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Abstract: 

The action of wind on the ocean surface results in the formation of Ekman spirals, as 

proposed by V.W. Ekman in 1905.  The spirals display exponential decay of current speed and 

anticyclonic rotation with increasing depth. Observations of Ekman spirals are extremely rare, and 

there are few studies that test Ekman theory against observations. Here we present a unique array 

of velocity profiles from EM-APEX profiling floats, which we use to examine the nature of Ekman 

spirals in the Southern Ocean and test how well they are described by theory. 

Classical Ekman theory assumes the momentum mixing within the upper ocean is set by a 

constant eddy viscosity.  However, previous observational studies have found Ekman spirals to be 

compressed, with different viscosities estimated from current speed and rotation. This behaviour 

has been linked to surface trapping of Ekman currents (Price et al. 1987) or could arise due to a 

failure to consider depth varying geostrophic currents (Polton et al. 2013). We use 1400 profiles of 

velocity from EM-APEX floats, collected at the northern Kerguelen Plateau as part of the Southern 

Ocean FINE-structure (SOFINE) expedition during the Austral summer of 2008-9, to investigate 

whether a constant viscosity parameterization is the best way to represent momentum mixing in the 

upper ocean, or whether other methods such as a depth-varying viscosity or a mixing scheme linked 

with stratification (e.g. Price et al., 1986) are more effective. Previous studies of Ekman layer 

observations have examined either the raw observations, or models of momentum input in the 

spectral domain or in the time domain. In this study we use all three approaches to build a robust 

picture of Ekman spirals in the Southern Ocean and their response to wind forcing. 

 Ekman velocities were isolated from inertial and geostrophic currents in the absolute 

velocity profiles. Estimates of eddy viscosity and Ekman layer depth were separately obtained from 

profiles of current speed and heading. Assuming a vertically-uniform geostrophic current the Ekman 

layer depths from current heading were approximately twice as large as those from current speed 

decay. This degree of spiral compression has been observed in prior studies. Assuming a linear 
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geostrophic shear, constant viscosity estimates from current heading and speed decay converged 

towards a common value, implying a significant reduction in the compression of the Ekman spirals. 

Including geostrophic shear through the Ekman layer also increased the number of EM-APEX profiles 

displaying Ekman spiral-like behaviour from 224 to 441, and reduced the RMS velocity residual 

between fitted and observed spirals. There was no clear relationship between the observed 

viscosities and mixed layer depth or strength of stratification. This suggests that the compressed 

spirals observed in previous studies are due to aliasing the geostrophic current into the Ekman spiral 

(Polton et al. 2013), rather than surface trapping of Ekman currents associated with stratification.  

 Nine conceptual Ekman models were fitted to the observations in the spectral domain using 

the method of Elipot and Gille (2009). Application of the spectral technique to shipboard ADCP and 

in situ wind data indicated a constant viscosity model with a finite boundary layer depth (BLD) was 

the best performing model. Eddy viscosities agreed with Elipot’s results for the same latitude bands 

but the optimal BLD was found to be deeper for the SOFINE region. Examination of Elipot’s results 

indicate that within the latitude band of our study bootstrap, estimates of summer BLDs displayed a 

greater range of variability than the year round or winter BLDs. This suggests that the deeper BLDs 

observed in our study were principally due to the timing of SOFINE. A similar analysis using EM-APEX 

float data and blended reanalysis-scatterometer winds was inconclusive. 

 To test for the effects of time-varying wind forcing and stratification in the mixed layer,  we 

ran linear and stratified Ekman models with the Price Weller and Pinkel (1986) mixing scheme, 

forced by both in situ shipboard winds and a variety of reanalysis wind data. Model time mean skill 

was analysed by comparing the correlation between the simulated and observed mean current 

profiles. Time varying performance was assessed using a two-sample Kolmogorov-Smirnov test and 

quantile-quantile plots. For the model runs with the shipboard winds, the classical linear time-

varying Ekman model offered the best performance. Model runs using 6 hourly reanalysis winds 

interpolated onto the float tracks performed poorly, preventing a proper assessment of skill of the 

stratified models relative to the linear Ekman models. 
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The combined evidence in this thesis suggests that the classical constant viscosity Ekman 

model offers an adequate representation of the near surface response to wind forcing with a 

minimal number of parameters. 
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Chapter 1: Introduction 
 

1.1 Background 

V.W. Ekman’s theory of wind forcing on the surface ocean is a corner stone of oceanography 

(Ekman, 1905). By considering a balance between frictional and Coriolis forces and assuming a 

constant vertical eddy viscosity, Ekman (1905) derived a set of equations for the latitudinal and 

longitudinal velocity components as a function of depth. For steady winds the resulting solution is 

the Ekman spiral, which has a characteristic exponential amplitude decay and anti-cyclonic 

(anticlockwise in the Southern Hemisphere) rotation with increasing depth. When integrated over 

the depth of the spiral the Ekman spiral imposes a net transport that is 90° to the wind field. This  

transport arising from Ekman currents is of significance in the meridional overturning circulation, 

driving the upwelling of deep waters near 50°S (Speer et al., 2000) and transporting them 

northward. It is also significant in the formation of Mode Waters (Sallée et al., 2006). 

Previous studies using direct observations of profiles of Ekman current have established the 

validity of the bulk relationship between wind stress and net Ekman transport (Chereskin, 1995, 

Lenn and Chereskin, 2009, Price et al., 1987). The same studies have also found Ekman-like spirals in 

data averaged over long time periods in a coordinate frame relative to the wind (Chereskin, 1995, 

Lenn and Chereskin, 2009, Price et al., 1987). The majority of these studies have found the ‘classical’ 

constant viscosity model inadequate, in that the time-mean spirals are compressed; that is the 

current amplitude decays more quickly with depth than predicted by classical theory. The 

consequence is that eddy viscosities estimated from the observed amplitude decay, and those 

estimated from the observed rotation of the spiral are not equal. It has been suggested that this 

compression is a result of stratification-driven “surface trapping” (Price and Sundermeyer, 1999, 

Price et al., 1987). However, two more recent studies, one employing spectral methods (Elipot and 

Gille, 2009a), and a second specifically considering the effect of depth varying geostrophic currents 

(Polton et al., 2013), indicate that it may be possible to reconcile observed Ekman currents to the 

‘classical’ Ekman model. 
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In response to the inconsistency between observed and theoretical Ekman spirals discussed 

above a number of modifications to Ekman theory have been proposed. These include using a slab-

like (i.e. velocity constant with depth) Ekman layer (Halpern, 1974, McNally and White, 1985, 

Wijffels et al., 1994); alternate depth varying eddy-viscosity parameterizations; linking momentum 

mixing to stratification (Price et al., 1986) and coupling to other processes such as Stokes drift 

(Heinloo and Toompuu, 2012, Polton et al., 2005) and geostrophic currents (Cronin and Kessler, 

2009). These individual modifications to Ekman theory have been compared to observations. 

However, there have been few coherent efforts to test multiple modifications to Ekman theory 

against a single dataset; Elipot and Gille (2009a) investigated nine models incorporating a variety of 

eddy viscosity profiles using rotary spectral techniques but did not investigate any form of coupling 

with other oceanic processes and were limited to examining a single depth level. 

 

1.2 Motivation and Aims 

Ekman currents in the Southern Ocean have seen little observational exploration. Two prior studies 

(Lenn and Chereskin, 2009, Polton et al., 2013) designed to detect Ekman spirals were both 

concentrated on the Drake Passage, while Elipot and Gille (2009a) focused on properties on a 

circumpolar-scale using drogued surface drifter data. As discussed above, even outside the Southern 

Ocean the vertical structure of Ekman currents is still only poorly understood. Given the role of the 

Southern Ocean in the global climate, errors in heat and fresh-water transport arising from 

inappropriate parameterization of the vertical structure of Ekman currents in model simulations 

could lead to uncertainty in other elements of the climate system. Hence, we seek to improve our 

understanding of the vertical structure of Ekman currents and to examine the effects of density 

stratification and coupling with other oceanic processes, and to assess the available theories against 

observations. 

We have access to a unique dataset of approximately 1400 concurrent profiles of 

temperature, salinity and horizontal velocity with fine vertical (2-5m) and high temporal (8hr) 
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resolution. These profiles were collected with 8 EM-APEX (Electro-Magnetic Autonomous Profiling 

eXplorer) velocity profiling floats (Sanford et al., 2005), deployed north of Kerguelen Island during 

the November-December 2008 Southern Ocean FINE-structure (SOFINE) expedition (Naveira 

Garabato et al., 2009, Waterman et al., 2012, Damerell et al., 2013, Phillips and Bindoff, 2014). This 

dataset represents one of the first large-scale deployments of this instrumentation. The float data is 

supplemented by shipboard ADCP observations taken during the SOFINE cruise; this second dataset 

offers high temporal resolution (30 seconds between profiles) but reduced vertical resolution. These 

datasets offer an opportunity to examine Ekman currents from multiple angles; in addition to 

detecting and characterizing the observed Ekman current we will also use spectral techniques to fit 

conceptual viscosity profiles and to run numerical Ekman models before comparing the model 

output to our observations. 

 

1.3 Thesis Outline 

This thesis consists of six chapters, opening with the introduction. We then review previous 

literature examining Ekman currents and Southern Ocean dynamics in Chapter 2. 

In Chapter 3 we isolate and characterize the Ekman currents observed in the EM-APEX float 

data. This allows us to diagnose the “bulk” eddy viscosities and eddy viscosity profiles. We consider 

the effect of using constant or depth-varying geostrophic currents when isolating the Ekman flow 

(Polton et al., 2013). We compute the net Ekman transport to see how well it compares to ‘classical’ 

Ekman theory. Then we consider the effect of stratification on transport profiles; “bulk” viscosities 

and viscosity profiles. 

In Chapter 4 we investigate Ekman currents from a frequency domain perspective. We use 

rotary spectral techniques (Elipot and Gille, 2009b) to fit theoretical transfer functions to our 

observational data. By considering the performance of the transfer functions we can then assess the 

most appropriate combination of eddy viscosity profile and bottom boundary condition for the 

Ekman layer. These results are useful in assessing the most appropriate parameterization of 
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momentum mixing. As a secondary benefit, using the best performing transfer function and power-

spectra of the wind forcing we can estimate the total wind energy input to the Ekman layer within 

our area of interest.  

In Chapter 5 we examine time domain simulation of Ekman currents with realistic wind 

forcing. We run two sets of numerical Ekman models with in situ and reanalysis wind forcing before 

comparing the output to our observations of Ekman currents. We use a number of variations of a 

linear Ekman model to investigate the performance of the best viscosity profiles identified in 

Chapter 4, and investigate the role of coupling of Ekman currents to Stokes drift and geostrophic 

shear. Thereafter, we consider three variations on the Price-Weller-Pinkel model (Price et al., 1986) 

to investigate the effect of surface buoyancy and wind forcing on the density stratification and 

Ekman currents within the mixed layer. Our conclusions are presented and possible further work 

discussed in Chapter 6. 
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Chapter 2: Literature Review and Background Material 

2.1 The Southern Ocean: Circumpolar Structure and Dynamics 

a. Currents and Fronts 

A number of currents play a role in the dynamics of the Southern Ocean. On the northern fringes of 

the Southern Ocean the subtropical gyres dominate. Further south lies the Antarctic Circumpolar 

Current (ACC) and adjacent to the Antarctic land mass itself gyres occur in the Weddell and Ross 

Seas. A map of these features is shown in Figure 2.1. 

 
Figure 2.1: Major currents and other features of the Southern Ocean. 

From Rintoul et al. (2001). 

Of all these currents the ACC is the most significant carrying an average of between 97 

x106m3/s (Orsi et al., 1995) and 134 x106m3/s (Rintoul et al., 2001) of water around the globe and 

forming a vital link between the ocean basins. The ACC is deep reaching and as a result its path is 

heavily influenced by the bottom topography. 
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The boundaries between the various regions of the Southern Ocean are marked by sharp 

transitions between water masses known as fronts (Stewart, 1997). Generally, four major 

circumpolar or near circumpolar fronts (Figure 2.2) are recognized (Orsi et al., 1995): the Subtropical 

Front (STF, blocked by South America); the Subantarctic Front (SAF); the Polar Front (PF) and the 

Southern ACC Front (sACCf or SACC). The criteria used to define these fronts have varied 

considerably from study to study, for examples see Belkin and Gordon (1996). This has resulted in 

discrepancies in the locations of fronts (Sokolov and Rintoul, 2007). In addition to the circumpolar 

fronts, two minor fronts (the Scotia front and an unnamed front) separate the Weddell and Ross 

gyres from the ACC. 

 
Figure 2.2: Schematic map of the principal fronts of the Southern Ocean. From Stewart (1997), after 

Orsi et al. (1995). Shaded areas indicate depths of 3000m or less. 

Based on studies in the Drake Passage it was long believed that transport along the ACC was 

concentrated in a number of continuous and deep jets associated with the circumpolar fronts 



7 
 

(Rintoul et al., 2001). The advent of high resolution models; remote sensing of the jets and higher 

resolution observations have since shown that the ACC is considerably more complex and is actually 

composed of (Hughes and Ash, 2001): “a complex interweaving of jets, breaking and joining, 

beginning and ending”. A number of these jets are associated with the temperature and salinity 

features which older studies have used to define frontal location and are thought to account for 

some of the discrepancies in frontal positions in those studies. Similar studies (Sokolov and Rintoul, 

2007) also indicate that frontal structure is more complex than previously believed. 

 

b. Water Masses 

While the circumpolar transport of the ACC is the dominant feature of the Southern Ocean the 

weaker meridional overturning circulation plays a very significant role in global climate. The 

circulation is dominated by six major water masses, the names and properties of which are shown in 

Table 2.1. 

Water Mass Temperature (°C) Salinity (psu) 
Other 

Characteristics 
Sources 

Subantarctic Mode 

Water (SAMW) 
4-15 34.2-35.8  

(Hanawa and 

Talley, 2001) 

Antarctic Intermediate 

Water (AAIW) 

3-5 (Potential 

temperature) 
34.2-34.4  (Gordon, 2001) 

Upper Circumpolar 

Deep Water (UCDW) 

1-2 (Potential 

temperature) 
34.2-34.4 

Oxygen 

minimum 

(Gordon, 2001) 

(Orsi et al., 1995) 

North Atlantic Deep 

Water (NADW) 
4 35  (Stewart, 1997) 

Lower Circumpolar 

Deep Water (LCDW) 

1-2 (Potential 

temperature) 
34.2-34.4 

Salinity 

maximum 

(Gordon, 2001) 

(Orsi et al., 1995) 

Antarctic Bottom 

Water (AABW) 

<-1 (Potential 

temperature) 
34.65-34.75  (Gordon, 2001) 

Table 2.1: Defining Features of Southern Ocean water masses. 

The densest of these water masses is the cold and saline AABW which originates on the continental 

margins of Antarctica, most notably in the Weddell Sea. Further up the water column sits the LCDW, 



8 
 

NADW and UCDW, south of the Polar Front both these water bodies extend to the surface. North of 

the Polar Front the AAIW and subsequently (north of the SAF) the SAMW dominate the near surface 

layers of the Southern Ocean. 

 

c. The Overturning Circulation  

The overturning circulation (Figure 2.3) is largely dependent on the balance between the southwards 

flow of the deep waters and the northward flow of AABW and surface waters north of the PF 

(Rintoul et al., 2001). It has been surmised that this process is at least partially driven by Ekman 

(wind driven) transport: Over much of the Southern Ocean westerly winds dominate (causing 

northward Ekman transport), reaching a maximum in the vicinity of 50°S; further south winds are 

weaker and more variable. This results in divergent Ekman transport which causes upwelling of the 

deep waters. 

 
Figure 2.3: Schematic diagram of the overturning circulation. From Speer et al. (2000). 

As a result of the circumpolar nature of the ACC, meridional geostrophic transport is 

confined to regions in which sea floor topography cuts across the ACC. From this it has been 

deduced (de Szoeke and Levine, 1981) that in order to balance northward Ekman flow and heat loss 

to the atmosphere eddies must contribute to an unusually large portion of the heat transport across 
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the ACC. Models (Speer et al., 2000) and experiments (Phillips and Rintoul, 2000) seem to confirm 

this. Areas associated with high eddy intensity include the Kerguelen and Campbell Plateaus. 

 

d. The Kerguelen Plateau Region 

The Kerguelen Plateau is a region of shallow water between 70οE and 80οE and extending from 

approximately 45οS to 65οS (Figure 2.4). The Plateau is split in two by the Fawn trough near 57οS; the 

plateau north of the trough is typically shallower than south of the trough. It represents one of the 

few major topographic barriers within the Southern Ocean, driving a bifurcation of the ACC 

deflecting the Polar and Subantarctic fronts northwards and the Southern ACC front southwards 

(Park et al., 2008). This bifurcation and deflection of the ACC jets results in intense eddy activity 

(Meijers et al., 2011b, Phillips and Rintoul, 2000, Rintoul et al., 2001). 

 

Figure 2.4: Bathymetry (Smith and Sandwell, 1997) of the Kerguelen Plateau with the major fronts 

and topographic features marked. Fronts are indicated by black lines (north to south: STF, Subtropical 

front; SAF, Subantarctic front and PF, polar front) while the SOFINE CTD survey is marked with the 

black diamonds (arrows indicate direction of survey).  NKP and SKP mark the Southern and Northern 

Kerguelen Plateaus; FT marks the Fawn Trough. From (Damerell et al., 2013). 
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 Flow in the Kerguelen region, as reconstructed by Park et al. (2008), is shown in Figure 2.5. 

Net transport is dominated by jets associated with the major branches of the Subantarctic front to 

the north of the Plateau and by flow through the Fawn Trough further south. Flow over the Plateau 

itself is weak. 

 

Figure 2.5: Schematic of flow in the Kerguelen Plateau region. Dashed lines indicate deep western 

boundary currents. Blue vectors with numerals indicate observed current velocities.  From (Park et al., 

2008)  

 

2.2 Subsurface Profiling Floats 

One of the major problems for Oceanographers has been the limitations on quality, quantity, 

geographic and temporal coverage of data. The development of the expendable bathythermograph 

(XBT) in the 1960s and the World Ocean Circulation Experiment in the 1990s (Roemmich et al., 1998) 

have done much to improve the extent and quality of coverage, however many limitations still 

remain. XBTs are principally deployed from ships of opportunity, and as such, the resulting data is 

mainly restricted to major shipping lanes and the measurements only provide temperature profiles. 

The WOCE survey provided high quality data across the entire water column, but even given seven 
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years of work the spatial coverage remained sparse. The large scale deployment of subsurface 

profiling floats under the Argo programme has overcome some of these limitations. 

The use of sub-surface floats was pioneered by John Swallow in 1955 (Gould, 2002) when he 

produced the first SOFAR (SOund Fixing And Ranging) floats. Early floats used a frequency in the 

region of 10kHz giving  a detection range of around 5 km (Warren and Wunsch, 1981). By the mid-

1970s it had become common to use the SOFAR channel (around 1000Hz) which allowed ranges of 

up to 700km (Warren and Wunsch, 1981). During the 1980s RAFOS (reverse SOFAR) floats were 

developed (Gould, 2002). Unlike SOFAR systems RAFOS used receivers fixed to the float and the 

signals transmitted from fixed stations.  

With the advent of the WOCE program during the 1990s RAFOS floats were supplemented 

by the introduction of Autonomous Lagrangian Circulation Explorer (ALACE) floats (Gould, 2002). 

ALACE floats could be set to maintain a desired depth for a period of time before surfacing then 

descending and repeating the process. ALACE floats did not use acoustic tracking; data on the 

location of a float was obtained solely from fixes obtained by satellite when the float periodically 

surfaced.  

The development of the Argo array was first proposed in 1998 in conjunction with the Global 

Ocean Data Assimilation Experiment (GODAE) and the Climate Variability and Predictability Program 

(CLIVAR). The first floats were deployed in 2000 and worldwide coverage was achieved by 2004 

(Lebedev et al., 2007). By the end of 2007 the initial target of 3000 active floats had been met. 

 

a. Argo Floats 

With the exception of some limited use of fixed profiling devices in the Arctic the vast majority of 

data collected by the Argo project is sourced from profiling floats. Currently most deployed Argo 

floats are of three main models: APEX, SOLO and Provor. All of these float models have similar 

characteristics: a nominal life time of 4 years or between 150 and 170 cycles and a maximum 

operating depth of about 2000m. All Argo floats use an external hydraulically operated bladder to 
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control depth. By adjusting the volume of the bladder, the volume and hence density of the float can 

be changed, allowing the float to rise or sink until neutral buoyancy is achieved. 

An Argo float cycle (Figure 2.6) consists of four distinct phases. First is the surface phase 

during which data is transmitted to satellites.  

 
Figure 2.6: Outline of a typical Argo float cycle. From Gould (2006). 

This is followed by descent to parking depth and an extended period spent at a parking depth which 

for 90% of floats is between 1000m and 2000m (Lebedev et al., 2007). Finally, the profiling phase in 

which temperature and salinity sensors record data while the float ascends to the surface. 

Dependent on the intended use of a float the profile may commence at the parking depth or may be 

preceded by a descent to a greater depth. On average an Argo float cycle lasts for 9.5 days, of which 

9 hours are spent on the surface (Lebedev et al., 2007).  

 

b. EM-APEX Floats 

EM-APEX (Electromagnetic Autonomous Profiling EXplorer) floats (Sanford et al., 2005) are an 

enhancement of the APEX sub-surface profiling float manufactured by Teledyne-Webb, which makes 
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up much of the current Argo fleet. They are equipped with an electromagnetic subsystem including 

compass, accelerometers and electrodes that measure the motionally-induced electric fields 

generated by currents moving through the vertical component of the Earth's magnetic field. Two 

orthogonal pairs of electrodes give two independent measurements of electrical potential difference 

across the body of the float. As the instrument ascends/descends at approximately 10-12 cm s-1, 

external fins cause the body to rotate so that the orientation of the electrode axes relative to the 

instantaneous current is constantly changing. The sampling rate is 20Hz and these data are averaged 

to 1 second intervals. On-board processing performs a least-squares fit over a moving window of 50 

seconds to give one voltage component pair, and the RMS error of the fit. The resulting vertical 

resolution is 2-4dbar, depending on the float’s vertical velocity. Each fit comprises multiple rotations 

of the float, allowing the large self-potential associated with electrodes to be removed. The electric 

field measurements are converted to relative velocity components following the method described 

in Sanford (1971). The unknown constant velocity offset is determined in this case from the GPS 

locations at each surfacing of the float, as described in Phillips and Bindoff (2014), allowing absolute 

velocities to be calculated. Further details of the EM-APEX floats are discussed in Section 3.2a. 

 

2.3 Ekman Theory 

One of the earliest theories addressing the effect of wind forcing on the ocean was proposed by 

V.W. Ekman (1905), inspired by Nansen’s observations of Icebergs drifting to an angle offset from 

the wind. Ekman devised his theory by considering a steady horizontal flow driven by constant wind 

forcing, resulting in a balance between frictional and coriolis forces. By assuming a constant 

“coefficient of friction” throughout the water column, Ekman was able to obtain differential 

equations for the longitudinal and latitudinal components of velocity as a function of depth. The 

coefficient of friction governs the transmission of frictional forces down the water column, and is 

now usually termed the eddy viscosity. Ekman’s equations result in a solution generating an 

exponential decay in the magnitude of the velocity and an anticyclonic (anti-clockwise in the 
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Southern Hemisphere) rotation with increasing depth, resulting in the classical Ekman spiral. 

Versions of these equations have also been adapted for use with periodic wind forcing (Rudnick, 

2003, Rudnick and Weller, 1993). By integrating the Ekman velocity over a selected depth range the 

resulting Ekman transport of water can be calculated. 

Ekman transport can have significant impacts on both biological and climate systems. Ekman 

transport away from a coastline can produce upwelling of water. While in the open Ocean spatial 

variability of Ekman transport can result in the phenomenon of Ekman pumping resulting in 

downwelling of water and Ekman suction driving upwelling. An example of this is the role Ekman 

transport plays in the meridional overturning circulation by driving the upwelling of deep waters 

near 50°S (Speer et al., 2000) and transporting them northward. These Ekman flows carry cold water 

northward, effecting a poleward heat transport and thus contributing to the global heat balance. 

 

a. Derivation of Steady State Solutions: 

The derivation of ‘classical’ steady state Ekman theory involves seven assumptions: 

1. The ocean is large and of uniform depth. 

2. The ocean has a uniform and constant density throughout. 

3. Water can flow freely into and out of the region considered: nearby currents and coastlines 

are neglected. 

4. The curvature of the Earth may be neglected. 

5. A steady and uniform wind stress acts on the entire region being considered. 

6. The system has had time to achieve a stationary state of motion. 

7. Water can be treated as incompressible. 

Following Ekman (1905) we consider the x-component of momentum: 
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Where: x,y,z denote the longitudinal, latitudinal and vertical coordinates 
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 u,v,w denote the longitudinal, latitudinal and vertical velocities 

 f denotes the Coriolis parameter 

p denotes pressure  

denotes density 

Fx denotes the frictional force 

Note that for the sake of consistency throughout this thesis all notation used to describe Ekman 

processes will be consistent with Chereskin and Price (2001) and Lenn and Chereskin (2009). 

Assumption 5 implies that u and v do not vary as functions of x and y, combining this with 

assumption 7 in turn implies that w does not vary as a function of z. 

Thus: 

0,,,, 




















z

w

y

v

x

v

y

u

x

u
 

 

Hence, the x component of the momentum equation simplifies to: 

xFfv
x

p

t

u













1
 

 

The assumption of uniform density (assumption 2) implies that there is no horizontal variation in 

pressure. Hence: 
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But the frictional force is a function of density and the horizontal components of stress, Txz and Tyz 

(Stewart, 1997): 
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Ekman assumed a frictional stress of the form: 
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(2.2) 

Where k is the kinematic eddy viscosity. 

Thus, the momentum equation becomes: 
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Assuming k is independent of depth (z): 
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 Applying assumption 6, the derivative of u with respect to time must be zero; we obtain a balance 

between wind stress and the Coriolis force: 
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Now, consider the substitution:  
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Hence the expression becomes: 
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A similar procedure can be applied to the y-component to yield:  
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The solutions to these partial differential equations take the form (Ekman, 1905): 
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Where V1 and V2 denote speeds and c1 and c2 denote angles. 

Taking z positive upwards it becomes apparent that the first term of each equation decays away 

from z=0m while the second term decays towards z=0m. Thus V1 represents the surface velocity 

(from now on denoted Vsurf) and V2 represents a velocity at depth. Hence, assuming an infinitely 

deep ocean (in practise, a depth much greater than De), V2 can be taken as 0m/s and so the second 

term can be neglected: 
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To determine the value of c1 we must first find the derivatives by depth of uek.  
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Now consider the case of z=0dbar (i.e. at the surface) with a constant wind stress (T) applied along 

the y axis. The x component of wind is, thus, zero: 
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Thus, for real and constant eddy viscosity and density the derivative of uek with respect to z must be 

zero: 
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At the surface z=0, hence: 
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Appling a trigonometric identity: 
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Similarly, for the wind directed along the y axis the y component of stress is:  
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Hence, evaluating the derivative of Equation 2.5b at the surface we obtain: 
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Substituting Equation 2.4 for De, and rearranging, we obtain an explicit expression for the surface 

velocity Vsurf in terms of the wind-stress, density, eddy viscosity and coriolis parameter: 
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The final form of the equations for u (Eqn. 2.5a) and v (Eqn. 2.5b) components of Ekman current 

velocity display the expected exponential decay and rotation with increasing depth: 
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2.4 Previous Observational Studies 

While laboratory experiments and atmospheric studies (Hesselberg, 1954) confirmed the existence 

of Ekman spirals it would take over half a century for the first observations of an oceanic Ekman 

spiral (Hunkins, 1966) and it would not be until the 1970s that instruments became sensitive and 

reliable enough for detailed examination of both localized Ekman spirals and (on a larger scale) 

Ekman transport. 

Generally, there are three methods by which Ekman theory has been studied observationally: 

1. Observations of Ekman transport across hydrographic sections (Chereskin and Roemmich, 

1991, Wijffels et al., 1994). 

2. Large scale statistical analysis of drogued surface drifter paths (Elipot, 2006, Krauss, 1993, 

McNally, 1981) 

3. Direct observation of velocity profiles (Chereskin, 1995, Lenn and Chereskin, 2009, Weller, 

1981). 

 

a. Early Observations 

The first reliable observations (Hunkins, 1966) of Ekman spirals in deep waters were not made until 

1958 when a series of measurements were undertaken from a station on an ice floe in the central 

Arctic Sea. Observations were made by the use of a tethered drogue deployed through a hole in the 

ice. Current heading was determined using the horizontal angle between the tether and north, while 

observations of the angle between the tether and a vertical plumbline were calibrated against both 

theory and observations with a conventional current meter to produce estimates of current speeds 

relative to the ice floe. The drift velocity of the ice floe was estimated from positional fixes obtained 

by celestial navigation. 

A total of 23 velocity profiles from 13 periods of steady wind and steady drift were isolated 

for analysis. These velocity profiles consisted of 4 to 6 velocity observations over depth ranges from 

29 to 61m. Vector plots of mean velocities over each drift period were prepared.  At shallow depths 

(typically around 12m), the majority of these plots display clockwise displacement of near surface 
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velocities relative to the ice floe and wind velocities and clockwise rotation, both consistent with 

Ekman theory. At deeper depths velocity amplitude decay and rotation are less consistent, and so do 

not fit as well to theory. 

 
Figure 2.7: Mean velocity spiral from 9 profiles taken over 6 periods of steady drift between the 8th of 

July and the 3rd of September 1958. Numbers adjacent to vectors denote depth in meters. From 

Hunkins (1966). 

While features of these profiles are indicative of Ekman spiral like behaviour, Hunkins (1966) 

pursued the problem further by considering a mean profile over 6 periods of steady drift (Figure 

2.7). The resulting profile has a clearly defined spiral rotating clockwise and decaying with increasing 

depth.  Additionally, Hunkins (1966) compared this mean spiral to the combination of a thin under-

ice boundary layer and a theoretical Ekman spiral with k=23.8cm2/s (not shown). Aside from a slight 

offset, probably arising from the geostrophic component of velocity, the two spirals matched well. 

This led Hunkins (1966) to conclude that the ‘classical’ constant eddy viscosity Ekman theory was 

adequate. 

In 1971 Halpern (1974) undertook a study of mixed layer responses in the North Pacific using 

a  mooring deployed at 47° N 128° E in 2700m of water. The mooring was equipped with a wind 

recorder, one air thermistor and nine thermistors placed between the surface and 55m. Four current 

meters were installed on the mooring in such a way as to place two (8 and 16m) in the mixed layer, 

one (26m) at the top of the thermocline and one (46m) at the base of the thermocline. The 
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experiment ran for 32 days from the 4th of August to the 5th of September, however the 16m 

current meter failed after 27 days hence limiting examination of currents to that time period. During 

the experiment two cold fronts passed over the mooring on the 20th of August and the 1st of 

September, otherwise winds only occasionally exceeded 5m/s.  

The passage of the 20th of August ‘storm’ drove considerable changes in the mixed layer. The 

temperature structure of the water column changed considerably: the mixed layer deepened from 

around 18m to 25m; the upper 10m displayed cooling of about 1°C and waters between 20 and 30m 

warmed (by 2°C at 23m and 0.6°C at 30m). Despite these changes, the net heat content of the upper 

50m varied by less than 5%. Based on a combination of this minimal change in heat content and 

surface observations, Halpern concluded that the temperature redistribution was principally driven 

by vertical mixing rather than horizontal advection.  

Examination of the velocity observations indicated strong coupling between the wind and 

mixed layer currents and a weaker coupling between the wind and deep currents and hinted at a 

slab-like (vertically-uniform horizontal velocity) response in the mixed layer. While no indications of 

an Ekman spiral were detected, observations of flow at 8m and 16m (14cm/s and 12cm/s) during a 

storm on the 20th and 21st of August were generally in line with a mean velocity of 14cm/s computed 

by assuming wind-derived estimates of Ekman transport were evenly spread over the 0-20m depth 

range. Observations of current headings at the same depth for the same time period yielded a 

clockwise deflection relative to the wind heading of around 120°. Halpern (1974) deemed that these 

observations were consistent with Ekman theory but were not strong enough to be taken  as 

confirmation. 

 

b. Weller (1981) 

Developments over the course of the 1960s and 1970s allowed the introduction of more 

sophisticated current meters.  During 1977 a set of vector measuring current meters (VMCMs) were 

deployed from the free-drifting research platform Flip in deep waters off California. 
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Observations of velocities relative to the research platform were made using two pairs of VMCMs on 

a wire. The wire was payed out and retrieved over the course of two hours, cycling the upper pair of 

VMCMs between 5m and 70m and the lower pair between 77m and 142m. During each cycle the 

wire was stopped for 5 minutes at ten preset depths resulting in velocity observations at 21 depth 

levels. Simultaneous observations of airspeed were made using an anemometer mounted 18m 

above the surface, this airspeed was corrected to a height of 10m and converted into a wind stress. 

Flip’s drift was tracked using the LORAN radio navigation system. 

Velocities were sorted into six depth bins (5-15m, 22-40m, 48-67m, 76-89m, 96-110m and 

118-142m) and rotary spectra were calculated for positive and negative radial frequencies in each 

depth bin. Negative (clockwise rotating) frequencies displayed a peak around 0.04 cycles per hour 

(CPH) which, due to the direction of rotation and proximity to the local coriolis frequency (denoted 

f), Weller (1981) attributed to inertial motion. Next, the coherence and phase (probable angle) 

between specific depth bands and the rest of the water column was calculated. Motion relative to 

the surface (Figure 2.8) was found to be significantly coherent with motion over the top 40m for a 

frequency band of -0.1 to 0.1 CPH.  

 
Figure 2.8: Coherence (top) and phase (bottom, positive indicates clockwise rotation) between 10m 

level and all other depths. From Weller (1981). 
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For subinertial frequencies phase relative to surface motion was predominantly positive, indicating 

rotation to the right. This was confirmed by examination of the mean daily velocities for the first five 

days of the study (Figure 2.9). 

 
Figure 2.9: Daily mean velocities relative to Flip (top) and corrected for Flip’s drift velocity (bottom). 

Vectors are labelled with the corresponding depth or, in the case of those indicating wind stresses, . 

Tick marks on axes are at 0.1ms-1 for velocity and 10-2Pa for wind stress. From Weller (1981). 

Issues with the number of high quality LORAN fixes per day meant that estimates of Flip’s drift speed 

(and hence, absolute rather than relative velocities) could on average be obtained only once per day. 

This prevented direct investigation of wind stress-velocity relationships using rotary cross spectral 

analysis as previously applied within the water column. Instead Weller (1981) used the observations 

of relative velocities to produce time series of velocity shear. Plots of coherence and phase between 

the wind stress and shear are shown in Figure 2.10.  Generally, coherence was significant to a depth 

of around 40m over a frequency band from -0.2 to 0.2 CPH. Coherence was deepest reaching at low 

frequencies with the exception of a region of coherence between 70 and 100m depth around the 

negative (clockwise-turning) inertial frequency. For all positive frequencies and the negative 
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frequencies between –f and 0 CPH the phase plot indicates that shear is usually to the right of the 

wind stress. At frequencies less than –f the phase plot indicates shear is usually to the left of wind 

stress. 

 
Figure 2.10: Coherence (top) and phase (bottom, positive indicates clockwise rotation) between wind 

stress and velocity shear. From Weller (1981). 

Using a combination of time dependent wind stress and Ekman equations, Weller (1981) attempted 

to model the velocity structure observed. Using a constant eddy viscosity parameterization, 

attempts to match the observed phase resulted in an eddy viscosity of between 100 and 500 cm2/s, 

while matching the observed shear required an eddy viscosity of around 50cm2/s. Similarly, simple 

linearly varying eddy viscosity parameterizations could not be made to match both the observed 

phase and shear. This inconsistency in estimates of eddy viscosity has also been observed in more 

recent studies (Lenn and Chereskin, 2009, Price and Sundermeyer, 1999, Price et al., 1987). 

 

c. NORPAX and Related Drifter Studies (McNally, 1981) 
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With the development of suitable satellite instrumentation (RAMS and ARGOS) during the 1970s the 

use of surface drifters for ocean observation became practical.  One of the notable early 

deployments of surface drifters occurred during the NORPAX experiment conducted between July 

1976 and June 1977. Twenty three drifters with 9 m drogues on 30m lines were deployed and 

tracked (McNally, 1981). In principal the use of the drogues with large surface area implies that the 

resulting drift trajectory can be attributed primarily to the velocity at drogue depth rather than to 

windage on the float. Over the course of the experiment, 80% of the drifters reported the loss of 

drogues.  

Monthly vector averages of drifter speed and direction were calculated for 5° by 5° bins and 

compared to similarly vector-averaged winds from the Fleet Numerical Weather Centre’s synoptic 

wind analysis dataset (2.5° spatial and 6 hourly temporal grids). These average winds and drift 

velocities indicated that a 350% increase in drifter velocity during the winter months coincided 

closely with 500% increase in wind speed during the same period. Additionally, comparisons of mean 

wind and drifter headings indicated a tendency for the drifter to be deflected to the right of the 

wind, consistent with the expected direction of deflection with depth and transport from Ekman 

theory. More detailed consideration of this data indicated that over the period of high wind speed 

from October 1976 through March 1977 the mean deflection of all drifters was 28° right of the wind, 

less than the 45° deflection expected for surface Ekman velocities or the 90° deflection expected for 

net Ekman transport. 

A second analysis procedure was also applied. Drifter trajectories were interpolated to 

produce 4 location fixes per day on the same 6 hourly temporal grid used for the FNWC wind 

dataset. Wind velocities were then interpolated to each location. A five day running average filter 

was then applied to the wind and drifter velocities. This data was then sorted by wind speed and 

date. Histograms of the difference between wind and drifter headings were computed for both 

(Figure 2.11). The histograms of deflection as a function of wind speed indicate that for weak winds 

(under 5 knots) deflection is approximately uniformly distributed but for stronger winds a preferred 



26 
 

deflection of float velocities off the wind of between 20° and 30° to the right is established and 

subsequently displays little sensitivity to further increases in wind speed. The histograms by date 

show an initial slight preference for rightward deflection, increasing and becoming more clearly 

defined while moving into the higher intensity winds of October 1976 to March 1977 before 

subsiding with the weaker winds thereafter. As with the monthly vector mean analysis this 

behaviour suggests significant correlation between large scale atmospheric forcing and drifter 

trajectories. 

 
Figure 2.11: Histograms of the angle between wind direction and drifter heading stratified by 

month (left) and by wind speed (right). From (McNally, 1981). 
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 Finally, McNally sorted the drifter velocities by the status of the drifters’ drogues: 4408 

measurements occurred while drogues were still attached; 7739 occurred after drogue loss. 

Calculations of mean speeds gave a value of 9.0cm/s for drogue observations and 8.8cm/s for 

observations after drogue loss. Averaged over the entire study time, while drogues remained 

attached drifters moved at 1.4% of the wind speed at 36° to the right of the wind and after drogue 

loss drifters moved at 1.5% of the wind speed at 34° to the right of the wind. McNally proposed two 

possible explanations for this observation, the first being a total lack of drogue efficiency (i.e. all 

velocities are exclusively due to windage) or that there was minimal velocity shear between the 

surface and 30m depth and by implication no Ekman spiral. Subsequent tests with deep drogues 

(120-200m) indicated the hypothesis of zero drogue efficiency was unlikely.  Thus, McNally 

concluded that the lack of difference in velocity observations between drifters with and without 

drogues indicated the presence of little vertical shear in the upper 30m, apparently in contradiction 

to Ekman theory. 

To further pursue this problem McNally and White (1985) performed a repeat deployment 

of drifters. A total of 12 drifters were deployed in four clusters of three drifters each between 35° N 

and 38° N along 155° W. Within each cluster, drifters were fitted with drogues at nominal depths of 

30m, 60m and 90m. Drifters were tracked using the ARGOS satellite array, providing more daily fixes 

and less uncertainty in location than the RAMS system used for previous studies. In order to perform 

analysis against wind data, drifter positions were interpolated to give positions on a regular 6 hourly 

temporal grid. 

 Trajectories of all drifters are shown in Figure 2.12. All drifters follow a pattern of a North-

South meander followed by Eastward drift until around 150°W, after which the majority of drifters 

move in a more north-easterly direction. The cluster of drifters deployed at 35° N display continued 

Eastward drift. Upon switching to a wind based coordinate system the differences in trajectory 

between the 35° N cluster and the other drifters disappears suggesting that this anomaly was due to 

differences in wind stress. This plot indicates that overall the drifters experience substantially 
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greater along-wind displacement than across-wind displacement. Net drift is to the right of the wind 

but as with the NORPAX study the angle of drift (around 20°) is inconsistent with either the expected 

net Ekman transport or surface Ekman velocity. There are no clear systematic differences in drift 

behaviour as a function of drogue depth. 

 
Figure 2.12: Drifter trajectories. From McNally and White (1985). 

  McNally and White (1985) proceeded to concentrate on the behaviour of the cluster of 

drifters deployed at 37° N. In all cases the drifters displayed little initial downstream drift with time 

before each drifter settled into a regime of near-constant downwind displacement rates, all 

displaying similar drift rates. However, this switch to constant displacement varied as a function of 

depth – the 30m drogue entered the regime in mid-September, the 60m drifter entered it in early 

October while the 90m drogue took until mid-October. Similar behaviour was observed for 

crosswind drift. 

An examination of wind stress was unable to account for this behaviour – a number of high 

wind stress values were observed prior to the 60m and 90m drifters commencing significant 

downwind drift.  However examination of mixed layer depth proved more informative. By producing 

a time series of mixed layer depths from XBT casts in the surrounding region McNally and White 

(1985) determined that over the course of the study the mixed layer depth deepened, reaching 25m, 

50m and 72m when the 30m, 60m and 90m drifters switched regimes. It should be noted that the 
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nominal drogue depths reflect the length of an unloaded drogue line, in practise applying a current 

to the drogue will result in the drogue sitting at a shallower depth. While the drifters used in this 

study did not have pressure sensors mounted on the drogues (McNally and White, 1985) previous 

work indicated that a real depth about 80% of the nominal depth (in line with the observed mixed 

layers depths at commencement of downwind drift) is plausible.  Thus McNally and White (1985) 

concluded that these changes in drift regime reflect the entry of the  drogues into the mixed layer. 

The behaviour of drifters was modelled by assuming that the crosswind component arose 

from a slab like wind driven mixed layer and that the downwind component arose exclusively from 

windage on the exposed hull of the drifter. Removal of the modelled windage-driven downwind 

velocity reduced total downwind displacement over the study time from around 1500km to 900km, 

indicating that there are other factors contributing to the downwind drift. The combination of 

downwind residual and crosswind drift shifts the angle between wind and currents to around 30° 

likely arising from the difference in the surface area of drogues used in each study. This is in line with 

the NORPAX measurements (McNally, 1981) but still inconsistent with Ekman theory. The slab-like 

wind-driven layer model applied to the crosswind component proved more successful by accounting 

for virtually all the crosswind drift of the 30m and 60m drifter in addition to a significant fraction of 

crosswind drift for the 90m drifter. 

By considering 5-day mean vector averaged velocities of the 60m and 90m drifters prior to 

the mixed layer depth reaching the drogues and the difference between nominal drogue depth and 

mixed layer depth, McNally and White (1985) detected clockwise rotating and depth-decaying 

velocity structures extending from the bottom of the mixed layer. This behaviour is consistent with 

an Ekman like spiral forming at the base of the mixed layer but the lack of precise data on drogue 

depth precluded a thorough investigation of these observations.  

These two studies (McNally, 1981, McNally and White, 1985) led McNally and White to 

conclude that a slab-like mixed layer model provided the best representation of near surface wind 

driven currents. While this seems a logical conclusion from these studies it must be pointed out this 
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interpretation is based on long-term (multiple month) behaviour and so does not exclude the 

existence of Ekman like spirals over shorter time frames.  

 

d. The Long Term Upper Ocean Study  

Paralleling developments in surface drifter systems, improvements in mooring based observing 

systems allowed the deployment of more robust and accurate current profilers. These 

improvements in instrumentation allowed longer time series of subsurface velocities to be collected. 

An early example of such a study is the deployment of a mooring in the western Sargasso  Sea as 

part of the Long Term Upper Ocean Study in the summer of 1982 (Price et al., 1987). The mooring 

had a total of 7 Vector Measuring Current Meters mounted at 5, 10, 15, 25, 50, 75 and 100m depth 

while a number of instruments mounted on the surface buoy recorded meteorological conditions. 

This mooring returned a time series of 160 days. 

 A time series of wind stress was estimated using bulk transfer formulae and observations of 

wind speed and air-sea temperature differences. Meanwhile the wind-driven current was isolated by 

subtracting from each observation a deep reference velocity (in this case the 50m level) then 

applying a vector average across all observations from a particular day. Finally, the 160 resulting 

daily mean velocities were rotated into a wind stress based reference frame and an ensemble 

average for the entire data set was calculated. This ensemble averaging served to increase the signal 

to noise ratio. 
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Figure 2.13: Mean observed Ekman profile (A) compared with output from a numerical model 

incorporating density stratification (B). Mean transport estimated from observations compared with 

that estimated from the wind stress using the ‘classical’ Ekman transport equations (C). From Price et 

al. (1987). 

 The resulting mean current (Figure 2.13A) takes the form of a rightward rotating spiral 

decaying with increasing depth, qualitatively consistent with steady-state Ekman theory. Analysis of 

the amplitude decay seen in this mean spiral generates an eddy viscosity of 6x10-3 m2s-1. The rate of 

rotation returns a different and incompatible eddy viscosity of 5.4 x10-2 m2s-1, almost an order of 

magnitude greater than the amplitude based estimate. Net Ekman transport was estimated from the 

mean current profile by applying trapezoid rule integration from the surface to 50m. Despite the two 

incompatible decay scales seen in the spiral the net transport matched theoretical results computed 

from mean wind stress to within 10% in magnitude and 5° in heading (Figure 2.15C), well within the 

20% uncertainly in the theoretical Ekman transport.   It was found that 95% of transport occurred in 

the upper 25m of the water column compared to 90% for a classical Ekman spiral with an eddy 

viscosity of 6x10-3 m2s-1 (obtained from the estimated e-folding depth) or 67% for the rotational eddy 

viscosity of 5.4 x10-2 m2s-1. Price et al. (1987) labelled this behaviour as ‘strong surface trapping’ and 
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suggested it indicated that classical Ekman theory was inadequate as it did not specifically include 

variations in stratification. 

 Examination of collocated temperature and salinity data indicated that variations in 

stratification occurred on both seasonal and daily timescales. The changes in stratification driven by 

the seasonal cycle of heat fluxes covered a range of 10°C. Daily changes in surface temperature 

usually ranged over 0.3°C but occasionally exceeded 2°C. These temperature variations in turn drove 

variations in mixed layer depths. Daily heat flux variations were observed to drive a cycle between a 

day time minimum mixed layer depth of between 2m and 10m and a night time maximum between 

10m and 30m. The influence of these changes in stratification can be seen in the differences in the 

mean daytime and night time current spirals (Figure 2.14), the night time spiral displays weaker 5, 10 

and 15m velocities and more rapid rotation with depth than the daytime spiral. 

 
Figure 2.14: Mean observed (top) and simulated (bottom) current profiles for data stratified by time 

of day into daytime (0800-2000 local time) and night time (2000-0800 local time). From Price et al. 

(1987). 

An additional examination of the effects of diurnal stratification was made by calculating 5m 

level velocities at 4 hour time intervals through the ensemble mean ‘day’ (Figure 2.14). This plot 

indicates a tendency for the 5m velocity to increase in magnitude and rotate to the right through the 

course of a day (0800-2000) before decaying overnight. Both the mean day and night and 5m level 
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data suggests that the surface trapping observed in the mean spiral arises predominantly from the 

shallow mixed layer depths of the daytime component of the diurnal cycle. Price et al. (1987) also 

constructed a numerical model to simulate the formation of Ekman currents under the influence of 

stratification . This model was able to create good matches to the total mean spiral (Figure 2.13B), 

the daytime mean spiral and the 5m diurnal current cycle (Figure 2.15). 

 
Figure 2.15: Mean diurnal current cycle at 5m depth (observed, left; modelled, right). From 

Price et al. (1987). 

 Price et al. (1987) confirmed that the classical wind stress to Ekman transport relationship 

holds over long time frames. It also demonstrated that the effect of stratification on the vertical 

structure of wind driven currents is significant, reinforcing the idea that the constant eddy viscosity 

parameterisation is inadequate. Further examination of data from later phases of LOTUS was 

undertaken by Schudlich and Price (1998) with similar results. 

 

e. Cross-Basin Transect Estimates of Ekman Transport (Chereskin and Roemmich, 1991, Wijffels et al., 

1994) 

By the late 1980s the velocity structure of wind driven flows remained unclear:  despite several 

direct observations of spiral like behaviour (Hunkins, 1966, Price et al., 1987, Weller, 1981), other 

observations pointed towards a slab like response (McNally, 1981, Davis et al., 1981b, Davis et al., 
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1981a).  The question of the penetration of wind driven transport into the ocean interior also 

remained, while observations (McNally, 1981, Price et al., 1987) suggested Ekman transport was 

insignificant below the mixed layer, the limited number of studies did not yet allow a firm 

conclusion. In an attempt to answer these questions Chereskin and Roemmich (1991) examined data 

taken from a transect between Senegal and French Guinea in March 1989. Over the course of the 

transect ADCP observations, wind observations and 84 CTD casts were taken. 

 The ADCP observations provided profiles of velocity shear over a depth range of 26m to 

300m. Similarly geostrophic shear was estimated between adjacent CTD casts by application of the 

thermal wind equations. The cross track component of the ADCP observations were then averaged 

between CTD cast locations to generate collocated ADCP and geostrophic profiles. Assuming the 

ageostrophic component of velocity tended to zero at a reference depth of 250m, Chereskin and 

Roemmich (1991) subtracted the geostrophic velocity profiles from the ADCP profiles to generate 

profiles of ageostrophic velocity. From the ageostrophic velocities transport was then calculated. Net 

ageostrophic transport was found to be predominantly to the north. Examination of transport 

integrated across the basin (Figure 2.16) indicated that the ageostrophic component displayed a 

strong near surface maximum before decaying with depth with a second, weaker, maximum around 

150m depth. In total the ageostrophic transport in the upper 100m was calculated to be 12Sv with 

error bars of 5.5Sv. This was compared with wind stress based estimates of transport derived both 

from shipboard observations and from climatology data. The former yielded an estimate of 

8.8±1.9Sv while the latter yielded an estimate of 13.5±0.3Sv. Chereskin and Roemmich (1991) 

concluded these figures were indicative of general agreement between Ekman theory and the 

observations. 
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Figure 2.16: Cross-basin transport per unit depth. The solid line (labelled difference) corresponds to 

the ageostrophic component. From Chereskin and Roemmich (1991). 

 To investigate the penetration depth of wind driven transport relative to the mixed layer 

Chereskin and Roemmich (1991) produced profiles of transport on a depth axis normalized by the 

local mixed layer depth before creating plots of basin integrated transport (Figure 2.17). Plots are 

shown for two different definitions of the mixed layer depth: variations of 0.1°C and 1°C from the 

surface temperature respectively. Slab-like behaviour would be expected to manifest as vertically 

uniform transport from the surface to 1.0 (fraction of mixed layer depth) before a sudden drop to 

zero transport. Besides a short stretch of vertical uniform transport at very shallow depths 

(approximately 0-0.3) arising from extrapolation of transport at the shallowest observations (26m) 

to the surface, neither definition of the mixed layer displays a slab-like response. Instead a near 

linear decrease towards 0Sv at depth with increasing depth is observed between 0.3 and 1.2 

normalized depth units for 1°C definition and 0.3 to 2.0 normalized depth units for 0.1°C definition. 

In both cases this behaviour is indicative of a significant level of Ekman transport below the mixed 

layer. 
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Figure 2.17: Basin integrated transport per unit of mixed layer depth. The mixed layer depth was 

defined as the depth at which at which temperature varied by 0.1°C (dashed curve) or 1°C (solid 

curve) from the SST. From Chereskin and Roemmich (1991). 

Following Chereskin and Roemmich (1991) Wijffels et al. (1994) examined a transect across 

the Pacific at 10°N taken between February 9 and May 10 1989. First a mixed layer defined by a 

variation of 0.1°C was applied, which yielded similar results to Chereskin and Roemmich (1991), 

apparently excluding a slab-like mixed layer. However, isolated velocity profiles frequently displayed 

a region of weak shear near the surface and regions of strong shear further down. Thus, Wijffels et 

al. (1994) repeated this work with a more stringent definition of mixed layer depth (a density change 

of 0.01kg m-3) and  with the depth of the top of the thermocline (defined by a density gradient of 

0.01kg m-4). Plots of cross-transect velocity as a function of normalized mixed layer depth and 

normalized thermocline depth (Figure 2.18) indicated that unlike the temperature based mixed layer 

definition used by Chereskin and Roemmich (1991) the density based mixed layer definition displays 

a slab-like response between the surface and 90% of mixed layer depth. 
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Figure 2.18: Mean cross-track ageostrophic velocity plotted as a function of depth normalized by 

mixed layer depth (MLD) and thermocline depth (TTC). From Wijffels et al. (1994). 

Somewhat unexpectedly, rather than a rapid change in velocity at the base of the mixed 

layer, these results indicated a steadier change and hence considerable penetration of momentum 

beyond the mixed layer depth. The thermocline depth based definition on the other hand displays a 

response more in line with the Atlantic results (Chereskin and Roemmich, 1991). Comparisons 

between the temperature and density based mixed layer criteria subsequently suggested that the 

temperature based definition tended to fall closer to the thermocline depth than to the density 

derived mixed layer depth. Wijffels et al. (1994) also calculated Ekman transport across the transect. 

The hydrography based estimate of 6.2±1x1010 kgs-1 matched reasonably well with the wind 

observation based estimate of 5.2±1x1010 kgs-1. 

While these two studies (Chereskin and Roemmich, 1991, Wijffels et al., 1994) further 

supported the relationship between wind stress and net Ekman transport, neither was able to clarify 

details of the wind-driven velocity structure. The Atlantic study by Chereskin and Roemmich (1991) 
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indicated the absence of a slab-like layer whereas Wijffels et al. (1994) did detect a slab-like mixed 

layer overlying a sheared ‘transition’ layer. 

 

f. Sensitivity to High Frequency Winds 

The studies of Ekman currents discussed so far have largely concentrated on comparing observations 

to steady state Ekman theory. In practise sensitivity to time-varying wind forcing can significantly 

change the response of Ekman currents. One such study intended to address this was performed by 

Rudnick and Weller (1993). 

Combining the vectorial form of the linear momentum equation and the wind-stress-eddy 

viscosity relationship, Rudnick and Weller (1993) assumed a solution sensitive to the radial 

frequency of the wind forcing: 
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For f+>0 (and thus >-f) the solution obtained by Rudnick and Weller (1993) was: 
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This result gives a surface velocity 45° to the right of the wind and rotation further to the right of the 

wind with increasing depth, qualitatively in line with a northern hemisphere ‘classical’ Ekman spiral.  

For f+<0 (thus, <-f ) the resulting solution was: 
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Unlike the classical Ekman spiral this solution results in a surface velocity 45° left of the wind and 

rotation to the left. In both cases the decay scale is a function of not just the eddy viscosity and 

coriolis parameter, but also the radial frequency of the wind forcing. 

 Additionally the total geocentric acceleration was defined as: 
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Geocentric acceleration is used in this case as it filters inertial oscillations. The component of 

geocentric acceleration coherent with the wind stress was modelled as: 


0T

aA 


 
 

Where T0 is the surface wind stress and a is the transfer function (m-1) determined as a function of  

for each current meter by minimizing the mean square difference between modelled wind-coherent 

geocentric acceleration and the observed total geocentric acceleration. 

 A 102 day long data set from the Frontal Air Sea Interaction Experiment (FASINEX) and a 160 

day dataset from LOTUS were selected for examination. The FASINEX data was recorded at five 

moorings deployed in the North Atlantic between February and May 1986. All moorings had 7 

current meters within the top 160m of the water column and one current meter mounted at 700m, 

while two moorings also had current meters mounted at 1000 and 4000m. The LOTUS time series on 

the other hand consisted of data from two moorings operational during May through October 1982: 

a surface mooring with current meters mounted between 5m and 100m and a subsurface mooring 

with current meters irregularly distributed between 129 and 4007m with the majority of current 

meters concentrated towards the top of the mooring (129m-328m). 

 Wind stresses were estimated for both datasets using bulk parameterizations before rotary 

spectral analysis was applied. In both cases the resulting power spectra were generally similar, both 

displaying a slight tendency for clockwise rotating frequencies to be more energetic than 

anticlockwise rotating frequencies. Geocentric acceleration was also estimated using the expression 
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outlined above before transfer functions were calculated for four frequency ranges -0.5 to -0.083 

cycles per hour (super inertial, clockwise rotating fourier components), -0.083 to -0.028 CPH (near 

inertial, clockwise rotating fourier components), 0.028 to 0.083 CPH (near inertial, anticlockwise 

rotating fourier components) and 0.083 to 0.5 CPH (super inertial, anticlockwise rotating fourier 

components). Plots of FASINEX transfer functions are shown in Figure 2.19 grouped into four depth 

ranges. Generally these results show a turning with depth consistent with the predictions for each 

frequency band, both within each depth range and between depth ranges and a general trend of 

surface intensification.  

 
Figure 2.19: Transfer functions from FASINEX in a wind relative reference frame (downwind equating 

to the x axis). Transfer functions are grouped into three depth ranges (rows) and four frequency 

bands (columns). From Rudnick and Weller (1993). 

Unexpectedly the FASINEX data displays significant responses at extreme depth (700-

4000m). Rudnick and Weller suspected this deep response arose from the transmission of mooring 

motions down the tether used to anchor the mooring to the seafloor. A correction scheme was 

developed which assumed that below a reference depth (taken as 80m for FASINEX) any wind driven 
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response arose from mooring motion rather than Ekman currents. Following the application of this 

correction, transport estimates for FASINEX were found to be in good agreement with theory and 

the resulting geocentric acceleration spirals turned to the left for clockwise rotating high frequency 

forcing and to the right in other cases. Application to the LOTUS data proved less successful: while 

the rotation of the spirals remained consistent with theory, the transport estimates did not match as 

well, suggesting that while the wind driven response is in the right direction, it is too small. 

 

g. ADCP Mooring Studies 

In addition to the ship-board surveys, Acoustic Doppler Current Meters were soon adopted for 

deployment on moorings. Such instruments have proven of value in both shallow waters (Yoshikawa 

et al., 2010, Liu et al., 2007) and the open ocean (Chereskin, 1995, Lenn and Chereskin, 2009). 

 The first application of mooring mounted ADCPs to Ekman currents was undertaken as part 

of the Eastern Boundary Current (EBC) experiment conducted in 1993 (Chereskin, 1995). A mooring 

with a downward looking ADCP and closely spaced thermisters (between the surface and 150m 

level) was deployed in deep water at 37.1° N, 127.6° W. The ADCP was mounted at a depth of 2m 

and was configured to produce velocity measurements at 4m intervals between 8m and 164m. 

Velocities were measured for a five minute period three times an hour before one average velocity 

for each 5 minute period was calculated. Random error in the velocity data was determined to be no 

more than 0.5 cm s-1. 

 For the analysis, a reference depth of 48m was selected. A mean spiral qualitatively similar 

to a theoretical Ekman spiral was detected and net transport calculated for both the 48m reference 

level and a number of alternate reference levels up to 60m depth. In all cases these transport 

estimates were found to agree with the wind-stress based transport to within the 20% uncertainty 

arising from errors in the drag coefficient used to calculate the wind stress. Estimates of transport 

were made on a daily basis and a cumulative transport calculated as a function of time (Figure 2.20) 

was found to be in general agreement with theory. Chereskin (1995) interpreted this agreement as 
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indicating that the momentum balance observed during the experiment was close to the steady 

state linear momentum balance assumed under classical Ekman theory.  

 
Figure 2.20: Observed (solid vector) and theoretical (dashed vector) Ekman transport. From Chereskin 

(1995). 

 Returning to the mean spiral Chereskin (1995) calculated decay scales and eddy viscosities 

from the observed spiral (Figure 2.21). As with several previous studies the spiral was found to be 

‘flat’: a deeper decay scale (48m) was observed using a rotation based definition (1 radian rotation) 

compared to the decay scale estimated from amplitude decay (25m). This resulted in a mismatch in 

eddy viscosity of a factor of 4 (274 cm2 s-1 for the amplitude based definition and 1011 cm2 s-1 for the 

rotational definition). 
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Figure 2.21: Observed mean Ekman spiral (left) and theoretical Ekman spirals computed from decay 

scales estimated amplitude decay (right, top) and the rate of rotation (right, bottom). From Chereskin 

(1995). 

This mismatch in eddy viscosities raised the question of whether a uniform eddy viscosity 

was a sensible parameterization. To further examine this question Chereskin (1995) returned to the 

relationship between stress and shear: 

z

u
kTxz



 

 
(2.6) 

Thus, if shear and stress profiles are available it is possible to calculate a profile of eddy viscosities. 

Shear by definition was easily obtainable from the velocity observations. Stress on the other had to 

be estimated from the relationship:  
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Where T(z) is the stress at depth z, T0 is the stress at the surface (i.e. the wind stress), is the 

Earth’s rate of rotation and uE is the Ekman velocity. The resulting eddy viscosity profile when an 

upper boundary condition requiring T(z=0) be equal to the wind stress is imposed is shown in Figure 

2.22. This procedure produced estimates of eddy viscosity of between 100 and 200 cm2 s-1 between 

10m and 30m, closer to the amplitude based estimate of k from the observed spiral. 

 Chereskin (1995) concluded that the EBC data indicated that the wind-driven portion of the 

observed flow was in Ekman balance over time periods greater than a few days; that estimates of 

Ekman transport from current and winds matched well and that the mean Ekman currents took the 

form of a smooth, ‘compressed’ spiral similar to previous observations (Price et al., 1987). 

 
Figure 2.22:Eddy viscosity profile inferred via Equation 2.7 from observed shear and stress. From 

Chereskin (1991). 
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h. Previous Southern Ocean Observations 

Prior to the start of this project there had been just two studies of Ekman currents in the Southern 

Ocean: Lenn and Chereskin (2009) investigated Ekman currents using ship-board ADCP observations 

in the Drake Passage, while Elipot and Gille (2009a, 2009b) used spectral methods to examine 

surface drifter data. Subsequently, a third study (Polton et al., 2013)  was published re-examining 

the Drake Passage ADCP data used by Lenn and Chereskin (2009) to investigate the effect of depth 

varying geostrophic velocities on the structure of Ekman currents. 

 
Figure 2.23: Observed mean current profile (solid black vectors) and mean wind stresses (Nm-2) from 

four reanalysis products. From Lenn and Chereskin (2009). 

 Lenn and Chereskin (2009) examined data collected by a 153.6kHz ADCP  aboard the 

Laurence M. Gould during 156 crossings of the Drake Passage between September 1999 and October 

2006. The mean cross-track geostrophic shear was computed from XBT/XCTD surveys and compared 

with the corresponding mean ADCP observations of shear; the ADCP shear was found to diverge 

from the XBT shear at approximately the 100m level, suggesting that this depth represented the 

base of the mean Ekman layer. ADCP currents were then gridded into 25km boxes and averaged to 

give one profile from each transect per box. Ekman current profiles were then generated by 

subtracting a deep reference velocity (here taken to be 98m) from each gridded velocity profile. 

Averaging over all Ekman current profiles resulted in a mean current spiralling anticyclonically and 
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decaying with depth (Figure 2.23). Least square fits to the amplitude decay and rotation of this mean 

spiral gave eddy viscosities of 0.0308 and 0.2210m2s-1 respectively. 

Mean Ekman transport was then computed by assuming the velocity was constant between 

26m and the surface before integrating the observed Ekman spiral from 98m to the surface. This 

transport was then compared to transport estimated from a variety of wind products (Figure 2.24). 

Three of the four products agreed with the observations at the 95% level. Similar analysis over 

subsets of the dataset by season or latitude did not display agreement with the wind-derived 

transport estimates. 

 
Figure 2.24: Observed mean current profile (solid black vectors) and mean transports computed from 

four reanalysis products. From Lenn and Chereskin (2009). 

Lenn and Chereskin (2009)  then computed profiles of viscosity using a similar method to that 

employed by Chereskin (1995). Varying from Chereskin’s method Lenn computed viscosity profiles 

based upon the vectors rather than magnitude of the stress and shear. Stress and shear were 

typically found to not be parallel, resulting in a complex eddy viscosity (Figure 2.25). Eddy viscosity 
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magnitude was found to decrease with depth from approximately 0.1m2s-1 at 26m to near zero at 

the base of the Ekman layer. The phase of the viscosities was found to be negative; indicating that at 

a particular depth stress was offset to the right of the corresponding shear vector. Lenn and 

Chereskin (2009) suggested that the observed complex viscosity either arose as an artefact of the 

averaging process (Price and Sundermeyer, 1999) or as the addition of a skewed component to the 

stress tensor, possibly arising from interactions with internal and surface gravity waves. 

 
Figure 2.25: Mean eddy viscosity profile inferred from observed mean stress and shear. From Lenn 

and Chereskin (2009). 

Elipot and Gille (2009a) adopted a rotary spectral technique to  fit nine conceptual models 

(Figure 2.26) of Ekman currents to observations taken with drogue-equipped surface drifters 

between 30° and 60° S. Data was sourced from drifters with drogues set at 15m depth deployed 

during the Surface Velocity Program and the Global Drifter Program; these drifters were tracked by 

the ARGOS array and resulting trajectories and velocities interpolated at six-hour time intervals. 
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Figure 2.26: Schematics of the 9 conceptual models from Elipot and Gille (2009). These models 

consist of combinations of three types of viscosity profile with three bottom boundary conditions. 

Class 1 models (top row) assume a constant viscosity (k0); class 2 (middle row) assume a viscosity 

increasing at a constant rate (k1) from 0 at the surface; class 3 (bottom row) assume a viscosity 

increasing at a constant rate from a non-zero value at the surface. These viscosity profiles are then 

combined with three bottom boundary conditions: an infinite depth Ekman layer (a, left column); a 

“one layer” model in which velocity approaches zero at a finite depth, h, (b, middle column) and a 

“one and a half layer” model in which shear tends to zero at depth h (c, right column). 

Elipot and Gille (2009a) isolated trajectories of at least 40 days duration between October 

1992 (the start of TOPEX/Poseidon altimetry data) and August 2002 (the end of the ERA-40 

reanalysis dataset). These trajectories were then divided into 40-day long segments and sorted into 

2° latitude bands. Geostrophic velocities were estimated from a combination of a time varying term 

estimated from AVISO sea level anomalies and a time mean term derived from the GRACE mean 
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dynamic topography interpolated onto the drifter tracks. Ageostrophic velocities at 15m depth were 

then obtained by subtracting the geostrophic velocities from the corresponding velocities estimated 

from the drifter trajectories. Time series of wind stresses corresponding to each drifter trajectory 

segment were then obtained from the ECMWF ERA-Interim reanalysis dataset. 

 For each latitude band the wind-stress autopower-spectrum (P) and wind-current 

crosspower-spectrum (Pu) were estimated using the periodogram method. The observed transfer 

function was then defined as the ratio of the cross-spectrum to the auto-spectrum: 


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P
zH u

obs ),(
 

(2.8) 

Model parameters were then obtained by fitting transfer functions (Hm) for each of the nine models 

to the observed transfer function over the frequency () range of -2 to 2 CPD by minimising the cost 

function (L, the difference between transfer functions weighted by the coherence 2) using a simplex 

search technique: 
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Errors were estimated using a bootstrap method. Further details of the fitting procedure and error 

analysis are discussed in Chapter 4.
 

Model parameters and minimum cost function values obtained by this method for each 

latitude band are shown in Figure 2.27. Class C (one and a half layer) models were typically found to 

produce viscosity parameters (k0 and k1) closely comparable to the corresponding infinite depth 

models; meanwhile boundary layer depths (h) produced by class C models were found to be deep, 

varying between 103 and 104m, comparable to or greater than the depth of the ocean. This implied 

that all class C models were effectively ‘degenerate’ to the corresponding class A models, and 

therefore offer no meaningful improvement. Disregarding class C models, Elipot and Gille (2009a) 

determined that single layer models performed better than the infinite depth models, with model 1B 
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being the best performing followed by model 3B. Interestingly, the classical Ekman model (1A) was 

found to be the least satisfactory model. 

 
Figure 2.27:  Estimates of eddy viscosity (a); viscosity gradient (b) and boundary layer depth (c) for all 

models; error bars indicate mean absolute deviation. Model performance as measured by the 

minimum cost function value (d). 

 Polton et al. (2013) considered the same dataset as Lenn and Chereskin (2009)  

supplemented with additional data collected on voyages between October 2006 and April 2011. 

Salinities for the XBT surveys were inferred from a salinity-temperature-depth regression and 

geostrophic velocities computed from the resulting density profiles. The data was then processed in 

line with Lenn and Chereskin (2009). Resulting velocity sections across the Drake Passage are shown 
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in Figure 2.28. The cross-track geostrophic velocity inferred from the XBT data displayed a depth 

varying structure. Comparison of the ADCP cross-track velocity with the XBT velocity suggests the 

geostrophic component dominates the cross-track flow. The along-track ADCP velocities were also 

found to display variability of similar magnitude to the cross-track case, suggesting that it also should 

be accounted for in the geostrophic current and shear. This behaviour strongly suggests that the 

vertical structure of geostrophic currents should be explicitly resolved when isolation Ekman 

currents.  

 
Figure 2.28:  An example transect across the Drake Passage showing velocities (ms-1) inferred from 

density profiles (a) or obtained from ADCP observations (b and c). From Polton et al. (2013). 

 Polton et al. (2013) then isolated geostrophic shear  by sorting the ADCP current profiles into 

25x25km grid boxes; in each box a mean current profile was calculated and the mean geostrophic 

shear obtained from the slope of a linear fit to the mean profile between 150 and 300m. For each 
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ADCP profile geostrophic currents were then estimated by taking the observed velocity at 150m and 

extrapolating linearly to the surface using the mean geostrophic shear from the grid-box the ADCP 

profile was located in. Ekman currents were then obtained by subtracting the extrapolated 

geostrophic current profile from the observed ADCP velocity profile. Profiles of mean Ekman current 

phase and log current magnitude (Figure 2.29a, large symbols) obtained using this method displayed 

closer agreement than when geostrophic shear was neglected (small symbols). The resulting mean 

current spiral (Figure 2.29b) was found to be consistent with a constant viscosity spiral.  

 
Figure 2.29: Mean profile of log current magnitude and phase (a, relative to the shallowest 

observation) using a constant geostrophic velocity (small symbols, dashed lines) or a constant 

geostrophic shear (large symbols, solid lines). Hodograph and standard error ellipses (b) for the mean 

Ekman current profile. The dark grey region bounds the range of a set of hodographs consistent with 

a constant viscosity ‘classical’ Ekman model. From Polton et al. (2013). 
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These findings indicate that the “compression” of the mean Ekman spiral, previously attributed to 

stratification induced surface trapping (Price et al., 1987), can arise as a side effect of using a 

constant geostrophic velocity when isolating Ekman currents. This in turn, suggests that ‘classical’ 

constant viscosity Ekman theory is adequate and raises questions of whether density stratification is 

actually relevant to our understanding of Ekman currents. 
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Chapter 3: Detecting and Characterizing Ekman Currents 

3.1 Introduction 

Previous studies have established the validity of the relationship between wind stress and net 

Ekman transport and observed Ekman-like spirals in data averaged over long time periods in a 

coordinate frame relative to the wind (Chereskin, 1995, Lenn and Chereskin, 2009). However, the 

vertical structure of both Ekman spirals and Ekman transport is still poorly understood. Previous 

studies have found the ‘classical’ constant viscosity model inadequate and identified behaviour 

suggestive of links to stratification in the mixed layer.  Additionally, despite the importance of Ekman 

transport in the Southern Ocean , there have been few previous observational studies in the region 

(Lenn and Chereskin, 2009, Elipot and Gille, 2009a). 

In this chapter we present a dataset of approximately 1400 concurrent temperature, salinity 

and horizontal velocity profiles. These profiles were collected with 8 EM-APEX (Electro-Magnetic 

Autonomous Profiling eXplorer) velocity profiling floats (Sanford et al., 2005) deployed north of 

Kerguelen Island as part of the 2008 Southern Ocean FINE-structure (SOFINE) expedition (Naveira 

Garabato et al., 2009). We isolate and describe Ekman currents within the EM-APEX data and then 

proceed to investigate the resulting Ekman transport, with particular attention to its vertical 

structure and relationship with stratification.   

 

3.2 Datasets  

a. EM-APEX Float Velocity Profiles 

The data used in this study were collected using eight EM-APEX floats (see Chapter 2, Section 2.2b) 

deployed north of Kerguelen Island in November 2008 in conjunction with the SOFINE expedition 

(Figure 3.1). The floats returned over 1400 profiles down to 1800m with samples spaced 

approximately 3m in the vertical. The horizontal separation of profiles was approximately 2-10 km 

depending on the mean currents. Within the Kerguelen Island region, all floats took four profiles 
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(two descent-ascent cycles) per day. Once downstream of Kerguelen Island floats were 

reprogrammed to produce ‘bursts’ of four profiles a day with each burst separated by nine days. 

 

Figure 3.1: Location of profiles from 8 EM-APEX floats (coloured circles). SOFINE cruise track and CTD 

locations (white circles). Background shading (m) is Smith and Sandwell (1997) bathymetry. Coloured 

contours from north to south mark the location of the northern (grey), central (pink), and southern 

(green) branches of the Subantarctic Front, and the northern Polar Front (brown) based on sea 

surface height (SSH) labels. Weekly and mean front positions (fine and heavy lines, respectively) are 

shown for AVISO SSH anomalies over the period 18/11/2008-14/1/2009 added to mean dynamic 

height of 100 dbar relative to 2500 dbar (Sokolov and Rintoul, 2009). 

During this study the latitude of the EM-APEX floats ranged from 41°S to 49°S, with inertial 

periods between 15.9 and 18.2 hours. The profiling mission was designed so that while near 

Kerguelen Island the pairs of adjacent up casts or down casts were separated by approximately half 

an inertial period.  This profiling allows the isolation and removal of velocities arising from inertial 
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oscillations. The complex velocity was modelled as the sum of subinertial complex velocity UM 

(assumed to be approximately steady over inertial scale periods) and a time varying complex near-

inertial velocity UI . 

)()( tUUtU IM   (3.1a) 

Where: 
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(3.1b) 

    
Given two velocity vectors and the time interval between them we can solve for the subinertial 

current and for the amplitude (AI) and phase () of the inertial current. Thus, for each pair of profiles 

spaced approximately half an inertial period apart we found the corresponding subinertial velocity. 

Calculated subinertial velocities were subsequently linearly interpolated back onto profile locations, 

producing the dataset used for all subsequent analysis. Only profiles with a time separation within 

10% of half the inertial period at their mean latitude were included in this analysis. 

 

Figure 3.2: Time-mean subinertial profile (left) and an example subinertial profile (right). Grey lines 

denote the v component and black lines denote the v component. Dashed lines in the time-mean 

profile indicate the variance of the data about the mean. 

 The mean non-inertial current profile and an example profile of UM are shown in Figure 3.2. 

The time-mean u profile is consistently positive (to the east) as would be expected from the mean 
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flow of the ACC, while the mean profile of the v component is close to zero over the majority of the 

water column. Both u and v components display significant variability about the time mean values. 

Both time-mean and individual cast profiles display higher flow speed within the upper 50m. 

 
Figure 3.3: Inertially filtered current speed (ms-1) as a function of depth and time from floats 3760 

(top) and 3762  (bottom).White contours indicate potential density isopycnals. The black line marks 

the mixed layer depth using a density criterion of <0.03kgm-3 relative to the upper-most 

observation (Sallée et al., 2006). 

Examples of current observations as a function of time from the floats are shown in Figure 

3.3, corresponding plots of temperature and salinity are shown in Figures A1.1 and A1.2. Float 3760 

(Figure 3.3, top) was deployed south of the central branch of the Subantarctic front before drifting 

closer to the front resulting in a warming and deepening mixed layer. Float 3762 was deployed 
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between the northern and central branches of the Subantarctic front and ended up following and 

ultimately crossing the northern branch of the Subantarctic front near the 40 day mark. 

 

b. Wind Data 

To examine the wind forcing within the Kerguelen region we used gridded wind fields (Bentamy et 

al., 2009)  produced by the Institut Francais de Recherche pour l’Exploitation de la Mer (IFREMER), 

Department of Oceanography and the Centre ERS d’ Archivage et de Traitement (CERSAT). This 

dataset was produced by merging QuickSCAT scatterometer winds with SSM/I radiometer wind 

speeds and ECMWF reanalysis wind fields using an objective method (Bentamy et al., 2009). The 

resulting 10m wind fields offer 0.25° spatial resolution and 6 hour temporal resolution. 

Wind velocities from the blended wind fields were interpolated onto the time and location 

of each EM-APEX profile and then converted to wind stresses using drag coefficients based on 

Yelland and Taylor (1996). These wind fields are smoothed both temporally and spatially, and we will 

return to this point later in this chapter. 

 

c. TPXO7.2 Tides 

To investigate the potential for tidal signals to affect our observations we used the TPXO7.2 

barotropic tide inverse model with global 0.25° resolution. Details of the model can be found in 

Egbert and Erofeeva (2002). The model was evaluated to determine tidal velocities at the times and 

locations of all EM-APEX float profiles. 

 

d. ERA-Interim Wave Data 

Mean wave period, significant wave height and mean wave heading were sourced from the 

ECMWF’s ERA-Interim reanalysis dataset (Persson, 2011). This dataset is derived from an 

atmospheric model coupled to a WAM type ocean wave model (WAMDI Group, 1988), driven by 
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data assimilated from a variety of sources. The resulting dataset has a 0.25° spatial resolution and a 

6 hour temporal resolution. 

 

3.3 Method 

a. Isolating Ekman Currents 

Ekman currents are the ageostrophic flow field where the primary balance is between the wind 

stress and the coriolis force. Having filtered near-inertial currents out of the velocity profiles it was 

necessary to remove the geostrophic component to isolate the Ekman currents. An obvious 

approach would be to calculate geostrophic velocities from the hydrographic data collected by the 

floats using the thermal wind equations. In practise, this is impractical as the EM-APEX floats tend to 

follow streamlines, so that using the thermal wind equations would only resolve the weak cross-

stream flow. Hence, we tested two alternative approaches for estimating the geostrophic flow. 

First, in line with a number of previous studies (Lenn and Chereskin, 2009, Chereskin, 1995) 

we assumed there was no geostrophic shear within the upper ocean, and so defined the sub-inertial 

currents in the Ekman layer  to be the sum of the depth-varying Ekman currents (Uek) and a constant 

geostrophic reference velocity (Udeep) 

UM (z) =Uek (z)+Udeep  (3.2) 

Uek(z)= uek +i vek  was assumed to follow the solution associated with a “classical” Ekman spiral with 

components  uek (east) and vek (north) defined as:
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(3.3b) 

 Where the depth, z, is taken as positive upwards; V0 denotes the surface current speed, 0 

denotes the wind stress heading (here in radians). De denotes the Ekman decay scale, with positive 
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values corresponding to anticlockwise rotation (as expected from Ekman theory) and negative values 

corresponding to reversed rotation.  Udeep is chosen to be the velocity at a level below which the 

Ekman component should be negligible. 

During their study within the Drake Passage, Lenn and Chereskin (2009) used a reference 

velocity at a depth of 98m based on ADCP measurements of shear from multiple voyages over a 

period of 7 years. We lack a long record of shear in the Kerguelen region independent of the EM-

APEX data; instead we selected the deep reference velocity based on mixed layer depth (MLD). 

Within the Kerguelen region Sallée et al. (2006) indicated MLDs of less than 100m in summer and up 

to 200m in winter. On this basis the reference velocity to be used as a proxy for the geostrophic 

velocity for each profile was defined as the observed velocity at 200m. For the rest of this paper we 

shall denote this method of defining the geostrophic velocity the “No Shear” case. 

 
For each profile two Nelder-Mead (NM) simplex searches (Nelder and Mead, 1965)  were 

run over the 0-50m depth range to search for the parameters V0, 0 , and De which minimized the 

cost function, L: 

    
m

m

Mfit zUzUL=
50

0
 

 

The first set of solutions with the Nelder-Mead algorithm assumed an Ekman component with 

anticlockwise rotation (as expected in the Southern Hemisphere), and the other solution assumed an 

Ekman component with clockwise rotation. Initial inputs for both simplex searches were taken to be 

an Ekman decay scale of 20m, a surface velocity with speed estimated from the upper-most ocean 

velocity observation and heading based upon the wind stress.  For each profile we selected the NM 

fit which produced the smaller L for our subsequent analysis. Note the solution of this system of 

equations is intrinsically non-linear since the surface current speed, current heading and Ekman 

decay scale appear inside the terms on the right side of Equation 3.3a and 3.3b.   

The assumption of a constant geostrophic velocity within the mixed layer is not supported 

by observations undertaken during SOFINE (Phillips and Bindoff, 2014). In these observations the 
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ACC displayed strong depth-varying flow. Additionally, geostrophic flow and mean wind displayed 

similar mean headings. It is therefore possible that depth-varying geostrophic flow has been 

included in our estimate of the Ekman velocity. In light of this we considered two cases (henceforth 

denoted as “Shear 1” and “Shear 2” cases) in which we assumed the complex near surface sub-

inertial currents (UM) could be described as the sum of an Ekman component (Uek), a constant 

reference velocity (Udeep, here taken as the velocity at the 200m level) and a component arising from 

a constant geostrophic shear: 

z
dz

dU
UzUzU

geo

deepekM  )()(
 

(3.4) 

In line with the no shear case two Nelder Mead simplex searches were run to fit parameters 

V0, 0 , De and the linear shear across the Ekman Layer (i.e. 
dz

dUgeo is constant). Initial inputs for V0, 0 , 

De were taken as per the no shear case, while those for the shear components were taken as the 

shear between the 100m and 200m levels. We selected the 100-200m geostrophic shear as a first 

guess based upon previous studies and decay scales observed in the “no shear” fits (section 3.4a), 

both of which suggest Ekman currents should be weak below 100m depth. The probability 

distribution of the geostrophic shear is discussed in Section 3.4a (Figure 3.6). 

For “Shear 1” we assumed the Ekman component typically consisted of a “classical” spiral 

and, hence, took the solutions generated by the NM fit initialized assuming anticlockwise rotation.  

For the “Shear 2” case we considered the possibility of the Ekman component often displaying 

reversed rotation as seen in frequency domain solutions of the Ekman equations (Elipot and Gille, 

2009a) and Chapter 4. Hence, for each profile we considered NM fits initialised with both clockwise 

and anticlockwise rotation and took the solution from whichever one of the two displayed the 

minimal residual. It is worthwhile noting that despite the assumed starting conditions both the 

“Shear 1” and “Shear 2” Nelder-Mead fits can produce both Ekman-like and reversed spirals. 
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Having obtained estimates of the parameters discussed above we next examine the 

performance of the “No Shear” and both shear cases and identify any individual profiles that display 

Ekman spirals. The classical Ekman spiral can be separated into a velocity amplitude component 

decaying exponentially with increasing depth and a unit vector component rotating anticlockwise as 

a linear function of increasing depth: 

    eD

z

ekek eVzivzu 0  
(3.5a) 
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(3.5b) 

The fraction of variance (R2) values in each observed profile of current speed and heading captured 

by the Nelder-Mead fits of Equations 3.5a and 3.5b were calculated and used as diagnostics to 

quantify the presence of rotation and amplitude decay with depth. If the R2 for the fit to current 

amplitude exceeded 0.75, and the rotational R2 exceeded 0.5 and the decay scale De was less than 

500m, the profile was classified as displaying a spiral and the direction of rotation was obtained. 

Eddy viscosities (k) were then calculated from estimated Ekman layer depths and the Coriolis 

parameter (f) as: 

2

2

f
ek

D
  

(3.6) 

Finally, we generated Ekman spirals for all profiles from the fitted Ekman decay scales using the 

solutions for the “classical” case which assumes constant wind forcing and constant density in the 

mixed layer. These estimated velocity profiles were subtracted from the corresponding observed 

velocities to obtain residuals which were then used to assess the performance of the fitting 

procedures (see Section 3.4a). 
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b. Estimating Ekman Decay Scales and Eddy Viscosities 

Ekman decay depth is a product of the shear fitting procedure outlined above. However, in line with 

previous studies (Lenn and Chereskin, 2009, Chereskin, 1995) we also obtained estimates of Ekman 

depth based on the rate of rotation with depth of the horizontal velocity vector, and on the rate of 

velocity amplitude decay observed in each individual spiral. The parameters for Equations 3.5a and 

3.5b were fitted independently of each other to the upper 50m of each velocity profile using a least 

squares technique. The fits produced two estimates of decay scale, Damp, the amplitude fit (from 

Equation 3.5a) and Drot the rotational fit (from Equation 3.5b). Analysis and classification of the 

velocity profiles then proceeded in the same manner as with the fits obtained through the Nelder-

Mead method (see Section 3.3a).  

 

c. Calculating Transport 

The observed Ekman-like profiles were rotated into a wind-relative reference frame using wind 

estimates interpolated onto each profile’s location and time from the CERSAT blended reanalysis-

scatterometer wind fields (Bentamy et al., 2009), and mapped onto a regular 2m depth grid . This 

suppresses variability arising from variations in wind heading and allows our results to be compared 

with prior studies (Price et al., 1987, Schudlich and Price, 1998). Volume transport per unit path 

length (T) was obtained for each velocity profile by integrating observed ageostrophic velocities 

upwards from 200m to the shallowest velocity observation (zi): 


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m

eki dzUzT
200
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(3.7) 

The mean wind-relative transport was calculated by averaging all transport estimates. The observed 

near surface transport was then compared with estimates calculated from reanalysis winds using the 

well-established relationship (Chereskin, 1995): 
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Where x and y denote components of surface wind-stress and  denotes the density of the ocean 

mixed layer. 

For both the observed Ekman transport profiles and the wind based transport estimates, confidence 

intervals (CI) based on 95% confidence intervals were calculated as: 

n
xCI

96.1
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(3.9) 

Where x̅ denotes the mean value; σ denotes the standard deviation and n denotes the number of 

degrees of freedom. We assumed one degree of freedom per 4 profiles (approximately one degree 

of freedom per day). The time-scale associated with this number of degrees of freedom, represents 

our understanding of the oceanographic noise (e.g. Figure 5.5), and because we are not interested in 

the relationship to weather events, is shorter than the dominant time period of weather systems of 

a few days. We did not consider additional degrees of freedom introduced by other factors (e.g. 

Stokes drift), hence, error bars in later sections may be conservatively wide. 

Several studies have suggested that transport within the mixed layer can best be described 

with a slab-like model (Halpern, 1974, Wijffels et al., 1994), that is transport constant within the 

mixed layer with little transport occurring deeper in the water column. Other studies (Chereskin and 

Roemmich, 1991) suggest that this is not the case. To investigate this further we considered mean 

Ekman velocities and transport in a vertical coordinate system defined in terms of the mixed layer 

depth. Mixed layer depth was calculated from each EM-APEX density profile using a density criterion 

of <0.03kgm-3 relative to the upper-most observation (Sallée et al., 2006). 

 

d. Local Estimates of Eddy Viscosity 

The classical, steady-state Ekman solution (Ekman, 1905) is: 
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Where Ue denotes the Ekman velocity in the form ue+ive; the stress and k eddy viscosity. 

This equation can be rearranged to give viscosity in terms of stress, Ekman shear and density (Lenn 

and Chereskin, 2009, Elipot and Gille, 2009a): 
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The stress profile can be estimated by integrating Ue upwards from a deep reference level (he): 
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(3.11) 

We calculated stress, shear and viscosity from Equations 3.10b and 3.11 for all depth levels in each 

profile, and then generated a mean viscosity profile over all data. In a similar manner to our 

preceding analysis of transport we also remapped the resulting profiles into mixed layer depth 

space, prior to averaging. 

 

3.4 Observed Ekman Spirals 

a. Performance of Fitting Procedures 

The number of Ekman spirals detected by each fitting procedure is given in Table 3.1 while RMS 

residuals between observations and fitted spirals for the 14m depth level are given in Table 3.2. 

Notably, in all cases we identified not just profiles displaying Ekman-like spirals but also spirals that 

passed the classification procedure outlined above and displayed reversed rotation. These counter-

rotating spirals may be consistent with cyclonic super-inertial wind forcing (Rudnick and Weller, 

1993). 

Example hodographs (the projection of the current profile onto the horizontal plane) of both 

anticlockwise and clockwise spirals are shown in Figure 3.4.  The Ekman currents averaged over all 
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observations also displayed Ekman-like spirals .This was the case both for the velocities in a 

geographic reference frame, and where individual profiles were first rotated into along- and cross-

wind components (Figure 3.5) at the time and place of the velocity observation. 

 
Number of Spirals 

Ekman Reverse 

NM Shear 1 441 39 

NM Shear 2 313 227 

NM No shear 224 150 

LS Shear 1 445 109 

LS Shear 2 359 236 

LS No Shear 249 186 

Table 3.1: Number of Ekman-like spirals and reversed spirals detected in observed velocity profiles 

with either linear geostrophic shear  or no shear assumed over the Ekman layer, and using either a 

Nelder Mead simplex search (NM) described in Section 3.3a or a least-squares fit (LS) described in 

Section 3.3b. 

 
Figure 3.4: Examples of hodographs of individual EM-APEX float velocity profiles displaying Ekman-

like (top row) and reversed (bottom row) spirals. Colours represent depths ranging from 8m (dark 

red) to 50m (dark blue). 
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Figure 3.5: Hodographs of observed Ekman spirals when averaged over all profiles (top row) and all 

profiles displaying Ekman-like spirals (bottom row).  Colours represent depths ranging from 8m (dark 

red) to 50m (dark blue). Ellipses represent 95% confidence intervals. 
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 No Shear    Shear 1    Shear 2    

 De k Number 
RMS 

Residual 
De k Number 

RMS 

Residual 
De k Number 

RMS 

Residual 

Ekman 

Spirals 
(m) (10-2 m2s-1)  (ms-1) (m) (10-2 m2s-1)  (ms-1) (m) (10-2 m2s-1)  (ms-1) 

Rot. Fit 42.59±5.36 9.35±2.35 249 0.1376 40.18±4.61 8.33±1.91 455 0.1343 39.01±5.31 7.85±2.13 359 0.1265 

Amp. 

Fit 
25.1±2.66 3.25±0.69 249 0.0816 31.07±3.34 4.98±1.07 455 0.1026 31.40±5.31 5.09±1.72 359 0.0691 

NM Fit 67.74±15.67 22.92±10.76 224 0.1171 38.53±4.59 7.65±1.82 441 0.0673 34.25±4.61 6.04±1.63 313 0.0557 

All Data             

Rot. Fit 93.06±9.70 44.71±9.32 1091 0.1179 70.43±7.77 25.61±5.66 1217 0.1155 75.19±8.27 29.20±6.43 1220 0.1147 

Amp. 

Fit 
63.36±6.12 20.73±4.01 1091 0.1467 60.63±5.78 18.98±3.62 1217 0.1319 67.83±8.27 23.77±5.80 1220 0.1381 

NM Fit 88.75±8.64 40.7±7.93 1397 0.0958 47.24±3.97 13.38±2.09 1397 0.0624 58.5±4.87 17.69±4.76 1397 0.0516 

 

Table 3.2: Estimates of Mean Decay Scales; Eddy Viscosities and RMS residuals using the different methods outlined in section 3.3a and b. No shear and 

shear estimates of decay scale come from Equation 3.5a for amplitude and Equation 3.5b for rotation.  Ekman spirals is for the analysis based entirely on 

profiles that fit the definition of an Ekman Spiral (see section 3.3a) and All Data is where all velocity profiles with decay scales of less than 1000m are used 

including those that do not meet the definition of a spiral and includes reverse spirals. 95% confidence intervals on decay scales were estimated using 

Equation 3.9, and errors in viscosity estimated by propagating the errors in De through Equation 3.6. RMS residuals were computed between observations 

and fitted spirals at 14m depth
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Considered over all profiles that generated a valid decay scale (here taken as less than 1000m) the 

Nelder-Mead simplex fits (described in Section 3.3a) achieved smaller RMS velocity residuals than 

the least squares approaches (described in Section 3.3b) that were also tested. Nelder-Mead and 

least squares fits including shear generally outperformed the no-shear fit using the same technique. 

The fits with shear also displayed an increased number of Ekman-like spirals compared to the no-

shear case. This suggests that to properly isolate Ekman currents, accurate knowledge of the vertical 

structure of geostrophic currents in the Ekman layer is also important.  

 
Figure 3.6: Cumulative Distribution Function plots of fitted geostrophic shear (“Shear 1” green; 

“Shear 2” in black) and shear observed between 100m and 200m (purple). Vertical lines mark the 

mean value of each distribution. Zonal shear is shown on the left and Meridional shear on the right. 

Cumulative distribution functions (CDFs) of the fitted geostrophic shear are shown in Figure 

3.6. The Southern Ocean is generally regarded as equivalent barotropic (i.e. current heading is 

constant through the water column but current speed evolves in a linear manner with depth) in 

nature (Meijers et al., 2011a) with strong mean eastward flow arising from the ACC jets. Hence, we 

would expect mean meridional shear close to zero and a positive mean zonal shear. In Figure 3.6 all 

estimates of meridional shear were close to zero, as expected. However, we found mean zonal shear 

close to zero. It is likely that this discrepancy is a result of the local oceanography of the Kerguelen 
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Plateau which features a complex system of eddies and meandering fronts and, based upon recent 

studies (Phillips and Bindoff, 2014), displays non-equivalent barotropic flow. 

The “Shear 1” and “Shear 2” fits produced stronger, negative zonal (westward) geostrophic 

shear than seen in the observed 100m-200m shear. Otherwise, both Nelder-Mead fits produced 

geostrophic shear statistically consistent with the observed deep shear. 

 

b. Ekman Layer Depths and Eddy Viscosities  

Mean Ekman layer depths and resulting eddy viscosities (Table 3.2) were estimated over all profiles 

displaying decay scales of less than 1000m and over a subset of profiles identified as displaying 

Ekman spirals (as defined in Section 3.3a). Mean eddy viscosities obtained from the fits ranged 

between 3.25±0.69x10-2 m2s-1 (no-shear amplitude fit over Ekman like spirals) and 0.447±0.0932 m2s-

1 (no-shear rotational fit over all data), consistent with previous observations of 0.0308-0.2210 m2s-1 

within the Antarctic Circumpolar Current in the Drake Passage (Lenn and Chereskin, 2009). 

Estimates of mean decay scale were found to be consistent over all three fitting methods for 

the “Shear 1” and “Shear 2” cases. However, in the no-shear case we found statistically significant 

differences in mean decay scale between the rotational and amplitude fits. This difference in decay 

scales could indicate a “compression” of the Ekman spiral, as observed in several prior studies (Price 

et al., 1987, Lenn and Chereskin, 2009, Chereskin, 1995), such that amplitude decays faster than 

predicted.  Investigating this further we considered the ratio of Drot to Damp calculated on a profile by 

profile basis (rather than the mean basis discussed above). In the “shear 1” case the mean Drot/Damp 

was found to be 1.55±0.16 when just considering the Ekman like spirals and 2.55±0.30 over all 

profiles with decay scales of less than 1000m. Ratios from the “shear 2” case were similar to the 

“shear 1” case. Corresponding ratios for the no-shear case were 2.01±0.26 and 3.38±0.40 

respectively. These values are broadly consistent with previous studies (Price et al., 1987, Lenn and 

Chereskin, 2009, Chereskin, 1995), which also found Drot to be around two times larger than Damp. It 

has been suggested (Price et al., 1987, Price and Sundermeyer, 1999) that this “compression” may 
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be linked to stratification within the surface layers of the ocean. We discuss links between 

stratification and Ekman current further in Section 3.6. 

 

3.5 Ekman Transport 

a. Mean Transport 

The mean profiles of cumulative Ekman transport integrated up from the 200m level (Equation 3.7) 

are shown in Figure 3.7. Vector plots of mean transport at the 14m level are shown in Figure 3.8. 

Due to the time needed for an EM-APEX float to ‘spin up’ at the start of its descent, observations are 

sparse between the 10m depth level and the surface. For example, at 8m depth, less than half the 

profiles have a valid velocity. Consequently, confidence intervals are wider at shallower levels. The 

low number of datapoints combined with the “Pandora’s box” of selecting an optimal method of 

extrapolating from deeper observations of transport to the surface prevents robust and direct 

comparisons of wind and velocity derived surface transports. Also, tests (not shown) of extrapolating 

transport to the surface either using a constant velocity or constant shear between the shallowest 

observation and 0m did not display statistically significant differences to the time-mean 14m 

observed transport. Thus, the mean transport magnitude calculated from reanalysis winds is instead 

compared with the observed mean transport at 14m. 

Using Ekman velocities isolated as part of the no-shear case the mean transport observed at 

the 14m level was 0.93±0.28m2s-1. Reanalysis winds gave a mean transport at the surface of 

1.01±0.12m2s-1. For the “Shear 1” case mean transport over all data was found to be stronger 

(1.18±0.34m2s-1 at 14m) but of similar heading to the no-shear case (Figure 3.8).  In the no shear and 

“Shear 1” cases the observed transport heading averaged over the profiles was found to lie closer to 

the wind (49° left of the wind) than the theoretical expectation (90° left of the wind). In the “Shear 

2” case we obtained a mean transport of 1.95±1.02m2s-1, skewed even further downwind (6° right of 

the wind). 
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Figure 3.7: Profiles of mean cumulative Ekman Transport relative to a reference level of 200m for the 

no-shear; “shear 1” and “shear 2” cases. Solid lines indicate the mean transport profiles; dashed lines 

indicate 95% confidence intervals. Transport is shown by component at the left (positive downwind 

and to the left of the wind) and in magnitude at the right.  
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On the basis of these results we concluded that the fitting procedure applied in the “shear 

2”case (which gives equal weighting to Ekman-like and reverse spirals) was inadequate; it produced 

an excessive number of reversed spirals which resulted in a reduced time-mean crosswind transport. 

For the rest of this chapter any reference to the shear case will refer to the “shear 1” fitting 

procedure.  

 

Figure 3.8: Wind-relative vector plots of mean Ekman transport with 95% confidence intervals 

(ellipses). Blue line is the equilibrium Ekman Transport from the interpolated wind stresses for each 

profile. Mean Transport from the no shear (light grey) and “shear 1” (dark grey) cases were skewed 

downwind by approximately 45°. The “shear 2” case (black) which applies a heavier weighting to the 

possibility of reversed spirals was skewed further downwind. 

This downwind skewing of mean transport is a significant difference from classical Ekman 

theory. To attempt to explain this disagreement we considered the effects on the observations from 

geostrophic shear; tidal flows; Stokes drift; the ‘compression’ of Ekman spirals described above; and 

the transient responses to time-varying wind forcing. 

A possibility we were unable to investigate is that the downwind transport anomaly may be 

an artefact arising from the relatively short (around two months) period of high resolution 
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observations by the floats used in this study; most prior insitu studies which successfully identified 

Ekman spirals have used time series of five months or greater duration. This possibility is supported 

by Lenn and Chereskin (2009), whose observations proved a good match to theoretical transport in 

the multi-year average, but also found that the same data when averaged by season did not match 

the theoretical transport. 

 

b. The Role of Geostrophic Shear and Reverse Spirals 

In an attempt to determine the cause of the downwind transport anomaly observed in the no-shear 

and “Shear 1” case we decomposed the net transport, into a vector sum of transport due to Ekman 

spirals, reverse spirals and non-spirals (denoted “other”), scaling each component by the fraction of 

the dataset it represented. In the no-shear case (Figure 3.9a) the majority of the downwind 

component of transport is associated with clockwise turning (reverse) spirals. Removing those 

profiles from consideration, the mean transport was found to shift from 48° to 63° left of the wind 

(Figure 3.10), closer to the theoretical case.  

 
Figure 3.9: Decomposition of Ekman transport at 14m depth by type of spiral present and normalized 

by the fraction of dataset each represent for no shear (left) and “shear 1” right) cases.  

In the “Shear 1" case (Figure 3.9b), transport arising from the Ekman spiral-like profiles was 

found to account for 75% of the crosswind transport and 60% of the mean downwind transport.  
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Reversed spirals made only a minor contribution. Excluding reverse spirals and high zonal shear 

profiles resulted in little change in heading for the shear case. 

 
Figure 3.10: Transport at 14m with reversed spirals and strong shear profiles removed, compared to 

theoretical transport at 0m. Vectors indicate the mean transport and the dashed ellipses the 95% 

confidence intervals.  

A histogram of transport by profile (Figure 3.11a) revealed that much of this mean 

downwind transport resulted from a few profiles at the far tails of the probability distribution. In a 

time-mean sense wind heading between 90°and 99° (dependent on if we considered the time-mean 

wind stress or ‘raw’ wind), directed close to the zonal component of flow and shear. We found most 

of the profiles displaying strong downwind transport (Figure 3.11b) were associated with strong 

zonal shear (here taken as shear outside the two standard deviation range, 1x10-3 s-1), resulting in a 

strong correlation (0.73) between downwind transport and shear.  This strong zonal shear is likely to 

be introduced by errors in the shear fitting procedure. Of the 455 Ekman-like spirals identified by the 

least square technique, 18 displayed strong positive longitudinal shear (>0.001s-1) and 11 displayed 

strong negative zonal shear (<-0.001s-1). Both resulted in strong along-wind transport but of 

opposite signs. 
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Figure 3.11: Histogram of downwind transport (left) and scatter plot of downwind transport against 

zonal shear (right). In the scatter plot blue circles denote all data while the filled red circles indicate 

geostrophic shear outside the two standard deviation range.  

Ignoring these profiles with strong shear in addition to ignoring reverse spirals (Figure 3.10), 

the “shear 1” mean transport remained skewed at 48° left of the wind, comparable with the no-

shear case. Mean transport at the surface was skewed further downwind but the 95% confidence 

intervals implied agreement with the 14m transport. Hence, it is unlikely that the downwind Ekman 

transport anomaly can be attributed to the inclusion of a residual geostrophic current when 

integrating current profiles to obtain transport. 

 

c. Tides and Transient Winds 

Having excluded contamination by geostrophic shear we considered other sources of the downwind 

Ekman transport anomaly.  We would not expect barotropic tides to account for transport anomaly 

since they are, by definition, uniform throughout the water column, and hence should be included in 

the reference velocity we subtract from the observations to isolate Ekman velocities in both the 

shear and no-shear cases. Secondly, the transport anomaly is based upon data averaged over a wide 

range of latitude, longitude and time. One would, therefore, expect any tidal signals to be heavily 

suppressed. Thirdly, barotropic tides from the TPXO7.2 model (Egbert and Erofeeva, 2002) within 
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the Kerguelen region were found to display a mean u-component of -0.0976cms-1 and a v-

component of -0.1886cms-1. Variability was larger, with standard deviations of 1.945cms-1 and 

1.199cms-1, respectively. Compared with mean Ekman velocity profiles (0.79-8.57cms-1 over the 

upper 50m), mean barotropic tidal velocities are weak, and thus mean tidal transport should have 

little impact on the observed mean transport. Baroclinic tides may contribute to the transport 

anomaly, but testing this idea is beyond the scope of this chapter.  

  We also considered transient wind forcing and compression of the spiral as possible 

contributors to the downwind skewing. Ekman dynamics are based upon a balance between 

frictional forces and Coriolis. Given forcing varying on sub-inertial time scales this balance may be 

disrupted, effectively trapping the Ekman currents in the process of spinning up, leading to modified 

current profiles and transport, likely with an increased component of transport parallel to the wind, 

as observed above.  The effect of transient wind forcing was examined by forcing a 1D numerical 

model (described in detail in Chapter 5) of the ‘classical’ constant viscosity case with observed wind 

stresses. This model was run for winds along the transects of all 8 EM-APEX floats assuming an eddy 

viscosity of 0.04m2s-1 with time steps of 40 seconds, a vertical resolution of 0.5m and a maximum 

depth of 1000m. The resulting velocity data was filtered to suppress inertial oscillations as outlined 

in Section 3.2a, consistent with the processing of the profile data before transport was computed 

between 200m and the surface. 

An example time series of transport magnitude and the angle between the simulated 

transport and the wind for one float (Float 3760) is shown in Figure 3.12. Transport magnitude from 

the model was close to estimates from the “steady state” Ekman transport equations (Equation 3.8), 

but showed significant disagreement with the observed transport. In a mean sense the angle 

between the simulated transport and the wind matched that expected from “steady state” Ekman 

transport. At any instant, the heading of the simulated transport relative to the wind is not always in 

agreement with the steady state Ekman transport. However this transient difference is small 

compared with the differences seen in the observational data. 
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Figure 3.12: Time series of observed and simulated transport magnitude (top) and heading (bottom) 

for float 3760. Transport magnitude obtained from a 1D numerical model was found to match the 

steady state Ekman transport relationship closely. The model displayed greater variability in 

transport heading relative to the wind than expected from steady-state Ekman theory; but less 

variability than seen in the observations. 

The failure to recreate the time-series of observed transport could be dismissed as a 

limitation of this model when forced with low resolution wind data (see Chapter 5). However, the 

model’s strong agreement with the time-series and time-mean vector of “steady state” transport 

suggests that the potential disruption of the Ekman balance by high frequency wind forcing cannot 

explain the downwind transport anomaly. 

 

d. Compressed Spirals and Stratification 

“Compression” of Ekman spirals has previously been attributed to density stratification (Price et al., 

1987, Price and Sundermeyer, 1999, Chereskin, 1995).To fully examine the effect of a compressed 

spiral on net Ekman transport one would need to consider a complex model that explicitly includes 

density stratification (see Chapter 5, Section 5.6c). For this chapter, we examine the effects of 
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compressed mean spirals in a simplified manner by considering the archetypal Ekman solutions but 

assuming independent decay scales for rotation and amplitude decay: 

)
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surfekek
rotamp eeVivu

4


  
 

We created synthetic spirals with decay scale ratios (Damp:Drot) between 1:0.25 and 1:5 and 

calculated the resulting wind-relative transport heading by integrating the computed velocities from 

200m to the surface (Figure 3.13). Spirals displaying a level of compression comparable to that seen 

in our observations (between 1:1.5 and 1:3) were found to display transport at the surface skewed 

between 88° and 68° left of the wind irrespective of the assumed rotational decay scale.  

 

Figure 3.13: Wind-relative transport heading computed from synthetic Ekman spirals of varying  

“compression” from 1:1.5 to 1:3 for amplitude decay scales (Damp) between 25m and 93m. Solid lines 

indicate the surface heading while dashed lines indicate the heading at 14m depth. 

The level of skewing observed at 14m depth is dependent on the rotational decay scale. 

Taking Damp as 25m, at the lower limit of the observed decay scales, transport at 14m depth was 

found to be skewed between 99° (at 1:1.5) and 74° (at 1:3) left of the wind. At a Damp of 40m the 

transport was skewed between 91° (at 1:1.5) and 70° (at 1:3) left of the wind. Taking Damp as 93m, 
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corresponding to the largest mean rotational decay scales obtained by the least-square fits 

described above, transport at 14m depth was skewed between 76° (at 1:1.5) and 61° (at 1:3) left of 

the wind. These results suggest that a “compressed” Ekman spiral could account for the downwind 

transport anomaly seen in our observations. 

 

e. Wave Effects 

Wave action can impact the Ekman layer by (1) enhancing turbulent mixing through wave breaking; 

(2) causing a Stokes drift that creates a component of the flow parallel to the wave heading, which 

could enhance or reduce current speeds that we have diagnosed as Ekman currents or (3) by direct 

coupling in the form of a Coriolis-Stokes forcing of the surface currents  (Polton et al., 2005, Lewis 

and Belcher, 2004).  In the former case one would expect a relationship between Ekman decay 

scales and either wave height or wave period. We examined these wave properties obtained from 

the ERA Interim reanalysis for correlations with the Ekman decay scales determined earlier in this 

chapter. Correlations between Ekman decay scales and local wave heights or wave periods were 

weak (Appendix 1, section 1). Scatter plots of Ekman decay scales as a function of wave parameters 

(Appendix 1, section 1) also showed no indication of any solid relationships. These results suggest 

that wave forcing does not significantly enhance turbulent momentum mixing. 

 In investigating the direct effect of Stokes drift on our observations we assumed that only 

monochromatic deep water waves were present. We interpolated the ERA-Interim wave period 

fields onto the location and time of each float profile before calculating wave lengths using the deep 

water dispersion relationship: 
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Where cp denotes phase speed; g denotes the acceleration due to gravity (here taken as 9.81m2s-1); 

T denotes wave period and  denotes wave length. 

Vertical profiles of Stokes drift velocities (us) were then computed as (Sutherland, 2010): 

kz

s eAgku 223  
(3.13) 

Where A denotes the wave amplitude (here taken as half the significant wave height) and k denotes 

the wave number (2). 

 
Figure 3.14: Mean current speed profiles of Ekman currents and Stokes drift (a, left). Mean transport 

(vectors) at 14m with and without Stokes drift explicitly removed from each velocity profile (b, right). 

95% confidence intervals are indicated by the ellipses. 

Stokes drift speeds calculated from the mean significant wave height and wave period were 

found to be smaller than, but of comparable magnitude to, the mean Ekman current speeds (Figure 

3.14a), and mean wave heading was found to coincide with mean wind heading. The transport 

calculated from the mean Stokes drift velocity profile was approximately half the magnitude of the 

observed mean Ekman transport. Assuming the mean Stokes transport was directed downwind it 

would be capable of accounting for the downwind skewing of the mean Ekman transport, within the 

uncertainty of the Ekman transport estimates. 
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We then examined the correlation between surface Stokes transport and Ekman transport at 

14m over all profiles before removing Stokes drift from each velocity profile and recalculating mean 

transport. Correlations between Ekman and Stokes transport were found to be weak in both the no 

shear and “Shear 1” cases. Removal of Stokes drift from the Ekman currents estimated assuming no 

geostrophic shear was found to result in the mean transport turning further downwind (Figure 

3.14b). However, within the 95% confidence intervals the Ekman transport with and without Stokes 

drift remained identical. In the “Shear 1” case, explicit removal of Stokes drift reduced the 

downwind transport anomaly in the mean transport, in turn bringing the 95% confidence interval 

into agreement with the theoretical transport.  

 

f. Wind Forcing Dataset 

As discussed in detail in later sections it is uncertain if the CERSAT blended satellite-reanalysis wind 

fields are the most appropriate choice for defining wind directions for the float data. Hence, we have 

repeated the least-squares fits for both the no-shear and “Shear 1” cases using wind directions 

obtained from the NCAR/NCEP reanalysis. Resulting Ekman transport estimates from all float profiles 

were then rotated into a wind relative co-ordinate frame and then averaged. 

Ekman decay scales and viscosities did not differ significantly from the estimates obtained 

using CERSAT winds. Mean transport (Figure 3.15) without shear displayed a downwind transport 

anomaly comparable to the CERSAT results. When including shear the transport anomaly was 

significantly reduced, bringing the transport into agreement with the theoretical case at the 95% 

confidence interval. When we explicitly used the NCEP winds and removed Stokes drift mean 

transport heading was close to the theoretical expectation (Figure 3.15), suggesting that a 

combination of Stokes drift and wind-field errors account for the observed down-wind anomaly. 
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Figure 3.15: Mean wind-relative 14m transport vectors using CERSAT (grey) and NCEP (red for wind 

only; blue for wind combined with correcting for Stokes Drift) winds for the “No Shear” and “Shear 1” 

cases (solid and dashed lines, respectively). Again, ellipses indicate 95% confidence intervals.  

 

3.6 The Effect of Stratification On Ekman Currents 

A number of previous studies (Price et al., 1987, Price and Sundermeyer, 1999) have suggested that 

density stratification may have a significant impact on the structure of Ekman currents and the 

resulting transport. As discussed above we have identified behaviour, notably the “compression” of 

the mean spirals, consistent with these previous studies. We therefore characterise the structure of 

the Ekman currents we have observed in terms of properties of the density stratification. The three 

properties we consider are the depth of stratification (here taken to be the mixed layer depth), the 

strength of stratification (Buoyancy Frequency squared, N2) and the stability of stratification (N2 for 

static stability and gradient Richardson Numbers for dynamic stability). The square of the buoyancy 

frequency (N2), calculated using the code included in the CSIRO Seawater library 
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(http://www.cmar.csiro.au/datacentre/ext_docs/seawater.htm), was used to define the strength of 

stratification and Richardson Number (Stewart, 1997) to define the stability of the stratification: 

 2
2

zU

N
Ri




 
(3.14) 

These are calculated from observed densities and velocity shear on a vertical grid of 2m (note that 

for the “no geostrophic shear” case we include all shear while in the “shear 1” case we only use the 

ageostrophic shear). Additionally, we considered the bulk Richardson number (Rb) across the mixed 

layer interface (Price et al., 1986), which measures the stability of the mixed layer. An Rb of less than 

0.65 implies the mixed layer is unstable and will tend to entrain additional water into the mixed 

layer. 

 20 u





hg
Rb  

(3.15) 

Where g denotes the acceleration due to gravity; h  the mixed layer depth;  the density difference 

between the mixed layer and the interior; u the difference in velocity across the base of the mixed 

layer and 0 the surface reference density. 

 

a. Depth and Strength of Stratification 

Mixed layer depth (defined in section 3.3c) from the EM-APEX profiles varied between 7m and 

330m, with a mean of 43.8m and a standard deviation of 25.2m, during the period 18 November 

2008 to 23 May 2009. Profiles of mean MLD-normalized transport (per section 3.3c) for both the no-

shear and “Shear 1” cases are shown in Figure 3.16. Plots of the difference in transport between 

adjacent fractions of mixed layer depth levels are shown in Figure 3.17. 
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Figure 3.16: Profiles of Ekman transport by component (left; black lines indicate the crosswind 

component and grey lines indicate the downwind component) and magnitude (right) against fraction 

of Mixed Layer Depth for both the no shear case (top) and “shear 1” case (bottom).  Solid lines 

indicate the mean profiles while dashed lines indicate 95% confidence intervals. 

Transport was surface intensified with over half the transport occurring above the mixed 

layer (Figure 3.16) and delta-transport rapidly increasing between 1 MLD and the surface (Figure 

3.17). Previous studies (Price and Sundermeyer, 1999, Price et al., 1987) have suggested Ekman 

currents are coupled to stratification by “surface trapping”, which could result in transport profiles 

similar to our results. It is also possible that this apparent relationship may be largely coincidental. 

Additionally, the surface intensification of transport within the mixed layer was not consistent with 

slab-like behaviour identified at lower latitudes in a number of previous studies (Wijffels et al., 1994, 
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McNally, 1981) with a potential for second order errors in the transports of heat and freshwater by 

the Ekman Layer in these studies. 

 

 
Figure 3.17: Profiles of the difference in Ekman transport between 0.05MLD intervals against fraction 

of MLD by component (left; black lines indicate the crosswind component and grey lines indicate the 

downwind component) and magnitude (right) for both the no shear case (top) and shear case 

(bottom). Solid lines indicate the mean profiles while dashed lines indicate 95% confidence intervals. 

Note the enhancement in  transport at the surface relative to the mixed layer base. 

Plots of Ri and N2 for two profiles are shown in Figure 3.18. Stratification was generally found 

to be statically stable (N2>0) over the entire depth range. Above the thermocline (defined by the 

maximum N2 within the upper 200m) the gradient Richardson numbers were typically found to be 
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smaller (O(10-3 to 1)) than in the interior (O(1 to 100)). This tendency for lower Ri near the surface is 

expected since both Ekman and Stokes shears are surface intensified. 

 

 
Figure 3.18: Profiles of Ri (left) and N2 (right) for Float 3760 profile 42 (top) and Float 3761 profile 80 

(bottom).  The standard criterion for dynamic instability (Ri<0.25) is indicated by the vertical dashed 

line; MLD and thermocline depth are indicated by the horizontal dashed and solid lines, respectively. 

Note that in both cases instability (Ri<0.25) was principally confined to the mixed layer. 

Dynamical instability (occurring when Ri<0.25) was rare below the thermocline, and when 

observed it was confined to small vertical scales (2-4m). Above the thermocline, sustained dynamical 

instability was found on vertical scales of 10-70m; examination of individual profiles suggested a 
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linkage between onset of instability and mixed layer depth. This was reinforced when we plotted 

maximum depth of “sustained” instability (here taken as two or more data-points with Ri<0.25 

within a 10m depth range) against MLD (Figure 3.19). Almost all cases of instability occurred at 

depths equal to or less than the MLD. The maximum depth of sustained dynamic instability displayed 

no significant relationship to the observed Ekman decay scales. 

 
Figure 3.19: Maximum depth of ‘sustained’ dynamic instability plotted against mixed layer depth.  

The dashed grey line corresponds to a 1:1 ratio between the depth of instability and the mixed layer 

depth. 

We then examined the relationship between stratification and the vertical structure of 

Ekman currents (see Appendix 1, section 2 for details)  by considering the relationships and 

correlations between the observed Ekman decay scales and parameters including mixed layer depth; 

thermocline depth; bulk Richardson number; peak buoyancy frequency and the difference in density 

across the mixed-layer interface. We found no evidence of linkages between either mixed layer or 

thermocline depth and the observed Ekman decay scales. Likewise, there is no evidence that the 

density difference across the mixed layer interface affects the Ekman decay scales. Maximum N2 was 

also found to have little impact on the Ekman decay scales. 
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There is some indication that the decay scales estimated above are related to the bulk 

Richardson number (Figure 3.20). The magnitude of Ekman decay scales was found to increase in a 

linear manner as the magnitude of Rb increased. This implies that Ekman decay scales were larger 

when the mixed layer was more stable. Note, however, that correlations were modest (in the shear 

case 0.47 for Damp and 0.19 for Drot), implying this result should be treated with caution. 

 
Figure 3.20: Ekman decay scales vs bulk Richardson Numbers (Rb) for decay scales estimated form 

current amplitude (left) and current rotation (right). Solid red and blue lines represent logarithmic fits 

to the data; dashed lines indicate confidence intervals estimated from the Matlab polyfit routine. The 

vertical black line indicates the critical value of Rb (0.65).  

 

b. Local Eddy Viscosities 

Eddy viscosity profiles calculated as described in Section 3.3d (Figure 3.21) were found to be of 

similar magnitude, if somewhat weaker, than comparable observations in the Drake Passage (Lenn 

and Chereskin, 2009). In general there was a tendency for greater viscosities to be observed closer 

to the surface and for the shear case to produce larger viscosities than the no-shear case. When 

considering the viscosity profiles with the vertical coordinate as a proportion of MLD (Figure 3.19b), 

the no-shear viscosity profile displayed a distinct trend for viscosity to decrease with increasing 

depth (as a fraction of MLD). Viscosity decreases approximately exponentially from around 10-2m2s-1 

near the surface to 2-3x10-3m2s-1 at a depth of 2-3 times the MLD. The viscosity profile for the shear 
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case is more consistent, over the 0-3 MLD range the viscosity is generally around 1-3x10-2m2s-1, 

however, there is still some tendency for smaller viscosities to occur below the mixed layer. 

 
Figure 3.21: Mean viscosity amplitude profiles by depth (a, left) and multiple of MLD (b, right).The no 

Shear case is indicated with crosses, and the Shear case with grey pluses.  MLD is mixed layer depth 

and it definition is given in the text. The vertical component of diffusivity Kz is calculated from 

Equation 3.10. 

 To properly characterize and examine this behaviour we divided the no-shear and shear case 

mean viscosity profiles into three subsets based upon depth: all data deeper than 0.3MLD; data 

between 0.3 and 1MLD (denoted “Mixed Layer”) and data between 1.5 and 3MLD (denoted “deep”). 

We excluded data shallower than 0.3MLD, since much of that data would come from depths only 

poorly sampled by the EM-APEX floats. Examination of the MLD-normalized viscosity profiles (Figure 

3.21) suggested that either linear or exponential fits would provide the best match to the mean 

current profiles. Linear fits were applied to the viscosity profiles using the matlab polyfit function; 

the resulting fits and confidence intervals were than plotted as using the matlab polyval function. 

Exponential fits were applied by using a linear fit to profiles of log10(kz) using the polyfit and polyval 

functions. 
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 Fits to viscosity profiles are shown in Figure 3.22 (linear fits) and Figure 3.23 (exponential 

fits). Initial examination focusing solely on the mean values of the mixed layer and deep fits, 

suggested that viscosity values are sensitive to the depth range. Such behaviour could be indicative 

of density stratification affecting the vertical structure of Ekman currents. 

 
Figure 3.22: Mean viscosity profiles (no-shear left and shear right) as a function of fraction of mixed 

layer depth (MLD).  Linear fits to viscosities in the mixed layer, ocean interior (1.5-3 MLD) and over 

the entire profile (0-5 MLD) are shown. 

However, considering confidence intervals about the mean, we were unable to distinguish a 

significant difference between any of the mixed layer fits and the corresponding between “all data” 

fits over the 0.3 to 1MLD interval. Similarly, over the 1.5 to 3MLD interval there was no significant 

difference between the “deep fits” and the all-data fits. We also found that the confidence intervals 

did not allow us to distinguish between the linear and exponential all-data fit.  
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Figure 3.23: Mean viscosity profiles (no-shear left and shear right) as a function of fraction of mixed 

layer depth (MLD).  Exponential fits to viscosities in the mixed layer, ocean interior (1.5-3 MLD) and 

over the entire profile are shown. 

 Examining the no-shear case “all data” fits we attempted to identify a range of constant 

viscosities which would produce agreement with the fit within the confidence intervals over the 0.3 

to 3MLD range. No such viscosities could be identified for the linear fit, but for the exponential fit we 

found that constant viscosities between 3.76x10-3m2s-1 and 4.83x10-3m2s-1 would satisfy the 

confidence interval about the exponential fit. Examining the shear case, all-data fits in a similar 

manner indicated constant viscosities satisfied the confidence intervals between 1.37x10-2m2s-1 and 

1.60x10-2m2s-1 for the linear fit and between 1.14x10-2m2s-1 and 1.53x10-2m2s-1 for the exponential 

fit.  

There are no statistical differences between these three empirical viscosity models for the 

water column, and therefore the “Occams razor” approach, we conclude that only a constant 

viscosity model is required to explain the available observations. It is interesting to note that in both 

the linear and exponential viscosity models, the observations indicate a tendency for the viscosity to 

decrease with depth, with generally higher values nearer to the surface layers. 
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3.7 Discussion and Conclusions 

We have detected and characterised Ekman spirals using EM-APEX velocity profiling floats in the 

Southern Ocean. Eddy viscosities were found to range between 3.2x10-2 and 44.7x10-2 m2s-1 

(corresponding to decay scales of 25m and 93m), in general agreement with previous studies in the 

Southern Ocean (Elipot and Gille, 2009a, Lenn and Chereskin, 2009).  When we assumed a constant 

geostrophic velocity within the Ekman layer, mean viscosities (and decay scales) obtained from the 

rotational least squares fit were found to be significantly larger than those obtained from the 

current amplitude least square fit, resulting in ‘compressed’ spirals, consistent with prior 

observations of open-ocean Ekman spirals (Lenn and Chereskin, 2009). This ‘compression’ was also 

seen when we computed the ratio between decay scales on a float by float basis. If we instead 

assumed a constant geostrophic shear was present within the Ekman layer, both least square fits 

(rotation and amplitude decay) were found to produce mean viscosities consistent with each other. 

Moreover, the “compression” of the spirals (computed on a float by float basis) decreased, with the 

ratio between the rotational and amplitude decay scales becoming closer to 1:1. Fits with 

geostrophic shear also captured more individual profiles displaying Ekman-like spirals, and 

decreased RMS residuals. This behaviour indicates that explicit consideration of the vertical 

structure of the geostrophic currents is required to properly isolate Ekman currents, and suggests 

that the ‘compressed’ spirals seen in most prior studies may be an artefact of assuming a constant 

geostrophic current, as discussed in Polton et al. (2013).  

Mean observed transport was found to be of the same magnitude as expected from wind 

data and steady state Ekman theory.  But, in contravention of ‘classical’ steady-state Ekman theory, 

Ekman transport heading was skewed downwind. The downwind transport anomaly proved 

surprisingly robust to selection of profiles and is a real feature of the analysis. Transient wind forcing 

and accidental inclusion of residual geostrophic currents when integrating the Ekman transport were 

found to have little effect on the downwind transport anomaly. Results suggested that the transport 
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anomaly likely arose from some combination of the “compression” seen in the Ekman spirals; 

inclusion of Stokes drift when integrating the Ekman transport, or from errors in the CERSAT wind 

fields. 

  We examined the proposed linkage between stratification and Ekman current from a variety 

of angles. Ekman transport and dynamic instability were largely confined to the mixed layer; while 

superficially suggestive of ‘surface trapping’ of the Ekman currents by density stratification this 

association could also be largely coincidental as the mean mixed layer depth and Ekman decay scales 

are comparable in magnitude. We identified relationships between the magnitude of Ekman decay 

scales and bulk Richardson numbers, implying that Ekman decay scales tended to be larger when the 

mixed layer was stable (and, hence, more strongly stratified). We found no firm links between mixed 

layer depth, thermocline depth or maximum buoyancy frequency and the observed Ekman decay 

scales. We demonstrated that the “compressed” spirals, previously attributed to stratification driven 

surface trapping of Ekman currents (Price and Sundermeyer, 1999, Price et al., 1987), could be 

explained as a side effect of failing to resolve geostrophic shear when isolating the ageostrophic flow 

(Polton et al., 2013). We conclude that, having found evidence both for and against density 

stratification affecting Ekman currents, our examination of the effect of stratification on Ekman 

currents is inconclusive. 

Examination of mean viscosity magnitude profiles as a function of MLD normalized depth 

was initially suggestive of either linear or exponential decay of viscosity with increasing depth. 

Applications of linear and exponential fits to all depths between 0.3 and 3MLD; just the mixed layer 

and below the mixed layer (1.5-3 MLD) suggested different behaviour within the mixed layer 

compared to the interior. However, when we considered the uncertainty around the fits it became 

clear that these differences were not statistically significant. We subsequently determined it was 

also possible to reconcile a constant magnitude eddy viscosity with the all data fits.  
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Chapter 4: Examining Wind Driven Ekman Dynamics in the 

Frequency Domain 

4.1 Overview and Introduction 

While we have detected and described Ekman-like spirals within the latitude and longitude range 

covered by the SOFINE EM-APEX floats, details of the vertical structure of both the mean and 

instantaneous spirals did not match classical Ekman theory. Results presented in the previous 

chapter suggested this could, at least in part, be due to the effects of density stratification. However 

time variable wind forcing or vertical variation in eddy viscosity may also play a role. To further 

examine potential effects of these two factors, particularly by allowing for vertical variations, we 

applied a form of rotary spectral analysis to fit 9 analytic solutions for Ekman type spirals for varying 

viscosity and boundary layer depths and conditions, in line with a number of previous studies 

(Weller, 1981, Rudnick and Weller, 1993, Elipot and Gille, 2009a).  

We adopted the method previously applied by Elipot and Gille (2009a) to data from surface 

drifters deployed in the Southern Ocean. The technique involves the estimation of transfer functions 

using wind-stress auto-spectra and cross spectra between wind-stress and Ekman currents at a 

constant depth level. By comparing the estimated transfer functions from shipboard ADCP and EM-

APEX float observations with transfer functions derived from theoretical combinations of eddy 

viscosity profiles and boundary conditions we infered properties of mixing within the Ekman layer. 

Further analysis (Elipot and Gille, 2009b) arising from this technique also allowed us to make an 

assessment of the wind energy input within the study region. 

This analysis is more comprehensive than earlier work, because it includes a larger range of 

models than studies prior to Elipot and Gille (2009a) and is extends beyond the single depth level of 

Elipot and Gille (2009a) to include the water column to 100 metres.  Unlike the surface drifter data 

used by Elipot and Gille (2009a) the EM-APEX and ADCP data provided a time series, and hence 

power spectra, of ocean currents over multiple depth levels. We used this additional depth 
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information to assess model performance in a 2D sense, as a function of both depth and frequency 

(over an interval of -2 to 2 CPD); and to examine the performance of the models over the 0-100m 

depth range at four frequencies between ± one inertial period. 

 

4.2 Datasets 

a. Shipboard ADCP Data 

In addition to the EM-APEX float data discussed in Chapter 3 we investigated shipboard Acoustic 

Doppler Current Profiler (ADCP) observations obtained during the SOFINE deployment voyage 

aboard RV James Cook during November-December 2008. The ship had two onboard ADCP systems, 

one operating at 75kHz and a second operating at 150kHz.  

 
Figure 4.1: Ship track of the RV James Cook during the survey phase of the SOFINE voyage (blue) 

superimposed over ETOPO bathymetry (Amante and Eakins, 2009).  

Since the 75kHz system offered relatively poor vertical resolution and did not capture any 

data above 33m we concentrated on the time-series produced by the 150kHz system. The dataset 

produced by this instrument ran for 29 days from the 10th of November to the 8th of December 2008 
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and covered a latitude range from 41S to 48S (Figure 4.1), delivering a dataset with 30 minute 

temporal resolution down to a depth of 455m. Since the shallowest observed depth and the bin 

width of the raw data varied over the course of the voyage this study focused on the post-processed 

time-series which had been mapped onto a regular depth grid, with a primary focus on the 23.55m 

depth level. 

 

b. Shipboard Winds 

Shipboard winds were recorded using an ultrasonic anemometer mounted on a platform near the 

bow of the vessel. This data underwent quality control; standardising to a nominal 10m height and 

correcting to absolute wind speed rather than ship-relative airspeed. The final time series of 

absolute shipboard winds offered 30 second resolution over a period from the 1st of November to 

the 19th of December 2008. For the purposes of this study we computed a 30 minute resolution 

running average to match the resolution of the ADCP observations. We then converted the resulting 

velocity time series to a wind-stress time series using drag coefficients calculated following Yelland 

and Taylor (1996). 

 

c. EM-APEX Float Data 

The EM-APEX float data has been described in detail in the previous chapter. Unlike in the previous 

analysis, this time we did not filter out inertial oscillations. Despite each float delivering 4 profiles 

per day the profiling mission was designed to ensure that pairs of adjacent up-casts or down-casts 

were separated by approximately half an inertial period (8-9 hours). We interpolated the unevenly 

spaced velocity time-series from each EM-APEX float onto a grid with 6hr time-steps. 

 

d. SSALTO/DUACS Geostrophic Velocity Fields 

Maps of surface geostrophic velocity (Dibarboure et al., 2008) were sourced from AVISO. This 

dataset was derived by merging sea surface height (SSH) data from multiple satellite missions 
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(including Jason 1 and 2, Topex/Poseidon and Envisat) to generate time varying fields of absolute 

dynamic topography. In turn, surface geostrophic currents were estimated using a finite difference 

method (Lagerloef et al., 1999). The resulting velocity fields provide 1/3° spatial and 7 day temporal 

resolution. 

 

4.3 Rotary Spectral Analysis 

a. Fourier Decomposition 

The use of rotary spectral techniques depends on representing a vector time series, such as the wind 

stress or the two components of velocity as a complex Fourier series of oscillations at different 

frequencies. 
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At each frequency k, the Fourier component is: 
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In effect, the time-series can be represented as a sum of vectors of constant magnitude each 

rotating at fixed frequencies. From the Fourier coefficient we can then obtain the finite Fourier 

transform (Uk) of uk: 
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(4.2) 

Elipot and GIlle (2009a) used a periodogram method to estimate power spectra. The time series 

(here denoted x and y with Fourier transforms X and Y) were split into a number of overlapping 
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segments of time period T and a Hanning window (Harris, 1978) applied to each segment. Fourier 

transforms were then obtained for each segment of the two time series. The cross power spectrum 

between the time series x and y was then estimated as: 

 
T

YX
P

kk

kxy

*




 
(4.3) 

 Where <.> denote the average over all segments of the time series. 

The periodogram method employed by Elipot and Gille (2009a) is similar to Welch’s method 

(1967), differing only in minor details. Hence, for the rest of this thesis we will use Welch’s method 

(1967) when estimating power spectra. 

 

b. Transfer Functions 

Assuming the ocean currents (u=u+iv) at depth z respond to the wind stress () in a linear manner, 

the velocity response can be regarded as a convolution of the wind stress with a response function. 

Taking a Fourier transform and applying the convolution theorem we obtain: 

       zHzU ,,  (4.4) 

Where U and  denote the Fourier transforms of u and and H is the transfer function. 

By definition the transfer function must also satisfy (Bendat and Piersol, 1986): 

  PzHPu ),(  (4.5) 

Where Pu denotes the stress-current cross-spectrum and P denotes the wind-stress 

autospectrum. 

Using equation 4.4 to obtain theoretical transfer functions from eddy viscosity profiles is discussed 

briefly in section 4.4. Computing observed transfer functions from estimated power spectra is 

discussed further in section 4.5a. 

 

4.4 The Models 
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During this study we considered the same set of 9 models (Figure 4.2) as applied by Elipot and Gille 

(2009a). These models included three forms of eddy viscosity profile: 1) constant, 2) linearly 

increasing with depth from 0m2s-1 at the surface, and 3) linearly increasing with depth with an offset 

at the surface. The models also considered three different bottom boundary conditions: A) an 

infinite-depth Ekman layer; B) an Ekman layer of finite depth with velocity tending to zero at the 

base of the layer (a so-called “one layer” model), and C) an Ekman layer with shear tending to zero at 

the bottom of the layer (a “one and a half layer” model). The resulting models were governed by a 

combination of up to three parameters: the eddy viscosity at the surface, k; a constant eddy viscosity 

gradient, z
k



, (here onwards denoted dk in the text); and the boundary layer depth (denoted BLD in 

the text and h in some equations) at which the deep boundary conditions were applied. 

 Elipot and Gille (2009a) obtained theoretical transfer functions by first applying a Fourier 

transform to the momentum equation to obtain an ordinary differential equation: 
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Fourier transforms were also applied to the surface boundary condition and deep boundary 

conditions. This resulted in a surface boundary condition at z=0 of: 

 
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dz
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,
 

 

In Class 2 models the viscosity tends to zero at the surface, hence, the surface boundary condition 

was taken as a limit. In other cases (Class1 and 3 models) viscosity is non-zero at the surface; hence, 

the boundary condition was applied directly. 

The deep boundary condition for the infinite depth (type A) Ekman models became: 

  0,



z

zU 
  

And, in turn, the no slip boundary condition in the type B (“one layer”) Ekman models became: 
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  0,
hz

zU



  

And the boundary condition for the type C (“one and a half layer”) Ekman models, in which shear 

tends to zero at the base of the boundary layer, became: 

 
0

,

hzdz

zdU





 

 

The eddy viscosity profiles were then applied and the Fourier transform of the momentum equation 

solved in a form consistent with equation 4.4 subject to the relevant boundary conditions. 

 

 

Figure 4.2: Schematics of the 9 models. From Elipot and Gille (2009a). 

Derivations of the  transfer functions for Class 1 and 2 models have been published in a number of 

previous papers (Lewis and Belcher, 2004, Madsen, 1977, Thomas, 1975, Weller, 1981) while the 

Class 3 model transfer functions are derived in Elipot and Gille (2009a). Discussion of the behaviour 
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of the models as a function of depth and frequency can be found in Elipot (2006) and Elipot and Gille 

(2009a).  

We follow the expressions for theoretical transfer functions given in Elipot (2006) rather 

than Elipot and Gille (2009a). While both are mathematically identical the expressions given in 

Elipot’s PhD thesis are forms more suitable the optimisation procedure. 

 

a. Constant Viscosity Models (Class 1) 

All class one models follow ‘classical’ Ekman theory by assuming the eddy viscosity (k) is constant 

with depth. We first define the class 1 model depth scale 1 which incorporates an effect from the 

eddy viscosity and frequency variability: 

 
f

k







2

2
1  

(4.6) 

To reduce the complexity of the subsequent equations we define the term  as: 

1

1




i


 
(4.7) 

Following the derivation outlined in Elipot (2006) the transfer function for the constant viscosity, 

infinite depth model (Model 1A) is:  






k

e
zH

z

A



),(1  
(4.8) 

Likewise, for the constant viscosity single layer model (Model 1B) the transfer function is: 

  
 h

zh

k
zH B








cosh

sinh1
),(1




 
(4.9) 

Finally, the transfer function for the constant viscosity one and a half layer model (Model 1C) is: 
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


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

sinh
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),(1


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(4.10) 

All Class 1 models follow “classical” Ekman theory in assuming eddy viscosity is constant with depth. 

Hence, the rate of rotation and decay are constant as a function of depth, with the exception of near 

the BLDs of Models 1B and 1C. 

 

b. Linearly Increasing Viscosity Models (Class 2) 

All Class 2 models assume the viscosity increases from 0m2s-1 at the surface with a constant eddy 

viscosity gradient, z
k



, (here onwards denoted dk in the text): 

 
z

k
zzK





 
 

Elipot and Gille (2009a) considered the Class 2 models on the basis of the concept of turbulent 

mixing length (Prandtl, 1952); as depth increases the size of turbulent eddies becomes larger and so 

viscosity increases. 

Again, for convenience we define three commonly used terms for the following equations. 

Firstly, we define the depth scale 2 as: 

 
f

z
k





 



2
2  

(4.11) 

In the following transfer functions, In denotes an nth order modified Bessel function of the first kind. 

Kn likewise denotes a Bessel function of the second kind. The resulting transfer functions are: 


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





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
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z
kA K

 
(4.12) 
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(4.13) 
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(4.14) 

The Class 2 models assume a linearly increasing viscosity, and thus, increasing Ekman decay scale 

with increasing depth. This results in the mean Ekman current profile displaying rapid decay and 

rotation in the surface waters; however as depth increases the rate of decay and rotation slow. 

 

c. Linearly Increasing Viscosity Models With A Non-Zero Surface Viscosity (Class 3) 

Class 3 models assume a linearly increasing viscosity with a non-zero surface viscosity: 

 
z

k
zkzK





 
 

To simplify the following expressions we define two commonly used terms as: 

 

2

02

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a




 
(4.15a) 

2
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
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(4.15b) 

The transfer functions for this class of model are: 
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(4.18) 

Similar to the Class 2 models, the Class 3 models display a more rapid rate of rotation and decay 

near the surface than at depth. However, in this case the rates of decay and rotation with depth are 

also sensitive to the depth constant component of K(z). 

 

4.5 Method 

a. Estimating Power Spectra and Transfer Functions 

We estimated the cross-spectra and auto-spectra over a frequency range of -2 to 2 CPD using 

Welch’s Method (Welch, 1967) whereby a time series  is split up into overlapping windows, power 

spectra estimated for each window and then a mean spectrum calculated over all windowed 

spectra. Note that positive frequencies correspond to anticlockwise and, in this study focusing on 

the Southern hemisphere, anticyclonic rotation).  For both float and shipboard observations we used 

10 day windows (40 data-points wide for the floats and 500 data-points wide for the shipboard 

data). For the shipboard data we used a 75% overlap between adjacent windows to maximize the 

number of power-spectra estimates from the relatively short time series. Since the float data 

consists of 8 separate time series, each longer than the shipboard data, a 50% overlap between 

adjacent windows, in line with Elipot and Gille’s method, was adequate. 

The shipboard data consists of a single continuous time series of ocean velocities along the 

ship-track and a corresponding time series of wind stresses. Hence, we were able to apply Welch’s 
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method directly. Unlike the shipboard data the float data consisted of independent time series from 

each of the floats. Hence, we applied Welch’s method to each float independently. We then 

averaged over all ‘windowed’ wind-stress autospectra and wind-current cross spectra to obtain a 

“composite” wind-stress autospectrum and a “composite” wind-current cross spectrum. All 

individual ‘windowed’ spectra generated for each float were retained for use in the error analysis 

outlined below. 

From Equation 4.5 the observed transfer function was computed as the ratio between the 

wind stress-current cross-spectrum (Pu) and wind-stress auto-spectrum (P): 




P

P
zH u),(

 
(4.19) 

Uncertainty in the observed transfer function was estimated using a bootstrap method in which Pu 

and Pwere recalculated multiple times (8 for the ADCP data, 51 for the float data), each time with 

one windowed spectrum excluded to produce bootstrap power spectra and bootstrap transfer 

functions (Hb 1 to Hb n).  Standard deviations of Pu and P were then estimated from the scatter of 

bootstrap estimates about the corresponding mean value. These standard deviations were 

propagated through equation 4.19 to obtain the standard deviation of Hobs, and 95% confidence 

intervals were then calculated (Equation 3.9). 

 

b. Fitting Transfer Functions At Constant Depth 

We fitted the models discussed above to three subsets of the data; in the first case we duplicated 

the method described by Elipot and Gille (2009a) in which fits were applied at a constant depth 

level. To fit each model to the observations a cost function (L) was used. Following Elipot and Gille 

(2009a) we defined the cost function as the sum over all frequencies of the residual between model 

transfer function (Hm) and observed transfer functions weighted by the square of the coherence (2): 



107 
 

     2kkobskm

k

HHL 
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Where 2 was calculated from the observed transfer function, the wind autospectrum and the 

current autospectrum (Puu): 
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(4.21) 

Additional penalties to the cost function were applied if the optimisation strayed into aphysical 

parameter space (here taken as k>3, k<0, dk>3, dk<0 or BLD>10000m). In turn dL, the expected 

uncertainty in L, was estimated by propagating the error in the observed transfer function through: 

   2kk

k

HddL 


  (4.22) 

Each model was initialised with parameters randomly selected within the parameter space 

described above, and a Nelder-Mead simplex search was run seeking to minimize the cost function 

given in equation 4.20. This was repeated 100 times to ensure thorough coverage of parameter 

space, and hence, maximize the chances of identifying all solutions. 

Next we identified unique solutions for each model. In the cases where we found multiple 

solutions we first considered the cost function value; if one solution displayed a significantly lower L 

than all other solutions (i.e. L1+dL<L2) it was taken as the optimum estimate of model parameters. If 

multiple solutions with comparable cost function values were detected we then applied a simulated 

annealing process. Diverging from Elipot and Gille (2009a), optimal solutions were then selected 

based upon a combination of the minimum cost score returned by the annealing process and the 

degree of change between the Nelder-Mead and annealing estimates of parameters. 

This procedure was repeated, substituting the bootstrap transfer functions Hb 1 to Hb n in 

place of Hobs. Error bars for each parameter were then estimated as the mean absolute deviation: 
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(4.23) 

Where M denotes the number of bootstrap estimates retained for the error analysis; x is the 

optimum parameter estimate from the observed transfer function Hobs, and xk is the parameter 

estimate from the kth bootstrap transfer function. 

 

d. Fitting Transfer Functions At Constant Frequency 

Unlike the surface drifter data used by Elipot and Gille (2009a) the EM-APEX floats and shipboard 

ADCP data employed in this study provided data over a range of depths. This allows examination of 

the oceanic response at specific forcing frequencies. Power spectra and transfer functions were 

calculated independently for time series taken across each depth level (2m intervals for floats, 8m 

intervals for ADCP data) between the surface and 100m. We then isolated the value of the observed 

and bootstrap transfer functions over all depth levels at four frequencies; plus and minus the inertial 

frequency and plus and minus half the inertial frequency. 

The optimisation procedure operated in a similar manner as for the constant depth fitting, 

with the exception that the cost function, L, and uncertainty in the cost function, dL, were calculated 

at all depths over one frequency: 

     2k

z

kobskm zzHzHL
k

  (4.24) 

With the corresponding dL calculated as: 

   2k

z

k zzHddL
k

  (4.25) 

e. Fitting Transfer Functions by Depth and Frequency 

As with the fits at constant frequency, power spectra and transfer functions were calculated 

independently for time series taken across each depth level between the surface and 100m.  
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The cost function was defined in a similar manner to the above, but was summed over both 

frequency and depth: 
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(4.26) 

dL was calculated in the same manner: 

    
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

 (4.27) 

f. Isolating Ageostrophic Velocities and Selecting Frequency Bands 

Since we wish to investigate Ekman currents we must remove the geostrophic component from the 

observed velocity time series. Here we have three alternative methods: to use a deep reference 

velocity as in Lenn and Chereskin (2009); a deep reference velocity plus geostrophic shear estimated 

in Chapter 3, or to use SSH derived surface velocities interpolated onto float and ship tracks.  

 
Figure 4.3: 24m Ageostrophic current anticlockwise autospectra estimated from float observations 

approximating geostrophic currents with: (i) a deep reference velocity and shear (see Chapter 3, 

Red); (ii) surface currents estimated from AVISO SSH fields (grey) or (iii) a deep reference velocity 

(Blue). Thick lines denote mean spectra; pale lines denote each bootstrap estimate. Note the general 
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agreement at high frequencies but significant disagreement between the surface SSH and deep 

reference velocity approximations at low frequencies (<0.1 CPD).  

To determine which of these methods is the most appropriate we calculated autospectra using each 

of these methods for the float data (Figure 4.3), and using both deep reference velocities and SSH 

data for the shipboard ADCP data (Figure 4.4). 

 
Figure 4.4: 24m Ageostrophic current anticlockwise autospectra estimated from shipboard ADCP 

observations approximating geostrophic currents with: (i) surface currents estimated from AVISO SSH 

fields (red) or (iii) a deep reference velocity (blue). Thick, dark lines denote mean spectra; thin, pale 

lines denote each bootstrap estimate. 

All power spectra estimated for each method of removing geostrophic currents are closely 

comparable at frequencies greater than 0.2 CPD. Inclusion of shear was found to result in only minor 

differences compared to the use of just a deep reference velocity as a geostrophic proxy. In turn, the 

use of deep reference velocities was found to attenuate the mean PSD by about an order of 

magnitude at low frequencies when compared with the SSH geostrophic velocity PSD and previous 

results given in Elipot and Gille (2009b). Despite this, outlying bootstrap estimates indicate a degree 

of overlap. It must also be noted that the low frequencies are not well resolved due to the 

combination of the relatively short period of high frequency observation by the floats (maximum of 
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70 days of sampling at 4 profiles per day) and the length of the windows used in the spectral 

estimates. Examination of the shipboard current autospectra shows less disagreement between the 

two techniques at low frequencies (<0.1 CPD), disagreement of a factor of 2-3 in the middle of the 

frequency band (0.1-1 CPD) and comparable performance at high frequencies. 

 As no method was clearly better we opted to maintain consistency with previous studies and 

use the AVISO SSH currents as the primary proxy for the geostrophic velocity. We also applied a 

limited analysis (repeating the fitting at constant depth) using a deep reference velocity as a proxy 

for geostrophic currents to quantify how much difference is made by the definition of geostrophic 

velocity. 

 

g. Estimating Wind Energy Input 

Following Elipot and Gille (2009b) we start with the spectral energy equation (see Elipot’s paper for 

the full derivation) at the ocean surface:  

    DEfiP kku   2,0  (4.28) 

 Where E denotes the vertically integrated Kinectic power spectral density in the Ekman layer and D 

denotes the vertically integrated dissipated power spectral density. Expressions for E and D are given 

in Elipot and Gille (2009b), but both D and E are purely real terms. 

Continuing to follow Elipot and Gille (2009b), we separated the wind-current cross-spectrum into 

real (C, designated the co-spectrum) and imaginary (Q, designated the quad-spectrum) components: 

uuu iQCP    (4.29) 

Hence, the co-spectrum is equal to D, the dissipated power spectral density. 

uCD   (4.30) 

 And the quad-spectrum is related to the kinetic energy of the Ekman layer. 

  uk QEf   2  (4.31) 
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 From the definition of the transfer function (equation 4.19) at a given depth (z) and frequency, the 

co-spectrum is related to the wind stress auto-spectrum and the transfer function by: 

        PzHzC u ,, R  (4.32) 

Where R(H) denotes the real component of the transfer function.  

Our observations were taken at a depth, denoted z0, below the surface (23.55m for the 

ADCP data and 24m for the float data). Equation 4.32 was rearranged to express the surface co-

spectrum in terms of the transfer function and the co-spectrum observed at z0: 
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(4.33) 

The surface co-spectrum was calculated using the best transfer function identified in section 4. 7. 

Error estimates were obtained by repeating this procedure for all bootstrap estimates of the co-

spectra and transfer function. We then separated the surface cospectra into the cyclonic (<0 CPD) 

and anticyclonic (>0 CPD) subsets before integrating each from 0 to 2 CPD to obtain the final 

estimate of wind energy input. 

 

4.6 Results: ADCP Observations 

a. Power Spectra and Coherence 

The shipboard current autospectrum was plotted across all depths and frequencies (Figure 4.5), and 

at 23.55m depth (Figure 4.6). The ADCP current autospectrum peaked near the anticlockwise inertial 

frequency. Outside near-inertial and high clockwise frequencies the spectral density varied between 

10-2 and 10-3 m2s-2/CPD, making the ADCP current spectrum “flatter” than the EM-APEX 

autospectrum (section 4.8). The wind-current cross-spectrum (Figure 4.7) demonstrated for signals 

with ||<0.05CPD, cyclonic and anticyclonic spectra were of comparable strength in both the real 

(down-wind) and imaginary (cross-wind) components.  Over the frequency band of 0.05-0.5CPD, 

cyclonic frequencies dominate the real component. 
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Figure 4.5: ADCP current autospectra (log10(m2s-2/Cycle-per-day)) vs depth. The horizontal black line 

denotes 23.55m depth level for horizontal fits. The vertical dashed black line marked f denotes mean 

inertial frequency; note that the inertial frequency is marked in the same manner in subsequent 

figures. 

 
Figure 4.6: Wind stress, and 23.55m current autospectra from the shipboard data described in 

Section 4.2a. Thick solid lines denote the anticyclonic frequencies; thick dashed lines denote cyclonic 

frequencies. Thin dashed lines denote 95% confidence intervals estimated over all bootstrap spectra. 
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Figure 4.7: The wind-current cross-spectrum at 23.55m (real component top, imaginary component 

bottom) estimated from shipboard observations. Blue lines denote the anticyclonic frequencies; red 

lines denote cyclonic frequencies. Dashed lines denote 95% confidence intervals estimated over all 

bootstrap spectra. 

Coherence squared provides a measure of the relation between two signals, in this case the time 

series of wind stress and ageostrophic current; assuming a linear transfer function. In this case 

(Figure 4.8) 2 displayed a complicated pattern of localized peaks and troughs, with the two most 

prominent (with 2>0.6 at 23.55m depth) occurring near -0.35CPD and around the inertial frequency 

(1.41CPD). Coherence near these two primary peaks remains high for depths between 23.5m and 

80m. In these frequency bands ageostrophic velocities are strongly linked with the wind forcing over 

a considerable depth range, but away from these frequency bands the currents are only weakly 

related to the wind forcing.  
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Figure 4.8: Coherence squared as a function of both depth and frequency (top) and at 23.55m 

(bottom) for the shipboard ADCP data. When plotted against depth the value of coherence squared is 

indicated by the colour, ranging from 0 (dark blue) to 1 (dark red). 

 

b. Fitted Transfer Functions: Constant Depth and 2D Fits 
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performing; however model 3B displayed high uncertainty in all parameter estimates. The 2D fit (by 

frequency and depth over the -2 to 2 CPD and 23.55-100m ranges) also identified model 1B as the 

best performing. Eddy viscosities for Model 1B were found to be 4.25±0.60x10-2 m2s-1 and 

4.83±0.23x10-2 m2s-1 for the constant depth and 2D fits respectively. Boundary layer depths (BLD) 

were found to be 104.99±9.13m and 118.50±2.86m. These eddy viscosities are consistent with 

results obtained by Elipot and Gille (2009a) but the estimates of BLDs are 2 to 3 times greater than 

Elipot’s circumpolar estimates for a comparable latitude range. Fig. 8 in Elipot and Gille (2009a) 

indicates greater scatter of BLD estimates during summer, suggesting this difference is likely due to 

the timing of the SOFINE voyage. 

 
Figure 4.9: Fitted Parameters (k, top left; dk/dz top right; BLD bottom left) and cost function values 

(bottom right). Plus signs indicate mean values, horizontal lines indicate error bars. Fits over -2 to 2 

CPD at 23.55m indicated in blue; 2D fits to 100m indicated in red. 

For model 3A and all class 1 and 2 models the 2D fit consistently produced estimates of 

viscosity and viscosity gradient 10-50% greater than the corresponding results for the 23.55m fit. 

Models 1A and 1C produced viscosities of around 0.15 m2s-1 for the 23.55m fit; and approximately 

0.32 m2s-1 for the 2D fit. For model 3A the 23.55m fit gave a viscosity of 0.014m2s-1 and the 2D fit 
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gave 0.024m2s-1. Estimated viscosity gradients were found to vary over the range 1.5-2.0x10-3 ms-1 

and 2.0-3.5x10-3 m2s-1 for the 23.55m and 2D fits respectively. Other than model 1B, all boundary 

layer depth estimates were between 1600 and 10000m, implying that bottom boundary effects were 

of little relevance. 

 Plots of the absolute value of the observed transfer function from the three best fitting 

models for both the 23.55m fit and the 2D fit are shown in Figure 4.10. While Model 1B for both the 

constant depth fit and the 2D fit was found to match the key features of the observed transfer 

function in the anticyclonic sub-inertial to near-inertial domain, it did poorly both in the anticylonic 

super-inertial range (>1.5CPD) and over the majority of the cyclonic domain.   

 
Figure 4.10: Absolute value of the observed transfer function at 23.55m and the transfer functions for 

the three best performing models. Dashed lines indicate 95% confidence intervals around the transfer 

functions. 

To summarise, both the 23.55m and the 2D fits suggested that a constant viscosity model with a finite 

BLD and Ekman velocity tending to zero at the BLD (model 1B) provided the most satisfactory fit to 

the observations. Estimates of eddy viscosity and boundary layer depth were consistent between both 
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c. Fitted Transfer Functions At Constant Frequencies 

Parameter estimates and estimated cost function values are given in Figure 4.11. In both sub-inertial 

frequency fits, all models were found to produce large uncertainties in parameter estimates with 

error-bars on eddy viscosity, viscosity gradient and BLD often exceeding mean estimates by an order 

of magnitude. In all cases no model was found to perform statistically better than the rest at the 

95% level, however, there was a suggestion of sensitivity to frequency: Class 1 (constant viscosity) 

models were found to be the best performing as measured by the cost function for both cyclonic 

and anticylonic near inertial frequencies, while Class 3 models typically performed better at low 

frequencies. 

 
Figure 4.11: Parameter estimates and cost function values (1. Viscosity; 2. Viscosity gradient; 3. BLD; 

4a. Cost Function Values for frequencies of -1.4, 0.7 and 1.4 CPD; 4b. Cost function value for -0.7CPD) 

for fits at constant frequencies of -1.4, -0.7, 0.7 and 1.4 CPD. Plus signs indicate mean values, 

horizontal lines indicate error bars. 

Selected fits and observed transfer functions are shown in Figure 4.12. Near the inertial frequency, 

model 1B was found to be the most satisfactory, showing not only the best cost function score, but 

also a good match to the observations over the entire depth range. This fit produced a viscosity of 

3.52±0.18x10-2 m2s-1 and BLD of 105.47±1.97m, in general agreement to the fit at constant depth. 
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Model 2C was the second best performing by cost function score in the near-inertial range but 

proved unsatisfactory when compared to the observed transfer function profile. Models 1C and 3C 

were found to be the best performing at -1.4CPD and to agree with the observed transfer function 

within error bars. Both produced extremely shallow (O(5m)) boundary layers; the former was also 

found to display an eddy viscosity at the upper limit of the assumed parameter space while the latter 

(3C) displayed  a viscosity gradient near the upper limit of its parameter-space. The net result in both 

cases was a transfer function of near constant magnitude with depth. These models, while 

mathematically acceptable are non-physical. Removing these models from consideration left Model 

1B (with k of 0.4436±0.0333m2s-1 and BLD of 128.64±0.92m) as the best performing model at -

1.4CPD. 

 
Figure 4.12:  Observed and fitted transfer functions vs depth for frequencies of (from left to right) -

1.4, -0.7,0.7 and 1.4 CPD. Error bars indicated for the observed transfer functions (blue) indicate 95% 

confidence intervals estimated from bootstrap analysis. Error bars for the fitted transfer functions 

were estimated by propagating errors in parameter estimates through the theoretical transfer 

functions. 
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d. Sensitivity of Fitted Parameters 

The estimates of viscosity, viscosity gradient and BLD presented above used a geostrophic velocity 

determined from sea surface height fields and also included frequency bands which are unlikely to 

be well resolved with the shipboard data. These factors, together with the depth at which the 

constant depth fits were applied, have the potential to alter the viscosity, viscosity gradient and BLD 

values estimated above. 

We investigated the sensitivity to frequency resolution of the constant depth fits to the float 

observations by repeating the fitting procedure with low frequencies (-0.1-0.1CPD) suppressed. The 

resulting parameter estimates are shown in Figure 4.13. Suppressing low frequency variability was 

found to have no statistically significant effect on any of the model parameters. 

 
Figure 4.13: Parameters fits with low frequencies suppressed and using a deep reference velocity as a 

proxy for geostrophic currents. Mean values and uncertainty indicated per figure 4.9. 
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order of magnitude as, viscosities obtained for the same models with the AVISO SSH geostrophic 

proxy. Model 3A (infinite BLD, linearly increasing viscosity with a non-zero surface offset) produced a 

viscosity an order of magnitude weaker than was obtained for the same model when using SSH 

geostrophic currents. Other type 3 models displayed wide confidence intervals, preventing a proper 

assessment of how the alternate geostrophic proxy impacted the parameter estimates. 

 We repeated the constant depth fits at a range of depths down to 79.55m (Figure 4.14). All 

models display agreement in terms of parameter amplitudes between 23.55m and 63.55m. Despite 

this general agreement, models only reliably achieved a match on all parameters to the constant 

depth fits above (23.55m) at 31.55m. Excluding models 3b and 3c, we observed a general tendency 

for mean viscosity, viscosity gradient and BLD estimates to increase with increasing depth. The 

tendency for models to produce larger parameter estimates at deeper depth levels may be a result 

of moving from the mixed layer to ocean interior regimes. 

 
Figure 4.14: Parameter estimates from constant depth spectral fitting at depths between 23.55m and 

79.55m. Mean values and uncertainty indicated per figure 4.9. 
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 The spectral fits to the shipboard wind and ADCP data show no significant sensitivity to 

suppressing low frequency winds. There is a marginal sensitivity to the use of deep reference 

velocities rather than SSH derived velocities as proxies for the geostrophic currents. 

 

4.7 Results: EM-APEX Floats 

a. Power Spectra 

Autospectra calculated from winds and 24m currents averaged over all floats are shown in Figure 

4.15. The float current autospectrum shows greater variability than the corresponding ADCP 

spectrum varying from 10-1 m2s-2/CPD at low frequencies to 10-4 m2s-2/CPD at high frequencies. 

While the EM-APEX power spectrum displays a clear near-inertial response it is significantly weaker 

than is seen with the ADCP spectrum. The float wind-stress autospectrum was found to be smaller 

than the shipboard wind-stress autospectrum across the entire frequency range. At frequencies less 

than 0.1CPD the float autospectrum was a factor of two smaller than the shipboard autospectrum; 

while at near and super-inertial frequencies the float spectrum is approximately an order of 

magnitude smaller than for the shipboard observations. Examining the current autospectrum as a 

function of both depth and frequency (Figure 4.16), we find that the differences compared to the 

ADCP spectrum (Figure 4.5) discussed above extend to approximately 50m depth. 

EM-APEX estimates of the wind-current cross-spectrum are shown in Figure 4.17. Compared 

to the shipboard cross-spectrum (Figure 4.7), the float spectrum displays much wider error bars at 

low frequencies and has lower amplitude and less variability at frequencies over 0.2CPD. In Figure 

4.18 we present an expanded view of the EM-APEX wind-current cross-spectrum to highlight the 

near-inertial response; while a near inertial peak is present it is much weaker (2x10-4 Wm-2/CPD) 

than in the shipboard spectrum (3x 10-2 Wm-2/CPD). 
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Figure 4.15: Wind stress and current autospectra at 24m estimated from EM-APEX float data. Solid 

lines denote the mean autospectra, dashed lines indicate the 95% confidence intervals estimated by a 

bootstrap method. 

 

 
Figure 4.16: EM-APEX current autospectrum (log10(m2s-2/Cycle-per-day)) vs depth (mean over all 

data,). The vertical dashed black line denotes mean inertial frequency over all 8 floats; the horizontal 

black line denotes depth level for the constant depth fits. 
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Figure 4.17: EM-APEX wind-current cross-spectrum at 24m (real component top, imaginary 

component bottom). Blue lines denote the anticyclonic frequencies; red lines denote cyclonic 

frequencies. Dashed lines denote 95% confidence intervals estimated over all bootstrap spectra. 

 
Figure 4.18: EM-APEX wind-current cross-spectrum at 24m (real component top, imaginary 

component bottom) plotted over 1-2CPD. 
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b. Fitted Transfer Functions and Parameter Estimates 

Parameter values and cost functions obtained from fits to the EM-APEX float data are given in Figure 

4.19. Error estimates obtain by the bootstrap method described above were generally found to be 

large relative to the mean parameter estimates, likely due to the larger variability seen in the float 

current autospectra (Figure 4.3) than in the corresponding shipboard estimates (Figure 4.4) For both 

the 1.4CPD and 24m fits, Model 1B was found to be the best performing, with estimated mean 

viscosities of 0.06 and 0.40 m2s-1 and BLDs of 96 and 336m respectively. Between -1.4 and 0.7CPD 

fits were consistent in identifying Class 3 models (non-zero surface viscosity linearly increasing with 

depth) as the most satisfactory. 

Mean estimates of viscosity gradients (Figure 4.19, panel 2) were closely consistent within 

the Class 2 (linearly increasing viscosity) family of models for a single fit but varied between fits; for 

example, the fit at -0.7CPD gives viscosity gradients of 2-3x10-2 ms-1, while the fit at 1.4CPD gives 

viscosity gradients of 7-9x10-3 ms-1 for the same set of models. Meanwhile, mean estimates of 

viscosity gradient for Class 3 models (non-zero surface viscosity, increasing linearly with depth) 

displayed no such behaviour. 

 
Figure 4.19: Parameter fits and Cost Function Values. Mean values are indicated by the short, vertical 

lines; uncertainty by the horizontal lines. 
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Observed transfer functions and the two best fitted models are plotted at each frequency in 

Figure 4.20. At -1.4, 0.7 and 1.4CPD the best fitted models, as measured by minimum cost function, 

were found to match the observed transfer function closely over the entire 10-100m depth range. At 

-0.7CPD model 3B was found to lie right at the lower limit of the error-bars around the observed 

transfer function, while the second best performing model (1B) lay outside the observed error bars. 

A similar plot for the 24m fit (Figure 4.21) demonstrates that, as in the shipboard data, model 1B 

matched the observed transfer function well over the anticyclonic frequencies but captured little of 

the variability in the cyclonic range. 

 
Figure 4.20: Absolute value of transfer function vs depth for observed transfer functions (blue, 95% 

confidence intervals indicated by dashed lines) and the two best fitting models (red and gray) at 

near-inertial and half-inertial frequencies. 
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Figure 4.21: Absolute value vs frequency of observed transfer function (blue) and best performing 

model (1B, red) 24m, -2 to 2 CPD fit. Dashed lines denote the uncertainty about the observed and 

fitted transfer function. 
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1B was found to perform well at the inertial frequency while Class 3 models were found to deliver 

the best performance at lower frequencies.  
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proxy and the inclusion of high frequency variability have not significantly affected our estimates of 

model parameters. 

 
Figure 4.22: Fitted Parameters for 24m fits with (1) AVISO SSH derived geostrophic current; (2) AVISO 

SSH derived geostrophic current, low frequency (<0.1CPD) signal excluded; (3) 200m reference 

velocity as a proxy for geostrophic current. 

We then repeated the standard constant depth fit at 14m, 24m, 50m and 74m with 

geostrophic velocities based on ACISO SSH data. Results are shown in Figure 4.23. Estimated mean 

parameters over class 1 and 2 models were found to be consistent for the 14m, 24m and 50m fits. 

The fit at 74m depth was found to produce lower mean estimates of viscosity and viscosity gradient 

for all class 1 and 2 models compared to fits at shallower depths. Estimated BLD was also differed 

considerably between the 74m fit and shallower depths. Mean mixed layer depth was found to be 

43.8m, suggesting this observed inconsistency arises from comparing variability within, or just below 

the mixed layer to variability within the ocean’s interior. 
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Figure 4.23: Parameters fitted to ageostrophic data at 14m, 24m, 50m and 74m. The ageostrophic 

current was isolated from the observations using an AVISO SSH based geostrophic current. Panel 1 

shows the fitted eddy viscosities; Panel 2 the viscosity gradients and Panel 3 the fitted boundary layer 

depths.  
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This suggests we need to consider the sensitivity of the spectral fits to our choice of wind data. 

The CERSAT winds interpolated onto the shiptrack were found to produce a weaker 

autospectrum than the insitu wind data (Figure 4.24, upper panel). The CERSAT wind spectra for the 

float tracks displayed a comparable magnitude to the shipboard case. This suggests that the float 
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wind spectra are also attenuated relative to the (unobserved) ‘real’ wind spectra along the float 

tracks, which This raises the possibility that the fits described earlier in this section may display 

significant sensitivity to the wind data used to estimate wind autospectra and wind-current cross-

spectra.  

 

 
Figure 4.24: Wind stress-autospectra obtained from shipboard instrumentation; CERSAT blended 

reanalysis-satellite winds and NCEP/NCAR reanalysis winds for the shipboard (top) and float data 

(bottom). Solid lines denote the mean power spectra while dashed lines denote the 95% confidence 

intervals. 
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To address this question we proceeded to examine a number of alternative wind datasets. 

ERA Interim reanalysis winds and NOAA/NCDC blended satellite winds (Zhang et al., 2006) were 

found to produce shipboard wind-spectra (not shown) attenuated to a similar degree to the CERSAT 

blended reanalysis-satellite winds. The NCEP/NCAR reanalysis wind fields were found to produce the 

closest match to the shipboard insitu wind-spectrum (Figure 4.24, upper panel). Hence, we 

investigated how the choice of forcing dataset affected the spectral fits by rerunning the constant 

depth fit using wind stresses derived from the NCEP/NCAR reanalysis.    

 
Figure 4.25: Parameter values and Cost Function Values for the constant depth fits to the EM-APEX 

float data using CERSAT blended winds and NCEP reanalysis winds. Mean values are indicated by the 

short, vertical lines; uncertainty by the horizontal lines. 

NCEP/NCAR reanalysis winds interpolated onto the float track were found to produce an 

autospectrum (Figure 4.24, lower panel) closer in magnitude to the float CERSAT spectrum than the 

shipboard insitu or NCEP/NCAR autospectra. Examination of wind-stress magnitude as a function of 

time (not shown) demonstrated that the higher amplitude shipboard spectra were associated with 

three short duration high wind events. Only one EM-APEX float was active during the time period of 

these high wind events and no wind events of similar amplitude were seen during the rest of the 

float record. Hence, this disagreement in wind-spectra amplitude between NCEP/NCAR wind fields 
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interpolated onto the float tracks and ship track is reasonable. The resulting spectral fits to float data 

at constant depth with NCEP winds (Figure 4.25) was found to result in no statistically significant 

changes in model parameters relative to those calculated with CERSAT winds. 

 

e. Sensitivity to Excluding Short-lived Floats 

Three of the eight EM-APEX floats delivered fewer than 21 days data, potentially producing low 

quality and biased estimates of the power-spectra and transfer functions. Examination of bootstrap 

wind spectra (Figure 4.26) indicates that these floats (3950, 3951 and 4051) produced the lowest 

amplitude bootstrap wind autospectra. Hence, it is plausible that including these floats in the above 

analysis would result in an attenuated wind spectrum with resulting errors when computing the 

observed transfer function. 

 
Figure 4.26: Bootstrap wind autospectra estimated from the EM-APEX float data colour-coded by the 

float ID number. 
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Figure 4.27: Mean wind autospectrum computed before and after removing the three short lived 

floats. Solid lines denote mean autospectra and dashed lines 95% confidence intervals. 

 
Figure 4.28: Comparison of fitted model parameters (viscosity in Panel 1; viscosity gradient in Panel 2 

and BLD in Panel 3) when considering all EM-APEX data and when excluding the three short lived 

floats. 
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shown in Figure 4.27; unexpectedly removing the three short-lived floats had little effect on the 

wind spectrum. The fitted parameters are shown in Figure 4.28; we observed no changes in 

parameters that was significant at the 95% confidence level.  

 

4.8 Wind Energy Input 

Previous studies (Wunsch, 1998, Wang and Huang, 2004) found that the Southern Ocean was a 

hotspot of wind energy input into the ocean, with latitudes south of 40°S accounting for 70% of the 

globally integrated wind work on the ocean. Most prior studies (Wunsch, 1998, Elipot and Gille, 

2009b, Wang and Huang, 2004) concentrated on computing the wind energy input into the Ekman 

layer on a large-scale circumpolar and long-term basis; our short-term and highly regional dataset 

offers a complimentary view. 

Shipboard estimates of wind energy input were evaluated using Model 1B (constant 

viscosity, finite BLD) with viscosities and BLDs taken from the 2D and 23.55m constant depth fits. 

The cyclonic (negative frequencies) and anticyclonic (positive frequencies) co-spectra (Figure 4.29) 

were then integrated over the frequency band of 0 to 2 CPD to obtain total wind energy input 

(Figure 4.30). Energy input from the anticylonic frequencies was found to be greater than the energy 

input from cyclonic frequencies, in line with results from Elipot and Gille (2009b). 

Total energy input to the Ekman layer over the frequency band of -2 to 2 CPD was 

45.5±0.4x10-3 Wm-2 for the constant depth fit at 23.55m, or 42.7±0.3x10-3 Wm-2 when using 

parameters estimated from the 2D fit. The previous application of spectral techniques to this 

problem (Elipot and Gille, 2009b) yielded circumpolar estimates of 20-30x10-3 Wm-2 over the latitude 

band of our study. Wunsch (1998) estimated wind energy input into the geostrophic circulation in 

the Kerguelen Island region to be 18-24x10-3 W m-2.  Wang and Huang (2004) found wind energy 

input into the Ekman layer of around 20x10-3 W m-2 over the Indian sector of the Southern Ocean. 

Our estimates are 50-100% greater than these prior observations. 
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Figure 4.29: Estimated surface cospectra evaluated from model 1B; 23.55m observed transfer 

function and 23.55m cospectrum, along the shiptrack. Solid lines indicate anticyclonic frequencies 

and dashed lines cyclonic frequencies. 95% confidence intervals estimated by a bootstrap procedure 

are indicated by the pale dotted lines. 

Wang and Huang (2004) employed spectral techniques combined with a slab-like model of 

Ekman currents. Elipot and Gille (2009b) used a similar methodology to our study but estimated 

power spectra over multiple years and on a circumpolar scale. Wunsch (1998) estimated wind 

energy input by considering the dot product of time mean wind stress and geostrophic velocity 

fields. In all three cases, the temporal and geographic averaging involved could account for these 

underestimates, relative to our study, of wind energy input. Another factor which could account for 

this difference is the wind data used in the study. We employed insitu shipboards wind observations 

while both Wunsch (1998), Wang and Huang (2004) and Elipot and Gille (2009b) used reanalysis 

wind data. As discussed above, the ship-track wind autospectrum (Figure 4.24, upper panel) from 

the CERSAT blended satellite-reanalysis data was found to be weaker than the corresponding 

estimate from the shipboard observations over the majority of the resolved frequency bands. This 

use of reanalysis winds could potentially work in together with the temporal and spatial averaging to 

reduce the estimated wind autospectrum. We see an example of this when we compare the 
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NCEP/NCAR wind stress autospectrum over the ship-track (Figure 4.24, upper panel) and the 

NCEP/NCAR wind stress spectrum averaged over all floats, covering a larger temporal and spatial 

extent (Figure 4.24, lower panel). 

 
Figure 4.30: Cyclonic and anticyclonic co-spectra integrated from 0 to 2CPD. Thick lines denote 

anticlockwise (anticyclonic) frequencies and thin lines clockwise frequencies 

To examine the effect of using reanalysis wind data we repeated our calculation of wind 

energy input using power spectra calculated with the CERSAT blended reanalysis-satellite winds in 

place of the insitu winds. Using the model parameters estimated from the 23.55m fit (with insitu 

winds) wind energy input was found to be 16.1±0.1x10-3 Wm-2, closer to but slightly lower than 

Wunsch’s estimate. These contrasting results, using the same oceanic response but differing wind 

inputs, raises the possibility that prior studies under-estimated wind energy input into the Ocean. 

Due to the large uncertainty in the relevant viscosity, viscosity gradient and BLD estimates 

no attempt was made to estimate wind energy input from the EM-APEX float data.  

 

4.9 Conclusion 

We have applied new extensions of the rotary spectral methods as outlined by Elipot and Gille 
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a view of the ocean’s response over multiple depth levels rather than the single depth implicit in the 

surface drifters used in Elipot and Gille’s work we have extended the spectral technique to examine 

the data both as a function of depth at fixed frequency and in two dimensions as a function of both 

depth and frequency. 

 

a. Model Performance, Fitted Parameters and Implications for Ekman Currents 

Data Model k (m2s-1) dk (ms-1) BLD (m)  

ADCP, 
23.55m 

1B 4.25x10-2±6.02 x10-3 - 104.99±9.13 Fig. 4.9 

ADCP, 2D 1B 4.83x10-2±2.28 x10-3 - 118.50±2.86 Fig. 4.9 

ADCP, 
1.4CPD 

1B 3.52 x10-2±1.84 x10-3 - 105.47±1.97 Fig. 4.11 

ADCP, 
0.7CPD 

3C 2.35 x10-10±1.31 1.17±1.83 53.18±2.63 Fig. 4.11 

ADCP, 
-1.4CPD 

3C* 1.59 x10-7±1.09 1.79±1.04 5.50±0.75 Fig. 4.11 

 1C* 3±0.04 - 5.86±0.71  

 1B 0.444±0.033 - 128.6±0.9  

ACDP, 
-0.7CPD 

3A 5.09 x10-2±1.24 
5.73 x10-6±3.98 

x10-1 
- Fig. 4.11 

Table 4.1: Best performing models and estimated parameters for selected fits to the shipboard ADCP 

data. The first column records the data the models were fitted to, the second column the best 

performing model type (as described in Section 4.4), Columns 3 to 5  are the fitted parameters: 

viscosity(k), viscosity gradient (dk) and boundary layer depth (BLD). A reference back to the relevant 

figures is given in Column 6. “*” denotes a non-physical model. 

The best performing models and fitted parameter values for the ADCP data are shown in Table 4.1. 

The constant depth and 2D fits to the ADCP velocity data identified model 1B (constant viscosity, 

finite boundary layer, Ekman velocity tending to zero at the BLD) as the best performing model.  

Viscosity estimates for both fits were in agreement, while estimates of BLD were generally 

consistent in magnitude. Fits at constant frequency to the ADCP data also identified model 1B as the 

best performing model in the near inertial regime with an eddy viscosity and BLD in general 

agreement with the parameter estimates from the 23.55m and 2D fits of model 1B. Class 3 models 
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(viscosity increasing with depth with a non-zero offset at the surface) were identified as the most 

suitable models for the other frequency bands. 

 The best performing models and corresponding parameters estimated for the EM-APEX float 

data are given in Table 4.2. Model 1B was found to be the most suitable model when fitted to the 

constant depth data and the near inertial data. Again, the Class 3 model performed well at cyclonic 

(clockwise) frequencies. 

Data Model k (m2s-1) dk (ms-1) BLD (m)  

EM-APEX, 
24m 

1B 0.401±0.31 - 336.43±307.26 Fig. 4.19 

EM-APEX, 
1.4CPD 

1B 0.060±0.14 - 96.09±949.85 Fig. 4.19 

EM-APEX, 
0.7CPD 

3A 6.66 x10-4±1.16 1.23 x10-3±1.06 - Fig. 4.19 

EM-APEX,   
-1.4CPD 

3C 1.32 x10-3±1.01 2.29 x10-2±0.59 19.45±264.95 Fig. 4.19 

EM-APEX,   
-0.7CPD 

3B 1.93 x10-17±1.87 0.297±1.37 
3.81 x10-17 

±2909.63 
Fig. 4.19 

Table 4.2: Best performing models and parameters for selected fits to the EMAPEX data. Columns as 

per Table 4.1.  

Class 1 (constant viscosity) models were found to offer good performance (the lowest cost 

function value for a given set of fits) when fitted to both ADCP and EM-APEX data at a constant 

depth level or in the near inertial frequency band (see Figures 4.11 and 4.19 for measures of 

goodness of fit). Estimated eddy viscosities and boundary layer depths were found to be in close 

agreement over all model classes and parameters fits. 

Class 2 models did not offer the best performance for any of the fits, and more generally 

offered middling to poor performance (high cost function values). This is likely an effect of the eddy 

viscosity linearly increasing with depth from 0m2s-1 at the surface. Even with a large viscosity 

gradient (dk), viscosities are very small near the surface, in turn implying rapid decay and rotation of 

the Ekman currents in the shallowest part of the mixed layer. Since the EM-APEX floats and the 

shipboard ADCP did not allow us to examine oceanic velocities within the upper 10m it is likely that 

we would not be able to detect this rapid current decay and where there are data do not detect the 
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stretching of the decay scale implied by this class of model.  We conclude that the Class 2 mdoels are 

poorly constrained by the observations, and are the least consistent model of the boundary layer 

Ekman dynamics assessed here. 

 Class 3 offered good performance when fitted at constant frequencies away from the inertial 

frequency. However, we consistently find at least one of the fitted model parameters (k, dk and BLD) 

display large uncertainty relative to the mean estimate. If these large uncertainties had been 

confined to the EM-APEX float data or to the constant frequency fits away from the inertial 

frequency it would suggest the uncertainty was principally a matter of the low amplitude of the 

mean observed transfer function compared to the variability seen in the bootstrap transfer function. 

However, we also see Class 3 model parameter estimates with large uncertainties in the ADCP 

constant depth and 2D fits. This suggests instead that the three parameters viscosity, gradient of 

viscosity and boundary layer depth (k, dk and BLD) in the Class 3 models have high dependency on 

each other and it is likely that the estimation procedure is poorly constrained (or ill-posed) by the 

observations.   

 The evidence from the fitting of spectral models suggests that either a constant viscosity 

model (Class 1 models) or a linearly increasing viscosity with a non-zero surface viscosity (Class 3 

models) provide the best representation of Ekman currents. However, all Class 3 models display high 

uncertainty around at least one parameter in all parameter fits. This suggests that the Class 3 

models, representing stratified flow, degenerate at times to an ill-posed solution, and thus the 

evidence for a significant general increase in viscosity with depth is a less robust feature of the data. 

In Chapter 3 we found evidence that the viscosity decreases with depth (Figure 3.19), although this 

decrease is within the uncertainty of the confidence interval on the mean viscosity. The lines of 

evidence from this Chapter and Chapter 3 suggest that a constant viscosity model provides a good 

representation of Ekman currents, and the time-mean eddy viscosity profile (Figure 3.19). We 

conclude that of the spectral models examined in this chapter, Class 1 models are the most 

satisfactory, and from within this class, Model 1B (constant viscosity, finite BLD) is the best. 
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b. Estimates of Wind Energy Input 

Having identified Model 1B as the most adequate model, we computed the resulting wind energy 

input using parameter estimates derived from the 23.55m constant depth and the 2D fits to ADCP 

data. Using the insitu wind spectrum we obtained wind energy input into the Ekman layer of 

45.5±0.4x10-3 Wm-2 and 42.7±0.3x10-3 Wm-2, respectively. These estimates are 50-100% larger than 

previous large scale estimates (Elipot and Gille, 2009b, Wunsch, 1998, Wang and Huang, 2004). 

Repeating our estimates with a wind spectrum derived from the CERSAT blended reanalysis-satellite 

wind fields we found a wind energy input of around 16x10-3 Wm-2, in line with the lower range of 

previous estimates (Wunsch, 1998, Wang and Huang, 2004). These two results together suggest that 

the wind energy input is particularly sensitive to the spectral content of the wind field. This 

difference is unlikely to be due to the time period of these regional measurements and therefore 

could suggest that closure of the wind budget globally would be improved with wind data with 

greater temporal resolution.   
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Chapter 5: Evaluating the Performance of Constant Viscosity Ekman 

Models 

 

5.1. Introduction 

In the previous chapters we estimated viscosity and viscosity profiles, and fitted a number of 

conceptual spectral models to the observations. This evidence suggested, against initial 

expectations, that a constant viscosity parameterization provides an adequate representation of 

wind-driven momentum mixing within the mixed layer. The results from the spectral fitting also 

suggested that a finite boundary layer depth may offer superior performance to the ‘classical’ 

infinite depth Ekman model.  

In light of this we tested a family of six constant viscosity linear Ekman models arising from 

various combinations of boundary layer depth and coupling with geostrophic shear and Stokes drift. 

We also examined a family of stratified Ekman models using the Price-Weller-Pinkel mixing scheme 

(Price et al., 1986) to test the effects of density stratification on Ekman currents. All nine models 

were forced with insitu wind-stresses taken along the ship track and blended satellite-reanalysis 

wind-stresses interpolated onto the float tracks. Model time varying performance was then analysed 

by considering the statistics of the currents at 24m depth; while time-mean performance was 

characterized by considering the correlation between the observed and modelled time-mean Ekman 

velocity profile. 

 

5.2. The Models 

During this study we considered a total of nine models (Table 5.1). We first considered a suite of 

three variations on the ‘classical’ Linear Ekman Model (CLEM), which assumes a constant viscosity 

and an infinite BLD: 1) the ‘standard’ case with wind forcing only; 2) a version including coupling with 

geostrophic shear (Cronin and Kessler, 2009) and 3) a version incorporating coupling with Stokes 
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Drift (Polton et al., 2005). We then considered the same three variations on the  finite BLD linear 

Ekman model (FLEM) with a constant viscosity, which was identified as the best performing spectral 

model in Chapter 4 and in Elipot and Gille (2009a). These models do not resolve the effect of density 

stratification beyond confining Ekman currents to a specified boundary layer depth. 

We also employed three models using the Price-Weller-Pinkel (PWP) mixing scheme (Price et 

al., 1986): the first PWP model assumes a heat budget driven only by surface forcing; the second 

incorporates cross-frontal Ekman transport in the heat budget; and the final PWP model 

incorporates movement of the heat gradients relative to the floats. These models explicitly resolve 

the vertical density structure and thereby directly link momentum mixing to stratification. However, 

these models require additional forcing data including incoming long wave and short wave radiation 

and the rate of evaporation/precipitation which adds additional potential sources of errors. 

Model 

Momentum 

Mixing 

Parameterization 

Coupling 
Boundary 

Layer 

Links to SST 

Gradients 

1 Constant Viscosity None Infinite None 

2 Constant Viscosity Stokes Infinite None 

3 Constant Viscosity Shear Infinite None 

4 Constant Viscosity None Finite None 

5 Constant Viscosity Stokes Finite None 

6 Constant Viscosity Shear Finite None 

7 PWP Mixing None Infinite None 

8 PWP Mixing None Infinite 

Meridional 

Ekman 

currents 

9 PWP Mixing None Infinite 

Meridional 

velocity of 

float drift 

Table 5.1: Summary of the key features of all nine models tested during this study. 
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a. Linear Ekman Models 

The derivation of the classical linear Ekman model was discussed in previous chapters. We took a 1D 

linear Ekman model (Price, 1999) and modified it to take into account time-varying input and 

variable bottom boundary conditions. The model was constructed on a finite vertical grid. During 

each time step the current velocity profile (ut, vt) is computed from the prescribed viscosity (k) and 

the velocity profile at the previous time step (ut-1, vt-1): 
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Where dt denotes the interval of one time step. 

Momentum from the wind stress was then added into the surface grid cell, where dz denotes the 

vertical spacing between grid cells: 

   
k

dz
uu x
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
  00 1  

(5.2a) 
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vv

y
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
  00 1  

(5.2b) 

In order to maintain numerical stability the duration of each time step was determined as: 

k

dz
dt

24.0


 
(5.3) 

This model could be configured with one of two bottom boundary conditions, either a free slip 

boundary to approximate the infinite depth case or a no slip boundary (velocity set to 0ms-1 at the 

bottom grid level).  
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b. Including Geostrophic Coupling 

The derivation of the ‘classical’ Ekman solutions assumes the oceans have a uniform and constant 

density, and hence, neglect vertical geostrophic shear from the momentum equation. However, the 

real ocean features regions of strong density gradients with resulting strong geostrophic flow. Cronin 

and Kessler (2009) investigated the potential effects of coupling between geostrophic currents and 

Ekman currents in the tropical North Pacific and determined that a “frontal Ekman” model 

incorporating coupling with vertically uniform geostrophic shear offered good qualitative agreement 

with their observations. Within the ACC there are a number of strong fronts with associated strong 

geostrophic flow; these fronts have been found to display non-equivalent barotropic behaviour 

(Phillips and Bindoff, 2014), which implies the potential for strong vertical geostrophic shear. In light 

of this we considered the applicability of Cronin and Kessler’s (2009) “frontal Ekman model” to our 

region of interest. 

The derivation of this model begins with consideration of the linear equations of motion 

with a buoyancy term: 

z
pif








 00

11
u

 
(5.4a) 

g
g

z

p










0

0

0

)(1
0





  
(5.4b) 

Assuming that stress and shear throughout the Ekman layer are related by an eddy viscosity leads to 

the standard surface boundary condition (Equation 2.2, Chapter 2). 

z
k





u
00   

(5.5) 

At depths where k=0 and dk/dz=0, Equation 5.4a reduces to the geostrophic balance: 
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From Equation 5.4b vertical variations in the horizontal pressure gradient can be related to 

horizontal buoyancy gradient; as a result geostrophic shear is parallel to density contours. 
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(5.6b) 

Assuming velocity can be decomposed into geostrophic (ug) and ageostrophic (ua) components, 

Equation 5.4b becomes: 
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Substituting from Equation 5.6a: 

2

2 )(
)(

z
kifif

ga

gga





uu
uuu

 
(5.7b) 

Subtracting ug from both sides of the equation yields: 
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Cronin and Kessler (2009) then assumed that the frontal buoyancy structure was vertically-uniform, 

and by implication (Equation 5.6b) geostrophic shear was constant and the derivative of geostrophic 

shear was thus zero.  This simplifies Equation 5.8a to: 
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(5.8b) 

Hence, the stress-shear balance is unmodified from the classical Ekman case. However, as 

geostrophic shear is non-zero it will modify the surface boundary condition: 
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(5.9) 

We obtain a classical Ekman model driven with a modified surface stress (eff); specifically the part of 

the wind stress which that is out of balance with the surface geostrophic stress. Since the 

modification is confined to the surface boundary condition rather than affecting the stress-shear 

balance we can apply this modification to both the classical infinite depth Ekman model and the 

finite-depth Ekman model. 

 It must be noted that this model is not equivalent to the cases with geostrophic shear 

considered in Chapter 3; on that occasion we did not incorporate any coupling between geostrophic 

shear and Ekman currents. 

 

c. Including Stokes Coupling 

A number of theoretical studies (Lewis and Belcher, 2004, Gnanadesikan and Weller, 1995, Heinloo 

and Toompuu, 2012, Perrie et al., 2003) have suggested that some form of coupling may exist 

between wind-driven currents and wave-driven Stokes drift. Stokes drift acts upon the upper ocean 

in two ways. Firstly, it deforms the mixed layer turbulence vorticity, in turn driving Langmuir 

circulation. Secondly, Stokes drift also acts to tilt and stretch the planetary vorticity into the 

horizontal producing a vortex force in the flow. Following Hasselmann (1970), the interaction 

between planetary vorticity and stokes drift results in a Coriolis-Stokes force on the momentum 

balance fxus, (where us denotes the Stokes drift velocity and x indicates the cross product) which in 

turn modifies the balance of mean flow within the upper ocean. 

We will limit ourselves to examination of a linear Ekman model incorporating Stokes 

coupling via a modified surface stress boundary condition as developed by Polton et al. (2005). 

Averaging over wave periods the Coriolis-Stokes forcing appears as an extra term in the horizontal 

momentum equation: 
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Polton et al. (2005) decomposed the solution (U) of the momentum equation (Eqn. (5.10)) into 

three terms comprised of the ‘pure’ Ekman contribution (Ue); the Ekman-Stokes component (Ues) 

and the ‘pure’ Stokes component (Us). Assuming a constant eddy viscosity these components were 

calculated as: 
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The Ekman decay scale, e, and Stokes decay scale, s, are defined as: 
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And the depth averaged Stokes (Us) and Ekman (Ue) are defined such that: 

ssss δUdzuT   
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 (5.13a) 
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 (5.13b) 

Resulting transports are then computed and the net wave-driven transport splits between the 

Ekman-Stokes and ‘pure’ Stokes components. The partitioning of wave transport between these two 

components is determined by the term: 
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When this term is large (i.e. e>s), as is typical in the open ocean, the Ekman-Stokes transport 

dominates, and the ‘pure’ Stokes transport and current can be neglected, i.e. U=Ue+ Ues.  From 

this result Polton et al. (2005) obtain an approximate solution: 
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The Coriolis–Stokes forcing adds an additional component to the ‘classical’ Ekman solution which 

accounts for the depth-integrated wave transport and has the same variation with depth as the 

‘classical’ Ekman solution. 

 Polton et al. (2005) conclude that the contribution of Stokes drift could be efficiently 

represented by the classic Ekman model with the surface boundary condition modified so the Ekman 

spiral is driven by an effective stress consisting of the wind stress plus a stress arising from the 

Stokes drift (w). Hence the momentum equation becomes: 
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Where w is computed as: 
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(5.17) 

Since this change is confined to the surface boundary condition rather than affecting the stress-

shear balance we can apply this modification to both the classical infinite-depth Ekman model and 

the finite-depth Ekman model. 

 Significant wave heights, periods and headings from the ERA-Interim reanalysis dataset were 

then interpolated onto all float and ship tracks. We then assumed only monochromatic deepwater 

waves were present before computing profiles of Stokes drift as in Chapter 3 section 3.5e. 
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c. Price, Weller and Pinkel 

The Price, Weller and Pinkel (PWP) model (Price et al., 1986) is a one dimensional numerical model 

of vertical mixing, initially developed to investigate the response of the upper ocean to the diurnal 

cycle of heating and cooling. The PWP algorithm is still used in modern ocean models such as 

HYCOM (Wallcraft et al., 2003). 

The PWP model assumes that vertical mixing and radiative processes are driven only by 

localized surface heat and momentum fluxes. Under these assumptions the heat, salinity and 

momentum budgets take the standard one-dimensional forms. Hence, the heat budget is defined as: 
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Where T denotes the temperature, c the heat capacity of water and F denotes the heat flux. 

In turn, the freshwater budget is defined as: 
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Where S denotes salinity and E denotes the fresh water flux. 

Finally, the momentum budget is: 
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For this study the model is implemented on a vertical grid of 1m with time steps of 600s. During 

each time step, surface heat and freshwater fluxes are applied first to the top most grid cell. Next, 

incoming short wave (subscript SW) and long wave (subscript LW) solar radiation are absorbed by 

the water column, with a vertical distribution of total incoming solar radiation defined by: 
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I(0) denotes the total solar radiation at the surface. ISW and ILW describe the partitioning of incoming 

solar radiation between short wave and long wave processes; here ISW is taken to be 0.6 and ILW to 
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be 0.4. The amplitude of the heat input from solar radiation below the surface is determined by SW 

and LW (0.6m and 20m). 

Density is then computed and adjusted by mixing from the surface down to achieve static 

stability, such that: 
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(5.22) 

Wind forcing is then absorbed in the mixed layer and the momentum balance (Equation 5.20) is 

stepped forwards in time. The Richardson number (Rb) across the boundary of the mixed layer (h) is 

computed as:  
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If Rb is less than 0.65 the mixed layer is unstable and the model proceeds to entrain and mix deeper 

levels into the mixed layer until Rb satisfies the stability criterion. Next, the model computes the 

gradient Richardson number (Rg) over all depths below the mixed layer: 
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(5.24) 

The profile Rg(z) is searched to find the minimum value, Rg(j). If Rg(j) is less than 0.25, shear flow 

instability is presumed to be present and grid levels j and j+1 are mixed until stability is achieved.  

Rg(z) is then recomputed, and this procedure repeated until the entire water column below the 

mixed layer is stable. 

Within the ACC, prevailing winds are typically westerly, resulting in Ekman transport which 

pushes cold water northwards. The ACC is also dominated by a complicated series of meandering 

fronts, often associated with strong latitudinal temperature gradients. Both the movement of the 

fronts relative to the floats and the heat transport arising from Ekman currents could significantly 
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modify the heat budget involved in the ‘basic’ PWP model described above. To simplify the problem 

we will limit ourselves to considering a meridional temperature gradient.  

The advective heat fluxes through the northern (q1) and southern (q2) boundaries on our 

region of interest are defined as: 
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Given a small y we assume the velocity profiles are horizontally uniform. Density and heat capacity 

are relatively insensitive to small changes in temperature; hence we treat both as constant on a 

particular depth level. 
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(5.26) 

We first develop the Ekman advection model. In this case the Ekman transport moves cold waters 

north, up the SST gradient. While this ultimately drives a southwards heat transport via deep return 

flow we focus on the near surface layer in which this transport will produce cooling. Firstly, we 

assume that the Ekman currents and horizontal temperature gradient are small below the mixed 

layer and hence can be neglected. By definition the density of an idealized mixed layer is vertically-

uniform, which implies that the temperature within the mixed layer should be close to constant 

with depth. Combined with the assumption of insignificant interior temperature gradient and 

Ekman velocity, Equation 5.26 simplifies to: 
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Where vek is the meridional ageostrophic velocity computed by the model. 

Integrating with respect to z this becomes: 
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Within the mixed layer T/y was obtained from satellite SST observations using datasets described 

in Section 5.3; below the mixed layer T/y was assumed to be 0οC/m, producing a step change in 

the temperature gradient. For a grid cell of height, Δz, at arbitrary depth level, zi, the advective heat 

flux qa was computed as: 

    zzv
y

T
Czq iek

ML
pia 



 

 
(5.27) 

During each time step the resulting Ekman advective flux profile, qa(z), was computed and applied to 

the water column after the input of solar radiation and before the mixing procedure. 

 Above we have assumed that the influence of fronts on the heat budget is confined to the 

mixed layer and advection arising from Ekman transport. However, in reality ACC fronts are deep 

reaching and evolve with time. We must also consider the movement of the floats relative to the 

fronts. The temporal evolution of the fronts is largely captured in the time evolving heat gradient; 

hence the velocity term will represent only the meridional drift of the float. Matters are potentially 

complicated by the fact that crossing a front implies moving between water masses with 

significantly different properties. However, given the relatively slow speed at which the EM-APEX 

floats drift off streamlines to the flow, it is reasonable to assume that the evolution of the heat 

budget driven by the temperature gradient should account for most of this effect. The derivation of 

the frontal PWP model follows similar arguments to the Ekman advection PWP model until Equation 
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5.26. However, we now assume that the temperature gradient is deep reaching. As a result we 

obtain an advection term in the heat budget: 
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(5.28) 

Where vdrift denotes the meridional velocity of the float’s drift. 

For this study we will assume the temperature gradient is constant over the upper 200m and zero 

below. As above this additional heat flux was applied to the model between the input of solar 

radiation and the mixing procedure. 

 

5.3. Performance Metrics 

Before proceeding with the analysis outlined below we first filtered the modelled currents as 

outlined in Chapter 3 to remove inertial currents and isolate the Ekman velocity profiles. This was 

done principally to allow direct comparison with Ekman velocity time-series obtained in Chapter 3. 

 

a. Time-Mean Metrics 

We consider the time-mean performance of models from two perspectives. Firstly, we calculate the 

mean current profiles and 95% confidence intervals from the model output. Each modelled mean 

current profile is then compared with the corresponding observed mean current profile over all 

data. Secondly, we interpolate the modelled mean current profiles onto the same depth levels as the 

corresponding observations before calculating the correlation between the profiles for both the u 

and v velocity components. 

 

b. Time-Varying Metrics 

We considered the lagged autocorrelation function and found that observed decorrelation time 

scale (e.g. Figure 5.5) was of the order of 12-24 hours. We concluded that temporal correlations 

were not suitable for use with the EM-APEX data as the relatively sparse sampling (4 profiles per 
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day) significantly increased the likelihood of aliasing noise. Instead we investigated model 

performance from a statistical view for both the EM-APEX and ADCP velocity data. 

To obtain a single cohesive measure of this we applied a two sample Kolmogorov-Smirnov 

(KS) test to the model and the observed data (Massey, 1951, Rohatgi and Ehsanes Saleh, 1976). The 

two sample KS test assumes a null hypothesis that the two samples (here the observations and the 

models) are drawn from the same (unspecified) underlying distribution. We then seek to accept or 

reject this null hypothesis at a significance level  (i.e. demonstrate that the distributions are not 

identical at a 1- level). This is done by computing the maximum difference (Dn1n2) between the 

cumulative distribution functions of the two samples. If this difference exceeds the critical value 

given in Equation 5.29, then we can reject the null hypothesis: 
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(5.29) 

Where n1, n2 denote the number of samples in each distribution while c() is a parameter for a given 

significance level. For the 95% confidence level we use in tis study the value of c() is 1.36. 

The two sample KS test provides a simple means of determining if the model and observed 

distributions are the same. However, in the event the distributions do not match, it provides no easy 

means to tell the difference between a mismatch due to, for example, a handful of outlying 

datapoints in the in situ observations, versus a systematic mismatch. In light of this we turn to 

quantile-quantile (QQ) plots (Wilk and Gnanadesikan, 1968). QQ plots were constructed by 

computing the cumulative distribution functions for each dataset, dividing the CDFs into regularly 

spaced quantiles (here taken at 0.5% intervals) and then identifying the velocities which correspond 

to each quantile. Observed and simulated velocity values for each quantile were then plotted against 

each other; a linear fit was then applied to the data between the first and third quartiles (25-75%) 

and was then extrapolated across the entire range of observed data. 
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5.4. Model Configuration 

a. ADCP Ekman Models 

Models were run for viscosities of 0.0025, 0.005, 0.01, 0.0425, 0.1, 0.2 and 0.447m2s-1. To simplify 

the model we assumed that latitude, and therefore the Coriolis parameter, could be treated as a 

constant. This is a reasonable assumption as our data covers a relatively narrow latitude range from 

41οS to 48οS. The infinite-depth Ekman models were approximated by using a boundary layer depth 

of 1000 m with a free slip bottom boundary condition to approximate the effect of an infinite BLD. 

Finite depth LEMs were configured with a BLD of either 105m or 336m (in line with the fits to the 

ADCP and EM-APEX data discussed in Chapter 4) and a no slip boundary condition. All linear Ekman 

models applied to the shipboard ADCP observations were run on vertical grids with dz of 0.5m. 

Stokes drift was computed (as in Chapter 3) from reanalysis wave period and significant wave 

heights interpolated onto the ship track before the resulting surface stresses for the modified LEMs 

were computed as described above. Geostrophic shear was computed from the shipboard ADCP 

observations using the method outlined in Chapter 3 assuming a reference depth of 200m. Time 

steps were computed from Equation 5.3. Output was saved to disk for later analysis every 1600 

seconds. 

To characterise the time varying performance of the model we compared the statistical 

distribution of modelled currents with the nominal 23.5m ADCP observations. However, the ADCP 

observations actually represent the currents observed in a ‘bin’ surrounding the nominal depth. The 

width of this depth bin varied with the mode in which the ADCP was running and whether RV James 

Cook’s keel was raised or lowered.  As a result the 23.5m ADCP observations include contribution 

from currents between 10m and 30m depth. Hence, it is not appropriate to compare the model time 

series at 23.5m depth to the observations and we must instead construct a representative time 

series. We considered two time series; one created by taking the mean velocity over the 10-30m 

interval at each time step and the other taking the maximum current by amplitude over the 10-30m 

depth. We found the time series constructed using the maximum current by amplitude produced a 
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probability density function closer to the PDF produced using the ADCP data; hence, we proceeded 

with this modelled time series for the subsequent analysis. 

Autocorrelation as a function of time lag for each model configuration at a particular 

viscosity was computed via a bootstrap method; the velocity time-series was split into a number of 

overlapping segments and the correlation by component as a function of time lag was calculated for 

each segment. Mean autocorrelation as a function of time-lag and the corresponding 95% 

confidence intervals were then computed from the bootstrap estimates. 

 

b. EM-APEX Ekman Models 

Ekman models for the floats were run with the same viscosities and BLD configurations as the 

models applied to the ADCP data. As float current time-series were two to three times longer than 

the duration of the shipboard time-series, applying the same time-steps used in the ADCP model 

runs was likely to result in excessive run times.  Hence, following Equation 5.3, we opted to use a 

lower resolution vertical grid with dz of 1m. 

 We considered model performance over all floats rather than on a float by float basis to 

maximize the number of datapoints available to ensure our analysis of time-varying performance 

was robust. Time series of simulated and observed velocities were generated in a similar manner to 

the shipboard case before the output from all floats was aggregated into a single dataset. We then 

applied the two sample KS test and computed the probability density functions and generated QQ 

plots. Autocorrelation as a function of time-lag was computed using a similar bootstrap method as 

applied to the ADCP model runs, only differing in that we took the mean and 95% confidence 

intervals over all floats. Similarly, the time-mean current profiles were generated by averaging over 

all floats. 

 

c. PWP Models 

The three variations on the Price-Weller-Pinkel model were only applied to the EM-APEX floats. 
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The PWP models were implemented on a 1m vertical grid with a maximum depth of 1000m and run 

with 600 s time steps. Wind-forcing, as above, was derived from the CERSAT blended ERA-

Scatterometer dataset (described in Chapter 3) and interpolated onto each float trajectory. To 

simplify the model we assumed that latitude, and by extension the coriolis parameter, could be 

treated as constant, as we did for the linear Ekman models. 

Six hour resolution solar short wave incoming radiation, the outgoing long-wave radiation 

and precipitation were sourced from the NCEP/NCAR reanalysis product and interpolated onto the 

time and locations of all EM-APEX profiles.  While NCEP/NCAR provides lower spatial resolution 

compared to the ECMWF ERA reanalysis products, all ERA products offer the relevant data at 12hr 

temporal resolution, limiting the alibility of the model to capture the diurnal cycle in stratification. As 

diurnal changes in stratification have been proposed (Price et al., 1987) as a major influence on the 

structure of the Ekman spiral, we judged the improvement in temporal resolution from using NCEP 

to outweigh the loss of spatial resolution. Meridional SST gradients were obtained from a 24hr-0.25° 

resolution blended SST dataset derived from Advanced Very High Resolution Radiometer (AVHRR) 

and Advanced Microwave Scanning Radiometer (AMSR) satellite systems (Reynolds et al., 2007). 

 

5.5. Shipboard ADCP Results 

a. Infinite Depth LEMs 

The infinite depth linear Ekman models were compared against observed Ekman currents extracted 

from the ADCP observations by removing the geostrophic shear (as described in Chapter 3) with a 

deep reference velocity, here taken as the mean between 183.5 and 215.5m. The time varying 

performance of all infinite BLD Ekman models as measured by the KS test statistic is shown in the 

upper panel of Figure 5.1. No models produced a KS statistic less than the critical value of 0.049; this 

indicates that none of the modelled CDFs matched the observed CDF. By a strict definition this 

would suggest that at the 95% confidence level none of the infinite depth LEMs were able to provide 
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a proper representation of the Ekman currents; however the observational data set likely contains 

noise athat is not present in the model data.  

The classical Ekman model was found to display a minimum zonal KS statistic of 0.075 for an 

eddy viscosity of 0.005m2s-1; the zonal KS statistic was found to increase (i.e. model time-varying 

performance decreased) with increasing viscosity. The corresponding meridional KS statistic was 

found to display a minimum value of 0.134 at a viscosity of 0.01m2s-1 and model performance then 

degraded with increasing viscosity. This tendency for model performance to degrade beyond a 

particular range of viscosities (here 0.005-0.010m2s-1) is logical. If we consider a single depth level a 

higher viscosity equate to deeper decay scale. Assuming a constant wind stress, this implies that the 

magnitude of the Ekman velocity is reduced. This is seen clearly in the PDF plots shown in Figure 5.2.  

 
Figure 5.1: KS test statistics for velocity distributions at 23.55m depth (top) between all infinite-depth 

Ekman models and shipboard observations. Correlations between observed and modelled mean 

velocity profiles (bottom) for all infinite depth Ekman models. Crit. indicates the critical value for a 

two sample KS test. 

The shear-coupled Ekman model was found to have performance closely comparable to the 

classical Ekman model for all viscosities less than 0.2m2s-1. At greater viscosities the shear-coupled 

model displayed superior performance to the CLEM; however, at these viscosities all models display 
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very high KS statistics, indicating model skill is low. The Stokes drift coupled Ekman model best 

matched the observations of zonal velocity at 0.01m2s-1 with a KS statistic of 0.095; meridional 

performance was characterised by a minimum KS statistic of 0.201 at a viscosity of 0.043m2s-1. The 

stokes-coupled model was found to outperform the CLEM in the zonal component at viscosities of 

0.043m2s-1and above, but proved inferior to the CLEM in the meridional component over the entire 

viscosity range. This evidence suggests that of the three models considered here, the classical Ekman 

and geostrophic shear coupled models are the most appropriate for capturing the time varying 

behaviour seen in the shipboard observations. 

Examination of probability distribution functions obtained from the observations and the 

models indicated qualitative agreement between observations and the classical Ekman model in the 

zonal component at viscosities between 0.0025 and 0.0100m2s-1 (Figure 5.2) despite the modelled 

PDFs tending to produce a heavier than expected rear (westward) tail. Examination of corresponding 

PDFs for the meridional component showed agreement in the shape of the PDFs but modelled PDFs 

were found to display a positive (northward) bias relative to the observations. PDFs displayed 

heavier tails than seen in the observations. 

QQ plots (Figure 5.3) show good agreement at viscosities between 0.005 and 0.0100m2s-1, 

with performance decreasing significantly at 0.0425m2s-1. The QQ plots also suggest that the failure 

to meet the KS criteria is associated with the tails of the modelled distributions. Concentrating on 

the linear fit extrapolated from the 1st to 3rd quartiles we see close agreement between the 

observations and the model output at 0.0100m2s-1. The shear-coupled model (not shown) was found 

to display almost identical behaviour to the classical Ekman model at all viscosities. 
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The Stokes coupled model (Figure 5.2) displayed significant disagreement with the observed 

zonal PDF at viscosities of 0.0025 and 0.0050m2s-1 but fair agreement at 0.0100m2s-1; as above the 

mismatch was principally characterised by the model displaying a heavy rear (westward) tail. The 

meridional modelled PDFs displayed a similar northward bias as described above.  QQ plots (Figure 

5.3) displayed behaviour consistent with the PDFs. Examination of the linear fit extrapolated from 

the 1st to 3rd quartiles indicated that the Stokes-coupled model generally provided a close match to 

the corresponding fit to the uncoupled Ekman model. This in turn suggests that the performance of 

the Stokes model may be more satisfactory than the KS test results indicate.  

The heavy tails observed in the PDF and QQ plots of modelled data were found to be 

associated with high wind speeds. This suggests that the numerical models, and by extension 

classical Ekman theory, tend to overestimate the oceanic response for strong winds. We speculate 

that it is likely an effect of wind waves. There are two plausible means by which the wind waves 

could suppress the Ekman response to strong winds: 

1. The formation and breaking of wind waves implies that wind energy (and, hence, 

momentum) is inputted into the wave field and dissipated instead of transferred via the 

wind stress into Ekman currents.  

2. Studies (Donelan et al., 1993, Fairall et al., 1996, Johnson et al., 1998) indicate that wind 

waves can affect sea surface roughness and, hence, the surface wind stress. Wind 

stresses computed in our study use the drag coefficient function from Yelland and Taylor 

(1996), which does not explicitly include any wave effects. Hence, it is possible that we 

have overestimated the wind stresses arising from high winds. 

Unfortunately, we were unable to pursue this line of inquiry any further. We were limited to using 

wave parameters obtained from the ERA Interim reanalysis. The spatial (1.5°) and temporal scales (6 

hour) of this dataset limit its utility on the fine spatial scales and short time periods needed to 

examine the effects of wind waves. 



162 
 

Fig
u

re 5
.3

: Q
Q

 p
lo

ts o
f zo

n
a

l (to
p

) a
n

d
 m

erid
io

n
a

l (b
otto

m
) velo

cities. Sym
b

o
ls ind

ica
te q

u
a

n
tiles a

t 0
.5%

 in
terva

ls; d
a

sh
ed

 lin
es a

re extra
p

o
la

ted
 from

 a
 

lin
ea

r fit to
 th

e 1
st to

 3
rd q

ua
rtiles o

f th
e d

a
ta

. 

 

 

-0
.5

-0
.2

5
0

0
.2

5
0

.5
-1

-0
.7

5

-0
.5

-0
.2

5 0

0
.2

5

0
.5

0
.7

5 1

O
b

s
e

rve
d

 Q
u
a

n
tile

s

Modelled Quantiles

k
=

0
.0

0
2

5
m

2s
-1

 

 

-0
.5

-0
.2

5
0

0
.2

5
0

.5
-1

-0
.7

5

-0
.5

-0
.2

5 0

0
.2

5

0
.5

0
.7

5 1

O
b

s
e

rve
d

 Q
u
a

n
tile

s

k
=

0
.0

0
5

m
2s

-1

-0
.5

-0
.2

5
0

0
.2

5
0

.5
-1

-0
.7

5

-0
.5

-0
.2

5 0

0
.2

5

0
.5

0
.7

5 1

O
b

s
e

rve
d

 Q
u
a

n
tile

s

k
=

0
.0

1
m

2s
-1

-0
.5

-0
.2

5
0

0
.2

5
0

.5
-1

-0
.7

5

-0
.5

-0
.2

5 0

0
.2

5

0
.5

0
.7

5 1

O
b

s
e

rve
d

 Q
u
a

n
tile

s

k
=

0
.0

4
2

5
m

2s
-1

-0
.5-0

.2
5

0
0

.2
5

0
.5

0
.7

5
1

-0
.5

-0
.2

5 0

0
.2

5

0
.5

0
.7

5 1

O
b

s
e

rve
d

 Q
u
a

n
tile

s

Modelled Quantiles

-0
.5-0

.2
5

0
0

.2
5

0
.5

0
.7

5
1

-0
.5

-0
.2

5 0

0
.2

5

0
.5

0
.7

5 1

O
b

s
e

rve
d

 Q
u
a

n
tile

s

-0
.5-0

.2
5

0
0

.2
5

0
.5

0
.7

5
1

-0
.5

-0
.2

5 0

0
.2

5

0
.5

0
.7

5 1

O
b

s
e

rve
d

 Q
u
a

n
tile

s

-0
.5-0

.2
5

0
0

.2
5

0
.5

0
.7

5
1

-0
.5

-0
.2

5 0

0
.2

5

0
.5

0
.7

5 1

O
b

s
e

rve
d

 Q
u
a

n
tile

s

Id
e

a
l C

a
s
e

 (1
:1

)

U
n
c
o

u
p

le
d

 L
E

M

S
to

k
e

s
 d

rift c
o

u
p

le
d

 L
E

M



163 
 

 
Time-mean performance (Figure 5.1, lower panel) as measured by the correlation between 

modelled and observed time-mean current profiles  suggested maximum performance occurred at 

higher viscosities than in the time-varying case: the wind driven and shear coupled models displayed 

maximum performance at 0.043m2s-1for both components, the stokes-coupled model displayed 

maximum performance in the v component at the same value while the u component achieved 

maximum correlation at 0.1m2s-1. The wind-forced and shear-coupled models achieved a higher peak 

zonal correlation (R=0.890 and R=0.887than the stokes-coupled model (R=0.794). Beyond the 

viscosities corresponding to peak u-correlation all three models displayed significant declines in 

performance as measured by correlations. All models displayed a peak meridional correlation of 

R=0.992 at a viscosity of 0.043m2s-1; at higher viscosities correlations trended downwards but 

remained elevated (R=0.804-0.976) relative to correlations at viscosities less than 0.043m2s-1. 

Plots of time-mean velocity profiles for viscosities between 2.5x10-3 and 1.0x10-1 m2s-1 are 

shown in Figure 5.4. Despite the strong correlations seen between the models and observations at 

certain viscosities no models were able to match the observed profiles at the 95% confidence 

interval over all of the 0-100m depth range. The shear-coupled model (not shown) was found to 

display almost identical behaviour to the wind-driven model at all viscosities. 
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Figure 5.4: Time mean classical Ekman model (top) and stokes-coupled model (bottom) current 

profiles for a range of viscosities. Solid lines indicate the mean profile and dashed lines the 95% 

confidence intervals. The shear-coupled model did not produce current profiles significantly different 

from the classical Ekman model. 
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Figure 5.5: Observed (grey curve) and modelled current autocorrelation as a function of time-lag for 

the u (left) and v (right) components at 23.5m over a range of viscosities for three different LEMs 

(top, ‘classical’; middle, shear coupled, and bottom, Stokes coupled). Solid curves denote the mean 

values and dashed lines indicate 95% confidence interval.  
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Plots of autocorrelation as a function of time-lag (Figure 5.5) were found to display little sensitivity 

to the choice of viscosity or model. The observed autocorrelation was found to display more rapid 

attenuation than the numerical models in the 0-3 hour range followed by a peak at around the 6 

hour mark. This behaviour suggests the observed ageostrophic currents include processes not 

resolved by the linear Ekman models. Alternatively, it could arise from how the models and 

observations treat inertial oscillations. The linear models only include inertial currents generated by 

the local wind forcing while the in situ observations also include contributions from inertial currents 

generated at a distance from the floats or ship that have subsequently been advected by the mean 

flow. Either way, the difference in behaviour demonstrated in the autocorrelation plots could 

account for the failure to achieve agreement between the observed and modelled CDFs as measured 

by the KS test statistic. 

 

b. Finite Depth LEMs 

The finite depth linear Ekman models were compared against observed Ekman currents isolated 

from the ADCP observations by removing the geostrophic shear (identified as described in Chapter 

3) with a deep reference velocity here taken at the depth of the model boundary layer (105m or 

336m).  

Model performance for all finite BLD Ekman model runs with a BLD of 105m is shown in 

Figure 5.6. All 105m BLD models display general agreement with the corresponding infinite depth 

models in terms of the optimal viscosities. All models displayed peak time-varying performance 

between viscosities of 0.005 and 0.01m2s-1. Peak time-mean performance for the wind-only and 

Stokes-coupled models occurred at a viscosity of 0.0425m2s-1; the shear coupled model achieved 

maximum performance in the u-component at the same viscosity as the other models, but peak v-

component performance occurred at a viscosity of 0.1m2s-1). 

Time-varying performance for the zonal current in the 105m BLD wind forced and shear-

coupled models was found to be comparable to the equivalent infinite BLD models over most of the 
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viscosity range. Meridional performance for the same models was found to be equivalent to the 

infinite BLD models for viscosities less than 0.43m2s-1 and slightly superior for larger viscosities. The 

Stokes-coupled 105m BLD model offered equivalent or slightly superior zonal performance to the 

infinite BLD Stokes-coupled model for all viscosities less than 0.2m2s-1, but as above, the meridional 

performance was equivalent to the infinite BLD model. Time mean performance of all 105m BLD 

models was found to be closely comparable to the equivalent infinite BLD models. 

 
Figure 5.6: KS test statistics for velocity distributions at 24m depth (top) between all finite depth 

Ekman models with a BLD of 105m and shipboard observations. Correlations between observed and 

modelled mean velocity profiles (bottom) for all finite depth Ekman models with BLD of 105m. Solid 

lines indicate u-components and dashed lines v-components. 

The 336m finite BLD wind driven and shear coupled models were found to offer generally equivalent 

zonal time varying performance (Figures 5.7) compared to the infinite BLD wind-forced model, over 

the majority of the viscosity range. Meridional time-varying performance for all finite depth models 

was inferior to the infinite BLD models. The zonal time mean performance of all finite depth models 

was superior to the corresponding infinite BLD models at low viscosities but inferior at high 

viscosities; while meridional performance was found to closely match the infinite BLD models. In 
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both cases the viscosities corresponding to maximum performance were the same as the 105m and 

infinite BLD cases. 

 
Figure 5.7: KS test statistics for velocity distributions at 24m depth (top) between all finite depth 

Ekman models with a BLD of 336m and shipboard observations. Correlations between observed and 

modelled mean velocity profiles (bottom) for all finite depth Ekman models with BLD of 336m. Solid 

lines indicate u-components and dashed lines v-components. 

Examination of modelled PDFs (Appendix 2, Figure A2.1 and A2.3), QQ plots (Appendix 2, 

Figure A2.2 and A2.4) and mean current profiles indicated that the choice of model BLD and bottom 

boundary condition had surprisingly little impact on the time-mean and time-varying characteristics 

of the models. Instead, we found that the primary factor driving differences in model performance 

as a function of BLD and boundary condition was the change in the observed Ekman current 

resulting from varying the deep reference velocity.  
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satisfy the KS test at any viscosity, with the best performing (wind-forced) models displaying a zonal 

KS score of around twice the critical value (0.049). However, examination of QQ plots indicated that 

the disagreement between the models and observations are primarily limited to the tails of the 

probability distribution; we speculated that the heavy tails in the modelled data likely arose from 

neglecting the effects of wind-waves. Minimum KS scores suggested the optimal viscosity for the 

wind-forced and geostrophic shear-coupled models was between 0.005 and 0.01m2s-1; while optimal 

viscosities for the Stokes-drift coupled models were larger, between 0.01 and 0.0425m2s-1. 

The shear-coupled models were found to display equivalent performance to the wind-driven 

models over the majority of the viscosity domain. Further examination indicated that the QQ plots 

and probability density functions derived from the shear-coupled models were virtually degenerate 

to the corresponding wind-driven models. This strongly suggests that within the Southern Ocean 

context coupling between Ekman currents and geostrophic shear is not significant. 

Stokes-drift coupled models were found to be generally inferior to the wind-driven models 

in a time varying-sense when measured by the KS test. However, examination of QQ plots and PDFs 

suggests that this is principally due to the Stokes-coupled models displaying heavier tails than either 

the wind-driven model or observations. Concentrating on the 1st to 3rd quartiles of the data, the 

Stokes-coupled models appeared to display time-varying performance (as measured by the slope of 

the QQ plot linear fit) in line with the wind-driven model. Additionally, our assumptions in 

computing the Stokes stress may have contributed to the poor performance. We used a wave 

amplitude of half the significant wave height; this would tend to lead to a higher Stokes stress than if 

we instead used a wave amplitude derived from the mean or RMS wave heights. We also assumed 

wave activity at any instant was monochromatic (i.e. that waves of only a single frequency were 

present); in situ wave activity is likely to consist of a superposition of waves of multiple frequencies. 

Finally, we obtained wave forcing data from the ERA-Interim reanalysis fields; it is possible that the 

spatial and temporal resolution of this dataset does not provide a full representation of the in situ 

wave activity.   
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The benefit of using models with finite boundary layer depths was found to be small. 

Examining mean velocity profiles suggested the small changes in performance were principally due 

to the change of deep reference level used to isolate the observed Ekman currents rather than 

changes to the model dynamics. 

In light of the above evidence, it appears that the most effective and parsimonious model of 

those tested is one with a time and depth constant viscosity and infinite boundary layer depth; in 

effect the ‘classical’ linear Ekman model. However, it must be noted that we still obtain significant 

disagreement between the viscosities for the best time-mean and time-varying performance. 

 

5.6. EM-APEX Results 

a. Infinite Depth LEMs 

Time-mean and time-varying performance of all infinite BLD Ekman models applied to the float data 

is shown in Figure 5.8. Time-varying performance for all models, measured by the KS statistic, was 

found to be inferior to the model runs for the shipboard data. The wind-forced and shear-coupled 

models were, again, found to be effectively equivalent to each other. As with the shipboard model 

runs the Stokes drift coupled model had the highest KS scores and, hence, was the worst performing 

model across the entire viscosity range; the meridional velocity component had similar KS scores to 

the uncoupled model but the zonal component KS statistics were significantly inferior. The resulting 

optimal viscosities did not agree with those obtained in the shipboard model runs (Section 5.5). The 

wind-forced and shear-coupled models displayed peak zonal performance between 0.01 and 

0.043m2s-1 (against 0.005m2s-1 for the same models in Section 5.5a) while meridional performance 

was found to be approximately constant across the entire viscosity range. The Stokes-coupled model 

gave optimal zonal performance at 0.043m2s-1and peak meridional performance at 0.0025m2s-1. 
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Figure 5.8: KS test statistics for velocity distributions at 24m depth (top) between all infinite depth 

Ekman models and EM-APEX observations. Correlations between observed and modelled mean 

velocity profiles (bottom) for all infinite depth Ekman models. Solid lines indicate u-components and 

dashed lines v-components. 

Examination of PDF and QQ plots (Appendix 2, Figure A2.5 and A2.6) reflect the poor time-varying 

performance identified by the KS test.  In both cases the behaviour of the PDFs and QQ plots 

indicated that the models consistently underestimate the current at 24m depth. 

 Time-mean performance is shown in the lower panel of Figure 5.8. Again the uncoupled and 

Shear-coupled Ekman models produced equivalent performance in both components; zonal 

correlations were found to be higher than the shipboard model runs over all viscosities while 

meridional correlations were superior for viscosities less than 0.01m2s-1and comparable to the 

shipboard models thereafter. Peak performance was found at the same viscosities as in the 

corresponding shipboard model runs (0.0425m2s-1). The meridional stokes-coupled performance 

displayed superior performance (relative to the corresponding shipboard model) for viscosities less 

than 0.01m2s-1, thereafter model performance was approximately equivalent. Zonal performance 

was found to be inferior to the shipboard stokes-coupled model for viscosities less than 0.1m2s-1. The 

Stokes-coupled model was found to achieve peak correlation at 0.1-0.2m2s-1. 
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b. Finite Depth LEMs 

Model performance for the finite depth models using a BLD of 105m is shown in Figure 5.9. Time-

mean performance (Figure 5.9, bottom) did not differ significantly from the infinite BLD LEM. Zonal 

time-varying performance (Figure 5.9, top) improved compared to the infinite BLD model, but at the 

cost of a comparable decline in meridional performance. As above, the float models displayed 

inferior performance to the ADCP models (section 5.6). QQ plots and CDF plots (Appendix 2, Figures 

9.7 and 9.8) indicate that, similar to the infinite depth case, the 105m BLD models tended to 

underestimate the oceanic response. 

 
Figure 5.9: KS test statistics for velocity distributions at 24m depth (top) between all 105m BLD 

Ekman models and EM-APEX observations. Correlations between observed and modelled mean 

velocity profiles (bottom) for all 105m BLD Ekman models. Solid lines indicate u-components and 

dashed lines v-components. 

The models run with a BLD of 336m (Figure 5.10) were found to offer equivalent time-mean and 

marginally inferior time-varying performance when compared to the infinite BLD model runs. As 

above time-varying performance was inferior to the shipboard case, with the models 

underestimating the velocity response. 
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Figure 5.10: KS test statistics for velocity distributions at 24m depth (top) between all 336m BLD 

Ekman models and EM-APEX observations. Correlations between observed and modelled mean 

velocity profiles (bottom) for all 336m BLD Ekman models. Solid lines indicate u-components and 

dashed lines v-components. 

 

c. Price, Weller and Pinkel 

We considered three stratified models using the PWP mixing scheme. The ‘simple’ no heat gradient 

case (equivalent to the standard PWP model) was found to produce zonal and meridional KS 

coefficients of 0.3976 and 0.3327. The case assuming a meridional temperature gradient and 

advection from Ekman and inertial currents produced KS coefficients of 0.3732 and 0.3226. The 

version including advection of the floats up and down the temperature gradient was found to 

produce KS coefficients of 0.4478 and 0.3406. All stratified models producing KS statistics an order of 

magnitude larger than the critical value (0.0349). In short, all variants on the PWP mixing schemes 

display low time-varying model skill. 

The low time-varying skill of the PWP models may be a result of errors in the reanalysis air-

sea flux; there are significant uncertainties between commonly used reanalysis products (Chaudhuri 
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et al., 2012). Additionally our data was collected in proximity to the Subantarctic and Polar Fronts. 

Cerovečki et al. (2011) detected particularly large discrepancies between different reanalysis 

datasets in proximity to strong fronts, including within the ACC. Alternatively, the low time-varying 

skill of PWP models may result from other issues such as our source of wind data and the vertical 

resolution of the model; these possibilities are discussed in Section 5.7. 

 
Figure 5.11: PDF plots of u (left) and v (right) components of Ekman currents for float observations 

and all three PWP models. 

PDF plots for the PWP stratified models are shown in Figure 5.11 and QQ plots in Figure 

5.12. In line with the KS test results all PDF and QQ plots demonstrated low agreement between the 

stratified models and the observations. Zonal correlations between the observations and modelled 

time-mean velocity profiles were found to vary between 0.945 (float advection) and 0.991 (Ekman 

advection), indicating the PWP models could account for between 89 and 98% of the variance 

observed in the zonal mean velocity profiles. Meridional correlations were found to lie between 

0.904 and 0.961 (accounting for 81-92% of the variability seen in the mean profile). These values 

indicate that in a time-mean sense stratified models employing the PWP mixing scheme perform as 

well or better than the linear Ekman models.  
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Figure 5.12: QQ plots for all PWP models. Symbols indicate quantiles at 0.5% intervals; dashed lines 

are extrapolated from a linear fit to the 1st to 3rd quartiles of the data. 

 

d. Summary 

All models forced with NCEP/NCAR reanalysis winds interpolated onto the float tracks were found to 

offer inferior time-varying performance to the same models driven with in-situ shipboard winds. The 

models were found to display comparable characteristics in terms of KS scores and the slope of the 

QQ plots, suggesting the cause of the failure is universal to all models. These failures suggest it is 

difficult to properly assess the performance of the models against the EM-APEX float observations 

and, in particular, we are unable to properly test the stratified models with the PWP mixing scheme. 

Potential causes of the low model skill are explored in the next section.  

 Despite all models of the float data displaying low time-varying performance, time-mean 

performance was comparable to the shipboard model runs, with the models capturing in excess of 

80% of the variance observed in the time mean velocity profiles at viscosities between 0.0425 and 

0.1m2s-1. 
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5.7 Explaining The Differences In Model Performance 

In section 5.5, above, we found that several models agree well with shipboard ADCP observations of 

Ekman currents. Unexpectedly, applying the same models to the float data (section 5.6) resulted in 

model output showing significant disagreement with the observations. The KS test statistics were 

found to be much greater over the entire viscosity range than for the ADCP observations, and 

likewise QQ plots indicated that the models badly underestimated the range of Ekman currents in 

the float data. The shipboard and float model runs differ in two significant ways: 

1. When we applied the models to the shipboard data we used a vertical resolution of 0.5m. Due 

to additional runtime required to run 8 floats for each viscosity and each version of the model, 

float model runs used a vertical resolution of 1m. It is possible that the model may display some 

sensitivity to the vertical resolution. 

2. The model runs for the shipboard data used high resolution (30s) in situ wind forcing. The float 

model runs were instead forced with reanalysis winds with 6 hour temporal resolution. 

Examination of histograms of the in situ wind stresses and NCEP wind stresses interpolated 

onto both the float tracks and the ship track (Figure 5.13) indicated that the reanalysis winds 

failed to capture the full range of variability seen in the observed wind stresses. The reanalysis 

winds interpolated onto the ship track were found to agree well with the distribution of in situ 

stresses up to 1.3Pa but failed to capture any higher amplitude stresses. This would suggest that 

either the spectral energy content or the resolution of the forcing dataset could account for the 

difference in model performance. 

To investigate the role of vertical resolution and temporal resolution we repeated runs of the 

shipboard model using coarser vertical resolutions and varying degrees of temporal smoothing. To 

investigate the sensitivity to the wind forcing dataset, we reran the ‘classical’ Ekman model for the 

shipboard observations using NCEP and ERA reanalysis data in addition to the shipboard 

observations and the CERSAT blended winds. 
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Figure 5.13: Histograms of wind stress amplitude for insitu shipboard winds (grey); NCEP/NCAR 

reanalysis winds interpolated onto the ship track (red) and NCEP/NCAR winds interpolated onto the 

float tracks (black).  

 

a. Vertical Resolution 

Model performance as a function of vertical resolution is shown in Figure 5.14. The model displayed 

little sensitivity to vertical resolution for vertical resolutions of less than 1m, and only displayed 

slight reductions in performance thereafter. Vertical resolution of the models applied above was 

either 0.5m (shipboard data) or 1m (float data); hence, model sensitivity to the vertical resolution is 

unlikely to explain the poor performance of the models when compared with the EM-APEX float 

observations. 
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Figure 5.14: KS test statistics for velocity distributions at 24m depth (top) between the infinite BLD 

Ekman model run with varying vertical resolution and ADCP observations. Correlations between 

observed and modelled mean velocity profiles (bottom) for the infinite BLD Ekman models. Solid lines 

indicate u-components and dashed lines v-components of velocity. 

 

b. Temporal Resolution 

We examined the effect of temporal smoothing by taking the observed high resolution (30s) in situ 

winds and smoothing them (using a windowed average) onto temporal grids of 5 minute; 10 minute; 

30 minute; 1 hour; 2 hour; 4 hour and 6 hour intervals. We also interpolated the NCEP reanalysis 

winds onto the ship track. We then re-ran the infinite depth ‘classical’ Ekman model with the new 

forcing fields over a viscosity range of 0.005-0.1m2s-1. The analysis described above was then 

repeated.  Model performance is summarised in Figure 5.15. Time-mean performance (lower panel) 

displayed no significant sensitivity to the choice of forcing data.  
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Figure 5.15: Time variable (top, measured by KS test statistic) and time-mean (bottom) model 

performance for wind forcing data with temporal resolutions between 5 minutes and 12 hours. Solid 

lines indicate u-components and dashed lines v-components. 

Time-varying performance (upper panel), on the other hand, was found to display sensitivity 

to the temporal resolution. Smoothing the wind input with windows of between 5 minutes and 2 

hours was found to increase zonal performance at low viscosities to the point of meeting the KS test 

criterion at 0.043m2s-1.  Performance at higher viscosities remained comparable to the unsmoothed 

case. Temporal smoothing with windows greater than 2 hours was found to result in slightly weaker 

zonal performance than the unsmoothed case. Meridional performance was found to weaken with 

increased smoothing across the entire viscosity range. Even with heavy (6-12hr) smoothing it proved 

impossible to degrade performance to the level seen when comparing the float modelled output and 

observations. 

 

c. Wind Forcing Dataset 

To examine the effect of applying different wind forcing datasets we ran the constant viscosity, 
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reanalysis winds; ERA-Interim reanalysis winds; the CERSAT blended scatterometer-reanalysis winds 

(described in Chapter 3) and the NOAA/NCDC blended satellite winds (Zhang et al., 2006). Details of 

these datasets are given in Table 5.2 and resulting model performance is summarised in Figure 5.16. 

Dataset 
Temporal 

Resolution 

Spatial 

Resolution 
Data Source 

CERSAT 6 hour 0.25° 

QuickSCAT 

scatterometer, 

SSM/I 

radiometers, 

ERA reanalysis 

NCEP/NCAR 

Reanalysis 
6 hour 2.5° 

Numerical 

Model 

ERA Interim 

Reanalysis 
6 hour 1.5° 

Numerical 

Model 

NOAA/NCDC 6 hour 0.25° 

Satellite 

Scatterometer 

& Radiometer 

wind speeds; 

wind direction 

from NCEP 

reanalysis 

Table 5.2: Properties of the four wind datasets tested in section 5.7c. 

All wind products offered broadly comparable time-mean performance. However, in a time-varying 

sense CERSAT, ERA and NOAA/NCDC resulted in significantly poorer performance than the models 

forced with in situ winds in both components. The NCEP reanalysis winds were found to offer 

meridional performance largely comparable with the in situ winds, but zonal performance was, with 

the exception of the lowest viscosities (0.0025-0.005m2s-1), significantly inferior. This suggests that 

the use of NCEP reanalysis winds contributes to at least part of the reduced performance of the float 

models runs. 
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Figure 5.16: Time variable (top) and time mean (bottom) model performance of the constant 

viscosity infinite BLD linear Ekman model forced with time-series of various gridded wind products 

interpolated onto the shiptrack. Solid lines indicate u-components and dashed lines v-components. 

 

d. Summary 

The evidence outlined above demonstrates that the failure of the float models cannot be attributed 

to the reduced vertical resolution of the float models compared with the shipboard models. Use of 

lower resolution ship winds and NCAR/NCEP reanalysis winds was found to result in some loss of 

model time-varying skill, but neither displayed the decrease in performance seen in the float models. 

This suggests that the poor performance of the float model runs cannot be solely attributed to either 

the coarse temporal resolution or the use of the reanalysis winds. 

 The other gridded wind products tested were found to display inferior performance to the 

model runs using NCEP, confirming NCEP reanalysis winds are the best available option for forcing 

the float models. 
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We have run a family of nine linear Ekman models over a viscosity range of 0.0025 to 0.447m2s-1. We 

have also examined three stratified Ekman models which use the PWP mixing scheme. All nine 

models were forced with timeseries of insitu ship winds and reanalysis winds interpolated onto all 

float tracks. 

For each model run time mean performance was characterized by calculating the correlation 

between the modelled and observed mean current profiles. Model time varying skill was assessed by 

examining the probability distributions of the modelled and observed data at 24m depth; we used a 

two sample Kolmogorov-Smirnov test as a quantitative measure of model skill and quantile-quantile 

plots as a more qualitative measure. 

 

a. ADCP Data 

We found peak correlations between the time-mean modelled and observed Ekman current profiles 

between R=0.794 for the Stokes-coupled model and R=0.890 for the ‘classical’ Ekman model, 

indicating that the numerical models account for between 63% and 80% of the variability seen in the 

mean current profile. None of the linear Ekman models managed to meet the KS criteria for a 95% 

confidence level. Superficially this would imply that in a time-varying sense all numerical models 

failed. However, examination of quantile-quantile and PDF plots indicated that the models displayed 

qualitative agreement with the observations over a viscosity range of 0.005 and 0.043m2s-1. Further 

examination demonstrated that the numerical models displayed PDFs with heavy tails indicating that 

the models produced more high amplitude flow than the observations, likely accounting for the 

failure to match the KS critical value. These heavy tails were associated with high wind stresses; 

hence we speculate the failure to match the KS critical value results from either overestimating drag 

coefficients for high wind speeds, or from incorrectly partitioning the wind momentum input 

between Ekman currents and the wave field. 
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Model 

Viscosity of Min. 
KS Statistic (m2s-1) 

Viscosity of Max. 
Correlation (m2s-1) 

u v u v 

1 
Inf. BLD, no 

coupling 
0.005 0.010 0.043 0.043 

2 
Inf. BLD, 
Stokes 

coupling 
0.010 0.043 0.100 0.043 

3 
Inf. BLD, 

Shear 
coupling 

0.005 0.01 0.043 0.043 

Table 5.3: Viscosities corresponding to the minimum KS statistics (best time-varying performance) 

and the maximum correlations between current profiles (best time-mean performance) for all infinite 

depth models run with the insitu shipboard winds. 

We next examined how model time-mean and time varying skill varied as a function of 

viscosity. We identified viscosities corresponding to the maximum time-mean (highest correlation 

between observed and modelled mean current profiles) and time-varying skill (lowest KS statistic) 

for both the u and v components (Table 5.3). The ‘classical’ Ekman model and the Shear coupled 

model were almost indistinguishable. Both displayed peak time-varying skill in the u component at 

0.005m2s-1 and at 0.01m2s-1 for the v component; in both cases the time-mean skill was maximized at 

a viscosity of 0.043m2s-1 for both zonal and meridional components. The Stokes coupled model 

showed maximum time-varying and time-mean skill at larger viscosities. 

The ‘classical’ Ekman and Shear coupled models were found to display higher time-mean 

and time-varying skill at the optimal viscosities identified in Table 5.3 than the shear coupled model. 

This could suggest that the Stokes drift coupled model is inferior to the ‘classical’ Ekman model and 

that the shear coupled model offers no significant advantage over the ‘classical’ Ekman model. 

However, we must be cautious about this result: we have only investigated coupling in a simple 

manner by employing modified surface boundary conditions (Cronin and Kessler, 2009, Polton et al., 

2005) and we have assumed monochromatic wave forcing for the Stokes coupled model. Using 

alternate coupling schemes or resolving the full wave spectrum may result in the coupled models 

displaying better performance. 
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Finite depth Ekman models were found to display performance closely comparable to the 

infinite depth models discussed above. 

 

b. EM-APEX Float data 

All linear models forced with reanalysis winds interpolated onto the float tracks were found to 

display inferior time-varying skill compared to the ‘classical’ Ekman model forced with shipboard 

wind data. Time-mean model skill was, generally, comparable with the models forced with shipboard 

winds. PWP models forced with reanalysis winds and buoyancy forcing also displayed low time 

varying skill, but high time-mean skill, accounting for 81-98% of the variance in the mean Ekman 

current profile. 

 To clarify the cause of the difference in performance between the linear models forced with 

reanalysis winds interpolated onto the float tracks and the same set of models forced with insitu 

shipboard winds we examined the effects of model vertical resolution, the temporal resolution of 

the wind forcing fields and our choice of gridded wind datasets. The temporal resolution and the 

reduced spectral energy content from the use of reanalysis winds could explain some of the 

reduction in time-varying skill relative to models forced with insitu winds. 
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Chapter 6: Discussion and Conclusion 

6.1 Summary 

a. Detecting and Characterizing Ekman Spirals 

The isolation, detection and characterization of Ekman currents are discussed in Chapter 3. Ekman 

currents were isolated by first filtering out inertial oscillations and then subtracting geostrophic 

currents. We considered both a constant geostrophic velocity and a constant geostrophic shear (i.e. 

a geostrophic velocity linearly changing with increasing depth) fitted using a Nelder-Mead simplex 

search. Ekman currents were then detected and characterized by applying a vectorial fit to current 

profiles using a simplex search and by applying least-squares fits to profiles of current heading and 

amplitude. Net Ekman transport was then computed, and profiles of mean viscosity amplitude were 

calculated using a stress-shear balance. 

 We found that the number of Ekman spirals, the mean Ekman decay scales, and the ratio 

between the rotational and amplitude decay scales were dependent on how the geostrophic 

currents were represented. We detected fewer velocity profiles displaying Ekman-like spirals in the 

constant geostrophic velocity case than in the constant geostrophic shear case. In the constant 

geostrophic velocity case the mean Ekman spiral was found to be “compressed” with an amplitude 

decay scale approximately half the rotational decay scale. In the geostrophic shear case this 

“compression” of the mean Ekman spiral was dramatically reduced. 

We also examined the mean Ekman transport. In both the constant geostrophic velocity and 

constant geostrophic shear cases, mean Ekman transport was of the right magnitude but with a 

heading closer to the wind than expected from classical Ekman theory. This anomaly was found to 

result from a combination of errors in the CERSAT wind fields and inclusion of Stokes drift in the near 

surface flow into the Ekman velocity profiles. Correcting for these effects, by switching to the NCEP 

wind fields and removing Stokes drift from the current profiles, brought the observed transport into 

agreement with the theoretical predictions. 
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We examined potential links between stratification and the vertical structure of Ekman 

spirals by considering the relationships between Ekman decay scales and a variety of parameters 

associated with the strength (e.g. Buoyancy frequency and density differences) and depth (both 

Mixed layer and thermocline depth) of density stratification. We were unable to identify any 

significant relationship between stratification and Ekman decay scales. This remains a surprising 

result in light of the number of prior studies which invoke coupling between stratification and Ekman 

currents to explain “compressed” Ekman spirals. 

 

b. Fitting Spectral Models 

In Chapter 4 we examined our data in the frequency domain following a methodology developed by 

Elipot and Gille (2009a). Ageostrophic current and wind stress autospectra and the cross-spectrum 

were estimated using rotary spectral analysis. Using the observed wind autospectrum and wind-

current crossspectrum we computed a transfer function at a constant depth level. We then used a 

Nelder-Mead simplex search to fit nine theoretical transfer functions derived from conceptual 

models of Ekman currents to the observed transfer function. We subsequently adapted Elipot and 

Gille’s (2009a) methodology to also allow fits at constant frequency and in a 2D sense (by both 

frequency and depth). 

 Fits between the nine models and the data from the EM-APEX float and shipboard ADCP 

datasets were obtained. Fits to the EM-APEX float data were inconclusive; we found large 

uncertainty in all parameters (viscosity, viscosity gradient and BLD) for all nine models. Fits to the 

ADCP data, on the other hand, produced more reliable and consistent results. Over both the 2D and 

23.55m constant depth analyses we found the best model was a finite boundary layer depth 

constant viscosity model. Suitable boundary layer depths were of order 100m and viscosities of the 

order of 4x10-2 m2s-1. Using this model we then computed the wind energy input into the Ekman 

layer. With the insitu winds we obtained wind energy input for this region of 45.5±0.4x10-3 Wm-2 

using model parameters estimated from the constant depth fit, or 42.7±0.3x10-3 Wm-2 using 
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parameters from the 2D fit. These wind energy inputs are around 50% larger than previous 

estimates (Elipot and Gille, 2009b, Wunsch, 1998, Wang and Huang, 2004) for the Southern Ocean. If 

we instead used winds derived from the CERSAT blended reanalysis-satellite wind field wind energy 

input was lower, around 16x10-3 Wm-2. We have previously shown that several reanalysis or blended 

wind fields fail to reliably capture high amplitude wind stresses (e.g. Figure 5.13) and display lower 

spectral energy content (e.g. Figure 4.24) than insitu wind data. This suggests that the difference 

between our wind energy input estimates and those obtained in previous studies arises from our use 

of insitu shipboard winds compared to the use of reanalysis winds in both prior studies. 

 

c. Testing Numerical Models 

We tested a range of 1D numerical Ekman models in Chapter 5. We considered six linear Ekman 

models (infinite BLD and finite BLD, each combined with three variations on coupling: uncoupled; 

coupled with Stokes drift; and coupled with geostrophic shear in the boundary layer) and finally 

three Ekman models with density stratification and re-stratification in the mixed layer using the PWP 

mixing scheme. Linear Ekman models were run for both the float and shipboard datasets over a 

range of viscosities between 0.0025m2s-1 and 0.447m2s-1 while stratified models using the PWP 

mixing scheme were run for the float observatons. Model time-varying performance was assessed 

by using a two-sample Kolmogorov-Smirnov test and quantile-quantile plots to compare the 

cumulative probability-density functions of the observations and model output at 24m depth. Time-

mean performance was assessed by examining the correlation between the observed and modelled 

mean Ekman current profiles. 

 Analysis of the ADCP data demonstrated that models with Stokes-coupled Ekman physics 

had a lower performance compared to the uncoupled Ekman models. Shear coupled models were 

found to be virtually indistinguishable from the uncoupled Ekman model. The use of a finite BLD was 

found to have little impact on model performance. Ideal viscosities were O(10-2 m2s-1). 



188 
 

 Analysis of the EM-APEX float data was inconclusive. Model skill was generally lower than in 

the ADCP model runs. This was at least partially the result of using reanalysis winds, which failed to 

capture the full spectral energy content of the insitu winds. This limitation in turn prevented us from 

properly testing the stratified Ekman models with EM-APEX data. 

  

6.2 Discussion and Conclusions 

a. The Utility of EM-APEX Floats 

This study has provided a test of the ability of EM-APEX floats to observe the upper ocean. Despite 

the floats not being able to sample all the way to the sea surface, we were able to isolate Ekman 

currents from the geostrophic flow and characterise the nature of Ekman spirals in the Southern 

Ocean.  

 

b. The Vertical Structure of Ekman Currents 

Mean eddy viscosities obtained from fits applied to Ekman current decay and rotation were found to 

range between 3.2x10-2 and 44.7x10-2 m2s-1 (decay scales of 25m and 93m), values which are 

comparable with previous studies in the Southern Ocean for the surface mixed layer (Lenn and 

Chereskin, 2009). Assuming a constant geostrophic velocity, mean viscosities obtained from the 

rotational least squares fit were found to be significantly larger than those obtained from the 

current amplitude least squares fit, resulting in ‘compressed’ spirals. If we instead used a constant 

geostrophic shear this ‘compression’ was effectively eliminated. 

Examination of mean viscosity magnitude profiles as a function of MLD-normalized depth 

was initially suggestive of either linear or exponential decay of viscosity with increasing depth. We 

applied linear and exponential fits to all depths between 0.3 and 3MLD. Estimates using data from 

only within the mixed layer and below 1MLD (i.e. extending into the ocean interior) suggested 

different behaviour within the mixed layer compared to the interior. However, when we considered 

the uncertainty around the fits, it became clear that these differences were not statistically 
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significant. Constant magnitude eddy viscosity was determined from the all-depth fits, and was 

found to lie between 1.14x10-2m2s-1 and 1.60x10-2m2s-1. 

Constant depth, 2-D and near-inertial frequency spectral fits of conceptual models to the 

shipboard ADCP current observations revealed that a constant viscosity model with finite boundary 

layer was the most suitable, in line with previous studies (Elipot and Gille, 2009a). These fits gave 

viscosities of between 3.52x10-2 m2s-1 and 4.83x10-2 m2s-1 and boundary layer depths between 105m 

and 119m. Given the BLDs were 3-4 times deeper than the decay scales corresponding to the 

viscosities, the vertical structure of the finite depth Ekman models did differ greatly from an infinite 

depth model using the same viscosity. 

We examined a set of numerical linear Ekman models. When models were forced with 

shipboard insitu winds and compared with ADCP velocity observations we found that an infinite 

depth constant viscosity model demonstrated the best performance. Viscosities corresponding to 

maximum model performance varied between 5x10-3 m2s-1 and 4x10-2 m2s-1. 

This evidence indicates that the ‘classical’ constant viscosity Ekman model with a viscosity 

O(10-2 m2s-1) provides an adequate and simple representation of the vertical structure of Ekman 

currents. Additionally, our results emphasise the need to properly resolve the vertical structure of 

geostrophic currents in order to isolate the ageostrophic Ekman velocities. 

 

c. Ekman transport 

Ekman currents were computed from the observed Ekman current profiles in Chapter 3. The 

expected mean transport per unit width (hereafter called transport) computed from the CERSAT 

blended satellite-reanalysis winds was 1.01±0.12m2s-1. Using a constant geostrophic velocity to 

isolate Ekman currents we obtained a mean transport of 0.93±0.28m2s-1 when integrated from 200m 

to 14m depth. Transport obtained when using a constant geostrophic shear was 1.18±0.34m2s-1 at 

14m depth. Hence, net transport is consistent in magnitude with Ekman theory. 
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 However, in both cases the mean transport heading was found to be about 50° to the left of 

the wind, while Ekman theory implies steady state transport should be 90° to the left of the wind in 

the Southern Hemisphere. Upon examination of the geostrophic shear case we found that this 

downwind skewing could be a side-effect of our use of the CERSAT blended satellite-reanalysis 

winds, or the result of aliasing Stokes drift into the Ekman transport. Using NCEP/NCAR reanalysis 

winds and explicitly removing Stokes velocities brought the observed mean transport into 

agreement with theory. 

We conclude that our results are consistent with both ‘classical’ Ekman theory and prior 

studies of Ekman transport (Chereskin, 1995, Chereskin and Roemmich, 1991, Ekman, 1905, Lenn 

and Chereskin, 2009). 

 

d. The influence of Stratification 

As discussed above, when we assumed a vertically-uniform geostrophic current the resulting Ekman 

spirals were found to be “compressed”, and mean viscosities (and decay scales) obtained from the 

rotational least squares fit were found to be significantly larger than those obtained from the 

current amplitude least squares fit. This behaviour has been attributed to stratification in previous 

studies (Price and Sundermeyer, 1999, Price et al., 1987). However, when we instead assumed 

constant geostrophic shear this “compression” of the Ekman spirals reduced; mean decay scales 

were brought into agreement and the compression ratio computed on a profile by profile basis was 

reduced from 1:3 to 1:1.5. This result indicates that the “compressed” Ekman spirals arise as a result 

of vertical shear in the mixed layer and below. By removing the vertical shear in the ocean currents 

the classical Ekman problem is being linearised around a sheared state.  Examination of the vertical 

shear removed when isolating Ekman currents indicated that it was statistically consistent with shear 

observed between the 100m and 200m depth levels (Figure 3.6); a depth at which flow should be 

principally geostrophic. 
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 In both the constant geostrophic velocity and constant geostrophic shear cases, Ekman 

transport was found to be surface-intensified with the intensification of transport coinciding with 

the mixed layer depth. Superficially this result would support the notion that density stratification 

can act to “surface trap” Ekman currents. However, we find the association is largely coincidental.  

Mean Ekman decay scales and mixed layer depths are comparable in magnitude, and since Ekman 

currents decay exponentially with increasing depth, it is logical that current amplitude, and hence 

net transport, will be weak below the mixed layer. 

We also examined the effects of stratification on Ekman currents by considering the 

relationships between Ekman decay scales and parameters associated with stratification such as 

buoyancy frequency, mixed layer depth, bulk Richardson number and the density difference 

between the mixed layer and interior. We only identified a statistically significant relationship 

between bulk Richardson number (a measure of mixed layer stability) and Ekman decay scales; even 

this relationship was relatively weak with correlations between 0.19 and 0.5. 

 Application of three models using the Price-Weller-Pinkel mixing scheme (Chapter 5), which 

explicitly links momentum mixing (and thus Ekman currents) with density stratification, to the EM-

APEX float data proved inconclusive. Model performance was poor, but linear Ekman models applied 

to the float data displayed similar poor performance. This suggests the poor performance was not 

intrinsic to the PWP mixing scheme and instead likely arose from limitations of the wind forcing 

data. 

 We have demonstrated that the “compression” of Ekman spirals and the confinement of 

Ekman transport to the mixed layer can be explained in our data without directly invoking effects of 

density stratification. Examination of the relationships between Ekman decay scales and parameters 

associated with the depth and strength of stratification yielded few significant results. In addition, as 

discussed in Section 6.2b, we have demonstrated that the constant viscosity “classical” Ekman model 

provides an adequate representation of the observed Ekman currents. These lines of evidence 
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suggest that within the Southern Ocean, and possibly more generally, density stratification does not 

play a significant role in setting the structure of Ekman currents. 

 

e. Coupling With Geostrophic Shear and Stokes Drift 

The effect of coupling between Ekman currents and Stokes drift or geostrophic shear was examined 

in Chapter 5. Coupling to geostrophic shear was found to have little impact on the performance of 

model runs compared to the shipboard ADCP data, while coupling to Stokes drift resulted in 

significant degradation of model performance.  This degradation is a surprising result in that we 

expected the inclusion of Stokes drift to improve model skill. However, these results must be treated 

with caution since we examined linear Ekman models coupled to the other processes using modified 

surface boundary conditions (Cronin and Kessler, 2009, Polton et al., 2005). The use of more 

complex coupling schemes (Heinloo and Toompuu, 2012, Lewis and Belcher, 2004) in a model may 

give different results. Additionally, due to the nature of the available forcing data, our treatment of 

Stokes drift was limited to treating the wave input as monochromatic. 

 

f. Wind Data 

Throughout this thesis we have encountered issues with reanalysis or blended wind datasets. In 

Chapter 3 we found that the choice of NCEP rather than CERSAT winds could, when combined with a 

correction for Stokes drift, explain the down-wind Ekman transport anomaly. In Chapter 4 we 

observed that the choice of insitu shipboard winds over blended reanalysis-scatterometer winds 

resulted in an increase of around 50% in estimates of wind energy input into the Ekman layer. In 

Chapter 5 we observed significantly poorer performance in models forced with the CERSAT winds 

interpolated onto the float track than the same models forced with the insitu shipboard winds. 

These results suggest that the quality of wind data is a limiting factor in understanding near-surface 

ocean dynamics. This in turn implies a need to improve the temporal resolution of gridded wind data 

and a need to improve methods of computing wind-stress. 
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6.3 Further Work 

a. Unresolved Questions and Limitations 

This study has focused on a relatively limited geographic area. This raises the question of whether 

our results are applicable on a larger scale, both within the ACC and in other oceans. Our results 

from examination of the EM-APEX float data are closely comparable with previous studies in the 

Drake Passage region (Lenn and Chereskin, 2009, Polton et al., 2013). The Kerguelen Island and 

Drake Passage region are areas of significant topographic intrusion into the ACC with resulting strong 

eddy activity, which in turn affects the geostrophic currents. This correlation of topography and 

experimental design is a direct aspect of the design of the SOFINE experiment.  The SOFINE 

experiment was specifically designed to examine the role of topographically generated lee waves 

and their effect on internal mixing.  This strong topography is a significant difference to other 

regions of the ACC (e.g. the Pacific sector of the Southern Ocean) and large areas of other oceans. 

This suggests more study is needed to determine the representativeness of the Kerguelen-region 

and Drake Passage (Lenn and Chereskin, 2009, Polton et al., 2013) results. Options for validating our 

findings in other regions are discussed below. 

 We have established that a constant-depth eddy viscosity is the most appropriate 

parameterization of the vertical structure of Ekman currents. However, we have not examined the 

effect of a constant-depth but time-varying eddy viscosity on the linear Ekman models. While we 

have examined the variability of eddy viscosity as a function of some environmental variables 

(surface wave properties and stratification), we have not examined how eddy viscosity varies with 

other environmental variables such as sea surface height; surface temperature or internal waves. 

The numerical models we have employed in this study have a number of limitations. All 

models were 1D, which meant we neglected the effects of inertial waves and transient Ekman flows 

that are generated remotely and propagate into the local region.  It is not clear how important these 

non-local effects are, and what spatial and temporal scales are needed to include there effects. 

There is evidence that these non-local influences are relevant because the lagged autocorrelation for 
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the observed data decays much faster than the lagged autocorrelation for the models, plausibly 

indicating there are oceanographic influences outside the insitu winds and surface buoyancy forcing. 

Additionally, we primarily considered linear models; it is possible that Ekman models resolving non-

linear effects would display different responses (Hart, 1996, Tan et al., 2006, Bennetts and Hocking, 

1973). Finally, in line with other studies (Cronin and Kessler, 2009, Polton et al., 2005) we have 

treated coupling in a simple manner using modified surface boundary conditions; more sophisticated 

representations of coupling between the Stokes drift and the flow field (Lewis and Belcher, 2004, 

Heinloo and Toompuu, 2012) may result in more realistic flow fields. 

 

c. Further Observational Studies 

To address these undetermined questions above, we consider that more observational studies are 

necessary. We suggest three observation strategies that would resolve some of the questions posed 

above: repeat EM-APEX float deployments in other regions of the ocean; deployment of free drifting 

spar buoys, and the deployment of a mooring or mooring array. 

A repeat EM-APEX float deployment would provide a relatively simple means of testing 

whether the “classical” Ekman model applies in other more quiescent regions of the ocean. If 

focussed primarily on the upper ocean we would be able to configure the floats to profile more 

rapidly than in this study, providing increased temporal resolution, ideal for the application of 

spectral fitting. However, as with this study, a repeat EM-APEX deployment would be constrained by 

the lack of insitu winds and would force the use of reanalysis or satellite winds, which we have found 

to be inadequate for examining the development of Ekman currents. One possibility we have not 

explored in this thesis is the use of EM-APEX floats to observe wave parameters (Sanford et al., 

2011).  This would enable us to examine coupling between Ekman currents and Stokes drift in a 

more explicit fashion. 

An alternate approach would be to deploy a number of free-drifting spar buoys with T and S 

sensors and current meters suspended beneath the buoy in a setup similar to that used by Pollard 
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and Thomas (1989). This arrangement would provide us with much finer temporal resolution and 

many of the advantages of the EM-APEX floats with the addition of having insitu meteorological 

data. It may also be possible (Pascal et al., 2010) to use the spar buoys to obtain concurrent wave 

data. However, the use of a spar buoy would require reduced vertical resolution. Preparation, 

deployment and retrieval of free drifting spar buoys are likely to be a much more complex, 

expensive and risky process than a repeat deployment of EM-APEX floats. 

Finally, we could consider deploying an array of moorings. Moorings offer most of the 

advantages of the free-drifting spar-buoys but at the cost of reduced geographic coverage. Mooring 

designs that include surface meteorological sensors and closely spaced current meters through the 

upper 200m of the ocean would allow detailed examination of inertial and Ekman currents. The 

RAMA, TOGA/TAO and PIRATA moorings (Hayes et al., 1991, McPhaden et al., 2009, McPhaden et 

al., 2010) deployed in the Indian, Atlantic  and Pacific Oceans follow this approach. In the numerical 

modelling phase of this study we have assumed inertial currents are only locally generated, where as 

in reality our observational data would also include remotely generated inertial currents that have 

subsequently propagated with the mean flow. A dataset from a properly designed mooring array 

that resolved non-local inertial oscillations well would allow us to more effectively identify and 

remove inertial currents, thereby reducing the uncertainty we see in our estimates of Ekman current 

profiles and mean transport. 

In general, repeat deployments of EM-APEX floats would offer an opportunity to confirm our 

results in another region of the ocean and enhance the spectral view of Ekman currents. However, 

the data would remain constrained by the lack of insitu wind and surface flux data. Meanwhile, the 

use of free drifting spar buoys or an array of moorings would offer more opportunity to expand our 

understanding of Ekman currents but are likely to be much more expensive and more risky.  
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d. Further Modelling Studies 

There is substantial opportunity for additional modelling work in the field of Ekman currents. We 

have thus far taken a fairly simple approach, confining ourselves to considering 1D linear models 

with a simplistic coupling scheme. 

 A first improvement beyond our modelling work would be to consider a regional model of 

Ekman currents forced with reanalysis winds.  We could then select profiles along the ship and float 

tracks for analysis instead of treating the shipboard and float velocity observations as stationary 

timeseries. 

The second major improvement would be to consider coupling in a more complex manner. 

We have been following two studies (Cronin and Kessler, 2009, Polton et al., 2005) that suggest a 

simple modification to the surface boundary condition should capture the effects of coupling of 

Ekman currents to geostrophic shear or Stokes drift. Other studies (Heinloo and Toompuu, 2012, 

Lewis and Belcher, 2004), however, have suggested more sophisticated means of representing 

coupling between Ekman currents and Stokes drift. It is possible that these other models of Ekman-

Stokes coupling may result in different behaviour throughout the water column instead of just a 

modified ‘effective’ surface stress. 
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Appendix 1: Supplementary Material For Chapter 3 

1. Temperature and Salinity Plots 

 
Figure A1.1: Temperature (οC) as a function of depth and time from floats 3760 (top) and 3762  

(bottom).White contours indicate regular 0.5 οC intervals. The black line marks the mixed layer depth 

using a density criterion of <0.03kgm-3 relative to the upper-most observation (Sallée et al., 

2006). 
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Figure A1.2: Salinity (PSU) as a function of depth and time from floats 3760 (top) and 3762  

(bottom).White contours indicate regular 0.1 PSU intervals. The black line marks the mixed layer 

depth using a density criterion of <0.03kgm-3 relative to the upper-most observation (Sallée et al., 

2006). 
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2. Wave Parameters and Ekman Decay Scales 

Scatter plots of Ekman decays scales as a function of wave period and wave height are 

shown in Figure A1.3. Examination of the scatter plots indicate that the relationships 

between Ekman scales and wave parameters are poorly defined. Correlations between 

wave parameters and De or log10 (De) are given in Table A1.1. All correlations were weak and 

few were statistically significant at the 95% level. 

 

 
Figure A1.3: Scatter plots of Ekman decay scales (Damp, left; Drot, right) as a function of wave period 

(top) and wave height (bottom). Blue circles indicate the “No Shear” case while red xs indicate the 

“Shear 1” case. 

 

 

 

6 8 10 12 14
10

-1

10
0

10
1

10
2

10
3

Wave Period (s)

D
a
m

p
 (

m
)

 

 

6 8 10 12 14
10

-1

10
0

10
1

10
2

10
3

Wave Period (s)

D
ro

t (
m

)

No Shear

Shear 1

0 2 4 6 8 10
10

-1

10
0

10
1

10
2

10
3

Wave Height (m)

D
a
m

p
 (

m
)

0 2 4 6 8 10
10

-1

10
0

10
1

10
2

10
3

Wave Height (m)

D
ro

t (
m

)



205 
 

Correlations: De 

 No Shear Shear 

 Damp Drot Damp Drot 

Wave 
Height (m) 

*0.159 -0.044  0.027  0.025 

Wave 
Period (s) 

*0.121  0.052  0.019 *0.087 

     

Correlations: log10 (De) 

 No Shear Shear 

 Damp Drot Damp Drot 

Wave 
Height (m) 

*0.238 -0.039 *0.126 0.0299 

Wave 
Period (s) 

*0.085  0.049  0.049 0.052 

Table A1.1: Correlations between wave parameters and Ekman decay scales and correlations for fits 

between wave parameters and the magnitude (log10) of Ekman decay scales. * denotes a correlation 

significant at the 95% level. 

 

3. Stratification and Ekman Decay Scales 

Example scatter plots of Ekman decay scales against mixed layer and thermocline depths are shown 

in Figure A1.4. Likewise, Ekman decay scales are plotted against peak N2 and bulk N2 in Figure A1.5. 

These figures suggest that any relationships between the Ekman decay scales and parameters 

measuring the strength or depth of stratification are poorly defined.  
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Figure A1.4: Ekman decay scales obtained from current amplitude (Damp) and rotation (Drot) for all 

EM-APEX profiles plotted as a function of mixed layer depth (top) and thermocline depth (bottom). 

Open grey-blue circles indicate values plotted for the “Shear 1” case; pale pink dots indicate values 

plotted for the “No Shear” case. 
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Figure A1.5: Ekman decay scales obtained from current amplitude (Damp) and rotation (Drot) for all 

EM-APEX profiles plotted as a function of the ‘bulk’N2 (top) and maximum N2 (bottom). Open grey-

blue circles indicate values plotted for the “Shear 1” case; pale pink dots indicate values plotted for 

the “No Shear” case. 

Linear fits were applied to the data in Figure A1.4 and A1.5 using the Matlab polyfit function. Next, 

exponential fits were then applied to the data using the Matlab polyfit function to apply a linear fit 

between log10(De) and the log10 of each stratification parameter. Ekman decay scales expected from 

the fits to the stratification parameters were calculated. Finally, the correlation between the fitted 

and observed Ekman decay scales was obtained (Table A1.2). 
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all correlations were statistically significant but weak. This would tend to suggest, in line with Figure 

A1.4 and A1.5, that the Ekman decay scales estimated in Chapter 3 are not strongly influenced by 

stratification. 

Correlation for linear fits 

 No Shear Shear 

 Damp Drot Damp Drot 

Max. N2 (Hz) 0.089 0.022 0.038 0.007 

‘Bulk’ N2 
(Hz) 

0.086 0.028 0.044 0.053 

Rb 0.054 0.071 0.052 0.053 

Thermocline 
Depth (m) 

0.065 0.056 0.009 0.083 

Mixed Layer 
Depth (m) 

0.106 0.039 0.036 0.105 

     

Correlations for Exponential Fits 

 No Shear Shear 

 Damp Drot Damp Drot 

Max. N2 (Hz) 0.130 0.012 0.048 0.047 

‘Bulk’ N2 
(Hz) 

0.165 0.119 0.101 0.175 

Rb 0.584 0.172 0.478 0.193 

Thermocline 
Depth (m) 

0.181 0.158 0.121 0.159 

Mixed Layer 
Depth (m) 

0.246 0.100 0.133 0.161 

Table A1.2: Correlations between the observed Ekman decay scales and Ekman decay scales obtained 

from linear or exponential fits to parameters measuring depth and strength of stratification 

including: maximum N2; the ‘bulk’ N2 computed across the mixed layer; the bulk Richardson number; 

the depth of the thermocline and the depth of the mixed layer. 

 Another option for assessing the role of stratification depth and strength on Ekman decay 

scales would be to fit generalized linear models (Nelder and Wedderburn, 1972) to the observations; 

this would enable us to consider the effects of stratification strength and depth in parallel instead of 

in isolation (as above). We did not pursue this line of inquiry due to time constraints. 
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Appendix 2: Supplementary Figures For Chapter 5 
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