Page:	- line:	
(ii)	4	"Huat Lim" should be "Ming-Huat".
(iii)	8	"spaned" should be "spanned".
(iii)	8, 9	The first A should be \bar{A}.
(iv)	-3 \& -4	There are commas missing after x_{1} and before x_{n}.
1	4	A period is missing at the end of the 1 ine.
8	-7	Three dots are missing between " $\mathrm{x}_{1}<$ " and " $<\mathrm{x}_{n}$ ".
19	6	"1-1" should be "i-1".
26	2	"semimodularity", should be "semimodular".
34	2	"U゙" should be "U".
39	-2	An "F" is missing here.
45	3	"in the associated bijection $2^{S}+2^{S}{ }^{\prime \prime}$ " should be added
46	6	Delete the period at the end of the line.
47	15	add ", and $\overline{\mathrm{a}}=\{\mathrm{a}\}, \forall \mathrm{a} \in \mathrm{S}^{\prime \prime}$.
50	4	"and $\bar{\phi}=\phi .4$ should be added.
58	1	"contraction" should be "restriction".
72	3	The bracket should close after "finite".
83	9	" $\left(X_{I}\right)$ " should be "(X) ${ }_{\text {I }}$ ".
148	3	"." should be ",".
157	-10	"Although" should be "although".
169	11	"Murtey" should be "Murty".

Combinatorial Geometry

by
(M / s)
Waree Karot, M.Sc. (Chula)

```
Submitted in fulfilment of the requirements for the degree of Master of Science
```

UNIVERSITY OF TASMANIA HOBART

May, 1981

Except as stated herein, this thesis contains no material which has been accepted for the award of any other degree or diploma in any university, and to the best of the author's knowledge and belief, contains no copy or paraphrase of material previously published or written by another person, except when due reference is made in the text of the thesis.

We systematically give alternative characterisations of pregeometries, and examine their properties.
 We examine well - known classes of pregeometries using the

 above characterisations.In particular we (i) define "product" of pregoemetries, related to that given by Lim, and (ii) give some applications of this "product" .

CONTENTS

INTRODUCTION (i)
NOTATION (iii)

1. EQUIVALENT CHARACTERISATIONS OF PREGEOMETRIES 1
1:1 Closure 1
1.2 Lattices of flats 5
1.3 Rank 15
1.4 Independent sets 24
1.5 Eases 29
1.6 Circuits 32
1.7 Flats 39
2. BASIC PROPERTIES OF PREGEOMETRIES 45
2.1 Isomorphisms 45
2.2 Subpregeometries 48
2.3 Canonical geometries 49
2.4 Truncation 56
2.5 Contraction 56
2.6 Union and direct sum of pregeometries 58
2.7 Connected pregeometries 67
2.8 Duality 72
3. TRANSVERSAL PREGEOMETRIES 83
3.1 Transversal pregeometries 83
3.2 Multiplicity 94
4. REPRESENTABLE AND BINARY PREGEOMETRIES 118
4.1 Representable pregeometries 118
4.2 Binary matroids 122
5. GAMMOIDS AND BASE ORDERABLE MATROIDS 238
5.1 Strict gammoids and gammoids 138
5.2 Base orderable matroids 143
6. PREGEOMETRY PRODUCTS WITH APPLICATIONS 148
6.1 First product 148
6.2 Second product 151
6.3 Applications to groups 157
6.4 Automorphisms 164
BIBLIOGRAPHY 168
INDEX 171

INTRODUCTION

Abstract

Crapo and Rota $[70]$ defined a pregeometry $G(S)$ as a set S together with a closure function on its subsets. They gave various characterisations of pregeometries in terms of their ranks, independent sets, circuits and lattice of flats. Roberts [73] characterised any pregeometry in terms of its flats. A basis characterisation was given by Welsh $[76]$. He also gave a characterisation in terms of hyperplanes, for any pregeometry on a finite set S (we will use the term matroid for such a pregeometry). All these characterisations are derived in Chapter 1.

Basic properties of pregeometries are discussed in Chapter 2. Arising from a pregeometry $G(S)$ a subpregeometry, $G_{S}(T)$ is induced on any subset T of S. Any pregeometry has special subpregeometries called canonical geometries. They are isomorphic. Other pregeometries obtained from $G(S)$ are contractions and duals (when $G(S)=M(S)$ is a matroid).

In Chapter 3 we discuss the pregeometry $G(S)$ obtainable from a family (X) of subsets of sets - a transversal pregeometry in which the independent sets of $G(S)$ are the partial transversals of $(X)_{I}$. Finally we investigate systems of distinct representatives giving the same transversal of such families.

Representable pregeometries, isomorphic to subpregeometries of finite dimensional vector spaces, are investigated in Chapter 4 .

In Chapter 5 we discuss the class of matroids arising from directed graphs - strict gammoids - together with their

SUMMARY

We systematically give alternative characterisations of pregeometries, and examine their properties.

We examine well - known classes of pregeometries using the above characterisations.

In particular we (i) define "product" of pregoemetries, related to that given by Lim, and (ii) give some applications of this "product" .
restrictions - gammoids. Also base orderable matroids are introduced and discussed.

In Chapter 6 we construct pregeometry products based on the work of Ming Huat Lim [77] and we apply these constructions to matroids defined on groups in which the geometric and algebraic structures are related. More precisely, group multiplication is a geometric automorphism.

The methods used in Chapter 1 unless otherwise stated in the text are based on lectures given to Honours students in Mathematics at the University of Tasmania. Similarly the methods of Chapter 2 (all but the last half of section 1), 3 section 1, 4 and 5 are based mainly on those of Welsh [76], Crapo and Rota [70], Mirsky [71] and Row [77] unless otherwise stated.

Some examples given in these chapters are original in particular those dealing with Steiner Triple Systems.

Section 3.2 dealiag with multiplicity of system of transversals is new.

In Chapter 6, section 1, 3 and 4 are new - while section 2 comes from Lim [77].

I would like to express my deep gratitude to Dr. D.H. Row for his assistance during the preparation of this thesis. I would like also thank Mrs. W. Gayong for her careful and patient typing.

NOTATION

A set $\{x, y, \ldots\}$ is often written $x y \ldots$... We use standard notation in set theory and algebra. Apart rom these we use :

M(S)	matroid on S
$M(S) / T$	restriction of $M(S)$ to T
$M^{*}(\mathrm{~S})$	dual matroid of $\mathrm{M}(\mathrm{S})$
\boldsymbol{r} (A)	rank of set A
\mathscr{S}_{n}.	Steiner triple systems on a set of n elements
sup M	supremum of set M
$U_{k, n}$	k - uniform geometry on n elements
(V, E)	directed graph with vertex set V and edge set E
$\left(v_{0}, v_{1}, \ldots, v_{k}\right)$	path in directed graph with initial vertex V_{0}
	and terminal vertex $\mathbf{v}_{\mathbf{k}}$
$x_{1} v \ldots v x_{n}$	supremum of $x_{1} \cdots x_{n}$
$x_{1} \wedge \ldots \wedge x_{n}$	infimum of $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}$
$x_{0}<x_{1}<\ldots$	chain in a poset
${ }^{(X)} I^{\prime}\left(X_{i} / i \in I\right)$	family of subsets of X with index I

1. EQUIVALENT CHARACTERISATIONS

of pregeometries

1.1 CLOSURE

We begin with a definition of pregeometries in terms of closure
1.1.1 A pregeometry, $G(S)$, is a set S together with a closure
$f: 2^{S} \rightarrow 2^{S}$ satisfying the following four conditions.
(C1) For all $A \subseteq S, A \subseteq \bar{A}$; writing \bar{A} for $f(A)$;
$\left(C_{2}\right)$ If $A \subseteq \bar{B}$, then $\bar{A} \subseteq \bar{B}, \quad \forall A, B \subseteq S$.
$\left(C_{3}\right)$ If $a \notin \bar{A}$ and $a \varepsilon \overline{A \cup b}$, then $b \varepsilon \overline{A \cup a}, \forall A S S, a, b \varepsilon S$. $\left(C_{4}\right)$ For all $A \subseteq S$, $\exists A_{f} \subset \subset A$ with $\bar{A}_{f}=\bar{A}$.
$\left(C_{3}\right)$ and $\left(C_{4}\right)$ are the exchange property and finite basis property respectively.
1.1.2 LEMMA. If $\left(C_{1}\right)$ is given, then $\left(C_{2}\right)$ is equivalent to
(i) For all $A \subseteq S, \bar{A}=\bar{A}$.
(ii) If $A \subseteq B$, then $\bar{A} \subseteq \bar{B}, \forall A, B \subseteq s$.

PROOF. Assume that $\left(C_{1}\right)$ and $\left(C_{2}\right)$ are given. Then $\bar{A} \subseteq \bar{A} \Rightarrow \overline{\bar{A}} \subseteq \bar{A}$ by $\left(C_{2}\right)$. On the other hand $\bar{A} \leftrightarrows \overline{\bar{A}}$ by $\left(C_{1}\right)$ so that $\overline{\bar{A}}=\bar{A}$. Now $A S B \Rightarrow$ $A \subseteq B \subseteq \bar{B} \Rightarrow \bar{A} \subseteq \bar{B}$ by $\left(C_{2}\right)$.

Assume that $\left(C_{1}\right)$, and $\overline{\bar{A}}=\bar{A}, \forall A \subseteq S$ and $A \subseteq B \Rightarrow \bar{A} \subseteq \bar{B}, A, B \subseteq S$ are given. Then $A \subseteq \bar{B} \Rightarrow \bar{A} \subseteq \overline{\bar{B}}=\overline{\mathrm{B}}$ which is as desired.
1.1.3 A geometry is a pregeometry $G(S)$ satisfying the two additional properties:
$\left(C_{5}\right) \bar{\phi}=\phi$
$\left(C_{6}\right) \bar{a}=a, \forall a \varepsilon S$.
1.1.4 EXAMPLE. The smallest coset of any subspace of a finite dimensional vector space V, containing a set A of vectors of V defines a closure \bar{A} satisfying $\left(C_{1}\right)-\left(C_{4}\right)$.

PROOF. The smallest coset of any subspace containing A is of the form $a_{0}+W$, where W is the (unique) smallest subspace containing $A-a_{0}$ for any $a_{0} \varepsilon A$.

We show that the closure defined satisfies $\left(C_{3}\right)$ and $\left(C_{4}\right)$.
Let $x \in \mathbb{A \cup Y}$ and $x \notin \bar{A}, A \subseteq S, x, y \in S$. Then $x \varepsilon a+W_{n}$, where $W=[A \cup y-a]$ for some $a \varepsilon A$ so that $x-a=\sum_{i=1}^{n} c_{i}\left(a_{i}-a\right)$, where $a_{i} \varepsilon A \cup Y, c_{i} \neq 0$. There exists j with $a_{j}=y$ (otherwise $x \in \bar{A}$). Putting $a_{j}-a=y-a$ on the left hand side we write
$y-a=\sum_{i=1}^{m} d_{i} b_{i}$, where $b_{i} \varepsilon(A \cup x)-a, d_{i} \neq 0$. Then $y \in \mathbb{A} \cup$.

For any $A \subseteq S$ consider a maximal independent subset $A_{f_{0}}$ of $A-a_{0}$ for some $a_{0} \varepsilon A$. Let $A_{f}=a_{0}+A_{f_{0}}$. Then A_{f} is a finite subset of A and $\vec{A}_{f}=a_{0}+\left[A_{f_{0}}\right]=\bar{A}$ as $\left[A_{f_{0}}\right]$ is the smallest subspace containing $\mathrm{A}-\mathrm{a}_{0}$
1.1.5 LEMMA. The conditions $\left(C_{1}\right)-\left(C_{6}\right)$ are independent.

PROOF. We see this by examining the following six examples in each of which exactly one of $\left(C_{1}\right)-\left(C_{6}\right)$ is not satisfied.
(i) Let $S=\{1,2,3\}, \phi=\phi^{\prime}, \overline{1}=1, \overline{2}=2, \overline{3}=3$, $\overline{12}=1, \overline{13}=13, \overline{23}=23, \bar{s}=8$.

Then only (C_{1})fails.
(ii) Let $S=\{1,2,3,4\}, \overline{12}=1234, \overline{14}=124, \overline{13}=123$, $\overline{23}=123, \overline{24}=124, \overline{\mathrm{~A}}=\mathrm{A}$ otherwise.

Then only $\left(C_{2}\right)$ fails.
(iii) Let $S=\{1,2,3,4\}$. Define closure on S by

$$
\bar{A}=\left\{\begin{array}{cl}
123 & \text { if } A=12 \\
A & \text { otherwise }
\end{array}\right.
$$

Then only $\left(C_{3}\right)$ fails.
(iv) Let S be an infinite set and define $\bar{A}=A, \forall A$.

Then only $\left(C_{4}\right)$ fails.
(v) Let $S=\{1,2,3\}$ and define closure on S by

$$
\bar{A}= \begin{cases}1 & \text { if } A=\phi \\ A & \text { otherwise }\end{cases}
$$

Then only $\left(C_{5}\right)$ fails.
(vi) Let $S=\{1,2,3\}$ and define closure on S by

$$
\bar{\Lambda}= \begin{cases}12 & \text { if } A=1 \\ A & \text { otherwise }\end{cases}
$$

Then only (C_{6}) fails.
1.1.6 A subset X in a pregeometry $G(S)$ is closed or a flat if $X=\bar{B}$ for some $B \leq S$.
1.1.7 LEMMA. In any pregeometry $G(S)$. The following are true.
(i) A is a flat in $G(S)$ if and only if $A=\bar{A}$.
(ii) Any intersection of flats is a flat.
(iii) $\overline{\mathrm{A}}$ is the intersection of all flats containing A . That
is \bar{A} is the smallest flat containing A.
(iv) S is a flat in $G(S)$.
(v) $B \leq \bar{A}$ if and only if $\bar{A}=\overline{A \cup B}, \quad A, B \leq S$.
(vi) $\overline{\{a / a \varepsilon \bar{A}\}}=\bigcup_{\varepsilon A} \bar{a}, v A \leq S$.

PROOF. (i) Let A be a flat in $G(S)$. By definition there exists $B \subseteq S$ such that $A=\bar{B}$. Thus $\bar{A}=\overline{\bar{B}}=\bar{B}=A$. The converse is obvious.
(ii) Given any intersection, $\cap A_{i}$, of flats of $G(S)$. Put $A=\cap A_{i}$. It suffices to show that $\bar{A} \subseteq A$. Since $A \subseteq A_{i}$ for all i which implies $\bar{A} \subseteq \bar{A}_{i}=A_{i}$ for all i, we have $\bar{A} \subseteq \cap A_{i}=A$.
(iii) Let $B=\cap A_{i}$, where A_{i} is a flat containing A. Then by (ii) B is a flat containing A. Therefore $\bar{A} \subseteq \bar{B}=B$. Since \bar{A} is a flat containing $A, \vec{A}=A_{i}$ for some i and hence $B \subseteq \vec{A}$.
(iv) follows from (i).
(v) Assume that $B \subseteq \bar{A}$. $B y\left(C_{1}\right) A \subseteq \bar{A}$ so that $A \cup B \subseteq \bar{A}$ and hence by $\left(C_{2}\right) \overline{A \cup B} \subseteq \bar{A}$. On the other hand $\bar{A} \subseteq \overline{A \cup B}$. Thus $\bar{A}=\overline{A \cup B}$.

Suppose that $\overline{A \cup B}=\bar{A}$. Let $x \in B$. Then $\overline{A \cup \times} \& \overline{A \cup B}=\bar{A}$ and so $x \in \bar{A}$. Therefore $B \subseteq \bar{A}$.
(vi). follows from (v).
1.1.8. A Boolean geometry is a pregeometry $G(S)$ with $\bar{A}=A$, UAES.

$$
\text { When } \bar{A}=A \text { if }|A|<k \text { and } \bar{A}=S \text { otherwise provided } k \geq 1
$$

nefines a k - uniform geometry on S .

1:2 LATTICES OF FLATS

We characterise any pregeometry in terms of a lattice of flats.
1.2.1 A poset is a set L together with a binary relation satisfying the following.
(i) For any $x \in L, x \leq x$, reflexive property;
(ii) If $x \leq y$ and $y \leq x$, then $x=y, \forall x, y \in L$, antisymmetric property;
(iii) If $x \leq y$ and $y \leq z$, then $x \leq z, \forall x, Y, z \in L$, transitive property.

In a poset we write $x<y$ (or $y>x$) to mean $x \leq y$ and $x \neq y$.

A greatest (least) element of a subset M of L is an element x of M such that $x \geq(\underline{x}) m$, $\mathcal{M} \in M$.

If x_{1} and x_{2} are greatest elements of $M_{\text {, }}$ then $x_{1} \leq x_{2}$ and $x_{2} \leq x_{1}$ so that by the antisymmetric property $x_{1}=x_{2}$. Thus the greatest element is unique if existing. Also the least element is unique if existing. We denote the greatest (least) element of I if existing by $I(0)$.

A lower (upper) bound of M is an element y of L with $y \leq(\geq)$ m, $\forall m \in M$. The infimum (supremum) of M, written inf M (sup M), is the greatest (least) element of the set of lower (upper) bounds of M (if existing).
1.2.2 LEMMA. $\sup \left(M_{1} \cup M_{2}\right)=\sup \left\{\sup M_{1}\right.$, sup $\left.M_{2}\right\}$, provided the right hand side exists.

PROOF. Suppose that: M_{1}, M_{2} are subsets of a poset ($L_{r} \leq$), with $x_{1}=\sup M_{1}, x_{2}=\sup M_{2}$. If $x=\sup \left\{x_{1}, x_{2}\right\}$, then $x \geq x_{1}$ and $x \geq x_{2}$ so that x is an upper bound of $M_{1} \cup M_{2}$.

For any upper bound x^{\prime} of $M_{1} \cup M_{2}$ we have $x^{\prime} \because \geq x_{1}$ and $x^{\prime} \geq x_{2}$ so that x^{\prime} is an upper bound of $\left\{x_{1}, x_{2}\right\}$ and so $x^{\prime} \geq x$. Thus the lemma is proved.
1.2.3 A lattice is a poset (L, \leq with every pair of elements having a supremum and infimum. .

For convenience in notation we write $x \wedge y$ and $x \vee y$ for inf $\{x, y\}$ and sup $\{x, y\}$ respectively, where A and v are read"meet" and" join".

By an induction argument we see that the infimum and supremum of finite subsets exist in any lattice.
1.2.4 LEMMA. The set of flats, $L(G)$, of a pregeometry $G(S)$ is a lattice with respect to set inclusion. In this lattice

As S is a flat and $\phi \subseteq A, \forall A \subseteq S, S$ and $\bar{\phi}$ are the elements 1 and 0 respectively in $L(G)$.
1.2.5 We say y covers x in a lattice (L, \leq) iff $x<y$ and there is no z in L with $x<z<y$.

A finite lattice can be conveniently represented by a Hasse diagram in which distinct elements are represented by distinct points so that x is above y iff $x>y$ and x, y are joined by a straight line whenever x covers y. We illustrate by

EXAMPLE 1.2 .6

the lattice of flats of a 2 - uniform geometry on abc.

We characterise a lattice in terms of \wedge and ${ }^{\boldsymbol{\nabla}}$.
1.2.7 THEOREM. A lattice (L, \leq) is characterised by
(L_{1}) For every $x \in L, x \wedge x=x$ and $x \vee x=x$.
$\left(L_{2}\right)$ For every $x, y \in L, x \wedge y=y \wedge x$ and $x \vee y=y \vee x$.
$\left(L_{3}\right)$ For every $x, y, z \in L, x \wedge(y \wedge z)=(x \wedge y) \cdot \wedge z$ and $x \vee(y \cdot z)=$ $(x \vee y) \vee z$.
$\left(L_{4}\right)$ For every $x, y \in L, x \in(y \vee x)=x$ and $x \cdot v(y \quad x)=x$.

PROOF. That a lattice (L, \leq satisfies $\left(L_{1}\right)-\left(L_{3}\right)$ is immediate.

We show that (L, \leq) satisfies $\left(L_{4}\right)$. Let $x, y \in L$. Let $z=y v x$. Then $x \leq z$ and since $x \leq x, x$ is a lower bound of $\{x, z\}$. For any lower bound a of $\{x, z\}$ we have $a \leq x$. Thus $x=\inf \{x, z\}$ as desired. Let $p=y \sim x$. Then $x \geq p$ so that p is an upper bound of $\{x, p\}$. For any upper bound d of $\{x, p\}$ we have $d \geq x$. Hence $x=\sup \{x, p\}$ as desired.

We show that a given set L with $x \wedge y, x \quad y$ defined for every pair x, y in L satisfying $\left(L_{1}\right)-\left(L_{4}\right)$ is a lattice.

We define $x \leq y$ when $x \vee y=y$. Then $x \leq y \Rightarrow x \vee y=y \Rightarrow$ $x \wedge(x \vee y)=x \wedge y \Rightarrow x=x \wedge y$. Also $x=x \wedge y \Rightarrow x \vee y=(x \wedge y) \vee y$ $\Rightarrow x \vee y=y \Rightarrow x \leq y$
(i) Since $x \vee x=x, x \leq x, \forall x \in L$.
(ii) Let $x \leq y$ and $y \leq x$. Then $x v y=y$ and $x=y v x$ so that $x=y$.
(iii)

Let $x \leq y$ and $y \leq z$. Then $x \vee y=y$ and $y v z=z$ so that $x \vee z=x \vee(y \vee z)=(x \vee y) v z=y \vee z=z$. Hence $x \leq z$.

Then (L, \leq) is a poset.

For any $x, y \in L$ we show that $\inf \{x, y\}=x \wedge y$ and $\sup \{x, y\}=x \quad y$.

Since $(x \wedge y) v x=x$ and $(x \wedge y) v y=y$, we have $x \in y \leq x$ and $x \in y \leq y$ and so $\{x, y\}$ has at least one lower bound. Let be any lower bound of $\{x, y\}$. Then $b \wedge x=b$ and $b \wedge y=b$ so that $b \wedge(x \wedge y)=(b \wedge x) \wedge y=b \wedge y=b$. Thus $b \leq x \wedge y$ and $s o x \wedge y=\inf \{x, y\}$.

Similarly we can show that $\sup \{x, y\}=x v y$.
1.2.8 A chain in a poset is a subset with the induced order on it linear, it is finite if the subset is finite.

We write $x_{0}<x_{1}<\ldots$ to denote a chain. Given a finite chain C : $x_{0}<x_{1} \ll x_{n}=y$ we say that C is a chain from x to y with length $|C|-1$.
1.2.9 LEMMA. Every chain in the lattice of flats of any pregeometry is finite.

PROOF. Suppose that C is an infinite chain in the lattice of flats of $G(S)$. Then C must contain an infinite ascending chain or an infinite descending chain.

First assume that there exists an infinite ascending chain.
 $A=\|_{i}$. Then A is a flat and by $\left(C_{4}\right) \exists A_{f}<A$ with $\bar{A}_{f}=\bar{A}=A$. Since A_{f} is finite and each $a_{i} \varepsilon A_{f}$ is contained in Λ_{i}, there exists n such that $A_{f} \subseteq A_{n}$. It then follows that $A=\bar{A}=\bar{A}_{f} \& \bar{A}_{n}=A_{n}$. Thus $A_{n+m} \subseteq A \subseteq A_{n}, \forall_{m}$. This contradicts the fact that C_{1} is infinite. Thus no ascending chain is infinite.

Next assume that C contains an infinite descending chain. Choose a countably infinite subchain $C_{2}: A_{0} \not A_{1} \not A^{\prime} A_{2} \not{ }_{z} \ldots$ For each i let $a_{i} \varepsilon A_{i-1} \backslash A_{i}$ and $T_{i+1}=\left\{a_{i+1}, a_{i+2}, \ldots\right\} \quad$ Now $T_{i+1} \& A_{i}$ and since $a_{i} \not \& A_{i}$ and $\bar{T}_{i+1} \subseteq A_{i}$, we have $a_{i} \notin \bar{T}_{i+1}$. Consider for each i the set $B_{i}=\left\{a_{j} / j \varepsilon N\right\} \quad a_{i}$. If there exists $a_{i} \varepsilon \bar{B}_{i}$ we then choose a maximum j such that $a_{i} \varepsilon\left\{a_{j}, \ldots, a_{i}, a_{i+1}, \ldots\right\}$, where $1 \leq 1 \leq i-1$ as $T_{i+1} \subseteq\left\{a_{j}, \ldots, a_{i-1}, a_{i+1}, \cdots\right\} \subseteq \bar{B}_{i}$. Put $B=\left\{a_{j+1}, \ldots, a_{i-1}, a_{i+1}, \ldots\right\}$. Then $a_{i} \notin \bar{B}_{1}$ but $a_{i} \varepsilon \overline{B \cup a_{j}}$ so that by $\left(C_{3}\right) a_{j} \varepsilon \overline{B \cup a_{i}}=\bar{T}_{j+1}$. A contradiction. Hence $a_{i} \notin \bar{B}_{i}$ for all i. This means that no proper subset of T_{1} has closure \bar{T}_{1} since $a_{i} \varepsilon \bar{T}_{1}$ for all i and any proper subset of T_{1} which does not contain a_{i} is contained in B_{i}, contradicting the finite basis property for $\left\{a_{j} / j \varepsilon j \varepsilon N\right\}$.

Thus the lema is proved.
1.2.10 LEMMA. For any flats A, B, C of $G(S)$ we have
(i) A covers $B \Leftrightarrow A=\overline{B \cup a}$ for some a $\varepsilon A \backslash B$.
(ii) A covers $B \Rightarrow A \vee C$ covers $B \vee C$ or $A v C=B \vee C$.

PROOF. (i) Assume that A covers B. Then $\exists \in A \geqslant B$ and hence $\mathrm{B} \underset{\mathrm{BUa}}{\mp}$ so that $\overline{\mathrm{BUa}}=\mathrm{A}$.

Assume $A=\overline{B Y a}$, for some $a \varepsilon A \backslash B$, where A, B are flats of $G(S)$. Then $B E A$. Let X be any flat such that $B Y\{\overline{B y a}$. We show that $\overline{B G a} \leq x$. Pick an element $b \in x \not B$. Then $b \notin \bar{B}=B$ and $b \varepsilon \overline{B \Downarrow a}$ so that by $\left(C_{3}\right)$, a $\varepsilon \overline{B U b} E x$. Thus $\overline{B G a} x$. Therefore A covers B.
(iii) Let A cover B. Then $A=B$ for some $a \varepsilon A>B$.

If a $\notin C$, then by (i) $\overline{A U C}=\overline{B U C J a}$ so that $A v C$ covers $B V C$. If a εC we have $\overline{A \cup C}=\overline{B U Z \cup C}=\overline{B U C}$ and so $A V C=B \vee C$.//
1.2.11 A lattice (L, \leq) is semimodular if it has no infinite chain and whenever x, y cover $x \wedge y$ we have $x \vee y$ covering x and y.
1.2.12 LEMMA. The lattice of flats of $G(S)$ is semimodular.

PROOF. Follows from Lemma: 1.2.10.
1.2.13 An atom is an element in any lattice that covers 0 .
1.2.14 A geometric lattice is a semimodular lattice in which every element is a supremum of atoms.
1.2.15 LEMMA. Let $(L$; \leq) be a geometric lattice. Then any x, y in L satisfy the following.
(i) Any two maximal chain from x to y have same length.
(ii) y covers $x \Leftrightarrow y=x v$ a for some atom $a \notin x$.

PROOF. (i) We prove this by induction on chain length.

Let $x=s_{0}<s_{1}<\ldots<s_{n}=y$ be a maximal chain from x to y. Consider another maximal chain $x=t_{0}<t_{1}<\ldots<t_{m}=y$ from x to y. We can assurne $s_{1} \neq t_{1}$. Now s_{1}, t_{1} both cover x and $s o s_{1} \wedge t_{1} \geq x$. If $x<s_{1} \wedge t_{1}$ and since either $s_{1} \wedge t_{1}<s_{1}$ or $s_{1} \wedge t_{1}<t_{1}$ is the case then either s_{1} or t_{1} does not cover x. Thus $x=s_{1} \wedge t_{1}$. Semimodularity implies that $s_{1} v t_{1}$ covers s_{1} and t_{1}. As $s_{1} \nabla t_{1} \leq y$ a chain from $s_{1} v t_{1}$ to y exists. Let $s_{1} v t_{1}=u_{1}<u_{2}<\ldots<u_{p}=y$ be maximal. Then $s_{1}<s_{1} v t_{1}<u_{2}<\ldots<u_{p}=y$ and $t_{1}<s_{1} v t_{1}<$ $u_{2}<\ldots<u_{p}=y$ are maximal chains from s_{1} and t_{1} respectively to y.
case 1. If $n=2$, then since y covers s_{1} we have $p=0$ so that $s_{1} v t_{1}=y$. Thus $x<t_{1}<s_{1} v t_{1}=y$ is maximal as required.
case 2. If $n>2$. Assume that the lemma holds for any maximal chain of length $<n$. As $s_{1}<s_{2}<\ldots<s_{n}=y$ is a maximal chain from s_{1} to y of length $n-1$ the chain $s_{1}<s_{1} v t_{1}<u_{2}$ $<\ldots \cdot u_{p}=y$ has length $n-1 . \quad$ Since $t_{1}<s_{1} v t_{1}<u_{2}<\ldots<u_{p}=y$ is maximal, by the assumption it has length $n-1$. Therefovef the chain $t_{0}<t_{1}<\ldots<t_{m}=Y$ has length n.
(ii) Assume y covers x. Since (L, \leq) is geometric, $y=\sup A$ for some subset A of atoms of L. If $\forall a \in A_{l} a \leq x$, then $y=\sup A \leq x$. A contradiction. Thus $\exists \mathbf{~ a} \varepsilon \mathrm{A}$ with $\mathrm{a} \neq \mathrm{x}$. But $\mathrm{x} v \mathrm{a}>\mathrm{x}$ (as $x \vee a=x \Leftrightarrow a \leq x)$. Hence $x v a=y$.

Now let $y=x \vee a$, where a is an atom such that $a \& x$. We consider the following two cases.
case 1. If the maximal chain length from 0 to x is 1.. Thus x is an atom so that by the above $x \wedge a=0$. By semimodularity $x v a$
covers x and a as desired.
case 2. If the maximal chain length from 0 to x is $n>1$. Assume that the lemma holds for any x with maximal chain length from 0 less than n. Let $0<\ldots<x^{\prime}<x$ be maximal. As x covers $x^{\prime \prime}$ we have $x=x^{\prime} v b$ for some atom $b \leqslant x$. If $x^{\prime} v b=x^{\prime} v a$, then $x=x^{\prime} v b$ $=x^{\prime} v a$ so that $a \leq x$. A contradiction. Thus $x ' v b \neq x ' v a$. and both cover x^{\prime} and so $x^{\prime}=\left(x^{\prime} v a\right) \wedge\left(x^{\prime} v b\right)$. By semimodularity ($\left.x^{\prime} v a\right) v\left(x^{\prime} v\right.$ b) covers both $x^{\prime} v a$ and $x^{\prime} v b=x$. Hence $y=x \vee a=$ $\left(x \vee x^{\prime}\right) v a=x \vee\left(x^{\prime} v a\right)=\left(x^{\prime} v b\right) v\left(x^{\prime} v a\right)$ which covers x.
1.2.16 Two lattices $\left(L_{1}, \leq\right)$ and $\left(L_{2}, \leq\right)$ are isomorphic if there exists a bijection $f: L_{1} \rightarrow L_{2}$ such that for every pair x, y in $L_{1} f(x \wedge y)$ and $f(x \vee y)$ are meet and join of $f(x)$ and $f(y)$ respectively in L_{2}.

We call f an isomorphism from $\left(\mathrm{L}_{1}, \leq\right)$ to $\left(\mathrm{L}_{2}, \leq\right)$.

We now characterise pregeometries by these properties of their lattices of flats.
1.2.17 THEOREM. The lattice of flats of any pregeometry is geometric. Conversely any geometric lattice is isomorphic to the lattice of flats of some pregeometry.

PROOF. Let $L(G)$ be the lattice of flats of $G(S)$. We need to show that every flat in $L(G)$ is a join of atoms. Let $B \varepsilon \mathcal{L G}$. If B covers $\bar{\phi}$ there is nothing to prove. Consider a maximal chain $\phi<B_{1}$ $<\ldots<B_{n}=B$ of length $n>1$ from $\bar{\phi}$ to B. Now as B_{1} covers $\bar{\phi}$ we have $B_{1}=\overline{\phi \cup a_{1}}$, where $a_{1} \varepsilon B_{1} \backslash \bar{\phi}$ so that \bar{a}_{1} is an atom and $B_{1}=\bar{\phi} v \bar{a}_{1}$ $=\bar{a}_{1}$. Inductively $B_{i}=B_{i-1} \vee \bar{a}_{i}$ for some $a_{i} \varepsilon B_{i}, B_{i-1}$, where $i=2, \ldots, n-1$. Thus $a_{i} q \bar{\phi}$ and $\overline{\dot{a}}_{i}$ is an atom which implies
$B=B_{n}=B_{n-1} v \bar{a}_{n}=\ldots=\bar{a}_{1} v \ldots v \bar{a}_{n}$, as required.

Conversely let (L, \leq) be any geometric lattice. Consider the set S of atoms of (L, \leq) and define elosure on 2^{S} as follows.

$$
\bar{A}=\{a \in S \neq a \leq \sup A\}, A \subseteq S
$$

We show that the closure defined satisfies $\left(C_{1}\right)-\left(C_{4}\right)$.
$\left(C_{1}\right):$ Let $A \& S$. As $a \varepsilon A, a \leq \sup A$ so that $a \varepsilon \bar{A}$. Hence $A \subseteq \bar{A}$.
(C_{2}) : Let $A \subseteq \vec{B}$, where $A, B \subseteq S$. For every $x \in \vec{B}$ we have $x \leq \sup B$ so that $\sup \bar{B} \leq \sup B$. But $\sup B \leq \sup \bar{B}$. Thus $\sup B=\sup \bar{B}$. If $a \leq \sup A$, then as $\sup A \leq \sup \bar{B}=\sup B$ we have $a \leq \sup$ D. That is $\bar{A} \subseteq \bar{B}$.
$\left(C_{3}\right):$ Let $a \varepsilon \overline{A \cup B}$ and $a \notin \bar{A}$, where $A \subseteq S, a, b \in S$. Then $a \in \overline{A \cup B} \Rightarrow a \leq \sup (A \cup b) \Rightarrow a \leq \sup \{\sup A, \sup b\} \Rightarrow$ $a \leq \sup \{\sup A, b\} \Rightarrow a \leq \sup A v b \Rightarrow \sup A v a \leq \sup A v b \Rightarrow$ $\sup A<\sup A v a \leq \sup A v b \quad(a s a \notin \bar{A})$. Then $b \notin \sup A$ (otherwise $a \leq \sup A v b=\sup A)$ so that by Lemma 1.2 .15 sup $A v b$ covers sup A and hence $\sup A v a=\sup A v b$. It then follows that $\overline{A V a}=\overline{A V b}$ and $b \in \overparen{A} \cup \mathbf{a}$.
$\left(C_{4}\right):$ Let $A \& S$. Well order A by $\left\{a_{1}, a_{2}, \ldots\right\}$ and define inductively the set

$$
b_{x}=\sup \left\{a_{1}, a_{2}, \ldots, a_{r}\right\}
$$

Then the chain $b_{1} \leq b_{2} \leq b_{3} \ldots$ is finite. Thus there exists n such that $b_{n+m}=b_{n}$ for all m. Therefore $\sup A=\sup \left\{a_{1}, \ldots, a_{n}\right\}$ and hence $\vec{A}=\left\{a_{1}, \cdots, a_{n}\right\}$.

Thus the closure defines a pregeometry $G(S)$ on S.

To show that the lattice of flats of $G(S)$ is isomorphic to (L, \leq) we define the function.f. $L(G) \rightarrow L$ by $f(A)=\sup A, \forall A \varepsilon L(G)$.

Let $A_{1} \neq A_{2}$ be-flats of $G(S)$. If sup $A_{1}=\sup A_{2}$, then $A_{1}=\bar{A}_{1}=\bar{A}_{2}=A_{2}$. Thus $f\left(A_{1}\right)=\sup A_{1} \neq \sup A_{2}=f\left(A_{2}\right)$ so that f is one to one.

Since (L, \leq) is geometric, $x=\sup B$ for some $B \leq S$, where $x \in L$. Then $\bar{B} \varepsilon L(G)$ and $f(\bar{B})=\sup \bar{B}=\sup B=x$. Hence f is onto.

To show that f preserves meet and join.
Let $A, B \in L(G)$. Then $A \cap B \subseteq A, A \cap B \subseteq B \Rightarrow \sup (A \cap B) \leq$ $\sup A$ and $\sup (A \cap B) \leq \sup B \Rightarrow \sup (A \cap B) \leq(\sup A) \wedge(\sup B)$. Put $x=\sup (A \cap B)$ and $y=(\sup A) \star(\sup B) . \quad$ Let $Y=\{a \varepsilon S / a \leq y\}$. Then $y \geq \sup Y$. Since (L, \leq) is geometric, $y=b_{1} v b_{2} \ldots v b_{n}$, where b_{i} 's are atoms. Then $b_{i} \varepsilon Y$ for $a l l i$ and so $y=\sup \left\{b_{1}, \ldots, b_{n}\right\}$ $\leq \sup Y$. Therefore $y=\sup Y$. Now $a \varepsilon Y \Rightarrow a \leq \sup A \Rightarrow a \varepsilon \bar{A}=A$ so that $Y \subseteq A$. Similarly $Y \subseteq B$. Hence $Y \subseteq A \cup B$ and $Y=\sup Y \leq$ $\sup (A \cup B)=x$ and sof($(a \wedge B)=f(A) \wedge f(B)$.

Now $f(A \vee B)=\sup (\overline{A \cup B})=\sup (A \cup B)=\sup \{\sup A, \sup B\}$
$=(\sup A) v(\sup B)=f(A) v f(B)$ and the theorem is proved.
1.2.18 A hyperplane in $G(S)$ is a flat covered by S in $L(G)$.

Thus no hyperplane properly contains another and so an intersection of distinct hyperplanes is not a hyperplane.

Before we close this section we prove a useful result.

[^0]PROOF. First we show that for any $A \in T$ in $L(G)$ and for any X
with $A \leq X \subseteq T, \exists Y \in L(G)$ such that $X \cap Y=A$ and $\overline{X U Y}=T$.

Since $\exists Y_{i}$ s.t. $A \subseteq Y_{i} \mathbb{C} T$ and $X M Y_{i}=A$, if $\overline{X U Y_{i}} \neq T$, let $b \varepsilon T \overline{X U Y}_{i}\left(\right.$ as $\left.\overline{X G Y_{i}} \quad T\right)$. Let $Y_{i+1}=Y_{i} \cup \bar{b}$. Then $\overline{X V Y_{i+1}}$ $\subseteq T$ and $\overline{X U Y_{i+1}}$ covers $\overline{X U Y_{i}}$. If follows that $X \cap Y_{i+1}=A$ (otherwise $\exists \mathrm{c} \varepsilon \mathrm{X} \cap \mathrm{Y}_{\mathrm{i}+1} \backslash \mathrm{~A}$ so that $\mathrm{Y}_{\mathrm{i}} \subset \mathrm{Y}_{\mathrm{i}} \cup \overline{\mathrm{c}} \subseteq \mathrm{Y}_{\mathrm{i}+1} \cup \overline{\mathrm{c}}=\mathrm{Y}_{\mathrm{i}+1}$. Since Y_{i+1} covers $Y_{i}, Y_{i} \cup \bar{c}=Y_{i+1}$. Then $\overline{X U Y_{i}}=\overline{\bar{c} \cup X \| Y_{i}}=$ $\overline{X \cup\left(\bar{c} \cup Y_{i}\right)}=\overline{X Y_{i+1}}$. A contradiction). If $\overline{X W Y} Y_{i+1} \neq T$ we then construct Y_{i+2} such that $X \cap Y_{i+2}=A, \overline{X U Y_{i+2}} \ldots T$ and $\overline{X U Y_{i+2}}$ covers $\bar{X} \cup Y_{i+1}$. As any chain in $L(G)$ is finite, after finitely many steps we have Y_{i+n} satisfying $x \cap y_{i+n}=A$ and $\overline{X U Y}_{i+n}=T$ as required.

Let $S \neq X$ be a flat of $G(S)$. Put $Y=\cap H$, where H is a hyperplane containing X. (H exists as a maximal chain from X to S exists and is finite). Obviously $X \subseteq Y \subseteq S$. By the above 3 a flat Z with $Y \cap Z=X$ and $\overline{Y \cup Z}=S$. Suppose $X \neq Y$. Then $X=Y \cap Z \neq Y$ which implies $Z \neq S$. Hence there exists a hyperplane H_{1} containing Z and so containing X as well. Thus $Y S_{1}$ and $Y \cup Z=S \Rightarrow Y H_{1}$ $=S \Rightarrow Y \nsubseteq H_{1}$. A contradiction. Hence $X=Y$ and the theorem is proved.

1.3 RANK

We characterise any pregeometry in terms of its rank.
1.3.1 The rank of any subset A of S in $G(S)$, written $r(A)$, is the maximal chain length from $\bar{\phi}$ to \bar{A} in $L(G)$.
$r(S)$ is the rank of the pregeometry $G(S)$. The points and
lines are the rank 1 and rank 2 elements respectively
1.3.2 LEMMA. In a geometric lattice the length of any chain from y to $x \vee y$ is not greater than that of any maximal chain from x to x.

PROOF. Let $x \wedge y=x_{0}<x_{1}<\ldots<x_{n}=x$ be a maximal chain from $x \wedge y$ to x. Put $y_{i}=y v x_{i}$. This gives

$$
y_{0}=(x \wedge y) \vee y=y \leq y_{1} \leq \ldots \leq y_{n}=x \vee y
$$

Since x_{i+1} covers x_{i}, by Lemma 1.2 .15 there exists an atom $a_{i} \notin \mathbf{x}_{i}$ with $x_{i+1}=x_{i} v a_{i}$ and hence $y_{i+1}=y \vee x_{i+1}=y v\left(x_{i} v a_{i}\right)=\left(y v x_{i}\right) v a_{i}$ $=y_{i} v a_{i}, i=0,1, \ldots, n-1$

If $a_{i} \nless y_{i}$, then y_{i+1} covers y_{i}.
If $a_{i} \leq y_{i}$, then $y_{i+1}=y_{i}$.
Hence with possible repetition of some elements we have a maximal chain from y to $x v y$ of length $\leq n$. Thus the lemma is proved.
1.3.3 LEMMA. The rank function r of any pregeometry $G(S)$ has the following properties.
$\left(R_{1}\right) r(A)+r(B) \geq r(A \cup B)+r(A \cap B), \forall A, B \subseteq S$. (semimodularity)
$\left(R_{2}\right) r(\phi)=0 \quad$ (normalized)
$\left(R_{3}\right) r$ is increasing
$\left(R_{4}\right) r(A \cup a)=r(A)+\left\{\begin{array}{l}0 \\ 1\end{array}, \quad \forall A \subseteq S, \forall a \varepsilon S . \quad\right.$ (unit increasing)
$\left(R_{5}\right)$ For all $A \subseteq S, \exists A_{f} \subset \subset A$ with $r\left(A_{f}\right)=r(A)$. (finite basis property)
proof. $\left(R_{1}\right):$ Given $A, B \subseteq S$. We note that $r(A)=r(\bar{A})$ and $\overline{\bar{A} \cup \bar{B}}=\overline{\mathrm{A} U \mathrm{~B}}$ by Lemma 1.1.7. Then

$$
\begin{aligned}
r(A \cup B)+r(A \cap B) & =r(\overline{A \cup B})+r(\overline{A \cap B}) \\
& =r(\overline{\bar{A} \cup \bar{B}})+r(\overline{\mathrm{~A} \cap B}) \\
& \leq r(\bar{A} \vee \bar{B})+r(\bar{A} \cap \bar{B}) \text { (as } A \subseteq \bar{A}, B \subseteq \bar{B} \Rightarrow \bar{A} \cap B \subseteq \bar{S} \bar{A} \cap \bar{B}=\bar{A} \cap \bar{B}) \\
& \leq r(\bar{A} \vee \bar{B})+r(\bar{A} \cap \bar{B})
\end{aligned}
$$

Now by Lemma 1.3.2 we have $r(\bar{A} \vee \bar{B})-r(\bar{B}) \leq r(\bar{A})-r(\bar{A} \wedge \bar{B})$ so that $r(\bar{A} \vee \bar{B})+r(\bar{A} \wedge \bar{B}) \leq \ddot{r}(\bar{A})+r(\bar{B})$ which is as desired.
$\left(R_{2}\right)$ follows from the definition of rank.
$\left(R_{3}\right)$ follows from the fact that $A \subseteq B \Rightarrow \bar{A} \subseteq \bar{B}$.
$\left(R_{4}\right)$: Let $A \subseteq S$. We consider the two cases. If $a \varepsilon \bar{A}$, then $\overline{A \cup a}=\bar{A}$ so that $r(A \cup a)=r(A)$. If a $\notin \bar{A}$, then by Lemma $1.1 .7 \bar{A} v \bar{a} \operatorname{covers} \bar{A}$: Hence $r(A \cup a)=r(A)+1$.
$\left(R_{5}\right)$: Let $A \subseteq S$. By $\left(C_{4}\right) \exists A_{f} \subset \subset A$ with $\bar{A}_{f}=A$ and then $r(A)=r\left(A_{f}\right)$.

We now link closure and rank function.
1.3.4 LEMMA. In any pregeometry $G(S)$ we have

$$
\bar{A}=\{a \varepsilon S / r(A \cup a)=r(A)\} \quad, \forall A \subseteq S
$$

PROOF. Let a $\varepsilon \bar{A}$. Then by Lemma 1.1.7 $\bar{A}=\bar{A} U$ a so that $r(A)=r(A \cup a)$. Given any a with $r(A \cup a)=r(A)$. If there exists $\mathrm{b} \varepsilon \overline{\mathrm{A} U \mathrm{a}} \overline{\mathrm{A}}$, then by Lemma $1.2 .10 \overline{\mathrm{~A} \cup \bar{b}}$ covers \bar{A} and so $r(A \cup b)>r(A)$. But as $b \cdot \varepsilon \overline{A \cup a}$ we have $r(A \cup a)=r(A \cup a \cup b)$ $\geq r(A \cup b)>r(A)$. A contradiction. Hence $\overline{A \cup a}=\bar{A}$ and $a \varepsilon \bar{A} . \because / /$

The following theorem characterises any pregeometry in terms of its rank function.
1.3.5 THEOREM. Any function $r: 2^{S} \rightarrow z$ which is semimodular, normalized, increasing, unit increasing and has the finite basis property is the rank function of a unique pregeometry on S, having closure given by
$\bar{A}=\{a \in S / r(A \cup a)=r(A)\}, \quad \forall A \subseteq S$.

Conversely the rank function of any pregeometry $G(S)$ is a function $r: 2^{S} \rightarrow Z$ which is semimodular, normalized, increasing, unit increasing, and has the finite basis property and the closure given by the above.

PROOF. Let $r: 2^{S} \rightarrow Z$ be semimodular, normalized, increasing, unit increasing and have finite basis property with the closure given by the above. We show that the closure as defined satisfies $\left(C_{1}\right)-\left(C_{4}\right)$.
$\left(C_{1}\right)$ is clear from definition.
$\left(C_{2}\right):$ Let $A \subseteq B, A, B \subseteq S$. For any a $\varepsilon \bar{A} \backslash B$ by semimodularity we have $r(A \cup a)+r(B) \geq r(B \cup a)+r\left(f_{2}\right)$. This implies $0 \leq r(B \cup a)-r(B) \leq r(A \cup a)-r(A)=r(A)-r(A)=0$. Thus a $\varepsilon \bar{B}$ and so $\bar{A} \cong \bar{B}$

To show that $\overline{\bar{A}}=\bar{A}, \forall A \& S$ we first show $r(\bar{A})=r(A)$. Let $B_{1} \subset \subset A$ with $r\left(B_{1}\right)=r(A)$ and let $C_{1} \subset \subset \bar{A}$ with $r\left(C_{1}\right)=r(\bar{A})$. Consider $C=B_{1} \cup C_{1}$ we have $C_{1} \subseteq C \subseteq \bar{A} \Rightarrow r(C) \leq r(\bar{A}) \Rightarrow r(C)=r(\bar{A})$ (as $\left.r(C) \geq r\left(C_{1}\right)=r(\bar{A})\right)$. Put $B=A \cap C$. Then $B_{1} \subseteq B \subseteq A \Rightarrow$ $r(B)=r(A)$.

If $B=C$, then $r(\bar{A})=r(C)=r(B)=r(A)$.
If $\exists a \in C \backslash B$, then $r(B) \leq r(B \cup a) \leq r(A \cup a)=r(A)=r(B)$.
Since $C \backslash B \subseteq \bar{A}$ and $C \times B$ is finite, suppose $C \times B=\left\{a_{1}, \ldots, a_{n}\right\}$. Now by semimodularity we have

$$
\begin{aligned}
& r\left(B \cup a_{1}\right)+r\left(B \cup a_{2}\right) \geq r(B)+r\left(B \cup a_{1} \cup a_{2}\right) \\
& \Rightarrow r(B)=r\left(B \cup a_{1}\right) \geq r\left(B \cup a_{1} \cup a_{2}\right)
\end{aligned}
$$

Also $r\left(B \cup a_{1} \cup a_{2}\right)+r\left(B \cup a_{3}\right) \geq r(B)+r\left(B \cup a_{1} \cup a_{2} \cup a_{3}\right)$
and hence $\quad r\left(B \cup a_{1} \cup a_{2}\right) \geq r\left(B \cup a_{1} \cup a_{2} \cup a_{3}\right)$.
Inductively for $i=1, \ldots, n$ we have

$$
r\left(B \cup a_{1} \cup \ldots \cup a_{1-1}\right) \geq r\left(B \cup a_{1} \cup \ldots \cup a_{i}\right)
$$

so that $r(B) \geq r(C)$. Hence $r(A)=r(B) \geq r(C)=r(\bar{A})$ and therefore $r(A)=r(\bar{A})$.

Now $r(\bar{A} \cup a) \leq r(\bar{A} \cup a) \leq r(\bar{A} \cup a)$ and since $r(A \cup a)=r(\overline{A \cup a})$ we have $r(A \cup a)=r(\bar{A} \cup a)$. Thus a $\varepsilon \bar{A} \ll r(A)=r(A \cup a) \Leftrightarrow r(\bar{A})=r(\bar{A} \cup a) \Leftrightarrow a \varepsilon \overline{\bar{A}}$.
$\left(C_{3}\right)$: Let $a \varepsilon \overline{A \cup b}$ and $a \notin \bar{A}, A \subseteq S, a, b \in S$. Since $a \notin \bar{A}$ and hence $r(A \cup a) \neq r(A)$, we have $r(A \cup a)=r(A)+1$. Now $r(A \cup a)$ $\leq r(A \cup b \cup a)=r(A \cup b) \leq r(A)+1$ so that $r(A \cup a)=r(A \cup a \cup b)$ and hence $b \in A \cup$.
$\left(C_{4}\right):$ Given $A \leq S$. There exists $A_{f} \subset \subset A$ with $r\left(A_{f}\right)=r(A)$. For any a $\varepsilon \bar{A}$ we have $r\left(A_{f}\right)=r(A)=r(A \cup a) \geq r\left(A_{f} \cup\right.$ a) so that $r\left(A_{f}\right)=r\left(A_{f} \cup a\right)$. Hence $a \varepsilon \bar{A}_{f}$, and $\bar{A}_{f}=\bar{A}$.

Then the closure defines a pregeometry $G(S)$ on S. We next show that r is rank function on $G(S)$. That is we have to show that $r(A)$ is the maximal chain length from $\bar{\phi}$ to \bar{A}. Given any $A \subseteq S$ and a maximal $\operatorname{chain} \bar{\phi}<A_{1}<\ldots<A_{n}=\bar{A}$ in $L(G)$. For each $i=1, \ldots, n-1, A_{i+1}$ covers A_{i} so that $A_{i+1}=\overline{A_{i} \cup a_{i+1}}$ for some $a_{i+1} \varepsilon A_{i+1} \backslash A_{i}$ and hence $r\left(A_{i+1}\right)=r\left(\overline{A_{i} \cup a_{i+1}}\right)=r\left(A_{i} \cup a_{i+1}\right)=r\left(A_{i}\right)+1\left(a s a_{i+1} \notin A_{i}\right)$. Inductively, $r(A)=r\left(A_{n}\right)=r\left(A_{n-1}\right)+1=r\left(A_{1}\right)+n-2+1=n$
1.3.6. COROLLARY. The pregeometry is a geometry if and only if all two element subsets have rank 2.

PROOF: If $G(S)$ is a geomety then $x \notin \stackrel{\hbar}{y} \Rightarrow r(x y) \neq r(y)=1$ $\Rightarrow r(x y)=2$.

Conversely, if $r(x y)=2$, as r is nommalized and unit increasing, $r(\phi)=0$ and $r(x)=1$.
1.3.7 EXAMPLE. Recall that a projective plane is a set of points S and lines, where lines are specified sets of points, satisfying the following axioms.

Axiom 1. Every two points belong to exactly one line.
Axiom 2. Every two lines have exactly one point in common.
Axiom 3. There are four points no three of which are in any line. Points on a line are collinear.
Define $r: 2^{s} \rightarrow z$ as follows :

$$
r(A)= \begin{cases}0 & \text { if } A=\phi \\ 1 & \text { if } A \text { is a singleton } \\ 2 & \text { if }|A| \geq 2 \text { and } A \text { is contained in a line } \\ 3 & \text { if } A \text { contains } 3 \text { non-collinear points }\end{cases}
$$

Then r is rank function on a pregeometry on S.

PROOF. To show that r is semimodular let $A, B \subseteq S$. We can assume that $A \neq B$.
case 1. A and B are singletons. Then $r(A)+r(B)=1+1=2$. Now there is a line containing $A \cup B$ so that $r(A \cup B)=2$. Hence $r(A \cup B)+r(A \cap B)=2+0=2=r(A)+r(B)$.
case 2. Both A and B are not singletons and contained in a line.

If A, B are contained in the same line, then $r(A \cup B)+r(A \cap B) \leq 2+2$ $=r(A)+r(B)$. In case A and B are contained in different lines we have $A \cap B$ is a singleton or the empty set so that $r(\cap \cap B) \leq 1$. Now $r(A \cup B)$ $+r(A \cap B) \leq 3+1=4=r(A)+r(B)$.
case 3. Both A and \mathbb{D} contain 3 non-collinear points. Then $r(A)+r(B)=3+3=6$. Since $r(X)+r(Y) \leq 6, \forall X, Y \subseteq S, r(A)+r(B)$ $\geq r(A \cup B)+r(A \cap B)$.
case 4. A is a singleton x and B is contained in a line L, where
$|B| \geq 2$. If $x \in L$, then $r(A B)+r(A \cap B)=2+1=3=r(A)+x(B)$. If $x \notin L$, we have $r(A \cup B)+r(A \cap B)=3+0=3: \leq r(A)+r(B)$.
case 5. A is a singleton x and B contains 3 non-collinear points. Then $r(A \cap B) \leq 1$ so that $r(A \cup B)+r(A \cap B) \leq 3+1 \leq 4$ $=r(A)+r(B)$.
case 6. A is contained in a line L, where $|A| \geq 2$ and B contains 3 non - collinear points. Then $r(A \cap B) \leq 2$ so that $r(A \cup B)+r(A \cap B) \leq 3+2=r(B)+r(A)$.

That r satisfies $\left(R_{2}\right)-\left(R_{5}\right)$ follows from the definition of r. Thus r is rank function on a pregeometry on S.
1.3.8 LEMMA. The conditions $\left(R_{1}\right)-\left(R_{5}\right)$ are independent.

PROOF. We see this by examining five examples in each of which exactly one of $\left(R_{1}\right)-\left(R_{5}\right)$ is not satisfied.
(i) Let $S=\{1,2,3\}$.

Define $r: 2^{S} \rightarrow z$ by

$$
r(A)= \begin{cases}0 & \text { if } A=\phi \\ 2 & \text { if } A=S \\ 1 & \text { otherwise }\end{cases}
$$

Then x does not satisfy (R_{1}) since

$$
r(12)+r(23)=1+1<r(12 \bigcup 23)+r(2) .
$$

$$
\text { (ii) Let } s=\{1,2\} \text {. }
$$

Define $x: 2^{s} \rightarrow z$ by $r(A)=1 \quad, \quad \forall A \leq S$.

Then r does not satisfy (R_{2}).
(iii) Let S be an infinite set.

Define $r: 2^{S} \rightarrow z$ by
$r(A)=\left\{\begin{array}{l}0 \quad \text { if } A^{C} \text { is finite, } \\ \min \{1,|A|\} \text { if } A^{C} \text { is infinite. }\end{array}\right.$

That r satisfies (R_{2}) follows from the fact that S is infinite.

To show that r satisfies $\left(R_{1}\right)$ let $A, B \subseteq S$. We consider three cases.
case 1. A^{C} and B^{C} are finite. Then $(A \cup B)^{C}=A^{C} \cap B^{C}$ is finite and $(A \cap B)^{C}=A^{C} \cup B^{C}$ is finite so that $r(A \cup B)+r(A \cap B)=0+0$. $=r(A)+r(B)$.
case 2. A_{2}^{C} is fin \boldsymbol{E}, and B^{C} is infinite. Then $(A \cup B)^{C}=A^{C} \cap B^{C}$ is finite and $(A \cap B)^{C}=A^{C} \cup B^{C}$ is infinite and so $r(A \cup B)+r(A \cap B)$ $\leq 0+1=r(A)+r(B)$.
case 3. A^{C} and B^{C} are infinite, and $A, B \neq \phi$, Then $r(A)+r(B)$

As $r(X)+r(Y) \leq 2, \forall X, Y \subseteq S$ we have $r(A)+r(B) \geq r(A \cup B)+r(A \cap B)$.

To see that r is not increasing consider the set $S \backslash x$ which is infinite so that $r(S \backslash x)=0$. Since $S \backslash x$ is infinite, there exists $\mathbf{x} \neq \mathrm{y} \varepsilon \mathrm{S} \backslash \mathrm{x}$. Now $r(\mathrm{y})=1$ which is as desired.

That r is unit increasing follows from the definition of r.

To show that r has finite basis property let $A \subseteq S$. If A^{C} is finite, we have $r(A)=0$. Then A is infinite and $\phi \subset \subset A$ with $r(\phi)=r(A)$. If A^{C} is infinite and A is infinite. Pick a εA. Now $a \subset \subset A$ and $r(a)=1=r(A)$. If A^{C} is infinite and A is finite we are finished.

Therefore r satisfies $\left(R_{1}\right)-\left(R_{5}\right)$ except $\left(R_{3}\right)$.
(iv) Let $s=\{1,2\}$.
befine $r: 2^{S} \rightarrow Z$ by $r(\phi)=0, r(1)=1, r(2)=2, r(S)=.3$. Then r satisfies $\left(R_{1}\right)-\left(R_{5}\right)$ except $\left(R_{4}\right)$.
(v) Let S be an infinite set.

Define $r: 2^{3} \rightarrow z$ by

$$
x(A)= \begin{cases}0 & \text { if } A=\phi \\ 1 & \text { if } A \text { is finite } \\ 2 & \text { if } A \text { is infinite }\end{cases}
$$

To show that r satisfies semimodularity let $A, B \subseteq S$. We consider the three cases and we may assume that $A, B \neq \phi$.
case 1. A and B are finite. Then $A \cup B$ is finite and $A A B$ is finite or empty so that $r(A)+r(B)=1+1 \geq r(A \cup B)+r(A \cap B)$.
case 2. A is finite and B is infinite. Then $A \cup B$ is infinite and $A \cap B$ is finite or empty and so $r(A)+r(B)=1+2 \geqslant \therefore$

```
r(A|B)+r(A\capB).
    case 3. A and B are infinite. Then r(A) +r(B)=2+2=4.
As r(X)+r(Y)\leq4, \forallX,Y\subseteqS, we have r(A) +r(B)\geqr(A\cupB) +r(A\capB).
```

 That \(r\) satisfies \(\left(R_{2}\right)-\left(R_{4}\right)\) is clear from the definition of \(r\).
 As \(r(S)=2\) and for every finite subset \(A\) of \(S\) we have \(r(A)=1\)
 $\neq 2$. Thus r . does not satisfy $\left(R_{5}\right)$.
//

1.4 INDEPENDENT SETS

We characterise any pregeometry in terms of its independent sets.
1.4.1 An independent set of a pregeometry $G(S)$ is a set with rank equal to its cardinality.

As every set has finite rank only finite sets can be independent.

Before we characterise any pregeometry in terms of independent sets we obtain some of their properties.
1.4.2 LEMMA. (i) Any subset of an independent set is independent.
(ii) All maximal independent subsets of any set A have same cardinality, i.e. $r(A)$.
(iii) If I_{1}, I_{2} are independent sets in $G(S)$ with $\left|I_{1}\right|<\left|I_{2}\right|$, then $\exists x \in I_{2} \backslash I_{1}$ such that $I_{1} \cup x$ is independent.

PROOF. (i) Let J be any subset of an independent set A. Then $r(A)=|A|$. By semimodularity $r(J)+r(A \backslash J) \geq r(A)+r(\phi)=|A|+0$ $=|A|=|J|+|A \backslash J| \geq|J|+r(A \backslash J)$ we have $r(J) \geq|J|$. On the other hand $r(J) \leq|J|$. Thus $r(J)=|J|$ so that J is independent.
(ii) Let A be any subset of S. Suppose that I is a maximal
independent subset of A with $|I|<r(A)$. Then $r(I)<r(A)$ and hence $\bar{I} \subset \bar{A}$. We observe that $\overline{\mathrm{I}} \underset{\neq}{ } A$ (otherwise by Lemma 1.1.7. $\overline{\mathrm{I}}=\overline{\mathrm{A}}$) and so there exists $x \in, \vec{A} \backslash \bar{I}$. Then $\overline{I U X}$ covers \bar{I} and $r(I \cup x)=r(I)+1=|I|+1=|I U x|$. Thus $I U x$ is an independent subset of A containing I. This contradicts the maximality of I. Hence $r(I)=r(A)$.
(iii) Let I_{1}, I_{2} be independent sets in $G(S)$ with $\left|I_{1}\right|<\left|I_{2}\right|$. Since I_{2} is an independent subset of $I_{1} \cup I_{2}$, any maximal independent subset of $I_{1} \cup I_{2}$ has size at least $\left|I_{2}\right|$. Let I be an independent subset of $I_{1} \cup I_{2}$ containing $I_{1}\left(I\right.$ exists as I_{1} is independent). Then $I * I_{1} \neq \phi$ (otherwise $|I|=\left|I_{1}\right|<\left|I_{2}\right|$). Thus I contains an element of $I_{2}+I_{1}$ which is as desired.

The following theorem characterises any pregeometry in terms of its independent sets.
1.4.3 THEOREM. Any nonempty family Tof finite subsets of S satisfying: (I_{1}) \tilde{j} is closed with respect to subsets. $\left(I_{2}\right)$ All elements of T contained in any subset A of S are contained in maximal elements of \mathcal{T} having the same cardinality. is the collection of independent sets of a (unique) pregeometry on S having closure given by

Conversely the independent sets of any pregeometry have the above properties.

PROOF. Let \mathcal{J} be a subset of 2^{S} satisfying the above conditions. Define $r: 2^{S} \rightarrow z$ as follows:

$$
r(A)=\max \{|I| / A \geq I \varepsilon \in\}
$$

We shall show that r satisfies $\left(R_{1}\right)-\left(R_{5}\right)$.

To show that r is semimodularity we note that for any subsets A, B of S a maximal independent set I_{1} in $A \cap B$ can be extended to a maximal independent set I_{2} in $A U B$. Thus

$$
\begin{aligned}
&\left|I_{2} \cap A\right|+\left|I_{2} \cap B\right|=\left|I_{2} \cap A \cap I_{2} \cap B\right|+\left|\left(I_{2} \cap A\right) \cup\left(I_{2} \cap B\right)\right| \\
&=\left|I_{1}\right|+\left|I_{2}\right| \\
&=r(A \cap B)+r(A \cup B) \\
& \text { Now } r(A)+r(B) \geq\left|I_{2} \cap A\right|+\left|I_{2} \cap B\right| \text { so that } \\
& r(A)+r(B) \geq r(A \cup B)+r(A \cap B)
\end{aligned}
$$

That r is increasing and unit increasing follows from the definition of r; and it is normalized as $\phi \varepsilon \vec{d}$.

To show that r has finite basis property let $A \subseteq S$. Pick a maximal element I of J which is contained in A. Then $r(A)=|I|=r(I)$.

Hence r satisfies $\left(R_{1}\right)-\left(R_{5}\right)$ so that x is the rank function of a unique pregeometry $G(S)$ on S.

To show that the closure of $G(S)$ defined as above we observe that $r(I)=|I| \Leftrightarrow I \varepsilon J$ and hence $r(A \cup a)=r(A), a \varepsilon \bar{A} \backslash A \Leftrightarrow a \cup I \notin \mathcal{J}, \exists A \geq I \varepsilon \bar{J}$. which is as desired.

The converse follows from Lemma 1.4 .2 and the uniqueness of the specification of a pregeometry from its rank function follows from the first half of this theoren.
1.4.4 COROLLARY. A pregeometry is a geometry if and only if all 2 - point sets are independent.

PROOF. Follows from Corollary 1.3.6 and the definition of independent sets.
1.4.5 LEMMA. Conditions $\left(I_{1}\right)$ and $\left(I_{2}\right)$ are together equivalent to $\left(I_{1}\right)$ and $\left(I_{2}^{\prime}\right)$, where $\left(I_{2}^{\prime}\right)$ is as follows:
$\left(I_{2}^{\prime}\right)$ If $A_{1} ; A_{2} \in T$ and $\left|A_{2}\right|=\left|A_{1}\right|+1$, then $\exists x \in A_{2}^{\text {ta }} A_{1}$ such that $A_{1} \cup \times \dot{\varepsilon} \tilde{J}$.

PROOF. Suppose that $A_{1}, A_{2} \varepsilon \mathscr{T}$ are maximal subsets of $X C^{T} S$ such that $\left|A_{1}\right|<\left|A_{2}\right|$. Then there exists $A_{2}^{\prime} G A_{2}$ with $\left|A_{2}^{0}\right|=\left|A_{1}\right|+1$ and so there exists $x \in A_{2}^{\prime} \quad A_{1}$ such that $A_{1} \cup \times \varepsilon \mathcal{J}$. This contradicts the maximality of A_{1} in J contained in x. Hence $\left|A_{1}\right| \geq\left|A_{2}\right|$.

$$
\text { Similarly }\left|A_{2}\right| \geq\left|\Lambda_{1}\right| \text { and therefore }\left|A_{1}\right|=\left|A_{2}\right|
$$

1.4.6 EXAMPLE. Let S be a tinite dimensional vector space. If we define \int to be the family of all linearly independent subsets A of S, then \mathcal{J} is the family of independent sets of a pregeometry on s.
1.4.7 LEMMA. The conditions $\left(I_{1}\right)$ and $\left(I_{2}\right)$ are independent.

PROOF. We see this by examining the following two examples in each of which exactly one of $\left(I_{1}\right)-\left(I_{2}\right)$ fails.
(i) Let $S=\{1,2\}$ and $T=\{\phi, 12\}$. Then only $\left(I_{1}\right)$ fails.
(ii) Let $S=\{1,2,3\}$. Let $J=\{\phi, 1,2,3,23\}$. Then only $\left(I_{2}\right)$ fails.
1.4.8 LEMMA. The following four conditions are equivalent.
(i) A is independent.
(ii) A is minimal among those sets having closure \bar{A}
(iii) In a giving listing a_{1}, a_{2}, \ldots of elements of A we have
$a_{i} \not \neq \overline{a_{1} \cdots a_{i-1}}, v_{i}$.
(iv) There exists no a $\varepsilon \mathrm{A}$ with a $\varepsilon \overline{\mathrm{A}=a}$.

PROOF. (iv) \Rightarrow (i).
In any $G(S)$ listing elements of A as a_{1}, a_{2}, \ldots

$$
\text { Put } x_{i}=\overline{a_{1} \cdots a_{i-1}}
$$

Then $a_{i+1} \nexists \overrightarrow{A-a_{i+1}} \geqslant x_{i}$ so that $x_{i+1} \geqslant x_{i}$. Consider the chain
 Thus $X_{n}=\bar{A}$ and $|A|=n$ so that A is independent.
(i) \Rightarrow (ii).

Suppose 3 C 穷 A with $\overline{\mathrm{C}}=\overline{\mathrm{A}}$. Let a $\varepsilon \mathrm{A}-\mathrm{C}$. Then a $\varepsilon \overline{\mathrm{A}}$ and so a $\varepsilon \overline{\mathrm{C}} \backslash \mathrm{C}$ so that there exists an independent set $I S_{0} C$ and $I U$ a is not independent. But $I \cup a \subseteq A$ and A is independent. A contradiction. Hence A is a minimal set having closure \bar{A}.

$$
\text { (ii) } \Rightarrow \text { (iii). }
$$

If $\exists a_{i} \varepsilon \overline{a_{1} \cdots a_{i-1}} \subseteq \overline{A>a_{i}}$, then by Lemma 1.1.7 $\bar{A}=\overline{A-a_{1}}$ so that A is not a minimal set having closure \bar{A}. Thus $a_{i} \notin \overline{a_{1} \cdots a_{i-1}}$, $\boldsymbol{*}_{i}$.

$$
\text { (iii) } \Rightarrow \text { (iv). }
$$

Suppose that $\exists a \in A$ such that $a \in \mathcal{A}$. Listing elements of A in a way that a is the $i^{\text {th }}$ element, for some fixed integer i :
Now $a_{i} \varepsilon \overrightarrow{A-a_{i}}$. By the finite basis property $\exists A_{f} \subset \subset A>a_{i}$ with
 Let j be the maximal suffix such that $a_{j} \varepsilon B$. Then $j>i$ (otherwise $B S_{1} a_{1} \cdots a_{i-1} \Rightarrow a_{i} \varepsilon \overline{A \times a_{i}}=\bar{B}\left[\overline{y_{1} \cdots a_{i-1}}\right.$ which contradicts the assumption). Now $a_{i} \notin \overline{B \backslash a_{j}}$ and $a_{i} \varepsilon \overline{\left(B \backslash a_{j}\right) / / a_{j}}$ so that by $\left(C_{3}\right), a_{j} \varepsilon \overrightarrow{\left(B-a_{j}\right) \cup a_{i}} \leq \overrightarrow{a_{1} \cdots a_{j-1}}$. A contradiction.

```
Thus there exists no a \varepsilon \widetilde{A\a.}
```


1.5 BASES

We characterise any pregeometry in terms of its collection of bases.

1.5.1 Defining a basis of $G(S)$ as a minimal set having S as closure we have

1.5.2 LEMMA. The bases of $G(S)$ are exactly the maximal independent sets in $\mathrm{G}(\mathrm{S})$.

PROOF. We first show that a basis B of $G(S)$ is a maximal independent set. Now B is a minimal set such that $\bar{B}=S$. If $\exists x \in B$ such that $x \in \bar{B} \backslash \bar{x}$, then $\bar{B}=\overline{B \backslash x}$ which is a contradiction. Thus $\forall x \in B, X \notin \overline{B \backslash X}$ so that, by Lemma 1.4.8, B is independent.

For any $x \notin B$ we have $x \in S=\bar{B}$ and so $r(B \cup x)=r(B)<|B \cup x|$. Therefore $B \cup x$ is not independent and hence B is a maximal independent set $\operatorname{in} G(S)$.

Next suppose that B is a maximal independent set in $G(S)$. Then $x \notin B \Rightarrow B \cup x$ is not independent, $\Rightarrow r(B \cup x)=r(B), \Rightarrow x \varepsilon \bar{B}$, $\Rightarrow \overline{\mathrm{B}}=\mathrm{S}$.

If $\exists x \in B$ such that $\overline{B X X}=S=\bar{B}$, then $r(B)=r(\bar{B})=r(B \quad x)$ $<|B|$, a contradiction. Thus B is a minimal set having S as closure; which is as required.
1.5.3 A subset A spans (generates) B in $G(S)$ if $B=\vec{A}$.

Thus every basis spans S.

We say that a depends on A if a $\varepsilon \bar{A}$. Then every element depends on any basis.
1.5.4 LEMMA. (i) Every independent set extends to a basis and this property characterises independent sets.
(ii) If A is an independent subset of a spaning set C, then there exists a basis B such that $A \subseteq B \subseteq C$.

PROOF. (i) Given an independent set I in $G(S)$. If $\bar{I} \underset{F}{C}$ consider a maximal chain of length n from \bar{I} to S :
 is a basis, having rank equal to its size.
(ii) As C is spaning we have $r(C)=r(S)$ so that there exists an independent subset of C of size $r(S)$. Let B be a maximal independent subset of C containing A. Then $r(B)=r(S)$ so that by Lemma 1.5.2 B is a basis.

We characterise any pregeometry in terms of its bases.
1.5.5 THEOREM. A nonempty family of finite subsets of s , each of the same size, is the collection of bases of a pregeometry on S if and only if it satisfies the following:
(B) If $B_{1}, B_{2} \in \mathcal{B}$ and $x \in B_{1} \rightarrow B_{2}$, then $\exists y \in B_{2} \rightarrow B_{1}$ such that ${ }^{\prime}\left(\mathrm{B}_{1} \cup \mathrm{y}\right)>\mathrm{x} \varepsilon \mathcal{B}$.

PROOF. That the family B of base of $G(S)$ satisfies (B) follows from Lemma 1.4.2.

Let β be a nonempty family of finite subsets of S of the same size satisfying (B).

Put $\mathcal{J}=\{I / I \subseteq A \in B\}$
Then $\mathcal{J} \neq \phi$ as $B \neq \phi$ and $\left(I_{1}\right)$ is satisfied from the definition of \mathcal{J}.

To show that J satisfies (I_{2}^{\prime}) let $A_{1}, A_{2} \varepsilon J$ with $\left|A_{2}\right|=\left|A_{1}\right|+1$. Then there exist $B_{1}, B_{2} \varepsilon B$ such that $A_{1} \subseteq B_{1}$, $A_{2} \subseteq B_{2}$. Let

$$
\begin{aligned}
A_{1} & =\left\{x_{1}, \ldots, x_{n}\right\}, \\
B_{1} & =\left\{x_{1}, \ldots, x_{n}, b_{1}, \ldots, b_{r}\right\}, \\
A_{2} & =\left\{y_{1}, \ldots, y_{n}, y_{n+1}\right\}, \\
B_{2} & =\left\{y_{1}, \ldots, y_{n}, y_{n+1}, c_{1} \ldots, c_{r-1}\right\} .
\end{aligned}
$$

Consider B_{1}, B_{2}. $B y$ (B), there exists $z_{1} \varepsilon B_{2}$ such that $B_{1}^{\prime}=\left(B_{1} \geqslant b_{1}\right) \cup z_{1} \in \mathcal{B}$.

If $z_{1} \in A_{2}$, then $A_{1} \cup z_{1} \in \mathcal{J}$ and (I_{2}^{\prime}) is satisfied.
If $z_{1} \notin A_{2}$ consider B_{1}^{\prime} and B_{2}. By (B) there exists $z_{2} \varepsilon B_{2}$ such that $B_{2}^{\prime}=\left(B_{i}^{\prime} \backslash b_{2}\right) \cup z_{2} \varepsilon B$. If $z_{2} \varepsilon A_{2}$ we are finished, if not remove b_{3} from B_{2}^{\prime} and so on. Since
$\left|\left\{b_{1}, \ldots, b_{r}\right\}\right|>\left|\left\{c_{1}, \ldots, c_{r-1}\right\}\right|$, we reach step $k(k \leq r)$, where $\mathrm{B}_{\mathrm{k}}^{\prime}=\left(\mathrm{B}_{\mathrm{k}-1}^{\prime} \backslash \mathrm{b}_{\mathrm{k}}\right) \cup \mathrm{z}_{\mathrm{k}} \in B$ and $\mathrm{z}_{\mathrm{k}} \in A_{2}$. Thus $\mathrm{B}_{\mathrm{k}}^{\prime} \geq \mathrm{A}_{1} \cup \mathrm{z}_{\mathrm{k}} \varepsilon \mathcal{J}$.

Therefore by Lemma 1.4.5 J is the family of independent sets of a pregeometry on s with B its family of bases
1.5.6 LEMMA. In any $G(S)$ the following statements are equivalent.
(i) H is a hyperplane of $\mathrm{G}(\mathrm{S})$.
(ii) $\bar{H} \neq S$ but $\overline{H U X}=S, \forall x \in S>H$.
(iii) No basis B is contained in H but if $x \in S \backslash H, \exists$ a basis B^{\prime} such that $x \in B \subseteq H \cup x$.
(iv) H is a maximal subset of S which is not spanning. (v) H is a maximal set of rank $r(S)-1$.

PROOF. (i) \Rightarrow (ii) follows from the definition of H.
(ii) $=>$ (iii) : Suppose that H contains a basis B. The $\mathrm{S}=\overline{\mathrm{B}} \subseteq \overline{\mathrm{H}}$ so that $\overline{\mathrm{H}}=\mathrm{S}$. Thus H does not contain any basis. Let $x \in S \quad H$. Then $\overline{H U X}=S$ so that $r(H \cup x)=r(S)$ and so $H \cup x$ contains a basis B and $x \in$ (otherwise H contains a basis).
(iii) \Rightarrow (iv) is obvious.
(iv) \Rightarrow (v) : By the assumption $r(H)<r(S)$. If $r(H)<$
$r(S)-1$, then H is not maximal non - spanning set. Thus $r(H)=$ $r(S)-1$. For any $x \in S \quad H, H U X$ is a spanning set and so it contains a basis. Hence $r(H \cup x)=r(S)$. Therefore H is a maximal set of rank $r(S)-1$.
(v) \Rightarrow (i) : It suffices to show that $\bar{H}=H$. Suppose $\exists x \in \bar{H} \backslash H$. Then $r(H \cup x)=r(\overline{H \cup X})=r(\bar{H})=r(H)=r(S)-1$, contradicting the maximality of H of $\operatorname{rank} r(\mathrm{~S})-1$. Thus $\overline{\mathrm{H}}=\mathrm{H} . \quad / /$

1.6 CIRCUITS

We characterise any pregeometry in terms of its circuits.
1.6.1. A subset A of S is dependent in $G(S)$ if it is not independent.

```
A circuit of G(S) is a minimal dependent subset of S.
```

1.6.2 LEMMA. The collection \bar{K} of circuits of $G(S)$ has the following properties.
$\left.\left(K_{0}\right) \quad c \in \mathcal{K} \Leftrightarrow r(C)=|c|-1=r(c\rangle a\right), \forall a \varepsilon c$.
(K_{1}) Any circuit is nonempty and finite.
$\left(K_{2}\right)$ No circuit properly contains another.
$\left(K_{3}\right)$ Every infinite subset of S contains a circuit.
$\left(K_{4}\right)$ If $C_{1}, C_{1} \neq C_{2} \varepsilon \mathcal{K}$ and a $\varepsilon C_{1} \cap C_{2}$, then $3 C \varepsilon \mathcal{K}$ s.t. $c \subseteq C_{1} \cup C_{2} \backslash a$.

PROOF. (K_{0}) is clear from the definition of circuits.
$\left(K_{1}\right)$: Since ϕ is independent, any circuit is nonempty.
As $r(C)=|c|-1$ any circuit is finite.
$\left(K_{2}\right):$ Since any circuit is a minimal depependent set, any circuit properly contains no other circuit.
$\left(K_{3}\right)$: If A is an infinite subset of S in $G(S)$, then A is dependent. Thus it contains a minimal dependent set which is a circuit.

$$
\left(K_{4}\right): \text { By semimodularity we have }
$$

$r\left(C_{1} \cup C_{2}\right) \leq r\left(C_{1}\right)+r\left(C_{2}\right)-r\left(C_{1} \cap C_{2}\right)=r\left(C_{1}\right)+r\left(C_{2}\right)+\left|C_{1} \cap C_{2}\right|$ (as $C_{1} \cap C_{2}$ is independent.)
and so

$$
\begin{aligned}
r\left(c_{1} \cup c_{2} \backslash a\right) & \leq r\left(c_{1} \cup c_{2}\right) \\
& \leq\left|c_{1}\right|-1+\left|c_{2}\right|-1-\left|c_{1} \cap c_{2}\right| \\
& <\left|c_{1} \cup c_{2} \backslash a\right|
\end{aligned}
$$

Thus $C_{1} \cup C_{2} \backslash a$ is dependent and hence contains a circuit which is as desired.

We link closure and circuits.
1.6.3 LEMMA. $\bar{A}=\{a / a \varepsilon C \subseteq A \cup a$, some circuit $C\} \dot{U} A$.

PROOF. Let a $\varepsilon C S_{F} \in \mathcal{U}$, for some circuit C. Then C a is independent so that by Theorem 1.4.3 a $\varepsilon \bar{A}$.

Conversely if a $\varepsilon \bar{A} \sim A$, then there exists an independent I $\& A$ such that $I U$ a is dependent. Pick a circuit $C \leqslant$ U \leqslant. Then a $\varepsilon C \leq I U$ a (otherwise C is independent).
1.6.4 THEOREM. Any subset G of 2^{S} which satisfies $\left(K_{1}\right)-\left(K_{4}\right)$ is the collection of circuits of a unique pregeometry on S, having closure given by

$$
\bar{A}=\{a / a \varepsilon C \subseteq A \cup a, \text { some } C \varepsilon \bigcup\} \bigcup_{0} A, \forall A \subseteq S
$$

Conversely the circuits of any pregeometry on S have the above properties.

PROOF. Assume that G is a subset of 2^{S} satisfying $\left(K_{1}\right)-\left(K_{4}\right)$. We first show that the closure defined as above satisfies $\left(C_{1}\right)-\left(C_{4}\right)$.
$\left(C_{1}\right)$ is trivial from the definition of closure.
$\left(C_{2}\right):$ Let $A \subseteq B$. For any a $\varepsilon \bar{A} \subset B$, a $\varepsilon C \subseteq A \cup$ a for some $C \varepsilon \mathscr{G}$ we have $a \varepsilon C \subseteq B \cup$ a so that $a \varepsilon \bar{B}$. Thus $\bar{A} \subseteq \bar{B}$. To show that $\overline{\bar{A}}=\bar{A}, \forall A \subseteq S$ we first show that C in $\left(K_{4}\right)$ can be chosen to contain any given $b \varepsilon C_{2} \backslash C_{1}$, i.e. we shall show $\left(\mathrm{K}_{4}^{\prime}\right) \mathrm{c}_{1}, c_{2} \varepsilon G, \quad$ а $\varepsilon c_{1} \cap{c_{2}}_{2}, \quad$ в $\varepsilon c_{2} c_{1} \Rightarrow \exists \mathrm{c} \varepsilon \mathcal{G}$ s.t. $\mathrm{b} \varepsilon \subset \leq \mathrm{C}_{1} \cup \mathrm{C}_{2} \cdots a$.

If not, there exist $C_{1}, C_{2}, a, b, a \varepsilon c_{1} \Pi^{\prime} C_{2}, b \varepsilon C_{2} C_{1}$
such that for any $c \in G$ and $a \notin c \leqslant C_{1} \cup C_{2}$ we have $b \notin c$. Choose
one such with $\left|c_{1} \cup c_{2}\right|$ minimal. Let $c \in \mathscr{G}$ be such that a $\notin C \subseteq C_{1} \cup C_{2} . \quad B y\left(K_{2}\right) C \sum_{\neq} C_{2}$ and so $\nexists b \neq c \in C \backslash C_{2}$. Since $c \subseteq c_{1} \cup C_{2}$ and $c \notin c_{2}, c \in C_{1}$. Now $C_{1} \cup c \subseteq c_{1} \cup c_{2}$ and $b \varepsilon\left(C_{1} \cup C_{2}\right) \backslash\left(C_{1} \cup C\right)$ so that $\left|C_{1} \cup c\right|<\left|C_{1} \cup C_{2}\right|$. Therefore $\exists c_{3} \varepsilon G, c_{3} \subseteq c_{1} \cup c$, containing a but not c (as $\left|c_{1} \cup c_{2}\right|$ is minimal such that $\left(K_{4}^{\prime}\right)$ fails).

Observe that $C_{3} \cup C_{2} \subseteq c_{1} \cup C \cup C_{2}=C_{1} \cup C_{2}$ and $b \notin C_{3}$ as $\mathrm{b} \not \& \mathrm{C}_{1}, \mathrm{C}$ and so $\mathrm{b} \in \mathrm{C}_{2}>\mathrm{C}_{3}$. Since $\mathrm{c} \& \mathrm{C}_{3}, \mathrm{C}_{2}$ but $\mathrm{c} \in \mathrm{C}_{1}, \mathrm{C}_{2}$ we have $c \in\left(C_{1} \cup C_{2}\right) \backslash\left(C_{3} \cup C_{2}\right)$ and hence $\left|C_{3} \cup C_{2}\right|<\left|C_{1} \cup C_{2}\right|$ As $\left|C_{1} \cup c_{2}\right|$ is minimal there exists an element c of \smile contained in $C_{3} \cup C_{2}$ containing b and not containing a $\varepsilon C_{3} \cap C_{2}$. Thus $\exists C^{\prime} \varepsilon \mathcal{G}$ such that a $\not \approx C^{\prime} \leq c_{1} \cup C_{2}$ and $b \varepsilon C^{\prime}$. This contradicts the assumption of C_{1}, C_{2}. Therefore $\left(K_{4}^{\prime}\right)$ is obtained.

Given $A \leq S$. If $b \in \overline{\bar{A}} \backslash \bar{A}$, then $\exists C_{2} \varepsilon \stackrel{\emptyset}{6}$ s.t. $b \in C_{2} \in \tilde{A} \cup b^{-}$ and $C_{2} f A \cup b(a s b \notin \bar{A})$. Hence $C_{2} \subseteq \bar{A} \cup b=(\bar{A}, A) \cup(A \cup b)$ so that we can choose a $\varepsilon C_{2} \cap(\bar{A}, A)$. Thus a $\varepsilon \bar{A} \Rightarrow \exists C_{1} \varepsilon$ Gs.t a $\in C_{1}\left\{\cap \cup\right.$. Hence $a \in C_{1} \cap C_{2}$ and $b \in C_{2} C_{1}$ (as $b \notin \bar{A} \Rightarrow$ $\left.\mathrm{b} \notin \mathrm{C}_{1} \subseteq \mathrm{~A} \cup \mathrm{a} \subseteq \overline{\mathrm{A}}\right)$ so that by $\left(\mathrm{K}_{4}^{\prime}\right) \exists \mathrm{C}_{3} \varepsilon$ O s.t b \& $\mathrm{C}_{3} \subseteq \mathrm{C}_{1} \cup \mathrm{C}_{2} \subseteq \overline{\mathrm{~A}} \cup \mathrm{~b}$ and $a \notin C_{3}$. Now the finite set $(\bar{A} \backslash A) \cap C_{3} f(\bar{A} \cap A) \cap C_{2}$ (as $\left.(\bar{A} \backslash A) \cap C_{3} \leq\left[(\bar{A} \backslash A) \cap C_{1}\right] \cup(\bar{A} \backslash A) \cap C_{2}\right]$ and $(\bar{A} \backslash A) \cap C_{1}=a$, $\left.a \varepsilon(\bar{A} \backslash \bar{A}) \cap C_{2} \backslash(\bar{A} \backslash A) \cap C_{3}\right)$.

If $(\bar{A} \backslash A) \cap C_{3} \neq \phi$ consider C_{3} and C_{1} instead of C_{2} and C_{1}, and obtain $C_{4} \varepsilon \bar{G}^{\prime}$ s.t $(\bar{A} \backslash A) \cap C_{4} \subseteq(\bar{A} \backslash \bar{A}) \cap C_{3}$ and $b \in C_{4}$. Eventually in finitely many steps we obtain $C \in G$ such that $(\bar{A} \backslash A) \cap C=\phi$ and $\mathrm{b} \varepsilon \mathrm{C}$. Then $\mathrm{b} \varepsilon \mathrm{C} \subseteq A \cup \mathrm{~b} \Rightarrow \mathrm{~b} \varepsilon \overline{\mathrm{~A}}$. A contradiction. Therefore $\overline{\bar{A}}=\overline{\mathrm{A}}$.
$\left(C_{3}\right)$: Let $a \varepsilon \overline{A \cup B}$ and $a \notin \bar{A}, A \subseteq S, a, b \varepsilon S$. There exists

C εG s.t a $\varepsilon C \leq A \cup b U$ a. Now $C \bar{A} A U$ a since $a \notin \bar{A}$. Hence $C \subseteq A \cup b$ and $b \varepsilon C$ so that $C \subseteq A \cup a$. Thus $b \in \overline{A U a}$.
$\left(C_{4}\right)$: Let $A S_{S}$. Consider the family of subsets of A which do not contain an element of ζ and partially order them by set inclusion. This family is not empty as it contains ϕ. It contains only finite sets. If the upper bound of any chain contains an element of \int_{0} then some member of the chain will also contain this finite set. This contradicts the choice of members of the set, so the set contains an upper bound of each chain. By Zorn's Lemma there exists a maximal element A_{f} in this family. Obviously A_{f} is finite. If Ta $\in A \backslash A_{f}$, then $\exists C \varepsilon G$ S.t. $a \varepsilon C \subseteq A_{f}\left(J\right.$ a (as A_{f} is maximal). Thus $\bar{A}_{f} \geqslant A$ and hence $\overline{\bar{A}}_{f}=\bar{A}_{f} \geqslant \bar{A}$. Since $\bar{A}_{f} \subseteq A, \bar{A}_{f} \bar{A}$ and therefore $\bar{A}_{f}=\bar{A}$.

Hence the closure defines a pregeometry $G(S)$ on S. To show that C_{0} is the family of circuits we first show that every element c ε Gis a circuit.

$$
c \in \bigcup \Longrightarrow c \in c \leftrightarrows(c, c) U c \Rightarrow c \in \overline{C \backslash c} \Rightarrow \exists c_{0} \varepsilon K_{\mathrm{c} . \mathrm{t}}
$$

$c \varepsilon C_{0}(C \backslash c) \cup c=C \Rightarrow C_{0} \subseteq C$

$$
\left.x \in C_{0} \subseteq\left(C_{0} \backslash x\right) \bigcup x \Rightarrow x \varepsilon \cdot \overline{C_{0} \backslash x} \Rightarrow \not C^{i} \varepsilon\right\} \mathrm{s} . \mathrm{t}
$$

$x \in C^{\prime} \subseteq\left(C_{0} \backslash x\right) \cup x \Rightarrow C^{\prime} \subseteq C_{0} \subseteq C \Rightarrow C^{\prime}=C=C_{0}$ Thus $\mathrm{C} \in \bigvee$ 。

By interchanging the roles of \mathbb{K} and \mathcal{O} in the above we show that every circuit is in φ.

The uniqueness of the pregeometry follows from the definition of closure in terms of circuits.
cìrcuits have cardinality at least 3 .

PROOF. Follows from Corollary 1.4.4 -

We recall that a graph (V, E) is a set V of vertices and a family E of unordered pairs of vertices, called edges, and a polygon is a finite set of edges $\left\{\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right), \ldots\left(\mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}\right),\left(\mathrm{v}_{\mathrm{n}}, \mathrm{v}_{1}\right)\right\}$ with $i \neq j \Rightarrow v_{i} \neq v_{j}$.
1.6.6. EXAMPLE. The polygons of any graph, in which any infinite collection of edges contains a polygon, are the circuits of a pregeometry on the set of edges of the graph.

PROOF. We need only show that the collection of polygons satisfy (K_{4}).

Consider two polygons,

$$
\begin{aligned}
& c_{1}:\left(v_{1}, v_{2}\right), \ldots,\left(v_{n-1}, v_{n}\right),\left(v_{n}, v_{1}\right) \\
& c_{2}:\left(w_{1}, w_{2}\right): \ldots,\left(w_{m-1}, w_{m}\right),\left(w_{m}, w_{1}\right)
\end{aligned}
$$

such that $C_{1} \cap C_{2} \neq \phi$. Without loss of generality we assume $\left(v_{1}, v_{2}\right)=\left(w_{1}, w_{2}\right)$ and $v_{1}=w_{1}, v_{2}=w_{2}$.

Consider the collection $\left(v_{2}, v_{3}\right) \ldots,\left(v_{n-1}, v_{n}\right),\left(v_{n}, v_{1}\right)$, $\left(w_{1}, w_{m}\right),\left(w_{m}, w_{m-1}\right), \ldots,\left(w_{3}, w_{2}\right)$. This is a finite closed path. Hence it contains a minimal closed path - or polygon - which does not contain (v_{1}, v_{2}).
1.6.7 LEMMA. The conditions $\left(\mathrm{K}_{1}\right)-\left(\mathrm{K}_{4}\right)$ are independent.

PROOF. We see this by examining the following four examples in each of which exactly one of $\left(\mathrm{K}_{1}\right)$ - $\left(\mathrm{K}_{4}\right)$ is not satisfied.
(i) Let s be any set and $\mathcal{K}=\{\phi\}$. Then only (\mathcal{K}_{1}) fails.
(ii) Let $S=\{1,2\}$ and $\mathbb{K}=\{1,2,12\}$. Then only $\left(K_{2}\right)$
fails.
(iii) Let s be an infinite set. Let $x \neq y \varepsilon s$. Put $\mathcal{K}=\{x, y\}$. Then only $\left(K_{3}\right)$ fails.
(iv) Let $S=\{1,2,3\}$ and $\mathbb{K}=\{12,23\}$. Then only (K_{4})
fails.

We link bases and circuits of pregeometries.
1.6.8 LEMMA. If B is a basis of $G(S)$ and $x \in S \backslash B$, then there exists a unique circuit $C=C(x, B)$ such that $x \in C \leq B \cup \mathbf{x}$.

This circuit is the fundamental circuit of x with respect to the basis B.

PROOF. First we show that $I U x$ contains at most one circuit if I is independent in $G(S)$ and $x \varepsilon S$. Suppose that $I U x$ contains two distinct circuits C_{1}, C_{2}. As I is independent C_{1} and C_{2} both contain x. Now $x \in C_{1} \cap C_{2}$ and hence by (K_{4}) \exists a circuit C_{3} of $G(S)$ such that $C_{3} \subseteq C_{1} \cup C_{2} \backslash x$. But $C_{1} \cup C_{2} \backslash x \subseteq I$. Thus I contains a circuit C_{3}. A contradiction.

Let B be a basis of $G(S)$ and $x \in S \backslash B$. Then $B \cup x$ is dependent and it contains a circuit C. Rince B is independent, $C \nsubseteq B$. and so $x \in C \subseteq B U x$. As $B U x$ contains at most one circuit, C is unique.

As a consequence of Lemma 1.6 .8 we have the following stronger result, writing $C(x, B)$ for the unique circuit C such that $x \in C \subseteq B U x$.
1.6.9 THEOREM. Consider any basis B of $G(S)$ and any $x \in S \backslash B$. Then $(B \backslash y) \cup x$ is a basis of $G(S)$ if and only if $y \varepsilon C(x, B)$.

PROOF. Le: $(B \backslash y) \cup x$ be a basis of $G(S)$. Then $C(x, B) \leq B \cup x$. Suppose $y \notin C(x, B)$. Then $C(x, B) \subseteq(B \backslash y) \cup x$ and so $(B \backslash y) \cup x$ can not be a basis. Hence $y \in C(x, B)$.

Assume that $y \in C(x, B)$. If $(B \backslash y) \cup x$ is not a basis, Then $(B \backslash y) U x$ contains a circuit C^{\prime}. Hence $B U x$ contains a circuit $C^{\prime} \neq C(x, B)$. A contradiction. Thus ($\left.B \backslash Y\right) \cup x$ is a basis. //

1.7 FLATS

We present a characterisation of any pregeometry in terms of flats, which is due to Roberts [73].
1.7.1 THEOREM. Let $F_{r}, r=0,1,2, \ldots, n$, be disjoint families of subsets of an arbitrary set S, with F_{n} consisting of S alone. A subset A of S is F-dependent iff A is contained in some member of F_{r}, for some $r<|A|$; otherwise A is F-independent. Suppose
(1) Each F-independent r-element subset R of S is contained in exactly cne member of F_{r}, denoted by $M(R)$, for $r=0,1, \ldots, n$; denoting a typical member of F_{r} by F_{r},
(2) If F_{r} contains an F-independent $(r-1)$-element subset R of S, then $F_{r} M(R)$, for $r=1,2, \ldots, n$;
(3) $\mathrm{F}_{r} \ngtr \mathrm{~F}_{s} \Rightarrow r>s$.

For $A \subseteq S$, we define $J(A)$ to be the intersection of all members of
$\bigcup_{r=0}^{n} F_{r}$ containing A.
The above conditions define a pregeometry on S, with J the
closure, F_{r} the set of flats of rank r, and the F-independent sets being exactly the independent sets. Conversely, given a pregeometry on S with F_{r} its set of flats of rank r, the above conditions are fulfilled, with the independent sets being exactly the F-independent sets, and the closure being J.

The pregeometry is a geometry iff F_{0} consists of the empty set alone and F_{1} consists of all singleton subsets of S.

PROOF. We require several preliminary lemmas.
1.7.2 LEMMA. If R is an F-independent r-element set and $a \not \subset M(R)$; then $R U$ a is an F-independent $(r+1)$-element set.

PROOF. By the definition of F-independence, R, and hence $R \cup a$, is contained in no F_{t}, for $t<r$. Suppose R if $a \leq F_{r}$. Then by (1), $\mathrm{F}_{r}=M(\mathrm{R})$, contradicting the choice of a.
1.7.3 LEMMA. If $t<r$, and F_{r} contains an F-independent t-element set T, then $\mathrm{F}_{r} \underset{\neq}{\longrightarrow} \mathrm{M}(\mathrm{T})$.

PROOF. If $t=r-1$, the above is true by $(2 ;$. If $t<r-1$, $M(T) \neq F_{r}$ by (3), and $M(T) \neq F_{r}$ since the families F_{r} are disjoint. Thus there is an $a_{1} \varepsilon F_{r} \backslash M(T)$. By Lemma 1.7.2, $T_{1}=T U a_{1}$ is an F-independent $(t+1)$-element set. Again, if $t+1<r-1$, there is an $a_{2} \in F_{r} \backslash M\left(T_{1}\right)$ such that $T_{2}=T_{1} \cup a_{2}$ is an F-independent $(t+2)-$ element set. We continue thus until we have an F-independent $(x-1)-$ element set T_{r-t-1}. Then, by repeated use of (2),
1.7.4 LEMMA. If $A \subseteq S$, there exists a maximal F-independent subset of A. If R is any maximal F-independent subset of A, then
$J(\Lambda)=M(R)$.

PROOF. Every subset of S of cardinality exceeding n is F-dependent, while the empty set is F-independent. Thus there exists at least one maximal F-independent subset of A, say R; let R have cardinality r. Then

$$
\begin{aligned}
F_{t} \supseteq A & \Rightarrow F_{t} \supseteq R, \\
& \Rightarrow t \geq r,
\end{aligned}
$$

by the definition of F-independence. If $t>r, F_{t} \supsetneq M(R)$ by Lemma 1.7.3; if $t=r, F_{t}=M(R)$ by (1). Thus $F_{t} \supseteq A \Rightarrow F_{t} \supseteq M(R)$. If $M(R) \neq A$, let $x \in A \backslash M(R)$. Then $R U x$ is F-independent by Lemma 1.7.2, contradicting our choice of R. Thus $J(A)=M(R)$.
1.7.5 LEMMA. Any subset of an F-independent set is F-independent.

PROOF. We show that any superset of an F-dependent subset T of S is F-dependent. Let R be a maximal F-independent subset of T, and let $a \varepsilon S \backslash T$. Then if a $\varepsilon M(R), T \cup a \subseteq M(R)=J(T)$ by Lemma 1.7.4, and $T U$ a is F-dependent. If $a \notin M(R), R \cup$ a is F-independent by Lemma 1.7.2. Thus, using (2),
and $T U a \subseteq M(R \cup a)$; hence $T U$ a is again F-dependent, since $R U$ a has lesser cardinality than $T \cup$ a. Since any infinite subset of S is F-dependent, any superset of an F-dependent subset of S is F-dependent.
1.7.6 LEMMA. Let R be a maximal F-independent subset of $A \leftrightarrows$, and let $R \cup x$ be F-independent for some $x \in S \backslash A$. Then $R U x$ is a maximal F-independent subset of $A \cup x$.

PROOF. Suppose $R \cup x \cup y$ is an F-independent subset of $A \cup x$, where $y \in A \backslash R$. Then by Lemma 1.7.5, $R \cup y$ is F-independent, contradicting our choice of R.

PROOF OF THEOREM 1.7.1 Suppose the families F_{r} of subsets of S satisfy the conditions of the theorem. Since $S \varepsilon F_{n}$, if $A \subset S$, the intersection in the evaluation of $J(A)$ is not vacuous. Thus, from the definition of $J, A \subseteq J(A)$, and if $A \subseteq B, J(A) \subseteq J(B)$. If R is a maximal F-independent subset of $A, J(A)=M(R)$ by Lemma 1.7.4, giving immediately the finite basis property for J (since $J(A)=J(R)=M(R)$) and the idempotency of J (since $J(M(R)=M(R))$.

To show that S is a pregeometry with J as its closure, we still need to show that J satisfies the exchange property. Suppose $\mathrm{a}, \mathrm{b} \in \mathrm{S}$ such that $\mathrm{b} \notin J(A)=M(R)$, but $b \varepsilon J(A \cup \mathrm{a})$, with a and R as above. If $R U$ is F-dependent, R is a maximal F-independent subset of $A \cup a$, so that $J(A \cup a)=M(R)=J(A)$, contradiction. Thus $R U$ a is F-independent, and, since $a \notin A, R \cup$ a is a maximal F-independent subset of $A \cup a$ by Lemma 1.7.6. Then $J(A \cup a)=M(R \cup a)$ by Lemma 1.7.4, and $b \varepsilon M(R \cup a)$. Now $b \notin M(R)$, so that $R \cup b$ is F-independent by Lemma 1.7.2, and $M(R \cup b)=M(R \cup a)$. From Lemma 1.7.6 and 1.7.4, since $b \notin A$ and $R U b$ is f-independent, $J(A \cup b)=M(R \cup b)$. Thus

$$
a \varepsilon M(R \cup a)=M(R \cup b)=J(A \cup b),
$$

and the exchange property for J is verified. Thus the cilosure J difines a pregeometry $G(S)$ on S.

Let $A \subseteq S$, and let R be a maximal F-independent subset of A. n
Then $J(A)=M(R) \varepsilon \bigcup_{r=0} F_{r}$ by Lemma 1.7.4; on the other hand
$F \in \bigcup_{r=0}^{n} F_{r} \Rightarrow J(F)=F$, by the definition of J, and the flats of $G(S)$ are exactly the members of $\bigcup_{r=0}^{n} F_{r}$.

If $T \in F_{t^{\prime}}$ let R be a maximal F-independent subset of T. If $|R|<t, T \geq M(R)$ by Lemma 1.7.3; then if $x \in T \backslash M(R), R \cup x$ is F-independent by Lemma 1.7 .2 , contradicting our choice of R. Thus $|R|=t$; let $R=r_{1} \ldots \ldots r_{t}$. If $1 \leq i \leq t$,

$$
\begin{aligned}
& r_{1} \ldots r_{i-1} \subseteq r_{1} \ldots r_{i} \\
& \Rightarrow J\left(r_{1} \ldots r_{i-1}\right)=M\left(r_{1} \ldots r_{i-1}\right) \not \Im^{M}\left(r_{1} \ldots r_{i}\right)=J\left(r_{1} \ldots r_{i}\right)
\end{aligned}
$$

Then

$$
J(\phi) \varsubsetneqq J\left(R_{1}\right) \varsubsetneqq J\left(r_{1}, r_{2}\right) \varsubsetneqq \cdots \cdots \cdot \subseteq \mathcal{F} J(R)=T
$$

is a maximal chain from $J(\phi)$ to T in $L(G)$, and F_{t} is the set of flats of rank t in $G(S)$, for each t.

Let A be a subset of S, and R a maximal F-independent subset of A. Then the rank of A in $G(S)$ is the (finite) cardinality of R, and A is F-independent iff $R=A$, iff the rank and cardinality of A are the same. Thus the F-independent sets are precisely the independent sets of $G(S)$, completing the proof of the first part of the theorem.

Conversely, let $G(S)$ be a pregeometry of rank n on a set S, and $L(G)$ its lattice of flats. Let F_{r} be the family of flats of rank r in $G(S)$, for $r=0,1, \ldots, n$ then the families F_{r} are disjoint, and F_{n} consists of S alone. Now any infinite subset of S is both dependent and F-dependent; hence let A be a finite subset of S, of cardinality t. If A is dependent, $r(A)<t$, and A is F-dependent. If A is F-dependent, $A \subseteq F_{r}$ for some $r<t$; then $\bar{A} \subseteq F_{r}$ by the cefintion of closure and $r(A) \leq r<t$, so that A is dependent. Thus the independent sets of G(S) are exactly the F-independent sets.

Any independent r-element subset R of S is contained in one member of F_{r}, namely \bar{R}. If $R \subseteq F_{r} \neq \bar{R}, R \subseteq F_{r} \cap \bar{R} \varepsilon F_{t^{\prime}}$ for some $t<r$, contradicting the fact that $r(R)=r$. Thus (1) is true. If F_{r} contains an independent $(r-1)$-element subset R of $S, F_{r} \geqslant \bar{R}$ by the definition of closure; $F_{r} \neq \bar{R}$ because their ranks in $G(S)$ differ, and so (2) is true. (3) is true by the definition of rank in G(S).

The last statement of the theorem is immediate from $\left(C_{5}\right)$ and $\left(C_{6}\right)$, and the proof of the theorem is complete. //

2 BASIC PROPERTIES OF PREGEOMETRIES

2.1 ISOMOPPHISMS

2.1.1 Two pregeometries $G(S)$ and $G\left(S^{\prime}\right)$ are isomorphic if there is a bijection $i: S \rightarrow S^{\prime}$ such that $i(\bar{A})=\overline{i(A)}, \quad \forall \hat{A} \subseteq S$.

We write $G(S) \cong G\left(S^{\prime}\right)$ and call i an isomorphism from $G(S)$ to G(S').

Now we examine the relations between isomorphism and the varjous characterisations of pregeometries.
2.1.2 THEOREM. Two pregeometries $G(S)$ and $G\left(S^{\prime}\right)$ with rank functions r and r^{\prime} respectively are isomorphic if and only if there exists a bijection $i: S \rightarrow S^{\prime}$ satisfying $r(A)=r^{\prime}(i A), \forall A \subseteq S$.

PROOF. First assume that $G(S) \cong G\left(S^{\prime}\right)$. Then there exists an isomorphism i : $S \rightarrow S^{\prime}$. Let $A \subseteq S$. Consider any maximal chain $\bar{\phi}<\bar{A}_{1}<\ldots<\bar{A}_{n}=\bar{A}$ in the lattice of flats of $G(S)$. Then $\bar{\phi}<\overline{i A}_{1}<\ldots<\overline{i A}_{n}=\overline{i A}$ is a chain in the lattice of flats in $G\left(S^{\prime}\right)$. Suppose $\exists j$ such that $\overline{i A_{j}}<y<\overline{i A_{j+1}}$ for some flat Y of $G\left(S^{\prime}\right)$. Hence $\bar{A}_{j}<X<\bar{A}_{j+1}$, where $i(X)=Y$. Now $i(\bar{X})=\overline{i X}=\bar{Y}=Y=i X$ so that $X=\vec{X}$ and hence X is a flat in $G(S)$. A contradiction. Thus $r^{\prime}(i A)=r(A)$.

Conversely let $i=S \rightarrow S '$ be a bijection satisfying $r(A)=r^{\prime}(i A), \forall A \subseteq \subseteq$. Let $A \subseteq S$. Then $x \in i(\bar{A}) \Rightarrow x=i(y)$ for some $y \in \bar{A}, \Rightarrow r(A \cup y)=r(A), \Rightarrow$ $r^{\prime}(i(A \cup y))=r^{\prime}(i A), \Rightarrow r^{\prime}(i A \cup i y)=r^{0}(i A) \Rightarrow r^{\prime}(i A \cup x)$ $=r^{\prime}(i A), \Rightarrow x$ i $\overline{i A}$.

Thus $i(\bar{A}) \subseteq \overline{i A}$.
$y \varepsilon i A \Rightarrow r^{\prime}(i A \cup y)=r^{\prime}(i A), \Rightarrow r^{\prime}(i(A \cup x))=r^{\prime}(i A)$, where $y=i x$ for some $x \varepsilon S, \Rightarrow r(A \cup x)=r(A) \Rightarrow x \varepsilon \bar{A}_{1}$, $\Rightarrow y \in i(\bar{A})$.

Therefore $\overline{i A} \leq i(\bar{A})$ and so $i(\bar{A})=\overline{i A}$.

In fact an isomorphism between two pregeometries preserves. rank, independence,bases and circuits and vice versa.
2.1.3 THEOREM. A bijection $i: S \rightarrow S^{\prime}$ is an isomorphism from $G(S)$ to $G\left(S^{\prime}\right)$ exactly when any one of the following three conditions holds,
(i) I is independent in $G(S) \Leftrightarrow i(I)$ is independent in $G\left(S^{\prime}\right)$,
(ii) B is a basis in $G(S) \Leftrightarrow i(B)$ is a basis in $G\left(S^{\prime}\right)$,
(ii£) C is a circuit in $G(S) \ll i(C)$ is a circuit in $G\left(S^{\prime}\right)$.

If i is an isomorphism then the induced map on flats is a lattice isomorphism.

Conversely, if GiS) and G(S') are geometries the existence of the lattice isomorphisni induces a geometric isomorphism.

```
        PROOF. First; i is an isomorphism from G(S) to G(S')
<r(A)=r'(iA), \forallA\subseteqS,
& |A| =r(A) exactly when |iA | = r'(iA),
<< Condition (i) holds.
Secondly; condition (ii) is equivalent to (i).
Thirdly; the equivalence of (iii) follows from (i) and (K
Let i be an isomorphism from G(S) to G(S'). Let L(G) and L(G')
```

be the lattices of flats of $\mathrm{G}(\mathrm{S})$ and $\mathrm{G}\left(\mathrm{S}^{\prime}\right)$ respectively.
Define $\psi: L(G) \rightarrow L\left(G^{\prime}\right)$ by
$\psi(\bar{A})=i(\bar{A}), \forall \bar{A} \varepsilon L(G)$.
Let $\bar{A}, \bar{B} \in L(G)$. Then $\phi(\bar{A}) \cdot v \phi(\bar{B})=i(\bar{A}) v i(\bar{B})=\overline{i(A)} \quad v \overline{i(B)}$
$=\overline{\overline{i(A)} \cup \overline{i(B)}}=\overline{i(\bar{A}) \cup i(\bar{B})}=\overline{i(\bar{A} \cup \bar{B})}=i(\overline{\bar{A} \cup \bar{B})}=\phi(\overline{\bar{A}} \cup \bar{B})=\phi(\bar{A} \cup \bar{B})$
and $\phi(\overline{\mathrm{A}} \wedge \overline{\mathrm{B}})=\phi(\overline{\mathrm{A}} \cap \overline{\mathrm{B}})=\phi(\overline{\bar{A} \cap \overline{\mathrm{~B}})}=i(\overline{\bar{A} \cap \overline{\mathrm{~B}})}=i(\overline{\mathrm{~A}} \cap \overline{\mathrm{~B}})=i(\overline{\mathrm{~A}}) \cap i(\overline{\mathrm{~B}})$
$=\overline{i(A)} \cap \overline{i(B)}=\overline{i(A)} \wedge \overline{i(B)}=i(\vec{A}) \wedge i(\bar{B})=\phi(\bar{A}) \wedge \phi(\bar{B})$.
Thus $L(G)$ and $L\left(G^{\prime}\right)$ are isomoxphic.

Let $G(S)$ and $G\left(S^{\prime}\right)$ be geometries such that $L \cong I^{2}$, where L, L^{\prime} are lattices of flats of $G(S), G\left(S^{\prime}\right)$ respectively. Let $\psi: L \rightarrow L^{\prime}$ be lattice isomorphism. Since $G(S), G\left(S^{\prime}\right)$ are geometries, the atoms in L, L^{\prime} are $\{\bar{a} / a \varepsilon S\},\left\{\bar{b} / b \varepsilon s^{0}\right\}$ respectively.

Define $\mathrm{i}: \mathrm{S} \rightarrow \mathrm{S}$ ' by $\mathrm{i}=\psi /$ atoms .
Then i is one to one and onto as $\psi /$ atoms is one to one and $\psi\{\bar{a} / a \varepsilon S\}=\left\{\bar{b} / b \varepsilon S^{\prime}\right\}$.

Let $A \subseteq S$. Then $i(\bar{A})=i(\sup A)=\psi(\sup A)=\sup (\psi A)$ $=\overline{\psi A}=\overline{i \bar{A}}$.

2.2 SUBPREGEOMETRIES

We show that in a natural way any pregeometry on S induces a pregeometry on any subset of S.
2.2.1 THEOREM. Any pregeometry $G(S)$ induces a pregeometry $G_{S}(T)$, on any subset T of S, called the subpreçemetry on T induced by $G(S)$ with closure \tilde{A} defined by $\tilde{A}=\bar{A} \cap T, \forall A \subseteq T$.

1
PROOF. It is obvious that $A \subsetneq \tilde{A}, \forall A \subsetneq T$ so that $\left(C_{1}\right)$ is satisfied.

Let $A \subseteq \vec{B}$. Then $A \subseteq \bar{B} \cap T$ so that $A \subseteq \overline{\mathrm{E}}$ and hence $\bar{A} \subseteq \bar{B}$. Thus $\tilde{A}=\bar{A} \cap T \subseteq \bar{B} \cap T=\tilde{B}$.

Given $a \in \underset{A \cup b}{ }$ and $a \not \subset \tilde{A}$, where $A \subseteq T, a, b \varepsilon T$. Now $a \not \subset \bar{A}$ and $a \varepsilon \overline{A U b}$ as $a \varepsilon T$. By the exchange property in $G(S)$ we have $\mathrm{b} \varepsilon \overparen{A \cup a}$. Therefore $\mathrm{L} \varepsilon \overparen{A \cup a}$.

Let $A \subseteq T . \quad$ Since $A \subseteq S, ~ \exists A_{f}=C A$ with $\bar{A}_{f}=\bar{A}$. Now $\tilde{A}_{\mathrm{f}}=\overline{\mathrm{A}}_{\mathrm{f}} \cap \mathrm{T}=\overline{\mathrm{A}} \cap \mathrm{T}=\tilde{\mathrm{A}}$.

Any pregeometry and its subpregeometries have structures related as in the following lema.
2.2.2. LEIMA. (i) In any subpregeometry $G_{S}(T), \tilde{A}=\bar{A}$, $\forall A \subseteq T$, if and only if T is a flat in $G(S)$.
(ii) The independent sets in $G_{S}(T)$ induced on $T \subseteq S$ by $G(S)$ are exactly the subsets of T which are independent ir $G(S)$.
(iii) The rank of $A \subseteq T$ in $G_{S}(T)$ is its rank in $G(S)$.
(iv) The circuits of $G_{S}(T)$ are exactly the subsets of T which are the circuits of $G(S)$.

PROOF. (i) Assume that $\tilde{A}=A, \forall A \subseteq T$. Thus $\bar{T}=\tilde{T}=\bar{T} \cap T=T$ so that T is a flat in $G(S)$.

Assume that T is a flat in $G(S)$. Let $A \subseteq T$. Then $\bar{A} \subseteq \bar{T}=T$ so that $\tilde{A}=\bar{A} \cap T=\bar{A}$.
(ii) Let A be independent in $G_{S}(T)$. By Lemma 1.4.8 there is no a εA such that $a \varepsilon \overparen{A \backslash a}=\overline{A \backslash a} \cap T$. If there is a εA such that $a \varepsilon \overline{A \backslash a}$, then $a \varepsilon \overline{A \backslash a} \backslash T$. But $A \subseteq T$. Therefore there is no a $\varepsilon \mathrm{A}$ such that $\mathrm{a} \varepsilon \overline{\mathrm{A} \backslash \mathrm{a}}$ and hence A is independent in $G(S)$.

Assume that A is independent in $G(S)$ and $A \subseteq T$. Now there is no a εA such that $a \varepsilon \overline{A \backslash a} \supseteq \overparen{A}$ a so that there is no a εA such that $a \varepsilon \overparen{A} a$. Hence A is independent in $G(T)$
(iii) follows from (ii) and the fact that $r_{T}(A)$ is the cardinality of a maximal independent set of $G_{S}(T)$ contained in $A \subseteq T$.
(iv) follows from (K_{0}) and (iii).
2.3 CANONICAL GEOMETRIES

We examine particular subpregeometries.
2.3.1 a subpregeometry $G_{S}(T)$ is a canonical geometry of $G(S)$
if it satisfies the following.
(CG 1) $T \cap \bar{\phi}=\phi$
(CG 2) $|T \cap(\bar{a}>\bar{\phi})|=1, \forall a \notin \bar{\phi}$.

Obviously a canonical geometry is a geometry, as the induced closure of a singleton is the singleton.

The existence of a canonical geometry of any pregeometry is guaranteed by
2.3.2 THEOREM. A canonical geometry of any pregeometry $G(S)$ exists and all canonical geometries of $G(S)$ are isomorphic.

PROOF. In $G(S)$ consider the equivalence relation \equiv on $S \backslash \bar{\phi}$ defined by $a \equiv b$ iff $\bar{a}=\bar{b}$. Let T be a set of elements each from one equivalence class, no two elements of T from the same class, then T satisfies (CG 1) and (CG 2) so that $G_{S}(T)$ is a canonical geometry of $G(S)$.

Let $G_{S}\left(T_{1}\right)$ and $G_{S}\left(T_{2}\right)$ be canonical geometries of $G(S)$. Define a bijection $f: T_{1} \rightarrow T_{2}$ by $f\left(T_{1} \cap(\bar{a} \backslash \bar{\phi})\right) \mapsto T_{2} \cap(\bar{a} \backslash \bar{\phi})$. To show that f is an isomorphism let $A \subseteq T$. First notice that $\bar{t}=\overline{f(t)}, \forall t \varepsilon T_{1}$ since t and $f(t)$ are in the same equivalence class. Now

$$
\begin{aligned}
\bar{A} & =\{\overline{\{a / a \varepsilon A\}}=\{\overline{a / a \in A\}}=\overline{f(a)} / a \in A\} \\
& =\overline{\{f(a) / a \in A\}}=\overline{f(A)} .
\end{aligned}
$$

Thus since $x \in \bar{A} \cap T_{1} \Leftrightarrow \tilde{f}(x) \in \bar{A} \cap T_{2}$ we have

$$
\begin{aligned}
f\left(C \ell_{1}(A)\right. & =f\left\{x / x \in \mathcal{C} \mathcal{l}_{1}(A)\right\} \\
& =f\left\{x / x \in \bar{A} \cap \mathrm{~T}_{1}\right\} \\
& =\left\{f(x) / f(x) \varepsilon \bar{A} \cap \mathrm{~T}_{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\overline{\mathrm{A}} \cap \mathrm{~T}_{2} \\
& =\overline{\mathrm{f}(\mathrm{~A})} \cap \mathrm{T}_{2}, \\
& =C l_{2}(\mathrm{f}(\mathrm{~A})) .
\end{aligned}
$$

In a geometry $G(S)$ if $G_{S}(T)$ is a canonical geometry we have $T=S$ exactly when $a \varepsilon S$ implies $\bar{a} \cap T=a \cap T=a$. We then have proved.
2.3.3 COROLLARY. A pregeometry is a geometry if and only if it is a canonical geometry of itself.
2.3.4 THEOREM. Any pregeometry, $G(S)$ canonically determines a geometry on the equivalence classes of $S \backslash \bar{\phi}$.

PROOF. As the equivalence relation \equiv in the proof of Theorem 2.3.2 partitions $S \backslash \bar{\phi}$ into equivalence classes S^{\prime}, where every element of S^{\prime} is of the form \bar{x} for some $x \varepsilon S \backslash \bar{\phi}$ and $\mathbf{x} \varepsilon \bar{y} \Leftrightarrow \bar{x}=\bar{y}, \forall \bar{x}, \bar{y} \in S^{\prime} . \quad$ For any $A^{\prime} \in S^{\prime}$ define $C l\left(A^{\prime}\right)$ as follows :

$$
C l\left(A^{\prime}\right)=\left\{\bar{b} \varepsilon S^{\prime} / b \varepsilon \overline{a^{\prime} \varepsilon A^{\prime}}\right\} .
$$

We show that $C l$ satisfies $\left(C_{1}\right)-\left(C_{6}\right)$.
$\left(C_{1}\right)$: Given $A^{\prime} \subseteq S^{\prime}$. Every element of A^{\prime} is of the form \bar{x} for some $x \in S \backslash \bar{\phi}$ and $x \varepsilon \overline{\operatorname{l}^{\prime} \varepsilon A^{\prime}}$. Hence $\bar{x} \varepsilon C l\left(A^{\prime}\right)$.
$\left(C_{2}\right): \operatorname{Let} A^{\prime} \subseteq C\left(B^{\prime}\right)$, where $A^{\prime}, B^{\prime} \varepsilon S^{\prime}$. Then

$$
\begin{aligned}
& A^{\prime} \subseteq l l\left(B^{\prime}\right) \Rightarrow \bigcup_{a^{\prime} \varepsilon A^{\prime}} a^{\prime} \subseteq \bigcup_{x^{\prime} \varepsilon \ell\left(B^{\prime}\right)} x^{\prime},
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \overline{a^{\prime} a^{\prime}} \cong \bar{U} x^{\prime} \varepsilon \ell\left(B^{\prime}\right) \\
& \Rightarrow \ell\left\{x^{\prime} / x^{\prime} \cdot \varepsilon B^{\prime}\right\}, ~(\text { by Lemma 1.1.7) } \\
& \Rightarrow \ell\left(A^{\prime}\right) .
\end{aligned}
$$

$\left(C_{3}\right):$ Let $\bar{a} \varepsilon \mathscr{C}\left(A^{\prime} \cup \bar{b}\right)$ and $\bar{a} \notin C l\left(\bar{a}^{\prime}\right)$, where $A^{\prime} \varepsilon S^{\prime}, \bar{a}, \bar{b} \in S^{\prime}$. Then a $\varepsilon\left\{\overline{\left.l^{\prime} / a^{\prime} \varepsilon A^{\prime} \cup \bar{b}\right\}}\right.$ and $a \notin\left\{U a^{\prime} / a^{\prime} \varepsilon A^{\prime}\right\}$. put $A=U a^{\prime}$, Now $a \notin \bar{A}$ and a $\varepsilon \overline{A U b}$ so that by the exchange property in $G(S)$ we

$\left(C_{4}\right)$: Given $A^{\prime} \subseteq S^{\prime}$. Let $A=U a^{\prime} \quad$. Then $A \subseteq S$ so that $3 A_{f} \subset \subset A$ with $\bar{A}_{f}=\bar{A}$. Consider $A_{f}^{:}=U \underset{a \in A_{f}}{U}$ which is finite. We show that $A_{f}^{\prime} \subset \subset A^{\prime}$ and $C\left(A_{f}^{\prime}\right)=\ell\left(A^{\prime}\right)$.

$$
\begin{aligned}
& \bar{a} \varepsilon A_{f}^{\prime} \Rightarrow \exists b \varepsilon A_{f} \text { and } b \varepsilon \bar{a} \backslash \bar{\phi} \Rightarrow b \varepsilon A \Rightarrow b \varepsilon \bar{c} \text { for some } \bar{c} \varepsilon A^{\prime} \\
\Rightarrow & \bar{a}=\bar{b}=\bar{c} \varepsilon A^{\prime} .
\end{aligned}
$$

That is $A_{f}^{\prime} \subset \subset A^{\prime}$. Now as $\ddot{b} \in A_{f}^{\prime} \Leftrightarrow 3 \subset \varepsilon \bar{b}$ s.t $\subset \in A_{f}$ and $\bar{c}=\bar{b}$ we have

$$
\ell\left(A_{f}^{\prime}\right)=\left\{\bar{a} / a \varepsilon \overline{\bigcup_{\bar{b}}} \overline{\bar{b}}\right\}
$$

$$
=\{\bar{a} / a \varepsilon \bar{A}\}=\left\{\bar{a} / a \varepsilon \bar{U} \bar{a} A^{\prime}\right\}=\mathscr{C}\left(A^{\prime}\right) .
$$

$\left(C_{5}\right)$ and (C_{6}) follow at once from the definition of $C l$ and the property that $a \varepsilon \cdot \bar{b} \Leftrightarrow \bar{a}=\bar{b}$.

Notice that the geometry obtained in Theorem 2.3.4 is
isormorphic to any canonical geometry of $G(S)$. Rado $[57]$ defined the canonical geometry of $G(S)$ to be the geometry obtained as in Theorem 2.3.4.
2.3.5 THEOREM. For any geometry $G(S)$ a partition of a super set
V of s in such a way that no two elements of s are in the same equivalence class of v determines a pregeometry on v having $\mathrm{G}_{\mathrm{V}}(\mathrm{S})=\mathrm{G}(\mathrm{S})$ as a canonical geometry of $\mathrm{G}(\mathrm{V})$.
proof. For any subset A of v, define $E(A)$ as follows : $Q(A)=\bigcup_{b} \bar{S}_{A} \quad\{$ equivalence class of v containing $b\{U$ equivalence class of V containing no element of S$\}$, where
$S_{A}=\operatorname{SO\{ } \underset{a \in A}{ }$ equivalence class of v containing a \}.
We show that ℓl satisfies $\left(C_{1}\right)-\left(C_{4}\right)$.
$\left(C_{1}\right)$: Given $A \subseteq V$. For any a εA and a is not in an equivalence class of v containing an element of s we have a $\varepsilon \ell(X), v x \subseteq v$. If a ε equivalence class containing an element b of S, then $b \varepsilon \bar{S}_{A}$ so that $a \varepsilon \varepsilon^{l}(A)$.
$\left(C_{2}\right):$ Let $A \subseteq B \subseteq v$. It is clear from the definition of $C l$ that $\ell(A) \subseteq U(B)$. To show that $U l(C l(A))=C(A)$ for every $\mathrm{A} \subseteq \mathrm{V}$ we observe that

$$
\begin{aligned}
\mathrm{B}^{\prime} & =\overline{\mathrm{S} \cap\{\cup \text { equivalence class containing a }\}} \\
& =\overline{\mathrm{a} \in \ell(\mathrm{~A})} . \\
& =\left\{\begin{array}{l}
\mathrm{a} \in \mathrm{~A}
\end{array}\right. \\
& =\text { equivalence class containing a }\}
\end{aligned} .
$$

For any $x \in \ell(\ell l(A))$ if $x \varepsilon$ equivalence class containing b, where $b \in \bar{B}^{\prime}$, then $x \in \mathscr{C}(A)$. Thus $\mathscr{C}(C l(A)=C l(A)$.
$\left(C_{3}\right)$: Let a $\varepsilon \ell(A \cup b)$ and $a \notin C l(A)$, where $A \subseteq v, a, b \in V$. We consider the class containing a: If this class contains no element of s we have a $\varepsilon \ell_{(A)}$. A contradiction. Hence there exists an element a^{\prime} of S in this equivalence class. If the
equivalence class containing b contains no element of S, then b $\varepsilon \ell \ell(A \cup a)$. Assume that b, b^{\prime} are in the same class, where $b^{\prime} \varepsilon S$.

Now a $\notin P(A) \Rightarrow$ a \notin equivalence class containing x, $\forall X \in \bar{S}_{A}$. As the union of equivalence classes containing an element of $A \cup b$ is the union of equivalence classes containing an element of $A \cup b^{\prime}$ we have $\bar{S}_{A \cup b}=\bar{S}_{A \cup b^{\prime}}$ and $\mathscr{C}(A \cup b)=C \ell_{\left(A \cup b^{\prime}\right)}$ Therefore $a \varepsilon C l(A \cup b) \Rightarrow a^{\prime} \varepsilon l l(A \cup b) \Rightarrow a^{\prime} \varepsilon C l\left(A \cup b^{\prime}\right) \Rightarrow$ a' $\varepsilon \bar{S}_{A \cup b^{\prime}}$. By the exchange property in $G(S)$ we have '. $b^{\prime} \varepsilon \bar{S}_{A \cup a^{\prime}} C l\left(A \cup a^{\prime}\right)=C(A \cup a)$ so that $b^{\prime} \cdot \varepsilon C l(A \cup a)$. Hence $b \in \mathscr{C}(A \cup a)$.

$$
\left(C_{4}\right): \text { Given } A^{\prime} \subseteq V . \quad \text { Let }
$$

$A^{\prime \prime}=\bigcup_{a^{\prime} \varepsilon A^{\prime}}\left\{\right.$ equivalence class containing $\left.a^{\prime}\right\}$ and
$A=A "$ in S. Then $A \cong S$ and by the finite basis property in $G(S) \exists A_{f} C \subset A$ with $\bar{A}_{f}=\bar{A}$. For each a εA_{f}, pick one element $x_{a} \varepsilon$ equivalence class containing a and $x_{a} \varepsilon A^{\prime}\left(x_{a}\right.$ exists as every element in A is in a class containing an element of A^{\prime}). Let $A_{f}^{\prime}=\left\{x_{a} / a \varepsilon A_{f}\right\}$, Then $A_{f}^{\prime} \subset C A^{\prime}$. Now

$$
\begin{aligned}
\ell \ell\left(A_{f}^{\prime}\right) & =U_{\varepsilon} \bar{A}_{f}\{\text { equivalence class of a }\} \cup\{\text { equivalence class } \\
& =U_{\varepsilon}\left\{\begin{array}{l}
\text { containing no element of } s\}
\end{array}\right. \\
& \text { containing no element of } S\} \\
& =\ell\left(A^{\prime}\right) .
\end{aligned}
$$

We see from the definition of $C l$ that $G_{V}(S)=G(S)$. To show that $G(S)$ is a canonical geometry we note that $C(\phi)=U$ \{equivalence class containing no element of s \}. Therefore $s \cap \operatorname{Cl}(\phi)=\phi$.

For any a $\notin \ell(\phi)$. ${ }^{\text {a }} \varepsilon$ equivalerce class containing an element s of $s \Rightarrow \bar{s}_{a}=s \Rightarrow C l(a) \backslash C(\bar{\phi})=$ equivalence class containing $s \Rightarrow s \cap(l l(a) \backslash l(\phi)=s$.
2.3.6 THEOREM. Two pregeometries with isomorphic canonical geometries have isomorphic lattices of flats.

PROOF. We first show that any pregeometry $G(S)$ and its canonical geometry $G_{S}(T)$ have isomorphic lattices of flats. Let $L(S)$ and $L(T)$ be lattices of flats of $G(S)$ and $G_{S}(T)$ respectively. Consider the function $f: L(S) \rightarrow L(T)$ defined by $f(A)=A \cap T, \forall A \varepsilon L(S)$. Obviously f is one to one. To see that f is onto we observe that $B \varepsilon L(T) \Leftrightarrow B=\bar{B} \cap T, B \subseteq T$ so that $\bar{B} \varepsilon L(S)$ and $f(\bar{B})=B$.

We show that f preserves meet and join. Let $A, B \in \mathscr{L}(S)$. Then $f(A \cap B)=(A \cap B) \cap T=(A \cap T) \cap(B \cap T)=f(A) \cap f(B)$ and $f(A) \vee f(B)=(A \cap T) v(B \cap T)=(\bar{A} \cap T) v(\bar{B} \cap T)=\dot{A} v \tilde{B}=\overparen{A \cup B}$ $=\overline{A \cup B} \cap_{T}=f(\overline{A \cup B})=f(A \vee B)$.

Let $G^{\prime}{ }^{\prime}\left(T^{\prime}\right)$ be a canonical geometry of $G\left(S^{\prime}\right)$, where $G_{S}(T) \cong G_{S}^{\prime}\left(T^{\prime}\right)$. The theorem is proved if we can show that $G_{S}(T)$ and $G_{S},\left(T^{\prime}\right)$ have isomorphic lattices of flats. Let i be an isomorphism from $G_{S}(T)$ onto $G_{S}{ }^{\prime}\left(T^{\prime}\right)$. Denote $b_{y} L(T)$ and $L\left(T^{\prime}\right)$ the lattices of flats of $G_{S}(T)$ and $G_{S}^{\prime}\left(T^{\prime}\right)$ respectively.

$$
\text { Define } \phi: L(T) \rightarrow L\left(T^{\prime}\right) \text { by } \phi(A)=i(A), \forall A \varepsilon L(T)
$$

Then ϕ is one to one and onto. Let $A, B \in L(T)$. Then $\phi(A \cap B)=$ $i(A \cap B)=i(A) \cap i(B)=\phi(A) \cap \phi(B)$ and $\phi(\overline{A \cup B})=i(\overline{A \cup B)}=\overline{i(A \cup B)}$ $=\overline{i(A) \cup i(B)}=\overline{\phi(A) \cup \phi(B)}$.

2.4 TRUNCATION

We define the truncation of any pregeometry.
2.4.1 THEOREM. Let J be the family of independent sets of $G(S)$. Then

$$
\tilde{J}_{k}=\{I \in J /|I| \leq k\}, \text { for some positive integer } k \leq r(S)
$$

is the family of independent sets of a pregeometry on S - the truncation of $G(S)$ at k.

PROOF. It is clear that \tilde{J}_{k} satisfies (I_{1}).
We show that \mathscr{J}_{k} satisfies $\left(I_{2}\right)$. Let $A \subseteq S$. If I_{1}, I_{2} are maximal elements of \mathcal{J}_{k} contained in A and $\left|I_{1}\right|<\left|I_{2}\right|$. By Lemma 1.4.2 $\exists \mathrm{x} \varepsilon \mathrm{I}_{2} \backslash I_{1}$ such that $I_{1} \cup x \in \mathcal{J}$. As $I_{1}, I_{2} \varepsilon \mathcal{J}_{k},\left|I_{1}\right|<k$ and so $\left|I_{1} \cup x\right| \leq k$. Thus $I_{1} U x \varepsilon \int_{k}$. A contradiction. Hence $\left|I_{1}\right|=\left|I_{2}\right|$.

Therefore \mathcal{J}_{k} is the the family of independent sets of a pregeometry on S.

We note that the k - uniform geometry on a set S is the truncation at k of the Boolean geometry. on S.

2.5 CONTRACTION

We define the contraction of any pregeometry.
2.5.1 THEOREM. Let J be the family of independent sets of $G(S)$. Let $T \subseteq S$ and define $\mathscr{J}(T)$ to be the family of subsets X of T such that there exists a maximal independent subset Y of $S \backslash I$ with $X \cup Y \varepsilon \mathcal{J}$. Then $\mathcal{J}(T)$ is the family of independent sets of a pregeometry $G(S) . T$
on S - the contraction of $\mathrm{G}(\mathrm{S})$ to T .

PROOF. We see that $\mathcal{J}(T)$ is a family of finite subsets of T if $J(T) \neq \emptyset$. Since $S\rangle \mathrm{T}$ contains a maximal independent subsets of $G(S)$ and $\phi \subseteq T, \phi \in J(T)$ so that $J(T) \neq \phi$. The theorem is proved if we can show that $J(T)$ satisfies $\left(I_{1}\right)$ and $\left(I_{2}\right)$.
$\left(I_{1}\right):$ Let $B \in \mathcal{J}(T)$ and $A \subseteq E$. Then there exists a maximal independent subset Y of $S \backslash T$ with $B \cup Y \varepsilon \mathcal{J}$. Now $A \cup Y \subseteq B \cup Y$ and so $A \cup Y \in J$. thus $A \in \mathcal{J}(T)$.
$\left(I_{2}\right):$ Let $A \subseteq T$. Let X_{1}, X_{2} be maximal sets in $\tilde{J}(T)$ contained in A. Then there exist maximal independent subsets Y_{1}, Y_{2} of $S \backslash T$ with $X_{1} \cup Y_{1} \& J$ and $X_{2} \downarrow Y_{2} \varepsilon J$. Put $T_{1}=(S \backslash T) U \mathrm{~A}$. Then $X_{1} \cup y_{1}$ and. $X_{2} \cup y_{2}$ are maximal independent sets of $G_{S}\left(T_{1}\right)$ and so $\left|X_{1} \cup \mathrm{y}_{1}\right|=\left|\mathrm{X}_{2} \cup \mathrm{y}_{2}\right|$. But $\left|\mathrm{Y}_{1}\right|=\left|\mathrm{Y}_{2}\right|$ and $\mathrm{X}_{1} \cap \mathrm{Y}_{1}=\mathrm{X}_{2} \cap \mathrm{Y}_{2}=\phi$. Thus $\left|x_{1}\right|=\left|x_{2}\right|$.
2.5.2 LEMMA. Let r^{T} be the rank function of $G(S) . T$. Then

$$
r^{T}(A)=r(A \cup(S \backslash T))-r(S \backslash T), \quad \forall A \subseteq T .
$$

In particular $r^{T}(T)=r(S)-r(S \backslash T)$.

PROOF. Let $A \subseteq T$. As in the proof of Theorem 2.5.1, $X U Y$ is a maximal independent set of $G_{S}(A \cup(S \backslash T))$ if X is a maximal independent subset of A in $G(S) . T$ and Y is a maximal independent subset of $S \backslash T$ in $G(S)$. Thus $r(A \cup(S \backslash T))=|X \cup Y|=|X|+|Y|=r^{T}(A)+r(S \backslash T)$ as ciesired. //
2.5.3 EXAMPLE. Let $M(G)$ be a pregeometry derived from a finite graph $G=(V, E)$ as in Example 1.6.6. For any $T \subseteq E$, let G_{T} be a subgraph of G obtained from G by deleting all edges not in T. Then $M\left(G_{T}\right)$ is
the contraction of $M(G)$ to T.

PROOF. Let $J, J(T)$, be the families of independent sets of $M(G), M\left(G_{T}\right)$ respectively. Observe that I is independent in $M(G) \Leftrightarrow I$ does not contain a polygon of G.

Let $I \in \mathcal{J}(T)$. Then I does not contain a polygon of $G{ }_{T}$. There exists a maximal subsct X of $S \backslash T$ such that $I U X$ is not a polygon of G and so $X \in J$ and $I U X \varepsilon J$.

Let $I U X \varepsilon \tilde{J}$, where X is a maximal independent subset of $S \backslash T$ and $I \subseteq T$. Thus $I U X$ does not contain a polygon of G and hence I does not contain a polygon of G_{T} so that $I \in J(T)$.

Hence $M\left(G_{T}\right)$ is the contraction of $M(G)$ to T. //
2.6 UNION AND DIRECT SUM OF PREGEOMETRIES

We discuss the union of two pregeometries.
2.6.1 THEOREM. Let \vec{J}_{1} and \vec{J}_{2} be the collections of independent sets of $G_{1}\left(S_{1}\right)$ and $G_{2}\left(S_{2}\right)$ respectively. Then the collection

$$
\tilde{J}=\left\{I_{1} U I_{2} / I_{i} \in \tilde{J}_{i}, i=1,2\right\}
$$

is the collection of independent sets of a pregeometry on $S_{1} \cup S_{2}$ - the union of $G_{1}\left(S_{1}\right)$ and $G_{2}\left(S_{2}\right)$ - denoted by $G_{1}\left(S_{1}\right) v G_{2}\left(S_{2}\right)$.

PROOF. Since $J_{1} \neq \phi, T_{2} \neq \phi$, we have $\overparen{d} \neq \phi$. We see that any set in J is a finite subset of $s_{1} \cup s_{2}$.

We show that \mathscr{J} satisfies $\left(I_{1}\right)$. Let $I \varepsilon \mathscr{J}$ and $J \subseteq I$. Then $I=I_{1} \cup I_{2}$, where $I_{i} \varepsilon \mathcal{J}_{i}, i=1,2$. Put $J_{i}=J \cap I_{i}, i=1,2$. Then $J_{i} \in J_{i}$ and $J=J_{1} \cup J_{2} \varepsilon \quad J$.

We next show that \mathcal{J} satisfies $\left(I_{2}\right)$. Let $A \subseteq S_{1} \prime^{\prime} S_{2}$. Let $I_{\text {, }}$ J be maximal sets in J contained in A. Suppose that $|I|<|J|$. There exists a presentation $I=I_{1} \cup I_{2}, J=J_{1} \cup J_{2}$ with $I_{1} \cap I_{2}=J_{1} \cap J_{2}=\oint$. Choose one of these such that $\left|I_{1} \cap J_{2}\right|+$ $\left|I_{2} \cap J_{1}\right|$ is minimum. Now $\left|I_{1}\right|+\left|I_{2}\right|=|I|<|J|=\left|J_{1}\right|+\left|J_{2}\right|$ and so $\left|I_{1}\right|<\left|J_{1}\right|$ or $\left|I_{2}\right|<\left|J_{2}\right|$. For definiteness assume $\left|I_{1}\right|<\left|J_{1}\right|$. Since J_{1} and I_{1} are independent in $G_{1}\left(S_{1}\right), \exists y \varepsilon J_{1} \backslash I_{1}$ with $I_{1}^{\prime}=I_{1} \cup y \in J_{1}$.

If $y \in I$, then as $y \notin I_{1}, y \varepsilon I_{2}$. Put $I_{1}^{*}=I_{1} U Y \varepsilon \quad 1$ and $I_{2}^{*}=I_{2} \backslash Y \in 2$. Then $I=I_{1}^{*} U I_{2}^{*}$ and $I_{1}^{*} \cap I_{2}^{*}=\phi$. But $\left|I_{1}^{*} \cap J_{2}\right|=$ $\left|\left(I_{1} \cup y\right) \cap J_{2}\right|=\left|I_{1} \cap J_{2}\right|$ (as $\left.y \notin J_{2}\right)$ and $\left.\left|I_{2}^{*} \cap J_{1}\right|=\mid\left(I_{2}\right\rangle y\right) \cap J_{1} \mid$ $=\left|I_{2} \quad J_{1}\right|-1$ (as $y \in J_{1} \cap I_{2}$), contradicting the minimality of $\left|I_{1} \cap J_{2}\right|+\left|I_{2} \cap J_{1}\right|$. Hence $y \notin I$ and $I \cup y=\left(I_{1} \cup y\right) \cup I_{2} \varepsilon J$. This contradicts the maximality of I.

Thus $|I| \geq|J|$.

Similarly $|J| \geq|I|$ so that $|I|=|J|$ and the theorem is proved.

Inductively we have
2.6.2 THEOREM. The union of any finite collection of pregeometries exists and is a pregeometry.

PROOF. Let $G_{1}\left(S_{1}\right), \ldots, G_{n}\left(S_{n}\right)$ be pregeometries. The theorem is true when $n=2$. Assume that the theorem is true for any union of k pregeometries, when $k \cdot n$. Let \mathcal{T}_{i} be the collection of independent sets of $G_{i}\left(G_{i}\right), i=1,2, \ldots, n$. By the assumption

$$
J=\left\{I_{1} U \ldots U I_{n-1} / I_{i} \varepsilon \bar{j}_{i}^{\prime} i=1, \ldots n-1\right\}
$$

is the collection of independent sets of a pregeometry $G\left(S_{1} \cup \ldots \cup S_{n-1}\right)$. Thus by Theorem 2.6.1 the union of $G\left(S_{1} \cup \ldots \cup S_{n-1}\right)$ and $G_{n}\left(S_{n}\right)$ is a pregeometry on $S_{1} \cup \ldots \cup S_{n}$ as required. //
2.6.3 EXAMPLE. (i) Union of a k_{1} - uniform geometry on S and a k_{2} - uniform geometry on S is $a\left(k_{1}+k_{2}\right)$ - uniform geometry on S. provided $|\mathrm{s}| \geq \mathrm{k}_{1}+\mathrm{k}_{2}$. It is Boolean if $\mathrm{k}_{1}+\mathrm{k}_{2} \geq|\mathrm{S}|$.
(ii) Any k - uniform geometry on S is the union of k

1 - uniform geometries on S.
2.6.4 COROLLARY. The union of geometries is a geometry.

PROOF. It suffices to show that $G_{1}\left(S_{1}\right) \quad v \quad G_{2}\left(S_{2}\right)$ is a geometry if $G_{1}\left(S_{1}\right)$ and $G_{2}\left(S_{2}\right)$ are geometries. Let. $A=\{x, y\}$ be any 2 - point subset of $S_{1} \cup S_{2}$. Thus $A=A_{1} \cup A_{2}$; where $A_{1} \subseteq S_{1}$, $A_{2} \subseteq S_{2}$. Thus $\left|A_{i}\right| \leq 2$ and since $G_{i}\left(S_{i}\right)$ is a geometry, by Corollary 1.4.4 A_{i} is independent in $G_{i}\left(S_{i}\right), i=1,2$. Thus A is independent in $G_{1}\left(S_{1}\right) \quad v G_{2}\left(S_{2}\right)$.

Hence $G_{1}\left(S_{1}\right) \quad \vee G_{2}\left(S_{2}\right)$ is a geometry by Corollary 1.4.4. // The following example shows that the converse is not true.

Let $S_{1}=\{1,2,3\}, S_{2}=\{3,4,5\}, \mathcal{J}_{1}=\{\phi, 1,2,3,12,13,23\}$

$$
J_{2}=\{\phi, 4,5,45\}, \tilde{J}=2^{S}, \text { where } s=s_{1} \cup s_{2}
$$

Then J is the family of independent set of the geometry $G_{1}\left(S_{1}\right) \vee G_{2}\left(S_{2}\right)$. By Corollary 1.6.5 $G_{2}\left(S_{2}\right)$ is not a geometry since $\mathcal{G}_{2}=:\{3\}$. //
2.6.5 A pregeometry $G\left(S_{1} \cup S_{2}\right)$ is the direct sum of $G_{1}\left(S_{1}\right)$ and $G_{2}\left(S_{2}\right)$ if $G_{S_{1}} \cup S_{2}\left(S_{i}\right)=G_{i}\left(S_{i}\right), i=1,2$, and each independent set I in
$G\left(S_{1} \cup S_{2}\right)$ can be written uniquely $I=I_{1}{ }^{\circ} I_{2}^{\prime}$ where I_{j} is unique and independent in $G_{j}\left(S_{j}\right)$ for $j=1,2$.

We denote the direct sum of $G_{1}\left(S_{1}\right)$ and $G_{2}\left(S_{2}\right)$ by $G_{1}\left(S_{1}\right) \oplus G_{2}\left(S_{2}\right)$.

Thus the union of $G_{1}\left(S_{1}\right)$ and $G_{2}\left(S_{2}\right)$ is certainly a direct sum if $S_{1} \cap S_{2}=\phi$.
2.6.6 THEOREM If $\mathrm{S}_{1} \cap \mathrm{~S}_{2}=\phi$ we have the following.
(i) The independent sets in $G_{1}\left(S_{1}\right) \oplus G_{2}\left(S_{2}\right)$ are the disjoint union of independent sets, one from $G_{1}\left(S_{1}\right)$, one from $G_{2}\left(S_{2}\right)$.
(ii) The rank function of $G_{1}\left(S_{1}\right) \oplus G_{2}\left(S_{2}\right)$ is given by

$$
r^{\prime}(A)=r_{1}\left(A \cap S_{1}\right)+r_{2}\left(A \cap S_{2}\right), \forall A \subseteq S_{1} \cup S_{2}
$$

where r_{1}, r_{2} are the rank functions of $G_{1}\left(S_{1}\right), G_{2}\left(S_{2}\right)$ respectively. (iii) The closure \bar{A} of A in $G_{1}\left(S_{1}\right) \oplus G_{2}\left(S_{2}\right)$ is given by $\bar{A}=$ closure of $\left(A \cap S_{1}\right)$ in $G_{1}\left(S_{1}\right)$ © closure of $\left(A \cap S_{2}\right)$ in $G_{2}\left(S_{2}\right)$.

Conversely if the rank, closure or independent structure of $G\left(S_{1} \dot{\cup} S_{2}\right)$ is given in the above way with respect to $G_{S_{1}} \cup S_{2}\left(S_{1}\right)$ and $G_{S_{1}} \cup S_{2}\left(S_{2}\right)$, then $G\left(S_{1} \cup S_{2}\right)=G_{S_{1}} \cup S_{2}\left(S_{1}\right) \oplus G_{S_{1}^{\prime}} \cup S_{2}\left(S_{2}\right)$.

PROOF. (i) follows directly from the definition of direct sum
(ii). Given $A G_{1} S_{1} \cup S_{2}$. Let $r(A)=|I|$, where I is a maximal independent subset in $G_{1}\left(S_{1}\right) \oplus G_{2}\left(S_{2}\right)$, contained in A. Then $I=I_{1} \dot{U} I_{2}$, where I_{j} is independent in $G_{j}\left(S_{j}\right), j=1$, 2. Thus I_{j} is a maximal independent set contained in $A \cap_{j}$ (otherwise I is not maximal). Hence $r_{j}\left(A \cap S_{j}\right)=\left|I_{j}\right|$ and so $r(A)=|I|=\left|I_{1}\right|+\left|I_{2}\right|=r_{1}\left(A \cap S_{1}\right)$ $+r_{2}\left(A \cap S_{2}\right)$ as required.
(iii) Let $A \subseteq S_{1} \cup S_{2}$. We first show that for $j=1,2$, $r_{j}\left((A \cup a) \cap S_{j}\right)=r_{j}\left(A \cap S_{j}\right) \Leftrightarrow a \varepsilon \bar{A}$. Let I be a maximal independent gubset contained in A. Then $I=I_{1} \cup I_{2}$, where I_{j} is a maximal independent subset contained in $A \cap S_{j} j=1,2$. Thus a $\varepsilon \bar{A} \Leftrightarrow r(A \cup a)$ $=r(A) \Leftrightarrow I$ is maximal in $A \cup a \Leftrightarrow I_{j}$ is maximal in $\left(A \quad f\right.$ a) $\cap S_{j}$, $\left.j=1,2 \Leftrightarrow r_{j}\left(A \cap S_{j}\right)=r_{j}(\wedge \cup a) \cap S_{j}\right), j=1,2$.

As a $\varepsilon \bar{A}$ only one of $a \varepsilon S_{1}$ or a εS_{2} occurs, for definiteness suppose $a \in S_{1}$ and hence $\left(A \cup\right.$ a) $\cap S_{1}=\left(\bar{A} \cap S_{1}\right) \cup$ a. Thus a $\in \bar{A} \Rightarrow$. $r_{1}\left((A \cup a) \cap S_{1}\right)=r_{1}\left(A \cap S_{1}\right) \Rightarrow r_{1}\left(\left(\lambda \cap S_{1}\right) \cup a\right)=r_{1}\left(A \cap S_{1}\right) \Rightarrow$ a ε closure of $A \cap S_{1}$ in $G_{1}\left(S_{1}\right)$. Clearly the closure of $A \cap S_{j}$ in $G_{j}\left(S_{j}\right) \subseteq \bar{A}, j=1,2$, so that (iii) is proved.

Now conversely we show that any independent subset I in $G\left(S_{1} \cup \mathrm{~S}_{2}\right)$ can be written uniquely as $I_{1} \stackrel{\cup}{U} I_{2}$, where I_{j} is independent in $G_{S_{1}} \dot{U}_{S_{2}}\left(S_{j}\right), j=1,2$. Let I be independent in $G\left(S_{1} \dot{U}_{S_{2}}\right)$. Observe that the rank of $A \cap S_{j}$ in $G_{S_{1}} \cup_{S_{2}}\left(S_{j}\right)$ is the rank of $A \cap S_{j}$ in $G\left(S_{1} \ddot{U}_{2}\right)$. Thus $|I|=r(I)=r\left(I \cap S_{1}\right)+r\left(I \cap S_{2}\right)$. But $|I|=\left|I \cap S_{1}\right|+\left|I \cap S_{2}\right|$. since $r\left(I \cap S_{j}\right) \leq\left|I \cap S_{j}\right|, r\left(I \cap S_{j}\right)=\left|I \cap S_{j}\right|, j=1,2$. Put $I_{j}=I \cap S_{j}, j=1,2$. Then I_{j} is independent in $G_{S_{1}} \dot{O}_{S_{2}}\left(S_{j}\right)$ and $I=I_{1} \dot{\cup} I_{2}$. Surpose $I=I_{1}^{\prime} \dot{U} I_{2}^{\prime}$, where I_{j}^{\prime} is independent in $G_{S_{1}} \cup_{S} S_{2}\left(S_{j}\right), j=1,2$. Then $I_{j}^{\prime} \subseteq I \cap S_{j}=I_{j}$. But $\left|I_{1}^{\prime}\right|+\left|I_{2}^{\prime}\right|=$ $\left|I \cap S_{1}\right|+\left|I \cap S_{2}\right|$. Thus $I_{1}^{\prime}=I \cap S_{1}=I_{1}$ and $I_{2}^{\prime}=I \cap S_{2}=I_{2}$.
$2.6 .7 \mathrm{~S}_{1}$ is a separator of $\mathrm{G}(\mathrm{S})$ if $G(S)=G_{S}\left(S_{1}\right) \rightarrow G_{S}\left(S \backslash S_{1}\right)$.

Observe that S_{1} is a separator if and only if $S \backslash S_{1}$ is a separator.
terms of circuits.
2.6.8 LEMMA. S_{1} is a separator of $G(S)$ if and only if every circuit of $G(S)$ is contained in either S_{1} or $S \backslash S_{1}$.

PROOF. Assume that every circuit of $G(S)$ is contained in either S_{1} or $S \backslash S_{1}=S_{2}$. Let I be any independent set of $G(S)$. Consider $I \cap S_{j}, j=1,2$. If $I \| S_{j}$ is dependent in $G_{S}\left(S_{j}\right)$, then it contains a circuit of $G_{S}\left(S_{j}\right)$ which is also a circuit of $G(S)$. Thus $I \cap S_{j}$ is independent in $G_{S}\left(S_{j}\right), j=1,2$. Also $I=\left(I \cap S_{1}\right) \stackrel{0}{\cup}\left(I \cap S_{2}\right)$. Let I_{1} and I_{2} be independent in $G_{S}\left(S_{1}\right)$ and $G_{S}\left(S_{2}\right)$ respectively. If $I=I_{1} \cup I_{2}$ is not independent in $G(S)$, then it contains a circuit C. We can assume that $C \subseteq S_{1}$. Thus $C \subseteq I_{1}$ which is imposible. Hence I is independent in $G(S)$.

Let $A \subseteq S$. Then by the akove $r(A)=r\left(A \cap S_{1}\right)+r\left(A \cap S_{2}\right)$. We show that $\bar{A}=$ closure of $\left(A \cap S_{1}\right)$ in $G_{S}\left(S_{1}\right) \cup$ closure of ($A \cap S_{2}$) in $G_{S}\left(S_{2}\right)$. Let \bar{A}_{j} be closure of ($A \cap S_{j}$) in $G_{S}\left(S_{j}\right), j=1,2$. We see that $\bar{A}_{1} \cap \bar{A}_{2}=\phi$ and $\bar{A}_{1} \cup \bar{A}_{2} \subseteq \bar{A}$. Let a $\varepsilon \bar{A} \backslash \bar{A}$. Then there exists a circuit C of $G(S)$ with a $\varepsilon C \subseteq A U$ a. If $C \subseteq S_{1}$, then a $\varepsilon \bar{A}_{1}$. In case $C S_{2}$ we have $a \varepsilon \bar{A}_{2}$.

By theorem 2.6.6, $G(S)=G_{S}\left(S_{1}\right) \oplus G_{S}\left(S \backslash S_{1}\right)$ so that S_{1} is a separator of $G(S)$.

Let S_{1} be a separator of $G(S)$. If there is a circuit C of $G(S)$ with $C \cap S_{1} \neq \phi$ and $C \cap\left(S \backslash S_{1}\right) \neq \phi$. Let $S_{2}=S \backslash S_{1}$. Then $C \cap S_{j}$ is independent in $G_{S}\left(S_{j}\right), j=1,2$ and $r(C)=r\left(C \cap S_{1}\right)+r\left(C \cap S_{2}\right)$ $=\left|c \cap s_{1}\right|+\left|c \cap s_{2}\right|=|c|$. A contradiction. Thus every circuit is contained in either S_{1} or $S \backslash S_{1}$. //
2.6.9 LEMMA. In any $G(S)$ with $\bar{\phi}=\phi$ if $r\left(S_{1}\right)+r\left(S \backslash S_{1}\right) \leq r(S)$ then any hyperplane contains either S_{1} or $S \backslash S_{1}$.

PROOF Given any $G(S)$ with $\bar{\phi}=\phi$ and $r\left(S_{1}\right)+x\left(S \lambda S_{1}\right) \leq x(S)$ for some $S_{1} \subseteq S$. Put $S_{2}=S \backslash S_{1}$. We first show that S_{1} and S_{2} are flats. $b \varepsilon \bar{s}_{1} \backslash S_{1} \Rightarrow r\left(S_{1} \cup b\right)+r\left(S_{2}\right) \geq r\left(\left(S_{1} \cup b\right) \cup S_{2}\right)+r\left(\left(S_{1} \cup b\right) \cap s_{2}\right)$, $\Rightarrow r\left(S_{1} \cup b\right)+r\left(S_{2}\right) \geq r(S)+r(b)$, $\Rightarrow r(b) \leq r\left(S_{1} \cup b\right)+r\left(S_{2}\right)-r(S)$,
$\Rightarrow r(\mathrm{~b}) \leq r\left(\bar{S}_{1}\right)+r\left(\mathrm{~S}_{2}\right)-r(\mathrm{~S})$, $\Rightarrow r(b) \leq r\left(S_{1}\right)+r\left(S_{2}\right)-r(S)_{1}$. $\Rightarrow r(b) \leq 0$, $\Rightarrow b \varepsilon \bar{\phi}$.

A contradiction. Hence $\bar{S}_{1}=S_{1}$ and similarly $\bar{S}_{2}=S_{2}$.

Suppose that H is a hyperplane of $G(S)$ such that $H \not \mathrm{~S}_{1}, \mathrm{H} \not \mathrm{S}_{2}$. Then as $H \cap S_{j}$ is a flat we have $r\left(H \cap S_{j}\right) \leq r\left(S_{j}\right), j=1,2$ and so $r\left(H \cap S_{1}\right)+r\left(H \cap S_{2}\right) \leq r\left(S_{1}\right)+r\left(S_{2}\right)-2$. By $\left(R_{1}\right)$ we have $r\left(H \cap S_{1}\right)+r\left(H \cap S_{2}\right) \geq r(H)+r(\phi)$ so that $r(H) \leq r\left(S_{1}\right)+r\left(S_{2}\right)-2$ $\leq r(S)-2$. A contradiction. Thus either $H \geqslant S_{1}$ or $H \geqslant S_{2}$ and the lemma is proved.

We now characterise separators.
2.6.10 THEOREM. In any $G(S)$ with $\bar{\phi}=\phi, r\left(S_{1}\right)+r\left(S \backslash S_{1}\right) \leq r(S) \Leftrightarrow S_{1}$ is a separator of $\mathrm{G}(\mathrm{S})$.

PROOF. Assume $r\left(S_{1}\right)+r\left(S \backslash S_{1}\right) \leq r(S)$, where $S_{1} \leftrightarrows S$. Let $S_{2}=S \backslash S_{1}$. By theorem 2.6.6 and Lemma 2.2.2 it suffices to show that $\vec{A}=\left(\overline{A \cap S_{1}}\right) \cup\left(\bar{U} \cap S_{2}\right), \forall A \subseteq S$. Let $A \subseteq S$. Since any hyperplane contains
either S_{1} or S_{2}, any hyperplane contains $A \cap S_{1}$ either contains $A \cap S_{1}$ and $A \cap S_{2}$ or contoins $A \cap S_{1}$ but not $A \cap S_{Z}$. Let \mathcal{H} be the family of hyperplanes of $G(S)$.

Now $\overline{\mathrm{A} \cap \mathrm{S}_{1}}=\cap\left\{\mathrm{H} / \mathrm{H} \in \mathcal{H} \mathcal{G}\right.$ and $\left.\mathrm{H} \supseteq \mathrm{A} \cap \mathrm{s}_{1}\right\}$, $=\left(\cap\left\{\mathrm{H} / \mathrm{H} \varepsilon \not \mathscr{G}, \mathrm{H} \supseteq A \cap S_{1}, \mathrm{H} \supseteq A \cap \mathrm{~S}_{2}\right\}\right) \cap\left(\cap\left\{\mathrm{H} / \mathrm{H} \varepsilon \mathcal{H}, \mathrm{H} \supseteq \mathrm{A} \cap \mathrm{S}_{1}, \mathrm{H} \neq A \cap S_{2}\right\}\right)$,
 If we let $\mathscr{H}_{1}, \mathscr{H}_{2}, \mathscr{H}_{3}$ be the families of hyperplanes of $G(s)$ containing $\left(A \cap S_{1}\right) \cup\left(A \cap S_{2}\right), A \cap S_{1}$ but not $A \cap S_{2}, A \cap S_{2}$ but not $A \cap S_{1}$ respectively, then by distributive law of sets we have

$$
\begin{aligned}
& =\bar{A} \cap[s] \\
& =\bar{n} .
\end{aligned}
$$

The converse follows from Theorem 2.6.6.
2.6.11 LEMMA. Let S_{1}, S_{2} be disjoint separators of $G(S)$. Then $S_{1} \cup \dot{S}_{2}$ and $S_{1} \cap S_{2}$ are also separators of $G(S)$.

Furthermore S_{1} is a separator of $G_{S}(T)$, $\forall T \geqslant S_{1}$.

PROOF. By semimodularity $\left.r\left((S) S_{1}\right) \cup\left(S>S_{2}\right)+r\left(S \backslash S_{1}\right) \cap\left(S \backslash S_{2}\right)\right) \leq$ $r\left(S^{>} / S_{1}\right)+r\left(S S_{2}\right)$ and $r\left(S_{1} \cup S_{2}\right)+r\left(S_{1} \cap S_{2}\right) \leq r\left(S_{1}\right)+r\left(S_{2}\right)$ so that adding two inequalities yields $r\left(\left(S S_{1}\right) \cup\left(S \sim S_{2}\right)\right)+r\left(S_{1} \cap S_{2}\right)+$ $r\left(\left(S \backslash S_{1}\right) \cap\left(S \backslash S_{2}\right)\right)+r\left(S_{1} \cup S_{2}\right) \leq r\left(S \backslash S_{1}\right)+r\left(S_{1}\right)+r\left(S \backslash S_{2}\right)+r\left(S_{2}\right) \leq$ $r(S)+r(S)$ which gives $r(S)+r(\phi)+r\left(S \backslash S_{1} \cup S_{2}\right)+r\left(S_{1} \cup S_{2}\right) \leq 2 r(S)$. Thus $r\left(S \backslash S_{1} U S_{2}\right)+r\left(S_{1} \cup S_{2}\right) \leq r(S)$ and so $S_{1} \cup S_{2}$ is a separator of $G(S)$.

Since S_{1}^{C} and S_{2}^{C} are also disjoint separators of $G(S)$, $s_{1} \cap s_{2}=\left(S_{1}^{C} \cup S_{2}^{C}\right)$ is a separator of $G(S)$.

Let r_{T} be the rank function of $G_{S}(T)$. Then $r_{T}(T)=r(T)=$ $r\left(T \cap S_{1}\right)+r\left(T \cap\left(S \backslash S_{1}\right)=r\left(S_{1}\right)+r\left(T \backslash S_{1}\right)=r_{T}\left(S_{1}\right)+r_{T}\left(T \backslash S_{1}\right)\right.$ so that by Theorein 2.6 .10 T is a separator of $\mathrm{G}_{\mathrm{S}}(\mathrm{T})$.
2.6.12 LEMMA. The family $\left\{S_{i}\right\}$ of minimal nontrivial separators of $G(S)$ is finite and $S=S_{1}{ }^{0} \ldots \ldots S_{m}$, where S_{i} ' S° are the minimal nontrivial separators of $G(S)$.

PROOF. Let $\left\{S_{i}\right\}$ be the family of minimal nontrivial separators of $G(S)$. If $S_{i} \cap S_{j} \neq \phi$ for some $i \neq j$, then $S_{i} \cap S_{j}$ is a separator and $S_{i} \cap S_{j} \subseteq S_{i}$, contradicting minimality of S_{i}. Thus $S_{i} \cap S_{j}=\phi$, $\forall i \neq j$. Now $r(S) \geq r\left(S_{1} \ddot{U} S_{2} \dot{U} \ldots\right)$. Suppose that there exists $k(>r(S))$ elments in $\left\{S_{i}\right\} \quad$. Then $r\left(S_{1}\right)+\ldots+r\left(S_{k}\right) \geq k>r(S)$. This implies $r\left(S_{1} \dot{U} S_{2} \dot{j} \ldots\right) \geq r\left(S_{1} \dot{\cup} \ldots \dot{\cup} S_{k}\right)=r\left(S_{1}\right)+\ldots+$ $r\left(S_{k}\right) \geq k>r(S)$. A contradiction. Thus $\left\{S_{i}\right\}$ consists of m elements, where $m \leq r(S)$. By Lemma 2.6 .11 and the finite induction $s_{1} \ddot{U}^{0} \ldots \cup^{\circ} \mathrm{s}_{\mathrm{m}}$ is a separator of $\mathrm{G}(\mathrm{S})$.

If $S \backslash S_{1} \ddot{U}^{\circ} \ldots U^{C} S_{\mathrm{i}} \neq \phi$, then it is a separator of $G(S)$ and contâins a minimal nontrivial separator, S_{j} say. Thus $S_{j} S_{T} S \backslash S_{1} \stackrel{\cup}{U} \ldots \cup \cup \cup S_{m}$ which is imposible. Therefore $s=s_{1} \ddot{U}^{\circ} \ldots U_{\mathrm{m}}$.

As a direct consequence we have
2.6.13 THEOREM. Every $G(S)$ has a unique decomposition into a direct sum of irreducible direct summands.

That is $G(S)=G\left(S_{1}\right) \oplus \ldots \Theta G\left(S_{m}\right)$, where S_{1}, \ldots, S_{m} are the minimal nontrivial separators of $G(S)$.

2.7 CONNECTED PREGEOMETRIES

We give necessary and sufficient conditions for a pregeometry to be connected.
2.7.1 A pregeometry $G(S)$ is connected if the only separators of $G(S)$ are ϕ and S, thus $G(S)$ with $\bar{\phi}=\phi$ is connected iff $r(A)+\boldsymbol{x}(S, A)>x(S)$,甘A. S. A pregeometry is disconnected if it is not connected.
2.7.2 LEMMA. $G(S)$ is connected if and only if $\forall \phi \neq A \subseteq S$, there exists a circuit containing elements, of both A and $S>A$.

PROOF. Follows from Lemma 2.6.8.

The following useful necessary and sufficient condition for connectivity is due to Whitney $[35]$.
2.7.3 THEOREM. $G(S)$ is connected if and only if every two distinct elements are contained in a circuit of $G(S)$.

PROOF. Assume that $G(S)$ is connected. Let x_{1}, x_{2} be distinct elements in S. By Lemma 2.7.2 there exists a circuit containing x_{1} and some elements of $S \backslash x_{1}$. Suppose that there exists no circuit containing both x_{1} and x_{2}. Let $S_{1}=x_{1} \cup$ all circuits containing x_{1}. Then $\phi \neq S_{1} \underset{\neq}{ } S$. Again by Lemma 2.7.2 there exists a circuit P_{3} containing elements of both S_{1} and $S \backslash S_{1}$. Pick an element $x_{4} \varepsilon P_{3} \cap S_{1}$. Since $x_{1} \notin P_{3}, x_{4} \neq x_{1}$ so that by the definition of S_{1} there is a circuit P_{1} containing x_{1} and x_{4}. Let $S_{2}=P_{3} \cap\left(S \backslash S_{1}\right)$ and choose $x_{3} \varepsilon S_{2}$. Now $S_{1} \cup S_{2}$ is a subset of S such that it contains circuits P_{1} and P_{3} containing x_{1} and x_{3} respectively and P_{1}, P_{3} have a common element.

We choose a smallest subsēt S^{\prime} of S with such property. Then $S^{\prime}=P_{1} \cup P_{3}^{\prime}$, where P_{1}^{\prime} and P_{3}^{\prime} are circuits containing x_{1} and an element \dot{x}_{3} of S, S_{1} respectively and $P_{1}^{\prime}, P_{3}^{\prime}$ have a common element (otherwise S^{\prime} is not smallest with the. specified property). Let x_{4}^{\prime} be a common element of P_{i}^{\prime} and P_{3}^{\prime}. By $\left(K_{4}^{\prime}\right)$ there exist circuits P_{4} and P_{5} both containing x_{1} and x_{3} respectively but not $x_{C_{4}}^{\prime}$. Thus P_{4} i! $\mathrm{P}_{5} \underset{\ddagger}{C} \mathrm{P}_{1}^{\prime} \cup \mathrm{P}_{3}^{\prime}$ and so $\mathrm{P}_{4}, \mathrm{P}_{5}$ have no common element (as $p_{1}^{\prime} U P_{3}^{\prime}$ is smallest with the specified property). Since $P_{4} \backslash P_{3}^{\prime} \nsubseteq P_{1}^{\prime}, P_{4}$ contains an element X_{5} of $P_{3}^{\prime} \backslash P_{1}^{\prime}$, Also P_{5} contains an element x_{6} of $P_{1}^{\prime} \backslash P_{3}^{\prime}$. Consider the circuits p_{1}^{\prime} and P_{5}. Now P_{i}^{\prime} contains x_{1} and P_{5} contains x_{3} and they have a common element x_{6}. But $x_{5} \not \& P_{5}$ and $\operatorname{so} P_{1} \cup P_{5} \not P_{1}^{\prime} \cup P_{3}^{\prime}$. A contradiction. Thus there exists a circuit containing both x_{1} and x_{2}.

Let $G(S)$ be a pregeometry such that every two distinct elements are contained in a circuit of $G(S)$. If $\phi \neq S_{1} \subseteq S$ is a separator of $G(S)$, let $x_{1} \varepsilon S_{1}$. By the assumption $\forall x_{1} \neq x \in S$ there exists a circuit C_{x} containing both x and x_{1}. By Lemma 2.6.8 $C_{x} C_{s} S_{1}$ and so $x \in S_{1}$. Thus $S_{1}=S$. Therefore $G(S)$ is connected.
2.7.4 EXAMPLE. Any k - uniform pregeometry on a set of size $>k$ is connected.
2.7.5 A subset T of S is connected in $G(S)$ if $G_{S}(T)$ is connected.

It then follows that any minimal separator of $G(S)$ is connnected.
2.7.6 LEMMA. If C_{1} and C_{2} are circuits of $G(S)$ containing x, y and
x, z respectively, then there exists a circuit C of $G(S)$ containing y, z and $c \subseteq c_{1} \cup c_{2}$.

PROOF. We proceed first to prove this for finite S by induction on $|s|$. It is true for $|s| \leq 3$. Assume that it is true for any $G(T)$ with $|T|<n$. Let $G(S)$ be a pregeometry on a set S of n elements. Let C_{1} and C_{2} be circuits of $G(S)$ containing x, y and . x, z respectively.

$$
\text { If } C_{1} \cup C_{2} \neq s, \text { let } T=S \backslash \text { a for some a } \varepsilon s \backslash C_{1} \cup C_{2}
$$

Then C_{1} and C_{2} are circuits of $G_{S}(T)$ containing x, y and x, z respectively and so by induction hypothesis there exists a circuit C of $G_{S}(T)$ containing y, z as required.

If C_{1} \& $C_{2}=S$. By $\left(K_{4}^{\prime}\right)$ there exist circuits C_{3}, C_{4} with $y \in C_{3} \in c_{1} \cup C_{2} \backslash x, z \in C_{4} \subseteq C_{1} \cup C_{2} \backslash x$. Obviously $C_{3} \cap C_{1} \subseteq C_{1} \backslash C_{2}$ and $C_{3} \cap C_{1} \neq \phi . \quad$ If $C_{3} \cap C_{1} \varsubsetneqq C_{1} \backslash C_{2}$, then $C_{3} \cup C_{2} \neq \mathrm{s}$ and C_{3} त $\mathrm{C}_{2} \neq \phi$. so that by the induction hypothesis there exists a circuit C_{3} of $G_{S}\left(C_{3} \cup C_{2}\right)$ containing y and z. Thus we have the result if $C_{3} \cap C_{1} \not C_{1} \backslash C_{2}$ or $C_{4} \cap C_{2} \varsubsetneqq C_{2} \backslash C_{1} . \quad$ Suppose $C_{3} \cap C_{1}=C_{1} \backslash C_{2}$ and $C_{4} \cap C_{2}=C_{2} \backslash C_{1}$. Now $C_{3} \cup C_{4} \leq C_{1} \cup C_{2} \backslash x$ and as $C_{3} \cap\left(C_{2} \backslash C_{1}\right) \neq \phi$ we have $C_{3} \cap C_{4} \neq \phi$. By the induction hypothesis there exists a circuit C of $G_{S}\left(C_{3} \cup C_{4}\right)$ containing y, z. Hence we have the result for finite S.

As a consequence of Lemma 2.7.6 we note that $G_{S}\left(C_{1} \& C_{2}\right)$ is connected if C_{1}, C_{2} are circuits of $G(S)$ having a common element.
2.7.7. THEOREM. Let A, B be connected in $G(S)$. If $A \cap B \neq \phi$, the $A \cup B$ is connected.
(In case A) $B=\phi$ this is not necessarily true. For example, the union of two disjoint polygons of a graph is not connected in the polygon pregeometry of that graph but both of the two polygons are connected).

PROOF. Pick an element $x \in A \cap B$. Let y, z be distinct elements in $A \cup B$. We show that there is a circuit of $G(S)$ containing y and z. If both y and z are in A or B, then y, z are contained in a circuit of $G(S)$ as A and B are connected. Suppose that $y \in A \backslash B, z \varepsilon B \backslash A$. Then by Theorem 2.7.3 there exist circuits C_{1} or $G_{S}(A)$ and C_{2} of $G_{S}(B)$ containing x, y and x, z respectively, By Lemma 2.7 .6 there exists a circuit $C \subseteq C_{1}$ \& C_{2} containing both y and z. The theorem is proved.

The following theorem shows that any connected pregeometry contains subpregeometry or contraction which is connected. The proof is due to Murty [66].
2.7.8 THEOREM. If $G(S)$ is connected, then for every $x \in S$ at least one of $G_{S}(S \backslash x)$ and $G(S) .(S \backslash x)$ is connected.

EROOF. The theorem is true when $|S|=1$. Let $G(S)$ be connected and $|S| \geq 2$. Let $x \in S$. Suppose that $G(S)$. (S $\backslash x$) is not connected and so it has a separator $S_{1} \neq \phi, S \backslash x$. Then $S \backslash x \backslash S_{1} \neq \phi, S \backslash x$ and $S \backslash x \backslash S_{1}$ is also a separator of $G(S) .(S \backslash x)$. Let $S_{1}, S_{2}, \ldots, S_{t}$ be all minimal nontrivial separators of $G(S) .(S \backslash x)$. Thus $t \geq 2$. We show that $G_{S}(S \backslash x)$ is connected. Let y, z be distinct elements of $S \backslash x$.
case 1. If $Y \varepsilon S_{i}, z \in S_{j}$, where $i \neq j$. Since $G(S)$ is connected, y and z are contained in a circuit C of $G(S)$. Suppose, that $x \in C$. Then x is maximally independent in $S \backslash(S \backslash x)$ so that $C \backslash x$ is dependent in $G(S) .(S \backslash x)$. For any $y \in C \backslash x$, $C \backslash y=((C \backslash x) \backslash y) U x$ is independent in $G(S)$ and hence $(C \backslash x) \backslash y$ is independent in $G(S) \cdot(S \backslash x)$. Thus $C \backslash x$ is a circuit of $G(S) .(S \backslash x)$. By Lemma 2.6.12, $S_{i} \cap S_{j}=\phi$. Therefore $C \backslash x$ is a circuit of $G(E)$. ($S \backslash x$) which is not contained in S_{i} or $(S \backslash x) \backslash S_{i}$. This contradicts the separability of S_{i}. Hence $x \notin C$ and so C is a circuit of $G_{S}(S \backslash x)$ containing y and z.
case 2. If y, $z \varepsilon S_{i}$. Pick a εS_{j} for some $j \neq i$. Then there exist circuits C_{1} and C_{2} of $G(S)$ containing a, y and a, z respectively. By case $1, x \notin C_{1}$ and $x \notin C_{2}$. Now C_{1} П $C_{2} \neq \phi$ and so there exists a circuit C_{3} of $G_{S}\left(C_{1} \cup C_{2}\right)$ containing y and z. Since $C_{3}^{\prime} \leq C_{1} \cup C_{2}, x \notin C_{3}$ and hence C_{3} is a circuit of $G_{S}(S \backslash x)$ as desired.

2.8 DUALITY

We define the dual of any matroid. (Remembering a matroid $M(S)$ is any pregeometry $G(S)$, where S is finite and use this concept for a hyperplane characterisation.)
2.8.1 THEOREM. In $M(S)$ with rank function r the function. $r^{*}: A \longmapsto|A|+r(S \backslash A)-r(S)$ is the rank function of a matroid $M^{*}(S)$ on S - the dual matroid of $M(S)$. Moreover the dual matroid has $\operatorname{rank}|S|-r(S)$.

PROOF. We first show that x^{*} is unit increasing. Let $A \subseteq S$, a $\& A$. Put $B=A \cup$ a. Then $r^{*}(B)=|B|+r(S \backslash B)-r(S)=|A|+1$ $+r((S \backslash A) \backslash a)-r(S)=|\Lambda|+1+r(S \backslash A)-\left\{\begin{array}{l}0 \\ 1\end{array}-r(S)=|A|+r(S \backslash A)\right.$ $-r(S)+\left(1-\left\{\begin{array}{l}0 \\ 1\end{array}\right)=r^{*}(\mathrm{~A})+\left\{\begin{array}{l}0 \\ 1\end{array}\right.\right.$.

Since S is finite, for a given $A \leq B$ we have $B=A \mathcal{U}^{6} a_{1} \ldots a_{n}$ for some $n \geq 0$ so that $r^{*}\left(A \cup a_{l}\right) \geq r^{*}(A)$ by the above and inductively $r^{*}(\mathrm{~B}) \geq r^{*}(\mathrm{~A})$. Thus r^{*} is increasing.

We show that r^{*} is semimodular. Let $A, B \subseteq S$. Then $r^{*}(A)+r^{*}(B)=|A|+|B|+r(S \backslash A)+r(S \backslash B)-2 r(S)$, $\geq|A|+|B|+r[(S \backslash A) U(S \backslash B)]+r[(S \backslash A) \cap(S \backslash B)]-2 r(S)$, $\geq|A \cup B|+|A \cap B|+r(S \backslash A \cap B)+r(S \backslash A \cup B)-2 r(S)$, $\geq r^{*}(A \cup B)+r^{*}(A \cap B)$.

Obviously r^{*} has finite basis property and $r^{*}(\phi)=|\phi|+r(S \backslash \phi)$ $-r(S)=0$.

Hence r^{*} is the rank function of a unique matroid on s.

Now $r^{* *}(A)=|A|+r^{*}(S \backslash A)-r^{*}(S)=|A|+|S \backslash A|+r(A)$
$-r(S)-|S|+r(S)=r(A)$. Thus we have
2.8.2 LEMMA. The dual of the dual of $M(S)$ is the matroid $M(S)$ itself.

We next link bases, circuits of $M(S)$ and $M^{*}(S)$. The word cobases and cocircuits are used for bases and circuits of $\mathrm{M}^{*}(\mathrm{~S})$ respectively.
2.8.3 THEOREM. In any matroid $M(S)$ the following are true.
(i) The cobases are exactly the complement of bases of $\mathrm{M}(\mathrm{S})$.
(ii) The cocircuits are exactly the complement of hyperplanes of $M(S)$.
(iii) The cocircuitsare exactly the subsets of S which minimally intersect all bases of $M(S)$.

PROOF. (i) For any subset A of S we have $\dot{r}^{*}(S \backslash \dot{A})=|S \backslash A|+$ $r(A)-r(S)$ so that $r^{*}(S)-r^{*}(S \backslash A)=r^{*}(S)+r(S)-|8 \backslash A|-r(A)=$ $|S|-|S \backslash A|-r(A)=|A|-r(A)$. Thus A is independent in $M(S)$ iff $S \backslash A$ is a spanning set in $M^{*}(S)$. If we replace A by $S \backslash A$ in $M^{*}(S)$ we see that $S \backslash A$ is independent in $M^{*}(S)$ iff A is a spaning set in $M(S)$. Now

$$
\begin{aligned}
A \text { is spanning in } M(S) & \Leftrightarrow S \backslash A \text { is independent in } M^{*}(S), \\
& \Leftrightarrow r^{*}(S \backslash A)=|S \backslash A|+|A|-|A|, \\
& \left.\Leftrightarrow r^{*}(S \backslash A)=|S|-r(S) \quad \text { (as } r(S)=|A|\right), \\
& \Leftrightarrow r^{*}(S \backslash A)=r^{*}(S) .
\end{aligned}
$$

(ii) C is a circuit of $M^{*}(S) \Leftrightarrow C$ is minimal dependent in $M^{*}(S)$ $\Leftrightarrow S \backslash C$ is maximal non - sparning subset in $M(S) \Leftrightarrow S \backslash C$ is a hyperplane of $\mathrm{M}(\mathrm{S})$.
(iii) C is a cocircuit of $M(S) \Leftrightarrow S \backslash C$ is a hyperplane of $M(S) \Leftrightarrow S \backslash C$ is a maximal non-spanning set in $M(S) \Leftrightarrow S \backslash C$ is a maximal set not containing any basis.

If $S \backslash C$ does not contain any basis, then C must intersect every basis. Suppose $\exists C^{\prime} \underset{\mp}{C}$ C such that C^{\prime} intersects every basis. Let a $\varepsilon C \backslash C^{\prime}$. Then $(S \backslash C) \cup$ contains a basis B which contains a and so $B \cap C^{\prime}=\phi$, A contradiction. Therefore C is a minimal set intersecting every basis.

Conversely let C be a minimal set with this property. Then $S \backslash C$ does not contain any basis. Jf there exists $x \in C$ such that $(S \backslash C) U x$ does not contain any basis. Then $C^{\prime}=C \backslash x$ intersects every basis, contradicting the minimality of C. Thus $S \backslash C$ is a maximal set not containing any basis and the theorem is proved.
2.8.4 LEMMA. Let A, A^{*} be independent in $M(S)$ and $M^{*}(S)$ respectively with $A \cap A^{*}=\phi$. Then there exists a basis B such that $A \subseteq B, \quad$, $A^{*} \subseteq S \backslash B$.

PROOF. Let r, r^{*} be rank functions of $M(S)$ and $M^{*}(S)$ respectively. Thus $r\left(S \backslash A^{*}\right)=|S|-\left|A^{*}\right|-r^{*}(S)+r^{*}\left(A^{*}\right)=$ $|S|-r^{*}(S)=r(S)$. Extend A to a basis $B \subseteq S \backslash A^{*}$. Then $A^{*} \leq S>B$ as required.
2.8.5 LEMMA. For any circuit C and any cocircuit C^{*} of $M(S)$ we have $\left|C \cap c^{*}\right| \neq 1$.

PROOF. Let C and C^{\prime} be any circuit and cocircuit. of $M(S)$
respectively. We may assume that $\mathrm{C} \cap \mathrm{C}^{*} \neq \phi$. Consider $\mathrm{C} \backslash \mathrm{C} \cap \mathrm{C}^{*}$ and $C^{*} C \cap C^{*}$ which are independent in $M(S)$ and $M^{*}(S)$ respectively.

By Lemma 2.8.4 there exists a basis B with $C \backslash C \cap C^{*} \subseteq B$ and $C^{*} \backslash C \cap C^{*} \subseteq S \backslash B$. since $C^{*} \cap B \neq \phi$ and $\left(C^{*} \backslash C \cap C^{*}\right) \cap \mathrm{E}=\phi$, there exists $y \in\left(C \cap C^{*}\right) \cap B$. If $\left|C \cap C^{*}\right|=1$, then $C \subseteq B$ which is a contradiction. Thus $\left|\mathrm{C} / \mathrm{C}^{*}\right| \neq 1$.
2.8.6 LEMMA. Let B be a basis of $M(S)$. For any e εB there is a unique cocircuit C^{*} of $M(S)$ with $(B \backslash e)$ i) $C^{*}=\phi$.

PROOF. Since ($S \backslash B$) is a basis of $M^{*}(S)$ and e $\not \subset S \backslash E$, by Theorem 1.6 .8 there exists a unique circuit C^{*} of $M^{*}(S)$ with e $\varepsilon C^{*} \leq S \backslash B$. Thus ($B \backslash e$) $\cap C^{*}=\phi$. Let C_{1}^{*} be a cocircuit of $M(S)$ with $(B \backslash e) \cap C_{1}^{*}=\phi . T_{1} C_{1}^{*} \leq(S \backslash B) \cup^{\prime}$ e and e εC_{1}^{*}. By the uniqueness of C^{*} we have $C^{*}=C_{1}^{*}$ and the lemma is proved.
2.8.7 LEMMA. Let a, b be distinct elements of a circuit C of $M(S)$. Then there exists a cocircuit C^{*} of $M(S)$ with $C \cap C^{*}=a b$.

PROOF. Extend $C \backslash a$ to a basis B of $M(S)$. Then $B^{*}=S \backslash B$ is a basis of $M^{*}(S)$ and $a \in B^{*}$. Now $b \not \subset B^{*}$. Consider the fundamental circuit $C^{*}\left(\right.$ in $\left.M^{*}(S)\right)$ of b in E^{*}. If $a \notin C^{*}$, then $C \cap C^{*}=b$ and so $\left|C \cap C^{*}\right|=1$ which is impossible. Thus $C \cap C^{*}=a b$.

Duality helps characterise a matroid in terms of its hyperplanes.
2.8.8 THEOREM. A collection \mathcal{H} of nonempty proper subsets of S is the set of hyperplanes of $M(S)$ if and only if it satisfies the following.
$\left(\mathrm{H}_{1}\right)$ For any $\mathrm{H}_{1}, \mathrm{H}_{2}$ in $\mathcal{H}, \mathrm{H}_{1} \underset{f}{\subset} \mathrm{H}_{2}$.
 $\mathrm{H}_{3} \geq\left(\mathrm{H}_{1} \cap \mathrm{H}_{2}\right) \cup \mathrm{x}$.
proof. Let \mathcal{H} be the family of hyperplanes of $M(S)$. Then (H_{1}) follows directly from Lemma 1.5.6 . Observe that $\left(H_{2}\right)$ is equivalent to
$\left(H_{2}^{\prime}\right)$ If $H_{1}, H_{2} \in \mathcal{H}$ and $x \varepsilon\left(S, H_{1}\right) \cap\left(S \vee H_{2}\right)$ then $3 H_{3} \varepsilon$ 形 such that $x \&\left(S \backslash H_{3}\right) \in\left(S \backslash H_{1}\right) \cup\left(S \backslash H_{2}\right)$ which is $\left(K_{4}\right)$ in $M^{*}(S)$. Thus $\left(\mathrm{H}_{2}\right)$ follows.

Conversely let \mathcal{H} be a collection of nonempty proper subsets of s satisfying (H_{1}) and $\left(\mathrm{H}_{2}\right)$. We show that $\mathscr{C}=\{\mathrm{S} \backslash \mathrm{H} / \mathrm{H} \varepsilon \mathscr{H}\}$ is the family of circuits of $M^{*}(s)$. obviously \mathscr{C}^{\prime} satisfies (K_{1}) and $\left(K_{3}\right)$ and by (H_{1}) ζ satisfies $\left(\mathrm{K}_{2}\right)$. That ζ satisfies $\left(\mathrm{K}_{4}\right)$ follows from the fact that $\left(\mathrm{H}_{2}\right) \Leftrightarrow\left(\mathrm{H}_{2}^{\prime}\right)$. .

Thus \mathscr{C} is the family of circuits of $M^{*}(S)$ and hence by Theorem 2.8.3 \mathscr{H} is the family of hyperplanes of $M(S)$.
2.8.9 A steiner triple system on a set S_{n} of n elements is a collection \mathscr{U}_{n} of 3 - element subsets of S_{n}, called triples, having any two distinct elements of S_{n} in a unique triple. (of Hall [67], p236)

Wie note some properties of any Steiner triple system \mathscr{Y}_{n} which are needed later.
(i) A necessary and sufficient condition for the existence of some \mathscr{U}_{n} on a set of size n is that $\mathrm{n} \equiv 1$ or $3(\bmod 6)$
(ii) Any element of S_{n} occurs in exactly $\frac{n-1}{2}$ triples of ${ }^{2} \mathscr{S}_{n}$
(iii) The number of triples in $\mathscr{\mathcal { P }}_{n}$ is $\frac{n(n-1)}{6}$.
2.8.10 EXAMPLE. \mathcal{U}_{n} is the collection of hyperplanes of a matroid $M\left(\mathscr{\mathscr { S }}_{\mathrm{n}}\right)$ on S_{n} with rank 3 . The bases of $\mathrm{M}\left(\mathscr{\mathscr { S }}_{\mathrm{n}}\right)$ are all 3 - element subsets of S_{n} which are not in \mathscr{J}_{n}.

For $\mathrm{n}=7 \mathrm{M}\left(\mathscr{\mathscr { L }}_{\mathrm{n}}\right)$ is the well known Fano matroid.

PROOF. We first show that \mathscr{Y}_{n} satisfies $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$. That \mathscr{f}_{n} satisfies $\left(\mathrm{H}_{1}\right)$ is clear from its definition. Let A, B be triples of \mathscr{U}_{n} and $x \notin A \cup B$. Since any two distinct triples intersect in one element or nc element, $(A \cap B) U x$ is contained in one triple of \mathscr{J}_{n}. Whus Y_{n} satisfies $\left(H_{2}\right)$ and so it is the collection of hyperplanes of a matroid $\mathrm{M}\left(\mathscr{y}_{n}\right)$ on S_{n}.

Since any element of s_{n} occurs in $\frac{n-1}{2}$ triples and the number of triples is $\frac{n(n-1)}{6} \neq \frac{n-1}{2}$ if $n>3$, the intersection of all triples is empty and thus $\bar{\phi}=\phi$. For any $x \in S_{n}$ the intersection of all triples containing x is x and so $\bar{x}=x$. Thus $M\left(\mathscr{S}_{n}\right)$ is a geometry and hence every 2 - element subset of S_{n} is independent. We show that if $x=\{x, y, z\} \notin \mathscr{g}_{n}$, then x is independent. Let $A=-\{x, y, a\}$ be the triple containing x, y. Then $a \neq z$. Now $S_{n} \backslash A$ is a cocircuit of $M\left(\varphi_{n}\right)$. Suppose that X is not independent. Since any proper subset of X is independent, x is a circuit of $M\left(y_{n}\right)$. But $X \cap\left(S_{n} \backslash A\right)=z$, contradicting Lemma 2.8.5. Hence X is independent as required.

We link submatroids, contractions and duals.
2.8.11 THEOREM. In: any matroid $M(S)$ for $T \subseteq S$, we have the following.
(i) $\left(M_{S}(T)\right)^{*}=M^{*}(S) \cdot T$
(ii) $(M(S) . T)^{*}=M_{S}^{*}(T)$

PROOF. Let $r, r^{*},\left(r^{*}\right)^{T}, \rho$ and ρ^{*} be rank functions of $M(S)$, $M^{*}(S), \ldots M^{*}(S) \cdot T, M_{S}(T)$ and $\left(M_{S}(T)\right)^{*}$ respectively.
(i) For any subset A of T we have $\rho^{*}(T \backslash A)=|T \backslash A|+\rho(A)-\rho(T)$ $=|T|-\rho(T)-|A|+\rho(A) \cdot D y$ Lemma 2.5 .2 we have $\left(r^{*}\right)^{T}(T \backslash A)=$ $r^{*}\left((T \backslash A) \cup U(S \backslash T)-r^{*}(S \backslash T)=r^{*}(S \backslash A)-r^{*}(S \backslash T)=|S|-r(S)\right.$
$-|A|+r(A)-(|S|-r(S)-|T|+r(T))=|T|-r(T)-|A|+r(A)=|T|$
$-\rho(T)-|A|+\rho(A)=\rho^{*}(T \backslash A)$. Since A is arbitrary, $\rho^{*}=\left(r^{*}\right)^{T}$ so that (i) is proved.
(ii) By (i) we have $\left(\dot{M}_{S}^{*}(T)\right)^{*}=\left(M^{*}(S)\right)^{*} \cdot T=M(S) \cdot T$. Taking dual both sides we obtain $M_{S}^{*}(T)=(M(S) \cdot T)^{*}$

We also have information about connectedness of duals
2.8.12 LEMMA. S_{1} is a seperator of $M(S)$ if and only if S_{1} is a separator of $\mathrm{M}^{*}(\mathrm{~S})$.

PROOF. Since $\left(M^{*}(S)\right)^{*}=M(S)$, it suffices to show that a separator S_{1} of $M(S)$ is a separator of $M^{*}(S)$. Now $r^{*}\left(S_{1}\right)+r^{*}\left(S \backslash S_{1}\right)=\left|s_{1}\right|$ $+r\left(S \backslash S_{1}\right)-r(S)+|S|-\left|S_{1}\right|+r\left(S_{1}\right)-r(S)=r\left(S_{1}\right)+r\left(S \backslash S_{1}\right)$ $-r(S)-r(S)+|S| \leq r(S)-r(S)-r(S)+|S| \leq r^{*}(S)$. Thus by Theorem 2.6.10 S_{1} is a separator of $\mathrm{M}^{*}(\mathrm{~S})$ and the lemma is proved. //

As a consequence of Lemma 2.8.12 we have
2.8.13 LEMMA. $M(S)$ is connected if and only if $M^{*}(S)$ is connected.
2.8.14 A loop of $M(S)$ is an element which is a cj.rcuit of $M(S)$ and a coloop of $M(S)$ is a loop of $M^{*}(S)$.

We now obtain a lower bound for the number of bases of a connected matroid. We first note the following .
2.8.15 LEMMA. (i) x is a loop of $M(S)$ if and only if x is not contained in any basis of $\mathrm{M}(\mathrm{S})$.
(ii) x is a coloop of $M(S)$ if and only if x is contained in every basis of $M(S)$.
(iii) x is a coloop of $M(S)$ if and only if x is not contained in any circuit of $M(S)$.
2.8.16 THEOREM. Let \mathcal{B} be the family of bases of a connected matroid. Then $|B| \geq|s|$.

PROOF. We proye the theoren by induction on $|S|$. The Theorem is true when $|S|=1$. Inssume that the theorem is true for any connected matroid $M(T)$, where $I \leq|T|<n$. Let $M(S)$ be a connected matroid on a set S of n elements.

For any $x \in S$ there exists $x \neq y \in S$ and thus x, y are contained in a circuit C of $M(S)$. Hence x is not a loop of $M(S)$. Now $C \backslash x$ is independent and $C \backslash x \subseteq a$ basis $B \in \mathcal{B}$. As C is dependent, $x \not \& B$. Therefore x is not a coloop of $M(S)$. That is $M(S)$ has no loops and coloops:

Let $x \varepsilon S$ and let n_{1}, n_{2} be the number of bases of $M_{S}(S \backslash x)$, $N(S) .(S \backslash x)$ respectively. Observe that $M_{S}(S \backslash x)$ and $M(S) .(S \backslash x)$ have no common basis since the bases of $M_{S}(S \vee x)$ are the bases of $M(S)$ not containing x and the bases of $M(S)$. (S $\backslash x$) are the bases of $M(S)$ containing x. As any basis of $M(S)$ either contains x or does not contain x we have $|\mathbb{B}|=n_{1}+n_{2}$. By Theorem 2.7.9 at least one of $M_{S}(S \backslash x)$ and $M(S) .(S \backslash x)$ is connected.

If $M_{S}(S \backslash x)$ is connected, then $n_{1} \geq|s|-1$. Since x is not a loop of $M(S), x$ is contained in a basis of $M(S)$ so that $n_{2} \geq 1$. Thus $|B| \geq|s|-1+1=|s| \ldots$

If $M(S) .(S \backslash x)$ is connected we have $n_{2} \geq|S|-1$. Also x is not a coloop and hence is not contained in a basis of $M(S)$ so that.
$n_{1} \geq 1$. Thus $|B| \geq 1+|s|-1=|s|$ and the theorem is proved. //
In fact Murty $[66\}$ showed that $|\mathcal{B}| \geq r(n-r)+1$ if $M(S)$ is a connected matroid of rank r on a set S of n elements.
2.8.17 LEMMA. A nonempty separator of a matroid without loops and coloops has cardinality at least 2.

PROOF. Suppose that x is a separator of $M(S)$ which has no loops and coloops. Thus x is not a loop and so x is not a circuit. Hence all circuits of $M(S)$ are contained in $S \backslash x$. Therefore x is not contained in any circuit of $M(S)$ so that by Lemma 2.8 .9 x is a coloop of $\mathrm{M}(\mathrm{S})$. This contradicts the assumption. So any separator of' $M(S)$ has cardinality at least 2.
2.8.18 LEMMA. Let S_{1} be a separator of $M(S)$. If B, β_{1} and B_{2} are the families of bases of $M(S), M_{S}\left(S_{1}\right)$ and $M_{S}\left(S \backslash S_{1}\right)$ respectively. Then $|B|=\left|B_{1}\right|\left|B_{2}\right|$.

PROOF. We first. show that $\left|B_{1} \cap S_{1}\right|=\left|B_{2} \cap S_{1}\right|$ for every two bases E_{1}, B_{2} of $M(S)$. Suppose that B_{1}, B_{2} are bases of $M(S)$ with $\left|\mathrm{B}_{1} \cap \mathrm{~S}_{1}\right|<\left|\mathrm{B}_{2} \cap \mathrm{~S}_{1}\right|$. Let $\mathrm{I}_{1}=\mathrm{b}_{1} \cap \mathrm{~S}_{1}$ and $\mathrm{I}_{2}=\mathrm{B}_{2} \cap \mathrm{~S}_{1}$. By Lemma 1.4.2 and finite induction there exists a nonempty subset I of $I_{2} \backslash I_{1}$ such that $I_{1} \cup I$ is independent and $\left|I_{1} \cup I\right|=\left|I_{2}\right|$. Observe that $B_{1} \cap S_{1}$ is a maximal subset of B_{1} contained in S_{1}. Consider any x in I we see that $\dot{x} \notin B_{1}$. Then $C\left(x, B_{1}\right)$ is contained in S_{1} or $S \backslash S_{1}$. But $x \in S_{1}$, hence $C\left(x, B_{1}\right) \subseteq S_{1}$. Now $C\left(x, B_{1}\right) \subseteq\left(B_{1} \cap S_{1}\right) \cup x=I_{1} \cup x$. A contradiction. Thus $\left|I_{1}\right| \geq\left|I_{2}\right|$. Similarly $\left|I_{2}\right| \geq\left|I_{1}\right|$ and so $\left|I_{1}\right|=\left|I_{2}\right|$.

Let $B \in \beta$. By the above $B \cap S_{1}$ is a basis of $M_{S}\left(S_{1}\right)$ and
$B \cap\left(S \backslash S_{1}\right)$ is a basis of $M_{S}\left(S \backslash S_{1}\right)$. Conversely if $B_{1} \varepsilon B_{1}$ we can extend B_{1} to a basis B of $M(S)$. Then $B \cap\left(S \backslash S_{1}\right)$ is a basis of $M_{S}\left(S \backslash S_{1}\right)$. Thus a subset B of S is a basis of $M(S)$ i.f and only if $B \Upsilon S_{1}$ is a basis of $M_{S}\left(S_{1}\right)$ and $B \cap\left(S \backslash S_{1}\right)$ is a basis of $M_{S}\left(S \backslash S_{1}\right)$. Therefore $|B|=\left|B_{2}\right|\left|B_{2}\right|$.
2.8.19 THEOREM. Let \mathcal{B} be the family of bases of a disconnected matroid which has no loops and coloops. Then $|\mathcal{B}| \geq|s|$.

PROOF. We first show that the theorem is true for $|s| \leq 4$. The theorem is obviously true for $|\mathrm{S}|=1$.

For $|S|=2$. Let $x_{1} \neq x_{2} \varepsilon S$. Since x_{1} and x_{2} are not coloops, $x_{1} \not \& B_{1}$ and $x_{2} \not \& B_{2}$ for some bases B_{1}, B_{2} of $M(S)$. If $B_{1}=B_{2}$ and no other bases, then x_{1} and x_{2} are coloops which is not so. Thus M(S) has at least two bases.

For $|S|=3$. Let $S=\left\{x_{1}, x_{2}, x_{3}\right\}$. As each of x_{1}, x_{2}, x_{3} is contained in a basj.s every basis has at least one element. if $M(S)$ has only one basis, then every element is a coloop. Thus $M(S)$ has at least 2 bases. Suppose that there are only 2 bases. Then every basis consists of exactly 2 elements and the two bases have a common element which is a coloop. A contradiction. Thus $M(S)$ has at least 3 bases.

For $|s|=4$. We can show that $|B| \geq 4$ by using the same argument as the case $|s|=3$.

Assume that the theorem is true for all $M(T)$ with $4 \leq|T|<n$. Let $M(S)$ be a disconnected matroid on a set S of n elements which has no loops and coloops. Then there is a separator S_{1} of S with $S_{1} \neq \phi, S$.

Also $S \backslash S_{1}$ is a separator of $M(S)$ with $S \backslash S_{1} \neq \phi$, S. Let B_{1}, and \mathcal{B}_{2} be the families of bases of $M_{S}\left(S_{1}\right)$ and $M_{S}\left(S, S_{1}\right)$ respectively. Then by Lemme 2.8.12 we have $|\bar{B}|=\left|\mathcal{B}_{1}\right|\left|B_{2}\right|$. By the induction hypothesis $\left|B_{1}\right| \geq\left|s_{1}\right|$ and $\left|B_{2}\right| \geq\left|s \backslash s_{1}\right|$ so that $|B| \geq\left|s_{1}\right|\left|s \backslash s_{1}\right|$. Now $\left|s_{1}\right| \geq 2$ by Lemma 2.3 .11 and so $|B| \geq 2 n-4 \geq n$ as required. //

3. TRANSVERSAL PREGEOMETRIES

We define and obtain simple properties of the important class of transversal pregeometries.

3.1 REPRESENTATIONS

Here we define, and discuss various representations, of transversal pregeometries.
3.1.1 A family (or listing) of subsets of a set X is a function $f: I \rightarrow 2^{X}$ with I well-ordered.

We usually denote it by $\left(X_{I}\right)$ or $\left(X_{i} ; i \varepsilon I\right)$; I being the index set of the family.
3.1.2 Given a family $\left(X_{I}\right), X \subseteq S$. We define as a system of representatives of $(X)_{I}$ (or choice function), denoted by $S R$ any function $\phi: I \rightarrow$ s satisfying $\phi(i) \varepsilon X_{i}, \forall i \in I$.

If ϕ is injective, it is a system of distinct representatives of $(X)_{I}$, denoted by $S D R$, and its image $\phi(I)$ is a transversal of $(X)_{I}$.

In general a family ${ }^{(X)}{ }_{I}$ of nonempty sets may not have an
SDR. For example if $X_{1}=\{a, b\}, X_{2}=\{a, c\}, X_{3}=\{b, c\}$., $x_{4}=\{a, b, c\}$, then $\phi: I=\{1,2,3,4\} \rightarrow\{a, b, c\}$ defined by $\phi(1)=a, \phi(2)=c, \phi(3)=b, \phi(4)=a$ is an SR of $(X)_{I}$ but $(X)_{I}$ has no SDR.
3.1.4 A subfamily $\left(\mathrm{X}_{J}\right.$ of a family $(X)_{I}$ is a restriction of f:I $\rightarrow 2^{S}$ to $J \subseteq I$.

We write $\bigcup_{J} x$ or $\bigcap_{J} x$ to denote the union or intersection of sets in $f(J)$ and we write (X) to denote $f(J)$.
3.1.5 A partial system of (distinct) representatives of a family (X) I^{\prime} denoted by PSR(PSDR), is an $\operatorname{SR}(S D R)$ of some subfamily of ${ }^{(X)} I^{\text {. }}$

A partial transversal of $(X)_{I}$ is a transversal of some subfamily of ${ }^{(X)}{ }_{I}$.
3.1.6 THEOREM. Let ${ }^{(X)}{ }_{I}$ be a finite family of subsets of a set S. Then the collection J of all partial transversals of ${ }^{(X)} I$ is the family of independent sets of a pregeometry on S.

PROOF. For each $i \varepsilon I$, let J_{i} be the collection of empty, set and all singletons of x_{i}. Then J_{i} is the collection of independent sets of a pregeometry $G_{i}\left(x_{i}\right)$ on x_{i}. Let \mathcal{J}^{\prime} be the collection of independent sets of the union of $G_{i}\left(X_{i}\right)$, where $i \varepsilon I$. We show that $J=\mathcal{J}^{\prime}$.

For each PT. $E=\left\{x_{1}, \ldots, x_{r}\right\}$ of $(X)_{I}$ there exists a subset J of I such that E is a transversal of $(X)_{J}$. We can assume that $J=\{1, \ldots, x\} \quad$ and $x_{j} \varepsilon x_{j}, \forall_{j} \varepsilon J$. Thus $x_{j} \varepsilon \widetilde{J}_{j}, \forall_{j} \varepsilon J$ and so $E=\bigcup_{j \in J} x_{j} \varepsilon \tilde{J}^{\prime}$.

Let $A \in \mathcal{J}^{\prime}$. Then $A=\bigcup_{r \in R} x_{r}$ for some $R \subseteq I$ and $r \neq s$ $\Rightarrow x_{r} \neq x_{S}$. Define $\phi: R \rightarrow A$ by $\phi(x)=x_{r}$. We see that ϕ is bijective and $\phi(R)=A$. Hence A is a PT of $(X)_{I}$ Thus A $\varepsilon \mathcal{J}$ and the theorem is proved.
3.1.7 LEMMA. Let $(X)_{I}$ be a finite family of subsets of a set S.

Let $\mathcal{F} \boldsymbol{f}$ be the collection of subsets of 1 satisfying : J $\varepsilon \mathscr{F}$ if and only if $(x)_{J}$ has a transversal. Then \mathcal{F} is the collection of independent sets of a matroid on I.

PROOF. Since ϕ is a PT of ${ }^{(X)}{ }_{I}$ and any subset of a PT of ${ }^{(X)}{ }_{I}$ is also a PT of $(X)_{I}$, we need to show that $\widetilde{\mathcal{F}}$ satisfies $\left(I_{2}\right)$. Let J_{1}, J_{2} be subsets of I with $\left|J_{1}\right|<\left|J_{2}\right|$. Then $(X)_{J_{1}}$ and $(X)_{J_{2}}$ have transversals E_{1} and E_{2} respectively. Now E_{1} and E_{2} are $P T$ of $(X)_{I}$ and $\left|E_{1}\right|<\left|E_{2}\right|$. Thus there exists $x \varepsilon E_{2} \backslash E_{1}$ such that $E_{1} U \times$ is a PT of ${ }^{(X)} I^{\prime}$. Since $x \varepsilon E_{2}, x \in X_{j}$ for some $j \varepsilon J_{2}$. As $E_{1} U x$ is a PT, $j \notin J_{1}$ and the lemma is proved.
3.1.8 A pregeometry $G(S)$ is transversal if there exists a finite family $\mathcal{A}=(X)_{I}$ of subsets of S such that the collection of all PT of ${ }^{(X)} I_{I}$ is the collection of independent sets of $\mathrm{G}(\mathrm{S})$.

We denote $G(S)$ by $m\{\mathscr{A}]$ or $M\left[x_{1}, \ldots, x_{n}\right]$, where $\mathrm{I}=\{1, \ldots, \mathrm{n}\}$ and call \mathcal{A} a presentation of $\mathrm{G}(\mathrm{s})$.

Indeed a presentation of a transversal pregeometry need not be unique. As an easy example consider the matroid $M(S)=$ $M[14,234,13]$ on the set $S=\{1,2,3,4\}$. Another presentation of $M(S)$ is $[123,12,24]$.
3.1.9 LEMMA. Any subpregeometry of a transversal pregeometry is transversal.

PROOF. Let $G_{S}(T)$ be any subpregeometry of a transversal $G(S)=M\left\{X_{1}, \ldots, X_{n}\right]$. Put $I=\{1, \ldots, n\} \quad$ and let $(Y)_{I}$ be the family of subsets of T defined by $Y_{i}=X_{i} \cap T, V i \in I$. Let $J=\left\{i \varepsilon I / Y_{i} \neq \phi\right\}$. Then it is clear that $G_{S}(T)=M\left[\left(Y_{j} / j \varepsilon J\right)\right]$
and so the lemma is proved.
3.1.10 LEMMA. If $G(S)$ is a transversal pregeometry of rank r, then $G(S)$ has a presentation consisting of r sets.

PROOF. We first show that if $G(S)=G_{1}\left(S_{1}\right) \bar{v} G_{2}\left(S_{2}\right)$ and $r(G(S))=r\left(G_{1}\left(S_{1}\right)\right)$, then $J=J_{1}$, where \mathcal{J} and J_{1} are the collections of independent sets of $G(S)$ and $G_{I}\left(S_{1}\right)$ respectively. Let J_{2} be the collection of independent sets of $G_{2}\left(S_{2}\right)$. Clearly $J \mathbb{J}_{1}$. Let $I \varepsilon J$. Then $I=I_{1} U I_{2}$ for some $I_{1} \varepsilon J_{1}$ and $I_{2} \in J_{2}$. Extend I_{1} to a basis B_{1} of $G_{1}\left(S_{1}\right)$. Since $r(G(S))=r\left(G_{1}\left(S_{1}\right)\right),\left|B_{1} \cup I_{2}\right| \leq\left|B_{1}\right|$ and so $I_{2} \subseteq B_{1}$. Thus $I_{1} \in I_{2} \varepsilon \mathcal{J}_{1}$. Therefore $J=J_{1} ;$

$$
\text { Let } G(S)=M\left\{x_{1}, \ldots, x_{n}\right\}: \text { and } I=\{1, \ldots, n\} . \text { Pick }
$$

a maximal PTE of $(X)_{I}$. Then $|E|=r$. Suppose that E is a transversal of $(X)_{R}$, where $R=\{1, \ldots, r\}$. For each $i \varepsilon I$ let \vec{T}_{i} and $G_{i}\left(X_{i}\right)$ be defined as in the proof of Theorem 3.1.6. Put $S_{1}=\bigcup_{R} X$ and $S_{2}=\bigcup_{I M_{R}} x$. Let $G^{\prime}\left(S_{1}\right)=G_{1}\left(X_{1}\right) v \ldots v G_{r}\left(X_{r}\right)$ and $G^{\prime \prime}\left(S_{2}\right)=G_{r+1}\left(X_{r+1}\right) v \ldots v G_{n}\left(x_{n}\right)$. By the above $J_{1}=J_{1} \| \in J_{r}$ so that $G(S)=M\left[X_{1}, \ldots, X_{r}\right\}$ as required.

Bondy and Welsh $[71]$ showed that there exists a presentation of a transversal matroid in which each of the sets of the presentation is a cocircuit of the matroid. We now obtain this result.
3.1.11 Lemma Let $M(S)=M\left\{X_{1}, \ldots, X_{n}\right\}$ be a transversal matroid of rank. r. If E is a transversal of $\left(X_{2}, \ldots, X_{r}\right)$ such that $A=E M X_{1}$ has minimum cardinality. Then $M(S)=M\left[X_{1} \backslash A, X_{2}, \ldots, X_{r}\right\}$.

PROOF. Clearly any PT of $\left(X_{1} \backslash A, X_{2}, \ldots, X_{r}\right)$ is a PT of $\left(X_{1}, \ldots, X_{r}\right)$. We show that any basis B of $M(S)$ is a transversal of $\left(X_{1} \backslash A, X_{2}, \ldots, X_{r}\right)$. Let $B=\left\{b_{1}, \ldots, b_{r}\right\}$ be any basis of $M(S)$ and $b_{i} \varepsilon X_{i}$ where $1 \leq i \leq x . \quad$ Suppose $E=\left\{e_{2}, \ldots, e_{r}\right\}$, where $e_{i} \varepsilon X_{i}, 2 \leq i \leq r_{0}$. The theorem is proved if $b_{1} \varepsilon X_{1} \backslash$ A. Assume that $b_{1} \varepsilon A$. Then $b_{1} \varepsilon E$ and $b_{1}=e_{2}$, say. Consider the two possibilities for b_{2}.
case 1. If $b_{2} \in X_{1}$, A, then B is a transversal of $\left(x_{1}, A, x_{2}, \ldots, x_{r}\right)$.
case 2. If $b_{2} \& X_{1}$. A. We show that $b_{2} \varepsilon$ E. Suppose that $b_{2} \& X_{1} \cup E$. Then $E^{\prime}=\left\{b_{2}, e_{3}, \ldots, e_{r}\right\}$ is a transversal of $\left(X_{2}, \ldots, X_{r}\right)$ with $\left|E \cdot \cap X_{1}\right|<\left|E \cap X_{1}\right|$ which is a contradiction. Thus $b_{2} \varepsilon X_{1} \cup E$. If $b_{2} \varepsilon X_{1} \backslash E$, then $b_{2} \varepsilon X_{1} \backslash A$ which is not so. Thus $\mathrm{b}_{2} \varepsilon \mathrm{E}$.

Now $b_{2} \neq e_{2}$ since $e_{2}=b_{1} \neq b_{2}$. Let $b_{2}=e_{3}$ and repeat the same argument as above for b_{3} and we shall have $b_{3}=e_{4} \varepsilon E$. Carrying on in this way we see that there exists i such that $b_{i} \varepsilon X_{1} \backslash A$ and $b_{j} \varepsilon X_{j+1}, 1 \leq j<i$. (otherwise we get a contradiction at the final step and so $\left.b_{1} \varepsilon x_{1} \backslash A\right)$. Thus $B=\left\{b_{i} ; b_{1}, b_{2}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{r}\right\}$ is a transversal of $\left(X_{1} \backslash A, X_{2}, \ldots, X_{r}\right)$ and the lemma is proved.

In fact we have the following stronger result

3.1.12 LEMMA. If $M(S)=M \quad\left[X_{1}, \ldots, X_{n}\right]$ and E is a maximal partial transversal of $\left(x_{2}, \ldots, x_{n}\right)$ with $\left|E \cap x_{1}\right|$ minimal, then $M(S)=M\left[X_{1} \backslash\left(E \cap X_{1}\right), X_{2}, \ldots, X_{n}\right]$.

PROOF. We can assume that $X_{1} \neq \phi$. Let $x \varepsilon X_{1}$, Extend x to
a basis B ot $M(S)$. Then $B X x$ is a maximal PT of $\left(X_{2}, \ldots, X_{n}\right)$. Without loss of generality assume that $B \backslash x$ is a transversal of $\left(X_{2}, \ldots, X_{r}\right)$. Observe that $M\left[X_{2}, \ldots, X_{n}\right]$ has rank $r-1$. As in the proof of Lemma $3.1 .10 \mathrm{M}\left[\mathrm{X}_{2}, \ldots, x_{n}\right]=M\left[x_{2}, \ldots, x_{r}\right]$ so that $M(S)=M\left[X_{1}, \ldots, X_{r}\right]$. Since E is a transversal of $\left(x_{2}, \ldots, x_{r}\right)$ with $\left|E \cap x_{1}\right|$ minimal, by Theorem 3.1 .11 we have $\left.M\left[X_{1}, E \cap x_{1}\right), X_{2}, \ldots x_{r}\right]=M\left[x_{1}, \ldots, x_{r}\right]$ so that $M\left[x_{1} \backslash\left(E \cap x_{1}\right), x_{2}, \ldots, x_{n}\right]=M\left[x_{1}, \ldots, x_{n}\right]$. The lemma is proved.
3.1.13 THEOREM. Let $M(S)=M\left[X_{1}, \ldots, X_{r}\right]$ be a transversal matroid of rank r. Then there exist distinct cocircuits $C_{1}^{*}, \ldots, C_{r}^{*}$ of $M(S)$ such that $M(S)=M\left[C_{1}^{*}, \ldots, C_{r}^{*}\right]$ and for some distinct integers $i_{1}, \ldots, i_{r}, C_{j} \leqslant X_{i_{j}}$, where $1 \leq j \leq r$.

This presentation is minimal in the sense that for any $i, 1 \leq i \leq r$ and for any $x \in C_{i}^{*}$,
$M(S) \neq M\left[C_{1}^{*}, \ldots, C_{i-1}^{*}, C_{i}^{*} \backslash x, C_{i+1}^{*}, \ldots, C_{n}^{*}\right]$

PROOF. Let E be a transversal of $\left(X_{2}, \ldots, X_{x}\right)$ such that $E \cap X_{1}$ has minimum cardinality. put $A=E \cap X_{1}$. Then ($\left.X_{1} \backslash A\right) \cap E=\phi$ Since E is a transversal of (X_{2}, \ldots, X_{r}), for any $x \in X_{1} \backslash A, E \cup x$ is a transversal of $\left(X_{1}, \ldots, X_{r}\right)$ and hence is a basis of $M(S)$. By Lemmen.1.11 for any basis B of Mis) we have

$$
B=\left\{x_{1}, \ldots, x_{r}\right\} \quad \text { where } x_{1} \varepsilon x_{1} \backslash A \text { and } x_{j} \varepsilon x_{j}, j=2, \ldots, r
$$

That is X_{1}, A is a set intersecting every basis of $M(S)$. If $y \in X_{1} \backslash A$ then $E \cup Y$ is a basis of $M(S)$ and $\left(X_{1} \backslash A \backslash y\right) \cap(E \cup Y)=\phi$. Therefore $X_{1} A$ is a minimal set intersecting every basis of $M(S)$. Hence $X_{1} K A$ is a cocircuit of $M(S)$ and $M(S)=M\left[x_{2}, X_{1} \backslash A, \ldots, x_{r}\right]$ Apply the
same procedure to $\left(X_{2}, X_{1} \backslash A_{1}, \ldots, x_{r}\right)$ and so on until we abtain $M(S)=M\left[X_{r} \backslash A_{r}, \ldots, X_{l} \backslash A_{1}\right]$ and $X_{j} \not A_{j}=C_{j}^{*}$ is a cocircuit of $M(S), 1 \leq j \leq r$. Observe that for any $x \in C_{i}^{*}$ we have $M(\hat{S}) \neq M\left[C_{1}^{*}, \ldots, C_{i-1}^{*}, C_{i}^{*} \backslash x, C_{i+1}^{*}, \ldots, C_{r}^{*}\right]$ as $C_{i}^{*} \times x$ has empty intersection with some basis of $u(S)$ which is a transversal of $m\left[C_{1}^{*}, \ldots . c_{r}^{*}\right]$.

To see that $C_{i}^{*} \neq C_{j}^{*}$ if $i \neq j$. Suppose that there exist $i \neq j$ with $C_{i}^{*}=C_{j}^{*}$. We show that $M\left[C_{1}^{*}, \ldots, C_{r}^{*}\right]$ $=M\left[C_{1}^{*}, \ldots, C_{i}^{*} \backslash x, \ldots, C_{r}^{*}\right]$ for any $x \in C_{i}^{*}$. For any $P T$ of $M(S)$ such that x represents C_{i}^{*} and y represents C_{j}^{*} we obtain the same PT by representing C_{i}^{*} by y and c_{j}^{*} by x. This contradicts the minimality of ($C_{1}^{*}, \ldots, C_{r}^{*}$). Hence all circuits are distinct and the theorem is proved.

Moreover Theorem 3.1.13 gives an algorithm for testing whether or not a matroid is transversal.

As an example we show that the Fano matroid is not transversal.

PROOF. Suppose that $M\left(\mathscr{J}_{7}\right)$ is transversal. As $\mathscr{\mathscr { S }}_{7}$ is the set of hyperplanes, $M\left(\mathscr{U}_{7}\right)=M\left[S_{7} \backslash A_{1}, S_{7} \backslash A_{2}, S_{7} \backslash A_{3}\right]$, for some A_{1}, A_{2}, A_{3} in \mathscr{Y}_{7}. We consider the two possibilities of A_{1}, A_{2}, A_{3} : (i) $A_{1} \cap A_{2}=A_{1} \cap A_{3}=A_{2} \cap A_{3}$, (ii) $A_{1} \cap A_{2} \neq A_{1} \cap A_{3}$ $\neq \mathrm{A}_{2}{ }^{\cap} \mathrm{A}_{3}$.

$$
\text { case 1. } A_{1} \cap A_{2}=A_{1} \cap A_{3}=A_{2} \cap A_{3}
$$

Without loss of generality assume that $A_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$, $A_{2}=\left\{x_{1}, x_{4}, x_{5}\right\}, A_{3}=\left\{x_{1}, x_{6}, x_{7}\right\}$. Then $A_{1} \cup A_{2} \cup A_{3}=S_{7}$ and $x_{1} \notin S_{7} \not \subset A_{1}, S_{7} \backslash A_{2}, S_{7} \backslash A_{3}$. Hence $A=\left\{x_{1}, x_{2}, x_{4}\right\} \notin \mathscr{S}_{7}$. But $A \not \& M\left[S_{7} \backslash A_{1}, S_{7} \backslash A_{2}, S_{7} \backslash A_{3}\right]$. A contradiction.
case 2. $\quad A_{1} \cap A_{2} \neq A_{1} \cap A_{3} \neq A_{2} \cap A_{3}$
We note that any two distinct triples of \mathscr{U}_{7} intersect in onfelement. Without loss of generality assume that $A_{1}=\left\{x_{1}, x_{2}, x_{4}\right\}$, $A_{2}=\left\{x_{1}, x_{3}, x_{5}\right\}, A_{3}=\left\{x_{2}, x_{3}, x_{6}\right\}$. Then $S_{7} \backslash A_{1}=\left\{x_{3}, x_{5}, x_{6}, x_{7}\right\}$ $S_{7} \backslash A_{2}=\left\{x_{2}, x_{4}, x_{6}, x_{7}\right\}, S_{7} \backslash A_{3}=\left\{x_{1}, x_{4}, x_{5}, x_{7}\right\}$: Consider the tripte $A=\left\{x, x_{1}, x_{7}\right\}$ containing x_{1}, x_{7}. Then $x=x_{2}$ or x_{3} or x_{4} or x_{5} or x_{6}, As $S_{7} \backslash A_{1} \backslash x_{7}=\left\{x_{3}, x_{5}, x_{6}\right\}$ and $S_{7} \backslash A_{2}, x_{7}=\left\{x_{2}, x_{4}, x_{6}\right\}$ and $x_{7} \varepsilon S_{7} \backslash A_{1}, S_{7} \backslash A_{2}$. Since $x_{1} \varepsilon S_{7} \backslash A_{3}$, it follows that $A \varepsilon M\left[S_{7} \backslash A_{1}, S_{7} \backslash A_{2}, S_{7} \backslash A_{3}\right]$. A contradiction.

Thus $M\left(\boldsymbol{Y}_{7}\right)$ is not eransversal:

By Hall [67] for any $n \equiv 1$ or $3 \bmod 6$ and $n \notin N_{0}=\{9,13,25$, 27, 33, 37, 67, 69, 75, 81, 97, 109, 201, 289, 321\}., a Steiner triple system \mathscr{H}_{n} containing $\mathscr{\mathcal { H }}_{7}$ exists and since $\mathscr{\mathscr { H }}_{7}$ is unique we note from Lemma 3.1.9 that a non - transversal matroid $M\left(\mathscr{U}_{n}\right)$ exists.

As a consequence of Theorem 3.1.13 we have
3.1.14 LEMMA. Each C_{i}^{*} in any minimal presentation ($C_{1}^{*}, \ldots, C_{r}^{*}$) of a transversal matroid $M(S)$ is a PT of the family of bases of $M(S)$.

PROOF. As in the proof of Theorem 3.1.13 for any y $\in C_{i}^{*}$, $D U Y$ is a basis of $M(S)$ for some PT D of $(X)_{I}$. Since $y_{1} \neq y_{2} \in C_{i}^{*}$, $D \cup y_{1}$ and $D \cup y_{2}$ are distinct bases of $M(S)$. Thus C_{i}^{*} is a PT of the family of bases of $M(S)$ as required.
3.1.15 THEOREM. $M(S)=M\left[X_{1}, \ldots, X_{n}\right]=M\left[X_{1} \cup A, X_{2}, \ldots, X_{n}\right]$ -if and only if every element of $A \backslash X_{1}$ is a coloop of $\left.M\left[x_{2} \backslash x_{1}, x_{3} \backslash x_{1}, \ldots, x_{n}\right\rangle x_{1}\right]=M_{s}\left(s \backslash x_{1}\right)$.

PROOF. Observe that if $a, b \in S \backslash X_{1}$ with $M(S)$
$=M\left[x_{1} \cup a, x_{2}, \ldots, x_{n}\right]=M\left[x_{1} \cup b, x_{2} \ldots, x_{n}\right]$, then $M(s)$
$=M\left[x_{1} u a b, x_{2}, \ldots, x_{n}\right]$. Thus to prove the theorem it suffices to show that if a $\notin x_{1}$, then $M\left[x_{1} \cup a, x_{2}, \ldots, x_{n}\right]=M\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ if and only if a is a coloop of $:\left[x_{2} \times x_{1}, x_{3} \backslash x_{1}, \ldots, x_{n} \backslash x_{1}\right]$.

Let a be a coloop of $M\left[X_{2} \backslash X_{1}, \ldots, X_{n} \backslash X_{1}\right]$. Then every maximal PT of (X_{2}, \ldots, X_{n}) intersects $X_{1} U$ a. Choose a maximal PT B_{1} of $\left(x_{2}, \ldots, x_{n}\right)$ with $\left|B_{1} n\left(x_{1} u a\right)\right|$ minimal. We consider the two possibilities for a.
case 1. If a εB_{1}. Then by Lemma 3.1.12 we have
$M\left[x_{1} \cup a, x_{2}, \ldots, x_{n}\right]=M\left[\left(x_{1} \cup a\right) \backslash\left(B_{1} \cap\left(x_{1} \cup a\right)\right), x_{2}, \ldots, x_{n}\right]$ $=M\left[X_{1} \backslash B_{1}, X_{2}, \ldots, X_{n}\right]$. But every maximal PT of ($\left.X_{1} \backslash B_{1}, \ldots, X_{n}\right)$ is a maximal PT of $\left(X_{1}, \ldots, X_{n}\right)$. Thus $M\left[X_{1} \cup a, \ldots, X_{n}\right]=M\left[X_{1}, \ldots, X_{n}\right]$.
case 2. If a $\notin B_{1}$, then since a belongs to every maximal PT of $\left(\dot{X}_{2} \times x_{1} \ldots, x_{n} \backslash x_{1}\right), B^{\prime}=B_{1} \times\left(X_{1} \cup\right.$ a) is a PT of $\left(X_{2} \backslash x_{1}, \ldots, x_{n} \backslash x_{1}\right)$. Wè see from the choice of B_{1} that B^{\prime} is a maximal PT of $\left(x_{2} \backslash x_{1}, \ldots, x_{n} \backslash x_{1}\right)$.
Extend B^{\prime} to a basis B_{2} of $M\left[X_{2}, \ldots, X_{n}\right]$. Since a εB^{\prime}, a εB_{2}. Now $\left|B_{2} \cap\left(X_{1} \cup a\right)\right|=\left|B_{1} \cap\left(x_{1} \cup a\right)\right|$ and we apply case 1 to B_{2}

$$
\text { Conversely suppose } m\left[x_{1} \cup a, \ldots, x_{n}\right]=m\left[x_{1}, \ldots, x_{n}\right]
$$

Consider any maximal PT E of ($\mathrm{X}_{2} \backslash \mathrm{X}_{1} \ldots \ldots, \mathrm{X}_{\mathrm{n}} \backslash \mathrm{x}_{1}$) which is a PT of $\left(x_{2}, \ldots, x_{n}\right)$ and hence $E \cup$ a is a PT of ($\left.x_{1} \cup a, x_{2}, \ldots, x_{n}\right)$. Then E U a is a PT of $\left(X_{1}, \ldots, X_{n}\right)$ (as a $\notin X_{1}$). Since ($E \cup$ a) $n X_{1}=\phi$, E U a is a PT of $\left(X_{2} \backslash X_{1}, \ldots, X_{n} \cdot X \cdot X_{1}\right)$. But E is a maximal PT of $\left(x_{2} \times x_{1}, \ldots, x_{n} \backslash x_{1}\right)$ and so $E=E \cup$ a. Thus a εE. Therefore a is a coloop of $M\left[x_{2}, x_{1}, \ldots, x_{n} \times x_{1}\right]$ and the theorem is proved
3.1.16 A maximal presentation $\left[X_{1}, \ldots, X_{r}\right]$ of a transversal matroid $M(S)$ of rank r is a presentation of $M(S)$ such that for any $i=1, \ldots, r$ and each $x \not \not \neq X_{i}, M(S) \neq M\left[X_{1}, \ldots, X_{i-1}, X_{i} \cup x, \ldots, x_{r}\right]$.

Bondy [72] showed that a maximal presentation of any transversal matroid exists and is unique.
3.1.17 THEOREM. A maximal presentation of a transversal matroid $M(S)=M\left[X_{1}, \ldots, X_{r}\right]$ of rank r is unique.

PROOF. We first show that a maximal presentation of $M(S)$
exists. Let A_{1} be the set of coloops of $M\left[x_{2}>x_{1}, \ldots, x_{r}>x_{1}\right]$. Then by Theorem 3.1.15 $M(S)=M\left[X_{1} \cup A_{1}, x_{2}, \ldots, x_{r}\right]$. Inductively for each $i, 2 \leq i \leq r$, having A_{i-1} we let A_{i} be the set of coloops of $M\left[X_{1} \cup A_{1} \backslash X_{i}, x_{2} \cup A_{2} \backslash X_{i}, \ldots, x_{i-1} \cup A_{i-1} * X_{i}\right.$, $\left.\left.x_{i+1}, \ldots, x_{r}\right\}=M_{S}(S\rangle x_{i}\right)$ so that by Theorem 3.1 .15 $M\left[x_{1} \cup A_{1}, \ldots, x_{i} \cup A_{i}, x_{i+1}, \ldots, x_{r}\right]=M\left[x_{1} \cup A_{1}, \ldots, x_{i-1} \cup A_{i-1}\right.$, $\left.x_{i}, \ldots, x_{r}\right]=M(S)$. We claim that $M\left[X_{1} \cup A_{1}, X_{2} \cup A_{2}, \ldots, x_{r} \cup A_{r}\right]$ is a maximal presentation of $\dot{M}(S)$. Suppose $M\left[x_{1} \cup A_{1}, \ldots, x_{i} \cup A_{i} \cup x\right.$, $\left.\ldots \ldots ., x_{r} \cup A_{r}\right]=M\left[X_{1} \cup A_{1}, \ldots, x_{r} \cup A_{r}\right]$. Then by Theorem 3.1.15 x is a coloop of $M_{S}\left(S \backslash X_{i}\right)$ so that $x \in A_{i}$

To show the uniqueness we suppose that $\mathscr{A}=\left(A_{1}, \ldots, A_{r}\right)$ and $\mathcal{B}=\left(B_{1}, \ldots, B_{r}\right)$ are distinct maximal presentations of $M(S)$. Thus there exists a subset x of s such that l of the sets in \mathscr{A} and m of the sets in B are equal to x, with $\ell \neq m$. Choose such an x with $|x|$ minimal. We may assume that $\ell>m$. Let k be such that k of the sets in \mathscr{A} are properly contained in x. Since $|x|$ is minimal, k of the sets in B are properly contained in x. put $T=S \$ x$. Order the sets in \mathcal{A} and B so that

$$
\begin{aligned}
& \mathrm{A}_{1} \cap \mathrm{~T}=\phi \Leftrightarrow 1 \leq i \leq k+\ell, \\
& \mathrm{B}_{i} \cap \mathrm{~T}=\phi \Leftrightarrow \mathrm{I} \Leftrightarrow \mathrm{i} \leq \mathrm{k}+\mathrm{m} .
\end{aligned}
$$

As in the proof of Lemma $3.1,9,\left(A_{1} \cap T, \ldots, A_{r} \cap T\right)$ and
 $\mathcal{A}^{\prime}=\left(A_{k+\ell+1} \cap \mathrm{~T}_{\mathrm{k}}, \ldots, \mathrm{A}_{\mathrm{r}} \cap \mathrm{T}\right)$ and $\mathcal{B}^{\prime}=\left(\mathrm{B}_{\mathrm{k}+\mathrm{m}+1} \cap \mathrm{~T}, \ldots, \mathrm{~B}_{\mathrm{r}} \cap \mathrm{T}\right)$ are presentations of $M_{S}(T)$. Now $r\left(M_{S}(T) \leq r-k-\right.$. By Lemma 3.1 .10 there exists a subfamily $B^{\prime \prime}$ of B with $\left|B^{\prime \prime}\right| B^{\prime} \mid$ and $\mathcal{B}^{\prime \prime}$ is a presentation of $\mathrm{M}_{\mathrm{S}}(\mathrm{T})$. Let $\mathrm{B}_{\mathrm{j}} \cap \mathrm{T} \in \mathcal{B}^{\prime} \mathcal{B}^{\prime \prime}$. Since $B_{j} \cap T \neq \phi$, there exists $y \varepsilon B_{j} \cap$ ' T. Thus every maximal PT of \mathcal{B} contains y so that y is a collop of $M_{S}(T)$. Thus by Theorem 3.1.15 $M(S)=M\left[A_{1}, \ldots, A_{k}, A_{k+1} \cup y_{1}, \ldots, A_{r}\right]$, contradicting the maximality of $\mathscr{\mathscr { A }}$. Therefore the theorem is proved.

We note that every presentation (X) ${ }_{I}$ of a transversal matroid lies between a minimal presentation $(\mathrm{m}) I^{\text {and the maximal }}$ presentation (M) ${ }_{I}$ in the sense that for all i $\varepsilon I, m_{i} \subset X_{i} \mathcal{S}_{i}$.

We close this section by the following theorem due to Bond [72].
3.1.18 THEOREM. Let $\left(M_{1}, \ldots ; M_{r}\right)$ be the maximal presentation of a transversal matroid $M(S)$ of rank r. If $\left(C_{1}, \ldots, C_{r}\right)$ and (D_{1}, \ldots, D_{r}) are cocircuit presentations of $M(S)$ with $C_{i} U D_{i} W_{i}, 1 \leq i \leq r$. Then $\left|C_{i}\right|=\left|D_{i}\right|, 1 \leq i \leq r$.

PROOF. Let $\left|C_{i} \cap D_{i}\right|=k_{i},\left|C_{0 i} \backslash D_{i}\right|=\ell_{i},\left|D_{i} \backslash C_{i}\right|=m_{i}$. Pick $x \in C_{i}^{\prime}$. Now C_{i} is a circuit of $M^{*}(S)$ so that $C_{i} \backslash x$ a basis B^{*} of $M^{*}(S)$. Then C_{i} is the fundamental circuit of B^{*} in x so that $C_{i} \cap\left(S \backslash B^{*}\right)=x$. Hence $S \backslash B^{*}$ is a basis of $M(S)$ which intersects C_{i}
in one element and so ($\left.M_{1} \backslash C_{i}, \ldots, M_{i-1} \backslash C_{i}, M_{i+1} \backslash C_{i}, \ldots, M_{r} \backslash C_{i}\right)$ has at least one transversal. Observe that ($M_{1}, \ldots, M_{i-1}, C_{i}, M_{i+1} \ldots \ldots M_{r}$) and ($M_{1}, \ldots, M_{i-1}, C_{i} \cup D_{i}, \ldots, M_{r}$) are presentations of $M(S)$. By Theorem 3.1.15 every element in $D_{i} \backslash C_{i}$ is a coloop of $M_{S}\left(S \backslash C_{i}\right)$. That is $D_{i} \backslash C_{i}$ is contained in every transversal of
$\left(M_{1} \backslash C_{i}, \ldots, M_{i-1} \backslash C_{i}, M_{i+1} \backslash C_{i}, \ldots, M_{r} \backslash C_{i}\right) . \operatorname{similarly} C_{i} \backslash D_{i}$ is contained in every transversal of ($\left.M_{1} \backslash D_{i}, \ldots, M_{i-1} \backslash D_{i}, M_{i+1}>D_{i}, \ldots, M_{r}>D_{i}\right)$ But $\left(S \vee C_{i}\right)$ and $\left(S \backslash D_{i}\right)$ and $\left(S \vee D_{i}\right)$ are hyperplanes of $M(S)$. Hence $r\left(M_{S}\left(S \sim C_{i}\right)=r\left(M_{S}\left(S \sim D_{i}\right)\right)=r-1\right.$. Thus every transversal of $\left(M_{1} \backslash D_{i}, \ldots, M_{i-1} \backslash D_{i}, M_{i+1} \backslash D_{i}, \ldots, M_{r} \backslash D_{r}\right)$ contains at least $\left|D_{i} \backslash C i\right|$ elements of $C_{i} \backslash D_{i}$ and so

$$
\ell_{i}=\left|c_{i} \backslash D_{i}\right| \geq\left|D_{i} \backslash c_{i}\right|=m_{i}
$$

Similarly we can show that $m_{i} \geq l_{i}$ and hence $l_{i}=m_{i}$. Thus $\left|c_{i}\right|=k_{i}+\ell_{i}=k_{i}+m_{i}=\left|D_{i}\right|$ and this is true for every i, $1 \leq i \leq r$. The theorem is proved.

3.2 MULTIPLICITY

As every transversal pregeometry has a presentation with a transversal it is interesting to find criteria for the existence of transversals of families. Throughout this section the families discussed are finite.
3.2.1 THEOREM. (Hall's Criterion).

```
Given a finite family (X) with each X finite. Then (X)}\mp@subsup{I}{I}{
``` has a transversal if and only if
\[
\begin{equation*}
\left|\operatorname{u}_{J} x\right| \geq J \quad, \quad \forall J \subseteq I \tag{H}
\end{equation*}
\]

PROOF. Let \(\phi(I)\) be a transversal of \({ }^{(X)}{ }_{I}\). Suppose that \(J \subseteq I\) with \(\left|\bigcup_{J} x\right|<|J|\). Then \(\phi\) is not infective on \(J\) so that \(\phi\) is not injective on I. A contradiction. Hence \(\left|\bigcup_{J} x\right| \geq|J|\), \(\forall J \subseteq I\).

Assume that \(\left|\bigcup_{J} x\right| \geq|J|, \Psi J G\). If all \(x\) are singletons the theorem is proved. We may assume that \(I=\{1,2, \ldots, n\}\) and \(X_{1}\) is not singleton. We shall show that \(¥ a \varepsilon X_{1}\) such that (\(\left.X^{\prime}\right)_{I}\) satisfies (H), where \(X_{1}^{\prime}=x_{1} \backslash a, x_{i}^{\prime}=x_{i}, 2 \leq i \leq n\).
suppose not. Let \(a_{1} \neq a_{2} \in x_{1}\). Then there exists \(J_{1}^{\prime} \subseteq\{1, \ldots, n\}\) such that \(\left|\bigcup_{J_{1}^{\prime}}^{\prime} x^{\prime}\right|<\left|J_{1}^{\prime}\right|\). That is
\[
\left|\left(x_{1} \backslash a_{1}\right) \cup\left(\underset{J_{1}}{\bigcup} x\right)\right|<\left|J_{1}\right|+1 \text {, where } J_{1}=J_{1}^{\prime}>1
\]

Also there exists \(J_{2} \subseteq\{2, \ldots, n\}\) such that
\[
\left|\left(x_{1} \backslash a_{2}\right) \cup\left(\underset{J_{2}}{\cup} x\right)\right|<\left|J_{2}\right|+1
\]
\[
\text { Let } \begin{aligned}
A & =\left(x_{1} \times a_{1}\right) \cup\left(\bigcup_{J_{1}} x\right) \\
B & =\left(x_{1} \backslash a_{2}\right) \cup\left(\bigcup_{J_{2}} x\right)
\end{aligned}
\]

Then \(A \cup B=x_{1} \cup\left(\underset{J_{1} \cup J_{i}}{\cup} \quad \begin{array}{l}x\end{array} \quad\right.\) and
\[
A \cap B=\left(x_{1} \backslash a_{1} a_{2}\right) \cup\left(\bigcup_{J_{1} \cap}^{\cup} \cap\right)
\]

Now \(\left|J_{1}\right|+1+\left|J_{2}\right|+1>|A|+|B|+1=|A \cup B|+|A \cap B|+1\)
\[
\begin{aligned}
|A \cup B|+|A \cap B|+1 & =\left|x_{1} \cup\left(U_{J_{1}} \cup X_{J}\right)\right|+\left|\left(x_{1} \backslash a_{1} a_{2}\right) \cup\left(\cup_{J_{1} \cup U_{J}}^{U x}\right)\right|+1 \\
& \geq\left|J_{1} \cup J_{2}\right|+1+\left|J_{1} \cap J_{2}\right|+1 \\
& \geq\left|J_{1}\right|+\left|J_{2}\right|-\left|J_{1} \cap J_{2}\right|+1+\left|J_{1} \cap J_{2}\right|+1
\end{aligned}
\]
\[
\geq\left|J_{1}\right|+\left|J_{2}\right|+1+1
\]

Hence \(\left|J_{1}\right|+1+\left|J_{2}\right|+1>\left|J_{1}\right|+\left|J_{2}\right|+1+1\) which is a contradiction. Thus (\(\left.X^{\prime}\right)_{I}\) satisfies (H) for some a \(\varepsilon X_{1}\). Therefore after finitely many steps we can reduce the family (\(X_{I}\) to a family \({ }^{(Y)} I_{I}\) of singletons and \({ }^{(Y)} I_{I}\) still satisfies \((H)\) so that \(U_{I} Y\) is a transversal of \({ }^{(X)} I^{\prime}\).

Even if we know that a given family \({ }^{(X)}{ }_{I}\) has a transversal \(E\) 'we may ask how many distinct SDR's give rise to the transversal E.

The next theorem gives a necessary and sufficient condition for uniqueness.
3.2.2 THEOREM. Let \(E\) be a transversal of a family (X) \(I^{\text {. Then }}\) a necessary and sufficient condition for the uniqueness of SDR giving \(E\) is the following.

If (Y) \({ }_{I}\) is a family satisfying the two conditions
(i) There exists \(J \subseteq I\) and \(x_{j} \in X_{j}\) with \(Y_{j}=x_{j}\) for all \(j \varepsilon J\) and \(Y_{j}=X_{j} \backslash x_{j}^{\prime}\), for some \(x_{j}^{\prime} \in X_{j}, j \notin \quad J\).
(ii) \(\left(\bigcup_{J}\right.\) y) \(\cup\left(\bigcup_{i \notin J} x_{i}^{\prime}\right)=E\),
then \(E\) is not a transversal of \({ }^{(Y)} I_{I}\).

PROOF. Necessity : Let \({ }^{(Y)}{ }_{I}\) be a family satisfying (\(\mathrm{T}_{1}\)).
Define \(\phi_{1}: I \rightarrow \bigcup_{I} Y\) by
\[
\phi_{1}(i) \begin{cases}x_{i} & \text { if } i \in J \quad, \\ x_{i} & \text { if i\&J. }\end{cases}
\]

Then \(\phi_{I}\) is injective and \(\phi_{I}(I)=E\). Suppose that (Y) has a transversal E. Let \(\phi_{2}\) be an SDR of \({ }^{(Y)_{I}}\). Since \(Y_{i} \subseteq X_{i}, \quad \phi_{2}\) is alsc
an \(\operatorname{SDR}\) of \((X)_{I}\). Thus \(\phi_{1}(I)=\phi_{2}(I)=E\). Now for \(i \notin J\) we have \(\phi_{2}(i) \neq x_{i}^{\prime}=\phi_{1}(i)\) so that \(\phi_{1} \neq \phi_{2}\) which is a contradiction. Thus \(E\) is not a transversal of \((Y)_{I}\).

Sufficiency : Given \(\phi(I)=\phi^{\prime}(I)=E\) and suppose that \(\phi \neq \phi^{\prime}\). Then \(\exists\) nonempty set \(I_{1} \subseteq I\) such that \(\phi(i) \neq \phi^{\prime}(i)\) if and only if i \(\varepsilon I_{1}\). We shall show that \(\phi\left(I_{1}\right)=\phi^{\prime}\left(I_{1}\right)\). For each i. \(\varepsilon I_{1}\) there exists \(i_{r} \neq i\) such that \(\phi^{\prime}\left(i_{r}\right)=\phi(i)\) and hence \(i_{r} \varepsilon I_{1}\). Similarly for \(j \varepsilon I_{1}\) there exists \(j_{S} \neq j\) such that \(\phi\left(j_{s}\right)=\phi^{\prime}(j)\). Thus \(\phi\left(I_{1}\right)=\phi^{\prime}\left(I_{1}\right)\). Put \(J=I \backslash I_{1}\)
\[
\text { Define } Y_{i}= \begin{cases}\phi(i) & i \varepsilon J, \\ X_{i} \backslash \phi(i) & i \notin J\end{cases}
\]

Then \({ }^{(Y)}{ }_{I}\) satisfies the condition \(\left(T_{1}\right)\) and so \(E\) is not a transversal of \((Y)_{I}\). Now for \(i \notin J\) we have \(\phi(i) \neq \phi^{\prime}(i)\) so that \(\phi^{\prime}(i) \varepsilon Y_{i}\).
 follows that \(\phi^{\prime}(I) \subseteq \bigcup_{I} Y\) so that \((Y)_{I}\) has a transversai \(\dot{\phi}(I)=E\).

A contradiction and then the sufficiency is proved.
3.2.3 A family (X) has a transversal \(E\) of multiplicity, \(k\) if every element in \(E\) occurs in exactly \(k\) sets of \((X)_{I}\).

We have another sufficient condition for the uniqueness of the SDR giving a particular transversal.
3.2.4 THEOREM. Let \({ }^{(X)}{ }_{I}\) be a family with a transversal \(E\) of multiplicity 2. If there exists no subset \(\left\{x_{i_{1}}, \ldots, x_{i_{r}}\right\}\) of \(E\) of cardinality \(x \geq 2\) such that
\[
\left\{x_{i_{j}}, x_{i_{j+1}}\right\} \subseteq x_{i_{j}} \quad j=1, \ldots, r \quad\left(T_{2}\right)
\]
where the addition of the subscript is modulo \(r\). Then \({ }^{(X)} I_{I}\) has unique SDR giving \(E\).

PROOF. Let \(\phi(I)=\phi^{\prime}(I)=\) E. Suppose \(\phi \neq \phi^{\prime}\). Then there exists \(I_{1} \subseteq I\) such that \(\phi\left(I_{1}\right)=\phi^{\prime}\left(I_{1}\right)\) and \(\phi(i) \neq \phi^{\prime}(i) \Leftrightarrow i \varepsilon I_{1}\)
\[
\begin{array}{ll}
\text { Define } & f: I_{1} \rightarrow I_{1} \text { by } \\
& f\left(i_{j}\right)=i_{k}, \text { where } \phi^{\prime}\left(i_{j}\right)=\phi\left(i_{k}\right) .
\end{array}
\]

Then \(f\) is a permutation on \(I_{1}\). Since \(f\) is not the identity permutation, it can be written as a product of disjoint cycles \(c_{1}, c_{2}, \ldots, c_{k}^{\prime}\), where at least one cycle, \(c_{j}\) say, has length \(\geq 2\).

Let \(c_{j}=\left(i_{1}, i_{2}, \ldots, i_{s}\right), s \geq 2\).
Suppose \(\phi(i)=x_{i}, \forall i \in I\). Consider \(1 \leq j \leq s-1\), we have \(f\left(i_{j}\right)=i_{j+1}\) so that \(\phi^{\prime}\left(i_{j}\right)=\phi\left(i_{j+1}\right)=x_{i_{j+1}}\). Thus \(x_{i_{j}}, x_{i_{j+1}} \varepsilon x_{i_{j}}\). Now \(f\left(i_{s}\right)=i_{1}\), so that \(\phi^{\prime}\left(i_{s}\right)=\phi\left(i_{1}\right)\) and hence \(x_{i_{1}}, x_{i_{s}} \varepsilon x_{i_{s}}\). Therefore \(\left\{x_{i_{1}} \ldots, x_{i_{s}}\right\}\) satisfies the condition \(\left(T_{2}\right)\). A contradiction. Hence \(\phi=\phi^{\prime}\).
3.2.5 REMARK. The condition (\(T_{2}\)) is not necessary for :. the uniqueness of \(\operatorname{SDR}\)

As an example consider \(x_{1}=1, x_{2}=24, x_{3}=345, x_{4}=4\)
\(x_{5}=56, x_{6}=64 .(X)_{I}\) has unique SDR \(\phi\) giving the transversal \(\{1,2,3,4,5,6\}\), namely, \(\phi(1)=1, \phi(2)=2, \phi(3)=3, \phi(4)=4\), \(\phi(5)=5, \phi(6)=6\). The set \(\{4,5,6\}\) is such that \(4,5 \varepsilon X_{3}, 5,6 \varepsilon X_{5}\) 。 \(6,4 \in X_{6}\) and so it satisfies (\(T_{2}\)).
3.2.6 Any subset \(C=\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)\) of a transversal \(E\) of \(a\)
family \((X)_{I}\) satisfying the condition \(\left(T_{2}\right)\) is a cycle of length \(r\) with index set \(\left\{i_{1}, \ldots, i_{r}\right\}\) and associate sets \(X_{i_{1}}, \ldots, X_{i_{r}}\).

The exact number of \(S D R^{\prime}\) s giving a transversal \(E\) of \({ }^{(X)} I_{I}\) is known if E is a transversal of multiplicity 2. To prove this we need the following ten lemmas.
3.2.7 LEMMA. Given a transversal \(E\) of \((X)_{I}\) of multiplicity 2. Let \(I_{1} \subseteq I\). Then there exists at most one cycle of \(E\) with index set \(I_{1}\). PROOF. Let \(C_{1}, C_{2}\) be cycles of \(E\) with the same index set \(I_{1}\) Case \(1 \quad I_{1}=I\).

Then \(\left|C_{1}\right|=\left|I_{1}\right|=|I|=|E|\) and also \(\left|C_{2}\right|=|E|\) so that \(C_{1}=C_{2}\). Case 2. \(I_{1} \nsubseteq I\).

Suppose \(c_{1} \neq c_{2}\). Since \(\left|c_{1}\right|=\left|c_{2}\right|,\left|c_{2} \backslash c_{1}\right|>0\) so that \(\left|\left(\bigcup_{I_{1}} x\right) \cap\left(C_{1} \cup c_{2}\right)\right|=\left|c_{1}\right|+\left|c_{2} * c_{1}\right|>\left|I_{1}\right|\)

Now \(x \in\left(\bigcup_{I_{1}} x\right) \cap\left(C_{1} \cup C_{2}\right) \Rightarrow x \notin\left(\underset{I}{\bigcup} \underset{I_{1}}{ }\right) \cap \mathrm{E}\). and so
\(\left|\left(\bigcup_{I \sim I_{1}}^{U x}\right) \cap E\right| \leq|I|-\left|\left(\bigcup_{I_{1}} x\right) \cap\left(C_{1} \cup C_{2}\right)\right|\)
\[
<|I|-\left|I_{1}\right|
\]

Hence \(\phi\left(I \backslash I_{1}\right)<|I|-\left|I_{1}\right|\). A contradiction.
3.2.8 LEMMA. Any proper subset of a cycle of a transveral of multiplicity 2 is not a cycle of that transversal.

PROOF. Let \(C^{\prime}\) be a proper subset of a cycle \(C=\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)\) of a transversal E of a family \((\mathrm{X})_{I} \cdot \operatorname{Let} C^{\prime}=\left(x_{i_{j_{1}}}, \ldots, x_{i_{j_{k}}}\right), k<r\).

As \(E\) is of multiplicity \(2,\left\{i_{j_{1}}, \ldots, i_{j_{k}}\right\}=\left\{i_{s}, i_{s+1}, \ldots, i_{p}\right\}\)
for some \(s, 1 \leq s \leq r\) and \(p=s+(k-1)\). We can assume that \(s>1\).
Now \(x_{i}\) must occur in exactly 2 associate sets of \(C^{\prime}\). Also
\(x_{i_{s}} \varepsilon X_{i_{s-1}}\) which is not an associate set of \(C^{\prime}\) so that \(x_{i}\) belongs to 3 sets of \({ }^{(X)} I^{\circ}\)

A contradiction.
3.2.9 LEMMA. Let \(C_{1}, C_{2}\) be cycles of a transversal E of multiplicity 2 of a family (X) with index sets \(I_{1}, I_{2}\) respectively. Then \(I_{1} \cap I_{2}=\phi\) if and only if \(C_{1} \cap C_{2}=\phi\).

PROOF. Assume that \(I_{1} \cap I_{2}=\phi\). Then \({ }^{(X)} I=(X)_{I_{1}} \cup I_{2} \dot{\cup}\left(I \backslash I_{1} \cup I_{2}\right)\). Let \(x \varepsilon C_{1}\). Then \(x\) belongs to exactly 2 sets of \(\left({ }^{(X)} I_{1}\right.\). Since \(x\) belongs to exactly 2 sets of \({ }^{(X)} I^{\prime}\) \(x\) does net belong to any set of \({ }^{(X)} I_{2}\). But \(C_{2} \subseteq{\underset{I}{2}}^{\cup} X\). Thus \(x \notin C_{2}\).

Next we assume that \(C_{1} \cap C_{2}=\phi . \quad\) Suppose \(I_{1} \cap I_{2} \neq \phi\).
Then \(\left|I \backslash I_{1} \cup I_{2}\right|>|I|-\left|I_{1}\right|-\left|I_{2}\right|\) and since
\[
\begin{aligned}
& \left.\left|\left(\begin{array}{lll}
U & X \\
I \backslash I_{1} & U I_{2}
\end{array}\right) \quad \leq|E|-\right| \begin{array}{lll}
\left(U_{1}\right) \\
I_{1} & \cup I_{2}
\end{array}\right) \cap\left(C_{1} \cup C_{2}\right) \mid \\
& \leq|I|-\left|I_{1}\right|-\left|I_{2}\right| \\
& <\left|I \backslash I_{1} \cup I_{2}\right|
\end{aligned}
\]

Thus \(\left|\phi\left(I \backslash I_{1} \cup I_{2}\right)\right|<\left|I \backslash I_{1} \cup I_{2}\right|\) and so \(\phi\) is not injective. A contradiction.
3.2.10 LEMMA. Let \(C_{1}\) be a cycle of a transversal \(E\) of multiplicity 2 of a family (X) \({ }_{I}\) with index set \(I_{1}\). Let \(C^{\prime}\) be a proper subset of \(C_{1}\).

Then the following are true.
(i) For any \(\phi \neq \mathrm{C}_{2} \subseteq\left(\underset{\mathrm{I} \backslash \mathrm{I}_{1}}{(\mathrm{X}}\right) \mathrm{E}\) with \(\mathrm{C}_{2} \cap \mathrm{C}^{\prime}=\phi, \mathrm{C}^{\prime} \cup \mathrm{C}_{2}\) is not a cycle of. \(E\).
(ii) For any \(C_{2} \subseteq\binom{\cup X}{I_{1}} \cap E\) with \(C_{2} \cap C^{\prime}=\phi, C^{\prime} \cup C_{2}\) is not a cycle of E .

PROOF. Let \(C_{1}=\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)\) and \(I_{1}=\left\{i_{1}, \ldots, i_{r}\right\}\).
(i) Let \(I=\left\{i_{j} \in I_{1} / x_{i} \in C^{\prime}\right\}\). Then \(I^{\prime} I_{1}\). Without loss of Generality assume that \(I^{\prime}=\left\{i_{j_{1}}, i_{j_{2}}, \ldots, i_{j_{k}}\right\}\), where \(1 \leq \mathbf{j}_{1}<\mathbf{j}_{2}<\ldots<j_{k}<\boldsymbol{r}\). Suppose that. \(\mathrm{C}^{0} \cup \mathrm{C}_{2}\) is a cycle of E . Let \(I^{\prime \prime}=\left\{i_{j_{1}}, \ldots i_{j_{k}}, i_{j_{1}}^{\prime}, \ldots, i_{j_{e}}^{\prime}\right\}\) be the index set of \(C^{\prime} \cup c_{2}\) where \(e \geq 1, i_{j_{m}}^{\prime} \not \not I^{\prime}, m=1, \ldots, e\).

If there exists \(i_{j_{r}} \varepsilon I^{\prime}\) with \(i_{j_{r}} \neq I^{\prime}\), where \(j_{1}<j_{r} \leq j_{k}\). Then \(X_{i_{j_{r}}-1}\) is not an associate set of the cycle \(C^{\circ} \cup C_{2}\) and since \(\mathbf{x}_{\mathbf{i}_{\mathbf{j}_{r}}}\) must belong to exactly 2 associate sets of \(\mathrm{C}^{\prime} \cup \mathrm{C}_{2}\), there exists \(i_{p}^{\prime}\) such that \(x_{i_{j}} \varepsilon X_{j_{p}^{\prime}}\) so that \(X_{i_{j}}\) belongs to at least 3 sets of (X) \(I^{\text {o }}\) namely \(X_{i_{j_{r}}}, X_{i_{j_{r}}-1}, x_{i_{p}}\), which is a contradiction. Hence we can assume that \(I^{\prime \prime}=\left\{i_{1}, \ldots, i_{k} ; i_{l^{\prime}}^{\prime}, \ldots, i_{e}^{\prime}\right\}\), where \(k<r\) and \(e \geq 1\). A cycle form of \(C^{\prime} \cup C_{2}\) can not have \(x_{i_{m}}\) in between \(x_{i_{r}}\) and \(x_{i_{r-1}}\) (otherwise \(x_{i_{r}}\) belongs to 3 sets of \({ }^{(X)} I_{I \prime}\)). Then \(C^{\circ} \cup C_{2}\) \(=\left(x_{i_{1}}, \ldots, x_{i_{k}}, x_{i_{i}}, \ldots, x_{i_{e}}^{*}\right)\) and so \(x_{i_{k}}\) belongs to at least 3 sets of (\(\mathrm{X}_{\mathrm{I}}\), namely \(\mathrm{X}_{\mathrm{i}_{\mathrm{k}-1}}, \mathrm{X}_{\mathrm{i}_{\mathrm{k}}}, \mathrm{X}_{\mathrm{i}_{\mathrm{i}}}\). A contradiction. Hence (i) is proved.
(ii) Let \(\left|C^{\prime}\right|=k, k<x\) and \(\left|C_{2}\right|=s>0\). Suppose that \(C^{\prime} \cup C_{2}\) is a cycle of E . Then it has length \(\mathrm{k}+\mathrm{s} \leq \mathrm{r}\) and we have
 \(\left(\left|C_{?}\right|+\left|C_{2}\right|\right) \leq|I|-\left(\left|I_{1}\right|+\left|C_{2}\right|\right)<|I| \quad\left|I_{1}\right|\). which is a contradiction.
3.2.11 LEMMA. It follows from Lemma 3.2.7-3.2.10 that two cycles of à transversal of multiplicity 2 are either disjoint (with disjoint index sets) or identical.

1
3.2.12 LEMMA. Let \(C=\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)\) be a cycle of a transversal
 where \(i_{j} \varepsilon\left\{i_{1}, \ldots, i_{r}\right\}\) and the addition of the subscript of \(x_{i}\) is modulo \(x\).

PROOF. Let \(I^{\prime}=\left\{i_{1}, \ldots, i_{r}\right\}\). It is obvious if \(\phi\left(I^{\prime}\right)=C\). Suppose that \(\phi(I) \neq C\). Since \(\phi\) is one to one and onto and \(\left|I^{\prime}\right|=|C|\), there exists \(x_{i_{k}} \in C\) such that \(\forall i_{j} \varepsilon I^{\prime}, \phi\left(i_{j}\right) \neq x_{i_{k}}\) and so there exists \(j \varepsilon I \backslash I\) such that \(\phi(j)=x_{\mathbf{i}_{k}}\). Then \(\mathbf{x}_{\mathbf{i}_{\mathbf{k}}}\) occurs in 3 sets of. (X) \(I_{I}\) which is impossible. Therefore \(\phi\left(i_{j}\right)=x_{i}\) or \(x_{i_{j+1}}\).

We define the \(S D R\) induced by the cycle \(C\) in the following lemma.
3.2.13 LEMMA. Let \(C=\left(X_{i_{1}}, \ldots, x_{i_{r}}\right)\) be a'cycle of a transversal \(E=\phi(I)\) of multiplicity 2 of a family \((X)_{I}\) with index set \(I^{\prime}\).

Define \(\phi_{C}: I \rightarrow E\) by
\[
\phi_{C}\left(i_{j}\right)= \begin{cases}x_{i_{j}}+1 & \text { if } \phi\left(i_{j}\right)=x_{i_{j}} \quad \text { and } i_{j} \varepsilon I^{\prime}, \\ x_{i_{j}} & \text { if } \phi\left(i_{j}\right)=x_{i_{j}}+1 \text { and } i_{j} \in I^{\prime}, \\ \phi\left(i_{j}\right) & i_{j} \in I \backslash I^{\prime} .\end{cases}
\]

Then \(\phi_{C}\) is an SDR of \((X)_{I}\) the SDR induced by the cycle \(C\)-which is different from \(\phi\) and \(\phi_{C}(I)=E\).

PROOF. That \(\phi_{C} \neq \phi\) is clear from the definition of \(\phi_{C}\) and \(\phi_{C}\left(x_{i}\right) \varepsilon X_{i}, \forall_{i} \varepsilon I\). To show that \(\phi_{C} i s\) an SDR, let \(\phi_{C}\left(i_{j}\right)=\phi_{C}\left(i_{k}\right)\), If one of \(i_{j}, i_{k}, i_{j}\) say belongs to \(I^{\prime}\) and \(i_{k} \varepsilon I \backslash I^{\prime}\), then \(\phi_{C}\left(i_{j}\right) \varepsilon\left(U_{I}, x\right) \cap E\). Since \(\forall x \in(U, X) \cap E\) we have \(x \notin\left(U_{I}, x\right) \cap E\), it follows that \({ }_{C}\left(i_{k}\right)=\phi_{C}\left(i_{j}\right) \notin\left(\bigcup_{I} X_{I}\right) \cap E\). Thus
\(\phi_{C}\left(i_{k}\right) \varepsilon\left(\bigcup_{I} X\right) \cap E\) so that \(i_{k} \varepsilon I^{\prime}\) which is a contradiction. Hence both \(i_{j}, i_{k}\) must belong to either \(I^{\prime}\) or \(I \backslash I\). In either case we have \(i_{j}=i_{k}\). Now \(\phi_{C}(I)=\phi\left(I^{\prime}\right) \cdot U \phi\left(I \backslash I^{\prime}\right)=C U(E \backslash C)=E\).
3.2.14 LEMMA. Disjoint cycles of a transversal give rise to different induced SDR's giving that transversal.

PROOF. Let \(C_{1} ; C_{2}\) be disjoint cycles of a transversal \(\phi(I)=E\) with index sets \(I_{1}, I_{2}\) respectively. For each \(i \varepsilon I_{1}\) we have \(\phi_{C_{1}}(i) \neq \phi(i) \quad\) But \(\phi_{C_{2}}(i)=\phi(i)\) whenever \(i \varepsilon I_{1}\). Thus \(\phi_{C_{1}} \neq \phi_{C_{2}} \cdot / \%\)

We define the \(S D R\) induced by the disjoint cycles \(C_{1}, \ldots, C_{k}\) in the following lemma.
3.2.15 LЕMMA. Let \(C_{1}, \ldots, C_{k}\) be disjoint cycles of a transversal
\(E=\phi(I)\) of \(\left(X_{I}\right)\) of multiplicity 2 with index sets \(I_{1}, \ldots, I_{k}\) respectively. Define \(\quad{ }^{\phi} C_{1} \ldots C_{k}: I \rightarrow E\) by
\[
\phi_{C_{1}} \cdots \cdots C_{k}= \begin{cases}\phi_{C_{j}}(i) & \text { if } i \varepsilon I_{j}, \\ \phi(i) & \text { if } i \varepsilon I \backslash I_{1} \cup \ldots U I_{k} .\end{cases}
\]

Then \({ }^{\phi_{C}}{ }_{1} \ldots C_{k}\) is an SDR of \((X)_{I}\) the SDR induced by the cycles \(C_{1}, \ldots, C_{k}\), which is different from each of \({ }_{\phi_{C_{1}}}, \ldots, \phi_{C_{k}}, \phi\), and \(\phi_{C_{1}} \ldots, C_{k}(I)=E\).

PROOF. By induction on the number of the cycles \(C_{1}, \ldots, C_{k}\). //
3.2.16 LEMMA. Let \(\phi\) be an SDR of muitiplicity 2 of a family (\(\mathrm{X}_{\mathrm{I}}\). For another SDR \(\phi^{1} \neq \phi\) such that \(\phi(I)=\phi^{\prime}(I)\), the set.
\[
\left\{\phi^{\prime}(i) / \phi^{\prime}(i) \neq \phi(i)\right\}
\]
determines disjoint cycles of \(\mathrm{E}=\phi(\mathrm{I})\).

PROOF. Follows from the proof of Theorem 3.2.4.

We are now ready to find the number of different SDR's giving the same transversal.
3.2.17 THEOREM. Let \(E=\phi(I)\) be a transversal of \((X)_{I}\) of multiplicity 2 . If \(E\) has \(r\) disjoint cycles, then the number, \(n(E)\), of distinct SDR's giving the transversal E is
\[
n(E)=1+r^{C_{i}}+r^{r} C_{2}+\ldots+{ }^{r} C_{r}
\]

PROOF. From \(r\) disjoint cycles of \(E\) we can form
\({ }^{r} C_{1}+\ldots+{ }^{r} C_{r}=k\) combinations of these cycles so that they induce the \(k\) different \(S D R^{\prime} s\) and each of these \(S D R^{\prime} s\) is different from \(\phi\). Thus
\[
n(E) \geq 1+k
\]

By Lemma 3.2.16 for a given \(\operatorname{SDR} \phi \neq \phi^{\prime}\) of \({ }^{(X)}{ }_{I}\) we have that \(\left\{\phi^{\prime}(i) / \phi^{\prime}(i) \neq \phi(i)\right\}\) determines disjoint cycles of \(E\) so that \(\phi\) is one of the above \(k\) SDR's and the theorem is proved.

If (X) \({ }_{I}\) has a transversal of multiplicity 2 , it might have only one SDR.giving the transversal if it has no cycles. We shall show that \({ }^{(X)}{ }_{I}\) has at least 2 SDR's. That is a cycle of a transversal of multiplicity 2 must exist.
3.2.18 THEOREM. Let \(E=\phi(I)\) be a transversal of multiplicity 2 of \({ }^{(X)}{ }_{I}\) which contains a singleton. Then there exists an SDR \(\phi \neq \phi^{\prime}\) of \({ }^{(X)}{ }_{I}\) giving \(E\).

We need the following lemma to prove the theorem.
3.2.19 LEMMA. Let \(E=\phi(I)\) be a transversal of multiplicity 2 of \((X)_{I}\) and \(U_{I} X=E\). Suppose that \({ }^{(X)_{I}}\) contains a singleton. Let \(I=\{1, \ldots, n\}\) and \(\phi(i)=x_{i} \varepsilon X_{i}, \forall i \varepsilon I\). Define the subfamily of of \((X)_{I}\) by
\[
\mathscr{A}_{1}=\left\{A_{1} / A_{1} \varepsilon(X)_{I} \text { and }\left|A_{1}\right|=1\right\}
\]

For any positive integer \(k, 2 \leq k<n\), if \(f_{k-1} \neq \phi\) we construct \(A\) as follows
\[
A_{k}=\left\{A_{k} \varepsilon(x)_{I} / A_{k}=x: 0 A_{k-1} \text { for some } x \in U \mathcal{A}_{1} \cup A_{k-1}\right)
\]
\[
\text { and } \left.A_{k-1} \subseteq \cup\left(A_{1} \cup \ldots \cup A_{k-1}\right)\right\}
\]

After finite steps of construction, m say, the process terminates when \(\mathcal{A}_{m+1}=\phi\) and \(\mathcal{A}_{k} \neq \phi, k \leq m\). Then
(i) For each \(k=1,2, \ldots, m\) and each \(x \in U\left(A_{1} \cup \ldots U A_{k}\right)\) we have \(\phi(\mathrm{i}) \neq \mathrm{x}, \forall \mathrm{x}_{\mathrm{i}} \neq \cup\left(\mathcal{A}_{1} \cup \ldots \cup \cup \mathcal{A}_{k}\right)\)
(ii) \(x_{r} \in \mathcal{A}_{k+1} \Rightarrow \phi(r) \notin \cup\left(A_{1} \cup \ldots \ldots \cup \mathcal{A}_{k}\right)\) \(\forall k, \dot{x}=1, \ldots, m\). In fact \(x_{r}=x_{r} \cup x_{k}^{\prime}\) for some \(x_{k}^{\prime} \subseteq U\left(A_{i} \cup \ldots \cup A_{k}\right)\) and \(x_{k} \notin U\left(A_{1} \cup \ldots \cup A_{k}\right)\).
\[
\text { (iii) }\left|(\mathrm{x})_{\mathrm{I}}>\mathbb{A}_{1} \cup \ldots \cup \mathbb{A}_{\mathrm{m}}\right|>1 \text {. }
\]

PROOF. (i) For \(k=1\), let \(x \in\left(\cup A_{1}\right)\). Hence \(\{x\} \in A_{1}\). Without loss of generality assume that \(\phi(1)=x\). Consider \(x_{i} \nsubseteq \cup \mathscr{A} .1\) and so \(i \neq 1\). By definition of \(\operatorname{SDR} \phi(i) \neq \phi(1)=x\). Assume that the hypothesis is true for \(k-1\). Let \(x \in \cup\left(A_{1} \cup \ldots \ldots \cup \mathcal{A}_{k}\right)\). Suppose that there exists \(x_{i} \not \ddagger U\left(A_{1} \cup \ldots \ldots \cup \cup \mathcal{A}_{k}\right)\) such that \(\phi(i)=x . \quad\) Hence \(x \in \cup A_{k} \backslash \cup\left(A_{1} \cup \ldots \ldots \cup \mathcal{A}_{k-1}\right)[\) otherwise the hypothesis is not true for \(k-1]\). Thus there exists \(x_{k} \& \mathcal{N}_{k}\) such that \(x_{k}=x \cup x_{k}^{\prime}\) for some \(x_{k}^{\prime} \subseteq U\left(\mathcal{A}_{1} \cup \ldots \cup \cup \mathcal{A}_{k-1}\right)[\) as \(x_{k} \in x_{k} \in \mathcal{A}_{k}\) and \(x_{k}=x^{\prime} \cup x_{k}^{\prime}\), for some \(x^{\prime} \notin U\left(A_{1} \ldots \cup \cup \mathcal{A}_{k-1}\right)\) and \(x_{k}^{\prime} \subseteq U\left(\mathscr{A}_{-1} \cup \ldots \ldots \cup \mathscr{A}_{k-1}\right)\) then \(x=x^{\prime}\); otherwise \(\left.x \varepsilon \cup\left(A_{1} \cup \ldots \ldots \cup A_{k-1}\right)\right]\). By the assumption \(\phi(k) \notin x_{k}^{\prime}\) (as \(x_{k} \notin \cup\left(A_{1} \cup \ldots \ldots \cup \mathcal{A}_{k-1}\right)\) and hence \(\phi(k)=x=\phi(i)\) so
that \(\mathrm{k}=\mathrm{i}\) and \(\mathrm{x}_{\mathrm{i}} \leqslant \cup\left(A_{1} \cup \ldots \cup A_{k}\right) . A\) contradiction.
(ii) Since \(x_{r} \in \mathcal{A}_{k+1}, x_{r} \nsubseteq U\left(\mathcal{A}_{1} \cup \ldots \cup \mathscr{A}_{k}\right)\) and so by (i) \(\phi(r) \notin \cup\left(\mathcal{A}_{1} \cup \ldots \cup \mathscr{A} A_{k}\right)\). For \(_{x_{r}} \in \mathcal{A}_{k+1}\) we have \(x_{r}=x \cup x_{k}^{\prime}\) for some \(x_{k}^{\prime} \subseteq U\left(A_{1} \cup \ldots \ldots \cup \mathscr{S}_{k}\right)\) and \(x \notin U\left(\mathcal{A}_{1} \cup \ldots \cup \mathscr{A _ { k }}\right)\). If \(x_{r} \neq x\), then \(x_{r} \in x_{k}^{\prime} \subseteq U\left(\mathscr{A}_{1} \cup \ldots \cup \not A_{k}\right)\) which is not so. Thus \(X_{r}=x\).
(iii) We first show that \((x)_{I} \backslash \mathscr{A}_{1} \cup \ldots \cup \mathscr{A} \mathcal{m}_{m} \neq\).

Suppose the contrary. Without loss of generality let
\[
\begin{aligned}
\mathcal{A}_{1} \cup \ldots \cup A_{m-1} & =\left\{x_{1}, \ldots, x_{r-1}\right\} \\
A_{m} & =\left\{x_{r}, \ldots, x_{n}\right\}
\end{aligned}
\]
where for each \(i=r, \ldots, n\), there exists \(i_{j}, 1 \leq i_{j} \leq r i \mathbb{1}\) such that \(x_{i}^{\prime}=x_{i} \cup x_{i_{j}}, x_{i_{j}} \subseteq U\left(A_{1} \cup \ldots . \cup A_{m-1}\right)\) and \(x_{i} \notin \cup\left(\mathbb{A}_{1} \cup \ldots \ldots \cup A_{m-1}\right)\). If there exist \(i, j, r \leq i \neq j \leq n\) such that a \(\varepsilon X_{i} \cap X_{j}\). Then since \(a \neq\) one of \(x_{i}, x_{j}\), there exists \(x_{t} \varepsilon \mathcal{A}_{t}, 1 \leq t \leq m-1\) such that a \(\varepsilon x_{t}\) which is a contradiction. Hence \(x_{i} \cap x_{j}=\phi \quad \forall i \neq j \varepsilon \quad\{r, \ldots, n\}\). Consider \(x_{i}\), where \(r \leq i \leq n\) we see that \(X_{i} \notin X_{j}, \forall_{j} \in\{1, \ldots, r-1\}\) and thus \(x_{i}\) belongs to exactly one set of (X\()_{I}\). A contradiction. Thus \({ }^{(x)_{I}} \backslash \mathcal{A}_{1} \cup \ldots \ldots \cup \underset{\mathrm{~m}}{A_{m}} \neq \phi\).

Suppose that there exists only one \(x_{i} \varepsilon(x)_{I} \backslash A \cup \ldots \ldots \cup \cup\) of . Then \(\left|x_{i} \cup \cup\left(A_{1} \cup \ldots \ldots \cup A_{m}\right)\right| \geq 1\) (otherwise
\(x_{i} \in \cup\left(\mathcal{A}_{1} \cup \ldots \cup \mathcal{A}_{\mathrm{m}}\right)\) and by (i) \(\left.\phi(i) \neq x_{i}\right)\). Let \(x \in x_{i} \backslash U\left(A_{1} \cup \ldots U, A_{m}\right)\). Then \(x\) belongs to exactly one set

PROOF OF THEOREM 3.2.18. It suffices to prove the theorem for the case \(\bigcup_{I} X=E\).
\[
\text { If } \underset{I}{U} X \underset{F}{P} E, \quad \text { let } Y_{i}=X_{i} \cap E, \quad i \varepsilon I . \quad \text { Then } \bigcup_{I} Y=E \text {. }
\]

If there exist \(i \neq j\) such that \(y_{i}=y_{j}\). For each \(i\) there is at most one integer \(j \neq i\) such that \(Y_{i}=y_{j}\) and if so \(\left|Y_{i}\right|=\left|Y_{j}\right|=2\). (otherwise \(\exists x \in E\) such that \(\phi(i) \neq x \forall i \in I)\).

Put \(I_{1}=\left\{i / \exists j \neq i\right.\) such that \(\left.Y_{i}=Y_{j}\right\}\) and \(I^{\prime}=I \backslash I_{1}\). If \(I^{\prime} \neq \phi\), let \(E^{\prime}=E \backslash \bigcup_{I_{1}} Y\). We claim that \({ }^{(Y)} I^{\prime}\), has a transversal \(E^{\prime}\) of multiplicity 2 and \(U_{I^{\prime}} Y=E^{\prime}\). Let \(x \varepsilon E^{\prime}\).
 Since \(x\) belongs to exactly 2 sets of \((X)_{I}\) and \(x \notin\) any set of \((Y)_{I_{1}}\), \(x\) belongs to exactly 2 sets of (Y) \(I^{\prime}\). As \(i \neq j\) we have \(Y_{i} \neq Y_{j}\) \(\forall_{i, j} \varepsilon I^{\prime}\). Hence \(E^{\prime}\) is a transversal of \((Y) I^{\prime}\) : Suppose that \(\phi(i)=x_{i} \varepsilon X_{i}\) for every \(i \varepsilon I\) and \(\phi(I)=F\). Then \(\phi / I^{\prime}\left(I^{\prime}\right)=E^{\prime}\). Put \(\phi_{1}=\phi / I^{\prime}\). If \(\phi_{1} \neq \phi^{\prime}\) is another \(\operatorname{SDR}\) of \((Y)_{I}{ }^{\prime}\) giving the transversal \(E^{\prime}\), we can define anSDR \(\phi \neq \phi^{\prime \prime}\) of (X) \({ }_{I}\) such that \(\phi^{\prime \prime}(I)=E\) as follows.
\[
\phi^{\prime \prime}(i)= \begin{cases}\phi^{\prime}(i) & \text { if } i \notin I^{\prime} \\ \phi^{\prime}(i) & \text { if } i \not \not I^{\prime}\end{cases}
\]

If \(I^{\prime}=\phi\). Without loss of generality assume that \(Y_{i}=Y_{i+1}\),
where \(i=1,3, \ldots, n-1\). Let \(\phi(i)=x_{i} \varepsilon Y_{i}=\left\{x_{i}, y_{i}\right\}\). Define \(\phi^{\prime}: I \rightarrow E\) by \(\phi^{\prime}(i)=y_{i}, \forall i \varepsilon I\). Then \(\phi^{\prime}\) is an SDR of \({ }^{(X)} I_{\text {giving }} E\) and \(\phi^{\prime} \neq \phi\).

Hence to prove the theorem we can assume that \(\bigcup_{I} X=E\) and \(i \neq j \Rightarrow x_{i} \neq X_{j}, \psi_{i} \in I\). Let \(I=\{1, \ldots, n\}\) and. \(\phi(i)=x_{i} \in X_{i}\) Define subfamilies \(\mathcal{A}_{1}, \ldots, \mathcal{A}_{m}\) as in Lemma 3.2.19. Without loss of generality assume that \({ }^{(x)_{I}}\) © \(\mathcal{l}_{1} \cup \ldots \ldots \cup \mathscr{A}=\left\{x_{i_{1}} \ldots \ldots, x_{i_{k}}\right\}\) and \(\cup\left(A_{1} \cup \ldots \cup A_{m}\right)=x^{\prime}\). Observe that \(x_{i_{j}} \notin x^{\prime}\), \(1 \leq j \leq k\).

We show that for each \(j, 1 \leq j \leq k\) we have \(\left|x_{i_{j}} \backslash x^{\prime}\right| \geq 2\). If there exists no \(x \varepsilon x_{i_{j}} \backslash x^{\prime} U x_{i_{j}}\), then \(x_{i_{j}}=x^{\prime \prime} U^{j} x_{i_{j}}\), where \(x^{\prime \prime} \subseteq x^{\prime}\). Now \(x_{i_{j}} \notin x^{\prime \prime}\) and so \(x_{i_{j}} \varepsilon \mathscr{A}_{j^{\prime}} U^{\prime} \ldots u^{i^{j}} A_{m+1} \cdot A^{i_{j}}\) contradiction. Thus \(\left|x_{i_{j}} \backslash x^{\prime}\right| \geq 2,1 \leq j \leq k\). Hence there exists \(x_{i_{j}} \varepsilon x_{i_{1}} \backslash x^{\prime} \cup x_{i_{1}}\) and \(i_{j} \neq i_{1}\). Without loss of generality assume \(i_{j}=i_{2}\). We first assume that \(k \geq 4\).
case 1. \(\mathrm{x}_{\mathrm{i}_{1}} \varepsilon \mathrm{X}_{\mathrm{i}_{2}}\)
Define \(\phi^{\prime}: I \rightarrow E\) by \(\phi^{\prime}\left(i_{1}\right)=x_{i_{2}}^{\prime}, \phi^{\prime}\left(i_{2}\right)^{\prime}=x_{i_{1}}, \phi^{\prime}(j)=\phi(j)\)
otherwise. Then \(\phi^{\prime} \neq \phi\) and \(\phi^{\prime}\) is an SDR of \({ }^{(X)}{ }_{I}\) giving the transversal E.
\[
\text { case 2. } \quad x_{i_{1}} \not \& x_{i_{2}}
\]

By the same argument as above there exists \(x_{i_{3}} \in X_{i_{2}} \backslash x^{\prime} \cup x_{i_{1}} x_{i_{2}}\) where \(x_{i_{3}} \in\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\} \quad\) and \(i_{3} \neq i_{2}\).

If \(x_{i_{1}} \varepsilon \mathrm{X}_{\mathrm{i}_{3}}\) we can define \(\phi^{\prime}: I \rightarrow E\) by
\(\phi^{\prime}\left(i_{1}\right)=x_{i_{2}}, \phi^{\prime}\left(i_{2}\right)=x_{i_{3}} \phi^{\prime}\left(i_{3}\right)=x_{i_{1}}\) and \(\phi^{\prime}(j)=\phi(j) \quad\) otherwise so that \(\phi \neq \phi^{\prime}\) is an \(\operatorname{SDR}\) of \((X)_{I}\) and \(\phi^{\prime}(I)=E\).

If \(x_{i_{1}} \not \& \mathrm{X}_{\mathrm{i}_{3}}\), then there exists \(\mathrm{x}_{\mathrm{i}_{4}} \varepsilon \mathrm{X}_{\mathrm{i}_{3}} \backslash \mathrm{X}^{\prime} \cup \mathrm{x}_{\mathrm{i}_{3}}\), where
\(x_{i_{4}} \in\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}\) and \(i_{4} \neq i_{3}\). For \(3 \leq j \leq k-1\), if \(x_{i_{1}} \notin X_{i_{j-1}}\) we can choose \(x_{i} \varepsilon x_{i_{j-1}} \backslash x^{\prime} U x_{i_{1}} \ldots x_{j-1} \quad\) (See Lemma 3.2 .20 below). The process must terminate after finite steps since there exists exactly one set from \(x_{i_{2}}, \ldots, x_{i_{k}}\) containing \(x_{i_{1}}\). Assume that the process stops after \(q\) steps; that is \(x_{i_{1}} \varepsilon x_{i_{q}} \backslash x^{\prime} \cup x_{i_{1}} \ldots \ldots x_{i_{q-1}}\) and \(x_{i_{1}} \not \& x_{i_{j}}, 2 \leq j \leq q-1\) Define \(\phi^{\prime}: I \rightarrow E\) as follows
\[
\begin{aligned}
& \phi^{\prime}\left(i_{1}\right)=x_{i_{2}}, \\
& \phi^{\prime}\left(i_{j}\right)=x_{i_{j+1}}, 2 \leq j \leq q-1, \\
& \phi^{\prime}\left(i_{q}\right)=x_{i_{1}}, \\
& \phi^{\prime}(j)=\phi(j) \quad \text { otherwise. }
\end{aligned}
\]

Then \(\phi^{\prime}\) is an SDR of \((X)_{I}\) such that \(\phi^{\prime}(I)=E\) and \(\phi^{\prime} \neq \phi\).
By Lemma 3.2.19 \(k>1\) : For \(k=2\) we have \(x_{i_{1}} \varepsilon x_{i_{2}} \backslash x^{\prime} z_{i_{1}}\) and \(x_{i_{2}} \in X_{i_{1}} \backslash x^{\prime} \cup x_{i_{1}}\). Thus a function \(\phi^{\prime}: I \rightarrow E\) defined by \(\phi^{\prime}\left(i_{1}\right)=x_{i_{2}}, \phi^{\prime}\left(i_{2}\right)=x_{i_{1}}\) and \(\phi^{\prime}(i)=\phi(i)\); otherwise, is an SDR of \((X)_{I}\) such that \(\phi^{\prime} \neq \phi\) and \(\phi^{\prime}(I)=E\).

For \(k=3\). The theorem is obvious when \(x_{i_{1}} \varepsilon X_{i_{2}}\). If \(x_{i_{1}} \notin x_{i_{2}}\). Then \(x_{i_{3}} \varepsilon x_{i_{2}} \backslash x^{\prime} \cup x_{i_{2}}\) and \(x_{i_{i}} \varepsilon x_{i_{3}} \backslash x^{\prime} \cup x_{i_{3}}\).

Define \(\phi^{\prime}: I \rightarrow E\) by \(\phi^{\prime}\left(i_{i}\right)=x_{i_{2}}, \phi^{\prime}\left(i_{2}\right)=x_{i_{3}}, \phi^{\prime}\left(i_{3}\right)=x_{i_{1}}\), \(\phi^{\prime}(i)=\phi(i)\) otherwise. Hence \(\phi^{\prime}\) is an SDR of \((X)_{I}\) such that \(\phi(I)=E\) and \(\phi^{i} \neq \phi\).

The theorem is then proved.
3.2.20 LеMMA.Assume the hypothesis and notation as in Theorem 3.2.18 Then for \(j=3, \ldots, k-1\), if \(x_{i_{1}} \notin x_{i_{j-1}}\) We can choose \(x_{i_{j}} \varepsilon x_{i_{j-1}} \backslash x^{i} \cup x_{i_{1}} \ldots \ldots x_{i_{j-1}}\).

PROOF. True for \(j=3\). Assume the lemma is true for \(j \leq r\). Hence \(x_{i_{j}} \in x_{i_{j-1}} \quad x^{\prime} \cup x_{i_{1}} \ldots \ldots x_{i_{j-1}}{ }^{3} \leq j \leq r\). That is
\(\mathrm{x}_{\mathrm{i}_{\mathbf{j}}} \varepsilon \quad \mathrm{X}_{\mathbf{i}_{\mathbf{j}}}{ }^{n} \mathrm{X}_{\mathbf{i}_{\mathbf{j}-1}}, 3 \leq \mathrm{j} \leq \mathrm{r}\)
Assume \(x_{i_{1}} \not \& X_{i_{r}}\) and suppose that there is no
\(x_{i_{r+1}} x_{i_{r}} x^{\prime} \cup x_{i_{1}} \ldots, x_{i_{r}}\). Thus \(x_{i_{i}} \subseteq x^{\prime} \cup x_{i_{1}} \ldots \ldots x_{i_{r}}\). Since \(\left|x_{i_{r}}>x^{\prime}\right| \geq 2\), there exists \(x \in x_{i_{r}} \backslash x^{\prime} \cup x_{i_{r}}\) and so as \(x_{i_{1}} \notin x_{i_{r}}, x \varepsilon\left\{x_{i_{2}}, \ldots, x_{i_{r-1}}\right\}\). If \(x=x_{i_{2}}\), then \(x \varepsilon x_{i_{r}}{ }^{n} X_{i_{2}}{ }^{n} x_{i_{i}}\) which is impossible. Thus there exists \(s, 3 \leq s \leq r-1\) such that \(x=x_{s}\). Now \(x \in x_{i_{s}}{ }^{n} x_{i_{s-1}}{ }^{n} x_{r}\). which is a contradiction. Hence the lemma is proved.
3.2.21 THEOREM. The conclusion of Theorem 3.2.18 holds even though \({ }^{(X)} I_{I}\) does not contain a singleton.

PROOF. We first show that if \({ }^{(X)}{ }_{I}\) does not contain a singleton then \(\left|X_{i}\right|=2, \forall_{i} \in I\). Let \(I=\{1, \ldots n\}\) and \(\phi(i)=x_{i} \varepsilon X_{i} ; i \varepsilon I\). Put \(\mathbf{Y}=\left\{(\mathbf{x}, \mathrm{i}) / \mathbf{x} \in \mathrm{E}, \mathbf{x} \in \mathrm{X}_{\mathrm{i}}\right\}\).

Then 2 distinct elements in \(E\) grafe rise to four different elements in \(Y\) : Foreach \(i=1, \ldots\) n, let
\[
y_{i}=\left\{\left(x_{i}, j\right) / x_{i} \in x_{j}\right\}
\]

Then \(Y_{i} \subset Y_{,} Y_{i} \cap Y_{j}=\phi\) if \(i \neq j\) and \(Y=\bigcup_{i=1}^{n} Y_{i}\)
Now \(-|y|=\left|\bigcup_{i=1}^{n} Y_{i}\right|=\sum_{i=1}^{n}\left|Y_{i}\right|=2 n\)
We, can write \(Y^{\prime}=\bigcup_{i=1}^{n} Z_{i}\), where \(Z_{i}=\left\{(x, i) / x \varepsilon X_{i}\right\}\)
Thus \(\left|z_{i}\right|=\left|x_{i}\right|\) and \(z_{i} \cap z_{j}=\phi\) if \(i \neq j\).
Since \(\left|x_{i}\right| \geq 2,\left|z_{i}\right| \geq 2\). Suppose that there exists \(k\) such that \(\left|x_{k}\right|>2!\) Then
\[
|y|=\sum_{i=1}^{n}\left|z_{i}\right| \geq 2(n-1)+\left|z_{k}\right|>2(n-1)+2=2 n
\]

A contradiction. Hence \(\left|X_{i}\right|=2 \quad \forall_{i} \in I\).

Now we write \(X_{i}=\left\{x_{i}, y_{i}\right\}\), where \(x_{i} \neq y_{i}\). Observe that \(y_{i} \neq y_{j}\) if \(i \neq j\) (otherwise there exists \(k \neq i, j\) such that \(\phi(k)=y_{i}\) so that \(y_{i}\) occurs in 3 sets of (\(\left.X\right)_{I}\))
We define \(\phi^{\prime}: I \rightarrow E\) by
\[
\phi^{\prime}(i)=y_{i} \quad \forall \underset{\sim}{i} \varepsilon I
\]

Then \(\phi^{\prime}\) is an SDR of \((X)_{I}\) and \(\phi^{\prime}(I)=E\).

In general a transversal \(E\) of multiplicity \(m\) is determined by at least m SDR's.
3.2.22 THEOREM: Let \(E=\phi(I)\) be a transversal of multiplicity \(m\) of a family \({ }^{(X)}{ }_{I}\). Then \((X)_{I}\) has at least \(m-1\) distinct \(\operatorname{SDR}\) 's each of which is different from \(\phi\) and gives the transversal E.

PROOF. We prove the theorem by induction on \(m\). The theorem is true for \(m=2\). Assume the theorem is true for any transversal \(E\) of multiplicity \(k<m\). Let \(\phi(I)=E\) be a transversal of multiplicity \(m\) of a fami \({ }^{-y}(\mathrm{X})_{I} . \operatorname{Le}: I=\{1,2, \ldots, n\}\) and \(\phi(i)=x_{i} \varepsilon X_{i}, i \varepsilon I\). We can assume that \(U_{I} X=E\). For each \(i \varepsilon I\) construct inductively the subset \(E_{i}\) of \(X_{i}\) as follows.
\[
\begin{aligned}
& E_{1}=X_{1} \backslash \phi(1), \\
& E_{i}=X_{i} \backslash \phi(i) \backslash U_{r}<E_{i} \quad, 2 \leq i \leq n .
\end{aligned}
\]

Put \(X_{i}^{\prime}=X_{i} \backslash E_{i}\), vi \(\varepsilon\). Then we have
(i) \(E_{i} \cap E_{j}=\phi\) if \(i \neq j\), (ii) \(\phi(i) \not \& E_{i},\left(\right.\) iii) \(\cup_{i=1}^{n} E_{i}=E\)
(iv) (X') has a transversal \(E=\phi(I)\) of multiplicity \(m-1\)

To show (iii) let a \(\varepsilon\) E. There exists \(i_{1} \varepsilon I\) such that \(\phi\left(i_{1}\right)=a\). Since a occurs in exactly \(m\) sets of \((X)_{I}, j_{2}, \ldots, i_{m}\) such that \(a \varepsilon X_{i}, j=2, \ldots, m\). Then \(\phi\left(i_{j}\right) \neq a \quad v_{j}=2, \ldots, m\). Without loss of generality assume that \(i_{2}<i_{3}<\ldots<i_{m}\).
case 1. \(i_{1}<i_{2}<\ldots<i_{m}\)
If \(i_{1}=1\), \(i_{2}=2\), then \(a \notin E_{1}\) so that \(a \varepsilon E_{2}\). Suppose that at least one of \(i_{1} \neq 1\) and \(i_{2} \neq 2\) holds. Then for each \(r, 1 \leq r<i_{2}\) we have a \(\notin E_{r}\) since \(a \notin X_{r}\) or \(a=\phi\left(i_{1}\right)\) if \(r=i_{1}\). Now a \(\notin U_{i}<\mathbf{i}_{2}\) but \(a \varepsilon X_{i_{2}}\) and \(a \neq \phi\left(i_{2}\right)\). Thus a \(\varepsilon E_{i_{2}}\).
case 2. \(i_{1}\) is in between \(i_{j}\) and \(i_{k}\) for some \(j, k \varepsilon\{2, \ldots, m\}\). We may assume that \(i_{2}<i_{1}<i_{3}<\ldots<i_{m}\). If a \(\notin E_{i_{3}}\), then since a \(\varepsilon X_{i_{3}}\) and \(\dot{a} \neq \phi\left(i_{3}\right)\) this implies that \(a \varepsilon U_{i} U_{i_{3}} E_{i}\). Thus a \(\varepsilon E_{i}\)
for some \(i<i_{3}\)
case \(3 i_{2}<i_{3}<\ldots<i_{m}<i_{1}\)
If \(a \notin E_{i_{m}}\), then by the same argument as in case 2 we have a \(\varepsilon E_{i}\) for some \(i<i_{m}\).

To show (iv) we observe that \(\phi(i) \varepsilon X_{i}\) for every i \(\varepsilon I\) so that \(\phi\) is also an SDR of \(\left(X^{\prime}\right)_{I}\). Let a \(\varepsilon E\). Then there exist \(i_{1} \neq i_{2} \neq \ldots \neq i_{m}\) such that \(a \varepsilon X_{i_{j}} \Leftrightarrow i_{j} \varepsilon\left\{i_{1}, \ldots, i_{m}\right\} \quad\). Since \(i_{i} \dot{U} E_{i}=E, a \varepsilon E_{i_{j}}\) for a unique \(i_{j} \varepsilon\left\{i_{1}, \ldots, i_{m}\right\}\). Thus a \(\notin X_{i j}^{\prime}\) and a \(\varepsilon x_{i_{k}}^{\circ}\) 䜣 \(\neq j, 1 \leq k \leq m\). If a is in more than \(m-1\) sets of \(\left(X^{\prime}\right)_{I}\), then a belongs to more than \(m\) sets of \((X)_{I}\). Thus (iv) is proved.
```

    By induction hypothesis there exist \(m-2\) distinct SDR's
    $\phi_{1}^{\prime}, \ldots, \phi_{m-1}^{\prime}$ each of which is different from $\phi$, giving the
transversal $E=\phi(I)$ of $\left(X^{\prime}\right)_{I}$.

```
For any i \(\varepsilon\) I, let
\[
\begin{aligned}
& E_{i}^{\prime}=x_{i}^{\prime} \backslash \phi_{1}^{\prime}(i) \\
& \text { and } \\
& x_{i}^{\prime \prime}=\left(x_{i}^{\prime} \backslash E_{i}^{\prime}\right) \cup E_{i} \\
& \text { Then } \int_{i=1}^{n} E_{1}^{\prime}=E \text { and } \phi_{1}^{\prime}(i) \varepsilon X_{i}^{\prime \prime} \quad \forall_{i} \in I . \quad \text { Now } a s X_{i}^{\prime \prime}=\phi_{1}^{\prime} \text { (i) U } E_{i}
\end{aligned}
\] and \(\forall x \in E, X=\phi_{1}^{\prime}(i)\) belongs to \(m-1\) sets of \(\left(X_{I}^{\prime}\right),\left(X_{I}^{\prime \prime}\right)\) has a transversal \(\phi_{1}^{\prime}(I)=E\) of multiplicity \(m-1\) and so by induction hypothesis \(\left(X^{\prime \prime}\right)_{I}\) has at least \(m=2\) distinct \(\operatorname{SDR} \phi_{1}, \phi_{2}, \ldots, \phi_{m-2}\) giving the transversal and each of them is different from \(\phi_{1}\).

We show that \(\phi_{i} \neq \phi \forall_{i}=1, \ldots, m-2\). Observe that \(x_{i}=\phi_{1}^{\prime}(i) \cup E_{i} \cup E_{i}^{\prime}\left(\operatorname{as} X_{i}=x_{i}^{\prime} \cup E_{i}\right) . \phi_{i} \neq \phi_{1}^{\prime} \Rightarrow \exists r_{i}\) such that
\(\phi_{i}\left(r_{i}\right) \neq \phi_{i}^{\prime}\left(r_{i}\right)\). Since \(\phi_{i}\left(r_{i}\right) \in X_{r_{i}}\) and \(\phi_{i}\left(r_{i}\right) \notin E_{r_{i}}^{\prime}, \phi_{i}\left(r_{i}\right) \varepsilon E_{r_{i}}\) But \(\phi\left(r_{i}\right) \notin E_{r_{i}}\) Thus \(\hat{\varphi}_{i} \neq \phi\) :

Hence \(\phi_{1}, \cdots, \phi_{m-2}, \phi_{1}^{\prime}, \phi\) are different SDR's of \((X)_{i}\) giving the transversal E and the theorem is proved.
3.2.23 Theorem. Let \(E\) be a transversal of a family (X) \(I\). If a \(E\), then a necessary and sufficient condition for
\[
\phi_{1}(i)=\phi_{2}(j)=a \quad i=j \quad \text { where } \phi_{1}, \phi_{2} \text { are }
\]

SDR's of \((X)_{I}\) and \(\phi_{1}(I)=\phi_{2}(I)=E\) is that a \(\mathcal{U} Y\) for every family \((X)_{I}\) satisfying the condition \(\left(T_{1}\right)\) corresponding to \(E\) and with a trànsversal E.

PROOF. Necessity : Let \(\left(Y_{I}\right.\) be any family satisfying the condition (\(T_{1}\)) corresponding to \(E\) and \((Y)_{I}\) has a transversal E. Thus there exists \(J \subseteq I\) and \(x_{j} \varepsilon X_{j}\) with \(y_{i}=x_{i}, i_{i} \varepsilon J\), and \(Y_{i}=X_{i} x_{i}^{\prime}\),

a \(\mathcal{F} \dot{U}^{U} Y\) if \(J=I\). Thus we may assume that \(J \subseteq I\) and so \(I \backslash J \neq \phi\). Define \(\phi_{1}: I \rightarrow E\) by
\[
\phi_{l}(i)= \begin{cases}x_{i} & i \in J, \\ x_{i} & i \in I \backslash J\end{cases}
\]

Since \(\left(\bigcup_{J} Y\right) U\left(\bigcup_{i \varepsilon I \backslash J} X_{i}^{\prime}\right)=E, \phi_{1}\) is an SDR of \((X)_{I}\) with \(\phi_{I}(I)=E\). As \((Y)_{I}\) has a transversal \(E\), there exists an \(\operatorname{SDR} \phi_{2}\) of (\(\left.Y\right)_{I}\) giving \(E\). Also \(\phi_{2}\) is an \(\operatorname{SDR}\) of \((X)_{I}\). Now for every i \(\varepsilon J, \phi_{1}(i)=\phi_{2}(j)\) but for every \(i \varepsilon I \backslash J, \phi_{1}(i) \notin Y_{i}\) and hence \(\phi_{1}(i) \neq \phi_{2}(i)\). Suppose \(a \varepsilon \bigcup_{I \backslash J} Y\). Since \(\phi_{2}(I \backslash J)=\left(\bigcup_{I \backslash J} Y\right) \cap E, a=\phi_{2}(j)\) for some
\(j \varepsilon I \backslash J\). But. \(a \varepsilon \cdot E=\phi_{1}(I)\). Thus \(a=\phi_{1}(i)\) for some \(i \varepsilon I\). Now \(\phi_{1}(i)=\phi_{2}(j)=\) a so that by the assumption \(i=j \varepsilon I \backslash J\) which is a contradiction. Hence a \(\ddagger \underset{\mathrm{I} \backslash \mathrm{J}}{\mathrm{Y}}\).

Sufficiency : Assume that \(\phi_{1}, \phi_{2}\) are SDR's of \({ }^{(X)}{ }_{I}\) giving the same transversal E. Let \(\phi_{1}(i)=\phi_{2}(j)=a\). We may assume that \(\phi_{1} \neq \phi_{2}\). Let \(\phi \neq I_{1} \subseteq I\) be such that \(\phi_{1}(i) \neq \phi_{2}(i) \Leftrightarrow i \varepsilon I_{1}\). Define the family (\(\mathrm{Y}_{\mathrm{I}}\), by
\[
y_{i}= \begin{cases}\phi_{1}(i) & i \varepsilon I \backslash I_{1} \\ x_{i} \backslash \phi_{1}(i) & i \varepsilon I_{1} .\end{cases}
\]

Then \(\left.{ }^{(Y)}\right)_{I}\) satisfies \(\left(T_{1}\right)\) corresponding to \(E\). By the same argument as in the proof of Theorem 3.2.4, \(\phi_{1}(I)=\phi_{2}(I)\) so that \((Y)_{I}\) has a transversal \(\mathrm{E}=\phi_{2}(\mathrm{I})\). Thus by the assumption a \(\notin \cup \mathbf{Y}\) and hence \(\phi_{2}(j)=a=\phi_{1}(i)=\phi_{2}(i)\). Therefore \(i=j\) as required.

\section*{4 REPRESENTABLE AND BINARY PREGEOMETRIES:}

In this chapter we examine the class of pregeometries isomorphic to subpregeometries of finite dimensional vector spaces.

\subsection*{4.1 REPRESENTABLE PREGEOMETRIES}
4.1.1 A pregeometry \(G(S)\) is representable over the field \(F\) if there exists a vector space \(V\) over \(F\) and a function \(f: S \rightarrow V\) whose natural extension to \(2^{\mathrm{S}} \rightarrow 2^{\mathrm{V}}\) preserves rank.

The function \(f\) is a representation of \(G(S)\).

As rank of any set in a subpregeometry of \(G(S)\) is equal to its rank in \(G(S)\) we have
4.1.2 LEMMA. If \(G(S)\) is representable over \(F\), then any subpregeomtry of \(G(S)\) is also representable over \(F\).

From Mirsky \([71]\),
4.1.3 THEOREM. Any transversal pregeometry is representable.

PROOF. Let \(G(S)\) be any transversal pregeometry of rank \(r\) with a presentation \(\left(_{(X)} I^{\prime}\right.\), where \(|I|=r\). Let \(Z=\left\{Z_{\epsilon i} / i \varepsilon I, e \varepsilon X_{i}\right\}\), where the Z's are independent indeterminates over the field of rational numbers. Let \(F\) be the field of rational functions in the \(Z\) 's (each function involving only a finite number of indeterminates). For each e \(\varepsilon S\) define the mapping \(\psi_{e}: I \rightarrow F\) as follows.
\[
\psi_{e}(i)= \begin{cases}Z_{\text {ei }} & \text { if e } \varepsilon X_{i} \\ 0 & \text { otherwise }\end{cases}
\]

For \(\alpha_{1}, \alpha_{2} \varepsilon F\) and \(e_{1}, e_{2} \varepsilon S\), let the mapping
\({ }_{1} \psi_{e_{1}}+\alpha_{2} \psi_{e_{2}}: I \rightarrow F\) be defined by the equation \(\left(\alpha_{1} \psi_{e_{1}}+\alpha_{2} \psi_{e_{2}}\right)(i)\) \(=\propto_{1} \psi_{e_{1}}(i)+\propto_{2} \psi_{e_{2}}(i), \forall i \varepsilon I\). Let \(V\) be the set of all linear combinations, with coefficients in \(F\), of the mapping \(\psi_{e}\), e \(\varepsilon\) S. Then \(V\) is a vector space over \(F\). Consider \(f: S \rightarrow V\) defined by \(f(e)=\psi_{e}\) if e \(\varepsilon U_{I} X\) and \(f(e)=0\) otherwise. Then \(f\) is injective. We show that \(f\) is a representation of \(G(S)\).

Let \(E=\left\{e_{1}, \ldots, e_{k}\right\}\) be a PT of \((X)_{I}\). Then there exist \(i_{1} \neq i_{2} \neq \ldots \neq i_{k}\) with \(e_{j} \varepsilon A_{i_{j}}, l \leq j \leq k\). Consider the \(k \times k\) matrix \(M\) whose \((r, s)\) element is \(\psi_{e_{r}}\left(i_{s}\right)\), where \(l \leq r, s \leq k\). All elements on the main diagonal of \(M\) are independent indeterminates and any other element of \(M\) is either or an indeterminate. But all indeterminates occuring in the entries of \(M\) are different. Thus \(M\) is non-singular. Suppose that \(f(E)=\left\{\psi_{e_{1}}, \ldots, \psi_{e_{k}}\right\}\) is linearly dependent in \(V\). Hence \(\alpha_{1} \psi_{e_{1}}+\ldots+\alpha_{k} \psi_{e_{k}}=0\) for some \(\propto_{1} \ldots \ldots, \alpha_{k}\) in \(F\) and all \(\propto_{1}, \ldots, \alpha_{k}\) are not zero. Therefore \(\alpha_{1} \psi_{e_{1}}\left(i_{s}\right)+\ldots+\) \({ }_{k} \psi_{e_{k}}\left(i_{s}\right)=0,1 \leq s \leq k\), and so the rows of \(M\) are linearly đependent over \(F\) which is a contradiction. Thus \(f(E)\) is linearly independent in \(V\).

Suppose that \(G=\left\{e_{1}, \ldots, e_{k}\right\}\) is not a PT of \({ }^{(X)} I\). We show that \(f(G)\) is linearly dependent in \(V\). Since \(G\) is not a PT of (X) \(I^{\prime}\) G contains a maximal PT E.

If \(|E|<r\), there exists a non-empty subset \(J=\left\{i_{1}, \ldots, i_{p}\right\}\) of \(I\) with \(e_{j} \not \not A_{i}, l \leq j \leq k ; i \varepsilon I \backslash J\) (otherwise \(E\) is not \(a\) maximal PT contained in G). Hence \(\psi_{e_{j}}(i)=0, i \leq j \leq k ; i \varepsilon I \backslash J\). Consider the \(k \times p\) matrix \(N\) whose \((j, s)\) element is \(\psi_{e_{j}}\left(i_{s}\right)\),
\(1 \leq j \leq k, 1 \leq s \leq p\). Suppose that the rows of \(N\) are linearly independent over \(F\). Then \(k \leq p\) so that \(N\) has a non-singular matrix, say \(N^{\prime}=\left(\psi_{e_{j}}\left(i_{s}\right)\right), l \leq j, s \leq k\). Thus all elements on the main diagonal of \(N^{\prime}\) are indeterminates and hence \(G\) is a PT of \({ }^{(X)} I^{\text {which }}\) is not so. Hence the rows of N are linearly dependent. Then
\(\exists \alpha_{1}, \ldots, \alpha_{k}\) of \(F\), not all zero such that
\[
\propto_{1} \psi_{e_{1}}(i)+\ldots+\alpha_{k} \psi_{e_{k}}(i)=0, i \varepsilon J .
\]

But \(\psi_{e_{j}}(i)=0,1 \leq j \leq k ; i \varepsilon I \backslash J\) and therefore
\[
\alpha_{1} \psi_{e_{1}}+\ldots+\propto_{k} \psi_{e_{k}}=0
\]

Thus \(\mathrm{f}(\mathrm{G})\) is linearly dependent in \(V\).

If \(|E|=r\), we consider the \(k \times r\) matrix \(N=\left(\psi_{e_{j}}(i)\right)\),
\(1 \leq j \leq k ; i \varepsilon I\). Then the rows of \(N\) are linearly dependent (as \(k>r\)) so that by the above \(f(G)\) is linearly dependent in \(V\). Thus the theorem is proved.

We note that a matroid \(M(S)\) on \(S=\left\{x_{1}, \ldots, x_{n}\right\}\) is
representable over \(F\) if and only if there exists a matrix \(A\) of \(n\) columns with elements in \(F\) such that the function \(f\) on \(S\) defined by
\[
f\left(x_{i}\right)=\text { the } i \text { th column vector of } A
\]
in the vector space of columns of \(A\) is a representation of \(M(S)\) over \(F\).

Thus if any matroid \(M(S)\) of rank \(r\) is representable over \(F\), then for any given basis \(B=\left\{b_{i}, \ldots, b_{r}\right\}=S \backslash\left\{b_{r+1}, \ldots, b_{n}\right\}\) of \(M(S)\) there exists a standard matrix representation \(A=\left[I_{r}, D\right]\), where \(I_{r}\) is the \(r \times r\) identity matrix and \(D\) is an \(r \times(n-r)\) matrix with entries in F .

\subsection*{4.1.4 EXAMPLE. The 2 uniform matroid \(U_{2,4}\) on 4 elements is representable over every field except GF (2).}

PROOF. We first show that \(\mathrm{U}_{2,4}\) is not representable over GF(2). Suppose the contrary. Then there exists a matrix \(A=\left[\begin{array}{llll}1 & 0 & a & c \\ 0 & 1 & b & d\end{array}\right]\) with elements in \(G F(2)\) such that. any two columns are independent. Now the column vectors \(\left[\begin{array}{l}1 \\ 0\end{array}\right]\) and \(\left[\begin{array}{l}a \\ b\end{array}\right]\) are independent and so \(\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]\) or \(\left[\begin{array}{l}1 \\ 1\end{array}\right]\). Since the two elements in \(U_{2,4}\) represented by the second and third columns of \(A\) are independent, \(\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]\). Now \(\left[\begin{array}{l}c \\ d\end{array}\right]\) and \(\left[\begin{array}{l}1 \\ 1\end{array}\right]\) are independent so that \(\left[\begin{array}{l}\mathrm{c} \\ \mathrm{d}\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]\) or \(\left[\begin{array}{l}1 \\ 0\end{array}\right]\) which is impossible. Thus \(U_{2,4}\) is not representable over GF(2).

For any field \(F\) of more than 2 elements consider the matrix \(A=\left[\begin{array}{llll}1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 2\end{array}\right]\) with elements in \(F\). We see that any two columns of \(A\) are independent while any three columns are dependent. Thus \(\dot{U}_{2,4}\) is representable over \(F\) with a standard matrix \(A\).
4.1.5 THEOREM. If \(M(S)\) is representable over \(F\), then \(M^{*}(S)\) is also representable over F.

PROOF. Let \(M(S)\) be a matroid of rank \(r\) on the set \(S\) of \(n\) elements which is representable over a field \(F\).

Let the \(r \times\) n matrix \(A=\left(a_{i j}\right), a_{i j} \varepsilon F\) be a matrix representation of \(M(S)\). Consider the linear transformation \(\psi\) from the vector space \(V(n, F)\) of \(n\)-tuples of elements in \(F\) to the vector
space \(V(x, F)\) defined by \(\psi(x)=A x^{\prime}\).
Now Ker \(\psi=\left\{x \in V(n, F) / A x^{\prime}=0\right\}\) and \(\operatorname{dim}(\operatorname{Ker} \psi)=n-r\). Choose \(n \times(n-r)\) matrix \(B\) with entries from \(F\) such that the columns of B span ker \(\psi\). Thus
(1) \(A x^{\prime}=0 \Leftrightarrow x^{\prime}=B y^{\prime}\) for some \(y \in V(n-r, F)\)

We show that \(B^{\prime}\) is a matrix representation of the dual \(M^{*}(S)\)
To prove this we need to show that \(r\) columns of \(A\) are linearly independent over \(F\) if and only if the complementary set of \(n-r\) columns of \(B^{\prime}\) are linearly independent over \(F\). Also by reordering the columns of \(A\) (and B) it is sufficient to show that the first \(r\) columms of \(A\) are linearly independent if and only if the last \(n-r\) columns of \(B^{\prime}\) are linearly independent. Again it is sufficient to show that the first \(r\) columns of \(A\) are linearly dependent if and only if the last \(n-r\) columns of \(B^{\prime}\) are linearly dependent. We shall show this. By (1) there exists \(0 \neq y=\left(y_{1}, y_{2}, \ldots, y_{r}, 0, \ldots, 0\right) \varepsilon V(n, F)\) with \(A y^{\prime}=0\) if and only if there exists \(0 \neq z \in V(n-r, F)\) such that \(y^{\prime}=B z^{\prime}\).

We can write \(B\) in the form \(B=\left(B_{1}, B_{2}\right)^{\prime}\), where \(B_{1}\) is \((n-r) \times r\) and \(B_{2}\) is \((n-r) \times(n-r)\). It then follows that \(B_{2}^{\prime} z^{\prime}=0\). But \(z \neq 0\). Hence \(B_{2}^{\prime}\) and so \(B_{2}\) is singular so that its columns are linearly dependent and the theorem is proved.
4.1.6 LEMMA If a matroid \(M(S)\) of \(r a n k r\) on \(S=\left\{x_{1}, \ldots, x_{n}\right\}\) has the standard representation

then \(M^{*}(S)\) has the standard representation
\[
\frac{x_{1}, \ldots, x_{r}, x_{r+1} \ldots \ldots, x_{n}}{-A^{\prime}, I_{n-r}}
\]

PROOF It suffices to show that the columns of \(\left[-A, I_{n-r}\right]\) span the space of solutions of \(\left[I_{r}, A\right] x^{\prime}=0\).

Let \(x=\left[-A^{\prime}, I_{n-r}\right]^{\prime} y\), where \(y \in V(n, F)\). Then
\(\left[I_{r}, A\right] x^{\prime}=\left[I_{r}, A\right]\left[\begin{array}{c}-A \\ I_{n-r}^{\prime}\end{array}\right] y^{\prime}=\left[-I_{r} A+A I_{r}\right] y^{\prime}=0\)
Thus \(x\) is a solution of \(\left[I_{r}, A\right] \mathbf{x}^{\prime}=0\)
Let \(x=\left(x_{1}, \ldots, x_{n}\right)\) be a solution of \(\left[I_{r}, A\right] \mathbf{x}^{\prime}=0\).
Put \(y=\left(x_{r+1}, \ldots, x_{n}\right) \varepsilon V(n-r, F)\). Then
\[
x=\left[\begin{array}{l}
-A \\
I_{n-r}
\end{array}\right] y=\left[-A^{\prime}, I_{n-x}\right]^{\prime} y
\]
and the lemma is proved.

\subsection*{4.2 BINARY MATROIDS}
4.2.1 A matroid \(M(S)\) is binary if it is representable over \(G F(2)\).

It follows easily from Theorem 4.1 .6 that \(M(S)\) is binary if an only if \(\mathrm{M}^{*}(\mathrm{~S})\) is binary.

Welsh [76]gave necessary and sufficient conditions for a
matroid \(M(S)\) to be binary. The following definition and lemma are needed for these conditions.
4.2.2 The symmetric diference of sets \(C_{1}, \ldots, C_{n}\), written \(c_{1} \Delta \ldots \Delta c_{n}\), is the set \(\bigcup_{i=1}^{n}\left(C_{i} \backslash \underset{C \neq C_{i}}{\cup} c\right)\).

Notice that \(x \in C_{1}, \Delta . . \Delta C_{n}\) if and only if \(x\) belongs to exactly one of \(C_{1}, \ldots, C_{n}\). Thus \(C_{1} \Delta \ldots \Delta C_{n}=\left(C_{1} \Delta \ldots \Delta C_{n-1}\right) \Delta C_{n}\). 4.2.3 LEMMA. If \(C_{1}, \ldots, c_{n}\) are sets such that \(\left|c \cap c_{i}\right|\) is even, \(1 \leq i \leq n\). Then \(\left|\left(C_{1} \Delta \ldots \Delta C_{n}\right) \cap c\right|\) is even.

PROOF. We first show that \(\left(C_{1} \Delta \ldots \Delta C_{n}\right) \cap C\)
\(=\left(C_{1} \cap C\right) \Delta . . \Delta\left(C_{n} \cap C\right)\). For \(n=2\) we have \(\left(C_{1} \Delta C_{2}\right) \cap c\)
\(=\left(\left(c_{1} \backslash c_{2}\right) \dot{U}\left(c_{2} \backslash c_{1}\right)\right) \cap c=\left(\left(c_{1} \backslash c_{2}\right) \cap c\right) \dot{U}\left(\left(c_{2} \backslash c_{1}\right) \cap c\right)\)
\(=\left(c_{1} \cap c \backslash c_{2} \cap c\right) \dot{U}\left(c_{2} \cap c \backslash c_{1} \cap c\right)=\left(c_{1} \cap c\right) \Delta\left(c_{2} \cap c\right)\).
Assume that \(\left(C_{1} \Delta \ldots \Delta C_{k}\right) \cap C=\left(C_{1} \cap C\right) \Delta \ldots \Delta\left(C_{k} \cap C\right)\), where \(2 \leq k<n\). Then \(\left(C_{1} \Delta \ldots \Delta C_{k+1}\right) \cap c=\left(\left(C_{1} \Delta \ldots \Delta C_{k}\right) \Delta C_{k+1}\right) \cap c\) \(=\left(\left(C_{1} \Delta \ldots \Delta C_{k}\right) \cap C\right) \Delta\left(C_{k+1} \cap C\right)=\left(\left(C_{1} \cap C\right) \Delta \ldots \Delta\left(C_{k} \cap c\right)\right) \Delta\) \(\left(\mathrm{C}_{\mathrm{k}+1} \cap \mathrm{c}\right)=\left(\mathrm{C}_{1} \cap \mathrm{C}\right) \Delta \ldots \Delta\left(\mathrm{C}_{\mathrm{k}+1} \cap \mathrm{C}\right)\). Hence \(\left(\mathrm{C}_{1} \Delta \ldots \Delta \mathrm{C}_{\mathrm{n}}\right) \cap \mathrm{c}\) \(=\left(C_{1} \cap C\right) \Delta \ldots \Delta\left(C_{n} \cap C\right)\).

We next show that for any sets \(A, B\) if \(|A|,|B|\) are even, then \(|A \Delta B|\) is even. Observe that \(A \Delta B=(A \backslash A \cap B) \dot{\cup}(B \backslash A \cap B)\). If \(|A \cap B|\) is odd, then since \(A=(A \backslash A \cap B) \cup(A \cap B),|A \backslash A \cap B|\) is odd. Also \(|B \backslash A \cap B|\) is odd and hence \(|A \Delta B|=|A \backslash A \cap B|\) \(+|B \backslash A \cap B|\) is even. If \(|A \cap B|\) is even, by the same argument we obtain \(|A \Delta B|\) even.
\[
\text { Thus }\left|\left(c_{1} \Delta c_{2}\right) \cap c\right|=\left|\left(c_{1} \cap c\right) \Delta\left(c_{2} \cap c\right)\right| \text { is even by the }
\] above.

Assume that \(\left|\left(C_{1} \Delta \ldots \Delta c_{k}\right) \cap_{A}\right|\) is even, where \(2 \leq k<n\). Thus \(r=\left|\left(C_{1} \Delta \ldots \Delta C_{k+1}\right) \cap \mathrm{c}\right|=\left|\left(C_{1} \cap c\right) \Delta \ldots \Delta\left(C_{k+1} \cap \mathrm{c}\right)\right|=\mid\left(\left(C_{1} \cap \mathrm{c}\right)\right.\) \(\Delta \ldots \Delta\left(c_{k} \cap c\right) \Delta\left(c_{k+1} \cap c\right) \mid . \operatorname{Let} c^{\prime}=\left(C_{1} \cap C\right) \Delta \ldots \Delta\left(c_{k} \cap c\right)\). By the assumption \(\left|C^{\prime}\right|\) is even and so by the above \(r=\left|C^{\prime} \Delta\left(\left(C_{K+1} \cap C\right)\right)\right|\) is even
4.2.4 THEOREM. The following statements about \(M(S)\) are equivalent.
(i) For any circuit \(C\) and any cocircuit \(c^{*}\) of \(M(S),\left|C \cap C^{*}\right|\) is even.
(ii) The symmetric difference of any finite collection of distinct circuits of \(M(S)\), if not empty, is the union of disjoint circuits of \(M(S)\).
(iii) The symmetric difference of any distinct circuits \(C_{1}, C_{2}\) of \(M(S)\) contains a circuit of \(M(S)\).
(iv) If \(C \backslash B=\left\{x_{1}, \ldots, x_{q}\right\}\), where \(C\) is a circuit of \(M(S)\) and \(B\) is a basis of \(M(S)\). Then
\[
C=C\left(x_{1}, B\right) \Delta \ldots \Delta C\left(x_{q}, B\right)
\]
(v) \(\mathrm{M}(\mathrm{S})\) is binary.

PROOF. We prove the theorem in 3 steps. Firstly we show that (i), (ii) and (iii) are equivalent. Secondly we show (i) << (iv) and finally we show (iv) <<> (v).
\[
\text { (i) } \Rightarrow \text { (ii) : }
\]

Let \(C_{1}, \ldots, C_{k}\) be distinct circuits of \(M(S)\). Put \(A=C_{1} \Delta \ldots, \Delta C_{k}\). Suppose that A is independent and non-empty. Extend A to a basis B. Let \(x \in A\). By Lemma 2.8.6 there is a cocircuit \(C^{*}\) of \(M(S)\) with \((B \times x) \cap C^{*}=\phi\) and \(x \in C^{*}\). Then \(\left|C^{*} \cap A\right| \leq\left|C^{*} \cap B\right|=1\). By Lemma 4.2.3 \(\left|C^{*} \cap A\right|\) is even. Thus we have a contradiction.

Hence \(A\) is dependent in \(M(S)\) and so it contains a circuit \(C\).
If \(A=C\) we are finished, if \(A \neq C\) we consider
\(A_{1}=C \Delta C_{1} \Delta \ldots \Delta C_{k}\) and apply the above argument with \(A=A_{1}\). Since \(A\) is finite and \(A_{1}=A \backslash C\), this process eventually terminates giving a finite collection of disjoint circuits whose union is \(A\) and (ii) is proved.
(ii) \(\Rightarrow\) (iii) is clear.
(iii) \(\Rightarrow\) (i) :

Suppose that \(M(S)\) satisfies (iii) but not (i). Then there exist a circuit \(C\) and a cocircuit \(C^{*}\) of \(M(S)\) such that \(\left|C \cap C^{\star}\right|\) is not even. Choose such \(C\) and \(C^{*}\) with \(\left|C \cap C^{*}\right|\) minimum. By Lemma 2.8.5 \(\left|C \cap C^{*}\right| \neq 1\) and so \(\left|c \cap c^{*}\right| \geq 3\). Let \(a, b, c\) be distinct elements of \(c \cap c^{*}\). By Lemma 2.8.7 there exists a circuit \(C_{1}\) with \(C_{1} \cap C^{*}=\) ac. By (\(K_{4}^{\prime}\)) there exists a circuit \(C_{2} \leq\left(C \cup C_{1}\right) \backslash a\) and \(b \varepsilon C_{2}\). Choose \(C_{2}\) so that \(\mathrm{C} \cup \mathrm{C}_{2}\) is minimal. Also by \(\left(\mathrm{K}_{4}^{\prime}\right)\) there exists a circuit \(\mathrm{C}_{3} \subseteq\left(\mathrm{C} \cup \mathrm{C}_{2}\right) \backslash \mathrm{b}\) with a \(\varepsilon C_{3}\) and so there exist; a circuit \(C_{4}\left(C \cup C_{3}\right)\) a with \(\mathrm{b} \in \mathrm{C}_{4}\). Now \(\mathrm{C} \cup \mathrm{C}_{4} \subseteq \mathrm{C} \cup \mathrm{C}_{3} \& \mathrm{C} \cup \mathrm{C}_{2} \subseteq \mathrm{C} \cup \mathrm{C}_{1}\) and \(\mathrm{b} \varepsilon \mathrm{C}_{4}\). Thus \(C_{4} G\left(C \cup C_{1}\right) \backslash\) a. Since \(C \cup C_{2}\) is minimal, \(C \cup C_{2} \subseteq C \cup C_{4}\) so that \(C \cup C_{2} \subseteq C \cup C_{4} \subseteq C \cup C_{3} \subseteq C \cup C_{2}\). Thus \(C \cup C_{3}=C \cup C_{2}\) and so \(c_{3} \backslash c=c_{2}\), \(\mathbf{C}\). Hence \(c_{2} \& c_{3}=\left(C_{2} \geqslant c_{3}\right)\) ن \(\left(C_{3}, c_{2}\right) \subseteq c\). By the assumption \(C_{2} \Delta C_{3}\) contains a circuit. Thus \(C_{2} \Delta C_{3}=C\). Observe that \(\left|C_{3} \cap c^{*}\right|\) is positive (as a \(\varepsilon C_{3} \cap c^{*}\)). If \(\left|C_{3} \cap c^{*}\right|\) is even, then as \(\left|c \cap c^{*}\right|=\left|\left(C_{2} \Delta c_{3}\right) \cap c^{*}\right|=\left|c_{2} \cap c^{*}\right|+\left|c_{3} \cap c^{*}\right|-2\left|c_{2} \cap c_{3} \cap c^{*}\right|\), \(\left|c_{2} \cap c^{*}\right|\) is odd (otherwise \(\left|c \cap c^{*}\right|\) is even). But \(\left|c_{2} \cap c^{*}\right|<\left|c \cap c^{*}\right|\), contradicting minimality of \(\left|C \cap C^{*}\right|\). Thus \(\left|C_{3} A C^{*}\right|\) is odd and this also contradicts the minimality of \(\left|c \cap c^{*}\right|\). Therefore (i) is proved.
\[
\text { (i) } \Rightarrow \text { (iv) : }
\]
. Let \(M(S)\) satisfy (i). Let \(C \backslash B=\left\{e_{1}, \ldots, e_{t}\right\}\), where \(C\) is a circuit of \(M(S)\) and \(B\) is a basis of \(M(S)\). Put \(Z=C\left(e_{1}, B\right) \Delta \ldots \Delta C\left(e_{t}, B\right)\). Then \(\left\{e_{1}, \ldots, e_{t}\right\} \subseteq Z\). Now \(C \Delta Z \subseteq B\). Since \(M(S)\) also satisfies (ii), if \(C \Delta z \neq \phi\), it is the union of disjoint circuits which is impossible. Thus \(C \Delta Z=\phi\) and so \(C=Z\) as required.
\[
\text { (iv) } \Rightarrow \text { (i) : }
\]

Let \(M(S)\) satisfy (iv). Since (i) \(\Leftrightarrow\) (iii), it suffices to show that \(M(S)\) satisfies (iii). Let \(D_{1}, D_{2}\) be distinct circuits of \(M(S)\). We show that \(D_{1} \Delta D_{2}\) is dependent. Suppose not, and let \(D_{1} \cap D_{2}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}\). Then \(D_{1} \Delta D_{2}=\left(D_{1} \cup D_{2}\right) \backslash x_{1} \ldots x_{k}\) is independent. Extend \(D_{1} \Delta D_{2}\) to a basis \(B\) of \(M(S)\). Thus \(D_{1} \backslash B=D_{2} \backslash B=\left\{x_{1}, \ldots, x_{q}\right\}\) and so \(D_{1}=C\left(x_{1}, B\right) \Delta \ldots \Delta C\left(x_{q}, B\right)=D_{2}\) by the assumption which is a contradiction. Hence \(D_{1} \Delta D_{2}\) is dependent and so it contains a circuit.
\[
\text { (v) } \Rightarrow \text { (iv) : }
\]

Let \(M(S)\) be binary and let \(\left.\left.B=\left\{b_{1}, \ldots, b_{r}\right\}=S\right\} e_{1}, \ldots, e_{q}\right\}\) be a basis of \(M(S)\). Then there exists a standard matrix representation of M(S) over GF(2) of the form

The elements of \(A\) are in \(G F(2)\). Let \(C\) be a circuit of \(M(S)\). We may assume that \(C=\left\{j_{1}, \ldots, b_{t}, e_{1}, \ldots, e_{p}\right\}\). Then for each \(j, 1 \leq j \leq p\) we have
\[
c\left(e_{j}, B\right) \backslash e_{j}=\left\{b_{i} / a_{i j}=l\right\}
\]

We show that for any \(b_{i} \in B \cap C C_{i} \in C\left(e_{j}, B\right)\) for a unique j. Suppose that there exists \(b_{i} \in B \cap C\) with \(b_{i} \notin C\left(e_{j}, B\right)\), \(j=1, \ldots, p . \quad\) Then \(a_{i j}=0, j=1, \ldots\), . Now \(C_{1}=C \backslash b_{i}\) is independent. Let \(f\) be the representation given by the columms of the above matrix. Consider \(c_{i} \sum_{\varepsilon C_{i}} x_{i} f\left(c_{i}\right)+y f\left(b_{i}\right)=0\). We see that , \(y\) must be zero and since \(C_{1}\) is independent, \(x_{i}=0, \forall i\). Hence \(f(C)\) is linearly independent over GF(2). This is a contradiction. Thus \(b_{i} \in C\left(e_{j}, B\right)\).

Since \(C\) is a circuit, \(f(c)\) is linearly dependent over \(G F(2)\) so that \(f(C)=\sum_{i=1}^{t} f\left(b_{i}\right)+\sum_{j=1}^{p} f\left(e_{i}\right)\) is the zero vector. But each \(b_{i}\) in \(B \cap C\) is in \(C\left(e_{j}, B\right)\) for some \(j\), thus each row of the matrix \([f(C)]\) is occupied by 1 in even number of times. Hence each \(b_{i}\) in \(B \cap C, b_{i}\) is in odd number of \(C\left(e_{1}, B\right), \ldots, C\left(e_{p}, B\right)\). Suppose that there exists, \(b_{t}\) say, so that \(b_{t}\) is in at least 3 sets of \(C\left(e_{1}, B\right), \ldots, C\left(e_{p}, B\right)\). We may assume that \(b_{t}\) is in \(C\left(e_{1}, B\right)\), \(C\left(e_{2}, B\right)\) and \(C\left(e_{p}, B\right)\) Consider the vector \(f\left(e_{p}\right)\). We choose \(x_{i}=0\) if the \(i\) th component of \(f\left(e_{p}\right)\) is 1 and \(x_{i}=1\) otherwise. Thus \(\sum_{i=1}^{t-1} x_{i}\left(f\left(b_{i}\right)\right)+\left(f\left(b_{t}\right)+f\left(e_{1}\right)+f\left(e_{2}\right)+\ldots+f\left(e_{p-1}\right)\right.\) is the zero vector, contradicting the fact that \(\left.\left\{f\left(b_{1}\right), \ldots, f\left(b_{t}\right), f \nmid e_{1}\right), \ldots, f\left(e_{p-1}\right)\right\}\) is linearly independent over \(G E(2)\). Thus any \(b_{i} \varepsilon B \cap C\) is in exactly one of \(C\left(e_{1}, B\right), \ldots, C\left(e_{p}, B\right)!^{\prime}\)

We show that \(C=C\left(e_{1}, B\right) \Delta \ldots \Delta C\left(e_{p}, B\right)\). Since
\(f\left(C\left(e_{i}, B\right)\right)=0, i=1, \ldots, p_{i}\) we have \(\sum_{i=1}^{p} f\left(C\left(e_{i}, B\right)\right)=0\).

\(\sum_{i=1}^{p} f\left(C\left(e_{i}, B\right)=\sum_{b_{i} \varepsilon, C} f^{\prime}\left(b_{i}\right)+f(C)=0\right.\). But \(f(C)=0\) and so \(b_{i} \varepsilon c^{\prime} f\left(b_{i}\right)=0\). We see that for any \(b_{i} \in c^{\prime}, b_{i}\) must occur in even number of \(C\left(e_{1}, B\right), \ldots, C\left(e_{p}, B\right)\). Therefore \(b_{i} \notin C\left(e_{1}, B\right) \Delta \ldots \Delta C\left(e_{p^{\prime}}, B\right)\) and hence \(C=C\left(e_{1}, B\right) \Delta \ldots \Delta C\left(e_{p}, B\right)\).
\[
\text { (iv) } \Rightarrow(v) \text { : }
\]

Let \(M(s)\) satisfy (iv). Let \(B=\left\{b_{1}, \ldots, b_{r}\right\}\) be a basis of \(M(S)\) and \(S \backslash B=\left\{e_{1},\left\{\ldots, e_{q}\right\}\right.\). Define a matrix \(A\) by
\[
a_{i j}= \begin{cases}1 & \text { if } b_{i} \& C\left(e_{j}, B\right), 1 \leq i \leq p, i \leq j \leq q, \\ 0 & \text { if } b_{i} \notin C\left(e_{j}, B\right), 1 \leq i \leq p, 1 \leq j \leq q .\end{cases}
\]

Put \(B=\left[I_{r}, A\right]\). We show that the function \(f\) on \(S\) defined by \(f\left(b_{i}\right)=\) the \(i\) th column vector of \(I_{r}\) and \(f\left(e_{j}\right)=\) the \(j\) th column vector of \(A\) is a representation of \(M(S)\) over GF(2).

\section*{Let \(C\) be a circuit of \(M(S)\). We show that \(f(C)\) is linearly} dependent over \(G F(2)\). Let \(C \backslash B=\left\{e_{i_{1}}, \ldots, e_{i_{k}}\right\}\). By the assumption \(C=C\left(e_{i_{1}}, B\right) \Delta \ldots \Delta C\left(e_{i_{k}}, B\right)\). If \(B \cap C \neq \phi\), then for any \(b_{k} \in B \cap C\), there is unique \(j\) with \(b_{k} \in C\left(e_{j}, B\right)\). Thus \((B \cap C) \cap C\left(e_{j}, B\right) \neq \phi\) for some \(j\). We may assume without loss of generality that \((B \cap C) \cap\left(C\left(e_{i_{1}}, B\right)\right) \neq \phi\). Suppose \((B \cap C) \cap C\left(e_{i_{1}}, B\right)=\left\{b_{1}, \ldots, b_{s}\right\}\).
Thus \(a_{\mathrm{mi}_{1}}=1,1 \leq m \leq s\), and \(a_{\mathrm{mi}_{1}}=0, s<m \leq r\), and so \(f\left(e_{i_{1}}\right)=f\left(b_{1}\right)+\ldots+f\left(b_{s}\right)\). Hence \(f(C)\) is linearly dependent over GF(2): If \(B \cap C=\phi\), then any \(b_{i} \varepsilon \bigcup_{j=1}^{k} C\left(e_{i_{j}}, B\right)\) occurs in even number of \(C\left(e_{i_{1}}, B\right), \ldots, C\left(e_{i_{k}}, B\right)\). Thus \(f(C)=\left\{f\left(e_{i_{1}}\right), \ldots, f\left(e_{i_{k}}\right)\right\}\) is linearly dependent over GF (2) (as \(\sum_{j=1}^{k} f\left(e_{i_{j}}\right)=0\)).

Let \(f(U)\) be linearly dependent over GF (2) and such that every proper subset of \(f(U)\) is linearly indendent over GF(2). Suppose that \(U=\left\{b_{1}, \ldots, b_{t}, e_{1}, \ldots, e_{p}\right\}\). We show that \(U\) is a circuit of \(M(S)\). Firstly we show that \(U=C\left(e_{1}, E\right) \Delta \ldots \Delta C\left(e_{p}, B\right)\). By the same argument as above for any \(b_{i} \varepsilon B \cap U, b_{i} \varepsilon C\left(e_{j}, B\right)\) for a unique \(j\). Thus \(U \subseteq C\left(e_{1}, B\right) \Delta \ldots \Delta C\left(e_{p}, B\right)\). We are left to show that each \(b_{k}\) in \((B \backslash U) \cap\left(\bigcup_{j=1}^{p} C\left(e_{j}, B\right)\right)=C^{\prime}, b_{k}\) occurs in even number of \(C\left(e_{1}, B\right), \ldots, C\left(e_{p}, B\right)\). Consider \(\sum_{j=1}^{p} f\left(C\left(e_{j}, B\right)\right)=0\) we can write \(\sum_{j=1}^{p} f\left(C\left(e_{j}, E\right)\right)=\sum_{b_{k} \varepsilon C^{0}} f\left(b_{k}\right)+f(U)\). But \(f(U)=0\) so that \(\Sigma, f\left(b_{k}\right)=0\). Thus each \(b_{k} \in C^{\prime}\) occurs in even number of \(b_{k} \varepsilon C^{\prime}\)
\(C\left(e_{1}, B\right), \ldots, C\left(e_{p}, B\right)\).

Since (iv) \(\Leftrightarrow\) (iii), \(C\left(e_{1}\right.\), B) \(\Delta C\left(e_{2}, B\right)\) contains a circuit \(C_{1}\) and so \(C_{1} \Delta C\left(e_{3}, B\right) \Delta \ldots \Delta C\left(e_{p}, B\right) \subseteq U\). Consider \(C_{1} \Delta C\left(e_{3}, B\right)\). Then there exists a circuit \(C_{2}\) with \(C_{2} \Delta C\left(e_{4}, B\right) \Delta \ldots \Delta C\left(e_{p}, B\right) \subset U\). Carry on in this way we reach the step \(C_{p-2} \Delta C\left(e_{p}, B\right) \subseteq U\), where \(C_{p-2}\) is a circuit of \(M(S)\), and so there is a circuit \(C_{p-1} \subseteq U\). Thus \(U\) is dependent. Observe that \(f(A)\) is linearly independent implies that \(A\) is independent in \(M(S)\). Thus every proper subset of \(U\) is independent in \(M(S)\) and so \(U\) is a circuit. Thus (v) is proved.

Hence the theorem is proved.
4.2.5 EXAMPLE. \(M\left(\int_{n}\right)\) is binary if and only if \(n=7\).

PROOF. We first show that \(M\left(\mathscr{y}_{n}\right)\) is not binary when \(n \neq 7\). First we show that \(n^{2}-10 n+21>0\) if \(n>7\). For \(n=8\)
we have \(n^{2}-10 n+21=64-80+21>0\). Assume \(k^{2}-10 k+21>0\) and \(k>7\). Then \((k+1)^{2}-10(k+1)+21=\left(k^{2}-10 k+21\right)+(2 k-9)>0\) (as \(2 \mathrm{k}-9>0\)).

Secondly for, any \(n \equiv 1\) or \(3(\bmod 6), n>7\) we claim that there exist two disjoint triples of \(f_{n}\). If not, suppose \(123 \varepsilon \mathcal{C}_{\mathrm{n}}\). Then any triple intercects 123. As each of \(1,2,3\) occurs in \(\frac{n-1}{2}\) triples and the number of triples in \(\mathcal{J}_{n}\) is \(\frac{n(n-1)}{6}\), we have
\[
3 \frac{(n-1)}{2}-2=\frac{n(n-1)}{6}
\]
which implies \(n^{2}-10 n+21=0\). This is not so. Hence there exist two disjoint triples. Let \(A_{1}, A_{2}\) be disjoint triples in \(f_{n}\). As shown in Chapter \(2, A_{1}\) is a hyperplane and hence \(S_{n}>A_{1}\) is a cocircuit. Now \(A_{2}\) is a circuit of \(M\left(\mathscr{I}_{n}\right)\) and \(\left|\left(S_{n} \backslash A_{1}\right) \cap A_{2}\right|=3\) which is odd. By Theorem 4.2.4 \(M\left(\varphi_{n}\right)\) is not binary.

To show that \(M\left(\mathscr{\mathscr { F }}_{7}\right)\) is binary let \(c_{1}, c_{2}\) be distinct circuits of \(M\left(\mathscr{S}_{7}\right)\) and \(C_{1} \cap C_{2} \neq \phi\). We shall show by exhaustion that \(C_{1} \Delta C_{2}\) contains a circuit. Observe that the set of circuits of \(M\left(\mathscr{S}_{n}\right)\) is the union of \(\mathscr{f}_{n}\) and the family \(\zeta_{n}\) of sets \(A \subseteq S_{n}\) with \(|A|=' 4\) and such that \(A \backslash x \notin \mathscr{U}_{n}, \forall x \in A\).
\[
\text { case 1. } \quad c_{1}, \dot{c}_{2} \varepsilon \mathscr{L}_{7}
\]

Then \(\left|c_{1} \Delta c_{2}\right|=4\) and any 3 - subset of \(C_{1} \Delta C_{2}\) can not be a triple. Thus \(C_{1} \Delta C_{2}\) is a circuit.
\[
\text { case 2. } c_{1} \varepsilon \mathscr{J}_{7}, c_{2} \varepsilon \mathscr{G}_{7},\left|c_{1} \cap c_{2}\right|=1
\]

Without loss of generality let \(C_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}, C_{2}=\left\{x_{1}, x_{4}, x_{5}, x_{6}\right\}\) If \(\left\{x_{4}, x_{5}, x_{7}\right\}\) is a triple, let \(C\) be the triple containing \(x_{4}, x_{6}\).

Then \(C \neq\left\{x_{4}, x_{6}, x_{7}\right\}\). Thus \(C\) contains an element of \(C_{1} \backslash C_{2}\). That is \(C \subseteq c_{1} \Delta C_{2}\).

If \(\left\{x_{4}, x_{5}, x_{7}\right\}\) is not a triple, consider the triple \(C\) ' containing \(x_{4}, x_{5}\). Then we have \(c^{\prime} \fallingdotseq C_{1} \Delta C_{2}\)

Case 3. \(c_{1} \varepsilon \mathscr{C}_{7}, c_{2} \varepsilon \quad \mathscr{b}_{7},\left|c_{1} \cap c_{2}\right|=2\)
Again we can assume that \(C_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}, C_{2}=\left\{x_{1} ; x_{2}, x_{4}, x_{5}\right\}\). Since the triple \(C\) containing \(x_{4}, x_{5}\) must intersect \(C_{1}\) in exactly one element, \(c \cap C_{1}=x_{3}\). Hence \(C \subseteq C_{1} \Delta C_{2}\).
case 4. \(c_{1}, c_{2} \varepsilon b_{7}\).
We shall first show that \(\left|c_{1} \cap c_{2}\right| \neq 1\), if not so let \(c_{1}=\{a, b, c, d\}\) \(A_{2}=\{a, p, q, r\}\). Then \(c_{1} \cup C_{2}=S_{7}\). Consider the triples containing \(a\) and \(b, a\) and \(c, a\) and \(d\), we see that each of these triples must have exactly two elements in \(A_{2}\). We can assume these triples to be \(\{a, b, p\},\{a, c, q\},\{a, d, r\}\). Then the triples containing \(b\) and \(c, b\) and, \(a, c\) and \(d\) must be \(\{b, c, r\},\{b, d, q\},\{c, a, p\}\). Now consider the other element \(x\) in the triple containing \(p\) and \(q\). We see that \(x \neq a, p, q, r\). But \(x \neq b\) (othewise \(b, p\) are in the two triples).

Also \(\mathrm{x} \neq \mathrm{c}, \mathrm{d}\). Hence no triple contains p and q which is a contradiction. Thus \(\left|c_{1} \cap c_{2}\right| \neq 1\). We shall show that \(\left|c_{1} \cap c_{2}\right|=2\). Suppose that \(\left|c_{1} \cap c_{2}\right|=3\), let \(c_{1} \cap c_{2}=\left\{x_{1}, x_{2}, x_{3}\right\}\) and \(s_{7} \backslash c_{1} \cup c_{2}=\left\{x_{4}, x_{5}\right\}\). We can form three distinct 2 -subsets from \(C_{1} \cap C_{2}\) and since any two elements are contained in exactly one triple, there is one 2-subset from \(C_{1} \cap C_{2},\left\{x_{1}, x_{2}\right\}\) say, which does not form a triple with either \(x_{4}\) or \(x_{5}\). Thus another element in the triple containing \(x_{1}, x_{2}\) is in \(c_{1} \Delta c_{2}\), contradicting the assurnption that \(e_{1}, c_{2} \varepsilon \zeta_{7}\). Hence \(\left|c_{1} \Delta c_{2}\right|=2\) and so \(\left|c_{1} \Delta c_{2}\right|=4\). Thus \(c_{1} \Delta C_{2}\) must contain a
circuit.
In fact the Fano matroid is only representable over GF(2)
(Rado [57]). The standard representation of the Fano matroid over GF(2) is given by the following.

By Lemma 4.1.6 the dual of the Fano matroid has the following standard representation

4.2.6 EXAMPLE. Let \(S_{n}=\{1,2, \ldots, n=2 m\}, n \geq 6\). Let \(B_{n}\) be the family of 2 -subsets of \(S\) excluding 2 -subsets of the form \(\{i, i+1\}\), where \(i=1,3, \ldots, 2 m-1\).

Then \(B_{n}\) is the family of bases of the matroid \(M\left(\mathcal{B}_{n}\right)\) on \(S_{n}\) and \(M\left(B_{n}\right)\) is binary if and only if \(n=6\).

PROOF. To prove that \(M\left(B_{n}\right)\) is a matroid we only need to show that for any \(i \neq j \neq k\) and \(\{i, j\} \varepsilon \mathcal{B}_{n}\); at least one of \(\{i, k\}\) or \(\{j, k\}\) is in \(B_{n}\). Let \(\{i, j\} \varepsilon B_{n}\) and \(k \neq i, j\).
case 1. \(k\) is odd.
If \(k=i-1\) or \(j-1\), without loss of generality assume that \(k=i-1\), hence \(k \neq j-1\) so that \(\{j, k\} \varepsilon B_{n}\). If \(k \neq i-1, j-1\), then \(\{i, k\} ;\{j, k\} \varepsilon \dot{B}_{n}\).
case 2. \(k\) is even.
If \(k<i\), then \(\{i, k\} \varepsilon \mathcal{B}_{n}\). If \(k>i\), then \(\{j, k\} \varepsilon B_{n}\) in case \(i+1=k\) and \(\{i, k\} \varepsilon \mathcal{B}_{\mathrm{n}}\) otherwise.

Hence \(M\left(B_{n}\right)\) is, a matroid on \(S\).
For each \(i \in I=\{1,3, \ldots, 2 m-1\}\), let \(F_{i}=\{i, i+1\}\) then \(F_{i}\) is a circuit of \(M\left(B_{n}\right)\). For distinct integers \(i, j, k\) in \(I\) the set \(\left\{x_{i}, x_{j}, x_{k}\right\}\), where \(x_{r} \in F_{r} \quad \forall r=i, j, k\) is a circuit of \(M\left(B_{n}\right)\). Let \(C(n)\) be the family of \(\left\{x_{i}, x_{j}, x_{k}\right\}\) defined as above. Then the circuits of \(M\left(B_{n}\right)\) are \(\left(\cup_{i \in I} F_{i}\right) \cup \ominus(n)\).

To show that \(M\left(B_{6}\right)\) is binary let \(C_{1}, C_{2}\) be distinct circuits of \(M\left(B_{6}\right)\) such that \(C_{1} \cap C_{2} \neq \phi\).
case 1. \(c_{1}=F_{i}, c_{2} \varepsilon \quad G(n)\)

Let \(C_{1}=\left\{x_{i}, y_{i}\right\}\) and \(C_{2}=\left\{x_{i}, x_{j}, x_{k}\right\}\). Then \(i \neq j \neq k\) so that \(C_{1} \Delta C_{2}=\left\{y_{i}, x_{j}, x_{k}\right\} \varepsilon G(n)\).
case 2. \(c_{1}, c_{2} \varepsilon G(n)\) and \(\left|c_{1} \cap c_{2}\right|=1\)
Then \(C_{1}=\left\{x_{i}, x_{j}, x_{k}\right\}\) and \(C_{2}=\left\{x_{i}, y_{j}, y_{k}\right\}\) where \(F_{j}=\left\{x_{j}, y_{j}\right\}\) and \(\left\{x_{k}, y_{k}\right\}=F_{k}\) and \(i \neq j \neq k\). Hence \(C_{1} \Delta C_{2}\) contains a circuit \(F_{j}\).
case 3. \(c_{1}, c_{2} \varepsilon G(n)\) and \(\left|c_{1} \cap c_{2}\right|=2\)
Let \(C_{1}=\left\{x_{i}, x_{j}, x_{k}\right\}\) and \(C_{2}=\left\{x_{i}, x_{j}, y_{k}\right\}\).
Then \(C_{1} \Delta C_{2}=\left\{x_{k}, y_{k}\right\}=F_{k}\) which is a circuit of \(M\left(B_{6}\right)\).

Thus M(6) is binary.
For \(n>6\) we can choose \(C_{1}=\left\{x_{i}, x_{j}, x_{k}\right\}\) and \(C_{2}\left\{x_{i}, x_{j}, x_{r}\right\}\) where i \(\neq j \neq k \neq r\). Then \(C_{1} \Delta C_{2}=\left\{x_{k}, x_{r}\right\}\) is not a circuit and so \(M\left(n_{n}\right)\) is not binary if \(n>6\).

The next theorem due to Tutte [65] gives a necessary and sufficient condition for a matroid to be binary. The proof is drawn from Welsh \([76]\). The following two lemmas are needed in the proof.
4.2.7 LEMMA. Let \(C\) be a circuit of \(G(S)\). If \(z \varepsilon C\), then \(C \backslash z\) is a circuit of \(G(S) .(S \backslash z)\). If \(z \notin C\), then either \(C\) is a circuit of \(G(S) \cdot(S \backslash z)\) or \(C\) is the disjoint union of two circuits of \(G(S) .(S>z)\).

PROOF. We first assume that \(z \varepsilon C\). We showed in the proof of Theorem 2.7.8 that \(C>z\) is a circuit of \(G(S) \cdot(S \backslash z)\).

We next assume that \(z \notin C\). Suppose that \(C\) is not a circuit of \(G(S) .(S \backslash z)\). But \(C\) is dependent in \(G(S)\). \((S \backslash z)\). Thus there exists a proper subset \(D\) of \(C\) such that \(D\) is a circuit of \(G(S) .(S>z)\). If \(D U_{z}\) is independent in \(G(S)\), then \(D\) is independent in \(G(S) .(S \geq z)\) which is not so. Hence \(D \cup z\) is dependent in \(G(S)\) so that \(D \cup z\) is a circuit of \(G(S)\). There exists a circuit \(C_{1} \subseteq(C \times D) \cup z \quad\) with \(z \quad C_{1}\). If there exists \(a\) in \((C \backslash D) \backslash C_{1}\). Pick \(x_{1} \in D\). Then \(a \neq x_{1}\) and so there exists a circuit \(C^{\prime} \leq(C \cup D \cup z) \backslash x_{1}\) with a \(\varepsilon C^{\prime}\). Since \(C \backslash x_{1}\) is independent, \(\left(C \backslash x_{1}\right) \cup z\) contains at most one circuit. Hence \(C^{\prime}=C_{1}\) and so a \(\varepsilon C_{1}\) which is a contradiction. Thus \(C_{1}=(C \backslash D) \cup z\). Hence \(C \backslash D\) is a circuit of \(G(S) \cdot(S \backslash z)\) as required
4.2.8 LEMMA. Let \(C^{\prime}\) be a circuit of \(G(S)\). \((S>z)\). Then \(C^{\prime}\) is a
circuit of \(G(S)\) or \(C^{\prime} U z\) is a circuit of \(G(S)\).

PROOF. Suppose that \(C^{\prime}\) is not a circuit of \(G(S)\). But every proper subset of \(C^{\prime}\) is independent in \(G(S) .(S \backslash z)\) and so in \(G(S)\). Thus \(C^{\prime}\) is independent in \(G(S)\). If \(z\) is dependent in \(G(S)\), then \(C^{\prime}\) must be independent in \(G(S) .(S \backslash z)\) which is not so. Thus \(z\) is independent in \(G(S)\). Since \(C^{\prime}\) is dependent in \(G(S) .(S \backslash z), C^{\prime} \cup z\) is dependent in \(G(S)\). As (\(C^{\prime} \backslash x\)) is independent in \(G(S) .(S \backslash z)\), \(\left(C^{\prime} \backslash x\right) \cup z\) is independent in \(G(S)\) and hence \(C^{\prime} \cup z\) is a circuit of \(G(S) \cdot / /\)
4.2.9 A minor of a matroid \(M(S)\) is a matroid on a subset of \(S\) obtained by any combination of submatroids and contractions of \(M(S)\).
4.2.10 THEOREM. A matroid \(M(S)\) is binary if and only if it has no minor isomorphic to \(U_{2,4}\).

PROOF. Let \(M(S)\) be binary. If there exists a minor of \(M(S)\) which is isomorphic to \(\mathrm{U}_{2,4}\), then since the minor is also binary, \(\mathrm{U}_{2,4}\) is also binary. This is a contradiction. Hence all minors of \(M(S)\) are not isomorphic to \(U_{2,4}\).

Let \(M(S)\) be a matroid which has no minor isormorphic to \(U_{2,4^{\circ}}\). We prove the theorem by induction on \(|s|\). Assume the theorem is true for any matroid \(M(T)\) which has no minor isomorphic to \(U_{2,4}\) and \(|T|<|S|\). Let \(C_{1}, C_{2}\) be disjoint circuits of \(M(S)\), where \(C_{1}\), \(C_{2} \neq \phi\). We shall show that \(C_{1} \Delta C_{2}\) is a disjoint union of circuits, that is \(C_{1} \Delta C_{2}\) contains a circuit.

We may assume that \(S=C_{1} \cup C_{2}\) (otherwise consider the matroid \(M_{S}\left(C_{1} \cup C_{2}\right)\). Let \(X=C_{1} \cap C_{2}, Y_{1}=C_{1} \backslash C_{2}, Y_{2}=C_{2} \backslash C_{1}\) and \(Y=Y_{1} \cup Y_{2}\). We show that \(Y\) is a union of disjoint circuits of \(M(S)\) by considering all possibilities.
case 1. \(\left|Y_{1}\right|=\left|Y_{2}\right|=1\)
If \(|X|=1\), then by \(\left(K_{4}\right)\) there exists a circuit \(C \subseteq Y_{1} \cup Y_{2}=C_{1} \Delta C_{2}\) and we are finished. The result also follows if \(|X|>1\) and \(Y_{1} \cup Y_{2}\) is dependent. If \(Y_{1} \cup Y_{2}\) is independent, then \(|X|>1\) fotherwise \(Y_{1}(\} Y_{2}\) is dependent). Extend \(Y_{1} \cup Y_{2}\) to a basis \(Y_{1} \| Y_{2} \cup I=B\). Then I \(\underset{\neq}{ } X . \therefore\) If \(X \backslash I=a\), then \(B U\) a contains 2 corcuits \(C_{1}, C_{2}\) which is not so. Hence \(|X \backslash I| \geq 2\). In case \(|X \backslash I|>2\) we have \(r(B)=2+|I|<2+|X|-2=|X|\) so that \(r(M)+1=r(B)+1<|X|+1\) \(=\left|C_{1}\right|\). A contradiction. Thus \(|X \backslash I|=2\) and so \(Y U\left(X \backslash x_{1} x_{2}\right)\) is a basis of \(M(S)\). Let \(T=\left\{x_{1}, x_{2}, Y_{1}, Y_{2}\right\}\). Consider \(M(S) . T\). We see that any 3 -subset of \(T\) is a circuit of \(M(S)\). \(T\) so that \(M(S)\). \(T\) is \(u_{2,4}\) which is a contradiction.
\[
\text { case 2. }\left|y_{1}\right|>1
\]

Let \(Y_{1}=\{y, z, \ldots\}\). By Lemma \(4.2 .7 C_{1}>Y\) is a circuit of \(M(S) .(S \backslash Y)\). Also by Lamma \(4.2 .7 C_{2}\) is either a circuit of \(M(S) .(S \backslash y)\) or \(C_{2}\) is the disjoint union of two circuits of \(M(S) \cdot(S, y)\). By the induction hypothesis and by Theorem 4.2.4 the symmetric difference of \(C_{1} \backslash y\) and \(C_{2}\) is a disjoint union of circuits of \(M(S) \cdot(S \backslash Y)\). By Lemma 4.2 .8 we then can write
\[
x=s_{1} \cup \ldots \cup s_{r} \cup \ldots \cup s_{t}
\]
where each \(S_{i}\) is a circuit of \(M(S)\) and
\[
S_{i} \cap S_{j}= \begin{cases}\{y\} & 1 \leq i \neq j \leq r \\ \phi & \text { otherwise }\end{cases}
\]

We show that \(r\) is odd. Suppose that \(r\) is even. Then we
pair \(S_{i}\) and \(S_{i+1}\) for \(i=1,3, \ldots, r-1\). By the induction hypothesis \(S_{i} \Delta S_{i+1}\) is a union of disjoint circuits of \(M_{S}\left(S_{i} \cup S_{i+1}\right)\). As any circuit of \(M_{S}\left(S_{i} U S_{i+1}\right)\) is also a circuit of \(M(S)\) it follows that
\[
Y \quad=T_{1} U \quad \ldots \quad U T_{h} U: Y
\]
where \(T_{1}, \ldots, T_{h}\) are disjoint circuits of \(M(S)\) which do not contain \(Y\). Now for each \(i=1, \ldots, h, T_{i}\) is a circuit of \(M_{S}(S \backslash y)\) and so by Lemma 4.2.7 if \(z \not \subset T_{i}, T_{i} \backslash z\) is a disjoint union of at most two circuits of \(M_{S}(S \vee y) .(S \backslash y z)\) and hence of \(M(S) .(S \backslash z)\) and \(T_{i}\) is a circuit of \(M(S)\). (\(S \backslash z\)) if \(z \varepsilon T_{i}\). Thus
\[
Y \backslash z=R_{1} \cup \ldots \cup R_{k} \cup Y
\]
where \(R_{1}, \ldots, R_{k}\) are circuits of \(M(S) .(S \backslash z)\) which do not contain \(Y\). Since \(Y \backslash z\) is a symmetric difference of \(C_{1} \backslash z\) and. \(C_{2}\) and \(C_{1} \backslash z\) is a circuit of \(M(S) .(S \backslash z)\) and \(C_{2}\) is the disjoint union of at most two circuits of \(M(S) .(S \backslash z), Y \backslash z\) is a symmetric difference of at most three circuits of \(M(S) .(S \backslash z)\). Then
\[
Y=R_{1} \Delta \ldots \Delta R_{k} \Delta(Y \backslash z)
\]
is a symmetric difference of circuits of \(M(S)\). (S \(\backslash z\)). Since \(M(S) \cdot(S \backslash z)\) is binary, \(y\) is a circuit of \(M(S) .(S \backslash z)\). By Lemma 4.2 .8 either \(Y\) or \(Y \cup z\) is a circuit of \(M(S)\) which is a contradiction.

Hence \(r\) is odd and thus by the induction hypothesis for each \(i=2,4, \ldots, x-1, S_{i-1} \Delta S_{i}\) is a disjoint union of circuits of \(M(S)\).

circuits of \(M(S)\) and therefore \(Y=\left(\underset{i=1}{p} C_{i}\right) \cdot v S_{r} \cup \ldots \cup S_{t}\) is,\(a\) disjoint union of circuits of \(M(S)\) as required.

\section*{5. GAMMOIDS AND BASE ORDERABLE MATROIDS}

Strict gammoids, that is, matroids arising from directed graphs were introduced by Mason [72]. We show their relationship to transversal matroids.

The class of gammoids is closed under the taking of minors and under duality and it also contalins transversal matroids: Thus the class of gammoids is the closures of the class of transversal matroids under contraction, restriction and dual.

Finally a class of base orderable matroids is discussed.

\subsection*{5.1 STRICT GAMMOIDS AND GAMMOIDS}

A path in a directed graph (more briefly : digraph) \(G=(V, E)\), where \(V\) is the set of vertices and \(E\) the set of edges, is a sequence \(P=\left(v_{0}, v_{1}, \ldots, v_{k}\right)\) of a pairwise distinct vertices of \(G\) such that \(k \geq 0\) and \(\left(v_{i-1}, v_{i}\right) \varepsilon E, 1 \leq i \leq k\). The vertices \(v_{0}\) and \(v_{k}\) are respectively the initial and terminal vertices of \(P\). We say that \(\left(v_{i-1}, v_{i}\right) \in F\) and \(v_{i-1}, v_{i}\) are on \(p_{i} 1 \leq i \leq k\). Two paths are disjoint if their vertex sets are disjoint.

Let \(A, B \in V\). \(A\) linking of \(A\) onto \(B\) is a bijection \(a: A \rightarrow B\) such that there are pairwise disjoint paths \(\left(P_{X} / X \varepsilon A\right)\), where \(P_{X}\) has initial vertex \(x\) and terminal vertex \(\alpha(x) \in B\). Before we present the Linkage Lemma due to Ingleton and Piff [73] we define for any Z © V the set
\[
\tilde{Z}=Z U\{v \in V /(z, v) \in E \text { for some } z \in Z\}
\]
and for each \(v \in V\) we denote by \(A_{v}\) the set \(\tilde{v}\) :

If \(\mathcal{A}_{\text {is }}\) the family of sets \(\left(\hat{A}_{\mathrm{v}} / \mathrm{v} \varepsilon \mathrm{v}\right)\) we denote by \(\mathcal{A}_{\mathrm{x}}\) the subfamily (\(A_{v} / v \varepsilon X\)), where \(X \subseteq V\).

Throughout this chapter anydigraph considered is finite.
5.1.1 THE LINKAGE LEMMA. Let \(G=(V, E)\) be a digraph. If \(X, Y\) are subsets of V then X can be linked onto Y in G if and only if \(\mathrm{V} \backslash \mathrm{X}\) is a transversal of the family \(\mathcal{A}_{V \backslash Y}\).

PROOF. First suppose that \(X\) is linked onto \(Y\) in \(G\) by pairwise disjoint paths \(\left(P_{v} / v, \varepsilon x\right)\). Define a function \(\propto: V \mathbb{X} \rightarrow \mathrm{~V} \backslash \mathrm{Y}\) by
\[
\propto(u)= \begin{cases}v & \text { if }(v, u) \varepsilon p_{x} \text { for some } x \in X, \\ u & \text { otherwise } \cdot\end{cases}
\]

Then \(\alpha\) is well defined, since the paths (\(\left.p_{v} / v \varepsilon X\right)\) are pairwise disjoint, and is an injection. For each \(u \in V \backslash x\) we see that \(u \& A_{\rho}(u)\) which belongs to \(A V_{V \backslash Y}\). Since \(\&\left(u_{1}\right) \neq \propto\left(u_{2}\right)\) if \(u_{1} \neq u_{2}, v \backslash x\) is a transversal of \(A_{V \backslash Y}\).

Conversely let \(V \backslash x\) be a transversal of \(\mathcal{A}_{V, Y}\). Then there is a bljection \(\alpha: V \backslash X \rightarrow V \backslash Y\) such that \(u \varepsilon \grave{A}_{\alpha(u)}\) for all \(u \varepsilon V \backslash X\). Consider any \(\mathrm{v} \varepsilon \mathrm{Y} \backslash \mathrm{X}\). We show that there is a path joining a point in \(X \backslash Y\) to \(V\). As \(v \varepsilon Y \backslash X, v \varepsilon V \backslash X\) so that \(v \varepsilon A_{\alpha(v)}\) and hence \((\propto(v), v) \in E\). If \(\propto(v) \notin X\), then \(\propto(v) \in V \backslash X\) so that \(\alpha^{\prime}(v) \varepsilon A_{\alpha(\alpha(v))}\) which implies \(\left(\alpha^{2}(v), \alpha(v)\right)=(\alpha(\alpha(v)), \alpha(v)) \varepsilon E\). Thus either there exists \(k\) with \(\alpha^{k}(v) \varepsilon X\) and \(\alpha^{r}(v) \not \notin X\), where \(r<k\) or we obtain an infinite sequence \(\left\{\alpha^{r}(v)\right\}_{r=1}^{\infty}\). Now \(\alpha^{r}(v) \varepsilon V \backslash Y\). for all \(r\). since \(G\) is finite we have \(\alpha^{r}(v)=\alpha^{s}(v)\) for some \(r<s\). Choose the minimal \(r\) with \(\alpha^{r}(v)=r^{s}(v), r<s\). Then \(\alpha\left(\alpha^{r-1}(v)\right)=\alpha\left(\alpha^{s-1}(v)\right)\), contradicting the mimimality of r. Thus
\(\alpha^{k}(v) \varepsilon X\) for some \(k\) and \(\alpha^{r}(v) \notin X\) for all \(r<k\). Thus we obtain a path \(\left(\alpha^{k}(v), \alpha^{k-1}(v), \ldots, v\right)\) from \(\alpha^{k}(v) \varepsilon X \backslash Y\) to \(v\). Since \(\alpha\) is injective, the paths \(\left(\left(\alpha^{k}(v), \ldots, v\right) / v \varepsilon Y \backslash X\right)\) are pairwise disjoint. We adjoin the trivial paths (v), for \(v \varepsilon X \cap Y\) to the above paths to get a linking of \(X\) onto \(Y\).
5.1.2 THEOREM. Given a digraph \(G=(V, E)\). Denote by \(L(G, B)\) the collection of all subsets of \(V\) which can be linked into a fixed subset \(B\) of \(V\). That is \(X \in L(G, B)\) if and only if there exists \(Y \subseteq B\) such that there is a linking of \(X\) onto \(Y\). Then \(L(G, B)\) is the collection of independent sets of a matroid on \(V\). We call this a Strict gammoid.

We always denote a strict gamoid by \(L(G, B)\) with \(G\) and \(B\) as above. Observe that \(B \in L(G, B)\) and so \(r(L(G, B))=|B|\).

PROOF. By the Linkage Lemma, \(x \varepsilon L(G, B)\) if and only if \(V \backslash x\) is a transversal of the family \(A_{V \backslash B}\), for some \(B^{\prime} \leq B\). Then
\(x \in L(G, B) \Leftrightarrow V \backslash x\) is a transversal of the family of \(V B^{\prime \prime}\) for some \(B^{\prime} \subseteq B\), \(\Leftrightarrow V \backslash x\) contains a transversal of \(v *{ }^{2}\) \(\Leftrightarrow V \backslash x\) is spanning in the transversal matroid \(M\left[\mathcal{S}^{\prime} y \backslash_{B}\right]\). Since the complement of a spanning set of a matroid is an independent set of its dual matroid, \(L(G, B)\) is the set of independent sets of the dual of. \(M\left[A_{V, B}\right]\).

In fact we have proved.
5.1.3 THEOREM. A matroid \(M(S)\) is a strict gammoid if and only if \(M^{*}(S)\) is transversal.
5.1.4 EXAMPLE. Consider the following digraph \(G=(\mathrm{V}, \mathrm{E})\).

Then \(L(G,\{6\}\)) has as bases all singletons of \(V\) while \(L(G,\{3,6\})\) has as bases all sets \(\{x, y\}\), where \(1 \leq x \leq 3\) and \(1 \leq y \leq 6\).
5.1.5 Given a digraph \(G=(V, E)\) and \(B \subseteq V\); by the strict ganmoid presentation of \(L(G, B) *\) we mean the family \(\left(A_{V} / V \& B\right)\) and write \(L(G, B) *\) for \(M\left[\begin{array}{l}V \backslash B\end{array}\right]\).
5.1.6 LEMMA. The strict gammoid presentation of any transversal matroid exists.

PROOF. Let \(M\) [\(\left.A_{1} \ldots \ldots, A_{r}\right]\) be any transversal matroid of rank \(r\) on a set \(V\). Choose a basis \(V>B=\left\{v_{1}, \ldots, v_{r}\right\}\) of \(M(V)\), where \(v_{i} \varepsilon A_{i}, 1 \leq i \leq r\). Construct the digraph \(G=(V, E)\) as follows:
\[
\left(v_{i}, x\right) \in E \Leftrightarrow \quad \Leftrightarrow \neq v_{i}, x \in A_{i}, \quad 1 \leq i \leq r
\]

Then it is clear that \(L(G, B) *=M\left[A_{1}, \ldots, A_{r}\right]\).

Thus for any strict gammoid we can obtain a presentation of its dual as a transversal matroid and conversely.
5.1.7 A gammid is any restriction (submatroid) of a strict gamoid.
5.1.8 LEMMA. Any transversal matroid is a gammoid.

PROOF, Let \(M\left[A_{1} ; \ldots, \dot{A}_{n}\right]\) be any transversal matroid on \(S\). Put \(I=\{1, \ldots, n\}\). Construct the digraph \(G=(V, E)\) as follows: Let \(v=\) SUI.

For each \(x\) e \(S\) join \(x\) to \(i \in I \Leftrightarrow x \in A_{i}\). Consider \(L(G, I)\). We easily see that \(M\left[A_{1}, \ldots . A_{r}\right]\) is the restriction of \(L(G, I)\) to \(S\). //

For convenience in notation the restriction of \(M(S)\) to any subset \(T\) of \(S\) is denoted by \(M(S) / T\).
5.1.9. Lema. (i) Any minor of a gammoid is a gammoid.
(ii) The dual of any gammoid is a gammoid.

PROOF. (i) It suffices to show that any restriction and any contraction of a gamoid is a gamoid. Let \(M(S)\) be a gammid. Then there exists a digraph \(G=(V, E)\) with \(M(S)=L(G, B) / S\) for some
subset \(B\) of \(V\) and some subset \(S\) of \(V\). Thus for any \(T \subseteq S\) we have
\[
M(S) / T=(L(G, B) / S) / T=L(G, B) / T
\]
and so \(M(S) / T\) is a gammoid.

To show that a contraction \(M(S)\). \(T\) is a gammoid we use the fact that for any \(M(S)\) and \(A \subseteq B \subseteq S\) we have
\[
(M(S) / B) \cdot A=(M(S) \cdot(S \backslash(B \backslash A))) / A
\]

Then \(M(S) \cdot T=\left(N\left(S^{\prime}\right) / S\right) \cdot T\), where \(N\) is a strict gammoid on some \(S^{\prime} \geq S . \quad\) By the above, \(M(S) . T=\left(N\left(S^{\prime}\right) . T^{\prime}\right) / T\), where \(T^{0}=S^{\prime} \backslash(S \backslash T)\). Now \(\left(N\left(S^{\prime}\right) . T^{\prime}\right)=\left(N\left(S^{\prime}\right) . T^{\prime}\right)^{* *}=\left(N^{*}\left(S^{\prime}\right) / T^{\prime}\right)^{*}\) and since \(N\left(S^{\prime}\right)\) is a strict gamoid, \(N^{*}\left(S^{\prime}\right)\) is transversal and hence \(N^{*}\left(S^{\circ}\right) / T^{\prime}\). Therefore \(N\left(S^{\prime}\right) . T^{\prime \prime}\) is a strict gamoid and so its restriction, M(S).T, is a gammoid.

The following theorem which we state without proof is due to Ingleton and Piff \([73]\).
5.1.10 THEOREM. (i) Every matroid of rank 1 or 2 is a strict gammoid.
(ii) Every gammoid of rank 3 is a strict gammoid.
(iii) Every matroid of rank \(n-1\) or \(n-2\) on a set of \(n\) elements is transversal.
(iv) Every gammoid of rank \(n-3\) on a set of \(n\) elements is transversal.

\subsection*{5.2 BASE ORDERABLE MATROIDS}
5.2.1 A matroid \(M(S)\) is base orderable if for any two bases \(B_{1}, B_{2}\) of \(M(S)\) there exists a bijection \(\theta: B_{1} \rightarrow B_{2}\) such that for each \(x \in B_{1}\),
\(\left(B_{1}>x\right) \quad U\) " \(\theta(x)\) and \(\left(B_{2} \backslash \theta(x)\right) U x\) are bases of \(M(S)\).

The furction \(\theta\) is an exchange ordering for \(B_{1}, B_{2}\).
5.2.2 EXAMPLE. \(M\left(\mathcal{B}_{n}\right)\) is base orderable.

PROOF. Let \(B_{1}, B_{2}\) be distinct bases of \(M\left(\mathcal{B}_{n}\right)\). We can assume that \(B_{1} \cap B_{2}=\phi \quad\) Suppose \(B_{1}=\{a, b\}\) and \(B_{2}=\{c, d\}\). If there exists a pair of elements one from \(B_{1}\) and one from \(B_{2}\) such that this pair is \(F_{i},\{a, c\}=F_{i}\) say. Then \(\{a, d\} \varepsilon B_{n}\) and \(\{b, c\} \varepsilon B_{n}\). Hence \(\theta: B_{1} \rightarrow B_{2}\) defined by \(\theta(a)=c, \theta(b)=d\) is an exchange ordering for \(\mathrm{B}_{1}, \mathrm{~B}_{2}\). In the other case any injection from \(B_{1}\) onto \(B_{2}\) is an exchange ordering for \(B_{1}, B_{2}\).

\subsection*{5.2.3 LEMMA. Not every matroid is base, orderable.}

PROOF. We show \(M\left(\mathcal{H}_{7}\right)\) is not. Let \(B_{1}^{\prime}=\left\{x_{1}, x_{4}, x_{6}\right\}\) and \(B_{2}^{\prime}=\left\{x_{2}, x_{5}, x_{6}\right\}\) be two triples in \(\mathscr{\mathscr { F }}_{7}\). Then there exists \(x_{3}\) such that \(B_{3}^{\prime}=\left\{x_{2}, x_{3}, x_{4}\right\}\) is the triple containing \(x_{2}, x_{4}\). put \(B_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}, B_{2}=\left\{x_{4}, x_{5}, x_{6}\right\} \quad\). Then \(B_{1}\) and \(B_{2}\) are bases. of \(M\left(\mathscr{Y}_{7}\right)\). Since \(\mathscr{Y}_{7}\) contains 7 triples and every element in \(S_{7}\) is contained in exactly 3 triples of \(\mathscr{f}_{7}\), the only triples that are not subsets of \(B_{1} \cup B_{2}\) are the three triples containing 7. Hence \(B_{1} \cup B_{2}\) contains another triple different from \(B_{1}^{\prime}, B_{2}^{\prime \prime}\) and \(B_{3}^{\prime}\). We claim that the triple \(B\) containing \(x_{1}, x_{3}\) is a subset of \(B_{1} \cup B_{2}\). Suppose not, then \(B=\left\{x_{1}, x_{3}, x_{7}\right\}\). Thus the triple \(B^{\circ}\) containing \(x_{1}, x_{2}\) does not contain \(x_{7}\) so that it is a subset of \(B_{1} \cup B_{2}\). Therefore \(B^{\prime}=\left\{x_{1}, x_{2}, x_{3}\right\}\) or \(\left\{x_{1}, x_{2}, x_{4}\right\}\) or \(\left\{x_{1}, x_{2}, x_{5}\right\}\) or \(\left\{x_{1}, x_{2}, \dot{x}_{6}\right\}\) which is impossible. Thus \(B \subseteq B_{1} \cup B_{2}\) and \(B\) must be
equal to \(\left\{x_{1}, x_{3}, x_{5}\right\}\) :
If \(M\left(\mathscr{Y}_{7}\right)\) is base orderable, then there exists a bijection
\(f: B_{1} \rightarrow B_{2}\) such that \(\left(B_{1} \backslash x\right) \cup f(x)\) and \(\left(B_{2} \backslash f(x)\right) \cup x\) are bases of \(M\left(\mathcal{J}_{7}\right), \forall x \in B_{1}\). Now \(f\left(x_{1}\right) \neq x_{5}\) and \(f\left(x_{2}\right) \neq x_{4}\) (otherwise \(\left(B_{2} \backslash f\left(x_{1}\right)\right) \cup x_{1}=\left\{x_{1}, x_{4}, x_{6}\right\} \in \mathcal{Y}_{7}\) and \(\left(B_{2} \backslash f\left(x_{2}\right)\right) \cup x_{2}\) \(\left.=\left\{x_{2}, x_{5}, x_{6}\right\} \in \mathscr{Y}_{7}\right)\). Thus \(f\left(x_{1}\right)=x_{4}\) or \(x_{6}\) and \(f\left(x_{2}\right)=x_{5}\) or \(x_{6}\) and so we have ail three possible bijections \(f_{1}, f_{2}, f_{3}\) from \(B_{1}\) onto \(B_{2}\) defined as follows:
\[
\begin{aligned}
& f_{1}\left(x_{1}\right)=x_{6}, f_{1}\left(x_{2}\right)=x_{5}, f_{1}\left(x_{3}\right)=x_{4} \\
& f_{2}\left(x_{1}\right)=x_{4}, f_{2}\left(x_{2}\right)=x_{6}, f_{2}\left(x_{3}\right)=x_{5} \\
& f_{3}\left(x_{1}\right)=x_{4}, f_{3}\left(x_{2}\right)=x_{5}, f_{3}\left(x_{3}\right)=x_{6}
\end{aligned}
\]

Then we have \(\left(B_{1} \backslash x_{2}\right) \cup f_{1}\left(x_{2}\right)=\left\{x_{1}, x_{3}, x_{5}\right\} \in \mathscr{f}_{7}\)
\[
\begin{aligned}
& \text { or }\left(B_{1} \backslash x_{1}\right) \cup f_{2}\left(x_{1}\right)=\left\{x_{2}, x_{3}, x_{4}\right\} \in \mathscr{Y}_{7} \\
& \text { or }\left(B_{1} \backslash x_{1}\right) \cup f_{3}\left(x_{1}\right)=\left\{x_{2}, x_{3}, x_{4}\right\} \in \mathscr{Y}_{7}
\end{aligned}
\]
which is not so.
Therefore \(M\left(\mathscr{S}_{7}\right)\) is not base orderable.

In fact if \(n \equiv 1\) or \(3(\bmod 6)\) and \(n \notin N_{0}\) a non - base orderable matroid \(M\left(\mathscr{Y}_{n}\right)\) exists since \(\varphi_{n}\) contains \(\zeta_{7}\) and we have
5.2.4 LEMMA. Any restriction of a base orderable matroid is base orderable.

PROOF. Let \(M(S) / T\) be any restriction of a base orderable
matroid \(M(S)\) on a subset \(T\). If \(B_{1}, B_{2}\) are bases of \(M(S) \mid T\), then there exist bases \(A_{1}, A_{2}\) of \(M(S)\) with \(B_{1} \subseteq A_{1}, B_{2} \subseteq A_{2}\). Let \(\theta\) be an exchange ordering for \(A_{1}, A_{2}\). Suppose that there exists \(\times \varepsilon B_{1}\) with \(\theta(x) \varepsilon A_{2} \backslash B_{2}\). Then \(\left(A_{2} \backslash \theta(x)\right) U x\) is a basis of \(M(S)\) so that \(x . \& \mathrm{~B}_{2}\). Thus \(\mathrm{B}_{2} \cup \mathrm{x}\) is independent in \(\mathrm{M}(\mathrm{S}) / \mathrm{T}\). A contradiction. Hence \(\theta(x) \varepsilon B_{2}, \forall x \in B_{1}\) and so \(\theta \mid B_{1}\) is an exchange ordering for \(B_{1}, B_{2}\).
5.2.5 LEMMA. The dual of any base orderable matroid is base orderable.

PROOF. Let \(M(S)\) be any base orderable matroid. Let \(B_{1}, B_{2}\) be bases of \(M^{*}(S)\). Thus \(S \backslash B_{1}\) and \(S \backslash B_{2}\) are bases of \(M(S)\) so that there exists an exchange ordering \(\theta\) for \(S \backslash B_{1}, S \backslash B_{2}\). If there exists \(x \in B_{2} \backslash B_{1}\) with \(\theta(x) \& B_{1}\), then \(\theta(x) \varepsilon S \backslash B_{1}\) so that \(\left|\left(S \backslash B_{1} \backslash x\right) \cup \theta(x)\right|=\left|s \backslash B_{1}\right|-1\). But \(\left.\left(\left(S \backslash B_{1}\right) \backslash x\right)\right) \cup \theta(x)\) is a basis of \(M(S)\) and so \(\left|\left(\left(S \backslash B_{1}\right) \backslash x\right) v \theta(x)\right|=\left|S \backslash B_{1}\right|\). A contradiction. Hence \(\forall x \in B_{2} \backslash B_{1}, \theta(x) \& B_{1} \backslash B_{2}\). That is \(B_{2} \backslash B_{1}=\theta^{-1} \cdot\left(B_{1}>B_{2}^{\prime}\right)\).

Define \(\Psi: B_{1} \rightarrow B_{2}\) by
\[
\psi(x)= \begin{cases}x & \text { if } x \in B_{1} \cap B_{2}, \\ \theta^{-1}(x) & \text { if } x \in B_{1} \backslash B_{2}\end{cases}
\]

Then for any \(x \in B_{1} B_{2}\) we have \(\left(B_{1} \geqslant x\right)\) (\(\psi(x)=\left(B_{1}>x\right) \cup \Theta^{-1}(x)\). Now \(\theta^{-1}(x) \in B_{2} \backslash B_{1} \Rightarrow \exists y_{1} \varepsilon B_{1} \backslash B_{2}\) with \(\theta(y)=x\) and so \(\left(\left(S \backslash B_{1}\right) \backslash y\right)\) \(\cup \theta(y)\) is a basis of \(M(S)\). That is \(\left(\left(S \vee B_{1}\right) \backslash \theta^{-1}(x)\right) v_{x}\) is a basis of \(M(S)\) so that \(\left.\left(B_{1}\right\rangle x\right) \cup \theta^{-1}(x)=\left(B_{1} \backslash x\right) \cup \psi(x)\) is a basis of \(M^{*}(S)\).

Similarly we can show that \(\left(B_{2} \backslash \psi(x)\right.\) U is a basis of \(M(S)^{*}\)
and the result is proved.

As a consequence of two above lemmas we obtain
5.2.6 LEMMA. Any minor of a base orderable matroid is base orderable.

\section*{6 PREGEOMETRY PRODUCTS WITH APPLICATIONS}

\subsection*{6.1 FIRST PRODUCT}

Given a matroid \(M\left(S_{1}\right)\) and a pregeometry \(G\left(S_{2}\right)\). For any basis \(B\) of \(M\left(S_{1}\right)\) we consider the collection \(\mathcal{D}_{B}\), the collection of sets of the form
\[
\left.D=\left(U_{\varepsilon} e \times B_{e}\right) \cup_{e} \cup_{\varepsilon} S_{1} B_{B} e \times\left(B_{e} \backslash f\right)\right)
\]
where for each e \(\varepsilon S_{1}\), some basis \(B_{e}\) of \(G\left(S_{2}\right)\) is selected and further for each \(e \varepsilon S_{1} \backslash B\) some element \(f \in B_{e}\) is selected.

We vary the construction of Lim [77] (see section 2) to obtain a pregeometry from a given matroid \(M\left(S_{1}\right)\) and a pregeometry \(G\left(S_{2}\right)\) by proving
6.1.1 THEOREM. A \(B\) is the collection of bases of a pregeometry \(G_{B}\left(S_{1} \times S_{2}\right)\) defined on \(S_{1} \times S_{2}\).

PROOF. We see from the definition that \(\mathcal{D}_{B}\) is a nonempty collection of finite subsets of \(S_{1} \times S_{2}\), each of the same size. We show that \(\mathcal{D}_{B}\) satisfies the basis axiom (B) . Let \(D, D^{\prime} \varepsilon_{\mathcal{A}} \mathcal{D}_{B}\). Then

Consider any particular \((e, x) \in D \nmid D^{\prime}\). We show that there exists \(\left(e^{\prime}, x^{\prime}\right) \varepsilon D^{\prime} \backslash D\) such that \(\left(D \backslash(e, x) \cup\left(e^{\prime}, x^{\prime}\right) \in \mathcal{D}_{B}\right.\). There are two possibilities ; (i) e \(E\) B , (ii) e \(\neq \mathrm{B}\).
(1) Suppose \(e \in B\). Because \(B_{e}\) and \(B_{e}^{\prime}\) are bases of \(G\left(S_{2}\right)\) and \(X \notin B_{e}^{\prime}\), from the basis axiom (B), there exists \(g \varepsilon B_{e}^{\prime} \backslash B_{e}\) such that \(\left(B_{e} \backslash x\right) \cup g\) is a basis of \(G\left(S_{2}\right)\).Then by changing \(D\) only in selecting \((B \backslash x) \cup g\) in place of the original \(B_{e}\) we have another member (\(\left.D \subset \times \mathrm{B}_{e}\right) \cup\left(e x\left(\left(B_{e} \backslash x\right) \cup g\right)\right)\) of \(\mathcal{A}_{B}\) which differs from \(D\) only in that (\(e, x\)) is replaced by \((e, g)\) and \((e, g) \in e \times\left(B_{e}^{\prime} \backslash B_{e}\right)\) is in \(D^{\prime} \backslash D\) as required.
(ii) Lastly suppose \(e \notin B\). Thus \((e, x) \varepsilon e x\left(B_{e} \backslash f\right)\)
and so \(x \notin f\). Now \(\left(B_{e} \backslash f\right) \backslash x\) and \(B_{e}^{\prime} \backslash f^{\prime}\) are both independent in \(G\left(S_{2}\right)\) and of size \(r\left(S_{2}\right)-2\) and \(r\left(S_{2}\right)-1\) respectively, and \(x \notin\left(B_{e}^{\prime} \backslash f^{\prime}\right)\). Hence there exists \(x \neq g \varepsilon B_{e}^{\prime} \backslash f^{\prime}\) such that \(\left(\left(B_{e} \backslash f\right) \backslash x\right) \cup g\) is independent in \(G\left(S_{2}\right)\). Then by changing \(D\) only in selecting \(\left(\left(B_{e} \backslash f\right) \backslash x\right) W g\) in place of the original \(\left(B_{e} \backslash f\right)\) corresponding to \(e\) we have another member \(\left.\left(D \backslash\left(e \times\left(B_{e} \backslash f\right)\right)\right) \cup\left(e \times\left(\left(B_{e} \backslash f\right) \backslash x\right) \cup g\right)\right)\) of \(\mathscr{D}_{B}\) which differs from \(D\) only in that (\(e, x\)) is replaced by (\(e, g\)) and \((e, g) \varepsilon e \times\left(\left(B_{e}^{\prime} \backslash f^{\prime}\right) \backslash\left(B_{e} \backslash f \geqslant x\right)\right)\) is in \(D^{\prime} \backslash D\) as required.
\[
\text { We noted in the proof that ranks } r \text { of } G_{B}\left(S_{1} \times S_{2}\right) \text { is }
\]
given by
\[
\mathbf{r}=r\left(S_{1}\right) r\left(s_{2}\right)+\left(\left|s_{1}\right|-r\left(s_{1}\right)\right)\left(r\left(S_{2}\right)-1\right),
\]
the conmon size of each D .
6.1.2 LEMMA - The circuits of \(G_{B}\left(S_{1} \times S_{2}\right)\) are exactly the sets of the following forms
(i) \(e \times C_{2}\), where \(e \varepsilon B\) and \(C_{2}\) is a circuit of \(G\left(S_{2}\right)\),
(ii) e \(\times C_{2}\), where \(e \nexists B\) and \(C_{2}\) is a circuit of \(G\left(S_{2}\right)\) of rank strictly less than \(r\left(S_{2}\right)\).

PROOF. We see from the definition of \(\mathcal{D}_{B}\) that any subset of \(S_{1} \times S_{2}\) of the form (i) or (ii) is a circuit of \(G_{B}\left(S_{1} \times S_{2}\right)\). Let \(C\) be a circuit of \(G_{B}\left(S_{1} \times S_{2}\right)\). We show that \(C\) has the form (i) or (ii)

Suppose \(C=\bigcup_{i=1}^{m}\left(e_{i} \times G_{i}\right)\), where all \(G_{i} \neq \emptyset, m \geq 2\), \(e_{i}=e_{j} \Leftrightarrow i=j\). Then since all \(e_{i} \times G_{i}\) is independent in \(G\left(S_{1} \times S_{2}\right)\), all \(G_{i}\) are independent in \(G\left(S_{2}\right)\). But if all \(G_{i}\) are not bases of \(G\left(S_{2}\right)\), it implies that \(C\) is contained in a basis of \(G_{B}\left(S_{1} \times S_{2}\right)\) which is not so. Thus there exists \(G_{i}\) which is a basis of \(G\left(S_{2}\right)\) and so \(C=\left\{e_{i} / G_{i}\right.\) is a basis of, \(\left.G\left(S_{2}\right)\right\} \neq \emptyset\). If all \(e_{i}\) in \(C_{1}\) belong to \(B\), then \(C\) in contained in a basis of \(G_{B}\left(S_{1} \times S_{2}\right)\). Thus there exists \(e_{i} \in C_{1}, e_{1}\) say, with \(e_{1} \notin B\). Put \(x=\left(e_{2}, c\right)\) for some \(c: G_{2}\). Now the dependent set \(e_{1} \times G_{1}\) is contained in C\x. This is a contradiction.

Thus \(C=e \times C_{2}\), where \(C_{2} S_{2}\). We consider two possibilities :
(i) \(e \varepsilon B\), (ii) \(e \notin B\).
(i) Suppose \(e \in B\). Then \(C_{2}\) is dependent in \(G\left(S_{2}\right)\) and \(C_{2}\) must be a circuit of \(G\left(S_{2}\right)\) (otherwise \(C\) contains a proper dependent subset). Thus \(C\) has the form (i).
(ii) Lastly suppose e \(t\). Also \(C_{2}\) is a circuit of \(G\left(S_{2}\right)\). For any \(x \in C_{2}\), \(e \times\left(C_{2}>x\right)\) is independent in \(G_{B}\left(S_{1} \times S_{2}\right)\) so that there exists a basis \(B_{x}\) of \(G\left(S_{2}\right)\) with \(C_{2} \backslash x G_{x} \backslash f_{\text {. Thus }} C_{2}\) has rank strictly less than \(r\left(S_{2}\right)\) as required.

\subsection*{6.2 SECOND PRODUCT}

Given a matroid \(M\left(S_{1}\right)\) and a pregeometry \(G\left(S_{2}\right)\) we define \(D=\bigcup_{B} \mathcal{D}_{B}\), for' all bases \(B\) of \(M\left(S_{1}\right)\).
6.2.1 THEOREM. \(\mathbb{A}\), is the collection of bases of a pregeometry, \(G\left(S_{1} \times S_{2}\right)\), defined on \(S_{1} \times S_{2}\).

PROOF. We see from the definition of \(\mathcal{D}\) that \(\mathcal{N}\) is a nonempty collection of finite subsets of \(S_{1} \times S_{2}\) of the same size. We show that \(\mathcal{A}\) satisfies the basis axiom (B). Let \(\dot{D}^{\prime}, D^{\prime} \varepsilon \mathcal{A}\). Then there exist bases \(B, B^{\prime}\) of \(M\left(S_{1}\right)\) such that

Consider any particular (\(e, x\)) \(\varepsilon D \backslash D^{\prime}\). We show that there exists (\(e^{\prime} ; x^{\prime}\)) \(\in D^{p} \backslash D\) such that \((D \cdot(e, x)) \cup\left(e^{\prime} x^{\prime}\right) \varepsilon \mathcal{D}\). There are four
```

possibilities : (i) $e \varepsilon B \cap B^{\prime}$, (ii) $e \varepsilon \cdot\left(S_{1} \backslash B\right) \cap\left(S_{1} \backslash B^{\prime}\right)$,
(iii) $e \varepsilon\left(S_{1} \backslash B\right) \cap B^{\prime}$, (iv) $e \varepsilon B \cap\left(S_{1}>B^{\prime}\right)$.
(i) Suppose $e \varepsilon B^{\prime} \cap B^{\prime}$. Since $B_{e}$, $B_{e}^{\prime}$ are bases of $G\left(S_{2}\right)$

```
and \(x \varepsilon B_{e} \geqslant B_{e}^{\prime}\), there exists \(g \varepsilon B_{e}^{\prime} \geqslant B_{e}\) so that \(\left(B_{e} \backslash x\right) \cup g\) is a basis of \(G\left(S_{2}\right)\). Then by changing \(D\) only in selecting (\(\left.B_{e} \backslash x\right) \cup g\) in place of the original \(B_{e}\) we have another member
\(\left(D<e \times B_{e}\right) \cup\left(e \times\left(\left(B_{e} \backslash x\right) \cup g\right)\right)\) of \(\mathcal{D}\) which differs from \(D\) only in that \((e, x)\) is replaced by \((e, g)\) and \((e, g)\) (\(\left.B_{e}^{\prime} \times B_{e}\right)\) is in \(D^{\prime} \backslash D\) as required.
(ii) Now suppose \(e \varepsilon\left(S_{1} \backslash B\right) \cap\left(S_{1} \backslash B^{\prime}\right)\). Thus \((e, x) e e x\left(B_{e} \backslash f\right)\) and so \(x \neq f\). Now \(\left(B_{e} \backslash f\right) \wedge x\) and (\(\left.B_{e}^{\prime} \backslash f^{\prime}\right)\) are both independent in \(G\left(S_{2}\right)\) of size \(r\left(S_{2}\right)-2\) and \(r\left(S_{2}\right)-1\) respectively and \(x \notin\left(B_{e}^{\prime}, ~ f^{\prime}\right)\). Hence there exists \(x \neq g \varepsilon:\left(\left(B_{e}^{\prime} \backslash f^{\prime}\right) \backslash\left(\left(B_{e} x f\right) \backslash x\right)\right)\) so that \(\left(\left(B_{e} \backslash f\right) \backslash x\right) \cup g\) is Independent in \(G\left(S_{2}\right)\) of size \(r\left(S_{2}\right)-1\). Then by changing \(D\) only in selecting \(\left(\left(B_{e} \backslash f\right) \backslash x\right) \cup g\) in place of the original \(\left(B_{e} \backslash f\right)\) corresponding to \(e\) we have another member \(\left(D \backslash\left(e \times\left(B_{e} \backslash f\right)\right)\right) \cup\left(e \times\left(\left(\left(B_{e} \backslash f\right) \backslash x\right) \cup g\right)\right)\) of \(\mathcal{D}\) which differs from \(D\) only in that \((e, x)\) is replaced by (\(e, g\)), and \((e, g) \varepsilon \operatorname{ex}\left(\left(B_{e}^{\prime} \backslash f^{\prime}\right) \backslash\left(B_{e} \backslash f \backslash x\right)\right)\) is in \(D^{\prime} \backslash D\) as required.
(iii) Now suppose e \(\varepsilon\left(S_{1} \leqslant B\right) \cap B^{\prime}\).

Since \(B_{e}^{0}, E_{e} f\) are both independent in \(G\left(S_{2}\right)\) of size rise and \(r\left(S_{2}{ }^{\prime}\right)-1\) respectively, there exists \(g \varepsilon\left(B_{e}^{\prime} \backslash\left(B_{e}\right) f\right.\) so that \(\left(B_{e} \times f\right) U_{g}\) is a basis of \(G\left(S_{2}\right)\). But \(x \not \approx B_{e}^{\prime}\), so \(x \neq g\) and since \(x \in\left(B_{e} \backslash f\right),\left(\left(B_{e} \backslash f\right) \backslash x\right) \cup g\) is independent in \(G(S)\) of size \(r\left(S_{2}^{\prime}\right)-1\). Then by changing \(D\) only in selecting \(\left(\left(B_{e} \backslash f\right) \backslash x\right) \cup g\) in place of the original \(\left(B_{e} \backslash f\right)\) corresponding to \(e\) we have another member \(\left.\left(D \backslash\left(e \times\left(B_{e} \vee f\right)\right)\right) \cup\left(e x\left(\left(B_{e} \backslash f\right) \backslash x\right) \cup g\right)\right)\) of \(\mathcal{A}\) which differs from \(D\) only in that \((e, x)\) is replaced by \((e, g)\) and \((e, g) \varepsilon e \times\left(B_{e}^{\prime} \times\left(B_{e} \backslash f\right)\right)\) is in \(D^{P} \backslash D\) as required.

\section*{(iv) Lastly suppose e \(\varepsilon B \cap\left(S_{1} \backslash B^{0}\right)\) Then e \(\varepsilon B * B^{\prime}\)} and hence there exists \(e^{\prime} \varepsilon B^{\prime} \geqslant B\) so that \((B \backslash e) \cup e^{\prime}\) is a basis of \(M\left(S_{1}\right)\). Now \(B_{e} \backslash f\) and \(B_{e}^{\prime}\), are independent in \(G\left(S_{2}\right)\) of size \(r\left(S_{2}\right)-1\) and \(r\left(S_{2}\right)\) respectively and hence there exists \(g \varepsilon\left(B_{e}^{\prime},\left(B_{e}, f\right)\right.\) so that \(\left(B_{e}, f\right) \cup g\) is a basis of \(G\left(S_{2}\right)\). Then by changing \(D\) only in selecting the basis (\(\left.B \backslash e\right) \cup e^{\prime}\) in place of the basis \(B\), and selecting \(\left(B_{e}, f\right) \cup g\) corresponding to \(e^{\prime}\), and selecting \(B_{e} x\) corresponding to \(e\) we have another member. \(\left(\left(D>\left(e \times B_{e}\right) \downarrow\left(e^{\prime} \times{ }^{\prime}\left(B_{e}\right\rangle f\right)\right)\right) \cup\left(e^{p} \times\left(\left(B_{e}, \ f\right) \not G g\right)\right)\) \(\mathbb{W}\left(e^{\infty}:\left(B_{e} x\right)\right)\) of which differs from \(D\) only in that \((e, x)\) is replaced by \(\left(e^{\prime}, g\right)\) and \(\left(e^{\prime}, g\right) \varepsilon e^{\prime} \times\left(B_{e^{\prime}}^{\prime} \times\left(B_{e^{\prime}}\right) f\right.\) is in \(D^{\prime} \not D\) as required.

Theorem 6.2.1 was obtained for matroids by Lim 77 The proof makes no use of the fact that \(S_{2}\) is infinite. We have based the contruction in section 1 on it. We note that
6.2.2 LEMMA. \(\Delta\) is the disjoint union of the \(\mathcal{D}_{B}\), for all bases \(B\) of \(M\left(S_{1}\right)\).

PROOF. We are left to show that \(\boldsymbol{O}_{\mathrm{B}_{1}} \cap \boldsymbol{D}_{\mathrm{B}_{2}}=\emptyset\) if \(B_{1}\) and \(B_{2}\) are distinct bases of \(M\left(S_{1}\right)\). Suppose that there

Let \(B_{1}=\left\{e_{1}, \ldots, e_{r}\right\}, B_{2}=\left\{e_{1}^{\ell}, \ldots, e_{r}^{\ell}\right\}\). Then
D can be written in the forms
\[
\begin{aligned}
& D=\left(\bigcup_{i=1}^{r} e_{i} \times B_{e_{i}}\right) U\left(\bigcup_{i} S_{1} e B_{1}\left(B_{e}\right)\right)
\end{aligned}
\]

For each \(i, 1 \leq i \leq r\), choose \(x_{i} \in e_{i} \times B_{e_{i}}\). If \(\left\{x_{1}, \ldots, x_{r}\right\} \leq \bigcup_{i=1}^{r}\left(e_{j}^{\prime} \times B_{e_{j}^{\prime}}^{\prime}\right)\), it follows that \(B_{1}=B_{2}\). Hence there exists \(x_{i}\) and \(e^{\prime} \in S_{1} \geqslant B_{2}\) with \(x_{i} \in e^{\prime} \times\left(B_{e}^{\prime}>f^{\prime}\right)\) and so \(e_{i}=e^{\prime}\). Pick an element \(y \in(\left(e_{i} \times B_{i}\right) \overbrace{i}\left(e^{\prime} \times\left(B^{\prime} e^{\prime}\right)\right))\). Now either 5 with \(y\) c. \(e_{j}^{\prime} \times B_{j}^{\prime}\), or \(\quad 3 e^{\prime \prime} \neq e^{p}\) and \(e^{\prime} \varepsilon S_{1} \times B_{2}\) with \(y\) i \(\left(e^{\prime \prime} \times\left(B_{e^{\prime \prime}}^{\prime \prime} f^{q}\right)\right)\). Thus we have \(e_{j}^{\prime}=e^{\prime}\) or \(e^{\prime \prime}=e^{\prime}\) which is a contradiction in aither case.

\title{
Hence \(\mathcal{D}_{B_{1}} \cap \mathcal{D}_{B_{2}}=\emptyset\) if \(B_{1}\) and \(B_{2}\) are distinct bases of \\ \(M\left(S_{1}\right)\).
}

We note from the definition of \(\mathcal{D}\) that the rank r of \(\mathrm{G}\left(\mathrm{S}_{1} \times \mathrm{S}_{2}\right)\)
is given by
\(r=r\left(s_{1}\right) r\left(s_{2}\right)+\left(\left|s_{1}\right|-r\left(s_{1}\right)\left(r\left(s_{2}\right)-1\right)\right.\), as for \(G_{B}\left(S_{1} \times S_{2}\right)\).
6.2.3 LEMMA. The circuits of \(G\left(S_{1} \times S_{2}\right)\) are of the following forms
(1) \(e \times C_{2}\), where \(e \varepsilon S_{1}\) and \(C_{2}\) is a circuit of \(G\left(S_{2}\right)\).
 each \(B_{e}\) is a basis of \(G\left(S_{2}\right)\).

PROOF. We see from the definition of \(\boldsymbol{\infty}\) that any subset of \(S_{1} \times S_{2}\) of the form (i) or (ii) is a circuit of \(G\left(S_{1} \times S_{2}\right)\). Let \(C\) be any circuit of \(G\left(S_{1} \times S_{2}\right)\). We show that \(C\) has the form (i) or (ii).
case 1. \(C=e \times J\) for some \(e \varepsilon S_{1}\) and \(J\left\{S_{2}\right.\). If \(e\) is not a loop of \(M\left(S_{1}\right)\), then \(J\) is dependent in \(G\left(S_{2}\right)\) (otherwise \(C\) is independent in \(G\left(S_{1} \times S_{2}\right)\)). For any \(x \varepsilon J\), if \(J \times x\) is dependent, then e \(\times(J \backslash x)\) is a proper dependent subset of \(C\) which is not so. Thus \(J \backslash x\) is independent and so \(J\) is a circuit of \(G\left(S_{2}\right)\). Hence \(C\) has the form (i).

If \(e\) is a loop of \(M\left(S_{1}\right)\). We show that \(J\) is either a circuit or a basis of \(G\left(S_{2}\right)\). For any \(x \in J\), \(e \times(J \backslash x)\) is independent in \(G\left(S_{1} \times S_{2}\right)\). But \(e\) is not contained in any basis of \(M\left(S_{1}\right)\), thus
\(e x(J \backslash x) \subseteq e \times\left(B_{e} \backslash f\right)\) for some basis \(B_{e}\) of \(G\left(S_{2}\right)\) and so \(J \geqslant x\) is independent in \(G\left(\mathrm{~S}_{2}\right)\). Then either \(J\) is dependent or independent. Suppose that \(J\) is dependent in \(G\left(S_{2}\right)\) and so \(C\) has the form (i). If \(J\) is independent we see that \(J\) must be a basis of \(G\left(S_{2}\right)\) (otherwise \(C\) is independent in \(G\left(S_{1} \times S_{2}\right)\)) and so \(C\) has the form (if).
case 2. \(C=\bigcup_{i=1}^{m}\left(e_{i} \times G_{i}\right)\), where \(G_{i} \neq \emptyset\) for all \(i, m \geq 2\)
and \(e_{i}=e_{j} \dot{\beta} \quad i=j\). Then since all \(e_{i} \times G_{i}\) are independent in \(G\left(S_{1} \times S_{2}\right)\), all \(G_{1}\) are independent in \(G\left(S_{2}\right)\). By the same argument as in the proof of Lemma 6.1.2 the set \(C_{1}=\left\{e_{i} / G_{i} \quad\right.\) is a basis of \(\left.G\left(S_{2}\right)\right\} \neq \emptyset\) and \(C_{1}\) is dependent in \(M\left(S_{1}\right)\) (otherwise \(C\) is independent in \(G\left(S_{1} \times S_{2}\right)\)). Suppose that \(C_{1}\) properly contains a dependent subset \(\hat{C}_{2}\). Then \(\bigcup_{e_{1}} \in C_{2}\left(e_{i} \times G_{i}\right)\) is a proper dependent subset of \(C\) which is a contradiction. Thus \(C_{1}\) is a circuit of \(M\left(S_{1}\right)\) and so \(\theta_{i} \in C_{1}\left(e_{i} \times G_{i}\right)\) is circuit of \(G\left(S_{1} \times S_{2}\right)\). But \(e_{i} \mathcal{L C}_{1}\left(e_{i} \times G_{i}\right) \in C\), hence \(e_{i} \in C_{1}\left(e_{i} \times G_{1}\right)=C\).

Indeed him [77] proved the following three hereditary properties of \(M\left(S_{1} * S_{2}\right)\) with bases \(\mathcal{O}-\) writing \(M\left(S_{1} \times S_{2}\right)\left(\right.\) when \(S_{2}\) is finite) for \(G\left(S_{1} \times S_{2}\right)\).
6.2.4 THEOREM. \(M\left(S_{1} \times S_{2}\right)\) with \(\left|S_{1}\right| \geq 2\) is connected if and only if \(M\left(S_{1}\right)\) is connected.
6.2.5 THEOREM. \(M\left(S_{1} \times S_{2}\right)\) is base orderable if and only if \(M\left(S_{1}\right)\) and \(M\left(S_{2}\right)\) are each base orderable.
6.2.6 THEOREM. \(M\left(S_{1} \times S_{2}\right)\) is binary if and only if the following are satisfied.
(i) \(M\left(S_{1}\right)\) and \(M\left(S_{2}\right)\) are binary.
(ii) If \(M\left(S_{1}\right)\) and \(M\left(S_{2}\right)\) both have a circuit, then every circuit of \(M\left(S_{2}\right)\) is of cardinality two.

\subsection*{6.3 APPLICATIONS TO GROUPS}

We now apply this last construction to matroids \(M\left(S_{1}\right)\) and \(M\left(S_{2}\right)\) defined on subgroups \(S_{1}\) and \(S_{2}\) which are direct summands of the group \(S=S_{1} S_{2}\) (Although we write the group operations we consider additively for convenience). Thus we obtain a matroid \(M\left(S_{1} S_{2}\right)=M\left(S_{1} \times S_{2}\right)\). We show that this example posseses some of the hereditary properties discussed in the previous section. We also obtain the size of the the group of its geometric automorphisms.

For any positive integer \(m>1\), denote by \(Z_{m}\) the cyclic group of integers \(0,1, \ldots, \mathrm{~m}-1\) with respect to addition modulo m .

Let \(B<m>\) be the collection of 2 - subsets of \(z_{m}\) of the form \(\left\{r_{1}, r_{2}\right\}\), where \(r_{1}\) is odd and \(r_{2}\) is even.
6.3.1 LEMMA. \(B<m>\) is the collection of bases of a loopless matroid \(M\left(Z_{m}\right)\) on \(Z_{m}\) which is binary and base orderable but not connected.
proof．That \(B\langle m\) ：\(\rangle\) is the collection of bases of a loopless matroid on \(\mathrm{Z}_{\mathrm{m}}\) is clear from its definition．

The circuits of \(M\left(z_{m}\right)\) are the collection of sets of two odd integers or two even integers．Thus a set of an odd integer and an even integer is not contained in a circuit so that \(M\left(z_{m}\right)\) is not connected．We easily see that the symmetric difference of distinct circuits contains a circuit．Hence \(M\left(Z_{m}\right)\) is binary．

For any two bases \(B_{1}, B_{2}\) of \(M\left(Z_{m}\right)\) the bijection \(\theta: B_{1} \rightarrow B_{2}\) sending the odd integer in \(B_{1}\) to the odd integer in \(B_{2}\) is an exchange ordering for \(B_{1}, B_{2}\) ．Thus \(M\left(Z_{m}\right)\) is base orderable．

Given \(m \geq 2, n \geq 2\) and \((m, n)=1\) ．Consider the subgroups \(\langle m i\rangle\) and 〈 \(n\) ；of \(z_{m n}\) generated by \(m\) and \(n\) respectively．By Moore ［67，p 118］ \(\mathrm{z}_{\mathrm{mn}}\) is the internal direct product of 《m＞and 〈n》． Moreover \(\mathrm{z}_{\mathrm{m}} \cong\langle\mathrm{n}\rangle\) by an isomorphism \(\mathrm{r} \rightarrow \mathrm{nr}\) ．Also \(\mathrm{z}_{\mathrm{n}} \cong\langle\mathrm{n}\rangle\) ． Then we obtain．

6．3．2 LЕMMA．Let \(B=\left\{m r_{1}, m r_{2}\right\} \in B<m>\) and \(m k \varepsilon\)（ \(m\) ），where \(\mathrm{k}<\mathrm{n}\) ．Then
（i）\(m k B \in B<m i>\) if \(n\) is even．
（ii）\(m k B \in B\left(m \Rightarrow\left(k+r_{1} \leq n, k+r_{2} \leq n\right)\right.\) or \(\left(k+r_{1}>n, k+r_{2}>n\right)\) if \(n\) is odd．

PROOF. (i) We may assume that \(r_{1}\) is odd and \(r_{2}\) is even. By the Euclidean algorithm \(\exists r_{1}^{\prime}, r_{2}^{\prime}, 0 \leq r_{1}^{\prime}, r_{2}^{\prime}<n\) with \(k+r_{1}=n+r_{1}^{\prime}, k+r_{2}=n+r_{2}^{\prime}\). If \(k\) is odd, then \(r_{1}^{\prime}\) is even and \(r_{2}^{\prime}\) is odd. Now \(m\left(k+r_{1}\right)=m\left(n+r_{1}^{\prime}\right)=m r_{1}^{\prime}\) and \(m\left(k+r_{2}\right)=m r_{2}^{\prime}\) so that \(\mathrm{mkB}=\left\{\mathrm{mr}_{1}^{\prime}, \mathrm{m} \mathrm{r}_{2}^{\prime}\right\} \in B\langle\mathrm{~m}\rangle\). Similarly if k is even we can show othat \(m k B \in \mathcal{B}\langle m\rangle\).

We first show that if either (\(k+r_{1} \leq n, k+r_{2}>n\)) or \(\left(k+r_{1} \geqslant n_{1}, k+r_{2} \leq n\right)\), then \(m k B \notin B\langle m\rangle\). Assume that \(k+r_{1} \leq n\) and \(k+r_{2}>n\). We can assume that \(r_{1}\) is odd and \(r_{2}\) is even. If \(k\) is odd, then \(k+r_{1}\) is even. There exists \(r_{2}^{\prime}, 0 \leq r_{2}^{\prime}<n\) with \(k+r_{2}=n+r_{2}^{\prime}\). Now \(k+r_{2}\) is odd so that \(r_{2}^{\prime}\) is even (as \(n\) is odd) and hence \(m k B=\left\{m\left(k+r_{1}\right), m r_{2}^{\prime}\right\} \notin B\langle m\rangle\). Similarly if \(k\) is even we can show that \(m k B \in B\langle m\rangle\).

If \(k+r_{1}>n\) and \(k+r_{2} \leq n\) we show by the same argument as above that \(m k B \notin B\langle m\rangle\). Thus \(m k B \in B\langle m\rangle\) implies that either \(\left(k+r_{1} \leq n, k+r_{2} \leq n\right)\) or \(\left(k+r_{1}>n, k+r_{2}>n\right)\).

We next show that either \(\left(k+r_{1} \leq n, k+r_{2} \leq n\right)\) or \(\left(k+r_{1}>n, k+r_{2}>n\right)\) impliesm \(k B \in B\) (im): Assume \(k+r_{1} \leq n\), \(k+r_{2} \leq n\). Then it is obvious that only one of \(k+r_{1}\) and \(k+r_{2}\) is odd is the case so that \(m k B=\left\{m\left(k+r_{1}\right), m\left(k+r_{2}\right)\right\} \varepsilon B\langle m\rangle\).

If \(k+r_{1} \geqslant n\) and \(k+r_{2} \geqslant n\). Then \(k+r_{1}=n+r_{1}^{\prime}\),
\(k+r_{2}=n+r_{2}^{\prime}\), for some \(r_{1}^{\prime}, r_{2}^{\prime}, 0 \leq r_{1}^{\prime}, r_{2}^{\prime} \leqslant n\). We may assume that \(r_{1}\) is odd and \(r_{2}\) is even. If \(k\) is odd, then \(r_{1}^{\prime}\) is odd and \(r_{2}^{\prime}\) is even.

If \(k\) is even, then \(r_{1}^{\prime}\) is even and \(r_{2}^{\prime}\) is odd. In either case we have \(m k B=\left\{m r_{1}^{\prime}, m r_{2}^{\prime}\right\} \varepsilon B<m>\).

By Herstein \([75]\), a group \(S\) which is an internal direct product of subgroups \(S_{1}\) and \(S_{2}\) is isomorphic to the external direct product \(S_{1} \times S_{2}\) by an isomorphism \(a b \rightarrow(a, b)\), \(\forall a \varepsilon S_{1}\), \(\forall b \varepsilon S_{2}\). Thus for given \(M\left(S_{1}\right)\) and \(G\left(S_{2}\right)\) if we replace the cartesian product \(e \times B_{e}\) in \(D\) by \(e B_{e}\), then the collection \(\mathcal{A}\) is the collection of bases of a pregeometry on \(S=S_{1} S_{2}\) which is isomorphic to \(G\left(S_{1} \times S_{2}\right)\) in the obvious natural way, and we do not distinguish between them.

We are now ready for the example.
6.3.3 LEMMA. Given \(m \geq 2, n \geq 2\) and \((m, n)=1\). Let \(M\left(S_{1}\right)\) be the matroid on \(\left\langle m>\right.\) with bases \(B<m>\) and let \(M\left(S_{2}\right)\) be the matroid on \(\langle n\rangle\) with bases \(B<n>\). Then \(M\left(S_{1} \times S_{2}\right)\) is binary and base orderable but not connected. Moreover for any \(A=m s_{1}\left\{n r_{1}, n r_{2}\right\} \cup m s_{2}\left\{n r_{1}^{\prime}, n r_{2}^{0}\right\} \cup n s_{3}\left\{n r_{3}\right\} \varepsilon d\) and for any \(m e \varepsilon<m>, n k \varepsilon<n>\) we have
(i) \(n k A \in \mathscr{D}\) if \(m\) is even and \(m e A \varepsilon \mathcal{X}\) if \(n\) is even
(ii) \(n k A \varepsilon \in\left(\underset{\sim}{\infty}\left(k+x_{1} \leq m, k+r_{2} \leq m\right)\right.\) or \(\left(k+r_{1}>m\right.\),
\(\left.k+r_{2}>m\right)\)) and \(\left(\left(k+r_{1}^{\prime} \leq m, k+r_{2}^{\prime} \leq m\right)\right.\) or \(\left.\left(k+r_{1}^{\prime}>m, k+r_{2}^{\prime}>m\right)\right)\) if m is odd.
(iii) \(m\) e \(A \in \mathcal{D} \Leftrightarrow\left(e+S_{1} \leq n, e+s_{2} \leq n\right)\) or \(\left(e+s_{1}>n\right.\), \(e+s_{2}>n\)) if \(n\) is odd.
(iv) \(\quad(m e n k) A \in \mathcal{D} \Leftrightarrow\left(e+s_{1} \leq n, e+s_{2} \leq n\right)\) or \(\left(e+s_{1}>n_{1} e+s_{2}>n\right)\) if \(m\) is even and \(n\) is odd.
(v) \((m e n k) A \in \mathcal{D} \Leftrightarrow\left(\left(k+r_{1} \leq m, k+r_{2} \leq m\right)\right.\) or \(\left.\left(k+r_{1}>m_{1} k+r_{2}>m\right)\right)\) and \(\left(\left(k+r_{1}^{\prime} \leq m_{1} k+r_{2}^{\prime} \leq m\right)\right.\) or \(\left.\left(k+r_{1}^{\prime}>m, k+r_{2}^{\prime}>m\right)\right)\) if \(m\) is odd and \(n\) is even.
(vi) (menk)A \(\in \mathcal{D} \Leftrightarrow\) R.H.S(iv) and R.H.S(v) if \(m\) and \(n\) are odd.
(vii) (menk) \(A \in D \quad\) if \(m\) and \(n\) are even.

PROOF. That \(M\left(S_{1} \times S_{2}\right)\) is binary and base orderable but not connected follows from Lemma 6.3.1. That \(M\left(S_{1} \times s_{2}\right)\) satisfies (i) - (vii) follows from Lemma 6.3.2.
6.3.4 An automorphism \(\sigma\) of a pregeometry \(G(S)\) is a permutation on \(S\) such that \(B\) is a basis if and only if \(\sigma\) (\(B\)) is a basis.

We note that the set of all automorphisms of \(G(S)\) is a group under composition.
6.3.5 LEMMA. The automorphism group \(A(M)\) of \(M\left(Z_{n}\right)\) has size given by
\[
A(M)= \begin{cases}2\left(\frac{n}{2} 1\right)\left(\frac{n}{2} 1\right) & \text { if } n \text { is even, } \\ \left.\left.\frac{(n+1}{2}!\right) \frac{(n-1}{2}!\right) & \text { if } n \text { is odd. }\end{cases}
\]

PROOF. First assume that \(n\) is even. Then the number of even integers in \(Z_{n}\) and the number of odd integers in \(Z_{n}\) are equal and is equal to \(\frac{n}{2}\). Put \(I=\) set of all even integers in \(Z_{n}\). Thus a permutation \(\propto\) on \(I\) and a permatation \(\beta\) on \(Z_{n} \backslash I\) define an automorphism \(\theta\) of \(M\left(Z_{n}\right)\) by \(\theta / I_{I}=\alpha\) and \(\theta / z_{n} \backslash I=B\). Also a bijection \(B: I \rightarrow Z_{n} \backslash I\) and a bijection \(\gamma: Z_{n} \backslash I \rightarrow I\) define an automorphism \(\sigma\) of \(M\left(Z_{n}\right)\) by \(\sigma / I=B\) and \(\sigma / Z_{n} \backslash I=\gamma\). Thus we have \(2\left(\frac{n}{2} 1\right)\left(\frac{n}{2} 1\right)\) different automorphisms defined this way.

Suppose that \(\theta\) is an automorphism of \(M\left(z_{n}\right)\). We show that either \(\theta(I)=I\) or \(\theta(I)=Z_{n} \backslash I\). If \(\theta(I) \neq I\), then there exists \(x \in I\) such that, \(\theta(x)=Y \in Z_{n} \backslash I\). For each a \(\varepsilon Z_{n} \backslash I\) we have \(\{\theta(a), y\} \varepsilon B<n>\) so that \(\theta(a) \cdot \varepsilon\). By the same argument we can show that for each \(b \in I, \theta(b) \in Z_{n} \backslash I\). Thus \(\theta(I)=Z_{n} \backslash I\) and \(\theta\left(Z_{n} \backslash I\right)=I\). Therefore either \(\theta(I)=I\) or \(\theta(I)=Z_{n} \backslash I\). In either case we see that \(\theta\) is one of the automorphisms defined as above.

We next assume that \(n\) is odd. Also a permutation \(\alpha\) on the set \(I\) of even integers in \(Z_{n}\) and a permutation \(\beta\) on \(Z_{n} I\) define an
automorphism \(\theta\) of \(M\left(Z_{n}\right)\) by \(\theta / I=\alpha, \theta / Z_{n} \backslash I=\beta\). Thus we have \(\frac{(n+1!)}{2} \frac{(n-1!)}{2}\) different automorphisms of \(M\left(Z_{n}\right)\) defined this way.

Let \(\theta\) be any automorphism of \(M\left(Z_{n}\right)\). Suppose that there exists \(x \in I\) such that \(\theta(x) \in Z_{n} \backslash I\). Then for each \(a \varepsilon Z_{n} \backslash I\) we have \(\theta(a) \varepsilon I\) and so \(\left|Z_{n} \backslash I\right|=|I|\) which is not so. Thus \(\theta(I)=I\) and \(\theta\left(Z_{n}{ }_{n} I\right)=Z_{n} \backslash I\). Hence \(|A(M)|=\frac{(n+1!)}{2} \frac{(n-1!)}{2}\).
6.3.6 The wreath product of a permutation group \(G\) on \(A\) by a permutation group \(H\) on \(B\) is the group of all permutations \(\theta\) on \(A \times B\) of the following kind
\[
\theta(a, b)=\left(\gamma_{b}(a), \eta(b)\right), a \varepsilon A, b \varepsilon A, \text { where for each }
\]
\(b \varepsilon B, \gamma_{b}\) is a permutation of \(G\) on \(A\), but for different \(b\) 's the choices of the permutations \(\gamma_{b}\) are independent. The permutation \(\eta\) is a permutation of \(\dot{H}\) on \(B\). (cf. Hall \([76], p 81\)).

The relation of the automorphism group of \(M\left(Z_{\operatorname{mn}}\right)\), where \(\dot{m} \geq 3\), to the wreath product of the automorphism group of \(M\left(z_{m}\right)\) by the automorphism group of \(M\left(z_{n}\right)\), was obtained, as the following result, by Lim \([77]\).
6.3.7 THEOREM. The automorphism group of \(M\left(S_{1} \times S_{2}\right)\) is the wreath product of the automorphism group of \(M\left(S_{1}\right)\) by the automorphism group of \(\mathrm{M}\left(\mathrm{S}_{2}\right)\) if and only if the following conditions hold.
(i) \(M\left(S_{2}\right)\) is 1 -uniform implies that every 2 - element subset of E is independent.
(ii) \(M\left(S_{2}\right)\) is not connected implies that \(M\left(S_{1}\right)\) has the property that for every two distinct elements \(e_{1} ; e_{2}\) of \(s_{1}\) there
exists a circuit́ \(C\) with \(\left|C \cap\left\{e_{1}, e_{2}\right\}\right|-=1\)

\subsection*{6.4 AUTOMORPHISMS}

We now give an example of a pregeometry defined on a group \(\mathbf{S}\) so that multiplication is a geometric automorphism i.e. so that the collection \(\mathcal{B}\) of bases is preserved under the group operation. That is, \(B \in \mathcal{B} \Leftrightarrow g B \in \mathcal{B}\). We also show that the products of the previous sections have such geometric automorphism.
6.4.1 EXAMPLE. Let \(H\) be a non-trivial proper subgroup of a group \(S\), of finite index \(r\). Denote all distinct left cosets of \(H\) in \(S\) by \(g_{1} H, \ldots, g_{r} H\). Define \(\mathcal{B}\) to be the collection of all subsets of \(S\) of the form \(\left\{b_{1}, \ldots, b_{r}\right\}\), where \(b_{i} \varepsilon g_{i}{ }^{H}, i=1, \ldots, r\). Then Bis the collection of bases of a transversal pregeometry \(G(S)\) on \(S\) such that
\[
\mathrm{B} \in B \Leftrightarrow g \mathrm{~B} \in \mathcal{B}, \forall g \varepsilon \mathrm{~S} .
\]

Moreover \(G(S)\) is a pregeometry which is (i) loopless, (ii) binary and (iii) base orderable.

PROOF. It follows from the definition of \(B\) that it satisfies (\(B\)) so that \(\mathcal{X}\) is the collection of bases of a transversal pregeometry \(G(S)\) with a presentation \(\left[g_{1} H, \ldots, g_{r}\right]\).

We show that \(B \in \mathcal{B} \Leftrightarrow \mathrm{~g} \in \mathcal{B}, \forall g \in \mathrm{~s}\). Let \(\mathrm{B} \in \mathcal{B}\) and \(g \varepsilon S\). To show that \(g B \in \mathcal{B}\) it suffices to show that \(\left.\left({g g_{1}}^{H}\right) \stackrel{\circ}{U} \ldots . \dot{U}_{\left(g g_{r}\right.}^{H}\right)=s . \quad\) For \(i=1, \ldots, r, p u t g_{i}^{\prime}=g g_{i} ;\) We first show that \(\left(g_{i}^{\prime} H\right) \cap\left(g_{j}^{\prime} H\right)=\phi \quad\) ifi\(\neq j\). Suppose that \(\exists x \in\left(g_{i}^{\prime} H\right) \cap\left(g_{j}^{\prime} H\right)\). Then there exist \(h_{1}, h_{2}\) in \(H\) with
\(x=g g_{i} h_{1}=g g_{j} h_{2}\) and hence \(y=g^{-1} x=\left(g_{i} H\right) \cap\left(g_{j} H\right)\) which is a contradiction. Thus \(\left(g_{i}^{\prime \prime} H\right) \cap\left(g_{j}^{\prime \prime} H\right)=\phi \quad\) if \(i \neq j\). Now \(g_{1}^{\prime \prime} \|_{H} \cup \ldots \cup g_{r}^{\prime} H \subseteq S\). For any \(x \in S\) we have \(g^{-1} x \varepsilon S\) so that \(g^{-1} x_{1} \varepsilon g_{i} H\) for some \(i\) and so \(x \varepsilon g g_{i} H\). Thus \(S=\left(g g_{i}^{\prime}{ }^{H}\right) \ddot{U} \ldots \dot{u}\left(g g_{r} H\right)\).

Let \(g B \in B\). Suppose \(B=\left\{b_{1}, \ldots, b_{r}\right\}\). Then \(g b_{i} \varepsilon g_{j} H\) for some \(j\). Since \(\mathrm{gb}_{\mathrm{i}} \neq \mathrm{gb}_{\mathrm{j}}\) and \(\left(\mathrm{g}_{\mathrm{i}} \mathrm{H} \cap \mathrm{g}_{\mathrm{j}} \mathrm{H}\right)=\phi\) if \(i \neq j\), we can assume that \(g b_{i} \varepsilon g_{i} H, i=1, \ldots, r\). Thus \(b_{i} \in g^{-1} g_{i} H\). By the above \(\left(g^{-1} g_{1} H\right) \dot{\cup} \ldots \dot{U}\left(g^{-1} g_{r} H\right)=S\) so that \(\left\{g^{-1} g_{1} H, \ldots, g^{-1} g_{r} H\right\}\) \(=\left\{g_{1} H, \ldots, g_{r} H\right\}\) and hence \(B \in B\).
(i) Since \(S=\bigcup_{i=1}^{r} g_{i} H\), every element of \(S\) is contained in a basis and so \(\mathrm{G}(\mathrm{S})\) is loopless.
(ii) Notice that a circuit of \(G(S)\) is just any set of two elements from the same coset. Let \(C_{1}, C_{2}\) be distinct circuits of \(G(S)\). Then since \(\left|c_{1}\right|=\left|c_{2}\right|=2, \quad\left|c_{1} \Delta c_{2}\right| \geq 2\). If \(c_{1}, c_{2}\) are in the same coset, then elearly \(C_{1} \Delta C_{2}\) contains a circuit. But if \(C_{1}, C_{2}\) are in different cosets, then \(C_{1} \Delta C_{2}=C_{1} \quad C_{2}\) and so \(C_{1} \Delta C_{2}\) contains a circuit. By Theorem 4.2.4 \(\mathrm{G}(\mathrm{S})\) is binary.
(iii) Let \(B_{1}=\left\{b_{1}, \ldots, b_{r}\right\}\) and \(B_{2}=\left\{b_{1}^{\prime}, \ldots, b_{r}^{\prime}\right\}\) be any two bases, where \(b_{i} \varepsilon g_{i} H_{0} b_{i}^{\prime} \varepsilon g_{i} H, i=1, \ldots, r\). Then the function \(\theta: B_{1} \rightarrow B_{2}^{\prime}\) defined by \(\theta\left(b_{i}\right)=b_{i}^{\prime}, \forall i=1, \ldots, r\), is an exchange ordering for \(B_{1}, B_{2}\). Thus \(G(S)\) is base orderable.
6.4.2 LEMMA. Any automorphism \(\sigma\) of the pregeometry in Example 6.4.1 is of the form
\[
\begin{equation*}
\sigma / g_{i} H=g_{\theta(i)}^{H} \quad i=1, \ldots, r, \tag{*}
\end{equation*}
\]
where \(\theta\) is any permutation on \(\{1, \ldots, r\}\).

PROOF. First we show that any function \(\sigma\) on \(S\) which satisfies (*) is an automorphism of \(G(S)\). It is clear that \(\sigma\) is a permutation on \(G\). Let \(B=\left\{g_{1} h_{1}, \ldots, g_{r} h_{r}\right\} \in B\). Then for \(i \neq j\) we have \(\sigma\left(g_{i} h_{i}\right)\) and \(\sigma\left(g_{j} h_{j}\right)\) in different cosets since \(\theta\) is a permutation on \(\{1, \ldots, r\}\). Thus \(\sigma\) (B) intersects every coset of \(H\) in \(S\) in exactly one element. Thus \(\sigma(B) \in \mathcal{B}\). similarly if \({ }^{*}\) \(\sigma\) (B) \(\varepsilon \mathcal{B}\) we can show that \(B \in \mathcal{B}\). Hence \(\sigma\) is an automorphism of G(S).

Suppose that \(\propto\) is an automorphism of \(G(S)\) which does not satisfy (*). Then' \(3 a \neq b, a \varepsilon g_{i} H, b_{i} \varepsilon g_{i} H\) with \(\alpha^{\prime}(a) \varepsilon g_{j} H\) and \(\propto\) (b) \(\varepsilon g_{k} H\), where \(j \neq k\). Thus \(\alpha(a)\) and \(\alpha(b)\) are in different cosets. Choose a basis B containirg \(\alpha\) (a) and \(\propto\) (b). Since \(\alpha^{-1}\) is also an automorphism of \(G(S), \alpha^{-1}(B) \varepsilon \mathcal{B}\). Now \(a b \alpha^{-1}(B)\). But \(\mathrm{a}, \mathrm{b}\) are in the same coset which is a contradiction. Thus any automorphism of \(G(S)\) satisfies (*).

Thus we have
6.4.3 LEMMA. The automorphism group of the Example 6.4 .1 has size (\(r\) !) \(\left(\frac{|S|}{r}!\right.\)) if \(s\) is finite, where \(r\) is the index of \(H\) in \(S\).

We finally prove
6.4.4 LEMMA. If \(S_{1}\) is a subgroup of \(S\) and multiplication by \(h \in S_{1}\) is a geometric automorhism of some \(G(S)\) then it is also a geometric automorphism of \(\mathrm{G}_{\mathrm{S}}\left(\mathrm{S}_{1}\right)\).

PROOF. Let \(B\) and \(B\) be the collection of bases of
\(G(S)\) and \(G_{S}(H)\) respectively. Then
\(B^{\prime} \varepsilon B^{\prime} \Rightarrow B^{\prime}=\mathrm{B} \cap \mathrm{H}\), where \(\mathrm{B} \varepsilon \mathcal{B}\),
\(\Rightarrow \mathrm{hB}^{\prime}=(\mathrm{hB}) \cap \mathrm{H}\) and \(\mathrm{hB}, \mathcal{B},\left|\mathrm{hB}^{\prime}\right|=\left|\mathrm{B}^{\prime}\right|\), for any \(\mathrm{h} \varepsilon \mathrm{H}\)
\(\Rightarrow h B^{\prime} \varepsilon B^{\prime}\).

Conversely when we deal with a matroid \(M_{1}\left(S_{1} \dot{x} S_{2}\right)\) obtained as in 6.1 we have
6.4.5 LEMMA. If multiplication \(h\) e \(S_{i}\) is a geometric automorphism of \(M\left(S_{i}\right), i=1,2\), then \(i t\) is also a geometric automorphism of \(M\left(S_{1} \times S_{2}\right)\).

PROOF: Let \(D\) be any basis of \(M\left(S_{1} \times S_{2}\right)\). \(\hat{\text { Let }} g=\left(g_{1}, g_{2}\right)\) be any element of \(S_{1} \times S_{2}\). Then by the definition of \(M\left(S_{1} \times S_{2}\right)\). there exists a basis \(B\) of \(M\left(S_{1}\right)\) such that
\[
D=\left(\bigcup_{\varepsilon B} e \times B_{e}\right) \cup\left(\bigcup_{\varepsilon}^{\cup} S_{1} \times B{ }^{\cup} e \times\left(B_{e} \backslash f\right)\right.
\]

Since \(B\) is a basis of \(M\left(S_{1}\right), G_{1} B\) is a basis of \(M\left(S_{1}\right)\). Also \(g_{2}\left(B_{e}>f\right)\) is independent in \(M\left(S_{2}\right)\) of rank \(r\left(S_{2}\right)-1\). Hence \(g D\) is a basis of \(M\left(S_{1} \times S_{2}\right)\) as required.

\section*{BIBLIOGRAPHY}

Topics in algebra. Xerox College Publishing (1975)

INGLETON, A.W. and PIFF, M.J
73

Presentations of transversal matroids: J. London Math.
SOC. (2), 5 (1972), 289-292
BONDY, J.A and WELSH, D.J.A
Some results on transversal matroids and constructions for identically self-dual matroids. Quart. J. Math. Oxford (2), 22 (1971), \(435-451\)

BRUALDI, R.A and SCRIMGER, E.B.
Exchange systems, matchings, and transversals. J combinatorial Theory 5(1968), 244-257

CRAPO, H.H AND ROTA, G.C.
On the foundations of conbinatorial theory. M.I.T. press Cambridge, Mass. (1970)

HALL, \(M\), Jr
Combinatorial theory. Blaisdell (1967)
Theory of group, \(2^{\text {nd }}\) ed. Chelsea (1976)

HERSTEIN, I.N.

Gammoids and transversal matroids. J. of Combinatorial

BONDY, J.A.

Theory B. 15 (1973), 51-68

MASON, J.H.
72 On a class of matroids arising from paths in graphs. Proc. London Math. Soc. (3) 25 (1972), 55-74

MING - HUAT LIM
77 . A product of matroids and its automorphism group. J. of Combinatorial Theory B. 23 (1977), 151 - 163

MIRSKY, L.
71 Transversal theory. Academic Press (1971)

MOORE, J.T.
67 Elements of abstract algebra, \(2^{\text {nd }}\) ed. Macmillan (1967). MURTEY, U.S.R.

66 On the number of bases of a matroid. J. of the Australian Math. Soc. Vol 6 (1966), 259 - 262.

RADO, R
57 Note on independence functions. Proc. London Math. Soc. 7 (1957), 300-320

ROBERTS, L
73 Automorphisms, flats and erections of pregeometries (M.Sc.Thesis), University of Tasmania (1973).

ROW, D.H.
77 Lecture notes in geometry course for Mathematics Honours Students, University of Tasmania (1977)

TUTIE, W.T
65 . Lectures on matroids. J. Res. Nat. Bur. Standard. 69 B (1965), 1-48.

WELSH, D.J.A
76 Matroid theory. Academic Press (1976).

WHITNEY, H
On the abstract properties of linear dependence. Amer. J. Math. 57 (1935), 509 - 533
```

Antisymmetric property; 5
Atom, 10
Associate sets,99
Automorphism; }26
Base orderable; 143
Basis, 29
Binary! 122
Boolean geometry: 4
Canonical geometry, 49
Chain, }
length of, }
Choice function, 83
Circuit, 33
Closed set, 3
Closure, l
Cobasis, }7
Cocircuit, }7
Coloop. }7
Connected
pregeometry, 67
set,68

```
```

Contraction, 56
Cover, 6
Cycle, }9
length of, 99
Depend, 30
Dependent set, 32
Digraph , 138
Direoted graph, 139
Direct aum, 60
Disjoint paths, 138
Dual, 72

```

\section*{Exchange}
```

    ordering, 144
    property, l
    Family, }8
Fano matroid, 76
Finite basis property
(closuxe), 1
(rank), 16
Flat, 3
Fundamental circuit, 38

```

Gammoid, 142
Generate, 29
Geometric lattice, 10
Geometry, 1
Greatest element, 5

Hall's criterion, 94
Hasse diagram, 6
Hyperplane, 14

Independent set, 24
Index
(cycle), 99
(family), 83

Induced system of representativ́es, 102, 103
Infimum, 5
Initial vertex, 138
Isomorphic
(lattice), 12
(pregeometry), 45
Isomorphism
(lattice), 12
(pregeometry), 45
k - uniform geometry, 5

\section*{Iattice; 6}
geometric; 10
Least element, 5
Line, 16
Linking; 138
Linkage lemma; 139
Listing, 83
Loop, 78
Lower bound, 5

Maximal presentation, 92
Matroid, 72
Minimal presentation, 88
Minor, 135
Normalized, 16

\section*{Partial}
system of (distinct) representatives; 84
transversal, 84
Path, 138
Point, 15
polygon pregeometry, 37
Poset, 5
Pregeometry, 1
Presentation, 85
```

Rank
(set), 15
(pregeometry), 15
Reflexive property, 5
Representable, 117
Eopresentation, 117
Semimodular
(lattice), 10
(rank), 16
Separator, 62
Span, 29
Standard matrix representation, 119
Steiner triple system, 76
Strict gammoid, 140
presentation, 141
Subfamily, 83
Subpregeometry, 48
Supremum, 5
Symmetric difference, 123
System of (distinct) representatives, 83
Terminal vertex, 138
Transitive property, 5

```

\section*{Transversal, 83}
pregeometry, 85
of multiplicity \(k, 97\)

Triple. 76
Truncation, 56

Union of pregeometries, 58
Unit increasing, 16
Upper bound, 5

Wreath product, 163```

[^0]: 1.2. 19 LEMMA. Every flat is the intersection of all hyperplanes containing it.

