]. m=1 	(t+m): 	o 	t 
(3.2.9) 

Using the result 

P 2.  (cos e ) = P(p) P(u
o

) 

+ 2 2i 	(-1)m (Z-m):  Pm(u) P 
m=1 	(t+m) 

cos(m(0-0 0)), 

where 

= cos 0 , 	1.1
0 

= Cos 0
o

, 

cos 	= cos 0 cos 0
o 
+ sin 0 sin 0

o 
cos  

(Sneddon (1961), Section (3.23)), the expansion (3.2.9) can be expressed 

in the more compact form 

60.1-P0) 6(0-  0 0) = 	22A-1  
Z=0 	4n 	P z (cos 	). 

(3.2.10) 

This is the expansion for d(p-p o) 6()-0 0) that we set out to obtain. 

We note that the angle e in Equation (3.2.10) is the polar angle 

referred to an axis through (00,00). 
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The normalisation condition (3.2.1) is satisfied if 

3N x
o
11+2  

• 16 n V p (ir2  1(n+1)1 ' 

in the expression (3.2.5) for Fo . 

	

Substituting for the constants, A, c t , amt , b 	the 

expression (3.2.5) we obtain the monoenergetic source solution 

corresponding to the release of N particles per steradian per second, 

of momentum po  from the position (r 0 ,00 ,4) 0) as 

2 	
(X

o
) n 	( 	2 2 ) 3N x

o 	
x+x 

1 
exp 	

o  F
o 

-  
T 	4T 

16 n V p
3 

r
2 

ln+11 	x  
o o 	. 

2X+1 
4 	

(X xo) 
P (cos 0 ) I

C 2T t=0 	n 	2, 

(3.2.11) 

where 

2 
= 	+ e 2.(9+1) (n+1) 2 ) 

= 2(rp
3/2

)
(1-b)/2  / (1-b), 

P c, 
T = 3f

p 
K (z) z (1-313)/2  dz/(2V), 
o 

 

• = (b+1) / (1-b), 

• = K / K 
• 

We note again that the diffusion coefficients in (3.2.11) are 

K 11  = K
o
(p)r

b 
and K

1 
 = e K 11 , where e is a constant. 

We now consider the structure of the monoenergetic source 

	

solution (3.2.11) as the source radius r o  
0. For particles to escape 

from r
o 

= 0 it is necessary to choose the parameter b, determining 

A 



22n+6 
V 7  

F
o  2 r(n+2) T n+1 exp (7) 

3N (n+1)
2n+2 

1 	-x
2 
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the radial dependence of the diffusion coefficients to be less than 

one i.e. b < 1. 	If the perpendicular diffusion coefficient 

K = e = 0, b < 1, and we let r
o 
+ 0 in the solution (3.2.11) we find 

that 

F
o  

3N(n+1)
2n+2 	

1 
exp 

2  
(?5-

2
) 2n+4 

w V r(n+2) T
n+1 	4T 

2I+1 	P (cos 9 ), 
t=0 47 (3.2.12) 

which is a steady state solution of the equation of transport for 

solar cosmic-rays. 	The series in Equation (3.2.12) is an expansion 

for 6(ii-11 0) 5(0-0 0) (cf. Equation (3.2.10)), so that with K 1  = 0, 

particles from the sun are channelled in the direction (0 ,c1) ). 
o o 

However if K
1 
 0 0, b < 1, and r

o 
+ 0 in the monenergetic point 

source solution (3.2.11) the only term in the right hand side of 

Equation (3.2.11) which remains non zero corresponds to t = 0 and the 

solution (3.2.11) becomes spherically symmetric due to a diffusive flux 

perpendicular to the magnetic field at the source. Hence the solar 

source solution in which N particles per second of momentum p o  are 

released from r
o 

= 0 is 

(3.2.13) 

where K 	K0 (p)r ' , b < 1, KI/K II  = e 0 0. 

We now consider the character of the monoenergetic source 

solution (3.2.11) as the source radius r
o 

+ =, which corresponds to 

the case of galactic cosmic rays. 	In order to obtain a finite 

solution as r
o 
+ = it is necessary to choose the parameter b, determin-

ing the radial dependence of the diffusion coefficients, to be greater 
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than one, i.e. b > 1, and to choose the injection rate N to be 

proportional to r
o
b+1 

If we choose 

= (b+1)N K(p) ro go o 	
b+1

, 

K
11 

= K0 (p) r
b
, b > 1, K

1 
 = 0, 

and let r
o 

4- 0,  in the monoenergetic point source solution (3.2.11) 

we obtain the solution for a monoenergetic galactic spectrum at 

infinity, i.e. 

= 41Tp
2
Fo 	Ng 6(p-P0 ) 6(P -U0 ) 6(0-$0 ) as r 	co . 

(3.2.14) 

The solution is 

3N Ko(p0) po 	
1 x 

-3(1+b)/2 
( 2)7 F _ 	g 	-x 

8 w V r(m) 	T 4T 	exP  (4T 

2 

) o  

(22.4-1)  
4n 	

P (cos 0 ) , 
t=0  (3.2.15) 

where K1  = 0, K il  = Ko (p)r
b
, b > 1, m = (b+1)/(b-1). The solution 

(3.2.15) shows that with K1  = 0, monoenergetic galactic particles 

released from r
o 

= co are channelled in the direction (0 ,0 ). We note 
o o 

that the corresponding solar source solution (3.2.12) with K i  = 0 

also has this property. 

However if the perpendicular diffusion coefficient K1  A o, 

K
11 

= K(p) r
b
, b > 1, K

1
/K

H 
= e, 

and 

b+1 
= 4n(b+1) Ng  K(po

) r 
o 	o 

and we let r
o 

4 	in the monoenergetic point source solution (3.2.11), 

the only term on the right hand side of (3.2.11) which remains non 
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zero corresponds to 2, = 0. 	In this way we obtain the monoenergetic, 

spherically symmetric galactic spectrum solution in which 

U 	N 	ó(p-p0 ) 	as 	r 	. 
(3.2.16) 

This solution is 

-3(1+b)/2 3 Ng  Ko (po ) po  1 
T 

(x2) m 	(-x2  
' 8 n V 	r(m) 4T 	exP 	4T 

(3.2.17) 

where K 	# 0, 	K
11 

= K
0
(p) r

b
, 	b > 1, m = (b+1)/(b-1). 

The solution (3.2.17) may also be obtained by a Laplace transform 

technique (see Section (4.3)), or by use of Green's theorem (see 

Section (6.3) ). 

To obtain the spherically symmetric monoenergetic source 

solution in which particles of momentum p o  are released at a rate of 

N particles per second from a spherical surface at radius r o , we 

simply replace N by N/(4n) in the monoenergetic point source solution 

(3.2.11) and integrate over the solid angle element chl
o 
= sine de dc0 

o Q 0 

	

from 0
o 

= 0 to 0
o 

= n and from (I)
o 

= 0 to (I)
o 

= 2n. 	Using the orthogon- 

ality relations (3.2.7) for the Legendre and associated Legendre 

polynomials, and carrying out the solid angle integrations we obtain 

2 	3 2 1 

xc 	x x 2) 	x2+x) 
3N 	

( 	 

x 	
T exp 	

o 

4T 	
I
m 	2T 	. 

64 n V po  ro  111+11 

For ready reference we note again 

= 2(rp
3/2

)
(1-b)/2 

/ (1-b), 

T = 3fP0  Ko  (z) 
z(1-3b)/2 

dz/(2V), 
p  

n = (b+1)/(1-b), 	m = I n I, 

K11  = K0 (p) r
b
, b 0 1, 	KI/K 11  = e. 

(3.2.18) 



3N 6(x-x) 601-1 0) 6(0-0 ) 0   
	 as T 0, F

o 
8 a V p

3 
r
2 

o 	o 
(3.2.2) 
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Case (2) 	K 11  = K(p)r, 	K/K
II 

= e A 0 

For monoenergetic source solutions, the group generators 

(2.4.7) must satisfy the additional parameter restrictions (2.3.30) 

4 W- (x ) 
11"(x ) = E 	 + A(x ) 	= 0, i=1 

	

	i  
ax 

so that 

6 = h = 0, 

= y(x0/2 - to ), 

x
o 
= x(ro ,p0 ), 	to  = t(p 0 ). 

Using Equation (2.5.28e) the condition k = y(x 0/2 - to ) is 

equivalent to 

a = x
o
/2. 

(3.2.19) 

(3.2.20) 

Substituting the parameters (3.2.19), (3.2.20) into the 

similarity solution given by Equations (2.5.34) and (2.5.37) we find 

that the monoenergetic point source solution has the form 
2 

A 
F
o  

— exp 	4T 	+ x - T] , 
4ff 	[  

ci3 	[c P (p) + E Ca 	cos(m0)+b 	sin(m0)] Pm (II) t 	t =0 	t 	m 	mt =1 	mt 	 9, 

exp (-e t(t+1) T). 	
(3.2.21) 

The normalisation condition (3.2.2) : 

and (2.3.32), i.e., 

corresponds to the release of N particles per steradian per second 

of momentum p o  from the source point (r0 ,00 ,0 0). The constants c
t' 

a
tat' 

b
rat 

are determined from the expansion of the Double Dirac delta 

function 6(p-11 0) 6(0-0
o
) in terms of Pt (u), P

m
(u) cos(m0) and 
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P(0) sin(m0). These constants are the same as in case (1) and they 

are given by Equations (3.2.8). The normalisation condition (3.2.2) 

also implies 

A 

-x 
3 N e 

  

16n3/2 
V p

3 
r
2 ' 

o o 
(3.2.22) 

in the expression (3.2.21) for F. 

Substituting c
'  a 
	b 	from the Equations (3.2.8), and A 

L 

from (3.2.22) in the solution (3.2.21), we obtain the monoenergetic 

point source solution in which particles of momentum po  are released 

at a rate of N per second per steradian from the heliocentric position 

(r ,0 	). This solution is 
o o o 

(x-x0 ) 2  T) 
F
o 
	3N 	1 

exp 	x - x
o 

6 4 n5/2  V p 3  r2 	
4T 

o o 

cf 	(22+1) P st (cos 0 ) exp (-e 9..(L+1) T), 
Q=0 (3.2.23) 

where 

= -231(2 r
2 

p
3
) /2, 

T = 3 1 °  K (z) z (1-3b)/2  dz / ( 2V), 

	

p 	o 

cos e = cos 0 cos 0
o 
+ sin 0 sin 0

0 
cos(4)-(0

o
), 

i.e. 0 is the polar angle relative to an axis in the direction (0 0 ,00 ). 

Replacing N by N/(4n) in the monenergetic point source 

solution (3.2.23), and integrating Equation (3.2.23) with respect to 

	

the solid angle element 	= sin 0 de dO from 0
o 
= 0 to 0

o 
= 

o o o o 

and from 00  = 0 to 00  = 2n we obtain the spherically symmetric mono-

energetic source solution in which particles of momentum p o  are released 

at a rate of N per second from a spherical surface at radius r o . This 
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solution is: 

F
o 
 3N  

exp 	x
o
-T - (x-x0)  

6 4 w5/2  V p3 r2 xr  4T 	' 
00 

2 

(3.2.24) 

We note that the solutions (3.2.23) and (3.2.24) both tend to zero as 

r
o 	

O. 

3.3 Remarks  

The monoenergetic point source solutions in which particles 

of momentum po  are released at a rate of N per second per steradian 

from the heliocentric position (r 0 ,00 ,4)0 ) are given by Equations 

(3.2.11), (3.2.23). In these solutions the diffusion coefficients 

parallel and perpendicular to the "radial interplanetary magnetic 

field" have the form K
II 

= K(p) r
b
, K/K

II 
= e. 	However if we 

have isotropic diffusion, i.e. K1  = K 11  the interplanetary magnetic 

field need not be assumed to be radial. 

The spherical symmetric monoenergetic source solutions in 

which particles of momentum po  are released at a rate of N per second 

from a spherical surface at radius r o  are given by Equations (3.2.18) 

and (3.2.24). 

The monoenergetic galactic and solar source solutions are 

given in Equations (3.2.13) and (3.2.17) for the cases where K 1  A o. 

These solutions are spherical symmetric due to a diffusive flux 

perpendicular to the magnetic field at the source. For the case where 

K = 0, the monoenergetic galactic and solar point source solutions 

are given by Equations (3.2.15) and (3.2.12). In these solutions the 

particles are channelled in the direction (0, 	). 
o o 
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CHAPTER 4 

THE LAPLACE TRANSFORM DERIVATION OF THE  

MONOENERGETIC SOURCE SOLUTIONS  

4.1 	Introduction 

In this chapter the monoenergetic point source solutions 

of Chapter (3) are derived using a Laplace transform technique. In 

these solutions the distribution function Fo 
satisfies the boundary 

conditions 

(a) Fo 	
0 	as r -* co 

(b) F
o 
is finite as r 	0, 

and these solutions are derived in Section (2). 

(4.1.1) 

The interplanetary magnetic field is assumed to be radial and 

the diffusion coefficients parallel and perpendicular to the field 

denoted by K I1  and K1  are given by 

K 11  = K0 (p) r
b

, 	K1/K 1I  = e, 	(4.1.2) 

where e is a constant and K0 (p) is an arbitrary function of momentum p. 

The solar wind velocity V is assumed to be radial and constant. 

In Section (3) we derive the solution of the boundary value 

problem 

(i) U = 4np
2 

F
o 

4- Ng  6(p-p) as r 	CO
, 

(ii) U is finite as r 	0, 	 (4.1.3) 

(iii) The diffusion coefficient K = K(p) rb , b > 1, 

by the Laplace transform technique. The solution of the boundary 
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value problem (4.1.3) was given, without derivation, in Chapter (3). 

4.2 Monoenergetic point source solutions  

With a source of monoenergetic particles of momentum p o  

released at heliocentric position Cr, 0 0 , 00) at a rate of N particles 

per second, per steradian, the steady-state cosmic-ray equation of 

transport has the separable forms (2.2.7) and (2.2.8), i.e., 

if 	K
II  

= K(p) r
b
, b A 1, 	K /1( II = e, 

J. 

2 	n+1  aFo 	aFo  (n+1) 2 [  2 a 2F
o 

a2F
o 	

ax 	
+ e 	(1-p 	2paFo 2 	2 at 

ax
2 x ap  

a 2F0  
1  

(1-p 2 ) 	ao 2 

- 3 N x (5(x-x) (5(t-t) 6(p-11 0) 6(0- o  0  o  0 0 ) 

 

8 n V p
3 r 2 in+11 
o o 

 

(4.2.1) 

wbere 

x = 2(rp
3/2

)
(1-b)/2  / (1-b), 

t = -3 IP  Ko (z) z
(1-3b)/2 dz / ( 2V), 	(4.2.2) 

n = (b+1)/(1-b); 

	

if K
II 

= K(p) r, 	K /K 	= e, b = 1, 
• 1 	11 

2 - 
o 

	

aF
o  

aF
o  

aFo  F
o a2F 	 1  

- 2 	+ e [(1-0
2

) 
a2F 

- 2p -T r+ 

	

ax 	at 
ax

2 ap
2 (1-p 2 ) 	a0

2 

3N 6(x-x
0
) 6(t-t

0
) d(p-p 0) 6(0-00 ) 

8 r V p
3 

r
2 

0 0 
(4.2.3) 
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where 

and 

x = - 2.n (2r 2
p
3
) / 2, 

-3/P  Ko(z) 
z(1-3b)/2 

dz / ( 2V), 

t
o 

= t(p0 ), 	x
o 
 = x(r ,p ). 

o o 

(4.2.4) 

Using the Laplace transform technique there are two mono-

energetic point source problems to consider according as the parameter 

b (determining the radial dependence of the diffusion coefficients) 

is equal or not equal to one. 

To derive these solutions we first obtain separated solutions 

of the angular part of the partial differential equations (4.2.1) and 

(4.2.3) determining F
o
, and hence we obtain 

F
o 

= r 	i 	[a cos(m0 + b
tut 

sin(m0] Pm(p) + c P (p)] 2.=0 m=1 	mt 	 R. 	It 

R (x, t, k), 	
(4.2.5) 

where Pm(p) is a Legendre associated function and P (p) is a Legendre 

polynomial of order Z. The second solution of Legendre's associated 

equation QT(p) has not been included in the solution (4.2.5) since 

it has a singularity at p = 1 and hence is inappropriate for the 

present problem. 

The coefficients a , b , and c in the solution (4.2.5) mt 	m9. 	9.  

are then determined from the normalisation conditions (3.2.1) and (3.2.2): 

If b 	1 

3N xo  d(x-x0 ) d(p-po ) (S(4)-(0 0 ) 
F 	 as t + t

o
, 

8 n V p
3 

r
2 

ln+11 
0 0 (4.2.6) 



91. 

if b = 1 

F
o 

3N ó(x-x0 ) 60-110 ) o(0-0 0 ) 
as t + t

o. 

 

8 	V p
3 

r
2 

o o (4.2.7) 

The conditions (4.2.6) and (4.2.7) imply 

6(11-0 0 ) 6(4)-(1) 0) = jo [mIt i  Cameos(m0) + b 	sin(m0)] P7(m) 

+ c P(p)]. 
(4.2.8) 

The determination of the coefficients a
mk' 

b
mk' 

c from 
k 

 

the conditions (4.2.8) has been carried out in Chapter (3) in 

Equations (3.2.6)-(3.2.10). In Equation (3.2.10) it is shown that 

where 

6(p-110) 6wo o) = 	7 2k+1 
47 

P (cos 	), 
fl=0 	k 

cos 13 = cos 0 cos 0
o 

+ sin 0 sin cos (4)-0
o
), 

(4.2.9) 

(4.2.10) 

and 	is the polar angle referred to an axis through (0
o'o

). 

Hence the solution of the Equations (4.2.1) and (4.2.3) for 

monoenergetic point source solutions reduces to the solution of a 

boundary value problem for the function R(x, t, R.) referred to in 

the expansion (4.2.5). 

Putting T = t-to  and since x = x(r,p), the function R(x,t,k) 

must satisfy the conditions 

(i) R(x,T,k) -* 0 as 	oo, 	
(4.2.11a) 

(ii) R(x,T,Z) -0- a finite value as r 	0, 	(4.2.11b) 

(iii) If b 	1 



R(x,T,t) + as T + O. 
8 n V p

3 
r
2 

00 

(4.2.11d) 
3N 6(x -x0 ) 
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R(x,T,t) 4 

3N x
o 

d(x-x0 ) 

 

as T + 0, 

 

8 n V p3  r 2 In+11 
o o 

(4.2.11c) 

and if b = 1 

The boundary value problem (4.2.11) for the function R(x,t,t) 

is now solved by the Laplace transform method for the two types of 

diffusion coefficient mentioned previously in this section. 

Case (1) K
11  = I(0  (p) r

b
, b 0 1, K/K

II 
= e 

The function R(x,t,t) satisfies the partial differential 

equation 

	

a
2
R 	2n+1 aR e 2,(2.+1)(n+1) 2 aR 
+ — — —  = . 

	

2 	
x
2 x 3x 	 aT ax 

 
(4.2.12) 

Consider the Laplace transform of R(x,t,t)with respect to T 

u(x,$) =  e
-sT 

R(x,T,t) dT. 
0 (4.2.13) 

Taking the Laplace transform of Equation (4.2.12) and the 

boundary conditions (4.2.11a) and (4.2.11b), the boundary value problem 

(4.2.11) for R(x,T,t) reduces the boundary value problem for u(x,$) 

given below. 

d
2
u 	2n+1 	du 	[7 2.(t+1)(n+1)

2 
+ — — 

x 	dx 	
+ s] u =  

dx
2 

x
2 

(4.2.14a) 
3N xo  5(x-x0 ) 

8 IT V p
3 

r
2 

in+1 
o o 

R(x,0) 

(4.2.14b) 
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u(x,$) -4- 0 as r + 00 

(4.2.14c) 

u(x,$) is finite as r + 0. 	
(4.2.14d) 

Since 

= 2(rp3/2 ) (1-1)/2  / 1(1-b)l, 

the boundary 	conditions (4.2.14c) and (4.2.14d) expressed in 

terms of x are: 

if b < 1, 

u(x,$) + 0 as x 

u(x,$) is finite as x 	0 

and if b > 1, 

u(x,$) is finite as x -* a. 

u(x,$) + 0 as x + 0. 

(4.2.14e) 

(4.2.14f) 

The general solution of the inhomogeneous Equation (4.2.14a) 

is 

R(z,0) u2 (z,$) 
u(x,$) = u (x,$) c + Ix 	 dz 

1 	W(u
1 (z ' s) '

u
2 (z,$)) 

( 	

R(z,0) ul (z,$) 	d  

+ u2 (x,$) 	d - 
x 
 W(u

1
(z,$), u 2 (z,$)) z  ' (4.2.15) 

where ul (x,$) and u2 (x,$) are independent solutions of the homogeneous 

Equation (4.2.14a), with wronskian W (u1
(x,$), u

2
(x,$)) (Morse and 

Feshback, Methods of theoretical physics, Vold, Section (5.2.), 

p.529-530). 	The constants c and d are determined by the boundary 

conditions that are placed on u(x,$). 

Two independent solutions of the homogeneous form of Equation 



x) fx a(z,x0) xn+ .1.  I (f-s-z)dz 
[ C 	0 	C 

u(x,$) - 	3 2  
87Vporo ln+1 

3N xo 

Carrying out the integrations in Equations (4.2.20) we have 

n+2 
3 N x

o  
x-n  i 1  xo) K C (f-s-  10 if x > xo , 

8 u V p3r
2 

ln+11 
00 

94. 

(4.2.14a) are: 

ul (x,$) = x
-n 

I (J x). 	
(4.2.16) 

u (x,$) = x( f x), 	
(4.2.17) 

where 

c  = 	+ e t(Z+1)(n+1) 2  

The wronskian of ul (x,$) and u2 (x,$) is 

x-2n-1 .  W (ul , u2 ) 

The functions u1 (x,$) and u2 (x,$) have the properties: 

ul (x,$) 	co as x 

ul (x,$) 4  0 as x -0.  0, 

u2 (x ' s) -0.  0 as x -0. w , 

u 2 (x ' s) 
-0.  a. as x -0. 0. 

(4.2.18) 

(4.2.19a) 

(4.2.19b) 

(4.2.19c) 

(4.2.19d) 

Substituting the expressions (4.2.16) and (4.2.17) for 

ul (x,$) and u 2 (x,$) in the general solution (4.2.15) and using the 

properties of ul (x,$) and u 2 (x,$) for small and large x, to fit the 

boundary conditions (4.2.14) we obtain 

+ x 
	

x) I: 6(z-x0 ) zn+1  K (J z) dz I. 
(4.2.20) 
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and, 

u(x,$) 

n+2 
3N xo  

x
-n 

I (.5 x) K (ri xo ) if x s xo . 
8 n V p

3 r
2 

in+11 
00 

(4.2.21) 

The inverse Laplace transform of u(x,$) gives the required 

solution of the boundary value problem (4.2.11) for R(x,T,Z). This 

solution is given by the Bromwich integral formula 

1 	c+i 	sT o. 
R(x,T,Z) = 	

2ni c-iO3 u(x,$) e 
	ds. (4.2.22) 

From Erdelyl e s Tables of integral transforms (vol.1, Section (5.16), 

p.284, formula (56)) 

1 	c+ioo 
27i c-ipo K((/oT +%/fT) Js) I 	- MI's) e

sT 
ds 

1a+01 	I (al exp( 
2T 	2T 	2T (4.2.23) 

where Re(a) > 0 and Re(a) > 0. Substituting the expressions (4.2.21) 

for u(x,$) in the Bromwich integral formula (4.2.22), and using the 

transform (4.2.23) with 

a = (x + x0 )
2
/4, 	8 = (x - x0 ) 2/4, 

we obtain 

R(x,T,t) = 

n+2 
3N x 	-n 	2, 2 	x x 

o 	x
T exp( 2Vg—) 2T l c 

16 7 V p
3 

r
2  n+11 

o o 
(4.2.24) 

as the solution for R(x,T,Z). 

Combining the expansion (4.2.9) for 6(i1-u 0) 6() and the 

expression (4.2.24) for R(x,t,t) we obtain the monoenergetic point 
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source solution in which particles of momentum p o  are released at a 

rate of N per second per steradian from the heliocentric position 

(r , 
O,  0 ). The solution is o o o 

2 
xo)11 1 	x2+x 3 N xo  F

o 	 exp( 	 T1 	4T 16 7 V p3  r2  In+11  x  o o 

where 

2,4-1) 	o 
X 

(2 	
X
) 

P(cos 	) It 	(---- 
i=0 	4-1T 	c 	2T 

(4.2.25) 

K
11 	

= K(p) r
b

, 	b 0 1, K1 /K 11 = e, 

(b+1)/(1-b), 

Jn2  + e  

2(rp3/2 ) (1-b)/2 / (1-b), 

P, 
3 I 	K (z)z( 

1-3b)/2 
 dz / (2V). p o 

cos 0 cos 0
o + sin 0 sin 0

o 
cos (0-0

o
). 

The result (4.2.25) has been given in Equation (3.2.11) of Chapter (3). 

Case (2) 	K I1  = K(p)r, 	K 
I 
 /K

1 
 = e 

1 

The function R(x,T,t) satisfies the partial differential 

equation 

a 2R 	DR 	aR 
2 — - e 2.(9.+1) R = 

3x 	DT 
Dx

2 
(4.2.26) 

Consider the Laplace transform of R(x,T,Z) with respect to T: 

-sT 
u(x.$) = I e 	R(x,T,Z) dT. 

Taking the Laplace transform of Equation (4.2.26) and the boundary 

c 

= 

= 

x = 

T = 

cos 	(i0 = 



d 2u du  -  
dx

2 	
- (e 9(9+1) + s) u dx 

3N (5(x -x0 ) 

8 7 V p r 3 2 ' 
o o 

u(x,$) 	0 as r 

R(x, 0) = 

= - R (x, 0), 	
(4.2.27a) 

(4.2.27h) 

(4.2.27c) 
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conditions (4.2.11a) and (4.2.11b), the boundary value problem 

(4.2.11) for R(x,T,k) is reduced to the following boundary value 

problem for u(x,$) 

u(x,$) is finite as r 	0. 

Since x = - kn(2r
2
p 3 )/2, the boundary conditions expressed in terms 

of x are 

u(x,$) 	0 as 	-co 
(4.2.27d) 

u(x,$) is finite as x 

The general solution of the inhomogeneous form of Equation 

(4.2.27a) is: 

x 	R(z,0) u 2 (z,$) 
u(x,$) = ul (x,$) 	c + I   dz W(u

1
(z

'
s)

'
u
2
(z

'
s)) 

	

+ u2 (x,$) 	d - Ix W(u1(z,$),u2(z,$)) 

R(z,0) ul (z,$) 
	 dz 

(4.2.28) 

where u
1
(x,$) and u2

(x,$) are independent solutions of the homogeneous 

form of Equation (4.2.27a), W(ui (x,$), u2 (x,$)) is the wronskian 

of u1 and u2 
and c and d are constants determined by the boundary 

conditions (cf. case (1)). 

Two independent solutions of the homogeneous form of Equation 

(4.2.27a) are 

u
1
(x,$) = exp L(1 +fl+s + e 9(2+1) ) x] , (4.2.29) 
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and 

   

u2 (x,$) = exp [(1 - 11 + s + e 2,(2.+1) ) x ] . 
(4. 2.30) 

The wronskian of u
1 and u 2 is 

   

W(ui (x,$), u 2 (x,$)) = - 2 /1 + s + e 2.(2+1) exp (2x). 
(4.2.31) 

For large positive x and large negative x we have: 

u
1
(x

'
s) 0 as x 	-co 	u1 (x ' s) 	0. as x 	co, 	

(4.2.32a) 

u2 (x,$) -0- 0. as x 	-co, u2 (x,$) -0- 0 as x 	co . 
(4.2.32h) 

Substituting the expressions (4.2.29) and (4.2.30) for u l (x,$) 

and u 2 (x,$) in the general solution (4.2.28), and using the properties 

(4.2.32) of ul (x,$) and u 2 (x,$) for large lxi to fit the boundary 

conditions (4.2.27d), we obtain 

3N 

16 it V p 3  r2J1+s+e 2.(Z+1) 00 

f: 6(z-x0) exp[ (Jl+s+e t(2,+1) - 1) z ] dz 

+ exp [(1 + ,j1+s+e 2.(2.+1) ) x] f ó(z-x 0) exp[-(1 +11+s+e 2.(2,+1))z] d4. 

(4.2.33) 

Carrying out the integrations in (4.2.33) we have 

16 n V p r,4"4.s+e  
exp[ - ,/l+s+e2. (Z4-1) )(x-x)] g i  2,(2.+1) 

if x > x
o

, 
(4.2.34a) 

and 

3 N 
expE(1+,/l+s+e2.(2.4-1) )(x-x 0 )7 

(4.2.34b) 

as the required solution for u(x,$). 

The inverse Laplace transform of u(x,$) : 

[exp[ (1- Ji+s+e 9(9.+1) ) x]. 

3N 

16 n V p3  r2J1+s+e 2,(2,+1) o o 
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1 	c+ioo 
u(x,$) e

sT 
 ds, R(x,T,X) = 2Tri 	I c.d.° 

(4.2.35) 

is the solution of the boundary value problem (4.2.11). Putting 

p = 1 + s + e k(9+1) and using the expressions (4.2.34) for u(x,$) 

in the transform (4.2.35) we have 

R(x,T,t) = 
3N  

exp [x-x
o
- (1 + e 9.(L+1)) T]. 

16 Tr V p
3 

r
2 

o o 

1c+i. 	exp(- 	lx-x 1) 
.1" 	exp(pT) 	o  dp.  

(4.2.36) 

From Erdelyi, Tables of integral transforms (vol.1, Section (5.6), 

p. 246, formula (6)): 

a+1.03 1 	1 
J51  e

pt dp = 	1 
exp (- a4t) 

271. 1 
a-do. 	1-13  (4.2.37) 

Using the transform (4.2.37) with 

a = (x-x0 )
2 

and t = T, 

in the result (4.2.36) we obtain 

R(x,T,J) = 3 N 	1 exp f x - x
o 

414.e £(9.+1)] T 
16 n

3/2 V p
3 r

2 17 

(x-xo)
2] 

4T 
(4.2.38) 

as the solution for R(x,T,t). 

Combining the expansion (4.2.9) for d(u-u o) d(0-00) and the 

solution (4.2.38) for R(x,T,k) we obtain the monoenergetic point source 

solution in which particles of momentum p c)  are released at a radius 

r
o 

at a rate of N per second per steradian from the heliocentric 

position (ro, 90 

The solution is : 



100. 

	

3 N 	
(x-x0) 

F 	
1 

exp x 	o  x 	T 	 
o 

16 n 3/2  V p3  r 2  IT 4T 
o o 

(2t+1)  

	

4n 	k (cos 0 ) exp [-e 2,(2.+1) T] , k=0  

(4.2.39) 

where 

K II 	
= K0 (p) r, 	KI/K II  = e, 

= - tn(2r
2
p
3
)/2, 

P 
T = 3 f

, 
 K (z) z(1-3b)/2 

dz /(2V), 

	

p 	o 

cos 0 = cos 0 cos 0o + sin 0 sin 0 o cos (0 -0 o ). 

The solution (4.2.39) has been given previously in Equation (3.2.23) 

of Chapter (3). 

4.3. The monoenergetic galactic spectrum solution 

We now proceed to solve the boundary value problem (4.1.3) 

in which the number density U is a monoenergetic spectrum at infinity 

and U is finite as r -0- 0, i.e. in terms of F o : 

(i) 	F 
Ng  6(p-po ) 

2 
4 n po  

as r ± CO 

(ii) Fo 
is finite as r 	0, 	 (4.3.1) 

(iii) the diffusion coefficient K = K(p) r
b
, b > 1. 

For the problem (4.3.1) the distribution function Fo  satisfies 

the spherically symmetric equation of transport with zero source term. 

Hence from Equation (2.2.7) we have: 
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a 2F 	 aF 

 

o + 2n+1 
 aF

o 	o 

	

ax 	aT 
ax

2 
(4.3.2) 

where 

•
= 2(rp312) (1-b)/2 , 1 

/ 1(1-b)I, 

• = (b+1)/(1-b), 

Po  
T = 3 f 	K 

0
(z) z (1-3b)/2 dz / ( 21.), p  

Since 
(1-3b)/2 

ldTI 	
3 Ko (Po l Po  

a(p-p0 ) = 6(T) 	= 	 2 V 	6(T), 

(4.3.3) 

the boundary value problem (4.3.1) expressed in terms of x and T 

is 

3 Ko(po)
3(1+b)/2  N 6(T) 

as x + 0, 
8 n V 

(4.3.4) 

(ii) Fo  is finite as x + CO. 

Consider the Laplace transform of F o  with respect to T: 

e

• 

-sT 
u(x,$) = F

o
(x,T) dT. I0  (4.3.5) 

Taking the Laplace transform of Equation (4.3.2) and the boundary 

conditions (4.3.4) the boundary value problem (4.3.1) becomes the 

following boundary value problem for u(x,$) 

d
2
u 	2n+1  du - s u = 

dx 	x dx 
o, 

u(x,$) + 0 	as 	X ÷ co 

3 K (p ) p
-3(1+b)/2 

o o o 

8 7 V 

(4.3.6a) 

(4.3.6h) 

N  as x + O. 	(4.3.6c) 
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The general solution of the ordinary differential equation 

(4.3.6a) is 

u(x,$) = [A . ImCa x) + B . Km(1"; x)] xm , 	
(4.3.7) 

where in = Ini and Im(z) and Km (z) are modified Bessel functions of 

the first and second kind of argument z. 

The boundary condition at x = co, (4.3.6b) is satisfied if 

we choose A = 0 in the general solution (4.3.7). Using the result 

K
m

(
z
) r(m) (z/2) -m/2 as z 0, (4.3.8) 

we find that the boundary condition at x = 0, (4.3.6c) is satisfied 

for 

3N K (p ) p
-3(1+b)/2 

s
m/2 

g o o o 

2m+2  7r V r(m) 
	 (4.3.9) 

and 
-3(1+b)/2 

3 Ng Ko (po )po  
s
m/2 

x
m 

Km(f; x). 
(4.3.10) 

2111+2 IT V r(m) 

Inverting the Laplace transform (4.3.10) for u(x,$) we 

obtain 

- c+io,  3Ng Ko 	
3(1+b)/2 

	

(p0) p
o 	1 F

o 
= 	 I s

m/2 
Km(J; 	

sT 
x) e x

m 
ds. 27i c-i00 

2' 	V r(m) 
(4.3.11) 

Using the result 

c+io. 

2wi cLico 
a-v/2 

p
v/2 

Kv (2/a45) ePt  dp = t-v-1  e
-alt  1 	 /2, 

(4.3.125 

(Erdelyi et.al . (1954), Vol.1, Section (5.16), p. 283), the expression 

(4.3.11) for Fo 
becomes: 



( -31+b)/2 

	

3 Ng  Ko (po ) po  	(x 2)111 
1 	-x

2 

	

n V r(m) 	4T 	T. exP (4T ) o 	8 	 ' 
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(4.3.13) 

F = 

The solution (4.3.13) is the monoenergetic galactic spectrum 

solution (3.2.17), which was given, without derivation in Chapter (3). 



CHAPTER 5 

GREEN'S FUNCTIONS  

5.1 	Introduction 

In this chapter we use the results of Chapter (2) to 

determine general solutions for cases in which we can specify the 

distribution function F
o 

on two boundaries at radii r = r
a 

and r = r
b' 

with the intention of obtaining spherically symmetric Green's 

functions. 	The Green's function is the solution for a monoenergetic 

source of momentum p
o
, at radius r

o 
and in general with F

o 
= 0 

at boundaries r = r
a 

and r = r
b' 

where r
a 

< r
o 

< r
b' 

The expressions (2.5.7) and (2.5.21) for the similarity 

variable n(x,t) are in general functions of radius r and momentum p. 

The curves 

where, 

and 

n(x,t) = constant, 

= -(3/(2V)).03  K
0 
 (z)z (1-3b)/2  dz, 

3/2) 	
if b 0 1,

(1-b)/2 
• = [21(1-bwrp  

▪ = - in(2r2p
3
)/2 if b = 1, 

(5.1.1) 

may be used as boundary curves for the general similarity solutions 

of Section (2.5). 

In Section (2) we show that the variable z = an (where a 

is a constant which may be made infinitely large) is a function 

104. 
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of radius only for diffusion coefficients of the form K
II 	

K
o 

rb 

or K
II 

= K
o 

r
b 

p
3/4(b-1)

and appropriate choice of the parameters 

ao , to , e l , d 1  which define n in Equations (2.5.7) and (2.5.21). 

The case b = 1 is degenerate so three separate similarity solutions 

arise for which z = z(r); they are for 

(1) K
II 	Ko r

b 
p3/4(b-1) , b 0 1, 

(2) K
II 	

= K
o 

r
b
, b 0 1, 

(3) K
II 

	Kr, 	
(5.1.2.) 

and these solutions are given below. 

In Section (3) we use the general similarity solutions of 

Section (2) to obtain the spherical symmetric Green's functions for 

cases where z = z(r) and boundaries at r
a 

and rb . 	In the case where 

rb = 0. and there is no inner boundary we obtain a spherical symmetric 

Green's function for general diffusion coefficients K
II 

= K(p) r
b

, 

K1/K 1I  = e. These latter solutions are the spherical symmetric 

monoenergetic-source solutions (3.2.18) and (3.2.24) with appropriate 

values of the normalisation constant N. 

5.2. 	Similarity solutions for cases where z = z(r)  

Case (1) 	K 	= K r
b 

p
3(b-1)/4

, b 0 1 

	

II 	o 

The similarity variable n(x,t) is given by Equation (2.5.7): 

(5.2.1) 

with x and t given by Equations (5.1.1) 

Choosing ao  = to  = 0 we have 
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= 2K
o 

p 
	

(5.2.2) 

= x/t = Vr
(1-1)/2/K0 , 	(5.2.3) 

and the similarity solution given by Equations (2.5.14) and (2.5.18) 

becomes 

-n -n-1 Fo (r,p) = exp(-z
2 
 t/4-x/t)z 	t 	[A.I (7 z) + B.K (4Trz)] 

C 	C 

. ,,.,s, , + ,.,s,.„ etis0, 	(5.2.4) " reP) u k4 R,"" 

where 

= (b+1)/(1-b), 

c 	J 2 + e(n+1)2  2.,(2, + 1), 

and s and 2, are positive integers with s L. 

The spherical symmetric part of the solution (5.2.4) is 

Fo (r,p) = exp(-z 2t/4-X/t)z-n  t-n-1  . [A.Im(,7 z) + B.Km (1,5-- z)], 

(5.2.5) 

where 	m = In 1. 

Case (2) 	K il  = Ko  r
b
, b 0 1 

The similarity variable n(x,t) for this case is given by 

the expression (2.5.7): 

n(x,t) = x/1/((t-t0 ) 2  + ao ) 	(5.2.6) 

where x and t are defined in (5.1.1). 
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We now let a
o 
= -t2

0 
-+ = and we introduce a new similarity 

variable 

limit - tn 2 

—9--  = x
2
/(4t). 

t
o  

(5.2.7) 

For a diffusion coefficient K
II 

= K
o 

p
a 

r
b
, the expression (5.1.1) 

for t is 

3K0  p6 
(5.2.8) 

2V 	!6 

where 

6 = a + 3(1-b)/2, 

and the expression (5.2.7) for z is 

= -2V 6 r1-b p
-a

/(3(1-b)
2
K0). 	(5.2.9) 

Hence if K
II 

= K
o 

r
b

' 
b A 1, from the results (5.2.9) and (5.2.8) 

we have 

t = K 
	

(5.2.10) 

= V r1-1' / (K0 (b-1)) 
	

(5.2.11) 

as the appropriate expressions for t and z. 

The similarity solution for a diffusion coefficient 

= Ko  r
b , is given by the expressions (2.5.14) and (2.5.17). 

2 
Letting a o 

= -t
o 

+ = in (2.5.14) and (2.5.17), defining 

limit 	X  (5.2.12) 
a
o 
 + = 	2to 
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and scaling the expression (2.5.17) so that we obtain a finite 

result we find 

Fo 
	e-z 

o . M((1+0/2 +v, l+c, z) 

tiscp ,  

	

+ Bo . U(1+0/2 + v, l+c, z)] 	[C.P:(11) 	
13004 603 e  

(5.2.13) 

where 

= (b+1)/(1-b), 

' 0/2 n + e  

s and L are positive integers with s t, and A o  and Bo  are arbitrary 

constants. 

The spherical symmetric part of the solution (5.2.13) is 

Fo = t
v-( 114.1)/2 e

-z 
[A

o  . M((l+n)/2 + v, l+n, z) 

	

+ Bo . U(l+n)/2 + v, l+n, z)], 	(5.2.14) 

and this is the form of the solution that we will use later in our 

analysis. 

Case (3) K11  = Ko 
r 

For a diffusion coefficient K
II 

= K
0 

r the similarity variable 

n(x,t) is given by the expression (2.5.21): 

x + d
1  + e (t-to

) 
n(x,t) =  1  

(t-t) 2  + a o 	
o (5.2.15) 
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where 

x = - kn(2)/2 - in r -(3/2) in (p) , 

t = -(3K0 /(2V))tn(p), 	to  

T = t - t
o

, 

and e d
l' 

and a
o are arbitrary constants. 

We now let a
o = a

2 
+ = and we introduce a new similarity 

variable z: 

limit 
z 

 
a n a + = 

= d 1  - tn(2)/2-(3K0/(2V))e 1  £n(p) -(3/2)4n(p) 

+(3K
o e1 /(2V))tn(p) - tn(r). 
	

(5.2.16) 

We choose e
1 
and d

1 so that z is a function of radius r only and 

hence putting 

e
1 
= V/K

o
, 	d

1 = kn(2)/2+(3/2)tn(P0), 	(5.2.17) 

we obtain 

z = - tn(r), 	 (5.2.18) 

as the appropriate expression for our similarity variable. 

The similarity solution for this case is given by the 

results (2.5.24) and (2.5.26a) : 



iz /2 M(3/4 - iav /2, 3/2, iz /( 2a))= a+ = 
2 IT' v 

limit 	 2 	2 	(e 	- e 	)  
vz 	-vz 
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F
o 

= exp[-n
2 
 T/4 - (1-e

1
/2)

2 
 T - 	9.n(T

2  +a0)/4 

+ n(1-e
1
/2) 1T2  + a

o 
 + c

1  IT  dy/(Y 2  + a )1. o j  

exp(-1-2T: n 2/4) [A0  . M(c 1/(V-a0) + 1/4, 1/2,J1-2/2) 

+ Bo  .(F7i; n2 /2) mcc i/(v=i-o) + 3/4, 3/2, xiCii: n 2/2d 

(5.2.19) 

Letting a
o 

= a
2 
+ =, defining 

limit 
v
2 

c
1
/a

2
'  

= 1 - V/(21%), 
a = 

(5.2.20) 

and using the results 

limit 
W-iv2a/2+1/4,1/2,12 2 /(2a)) = (evz  + e-vz)/2, a + = 

(5.2.21) 

(Abramowitz and Stegun (1964), Section 13.5). 

the similarity solution (5.2.19) becomes 

= (A evz  + B e-vz) exp (( v2  - c 2) T + c z). 	(5.2.22) 

An alternative form of the solution (5.2.22) in terms of radius r 

and momentum p is 

-v 	v, -3d(v
2
-c

2
)/2, Fo = 	 r-c (Ar +Br) p 

(5.2.23) 

where 

= 1 - V/(21( 0), 	d = K
o
/V. 



5.3 The Green's Functions  

We now extend the general solutions for F o  in cases with 

n a function of r only, given in Section (2), and obtain the Green's 

functions for those particular cases. The Green's function is the 

solution for monoenergetic release with momentum p o , at radius ro , 

and in general with Fo  = 0 at boundaries ra , rb 	a 	o  with r < r < rb . 

We denote it by CF  (r, p; ro , po , ra , rb ) and here restrict ourselves 

to the spherically symmetric problem. 

Solutions which have F
o 

= 0 at r
a 

and r
b 

are in general sums 

of eigensolutions of the general solution. For example in the case 

K.1  = K
o r

b 
p
3(b-1)/4 

where the general solution is given by Equation 
1 

(5.2.5), the constants x must have values x s  set by the eigenvalue 

equation 

Iraqi; z(ra)] Km[rcrs z(rb)] - Iraqi; z(rb )] 	z(ra)] = O. 

(5.3.1) 

The Green's function solution is then obtained by a summation of 

the terms corresponding to the right hand side of Equation (5.2.5), 

with suitable coefficients c s . 

The determination of the constants cs 
is awkward if done 

directly from (5.2.5). 	However the problem is basically of Sturm 

Liouville type and the determination of the constants is expedited by 

using Sturm Liowville theory. To achieve this we use a change of 

variables. 

t 	T, 	 (5.3.2) 
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and manipulate the solutions of Section (2) into the form 

F
o = a(z, t) g(z, T), 	 (5.3.3) 

in which we choose a(z, t). 	Then in place of the partial differential 

equation for Fo  in terms of z and t (see e.g., Equation (5.3.8)) 

we obtain a partial differential equation for g(z, T). 

1 	a /
p(z) q(z) 	

= 
az •I 	aT . 

(5.3.4) 

This is immediately separable with solutions of the form 

g(z, r) = 	y(z, A) e-AT  , 	 (5.3.5) 

and y satisfying 

1 	d
•q(z) 	dz 	ddz 

	+ A y(z) = 0, 	(5.3.6) 

which is an equation of standard Sturm Liouville form. 

The transformations (5.3.2) and the function a(z, T) are 

different in each case as are the functions q(z), p(z) and the 

resultant algebraic equation for the eigenvalues k
s

, which is 

obtained in solving Equation (5.3.6). This procedure gives the 

Green's function in z and T for g as an expansion of the form 

G (z, T; Z, z, Zb) = 	c y (z, A) e-A s T  , (5.3.7) o a  
s=1 s s 	s 
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and the Green's function for F
o follows immediately from (5.3.3). 

The transformations (5.3.2) are listed for each case of K(r,p) 

of interest here : 	K
o r

b 
p3/4(b-1) , b 0 1 ; K

o 
r
b

' 
b > 1 ; 

Ko r
b
, b <1 ; K

o 
r. 	To facilitate presentation we work through 

the method in general here in the text following standard Sturm 

Liouville procedure, and simply list the eigenfunctions, the eigenvalue 

equations and any special information with the transformations in 

Table (5.1.). 

For completeness we note that the partial differential 

equation for Fo  in the spherical symmetric case in terms of z and t 

referred to above is obtained in the most general case from Equations 

(2.2.7) and (2.2.8) by transforming the independent variables from 

(x, t) 	(z, t). For the case K
11 
 = K rb  p3(b-1)/4  it has the form:  o 	- 

a2F
o)3Fo 	2 aFo 4. 	/2n + 1 	

z t 	at  . (5.3.8) T 	 az 

In contrast to Equation (5.3.4) the form of the partial differential 

equation for Fo  is not standard being different for each of the 

diffusion coefficients of interest in this section (see Appendix (A)). 

That the substitutions (5.3.3) listed in Table (5.1) lead to the 

standard form (5.3.4) may be verified by direct substitution with some 

considerable labour. 

We now proceed to give a more precise definition of the Green's 

functions CF  (z, T; Zo
, T

o
, z

a
, z

b) and G (z, T; Z
o '  To' 

z
a 

z
b

) 

where z 	z(1. 0), z
a 

= z(r
a
), 	zb  = z(rb ), T o  = T(p) referred to 
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above, and using Sturm Liouville theory we obtain an eigenfunction 

expansion of the form (5.3.7) for the Green's function G . 

Definition  

The Green's function CF  (z, T; zo , To  za , zb) for the steady-

state spherically symmetric cosmic-ray equation of transport in the 

similarity variable z and the energy parameter T is defined by: 

(i) CF satisfies the spherical symmetric transport equation 

1 a ( 2 	2 a 
-2 -rVF-rK--2) 	2V l' _ 	a / 3 
r Dr 	ar 	3rp2 	0)  F01 

 = M 6 (13-130 ) 6 (r-r0 ). 

(5.3.9a) 

The constant M is determined by the condition : 

(ii) limit 
G (z. T; z, T 

- 
Z . Z,) = 	(5.3.9h) T 	T

o  
F 	- 	o -  o 	a -  D 	6 (z - z

o
),  

where T > T
o 
and 6(z) is the Dirac delta function of argument z. 

(iii)CF (za , T; z, Z a , Zb ) = GF (zb , T; zo , za , zb) = 0. 	(5.3.9c) 

Definition 

The Green's function for g(z, T) namely G (z, T; Z0 , Za , zb ) 

is the solution of the partial differential equation 

1 a „ 	 2 

	

q(Z) aZ 0:(Z) fi) r..  1.7 	M 6(z - zo) 6(:0, (5.3.10a) 

where the constant M is determined by the condition 



(1) 	limit 
(5.3.10b) ooab T 	T

O  

G (z, T; Z  T  Z  Z ) = d (z - z ), 
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and 

(ii) 	G
g 

(z
a

, T; Z
o
, T

o
, z

a
, z

b
) = C

g 
 (zb , T; Z

o
, T

o
, z

a
, z

b ) = 0. 

(5.3.10c) 

We also have 

a(z,t) 	, 
Gp ( z, T; Z  Za , zb ) 

a(z ,t )g 
kz, T; Z

o' 
T
o' 

z
a
, z

b
)

' 
o o 

(5.3.11) 

relating the Green's functions CF  and C. 

The Green's functions with boundary surface at r = = and 

no inner boundary are : 

If K 11  = K6(p)r , 	b 0 1, 

n+1-n 
2 	2 ) 

L.111(2.__ G (x t. x 	t ) = 	 exp (- 
F " o' o 	2T 	4T 

x xo ) 
(5.3.12) 

2T ' 

and if b = 1 

1 	(x-xo)2 
G (x t. x 	t ) = 	exp(,x x

o 
T 

F " o' o 	2j/i7 	4T 
(5.3.13) 

where 

z (1-3b)/2 
T = t-t =(3/(2V))IP°  K (z) 	dz, o   p 	o 

if b 0 1, 

x (5.3.14) 
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and if b = 1, 

= - 	ln(2r2  p3). 

The Green's functions (5.3.12) and (5.3.13) are the mono-

energetic source solutions (3.2.18) and (3.2.24) with appropriate 

values of the normalisation constant N. 	The solutions (5.3.12) 

and (5.3.13) have the properties: 

(i) G (x t. 
F " x o 

 , t) + d(x - x
o
) as t + t o 	 o ' 

(5.3.15) 

(ii) G
F
(x, t; x , t ) 	0 	as 	r + =. 

o o 

The Green's function G (z, T; Z
o ' o' 

z
a' 

z
b
) is obtained 

as follows. Since G must satisfy the partial differential equation 

for g(z, T) (Equation (5.3.4)) we have 

E  y (z,A s ) e
-A 

s
T 

, 
s=1 	s 

(5.3.16) 

where the eigenfunctions y s (z, A s) satisfy Equation (5.3.6) with 

A = A s 	
In certain cases where z a 

or zb 
is a singular point of 

Equation (5.3.6) the eigenfunction expansion (5.3.16) is an integral 

over a continuous eigenspectrnm A s . At the moment we restrict our-

selves to cases where the eigenspectrum for A is discrete. 	In general 

the eigenfunctions y s (z, A s ) are a linear combination of two 

independent solutions Yl (z, As ) and Y 2 (z, A s) of Equation (5.3.6). 

Hence 

ys (z, A s) = A . Yi (z, A s) + B • Y
2 
 (z, A s ). 

(5.3.17) 
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Since G is zero at z = z
a 

and z = z
b the eigenfunctions 

y (z, A) must also be zero at za and zb' and from Equation (5.3.17) s 	s 

we have 

A . Yl  (za , A s) + B . Y 2  (za , A s ) 	= 0, 	(5.3.18a) 

A . 
Y1(zb' 

A
s
) + B . Y

2 
(z
b' 

A s ) 	= 0. 	(5.3.18b) 

Solving Equations (5.3.18) for A / B we find 

-Y
2 	
(z

a'
A s ) 	-Y

2 A 	 (z
b' 

A
s
) 

Y
1
(z
a'

A ) 	Y
1 

(z
b'

A s ) • 
(5.3.19) 

It follows from Equation (5.3.19) that the eigenvalues A s  must 

satisfy the eigenvalue equation 

Yl (zl' A  ) Y (z 2' A s )  Y
1
(z 2' As ) Y2 (z1' A

9
)  = 0, 
	(5.3.20) 

where the convention 

z
1 

= minimum of (z
a
, z ) 

b'' 
(5.3.21) 

z 2 = maximum of (z
a' 

z
b

)
' 

has been adopted. 

Choosing A and B to satisfy Equation (5.3.19) we may define 

the eigenfunctions (5.3.17) to be 

ys (z, As ) = Y 2 (zi,X s ) Yi (z,i s ) - Y l (zi ,A s ) Y 2 (z,A s ). (5-3-22) 
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The eigenfunctions ys (z, A n ) satisfy the relations 

dyn (z)  
m-An)f

z2 
q(x)ym(x)yn (x)dx = [p(z)(ym

(z) 
dz 	Yn

(z)dya
cl:

z);
I
z=z2

' z zl 	 = zl 

(5.3.23) 

(see Morse and Feshback, Methods of theoretical physics, Vol.1, P.  720) 

from which it follows that they satisfy the orthogonality relations 

z
2 

z1 
q(x)ym(x)yn (x) dx = N (1)  6 

m mn 
(5.3.24) 

wi th 

  

 

limit 	1 	dyn(z) 	OYm (z) 
A
mn 

(A
m
-A

n
) tP(z)(Ym(z) 	dz 	

y .(z) 
n 	dz 

z= z 2  

z z1 • 

 

Using Hospital's rule and the result 

aYn (z ' An)  / axa lz=z 
 1 

= 0, 

we have 

(1) 
Nn 	= p(z)(ayn (z,An) / axn). (Dyn(z,An) / 	z=z 2 

	(5.3.25) 

(1) 
as the expression for N

n 

Since the Green's function expansion for G is given by 

Equation (5.3.16) and G satisfies the source condition (5.3.10b) 

we have 

-A  
G
g 	o o o a b 

	

(zo- ; z, T ,z,z) = 6(z-z ) 	r c y  (z A) e 	
T 

s ° 

	

o 	s=1 s s 	s 
(5.3.26) 
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Using the orthogonality relations (5.3.24) and Equation (5.3.26) 

we find the constants c
s 
are given by 

At 
S 0 	( 1 ) 

C
s 

= q(z0) y(z ) e 	/ N
s 

. (5.3.27) 

-A 

Substituting for the constants c s  in the expansion (5.3.16) 

we have 

G 
g
(z, T; Z

o
, t

o 
 z

a
, zb )  

(T-T
o

) 
. y (z) yn (zo) e n  

= q(z ) 	E 	n  
o 	n=1 

N
(1) 
n 

(5.3.28) 
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This is the Green's function for g(z, T) and the important result 

we seek. Note that yn  and An  must be determined in each case. 

From the expression (5.3.28) for the Green's function G we 

have 

q(z) Gg (z, T; Ze T0 ,Za ,Z13 ) = q(z0) Gg (z0 , t; Z,T ,Za ,Zb), 

(5.3.29) 

which is a reciprocity relation for G . 

The above has been developed with z i  the explicit boundary 

variable in the eigensolution y n  and z 2  implicit via the eigenvalue 

equation. Alternative solutions with z 2  explicit and z 1  implicit can 

be written. Thus using the eigensolutions 

v
n
(z, A 
	

Y2 (z 2' An) Yl (z ' A n) 	Y
1
(z 2' An) Y 2 (z ' An) ' 

	
(5.3.30) 

the Green's function is 

T 
V
n
(y
o
)V
n
(z) e-An(T-To) 

G
g
(z,t;z

o
,T
o
,z
a
,z
b
) = q(z ) L 

n=1 	N
(2) , 	(5.3.31) 

where 

317n(z,An) 	av
n
(z,An) 

N
(2) 

= 	- p(z) axn 	3z 	'z=z
1 

 • (5.3.32) 

The functions v(z) y(z) and the normalisation constants 

(2) 
N
(1) 

and Nn 
are related by : 

Y
2
(z 	A

n
) vn

(z) 	= Y
2
(z

2' 
A
n
) 
	

(5.3.33) 



121. 

N (1) [Y
2
(z

2' A
n
) ]

2 
= 	N2'

2 (z1, 	)) 
2

. n 	n (5.3.34) 

In the cases where z
a 

or z
b is a singular point of Equation 

(5.3.6) and the eigenspectrum for A is continuous the Green's 

function G is derived using a Laplace transform technique (for an 

example see Appendix (B)). 	For a discussion of eigenfunction 

expansions when the spectrum is discrete or continuous see Titchmarsh 

(1962). 

The Green's functions for the cases where z = z(r) may be 

constructed from the table below by using the expansions (5.3.28) 

and (5.3.31). 	In this table it is also shown how the eigenfunction 

expansions for G and G
F behave as the outer boundary at rb 4- = and 

the inner boundary at ra  (if any) tends to zero. 



TABLE 5.1 

GREEN'S FUNCTIONS  

A, Diffusion coefficient  

= Ko r
b 

p3(b-1)/4 b > 1. 

Variables  

z = V r (1-b)/2 / K
o , 

t = 2 Ko p
3(1-b)/4 

/ (V(b-1)), 

= - 1 / t, 

zt = 2(rp3/2) (1-1)/  / (b-1), T = t - to , 

zi  = z(rb ), 	z2  = z(ra ), 	to  = 

= 1(b + 1)! (b - 1)1 , 	n = (b + 1) / ( 1-b 

a(z, 	p(z), q(z)  

a(z, 	= t1131  exp(-zt/4), 

P(z) 	= q ( z ) 	
= z1-2m. 

The eigenvalue equation  

Putting sn  = %Ica  the eigenvalue equation is in general 

Jm (snzi ) Ym(snz2) = J
m
(s
n
z
2
)  Y

m
(s
n
z
1
) = O. 

If z
1 

= 0
' 

i.e. r
b = = the eigenvalue equation is 

m
(s
n
z) = O. 

122. 
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If z
2 
= m, i.e. r

a = 0 the eigenspectrum is continuous and 0 5 A < 

Eenfunctions  

	

y(z) = zm  zm  CY m (snzl m n 	m 
) J(s z) - J (s

n
z
l m n 
) Y(sz)] 1 

If z
1 
= 0, i.e. r

b 
= m then 

y(z) = 
	in 

J
m (s

n
z). 

in 
v( z) = z 2 zm Ym(snz2)  Jm (snz) - Jm(snz2)  Ym(snz)]. 

Normalisation constants  

N(1) = (z /2)[J 	(s z ) Y (s z ) - J (s z ) Y 	(s z-)] 2 	m+1n2 rani 	mnl m+lnz 

[z 2 (Jm+1  (s z 2  ) Y (s zi  ) - Jm(snz 1 )  Ym+1 (5nz 2 ))  n 	ran 

+ z1 (Jm(snz2)  Yn114.1 (s
n
zl) - 

Ym (sn
z
2
)  J

m+1
(s
n
z
1
))] z 2m 

1 

If z1  = 0 i.e.  

N
n
(1) = z J 

2 	2 	
(s z ) / 2. 

2 m+1 n2 

N(2) = (z /2)EJ 	z ) Y (s z ) - J (s z ) Y 	(s z )] 1 	m+lnlmn2 	mn2 m+lnl 

[z
2 	m+1(s 

 z 2  ) Y (s z1  ) - J (s z l  ) Y
m+1 

 (s z 2  )) nmn 	mn n 
2m 

+ z
1 (Jm(snz2)1(snzl)  - Ym

(s
n
z
2
)  J

m+1
(s
n
z
1
))] z2 

Asymptotic form for large n  

For n sufficiently large 

A n 	n IT 2 2 / (z 2  - z1 ) 2 , 
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and the terms of the eigenfunction expansion have the form 

2  
un 	

111.2.(a=2) = (z 	) sin( 	) 	
z  

sin( niqz1-z°) )( z1/2-m  ) 
2 1 	(z -z  ) 

	

2 1 	( -z  ) 2 1 

exp 	
,2 

(z2-z1 1  

[-1121,2 (T-to)  

and the series for G is uniformly convergent for T >
o

. 

Effect of varying the boundaries  

If z
1 
= 0

' i.e. r
b = co then 

2 	1-m zth co J
m (snz)Jm (snzo ) 	2, 

(T-T ) G = (2/z
2
)z

o 	 e u n=1 	J2 
1 

(s z 2 ) 

(5.3.35) 

and the Green's function for F is given by the result (5.3.11), i.e., 

CF = (t/t0) m-1  exp(z0 2  t0/4 - z
2
t/4) G . 

We note that for T =T
o 

then expression (5.3.35) is the Fourier Bessel 

expansion of d(z-z0) [see TitchmarSh (1962)]. 

If z
2 = 0., i.e. ra = 0, the Green's function for g(z, T) is : 

2, 
G = z

m 
zo

1-mco 
s.e

- s (T-T 
0 )  . [J(sz) Y (sz ) - J(sz)Y(sz)] 0 	m 	ml 	in 1m  

EJm (szo) Ym(szi) - Ym(szo).%, (sZ1)]/Dr2i (sz1)+Y 2 (sz1) ] ds, 

(5.3.36) 

and 

G 	= (t/t
o )
m-1 

exp(z
2 

t /4 - z
2
t/4) G . o o 
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For a derivation of the result (5.3.36) see Appendix (B). If t = t o  

the expression (5.3.36) gives the Weber formula expansion of 

6(z-z) [see Titchmarsh (1962)]. 

As z
2 + 00, i.e. ra -0 0 in the solution (5.3.35) or as 

z
1 
 + 0, i.e. r

b 	00 in the solution (5.3.36) we find 

in 
GF 
+ 	 z zo

1-m 	2 
(t/to)

m-1 
exp(zo  to/4 - z

2
t/4) 

2 , 
fc°  e-Y (r-T o )  Jm(yzo ) Jm(yz) y dy. 
0 

This latter result is essentially the Green's function for F o  with 

a free escape boundary at r = 00. To show this explicitly we use the 

result 

2 
-x a 

f
o e 	Jm(215x) Jm(2ox) x dx 

1 
.0
2
+

2
) 1  2do 

exp 	a 	I
m a )' 2a Re (in) > -1 

(see Gradshteyn and Ryzhik (1965) p. 710), and hence obtain 

m 1-rn 

o 	
2 2 j 

CF 
= (t/t)

m-1
exp((z

2
t - z

2
0/4) z 	

7n 
, 	z +zn  exp o o 	2 T-T

o
) 

4(To'T
0

) 

Z Z 
0  

111( 2(T-To ) ) 

Using the relations 

= 2(rp
3/2

)
(1-b)/2  

/ (b-1) = zt, 

-1/t, 	T = t - t
o , 

(see Variables), we may write this last expression for G F  as 

in 	1-m 
GF 	

t
o 	ex44T 

_2L2d) 	(2 
2T  
L2kL) 

2T 	m 	' 
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which is to times the Green's function (5.3.12) for Fo 
with an outer 

free escape boundary at r = =. 

B. Diffusion coefficient. 

K(r,p) = Ko  rb , 	b < 1 

Variables  

• = V r1-6 
	

/ (Ko (1-b)), 

• -K
o 

p 3(1-b)/2 / (V (1-b)), 

• = -3(1-b) tn (p)/2, 

t = t
o 

exp[-(T-T0)], 	T = t - t
o

, 

• -x
2
/(4 0, 

• = 2(rp3/2 ) (1-b)/2 / 

z, = z(ra), 	z2  = z(rb), 	t
o 

= t(p
o), 

• = (b+1) / (1-b). 

a(z,t), P(z), q(z)  

a(z,t) = 1, 

p(z) 
	

= Zl+m  e
-z

, 	q(z) = z
m 
 e

-z
. 

The eigenvalue equation  

The eigenvalue equation is in general 

W-Are 1+m,z1 ) U(-Ao ,l+m,z2 ) - U(-Ao ,l+m,z 1) W-An,1+m,z2) = 0, 

where M(a,b,z) and U(a,b,z) are standard solutions of Kummers' confluent 
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hypergeometric equation. If there is no inner boundary and the 

Green's function G is finite as r + 0 then the eigenvalue equation 

is 

M( -An , l+m, 	= 0. 

Eigenfunctions  

y( z) = u(-xn ,i+m ,z1) m(-An ,1+m, z) 

- M(-A n ,1+m,z1) U(-An ,l+m,z), 

v(z) = U(-A,1+m,z 2) M(-An ,l+m,z) 

- M(-A n ,l+m,z 2) U(-An ,l+m,z). 

If there is no inner boundary 

y(z) 	= M(-A
n
,l+m,z). 

Normalisation constants  

The normalisation constants are given by Equations (5.3.25) 

and (5.3.32). 

Asymptotic form for large n 

For n sufficiently large the eigenvalues are 

n27
2 

l+m A 
• 4(,ff -  kiF) 2 	2 

1 	2 

and the terms of the eigenfunction expansion for G are 



e (z-zo)/2 z  m/2-1/4 z-m/2-44 	1 
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sin 

 [n

w( 	•5"1) ] sin I nw(171- 15) 1 e (T -To )  

( Jil 	v"2) 	I  

and the series for G is uniformly convergent for T > T
o

. 

Effect of varying the boundaries  

If we have no inner boundary and let the outer boundary at 

r = r
b tend to infinity the eigenfunction expansion becomes 

in -z r(n+1)  
L
m 

(z ) L
m 

(z) e-n(T-To ). = Z
o 
e o E 

n=0 r(m+n+1) n o n 

Since a(z,t) = 1, G = G
F 

and using the result 

r(n+1)  
L
n
(x) L

n
in  
(y)zn  

no r(m+n+1) 

-m/2 
(xyz)  -z(x+0  A (12EL 1 

1.z  k (1—z)  
Int\ (1„)1 ,  1z1< 

where L: (z) is a generalised Laguerre function and I(z)  a modified 

Bessel function of the first kind (see Gradshteyn and Ryzhik (1965), 

p. 1038) we have 

Czz exp(-(T-T))]-m/2  
m -z 	o o  

= CF = zo e 0  
[1 - exp(-(T-T o

))] 

T  ( 2 lz znexp(-(T-T0 )) 
exP  

eXP(“ T TO) ) (Z+Z(1)] 

- exP( - ( T- T0))] • I'm [1 - exp(-(T-T0))]1' 

Since 

-x
2
/(4t), 

= to 
exp(-(T-T

o
)), 	T = (t-t0), 
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(see Variables),  this last result for G and G
F may be written g 

	

x
o 	m+1 -m 	2.,_ 2 

Aa___25..__ G 	= GF = 	exp--E-==o--1 	I fr1-2-54 ) 
g 	 . 	- 2z 	2T 	4T 	m 2T o 

which is x/(2z) times the Green's function (5.3.12) for F
o with 

an outer free escape boundary at r = =. 

C. Diffusion coefficient  

K(r,p) = Ko  rb , 	b > 1, 

Variables  

= V r
1-b

/(Ko(b-1)), 

t = Ko p3(1-b)/2 / (V(b-1)), 

= -3(b-1) tn(p)/2, 

t = t exp(T-T ), 	T = t - t , 

z = x
2 

 

x . 2(rp3/2 )(1-b)/2  / (b-1), 

z 	= z(rb ), 	z2  = z(ra), to  = t(p0), 1 

m = (b+1) / (b-1). 

a(z,t), p(z), q(z) 

a(z,t) 	= 1, 

P(z) = z1-m  ez , -m z q(z) = z 	e 

The eigenvalue equation  

The eigenvalue equation is in general 

M(1-A o ,1+m,z 1 ) U(1-A n , l+m,z 2 )- U(1-Are l+m,z 1 ) M(1-A n , l+m, z 2) = 0, 



where M(a,b,z) and U(a,b,z) are standard solutions of Kummer's 

	

confluent hypergeometric equation. 	If z
1 
= 0, i.e. r

b = = then 

the eigenvalue equation is 

M(1-An , l+m, 22) = 0. 

If z 2 = =, i.e. ra 
= 0 then the eigenvalue equation is 

U(1-An , l+m, z1) = 0. 

Eigenfunctions  

-zl-z  y(z) = e 	(z 	[M(1-An ,1+m,z1 ) U(1-A
n
,l+m,z) 

- U(1-An ,l+m,z1) M(1-An ,l+m,z)], 

If 2
1 
= 0, or r

b = = then 

y(z) = e-zzm  M(1-X, l+m, z), 

and if z 2 = m, i.e. ra = 0 then 

- 
= e zzm  U(1-A

n
, l+m, z) 

Normalisation constants  

( 
The normalisation constants N1) 

n 	
and N

(2)
n 

are given by 

Equations (5.3.32). 

Asymptotic form for large n  

For n sufficiently large the eigenvalues are 

22  

An
1-m  

n 

	

4( /1,-- .57) 2 	2 

	

2 	1 

and the terms of the eigenfunction expansion for G have the form 

130. 
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un 	zo 
-m/2-¼ zm/2-!

L'4 
e(z-zo)/2 /

1
) 

- 
sin 	w-TY_ 	] sin 

_ 	1 	2 

- 4-2  1 

_ 	Ji2)] exP(-An (T-T n)), 

and the series for G is uniformly convergent for T > T
o

. 

Effect of varying the boundaries  

If we let the outer boundary at r = r b  tend to infinity and 

the inner boundary at r = r n  tend to zero the eigenfunction expansion 

becomes 

G = zm  e-z-(T-T  ) T  0  E  Z  Lm (z) (r (n+1) / r(l+n+m)) e -11(T-T  ) o 
n=0 n o n 

where Lm (z)  is a generalised Laguerre function of argument z. 

Since a(z,t) = 1, G
g 

= C
F 

and using the result 

r(l+1)  Lm( x)   
n=0 	r(m+n+1) Lnkx 

Lm(y)  z 

-m/2 

(xY lz) z 	exP ( -*Lc+z) )- ) im ( ( 32  JrcT-zz)) 	z  < 1 ' 

(see Gradshteyn and Ryzhik (1965), p.1038), we have 

m -z-(T-T ) Cz zo 	
e 

= CF 
= z e 	

(1 - exp(T
o
-T)) 

]

T o  -T ]  -M/2 

( -(z+zo) exp(To-T)  ) 	
m 

( 2 jz zo  exp(To-T) 
exp 	 • I 

(1 - exp(To
-T))  1 - exp(T0-T) 

Using the relations 

= x
2 
/ (40, 

to 
exp(T-T o

), 	= t - to , 
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(see Variables), this last result for G and G P may be written 

1-m in x = 	xo ' xo  	( 	2x +2c .„ 	x X0 
GF 	 exp 	) 

2T 	 4T 	im ( 2T 2zo  

which is x /(2z o) times the Green's function (5.. 3.12) for F o , with an o  

outer free escape boundary at r = 

D. Diffusion coefficient  

K(r,p) = Ko  r 

Variables  

• = 	(r), 

t = =-(3Ko/(2V))2.n(p), 	T = t - t 

• = -1/2R.n(2r 2p 3) = 2(1-c)T -2.n(2)/ 2 - z 

z = z(r ), 	z 2 = z(rb ) ' 	t 	t(p ) 1 

• = 1 - V/ (2K0 ) . 

a(z,t), P(z), q(z)  

a(z,t) = 1, 

p(z)  = q(z)  = e2cz .  

The eigenvalue equation  

The eigenvalues are given by 

2 	22 • c 2 + n2 71-2 An  = c + n  
(z2-z1) 2 	 [1rx(rb/ra ) 7 2  
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Eigenfunctions  

y(z) 	e-c(z+zi) sin(nTr(z_z 1 ) / (z 1 -z 2)  ). 

Normalisation const  

- z z 2 	1 
2 exp (-2c z 1 ) 

Green's function  

In this case it is relatively simple to give the Green's 

functions G and G
F 

G
F 

2 	ec(zo-z) 1. 	sin  .niT(z-z )) 

	

(z2-z1) 	 n=1 	( ( z1-z 2 ) 
2 2 ) 

	

sin (117r(z°-z1) 	exp[-(c 2  +  k ( z1-z2)  ) 	(z 2-z 1 ) 2 
 (5.3.38) 

Effect of varying the boundaries  

If z 1 -4 --c° 	i.e. r
a 

-0-  0 we find 

	

1 	 2, 	.1 G
F 

=G 	= 	, , 
 T-T 	

exp[ c(z0-z) - c (T-Tc, )J 
g  1Tk 0 ) 

( _121,,E012  _ 	( (z+z„,-2z0 2 ) 

	

P A(t-To)  ) 	exp. 	4(T_To)  

 

(5.3.39) 

   

If we let z 2 	co, i.e. rb =, and keep the inner boundary 

at r = r a 
fixed, ra # 0 the eigenspectruM becomes continuous and we have 



G
F 

1 exp(c(z
o
-z) - c

2
(T-T0)) . 
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2 j(T-T o)w 

 

[exp(- 	). - ex (-(13:21E0- 
4(T-T0 ) 	P ' 	4(T-T0 ) 

(5.3.40) 

Hence if we let r
b 

-0- co and r
a 

-■ 0 the solutions (5.3.39) 

and (5.3.40) give 

 

1 

 

expfc 
2 	1.2i7.29)1 , 

o
-z) - c kT-T

o
) 

4(T-T
0

) 

   

2 

 

(5.3.41) 

Since 

= 2(1-c)T - 1/2 ln(2) - z, 

T -T 
0 

(see Variables) the solution (5.3.41) may be expressed in the 

alternative form 

G
F  2 

1  
exp x-x

o 

T (x - x0 ) 2  

IFIr 	4T 

which is the Green's function (5.3.13) with boundary surface at 

r =co. 

The negative terms in the Green's functions (5.3.39) and 

(5.3.40) are due to boundary effects, whereas the positive term 

is due to the source at (z t T ). 
00 
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CHAPTER 6  

GREEN'S THEOREM AND BOUNDARY VALUE PROBLEMS  

6.1 Introduction  

In this chapter solutions in which the distribution function F o  is 

specified on boundaries at r=r a  and r=rb  are obtained from the cases where 

the similarity variable z of Chapter (5) is a function of radius only, 

namely when the diffusion coefficient K H  has one of the forms: 

0 
	= Ko r

b 
p3(b-1)/4 

= K
o 

rb , b 0 1, 

= K
o 
 r, 

where K
o 

is a constant. We also obtain galactic spectrum solutions in 

which F
o 

is specified as r m and as r 0, with a diffusion coefficient 

K = K0 (p) rb  , b>1. 

In cases where the similarity variable z=z(r), the distribution 

function F
o 

has the form 

F
o 

= a(z,t) g(z,T), 	 (6.1.1) 

where the function a(z,T) is chosen such that g(z,i) satisfies the 

partial differential equation 

1 	a  

q ( z )  az  P (z)  aT 
(6.1.2) 



136. 

(see Equations (5.3.3) and (5.3.4)). Hence a boundary value problem 

for the distribution function Fo in which spectra are specified at 

radii ra and rb 
may be reduced to an equivalent boundary value problem 

for g(z,T) by using the relation (6.1.1) with the functions a(z,T), p(z) 

and q(z) given in Table (5.1). 

We note that Equation (6.1.2) is similar to the one dimensional 

heat flow equation. It is well known that boundary value problems for 

the heat equation may be solved by using Green's theorem for the heat 

equation in conjunction with appropriate Green's functions (see Snedden 

Elements of Partial Differential Equations (1957)). The basic procedure 

we adopt to solve boundary value problems for F o  with boundaries at ra  

and rb 
is to solve the equivalent boundary value problem for g(z,T) by 

using Green's theorem for Equation (6.1.2) in conjunction with Green's 

functions G (z,T;z ,T ,z ,z.) for g(z,T) given in Table (5.1). 
ooab 

In Section (2) we establish Green's theorem for Equatiin (6.1.2), 

and for the sake of completeness we incorporate a source term -Q(z,T) on 

the right-hand side of this equation. 

In Section (3) we use the Green's theorem technique to solve the 

general boundary value problem for Fo  in which the galactic spectrum is 

specified and the diffusion coefficient i of the form K = K o (p)rb  with 

b > 1. The monoenergetic galactic spectrum solution given by Equation 

(3.2.17) and the solutions of Fisk and Axford (1969) in which: 

(i) F
o
(r,p) 	

Ap-p-2 
as r = , 

(ii) Fo(r,p) is finite as r 0, 

(iii) the diffusion coefficient K(r,p) =  ab  Kopr with b > 1, 
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are derived as special cases of the general galactic spectrum solution. 

In Section (4) the Green's theorem technique is used to solve 

boundary value problems for F
o 
with boundaries at radii r = r

a 
and 

r = r
b' and these solutions are given in Table (6.2). 

In Section (5) we conclude the Chapter with a discussion of the 

various solutions obtained by the Green's theorem technique. 

6.2 	Green's Theorem for g(z,T) 

Green's theorem for Equation (6.1.2) with a source term Q(z,T) 

gives the solution of the partial differential equation 

q( 1z) 	D z  (p(z) 	 Q(z,T), 	
(6.2.1) 

in which the function g(z,T) is specified on boundaries at z = z l , 

z=z2 andT=T.whereT.is  some initial value of the variable T. 
1 

Thissolutionisvalidintheregionz 1 <z<z2 andT>T..For 

brevity of exposition we denote the Green's function solution of 

Equation (6.1.2) with boundaries at z 1  and z 2 by G (z,zo
, T- T

o
). 

This solution of (6.1.2) has the properties 

(i) G(z, z
o

, T -T
o

)  d(z-z
o
) as T÷ T

o' 	
(6.2.2a) 

(ii) G(z i , Zo , T - To) = G(z 2 , zo , T  To) = 0.  (6.2.2b) 

Green's theorem for the partial differential equation (6.2.1) is 

obtained as follows: Since g(z,T) satisfies Equation (6.2.1) we have 

1  a 
az

o 	
) a,g (zo , T0 ) 	_ ag(Zn,T0)  

q(z) 0  Z
o 	

f  aT 	Q(z , T). 
0  

0  0 (6.2.3) 
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The Green's function G satisfies the equation 

1 	3 	a 	n , , 	o 
q(z0) 	

(zo) az 	G(z
o
, z, r - T

o
) ) 	

3G (z  Z T 	T ) 
 at 	 • 	

(6.2.4) ) Dz 
oo 

From Equations (6.2.3) and (6.2.4) 

a 
q(z0 ) 1;— (g Z  T

o
) G(z

o
, z, T  To) ) 

3 	 ,„ 	^ 
)]

,
o' Z

' 
T • T

o
) = [q(z

o
) Q(zo , To) + 	(p (z o) az 

ag(z  To ) 
 

H inzo, az  G(zo , z, T T
o
) ) •g(z , T ). 

0 0 (6.2.5) 

Rearranging Equation (6.2.5) we have 

q(z ) a 
7---(Ag(z , t) G(Z  Z, T  T

o
) ) o 	o 	o . 0 at 

 

	

= q(z0) Q(z , T ) G(z
o
, z, T 	T

o
) 

o o 

( G Z ,Z,T-T ) 	 

	

0 ::(Za' Tn) 	

aG(Zn,Z,T-To) 	
(6.2.6) aZ

o 

L. 
 [
P(Z0 

g(z 'T) 
3zo 
 

•  

Integrating Equation (6.2.6) with respect to zo  and T o  from 

z =z to z
o 
=z and from T = T to t  

o 
= 

o  
: 

1 	2  o 	i  

I z2 dz
o 

• q(z) ft  di a 	0 r o ( g(z , t) G(Zo 	T-T
o
) 

 0 
z
1  

= 	2 dz  J 	0 
,T 	, 

1.  q(z) G(z
o
, z, T-T o

) Q(z , T ) 

z  
o 	 o o o  o 

T
i  



+ I
T 
 dT

a  
T
i 	

0  
I 2 	dz

oz 
o 

[1)(zo 
z
1 

ag(zn , T n)  
0 	0 3z

o 
'GU  Z, T-T) 
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_g(z 
o 

 , T ) aG 	(z, Z, T-T ).)] o 3z (6.2.7) 

Carrying out the inner integrations In (6.2.7) we obtain 

eZ n  A  
T
o
=I 

a J 4 	z
o 

q(z ) Eg(z 
0
, t) G(Z

o 
Z, T-T0)] 

 0 
Z
1 	

T
o
"T 

dz 	G 
,T 	, 
J  T q(z ) Q(z , t 0) G(Z 	Z, T-T ) fz2 

o 	o o z, Ti  

Z =Z 
% ag(Z,T) 	% 3G(Z,,,Z,T Tn))] o 2 

	

+ fT  di
o 

[p(z
o
)(G(z

o
,z T-T )  g(z

o
'T
o
)

3zo 
o 3zo  • T

i 	 JZ
o
=cz

1 

(6.2.8) 

Using the singularity property (6.2.2a) o6 the Green's function 

G(Z 	Z, i-i) 	6(Z 
0
-"Z) GS T T 0 	0 	0 

the left hand side of Equation (6.2.8) reduces to 

q(z) g(z, 	- Iz2 dz
o 

q(z0) g(z
o

, T
i
) G(z

o
, z, T•••T). 

Z
1 

This last result shows that we can rearrange the result (6.2.8) to 

obtain the required solution for g(z, T). 
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Since the Green's function for g(z, T) is zero on the boundaries 

at z=z 1 and z=z2 
(see Equation (6.2.2b)) 

G(z i , z, T-T 0) = G(z 2 , z, T-T 0) = 0, 

the second integral in the right hand side of Equation (6.2.8) becomes 

pT , 	 % ac (Z" Z, T-•TiN)  
J 	1070  [p(zi) g(zi , To) az  w 	= Zo  Zi  

T, 	 - 0 

aG(z,,z,T-T,)  1 -p(z2) g(z2 ,T0 ) az° 	
I 	' zo 	z21 

Hence solving Equation (6.2.8) for g(z,T) 

g(z,T) = 1 	1
z2 dzo 	aT

o 
q(zo) Q(z , r0) G(Z

o
, Z, T=T ) 

q(z) 	 o o 
T
i  

+ fz2 q(zo) g(zo , Ti) G(zo , z, i-i i) dzo  
• z1 

fT 	 aG(Zn, z, Ti) 	_ 
dio (p(z i) g(zi , To) az 	1 4o 41 T i 	 0  

- p(z2) g 2 , To) rz (zr" z' 
 TT) 

 lz =z )]. (z o 2 (6.2.9) 

This result is Green's theorem for the partial differential equation 

(6.2.1) and we shall use this result in Section (3), to obtain solutions 

of boundary value problems for g(z,T) and the distribution function 

Fo(r,p). 

The double integral over zo  and To  in the result (6.2.9) involving 

Q(z0 ,T0) gives the effects of sources within the region z l< Zo < Z2  

and T
i 

< T
o 

< T. The second integral gives the "initial conditions" 
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and the third and fourth integrals give the effects of boundary condit-

ions at zi  and z2 . 

Note that if 

Q(Z ,T ) = 6(z -z ) 45(T—T
s' 0 0  OS  o  

and, 

g(zo,T i) = g(zi , T) = g(z2 , T) = 0, 

the solution of (6.2.9) is 

aisl%  a g(z, T) =  l7(Z
ss

). 
q(z) 

Using the reciprocity relation for the Green's function given in 

Equation (5.3.29) the solution (6.2.10) becomes 

g(z, 	= G(z, zs , s
). 

(6.2.10) 

(6.2.11) 

The solution (6.2.11) is the Green's function of the partial different-

ial equation (6.2.1), which satisfies homogeneous Dirichlet boundary 

conditions at z=z1 and z=z2' 
and the source is located at (z 13  , r5 ). 

Since the variables z and T given in Table (5.1) have the 

properties: 

(i) the variable z=z(r) and Tr(p) withr heliocentric radius and 

p the particle momentum, 

(ii) T(p) is a monotonic decreasing function of p, and hence 

(iii) if P < Po  < Pi , r0wr(P0), Ti=t(pi) then T > T o  > 

(iv) T(p) 	-= as p 	= , 
	 (6.2.12) 

(v) the variable z(r) is restricted to the range 

z
1 
< z < z2

' 

where 

z i  = minimum of (z (r s), z(rb) ), 

z 2 
= maximum of (z (ra)' 

z(r
b
) )

' 
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and 

r
a 

< r < r
b 

(see Equation(5.3.21)), 

we may interpret the Green's theorem (6.2.9) for cosmic ray problems 

in the following way. 

The double integral over z 0  and T0  in Equation (6.2.9) gives the 

effects of sources located within the region r a  < r0  < rb  and 

p < p0  < P. The second integral gives the effects of specifying the 

radial variation of the distribution function at momentum p i  and the 

third and fourth integrals give the effects of specifying the spectrum 

at radii ra , rb . 

In certain problems of physical interest we have 

(i) Q(z0, T0) = 0 corresponding to no sources within the solar cavity. 

(ii) T
i 
= = or p

i 
= = since we are interested in all particles with 

momentum o < p < = , 

(iii)Far,p) and g(z,T) -0. 0 as p 4=  or T i 	= since we cannot have 

particles with infinite momentum. 

Hence in these cases Green's theorem (6.2.9) takes the form 

DG 1 	fT 	(z  
g(z,T) = --ayq 	

[T 	
0  p, 1) g(z1 ,T 0 ) az  (z0 ,z,T-T0) Iz0= zi  

(=) 

dT 

 

p 	 % aG(Zn,Z,TTn )  
J 	p(z 	T 	 2) g(z2 , 0 ) az 	I z = z T 	 , 

Tt.) 	o 	 o 	2 
(6.2.13) 

where T(p) 4-T(...) as p 	m . 

Since the Green's function expansions (5.3.28) and (5.3.31) are 

uniformly convergent we may obtain expressions for 3G(z 0 ,z,T-T0)/3zo 

by differentiating the series for G(z 0 ,z,T-T0) term by term. 
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From the Green's function expansion (5.3.28) 

aG(z0 ,z,T-1-0)  
azo 	lz o=z 2 

= q(z) ngl Yn(z) ay(Z 0)/Z0  e-An (T-T0)  Izo=z2  

N
(1) 

n 
 

Using the expression (5.3.25) for N
n
(1) we obtain 

aG(z0 ,z,T—T0) 
a z o 	lzo=z 2 

_ q(z) 	r 	yfl (z) e-An (1-'0)  
p(z 2) n=1 ayn (zo dinvaxn zo=z2 

(6.2.14) 

as the expansion for [OG(z o ,Z,T-To)/aZ 0 	= 
o2 

Also from the result (5.3.31) 

An(T OG(z0 ,z,T-T0 ) 	= v(z) Ovn (z0)/Ozn  e_-t0)1  z o  zi  = 
Ozo 	Iz0=z1 

n 
q(z)n4 	

N (2) 

Using the expression (5.3.32) for No(2)  we have 

OG(zo ,z,T7T0  
azo 	

=z
1 

- q(z) 	! v(z) e-An (T-T° )  
P(z1) n=1  avn(zo „X )/OA Zo=21 

(6.2.15) 

as the expansion for OG(zo ,Z,T-To)faZolz=z o1 

Substituting the expressions (6.2.14) and (6.2.15) for 

DG(z ,z,T-T )/azo 
in the result (6.2.13) we obtain the Green's 

o 	o 

theorem solution 

! y(z) e-An (T-Ts )  
g(z,T) = - I T  dT a(Z T 

' Too 	S °' 	s 11.1  a vn (z ,x vx 

	

a 	1 0 n 	rozo=z1 

r T 	V 	Xn,.(Z) e-An(T-TS )  
J 	at g(z ^ ,T ) 

T(.) 	s 	L -  S n.1 	(z  _ 1/0A I 

	

'n' o
A
' n' 	n'zo=z2 

(6.2.16) 
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for the partial differential equation (6.2.1) when the eigenspectrum 

is discrete. 

In Sections (3) and (4) we use the Green's theorems (6.2.13) 

and (6.2.16) to solve boundary value problems for the distribution 

function Fo(r,p), with boundaries at radii r=r a  and r=rb. If the 

eigenspectrum is continuous we use the Green's theorem (6.2.13) 

whereas if the eigenspectrum is discrete we use the Green's theorem 

(6.2.16). 

6.3 Galactic spectrum solutions 

From the separable form of the cosmic ray equation of transport 

(2.2.7) we have 

	

3
2
F
0 + 2,1+1

3F 	aF 
0=  0 

x  ax  at 
ax

2 
9 	 (6.3.1) 

where the diffusion coefficient 

K(r,p) =I( (p) rb  , b >1, 

and 

(2/(1-h))(rp
3/2

) 
(1-b)/2 

(6.3.2) 

(6.3.3) 

t = -(3/ (2v)) fP Ko (z ) z (1-3b) /2dz,  

are the independent variables. For particles, initially at infinity 

to penetrate to a finite radius it is necessary to choose b > 1 in 

(6.3.2). 

Since the partial differential equation (6.3.1) has the same 

form as Equation (6.1.2) i.e. 

1  a 

q(x)  
13(x) E0A_ 

la 
ax  at , 

(6.3.4) 
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with 

p(x) = q(x) = x
2 n+1  

(6.3.5) 

• we may use Green's theorem for Equation (6.1.2), derived in Section 

(2) to obtain solutions for F
o 

in which Fo is specified on 

boundaries at x = xl  and x = x 2 . 

In general the curves x = constant, describe a curve in the r-p 

plane. However for boundary radii at r = 0 and r = 	, and with 

b > 1 we have 

x + 0 as r 	co, 
	 (6.3.6a) 

x - - 	as r 
	

(6.3.6b) 

so that we can use Green's theorem (6.2.13)and the Green's function 

(5.3.12) to obtain galactic spectrum solutions. 

We now proceed to obtain the general galactic spectrum solution 

in which the distribution function Fo (r,p) satisfies: 

(i) F
o
(r,p) is finite as r + 0, 

(ii) Fo (r,p) +A(p) = Z(t) as r + 

where A(p) is the galactic spectrum and Z(t) is the corresponding 

form of A(p) expressed in terms of the variable t, 

(iii) the diffusion coefficient K(r,p) = K(p) r
b 
 with K(p) an 

arbitrary function of p and b > 1, 

(iv) the solar wind speed V is assumed constant. 

(6.3.7a) 

(6.3.7b) 

(6.3.7c) 

(6.3.7d) 

Using Green's theorem (6.2.13) and the results (6.3.4), 

(6.3.5) and 6.3.6), the solution of the galactic boundary value 

problem (6.3.7) is 

2n+1 
F
o 
= (l/x

2n+1
) 	It dt o 	

x
o 	

F(r ,p )3G(xo ,x,t-t Mx 00 o 	o 	o 
t(03) 	x 	0 
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- I 	2n+1 
, 	dt 	limit x 	F(r ,p ) aG(x,x,t-t )/Dx I, tv.) 	0 	 o 	o 	o x 

where the appropriate Green's function (5.3.12) is 

22 n+1 
x
-n 	( x +xo 	x x 

G(x,x ,t-t ) = 
x
o 	exp ------

4T 
 ) I ( 

o 	o 	 m 2T 
2T 

and 

= t-t
o

, 

t
o = 

x
o  

= x(ro ,p0 ), 

= (b+1)/(1-b), m = ini , b > • 

Since the modified Bessel function Im (z) has the properties 

I(z) = 	I (z) + I(z) m 	 , 
z m 	m+1  

Ira (z)÷/----as z 	, 

(6.3.8) 

(6.3.9) 

(6.3.10) 

(6.3.11) 

(6.3.12) 

Im (z) 	 z 	 
2m r(m+1) 

(Abramowitz and Stegun (1964), Sections (9.6) and (9.7)), 

we have 

2 .1._ 2 

	

n+1 -n 	x 
3G(x0 ,x,t -to) = x 	xo  e 4(t -t o ) 	I 2m 	o 	

) 1m (5-4%0 )) 
Dx

o  
2(t-t

o
) 	L\ xo 	2(t -t o ) 

( X X
o  

2(t-t o
) 1111+1 

2(t-t o ) 

(6.3.14) 

limit 	
xo2n+1 aG(x-

o' 
x, t—t)  _ 0, 

x 
Dx

o cc. 
(6.3.15) 

as z 	0 , 	 (6.3.13) 

0 
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3G(x
o
,x,t-t

o
) 	

x 	e
-x2/(4(t-to)) 

limit x
2n+1 
ox 

	

x
o 

+ 0 o  2
2m 

 

o 
	
r (m) (t—t o ) m+1 

as expressions for DG(x
o
,x,t-t

o
)/3x

o 

Substituting the expressions (6.3.15), and (6.3.16) for 

DG(x0 ,x,t-t o)/3x0  and the boundary conditions (6.3.7) into the 

Green's theorem solution (6.3.8) we obtain the general galactic 

spectrum solution 

x
2m t 	Z(ts ) 	-x2 

Fo (r,p) - 	 m+1  ex -x  
4(t-ts) ) 

dt
s' 

2
2m

r(m) 	t(w) (t-t s ) 

where 

= 2(rp
3/2

)
(1-b)/2 / (1-b), b > 1 , 

-3 f Ko(z) 
z(1-3b)/2 dz/2V, t s  = t(p s ), 

= (b+1)/(b71), 

and Z(t 5) = F0 (00,p s) specifies the galactic spectrum. 

Expressing the integral over t s  in the solution (6.3.17) in 

terms of the momentum variable p s  of (6.3.18) we obtain 

Fo (r,P) = f G(r,P,P s ) Fo (',P s) dP s , 

(6.3.16) 

(6.3.17) 

(6.3.18) 

(6.3.19) 

where 

G(r,p,p s) - 

(1-3b)/2 
3 K (p ) p 

o s 	s m -u 
u e 

 

2VT F(m) 

= 3 /Ps Ko (z) z (1-3b)/2  dz / 2V, 

.7) 
x - /(4T) , 

3/2 (1-b)/2k 1-b),  
= 2(rp 

(6.3.20) 



as an alternative form of the general galactic spectrum solution. 

The monoenergetic galactic spectrum solution in which 

Fo (', P s) = Ng (5 (P - Po  ) / (4 1TPo
2
), s  
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(6.3.21) 

is obtained by substituting the galactic spectrum (6.3.21) in the 

general solution (6.3.19). Thus we obtain the monoenergetic 

galactic spectrum solution 

3N K(p) 1 x2  \rn1 	• 2 
-x ) 

Fo (r,p) - 	g  
3(1+b)/2

r(m) 
	exP  (4T 

81TV p
o  

(6.3.22) 

where 

T = t-t
o

. 

We note that this solution has also been given in Equations 

(3.2.17) and (4.3.13). 

The solutions of Fisk and Axford (1969), which satisfy the 

boundary conditions 

(i) F
o 

4 - N p-1.1-2  as r 	, 

(ii) F
o 

is finite as r 4-  0, 

(iii) the diffusion coefficient K(r,p) = K opa  rb , with b > 1, 

a > 0, are obtained by choosing the galactic momentum 

spectrum F0 (...,p) and the corresponding function Z(t) of 

(6.3.7) to be 

Z(t) = Fo (m,P ) = N 

and substituting for Z(t) in the general galactic spectrum 

solution (6.3.17). 

(6.3.23a) 

(6.3.23h) 

(6.3.24) 
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There are three solutions of the boundary value problem 

(6.3.23) corresponding to the cases 

(i) 1 < b < 1 + 2a/3, 

(ii) b = 1 + 2a/3, 

(iii) b > 1 + 2a/3. 

Introducing the parameters 

= 2/ (1-b + 2a/3), 

m = (b+1)/(b-1), 

the solutions corresponding to cases (1), (ii) and (iii) are 

case (i) 	1 < b < 1 +2a/3  

The solution of (6.3.23) in terms of Fo (r,p) is 

F =N p
-p-2 r(4(p+2)/3+m) 	

U((p+2)/3,2/(1-b , 2Vr
1-b

p
-a

/(v K(l-b) 2 )). . 	v  
0 	g 	r(m) 

(6.3.25a) 

case (ii) 	b = 1 + 2a/3  

The solution of (6.3.23) is 

F
o 

= 2N 
p-p-2 

(2(p+2) Vr
1-b

p
-a

/(3(1-b)
2
Ko ) 

m/2 r (m). 

Km ( 2(2(p+2) Vr
1-b 

p
-a

/ (3(1-b)
2 
K
o
)) ). 

case (iii) 	b > 1 + 2a/3  

The solution of (6.3.23) is 

= N
g 

p 	2F(1-v(p+2)/3) exp(2Vr
1-b

p
-a

/(v(1-b)
2
K0 )) 

I,  (in) 

(6.3.25b) 

U(1-m-v(1+2)/3, 1-m, -2Vr i-b _a/(v(1-b) 2K)), 	(6.3.25c) 
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In Equations (6.3.25) Km (z) is a modified Bessel function of 

the second kind of order m, and U(a,b,z) is one of the standard 

solutions of Kummer's confluent hypergeometric equation 

(Abramowitz and Stegun (19641 Section (13.1)). 

We now derive the solution (6.3.25a) from the general 

galactic spectrum solution (6.3.17). The solutions (6.3.25h) and 

(6.3.25c) can also be obtained from the general galactic spectrum 

solution and the derivation of these results are given in Appendix (C). 

In the case of interest the general galactic spectrum solution 

(6.3.17) becomes 

2m 	 2 
t 	Z(to ) 	-x  

F
o  	exP  ( 4(t-to)) 

dt
o ' 

2I(m) t(co) 	(t-t 0 ) 111+-  

(6.3.26) 

where 

t = - cp
6 

/6 , 

6 = a + 3(1-b)/2 > 0, 

= 3K/2V, 

and the diffusion coefficient K(r,p) = K o  perb . 

Introducing the variables 

= t-t
o 

= e(p
o 

- p )/(S  , 

(6.3.27) 

and 

we have 

= (1+2)/6, 

= 

= p(1 + 6x2 / (4ep6 
	1/6 
s)) 	, 
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-p-2 	-p-2 y 
Z(t

o
) = N

g 
p
o  

= N p 	s (s +  

dt
o 

= x
2
/ (4s

2
) ds, 

as t
o  

t, s-c.; as t
o 

-- t(c) s 	O. 

Using the transformations (6.3.27), (6.3.28) and (6.3.29) 

the solution (6.3.26) for Fo (r,p) becomes 

N -p-2 
F 	re° + 6x 	

2 	
sY+m-1  e-s  ds. 

4cp 
r (m) 	j 0 ) 

(6.3.28) 

(6.3.29) 

(6.3.30) 

Since the solution U(a,b,x) of Kummer's confluent hypergeometric 

equation is defined by 

l  (s+x) 
-b 	-s a-1 b-a-1 

U(a,b,x) = x e 	s 	ds/r(a), 

and from Kummer's transformation 

U(a,b,x) = xl-b  U (1 + a-b, 2-b, x), 

(see Slater 1960), the solution (6.3.30) becomes 

(6.3.31) 

(6.3.32) 

-P-2 	v(p+2) 
F
o 
= N p 	r( 	+ m) • U(-vs (p+2), 	

2 	2V 
3 	1-b' 	

rl-b_p-a  ) 
2 

where 	= 2/(1-b + 2a/3) >0,i.e. 1 < b < 2a/3. 

This is the result we set out to obtain and it is identical to the 

solution (6.3.25a). 

r(m) 	 (1-b) K
o
v 	(6.3.33) 



6.4 Solutions with finite boundaries 

Solutions in which the distribution function F
o
(r,p) is 

specified on boundaries at r = r
a 

and r = rb  can be obtained for 

cases where the diffusion coefficient K(r,p) has the forms 

(i) K = K rb 3 (b-1 )/ 4  
o 	P 	> 1, 

(ii) K = K
o 

r
b 

, b < 1, 

(iii)K = K
o 

r
b 

, b > 1, 

(iv) K = Kr. 

The general Green's theorem with source term in r
a 

< r < rb 

set equal to zero as given in Equations (6.2.13) or (6.2.16) and 

the Green's functions of Chapter (5) (see Table (5.1)) are used 

to obtain these solutions. Green's theorem in the form (6.2.16) 

may be used when the eigenspectrum is discrete, whereas Green's 

theorem in the form (6.2.13) must be used if the eigenspectrum 

is continuous. 

152. 
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The solutions are obtained for the following cases. 

TABLE 	6.1  

K(r,p) F(ra ,p) F(r
b
,p) 

K r
b 

p
3(b-1)/4

, 
o 

b > 1 0 

No  (5(p-p) 

N 	5(p-p) 

0 

K
o
r
b 

, b < 1 0 

No  6(p-p 0 ) 

N
o  

(S(p -p0 ) 

0 

Kor
b 
 , b >1 0 

N
o 

6(p-p
o

) 

No  (5(p-p 0 ) 

0 

K
o 

r 0 

N
o 

6(p-p) 

N
o 

(5(p-p
0

) 

0 

The determination of these solutions from those of Chapter (5) 

(Table (5.1)) is straight forward, but in particular cases is quite 

lengthy. These details have been omitted and the solutions together 

with the appropriate variables have been given in Table (6.1). For 

completeness the eigenvalue equations for X n  are repeated from Table (5.1). 
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TABLE 	6.2  

SOLUTIONS WITH FINITE BOUNDARIES  

A. Diffusion coefficient  

K(r,p) = K
o
rb p3(b-1)/4,  b > 1 

Boundary conditions  

Fo(ra ,p) = 0, 

F(crb , p) = No  (5(p-p0 ), 

ra  < r < rb  , 0< p <p
0 

Variables  

■ V r(1-b)/2/ K

o 

 , 

= 2K p3(1-b)/4
/ (V(b-1)), 

= (t-to )/ (t to ), 

x= zt = 2(r p3/2 ) (1-b)/2 / (b-1), T =  

b) , z 2  = z(ra), t o  = t(p0), 

m = 	(b+1.0) / (b-1.0) . 

Solution  

Fo (r,p) = 
3N0  (b-1)

2 
Vp 0 (3b-7)/4 

(z/z
1

) m (t/t0 )
m-1

exp((z2 t -z2 0/4) 
1 o 4K

o  

2 -s u E 	sn [Ym (sn  z 2 ) Jm (sn z) 	Jm (sn  z 2 ) Ym (snz)] e n 	/ 
n=1 



-s u 	2 	2 
E 	sn Jm(sn z) e n / (2 2 	

Jm+1 (sn z 2 )) 
n=1 

2 
(6.4.2) 
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[z
1 

(Y
m
(s
n 

z
2
) J

m+1 
(s
n 

z
1
) - J (s z ) Y 	(s z )) + 

m n 2 m+1 n 1 

z2 om (sn z1 )  Ym+1 (sn z 2 ) 	Ym (sn zl ) jm+1 (sn z2 ))  (6.4.1) 

where, 

Jm  (sn  z 1) Ym (sn  z 2) - Jm  (sn  z2 ) Ym  (sn  z1) = 0, 

and Jm (z), Y(z) are Bessel functions, of order m, and of the first 

and second kind respectively. 

Effect of varying the boundaries  

If we let the outer boundary at r=rb  tend to infinity then 

z1 = z(rb ) 	0 and the eigenvalue equation becomes 

in 
(s
n 

z
2) =0. 

Using Green's theorem (6.2.16) and the Green's function (5.3.35) for 

z 1  = 0 and z 2  finite we have 

Fo (r,p) = 
3No V(b-1)

2 po
(3b-7)/4 

zm (t/t0 )
m-1 

exp (-z
2 

t/4). 
2
m+1 

r(m) 

as the solution with inner boundary at r=r a 
0 and the outer boundary 

at r = 

If we let the inner boundary at r=r a  tend to zero in the solution 

(6.4.2), then z 2  = z(ra
) , the eigenspectrum becomes continuous and 

we find 
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3 N V(b-1)
2 

o 	
po(

3b-7)/4 
m 

Fo (r,p) = 	 z (t/t
o

)
m-1 

exp (7-z
2 

t/4). 
m+2 

 

2  r(m) K
o  

2 
I sm+1  Jm(sz) e-s u ds, 0 

(6.4.3) 

as the solution for r =0 and r
b a 

The solution (6.4.3) is equivalent to the monoenergetic 

galactic spectrum solution (6.3.22). To show this explicitly we 

put 

= 4.ff p
2 

N0 , 
o o 

and we use the result 

	

f x
m+1 

e
-ax2 
 b

m 
J(bx) dx - 

0 	
m 

(2a)
m+1 exp 

 

Where Re (a) > 0, b > 0, Re(m) > -1 (Gradshteyn and Ryszhik p.717) 

in the solution (6.4.3). Hence we obtain 

2 	(3b-7)/4 
3 N

g
(b-1) V p

o 	m, „m-1 	, 2 „, 
F
o 
(r,p) - 	 z kt/t

o
) 	expk-z t/4). 

2
m+4 	2 
 Tr p

o  
K
o 
 r(m) 

[ m  exp (-z2  /(4u)) / (2u)m+1  z 	]. 

Since 

x = zt, 	T = (t-to ) 	u = T /(t to), 

(see Variables), this latter result reduces to 

3(b-1)/4 i 2 x  ym 1  
Fo (r,p) - 	g 	c) 	 -x

2 

 

3 NK 
P 	

) 

k 4T.) 	exP  ( 4T 	' 
8 ir V po

3(1+b)/2 r(m) 

which is the monoenergetic galactic spectrum solution (6.3.22). 



0 	
m
2 

(sz1
) + Y

m
2 

(sz 1 )] 

[J
m 

(sz
1
) Y

m
(sz) - Ym (szi ) Jm(sz)] 

s • exp (-s
2 
u) ds, 
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In the case where the inner boundary is at ra=0 (z2  + 

and the outer boundary at some finite radius r
b (z 1 finite), the 

eigenspectrum is continuous and the appropriate Green's function is 

given by Equation (5.3.36). Using Green's theorem (6.2.13) and the 

Green's function (5.3.36) we obtain 

3 N(b-1) 
o 

 2 
F
o
(r,p) - 

(
z/z

1
)
m 

t
m-1 

t
o 
-m 

exp ((z 1 to - z
2
0/4). 27 pc)  

(6.4.4) 

as the solution for r
a 
= 0 and r

b 
finite. 

If we let the outer boundary at rb  tend to infinity (i.e. 

z
1 
+ 0) in the solution (6.4.4) we obtain 

3 N
o 

(b-1) 
t
m-1 

to
-m 

z
m 

exp (-z
2 

t/4). F
o 

(r,p) - m+1 
2 	r(m) p

o  

I sm+1 e-s2u J (sz) ds, 
0 	m  

which is equivalent to the monoenergetic galactic spectrum 

solution (6.3.22), or the solution (6.4.3). 

B. 	Diffusion Coefficient  

K (r,p) = K
o r

b p
3(b-1)/4 , b > 1. 

Boundary Conditions  

F
o
(r

a
,p) = N  

Fb (rb ,p) = 0, 

r < r < rb  a 
	

< P  < Po .  

(6.4.5) 
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Variables  

• = V r(1-b)/2/ Ko  , 

• = 2 K
o 

p3(1-b)/4/  (V(b-1)), 

u = (t- to ) / (t to), 

x = zt = 2 (r p3/2)(1-b)/2/  (b-1), T = t-to , 

z
1 	

z(rb) , z 2  = z(ra), to  = 

m = (b+1.0) / (b-1.0) . 

Solution  

3(b-1)
2 N V p (3b-7)/4 

o o  
F
o
(r,p) = 	4K 	

(z/z
2  )
m  (t/t

o
)
m-1

exp[(z
2
t
o
-z

2
0/4]. 

o 2 

2 
E s [ Ym(snzl)  Jm (snz) - Jm 

(sn zl) Ym(sn z) ] en 
u  / 

n=1 n  

[ z 1 
(Jm (sn z 2 ) Ym+1 

(sn zl
) - Ym (sn 

z
2
) J

m+1 
(s
n 

z
1
)) 

+ z 2  ( Ym  (sn  z1 ) 	(s z2) - Jm  (sn  z1) Ym+, (sn  z2))] 

where, 

Jm (sn  z1) Ym( sn  z2) - Jm  ( sn  z2  ) Ym  ( sn  zi  ) =0 

is the eigenvalue equation.We note that the solution (6.4.6) can 

be obtained from the solution (6.4.1) by interchanging z 1  and 

(6.4.6) 
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Effect of Varying the Boundaries  

If we let the outer boundary at r = rb  tend to infinity then 

z
1 

tends to zero and the eigenvalue equation becomes 

J
m
(s
n 

z
2 ) = 0. 

Using Green's theorem (6.2.16) and the Green's function (5.3.35) 

for z
1 
= 0 and 22 finite we have 

Fo (r,p) - 
3N

o 
V(b-1) 2 p

o
(3b-7)/4 

(t/to)
m-1 

z
m 

z
-m-1 

exp((z
2
t -z

2
t)/4). 

2 	2 o 4Ko  

2 
-s u 

I sn Jm 
(s
n 
z) e n 	/ Jm+1 (sn z2 ), 

n=1 
(6.4.7) 

as the solution with an inner boundary at r=r a 
4 0, and the outer 

boundary at r = co. 

C. 	Diffusion Coefficient  

K(r,P) = Ko  rb  , b < 1 

Boundary conditions  

F(r '  p) = 0, 0 a 

F4Srb ,P) = No  

0 < p <p. r
a  <r < rb , 

Variables  

= V r
1-b / (K0(1-b)), 

= 3(1-b) Zn(po /p) /2, 
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zi  = z(ra), z2  = z(rb ), 

= (b+1) / (1-b) 

Solution  

3(b-1) 
Fo (r,p) = N  2130 	 o 

E [U(-An' l+m,z1)M(-Xn ,l+m,z)-M(-X
n1

). 
n=1 

U( -An , 1-fm, z) ] e -Anu / 

[U(-X
n
,l+mz

1
)M(-A

n
,l+m,z0)-M(-X

n ,l+m ' z l)U(-An ,l+m,z
o
)j

zo=z2' BAn 

(6.4.8) 

where the eigenvalues A n  satisfy 

U(-Xn ,1+m,zi)M(-Xn ,1+m,z2 )-M(-Xn ,l+m,zi)U(-An ,1+m,z 2) = 0 

Effect of Varying the Boundary  

If there is no inner boundary, but we require that F o (r,p) 

be finite as r 	0, then the solution is 

Fo (r,p) -  	
, 

 2, 
3(b-1)  N 	E 	m(-A

n , l+m, z) e n / 
r0 	n=1 

CO 	
-A u 

[1,4(-X
n
, l+m, zo)]  9X

n 	o2 

and the eigenvalue equation is 

W-An , l+m, z 2 ) = 0 

D. 	Diffusion Coefficient  

K(r,p) = Ko  rb , b < 1 , 

(6.4.9) 



Boundary conditions  

Fo (ra , p) = No  d(p - po), 

Fo (rb , p) = 0, 

✓ < r < rb , 	0 < p < po . 
a 

Variables  

• = Vr 1-1 /(K0(1-b)), 

• = 3(1-b) ln (p0 /p)/2, 

z
1 
 z(r

a
), 	z

2 
= 	z(rb ), =  

= (b+1)/(1-b). 

Solution  

Fo (r,p) = 3(b -1)  ------N 	F [ 	n u( , l+m,z
2
)M( -)

n
, l+m, z) 

2 p
o o n=1 

( 

3 	. 
( 	l+m, z2) M(-A, 	zo) 

	

- M(-A , 1-fm '  z 2  ) U(--A
" 

1-fm , z )) I z 	= z , n 	 n 	o 	o 

(6.4.10) 

where 

l+m, z2 ) 	1-Fm, z 1) - U(-An , 1-Fm, z1) 

M (-A
n
, l+m, z 2) = 0,, 

is the eigenvalue equation. We note that the solution (6.4.10) 

can be obtained from the solution (6.4.8) by interchange of z 1  and 
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- M(-An
,l+m, z

2
) U(-A

n
, l+m, z)] e-Anu / 

z 2 . 
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E. 	Diffusion coefficient  

	

K(r,p) = Ko  rb , 	b > 1 

Boundary conditions  

Fo (ra , p) = 0 

Fo (rb , p) = No  6(p - po), 

ra < r <  rb' 

Variables  

z = V rl-b/(Ko (b-1)), 

t = Ko p3(1-b)/2/  (V (b-1)), 

• = 3 (13-1) in (po/p) /2, 

• = (4zt) 1/2  = 2(rp3/2 ) (1-b) /2 / (b-1), 

= t - to = t El - exp(-u)], 

1

• 

 = z(rb), 	z 2  = z(ra), 	to = t(p0) , 

• = (b+1)/(b-1). 

Solution 

where 

-3N (b-1) (z/zi) m  e zl-z  Fo (r,p) = 	2p0  

°‘ [u(1-A, l+m, z2) M(1-X, 1+m, z) - 
n=1 

M(1--A n , 1-fin, z 2) U(1-An , 14-m, z)] e-Anu  / 

I (U(1-x, l+m, z2 ) M(1-A, 	zo ) 
aA n 

- M(1-An , 1-fm, z2) U(1-An,  l+m, z )1z0  = 

(6.4.11) 

U(1-Xa , l+m, z2 ) M(1-A, 1-1m, z1) - M(1-An , 1+M, z 2 ) 

U(1-X n ,l+tn, z1) = 0, 



is the eigenvalue equation. 

Effect of varying the boundaries  

If we let the inner boundary at r = ra  tend to zero, 

then z 2 + and the eigenvalue equation becomes 

U(1-At , l+m, zi) = 0 

and we obtain 

   

ezl-z  

	

F
o
(r

'
p) = -mat:11No 	1 

(z/z ) m  
2p0   

= U(1 -A , l+m, z) e -Anti  
E 	n 

n=1 

 

(6.4.12) 

 

 

l+m, zo ) I z 	Z l  

 

as the solution with outer boundary at r = r ib  and Inner boundary 

at r = 0. 

If we let the outer boundary at r = r b  tend to infinity 

(i.e. z
1 
+ 0) in the solution (6.4.12), the elgenvalue equation 

becomes 

1  

	

r(1-An) 	
= 0, 

 

so that the eigenvalues are 

n 
= 1, 2, 3, 4, 	 

Since 

U(-n, l+m, z) = (-1)n  n! L: (z), 

limit 	3 U(-n, l+m, z)/3n 	-M r(M) r(11+1)( -3 ) 1344 , 
z -b 0 

where Lm (Z)  is a generalised Laguerre function and r(z) is the 
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gamma function, we obtain 

m -z 
3(b-1)No 	z e 
	 7 L

m
(z) e-nu-u Fo (r,p) = 	  

2p 	r(m) 	n=0 n 
o 

(6.4.13) 

as the solution with inner boundary at r a  = 0 and the outer 

boundary rb  at infinity. 

The solution (6.4.13) is equivalent to the monoenergetic 

galactic spectrum solution (6.3.22). 	To show thieexplicity we put 

N = 4wp
2 
N, 
00 

and we use the result 

7 Lm(x) yn . (1 -y) 
-m-1

exp(xy/(Y-1)), n=0 n 

where I y I< 1 	(see Gradshteyn and Ryzhik p. 1038) in Equation 

(6.4.13) and thus obtain 

3(b-1)Na  zm  e- 
Fo (r,p) =   I -u 	-u -m-1 

e(1-e)exp 
3 8np 	r(m) 

o 

Since 

z e
-u 

-u  e -1 )i 

x
2 

= 4zt, 	T = t(ie), 	t = K
0 

3(1-b)/2 
/ (V(b-1)), 

(see Variables), this latter result reduces to 

3Na  K, 	
exp \ 

( -x2  
Fo (r,p) = 	 3(1+b)/2 r(m) \4T'i 	T 	

4T,/, 
8nV p0 

which is the monoenergetic galactic spectrum solution (6.3.22). 

F. 	Diffusion coefficient  

K(r,p) = Korb , 	b > 1 
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Boundary conditions  

F
o
(r

a
,p) 	No  6(p-p0) = 

Fo (rb ,p) = 0 , 

r
a 
<r < r, 	0 < p < po  b  

Variables  

= V r
1-b

/ K(1-b), 

= 3(b-1) in (po/p)/2, 

z
1 	

z(rb), 	z2  = z(r) 

ra  = (b+1)/(b-1) 

Solution  

	

-3(b-1) 	m F
o (r,P) = 	

(z/z
2
) 	exp(z2-z). 

2p
o  

-acgi  [U(1-An , l+m, z 1) M(1-A
n
, l+m, z) - M(1-A, l+m, z 1 ) 

-A u 	a  
U(1-Xn

, 1+111, z)] e n / 	(U(17Ao , 1-fin, z 1) M(1-An , l+m, zo) 

- M(1-X ,  1-fm , z
1
) U(1-A

n
, l+m; z

o
))1 z

o 
= z

2' 	(6.4.14) 

and the eigenvalue equation is 

U( 1-A, l+m, z1) M(1-A, l+m, z 2) - M(1-A n, l+m, z 1) 

U(1-A
n
, l+m, z 2) = 0. 

Effect of varying the boundaries  

If we let the outer boundary at r = rb  tend to infinity 

(i.e., z 1  -0- 0) the eigenvalue equation becomes 

M(1-A, l+m, z 2) = 0, 



and 
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Fo(r,p) 
=3N0(b-1) 

(z/z
2
) m 
 e

z2-z  
2p0  

M(1-An , 14m, z) e-Anu  
n=1 	  

91,1(1-A
n
, l+m, z0)/3A

n
I z

o 
= z

2 

(6.415) 

is the solution for an inner boundary at r = r
a 

0 0 and an outer 

boundary at infinity. 

G. 	Diffusion coefficient  

K(r,p) = Kr 

Boundary conditions  

F(r
a
,p) 	= 0, 

F(rb ,p) 	= No  d(p-p0 ), 

r
a 

< r < r
b' 
 0 < p < po . 

Variables  

• = ln(r) 

• = 3K
o 

ln(p0/p)/2V, 

• = 1 - V/21(0  

z
1 
= z(ra), z 2  = z(rb ) 

Solution  

F 	
3N0K0 

o (r,p) =  	exp (c(z 2-z) - c
2 
 u). 

Vp0 (z 2-z1 ) 2  
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F 	(-1)
n 

nn 	
2 

sin Enn(z-z
1)/(z2

-z
1
)] exp [-n

2
n
2
u/(z 2

-z
1

) 
n=1 

Effect of varying the boundaries 
	 (6.4.16) 

If we let the inner boundary at ra  tend to zero then 

z
1 	-cc,  and the solution (6.4.16) becomes 

Fo (r,P) = 
3NK 	(z2-z) exp[c(z2-z)-c

2
u -(z-z 2)2/(4u)]/u

3/2
. 

4Vpoin 

(6.4.17) 

H. Diffusion coefficient  

K(r,p) = Kr 

Boundary conditions  

F(ra ,p) = No  6(p-p0), 

F(rb ,p) = 0, 

✓
a 
< r <rb , 	0 < p < po , 

Variables  

• = ln(r), 

u = 3K0 
Ln(p

o
/13)/ 2V, 

c = 1 - V/2Ko 

z
1
= z(r

a
), z

2 
= z(rb). 

Solution 

F
o
(r,p) = 

3N
o
Ko 	exp[c(z

1 
 -z) - c

2 
u]. 

V po (z 2-z) 2  

7 nn sin[nn(z-z1
)/(z 2

-z
1
)] exp[-n

2
r
2
u/(z 2-z 1 )

2
] 

n=1 (6.4.18) 
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Effect of varying the boundaries  

If we let the outer boundary at r = rb  tend to infinity 

then z
2 

4. .., and we obtain 

3 N
0K 	(z-z) exp[c(z 1-z) - c

2
u -(z-z1  )

2
/(4u)]/u3/2 Fo (r,P) = 	 , 

4 Vpoii 

(6.4.19) 

as the solution for an inner boundary at ra  0 0, and an outer 

boundary at infinity. 

6.5 	Concluding Remarks 

In each case considered, solutions in this chapter have been 

given for a monoenergetic boundary spectrum of the form 

F = N d(p-p0 ). 	Only in the case of Fisk and Axford (1969)with o 	o 

K = Ko p
a 

r
b
, b > 1 has to solution included the effects of a full 

boundary spectrum, viz. F 4 N
o 

p-u-2 
as r 4 
	

Full spectrum cases 

can of course be determined by integration but numerical methods may 

be necessary. 	Examples of this will be given later in Chapter (8). 

Note again that the interior sources have been set equal to 

zero, this corresponding to the cosmic ray case in the solar cavity. 

These sources can also be included if necessary by evaluation of the 

Green's theorem integral (see Equation (6.2.9)). 
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CHAPTER 7 

COSMIC-RAY ENERGY CHANGES  

7.1 	Introduction 

In this chapter we show that the average time rate of change 

of momentum of cosmic-ray particles propagating in interplanetary space, 

reckoned for a fixed volume in a frame of reference fixed in the solar 

system is given by 

p V a up 	p  • 2  
< 15> 

3U 	• 3 r 	3 	' (7.1.1) 

where U (r,p,t) is the differential number density (w.r.t. momentum), 
P — 

V is the solar wind velocity, and G = (1/U )(311 /Dr) is the density 
P 	P — 

gradient. The expression (7.1.1) for <15> was first noted by Gleeson 

(1972), Quenby (1973), Gleeson and Webb (1974), and it is implicit in 

the discussion of cosmic-ray energy changes by Jokipii and Parker (1967). 

It shows that particles on average gain energy when there is a positive 

density gradient, and that they lose energy in a negative density 

gradient. 

There are two further momentum rates that are useful in discuss-

ing cosmic-ray energy changes, which have been discussed briefly in 

Section 1.3. We reiterate the basic argument of that section in order 

to show the proper use of these two rates. 

The equation of transport for the propagation of cosmic-rays 

in the interplanetary medium is (Jokipii and Parker, 1970), 

3U* 
--a + V.(V U* - K.V U*) - 

1  —V.V  3 — (p'U*) = 0, (7.1.2) 
3t 	— P 	P 	, 	p 
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where U* (r,p',t) is the differential number density with respect to 

momentum p' as seen in a frame of reference moving with the solar wind, 

and the spatial coordinates, r, are defined in a fixed frame of reference. 

The equation of transport (7.1.2) can be written in an alternative 

form, which displays the physics more clearly: 

where 

aU* 
+ v . S* + L,(<>  u*) . 0, 

at 	—P 	aP 

S* = V U* - K . VU* 
—13 	P 	= 	— 	13 ' 

(7.1.3) 

(7.1.4) 

is the streaming of particles with momentum p' (specified relative 

to the solar wind frame) across a fixed surface at position r in the 

fixed frame, and 

V . V 
	

(7.1.5) 

is the corresponding mean rate of change of momentum of particles 

with momentum p' at position r. 

The momentum rate <fo'> is due to the transformation of momentum 

between the fixed and solar wind frames. It arises because the solar 

wind frame is not an inertial frame of reference on a large scale. We 

remark that <IV> is not dependent on particle scattering, and a derivation 

of the rate <P> is given (for the first time) in Appendix G. 

In addition to the rates < 1'3> and <> referred to in 

Equations (7.1.1) and (7.1.5) there is the adiabatic deceleration rate 

of Parker (1965). The term adiabatic arises from thermodynamics. An 

adiabatic enclosure is one which is isolated or thermally insulated' from 

its surroundings. If a gas is allowed to expand under adiabatic conditions 

it will do work at the expense of its internal energy (the total kinetic 
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energy of the individual particles composing the gas). The adiabatic 

deceleration formula 

<b>ad = (7.1.6) 

gives the rate of change of momentum that the particles of momentum 

p undergo when the external boundaries of the gas expand at the 

velocity V(x). 

In the case of cosmic-ray propagation in the interplanetary 

medium, the concept of adiabatic deceleration is only applicable in the 

limit of strong scattering, i.e., the components of the diffusion 

tensor K = 0. The cosmic-rays are then effectively constrained to move 

with the solar wind as they scatter between the magnetic field irregulari-

ties which behave like the walls of a 'magnetic box'. 	Consequently 

they change momentum at the adiabatic rate (7.1.6) within the 'magnetic 

box' whose walls expand at the solar wind velocity V(x). A derivation 

of the adiabatic rate (7.1.6) is given in Section 4. 

It is obvious from the above discussion that the appropriate 

rate to use when deriving the transport equation in terms of U* (r,p',t) 
P — 

is <V>.  We remark that Parker (1965) and Jokipii and Parker (1970) 

obtained the equation of transport (7.1.2) by using the adiabatic rate 

which is of course incorrect. However they obtained the correct 

equation of transport because the momentum rate <IV> and the adiabatic 

deceleration rate <0'>ad 
are given by the same formula. 

As indicated in Section 1.3, the equation of transport in the 

fixed frame of reference is 

DU 	 a ---P + v . (vu —K.vu) — 1 	 (p Up ) = 0, 
3t  — p = — p 

(7.1.7) 
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where U (r, p,t) is the differential number density with respect to 
P — 

momentum p at position r in the fixed frame, and it is readily obtained 

from Equation (7.1.2), 

The principal contents of this chapter concern the derivation 

of the meant-time-rate-of-change of momentum q> in the fixed frame 

of reference, referred to in Equation (7.1.1). We derive <13> in three 

ways: 

(i) by a rearrangement and reinterpretation of the equation of 

transport (7.1.7), 

(ii) from a consideration of particle momentum changes arising from 

the scattering analysis of Gleeson and Axford (1967), 

(iii) by considering the collisions of the cosmic-rays with the 

walls of a collection of 'magnetic boxes' moving with the 

solar wind. 

We develop it by the first method in Section 2, the second method in 

Section 3 and by the third method in Section 4. 	The first derivation 

has been published (Gleeson 1972; Quenby 1973; Gleeson and Webb 1974). 

The third method is particularly instructive in the derivation of the 

relativistic adiabatic deceleration formula and for showing the relation 

between this and the result (7.1.1). 

For completeness a result of Jokipii and Parker (1967) is also 

derived. These authors have shown that the total rate of energy transfer 

from the solar wind to the cosmic-rays, per unit volume is :- 

d P
c 

(r) 
dW 
— = 
dt 	

V 	
dr 	

(7.1.8) 

where Pc(r)  is the cosmic-ray pressure at radius r. In Section 5 we 

show that the result (7.1.8) follows from the momentum rate <1'3> given 

in Equation (7.1.1). 
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In Section (6) we give a summary and discussion of the results of this 

Chapter and we define a momentum-position flaw line in terms of the flow 

velocity <i.> and the average time rate of change of momentum 4>. 

In the work that follows we use two frames of reference; one of the 

frames, denoted by S is fixed in the solar system and the other frame S m 

moves with the solar wind. Physical quantities in the moving frame Sm  

are denoted by the subscript m. The Lorentz transformations for momentum 

2 and total energy E between the moving frame S m and the fixed frame S are: 

2m  = + 	(y-1)2 • y_ - yin V, ) 

V2 

E = y(E - 	), 	 (7.1.9) 

Y = (1-V2 /c2 )
-1/2

, 

and m=m0 (1-v
2
/c

2
)

-1/2 is the relativistic mass of a particle with rest 

mass mo . To 0(V/c)
2  we have y=1 and the transformations (7.1.9) are 

= 

Em  = 

It can also be shown (see e.g. Forman (1970) ) that the momentum 

position distribution function F(r,i) and the volume element d3r d3.2 

centred on the point (r,l) of position moment= space are Lorentz 

invariant, i.e., 

Fm 	„(r , 2m , tm) = F(r 	), 

3
r d

3
2m  = d

3rd3 d 	E, 

and we will use these relationships in our analysis. 

( 7.1.10) 

(7.1.11) 



7.2 The transport equation approach 

The basic equations describing the cosmic ray gas in the inter- 
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planetary region are:- 

DU 	3U 	1 
--2- + V •( VU - K • --2) — at 	— — p = ar 	3 

V• 	
3p  

V) 	(pU 	= 0, 
- - 	p 

(7.2.1) 

(7.2.2) 
au v a S = 	(p U ) -K • --a 

-P 	P 	3 0 P 	P = Dr 

where S is the differential current density or streaming. The 
-P 

result (7.2.2) was first obtained by Gleeson and Axford (1967) in a 

spherically symmetric model of the interplanetary region. 

The basis for the present work is to note that particles are con-

served; thus we may write dawn a continuity equation and identify the 

terms in it by comparison with (7.2.1). . Taking into account the momentum 

of the cosmic ray particles the general continuity equation for 

U (r,p,t) is 
P - 

au 
+ V • S  Dt 	- -P 	oP (7.2.3) 

In order to identify terms in our case we rearrange (7.2.1) so that the 

terms in the first parenthesis are equal to S • It becomes 
-P 

au DU aU 	1 a 	P)  a (a._2_) 	0. V 	- p 3 P + 	• V 	- 	(pun )] —E  ap 3 ar 3t 	ap 	P 

Identification with (7.2.3) now gives the relationship 

au 
u = -Ya • --2  
p 	3 	3r ' 

Alternatively we write this result as 

p 
-
V . G 

<p> - 	 
3 

in which 	= (1/U ) 3U /Dr 	is the density gradient. 
P 	P 

(7.2.6) 
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7.3 The scattering model approach  

We now obtain the momentum rate <p> derived in Section (7.2) and 

given in Equations (7.1.1) and (7.2.6) by using the scattering analysis 

of Gleeson and Axford (1967). We first give details of their analysis 

and then use the same model to calculate: 

(i) the total momentum change of particles with momentum in (p,p+dp) and 

position in d 3
r about r at time t, due to scattering in the time interval 

(t,t+dt); 

(ii) the total momentum change of particles with momentum in (p,p+dp) and 

position in d
3
r about r at time t+dt, due to previous scattering in the 

time interval (t,t-Fdt). 

The momentum changes obtained in (i) and (ii) are found to be 

different, and to calculate <p> we take the average of these momentum 

changes, and divide this average by the time interval dt and the number 

of particles with momentum in (p,p+dp) and position in d 3r about r at 

time t. 

In the scattering analysis the interplanetary medium is modelled by 

magnetic irregularities moving radially with the solar wind and deflect-

ing or scattering cosmic-ray particles. We assume: 

(i) the steady interplanetary magnetic field is radial; 

(ii) the scattering is isotropic in the solar wind frame S m, and since 

there are no electric fields in S 	are scattered without change 

of speed. 

The number of scatterers per unit volume and the scattering cross 

section in Sy  are denoted by N1 (r) and a(pm) respectively. The 

Boltzmann equation 

3F 	3 	 3 	• .57 + -Tr  • (..cr F) + -672.  • (.E F) = (11-) c  , (7.3.1) 
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for this situation becomes 

aF 	31' 	v sin 8  DF_ ((SF\  -57 + v cos 0 	
r 

ar  ao — ‘6ec ' 	(7.3.2) 

6F 
where 0 is the angle between v and r and() o  represents the effect of 

6F 
scattering (cf. Gleeson and Axford, 1967). The scattering rate  

is initially evaluated in the moving frame Sin , and a relativistic trans-

formation gives the result in the fixed frame. Thus for isotropic 

scattering 

6F 
= -411 N (1 - Vv cos 0)  v a(p ) F(r,p,O,t) 

	

6t c 	 m 	m 
c2  

+21I N (1 - Vv cos 0)  vm  a(pm) 	F(r,p;0;t)sin 0'm  de -m , 

C2  
(7.3.3) 

where primed superscripts refer to the particle momentum before scattering. 

The first and second terms in Equation (7.3.3) represent scattering out 

of and into a given element of phase space respectively. 

It is assumed that the distribution function can be written as a 

Legendre expansion as follows: 

F(r0,0=7Fi  (r os 0).  
i=0 	

1 

Substituting this expression for F(r,p,0,t) into Equations (7.3.2) and 

(7.3.3), making a Taylor expansion of () o  in powers of .TV.T. , assuming 

near isotropy so that Fi  << Fo , F
1 
 (i > 2), a set of coupled partial 
 — 

differential equations for the functions Fi (r,p,t) are obtained by equat-

ing the coefficients of the P
i 

(cos 0). The first two of these 

equations are 

3Fo 	1 3 	2 	411 NV a 	3 	
3V 

	

+ 	, 77 (r v F1) = 	— [p a(F + mV ----z -) )] 
3t 	3r4  °r 	3p2 	313 	Dr) 	, 

(7.3.4) 

V 3 
+ 0[(;) 411 N a v Fo ] , (7.3.5) 
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3F
o  

3F0  3F 
T€1+ v  - -4II Na v(F i  + mV -ai--;- ) 

2 
+ 0(--V  0 Na v F0). 

v2  
(7.3.6) 

In the derivation of (7.3.5) and (7.3.6) it is assumed that the distribut- 

	

3F 	2 3 2F ion function is sufficiently smooth for F, p — and p --2- to be ap 

V considered of the same order of magnitude and F 1  = o( 

The term 
aF , (which represents the effects of inertia of the 
at 

cosmic-ray gas) can usually be neglected in Equation (7.3.6), and this 

equation becomes 
3F

o 	aF 
v 	— 411Na v(F

1 
 + mV --2  )• 	(7.3.7) ar 	Dp 

On eliminating F 1  between (7.3.5) and (7.3.7) and replacing Na by the 

diffusion coefficient 

K = v/12 IT Na, 

we obtain the equations of transport: 

also 	1 a , 	3F 	3F 	DF 2 a 	
-r 

	

2 K 	v2.._ f_3  0\ 	0,  + - — 

3t 	r2 ar 	3 WDr / 	42 Dp ‘11  3r 

	

3F 	3F
o v F

1 
= -pV o 3K3r 

3p  

In terms of the differential current density 

S = 411 p
2 
v F1/3, 

and the momentum number density 

U = 411 p2F
o

, 

these equations are 

3U  3U 
__E.+  1 2_ (r2s .4.  	 ) = 0 , at +2.5 	p' 	ap 	3 ar 

(7.3.10) 

au 
V 3 

S = VU -  (pU )  (7.3.11) 
P 	3 Dr, 	p 	3r ' 

which are the usual form of the transport equations. 
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The above completes the resume of the scattering analysis used to 

obtain the equations of transport. We now proceed to use these same 

ideas to calculate directly the average - time - rate of change of 

momentum 4> for cosmic-rays. In the analysis we use the following 

relativistic relations between the moving and the fixed frames 

F (r ,p 	,t ) = F(r,p,O,t), mmmmm 
(7.3.12a 

d
3
Era  d

3Ern 	d3rd
3 	 (7.3.12b) 

dt
m 

V V cos 0  
t2 	

) dt, 	(7.3.12c) 

	

Nm 	 (7.3.12d) 

.2_ - mV + 0 (V2 /c2p) , 	(,7.3.12e) 2m  

	

Em 	E - 1/-2 + 0(V2 /c2E), 	(7.3.12f) 

-4' 
where 	I 	=(1-V

2 
 /c

2 
 ) 2 , M is the relativistic 

3 
mass of a particle with rest mass mo , and speed v, d

3  rm  d m  and d
3
rd

3 

are volume elements about the points (r , 2m) and(r,2) of position - 

momentum space, and N(r) is the number of scatterers per unit volume. 

Consider the momentum changes of particles initially in the volume 

d
3r d2 about (r,2) at time t, which are scattered out of the momentum 

volume d3E about 2 in the time interval (t,t+dt). 

Figure 7.3a. 

Showing particles scattered out of the momentum volume d
3
2m  about 

2m  into the volume d
3
a

-1
m  about 2; 
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In the moving frame Sm , the number of particles initially with 

momentum in d
3
Rm  around 2m  and position in d

3
r which are scattered into 

the element of phase space d
3
rm  d3p'm  around (r ,2ti) in time dtm  is 

[vm Fm (rm,pmpm ,tm  3pa] [ a(p'm) d fl -m 	m m  ] [Nd3r] dtm . (7.3.13) 

The first bracket in (7.3.13) is the flux of particles with 

momentum in d 3pm  around 2m  incident on a surface with unit normal 

Pin/Pm, the second bracket is the fraction of particles, incident on a 

single scatterer, which are scattered into the solid angle clirm , and 

the third bracket is the number of scatterers located in d 3r at 4n . 

The number in (7.3.13) is Lorentz invariant, so it is the number 

of particles initially in the volume d3r d 3
R around (r,2) at time t, 

which are scattered into the volume d
3
r d

3, 
around (r,2") in the time 

interval (t,t+dt). Using the relativistic transformations (7.3.12), 

i.e. 

F (r ,p ,0 ,t ) = F (r,p,O,t), 
in in m in m 

	

d
3
r d3.2m  . 	d

3
r d 32, _ 

	

Nm 	
= 	N/y, 

V v cos 0  

	

dtm 	= 	y dt(1 	) , 
c2  

noting that d = p
2dpdO, dR= 211 sin 0 dO and that particles are scattered 

without change of speed in the moving frame (i.e.  

411
2v a(p ) F(r,p,O,t) N (1 

V  v
, 
 cos 0 

 ) p
2 
 sin e sin 0' de' de 

in 	 m 	 111 	in 

dp d 3
r dt 

is the number of particles initially in the volume d
3r d 3 2.  around 

(r,2) at time t, which are scattered into the volume d 3  r d 32: around 

(r,i) in the time interval (t,t+dt). 
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Each of these particles changes momentum by (p'-p) in the fixed 

frame, so that 

V v cos 0 	2 
(p'-p) [411 -  v a(p ) F(r,p,O,t) N(1- 	) p sin 	sin 0' do' d 0 

in 	m 	c2 	m 	in 

dp d
3
rdt], 

is the momentum change of these particles. 

Integrating this last result from 6=0 to e=n and from 6 -m=0 to 

6"
m
=11 we find 

4ll
2
Np

2 V v cos 6
)(p'-p) sin 0 sin 6' d6' de 

 

Ill  
v a(p ) F(r,p,0,t)(1- 

	

0 	0 in 	in 	c2 	 m 	m 

d
3
r dp dt, 	 (7.3.14) 

is the total momentum change of particles with momentum in (p,p+dp) 

and position in d 3r about r at time t, due to scattering in the time 

interval (t, t+dt). 

To evaluate the integrals in (7.3.14) to the order we require we 

need to obtain expressions for p', cos 6 and pm  in terms of 0, 6'm  and 

p. These expressions follow from the Lorentz transformations for momentum 

(7.3.12e) and the result that the particle speed in the moving frame is 

conserved during a collision, i.e. 

_Pm  . 	 - mV + 0(v2 /c2 )p, 

P'm  = Pm . 

Putting 0 = cos 6 and p'm  = cos O'm  from (7.3.15) we deduce 

2 2 
2mV 	m 

Pm  = p (1- 	p + V )I. + 0(V2 
 /c

2 
 p). p2 

Expanding this result by the Binomial Theorem 

, 2, 2 , p
m = p -mVp + OkV /v p), 

- p = -mVp + 0(V2 /v
2 

p). 	(7.3.17) 
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Also from the transformation (7.3.15) and using p'm  = pm , 

we find 

, , 2mV , • m2V2 	, 	V2  p° = p 	-r 
P 	

u 	-r 	) 	0(-,, p"). 
m 	`- m 	c P2

m  

Using the Binomial Theorem and the result (7.3.17) this expression 

for p -  becomes 

p -  = p mV 1.1 + mVp'
m 
+ 

V2
p), 

V` 

V2  
P •-  P = mV(U -m-  u) + 0(Th P). 

From (7.3.15) we have 

= 	mV + 0(V2 /c2  pa), 

so that 

p -cos 0 = pm  cos 0 + my + o(v2 /v2  p"), 

cos 0 = mV + pm  cos 0 -in . 

Using the expansions (7.3.17) and (7.3.18) for % and p" we obtain 

m v 

V 
U -U 	= 	(1 - u -

m
2 

) + 0(V2 /v2), 

(7.3.18) 

(7.3.19) 

as ancexpansion for cos 0. 

We note, for later reference that the distribution function 

F(r,p", 0",t) can be expressed in terms of the variables r,p,0,0" m ,t. 

This expansion is obtained as follows. We first note that we can 

expand F(r,p',0',t) using the Legendre expansion (7.3.4) 

F(r,p-,0-,t) = 	F1  (r,p - ,t) Pi  (cos 0), 
i=0 

and we then expand the functions F1  (r,r,t) and Pi  (u") in Taylor series 



about the points p and u'm  respectively. We have 

= E [F
44'
(r,p,t) + (p-p) 

3F(r,p,t) 
+ o(

y_22 22F 
 )] 

1=0 	3p  v- 

dPi(u -m) 	V2 
[Pi (P -m) + 	u-m ) 

du
. 	 + 0(172 ) Pi ]. 

From this and using the expressions for p'-p and p'-p' given in 

Equations (7.3.18) and (7.3.19), and using the assumptions of the 

scattering model, namely Fi  << Fo , > 2), F1  = 0(V/v Fo ) and 

p aF1 /3p = 0(F1) etc., we obtain 

aF 	2 
V 

F(r,p',0',t) = F +— (u' - p)  + p'
m 

F
1 
+

.11 
v 	m 	 v2  3p 

(7.3.20) 

as the expansion for F(r,p',8',t) to 0(V 2 /v2  F0 ). 

Similarly expanding vma(pm) about p in a Taylor series, and using the 

expression for pa-p given in (7.3.17) we have 

V2  
vm  a(pm) = v a(p) — mVp  (v a(p)) + 0(;-2  v a (p)),  ap 

as the expansion for vm  a(pm). 

Substituting the expressions for vm  a(pm), F(r,p,O,t) and p'-p 

(7.3.21) 

182. 
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from Equations (7.3.21), (7.3.4) and (7.3.18) in the result (7.3.14), 

we have that 

2 2 	1 , 	V 3 , , 	,V2  „ „ Vvu , 411 Np I rya - p- p — kva) + 	van 	) v a p 	v4 	c2 -1 

[F 	p 

	

+ F + o(V2
/v

2 
F 	[mV(u"m u) + O(-2 	dp'm du • d

3
r dp dt o 1 	o 	v2 

2 vvy  

	

-811 2  p3  N 11 	
V a 

	

-1 	 z. 
[v a-p - p 	a) + 	v a)] (1 v 	v ap 	v 	v2  

•[pF
o 
+ p 2F

1 
 + 0(V2/v2  F0)] du • d 3r dp dt 

= -1611 2  p 3 V Na 	Vv  [F - 	+ 	v 	(\To) ] Fo 3 	1 	cz. 	3p 
va 

+ a
!2 

F 	d
3
r dp dt, 

V 2 0  

is the total momentum change of particles with momentum in 

(p,p+dp) and position in d3r about r at time t  due to scattering 

in the time interval (t,t+dt). 

(7.3.22) 



dS2m 

dpm  

trajectory 
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We now consider the momentum changes of particles in the volume 

d3r d 3a about (r,p) at time t+dt, due to particles scattering into the 

momentum volume d 3a about 2 in the time interval (t,t+dt). 

Figure 7.3b 

Showing particles scattered into the volume d 3r dem  about 
-Ifl

(r , pm)• 

In the moving frame Sm , the number of particles initially in the 

volume d 3r d3p.
m about (r 11"m), at time tm 

which are scattered into 
--M 	 --M 

the volume element of phase space d
3
r d3pm  in time dtm is —in 

[v 	1r ,p, 6' m ,t m) d3 	] [a(p m  ) dS2 ] [N d
3r ] dt . 

mmmm 	m 	m  
(7.3.23) 

The physical significance of the three bracketed quantities-in 

(7.3.23) are analagous to the interpretation of (7.3.13). 

The number in (7.3.23) is Lorentz invariant, so it is the number 

of particles initially in the volume d 3r d3R, about (r,Z) at time t, 

which are scattered into the volume d 3r d
3a about (r,p) in the time 

interval (t,t+dt). Since p' Ill  =p,d
3p = p

2dp dc2 , we make the 
- 

substitution 

3  d3p .m  d3rm  dQm  = d _pm d
3 
 r &I'm " 
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in (7.3.23). However from Equation (7.3.12b) we have 

d3Em  d3r = d
3
R d

3
r, 

so that this last result may be written in an alternative form 

d
3
p
.
m  d

3
r
m  am  = d

3
r p

2 
dp a d0'

m 
 (7.3.24) 

Thus using the relativistic transformations (7.3.12) i.e. 

F (r , p' ,e" , t ) = F(r,p",e",t), mm m m m 

N
m 

= N/y, 

dt
m 

Vv cos 0  
ydt(1 	), 

c2  

noting dn = 211 sin 0 de, and using the result (7.3.24) in Equation 

(7.3.23) we have 

4H
2 
Np

2 
v a(p ) F(r,p',0',t) (1 VV cos 6 ) sin 0 sin 0' de de' dpd 3

r dt m m 	c 	m  m2 

is the number of particles initially in the volume d 3r d32' about 

at time t which are scattered into the volume d 3r d3.2.  about 

(r,2) in the time interval (t,t+dt). 

Each of these particles changes momentum by p-p' in the fixed 

frame in the time interval (t,t+dt) so that 

(p-p')[41T
2
Np

2 
v o(p ) F(r,p',6 	

Vv cos 0 
',t) (1 	) sin 0 sin 0' 	dO de' in 	m 	c2 	m  in 

dp d
3
r dt], 

Is the momentum Change of these particles. 

Integrating this last result from 0 0 to 0 = H and from O'm  = 0 

to 0'
m 

= H, and using the expansions for v a(p ), F(r,p',0",t) and m 	m 

p-p' given in Equations (7.3.21), (7.3.20) and (7.3.18), we find 
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2 2 H Vv cos 0  
4n Np 	fo  fo

11 
 vm  a(Pm)(P-P') F(r,p',61",t)(1 	) sin esin 8 -1011  

c2  

de de"m dp d
3r dt 

2 
2_ 2 1 	V a  vvp 

411 Np 	I [va-p - p 	(v a(p))+ 	v0(0)] (1 	) v op 	 c' -1 

2 	3F
o 

	

1 	V 
(11-U -m) + 0(-

v 
[ F + 

V  - (p' - p) p 	+ p F + 
V  

F )] 

	

-1 	v4 	o v 	m 	3p 	m 1 2 0 

du'm dp dpd
3r dt 

2 V 3 	 Vvp 
4H

2
Np21 [va - p 	— (va) + 0(27- va)] [ 1 - 	] 

v ap -1 	 v2 	c4  

aF  

	

p 	[ 2p F0 -! - p 
0 
 (2p

2 
 + 2/3) - 2/3 F

1 
 + 

v2 
F0)] dp dpd 3r dt v 3p  

- 1611 2 p3 VNa  
3 	

[F1  + 2p - — + 	+ V 
3F

0 	Vv 	p 	(ye)) Fo + 0(y_ F ] 
v 3p 	c' 	VG 	 v2 

d3r dp dt, 	 (7.3.25) 

is the total momentum change of particles with momentum in (p,p+dp) 

and position in d
3r about t at time t+dt  , due to previous scattering 

in the time interval (t,t+dt). 

In summary, the basic results (7.3.22) and (7.3.25) concerning 

the momentum changes of particles with momentum in (p,p+dp) are: 

(i) we have 

V 
V2  Vv .pv3 

-16H
2
p 3V Na [ Fi 	ye  + (va)] F + 0(172 F)] 
3 

d
3
r dp dt, 

is the total momentum change of particles with momentum in (p,p+dp) 



Since the streaming in the moving frame is given by 

4llp
2 

v 
M M 

—Pm 
	

3 
F 	(r 9 p ) l —in M 

(7.3.28) 
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and position in d
3
r about r at time t due to scattering in the time 

interval (t,t+dt) and, 

(ii) 
-1611

2 
 p

3
V Na  

[F 	—V 
aF
0  V   3 + F—v  + pViv  —  (va)] F 

3 	1 
+ 2p 	

ap  c2 	va ap  o 

2 
+

y 
F )] d

3
r dp dt, 

v2 o 

is the total momentum change of particles with momentum in (p,p+dp) 

and position in d
3
r about r at time t+dt, due to previous scattering 

in the time interval (t,t+dt). 

As noted at the beginning of this section the momentum changes 

in (i) and (ii) are different, and to calculate <p> we take the 

average of these momentum changes, and divide this average by the 

time interval dt and the number of particles with momentum in (p,p+dp) 

and position in d
3
r about r, viz. 4ll p

2 
Fo 

(r,p,t) dp d 3r. 

Hence we obtain. 

o 
DF E 411Na 	V 	V2 

[F + p  0(17 Fo ) 3 F 	1  o
yap (7.3.26) 

as the expression for average time rate of change of momentum of the 

cosmic rays. 

If we express the distribution function in the moving frame by 

V2 
F (r , p ) = F 	(r , p ) + F (r , p ) cos 0

m 
+ 13(--z F 	) 

—M M 	Mo —M M 	Mi —M M 	 V MO 

we can show that 

3F V 0 F = Fi  
mi (7.3.27) 
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the result (7.3.27) when substituted in the expression (7.3.26) for <p> 

indicates that <p> is proportional to the net inward streaming in the 

moving frame. Since the streaming in the moving frame is a diffusive 

flux 

DF 
= -4Hp 2 K(r,p) ---Q-

-Vm 	ar (7.3.29) 

arising from the scattering, we find that <p> is proportional to the 

radial gradient 1/F0  aFo  /ar. The result <p> = S 	also makes physical 
-Pm 

sense, since the streaming in the moving frame is due to the combined 

effect of overtaking and head an collisions between the cosmic rays and 

the scatterers. 

To show the relationship (7.3.27) explicitly and to obtain the 

dependence of <P> on the radial gradient (1/F0 ) MOO we note that 

from the equation of transport (7.3.9) 

aF 	aF V 0 	—1 	o  
F
1 
 + p 

v dp 	411Na ar • 
(7.3.30) 

Since the diffusion coefficient K = v/(12HNo) we may write this last 

result as 

aF 	aF 
V 	- 3K -9 F + p -- 	_ 

 
1 	v Bp 	v ar 

or using Equations (7.3.28) and (7.3.29) we have 

aF 	3S 
V 0 _  -Vm  	- F 

M1 
F + p — 	411 p2 1 V 4 

which is the result (7.3.27). Finally using the result (7.3.30) in the 

expression (7.3.26) for <P> we find 

aF 
<p> 	

3F ar 
	 (7.3.31) 
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Alternatively in terms of the radial gradient Gr (r,p) = (1/Up ) (911p /30 

we write this result as 

<1;> 	yija Gr • 	 (7.3.22) 

This is the result we seek and it was obtained in Section (7.2) by 

proper interpretation of the equations of transport. 



190. - 

7.4 The moving cell approach  

In this section we consider a special model (see Figure (7.4a)) in 

which the particles are considered to be confined within "boxes", the 

walls of which are moving with velocity V(r) (V(r) is in general a 

function of position). 

Figure 7.4a. 
Illustrating the boxes of Section (7.4). The surfaces at 

each point move with the local velocity V(r). 

In the cosmic ray case V is the velocity of the solar wind. We first 

consider momentum changes within a single box  or cell and then the 

momentum changes associated with a set of cells within a volume fixed in  

space and not moving. 

A single cell is shown in Figure (7.4b) and the following conditions 

apply 

(i) The particle speed v >> V. 

(ii) As seen by an observer moving anywhere within the cell the distribution 

function F 	) m m is uniform and isotropic and we write 

F42  —m )  = Fmo (P  m)  

with F (p ) changing from cell to cell. 
mo 

(iii)The particles are considered to have elastic collisions with the 

rigid walls of the enclosure i.e. the incident and rebound speed 

as seen moving relative to the contact point of the wall are the 

same. 

The Lorentz transformations for the momentum 2 .  and the total energy 
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E between the moving frame Sm  and the fixed frame S to 0(V/c) 2  are given 

in Equations (7.1.10) and (7.1.11): 

2,m  = 	 (7.4.1) 

E
m 

= E - V • 2.  . 	
(7.4.2) 

From the Lorentz invariance of the position-momentum distribution 

function 

F(r,2) = Fm  (r , 2m).  

Expanding Fm(  r , 2m) about in a Taylor series we have 

.D F(r,2) = Fm (r ,2) + (pm  - 2) 72- F(r 	+ 

 

(7.4.4) 

 

Since F (rm m 
 ) is essentially isotropic (see (ii)) and using the 

m -  

Lorentz transformations (7.4.1) we have 

v 	31.0 
F(r,2) = Fmo (r m ,p) + 0(1.7 P 	), 

as an approximate relation between the moving and fixed frame 

distribution functions. 

We now proceed to calculate the rate at which the particles Change 

momentum due to collisions with the walls of the enclosure. 

Consider the collision of a particle of momentum p with an element 

dA of the wall centred around the boundary point at b where the inward 

normal is n. Let 21  and 21  denote the particle momenta before and 

after the collision. 

Figure 7.4b. 

Schematic of particle collision with wall at b. 

The inward normal to the surface at b is n . 



Since collisions are elastic relative to the wall (see (iii)) we can 
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easily show 

2mf = (2rd. Pmi • LI 	- 	• 	= 2mi - 22mi • 

Using the Lorentz transformations (7.4.1) we have 

= 	- 21  • Li - 	- 2m V) . n n + 0 (V2 /c2  pi). 

Hence 

2 	2 
2.f = Pi - 40q 	 c. . • 2) (21  • n) + 0(V

2
/

2 
Pi

2
). 

Using the Binomial theorem in Equation (7.4.8), 

Ap = pf-pi  = -2(m V • n) (21.  • n)/pi  + 0(V2 /c2 ) Pi . 

With 0 the angle between 21  and-.n (Ei  • n = -pi  cos 0) and dropping 

the subscript i, Equation (7.4.9) gives 

Ap = 2(m V • n) cos 0 + 0(V2 /c2  p), 

(7.4.6) 

(7.4.7) 

(7.4.8) 

(7.4.9) 

(7.4.10) 

as the momentum change in the fixed frame. 

The number of particles with momentum in d2 about 2:which intercept 

dA in time dt is 

(v cos 0 - V • n) dA dt d 32.. 

Using the relation between distribution functions given in (7.4.5) we 

have 
v  mo 

[Fmo (r ,p) + 0(;77-  P a p 	)] (v cos 0 - V • n ) dA dt d p, 
-in 

i  as the number of particles with momentum n d
3  2 about 2:which intercept 

the area dA in time dt. 

Each of these particles changes momentum by Ap given by Equation 

(7.4.10) and 
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2(m V • n) cos 6 Fmo (r , p) (v cos 8 - V • n) dA d 3E dt 

+ 0(p
2
V V/v OF /4)).- dA d 3 2 dt. ma  

is their total momentum change in time dt. 

Using d 3p = p26pdQ, dO = 211 sin e dO and integrating this last 

result over the solid angle (IQ corresponding to incident particles we 

obtain 

411(V • n) p
3 
v Fmo (r p) opdA dt11/2 (v cos 6 - V • n) 

cos 6 sin 6 de + 0(p 2V2/v (F Pp)). p
2 

6p dA dt ma 

411 p
3 

F (rp) V • n Sp dA dt (1 + 0(.12") ), 3 	mo -110 	- (7.4.11) 

as the total momentum change in time dt from particles with momentum 

in (p,p+dp) irrespective of direction. 

Dividing by dt, noting that Fmo (r ,p) is constant within a cell 

and integrating over the entire interior surface we have 

411 F 	(r , p) p
3
/3 I V • n dA dp (1 + 0( V.-tr-) ), m mo - 	S 

as the total momentum Change per unit time of particles with momentum 

in (p,p+ap) due to collisions with the cell wall. 

The exterior normal to the surface S is -n, and using Gauss's 

theorem this result can be written alternatively as 

-411/3 p 3 F (r ,p) dp 	V • V d 3r. mo -m 

Noting that the number of particles in (p,p+6p) is 411p 2 
Fmo (r ,p)(5p.V0 , 

this result shows that although due to surface collisions, the momentum 

changes can be reckoned as due to the momentum changing at each point of 

space at a rate 

• 
<P>ad = (p/3)V • V , (7.4.12) 



fixed surface 

moving cells 

Since it is independent of the shape of the surfaces this is a useful 

general interpretation. The result (7.4.12) is the adiabatic 

deceleration rate referred to in (7.1.6), and it is independent of the 

frame of reference. 

We now consider a collection of adjoining cells moving through a 

volume Vo enclosed by a surface So which is fixed relative to the rest 

frame (Figure 7.4c). 

Figure 7.4c. 
The volume Vo enclosed by the surface So which is fixed 

in the rest frame. 

The total change of momentum per unit time for particles in 

(p,p+6p) due to collisions with the walls of all the cells follows 

from (7.4.11) and it is given by 

411p
3 

I F (r '  p) V • n dA dp [1 + 0 3 	mo -m— — 
S 

where the surfaces S are the complete set of the walls of the cells 

which are totally or partially enclosed by S. Note that although 

F (r ,p) is a function of position, it is constant within each cell. 
mo  -m 

Labelling the cells totally enclosed by S o  by the index i, we find 

that the total momentum change per unit time in these cells is 

41Ip 3  6  
3 

E 	, 
• rmo kr i,P) I V n dA. 

Si 

194. 
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Since -n is the outward normal and using Gauss's theorem, 

-411p 3  6p op 	F 	(r 	p) f V • V d
3
r. i mo -mi' 	- - vi  (7.4.13) 

is the momentum Change per unit time in these cells. 

We now consider the contribution to the momentum change in a cell 

partially enclosed by So . The volume of the cell within So  is denoted 

by VO the portion of the surface S o  which cuts the cell is labelled 

Sk  and the surfaces of the cell interior to S o  are labelled S* (Figure 

7.4d). 

Figure 7.4d 
A cell partially enclosed by S. 

Using the result (7.4.11) the total change of momentum per unit 

time of particles with momenta (p,p+6p) within this cell is 

443 
I F 	(r 9  p) V • n dA dp. 3mo -101 

S* 

This result may also be written 

4 3  r 
Fmo (r , p) dA -I V•nF (r 	p) dA] dp, 3 	I S

k 
+ S* 	 - - 	-In' Sk 



with Sk 
+ S the surface enclosing Vk 

and Sk 
the stationary part of 

that surface. Using Gauss's theorem in the usual way 

-411 p
3 

[ F (r
' 
 p) I V • Vd3r+f F (r ,p) V • n dA] óp, 

3 	mo -mk 	e
k 
 mo -m 

- 

is the momentum change per unit time within this cell. 

Combining this with the result (7.4.13) for cells completely enclosed 

by the fixed surface So , we find the total change of momentum per unit 

time to be 

p
3 

(Sp [ E F 	(r 	p) I V • V d
3r + E F 	(r 	p) I V • V d 3r] 

3 	k  mo -in v  - - - 	mo -mi 	Vi 

-  11p
3 
 6P E f F (r 	p) V • n dA; 3 	mo -in - 

where the subscript i labels the cells totally interior to S o , and the 

subscript k - labels the cells partially enclosed by So . 

Noting that E Vk  + E Vi  = Vo , the enclosed volume, E S k  is the 

fixed surface So 
and that F (r ' p) is constant within a cell, mo-m 

4n 

	‘j13 
3R 	 3x 

f F 0 (r , p) V • V d 3r 	4nP  1)I F 	(r ' p) V • n dA, 

	

3 	v m 	3 	mo -m So  
o 

 

is the total momentum change per unit time for cells within S o . 

Finally using Fmo (r,  , p) = Fo (r,p) to the order required the total 

change of momentum per unit time is 

An R "3 	44 f  F (r p ) V • n dA. 
J 3

6n o,  

	

-411P 	

3 4 

 I Fo (r,p) V. vur 	3  

	

3 	Vo So  
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The first term is the adiabatic deceleration term discussed earlier. 

The second term is from the exterior surfaces. It too can be converted 

to an equivalent volume effect by using Gauss's theorem and noting again 

that n is the inward normal to S . 

It follows that the change of momentum per unit time of particles 

in (p,p+6p) is 

„ 3 
„ • -4.nP 	'JP  f [Fo (r p) V • V 	V • (F 0 	II a3  (r,p) V 	r 

3 	Vo 
 

3 p 
4np oP  fV .F (r,p) d

3
r . 

3 	- - o 
Vo  

Since the number of particles with momenta in (p,p+dp) inside S o  is 

411p2 (5p I F (r,p) d 3r this result shows that although due to surface 
Vo ° 

collisions with the cell walls, the momentum changes can be reckoned 

as due to the momentum changing at each point of space at a rate 

<P>  - 3 Fo (r,p) -11 
• E

-  Fo
(r,p). 	(7.4.14) 

This result expressed in terms of the number density U = 411p
2F (r,p) 
o - 

is 

<P> = ___R v  •  (7.4.15) 
3U - ar ' 

which is the expression for <p> given in (7.1.1). 

This result can be written in terms of the spatial gradient of 

particles 
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1 	1 
— VF=—VU 
F
o
—o U— p' 

as 

• 
<P> = (p/3) v • G . 

It shows that whenever there is a positive heliocentric density 

gradient cosmic-ray particles are, on average, gaining energy. 

7.5 Cosmic-ray energy changes over  the whole momentum spectrum  

Jokipii and Parker (1967) showed that the total rate of change 

of energy transfer per unit volume from the solar wind to the cosmic 

rays is 

dP
c(r)  dW _ V 

dt 	dr 	' (7.5.1) 

where P(r)  is the isotropic cosmic-ray pressure at heliocentric 

radius r. In this section we derive this result from the expression for 

<p> given in (7.1.1). 

The relation between the average time rate of change of kinetic 

dT 	• 
energy <--> and <p> is 

dt 

dT 
dT 	• 

<dt>  = 	<P>  • (7.5.2) 

Using the relativistic relations 

E
2 

= p
2 	2 
c
2 
+E0 , 

= 

where E is the total particle energy, E0 , the rest energy and T the 
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kinetic energy it is easy to show that 

dT 
dp 
	v, 	 (7.5.3) 

where v is the particle speed. From the expression for <p>given in 

(7.1.1) and the relations (7.5.2) and (7.5.3) we have 

dT <—> 
dt 

3U 
17_171 __E 
3U 	ar 	' (7.5.4) 

as the average time rate of change of kinetic energy. 

Hence 

dT  
U dp d

3 
 r, 

dt P 

is the total average rate of change of kinetic energy of particles with 

momentum in (p,p+dp) and position in d3r about r. 

dT Using the expression for 	given in (7.5.4), integrating over 
dt 

the whole momentum spectrum, and dividing by d
3r we obtain 

dw _ rco dT 
` – 0 —d—t>  Up dr' 

3U 
= V c° 	dn 

0 3 Dr 
(7.5.5) 

as the total rate of energy transfer per unit volume from the solar wind 

to the cosmic rays. 

To relate the expressions (7.5.1) and (7.5.5) for 514  we need an dt 

expression for the cosmic ray pressure Pc (r) in terms of the momentum 

number density U. The pressure Pc (r) is the force per unit area 

exerted on a plane rigid surface at radius r. To calculate P c (r) 

consider collisions of particles with an element of area dA of the 

surface, with normal n (Figure (7.5a). 



Figure 7.5a 
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Illustrating the collisions of particles of momentum 

2:with the area dA. 

The number of particles with momentum in d 3
2.  about 2.  striking 

the area dA in time dt is 

v cos 0 F(r,2) dA dt d32. , 

where 8 is the angle between the initial particle momentum and —n. 

Each of these particles changes momentum by Ap = 2p cos 0 and 

2p cos 0 v cos 6 F(r,2) dA dt d 32. , 

is the total momentum Change from these particles. 

Assuming that the momentum distribution function is essentially 

isotropic i.e. F(r,2) = Fo (r,p) and using the relations 

d
32 = p2dpdS1, d2 = 211 sin 8 de, U = 411p2F0 , 	then 

	

H/2 = 	3 

 

f
o  

v Fd (r,p) dp cos
2
6 sin 8 de dA dt 

0 

fm   0 3 U dp dA dt, 
P 

is the total momentum change corresponding to all particles from 

p=0 to p=c0 and incident on one side of dA. 
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Since the cosmic ray pressure is the momentum change per unit area 

per unit time we have 

pc (r) = f03  up  dp. 

The gradient of the cosmic ray pressure is 

dP
c(r) _ 	

3U 
fw 	dp. dr 	0 3 3r 

(7.5.6) 

(7.5.7) 

Noting that the integrals on the left hand sides of Equations (7.5.7) and 

(7.5.5) are identical we obtain 

u dPc(r)  dW _ 
dt 	" 	dr 	' (7.5.8) 

and this is the result (7.5.1) obtained by jokipli and Parker in (1967). 

7.6 Summary and discussion 

In this Chapter we have obtained a new expression for <P>, the time 

average rate of Change of momentum for cosmic rays in the interplanetary 

medium, given by 

4p> = p V . G /3, 	 (7.6.1) 

with G (r,p) = (1/Up ) 3Up/9r, the density gradient. 

This result was obtained in three different ways: 

(i) by a rearrangement and reinterpretation of the general continuity 

equation for the cosmic rays. 

(ii) by using the scattering analysis of Gleeson and Axford (1967), to 

calculate directly the momentum changes of the particles due to collisions 

with the radially moving scattering centres. 



(iii) by using a special model in which the particles are trapped in 

'boxes' moving with the solar wind. In this model the particles change 

momentum as they collide with the rigid walls of the box. 

The first method is the simplest, but in fact it is built on the 

results obtained from the scattering analysis. 

The second method is quite complex because it involves calculating 

directly the momentum changes of the particles due to scattering, and 

had to be treated with great care to obtain the final result. 

The third method employs a special model with particles trapped 

in boxes moving with the solar wind. However, this model is very 

instructive since the adiabatic deceleration result is derived in the 

process. The model demonstrates that particles within a moving cell 

lose energy at the adiabatic rate, but when a volume fixed in the rest 

frame is considered, a further 'surface effect' must be included, and 

this together with adiabatic deceleration gives the new result (7.6.1). 

The most significant difference between the adiabatic deceleration 

rate and the new result (7.6.1) is that particles can, on average gain 

kinetic energy when there is a positive radial density gradient. 

In any use of the equations we consider that it is particularly 

instructive that they be written as the set: the continuity equation, 

the streaming equation and the momentum rate i.e. 

DU 
+v. S + 	(<1.3> U ) = 0, 

Dt 	— —P op 

DU 

P 
S =. V U. - V/3 a 

--- (U) - 	a  
- 	P 	Dp 	P 

au 

	

= a.. 	' 13  
3U 	2r • 

(7.6.2) 

(7.6.3) 

(7.6.4) 

202. 
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These display clearly the entire set of physical phenomenon and on 

substitution of the results (7.6.4) and (7.6.3) in the continuity 

equation (7.6.2) we obtain the equation of transport given by Parker 

(1965). The fact that <P> may be positive will require us to reinterpret 

energy exchange processes of cosmic rays in interplanetary space. For 

example galactic cosmic rays have a positive density gradient in the 

vicinity of the earth and hence are gaining energy. 

A useful way to visualise the transport of particles in position 

and momentum is by means of flow lines in (r,p) space. The flow lines 

are the solutions of the simultaneous ordinary differential equations 

dr _ 
<> = S /U , 

-P P 
(7.6.5) 

dt 
	<P> = (Vp/31Jp) (au /r), 	(7.6.6) 

where S is the differential current density. Since the time t in 
-P 

(7.6.5) and (7.6.6) is a parameter we have 

aU 
d 	= 3S / (Vp 	), 

-P 	ar dp 
(7.6.7) 

as an alternative form of the flow line equations. 

We note that the tangent to the flow line passing through the 

point (r,p), gives the ratio of the streaming velocity <i> to the 

momentum rate <p> at that point. Hence if we cannot identify individual 

particles with momentum in (p,p+dp) and position in d 3r about r, these  

particles would appear  to follow the flow line passing through the point 

(r p) of position-momentum space. 

In the scattering model, a consideration of the collisions between 

an individual particle with a collection of radially moving scatterers 



shows that the particle cannot gain momentum greater than 

Ap = 2mV (1 + 0()), 

but the particle may continuously lose energy. This aspect of the 

collision process needs to be kept in mind in the interpretation of the 

momentum rate <p>. 

In spherical symmetric models of the interplanetary medium the 

differential current density 

aF 	 3F 
S = -411p2 (!23 	+ K(r,p) -57-0  ) 
-P 

where K(r,p) is the diffusion coefficient and e is the radial unit 

vector. The flow line equations for this case are 

or 

dr = -(Vp/3(3F0 /30 + K(r,p) 3F0 /3r]/F 
dt 	 o' 

3Fo c_12 = Y2. 
dt 	3F

0 
ar ' 

	

3F 	3F 	3F 
dr 	o 	o 

I 	/ / 
(vp aro ). 

dp 	'3 Dp 	" 3r  

(7.6.8) 

(7.6.9) 

(7.6.10) 

We shall construct flow lines for monoenergetic source and monoenergetic 

spectrum solutions of the transport equations in later chapters. 
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CHAPTER 8 

GALACTIC SPECTRUM SOLUTIONS  

8.1 	Introduction 

In this chapter we present calculations showing features of 

the monenergetic galactic spectrum solution (6.3.22): 
-3(1+b)/2 

1 ( x
T
2  ) m 

exp
( 
-
-x2  3 Ng  Ko  

o 	
(p

o) po  
F(r,p) - 

	

8 7 V r(m) 	T \ 4 	4T ) 

(8.1.1) 
and the general galactic spectrum solution (6.3.19): 

Fo (r,p) = f p  G(r,p;p0) Fo (=,p 0) d po , 	(8.1.2) 

where 
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G(r,p;p0) = 

(1-3b)/2 9  m 
3 Ko(P)P0 	 1 ( x - 

T 4T 
2 V r(m) 

exp 
-x

2 

 

4T 
(8.1.3) 

= 2(r p
3/2

)
(1-b)/2 

/ (1-b), 

= 3 f 	K (z) 
z(1-3b)/2 

dz/ ( 2V), p 	o 

the diffusion coefficient K(r,p) = K
o
(p)r

b
, with b > 1, and F 

o 
 (0. 9 p 

o
) 

specifies the distribution function at r = 

Some of the results of this chapter concerning the propagation 

of galactic cosmic-rays have been obtained previously by means of 

numerical solutions of the equation of transport. Here the features 

are obtained more easily, with more precision, and over a wider range 

of parameters. In particular, the results concerning the momentum 

changes and the flow of monenergetic galactic cosmic-rays within the 

solar cavity are new. 

In Section (2) we show the characteristics of the monoenergetic 
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galactic spectrum solution (8.1.1) for a diffusion coefficient 

K(r,p) = K
c 
p r

1.5 
and we present the results published in Webb and 

Gleeson (1973). 

Previous studies of the redistribution of monoenergetic or 

near monoenergetic galactic cosmic-rays within the solar cavity have 

been carried out by Parker (1965, 1966), Gleeson and Urch(1971), and 

Goldstein et al. (1970b). Parker considered the case where the 

diffusion coefficient K(r,p) = constant, and monoenergetic particles 

were released from a free escape boundary at r = R. He obtained and 

evaluated a series for the distribution near r = 0. Gleeson and Urch, 

and Goldstein et al. studied the redistribution of near monoenergetic 

galactic cosmic rays using extensive numerical solutions of the equation 

of transport. In the latter solutions, the differential number density 

was specified to be a narrow Gaussian distribution in kinetic energy 

with a half width q, 10% of the mean kinetic energy. The numerical 

solutions probably show the redistribution of particles well, but they 

are restricted in that, 

(i) the spectrum at r = R is near monoenergetic, 

(ii) extension of the calculations to very low energies has not 

been carried out because of accuracy considerations, and 

(iii) it is not feasible to examine a wide range of parameters. 

These deficiencies are not present in the analytical 

solution (8.1.1). 

n Section (3) we show the structure of the streaming S in 
-P 

the (r,p) plane arising from monoenergetic galactic cosmic-rays for 

the case where the diffusion coefficient K(r,p) = Kc  p r
1.5

, and 

V r
e
/K(re

,p
o
) = 0.1 in the solution (8.1.1). To understand the 
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physics of the flow it is necessary to recognise that the particles 

change momentum at the average rate (7.1.1), i.e. 

<h> = 	pv•vup  / (3 Up ), 	(8.1.4) 

and not at the adiabatic rate 

<h>ad 	= 	P v • V / 3, 	 (8.1.5) 

as given in Equation (7.1.6). 

The variation of the streaming velocity <i> = S /U , and 
-9 P 

the momentum rate <P> in the (r,p) plane are best seen by constructing 

solutions of the flow line equation (7.6.7), i.e., 

dr 
dp 

<p> = 3 S / (V p DU /Dr), (8.1.6) 

and in Section (3) we obtain numerical and analytic solutions of this 

equation for the case K(r,p) = K
c 

p 1.5 
 and V r

e
/K(r

e
,p

o
) = 0.1, 

where r
e 

is some fixed radius. 

In Section (4) we give examples of the general galactic 

spectrum solution (8.1.2) and we obtain features similar to those in 

Urch and Gleeson's (1972a) numerical solutions of the equation of trans-

port. 

In the general galactic spectrum solution (8.1.2) the distri-

bution function F
o
(r,p) is the convolution of the Green's function 

G(r,p;p 0) of Equation (8.1.3) and the galactic distribution function 

F
o
(0.,p0). The Green's function determines the modulation properties of 

a model, independent of the galactic spectrum and thus warrants particu-

lar consideration. In Section (5) we investigate the dependence of 

G(r,p;p0 ) on the momentum p c) , for a range of interplanetary conditions. 

We use it to study the fraction of particles with kinetic energy in the 

interval (T, T + dT) at radius r which originated in the kinetic energy 
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interval (T, T o 
 + dT

o
) in a general galactic spectrum. In specific 

o  

examples we show the origin of protons, electrons and helium nuclei 

in the galactic spectrum. Some of these results for particular inter-

planetary conditions are similar to those of Urch and Gleeson (1972b, 

1973), but for other conditions the results are different. The calcu-

lations involved in the approach presented here are much simpler than 

the calculations of Urch and Gleeson (1972b, 1973) who investigated 

the origin of particles in the galactic spectrum by using numerical 

solutions of the equation of transport. 

8.2 The monoenergetic - galactic - spectrum solution  

For a diffusion coefficient K(r,p) = K
c 
p r

b
, the monoenergetic 

galactic spectrum solution (8.1.1) may be written 

p
3 

F t 3c 2 
o o  (5-3b) 	1  x

2) m 

N. 	8 irr(m) • 

 

C1-(p/p0)
(5-3b)/2

] 
(4T 	exil-  4T 

where 

	

2 	 (P/Po )
3(1-b)/2 

_ (5-3b) 	Vr  

	

4T 	- 30_ 1:0 2 K(r,p0) C1-(p/p0)(5-3b)/2] 
(8.2.2) 

The parameter V r/K(r,p) is dimensionless, and it contains the complete 

dependence of the solution on heliocentric distance r, the diffusion 

coefficient constant K
c
, and the solar wind speed V. A useful and 

more explicit formulation of the radial dependence is obtained by 

noting that 

Vr/K(r,p0) = V re/K(re ,p0) (re/r
)b-1, 	(8.2.3) 

and we have some knowledge of V r/K(r,p 0) at 1 A.U. which we may take 

as re . 

The differential number density with respect to momentum U, 

(8.2.1) 
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and the mean differential intensity with respect to kinetic energy, 

-(r,T), are related to the mean distribution function with respect 
11' 

to momentum F
o
(r,p), by 

U
p 

= 4 r p
2 

F
o 

= 
 

(8.2.4) 

and we will use each of these in the following. 

Some of the principal features of the monoenergetic galactic 

spectrum solution (8.2.1) are displayed in Figure 8.1. It shows 

3 
Po F0/Ng versus p/po on a log-linear scaling for a diffusion coefficient 

K(r,p) = K
c 

p r
1.5

, and values 0.01, 0.1 and 1.0 of the parameter 

V r/K(r,p 0 ). 

The particles injected with momentum p 0  are seen to be redis-

tributed over the whole momentum interval, 0< p p o , due to the 

momentum changes. 	For sufficiently small V r/K(r,p0) there is a sub- 

stantial peak in the distribution in the vicinity of po . As V r/K(r,p 0 ) 

decreases, either because r or p c.  or Kc  increases, or V decreases, the 

peak moves towards p o , increases in value, and narrows in width. Since 

the differential number density U tends to a delta function as r 

we have 
U 	N d(p-p0 ) 	as V r/K(r,p 0) 4- 0. 

The distribution function F
o
(r,p) 4- 0 as p 0, we have 

x
2
/T -> co and the term exp (-x

2
/(4T)) dominates in the expression (8.2.1) 

for F
o
(r,p). For the two smaller values of V r/K(r,p o ) of Figure 8.1, 

there is a second peak at the low end of the momentum range. There is 

apparently a buildup of particles which have most momentum due to inter-

action with the irregular mangnetic fields moving with the solar wind. 

At V r/K(r,p0 ) = 1.0 this second peak is not present, and the distri-

bution has a single peak, which diminishes sharply in amplitude as 
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✓ r/K(r,p0) increases, e.g., for V r/K(r,p 0) = 10.0, the maximum of 

p 3 F IN is 1.19 x 10
-21 

at p/p = 0.32. 
o o g 	 o  

The curves of Figure 8.1 can be interpreted as indicating the 

changes in the distribution function F o (r,p) at fixed r for various 

diffusion coefficients,or the changes at fixed r for various p o  in 

, 
interstellar space (recall K(r,p

o
)=K p r

b 
 ). 	In this latter case 

c o 

the figure shows that particles of lower po  are more spread from the 

delta function distribution of injection, and are more attenuated. To 

establish the relationship of these curves to practical modulation 

problems, we note that using values of K used by Urch and Gleeson 

(1972b) to reproduce the modulation of 1965, i.e., solar minimum 

(K(r,p) = 3 x 1017  m2  s-1  at a radius of 1 A U and 1 G V rigidity, and 

V = 4 x 10
5 
m s

-1
), the curves V r/K(r,p

o
) = 0.01, 0.1 and 1.0 represent, 

respectively the distributions to be obtained at r = 1 A U from 

injection of protons at kinetic energies, To , of 19 GeV, 1260 MeV and 

20.9 MeV. 

Alternative to the previous paragraph, the three curves of 

Figure 8.1, can be interpreted as indicating the changes in distribution 

with heliocentric distance r. In this example V r/K(r,p
o
) a r-112 and 

the heliocentric distances, represented by the curves V r/K(r,p 0) = 1.0, 

0.1 and 0.01 are in the ratio 0.01 : 1 : 100. Thus if the curve for 

✓ r/K(r,p0 ) = 0.1 represents the distribution at r = 1 A U, the curves 

✓ r/K(r,p 0 ) = 1.0 and 0.01 represent, respectively, the corresponding 

distributions at r = 0.01 A U and r = 100 A U. 

Observational results for cosmic-ray spectra are usually shown 

as j
T 

vs T and, in view of this, we have redrawn the curves of Figure 

8.1 in this form in Figure 8.2. The same general features noted above 
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are to be seen, except that, due to the factor p
2 
in the relation 

between F
o 

and j T , viz., j T  = p
2 

Fo , the peaks at the low energy end 

of the spectrum are not as pronounced. Although generally representing 

the form of the spectra, Figure 8.2 has been drawn for the particular 

case of the kinetic energy of injection T o  equal to the rest energy E. 

As a confirmation of previous results, Figures 8.1 and 8.2 

demonstrate again the reduction in momentum and energy cosmic ray 

particles, on average, undergo. 

Figures 8.1 and 8.2 also provide an extension of previous 

results for they show a hitherto unknown peak in the distribution at low 

energies. However, this might not be important in relation to the popu-

lation of very low energy particles since 

(i) the peak occurs at very low energies T 0.001 MeV for 

T = E = 938.211 MeV protons, 
o 	o 

(ii) at these energies the diffusion coefficient K(r,p) = K o  p r1.5 

may not be appropriate, 

(iii) other sources, e.g. the sun, may be more important contributors 

in practical situations. 

An example of a previous notion to be refuted is the hypothesis 

advanced by Urch and Gleeson (1972b), based on a wide range of numerical 

solutions, that monoenergetic galactic sources produced, within the 

solar cavity, distributions with j T  a T at the low ,(non-relativistic) 

energy end of the spectrum. The condition j T  a T corresponds to 

DF
o
/Dp = 0, i.e., Fo 

= constant over the range in which j
T 

a T, and 

the results displayed in Figures 8.1 and 8.2 shows that this is not 

generally the case. 

The results of a more comprehensive investigation of the mono- 
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energetic galactic spectrum solution (8.2.1) for the case 

K(r,p) = K
c 

p r
1.5 are presented in Figures 8.3 and 8.4. The figures 

show the physical quantities: 

(i) the distribution function F
o

, 

(ii) the differential number density U = 4 n p
2 

F
o

, 
P 

(iii) the radial gradient G r (r,p) = (1/U ) DU /Dr , 	(8.2.5) 
P 	P 

(iv) the radial differential current density S, and the convective 
P 

and diffusive components of S, which we denote by S
c 

and S
d' 

i.e., 	
S
c 

= - 4 7 p
3
(V/3) DF

o
/Dp, 

S
d 

= - 4iT p
2 K(r,p) DF

o
/Dr , 

S = S
c 
+S 

d ' 

(v) the bulk flow speed <i> = S /U , the related component quantities 
P P 

S /(V U
p
), S

d
/(V U

p
), and the Compton Getting factor 

C = S
c/(V U ), 

(vi) the time average rate of change of momentum 

= V p Gr  / 3, 

and 	
<1.3>  / <15>ad where 

<I>ad = 	
2 V p/(3r), 

is the adiabatic deceleration rate. 

In Figures 8.3a, and 8.3b, these physical quantities are 

plotted against p/po  for values 0.01, 0.1 and 1.0 of the parameter 

V r/K(r,p 0). In Figures 8.4a and 8.4b they are shown on contour plots 

in the (r,p)plane, on a log-log scale for the case V r e/K(r e ,p0 ) 	0.1. 

To conclude this section we discuss some of the physical 

characteristics of the cosmic-ray propagation shown by this set of 
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graphs. We look at the distribution of particles, gradient, streaming 

and mean momentum changes in (r,p) space for K o  given. Thus we regard 

the curves V r/K(r,p 0 ) = 0.01, 0.1 and 1.0 of Figures 8.3 as being 

for different heliocentric distance, and in this case, since K = 

K
c 

p r
1.5

, the parameter V r/K(r,p
o
) a 

r-1/2. 
	The contour plots of 

Figures 8.4 are particularly useful here. 

The curves for F
o or U in Figures 8.3 and 8.4 show that for 

each p, (p < po ) as r increases from zero the number density increases 

to a peak and then decreases. This represents particles simultaneously 

being fed into (p, p + dp) by the energy changes but being excluded from 

the inner regions by the outwardly moving scattering centres. 

Corresponding to this peak (which shows as a 'ridge' in the 

(r,p) plane) we have a positive gradient near r = 0, changing to negative 

at heliocentric distances past the peak. At large radii the negative 

gradient is independent of p over a large portion of the spectrum. 

The structure of the streaming is very complex, particularly 

near p = p c) . The contours of S in Figure 8.4 give the clearer picture 

of the streaming structure. They show that near the sun S changes 

from -ve to +ve as p increases from 0 to p
o and at larger radii S 

changes through the sequence -ve, +ve, -ve, +ve as p increases from 0 

to po . At low momenta (p << p o) the magnitude of the Compton-Getting 

factor is much greater than ISd  /VUI and the flow is convective. 

The regions in (r,p) space in which particles are gaining or 

losing momentum are readily seen from the contour plots of (dp/dt)/ 

(dp/dt) ad  of Figure 8.4b. 	We note that at large radii, <1i> is approx- 

imately equal to the adiabatic deceleration rate over a large portion 

of the momentum spectrum. 
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At sufficiently small p we note that the distribution function 

contours are of the form 

3/2 r p 	= constant. 

This form is characteristic of the convective solution of the transport 

equation (Appendix D, Gleeson, 1970), and it can also be seen from the 

analytic expression (8.2.1) for Fo (r,p) : for K(r,p) = Ko  p r1-5 , we 

have as p -0- 0 

x
2/

(4T) -0- 2 V r e
/K(r

e
,p
o
) . [ire  (r/re) (P/Po )

3/2 
/ 3, 

and F
o 

is a function of r p
3/2

. 	However for diffusion coefficients of 

the form K = K
c 

p
a 

r
b
, with b > 1 + 2a/3, an investigation of the 

analytic expression (8.1.1) for Fo (r,p) shows that it is not a function 

of the single variable r p
3/2 

for small p, and hence in these cases 

the solution might not be convective as p 0. 

The particle flow and momentum changes are related since the 

momentum changes form effective sources of particles. We investigate 

this more fully for monoenergetic galactic cosmic-rays in the next 

section. 

8.3  The flow pattern of monoenergetic galactic cosmic-rays 

In this section we investigate the particle flow and momentum 

changes in position-momentum space. These aspects are examined 

together because they are related by the fact that particles are con-

served and the continuity equation 

aa 
(r

2 
S ) + 	(<1;> Up) = 0 	(8.3.1) 

r2 ar 

applies. The momentum changes provide an effective source of particles; 
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without them we would have 

r
2 

S 	= constant. 

in general, and S = 0 in the galactic case. 
We first calculate the streaming S (r,p) for the case 

K = K
c 

p r
b 

and show the regions of (r,p) space in which particles 

have a net inflow or net outflow for the particular conditions 

K(r,p) = K 	
1.5

c 
p r 	and V r

e
/K(r

e
,p

o
) = 0.1 where r

e 
is some fixed 

heliocentric distance. 

Then in order to elucidate the physics of the flow we obtain 

analytic and numerical solutions of the flow line equations (7.6.8) 

and (7.6.9). 	We note again that the tangent to a flow line at any 

point of (r,p) space gives the ratio of the streaming speed <i> to the 

momentum change rate q> (cf. Section (7.6)). 

From the expression (7.6.3) for the streaming we have 

S = -4 n p
2 ( 

3  ap 
0 + K(r,p) 0 (8.3.2) 

For a diffusion coefficient K(r,p) = K o  p rb , b > 1 substitution of 

the expression (8.2.1) for F o  in the result (8.3.2) gives 

- 4 np V F (5-3b)z 
 +

(2z+3-3b  
+ (1-b) 1-(-11-?-21 ) 

° [6(1-z) 	6(1-z) 	Vr 

m - (5-3b) 	V r  

3(b-1)
2 K(r,p)  (8.3.3) 

where 

z = 	(p/p0 )
(5-3b)/2 

M = 	(b+1)/(b-1), 

as the formula for the streaming arising from monoenergetic galactic 

cosmic-rays. 
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The general structure of S (r,p) is given in Figure 8.5, it 

shows an (r,p) plane and the arrows indicate schematically the 

direction of S (either inward or outward). Note that the total flux of 

particles inward equals that outward at every r. At r
l' 

say we note 

four momenta po , p l , p2  and p 3  (see Figure 8.5). The significant net 

inward flow occurs between pl and p 2  and the bulk of this moves outward 

at lower momenta between p 2  and p3 . 	There is always a region p l  < p <po  

with a net outflow and these particles have momentum greater than that 

of the inflow region. This flow pattern is readily understood in terms 

of particles entering within r
1 and gaining momentum at the rate 

(8.1.4) i.e., 

<fs> = V p (U /3r) / (3 U) ; 	(8.3.4) 

the outflow in p
l 

< p < po could not arise if cosmic-ray particles lost 

momentum continuously at the adiabatic rate (8.1.6). 

The relationship between the mean rate of change of momentum 

<1.3> and the streaming is conveniently illustrated by plotting the flow 

lines in (r,p) space of the average particle. These are defined para-

metrically by Equations (7.6.8) and (7.6.9): 

	

aF 	9F
o dr 	<f> = 	 . -1 V p 	0 

dt 	U
p 	

+ K(r,p) 
Dr )' 	

(8.3.5) 

 

F
o  

3 3p 

- 
3F

o . 	p V  
= <p> 

dt 	3F
o 	

Dr 	 (8.3.6) 

Alternatively by eliminating time we obtain 

DF 	DF 	3F
o dr 	

• 
<r> = 	3  (Vp. 	o 	mr,, N  0 ) 	( V p 

• 	3 	Dp 	v/  Dr dp 	<p> 

(8.3.7) 

the direct equation of the flow line. 

We now obtain the analytic solution of these flow line equations 
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for the monoenergetic galactic spectrum solution (8.1.1). Substitut-

ing the expression (8.1.1) for Fo  in the flow line equation s (8.3.5) 

and (8.3.6) we have 

(  	

Ko(p) p (3-3b)/2 ) 

rt- = (1 - 11) 	(1'_:) + (1+u-m) 	 2T 

- Ko(p) p (3-3b)/2 / (2T), 

c12 	2 V p (m-u)  
dt 	3 r (1-m) 	' 

where 

= x
2/(4T). 

and as previously 
PA  

T = 3 	K (z) z 2—dz / ( 2V), p o 

= 2 (r p
3/2

) (1-b)/2 / (1-b). 

(8.3.10) 

Regarding u and T as independent variables and using the 

derivative transformations 

dr 	. 	(Dt. 	du 	+Or\ 	dT 

dt 	u)T 
	

dt 	DT) 	dt 

(la\ 	du 	+/le\ 	dT 
dt T 	

d  

\ 

1-m r 
2 u 

(8.3.11) 

(l+m)r 	V r  
(93Tr ) 2T K(p) p

(3-3b)/2 ' 
U 

	

(1E33 

	
0, 

	

(10 	
- 2 V  

3 K (p) p
(1-3b)/2 

the flow line Equations (8.3.8) and (8.3.9) may he expressed as 
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K(p) (3-3b)/2 
P du 	m .     (m 1-u), 

dt 	(1-m) 	Tr 

K(p) p (3-3b)/2 (m-u) 
dT . 
dt 	(m-Or 

Dividing Equation (8.3.12) by Equation (8.3.13) we obtain 

(8.3.12) 

(8.3.13) 

(8.3.14) du _ m(u + 1 - m)  
dT 	T (m-u) 

as the flow line equation for monoenergetic galactic cosmic-rays. Note 

that it contains only u and T as variables. 

The general solution of the flow line Equation (8.3.14) is 

m = (u+1-m) e-u A T 	, 

with A an arbitrary constant. 

(8.3.15) 

The flow lines in (u,T) coordinates are shown in Figure 8.6a, 

for the case K(r,p) = K(p) r
1.5 , for 0 < u < 10, and for A = t 0.1, 

tl, t 10, on a log-linear scaling. There are two distinct sections 

corresponding to A 0, and separated by the critical solution 

= m - 1 = 4, 	 (8.3.16) 

obtained with A = 0. The curves in each section, have the same slope 

with a logarithmic T scale. The peaks occur at u = m = 5, and 

T = 1/(e A
l/m

) = 1/(e A
1/5

), 

where e is the base of Napierian logarithms, at this peak. In order to 

show the structure of the flow lines for large u we have redrawn the 

flow lines in Figure 8.6b for A = t 0.01, t 1, t 100 and for 0.1 <u <100 

on a log-log scaling. 

We note particularly that these flow lines apply to the general 

case K(r,p) = K(p) r
b
, (b = 1.5), and not just the case K(r,p) = 

K
c 

p r
b . They may, of course, be expressed in terms of r and p when 

required and we do this next to illustrate the general features. 

For a diffusion coefficient K(r,p) = K c  p rb , b > 1, 
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we have 
1-b 

V r 
x
2 

	e  _ 	(5-3b) 	r) 	Po 	z  
= 4T 	303-0 2 	K(r

e
,p

o
) 	r

e  
p (1-z) ' 

T = 3 K p 
(5-3b)/2

(1-z) / ((5-3b)V), 
C o 

where 

(5-3b)/2 

	

= 	(P/P0 ) 

	

m = 	(b+1)/(b-1). 

Note that we have again introduced r e  and the non-dimensional para-

meter V r
e
/K(r

e
,p

o
). 

The flow lines for the case b = 1.5 and V r
e
/K(r

e
,p
o
) = 0.1 

are given in Figure 8.7. Although it is possible to use the solution 

(8.3.15) to construct the flow lines in (r,p) space, the flow lines of 

Figure 8.7 were obtained by numerically solving the flow equations 

(8.3.8) and (8.3.9) as an initial value problem. 

The general features to note are that the lines are of two 

main forms: 

(i) those that go inward, drop monotonically in p and emerge 

again with lower p, and 

(ii) those that enter inwards, and return with p increased, 

indicating momentum increases. 

There is a critical curve separating the two forms and it corresponds 

to u = m - 1 of Figures 8.6 obtained with A = 0. 

Further loci which assist in assessing the structure of the 

flow lines are the locus of the minimum values of p/p o  (when it exists) 

and the locus of the minimum values of r. The first is the locus 

<17) ,  = 0 and is given by 

U = 
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and corresponds to the peaks in the distribution function in Figure 

8.4a. The second are the loci <i> = 0 or S = 0; they cannot be 

expressed in terms of u and T without a knowledge of K(p) and are 

found by solving the equation <i> = 0, with <i> given by Equation (8.3.8). 

For sufficiently small p/p o  Figure 8.8 shows that the critical 

curve, the locus <13> = 0 and the right hand locus <i> = 0 are of the form 

3 
r p

/2 
 = constant. 	We note from Section (8.2) that the distribution 

function contours for the case K=K
c
pr

1.5 
and V r

e
/K(r

e
,po

) = 0.1, 

are of the form r p
3/2 = constant, at small pip, and that this form is 

characteristic of the convective solution of the transport equation. 

However for diffusion coefficients K = K
c 

pa  rb , with b > 1 + 2a/3 

the solution (8.1.1), the flow lines (8.3.15) and thelocus <fl> = 0, 

at small p/po  cannot be expressed in terms of the single variable 

3 r p /2  and the convective solution of the transport equation does not 

seem to apply. 

Finally, in this section we remark that these flow patterns 

show clearly the regions in (r,p) space of the inflow and outflow and 

momentum gains and losses of the average particles. The momentum gains 

occurring make the flow pattern variations explicable. 	We stress 

however that the flow lines represent the mean or average effects on 

the particles and not the path in (r,p) space of any individual particle. 

The individual particle paths in (r,p) space are random with some order 

(the average effects discussed here) superimposed. 

8.4 Composite galactic spectrum solutions  

In this section we give examples of the general galactic 

spectrum solution (8.1.2), i.e., 



(T > 186 MeV) 

exp(-25 9n(2)((T-186)/155) 2) (T < 186 Mev) 
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CO 

Fo (r,p) = f p  G(r,p;p0) F0 (0., p o ) d po , 	(8.4.1) 

where 

G(r,p;p0) - 

(1-3b)/2 

	

3 K0 (po ) po 
	 1 ( x2  )111 	x2 

	

2V r(m) 	T 	4T / 	
exp(- 7ey. (8.4.2) 

= 2(r p3/2)(1-b)/2/  (1-b) , 	(8.4.3) 

= 3
Po 
 K (z) z

(1-3b)/2 
dz/(2V), 	(8.4.4) 

P 	o 

the diffusion coefficient K(r,p) = K
o
(p) rb , b>1 and F

o 
(00,p0 ) 

specifies the distribution function at r = 

In terms of the differential number density with respect to 

kinetic energy U T , the three forms of the galactic spectrum used are: 

(a) 	UT (0.,T) = Al (T + E0 )
-2.5 	

x 

(b) UT (0.,T) = A2 (T + E0 )
-2.5 	

(8.4.5) 

(c) U
T 
 (0. T) = A

3
[(1 + T/Eo )

-2.5 
+ (1/2)(T/0.15 E 0 )

-2
] 

hereafter referred to as (a), (b) and (c) respectively. 

In these examples we use a diffusion coefficient 

K(r,p) = 6 x 10
21 r1.237 

P a cm2/s, 	(8.4.6) 

a F. particle speed/speed of light, P is in GV and r is in 

A U. 	For this diffusion coefficient, with the boundary of the solar 

cavity at r = 00, and the solar wind speed V = 4 x 10
5 m s

-1
, the value 

of the force field parameter, cp , (Gleeson and Axford, 1968c) is 0.14 

G Vat 1 A U. 
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The galactic spectra (8.4.5), the value of the diffusion 

coefficient at a radius of 1 A U and a rigidity of 1 G V, and the 

value of the force field parameter at a radius of 1 A U are the same 

as Urch and Gleeson (1972a) have used in numerical solutions of the 

equation of transport. Hence we may directly compare the results 

obtained from the general galactic spectrum solution (8.4.1) and the 

work of Urch and Gleeson (1972a). 

We investigate the kinetic energy spectra of the differential 

intensity with respect to kinetic energy 

jT (r,T) = p
2 

Fo (r,p), 	(8.4.7) 

the radial gradient 

Gr (r,T) = (1/U ) au /3r , 	(8.4.8) 
P 	P 

and the radial anisotropy 

yr,T) = 3 S p  / (v Up ), 	(8.4.9) 

where v is the particle speed, to be obtained at r = 1 A U for the three 

forms of the galactic proton spectra (8.4.5). 

In Figures 8.9a, 8.9b, 8.9c we show the differential intensity, 

the radial gradient and the radial anisotropies to be obtained at 

r = 1 A U for the three types of galactic proton spectra (8.4.5). 

These spectra were obtained as follows. We first expressed 

iT' Crand 	given in Equations (8.4.7)-(8.4.9) in terms of F, aF /3r 
- 	 o 	o 

and 3F
o
/Dp, i.e., 

= p
2 

F
o 

G
r  

= (1/F0 ) (aFo/Dr ), 
	 (8.4.10) 

E r 
 - 3 (K aF /3r + (V p13) DF/4) / (v F0 ). 

Using the galactic spectrum solution (8.4.1) we then evaluated the integrals 
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CO 

	

F
o 

= I  G(r,p;p0) F0 (0.,p 0) d po . 

	

F0/3r = I 	EaG(r,P;P)lar] Fo (w,P0 ) d Po , 
	(8.4.11) 

	

aF
o
/ap = I 	F0 (ce,p0) d po , 

for F
o
, aF

o
/3r and 3F/3p directly by using Simpson's rule and neglect-

ing contributions to the integral above p o  = 100 GeV/c. Thus using 

the expressions (8.4.10) we obtained numerical values for jT, Cr  and E r
. 

Although the three galactic spectra are very different for 

T 5 200 MeV they all lead to similar differential intensity spectra at 

r = 1 A U. The results of Figure 8.9a show that low energy particles 

are being excluded from near earth, and that a large proportion of the 

low energy particles observed near earth must have originated from above 

200 MeV in the galactic spectrum (cf. Goldstein et a/. 1970b, Urch and 

Gleeson 1972a). 

In contrast to the differential intensity spectra, the gradients 

and anisotropies in the energy range T < 60 MeV are very sensitive to 

the form of the galactic spectrum. The case (a) is quite distinct, for 

it yields negative gradients and positive radial anisotropies at low 

energies. The positive radial anisotropy is due to an accumulation of 

low energy particles at r< 1 A U, which originated from much higher 

energies in the galactic spectrum. 

Since the time-average-rate-of-change of momentum is given by 

V p Gr /3, 

the radial gradient curves of Figure 8.9b show that in cases (b) and 

(c) that particles with kinetic energy T 10 MeV are on average gaining 

energy, whereas in case (a) particles with T > 60 MeV are gaining energy 

and particles with T < 60 MeV are losing energy. 
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The differential intensities, the radial gradients, and the 

radial anisotropies obtained by Urch and Gleeson (1972a) from numerical 

solutions of the equation of transport are displayed in Figures 8.10a, 

8.10b and 8.10c respectively. The differential intensity spectra 

obtained at r = 1 A U by Urch and Gleeson are virtually identical to 

the results obtained from the galactic spectrum solution (8.4.1). The 

radial gradients and the radial anisotropies obtained at r = 1 A U by 

the two methods show similar positive and negative regions. However 

due to the different radial dependence of the diffusion coefficient and 

the position of the outer boundary used in the two methods, they differ 

considerably in fine details. 

8.5 The origin of particles in a galactic spectrum 

In the general galactic spectrum solution (8.1.2) the distri-

bution function F
o
(r,p) is the convolution of the kernel G(r,p;p

o
) of 

Equation (8.1.3) and the galactic distribution function F o (co,p0 ). In 

this section we investigate the properties of the kernel G(r,p;p 0) and 

then use it to determine the relative contribution of the galactic 

spectrum to intensities measured at (r,p). 

The kernel regarded as a function of p c)  provides a direct 

measure of the sensitivity of the intensity at position r and momentum p 

to particles of momentum p 0  in the galactic spectrum. It thus provides 

the essential features of the modulating region without reference to 

galactic spectra and enables us to establish the most sensitive regions 

of the galactic spectrum. 	This concept studying the modulation charact- 

eristics via G is new and has not been possible before because of the 

difficulty of obtaining G by numerical solution of the equation of 

transport. 
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As an example of the form of G we note that for a diffusion 

coefficient K(r,p) = K c  p r
b
, b > 1, the function G(r,p;p 0) is given 

by 

where 

G(r,p;p0) = 
r(m)p (z-1) 	p

o  
um e-u  ' (8.5.1) 

 

= (b+1)/(b-1), 

= (Po
(5-3b)/2 

   

(8.5.2) 

 

2 (5-3b) 	1 	V r 

  

 

4T 
3(1-b)

2 	(z-1) 	K(r,p) 

 

and r(m) is the gamma function of argument m. The diffusion coefficient 

constant K
c
, r and V dependence is completely contained in the non-

dimensional parameter V r/K(r,p). 

This function Gis plotted in Figure 8.11 as a function of 

p
o
/p for a diffusion coefficient K(r,p) = K

c 
p r1.5 and values 0.01, 

1.0 and 10.0 of the parameter V r/K(r,p). 

The curves show: 

(i) that particles with momentum p at radius r, arise from 

particles in the whole momentum range p c  > p in the galactic 

spectrum and 

(ii) as V r/K(r,p) increases the peak which represents the most 

sensitive region moves to higher p c  and becomes broader. 

For a diffusion coefficient K = K
c 
p r

b
, b > 1, the peak is 

located at 

po/p = [(B + IB 2  - 4AC )/(2A)] 21(5-313) 	(8.5.3) 

where 

5-3b 
b-1 + 2 

6(b-1)2 	

V r  
K(r,p) -  (8.5.4) 
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A = 	1 + (5-3b)(b+1)/(2(b-1)), 

	

= 	3(b-1)12. 

As V r/K(r,p) 4 0, either because the radius r, or momentum p or 

diffusion coefficient constant K
c 

increases (recall K = K
c 

p r
1.5

), 

or because V decreases, the peak narrows in width, increases in peak 

value and moves towards po  = p, and G(r,p;p 0 ) -4- 6(p-p). 

The parameter V r/K(r,p) determines the modulation of galactic 

cosmic-rays when a p -P , u > 0, galactic spectrum for F
oo

) is used 

[see Section (6.3) ]; the modulation increases as V r/K(r,p) increases. 

We note that only when the modulation is small and the function 

G(r,p;p0) is sharply peaked at p o  near p can the galactic spectrum 

near po  = p contribute significantly to the intensity at (r,p). At the 

higher modulation the contribution from 13 0  p decreases markedly as 

the curves in Figure 8.11 shift to the right and the contribution is 

predominantly from the higher momentum range. This low contribution 

from po  p when the modulation is large is the exclusion of low energy 

galactic cosmic rays shown from numerical solutions of the equation of 

transport by Urch and Gleeson (1972a), Goldstein et a/. (1970b), and 

from the galactic spectrum solution (8.1.2) results discussed in the 

previous section. These present curves give a more direct demonstration 

of the exclusion and it is quite clear that this exclusion becomes more 

marked as the modulation increases. 

The curves of Figure 8.11 can be interpreted as indicating the 

changes in G(r,p;p 0) at fixed r for various diffusion coefficients 

(recall K = K
c 

p r
1.5), or the changes at fixed r, for particles of 

various momenta p. In this latter case, if V = 4 x 10
5 
m s

-1
, r = 1 A U 

17 2 -1 
and K(r,p) = 3 x 10 m s at a radius of 1 A.U. and a momentum of 
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1 GeV/c, the curves V r/K(r,p) = 10, 1, 0.1 and 0.01, represent, 

respectively, the number of particles with momentum p o  in a galactic 

spectrum with F0 (00,p0) = constant, which are observed at r = 1 A U 

with momenta of 20, 200 MeV/c, 2 and 20 GeV/c. 

Alternatively the curves of Figure 8.11 can be interpreted as 

indicating the changes in G(r,p;p 0) with heliocentric radius r. In 

this example V r/K(r,p) a 
r-11'2 

and the heliocentric distances represented 

by the curves V r/K(r,p) = 10, 1 2  0.1 and 0.01 are in the ratio 0.01 : 

1 : 10
2 

: 10
4 	

Thus if the curve V r/K = 1 corresponds to r = 1 A U, 

the curves V r/K(r,p) = 10, 1, 01, and 0.01 represent, respectively, 

the distribution of particles with momentum po  in a galactic spectrum 

with F0 (03,p0 ) = constant, which are observed with momentum p at radii 

of 0.01, 1, 100 and 10
4 
A U. 

The Green's function G(r,p;p 0) can be used to determine where 

within the galactic spectrum particles observed at position r and 

momentum p have originated. If the galactic spectrum at p o  is F0 (co,p0 ), 

then there are 

4 n p
2 

Fo (co,p0) G(r,p;p0 ) dp dp
o 

particles per unit volume at r in (p, p+dp) arising from the momentum 

interval (p o , po  + dpo). The fraction of particles at (r,p) originating 

within dp o  about p o  is thus 

pp  (r,NP )dP o 	o 

F0 (0.,p0) G(r,p;p 0) dpo  

f F (co,p ) G(r,p,p0) dpo  
Po 	0 

(8.5.5) 

If we work in terms of kinetic energy T, the fraction of particles at 

(r,T) originating in dT 0  about To  is 

dp
o  1 

T  ' 
(r T.T

0 
 ) dT  

= 4'13 (r ' P ' Po )  dT 	
dT

o 
= 	w kr,P;P )d T . 

o  v
o  

p 	0 	0 
0 

(8.5.6) 
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The mean kinetic energy of the particles observed at r with kinetic 

energy T is 

<T (T)> = I 	To 11, T ( r,T;T ) dT 
o 

 o 	o 

and a similar result applies to momentum. 

(8.5.7) 

Using these formulae we now calculate the contribution from 

different portions of the galactic spectrum to the near earth differ-

ential intensity at kinetic energy T, for electrmn., proton, and helium 

galactic spectra and interplanetary conditions appropriate for 1965 

and 1969. The only previous study of this nature was carried out by 

Urch and Gleeson (1972b, 1973) using numerical solutions of the equation 

of transport; that study made no reference to Green's function 

G(r,p;p 0 ). 

The galactic spectra and the momentum dependence of the 

diffusion coefficient assumed have been taken from. Urch and Gleeson 

(1973), denoted U G for further reference. The galactic proton and 

helium nuclei spectra are 

UT (o.,T) = A(T + a E0 )
-2.5 , 	 (8.5.8) 

with a = 1.0, E0  = 938.211 MeV for protons and a =-- 0.5, E 0  = 3726.78 

MeV for helium. The known galactic electron spectrum (see Figure 1, 

Burger, 1971; Goldstein at ca. 1970a), is used in the electron calcu- 

lations. We approximate this galactic spectrum by 
A1 

B1 	' T 	T< T2, 

A2 
iT (c° ' T)  = P2 Fo (c° ' P)  = 	

T 	, 	T 2 < T < T3' 
A3 

	

T 	, 	T> T2 

where T is the kinetic energy in MeV, 

(8.5.9) 
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T2 

T 3 

B1  

B 2 

B 3 

= 

= 

= 

= 

= 

1279.8, 

425.1, 

1.77826 x 

6.95517 x 

7.60505 x 

104 , 

10 5
' 

10 7
, 

A1  

A2 

A3 

= 

= 

= 

-1.75, 

-2.262, 

-2.824, 

(8.5.10) 

and j,r (co,T) is the differential intensity with respect to kinetic 

energy in units of nr 2 s-1 sr-1 MeV-1 . 

The diffusion coefficient is assumed to be of the form 

K(r,p) = Kc K2 (P)8 rb , 	 (8.5.11) 

where 

K 2 (P) = IP 2 P  ' 	P1  < P s P2, (8.5.12) 

 

1P 1 P2, 	0 < P 	P1' 

 

P is the rigidity in G V, 8 = particle speed/speed of light. With 

Kc in m s 2 -1 and r in A U, and for K(r,p) a r1. 5 , the parameters 

(Kc ,PP 2) appropriate for 1965 and 1969 are (1.139 x 1017 , 0.038, 1.0) 

and (5.316 x 10 16 , 0.248, 0.7) respectively. These values of Kc and 

b = 1.5 together give the force-field parameter , O(r) , values of 0.35 GV 

and 0.75 CV at 1 AU. These are the same as used by U G to reproduce 

the observed modulation for 1965 and 1969. Note that the general form 

(8.1.3) for the Green's function G(r,p;po ) must be used because of the 

sectioned form of K2 (P), in Equation (8.5.12). 

In Figures 8.12a, 8.12b, 8.12c we show the origin, within the 

galactic spectrum of protons, helium and electrons observed near Earth 

during 1965 and 1969. The kinetic energies of the proton and helium 

nuclei are 50, 100, 200 and 500 MeV/nucleon, and for the electrons they 

are 100, 200, 500 and 1000 MeV. The arrows indicate the mean energies 
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of the distribution <To> and these are also listed on the figures. 

It has been shown previously (Goldstein et al., 1970b, Gleeson 

and Urch, 1971; Urch and Gleeson 1973) that low energy nuclei 

(T 80 MeV/nucleon at sunspot minimum) are virtually excluded from 

near Earth. For example in 1969, Figure 8.12a shows that only a few 

percent of the proton differential intensity near Earth at T = 50 MeV 

comes from galactic protons with kinetic energies T < 400 MeV. The 

mean energy of the distribution for 50 MeV protons in 1969 was <T o> = 

777 MeV, whereas based upon the mean energy loss of monoenergetic 

galactic protons with T = 50 MeV near Earth should have come from 

T 150 MeV in the galactic spectrum (Gleeson and Urch, 1971; Urch and 

Gleeson, 1972b, 1973). 

In contrast the electron distributions of Figure 8.12c show that 

there is no virtual exclusion of the electrons. This contrasting behav-

iour of the electrons and nuclei is due to their different galactic spectra 

at low energies. Both low energy galactic electrons and protons have 

only a small probability of penetrating to the orbit of the Earth (see 

Figure 8.11, in which the curve Vr/K(r,p) = 1.0 corresponds to 30 MeV 

protons or 200 MeV electrons at r = 1 A U if K
c 

= 3 x 10
17 

m
2 

s
-1

), and 

for nuclei, for which the spectrum is flat at low energies, this leads to 

virtual exclusion, but for electrons the galactic intensity increases 

rapidly as the energy decreases and this enables enough galactic electrons 

of all energies to reach Earth so that there is no virtual exclusion of 

this cosmic-ray species (cf. Urch and Gleeson, 1973). 

The distributions shown in Figures 8.12 are quite close to those 

obtained numerically by Urch and Gleeson (1973). We note however that 

with the r15 dependence of K(r,p) the radial gradients given approximately 



Gr 	
C V / K(r,p), 

where C is the Compton Getting factor (the force-field approximation) 

are higher than those of Urch and Cleeson which are in turn higher 

than those reported observationally from Pioneer 10 and 11 Jupiter 

missions (Lentz et al., 1973; Van Allen, 1973). 

We have therefore repeated the distribution calculations using 

a diffusion coefficient which leads to gradients of about 1/5 that 

calculated by Urch and Gleeson, but maintaining their values of 0. 

This has been achieved by using a diffusion coefficient with K a r
1.038 

replacing K a r
1.5 and values 1.5 x 10

18 
m
2 

s
-1 

and 7 x 10
17 

m
2 

s-1 

for the diffusion coefficient constant K c during 1965 and 1969. The 

results of these calculations are presented in Figures 8.13a, 8.13b and 

8.13c, which show, respectively, the proton, helium nuclei and electron 

distributions for the same near Earth kinetic energies, T, as those 

listed in Figures 8.12. 

The distributions in Figures 8.13 are in general narrower than 

those obtained by U G and those presented in Figures 8.12. The narrow-

ing of these distributions are illustrated more clearly in Figures 8.14a, 

8.14b, and 8.14c, which display, respectively, the distributions 

tpT (r,T;To ) for protons and helium nuclei with T . 200 MeV/nucleon and 

for electrons with T = 200 MeV at Earth for 1965. Conditions assumed 

here and later are 

(a) K 	5 times that of U G , 
(8.5.13) 

(b) K 	0.3 times that of U G, 

with 0(1 A U) = 0.35 G V for 1965 and 0(1 A U) = 0.75 G V for 1969, 

which correspond to the interplanetary parameters used in Figures 8.13 

231. 

by 
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and 8.12 respectively. For comparison the histogram IpT  obtained by 

U G with conditions 

(c) K = 3 x 10
17 

m
2 

s
-1

, 	4)(1 A U) = 0.35 G V, 	(8.5.14) 

have also been reproduced in Figures 8.14. 

The mean energy <T > of each of the distributions in Figures 

8.14 are indicated by arrows. In the case of electrons (Figure 8.14c) 

there is . a substantial difference in <T 0> for conditions (a) and (b), 

but <T
o
> for (b) and(c) are closely equal. This difference is shown 

more generally in Figure 8.15. 

In Figure 8.15 we have reproduced from U G, the mean energy 

loss <T> - T, for electrons, obtained by them for 1965 and 1969 

conditions (full curves) and the force-field energy loss 4) (dotted curves). 

On this we have superimposed the values of <T 0> - T for 1965 and 1969 

obtained- here with conditions (a) and (b). Results for conditions (a) 

are indicated by crosses, those for conditions (b) by circles. 

The substantial differences in <T 
0
> - T obtained with 

conditions (a) and (b), noted above, are apparent in both 1965 and 

1969. These results show that in the case of electrons the distribution 

T 
and the mean energy loss is a function of the magnitude of the 

diffusion coefficient, despite the fact that 4)(1 A U), and hence the 

modulation is maintained. 

A further result, apparent in Figure 8.15, is that with 

conditions (a) the mean energy losses obtained (the crosses) are almost 

equal to the force-field energy changes 4) (the dotted curve). Under 

these conditions the force-field energy loss would be a good approxi-

mation to <T> - T. This is in contrast to the results (cf. Figure 8.15) 
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for conditions (c), given and stressed by U G, that 0 is not a good 

approximation to <T o> - T in the case of electrons. Since the Pioneer 

10. and Pioneer 11 gradient observations indicate that conditions (a) 

may be more appropriate it is likely that the force field energy losses 

can be used to obtain good approximations to the mean energy loss 

<T 
0
> - T for electrons. 

A similar pattern of mean energy loss applies for proton and 

helium nuclei save that the differences are much less significant. In 

Figure 8.16 we have reproduced from U G the energy loss <T o> - T for 

protons and helium obtained by them for 1965 (full curves) and the force-

field energy loss 0 (dotted curves). Figure 8.17 shows the correspond-

ing results for 1969 conditions. As in Figure 8.15 we have superimposed 

the values of <T 
0
> - T for 1965 and 1969 conditions obtained here with 

conditions (a) (the crosses) and conditions (b) (the circles). Conditions 

(a) lead to energy losses close to the values obtained by U G. These 

differences are not significant however because the energy losses for 

protons and helium obtained by U G were themselves close to 0. 

In conclusion we remark that in determining these distributions 

that even with the somewhat complex dependence of K on p, only two 

simple numerical integrations were required. The first was in the 

determination of the function T (Equation (8.1.3)) and the second in 

convolving the spectrum with G(r,p;p0). 



FIGURES 	8.1 - 8.17 

234. 
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Figure 8.1 - The momentum spectrum of the distribution 

function Fo (r,p) for a monoenergetic galactic 

spectrum at infinity, i.e., U 4  N d(p-p) as 
P 	g 

r 	.... The figure is drawn for a diffusion 

coefficient K(r,p) = Kc  p r1.5 , and values 0.001, 

0.01, 0.1 and 1.0 of the parameter Vr/K(r,p0). 
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Figure 8.2 - The kinetic energy spectrum of the 

differential intensity j T (r,T) for a mono-

energetic galactic spectrum at infinity, i.e., 

U 	N 6(p-p
o
) as r 4- =. The figure is drawn 

for a diffusion coefficient K(r,p) = K
c 
p r1.5 

and the parameter Vr/K(r,p 0) = 0.01, 0.1 and 

1.0. The kinetic energy of injection T o  is 

equal to the rest energy E. 
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Figure 8.3a - The momentum dependence of various physical 

quantities, arising from a monoenergetic galactic spectrum of 

particles at infinity, i.e., U + N 6(p-p 0) as r + ... The 

figure is drawn for a diffusion coefficient K(r,p) = K c  p r1.5 , 

and for values 0.01, 0.1 and 1.0 of the dimensionless para-

meter Vr/K(r,p0 ). 	Shown(in dimensionless form) are : 

(a) the momentum average distribution function F c (r,p), 

(b) the differential number density U = 4 7 p
2 

F
o

, 

(c) the radial gradient G
r 

= (1/U ).(3U /3r), 

(d) the radial differential current density S and its convective 

and diffusive components S
c 

and S
d' 

i.e., 

S
c 

= - 4 7p
3
(V/3) 3F

o
/3p, 

S
d 

= - 4 7 p
2 
K(r,p) DF

o
/Dr, 

S 	=' S
c 

+ S
d

. 

Here 

= (p
3 / N ) F , 

0 	o. 	g 	o 

= (p
o
/N

g
) U

p' 

Grad(log(U p)) = re  Gr , 

= (p
o 

/ V N
g
) S

c
, 

Sd = (p
o
/VNg)S •  d' 

-S- 	= -S-  + -S-  = (p / V N ) S 
p 	c 	d 	o 	g 

are dimensionless forms of Fo
, U

p
, G

r
, S

c
, S

d 
and 5, and 

r/r
e 

= ([Vr/K(r,p
o
)] / [Vr /K(r ,p 	1/(1-1))  

e 	e o 

Vr
e
/K

(
r
e
,p

o
) = 0.1, 	b = 1.5. 
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Figure 8.3b - The momentum dependence of various physical 

quantities arising from a monoenergetic spectrum of particles 

at infinity, i.e., U 	N 	6(p-p0 ) as r 	... The figure is 

drawn for a diffusion coefficient K(r,p) = K
c 
p r

1.5
, and for 

values 0.01, 0.1 and 1.0 of the dimensionless parameter 

Vr/K(r,p0). Shown are: 

(e) the ratio of the bulk streaming velocity <i .> to the solar 

wind speed V. i.e., dRidt = S /(V ), and the related component 

quantities S
d
/(V U) and the Compton-Getting factor C = S

c
/(V U) 

( 1 ) the time average rate of change of momentum q> , expressed 

in dimensionless form, i.e., 

dp/dt = (re /(V po )) <1;> 

(g) the ratio of <1i> and the adiabatic deceleration rate 

<P>
ad 

= - 2 V p / 3 r, 

i.e., 

(dp/dt) / (dp/dt) ad 
	

/ q >ad- 

As in Figure 8.3a, r e  is some fixed radius and 

r/re  = ([Vr/K(r,p 0)] / [Vr e/K(r e  

Vr
e
/K(r

e
,p

o
) = 0.1, 	b = 1.5. 

1/(1-b) 
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Figure 8.4a - Contours in the (r,p) plane of various physical 

quantities associated with a monoenergetic galactic spectrum of 

particles at infinity, i.e. U -4- N d(p-p 0) as r 	. The 

figure is drawn for a diffusion coefficient K(r,p) = K c  p r1.5 , 

and the parameter Vr
e
/K(r

e
,p

o
) = 0.1 where r

e 
is some fixed 

radius. Shown (in dimensionless form) are: 

(a) the momentum average distribution function F o (r,p), 

(b) the differential number density U = 4 7 p
2 

F
o

, 

(c) the radial gradient C
r 

= (1/U )(au /ar), 
P 	P 

(d) the radial differential current density S and its convective 

and diffusive components, S
c 

and S
d' 

i.e., 

S c  = - 4 7 p
3
(V/3) aF0/3p , 

S 	= - 4 w p
2 
K(r,p)

o
/ar , 

S 	= S
c 

+ S
d. 

Here 

0 
= (p / N

g
) F

o
, 

rip  = (p0  / Ng) U p , 

Grad (log(Up)) = r G e r , 

= (po  / (V Ng)) Sc , 

'Tsd  = (po  / (V Ng )) Sd , 

= 	+ 	= (po  / (V N g)) S p , 

are dimensionless forms of F
o
, U

p
, G

r
, S

c
, S

d 
and S . 
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Figure 8.4b - Contours in the (r,p) plane of various physical 

quantities associated with a monoenergetic galactic spectrum 

of particles at infinity, i.e., U 	N
g 
 6(p-r 0) as r m. The 

P  

figures is drawn for a diffusion coefficient K(r,p) = Kc  p r
1.5 , 

and the parameter Vr e/K(re ,p0) = 0.1 where r e 
is some fixed 

radius. Shown are: 

(e) the ratio of the bulk streaming velocity <i> to the solar 

wind speed V, i.e, dR/dt = S /(V 	), and the related component 

quantities S
d
/(V U

p
), and the Compton-Getting factor C = S c

/(V U), 

(f) the time average rate of change of momentum <IS> expressed 

in dimensionless form, i.e., 

dp/dt = [r e/(V pc )] < IS> 

(g) the ratio of <P> and the adiabatic deceleration rate 

<p>  - 2 V p / (3r), 
ad 

(dp/dt)/(dp/dt) ad = 
< P >  / <IS>ad • 



.33 

3 

. 0 

247. 

ciai (14, 

	

a- -5 .00 . +01 	13.. -5.00 . +00 

	

C' -1.00.-01 	ci 	1.00.-01 

	

5.00.+00 	,t 	5.0 .1-01 

a- -5,00. ,..01 
c, -1.00.-01 
e .00.+00 

Si Uu 

la- -5.00. +00 a_ 	1 .00r,401 
,r, 	5.00. +01 

. . --,,, 
., 

-.. 

Q. -1.00.-01 	(3., -1 .00.-02 
C., -1.00.-03 	ci- 	1 .00.-01 
e 	1.00.-1-00 	,f; 	1.00.+02 

a- -1.00. +01 
c, -1.00.-02 
e 1 .00.1-00 

UU 

b, -1 .00 . -01 a_ 	I .00. -01 
,f, 	1 . 00 . +01 

) 

0 

, 

. . 

.1.AI 	a 	a A 	Axl a 
.. 

• •all 	 a 

' 	' 	' 	. ' 
. 	

' 1 Cli):/ a/i/V C4):/ 1/•t;iriCIL 

a' — 1 .001'11-01 	ill, —1 .00131-00 
C- -1.00.-01 	cl. 	1.00.-01 

.00. -01 	,t 	1.00. +00 

. 	' ' . . 

0,  -2.00.4-01 
c, -1.00.-01 
e 1 .00.4-00 

b. -1.00.+00 
ct- 	1.00. -01 
,£ 	1 .00.+02 

- 

. 
E.-  
: 

E 
: . 
. 

• 

. 

\ 
■ _ 

1,11•i 	 a 	a 	A 	a. 1.1 

-2 —1 .0 
RADIAL DISTANCE CRIRe) 

Figure 8.4b 

-3 
.-3 



248. 

Figure 8.5 - Schematic of the differential current density 

S in the (r, p) plane for a monoenergetic galactic 

spectrum at infinity, i.e., Up  -4- Ng  5 (p-p0 ) as 

-4- co. 	The figure is drawn for K(r,p) = K c  p r1-5  

and Vr
e
/K(r

e
,p

o) = 0.1. The arrows represent the 

direction of S . 
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Figure 8.6a — 	The flow lines (8.3.15) in (u,T) 

co-ordinates for a monoenergetic galactic spectrum 

of particles at infinity. The figure is drawn 

for a diffusion coefficient K(r,p) = K(p) r 1.5  

where K(p) is an arbitrary function of momentum 

p and for A = t 0.1, t 1, t 10. 	Also shown are 

the critical curve and the locus <1i> = 0. 
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Figure 8.6b - The flow lines (8.3.15) in (u,T) 

coordinates for a monoenergetic galactic spectrum 

of particles at infinity. 	The figure is drawn 

for a diffusion coefficient K(r,p) = K(p) r 1.5 , 

where K(p) is an arbitrary function of momentum 

p and for A = t 0.01, t 1, t 100. Also shown are 

the critical curve and the locus <1i> = 0. 
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Figure 8.7 - Flow lines in the (r,p) plane for a mono-

energetic galactic spectrum of particles at infinity, 

i.e., U 	N
g 
 ó(p-p 0 ) as r 	co . The figure is drawn 

P  

for a diffusion coefficient K(r,p) = Kc  p r 1-5 , and 

Vr
e
/K(r

e
,p

o
) = 0.1. The flow lines are shown by the 

full lines whereas the loci <i> = 0, <f> = 0 and 

the critical curve are shown by broken lines. 
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Figure 8.3 - Loci in the (r,p) plane which assist in 

assessing the flow lines for a monoenergetic 

spectrum of particles at r = 03. The figure is 

drawn for a diffusion coefficient K(r,p) = K
c 

p r1.5 

and Vr e
/K(r

e
,p

o
) = 0.1. Shown are the curves 

= 0, <1.3> = 0, and the critical curve which 

separates the two different types of flow lines 

displayed in Figure 8.7. 
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Figure 8.9a - Showing the insensitivity of the near-

Earth proton spectrum to the form of the low 

energy galactic spectrum. These results were 

obtained from the general galactic spectrum 

solution (8.4.1), with the galactic spectra 

(a), (b) and (c) specified in Equations (8.4.5), 

the diffusion coefficient K = 6 x 10
21 

r
1.237 

P a cm
2 

s
-1 

(1,  in G V and r in A U) and the 

5 	-1 
solar wind speed V = 4 x 10 in s. 
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260. 

Figure 8.9b - The radial gradients of protons at 

r = 1 A U for three different galactic spectra 

(a), (b) and (c). These results were obtained 

from the general galactic spectrum solution 

(8.4.1), with the galactic spectra (a), (b) 

and (c) specified in Equations (8.4.5), the 

diffusion coefficient K(r,p) = 6 x 102
1 

r1.237 

P a cm 2 
s
-1 (P in G V and r in A U) and the 

5 	-1 
solar wind speed V = 4 x 10 m s. 
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262. 

Figure 8.9c - The radial anisotropies of protons at 

r = 1 A U for three different galactic spectra 

(a), (b) and (c). These results were obtained 

from the general galactic spectrum solution 

(8.4.1), with the galactic spectra (a), (b) and 

(c) specified in Equations (8.4.5), the diffusion 

coefficient K(r,p) = 6 x 10 21 r1.237 P 13 cm
2 

s
-1 

(P in G V and r in A U), and the solar wind speed 

V = 4 x 10 5 m s-1 . 
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264. 

Figure 8.10a - 	Showing the insensitivity of the near- 

Earth proton spectrum to the form of the low energy 

galactic spectrum. These results were obtained by 

Urch and Gleeson (1972a) from numerical solutions 

of the equation of transport. 	Three forms of 

galactic spectra (a), (b) and (c) given in Equations 

(8.4.5) were used. In the model the diffusion 

coefficient K = 6 x 10
21 	

P B cm
2 

s
-1 

(P in G V and 

r in A U), the force field parameter at r = 1 A U, 

(p.(1 A U) = 0.14 G V, and the boundary of the solar 

cavity was taken to be at r = 10 A U. 
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266. 

Figure 8.10b - Showing the radial gradient of protons at 

r = 1 A U for the diffusion coefficient K = 6 x 10 21 

P 6  cm2  s-1  (P in G V and r in A U) and the three 

forms (a), (b) and (c) for the galactic proton 

spectra given in Equations (8.4.5). These results 

were obtained by Urch and Gleeson (1972a) from 

numerical solutions of the equation of transport. 

The gradients for cases (a) and (b) computed from 

the force-field approximate solution are shown 

by broken lines. 
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268. 

Figure 8.10c 	- showing the radial component of the 

anisotropy of protons at r = 1 A U for the 

diffusion coefficient K = 6 x 10
21 
 ir

r-  
 P 8 cm

2 

s
-1 

(P in G V and r in A U) and the three forms 

(a), (b) and (c) of the galactic proton spectra 

given in Equations (8.4.5). These results are 

reproduced from Urch and Gleeson (1972a) who 

obtained them from numerical solutions of the 

equation of transport. 
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270. 

Figure 8.11 - Showing the dependence of the Green's 

function G(r,p;p 0) given in Equation (8.5.1) 

on the momentum variable p o/p. It provides 

a direct measure of the sensitivity of the 

intensity, at position r and momentum p, to 

particles of momentum p o  in the galactic spectrum. 

The figure is drawn for a diffusion coefficient 

K = K
c 

p r
1.5 

and for values 0.01, 0.1, 1.0 and 

10 of the parameter Vr/K(r,p). 



0 

1 0 	 1 0 

( od ! d ' J) 0 d 

F
ig

u
r
e  

8.
11

 

271. 



272. 

Figure 8.12a - Showing the distribution IPT (r,T;To) 

of protons observed at r = 1 A U during 1965 

and 1969 with kinetic energies T = 50, 100, 

200 and 500 MeV, which originated with kinetic 

energy T o  in the galactic spectrum. The galactic 

spectrum is given in Equation (8.5.8) and the 

diffusion coefficients used are of the form given 

in Equations (8.5.11) and (8.5.12) with the para-

meters (K
c' 

P
1 ,  P 2' 

b) appropriate for 1965 and 

1969 being (1.139 x 10
17

, 0.038, 1.0, 1.5) and 

(5.316 x 10
16

, 0.248, 0.7, 1.5) respectively. 

The arrows indicate the mean energies <T 
0
> of 

the distributions and these are also listed in 

the figure. 
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274. 

Figure 8.12b - Showing the distribution Cr (r,T;To ) 

of helium nuclei observed at r = 1 A U with 

kinetic energies T = 50, 100, 200 and 500 MeV/ 

nucleon, which originated with kinetic energy T o  

in the galactic spectrum. The galactic spectrum 

is given in Equation (8.5.8) and the diffusion 

coefficients used are of the form given in 

Equations (8.5.11) and (8.5.12), with parameters 

(Kc , P l , P 2 , b) appropriate for 1965 and 1969 being 

(1.139 x 10
17

, 0.038, 1.0, 1..5) and (5.316 x 10
16

, 

0.248, 0.7, 1.5) respectively. The arrows indicate 

the mean energies <T0> of the distribution and these 

are also listed on the figure. 
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276. 

Figure 8.12c - Showing the distribution IpT (r,T;To ) of 

electrons observed at r = lA U with kinetic 

energies T = 100, 200, 500 and 1000 MeV, which 

originated with kinetic energy To  in the galactic 

spectrum. The galactic spectrum is given in 

Equations (8.5.9) and (8.5.10) and the diffusion 

coefficients employed are of the form given in 

Equations (8.5.11) and (8.5.12), with the para-

meters (Ko , P l , P 2 , b) appropriate for 1965 and 

1969 being (1.139 x 10 17 , 0.038, 1.0, 1.5) and 

(5.316 x 10
16

, 0.248, 0.7, 1.5) respectively. 

The arrows indicate the mean energies <T 0> of 

the distributions, and these are also listed 

on the figure. 
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278. 

Figure 8.13a - Showing the distribution Cr (r,T;T o) of 

protons observed at r = 1 A U with kinetic energies 

T = 50, 100, 200 and 500 MeV, which originated 

with kinetic energy T o  in the galactic spectrum. 

The galactic spectrum is given in Equation (8.5.8) 

and the diffusion coefficients employed are of 

the form given in Equations (8.5.11) and (8.5.12), 

with the parameters (K, P., P 2 , b) appropriate 
c 

for 1965 and 1969 being (1.5 x 10
18

, 0.038, 1.0, 

1.038) and (7.0 x 1017 , 0.248, 0.7, 1.038) respect-

ively. With these diffusion coefficients, the 

radial gradients are in accord with the observations 

from Pioneer 10 and 11 Jupiter missions. The arrows 

indicate the mean energies <T0> of the distributions, 

and these are also listed on the figure. 
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280. 

Figure 8.13b 	- Showing the distribution IP T (r,T;To) of 

helium observed at r = 1 AU, with kinetic energies 

T = 50, 100, 200 and 500 MeV/nucleon, which origi- 

nated with kinetic energy T o  in the galactic 

spectrum. The galactic spectrum is given in Equation 

(8.5.8), and the diffusion coefficients employed 

are of the form given in Equations (8.5.11) and 

(8.5.12), with the parameters (K c , P l , P 2 , b) appro-

priate for 1965 and 1969 being (1.5 x 10 18 , 0.038, 

1.0, 1.038) and (7.0 x 10 17
, 0.248, 0.7, 1.038) 

respectively. With these diffusion coefficients, 

the radial gradients in the model are in accord 

with the observations from the Pioneer 10 and 11 

Jupiter missions. The arrows indicate the mean 

energies <T0> of the distributions, and these are 

also listed on the figure. 
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282, 

Figure 8.13c - Showing the distribution Ip T (r,T;T o) of 

electrons at r = 1 A U, with kinetic energies 

T = 100, 200, 500 and 1000 MeV, which originated 

with kinetic energy T o  in the galactic spectrum. 

The galactic spectrum is given in Equations (8.5.9) 

and (8.5.10), and the diffusion coefficients used 

are of the form given in Equations (8.5.11) and 

(8.5.12), with the parameters (K o , Pi , P 2 , b) 

appropriate for 1965 and 1969 being (1.5 x 10
18 

0.038, 1.0, 1.038) and (7.0 x 1017 , 0.248, 0.7, 

1.038) respectively. With these diffusion coeffi-

cients, the radial gradients are in accord with 

the observations from the Pioneer 10 and 11 Jupiter 

missions. The arrows indicate the mean energy 

<T 
0
> of the distributions, and these are also listed 

on the figure. 
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284. 

Figure 8 . 14a - Showing 	(r,T;To ), the percentage of 

protons per MeV at r = 1 A U at kinetic energy T 

which originated in the kinetic energy interval 

(To' To + dTo ) of the galactic spectrum. The 

figure is drawn for T = 200 MeV. It shows the 

effect of varying the magnitude of the diffusion 

coefficient Kc (K(r,p) = Ke  K2 (P) 	rb , b> 1, 

P in G V , r in A U, Equation (8.5.11) ). Curves 

(a), (b) and (c) are drawn for 

(a) Kc = 1.5 x 1018 m2 s-1 

(b) K = 1.139 x 1017 m 2 s-1 

(c) Kc = 3 x 1017  m2  s-1 . 

(see Equations (8.5.13) and (8.5.14) and these conditions 

are appropriate for 1965. The histogram (conditions 

(c)) has been reproduced from Urch and Gleeson (1973). 

The arrows indicate the mean energies <T 0> of the 

distributions. 
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286. 

Figure 8.14b - Showing Cr (r,T;To), the percentage per 

MeV/nucleon of helium nuclei at r = 1 A U at 

kinetic energy T which originated in the kinetic 

energy interval (To , To  + dT0) of the galactic 

spectrum. The figure is drawn for T = 200 MeV/ 

nucleon. It shows the effect of varying the 

magnitude of the diffusion coefficient K c  

(K(r,p) = Kc  K2 (P) rb , P in G V, r in A U, 

Equations (8.5.11)). Curves (a), (b) and (c) 

are drawn for 

(a) K
c 

= 1.5 x 1018  m 2  s-1  

(b) K
c 

= 1.139 x 10
17 

m
2 

s
-1 

(c) K
c 

= 3 x 1017  m2  s-1  

(see Equations (8.5.13) and (8.5.14)) and these 

conditions are appropriate for 1965. The histogram 

(conditions (c) ) has been reproduced from Urch and 

Cleeson (1973). The arrows indicate the mean energies 

<T
o
>of the distributions. 
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288. 

Figure 8.14c - Showing Ip T (r,T;T0), the percentage of 

electrons per MeV at r = 1 A U at kinetic energy 

T, which originate in the kinetic energy interval 

(T ,T + dT) of the galactic spectrum. The figure 
o o 	o  

is drawn for T = 200 MeV. It shows the effect of 

varying the magnitude of the diffusion coefficient 

K
c

, (K(r,p) = Kc  K2 (P) a r
b , r in A U, P in G V, 

Equation (8.5.11) ). Curves (a), (b) and (c) are 

drawn for 

(a) K
c 

= 1.5 x 10
18 

m
2 

s
-1

, 

(b) K
c 

= 1.139 x 10
17 

m
2 

s
-1

, 

(c) K
c 

= 3 x 10
17 

m
2 

s
-1

, 

(see Equations (8.5.13) and (8.5.14) ), and these 

conditions are appropriate for 1965. The histogram 

(conditions (c) ) has been reproduced from Urch and 

Gleeson (1973). The arrows indicate the mean 

energies <T0> of the distributions. 
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290. 

Figure 8.15 	- The energy losses <T0> - T for galactic 

electrons for 1965 and 1969. The energy losses 

obtained by Urch and Gleeson (1973) from numerical 

solutions of the equation of transport (full curves), 

and the force field energy losses, 4), (broken 

curves) have been reproduced from their study. The 

energy losses obtained here with conditions (a) 

(the crosses) and conditions (b)(the circles) have 

been obtained from the distributions ty,r (r,T;To ) 

displayed in Figures 8.13c and 8.12c respectively. 

Conditions (a) and (b) are specified in Equations 

(8.5.13). 



291. 

1000 
To  (MeV) 

Figure 8.15 

M
EA

N
 E

N
E

RG
Y

 L
O

SS
 



292. 

Figure 8.16 - The energy losses <T 0> - T for galactic 

protons and helium nuclei for 1965. The energy 

losses obtained by Urch and Gleeson (1973) from 

numerical solutions of the equation of transport 

(full curves), and the force field energy losses, 

0, (broken curves) have been reproduced from their 

study. The energy losses obtained here with 

conditions (a) (the crosses) and conditions (b) 

(the circles) have been obtained from the distri-

butions tpT (r,T;T0) displayed in Figures 8.13a, 

8.13b and Figures 8.12a, 8.12b respectively. 

Conditions (a) and (b) are specified in 

Equations (8.5.13). 
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294. 

Figure 8.17 - The energy losses <T 0> - T for galactic 

protons and helium nuclei for 1969. The energy 

losses obtained by Urch and Gleeson (1973) from 

numerical solutions of the equation of transport 

(full curves), and the force field energy losses, 

4., (broken curves) have been reproduced from their 

study. The energy losses obtained here with 

conditions (a) (the crosses) and conditions (b) 

(the circles) have been obtained from the distri-

butions tpT (r,T;To) displayed in Figures 8.13a, 

8.13b and Figures 8.12a, 8.12b respectively. 

Conditions (a) and (b) are specified in Equations 

(8.5.13). 
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CHAPTER 9 

SOLAR SOURCE SOLUTIONS  

9.1 	Introduction 

In this chapter we study the steady-state interplanetary 

propagation of solar cosmic-rays by means of monoenergetic source 

solutions (3.2.13) and (3.2.18) of the transport equation. 

In these solutions particles are released'monoenergetically 

from a spherical surface at radius r o 
with momentum p

o
. The solution 

(3.2.18), expressed in terms of the distribution function F o  is 

2 ( 2 2 
n 	x x +xo 	ix x

o
) 

F
o 

- 

6471 	

3 N 	o) 	o 
exp 

2 	3 2 In+11 

( x 

	T 	4 T ) 

1( 	

1m 	2 T 
p
o  ro   

(9.1.1) 

where 

= 	3 
Po K (z) z(1-3b)/2dz/( 
p 	0 	

2V), 

n = 	(b+1) / (1-b), 	m = Ini , 	(9.1.2) 

x = 	2 (rp
3/2

)
(1-b)/2

/ (1-b), xo  = x(ro ,p0 ), 

the diffusion coefficient K(r,p) = K(p) r b , with b 	1, 1(z) is 

a modified Bessel function of the first kind of order in and argument 

z, and N is the rate at which particles are released from the source. 

The solution (3.2.13), for release at the origin, is obtained by 

letting ro  + 0 and choosing b < 1 in the solution (9.1.1). Note that 

it is necessary to choose b < 1 for particles to escape from r o  = O. 

This solution is 

3 N  (n+1)
2n+1 

F
o  

T-n-1 	
-x

2 

22n+6 
V Tr

2 
P(n+1) 	

exp 	, 	(9.1.3)  
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In Section (2) we study the solar source solution (9.1.3) 

with release at r o = 0 for a diffusion coefficient K(r,p) = c 
p IT, 

and the general solution (9.1.1) with r o  A 0 for the case K(r,p) = 

K
c 

p r
1.5

, and with parameters in the solution appropriate for solar 

cosmic rays. 	Some of the results of this section are published in 

Webb and Gleeson (1974). 

In Section (3) we study the structure of the particle flow and 

momentum changes in (r,p) space by constructing solutions of the flow 

line equation (7.6.7) for the monoenergetic source solution (9.1.3) 

with release at r
o 

= 0 for the case 

(i) K(r,p) = Ko  p 

and for the solution (9.1.1) with release at r
o for the cases 

(ii) K = K
c 

p r
1.5 

and V r
o
/K(r

o'
p
o ) = 1.46, 

(iii) K=Kc p /i 	and V r
o
/K(r ,p ) = 0.4. 

o o 

The flow lines for these three cases are quite distinct, and when 

compared with the flow lines for monoenergetic galactic cosmic-rays 

presented in Chapter (8), (Figure 8.7), they highlight the difference 

between the steady state propagation of galactic and solar cosmic-rays. 

9.2 Monoenergetic solar source solutions. 

For a diffusion coefficient K(r,p) = K pa  rb , b < 1 the mono-

energetic solar source solution (9.1.3) with r o  = 0, is 

23 r p VF 
s o 	o 	3(n+1)

2n+1 

 

/ 2\ 
[ 1 - ( p/p0)]-n-1  exp 	, 

(9.2.1) 

  

22n+6. r
2 
r(n+1) 



where 

6 	= a + 3(1-b)/2, 

   

= (3 K pa  /(2V6))
1/(1-b)  

r
s C o 

= (b+1) / (1-b), 

(P/Po )
3(1-b)/2 

x
2 

26 	V r  
(9.2.2) 

4T 3(1 _43) 2 K(r,p0 ) 	(1-  (p/p0) (5 )  
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Here the parameter V riK(r,p0) is dimensionless, and it contains 

the complete dependence of the solution on heliocentric radius r, 

the diffusion coefficient constant K
c
, and the solar wind speed V. A more 

explicit formulation of the radial dependence is obtained by observing 

that 

V r/K(r,p 0) = [V r eiK(re ,p0)] (rir e ) 1-b 	(9.2.3) 

where r
e 

is some fixed heliocentric radius. 

Similarly, for a diffusion coefficient K(r,p) = K
c 

p
a rb , 

the general monenergetic source solution (9.1.1) may be written as 

x2.4.x 2 ) 
x x r

2 
p
3 

V 	
n 

x
2 i 2To\ 

o o 	3 	 o 	T  
Fo (r,p) - 	

o) 	
T exik 	4T 	'1111‘ 	) 

64n 2 In+11 	x  

(9.2.4) 

where 

= 2 (r 
p3/2)(1-b)/2/ 

 (1-b), 

3(1-b)/4 
xixo  = (riro )

(1-b)/2 
(P/Po )  

= (b+1)/(1-b), m = In' , 

V r
o 	( r/r 0 )

1-b 
(P/130 )

3(1-b)/2 

x = 

2 26  
4T  3(1-b)

2 
K(ro ,p0 ) 	(1-(pip0 ) 6 ) 

x
2 V r 
0 = 	26 	o 	1  

4T 3(1-b)
2 

K(ro ,p0) (1-(p/p 0) ) 
(9.2.5) 
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(1-b)/2 
X X

o 	46 	
V r

o  
(r/ro) 	

(P/Po)
3(1-b)/4 

2T 
3(1-b)

2 K(r ,p 
o o 	(1 - (p/p) ) 

• a + 3(1-b)/2. 

Here the solution depends on the three dimensionless quantities 

✓ ro/K(ro,po)' r/r
o 

and p/p
o
. This is in direct contrast with the 

case r
o 

0 in which Vr/K(r,p
o
) and p/p

o 
were the dimensionless 

quantities specifying Fo (r,p) and also in contrast to the galactic 

case for which r
o 

m. 	This additional parameter makes the range of 

solution forms more difficult to display. 

Some of the principal features of these solutions are shown 

in Figures 9.1, 9.2 and 9.3 which display F ,U and S as functions 
o p 

of p/po . 	Figure 9.1 is for the case ro  = 0 and the radial dependence 

and the dependence on V, K
c 

and po  are contained in the single parameter 

✓ r/K(r,p0 ). 	Figures 9.2 and 9.3 are for the cases r o  0; here, 

because of the increase in the number of parameters in the solution 

two sets of curves are necessary. Figure 9.2 represents the effects 

seen at a fixed position obtained by changing V, K o  or po  while Figures 

9.3a and 9.3b show the dependence on position r/r o  with fixed 

✓ r
o/K(r ,P ). 0 0 

Figure 9.1 shows the momentum dependence of F , U and S 
o p 	p 

for the solution with r
o 

= 0 (Equation (9.2.1)) for K = K
c 

p ii- , and 

values 0.001, 0.01, 0.1, 1.0 and 10.0 of the parameter V r/K(r,p 0). 

Particles injected with momentum po  are seen to be redistributed over 

the whole momentum range 0 < p 5 po . 	For the three smaller values 

Of V r/K(r,p 0) there is a substantial peak in the spectrum in the 

vicinity of po . As V r/K(r,p 0) decreases, either because V or r 

decreases or because K
c 

or p
o 

increases the peaks move toward p o 
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narrow inwidth and increase in peak value. Since particles are 

releasedmonoenergeticallywith momentum p o  from ro  = 0 we have 

limit 
F(r,p

o
) = 

r
0
4-0 	 (9.2.6) 

32w
2 
V p

3 
r 

o o 

where 6(x) is the Dirac delta function of argument x, and hence 

F (r,p ) 	= as V r/K(r,p
o
) 4- 0. o 	o 

For large values of V r/K(r,p 0) in Figure 9.1 the distributions 

are strongly attenuated at the upper end of the momentum range. These 

results indicate that as the solar wind speed V, or the heliocentric 

distance r increase, or as p c,  or the diffusion coefficient constant Ke  

decrease, particles lose a larger fraction of their initial momentum. 

We can also see these characteristics of the particle propagation 

from the mean momenta 

p 
p =  

o 
I  p U

p 
dp / IPo U dp, 	(9.2.7) 

0 	0 	p 

which are indicated on the U plots by arrows. 

At the low end of the momentum range the distribution function 

curves show that there is an accumulation of particles which have lost 

momentum due to interaction with the irregular component of the 

magnetic field moving with the solar wind. As p 4- 0 we have 

23 
r p V 
s o  F

o  
0.203, 

for all values of V r/K(r,p0), with b = 0.5, r o  = 0, and r s  defined 

by Equations (9.2.2), and hence the distribution function is independent 

of heliocentric distance as p -4- 0. The result Fo  -4- constant as p -4- 0 

is characteristic of the monoenergetic source solutions (9.2.1) and 

(9.2.4) for cases where r
o 

is general and K(r,p) = K
c 

p
a 

r
b
, a > 0, 

b < 1. 	For the solution (9.2.4) with r o 	0 we find that as p 4 0, 

3 N 5(r -r) 



n+1 
I 	26 V r

o 1 

3(1-b) 
2 

K(r
o

) p r (n+1 ) 
o 

167T
2 

V p
3 

r
2 

In+11 o o 

3N  F 
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with a > 0, b < 1, 

V r
o  

exp 	
) (  -26  

(9.2.8) 
3(1-h)

2 K(r ,p ) ' 
o o 

where 

a + 3(1-b)/2 00, 	n = (b+1)/(1-b) . 

For a source at r
o 

= 0 with a > 0 and b < 1, as p 0 we have 

where 

23 
r p V 

3(n+1) 2n+1 s o  
F
o 

2
21.1-4-6 

ir
2 

r(n+1), 

r
s 

= [3K p
a 

/(2V6)] 11(1-b) 
c o 

(9.2.9) 

The above result may be obtained directly from the solution (9.2.1) 

with r
o 

= 0, or by letting r
o 

-4- 0 in the result (9.2.8). 

The S curves show that for r
o 

= 0, K = K
c 

p IF, the streaming 

is positive (outward) for all p and V r/K(r,p 0). We can also show 

(Equation (9.3.11)) that S is positive at all r and p when the source 

is located at r
o 
= 0 and K = K(p) r

b
, b < 1. 

The curves of Figure 9.1 can be interpreted as indicating the 

changes in the spectra at fixed r for various diffusion coefficients 

or the changes at fixed r for particles of various source momenta p o . 

In this latter case, since V r/K(r,p 0) increases as p o  decreases, the 

U curves show that particles of lower p o 
lose a larger fraction of 

their initial momentum. We note that with values of K used by Urch 

and Gleeson (1972b) to reproduce the modulation of 1965, i.e., solar 
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minimum (K(r,p) = 3 x 10 17  m2  s-1  at a radius of 1 A.U. and a 

rigidity of 1 G V, V = 4 x 10
5 
m s

-1
),the curves Vr/K(r,p 0) = 0.001, 

0.01, 0.1, 1.0 and 10.0 represent, respectively, the spectra to be 

obtained at r = 1 A U from injection of protons at r o  = 0 with kinetic 

energies, To , of 198, 19, 1.26 GeV, 20 and 0.2 MeV. 

The curves of Figure 9.1 can alternatively be interpreted as 

indicating the changes in the spectra with heliocentric distance r. 

Since V r/K(r,p0 ) a 17 in this example, the heliocentric distances 

represented by the curves of Figure 9.1 are in the ratio of 

l0 	10-2  : 1 : 10 2  : 10 4 . 	Hence if V r/K(r,po) = 0.1 represents 

the spectra at r = 1 A U obtained from particles released monoenergetic-

ally at ro  = 0, the curves V r/K(r,p 0) = 0.001, 0.01, 1.0 and 10.0 

represent the spectra at 10
-4

, 10
-2 

10
2 

and 10
4 A U respectively. 

We now turn to the examination of the cases with r o 
A 0, for 

which examples of F, U and S
p 
are displayed in Figures 9.2 and 9.3. 

o p 

Two figures are provided in order to show the dependence of the 

solution on each of the parameters V r o /K(r0 00 ) and r/ro . 

Figure 9.2 indicates the dependence of F , U and S on o 	p 

V r
o
/K(r ,p ) for fixed r/r

o
; it is constructed for the case 

o o 

K=K
c
pr

1.5 and r/r
o 

= 214.95. The principal features are again 

the spread in momentum over the range 0 < p 5 po  and the peaked nature 

of the spectrum in the vicinity of p
o 

for small V r
o
/K(r 

o 
 ,p 

o
). As 

in the case of r
o 
= 0 [Figure 9.1] the mean momentum decreases as 

V r
o
/K(r 

o 
 ,p 

o
) increases. 

At small p/po  the spectrum of Figure 9.2 has a second peak 

for small V r
o
/K(r ,p ), apparently indicating some accumulation of 

o o 

particles after energy changes. 
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As p + 0, F + 0 for b >1, but for K = K
c 

p
a 

r
b
, b < 1, a > 0, 

from the result (9.2.8) 

3N 	26  
I n+1 

V r
o  1  F

o 
+ constant - 

16w 2Vp3r 2 In+11 3(1-b)
2 K(r

o'
p
o

) 	r(n+1) 
00 

ex [  

	

V r
o  

we recall that for r
o 

= 0, K = K
c 

p
a 

r
b
, a > 0, b > 1, the distri-

bution function tended to the constant (9.2.9) as p/p o+ 0, and this 

behaviour of F
o 

for small p/p
o 

is also shown in Figure 9.1. 

The structure of the streaming S is more complex than for 

the case r
o 
= 0. Here S is positive for p near p

o 
but becomes negative, 

indicating inward flow at low p, whereas in the case 1 .0  = 0 we had 

S > 0 for all p. This pattern is discussed in more detail in 

Section (9.3). For K(r,p) = 3 x 10 17  m2/s at 1 A U and 1 G V rigidity, 

5 V = 4 x 10 m/s, the curves V r 
o 
 /K(r 

o
p 
o
) = 0.03, 0.3 and 3.0 of 

,  

Figure 9.2, represent, respectively, the momentum dependence of F, U 
o p 

and S to be obtained at r = 1 A U from injection of protons at r
o 

= 1 

solar radius and kinetic energies, T o , of 96.5, 8.85 GeV and 414 MeV. 

The curves of Figures 9.3a and 9.3b show the dependence of the 

spectra on heliocentric distance. They show F 
o 
 , U and S as functions p 

of p/po  for r/ro  = 1, 2, 100 and 1000 and are for the cases K = K c  p r1.5  

and V r /K(r ,p ) = 1.46 (Figure 9.3a) and V r /K(r ,p ) = 0.1 (Figure 
o 	o o 	 o 	o o 

9.3b). 

Figure 9.3a shows that F o and U are peaked near r/r o 
- 1 

and that the spectrum spreads and becomes concentrated at lower mean 

values of p/po  as r/r o  increases. Figure 9.3b which is for smaller 

3(1-b)
2 K(r ,p 

o
) 	. o  
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V ro
/K(r ,p ) shows that as we decrease V r

o
/K(r ,p ) the peak near 

o o 	 o o 

p/p
o 

= 1, persists even at large radii, and that the shape of the 

spectrum is critically dependent on this parameter. Since the particles 

are released monoenergetically with momentum p o  at radius ro  we have 

3 N 6(r-r) 
F(r,p ) 	= 

 

32i
2 
V p

3 
r 

o o 

where 6(r-r) is the Dirac delta function, so that F(r,p o) -4- co as 

r 	r . 

The spectra of Figures 9.3a and 9.3b have Fo  + 0 as p + 0 

because b > 1 (recall K = Kc 
p
a 

r
b
, b = 1.5, a = 1.0). 	If b < 1 and 

a > 0, then Fo  tends to the constant (9.2.8) as p 	0. 

The dependence of S upon p of Figures 9.3a and 9.3b is again 

complex, but very interesting. As in the case of Figure 9.2 we have 

a region of S > 0 near p = p o 
and a region of S < 0 for low p; the 

crossover point in p/po decreases as r/r o increases. As r/r o 	
1
+

, 

the range of p/po 
of net outflow (S > 0) decreases and tends to a 

double delta form with large positive flow close to p o  and a large 

negative inward flow for p just below this. 	It represents the particles 

first flowing outward and being turned around with energy loss (over-

taking 'collisions') and passing into r < r o . The (r,p) flow patterns 

are given in Section 9.3. 

If we choose r o 
= 1 solar radius in Figures 9.3, the curves 

r/r
o 

= 2, 100, 1000 represent, respectively, the spectra obtained at 

heliocentric distances of 9.3 x 10
-3 , 0.465 and 4.65 A U. 

For K(r,p) = 3 x 1017 m
7  
" s

-1 
 at a rigidity of 1 G V and r = 1 A U, 

V = 4 x 10
5 
m s

-1
, the curves of Figure 9.3a show the redistribution 

and streaming of monoenergetic protons released from r o  = 1 solar radius, 
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with a momentum p o  = 2 GeV/c whereas in Figure 9.3b, p o  = 29.3 GeV/c. 

The results presented so far in this section show the main 

features associated with steady state monoenergetic release with 

r
o 

= 0 and r 	0. 	We now present the results of a more detailed 

investigation of the dependence on p and r of these solutions in 

particular, but representative cases. 

As in a similar study for the monoenergetic galactic spectrum 

case of Chapter (8) we calculate the quantities specified in the list 

(8.2.5) and we use contour plots in the (r,p) plane to represent them. 

We look at the distribution of particles, gradient, streaming and 

momentum changes, and use the set of graphs produced to discuss some 

of the physical characteristics of the steady state propagation of 

solar cosmic rays. 

The particular cases studied are 

(i) r
o 
= 0 and K = K

c 
p ii with V r

e
/K(r

e'
p
o
) = 0.1, and 

(ii) ro  0 0 and K = K p r1.5 with V ro/K(ro ,p0 ) = 1.46. 

The results for (i) follow from the solution (9.2.1) and are presented 

in Figures 9.4 while those for (ii) follow from the solution (9.2.4) 

and are presented in Figures 9.5. 

The contours for F o 
or U show that the number density is 

sharply peaked about the source at r = 0 and p = p o  in Figure 9.4a 

and about the source at r = r
o 

0, and p = p
o 

in Figure 9.5a. 

The redistribution of particles initially injected into the 

interplanetary medium with momentum p o  in these two examples are very 

different and this is essentially a consequence of the differing radial 

dependence of the two diffusion coefficients employed, and the helio- 
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centric position of the source. 

For the case K = K
c 

p if- and ro 
= 0 the contours of Figure 

9.4a show that for a fixed momentum Fo 
decreases montonically with 

increasing r. As a consequence the radial gradient is negative and 

the diffusive flux is outward at all radii. Since the diffusive flux 

is outward the cosmic-rays undergo more overtaking than head on 

collisions with the magnetic field irregularities moving with the solar-

wind and hence on average particles are losing momentum at all r and 

p and <P> is negative. From the (dp/dt)/(dp/dt) ad 
contours of Figure 

9.4b we see that the cosmic-rays are losing momentum over a large 

portion of the (r,p) plane at a rate less than the adiabatic rate. 

As noted previously the streaming Sp  and the bulk flow velocity 

are outward over the whole (r,p) plane, and hence the particles on 

average lose momentum as they flow outward. 

For the case K = Kc 
p r

1.5 and r
o 
0 0, the Fo 

or U
p 

contours 

of Figure 9.5a show that for each p, as r increases from zero the 

number density increases to a peak and then decreases. This represents 

particlessimultaneously being fed into (p,p+dp) by the energy changes, 

but being excluded from the inner regions by the outwardly moving 

scattering centres. 	Corresponding to this peak (which shows as a 

ridge in the r-p plane) we have a positive gradient near r = 0, chang-

ing to negative at heliocentric distances past the peak. 

The contours of S in Figure 9.5a show that the streaming 

changes from inward to outward as p increases from 0 to p c) , and the 

outflow region decreases in width and S increases as r + r o 
or as 

r + ro 
. The outflow region of the momentum spectrum is in general 

much wider at heliocentric radii r >r o  than for r < ro . At low 
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momenta, the magnitude of the Compton Getting factor, C, is much 

greater than ISd /V p I and the flow is convective. 

The regions of (r,p) space in which particles are gaining and 

losing momentum are readily seen from the contour plots of dp/dt 

of Figure 9.5b. At a fixed p, as r increases the momentum rate <P> 

changes from positive to negative. 

At sufficiently small p the distribution function contours 

are of the form 

3/2 
r p 	= constant. 

This form is characteristic of the convective solution of the transport 

equation (Appendix D, Gleeson 1970) and for the case K = K
c p r

1.5 
it 

can also be seen from the analytic expression (9.2.4) for F
o
(r,p). 

However for a diffusion coefficient K = K
c p

a 
r
b 

with b > 1 + 2a/3, 

the expression (9.2.4) for F o  cannot be expressed solely in terms of 

the variable r p
3/2 

at small p/po , and the solution does not seem to be 

convective. 

The redistribution of particles, the streaming, the gradient 

and the momentum changes in the region r << r o  of Figures 9.5 are 

similar to the corresponding features of the monoenergetic galactic 

spectrum solution (8.1.1) for K = K
c 

p r
1.5 

near r = 0. (See Figures 

8.4). 

The particle flow and momentum changes are related since the 

momentum changes form effective sources of particles. We investigate 

this more fully for monoenergetic solar cosmic-rays in the next section. 
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9.3 The flow pattern of monoenergetic solar cosmic-rays. 

In this section we investigate the particle flow and momentum 

changes in position-momentum space arising from a source of mono-

energetic cosmic-rays of momentum p 0  released at a rate of N particles 

per second from the heliocentric radius r r
o

. 	These aspects are 

examined together because they are related by the fact that particles 

are conserved and the continuity equation 

1 a 

r
2 ar k r  ) + 	(<P> U ) - 

P 	ap 

N d(r-r) 6(p-p) 
, 	(9.3.1) 

4 Tr r 2 

applies. Equation (9.3.1) shows that the momentum changes provide an 

effective source of particles. 

Using the continuity equation (9.3.1) we first consider the 

conservation of particles over the whole momentum range 0 5 p< co 

and we obtain a relation between the total flux across a spherical 

surface at radius r and the injection rate N. 

We then calculate the streaming S (r,p), and show the regions 

of the (r,p) plane in which particles have a net inflow or outflow 

for the particular cases 

(i) K = K
c 
p,/7,  

(ii) K=Kpr
1.5

, 	V r /K(r ,p ) = 1.46, r 	0, 
C o 	o o 

(iii) K=K
c

p if, 	V r /K(r ,p ) = 0.4, 	r
o 

A 0. o 	o o 

Then in order to elucidate the physics of the flow we obtain 

analytic and numerical solutions of the flow line equations (7.6.8) 

and (7.6.9). We note again that the tangent to a flow line at any point 

of (r,p) space gives the ratio of the streaming speed <i> to the 
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momentum change rate <15> (cf. Sections 7.6 and 8.3). 

We now consider the conservation of particles over the whole 

momentum range 0 5 p < c°. Under steady state conditions particles 

which enter the region r < r o  must flow out again, so that the net flow 

of particles over the whole momentum range 0 < p < co across any 

spherical surface at heliocentric radius r, with r < r o  must be zero. 

In the region r > ro , the net outflow of particles of all momenta 

across the spherical surface at radius r must equal the injection rate, 

i.e., N particles per second. We may express these results by the 

equation 

2 op 
4 7 r JO S

p 
(r,p) dp = N • Wr-r0 ), 	(9.3.3) 

where H(r-r 0 ) is the Heaviside step function with argument r-r, i.e., 

1 	if r >r, 
H(r-r

o
) = 

0 	if r < r
o

, 

and S (r,p) is the radial differential current density. 

(9.3.4) 

To show the conservation relation (9.3.3) directly from the 

continuity equation (9.3.1) we proceed as follows. Using the 

expression (7.1.1) for <15 , i.e., 

DU 
= <p> 	Vp 

3U 	Dr 

putting r = x in the continuity equation and integrating over the 

whole momentum range from p = 0 to p = co we have 

	

U (x) (x p) p=c." 	N.d(x-ro ) 
1 	D 	 Y_P_ 	P  ( x

2 I S (x ,p) dp) o p 3 Dx 
x
2 Dx 

	

p=0 	4 Tr r
2 

(9.3.6) 

Since U 	= 0 we have au (x,-)/ax = 0, the term in square braces 

(9.3.5) 
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in the above equation is zero and it becomes 

2 
-

a 	

( 4 n x
o p (x,p)dp) = N • (5(x-r o ) , ax (9.3.7) 

showing that the divergence of the total particle flux over all p 

has a singularity at x = r o , but it is zero for x 0 r o . 

Integrating Equation (9.3.7) from x = 0 to x = r we find 

x=r 
4 it x

2 
f  S (x,p)dp 	= 	N • H(r-ro ), 
0 p x=0 

2= 
4 it r I

0 
S
p
(r,p)dp 	= N • H(r-r), 

which is the conservation relation (9.3.3). 

(9.3.8) 

From the monoenergetic source solutions (9.1.1) and (9.1.3) 

we can show that for x A r
o 
we have U (x,p) = 0 for p p

o
, and hence 

the conservation relation (9.3.8) for these solutions can be written 

as 

2 Po 
4 it r f o  Sp (r,p)dp = N• HU-rd. 

(9.3.9) 

The result (9.3.8) shows that the net flux of particles across 

a spherical surface at radius r, with r <r o , is zero and hence either 

S E 0 or the momentum spectrum of S must have positive and negative 

regions at these radii. At r > r o , the streaming flux across the 

spherical surface at radius r equals the injection rate N, and S can 

be positive over the whole momentum range 0 p < 

The positive and negative regions of the streaming in the 

(r,p) plane can be calculated from the expression (7.6.3) for S 	i.e., 

2 (  
aF 

Vp  o 
- 4 n p 	+ KU,P) ;I ) • 

	

3 ap 	
(9.3.10) 
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For a general diffusion coefficient K = K(p)r 1 , b < 1, substituting 

the expression (9.1.3) for Fo  in the result (9.3.10) gives the stream-

ing arising from a monoenergetic source at r o  = 0 to be 

Sp  = 4 Tr p 
2 
V Fo 4T) 
( 	1 	Ko(P) P

(3-3b)/2) 

(n+1) 	2 V T 

where as usual 

= 2(r p
3/2

)
(1-b)/2

/(1-b), 

. 3 1 130 K fz‘ z (I-3b)/2 dz / (2V). p 	o‘ 1  

(9.3.12) 

Since T and x
2
/(4T) are positive Equation (9.3.11) shows that for the 

solution (9.1.3) for a source at ro  = 0, with b < 1, the streaming 

is positive (outward) over the whole momentum range 0 < p 5 po . 

Substituting the general monoenergetic source solution (9.1.1) 

for Fo in the expression (9.3.9) for the streaming and using the 

result 

I' (z) = 	I 1 (z) + -ra I (z), z m 

for the modified Bessel function of the first kind I
m (z) (Abramowitz 

and Stegun, 1965, Section 9.6), we have 

, (9.3.11) 

S 	= 4 Tr p
2 

F
o 

K(p) (3-3b)/2 
P 2T (m-n+ (m-n) (n+1) 2 TV 

MP 

2 2 

	 + 	
x x 1 	 x 	/ 

(n+1) -== + 	I m+1 k 2T°  
i 	tx xo  

x 	2T 	- 	'm 4T / m 2T) 

1 x
2 

( 

x x
o  .,.. x xo l 

( 2(n+1) m-n-  2T ' 	2T im+1 	2T ) 

(9.3.13) 
as the streaming for a monoenergetic source located at radius 

r
o 	

0, and b A 1. 
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The general structure of S (r,p) in the (r,p) plane resulting 

from a monoenergetic source located at radius r 	0 for the 

particular cases 

(i) K = Kc  p r
1.5 

and V ro/K(ro ,p0) = 1.46, 

(ii) K = Kc  p Tr-  and V r0 /K(r0 ,p0 ) = 0.4, 

are shown in Figures 9.6b and 9.6c. Figure 9.6a shows for comparison 

the structure of S (r,p) in the (r,p) plane for a monoenergetic source 

located at r
o 

= 0, and a diffusion coefficient K = K
c 
pi:E. The 

figures show an (r,p) plane and the arrows indicate schematically the 

direction of S (either inward or outward). 

In both examples with r o  0 0, there are two outflow regions 

and one inflow region. The inflow regions include the source point 

at (r ,p ). For K=K
c
pr

1.5
, Figure 9.6b shows that the inflow 

o o 

region extends to radial distances r >> r
o 
at low momenta, and there 

is a net inflow of particles with momenta between the curves p = 0 and 

S =0. 	However for K = K
c 
p Jr. the inflow region does not extend 

far beyond r = r
o 

and in contrast to the case K = K
c 

p r1.5 , there is 

an outflow of particles at low momenta at radii 0 <r<ro . In both 

cases there is an outflow of particles at the upper end of the momentum 

range at radii r <ro . 

These flow patterns can readily be understood in terms of the 

momentum change term in the continuity equation (9.3.1) providing an 

effective source of particles and of particles changing momentum at 

the average rate (9.3.5) 

<1) . > = V p DU /Dr / (3 U), 	(9.3.14) 

over the whole (r,p) plane. The outflow of particles at the upper end 
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of the momentum range at radii r < ro could not occur if cosmic-ray 

particles lost momentum continuously at the adiabatic rate (7.1.6). 

The relationship between the mean rate of change of momentum 

<P> and the streaming is conveniently illustrated by plotting the 

flow lines in (r,p) space of the average particle. These are defined 

parametrically by Equations (7.6.8) and (7.6.9): 

dr = <f> dt 
—2. 	- 	V p  aFo 	 3F

ol 
3 	+ K(r,p) 	IF, 

LIE. = <p> 
dt 

3F = ,pVo 
3Fo Dr • 

Alternatively eliminating time we obtain 

3 Va aF
o 	K(r,p) 2.1.a / V p ;11; 	

2 
dr . <f> 
dp 	< 15>  3 Dp 	Dr 

(9.3.17) 

the direct equation of the flow line. 

We now obtain the analytic solution of the flow line equation 

(9.3.17) for the monoenergetic solar source solution (9.1.3) with 

ro = 0. 	Substituting the expression (9.1.3) for Fo in the flow line 

equations (9.3.15) and (9.3.16) we have 

 

dr _ 	V u 	K (p) P
(3-3b)/2u 

dt 	(n+1) 	2T 

	

-2 V p  	 
dt 	3r 	(n+1) ' 

where 

= x
2
/(4T). 

= 2(r p3/2 ) 1-b)/2 / (1-b), 

P 
T = 3 f

p
- 

o 
K
b
(z) z (1-31))/2  dz / (2V). 

(9.3.20) 
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Regarding u and T as independent variables and using the 

derivative transformations 

dr . Or\ du 	an dT 
dt 	kau/T dt 	kaT/ u dt 	' 

dia 	122\ 	du 4.  /la\ 	dT 
dt 	Ou) 	dt 	l3T) 	dt ' 

(n+l)r  
2u 	' 

 

(9.3.21) 

(n+l)r 	V r  
2T 

K(p) p
(3-3b)/2 

o, 

- 2V 
3 K(p) P (1 -3b)/2 

 

(cf. Equations (8.3.11))the flow line equations (9.3.18) and (9.3.19) 

become 

- dT 
dt = 	

K0(p) p(3-313)/2 	
u  

(n+1)-r- 
(9.3.22) 

du . 
dt 

o, (9.3.23) 

Dividing Equation (9.3.23) by (9.3.22) we obtain 

du _ 
dT 

(9.3.24) 

as the flow line for monoenergetic solar cosmic-rays released from 

r
o 

= 0, and we note thatit contains only u and T as variables. 
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The general solution of the flow line equation (9.3.24) is 

= constant, 	 (9.3.25) 

a particularly simple result. The flow lines in (u,T) space are 

straight lines parallel to the T axis. In physically realistic cases, 

the integration constant of Equation (9.3.25) is positive. 

We note particularly that these flow lines apply to the 

general case K = K0 (p) r
b
, b < 1, and not just the case K = K

c 
p r

b
. 

They may of course be expressed in terms of r and p and we do this next 

in particular cases to illustrate the general features. 

For a diffusion coefficient K = K
c 

p
a 

r
b
, (a > 0, b < 1) 

we have 
3/2 1-b 2 	V r

e  [ (r/r e) 0/130 ) x _ 	26 
= 4T 

3(1-b)
2 K(r

e
,p

o
) 

where 

6 = a + 3(1-b)/2, 

and r
e is some fixed heliocentric radius. Using the results (9.3.26) 

in the flow line equation (9.3.25) we have 

r/r i  = [(1- (p/P0) 6 )/(1-(pi/P0)) 
]1/(1-b) 

(p/p 1 )
-3/2 

, 	(9.3.27) 

as the flow line passing through the point (r i , p i) of position 

momentum space. 	An important and striking feature of the flow line 

(9.3.27) is that it is independent of the solar wind speed V and the 

diffusion coefficient constant K
c

. 

The flow lines (9.3.27) for a monoenergetic source located at 

r
o 
= 0 for the case K = K

c 
p fi are shown in Figure 9.7 on a linear-

linear scaling in the (r,p) plane. We have redrawn these flow lines 

(1- (p/ p0 ) 6 ) (9.3.26) 



317. 

on a log-log scale in Figure 9.8 in order to emphasize the nature of 

the flow lines at low momenta. 

The flow lines for a monoenergetic source located at radius 

r
o 
0 0, for the particular cases 

(i) K = K
c 
p r

1.5 	
and V r

o
/K(r

o'
p
o
) = 1.46, 

(ii) K = K
c  

and V r /K(r ,p ) = 0.4, 
o 	00 

are shown in Figures 9.9 and 9.10 respectively. These flow lines were 

obtained by substituting the expression (9.1.1) for F o  in the flow line 

differential equations (9.3.15) and (9.3.16) and numerically integrating 

the resultant differential equations as an initial value problem. 

For r
o  

0 the flow lines of Figures 9.9 and 9.10 are of two 

main forms: 

(i) those that circulate around the source, and 

(ii) those that go outward from the source with p decreasing 

with increasing r. 

As in the flow lines obtain for monoenergetic galactic cosmic rays , 

there is a critical curve separating the two forms (cf. Figure 8.7). 

The general features in common of the flow lines of Figures 

9.7 - 9.10 are: 

(i) every flow line passes through the source point (r o ,p0 ). 

(ii) At low pip, the flow lines are of the form 

3/2 
r p 	... constant. 

As noted previously, this result is characteristic of the convective 

solution of the equation of transport. We note that for the case 

K=K
c

p .5: and r
o 

= 0 the above features can be seen directly from 
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the analytic solution (9.3.27). 

For the cases with ro 
0 0, further loci which assist in 

assessing the structure of the flow lines are the locus of the 

minimum values of p/p o  along a flow line (when it exists) and the locus 

of the minimum values of r. The first is the locus <P> = 0, i.e. 

3Fo 	
= 0, and it corresponds to a maximum in the distribution function 

considered as a function of r, with p fixed. The second are the loci 

<f> = 0 or S- = 0. The loci <i> = 0 and <P> = 0 are shown by 

broken lines on the flow line plots of Figures 9.9 and 9.10. These 

curves were obtained by substituting the expression (9.1.3) for F o  in 

the flow line equations (9.3.15) and (9.3.16) and solving the equations 

= 0 and q> = 0 numerically. 

At large radii the flow lines of Figures 9.7 - 9.10 show that 

nearly all particles, on average are losing momentum as they stream 

outwards. For the cases where K = K
c 

p IT, all particles, are on 

average behaving in this manner (Figures 9.7, 9.8 and 9.10) but for the 

case K = K
c 

p r1.5 , displayed in Figure 9.9 there is a small proportion 

of low momentum particles which are, on average, gaining momentum and 

flowing inwards. 

In contrast to the above results, the flow pattern for mono-

energetic galactic cosmic-rays for the case K=K
c
pr1.5

, V r
e
/K(r

e
,p

o
) 

= 0.1, displayed in Figure 8.7, shows that at all radii, there are 

particles with momentum near p = p o  which, on average, are gaining 

momentum as they stream outwards. In other respects the flow lines of 

Figure 8.7 are quite similar (particularly near r = 0) to the flow 

lines for a monenergetic source located at radius r (r 	0, r
o o o 

for K=K
c
pr

1.5 and V r /K(r ,p ) = 1.46 displayed in Figure 9.9. 
0 	0 0 
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To conclude this section we reiterate the comments about 

flow patterns made at the end of Section (8.3). 	The flow patterns 

show clearly the regions in (r,p) space of the inflow and outflow and 

momentum gains and losses of the average particles. The momentum 

gains occurring make the flow pattern variations explicable. We stress 

however that the flow lines represent the mean or average effects on 

the particles and not the path in (r,p) space of any individual particle. 

The individual particle paths in (r,p) space are random with some 

order (the average effects discussed here) superimposed. 
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Figure 9.1 - 	the momentum dependence of F , U and S 
0 	p 

for a monoenergetic source of particles of 

momentum po  released from radius ro  = 0. 

The diffusion coefficient K(r,p) = Kc  p /7 

and the parameter Vr/K(r,p 0) has values 

0.001, 0.01, 0.1, 1.0 and 10.0. The functions 
23 ✓ p V 

o  

s o 	
F
o

, 

r 2 p V 
ii . -s--12— U , 
P N 	P 

2 ✓ p 
-S-  = 	

S 0 
 S, 

P N 	P 

are dimensionless forms of F , U and S and o 	p 	P' 

r
s 

= 3K p
a 

/ (2Vd) 
11(1-b) 

  

is a characteristic length (see Equations (9.2.2)), 

a = 1, b = 0.5, d = 1.75. 
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Figure 9.2 - The momentum dependence of F , U and S o 	p 

for a monenergetic source of particles of 

momentum po , released from radius ro (ro  0 0). 

The diffusion coefficient K(r,p) =K
c 

p r
1.5

, 

the heliocentric radius variable r/r
o 

= 214.95, 

and the parameter V r o/K(ro ,p0) has values 

0.03, 0.3 and 3.0. The functions 

r
2 

p
3 
V 

	

_ 	0 0 	
F, 

r
2 
p V 

	

j- _ 	00  U
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2 
r p 
00 

are dimensionless forms of F , U and S . 
0 p 
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Figure 9.3a - The momentum dependence of F , U and S 
o p 

for a monoenergetic source of particles of 

momentum po , released from radius r o (ro  0 0). 

The diffusion coefficient K(r,p) =K
c
pr1.5

, 

V ro/K(r ,p ) = 1.46, and the heliocentric o o 

radius variable r/r
o has values 1, 2, 100 and 

1000. 	The functions 

23 
r p V 
00  Fo 	o F, 

r
2 
p V 

o o  
U, 

2 r p = 00  

p 	N S, 

are dimensionless forms of F , U and S . o p 
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Figure 9.3b - The momentum dependence of F, U
p 
 and o  

S for a monoenergetic source of particles of 

momentum po , released from radius r o (ro  A 0). 

The diffusion coefficient K(r,p) =K
c
pr1.5

, 

Vr /K(r ,p ) = 0.1, and the heliocentric o 	o o 

distance variable r/r
o 

has values, 1, 2, 100 

and 1000. The functions 

rp 2 3 V 
0 0  F

0
, 

r
2 
p V 

o 0  U , 
P N 	P 

2 r p 
-S-  = 	o o  S , 
P N 	P 

are dimensionless forms of F , U and S. o 	p 	p  

327. 
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Figure 9.4a - Contours in the (r,p) plane of the characteristics 

of a monoenergetic source of particles of momentum p o  released 

from heliocentric radius r
o 

= 0. The figure is drawn for a 

diffusion coefficient K(r,p) = K o  p 	and the parameter 

V r
e
/K(r

e
,p

o
) = 0.1, where r

e is some fixed heliocentric radius. 

Shown (in dimensionless form) are 

(a) the mean distribution function F, 

(b) the differential number density U = 4 it p
2 

F
o

, 

(c) the radial gradient C
r 

= (1/U )(3U /30, 
P 	P 

(d) the radial differential current density S
' 
 and its 

P 
convective and diffusive components Sc  and Sd , i.e., 

S
c 

= - 4 it p
3 

(V/3) aFo/Dp, 

S
d =  - 4 w p

2 
K(r,p)

o
/3r, 

= S
c 
+S 

d
. 

Here 

= (r: p 30  V/N) Fo , 

= (r 2  p V/N) U 
s o 

Grad (log(U )) = 	a r G , 
sr 

(r
2 

p 
o
/N) S

c
, 

s  

2 
= (rs  po/N) Sd , 

= 	+ -gd  = (r! po /N) 	Sp ; 

rs = 13 K pa  /(2Vd)] 11(1-b) 
C 

is a characteristic length (Equation (9.2.2)), and 

a = 1, b = 0.5, 	d = 1.75, 	a = 36149. 
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Figure 9.4h - Contours in the (r,p) plane of the characteristics 

of a monoenergetic source of particles of momentum p c  released 

from heliocentric radius r o = 0. 	The figure is drawn for a 

diffusion coefficient K(r,p) = Kc  p IT, and the parameter 

V r
e
/K(r

e
,p

o
) = 0.1, where r

e is some fixed heliocentric radius. 

Shown are: 

(e) the ratio of the bulk flow speed <> to the solar wind speed 

V, i.e., dR/dt = S /(V U), and the related component quantities 

S
d
/(V U ) and the Compton-Getting factor C = Sc/(V U), 

(f) the time average rate of change of momentum <III> , expressed 

in dimensionless form, i.e., 

dp/dt = (a r5/(V pc.) <P> 	= 	[a rs  p1(3 p0)] Gr 

where G
r 

is the radial gradient, 

(g) the ratio of <P> and the adiabatic deceleration rate 

< 1.)>ad 
	-2 v p/ (3 r) , 

	

(dp/dt)/(dp/dt) ad = <P> 
/<1;> ad 	• 

As in Figure (9.4a) 

11(1-b) 
rs = 	[3 K pa  / (2170] 

c o 

is a characteristic length and 

a = 1, b = 0.5, mS = 1.75, a = 36/49. 



cial ci,t, 

a- 	1.00.-02 	k:, 	1 .00. -01 
c, 	b.00-01 	cl, 	1.00+00 
E3 	1 .00 Is *01 	5.011+01 

a, 	1.00.-02 
& 	5.00-0i 
a 	1.00.1-01 

8/ U1,1 

1.00.--01 
d, 	1 .00. +00 

5 .00. +01 

_ _ 	------------___ 

. 

. 	.. . 

. 

4; ct,t, 

a, -5 .00. +02 	I> -5 .00..1-01 
c, -1 . 00 . +01 	ci. -1 .00. +00 
E3 -1 .00* -01 	'f, -5.00. -02 

a, 	5.00D-02 
& 	5 .00.-01 
a 	5 .00. +00 

ScL/UU 

1> 	1 
d, 	1 
iE 	5 

.00.-01 

.00. +00 

. CO . +01 
----9-- 	 _____------ 

.--------- 

cle 
--- ___--- 

--- ----- 

-,- - 

t 

- 

'? 4;i GOR Cliai Giiie..a 
a, 	1.00.-02 	b, 	5.O0.-OZ 
c, 	1 .011-01 	ci, 	5.011-01 
€31 .00 to *00 	lC 	5 .00. +00 

a, -5.011+00 
c, -1 .011-01 
a 1.00.-r00 

b. -1 
d, 	1 
,& 	5 

.011--00 

.011-02 

.00.+01 

. 	. 	......, 	. 	. 	. 	• . •., 	. 	. 	....•• 	. . 	.. ". 

- 
- 

.. 

, .. 

--- 

. 

1 .0 

0.8 

0.b 

0 .2 

0 

0 

1.0 

0.8 

0 .b 

0 .14. 

0 .2 

0 

332. 

DO 	31 	-2 
RADIAL DISTANCE p,/ ) 

Figure 9.4b 



333. 

Figure 9.5a - Contours in the (r,p) plane of the characteristics 

of a monoenergetic source of particles of momentum po  released 

from heliocentric radius r
o  (r A 0). The figure is drawn for  o 

a diffusion coefficient K(r,p) = K
c 

p r
1.5 

and the parameter 

V r
o/K(r ,p ) = 1.46. Shown (in dimensionless form) are : o o 

(b) the differential number density U = 4 n p 2 
F
o

, 

(c) the radial gradient G
r 

= (1/U )(aU /ar), 
P 	P 

(d) the differential current density S
' 
 and its 

P 
convective and diffusive components, i.e., 

S
c 	

- 4 7 p3 (V/3) aFo/ap , 

Sd 	- 4 n p
2 
K(r,p) 3F/Dr, 

= Sc 
+ S

d
. 

Here 

T7(3 = (r
2 

p3 V/N) F
o

, 
o o 

r
2 
p V/N) U , 
o 

Grad (log (Up)) = ro  Gr , 

— 
S
c 

= (r2 
p /N) S

c
, 

o o 

Sd = (r2 	Sd , 

= c  + 	= (r
1:2) 

p
o
/N) S

p
. 

(a) the distribution function F
o

, 
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Figure 9.5b - Contours in the (r,p) plane of the characteristics 

of a monoenergetic source of particles of momentum p o  released 

from heliocentric radius r
o 
 (r0  A 0). The figure is drawn for a 

diffusion coefficient K(r,p) = Ko  p r 5 , and the parameter 

V r /K(r ,p ) = 1.46. Shown are : o 	o o 

(e) the ratio of the bulk flow speed <i.> to the solar wind speed 

V, i.e., dR/dt = S /(V U ), and the related component quantities 

S
d
/(V U) and the Compton-Getting factor C = S

c
/ V U, 

(g) the time average rate of change of momentum <p> , expressed 

in dimensionless form, i.e. 

dp/dt = Er0 /(V 130)] <P> 	= Ero  p/(3p0)] Gr , 

where G
r 

is the radial gradient, 

(g) the ratio 

(dp/dt) / (dp/dt) ad 

where 

. , 

<p> / <p>
ad ' 

<P▪ > ad 
	

• 	

— 2 V pi (30, 

is the adiabatic deceleration rate. 
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Figures 9.6 - show schematically the differential current 

density S in the (r,p) plane for three different models, 

in which particles of momentum p c)  are released monoenergetically 

from heliocentric radius r o
. The models are specified by the 

position of the source (r
o 
= 0 or r 	0), the diffusion 

coefficient K(r,p), and in cases (b) and (c) by the dimension-

less parameter V r o/K(ro ,po). The figures are drawn for the 

cases: 

(a) r
o 

= 0, 	K(r,p) = K0 (p) rb , b < 1, where K0 (p) is an 

arbitrary function of momentum p; 

(b) r
o 

A 0, 	K(r,p) = Kc p r
1.5 , V r

o
/K(r

o'
p
o
) = 1.46; 

(c) ro  A 0, 	K(r,p) = Kc  p /i, 	V ro /K(ro, p0) = 0.4. 

The arrows represent the direction of S. 



Figure 9.6a 

1.0 

0.8 

0.6 
so a 

a 04 

0.2 

11 	1 	11111111 	!, &fl111 	1 	1111111 

Vr0/K(r01 p0 )=1.46 	_ 

1.0 

0.8 

0.6 

a 0.4 

0.2 

0 
0 20 	40 	60 tyre  80 100 

K(r,p)=K 0(p)rb, b<1, 

r0= 0  

IS* 	 1111. 

K(r,p)=Kc pri. 5  

338. 

0 	1 	1111111 	1 1 	111111 	 I 1 1111111 	 • 

	

-2 	-1 
10 	10 	100  10 1 	10 2 

r/r0  
Figure 9.6b 

1.0 

1 • 1 11III 	 1 	I 1 1111 

	

10 3 

	

10' 

---A. 
0.8_ K(r,p)=K c p\F 	- 

Vr0 /K(r0 ,p0 )=0.4 
1111. 

0.2 

I 	I 	I 	I 	1 	I 	I 	I 	1 	I 	I 	I 	I 	I 	I 	I 	I 	I 

1 2 

Figure 9.6c 
r/ ro  

o
c? 0.6 

a 04 
 

.■■■11,/ 

•••-■••011/ 



339. 

Figure 9.7 - 	Flow lines in the (r,p) plane for a 

monoenergetic source of particles of 

momentum p c) , released at a steady rate 

from the source point ro  = 0. The 

diagram is drawn on a log-linear scaling, 

for the particular case where the 

diffusion coefficient K(r,p) = Kc  p 

and r
e 

is some fixed heliocentric radius. 
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Figure 9.8 - Flow lines in the (r,p) plane for a 

monoenergetic source of particles of 

momentum p c)  released at a steady rate 

from the source point ro  = 0. The 

diagram is drawn on a log-log scaling 

for the particular case where the 

diffusion coefficient K(r,p) = K c  PJ 

and r
e 

is some fixed heliocentric radius. 
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Figure 9.9 - Flow lines in the (r,p) plane for a 

monenergetic source of particles of 

momentum pc , released at a steady rate 

from a spherical surface at heliocentric 

'radius r (r 0 0). The diagram is drawn 
o o 

for a diffusion coefficient 

K(r,p) = Kc  p r1.5  and V r0/K(r0 ,p0 ) = 

1.46. The flow lines are indicated by 

the full curves, whereas the loci 

<i> = 0 and <P> = 0 are indicated by 

broken curves. 
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Figure 9.10 - Flow lines in the (r,p) plane for a 

monoenergetic source of particles of 

momentum pc , released at a steady rate 

from a spherical surface at heliocentric 

radius r
o 
 (r 	0). 	The figure is drawn 
 o 

for a diffusion coefficient K(r,p) = 

Kc  p ri and V rc/K(r0 ,p0) = 0.4. The 

flow lines are indicated by the full 

curves, whereas the loci 	<i> = 0 and 

<p> = 0 are indicated by broken curves. 
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CHAPTER 10 

A FREE ESCAPE BOUNDARY SOLUTION 

10.1 	Introduction 

In this chapter we study the steady state propagation, within 

the solar cavity of monoenergetic galactic cosmic rays, in a model 

having a free escape boundary at r = r b . In this problem the differ-

ential number density U satisfies the boundary conditions 

(i) U 	-4- N d(p-p0) as r 	rb , 

(10.1.1) 

(ii) U is finite as r 	0 

and in the region r > rb  the diffusion coefficient K 	corresponding 

to free escape conditions. 

The solution differs from the previous cases of Chapter (8), 

where we considered the propagation of galactic cosmic-rays with a 

boundary at infinity. In general it is given by an eigenftrnction 

expansion as outlined in Chapter (6). We recall from Chapter (6), that 

we could only obtain solutions with finite boundaries for cases where 

the diffusion coefficient K(r,p) has one of the forms 

(i) K = K
c 

r
b

, 

(ii) K = K
c r

b 
p
3(b-1)/4 

and the solar wind speed V is assumed to be constant. 

The evaluation of the finite boundary solution is in general 

much more complex than the case where the boundary is at infinity. 

If the eigenspectrum in the solution is discrete it is necessary to 

evaluate the eigenvalues and eigenfunctions and then sum an appropriately 

weighted series of eigenfunctions. However if the eigenspectrum is 
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continuous the solution is given by an integral over the continuous 

range of eigenvalues. In the former case the terms of the eigenfunction 

series decrease with increasing eigenvalue A n  and the series is in 

general slowly convergent for p near p o . For a continuous eigen-

spectrum, the evaluation of the integral can be quite difficult, 

particularly when the integral is highly oscillatory and there is an 

infinite range of eigenvalues. 

We consider the case where the diffusion coefficient 

K = K
c r

b 3(b_1)/4 
with with b = 7/3 i.e., K = K

c 
p r7/3 . The solution 

of the boundary value problem (10.1.1) for this type of diffusion 

coefficient is given by a semi-finite integral, corresponding to a 

cOntinuous eigenspectrum. It has been derived, in detail in Chapter 

(6) and using the result (6.4.4), the solution, expressed in terms of 

F
o
(r,p) and valid for 0 < r < r

b' 
0< p < p

o 
is 

5/2 -3/2 
g ii  Fo (r,p) - 	C 	exp ET1(1-

2
/u)/4 

21T 2 3 p  

f
o 

s exp [-s
2
(1-0/n] [J512 (s)Y 512 (sc) - J 5/2 (s0Y5/2 (s)]/ 

where 

2 	2 
[J

5/2
(s) + Y5/2(s)7  ds, 

= P/Po' 

= 3 (V rb /K(rb ,p0))/2, 

= (r/r
b

)
-2/3

, 

(10.1.2) 

and J5/2(s)  and  Y5/2(s)  are Bessel functions of the first and second 

kind of order 5/2. Note that three quantities specify the solution: 

p/po , r/rn  and V rb /K(rb ,p0 ). 

Parker (1965) has considered a similar solution of the steady-state 
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equation of transport satisfying the boundary conditions (10.1.1), 

for a constant diffusion coefficient in the region 0 < r < r
b 

and 

a constant solar wind speed V. He obtained and evaluated a series 

for the distribution near r = 0. The present study is more extensive 

than Parker's and we show the characteristics of the solution (10.1.2) 

over the whole range of heliocentric radii 0 < r < r b' 
and for a range 

of values of the parameter V rb
/K(r

b
,p
o
). 

In Section (2) we outline the numerical methods used to evaluate 

the solution (10.1.2). The reader who is not particularly interested 

in these details, can omit this section without losing the physical 

implications of the solution. 

In Section (3) we show the characteristics of the solution as 

a function of p/po  for a range of values of the radial variable r/r b  

and for a range of the parameter V r
b
/K(r

b
,p
o
). We also show the 

effect of varying the free escape boundary at r b' 
for V r/K(r,p o

) 

fixed, and we compare the momentum spectra thus obtained with the mono-

energetic galactic spectrum solution (8.1.1) results obtained when 

rb  4 =. 

10.2 Evaluation of the solution 

In this section we discuss methods of evaluating the solution 

(10.1.2). We first obtain expressions for F o , aFo/ar and aFo /ap. 

We note that having computed F o , aFo/ar and aFo/ap it is relatively 

simple to calculate the basic physical quantities, such as the differ-

ential number density, the radial gradient, the streaming S, and its 

convective and diffusive components. 	The computation of F
o
, aF

o
/ar 

and aFo /ap 
reduces to the evaluation of six infinite integrals of the 



350. 

form 

I = f  e
-x

2 
sin(ax) h(x, v, 	dx, 

2 
-x 

= J ce  e 	cos(ax) g(x, v, C) dx, 

where 

= n I (1 - 

a = (C - 1) '17 

= P I  Po' 

n = 3 (V rb/K(rb ,P0)) / 2, 

= (r/rb ) -2/ 3  

(10.2.2) 

and h(x,v,c) and g(x,v,C) are odd and even rational functions of x 

respectively. 

We then give two methods of evaluating the integrals (10.2.1) 

In the first method we approximate the functions h(x,v,0 and g(x,v,c) 

by Hermite polynomial expansions, and using the properties of Hermite 

polynomials we devise an algorithm to numerically evaluate the integrals, 

and estinmte the errors involved. 	For sufficiently large values of 

the parameter a, given in Equations(10.2.2), the errors increase and 

we then use the second method of computing the integrals (10.2.1). In 

this latter method the integrals (10.2.1) are evaluated by solving a 

system of first order linear ordinary differential equations as an 

initial value problem. 

From the solution (10.1.2) we have 

N 5/2 
P 	
-3/2 

F 
= g  

o 	
exp 	(1-C

2
/0/41 

2 71 p
3  

	Ii 

DF 
o - T2 2 (n Cl 21J - 13/1 1) / (3 (r/rb )), Dr 

3F
o 

— (n
2
/(4 u

2
) - 3/(2u) + 1 2 /11 ), 3p 

Po 

(10.2.3) 



where 

= I0  s exp [ -s
2
(1-11)/n] Dm (s)Ym (sC) - Ym

(s)Jm (sC)] I 1  

/ [J2 (s) + Y 2 (s)] ds, 	 (10 . 2.4a) 

1
2 

= ai 1/au 

351. 

. 3 
= (1/0 fo  s exp[ -s

2
(1 -0/m] [Jm (s)Ym (sc)  

/[J 2 (s) + Y 2
m (s)] ds , 	 (10.2.4b) 

1
3 

= (m/C)I1  + 3I1 /3c 

2 = 	s exp[-s 2
(1-10/m] Um(s)Ym_ 1 (Cs) - Jm_ 1 (sC)Ym (s)] 

//[J 2 (s)2
m (s) + Y 2

m (s)] ds, 	 (10.2.4c) 

and m = 5/2. 

Since m is a half integer in Equations (10.2.4) we may express 

the ordinary Bessel functions in these equations in terms of spherical 

Bessel functions. Using the relations between the spherical Bessel 

functions j n (x), y(x) (n is an integer) and the ordinary Bessel 

functions Jn.01 (x), Yn+11 (x), i.e., 

j(x) = J-rr /(2x) Jn441 (x), 

(10 . 2.5) 
yn (x )  1ff  /(2x) Yrrol (x), 

and the results 

j 1 (x) = sin(x)/x 2  - cos(x)/x , 

j 2 (x) = (3/x3  - l/x) sin(x) - (3/x2 ) cos(x), (10.2.6) 

, y1 (x) = -cos(x)/x 2  - sin(x)/x, 

y2 (x) = (-3/x3+1/x) cos(x) - (3/x2 )sin(x), 

(Abramowitz and Stegun 1964, Section 10.1), we may write Equations 

(1n.2.4) as 
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r 

1 
= C 	LV j] /2

' 1 

12 
=-5/2 Cv

2
i
2 
+ v

3/2 
j
2
] / (2n), 

1
3 

= C
-312 

[v
2
i 3  + v

3/2 
j 3 ] 12, 

(10.2.7) 

where 

• -u
2 

11 = f e 	sin(au) [9+v(9C-3-3
2
)u

2 
+ c

2
v
2
u
4
] u/so (u,v) du, 

2 
• - 

i2 = f e
u 
 sin(au) [9+v(9c-3-3c

2
)11

2 
+ c 2v

2
u
4
] u

3
/so (u,v) du , 

_co 
2 

-u i
3 = f e 	sin(au) 13+(3c-1)v u

2
] u

3
/s0 (u,v) du, 

• -u
2 

j i  = I. e 	cos(au) [9(1-c)v +
2
)v

2
u
2
] u

2
/so (u,v) du, 

2 
j 2  = f.  e

• 

 

- u 

 cos(au) [9(1-C)v + 3(C- C
2)v2u2] u4

/
so

(u,v) du, 

j 3  = f 

• 

e 

- 

cos(au) [-3v(c-1) + v
2
c u

2
] u

4
/so (u,v) du, 

so (u,v) = 9 + 3vu
2 + v

2
u
4 , 	 (10.2.8) 

T / ( 1-0, 

a = 	(t -1).  

Tne results (10.2.8), snow, as mentioned previously in Equations 

(10.2.1) that the computation of F o  , aF Pr and aFo/Dp reduces to the o 
evaluation of infinite integrals of the form 

2 
-x 

i = I 	e 	sin(ax) h(x) dx, 	(10.2.9a) 
co 	2 

j = f, e x  cos(ax) g(x) dx, 	(10.2.9b) 

where 

h(x) = m(x,v,C) / so
(x,v), 

g(x) = t(x,v,C) / s o
(x,v), 

so (x,v) = v
2 (x-z1 )(x-1-1)(x+z1 )(x+7;1), 

z 	= 13/ve i7 / 3 , 
1 

(10.2.10a) 

(10.2.10b) 

(10.2.10c) 

(10.2.10d) 

m(x,v,c) and t(x,v,c) are odd and even polynomials of x respectively. 

To compute integrals of the form (10.2.9) we approximate the 
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rational functions h(x) and g(x) by Hermite polynomial expansions 

h(x) and g(x) of degree n. 	These expansions are 

where 

n h(t1) p+1(x) 
hn (x) = 	ak Pk (x)  = i

• 

0 (x-t i)p141 (ti ) 

n g(ti ) Pn+1 (x)  gn (x) = kE-0 ck Pk (x)  = 

• 	

(x-ti )13:11. 1 (t i ) 

(10.2.11a) 

(10.2.11b) 

(-1)
k 

e
x
2 	

k 	2 

Pk (x)  = 	 
d 	1 
	 H

k(x). / 	, k (e-x  ) - i2k 
4 2k  k'  ,i7  ax 	j 	k: i.n 	(10.2.12) 

Here Hk(x) is a Hermite polynomial of degree k, Pk(X)  is the normalised 

formofyx)andtlieconstantst.are the roots of pn+1(x),  i.e., 1 

pn+I (t
i
) = 0, 	i = 0(1)n, 	(10.2.13)  

and 
2 

-x 
I.  e 	pk(x) pz (x) dx = 

kR, 
(10.2.14) 

Note that since 

h (t 1) = h(ti), 	i = 0(1)n, 	(10.2.15a) 

g (ti) = g(ti ), 	i = 0(1)n, 	(10.2.15b) 

the polynomial expansions h(x) and g(x) are the Lagrange interpolation 

polynomials for h(x) and g(x) with interpolation points located at 

x = t i , i = 0(1)n. 

The coefficients ak and c k  occurring in the expansions (10.2.11a) 

and (10.2.11b) are given by 

• a k 
	1  

(n+1) _ 
	h(ti) pk (t i )/p

2
n (t i), k = 0(1)n, 	(10.2.16a) 

ck

• 

(n+1) i0 
1 	2 

= 

 

E g(ti) pk (td/pn (t i ), k = 0(1)n, 	(10.2.16b) 

(See Appendix (E)). 



354. 

The roots of t i  of p114.1 (x) and the constants pk (t i ), 

k = 0(1)n, i = 0(1)n, occurring in the expansions (10.2.16)for a k  

and ck can be computed as follows. The normalised Hermite poly-

nomials satisfy the recurrence relation 

p
k+1

(x) = I2T(1--(+1) x pk(x) - ,Th(1-1(+1) pk-1(x),  k = 0(1)n, 
(10.2.17) 

(Abramowitz and Stegun 1964, Section 22.7). We can write the result 

(10.2.17) in the form 

x Pk (x) = M 	+,14n7iVi(1 	Pn+1 (x)6k,n k
' = 0(1)n, 

(10.2.18) 

where the summation convention has been assumed and 

Mkt  = Ak+1)/2 6 9.,k+1 	5.7i  62,+1,k. 	
(10.2.19) 

We can regard the Mkt  as the elements of a symmetric tridiagonal matrix 

M. 	Noting that at x = t i 
we have p +1 (t) = 0 so that the second 

term in (10.2.18) is zero and 

ti Pk(ti) = Mkt (ti ) p t (t i), k, 2. = 0(1)n. 	(10.2.20) 

Introducing the column vector P(i) = (po (t i), p1 (ti ), 	po(ti)) T  

where the superscript T denotes the transpose, the set of linear 

equations (10.2.20) can be expressed in the matrix form 

t
i 
_11(i) = M • — i = 0(1)n. 	(10.2.21) 

This latter result shows that the roots t and the column vectors 

[po (t i), p i (t), 	, p(t)], i = 0(1)n, are the eigenvalues and 

eigenvectors of the symmetric tridiagonal matrix M. This eigenvalue 

problem for the roots t i 
and the eigenvectors P(i) is readily solved 

by using the theory of Sturm sequences (Hammarling, 1970). 

Substituting the Hermite polynomial approximations (10.2.11) 

for h(x) and g(x) in the integrals (10.2.9) we obtain approximations 



and 

J
2k 
 = K

2k+1 = 0,  
k  _a2/4 

J1 	
= n e 	, 

K 	= air 1/4 e
-a2/4 

0 	, 

(10.2.25) 
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i (n)  and j (n)  to the integrals i and j: 

-x 2 
i
(n) 

 

= f  e 	sin(ax) h(x) dx = 	E  a J (a) 	(10.2.22a) n  
k=0 k k 	' 

2 
.(n) 	cc, 	-x 

 

= f 	e 	cos(ax) g(x) dx = kio  ck  Kk (a), 	(10.2.22b) -op 

where 

. 	2 

	

k (a) = I 	e-x  sin(ax) Pk(x)  dx 

2 
= n sin(kn/2) a

k 
e
-a /4/ P71-7, 

2 
co -x 

Kk (a) = I. e 	cos(ax) Pk(x)  dx 

k -a
2
/4 

= n 4  cos(kn/2) a e 	/  

(10.2.23a) 

(10.2.23b) 

This is the algorithm we use in the next section to evaluate the 

integrals (10.2.8) and hence Fo , 3F0/3r and aF0/3p. 

We have changed the problem of evaluating the infinite 

integrals (10.2.8) to one of finding the eigenvalues and eigenvectors 

of a symmetric tridiagonal matrix. The accuracy can be increased by 

increasing n, the degree of the polynomial approximation and the 

procedure is satisfactory when the parameter a is sufficiently small 

for i (n) and j
(n) to be good approximations to i and j. 

The results (10.2.23a) and (10.2.23b) are standard integrals 

for Hermite polynomials (Erdelyi et.a/., 1954, Vol.1, Sections 1.11, 

2.10). Since the functions Jk(a) and Kk(a) satisfy the recurrence 

relations 

=-(a
2
/ j8k(2k+1) ) J 2k-1 ' 	

k 	1, 
j 2k+1  (10.2.24) 

K2k 
	= -(a

2
/ J8k(2k-1) ) K2k_ 1 , 	k 	1, 
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we may sum the series (10.2.22a) and (10.2.22b) most efficiently by 

using Clenshaws algorithm, (Clenshmw, 1955). In the present application 

wecoristr"tsequenc"Ibidol 	j = N(-1)0, 

b
k 

= a
2k+1 - (a

2 
/18(k+1)(2k+3) ) 

 
(10.2.26) 

e. i■ c
2j 

- (a
2 

/ ,./80+1)(2j+1) ) ej+1 , 

where 

l (n-2)/2 	if n even, 

n/2 	if n even, 
N = 

(n-1)/2 	if n odd. 

b
M+1 

= e
N+1 

= 0, 

then the series (10.2.22a) and (10.2.22b) are given by 

i (n) 

	

= 	E 	 b
0 

J
1 k 	

a
=0 2k+1 32k+1 = 

	

j(n) = 	k0 c2k K2k = e0 1(0
. 

= 

(n-1)/2 	if n odd, 
(10.2.27) 

(10.2.28) 

Summarizing we determine the integrals (10.2.9) by evaluating 

the a k 
and c and then summing appropriately to find b

0 
 and e

0
' The 

ak and ck 
in turn have been found from the expressions (10.2.16) which 

require Pk(ti)  and t i  which are obtained as the eigenvalues and eigen-

vectors of the symmetric tridiagonal matrix (10.2.19). 

Another important aspect of calculating the integrals (10.2.9a) 

and (10.2.9b) by using Hermite polynomial expansions for h(x) and g(x) 

isthatwemayobtainasymptoticestimates =i -
(n) 

and R
(n) = j - j

(n) for large n by using methods of complex inte-

gration (Donaldson and Elliot, 1972; Paget and Elliot 1972). Using 

thesemethodswecanshowthatthe and&for functions 
1 
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h(x) and g(x) of 

= 

R (n) = 

where 

	

q(za) 	= 

	

Q(zi,a) 	= 

	

h(x) 	= 

	

g(x) 	= 

	

so (x,v) 	= 

z 1 

the form (10.2.10), 

2 
fw 	e-x 	sin(ax) 

- 2 Im (m(zi ) q(zi ,a) 

2 -x I cc. 	e 	cos(ax) 

-2 Im(t(z
1 ) Q(z 

2 
-x I. e 	sin(ax) 

2 
-x I. e 	cos(ax ) 

m(x)/s0 (x,v), 

t(x)/s0 (x,v), 

v
2 

(x-z1)(x- 1
.F )(x+z 

are given by 

[h(x) - hn (x)] 	dx. 

/ 	(3 V-
5 v z1 Pn+1(x1)))' 

(10.2.29a) 

(g(x) - gn (x)) 	dx 

a) 	/ 	(3 	v zl pn 1 	))),(10.2.29b) 

P +1 (x) / 	(z1  -x) dx, 	(10.2.30a) 

p+1(x) / (z1-x) d x, (10.2.30b) 

(10.2.30c) 

(10.2.30d) 

, 	11 ),  (10.2.30e) 

(10.2.300 /57;  ei" 3 , 

m(x) is an odd polynomial and t(x) is an even polynomial (Appendix(F) ). 

The result (10.2.29a) is exact for n > the degree of m(x) and the 

result (10.2.29b) is exact for n > the degree of the polynomial t(x), 

but it is only practicable to evaluate these errors for large n. 

Asymptotic estimates of the errors are obtained by using 

asymptotic expansions of the functions q(z i ,a), Q(zi ,a) and  

To obtain these expansions we express the functions q(z i ,a), Q(z i ,a) 

in the alternative form: 

q(zi ,a) = (Cn+1 (z1 ) sin(azi ) - 	cos((n+1)n/2) d 1  

+ 4r-17-  sin( (n+1) n/2) d 2 )/kni4 , 	(10.2.31a) 

Q(za) = (Cn+1 (z 1 ) cos(az1 ) + fi- sin( (n+1) n/2) d
1 

+ ifiTcos( (n+1) n/2) d 2 )/k 1 , 	(10.2.31b) 

where 



= -x C 	(z ) = 	e n+1 1 	_oo 	H
n+1 	1 

(x) / (z -x) dx / k
n+1 

, 	. pa _n+1 e-x
2
/4 cos  ( (o_.x) z

1 ) dx al '0 x  

n+2.= 
2 -2x  J exp (-(n+2)x - 

	

0 	e 
. a 	

a 	/4) cos (a(1-e-x) z1 ) dx, 

(10.2.31c) 
d 	. Icot xn+1 e-x

2
/4 sin( (a_.  

2 	 x) z1) dx 

	

n+2„=. 	-2x . o 	
J  . 
o exp(-(n 	- a2 

e 	/4) sin 
 (o (1-e-x ) z1 ) dx, 

(10.2.31d) 2 
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-i(n+2)7/2 	 -1.7 2 = e 	V71.  (n+1): U( (n+2)/2, 1/2, e 	z1 ), 

(10.2.31e) 

j2n+1 (n+1):  Tr  k
n+1 	

, 	
(10.2.310 

H(x) is the usual Hermite polynomial and U(a,b,x) is a standard 

solution of Kummer's confluent hypergeometric equation (Abramowitz 

and Stegun, 1964, Chapter 13). 

We then substitute asymptotic expansion for C 114.1 (z i), di  and 

d2 of Equations (10.2.31c) - (10.2.31e) into the expressions (10.2.31a), 

(10.2.31b) for q(z ia) and Q(z i ,a) to obtain the asymptotic behaviour 

of q(zi ,a) and Q(z i ,a). 	Finally we substitute the asymptotic expansions 

for q(z
l
a), Q(z

l'
a) and 

pn+1(z1)  in the results (10.2.29a) and 

(l0.2.2913) and obtain asymptotic estimates of 11 (1°  and 

The asymptotic behaviour of C ni_ 1 (zi) and lo
n+1 - (zl - ) for large n - 

is given in Elliot (Technical report 21), and 

'x• 	
n+2e-a2/4 

d
1 	

a   [
1  

(n+2) 	
+ a

2
/(2(n+2))+(a 4

/4-a
2
-a

2 
1
2
) /(n+2) 2 

+ 0 (a6
i(n+1) 3

)] , 

an+3
1 e

-a2/4 _ 

d
2 

'A, 	
2 	

[1 + (a 2-1) / (n+2) 
(n+2) 

(10.2.32a) 

+ (a
2 

(3a
2
-z

2
-9/2) + 1) /(n+2)

2 
+ 0(a

6
/(n+2) 3 

 ) , (10.2.32b) 1 
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are the asymptotic expansions of the integrals d 1  and d 2 . 	The 

asymptotic expansions (10.2.32a) and (10.2.32b) were obtained by 

expanding the integrals (10.2.31c) and (10.2.31d) by integration by 

parts (cf. Erdelyi, 1956). 

In the computations of Fo , aF o/ar and aFo/ap presented in 

(n) 	(n) 
thenextsection,theerrorsR.and R. 	in evaluating the integrals 

(10.2.8) in general decrease with increasing n. 	However as 

p = po/p -0- 1, the parameters v = n/(1-p) and a = (c-1)/v increase 

very rapidly and the errors eventually become so large that we cannot 

use the approximations i (n)  and j (n)  of Equations (10.2.22a) and 

(10.2.22b) to evaluate the integrals (10.2.8). Hence an alternative 

method of evaluating the integrals (10.2.8) for p = p/po  1  1, (p/po  <1), 

was devised and we outline the method below. 

In this method we first express the integrals (10.2.8) in a 

slightly different form and we introduce integrals y i(c,c), i = 1(1)8 

where 

= ( 1-P) / n, 

which are closely related to the integrals (10.2.8). Noting that 

1-p = (1-p/po ), we see that e is small when p -0- po . We then show 
d Yi (e,C) 

that{yi (c,c)} and { 	de 	} , i = 1(1)8 are linearly related and 

the yi 's satisfy a system of linear, first order, ordinary differential 

equations with the independent variable being e.  Since we can obtain 

analyticexpressionsfory i (0,C), (i.e., the value of y (C,C) for 

p/p
o 
= 1) we can solve this system of differential equations for 

yi
(c,c), numerically as an initial value problem, and hence we evaluate 

the integrals (10.2.8). 

The integrals i, i 2 , i3 , j 1 , j 2,  and j 3  given in Equations 

(10.2.8) are related to the integrals y i (c,c), i = 1(1)8 as follows: 
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where 

• 2 c yl  (e,c) . 
1 

1 2 = -2 e
2 

 

1
3 

 

 2 e
2 
Y5(E,C), 

2  VT Y 3 (E,C), 

j2 	-2 E
3/2 

Y4(E,C). 

j 3  = 	2 E
3/2 

Y 7 (E,C), 

(10.2.33a) 

(10.2.33b) 

(10.2.33c) 

(10.2.33d) 

(10.2.33e) 

(10.2.330 

= 	1/v 	= (1-0/n,  (10.2.34a) 

Yi(c,c)f' e-s
2e s(94.(9c...3-3c2)s 	s 2+c24

) 
 

0 	(94.3s24.s4) 	
sin((c-1)s) ds, 

(10.2.34b) 

y 2 ( c ,c ) = 
d • -s

2 n. 	e 
s
3 (9+(9c-3-3C 2

)s
2
+C

2
s
4
) sin((c-1)s) ds, 

de 
- -I e 

(9+3s
2
+s

4
) 	(10.2.34c) 

• -s 2e 
s
2 (9(1-0 + 	2 )s

2 
 ) cos((c-1)s) ds, Y3 (E,C) = fo  e 

(9+3s
2+s4 ) 	(10.2.34d) 

dy3  .... -s 2E s
4 (9(1-0 + 3(C-.0

2
)s  

Y4 (E,C) = de 	=
0  e 
	 cos((C-1)s) ds, 

(9+3s 2+s4 ) 	(10.2.34e) 

• -s 2e s3 (3+(3c-1) 8
2
)  sin ((c-1)s) ds, 	(10.2.340 

Y5(E,0 
= 10 e 

(9-4-3s
2+s

4
) 

dY5(E,) 	-s
2c s

5
(3+(3c-1)s

2
)  

y6 (E,C) - 	de 	
= 	1

0  e 	
sin((c-1)s) ds, 2 4 

(9+3s+s) (10.2.34g) 

-s 	s4 (3-3C+Cs
2
)  

Y 7 (E,C) = f o  e 	
(9+3s

2
+s

4
) 	

cos((c-1)s) ds, (10.2.34h) 

Y8 (E,C) - 

dy7(e,c) -s E S  
2 6„ 	2, 

	

= 	)  
• — 	e 	cos ((c-1)s) ds, 

de 	f0 2 
(9+3s+s

4 ) (10.2.34i) 

Note that the variable of integration s is related to that used in 

2 	2 
Equations (10.2.8) by s = v u. 
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The integrals (10.2.34) satisfy the system of ordinary 

differential equations 

dyi dy2  

de 	- Y2' 	de 	ql 	3  Y2 - 9  Yl ,  

dy3 	dy4  

de 	- Y4 , 	de 	
= 	n+117 	9.7 

'3 ' - '4 - - '3' 

dy5 	dy6

• de 	= Y6' 	de 	
- 	n 4-1v 

'5 ' - '6 - 9 Y5' 

(10.2.35) 

dy7 	dy8  

de 	
. y8, 	

de 	
- 	n  iv 

'7
+ 
 - '8 - 9 Y 7 ,  

where 

2 
• -s E 

ql  10 	s(9+(9C-3-3C
2
)s

2 
+ c

2
s
4
) sin((C-1)s) ds, 

= -s
2
c  

(13 	
2 

I
o 

e 	s (9(1-C) + 3(C-c
2
)s

2
) cos((c-1)s) ds, 

(10.2.36) 
• -s

2
e  

q5 	
I
o 

e 	s
2 
 (3+(3c-1)s

2
) sin ((c-1)s), 

(1 7 
=  e I0   

▪ -s E 4 
2  , 

s (3(1-C) + Cs
2
) cos ((C-1)s) ds. 

In the system of ordinary differential equations (10.2.35) the 

quantities ql , q3 , q 5  and q7  are independent of the y i 's and are 

functions of e and c only. 

We now obtain analytic expressions for q l , q3 , q 5  and q 7 . 

Expressing the polynomial parts of the integrands of the integrals 

(10.2.36) in terms of Hermite polynomials and then using the results 

2 
-s 

fo  e 	Hk(s) sin(as) ds = fc e
-a2/4sin(ku/2)/2, (10.2.37a) 

_2 s  
I e 	Hk

(s) cos(as) ds = 	e-a2/4cos(kn/2) 
0 

(10.2.37b) 

where H
k
(s) is an Hermite polynomial of degree k (Erdelyi et.ca., 1954, 
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Vol.1, Sections 1.11, 2.10), we obtain 

q1 = 9 Z1 
+ (9c - 3 - 3c

2
) Z 3 + c

2 
k5' 

q3  = 9(1-c) m2 + s(C-C
2
) m4' 

(10.2.38) 

5 

q 7 

where 

1 

= 

= 

= 

	

3 2.
3 
+ (3c-1) 	£5 . 

3(1-C) m4  + Cm6 , 

2„ 
/7 a e-a 14  

	

/ 	(4c), 

R
3 

(6a-a 3 ) 	e-a2/4  / 	(16E 2), 

Z5 
= (a 5 - 20a3 + 60a) 

e-a2/4 
/(64e 3), 

2 	-a2/4 	3/2 (10.2.39) 
m2 

m4 

k/7- 	(2-a) 	e 	/ 	(8E), 

497 	(a4-12a 2+12)e-a2/4 / 	(32e5/2) , 

a = 

(-a 6  +30a
4 
 - 180a2+120)e-a2/4  / (128c 7/2 ), 

(c-1) /v , 	c = 	1/ v = (1-0/n. 

The expressions (10.2.38) for ql , q3 , q5  and q 7  and the associated 

quantities (10.2.39) are easily evaluated and we use these results when 

we numerically integrate the differential equations (10.2.35) to 

obtain the y i 's. 

Finally we evaluate the integrals (10.2.34), i.e.,  

i = 1(1)8 at e = 0 by using the methods of complex integration. For 

E = 0 these integrals have one of the forms 

• = I 

• 

u(s) sin [(C-1)s] / (s
4 + 3s

2 
+ 9) ds, 

0 

or 	 (10.2.40) 

• = I 

• 

w(s) cos [(C-1)s] / (s
4 + 3s

2 
+ 9) ds, 

0 

where u(s) is an odd polynomial and w(s) is an even polynomial. 
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Using Cauchy's theorem in the complex s plane we can show that the 

integrals (10.2.40) have values 

IM (11(S ) ei  (c-1)s 1  1) / 3 1-3. 

and 

r Re (w(si) 
ei(c-1)s1 . s 1)  / 3  

where 

• 8 1 =  ei7T/3 

(10.2.41) 

(10.2.42) 

and we use these results to evaluate the integrals y 1 (0,0, i = 1(1)8. 

In this way we obtain 

= 	-y3 (0,) 

= 	-Y4 (121,C)  

= 

= 

1) 1  P + al  Q, 

b 2 P 	a2 Q ' 
(10.2.43) 

= -y7 (0,1) = b 5  P + a 5  Q, 

= -y6 (0,c) = b 6  P + a6  Q, 

27(1-0/2, = 	9 IT (3c-1-c 2
)/2, 

-27c/2, b 5 = 	9 15 (2-3C)/2, 

3(a1+fib1 )/2, b 2 	= 	3(b1-.5 a1)/2 ' 
(10.2.44) 

3(a5+19 b 5)/2, b 6 	= 	3(b 5-I3 a 5 )/2, 

Upon substitution of the expressions (10.2.38), (10.2.39) for 

ql , q 3 , q 5  and q 7  in the differential equations (10.2.35) and numeri-

cally integrating the latter set of equations with initial values 

yi (0,c), i = 1(1)8, given by Equations (10.2.43), (10.2.44) we obtain 

a
5 

= 

a2 = 

a6 = 

P 	. Tr exp[-3(C-1)/2] coski - C- 1)/2 7, 

Q 	. it exp[-3(C-1)/ 2] sin[,/I(C-1)/2 ], 

as values for y 1 (0,c), i = 1(1)8. 
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numerical values for y i (c,c). Hence using the results (10.2.33), 

(10.2.7) and (10.2.3) we evaluate F 0 ,DF0/Dr, and aFo/ap. 

We note that the expressions (10.2.7) for I
1,  1 2 

and I
3' 

given 

In terms of y i (c,c) are : 

-5/2 
I
1 
 = c 	[Y1 (e9C) + Y 3 (c,C)], 

12 = -C 
 
Cy2 (c,c) + y4 (c,c)] /11 , 

1
3 
	c-3/2 EY5 (c,c) + Y 7 (c,c)] . 

(10.2.45) 

Using the values of y 1 (0,c), i = 1(1)8, given in Equations (10.2.43), 

(10.2.44) in Equations (10.2.45) we find that at 

= 0, r A rb  (i.e., p = po , r # rb ), 

I
1  = 12 = 1

3  = 0. 	 (10.2.46) 

Substituting the above values of I ,  1 2 
and 1

3 
into the expressions 

(10.2.3) for Fo , aF0/3r and DF0/3p we find that for r 	rb  

Fo (r,p0) = 3F0 (r,p0)/ar = aFo (r ,P)/301
p=p  = 0, (10.2.47) 

which shows that the differential number density, the streaming and 

the gradient DF 0 /ar are all zero at p = p o  and for r A rb , 0< r< r
b

. 

The numerical methods presented in this section are quite 

complex; we use them in the next section to investigate the physical 

characteristics of the solution (10.1.2). 

10.3 Characteristics of the solution  

In this section we show some of the basic physical character-

istics of the solution (10.1.2) which has U 	N
g 
 6(p-i)  as r 	rb . 

P  

We note against that the solution depends on the dimensionless quantities 

V r
b
/K(r

b
,p

o
), r/r

b 
and p/p

o 
and the diffusion coefficient has the 

7/3 
form K=K

c
pr 

 
Since 
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V rb /K(rb ,p0) = (V r/K(r,p0 ) ) .  

the solution may alternatively be expressed in terms of V r/K(r,p 0 ), 

r/rb  and p/p
o

. 	The latter formulation in terms of V r/K(r,p
o
), 

r/r
b 

and p/p
o is particularly useful in showing the relation of the 

solution (10.1.2) to the monoenergetic galactic spectrum solution 

(8.1.1) for K = K
c 

p r
7/3 

obtained by letting r
b 
 C°  • 

Using the methods of Section (2) we calculate F o , DF0/Dr and 

aFo /ap and we investigate the momentum dependence of 

(i) the distribution function F
o

, 

(ii) the differential number density U = 4 7 p 2 
F
o' 

(iii) the radial gradient G
r 
= (1/U ) DU /Dr, and 

P 	P 

(iv) the radial differential current density S. and the 

convective and diffusive components of S which we denote by S
c 

and 

S
d' 

i.e., 

S
c =  - 4 7 p

3 
(V/3) 3F

o
/Dp, 

S
d 

= -4 7 p
2 

K DF
o
/Dr, 

S 	= S
c 

+ S
d

. 

In Figure 10.1 these quantities are plotted against p/p o  

for V r
b
/K(r

b'
p
o
) = 0.005 and r/r

b 
= 0.01, 0.1 and 0.9. In Figure 

10.2 they are plotted against p/p o  for r/rb  = 0.1 and values 0.0005, 

0.005 and 0.1 of the parameter V rb/K(rb ,p0 ) and Figure (10.3) shows 

similar plots for V r/K(r,p0) = 0.11753 and rb /r = 1.01, 1.1, 2.0 and co. 

The F
o 
or U curves of Figure .10.1 show the radial redistri-

P 

bution of particles, initially injected with momentum p o  from the 

free escape boundary at r = r b . There is a substantial peak in the 

distribution in the vicinity of po . As we approach the boundary, i.e. 

r/rb  4 1, the peak moves towards p
o
, narrows in width and increases 
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in peak value and U 	N (p-p), 
P 	g 	

0 
 

The F
o curves also show that Fo -4- 0 as p 0. For r/rb 

= 0.9 

and 0.1, there is a second peak in the distribution function at the 

low end of the momentum range due to an accumulation of particles 

which have lost momentum to the solar wind. As r increases towards 

the boundary radius rb , the peak moves towards p = 0 and diminishes 

in peak value. 

The radial gradient curves of Figure 10.1 show that for each 

p, (p < pc) ) that as r increases from zero the number density increases 

to a peak and then decreases, and that the radial position of the peak 

moves outward as p decreases. 	This represents particles being fed 

into (p, p + d p) by the energy changes but being excluded from the 

inner regions by the outwardly moving scattering centres. 

The streaming curves of Figure 10.1 are quite complex, but 

have the same basic structure as the monoenergetic galactic spectrum 

solution (8.1.1) results presented in Figure 8.3a . Although it is 

not obvious from the curves of Figure 10.1 the calculations show that 

near the sun S changes from - ve to + ve as p increases from 0 to p
o

, 

and at larger radii S changes through the sequence -ve, + ve, - ve, 

+ ve as p increases from 0 to pb . 

The curves of Figure 10.1 show the dependence of the solution 

on heliocentric radius for a range of interplanetary conditions. 

For example if K(r,p) = 3 X i0 	s-1  at a radius of 1 A U, and 

1 G V rigidity, V = 4 X 10
5 
m s

-1 
and rb = 10 A U, the Fo 

curves for 

r/r
b 

= 0.9, 0.1 and 0.01 of Figure 10.1 represent, respectively, 

the distributions to be obtained at r = 9, 1 and 0.1 A U from protons 

injected with a kinetic energy of 1.14 GeV from the boundary at 
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rb = 10 A U. 

The curves of Figure 10.2 show the dependence of the solution 

on the parameter V rb /K(rb ,p0), and they can be interpreted as 

indicating the changes in the solution due to changes in the solar 

wind speed V, the diffusion coefficient constant Kc  (recall 

K = K
c 

p r7/3), or the injection momentum p o
. 	The curves are very 

similar to those of Figure 10.1, and as a consequence we shall not 

discuss them in great detail. 

For the two smaller values of V rb/K(rb'po)  in Figure 10.2 

the distribution function has a substantial peak in the vicinity of 

p. As V b /K(rb ,p0) 0, the peak moves towards p o
, decreases in 

width and increases in peak value and U -4- N d(p-p o
). 

For V rb/K(rb ,p0) = 0.005 and 0.0005, there is a second peak 

in the distribution function at the low end of the momentum range. 

As V rb/K(rb'po)  decreases, the peak decreases in amplitude and moves 

towards p = 0. 

If we interpret the curves as indicating the changes in the 

number density, the gradient and the streaming at fixed r for various 

p
o
, they show that particles of lower p

o 
are more spread from the delta 

fOction of injection and are more attenuated. The radial gradient 

curves show that a greater proportion of particles with lower p c  are 

excluded from the region enclosed by a spherical surface at radius r, 

due to the decreased diffusion coefficient for these particles. Assum-

ing a diffusion coefficient K(r,p) = 3 x 10
17 

m
2 s-1 at r = 1 A U and 

P = 1 G V, V = 4 x 10
5 
m/s and r

b 
= 10 A U, the F

o 
curves of Figure 

10.2 represent, respectively, the distributions to be obtained at 

r = 1 A U from monoenergetic protons, intially at r b  = 10 A U with 
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kinetic energies, T o , of 17.6, 1.14 GeV and 4.53 MeV. 

The curves of Figure 10.3 show the changes in the momentum 

dependence of the solution at fixed r and po  when we vary the position 

of the free escape boundary at radius rb . As rb/r decreases . , F
o 

and 

U decrease fairly uniformly over most of the spectrum. For smaller 

values of r/r
b 

(i.e., larger values of r
b
/r) we might expect F

o 
and 

U to decrease due to the exclusion of particles from the inner regions. 

However the F
o and U curves of Figure 10.3 show that this is not 

the case, and that there is a reduction in the number density as r b /r 

decreases which must be due to the free escape of particles across 

the boundary. The curves for r b  = co in Figure 10.3 were calculated 

from the monoenergetic galactic spectrum solution (8.1.1) for 

K = K
c 

p r 7/3 and V r/K(r,p0 ) = 0.11753. 	We note that at radii 

r/r
b < 1/2 there is little difference between the monoenergetic galactic 

spectrum solution (8.1.1) curves and the corresponding results for the 

free escape boundary solution (10.1.2). Using the numerical values of 

the diffusion coefficient at 1 A U and 1 G V,and the solar wind speed 

V, assumed in the previous paragraph, the F o  curves rb/r = 1.01, 1.1, 

2.0 and co of Figure 10.3 represent, respectively, the distributions 

to be obtained at r = 1 A U from protons released from rb  = 1.01, 1.1, 

2.0 A U and infinity with kinetic energy T o  = 1 GeV. 

The features of the free escape boundary solution (10.1.2) 

investigated in this chapter are quite similar to the monoenergetic 

galactic spectrum solution (8.1.1) results displayed in Figure 8.3 

Finally we remark that the basic effect of the free escape boundary 

is to reduce the values of F
o 

and U
P 
below the values obtained for 

the corresponding monoenergetic galactic spectrum solution obtained 

when r
b 

=, and at r/r
b
<< 1 there is virtually no difference between 

the solutions. 
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Figure 10.1 - The momentum dependence of various physical 

quantities associated with a monoenergetic galactic spectrum 

of particles at heliocentric radius r b , for the solution 

(10.1.2), in which U 	N
g 
 d(p-r 0) as r + r

b' 
and the 

P  

diffusioncoefficienti((r4).1(c pr 7/3
. The figure is drawn 

for V rb /K(rb ,p0) = 0.005, and for values 0.9, 0.1 and 0.01 of 

the heliocentric radius variable r/rb . Shown (in dimensionless 

form) are 

(a) the momentum average distribution function Fo (r,p), 

(b) the differential number density U = 4 it p 2 
F
o

, 

(c) the radial gradient G
r 

= (1/U )(au /ar), 
P 	P 

(d) the radial differential current density S and its 
convective and diffusive components Sc  P 
and S

d' 
i.e., 

S = - 4 7 p3 (V/3) aF
o
tap , 

S
d 
= - 4 7 p

2 
K(r,p) aF0/31-  , 

S = S
c 
+ S 

Here 

= p
3
o 
FIN 
og' 

= p U/N 
op g

, 

Grad(log(Up)) = rb Gr' 

S
c 
= p S / (V N ), o c 

-S"  rd 
= p

o 
S
d 

/ (V Ng ) 
g 

-§
P 

= .c + -§d = p 
o 
 S / (V N 

g
), 

p  

are dimensionless forms ofF,U G,S,S and S. o 	p'rcdp 
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Figure 10.2 - The momentum dependence of various physical 

quantities associated with a monoenergetic galactic spectrum 

of particles at heliocentric radius r
b' 

for the solution 

(10.1.2), in which U
P 
 + N

g 
 6(p-p0 ) as r + rb' and the diffusion 

coefficient K(r,p) = K
c 

p r7/3 . The figure is drawn for 

r/r
b 

= 0.1, and for values 0.0005, 0.005 and 0.1 of the para-

meter V rb/K(rb'po).  Shown (in dimensionless form) are: 

(a) the momentum average distribution function Fo (r,p), 

(b) the differential number density U = 4 ffp 2 
F
o

, 

(c) the radial gradient G
r 

= (1/U n) • (DU /Dr). 

(d) the radial differential current density S and 
its convective and diffusive components P  
S
c 
and S

d 
i.e. 

S
c 

= - 4 ir p
3 

(V/3) DF0/3p , 

S
d 

= — 4 Tr p
2 

K(r,p) aF0/3r , 

S = Sc +s d 

Here 

p 3 F / N , 0 	0 o 	g 

= p
o 

U
p 

/ N
g 

, 

Grad(log (Up) ) = rb  Gr , 

c 
= p S / (V N ), 

o c 

= p
o  Sd  / (V Ng ), 

= 	+ d = p 
o 
 S 

p
/ (V Ng ) 

are dimensionless forms of F
o
, U

p
, G

r
, S

c
, S

d 
and S . 
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Figure 10.3 - The momentum dependence of various physical 

quantities associated with a monoenergetic galactic spectrum 

of particles at heliocentric radius r
b' 

for the solution 

(10.1.2), in which U
P 
 + N

g 
 d(p-r)0) as r + r

b' 
and the diffusion 

coefficient K(r,p) =K
c
pr

7/3
. The figure is drawn for 

V r/K(r,p) = 0.11753. It shows the dependence of the solution 

on the position of the boundary r b , through the parameter r b /r 

which has values of 1.01, 1.1, 2.0 and infinity. 	Shown (in 

dimensionless form) are: 

(a) the momentum average distribution function Fo (r,p), 

(b) the differential number density Up  = 4irp 2  Fo , 

(c) the radial gradient C
r = (1/U ) . (3U /r) 

(d) the radial differential current density S and its 
convective and diffusive components Sc 
and S

d' 
i.e., 

S
c = - 4 IT p

3 
 (V/3) 3F0 /Dp , 

S
d 
= - 4 n p

2 
K(r,p) 3F0/3r , 

= S
c 
+S 

d 
. 

Here 

= p3  F / N , 
o 	o o 	g 

= p
o 

U
p 

/ N
g

, 

Grad (log(U )) = r G , sr 

Sc
= p o 

 S 
c

• / (V N ), 

-S" = 	+ 	= p S / (V N ) , 
op 

are dimensionless forms of F o
, U

p
, G

r
, S

c
, S

d 
and S and 

r
s 
= (K p /V) 

	is a characteristic length. 
c o 
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APPENDIX A 

In this appendix we derive two sets of partial differential 

equations associated with the spherical symmetric similarity solutions 

of Chapter (5). These solutions, expressed in terms of F o  are of the 

form 
F
o 

= a(z,t) g(z,T), 	 (A.1) 

where the similarity variable z is a function of heliocentric radius r 

only, T and t are functions of momentum p. 

We obtain a partial differential equation for F o (z,t) in terms 

of the variables z and t. This equation is obtained by transforming 

the variables from (x,t) 4  (z,t) in the spherical symmetric, separable 

form of the transport equations (2.2.7) and (2.2.8). 

The function a(z,t) and the variable T are then chosen so that 

g(z,T) satisfies an equation of the form 

1 	3 \ 
q(z) 	Dz k P` z' az ) =  : T 	9  

with appropriate p(z) and q(z). 

(A.2) (A.2) 

There are four cases to consider corresponding to the diffusion 

coefficients: 

(i) K(r,p) = K
o r

b 
p
3(b-1)/4 	b > 1, 

(ii) K(r,p) = Ko  rb , 	b <1, 

(iii) K(r,p) = Ko  rb , 	b >1, 

(iv) K(r,p) = Ko  r, 

and we now investigate these cases in detail. 

Case (i) 	K(r,p) = Ko r
b 3(b-1)/4  

In this case the similarity variable z, and t are given by 

Equations (5.2.3) and (5.2.2), i.e., 

t = 2K
0 

p
3(1-b)/4 1 (V(b-1)), 

(1-b)/2 
= x/t = V r /K, 	(A.3) 

o 
 

= 2(rp
3/2

)
(1-b)/2  

/ (b-1), 
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and from Equation (2.2.7) 

2n+1 
DF

o 	
aFo 32F

o  
(A.4) 

ax
2 3x 	at ' 

is the transport equation for F o . 

Transforming the variables in (A.4) from (x,t) 4  (z,t) we 

have 

3 	1 
3x 	t 	az ' 

a 2 a 2 

D 2 z 2 x 	t  a 	' 

	

_a 	_za 
at 	— at 	t az 

(A.5) 

for the transformations of the partial derivative operators. Using 

these transformations Equation (A.4) becomes 

3 2Fo2 	aF 
2 

3F 

az
2 	( z

o + zt ) a: 	
' 	(A.6) 3t 

n+1 
 

which is the transport equation in terms of z and t. 

In order to transform the partial differential equation (A.6) 

to Sturm Liouville form, the similarity solution (5.2.5): 

F
o 
= [exp(-z

2
t/4) t

-n-1 	
z
-n 

exp(-x/t) (A.Im(/i z) + B.Km 	z)), 

suggests that we choose 

a(z,t) = exp(-z
2
t/4) t

-n-1 

as the expression for a(z,t) in Equation (A.1). Putting 

= -1/t, 

F
o 
= a(z,t) g(z,t), 

Equation (A.6) for Fo  reduces to 

1 	3 	z2n+1 	. 

2n+1 	3z k 	3z 	9T 

(A.7) 

(A.8)  

(A.9) 

Equation (A.9) for g(z,T) has separated solutions which satisfy a 
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Sturm-Liouville equation and it is the equation for g(2r.,T) that we 

set out to obtain. 

Case (ii) 	K(r,p) = Ko  rb , 	b < 1 

In this case the similarity variable z, and t are given by 

Equations (5.2.10) and (5.2.11): 

= V r
i-b 

/ (K0 (1-b)) = -x /(40, 	(A.10) 

t = K
o 
p 3(1-b)/2 / (V (b-1)), 

and the appropriate transport equation for F
o
, in terms of the variables 

x and t is given in Equation (A.4). 

Transforming the variables from (x,t) to (z,t) we have 

a 	. _ x a 
ax 	2t at , 

a 2 -1 	z 3
2 

ax 	
2t az 	T 

3z 
' 

3 	. 	_ z 	3 
at 	at 	t 	az ' 

(A.11) 

for the transformation of partial derivatives. Using these transform-

ations Equation (A.4) becomes 

3F 
) 	o 	

3F
o 32F

0 . 	. z 	kirri - z 	-t 	(A.12) 
az 	Dt 

3z
2 

which is the equation for F o  in terms of z and t. 

Choosing 	
= -kn( Iti ), 

(A.13) 
Fo

(z,t) = g(z,T), 

we find 

1 	3 ( zn+1-z e 	.111 
az ) 

z
n
e
-z az 	ar 

which is the required equation for g(z,T). 

(A.14) 
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Case (iii) 	K(r,p) = Ko  rb , b > 1 

The appropriate similarity variable z, and t are given by 

Equations (5 . 2.10) and (5.2.11) , i.e. , 

z = V r i-b  / (K0(b-1)) = x2 / (40, 

= K
o p 3(1-b)/2 / (V (b-1)), 

	 (A.15) 

and the transport equation for F o , in terms of the variables x and t 
is given in Equation (A.4). 

Transforming the variables from (›c,t) to (z,t) we have 

a 	x 	a _ 
ax 	2t 3z 

a 2 a 	4.  z 3 2 

-a-  x2 	2t az 	t az2 ' 

3 	 z a 
at 	at 	t az ' 

(A.16)  

for the transformation of partial derivatives and from Equations (A.4) 
and (A.16) 

(A.17)  

is the equation for Fo  in terms of z and t. 

Choosing 

tn(t) = -3(b-1) tn(p)/2, 	(A.18) 

F
o 	

g(z, 

we find 

1  a( zn+l
e

z 211 	_ 

zn
e
z az 	az ) 	31.  

which is the required equation for g(z, T) . 

(A.19) 

Case (iv) K(r,p) = Ko  r 

  

   

The similarity variable z and the variable t for this case 

are given in Equations (5.2.15) and (5.2.18), i.e., 

3 2F
0 	3F 

+ (n+1+z) az°  3t 3z 2 



• = 2.n(r) = - x + V t/Ko  - 941(2)/2, 

• = -3K
0 

in(p) / (2V), 

and from Equation (2.2.8) 

3
2
F
o  

DF0 	aFo 
2 

ax 

- 	

at ' 
ax

2 

(A.20) 

(A.21) 

is the transport equation for F o . 

Transforming the variables from (x,t)+(z,t) we have 

a. 	_ a 
ax 	3z ' 

a 2 _ 	a
2 

a
2 2 ' 

ax x 
 

(A.22) 

aa 	v 	a 
at 	at  

as the transformations for the partial derivative operators. Using 

these transformations Equation (A.21) becomes 

a 2F
o  

aF
o  

aF
o 

+ 2c 	 (A.23) 
az

2 

	

az 	

- 	

at ' 

where 

= 1 - V/(2K0 ). 

In this case we choose 

F
o 
 = g(z, 

and 

/ 	2cz 
e 
-2cz a 

e 	az ) 	at 

is the standard form of the equation for g(z, t). 

(A.24) 

380. 
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APPENDIX B 

In this appendix we give an example of the derivation of a 

Green's function of Chapter (5) when the eigenspectrum is continuous. 

We consider the case where the diffusion coefficient 

K(r,p) = Ko r
b 

p
3(b-1)/4 

b > 1, 	(B.1) 

and we have a monoenergetic source of momentum p o 
located at radius r

o
, 

between an outer free escape boundary at radius r b  and an inner 

boundary at r = 0. 

We note that for diffusion coefficients of the form (B.1) the 

similarity solutions of the steady state spherically symmetric transport 

equation are of the form 

F
o 

= 	a(z,t) g(z,T) 	 (B.2) 

where 
t
m-1 

e
-z

2
t/4 

a(z,t) = 

• = 	V r
(1-1)/2 

/ K
o 

= x/t, 

(b+1) / ( 1-b), 	m = ml 

3(1-b)/4 / (V (b-1)), t = 2 Ko 
 p 

(B.3) 
• t - t , 

• = 	2 (r p
3/2

)
(1-b)/2 

/ (1-b), 

• - 1/t, 

and g(z,T) satisfies the partial differential equation 

2 
2n+1 	ao,  —g. 

2 	z 	az 	at ' 
az 

 

(See Appendix (A) ). 

(8.4) 

We initially find the Green's function for g(z,T). This 

solution of Equation (B.4) is denoted by G g , • it satisfies the conditions: 

(i) G 	+ 6(z-z) as T 	To , 	T > T
o 

(ii) 	G
g 

(z
1 
,r) = G 	= 0 	(B.5) 

where 
z
1 
= z(rb  ) 	zo  = z(ro 

 ) T
o 

= 
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and 0 < r< r
b 

< 00. 

We shall show that the Green's function G satisfying Equations (B.4) 

and (B.5) is given by Equation (5.3.36), i.e. 

z z 
in 1-m 

I 	s 	(sz) Ym (sz
1
) - J

m
(sz

1
) Y

m
(sz)] . 0 	• 	m 

EJm (szo)Ym(szi) - Jm(syYm (szo)] 

2 	2 
J
m 

(sz
1
) + Y

m (sz 1 ) 

r  
k 

2, 
exp L-s T-T

o
)] ds. 

(B.6) 

The Green's function for the distribution function F
o
, denoted 

by CF  can then be obtained from Equation (11.2), i.e., 

CF = a(z,t) G / a(z 
o  , t) , o 

i.e., 

CF 
= (t/t0 ) m-1  exp(-z2 t14 + z 2  t /4) G . 	(B.7) 00 

Derivation of G 

The solution g(z,T) of Equation (B.4) that we seek may be 

obtained by a Laplace transform technique. Putting 

-X(T-T ) 
u(z,A) = fo 	e 	o 	g(z,T) dt , 

and taking the Laplace transform of the partial differential equation 

(B.4) and the boundary conditions (B.5) we find that u(z,A) must satisfy 

the differential equation 

d
2u ..,_ 1-2m du 

dz
2 -I 	z 	dz - 

and the boundary conditions 

Au = 	- d(z-z0 ), 	(3.8) 

u(z 	A) = 0, 	 (B.9a) 

u(co, A) 	is finite. 	 (B.9b) 

The general solution of the inhomogeneous equation (8.8) is 

= U
1
(c - f z  [- d(y- z0 )] u 2 (y)/W(u1 (Y), u2 (y)) dy ) 

C - ó(y-z)] 111 (y)/W(u1 (y), u 2 (Y)) dy), 

(B.10) 

where c
1 
and c

2 
are arbitrary constants 



(B.16) 

Substituting the expressions (B.15), and (B.16) for c l  and c2 

k (z 1' A)/u2 (z 1' A) I f z (6(Y-z) u2 (Y)/W(u1' u2 ))dY ' 
c° 

' 	1 
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and u1 
 and u2 

are two independent solutions of the homogeneous equation 

(B.8) and W(u u
2
) is their wronskian. (see Morse and Feshback (1953) 

Section (5.2), p.530, Vol.1). 

Two independent solutions of the homogeneous equation (B.8) 

are 
u
1 
 = z

m 
Im ( 	z), 	(B.11) 

u2 = z
m 

Km (,5 z), 
	(B.12) 

where m (z) and Km (z) are modified Bessel functions of the first and 

secondkindofargumentz.Thewronskianofand u
2 

is 

w (ul ( z ),  u 2 ( z ))  = 
	2m-1 	

(B.13) 

and 

u 	zm  e 	/ 1/27 17 z 	as z 

for 	arg (V7 z)1 < 	7/2, 	(B.14) 

zm  e-iTz  ■ IFT/Tz ,  0, as z 	CO 

for 1 arg (/7 z)1 < 37/2. 

(Abramowitz and Stegun 1965, Section (9.7)) 

specifies the asymptotic forms of ul  and u 2  for large z. 

The constants c 1 and c 2 in the solution (B.10) are determined 

by the boundary conditions (B.9). Using the asymptotic results (B.14) 

then the boundary condition (B.9b), which applies as z 0., is satisfied 

if 
c1 	

- I (6(y-z) u 2 (y,A) / W(ul , u2 )) dy. 	(B.15) 

The homogeneous boundary condition at z = z
1 
is satisfied if we choose 

z
1 

c 2 = I  ( 6 (y-z) u1 (Y,A)/ W(uu 2
)) dy 



K(17 z) m 	o  
[I(iTz) m 	Kra (iTz i) - Ira (iTzi )Km(i)] w(z,z0 ;z 1 ,A) = 

Km ( ix z1 ) 

384. 

into the solution (B.10) we have 

u(z,A) = - ul (z,A) f: (d(y-z) u 2 (y,A) / W(u1 ,u2 )) dy 

zl ▪u2 (zdt)  [fz (6(Y-z0 ) u
1
(Y ' A)/W(u1' u 2)) dY  

•(u1 ( z1 , x ) /u2 (z1d ))  fz ( 6 (Y- zo )  u2 (Y , A) mu1 , u2 )) dY • 

(B.17) 

Substituting the expressions (B.11), (B.12) and (B.13) for u l , u 2 , 

W(u1 ,u2 ) in the solution (B.17) we obtain 

u(z,A) = zm  Im(az) I; 5(y-z0) y
1-m Km(5y) dy 

+ zm  Km(gz) [I zzl  6(y-z0 )y 1-m  Im (iTy) dy 

- (Im (iTz i )/Km(iTzi)) 1: 1  6(y-z) y l-m  Km (ITy) dyl . 

(B.18) 

as the solution for u(z,A). 

Carrying out the integrations in (B.18), the solution splits 

into two parts, and we have: 

if z1  < z < zo < 

m 1-m 
u(z,A) = z z w (z, z0 ; zi ,A), 	(B.19) 

and if z1 
< zo 

< z< 

m 1-m 
u(z,X) = z z 	w(zo ,z; z i ,A), 

o 

where 

(B.20) 

(B.21) 
The required solution for g(z,T) is now obtained by using the 

Bromwich contour integral formula for the inverse Laplace transform 

(see Spiegel (1970)). 

i.e., 	 A(T-To
) 

1 	c+10. 
g(z,T) 	2wi 	u(z,X) e 	dX, (B.22) 
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where c is a real non negative constant, chosen so that the inverse 

Laplace transform (B.22) is well defined. 

Since the function w(z,z 0 ;z 1 ,A) occurs in (B.19), and the 

function w(z
o
,z; zA) occurs in (B.20) we need only consider the 

region z
l 

< z < z
o 
< co in the inversion process; the other part of 

the solution for g(z,T) in the region z
l 

< z
o 
< z <cois obtained by 

interchanging z and z o  in the inverse Laplace transform of w(z,z 0 ;z 1 ,A). 

We now consider the inverse Laplace transform of u(z,A) for 

the region z 1  < z < zo  < 03, so that 

m 1-m IS11 (17 zo )  
u(z,X) = z zo 	

Km(v 	
, 

z
1
) [I

m(iTz)Km (i7z1 )-InlAzi )Km (iTz) ]. 
A  

(B.23) 

The function u(z,A) has a branch point at A = 0. To compute g(z,T) 

from the Bromwich integral (B.22), we make a branch cut along the negative 

Re(X) axis, and construct: a large circular arc GAHBC of radius R 

centred on A = 0 with the points C and G a small distance E above and 

below the negative Re(A) axis; a small circular arc FED of radius r, 

centred on A = 0, with the points D and F a distance E above and below 

the negative Re(X) axis respectively. The large and small arcs are 

joined above and below the branch cut by the straight line segments 

C D and G F. The straight line segment A B is parallel to the Im(A) axis 

and distance c from it, and as the radius R, of the large arc tends to 

infinity, A B becomes the straight line segment (c - i, c + io.) in the 

complex A plane(see Figure (B.1)). 

A 
Figure B.1 Showing the Bromwich contours for the inversion of the 

Laplace transform. For T > T o  the contour employed is 
ABCDEFGA, whereas forT<T 0  we use the contourABH A. 
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For T > T o we first of all compute 

A(T-T
o

) 
g*(z,T) = IB

A 
 u(z,A) e 	dA, 

by using Cauchy's theorem on the closed contourABCDEFGA, whereas 

for T < T
o 
we use Cauchy's theorem on the closed contour A B H A. The 

required transform (B.22) for g(z,T) is then obtained by letting the 

radius of the large arc R + co and the radius of the small arc r + 0. 

Since u(z,A) has no poles within either contour, an application 

of Cauchy's theorem gives: 

 

-1  
A(T-T

o  dA, 
) 

	

2ni 	
limit I

BCDEFGA u(z,A) e 
r-'- 0 

(8.24) 

A(T-T0 ) 1 
2wi limit I A  u1 (z ' A) e 

R 	= 	 (B.25) 

If T > T
o 

g ( z , T) = 

and if T < T
o 

g(z,T) = 

R 

Using the asymptotic results 

-x 17-  ,K (x) 	e 	as x In 
, 

2x larg (x)1 < 3n/2 
(B.26) 

e
x 

2Trx 
as x 	m 	larg (x)1 <  

(Abramowitz and Stegun (1965), Section (9.7)) 

and putting A = Re
le

, with I e I < n, in the expression (B.23) for u(z,A) 

m 1-m 
z z 

lu(z,A)1   exp (-JR cos(0/2) 12 z
1 
- z - z1), as R+ = 

21T-T-T 	 o 0  

on the large circular arcs for sufficiently large R. From this last 

result it follows that the contribution to g(z,T) from the integrals 

along the large circular arcs in (B.24) and (B.25) tend to zero as R m. 

Using the expressions for Km (x) and Im (x) for small arguments 

Km (x) 	r(m) (x/2) -m  /2, as x 	0, (Re(m) > 0) 

Im (x) 	(x12) m/r(m+1), 	as x + 0, (m 0 - 1, - 2, 	 

and putting A = re
JO 

with 101 < n, in the expression (B.23) for u(z,A) 

we have 
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we have 

u(z,X) dX 	reie d0 . zm  z l-m  (z i/zo ) m  r(m) / (2 1'(m+1)) • 

[(z/zi ) m  - (zi/z) m ] 

on the small circular arc D E F. Thus the contribution to the contour 

integral (8.24) for g(z,T) from the small circular arc D E F tends to 

zero as r + 0. 

Since the contributions to (B.24) and (B.25) from the circular 

arcs are zero in the limits as r 0 and R -4- co we have 

if T > T 
X(T-To ) 

. -1 
g(z,T) = 	2ni 

(fCD 	f
FG ) u(z,X) e dX, 

R + 	 (B.26) 

and if T < T o 

g(z,T) = 0. 	 (B.27) 

Using the transformations between modified Bessel functions 

and Bessel functions: 

Im(z) = exp(-mni/2) 	Jm (eiff/2 z), 	-7 <arg(z) 	n/2, 

z 	= 	mii 	i(n1) (ein/2z  
Km () 	— exp( 	) H  ),

Tr <arg(z) < n/2, 

(1) Hm  (Z)=  i Y(Z) (B.28) 

Yin(z) = [J(Z) cos(mn) - Jm(z).] / sin(mn) 

(Abramowitz and Stegun (1965), Section (9.6)) 

putting X = s 2  e ilr , in the expression (B.23) for u(z,X) we have 

1  
limit 2TriCD 

u(z '
X) eA(T-T o )  dX  

r 0 
R 

in 1-m 
Z z

o
2„ 

Im  s e-s (T-To ) 	• Y- pm (sz) 
m
(SZ

1
) - J

m 
sz

1
)Ym (sz) ] 

2 	0 

Jm
(sz

o
)Y
m
(sz

1
) - Y (sz )J (sz ) - i (J

m
(sz

o
)J
m
(sz

1
) 

momo 

2 	2 
+ Ym (szo ) Ym (szi))] / [Jm (sz i ) + Ym (szi )] ds . 	(B.29) 
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Using the relations (B.28) between modified Bessel functions and 

Bessel functions, putting A = s
2 

e
-17

, in the expression (B.23) for 

u(z,A) we have: 

-1 IFG 	' u(z A) 
eA(T-T°) 

 dA limit 
r + 0 27i 
R - 

m 1-m Z z 	2„ 

2  
fc° S S-S “-T0)  Lim(SZ) Ym(SZ1) 	Ym (SZ)  jm (SZ1 )3  

0  

[Jm (szo ) Ym (szi ) - Jm (szi ) Ym (szo) + i (Jm (szo ) Jm (szi ) 

+ Ym (szo ) Ym (szi ))] / 	2 (sz i) + Y2 	ds. (B.30) 

Substituting the results (B.29) and (B.30) into the expression 

(B.26) for g(z,T) we obtain. 

, 
m 1-m 

I s e-s
2 
 lT -T0) g(z,T) =z zo 	0 	

Dm(sz) Ym (sz l ) - Ym (sz)Jm (szi )]. 

[ Jm (szo )Ym (szi ) - Jm(syYm(szo)]/D
2m (sz i )+Y

2
m (szi )] ds. 

(B.31) 

The solution (B.31) is the Green's function that we set out to 

obtain; it has already been given in Equations (5.3.36) and (B.6). 

We note that the solution (B.31) can be split into two parts: 

the first part is due to the source at(z o ,Tdand the second part is due 

to the boundary at z = z l . If we let z1  + 0 (rb  + co) in the solution 

(B.31), there will be.no effect from the boundary. In this way we may 

identify the boundary and source terms in the solution (B.31). The source 

term is 
, 

	

m 1-m 
f
w 
se 	

m o 

-s
2 
 yr- s 	= z z 	T o )  J

m 
(sz) J (sz) ds 	(B.32) 

0 	0 

and the boundary term is 
2, 

in 1-m (T -To) 
B 	= -z z

o 	
s e 	J

m
(sz

1 ) [J in
0 (sz).
m
(sz

o
)J
m
(sz

1
) 

0 

+ Ym (szi ) Ym (szo )) + Ym (sz)(Jm (szo )Ym (szi ) - Jm(syYm (szo ))] 

2 
/ EJm

2
(sz1

) + Ym (sz1 )] ds ' (B.33) 
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and 

G 	= S +B . 	 (B. 34) 
g 	g 

Using the result 
2 

00 -x cx  
fo  e 	Jm(26x) Jm (2yx) dx 

	

1 	
e
-(y

2
+6

2
)/a 	(26y ), 

	

2a 	\ a 
Re(a) > -1 

(B.35) 

(Gradshteyn and Ryzhik (1965) , Section (6.61) , p.710) 

the source term S of Equation (B.32) reduces to 
g 

rn 1-m 2 2 
z z 	_(z +z

o
) 

S 
g - 

2(T-T 	\ exp 
Li
„ 

o o 

oi 	
(T-T

o
) Im 

( z z 

2(T-T
o

) 	• 
(B.36) 

The Green's function for the distribution function F
o 

corresponding to the result (B.36) is 

G
F 

= (t/t0 )
m-1 

exp ((z
2 
t - z

2
t)/4) • 

o o 

m 1-m 2 2 
z z 	.. z +z 

	
Z Z 

0 	 0  

2(T-T o ) 	exP( 4 (T -T) 
T  	

(2(T-T o ) ) 

From the transformations (B.3) we have 

x = 2(r p
3/2

)
(1-b)/2 

/ (b-1) = zt 

= -1 / t 

T = t - t
o

, 

and upon expressing the result (B.37) in terms of x and t we have 

m 1-m 

	

x x 	x
2
+x

2 
X X

o
) 

G
F 

= t
o  2T 
	 exp(- 	 

4T 	Im( 2T 
(B.38) 

This latter result is just to  times the Green's function (5.3.12) 

with a free escape boundary at r = 
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APPENDIX C 

In this appendix we derive the solutions of the steady-state 

spherically symmetric equation of transport given in Equations (6.3.25), 

which were initially obtained by Fisk and Axford (1969). In these 

solutions the momentum-average distribution function F o  satisfies 

the boundary conditions 

(i) F
o 	

N
g 

p-/1-2  as r + op, p > 0, 	
(C.1) 

(ii) F
o 

is finite as r + 0, 

and the diffusion coefficient K(r,p) = Ko  pa  rb , where a, b, and Ko  

are constants, with a > 0, b > 1 and Ko  > 0. 

These solutions are obtained from the general galactic spectrum 

solution (6.3.17), i.e., 

x
2m 	ts=t(p) 

( 	
-x

2 
Fo(r,p)

ts=t(p=0,) 	
mtel exp(

4(t-ts 
S 

) 
dt

s
. 

2
2m

r(m) 	(t-t) 

(C.2) 
Here z(t

5
) specifies the galactic spectrum, i.e. 

z(t5) = Fo (co,p s) = Ng  p-sp-2  , 

and 

-c p
6
/6 if 6 = a + 3(1-b)/2 0 0, 

t = 

-c kn(p) if 6 = 0, 

c = 	3K
0 

/ 2V, 	 (C.3) 

t
s 	t 

x = 	2(rp
312

)
(1-b)/2

/ (1-b), 

m = 	(b+1)/(b-1). 

The solution of the boundary value problem (C.1) splits into three 

cases according as 6 .t 0. 

Case (i) 6 > 0 or 1 < b < 1 + 2a/3  

In order to obtain the Fisk and Axford result given in Equation 

(6.3.25a) we introduce the variables 
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y = (11+2) / 6, 

s = x
2 

/ [4(t- td i, 
 (C.4) 

and hence transform the integral (C.2) over t s  to an integral over s. 

To execute this transformation we note that 

Ps 

Z(ts ) 

dt
s 

= 

= 

= 

p (1 + 6x
2 

/ (4 c p
6 

s)) 

--P-2 
N p 	sY  (s + 6 x

2 
/ (4 c  

x
2 
ds / (48

2
), 

(C.5) 

and the limits of integration over s are determined from the results: 

	

s -0- 0 as t
s 	t(p==, ) 
	

■00 

and 	
(C.6) 

	

00 as t
s 	

t. 

Using the transformations (C.4), (C.5) and (C.6) the solution 

(C.2) for Fo  becomes 

N p
-p-2 

Fo (r,p) - 	gr(m)  	 fo 
(s+ 6x

2
/(4 cp

6
))

-y 
s
y
+In

-1 
e
-s 

ds. 

(C.7) 

To proceed further we note that the second solution of Kummer's confluent 

hypergeometric equation, U(a,b,x) is given by the formula 

1-b 
X 7  e-s 

s
a-1 

(s
4.7c

)
b-a-1 ds, U(a,b,x) = F(a) 	0 

(Slater (1960), Section (3.1.2)) 

where Re(a), Re(x) > 0, and that 

U(a,b,x) = x
1-b 

U(l+a-b, 2-b, x), 

(C.8) 

(C.9) 

which is Kummer's transformation (Slater 1960, Section (1.4), p.38). 

Using the results (C.8) and (C.9) in the expression (C.6) for F o  we 

obtain 

- 
F
o 

= N
g 

p-p-2 r(v(p+2)/3+m
) 
 U(v(p+2)/3,2/(1-b), 2Vr 1 bp a/(v(1-b) 2

Ko )), r(m) 

(C.10) 
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where 

= 3/6 = 3/(a+3(1-b)/2), 

is positive,i.e., 1 < b < 1 + 2a/3, 

This is the result of Fisk and Axford, and it is also given in 

Equation (6.3.25a). 

Case (ii) 6 = 0 or b = 1 + 2a/3  

To obtain the Fisk and Axford result, we introduce the variable 

s = t-t
s = e Zn(p

s
/p). 	(C.11) 

Thus we have 

Ps 
	p exp (s/e) 

Z(ts ) = N p-P-2  = N p-P-2  exp(-01+2)s/e) g s 

dt
s 

= -ds, 

(C.12) 

and the limits of integration over s are determined by the results: 

	

0 	as 	t
s 

-0- t 

(C.13) 
s 	co 	as 	t

s 
-0- t(co) 	= 

Transforming the integration variable in the general solution 

(C.2) from t
s to s, and using the results (C.12) and (C.13) we obtain 

co 
F
o 

= N p
-p-2 (x 2/4) m I exp(-(ii+2)s/c-x

2
/4s) s-m-1 

ds/r(m). 0 
(C.14) 

as the solution for F. The result of Fisk and Axford (1969) is now 

obtained by using the Laplace transform 

' 	-At -v-1 	 v/2 I 	e 	t 	exp(-a/4t)dt = 2(a/4A) 	Kv ( VT117), 	(C.15) 0 

where Re(a), Re(v) and Re(A) are positive and K(x) is a modified 

Bessel function of the second kind of order v and argument x 

(Erdelyi et.cd. (1954), Vol.1, Section (4.5), p.146), with 
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a = x2 , 

A 	= 	(.1-1-2 )/c, 

in = (b+1)/(b-1) 

in the integral 	(C.14). 	'Hence 

-u-2 1-b 	-a 
F
o 

= 2N p (2(u+2) Vrp/(3(1-b) 2K0 ))m/2 / t(m) 

K
m 

2 ‘,/ (2(p+2) V r 1-b  p-a/ 	(3(1-b) 2  K)) o 	_ , (C.17) 

This is the solution for Fo 
cited in Equation (6.3.25b), and is the 

result we set out to obtain. 

Case (iii) 	ó < 0 or b > 1 + 2a/3  

To obtain the Fisk and Axford result (6.3.25c) we introduce 

the variables 

= t / (t-t 5 ), 

Y = 	(P+2 ) / I 	1, 
where 

d = a + 3(1-b)/2. 

Thus we have 

P 	= g(s1)/s ]
1/6 , 

-u-2 	-0-2 
Z(ts ) = Ng  ps 	= N p  

dt
s = t ds/ s

2 
, 

s 	1, 	as ts 	= 0, 

m 	as t 	t. 

(C.18) 

(C.19) 

Transforming the integration variable in the general solution 

(C.2) from ts 
to s and using the transformations (C.19) we have 

F
o 

= N
g 

p-u-2  [Idix2/4tp9 m  rm (s-1) Y  sm-I-Y  exp(-(0x2s/(4cp 6 )) ds, 
4 1 

(C.20) 

as the solution for F. 

Using the formula 
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e
x 

f c°  e-xw (w-1) 	dw,
a-1 

w
b-a-1 

U(a,b,x) - r(a) 	1 
(C.21) 

for U(a,b,x), which is one of the standard solutions of Kummer's 

confluent hypergeometric equation (Abramowitz and Stegun (1965), 

Section (13.1)) and using Kummer's transformation (C.9), the solution 

(C.20) for Fo  becomes 

N p 	
r(m) 

-p-2 r(1-v(2+)/3)  
F = 
o 	

exp 	2 V r
1-b

p
-a

/(v(1-b)
2
Ko) ] 

I.-bp-a/0(1-13) 2 1(0)).  U(2/(1-b)-v04.2)/3, 21(1-b), -2 vr 

(C.22) 

This is the solution (6.3.25c) which we set out to obtain. 
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APPENDIX D 

In this appendix we obtain a solution of the spherically 

symmetric cosmic-ray equation of transport known as the convective 

solution. In this solution the effective radial diffusion coefficient 

is zero, and the solar wind velocity V is taken to be radial, so that 

the equation of transport (1.3.6), expressed in terms of the mean 

distribution function with respect to momentum F
o
(r,p) is 

aFo 	aF
o 	p 	d , 2 	

aFo + V 	2  c- Ti- kr Ni) ap 	= 0. 	(D.1) 
at 	ar 

3r 

The general solution of the first order, linear partial 

differential equation (D.1) may be expressed in terms of the solutions 

of the characteristic equations 

dt dp 

 

dF
o (D.2) 

0 

 

d 
— (r

2
V) 

3r
2 dr 

(Sneddon, Elements of Partial Differential Equations 1957). 	Here 

the symbol dF0/0 is taken to mean that F o 
is constant along the 

characteristic curves. The solutions of the characteristic equations 

(D.2) are 

fr dx 
J  V(x) 

r p
3/2 

V
1/2 (D.3) 

where c
1
, c and c

3 
are arbitrary constants. 

The general solution of the 'convective' equation of transport 

(D.1) is 

F 	= H(c 	c
2
). 

Fo (r,p) = H (t- i r  r p
3/2 

V
1/2 ) 

(D.4) 

where H is an arbitrary function in two variables. In particular 

problems the function H is determined by the initial conditions and 
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the boundary conditions on the solution. 

The steady state solution of the convective equation of 

transport (D.1), obtained when aF o/at = 0, is also determined by 

the characteristic curves (D.3). It is 

F
o 	= 	G (c 2), 

Fo (r,p) = G(r p
3/2 

V(r)
112

), 	(D.5) 

where G is an arbitrary function in one independent variable. 

We now show that the flow line equations (7.6.8) and (7.6.9) 

aF 
4. n12.21 aFo 

dt 	 Fo 	
ap ) 

d r Vp 	o
'  3Fo  ap 

3F
o la 	pV  

dt 	3F
o 

Dr 

for the general, steady state convective solution (D.5) have the 

general solution 

r p
3/2 V(r)

1/2 (D.8) 

where c is an arbitrary constant. 

Substituting the expression (D.5) for F o (r,p) in the flow 

line equations (D.6) and (D.7), and putting K(r,p) = 0 we find 

dr 	— Vp 	 , 	az 
(D.9) G (z) 	, 

dt 	3 G(z) 

512 	= 	G'( z)  
dt 	

, (D.10) 

where 
3/2 2 

li = 	r p 	V (r) 	. 

Dividing Equation (D.9) by Equation (D.10) we have-

dr 	_ 	/ 
dp 	ap '3r' 

(D.11) 

3z 	3z 
-aT dr + 	dp = 0. 	 (D.12) 
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The general solution of the flow line equation (D.12) is 

z = c, 

3/2 
V
1/2 

r p 
 
= c, (D.13) 

where c is an arbitrary constant. This last result gives the flow 

lines (D.8) for the steady state, convective solution of the transport 

equation, which we set out to obtain. 



where pk(x) is a normalised Hermite polynomial, i.e., 

(_o k ex2 dk 	_x2 	Hk  (x) 
pk(x) = 	 

/2k 	dx 	Ik (e 	) = J2k k! / 	
(E.3) 

APPENDIX. E 

In this appendix we prove that the coefficients a of the 

Hermite polynomial expansion (10.2.11a) 

n h(t i )  p+1(x) 
h(x) = kE0 ak Pk (x)= o (x-t i)p1/114 (t1 ) 	' 

(E.1)  

are given by 

1  a
k 

= 	E (n+1) 	h(ti) pk  (ti  ) / p
2
(t
i'  ) 	k = 0(1)n, i=O 	n 

(E.2) 
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and the t
i are roots of pn+1(x)' i . e., 

Pn+1 (t 1 )  = 0, 	i = 0(1)n. 	(E.4) 

The polynomials {p
k(x)} are orthonormal with respect to the 

weight function e
-x2 
 i.e., 

e-x
2 

pm(x) pj (x)dx = 6mj . 	(E. 5) 

_ 2 
Premultiplying Equation (E.1) by e x  pm  (x), integrating the 

resultant equation from x = - 0,  to x = 00, and using the orthonormality 

condition (E.5) we have 

= 	-x2 	h(t) p 1 (x) 
am  = L. e 	pm 

 
(x) riE_  	dx. 	(E.6) =0 (x-t i) p 44 (y 

We now express the function p n+1 (x)/(x-tdin Equation (E.6) as 

a linear sum of the p k(x), k = 0(1)n, by using the Christoffel Darboux 

identity for orthonormal polynomials. In this case the Christoffel 

Darboux identity is 
n+1 	

(Pn+2 (x)  Pn+1(Y)  p+1(x)  Pn+2(Y))  
fi77717'13  ic;:) Pk (x) Pk (Y)  = ( x - y) 

(E.7) 

(Szego (1967) Section (3.2), p.42, or Abramowitz and Stegun (1965), 

Section (22.12), p.785). Putting y = t i  in the Christoffel Darboux 

identity (E.7) and using p+1(ti) = 0 we obtain, 
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p
n+1

(x)  /71- 	
E 	p (x) pk (t) / pn+2 (ti) ' (:8) -15;717  n+2 k= k 

which is the expression we seek. 

Substituting the expression (E.8) in the expression (E.6) for 

am , and using the orthonormality conditions (E.5) we find 

a
m =  - /2777-1+2) 	h(ti) Pm (ti ) /[13;41. (t i) Pn+2 (ti)3  • 

(E.9) 

From the properties of the Hermite polynomials H k(x) we have 

p
k 1

(x) = 117(E—c+1) x pk (x) - ii7TiT15 pk_ 1 (x), k1, 
(E.10) 

Pk+1(x) 	ViTITTT) Pk (x), 

and hence 

Pn+1 (t ) = 	pn(ti ' (E.11) 

p+2(ti) = -/(n+1)/(s+2) pn (t i), 

 

(Abramowitz and Stegun (1965), Chapter 22). 	Substituting the results 

(E.11) in Equation (E.9) we obtain 

1  
a = (n+1) 	i E

0 	h(ti) pm (t i) / p
2
n (t i). m  (E.12) 

This is the expansion for am  given in Equation (E.2), and it is the 

result we set out to obtain. 



400. 

APPENDIX F 

In this appendix we show that if 

h(t) p
n+1

(x) 
hn (x) = kE0  ak  pk (x) = F 

i=0 (x-t ) p l +1  (t i  ) ' 	
(F.1) 

i n  

is the Hermite polynomial approximation of order n to the function 

h(x), where Pk(X)  is a normalised Hermite polynomial (cf. Equation 

(10.2.10)), then the error in approximating the integral 

2 

by 

= -x 
i = I  e 	sin(ax) h(x) dx, _co 

i
(n)  2 

= I
oc, 

e
-x 

sin(ax) hn (x) dx, -co 

is given by 

R (n) 	_ i (n) _ 1 	h(z) c(z,a)  dz, 
- 27i  jC p+1(z) 

where 

-t
2 

q(z,a) = I. e 	sin(at) p +1 (t) / (z-t) dt. 

(F.4) 

(F.5) 

Here h(z) is assumed analytic along the Re(z) axis and 

C = C
+
(0,0) U C (0,0) is a contour in the complex z plane 

defined by Donaldson and Elliott (1972) (see below). 

We then use the error formula (F.4) to derive the result 

(10.2.29a), i.e. if 

h(x) = m(x) / sn (x), 

so
(x) = v

2 
(x-z

1
)(x-;)(x+z 1

)(x+z
1
), 

= jrr; eiw"  
1 

and m(x) is an odd polynomial of degree less than n, then 

R (n) = -2 Im(m(z 1  ) cl (z1  / 
(3a 

v z1 Pmfl(z1))). 

(F.6) 

(F.7) 

is the error (F.4) for the function h(x) of Equation (F.6). 

We now proceed to obtain the general result (F.4). For conven-

ience let g(a,z) denote the integrand of the contour integral in 
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Equation (F.4). In the present application of the more general result 

of Donaldson and Elliott (1972) we may choose C4- (0,0) to be the 

upper edge of (-0., 0,), i.e., the line Im(z) = c > 0, with c sufficiently 

small so that h(z) has no singularities in the regionlIm(0 < c , 

together with semi-circular indentations of radius 6 around each of 

the singularities of g(a,z) on (-=, =). The function g(a, z) has 

simple poles at the roots of 
Pn+1(z)'  i.e., at z = tk , k = 0(1)n. 

The semicircle around tk is denoted by y k for k = 0(1)n. 	C (0,0) 

is chosen similarly in the Im(z) < 0 plane but with corresponding 

semicircular indentations yk (see Figure (F.1)). 

+ 
Yk 	C

+
(0,0) r--. 	  >  

_ ,..„I 
Yk Q6.—) 	

C— (0,0)  Re(z) 

Figure F.1. 	Illustrating the contour C = C
+
(0,0) U C (0,0). 

Having defined the contour C we may write the contour integral 

(F.4) 	as 

(n) Ri 

where 

= 

g* 

1 
n  

E 
k=1 

k0 

= 

c: 6 	to-6 
f  +  I  + 
ti 

tk-1+6

) 	

-co 	tn+6 

I 	) 	g(a,z) 	dz, ( 

g(a,x-ic) - g(a, x+ic). 

g*(a,x) dx 

(F.8) 

(F.9) 

21ri 

1 
2 .ai 

(a,x) 

Since g(a,z) is the integrand of the contour integral (F.4), 

and since h(z) and p+1(z)  are continuous across the Re(z) axis we 

have 

g* (a,x) = h(x) (q(x-ic,a) - q(x+ic,a)) / 

(F.10) 

For x real we define q(x,a) to be the Cauchy principal value integral 
2 

= -t 
q(x,a) = 	e 	sin(at) p+1(t) 

1  (z-t) dt, 
	(F.11) 

Accounting for the pole at z = x it is easily shown that 



2 
q(x-ic,a) = q(x,a) + 7 i e-x  sin(ax) p +1 (x) 

2 
q(x+ic,a) = q(x,a) 	ni e-x  sin(ax

) P114-1(x)- 

Substituting the results (F.12) in Equation (F.10) we have 

g*(a,x) = 2 7i e-X2  sin(ax) h(x). 
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(F.12) 

(F.13) 

Also from a well known result we have 

1 / 

/ 

(2 

, 	
) 

(2  

p;14.1 (t k)), 

(F.14) 

/ Pn+1 	(tk) * 

dz 	= 	h(tk) 	ie,a) f 	g(a,z) 	q(tk- 
2Tri 	YR 

1 
dz  =  h(tk) Ii+  g(a,z)  q(tk+ ie,a) 2ni  

and hence using the results (F.12) we have 

1 dz 	= h(tk) 2ni  ( Iy_ 	+  f  )  g(a,z) 	q(t 

(F.15) 

Substituting the results (F.15), (F.13) in the result (F.8) 

and letting both e and 6  0 we have 

2 
(n) R 	= I: e-x  sin(ax) h(x) dx + kE0  h(tk) q(tk ,a) / p;14.1 (t k). 

(F.16) 

Using the definition (F.11) for q(x,a) in this latter expression for 

(n) 
R . 	we obtain 

2 
R (n)  = 	e -x  sin(ax) [h(x) - hn

(x)] dx = i - 	i (n) , 
(F.17) 

which is the result (F.4) which we set out to prove. 

We now use the contour integral expression for the remainder 
(n) 	. R 	given in Equation (F.4) to show that for 
i 

h(x) = m(x) / (v
2
(x-z i )(x+z i)(x2;1 )(x+-i-1 )), 

= i3/v e
in/3 

1 	
, 

and m(x) is an odd polynomial of degree less than n, that 

(F.18) 
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R (n)  = -2 Im [...m(z1 ) q(z1
,a) / (3 "Tv z1 Pn+1 (z1))1 • 

(F.19) 

To obtain the result (F.19) we introduce contours C 1  and c 2  in 

the complex z plane. The contour C 1  is a large semi-circular arc of 

radius R in the Im(z) > 0 half plane with suitable indentations to 

circle the poles of h(z) at z = z 1  and z = 	The contour C 2  is 

a similar semi-circular arc of radius R in the Im(z) < 0 half plane 

with indentations to circle the poles of h(z) at z = 	and z = -z1  

(see Figure (F.2)). 	Irn(z) 

Figure F.2 	Showing the contours C 1  and C2  in the complex z plane. 

Consider the contour integral 

2Tri 	fC1 UC 2 
h(z) q(z,a) / p+1 (z) dz. 	(F.20) 

As the radius R of the large circular arcs of c l  and C 2  tends to 

infinity, an application of Cauchy's theorem, and using the result (F.4) 

gives 

1 
R
(n) = limit h(z) q(z,a) / p

n+1 (z) dz. 
1 	2i11 IC 1 UC 2 R + m 

If h(z) v  0(1z1
k) as 1z1 + co and we choose n >k the contribution to 

the integral (F.20) from the large circular arcs of C 1  and C 2  tends 

to zero as R . 

(F.21) 



Using the results 

= 	() 
_ 1 ,n+1 
 p 

q(-z,a) 	= 	(-1)n+1 

m(z) 	= 	-m(z). 

(F.23) 
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As the radius r of the circular indentations around the poles 

of h(z) tends to zero and as R 00, the principal contribution to 

the integral (F.20) comes from the indentations around the poles of 

h(z), and we find that R
(n) 

is minus the sum of the residues of h(z) 

q(z 'a) 
 / P+1(z) at the poles of h(z), i.e., 

1 

	

R (n) = - 	[m(z1 ) q(zi ,a) / (2(z 1+ 1 ) z1(z1-z1
) Pni-1(z1)) 

v  - 

m(;) q 	/ ( 2. 1 ( 1-zi)(z14-1 )  Pn+1 ( z1 ) ) 

	

+ 	 / 	
) Pn+1 (2 1 ))  

q(--z-1 ,a)  / (2-;1 (z14--z-1 )(z14-1 )  

(F.22) 

z
1 
	= V 3/ye

iT1/3  

the result (F.22) for R
(n) 

reduces to 

R (n) 2 

3/-5v 

( m(z1 ) q(zl' a)  ) 
In 

z
1  P +1 (Z1 ) 

(F.24) 

(n) 
which is the expression for R

i 	
given in Equations (10.2.29a) 

and (F.7). 
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APPENDIX G 

In this appendix we derive the momentum rate <P> 

which is the average time rate of change of momentum of cosmic- 

ray particles when the particle momentum p' is specified relative 

to the wind frame, and its position, x, is specified in the fixed 

frame. 

In our analysis we use the relativistic transformations 
V) 2  

	

of velocity v and momentum 2.  accurate to 	between fixed and 

solar wind frames of reference. These transformations are 

V . v 

-('V2 c
2 v e 	v - V + 	v + u — v) = 	 , 	(G.1) _ 	_ _ 	— 

c
2 

V2  
2: = 2.  - m V(x) + 0( —T p 	, 	(G.2) 

c 

where m is the relativistic particle mass in the fixed frame and V 

is the solar wind velocity. 

The momentum 2: in Equation (G.2) varies with position due 

to the spatial dependence of the solar and wind velocity V(x), as 

well as due to the Lorentz force. Thus focussing our attention on an 

individual particle we have 

dp i' pl 
2...Cj 	aP i a 3( 	a Pj  

(G.3) 
dt 

as the time rate of change of the i
th 

component p of 	Here we 

use the summation convention and the notation of tensor calculus; 

dp 

= E. 	(V — V ) B 
dt 	c 	32.m9. 	 in 

dx. 
is the Lorentz force on the particle and --1  - dt 

V v'  

velocity. 

(G.4) 

v. is the particle 

Using the transformations (G.1) and (G.2) we have 

dt 	c 	m 
v' B (1 - s 2

s 	, 	
(G.5) 

dp 
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aP; 	v! V. 
- 	+ 0 ( v2) 3 	d

ij 	2 Pj 	 v
2 ' (G.6) 

a vi  
— m 

• ax. 	ax. (G.7) 

Substituting the results (G.5), (G.6) and(G.7) in the 
4)1 

expression (G.3) for 	we obtain 
dt 

	

v ) 	V 

	

Vi 	
s s - 

	
+. - 	i 	

v' B ( 	
v'

1 

	

j 3x. 	(ij 

	

c
2 	c 	jf4m 	m 

c
2 )' 

dp1 	avi 	v v ,  
+ 	e 	v' B s s\ . 	(G.8) dt 	PjDx.cijk j k 

c
2 

dp' 
However we are not interested in 

dt
i but s-12.L . This latter dt 

quantity is given by 

P' 	 _ 	i 
(G.9) dt 	p' 

dP1 
Substituting for — from Equation (G.8) in the result (G.9), and dt 
using the momentum transformations (G.2) we obtain 

dp' 	P' 3Vi  

dt 	= 	 p , 	(pi + m Vj) T 	(G.10) 

The result (G.10) gives the rate of change of momentum p' of an 

individual particle with time. Note that it depends on the direction 

of the particle momentum pl and is independent of the magnetic field B. 

dp'  In order to find the average value of 	for a group of 
dt 

particles, all with momentum of magnitude p', but with different 

directions we proceed as follows: We introduce the distribution 

function F* (r, 11', t) in position-momentum space in which the position 

r is specified in the fixed frame of reference and the momentum p:is 

specified in the solar wind frame. Since the cosmic-ray distribution 

must be near isotropic for the transport equations to be valid we may 

write - 

dp 

dt 

dp 

dt 
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F* (r,E',t)  =F (r,p',t) + F. (r,p',t)(pi/p'),  (G.11) 

where F* is the isotropic part of the distribution function and 0 
V F* F*) is usually associated with cosmic-ray anisotropies lj 	v 0 

or streaming. 

For such a distribution of particles, the average value of 

422- is given by at 

<f, '> 
I 	F*(r,,p',t) dt 

(G.12). 

 

I F*(r,E',t) 

where the solid angle integrations with respect to cill e  are over all 

directions of p'. 

Substituting the expressions (G.10) and (G.11) for 4P-1  
dt 

and F* in the definition (G.12) for <P> and using the results 

I dre = 4 , 

I vi 
 do' = 0, 

4 ird. 
I v v dV - 	1 

i j 	3 

where 	= p i./p' we obtain, 1 

(G.13) 

<y > 
=3 — 

V . V (1 + 0 (V2) ' ) 	(G.14) — 	2  

This is the rate <P> quoted in the text in Equation (1.3.7). 
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