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ERRATA 

"Huat Lim" should be "Ming-Huat". 

"spaned" should be "spanned". 

The first A should be A. 

There are commas missing after x1  and before xn. 

A period is missing at the end of the 1 me. 

Three dots are missing between "x1<" and "<xn". 

"1-1" should be "i-1". 

"semimodularity", should be "semimodular". 

"0" should be "U". 

An "F" is missing here. 

"in the associated bijection 2S+2SI" should be added . 

Delete the period at the end of the line. 

add ", and 	 = {a}, V a E S". 

"and F = (1) " should be added. 

"contraction" should be "restriction". 

The bracket should close after "finite" 

"(XI)" should be "(X)I". 

"." should be ",". 

"Although" should be "although" 

"Murtey" should be "Murty". 
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SUMMARY 

We systematically give alternative characterisations of 

pregeometries, and examine their properties. 

We examine well - known classes of pregeometries using the 

above characterisations. 

In particular we (i) define "product" of pregoetetries, 

related to that given by Lim, and (ii) give some applications of 

this "product" . 
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INTRODUCTION • 

Crapo and Rota 170j defined a pregeometry G(S) as a set S 

together with a closure function on its subsets. They gave various 

characterisations of pregeometries in terms of their ranks, independent 

.sets, circuits and lattice of flats. Roberts 1733 characterised any 

pregeometry in terms of its flats. A basis characterisation was given 

by Welsh [76] . He also gave a characterisation in terms of 

hyperplanes, for any pregeometry on a finite set S (we will use the 

term matroid for such a pregeometry). All these characterisations 

are derived in Chapter 1. 

Basic properties of pregeometries are discussed in Chapter 2. 

Arising from a pregeometry G(S) a subpregeometry, G s (T) is induced on 

any subset T of S. Any pregeometry has special subpregeometries 

called canonical geometries. They are isomorphic. Other pregeometries 

obtained from G(S) are contractions and duals (when G(S) = M(S) is a 

matroid). 

In Chapter 3 we discuss the pregeometry G(S) obtainable from 

a family (X) 1  of subsets of sets - a transversal pregeometry in which 

the independent sets of G(S) are the partial transversals of (X) 1  . 

Finally we investigate systems of distinct representatives giving the 

same transversal of such families. 

Representable pregeometries, isomorphic to mibpregeometries 

of finite dimensional vector spaces, are investigated in Chapter 4 

In Chapter 5 we discuss the class of matroids arising from 

directed graphs - strict gammoids - together, with their. 



SUMMARY 

We systematically give aLeernative characterisations of 

pregeometries, and examine their properties. 

We examine well - known classes of pregeometries using the 

above characterisations. 

In particular we 	 (i) define "product" of pregoemetries, 

related to that given by Lim, and (ii) give some applications of 

this "product" . 



restrictions - gammoids. Also base orderable matroids are introduced 

and discussed. 

In Chapter 6 we construct pregeometry products based on the 

work of Ming Huat Lim [773 and we apply these constructions to 

matroids defined on groups in which the geometric and algebraic 

structures are related. More precisely, group multiplication is a 

geometric automorphism. 

The methods used In Chapter 1 unless otherwise stated in the 

text are based on lectures given to Honours students in Mathematics 

at the University of Tasmania. Similarly the methods of Chapter 2 

(all but the last half of section 1), 3 section 1, 4 and 5 are based 

mainly on those of Welsh [76] , Crapo_and Rota [70] , Mirsky [71] 

and Row [773 unless otherwise stated. 

Some examples given in these chapters are original in 

particular those dealing with Steiner Triple Systems. 

Section 3.2 dealilg with multiplicity of system of 

transversals is new. 

In Chapter 6, section 1, 3 and 4 are new - while section 2 

comes from Lim f77 . 

I would like to express my deep gratitude to Dr. D.H. Row 

for his assistance during the preparation of this thesis. I would 

like also thank Mrs. W. Gayong for her careful and patient typing. 



NOTATION 

A set (x,y,... ) is often written xy... 	 . We use standard 

notation in set theory and algebra. Apart rom these we use : 

complement of A (in the appropriate universal set). 

closure of A in a pregeometry 

A' is a finite subset of A 

union of disjoint sets A and B 

subspace spaned by A 

closure of A in a subpregeometry 

symmetric difference of sets 

fundamental circuit of x in the basis B 

closure of A in a pregeometry 

pregeometry on S 

subpregeometry on T induced by G(S) 

contraction of G(S) to a subset T of S 

union of pregeametries G1(S1) and 02(S2) 

direct sum of pregeametries G1(S1) and G2(S2) 

infimum of set M 

lattice of flats of a pregeometry G(S) 
• 

transversal matroid with a presentation A 

A 

A
f
cc A 

A U B 

A 

...A An 1 

C(x, B) 

Cl (A) 

G(S) 

G
s
(T) 

G(S).T 

G1  (S1) ) v G2(S2) 

G11 (S ) 

inf M 

L(G) 



(iv) 

M(S) 	 matroid on S 

M(S)/T 	 restriction of M(S) to T 

M (S) 	 dual matroid of M(S) 

r(A) 	 rank of set A 

en • 	 Steiner triple systems on a set of n elements 

sup M 	 supremum of set M 

k,n 	
k - uniform geometry on n elements 

(V,E) 	 directed graph with vertex set V and edge set E 

(vo,vi,...,vk) 	 path in directed graph with initial vertex vo  

and terminal vertex vk  

xlv...v xn 	 supremum of xl...xn  

... A X
n 	

infimum of xl...xn  

xo < x1 
<... 	 chain in a poset 

(X)
I'
(X
i
/i e I) 	 family of subsets of X with index I 



1. EQUIVALENT CHARACTERISATIONS 

OF PREGEOMETRIES 

1.1 CLOSURE 

We begin with a definition of pregeometries in terms of closure 

1.1.1 A pregeometry, G(S), is a set S together with a closure 

f : 23  + 2S  satisfying the following four conditions. 

(C1)
For all A C. S, A S R; writing A for f (A); 

(C2)
If A 5, then A 'B, 	 S. 

(C3)
If a i R and a c AU b, then b c AL/a, VAS, a,b e S. 

(C4)For all A c S, 3 Af  C.A with Af= . 

(C
3
) and (C

4
) are the exchange property and finite basis 

property respectively. 

1.1.2 LEMMA. If (C
1
) is given, then (C

2
) is equivalent to 

- 
(i) For all A S, A = A. 

(ii) If A B, then ii B , VA,B 	 S. 

PROOF. Assume that (C1) and (C
2
) are given. Then A A =>/7 

by (C2). On the other hand R G 11 by (C1) so that R = R. Now A II => 

-A 	 B 	 .3. 	 G.. B.  by (C2). 

Assume that (C ), and A = R, VA S and A c. B => Ac 5, A,B S 

are given. Then A E => ES = 5 which is as desired. 	 // 

1.1.3 A geometry is a pregeoMetry G(S) satisfying the two additional 

properties: 

(C
S
) 
-41 = 



2. 

(C
6
) 	 = a, Va e S. 

1.1.4 EXAMPLE. The smallest coset of any subspace of a finite 

dimensional vector space V, containing a set A of vectors of V 

defines a closure satisfying (C1) - (C4). 

PROOF. The smallest ooset of any subspace containing A is of 

the form a
0 
 + W, where W is the (unique) smallest subspace containing 

A - ao, for any aci  e A. 

We show that the.closure defined satisfies (C3
) and (C4). 

- 
Let x e AUy and x A, A C S, x,y e S. Then x e a + W, where 

= EA 1.3 y - a] for some a e A so that x - a = 	 c. (a - a), where i 
i=1 

a."11-11 1111ereexistsjwitha.=-Y (otherwise x e A). 
3 

Putting a. a = y - a on the left hand side we write 

m 

y-  a = 	 Id.b.,whereb
i 
 e(Atix)-a,c1.00. 

3. 1 	 i 
i=1 

Then y C AU x. 

For any A S consider a maximal independent subset A, of 

A - ao for some ao 
e A. Let A

f 
= a
0 
+ A
f0
. Then Af 

is a finite 

. 	 _ 
subset of A and A

f 
= a
0 
+ CA'f = A as [A ] is the smallest subspace 

fo 0 
containing A - ao  /I 

1.1.5 LEMMA. The conditions (C1) - (C6
) are independent. 

PROOF. We see this by examining the following six examples in 

each of which exactly one of (C1) - (C6) is not satisfied. 

(i) Let S = {1,2,31 ,0 = 0'  , I = 1, 3= 2, 3 = 3, 

12 = 1, 13 = 13, 23 = 23, g = S. 



Then only (CI)fails. 

(ii)Let S = (1,2,3,4) , 12 = 1234, 14 = 124, 13 = 123, 

23 = 123, 24 = 124, R = A otherwise. 

Then only (C2) fails. 

(iii)Let S = (1,2,3,4) . Define closure on S by 

	

123 	 if A = 12 

 

A 

	
A 	 otherwise 

Then only (C3) fails. 

(iv)Let S be an infinite set and define A = A, VA S. 

Then only (C4) fails. 

(v) Let S = (1 2,3) and define closure on S by 

1 	 if A = 
R 

A 	 otherwise 

Then only (C5) fails. 

(vi)Let S = (1,2,3) and define closure on $ by 

112 if A=1 = 1 .  
= 

A otherwise 

	

Then only (C6) fails. 	 // 

1.1.6 A subset X in a pregeometry G(S) is closed or a flat if X = 

for some B cr,S• 

1.1.7 LEMMA. In any pregeometry G(S). The following are true. 

(i) AisaflatinG(S)ifandonlyifA= A.  

(ii)Any intersection of flats is a flat. 

(iii)R is the intersection of all flats containing A. That 

3. 



4. 

is R is the smallest flat containing A. 

(iv)S is a flat in G(S). 

(v) B 5_ R if and only if A = A Li B, A,B c S. 

(vi){a/a c R} 	
a c 
UA 	 , VA c S. 

PROOF. (i) Let A be a flat in G(S). By definition there 

exists BS S such that A = B. Thus R = B = B = A. The converse is 

obvious. 

(ii) Given any intersection, C) Ai  , of flats of G(S). Put 

A=nliv Itsufficestoshowthatiic:A.sinceASA.for all i 

which implies R = A. for all it  we have Rç r1A. = A. 
3. 	 3. 

(iii)LetB=.(1A.,whereA.is a flat containing A. 

Then by (ii) B is a flat containing A. Therefore Ac B B. Since A 

is a flat containing A, A = Ai  for some i and hence B S A. 

(iv)follows from (i). 

(v) Assume that B R. By (C1) A R so that A V B 

and hence by (C2) AUBS R. On the other hand Rs Au B. Thus 

= A 1./ B. 

Suppose that A I.) B = R. Let x c B. Then A v x 	 AuB= 

and so x C R. Therefore B5.-. A. 

(vi)follows from (v) 	 // 

1.1.8- A Boolean geometry is a pregeometry G(S) with R . A, 

VA 	 S. 

When i = A if 'Al< k and R = s otherwise provided k > 1 



refines a k - uniform geometry on S. 

lj LATTICES OF FLATS 

We characterise any pregeometry in terms of a lattice of flats. 

1.2.1 A poset is a set L together with a binary relation < satisfying 

the following. 

(i) For any x c L, x < x, reflexive property; 

(ii) If x <y and y < x, then x = y, Vx, y e L, antisymmetric property; 

(iii) If x < y and y < z, then x < z, Vx,y,z e L, transitive property. 

In a poset we write x < y (or y > x) to mean x < y and x p y. 

A greatest (least) element of a subset M of L is an element 

x of M such that x > (‘ ) m Vm c M. 

If x1 and x2 are greatest elements of M, then x 1  < x2  and —  

x2  lx1  so that by the antisymmetric property x l  = x2 . Thus the 

greatest element is unique if existing. Also the least element is 

unique if existing. We denote the greatest (least) element of L if 

existing by 1(0) . 

A lower (upper) bound of M is an element y of L with y < ( >) 

m, Vm c M. The infimum (supremum ) of M, written inf M (sup M), is 

the greatest (least) element of the set of lower (upper), bounds of M 

(if existing). 

1.2.2 LEMMA. sup (M1 0 M2 ) = sup {sup.  Mi , sup M2 },provided the 

right hand side exists. 

5.. 



6. 

PROOF. Suppose that:MI, M2  are subsets of a poset •L,< ), with 

xi  = sup Mi, x2  = sup M2. If x = sup fx1,x21 , then x Lx1  and x >. x2  

so that x is an upper bound of M1  L./ M2. 

For any upper bound x' of M
1 

M
2 
we have x'z-> x and x' > x 

-- 1 	 — 2 

so that x' is an upper bound of 6:x
2 

and so x' > x. Thus the 

lemma is proved.  

1.2.3 A lattice is a poset (L, <) with every pair of elements having 

a supremum and infimum. . 

For convenience in notation we write x A y and x v y for 

inf {x,y}and sup Cx,y1 respectively, where A and v are read"meet" 

and" join". 

By an induction argument we see that the infimum and 

supremum of finite subsets exist in any lattice. 

1.2.4 LEMMA. The set of flats, L(G), of a pregeometry G(S) is a 

lattice with respect to set inclusion. In this lattice 

AvB = AUB , AAB = An13 , VA,BcL(G). 

As S is a flat and 4)C A, VA c S, S and 71).  are the elementsl 

and 0 respectively in L(G). 

1.2.5 We say y covers x in a lattice (L, <) iff x < y and there is 

no z in L with x < z < y. 

A finite lattice can be conveniently represented by a Hasse 

diagram in which distinct elements are represented by distinct points 

so that x is above y iff x > y and x, y'are joined by a straight line 

whenever x covers y. We illustrate by 



7. 

EXAMPLE 1.2.6 

= 0 

the lattice of flats of a 2 - uniform geometry on abc. 

We characterise a lattice in terms of A and v. 

1.2.7 THEOREM. A lattice (L,<) is characterised by 

AL
1
) For every x c L, xAx=x and x v x = x. 

(L
2
)Foreveryx,yEL,xAy=yAxandxvy=yvx. 

(L
3
) For every x,y,z E L, x A (y A z) = (x A y) A z and x v(y-v -z 

(x v y), z. 

(L
4
1 For every x,y L, x 4 (y v x) = x and x v(y x) = x. 

PROOF. That a lattice (L,<)satisfies (L1) - (L
3
) is immediate. 

• 

We show that (L,<) satisfies (L4). Let x,y e L. Let z = y v x. 

Then x < z and since x < x, x is a lower bound of {x,z} . For any 

lower bound a of {x,z} we have a < x. Thus x = inf {x,z} as 

desired. Let p = y x. Then x > p so that p is an upper bound of 

{x,p} . For any upper bound d of {x,p} we have d > x. Hence 

x = sup {x,p} as desired. 

We show that a given set L with x A y, x y defined for every 

pair x,y in L satisfying (L ) - (L4) is a lattice. 

We define x < y when x V y = y. Then x < y =>x v  y = y => 

X.A (X v y) = x 	 =>x = x y. Also x = x y =>x v y = (x A y)V y 

=>x v y = y im> x < y 



8. 

(i) Since x v x = x, x < x, Yxe L. 

(ii) Letx<yandy x. Thenxvy=yandx=yvx so 

that x = y. 

(iii) Letx<yandy< z. Thenxvy=.yandyvz= z 

so thatxvz=xv (yvz) = (xvy) vz=yvz= z. Hencex< z. 

Then (L,<) is a poset. 

For any x,y e L we show that inf {x,y} =x y and 

sup x 	 = x y. 

Since (x 114  y) v x = x and Oc A y) v y = y, we have x y < x 

and x Mk y < y and so {x,y} has at least.  one lower bound. Let b be any 

lower bound of {x, y} . Then b" x = b and bAy=b so that 

b A (X y) 	 (b x)A y = bn y = b. Thus b XA y and so X/1 y = inffx,y1. 

Similarly we can show that sup x,y) = x v y. 	 // 

1.2.8 A chain in a poset is a subset with the induced order on it 

linear, it is finite if the subset is finite. 

We write x
0 
 < x

1 
<.., to denote a chain. Given a finite 

chain C x
0 
 < x

l 
« x

n 
= y we say that C is a chain from x to y 

with length id  l - 1. 

1.2.9 LEMMA. Every chain in the lattice of flats of any pregeometry 

is finite. 

PROOF. Suppose that C is an infinite chain in the lattice of 

flats of G(S). Then C must contain an infinite ascending chain or an 

infinite descending chain. 



9.. 

First assume that there exists an infinite ascending chain. 

Choose a countably infinite subchain C1  : Ao  A, t A2  $. 	 . Let 

A = IV A. . Then A is a flat and by (C
4
) 3 A c lc A with /I

f 
= A = A. 

1 1 

Since At, is finite and each a. e A
f 
is contained in A., there exists n 

	

1 	 1 
_ 	 - 

such that A c A . It then follows that A = A = A
f 
E A = A. Thus 

f 	 n 	 n 	 n 

A
n+m 

s A S A
n
, V
in 
. This contradicts the fact that C

l 
is infinite. 

Thus no 	 ascending chain is infinite. 

Next assume that C contains an infinite descending chain. 

Choose a countably infinite subchain C2: Ao  A
l 
 A21 .... For each 

i let ai  e Ai_Iss. Ai  and Ti41  = {ai+1, ai+2, ...} . Now Ti+1  Ai  and 

since a. X A. and T. C A., we have a
i Ti+1. 

Consider for each i 
1 	 1 	 1+1 	 1 

the set B. = {a. 	 j If there exists a. e B. we then choose 
1 	 3 	 1 	 1 	 1 

a maximum j such that ai  E. {a.
' 
 ....,a., ai41, ...} , where 
3 

1 < j < i - 1 as T
i+1 5

: 	 a.1  
a.1+1 ,...) c B.. Put 

— — 	 1- 	 1 

B = {ai+i, 	 , ai_1, a.41, ...}. Then 	 B,but aie B LI a .so that by 
.3 

- 
(C 	 B 1.) a. = A contradiction. Hence a. X B. for all i. 
3 	 3 	 1 	 1 	 1 

This means that no proper subset of Tl  has closure '1'1  since ai  e 

for all i and any proper subset of T1  which does not contain ai  is 

contained in B., contradicting the finite basis property for 
1 

{ a./j sjeN} j  

Thus the lemma is proved. 	 // 

1.2.10 LEMMA. For any flats A, B, C of G(S) we have 

(i) A covers B <=> A = B 0 a for some a e A B. 

(ii) AcoversB=> AvCcoversBvCorAvC=BvC. 



10, 

PROOF. (i) Assume thatAcovers B. Then ga EAN‘Band 

hence B 	 13 ti a so that B U a = A. 

Assume A = B Lt a , for some a c A 	 , where A, B are flats 

of G(S). Then B S A. Let X be any flatsuchtatBXBMa . 

We show that B U a a X. Pick an element b e )(AA B. Then biII=B 

and beBva so that by (C3) , a e 13U b E X. Thus B Li a E. X. 

Therefore A covers 13. 

(ii) Let A cover B. Then A =B 4-741; for some a C A.-B. 

If a I C, then by (i) A C = B w C ii a so that A V C covers B v C. 

Ifa eC wehaveAVC = BUaLiC = 13L/C andsoAvC=BvC.// 

1.2.11 A lattice (L,<) is semdmodular if it has no infinite chain and 

whenever x,y cover x." y we have x v y covering x and y. 

1.2.12 LEMMA. The lattice of flats of G(S) is semimodular. 

PROOF. Follows from Lemma-  1.2.10 

1.2.13 An atom is an element in any lattice that covers 0. 

1.2.14 A geometric lattice is a semimodular lattice in which every 

element is a supremum of atoms. 

1.2.15 LEMMA. Let (L, < ) be a geometric lattice. Then any x,y in L 

satisfy the following. 

(i) Any two maximal chain from x to y have same length: 

(ii)ycoversx<=>y=xvafor some atom ai x. 

PROOF. (i) We prove this by induction on chain length. 



11. 

Let x = s
0 
< s
1 	

s
n 
= y be a maximal chain from x to y. 

Consider another maximal chain x = to  < t1  <...<t = y from x to y. 

We can assume si  tl. Now sl, t1  both cover x and so sliN t1  x. 

If x < s
l 

t
1 
and since either s

l
A t

1 
< S
1 
or s

1
A t

l 
< t
l 
is the case 

then either sl  or t1  does not cover x. Thus x = 51̂  tl. 

Semimodularity implies that si  v t1  covers sl  and tl. As sl  t1  f.y 

a chain from si  v t1  to y exists. Let al  v t1  = u1  < u2  <..of up  = y 

be maximal. Thens <s vt <u <...4tu=yand t
1 
<s 
1
vt
1 
< 

1 	 1 	 1 	 2 

U
2 
<;..< u = y are maximal chains from s

1 
and t

1 
respectively to y. 

case 1. If n = 2, then since y covers s
1 
 we have p = 0 so that 

s
1
vt
1 
= y. Thusx<t

1 
 <s

1
vt
1
=yis maximal as required. 

case 2. If n > 2. Assume that the lemma holds for any 

maximal chain of length < n. As s
1 
< s
2 
< 	 < s

n 
= y is a 

maximal chain from s
1 
to y of length n - 1 the chain s

l 
< s
l 
v t
l 
< u
2 

< 	 = y has length n - 1. Since t
l 
< s
l 
v t
l 
< u
2 
4...< U = 

is maximal, by the assumption it has length n - 1. Therefor:les. the 

chain t < t <...< t = y has length n. 
o 	 1 	 m 

(ii) Assume y covers x. Since (L,< ) is geometric, y = sup A 

for some subset A of atoms of L. If Va e AR a < x, then y = sup A < x. 

A contradiction. Thus 3aeAwithaAx. Butxva> x 

(as x v a = x <=> a < x). Hence x V a = y. 

Now let y = x v a, where a is an atom such that a x. We 

consider the following two cases. 

case 1. If the maximal chain length from 0 to x is 1.. Thus 

x is an atom so that by the above xn a = O. By semimoftlarity x v a 



covers x and a as desired. 

case 2. If the maximal chain length from 0 to x is n > 1. 

Assume that the lemma holds for any x with maximal chain length from 

0 less than n. Let 0 <...< x' < x be maximal. As x covers x° we 

, 	 / 
have x = x'v b for some atom b x. If xiv b = x'v a, then x = x'v b 

= x'v a so that a < x. A contradiction. Thus x'v b # x'v a. and 

both cover x' and so x' = (x'v a)/1(xlv b). By semimodularity 

(x'v a) v (x'v b) covers both x'v a and xlv b = x. Hence y = x v a = 

(x v x') v a = x v (x'v a) = (x'v b) v (x° v a) which covers x. 

1.2.16 Two lattices (L1,1) and (L2,<L) are isomorphic if there exists 

a bijection f: L1  + L2  such that for every pair x,y in L1  f(x" y) and 

f(x v y) are meet and join of f(x) and f(y) respectively in L2. 

We call f an isomorphism from (Lir< ) to (L2,< ). 

We now characterise pregeometries by these properties of their 

lattices of flats. 

1.2.17 THEOREM. The lattice of flats of any pregeometry is geometric. 

Conversely any geometric lattice is isomorphic to the lattice of flats 

of some pregeometry. 

PROOF. Let L (G) be the lattice of flats of G(S). We need to 

show that every flat in L(G) is a join of atoms. Let Bc 11(G). If B 

covers 47there is nothing to prove. Consider a maximal chain • < 

<...< B = B of length n >1 from 4  to B. Now as B covers we have 1 

Bi  = Oval  , where al  e Bìs. 7) so that 31  is an atom and Bi  = v 31  

=al. Inductively Bi  = 	 v ai  for some ai  e 	 Bi_i, where 

i = 2, ... , n - 1. Thus ail -0 and 3j.  is an atom which implies 

12. 

// 



1.3. 

- 
B = B

n 
= B
n-1 

v a
n 
= 	 = a

1
v 	 v an

, as required. 

Conversely let (L<) be any geometric lattice.Consider the 

set S of atoms of (L,< ) and define Closure on 2 as follows. 

- 
A= { a cS-/-a <sup 11-} , Açs. 

We show that the closure defined satisfies (C1) - (C4
). 

- 

(C1)
: Let A S. As a c A, a < sup A so that a c A. Hence 

A 

- 

(C2)
: Let A 5 B, where A, B 5 S. For every x cIS we have 

x < sup B so that sup B < sup B. But sup B < sup B. Thus 
- 

eup B = sup B. If a < sup A, then as sup A < sup B = sup B we have 

a < aup D. That is R c B. 

C3) : Let a e X(71-8 and a A, where A g S, a, b e S-

ThenaeAub=>a< sup (A. Li b) =>a<-sup {sup A, sup b} => 

a < sup {sup A,b1 => a < sup A v b => sup A v a < sup A v b => • 

sup A < sup A v a < sup A v b (as a g 	 Then b sup A (otherwise 

a < sup A v b = sup A) so that by Lemma 1.2.15 sup A v b covers sup A • 

- and hence sup A v a = sup A v b. It then follows that A tia = A LI b 

and b e At7. 

(C4) : Let A S. Well order A by { al, a2, 	 } and define 

inductively the set 

.br  = sup { al, a2, 	 , ar} . 

Then the chain bl  < b2  <b3  ... is finite. Thus there exists n such 

that bnm = b
n 
for all m. Therefore sup A= sup { al, 	 , a

n
) and 

hence A = { a
1- 
, 	 , an} . 
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Thus the closure defines a pregeometry G(S) on S. 

To show that the lattice of flats of G(S) is isomorphic to 

(L. <) we define the function.f. : L(G) 	 L by f(A) = 'sup A, VA c L(G). 

Let Al  -A2  be-flats-of G(S). If sup Al  m.-sup A2, th6n- 

Al  = A =112= A2. Thus f(A1) = sup Al  sup A2  = f(A2) so that f is 

one to one. 

Since (L,< ) is geometric, x = sup B for some B c S, where x c L. 

Then i c L(G) and f(13) = sup B = sup B = x. Hence f is onto. 

To show that f preserves meet and join. 

Let A,BEL(G). ThenAnBcA, AnBcB=> sup (AnB) < 

sup A and sup (An B) < sup B => sup (An B) < (sup A) A'(sup B). Put 

x = sup (A n B) and y = (sup A) A (sup B). Let Y = {a c S / a < 	 . 

Then y> sup Y. Since (L,< ) is geometric, y = bl  v b2 	 v bn, where 

b.'sareatorm.Thenb.sY for all i and so y = sup {b1, 	 , b
n 

< sup Y. Thereforey= sup Y. NowacY=>a< supA=>acA= A 

so thatYcA. SimilarlyYcH. HenceYcAu8andy= supY< 

sup (A u B) = x and so f (a A B) = f(A) A f(B). 

Now f(A v B) = sup (A u B) = sup (A u B) = sup {sup A, sup El} 

= (sup A) v (sup B) = f(A) v f(B) and the theorem is proved. 	 /1 

1.2.18 A hyperplane in G(S) is a flat covered by S in L(G). 

Thus no hyperplane properly contains another and so an 

intersection of distinct hyperplanes is not a hyperplane. 

Before we close this section we prove a useful result. 

1.2. 19 LEMMA. Every flat is the intersection of all hyperplanes 

containing it. 

PROOF. First we show that for any A T in L(G) and for any X 



withAGX.S.T,3YeL(G)suchthatXnY=AandXUY= T. 

Since 3Y. s.t. A Y. 	 T and x(4% Y. = A, if XL) Y. 	 T, 

let b e T‘X LI Y7 (as X tl Y. T). Let Y. 	 = 
+1 Y 

u b. Then X ti 1 	 i 	 Yi+1 

T and X 
UYi+1 

covers X U Y.. If follows that X r) Y
i+1 

= A 
3. 

- 
(otherwise 3 c e X el Y. ■ A so that Y.G Y. c y 

i.+1 
U c = +1 	 3. 	 1 	 Yi+1.  

Since Y
i+1 

covers Y., Y. co c = Y
i+1. 

Then X U Y. = U X I) Y. = 
3. 1 	 1. 

..1•■•••■ •••••■••••■•••.01■10 

X 1..) (C Y . ) = X Y i+i  . A contradiction). If X Y i+i  # T we then 

construct Y
i+2 

such that X ri Y
i+2 

= A, X tj 
Yi.+2 

T and'X U Y. 
1+2 

covers X U 	 As any chain in L(G) is finite, after finitely .steny 

steps we have Yi+n  satisfying x n yi+n  = A and X U Y i+n  = T as 

required. 

Let S X be a flat of G(S). Put Y 	 H, where H is a 

hyperplane containing X. (H exists as a maximal chain from X to S 

exists and is finite). Obviously XSYS S. By the above ,3 a flat 

Z with YOZ =X and Y ‘,/ Z = S. Suppose X Y. Then X = Y 11 Z Y 

which implies Z # S. Hence there exists a hyperplane H1  containing 

Z and so containing X as well Thus Y* H
1 
and Y U Z = 	 Y U H1  

= S => Y H1. A contradiction. Hence X = Y and the theorem is 

proved. 	 1/ 

1.3 RANK 

We characterise any pregeometry in terms of its rank. 

1.3.1 The rank of any subset A of S in G(S), written r(A), is the 

maximal chain length from TIT to in L(G). 

15.. 

r(S) is the rank of the preyeometry G(S) . The points and 



lines are the rank 1 and rank 2 elements respectively,  4.. 	 _ • . 

1.3.2 LEMMA. In a geometric lattice the length of any chain from y to 

x v y is not greater than that of any maximal chain from x 	 y to x. 

PROOF. Let x A y = xo  < x1  <...< xn  = x be a maximal chain 

from x A y to x. Put yi  = y v xi  . This gives 

y0= (x A y) vy=y<y
1 
 <...< y =xvy. 

—  — — n 

Since xi+1  covers x., by Lemma 1.2.15 there exists an atom ai  4 xi  with 
1 

= xi  v ai  and hence yi+i  = y v x
1+1 

= y v (x. v a.) = (y v x.) v a. 

= y. v a, , i = 0, 1, ... , n - 1 

If a. 4_ 	
yi+1 

y. , then 	 covers 
•f„ 	 Yi 

If a. < y. , then y. 	 = 	 . 
1 — 1 	 1+1 

Hence with possible repetition of some elements we have a maximal chain 

from y to x v y of length < n. Thus the lemma is proved. 	 // 

1.3.3 LEMMA. The rank function r of any pregeometry G(S) has the 

following properties. 

(R1)
r(A) + r(B) > r(A U B) + r(A fl B), VA, B C S. (sendmodularity) 

— 

(R2)r 	 = 0 	 (normalized) 

(R3)
r is increasing 

(R4)
r(A U a) = r(A) + 	

o 
VA S, Va e S. (unit increasing) 

1 

(R5)
For all A C S, 3 A

f 
GCA with r(A

f
) = r(A). (finite basis 

property) 

PROOF. (Ri):Given A, B c S. We note that A) = r(A) and 

AUB=AUB by Lemma 1.1.7. Then 



r(AU13) + r(AnB) = r(AUB) + r(AnB) 

••■■•■■•11.0■■• 	 ..■ 11.•■••■■•■■■■ 

= r(AL/E) + r(AI)B) 

—*ow 
< 	 v E)+ r(iinE) (as 	 BCE => 	A ns A() = A(7E) 

< ra v 	 + r(A AB) 

Now by Lemma 1.3.2 we have r(A v E) - r(E) < r(A) - r(ii" E) so that 

r(AV13) + r(A.", E) < r(A) + r(E) which is as desired. 

(R2)
follows from the definition of rank. 

(R3)
follows from the fact that A C B 

(R4)
: Let A C S. We consider the two cases. 

If a C A , then A U a = A so that r (A a) = r(A). 

If a 0A , then by Lemma 1.1.7 A v a covers A . Hence r(A U a) = r(A)+1. 

(115) : Let A C. S. By (C4) 3 Afcc A with Af  = A and then 

r (A) = r (Af) . 	 // 

We now link closure and rank function. 

1.3.4 LEMMA. In any pregeometry G(S) we have 

	

={acS/ r(A (,) a) = r (14) 	 , VAç S. 

PROOF. Let a e . Then by Lemma 1.1.7 5.=A Ua so that 

r(A) = r (A U a). Given any a with r (A (.1 a) = r (A) . If there exists 

b e A 61 a N.,A , then by Lemma 1.2.10 A U b covers A and so 

r(A(i b) > r(A). But as b:.c AU a we have r(A ua) = r(A Uau b) 

> r(A U b) > r(A). A contradiction. Hence A 1/ a = A and a A. 	 // 

The following theorem characterises any pregeometry in terms 

of its rank function. 
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1.3.5 THEOREM. Any function r : 2S  Z which is semimodular, 

normalized, increasing, unit increasing and has the finite basis 

property is the rank function of a unique pregeometry on S, having 

closure given by 

R = {a c S / r(A Oa) = r(A)} , VA c S. 

Conversely the rank function of any pregeometry G(S)is a function 

r : 2 4- Z which is semimodular, normalized, increasing, unit 

increasing, and has the finite basis property and the closure given by 

the above. 

PROOF. Let r : 2
s 

Z be semimodular, normalized, increasing, 

unit increasing and have finite basis property with the closure given 

by the above. We show that the closure as defined satisfies (C1) - (C4). 

(C1)is clear from definition. 

(C2): Let A B, A,B 5.- S. For any a c 21\B by 

semimodularity we have r(A Ida) + r(B) > r(B Li a) + r(A). This implies 

0 < r(B U a) - r(B) < r(A Li a) - r(A) = r(A) - r(A) = 0. Thus a c 13-  

and so A 

To show that K . ii, VA S we first show r(R) = r(A). 

Let B1  .A with r(B
1 
 ) = r(A) and let C

1 
 cc. R with r(C

1 
 ) = r(R). 

Consider C = B
1 
0 C

1 
we have C

1 
 C C g. R => r(C) .< r(ii) => r(C) = r(R) 

(as r(C) > r(C
1 
 ) = r(R)). Put B = A n C. Then B

1 
 B C- A => 

— 	 — 

r(B) = r(A). 

If B = C, then r(R) = r(C) = r (B) = r (A). 

If 3a c C 13, then r(B) < r(I3 U a) < r(A U a) = r(A) = r(B). 

Since C B R and C B is finite, suppose C B = { al, , a
n
} . 

Now by semimodularity we have 
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r (B U a1) + r (B U a2) > r(B) + r(B U al 
U a
2
) 

 — 

	

r(B) = r(B U al) > r (B U a 	 a2) 

Also r(B 	 u a2) + r(B U a3)1 r(13) + r (B U al  u a2  U a3) 

and hence 	 r(13 U a
l U a2)—> r (B U al U a2 U a3).• 

Inductively for,i = 1, 	 , n we have 

r(B U a
1
U 	 a

1-1
) ir(B UP a1  U 

	 Lia.) 

so that r(13) > r (C) . Hence r(A) = r(B) > r (C) = r(i) and therefore 

r(A) = r(i). 

Now r (A U a) < r (A (.) a) < r(A U a) and since 

r(A U a) = r(A U a) we -have r (A U a) = r (A U a) • 

Thus a c ii<=>r(A) = r(A U a) <=> r(A) = r U a) <=s• a •c A. 

(C3): Let ae AU]) and a A, 'A S, a , b e S. Since a it 

and hence r(A U a) 	 r(A) , we have r (A I) a) = r (A) + 1. Now r (A U a) 

< r(A LI b 1.1 a) = r(A (.1 b) < r(A) + 1 so that r(A 1.1 a) = r(A U a U b) 

■■■•■••••,11.•■■■ 

and hence b e AU a. 

(C4)
: Given A S. There exists A

f 
C C A with r(A

f
) = r (A) . 

For any a eA we have r(Af) = r (A) = r (A U a) > r (Af  U a) so that 

r (A
f
) = r (A

f 
U a). Hence a e Re and Hf = A. 

Then the closure defines a pregeometry G(S) on S. We next show 

that r is rank function on G(S). That is we have to show that r (A) is 

the maximal chain length from (T) to H. Given any A S and a maximal 

chain ;1") < A
l 
<...< A = A in L(G) . For each i = 1, 	 , n - 1, A

i+1 
/. 	  

coversA.so  that A
i+1 

= A
i
U a
i+1 

for some a.
1+1 	 1+1 

c.  A. NA. and hence 
1 	 1 

rAi+1 ) = r(A
i 
ij a

i+1
) = r(A

i 
U a

i+1) = r(A) 
	 1 (as a 1 

 

Inductively, r(A) = r(An) = r(A 1) + 1 = r (Ai) + n - 2 + 1 = n 

The converse was proved in Lemma 1.3.3 and 1.3.4. 	 // 
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1.3.6. COROLLARY. The pregeometry is a geometry if and only if all 

two element subsets have rank 2. 

PROOFI If G(S) is a geomety then x y => r(xy) r(y) = 1 

=> r(xy) = 2. 

Conversely, if r(xy) = 2, as r is normalized and unit increasing, 

r(4)) = 0 and r(x) =1. 
	 1/ 

1.3.7 EXAMPLE. Recall that a projective plane is a set of points S 

and lines, where lines are specified sets of points, satisfying the 

following axioms. 

Axiom 1. Every two points belong to exactly one line. 

Axiom 2. Every two lines have exactly one point in common. 

Axiom 3. There are four points no three of which are in any line. 

Points on a line are collinear. 

Define r : 2+ Z as follows : 

0 	 if A = 40 

1 	 if A is a singleton 
r(A) = e 

2 	 if IAI > 2 and A is contained in a line 

3 	 if A contains 3 non-collinear points 

Then r is rank function on a pregeometry on S. 

PROOF. To show that r is semimodular let A, B C.S. We can 

assume that A B. 

case 1. A and B are singletons. Then r(A) + r(B) = 1 + 1 = 2. 

Now there is a line containing A Li B so that r(AU B) = 2. Hence 

r(A U B) + r(A n B) = 2 + 0 = 2 = r(A) + r(B). 

case 2. Both A and B are not singletons and contained in a line. 
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If A, B are contained in the same line, then r(A U B) + r(A n B) < 2 + 2 

= r(A) + r(B). In case A and B are contained in different lines we have 

All 13 is a singleton or the empty set so that r (A n B) <1. Now r(A B) 

+ r(A B) < 3 + 3. = 4 = r(A) + r(13). 

case 3. Both A and B contain 3 non-collinear points. Then 

r(A) + r(B) = 3 + 3 = 6. Since r(X) + r(Y) <6, VX, YS. r(A) + r(B) 

> r (P. U B) + r(A ()B). 

case 4. A is a singleton x and B is contained in ex line L, where 

IBI > 2. If x e L, then r(A L.! B) + r(A 	 B) = 2 + 1 = 3= r(A) + r(B). 

If x L, we have r(A U B) + r(A 1) B) = 3 + 0 =3r(A) r (B) 

case 5. A is a singleton x and B contains 3 non-ccAlinear 

- points. Then r(A n B) < 1 so that r(A U B) + r(A 11 B) <3 + 1 < 4 

= r(A) + r(13). 

case 6. A is contained in a line L, where AJ >2 and B 

contains 3 non - collinear points. Then r(A 13) < 2 so that 

r(A U B) + r(A n E) < 3 + 2 = r(B) + r(A). 

That r satisfies (R2) - (115) follows from the definition of r. 

Thus r is rank function on a pregeometry on S. 	 // 

1.3.8 LEMMA. The conditions (R1) - (R
5) are independent. 

PROOf. We see this by examining five examples in each of which 

exactly one of (R1) - (R5) is not satisfied. 

(i) Let S = {1,2,3} . 



22 

Define r : 2 + z by 

if A = , 

r(A) =2 	 if A = S , 

otherwise. 

Theri r does not satisfy (RI) since 

r(12) + r(23) = 1 + 1 < r(3.2 •U23) + r(2). 

(ii) Let S = {1,2} . 

Define r : 2S  + Z by 

r(A) = I 	 VA S. 

Then r does not satisfy (R2). 

(iii) Let S be an infinite set. 

Define r : 2
s 

Z by 

C . 	 . ( 0 	 if A is finite, 
r(A) = 

I min {1,1ADif A
c 
is infinite. 

That r satisfies (R
2
) follows from the fact that S is infinite. 

To show that r satisfies (R
1
) let A, B S. We consider three 

cases. 

c  
case 1. AC  and B

c 
are finite. Then (A 013) = A

C 	 C  A ti is finite 

• and (A 11 13) = ACV BC  is finite so that r(A U B) + r(A 13) = 0 + 

r(A) + r(13). 

caSe 2. AC  is fin. 	 and BC  is infinite. Then (A 
(J 
 13)C = ACE) BC  

is finite and (All I3)C  = ACU BC  is infinite and so r(A B) + r(A 

10 + 1 = r(A) + r03). 

case 3. AC  and 13C  are infinite, an 
	

B 	 4, 	z. (A) +,,r(B) 

= 1 + 1 = 2 . 
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As r(X) + r(Y) < 2, VX,Y ¶ S we have r(A) + r(3) > r(A t) B) + r(A n 0) . 

To see that r is not increasing consider the set S̀.x which is 

infinite so that r(S\x) = 0. Since SN...x is infinite, there exists 

x y e 5•.x. Now r(y) = 1 which is as desired. 

That r is unit increasing follows from the definition of r. 

To show that r has finite basis property let A S. If AC  is 

finite, we have r(A) = 0. Then A is infinite and 0c:c:A with r(0) = r(A). 

. infinite If A
C 
 is infinite and A is infinite. Pick a e A. Now aC.(.A and . 

r(a) = 1 = r(A). If A
c 
is infinite and A is finite we are finished. 

Therefore r satisfies (111) - (R) except (R3). 
5 

(iv)Let S = {1,2}. 

Define r : 2S 	 Z by r(0) = 0, r(1) = 1, r(2) = 2, r(S) = .3. 

Then r satisfies (R
1) - (R5

) except (R
4
). 

(v) Let S be an infinite set. 

Definer: 23+z by 

	

'0 	 if A = 0 

	

r(A) = (1 	 if A is finite 

	

2 	 if A is infinite . 

To show that r satisfies semimodularity let A,B c- S. We consider 

the three cases and we may assume that A,B 	 . 

case 1. A and B are finite. Then A U B is finite and A UB is 

finite or empty so that r(A) + r(B) = 1 + 1 > r(A U  B) + r(Adl B). 

case 2. A is finite and B is infinite. Then A LOB is infinite 

and A n D is finite or empty and so r(A) + r(B) = 1 + 2 j 
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r(A U13) + r(A 	 B). 

case 3. A and B are infinite. Then r(A) + r(B) = 2 + 2 = 4. 

As r(X) + r(Y) < 4, VX,Y 	 S, we have r(A) + r(13) > r(A U 	 + r(A f  B). 

That r satisfies (R
2) - (R4) is clear from the definition of r. 

As r(S) = 2 and for every finite subset A of S we have r(A) = 1 

2. Thus r does not satisfy (R5). 	 // 

1:4 INDEPENDENT SETS 

We characterise any pregeometry in terms of its independent sets. 

1.4.1 An independent set of a pregeometry G(S) is a set with rank equal 

to its cardinality. 

As every set has finite rank only finite sets can be independent. 

Before we Characterise any pregeometry in terms of 

independent sets we obtain some of their properties. 

1.4.2 LEMMA. (i) Any subset of an independent set is independent. 

(ii)All maximal independent subsets of any set A have same 

cardinality, i.e. r(A). 

(iii)If I
1,  12 

are independent sets in G(S) with I'll <1121, 

then g x e I
2 1 

such that 11U x is independent. 

PROOF. (i) Let J be any subset of an independent set A. Then 

r(A) = 1A1 . By semimodularity r(J) + r(A**.J) > r(A) + r(¢) = 1A1 + 0 

= 1A1 = 1J1 + IA 	 1 >1J1 + r(A\J) we have r(J) > 1J1 . On the other 

hand r(J) < 1J1 . Thus r(J) = 1J1 so that J is independent. 

(ii) Let A be any subset Of S. Suppose that I is a maximal 
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independent subset of A with III < r(A). Then r(I) < r(A) and hence I c A. 
- _ 

We observe that I c A (otherwise by Lemma 1.1.7.I = A) and so there exists 

x 	 Then IL) x covers 1 and r(I LI x) = r(I) + 1 = III '1- 1 = JiLixI. 

Thus I U x is an independent subset of A containing I. This contradicts 

the maximality of I. Hence r(I) = 

(iii),  Let I, 12  be independent sets in G(S) with 'Ill <1121 . 

Since 12  is an independent subset of 11U  121  any maximal independent 

subset of I
1
IJ 12 has size at least 1121  . Let I be an independent 

subsetofIUI2 
 containingI(Iexistsasis independent). 1  

Then 	 (1) (otherwise III = II 1 < II2 ). Thus I contains an 1 	 1 

element of I
2 1 which is as desired. 

// 

The following theorem characterises any pregeemetry in terms of its 

independent sets. 

1.4.3 THEOREM. Any nonempty family 0 of finite subsets of S satisfying: 

(11)J is closed with respect to subsets. 
(I2) All elements of c) contained in any subset A of S are contained in 

maximal elements of() having the same cardinality. 

is the collection of independent sets of a (unique) pregeometry on S 

having closure given by 

°, 
A ={a/.3 APIerJs.ta'../IcAtiA, VA s. 

Conversely the independent sets of any pregeometry have the above 

properties. 

PROOF. Let Cl be a subset of 2
s 
satisfying the above conditions. 

Define r : 2 4.2 as follows: 

r (A) = max {III / A 21 
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We shall show that r satisfies (R1) - (R
5
). 

To show that r is semimodularity we note that for any subsets 

A, B of S a maximal independent set I in Ail B can be extended to a 

maximal independent set 12  in A LIB. Thus 

112 n Al + 112  (1 31 = II211 A r) I2 0 BI + I  (I2n h) Li (I2 	 B) 

= 1111 + II2I 

= r(A( B) + r(A Li B) 

Now r(A) + r(B) > I I
2 
 (*) AI + 11211  (I BI so that --  

r(A) + r(B) > 	 r(A Li 	 + r(A ()B) 

That r is increasing and unit increasing follows from the 

definition of r; and it is normalized as e 

To show that r has finite basis property let A,;;-: S. Pick a 

maximal element I of c./ which is contained in A. Then r(A) =III = r(I) 

Hence r satisfies (R
1) - (R5

) so that r is the rank function 

of a unique pregeometry G(S) on S. 

To show that the closure of G(S) defined as above weobserve 

. that r(I) ' III <=> I c eT and hence 

C) a) = r(A), a e 	 <=> a L/ I X .j", 3 AI e 

which is as desired. 

The converse follows from Lemma 1.4.2 and the uniqueness of 

the specification of a pregeometry from its rank function follows 

from the first half of this theorem. 	 // 

1.4.4 COROLLARY. A pregeometry is a geometry if and only if all 

2 - point sets are independent. 



PROOF. Follows from Corollary 1.3.6 and the definition of 

independent sets. 

1.4.5 LEMMA. Conditions (Ii) and (I2) are together equivalent to 

(I ) and (I2
), where (I

2
) is as follows: 

(4) If Al, A2  Ed and 1A21 = lAll + 1, then ix C Az-,A1  such 

that  
1 

PROOF. Suppose Suppose that A
1' 
A
2 
CU are maximal subsets of X ct S 

1 	 0 

such that IA11< IA21 • 	 Then there exists A
2
i A
2 
 with •I A21=  1A11 + 1  
li and so there exists x c A7  ---,AI  such that A1

ij x cc/. This contradicts 
- 

the maximality of A
1 
in ej contained in X. Hence 1A11 1 

Similarly I1'21  —>IA11 and therefore IA 1 = IA21 . 1 	 // 

1.4.6 EXAMPLE. Let S be a Unite dimensional vector space. If we 

define j 	be the family of all linearly independent subsets A of S, 

theng is the family of independent sets'of a pregeometry on S. 

1.4.7 LEMMA. The conditions (I
1
) and (12

) are independent. 

PROOF. We see this by examining the following two examples in 

each of which exactly one of (Ii) - (I2) fails. 

(i) Let S = {1,2) and cr= {,,12, . Then only (II) fails. 

(ii)Let S = {1,2,3} . Let 	 = (4), ,2,3, 23} . Then only 

(I
2
) fails. 

	
/1 

1.4.8 LEMMA. The following four conditions are equivalent. 

(i) A is independent. 

(ii)A is minimal among those sets having closure ik 

(iii)In a giving listing a
1
, a2, 	

of elements of A we have 
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ai_i f Vi • 

(iv) There exists no a s A with a e 

PROOF. (iv) => (i). 

In any G(S) listing elements of A as a
l' 
a2' 

... 

Put X. = aa 
1 	 1 • • • i-1 • 

Thenai+1  y A a -- .
1+1  -

.1:) X. so that 
X.1+1-r  

;?. X. . Consider the chain 
-- 1  

.1) 	 X1*** X2  ... C A in L(G) which is finite, of length n say. 

- 
Thus X

n 
= A and 1A1=n so that A is independent. 

(i) => (ii). 

Suppose 3 Cr_r.; A with E = R. Let a e A--C. Then a e R and so a e 

so that there exists an independent set I 5111  C and I LI a is not 

independent. But I Li a A and A is independent. A contradiction. 

- Hence A is a minimal set having closure R. 

(ii)=> (iii). 

If 3 ai  C al  ... 	 , then by Lemma 1.1.7 R = 	 so 

that A is not a mioimal set having closure R. Thus ai  g a ... ai_i, 

(iii) => (iv). 

Suppose that 3 a e A such that a e 	 a • Listing elements of A in a 

way that a is the i
th 
element, for some fixed integer i . 

Now a 	 a. . By the finite basis property g A
f 
4:. 	 a . with 

1 	 1 . 

A
f 
= 	 Choose a minimal B 43  such that B = A-á.. 

1 	 1 	 1 

Let j be the maximal suffix such that a. 
3 

- 
B 	 ... ai_ = > ai  e 	 ai  = B 

the assumption). Now a. 	 Ba and a. c 

(C3), ai  e (r--aj)(..) ai 	 al 	 A 

B. Then j > i (otherwise 

. a 	 which contradicts 
i-1 

)LI a so that by 

contradiction. 
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Thus there exists no a 

1.5 BASES 

•We characterise any pregeometry in terms of its collection of 

bases. 

1.5.1 Defining a basis of G(S) as a minimal set having 5; as closure 

we have 

1.5.2 LEMMA. The bases of G(S) are exactly the maximal independent 

sets in G(S). 

PROOF. We first show that a basis B of G(S) is at maximal 

independent set. Now B is a minimal set such that 5 =S. 

If gxclasuch thatxcir...x , theni= 	 which isa contradiction. 

Thus Vx c B, x 0 B--,x so that, by Lemma 1.4.8, B is independent. 

For anyx0Bwe havexcS=Band so r(B U x) == r(B)< 1B UP xl. 

Therefore B U x is not independent and hence B is a maximal independent 

set in G(S). 

Next suppose that B is a maximal independent set in G(S). 

Then x % B => BU x is not independent, => r(B u x) =r(E3), => x e 5 , 

=> = s . 

If 3 x c B such that a-4,x = S = 11, then r(B) =r() = r(B-4...x) 

< 1131 , a contradiction. Thus B is a minimal set having S as closure; 

which is as required. I/ 

1.5.3 A subset A spans (gonerates)B in G(S) if B = A. 

Thus every basis spans S. 
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We say that a depends on A if a c A. Then every element 

depends on any basis. 

1.5.4 LEMMA. (i) Every independent set extends to a basis and this 

property characterises independent sets. 

(ii) If A is an independent subset of a spaning set C, then 

there exists a basis B such that Ac- B C. 

- 
PROOF. (i) Given an independent set I in G (S). If I 

consider a maximal chain of length n from I to S : 

4 I u xi  4.:  I Li x1x2 	 I u x1  ... xn  = S. Then I U x1  ... xn 

is a basis, having rank equal to its size. 

(ii) As C is spaning we have r(C) = r(S) so that there exists 

an independent subset of C of size r(S). Let B be a maximal 

independent subset of C containing A. Then r(B) = r(S) so that by 

Lemma 1.5.2 B is a basis. 	 // 

We characterise any pregeometry in terms of its bases. 

1.5.5 THEOREM. A nonempty family of finite subsets of S,eadh of 

the same size, is the collection of bases of a pregeometry on S if 

and only if it satisfies the following: 

(B) If B 	 B2 

6 U 
1 

and x c Bi-410,..B2, then 	 y C BB1  suah that 

PROOF. That the family 	 of base of G(S) satisfies (B) 

follows from Lemma 1.4.2. 

Let...9 be a nonempty family Of finite subsets of S of the 

same size satisfying (B). 
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Put J-  = {I/Ic A E B } 

Then jj/. 0 as 13 0 and (Ii) is satisfied from the definition 

of tri . 

To show that 7satisfies (I'
2
) let A . A2  e jwith 1-   

IA1  I + 1. Then there exist B1° B2 c 19 such that A1  c B - 1°  
c B
2 
 Let 

- . 

{x1, 	 xn, 131, 	 br} 
1 

A2 = {y
1°  ••• ° Yn° Yn+1)  

B2 	 1Y1°  ••• 	 Yn°'Yn+1°  cl ••• 	 cr-11  • 

Consider 
B1,B2. 

By (B), there exists z
1 
e B
2 
such that 

Bi = 	 b1) u z1  e 

If z
1 
e A
2° 
then A

l 
u z
l 
c c.) and (I'

2
) is satisfied. 

If z
1 
le A
2 
consider B'

1 
 and B

2. 
By (B) there exists z

2 
e B
2 

such that B = (B
1
",.b

2
)uz e/3. If 

z2eA2 
we are finished, 

2 	 2 

if not remove b
3 
from B' and so on. Since 

2 

fbl,"" br 	 I  > 	 cr-111 , we reach step k(k < r). 

where B' = (B.
1 
 N.,b

k
)uz

k 
e_Band z

k2. 
Thus B"DA

1 
 uz

k 
 cc). 

k - • 	 k -  

Therefore by Lemma 1.4.5 0 is the family of independent 

sets of a pregeometry on S with Bits family of bases 	 // 

1.5.6 LEMMA. In any G(S) the following statements are equivalent. 

(i) H is a hyperplane of G(S). 
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(ii)ROSbutHux=S , VxeS'''% H. 

(iii)No basis B is contained in H but if x e 	 H, 3a basis 

B' such thatxeBcHu x. 

(iv) H is a maximal subset of S which is not spanning. 

(v) H is a maximal set of rank r(S) - 1. 

PROOF. (i) => (ii) follows from the definition of H. 

(ii) => 	 : Suppose that H contains a basis B. The 

S =BcHso thatH= S. ThusHdoes not contain any basis. Let 

xeS H. ThenHux=S so that r(Hux) = r(S) and soHux 

contains a basis B and x B (otherwise H contains a basis). 

(iii)=> (iv) is obvious. 

(iv) => (v) : By the assumption r(H) < r(S). If r(H) < 

r(S) 	 1, then H is not maximal non - spanning set. Thus r(H) = 

r(S) - 1. For any x C S H, H u x is a spanning set and so it 

contains a basis. Hence r(H u x) = r(S). Therefore H is a maximal 

set of rank r(S) - 1. 

(v)=> (i) : It suffices to show that R = H. Suppose 

3X 	 H. Then r(H u x) = r(H u x) = r(R) = r(H) = r(S) - 1, 

contradicting the maximality of H of rank•r(S) - 1. Thus R = H. 	 // 

1.6 CIRCUITS 

We characterise any pregeometry in terms of its circuits. 

1.6.1. A subset A of S is dependent in G(S) if it is not 

independent. 
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A circuit of G(S) is a minimal dependent subset of S. 

1.6.2 LEMMA. The collection:Kof circuits of G(S) has the following 

properties. 

(Ko) C e 3< <=> r(C) = ICI - 1 = r(C̀‘a), Vac C. 
(K1 
 ) Any circuit is nonempty and finite. 

(K2)No circuit properly contains another. 

(K3)Every infinite subset of S contains a circuit. 

(K4) If CC1 	
C
2
e and a e C

1 
 () C2' 

 then 3 c Eck S.t. 

C. C
1 	 2

N a. 

PROOF. (K) is clear from the definition of circuits. 

(K1) : Since (i) is independent, any circuit is nonempty. 

As r(C) = ICI - 1 any circuit is finite. 

(K2  ) : Since any circuit is a minimal depependent set*, any circuit 

properly contains no other circuit. 

(K3): If A is an infinite subset of S in G(S), then A is 

dependent. Thus it contains a minimal dependent set which is a circuit. 

(K4)
: By semimodularity we have 

r(C
1
U C

2
) < (C1

) + r (C
2
) - r (C

1 
(1 C

2
) =(C

1 
 ) + (C 

(as C
1  C2 

 is indeoendent.) 
,  

and so 

r(C
1 	

C2'.,. a) < r(C
1  U C

2) 

< C
1
1 - 1 + 1c21 - 1 - 1C1 n C21 

c IC1 	C
2\al 

Thus CU C2\a is dependent and hence contains a circuit which is 

as desired. 	 1/ 
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We link closure and circuits. 

1.6.3 LEMMA. A = {a /a eCC AU a, some circuit C} U A. 

PROOF. Let a eCAU a, for some circuit C. Then CN-a is 

independent so that by Theorem 1.4.3 a e A. 

Conversely if a e A-- A, then there exists an independent 

I A such that I U a is dependent. Pick a circuit C 5ia L/I. 

	

'Then a e C c. I U a (otherwise C is independent). 	 // 

1.6.4 THEOREM. Any :,:9ubset e of 2 which satisfies (K
1
) - (K

4
) 

is the collection of circuits,ofa unique pregeometry on S, having 

closure given by 

= 
	

/ a e CC.'a U a, some C (41 id A, VA S. 

Conversely the circuits of any pregeometry on S have the above 

properties. 

PROOF.. Assume that t is a subset of 2S  satisfying (K
1
) - (K). 

We first show that the closure defined as above satisfies (C1) - (C
4)
. 

(C1)is trivial from the definition of closure. 

(C2):Let A c: B. For any a E A,-„B, a e CAU a for some 

CefwehaveaeC GBLiasothatacE. ThusA B.  

To show that -7-7, = A, VA c-L S we first show that C in (1(
4
) can 

be chosen to contain any given b e C
l' 
i.e. we shall show 

(1(:1) C1,C2  e e, a e Clfl C2, b e C2410,C1  => 3 C e f s.t. 

b e C Ci  

	

If not, there exist C
1,  C2' 

a, b, a e C1 
	
C
2' 
 b e C2'-.C1  

'  

such that for any C e eand a C
1
() C
2 
we have b C. Choose 
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one such with 1 C
1 L) C2

1 minimal. Let C c lo be such that 

•a 	 C C C1  U C2. By (K2) C 	 C2  and so .741pc c CC2. Since 

C C 1  U C2  and c c2, c c C1. Now CiU C C 1  V C2  and 

b e (C
1 
 U C

1 
u C) so that IC1  U CI < 1C1 Li C21 . Therefore 

3 C3  c 	 ,C
3 	 1

U C, containing a but not c (as IC1 C21 is —  

minimal such that (1(
4
) fails). 

Observe that C3  U C2  G C1U C Li C2  = C1  U C2  and b C3  as 

b 	 C1, C and so b e C2---,C3. Since c C3, C2  but c e C1, C2  we 

have c c (C
1 	

c
2) \(C3 U C2

) and hence 1 C
3 	

C
2
1 < IC1 Lif C21 

As IC1(J C21 is minimal there exists an element C' of .6)  

contained in C3  U C2  containing b and not containing a E c3  n C2. 
-7° Thus 3 c ° e La such that a C' 	 C

1 
t) C

2 
and b e C. This 

contradicts the assumption of C1, C2. Therefore (K4) is obtained. 

Given A c- S. If b E 	 A, then 3-C2  e 	 s.t. b c C2 	 A U b- 

and C
2 
 A U b (as b g 	 . Hence C

2 	
b = (AA-- A) U(A Ub) so 

 — 

that we can choose a e C
2 
ri 	 . Thus a e A => 3 c

1 
e b s.t 

a e C1  A ti a. Hence a e C
1 
ri C

2 
and b e C 	 (as b 	 .> 

1-- 	 2 	 1 

b 	 C1:S.- AL' a A) so that by (K4) 3 C3  c 	 s.t b C C3C:. C1{JC2EAUb 

and a le C3* Now the finite set (A----A) A 0 	 ri C
2 - 3 

-  

(as 	 (1 C3 	 L(A----.A) 1) C17 U (ANA) i) C23 and (/-1A) 	 ci  = a, 
r - 

a e 	 c3). 

If (A----A) n c3  4) consider C3  and C1  instead of C2  and C1  and 

obtain C
4
e L9 s.t 	 n c4 	 n C

3 
and b e C

4* 
Eventually in 

finitely many steps we obtain C e C.2 such that (A---.A) 	 C = $ and 

•b e C. Then be Cc- AUb => b c A. A contradiction. Therefore 

(C
3
) : Let a e A U b and a A, A S, a,b S. There exists 



36 

- 

C e 	 s.t a E C c- A Li b U a. Now C cj: A LI a since a A. Hence 

CCAUbandbECsothatCCAUa. ThusbeA0a. 

(C4) : Let A; S. Consider the family of subsets of A which 

do not contain an element of 	 and partially order them by set 

inclusion. This family is not empty as it contains (I)  . It contains 

only finite sets. If the upper bound of any chain contains an element 

of e then some member of the chain will also contain this finite set. 

This contradicts the choice of members of the set, so the set contains 

an upper bound of each chain. By Zorn's Lemma there exists a maximal ' 

element A
f 
in this family. Obviously A

f 
is finite. If (a-  e A\A

f' 

then 3 C E e s.t. a e C C. Af  U a (as Af 
is maximal). Thus A

f
. A and 
 -- 

hence Fif  = Af  A. Since Af  A, Af-;",F  'A and therefore Af  = A. 

Hence the closure defines a pregeometry G(S) on S. To show 

that e is the family of circuits we first show that every element 
C E 	 is a circuit. 

Cc b=--> c c c 	 (cNsbc)u c => cc 	 co  c Xs.t. 

c c c 	 (cN.,c)uc. = c => c G c 
0 	 0 

x E C C (CoN,X) (,) X => X E Co\ X => .3 C2  E 

X E C° c1(C •,x) U x => C' c.0 c C => C' = C = C 
—  0 	 0 -  	 0 

Thus C c ,7; • 
By interchanging the roles ofYand 6-'in the above we show 

that every, circuit is in L419  

The uniqueness of the pregeometry follows from the definition 

of closure in terms of circuits. 

The converse has already been proved. 	 /- 

1.6.5 COROLLARY. The pregeometry is a geometry if and only if all • 
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circuits have cardinality at least 3. 

PROOF. Follows from Corollary 1.4.4 • 

We recall that a graph (V,E) is a set V of vertices and a 

family E of unordered pairs of vertices, called edges , and a polygon 

is a finite set of edges {(v1,v2), (v2,v3), 	 (v i, vn), (vn, v1)} 

with 	 j 	 17. # 'V. 
1  3 

1.6.6. EXAMPLE. The polygons of any graph, in which any infinite 

collection of edges contains a polygon, are the circuits of a 

pregeometry on the set of edges of the graph. 

PROOF. We need only show that the collection of polygons 

satisfy (K4). 

Consider two polygons, 

C
1 
 : (v

l'  v2 
 ) , 	 , (v

n-1'vn), (vn'v1)  

C2 	 : (# w ). 	 , 	 w ) 	 Ow 	 w ) 
l' 2 • ' 	 m-1' 

 
in ° 	 m' 	 1 

such that C
1 
 () C

2 
 # . Without loss of generality we assume 

(v11v2) = (w1,w2) and vl  = w1, v2  = w2  . 

Consider the collection (v2,v3) 	 , (v,, vn), (vn, v1), 

(w1, wm).  (dra m-1), ••• 	 (w3' w2
). This is a finite closed 

Path. Hence it contains a minimal closed path - or polygon - which 

does not contain (vi, v2). 	 /- 

1.6.7 LEMMA. The conditions (K
1
) - (K4

) are independent. 

PROOF. We see this by examining the following four examples 

in each of which exactly one of (K1) - (K4) is not satisfied. 

(i) Let S be any set and ‘,7( = {} . Then only (1C1)  fails. 
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(ii)Let S = {1,2} and (.7‹ = {1,2,12} . Then only (K2) 

fails. 

(iii)Let S be an infinite set. Let x y e S. Put 

= {x,y} . Then only (K3) fails. 

(iv)Let S = {1,2,3} and t.7K= {12,23} . Then only (K4) 

fails. 	 II 

We link bases and circuits of pregeometxies. 

1.6.8 LEMMA. If B is a basis of G(S) and x e SNB, then there 

exists a unique circuit C = C(x, B) such that x e C 5LB cix . 

This circuit is the fundamental circuit of x with respect to 

the basis B. 

PROOF. First we show that I U x contains at most one circuit 

if I is independent in G(S) and x e S. Suppose that I u x contains 

two distinct circuits Cl, C2. As I is independent C1  and C2  both 

contain x. Now x e.C111 C2  and hence by '(K4) 3 a circuit C
3 
 of G(S) 

such that C3  C1  U C2Nx. But C1  U C2NxG_ I. Thus I contains a 

circuit C3. A contradiction. 

Let B be a basis of G(S) and x e SN.B. Then B U x is 

dependent and it contains a circuit C. Since B is independent, 

Band so x e CC. B Llx. As B U x contains at most one circuit, 

C is unique. 	 /7 

As a consequence of Lemma 1.6.8 we have the following 

stronger result ,writing C(x, B) for the unique circuit C such that 

x E C c B Ux. 
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1.6.9 THEOREM. Consider any basis B of G(S) and any x e SNB. Then 

(BNy) U x is a basis of G(S) if and only if y e C(x, B). 

PROOF. Let (B \y) U x be a basis of G(S). Then C(x, B)=.1-  BUx. 

Suppose y C(x, B). Then C(x, B) 	 (B \ y) U x and so (BNy) U x can 

not be a basis. Hence y e C(x, B). 

Assume that y C(x, B). If (ENy)lj x is not a basis, Then 

(B\y) U x contains a circuit C'. Hence B U x contains a circuit 

C' 	 C(x, B). A contradiction. Thus (B\y)U x is a basis. 	 // 

1.7 FLATS 

We present a characterisation of any pregeometry in terms of 

flats, which is due to Roberts 

1.7.1 THEOREM. Let Fr, r = 0,1,2, ... , n, be disjoint families of 

subsets of an arbitrary set S, with Fn  consisting of S alone. A 

subset A of S isF-dependent iff A is contained in some member of Fe 

for some r < IAI ; otherwise A is /2  -independent. Suppose 

(1)Each F-independent r-element subset R of S is contained 

in exactly cne member of F
r
, denoted by M(R1, for r = 0, 1,..., n; 

denoting a typical member of Fr  by Fr, 

(2)If F
r 
contains an F- independent (r-1)-element subset R of 

S, then Fri? M(R), for r = 1,2, ... , n; 

(3)F 	 => r > s. 
r 4= s 

For AC- S, we define J(A) to be the intersection of all members of 

L) F containing A. 
r=0 r  

The above conditions define a pregeometry on S, with J the 
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closure, P the set of flats of rank r, and the F-independent sets 

being exactly the independent sets. Conversely, given a pregeometry 

on S with Fr  its set of flats of rank r, the above conditions are 

fulfilled, with the independent sets being exactly the F-independent 

sets, and the closure being J. 

The pregeometry is a geometry iff Fo  consists of the empty 

set alone and F consists of all singleton subsets of S. 

PROOF. We require several preliminary lemmas. 

1.7.2 LEMMA. If R is an F—independent r-element set and a X M(R), 

then R i.J a is an F-independent (r + 1)-element set. 

PROOF. By the definition of F-independence, R, and hence 

R U a, is contained in no F
t' for t < r. Suppose R U a F. Then 

by (1), Fr  = M(R), contradicting the choice of a. 	 // 

1.7.3 LEMMA. If t < r, and Fr  contains an F.-independent t-element 

set T, then F :› M(T). 
r*s 

PROOF. If t = r-1, the above is true by (2). If t < r-1, 

M(T) 4 F
r 
by (3), and M(T). 	 F

r 
since the families 'Fr are disjoint. 

Thus there is an a
l 
E F
r
\, M(T). By Lemma 1.7.2, T

l 
= T U a

l 
is an 

F-independent (t+1)-element set. Again, if t+1 < r-1, there is an 

a, c F NM(T
1
) such that T

2 
= T
l 

a
2 
is an F-independent (t+2)- 4 	 r 

• 
element set. We continue thus until we have an F-independent (r-l)-

element set 
Tr-t-1. 

 Then, by repeated use of (2), 

M(T) .  
	

II 

1.7.4 LEMMA. If A 5 Sr  there exists a maximal F-independent 

subset of A. If R is any maximal F-independent subset of A, then 
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J (A) = M (R) 

PROOF. Every subset of S of cardinality exceeding n is 

F-dependent, while the empty set is F-independent. Thus there exists 

at least one maximalF-independent subset of A, say R; let R have 

cardinality r. Then 

F
t 

A => F
t 

 

t > r, 

by the definition of P-independence.-  If t > r, F
t 
 D M(R) by Lemma 
 F 

1.7.3; if t = r, Ft  = l',1(R) by (1). Thus Ft9 A => Ft  .'M(R). 

If M(R) A, let x e AN M(R). Then R U x is A:-independent by Lemma 

1.7.2, contradicting our choice of R. Thus J(A) = M(R). 	 II 

1.7.5 LEMMA. Any subset of an F-independent set is F-independent. 

PROOF. We show that any superset of an F-dependent subset T 

of S is F-dependent. Let R be a. maximal F-independent subset of T, 

and let a c S \T. Then if a e M(R), T U a S M(R) = J(T) by Lemma 

1.7.4, and T U a is F -dependent. If a je M(R), R U a is F-independent 

by Lemma 1.7.2. Thus, using (2), 

T 	 J(T) = M(R) 	 M(R U a) , 

and T U  a M(R U a); hence T U a is again F-dependent, since R a 

has lesser cardinality than T U a. Since any infinite subset of S 

is F -dependent, any superset of an F-dependent subset of S is 

F -dependent. 	 // 

1.7.6 LEMMA. Let R be a maximal F-independent subset of A S, 

and let R Ux be F-independent for some x e SN A. Then R U x is a 

maximal F-independent subset of A U x. 
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PROOF. Suppose RU xU y is an F -independent subset of 

AU x, where y e A\ R. Then by Lemma 1.7.5, R U y is F-independent, 

contradicting our choice of R. 	 11 

PROOF OF THEOREM 1.7.1 Suppose the families Fr  of subsets of 

S satisfy the conditions of the theorem. Since S c Fn, if A S, the 

intersection in the evaluation of 3(A) is not vacuots. Thus, from 

the definition of J, A c.J(A), and if A G,  B, 3 (A) 	 J (B) . If R is a 

maximal F-independent subset of A, J(A) = M(R) by Lemma 1.7.4, giving 

immediately the finite basis property for J (since 3(A) = J(R) = M(R)) 

and the idempotency of J (since J(M(R) = M(R)) . 

To show that S is a pregeometry with J as its closure, we still 

need to show that J satisfies the exchange property. Suppose 

a,b c  S such that b g 3(A) = M(R), but b e J(A U a), with a and R as 

above. If RI) a is F -dependent, R is a maximal F -independent subset 

of A U a, so that 3(A U a) = M(R) = 3(A), contradiction. Thus 

R U a is F-independent, and, since a it A, R U a is a maximal 

F-independent subset of AU a by Lemma 1.7.6. Then J(A U a) = 1\1(R U a) 

by Lemma 1.7.4, and b c M(R U a). ',low b M(R), so that R Li b is 

F-independent by Lemma 1.7.2, and M(R LI b) = M(R Li a). From Lemma 1.7.6 

and 1.7.4, since b g A and R Li b is g-independent, J(A Li b) = 1,1(R 	 b). 

Thus 

a e M(R 	 = M(R 1,1 b) = J (A Li b), 

and the exchange property for J is verified. Thus the closure J 

difines a pregeometry G(S) on S. 

Let A 6 S, and let R be a maximal F-independent subset of A. 

Then J(A) = M(R) eU Fr 	Lemma 1.7.4; on the other hand 
r=0 r  
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Fe UF => J(F) = F, by the definition of J, and the flats of G(S) 
r=0 r  

are exactly the members of (J Fr • r=0 

If T Ft, let R be a maximal F-independent subset of T. 

If I RI < t, T iR M(R) by Lemma 1.7.3; then if x e T 	 M(R) , RU x 

is F-independent by Lemma 1.7.2, contradicting our choice of R. 

Thus IRI = t; let R = r 	 ..rt. 	 If 1 < i < t, 
1 

r..r 	 r 	 ..r. 1.. 	 i-1 	 1— 	 1 

=> J(ri....ri_i) = 	 = J(r1....ri). 

Then 	 U()4 J(111) ji J(r1,r2) ji 	  j(R) = T 
Y= 

is a maximal chain from J(0) to T in L(G) , and Ft  is the set of flats 

of rank t in G(S), for each t. 

Let A be a subset of S, and R a maximal F-independent subset of 

A. Then the rank of A in G(S) is the (finite) cardinality of R, and A 

is F-independent iff R = A, if f the rank and cardinality of A are the 

same. Thus the F - independent sets are precisely the independent sets 

of G(S) , completing the proof of the first part of the theorem. 

Conversely, let G(S) be a pregeometry of rank n on a set S, and 

L(G) its lattice of flats. Let F-z- be the family of flats of rank r 

in G(S) , for r = 0,1, ... ,n then the families Fr  are disjoint, and Fn  

consists of S alone. Now any infinite subset of S is both dependent 

and F -dependent4 hence let A be a finite subset of S, of cardinality t. 

If A is dependent, r(A) < t, and A is F-dependent. If A is 

F-dependent, A c Fr  for some r < t; then A Fr  by the defintion of closure 

and r(A) < r < t, so that A is dependent. Thus the independent sets of 

G (S ) are exactly the F - independent sets. 
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Any independent r-element subset R of S is contained in one 

member of Fr, namely R. If RC F 	c:Frir/ Re Ft, for some 

t < r, contradicting the fact that r(R) = r. Thus (1) is true. 

If F
.r 
contains an independent (r-1)-element subset R of S, F 	 R 

r 

by the definition of closure; Fr 
R because their ranks in G(S) 

differ, and so (2) is true. (3) is true by the definitionof rank in 

G(S). 

The last statement of the theorem is immediate from (C5) and 

(C6' ) and the proof of the theorem is complete. 
	

/ / 



2 BASIC PROPERTIES OF PREGEOMETRIES 

2.1 ISOMOPPHISMS 

2.1.1 Two pregeometries G(S) and G(S1) are isomorphic if there is a 

bijection 	 S  S' such that i(R) = i(A) , VAc S. 

We write G(S)G(St) and call i an isomorphism from G(S) to 

G(S'). 

Now we examine the relations between isomorphism and the 

various characterisations of pregeometries. 

2.1.2 THEOREM. Two pregeometries G(S• and G(S') with rank functions 

r and r' respectively are isomorphic if and only if there exists a 

bijection 	 S 	 S satisfying r(A) = r'(iA), VA 	 S. 

PROOF. First assume that G(S):3::- G(S'). Then there exists an 

isomorphism i : S S'. Let A C S. Consider any maximal chain 
\ 

< A
1 
<...< A

n 
= A in the lattice of flats of G(S). Then 

< IA
1 
<...c an = IA is a chain in the lattice of flats in G(S'). 

Suppose 3 j such that iA. < Y < iAj.1.1  for some flat Y of G(S'). 
_ 

H.enceA.<x < A
j+1 

, where i(X) = Y. Now i(X) = ix = Y = Y = iX 

so that X = R and hence X is a flat in G(S). A contradiction. Thus 

ri(iA) = r(A). 

Conversely let i : S 	 S' be a bijection Satisfying 

r(A) = r' (IA), VA c S. Let A 	 S. Then 

x e i(A) => x = i(y) for some y e A, => r(A tiy) = r(A). => 

• r'(i(A u y)) = r'(iA), => r'(iA u iy)• = 	 => rk(iA u x) 

= r' (iA), => x 	 iA 
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_ 
Thus i(A) C IA . 

Y c iA => r° (iA LI y) = r' (iA) , => r' (1 (A U x)) = r' irk) 

where y = ix for some x €S, => r(A LI x) = r(A) => x e R, 

=> y E 

Therefore —CA c i(A) and so i(A) = IA. 	 // 

In fact an isomorphism between two pregeometries preserves. 

rank, independencesbases and circuits and vice versa. 

2.1.3 THEOREM. A bijection i : S 	 S°  is an isomorphism from G(S) 

to G(S1) exactly when any one of the following three conditions holds, 

(i)I is independent in G(S) <=> i(I)is independent in G(S1), 

(ii)B is a basis in G(S) <=> i(B) is a basis in G(S), 

(iii)C is a circuit in G(S) <=> i(C) is a circuit in G(S'). 

If i is an isomorphism then the induced map on flats is a 

lattice isomorphism. 

Conversely, if GS) and G(S1) are geometries the existence of 

the lattice isomorphism induces a geometric isomorphisM. 

PROOF. First; i is an isomorphism from G(S) to G(S1) 

<=> r(A) = r' (IA), VA c S, 

<=> IAI = r(A) exactly when liAl = r' (IA) 

<=> Condition (i) holds. 

Secondly; condition (ii) is equivalent to (i). 

Thirdly; the equivalence of (iii) follows from (i) and (K0). 

Let i be an isomorphism from G(S) to G(S1). Let L(G) and L(G') 
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be the lattices of flats of G(S) and G(S') respectively. 

Define IP 	 L(G) 	 L(G1) by 

tp (R) = i(A) , VA c L(G). 

Let A, g E L(G). Then (1)(A) v 0(g) = i(A) v i(g) = i(R) v i(B) 
---____ 

= i(A) u i(B) .= i(A) u i(g) = 	 u g) = i(R u g) = 	 u B) = $(71 v 
••••••••■•■•••■•■• 

and 0(R A g) = 	 n g) = cP(A n g) = i(R n g) = 	 = i(i) n i(E) 

= i(A)fl i(B) = 	 A 	 (B) = (A) A i(g) = .0(R) A 4) (5) - 

Thus L(G) and L(G) are isomorphic. 

Let G(S) and G(5') be geometries such that L : 	 where L, L' 

are lattices of flats of G(S), G(S') respectively. Let ip 	 L 4- Li  

be lattice isomorphism. Since G(S), G(S' ) are geometries, the atoms 

in L, L' are { a-  / a e 	 { b / b c S' } respectively.. 

Define i S S' by i = / ato ms . 

Then i is one to one and onto as ip / atoms is one to one and 

11){:;/acs} ={ E/beS'I. 

Let A c S. Then i(A) = i(sup A) = IP (sup A) = stip (0) 

= PA = iA . 
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2.2 SUBPREGEOMETRIES 

We show that in a natural way any pregeometry on S induces 

a pregeometry on any subset of S. 

2.2.1 THEOREM. Any pregeometry G(S) induces a pregeometry G
s
(T), on 

any subset T of S, called the subpregeometry on T induced by,G(S) with 
Oir 	 IV/ 

closure A defined by A = A fiT, VA T. 

PROOF. It is obvious that A A , VA T so that (C1) is 

satisfied. 

- 
Let A c B. Then A C-Bfl T so that AE iS and hence 

- 
Thus A=AnT B T B. 

Given a c A Li b and a // A , where A c_ T, a,b c T. Now a j A 

andacAUb asacT. By the exchange property in G(S) we have 

bcAUa. ThereforebeAUa. 

Let A T. Since AC:. S, 3Af.CAW1thAf  = A. Now 
_  

A
f
=y7IT=AnT=A. ii 

Any pregeometry and its subpregeometries have structures 

related as in the following lemma. 

2.2.2. LEMMA. (i) In any subpregeometry Gs(T), A = A, VA T, if and 

only if T is a flat in G(S). 

(ii)The independent sets in Gs(T) induced on T S by G(S) 

are exactly the subsets of T which are independent in G(S). 

(iii)The rank of AT in Gs(T) is its rank in G(S). 

(iv)The circuits of G
s
(T) are exactly the subsets of T which 

are the circuits of G(S). 
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PROOF. (1) Assume that A = A, VA T. Thus ri=i=i;nT 

so that T is a flat in G(S). 
- 

Assume that T is a flat in G(S). Let A c T. Then ACT=T 

so thatA=RnT=A. 

(ii) Let A be independent in Gs
(T)• By Lemma 1.4.8 there 

is noaeAsuch thataCA\a=A\a nT.. If there isaeA 

such thatael-7a , thenaeA\a\ T. ButAcT. Therefore 

there is noaeAsuch thataeA\a and henceAis independent 

in G(S). 

Assume that A is independent in G(S) and A C  T. Now there 

is noaeAsuch thataeA\a DA\a so that there is noaeA 

such that a e A \ a. Hence A is independent in G
s
(T) 

(iii)follows from (ii) and the fact that rT
(A) is the 

cardinality of a maximal independent set of Gs(T) contained in 

ACT. 

(iv)follows from (1
0 
 ) and (iii). 	 I/ 

2.3 CANONICAL GEOMETRIES 

We examine particular subpregeometries. 

2.3.1 A subpregeometry Gs  (T) is a canonical geometry of G(S) 

if it satisfies the following. 
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(CG I) T  = 

(CG2) IT () (i-ON:47) I  = 1 , Va 	 . 

Obviously a canonical geometry is a geometry, as the induced 

closure of a singleton is the singleton. 

The existence of a canonical geometry of any pregeometry is 

guaranteed by 

2.3.2 THEOREM. A canonical geometry of any pregeometry 0( ) exists 

and all canonical geometries of G(S) are isomorphic. 

PROOF. In G(S) consider the equivalence relation E on SNTI 

defined by a E b iff a = b. Let T be a set of elements each from 

one equivalence class, no two elements of T from the same class, 

then T satisfies (CG 1) and (CO 2) so that'G (T) is a canonical 

geometry of G(S). 

Let G
S
(T
1
) and G

S 
 (T
2 
 ) be canonical geometries of G(S). 

Define a bijection f: T
1 
-+ T
2 
by f : (T

1  (1aNT)))1-4.  T2 
n (;•,T). 

To show that f is an isomorphism let A C T. First notice that 

t = f(t) , Vt c T
1 
since t and f(t) are in the same equivalence cless. 

Now 

     

      

      

      

R 	 {a/aeA}= { 	/acA}={f(a) /a.EA} 
•••■■■■■)11. 

={f(a)/acA}=f(A) . 

Thus since xeAn T
1 
<=> f (x) c A (-) T

2 
we have 

f ( 	 (A) = f {x / X E d i  (A) } , 

▪ {X / X E Any I 

▪ { f(x) / f(x) e 	 1,21 , 
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= n T2  
= f(A)1T2  , 

= el?
2
(f(A)) . 	 /1 

In a geometry G(S) if Gs(T) is a canonical geometry we have 

T =Sexactly whenaeSimplies,ar)T=anT=a . We then have 

provee. 

2.3.3 COROLLARY. A pregeometry is a geometry if and only if it is 

a canonical geometry of itself. 

2.3.4 THEOREH. Any pregeometry\G(S) canonically determines a 

geometry on the equivalence classes of S̀.7) . 

PROOF. As the equivalence relation a in the proof of 

Theorem 2.3.2 partitions N4 into equivalence classes S', where 

every element of S° is of the form x for some x e S\T) and 

x e y <=> x = 1-7, Vx,y C S'. For any A' r-: S' define C(A') as 

follows : 

ce (A') ={SeS' /be Li a' } . 
a'eA' 

We show that a satisfies (C
1
) - (C6). C6-  

(C1)
: Given WC: S°. Every element of A' is of the form x for 

some x e S̀,..17t; and x e L) a' . Hence x e  
a' CA' 

(C2): Let A' C: EAB'), where A',B' e S'. Then 

AIC:ff(B.) =>U a' 	 c. () x' 
a' CA'  CAB' ) 

	

=> (.) a' 	 C: 	 IL) x' 	 = Lfx1(){a-./..-  / B' ,;.e Li x°}, 

	

aieTO 	 xteee(131) 	 x'eB. 	 x'eB' 



=> Li a' 	 U 
a' e A 	 x' c CE(B1) 

=> (i(A') 	 6i(BI). 

= LI{20/ x' e B'} , (by Lemma 1.1.7) 
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(C3)
: Let a e a7(A' LjE.) and ; ji 	 (,) , where A° e S', ;,17.•e S°. 

Then a c {Vela' e A' U }and a it (Ua°/a' c A') . Put A = 	 a' 
a' e A' 

Now a A and a c A LTTo so that by the exchange property in G(S) we 

have b c AUa = 11 a' U a = U.a' Li a • Hence b Ee.e(Liu a-) 
a' E A'' 	 a' e A° 

(C4)
: Given A°  cs.;; S' 

3 AfC CA with Af  = . 

• Let A = U a° 	 • Then A,-- S so that 
a' c A° 

Consider A° = 	 ; which is finite. We 
a e A

f 

show that A' 
f 
c c A' and (_e.(A.) = 	 A') . 

a

-  

 e A' => 3 b A
f 
and b E 	 => b £A=>b c c for some c

- 

 e 

= > 	 = b = ; c A'. 

That is A' C C. A . Now as 3; e A <=> 3 c c b s.t c e A
f 
and c = b we have 

- 6€ (Ai) = {/ae 	 E)}= (a /ae Uc)={a/acii f} 
e A' 	 c e A

f 

a e A' 

(C5)
and (C

6
) follow at once from the definition of egand the 

property that a e 1:7; <=> a = 1-1; . 	 I/ 

Notice that the geometry obtained in Theorem 2.3.4 is 

isormorphic to.any canonical geometry of G(S). Redo [ 57] defined 

the canonical geometry of G(S) to be the geometry obtained as in 

Theorem 2.3.4. 

2.3.5 'THEOREM. For any geometry G(S) a partition of a super set 
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V of S in such a way that no two elements of S are in the same 

• 
equivalence class of V determines a pregeometry on V having 

G
V 
 (S) = G(S) as a canonical geometry of G(V). 

PROOF. For any subset A of V, define LI(A) as follows : 

(A) = (,){ equivalence class of V containing bfWequivalence 
b e g

A 

class of V containing no element of S } , where 

S
A 
= SO{ U equivalence class of V containing a } . 

We show that 
	

satisfies (C1) 	 (C
4
). 

(C1)
: Given Fic:V. For any a e A and a is not in an equivalence 

class of V containing an element of S we have a e ei(X), Vx c V. 

If a E equivalence class containing an element b of S, then b e gA  

so that a e (AA). 

(C2)
: Let A Bc:1- V. It is clear from the definition of athat 

et (A) 	 (B). To show that 	 ( ei(A))= Ce(A) for every 

A C V we observe that 

B' 	 (.1 equivalence class containing a 	 , 
a C(A) 

= SO{U equivalence class containing a, . 
a e A 

For any x e 6g( et(A)) if x e equivalence class containing b, 

/28 
where b e B , then x e LL (A). Thus a( 61(21)  ci(A). 

(C3)
: Let a e Ce(A L/b) and a% OA), where Ac- V, a,b e V. 

We consider the class containing a-. If this class contains no 

element of S we have a e L-,& a (A). A contradiction. Hence there 
exists an element a' of S in this equivalence class. If the 

a e 
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equivalence class containing b contains no element of S , then 

b CCe(A U a). Assume that b, b' are in the same class, where 

b' CS. 

Now a g e1(A) => a g equivalence class containing x, 
- 

Vx CS
A
. As the union of equivalence classes containing an element 

of A Ub is the union of equivalence classes containing an element of 

A U b' we have S
A b = SA U b' 

and e-e (A.0 b) = ee(A U b•) 

There fore a E c_1(A u b) => 	 E 	 (A U b) => 	 C evul u b.) =.0 

C- 	 U 
b' • By the exchange property in G(S) we have '•' 

f.)/) 
b' 	 el(A U a') = %--• (A U a) so that b' C ei(A U a) . 

A (../ a' 

Hence b C 	 (A U a). 

(C4
) : Given A'C- V. Let 

A" = U 	 { equivalence class containing a' } and 
a' C A' 

A = A" f' S. Then A SS and by the finite basis property in 

G(s) 3 A
f 
(LC A with A

f 
= A. For each a c Aft  pick one element 

x
a 
c equivalence class containing a and x

a 
C A'(x

a-
exists as every 

element in A is in a class containing an element of A'). Let 

A' = x
a 
/ a c A

f 
} , Then AA°. Now 

(A') = U 	 { equivalence class of a }U{ equivalence class 
-f 

a e A
f 

containing no element of S } , 

= Lj 	{ equivalence class of a }V{equivalence class 
a c A- 

containing no element of S }, 

= 	 (At) . 

We see from the definition of el that G
v(S) = G(S). To show 

that G(S) is a canonical geometry we note that MO =ii {equivalence 

class containing no element of S }. Therefore S 	 ao = . 
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For any a j el(0)..> a c equivalence class containing an element s of 

S => S= s => Ce(a)"-.. et()) = equivalence class containing 

s => S 	 ( 	 (0) = s. 	 // 

2.3.6 THEOREM. Two pregeometries with isomorphic canonical geometries 

have isomorphic lattices of flats. 

PROOF. We first show that any pregeometry G(S) and its 

canonical geometry Gs(T) have isomorphic lattices of flats. Let L(S) 

and L(T) be lattices of flats of G(S) and G (T) respectively. 

Consider the function f : L(S) 	 L(T) defined by f(A) = A n T, VA E L(S). 

Obvitusly f is one to one. To see that f is onto we observe that 

B e L(T) <=> B = B fl T, B T so that Be L(S) and f(B) = B. 

We show that f preserves meet and join. Let A, B c L(S). 

Then f (A () B) = (A I 	 n T = (A T) (B 	 T) = f(A)I) f (B) and 
• 

f (A) v f(B) = (A n T) v (B T) = (R OT) v (13()T) =ivi=A UB 

= AUB1T=f (A U B) = f (A v B) 

Let G
s
' (T') be a canonical geometry of G(S), where 

G (T)== G '(11"). The theorem is proved if we can show that G
s
(T) and 

GS' (T') have isomorphic lattices of flats. Let i be an isomorphism 

from G (T) onto G 1(T'). Denote by L(T) and L(T1) the lattices of flats 

of G
s
(T) and G 1(T')respectively. 

Define e5 	 L(T) +L(T') by 0(A) = i(A), VA e L(T). 

Then is one to one and onto. Let A, B c L(T) . Then (A n B) = 

1.01 (I B) = (A) () i (B) = 4)(A) n (Bir  and cp (A U B) = i (A U B) = i (A U B) 

= i(A) 	 i(B) = 0(A) U 0(B). 

Thus L(T) and L(T') are isomorphic and the theorem is proved. // 
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2.4 TRUNCATION 

We define the truncation of any pregeometry. 

- 
2.4.1 THEOREM. Lett/

1 
 be the family of independent sets of G(S). 

Then 

()k 	
= { I eq) / III <k }, for some positive integer k < r(S) — 

is the family of independent sets of a pregeometry on S - the truncation 

of G(S) at k. 

(-7 
PROOF. It is clear that 	 satisfies (I ). 

We show that 014:  'satisfies (12).  Let A 	 S. If I
1,  12 

are 
, 	. 

maximal elements of c.1k contained in A and II1I < 1121 . By Lemma 
1-  

1.4.2 2x c I2NI1  such that I
l
U x e 	 . As I

112
e
k 	

'I
l
l < 

, and so 11133  xl < k.- Thus I1U x e 	 k  . A contradiction. Hence 

II1I = 11  21 

Therefore c,)k is the the family of independent sets of a 

pregeometry on S. 	 // 

We note that the k - uniform geometry on a set S is the 

truncation at k of the Boolean geometry,on S. 	 / 

2.5 CONTRACTION 

We define the contraction of any pregeometry. 

2.5.1 THEOREM. Let c.) be the family of independent sets of G(S). 

Let T C S and define c) (T) to be the family of subsets X of T such 

1-  
that there exists a maximal independent subset Y of SNT with X U Y 

Then a(T) is the family of indepen4ent sets of a pregeometry G(S).T 
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on S - the contraction of G(S) to T. 

PROOF. We see that 5 (T) is a family of finite subsete of T 

if j (T) # ¢. . Since ST contains a maximal independent subsets of 

G(S) and 	 T, ¢ 	 J(T) so that 	 (T) # ¢ . The theorem is proved 

if we can show that c)  (T) satisfies (I1)  and (I2
). 

(11 
 ) : Let B e 3 (T) and A E. Then there exists a maximal 

independentsubsetYofSTwithBUYCd. Now AUY...c_BUY and 

soAUY e J.  Thus A e"c)(T). 

(I
2
) : Let AC T. Let X

1, 
X
2 
be maximal sets in ‹..) (T) 

• 

contained in A. Then there exist maximal independent subsets-Y Y
2 

of S̀..,T with X
1U Y1 Ej 

and X
2
tj Y
2 
 c5. Put T1 = (SNT)L, A. 

Then X
1
ti Y
1 
and.X

2
(J Y

2 
arc maximal independentsets of G

S 
 (T
1 
 ) and 
 . 

so IX U Y
l
l = 1X

2 
tj Y
2
1 . But 1Y

1
1 = 1Y

2
1 and X

1 
 r) Y

1 
= X
2 
n Y
2 
= ¢. 

Thud IX11 = IX21 . 	 /7 

2.5.2 LEMMA. Let r
T 
be the rank function of G(S).T. Then 

r
T
(A) = r(A U(ST)) - r(S) , VA <= T. 

In particular r
T
(T) = r(S) 	 r(SN.,T). 

PROOF. Set A T. As in the proof of Theorem 2.5.1, X LiY is a 

maximal independent set of G(A•U (S'-T)) if X is a maximal independent 

subset of A in G(S). T and Y is a maximal independent subset of ST in 

G(S). Thus r(A U (Ssft,T)) = Ix U Y1= 1X1+1Y1= rT(A) + r(SN,T) as desired. // 

2.5.3 EXAMPLE. Let M(G) be a pregeometry derived from a finite graph 

G = (V, E) as in Example 1.6.6. For any T C-E, let GT  be a subgraph 

of G obtained from G by deleting all edges not in T. Then M(GT) is 
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the contraction of M(G) to T. 

(7.  
PROOF. Let .t) ,J (T) be the families of independent sets of 

M(G), M(GT) respectively. Observe that I is independent in 14(G) <=> I 

does not contain a polygon of G. 

Let I e cy. (T). Then I does not contain a polygon of G
T. 

There exists amaximal subset X of ST such that I U X is not a polygon 

of G and so X e j and IL) X c 	 . 

-- 
Let I 6,  X e J,  where X is a maximal independent subset of 

S",1/4T and lc T. Thus I LiX does not contain a polygon of G and hence 

I does not contain a polygon of GT  so that I e g (T). 

	

Hence M(G
T
) is' the contraction of M(G) to T. 	 // 

2.6 UNION AND DIRECT SUM OF PREGEOMETRIES 

We discuss the union of two pregeometries. 

2.6.1 THEOREM. Let ji  and c)2  be the collections of independent 

sets of G
1
(S
1
) and G

2
(S
2) respectively. Then the collection 

	

cj—  = 	 U 12  / Ii
E 	 , I = 1,2 } 

is the collection of independent sets of a pregeometry on 

Si  LI S2  - the union of Gi(S ) and G2  (S2) - denoted by G1(S1) v G2(S2). 

	

PROOF. .Since 	 0 	 , we have cj 	 . We see 

that any set in j-  is a finite subset of S].  Li S2  . 

	

We show that 	 satisfies(I
1 
 ) . Let I c tj and J I. Then 

	

= I3U 12, where Ii  c JI, i= 1,2. Put ji  = J n 	 = 1,2. Then 

J.c j.andJ=J1IJJ2C 3. 



59 

We next show that cJ satisfies (I2
). Let AC 

--S 
	 S2. 

2
. Let I, 

J be maximal sets in (1) contained in A. Suppose that III <IJI 

There exists a presentation I = 11U 12, J = Ji  iJ J2  with 

I
1 
(1 12 

= J
1 
r± J2 = ¢ . Choose one of these such that II1 ('1 2I+ 

I21  () J 1  I is minimum. Now II11 + 1121 = III < IJI =II+ IJ2I 

and so I'll <IJil or 1121 < 13.21. For definiteness assume 

II1I < IJ1I . Since J and I are independent in G1 (S1'  ) 3ry e J 1 	 1 	 1 	 1 

with Ii = 	 U y e JI  . 

If y e I, then as y % I, y e 12• Put I = Il(j y e 	 and 

* 	 * 	 * 	 * 	 , * 	 , 
12  = I2Ny e 2  . Then I = 	 tj 12  and II  (1 12  = ¢ . But II]. 	 J21 = 

1 * 
(Ii  U y) 	 J21 = Iiin J21 (as y 	 J2) and 112  (1,111 = I(I2Ns..y) IJII 

= 112 	JII- 1 (as ye JI  (.1 12), contradicting the minimality of 
,r  • J 1 + 	 n J

1
1 . Hence y I and I U y = (1

1 
U y) U 1

2 
e 	 . 

1. 	 2 

This contradicts the maximality of I. 

Thus 	 III 	 > IJI . 

Similarly 1JI > III so that III = IJI and the theorem is 

proved. 	 // 

Inductively we have 

2.6.2 THEOREM. The union of any finite collection of pregeometries 

exists and is a pregeometry. 

PROOF. Let G
1
(S
1
),...,Gn

(S
n) be pregeometries. The theorem 

is true when n = 2. Assume that the theorem is true for any union 

of k pregeometries, when k.< n. Let J.  be the collection of 

independent sets of G.(S.), i = 1,2,...,n. By the assumption 

= 	 I 	 u I
n-1 
 / I. e(i., i = 1,... n- 1 

a. 
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is the collection of independent sets of a pregeometry G(S1Li...1JSn_i) . 

Thus by Theorem 2.6.1 the union of G(S
1 	US -1

) and G(S) is 

a pregeometryon S
1 n  

as required. 	 /1 

2.6.3 EXAMPLE. (i) Union of a k
1 
- uniform geometry on S and a 

k
2 - uniform geometry on S is a (k1 

+ k
2
) - uniform geometry on S. 

provided 1St >. ki  + k2  . It is Boolean if ki  + k2 	 . 

(ii) Any k - uniform geometry on S is the union of k 

1 - uniform geometries on S. 

2.6.4 COROLLARY. The union of geometries is a geometry. 

PROOF. It suffices to show that G
1
(S
1
) v G

2
(S
2
) is a 

geometry if G
1
(S
1
) and G2(S2) are geometries. Let A = {x,y} be 

any 2 - point subset,of.S1  L) S2. Thus A = Al(j A2, where A1  c_ Sl, 

A2.2 S2  . Thus lAil <2 and since G(Si)  is a geometry, by Corollary 

1.4.4A. is independent in G.(S.), i = 1,2. Thus A is independent in / 

G
1
(S
1
) v G

2
(S
2
). 

	

Hence G
1
(S
1
) v G

2
(S
2
) is a geometry by Corollary 1.4.4. 	 // 

The following example shows that the converse is not true. 

Let S1  = {1,2,3} , S2  = {3,4,5} , (71  = {4;1,2,3, 12,13,23} 

0-2  = { 4),4,5,45} „5-  = 2S  , where S = 	 U S2  

Then.j is the family of independent set of the geometry G1(S1) * G2(S2). 

By Corollary.1.6.5 G
2(S2) is not a geometry since = J3} . // 

2.6.5 A pregeometry G(Sitj S2) is the direct sum of G1(S1) and G2(S2) 

if G
S1L 	 (S.) = GAS.), i = 1,2, and each independent set I in IS

2 
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0 
G(S1U S2) can be written uniquely I = 11  Li 12' where I. is unique and 

independent in G.(S.
7
) for j = 1, 2. 

3  

We denote the direct sum of G
1
(S1
) and G

2(S2) by G1(S1)1:71 G2(S2). 

Thus the union of G
1
(S
1
) and G

2(S2
) is certainly a direct sum 

if S1fl  s2 = 4). 

2.6.6 THEOREM If S
1 

S
2 
= 0 we have the following. 

(i)The independent sets in G1(S1) ®G2(S2) are the disjoint 

union of independent sets, one from Gi(Si)fone from G2(52). 

(ii)The rank function of G
1 
 (S )0) G

2
(S
2
) is given by 

r(A) = r1
(A riS ) + r

2
(A )S  ) ° VA S

1 
() S
2 1 	 2  

• where r
1, 
r
2 
are the rank functions of G

1
(S1), G2(S2

) respectively. 

(iii)The closure A of A in G1
(S
1) ED G2(S2) is given by 

5 = closure of (A (1St)  in Gi(S ) 6'  closure of (A ns2) in G2(S2) 

Conversely if the rank, closure or independent structure of 
0 

G(S
1 S

2) is given in the above way with respect to Cs u s  (S1) 
1 	 2 

0 
and Gs i S

2 
	 , then G(SiU S2) = G

S1 	 S2 
(S
1
) 	 G

S1
, 
 U S2

(S
2
) . 

PROOF. (i) follows directly from the definition of direct sum 

Given A Q S
1 

S
2 
. Let r(A) = III , where I is a maximal 

independent subset in G
1
(S
1
) ED G

2(S2
)
'
contained in A. Then 

0 
I = I1iJI2,whereIjisindependentinGAS.),j=1,2.ThusI.is  

7 3 	 7 

a maximal independent set contained in A n S. (otherwise I is not maximal). 

Hencer,(AOS.)=11.1and so r(A) = II) = 'Ill 	 1121 = r
1
(A n s1) 3 

+ r
2 
 (A n S

2
) as required. 
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(iii) Let A S1  U S2. We first show that for j = 1,2, 

r (.( A U a) 1) 	 = r. (A (is.) <=> a e R. Let I be a maximal independent 

(a 
subset contained in A. 	 Then I =

1 
l) 1
2' 
where I

j 
is a maximal 

independent subset 'contained in A r) S_,,j =1,2. Thus a e A <=> r(A U a) 

'= r(A) <=> I is maximal in A U a <=> I. is maximal in (A ti a) () S., 

<j = 1,2 	 ==> r.(AnS.) 	 rItti a) (i S.), j = 1,2. 
3 

As a e A only one of a e S1  or a e• S2  occurs, for definiteness , 

suppose a e s
1 
and hence (A U a) (1• S

1 
 = (Al s1)d.,/ a. Thus a e A

.> 

r
1
((A U a) () S

1
) = r

1 
 (A n1) => r((A 11 s1) U a) = r1(A as1) .=> a e 

closure of All S1  in Gi(Si) . Clearly the closure of A ()S. in 

G. (S.) 	 A, j = 1,2, so that (iii) is -proved. 
3 

Now conversely we show that any independent subset I in 

0 
G(S
1 
U S

2
) can be written uniquely as I U I

2 
 where I

. 
is independent 

	

1 	 ' 
0 

in G 	 (S.), j = 1,2. Let I be independent in G(S
1 
Li S
2
). Observe 

S
l
l) S
2 
3 

0 
that the rank of A il S, in G ° 	 (S.) is the rank of A 0 S. in G(S US ). 

J 	 S
1
1.1 S
2 
j 	 3 	 1. 

Thus III = r(I) = r(I (), Si) + r(I n S2). But III = II (*) Sil + II 0  S2I• 

S 	 <ince r(I 0 S.) 	 II OS,I , r(I i) S.) = II ri s.1 , j = 1,2. Put 
3 	 J 	 3 	 3 

I. = I (Is., j = 1,2. Then I. is independent in G ° 	 (S.) and 
3 	 3 	 3 	 S

1
(0 S
2 
3 

0 

I = Ii  U 12. Suppose I = 111J 12  , .where Ii  is independent in 
' 1 	 i 	i  I 	 I 	 I 

=- G
5
0 52(Sj),  j = 1,2. Then I. C If? S. = I.. But II I + 1121 3 	 3 	 3 	 1 

I 	 I 

lin s1( + kis21 . Thus I = 1 ii S = I1  and 12 = I () S2 = 1 1  

2.6.7 S is a separator of G(S) if G(S) = G
s
(S G

s 
(S '.s ) . 

1  1 

Observe that S
1 
is a separator if and only if S\5

1 
is a 

separator. 

- We have one further characterisation of direct sums in 
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terms of circuits. 

2.6.8 LEMMA. S
1 
is a separator of G(S) if and only if every circuit of 

G(S) is contained in either S
1 
or 

PROOF. Assume that every circuit of G(S) is contained in either 

S1  or SNSi  = S2. Let I be any independent set of G(S). Consider 

II S. j = 1,2. If (I S. is dependent in G (S.), then it contains 3, 	. 	 S 	3 

a circuit of G (S.) which is also a circuit of G(S). Thus I (-) S. is 
S 3 	

_ 
 

0 
independent in G

S 
 (S.), j = 1,2. Also I = (I n s1) u (I s ). Let 

and 12  be independent in Gs  (Si.) and G5(S2) respectively. If 
a 

I = 11U 12 is not independent in G(S), then it contains a circuit C. 

We can assume that CCS1.  Thus C C- I which is imposible. Hence 
 — 1 

is independent in G(S). 

Let A S. Then by the above r(A) = r(A n S1) + r(A 11 S2). 
, 

We show that A = closure of (A r) s1  ) in G5(S1) U closure of (Al) S2) 

in G (S2). Let R. be closure of (A n S.) in G
S 
 (S.), j = 1,2. We see 

.3 	3 

that El n E2 = 	 and R
1 
u R
2 
C R. Let a e RNA. Then there exists a 

circuit C of G(S) with a eCc AU a. If C S1, then a e R1. In case 

- 
CQ S 

2  we have a s A2
. 

By theorem 2.6.6, G(S) = G5(S1) (+) G5(SNS1) so that S1  is a 

separator of G(S). 

Let S
1 
be a separator of G(S). If there is a circuit C of 

G(S) with C n S1 	 and C n (SNS1) 	 . Let S2  = S\S].. Then 

C n Si  is independent in G
S 
 (S.), j = 1,2 and r(C) = r(C 	 s1) .+ r(C i) S2)  3 

Ic ns1  I + Ic nS21 = 1d1 . A contradiction. Thus every circuit 
is contained in either Si  or SNSi. 	 // 
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2.6.9 LEMMA. In any G(S) with = 	 if r(Si) + r(SS1) < r(S) then 

any hyperplane contains either S1  or S\Si. 

PROOF Given any G(S) with 4) = q) and r(S1) + r(S•,,..S1) < r(S) for 

some S
1 
 S. Put S

2 
= 	

1 	 1 
. We first show that S and.S

2 
are flats, 

— 	 .  

b 1  	 1 	
r(S
1 
 U b) + r(S

2  ) > r((B1 	
b) 4„) S2)+ r ((s1  U b) 	 s2), 

=> r(S1U b) + r(S1) > r(S) + r(b), 

= > r(b) < r(S Lib) + r(S2) - r (S) 

=> r(b) < r(y 	 r(S2) 	 r(S), 

=> r(b) < r(S
1 
 ) + r(S

2  ) 
	 r(S),, —  

=>"r(b) <0, 

=> b 

A contradiction. Hence gl  = S1  and similarly g2  = S 

Suppose that 4 is a hyperplane of G(S) such that H *S1, H 

Then as H 	 S. is a flat we have r(H s . ) < r(S.), j = 1J2 and so 

r(H ri s
1 
 ) + r(H ()S

2 
 ) < r(S

1 
 ) + r(S

2
) - 2, By (R

1 
 ) we have , 	 —  

r(H ri S1) + r(H (i S 2) 2.  r(H) + r(0 so that r(H) < r(Si) + r(S2) - 2 

< r(S) - 2. A contradiction. This either H Si  or H "PS2  and the 

lemma is proved. ' 1/ 

We now characterise separators. 

2.6.10 THEOREM. In any G(S) with .if) = (I) , r(S1) + r(SN,S1) < r(S) <=> S1  

is a separator of G(S). 

PROOF. Assume r(S
1 
 ) + r(SN„S

1 
 ) < r(S) , where S

1 
 S. Let 

—  

S2  = 	 By theorem 2.6.6 and Lemma 2.2.2 it Suffices to show that 

0 	  
A = (A (1 S1) () (A (i s 2) , VA c. S. Let A GI S. Since any hyperplane contains 
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either S or S2, any hyperplane contains A n S
1 
either contains A n S1  

1 

and A ri S
2 
or contains A (1 S

1 
 but not A n 5

2
. Let 	 be the family of 

hyperplanes of p(s). 

Now A nSi  = n .{ii/ H Ecgand H A 1) S11 r 

n{1-1/11 ge, HnAnS1d-IAOS2}) n MH/H 	 Ans,}1, 

and AnS
2 
=(.0{H/H

1
,H-AITS

2
1)0 (n{foi EX,}211/7E3 

2 

If we let gel, ;e2, ge3  be the families of hyperplanes of G(S) containing 

( A) 	 (A 	 ) A 11 s but 'not Ans 	 s2 but n6t Al)S 
1 	 2 	 1 	 .2' 	 1 

respectively, then by distributive law of sets we have 

(A OS ) 	 (A OS2) = (,) H )(1 [( 	 H) LJ ( IM )1, 

	

H ER'
1 	

H EX
2 	

H ege
3 
" 

R 	 ( 	 H 
H e le some 

2' 	 ' 

. 7, a sJ 

R . 

) U ( 	 H 
H c ,some His2  

r 

The converse follows from Theorem 2.6.6. 	 // 

2.6.11 LEMMA. Letr, 	 S
2 
 be disjoint separators of G (S) . Then S

1
U S

2  

and S
l
n S

2 
are also separators of G(S). 

Furthermore S
1 
is a separator of G (T), VT S

1
. 

PROOF. By semiraodularity r((S̀....S1) U ( "*-S
2
) +

1
) il (S■S

2
) )
—
< 

r(SN.S
1 
 ) + r(S"4*S

2
) and r(S)U S

2
) + r(S

1 
11 S

2
) 
—
< r(5

1
) + r(S

2 
 ) so that 

adding two inequalities yields•r((EN.S
1  U 2

)) + r(S
1 

s
2
) + 

n (SS)) + r(Si  V S2)1 r( HS1) + r(Si) + r(S--..S2) + r(s2) < 

r(S) + r(S) which gives r(S) + r(0) + r(S'■Si  (i S2) + r(Si  j S2) < 2r(S). 

Thus r(SN.S
1  U S

2) + r(S
1 
 V S ) < r(S) and so S U 
 2 — 

is a separator of G(S). 
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Since S and S
2 
are also disjoint separators of G(S), 

1 
C 	 C 

S
1
n s2 = (S1 () S2) is a separator of G(S). 

Let r
T 
be the rank function of G (T). Then rT(T) = r(T) = 

r(T f) S1) 	 r(T A (ss1  = r(S1  ) + r(T\S1  ) = r(S1) + rT(T."-,.()1  ) 

so that by TheoreM 2.6.10 T is a separator of G,(T). 0 
• // 

2.6.12 LEMMA, The family { Si} of minimal nontrivial separators of 

0 
are the minimal 

1 

nontrivial separators of G(S). 

PROOF.LetISAbe the family of minimal nontrivial separators 
i 

of G(S). If S. n Si# 0 	 for some i 	 j, then S. a S. is a separator 
•i  

, 
and Sili Si  c:.-.. Si, contradicting minimality of Si  . Thus Si/1 ,Sj  = 

. 	 0 

Vi # j. Now r(S) > r(Si  ( S2  U ...). Suppose that there exists 

k(>r(S).)elementsinfS.}. Then r(S
1
) +..+ r(S ) >k > r(S). 

k 
0 	 • 0 

This 	 implies 	 r(S, U S2L.1 	 ) > r(Si  Li 	 L/Sk) = r(Si) +...+ 

r.(S
k) 
>k > r(S). A contradiction. Thus. {s.} • consists of m 

-elements, where m < r(S). By Lemma 2.6.11 and the finite induction 
0 

s
1
U• • • Us is a separator of G (S) . 

m • 

. 0 

If S ..\S
1
U 	 S

r
.
a.
#c , then it is a separator of G(S) and 

contains a minimal nontrivial separator, S. say. Thus ;S:. S.N.S
1
U ...US

m . 	• 	3 	 • 
0 	 0 

which is imposible. Therefore S = S
1 	

S
m 
. 	 // 

As a direct consequence we have 

2.6.13 THEOREM. Every G(S) has a unique decomposition into a direct 

sum of irreducible direct summands. 

That is G(S) = 0(S1) ED ...GP G(Sm), where S 	 .,S are the 

	

rti 	 - 

minimal nontrivial separators of G(S). 
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2.7 CONNECTED PREGEOMETRIES 

We give necessary and sufficient conditions for a pregeometry 

to be connected. 

2.7.1 A pregeometry G(S) is connected if the only separators of G(S) 

are 4  and S, thus G(S) with is-  = 	 is connected iff r(A) + k(S--A) > 

VA 	 S. A pregeometry is disconnected if it is not connected. 

2.7.2 LEMMA .G(S) is connected if and only if Vcp A 	 S, there 

exists a circuit containing elements, of both A and S A. 

PROOF. Follows from Lemma 2.6.8. 

The following useful necessary and sufficient condition for 

connectivity is due to Whitney (35 

2.7.3 THECREM. G(S) is connected if and only if every two distinct 

elements are contained in a circuit of G(S). 

PROOF. Assume that G(S) isconnected. Let x1, x
2 
 be distinct 

elements in S. By Lemma 2.7.2 there exists a circuit containing xl  

and some elements of SNx1. Suppose that there exists no circuit 

containing both xl  and x2. Let S1  = xl Li  all circuits containing xl. 

Then 0 S C S. Again by Lemma 2.7.2 there exists a circuit P
3 1 

containing elements of both S and S. S
l' 

Pick an element' 

x4C P3  (1 Sl. Since xl  je P3, x4  xl-so that by the definition of 

S
1 
there is a circuit P

1 
 containing x

1 
and x

4' 
Let S

2 
= P31) (s's. S ) 1 

- and choose x
3 
e S
2' 

Now S
1 

S
2 is a subset of S such that it contains 

circuits P
1 
and P

3 
containing x

1. 
and x respectively and P P have a 

common element. 
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We choose a.  smallest subset S' of S with such property. 

Then S' = P1  U P'3, where Pi and P; are circuits containing xl  and 

an element X3  of S'L.S1  respectively and Pi , P; have a common 

element (otherwise S' is not smallest with the-specified property). 

Let x4  be 

circuits 

Thus P4  

a cOiitmon element of P' and P'' By (1(1) there exist 1 	 3 	 4 

x
1 
and x

3 
respectively but not x' . 

4 

4
, P
5 
have no common element 

P
4 
 and P5 both containing 

P
5 
 C P' L) P' and so P 
 1  	 3 

(as P' IJ P' is smallest with the specified property). Since 1 	 3 

P4 l' 
P' P

4 
 contains an element x5  of 	 . Also P

5. 3  

contains an element x6  of Pi N. P; . Consider the circuits pi and P5. 

Now P'
1  contains x1 

and P
5 contains x3 

and they have a common element , 

x6. But x5  g P5  and-so Pi Li P5 	 Pi U P. A contradiction. 

Thus there exists a circuit containing both xl  and x2. 

Let G(S) be a pregeometry such that every two distinct elements 

are contained in a circuit of G(S). If • S1  c; s is a separator of 

G(S), let x
1 

S 	 By the assumption Vx
1 xeSthere exists a 

circuit C containing both x and x
l' By Lemma 2.6.8 C c S1 

 and 
x  

so x c S
l' Thus S1  = S. Therefore G(S) is connected. 

2.7.4 EXAMPLE. Any k - uniform pregeometry, on a set of size > k is 

connected. 

2.7.5 A subset T of S is connected in G(S) if G (T) is connected. 

It then follows that any minimal separator of G(S) is connnected. 

// 

2.7.6 LEMMA. If C
1 
 and C

2 are circuits of G(S) containing x, y and 
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x, z respectively, then there exists a circuit C of G(S) containing 

Y. z and C C C1 
 U•C 

•  • 

PROOF. We proceed first to prove this for finite S by 

induction on ISI . It is true for ISI < 3. Assume that it is true 

for any G(T) with ITI < n. Let G(S) be a pregeoMetry on a set S of n 

elements. Let C
I 
and C2 be circuits of G(S) containing x, y and 

x, z respectively. 

If C1C2- S, letT=S"Nafor someaeSN,C1 
UC2' , 

Then C
1 
and C

2 
are circuits of G (T) containing x, y and x, z 

respectively and so by induction hypothesis there exists a circuit 

C of C(T) containing y, z as required. 

If C
1 
L. C
2 
= S. By (V) there exist circuits C

3' 
C
4 
with 

4 

y c C
3.  
- c C

1 	 C2  \ x, z C C4 
	 C

1 	
C2 x . Obviously —  

C3  fl C1 	 C1  C2  and C3  IT C1  # ¢ . If C3  /I C1 	 C1 	 C2  , 

then C
3 
U C
2 
# S and C

3 
II C

2 
# ¢ . so that by the induction 

hypothesis there exists a circuit C3  of s(C3  U C2) containing y 

and z. Thus we have the result if C3  n C1 	 C1̀-..,C or 

C4  n C2 	 C2".. C1. Suppose C 1 C1  = C1 	 C2  and C4  n C2  = C2-.C1.• 

Now C3  Li C4  C1  1/ 	 x and as C3  ri (:2-, CI) 	 ¢ we have 

C
3 
() C
4 # ¢ . By the induction hypothesis there exists a circuit 

C of G (C U C
4  ) containing y, z. Hence we have the result for S 3  

finite S. 

In case S is infinite we apply the Above for Gs(C, Li Ca). 	 /1 
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As a consequence of Lemma 2.7.6 we note that Gs(Ci  L, C2) 

is connected if C11 
C
2 
are circuits of G(S) having.a common element. 

2.7.7. THEOREM. Let A, B be connected in G(S). If A 11 B 	 4>, 

the A U B is connected. 

(In case A n B = (1) this is not necessarily true. For 

example, the union of two disjoint polygons of a graph is not 

connected in the polygon pregeometry of that graph but both of the 

two polygons are connected). 

PROOF. Pick an elementxeAri B. Let y, zbe distinct 

elements in A Li B. We show that there is a circuit of G(S) 

containing y and z. If both y and z are in A or B, then y, z are 

contained in a circuit of G(S) as A and B are connected. Suppose 

thatyEA's. B,ze13%,%A. Then by Theorem 2.7.3 there exist 

circuits C
1 
or G

S  (A) and C2 of Gs(B) containing x, y and x, z 

respectively. By Lemma 2.7.6 there exists a circuit C C1  U C2  

containing both y and z. The theorem is proved. 	 // 

The following theorem shows that any connected pregeometry 

contains subpregeometry or contraction which is connected. The 

proof is due to Murty [66] . 

2.7.8 THEOREM. If G(S) is connected, then for every x C S at least 

one of G
s(s  x) and G(S).(S ss■  x) is connected. 
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PROOF. The theorem is true when 1St = .1. Let G(S) be 

connected and ISI > 2. Let x e S. Suppose that G(S). (S N x) is not 

connected and so it has a separator S1 	 S Nx. Then 

S N.„ x NS1 	 , S 	 x and S x N, Sl  is also a separator of 

G(S) .(S N x). Let Si, S2, ... , St  be all minimal nontrivial 

separators of G(S).(S x). Thus t .> 2. We show that Gs(S N„ x).  is 

connected. Let y, z be distinct elements of SNx. 

case 1. If y c S., z e S., where i 	 j. Since G(S) is 

connected, y and z are contained in a circuit C of G(S). Suppose, 

that x C C. Then x is maximally independent i.n S 	 (S x) so 

that C N, x is dependent in G (S) . (S x) . For any y C C x, 

C y = ((C Nx) 	 y) U x is independent in G(S) and hence 

(C \ x) N y is independent in G(S). (S N x) . Thus C x is a 

circuit of G(S). (S N.„ x). By Lemma 2.6.12, Si  n S. := 	 . Therefore 

CN x is a circuit of G(S).(S'S. x) which is not contained in Si  or  

(S N x) N„ S. This contradicts the separability of S.. Hence 

x C and so C is a circuit of G (S 	 x) containing y and 1. 

case 2. If y, z CS. 	 Pick a C  S. for some j 	 i. Then 

there exist circuits C
1 
and C

2 
of G(S) containing a, y and a, z 

respectively. By case 1, x C1  and x ,t C2. Now C1  (1 C2  

and so there exists a circuit C
3 
of G

S 
(C
1 
(„J C

2
) containing y and z. 

Since C.
3 	

C U C
2

x C
3 
and hence C

3 
is a circuit of G (S N, x) 

- 

as desired. 	 // 
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2.8 DUALITY 

We define the dual of any matroid. (Remembering a matroid M(S) 

is any pregeometry G(S), where S is finite and use this concept for a 

hyperplane characterisation.) 

2.8.1 THEOREM. In M(S) with rank function r the function - 

✓ A 	 IAI + r 	 r(S) is the rank function of a matroid 

M (S) on S - the dual matroid of M(S). Moreover the dual matroid has 

rank ISI 	 r(S). 

PROOF. We first show that r is unit increasing: Let A (z- S, 

a le A. Put B = A U a. Then r (B) = IBI + r(SNB) - r(S) = IAI + 1 

+r((SA)N:a) - r(S) = IAI + 1 + r(SA) - { 

(A) + { 
0 	 0 

r(S) + (1 - { 	 ) = r
* 

1 	 1 

1 
- r(S) = IAI + r(SN,A) 

Since S is finite, for a given A B we have B = A U a
1 ... an 

for some n > 0 so that r (A U a1) > r (A) by the above and inductively  — 

✓(B) > r (A). Thus r is increasing. 

We show that r is semimodular. Let A,B S. Then 

✓(A) + r(B) = IAI + IBI + r(S-.A) + r(S■E) - 2r(S), 

>IAI + IBI + r [(SA) U (S NB)] + r C(SN\A) n(S\B):1 -.2r(S), 

> LIB! + 	 BI + r(Ss■A ()B) + r(S̀sA UB) - 2r(S), 

r (A U B) + r (A n B) 

Obviously r has finite basis property and r (0) = 101+ r(SN■0) 

- r(S) = 0. 

Hence r is the rank function of a unique matroid on S. 	 // 
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** 
Now r (A) = IAI + r (S■A) - r (S) = IAI + IS\AI + r(A) 

- r(S) 	 ISI + r(S) = r(A.). Thus we have 

2.8.2 LEMMA: The dual of the dual of M(S) is the matroid M(S) itself. 

We next link bases, circuits of M(S) and M (S). The word 

cobases and cocircuits are used for bases and circuits of M (S) 

respectively.' 

2.8.3 THEOREM. In any matroid M(S) the following are true. 

(i)The cobases are exactly the complement of bases of M(S). 

(ii)The cocircuits -‘6e exactly the complement of hyperplanes 

of M(S). 

(iii)The coaircuitsare exactly the subsets of S,which minimally 

intersect all bases of M(S). 

PROOF. (i) For any subset A of S we have r (SNA) = IS,.AI + 

r(A) - r(S) so that r (S) 	 r (S.N.A) = r (S) + r(S) - 	 At - r(A) = - 

ISI - IS•.AI - r(A) = IAI - r(A). Thus A is independent in M(S) iff 

S,.A is a spanning set in M (S). If we replace A by S'-.A in M (S) we 

see that SA is Independent in M (S) iff A is a spanning set in M(S). 

Now 

A is spanning in M(s) <=> S....A is independent in M (S), 

<=> r (Ss..A) = 	 + IA( - IAI  , 

<=> r (SN;;.A) = ISI - r(S) 	 (as r(S) = IAI ), 

<=> r (s\r). = r (S). 

(ii) C is a circuit of M (S) <=> C is minimal dependent in M (S) 

<=> S..,C is maximal non -.spanning subset in M(S) <=> S.NC is a 

hyperplane of M(S). 
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(iii) C is a cocircuit of M(S) <=> S\C is a hyperplane of 

M(S) <=> SN„C is a maximal non-spanning set in M(S) <=> SC is-a 
' 

maximal set not containing any basis. 

If S\C does not contain any basis, then C must intersect 

every basis. Suppose .3 c° c— c such that C° intersects every basis. 

Let a e• C\C'. Then (S \C) Li a contains a basis B which contains a 

and so B C' = 	 . A contradiction. Therefore C is a minimal set 

intersecting every basis. 

Conversely let C be a minimal set with this property. Then 

S\C does not contain any basis. If there exists x C such that 

(S\C) U x does not contain any basis, Then C' = C•,x intersects 

every basis, contradicting the minimality .of C. Thus S\C is a 

maximal set not containing any basis and the theorem is proved. 	 1/ 

2.8.4 LEMMA. Let A, A be independent in M(S) and M (S) respectively 

with A r) A = 	 . Then there exists a basis B such that A c: B, 

A C. S'N,B. 

PROOF. Let r, r be rank functions of M(S) and M (S) . 

* 	 * * 
respectively . Thus r(S.,,A

* 	 I ) = ISI - A I - r(S) 	 r (A ) = 

,* 
II - r(S) = r(S). Extend A to a basis B 	 S,\A . Then A 

as required. 	 1/ 

2.8.5 LEMMA. For any circuit C and any cocircuit C of M(S) we have 

IC n C! • 	 1 . 

PROOF, -Let C and C° be any circuit and cocircuit.of M(S) 

respectively.. We may assume that C IC  . Consider C,,.0 oc 

and CC I C which are independent in M(S) and t4 (S) respectively. 
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By Lemma 2.8;4 there exists a basis B with CNC ACcB and 

* 
C 	 ()C 	 S 	

„, 
B. Since C 	 B 7f 4) and (c N.cr) C ) AB= 	 there 

* 
exists y e (C .()C r) B. If IC /C I = 1, then C 	 13 which is a 

1 	 *1 
contradiction. Thus IC (1C I 	 1. 	 // 

2.8.6 LEMMA. Let B be a.basis of M(S). For-any e e B there is a 

* 
unique cocircuit C of M(S) with (B■„e) 	 C = 	 . 

PROOF. Since (S-,J1) is a basis of M (S) and e S\B, by 

Theorem 1.6.8 there exists a unique circuit C of M (S) with 

* 	 , * 	 * 
eeC LS*-,B. Thus (Be) aC = ¢ . Let C

1 
beacocircuit of 

- * 	 * 	 * M(S) with (Be) f!
. 	

= ¢ . Then C
1 
 c... (5\ B) L' e and e c C

1. 
By the 

 - 
* 	 * 	 * 

uniqueness of C we have C = C
1 
and the lemma is proved. 	 // 

2.8.7 LEMMA. Let a, b be distinct elements Of a circuit C of M(S). 

Then there exists a cocircuit C of M (S) with C r) C = a b. 

PROOF. Extend C..a to a basis B of M(S). Then B = S \ B is 

a basis of M (8) and a e B . Now b B . .Consider the fundamental 

circuitC(in'M (S)) ofbinB. IfaXC, thenCiC =band so 

lc n* = 1 -which is impossible. Thus C 1) C = ab. // 

'Duality helps characterise a matrOid in terms of its hyperplanes. 

2.8.8 THEOREM. A collection 67{, of nonempty proper subsets of S is 

the set of hyperplanes of M(S) if and only if it satisfies the following. 

(H1) For any H1, H2  in X , H1  C H2  . 

	

.(112) If 
H1, 

H e X and x 0  H1 
LPH
2' 
then 	 H

3 
eAfsuch that 

H
3 	

(H
1 
(7) H
2) U x. 
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PROOF. Let X be the family of hyperplanes of H(S). Then (H1) 

follows directly from Lemma 1.5.6 . Observe that (H2) is equivalent to 

(H2i) If H1, 
H
2 
e X and x e (S-,H

1
) 0 (Sv.H

2
) then g H

3 
c ci7rIf such 

that x 	 (SN.H
3 1

) 	 (S'..H
2
) 	 which is 0

(4
) in M (S). Thus 

—  

(H
2
) follows. 

Conversely let 	 be a collection of nonernpty proper subsets 

of S satisfying (H1) and (H2). We show that C.) 	 { SN.H / H e 	 } 

is the family of circuits of M (S). Obviously satisfies (K1) and 

(K
3
) and by (H1) f satisfies (K

2
). That e satisfies (1(

4
) follows 

from the fact that (H2) <> (H12). . 

Thus t is the family of circuits of M (S) aund hence by 

Theorem 2.8.3 ge is the family of hyperplanes of M(S) . 	 I/ 

2.8.9 A Steiner triple systemon a set Sn  of n elements is a 

collection e of 3 - element subsets of S
n
, called _triples, having 

any two distinct elements of Sin a unique triple. (of Hall 1673,p236) 

We note some properties of any Steiner triple) system j 
n 

which are needed later. 

(i)A necessary and sufficient condition for the existence of 

some e on a set of SiZe r1 is that n El or 3 (mod 6) 
(ii)Any element of S

n 
occurs in exactly n - 1 triples of se 

2 	
TI 

(iii)The number of triples in cfn  is n (n - 1)  • 

6 

2.8.10 EXAMPLE. cf is the collection of hyperplanes of a matroid 

14( 	 ) on Sn with rank 3. The bases of M(' yn ) are all 3 - element 
subsets of S

n 
which are not in d'n  

For n = 7 M( d.'1°
n 
) is the Well known Fano matroid. 
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PROOF. We first show that 	 satisfies (H
1
) and (H

2 • That • 

satisfies (H
1
) is clear from its definition. Let A, B be triples 

of :I/n andxYALI B. Since any two distinct triples intersect in one 

element or no element, (A r)B) 0 x is contained in one triple of d:n Thus 

V satisfies (112)  and so it is the collection of hyperplanes of a n 

matroid M(Y ) on S
n 
. 

Since any element of Sn  occurs in n - 1 triples and the number 
2 

of triples is n(n - 1) # n.- 1 if n > 3, the intersection of all triples 
6 	 2 

is empty and thus 'cT) = (1) . For any x c S
n the intersection of all 

triples containing x is x and so x = x. Thus M(') is a,geometry and 
n. 

hence every 2 - element subset of Sn  is independent. We show that if 

X = {x,y,z} X n , then X is independent. Let A = -{x,y,a} be the 

triple Containing x,y. Then a # z. Now 	 is a cocircuit of M( 	 . 

Suppose that X is not independent. Since any proper subset of X is 

independent, X is a circuit of M(g). But X /1(S
n
NA) = z, contradicting 

Lemma 2.8.5. Hence X is independent as required. 	 // 

We link Submatioids, contractions and duals. 

2.8.11 THEOREM. /many matroid M(S) for T c S, we have the following. 

(i) (Mc(T) 	 = M*(S).T 

(ii)(M(S).T) 	 = M
s 
(T) 

PROOF. Let r, r , (r ) , p and p be rank functions of M(S), 

M (S),-M (S).T, M (T) and (M (T)) respectively.  

(i) For any subset A Of T we have p 	 A) =. 111"NA' + p (A) - p (T) 

= IT I - P(T) - IAI + P(A): By temma 2.5.2 we have (r*)T(T\A) = 
* 

r ((T;•,..A)-U (S.N.T) 	 r (SN.,T) =r (S■ A) - r (s■;.'i).= Is' - r(S) 

* T 
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I

-  

AI + r(A) - ( ISI  r(S) - ITI + r(T))= IT! -,r(T) 	 IAI + r(A) = IT! 
*  * -P(T) - IA] + p(A) = 	 p(TN.A). Since A is arbitrary, p )

T 

so that (i) is proved. 

(ii).  By (i) we have (Ms  (T)) = (M (S)) .T = M(S).T. Taking 

dual both sides we obtain M
s
(T) = (m(s).T) 

	
1/ 

We also have information about connectedness of duals 

2.8.12 LEMMA. S
1 
is a separator of M(S) if and only if S

1 
is a 

separator of M (S). 

* 	 * 
PROOF. Since (M (S)) = M(S), it suffices to show that a separator 

* 	 * 	 * 
S
I 
of M(S) is a separator of M (S). Now r (S

1 
 ) + r (S̀■5 ) = I1  S 1 1  

+ r(S\S
1
) - r(S) + ISI - IS11 + r(S1) - r(S) = r (S1) + r(SS1) 

, 	 * 
-r(S) -.r(S) + ISI< r(S) - r(S) - r(S) + ISI < r (S). Thus by 

'Theorem 2.6.10 S
1 
is a separator of M (S) and the lemma is proved. 	 // 

As a consequence of Lemma 2.8.12 we have 

2.8.13 LEMMA. M(S) is connected if and only if M (S) is connected. 

2.8.14 A loop of M(S) is an element which is a circuit of M(S) and 

a coloop of M(S) is a loop of M (S). 

We now obtain a lower bound for the number of bases of a 

connected matroid. We first note the following. 

2.8.15 .LEMMA. (i) x is a loop of M(S) if and only if x is not 

contained in any basis of M(S). 

(ii) x is a coloop of M(S) if and only if x is contained in 

every basis of M(S). 
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(iii) x is a coloop of M(S) if and only if x is not contained.  

in any circuit of M(S). 

2.8.16 THEOREM. Let . 	 be the family of bases of a connected matroid. 

Then IS I > Isl 

PROOF. We prove the theorem by induction on ISI . The Theorem 

is true when ISI = 1. Assume that the theorem is true for any connected 

matroid M(T), where I < IT < n. Let M(S) be a. connected matroid on 

a set S of n elements. 

For any x e S there exists x y e'S and thus x,y are contained 

in a circuit C of M(S). Hence x is not a loop of M(S). Now C...x is 

independent and C\Nxca basis Be b. As C is dependent, x X B. 

Therefore x is not a cploop of M(S). That is M(S) has no loops and 

coloops: 

Let x e S and let nl, n2  be the number of bases of M(sN,x), 

M (S ) . (S x) respectively. Observe that Mc  (S x) and M (S) . (S N. x) have 

no common basis since the bases of M
S 
 (S N.x)are the bases of M(S) not 
 ' 

containing x and the bases of M(S).(S'.x) are the bases of M(S) 

containing x. As any basis of M(S) either contains x or does not 

42 
contain x we have 1),1 = ni  + n2. By Theorem 2.7.9 at least one of 

M,(S-,.x) and M(S).(SN.x) is connected. 
0 

If M (SN.x) is connected, then n
1 	

ISI- 1. Since x is not a 

loop of M(S), x is contained in a basis of M(S) so that n2  > 1. Thus 

1 .13 IL Is - 1 + 1 = ISI 

If M(S).(S'.x) is connected we have n
2 	

Is) - 1. Also x is 

not a coloop and hence is not contained in a basis of M(S) so that- 
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n
1
-.1 1. Thus 1_81 	 l-1-1 I- 1 = II and the theorem is proved. 	 // 

In fact Murty ( 66) showed that 1._,6 I > r(n , r) + 1 if M(S) 

is a connected matroid of rank r on a set S of n elements. 

2.8.17 LEMMA. A nonempty separator of a matroid without loops and 

coloops has cardinality at least 2. 

PROOF. Suppose that x is a separator of M(S) which has no 

loops and coloops. Thus x is not a loop and so x is not a circuit. 

Hence all circuits of N(S) are contained in Sx. Therefore xis 

not contained in any circuit of M(S) so that by Lemma 28.9 x- is a 

coloop of M(S). This contradicts the assumption. So any .separator 

of'M(S) has cardinality at least 2. 	 // 

2.8.18 LEMMA. Let S
1 
 be a separator of M(S). If .8 	ji!  and  ' 	 1 	 . 

are the families of bases of M(S), MS(S1)  and MS 
 (SN,S

1 
 ) respectively. 

Then IS I = 1$11 I-B2  1 
	

• 

PROOF. We first show that 	 1811') s1  = IB2  nSil for every 

two bases E
1, 
B
2 
of M(S). 'Suppose that B

1, 
B
2 
are bases of M(S) with 

IB1  n sil < lB2  cisil . Let II.  = E51  () SI  and 12  = B2  11 Si. By 

Lemma 1.4.2 and finite induction there ,exists a nonempty subset I of 

12\ II  such that II  U I is independent and II1U II = 1121 . 

Observe that Bi  1) Si  is a maximal subset of-B1  contained in Si. 

Consider any x in I we see that x Bi. Then C(x, Bl) is contained 

in Si  or SN.,S1. But x e Si, hence CIx , 	 C- S
1 
 . Now 

1 -  

-C(x, B1) cr, (B1  n sl) U x =Il  LI x. A contradiction. Thus 

Similarly 1121   > II 1 and so  .- 	 1 	 1111 	 1121 	• 

Let B cj3 . By the Above B n s is a basis of M
S
(S
1
) and 

1 
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B I) 
	

is a basis of M
s
(SN,S

1
)• Conversely if B

1 
E131 we can 

extend'B
1 
to a basis B of M(S). Then B n (sN,s

1
) is a basis of 

Thus a subset B of S is a basis of M(S) if And only if 

B ()S is a basis of M
S(S1

) and B
1 
 ) is a basis of M

S 
 (SN.S

1 
 ). 

Therefore I 3 I = I A,. II13, I • 	 1/ 

2.8.19 THEOREM. Let 0 be the family of bases of a disconnected 

matroid which has no loops and:coloops. Then 121> Is' . 

PROOF. We first show that the theorem is true for W < 4. 

Thd theorem is obviously true for Is! = 1. 

For ISI = 2. Let xl 	 x2  c S. Since xl  and x2  are not 

coloops, x
1 
X B
1 
and x

2 
X B
2 
for some bases E

1 
B
2 
of M(S). If 

B
1 
= B
2 and no other bases, then x1 

and x
2 
are coloops which is not 

so. Thus M(S) has at least two bases. 

For ISI = 3. Let S= {x
1, 
 x2' x) 	 As each of x

1,  x2' 
x
3  3 

is contained in a basis every basis has at least one element. If 

M(S) has only one basis, then every element is a coloon. Thus mtsy 

has at least 2 bases. Suppose that there are only 2 bases. Then 

every basis consists of exactly 2 elements and the two bases have a 

common element which is a coloop. A contradiction. Thus M(S) has 

at least 3 bases. 

For ISI = 4. We can show that Ij3I > 4 by using the same 

argument as the case ISI = 3. 

Assume that the theorem is true for all M(T) with 4 < ITI < n. 

Let M(S) be a disconnected matroid on a set S of n elements which has 

no loops andcoleops. Then there is a separator S1  of S ‘Afth SI  (P, S. 
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Also
1 
is a separator of M(S) with SN,S

1 	
, S. Let 

11 
 and 

2 
be the families of bases of M

S
(S
1
) and M

s 1
) respectively. 

Then by Lemma 2.8,12 we have 131'  1321 • By the induction 

hypothesis Lei  1 > 1S11 and 112I > IS sj so that jBj>Isil1S-N,B11. 
Now IS11 .12 by Lemma 2.8.11 and so 1131 > 2n - 4 .> n as required. // 



3. TRANSVERSAL PREGEOMETRIES 

We define and obtain simple properties of the important class 

of transversal pregeometries. 

3.1 REPRESENTATIONS 

Here we define, and discuss various representations, of 

transversal pregeometries. 

3.1.1 A family (or listing) of subsets of a set X is a function 

f : I 4- 2
x 
with I well-ordered. 

We usually denote it by (XI) or (Xi, i e I); I being the 

index set-of the family. 

3.1.2 Given a family (XI), X S. We define as a system of 

representatives of MI  (or choice function ), denoted by SR any 

function c 	 I4-S satisfying 0(i) e Xi, Vi e I. 

If 0 is injective, it is a system of distinct representatives 

of 001  , denoted by SDR, and its image 4)(I) is a transversal of Mx. 

In general a family (X)1  of nonempty sets may not have an 

SDR. For example if X = {ado} , X2  = {a,c} , X3  = 

X
4 = {a,b,c} , then 4 : I = 	 {a,b,c} defined by 

01) = a, 02) = c, 03) = b, 0(4) = a is an SR of (X)1  but (X)
I  

has no SDR. 

3.1.4 A subfamily (X) 	a family (VI  is a restriction of 

f : I -4- 2S  to 3 	 I. 
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We write LIX or () X to denote the union or intersection of 

sets in f(J) and we write (X) to denote f(J). 

3.1.5 A partial system of (distinct ) representatives of a family (X)1, 

denoted by PSR(PSDR), is an SR(SDR) of some subfamily of (X)I. 

A partial transversal of 6701  is a transversal of some 

subfamily of (X)I. 

3.1.6 THEOREM. Let (X)
I 
be a finite family of subsets of a set S. 

Then the collection ej of all partial' transversals of (X)
I 
is the 

family of independent sets of a pregeometry on S. 

rr 
PROOF. For each i e I, let 0. be the collection of empty 

set and all singletons of X.. Then 	 is the collection of 

independent sets of a pregeometry G(X) on Xi. Let J.  be the 
3. 	3. 

collection of independent sets of the union of Gi(Xi), where i e I. 

We show that ci 
= c7-  • 

For each PT E = {x
1' 	

, x
r 

of (X)
I 
there exists a subset 

J of I such that E is a transversal of (X)j. We can assume that 

J = {l, 	 r} 	 and x. e X., V. e J. Thus x. 	 V. ie J• and so 
7 	 3 	 3• 3 	 3 	 3 

,r1  
E = Li x. C. 

j 	 3  

Let A e c) . Then A = L) x for some 	 I and r # s 
r E R

r 
 

=> x # x
s 
 . Define 0: R A by 0(r) = x . We see that 0 is 

r  

bijective and 0(R) = A. Hence A is a PT of (X)I. Thus A ecT and the 

theorem is proved. 	 'I 

3.1.7 LEMMA. Let (X)1  be a finite family of subsets of a set S. 
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er. 
Let cfr be the collection of subsets of I satisfying : J e ty-r if 

and only if (X)j  has a transversal. Then je is the collection of 

independent sets of a matroid on I. - 

PROOF. Since 4) is a PT of (X)1  and any subset of a PT of (X)1  

is also a PT of (X)1, we need to show that cyr satisfies (I2). Let 

J
11 
J
2 
be subsets of 'I with 1,11I < 1J2

1 • Then (X) 	 andand (X)
J 
have 

2 
 

transversals E
1 
and E2 respectively. Now E1 

and E2 are PT of (X) and 

1E
1
1 < 1E21 . Thus there exists x e E 2 

 \E
1 
 such that E

l 
U x is a PT 

of (X)I'  Since x c E2' 
x e X. for some j c 3

2. As El 
-Lt x is a PT, 

3 

j ji J
1 
and the lemma is proved. 

3.1.8 A pregeometry G(S) is transversal if there exists a finite family 

= (X) of subsets of S such that the collection of all PT of (X) 

is the collection of independent sets of G(S). 

We denote G(S) by KA )or M f X1, 	 , Xn  3, where 

I = {1, 	 , n1 and call c914 a presentation of G(S). 

Indeed a presentation of a transversal pregeometry need not 

be unique. As an easy example consider the matroid M(S) = 

M[14,234,13] on the set S ={1,2,3,4} . Another presentation of M(S) 

is [123, 12, 24 3 . 

3.1.9 LEMMA. Any subpregeometry of a transversal pregeametry is 

transversal. 

PROOF. Let G (T) be any subpregeometry of a transversal 

G(S) = M U X1, 	 , Xn  j . Put I = {1, 	 , n1 	 and let (Y)1  be 

the family of subsets of T defined by Y. = Xi  n T, Vi c I. Let 
J={icI/Y.#0.21henitisclearthatyr)=M[(Y./j E )) 

1  43- 

II 
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and so the lemma is proved. 

3.1.1G LEMMA. If G(S) is a transversal pregeometry of rank r, then 

G(S) has a presentation consisting of r sets. 

	

PROOF. We first show that if G(S) =
1 
 (S
1  ) 
	 G2(82) and 0 	 •  

r(G(S)) = r(G
1(51

))1 then 0- 	 0-
1 
 where zi and 	 are the 

1 

collections of independent sets of G(S) and G1(S1) respectively. 

Let Zr2  be the collection of independent sets of G2(S2). Clearly 

;11 	
Let I e (3- 	 Then I = I1 Li 12 for some I e J1  and 1.  

12 e zr2 • Extend I to a basis B1  of G1(S1). Since 1  

r(G(S)) = r(G1(S1)), 1B1  Li 121 < 1B11 and so I2c=4.- Bl. Thus 

id, 12  C01. Therefore cr 	al  

	

Let G(S) = M 	 , X
n 
1 and I = {1, 	 n} . Pick 

a maximal PT E of(X) 	 Then 1E1 = 
	

Suppose that E is a 

transversal of (X)R, where R = (1, 	 , r} . For each i e I let 

and G. (X.) be defined as in the proof of Theorem 3.1.6. Put 

	

U X and S
2 
= 	 X. Let G' (S1) = 1(X1) v 

	 v G (X ) and r r 
IN%R 

G" (S
2) = r+1  ' (Xr+1 ) v.... v Gn (Yn) . 

By the Above 4T7= 	 4; .. 4.1 1 

so that G(S) = M tX1, 	 X3 	required. 	 // 

Bondy and Welsh 71 showed that there exists a presentation 

of a transversal matroid in which each of the sets of the presentation 

is a cocircuit of the matroid. We now obtain this result. 

3.1.11 LEMMA Let M(S) = M (Xi, 	 I be a transversal matroid of 

rank r. If E is a transversal of (X2' 	 X
r
) such that A = E r)x1 

has minimum cardinality. Thep M(S) = M[X1N.A, X2, ..., Xr  . 
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PROOF. Clearly any PT of (X32,,, A, X2, ..., Xr) is a PT of 

(X1, Xr). We show that any basis 'B of M(S) is a transversal of 

(Xl\,,  A, X29••., Xr)• Let B =. {b1, 	 br} be any basis of M(S) 

and b.c X. where l< i < r. Suppose E = { e2, 	 , e
r
}, 	 where 

e.e X., 2 < i < r. The theorem is proved if blc X1N■ A. Assume 
3. 	 3. 

that bl  e A. Then ble E and bl  = e2, say. Consider the two 

possibilities for b2  . 

case 1. If b
2 
c X
1
N.‘ A, then B is a transvers41 of 

(X
1
NN, A, X , ...,X

r
). 

case 2. If b
2 
 t X

1.  A. We show that b2
e E. Suppose that 

b2  xiy E. Then E' = { b2, e3, 	 e} is a transversal of 

(X2, Xr) with 1E' n x11 < 1E n x11 which is a contradiction. 

T
h
us b

2 
e X
1 
u E. If b

2 
E X
1 	

then b
2 
c X
1 
A which is not so. 

Thus b
2 
e E. 

Now b
2 

e
2 
since e

2 
= b
1 

b
2. 

Let b
2 
= e
3 
and repeat the 

same argument as above for b3 and we shall have b3 
= e
4 
c E. 

Carrying on in this way we see that there exists i such that bi  e X1\, A 

andb.eXj+1' 
1 < j < i. (otherwise we get a contradiction at the 

3 

final step and so bl  e XiNA). Thus B = 	 bi,b2,...,bi_1,b1+1,...br} 

is a transversal of (X
1
N,•A, X

2'
...,X

r
) a
n
d the lemma is proved. 	 // 

In fact we have the following stronger result 

3.1.12 LEMMA. If M(S) = M pc1,...,x0 and E is a mamimal partial 

transversal of (X2,...,Xn) with 1E n Xil minimal, then 

M(S) = M [Xi  \(E n 	 x2,...,xn  j. 

	

PROOF. We can assume that X 	 . Let x e X
1 
 , Extend x• to 

1  
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a basis B ofM(S). Then BN+x is a maximal PT of (X2, ..., Xn
). 

Without loss of generality assume that BN.x is a transversal of 

(X2, ..., Xr). Observe that M (12, ..., xJ has rank r - 1. 

As in the proof, of Lemma 3.1.10 Mr X2, ..., 	 = M 	 Xr) 

so that M(S) = M [Xi, •.., X
r
j . Since E is a transversal of 

(X2, ..., Xr) with IE rly minimal, by Theorem 3.1.11 we have 

M 	 ()xi) , x2, ... XJ= m 	 xr  ] so that 

M 	 (E fl y , X2, 	 , x,  j= M [X 	 Xn  3. The lemma is 

proved. 	 // 

3.1.13 THEOREM. Let M(S) = M{ X11 	 Xr  ) be a transversal 

matroid of rank r. Then there exist distinct cocircuits 

* 	 * 	 * 	 * 
Cl, ..., Cr  of M(S) such that M(S) = M [C1, ..., Cr  ] and for some 

distinct integers i
1
, ..., i , C. 5; X. , where 1 < j < r. 

r  

This presentation is minima/ in the sense that for any 

i, 1 < i < r and for any x e C. , 

* 	, 
M(S) # m [c

1 	
c-1  , C.N.x, C. ,..., C i 	 3.+1 

PROOF. Let E be a transversal of (X2, ..., X ) such that 
,r 

E fl X1  has minimum cardinality. Put A = E fl Xl. Then (X1N,,A) n E = 0 
Since E is a transversal of (X

2' 	
X), for any x e X

1  N
'N. A, E 1../x 

r  

is a transversal of (X1, 	 Xr) and hence is a basis of M(S). 

By terrPn23.1.11 for any basis Hof M(S) we have 

B = fx 	 x 	 where x
l 
e X
1
\A and x. e X., j = 2,...,r. 

r 	 3 	 3 

That is X
1 
 A is a set intersecting every basis of M(S). If y e X

1 
 \A 

then EU y is a basis of M(S) and (cp.,AN„y)  (E U y) = 0 . Therefore 

X
1  A is a minimal set intersecting every basis of M(S). Hence X *.g.A 1 

is a cocircuit of M(S) and M(S) = MEX2, 	 Xrj, Apply the 

A 
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same procedure to (X2, X1N,A1,...,..Xr) and so on until we obtain 

M ( S )  =  A l] and Xp, Ai  = C. is a cocircuit of 

M(S), 1 < j < r. Observe that for any x c C. we have 

has empty 
1 

intersection with some basis of M(S) which is a transversal of 

M [Ci 	 Cr]. 

	

* 	 * 
To see that C. # C. if i j  j. Suppose that there exist 

	

1 	 j 
* 	 * 	 * 	 * 

i # j with C. = C . . We show that M (C1 
, ... , C I 

1 	 3 	 r  
* 	 * 	 * 	 * 

... , C
r 3 

for any x C. . For any PT of M(S) such 
1 	 1 	 i 

* 	 * 
that x represents C. and y represents C. we obtain the same PT by 

i 	 3 
* 	 * 

representing C. by y and C. by x. This contradicts the minimality 
1 	 , J 

of (C1  ,..., Cr). Hence all circuits are distinct and the theorem is . 

proved. 
	

// 

Moreover Theorem 3.1.13 gives an algorithm for testing 

whether or not a matroid is transversal. 

As an example we show that the Fano matroid is not transversal. 

PROOF. Suppose that M( 	 ) is transversal. As ,,Y. is the 

set of hyperplanes, M( e7  ) = MCS7N,Ai, S7 A2, S7"..A3  I , for 
someAl' A

2'  A3 	 ' 

	

in Y  We consider the two possibilities of 
7  

Ai, A2, A3 	 (i) Ai  n A2  = Al  n A3  = A2  n.A3, (ii) Al  n A2  #A1  n A3  

# A
2 
n A
3" 

case 1. Ai  n A2  = Al  n A3  = A2  n A 

Without loss of generality assume that Al  = ( xl, x2, 

A
2 
= {x

1,  x4' 
x
5
} , A

3 
= fx

1,  x6' 
x
7
1 • Then A1uA

2 
 uA

3 
 = S7  

and xl  0 S7Nk.A1, S7Nk-A2, S7N4.A3. Hence A = { xl, x2, x4}  Y.7  • 

But A 0 M [S7N.A1, S7N,A2, S7N.A3 	 . A contradiction. 
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case 2. A
l 
n A
2 
# A
l 
n A
3 
# A
2 
n A
3 

We note that any two distinct triples of cy, intersect in oneelement. 
Without loss of generality assume that A

1 
 = {x

1,  x2' 
x
4 
, 

A
2 
= {x

1,  x3' x5
},A

3 
 = {x

2-  
,x3' x}. Then S

7
N.,A
1 
= {x

3' 
x
5' 
x
6° 
x
7
} 

 6 

S7'. A
2 
= {x

2° x4' x6' x7
} ,S

7
N,A
3 
 = {x

1, x4°  x5- 
,x
7
} . Consider the 

tripte A = {x, xl, x7} containing x1 
x
7
. Then x = x

2 
or x

3 
or x

4 

or x
5 
or x

6. 
As S

7
N‘A
1
N...x
7 
= {x

3° 
x
5 	 6 

and S7N,A2Nkx7  = {x2, x4, x6} 

and x7  eS7 A1, S7‘,A2. Since xl  e S7s.A3, it follows that 

A e MrS7N■Ai, S7 1.2, S7N.A3 J . A contradiction. 

Thus M( .fY ) is not transversal; 
. 	 7 

// 

By Hall [67j for any n E 1 or 3 mod 6 and n No  = {9, 13, 25, 

27, 33, 37, 67, 69, 75, 81, 97, 109, 201, 289, 321} , a Steiner triple 

system Al  containing e7  exists and since cy, is unique we note 
from Lemma 3.1.9 that a non - transversal matroid M( 	 ) exists. 

As a consequence of Theorem 3.1.13 we have 

3.1.14LEMMA.EachC.in  any minimal presentation (C
1 	

C
r 
 ) of a 

transversal matroid M(S) is a PT of the family of bases of M(S). 

PROOF. As in the proof of Theorem3.1.13 for any y e C: , 

Du y is a basis of M(S) for some PT D of (X)I. Since 171  # y2  e Ci, 

Du yl  and D u y2  are distinct bases of M(S). Thus C. is a PT of the 

family of bases of M(S) as required. 	 1/ 

3.1.15 THEOREM. M(S) = M CX1,..., Xnj = m [Xi  u A, X2, ..., Xn] 
-if and only if every element of A N.X1  is a coloop of 

m rx2-. xi, x3,s,x1, 	 , 	 x13 = ms(sNsx ) 1 
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PROOF. Observe that if a,b E X
1 
 with M(S) 

= M 	 U a, X21...,Xnj =,M [X1u b, 	 then M(S) 

= M [X1  u ab, X21...,XnJ. Thus to prove the theorem it suffices to show 

that if a 0 X1, then M [X1  u a, X2, ...,Xn] = M EX11  X2,...,Xn1 if and 

only if a is a coloop of 	 X3*.N 	 Xi  J. 

Let a be a coloop of M 	 Xi]. Then every maximal 

PT of (X2,...,Xn) intersects X1  u a. Choose a maximal PT B1  of 

(X2,.. .,X) with 1B1  n (X1  U a)1 minimal,: We consider the two 

possibilities for a. 

case 1. If a e B1. Then by Lemma 3.1.12 we have 

M [Xi  u a, X2,...,Xnj = M ((Xi  u a) Nia (B1  n 	 u a)), X2,...,Xnj 

= M 	 N., B1, X21•..,Xn3 . But every maximal PT of  

is a maximal PT of (Xr,.• • ,Xn). Thus M [Xi  u a,...,Xnj = 

case 2. If a B1, then since a belongs to every maximal PT 

of (X
2
N. x
1"
.;
*
,X
n1

),B' = B
1
1k,(X

1 
u a) is a PT of (X

2
■,X
1"
.,X

n 
X
1
). 

We see from the choice of B
1 
that B' is a maximal PT of 

(X2'4%, Xi,. .. 	 Xi) . 

Extend B' to a basis B2  of M[X21...,X0 . Since a e B', a c B2. 

Now 1B
2 
n (X

1 
 U a)1= 1B1  n (X1  u a)1 and we apply case 1 to B2 

Conversely suppose M [Xi  u a, ...,Xn  = M [Xi, ...,Xn  3. 

Consider any maximal PT E of (X
2 	

X ,...,X N... X
1 
 ) which is a PT of 

1 	 n  

(X2,...,Xn) and hence E u a is a PT of (X1  u a, X2,...,Xn). 

Then E U a is a PT of (X11...,Xn) (as a V X1). Since (E u a) n 	 = cp, 

E U a is a PT of (X2  \ 	 Ni.„-X1). But E is a maximal PT of 

and so E = E u a. Thus a e E. Therefore a is 

a coloop of NI [X2N4 X1, ...,X;t4, X1  and the theorem is proved II 
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3.1.16 A gaximal presentation rx  x  of a transversal matroid 
L 1 	 /rJ 

M(S) of rank r is a presentation of M(S) such that for any i = 	 r 

and each x 	 X., M(S) 	 m [ x 	 x. , x. u 	 xr . 1 	 1-1 i. 

Bondy [ 72 ] showed that a maximal presentation of any 

transversal matroid exists and is unique. 

3.1.17 THEOREM. A maximal presentation of a transversal matroid 

M(S) = M X1, 	 , Xr  of rank r is unique. 

PROOF. We first show that a maximal presentation of M(S) 

'exists. Let Ai  be the set of coloops of M r 	 Xr>.X1 	 . 

Then by Theorem 3.1.15 M(S) = M 	 X2,.•., Xr 	 . 

Inductively for each 1, 2 < i < r, having Ai_i  we let Ai  be the set 

of coloops of M {X1  U AiNXi, X2 	 1.4 A. 	 Xi, 

Xr  3:  =- Ms(SN.Xi) so that by Theorem 3:1.15 

M rX1U  A1,..., Xi  U Ai, X.1,..., Xt.] = M 	 Xi  11 A1,..., X.11j  Ai_1, 

X,..., xr  ) = m (s) . We claim that M 	 Xi  U Ai, •2  U A2;..., ,Xr Li  /kr) 

is a maximal presentation of M(S). Suppose M Xi  U A11..., Xi  U AiU x, 

	 , X
r 
 U A j =1+4 [3(

1 
 ti A1,..., X

r
(.) A
r 
. Then by Theorem 

r  

3.1.15.xisacoloopofM(s,N2C)so that x g A. 

To show the uniqueness we suppose that A = (A 	 , A ) 
r 

and 3 = (B
r
) are distinct maximal presentations of M(S). 

Thus there exists a subset X of S such that Ae of the sets in 4 

and m of the-sets in 25 are equal to X, with Ae m. Choose such 

an X with IXI minimal. We may assume that -49  > m. Let k be such 

that k of the sets in 4 are properly contained in X . Since IXI 

is minimal, k.  of the sets in _13 are properly contained in X. Put 
T = SN,,X. Order the sets in 09( and je so that 
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B.(1,  T = 	 <=> 1 < i < k + m . 

As in the proof.of Lemma 3.1,9, (A11) T,...,.A [IT) and 

(B
1
/1 	 B

r. 
 ()T) are presentations of Ms

(T) and so 

(3  
+  

T,..., A /) T) and 74 k+m+1 	
. : . , B

r 
n T) 

= (Ak  +1 

are presentations of M5  (T). Now r(Ms(T) < r k - I. By Lemma 

3.1.10 there exists a subfamily J5 of 13 with L61 < DI and 

13 is a presentation of Ms(T). Let B.r)T cB.43 . Since 
B.(1 T # , there exists y B.() T. Thus every maximal PT of 

7 

contains y so that y is a coloop of Ms(T). Thus by Theorem 3.1.15, 

M(S) = M [Al,. , Ak, Ak+1  Cj  Ar  ), contradicting the 

maximality of A . Therefore the theorem is proved. 	 // 

We note that every presentation (X)1  of a transversal 

matroid lies between a minimal presentation WI  and the maximal 

presentation(M)/inthesensethatforallicI,m. ç x. GM.. 

We close this section by the following theorem due to 

Bondy 721 . 

3.1.18 THEOREM. Let (M
1, 	

M
r
) be the maximal presentation of a 

transversal matroid M(S) of rank r. If (C1,..., Cr) and (D11..., Dr) 

are cocircuit presentations of M(S) with C. U Di  Mi, 1 < i < r. 

Then IC.I = ID.I, 1< 	 < r- _  1 

• 	 PROOF. Let IC. (1 D.I = k:, = AE., ID.̀%C.I = m. • a 	 3. 

PickxeCi.NowC.is  a circuit of M (S) so that C.xila basis B 
1 

ofM(S).ThenC.is the fundamental circuit of B ih x so that 
1 

C. rI(SNB
*
) = x. Hence S'4B

* 
is a basis of M(S) which intersects C. 1 
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in one element and so (M 	 C-,..., M. Ns  C., M. N. C.,..., M 	 C.) 1 	 1 	 1-1 	 1 1+1 	 1 	 r 

has at least one transversal. Observe that 	
M.-11 

and (M1,..., Mi_i, Ci  u Di,. , M
r
) are presentations of M(S). By Theorem 

3.1.15 every element in Di\ C. is a coloop of Ms(S \,Ci). That is 

D.N C. is contained in every transversal of 
1 	 1 

Ci' Mi+1N' Ci"."Mr 	
. Similarly C. ■.,Di  is 

contained in every transversal of (M ND. ... M. 	 M'  1 1' .' 1-1 	 1' i+1 	 1 	 r 	 1 

But (S %,,.C.) and (S \,D.) and (SND.) are hyperplanes of M(S). 
1 	 1 

Hence r(M5(S•0.C.) = r(M 	 = r - 1. Thus every transversal of 
1 	 1 

(M 	 M. 	 D., M.
* 
. 	 ) contains at least 11).\,C.1,. 

1 	 1 	 1-1 	 1  1+1  1  r 	 r 	 2. 	 1 • 

elements of C.%44D. and so 

Thus 

A? = IC.ND.I >ID.\.,C.I= m. i 	 1 1 — 1 1 	 I 

Similarly we can show that m. > A? and hence A? = m. . 
1 

=.k.+i=lc.+m.=1D.1 and this is true for every i, 1 	 i 	 1 	 1 	 1 

1 < i < r. The theorem is proved. 	 // 

3.2 MULTIPLICITY , 

As every transversal pregeometry has &presentation with a 

transversal it is interesting to find criteria for the existence of 

transversals of families. Throughout this section the families 

discussed are finite. 

3.2.1 THEOREM. (Hall's Criterion). 

Given a finite family (X)1  with each X finite. Then (X)1  

has a transversal if and only if 

Iu X  j  VJ CI.  :00 



95 

PROOF. Let flI) be a transversal of (X) 	 Suppose that 

J 	 I with I Li X I < IJI . Then 4) is not injective on J so that 
3. 

(I) is not injective on I. A contradiction. Hence i U  xl 	 II 
3. 

	

Assume that I (..) xl > IJI , VJ 	 I. If all X are singletons 
3. 

the theorem is proved. We may assume that I = 	 n} and X1  

is not singleton. We shall show that X a c X1  such that (X')1  

satisfies(H),whereXI=Xl\a,Xi=X,,2 <.i 

suppose not. Let al 
a
2 
c X
1. 

Then there exists  
1 

, 	 v, 
such that I U,  X I 	 J°1 . That is 

J1  

I (X
1 
 \a1) (.1j ( J  x) I < IJ I + 1 , where J1 = J1N1 1 

J
1   

Also there exists J CI {2"",  n} such that 2 —  

I(XN■ a)U( 	 x) I < IJ2I 	 1  1 	 J
2 

Let A = (X
1 al) LI 	 U 

3. 
1 

B = 	 N. a2) L) ( Li X) 
J2 

Then AUB = X
1U( 

L.) x ) 	 and 

An B = (X NNa a ) Li 	 Ux ) 
1 2 	 J1 J2 

Now IJ I +'1 + IJ 	+ 1 > IAI + IBI 
1 

= IA U BI 	 'An B1 + 1 

J U J- 1 	 2 

IA LI BI + lAny31 41 	 . 	 ( 	 x )1 + I 	 a2) L) ( 	 L) x )1 +1 
J
1
(.1 J2 	 J1 tJ J2 
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IJ21 + 1 + 1 

Hence IJ1
1 + 1 + IJ21 + 1 > I1J I + IJ2I + 1 + 1 which is a 

1 
contradiction. Thus (X) satisfies (H) for some a c X 	 Therefore 

after finitely many steps we can reduce the family (X)1  to a family 

(Y) of singletons and (Y) still satisfies (H) so that u -Y is a 

transversal of (X)I. 	 // 

Even if we know that a given family (X)1  has a transversal E 

we may ask how many distinct SDR's give rise to the transversal E. 

The next theorem gives a necessary and sufficient condition 

for Uniqueness. 

3.2.2 THEOREM. Let E be a transversal of a family (X)I. Then a 

necessary and sufficient condition for the uniqueness of SDR giving 

E is the following. 

If (Y)
I 
is a family satisfying the two conditions 

(i)Thereexistsandx.cX.with Y. -= x. for all j e J and 
3 	 3 	 3 	 3 

Y. = X."\x! , for some x! c X„  

I 1/  

then E is not a transversal of (Y)
I 
. 

PROOF. Necessity : Let (Y) be a family satisfying (T). 

Define 	 ¢ : I 	 Li Y by 1 

xi 	 if i c J 

1(i) 

x. 	 if i 	 J • 

Then (!)
1 
is injective and 41(I) = E. Suppose that (Y)I has a 

transversal E. Let ¢ be an SDR of (Y) . Since Y. 	Xi, 	 ¢2  is also 
2 

( U  Y) U ( U x!) = "  
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an SDR of (X) 	 Thus 0
1  (I) = 02

(I) = E. Now for i X J we have 

? 
x. = 0 (i) so that 0

1 
#
2 
which is a contradiction. Thus E 

1 	 1 

is not a transversal of (y)1.  

Sufficiency : Given 0(I) = 01(I) = E and suppose that 

1 
# 0 . Then a nonempty set I 	 I such that 0(i) # 	 (i) if 

1 
and only if i I. We shall show that 0(I1) = 	 (II). For each 

1 
i c I

1 
there exists i

r 
# i such that 0 (i

r
) = 0(i) and hence 

i e I. Similarly for j c I there exists is 
#j such that 

r 	 1 	 1 
1 

s
)= 0 (j). Thus 	 (I) = 0 (I ). Put J = IN.I 

1 	 1 	 1 

(i) 	 i e J , 
Define Y

i 

' 
	 J . 

Then (Y)1  satisfies the condition (r1) and so E is not a transversal 

of (Y)1. Now for i X J we have •(i) # 	 (i) so that 	 (i) e Y. 
1 

1 
Since 0(II) = 0 (Ii) C.. 	 Y 	 and 4  (J) = 	 (J) 	 U Y. , it 

 i   
i J 	 i e J1' 

follows that 	 (I) 	 U Y so that (Y)t  has a transversal 0(I) = E. 

A contradiction and then the sufficiency is proved. 	 // 

3.2.3 A family MI  has a transversal 2 of alultiplicity,k if every 

element in E occurs in. exactly k sets.of (X)I. 
\ 

We have another sufficient condition for the uniqueness of 

the SDR giving a particular transversal. 

3.2.4 THEOREM. Let (X)
I 
be a family with a transversal E of 

multiplicity 2. If there exists no subset { x. 	 x1 	of E of 
11  

1r 

cardinality X> 2 such that 
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{ x. 	 , x. } CK. 	 j = 1, 	 , r 	 (T) 
1. 1

ill
- 1. 2  

where the addition of the subscript is modulo r. Then (X)1  

has unique SDR giving E. 

PROOF. Let 0(I) = 4)' (I) =•E. Suppose 	 0'. Then there 

exists Ii  .g I such that 0(Ii) = 4)' (Ii) and 	 0'(i) <=> i e 

Define 	 f : I
1 
.÷ I

1 
by 

f(ii) = ik  , where 0' (ii) = 0(ik) . 

Then f is a permutation on I 	 Since f is not the identity 

permutation , it can be written as a product of disjoint cycles 

, 
Ci, C2,..., Ck  , where at least one cycle, C. say, has length > 2. _ 

Let C. = (ii, i21..., is) , s >2. _ 

Suppose 0(i) = xi  , Vi e I. Consider 1 < j < $ - 1, we have 

f(i..).12 ij+1  sothatc1)""=" 0(1j+1 ) = x. 
	 . Thus 

	

J 	 j   

x. , x. 	 e X. . Now f(is
) = i

1' 
 so that 0'(i 

s
) = 0(i 	 and hence 

J 

	

1. 	 1j4.1 	 1. 
3 

x. , x. e X 	 . Therefore {x. 	 x } satisfies the condition 

	

1
1 	

1 	 i 
S 	 $ 	

1
1 	

i
s 

(T2). . A contradiction. Hence = 0' . 
	

/1 

3.2.5 REMARK. The condition (T
2
) is not necessary for , the 

uniqueness of SDR 

As an example consider Xi  = 1, X2  = 24 , X3  = 345, X4  = 4 

X
s 
= 56, X

6 
= 64. (X) has unique SDR giving the transversal 

{1,2,3,4,5,6} •, namely, 0(1) = 1, 4)(2) = 2, 0(3) = 3, 0(4) = 4, 

0{5) = 5, 0(6) = 6. The set {4,5,6} is such that 4,5 c X 	 5,6 e X5, 5' 

6,4 e X
6 
and so it Satisfies (T

2
). 

3.2.6 Any subset C = (x. 	 x. ) of a transversal E of a 

	

11 	 lr 
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family (X)
I 
satisfying the condition (T2) is a cycle of length r with 

index set { i1,..., I } and associate sets X. 	 .., X. . 
1 	 ,r 

The exact number of SDR's giving a transversal E of (X)
I 
is 

known if E'is a transversal of multiplicity 2. To prove this we need 

the following ten lemmas. 

3.2.7 LEMMA. Given a transversal E of (X)
I 
of multiplicity 2. 

Let 	 C I. Then there exists at most one cycle of E with index set 

PROOF. Let C
1 
, C
2 
be cycles of E with the same index set I

l  

Case 1 	 I
1 
 = I. 

Then IC 1 =1111 	 III = 1E1 and also IC21 = 1E1' so that CI  = C2  . • 	 1  

Case 2 yi I . 

Suppose C1 	 C2  . Since -1C11 = 1C21 , 1C2  Ncil -> 0 

so that 	 U X )1) C tIC2)1 = 1C11 + 1C2NN, C11 > II11 
I
1 

Now x 	 Llx) r)-(c1  u C2  
1 

x C u x n E. and so 
I 

1( U X ) () El  III - I( U X )  (Ci  U C2)1 
1  1 

Hence 4)(1  N4I1) < III - II1I 	 A contradiction . 
	 1/ 

3.2.8 LEMMA. Any proper subset of a cycle of a transveral of 

multiplicity 2 is not a cycle of that transversal. 

1 

PROOF. Let C be a proper subset of a cycle C = (xi  ,..., xi  ) 
1 1 

of a transversal E of a family MI. ,Let C = (xi  ,..., xi.), k < r. 
3k jl 
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As E is of multiplicity 	 i , i 	 ,•.., i } 
J1 	 3

k 

for some some s, 1 < s < r and p = s + (k - 1). We can assume that s >1. 

Now x. must occur in exactly 2 associate sets of C . Also 
S 

x. 	 X. 	 uquch.isnotanassociatesetofclsoemtx.belongs to 
1
s 	

1
s-1 	

1
s 

3 sets of (X) I° 

A contradiction . 
	 // 

3.2.9 LEMMA. Let Cl, C2  be cycles of a transversal E of multiplicity 2 

of a family (X)1  with index sets I
1
, 12 respectively. Then I1 

n 12 
= A 

if and only if C
1 
n C
2 = (I) 

‘PROOF. Assume that I
1 
n 12 

= (1) . Then 

(X)I=MI 	
1 

tci 	 tl (1 N 	 u 1
2
). Let x e Cl. Then x belongs to 

1 	 2 
exactly 2 sets of (X)1  . Since x belongs to exactly 2 sets of (X)I: 

1 
x does net belong to any set of (X)

1
. But C

2 	
u x . Thus x X C2. 

2 
 

I
2 

Next we assume that C
1 
n C
2 
= (1) . Suppose I

1 
n 1
2 

 

Then II 'NI1 U2I > III 	 1i 1j 	1121 and since 

1 
u 1
2 

I( u 	 X 	 ) n El  < IEI - I( u 	 x ) n (c1  u c2  )1 
I ■  U I

2 	
I
1 
u I
2 

-IIl - 1121 

I I 	 u 121 

Thus I(INKI u2)1 < 	 u I
2  I 	 and so.(;) is not injective 

1  

A contradiction. 	 // 

3.2.10 LEMMA. Let C
1 
 be a cycle of a transversal E of multiplicity 2 

of a family (X)1  with index set I. Let C° be a proper subset of Cl. 

x  ( u  x) n (c1  u c 2) .> x  (U  x ) n E we have 
I
1 
u 1
2 



Then the following are true. 

(i) For anY # C2  c ( ti X) n E with C2  n C° = 	 C' u 

is not a cycle of E. 	
1 

 

(ii) For any C2  5 ( u x) n E with C2  fl C' =, C' u C2  is 
Ii 

not a cycle of E. 

PROOF.LetC
1 
 =(x. 

°
...,xix.)and 	 = 	 ir} . 

11  

(i) Let I = fi e I / x. e C°1 . Then I° 	 I• Without loss of 
j 	 1 	 1. 	 it 1 

	

nerality assume that I' = fi. , i 	 i 1 , where 
J1 	 j2 	 jk 

1 < ji< j2  ‹. ..<jk  < r. Suppose that .0 u C2  is a cycle of E. Let 
1 

I" = 	 i„ 	 be the index set of C' u C
2 
where 

Jk 	 31- 	
j
e 

e > 1, i
jm 	

I° 	 m = 1,...,e . 

If there exists i. e 
j
r 	

I' with i 
	
i I' , where j

1 < r 
j <— j . 

k 
r 

Then X. 
1. 	

is not an associate set of the cycle C° UC
2 
and since 

x, 	 must belong to exactly 2 associate sets of C° u C
2' 
there exists 1, 

Jr 

i suchthatxeX., sothatx.belongs to at least 3 sets of (X) 
i 	 1 	 I' P 	 . 	 1, 
3r P 	 Jr 

namely X. , X. 	 , X. which is a• contradiction-- Hence we can 
1. 	

1j'-1 	 1p Jr 	 r 

assume that I" = {i
11 	 ° 
... i

k°  i 1" 
... i } , where k < r arid e > 1. e 	 _ 

A cycle form of C u C2  can not have xi  in between xi  and xi  
m 	 r 	 r-1 

(otherwisex.belongs to 3 sets of (X)
I"
). Then C:' uC 

	

1
r 	 2 

• 

=
1' ' 	 x." ) and so x. belongs to at least 3 sets 1

1 	 1
e 

	

lk 	 1 

of (X)1,  namely X. 	 , X. , X., . A contradiction. Hence (i) is proved. 'k-1 
1k

11 

(ii) Let IC'l =k,k<rand IC2I =s> 0. Suppose that C'uC2 is 

a cycle of E. Then it has length k + s < r and we have 

101 

C
2 
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1(:)(I•.I1)1 = 	 U 	 x) n El < lEl - l( u X) n (C. u C2)1 <. I E I - 
1 1 	
I 

 
(IC .71 + IC2I) -< III  - (I'll + 1c2  I) <Iii 	 I'll 	

which is a 

contradiction. 	 II 

3.2.11 LEMMA. It follows from Lemma 3.2.7 - 3.2.10 that two cycles 

of 'se transveraof multiplicity 2 are either disjoint (with disjoint 

index sets) or identical. 

3.2.12LEMMA.LetC=(x.,..., x. ) be a cycle of a transversal 
1
1 r  

0,(I) of multiplicity 2 of a family 001. 'Alen 0(i.) = x. or x. 
1.

j+1 

wherei- "1" -"r/ and the addition of  the subscript of 3c. is  3 

modulo r. 

	

. 	1 	 1 

	

PROOF. Let I =
11* 
. 	 i

r1 . It is obvious if 0(I ) = C. 

Suppose that (I) C. Since 0 is one to one and onto and 
• 
II I= ICI ,thereexistsx.eC such that Vi .e I , 	 # x. 

	

a
k 	 3 	 1k • 

and so there exists j eii such that OM = x. . Then x. 
.1k 	 lk 

occurs in 3 sets of (X)
I which is impossible. Therefore 

0(i.) = x. or x. 
3 	 1. 

3. 	 1j+1 
	 I/ 

We define the SDR induced by the cycle C in the following lemma. 

3.2.13 LEDDIA.LetC=(x.,—,x.)be àcycle of a transversal 1
r 

11  

E = 0(I) of multiplicity 2 of a family (X)1  with index set I'  . 



103 

Define 0
c 
: I 	 E by 

xii+1  

1 

0c  (ij) = 	 X. 
. 	 3 

0(i.) 
3 

	

'if 0(i.) = x. 	 and i . c I , 
3 

	

if 0(i.) =, x. 	 andi. c I, 
3 	 7 

3 

Then
c is an SDR of (X) "the SDR induced by the cycle C—which is 

different from 0 and Oc(I) = E. 

PROOF. That 	 is clear from the definition of .4) and 

e X,, V. c I . To show that 0 is an SDR, let 0 (i.) =  C i 	 i 1 	 C 	 C 3 	 C k 
1 	 1 

If one of i
'  
. i 	 i. say belongs to I and i e I-....I , then 3 	 k' 3 	 k 

c (U, X) r) E. Since Vx e (U, X) n 'E we have x fl (Li IX) 11 E, C 3 	
I 	 I  

it follows that 0 (i ) = 4(i.) je ( U X,) /1 E. Thus C k 	 C 3 I',...I 

0C(1k)  e (U .X) 	 E so that i
k c I which is a contradiction. Hence 

1 
both•

' 
 i must belong to either I or IN'. In either case we have 3 	k 

ij  = L. Now 0c  (1) = 0 (I ). U 0(1 	 I ) = C U (ENC) = E. 	 // 

3:2.14 LEMMA. Disjoint cycles of a transversal give rise to different 

induced SDR's giving that transversal. 

PROOF. Let C
l'  C2 

 be disjoint cycles of a transversal 0(I) = E 

-with index sets I 12 respectively. For each i c I1 
we have 

Oc  (i) # OM:. But cpc  (i) = 0(i) whenever i e 	 Thus (Pc  
1 	 2 	 1 	 2 

We define the SDR induced by the disjoint cycles C 	 C 

	

1' 	 k 

in the following lemma. 

3.2.15 LEMMA. Let C 	 C
k 
 'be disjoint cycles of a transversal 
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= 0(I) of (X of multiplicity 2 with index sets I
1 k  

respectively. 

Define 
C 	 C 	 : I 	 E by 
1—  k 

..0 k 
= 
. 
O 	 (i) C. 
3 

0(i) 

if 

if 

i 	c 	I. 	, 
3 

i e I "■I
1
Q 

Then 4, 	 is an SDR of (X)
I the SDR induced by the cycles C

1
,..0
k 

C
1 k

, which is different from each of 0 	 , 4, , and 
C
1 	

Ck  

(I) = E. (I)C
1
...,C

k 

PROOF. By induction on the number of the cycles C1,... 

3.2.16 LEMMA. Let 4, bean SDR of multiplicity 2 of a family. (X)I. 

For another SDR 01 0 such that 0(I) = 0 (I), the set 

{ 4,  (i) 	 / 	 (i) 	 4)(i) } 

determines disjoint cycles of E = 0(I) . 

PROOF. Follows from the proof of Theorem 3.2.4. 

We are now ready to find the number of different SDR's 

giving the same transversal. 

3.2.17 THEOREM. Let E = 0(I) be a transversal of (X)., of multiplicity 

2 . If E has r disjoint cycles, then the number, n(E), of distinct 

SDR's giving the transversal E is 

n(E) = 1 + rC + rC + 	 + rC
r 1 	 2 

II 

// 

PROOF. From r disjoint cycles of E we can form 
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r
C
1 
+...+ C

r 
= k combinations of these cycles so that: they induce 

the k different SDR's and each of these SDR's is different from 0 . 

Thus 

n(E) > 1 + k 

By Lemma 3.2.16 for a given SDR 0 # 	 of (X)1  we have that 

1 

{ 0 (i) / 	 (i) # 0(i) 1 determines disjoint cycles of E so that 

4)' is one of the above k SDR's and the theorem is proved. 

If (X)
I 
has a transversal of multiplicity 2, it might have 

only one SDR giving the transversal if it has no cycles . We shall 

show that (X)
I 
has at least 2 SDR's. That is a cycle of a 

transversal of multiplicity 2 must exist. 

3.2.18 THEOREM. Let E = 0(I) be a transversal of multiplicity 2 of 

(X) which contains a singleton. Then there exists an SDR 4)#  0 of 

(X) giving E . 

We need the following lemma to prove the theorem. 

3.2.19 LEMMA. Let E = 0(I) be a transversal of multiplicity 2 

of (X)
I 
and U X = E . Suppose that (X 1 	a singleton. 

Let I = 	 IA. 	 and (1)(i) =e X. 	 I. Define the 

subfamily g4 	 of (X) •by 

{ A
l 
/ A
l 
e (X)I 

and 1A
1 
= 1 } 

For any Positive integer k,2 <k < n , if A 	 # 0 we 

construct A t  as follows A 

{ Ak  e (X)1  Ak  = x !Li for some x 	 U (ritu.-U4 
•1 	 k-1 
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Ak- 
 c 	 • • 	 k-1 ) 

After finite steps of construction, in say, the process terminates 

when cAm+1 = cand 4 	 , k < m . Then 

(i) For each k = 1,2,..., m and each x e U 

we have 4)(i) 	 x VXi 	 u(ku.•..,) 64k  ) 

(ii) X
r 
c

k+1 	
=> 	 (r) 0 U 4114

1 
U.- • 

= 	 in • In fact X
r 
 = xU X,,  for some  r 

XC 11( <543.U..; u 	 ) and xr  g u (Aiu 	 ) . 

(iii) l(X), 	 A u . . .0 m  I > 1 • 

PROOF. (i) For k = 1, let x e ( U 41  ) . Hence {x} c Ai  • 

Without loss of generality assume that 	 = x. Consider Xi4 Uc$4,1  

d so i 	 1 . By definition of SDR 4)(i) 	 40(1) = x. Assume that 

the hypothesis is true for k - 1. Let x e U (c 1U. 	  U c5af
k 
). 

Suppose that there exists Xi 	 U (c5411) • • • • • • U G4k  ) such that 

u A k-

1 ) [otherwise 

the hypothesis is not true for k - I . Thus there exists Xk  c c54k  

such that Xk  = x U Xk  for some Xk 	 (J( c941U 	 U 4 	 as 

	

C Xk  Ak  and Xk  = x U 	 , for some xi  g U ( 	 cd4k_i) 

and Xk  G t.)( c41U 	 ....0 ci4k-1)  then x = x; otherwise 

X e.0 ((A 
1 

(as Xk 	 ( c..541  

. By the assumption 0(k) g xk  

arid hence cl)(k) = x = +(i) so 

4) 

= x. Hence x e U Ales. U (Ai  U 
4 



m- 1 
1 0 0 0 1  X 

r-1 
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that k = i and X. c_U( 	 U 44k ). A contradiction. 1 

(ii)Since Xr 	
, x cL L, ( 	 U 	 °4k  ) and so 
r k+1 

by (i) •(r) % U (e941U 	 u ck  y . For Xr  Cc4kia  we have 

X
r 
= x U X for some X

k 
C ()( lu  	 ) and 

X 	 ( C541 U 	 Ak). If xr  0 x , then xr  c Xk  U( 64c U . . . U 004k) 

which is not so. Thus x
r 
= x. 

(iii)We first show that (X) 	 0941  U... U 094 m  (1) 

Suppose the contrary. Without loss of generality let 

Am 	 { 

where for each i = r,..., n, there exists ii, 1 .5..  ij  f.rdsuch that 

X. = x. 'u X. , x. a U ( A1u 	  u 64- 	) and  -  m - 1  

	

3 	 3 

x. 

 

	

% U( A1u 	  u04mL-1). If there exist i, j,r<i#j< n 1 	 _ 

such that a e X. ri. Then since a # one of x, x there exists 1 	
Xj 	 . 	 .1 	 J, 

X
t
c,561 , 1 <t<m- 1 such thatacX

t 
which isacontradiction. 

FienceX.nX. = 	 Vi # j c {r,..., n} . Consider x., where 1 	 - 	 1 

	

n we see that x. 	 X. , V. e {1,..., r - 1} 	 and thus x. 

	

1 	 3 	 1 

belongs to exactly one set of (X)I. A contradiction. Thus 

(X)1 4 U... •• • u 	 (1) 	 . 
1 	 In 

Suppose that there exists only one X. c (X) 
1 

UThen IX 	 (411
1 
 U 	  > I (otherwise 

u f 
1 
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x. c U(c4 CI ... U din) and by (i) 	 0 (i) # x. ). Let 
1 	 1 	 1 

x e X. '-.., U( 641 
 Li-- U,e4m). Then x belongs to exactly one set 

1  

of 001  namelyX..A contaradiction. Thus 
I(X) N.,„ CA U....0 041> 1• // 

	

1 	 I 	
1 	 m 

PROOF OF THEOREM 3.2.18. It suffices to prove the theorem for 

the case u X =E . 

	

If U X 	 E , let Y. = Xi 	E , i e I. Then 	 Y = E. 

If there exist' i # j such that Y. = y
j 
 . For each i there is at 

1  

most one integer j # i such that Y. = y
j  and if so IY.I = IY.I = 2' 1 	 1 	 3 

(otherwise 3xeEsuch that ¢(i) 	 XVieI). 

	

Put I = { i / 3j # i such that Y. = Y. } and I'  = 	 . 
1 	 3 	 1 

1 
If I # , let E = E 	 U Y . We claim that (Y)1' has a 

Il 

transversal E of multiplicity 2 and U Y = E . Let x e E . 
I°  

Then x EEU Y = ( 	 U ( U 	 U Y so that x ( U Y) . 
I° 	 ' 	 I 	 I' 

	

1 	 1 
Since x belongs to exactly 2sets of (X) and x i  any set of (Y) 

x belongs to exactly 2 s3ts of (Y)I°. As i # j we have Yi  # Yj  

V,
j  e I . Hence E is a transversal of (Y)I  ° 	 Suppose that 1,  

	

1 	 1 
(Hi) = x. e X. for every i e I and 0(I) = E. Then 4, / I (I ) = E. 1 	 1 

	

1 	 1 
Put 0

1 
= 0/ 	 . If 	¢ is another SDR of (Y)1' giving the 

transversal E , we can define anSDR 4,# ¢ of (X)
I 
such that 

11 

¢ (I) = E as follows. 

(i) 	 if i e I 
(i) = 

•(i) 	 if i 	 I'  

If I =4, . Without loss of generality assume that Yi  = 
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where i =1, 	 n - 1. Let 0(i) = xi  e Y. = {xi, yi} • 

Define 4):I  4- Eby 0 (i) = yi, VicI. Then 0 is an SDR of 

(X)
I 
giving E and 0 # ¢ . 

Hence to prove the theorem we can assume that u  X = E and 

i # j => X. # X., Vi e I. Let I = {1,..., n1 and .0(i) = x. e X. j 

Define subfamilies 04
'"" 
A as in Lemma 3.2.19, Without loss 

1 	 m 

of generality assume that (X)
I
A U 	 c) el = {  

m 

k. 

We show that for each j, 1 < j < k we have 	 X I > 2. 

	

u 	3 
If there exists no x c X.X U x. , then X. =X U x

i, 
, where 

1 	 • 
” 	 1 	 u 	 J 	

liA 	

j0541 	
J 

X (-1  X. Now x. % X and so x. e Ali.,

, 

 ... 	 . A m.a  1. 	 1. 

1, 
Contradiction. Thus IX. ., X I > 2, 1 < j < k. Hence there exists 

1 	 J 
x. 	 c X. '...s. X U x. and i

j 	 i1 • 1. 	 Without loss of generality assume 1
1 

 
3 	

11 

i
j 
= i
2. We first assume that k > 4 . 

casel.x.EX X. 
1
1 	

1
2 

1 	 v 
Define 	 4): 1 '÷ EbT0(i1)=x,,0(i2)-=x.,(P (j) = 0(j) 

j-2 	
1 
1 

otherwise. Then 0 # 0 and 0 is an SDR of (X) giving the 
..' 

transversal E. 

case 2. x. 	 X. 
11 	 2  

Bythesameargumentasabovethereexistsx.eX.N..X U x. x. 
13 	

12 	 112 

uthena x. E: {X. ,..., X. } and i 	 i
2 
. 1

3 1 k 

andU(0411(J - 1" 1 )=-X'. 010servethatx.OX°  1. 
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IfxileXi3 we can define ¢ : I 	 E by 

1 
("1"-xi21"i2)=x1.34)(i3)=3c.arld 	 = 0(j) otherwise 

1
1  

so that 0 # 0'  is an SDR of (X), and 4)  (I)= E. 

IfxiIXXi,thenthereexistsxi cXj NXuxi,where 

	

3 	 li 	 3 	 3   

xi 	 { X. ,..., X. 1 and i4  # 	 . For 3 < j < k - 1, if x. fe.  X. 4   
11 	 11( 	 11 	

1j_i 

we can C:11,0Wie x. £ X. 	 N X U 	 x. 	 (See Lemma 3.2.20 below). 
1
j 	

1
j 	

1
1 	

1
j -1 

The process mustterminate after finite steps since there exists exactly 

onesetfromX.,...,X.containing x. . Assume that the process stops 
12 	 1

k 	 , 
1
1 

afterqsteps;thatisx.eX.XX Ux 	  x. 	 and 

	

11 	
1 

 

11 	
1
q-1 

x1 	
1. 

11 7 

Define 	¢1  

40  

0 

, 2 <j<q- 1 

	

: I 	4- 	E 	as follows 

(i 	) 	 = 	x. 	 , 

	

1 	 12 

	

=(i.) 	 x. 	 , 	 2 < j 	< q - 1 
1j4.1  

(i 	) 	 = 	X. 	 , 
3.
1  

= 	0(j) 	 otherwise. 

g 	 1 	 g 
Then ¢ is an SDR of (X)1  such that ¢ (I) = E and ¢ # ¢ . 

ByLerrirtia3.2.A.9k>1.Fork.=2wellavex.Ex. N., X' x. and 
1
1 	

12 	
1
1 

1 	 g 
x. c X. \X ux. . Thusafunction ¢ :I 4- E defined by 
1
2 	

1
1 	

1
1 

I 	 g 	 1 
0(j.1)=x.r0 (i2) = x. and 0 (i) = 0(i) ; otherwise, is an 12 	 2 	 1

1 
- 	 g 	 g 

SDR of (X)
I 
such that ¢ # ¢ and 4) (1) = E. 

Fork=3.Thetheoremisobviouswhenx.eX..If 
1
1 	

12 

x. 0 

 
V 

X. ., Then x: c X. N. X U x. and x. c X. N. X U X. 	 .. 
1
1  

1
2 	 1

3 	
1
2 	

12 	 . 1 	 13 	 13 
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1 	 9 	 1 

Define ¢ t I 4-E by ¢ 	 = xi 	 ¢ (i2) = xi  , ¢ (i3  = x, 
2 	 3 	

2.1 
1 
¢ (i) = ¢(i) otherwise. Hence ¢' is an SDR of (X)1  such that 

¢(1) = E and ¢'  ¢ . 

The theorem is then proved. 	 // 

3.2.20 LEMMA.Assume the hypothesis and notation as in Theorem 3.2.18 

•Then for j = 	 k - 1, if x. 	 X. , 	 We can choose 

	

11 	 1j-1 

xi.e Xi 	 N.. X4  U Xi 	  X.  •• 

1. 

3 	 j-1 	 1 

PROOF TrUe for j = 3. Assume the lemma is true for j 

Hence x. c X. 	 X' u x. 	  x. 	 3 < j < r. That is 

	

1
j 	

1 

	

1. , 	
1 3-1 	 1j-1 

x. C X. n X. 	 , 3 < j < r 
1, 	 1. 	 1. 

 j-1 

ASSIUMB x. je X. and suppose that there is no 

x.c x.Nkix ux. ,...,x. . Thus X.CX ux 	  x. Since 
1  

	

1 	 1
1 	

1
r 	

1 — 	 1 	
ir r+1 r 	 IL 	 1 

1 
I x. \a, X 	 > ,thereexistsx C X.. X U X. and so as 
1r 	

1
r 	

1
r 

	

g x „ x (= {X. ,..., X.  } . If x = x. , then x e x. n x, n x. 
i
1 
	 1. 

r 	
1
2 	

1
r-1 	

1 	 1
r 	 12 	

1 
1 

which is impossible. Thus there exists s, 3 < s < r - 1 such that 

x...xs.blovixex.nx n x which is a contradiction. Hence 
s s-1 

the lemma is proved. 	 S / /  

3.2.21 THEOREM. The conclusion of Theorem 3.2.18 holds even though 

(X)
I 
does not contain a singleton. 

PROOF. We first show that if (X)
I 
does not contain a singleton 

then IX.I = 2, Ti. e I. Let I = {1,... n} and (PM = x. e X., I  e I. 
I 

Put Y= {(x, i) /xcE xeXi} . 
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Then 2 distinct elements in E ie rise to four different elements in .- 

Foreach i = 1,...; n, let 

Y. = f(xi, i) 	x
1  
. c X. 
 3  

Then Y. c Y, Y. n Y. = 	 if i # j and Y = 
1 — 	 3 

Now -1Y1 = I kj Yi  = 	 E IY. 
1 

i=1 	 i=1 

We can write Y = U Z. , where Z. = {(x, i) / x e X.) 
i=1 

Thus IzI = IX. and Z. n Z. = 0 if i 	 j . 

Since IX. >2, 
1 

IXkl > 21 Then 

2. Suppose that there exists k such that 

E lz.I > 2(n - 1) + 
i=1 1  — 

A contradiction. Iler10131)0=2 	 V. -E I. 
1 	 1 

IY1 2(n - 1) + 2 = 2n 

Now we write X. = { x., y.} ,,where x
1  
. 	 Observe that 

	

1 	 1 	 1  

Y. # Y if i 	 j (otherwise there exists k # i, j such that0(k) = . 
1 	 j 	 Yi 

so that y. occurs in 3 setsof (X)
I
) 

. 1 

We define 	 : I 4- E by 

4)1(i) 	 = 
# 

Then 	 is an SDR of (X)1  and 0 (I) 	 E. 	 // 

In general a transversal E of multiplicity m is determined by 

at least in SDR's . 

3.2.22 THEOREM. Let E = 0(I) be a transversal of multiplicity in of 

a family (X) Then (X)
I 
has at least in - 1 distinct SDR's each of 

which is different from and gives the transversal E. 
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PROOF. We prove the theorem by induction on m. The theorem 

is true for in = 2. Assume the theorem is true for any transversal E 

of multiplicity k < m. Let ¢(1) = E be a transversal of multiplicity 

in of a famil.y (X)I. Le: I = {1,2,..., n} and ¢(i) = xi  E Xi, i E I. 

We can assume that U X = E. For each i e I construct inductively 

thesubsetE.of X. as follows. 1 	 1 

= x1 	 0(1) 

E. 	 ¢(i)N U Er 
•r <1 

Put X. = X. N,, E. , V1 e I. Then we have 1 	 1 	 1 

2 < i < n. 

1 
	

U E. = E 
1 

i=1 1  

(iv) 
	

has a transversal E = 0(I) of multiplicity m - 1 

To show (iii) let a e E. There exists i
1 
e I such that 

0(11
) = a. Since a occurs in exactly in sets of (X) 	 3 i , 	 i 

2 	 m 

suchthatae .Then¢(i.)5iaV.=2,..., in . 
ij  

Without loss of generality assume that i
2 < i3 < 	 < im .• 

case 1. 	 i
1 
< i2 < 	 < i. 

in 

If i
1 
= 1, i

2 = 2, then a / E1 
so that a e E2. . Suppose that at least 

one of i
1 

1 and = 	 2 holds. Then for each r, 1 < r < i
2 
we have 

a / E
r 
since a / X

r or a = ¢(i1) if r = i1. Now a 0 
 U E. but 

1 

a e X. and a;--4  ¢(i
2
). Thus a e E. . 

12 	
1
2 

case 2. i
1 
is in between i, and ik for some j, k e {2,..., ml . 

Wemayassumethati2<i, <i3< 	since 3   

a"Ci3a11""Ythisimpliest-hataciJE.*Thus a e E. 
i < i1  

3 
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for some i < i
3 

case 3 i
2 
<i
3 	

< 
1 

If a jE. , then by the same argument as in case 2 we have a e R. for 
m 	

1 

some i < i
m 
. 

To show (iv) we observe that 4(i) c X! for every i e I so 
1 

that 4 is also an SDR of (X')I. Let a E E. Then there exist 

ii$j-2#—$illasuchtliataeX.i.e{i 	 i } 

	

1,..., m 	 • 
1. 	 3 
3 

Since 	 u E. = 'E, a E E. for a unique i. e {i 	 .. i } . Thus 
1 	 1. 	 3 	 1" ' m 

	

id I 	 3 
g 	 g 	- 

a )€ X
i. 

	 If a is in more than m - 1 

3 	 lk 
0 

sets of (X)  then a belongs to more than in sets of 
(X)I' 

Thus (iv) 
I' 

is proved. 

By induction hypothesis there 'exist in - 2 distinct SDR's 

01,...f 4m...1  each of which is different from 4 , giving the 

1 
transversal E = 4(I) of  

For any i e I, let 

0 	 V 	 9 

N 0 (i) 
1 	 1 	 1 

sa 
UX. = (X. N E. ) 	 E 

1 	 1 	 1 

n 	 a 	 a 	 II 	 II 	 I 

Then 	 u E
1 
= E and ¢ (i) c X. , V. e I • Now as Xi  = ¢i 	

1 
(i)  u E. 

i1 1 	 1 = 
g 

and Vx c E, x = 01(i) belongs to m - 1 sets of (Xi),(X) has a transversal 

ft 

¢1(1) = E of multiplicity in - 1 and so by induction hypothesis (X ), 

has at least in 2 distinct SDR 	 ¢m-2  giving the 

9 

transversal and each of them is different from 01  . 

Weshowthat.0.$0V.=1,..., in - 2. Observe that 
1 	 1 

1 	 1 	 1 	 g 
X. = ¢

1 
 (i) U E. U E. (as X = X. u E.). 4. 	 4 1 	 1 	 1 	 1 	 1 

and 

r such that 
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0i(ri) # 0.1(ri). 'Since 0i(ri) s Xr.  and 05.(ri) 	 E: , 4).(r.) c E
r. 
1. 

ButOri) ¢ Er.. Thus 0i  # 	 . 

	

Hence 4)1,...,0m-2, 01  , 	 are different SDR'S of (M., giving 

the transversal E and the theorem is proved: 	 // 

3.2.23 Theorem. Let E be a transversal of a family (X)I. If a c E, 

then a necessary and sufficient condition for 

1 = 4)2(j) = a => i = j 
	 , 	 where 01, 02  are 

SDR's of (X), and ¢i(I) = 4)2(I) = E is that a ¢ u Y for every family 
1C■J 

(Y), satisfying the condition (T) corresponding to E and with a 

transversal E. 

PROOF. Necessity : Let (Y), be any family satisfying the 

condition (T
1
) corresponding to E and (Y) has a transversal E. Thus 

1 
there exists J c_;I and x. c X. with Y. = x., i c J, and Y. = XiN xi, , 

3 	 3 
1 

i e I J and ( Li x.) U ( U x
i
).  = E. It is obvious that 

i e J 	 i e I■J 

a 	 u .y if J = I. Thus we may assume that J iE  I and so 	 J # 44 

• 	 Define 4)1  : I 	 E by 

x. 	 i e J , 
i 

= IS 
x. i, 	 c 1 \ ,7 „ 
3. 

1 
Since (UY)u( U 	 x4) = E, :pi  is an SDR of (X), with 01(I) = 

i c IN‘J 

As (Y)
I 
has a transversal E, there exists an SDR 0 of (Y)

I 
giving E. 

Also .2  is an SDR of (X),. Now for every i C  J, 01(i) = 02(j) but. 

for every i 	 01(i) 0 Yi  and hence 01(i) # 02(i). Suppose 

a c k.) Y. Since •2  (Ì■ J) = ( U Y) fl E, a = 02(j) for some 
IN■J 
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j e IJ. sBut.a eE = ¢i(I). Thus a = ¢1(i) for some i c I. Now 

q(i) = 4,2(j)  = 
a so that by the assumption i = j c IN■J which is a 

contradiction. Hence a U Y . 
INk0J 

' Sufficiency : Assume that '4)1,-(1)2  are SDR's of (X) giving the 

same transversal E. Let $1(i) = ¢2(j) = a. We may. assume that 

• 
Let 	 I (..--.; I be such that (:01(i) 	 (02(i) <=> i c I . 4)1 	 4)2 	 . 	 1 	 1 

Define the family (Y)I.by 

yi) i e IN 

Y. 
X. N■ 	 (i) 	 e I1 1 

Then (Y) satisfies (TI) corresponding to E. By the same argument as 

in the proof of Theorem 3.2.4, q(I) = (1)2(I) so that (Y)1  has a 

transversal E = ¢2(I). Thus by the assumption a J Y and hence 

q2(j) = a =.¢1(i) = 432(i). Therefore i = j as required. ' 
	

II 



4 .REPRESENTABLE AND BINARY PREGEOMETRIES::: . 

In this chapter we examine the class of pregeometries 

isomorphic to subpregeometries of finite dimensional vector spaces. 

4.1 REPRESENTABLE PREGEOMETRIES 

4.1,1 A pregeometry G(S) is representable over the field F if there 

exists avector spaceVoverFandafunctionf : S±Vwhose natural 

V 
extension to 2 4- 2 preserves rank. 

The function f is. a representation of G(S). 

As rank of any set in a subpregeometry of G(S) is equal to its 

rank in G(S) we have 

4.1.2 LEMMA. If G(S) is representable over F, then any subpregeomtry 

of G(S),  is also representable over F. 

From Mirsky 

4.1.3 THEOREM. Any transversal pregeometry is representable. 

PROOF. Let G(S) be any transversal pregeometry of rank r with 

apreseritation00.1,wherelIHr.LetZ={Z,/i e I, e e .X.} , 
el 	 1 

where the Z's are.independent indeterminates over the field of rational 

numbers. Let F be the field of rational functions in.the Z's 

(each function involving only afinite number of indeterminates). For 

eacheeSdefine the mapping IP
e 
:I + Fos follows. 

if e e X. , 
el 	 1 

otherwise , 

For « «
2 
c F and e e

2 
e S, let the mapping 
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cc
1 
*
e 
+ =
2 
*
e2 
: I +-F be defined by the equation ( «1 	 + cc2  tpe  )(i) 

1 	 1 	 2 

= =
1 
*
el
(i) + 

cc2*e 
(i) , Vi z I. Let V be the set of all linear 
2 

combinations, with coefficients in F, of the mapping *e, e c S. Then 

V isavector space over F. Considerf : S÷Vdefined by f(e) = 

ifee uX and f(e) = 0 otherwise. Thenfis injective. We show 

that f is a representation of G(S). 

Let E = {e1,..., ek) be a PT of (X)I. Then there exist 

•• 	with ej  e A. , 1 < j < k. Consider the k x k 
1. 	 — — 

matrix M whose (r, s) element is *e  (is), where 1 < r, s < k. All 

elements on the main diagonal of M are independent indeterminates and 

any other element of M is either o or an indeterminate. But all 

indeterminates occuring in the entries of M are different. Thus M is 

non-singular. Suppose that f(E) ={ * 	 *
ek
} is linearly 

el 
 

dependent in V. Hence cc
1 
*
e 
+ 	 cc

k 
*
ek 
= 0 for some 

l 
	cc
1 '  

cc
k 

in F and all cci,..., cck  are not zero. Therefore cc1 e * (i ) +...+ 
1 
s 

k *e (is
) = 0, 1 < s < k, and so the rows of M are linearly 

dependent over F which is a contradiction- Thus f(E) is linearly 

independent in V. 

Suppose that G = { el,..., ek} is not a PT of (X)
I. 

We show 

that f(G) is linearly dependent in V. Since G is not a PT of (X)1, 

G contains a maximal PT E. 

If 1E1 < r, there existsanon-empty subsetJ=fi 
1"." P 

ofIldithejjt.A.,1 < j < k; i C I 	 (otherwise E is not a 

maximal PT contained in G). Hence *e  (i) = 0, i < j < k; i e I 

Consider the k x p matrix N whose (j, s) element is IPe  (is), 
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1 < j < k, 1 < s < p. Suppose that the rows of N are linearly 

independent over F. Then k < p so that N has a non-singular matrix, 

say N = ( e. 
(i_)), 1 < j , s < k. Thus all elements on the main 

3 
diagonal of N' are indeterminates and hence G is a PT of (X)1  which 

is not so. Hence the rows of N are linearly dependent. Then 

3 -  eck  of F, not all zero such that 

e 
(i) +...+mk  tPe  (i) = 
1 

i e J . 

But tpe  (i) = 0, 1 < j < k; i e I ■, J and therefore 

ml  4)e +—+ mk 4je = 0 
1 

Thus f(G) is linearly dependent in V. 

If 1E1 = r, we consider the k x r matrix N = ( tpe  

1 < j < k; i c I. Then the rows of N are linearly dependent (as k > r) 

so that by the Above f(G) is linearly dependent in V. Thus the 

'theorem is proved. 	 // 

We note that a matroid M(S) on S = { 	 is 

representable over F if and only if there exists a matrix A of n 

columns with elements in F such that the function f on S defined by 

f(x.) = the ith column vector of A , 
1 

in the vector space of columns of A is a representation of M(S) over F. 

Thus if any matroid M(S) of rank r is representable over F, 

then for any given basis B = {bi,..., br} = S 	 bril of M(S) 

there exists a standard matrix representation A = [ Ir, D j , where 

I
r 
is the r X  r identity matrix and D is an r x(n - r) matrix with 

entries in F. 
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4.1.4 EXAMPLE. The 2 uniform matroid 
U2,4 

on 4 elements is 

representable over every field except GF(2).' 

PROOF. We first show that 	
U2,4 	

is not representable over 

GF(2). Suppose the contrary. Then there exists a matrix 

A 	= 
r O a c  

with elements in GF(2) such that. any two 
0 1 b d 

columns are independent. Now the column vectors -11 and a  
01 	 bi are 

- 	' a 	 0 

[ 
independent and so 	 = 1 

	 1 
or 	 Since nce the two elements 

[] 	 ] 
in U

2,4 
represented by the second and third columns of A are 

c 	 1 
independent, [: = 1 	 Now

d
I and [ ] are independent so 

1 	 1 

that 
[J 	0 

	 111 	is impossible. Thus U12,4  is not 
or '

o 1 . 

representable over GF(2). 

For any field F of more than 2 elements consider the matrix 

[ 1 0 1 21 
A = 	 with elements in F. We see that any two columns 

0 1 2 2 

of A are independent while any three columns are dependent. Thus 

U
2,4 

is representable over F with a standard matrix A. 	 // 

4.1.5 THEOREM. If M(S) is representable over F, then M (S) is also 

representable over F. 

PROOF. Let M(S) be a matroid of rank r on the set S of n 

elements which is representable over a field F. 

LettherxnmatrixA=(a.), a. e F be a matrix 
lj 	 ij 

• 
representation of M(S). Consider the linear transformation tp from 

the vector space V(n, F) of n-tuples of elements in F to the vector 
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space V(r, F) defined by 	 *(x) = Ax'. 

Now Ker * = C x e V(n, F) / Ax'  = 0 1 and dim (Ker * ) = n -r. 

Choose n -x (n - r) matrix B with entries from F such that the columns 

of B span ker * . Thus 

(1) 	 Ax'  = 0 <=> x'  = By for some y e V(n - r, F) 

We show that B is a matrix representation of the dual M (S) 

To prove this we need to show that r columns of A are linearly 

independent over F if and only if the complementary set of n - r 

1 
columns of B are linearly independent over F. Also by reordering the 

columns of A (and B) it is sufficient to show that the first r columms 

of A are linearly independent if and only if the last n - r columns 

of B are linearly independent. Again it is sufficient to show that 

the first r columns of A are linearly dependent if and only if the 

last n - r columns of B are linearly dependent. We shall show 

this. By (1) there exists 0 	 y = (y1, y2,..., yr, 0,..., 0) e V(n, F) 

with Ay'  = 0 if and only if there exists 0 z e V(n - r, F) such that 

1 	 1 
y = Bz . 

We can write B in the form B = (B1, B2) , where B
1 
is 

• 

(n - r)x r and B
2 
is (n - r) x (n - ). It then follows that 

I 	 1 
B
2 
z = 0. But z 0. Hence B

2 
and so B2 

is singular so that its 

columns are linearly, dependent and the theorem is proved. 	 // 

4.1.6 LEMMA If a matroid M(S) of rank r on S =C x 	 x } 
11 	 n 

has the standard representation 

X f o e s ,  

 

X, X 	 ,0001 X 
1 	 r r+1 	 n 

Ir A 
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then M (S) has the standard representation 

X
1
fe.e, x

r xr+1
$0.0,  xn 

-A 

, 	 1 
PROOF It suffices to show that the columns of L -A , In-r] 

span the space of solutions of [In, A j x = O. 

I 
Let x = [- A , I

n-r j 
y, where y c V(n, F). Then 

' = [1
r
, A] [-A  

I
n-r
i 

g 	 = -1
r
A + A I

r
) y = 0 

g 	 [ 	 g 

Thus x is a solution of [Ir, A ] x = 0 

Let x = (x11..., xn) be a solution of [In, 

Put y = xr+1"." 
( 	 xn) e V(n - r, F). Then 
-  

= 0 . 

 

--A 
Y = [-A'  , I 

 

X -= 

 

I
n-r 

n-r 

      

and the lemma is proved. 	 II 

4.2 BINARY MATROIDS 

4.2.1 A matroid M(S) is binary if it is representable over GF(2). 

It follows easily from Theorem 4.1.6 that M(S) is binary 

if an only if M(S) is binary. 

l,Welsh [76 )gave necessary and sufficient conditions for a 
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matroid M(S) to be binary. The following definition and lemma are 

needed for these conditions. 

4.2.2 The symmetric d:_ference of sets C1,..., C
n
, written 

C
1
A ... AC, is the set u (C. 	 U C ). 

i=1 	 CC. 

Notice that x c C A. .A C if and only if x belongs to 

	

1 	 n  

exactly one of C
1, 	

C. Thus C A.. .A C
n 
= (C A...A 

Cn-1) 
 AC . 

1 	 1 

4.2.3 LEMMA. If C , . . . ,  C are sets such that (C ric.( is even, 

1 < i < n. Then ((C
I
A ... AC) fl cl is even. 

PROOF. We first show that (C1A 	 AC 
n
) C 

= (C
1 	

C)A...A(C
n
n C). For n = 2 we have (C

1 
A C
2
) 	 C 

= ((C
1 	

C
2
) U (c2N, C1

)) 	 C = ((C
l. 
\ C

2
) ( c) 	 ((C

2 	
C
1
) () C) 

= (C 11 C 	 C
2 
) c) Li (C

2 	
C

1 
n c) = (c1 	 C) A (C

2 
n C). 

Assume that (C
1 
 A ... AC

k
) 	 C = (C

1 
 IC) 	 A(C

k 
n c) , where 

2 <k < n. Then (CiA 	 ACk+i) 	 C = ((CiA 	 ACM) A Ck+i) IC 

= ((CiA 	 ACM) 	 C) A (C.k+i  n C) =((c111 C)A 	 A(Ck 	 C)) A 

(C
k+1 
n C) = (C

1 
 17 C)A 	 A(C

k+1 
0 C). 	 Hence (C

I
A ... AC) 	 C 

= (C
1 
n C) A 	 A (C

n 
n C) . 

We next show that for any sets A, B if IAI, IBI are even, 

then IA A BI is even. Observe that A A B = (A N, A r) B) 6 (B A (1 B). 

If IA ('1 BI is odd, then since A = (A --N. A n B) Li (A r) B) , IA N.■ Al BI 

is odd. Also 113"--. A C) B( is odd and hence IA A BI = IA ■ A 0 BI 

+ 113 A r) BI is even. If IA / BI is even, by the same argument 

we obtain 1A A 131 even. 

Thus I (C
1 
A C
2
) n CI =((C 	 C) A (C

2 	
C) I is even by the 

above. 
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Assume that 
	

A ... A c)() 1)  A I is even, where 2 < k < n. Thus 

r = I (C
I
A ... 

ACk+1) 
	 C 	 = 1(c1 	 c)A ... A (Ck+1 	 CY I = I ( (C

1 
0 C) 

A ... MC (1 c)) A (Ck+1 	 C) I . Let C'  = (C1  0 C)1 ... A (Ck 	 C) . 

° By the assumption ICI  is even and so by the above r = IC A ( (C.K44()C)) I 

is even 
	

/1 

4.2.4 THEOREM. The following statements about M (S) are equivalent. 

*, 
(i)For any circuit C and any cocircuit C of M(S), IC4/C I 

is even. 

(ii)The symmetric difference of any finite collection of 

distinct circuits of U(S), if not empty, is the union of disjoint 

circuits of M(S). 

(iii)The symmetric difference of any distinct circuits 

C1, C2 of M(S) contains a circuit of M(S) . 

(iv)If C. B = { x1°
...
1 
x
q 
} , where C is a circuit of M(8) 

and B is a basis of M(S). Then 

C = C(xl, B)A 	 AC(x , B) 

(v)M(S) is binary. 

PROOF. We prove the theorem in 3 steps. Firstly we show 

that (i), (ii) and (iii) are equivalent. Secondly we show (i) <=> (iv) 

and finally we show (iv) <=> (v). 

(i) => (ii) : 

Let C1,..., Ck  be distinct circuits of M(S). Put A = C1A 	 ACk  . 

Suppose that A is independent and non-empty. Extend A to a basis B. 

Let x e A. By Lemma 2.8.6 there is a cocircuit C of M(S) with 

* 
(B 	 x) 	 C

* 
= 4) and x e C. Then IC

* 
nAl < lc fl Bl = 1. 

* 
By Lemma 4.2.3 IC '2 Al is even. Thus we have a contradiction. 
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Hence A is dependent in M(S) and so it contains a circuit C. 

If A = C we are finished, if A C we conSider 

Al  = C A CIA 	 ACk  and apply the above argument with A = Al. Since 

A is finite and A
1 
= As.,c, this process eventually terminates giving 

a finite collection of disjoint circuits whose union is A and (ii) is 

proved. 

(ii)=> (iii) is clear.. 

(iii) => (i) : 

Suppose that M(S) satisfies (iii) but not (i). Then there exist a 

*, 
circuit C and a cocircuit C of M(S) such that IC nc Lis not even. 

	

*,. 	 * 
Choose such C and C with IC nc minimum. By Lemma 2.8.5 IC (?C

,
c 9i 1 
*. 

and 'so Ion C I > 3. Let a, b, c be distinct elements of C 0 C. By 

1 
Lemma 2.67 there exists a circuit C

1 
 with C

1 
 C = ac. By (1(

4
) there 

exists a circuit C
2 c (C L1C1 	

a and b C
2. Choose C2 so that 

C U C
2 is minimal. Also by (K4

) there exists a circuit C
3 	 (C U C

2
) b 

with a c C
3 and so there exist, a circuit C4 	

(C U C
3
) ■ a with 

b C  C4. Now C U C4  C U C3  ‘, C U C2  C U C1  and b s C4  . Thus 

C4 	
(C1 	 a. Since C C is minimal C (i C G. C - 	 UC 	 that 

	

Ci 	
2 	

, 	 s  
2 	

4 so 
 

C U C
2 
c&  C UC4 cT C 	 C

3 	
C LiC

2. 
Thus C U C

3
-= C
. 
C/C
2 and so 

C3' C = C2  C. Hence C
2 
L C
3
.= (C

2 
C
3
) U (c  C

2
) C. C. By the 

assumption C2  A C3  contains a circuit. Thus C2  A C3= C. Observe that 

IC3  r? C*I is positive (as .a e C3 	 C*). If IC3  (1 C*I is even, then 

as IC 1) C*I = I(C2  A C3) () C*I = IC2  (7) c*I + 1c3 	 C*I -2 IC2  () C3  n c*I, 
* 	 *, 	 „  IC

2 
fl C

, 
 is odd (otherwise IC 1/ CJ is even). But-IC

2 
n C* I< lc (4 C*I, 

	

*. 	 *. 
contradicting minimality of IC C I . Thus IC

3 
/.1 C.I is Odd and this 

*, 
also contradicts the minimality of IC C I . Therefore (i) is proved. 

(i) => 	 (iv) : 
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Let M(S) satisfy (i). Let Ci B = {e1,..., 	 where C is a 

circuit of M(S) and B is a basis of-M(S). Put Z = C (eB)A...AC(e ,B). 

Then {e1,..., e
t
}c Z. NowCAZCB. Since M(S)' also satisfies 
 — 

(ii), if C A Z 	 , it is the union of disjoint circuits which is 

impossible. Thus C A Z = (:) and so C = Z as required. 

(iv) => 	 (i) : 

Let M(S) satisfy (iv). Since (i) <=> (iii), it suffices to show that 

M(S) satisfies (iii). Let D
1, 
D
2 
be distinct circuits of M(S). We 

show that D
1 
A D
2 
is dependent. Suppose not, and let 

Din D2  = {x1,x21..., xk} . Then D1  A D2  = (D1  U D2) 

is independent. Extend D
1 
A D
2 
to a basis B of M(S). Thus 

D 	 B = D
2
--,.. B = { 	 x} and so D = C(xl' B)A 	 AC(x , B) = D

2 1 	 1  

by the assumption which is a contradiction. Hence D
1 
A D
2 
is dependent 

and so it contains a circuit. 

(v) => 	 (iv) : 

Let M(S) be binary and let B = {b1,..., b
r
} = 	 {el,..., eq} be a 

basis of M(S). Then there exists a standard matrix representation of 

M(S) over GF(2) of the form 

	  b
r 
e
l 

I
r 
	 A 

The elements of A are in GF(2). Let C be a circuit of M(S). We may 

assume that C ="' b e
1
" e} . Then for each j, 1 < j <p 

I 	p 

we have 

C 	 13) 	 { b. / a.. = 1 } 	 . 
ij 
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We show that for any bi  e B n C,. b. c C(el, B) for a unique 

j. SuPposethatthereexistsb.cBnCwithb.iC(e. B) 1 

1 

independent. Let f be the representation given by the columms of the 

Above matrix. Consider' 	 x.f(c.)+yf(b.) =0. We see that 

	

c. e C. 1 	 i 	 1 
1 	 1 

symustbezeroandsinceclisindependent,x.=0, Vi. Hence f(C) 

is linearly, independent over GF(2). This is a contradiction. Thus 

b. c C(e. B). 
1 	 3' 

Since C is a circuit, f(c) is linearly dependent over GF(2) 

sothatf(C)=1f(b.)+Xf(e.)is the zero vector. But each 
1 	 1 

i=1 	 j=1 

b. in B n C is in C(e:, B) for some j, thus each row of the matrix 

.f(c)j is occupied by 1 in even number of times, Hence each b. in 
3 

13 n C, b. is in odd number of C(el'  B),..., C(e
p
, B). Suppose that 

1  

there exists, b
t 
say, so that b

t 
is in at least 3 sets of 

C(e
l' 
B),..., C(e , B). We may assume that b

t 
is in C(e1" B), 

P  

C( o2,B)andC(e,WCoilsiderthevectorf(e).Wechoosex.=0 
P 	 P 	 1 

if the ithcomporlentoff(e)is1andx.=1 otherwise. Thus 
t-1 	 P 	 1 

y 	x.(f(b.)) + (f(b
t
) + f(e

1
) + f(e

2
) +...+ f(e 1) is the zero 

1 	 1 
i=1 

vector, contradicting the fact that (f(b1),..., f(bt),f(e1),...,f(ep_1)} 

is linearly independent over GE (2). Thus any bieBnCis in exactly 

one of C(e 	 B),..., C(e
p
, B). 

We show that C = C(el, B)A ... A C(e , B). Since 

P P  
f(C(e., B)) = 0, i = 	 13, we have 	 1 f(C(e., B)) = 0. 

i=1 

Let C°  = ( u C (e., B)) n (B N.C) . We write 
1. 

i=1 
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E f(C(e.,B) = 	 E,f(b.) +f(C) = 0. But f(C) = 0 and so 
1 	 1 

i=1 	 b. c C 
1 

E ,f(bi) = 0 • We see that for any bi  e C bi  must occur in even 
b c C 

number of C(el, B),..., C(e
' 
 8). Therefore bi.X C(el, B)A...AC(e ,B) 
P 

and hence C = C(e ,.B)A 	 AC(ep, B). 

(iv) => (v) : 

Let M(S) satisfy (iv). Let B = {b1,..., b r
} be a basis of M(S) and 

B = II....I  e} . Define a matrix A by  q 

1  

a.j 
	

if b. e C(e.
' 
 B) , 1 < i < p , 1 ‹. j < q , 1 	 7 	 . 

-=' 

0 	 if b. it C(e,
' 
 .B) , 1 < i < 	 , 1 < j < q . 

1 	 j 	 — — 

Put B = [ I
r, A ] . We show' 

 that the function f on S defined by 

f(a.) = the i th column vector of I
r 
and f(e.) = the j th column 

1 

vector of A is a representation of M(S) over GF(2). 

Let C be a circuit of M(S). We show that f(C) is linearly 

dependent over GF(2). Let C N B = lei 	 ei} 	 . By the assumption 
1 

C = C(e. , B)A 	 AC (e. , B). If B 0 C # 	 , then for any bk  C B 	 C, 
k 11 

there is unique j with bk  e q(ej, B). Thus (B C) n C(ej, B) # (11  

for some j. We may assume without loss of generality that 

(B n C) 	 (C(e. , B)) # (1) . Suppose (B 0 C) 	 C(e. , B) = {bi,...,bs} . 
11 	 11 

Thus a . =, 1 < m < s, and a • = 0, s < m < r, and so 
M1
1  

mil  

• f(e. ) = f(b ) +...+ f(bs
). Hence f(C) is linearly dependent over

1 	
1 

GF(2): If B C = (1) , then any b. e U C(e. 	 B) occurs in even number 
1 	 j=1 	 1j  

of C(e. , B),..., C(e. , B). Thus f(C) = {f(e. ),..., f(e. )} is 
1
k 	

.1k 11 	
11 

k 
linearly dependent over GF(2) (as E f(e,.) = 0) 

j=1 	
J.j 
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Let f( U ) be linearly dependent over GF(2) and such that every 

proper subset of f( U ) is linearly indendent over GF(2). Suppose that 

U = fbi,..., bt, el,..., . We show that U is a circuit of M(S). 

Firstly we show that U 	 C(e E)A 	
' 

AC(e B). By the same argument 
P 

as aboveforanyb.eB n U , b. e C(ej, 13) for a unique j. Thus 
1 	 1 

U c C(e B)A 	 AC(e
p
, B). We are left to show that each b

k 
in 

(B 	 U) n (  u C(e.

' 

 B)) = C , b
k 
occurs in even number of 

7=1 	 3  

C(e11 B),...,C(e, 13).CorisiderZf(C(e.' B)) = 0 we can write 
3 j=1 

'p 
E f(C(e.

' 
 E)) = / 	 f(b) + f( U ) . But f( U ) = 0 so that 

j=1 	 7 b
k 
C°  

E 	 f(b
k
) = O. Thus each b

k 
e C occurs in even number of 

b
k
e C 

C(e 	 B),..., C(e 	 B). 

Since (iv) <=> (iii), C(el, B) A C(e2' 
B) contains a circuit C

l  

and,so C
1 
A C(e3'  B)A ... AC(e , 13)c U . Consider C1 

 A C(e3- 
 
. B). Then 

p —  

there exists a circuit C
2 
with C

2 
A C(e

4' 	 ' 
13)A ... AC(e 	 B)c U . Carry 

P — 

on in this way we reach the step Cp..2  A C(e , B)c U , where Cr_i is a 

circuit of M(S), and so there is a circuit C
p-1 	

u • Thus u is 

dependent. Observe that f(A) is linearly independent implies that A is . 

independent in M(S). Thus every proper subset of U is independent in 

M(S) and so U is. a circuit. Thus (v) is proved. 

Hence the theorem is proved. 	 II 

4.2.5 EXAMPLE. M(
n 
) is binary if and only if n = 7 . 

PROOF. We first show that M( 	 ) is not binary when n 7. 

First we show that n
2 
- 10n + 21 > 0 if n > 7 . For n = 8 
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we have n
2 
- 10n + 21 = 64 - 80 + 21 > O. Assume k

2 
- 10k + 21 > 0 

and k > 7. Then (k + 1)
2 
- 10 (k + 1) + 21 = (k

2 - 10k + 21) + (2k - 9) >0 

(as 2k - 9 > 0). 

Secondly for, any n E 1 or 3 (mod 6), n > 7 we claim that there 

exist two disjoint triples of 0
n 
. If not, suppose 123

n . 

Then any triple intercects 123. As each of 1,2,3 occurs in n - 1 triples 
2 

and the number of triples in 	 is n(n - 1) , we have 
6 

3 (n - 1) 
	

2 	 = 	 n(n - 1)  
2 
	

6 

which implies n
2 
- 10n + 21 = 0. This is not so. Hence there exist 

two disjoint triples. Let AI, A2  be disjoint triples in jn  . As 

shown in Chapter 2 , Al  is a hyperplane. and hence SnNS.  Al  is a 

cocircuit. Now A
2 
is a circuit of M(

n 
) and 1(Sn A

1
) 	 A

2
1 = 3 

which is odd. By Theorem 4.2.4 M(&11) is not binary. 

To show that M( j
7
) is binary let C

1, 
C
2 
be distinct circuits 

Of M( y7 ) and C1 n C2 (I) . We shall show by exhaustion that C1 A C2 
contains a circuit. Observe that the set of circuits of M( c.c,c ) is 

the union of ff and the family -C of sets A C.S
n 
with IA1 = 4 

C n 

and such that A\ X X 	 Vx C A. 

case I. 	 C
1
, C
2 
e 

Then IC1 A C21 = 4 and any 3 - subset of C1 A C2 can hot be a triple. 

Thus C
1 
A C
2 
is a circuit. 

case 2. C1  c e7  , C2  Ce7  1C1  0 C21 = 1 

Without loss of generality let C1  = {xl, x2, x3} , C2  = {x1, x4, x5, x6} 

If {x4, x5, x7} is a triple, let C be the triple containing x4, )(6. 
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Then C # {x
4' 
x
6' 
x
7 
. Thus C contains an element of C1 

C
2. 

That is C C A C 
- 1 	 2 • " 

If {x
4,  x5' x7

} is not a triple, .consider the triple C 

containing x
4' 
x
5. 

Then we have C 	 C
1 
 A C2 -  

Case 3. ci  07  c2  C  Ici 	 C2I c9  

Again we can assume that C
1 
 = {x

1,  x2' x
3} } , C

2 
 = {x

1, x2' x4' x5
.}. 

Since the triple C containing x4, x5  must intersect C1  in exactly one 

element, C 	 x3  . Hence C C- C1  A C2. 
• 

case 4. Cl, C2  e 	 . 

We shall first show that IC1 C
2
I # 1, if not so let C

1 
 = {a,b,c,d} 

A2  = {a, 10, q, r} . Then C1  Li C2  = S7  . Consider the triples 

containing a and b, a and c, a and d, we see that each of these triples 

must have exactly two elements in A2. We can assume these triples to 

be {a, b, p} , {a, c, q} , {a, d, r} . Then the triples containing 

b and c, b and,d, c and d must be {b, c, .r} , {b, d, qj , {c, d, p} . 

Now consider the other element x in the triple containing p and q. We 

see that x # a, p, q, r. But x # b (othewise b, p are in the two triples). 

Also x # c, d. Hence no triple contains p and q which is a contradiction. 

-Thus IC1  r) c21 # 1. We shall show that IC1/1 C21 = 2., Suppose that 

ICi  n c2  I = 3, let c1(1 C2  = { xl, x2, x3} and S. 	 C1  U C2  = {x4, x5I. 

We can form three distinct 2-subsets from C
1 

C2 
and since any two 

elements are contained in exactly on triple, there is one 2-subset 

from C
1 

C
2' 

{x x2 
say, which does not form a triple with either 

x4  or x5. Thus another element in the triple containing xl, x2  is in 

C
1 
 AC

2 
 j contradicting the assumption that e1

,C
2 	 . Hence 

7 

IC1 A C21 = 2 and so IC1 A C2I = 4. Thus C1 A C2 must contain a 
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In fact the Fano matroid is only representable over GF(2) 

(Rado [57] ). The standard representation of the Fano matroid over 

GF(2) is given by the following. 

x
2 

x
3 

x x
5 

x
6 

x
7 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

1 

1 

1 

0 

1 

1 

1 

0 

1 

1 

By Lemma 4.1.6 the dual of the Fano matroid has the following standard 

representation 

x
1 	

x
2 

x
3 

x
4 

x
5 

x
7 

0 	 1 1 1 0 	 0 0 

1 	 0 1 0 1 	 0 0 

1 	 1 0 0 0 	 1 0 

1 	 1 1 0 0 	 0 1 

4.2.6 	EXAMPLE. Let Sri= {1,2,..., n = 2m} , n >6. Let 

where i = 1,3,..., 2m - 1. 

Then 	 is the family of bases of the matroid M( 
	

on Sand 

) is binary if and only if n = 6 . 

PROOF. To prove that M 
	

) is a matroid we only need to show 

.15n be the 
family of 2-subsets of S excluding 2-subsets of the form {i, i + 1} , 

tl)gt for any i # j # k and {i, j} e ,Bn, at least one Of {i, k} or 

{j, k} is in i3n  . Let {i, j} c 1311  and k # if j • 
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case 1. k is odd. 

If k = i - 1 or j —1, without loss of generality assume that k = i - 1, 

hence k 	 j - 1 so that {j, k} c -15,. If k 	 i - 1, j - 1, then 

kl ; {j, k} e 19n  . 

case 2. k is even. 

If k < i, then {i, k} e 3. If k > i, then {j, k} e  in case 

+ 1 = k and {i, kl
n 
otherwise. 

Hence M( .41) is,a matroid on S. 

i + 1} then 

F. is a circuit of M( 	 ). For distinct integers i, j, k in I the set 

(x. x., 	 } , where xr  e Fr  Vr = i, j, k is a circuit of M($ ). 

Let t (n) be the family of {xi, xj, xk} defined as above. Then the 

circuits of M(. I% ) are ( U F.) U 
I 1  

To show that M(15 ) is binary let C
1, 
C
2 
be distinct circuits 

of M(j36) such that C1  0 C2  # (1) • 

case 1. C1  = F. , C2 
e (,(n) 

Let C1 
	 , 

	

={x. y.} and C2  = {x., x. 	 . Then i 	 j # k so that 
i, 
	

i 	 3 

A C2  = {yi, xj, xk} e 

case 2. Cl, c2  e e (n) and 1C1  0 C21 = I 

Then C1  = {xi, xj, xk} and C2  = {xi, Yj, yk} where F. = {xj, Yi} 

and (xk  , ykl = Fk  and i j k. Hence C1  A C2  contains a circuit Fj. 

case 3. C
1, 
C
2 
e e(n) and IC1 n C21 = 2 

Let C1  = {xi, xj, xk} and C2  = {xi, xj, yk} • 

Then C1  A C2  = {xk, 	 = Fk  which is a circuit of M(786). 
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Thus M( 6) is binary. 

For n > 6 we can choose C1  = {xi, xj, xk} and C2  {xi, xj, xr} 

where i # j k # r. Then C1  A C2  = {xk, x
r
} is not a circuit and 

so MI 	 ) is not binary if n > 6. 

The next theorem due to Tutte [653 .gives a necessary and 

sufficient condition for a matroid to be binary. The proof is drawn 

from Welsh [76 J  . The following two lemmas are needed in the proof. 

4.2.7 LEMMA. Let C be a circuit of.G(S). If z e C, then C \,z is ' 

a circuit of G(S):(S 	 z). If z C, then either C is a circuit of 

G(S).(S ■,z)'or C is the disjoint union of two circuits of G(S).(S N,z). 

PROOF. We first assume that z e C. We showed in the proof of 

Theorem 2.7.8 that C 	 is a circuit of G(S). (S z) . 

We next assume that z C. Suppose that C is nOt a circuit 

of G(S).(S N, z). But C is dependent in G(S) (S---..z). Thus there 

exists a proper subset D of C such that D is a circuit of G(S).(SN., z). 

If D Liz is independent in G(S), then'D is independent in G(S).(S 

which is not so. Hence D U z is dependent in G(S) so that D t.) z is a 

circuit of G(S)... 

merecocistsaci it4 z e cl. 

If there exists a.in (C \D)NC
1. 

Pick x
1 
e D. Then a # x

1  
• and so . 

there exists a circuit C c (CUD U 'x1 with a e C . Since C 1 

is independent, (C 	 Liz contains at most one circuit. Hence C = C1  

and So a c C
1 
which is a contradiction. Thus C1 

= (C 	 z. .Hence 

C Dis a circuit of G(S). (S z) as required 	 //. 

I  4.2.8 LEMMA. Let C be a circuit of G(S).(S 	 Then C is a 
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circuit of G(S) or C' u z is a circuit of G(S). 

PROOF. Suppose that C° is not a circuit of G(S). But every 

proper subset of C° is independent in G(S).(S z) and so in G(S). 

Thus C°  is independent in G(S). If z is dependent in G(S), then C' 

must be independent in G(S).(S \ z) which is not so. Thus z is 

independent in G(S). Since C' is dependent in G(S).(S \ z), C° u z 

is dependent in G(S). As (C' 	 x) is independent in G(S).(S \,z), 

(C°\ x) u z is independent in G(S) and hence C°  u z is a circuit of G(S). // 

4.2.9 A minor of a matroid M(S) is a matroid on a subset of S obtained 

by any combination of submatroids and contractions of M(S). 

4.2.10 THEOREM. A matroid M(S) is binary if and only if it has no 

minor isomorphic to U
2,4 • 

PROOF. Let M(S) be binary. If there exists a minor of M(S) 

which is isomorphic to U2,4, then since the minor is also binary, 

U24  is also binary. This is a contradiction. Hence all minors of , 

M(S) are not isomorphic to U2,4  . 

Let M(S) be a matroid which has no minor isormorphic to U2,4. 

We prove the theorem by induction on ISI . Assume the theorem is true 

for any matroid M(T) which has no minor isomorphic to U2,4  and 

ITI 4  181 • 

We shall show that C
1 
A C
2 
is a.disjoint union of circuits, that is 

C
1 
A C
2 
contains a circuit. 

We may assume that S = C1  u C2  (otherwise consider the matroid 

M5(C
1 
u C
2
). Let X = C

1 
n C
2' 
Y
1 
= C
1 

C
2' 
Y
2 
= C2  \ C

1 
and Y = Y

1 
u Y
2° 

We show that Y is a union of disjoint circuits of M(S) by considering all 

possibilities. 

Let Cl, C2  be disjoint circuits of M(S), where C1  n c2  ¢ 
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case 1.  IY11 = IY2I = 1  

If IXI = 1, then by (K4) there exists a circuit C Yic/ Y2  = C1  A C2  

and we are finished. The result also follows if 'XI > 1 and Y1 
Y 

is dependent. If Y1 
u Y
2 
is independent, then IXI > 1 (otherwise 

Y
1 

Y
2 
is dependent). Extend Y

1 
u Y
2 
to a basis Y

1 
	 (I = B. Then 

I X. If X 	 / = a , then B u a contains '2 circuits Cl, C2  which 

is not so. Hence IX  II > 2. In case IX  If > 2 we have 

r(B) = 2 + III'< 2 + 'XI - 2 = IX' so that r(M) + 1 = r(B) + 1<IXI + 1 

= IC1I . A .contradiction. Thus IX N. II = 2 and so Y Li (X ..x1 
x
2
) is 

a basis of M(S). Let T = {x
1' 
x2' y1, 

y2 
. Consider M(S).T . 

We see that any 3-subset of T is a circuit of M(S).T so that M(S).T is 

U
2,4 

	 which is a contradiction. 

case 2. 	 IY11 > 1. 

Let Y1= {y, z, 	 -1 . By Lemma 4.2.7 C1 
 y is a circuit of 

-  

M(S).(S 	 y). Also by Lamma 4.2.7 C2  is either a circuit of m(s).(s•.y) 

or C
2 
is the disjoint union of two circuits, of M(S).(S 	 By the 

induction hypothesis and by Theorem 4.2.4 the symmetric difference of 

C
1 	

and C2 
is a disjoint union of circuits of M(S).(S,..,y). By 

Lemma 4.2.8 we then can write 

Y = s u 	 8 u  US 
 1 

where each S. is a circuit of M(S) and 

y}  

s.  s. = 
3 .  3  {  

1 < i 	 j < r , 

0 	 otherwise 

We show that r is odd. Suppose that r is even . Then we 
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pair Si  and 5i+1 
for
-
i = 1, 	 r - 1. By the induction hypothesis 

Si  A Si41  is a union of disjoint circuits of Ms(Si  u Si+1). As any 

circuit of M (S. U  S 	 ) is also a circuit of M(S) it follows that 
S 1 	 i+1 

Y = T V 	 u 	 u y 
1 	

Th 

where T1,..., Th  are disjoint circuits of M(S) which do not contain y. 

Now for each i = 	 h, Ti  is a circuit of Ms(S Ny) and so by 

Lemma 4.2.7 if z Ti, T. 	 z is a disjoint union of at most two 

circuitsofM andhenceofM(S).(S-,z)andT.is a 
1 

circtlitof ifzeT..Thus 
1 

Y\z = R
1  U 
	 U RkU y , 

where R11..., Rk  are circuits of M(S).(8-'■ z) which do not contain y. 

Since Y N z is a symmetric difference of C
1
N\ z and. C

2 
and C

1 
z is a 

, circuit of M(S).(S N,,z) and C
2 
is the disjoint union of at most 

two circuits of M(S).(S z), Y z is a symmetric difference of at 

most three circuits of M(S).(SN z). Then 

y = R A ... A Rk  A (Y N Z) 
1 

is a symmetric difference of circuits of M(S).(S -•„z). Since M(S).(SNz) 

is binary, y is a circuit of M(S).(S̀,... z). By Lemma 4.2.8 either y or 

y u z is a circuit of M(S) which is a contradiction. 

Hence r is odd and thus by the induction hypothesis for each 

i = 2,4,..., r - 1, S1...1  A Si  is a disjoint union of circuits of M(S). 

P 	 g 
Thenwecanwritey...11Sr-lasuC.whereal1C.are disjoint' 

1 
i 	

1 
=1 

circuits of M(S)and therefore Y = ( u C.) u Sr u 	
u S
t 
is,a 

i=1 1  

disjoint union of circuits of M(S) as required. 	 // 



5. GAMMOIDS AND BASE ORDERABLE MATROIDS 

Strict gammoids, that is, matroids arising from directed 

graphs were introduded by Mason [723 . We show their relationship 

to transversal matroids. 

The class of gammoids is closed under the taking of minors and 

under duality and it also dontains tianiversal Matroids. ThUs the 

class of gammoids is the closures of the class of transversal 

matroids under Contraction, restriction and dual. 

Finally a class of base orderable matroids is discussed. 

5.1 STRICT GAMMOIDS AND.GAMMOIDS 

A path in a directed graph (more briefly : digraph) G = 

where V is the set of vertices and E the set of edges, is a sequence 

P = (v
0,  v1" V

() of a pairwise distinct vertices of G such that 

k > 0 and (v-19 . 	 v) e E, 1 < i < k. The vertices vo 
and v

k are 1 	 _- 

respectively the initial and terminal vertices of P. We say that 

P and Vi_vvIume =PO.< i < k. Two paths are 'disjoint if , 

their vertex sets are disjoint. 

Let A, B c V. A linking of A onto B is a bijection ag: A -> 

such that there are pairwise disjoint paths (Px/x e A), where Px  has 

initial vertex x and terminal vertex =(x) e B. Before we present 

the Linkage Lemma due to Ingleton and Piff (73.1 we define for any 

Z c V the set 

' 
Z = Z U{vcV/ (z, v)cE for somezeZ} 

and for each v e V we denote by A
V 
the set v . 
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If 4 is the family of sets (Av  / v • V) we denote by 

the subfamily (Av  / v e X), where X cv. 

Throughout this chapter arrydigraph considered is finite. 

5.1.1 THE LINKAGE LEMMA. Let G = (V, E) be a digraph. If X, Y are 

subsets of V then X can be linked onto Y in G if and only if V X is 

a transversal of the family 
 

PROOF. First suppose that X is linked onto Y in G by pairwise 

disjoint paths (Pv  / V e X). Define a function cc 	 by 

v 	 if (v, u) e Px  for some x .p X, 
..=(u) 	 = 

U otherwise 

Then is well defined, since the paths (Pv  / v c X) are pairwise 

disjoint, and is an injection. For each u *EV-••,,X we see that 

u ç A() which belongs to A  . Since .= (u ) # m (u2) if 
U
1 
# u2' V X is a transversal of 0

,44 	 • 

Conversely let V \ X be a transversal of 4  . Then there is 
17\ Y 

a bijection cc V \ X -0- V \ Y such that u C Acc(u)  for all u e \ X. 

Consider any v e YN., X. We show that there is apath joining a point 

in X \ Y to v. As v c Y \ X, vcV\X so that v 
Ace(v) 

and hence 

(m(v), v) 	 E. If m(v) OX , then m(v) cV's4Xso that 

cc(V) c 
A(()) 

 which implies (m2(v), m(v)) = (=(=(v)), m(v)) c E. ==v 

Thus either there exists k with m
k
(v) c X and =

r
(v) 0 X, where r < k 

or we obtain an infinite sequence { =r(v)}c° 	 . Now ccr(v) e v \Y.  
r=1 

for all r. Since G is finite we have =r(v) = s(v) for some r < s. 

Choose the minimal r with m
r
(v) = r

s
(v), r < s. Then 

= =(m
8-1
(v)), contradicting the miaimality of r. Thus 



140 

=k(v) e X for some k and =
r 
 (v) X for all r < k. Thus we obtain a 

path (=k (v), =
k-1
(v),..., v) from =

k 
(v) e X N..Y to v. Since = is 

injective, the paths ((=k(v),..., v) /veIN.X) are pairwise 

disjoint. We adjoin the trivial paths (v), forveXnYto the 

above paths to get a linking of X onto Y. 	 11 

5.1.2 THEOREM. Given a digraph G = (V, E). Denote by L(G, B) the 

collection of all subsets of V which can be linked into a fixed 

subset Sof V • That is X e L(G, B) if and only if there exists 

Y c B such that there is a linking of X onto Y. Then L(G, B) is the 

collection of independent sets of a matroid on V. We call this a 

Strict gammoid. 

We always denote a strict gammoid by L(G, B) with G and B as 

above. Observe that B e L(G, B) and so r (L(G, B)) = IBI • 

PROOF. By the Linkage Lemma, X e L(G, 13) if and only if 

V N. X is a transversal of the family  
V N. 

Then 

X e L(G, B)<=> VN„X is a transversal of the family(91 	 for some B B, 
4 	 VN.B 

< = > VN,X contains a transversal of 
V •k, B 

<=> V N,X is spanning in the transversal matroid M[4411,,J31, 

Since the complement of a spanning set of a matroid is an independent set 

of its dual matroid, L(G, B) is the set of independent sets of the dual of , 

V..8 

In fact we have proved. 

5.1.3 ,THEOREM. A matroid M(S) is a strict gammoid if and only if M*(S) 

is transversal. 	 /1 
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5.1.4 EXAMPLE. Consider the following digraph G = (V, E). 

1 	 2 	 3 	 4 	 5 	 6 

Then L(G, i6) ) has as bases all singletons of V while L(G, {3, 6) ) 

has as bases all sets (x, y) , where 1 < x < 3 and 1 <y < 6. 

5.1.5 Given a digraph G = CV, E) and B 5V; by the strict gammoid 

, presentation of L(G, B)* we mean the family ( 094 /veB) and write 

L(G, B)* for M 	 ] • 
VN‘B 

5.1.6 LEMMA. The strict gammoid presentation of any transversal 

matroid exists. 

PROOF. Let M [ A1, ..., Az.] be any transversal matroid of 

rank r on a set V. Choose a basis V" B = C v1" v
r 
 of M(V), 

where v. c Ai, 1. < i _sr. Construct the digraph G = CV, E) as follows: 

(v., X) C E <=>  X # v., X C A. , 
1 	 1 	 3. 

1 <i <r 

Then it is clear that,L(G, B)* = M 	 Ar  j  

Thus for any strict gammoid we can obtain a presentation of 

its dual as a transversal matroid and conversely. 
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5.1.7 A gammOld is any restriction (submatroid)-pf a 'strict 4ammoid. 

5.1.8 LEMMA. Any transversal matroid is a gammoid. 

PROOF. Let M [Av ., An] be any transversal matroid on S. 

?tit I = (1,..., n) . Construct the digraph G = (V, E) as follows: 

Let V = SUI. 

For each x e S join x to i s- I 4=> X c Ai . Consider L(G, I). We 

easily see that M[A1,..., Ar j is the restriction of L(G, I) to S. // 

For convenience in notation the restriction of M(S) to any 

subset T of S is denoted by M(S) '/ T. 

5.1.9 1  Lemma. (i) Any minor of a gammoid is a gammoid. 

(ii) The dual of any gammoid is a gammoid. 

PROOF. (i) It suffices to show that any restriction and 

any contraction of a gammoid is a gammoid. Let M(S) be a gammoid. 

Then there exists a digraph G = (V, E) with M(S) = L(G, BUS for some 
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subset B of V and some subset S of V. Thus fbr any T cS we have 

M(S) / T = (L(G, B)/ S) / T = L(G, B) / T 

and so M(S) / T is a gammoid. 

To show that a contraction M(S) . T is a gammoid we use the 

fact that for any M(S) andAcBcSwe have 

(M(S) / B). A = (M(S). (S •■ (B NA))) / A. 

Then M(S). T = (N(S1) / S). T, where N is a strict gammoid on some 

SI  D S. By the above, M(S). T = (N(S'). T')/ T , where T = S°  \ (S \T) • 

** 
Now (N(S').T1) = (N(S').T') 	 = (N (S')/ T) and since N(S°) is a 

strict gammoid, N (S') is transversal and hence N (S)/T.  Therefore 

N(S').T° is a strict gammoid and so its restriction, M(S).T, is a 

gammoid. 

The following theorem which we state without proof is due to 

Ingleton and Piff [73] . 

5.1.10 THEOREM. (i) Every-matroid of rank 1 or 2 is a strict gammoid. 

(ii)Every gammoid of rank 3 is a strict gammoid. 

(iii)Every matroid of rank n - 1 or n - 2 on a set of n 

elements is transversal. 

(iv)Every gammoid of rank n - 3 on a set of n elements is 

transversal. 

5.2 BASE ORDERABLE MATROIDS 

5.2.1 A matroid M(S) is base orderable if for any two bases B1, B2  of 

M(S) there exists a bijection 0 : B1  .4.B2  such that for each x e:Bi, 
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B \ x) u 0(x) and (B
2 
\ 0(x)) u x are bases of NI (S) . 

1 

The function 0 is an exchange ordering for B1, 
 

5.2.2 EXAMPLE. M( 13 ) is base orderable. 

PROOF. Let B
1 	

be distinct bases of M( _j?
n 
). We can 

assume that 13
1 
n D
2 
= (:) . Suppose B

1 
 = {a, b} and B

2 ,
= {c, d} . 

If there exists ,a pair of elements one from B1  and one from B2  such 

that this pair is Fi, (a, c} = F. say. Then {a, ■cl}s .13n  and 

{b, c}e 	 . Hence 0 : 131 	 1.32  defined by 0(a) = c , 0(b) = d 

is an exchange ordering for B
l! 
B
2. 

In the other case any injection 

from B1  onto B2  is an exchange ordering for B1, 132. 
	

// 

5.2.3 LEMMA. Not every matroid is base orderable. 

g 
PROOF. We show M( 	 ) is not. Let B

1 
=fx

1°  x4° x
6} and 

B
2 

{X
2°  x5' 

x
6
} be two triples in y7 • Then there exists x

3 
such 

that B3  = {x2, x3, x4} is the triple containing x2, x4. Put 

B
1 
 = {x1° x

2' 
 x3} } 	 B = {x x

5'  x6 	
. Then B

1 
and B

2 
are bases 

4°   

of M( 	 ). Since 	 contains 7 triples and every element in S
7 7 

is contained in exactly 3 triples of cf.7  , the only triples that are 

not subsets of E1  u B2  are the three triples containing 7. Hence 

B1  u B2  contains another triple different from B1  , B2  and B3  . We 

claim that the triple B containing xl, x3  is a subset. of B1  u B2. 

Suppose not, then B = {x
1° x3°  x7.

} . Thus the triple B containing 

1 
x
2 
does not contain x

7 
so that it is a subset of B

1 
u B
2. 

Therefore B = {x
1-  x2' x

3} or {x
1° 
 x2' .x4} or {x 	

x2' x5 
 } or 

r  

{ x
1° 	 ° 
x x

6 
 } which is impossible. Thus B 

B1uB2 
and B must be 

2  
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equal to {xi, 3  

If M( 6P) is base orderable, then there exists a bijection 7 

f : B
1 	

B
2 such that(B1

\ x) U f(x) and (B
2 
 \f(x)) u x are 
 . 

bases of M( (f), Vx E B
1. 

Now f(x
1
) 	 x

5 
and f(x

2
) 	 x

4 
(otherwise 

7 

(B
2
\ f(x

1
)) u x1 = tx

1
.
,  x4' 

x
6 
 e cf and (B

2 
N■f(x

2)) u x2 7 

= Jx2' x5' x6 E 	 ) .  Thus f(x
1
) = x

4
r'x
6 
and f(x

2
) = x

5 
or x

6 7 

and so we have all three possible bijections f ,f
2' 
f
3 
from B

1 
onto B

2 

defined as follows: 

f
1  (x1  ) = x6 , f1(x2) = x5 , f1

(x
3
) = x

4 

f
2
(x
1
) = x

4 
, f

2
(x
2
) = x

6 
, f

2
(x
3
) = x

5 

f
3
(x
1
) = x

4  , f3 
 (x
2 
 ) = x

5 
, f

3
(x
3
) = x

6 

Then we have (B
1 \x2) u f (x2

) = {x
1
, x
3
, x5} 

or (Bi\ xi) u f2(xi) = (x2, x3, x4} c 

or (BiN xi) u f3(x ) = {x2, x3, x4} c 

which is not so. 

Therefore M( Y) is not base orderable. 
7 

In fact if n = 1 or 3 (mod 6) and n No  a non - base orderable 

matroid M( e ) exists since c50 contains Y and we have 
7 

5.2.4 LEMMA. Any restriction of a base orderable matroid is base 

orderable. 

// 

PROOF. Let M(S)/T be any restriction of a base orderable 
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1 
fl B
2 

11)(x) 	 = i0-1(x) if x c B ‘--.. B 
1 	 2 ' - 
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Matroid M(S) on a subset T. If B B
2 
are bases of M(S) IT, then there 

exist bases Ai, A2  of M(S) with B1  c A1, B2  E. A2. Let 0 be an 

exchange ordering for A1, A2. Suppose that there exists x e B1  with 

O(x) e A2  B2. Then (A., 	 0 cx)) U  x is a basis of M(S) so that 

. Thus B2  u x is independent in M(S)/T. A contradiction. 

Hence 0(x) C H
' 
 Vx B1 

	 B1 
and so 01 	 is an exchange or\dering fcir 

2  

8
11 B2* 

1/ 

5.2.5 LEMMA. The dual Of any base orderable matroid is base orderable. 

PROOF. Let M(S) be any base orderable matroid. Let B3., 

be bases of M (S). Thus S ■131 
	 13  
and S 	 are bases of M(S) so that 

2 

there exists an exchange ordering 0 for S B1, S ■ B2• If there 

exists x cB
2  B1 

 with 0(x) g B
1' 
 then 0(x) s S NB1  so that 

N.13
1 	

x) U 0(x)I = Is NB
1 
 - 1 • But ((S 	 ) 	 r)) U 0(X) 

is a basis of M(S) and so 1( (S Ri) 	 U0(x) I = 1 S Bi  • 

contradiction. Hence Vx B *Nit B , 0(x) 	 B %••• B 
2 	 1 	 1 	 2.  

	

B 	 B = 	 . 	 B ). 

	

2 	 1 	 I 	 1 

	

Define * 	 BI 	 , by 
2 

' 

That is 

Then for any x e B
I
N, B

2 
we have (BiN6. x) u *(x) = (BIN. x) u 0-1(x). 

- 
Now 0 1(x) e B2  N.Bi  => 3 y c BO.. B2  with 0(y) = x and so 

-1 
((S 	 B

1 
) 	 y) U 0(y) is a basis of M(S). That is ((S '̀.•H ) 	 (X) ) X 
 1  

1 
is a basis of-M(S) so that (B 	 x) u 0 (x) = (B

1 	
x) 	 Ij(x) is a 

1  

basis of M (S). 

Similarly we_can.show that (B2  N. 1P(X) U X is a basis of M(S) 
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and the result is prcved. 	 // 

As a consequence of two above lemmas we obtain 

5.2.6 LEMMA. Any minor of a base orderable matroid is base 

orderable. 



6 PREGEOMETRY PRODUCTS WITH APPLICATIONS 

6.1 FIRST PRODUCT 

Given a matroid M(S1) and a pregeometry G(S2) . For any 

.basis B of M(S
1
) we consider the collection 	 , the collection 

of sets of the form 

• (U 	 exB
e
)U U 	 e (B 	 , 

e e B 	 e c S■B 
1 

where for each e e S1 ' some bas
i
s B
e 
of G(S

2
) is selected and 

further for eachec S'NB some element feB
e 
is selected. 

We vary the construction of Uri r773 (see section 2) to 

obtain a pregeometry from a given matroid M(S1) and a pregeometry 

G(S2) by proving 

6-.1.1 THEOREM. j)B is the collection of bases of a pregeometry 

k S2
) defined on S x S2  

2 

PROOF. We see from the definition that 41B is a nonempty 

collection of finite subsets of S
I 
x S
2 ' 

each of the same size. 

We show that di B  satisfies the basis axiom (B) . Let D, D'E,PB  

Then 

D = ( U 
ec B 

e x B
e
) U ( U 

e e S B 
e x (B

e.- 
- f )) , 

1 

_DI  ar 	( 
ee B 

e k 131 	
ee) U ( U 	

e x (B''•,fi U 	 ). 
E Si--..B 	 e 

Consider any particular (e, x) e 	 We show that there 

exists (ef, xl) E D' 	 D such that (D".....(e, x)t.i (e', x').c 

There are two possibilities ; (i) e e B 	 (ii) e B 
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(i)Suppose e c B . Because B
e 
and B are bases of 

G(S
2
) and x j  B' e 	

from the basis axiom (B) , there exists 

g c B'
e 

B
e 
such that (B̀,.. x) u g is a basis of G(S

2
) 
'
Then 

by changing D only in selecting (%..x)iig in place of the original 

B
e 
we have another member (D"*.e x Be)U(e x ((Bx)Lig)) of AB  

which differs from D only in that (e, x) is replaced by (e, g) and 

(e, g) Aie x (Ble■■Be) is in D1N,D as required. 

(ii)Lastly suppose e 0 B. Thus (e, x) c ax (Bè...,f)
• 

and so x 4 f. Now (BN.f)Nx and 	 are both independent in 

G(S
2
) and of size r(S

2
)-2 and r(S

2
) -1 respectively, and 

. Hence there existsxVg cBe'/' such that 

((BN. f)•.‘x) Li g is independent in G(S
2
) . Then by changing D only 

in selecting ((Be\,f)N,..x)k) g in place of the original (BeN,f) 

corresponding to e we have another member 

CVs.(e x (BeNf)))‘)(e x (((%....f) N. x) U g)) ofOB  which differs 

from D only in that (e, x) is replaced by (e, g) and 

(e, g) c e x ((Bei*̀4.flY4b.,(B ■f N. X)) is in D'NN.D as required. 	 // 

We noted in the proof that ranks r of GB(S, is 

given by 

r = r!(.S1,) r ( :Sp + 	 - 	 .))(r( 

the common size of each D . 
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. 6.1.2 LEMMA • The circuits of 
GB(SI 

x S
2
) are exactly the. sets of 

the following forms 

(i) e x C
2' where e e B and C2 

is a circuit of G(S
2
), 

(ii)e x C
2' 

where e gleB and C
2  is a circuit of G(S2

) of 

rank strictly less than r;( S :). 

PROOF. We see from the definition of 0:0 	 that any subset 

of S
I 
x S
2 of the form (i) or (ii) is a circuit of GB

(S
I
x S
2
). 

Let C be a circuit of G
B(SIx S2) • We show that C has the form (i) 

or (ii) 

Suppose C = U (ei  x Gi), where all Gi  # 0 , m >2 , 
i=1 

ei  = e <=?.I = j. Then since all ei  x Gi  is independent in 

G(S, x S2), all Gi  are independent in G(S2). But if all Gi  are 

not bases of G(S2), it implies that C is contained in a basis of 

G
B 
 (S
I  x S
2) which is not so. Thus there exists Gi  which is a basis 

of G(S2) and so C = 	 /01  is a basis of 0(52)I 0 0 . If all ei  

in C
I belong to B, then C in contained in a basis of GB

(S
1
xS
2
). 

Thus there exists ei  e CI, el  say, with el  fts. Put x = (e2, 

for some c e G2• Now the dependent set el  x GI  is contained in 

C.x • This is a contradiction. 

Thus C = e x C2, where C 4 . We consider two possibilities : 

(i) e C  B 	 (ii) e 
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(i) Suppose e e B. Then C
2 
is dependent in G(S

2
) and 

C
2 
must be a circuit of G(S

2) (otherwise C contains a proper , 

dependent subset). Thus C has the form (1). 

(ii)Lastly suppose el B. Also C
2 
is a circuit of G(S2). 

For any x 
2 	 e x (C2NN.x) is independent in GB(Slx S2) so that 

there exists a basis B
x 
of G(S

2
) with C

2 x  
f. Thus C

2 
has 

rank strictly less than re ,S21) as required. 	 1/ 

6.2 SECOND PRODUCT 

Given a matroid M(S
1 
 ) and a pregeometry G(S) we define 

for all bases B of M(S
1  ). .B  

6.2.1 THEOREM. 	 is the collection of bases of a pregeometry, 

G(Si  x S2), defined on SI  x S2  . 

PROOF. We see frpm the definition of that is a nonempty 

collection of finite subsets of S
I 
x S
2 
of the same size. We show 

that di)satisfies the basis axiom (B). Let 6, D' 	 Then there 

exist bases B, B' of M(S1) such that 

D e x-13 	 U( U 
e 	 e ,g B 	 e thSB 

1 

1 U 
e  

' XD' 	) . 
eT  ' 

• 	 et  x 
B 

f')). 

Consider any particular (e, x) e D*-...D1. We show that there exists 

,(e x') 	 Dt"..D such that (D- (e,x))0(e:xl) 6 A. There are four 
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possibilities t, (i) ee131) 	 , (ii) e 	 (SI  B) 	 ( 	 ) , 

(iii) e e, (Si 	 B) 131 	 (iv) e 	 B n(Sf,%. B' ) 

(i) Suppose e e B rw. Since Be, 13 are bases of G(S2) 

and x c B 	 B'there exists g EV.48 so that (BN x) Lig e 	 e 	 e e 	 e  

is a basis of G(S2). Then by changing D only in selecting (B
e
.s.x) U g 

in place of the original Be  we have another member 

(D'1/4, e x Be) 	 (e 	 ((Be■ x) 	 g)) of 0Q which differs from D 

only in that (e, x) is replaced by (e, g) and (e, g) 	 (13;NO3e) 

is in 	 D as required. 

(ii) Now suppose e (SIN.. B) (S0...13°). Thus 

(e, x) e e x 	 f) and so x # f. Now (Be-% f)k...x and (Be' NV) 

are both independent in G(S2) of size 	 )- 2 and r(S2) - 1 

respectively and x g (Wes f'). Hence there exists 

x 	 g e: ((B; 	 f °) ((Be'si.f) 	 X)) so that ((B 	f) 	 x)u g is 

independent in G(S2) of size rtCS2>) - 1 • Then by changing D 

only in selecting ((Be■ f) 	 x)L1 g in place of the original (BeN..f) 

corresponding to e we have another member 

(D-s.(e X (B 	 f))) U (e x (((B. 	 x) U g)) of 0 which 

differs from D only in that (e, x) is replaced by (e, g), 

and (e, g) c e x ((Wei 	 f') N (Bess1/4f 	 x)) is in 	 D as 

required. 

(iii) 	 Now suppose e c (S1  Nik, B) t B' . 
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Since B: , Be*,..f are both independent in G(S2) of size r(C., 

and ri C.S2:̀) - 1 respectively, there exists g e (13:‘(Bes. f) so 

„that (Be1/4f) U  g is a basis of G(S2). But x 	 13; , so x 	 g 

and siT x e (B
e
Nf), ((B

e
s% i) 	 U g is independent in G(S) of 

size r(CS
2' 
 ) -1 .•Then by changing D only in selecting 

((B
e
N f) \,x) 	 g in place of the original (B

e
's f) corresponding to 

e we have another member (D st, (e x (BeN. f)))Lt (e x (((Be\ f)st x)U g)) 

of 	 which differs from D only in that (e, x) is replaced by (es,g) 

and (e, g) e e 	 (Be"%. f)) is in D'is.,D as required. 

(iv) Lastly suppose e c Bi
1
IV) Then e e B *1/4 13°  

and hence there exists e°e 	 B so that (B 	 e) 1/4.) e°  is a • 

basis of Al(S1). Now Be,‘. f and 13:, are independent in G(S2) 

of size ri( '5
2
: ) - 1 and z.("S

2' 
 ) respectively and hence there 

exists g c (11;1  NI% (Be, '4* f) so that (B,f)U g is a basis of 

G(S
2 
 ). Then by changing D only in selecting the basis (B‘...e)k) 

in place of the basis B, and selecting (B 
e
,f) J g corresponding 

to e°, and selecting B. x corresponding to e we have another•

member, ((D ̀44. (a x Be) 	 (evx," (Bei**. f)))1J(e°  x ((Be,'Nf) 	 g)) 

Li (e 	 (B
e
lb.x)) of 4 which differs from D only in that (e, x) is 

replaced by (e', g) and (e', g) e 	 x (E; 	 (Be,s.f) is in El° 	 D as 

required. 
	 /1 
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Theorem 6.2.1 was obtained for matroids by Lim r771 

The proof makes no use of the fact that S2 
is infinite. We 

have based the contruction in section 1 on it. We note that 

6.2.2 IMEA. A is the disjoint union of the 	 for all bases 

B of M(S
1 
 ). 

PROOF. We are left to show that A 
B 	 ' 0 if 

B
2 1 

B
1 
and B

2 
are distinct bases of M(S

1 	
Suppose that there 

exists D
B 	 B 

with B
1 
0 B
2 	

Assume r(((S ) • r. 
1 

•-e

1***** 
Let B1' 

= 	
1""" 

e 
 r  1 ' B2 

 = (e 	 e . Then 
' 1 	r 

D can be written in the forms 

r 

D = ( k) e x B 	 ) 0 (. .1P 1.1 i 	 e
i 	

e x (B 'P... f)) 
e e s 5 ....',■ ..13 

D = ( 	 e! x B ,) ti ( U . 	 e'x(Be--or)) 
ei 

	

	 ev: e16 •r 	 2 

For each i, 1-< i r , choose x
i 
S e
i 
x B, If 
ei 

 

tx. 	 l I-  1' ", x 	 12.1  (ei x B', ), it follows that B1= B2. 

Hence there exists xi  and e' e SIN. B2  with xi  t e' x 

enclewei=e'.ftecismelemermyt((eix)3_ylk,(e' x (B'e,■*V))). Be  

Now either 3 J with y s e' x B', or 3 e" e" and et_i S
1
N,B
2 ej 

with y s (e" X (131,,N. f')). Thus we have e = e' or e" = e' 

which is a contradiction in either case. 
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M(S). 

Hence 401B  
1 

= f if B1  and B are distinct bases of 

/1 

We note from the definition of Z1 that the tank r of G(Si  x S2) 

is given by 

r = r.CS 
	

+ (Is I — rff:s0)(tqc‘s 	 — 1), 

as for GB(S, x S2). 

6.2.3 LEMMA. The circuits of G(S, X  S2) are of the following forms 

(i) e x C
2 ' 

where e t S
1 
 and C is a circuit of G(S2

). 

(ii) U 	 (ex Be), where C1  is a circuit of M(S ) and 
e C C1 

 
each B

e 
is a basis of G(S

2
) 

PROOF. We see from the definition of 4 that any subset of 

S
1 
x S
2 
of the form (i) or (ii) is a circuit of G(S

1 
xS2). Let C 

be any circuit of G(Six S2). We show that C has the forM(i) or (ii). 

case 1. e x J for some e z S
1 
 and J S

2 
If e is not • 

 . 

a loop of M(S1), then J is dependent in G(S2) (otherwise C is 

independent in G(S
1 
x S
2
)). For any x z J, if J xis dependent, then 

(JN.x) is a proper dependent subset of C which is not so. Thus JNix 

is independent and so J is a circuit of G(S2).. Hence C has the form (i). 

If e is a loop of M(S1). We show that J is either a circuit or 

a basis of G(S
2
). For any x J, e )( (J N.x) is independent in 

G(Slx S
2
). But e is not contained in any basis of M(S

1
)
' 
thus 
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e x. 	 e X (B's.. f) for some basis Be  of G(S2) and so J **, x 

is independent in G(S2). Then either J is dependent or independent. 

Suppose that J is dependent in G(S2) and so C has the form (i). If 

J is independent we see that J must be a basis of G(S2) (otherwise C 

Is independent in G(Six S2)) and so C has the form :M. 

case 2. 

and e = e j 

m 

1=1
(e1x G)

' 
where G0 0 for all i, m > 2 

= j. Then since all e xG
i 
are independent in 

- G(S
1 
x S
2), all C are independent in G(S2

). By the.same argument 

as in the proof of Lemma 6.1.2 the set .C1  = lei  /Zi  is a basis - 

of G(S2)1"- 0 0 and C 	 is dependent in M(Si) (otherwise C is 

independent in G(Si  S2)). Suppose that CI  properly contains a 

dependent subset C2. Then 1.) 	 (ei  x Gi) is a proper dependent 
ec C

2 

subset of C which is a contradiction. Thus C
I 
is a circuit of M(S

1) 

and so 	 ij 	 (e 	 G
i
) is circuit of G(S

1
N S
2
). But - 

e Cl. 

1.3  (e x. G
i
) 	 C , hence 	 &j 	 (ei  x GI) = C. 	 / 

e
i 
e C
l 

Indeed Lim [771 proved the following three hereditary 

properties of M(S1  9* S2) with bases c'd -- writing M(Six S2)( when S2 

Is finite) for G(Si  x S2) 4  

6.2.4 THEOREM. M(S
1 

S
2
) with tS 5,  2 is connected if and 

only if M(Si) is connected. 

et C 
1 
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6.2.5 THEOREM. M(S1 
x S
2
) is base orderable if and only if M(S ) 

and M(S
2
) are each base orderable. 

6.2.6 THEOREM. M(S
1 
x S
2
) is binary if and only if the following 

are satisfied. 

(i) M(S
1 
 ) and M(S

2
) are binary. 

(ii) If M(S
1 
 ) and M(S2

) both have a circuit, then every 

circuit of M(S
2
) is of cardinality two. 

6.3 APPLICATIONS TO GROUPS 

We now apply this last construction to matroids M(Si) and M(S2) 

defined on subgroups S1  and S2  which are direct summands of the group 

S = S1S2 
(Although we write the group operations we consider additively 

for convenience). Thus we obtain a matroid M(S
1
S
2
) = M(S

1 
x S
2
). We 

show that this example posseses some of the hereditary properties 

discussed in the previous section. We also obtain the size of the the 

group of its geometric automorphisms. 

For any positive integer in > 1, denote by Zm  the cyclic group 

of integers 0, 1, ..., m-1 with respect to addition modulo m. 

Let 	 < in > be the collection of 2 - subsets of Z
m 
of the form 

{ r1, r2 
}, where r

1 
is odd and r

2 
is even. 

6.3.1 LEMMA. /3 < m > is the collection of bases of a loopless 

matroid M(Z)  on Zm 
which is binary and base orderable but not connected. 
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PROOF. That -&zrn:› is the collection of bases of a loopless 

matroid on Z
m 
is clear from its definition. 

The circuits of M(Z ) are the collection of sets of two odd 

integers or two even integers. Thus a set of an odd integer and an 

even integer is not contained in a circuit so that M(Zm) is not 

connected. We easily see that the symmetric difference of distinct 

circuits contains a circuit. Hence M(Z)  is binary. 

For any two bases B B
2 
of M(Z) the bijection 0 : B

1 82 

sending the odd integer in B1  to the odd integer in B2  is an exchange 

ordering for Bi, 82. Thus M(Z) is base orderable. 	 II 

Given m ,› 2, n > 2 and (in, n) = 1. Consider the subgroups 

(tra:› and <m> of Z 	 generated by in and n respectively. By Moore 

[67, p 118 Z 	the internal direct product of kw> and <,:n:> 

Moreover Z 	(,:ry.) by an isomorphism r nr. Also Z
n 
= < m >. 

Then we obtain. 

6.3.2 LEMMA. Let B = { mr, mr
2 
Ct/Ja< in > and ink e 010, where 

k < n. Then 

(i) rakB c 	 :> if n is even. 

(ii) mkB .1300 <=> (k + r1  < n,k + r2  < n) or 

(k 4 r
1 
> n,k + r > n) if n is odd. 
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PROOF. 	 (i) We may assume that r
1 
is odd and r

2 
is even. 

By the Euclidean algorithm 3 	 r12, 0 < r, e2  < n with 

k + r1  = n + 	 k + r2  = n + 	 If k is odd, then r°1  is even and 1-2  

is odd. Now m(k + r1) = 	 + 	 = in el  and m(k + r2) = in e2  so that 

mkB = 	 in 	 j3(:  in > . Similarly if k is even we can show 

that mkB :1?< m ) 

We first show that if either (k + r 1  < n, k + r2  > n) or 

(k +r1 >n1, k+r
2 	 ' 
<n) 	 then mkBle.< 	 • Assume that 
—  

k + r
1 
 < n and k + r

2 
> n. We can assume that r

1 
is odd and r

2 
is even. 

 — 

If k is odd, then k + r
1 
is even. There exists r12 ' 

	 — 
0 < 2 < n with 

k + r2  = n + e2. Now k + r2  is odd so that e2  is even (as n is odd) and 

hence in k n  { in (k + r1), in rip e _13(m 	. Similarly if k is even 
we can show thatmkBE54m ›. 

If k + r
1 
> n and k + r

2.
5_ n we show by the same argument as 

above that in k B e 5 4m>. Thus in k B 	 on > implies that either 

(k + r
1 
 < n,k + r

2 
 < n) or (k + r

1 
>n, k + r

2 > 
n). — 	— 

We next show that either (k + r < n, k + 
r2--
<  n) or 

(k + r1  •> n, k+ r2  > n) i mplies mkBE 13021); As-512mek+ r1  1n, 

r
2 
 < n • Then it is obvious that only one of k + r

1 
and k +r

2 
is  — 

odd is the case so that in k B = { in (k + r
1
), m(k + r2)) eg< m> . - 

If k + r
1 
> n and k + r

2 
 > n. Then k + r

1 
= n +

'-  - 

k + r
2 
= n +

2  I 
 for so me r, 

	
0 	

12 r' 
	 n. We may assume that 

2 	 •-•-• 	 2 

r
1 
is odd and r

2 
is even. If k is odd, then el  is odd and e2  is even. 
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If k is even, then ri is even and r is odd. In either case we have 

m k B = {m ri, m r;} c)3 < m > . 	 /1 

By Herstein [75] , a group S which is an internal direct 

product of subgroups S
1 
and S2 

is isomorphic to the external direct 

product S1  x S2  by an isomorphism ab (a,b), Va c Sl, Vb c S2  . 

Thus for given M(Si) and G(S2) if we replace the cartesian product 

	

• e x B
e 
in D by eB

e
, then the collection 	 is the collection of 

. bases of a pregeometry on S = S1S2  which is isomorphic to G(Si  )( S2) 

in the obvious natural way, and we do not distinguish between them. 

We are now ready for the example. 

6.3.3 LEMMA. Given m > 2, n > 2 and (n,n) = 1. Let M(S1) be the 

matroid on < m > with bases .3< m > and let M(S2) be the matroid on 

< n > with bases .9<  n > . Then M(S1  x S2) is binary and base 

orderable but not connected. Moreover for any 

A = m s
1
{n r

1, 
n r
2
}um s

2 
 {n r'

1 
 n r'} U m s {n r

3
} cd) and for any 

1 	 2 

mee<m> ,nke<n> w,..1 have 

(i) n k c 4,D if m is even and m e A c 	 if n is even 

(ii)n k A c Q1;0 .'<=> ((k + r
1 
<. m , k + r

2 
 < m) or (k + r

1 
> m, 

 — 

k + r2  > m)) and ((k + ri m, k + r <. m) or (k + ri > m, k + r > m)) 

if m is odd. 

(iii)meAcik <=> (e +S1 
	 ° 
<n e+s

2 
 < n) or (e + 81 > n, 

	

— 	-- 

e + s
2 
> n) if n is odd. 
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(iv) On e n k) A .o:'D <=> (e +,s< n, e + s 	 n or 
1 

(e +s
1 
> n, e + s

2 
> n) if in is even and n is odd. 

M (men k) A c ;00 <=>.((k + ii  <m, k + r2 
 < m) or 
 - 

- (k + r1 
 > m, k + r2 

> m)) and ((k + r < m k.+ r' cm) or 
1 - 	 2 - 

(k + r' > m, k + r' > m)) if m is odd and n is even. 
1 	 2 

(vi) (m e n k). A c .4 <=> R.H.S(iv) and R.H.S(v) if in and n 

are odd. 

(vii) Cm e n k) A c 0 if in and n are even. 

PROOF. That M(S
1 
x S
2
) is binary and base orderable but not 

connected follows from Lemma 6.3.1. That M(Si  x S2) satisfies (i) - (vii) 

follows from Lemma 6.3.2. 	 // , 

6.3.4 An automorphism a of a pregeometry G(S) is a permutation 

on S such that B is a basis if and only if a (B) is a basis. 

We note that the set of all automorphisms of G(S) is &group 

under composition. 

‘6.3.5 LEMMA. The automorphism group A(M) of M(Z) has size 

given by 

1 2(- I) (- I) 
A(M) = 	 n2 	 n2  

(n+1 !) (n-1!) 
2 	 2 

if n is even, . 

if n is odd. 
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PROOF. First assume that n is even. Then the number of even 

integers in Zn  and the number of odd integers in Zn  are equal and is 

equal to — . Putsi = set of all even integers in Z. Thus a permutation 
2 

m on I and a permutation a on 	 I define an automorphism 0 of M(Z) 

by 0/1  = m and 01z 	 = 0 • Also a bijection 0 : I 4. Zns I and 

a bijection y ZnN I + I define an automorphism 0 of M(Z) by 

n 	 n 
and a /

Zn
I 
= y • Thus we have 2( —A) (— I) different 2 	 2 

automorphisms defined this way. 

Suppose that e is an automorphism of M(Zn). We show that 

either 0(I) = I or 0(I) = Zn 
I. 	 If 0(I) # I, then there 

exists x e I such that 0(x) = y e Zn 
I. For each a e Z

n 
I 

we have { 0(a),y}e_B <n> so that 0(a) .c I. By the same 

argument we can dhow that for each b e I, O(b) e Zn  \I. Thus 

0(I) = Zn
N I and 0(Z n\ I) = I. Therefore either 0(i) = I 

or 0(I) = Z
n 
Ns, I • In either case we see that Eris one of the 

automorphimns defined as above. 

We next assume that n is odd. Also a permutation = on the 

set I of even integers in Z and a permutation 0 on Z\I define an 
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automorphism 0 of M(Z) by 0/I = cc, 0/Z1\ I = 0 . Thus we have 

(n + 11) (n - 11) different automorphisms of M(Z) defined this way. 
2 	 2 

Let 0 be any automorphism of M(Zn). Suppose that there exists 

x e I such that 0(x) e Z
n 

I. Then for each a e Z
n
N, I we have 

0(a) e I and so IZnN, II = III which is not so. Thus 0(I) = I and 

0(Z 	 I) = Z
n 
\ I . Hence IA(M) I = (n + 1!) (n - 11). 

2 	 2 

6.3.6 The wreath product of a permutation 	 group G on A by a 

permutation group H on B is the group of all permutations G on A x B 

of the following kind 

0(a,b) = (yb(a), n(b)) , a e A, b e A, where for each 

b e B, yb  is a permutation of G on A, but for different b's the 

choices of the permutations yb  are independent. The permutation n 

is a permutation of H on B. (cf. Hall [761 , p 81). 

The relation of the automorphism group of M(Zum), where 

M > 3, to the wreath product of the automorphism group of M(Zm) by 

the automorphism group of M(Zn), was obtained, as the following 

result, by Lim [77 	 . 

6.3.7 THEOREM. The automorphism group of M(S
1 
x S
2
) 
i
s the wreath 

product of the automorphism group of M(S1) by the automorphism group 

of M(S
2) if and only if the following conditions hold. 

(i) M(S2) is 1 - uniform implies that every 2 - element 

subset of E is independent. 

(ii)M(5
2
) is not connected implies that M(S

1 
 ) has the 

property that for every two distinct elements e e
2 
of S

1 
there 

II 
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exists a circuit "C with IC ri {el, e2}I 	. 1 	 // 

6.4 AUTOMORPHISMS 

We now give an example of a pregeometry defined on a group S 

so that multiplication is a geometric automorphism i.e. so that the 

collectionBof bases is preserved under the group operation. That 

<=>gBeB. We also show that the products of the 

previous sections have such geometric automorphism. 

6.4.1 EXAMPLE. Let H be a non-trivial proper subgroup of a group 

S, of finite index r. Denote all distinct Left cosets of H in S 

by gl  H, 	 , gr  H. Define .B to be the collection of all subsets 
ofsofthefor m{b

1
,, , br},vhereb.eg.H, 1 = 1, 	 , r . 

Then 13is the collection of bases of a transversal pregeometry G(S) 

on S such that 

B cj3 <=> gB c, Vg e S. 

Moreover G(S) is a pregeometry which is (i) loopless, (ii) binary 

and (iii) base orderable. 

PROOF. It follows from the definition of.$ 	 that it 

satisfies (B) so that J5 is the collection of bases of a transversal 

pregeometry G(S) with .a presentation [gill, 	 . 

We show thatBe3<=> gBe.3 , VgeS. MetBe3 and 

g e S. To show that g B e 19 it suffices to show tilat 

(ggi 	 6(ggr  H) = S. For i = 1, ... 	 r,pqat gi 	 ggi:. 

 

1  1 

We firstsholathat(g.1) n 0g3  W . 	 = 	 if i # j . Suppose that 

1 
ixe(gi.H)n (g310 	 Th.. 	 en there exist h

1, 
h
2 
in H with 



165 

... 
x = gg.h = gg.h

2 
 and hence y = g lx : (g.H) n (g .H) which is a 

1 1 	 3 	 i 	 3 

contradiction. Thus (g. H) /7 (g. H) = $ if i 	 j . Now 
i 	 g3 

grIH U ... tig H c S. For any x e S we have g-lx ES so that 
1 	 r 

g 3( -1 	
H for some i and so x e gg H . Thus S = (gg'.H) 	 . C,I(gg

r
H). 

Let g B E 13. Suppose B = { b1 - ,— , b 
r 
 ) . Then gb. e g.H 

i 	 3 

for some j. Since gb 	 gb. and (g.H ng.H) = (I) if i 	 j, we can 
1 	 3 	 1 	 3 

assume that gbi  e gift, i = 1, ... , r . Thus bi  e g-igiH .. By the 

lgiH) 6 	 6(g-lgrs) = s so that Cg-.1g1H 	 g-igrH) above (g - 

= 1 g1H  "." grH.  / and hence B c 	 • 

(i)SinceS=W.H, every element of S is contained in a 
i=1 

basis and so G(S) is loopless. 

(ii)Notice that a circuit of G(S) is just any set of two 

elements from the same coset. Let C
1, 
C
2 
be distinct circuits of 

G(S). Then since 1 C11 = 1 C
2
1 = 2, 	 1C

1  A C2 -- 
1 	 2. If C

1, 
C
2 
are 

in the same coset, then elearly C
1 
A C
2 
contains a circuit. But if 

C
1, 
C
2 
are in different cosets, then C

1 
 A C

2 
 = C

1  
. C

2 
 and so C

I
A C

2 

contains a circuit. By Theorem 4.2.4 G(S) is binary. 

(iii)Let Bi  = { b1,.7., br } and B = {bi 	 b' } be any 

two bases, where bi  C giH, b.c giH, i = 1 	 . Then the function 

1 
0  : B

1 
4-  B2  defined by 0  (b.) = b., Vi = 1 	 r, is an exchange 

ordering for B B
2
. Thus G(S) is base orderable. 	 1/ 

6.4.2 LEMMA. Any automorphism a of the pregeometry in Example 

6.4.1 is of the form 

(  )  

	

i = 1 	 r , 
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where 0 is any permutation on { 1 ,..., 

PROOF. First we show that any function a on S which satisfies 

(*) is an automorphism of G(S). It is clear that a is a permutation 

on G. Let B = { gl  hi ,..., gr  hr  } e 13 . Then for i j we 

have a (g.h ) and a (g.h.) in different cosets since 0 is a 
i 	 3 

permutation on { 1 	 r } . Thus a (B)' intersects every coset of 

H in S in exactly one element. Thus a(B) c.13. Similarly if 

a (B) ES we can show that B e j3 • Hence a is an automorphism of 

G(S). 

Suppose that cc is an automorphism of G(S) which does not 

satisfy (*). Then 3 a # b, a e giH, g iH with cc' (a) e gjH 

and m (b) e gkH, where j # k. Thus m(a) and m(b) are in different 

-1 
cosees. Choose a basis B containirg cc (a) and cc,  (b). Since m 

is also an automorphism of G(S), cc-1(B) e J9 • Now ab 

But a, b are in the same coset which is a contradiction. Thus any 

automorphism of G(S) satisfies (*)• 	 /1 

Thus-we have 

6.4.3 LEMMA. The automorphism group of the Example 6.4.1 has size 

(r!) ( 161 ) if Sis finite, where r is the index of H in S..  

We finally, prove 

6.4.4 LEMMA. If S
1 
is a subgroup of S and multiplication by 

• heSisageometric automorhism of some G(S) then it is also a 

geometric automorphism of Gs(Si). 

PROOF. Let j? and j5 be the collection of bases of 

CI 
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G(S) and G (H) respectively. Then 

B' B' =BnH, whereBeZ 

hB' = (hB)n H and hB 	 hB' 	 for any h e H 

/1 

Conversely when we deal with a matroidM,(Si  X S)  

'as in 6.1 we have 

6.4.5 LEMMA. If multiplication h e Si  is a geometric automorphism 

of M(S.), i = 1/ 2, then itsis also a geometric automorphism of 

n(S1 x S2
). 

PROOF. Let D be any basis of m(Si  x S2). , ret g = (gl, g2) 

be any element of Si  x S2  . Then by the definition of M(Si  X S2) . 

there exists a basis B of M(S
1 
 ) such that 

Thus gD 

Li exB)U( Li 	 e x (B 	 f) 
e e B 	 e 	 ec SI

N.% B 	 e• 

( V 
e 	 B 

eg
1 	

g
2 
 B ) is) ( e 

	
egi 	 (g2  (Be 	 f))) 

e 	 e 	 e 	 13  

Since B is a basis of M(S
1 
 ), g

1 
 B is a basis of M(S

1 
 ). Also 

g
2
(B
e 	

f) is independent in M(S
2
) of rank .r 	 ,)- 1. 

Hence gD is a basis of M(Si  x S ) as required. 	 // 
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