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vi.

SUMMARY

Tﬁis thesis is a theoretical investigation of the steady-
state propagation of galactic and solar cosmic-rays in the inter-
planetary medium. The study is carried out by means of analytic,
steady-state solutions of the_equation of transport for cosmic~-rays
in the‘interplanetary medium, including the effects of convection,

diffusion and energy changes.

In Chapters 2~6, analytic monenergetic-source and mono-
energetic~spectrum solutions of the steady-state equation of transport
are obtained and these solutions are related to previously obtained

analytic solutions.

In Chapter 7, three proofs are given of a result first noted
by Gleeson (1972), for the mean-time-rate~of-change of momentum for
cosmic-rays in interplanetary space, reckoned for a fixed vélume in
a reference frame fixed in the solar system. Also discussed in
Chapter 7, are the proper role of:

(i) the adiabatic deceleration momentum rate <ﬁ>ad, introduced
by Parker (1965), and
(ii) the mean-time-rate-of-change of momentum, <p'>, of
particles with momentum p' specified relative to the solar wind frame
of reference, and with position r specified in the fixed frame of

reference.

The physical significance of the momentum rate <p'> has
not been understood previously, and it is derived (for the first time)
in Appendix G, from the transformation of momentum between the fixed

and solar wind frames of reference. It is shown that Parker (1965)
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and Jokipii and Parker (1970) have misinterpreted the energy change
term in the cosmic-ray continuity equation associated with <p'>,
due to an insufficient distinction between the two momentum rates

<p> and <§'>,

ad
The cosmic-ray particle vflow and momentum changes are related

to each other via the continuity or transport equation. In order

to elucidate this relation we introduce the concept of a flow line in

position momentum space. The flow line is defined as the curve whose

tangent in position momentum space is given by the ratio of the stream

ing velocity to the mean-time-rate-of-change-of-momentum in the fixed

frame of reference.

In Chapters 8-10, the solutions developed in Chapters 2-6,
are used to verify most of the principal known features of steady-
state propagation in the solar cavity. Some of these are: the energy
changes; the relative exclusion of low energy galactic particles;
the origin within the galactic spectrum of particles of given kinetic
energy at 1 A.U. say; and the flow of particles in the solar cavity.
Flow lines for monoenergetic galactic and solar cosmic—rays are con-
structed by using the monoenergetic-source and monoenergetic-spectrum
golutions of the equation of transport derived in Chapters 2-6. The
flow lines show, in some detail, the radical differences in the energy
changes and flow of galactic and solar cosmic-rays. In brief,

Chapter 8 deals with galactic cosmic-ray propagation, Chapter 9 deals
with the propagation of monoenergetic solar cosmic-rays, and Chapter
10 concerns the propagation of galactic cosmic-rays for a special model
in which a monoenergetic spectrum of particles is specified at the
boundary of the solar cavity which is located at a fimite distance from

the sun.
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CHAPTER 1.

INTRODUCTION.

1.1 Introduction

This thesis is a theoretical study of the steady-state
propagation of galactic and solar cosmic~ray particles iniinter-
planetary space. In the next section we sketch the historical back-
ground of the subject. In Section 3 we consider the development
of the transport equations for cosmic-rays in the interplanetary
medium. In Section 4 we indicate solutions of these equations, which
have been used extensively to interpret the observed cosmic-ray
fluxes and anisotropies, and we discuss in some detail the steady-
state solutions. in Section 4 we discuss the fundamental role of
monoenergetic solutions of the steady-state equation of transport
in elucidating the physical processes involved, and we give examples
of the use of the analytic monoenergetic solutions obtained by the
present author. Finally in Section 6 an outline of the subject matter

of this thesis is given.

1.2 Historical background

Cosmic-ray research originates from the'discovery off'pene-
trating radiation' observed with ionisation chambers early in the
20th century. This ionisation was such that it increased with increas-
ing altitude in the atmosphere (Hess, 1911, 1912). The results of
eariy experiments indicated solar and sidereal diurnal variations
in the gosmic-ray intensity (Hess and Steinmaurer, 1933; Compton

and Getting, 1935).



In the early 1930's serious attempts were made to provide
a continuous registration of cosmic-ray intensity. Hess and
Graziadei (1936) subsequently reported a 27-day recurrence tendency
in the intensity variétions, while Forbush (1937) found that sudden
decreases in cosmic-ray intensity (Forbush decreases) were accompanied

by magnetic storms.

Forbush (1954) also showed that the variation in cosmic-ray
inteﬁsity was in clear anti-correlation with the eleven-year cycle of
solar activity as measured by the sunspot number. This phenomenon
is shown in Figure 1.1, which has been reproduced from Forbush (1954).
It shows the currents for four ground-based ionisation chambers and
t:hgir mean current for the years 1938 to 1952. The sunspot number
is also plotted with scale reversed, and there is a clear éssociation
between increase in solar activity and decrease of ionisation current

or integral cosmic-ray intensity.

These time dependent phenomena (i.e., modulations) have been
studied ever since, with the introduction of the neutron monitor
(Simpson and Fagot, 1953; Hatton, 1971) in the 1950's being the first
major attempt to record cosmic-ray intensities at a network of

stations on a continuous basis.

Since the advent of balloon and satellité technology the
variations in the absolute intensities of specific cosmic-ray nuclei
and electrons could be monitored. Neutron monitor observations deep
in the atmosphere consist of the registration of secondary atmospheric
products of near—-Earth particles of the whole cosmic-ray abundance
spectrum. Satel.lite and balloon observations have the additional

advantage that they are not subjected to atmospheric attenuation, and
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- shows the anti-correlation between cosmic-ray
intensity at four ground-based stations and the
eleven-year cycle of solar activity as measured
by sunspot activity. The figure has been
reproduced from Forbush (1954).



hence extend to much lower energies than observations in the atmos-
phere. Cosmic-ray proton and alpha particle differential intensity
spectra, obtained from balloon and satellite experiments have been
compiled since 1965 (e.g., Gloeckler and Jokipii 1967; Ormes and
Webber 1968; Hsieh 1970; Freier et al., 1971;. Webber and Lezniak
1973,.1974). Intensity spectra of electrons and positrons have been
- measured extensively since 1965. (e.g., Webber and Chotowski, 1967;
Beuerman et.al.1969; Fanselow et.al.,1969; Meyer et.al.,1971;

Burger and Swanenburg, 1971; Fulks et.al.,1973; Caldwell et.al.,1975).

The near-Earth differential intensity spectra over solar cycle
20 of protons and alpha particles are shown in Figure 1.2 for three
levels ofvsolar modulation corresponding to: (1) sunspot minimum
(1965); (2) an intermediate level; and (3) sunspot maximum (1970).
The figure has been reproduced from Webber and Lezniak (1974) and the
sources of the data are listed in the figure caption. The solid lines
provide a smoothed best fit to the data at different epochs. The
near-Earth electron spectra observed during the periods: July 1965
(Webber and Chotowski, 1967); June-July in the years 1968, 1969 and
1970 (Meyer et.al.,1971); and the galactic electron spectrum (Gold-
stein et.al., 1970a; Burger et.al., 1971) are shown in Figure 1.3.
The figure has been reproduced from Urch and Gleeson (1972b). The
range of energies observed is from 10 MeV/nuc to 1000 GeV/nuc for
the proton and helium spectra of Figure 1.2 and from 10 MeV to 10 GeV
for the electrons in Figure 1.3. Significant variation in the
intensity (modulation) occurs only in the range 10 MeV/nuc to 10 GeV/
nuc for the nuclei and 10 MeV to 10 GeV for electrons, and the work

of this thesis is therefore concerned with this range.
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- The near-Earth electron spectra observed during

the periods: July 1965 (Webber and Chotowski, 1967);
June-July in the years 1968, 1969 and 1970 (Meyer
et.al., 1971); and thegalactic electron spectrum
(Goldstein et.al.,1970a; Burger et.al.,1971). The
figure has been reproduced from Urch and Gleeson
(1972b).



The basis of the theoretical understanding of these
phenomena can be traced back to the original pioneering work of
Fermi (1949), Cocconi (1951) and Terletskii and Logunov (1951) on
the diffusion of cosmic-rays in a stochastic magnet;ic field. The
first observational evidence that diffusion v;ras in fact an excellent
approximation to cosmic-ray motion was given by Meyer et. al. (1956) .
who showed that the intensity-time profile, during a solar flare event
of particles with rigidities of 2-4GV could be accounted for quanti-
tatively by the solution of a diffusion equatién. These ad hoc
applications to the propagation of cosmic-rays in interplanetary space
have been put on a firm theoretical and observational basis since the
observational confirmation of the existence of a continuous solar wind,
first sugéested by Biermann (1951) from his studies of comet tails
and developed on a proper basis by Parker (1958a) with his hydrodyn-
amical model of the extension of the solar corona into interplanetary

space.

Parker predicted, and it was subsequently conf irmed on
Mariner II, that there would be a continuous radial flow of ionised
gas (mostly protons and electrons) from the Sun into interplanetary

space. The radial speed is = 400 km a1

and there are about 5 protons/
c.c. and 5 electrons/c.c. at the orbit of the Earth. This expanding
plasma carries with it magnetic fields from the sun's surface

(Parker, 1958a). Due to the sun's rotation the steady—state inter-
planetary magnetic field has the form of an Archimedes spiral on the
surface éf a cone. In addition to the steady-state field there are
irregular magnetic fields; all are convected radially with t}le solar

wind. The irregularities or kinks in the average spiral interplane-

tary magnetic field convected with the solar wind (Parker, 1958a)



provide a magnetic configuration for the scattering and consequent

'random walk' of the cosmic-ray charged particles.

Since 1958 a wealth of literature has been produced on the
effect of the solar wind on galactic cosmic-rays that have penetrated
the inner solar system and on the propagation of solar cosmic-rays.
The reader is referred to the excellent and extensive reQiews by
Axford (1970a, b) on the various models of propagation; to the feview
by Jokipii (1971), and the workshop report edited by Birmingham and
Jones (197'5) on the diffusion of particles in the interplanetary
magnetic field; to the reviews by Gleeson (1971, 1972) on steady-
state modulation of galactic cosmic-rays; to Wibberenz (1971) on
solar particle propagation; to McCracken and Rao (1970) on solar
particle observations; and to the Rapporteur paper by Quenby (1973)

for an overall view.

1.3 Development of the cosmic-ray transport equations

We now give a development from the literature of the trans-
port equations for cosmic~rays in the interplanetary medium which
have been used extensively to interpret the modulation of galactic

cosmic-rays and the propagation characteristics of solar particles.

Parker (1958b) pointed out that the continuous solar wind
provides a compelling interpretation of the quasi-steady eleven-year
modulation of galactic cosmic-rays. He argued that the cosmic-rays
are convected by the magnetic fields carried by the solar wind as they
diffuse through the solar wind due to scattering with the magnetic
irregularities. He further assumed that the particles did not suffer
any significant energy changes so that the equation of transport which

includes the effects of convection and diffusion but neglects energy



changes is (Parker, 1963):

oU
ot

+ V.(VU -K.VU = 0, 1.3.1
yv.w p K p) ( )

where Up (r,p,t) is the differential number density with respect
to momentum p at position r and time t, K is the diffusion tensor

and V is the solar wind velocity.

He showed (Parker, 1958b) that with a spherically symmetric
geometry and with isotropic diffusion the steady-state solution of

Equation (1.3.1) appropriate for galactic cosmic-rays is
R
Up(r,p) = Up(R,p) exp(- fr (V/K) dr), (1.3.2)

where Up (R,p) is the differential number density at the boundary of
the solar cavity which is at heliocentric radius r = R, and K is the
igsotropic diffusion coefficient. He used this simple solution of

the transport equation to qualitatively account for the quasi-steady
eleven-year solar-cycle modulation of cosmic-ray intensity. This
convection-diffusion theory has been widely used when interpreting
observed cosmic-ray particle spectra and has hadbsbme success at high
and intermediate energies (e.g., Fan et.al., 1965; Silberberg, 1966;
Gloeckler and Jokipii, 1966, 1967; Badhwar et.al., 1967; O'Gallagher
and Simpson, 1967; Lockwood and Webber, 1967; Ormes and Webber, 1968;

Rématy and Lingfelter, 1969; Wang, 1970).

The absolute necessity for convection in this theory can be
seen directly from the steady-state solution (1.3.2) of the convection-

0 in the solution (1.3.2) then

diffusion equation. If V

v, (r.p) = U (R,p),

and consequently there is no modulation in the absence of convection.

The presence of convection ensures that not all galactic particles
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can penetrate into the inner solar system.

However Parker (1965,1966) has shown that energy changes of
cosmic-ray particles in the interplanetary medium are not negligible.
Pafker showed that Fermi acceleration could be neglected and he argued
that all cosmic-ray particles lose energy (when viewed from a frame
moving with the solar wind) because of adiabatic deceleration as they
move with the expanding magnetic field irregularities. The rate of
change of momentum of particles due to adiabatic deceleration is

(Parker, 1965; Dorman, 1965),

P>y = -p E©.0/3, (1.3.3)

where p' is the particle momentum as seen by an observer moving with
the solar wind. We note that Singer et.al. (1962) discussed adiabatic
deceleration in connection with Forbush decreases, and the possibility

of the importance of energy changes was discussed by Quenby (1965,

1967).

The transport equation, which includes the effects of
convection, anisotropic diffusion and momentum changes 1is (Jokipii
and Parker, 1970),

AU
. x - £) - L 2 (p'U*) =
+1.(y_Up g.y_up) 3(1.1/_)3p.(pl!p) o,

ot
(103.4)
where U; (x,p',t) is the differential number density with respect

to momentum p' as seen in the frame of reference moving with the solar
wind, and the spatial co-ordinates r are defined in a fixed frame of

reference.

Parker (1965) and Jokipii and Parker (1970) argue that the
energy change term

1
-"3' V.V — (p'U;)s
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occurring in the transport equation (1.3.4) is due to adiabatic
deceleration. However it has been recently noted by the present
author that this is not the case. 1In order to see this we write the

transport equation (1.3.4) in the form

U*

—B * 3 (e %) =

= M AR S = (<p'> Up) 0, (1.3.5)
where

S* = V U* -K ., VUu* (1.3.6)

=P - . P = %

is the differential current density or streaming of particles with
momentum p' (specified relative to the solar wind frame) across a

fixed surface at position r in the fixed frame of reference, and

, ,
<p'> -% v.V, (1.3.7)

is the corresponding'mean-time—raﬁé-of-change of momentum of particles

with momentum p' at position r.

The momentum rate <p'> is due to the transformation of
momentum between the fixed and solar wind frames. It arises because
the solar wind frame is not an inertial reference frame on a large
scale. We remark that <p'> is not dependent on particle scattering,
and a derivation of the rate <p'>is given, (for the first time).in

Appendix G.

The adiabatic deceleration rate <1‘>>a on the other hand is

d
only applicable (in the discussion of cosmic-ray enefgy changes) in
the case éf convective transport or strong scattering, i.e., the

components of the diffusion tensor K = 0. The cosmic-rays are then
effectively constrained to move with the solar wind as they scatter

between the magnetic field irregularities which behave like the walls

of a 'magnetic box'. Consequently the particles change momentum at
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the adiabatic rate (1.3.3) within the expanding 'magnetic box'

whose walls move at the solar wind velocity V (x). It thus appears
that Parker (1965) and Jokipii and Parker (1970) have misinterpreted
the momentum change term in the cosmic-ray continuity equation (1.3.5)
associated with <p'>, as being due to adiabatic deceleration. A

further discussion of this matter is given in Chapter 7.

The differential number density Up(r,p,t), defined in a
fixed frame is a more useful quantity than U; (r,p,t) since all
observations are mad_e from the fixed frame. These densities are
related by (Jokipii and PRarker, 1967; Gleeson and Axford, 1968a;

Forman, 1970).

Up (r,p,t) = U; (r,p,t) [1 + 0(e) ] , (1.3.8)

where e = (sz/vz) |3 zn(Up)/ap | <<1, (v is the particle

speed). Hence when € << 1 the differential number density as measured
in the fixed frame Up(g,p,t) will satisfy Equation (1.3.4) and it
can be used to calculate the differential number density in the fixed

frame of reference, i.e., for € << 1 we have

—-E-at +z.(_Y_Up-§._2Up)-§(_Y_-_Y)'5; (PUP)=0,
(1.3.9)

as the equation of transport.

Alternative derivations of the transport equation (1.3.9)
have also been given by Gleeson and Axford (1967), and by Dolginov
and Toptygin (1967, 1968). Gleeson and Axford derived the transport
equation (1.3.9) from the Boltzmann‘equation in a spherically symmetric
model of the interplanetary medium. In this model the cosmic-rays

undergo isotropic, hard-sphere scattering with scattering centres

embedded in a radial solar wind. Dolginov and Toptygin derived the
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equation of transport from the Boltzmann equation for a hard-sphere,
small angle scattering model, but their results do not assume
spherical symmetry about the sun and hence they are able to incorpor-
ate corfectly the Archimedean spiral magnetic field (and hence aniso-
tropic diffusion) and the effect of a non radiai solar wind velocity.
These latter authors also derived the transport equation directly

from Liouville's theorem, for the case of small angle scattering,

with special forms for the two point correlation tensor of the irregu-
lar component of the interplanetary magnetic field, and for a general

non-spherically-symmetric model.

Gleeson and Axford, and Dolginov and Toptygin also derived
an expression for the differential current density or streaming §p

per unit momentum Interval. Their result can be written as

S = CVU -K.vVU , , (1.3.10)
P = P = = P
where \
c 1-—2 2 pu) (1.3.11)
3 Up ap p’? t

is the Compton-Getting factor (Compton and Getting 1935, Gleeson

and Axford 1968a; Forman, 1970) and K is the diffusion tensor. In
the work of Gleeson and Axford (1967), the diffusion tensor is
replaced by a radial diffusion coefficient K., Gleeson (1969) has
obtained the streaming (1.3.10) for a general, non spherically
symmetric model by generalising the earlier results of Gleégon and
Axford (1967). We note here that Gleeson and Axford (1968a5 and
Forman (1970), have shown that the Compton-Getting factor C and the
convective flux C V Up are consequences of transforming the streaming
from the solar wind frame of reference to a stationary frame qf

reference taking into account the momentum spectrum of Up'
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Although the diffusion tensor arises naturally in the
development of the transport equations using the Boltzmann equation,
or the Liouville equation development of Dolginov and Toptygin, or
by using the physical arguments of Jokipii and Parker (1970), these
treatments do not give the detailed dependence of the diffusion tensor
on the statistical properties of the interplanetary magnetic field.
The diffusion tensor K occurring in the transport equations (1.3.9)
and (1.3.10) is in general derived from the theory of the propagation
of charged particles in stochastic electromagnetic fields. This
theory has been developed for both the propagation of cosmic-rays

in the interstellar medium and in interplanetary space.

There is an important dif_ference btween the cosmic—ray inter-
action with the magnetic field in ‘the interstellaf medium and in
interplanetary space. In the former case the energy densities of the
cosmic-rays and magnetic field are approximately the same, and the
effect of particles on the fieids (through emission and absorption
of various waves) must be taken into account. This requires a self-
consistent solution of the full set of Maxwell-Vlasov equations (e.g.,

Lerche, 1967; Kulsrud and Pearce, 1969; Melrose and Wentzel, 1970).

The magnetic field in interplanetary space is carried by
the solar wind. 1Its energy density is roughly equal to the thermal
energy density of solar wind particles and is much larger than that
of cosmic-rays. 1In contrast to the situation in interstellar space,
the effect of the cosmic-rays on the magnetic field is negligible,
and the particles may be assumed to propagate in a given although

complicated 'external' field (Kaiser, 1973).

Another characteristic feature of the interplanetary magnetic
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magnetic field is evaluated according to q v, (t) x 6 B(ro(r)),
where (I_O(T), y_o(T)) is the particle trajectory neglecting the
effects of the fluctuations. When the interaction is weak, that is,
the cosmic-ray moves out of a region of statistically correlated

8B before the fluctuating field largely affects its orbit, the
particle trajectory doés not differ significantly from g_o(r), 'go(r)
and the approximation is a valid one. However, there are regions
of phase space for this problem, such as 90° pitch angle with respect
to the average background magnetic field, where the duration of an
interaction is arbitrarily long, and the theory is therefore generally
thought to be invalid. It is for these regions of phase space that

non linear theories have been proposed (e.g., Kaiser, 1973; Kaiser

et.al., 1974; Jones et.al., 1973a, 1973b; Volk, 1973; Volk et.al.,1974).

After the momentum—-space diffusion coefficients have been
derived the spatial diffusion coefficients parallel and perpendicular
to the average magnetic field, KI Iand K_L, can be obtained by 'coarse
graining' the momentum space description over directions of momentum
‘P. However there is a further anti-symmetric component of the
diffusion tensor, KT’ which cannot be obtained by this procedure and
it is necessary to adqpt another technique. Physically the term Kr

provides the current density known as the perpendicular gradient drift.

A technique to obtain the complete diffusion tensor using
the quasilinear theory has been developed by Forman et. al. (1974)

and they show that in the weak scattering limit the diffusion tensor

Kl | 0 o
(o] —KT KJ.

when written in components parallel and perpendicular to the magnetic
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field. 1In this model the diffusion coefficients Kli’ Kl and KT

can be expressed in terms of collision times T|| and T, parallel
and perpendicular to the mean magnetic field, and if the scattering
is weak, i.e., w T">> 1, w §L>> 1,

then

vzrll v2
et T T (1.3.13)
v2 vr 1 tr
% - 2 B _33
3w
where w = qB/m is the gyro-frequency, rg is the gyro-radius

and v is the particle speed.

The collision frequencies llr‘land 1/'rl in this model are
related to the power spectrum tensor of the magnetic field irregular-
ities. The collision frequency 1/1|| is determined by components of
the power-spectrum tensor at the resonanp wave number k = 1/(rg cos O)
where 0 is the partiéle pitch angle relative to'the average magnetic
field. The collision frequency 1/11 contains a resonant scattering
term plus a term which represents the power in the magnetic field
at zero wave nqmber, i.e., k = 0. The power in the magnetic field at
zero wave number is usually associated with random walk of the mean

magnetic field (Jokipii and Parker, 1969).

In typical interplanetary conditions, the condition w T, > 1,
requires the particle rigidity 2 800 MV, or proton kinetic energy
2 320 MeV, and at these rigidities, Kl/Kll 2 0.08. At present there
is no adequate theory available for Kl and KT below the weak perpendi-
cular scattering limit (Forman et.al., 1974; Forman and Gleeson,
1975). It should be noted that thé weak scattering condition

w T|| >> 1 for the validity of the derivation of Kll is fulfilled
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at all energies under typical interplanetary conditions.

We note that the form of the diffusion tensor (1.3.12)
had been obtained in the less general analysis of Parker (1965),
Jokipii and Parker (1969%b), Dolginov and Toptygin (1967, 1968) and
Gleeson (1969). In particular in the small angle scattering models
of Dolginov and Toptygin (1967, 1968) and the isotropic scattering
model of Gleeson (1969) with average collision time 1, the diffusion

coefficients are
2

Kll = v 1/ 3,
2 2
K = K.,/ Q1+ 17, (1.3.14)
L i
v rg ( NZTZ
K = wTtTK = .
T 1 3 l+w2T2)

In the weak scattering limit, w T >> 1, and the diffusion coefficient
‘KT is identical to the result (1.3.13) obtained by Forman et. al.

(1974).

The above completes our resume of the development of the
transport equations for cosmic-rays in the interplanetary medium and
the relation of the diffusion tensor to the properties of the inter-

planetary magnetic field.

‘ The most extensive and complete studies of the eleven-year
solar-cycle modulation of cosmic-ray intensity (see Section 2) have
been carried out by means of spherically-symmetric, steady-state
solutions of the equation of transport (1.3.9). In these models the
solar wind is assumed to be radial, and the diffusion tensor is re-
placed by an effective radial diffusion coefficient.

2

K = K cos2 v + Kl sin” ¢, (1.3.15)

rr |

where ¢ is the angle between the outward spiral magnetic field and

the radial direction.
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In this thesis we elucidate the basdic physical processes
governing the steady-state propagation of cosmic-rays in inter-
planetary space for spherically symmetric modeis by using analytic
solutions of the equation of transport. We xremark that at present,
there is no systematic study of non-spherically symmetric models for
steady-state propagation incorporating the e £fects of the complete

diffusion temnsor (1.3.12).

In the next section we outline the models and solutions of
the equation of transport that have been developed to describe the

propagation of cosmic-rays in the interplanetary medium,

1.4 Solutions of the transport equation

Since Parker (1965) first obtainedl the equation of transport
(1.3.9) considerable effort has been expended in obtaining solutions
of the equation, with the intention of illustrating and elucidating
the physical implications of the observed cosmic-ray intensity vari-

ations and anisotropies.

There are two basic types of cosmic—ray phenomena usually
described by the transport equations, namely , the solar-flare events
and the quasi-steady solar-cycle modulation. Solar-flare events are
described by the full time dependent equation of transport after the
initial flare. The typical time scale for df £fusive and convective
effects are of the order of seconds whereas the time scale associated
with the eleven-year modulation is of the order of 108 seconds. Thus
the eleveﬁ—year sblar-cycle modulation is adlequately described by

quasi-steady-state solutions of the transport equation (1.3.9).

Time-dependent solutions of the equation of transport (some
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analytic, some numerical) have been obtained by Fisk and Axford
(1968) , Englade (1971a), Forman (1971a, b), Luptorr and Stone (1971,
1973), Webb and Quenby (1973a), Ng (1972), Ng and Gleeson (1971a,
1971b, 1975). Probably the most complete model at present for the
propagation of solar-flare particles is that of Ng and Gleeson (1975)
Excellent and extensive reviews of this earlier time-dependent work

have been given by Axford (1970a, 1970b) and Wibbe xenz (1971).

Insight into the quasi-steady-state solar-cy cle modulation of
galactic and solar cosmic-rays has come from solut ions of the transport
equation (1.3.9), which includes the effects of comvection, diffusion
and particle energy changes. Observational evidence for the necessity
to include the effects of energy changes in the equation of transport
when discussing the quasi-steady modulation of the cosmic-ray intensity
has been provided by Webber (1969) and Lezniak and Webber (1971), from
an examination of a modulation parameter relevant to cosmic-ray fluxes
at times t1 and tz. They found that at kinetic energies below 100
MéV/nucleon this modulation parameter plotted as a function of rigidity
P' splits into a separate curve for each species. This gsplitting is
c‘bntrary to the predictions of convection-diffusion theory without

e‘nergy changes; but it is present in solutions of the steady—state

equation of transport including the effects of ener gy changes.

In the following paragraphs we discuss various steady-state
solutions of the equation of transport which have been obtained and

used to describe the eleven-year modulation of galactic cosmic-rays.

1.4.1 Steady—state, spherically-symmetric analyt dc solutions

The complete steady-state equation of transpoxt (1.3.9) cannot

in general be solved analytically. Most solutions have been obtained
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for spherically-symmetric models.

Prior to the work of this thesis, Parker (1965, 1966), Dolginov
and Toptygin (1967) and Fisk and Axford (1969) obtained analytic,
spherically-symmetric solutions for idealised interplanetary conditions:
the solar wind velocity V was assumed to be radial and constant, and
the effective radial diffusion coefficient Krr has restricted functional

dependence on heliocentric radius r and momentum p.

Parker considered the case Krr = constant, and steady release of
monoenergetic particles from a free escape boundary at radius r = R
(the solar cavity boundary). He obtained andevaluated a series for
the differential number density Up near r = 0, The results showed
(for the first time) the effect of energy changes on the propagation
of cosmic-rays in the solar cavity. Further solutions of this type
for Krr = Ko(p)rb, where Ko(p) is an arbitrary function of momentum p

are presented in this thesis (Section 1.5).

The solutions of Dolginov and Toptygin (1967) and Fisk and
Axford (1969) show the redistribution of galactic cosmic-rays within
the solar cavity for a galactic spectrum which is a power law in
momentum p or kinetic energy T. Such galactic spectra are quite
realistic at kinetic energies above 1 GeV/nuc for nuclei (Figure 1.2)
and for T > 1 GeV for electrons. (Figure 1.3). 1In the solution of

Dolginov and Toptygin, the differential number density Up is a cut-off

power law spectrum at the boundary of the solar cavity, i.e.,

A p_u, P> P (A constant)
U (R,p) =
P o 0 <p<p,,

and the radial diffusion coefficient Krr = constant, within the
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modulation region O < r < R. The solutions of Fisk and Axford (1969)
were obtained for a more realistic diffusion coefficient of the
gform Krr = Kc pa rb, where Kc, a and b are constants with b > 1 and
Kc > 0. These latter solutions were obtained for the case where the
boundary of the solar cavity was taken to be at infinity, and the
differential number density Up satisfied the boundary cbnditions:
(1) Up > A p-u asr + o, and
(i1) Up is finite as r -+ O.

The above analytic solutions were quite useful for illustrating
the rédistribution of particles in momentum with heliocentric radius,
and the effects of varying the diffusion coefficient Krr and the
solar wind speed V in modulation models. A more detailed study of
the modulation process has subsequently been carried out by means of
approximate analytié solutions and numerical solutions, as discussed

in the following subsections.

1.4.2 Spherically-symmetric numerical solutions.

Methods for obtaining spherically-symmetric numerical solutions
were initially developed by Fisk (1969) and by Urch (1971), and
solutions obtained numerically on computers have been used by, for
example, Gleeson and Urch (1971), Lezniak and Webber (1971), Goldstein
et.al. (1970b) and Urch and Gleeson (1972a, 1972b). Most of the
important physical phenomena have been discovered by means of these

numerical solutions.

The numerical solutions are carried out by specifying the
galactic differential number density UT (R,T) at a certain radial
distance r = R, representing the boundary of the solar cavity. We

note here that only the galactic electron spectrum is known in these
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models, and this has been deduced from the galactic non—thermal radio
background radiation.(Goldstein et.al. 1970b; Burger 1971). Boundary

conditions on the number density U,, or the differential streaming ST

T
are specified at a boundary near the sun, and the solar-wind speed,

V(r), 1is usually assumed to be radial and essentially constant except

near the sun where it decreases rapidly to zero at one solar radius.

Diffusion coefficients are then determined which give the best
match between calculated intensities and those observed at Earth at
a specific time. The procedure adopted at present is as folidws:
From electrpn spectra observed near-Earth and the galactic electron
spectrum inferred from the non-thermal radio noise from the galaxy,
trials are made to determine a diffusion coefficient (particularly its

energy dependence) at each sgpecific time.

In order to check the modulation model, spectral forms for the
galactic proton and helium nuclei are chosen which lead to a match
with the near-Earth spectra during a particular epoch (note that there
is no direct information about the galactic proton and helium nuclei
spectra). The near-Earth proton and helium spectra are then predicted
for different epochs by using these galactic specfra, and the
diffusion coefficients deduced from the electron observations. Once
the diffusion coefficient Krr and the galactic spectra UT(R,T) are
known the modulation is determined. So too are other physical

quantities of interest.

1.4.3 Three dimensional solutions

At the Denver International Conference on Cosmic-Rays (1973),

there was an increased acceptance for the need for three-dimensional
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models of the modulation (Quenby, 1973). Early indications of the
probable need for these models was recognized by Parker (1964),

Krimsky (1964), who considered the effects of a non-spherical solar
cavity with a boundary closer to the sun at high heliocentric latitudes.
Subramanian and Sarabhai (1967), suggested that the second harmonic

of the diurnal variation was due to rising off-ecliptic gradients due
to a latitude dependence in solar activity. However, Lietti and Quenby
(1968), were able to account for the variation with no heliolatitude
dependence of the modulation parameters. Owens and Jokipii (1971)
obtained an approximate analytic solution of the transport equation,
depending on radial distance r, heliolatitude 6, and the kinetic energy
T, for a radi‘al magnetic field, finite Kl and with a latitude dependence
of K” and V, and used it to investigate the particle flow (i.e., the
anisotropy). Belov and Dorman (1969, 1971) have also obtained analytic
non spherically-symmetric solutions of the equation of transport, which |
describe the modulation of cosmic-rays in a region of space enclosed
by a cone centred on the sun., In these models, the diffusion coeffic-
ients inside and outside the cone are different, and they simulate

the effects of the asymmetry in solar activity.

Some numerical solutions of the transport equation for three
dimensional models have been explored (Dorman and Milovinova, 1973;
Dorman and Kobylinksi, 1973; Fisk, 1973). At the just concluded
Munich International Conference (1975) only four papers on three-
dimensional models were delivered (Moraal and Gleeson, 1975; Cecchini
and Quenby, 1975; Fisk, 1975; Dorman and Milovinova, 1975). As yet
no systematic study of the properties of such models has been carried
ouf. When available such studies should result in a more comprehensive

picture of cosmic-ray propagation in the solar cavity.
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1.4.4 Approximate analytic solutions

Computer based numerical solutions are time consuming to obtain,
costly and do not readily show the dependence of the solution on
the parameters. Approximate analytic solutions provide in a ready
form, the modulation, its dependence on the pafameters of the problem
and associated quantities such as the gradient with sufficient accur-

acy for the purposes at hand,

The simplest approximation is to use the convection-diffusion
solution of Parker (1958b) (Equation (1.3.2)), i.e., to include con-
vection and diffusion processes but exclude energy changes. This

provides a simple and powerful means of rough analysis.

Gleeson and Axford (1968b, 1968c) have obtained two useful approx-
imate steady-state solutions of the spherically-symmetric equation of
tfﬁnsport which are valid when the modulation pérameter Vr/K(r,p)

[ K(r,p) is the effective radial diffusion coefficient] is sufficiently
small, i.e. Vr/K(r,p) << 1. In these solutions the spectrum is

specified at the boundary of the solar cavity at r = R by UT(R,T).

The first solution (Gleeson and Axford, 1968b), is obtained by
solving the equation of transport by an iterative technique. The

solution to 0(Vr/K) is

2
Up(r,T) = UT(R,T) [1 - 2y (R V(X)) ix + °<y'lr?> ]’

3 r K(x,T)
where
y = - an[3i (R, T)]/0T,

a = (T + ZEO)/(T + EO)’

and jT(R,T) =v UT(R,T)/4ﬂ is the differential intensity spectrum

on the boundary. From this last result we see that for realistic
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power law spectra on the boundary (y ~ 2.6), that the cosmic-ray
intensity is reduced below its interstellar value due to solar modu-
lation. A further feature of this approximate solution is that the

differential current density

o

Sp = CVU, -K3U/ ar,

(Equation (1.3.10) is zero to 0(Vr/K).

This latter observation that the differential current density is
zero to O(Vr/K when Vr/K << 1 led to the development of another approxi-
mate analytic solution known as the force-field solution (Gleeson and
Axford, 1968c). It is obtained by setting the radial differential

current density

2( aFo YLBFO
Sp=‘—4'ﬂ’p Ksr—-f- 3F ,

(Equation (1.3.10) equal to zero, so that

3F_ Voo v 3F
vVir vt T T

ihis latter equation is known as the force-field equation, and it has
the form of a one~-dimensional steady-state ( ;;2- = 0) Liouville
;quation, with the quantity Vpv/(3K) having the dimensions of force.
We note that Freir and Waddington (1965) observed that the modulation

could be reproduced by assuming galactic particles lost energy in a

force-field.

The force-field equation has the solution
F (r,p) = F_ (R, p*),

where p*(r,p,R) is obtained by integrating the characteristic equation

dp  _ v
dr 3k °

from the point (r,p) to the point (R, p*) where the characteristic

curve cuts the boundary at r = R (Urch and Gleeson, 1973).
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The force-field solution only holds for a sufficiently
smooth galactic spectrum, and at sufficiently small Vr/K(r,p). Urch
and Gleeson (1972a) have argued that under typical interplanetary
conditions, the force-field approximation is probably valid dowh
to kinetic energies of 150 MeV/nucleon. We remark that the force-
field solution has proved to be a powerful tool when used in conjunct-
ion with numerical solutions in investigations of.the modulation

process.

1.5 The fundamental role of monoenergetic solutions

The solutions which are investigated in detail in this thesis
are the monoenergetic-source and monoenergetic-spectrum solutions
of the steady-state equation of transport. By a monoenergetic-source
solution we mean that monoenergetic cosmic~rays are injected at a
steady rate into the interplanetary medium from some fixed heliocentric
position, whereas in a monoenergetic-spectrum solution, the differ-
ential number density, Up, is specified to be a monoenergetic spectrum
on some boundary. Note that the monoenergetic-spectrum solution is
quite distinct from the monoenergetic-source solution in that there
are no sources within the region of position-momentum space for which

the solution is valid.

These solutions do not necessarily attempt to fit any given
observation, but they give very useful insight into the physics
involved in the modulation process. Solutions in which the boundary
specﬁra or sources are not monoenergetic do not display-the physics

- 80 clearly since the resultant redistribution of particles in momentum
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and position is the combined result of the transport processes and

the boundary and source conditions.

; The most basic solution is that in which monoenergetic particles
are released at a steady rate from a fixed heliocentric radius and
the resulting distribution in energy or momentum is determined as a
function of position within the solar cavity. Except for a limited

case noted below, such analytic solutions were first obtained inde-

pendently by Toptygin (1973) and the present author.

The exception noted above is a solution obtained by Parker (1965,
1966). He took the case of constant radial diffusion coefficient,
i.e., K = constant, a constant radial solar wind velocity, V, and
steady release of monoenergetic particles from a free escape boundary
at radius r = R (i.e., a monoenergetic-spectrum solution).' Numerical
solutions have also been obtained for the distribution within the
solar cavity with a Boundary at r = R and the differential number
dtensity there specified to be a narrow Gaussian distribution in kinetic
energy with half width ~ 10%Z of the mean kinetic energy (Goldstein et.
&‘Z. 1970b; Urch, 1971; Gleeson and Urch, 1971). This Gaussian
distribution represents a monoenergetic galactic spectrum. This
numerical work probably shows the redistribution of particles well,
but it is an approximation and restricted in that,

(1) the spectrum at r = R is near monoenergetic,
(1i) extension of the calculations to very low energies has not
been carried out because of accuracy considerations, and

(4ii) it is not feasible to examine a wide range of parameters.

These deficiencies are not present in the analytical solutions studied

in this thesis.
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We consider in detail models in which the effective radial
diffusion coefficient K = Ko(p) rb, where Ko(p).is an arbitrary function
of momentum p, and the solar wind velocity V is assumed to be radial
and constant. We set out below the solutions which we use most intens-

ively in Chapters 8 and 9 to study the modulation.

With the above model, the spherically-symmetric monoenergetic

source solution in which:

(i) particles of momentum P, are released at a steady rate of
N per unit time from a spherical surface at radius s

(ii) the momentum average distribution functiqn Fo(r,p) -> 6 as
r e

(iii) Fo is finite as r -»> O0;

for the case b # 1, and given in terms of Fo is:

n 2 2 2
3N <xo> X0 ( x +xo) (k xo)
F, = 7 3 2 x) T P\ )\ 27 /-

64 17V P, Ty |n+1|

(1.5.1)

Here Im(z) is a modified Bessel function of the first kind,

x = 2(r p/H A2, oy,
n = (b+l)/(-b), m = |n|, (1.5.2)
T = 3I§° K_(2) 173124, vy,

and X, = x(ro, po)- The above solution is degenerate in the case

b =1 and in this case

(x-x )2
F = 3N L exp | x-x -T- ——=>—
° . e 1T5/2V p3 r2 T o 4T »
° © (I.5.3)

with x = - 2n(2r2p3)/2 is the appropriate solution. The solutions
(1.5.1) and (1.5.3) are derived in Chapters 3 and 4 and the solution

(1.5.1) is used in Chapter 9 to study the propagation of monoenergetic
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solar cosmic-rays.

The above monoenergetic-source solutions can be used to derive
a‘monoenergetic-Spectrum solution for galactic cosmic-rays (Chapter 6)
in which:

(1) Up > Ng G(p—po) as T > =

(i1) Up is finite as r -+ O0;

(1i1ii) the diffusion coefficient K = Ko(p) rb, where Ko(p) is an
arbitrary function of momentum p and b > 1.

In terms of Fo it is given by

-3(1+b)/2
- g Ko (Pg) Pg l(ﬁ) - (ﬁ)
o 8 1V TI(m) T \4T P\%T ’

(1.5.4)
a fairly simple expression, the r dependence of the solution being in
x?and the p dependence in both x and T. Here TI'(m) denotes the gamma

function of argument m.

As an example of the usefulness of these solutions we display
bglow some of the principal features of the mondenergetic—galactic—
spectrum solution (1.5.4), which we have reproduced from Chapter 8.

We consider the case K = Kc P rb, with Kc constant and b > 1, in which
case (pglNg) Fo is a function of the dimensionless variables p/p°

and Vr/K(r,po)-

Figure 1.4 shows (pi/Ng) Fo vs p/po for b = 1.5 and values

0.01, 0.1 and 1.0 of the parameter Vr/K(r,po).

Since the solution depends on p/po and Vr/K(r,p,) the curves
for different Vr/K(r,po) show:
(1) the redistribution of monoenergetic galactic cosmic-rays

in momentum at various heliocentric radii;
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FIGURE 1.4 - The momentum spectrum of the distribution

function Fo(r,p) for a monoenergetic galactic
spectrum at infinity, i.e.,Up > Ng é(p—po) as

r + ©, The figure is drawn for a diffusion
coefficient K(r,p) = K. p rl’s, and' values 0.01,
0.1 and 1.0 of the parameter Vr/K(r,po). It

has been reproduced from Figure 8.1 in Chapter 8.
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(11) the effect of varying interplanetary conditions through the
parameters V and Kc on the distribution at fixed r;

(1ii) the effect of varying the source momentum P, for fixed V,
Kc and r. Thus the solution shows the basic features the propagation
of monoenergetic galactic cosmic-rays in the solar cavity for a wide
range of parameters; the feaﬁures could of course be obtained with
numerical solutions, but it would be much more difficult to display

the features for such a wide range of parameters.

The monoenergetic-galactic-spectrum solution (1.5.4) can also
be used to study the modulation of galactic cosmic-rays from a general
galactic spectrum. For cases where the galactic spectrum is specified

at infinity to be F_ (=, po), the distribution at (r,p) is

F (r,p) = fp F (=, p) G(r,p;p,) dp,. (1.5.5)
Here the Green's function G(r,p;po) is the solution of the equation of

transport for Fo(r,p) for a monoenergetic spectrum at infinity, i.e.,

G(r,p;po) - G(p-po) as r > «,

From the monoenergetic-~galactic-spectrum solution (1.5.4) the

v
Green's function is given by (1-3b)/2

ceminy + 0BT 2y ()
LsP3P, 2 V I'(m) T \4T P 4t/ °

(1.5.6)

 The Green's function is of fundamental importance in modulation studies
since it contains the modulation properties of the interplanetary
region independent of the galactic spectrum (Chapter 8).

Further examples of the usefulness of these solutions are given
in Chapters 8 and 9. We remark that in regard to the steady-state
propagation of monoenergetic solar cosmic-rays, that previous studies

have been carried out by Urch and Gleeson (1971) by means of numerical
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;olutions and by Toptygin (1973) who used an analytic solution.
These studies however are less extensive than the present study, and

they do not display fully the physical processes.

The above completes our discussion of the role of monoenergetic
solutions in modulation studies and in the next section we indicate

in more detail the subject matter of this thesis.

1.6 OQutline of the present thesis

As noted in the Summary, this thesis is a theoretical study of
the steady-state propagation of galactic and solar cosmic-rays in the
interplanetary medium. The thesis can be roughly divided into three

sections:

(1) The derivation of analytic monoenergetic-source and
monoenergetic-spectrum solutions of the steady~state equation of
transport and the relation of these solutions to previously obtained

analytic solutions (Chapters 2-6).

(i1) A clarification of the energy changes experienced by

cosmic-rays in the interplanetary medium (Chapter 7).

(i11) 1In Chapters 8, 9 and 10 we use the solutions developed
in Chapters 2-6 to verify the principal known features of steady-
state cosmic-ray propagation in the solar cavity as well as eluci-
dating various features of the transport processes which have hitherto

not been displayed.

Examples of new results obtained from this study are:
(Q) the particle flow and momentum changes in position-momentum

space of monoenergetic galactic and solar cosmic-rays by using the
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results developed in Chapter 7.

(b) the modulation properties of the interplanetary region independ-
ent of the galactic spectrum are displayed by use of the Green's
function G(r,p;po) occurring in the general galactic spectrum solution
(1.5.5).

We now discuss briefly the contents of each chapter, and their relation

to previous work.

In Chapter 2 we initially investigate the conditions under which
the steady-state equation of transport is separable. The motivation
for this study was an attempt to generalise the result obtained by
Jokipii (1967) and used by Fisk and Axford (1969), that the steady-
state equation was separable for a diffusion coefficient

K(r,p) = Kc ﬁalrb,
where Kc’ and b are constants and the solar wind velocity V is
assumed to be radial and constant. We find that the equation is sep-

arable for a model with a radial magnetic field, a diffusion tensor

(1.3.12) specified by

- b -
KII = Kb(p) r, KL/K|| = constant,
3K K (1.6.1)
-——1; = -—I= 0
o0 99 ’

where Ko(p) is an arbitrary function of momentum p and the solar wind
velocity V is radial and constant. Here (r,0,¢) aré spherical polar
co-ordinates centred on the sun, with the polar axis along the sun's
rotation axis. We note again that the effects of anisotropic diffusion
can be incorporated in spherically symmetric models by defining an

effective radial diffusion coefficient as in Equation (1.3.15).

Having separated the steady-state equation of transport with a
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constant radial solar wind velocity V, and the diffusion tensor (1.4.1),
we proceed to study the symmetries or group properties of the separated
equation. We then use these properties to derive analytic, similarity

{
solutions of the separated equation.

In Chapter 3 we use the similarity solutions and the group pro-
perties of the equation of transport given in Chapter 2, to obtain
monoenergetic—source solutions. In these latter solutions, particles
of momentum p,» say, are released at a steady rate from a spherical
surface or a point at radius to-located within the solar cavity. We
note that the spherically-symmetric monoenergetic-source solutions

have beenderived independently by Toptygin (1973).

. In Chapter 4, the monoenergetic-source solutions of Chapter 3,

and the monoenergetic-galactic-spectrum solution (1.5.4) in which we

specify a monoenergetic spectrum at infinity, i.e., Up > N 6(p—p0)

g
as r + », and Up is finite as r » 0, are obtained by using a Laplace
transform technique. We remark that the solutions of Chapter 3 are

rederived in Chapter 4 by the Laplace transform technique, because it

is more widely known and more easily understood than the group method.

In Chapter 5 we use the similarity solutions of Chapter 2 to
derive spherically symmetric Green's functions, with the intention
of obtaining solutions in which we can specify the spectrum on two
boundaries at helioéentric radii r = r, and r = T, The Green's
function is the solution for a monoenergetic source of momentum P,
at radius r, and in general with the mean distribution function with

respect to momentum, Fo’ equal to zero at the boundaries r = r and

r=rb.

¢

In Chapter 6 we obtain analytic solutions in which we specify
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the spectrum at boundary radii r = L and r = r We also obtain

b
the galactic spectrum solution (1.5.5) in which a general spectrum
is specified as r * ©, and we use this latter solution to obtain the
solutions of Fisk and Axford (1969). These solutioms are obtained by
establishing an appropriate Green's theérem and using the Green's
functions of Chapter 5. We remark that the Green's theorem technique

used to obtain these solutions is similar to solving the one dimensional

heat flow equation by Green's theorem.

In Chapter 7 we consider the momentum or energy changes of
cosmic-rays in the interplanetary medium. It was noted by Gleeson
(1972) and Quenby (1973) that the mean-time-rate-of —change of momentum
<p> for cosmic-rays in interplanetary space reckoned for a fixed

volume in a reference frame fixed in the solar system is

) pV U PV . 6 ,
<p> = 3Up T = 3 > (1.6.2)

where G = (aUp/Sr) /Up, is the cosmic-ray density gradient. The
result (1.6.2) for <p> 1is implicit in the disbcussion of energy changes
by Jokipii and Parker (1967). However these lattex authors did not
show explicitly the role of <p> in the cosmic-ray continuity equation,
and their discuss.ion of energy changes is limi ted to the case of con-

vective transport, or strong scattering.

The result (1.6.2) is proved in three ways:
(i) by a rearrangement and reinterpretation of the equation of
transport or continuity equation (1.3.9);
(11i) from a consideration of particle momentﬁm changes arising:
from the scattering analysis derivation of the equations of transport
by Gleeson and Axford;

(iii) by a special model in which the cosmic—~rays are trapped in
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'magnetic boxes' moving with the solar wind. In this model the
particles change momentum as they collide with the rigid walls of

the box.

The third method is for a convective strong scattering model.
It is particuiarly instructive in showing the relation between the

expression (1.6.2) for <p> and the adiabatic deceleration formula

L] = - R
> 4 T L.y, (1.6.3)

which is the mean rate at Vhich particles of momentum p, change momen-
tum in an individual 'magnetic box'. This model shows that the concept
of adiabatic deceleration, as applied to cosmic-ray propagation in

interplanetary space is only valid for convective transport.

In Chapter 7 we also discuss briefly the mean-time-rate-of-
change of momentum <p'> of particles with momentum p' specified
relative to the solar wind frame of reference, and with position r
specified in the fixed frame of reference. The physical significance
of the momentum rate <p'> has not been understood previously, and it
is derived in Appendix G, from the transformation of momentum between
the fixed and solar wind frames of reference. It 1is shown that
Parker (1965) and Jokipii and Parker (1970) have misinterpreted the
energy change term in the cosmic-ray continuity equation associated
with <p'>, due to an insufficient distinction between the two momentum

[ <o'>
rates <p>, 4 and <p'>,

Having established the result (1.6.2) for <p> we then show
that the rate at which the cosmic-rays gain energy per unit volume

and over the whole momentum spectrum from the solar wind is
d P (r)
aw e

S — (1.6.4)
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where Pc(r) is the cosmic-ray pressure at radius r. This result

was initially obtained by Jokipii and Parker (1967).

The cosmic-ray particle flow and momentum changes are related
to each other via the continuity or transport equation (1.3.9). 1In
order to elucidate this relation we introduce the concept of a flow
line in position-momentum space. The flow line is defined as the
curve whose tangent in position-momentum space is given by the ratio
of the streaming velocity

k> = 5, /U, o (1.6.5)
to the momentum rate <p> in the fixed frame of reference (Equation

(1.6.2)), ti.e.,

<r>

dr
dp <1')>

. (1.6.6)

We construct flow lines for monoenergetic galactic and solar cosmic-

rays in Chapters 8 and 9.

In Chapter 8 we study the steady-state éropagation of mono-
energetic galactic cosmic-rays by using the monoenergetic galactic‘
spectrum solution (1.5.4) in which Up -+ Ng G(p-pé) as r > @®, and UP
is finite as r » O. From the solution we show the rediétribution
of particles with heliocentric distance, the gradients, the particle
flow and the momentum changes of monoenergetic galactic cosmic-rays.
We then consider the structure of the particle leV in position-
momentum space for monoenergetic galactic cosmic~rays, and to eluci-
date the relation between particle flow and momentum changes we con-

struct flow lines in (r,p) space.

The redistribution of particles from a complete galactic

spectrum at r = © ig obtained from the general galactic spectrum
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solution (1.5.5). We use it to obtain the near-Earth spectra,
gradients and anisotropies for different types of galactic spectra,
and it reproduces some of the results obtained with numerical solu-
tions, such as the relative exclusion of low energy galactic particles.
W; also use the solution to determine the origin within the galactic
spectrum of partiéles observed at Earth with given momentum, and we
emphasize the role of the Green's function in determining the modu-
lation characteristics of the interplanetary region for a specific

model, independent of the galactic spectrum.

In Chapter 9 we study the steady-state interplanetary propaga-
tion of solar cosmic-rays by means of the monoenergetic-source solution
(%.5.1) developed in Chapters 3 and 4. We also construct flow lines
in (r,p) space for the solution, and when compared with the flow lines
for monoenergetic galactic cosmic-rays presented in Chapter 8, they
highlight the differences between the steady-state propagation of

gélactic and solar particles.

In Chapter 10 we study the redistribution within the solar
c;vity of monoenergetic galactic cosmic-rays in a model having a free
escape boundary at r = Ty which corresponds to the boundary of the
solar cavity. This model differs from the previous study in Chapter
8 where we considered the propagation of monoenergetic galactic cosmic-
rays released from a boundary at infinity. We use this model to
show the effects of a finite boundary, and we compare it with the
results obtainedkin Chapter 8.

Three papers have been published . on the contents of Chapter 8
(Webb and Gleeson, 1973; Gleeson and Webb, 1974, 1975) and one paper

on the propagation of monoenergetic solar cosmic-rays from Chapter 9
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(Webb and Gleeson, 1974). It is anticipated that at least three

more will be forthcoming. The first will be an extensive version

of the work in Chapter 7 on the energy changes of cosmic-rays in the
interplanetary medium, the second will deal with the particle flow
and momentum changes of monoenergetic galactic and solar cosmic-rays
from the work in Chapters 8 and 9, and the third will be concerned
with the developmenlt of the monoenergetic-spectrum and monoenergetic-

source solutions from Chapters 2-6.
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CHAPTER 2

GROUP PROPERTIES OF THE STEADY-STATE

COSMIC-RAY EQUATION OF TRANSPORT

2.1 Introduction

In this chapter we study the group properties of the steady-
state cosmic-ray equation of transport (1.3.9). The interplanetary
magnetic field is assumed to be radial and the diffusion coefficients
parallel and perpendicular fo the field, denoted by KH and Kl are
g}ven by

b -
! K Ko(P) r7s K /Ry = e, (2.1.1)

where e is a constant, Ko(p) is an arbitrary function of momentum p
and the effect of the antisymmetric component of the diffusion tensor

(l.3.12)rKT, is assumed to be megligible.

With a source of monoenergetic particles of momentum P, released
at the heliocentric position (ro, 90, ¢o) the steady-state continuity
equation (1.3.9)governing the differential number density with respect

to momentum Up(r, 8, ¢, p) is

1 3.
. - . vV - =V . =
v(vru k.20 - Y.V 5(pUy)

N
= —;5 §(r-r ) S(u-u ) §(¢=¢.) S(p-p ).

o (2.1.2)
Here K is the diffusion tensor, V the solar wind velocity, u = cos @,
§(z) is the Dirac delta function of argument z, and N is the number

of particles released per second per steradian from the source point.
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The density Up is related to the mean distribution function

Fo(r’ e’, o, P) by

U = 4n p2 Fo.

P (2.1.3)

Here Fo is the isotropic part of the distribution function in position

momentum space.

In Section (2), we separate the continuity equation (2.1.2)
for the case where the solar wind velocity V is constant and radial,
and the diffusion coefficients K|| and Kl are given by Equation (2.1.1).
The separation variables in this equation are x, t, y and ¢ where

x 18 a funetion of r and p and t is a function of p.

The separated form of Equation (2.1.2) obtained in Section (2)
may be solved analytically by the techniques:
(i) solution by separation of the variables,
(ii) solution by Laplace transform technique,

(iii) solution by group methods.

The simplest method, including boundary conditions is the Laplace
transform technique. It however requires boundary conditions on the
curves x = constant, and since x is a function of radius r and momentum
p, we cannot obtain solutions with boundaries r = constant, except in
the special cases of r > =, Thus these solutions although very use-

ful are more limited than we would like. They are given in Chapter (4).

The solution by direct application of separation of variables
in x and t leads to the same solution as the Laplace transform method |,
since the separation function in t 1s exp(-st) with s the separation

constant and the resultant integral over s leads to the weighting
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functions being identified as an inverse Laplace transform. Because

of this the separated solution is not given in this chapter.

The group method is the most useful of the above and it is
developed in the present chapter. It leads to a reduction in the
independent variables from four to three and to a further partial diff-
ential equation in three independent variables. This latter partial
differential equation has separable solutions, and for certain special
types of diffusion coefficients one of the separation variables is a
function of radius r only. For these special types of diffusion
coefficients it is possible to specify boundary conditions (e.g., free
escape) at boundaries r = r, and r = T, . The solution of boundarf
value problems in which spectra are specified at radii r = r, and r = Ty
is developed in Chapters (5) and (6).

In Section (3) a method is given for finding solutions of a -

system of differential equations S, from a knowledge of the groups of

continuous transformations that leave S invariant.

It is noted that the homogeneous, separated, steady-state trans-
port equation obtained in Section (2) is a linear partial differential
equation of second oraer in one dependent variable and four independent
variables. Ovsjannikov (1962) has investigated the group properties
of the general second order linear partial differential equation in one
dependent variable and n independent variables. Since the homogeneous,
separated, steady-state transport equation of Section (2) is a special
case of Ovsjannikov's work, we use his results in Section (4) to find
the group of continuous infinitesimal transformations that leave the
separated transport equation invariant.

In Section (5) the finite equations of the group and its
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invariants are used to construct group invariant or similarity
solutions of the separated transport equation by the methods of

Section (3).

2.2 The separable transport equation

For diffusion coefficients KII and Kl specified by the express-
ions (2.1.1), neglecting effects due to the antisymmetric component
of the diffusion tensor, KT, and assuming a constant, radial solar wind
velocity V, the steady-state continuity equation (2.1.2) expressed
in terms of the mean distribution function with respect to momentum p
Fo (r, 8, ¢, p) is

2

4, 0 F oF oF
b+1 o b _ ) 2Vp )
Ko(p) r 3r2 + ((2+b) Ko(p)r Vr,ar + 3 73
2 2
o F oF 3 F
b-1 2 1
ek, (P | AT - 2+ —— 3
ou (1-u™) 3¢
) N G(r-ro) 8 (u-u.) §(¢=9) § (p-p,)
= - 5 : -
4 7 r, P,
(2.2.1)

Introducing variables £ = £(r,p) and t = t(p), and using the

notation § = 3¢/3r, € = 3t/3p, Equation (2.2.1) may be written

P
b+l 2 azFo b+l 2+b
K (p)r 3 agz + | K (pr (tE.rr += &)
oF 3F
2p _ 0 2Vp dt 0
+ ( 3 Ep r Er) V] 9§ + 3 dp ot
~ 2 2
b-1 2, 2 ¥, F 1 F
+ e Ko(p)r (1-u )_-T - 2y ™ + 5 5
ou (1-u™) 3¢

N|ag/or . dt/dp| 8(E-£,) 8(t-t ) &(u-u ) (4= ¢ )

b nr 2
o Po (2.2.2)
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In passing from Equation (2.2.1) to (2.2.2) the transformation
G(r—ro) G(H-UO) 5(¢—¢°)5(P-Po) =J G(S-EO) 5(u-uo) 5(¢—¢o) 5(t‘t0),

has been used, where the Jacobian

J = I 0 (E:t;u"t’)/a(r’p:u!‘b)' = Iag/ar 'dt/dp|r=r = i
o*P=P,

™
1

&(ro, po) and t =t (p).

Equation (2.2.2) is separable if we choose the coefficient of
aFo/ag to be zero, such that £ satisfies simultaneously the partial

differential equations

2+b
Err + T gr =0,
(2.2.3)
2p - -
3 €p r Er o,
The solution of Equations (2.2.3) is
-(b+
E = ¢ (rp3/2) (b+1) ,
where c¢ is an arbitrary constant. Choosing
-(b+
g = p¥H O pay,
_ (2.2.4)
e = -3/Pk () 2" I)/2 4, 7 2w,
Equation (2.2.2) becomes:
2
3°F oF
Cor)g1 /B o o
. 3e2 -
2 2
9 F aF o F
re [Eengl TR/ g 2y oy 0y Lo o
ou (1-u7) 3¢

-3 N| £ _(r ,p) | §(e-g ) 8(t-t ) 8(u-u) 8(¢-¢,)

8w V p3 r,
° (2.2.5)
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We note that Equation (2.2.5) is separable.

Introducing the variables :

if b # 1,

x = 2 HADZ iy o 2 peanyea @D/ QO
and if b = 1,

x = -2a(2rp)/2 = - aa(E) / 2, (2.2.6)

we now transform Equation (2.2.5) into two partial differential
equations in x, t, u, ¢ corresponding to the two cases in Equations

(2.2.6). These partial differential equations are:

- b -
1f KI I = KO(P) r, b # 1, K-L/KII = e,

2 ¥ 2, 2
9 Fo + 2n+1 aFo _ aFo + e(n+1)2 (l_uz)a Fo - zuaF + 1 0 Fo
o2 x ox ot 2 3u2 o T2 502

i - 3N X 6(x-xo) G(t—to) G(D-Do) 5(¢-¢o)
3.2
8 nV P, ro |n+1| , (2.2.7)
BZFO BFO 3Fo 2 32F0 3F° 1 82Fo
-2 - + e (1-y")y——— - 21 +
2 3x ot 22 T w2y 292
i - 3N a(x-xo) d(t-to) G(u-uo) 6(¢-¢°)
3 2
8 mVop, r, (2.2.8)

where X, = x(ro, po), to = t(po) and if b # 1, n = (b+1)/(1-b).
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Equations (2.2.7) and (2.2.8) may be combined in the equation

2 . 2 2

3°F a oF oF : 9 F oF a F
o e . o _ o o 2 o o 1
+(-——x+a2)—-——x ———-+(B+———) (1-u") Z—Zu +

]
x du W2 g2

= Z 8(x-x_) S(t-to) §(u~u_) 8(¢-¢ ),

(2.2.9)
where,
. - b =
(i) 1if b # .1, Kjy = Ko(p) r, KL/K” e, then
n = (b+1)/(1-b), a; = 2n+l, a, = 0,
a = e(n+1)2, B = 0O,
3 2 (2.2.10)
Z=—3Nxo/(81ero r, |n+1]| ),
x = 2 (rp3/2)(1—b)/2 / (1-b),
and
(ii) if b = 1, KII .= Ko(p)r, K.L/Kll = e then
al = 0, a, = =2,
a = 0, B = e,
4 =—3N/(8an2 rcz)),
(2.2.11)

x = -an (2r%p3) /2.

In the following sections we study the group properties and the group
invariant solutions of the partial differential equation (2.2.9), where

the parameters a;, a,, @, B, Z are specified in Eqﬁations (2.2.10) and

(2.2.11).

The group properties and the group invariant solutions of the
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transport equation (2.2.9) will be used to show the relation between the
separation variables x and t given in Equations (2.2.4) and (2.2.6)

and the separation variables

t = —3ch‘5/(2vc),1f § = a+3(1-b) / 2 # o,
t = -3Kc2n(p)/(2V) if § = o0,
y = 2ves P p 2/ (3 K, (1-b)2),

where the diffusion coefficient K(r,p) = Kc pa rb, which were used by
Parker (1965), Jokipii (1967), Fisk and Axford (1969) in their work on

analytic solutions of the steady-state cosmic-ray equation of transport.

2,3 Solutions of partial differential equations and Lie Groups

The application of group theory to the solution of partial
differential equations was first considered by Lie (188l), and later by
Ovsjannikov (1962), Muller andlMatschat (1962) and Bluman and Cole (1969)
(for a more complete account of the results of this section see

Ovsjannikov (1962)).

‘A system of differential equations S in m dependent variables

u* and (n-m) independent variables xJ

is said to admit a group of continu-
ous transformations G if the system S is transformed into itself when

the dependent and independent variables are subjected to a transformation
of G. Hence any solution of S admitting a group G is transformed into
another solution of S under the action of any transformation of G.

The group of continuous, infinitesimal transformations

11 X+ e £

x (x; u), i 1(1) n-m,

(2.3.1).
'8 Crec

[

u (x; u), s 1(1) m,
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admitted by S are found as follows. The transformations of the partial
dérivatives of the dependent variables u® with respect to the indepen-
dent variables xi, i.e. E)us"/axi etc. corresponding to the transformations
(2.3.1) are calculated. We then substitute the derivative transformations
and the transformations (2.3.1) into the condition of invariance of §

and eliminate any relations betwzen the partial derivatives implied by
the equations of S. Equating the coefficients of the partial derivatives
of 0(e) in the invariance condition yields a set of part-ial differential

equations for the functions
£, &7, i = 1(1) n-m, s = 1(1) m.
known as the determining equations.

The finite equations of the group admitted by S are the integral
form of the infinitesimal transformations (2.3.1), i.e., the solutions

of the set of ordinary differential equations

d x'.:L _ du'® = de
i .. - S , 4.1 ’ (2.3.2)
€ (x';u') €, (x';u')

known as the trajectories of the group.

Invariants of the group with infinitesimal generators (2.3.1)

are functions J(x,u) such that

J (x', u"') = J (x, u). (2.3.3)

Substituting the transformations (2.3.1) in Equation (2.3.3) and

equating terms O(e) to 2ero we find

i 9J s 0J -
Ex i + gu s 0. (2.3.4)
ox dJu

The characteristic equations for the first order partial differential

equation (2.3.4) are given by the group trajectories (2.3.2). Thus
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the invariants of the group with generators (2.3.1) are the (n-1)
functionally independent solutions of the trajectories (2.3.2). The
above discussion indicates that the finite equations of the group with

trajectories (2.3.2) may be expressed as

J' x';u") = J° (x; u), T = 1(1) n-1,

f (xl’ ul’ E) = O, (2-3.5)

where J' are the invariants of the group and the function\f (x', u', €)
is determined from the trajectories (2.3.2.)

Let H be a subgroup of the main group admitted by the system
S, with a complete set of functionally independent invariants
{(J/ t=1 () t}. The solution u = y(x) is known as an iﬁvariant H
solution if the solution is mapped onto itéelf by the transformations
of H. A necessary condition for the existence of ;n invariant H solution

is that the rank of the matrix

HBJT/BukII, T = 1 (1) ¢, k = 1 (1)m,

be equal to m (the number of dependent variables). An invariant

H solution of the system S is given by

k -
0 (J) = o, k = 1() m, (2.3.6)

where the functions ¢k are functionally independent with respect to the

variables J.

The transformations of the partial derivatives of the first
and second order of the dependent variables u® under the transformations
(2.3.1) may be calculated as follows:

We introduce the total differential operators
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D 9 s )
—_ = D = —— 4+ u — ,
Dx" 1 ax 1,8 (2.3.7)
~ P s d s 9
Di axi + Yy s + uij s ’
h| (2.3.8)
where \
us = aus
3 »
1 ax > (2.3.9)
u’ = —il—ifi-
ij Bxi axJ (2.3.10)
Since gi and gi are functions of x and u, we have
s s s D xg
u' = D +
i ') (u € Eu ) D x'i
= Dl( uS + € Ei ) D 5 ( x'g - € Ei ).
D x' (2.3.11)
Here we have used the summation convention and the notation
uj = au° / axi. Hence to 0O(g)
'S _ S S
vy u toety, (2.3.12)
where
s s S 2
L4 D, (6) - u D, (), (2.3.13)

gives the transformations for the first order partial derivatives.

By a similar analysis

s .8 S
u'l., = u,,+ €¢
i] 1 13 (2.3.14)

where
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)

L. D, (g

s s
ij i )

3y ujl Di ) (2.3.15)

gives the transformations for the second order partial derivatives to

0(e).

Associated with the transformations (2.3.1), (2.3.12) and

(2.3.14) are the differential operators

i 9 k 9
X = g == + g L—

X axi U (2.3.16)
~ i ] k ) s ]
X = & —5 + & — + 77 — ,

X axi u auk i aui (2.3.17)
(-3
X = gi 2 4 gu-———a + ci 2 +C:. as

ax du du J dui,

(2.3.18)

The operators X and ; are called the first and second extended operators
of the operator X. If F is some arbitrary function of the x's and u's
the function X F is known as the symbol of the group generated by the
infinitesimal transformations (2.3.1). The functions X F, ; F are the

symbols of the first and second extended groups.

The general operator X of a Lie group can be expressed as a
linear combination of a set of basis operators '{Xa, a= 1 (1) r} with

a
constant coefficients e, 1i.e.

a ® | (2.3.19)

where as usual the summation convention applies. The operators Xa form

a Lie Algebra with respect to the operation of commutation:

[X_, X ] X, X, - X X_. (2.3.20)

It can be shown (Eisenhart (1933)) that the operators Xa satisfy the
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relations
- e =
[X» Xpd = ey %o s a, b,e=1Wr, (2.3.21)
[x,, x1 = -0x, X1, (2.3.22)
(0X,, %, 1,X 1400, X 1, X1 + [0X,, 31, %1 = 0 (5 5,0

The constants co. are known as the structure constants of the group and

ab

the relations (2.3.22) and (2.3.23) are known as the Jacobi relations.

The results (2.3.21) = (2.3.23) also hold for the first extended operators -

~ ~

Xa! Xb’

(2.3.23).

ic' Similarly the nr'h extended operators satisfy (2.3.21)-

The homogeneous, steady-state, cosmic-ray equation of tranmsport
(2.2.9) is separable and it is a second order linear homogeneous partial

differential equation of the form

cF) = atd) F.. + bl F, + ¢f = 0

ij (2.3.24)

where aij, bi, c are functions of the independent variables xi and

aij = aji. The group properties of Equation (2.3.24) have been analysed

by Ovsjannikov (1962), and we outline his results below.

Consider the operators

X=Ei——3—i-_+n

9x

3
?F ? (2.3.25)

admitted by Equation (2.3.24). The condition of invariance of Equation
(2.3.24) under the infinitesimal transformations with operators (2.3.25)
is

=1

X G(F) = XMG(F) = o0, (2.3.26)
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where

ik

ik,
ik + cn + X(a ) Fi

~ i i
X G(F) = a +b ¢ + X(b7) F, + X(c)F,

i k

(2.3.27)

and X is the second extended operator.

Equating the coefficients of the various partial derivatives of
F in Equation (2.3.26) to zero yields a set of determining equations
for the functions Ei and n. Ovsjannikov (1962) has shown that the
determining equations for the infinitesimal transformations admitted
by Equation (2.3.24), in the case where the equation is not strongly

degenerate are:

n = o (XHF + ax)

(2.3.28a) .
A= A (X, | (2.3.28b)
v = o-2a, (2.3.28¢)
ik agd jk aet 3 ald k ij
a + a’' = - © & = va-, i, = 1(1)n,
9% ox ox (2.3.28d)
, 2.4 i ,
zalk aok jk a_i 4-bk g gk abk - v b1
X ax ij X 9x
L=1Mn, (5 3. 28e)
i] 320 i 9do k dc
a™d 1 + b - + g % + ve = 0,
axaxd ax 9% : (2.3.28f)
axiaxJ . axi . (2.3.28g)

Equation (2.3.24) is strongly degenerate if in a certain system of

coordinates y = y(x) 1t is reduced to the form

2 1
ayl 3y (2.3.29)
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where b and c are functions of the new coordinates yl, yz, y3, ces y“.

If the function G(F) in Equation (2.3.24) had contained
an inhomogeneous term -M 6(5730), where M 1s a constant and 6(5750), is a
Dirac delta function in the n independent variables xi, then further
conditions are imposed on the operators (2.3.25). The condition of

invariance of the source point at 56 implies

£ (x) = o, (2.3.30)

and the n dimensional delta function transforms as

n i 2
6(x'-x_) = 6(x-x) [1-¢ L D, (§7) + 0 (e™1] .
—o —° =1 1 (2.3.31)
Hence we have
i
3 (x)
n 0
[ + A = 0
e (%) ’ (2.3.32)

as a consequence of the invariance condition (2.3.26),.

2.4 Infinitesimal transformations admitted by the steady state

cosmic-ray equation of transport.

The homogeneous, separated,steady-state cosmic-ray equation
of transport (2.2.9) is a linear homogeneous partial differential equation
in one dependent variable Fo’ and four independent variables x, t, u
and ¢. Ovsjannikov (1962) has investigated the group properties of
this type of equation and we proceed to use his results, which are out-
lined in Section (3) to find the group of infinitesimal transformations
admitted by the separated transport equation.

Putting (xl,'xz, x3, xa) = (x, t, u, ), Equatioh (2.2.9) is

then of the same form as Equation (2.3.24) with
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33
a

(8 + afx2) (1-u2),

o if v ¢ j, i,

(a1 /x + az), b2

-2u (B + a/xz), b

44

j o= 1) 4,

4

From Equations (2.2.10) and (2.2.11) we have:

(i) 1if K

[

n =

a1=

and

as the appropriate

Equations (2.4.1).

b
= xo(p)'r , b#1,

(b+1)/(1-b),
2n+l1, a, = o,
emD?, 8 = 0
= Ko(p) r and KI/K
o, a, = -2,
o, B = e,

values of

K. /K = e
L/lll

then

e then

56,

a® = (8 + a/xd)/(1-0D),

(2.4.1)

(2.4.2a)

(2.4.2b)

the parameters ap, a2; a, B to be used in

Using the results incorporated in Equations (2.3.28) the

determining equations for the operators admitted by the separated

transport equétion (2.2.9) are:

1

2t _
2 9x Vo

2
13 - o
9x ’

3 1
3k a_ _2 13
P +<B+x2)(1u)—"au

(2.4.3a)

(2.4.3b)

(2.4.3c)
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4 1
)
. +(s +—%)—1—-§ 3%—- = o0, (2.4.3d)
x°/ 1-u
o 2, 3 2 | ‘
(B +._E) (1-u°) 35_ = 0, . (2.4.3e)
x A
_ 2
(s+9‘7) L ¥ ., (2.4.3£)
X 1-p .
o 2 3_§_i 20 3
2(6 +—'2)(1-u) 5 + 55 A=) g7 4 2u(8+-‘§')£
X X X
= v(B +—§—)( 1-u%), (2.4.3g)
X
4 3
a 2, 3¢ 1 9E
B + — (1-°) —=— + o ] = 0, (2.4.3h)
( XZ)[ u l_uz 3¢
2o =) o o, 2adl | 2urendd]
2] 12 % S’y ad?
= o) 1
v (8 + > ) 7 - (2.4.31)
X l-p

Introducing the differential operator

2 a B
= 9__ 1 a_ _38_ o —u2y. 9
G = ax2 +( x+az) Py 3t+<8'+ 2)} [(lu) 3

2
9 1 J
- 2u E + 2 2]

a 1 a
90 _ 1 1&8 1 .
2—8-; = G(£ ) + 2 \)(— +a2) . (2.4.3])

(2.4.3k)

aw?
3t
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2 (s+—§) R G R 2(s+9-5) & +uvy,
X X X
(2.4.31)
2 (B8 + =
S S (2.4.3m)
(1-u%) i '
G (6) = o, | | (2.4.3n)
G (R) = 0, (2.4.30)

The solutions of the determining equations (2.4.3) depend on the
radial dependence of the diffusion coefficients KII and KL' In the

models under consideration the diffusion coefficients are of the form

'K = Ko(p) rb, KI/KII = e, (2.4.4)

In addition we require compatibility conditions of the form

a2 Ei a2 gi

. = - =z b ]
axd axF ax® ax3

to hold. There are three cases to consider. The solutions of the

determining equations for these cases are given below.

) b
Case 1. K|[ Ko(p) r,b#l, KL/ KlI = e

The solutions are

El

x (B +vt) = Y(t—to) X, (2.4.5a)

Y
1l

Y tz + 28t + o = y[(t-—to)2 + ao] ’ (2.4.5b)

£ = A Jl-p (b2 cos ¢ - b1 sin ¢)

#

l-uz sin Oo sin (¢0-¢), (2.4.5¢)
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e = I- H/ /l—u , 8in ¢ + b, cos ¢) = b3]

= A [(u / Jl—pz,)sin Go cos(¢-¢o) ~ cos Oo]’

(2.4.54)
v = 2842yt = 2 v(t-t ), (2.4.5e)
6 = y[-x*/4 - (n+l) t + 81, (2.4.5¢£)
n = oF+ax)), (2.4.5g)
A = g - v, (2.4.5h)
2 2
ie. X = - y(x - xo) /4 - (n+3) y(t-t ) + ¥ , (2.4.51)
where
2(x) is any solution of the homogeneous equation (2.2.1),
2 2
t, = -8/y , a, = (ay = B) / ¥° , (2.4.53)
Vo= sy - yGE J4+ (nD) £, (2.4.5K)
(bl, b2, b3) (gin Oo cos ¢o’ sin Oo sin ¢°, cos Oo),
(2.4.51)
and
H = cos 0.
Case 2 K”' =k () r, K = O
The solutions of the determining equations are
1
£ = K +6t + (B + vt) x,
i.e. g5 = yIx(t-t) +d (et ) + wl, (2.4.6a)
2 2 2
£° = y tT + 2t +a-= Y[(t-—to) + aOJ R (2.4.6b)
v = 28+ 2yt = 2y(t-t),

(2.4.6¢)
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a = -y x2/4 + (yt +8 -8/2)x - Yt2 - (28 + y/2 = 38) t+ Yo s
(2.4.6d)
n = OoF +Q, (2.4.6e)
A = 0 -V,
deer a = —y(oxD)/h + v (et )% - 8(xex )/2 = y(t-t )2
T Y o Y o o Y o
(2.4.6F)

-(5v/2-8) (t-t ) + I,

where
Q (i) is any solution of the homogeneous equation (2.2.1),
t, = - B/y, d;=2¢6/v, w = (K+6t )y, (2.4.6g)
and .
I = yp_ - yx> [b+ yt? - 8x /2 - (v/2-8) t
Po o o ) o’ ;
(2.4.6h)
Case 3 Kjl = Ko(p)r, KL/K|| =e#0
The solutions of the determining equations are
1 : ,
£ = yt+ B = Y(t-to), (2.4.7a)
2
£° = 3, (2.4.7b)
&3 = A.Jl—u2 (b2 cos ¢ - bl sin ¢), (2.4.7¢)
= Asin 0 \/1-uz sin (¢ _—¢),
54 = A [(u/Jl—u )(b2 sin ¢ + bl cos ¢) - bj]
= A [sin Oo(u//&-uz) cos(¢—¢0) - cos @Q]’ (2.4.74d)
v = 0, (2.4.7e)
g = A= yt-yx/2+k = Y(t—to) - Y(x-xo)/Z + h, (2.4.7g)

n = 0 F + 8
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where
Q@ (x) is any solution of the homogeneous Equation (2.2.1),
t, = -8/v, h =yt - Yxo/2 + k, (2.4.7h)
(bl, b2, b3) = (sin Oo, cos ¢°, sin Go sin ¢0, cos Oo),
and (2.4.71)
w = cos O. (2.4.73)

In Equations (2.4.5), (2.4.6), and (2.4.7) Oo and ¢o are
arbitrary, but constant polar and azimuthal angles and @, 8, Y, §, K,

p, A and k are arbitrary constants.

The operators corresponding to (2.4.5)-(2.4.7) can be expressed
in terms of a linear combination of basis operators [cf. Equation (2.3.19)].

For case (1) this decomposition takes the form

13

axi

X = ¢ +n %f

= A X, +A X, +A, X, +aX, + BX5 + yX, + Y8X, + X

17 2 72 373 4 6 7 8’
(2.4.8)
where
X, = —./l—u2 sin¢§—+ M cos¢_-a-'--
1 ] 1 ¢
s ¥
3 . )
= x. 2 - x == . (2.4.9a)
3 8x2 2 3x3
X, = Jl-—u2 cos ¢—a-— + L sin ¢ a—
2 ou 1 9¢
b ¥}
) 9.
= x 22— - x. ==, (2.4.9b)
1 Bx3 3 axl
- . 3 _ 3
X3 = 3 x2 ™ x1 . s (2.4.9¢)
1 2
x = 2 (2.4.9d)
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X5 = X 3= + 2t 3 ° (2.4.9e)
2 2
X6 = xtd/ox + t a/at + Fo(—x /4 - (n+1)t)3/3F, (2.4.9f)
X7 = F 23/3F, (2.4.9g)
x8 = Q(x) 9/9F, (2.4.9h)
with Al = Abl’ A2 = A b2’ A3 = A b3, and (xl, Xy x3),

(Al, AZ’ A3) position vectors in a rectangular cartesian coordinate

system.

The operators Xl, Xz, X3 correspond to infinitesimal rotations
about the X1y X, and Xq agis respectively; X4 is a translation operator,
whereas X5 and X7 are stretching operators. A similar decomposition

can be carried out for the other two cases.

The commutation relations (2.3.21) for the subgroup with
operators {Xl, XZ’ X3, X4, XS’ Xes X7} defined by Equations (2.4.9) are

given below:

TABLE 2.1
X1 XZ X3 X4 X5 X6 X7
Xl 0 X3 —X2 0 0 0 0
X2 —X3 (0] Xl 0 0 0 0
X3 XZ -Xl 0 0 0 0 0
X
X4 0 0 0 0 2x4 5 0
-(n+1)X
7
X5 o 0 0 —ZX4 0 2X6 0
X6 0 0 0 (n+l)X7- —2X6 (0] 0]
X
5
X 0 0 0 0 ' 0 0 0
7 4

.t .
In the above table the intersection of the ith row and j h column gives
the commutator [Xi, X.1.
J
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2.5. Invariant group solutions

In this section the finite equations of the main subgroup
admitted by the separated transport equation (2.2.9) are calculated

by integrating the group trajectories (2.3.2), i.e.

de = ax't _ apt
tlxty  oGDEH
2 3

where (xl,x ,X ,x4) = (x,t,u,¢) and the &i, o and @ are the infinite-

1 =1(1)4, (2.5.1)

simal generators of the group, which are given in Section (4). We
find the solutions of Equations (2.5.1) for the main subgroup with

2 = 0 since this is sufficient for our purposes. Taking (x,t,u,¢) as
initial values of (x',t',u',é') the solutions of the trajectory equations

(2.5.1) have the form

3 &ED = 3 (F), s = 1(D) 4, (2.5.2)

where Jg(x,F) are functionally independent invariants of the group.

An invariant group solution of Equation (2.2.9) has the form

(cf. Equation (2.3.6)).

G (Ji, JZ’ J3, Jé) = 0, (2.5.3)

where the function G in the relation (2.5.3) is compatible with the
separable transport equation (2.2.9). Since only one of the invariants
of Equations (2.5.1), say J3(x,F) is a function of, F, (the dependent
vari;ble), the invariapt.group solution (2.5.3), if it exists, may be

put in the form v
I3 (x,F) = f(Jl(x), JZ(X), J4(X) ), (2.5.4)

where the function f in Equation (2.5.4) is compatible with F being a

solution of the separable transport equation (2.2.9).

There are three cases to consider since the generators of the
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group admitted by Equation (2.2.9), given in Equations (2.4.5),
(2.4.6) and (2.4.7) are dependent on the character of the diffusion
coefficients.

b
Case 1 K|| = Ko(p) r, b#1l KL/KII = e

Putting u = cos O the trajectories of the gfoup with generators
(2.4.5) are

dx - dt dF

de = =
Y (t=t )x Y[(t-to)2+ao] Y(=x2/4 = (o+l) t+8)F

_ do _ d¢
T A sin@° sin(¢—¢o)A A[cot@ sin@o cos(¢—¢o)—cosG°]
(2.5.5)
Equations (2.5.5) may be written
(t-t ) x
%’:- - - , (2.5.6a)
[(t—to) + a‘o.]
do sin @o sin(¢-¢o)
do = (cot © sin © cos(¢-¢9 ) -~ cos O ) ’ (2.5.6b)
o o o
dF (-x2/4 - (a+l)t + &)F
T - )2 2 ) . (2.5.6¢)
o o
do _ Asin©, sin(e-4,) (2.5.64d)
dt :

2
Y[(t—to) + ao]

The solutions of Equations (2.5.6a), and (2.5.6b) are

-— X i
- )
/ (t—to) + a

n (x,t) = J ’ (2.5.7)

1

JZ = cos O cos Oo + sin O sin Oo cos (¢-¢o). (2.5.8)
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The. invariant J2 is the cosine of the polar angle in a coordinate
system with polar axis in the direction (Oo, ¢o).
From Equations (2.5.7) and (2.5.8)

’ (2.5.93)

2 (p? ), T =t-t
x Jl(T +a°’ o

\/(s'inze s:i.n2

Il

0, ~ (J2 - cos O cos 00)2) /sin O sin Oo.
(2.5.9b)

Sin(¢—¢o)

Using Equations (2.5.9) to eliminate x and ¢ from Equations (2.5.6¢)

and (2.5.6d) we find Equations (2.5.6c) and (2.5.6d) have the

solutions
_ 2 2 T 2
Jy = F exp(J] T/4+(nt]) an(T+a,) /2 - xS~ dy/(y +a ),
(2.5.10)
T 2
J, = o+ (A/y) /7 dyl/(y +ao), (2.5.11)
where
cos O - J2 cos Oo '
] = % arcos(;r___z_ > . (2.5.12)
(1—J2) sin (Oo)
T 2 2 '
I dy/ (y +a,) = artan (r/b)/b if a = b~ > 0, (2.5.13a)

J’T dy/ (y2+a0) tn((T-a) /(T+a))/(2a) if a = --a2 < 0, (2.5.13b)

/T ayry? -1/T if a_ = o, (2.5.13¢)

and

X = & - (n+l) t, - (2.5.13d)

By simple coordinate geometry the angle ¢ can be shown to be the
azimuthal angle of a spherical polar coordinate system with polar

axis in the direction (60, ¢°) .

The invariants Jl, J2, J3, J& above satisfy the necessary con-

dition for the existence of an invariant group solution given in
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Section (3). The invariant group solutions of Equation (2.2.9)

are of the form (2.5.4), i.e.,

J, = f(Jl, J2, J

3 ). (2.5.4)

4

Using the expression (2.5.10) for J3 the invariant group solutions
(2.5.4.) are
, 2 2 T 2
F = exp[—J1 T/4 - (n+l1)2n(T +a°)/2 + xS dy(y +ao)] . f(Jl’JZ’J4)’
(2.5.14)

where £(J J4) is the solution of a partiél differential equation

1 ,sz’
in Jl’ J2, J4 obtained by requiring that the function F in Equation

(2.5.14) satisfy the separable transport equation (2.2.9).

Choosing a coordinate system such that'Oo =6, = 0, and
putting n = Jl and w = J4 we find that the function f satisfies the

partial differentiallequation

2
3%f 20kl af , (20" A of
2 M n 5;'+ 4 £o- Y
an
+elot)” (g 2y 3 £, 3f 1 _ 3 fY_ 45 (2.5.15)
2 2 du 2 2
n ou 1-u Iw )

Note that the problem of solving a partial differential equation for
F in four variables has been reduced to the solution of a partial

differential equation for f in three independent variables. 
If A =0 then w = ¢ and Equation (2.5.15) sepafates, i.e.

P(u) Q(¢) R(M), (2.5.16a)

f =
where
2
P - —2— ') +(““§_) - 2 2) PG) = o,
(1-u7) (1-u™) (1-u™)
(2.5.16b)

Q"' (4) +n’ Q = o0, | (2.5.16¢)
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r 2
an 2
R + 22 Ry 4 [ o— - x - &)y } R(n) = o.
n

(2.5.16d)

Equation (2.5.16b) is Legendre's associated equation, Equation
(2.5.16c) has solutions in terms of exponential functions, and
Equation (2.5.16d) has solutions in terms of confluent hypergeometric
functions or modified Bessel functions, depending on whether a, #0

or a = 0.
o

The separated solutions of Equations (2.5.16) for f are

£ = 0" exp(-{a, n’/4) CAM(x/(2/=a ) +@+E)/2, 1+c,I:3;n2/2)

+ B.U (x/(2FE) + (148)/2, 142, J7a o’/D)].

[c.P? () + D.Q§ (1)) etimé (2.5.17)
or ifa =0
[o]
f = B [A.Ic(ﬁn) + B-K;(ﬁn)].
[C.Pi(u) + D._Q‘;(u)]eﬁm¢ , (2.5.18)

where

¢ =Jo? + e+ (mD)?, = (+1)/(1-b),

and 2 and m are integers withm < 2. The functions M(a,b,x) and

U(a,b,x) are standard independent solutions of the equation
xF''(x) + (b-x) F'(x) - aF(x) = O, (2.5.19)

which is Kummer's confluent hypergeometric equation (see Slater (1960)),
The functions Im(x) and Km(x) are modified Bessel functions of the
first and second kind; P?(u) and Q:(u) are associated Legendre
polynomials. In the applications of the solutions (2.5.17) and (2.5.18)

the coefficients of the Q?(u) terms are put equal to zero since these
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U
-
.

terms have a singularity at u

]
o

Case 2 KH = ko(p) T, Kl

The generators of the group are given by Equations (2.4.6),

and the trajectories of the group with = 0 are:

dx . dt

de = ,
Y[x(t—to) + dl(t—to) + QJ Y[(t-to)z + ao]

dF
.2 e 2 2y
YF(-x“/4 + (t t, d1/2)x -t° + (2to 5 + dl)c + po)
(2.5.20)
Putting T = t-tg the trajectories (2.5.20) may be written in the
alternative form

xT + d;T + w

%;. - 5 1 , - (2.5.20a)
(T° + a)
o
2 _ _ 52 1
dF _ F(-x"/4 + (T dl/Z)x " + (dl )T + bl)
dT (™ +a) | " (2.5.20b)
where
by = p_ +ti+(d -t | (2.5.20¢)
1 o o 1 o’ ce
The solution of Equation (2.5.20a) is
x + dl - e T
n (x,T) = J.(x,T) > _
1 (T2 +a) (2.5.21)
: o
where e, = w/ao. From Equation (2.5.21) we have
2 .
x = (T™ + ao) Jl + e T -»dl. (2.5.22)

Substituting for x in the remaining trajectory equation (2.5.20b)
we obtain a first order differential equation for F in the independent

variable T, and this equation has the solution

.
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JZ = F exp [nZT/4 + (l—el/Z)zT + 2n(T2+ao)/4
- n(l-el/?.) /(T ta ) - ¢y fT dy/(y2+ao)], (2.5.23)
where
¢, = t2 4 (d, - 1/t + (l-e./2)% + d% /4 +
1 o 1 o 1 0 1 Poe

The invariants J1 and J2 satisfy the necessary condition for
the existence of an invariant group solution given in Section (3).

The invariant group solution has the form:

J

or

F = f(n) exp[—nzT/4 - (l—e1/2)2 T - 2n(T2+ao)/4
+ n(l—e1/2) v (T +ao) + cldeyf(y2+ao)], (2.5.24)

where the function f(n) statisfies an ordinary differential equation
obtained by requiring that the function F be a solution of the separable

transport equation (2.2.9).

The differential equation for f(n) is
SZ+ (ag n’/4 - c)) £() = o. (2.5.25)
o 1
dn
The Equation (2.5.25) has solutions:

if ao‘# 0

£(n) = exp(~/~a, n?/4) [a.M(c,/(2/ma)) + 1/4, 1/2, J=a, n%/2)
+ B.U(e,/[FE) + 1/4, 1/2, [, n%/2)],  (2.5.26a)

and if ag = 0,

£(n) A.exp(/EI n) + B.exp(-JEI n). (2.5.26b)

The functions M(a,b,x) and U(a,b,x) are standard solutions of Kummer's
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confluent hypergeometric equation (2.5.19), and A and B are

arbitrary constants.

Case 3 KII = Ko(p) T, g;/KLl = e # 0.

The generators of the group are given by Equations (2.4.7).

The trajectories of the group with @ =0 are

4 - dx . dt  _ dF
€ y(t=tg) 8 YF(t-t_-x/2+a)
do _ d¢
A sin @0 sin(¢-¢0) A(sin Go cot 0 cos(¢—¢o)—cos @o)

(2.5.27)
where a = to + k/v. The integration of the groﬁp trajectories
(2.5.27) falls naturally into two sub-cases according to the parameter
8§, of Equations (2.4.7) is equal or not equal to zero. The case § = O,
~ corresponds to the monoenergetic point source solution, in which
particles of momentum P, are released at a steady rate from the
heliocentric position (ro, Oo, ¢0). The condition § = O defines the
subgroup of transformations under which the source:point (ro, Oo, ¢o)

remains invariant.

Without loss of generality we may choose coordinate axis such
that Oo = ¢o =0 (cf. case (1)), and we use this to simplify the
algebra in the work below, where we obtain the invariants and the group
invariant solutions corresponding to the cases : (i) § # 0, and

(ii) & = 0.

Case (1) § # O

‘The invariants of the group with 2 = 0 are given by the solutions

of the trajectory equations (2.5.27), which are

o~
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Jl = n(x,t) = x - %%i . t2.5.28a)
J2 = u , (2.5.28b)
J3 = F exp [’}((;]; -a) T - %—2- + I—g;)], (2.5.28c)
3, = ¢ +%E -, | (2.5.28d)
where
T = t-to, a = t0 + k/vy (2.5.28e)
The similarity solutions are of the form
Jy o= £, 3,5, )
or

o)
il

3 2
exp [-}- (-% + % + (a - %)T)] f(n,u,w). (2.5.29)

The function f(n,u,w) is the solution of a partial differential
equation obtained by requiring that the function F in Equation (2.5.29)

éatisfy the separable transport equation (2.2.9).

The function f satisfies the partial differential equation

2
af _ . 8f xy _ A of
2 2 an +-26 (n-2a) f - § ow
an
2 2
tefla-pty &E 28 1 3L} o, (2.5.30)
2 ou 2 2
du 1-u° 9w

If A= 0 then w = ¢ and Equation (2.5.30) has separable solutions:

f = P Q(¥) R (M), (2.5.31a)
where
P''(u) - 2u2 P'(u) + ( 2(2+;) - mz 3 ) P(u) = 0,
1-u 1-v A-477 (2.5.31b)
Q' (¢) + w’ Q(¢) = O, (2.5.31c)
RU) = 2 k') +{ 5 - e 22 - 12) R(n) = oO.

(2.5.31d)
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Equations (2.5.31b), (2.5.31lc) have solutions in terms qf associated
Legendre polynomials and the exponential function. By suitable trans-
formations Equation (2.5.31d) can be reduced to Bessel's equation.

We can show that the general solution for R(n) is

o 3/2 3/2,.
R(n) = e /z (A.J1/3(22 /3) + 3.3y 5 (22 /3)) :
where
- -2/3
z = (v/28) [ vyn/26 -y ald-1-e2(a+])] |
and Jl/3(x) is a Bessel function of order 1/3 with argument x.

Substituting the solutions for P(u), Q(¢) and R(n) in Equation

(2.5.31a) we obtain

_ .n 3/2 3/2
£ = e (E‘(A.Jl/3 (227 “/3) + Bod_yjy (22 /3))
(c Pr(u) + .G (u))eiim¢ , | - (2.5.32)
where
z = (/263 [y 0 /26 - yass - 1 - e 14T

as the separated solution for f.

Case (ii) 6 =0

The invariants of the group with € = 0 are given by the solutions

of the trajectory equations (2.5.27), which are:

J1 = T, (2.5.33a)
Jy = W, (2.5.33b)
(xz T+a ) |
J3 = F exp it - T X . (2.5.33c)
- Ax

The similarity solutions are of the form
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or

rrj
i

2
exp (— ’;:_T‘ + "I"‘-;_a" X) f(T, Hy W). (2’5’34)

The function f£(T,u, w) is the solution of a partial differential
equation obtained by requiring that the function F in Equation (2.5.34)

satisfy the separablie transport equation (2.2.9).

The function f satisfies the partial differential equation

2 2 2
A o f . 2Aa of 2f £ <:é§ -1 - l;_)

22 o2t 2 T . 2T
2 2

+ e ((1-u2) % - 2u%£ + 12 i—g- = 0. (2.5.35)
ou s (1-u7) 3w

Taking A = O and w = ¢ Equation (2.5.35) separates into the ordinary

differential equations

2
P (L) ___2u_2___ () + (2(E+1; ) mz 2>P(u) - o,
(1-u%) (1-u™) (1-u°)
(2.5.36a)
Q"' (¢) +m’ Qp) = O, (2.5.36b)
' 2
R'(T)+(1+-]2%f+ e 2(z+1)——a-2—) R(T) = 0,
T (2.5.36¢)
where
£ = P@) Q) R(T). (2.5.36d)

Substituting the solutions for P(u), Q(¢) and R(T) in

Equation (2.5.36d) we obtain

2
£(T,u,9) = ‘/—_Trl_- exp [;:%-— - T [1te 2(9,+1)]] .
[A Py(n) + B.Q';(u)] (Himo (2.5.37)

as the separated solution for f.
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The above completes the derivation of the analytic similarity
solutions of the transport equation, which we use in later chapters

to obtain solutions for specific boundary and source conditions.

¢l
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CHAPTER 3

MONOENERGETIC SOURCE SOLUTIONS

OBTAINED BY THE GROUP METHOD

3.1 Introduction

The steady state similarity solutions of the homogeneous
equation of transport (2.2.9) of Chapter (2) are now used to obtain
monoenergetic source solutions in which the distribution function Fo

satisfies the boundary conditions

(a) F0 + 0 as r > o

(3.1.1)
(b) Fo is finite as r =-» O.
The interplanetary magnetic field is assumed to be radial
and the diffusion coefficients parallel and perpendicular to the

field, denoted by Kll and KL are given by

- b ; -
K = Ko(p) r, Kl/l\.II = e,

[ (3.1.2)

where e is a constant and Ko(p) is an arbitrary function of momentum p.

In this chapter these monoenergetic source solutions are
obtained by using the‘group properties of the separable trénsport
equation (Equation (2.2.9)). 1In Chapter (4) these solutions are
obtained by using a Laplace transform method which is more widely
known.

In the first solution the particles of the monoenergetic

source have momentum Py and are released from the heliocentric position

(ro, Oo’ ¢o) at a rate of N per second per steradian. This solution
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is a function of heliocentric radius r, particle momentum p, and the

angle ® which is the polar angle referred to an axis through (Oo,¢o).

If.theVSOurce is located at the sun or infinity and the
perpendicular diffusion coefficient Kl # 0, these solutions become
spherically symmetric due to a diffusive flux perpendicular to- the
magnetic field at the source. For cases where KL = 0, the particles
are channelled in the direction (O°,¢o). We also note that if KL = Kll’
then diffusion is isotropic, and in this case the field need not be

radial.

In the second solution particles of momentum p, are released
at a rate of N per second from a spherical surface at radius r . This
latter solution is obtained by integrating the monoenergetic point
source solution in which N/(4rn) particles per second per steradian are
released from the heliocentric position (ro, Oo’ ¢o) With respect to
the solid angle element on = sin @o qeo d¢0, from Oo =0 to@ ==

(o}

and from ¢o =0 to ¢o = 27,

3.2 Derivation of the solutions

The monoenergetic point source solutions in which particles
of momentum p, are released at a rate of N per second per steradian

from the heliocentric position (ro, e, ¢0) are now obtained by using

o

the group properties of the inhomogeneous equation of transport (2.2.9).
The infinitesimal generators of the group of transformations

that leave the inhomogeneous Equation (2.2.9) invariant are a subset

of the generators for the homogeneous equation (2.2.9) satisfying the

conditions:

(i) The source point at (ro, @o, ¢o) is invariant under



77.

transformations of G. This condition holds if the infinitesimal
generators of G, namely gi(x, t, U, ¢), i = 1(1)4, are zero at the
source point.
(ii) From Equation (2.3.32)
n o agt(x)

f "9
i=1 i

The conditions (i) and (ii) restrict the parameters occurring

+ Ax) = 0.

in the similarity variable n, and in the general similarity solutions
of Section (2.5) to values appropriate for monoenergetic point source

solutions. The boundary conditions (3.1.1) and the normalisation

conditions:
If b #1
INx 8G—=x_) §Cu-u) 8(¢p-¢ )
FO hd o 03 2 0 2 as T ~» O,
8 nv P, T, [n+1] (3.2.1)
If b =1
3N §(x—x ) 8(u-k) 6(¢p=~¢ )
F_ -~ " > as T >0, (3.2.2)
° 8 nvp r o
o o
where
P -
T - 3/° K@ 1732 4,1 avy,

combined with the restrictions (i) and (ii) are sufficient to determine
the monoenergetic point source solutions. There are two cases to

consider depending on the radial dependence of the diffusion coefficient.

. b -
Case (1) k|| = Ko(p) r,b#1, KL/KlI e.

The generators of the group that leave the homogeneous transport
equation invariant are given by Equations (2.4.5). The parameter

restrictions (i) and (ii) determining the group generators of the
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inhomogeneous transport equation (2.2.9) imply

(3.2.3)
t, =t(po), X, = x(ro, po)-

The condition a = 0, determines the similarity variable

n(x,t) of Equation (2.5.7) and we have

n = x/T,
where

2m)s/z)(l—b)/:z

»
]

/(1-b).

‘ p _
O A WO IR )
Using Equations (2.4.5) and (2.5.13d) the condition ¢y = O implies

2
8 = xo/4 + (n+l) t,s

) (3.2.4)
X = X /4 ’
(o]

in the similarity solution given in Equations (2.5.14) and (2.5.18).

The boundary conditions (3.1.1):

F + 0 as r > @
o
FO is finite as r > O0;
require that coefficient of Kc(Ji n) in the similarity solution given
by Equations (2.5.14) and (2.5.18) be zero. Since | u | =1 the

coefficient of the Legendre associated function Q?(u) in Equation

(2.5.18) is zero from convergence considerations. Hence,
2,2
-n X +x X X 2
F A x exp \- 0 T 1.\—2 L, [a_ _cos(m¢)
o T 4T £=0 c\ 2T m=1 mi

+ me sin (m¢)] P:(u) +c, P (u)].

o (3.2.5)

gives the form of the monoenergetic point source solution.

The normalisation condition (3.2.1):
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3N X 6(x-xo) G(U-uo) S (¢=04)

F -> as T » 0O,
° 8V p3 r2 | n+1 |
o o

(3.2.1)

corresponds to the release of N particles per second per steradian,

of momentum P, at the source point.

It is necessary to determine the coefficients a_ _, b , ¢
mg mL 2

to satisfy the condition (3.2.1). To do this we now proceed to obtain
an expansion for the double Dirac delta function d(u—uo) 6(¢—¢o) in
terms of Pz(“)’ P?(u) cos(m¢) , p?(u) sin(m¢). The coefficients a o»

b satisfy:

me’® Sy

)
§Cu-u ) 8(o=0 ) = oI [c, Po(W) + I, [a, cos(me) +b , sin(mé)]

Pt:(u)].
(3.2.6)
The coefficients cl,.amg, bmz are obtained by using the orthogonality
relations
1 m m - I'(2+mtl) _q\0 2
L1 P PG du r-mt) . Y @D Ses
AR ) P ) du = 2 6
=1 g ¥ s'H H (22+1) Ls ,
. (3.2.7)
/2" cos(mg) cos(ne) do = f2"sin(mé) sin(ne) = ms
0 cos(m¢p) cos(n¢o o n s nm
2m
Iy cos(m¢) sin(n¢) dp = 0 |

‘(Sneddon - (1961) Sections (3.15) and (3.22) )

where stis the Kronecker delta symbol and I'(z) is the gamma function

of argument z.

Using the relations (3.2.7) we find
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e = L p )
(22+1) (-1)" (z-ﬁ): m

a = - P, (u_) cos(mp ).

mL 2n (2+m) ! [N o (3.2.8)
(2241) (-1)™ (2-m)! _m

bog = 2n (24m) ! Py(uy) sin(me ),

as the expressions for Cps @ o> and bml'

Substituting the coefficients Cos a0 and bmz from Equations

(3.2.8) into the expansion (3.2.6) we have

s(umuy) 8G-0) = B EEL[p () P, (1)
b2 § DT @M om0 )y ]
m=1 (24m) ! 2 'Ho l(u cos (m(¢ ¢o )1

(3.2.9)

Using the result

P,(cos ® ) = Pz(u) Pl(uo)

2 D™ @-m)! om n
+ ngl (2.+m)'- PR(D) Pz(uo) cos(m(¢—¢o)),
where
p = cos 0, M, = cos OO,
cos ® = cos O cos Oo + sin O sin Oo cos (¢—¢o),

(Sneddon (1961), Section (3.23)), the expansion (3.2.9) can be expressed
in the more compact form

.= 20+l
=0 4r

§ (u=u,) § (¢- ¢o) P (cos © ).

(3.2.10)

This is the expansion for 6(u—uo) 6(¢-¢°) that we set out to obtain.

We note that the angle @ in Equation (3.2.10) is the polar angle

referred to an axis through (O°,¢o).
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The normalisation condition (3.2.1) is satisfied if

3N X n+2
A = 2 ‘
= 16wV pg rg Kn+1” ’

in the expression (3.2.5) for Fo.

Substituting for the constants, A, Cos 3pos bml in the
expression (3.2.5) we obtain the monoenergetic source solution

corresponding to the release of N particles per steradian per second,

of momentum Py from the position (ro,00,¢0) as
3N x2 x \" x2+x2
F = o _2 .1_ expi- ___._._0—
© 16 7V pg ri |n+1 | X 4 T 4T

X X
® 28+1 0o
229 “am Epfcos @) Ic( 7T )

(3.2.11)

where

J @+ e a4 (DD

g =
RN VNS ES V2 R
P
o= 30K () (17392 4/ avy,

n = (b+l) / (1-b),

o
]

K .
K.L/ Il

We note again that the diffusion coefficients in (3.2.11) are

K = Ko(p)rb and K_L = e Kll’ where e is a constant.

We now consider the structure of the monoenergetic source
solution (3.2.11) as the source radius r, > 0. For particles to escape

from r, = 0 it is necessary to choose the parameter b, determining
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the radial dependence of the diffusion coefficients to be less than
one 1.e. b < 1. If the perpendicular diffusioh coefficient

Kl = e =0, b <1, and we let r, > 0 in the solutipﬁ (3.2.11) we find
that

R [Ces ) N 1 —x?
o 20t ot €XP \ a1

2 ™ V I'(n+2)

2 20+1 Pl(cos ® ),

2=0 4o (3.2.12)

which is a steady state solution of the equation of transport for
solar cosmic-rays. The series in Equation (3.2.12) is an expansion
for‘&u—uo) 6(¢—¢o) (cf. Equation (3.2.10)), so that with K-L = 0,

particles from the sun are channelled in the direction (Oo,¢0).

However if K‘L #0, b< 1, and r, > 0 in the monenergetic point
source solution (3.2.11) thevonly term in the right hand side of
Equation (3.2.11) which remains non zero corresponds to £ = 0 and the
solution (3.2.11) becomes spherically symmetric &ue to a diffusive flux
perpendicular to the magnetic field at the sourée. Hence the solar
source solutiop in which N particles per second of momentum p, are

released from ro = 0 is

F = 3N (n+122n+2 1 exp (-x
°© 226y 12 r(nt2) T 4T (3.2.13)
where K,, = K (p)rb, b< 1, K/K,,6 =e #0.
bl o L7

We now consider the character of the monoenergetic source
solution (3.2.11) as the source radius ro> which corresponds to
the case qf galactic cosmic rays. In order to obtain a finite
solution as r,> e it is necessary to choose the parameter b, determin-

ing the radial dependence of the diffusion coefficients, to be greater
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than one, i.e. b > 1, and to choose the injection rate N to be

proportional to rob+1.

1f we choose

b+l
N (b+DN_ K (p) £ °",

b
K, = K r,b>1, § =0,

and let r, > in the monoenergetic point source solution (3.2.11)
we obtain the solution for a monoenergetic galactic spectrum at

infinity, i.e.

9 :
Up = 4mp F_ -~ Ng G(p-po) G(u-uo) 6(¢-¢0) as r » = ,
(3.2.14)

The solution is

-3(1+b)/2 m
. } 3Ng KO(PO) Py 1 lci . -x2
o ~ 8wV TI(wm T \4T P \%T
® (22+1)
2o 4n  Pglcos @), (3.2.15)

where Kl = 0, Kll = Kb(p)rb, b >1, m= (b+l)/(b-1). The solution
(3.2.15) shows that with Kl = 0, monoenergetic galactic particles
released from r, =« are channelled in the direction (Oo,¢o). We note
that the corresponding solar source solution (3.2.12) with Kl =0

also has this property.

However if the perpendicular diffusion coefficient K, # 0,

b
K Ko(p) r, b >1, Kl/K = e,

and

b+1
4m (b+1) Ng Ko(po) r, ,

4
]

and we let r,t e in the monoenergetic point source solution (3.2.11),

the only term on the right hand side of (3.2.11) which remains non
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zero corresponds to £ = O. In this way we obtain the monoenergetic,

spherically symmetric galactic spectrum solution in which

Up > Ny 8(pp,) as r~>=. (3.2.16)

This solution is

-3(1+b)/2
e . 3 ?g,Ko(po) P, 1 53 xnéx _x2
o 8 7V T(m) T \&T P\sT /°

(3.2.17)

where KL # O; Kll = Ko(p) rb, b.> 1, m= (b+l)/(b-1).

The solution (3.2.17) may also be obtained by a Laplace transform
technique (see Section (4.3)), or by use of Green's theorem (see

Section (6.3) ).

To obtain the spherically symmetric monoenergetic source
solution in which particles of momentum p, are released.at a rate of
N particles per second from a spherical surface at radius r,, we
simply replace N by N/(4m) in the monoenergetic point source solution
(3.2.11) and integrate over the solid angle element dQO = sinGo dOQ d¢o
from Oo =0 to Oo = 1 and from ¢o = 0 to ¢° = Zn; Using the orthogon-

ality relations (3.2.7) for the Legendre and associated Legendre

polynomials, and carrying out the solid angle integrations we obtain

2 2 2
3N (xo)1 xo X +xo (x xo)
— — exp\- 1
o 64 Tr2 v Pz ri |n+l| X T 4T m 2T .

(3.2.18)

e}
[}

For ready reference we note again

x = 20plHADI2Z gy,
(1-3b)/2

P
T = 3fp° K (2) z dz/(zv),_
n = (b+l)/(i-b), m=|n]l,
- b -
K” = K() 1, b#l, KL/K” = e,
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Case (2) KlI = Ko(?)r, Kl/K|| = e #0

For monoenergetic source solutions, the group generators
(2.4.7) must satisfy the additional parameter restrictions (2.3.30)

and (2.3.32), i.e., i
4 9E (50)

i 3 —
£ (50) =45, 31 + A(ﬁo) = 0,
9X
so that
§ = h = 0,
k = y(x /2 -1t),
o o
3.2.19
x, = x(r,p), t, = tlp). (3.2.19)
Using Equation (2.5.28e) the condition k = y(x0/2 - ty) is
equivalent to
a = xo/2.

(3.2.20)

Substituting the parameters (3.2.19), (3.2.20) into the
similarity solution given by Equations (2.5.34) and (2.5.37) we find

that the monoenergetic point source solution has the form

R - (xx )’

F°.=Eexp"—4—,r—"“+x-'f N
w g 0
££0 <, Pz(p) + mél’[ami cos(m¢)+bm£ sin(m¢) ] Pl(u)d
exp(-e 2+1) T). (3.2.21)

The normalisation condition (3.2.2) :

3N 8§(x-x_ ) 6(u-u_) 8(¢-¢ )

F °3 2° 2 as T -0, (3.2.2)

° 8wV P, T, T

corresponds to the release of N particles per steradian per second

of momentum Po from the source point (ro,00,¢0). The constants Cys

a e’ bmi are determined from the expansion of the Double Dirac delta

function G(u—uo) 6(¢-¢o) in terms of Py (v), P?(u) cos(m¢) and
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P?(u) sin(m¢). These constants are the same as in case (1) and they
are given by Equations (3.2.8). The normalisation condition (3.2.2)

also implies

~x
3 Ne ©

16 n3/2 v pg rg

? (3.2.22)

in the expression (3.2.21) for FO.

Substituting C,» ap bmz from the Equations (3.2.8), and A

2"
from (3.2.22) in the solution (3.2.21), we obtain the monoenergetic
point source solution in which particles of momentum p, are released

at a rate of N per second per steradian from the heliocentric position

(ro,90,¢o). This solution is

|

(x-x_)*
Bt S o o \tm T
6 4 \Y P, T, JT

(B, (2841) Po(cos @ ) exp (-e 2(2+1) T), | —
(3.2.23)

where
x = -n(2 r2 p3) /2,
p -
T = 3 fp° K, (2) 1732 40 1 (o,
cos & =

cos O cos Go + sin @ sin Oo cos(¢—¢o),

i.e. ® 1is the polar angle relative to an axis in the direction (Oo,¢o).

Replacing N by N/(4w) in the monenergetic point source
solution (3.2.23), and integrating Equation (3.2.23) with respect to

the solid angle element d =sin © d© d¢ from® =0 to O =
o o o o ) o o

and from ¢o = (0 to ¢o = 27 we obtain the spherically symmetric mono-
energetic source solution in which particles of momentum P, are released

at a rate of N per second from a spherical surface at radius . This
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solution is:

(3.2.24)

We note that the solutions (3.2.23) and (3.2.24) both tend to zero as

r - 0.
o

3.3 Remarks

The monoenergetic point source solutions in whicﬁ particles
of momentum p, are released at a rate of N per second pér steradian
from the heliocentric position (ro,60,¢°) are given by Equations
(3.2.11), (3.2.23). In these solutions the diffusion coefficients
parallel and perpendicular to the ''radial interplanetary magnetic
field" have the form Kll = Kb(P) rb, KL/K|| = e, However if we
have isotropic diffusion, 1i.e. K_L = K|| the interplanetary magnetic

field need not be assumed to be radial.

The spherical symmetric monoenergetic source solutions in
which particles of momentum P, are released at a rate of N per second
from a spherical surface at radius r  are given by Equations (3.2.18)

and (3.2.24).

The monoenergetic galactic and solar source solutions are
given in Equations (3.2.13) and (3.2.17) for the cases where Kl # 0.
These solutions are spherical symmetric due to a diffusive flux
perpendicular to the magnetic field at the source. For the case where
l{l = 0, the monoenergetic galactic and solar point source solutions
are given by Equations (3.2.15) and (3.2.12). In these solutions the

particles are channelled in the direction (Oo, ¢°).
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CHAPTER 4

THE LAPLACE TRANSFORM DERIVATION OF THE

MONOENERGETIC SOURCE SOLUTIONS

4.1 Introduction

In this chapter the monoenergetic point source solutions
of Chapter (3) are derived using a Laplace transform technique. 1In
these solutions the distribution function Fo satisfies the boundary

conditions

(a) Fo + 0 as r =+ o

(4.1.1)
(b) F is finite as r -» O,
o

and these solutions are derived in Section (2).

The interplanetary magnetic field is assumed to be radial and
the diffusion coefficients parallel and perpendicular to the field

denoted by KI| and K‘L are given by
K, = K@ r, KI/K, =e
H o ’ 1 ’ (4.1.2)

where e is a constant and Ko(p) is an arbitrary function of momentum p.

The solar wind velocity V is assumed to be radial and constant.

In Section (3) we derive the solution of the boundary wvalue
problem

2
(i) Up = 4up F0 > Ng G(p—po) as r > o
(ii) Up is finite as r -+ O, ‘ (4.1.3)
(ii1) The diffusion coefficient K = Ko(p) rb, b >1,

by the Laplace transform technique. The solution of the boundary
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value problem (4.1.3) was given, without derivation, in Chapter (3).

4.2 Monoenergetic point source solutions

With a source of monoenergetic particles of momentum Py
released at heliocentric position (ro, Oo, ¢0) at a rate of N particles
per second, per steradian, the steady-state cosmic-ray equation of
transport has the separable forms (2.2.7) and (2.2.8), i.e.;

b‘

if KH = Ko(p) r, b#1, Kl/Kll = e,
3%F oF 3F 2 %3 5F
o 2n+1 _ (n+1) 2y o _ 0
2 + X ox ot + 2 Ll L 2 2 du
ax X ou
SZF
+ 1 o
2 2 ]
(1-u%) 3¢
- 3 N X 5(x-xo) G(t—to) 5(U-u0) 5(¢'¢0)
- 3 2 ’ ;
8 mV p, r. |n+l] (4.2.1)
where
x = 2(p/H (D2 /g py,
- _a (P (1-3b)/2
t = 37 KO(Z) 2z dz / (ZV)9 (4.2.2)
n = (b+l)/(1-b);
if K, = K () r, 1_<l/1<|| =e, b=1,
3%F . 3F_  oF 22F OF 3%r ]
o o (o) 2 0 o 1 0
7 ~ 253" e te () —5 - 2w —nt 2 2
ax du (1-u7) 3¢

3N 6(x—x°) é(t—to) G(u-uo) 6(¢-¢o)
3 2 ’
OrO

8nVp (4.2.3)
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where
x = -n (26297 / 2,
t = -3fp Ko(z) z(l_3b)/2 dz / @2y,
. (4.2.4)
and
t, = tlp))s x, = x(r_,p).

Using the Laplace transform technique there are two mono-
energetic point source problems to consider according as the parameter
b (determining the radial dependence of the diffusion coefficients)

is equal or not equal to one.

To derive these solutions we first obtain separated solutions
of the angular part of the partial differential equations (4.2.1) and

(4.2.3) determining Fo’ and hence we obtain

L

F = 1%
2 [mgl

o 220 [a

cos(m¢) + bm sin(m¢)] P?(u) + c Pl(“)]

me L L

R (x, t, 2), (4.2.5)

where P?(u) is a Legendre associated function and Pz(u) is a Legendre
polynomial of order f£. The second solution of Legendre's associated
equation Q?(u) has not been included in the solution (4.2.5) since

it has a singularity at u = 1 and hence is inappropriate for the

present problem.

The coefficients a bml’ and ¢ in the solution (4.2.5)

mg’ [}

are then determined from the normalisation conditions (3.2.1) and (3.2.2):

Ifb#1

3N x_ 8(x-x_) S(u-u_) 8(¢-¢ ) ,
F - o 3° > 9 o as t + t,
° 8 mV P, T, [n+1] ©

(4.2.6)
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if b=1

3N 6(x-x,) 8(u=uy) §(4-9 )
F > as t > ¢t
o 3 2
8§ nVp r
o o

o.
(4.2.7)

The conditions (4.2.6) and (4.2.7) imply

it

[a cos(m¢g) + bm

§(u=u,) §C4—9 ) = I I [a

olm sin(m¢)] Pz(u)

2

+ ¢, P_(w].
Lot (4.2.8)

The determination of the coefficients a b from

mg’ me? €2

the conditions (4.2.8) has been carried out in Chapter (3) in

Equations (3.2.6)-(3.2.10). In Equation (3.2.10) it is shown that

_ o 22+] .
S(u-u_) 8(¢=¢,) = B, == P (cos @), (4.2.9)
where
cos @ = cos 0 cos O+ sin O sin éo cos (¢-¢_),
(4.2.10)

and ® 1is the . polar angle referred to an axis through (Go, ¢o).

Henée the solution of the Equations (4.2.1) énd (4.2.3) for
monoenergetic point source solutions reduces to the solution of a
boundary value problem for the function R(x, t, &) referred to in

the expansion (4.2.5).

Putting T = t-t and since x = x(r,p), the function R(x,t,%)

must satisfy the conditions
(i) R(x,T,l) +> 0 as r > », (4.2.11a)
{ii) R(x,T,2) -+ a finite valueas r -+ O, (4.2.11b)

(iii) If b # 1
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3N X, 6(x—x0)

R{x,T,2) - as T -+ 0,
' Ly 8 n v p3 r2|n+1| (4.2.11¢c)
o o . .
and if b =1
3N G(x—xo)
R(x,T,%) -+ ————3 , as T - 0. (4.2.114d)
8 nV P, T,

The boundary value problem (4.2.11) for the function R(x,t,%)
is now solved by the Laplace transform method for the two types of

diffusion coefficient mentioned previously in this section.

= b =
Case (1) Kll = Ko(p) r, b#1, KL/KlI = e

The function R(x,t,?) satisfies the partial differential

equation
2 2
9°R , 2n+l 3R e (2+1) (n+l)’ 3R .
27 T x 2 R= 31 ° ‘
x x (4.2.12)

Consider the Laplace transform of R(x,t,f)with respect to T

u(x,s) = = e 3T rx,T,2) dT.

4] (4.2.13)

Taking the Laplace transform of Equation (4.2.12) and the
boundary conditions (4.2.1la) and (4.2.11b), the boundary value problenm
(4.2.11) for R(x,T,%) reduces the boundary value problem for u(x,s)

given below.

2 2

Loz o [oaemen®, ], o,

dx X X x (4.2.14a)
3N X G(x-xo)

8 1V pz r§ |n+1]

R(x,0)

(4.2.14b)
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u(x,s) - 0 as r -+ o,

(4.2.14¢)
u(x,s) 1is finite as r -+ O. (4.2.14d)
Since
X = 2(1‘p3/2).(1.—b)/2 / [(l-b)l,
the boundary conditions (4.2.14c) and (4.2.14d) expressed in
terms of x are:
if b < 1,
u(x,s) > 0 as x >, (4.2.14e)
u(x,s)l is finiteas x -+ O
and if b > 1,
u(x,s) 1is finite as x -+ =, (4.2.14f)

u(x,s) > 0 as x > O.

The general solution of the inhomogeneous Equation (4.2.14a)

is

u(x,s) = ul(x,s) (c + r*

R(z,0) u2(Z,S)
W(u,(2,9),u0,(2,8)) 7

R(z,0) ql(z,s)
: b4 - dz },
+ uz(x,s) d -/ W(ul(z,s), uz(z,s)) (4.2.15)

where ul(x,s) and u2(x,s) are independent solutions of the homogeneous
Equation (4.2.14a), with wronskian W (ul(x,s), uz(x,s)) (Morse and
Feshback, Methods of theoretical physics, Vol.l, Section (5.2.),
p.529-530). The constants ¢ and d are determined by the boundary

conditions that are placed on u(x,s).

Two independent solutions of the homogeneous form of Equation
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(4.2.14a) are:

u;(x,s) = x " IC(-/;")° (4.2.16)
uy(x,8) = xR (s %), (4.2.17)
where ‘
¢ = Jo? + e 2(241) (nt1)>
The wronskian of ul(x,s) and uz(x,s) is
W, u) = - x o0k (4.2.18)
The functions ul(x,s) and uz(x,s) have the properties:
u, (x,8) » = as x > =, (4.2.19a)
u;(x,s) > 0 as x > 0, (4.2.19b)
u,(x,8) > 0 as x > =, (4.2.19¢)
u,(x,8) > = as x =+ 0.

(4.2.19d)

Substituting the expressions (4.2.16) and (4.2.17) for
ul(x,s) and ué(x,s) in the general solution (4.2.15) and using the
properties of ul(x,s) and uz(x,s) for small and large x, to fit the

boundary conditions (4.2.14) we obtain

3N x
o

8an2r§|n+l|

ntl IC(Ez)dz

u(x,s)

.[X-n Kc(/g-x) f: 6(z—x°) z

+x M1 (s %) £ 6(zx ) 2" K (/3 2) dzJ .
& X ° . (4.2.20)

Carrying out the integrations in Equations (4.2.20) we have

n+2
. 3N X -n _
u(x,s) = X IC(f; xo) Kc(ﬁ; x) if x > X

8aV pzr: |n+ll

7



95.

and,

IN x n+2
o

i

u(x,s) x ° IC(JE x) KC(JE xo) if x < X -

8 nV pi rcz) | n+1]
(4.2.21)

The inverse Laplace transform of uy(x,s) gives the required
solution of the boundary value problem (4.2.11) for R(x,T,2). This

solution is gi\}en by the Bromwich integral formula

sT

1 ct+iw
S u(x,s) e = ds. (4.2.22)

R(x,T,2) = 2mi T e~i®

From Erdelyi's Tables of integral transforms (vol.1l, Section (5.16),

p.284, formula (56))

L potie R ((a +/B) /5) 1 (/o = /B9 e ds

2ni c-ixo

o+B a-B

yoe(-52) 1 ()
= 5= exXpl- 50— I {—= 4
2T 2T e\ 2T (4.2.23)

where Re(a) > 0 and Re(B) > 0. Substituting the expressions (4.2.21)
for u(x,s) in the Bromwich integral formula (4.2.22), and using the

transform (4.2.23) with
a = (x +x)%/4, B=(x-x )4
o ’ o >

we obtain

oo x n 2,2 x x_
R(x,T,%) = exp(- ——-Q-—) I ( )
16 m V p3 r2 | n+1| T . 4T 2\ 2T
o o
(4.2.24)

as the solution for R(x,T,L).

Combining the expansion (4.2.9) for S(u-uo) 6(¢—¢0) and the

expression (4.2.24) for R(x,t,%) we obtain the monoenergetic point
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source solution in which particles of momentum p, are released at a
rate of N per second per steradian from the heliocentric position

(ro, Oo, ¢o ). The solution is

2 n . 2A
v ) 3N X (fE) 1 exp<:<x +x§)
° 16 n V p3 r2 | n+1| X T 4T
o o ~

. (22+1) X xo)
L ———*= P,(cos @) I
220 4 % z ( 2T . (4.2.25)
where
K = K (p) rb b#1, K /K = e
I | o ’ ’ 1 H ’
n = (b+l)/(1-b),
¢ = Jn? + e n@u4l) (n+1)2
x = 2(rp3/2)(1'b)/2 / (1-b),
P
T = 3 fpo Ko(z) z(lm:;b')/2 dz / (2v). 2
cos @ =

cos O cos Oo + sin © sin Oo cos (¢—¢o).

The result (4.2.25) has been given in Equation (3.2.11) of Chapter (3).

Case (2) K|| = Ko(p)r, Kl/Kll = e

The function R(x,T,%) satisfies the partial differential

equation

2
»a—fzi-zg—R-ez(un R =§3 i
ax X (4.2.26)

Consider the Laplace transform of R(x,T,L) with respect to T:
s

u(x.s) = f: e T R(x,T,%) dT.

Taking the Laplace transform of Equation (4.2.26) and the boundary
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conditions (4.2.11a) and (4.2.11b), the boundary value problem
(4.2.11) for R(x,T,2) is reduced to the following boundary value

problem for u(x,s)

d2u du
;—E- - 235 (e 2(2+1) +8) u = - R (x, 0), (4.2.27a)
X
3N 6(x—xo)
R(x, 0) = ————— ,
8 1V p3 r2 (4.2.27b)
o o
u(x,s) - 0 as r =+ o,
(4.2.27¢)
u(x,s) 1s finite as r - 0.
, 2 3 .
Since x = - ¢n(2r"p~)/2, the boundary conditions expressed in terms
of x are
u(x,s) > 0 as x > -o,
(4.2.27d)

u(x,s) is finite as x > =,

The general solution of the inhomogeneous form of Equation

(4.2.27a) is:

' x R(z,0) u2(z,s)
u(x,s) = ul(x,s) c+ /

W(u (z,8),u,(z,) °

x R(Z,O) ul(Z,S) |
+uy(x,8) | d-J W(u, (z,s),u,(z,s)) a2

(4.2.28)
where ul(x,s) and u2(x,s) are independent solutions of the homogeneous
form of Equation (4.2.27a), W(ul(x,s), uz(x,s)) is the wronskian
of uy and ué and ¢ and d are constants determined by the boundary
conditions (cf. case (1)).

Two independent solutions of the homogeneous form of Equation

(4.2.27a) are

ul(x’s) = exp [(1 +J1+s + e 2(2+1) ) x], (4.2.29)
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and

uz(x,S) = exp [(1 - /1 + s + e 2(1+1)l) x ] . (4.2.30)

The wronskian of uy and u, is

w(ul(x,s), uz(x,s)) =-2J1+ s+ e 2(2+l) exp (2x).

(4.2.31)
For large positive x and large negative x we have:
u,(x,8)>0 as x =+ -=, u,(x,8) >~ as x > =, (4.2.32a)
uy(x,8) + = as x > -=, UZ(X,S) >0 as x>, (4.2.32b)

Substituting the expressions (4.2.29) and (4.2.30) for ul(x,s)
and uz(x,s) in the general solution (4.2.28), and using the properties
(4.2.32) of ul(x,s) and uz(x,s) for large |x| to fit the boundary

conditions (4.2.27d), we obtain

3 N
16 w V pg r§ﬁ+s+e 2(2+1)

u(x,s)

[exp[ (1- J1+s+e 2(2+1) ) x]J.

{: 6(z—x°) expl (V1+s+e £(2+1) - 1) z ] dz

+ exp [(1 +J/1l+ste 2(2+1) ) x] f: G(Z—xo) exp[-(1 + /1+s+e L(2+1)z] d%.
: (4.2.33)

Carrying out the integrations in (4.2.33) we have

: 3N '
16 © V p3 r5/IFste Z(ZFI)
if x> x,
[o]

u(x,s) exp[ (1 - 1+s+el (2+1) )(x—xo)]

(4.2.34a)

and

u(x,s) = 3N expl (1 +,/1+s+et (L+1) )(x—xo)]

16 n Vv pg r§JT¥s+e L(2+1)

if x < x,, (4.2.34b)

as the required solution for u(x,s).

The inverse Laplace transform of u(x,s)
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T

L cti u(x,s) e® ds,

2ni cajice

R(x,T,L) =
(4.2.35)

is the solution of the boundary wvalue problem (4.2.11). Putting
p=1+ s + e 2(241) and using the expressions (4.2.34) for u(x,s)

in the transform (4.2.35) we have

R(x,T,) = 3N exp [x-x = (1 + e 2(2+1)) T1

3 2 o

16 nVp r
o o
exp(— Vp |x-x_|)
+{co
2;1 fﬁ_iw exp (pT) = °— dp.
p (4.2.36)

From Erdelyi, Tables of integral transforms (vol.l, Section (5.6),

p. 246, formula (6)):

] Ot 1 -/a t 1 o
B S AT e g ewb )
o—i® p (4.2.37)

Using the transform (4.2.37) with

a = (x—xo)2 and t = T,

in the result (4.2.36) we obtain

3N 1
RGx,T,0) = =375 7 T
r
o

exp [ X = X ~[1+e 2(2+1)] T
16 w vV p L

2
} (x-xo) ]
4T

as the solution for R(x,T,%).

o w

(4.2.38)

Combining the expansion (4.2.9) for G(u-uo) 6(¢—¢o) and the
solution (4.2.38) for R(x,T,2) we obtain the monoenergetic point source
soluti&n in which particles of momentum p, are released at a radius

r, at a rate of N per second per steradian from the heliocentric

position (r_, O, ¢ ).

The solution is
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(x-x_)?
Fo= 3N Lo |xox -0
o 16 1T3/2 v p3 r2 JT o 4T
o o
® (22+1) - _
250 e Pl(cos ® ) exp [-e 2(4+1) TI ,
(4.2.39)
where
k’l = Ko(p) r, KL/Kl| = e,
X = - 2n(2r2p3)/2,

(1-3b)/2

T = 3 f§° Ko(z) z dz /(2v),

cos O cos O cos Oo + sin O sin OO cos (¢ —¢o).

The solution (4.2.39) has been given previously in Equation (3.2.23)

of Chapter (3).

4.3. The monoenergetic galactic spectrum solution

We now proceed to solve the boundary value problem (4.1.3)
in which the number density Up is a monoenergetic spectrum at infinity

and Up is finite as r - 0, i.e. in terms of Fo:

N 6(p-po)
(i) F » B2 ——2 . 45 r -» .,
o 4 T 2
pO
(i) F_ is finite as r -+ 0, (4.3.1)

(iii) the diffusion coefficient K = Ko(p) rb, b > 1.

For the problem (4.3.1) the distribution function F_ satisfies
the spherically symmetric equation of transport with zero source term.

Hence from Equation (2.2.7) we have:
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2?
9 1o + 2n+l Efg - Efg
3% x o oT (4.3.2)
where
x = 2(rp3/2)(1—b)/2/ | (1-b) |,
n = (b+1)/(1-b),
p s
T = 37f °k (2) z(1 3b)/2 dz / (2v),
p o
Since
dT 3 Ko(po) po(l-3b)/2
§ (p-p,) = 6(T) I‘Tl; = 2V (T,

(4.3.3)
the boundary value problem (4.3.1) expressed in terms of x and T

is
-3(14b)/2
3 Ko(po) P, Ng §(T)

1) F, - R as x - 0,

(4.3.4)
(ii) Fo is finite as x -+ =,

Consider the Laplace transform of Fo with respect to T:

u(x,s) = fO e Fo(x,T) dT. (4.3.5)

Taking the Laplace transform of Equation (4.3.2) and the boundary
conditions (4.3.4) the boundary value problem (4.3.1) becomes the

following boundary value problem for u(x,s)

2
du 2n+l du _ (4.3.6a)
E;z + - dx su = 0,

u(x,s) > O as X > o (4.3.6b)
3K (p) p—3(1+b)/2 '
u(x,s) - © 0 O N as x -+ 0. (4.3.6c)

8tV g
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The general solution of the ordinary differential equation

(4.3.6a) is

u(x,s) = [A . Im(JE x) +B . Km(/g x)1 %", (4.3.7)

where m = |n| and Im(z) and Km(z) are modified Bessel functions of

the first and second kind of argument z.

The boundary condition at x = o, (4.3.6b) is satisfied if

we choose A = 0 in the general solution (4.3.7). Using the result

K (2) » T(m) (2/2)7"/2 as z > 0, (4.3.8)

we find that the boundary condition at x = 0, (4.3.6c) is satisfied

for
I K (p) p—3(1+b)/2 Sm/2
B &0 0 o ’ .
2m+2 2 V I (m) (4.3.9)
and
-3(1+b)/2
u(x,s) = s ::;pO)po . "2 5 Kas %)y 3 10)
2 7 V I'(m) (4.3.
Inverting the Laplace transform (4.3.10) for u(x,s) we
v obtain
-3(14b)/2 .
3N K +ico
P - i+20(Po) P, Zii ci;w /2 < (/5 0 ST ™ 4o
2™ 5V T'(n) € |
(4.3.11)
Using the result
ctix o _
21i - ~-v/2 pv/2 K (2/3/%) oPt dp = t v-1 e a/t/Z’
Thoest v (4.3.12%

(Erdelyi et.al. (1954), Vol.1l, Section (5.16), p. 283), the expression

(4.3.11) for Fo becomes: ' .
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ANt £ R o,
o 81 V I'(m) 4T T ®XP\%T J°

The solution (4.3.13) is the monoenergetic galactic spectrum

(4.3.13)

solution (3.2.17), which was given, without derivation in Chapter (3).
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CHAPTER 5

GREEN'S FUNCTIONS

5.1 Introduction

In this chapter we use the results of Chapter (2) to
determine general solutions for cases in which we can specify the
distribution function Fo on two boundaries at radii r = r, and r = T
with the intention of obtaining spherically symmetric Green's
functions. The Green's function is the solution for a monoenergeéic_

source of momentum P,» at radius r, and in general with F° =0

at boundaries r = r and r = r, , wherer <r < r_,
a b a o b

The expressions (2.5.7) and (2.5.21) for the similarity
variable n(x,t) are in general functions of radius r and momentum p.

The curves

n(x,t) = constant,
where,
£ = -G/@P K () 21T g,
x = (27BN HIP2 ye py,
and (5.1.1)
x = - an(2r2p)/2 if b =1,

may be used as boundary curves for the general similarity solutions

of Section (2.5).

In Section (2) we show that the variable z = an (where a

is a constant which may be made infinitely large) is a function
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b

of radius only for diffusion coefficients of the form KII = Ko r

D p3/4(b—1)

or K = K
I o

a, to’ e

o 1’ 71

and appropriate choice of the parameters

d, which define n in Equations (2.5.7) and (2.5.21).

The case b = 1 is degenerate so three separate similarity solutions

arise for which z = z(r); they are for

(1) KII = KO rb p3/4(b-1), b # 1,
2 Kk, = K 2, b #1,
(3) K|| = Ko r,

and these solutions are given below.

(5.1.2.)

In Section (3) we use the general similarity solutions of

Section (2) to obtain the spherical symmetric Green's functions for

cases where z = z(r) and boundaries at ra and . In the case where

r. = @ and there is no inner boundary we obtain a spherical symmetric

b
Green's function for general diffusion coefficients K|| = Ko(p) rb,
Kl/Kll = e. These latter solutions are the spherical symmetric

monoenergetic-source solutions (3.2.18) and (3.2.24) with appropriate

values of the normalisation constant N.

5.2. Similarity solutions for cases where z = z(r)

Case (1) KIl =K rb p3(b_1)/4, b#1

[¢]

The similarity variable n(x,t) is given by Equation (2.5.7):

X
n = — 2z ’
J(t to) + ag

with x and t given by Equations (5.1.1)

Choosing a =t = 0O we have
o o

(5.2.1)
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p3(1--b)/lt

t = 2K /(V(b-1)), (5.2.2)

o

e (-0)/2

z = n = x/t = /KO, ' (5.2.3)

and the similarity solution given by Equations (2.5.14) and (2.5.18)

becomes
F (r,p) = exp(-zzt:/lo-)(/t:)z‘--n ¢l [A.IC(J; z) + B.KC(JY?Z)]

. [c.PS(w) + D.q(w)] e, (5.2.4)

where

n = (b+l1)/(1-b),

r = an + e(n+l)2 2(1 + 1))

and s and £ are positive integers with s < £.

The spherical symmetric part of the solution (5.2.4) is

F_(r,p) = exp(-z2e/4-x/t)z ™ ¢ 7L | [A.I_(X 2) +B.K (x 2)],
(5.2.5)
where m= | nl.
Case (2) K,, =K rb b#1
il o’

The similarity variable n(x,t) for this case is given by

the expression (2.5.7):

nx,e) = xW(t-e)? +a) (5.2.6)

where x and t are defined in (5.1.1).
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2
We now let a, = —t°-+ @ and we introduce a new similarity

variable

limit -t n
t - oo
(o]

= X2/, (5.2.7)

For a diffusion coefficient KII = Ko pa rb, the expression (5.1.1)

for t is
3K, pS .
t = - A — sl oo
2V S ’ (5.2.8)
where
§ = a+ 3(1-b)/2,

and the expression (5.2.7) for z is

z = -2v § 1P p 2/(30-b) K ). (5.2.9)

Hence 1f K| = K_ 2, b # 1, from the results (5.2.9) and (5.2.8)
we have
t = K p3(1fb)/2/(v(b-1)), (5.2.10)
z = v iy (K_(b-1)) (5.2.11)

as the appropriate expressions for t and z.

The similarity solution for a diffusion coefficient
Hl = Ko rb, is given by the expressions (2.5.14) and (2.5.17).

Letting a_ = ~t2 » © in (2.5.14)and (2.5.17), defining

_ limit X
= e T3 (5.2.12)
o o
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and scaling the expression (2.5.17) so that we obtain a finite
result we find

- tv-(n+1)/2 z(c—n)/2 o2

Fo [A, - M((142)/2 +v, 1+, 2)
+ B, U(4T)/2 + v, T+g, 2)] . [C.ES(w) + 0.5 (w1 "%,
(5.2.13)
where

n = (b+l)/(1-b),

¢ "/n? 4 e () (n)?
s and ¢ are positive integers with s < £, and A° and Bo are arbitrary

constants.

The spherical symmetric part of the solution (5.2.13) is

F = tv-(n+1)/2 o

o “ [a, - M((#0)/2 + v, l4n, 2)

+ Bo' U(14+n)/2 + v, 14n, 2)], ' (5.2.14)

and this is the form of the solution that we will use later in our

analysis.

Case (3) K!l = Ko r

For a diffusion coefficient Kll = Ko r the similarity variable

n(x,t) is given by the expression (2.5.21):

n(x,t) = x + d1 + e, (t-to)

2 - ’
- a
(t to) +a

(5.2.15)
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where
x=-2n(2)/2 - ¢nxr -(3/2 2n (p) ,
t = —(3K0/(2V))EH(P) ’ tO = t(PO) ’
T=¢t -t ,

and e dl’ and a  are arbitrary constants.

2
We now let a,=a *= and we introduce a new similarity

variable z:

limit 2
z = a’n

a-+

dl - zn(2)/2—(3Ko/(ZV))e1 zn(po) -(3/2)2n(p)

+(3K0 ell(ZV))zn(p) - n(r). (5.2.16)

We choose e, and d1 so that z is a function of radius r only and

hence putting

e, = V/Ko, d; = zn(2)/2+<3/2)2n(p°). (5.2.17)
we obtain
z = - gn(r), (5.2.18)

as the appropriate expression for our similarity variable.

The similarity solution for this case is given by the

resuits (2.5.24) and (2.5.26a)
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F = exp[—nzT/4 - (1-e,/)’1 - tn(T2+ag) /4

+ n(l-e1/2)vZ;z—;—;; +e, /T oayr 2+ ao)]. |
exp (- n20) &) . We / G/ + 174, 1/2. ST l2)
v, . (2, 02D M 1) + 34, 32, Lo nr2)

. (5.2.1Y)
2
Letting a = a >, defining
2 limit 2
vio= e cfat, e = 1-V/(X), (5.2.20)
and using the results
Ut y-1v?a/241/4,1/2,127/ (22)) = (&°% + e 7VF)/2,
vz -VZz —
Moit - f12272 u(3/4 - 1av%/2, 3/2, 128/(2a)= (& =& ) /1
a-+»
2V2 v
(5.2.21)

(Abramowitz and Stegun (1964), Section 13.5).

the similarity solution (5.2.19) becomes

F = (A e"? + 8 e-vz) exp ((v2 - cz) T + ¢ 2). (5.2.22)

(o}

An alternative form of the solution (5.2.22) in terms of radius r

and momentum p is

F = rC(QAr ' +Br)

~3d(vZ=c?y/2, (5.2.23)
. p

where

0
]

1-V/(2k), d = K /V.
(o} (o]
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5.3 The Green's Functions

We now extend the general solutions for Fo in cases with
n a function of r only, given in Section (2), and obtain the Green's
functions for those particular cases. The Green's function is the
solution for monoenergei:ic release with momentum po, at radius L
and in general with Fo = 0 at boundaries Tos Iy with r, ST, <.

We denote it by GF (r, p; T s Pos Too rb) and here restrict ourselves

to the spherically symmetric problem.

Solutions which have F0 = 0 at r, and r, are in general sums

b
of eigensolutions of the general solution. For example in the case
K,|| = Ko rb p3(b—1)/4 where the general solution is given by Equation

(5.2.5), the constants X must have values X  set by the eigenvalue

equation

Im[ﬁ(—s_ z(r )] Km[’ Xg z(rb)] - Im[jx_s z(r) ] Km[J)C z(r )] = 0.

(5.3.1)

The Green's function solution is then obtained by a summation of
the terms corresponding to the right hand side of Equation (5.2.5),

with suitable coefficients Cge

The determination of the constants Cq is awkward if done
directly from (5.2.5). However the problem is basically of Sturm
Liouville type and the determination of the constants is expedited by
using Sturm Liouville theory. To achieve this we use a change of
variables.

£+ T, (5.3.2)
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and manipulate the solutions of Section (2) into the form

Fo = a(z, t) g(z, 1), _ (5.3.3)
in which we choose a(z, t). Then in place of the partial differential
equation for Fo in terms of z and t (see e.g., Equation (5.3.8))

we obtain a partial differential equation for g(z, 1).

q(i) 3z (p32) = & ’ (5.3.4)

This is immediately separable with solutions of the form

glz, 1) = y(z, A) e T . (5.3.5)

and y satisfying

E?%j' 3%' (p(Z)-%f) + X y(z) = o, (5.3.6)

which is an equation of standard Sturm Liouville form.

The transformations (5.3.2) and the function a(z, 1) are
different in each case as are the functions q(z), p(z) and the
resultant algebraic equation for the eigenvalues As, which is
obtained in solving Equation (5.3.6). This procedure gives the

Green's function in z and 1 for g as an expansion of the form

. . @ gt
G, (2, 15 2, 2,5 2) eE1 Cg Vg (2s X)) e » (5.3.7)
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and the Green's function for Fo follows immediately from (5.3.3).

The transformations (5.3.2) are listed for each case of K(r,p)
of interest here : Ko rb p3/4(b-1), b#1; K, rb, b>1;
K r, b<l; K r. To facilitate presentation we work through
the method in general here in the text following standard Sturm
Liouville procedure, and simply list the eigenfunctions, the éigenvalue

equations and any special information with the transformations in

Table (5.1.).

For completeness.wé note that the partial differential -
equation for Fo in the spherical symmetric case in terms of z and t
referred to above 1is obtained in the most general case from Equations
(2.2.7) and (2.2.8) by transforming the independent variables from

it has the form:

(x, t) - (z, t). For the case Kll = Ko rb p3(b_l)/4
32F oF oF
o f2n + 1 o 2 0
3z2 + '( z t oz t) 3z t at ° (5.3.8)

In contrast to Equation (5.3.4) the form of the partial differential
equation for Fo is not standard being different for each of the
diffusion coefficients of interest in this section (see Appendix (A)).
That the substitutions”(5.3.3) listed in Table (5.1) lead to the
standard form (5.3.4) may be verified by direct substitution with some

considerable labour.

We now proceed to give a more precise definition of the Green's
functions GF (z, 13 Z s Tos 20 zb)‘and Gg(z, T2 s T s 25 zb)

where z = z(ro), z, = z(ra), z, = z(rb), L r(po) referred to
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above, and using Sturm Liouville theory we obtain an eigenfunction
expansion of the form (5.3.7) for the Green's function Gg’
Definition

The Green's function GF (z, T; Z s Tos 2, zb) fqr the steady-
state spherically symmetric cosmic-ray equation of transport in the

similarity variable z and the energy parameter 1 is defined by:

(i) G satisfies the spherical symmetric transport equation

F
1 3 (.2 2. 9F, 2v 3(3_ |
?2 ar(r v Fo r kK or ) - 3rp2 ap P Fo M S(p po)d(r-ro)'
(5.3.9a)
The constant M is determined by the condition :
(ii) 1limit . - _
s GF (z, T3 Zs Tos 25 zb) § (z zo), (5.3.9b)

where 1 > T, and 6(z) is the Dirac delta function of argument z.

(1ii) GF (za, T3 205 Zgs zb) = GF(zb, TS 2 Zgs zb) = 0. (5.3.9¢)

Definition

The Green's function for g(z, t) namely G (z, t; z , 2 , 2, )
g o’ "a’ b

is the solution of the partial differential equation

1 3 g\ _ ? _ -
qT)a_z'(;P(z)SE)“Sé - M 8z -z) (1), (5.3.10a)

where the constant M is determined by the condition
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(1) limit .
Tt Go(zs T3 205 Ts 2 7)) = 6 (z-2z), (5.3.10b)
and
(ii) Gg (za, T3 205 T s Zs zb) = Gg (zb, oz Tos 25 zb) = 0,
(5.3.10c¢)
We also have
G.( 2z, 15 2z, T z z)=—a£'-t)—-c(zr'z T, 2z, 2)
4 * 7 %0’ "o’ "a’ b a(zo,to) g > ’ %0 o’ "a’ v’
(5.3.11)

relating the Green's functions Gp and Gg.

The Green's functions with boundary surface at r = » and

no inner boundary are :

‘ b
If K| = K, (), b#1,
n+l -n
o X 2, 2 X XA
. - _ X +xo ( o i
GF(x, t; X to) 2T exp( 4T > Im 5T ), (5.3.12)
and i1f b =1
. (x~-x )2
GF(x, t; X» to) = J__f_ exp (,x - x - T - _ZT'Q ., (5.3.13)
2ynJT :

where
(1-3b)/2 dz

T = t-t_ =(3/(2v>)1§° K (2) z

if b #1,

3/2)(l—b)/2’ (5.3.14)

x =(2/(1-b))(rp
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and 1f b = 1,

x = = 1n(2r2 p3).

The Green's functions (5.3.12) and (5.3.13) are the mono-
energetic source solutions (3.2.18) and (3.2.24) with appropriate
values of the normalisation constant N. The solutions (5.3.12)

and (5.3.13) have the properties:

(1) GF(x, t; x_, to) + 8(x-x) as t=>t

[o]

(5.3.15)

(1i) GF(x, t; X,» to) + 0 as r o »,

The Green's function Gg(z, T3 2 Ty Zgs zb) is obtained

a
as follows. Since Gg must satisfy the partial differential equation

for g(z, t) (Equation (5.3.4)) we have

® C=AaT
= 8 .
Gg sEl Cgq ys(z,AS) e s (5.3.16)

where the eigénfunctions ys(z, AS) satisfy Equation (5.3.6) with
A= As. In certain cases where z, or z, is a singular point of
Equation (5.3.6) the eigenfunction expansion (5.3.16) is an integral
over a continuous eigenéﬁectnnm As.' At the moment we restrict our—
selves to cases where the eigenspectrum for A is discrete. In general
the eigenfunctions ys(z, AS) are a linear éombination of two
independent solutions Yl(z, As) and Yz(z, AS) of Equation (5.3.6).
Hence

ys(z, As) = A, Yl(z, AS) + B . Yz(z, As).

(5.3.17)
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Since Gg is zero at z = z, and z = zy the eigenfunctions
ys(z, As) must also be zero at z, and zZ, s and from Equation (5.3.17)

we have

A . Yl (za,.As) + B . Y, (za, As) = 0, (5.3.18a)

A.Y(z, A)+B .Y, (5,1) = O (5.3.18b)

Solving Equations (5.3.18) for A / B we find

_YZ(za’As) - —Yz(zb’ As)
Yy (z ) Y (z,02))

. (5.3.19)

w >

It follows from Equation (5.3.19) that the eigenvalues AS nust

satisfy the eigenvalue equation

Yl(zl,ks),Yz(zz,As) - Yl(zz,ks) Yz(zl,ls) = 0, (5.3.20)

where the convention

z, = minimum of (za, Zb),

(5.3.21)

z, = maximum of (za, zb),

has been adopted.

Choesing A and B to satisfy Equation (5.3.19) we may define

the eigenfunctions (5.3.17) to be

Yo (zo A)) = Y (3,0 ) Y (2,0 ) = ¥, (2,0 ) Y,(2,3). (5.3.22)
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The eigenfunctions ys(z, As) satisfy the relations

z dy _(2z) Jz=z
(Xm-kn)f 2 q(x)ym(x)yn(x)dx = [p(Z)(y (2) yn( z) yn(Z)——ﬁz-rO]‘ 2’
z1 z=zl
(5.3.23)

(see Morse and Feshback, Methods of theoretical physics, Vol.l, p. 720)

from which it follows that they satisfy the orthogonality relations

2 _ o) (5.3.24)
S q(x)ym(x)yn(x) dz = N6, .
z
1
with
(1) _ 1limit 1 n( z) L \dyp(2) 1272,
Nn A A O =2) [P(Z)(y (2)—— yn(z)——dz 2=z, °
m n m'n
Using Hospita.l;s rule and the result
Byn(z, An) / axn lz=zl = 0,
we have
(1)
Noo= p(2) Py (z,2 )/ 3r) . By (z,2) / az)|z=zz (5.3.25)

(1)‘

as the expression for Nn

Since the Green's function expansion for Gg is given by
Equation (5.3.16) and Gg satisfies the source condition (5.3.10b)

we have

o - T
G (2,7 5 2, T 42 ,2) =8(z-2 )= Lc_ y (z,r)e SP©°
g o’ "o’ 0’"a’" o s=1"s “s s (5.3.26)



119.

Using the orthogonality relations (5.3.24) and Equation (5.3.26)
we find the constants cg are given by

AT

c = q(zo) y(ZO} e 59 Nél). (5.3.27)

Substituting for the constants cg in the expansion (5.3.16)

we have
“An (T=T.)
' 0 v (2) y (z)e " °
G (z, 1; 2 T, 2 z,) = q(z)) I
g o’ o’ "a’ b o N(1)
n

n=1

(5.3.28)
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This is the Green's function for g(z, 1) and the important result

we seek. Note that Y and An must be determined in each case.

From the expression (5.3.28) for the Green's function Gg we

have

q(;) Gg(z. T3 2 .ro.za.zb) = q(zo) Gg(zo, T3 z,_ro.za,zb).

(5.3.29)

(o}

which 18 a reciprocity relation for Gg.

The above has been developed with z. the explicit boundary

1
variable in the eigensolution Yo and z, implicit via the eigenvalue

equation. Alternative solutions with z, explicit and z., implicit can
q : 2

1

be written. Thus using the eigensolutions

v (z, An)~ = Y,(2,,A ) Y,(z,2 ) - ¥,(2,,0 ) Y,(2,1), (5.3.30)

the Green's function is

v v =A -
G(zr'zrzz)"Q(Z)of—EE-z'gl—n—(-z—)-e n(tTo) 5.3.31
g 113550159952 %, : ongl N(Z) ’ (. . )
n

where

v_(z,x ) v _(z,)) _
- p(2) =+ .. (5.3.32)
n

K@ _
n T

The functions vn(z) yn(z) and the normalisation constants

Nél) and Niz) are related by :

Yz(zl. An) vn(z) = Yz(zz’ An) yn(z), (5.3.33)
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2 2

1 2
NIE ) [Yz(zz, An) 17 = Nr(l ) [Y2 (zl, An)] . (5.3.34)

In the cases where z_ or z is a singular point of Equation
(5.3.6) and the eigenspectrum for A is continuous the Green's
function Gg is derived using a Laplace transform technique (for an
example see Appendix (B)). For a discussion of eigenfunction

expansions when the spectrum is discrete or continuous see Titchmarsh

(1962).

The Green's functions for the cases where z = z(r) may be
constructed from the table below by using the expansions (5.3.28)
and (5.3.31). In this table it is also shown how the eigenfunction

behave as the outer boundary at r, + « and

F b

the inner boundary at r, (1f any) tends to zero.

expansions for Gg and G
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TABLE 5.1

'GREEN'S _FUNCTIONS

A, Diffusion coefficient

R = x P 30D/

o s b>1.

Variables

v 1-0)/2

z = / Ko .

e = 2k L3 (1-b)/4

/ (v(b-1)),

T = =-1/¢t,

3/2,(1-b)/2

x = 2zt = 2(rp ' ") / (b-1), T=1¢t - to’

z(r), 2z, = z(r,), t, = t(po),.

|G +1)/ -1, n = (b+1)/ (1-b).

a(z, t)J,EKZ). q(z)

a(z, t) = ™1 exp(-zzt/4),

p(z) = q(z) = z1 2@,

The eigenvalue equation

Putting s, = Jkn the eigenvalue equation is in general

Jm(snzl) Ym(snzz) - Jm(snzz) Ym(snzl) = 0.

If z. =0, 1i.e. r_ =~ the eigenvalue equation is

Jm(snzz) = 0.
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If 2z, ==, 1.e. ra = 0 the eigenspectrum is continuous and 0 < A < o,

2

Eigenfunctions
yn(z) = zT z" [Yﬁ(snzl) Jm(snz) - Jm(snzl) Ym(snz)]
If z, = 0, 1i.e. rb = o then
yn(z) = Z" Jm(snz).
vn(z) = zg szYm(snzz) Jm(snz) - Jm(snzz) Ym(snz)].

Normalisation constants

Nil) = (2, /2)[J (s z ) Y (s z ) Jm(snzl) Ym+1(sn22)]

[y (41 (,29) Yplsyz)) = Jp(s.2y) ¥ o, (s.2,))

2m
z; Upls,2zp) Yo (e02) = Y (8,20 I (8200 2

I1f zl =0 {i.e. Ty = o

N(l) = 22 (s z ) / 2.
n

2 m+1

(2) ‘
N = (21/2)[Jm+l(snzl) Ym(snzz) - Jm(snzz) Ym+1(snzl)]

lz) G

2m
z) (3 (spzy) Y0 (8020) - (s z)) J 4,021 2,

(s 2,) ¥ (s 2,) - J (s2) Y (s 2,)) '

Asymptotic form for large n

For n sufficiently large

2 2
An A~ n"ont/ (22 - zl) )
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and the terms of the eigenfunction expansion have the form

= —2  oyn(Bm€Zm 2)) _, (un(Z17%0) \ [z \m
Yn (zz-zl) sin (z2-21 s n( ' z
2.2
-n" v (1-1,)
exp 2
(z,-2,)

and the series for Gg is uniformly convergent for 1 > Ty

Effect of varying the boundaries

" 1f z, = O, i.e. r = o then

b
_ . J (s 2)J (s_z) e 2, .
C = (2/22)2 l-m 0 m n’'“m no e Sn (= ro) . ,
g 2’70 n=1 J2 (s z.)
m+l n 2
(5.3.35)

and the Green's function for F is given by the result (5.3.11), i.e.,

m-1 2 2
GF = (t/to) exp(zo t°/4 - 2z°t/4) Gg'

We note that for 1 =T, then expression (5.3.35) is the Fourier Bessel

expansion of 6(z-z°) [see Titchmarsh (1962)].

If Zy = i.e. ra = 0, the Green's function for g(z, 1) 1is :

2
m l—mf oS (1—10)

G = z z

. o o . . [Jm(sz) Yﬁ(szl) - Jm(szl)Ym(sz)]

[Jm(szo) Ym(szl) - Ym(szo)Jﬁ(szl)]/[J:(szl)+Yi(szl) ] ds,

(5.3.36)

and

m-1 2 2
GF = (t/to) exp(zo to/4 - 27t/4) Gg'
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For a derivation of the result (5.3.36) see Appendix (B). If t = LN
the expression (5.3.36) gives the Weber formula expansion of

6(z-z°) [see Titchmarsh (1962)].

As z, > =, i.e. r_ - O in the solution (5.3.35) or as

z, > b, i.e. > in the solution (5.3.36) we find

m 1-m m-1 2 2
GF rzoz (t/to) exp(zo to/A - z2°t/4)

2
fm e Y (T_To)

o Jorz ) J (yz) y dy.

This latter result is essentially the Green's function for Fo with

a free escape boundary at r = o, To show this explicitly we use the

result
o —xza
fo e Jm(26x) Jm(20x) x dx
1 2. .2
o +8 280. _
= 55 exp( = ) Im'(—a ), Re (m) > -1

(see Gradshteyn and Ryzhik (1965) p. 710), and hence obtain

m-1 2 2 2"z 1-m 2, 2
G, = (t/to) exp((zoto -z t)/4)]-——41——3- exp [_ z +zg ]

F 2(t-1
' o A(T-ro)
z z ‘
Im( 2(1—10) >‘

Using the relations

rp3/2)(l—b)/2

x = 2( / (b=-1) = zt,

Tt = -1/t, T = t - s
(see Variables), we may write this last expression for GF as

xm §Ql_m x2+x2 (x X )
= - ———m 2200
Cp t 2T ex"( 4T ) \T2r /)
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which is t, times the Green's function (5.3.12) for F° with an outer

free escape boundary at r = o,

B. Diffusion coefficient.

K(r,p) = K rb, b<1

Variables
2 = VETD /(R (1)),
e = & p 32 v by,

t = =3(1-b) &n (p)/2,
t =t expl~(t-1 )], T =t - ts

z = —x2/(4 t),

(1-b)/2

x = 20cpY? / (b-1),

z) = z(r)), z, = z(r), t, = tlp),

o]

m = (b+l) / (1-b).

a(z,t), p(z), q(z)

a(z,t) = 1,

p(z) = 22 E q2) = e

The eigenvalue equation

The eigenvalue equation is in general

M(-An,1+m,zl) U(—An,1+m,zz) - U(-An,1+m,zl) M(—An,l+m,zz) = 0,

where M(a,b,z) and U(a,b,z) are standard solutions of Kummers' confluent
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hypergeometric equation. If there is no inner boundary and the
Green's function Gg is finite as r + O then the eigenvalue equation

is

M(-An, 1+m, z2) = 0,

Eigenfunctions

Yn(z) = U(“Antl"mszl) M(_An:]-"'m’ z)

- M(—An,l+m,zl) U(—An,l+m,z),

vn(z) = U(-Xn,l+m,zz) M(-An,1+m,z)

- M(—Xn,l+m,zz) U(—An,1+m,z).

If there is no inner boundary

yn(z) = M(-Xn,1+m,z).

Normalisation constants

The normalisation constants are given by Equations (5.3.25)

and (5.3.32).

Asymptotic form for large n

For n sufficiently large the eigenvalues are

A n nz'ﬂz 14+m
(e = T332 = 5
n 4z, - fz_z) 2

and the terms of the eigenfunction expansion for Gg are
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(z-2.)/2  m/2-% -g/2-% 1
“a e T % i (Vz,- Jz)

oin |B0CVE= V20| oo (002 JBY|  Aple-t,)

and the series for Gg is uniformly convergent for t > To

Effect of varying the boundaries

If we have no inner boundary and let the outer boundary at
r=r tend to infinity the eigenfunction expansion becomes

. o -zy ® I'(n+l) m m -n(t-1 ).
Gg Zo © nEO T (m+n+l) Ln (zo) Ln (z) e °

Since a(z,t) =1, Gg = GF and using the result

® I'(n+l)

m m n
n=2Q [ (mrntl) Ln(x) Ln(y)z

-m/2 ’ B .
(xyz) mn —z(x+y) . 2\J/xyz
= 1-z ""‘P( (1-z) ) Im( (1-2) ) lz]<1

where L: (z) is a generalised Laguerre function and Im(z) a modified
Bessel function of the first kind (see Gradshteyn and Ryzhik (1965),

p. 1038) we have

n -z ‘[z 2 exp(-(‘r-'ro)):l_m/2 ]
Gg = GF T ° 1 - exp(-fﬁ—ro))]

exp | ~=XR=(1-15)) (z+2,) I (2‘Jé zgexp(-(1-1,)) )
Pl T1- exp(—(r-To))] " m\ [1- exp(-(r—ro))]~ °

Since
z = -x2/(4t),

t = t oexp(=(r-1)), T = (t-t)),
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may be written

(see Variables), this last result for Gg and GF

xo X, m+1x-m (~x2+x 2 (x X
= =z « =0 - —en ) ;
Gy Cp 22, " o eXP\ T 4T ) Lo\ 727" )

which is xO/(Zzo) times the Green's function (5.3.12) for Fo with

an outer free escape boundary at r = =,

C. Diffusion coefficient

K(r,p) = K_ 2, bo>1,

Variables

z = Vrl AR (b-1)),

e = kP2 w1y,

t = =3(b-1) &n(p)/2,

t =t exp(r—-ro), T=t-¢t,
z = x2/(4t),

x = 2(rp3/2)(1-b)/2 / (b-1),

z, = Z(rb), z, = Z(ra), t, = t(po).

m = (b+l) / (b-1).

a(z,t), p(z), q(z)

a(z,t) = 1,

p(z) = Tl e?, q(z) = z "’

The eigenvalue equation

The eigenvalue equation is in general

M(l-kn,1+m,zl) U(l-An,1+m,zz)- U(l-xn,l+m,zl) M(l-An, 14m, 22) = 0,
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where M(a,b,z) and U(a,b,z) are standard solutions of Kummer's

confluent hypergeometric equation. If = 0, i.e. r, = @ then

%1 b

the eigenvalue equation is

M(l-kn, 1+m, 2z = 0.

2)

If z, = =, i.e. r, = O then the eigenvalue equation is

U(l-An, l1+m, z = 0.

1

Eigenflunctions

~z-2z n
yn(z) = e (z zl) [M(l-kn,1+m,zl) U(I-An,l+m,z)

- U(1-An,141n,z1) M(l—xn,1+m,z)],

If z; = 0, or I, = then

-z m
yn(z) = e "z M(l-An, 1l+m, z),
and if z, = », {.e. r, = 0 then

2

y(z) = e 2z U(-A_, l4m, 2)

Normalisation constants

(1) (2)

The normalisation constants Nn and an are given by

Equations (5.3.32).

Asymptotic form for large n

For n sufficiently large the eigenvalues are

2 2
X N BT + l-m
n 4(Jz,- Jz))? 2

and the terms of the eigenfunction expansion for Gg have the form
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u Nz —m/Z-LE zm/z’% e(z—zo)/z / dz—z _‘/—z—l)

n o

an(Wz_ - V2,)] an(W/z - Jz,
(\/Z_]_ — q sin (‘/z—l - J"z-z) exP("An(T"TO)))

sin

and the series for Gg is uniformly convergent for 1 > Ty

Effect of varying the boundaries

If we let the outer boundary at r = T, tend to infinity and
the inner boundary at r = r, tend to zero the eigenfunction expansion

becomes

-n(r—ro)

¢, = " o~z (171,) nko Ln(zg) Lo(2) (T(ntl) / T(l+mm) e

where L:(z) is a generalised Laguerre function of argument z,.

Since a(z,t) =1, Gg = GF and using the result

I (n+l)

—retl) ymey ™) 2t
n=0 I (m+n+1) n x n y) z

- /2 )
- (xyz) n -~z (x+y) 2/xyz
- 1-z exp (1-2) ) Im( (1_2)) , bz | <1,

(see Gradshteyn and Ryzhik (1965), p.1038), we have

m ‘—z-(T-r ) { Lz zﬂ,er°'11°m/2
z € ° @ exp(r -

-(z+z_ ) exp(T1o-T) 2z z, exp(1o-1)
exp( (l[—l exp(ro-T)) > - I ( 1 - égp(To-T) ) -

Using the relations
z = x2 / (4t),

t = to exp(T—ro), T = t-~-1¢t_,
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may be written

(see Variables), this last result for Gg and GF

X, ' xol—m X" ( x2+x 2 ) X X
= = (¢] ' - e—— ] L)
€, = Cp 2z 2T exp T ( 7T )

which is xo/(Zzo) times the Green's function (5. 3.12) for F_, with an

outer free escape boundary at r = «,

Diffusion coefficient

K(r,p) = Ko r

Variables

z = n (1),

t ==r==-(3Ko/(2v))sm(p), T= ¢t - to

x = -gen(r’pd) = 201-0)t —ea()/2 - z
z, = 2(r.), 2, = z(rp)), t = t(p)

c = 1- V/(ZKO).

a(z,t), p(z), q(z)

a(z,t) = 1,

p(z) = q(z) = 22,

The eigenvalue equation

The eigenvalues are given by

A = c2 + nznz = c2 + n21r2

n (22_21)2 [ln(rb/ra) 14
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Eigenfunctions

yn(z) = o ¢(ztz1) sin(mr(z-zl) / (z,-2,) ).

Normalisation const

v . 27H
Nn 3 exp (-2c¢ zl)

‘Green's function

In this case it is relatively simple to give the Green's

functions G and G
g F

6 o - iy P g e (e

g F (zz—zl ' (zl—zz)
. 2 2 ..
nn(zg-21). _[.2 n o (e
sin( (z,-29) ) exp[ (c + -(2_2:2—1—2> (r ro)] .
(5.3.38)

Effect of varying the boundaries -

If z, >+ —= i.e. T >0 we find
1 a

GF = Gg = 3 "1T-To éxp[ c(zo-z) —cz(t-—ro)]
r . (z—2z2 )2 . (z4+za-22 )2
o o

If we let zZ, > = i.e. T, > % and keep the inner boundary

at r = T, fixed, r, # O the eigenspectrum becomes conitinuous and we have
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1 2
Sp = Cg T T teagw Pz - elim))
_ (z-z;)z L _(z+zn-—22])2 .. (5.3.40)
exp 4(t-1) exP\ 4(1-1.) :

Hence if we let L + o and r, -+ 0 the solutions (5.3.39)

and (5.3.40) give

. 2
( = ' = .—L—.—.—— By - - 2 - - (Z"'z ) :
GF Gg 5 J?T?:T;7 exp[?(zo z) c(t To) Z??:gzj'] Ve
(5.3.41)

Since

x = 2(1-¢)t - % 1n(2) - z,

(see Variables) the solution (5.3.41) may be expressed in the

A
alternative form '

2
(x - x_)
G, = G = 1 exp | x~x - T - —
F g 2 J7T o 4T ’

which is the Green's function (5.3.13) with boundary surface at

r = w.

The negative terms in the Green's functions (5.3.39) and

(5.3.40) are due to boundary effects, whereas the positive term

is due to the source at (zo,ro).
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CHAPTER 6

GREEN'S THEOREM AND BOUNDARY VALUE PROBLEMS

6.1 Introduction

In this chapter solutions in which the distribution 1‘:'unction_Fo is
specified on boundaries at r=r, and r=r, are obtained from the cases where
the similarity variable z of Chapter (5) is a function of radius only,

namely when the diffusion 4coefficient K” has one of the fomms:

rb p3(b-1) /4’

K = K
il o
- b
K" = KO r ,b # 1,
= K r,

I o

where Ko is a constant. We also obtain galactic spectrum solutions in
which Fo is specified as r > and as r + 0, with a diffusion coefficient
K = Ko(p) rb , b>1.

In cases where the similarity variable z=z(r), the distribution

function Fo has the form

Fo = a(z,7) g(z,T1), (6.1.1)

where the function a(z,t) is chosen such that g(z,7) satisfies the

partial differential equation

9 : 9 )
qT:)_ 3z (p(,)_a.g. -35. , (6.1.2)
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(see Equations (5.3.3) and (5.3.4)). Hence a bourdary value problem

for the distribution function F  in which spectra are specified at

radii r, and r, may be reduced to an equivalent boundary value problem
for g(z,t) by using the relation (6.1.1) with the functiomns a(z,t), p(2)
and q(z) given in Tabie (5.1).

We note that Equation (6.1.2) is similar to the one dimensional
heat flow equation. It is well known that boundary value problems for
the heat equation may be solved by using Green's theorem for the heat
equation in conjunction with appropriate Green's functiohs (see Snedden
Elements of Partial Differential Equations (1957)). The basic procedure
we adopt to solve boundary value problems for Fo with boundaries at r,
and r, is to solve the equivalent boundary value problem for g(z,t) by
using Green's theorem for Equation (6.1.2) in conjumction with Green's
functions Gg(z,r;zo,ro,za,zb) for g(z,t) given in Table (5.1).

In Section (2) we establish Green's theorem for Equatimm (6.1.2),
and for the sake of completeness we incorporate a source term -Q(z,t) on
the right-hand side of this equation.

In Section (3) we use the Green's theorem technique to solve the
general boundary value problem for Fo in which the galactié spectrum is
specified and the diffusion coefficient i§ of the form K = Ko(p)rb with

b > 1, The monoenergetic galactic spectrum solution given by Equation

(3.2.17) and the solutions of Fisk and Axford (1969) in which:

' -u=2
(1) Fo(r,p) -+ Ap M2 asrew .
(11) F _(r,p) is finite as r + 0,

(ii1) the diffusion coefficient K(r,p) = Koparb with b > 1,
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are derived as special cases of the general galactic spectrum solution.
In Section (4) the Green's theorem technique is used to solve
boundary value problems for F0 with boundaries at radii r = r and
r o=, and these solutioné are given in Table (6.2).
In Section (5) we conclude the Chapter with a discussion of the

various solutions obtained by the Green's theorem technique.

6.2 Green's Theorem for g(z,1)

Green's theorem for Equation (6.1.2) with a source term Q(z,t)"

gives the solution of the partial differential equation

1
q(z)

a_{- g ) . 38
dz (,p(z) oz 1~ 3t Q(z,7), (6.2.1)
in which the function g(z,t) is specified on boundaries at z = zy5

z = 22 and T =’ti where Ti is some initial value of the variable T.

This solution dis valid in the region zq < z < z, and T > Ty For

brevity of exposition we denote the Green's function solution of

Equation (6.1.2) with boundaries at z., and z, by G (z,zo, T- ro).

1
This solution of (6.1.2) has the properties

(i) G(z, zs T -TO) - 6'(z-—zo) as T s (6.2.2a)

(1) Glaps 2,5 T = T) = Glzy, 2, T = 7)) = 0. ' (6.2.2b)

Green's theorem for the partial differential equation (6.2.1) is

obtained as follows: Since g(z,t) satisfies Equation (6.2.1) we have

1 3 . 0g(z ,Tg) ) _ Bg(zm.TQ}‘ _
q( P(zo) d z ) - BTO Q(zo’ To)° (6.2.3)

Q(zo)
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The Green's function G satisfies the equation

S a_ - =_aG(zn z2, T - 14)
q(z ) 3zo( p(z) Bzo G(zo’ Z, T To) ) 310 } ’ * (6.2.4)

From Equations (6.2.3) and (6.2.4)

a .
a(z,) 3;:(8(:0, 1) 6z, z, T - 1) )

- [atzp 0z, ) +§—z;(.p (z,) %gc‘fm—‘n)- )] stzgs 2t - 1)

9 ) )
- 3;;-(p(zo) 3;; G(zo, z, T - To) ) -8(20, To).

(6.2.5)
Rearranging Equation (6.2.5) we have
(Z)'a——( (z , t) G(z ér-r‘)
12, 9T BR250 To o’ o’
= Q(zo) Q(zo’ To) G(zo, zZ, T - ro)
a_ T ‘ 9g(z,, 15) 3G(2q,2,T-Tg) |
s - 22002 04 ‘0%
+ 3z, [p(zo) (G(zo,z,r To).azo g(z 7 ) 3z, )J (6.2.6)

Integrating Equation (6.2.6) with respect to z and T from

z =z toz =2, and fromt =T, to T =T ¢
o 1 o 2 o o

1 :

r%2 dzo . q(zo) It dro %?— ( g(zo, To) G(zo, z, r-ro))

21 ' T'i (o]

z T
= zf 2 dz Tf dr q(zo) G(zo, z, r—ro) Q(z, 1)
1
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+ /7 dr %2 dz——-p(z) ' 6(z_, z, -1 ) 28(Za» Ta)
(o] (o] o

o Bz

' oG v
-g(zo, To) 5;: (zo, Z, r-ro))].

Carrying out the inner integrations #n (6.2.7) we obtain

r22 dzo q(zo) [g(zo, To) G(zo, Z, T—To)] °

]
-
N
[o N
N
-

dro q(zo) Q(zo, To) G(zo, z, T-To)

+f° dt [p(zo)(c(zo,z,r-ro):%Eﬁénxlnl g(z \OG(Z0,Z,T~Tg)

’T )
az
o
Ty

Using the singularity property (6.2.2a) of the Green's function

G(zo, z, T—To) -> G(zo-z) as 1 > T _,

the left hand side of Equation €6.2.8) reduces to

a(z) g(z, 1) —zfzz dz_ q(z)) 8(zy, ;) Gz, z, T=1,).
1

This last result shows that we can rearrange the result (6.2.8) to

obtain the required solution for g(z, T).

(6.2.7)

1

(6.2.8)
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Since the Green's function for g(z, 1) is zero on the boundaries

at z=2, and z=z, (see Equation (6.2.2b))
G(zl, z, t—'ro) = G(zz, z, 'r-'ro) = 0,

the second integral in the right hand side of Equation (6.2.8) becomes

T d-ro lp(zl) g(zl, T

) 36(z,, 2, T-Tp)

4 o’ 9z
"o

i

|z=z
T o1

“p(z)) 8(zy7,) Faatata) | 5 o g,

azo

Hence solving Equation (6.2.8) for g(z,t)

1 [ ,z T
g(z,t) = -q—(ZT ng 2 dz0 -:f' d’ro q(zo) Q(zo, ro) G(zo, z, -r-ro)
) -1 i

+ r% q(zo) g(zo, 'ri) G(zo, Z, T-‘l’i) dzo
.z
1

T 9G(Zny Z, T=To) -
+£ dTo (p(zl) g(zl, To) Bzo | 26" %1
g .

- p(z,) 8(z,, T,) 3G(24, z, T=Tg)

o’ 3z | 2,°2,) |

(6.2.9)
This result is Green's theorem for the partial differential équation
(6.2.1) and we shall use this result in Section (3), to obtain solutioms
of boundary value problems for g(z,tr) and the distribution function
Fo(r,p).

The double integral over z and T, in the result (6.2.9) involving

Q(zo,to) gives the effects of sources within the region zl< z, <z,

and T g <ty < T The second integral gives the "initial conditions”
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and the third and fourth integrals give the effects of boundary condit-
ions at zy and Zye

Note that if
| Q(zo,ro) = G(zo-zs) 6(10-18).
and,

g(zo,7,) = 8(2,,7) = g(z,, 1) = O,

the solution of (6.2.9) is

g(z, 1) =-3-g‘§l G(zs, Z, ‘[-Ts). - (6.2.10)

Using the reciprocity relation for the Green's function given in

Equation (5.3.29) the solution (6.2.10) becomes
g(z, 1) = 6(z, z_, T=1). (6.2.11)

The solution (6.2.11) is the Green's function of the partial different-
ial equation (6.2.1), which satisfies homogeneous Dirichlet boundary
conditions at z=z, and z=z,, and the source is located at (zs, rs).

Since the variables z and T given in Takle (5.1) have the
properties: |
1) the variable z=z(r) and t=1(p) with r heliocentric radius and

p the particle momentum,

(11) 1(p) is a monotonic decreasing function of p, and hence

(1i1) 1if p < P, <Py ror(po), 'ria'r(pi) then 1 > T > T4

(iv) t(p) > = as p *> =, ‘ (6.2.12)
v) the variable z(r) is restricted to the range

Zy <z < zp,
where

z, = minimum of (z (;‘a), Z(Ib) ) IR

z., = maximum of (z (ra), Z(rb) )>»

2
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and

r,<r<r (see Equation(5.3.21)),

we may interpret the Green's theorem (6.2.9) for cosmic ray problems
in the following way.
The double integral over z, and T, in Equation (6.2.9) gives the
effects of sources located within the region r, < r < T and
P <P, < Pye The second integral gives the effects of specifying the
radial variation of the distribution function at momentum Py and the
third and fourth 1ntggrals give the effects of specifying‘the spectrum
at radii Ts Ty
In certain problems of physical interest we have
(1) Q(zo, ro) = 0 corresponding to no sources within the solar cavity.
(i1) 1 =-®orp; = since we are interested in all particles with
momentum 0 < p < ® ,
(1ii) E(r,p) and g(z,1) - 0 as p + » or Ty e since we cannot have
particles with infinite momentum.
Hence in these cases Green's theorem (6.2.9) takes the form

1 oG
8(z,0) = ;‘_"TL{:) ey Blay) B(zy;1) G (2ematry) 1257 7

- dr p(z,) 8(z,,7) aG(ZD’Z’T_T“)'|ZO = z%],

Tk"’) azo (6.2.13)

where 7T(p) »1(») as p +> @,

Since the Green's function expansions (5.3.28) and (5.3.31) are

uniformly convergent we may obtain expressions for SG(zo,z,r-to)/azo

by differentiating the series for G(zo,z,r—To) term by term.



143,

From the Green's function expansion (5.3.28)

3 -\ -
3G(2g,2,T=T,) = q(z) n£1 ¥n(2) 3yn(2,)/325 e n(1-7o) |z°=22
azo | z =z, N (1)
n
Using the expression (5.3.25) for Nn(l) we obtain

A -3 “An(1-10)
3G(2p,2,T=Tg) = g(z) & Yn(z) e -— ’ (6.2.14)

L |z°=z2 p(zz) n=1 ayn(zo,xn)/axn | 25529

as the expansion for [BG(ZO,Z-T‘TO)/azo] z°=22'

Also from the result (5.3.31)

“An(T=-1
3G(2g,2,T=Tg) - q(z)nil vn(2) 3vp(zo)/dzg e 'n{T™T0)| z =z

= 1°
azo zO_zl N (2)
n

Using the expression (5.3.32) for Nn(z) we have
A (T—
3G(2052,T-T0) =-az) ¢ vp(z) e n(T=%o) (6.2.15)
azo z =%y p(zl) n=1 avn(zo,kn)laknﬂzo=zl

as the expansion for BG(zo,z,r-ro)/az

o|Zo=z1

Substituting the expressions (6.2.14) and (6.2.15) for
BG(zo,z,r-ro)/azo in the result (6.2.13) we obtain the Green's
theorem solution

=A,(t-1.)
_ T cov(z)e“ 8
g(z,1) -T{m) dv_ 8(z,,7.) nil 5n9n(zo,xn)/ax

|2 =
nzozl

x (2) e-xn(r-ts)

-7
(=)

dr_ g(z,,7) T : \
s 2? 4 6.2.16)
$* n=1 ayn(zo,kn)/ﬁxnlzogzz (
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for the partial differential equation (6.2.1) when the eigenspectrum
is discrete.

In Sections (3) and (4) we use the Green's theorems (6.2.13)
and (6.2.16) to solve boundary value problems for the distribution
function Fo(r,p), with boundaries at radii r=r, and r=r, . If the
eigenspectrum is continuous we use the Green's theorem (6.2.13)

whereas if the elgenspectrum is discrete we use the Green's theorem

(6.2.16).

6.3 Galactic spectrum solutions

From the separable form of the cosmic ray equation of tramsport

(2.2.7) we have

2
3Fy 4 omt1 Fo = ¥ (6.3.1)

2 X ox ot

ox
where the diffusion coefficient

b
RK(r,p) =K, (® r ,Db>1, (6.3.2)
and

x = 2/(1-b))(xp?y (D)2

]

(6.3.3)
(1-36)/2,,

t = -3/ P K (2) 2
are the independent variables. For particles, initially at infinity
to penetrate to a finite radius it is necessary to choose b > 1in
(6.3.2).

Since the partial differential equation (6.3.1) has the same

form as Equation (6.1.2) i.e.

q%x) g_x' (P(x) %,E(“)= 3—? , | (6.3.4)



with

p(x) = q(x) = x2 ", (6.3.5)

we may use Green's theorem for Equation (6.1.2), derived in Section
(2) to obtain solutions for Fo in which Fo is specified on

boundaries at x = and x =

X Xg-
In general the curves X = constant, describe a curve in the r-p
plane. However for boundary radii at r = 0 and r = * , and with

b > 1 we have

(6.3.6a)

X > 0 as r > o,
X > © as r > 0, (6.3.6b)

so that we can use Green's theorem (6.2.13)and the Green's function
(5.3.12) to obtain galactic spectrum solutions.
We now proceed to obtain the general galactic spectrum solution

in which the distribution function Fo(r,p) satisfies:

(i) Fo(r,p) is finite as r > 0, (6.3.7a)
(ii) F_(r,p) »A(p) = Z(t) as r + =, (6.3.7b)
where A(p) is the galactic spectrum and Z(t) is the corresponding
form of A(p) expressed in terms of the variable t,
(iii) the diffusion coefficient K(r,p) = Ko(p) rb with Ko(p) an
arbitrary function of p and b > 1, (6.3.7¢)
(iv) the solar wind speed V is assumed constant. (6.3.7d)
Using Green's theorem (6.2.13) and the results (6.3.4),
(6.3.5) and 6.3.6), the solution of the galactic boundary value
problem (6.3.7) is
+
Fo= /<2 |5 dae 1imie 2™ B(r ,p )8G(x ,x,t-t )/dx
o o o o o’fo o o o
t () x> 0
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- 1° dt limit x 2ntl E(r ) 8G( t-t ) /3
t=) o .0 o 0o X oX,t=t ) /ox 1, (6.3.8)
o

where the appropriate Green's function (5.3.12) is

x n+l x-n x2+x§> ( X xo )
G(X,Xo,t‘to) = o exP("‘—l:T—“‘ Im 2T ‘ (6.3.9)
2T
and
T = t—to,
tO = t(Po),
(6.3.10)
x, = x(r»,p.)>
n = (b+1)/(1-b), m = |n|, b > 1.
Since the modified Bessel function Im(z) has the properties
' = 21 + (
1. = — I(z)+1I .0, (6.3.11)
e’
Im(z) - Jons 238 A N (6.3.12)
zm -
Im(z) >  as z >0, (6.3.13)
2 1 (mtl)

( Abramowitz and Stegun (1964), Sections (9.6) and (9.7)),

we have
2 2
_ - X +x
36(x_,x,t-t ) = x° L x e &(t-t ) [ 2m %o I (x—ax |
e : ° x, T 2(eey ) m )
3% 2(t-t ) L\%s o’
[o] [o)
x ' X X (6.3.14)
+ 57— 1 o ]
2(t-t ) m+l (-——f:——— ) ’
o 2(t to) J

x 2n+l 9G(x,., x, t-t,)

limit N
o

X > ®©
(o]

0, (6.3.15)
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2
limit X2n+1 BG(xo,x,t—to) _X e X /(4(t_to)) '
t
xo >0 o axo 22m T (m) (t—to)m+l

as expressions for BG(xo,x,t—to)/axo.

Substituting the expressions (6.3.15), and (6.3.16) for
aG(xo,x,t—to)/axo and the boundary conditions (6.3.7) into the
Green's theorem solution (6.3.8) we obtain the general galactic

spectrum solution

2m 2
Fo(r,p) = ___xzm —_ ft Z(tg) =T exp(————4}zt_t ) )dts’
27T (m) t () (t—ts) s
where
x = 2ep/H A2 by, b s,
t = -3 /P (z) z(l_3b)/2 dz/2v, t_ = t(p ),
(o) s s
m = (b+l)/(b-1),
and Z(ts) = Fo(?,ps) specifies the galactic spectrum.

Expressing the integral over tg in the solution (6.3.17) in

terms of the momentum variable P, of (6.3.18) we obtain

F (r,p) = ; G(r,p,p,) Fo(w,ps) dp,>

where
(1-3b) /2

3 Ko(ps) Ps m _-u

G(r,p,ps) = VT T (o)

(1-3b) /2 dz | 2v,

L=
il

3 /Ps K (2) z
P

2
X-/ (AT) s

c
it

rp3/2)(1—b)/2/(

2( l—b) s

]
]

(6.3.16)

(6.3.17)

(6.3.18)

(6.3.19)

(6.3.20)
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as an alternative form of the general galactic spectrum solution.

The monoenergetic galactic spectrum solution in which

2
FO (=, PS) = Ng G(PS - Po) / (4'"Po ) ‘ (6.3.21)

is obtained by substituting the galactic spectrum (6.3.21) in the
general solution (6.3.19). Thus we obtain the monoenergetic

galactic spectrum solution

3N K (p) 2\m . 2
1 —X
F (r,p) = —B—2>-2 (ELT) = exp (r—-f) , (6.3.22)
o 8V p03(1+b)/2F(m) 4T T 4T
where
T = t”t .
o

We note that this solution has also been given in Equations
(3.2.17) and (4.3.13).

The solutions of Fisk and Axford (1969), which satisfy the
boundary conditions

W F o> Nyp P as koo (6.3.23a)
(ii) Fo is finite as r + 0, _ (6.3.23b)

(1ii) the diffusion coefficient K(r,p) = K.opa rb, with b > 1,
a > 0, are obtained by choosing the galactic momentum

spectrum Fo(w,p) and the corresponding function Z(t) of

(6.3.7) to be
—u=2

Z(t) = Fo(m,p ) =Np

g (6.3.24)

and substituting for Z(t) in the general galactic speétrum

solution (6.3.17).
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There are three solutions of the boundary value problem

(6.3.23) corresponding to the cases

(1) 1< b <1+ 2a/3,

(ii) b = 1 + 2a/3,

(iii) b > 1 + 2a/3.

Introducing the parameters

<
Il

2/ (1-b + 2a/3),

(b+1)/(b-1),

=]
(1}

the solutions corresponding to cases (i), (ii) and (iii) are

case (i) 1 <b<1+2a/3

The solution of (6.3.23) in terms of Fo(r,p) is

—u=2 T (st (u+2) /3+m)

. U @+2)/3,2/(1-b) , vl Ko(l—-b)z)).

Fo = Ng P T (m)
(6.3.25a)
case (ii) b=1+ 2a/3
The solution of (6.3.23) is
Fo- o pH2 2a2) vet P/ ) & )™/ T ().
- o L

K_( 22G42) ve 0 p7/ (3a-b)? K ). (6.3.25b)
case (iii) b > 14 2a/3
The solution of (6.3.23) ds
Fo= N, b M (42) /3) exp(2Vr TR 2/ G (10K )

I'(m)

U(l-m-v (1#2)/3, l-m, -2vei™® p—a/(\)(l—b)zKo)), (6.3.25¢)
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In Equations (6.3.25) Km(z) is a modified Bessel function‘of
the second kind of order m, and U(a,b,z) is one of the standard
solutions of Kummer's confluent hypergeometric equation
(Abramowitz and Stegun (1964) Section (13.1)).

We now derive the solution (6.3.25a) from the general
galactic spectrum solution (6.3.17). The solutions (6.3.25b) and
(6.3.25¢c) can also be obtained from the general galactic spectrum
solution and the derivation ofbthese results are given in Appendix (C).

In the case of interest the general galactic spectrum solution

(6.3.17) becomes

2m 2
F = x—z-—-— T Y exp(i%t—_—é—)) dt_ , (6.3.26)
° 27T (@) £(=) (e-t )L o |

where

t = - s»:p(S /s ,

§ = a+ 3(1-b)/2 >0,

e = 3K0/2V,

b

and the diffusion coefficient K(r,p) = Ko par .

Introducing the variables

u o= t-t = e(po(S - pa)/G s
v (6.3.27)
y = (U+2)/6’
and _
= x2/ (-t )
s = X o))
we have
p, = p(1+ ze/ (loep<S s)) 1/ R
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- “u=2 _ -u-2 |y 2 Sy\-Yy ‘ -
z(t ) = Ng P, = Ng P s’ (s + 8x"/(4ep)) 7, (6.3.28)
dto = xz/ (452) ds,
as to > t, s > ®; as t0 > t(®) s »> 0. (6.3.29)

Using the transformations (6.3.27), (6.3.28) and (6.3.29)

the solution (6.3.26) for Fo(r,p) becomes

N —-u=2 2
. _8p L 6x -y ytm-1 -s
F T () o (s + T ) s e ~ ds. (6.3.30)

4ep

Since the solutiom U(a,b,x) of Kummer's confluent hypergeometric

equation is defined by

U(a,b,x) = %P f:; e 271 (s+X)b_a_l ds/T(a), (6.3.31)

and from Kummer's transformation

1-b
U(a,b,x) = x U (1 + a-b, 2-b, x), (6.3.32)

(see Slater 1960), the solution (6.3.30) becomes

; 1-b -a
Fo=n p W2 VD pny o2 ey, A, IR,
o g 3 3 1-b 1-b 2
T (m) (1-b)"K v (6.3.33)
where v = 2/(1-b + 2a/3) >0,i.e. 1 < b < 2a/3.

This is the result we set out to obtain and it is identical to the

solution (6.3.25a).



6.4 Solutions with finite boundaries

Solutions in which the distribution function Fo(r,p) is
specified on boundaries at r = T, and r = r, can be obtained for

cases where the diffusion coefficient K(r,p) has the forms

P p3(b—l)/4’

1) K = K b > 1,
(i1) K = K_ P L b<1,

(1ii) K = Korb,b>l,

(iv) K = Ko r.

The general Green's theorem with source term in r, <r < I
set equal to zero as given in Equations (6.2.13) or (6.2.16) and
the Green's functions of Chapter (5) (see Table (5.1)) are used
to obtain these solutions. Green'é theorem in the form (6.2.16)
may be used when the eigenspectrum is discrete, whereas Green's

theorem in the form (6.2.13) must be used if the eigenspectrum

is continuous.

152,
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The solutions are obtained for the following cases.

TABLE 6.1
K(I,P) F(ra,P) F(l‘b,P)
b 3(b-1)/4
K r' p s b > 1 0 N G(P'Po)
N, 5(P’Po) 0
K2, b<1 0 N &
o ’ o (P"Po)
N, 6(p-po) 0
K r® , b >1 0 N §(p-p )
o 4 o P7P,
N, 6(p—po) 0
K, t 0 No 6(p-p0)
N, <S(p-po) 0

The determination of these solutions from those of Chapter (5)

(Table (5.1)) is straight forward, but in particular cases is quite

lengthy. These details have been omitted and the solutions together

with the appropriate variables have been given in Table (6.1). For

completeness the eigenvalue equations for )\n are repeated from Table (5.1).
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TABLE 6.2

SOLUTIONS WITH FINITE BOUNDARIES

A. Diffusion coefficient

b -
p3(b l)/4,

K(r,p) = Kor b>1
Boundary conditions
Fo(ra,P) = 09
F{r,, P) = N 6(p-po),
ra <r < rb sy, 0 <pc«< po
Variables
z \' r(l'b)/z/ K,
(o]
e = x P -y,
u = (t—to)/ (t t)s
=zt = 2 ) oy, e e,
Zl = z(rb) ’ 22 = z(ra)’ tO = t(Po),
m = (b+1.0) / (b-1.0)
Solution
N, (-1 Vpo(3b_7)/4 m n-1 2. 2
Fo(r,p) = e (Z/zl) (t/to) exP((zlto-z t)/4)

o

® 2
-s
i:l sn[Ym(sn ZZ) Jm(snz) - Jm(sn 22) Ym(snz)] e n

u

/
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[zl (Ym(sn 22) Jm+l (sn zl) - Jm (sn ZZ) Ym+1 (sn zl)) +

z, (Jm(sn zl) Yol (s 2,) - Ym(sn zl) It (s, 2z,)) 1, (6.4.1)
where;
Jm (sn zl) Ym(sn 22)._ Jm (sn zz) Ym (sn zl) = 0,

and Jm(z), Ym(z) are Bessel functions, of order m, and of the first

and second kind respectively.

Effect of varying the boundaries

If we let the outer boundary at r=r, tend to infinity then

= z(rb) + 0 and the eigenvalue equation becomes

Using Green's theorem (6.2.16) and the Green's function (5.3.35) for

zy = 0 and z, finite we have

3N V(b-1)2 po(3b—7) /4 m » X
Fo(r,P) = 2m+1 . z (t/to) exp (-z° t/4).
SR I ) e ® 2u/ (22 1% (s 2.)
=1 °n “m%n # ¢ P 2 m+l  “Sn %277 (6.4.2)

as the solution with inner boundary at r=r_ # 0 and the outer boundary
at r = «©,

If we let the inner boundary at r=r tend to zero in the solution
(6.4.2), then z, = z(ra) -+ w, the eigenspectrum becomes continuous and

we find
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2 (3b-7) /4
3 No V(b-1) P,

2m+2 I'(m) Ko

Fo(r,p) = 2" (t:/t;())m_l exp (.—z2 t/4).

2

mtl u

f” s Jm(sz) e S

. ds, (6.4.3)

as the solution for r =0 and rb > oo,
a

The solution (6.4.3) is equivalent to the monoenergetic
galactic spectrum solution (6.3.22). To show this explicitly we

put

and we use the result

m
o mt+]l -ax
X e

5 exp (-b%/(42)),

S Jm(bx) dx =

(Za)m+l

where Re (a) > 0, b > 0, Re(m) > -1 (Gradshteyn and Ryszhik p.717)

in the solution (6.4.3). Hence we obtain

’ Ng(b_l)z v po(3b‘?)/4 m m-1 2
FO (r,P) = —w 2 z (t/to) eXP(;Z t/4) .
2 T P, Ko I'(m)

[ 2" exp (-22 /(4u)) / (2u)m+l 1.
Since
X = zt, T = (t—to) u = T /(t to),

(see Variables), this latter result reduces to

F ( ) 3 Nj K0 p03(b—l)/4 (xz.)m 1 ( -X )
r,p = Zm. T €XP \. 7w |
o 81V po3(l+b)/2F(m) 4T T 4T

which is the monoenergetic galactic spectrum solution (6.3.22).
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In the case where the inner boundary is at ra=0 (22 + o),
and the outer boundary at some finite radius T, (zl finite), the
eigenspectrum is continuous and the appropriate Green's function is
given by Equation (5.3.36). Using Green's theorem (6.2.13) and the
Green's function (5.3.36) we obtain

3 N (b-1) ool

_ o m ~m 2 _ 2
Fo(r,p) = Sno % (z/zl) t t0 exp ((zl .to 2°t)/4).

[Jm (szl) Ym(sz) - Ym(szl) Jm(sz)]

N 2
fo [J 2 (SZ ) + Y 2 (Sz )] s + exp (—S u) ds’ (6.4.4)

as the solution for ra = 0 and rb finite.

If we let the outer boundary at r._ tend to infinity (i.e.

b
z, > 0) in the solution (6.4.4) we obtain

3 N (b-1) - _
F (r,p) = o t® 1 t P exp (-z2 t/4) .
o mt+l o

2 I'(m) p

o
© m+l -s2u
Jo 8 e J, (s2) ds, (6.4.5)

which is equivalent to the monoenergetic galactic spectrum

solution (6.3.22), or the solution (6.4.3).

B. Diffusion Coef‘ficient

P p3(b—1) /4’

K (r,p) = K b>1
Boundary Conditions

F (r,,p) = N, 8(p-p),

F (rp5p) = 0,
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Variables

\Y r(l—b)/zl K

’

e = 2k P we-),
u = (t—to) / (e t),
x = ze=2 @p!HE2 b1y, 1= e,

2y = z(rb) s 2, Z(ra), to = t(Po),

m = (b+l.0) / (b-1.0)
Solution
2 (3b=7) /4
3(b-1)" N Vp -
P (r,p) = ————— (2/2,)™ (et )" Fexpl(z”t ~27t) /4].
, o 2
o -2

nil s [ Ym(snzl) Jm(snz) - Jm (sn zl)'Ym(sn z) ] e n Y /

Y (s

l) " 'm n ZZ) J

[ 21 (Jm (sn ZZ) Ym+1 (Sn z m+1 (Sn zl))

tz, ( b (sn Zl) Jm+l (sn 22) - Jm (Sn zl) Ym+l (Sn ZZ))]
(6.4.6)

where,
Jm(sn zl) Ym( N 22) - Jm ( s, 2%y ) Ym ( s, %1 ) =0

is the eigenvalue equation.We note that the solution (6.4.6) can

be obtained from the solution (6.4.1) by interchanging zy and Zy-
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Effect of Varying the Boundaries

If we let the outer boundary at r = r_tend to infinity then

b

zy tends to zero and the eigenvalue equation becomes

Jm(sn 22)

Using Green's theorem (6.2.16) and the Green's function (5.3.35)

for zy = 0 and z, finite we have

2
F (r,p) = w, VoD 5 P /e )™ P L ((22e —2Pe) /4)
olTsP) = 4Ko o) z z, exp((z,t -z .
® —32 u
nzl s, I (s, 2) e™n / T (8, 290 : (6.4.7)

as the solution with an inner boundary at r=r_ # 0, and the outer

boundary at r = .

C. Diffusion Coefficient

K(r,p) = Ko rb , b <1

Boundary conditions

il

E(r sp) =0,
Férb »p) = NO S(P"Po) ’

r <r <1, , 0 <pc< po.

Variables

z =V (x (b)),

[~
]

3(1-b) &n(p /p) /2,
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N
]

1 z(ra), z, = Z(rb),

m = (b+l) / (1-b)
Solution
3(b—1) oo .
Fo(r,p) = 2po N° i=l[U(-An,l+m,zl)M(—An,1+m,z)—M(—An,Lhn,zl).

U(—Xn, 14+m, z) ] e-xnu /

3
SX; [U(—An,1+m,zl)M(—An,Lhm,zo)—M(—An,1+m,zl)U(—An,1+m,zo)]zo:zz,

(6.4.8)
where the eigenvalues An satisfy

UG-A,14m, 2 )M(=)A_, 14m,2,) -M(=A_,14m, 2 YUC-)_,14m,z,) = O

Effect of Varying the Boundary

If there is no inner boundary, but we require that Fo(r,p)

be finite as r » 0, then the solution is

F (r,p) = 3(b-1) N I M(-A_, l+m, z) e‘}\nu /
o 2p _ ° n

9
o [M(—Kn, 1+m, Zo)] z =z ° (6.4.9)
n o 2

and the eigenvalue equation is
M(—Xn, 1+m, 22) =0

D. Diffusion Coefficient

K(r,p) =K 1, b <1,
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Boundary conditions

F (r,, p) = N 8(p -p),
F (r,, p = 0,
r, <r < Ty 0 <pc< Py
Variables
z = Vrl-b/(Ko(l-b));
u = 3(1-b) 1In (pO/p)/Z,
zy f z(r#), z, = z(rb),
m = (b+1)/(1-b).
Solution
F_(r,p) = ééhgiluo nz; | U, Tm,z )M(-2, L4m, 2)

-
- M(-A_,14m, z,) U(-A_, l4m, 2)| e7'n" /

. ]
E ( UG-A, T4m, z)) M(-A_, l4m, z )

//’ 9
n
- M(fkn.1+m, zz) U(-ln, 1+4m, zo))|zo =z,

(6.4.10)
where
U(—An, 1+4m, 22) M(-kn, 1+m, zl) - U(-An, 14m, zl)
M (—An, l1+m, 22) = 0,

is the eigenvalue equation. We note that the solution (6.4.10)

can be obtained from the solution (6.4.8) by interchange of z, and

Zz.
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E. Diffusion coefficient

K(r,p) = Ko rb, b>1

Boundary conditions

Fo(ra’ P) = 0

FO(rb’ p) = NO 6(p = po)s

r, <r < Ty 0<pc« P,
Variables

z = VeI (1)),

e = x p 32w -1,

u = 3(b-1) 1n (p_/p) /2,
3/2, (1-b) /2

x = (4z0)F = 2(p”'d / (b-1),
T = t - L, =t [1 - exp(-u) 1,
z, = z(r), z, = z(r), t =1th)D,

m = (b+l)/(b-1).

Solution
F (r,p) = 3N, -1 (2/21)m e®17”
(o] Zpo
T _ o -
o1 [u(1 A s 14m, z,) M(1 A_, l+m, 2)
-2 u
M(l-An, l+m, zz) U(l—ln, 1+m, z)] e n /
9 :
.axn(U(l-An, +m, z,) M(1-A_, 14m, z )
- MU-, b, z) UG-\ D, zo))‘go =z,
(6.4.11)
where

U(l-)\n, 1l4m, zz) M(l-)\n, 1+m, zl) - M(l—An, 1+m, zz)

U(l—An,1+m, zl) = 0,
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is the eigenvalue equation.

Effect of varying the boundaries

If we let the inner boundary at r = r tend to zero,

then zy) > and the eigenvalue equation becomes

U(l—)\,n, 1+m, zl) = 0

and we obtain
- _=3(b-1) m %172
Fo(r,p) 2p N, (z/zl) e

- )
2 VU(l—An, 14m, z) e MY

n=1 3
.é-l;{U(l-xn’ L+m, zo) ‘ Zo T %

.(6.4_.12)
1

as the solution with outer boundary at r = ry and inner boundary

at r = 0,

If we let the outer boundary at r = T, tend to infinity

(i.e. z, + 0) in the solution (6.4.12), the eigenvalue equation

1
becomes

1 _
T(1-1)

so that the eigenvalues are

An = 1, 2, 3, 4, .....

Since

U(-n, 1+m, z) = (-1)" n! L: (2),

limit 3 U(-n, 1+m, 2)/3n ~z "T(m) T(n+l)(-1)™,
z >0

where L:(z) is a generalised Laguerre function and T(z) is the
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gamma function, we obtain

3(b-1)N, z'e . o

L
Zpo T (m) n=0

Fo(r,P) = L:(z) e-nu—u’

(6.4.13)
as the solution with inner boundary at r, = 0 and the outer

boundary r, at infinity.

b

The solution (6.4.13) is equivalent to the monoenergetic

galactic spectrum solution (6.3.22). To show this explicity we put

2
Ng 4ﬂp° No,

and we use the result

m n -m-1
ado n®y = (A-y) " Texp(xy/(y-1)),

where | y_|< 1 (see Gradshteyn and Ryzhik p. 1038) in Equation

(6.4.13) and thus obtain

A (e m -z ~ : -u
3(b l)Ng z e fe-u(l-e-u -m-1 {z e _)J

Fo(r',p) 3 ) exp}.

8npo '(m) 1. \e-u—ll

Since

2

x" = 42t, T = t(l-e-u), t = Kop3(1-b)/2

/ (V(b“"l) ) ’

(see Variables), this latter result reduces to

3Ng K,

2\m
F (r,p) = 3(1+b)/2 T (m) (%T) '% e""(" 'Z‘T-)'
o 87V p m '

which is the monoenergetic galactic spectrum solution (6.3.22).

F. Diffusion coefficient

K(r,p) = Korb, b>1
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Boundary conditions

Fo(ra,p5 = N 8(p-p)),

Fo(rb,p) = 0 ,
ra<r<rb’ O<p<po
Variables
z = vy K_(1-b),
u = 3(b-1) 1n (polp)/Z,
zl' = z(rb), z, = z(ra)
m = (b+l)/(b-1)
Solution
-3(b-1) m
Fo(r,P) e épo (2/22) exp(zz-z).
£ [vaa, 1w, 2) A, T, 2) - NA-A, Lim, z))
A “at / 2 1-x , 1 |
U(l— n’ 1+'m, Z)] e aAn(U( - n’ +m, zl) M(l-xn’ 1+I1‘l, ZO)
- M(l-)\n, 1l+m, zl) U(l-An, 1+m, zo))l z, = 2z, | (6.4.14)

and the eigenvalue equation is
U(l—)‘n, 1+m, zl) M(l-An, 14m, zz) - M(l-)\n, 1+m, zl)
- 0.

U(I‘An’ 1’Pm’ 22)

Effect of varying the boundaries

If we let the outer boundary at r = T, tend to infinity

(i.e., z, = 0) the eigenvalue equation becomes

1
M(l—Xn, l1+m, zz) = 0,
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and

~3N, (b-1)

2p°

% M(1<\n, 14m, z) e~
n=1 ~ ,
M(1-2_, L4m, z)/3) |z z

F (r,p) (z/zz)m e?27%

Anu

(6.4.415)

is the solution for an inner boundary at r = r, # 0 and an outer

boundary at infinity.

G. Diffusion coefficient

K(r,p) = Kor

Boundarxﬁcdnditions

F(ra,p) = 0,

F(r,,p) = N_8(p-p),

r < T <, 0 <pcx P,
Variables

z = 1ln(r)

u = 3Ko ln(po/p)/ZV,

c = 1- V/ZKo

z, = z(ra), z, = z(rb)

Solution

3NoKo

Fo(r,p) exp (c(zz-z) - czu).

Vpo(zz-zl)2
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I (-1)" an  sin [on(z-z,)/(z.,-2,)] exp [-nzﬂzu/(z -z )2]
n=1 1 271 2 717

(6.4.16)
Effect of varying the boundaries

If we let the inner boundary at r, tend to zero then

z, > - and the solution (6.4.16) becomes

Fo(r,p) = WK (zz—z) exp[c(zz—z)—czu —(z—zzfa(éu)] /u3/2.
Wil

(6.4.17)

H; Diffusion coefficient

K(r:P) = Kor

Boundary conditions

F(r_,p) = N, 8(p-p ),

F(r,,p) = 6.

ra <r < rb, 0 < pc« po,
Variables

z = ln(?),

u = 3K° ln(po/p)/ 2v,

c = 1- V/2Ko;

z, = z(ra), z, = z(rb).

Solution

Fo(r,P) = 3N°K° - exP[c(zl-z) - czu].
\' po(zz-z1 2

nzl nw sin[nﬁ(z—zl)/(zz—zl)] exp[-nzﬂzu/ (22-21)2] . (6.4.18)
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Effect of varying the boundaries

If we let the outer boundary at r = r. tend to infinity

b

then z, + » and we obtain

2
Fo(r,p) = .3_11‘&9_ (z—zl) exp[c(zl-Z) - c2u -(z—zl)zl(éu)]/u3/2. )
4 Vp V=

(6.4.19)

as the solution for an inner boundary at r, # 0, and an outer

boundary at infinity.

6.5 Concluding Remarks

In each case considered, solutions in this chapter have been
given for a monoenergetic boundary spectrum of the form
Fo = No G(p—ﬁo). Only in the case of Fisk and Axford (1969)with
K=K, p? £, b > 1 has to solution included the effects of a full
boundary épectrum, viz., F -» No p-u— as r »> o, Full spectrum cases

can of course be determined by integration but numerical methods may

be necessary. Exaﬁples of this will be given later in Chapter (8).

Note again that the interior sources have been set equal to
zero, this corresponding to the cosmic ray case in the solar cavity.
These sources can also be included if necessary by evaluation of the

Green's theorem integral (see Equation (6.2.9)).
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CHAPTER 7

COSMIC-RAY ENERGY CHANGES

7.1 Introduction

In this chapter we show that the average time rate of change
of mementum of cosniic-ray particles propagating in interplanetary space,
reckoned for a fixed volume in a frame of reference fixed in the solar

system is given by

j<
|<

W]
2]

P
3

|
E

<1'>> -

(7.1.1)

(=]
w

r
P =

where Up(_g,p,t) is the differential number density (w.r.t. momentum),

V is the solar wind velocity, and G = (1/Up) (3Up/3_1_:) is the density
gradient. The expregsion (7.1.1) for <p> was first noted by Gleeson
(1972), Quenby (1973), Gleeson and Webb (1974), and it is implicit in
the discussion of cosmic-ray energy changes by Jokipii and Parker (1967).
It shows that particles on average gain energy when there is a positive
density gradient, and that they lose energy in a negative density

gradient.

There are two further momentum rates that are useful in discuss-
ing cosmic-ray energy changes, which have been discussed briefly in
Section 1.3. We reiterate the basic argument of that section in order

to show the proper use of these two rates.
The equation of transport for the propagation of cosmic-rays

in the interplanetary medium is (Jokipii and Parker, 1970),

) -%—y_.y,%;. (p'ux) = o, (7.1.2)
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where U; (x,p',t) is the differential number density with respect to
momentum p' as seen in a frame of reference movihg with the solar wind,
and the spatial coordinates, r, are defined in a fixed frame of reference.
The equation of transport (7.1.2) can be writtén in an alternative

form, which displays the physics more clearly:

aU*
where
§; = !.U; - K . v U*p, i (7.1.4)

is the streaming of particles with momentum p' (specified relative
to the solar wind frame) across a fixed surface at position I in the

fixed frame, and

- ' [}
p'> = P vy, (7.1.5)

is the corresponding mean rate of change of momentum of particles

with momentum p' at position r.

The momentum rate <p'> is due tq the transformation of momentum
between the fixed and solar wind frames. It arises because the solar
wind frame is not an inertial frame of reference on a large scale. We
remark that <p'> is not dependent on particle scattering, and a derivation

of the rate <p'> is given (for the first time) in Appendix G.

In addition to the rates <§> and <p'> referred to in
Equations (7.1.1) and (7.1.5) there is the adiabatic deceleration rate
of Parker (1965). The term adiabatic arises from thermodynamics. An
adiabatic enclosure is one which is isolated of'thermally insulated from
its surroundings. If a gas is allowed to expand under adiabatic conditions

it will do work at the expense of its internal energy (the total kinetic
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energy of the individual particles composing the gas). The adiabatic

deceleration formula

<f)>ad = %—-_2 .V, (7.1.6)

gives the rate of change of momentum that the particles of momentum
p undergo when the external boundaries of the gas expand at the

velocity V(x).

In the case of cosmic-ray propagation in the interplanetary
medium, the concept IOf, adiabatic deceleration is only applicﬁble in the
limit of strong scattering, i.e., the components of the diffusion
tensor K = 0. The cosmic-rays are then effectively constrained to move
with the solar wind as they scatter between the magnetic field irregulari-
ties which behave like the walls of a 'magnetic box'. Consequently
they change momenturﬁ at the adiabatic rate (7.1.6) within the 'magnetic
box' whose walls expand at the solar wind vélocity V(x). A derivation

of the adiabatic rate (7.1.6) is given in Section 4.

It is obvious from the above discussion that the appropriate
rate to use when deriving the transport equation in terms of U; (x,p',t)
is <p'>. We remark that Parker (1965) and Jokipii and Parker (1970)
obtained the equation of transport (7.1.2) by using the adiabatic rate
<{>>ad, which is of course incorrect. However they obtained the correct
equation of transport because the momentum rate <p'> and the adiabatic

deceleration rate <f>'>ad are given by the same formula.

As indicated in Section 1.3, the equation of transport in the

fixed frame of reference is

U

1 )
LU -K.TU)-3T.V(pU) =0,

+ v
ot - p
(7.1.7)

p
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where Up (r, p,t) is the differential number density with respect to
momentum p at position r in the fixed frame, and it is readily obtained

from Equation (7.1.2),

The principal contents of this chapter concern the derivation
of the meant-time-rate-of-change of momentum <p> in the fixed frame
of reference, referred to in Equation (7.1.1). We derive <ﬁ> in three

ways:

(1) by a rearrangement and reinterpretation of the equation of

transport (7.1.7),

(i1) from a consideration of particle momentum changes arising from

the scattering analysis of Gleeson and Axford (1967),

(iii) by considering the collisions of the cosmic-rays with the

walls of a collection of 'magnetic boxes' moving with the

solar wind,
We develop it by the first method in Section 2, the second method in
Section 3 and by the third method in Section 4, The first derivation
has been published (Gleeson 1972; Quenby 1973; Gleeson and Webb 1974).
The third method is particularly instructive in the derivation of the
relativistic adiabatic deceleration formula and for showing the relation

between this and the result (7.1.1).

For completeness a result of Jokipii and Parker (1967) is also
derived. These authors have shown that the total rate of energy transfer
from the solar wind to the cosmic~rays, per unit volume is :-

dP (r)
aw oy 2l

TS — (7.1.8)

where Pc(r) is the cosmic-ray pressure at radius r. In Section 5 we
show that the result (7.1.8) follows from the momentum rate <p> given

in Equation (7.1.1).



173.

In Section (6) we give a summary and discussion of the results of this
chapter and we define a momentum-position flow line in terms of the flow
velocity <r> and the average time rate of change of mc;mentum <p>.

In the work that follows we use two frames of reference; one of the
frames, denoted by S is fixed in the solar system and the other frame Sm
moves with the salar wind., Physical quantities in the moving frame Sm

are denoted by the subscript m. The Lorentz transformations for momentum

p and total energy E between the moving frame Sm and the fixed frame S are:

2,

p+ ((Y-l)_g . X-Ym)j{,
V2

E .
m

Y(E "_Y'R)’ (7.1.9)

v = -vi/eHs,

and m#-mo‘(l—vzlcz)'-;5 is the relativistic mass of a particle with rest

mass m.. To O(V/c)2 we have y=1 and the transformations (7.1.9) are

o
P, = R- nV - (7.1.10)
Em = E-V-.p (7.1.11) .

It can also be shown (see e.g. Forman (1970) ) that the momentum
position distribution function F(r,p) and the volume element d3_1; d3p_
centred on the point (x,p) of position momentum space are Lorentz

invariant, i.e.,

Fm(_Em’ Rma tm) = F(_E’B’t_)’ (7-1-12)

3. .3 3.3
d’r d'p = drdp, (7.1.13)

and we will use these relationships in our analysis.
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7.2  The transport equation approach

The basic equations describing the cosmic ray gas in the inter-

planetary region are:-

U, ' ! 3
et Y '(.XU'p -K- ot )- 3'(_-_) a—P(pUp.) = Q,_ (7.2.1)
au
VD “p
5, = - = K - 7.2.2

where §p is the differential current density or streaming. The
result (7.2.2) was first obtained by Gleeson and Axford (1967) in a
spherically symmetric model of the interplanetary region.

The basis for the present work is to note that particles are con-
served; thus we may write down a continuity equation and idéntify the
terms in it by comparison with (7;2.1).. Taking into account the momentum
of the cosmic ray particles the general continuity equation for

Up (_E,pst) is

U

a L ]
—L2 4+ v.5 + 5; (<p> Ub) = 0. (7.2.3)

ot - =P
In order to identify terms in our case we rearrange (7.2.1) so that the

terms in the first parenthesis are equal to §p. It becomes

Ay ou ’ 11
13 P 3 [ pVe P
—B . -=2 K . : S (B _Y ) -
3¢ T <1 0, - 335, U] K a;) + 3p<3 T 0.
(7.2.4)
Identification with (7.2.3) now gives the relationship
: .Y (7.2.5)
<p> Up = 3 8— L] - -
Alternatively we write this result as
. pV. G
P> = T3 (7.2.6)

in which G = (l/Up) aup/ag is the density gradient.
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7.3 The scattering model approach

We now obtain the momentum rate <;.>> derived in Section (7.2) and
given in Equations (7.1.1) and (7.2.6) by using the scattering analysis
of Gleeson and Axford (1967). We first give details of their analysis
- and then use the same model to calculate:

(1) the total momentum change of particles with momentum in (p,p+dp) and
position in d3_r_ about r at time t, due to scattering in the time interval
(t,t+dt);

(ii) the total momentum change of particles with momentum in (p,p+dp) and
position in d3£ about r at time t+dt, due to previous scattering in the
time interval (t,t+dt).

The momentum changes obtained in (i) and (ii) are found to be
different, and to calculate <f5> we take the average of these momentum
changes, and dividg this average by the time interval dt and the number
of particles with momentum in (p,p+dp) and position in d3£ about r at
timé t.

In the scattering analysis the interplanetary medium is modelled by
magnetic irregularities moving radially with the solar wind and deflect-
ing or scattering cosmic-ray particles. We assume:

(1) the steady interplanetary magnetic field is radial;

(i1) the scattering is isotropic in the solar wind frame Sm’ and since
there are no electric fields in S.m particles are scattered without change
of speed.

The number of scatterers per unit volume and the scattering cross
section in S, are denoted by N,(r) and o(pm) respectively. The
Boltzmann equation |

JF

3 3 . §F
oy o . . = &= 7.3.1
T 5% (v F) + 5D @P =G, ( )
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for this situation becomes

aF oF v sin 6 dF _ /4F.
3¢ T VeSS - 38 - &GP

’ (7.3.2)
where 6 is the angle between v and r and(%% o represents the effect of
scattering (cf. Gleeson and Axford, 1967). The scattering rate (%%bc

is initially evaluated in the moving frame Sm, and a relativistic trans-

formation gives the result in the fixed frame. Thus for isotropic

scattering

SF ' .
(EE-C = <48 N (1 - Vv cos 8) v c(pm) F(r,p,6,t)

c2

H Apy o - -
+201°N (1 - V; cos 0) v a(pm) fo F(r,p;6,t)sin 6 n de m’
¢ (7.3.3)

where primed superscripts refer to the particle momentum before scattering.
The first and second terms in Equation (7.3.3) represent séattering out
of and into a given element of phase space respectively.

It is assumed that the distribution function can be written as a
Legendre expansion as follows:

F(r,p,8,t) = £ F (r,p,t) P (cos 6). " (7.3.4)
i=0

Substituting this expression for F(r,p,8,t) into Equations (7.3.2) and
(7.3.3), making a Taylor expansion of (%%)c in powers of-% » assuming
near isotropy so that F, << Fé, Fl (1 > 2), a set of coupled partial
differential equations for the functions Fi(r,p,t) are obtgined by equat-

ing the coefficients of the Pi (cos 6). The first two of these

equations are

oF
o 1 3 2 -
5t t gzar & VED S

3 3F°
[p G(Fl +mV3;— )1,

41 NV 3

+ 0[0%)3 I NovF], (7.3.5)
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aF oF

oF o _ 0
3?1 +va— = =41 No v(F1 + mV-ss— )
v2
+ 0(—, 41 No v F). (7.3.6)
v2 °
In the derivation of (7.3.5) and (7.3.6) it is assumed that the distribut-
2
: oF 2 3°F
fion function is sufficiently smooth for F, p-g; and p 5;2 to be

considered of the same order of magnitude and F1 = 0(% Fo).

The term aFl » (which represents the effects of inertia of the

ot
cosmic-ray gas) can usually be neglected in Equation (7.3.6), and this

equation becomes

aFo BFO
v — = - 41l No v(Fl + mV 3;— ). (7.3f7)

ar
On eliminating F, between (7.3.5) and (7.3.7) and replacing No by the
diffusion coefficient
K = v/12 1 No,

we obtain the equations of transport:

oF oF oF oF
o,1 3 .2V o 2 ) vV 3 3 7o, _
5t * 22 ot (*>r 3 55 F Kgp + 39 Bp( 3z ) =0, (7.3.8)
BFO BFO
v F1 = -pV-SS— - 3K T (7.3.9)
In terms of the differential current density

2
sp = 41 p° v F1/3,

and the momentum‘number density
2
Up = 41l p Fo,

these equations are

au 3U
_pP,1 3 .2 3 (MW _p, . .3.10
5 Tr23r TSPty (330) =0, (7.3.10)
va 3u ‘-

. _va - kP 7.3.11

Sp VUp 3 3p (pUp) LS v ( )

which are the usual form of the transport equations.
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The above completés the resume of the scattering analysis used to
obtain the equations of transport. We now proéeed to use these same
ideas to calculate directly the average - time - rate of change of
momentum <ﬁ> for cosmic-rays. In the analysis we use the following

relativistic relations between the moving and the fixed frames

Fﬁ(rm,pm,em,tm) = F(r,p,0,t), (7.3.12a
3. .3 3.3
d’r, dp, = d’rd’p, : (7.3.12b)
dt = y(1-YYcos O,y g, (7.3.12¢)
m cZ
N = N, (7.3.12d)
- 2,2
Py = p - mV + 0(V®/c%p), (7.3.12e)
' 2, 2. _
E_ = E - Vep + 0(V°/cE), (7.3.12£)
. 2, 2.-% _
where Y = (1-v°/c“) 2, m is the relativistic

mass of a particle with rest mass m, and speed v, d%{m d%Rm and d%gd?g
are volume elements about the points (Em’ Bm) and(x,p) of position -
momentum space, and N(r) is the number of scatterers pef unit volume.
Consider the momentum changes of particles initially in the volume
3 .

dr d%R about (r,p) at time t, which are scattered out of the momentum

volume d?R about p in the time interval (t,t+dt).

de”
m

trajectory

Figure 7.3a.

Showing particles scattered out of the momentum volume d%gm about '

p, into the volume d?gfm about p-
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In the moving frame Sm, the number of particles initially with
momentum in d32m around 2, and position in d31:_m which are scattered into

the element of phase space d3rm d3p’m around (Eﬂi’B:;) in time dt_is

v Fh(rm,pﬁpm,tm)'d3gm] [o(p” ) d o] [de?gm] at_. (7.3.13)

The first bracket in (7.3.13) is the flux of particles with
momentum in d3hn around p, incident on a surface with unit normal
Pp/Pm» the second bracket is the fraction of particles, incident on a
si-ngle scatterer, which are scattered into the solid angle dQ‘m, and
the third bracket is the number of scatterers located in d3_1;m at Iy.

The number in (7.3.13) is Lorentz invariant, so it is the number
of Iparticles initially in the volume d3£_ dBR around (r,p) at time t,
which are scattered into the volume d3£ d3p_‘ around (r,p”) in the time
interval (t,t+dt). Using the relativistic transformations (7.3.12),
i.e.

Fm(rm,pm,em,tm) = F (r,p,0,t),

3 3 3 .3
d r d 2 = d’r d7p,
N = Ny,
_ Vv cos 6
de_ =y dt:(l-—----—--'-(:2 )

noting that ds_P_ = pzdpdﬂ, dQ= 21 sin 6 d6 and that particles are scattered
without change of speed in the moving frame (i.e. p’m=pm)

V v cos O 2 . .
—5—— ) p sin 6 sin 67 d6~° dé

any_a(p ) F(r,p,0,t) N (1- .

dp a’r de
. 3 3
is the number of particles initially in the volume d°r d” p around
(r,p) at time t, which are scattered into the volume d3 r d32‘ around

(r,p ) in the time interval (t,t+dt).
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Each of these particles changes momentum by (p“—p) in the fixed
frame, so that
. 2 V v cos © 2 . .
(p”-p) [4n v o(pm) F(r,p,8,t) N(1- 2 ) p"sin 6 sin © mde md 0
dp d?sdt],
is the momentum change of these particles.
Integrating this last result from 6=0 to 6=l and from e‘m=o to
8° =N we find
m

V v cos 6

2, 2 1 I . o s
AN T Sy TV o(py) F(r,p,0,8) (I- —————)(p"-p) sin & sin 67 d07 do

&r dp at, (7.3.14)
is the total momentum change of particles with momentum in (p,p+dp)
and position in d?g about r at time t, due to scattering in the time
interval (t, t+dt).

To evaluate the integrals in (7.3.14) to the order we require we

need to obtain expressions for p“, cos 6° and Py in terms of 6, e'm and
p. These expressions follow from the Lorentz transformations for momentum
(7.3.12e) and the result that the particle speed in the moving frame is

conserved during a collision, i.e.

2,2 ’
P, = P2-mv+o(Vi/cHp, (7.3.15)
= . | : (7.3.16)
Putting {i = cos 6 and ufm = cos e'm from (7.3.15) we deduce
2.2
v .
p, = P (1- 2uv u +'E-¥— 3 + 0(V2/c2 D).
P P

Expanding this result by the Binomial Theorem

2
p -mVu + o(V /v2 P)>»

o
8
]

i.e.,

|
-
]

-nVu + 0(V2/v2 p). (7.3.17)
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’

Also from the transformation (7.3.15) and using p:m =P,

we find

2.2 2

- 2mV . mV % v -

= 1+=—yuy" + + O(- .

pTmp, i e BTy o, 00
m

Using the Binomial Theorem and the result (7.3.17) this expression

for p’ becomes

2
- » V
p" =p =-nVu + mVu n + 06"2 p),
v
i.e.,
v2
p-p =uV(’ - u) +0( p). (7.3.18)

v

From (7.3.15) we have

p. = p - ¥ +0(v?/? py,

so that

p cos 6° p, cos e‘m + mV + 0(V2/v2 ),
i.e.,

cos 6 = mV + P, cos e‘m.

)

P

Using the expansions (7.3.17) and (7.3.18) for Py and p~ we obtain

. . v -2 2,2
i WLt - 7))+ 0N,
i,e.,
.. _ Vv _ -2 2,2 '
Wit o= @ - 7)) 0V, (7.3.19)

as ancexpansion for cos 6°.

We note, for later reference that the distribution function
F(r,p°, 67,t) can be expressed in terms of the variables r,p,e,e'm,t.
This expansion is obtained as follows. We first note that we can
expand F(r,p”,87,t) using the Legendre expansion (7.3.4)

F(r,p”,0°,t) =12 F, (r,p",t) P; (cos 87),
i=0

and we then expand the functions Fy (r,p’,t) and Pi(u’) in Taylor series
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about the points p and u”_ respectively. We have
m

2 2
. g- 2 .y 9F.(r,p, v© 2
F(r,p”,67,t) = [F(r,p,t) + (p"-p) 1(£P28) 0=, P F1 )
1=0 3p v 3p
' dp, (u” ) 2
- L » i m y_
[Py ) + (W= w’) ——du‘m + 0(v2 ) Bl

From this and using the expressions for p“-p and u’—u’m given in
Equations (7.3.18) and (7.3.19), and using the assumptions of the

scattering model, namely F, << F;, Fl(i > 2), Fl = o(V/v FB) and

i
") aFi/Bp = O(Fi) etc., we obtain

v aFo V2
F(r,p",07,t) = Fo + < (u m u) p-;;-+ T Fl + o(;2 Fo) (7.3.20)

as the expansion for F(r,p”,87,t) to 0(V2/v2 Fo)’

Similarly expanding v o (pm) about p in a Taylor series, and using the

expression for P, P given in (7.3.17) we have
9 V2
v o(pm) = v o(p) - mVu 3p (v a(p)) + 0(-‘;2 v o (p)), (7.3.21)

as the expansion for v o(pm).

Substituting the expressions for v o(pm), F(r,p,9,t) and p“-p



183.

from Equations (7.3.21), (7.3.4) and (7.3.18) in the result (7.3.14),
we have that

2
4112 sz fl [vo - p‘—‘i- u g— (vo) + ()(y-2 vo)] (1- y_g_g )
-1 p v c
[F_+uF, + o(v2/v? 7)1 /1 [mveu” - ) + o(X:Z p)] du” du - ac dp de
o 1 o .1 m v2 m -
=81 p3 In sl vop ¥ 2
P v =1 -Pp

vu-g—;(VO)-PO(%zvc)] (1-:”—;“-)

. [uF0 + uzFl + 0(V2/v2 Fo)] du - d3£ dp dt

= -16I° p> V No W
3 [F) - [z +

3
ap

§‘<I<:

(vo) 1 F,

R 3
0(=, F )] d°r dp dt, (7.3.22)
v o

is the total momentum change of particles with momentum in

(p,pt+dp) and position in d3_1_' about r at time t due to scattering
in the time interval (t,t+dt).
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We now consider the momentum changes of particles in the volume

d%z d%g about (r,p) at time t+dt, due to particles scattering into the

momentum volume d?R about p in the time interval (t,t+dt).

de”

trajectory

Figure 7.3b

Showing particles scattered into the volume d?sm d%Rm about
(x, gm)-
In the moving frame Sm’ the number of particles initially in the
volume d3r d%R’ about (r , p° ), at time t_which are scattered into
-m m —m m ™

the volume element of phase space d3r d?gm in time dt_ is
—m m

- -

[v' E(r,p", 6° ,t) dp" ] [o(p ) da ] (N ar] at . (7.3.23)

m m m m

The physical significance of the three bracketed quantities-in
(7.3.23) are analagous to the interpretation of (7.3.13).

The number in (7.3.23) is Lorentz invariant, so it is the number
of particles initially in the volume d%g d?E’ about (r,p”) at time t,
which are scattered into the volume d?g d%g about (r,p) in the time
interval (t,¢+dt). Since p’m= P d%g = pzdp d?, we make the

substitution
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in (7.3.23). However from Equation (7.3.12b) we have

3 3 3.3
d 2, d r, = d B.dIEJ
so that this last result may be written in an alternative form

3. .3 _ 3.2 .
d’p n d T de =d°r p dp dQ dQ o ' (7.3.24)

Thus using the relativistic transformations (7.3.12) {i.e.

Fm(rm’ p‘m’e’m’ tm) = F(r’p"e"t)’

Nm = Ny,
Vv cos 6
dt ydt(1 - —Z ),

noting d? = 2l sin © d6, and using the result (7.3.24) in Equation
(7.3.23) we have

2 2 .o Vv cos © . . 3
41" Np vho(pm) F(r,p~,87°,t) (1- ) ) sin © sin @ n do de n dpd’r dt

is the number of particles initially in the volume d?g d%g' about
(r,p”) at time t which are scattered into the volume d%g d%g about
(x,p) in the time interval (t,t+dt).

Each of these particles changes momentum by p-p” in the fixed
frame in the time interval (t,t+dt) so that

Vv cos 6

o3 [ a7 22 . ge . .
(p-p”) [4N"Np~ v_ o(p ) F(r,p”,67%,t) (- — ) sin 6 sin 07 do do”_

c
dp d?E de],
is the momentum change of these particles.
Integrating this last result from 6 = 0 to 6 = I and from e‘m =0
to e'm = I, and using the expansions for v o(pm), F(r,p”,6°,t) and

p-p~ given in Equations (7.3.21), (7.3.20) and (7.3.18), we find
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2.2 Il 1l - PR Vv 8 -
41 Np fo fo v O(pm)(p‘P ) F(r,p”,07,t)(1- —nggi—— ) sin 8sin an
. 3
de d6°_ dp d’r dt
m —
2,2 1 v 3 ¥ Vo
= 41°Np _f [vo-p el 3;»(v o(p))+ 06;2 vo(p))] (1~ —:5 )
2 oF 2
1 V- v Vo, - _o° - v
_JJ: [p5 ') + 0, PILF, +35 (- w) p g +umF1+0(v2Fo)]
. 3
du o du dpd'r dt
= aitwp? 1L vo - p Y - (vo) + 0(—‘12 vo)] [ 1 - 8
L AT v2 )
F 2
v o 2 _ v 3
p- [ 2uF, 5 P —Bp (20 + 2/3) 2/3 Fl + 0(v2 Fo)] du dpd x dt

2 3 aF \A 2
= - 160" p” VNGO vV _ o Vv pe 9 v
3 [Fl +2p 3 Tp + (c2 + _Ez 5p (vo)) F + 0(v2) F_]
3
d’r dp dt, (7.3.25)

is the total momentum change of particles with momentum in (p,p+dp)
and position in d%{ about £ at time t+dt , due to previous scattering
in the time interval (t,t+dt).

In summary, the basic results (7.3.22) and (7.3.25) concerning
the momentum changes of particles with momentum in (p,p+dp) are:

(i) we have

\'J
1en2.3 W . pv 3 V2
161 % VNo [ Fl [ZZ + Vo 3p (vo)] Fo + 0(V2 Fo)]
d?g dp dt,

is the total momentum change of particles with momentum in (p,p+dp)
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and position in d3£ about r at time t due to scattering in the time

interval (t,t+dt) and,
. -161" p"V No Vv 7o Vv pViv 3 __
(ii) [F, + 2p - + [c2 + vo 3p (vo)] F0

+ o(%i Fo)] d3_g_ dp dt,
is the total momenf;um change of; éarticles with momentum in (p,p+dp)
and position in d3£ about T at time t+dt, due to previous scattering
in the time interval (t,t+dt).

As noted at the beginning of this section the momentum changes
in (1) and (ii) aré different, at;d to calculate <13> we take the
average of these momentum changes, and divide this average by the
time interval dt and the mﬁnber of particles with momentum in (p,p+dp)
and position in d3£ about r, viz. 4 p2 Fo (r,p,t) dp d3_r_.'

Hence we obtain. |

: oF 2
. V 4IINo V o \ '
<p> =_§— T [F1+p;3_p—+0(:;f Fo)]’ (7.3.26)
o :

as the expression for average time rate of change of momentum of the
cosmic rays.
If we express the distribution function in the moving frame by

2

\'/
Fm(—r-m’ pm) B Fmo (—Em’ pm) + le(Em’ pm) cos em + 0(:,7 Fmo )
we can show that
v BFO
le = Fl + p;a—p— . (7.3.27)
Since the streaming in the moving frame is given by
4Hp2 v
s =—72-2F (£,p) (7.3.28)
~pm 3 my -m’ ‘m”’ ot
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the result (7.3.27) when substituted in the expression (7.3.26) for <é>
indicates that <é> is proportional to the net 1inward streaming in the

moving frame. Since the streaming in the moving frame is a diffusive

flux

oF

2 o
S =~ K, 5 o : (7.3.29)

arising from the scattering,we find that <é> is proportional to the
radial gradient 1/Fo BFO/Br. The result <p> « §pm also makes physical
sense, since the strgaming in the moving frame is due to the combined
effect of overtaking and head on collisions between the cosmic rays and
the scatterers.

To show the relationship (7.3.27) explicitly and to obtain the
dependence of <§> on the radial gradient (l/Fo) (an/ar) we note that
from the equation of tramsport (7.3.9)

. !aFo a1 3F
17 P39 4NG 3r °

(7.3.30)

Since the diffusion coefficient K = v/(12lINoc) we may write this last

result as
oF 0
e soYolo -3k fo
17 Py 9p v 9dr °

or using Equations (7.3.28) and (7.3.29) we have

v o, > gbm =

17Py% T@pzv T fmy

which is the result (7.3.27). Finally using the result (7.3.30) in the

expression (7.3.26) for <§> we find

° aF
vp_ OF,
P> = p e (7.3.31)
0
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Alternatively in terms of the radial gradient Gr(r,p) = (1/Up) (8Up/8r)

. = .-—E
<p> G (7.3.22)

This is the result we seek and it was obtained in Section (7.2) by

proper interpretation of the equations of transport.
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7.4 The moving cell approach

In this section we consider a special model (see Figure (7.4a)) in
which the particles are considered to be confined within 'boxes', the
walls of which are moving with velocity V(r) (V(r) is in general a

function of position).

Figure 7.4a.
Illustrating the boxes of Section (7.4). The surfaces at

each point move with the local velocity V(r).
In the cosmic ray case V is the velocity of the solar wind. We first

consider momentum changes within a single box or cell and then the

momentum changes associated with a set of cells within a volume fixed in

space and not moving.
A single cell is shown in Figure (7.4b) and the following conditions
apply
(i) The particle speed v >> V.,
(ii) As seen by an observer moving anywhere within the cell the distribution

function F m(R_m) is uniform and isotropic and we write
gég-m) - Fmo(p m)

with F mo(pm) changing from cell to cell.

(iii) The particles are considered to have elastic collisions with the
rigid walls of the enclosure i.e. the incident and rebound speed
as seen moving relative to the contact point of the wall are the
same.

The Lorentz transformations for the momentum p and the total energy
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E between the moving frame Sm and the fixed frame S to O(V/c)2 are given

in Equations (7.1.10) and (7.1.11):

Pp = -V, (7.4.1)

ol - (7.4.2)
From the Lorentz invariance of the position-momentum distribution
function
F(x,p) = Fm (-Em’ pm). (7.4.3)
Expanding Fm(_r;'m ’ Em) about p in a Taylor series we have
F(r,p) = Fp(5,p) + (B =) "G5 Flpu) + eeeeeee  (T248)

Since F m(_r_ ) m) is essentially isotropic (see (ii)) and using the
Lorentz transformations (7.4.1) we have

oF
o

Fr,p) = F, (@ .p) + 0 P 52 )

as an approximate relation between the.moving and fixed frame

distribution functionms.

We now proceed to calculate the rate at which the particles change
momentum due to collisions with the walls of the enclosure.

Consider the collision of a particle of momentum p with an element
dA of the wall centred around the boundary point at b where the inward

normal is n. Let B and Pg denote the particle momenta before and

after the collision.

Figure 7.4b.
Schematic of particle collision with wall at b.

The inward normal to the surface at b is n ,
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Since collisions are elastic relative to the wall (see (iii)) we can

easily show

Bpg = (Bpg ~Ppg *BD) ~ Py c BB =Py T 2%y cRRD (7.4.6)

Using the Lorentz transformations (7.4.1) we have

Peg" Ry "Ryt (P_i"zml) 'EE+O(V2/C2 pi)' (7.4.7)
Hence

.sz = Piz - 4@V - n) (p; " n) + o(vz/c:2 piz). (7.4.8)

Using the Binomial theorem in Equation (7.4.8),
bp = pop, = 2@ V - ) (o, - m/p, + 0(vi/c?)
£ P51 2 LAyt /Py Pye (7.4.9)

With 6 the angle between P4 and-g_(gi " n = -p; cos 8) and dropping

the subscript i, Equation (7.4.9) gives

Ap = 2(m V + n) cos 6 + o(v?/e? py, (7.4.10)

as the momentum change in the fixed frame.
The number of particles with momentum in d?R about p which intercept

dA in time dt is
F(r,p) (vcos 6 -V - n) dA dt d3g_.

Using the relation between distribution functions given in (7.4.5) we

have

oF
mo

3
) )] (vecos 8 -~V -n) dAde dp,

v
[Fpo(TyoP) + oG P

as the number of particles with momentum in d%E about p which intercept
the area dA in time dt,

Each of these particles changes momentum by Ap given by Equation

(7.4.10) and
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3

2(m V - n) cos.eFmo(_gm, p) (v cos 6 = V « n) dA d7p dt

+ 0(p2V V/v (3Fmo/3p))-~ dA d3 p dt.

is their total momentum change in time dt.

" Using d3_;_>_ = p26pd9, dQ = 2l sin © dO and integrating this last
result over the solid angle d corresponding to incident particles we
obtain

I
M - n) p /v E (r ., p) 6pdh dt L% (veos 8 - ¥ - m)

cos 6 sin 8 do + O(pszz/v (aFmo/'c)p))- p2 Sp dA dt

3
411
-—3L Fol&y» P) Y -ndpdade (1+ o(%) ) (7.4.11)

as the total momentum change in time dt from particles with momentum
in (p,p+dp) irrespective of direction.
Dividing by dt, noting that Fmo(sﬁ’p) is constant within a cell

and integrating over the entire interior surface we have
4N F (xr , p) p3/3fV'ndA<S (1+0(—Y))
7 "mo -m’ §— = P v

as the total momentum change per unit time of particles with méomentum
in (p,p+8p) due to collisions with the cell wall.
The exterior normal to the surface S is -n, and using Gauss's

theorem this result can be written alternatively as

-41/3 p3 F o0&, >P) 6p f 1-¥ d3_y_.
. (o]

Noting that the number of particles in (p,pt+6p) is 4Hp2 Fmo(l:m,p)dp.vo,
this result shows that although due to surface collisions, the momentum
changes can be reckoned as due to the momentum changing at each point of

space at a rate

P>, = -0/ -V, ' ' (7.4.12)



Since it is independent of the shape of the surfaces this is a useful
general interpretation. The result (7.4.12) is the adiabatic
deceleration rate referred to in (7.1.6), and it is independent of the
frame of reference.

We now consider a collection of adjoining cells moving through a

volume V0 enclosed by a surface So which is fixed relative to the rest

frame (Figure 7.4c).

f_ixed surface

Figure 7.4c.
The volume v, enclosed by the surface S, which is fixed

in the rest frame.
The total change of momentum per unit t:hne. for particles in
(p,p+Sp) due to collisions with the walls of all the cells follows

from (7.4.11) and it is given by

@ﬁ J F (r,p) V-ndAS$ [1+o(—Y)j
3 S mo —m’P/ = * 2 P v

where the surfaces S are the complete set of the walls of the cells

which are totally or partially enclosed by So. Note that although

Fmo(gm,p) is a function of position, it is constant within each cell,
Labelling the cells totally enclosed by So by the index i, we find

that the total momentum change per unit time in these cells is

ap> x _
3 Py Fmo(Emi’p) S{ Y ' ndh
: i

194,
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Since -n is the outward normal and using Gauss's theorem,

3, Z 3
80 § Fro Cpg» P /L -V dr, (7.4.13)

Vi

~41lp

is the momentum change per unit time in these cells.,

We now consider the contribution to the momentum change in a cell
partially enclosed by Sg+ The volume of the cell within So is denoted
by V,; the portion of the surface So which cuts the cell is _labelled
Sk and the surfaces of the cell interior to So are labelled S* (Figure

7.4d).

So

Figure 7.4d
A cell partially enclosed by S-o.

Using the result (7.4.11) the total change of momentum per unit

time of particles with momenta (p,p+Sp) within this cell is

3
S

This result may also be written

anp” o J . - .
3 [Sk +sx YenF (r,p)dA sf V-naF (r,p) dA] ép,
k
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*
with Sk + S the surface enclosing Vk and Sk the stationary part of

that surface. Using Gauss's theorem in the usual way

TQEJEE [ F (¢ ) [
3 mo —mk’ P Vi

3
V.Y &r+ B (,p) ¥ - ndAl dp,
k
is the momentum change per unit time within this cell.

Combining this with the result (7.4.13) for cells completely enclosed

by the fixed surface So’ we find the total change of momentum per unit

time to be
~an p° [fF (. ,p/f V-Var+tF (.,p [ ¥-Vdr
3 P k ™o “mk> P v — — — { mo Imi> P 7

k

- #1ps
2R Ry s F (., p) V- nda;
k S -
where the subscript i labels the cells totally interior to So’ and the
subscript k labels the cells partially enclosed by S,
Noting that I Vk + I Vi = Vo’ the enclosed volume, I Sk is the

fixed surface S_. and that F_ (r , p) is constant within a cell,
(o] mo —m

is the total momentum change per unit time for cells within So.

Finally using Fmo(zm’ p) = Fo(E,p) to the order required the total

change of momentum per unit time is

3 3
-4H3 ép s FO(_E’p) V.V d3£ _ igp_épf Fo(l:- p) V - n dA.
\' S )
o o
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The first term is the adiabatic deceleration term discussed earlier,
The second term is from the exterior surfaces. It too can be converted
to an equivalent volume effect by using Gauss's theorem and noting again

that n is the inward normal to S .
o

It follows that the change of momentum per unit time of particleé

in (p,p+Sp) is

V-9 (F () O] dx

3
e LA

(o]

_ 3
= ﬂl_P_g_G_P. f y_._\zpo (r,p) d3£.

Yo

Since the number of particles with momenta in (p,p+Sp) inside So is

4Hp26p S Fo(g,p) d?g this result shows that although due to surface
Vo
collisions with the cell walls, the momentum changes can be reckoned

as due to the momentum changing at each point of space at a rate

-2 _ y.
P> 3F_(Z,p) vV.3YF (z,p). (7.4.14)

This result expressed in terms of the number density Up = 4Hp2Fo(£’p)
is
oU :
p = £ V.2, - (7.4.15)

3 Up

which is the expression for <§> given in (7.1.1).
This result can be written in terms of the spatial gradieﬁt of

particles
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<p>= (p/3) V -G .

It shows that whenever there is a positive heliocentric density

gradient cosmic-ray particles are, on average, gaining energy.

7.5 Cosmic-ray energy changes over the whole momentum spectrum:

Jokipii and Parker (1967) showed that the total rate of change
of energy transfer per unit volume from the solar wind to the cosmic
rays is

dp
aw v c(r)

dt = Ir , (7.5.1)
where Pc(r) is the isotropic cosmic-ray pressure at heliocentric
radius r. In this section we derive this result from the expression for

<p> given in (7.1.1).

The relation between the average time rate of change of kinetic

 energy <%%> and <p> is
dT '
— dT . .
€ia> = == <p> - (7.5.2
dt dp P )

Using the relativistic relationms

E2 = p2c2 + Eo%

T = E-E,

where E is the total particle energy, E,, the rest energy and T the
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kinetic energy it is easy to show that

dr  _
H = (7.5.3)

where v is the particle speed. From the expresgion for <{)>given in

(7.1.1) and the relations (7.5.2) and (7.5.3) we have

au

dT vV
@ T To W (7.5.4)

P
as the average time rate of change of kinetic energy.

Hence

dt_ . 3
“at Up P 4L,

is the total average rate of change of kinetic energy of particles with
momentum in (p,p+dp) and position in d3_1;_ about r.
Using the expression for <—g—'£> given in (7.5.4), integrating over

the whole momentum spectrum, and dividing by d3£ we obtain

dw o dT
dt fO <dt> Up dp
~vp 2p
= Vfo 3 3% dp, . (7.5.5)

as the total rate of energy transfer per imnit volume from the solar wind
to the cosmic rays.

To relate the expressions (7.5.1) and (7.5.5) for —g—‘g- we need an
expression for the cosmic ray pressure P-c (r) in terms of the momentum
number density Up. The pressure Pc(r) is the force per unit area
exerted on a plane rigid surface at radius r. To calculate Pc(r)

consider collisions of particles with an element of area dA of the

surface, with normal n (Figure (7.5a).



Figure 7.5a

Illustrating the collisions of particles of momentum
p with the area dA.
The number of particles with momentum in d3E about p striking

the area dA in time dt is

v cos 6 F(r,p) dA dt d3p_,

where 6 is the angle between the initial particle momentum p and -n.

Each of these particles changes momentum by Ap = 2p cos § and
3
2p cos © v cos ® F(r,p) dA dt d7p,

is the total momentum change from these particles.

Assuming that the momentum distribution function is essentially

isotropic i.e. F(_;'_,P_) Fo(_r_,p) and using the relations

= l;]Iszo , then

a>p = pdpde, do = 21 sin 6 do, U

P

n/2

r 3
0]

f; 4lip~ v Fd(lf_,p) dp cosze sin 6 d6 dA dt

= ® m 3
fb 3 Up dp dA dt,

is the total momentum change eorrespondimg to all particles from

p=0 to p== and incident on one side of dA.

200,
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Since the cosmic ray pressure is the momentum change per unit area

per unit time we have
= [ ¥p
Pc.(r) fO 3 Up dp. (7.5.6)

The gradient of the cosmic ray pressure is

lvé

Pory ,

ﬂ .
T 3 dp . €7.5.7)

©
0

-V
2]

Noting that the integrals on the left hand sides of Equations (7.5.7) and

(7.5.5) are identical we obtain

dp
daw _ v c(xr)

It ar R (7.5.8)

and this is the result (7.5.1) obtained by Jokipii and Parker in (1967).

7.6 Summary and discussion

In this chapter we have obtained a new expression for <f)>, the time
average rate of change of momentum for cosmic rays in the interplanetary

medium, given by

<p> = pV .G /3, (7.6.1)

with G (xr,p) = (llUp) aup/a;, the density gradient.

This result was obtained in three different ways:
(i) by a ‘rearrangement and reinterpretation of the general continuity
equation for the cosmic rays.
(ii)‘ by using the scattering analysis of Gleeson and Axford (1967), to
calculate directly the momentum changes of the particles due to collisions

with the radially moving scattering centres.



(iii) by using a special model in which the particles are trapped in
'boxes' moving with the solar wind. In this model the particles change
momentum as they collide with the rigid walls of the box.

The first method is the simplest, but in fact it is built on the
results obtained from the scattering analysis.

The second method is quite complex because it involves calculating
directly the momentum chanées of the particles due to scattering, and
had to be treated with great care to obtain the final result.

The third method employs a special model with particles trapped
in boxes moving with the solar wind. However, this model 1is very
instructive since the adiabatic deceleration result is aerived in the
process. The model demonstrates that particles within a moving cell
lose energy at the adiabatic rate, but when a volume fixed in the rest
frame is considered, a further 'surface effect' must be included, and
this together with adiabatic deceleration gives the new result (7.6.1).

The most significant difference between the adiabatic deceleration
rate and the new result (7.6.1) is that particles can, on average gain
kinetic energy when there is a positive radial density gradient.

In any use of the equations we consider that it is particularly
instructive that they be written as the set: the continuity equation,

the streaming equation and the momentum rate i.e.

202,

oU
B . s 4+ . = .
5t Y-S5, tgy (P U) =0, (7.6.2)

o P
= - e - k—L 7.6.
Sp =Y Uy = ¥/3 55 (0Y,) - Ky s (7.6.3)
w . Y
<p> = 30 . —B—E-- . (7.6.4)
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These display clearly the entire set of physical phenomenon and on
substitution of the results (7.6.4) and (7.6.3) in the contiﬁuity
equation (7.6.2) we obtain the equation of transport given by Parker
(1965). The fact that <f>> may be positive will require us to reinterpret
energy exchange processes of cosmic rays in interplanetary space. For
example galactic cosmic rays have a positive density gradient in the
vicinity of the earth and hence are gaining energy.

A useful way to visualise the transport of parti‘cles in position
and momentun is by means of flow lines in (r,p) space. The flow lines

are the solutions of the simultaneous ordinary differential equations

d . '

'a% = <> = -S-p/Up’ (7.6.5)
d .

3% = <> = (Vp/3U)) (v /or), (7.6.6)

where _S_p is the differential current dénsity. Since the time t in

(7.6.5) and (7.6.6) is a parameter we have

dr _ 4 /(VP_ZER) (7.6.7)
EE = ar ?

as an alternative form of the flow line equatioms.

We note that the tangent to the flow line passing through the
point (x,p), gives the ratio of the streaming velocity <_£'_> to the
momentum rate <f)> at that point. Hence if we cannot identify individual
particles with momentum iﬁ (p,p+dp) and position in d3£ about r, these
particles would appear to follow the flow line passing through the point
(E_,p') of position-momentum space.

In the scattering model, a consideration of the collisions between

an individual particle with a collection of radially moving scatterers
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shows that the particle cannot gain momentum greater than -
\
Ap = 2mV (1 + 0()),

but the particle may continuously lose energy. This aspect of the
collision process needs to be kept in mind in the interpretation of the
momentum rate <p>.

In spherical symmetric models of the interplanetary medium the

differential current density

2 Vp 3Fo 3F0
§p = -4lp” (3 T + K(r,p) 57 ) &>

where K(r,p) is the diffusion coefficient and e is the radial unit

vector. The flow line equations for this case are

d

-d-‘é- = -[Vp/3(3F_/dp) + K(x,p) 3F /3r]/F_, (7.6.8)
oF

d \'j o

3 "3 3w o (7.6.9)

o ‘
or
dr Vp F, °Fs °F
& - -3(3 33 * K(r,p) 37— ) / (Vp 37~ )- (7.6 .10)

We shall construct flow lines for monoenergetic source and monoenergetic

spectrum sclutions of the transport equations in later chapters.

v
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CHAPTER 8

GALACTIC SPECTRUM SOLUTIONS

8.1 Introduction

In this chapter we present calculations showing features of

the monenergetic galactic spectrum solution (6.3.22):
-3(14+b)/2

e - 2 () ()
o’ 8 m VT (m) T 4T P\ 7T
(8.1.1)
and the general galactic spectrum solution (6.3.19):
F (r,p) = fp G(r,psp,) F_(=p)) d P, - (8.1.2)
where
(1-3b)/2 m '
3 K (P, 1{ <2 "
G(r,P;Po) = T\aT exp \ =7 ) >
2 V I'(m) (8.1.3)
x = 2(r p3/2)(1—b)/2 / (1-b),
P 1-
T = 3/° K (2 273012 4 h oy,

the diffusion coefficient K(r,p) = Ko(p)rb, with b > 1, and Fo(m’po)

specifies the distribution function at r = =,

Some of the results of this chapter concerniﬁg the propagation
of galactic cosmic-rays have been obtained previously by means of
numerical solutions of the equation of transport. Here the featdres
are obtained more easily, with more precision, and over a wider rangé
of parameters. In particular, the results concerning the momentum
changes and the flow of monenergetic galactic cosmic-rays within the

solar cavity are new.

In Section (2) we show the characteristics of the monoenergetic
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galactic spectrum solution (8.1.1) for a diffusion coefficient
K(r,p) = Kc ] rl'5 and we present the results published in Webb and

Gleeson (1973).

Previous studies of the redistribution of monoenergetic or
near monoenergetic galactic cosmic-rays within the solar cavity have
been carried out by Parker (1965, 1966), Gleeson and Urch (1971), and
Goldstein et al. (1970b). Parker considered the case where the

diffusion coefficient K(r,p) = constant, and monoenergetic particles

were released from a free escape boundafy at r = R. He obtained and

evaluated a series for the distribution near r = O. Gleeson and Urch,
and Goldstein et al. studied the redistribution of near monoenergetic
galactic cosmic rays using extensive numerical solutions of the equation
of transport. 1In the latter solutions, the differential number density
was specified to be a narrow Gaussian distribution in kinetic energy
with a half width ~ 10%Z of the mean kinetic energy. The numerical
solutions probably show the redistribution of particles well, but they
.are restricted in that,
(i) the spectrum at r = R is near monoenergetic,
(ii) extension of the calculations to very low energies has not
been carried out because of accuracy considerations, and
(iii} it is not feasible to examine a wide'range of parameters.

These deficiencies are not present in the analytical

solution (8.1.1).

In Section (3) we show the structure of the streaming §p in
the (r,p) plane arising from monoenergetic galactic cosmic-~rays for
the case where the diffusion coefficient K(r,p) = Kc P rl's, and

\Y re/K(re,po) = 0.1 in the solution (8.1.1). To understand the



207.

physics of the flow it is necessary to recognise that the particles

change momentum at the average rate (7.1.1), i.e.

<p> = p x} zup / (3 Up>, (8.1.4)

and not at the adiabatic rate

= —-pV - .1.
<P> 4 pv-VvV/ 3, (8.1.5)

as given in Equation (7.1.6).

The variation of the streaming velocity <r> §-p/Up’ and
the momentum rate <p> in the (r,p) plane are best seen by constructing

solutions of the flow line equation (7.6.7), i.e.,

g—-g = <i> /<$> = 35 / (Vpoulem, (8.1.6)

and in Section (3) we obtain numerical and analytic solutions of this

equation for the case K(r,p) = Kc P rl’5 and V re/K(re,po) = 0.1,

where r, is some fixed radius.

In Section (4) we give examples of the general galactic
spectrum solution (8.1.2) and we obtain features similar to those in
Urch and Gleeson's (1972a) numerical solutions of the equation of trans-

port.

In the general galactié spectrum solution (8.1.2) the distri-
bution function Fo(r,p) is the convolution of the Green's function
G(r,p;po) of Equation (8.1.3) and the galactic distribution function
Fo(w,po) . The Green's function determines the modulation properties of
a model, independent of the galactic spectrum and thﬁs warrants particu-
lar consideration. In Section (5) we investigate the dependence of
G(r,p;po) on the momentum Py» for a range of interplanetary conditionms.

We use it to study the fraction of particles with kinetic energy in the

interval (T, T + dT) at radius r which originated in the kinetic energy
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interval (To’ To + dTo) in a general galactic spectrum. In specific
examples we show the origin of protons, electrons and helium nuclei

in the galactic spectrum. Some of these results for particular inter-
planetary conditions are similar to those of Urch énd Gleeson (1972b,
1973), but for other conditions the results are different. The calcu-
lations involved in the approach presented here are much simpler than
thg calculations of Urch and Gleeson (1972b, 1973) who investigated
the origin of particles in the galactic spectrum by using numerical

solutions of the equation of transport.

8.2 The monoenergetic - galactic — spectrum solution

For a diffusion coefficient K(r,p) = KC p rb, the monoenergetic

galactic spectrum solution (8.1.1) may be written

Po F'o _ (5-3b) 1 (ﬁ) " exp<_ x_z)
N, 8 wI(m) [1_(p/po)(5-3b)/2] 4T 4t )
(8.2.1)
where
<2 _ (5-3b) vr ("/*’0)3(14))/2 (8.2.2)
4T 3(1-b)2 K(;,po) [1—(p/p°)(5-3b)/2] : a

The parameter V r/K(r,po) is dimensionless, and it contains the complete
dependence of the solution on heliocentric distance r, the diffusion
coefficient constant Kc’ and the solar wind speed V. A useful and
more explicit formulation of the radial dependence is obtained by
noting that

Ve/K(z,p ) = V £ /R(r_,p) (r /e)°! (8.2.3)

*Fo e e’ o e ?

and we have some knowledge of V r/K(r,po) at 1 A.U. which we may take

as r_.
e

The differential number density with respect to momentum Up,
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and the mean differential intensity with respect to kinetic energy,
jT(r,T), are related to the mean distribution function with respect

to momentum Fo(r,p), by

2 -
Up = 47 p Fo = 4 1 jT’ - (8.2.4)

and we will use each of these in the following.

Some of the principal features of the monoenergetic galactic
spectrum solution (8.2.1) are displayed in Figure 8.1. It shows

pz Fo/Ng versus p/p0 on a log-linear scaling for a diffusion coefficient

K(r,p) = Kc p rl'S, and values 0.0l, 0.1 and 1.0 of the parameter

\Y r/K(r,po).

The particles injected with momentum P, are seen to be redis-
tributed over the whole momentum interval, O< p < Py» due to the
momentum changes. For sufficiently small V r/K(r,po) there‘is a sub-
stantial peak in the distribution in the vicinity.of P, As V r/K(r,po)
decreases, either because r or P, or Kc increases, or V decreases, the
peak moves towards Pys increases in value, and narrows in width. Since

the differential number density Up tends to a delta function as r +» =,

we have

Up > Ng 6(p—po) as V r/K(r,po) + 0.

The distribution function Fo(r,p) + 0 as p > 0, we have
x2/T + o and the term exp (—x2/(4T)) dominates in the expression (8.2.1)
for Fo(r,p). For the two smaller values of V r/K(r,po) of Figure 8.1,
there is a second peak at the low end of the momentum range. There is
apparently a buildup of particles which have most momentum due to inter-
action with the irregular mangnetic fields moving with the solar wind.
At V r/K(r,po) = 1.0 this second peak is not present, and the distri-

bution has a single peak, which diminishes sharply in amplitude as
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Y r/K(r,po) increases, e.g., for V r/K(r,po) = 10.0, the maximum of

3 -21 _
P, FO/Ng is 1.19 x 10 at p/p0 = 0.32.

The curves of Figure 8.1 can be interpreted as indicating the
changes in the distribution function Fo(r,p) at fixed r for various
diffusion coefficients,or the changes at fixed r for various P, in

\

interstellar space (recall K(r,po) = Kc P rb). In this latter case
the figure shows that particles of lower P, are more spread from the
delta function distribution of injection, and are more attenuated. To
establish the relationship of these curves to prﬁctiéal modulation
problems, we note that using values of K used by Urch and Gleeson
(1972b) to reproduce the modulation of 1965, i.e., solar minimum

(K(xr,p) = 3 x 1017 m2 s;“1 at a radius of 1 A U and 1 G V rigidity, and

V=24x 10S

m s—l), the curves V r/K(r,po) = 0.01, 0.1 and 1.0 represent,
respectively the distributions to be obtained at r =1 A U from
injection of protons at kinetic energies, To’ of 19 Gev, 1260 MeV and

20.9 MeV.

Alternative to the previous paragraph, the three curves of
Figure 8.1, can be interpreted as indicating the changes in distribution

1/2

with heliocentric distance r. 1In this example V r/K(r,po) ar and
the heliocentric distances, represented by the curves V r/K(r,po) = 1.0,

0.1 and 0.01 are in the ratio 0.01 : 1 : 100. Thus if the curve for

V r/K(r,p_ ) = 0.1 represents the distribution at r = 1 A U, the curves
o

\Y r/K(r,po) 1.0 and 0.01 represent, respectively, the corresponding

distributions at r = 0,01 AU and r = 100 A U,

Observational results for cosmic-ray spectra are usually shown
as jT vs T and, in view of this, we have redrawn the curves of Figure

8.1 in this form in Figure 8.2. The same general features noted above
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are to be seen, except that, due to the factor p2 in the relation
between Fo and jT’ viz., jT = p2 Fo, the peaks at the low energy end
of the spectrum are not as pronounced. Although generally representing
the form of the spectra, Figure 8.2 has been drawn for the particular

case of the kinetic energy of injection TO equal to the rest energy Eo'

As a confirmation of previous results, Figures 8.1 and 8.2

demonstrate again the reduction in momentum and energy cosmic ray

particles, on average, undergo,

Figures 8.1 and 8.2 also provide an extension of previous
results for they show a hitherto unknown peak in the distribution at low
energies. However, this might not be important in relation to the popu-
lation of very low energy particles since

(1) the peak occurs at very low energies T ~ 0.001 MeV for

T =E = 938.211 MeV protons,
o o

(11) at these energies the diffusion coefficient K(r,p) = Kc p rl'5

may not be appropriate,
(iii) other sources, e.g. the sun, may be more important contributors

in practical situations.

An example of a previous notion to be refuted is the hypothesis
advanced by Urch and Gleeson (1972b), based on a wide range of numerical
solutions, that monoenergetic galactic sources produced, within the
solar cavity, distributions with jT o T at the low (non-relativistic)
energy end of the spectrum. The condition jT a T corresponds to
BFolap =0, i.e., Fo = constant over the range in which jT a T, and
the results displayed in Figures 8.1 and 8.2 shows that this is not

generally the case.

The results of a more comprehensive investigation of the mono-
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energetic galactic spectrum solution (8.2.1) for the case
K(r,p) = Kc P rl's are presented in Figures 8.3 and 8.4. The figures

show the physical quantities:

(i) the distribution function Fo’

(ii) the differential number density Up =47 p2 Fo’
(i1i) the radial gradient Gr(r,p) = (1/Up) aUp/ar , (8.2.5)
(iv) the radial differential current density Sp, and the convective

and diffusive components of SP, which we denote by Sc and S

y
i.e., 3
s, = - 4mp (V/3) 3F [op,
s, = - 47 p> K(r,p) 9F [or ,
(o]
S5, = Sg* 54

(v) the bulk flow speed <r> = Sp/Up, the related component quantities
Sp/(V Up), Sd/(V Up)’ and the Compton Getting factor

c = Sc/(V Up)’

(vi) the time average rate of change of momentum
<p> = Vp G / 3,
anq <p> / <ﬁ>ad, where
B> 4 = -~ 2Vp/QGr),

is the adiabatic deceleration rate.

In Figures 8.3a, and 8.3b, these physical quantities are
plotted against p/po for values 0.01, 0.1 and 1.0 of the parameter
\Y r/K(r,po). In Figures 8.4a and 8.4b they are shown on contour plots

in the (r,p)plane, on a log-log scale for the case V re/K(re,po) = 0,1.

To conclude this section we discuss some of the physical

characteristics of the cosmic-ray propagation shown by this set of
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graphs. We look at the distribution of particles, gradient, streaming
and mean momentum changes in (r,p) space for Kc given. Thus we regard
the curves V r/K(r,po) = 0.01, 0.1 and 1.0 of Figures 8.3 as being

for different heliocentric distance, and in this case, since K =

r1.5 -1/2

KC P , the parameter V r/K(r,po) ar . The contour plots of

Figures 8.4 are particularly useful here.

The curves for Fo or Up in Figures 8.3 and 8.4 show that for
each p, (p < po) as r increases from zero the number density increases
to a peak and then decreases. This represents particles simultaneously
being fed into (p, p + dp) by the energy changes but being excluded from

the inner regions by the outwardly moving scattering centres.

Al

Corresponding to this peak (which shows as a 'ridge' in the
(r,p) plane) we have a positive gradient near r = 0, changing to negative
at heliocentric distances past the peak. At large radii the negative

gradient is independent of p over a large portion of the spectrum.

The structure of the streaming is very complex, particularly
near p = p_. The contours of Sp in Figure 8.4 give the clearer picture
of the streaming structure. They show that near the sun Sp changes
from -ve to +ve as p increases from O to P, and at larger radii Sp
changes through the sequence -ve, +ve, -ve, tve as p increases from O
to Py At low momenta (p << po) the magnitude of the Compton-~Getting

factor is much greater than |Sd /v Up[ and the flow is convective.

The regions in (r,p) space in which particles are gaining or
losing momentum are readily seen from the contour plots of (dp/dt)/
(dp/dt)ad of Figure 8.4b. We note that at large radii, <p> is approx-
imately equal to the adiabatic deceleration rate over a large portion

of the momentum spectrum.
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At sufficiently small p we note that the distribution function
contours are of the form

. p3/2

= constant.
This form is characteristic of the convective solution of the transport
equation (Appendix D, Gleeson, 1970), and it can also be seen from the
1.5
r H]

analytic expression (8.2.1) for Fo(r,p) : for K(r,p) = Kc P we

have as p >+ 0

-1/2
x2/(1) » 2V r [K(r_,p,) - [<r/re) w/pg)” 2] / 3,

and Fo is a function of r p3/2. However for diffusion coefficients of

the form K = K_ p? rb, with b > 1 + 2a/3, an investigation of the
analytic expression (8.1.1) for Fo(r,p) shows that it is not a function

3/2

of the single variable r p for small p, and hence in these cases

the solution might not be convective as p + O.

The particle flow and momentum changes are related since the
momentum changes form effective sources of particles. We investigate
this more fully for monoenergetic galactic cosmic-rays in the next

section.

8.3 The flow pattern of monocenergetic galactic cosmic-rays

In this section we investigate the particle flow and momentum
changes in position-momentum space. These aspects are examined
together because they are related by the fact that particles are con-

served and the continuity equation

Io)

2 X
(x“s) + —3; <> U) = o, (8.3.1)

QL

1
2 9r
T

applies. The momentum changes provide an effective source of particles;
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without them we would have

r2 Sp = constant.

in general, and Sp Z 0 in the galactic case.

We first calculate the streaming Sp(r,p) for the case
K = KC P rb and show the regions of (r,p) space in which particles
have a net inflow or net outflow for the particular conditions

1.5

K(r,p) = K.pr and V re/K(re,po) = 0.1 where r, is some fixed

heliocentric distance.

Then in order to elucidate the physics of the flow we obtain
analytic and numerical solutions of the flow line equations (7.6.8)
and (7.6.9). We note again that the tangent to a flow line at any
point of (r,p) space gives the ratio of the streaming speed <r> to the

momentum change rate <p> (cf. Section (7.6)).

From the expression (7.6.3) for the streaming we have

oF aF
- - 2({Vp o __2)
Sp = 4»n P ( 3 5p + K(r,p) 5T . (8.3.2)

For a diffusion coefficient K(r,p) = Kc P rb, b > 1 substitution of

the expression (8.2.1) for Fo in the result (8.3.2) gives

~

s = -4 an _ (5-3b)z +(2z+3-3b + (1-b) K(r,p) )

P ° 16(1-2) 6(1-2) Vr

(5-3b) Vr z )
m - ’ (8.3.3)
( 3(b_1)2 K(r,p) (1-2)
where
2m (plp ) T2,
m=  (b+1)/(b-1),

as the formula for the streaming arising from monoenergetic galactic

cosmic-rays.
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The general.structure of Sp(r,p) is given in Figure 8.5, it
shows an (r,p) plane and the arrows indicate schematically the
direction of Sp (either inward or outward). Note that the total flux of
pafticles inward equals that outward at every r. At r,, say we note
four momenta P,» P15 Py and Py (see Figure 8.5). The significant net
inward flow occurs between p; and Py and fhe bulk of this moves outward
at lower momenta between P, and Py There is always a region Py <p <Py
with a net outflow and these particles have momentum greater than that
of the inflow region. This flow pattern is readily understood in terms
of particles entering within r, and gaining momentum at the_rate
(8.1.4) i.e., | |

<= Vp (U /er) [ (BU) _ (8.3.4)

the outflow in Py <P <P, could not arise if cosmic-ray pa;ticles lost

momentum continuously at the adiabatic rate (8.1.6).

" The relationship between the mean rate of change of momentum
<p> and the streaming is conveniently illustrated by plotting the flow
lines in (r,p) space of the average particle. These are defined para-

metrically By Equations (7.6.8) and (7.6.9):

dr : % -l(Y__P_ %o "aFO)‘

i = <f> = 5 -5 3 —-p— + K(r,p)..—a-r—' , (8.3.5)
P [o]

’ oF

d¢p _ (5= RV _o

E <p> = == . (8.3.6)

(o]

Alternatively by eliminating time we obtain

dr <r> (V p aFo aFo ) ( aFo )
Ty =—<'{)—>'=-3 3 F*.K(I..’p)s—; I'\Ves />
' (8.3.7)

the direct equation of the flow line.

' We now obtain the analytic solution of these flow line equations
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for the monoenergetic galactic spectrum solution (8.1.1). Substitut-
ing the expression (8.1.1) for Fo in the flow line equation s (8.3.5)

and (8.3.6) we have

' . _(3-3b)/2
= =(1°"’l)(—v—“—+<1+—)1{°(p)p )
dt G . (1-m) u-m 2T
-k () p2 ) (8.3.8)
dp _ 2 Vp (m-u)
dt 3t (l-m) . ° (8.3.9)
where
u = x2/(4T).
and as previously
P -~
T = 3 fp° K, (2) (=B L2 o7y, (8.3.10)
x = 2 (r p3/:2)(1-13)/2 / (1-b).

Regarding u and T as independent variables and using the

derivative transformations

de . () du pery dT
dt du dt 3T dt ’
T u
. () +9_p_') dr
dt du dt 3T dt ’
T : u
or _ l-m r
55) - 5= (8.3.11)
T
35) . (mr Vr
9T u 2T Ko(p) p(3-3b)/2
ap =
(Bu 0,
2y - =29
) 1-3b)/2 ?
3T/, 3 Ko(p) p( 3b)/

the flow line Equations (8.3.8) and (8.3.9) may be expressed as
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i ok () pCT)/2

cu = (m-1-u) (8.3.12)
dt (1-m) Tr ’

dT KO(P) p(3-3b)/2(m-U)

al = . (8.3.13)
dt (m-1)r ”

Dividing Equation (8.3.12) by Equation (8.3.13) we obtain

du _ mu+1-m _
it - T (n=0) s (8.3.14)

as the flow line equation for monoenergetic galactic cosmic-rays. Note
that:itcontains only u and T as variables.
The general solution of the flow line Equation (8.3.14) is
AT = (utl-m) e °, (8.3.15)
with A an arbitrary constant.
The flow lines in (u,T) coordinates are shown in Figure 8.6a,
for the case K(r,p) = Ko(p) rl's, for 0 < u < 10, and for A = 1 0.1,
tl1, £ 10, on a log-linear scaling. There are two distinct sections
corresponding to A Z O, and separated by the critical solution
u = m-1 = 4, (8.3.16)
obtained with A = 0. The curves in each sectiqn, have the same slope
with a logarithmic T scale. The peaks occur at u = m = 5, and

T = 1/(e Al/m 1/5

) = 1/(e AT'7),
where e is the base of Napierian iogarithms, at this peak. 1In order to
show the structure of the flow lines for large u we have redrawn the
flow lines in Figure 8.6b for A = t 0.01, £ 1, £ 100 and for 0.1 <u <100
on a log-log scaling.

We note particularly that these flow lines apply to the general
case K(r,p) = Ko(p) rb, (b = 1.5), and not just the case K(r,p) =
K; P rb. They may, of course, be expressed in terms of r and p when
required and we do this next to illustrate the general features.

For a diffusion coefficient K(r,p) = Kc P rb, b>1,
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we have 1-b
u = Lz_ = (5-3b) VT, r_ Py z
4T 3(b—1)2 K(re’po) Te p (1-z) °
1 = 3k p O () /(-3
where |
, = (p/po)(5-3b)/2 ,
m = (b+1)/(b-1).

Note that we have again introduced r, and the non-dimensional para-

meter V re/K(re,po).

The flow lines for the case b = 1.5 and V re/K(re,po) = 0.1
are given in Figure 8.7. Although it is possible to use the solution
(8.3.15) to construct the flow lines in (r,p) space, the flow lines of
Figure 8.7 were obtained by numerically solving the flow equations

(8.3.8) and (8.3.9) as an initial value pfoblem.

The general features to note are that the lines are of two

main forms:

(i) those that go inward, drop monotonically in p and emerge
again with lower p, and
(ii) those that enter inwards, and return with p increased,
indicating momentum increases.
There is a critical curve separating the two forms and it corresponds

to u=m - 1 of Figures 8.6 obtained with A = 0.

Further loci which assist in assessing the structure of the
flow lines are the locus of the minimum values of p/po (vhen it exists)
and the locus of the minimum values of r. The first is the locus

<p> = 0 and is given by
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and corresponds to the peaks in the distribution function in Figure
8.4a. The second are the loci <> = 0 or Sp = 0; they cannot be
expressed in terms of u and T without a knowledge of Ko(p) and are

found by solving the equation <r> = 0, with <> given by Equation (8.3.8).

For sufficiently small p/po Figure 8.8 shows that the critical
curve, thelocus <p> = O and the right hand locus <r> = 0 are of the form

r p3/2 = constant. We note from Section (8.2) that the distribution

function contours for the case K = K p rl's and V re/K(re,po) = 0.1,

c
are of the form r p3/2 = constant, at small p/po; and that this form is
characteristic of the convective solution of the transport equation.
However for diffusion coefficients K = K, p? rb, with b > 1 + 2a/3

the solution (8.1.1), the flow lines (8.3.15) and thelocus <p> = O,

at small p/po cannot be expressed in terms of the single variable

c p3/2

and the convective solution of the transport equation does not

seem to apply.

Finally, in this section we remark that these flow patterns
show clearly the regions in (r,p) space of the inflow and outflow and
momentum gains and losses of the average particles. The momentum gains
occurring make the flow pattern variations explicable. We stress
however that the flow lines represent the mean or average effects on
the particles and not the path in (r,p) space of any individual particle.
The individual particle paths in (r,p) space are random with some order

(the average effects discussed here) superimposed.

8.4 Composite galactic spectrum solutions

In this section we give examples of the general galactic

spectrum solution (8.1.2), i.e.,
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Fo(r,p) = f: G(r,p;po) Fo(w, po) dpg, (8.4.1)
where 3 KO(P ) p(1—3b)/2 L 2\ m 2
oy o’ Po 1(xf _x°
Glrspipg) = 2V T(m T (4T ) exp( 4T l(8°4'2)
x = 2(r plEH QP2 by (8.4.3)
P
To= 30° K L1730)/2 4oy, (8.4.4)

the diffusion coefficient K(r,p) = K_(p) r”, b>1 and F_ (=,p,)

specifies the distribution function at r

o 2]
.

In terms of the differential number density with respect to

kinetic energy UT’ the three forms of the galactic spectrum used are:

(a) U (=,T) = A[(T + Eo)-z's. %
1 (T > 186 MeV)
x
exp (=25 Ln(2) ((T-186)/155)2) (T < 186 Mev)
() U (=T) = 'Aé(T + Eo)_z's , (8.4.5)

-2.5 -2
(c) QT(W,T) = A3[(1 + T/Eo) + (1/2)(T/0.15 Eo) ]

hereafter referred to as (a), (b) and (c) respectively.

In these examples we use a diffusion coefficient

021 rl°237

K(r,p) = 6 x 1 P B cm?/s, (8.4.6)

B = particle épeed/speed of light, P is in GV and r is in
AU, For this diffusion coefficient, with the boundary of the solar
cavity at r = =, and the solar wind speed V = 4 x 105 m s_l, the value
of the force field parameter, ¢ , (Gleeson and Axford, 1968c) is 0.14

G Vat 1l AU,
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The galactic spectra (8.4.5), the value of the diffusion
coefficient at a radius of 1 AU and a rigidity of 1 GV, and the
value of the force field parameter at a radius of 1 A U are the same
as Urch and Gleeson (1972a) have used in numerical solutions of the
equation of transport. Hence we may directly compare the results
obtained from the general galactic spectrum solution (8.4.1) and the

work of Urch and Gleeson (1972a).

We investigate the kinetic energy spectra of the differential
intensity with respect to kinetic energy
. .2
JT(r’T) = P Fo(rsp)’ (804-7)

the radial gradient

.Gr(r,T) = (l/Up) aup/ar . (8.4.8)
and the radial anisotropy
€r(r,T) = 3 Sp !/ (v Up)’ (8.4.9)

where vy is the particle speed, to be obtained at ¥ = 1 A U for the three

forms of the galactic proton spectra (8.4.5).

In Figures 8.9a, 8.9b, 8.9c we show the differential intensity,
the radial gradient and the radial anisotropies to be obtained at

r =1 AU for the three types of galactic proton spectra (8.4.5).

These spectra were obtained as follows. We first expressed

jT; Gr and &r given in Equations (8.4.7)-(8.4.9) in terms of Fo, 8Fo/ar

and BFO/Bp, i.e.,
2
jT =P Fo
Gr = (l/Fo) (BFo/ar ), (8.4.10)
Er = -3 (K 3F0/8r + (V p/3) BFO/Bp) !/ (v Fo).

Using the galactic spectrum solution (8.4.1) we then evaluated the integrals
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Fo =1, Glrpspy) Fol=p,) dp.
‘ aFo/ar = Ip [SG(r,p;po)/ar] Fo(w,po) d P, (8.4.11)
oF /ap = J'p (oG (r,p;p )/3p] F (~,p ) d p,

for Fo, 3F0/3r and aFo/ap directly by using Simpson's rule and neglect-
ing contributions to the integral above P, = 100 GeV/c. Thus using

the expressions (8.4.10) we obtained numerical values for jT’ Gr and Er.

Although the three galactic spectra are very different for
T < 200 MeV they all lead to similar differential intensity spectra at
r = 1 A U. The results of Figure 8.9a show that low energy particles
are being excluded from near earth, and that a large proportion of the
iow energy particlés observed near earth must have originated from above
200 MeV in the galactic spectrum (cf. Goldstein et al. 1970b, Urch and

Gleeson 1972a).

In contrast to the differential intensity spectra, the gradients
and anisotropies in the energy range T < 60 MeV are very sensitive to
the form of the galactic spectrum. The case (a) is quite distinct, for
it yields negative gradients and positive radial anisotropies at low
energies. The positive radial anisotropy is due to an accumulation of
low energy particles at r< 1 A U, which originated from.much higher

energies in the galactic spectrum.

Since the time-average-rate-of-change of momentum is given by
<f)> = VpG/3’
r
the radial gradient curves of Figure 8.9b show that in cases (b) and
(c) that particles with kinetic energy T 2 10 MeV are on average gaining
energy, whereas in case (a) particles with T > 60 MeV are gaining energy

and particles with T < 60 MeV are losing energy.
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The differential intensities, the radial gradients, and the
radial anisotropies obtained by Urch and Gleeson (1972a) from numerical
solutions of the equation of transport are displayed in Figures 8.10a,
8.10b and 8.10c respectively. The differential intensity spectra
obtained at r = 1 A U by Urch and Gleeson are virtually identical to
the results obtained from the galactic spectrum solution (8.4.1). The
radial gradients and the radial anisotropies obtained at r = 1 A U by
the two methods show similar positive and negative regions. However
due to the different radial dependence of the diffusion coefficient and
the position of the outer boundary used in the two methods, they differ

considerably in fine details.

8.5 The origin of particles in a galactic spectrum

In the general galactic spectrum solution (8.1.2) the distri-
bution function Fo(r,p) is the convolution of the-kernel G(r,p;po) of
quation (8.1.3) and the galactic distribution function Fo(m,po). In
this section we investigate the properties of thé kernel G(r,p;po) and

then use it to determine the relative contribution of the galactic

spectrum to intensities measured at (r,p).

The kernel regarded as a function ofbpo provides a direct
measure of the sensitivity of the intensity at position r and momentum p
to particles of momentum P, in the galactic spectrum. It thus provides
the essential features of the modulating region without reference to
galactic spectra and enables us to establish the most sensitive regions
of the galactic spectrum. This concept studying the modulation charact-
- eristics via G is new and has not been possible before because of the
difficulty of obtaining G by numerical solution of the equation of

transport.
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As an exémple of the form of G we note that for a diffusion

coefficient K(r,p) = K. P rb, b > 1, the function G(r,p;po) is given

by.

. © 7 (5-3b) z m -u
C(r.piPy) = Fays oD (1:;;) e, (8.5.1)

where

m = (b+1)/(b-1),

z =__(p°/p>(5'3b)/2. . (8.5.2)
L. XD (5-3b) 1 vr
47T o 3(1_‘))2 (z-1) K(r,p)

and I'(m) is the gamma function of afgumentnn The diffusion coefficient
constant Kc’ r and V dependence is completely contained in the non-
dimensional parameter V r/K(r,p).

This functibn Gis plotted in Figure 8.11 as a function of

1'5

po/p for a diffusion coefficient K(r,p) = Kc pPTr and values 0.01,

1.0 and 10.0 of the parameter V r/K(r,p).

The curvés show:

(1) ghét'parﬁ;c}es with momentum p at radius r, arise from
particles iﬁ the whole momentum range Py > p in thé galactic
spectrum and

(ii) as V r/K(f,p) increases the peak which represents the most

sensitive region moves to higher Py and becomes broader.

For a diffusion coefficient K = Kc P rb, b > 1, the peak is

located at

b/p = [ +JB7 - aac)/u) O, (8.5.3)
where
5-3b (5-3b) ve o
B 2230 4 gy _ o, (8.5.4)
b'l 6(b—1)2 K(r)p) : .
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>
I

1 + (5-3b) (b+1)/(2(b-1)),

o
]

3(b-1)/2.

As V r/X(x,p) - O, either because the radius r, or momentum p or

diffusion coefficient constant Ke increases (recall K = Kc P rl'5

)

or because V decreases, the peak narrows in width, increases in peak

value and moves towards P, = P> and G(r,p;po) + G(po-p).

The parameter V r/K(r,p) determines the modulation of galactic
cosmic-rays when a p—u, p > 0, galactic spectrum for Fo(w,po) is used
[see Section (6.3) ]; the modulation increases as V r/K(r,p) increases.
We note that only when the modulation is small and the function
G(r,p;po) ié sharply peaked at P, near p can the galactic spectrum
near p_ = p contribute significantly to the intensity at (r,p). At the
higher modulation the contribution from P, Y p decreases markedly as
the curves in Figure 8.11 shift to the right and the contribution is
predominantly from the higher momentum range. This low contribution
from Py 2 p when the modulation is large is the exclusion of low energy
galactic cosmic rays shown from numerical solutions of the equation of
transport by Urch and Gleeson (1972a), Goldstein et al. (1970b), and
from the galactic spectrum solution (8.1.2) results discussed in the
previous section. These present curves give a more direct demonstration

of the exclusion and it is quite clear that this exclusion becomes more

marked as the modulation increases.

The curves of Figure 8.11 can be interpreted as indicating the

changes in G(r,p;po) at fixed r for various diffusion coefficients

(recall K = Kc P rl°5), or the changes at fixed r, for particles of
-1
various momenta p. In this latter case, if V = 4 x lO5 ms ,r=1AU
17 2 -1

and K(r,p) = 3 x 10 m s at a radius of 1 A.U. and a momentum of



227.

1 GeV/c, the curves V r/K(r,p) = 10, 1, 0.1 and 0.01, represent,
respectively, the number of particles with momentum P, in a galactic
spectrum with FO(W,pO) = constant, which are observed at r =1 A U

with momenta of 20, 200 MeV/c, 2 and 20 GeV/c.

Alternatively the curves of Figure 8.11 can be interpreted as
indicating the changes in G(r,p;po) with heliocentric radius r. In

1/2

this example V r/K(r,p) o r and the heliocentric distances represented

by the curves V r/K(r,p) = 10, 1, 0.1 and 0.01 are in the ratio 0.0l
1: 102 : 104, Thus if the curve V r/K = 1 corresponds to r =1 AU,
the curves V r/K(r,p)-= 10, 1, 01, and 0.0l represent, respectively,
the distribution of particles with momentum P in a galactic.speétrum

with Fo(w,po) = constant, which are observed with momentum p at radii

of 0.01, 1, 100 and 10* A U.

The Green's function G(r,p;po) can be used to determine where
within the galactic spectrum particles observed at position r and
momentum p have originated. If the galactic spectrum at P, is Fo(w,po),
then there are

4w p’ F (=,py) G(r,psp ) dp dp
particles per unit volume at r in (p, p+dp) arising from the momentum
interval (po, P, + dpo). The fraction of particles at (r,p) originating

within dp0 about P, is thus

. F_(»,p ) G(r,p;p) dp :
R ) o o )
wp (r,p;pldp, = — . (8.5.5)

/ Fo(w,po) G(r,p,po) dp

©

If we work in terms of kinetic energy T, the fraction of particles at

(r,T) originating in dTo about To is

dp
o 1
) . = . v—— = — . T .
vy (0, T2T ) dT v, (r.pipy) I dT v b, (r.pip)d T

(8.5.6)
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The mean kinetic energy of the particles observed at r with kinetic
energy T is

ST (T)> = [_ T, ¥ (£,T3T)) dT (8.5.7)
and a similar result applies to momentum.

Using these formulae we now calculate the contribution from
different portions of the galactic spectrum to the near earth differ-
ential intensity at kinetic energy T, for electron , proton, and helium
galactic spéctra and interplanetary conditions app ropriate for 1965
a>nd 1969. The only previous study of this nature wés carried out by
Urch and Gleeson (1972b, 1973) using numerical solutions of the equation

of transport; that study made no reference to (reen's function

G(r.p;po)-

The galactic spectra and the momentum dependence of the
diffusion coefficient assumed have been taken from Urch and Gleeson
(1973), denoted U G for further reference. The ga lactic proton and
helium nuclei spectra are

-2.5
UT(m,T) = A(T + a Eo) . (8.5.8)
with a = 1.0, E_ = 938.211 MeV for protons anda = 0.5, E, = 3726.78
MeV for helium. The known galactic electron spectxrum (see Figure 1,

Burger, 1971; Goldstein et al. 1970a), is used in f:he electron calcu-

lations. We approximate this galactic spectrumby

A
1
B1 T, T < T2 ,
2 A2
Jp(=,T) =p" F (=p) = | B, T ", T, < T< T, (8.5.9)
A
By T 3 T> 1T

where T is the kinetic energy in MeV,
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T, = 1279.8,
T3 = 425.1,
B, = 1.77826 x 104, Al = -1.75, (8.5.10)
B, = 6.95517 x 10°, A, =-2.262,
B3 = 7.60505 x 107, A3 = ~2.824,
and jT(w,T) is the differential intensity with respect to kihetic
energy in units of m'.:Z s—1 sr—1 MeV-l.

The diffusion coefficient is assumed to be of the form

K(r,p) = K K,(®) 81, (8.5.11)
where
P , P> Py,
Ky,(P) = ( ./F;'E', Pp<Ps P, (8.5.12)
/?1_“175, 0<Ps P,

P is the rigidity in G V, B = particle speed/s peed of light. With

1. 5, the parameters

17

Kc in m2 s-l and r in A U, and for K(r,p) a r

(Kc,Pl,Pz) appropriate for 1965 and 1969 are (1 .139 x 100", 0.038, 1.0)

and (5.316 x 1016, 0.248, 0.7) respectively. These values of Kc and

b = 1.5 together give' the force-field parameter , ¢(r) , values of 0.35 GV
and 0.75 GV at 1 A U. These are the same as used by U G to reproduce
the observed modulation for 1965 and 1969. Note thgt the general form

(8.1.3) for the Green's function G(r,p;po) nust be used because of the

sectioned form of KZ(P), in Equation (8.5.12).

in Figures 8.12a, 8.12b, 8.12c we show the origin, within the
galactic spect‘rum of protons, helium and electrons observed near Earth
during 1965 and 1969. The kinetic energies of the proton and helium
nuclei are 50, 100, 200 and 500 MeV/nucleon, and for the electrons they

are 100, 200, 500 and 1000 MeV. The arrows indi cate the mean energies
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of the distribution <To> and these are also listed on the figures.

It has been shown previously (Goldstein et al., 1970b, Gleeson
and Urch, 1971; Urch and Gleeson 1973) that low energy nuclei
(T < 80 MeV/nucleon at sunspot minimum) are virtually excluded from
near Earth. For example in 1969, Figure 8.12a shows that only a few
percent of the proton differential intensity near Earth at T = 50 MeV
comes from galactic protons with kinetic energies T < 400 MeV. The
mean energy of the distribution for 50 MeV protons in 1969 was <TO> =
777 MeV, whereas based upon the mean energy loss of monoenergetic
galactic prdtons with T = 50 MeV near Earth should have come from
T ~ 150 MeV in the galactic spectrum (Gleeson and Urch, 1971; Urch and

Gleeson, 1972b, 1973).

In contrast the electron distributions of Figure 8.12c show that
there is no virtual exclusion of the electrons. This contrasting behav-
iour of the electrons and nucleil is due to their different galactic spectra
at low energies. Both low energy galactic electrons énd protons have
only a small probability of penetrating to the orbit of the Earth (see
Figure 8.11, in which the curve Vr/X(r,p) = 1.0 corresponds to 30 MeV
protons or 200 MeV electrons at r =1 A U if Kc =3 x 1017 m2 s_l), and
for nuclei, for which the spectrum is flat at low energies, this leads to
virtual exclusion, but for electrons the galactic intensity increases
rapidly as the energy decreases and this enables enough galactic electrons

of all energies to reach Earth so that there is no virtual exclusion of

this cosmic-ray species (cf. Urch and Gleeson, 1973).

The distributions shown in Figures 8.12 are quite close to those

obtained numerically by Urch and Gleeson (1973). We note however that

with the rl's dependence of K(r,p) the radial gradients given épproximately
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by G_ = CV/K(r,p),

where C is the Compton Getting factor (the force-field approximation)
are higher than those of Urch and Gleeson which are in turn higher
than those reported observaﬁionally from Pioneer 10 and 11 Jupiter

missions (Lentz et al., 1973; Van Allen, 1973).

We have therefore repeated the distribution calculations using
a diffusion coefficient which leads to gradients of about 1/5 that
calculated by Urch and Gleeson, but maintaining their values of ¢.

This has been achieved by using a diffusion coefficient with K a r1'038

replacing K a rl'5,>and values 1.5 x lO18 m2 s_1 and 7 x 1017 m2 s.1
for the diffusion coefficient constant KC during 1965 and 1969. The
results of these calculations are presented in Figures 8.13a, 8.13b and
8.13c, which show, respectively, the proton, helium nuclei and electron

distributions for the same near Earth kinetic energies, T, as those

listed in Figures 8.12.

The distributions in Figures 8.13 are in general narrower than
those obtained by U G and those presented in Figures 8.12. The narrow-
ing of these distributions are illustrated more clearly in Figures 8.1l4a,
8.14b, and 8.l4c, which display, respectively, the distributions
wT(r,T;To) for protons and helium nuclei with T = 200 MeV/nucleon and
for electrons with T = 200 MeV at Earth for 1965. Conditions assumed
here and later are

(a) K ~ 5 times that of U G ,

N (8.5.13)
(b) Kc ~ 0.3 times that of U G,

with ¢(1 A U) = 0.35 G V for 1965 and ¢(1 A U) = 0.75 G V for 1969,

which correspond to the interplanetary parameters used in Figures 8.13
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and 8.12 respectively. For comparison the histogram wT obtained by
U G with conditions

(©) Kk =3x 107 w2 s, saav =0.350v, (8.5.14)

have also been reproduced in Figures 8.14.

The mean energy <To> of each of the distributions in Figures
8.14 are indicated by arrows. In the case of electrons (Figure 8.1l4c)
there is a substantial difference in <T,> for conditions (a) and (b),
but <T°> for (b) and(c) are closely equal. This difference is shown

more generally in Figure 8.15.

In Figure 8.15 we have reproduced from U G, the mean energy
loss. <To> - T, for electrons, obtained by them for 1965 and 1969
conditions (full curves) and the force~field energy loss ¢ (dotted curves).
On this we have superimposed the values of <To> - T for 1965 and 1969
obtained here with conditions (a) and (b). Results for conditions (a)

are indicated by crosses, those for conditions (b) by circles.

The substantial differences in <To> - T obtained with
conditions (a) and (b), noted above, are apparent in both 1965 and
1969. These results show that in the case of electrons the distribution

¥,., and the mean energy loss is a function of the magnitude of the

T
diffusion coefficient, despite the fact that ¢(1 A U), and hence the

modulation is maintained.

A further result, apparent in Figure 8.15, is that with
conditions (a) the mean energy losses obtained (the crosses) are almost
equal to the force~field energy changes ¢ (the dotted curve). Under
these conditions the force-field energy loss would be a good approxi-

mation to <To> - T. This is in contrast to the results (cf. Figure 8.15)



233.

for conditions (c), given and stressed by U G, that ¢ is not a good
approximation to <T > — T in the case of electrons. Since the Pioneer
IO: and Pioneer 11 gradient observations indicate that conditions (a)
may be more appropriate it is likely that the force field energy losses
¢ can be used to obtain good approximations to the mean ener‘gy loss

<T0> -~ T for electrons.

A similar pattern of mean energy loss applies for proton and
helium nuclei save that the differences are much less significant. 1In
Figure 8.16 we have reproduced from U G the energy loss <To> - T for
protons and helium obtained by them for 1965 (full curves) and the force-
field energy loss ¢ (dotted curves). Figure 8.17 shows the correspond-
ing results for 1969 conditions. As in Figure 8.15 we have superimposed
the values of <T0> - T for 1965 and 1969 conditions obtained here with
cénditions (a) (the érosses) and conditions (b) (the circles). Conditions
(a) lead to energy losses close to the values obtained by U G. These
differences are not significant however because the energy losses for

protons and helium obtained by U G were themselves close to ¢.

In éonclusion we remark that in determining these distributions
that even with the somewhat complex dependence of K on p, only two
simple numerical integrations were required. The first wés in the
determination of the function T (Equation (8.1.3)) and the second in

convolving the spectrum with G(r,p;po).
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FIGURES 8.1 - 8.17
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Figure 8.1 ~ The momentum spectrum of the distribution

function Fo(r,p) for a monoenergetic galactic
spectrum at infinity, i.e., Up + Ng 6(p—po) as

r - », The figure is drawn for a diffusion
coefficient K(r,p) = KC P rl's, and values 0.001,

0.01, 0.1 and 1.0 of the parameter Vr/K(r,po).
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Figure 8.2 -~ The kinetic energy spectrum of the
| differential intensity jT(r,T) for a mono-
energetic galactic spectrum at infinity, i.e.,
Up-+ Ng 6(p—p0) as r » o, The figure is drawn
for a dif fusion coefficient K(r,p) = Kc P rl'5
and the parameter Vr/K(r,po) = 0,01, 0.1 and

1.0. The kinetic energy of injection To is

equal to the rest energy Eo.
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Figure 8.3a - The momentum dependence of various physical

quantities, arising from a monoenergetic galactic spectrum of

particles at infinity, i.e., Up - Ng G(p-po) as r » @, The

1.5

figure is drawn for a diffusion coefficient K(r,p) = Kc pr .

and for values 0.01, 0.1 and 1.0 of the dimensionless para-

meter Vr/K(r,po).> Shown (in dimensionless form) are :

(a) the momentum average distribution function Fo(r,p),
(b) the differential number dénsity Up =47 p2 Fo’
(c¢) the radial gradient Gr = (1/Up).(aUp/ar),
(d) the radial differential current density Sp and its convective
and diffusive components Sc and Sd’ i.e.,
3
5. = - 4 mp (V/3) aFo/ap,
2
Sq = - 4mp K(r,p) BFO/Br,
= + .
Sp SC Sd
Here
= _ 3
FO - (Pov/ Ng) FO’
U = /IN) U
P (pg g) p’
Grad(log(Up))' = T, Gr’
SC = ‘po /v Ng) SC,
Sq4 = (p_/ VN) S45
g = ) g = \)
5, 5.+ S, G, /v ng) 5,
are dimensionless forms of Fo’ Up, Gr’ Sc’ Sd and Sp, and
| ; . 1/(1-b)
r/r, = ([Ve/R(r,p )7/ (Vr /K(r ,p)]) :

Vre/K(pe,pO) = 0.1, b = 1.5,
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Figure 8.3b - The momentun dependence of various physical
quantities arising from a monoenergetic spectrum of particles
at infinity, i.e., Up -+ N d(p-po) as r » », The figure is

g
drawn for a diffusion coefficient K(r,p) = KC P rl's

, and for
values 0.01, 0.1 and 1.0 of the dimensionless parameter
Vr/K(r,po). Shown are:

(e) the ratio of the bulk streaming velocity <r> to the solar

wind speed V, i.e., dR/dt = Sp/(V Up), and the related component

quantities Sd/(V Up) and the Compton-Getting factor C = Sc/(V Up),

(f) the time average rate of change of momentum <p> , expressed
in dimensionless form, i.e.,
dp/dt = (r_/(V p_)) <p>
(g) the ratio of <p> and the adiabatic deceleration rate
<f)>ad =-2Vp/3r,

i.e.,

(dp/dt) / (dp/dt) ad = <p> / <ﬁ>ad'
As in Figure 8.3a, re is some fixed radius and
- ~ 1/ (1-b)
r/r, = ([Ve/R(r,p)3 / [Vr /R(x_,p)]) ,

Vre/K(re,po) = 0.1, b = 1.5.
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Figure 8.4a - Contours in the (r,p) plane of various physical
quantities associated with a monoenergetic galactic spectrum of
particles at infinity, i.e. Up - Ng S(p—po) as r > » , The
figure is drawn for a diffusion coefficient K(r,p) = Kc P rl'S,
and the parameter Vre/K(re,po) = 0.1 where T is some fixed
radius. Shown (in dimensionless form) are:

(a) the momentum average distribution function Fo(r,p),

(b) the differential number density UP =4 7 p2 Fo»

(c) the radial gradient Gr = (1/Up)(aUp/3r),

(d) the radial differential current density Sp and its convective

and diffusive components, SC and Sd’ i.e.,

s, = -4 mp(V/3) 9F_/op ,
S5y = -4 p2 K(r,p) 3F _/or ,
s, = S, *+ Sg

Here
Fo= )/ N) Fo
ﬁp = (p, / Ng> Us»

Grad (log(Up)) =T, Gr’

5, = (b, / (VN S,
Sp = S, + 8, = (p0 / v Ng)) Sp’

are dimensionless forms of Fo, Up, Gr’ Sc’ Sd and Sp.



MOMENTUM (ps/po-)

245,

e 5,00,-02

ﬁ)
a 1.C0.-0o b
C 1 aOOu—Oa %

T

7

Up-

a 1.00.-10 b 1.00.-05
c 1.00.-0L d 1.00.-03
5 1 £ 1.00.+00

&D —‘ 'r————_—’——_—.
oall: 3
-2k

Ak dd AL

e

n—3

«C

“GradllogTp)T™
a ~1.00.+01 b =1.00.+00

C -1.00.-01 d 1.00.+00
e 1.00.+02 £ 1.00.+0
E .

At liadl

o -1.00.+01
¢ -1.00.-0b
> 1.00.-01
‘o [T nm—————

sa il

Aurl.suu.l_a_s_l_mu

b -1.00-.-03

d
£

1.00.-0b
1,00, 01

o =1 0

[

A4 2
lﬁ_a

(3
[ R

RADIAL DISTANCE (Rr/Re)

Pigure 8.4a



246.

Figure 8.4b - Contours in the (r,p) plane of various physical
quantities associated with a monoenergetic galactic spectrum
of particles at infinity, i.e., Up+ Ng G(p-po) as r + ©», The
figures is drawn for a diffusion coefficient K(r,p) = Kc ) rl's,
and the parameter Vre/K(re,po) = 0.1 where r, is some fixed
radius. Shown are:

(e) the ratio of the bulk streaming velocity <r> to the solar

wind speed V, i.e, dR/dt = Sp/ Q4 Up), and the related component

quantities Sd/(V Up), and the Compton-Getting factor C = Sc/ w Up),

(f) the time average rate of change of momentum <p> expressed

in dimensionless form, i.e.,
dp/dt = [re/(V po)] <p>
(g) the ratio of <f)> and the adiabatic deceleration rate
<p>ad = -2vyp/ 3r),

i.e.,

(dp/dt)/(dp/dt) ad = <p> /[ <p> .
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Figure 8.5 - Schematic of the differential current density

Sp in the (r, p) plane for a monoenergetic galactic
spectrum at infinity, i.e., Up - Ng G(p-po) as
r - o, The figure is drawn for K(r,p) = KC p rlfs

and Vre/K(re,po) = 0.1. The arrows represent the

direction of Sp.
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Figure 8.5
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Figure 8.6a - The flow lines (8.3.15) in (u,T)
co-ordinates for a monoenergetic galactic spectrum
of particles at infinity. The figure is drawn
for a diffusion coefficient K(r,p) = Ko(p) rl's,
where Ko(p) is an arbitrary function of momentum

p and for A = %+ 0.1, £ 1, t 10. Also shown are

the critical curve and the locus <p> = 0.
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Figure 8.6b -~ The flow lines (8.3.15) in (u,T)
coordinates for a monoenergetic galactic spectrum
of particles at infinity. The figure is drawn
for a diffusion coefficient K(r,p) = Ko(p) rl's,
where Ko(p) is an arbitrary function of momentum

p and for A = t 0.01, t 1, + 100. Also shown are

the critical curve and the locus <p> = O.
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Figure 8.7 - Flow lines in the (r,p) plane for a mono-

energetic galactic spectrum of particles at infinity,
i.e., Up > Ng §(p~py) as r > » . The figure is drawn
for a diffusion coefficient X(r,p) = KC P r1°5, and

Vre/K(re,po) = 0.1. The flow lines are shown by the

full lines whereas the loci <r> = 0, <p> = 0 and

the critical curve are shown by broken lines.
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Figure 8.3 - Loci 1in the (r,p) plane which assist in
assessing the.flow lines for a monoenergetic
"~ spectrum of particles at r = . The figure is
drawn for a diffusion coefficient K(r,p) = LI ple3
and Vre/K(re,po) = 0.1. Shown are the curves
<r> = 0, <p> = 0, and the critical curve which

separates the two different types of flow lines

displayed in Figure 8.7.
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Tigure 8.%9a -~ Showing the insensitivity of the near-

Earth proton spectrum to the form of the low
energy galactic spectrum. These results were
obtained from the general galactic spectrum
solution (8.4.1), with the galactic spectra

(a), (b) and (c) specified in Equations (8.4.5),

the diffusion coefficient K = 6 x 1021 rl'z37

P B cm2 s_1 (P in G V and r in A U) and the

solar wind speed V = 4 x 105 m s_l.
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Figure 8.9b -~ The radial gradients of protons at
r =1 AU for three different galactic spectra
(a), (b) and (c). These results were obtained
from the general galactic spectrum solution
(8.4.1), with the galactic spectra (a), (b)

and (c) specified in Equations (8.4.5), the

diffusion coefficient K(r,p) = 6 x 10-21 r1'237

P8 em? 7L (P in GV and r in A U) and the

solar wind speed V = 4 x 105 m s_l.
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Figure 8.9c - The radial anisotropies of protons at

r =1 AU for three different galactic spectra
(a), (b) and (c). These results were obtained
from the general galactic spectrum solution
(8.4.1), with the galactic spectra (a), (b) and
(c) specified in Equations (8.4.5), the diffusion

21 1.237 2 -1
r P

coefficient K(r,p) = 6 x 10 B cm” s

(P in G V and r in A U), and the solar wind speed

V=4 x lO5 m s-l.
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Figure 8.10a - Showing the insensitivity of the near-
Earth proton spectrum to the form of the low energy
galactic spectrum. These results were obtained by
Urch and Gleeson (1972a) from numerical solutions
of the equation of transport. Three forms of
galactic spectra (a), (b) and (c) given in Equations
(8.4.5) were used. In the model the diffusion
coefficient K = 6 x 1021ff PR cm2 s_l (P in G V and
r in A U), the force field parameter at r = 1 A U,
$¢(1 AU) = 0.14 GV, and the boundary of the solar

cavity was taken to be at r = 10 A U.
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Figure 8.10b -~ Showing the radial gradient of protons at
r=1A0U fof the diffusion coefficient K = 6 x lO21

2 S-l (P in G V and r in A U) and the three

Jr P B cm
forms (a), (b) and (c) for the galactic proton
spectra given in Equations (8.4.5). These results
were obtained by Urch and Gleeson (1972a) from
numerical solutions of the equation of transport.
The gradients for cases (a) and (b) computed from

the force-field approximate solution are shown

by broken lines.
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Figure 8.10c¢ - showing the radial component of the
anisotropy of protons at r = 1 A U for the
diffusion coefficient K = 6 x 102} JTPB cm?
s—1 (P in G Vand r in A U) and the three forms
(a), ‘(b) and (c) of the galactic proton spectra
given in Equations (8.4.5). These results are
reproduced from Urch and Gleeson (1972a) who

obtained them from numerical solutions of the

equation of transport.
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Figure 8.11 - Sho&ing the dependence of the Green's
function G(r,p;po) given in Equation (8.5.1)
on the momentum variable po/p. It provides
a direct measure of the sensitivity of the
intensity, at position r and momentum p, to
particles of momentum P, in the galactic spectrum.
Thé figure is drawn for a diffusion coefficient

5

K = KC p rl' and for values 0.01, 0.1, 1.0 and

10 of the parameter Vr/K(r,p).
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Figure 8.12a - Showing the distribution Q)T(r,T;To)
of protons observed at r = 1 A U during 1965
and 1969 with kinetic energies T = 50, 100,
200 a{nd 500 MeV, which originated with kinetic
energy To in the galactic spectrum. The galactic
spectrum is given in Equation (8.5.8) and the
diffusion coefficients used are of the form given
in Equations (8.5.11) and (8.5.12) with the para-
meters (Kc’ Pl’ P2, b) appropriate for 1965 and

1
1969 being (1.139 x 10 7, 0.038, 1.0, 1.5) and

(5.316 x 1016, 0.248, 0.7, 1.5) respectively.
The arrows indicate the mean energies <To> of

the distributions and these are also listed in

the figure.
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Figure 8.12b - Showing the distribution QT(r,T;TO)
of helium nuclei observed at r = 1 A U with
kinetic energies T = 50, 100, 200 and 500 MeV/
nucleon, which originated with kinetic energy To
in the galactic spectrum. The galactic spectrum
is given in Equation (8.5.8) and the diffusion
coefficients used are of the form given in
Equations (8.5.11) and (8.5.12), with parameters
(KC, Pl’ P2, b) appropriate for 1965 and 1969 being
(1.139 x 1017, 0.038, 1.0, 1.5) and (5.316 x 1016,
0.248, 0.7, 1.5) respectively. The arrows indicate

the mean energies <To> of the distribution and these

are also listed on the figure.
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Figure 8.12¢ - Showing the distribution \pT(r,T;TO) of
electrons observed at r = 1A U with kinetic
energies T = 100, 200, 500 and 1000 MeV, which
originated with kinetic energy To in the galactic
spectrum. The galactic spectrum is given in
Equations (8.5.9) and (8.5.10) and the diffusion
coefficients employed are of the form given in

Equations (8.5.11) and (8.5.12), with the para-

meters (KC, Pl’ PZ’ b) appropriate for 1965 and
1969 being (1.139 x 10V, 0.038, 1.0, 1.5) and
16

(5.316 x 107", 0.248, 0.7, 1.5) respectively.
The arrows indicate the mean energies <To> of
the distributions, and these are also listed

on the figure.
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Figure 8.13a - Showing the distribution wT(r,T;TO) of
protons observed at r = 1 A U with kinetic energies
T = 50, 100, 200 and 500 MeV, which originated
wigh kinetic energy To in the galactic spectrum.
The galactic spectrum is given in Equation (8.5.8)
and the diffusion coefficients employed are of
the form given in Equétions (8.5.11) and (8.5.12),
with the paramgters'(Kc, Pl’ P2, b) appropriate

for 1965 and 1969 being (1.5 x 10'°, 0.038, 1.0,

1.038) and (7.0 x 10%7

, 0.248, 0.7, 1.038) respect-
ively. With these diffusion coefficients, the
radial gradients are in accord with the observations
from Pioneer 10 and 11 Jupiter missions. The arrows

indicate the mean energies <To> of the distributions,

and these are also listed on the figure.
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Figure 8.13b - Showing the distribution Q;T(r,T;To) of
helium observed at r = 1 AU, with kinetic energies
T = 50, 100, ZQO and 500 MeV/nucleon, which origi-
nated with kinetic energy To in the galactic
spectvrum. The galactic spectrum is given in Equation
(8.5.8), and the diffusion coefficients employed
are of the form given in Equations (8.5.11l) and
(8.5.12), withl the parameters (Kc, Pl’ P2, b) appro-

priate for 1965 and 1969 being (1.5 x 1018, 0.038,

1.0, 1.038) and (7.0 x 1077

, 0.248, 0.7, 1.038)
respectively. With these diffusion coefficients,
the radial gradients in the model are in accord
with the observations from the Pioneer 10 and 11
Jupiter missions. The arrows indicate the mean

energies <TO> of the distributions, and these are

also listed on the figure.
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Figure 8.13¢c - Showing the distribution @T(r,f;To) of
electrons at r = 1 A U, with kinetic energies
T = 100, 200, 500 and 1000 MeV, which originated
with kinetic energy TO in the galactic spectrum.
The galactic spectrum is given in Equations (8.5.9)
and (8.5.10), and the diffusion coefficients used
are of the form given in Equations (8.5.11) and

(8.5.12), with the parameters (Kc, Pl’ Pz, b)
8

appropriate for 1965 and 1969 being (1.5 x 10l

0.038, 1.0, 1.038) and (7.0 x 1017

, 0.248, 0.7,
'1.038) respectively. With these diffusion coeffi-
cients, the radial gradients are in accord with
the observations from the Pioneer 10 and 11 Jupiter
missions. The arrows indicate the mean energy

<T°> of the distributions, and these are also listed

on the figure.
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Figure 8.1l4a - Showing q)T(r,T;TO), the percentage of
protons per MeV at r = 1 AU at kinetic energy T
whichoriginated in the kinetic energy interval
(To, To + dTo) of the galactic spectrum. The
figure is drawn for T = 200 MeV. It shows the
effect of varying the magnitude of the diffusion
coefficient KC(K(r,p) = KC KZ(P) B rb, b>1,
Pin GV, r in AU, Equation (8.5.11) ). Curves

(a), (b) -and (c) are drawn for

(a) K_=1.5x 1048 n? s-l,
Cc

(b) K_ = 1.139 x 1017 n? sl

(c) Kc = 3 x 1017 m2 s-l.

(see Equatidns (8.5.13) and (8.5.14) and Ithese conditions
are appropriét;e for 1965. 'The histogram (conditions
(c)) has been reproduced from Urch and Gleeson (1973).
The arrows indicate the tﬁean energies <To> of the

distributions.
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Figure 8.14b - Showing ¢T(r,T;TO), the percentage per
MeV/nucleon of helium nuclei at r =1 A U at
kinetic energy T which originated in the kinetic
energy interval (To, To + dTO) of the galactic
spectrum. The figure is drawn for T = 200 MeV/
nucleon. _It shows the effect of varying the
magnitude of the diffusion coefficient KC
(K(r,p) = K_ K, () , Pin GV, rin AU,
Equations (8.5.11)). Curves (a), (b) and (c)
are drawn for

18 2 -1

(a) KC =1.5%x107 " m" s 7,

() K =1.139 x 107 m? &7},
c

(c) KC =3 x 1017 m2 s—l,

(see Equations (8.5.13) and (8.5.14)) and these
conditions are appropriate for 1965. The histogram
(conditions (c) ) has been reproduced from Urch and
Gleeson (1973). The arrows indicate the mean energies

<To>of the distributions.
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Figure 8.14c - Showing wT(r,T;TO), the percentage of

electrons per MeV at r = 1 A U at kinetic energy

T, which originate in the kinetic energy interval
(TO,To + dTo) of the galactic spectrum. The figure
is drawn for T = 200 MeV. It shows the effect of
varying the magnitude of the diffusion coefficient
KC, (K(r,p) = KC KZ(P) B rb, r in AU, P in G V,
Equation (8.5.11) ). Curves (a), (b) and (c) are

drawn for

1 -
(a) KC_ = 1.5 x 10 8 m2 s 1,
®) K = 1.139 x 1017 n? 7L,
(c) KC = 3 x 1017 m2 s_l,

(see Equations (8.5.13) and (8.5.14) ), and these
conditions are appropriate for 1965. The histogram
(conditions (c) ) has been reproduced from Urch and
Gleeson (1973). The arrows indicate the mean

energies <T0> of the distributions.
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Figure 8.15 - The energy losses <Tp> - T for galactic
électrons for 1965 and 1969. The energy losses
obtained by Urch and Gleeson (1973) from numerical
solutionsvof the equation of transport (full curves),
and the force field energy losses, ¢, (broken
curves) have been reproduced from their study. The
energy losses obtained here with conditions (a)
(the crosses) and conditions (b) (the circles) have

been obtained from the distributions wT(r,T;To)
displayed in Figures 8.13c and 8.12c respectively.
Conditions (a) and (b) are specified in Equations

(8.5.13).
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Figure 8.16 - The energy losses <To> - T for galactic
protons and helium nuclei for 1965. The energy
losses obtained by Urch and Gleeson (1973) from
numerical sélutions of the equation of transport
(full curves), and the force field energy losses,
o, (broken-curves) have been reproduced from their
study. The energy losses obtained here with
conditions (a) (the crosses) and conditions (b)
(the circles) have been obtained from the distri-
butions wT(r,T;To) displayed in Figures 8.13a,
8.13b and Figures 8.12a, 8.12b respectively.
Conditions (a) and (b) are specified in

Equations (8.5.13).
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Figure 8.17 - The energy losses <To> - T for galactic
protons and helium nuclei for 1969. The energy
losses obtained by Urch and Gleeson (1973) from
numerical solutions of the equation of transport
(full curves), and the force field energy losses,
¢, (broken curves) have been reproduced from their
study. The energy losses obtained here with
conditions Ka) (the crosses) and conditions (b)
(the circles) have been obtained from the distri-
butions WT(r,T;To) displayed in Figures 8.13a,
8.13b and Figures 8.12a, 8.12b respectively.
Conditions (a) and (b) are specified in Equations

(8.5.13).
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CHAPTER 9

SOLAR SOURCE SOLUTIONS

9.1 Introduction

In this chapter we study the steady-state interplanetary
propagation of solar cosmic-rays by means of monoenergetic source

solutions (3.2.13) and (3.2.18) of the transport equation.

In these solutions particles are released monoenergetically
from a spherical surface at radius r, with momentum P,* The solution

(3.2.18), expressed in terms of the distribution function Fo is

n .2 2,2

~ 3N (xo) xo ( X +xo /X Xo)

F, = oon? v 53 22 (ot | ¥/ T %P\ 71/ W ( 7T
(o} (o]
(9.1.1)
where
P -

T = 3 fpo Ko(z) z(1 3b)/zdz/(ZV),
n = (b+l) / (1-b), m= |n| , (9.1.2)
x = 2 @/ HIPY ), x = x(r,.e),

the diffusion coefficient K(r,p) = Ko(p) rb, with b # 1, Im(z) is

a modified Bessel function of the first kind of order m and argument
z, and N is the rate at which particles are released from the source.
The solution (3.2.13), for release at the origin, is obtained by
letting r + 0 and choosing b < 1 in the solution (9.1.1). Note that

it is necessary to choose b < 1 for particles to escape from r, = 0. |

This solution is

3§ (o+1) 27

22n+6 \'4 n2 I'(n+1)

-n—-1 ¥x2
T exp z—f‘) s (9.1.3)
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In Section (2) we study the solar source solution (9.1.3)
with release at r, = O for a diffusion coefficient K(r,p) = Kc p /r,
and the general solution (9.1.1) with r # 0 for the case K(r,p) =
1.5
r

K p

c , and with parameters in the solution appropriate for solar

cosmic rays. Some of the results of this section are published in

Webb and Gleeson (1974).

In Section (3) we study the structure of the particle flow and
momentum changes in (r,p) space by constructing solutions of the flow

line equation (7.6.7) for the monoenergetic source solution (9.1.3)

with release at ro 0 for the case

(i) K(r,p) = K p Jr

and for the solution (9.1.1) with release at ro for the cases

1.5
K.PrT and V rolK(ro,po)

(i1) K 1.46,

il

0040

1]

(iii) K =K_ p VT and V ro/K(ré,po)
The flow lines for these three cases are quite distinct, and when
compared with the flow lines for monoenergetic galactic cosmic-rays

presented in Chapter (8), (Figure 8.7), they highlight the difference

between the steady state propagation of galactic and solar cosmic-rays.

9.2 Monoenergetic solar source solutions.

For a diffusion coefficient K(r,p) = K_c pa rb, b < 1 the mono-

energetic solar source solution (9.1.3) with r = 0, is

2 3
r . p VF 2n+l o 2
s 3 o) - 3(221)2 [1- (p/po)ﬁ] n-1 exp Z¥_ s
! 290701 r(nt+l)

(9.2.1)
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where
§ = a+3(1-b)/2,
r, = Gk pt /et D),
n = (b+l) / (1-Db),
3(1-b) /2
5_2_ _ 28 Vr (p/p,) 9.2.2)
4T 30-6)2 K0P 1 prp )%

Here the parameter V r/K(r,p,) is dimensionless, and it contains

the complete dependence of the solution on heliocentric radius r,

the diffusion coefficient constant K., and the solar wind speed V. A more
explicit formulation of the radial dependence is obtained by observing

that
. 1-b
v r/K(r,po) = [V re/h(re,po)] (r/re) . (9.2.3)

where re is some fixed heliocentric radius.

Similarly, for a diffusion coefficient K(r,p) = Kc pa rb,

the general monenergetic source solution (9.1.1) may be written as

2 3 n 2 2 2 _ .
r, P, \' 3 X, X ( X +xo ) X X
N F(ryp) = 64112|n+1| (E’) T P\ T aT Im( 2T ) ’
(9.2.4)
where
x = 2 (x pdHWD2Z, 4y,
xix, = (lr) T2 (prp )3T,
n = (b+1)/(1-b), m= |n]| ,
1-b 3(1-b)/2
ﬁ i 26 Vor, (r/r ) (p/p_)
T saw? k) -G/
x2 5 Vr 1 '
= - 2 0 , (9.2.5)

30-0)% Kee,p)  (A-(p/p )
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x x| i v r (r/ro)(l—b)/z (p/po)3(1—b)/4
2T 3a1-b)2 Kgpg) a-onryty
§ = a+ 3(1-b)/2.

Here the solution depends on the three dimensionless quantities

Vr /K{(x p), r/r_ and p/p_.. This is in direct contrast with the
o 0,70 o o -

case r_ + O in which Vr/K(r,po) and p/p0 were the dimensionless

quantities specifying Fo(r,p) and also in contrast to the galactic

case for which r, > . This additional parameter makes the range of

solution forms more difficult to display.

Some of thé principal features of these solutions are shown
in Figures 9.1, 9.2 and 9.3 which display Fo’ Up and Sp as functions
of p/po. Figure 9.1 is for the case r, = 0 and the radial dgpendence
and the dependence on v, Kc and p, are contained in the single paramete;
\Y r/K(r,po). Figures 9.2 and 9.3 are for the cases r # 0; here,
because of the increase in the number of parameters in the solution
two sets of curves are necessary. Figure 9.2 represents the effects
seen at a fixed position obtained by changing V, Kc or p, while Figures
9.3a and 9.3b show the dependence on position r/ro with fixed

\Y ro/K(ro,po).

Figure 9.1 shows the'momentum dependence of Fo’ Up and S
for the solution with r =0 (Equation (9.2.1)) for K = K, p /r, and
values 0.001, 0.01, 0.1, 1.0 and 10.0 of the parameter V r/K(r,po)-
Particles injected with momentum P, are seen to be redistributed over
the whole momentum range 0< p < P, For the three smaller values
of V r/K(r,po) there-is a substantial peak in the spectrum in the
vicinity of Py As V r/K(r,po) decreases, either because V or r

decreases or because Kc or p, increases the peaks move toward P,
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narrow inwidth and increase in peak value. Since particles are

released monoenergetically with momentum P, from r,o= 0 we have

. 3N §(xr~r )
limit o
Fo(r,po) r +0 3 3 s (9.2.6)
o 32v° Vv P, T,

where §(x) is the Dirac delta function of argument x, and hence

Fo(r’po) + o ag V r/K(r,po) > 0.

For large values of V r/K(r,po) in Figure 9.1 the distributions
are strongly attenuated at the upper end of the momentum range. These
results indicate that as the solar wind speed V, or the heliocentric
distance r increase, or as P, or the diffusion.coefficient constant Kc
decrease, particles lose a larger fraction of their initial momentum.
We can also see these characteristics of the particle propagation

from the mean momenta

_ P, P,
p = fo P Up dp / fO Up dp, (9.2.7)

which are indicated on the Up plots by arrows.

At the low end of the momentum range the distribution function
curves show that there is an accumulation of particles which have lost
momentum due to interaction with the irregular component of the
magnetic field moving with the solar wind. As p > O we have

rz pz \Y
S F - 0.203,
o

for all values of V r/K(r,po), with b = 0.5, r = 0, and T defined

by Equations (9.2.2), and hence the distribution function is independent
of heliocentric distance as p » 0. The result Fo > constant as p -+ O
is characteristic of the monoenergetic source solutions (9.2.1) and

a

. b
(9.2.4) for cases where r is general and K(r,p) = KC p r,a>0,

b < 1. For the solution (9.2.4) with r, # O we find that as p -~ O,
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with a> 0, b< 1,

Vvr . n+l
Fo 2 3 3§ 2 2 7 2 ——
o
16m° V p° ro|n+1| 3(1-b)° K(r_,p,) I (n+l1)

( -5 Vro) .
exp , (9.2.8)
3(1--b)2 K(ro’po)

where

§ = a+ 3(1-b)/2 #0, n = (b+1)/(1-b) .

For a source at r, = 0 witha > 0 and b < 1, as p > O we have

2 3
r_ P \Y _— 3(n+1)2n+1 A
N o 22n+6 “2 I(ntl), . (9.2.9)
where
_ a 1/ (1-b)
r, = [3Kc P, /(2v8)] .

The above result may be obtained directly from the solution (9.2.1)

with r = 0, or by letting r,.> 0 in the result (9.2.8).

The Sp curves show that for r, =0, K=K p /T, the streaming
is positive (outward) for all p and V r/K(r,po). We can also show
(Equation (9.3.11)) that Sp is positive at all r and p when the source

is located at r, = 0 and K = Ko(p) rb, b < 1.

The curves of Figure 9.1 can be interpreted as indicating the
changes in the spectra at fixed r for various diffusion coefficients
or the changes at fixed r for particles of various source momenta Py
In this latter case, since V r/K(r,po) increases as P, decreases, the
Up curves show that particles of lower Py lose a larger fraction of
their initial momentum. We note that with values of K used by Urch

and Gleeson (1972b) to reproduce the modulation of 1965, i.e., solar
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minimum (K(r,p) = 3 x 1017 mz s‘.1 at a radius of 1 A.U. and:a

rigidity of 1 GV, V =4 x 10° m s-l),the curves Vr/K(r,po) = 0.001,
0.01, 0.1, 1.0 and 10.0 represent, respectively, the spectra to be
obtained at r = 1 AU from injection of protons at r, = 0 with kinetic

energies, Tb, of 198, 19, 1.26 GeV, 20 and 0.2 MeV.

The curves of Figure 9.1 can alternatively be interpreted as
indicating the changes in the spectra with heliocentric distance r.
Since V r/K(r,po) o ¥T in this example, the heliocentric distances
represented by the curves of Figure 9.1 are in the ratio of

-4 -2 2 4
10 : 10 :1:10° : 10. Hence if V r/K(r,po) = 0.1 represents
the spectra at r = 1 A U obtained from particles released monoenergetic-
ally at r = 0, the curves V r/K(r,po) = 0.001, 0.01, 1.0 and 10.0

represent the spectra at 10_4, 10-2 lO2 and 104 A U respectively.

We now turn to the examination of the cases with L £ 0, for
which examples of Fo’ Up and Sp are displayed in Figures 9.2 and 9.3.
Two figures are provided in order to show the dependence of the

solution on each of the parameters V rO/K(ro,po) and r/ro.

Figure 9.2 indicates the dependence of Fo’ Up and Sp on
Y rO/K(ro,po) for fixed r/ro; it is constructed for the case
1.5
r

K=K p

c and r/ro = 214.95. The principal features are again

the spread in momentum over the range O0< p = P, and the peaked nature
of the spectrum in the vicinity of P, for small V rO/K(ro,po). As
in the case of r = 0 [Figure 9.1] the mean momentum decreases as

Y ro/K(ro,po) increases.

At small p/po the spectrum of Figure 9.2 has a secound peak
for small V ro/K(ro,po), apparently indicating some accumulation of

particles after energy changes.
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As p > O, F0 > O for b >1, but for K = Kc pa rb, b<1l, a>0,

from the result (9.2.8)

Vr n+l1
Fo + constant = 2 32 2 26 7 Xt 2 ) .__L___
16m Vp°r°|n+1| 3(1-b) 0’Po I'(n+1)
exp 28 5 K(rv ro)
3(1-b) 0°Po :
b

we recall that for r, = 0, K= Kc pa r ,a>0, b>1, the distri-
bution function tended to the constant (9.2.9),as.p/p0* 0, and this

behaviour of F_ for small p/po is also shown in Figure 9.1.

The structure of the streaming Sp is more complex than for
the case r, = 0. Here Sp is positive for p near P, but becomes negative,
indicating inward flow at low p, whereas in the case r, = 0 we had
Sp > 0 for all p. This pattern is discussed in more detail in

Section (9.3). For K(r,p) = 3 x 1017 m2/s at 1 AU and 1 G V rigidity,

5

V = 4 x 10° m/s, the curves V r /K(r_ p) = 0.03, 0.3 and 3.0 of
, b}

Figure 9.2, represent, respectively, the momentum dependence of Fo’ Up
and Sp to be obtained at r = 1 A U from injection of protons at r, = 1

solar radius and kinetic energies, To’ of 96.5, 8.85 GeV and 414 MeV.

The curves of Figures 9.3a and 9.3b show the dependence of the
specfra on heliocentric distance. They show Fo, Up and Sp as functions
of p/po for r/ro = 1, 2, 100 and 1000 and are for the cases K = Kc P r1'5
and V ro/K(ro,po) = 1.46 (Figure 9.3a) and V rO/K(ro,po) = 0.1 (Figure

9.3b).

Figure 9.3a shows that F_ and Up are peaked near r/ro X
and that the spectrum spreads and becomes concentrated at lower mean

values of p/po as r/ro increases. Figure 9.3b which is for smaller
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\Y rO/K(ro,po) shows that as we decrease V ro/K(ro,po) the peak near

p/p_ = 1, persists even at large radii, and that the‘shape of the

o]

spectrum is critically dependent on this parameter. Since the particles

are released monoenergetically with momentum P, at radius r, we have

3N G(r-ro)
F(r’po_) = 2 3 ’

) 321V P, T,

where G(r-ro) is the Dirac delta function, so that F(r,pé) + ® as
r>r.

The spectra of Figures 9.3a and 9.3b have Fo > 0asp~>0
because b > 1 (recall K = Kc pa rb, b=1.5, a=1.0). If b <1 and

a > 0, then Fo tends to the constant (9.2.8) as p > O.

The dependence of Sp upon p of Figures 9.3a and 9.3b is ;gain
complex, but very interesting. As in the case of Figure 9.2 we have
a region of Sp > O near p = P, and a region of Sp < 0 for low p; the
crossover point in p/pO decreases as r/x:o increases. As r/ro > l+,
the range of p/po of net outflow (Sp > 0) decreases and tends to a
double delta form with large positive flow close to P, and a large
negative inward flow for p just below this. It represents the particles
first flowing outward and being turned around with energy loss (over-

taking 'collisions') and passing into r < r - The (r,p) flow patterns

are given in Section 9.3.

If we choose r = 1 solar radius in Figures 9.3, the curves

r/r0 = 2, 100, 1000 represent, respectively, the spectra obtained at

heliocentric distances of 9.3 x 10—3, 0.465 and 4.65 A U.

For K(r,p) = 3 x 10t m? sl at a rigidity of 1 GVandr =1 AU,
V==4x lO5 m s—l, the curves of Figure 9.3a show the redistribution

and streaming of monoenergetic protons released from r = 1 solar radius,
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with a momentum P, = 2 GeV/c whereas in Figure 9.3b, Py = 29.3 GeV/c.

The results presented so far in this section show the main
features associated with steady state monoenergetic release with
r = 0 and r, # 0. We now present the results of a more detailed
investigation of the dependence on p and r of these solutions in

particular, but representative cases.

As in a similar study for the monoenergetic galactic spectrﬁm
case of Chapter (8) we calculate the quantities specified in the list
(8.2.5) and we use contour plots in the (r,p) plane to represent them.
We look at the distribution of particles, gradient, streaming and
momentum changes, and use the set of graphs produced to discuss some
of the physical characteristics of the steady state propagation of

solar cosmic rays.

The particular cases studied are

(1) r =0andK Kc p /T with V re/K(re,po) = 0.1, and

1.5
Kc P with V ro/K(ro,po) = 1,46.

(ii) r, # 0 and K
The results for (i) follow from the solution (9.2.1) and are presented

in Figures 9.4 while those for (ii) follow from the solution (9.2.4)

and are presented in Figures 9.5.

The contours for Fo or Up show that the number density is
sharply peaked about the source at r = 0 and p = P, in Figure 9.4a

and about the source at r = r, #0, and p = P, in Figure 9.5a.

The redistribution of particles initially injected into the
interplanetar& medium with momentum p in these two examples are very
different and this is essentially a consequence of the differing radial

dependence of the two diffusion coefficients employed, and the helio-
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centric position of the source.

For the case K = K_ p JT and r_ = 0 the contours of Figure
9.4a show that for a fixed momentum Fo decreases montonically with
increasing r. As a consequence the radial gradient is negative and
the diffusive flux is outward at all radii. Since the diffusive flux
is outward the cosmic-rays undergo more overtaking than head on
collisions with the magnetic field irregularities moving with the solar-
wind and hence on average particles are losing moﬁentum at all r and
p and <p> is negative. From the (dp/dt)/(dp/dt)ad contours of Figure
9.4b we see that the cosmic-rays are losing momentum over a large

portion of the (r,p) plane at a rate less than the adiabatic rate.

As noted previously the streaming S_ and the bulk flow velocity

P
are outward over the whole (r,p) plane, and hence’ the particles on

average lose momentum as they flow outward.

For the case K = Kc P r;'s and r, # 0; the F0 or Up contours
of Figure 9.5a show that for each p, as r increases from zero the
number density increases to a peak and then decreases. This represents
particles simultaneously being fed into (p,p+dp) by the energy changes,
but being excluded from the inner regions by the outwardly moving
scattering centres. Corresponding to this peak (which shows as a

ridge in the r-p plane) we have a positive gradient near r = O, chang-

ing to negative at heliocentric distances past the peak.

The contours of Sp in Figure 9.5a show' that the streaming

changes from inward to outward as p increases from O to P> and the
. +

outflow region decreases in width and Sp increases as r > r = or as

r - r; . The outflow region of the momentum spectrum is in general

much wider at heliocentric radii r >r, than for r < r . At low
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momenta, the magnitude of the Compton Getting factor, C, is much

greater than [Sd/V Upl and the flow is convective.

The regions of (r,p) space in which particles are gaining and
losing momentum are readily seen from the contour plots of dp/dt
of Figure 9.5b. At a fixed p, as r increases the momentum rate <ﬁ>

changes from positive to negative.

At sufficiently small p the distribution function contours

are of the form

T p3/2 = constant.

This form is characteristic of the convective solution of the transport
equation (Appendix D, Gleeson 1970) and for the case K = Kc P rl’5 it
can also be seen from the analytic expression (9.2.4) for Fo(r,p).
However for a diffusion coefficient K = Kc pa rb with b > 1 + 2a/3,
the expression (9.2.4) for Fo cannot be expressed solely iﬁ terms of

3/2

the variable r p at small p/po, and the solution does not seem to be

convective.

The redistribution of particles, the streaming, the gradient

and the momentum changes in the region r << r_ of Figures 9.5 are

(o)

similar to the corresponding features of the monoenergetic galactic
spectrum solution (8.1.1) for K = K. p rled near r = O. (See Figures

8.4).

The particle flow and momentum changes are related since the
momentum changes form effective sources of particles. We investigate

this more fully for monoénergetic solar cosmic-rays in the next section.
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9.3 The flow pattern of monoenergetic solar cosmic-rays.

In this section we investigate the particle flow and momentum
changes in position-momentum space arising from a source of mono-
energetic cosmic-rays of momentum P, released at a rate of N particles
per second from the heliocentric radius r = r,. These aspects are
examined together because they are related by the fact that particles

are conserved and the continuity equation

N G(r—ro) §(p-p,)

= (r s) + — (<p>U_} = , (9.3.1)
2% ( P 9p ( p) 4 “rg

applieé. Equation (9.3.1) shows that the momentum changes provide an

effective source of particles.

Using the continuity equation (9.3.1) we first consider the
conservation of particles over the whole momentum range O < p< o,
and we obtain a relation between the total flux across a spherical

surface at radius r and the injection rate N.

We then calculate the streaming Sp(r,p), and show the regions
of the (r,p) plane in which particles have a net inflow or outflow

for the particular cases

(ii) K=K p r1'5 Vr /K(r ,p) =1.46, v #0
c ’ o o’o ? o ’
(iii) K = Kc p VT, Y ro/K(ro,po) = 0.4, r, # 0.

Then in order to elucidate the physics of the flow we obtain
analytic and numerical solutions of the flow line equations (7.6.8)
and (7.6.9). We note again that the tangent to a flow line at any point

of (r,p) space gives the ratio of the streaming speed <r> to the
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momentum change rate <p>. (cf. Sections 7.6 and 8.3).

We now consider the conservation of particles over the whole
momentum range O £ p < =, Under steady state conditions particles
which enter the region r < r, must flow out again, so that the net flow
of particles over the whole momentum range O < P < ® across any
spherical surface at heliocentric radius r, with r«< r, must be zero.

In the region r > L the net outflow of particles of all momenta
across the spherical surface at radius r must equal the injection rate,
i.e., N particles per second. We may expréss these results by the
equation

2 @ t—3 g -
bmxt S8 (T dpo= N H(reT,), (9.3.3)

where H(r-ro) is the Heaviside step function with argument r—ro, i.e.,

1 if r > r,
o

H(r-r ) = V
o 0 ifF r < T, (9.3.4)

and Sp(r,p) is the radial differential current density.

To show the conservation relation (9.3.3) directly from the
continuity equation (9.3.1) we proceed as follows. Using the

expression (7.1.1) for <p> , 1i.e.,
v U
> = —= =L . (9.3.5)

3U or ’
P

putting r = x in the continuity equation and integrating over the

whole momentum range from p = O to p = © we have

. U P .6 (%=
1 3 7 v U (x,p) _ N.S(x ro)
- o= x" [, S (x,p)dp) + =2 P2 = —_— 9
2 3x O p 3 98x _ 2
X p=0 4 1mr
, o
(9.3.6)

Since U (x,®) = 0 we have QUp(x,w)/ax = 0, the term in square braces
P
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in the above equation is zero and it becomes

3 2,
e (4 " xS, Sp(x,p)dp) = N S(x-r), (9.3.7)

showing that the divergence of the total particle flux over all p

has a singularity at x = T but it is zero for x # r -

Integrating Equation (9.3.7) from x = 0 to x = r we find

7 - X=r
4 n ox fo Sp(x,p)dp - = N - H(r-ro),
i.e.,
2 o _ _
4 1r fO Sp(r,p)dp = N « H(r ro), (9.3.8)

which is the conservation relation (9.3.3).

From the monoenergetic source solutions (9.1.1) and (9.1.3)
we can show that for x # r  we have Up(x,p) =0 for p 2 Pys and hence
the conservation relation (9.3.8) for these solutions can be written
as

2 Po =
4w fy s (rp)dp = N - H(r-r)). (9.3.9)

The result (9.3.8) shows that the net flux of particles across
a spherical surface at radius r, with r <ro, is zero and hence either
S = O or the momentum spectrum of Sp must have positive and negative
regions at these radii. At r > ro, the streaming flux across the
spherical surface at radius r equals the injection rate N, and Sp can

be positive over the whole momentum range O < p < <,

The positive and negative regions of the streaming in the

(r,p) plane can be calculated from the expression‘(7.6.3) for Sp, i.e.,

: 2 ( Vp aFo aFO)
sp = -4 7p 3 %p + R(r,p) 37 K (9.3.10)
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For a general diffusion coefficient K = Kb(p)rb, b < 1, substituting
the expression (9.1.3) for FO in the result (9.3.10) gives the stream-

ing aristng from a monoenergetic source at r, = 0 to be

s, = 4np  VF \m) \ st T , (9.3.11)

where as usual

2(r /2y (D2, 1y,

(1-3b)/2

b
il

(9.3.12)
dz / (2V).

-
i

pO
3 fp KO(Z) z

Since T and xz/(4T) are positive Equation (9.3.11) shows that for the
solution (9.1.3) for a source at r = 0, with b < 1, the streaming

is positive (outward) over the whole momentum range O < p < P,-

Substituting the general monoenergetic source solution (9.1.1)
for Fo in the expression (9.3.9) for the streaming and using the
result

(2 = I, +2 1(2),
for the modified Bessel function of the first kind Im(z) (Abramowitz

and Stegun, 1965, Section 9.6), we have

X

X +xo x0 X xo <x xo / X xo
B [(“”) Y | G \oT ) Im( 2T ))

‘ 1 ’ x2 X X (x X // x xo)
MICTS)) (""“"z_f Yo7 L \ToT ) Im( 3T

(9.3.13)
as, the streaming for a moncenergetic source located at radius

) Ko(p) p(3—3b)/2 -
S = 47w 0p FO <m—n+ (m-n) (n+l1) =

r, # 0, and b # 1.
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The general structure of Sp(r,p) in the (r,p) plane resulting
from a monoenergetic source located at radius r, # 0 for the
particular cases

_ 1.5
(1) K = Kc pr and V ro/K(ro,po)

1.46,

(ii) K KC pJr and V rO/K(ro,po) 0.4,

are shown in Figures 9.6b and 9.6c. Figure 9.6a shows for comparison.
the structure of Sp(r,p) in the (r,p) plane for a monoenergetic source
lécated at r, = 0, and a diffusion coefficient K =-Kb p /r. The
figures show an (r,p) plane and the arrows indicate schematically the

direction of Sp (either inward or outward).

In both examples with r, # 0, there are tw§ outflow regions
and one inflow region. The inflow regions include the source point
at (ro,po). For K = Kc P rl's, Fiéure 9.6b shows that the inflow
region extends to radial distances r >> r, at low momenta, and there v
is a net inflow of particles with momenta between the curves p = O and
S = 0. However for K = Kc p V¥, the inflow region does not extend

|%
far beyond r = T, and in contrast to the case K = Kb P r1°5

, there is
an outflow of particles at low momenta at radii O <r'<r°. In both

cases there is an outflow of particles at the upper end of the momentum

range at radii r <r .

These flow patterns can readily be understood in terms of the
momentum change term in the continuity equation (9.3.1) providing an
effective source of particles and of particles changing momentum at

the average rate (9.3.5)

<p’> = Vop BUP/Br !/ 3 Up)’ (9.3.14)

over the whole (r,p) plane. The outflow of particles at the upper end
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of the momentum range at radii r < r, could not occur if cosmic-ray

particles lost momentum continuously at the adiabatic rate (7.1.6).

The relationship between the mean rate of change of momentum
<p> and the streaming is conveniently illustrated by plotting the
flow lines in (r,p) space of the average particle. These are defined

parametrically by Equations (7.6.8) and (7.6.9):

dr .fg Vop aFo aFo

F e O I T R T A
(9.3.15)

g v BFO

__p_ = S = -E— — . - .

dt p> 3Fo r (9.3.16)

Alternatively eliminating time we obtain

dr _  <i> _ 3<V o) aFo _ai / (V aFo)

dp  <p> T 3 dp + K(r,p) or P or ’
(9.3.17)

the direct equation of the flow lime.

We now obtain the analytic solution of the flow line equation

(9.3.17) for the monoenergetic solar source solution (9.1.3) with

r, = 0. Substituting the expression (9.1.3) for Fo in the flow line

equations (9.3.15) and (9.3.16) we have

K (p) p3732)/2,

dr _ V u o
T = Tyt T , (9.3.18)
dp _ -2V op u
at 3r (oD ° (9.3.19)
where
u = x2/(4T).
x = 2(r p3/H D2y, (9.3.20)
Py (1-3b)/2
T = 3 fp Ko(z) z dz / (2v).
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Regarding u and T as independent variables and using the

derivative transformations

dr _ (2r) du  (dr) drT
a& " (a )T & (ar)u ac  ?
o . () du, op) &
dt au)T dt 3T dt °
u

(ﬁg _ (ntD)r
du 2u

T

(9.3.21)
(§£> - (ntDr Vr
3 - ’
T u 2T Ko(p) p(3 3b)/2

ap\ .
(3u> = 0

T
) -
3T (1-3b)/2

u 3 KO(P) p

(cf. Equations (8.3.11)) the flow line equations (9.3.18) and (9.3.19)

become
dr (3-3b)/2 _u
dt Ko(p) P (n+l)x ’ (9.3.22)
du _
a - % | (9.3.23)
Dividing Equation (9.3.23) by (9.3.22) we obtain
du _ '
aT = 0, (9.3.24)

as the flow line for monoenergetic solar cosmic-rays released from

r, = 0, and we note thatit contains only u and T as variables.
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The general solution of the flow line equation (9.3.24) is

u = constant, (9.3.25)
a particularly simple result. The flow lines in (u,T) space are
straight lines paréllel to the T axis. In physically realistic cases,
the integration constant of Equétion (9.3.25) is positive.
We note particularly that these flow lines apply to the
general case K = Ko(p) rb, b < 1, and not just the case K = Kc p rb.

They may of course be expressed in terms of r and p and we do this next

in particular cases to illustrate the general features.

For a diffusion coefficient K = Kc pa rb, (a>0,b<1)

we have
3/2 .1-b
xR 2 Ve L) )7
4T 3(1—b)2 K(re,po) (1_ (p/po)d) (9.3-26)
where
§ = a+ 3(1-b)/2,

and r, is some fixed heliocentric radius. Using the results (9.3.26)

in the flow line equation (9.3.25) we have

r/ry = [(1—(p/p0?6)/(1—(pi/po)6) 11/ (1-b) (p/pi).w2 »  (9.3.27)

as the flow line passing through the point (ri, pi) of position
momentum space. An important and strikipg feature of the flow line
(9.3.27) is that it is independent of the solar wind speed V and the

diffusion coefficient constant Kc.

The flow lines (9.3.27) for a monoenergetic source located at

ré = 0 for the case K = KC p /r are shown in Figure 9.7 on a linear-

linear scaling in the (r,p) plane. We have redrawn these flow lines
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on a log~log scale in Figure 9.8 in order to emphasize the nature of

the flow lines at low momenta.

The flow lines for a monoenergetic source located at radius

r # 0, for the particular cases

1.5
K pr and V ro/K(ro,po)

(1) K o

il
[l

1.46,

(i1) K K, pJT and V ro/K(ro,po) 0.4,

are shown in Figures 9.9 and 9.10 respectively. These flow lines were
obtained by substituting the expression (9.1.1) for Fo in the flow line
differential equations (9.3.15) and (9.3.16) and numerically integrating

the resultant differential equations as an initial value problem.

For r # 0 the flow lines of Figures 9.9 and 9.10 are of two

main forms:

(i) those that circulate around the source, and
(ii) those that go outward from the source with p decreasing
with increasing r.
As in the flow lines obtain for monoenergetic galactic cosmic rays ,

there is a critical curve separating the two forms (cf. Figure 8.7).

The general features in common of the flow lines of Figures

9.7 - 9.10 are:

(i) every flow line passes through the source point (ro,po).
(ii) At low p/po, the flow lines are of the form

r p3/2 = constant.

As noted previously, this result is characteristic of the convective
solution of the equation of transport. We note that for the case

K = KC P Jr and r, = 0 the above features can be seen directly from
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the analytic solution (9.3.27).

For the cases with r # 0, further loci which assist in
assessing the structure of the flow lines are the locus of the
minimum values of p/po along a flow line (when it exists) and the locus
of the minimum values of r. The first is the locus <p> = 0, i.e.
8Fo/ar = 0, and it corresponds to a maximum in the distribution function
considered as a function of r, with p fixed. The second are the loci
<t> =0 or Sﬁ = 0. The loci <r> = 0 and <p> = O are shown by
broken lines on the flow line plots of Figures 9.9 and 9.10. These
curves were obtained.by substituting the expressibn (9.1.3) for Fo in
the flow line equations (9.3.15) and (9.3.16) and solving the equations

<t> = 0 and <p> = O numerically.

At large radii the flow lines of Figures 9.7 - 9.10 show that
nearly all particles, on average are losing momentum as they stream
outwards. For the cases where K = Kc p ./r, all particles, are on
average behaving in this manner (Figures 9.7, 9.8 and 9.10) but for the

r1°5, displayed in Figure 9.9 there is a small proportion

case K = Kc P
of low momentum particles which are, on average, gaining momentum and

flowing inwards.

In contrast to the above results, the flow pattern for mono-
energetic galactic cosmic-rays for the case K = Kc P rl's, v re/K(re,po)
= 0.1, displayed in Figure 8.7, shows that at all radii, there are
particles with momentum near p = P, which, on average, are géining
momentum as they stream outwards. In other respects the flow lines of
Figﬁre 8.7 are quite similar (particularly near r = 0) to the flow
lines for a monenergetié source located at radius L (r0 # 0, r # =),

1.5
r

for K = Kc p and V rO/K(ro,po) = 1.46 displayed in Figure 9.9.
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To conclude this section we reiterate the comments about
flow patterns made at the end of Section (8.3). The flow patterns
show clearly the regions in (r,p) space of the inflow and outflow and
momentum gains and losses of the average particles. The momentum
gains occurring make the flow pattern variations explicable. We stress
however that the flow lines represent the mean or average effects on
the particles and not the path in (r,p) space of any individual particle.
The individual particle paths in (r,p) space are‘random with some

order (the average effects discussed here) superimposed.
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FIGURES 9.1 - 9.10
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Figure 9.1 -  the momentum dependence of Fo’ Up and S
for a monoenergetic source of particles of
momentum P, released from radius r, = 0.
The diffusion coefficient K(r,p) = K_p /r
and the parameter Vr/K(r,po) has values
0.001, 0.01, 0.1, 1.0 and 10.0. The functions
r2 3 \
s Po

Fo = N Fo’

<l
[
=

0|
i

are dimensionless forms of Fo’ Up and Sp, and

r,. = 3Kc P, / (ZVG)J

1/(1-b)

is a characteristic length (see Equations (9.2.2)),

a=1, b=0.5, 6 = 1.75.
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Figure 9.2

- The momentum dependence of Fo’ Up and S
for a monenergetic source of particles of
momentum p_, released from radius ro(ro # 0).

The diffusion coefficient K(r,p) = Kc P rl's

the heliocentric radius variable r/ro = 214.95,
and the parameter V ro/K(ro,po) has values

0.03, 0.3 and 3.0. The functions

r2 p3 v
F = 209 F
o N o’
_ ri po A"/
Up - N Up’
2
5 = o %o S
P N p’

are dimensionless forms of Fo’ Up and Sp.
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Figure 9.3a - The momentum dependence of Fo’ Up and S
for a monoenergetic source of particles of
momentum p , released from radius ro(ro £ 0).
The diffusion coefficient K(r,p) = Kc p rl's,
\Y rO/K(ro,po) = 1.46, and the heliocentric

radius variable r/ro has values 1, 2, 100 and

1000. The functions

r2 p3 v
F = 292 F
o N o’
_ rg po v
UP = N Upa
rZ
5 = =2 %o S
P N p’

are dimensionless forms of Fo’ Up and Sp.
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Figure 9.3b -~ The momentum dependence of Fo, Up and

Sp for a monoenergetic source of particles of

momentum p_, released from radius ro(r0 # 0).

The diffusion coefficient K(r,p) = Kc P rl's,

VrO/K('ro.,po) = 0.1, and the heliocentric
distance variable r/ro has values, 1, 2, 100

and 1000. The functions
r2 3 v

F, = —5— F_,

=
(o]

=]

u
[t
-

are dimensionless forms of Fo, Up and Sp.



328.

10 =
F
MONOENERGETIC INJECTION
. ™ K(r.p)=K. pr‘-5
107
16°
16°
16“
Vro/K(rg.pg)=0.1
10-1‘ - lllllll i1 lllllll L1 LAlsl
1& = Up
108k r/ry=1
=7
10 3
10" E 100
i 1000
1615 LA llllll Wit Illlll Al llul‘_l A AL llllll L LA ALl
10? -
o Sp
0% F
6% F
_102 Ct ooonmd o L1um|31 1uuulzL||nm.| 1o i 5
16° 16* 10 10 10" 10
P/ Py

Figure 9.3b



329,

Figure 9.4a - .Contours in the (r,p) plane of the characteristics
of a monoenergetic source of particles of momentum P, released
from heliocentric radius r, = 0. The figure is drawn for a
diffusion coefficient K(r,p) = K, P /T, and the parameter

\ re/K(re,po) = 0.1, where r, 1s some fixed heliocentric radius.
Shewn (in dimensionless form) are

(a) the mean distribution function Fo’
2

(b) the differential number density Up =4 1p Fo,
(c¢) the radial gradient G = (1/Up)(3Up/8r),
(d) the radial differential current density Sp, and its

convective and diffusive components Sc and S,, i.e.,

d

- 3
S. = 4w p~ (V/3) BFO/Bp,
S, = -4 2 K(r,p) 9F /or
d P »p) F /ar,
Sp. = Sc + Sd.
Here
—. 2 3
F, = (rS P, V/N) F,
U = (r2 p V/IN) U
P s "o p’
Grad (1og(Up)) = ar, Gr’
s = (r2 p /N) S
c s "o c’
s, = (r2 p /N) S
d s "o d’
S =§'+"s' = (2 p /N) S ;
P c d s o p’
_ a 1/(1-b)
rs = [3 KC Po /(2V6)] ’

is a characteristic length (Equation (9.2.2)), and

a=1, b =0.5, § =1.75, a = 36/49.
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Figure 9.4b - Contours in the (r,p) plane of the characteristics
of a monoenergetic source of particles of momentum Py released
from heliocentric padius r, = o. The figure is drawn for a
diffusion coefficient K(r,p) = Kc pJr, and the parameter

v re/K(re,po) = 0.1, where r, is some fixed heliocentric radius.
Shown are:

(e) the ratio of the bulk flow speed <r> to the solar wind speed
V, i.e., dR/dt = Sp/(V Up), and the related component quantities

Sd/(V Up), and the Compton-Getting factor C = Sc/(V Up),

(f) the time average rate of change of momentum <p> , expressed
in dimensionless form, 1i.e.,
dp/dt = (a rs/(V P,) <p> = [a T p/ (3 po)] G

where Gr is the radial gradient,
(g) the ratio of <p> and the adiabatic deceleration rate

<P>_4 = -2 Vp/ (31),

i.e.,

(dp/dt)/(dp/dt) ad = <§>-/<ﬁ>ad

As in Figure (9.4a)

~  a 1/ (1-b)
-rs = [3 KC Po / (ZVG)] ’

is a characteristic length and

a=1, b=0.5 6=1.75, o =36/49.
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Figure 9.5a - Contours in the (r,p) plane of the characteristics
of a monoenergetic source of particles of momentum P, released
from heliocentric radius r, (ro # 0). The figure is drawn for
a diffusion coefficient K(r,p) = Kc P rl'5 and the parameter
\Y rO/K(ro,po) = 1.46. Shown (in dimensionless form) are :

(a) the distribution function Fo’

(b) the differential number density Up =4 7 p2 Fo’

(c) the radial gradient G = (1/Up)(8Up/ar),

(d) the differential current density Sp, and its

convective and diffusive components, i.e.,

_ 3
SC = -4 mwp> (V/3) aFo/ap s
S, = -4 n p? K(r,p) OF /or
d p ’p o) ’
Sp = SC + Sd.
Here
= .2 3
F, .= (ro Py v/N) Fo
T = (2p VMU
P oo p’
Grad (log (Up)) = T, Gr’
S =(r2p/N)S
c oo c?
B —(2 /N) S
d o Po d’
S =35 +3, = (2p /M) s.
P c d oo p
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Figure 9.5b -~ Contours in the (r,p) plane of the characteristics

of a monoenergetic source of particles of momentum P, released

from heliocentric radius r, (ro # 0). The figure is drawn for a
1.5

diffusion coefficient K(r,p) = KC pr , and the parameter

v ro/K(ro,po) = 1.46. Shown are
(e) the ratio of the bulk flow speed <r> to the solar wind speed
vV, i.e., dR/dt = Sp/ 4 Up), and the related component quantities.

Sd/(V Up), and the Compton-Getting factor C = Sc/ \Y Up,

(g) the time average rate of change of momentum <f>> , expressed

in dimensionless form, i.e.

dp/dt = [r /(V p))] <p> [r, »/(3p )] G_,

where Gr is the radial gradient,
(g) the ratio

(dp/dt) / (dp/de) ad = <p> [ <p>_,

where

* <P,4 = —2Vp/G3n),

is the adiabatic deceleration rate.
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Figures 9.6 - show schematically the differential current
density Sp in the (r,p) plane for three different models,

in which particles of momentum p, are released monoenergetically
from heliocentric radius . The models are specified by the
position of the source (ro =0 orr # 0), the diffusion
coefficient K(r,p), and in cases (b) and (c) by the dimension-
less parameter V ro/K(ro,po). The figures are drawn for the

cases:

(a) r =0, K(r,p) = Ko(p) rb, b < 1, where K_(p) is an

arbitrary function of momentum P;

1.5
r

() r #0, K(r,p) =K p 1.46;

o T ¢ = K, s VrO/K(ro.po)

004.

() r, # 0, K(r,p) = K, p VT, \' ro/K(ro’po)

The arrows represent the direction of Sp.



1.0 —

I LI ! 1 T !
- — - — |
0.8 - s — - -
- K(r.p=Ko(P)rP, ber, /
—_— >
0.6" "0=0 -
QO |~ _— : ——— —_—
S 0.4f 1
—_— - —- »
- 4
0.2 — L — — -
-0 5 1 b | | 1 1 . | 1
2 40 tre 60 80 . 100
Figure 9.6a
1'0 T 'I'l'l'l LI § l'll'[[ Tj’llllll' LI 4 "I'I'] T 1T
: —_— > —
0.8 L Knp=kepr! S
Vro/K(ro,po)=1.46
0.6 - Rl
o° (™ i
N — —
S 0.4F i
—_—
B - . _
0.2 «—
. —— -
F ————— : -
O llllllll LJIII“I] 1 IAIN“ i dodebend 41 1) Al 2 1 aill
162 0" 10° o' 102 108 10t
I'/t'o
Figure 9.6b
1.0—r—7—7 T T T 1T 7T
/WjM —— —
0.8+ K(r,p)=K pVr 7
o6 Vro/K(ro,p)=0.4 ]
. — el —_— -
o i —_— —_—_—
~ —_— —_— n
0.4+ — —_—
| I —_— —_— -
0.2} - — ,
- _ﬂ -
—_—
0 S WS Y U [ A T T S TN T U S O VO SO
0 1 2
r/fo

. Figure 9.6c



339.

Figure 9.7

Flow lines in the (r,p) plane for a
monoenergetic source of particles of
momentum p_, released at a steady rate
from the source point r, = 0. The
diagrém is drawn on a log-linear scaling,
for thé particular case where the
diffusion coefficient K(r,p) = K  p /r,

and re is some fixed heliocentric radius.
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Figure 9.8

~ Flow lines in the (r,p) plane for a
monoenergetic source of particles of
momentum P, released at a steady rate
from the source point r, = 0. The
diagram is drawn on a log-log scaling
for the particular case where the
diffusion coefficient K(r,p) = Kc pJ/T,

and re is some fixed heliocentric radius.
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Figure 9.9 - Floﬁ lines in the (r,p) plane for a
monenergetic source of particles of
momentum p , released at a steady rate
from a spherical surface at heliocentric

" radius r, (r° # 0). The diagram is drawn
for a diffusion coefficient

K(r,p) =K p 3

and V rO/K(ro,po) =
1.46., The flow lines are indicated by
the full curves, whereas the loci

<f> = 0 and <p> = O are indicated by

broken curves.
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Figure 9.10 -~ Flow lines in the (r,p) plane for a

monoenergetic source of particles of
momentum P, releaéed at a steaady rate
from a spherical surface at heliocentric
radius r, (ro # 0). The figure is drawn
for a diffusion coefficient K(r,p) =

K, P Jr and V rO/K(ro,po) = 0.4. The
flow lines are indicated by the full
cufves, whereas the loci <r> = 0 and

<p> = 0 are indicated by broken curves.
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CHAPTER 10

A FREE ESCAPE BOUNDARY SOLUTION

10.1 Introduction

In this chapi:er we study the steady state propagation, within
the solar cavity of monoenergetic galactic cosmic rays, in a model

having a free escape boundary at r = r In this problem the differ-

b*
ential number density Up satisfies the boundary conditions
(i) Up > Ng 6(p—po) as r > 1.,
(10.1.1)
(ii) UP is finite as r = O,
and in the region r > Ty the diffusion coefficient K > «, corresponding

to free escape conditions.

The solution differs from the previous cases of Chapter (8),
where we considered the propagation of galactic cosmic-rays with a
boundary at infinity. In general it is given by an eigenfunction
expansion as outlined in Chapter (6). We recall from Chapter (6), that
we could only obtain solutions with finite boundaries for cases where
the diffusion coefficient K(r,p) has one of the forms

(1) K = K rb,

(&
(1) K = K, 2 p3(o-D/4

and the solar wind speed V is assumed to be constant.

The evaluation of the finite boundary s_olufion is in general
much more complex than the case where the boundary is at infinity.
If the eigenspectrum in the solution is discrete it is necessary to
evalﬁate the eigenvalues and eigenfunctions and then sum an appropriately

weighted series of eigenfunctions. However if the eigenspectrum is
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continuous the solution is given by an integral over the continuous
range of eigenvalues. In the former case the terms of the eigenfunction
series decrease with increasing eigenvalue An and the series is in
general slowly convergent for p near P, For é continuous eigen-
spectrum, the evaluation of the integral can be quite difficult,
particularly when the integral is highly oscillatory and thére is an
infinite range of eigenvalues.

We consider the case where the diffusion coefficient

K=K b 3b-1)/4 13

, withb =7/3 i.e., K = Kc P The solution

- of the boundary value‘problem (10.1.1) for this type of diffusion
coefficient is given by a semi-finite integral, corresponding to a
continuous eigenspectrum. It has been derived, in detail in Chapter
(6) and using the result (6.4.4), the solution, expressed in terms of

Fo(r,p) and valid for O < r < r O<p < P, is

b’
- N 5/2 -=-3/2
F(rp) = —pbe I exp [n(1-z2/u)/4 1

2% P,

Iy s exp [=s*(1-u)/n L3, (8)¥g 5(s0) = Jg ) (SEIYg p()1/

2 | 2

[JS/Z(S) +-Y5/2(s)] ds, (10{1.2)
where '
o= p/po,
n = 3 (V rb/K(rb,po))/Z,
¢ = ir) Y3,
and J5/2(s) and YS/Z(S) are Bessel functions of the first and second

kind of order 5/2. Note that three quantities specify the solution:

p/po, r/rb and V rb/K(rb,po).

Parker (1965) has considered a similar solution of the steady-state
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equation of transport satisfying the boundary conditions (10.1.1),

for a constant diffusion coefficient in the region O < r < L2 and

a constant solar wind speed V. He obtained and evaluated a series
for the distribution near r = 0. The present study is more extensivg
than Parker's and we show the characteristics of the solution (10.1.2)

over the whole range of heliocentric radii O < r < Tys and for a range

of values of the parameter V rb/K(rb,po).

In Section (2) we outline the numerical methods used to evaluate
the solution (10.1.2). The reader who is not particularly interested
in these details, can omit this section without losing the physical

implications of the solution.

In Section (3) we show the characteristics of the solution as
a function of p/po for a range of values of the radial variable r/rb
and for a range of the parameter V rb/K(rb,po). We also show the

effect of varying the free escape boundary at r,, for V r/K(r,po)

b’
fixed, and we compare the momentum spectra thus obtained with the mono-

energetic galactic spectrum solution (8.1.1) results obtained when

10.2 Evaluation of the solution

In this section we discuss methods of evaluating the solution
(10.1.2). We first obtain expressions for F, 3F0/3r and 3F0/3p.
We note that having computed Fo’ BFo/ar and BFO/ap it is relatively
simple to calculate the basic physical quantities,.such as the differ-
ential number density, the radial gradient, the streaming Sp, and its
convective and diffusive components. The computation of Fo’ aFo/ar

and aFo/ap reduces to the evaluation of six infinite integrals of the
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form 2

1 = j_‘: e—x sj'n(ax) h(x,_V, ;) dx, (10.2.18)

j =/, e cos(ox) g(x, v, 2) dx, (10.2.1b)
where

v = n / a1 -w,

—_ (10.2.2)

a = (¢ -1)Vv ,

W= p/ Py

n = 3(V rb/K(rb,po)) / 2,

(!‘/rb) —2/3 s

Y
[}

and h(x,v,z) and g(x,v,%) are odd and even rational functions of x

respectively.

We then gi&e two methods of evaluating the integrals (10.2.1)
In the first method we approximate the functions h(x,v,z) and g(x,v,z)
by Hermite polynomial expansions, and using the properties of Hermite
polynomials we devise an algorithm to numerically evaluate the integrals,
and estimate the errors involved. For sufficiently large values of
the parameter o, given in Equations(10.2.2), the errors increase and
. we then use the second method of computing the integrals (10.2.1). In
this latter method the integrals (10.2.1) are evaluated by solving a
system of first order linear ordinary differential equations as an

initial wvalue problem.

From the solution (10.1.2) we have

N 5/2 -3/2
- A exp [/n (1-22/u)/41 1

F =

o 3 n 1

2‘ﬂpo

aFo Fo

5T = ;': 2(: (n C/ 2u - I3/Il) / (3 (r/rb))) (10.2-3)
oF F 2 2
3_51 = 2 (n %/ uS) - 3/Qu) + I,/1),

p P



/ [Ji(s) + Yi(s)] ds,

where
L =
I2 = BIllau

351.

s exp [-s°(1-u)/n] LI ()Y_(s8) - Y _(8)J (sZ)]

(10.2.4a)

= /) 1Y s expl-s’(1-u)/n1 [3 ()Y (1) ~ ¥,($)J (sE)]

ILZ(s) + Y2(9)] ds

oo

= J

0
JL(s) + Y2(s)] ds,

.and m = 5/2.

Since m is a half integer in Equations (10.2.4) we may express

the ordinary Bessel functions in these equations in terms of spherical

32 exp[—sz(l—u)/n]

(10.2.4b)

I, = (m/c)I1 + azl/aq

Lim(s)Y _, (cs) - Jm_l(s;)Ym(s)]

(10.2.4c)

Bessel functions. Using the relations between the spherical Bessel

functions jn(x), yn(x) (n is an integer) and the ordinary Bessel

-functions Jn+%(x), Yn+%(x), i.e.,

3,0

yn(X)

and the results
jl(x)
j2(x)
yl(x)

yz(x)

v /(2x) Jn+%(X),

(10.2.5)

Jr T(2x) Yn+%(x),

sin(x)/x2 - cos(x)/x ,
(3/x3 - 1/x) sin(x) - (3/x2) cos(x), (10.2.6)

—cos(x)/x2 - sin(x)/x,

(-3/x°+1/x) cos(x) - (3/x%)sin(x).

(Abramowitz and Stegun 1964, Section 10.1), we may write Equations

(1n.2.4) as
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. =¢9/2 7y 1, + JV’jll /2,

1
o= 202 232517 e, (10.2.7)
2 2 2

-3/2 2, 372

13 =z Cv i, + v / 33] /2,

where

o —u2 2, 2 224

il = L& e sin(au) [9+v(9z-3-37)u” + z"v'u ] u/so(u,v) du,

2

i, = {: e " sin(au) [9+V(9C-3-3C2)u2 + szzua] u3/s°(u,v) du,
o —ul 2, 3

i; = /e sin(au) [3+(3z-1)v u']l u /so(u,v) du,

2

j1 = {: e U cos(au) [9(l-z)v + 3(;—;2)v2u2] u2/so(u,v) du,
o —ul - 2.2, &4

i, =1, e " cos(au) [9(1-2)v + 3(t-£2)v“u"] u'/s_(u,v) du,
— 2 2. 4

j3 =/ e Y cos(au) [-3v(z=1) + v'Z u’l u /so(u,v) du,

s (u,v) = 9+ 3w’ + Vi, (10.2.8)

v o= n/ (1-u),
a = (z-1) Vv .

Tne results (10.2.8) , show, as nentioned previously in Equations
(10.2.1) that the computation of F o, BFolar and BFo/ap reduces to the

evaluation of infinite 21ntegra1$ of the form

1 = [, e sin(ex) h(x) dx, (10.2.9a)
j o= I e'xz cos(ax) g(x) dx, (10.2.9b)
where
h(x) = m(x,v,%) / s (x,V), . (10.2.10a)
é(x) = t(x,v,8) / s (x,v), (10.2.10b)
S, (x,v) = vz(x—zl)(x-;i)(x+zl)(x4i5i), ‘ (10.2.10¢)
2, = 3w M3, (10.2.10d)

m(x,v,z) and t(x,v,Z) are odd and even polynomials of x respectively.

To compute integrals of the form (10.2.9) we approximate the
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rational functions h(x) and g(x) by Hermite polynomial expansions

hn(x) and gn(x) of degree n.

n
B = ko 3 Pt =
n
8n(x) = k£0 ck pk(x) =
where
2
k x
-1
P (x) = L e 4

J2¥ k! VA ax

These expansions are

n h(t;) p_,,(x) |
i£0 (x*ti)pé+1(ti) ’ (10.2.11a)
n g(ty) pyq(x)
z . .
120 (x-ty)pp,,(ty) ’ (10.2.11b)
2
™) = - * —— H, (x).
2k (10.2.12)

Here Hk(x) is a Hermite polynomial of degree k, pk(x) is the normalised

form of Hk(x) and the constants t, are the roots of pn+1(x), i.e.,

pn+1(ti) = 0, i = 0(1)n, (10.2.13)
and

{m e pk(x) pz(x) dx = 6k2 (10.2.14)
Note that since

hn(ti) = h(ti)’ i = 0(1)n, (10.2.15a)

gn(ti) = g(ti), i =0(l)n, (10.2.15b)

the polynomial expansions hn(x) and gn(x) are the Lagrange interpolation

polynomials for h(x) and g(x) with interpolation points located at

X =t i=0(1)n.

i’

The coefficients ap and C occurring in the expansions (10.2.11la)

and (10.2.11b) are given by

n
T (nil) 1Zo P(Ey) Pk(ti)/Pi(ti), k = 0(1)n, (10.2.16a)
. 2
‘% T (nil) (o 8(5) B (/P (), k = 0(L)n, (10.2.16b)

(See Appendix (E)).
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The roots of t,i of pn+l(x) and the constants pk(ti)’
k = 0(1)n, i = 0(1)n, occurring in the expansions (10.2.16) for ay
and ¢, can be computed as follows., The normalised Hermite poly-

nomials satisfy the recurrence relation

Py (®) = J27GHD x p () - fk/ (k1) p_ (x), k = 0(1)n,
(10.2.17)

(Abramowitz and Stegun 1964, Section 22.7). We can write the result

(10.2.17) 1in the form

x p (x) =M p,(x) +/(n+1)/2 pn+1(X)‘sk,n’ ko &= O(I)HZm 2.18)

where the summation convention has been assumed and

Mg = JOD7/2 6+ [i2 6 (10.2.19)

2+1,k”

We can regard the Mkz as the elements of a symmetric tridiagonal matrix
M. Noting that at x = t, we have pn+1(ti) = 0 so that the second

term in (10.2.18) is zero and

t; Pty = M (t)p (t)), k, & =0()n. (10.2.20)

T
Introducing the column vector P(i) = (po(ti)’ pl(ti), ey pn(;i))
where the superscript T denotes the transpose, the set of linear

equations (10.2.20) can be expressed in the matrix form
ti P(i) = M - P(i), i =0(1)n. (10.2.21)

This latter result shows that the roots ti and the column vectors

LT
[po(ti)’ pl(ti), oo _pn(ti)J , 1 =0(1)n, are the eigenvalues and

eigenvectors of the symmetric tridiagonal matrix M. This eigenvalue

problem for the roots t, and the eigenvectors P(i) is readily solved

i
by using the theory of Sturm sequences (Hammarling, 1970).

Substituting the Hermite polynomial approximations (10.2.11)

for h(x) and g(x) in the integrals (10.2.9) we obtain approximations
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i(n) and j(n) to the integrals i and j:
1™ oo e—xzsin( ) h(x) dx = % J (@), (10.2.22a)
I ax) h (x) dx Ly 3 Jp(a), .2.22a
(n) - -x2 n
j = [m e cos (ax) gn(x) dx = kEO Cx Kk(a), (10.2.22b)
where
Jk(a) = [m e sin(ax) pk(x) dx
2
1 -
= 1% sin(kn/2) of e /4 Kkt (10.2. 23a)
o 2
Kk(a) = [ e x cos (ax) pk(x) dx
2
1 -
= 1% cos(kn/2) of & T4 2K wr (10.2.23b)

This is the algorithm we use in the next section to evaluate the

integrals (10.2.8) and hence Fo’ 3F0/3r and aFo/Bp.

We have changed the problem of evaluating the infinite
integrals (10.2.8) to one of finding the eigenvalues and eigenvectors
of a symmetric tridiagonal matrix. The accuracy can be increased by
increasiné n, the degree of the polynomial approximation and the
procedure is satisfactory when the parameter o is sufficientlysnnal}

(n) . (n)

for i and j to be good approximations to i and j.

The results (10.2.23a) and (10.2.23b) are standard integrals
for Hermite polynomials (Erdelyi et.al., 1954, Vol.l, Sections 1.11,

2.10). Since the functions Jk(q) and Kk(a) satisfy the recurrence

relations
_ 2
Tpy = -7/ VBKD ) I, . k21,
(10.2.24)
2
Kpe = "G BRED ) Ky g, k2l
and
Tk = Ko = O
TR
3 = 1% 8 (10.2. 25)
' -
K = o m e s
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we may sum the series (10.2.22a) and (10.2.22b) most efficiently by
using Clenshaws algorithm, (Clenshaw, 1955). 1In the present application

we construct sequences {bk}, k = M(-1)0, {ej}, j = N(-1)O,

2
by ayp — (@ //BGHAD(ZKH3) ) b,
2 (10.2.26)
ey = Sy ~ (a™ /7 J8(3+1)(23+1) ) €41°
where
(n-2)/2 1if n even,
M =
(n-1)/2 1if n odd,
(10.2.27)
n/2 if n even,
N =
(n-1)/2 if n odd.
buer T w1 T O
then the series (10.2.22a) and (10.2.22b) are given by
" .
(n) _ -
i = kB0 %2k+1 Yokl T Po N1
' N (10.2.28)
.(n) _ c K = e . K..
j = Ep 2 2k o "o

‘Summarizing we determine the integrals (10.2.9) by evaluating

the a, and ¢, and thén summing appropriately to find bO and e The

k k

0

and ¢, in turn have been found from the expressions (10.2.16) which

ay k

require pk(ti) and ty which are obtained as the eigenvalues and eigen-

vectors of the symmetric tridiagonal matrix (10.2.19).

Another important aspect of calculating the integrals (10.2.9a)

and (10.2.9b) by using Hermite polynomial expansions for h(x) and g(x)

is that we may obtain asymptotic estimates of the errors Rgn) =1i- i(n)

and Rgn) = j - j(#) for large n by using methods of complex inte-

gration (Donaldson and Elliot, 1972; Paget and Elliot 1972). Using
(n) (n)

these methods we can show that the:errorSRi and Rj for functions
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h(x) and g(x) of the form (10.2.10), are given by

2
Rin) = L: e X sin(ax) [h(x) - hn(x)] dx.
= - 2Im (n(z) q(z;,0) / 3 {3 vz p, (2,))), :
1 1 1 Pl 0. 2. 29a)
(n) -
R = [/ e cos(ax) (g(x) - gn(x)) dx

j 00
-2 In(t(z;) Q(z;,0) / (3 VERY 2) Py (21))),(10.2.29b)

where
-
q(zl,a) = [ e x sin(ax) pn+l(x) / (zl-x) dx, (10.2.30a)
2
Q(z;,0) = [: e cos(ax) pn+1(x) / (zl—x)'dx; (10.2.30b)
hG) = m(x)/s, (x,v), - (10.2.30c)
g(x) = t(x)/s (x,v), (10.2.30d)
So(x’“) = v2 (x-zl)(x4Ei)(xle)(x¥Ei), | (10.2.30e)
2, = V3Iy A3, (10.2.30f)

m(x) is an odd polynomial and t(x) is an even polynomial (Appendix(F) ).
The result (10.2.29a) is exact for n > the degree of m(x) and the
result (10.2.29b) is exact for n > the degree of the polynomial t(x),

but it is only practicable to evaluate these errors for large n.

Asymptotic estimates of the errors are obtained by using
asymptotic expansions of the functions q(zl,a), Q(zl,a) and pn+l(zl)'
To obtain these expansions we express the functions q(zl,a), Q(zl,a)

in the alternative form:

q(zl,a) = (Cn+1(zl) sin(azl) - J7 cos((n+l)1/2) d1

+ J;-siﬁ( (n+1) 7/2) d2)/kn+1, (10.2.31a)
Qzy,8) = (C ., (z)) cos(az;) + VT sin( (n+l) n/2) 41

+v m cos( (n+l) w/2) dZ)/kn+1’ (10.2.31b)

where
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d1 = fg xn+1 e—le4 cos ( (a=x) z;) dx
= an+2f; exp (-(n+2)x - a2 e-leé) cos (a(l-e—x) zl) dx,
2 (10.2.31c)
d2 = fg xt e ¥ /4 sin( (a-x) zl) dx
= an+2f; exp(-(n+2)x - az e—zx/A) sin(a (l-e_x) zl) dx,
2 (10.2.31d)
Con (@) =L €7 B G0/ (2 dx [k,
= HMDN2 oyt U (e2)/2, 1/2, 12Dy,
(10.2.31e)
k., o = V2 ey T (10.2.31£)

Hn(x) is the usual Hermite polynomial and U(a,b,x) is a standard
solution of Kummer's confluent hypergeometric equation (Abramowitz

and Stegun, 1964, Chapter 13).

We then substitute asymptotic expansion for Cn+1(zl)’ dl and
d2 of Equations (10.2.31lc) - (10.2.31le) into the expressions (10.2.31a),
(10.2.31b) for q(zla) an§ Q(zl,a) to obtain the asymptotic behaviour
of q(zl,a) and Q(zl,a). Finally we substitute the asymptotic expansions
for q(zla), Q(zl,a) and pn+1(zl) in the results (10.2.29a) and

(10.2.29b) and obtain asymptotic estimates of Rin) and Rgn).

The asymptotic behaviour of Cn+1(zl) and pn+1(zl) for)large n

is given in Elliot (Technical report 21), and

n+2 —a2/4
dl v -fi—zgfij——— [1 + a2/(2(n+2))+(a4/4-a2—azzi) /(n+2)2
+0 (a6/(n+1)3)1 s (10.2.32a)
n+3 —a2/4 -
a z, e 2
d2 n 5 1+ (a™=1) / (n+2)
(n+2)

+ (a? (3a2-zi—9/2) +1) /(a+2)2 + o(a6/(n+2)3)]', (10.2.32b)
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are the asymptotic expansions of the integrals dl and d2. The
asymptotic expansions (10.2.32a) and (10.2.32b) were obtained by
expanding the integrals (10.2.31c¢c) and (10.2.31d) by integration by
parts (cf. Erdelyi, 1956).

In the computations of Fo, BFo/ar and aFolap presented in

in) and R§n) in evaluating the integrals

the next section, the errors R
(10.2.8) in general decrease with increasing n. However as

U= polp + 1, the parameters v = n/(l-u) and =.(;-1)/v increase
very rapidly and the errors eventually become so large that we cannot

(n) (n)

use the approximations i and j of Equations (10.2.22a) and
(10.2.22b) to evaluate the integrals (10.2.8). Hence an alternative
method of evaluating the integrals (10.2.8) for u = p/p0 ~1, (p/po <1l),

was devised and we outline the method below.

In this method we first express the integrals (10.2.8) in a
slightly different form and we introduce integrals yi(e,c), i=1(1)8
" where |

e = (1-w) / n,
which are closely related to the integrals (10.2.8). Noting that

l-y = (l-p/po), we see that € is small when p - P, We then show

P } , 1 =1(1)8 are linearly related and

that{yi(s,c)} and {
the yi's satisfy a system of linear, first order, ordinary differential
equations with the independent variable being €. Since we can obtaiﬁ
analytic expressions for yi(O,c), (i.e., the value of yi(e,c) for

p/po = 1) we can solve this system of differential equations for

yi(e,c), numerically as an initial value problem, and hence we evaluate

the integrals (10.2.8).

The integrals i and j3 given in Equations

1, 12’ 13’ jl’ jz’
(10.2.8) are related to the integrals yi(e,c), i = 1(1)8 as follows:
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il = 2 € Y1 (e,z) . (10.2.33a)
. 2
i, = -2 ¢ yz(e,c), (10.2.33b)
_ 2
13 = 2¢ ys(e,g), (10.2.33¢c)
ip = 2Ve yy(e,0), | (10.2.33d)
3, 2 &2 ACHIE (10.2.33e)
. 2
iz = 2 > y;(e,0), (10.2.33f)
where
e = 1/v = (1-p)/n, (10.2.34a)
2 2, 2, .2 4
© - C=3~
y(e,0) = fo o€ 20 o405 ) 40 ((1o1)s) ds,
(9435 +s ) , (10.2.34b)
dy o o2 aar 2.2 4
yz(e,;) = ZEEL = —f() eS¢ s3 9+ (9 3 32 )5+t s ) sin((g-1)s) ds,
' ‘ (9435 +s ) (10.2.34¢)

2 2, 2
y3(€sC) = f‘(; e-s € 52 (9(1_CL+ 3(C_C )S )

74 cos((z-1)s) ds,
(9+38"+s ) (10.2.344)

dy 2 4 2.2
3. © -3 9(1-z) + 3(z-
ya(e,C) = 3 = —f() e s €8 ele C)Z 4(C £)s ) cos((z-1)s) ds,
(9438 +s ) (10.2.34e)
2 3 2
oy = o s e e HOEN B gn ()e) s, (10.2.346)
Y5ies (9+3s“+s")
d , 2
yg(e,0) = —-)157(6——];—)— =y ete 55‘3‘“%‘,{’52) sin((z-1)s) ds,
€ (9+3s“+s™)
| (10.2.34g)
2 4 2 -
y (e,0) = so e S € 2GS ) co5((c-1)5) ds, (10.2.34h)
(9+3s°+s ")
dy,(e,Z) 2 6 2
77 o - -3z+
y8(e,c) = g = —fo e ® ¢ 2 3 3% C24l cos ((z-1)s) ds,

(9+3s7+s) (10.2.341)

Note that the variable of integration s is related to that used in

Equations (10.2.8) by s2 =v u2.
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The integrals (10.2.34) satisfy the system of ordinary

differential equations

EZL = Ezg = + 3 -9
de Yoo de 9 Y2 Y1°
dy dy
3 4
& - Y & - 93*t3y,-9v;5
(10.2.35)
f_}:.s- = y iy—6. = q + 3 y -9 y
de Ve de 5 6 5°
dy dy
7 8
dc Yg> T - Y t3vg -9y
where
q, = f: e S ¢ s(9+(9§-3-3§2)s2 + CZSA) sin((¢-1)s) ds,
a; =I5 e 52000 + 3(-cP)sD) cos((-D)s) ds,
o -s% 2 ) (10.2.36)
95 = IO e s (3+(3z-1)s") sin ((z-1)s),
2
q; = 'IO e S € 54(3(1~C) + CSZ) cos ((z-1)s) ds.

In the system of ordinary differential equations (10.2.35) the
quantities 41> 93» 95 and q, are independent of the yi's and are

functions of € and ¢ only.

We now obtain analytic expressions for qi, 935 95 and 9.
Expressing the polynomial parts of the integrands of the integrals

(10.2.36) in terms of Hermite polynomials and then using the results

© —52 k -a2/4
fO e Hk(s) sin(as) ds = Jna e sin(kn/2)/2, (10.2.37a)
> g Kk -a2/4
fO e Hk(s) cos(us) ds = y/Ta e cos(kn/2) (10.2.37b)

where Hk(s) is an Hermite polynomial of degree k (Erdelyi et.al., 1954,
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Vol.l, Sections 1.11, 2.10), we obtain

a, = 98, + Oz -3-32 e, +% 0,

q; = 9(1-7) m, + s(z-2%) m, »
(10.2.38)
95 = 3 23 + (3z-1) 25,
q; = 3(1-¢) m, + §m6,
where _

2, = fia S e,
2, = VT (6a-a?) o’/ / (162,
o = V7 (« - 200° + 60) e‘°‘2/4 / (643,
n = VT (2ead) ol N (10.2.39)
m, = J¥ (a?-1202412) e'“z/4 / (3255/2),
m, = V7 (-a6+30a4 — 180a%+120) e‘“z/4 / (128e7/2),

a = (z-1) /v, e = 1/v = (1-u)/n.

The expressions (10.2.38) for 435 935 95 and 1y and the associated

quantities (10.2.39) are easily evaluated and we use these results when
we numerically integrate the-differential equations (10.2.35) to

obtain the yi's.

Finally we evaluate the integrals (10.2.34), i.e., yi(e,c),

=
]

1(1)8 at € = O by using the methods of complex integration. For

e = 0 these integrals have one of the forms

g

I = f; u(s) sin [(g-1)s] / (s4 + 3s2 + 9) ds,

°r (10.2.40)
J = f; w(s) cos [(z-1)s] / (s4 + 352 + 9) ds,

where u(s) is an odd polynomial and w(s) is an even polynomial.
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Using Cauchy's theorem in the complex s plane we can show that the

integrals (10.2.40) have values

I
and

J
where

8

" Im (u(sp) ei(“l)sl/sl) / 303

(10.2.41)

m Re (w(s)) ei("l)slysl)-/ 3/3

73 3 (10.2.42)

and we use these results to evaluate the integrals yi(O,c), i= 1(1)8.

In this way we obtain

yl(O)C) = _YB(O’C) = bl P+ al Q,
y (O’C) = -y (O’C) = b P+ a Qs

2 4 2 2 (10.2.43)
ys(O,C) = _Y7(ch) = bS P+ as Q,
YS(O,C) = -y6(0,C) = b6 P+ a6 Q)

where
a, = 270-0/2, b = 9V3 Ge-1-tH/2,
ag = -27¢/2, by = 93 (2-30)/2,
a, = 3(a1+J3 bl)/2, b, = 3(b1-/§ al)/Z,
_ (10.2.44)

a, = 3(a5+/§ bg)/2, b = 3(bs=/3 a5)/2,
P = 7 exp[-3(¢-1)/2] .cos[V3(z-1)/2 1,
Q = m exp[-3(¢-1)/21 sinly/3(z-1)/2 1,

as values

for yi(O,c), i =1(1)8.

Upon substitution of the expressions (10.2.38), (10.2.39) for

47> 93» 4

5 and q5 in the differential equations (10.2.35) and numeri-

cally integrating the latter set of equations with initial values

yi(O,C)s

i = 1(1)8, given by Equations (10.2.43), (10.2.44) we obtain
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numerical values for yi(e,c). Hence using the results (10.2.33),

(10.2.7) and (10.2.3) we evaluate FO,BFO/Br, and aFolap.

We note that the expressions (10.2.7) for Il’ 12 and 13, given

in terms of yi(e,c) are :

I, = c-S/zltyl(e,c) + y3(e,c)].
1, = 22 [y (e,0) +y, (007 /n (10.2.45)
I, = c_3/2 [ys(e,c) + y7(e,c)] .

Using the values of Yi(O,C), i =1(1)8, given in Equations (10.2.43),

(10.2.44) in Equations (10.2.45) we find that at

€ O, r # 2% (i.e., p = Pgs T # rb),

Il = IZ = I3 = 0. (10.2.46)

Substituting the above values of Il’ I2 and I3 into the expressions

(10.2.3) for F_, 3F_/dr and 9F /dp we find that for r # r£
Fo(r,po) = aFo(r,po)/Br = aFo(r,p)/ap4p=po = 0, (10.2.47)_

which shows that the differential number density, the streaming and

O<r<r,.

the gradient BFO/Br are all zero at p = P, and for r # T, b

The numerical methods presented in this section are quite
complex; we use them in the next section to investigate the physical

characteristics of the solution (10.1.2).

10.3 Characteriétics of the solution

In this section we show some of the basic physical character-
istics of the solution (10.1.2) which has Up -+ Ng G(p—po) as r > r.
We note against that the solution depends on the dimensionless quantities
Y rb/K(rb,po), r/rb and p/p0 and the diffusion coefficient has the

r7/3. ]

form K = KC P Since
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\4 rb/K(rb,po) = (Vv r/K(r,po) ) . (r/rb)4/3,

the solution may alternatively be expressed in terms of V r/K(r,pg),

r/rb and p/po. The latter formulation in terms of V r/K(r,po),

r/rb and p/po is particularly useful in showing thé relation of the

solution (10.1.2) to the monoenergetic galactic spectrum solution
7/3

(8.1.1) for X = Kc P obtained by letting o>

Using the methods of Section (2) we calculate Fo, aFolar and
BFolap and we investigate the momentum dependence of
(i) the distribution function Fo,
(ii) the differential number density Up =4 7 p2 Fo’
(iii) the radial gradient Gr = (l/Up) aup/ar, and
(iv) the radial differential current density Sp, and the

convective and diffusive components of Sp which we denote by Sc and

Sd’ i.e.,
_ 3
s, = -4 mp> (V/3) 3F _/ap,
S = =4 7 2 K 3F /or
d P o ’
Sp = SC + Sd.

In Figure '10.1 these quantities are plotted against p/po
for V rb/K(rb,po) = 0,005 and r/rb = 0.01, 0.1 and 0.9. 1In Figure
10.2 they are plotted against p/p0 for.r/rb = 0.1 and values 0.0005,
0.005 and 0.1 of ﬁhe parameter V rb/K(rb;po) and Figure (10.3) shows

similar plots for V r/K(r,po) = 0,11753 and rb/r = 1.01, 1.1, 2.0 and .

The Fo or Up curves of Figure 10.1 show the radial redistri-
bution of particles, initially injected with momentum P, from the
free escape boundary at r = Tye There is a substantial peak in the
distribution in the vicinity of P,- As we approach the boundary, i.e.

r/rb + 1, the peak moves towards P,» marrows in width and increases
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in peak value and U - N - .
P p > Ng (p-py)

The F_ curves also show that F +0asp>0. For r/rb = 0.9
and 0.1, there is a second peak‘in the distribution function at the
low end of the momentum range due to an accumulation of particles
which have lost momentum to the solar wind. As r increases towards
the boundary radius Iys the peak moves towards p = 0 and diminishes

in peak value.

The radial gradient curves of Figure 10.1 show that for each
p, (p < po) that as r increases from zero the number density increases
to a peak and then dec:eases, and that the radial position of the peak
moves outward as p decreases. This represents particles being fed
into (p, p + d p) by the energy changes but being excluded from the

inner regions by the outwardly moving scattering centres.

The streaming curves of Figure 10.1 are quite complex, but
have the same basic structure as the monoenergetic galactic spectrum
solution (8.1.1) results presented in Figure 8.3a . Although it is
not obvious from the curves of Figure 10.1 the calculations show that
near the sun Sp changes from - ve to + ve as p increases ffom 0 to P,s
and at larger radii Sp changes through the sequence -ve, + ve, - ve,

+ ve as p increases from O to P,-

The curves of Figure 10.1 show the dependence of the solution

on heliocentric radius for a range of interplanetary conditions.

For example if K(r,p) = 3 X 1017 m2 s-1 at a radius of 1 A U, and

> m s.'l and r, = 10 A U, the Fo curves for

1 GV rigidity, V = 4 X 10 b

r/r, = 0.9, 0.1 and 0.01 of Figure 10.1 represent, respéctively,

b

the distributions to be obtained at r = 9, 1 and 0.1 A U from protons

injected with a kinetic energy of 1.14 GeV from the boundary at
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r, = 10 A ﬁ.

The curves of Figure 10.2 show the dependence of the solution
on the parameter V rb/K(rb,po), and they can be interpreted as
indicating the changes in the solution due to changes in the solar
wind speed V, the diffusion coefficient constant Kc (récall
K= KC P :7/3), or the injection momentum Pye The curves are very

similar to those of Figure 10.1, and as a consequence we shall not

discuss them in great detail.

For the two smaller values of V rb/K(rb,po) in Figure 10.2
the distribution function has a substantial peak in the vicinity of
P, As V tb/K(rb,po) + 0, the peak moves towards P> decreases in

width and increases in peak value and Up -+ Ng d(p—po).

For V rb/K(rb,po) = 0.005 and 0.0005, there is a second peak
in the distribution function at the low end of the momentum range.
As V rb/K(rb,po) decreases, the peak decreases in amplitude and moves

towards p = O.

If we interpret the curves as indicating the changes in the
number density, the gradient and the streaming at fixed r for various
Pys they show that particles of lower p, are more spread from the delta
function of injection and are more attenuated. The radial gradient
curves show that a greater proportion of particles with lower p, are
excluded froﬁ the region enclosed by a spherical surface at radius r,
due to the decreased diffusion coefficient for these particles. Assum-

1017 m2 s_l'at r=1AU and

ing a diffusion coefficient K(r,p) 3 x

P=1GV, V=4x 105 m/s and r

b 10 A U, the-Fo curves of Figure

10.2 represent, respectively, the distributions to be obtained at

r = 1 AU from monoenergetic protons, intially at rb = 10 A U with
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kinetic energies, To’ of 17.6, 1.14 GeV and 4.53 MeV.

The curves of Figure 10.3 show the changes in the momentum
dependence of the solution at fixed r and Py when we vary the position
of the free escape boundary at radius L As rb/r decreases, F0 and
Up decrease fairly uniformly over most of the spectrum. For smaller
values of r/rb (i.e., larger values of rb/r) we might expect Fo and
Up to decrease due to the exclusion of particles from the inner regions.
However the Fo and Up curves of Figure 10.3 show that this is not
the case, and that there is a reduction in the number density as rb/r
decreases which must be due to the free escape of particles across
the boundary. The curves for r, = in Figure 10.3 were calculated
from the monoenergetic galactic spectrum solution (8.1.1) for
K=K p 1‘7/3 and V r/K(r,po) = 0.11753. We note that at radii
r/rb < 1/2 there is little difference between the monoenergetic galactic
spectrum solution (8.1.1) curves and the corresponding results for the
free escape boundary solution (10.1.2). Using the numerical values of
the diffusion coefficient at 1 A U and 1 G V,and the solar wind speed
V, assumed in the previous paragraph, the F, curves rb/r =1.01, 1.1,
2.0 and = of Figuré 10.3 represent, respectively, the distributions

to be obtained at r = 1 A U from protons released from r, = 1.01, 1.1,

b
2.0 AU and infinity with kinetic energy T0 =1 GeV.

The features of the free escape boundary solution (10.1.2)
investigated in this chapter are quite similar to the monoenergetic
galactic spectrum solution (8.1.1) results displayed in Figure 8.3a .
Finally we remark that the basic effect of the free escape boundary
is to reduce the values of Fo and Up below the values obtained for
the corresponding monoenergetic galactic spectrum solution obtained
when r, - <, and at r/rb<< 1 there is virtually no difference between

b

the solutions.
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FIGURES 10.1 - 10.3
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Figure 10.1 - The momentum dependence of various physical

quantities associated with a monoenergetic galactic spectrum
of particles at heliocentric radius s for the solution

(10.1.2), in which Up - Ng G(p-po) as r + r,, and the

b
" diffusion coefficient K(r,p) = I(é p r7/3. The figure 1is drawn

for V rb/K(rb,po) = 0,005, and for values 0.9, 0.1 and 0.0l of
the heliocentric radius variable r/rb. Shown (in dimensionless
form) are

(a) the momentum'average distribution function Fo(r,p),
(b) the differential number density Up =4 7 p2 Fo’
(¢) the radial gradient Gr = (l/Up)(aUp/ar),

(d) the radial differential current density S_ and its
convective and diffusive components Sc

and Sd’ i.e.,
3

So = —4Tmp (v/3) BFO/BP ’
2

Sg = =4 mp” K(r,p) 3F /or ,

sp = s_+5,.

Here

= _ 3

F = P, FO/Ng,

U = U /N

P Po “p'Tg?

Grad(log(Up)) = 1 Gra

S, = P, S,/ (WK,
§a = p, S,/ (W Ng),
§p= §C+§d. = p, sp/ v N,
are diménsionless forms of Fo’ v, Gr’ Sc’ Sa and Sp.

P
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Figure 10.2 - The momentum dependence of various physical
quantities associated with a monoenergetic galactic spectrum

of particles at heliocentric radius r,, for the solution

b’
(10.1.2), in which U_ > N 6&(p-p.) as r > r,, and the diffusion
P g o b

coefficient K(r,p) = Kc P r7/3. The figure is drawn for

r/r, = 0.1, and for values 0.0005, 0.005 and 0.1 of the para-

b

meter V rb/K(rb,po). Shown (in dimensionless form) are:

(a) the momentum average distribution function Fo(r,p) .
(b) the differential number density Up =4 Trpz Fo’
(c) the radial gradient G, = (l/Up) . (BUp/ar).

(d) the radial differential current density S_ and
its convective and diffusive components
Se and Sd', i.e.

§ = -4 1 p3 v/3) aFo/ap s

S = -4 7 pz K(I',P) aFO/ar ’

d
5, = Sc;*-sd .
Here
'17*0 = pg F / Ng ,
'ﬁ'p = p, Up / Ng ,
Grad(lqg (Up) ) = r, Gr’
'§c = Sc / v Ng),
§d= P, Sd/(VNg)’
'§p = S, +5; = p, s, / VN,

are dimensionless forms of Fo, Up, Gr’ Sc, Sd and S .
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Figure 10.3 - The momentum dependence of various physical
quantities associated with a monoenergetic galactic spectrum

of particles at heliocentric radius r,, for the solution

b,
(10.1.2), in which Ué > Ng é(p—po) as r > s and the diffusion
coefficient K(r,p) = Kc P r7/3. The figure is drawn for

\Y r/K(r,po) = 0.11753. It shows the dependence of the solution
on the position of the boundary s through the parameter rb/r
which has values of 1.01, 1.1, 2.0 and infinity. Shown (in
dimensionless form) are:

(a) the momentum average distribution function Fo(r,p),
2

(b) the differential number density Up =4mp Fos
(c) the radial gradient Gr = (1/Up) . (aup/ar)

(d) the radial differential current density S_ and its
convective and diffusive components Sc

and Sd’ i.e.,
S = -4 g p> (V/3) 3F /3p
c o ’
S, = =4 p2 K(r,p) aF /ar
d ’ o »
Sp = SC + Sd .
Here
= _ 3
F o= p, F, / Ng.
v = U /N
P Po “p g’

’

Grad (log(Up)) =T Gr

SC = po SC/ (V Ng);
5= S, *+S55= p, Sp !/ v Ng) )

are dimensionless forms of Fo, uvu,G, S, Sd and Sp and

P r c
-3/4

r = (K p /V) is a characteristic length.
s c ‘o
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APPENDIX A

In this appendix we derive two sets of partial differential
equations associated with the spherical symmetric similarity solutions
of Chapter (5). These solutions, expressed in terms of Fo are of the
form

F,o= a(z,t) g(z,1), S (A.1)

where the similarity variable z is a function of heliocentric radius ¢

only, t and .t are functions of momentum p.

We obtain a partial differential equation fo; Fo(z,t) in terms
of the variables z and t. This equation is obtained by transforming
the variables from (x,t) > (z,t) in the spherical symmetric, separable
form of the transport equations (2.2.7) and (2.2.8).

The function a(z,t) and the variable 1 are then chosen so that
g(z,t) satisfies an equation of the form

'EZ%Y' S (p38) - £, (A.2)

with appropriate p(z) and q(z).

There are four cases to consider corresponding to the diffusion

coefficients:
(1) K(r,p) = K, rb p3(b_1)/4, b>1,
(1i1) K(r,p) = KO rb, b <1,
(ii1) K(r,p) =K, r°, b>l,

(iv) K(r,p) =K 1,
and we now investigate these cases in detail.

£P p3(b—1)/4

Case (1) K(r,p) = Ko

In this case the similarity variable z, and t are given by
Equations (5.2.3) and (5.2.2), i.e.,

p (=04, g1y,

(1-b)/2
/K

t = 2K
(o]

x/[t = Vr
p3/2)(1—b)/2

N
|1}

o (A.3)

X = 2(r / (b_l))
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and from Equation (2.2.7)

2
O°F, amtl 0% oF
+ =

X 9x

o

(A.4)

(=3
[nd
-

Ix

is the transport equation for Fo.

Transforming the variables in (A.4) from (x,t) -+ (z,t) we

have
9 _ 1 3
ax t 9z
2 2
] 1 )
—H = T3 T3 (A.5)
9x t 9z
3 2. 3. _ z 3
ot ot t 9z

for the transformations of the partial derivative operators. Using

these transformations Equation (A.4) becomes

2
o F oF oF ’
o ,[( 2n+l o _ 2 o)
”; +( ~ + zt ) = = ¢t T (A.6)

which is the transport equation in terms of z and t.

In order to transform the partial differential equation (A.6)
to Sturm Liouville form, the similarity solution (5.2.5):

F = [exp(-zzt/4) t-n—l]

o 27" exp(-x/t) (A.I (/X z) + B.K (X 2)),

suggests that we choose
a(z,t) = exp(-z2t/4) £ ™1, (A.7)
as the expression for a(z,t) in Equation (A.1). Putting

-1/t,

T

F

o a(z,t) g(z,1), (A.8)

Equation (A.6) for FO reduces to

1 2 2mgy | 2
ol 5z ( z 32 ) = 3t (A.9)

Equation (A.9) for g(z,t) has separated solutions which satisfy a
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Sturm-Liouville equation and it is the equation for g(=,Tt) that we

set out to obtain.

Case (ii) K(r,p) = Ko rb, b< 1l

In this case the similarity variable z, and t are given by
Equations (5.2.10) and (5.2.11):

z = vy (K (1-b)) = -x2/(t), (A.10)

3(1-b)/2
e =k p®2 @ -,
and the appropriate transport equation for Fo, in terms of the variables
t
x and t is given in Equation (A.4).

!

Transforming the variables from (x,t) to (z,t) we have

3 - X 3
X 2t a3t °?
2 2
3 e -1 3 _ z 3
2 7t 9z t 2 (a.11)
9xX 9z
3 - 9. _ z 3
ot At t 2z °*

for the transformation of partial derivatives. Using these transform-

ations Equation (A.4) becomes

o%F oF_ oF
azz + (n+l - 2) 'Y = -t T (A.12)

which is the equation for Fo in terms of z and t.

Choosing
T = -2n( 'tl ),
(A.13)
F (z,t) = g(z,1),
we find
1 9 n+l -z 3g ) _ dg
SN2 oz ( Z & 32 )7 & (A.14)

which is the required equation for g(z,t).
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Case (iii) K(r,p) = Ko r, b>1

The appropriate similarity variable z, and t are given by
Equations (5.2.10) and (5.2.11), i.e.,

z = v ri® / (R (b-1)) = x2/ (4v),

- (A.15)
€ = K 53(1-b)/2

/ (V (b-1)),

and the transport equation for Fo, in terms of the variables x and t

is given in Equation (AG).

Transforming the variables from (x,t) to (z,t) we have

3xX 2t 3z °

2 2

2" _ L3 , z 3

27 7t 5z T YT T30 (A.16)
9x 0z

at ot t 9z °

for the transformation of partial derivatiwes and from 'Equations (A.46)

and (A.16) 2

] Fo BFO 3Fo
iR Pl (a.17)

is the equation for F0 in terms of z and t.

Choosing
T = 4n(t) = =-3(b-1) gn(p)/2, (A.18)
F= gz, 1),
we find
1 3 ( ntl z 3dg _ g
znez T z e 3z ) = at ° (A.19)

which is the required equation for g(z, Tt).

Case (iv) K(r,p) = Ko r

The similarity variable z and the variable t for this case

are given in Equations (5.2.15) and (5.2.18), {i.e.,



z = n(r) = -x+V c/1<o - n(2)/2,
t = —3K0 n(p) / 2v),

and from Equation (2.2.8)

BZF oF oF
o o

- 2 = 2

2 X t °?

9xX

is the transport equation for Fo.
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(A.20)

(A.21)

Transforming the variables from (x,t) +(z,t) we have

8 . . 2
9x az °’
32 - 82 .
axz 822
I S A
at at Ko 3z

(A.22)

as the transformations for the partial derivative operators. Using

these transformations Equation (A.21) becomes

aZFO BFO BFO
7 T T T The o
02z
where
c = 1- V/(ZKO).

In this case we choose

FO = g(z, t)’

and
-2cz _3 2cz dg )= dg
€ 2z \ € oz ot

is the standard form of the equation for g(z, t).

(A.23)

(A.24)
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APPENDIX B

In this appendix we give an example of the derivation of a
Green's function of Chapter (5) when the eigenspectrum is continuous.
We consider the case where the diffusion coefficient

rb p3(b—l)/4’

K(r,p) = K b>1, (8.1)

o
and we have a monoenergetic source of momentum P, located at radius L
between an outer free escape boundary at radius Ty and an inner
boundary at r = O.

We note that for diffusion coefficients of the form (B.l) the
similarity solutions of the steady state spherically symmetric transport

equation are of the form

Foo= a(z,t) g(z,t) (B.2)
where 2
alz,t) = tm—l o2 t/4’
z =V r(l_b)/2 / Ko = x/t,
n = (b+l) / (1-b), m= |n] ,
e = 2k ™ v e,
(B.3)

T = t-¢t,

_ o
x = 2 (rpdHUDZ gy,
Tt = =1/t,

and g(z,t) satisfies the partial differential equation

2
g 20+l 3g _ 3g
822 + z 9z a1t °? : (B.4)

(See Appendix (A) ).

We initially find the Green's function for g(z,t). This

solution of Equation (B.4) is denoted by Gg; it satisfies the conditions:

(i) Gg + 6(2—20) as T > T, T> T,

(ii) Gg (zl,T) = Gg (2,t) = O, . (B.5)

where

1 = Z(rb): zO = Z(ro), TO = T(Po)’
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and O < r < r, < o,
o b

We shall show that the Green's function Gg satisfying Equations (B.4)
and (B.5) is given by Equation (5.3.36), i.e.

. o ; s. [Jm(sz) Ym(szl) - Jm(szl) Ym(sz)] .

[Jm(szo)Ym(szl) - Jm(szl)Ym(szo)]

2
Jz o Yz(sz ) exp [-s (T—To)] ds.
m 1 m 1

(B.6)

The Green's function for the distribution function F_, denoted

by GF can then be obtained from Equation (B.2), i.e.,

Cp

a(z,t) Gg / a<zO’ tO) s

i.e., .

Cp

(t/to)m_l exp(-z2t/4 + zg 6,/4) G- (B.7)

Derivation of G-
2

The solution g(z,1) of Equation (B.4) that we seek may be
obtained by a Laplace transform technique. Putting

u(z,A) = f; e_A(T—To) g(z,1) dt ,

and taking the Laplace transform of the partial differential equation
(B.4) and the boundary conditions (B.5) we find that u(z,A) must satisfy

the differential equation

2

d’u 1-2m du . _
2 + z dz Au = - G(Z-zo)’ (B.8)
dz
and the boundary conditions
U(zlp A) = 0, (B.9a)
u(», A) is finite. (B.9b)

The general solution of the inhomogeneous equation (B.8) is

u=up(eg = 5 L= &ymz )] u, (/G (9), uy(y)) dy )

+u,(c, + %[ §(y=z )1 uy (9 /W(uy (), uy(y)) dy),
: (B.10)

where ¢y and c, are arbitrary constants



383.

and uy andvu2 are two independent solutions of the homogeneous equation
- (B.8) and W(ul, u2) is their wronskian. (see Morse and Feshback (1953)

Section (5.2), p.530, Vol.l).

Two independent solutions of the homogeneous equation (B.8)

are

uy z" 1 ( {* z), (B.11)

u, z" Km (VX 2), | (B.12)

where Im(z) and Km(z) are modified Bessel functions of the first and

second kind of argument z. The wronskian of uy and u, is

W(u (2), uy(2)) = g2l (8.13)

and

u > z" e‘fiz /I V2 X z > as z > «,

for | arg W z)] < /2, (B.14)

u, * J7 2" e-'“‘z V¥2/xz ~ 0, asz » o
for | arg Wx z)| < 3n/2.
(Abramowitz and Stegun 1965, Section (9.7))

specifies the asymptotic forms of Uy and u, for large z.

The constants ¢, and ¢, in the solution (B.10) are determined
by the boundary conditions (B.9). Using the asymptotic results (B.1l4)
then the boundary condition (B.9b), which applies as z +~ », is satisfied

if

¢, = - fm(5(y—zo) u,y(y,2) / Wy, u,)) dy. (B.15)

The homogeneous boundary condition at z = z; is satisfied if we choose

zZ
¢, = 118Gz ) u 7,1/ Wup,u,)) dy
+ [uy Gy a0 | 17 (Sm2g) u, 5V /G up))dy.
1 (.16)

Substituting the expressions (B.15), and (B.16) for cq and <,
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into the solution (B.1l0) we have

u(z,A) = - ul(z,k) f: (G(y—zo) uz(y,A) / W(ul,uz)) dy
z

+ uz(z,k) [le (d(y-zo) ul(y,A)/W(ul,uz)) dy

* Gy (D up(ay ) S (Bm2g) uy(1d) Sy u)) dy].
(B.17)
Substituting the expressions (B.11l), (B.12) and (B.13) for Uz, Uy,

W(ul,uz) in the solution (B.1l7) we obtain

w(z,) = 2 I6A2) 1T s(y-z) vy T K_(Ry) dy

‘m z 1-m -
+ z Km(ﬁz) [le §(y-z,)y I Ay) dy
o l-m
- O /%, (Rz)) £ 80-2) v Ky () ar] -
(B.18)
as the solution for u(z,).
Carrying out the integrations in (B.18), the solution splits

into two parts, and we have:

if z, < z < Zo <

1
m l-m
u(z,\) = =z z w(z,zo; zl,k), (B.19)
and if zl < zo.< z2 < o
m l-m
u(z,A) = =z z, w(zo,z; zl,A), (B.20)
where
Km(ﬂ' z)

w(z,zo;zl,k) = W [Im(ﬁZ) Km(ﬁzl) - Im(./_)\'zl)Km('/Tz)]

(B.21)
The required solution for g(z,T) is now obtained by using the

Bromwich contour integral formula for the inverse Laplace transform

(see Spiegel (1970)).
i.e., A(r-1 )

g(z,1) = E%_ fc+im u(z,A) e 0 da, (B.22)

i c—ix=
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where ¢ is a real non negative constant, chosen so that the inverse

- Laplace transform (B.22) is well defined.

Since the function w(z,zo;zl,A) occurs in (B.19), and the
function w(zo,z; zl,A) occurs in (B.20) we need only consider the
region zg <z<z < in the inversion process; the other part of
the solution for g(z,t) in the region zy < z, < z < ois obtained by

interchanging z and z, in the inverse Laplace transform of w(z,zo;zl,x).

We now consider the inverse Laplace transform of u(z,\) for

the region z, < z < z, < =, g0 that

o lem K (/X 2)
u(z,\) = z z ———7T—_—— [I VAz)K Cf-zl) I(Jizl)K Wiz) ]

o

(B.23)
The function u(z,\) has a branch point at A = O, To compute g(z,T)
from the Bromwich integral (B.22), we make a branch cut along the negative
Re()) axis, and construct: a large circular arc GAHBC of radius R
centred on A = O with the points C and G a small distance € above and
below the negative Re(A) axis; a small circular arc FED of radius r,
centred on A = 0, with the points D and F a distance € above and below
the negative Re(\) axis respectively. The large and small arcs are
joined above and below the branch cut by the straight line segments
CD and G F., The straight line segment A B is parallel to the Im()) axis
and distance ¢ from it, and as the radius R, of the large arc tends to
infinity, A B becomes the straight line segment (¢ - i®, ¢ + i®) in the
complex A plane(see Figure (B.1)).

‘‘‘‘‘‘‘‘ \B\
T "~

Y

c__ 0
TN

"""" —"A

Figure B.1 Showing the Bromwich contours for the inversion of the
Laplace transform. For t > T the contour employed is
ABCDETFG A, whereas for’t <1, we use the contour A B H A,
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For © > 7, we first of all compute

A(t-1)
g*(z,1) fi u(z,)\) e ° aa,

by using Cauchy's theorem on the closed contour A B C D E F G A, whereas
for 1 <« T, We use Cauéhy's theorem on the closed contour A B H A. The
required transform (B.22) for g(z,t) is then obtained by letting the

radius of the large arc R > « and the radius of the small arc r -+ O.

Since u(z,)) has no poles within either contour, an application

of Cauchy's theorem gives:

if > 1
o
-1 A(T—To)
gz, 1) = TT limit fBCDEFGA u(z,)) e da,
r> 9 24
R + o (B.24)
and if t < 1
o
1 A(T-TO)
g(z,1) = - 5= 1limit S ul(z,)\) e di.
27l R > w BHA (8.25)
Using the asymptotic results
K_(x) ~ e XV -127; as x + » , larg (x)| < 3n/2
(B.26)
oX
&)~ as x > ® , |arg (x)| < w/2,

2mx
(Abramowitz and Stegun (1965), Section (9.7))
and putting A = Reie, with |6]| < w, in the expression (B.23) for u(z,})

we have
m l-m
z z

Iu(z,)\)[ n exp (-R cos(0/2) |2 z, -z - zl), as R» =

2YR z z 1 o

on the large circular arcs for sufficiently large R. From this last
result it follows that the contribution to g(z,T) from the integrals

along the large circular arcs in (B.24) and (B.25) tend to zero as R » =,
Using the expressions for Km(x) and I (x) for small arguments

K_(x) v T'(m) (x/2)™ /2, as x > 0, (Re(m) > 0)

I (x) v (x/2)7/T(m+l), as x>0, (mé-1,-2, ... )

and putting X = reie with IOI < m, in the expression (B.23) for u(z,))



we have
u(z,r) dx v reiedO .2

[(z/zl)m - (zl/z)m]

on the small circular arc D E F. Thus the contribution to

387.

22 ™ (2,/2)" T(m) / (2 T(mH1))

the contour

integral (B.24) for g(z,t) from the small circular arc D E F tends to

zero as r + 0.

Since the contributions to (B.24) and (B.25) from

arcs are zero in the limits as r + 0 and R - =« we have

if t©v > ¢t
o

-1 M-t
g(z,1) = limig == (.5 + 5o u(z,A) e
R+ =
and if 1 < 1
o
g(z,1) = 0.

Using the transformations between modified Bessel

and Bessel functions:

Im(z) = exp(-mni/2) Jm(einlzz), -m <arg(z) <
Km(z) = %i' eXP(E%E ) Hél)(ei“/zz), -m <arg(z) <

Hél)(z)= Jm(z) + i Ym(z)

Ym(z) = [Jm(z) cos(mm) - J_(2z)] / sin(mm)

(Abramowitz and Stegun (1965), Section (9.6))

the circular

o)

dx,
(B.26)

(B.27)

functions

w/2,

n/2,

(B.28)

putting X = 52 elﬂ, in the expression (B.23) for u(z,A) we have
limit - —— /. u(z,0) e TTo) ar
2ni CD
r >0
R » =
zmzi—m © ‘SZ(T—T )
= e———— o -
5 IO s e [Jm(sz) Ym(szl) Jm(szl)Ym(sz) ]

[ Jm(szo)Ym(szl) - Ym(szo)Jm(szo) - i (Jm(szo)Jm(szl)

+ Ym(szo) Ym(szl))] / [Ji(szl) + Yi(szl)] ds .

(B.29)
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Using the relations (B.28) between modified Bessel functions and

Bessel functions, putting A = 32 e—i“, in the expression (B.23) for

u(z,\) we have:

, -1 A(t=14)
limit 571 IFG u(z,)) e dx
r >0
R »
2" ii~m - SZ(T )
Em | eee———t—tm———— - -o -
5 fO, s e [Jm(sz) Ym(szl) Ym(sz) Jm(szl)]

[Jm(szo) Ym(szl) - Jm(szl) Ym(szo) + 1 (Jm(szo) Jm(szl)

+ ¥, (s2)) Y, (s2)] / [Ji (s2)) + Yi (s2))7 ds. (8.30)

Substituting the results (B.29) and (B.30) into the expression
(B.26) for g(z,1) we obtain.

m l-m o 'SZ(T-TO)

glz,t) =z z IO s e [Jm(sz) Ym(szl) - Ym(sz)Jm(szl)]~

[ Jm(szo)Ym(szl) - Jm(szl)Ym(szo)]/[Ji(szl)+Yi(szl)] ds.

(B.31)
The solution (B.31l) is the Green's function that we set out to
obtain; it has already been given in Equations (5.3.36) and (B.6).

_ We note that the solution (B.31) can be split into two parts:
the first part is due to‘the source at(zo,ro)and the second part 1is due
to tbe boundary at z = z). If we let z, + 0 (rb -+ «) in the solution
(B.31), there will be.no effect from the boundary. In this way we may

identify the boundary and source terms in the solution (B.31). The source

term is
m l-m % -sz(r-r )
Sg =z 2z fO s e o Jm(SZ) Jm(szo) ds (B.32)
and the boundary term is
2
ml-m -s (1=10)
Bg ~zz [, se . Jm(szl) [Jm(sz).(Jm(szo)Jm(szl)

+ Ym(szl) Ym(szo)) + Ym(sz)(Jm(szo)Ym(szl) - Jm(szl)Ym(szo))]

/ [sz(szl) + Yi(szl)] ds, (B.33)
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and ‘
G = S +B . (B.34)
g g g

Using the result
2
© =X a
IO e Jm(Zéx) Jm(2yx) dx

2 2 {B.35)
= %— e_(Y ) /o Im<-2—2—y-), Re(B) > ~1 |

(Gradshteyn and Ryzhik (1965), Section (6.61), p.710)

the source term Sg of Equation (B.32) reduces to

m  l-m 2, 2
Z oz, (z +zo) z 2z
Sg B 2(1—10) exp 4(1—10) Im Z(T—To)) * (B.36)

The Green's function for the distribution function Fo

corresponding to the result (B.36) is

Gy = (/e )™ exp ((2‘2) £, - 2 t)/4) -

F
zm zé_m < ~zz+z§ ‘> (Az zo
T Y expl~ 7~ I —_—> . (8.37)
2(1 To) 4(t To)/ m\ 2(x To)

From the transformations (B.3) we have

x = 2(r 1::3/2)(1-1))/2 / (b-1) = =zt
Tt = -1/+¢t,
T = t-.t_,

o

and upon expressing the result (B.37) in terms of x and t we have

2, 2

m l-m :
X xo ( ‘X +x0 > (x xo)
Gp =t 3T °XP\" 77 L\ ) - (8. 38)

This latter result is just to times the Green's function (5.3.12)

with a free escape boundary at r = «,
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APPENDIX C

In this appendix we derive the solutions of the steady-state
spherically symmetric equation of transport given in Equations (6.3.25),
which were initially obtained by Fisk and Axford (1969). In these
solutions the momentum-average distribution function Fo satisfies
the boundary conditions

(1) Fo + N p-u-2 as r >, u>0,
g (c.1)

(ii) Fo is finite as r -+ O,
and the diffusion coefficient K(r,p) = I(.o pa rb, where a, b, and Ko
are constants, with a > 0, b > 1 and Ko > 0.

These solutions are obtained from the general galactic spectrum
solution (6.3.17), i.e.,

| L2m ts=t(p) z (t) 2
F (r,p) = 50— [ _ /0y — 07 exp<——7——->dt .
o 22m[,(m) tg=t (p=w=) (t_ts)m+1 4(e-t) s
(C.2)
Here z(ts) specifies the galactic spectrum, i.e.
= oo = —u-z
Z(;S) = FO( ’pS) Ng PS ’
and
~-€ p6/6 if 8§ = a + 3(1-b)/2 #£ 0,
t =
- &n(p) if &§ = O,
E = 3K0 / 2v, (C.3)
tS = t (Ps),
x = 2 HUPZ, 1y,
m = (b+1)/(b-1).

The solution of the boundary value problem (C.l) splits into three

cases according as § Z 0.

Case (i) 8§ >0or 1<b<1+ 2a/3

In order to obtain the Fisk and Axford result given in Equation
(6.3.25a) we introduce the variables
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(u+2) / 6§,

<
n

(C.4)

7]
]

2 ;
x / [4(t-ts)J,

and hence transform the integral (C.2) over t, to an integral over s.

To execute this transformation we note that

p, = p (1+ sx° / (4 ¢ p(5 S))lld,
Z(t) = N p "2 s x2/ (b)Y, (C.5)
dt = x2 ds / (482),

S

and the limits of integration over s are determined from the results:

s > 0 as t_ > t(p==) = -,

and (C.6)

Using the transformations (C.4), (C.5) and (C.6) the solution

(C.2) for Fo becomes

-u=2
NPT - -
Fo(r,p) = '—EFTES—— fo (s+ 6x2/(4 epé)) y sy+m 1 e S ds.
(c.7)

To proceed further we note that the second solution of Kummer's confluent

hypergeometric equation, U(a,b,x) is given by the formula

EE:E- ;Zoe™s sa.1 (s+’x)b_a“1 ds (c.8)
T'(a) 0 ’ '

(Slater (1960), Section (3.1.2))

U(a,b,x)

where Re(a), Re(x) > 0, and that
1-b
U(a,b,x) = x U(l+a-b, 2-b, x), (C.9)
which is Kummer's transformation (Slater 1960, Section (1.4), p.38).
Using the results (C.8) and (C.9) in the expression (C.6) for Fo we
obtain

- -u=2 T (v(u+2)/3+m)
Fo - Ng P I (m)

UG (+2)/3,2/(1-b), 2vr %P7/ (v (1-b) K ),

(c.10)
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where
v = 3/§ = 3/(a+3(1—b)/2),

is positive,i.e., 1] < b < 1 + 2a/3,

This is the result of Fisk and Axford, and it is also given in
Equation (6.3.25a). '

Case ({1) 8§ =0 or b =1+ 2a/3

To obtain the Fisk and Axford result, we introduce the variable

s = t-t. = ¢ Qn(ps/p). (C.11)
Thus we have
P = P exp (s/e)
Z(t ) = p--u_2 = N p--u-2 exp(-(u+2)s/e) (C.12)
s g 's g ‘ "
dt = =ds,
s

and the limits of integration over s are determined by the results:

(C.13)
s +* o as t +  t(w) = ~= ,

Transforming the integration variable in the general solution

(C.2) from tS to s, and using the results (C.12) and (C.13) we obtain

m-] ds/T'(m).

(C.14)
as the solution for Fo. The result of Fisk and Axford (1969) is now

o= N p "2 (x%/4)™ I exp(-(u+2)s/e-x>/bs) s~

obtained by using the Laplace transform

) =\ LY T \V}

15 e eV expl-asaryar = 2a/40)"/? K,(V&X),  (C.15)
where Re(a), Re(v) and Re()) are positive and Kv(x) is a modified
Bessel function of the second kind of order v and argument x

(Erdelyi et.al. (1954), Vol.l, Section (4.5), p.146), with
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2
a = x,
A= (u+2)/e,
v = m = (b+l)/(b-1)

in the integral (C.1l4). Hence

- p 2 ™2 ¢ (m)

. 22 ve' ™ 77 (301-8)%k )

K_ [ﬁ V Qe+ v e 5 an? k) ] SNCET)

This is the solution for Fo cited in Equation (6.3.25b), and is the

result we set out to obtain.

Case (iii) § <0 or b>1+ 2a/3

To obtain the Fisk and Axford result (6.3.25¢) we introduce

the variables

s t / (t-ts),

y = (u¥2) / | &/, (C.18)
where
§ = a + 3(1-b)/2.
Thus we have
p, = pl(s-1)/s 1V/¢,
= “u=2 “H=2 el y
Z(ts) Ng Pg Ng p [(s-1)/s]) ,
) .
dts = t ds/ s° , (C.19)
s - 1, as ts +> t(e) = 0,
s =+ o, as t_ > ¢t.

s
Transforming the integration variable in the general solution

(C.2) from tg to s and uging the transformations (C.19) we have

Fo = Ng p—u-Z Ljdlledepdlm f:(s—l)y sm—l-y exp(—ldlxzs/(4ep6)) ds,
(C.20)

as the solution for Fo.

Using the formula
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o - -1 b-a-1
U(a,b,x) = I‘?a) 7 e WY du, (C.21)

for U(a,b,x), which is one of the standard solutions of Kummer's
confluent hypergeometric equation (Abramowitz and Stegun (1965),
Section (13.1)) and using Kummer's transformation (C.9), the solution

(C.20) for Fo becomes

Fo = ng—u-Z F(%E;§2+U)/3) exp [ 2V rl—bp-a/(v(l—b)zKo) ]
1-b -a 2
U(2/(1-b)-v(u+2)/3, 2/(1-b), -2vr  “p ~/(v(l-b) K-

(C.22) .

This is the solution (6.3.25c) which we set out to obtain.
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APPENDIX D

In this appendix we obtain a solution of the spherically
symmetric cosmic-ray equation of transport known as the convective
solution. In this solution the effective radial diffusion coefficient
is zero, and the solar wind velocity V is taken to be radial, so that
the equation of transport (1.3.6), expressed in terms of the mean

distribution function with respect to momentum Fo(r,p) is

oF oF 4 g OF
5e T Var T 5.2 ar V) 55 = 0 (0.1)

The general solution of the first order, linear partial
differential equation (D.1l) may be expressed in terms of the solutions

of the characteristic equations

dt _ dr _ dp dF
T v < . . o (D.2)
ZP_ &
2 dr (r'v)
3r

(Sneddon, Elements of Partial Differential Equatiomns 1957). Here
the symbol dFO/O is taken to mean that Fo is constant along the |
characteristic curves. The solutions of the characteristic equations
(D.2) are

r dx _
t - T T cr
3/2 1/2 '
p / \Y / Cys (b.3)
Fo - Gz
where Ci» €y and cq are arbitrary constants.

The general solution of the 'convective' equation of transport

(0.1) is

Fo = H(cl, CZ)'

i.e., dx 3/2 1/2
ey v

where H is an arbitrary function in two variables. In particular

F_(r,p) = l{(t- It (D.4)

problems the function H is determined by the initial conditions and
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the boundary conditions on the solution.

The steady state solution of the convective equation of

transport (D.l), obtained when 3F0/3t 0, is also determined by

the characteristic curves (D.3). It is

Fo = G (cz),

32 yryt/?y, ®.5)

F (r,p) = G(rp
where G is an arbitrary function in one independent variable.

We now show that the flow line equations (7.6.8) and (7.6.9)

i.e.,
dr _ _{Vp aF0 + K(r,p) aFo ©0.6)
dt 3F_ dp F ap /? .
(] (o]
3F
dp = pVv_ _ o
at 3 3r (@.7)

for the general, steady state convective solution (D.5) have the

general solution

3/2 V(r)ll2 = ¢, - (D.8)

rp
where ¢ is an arbitrary constant.
Substituting the expression (D.5) for Fo(r,p) in the flow
line equations (D.6) and (D.7), and putting K(r,p) = O we find

dr -V 9z

dr  _ VP gy 92

dt 36( © P 30 (0.9)

dp VB _ gr(y 22

dt 3 G(z) G'(z) or °’ (D.10)
where

z = r p3/2 V(r)l/Z. (D.11)

Dividing Equation (D.9) by Equation (D.10) we have

dr o0z 3z

dr . _ 22 ,2°z

dp ap ar
i.e.,

22 4r 4+ 2 4 = 0 (0.12)

a}
Q
©
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The general solution of the flow line equation (D.12) is

z = ¢,
i.e.,

r p3/2 V]'/2 = c, (D.13)

where ¢ is an arbitrary constant. This last result gives the flow
lines (D.8) for the steady state, convective solution of the transport

equation, which we set out to obtain.
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APPENDIX . E
In this appendix we prove that the coefficients ay of the
Hermite polynomial expansion (10.2.11a)
n n h(t;) p__.(x)
i’ "n+l
h(x) = I a p ()= L b , (E.1)
n k=0 “k 'k 120 (x ti)pn+1(ti)
are given by
a = = Loh(t) e () /p2(t), k= 0(Dn
k (n+l) i20 i’ ki n1i"? ’
(E.2)
where pk(x) is a normalised Hermite polynomial, i.e.,
2
P, (x) = ('l)k & df (e'xz) = _EE_Efl__ (E.3)
k TERTE e VR
and the t, are roots of pn+1(x), i.e.,
pn+1(ti) = 0, i = 0(l)n. (E.4)

The polynomigls {pk(x)} are orthonormal with respect to the

weight function e * i.e.,

~ e-x2 pm(x) pj(x)dx = dmj' A (E.5)

-0

2
Premultiplying Equation (E.1l) by e ™ p_(x), integrating the
m

resultant equation from x = - ©» to x = «», and using the orthonormality

condition (E.5) we have

[ J —x2 n h(ti) Pn+1 (X)
n " Iw_ € pm(x) 1o (x-ti) pa+1(ti)

] dx. (E.6)

We now express the function pn+1(x)/(x—ti)in Equation (E.6) as
a linear sum of the pk(x), k = 0(1)n, by using the Christoffel Darboux
identity for orthonormal polynomials. 1In this case the Christoffel

Darboux identity is

n+l (P P (9 =P () P ,(¥))

V2/(atl) I, p (x) p(y) = (x =)

(E.7)

(Szego (1967) Section (3.2), p.42, or Abramowitz and Stegun (1965),

Section (22.12), p.785). Putting y = ti in the Christoffel Darboux

identity (E.7) and using pn+1(ti) = 0 we obtain,
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CR N Varz  kfo P Pty /P (), (E.8)

which is the expression we seek.

Substituting the expression (E.8) in the expression (E.6) for
a s and using the orthonormality conditions (E.5) we find

n
a = - 2/ (a¥2) 1, h(ty) p_(t,) /TPy (tg) P (EDT o
' (E.9)

From the properties of the Hermite polynomials Hk(x) we have

pk+1(x) = V2/(k+1) x Py (x) - Vk/ (k+1) P (), k21,
(E.10)
Py (¥) = V2(k+1) p (),
and hence
) .
Pptp (Eg) = ¥2(o+l) p (t)), (E.11)
Pogp(ty) = ~/FD/(n42) p (t)),

(Abramowitz and Stegun (1965), Chapter 22). Substituting the results

(E.11) in Equation (E.9) we obtain
%n ~ (otD) _150 h(ty) pp(e) / p (t). (E.12)

This is the expansion for a giiren in Equation (E.2), and it is the

result we set out to obtain.
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~ APPENDIX F

In this appendix we show that if

n h n h(t) p ,, )
B0 = o A B T ko Geep e 0 FD

is the Hermite polynomial approximation of order n to the function
h(x), where pk(x) is a normalised Hermite polynomial (cf. Equation
(10.2.10)), then the error in approximating the integral

2
i =17 e = sin(ax) h(x) dx, : (F.2)

by 9 .
i(n) = /7 e* sin(ox) hn(x) dx, (F.3)

is given by

(n) _ _y(m) _ 1 h(z) 49(z,a)
Ry 1 -1 771 fc—f{iﬁ'_ dz, (F.4)
where
q(z,a) = [_ e = sin(at) pn+1(t) / (z-t) dt. (F.5)

Here h(z) is assumed analytic along the Re(z) axis and
C = C+(0,0) U C (0,0) is a contour in the complex z plane
defined by Donaldson and Elliott (1972) (see below).
We then use the error formula (F.4) to derive the result

(10.2.29a), i.e. if

h(x) = m(x) / SO(X),

s, (0 = V2 (xmz)) (x-Z,) (b)) (7)), (F.6)
Zl - 1-37-\7 ein/3 ,

and m(x) is an odd polynomial of degree less than n, then
(n) _ :
R, = =2 Im(m(z)) q(z;,a) / (33 v z2) Py (20D (F.7)
- is the error (F.4) for the function h(x) of Equation (F.6).

We now proceed to obtain the general result (F.4). For conven-

ience let g(a,z) denote the integrand of the contour integrél in
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Equation (F.4). In the present application of the more general result
of Donaldson and Elliott (1972) we may choose C+(0,0) to be the

upper edge of (-», «), i.e., the line Im(z) = € > 0, with € sufficiently
small so that h(z) has no singularities in the region[Im(zN <€,
together with semi-circular indentations of radius § around each of

the singularities of g(a,z) on (-», »), The function g(a, z) has

simple poles at the roots of pn+1(z), i.e., at z = tys k = 0(1)n.

The semicircle around tk‘is denoted by y: for k = 0(1)n. C (0,0)

is chosen similarly in the Im(z) < O plane but with corresponding

semicircular indentations 7; (see Figure (F.1)).

N R e
1 J - \[6 J ¢ (0,0) Uii;(‘z)
~ Tk

Figure F.l. Illustrating the contour C = C+(0,0) U C (0,0).

viA

Having defined the contour C we may write the contour integral

(F.4) as

A to=6
W = L | % (f ' )+ I, +07 le*a dx

i S AN ) i S
1 n
+ TTl kEO ( IYE +- fyf ) g(a,z) dz, (F.8)
where

g* (a,x) = g(a,x-ic) - g(a, x+ie). (F.9)

Since g(a,z)vis the integrand of the contour integral (F.4),

and since h(z) and pn+l(z) are continuous across the Re(z) axis we

have
g* (a,x) = h(x) (q(x-i€,0) - q(x+ie,a)) / p ., (x).
For x real we define q(x,a) to be the Cauchy principal value integral

2
q(x,a) = £ et sin(at) pn+1(t) /[ (x-t) dt, (F.11)

-0

Accounting for the pole at z = x it is easily shown that
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k

2
q(x-ie,a) = q(x,2) + 741 e_x sin(ox) pn+1(x)
2 (F.12)
-X
q(x+ie,o) q(x,a) = i e sin(ax) pn+1(x).
Substituting the results (F.12) in Equation (F.1l0) we have
gx(a,x) = 27mi e sin(ax) h(x). (F.13)
Also from a well known result we have
1 _ ' .
2ni IYE g(a,z) dz = h(tk) Q(tk 15’3) / (2 Pt'ﬁ_l(tk)),
(F.14)
1 .
7 [ye 802 dz = h(g) algtde,a) /(2 ppy, (1)),

and hence using the results (F.12) we have

1 '
5T ( T * ) g(a,2) dz = h(t) alt,a) /pl,, (£).
(F.15)

Substituting the results (F.15), (F.13) in the result (F.8)
and letting both € and § - O we have
(™ - e“x2 sin(ax) h(x) dx + 5. h(t,) q(t,,a) / p .. (t,)
i /o o k&0 K ) F Py -
(F.16)

Using the definition (F.11l) for q(x,a) in this latter expression for

R(z) we obtain

() _ = -x° (n)
R\ = I, e X sin(ax) [h(x) - hn(x)] dx = i -4i'P

1 (F.17)

which is the result (F.4) which we set out to prove.

We now use the contour integral expression for the remainder

Rinz given in Equation (F.4) to show that for

hG) = mGx) / (v (xmz)) (b2, (x-2)) (eb2))

zl ‘/'3—/'\-)' eiTT/3’ (F.l8)

and m(x) is an odd polynomial of degree less than n, that
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R(‘i‘) = -2 In [m(zl) a(z;,9) / 3V3 vz pn+l(zl))] :
(F.19)

To obtain the result (F.19) we introduce contours Cq and C, in
the complex z plane. The contour C1 is a large semi-circular arc of
radius R in the Im(z) > O half plane with suitable indentations to

circle the poles of h(z) at z = zl and z =‘4;i. The contour 02 is

a similar semi-circular arc of radius R in the Im(z) < O half plane

with indentations to circle the poles of h(z) at z = z, and z = -z

1 1

(see Figure (F.2)).. A Im(z)

) T~ __/
—

Figure F.2 Showing the contours Cy and c, in the complex z plane.
Consider the contour integral

I = -5%2 Io we. B2 a(z,@) /p () dz. (F.20)

C, UGy

As the radius R of the large circular arcs of C1 and c2 tends to

infinity, an application of Cauchy's theorem, and using the result (F.4)

gives ,
R™ o limit == f h(z) q(z,2) / p_, (z) dz
i 211 ¢ Uc2 ’ n+l *

R+ 1 (F.21)

If h(z) ~ 0(!z|k) as |zl + < and we choose n >k the contribution to
the integral (F.20) from the large circular arcs of C, and C, tends

1 2
to zero as R > =
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As the radius r of the circular indentations around the poles
of h(z) tends to zero and as R » «, the principal contribution to
the integral (F.20) comes from the indentations around the poles of
h(z), and we find that R(g) is minus the sum of the residues of h(z)

q(z,a) / pn+1(z) at the poles of h(z), i.e.,

R(:) = - :% [m(zl) q(zl,a) / (2(21+Ei) zl(zl—;i) pn+1(zl))

+ m(z)) a(z),a) [ ( 22)(z)m2)) (2g42)) b, (7))
+ m(-z))q(-z,,a) / (2zl(”z'l-zl)(zl+§l) P4y (21))

+ m(-z)) qlzy,a0) / (22 (2 +2)) (2,-2) pn+1(—?1>)].

(F.22)
Using the results
1
p (-2 = D™ (2),
n+l nt+l (F.23)
q(-z,a) = (—1)n+1 q(z,a)
m(~2z) = -m(z).
zy = v 3/v ein/3,
the result (F.22) for Rin) reduces to
©n(z,) q(z,0)
Rin) - - 2 1m< 1 (1) ) (F.24)
3/3v 21 Pp41'®1

(n)

which is the expression for Ri

and (F.7).

given in Equations (10.2.29%a)



405.

APPENDIX G

In this appendix we derive the momentum rate <p'>
which is the average time rate of change of momentum of cosmic-
ray particles when the particle momentum p' is specified relative
to the wind frame, and its position, x, is specified in the fixed

frame.

In our analysis we use the relativistic transformations
: 2
of velocity v and momentum p accurate to 0(%) between fixed and

solar wind frames of reference. These transformations are

V.uvw v V2
vy o= v-V+ 3 _Y+0-‘2-V) ; (G.1)
VC 2 (o]
p' = P.*mY_(zﬁ_)+0<!§p\) , (G.2)
(o4

where m is the relativistic particle mass in the fixed frame and V

is the solar wind velocity.

The momentum p' in Equation (G.2) varies with position due
to the spatial dependence of the solar and wind velocity V(x), as
well as due to the Lorentz force. Thus focussing our attention on an

individual particle we have

dp! op! dx, op! .
dt ox . dt p. dt '
J J
as the time rate of change of the ith component pi of p'. Here we

use the summation convention and the notation of tensor calculus;

dp
1 - 4 -
dt e ej!?.m (Vﬂl Vf;) Bm’ (G-4)
dx,
is the Lorentz force on the particle and 'Ezl = Vﬁ is the particle
velocity.

Using the transformations (G.1l) and (G.2) we have

dp. ' VS v; '
———J- = % € VL Bm - , (G; 5)

jam c2
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op! v! v, 2
—_—r - —a 1 v\
5, %4 7 * 0 ( 2) ’ (G.6)
J c v
‘ ap! : BVi
ox. - 3k, : (G.7)
J J

Substituting the results (G.5), (G.6) and(G.7) in the

dp
expression (G.3) for EEi we obtain
[] T t .
e S S A B0 I TR AP
dt vj 9x, ij 2 ¢ jAm £ m 2/
J c c
i.e.,
dp! 3V vV v!
_._:!'. = - _i q 1 _ S S
dt Pi3x. T Si3k Yy Bk<l 2)' (G.8)
J c
However we are not interested in it but E%_ . This latter

quantity is given by

1 1 -
g _ P Py ©.9)
dt p' dt * *
dpg
Substituting for T from Equation (G.8) in the result (G.9), and

using the momentum transformations (G.2) we obtain

’

dp' - Py Wy
EIE—- = _1;7- (pj' 4+ m Vj) R (G.10)
h|

The result (G.10) gives the rate of change of momentum p' of an
individual particle with time. Note that it depends on the direction
of the particle momentum pi and is independent of the magnetic field B.

dp’

In order to find the average value of at for a group of
particles, all with momentum of magnitude p', but with different
directions we proceed as follows: We introduce the distribution
function F* (r, p', t) in position-momentum space in which the position
r is specified in the fixed frame of reference and the momentum p'is
specified in the solar wind frame. Since the cosmic-ray distribution
must be near isotropic for the transport equations to be valid we may

write -
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| F* (x,p',t) = F§ (z,p',t) + Ff, (z,p',0)(py/p"), (G.11)

where FS is the isotropic part of the distribution function and

Ffj "~ O(%, FS) is usually associated with cosmic-ray anisotropies

or streaming.

For such a distribution of particles, the average value of
%%L is given by

' - .
s SR Fr(rp',t) de | |
<§'> = ’ (G.12).

J Fx(z,p',t) dq'

where the solid angle integrations with respect to dR' are over all

directions of p'.

L
Substituting the expressions (G.10) and (G.1ll) for %%—

and F* in the definition (G.12) for <p'> and using the results

SdQ' = 4w,
/v, dg' = o, (G.13)
N ' 4 ndi,
S v, v, d@' = —=l
173 3
N Y7 .
where v, = pi/p we obtain,
$'> = R oy (1 + o(%—) ) i (G.14)
v

This is the rate <p'> quoted in the text in Equation (1.3.7).
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