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SUMMARY

We systematically give alternative characterisations of

pregeometries, and examine their properties.

We examine well - known classes of pregeometries uéing the

above characterisations.

In particular we (1)’ define “product" of pregoemetries,
related to that given by Lim, and (ii) give some applications of

this "product" .
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(1)
INTRODUCTION

‘Crapo and Roté [70:] defined a preggometrx G(S) as.a set S
tOQether_with a closure function on its subséts. They gave various
characterisations of pregeometries in terms of their ranks, independent
.sets, circuits and lattice of flaté. Roberts r73} characterised any
pregeometry in terms of its flats. A basis-characterisation was given
by‘Welsh [76] . He also gave a character;sation in termsvof
hyperplanes, fo:‘any pregeometry on a finite set S_(we will use the
term matroid for such a pregeomeﬁry). ' All these characterisations

are deriQed in Chapter 1.

v

Basic propertiés'of preéeometrieé are discussed in Chapter 2.
Arising from a‘pregeometry G(S) a subpregeometry, qs(T) is induced on
any subset T of S. Any pregecmetry has special subpregecmetries -
called céhonical geometries. They are isomorphic. Other pregeomefries
obtaihed from G(S) are éontractioﬁs and duals (when G(S) = M(S) is a

matroid).

"In Chapter 3 we discuss the pregeometry G(S) obtainabie from
a family (X)I of subsets of sets - a transversal pfegeometry in which
the indepgndent sets of G(S) are the partial transversals of (x)I .
Finally we investigate systems of distinct'repfésentatives giving the

same transversal of such families.

-

Representable pregeometries, isomorphic to subpregeometries

of finite dimensional vector spaces, are investigated in Chapter 4 .

In Chapter 5 we discuss the class of mégroids arising from

directed graphs - strict gammoids - together with their-



SUMMARY

We systematically give alternative characterisations of

pregeomeﬁties, and examine theif properties.

We examine well - known classes of pregeometries using the

above characterisations.

In particular we {i)} define "product" of preqoemetriea.‘
related to that given by Lim, and ({i) give some applications of

this "product" ,
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restrictions - gammoids. Also base orderable mztroids are introduced

and discussed.

Iﬁ Chapter 6 we cOnétruct pregeometry brodﬁcts based on tﬁe
work of Ming Huat Lim [77] and we apply these constructions to A
matroids defined on groups in thch the geometric and algebraic
structures are related. More precisely, group multiplication is a

geometric automorphism.

The methods used in Chapter 1 unless otherwise staﬁed in the
text are based on lectures given to Honoursstudents in Mathematics
at the University of Tasmania. Similarly the methbds of Chapter 2
(all but the last half of section 1), 3 section 1, 4 and 5 are based
mainly on those of Weish»[j76} , Crapo and Rota (70] , Mirsky [7;]

and Row .{7?} unless otherwise stated.

Some examples given in these chapters are original in

particular those dealing with Steiner Triple Systems.

Section 3,2 dealing with multiplicity of system of

transversals is new.

In Chapter 6, section 1, 3 and 4 are new - while section 2

comes from Lim [77} .

. I would like to express my deep gratitude to Dr. D.H. Row
for his assistance during the prgparation of this thesis, I would
like also thank Mrs. W. Gayong for her careful and patient typing,

f
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NOTATION

A set (x,y,... } is often written xy... . We use standard

notation in set Eheoz;y and alcjébfai.- Apart rom these we use :

A

A.cc A
AuB

A

A

2 Be..d An
C(x, B) |
c1(a)
G(s)

G (T)
G(s).T

Gl (Sl) v G2 (Sz)

Gltsl') ® 62(52) _

inf M

L(G)

u[AJ

complement of A (in the appropriate universal set).

closure of A in a pregeometry

Af is a f:i;nite subset of A

union of disjoint sets A and B

subspace spaned by A

closure of A in a sﬁbprééedméffy
symmetric difference .of sets Byrees A N
fundamenﬁai circuit of x in the basis B
6loéure of A in é. preéeoﬁetry
p:;egeometry on S

s_ubpreget;m'letx."'if on T induced by é(S)
contraction of G(s) to a subset T of S
union of prégeouletrieé Gl ‘Sl). and éz-(sz)
direct sum of pJ.'.egec':nietries Gilsli and G, (Sz)
infimum of set M

lattice of flats of a pregeometry G(S)

t.ransversal matroi.d with a. presentation J4



(iv)

M(S) | . ' ~ matroid on S

ﬁ(s'))i' restriction of M(S) to T

M (s) o dual matroid of M(S)

r(a) rank of set A

'an . o . Steiner triplé sysée:ﬁs on a set of n elements

sup M * " supremum of .se;t M

"“k,n - k - uniform geoﬁgm on n é;emépta

(V,E) dirécl'ﬁed' grapﬁ v}ith_vert'ex set V and edtje set E

-(vo,vl,... .ﬁk} path in_di.rected tjraph Iwiﬁh initial vertex v
and ta:.:minall vertex vk |

X V..V X supremum of XyewoX

xl:a.../txn - mfimum of Xpeeo X,

x, < X, <eue _ chain in a poset

(X) 4 (X, /i € T) family of subsets of X with index I
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1. EQUIVALENT CHARACTERISATIONS

OF PREGEOMETRIES

1.1 CLOSURE
We begin with a definition of pregeometries in terms of closure

1.1.1 & pregeometry, G(S), is a set S together with a closure
£: 254 2° satisfying the following four conditions.

(c,) For all A& S, AS A | writing A for £(a);

(c,) If A< B, then ASB, WA,BSS.

(c,) IfafhandacAUb, thenbeAUa, ¥AGS, 2,b ¢ S.

(C,) For all AS S, J A.CCA with A=A .

(C3} and {Cd) are the exchange property and finite basis .

property respectively.

1.1.2 1EMMA. If (C)) is given, then (C,) is equivalent to
(i) For all A < s, A = A.

(ii) If A< B, then A< B , VA,B < S.

PROOF., Assume that (Cl) and (Cz) are given. Then A& A :=>§_C,,E

by (Cz). On the other hanc'if—".gsby (Cl) so that A = A. Now A% B =

AGBCSB=>ASD by ().

assume that (C,), and A=A VA& Sand ASB=> ACB, A, BES

are given. Then A D => A& B = B which is as desired. //

1.1.3' A geometry is a pregeometry G(S) satisfying the two additional
properties:

(cg) & = ¢



(CG) a = a, va e 5.

1.1.4 EXAMPLE. The smallest coset of any subspace of a finite
dimensional vector space V, oonta-ining a set A of vectors of V

defines a closure A satisfying (€) - ().

PROOF. The smallest coset of any subspace containing A is of
the form a, + W, where W is the (unigue) smallest subspace containing

A - 0’ for any a, € A.

We show that the.closure defined satisfies (c3) and (C4).

Letxece AUyand x £A, ACS, x,y € S. Then x ¢ a + W, where

n
w=[AL}y-a] for some a € A so that x ~ a E c, {ai—a),where
i=1 *

a; € AU v, c; # 0, There exists j with aj = y (otherwise x € a).

Putting a, - 2a = y - a on the left hand side we write

3

m :

y-a = E dibi,wherebie(AUx)—a, di;eo.
© —— i=1 :

Then vy € AU Xx.

For any A & S consider a maximal independent subset A of

0
A - a, for some a, € A. Let A, = a, + Afo. Then 2. is a finite
subset of A and Ap = a, + [Afol = A as [AfOJ is the smallest subspace

V4

eontaining A - 0

1.1.5 LEMMA. The conditions (Cl) - (Ce) are independent.

PROOF. We see this by examining the following six examples in

each of which exactly one of (Cl) - (CG) is not satisfied.

(1) Let s = {1,2,3} ,¢ = ¢,1=1,3=23=3,

12 =1, 13 = 13, 23 = 23, § = 8,



Then only (C‘l)fails.

(ii) Let s {1,2,3,4) , 12 = 1234, 14 = 124,13 = 123,
3 = 123, 24 = 124, A = A otherwise.

- Then only {CZ) fails.

(iii) Let s = {1,2,3,4} . Define closure on S by

_ 123 if A = 12
A = '
A otherwise

" Then only (03) fails.

(iv) Let S be an infinite set and define A = A, VA gS.

Then only (C4) fails.

(v) Let s = ({1,2,3} and define closure on S by
1 ifA= ¢
t 2 otherwise

Then only (CS) fails.

(vi) Let s = {1,2,3} and define closure on S by

12 ifa=1
h=

, A otherwise

Then only (C,) fails. ' //

'1.1.6 A subset X in a pregeometry G(S) is closed or a flat if X = B

for some B ¢ S.

1.1.7 LEMMA. In any pregeometry G(S). The following are true.
(i) A is a flat in G(S) if and only if A = A.
(ii) Any intersection of flats is a flat.

(iii) 2 is the intersection of all flats containing A. That



is A is the smallest flat containing A.

(iv) 8 is a flat in G(S).

(v BS Aif andonly if A=AUB, ABCS.

ks

(vi) {a/a e A} = aL{A .

VA ¢ S.

e
n

‘PRDOF. (i) Let A be a flat in G(S). By definition there

exists B< S such that A=B. Thus A =B = B = A. The converse is

obvious.

(ii) Given any intersection, nai , of flats of G(S). Put
A -ﬂni'. It suffices to show that A € A. Since A & A, for all i

which implies & SA, = A, for all i, we have A € na; =A.

(iii) Let B = /) Ay where A, is a flat containing A.

Then by (ii) B is a flat containing A. Therefore A< B = B. Since A

is a flat containing A, A = hi for some i and hence B ¢ A,

o

(iv) follows from (i).

(v) Assume that B ¢ A. By (Cl) AZAsothat AWBS A

and hence by (Cz) AUBCS A. On the other hand A€ A U B, Thus

A=1AUB,

SupposethatauBai. Let x € B. Then A v x gnussﬁ

and so x € A. Therefore B < Aa.

(vi). follows from (v) . //

1.1.8 - A Boolean geometry is a pregeometry G(S) with A = a,

‘YA € S,

‘When A = A if [al<kx ana R = s otherwise provided k > 1



Aefines a k - uniform geometry on S.

1:2 LATTICES OF FLATS
We characterise any pregeometry in terms of a lattice of flats.

1.2.1 & poéet is a set L together with a binary relation f_ satisfying_
the following.

(i) For any x € L, x < x, reflexive property;

(ii) Ifx <yandy <x, thenx =y, ¥x, y € L, antisymmetric property;

(iii) If x <y and y < 2z, then x < z, ¥x,y,z € L, transitive property.
In a poset we write x <y (dr‘y >x) tomean x <y and x ¥ y.

. A greatest (least) element of a subset M of L is an element

x of M such that x > (¢ ) m, ¥m € M,

If x. and x, are greatest elements of M, then x

1 2 < x, and

2
Thus the

1

X, <x

5 so that by the antisymmetric property x, = x

1 2°

greatest element is unique if existing. Also the least element is

1

unique if existing. We denote the greatest (least) element of L if

existing by 1(0) .

A lower (upper)-bound of M is an element y of Lwithy < ( >)
m, ¥m € M. The infimum (supremum ) of M, written inf M (sup M), is
tﬁg greatest (least) element of the set of lower (upper).bounds of M

(if existing).

1.2.2 ILEMMA. sup (M, U M)) = sup '{sup'Ml, sup M,}, provided the

right hand side exists.



PROOF. Suppose that My, M, are subsets of a poset (L,< ), with

= X = >
X, = sup M), x, = sup M,. If x = sup {xl,xz} , then x > x; and x > x,
so that x is an upper bound of Ml ¥ M2.
For any upper bound x' of M, U M, we have x'>> X, and x' > X,

so that x' is an upper bound of {xl,xz} and so x' > x. Thus the

lemma is proved. ' //

1.2.3 A lattice is a poset (L, <) with every pair of elements having

a supremum and infimum.

For convenience in notation we write x A y and x v y for
inf {x,yland sup {x,y} respectively, where ~ and v are read"meet".
and" join".

By an induction argument we see that the infimum and

supremum of finite subsets exist in any lattice.

1.2.4 LEMMA. The set of flats, L(G), of a pregeometry G(S) is a

lattice with respect to set inclusion. 1In this lattice

AVB = AUB , AAB = aANMB , VA{BBL(G).

As S is a flat and ¢ < A, VAS S, S and ¢ are the elementsl

and 0 respectively in L(G).

1.2.5 We say y covers x in a lattice (L, <) iff x < y and there is

no z in L with x < z < Y.

A finite lattice can be conveniently representéd by a Hasse
diagram in which distinct elements are fepresented by distinct points'
so that x is above y iff x » vy and X, y are joined by a straight line

whenever x covers y. We illustrate by



EXAMPLE 1.2.6

the lattice of flats of a 2 - uniform geometry on abc.
We characterise a lattice in terms of A and .

1.2.7 THEOREM. A lattice (L,<) is characterised by

‘(Ll) For every x e L, xA* X =x and X ¢ X = X.

{Lz) For every X,y e L, x "y=y~~xand x vy =Yy vV X.

(L3} For every X,y,2 € L, xA(y A z) = (x Ay)A 2z and x v(y v:iz)-=
(xV y)e 2.

(L4\ For every X,y e L, X A(yv x) = xand xv(y x) = x.

_PROOF. That a lattice (L,<)satisfies (L;) - (L)) is immediate.

We show that (L,<) satisfies (L4). Let x,vy e L. Let z = yv X.
Then x < z and since x < x, x is a lower bound of {x,z} . For any
lower bound a of {x,z} we have a < x. Thus x = inf {x,z} as
desired. lLet p =y ¥ x. Then x > p so that p is an upper bound of
{x,p} . For any upper bound d of {x,p} we have 4 > x. Hence

x = sup {x,p} as desired.

We show that a given set L with x A"y, x vy defined for every

pair x‘,y in L satisfying (Ll) - (Ld) is a lattice.

We define x < ywhen x Vy=y. Thenx <y =>xXvy=y=>
xA(x v y) =xa\jr=>x=x_aly. AlsO X = X Ay =>X vy = (XA YV Y

=>xvyu=y->xiy



(i) Sincexvx:x,xix,i'xel..

(ii) ILet x<yandy <x. Thenxvy=yandx =y v X so

that x = y.

(iii) Let x <yandy <2z2. Thenxvy=yandyvzs=z

sothat x vz=xv (yvz)=(xvy)vz=yvz=z, Hencex< z.
Then (L,<) is a poset.

For any x,y € L we show that inlf {x,v} = x A‘y and
sup {x,y} =x vy.

Since (x Ay) v x = xand (x Ay) vy=1y, we have x Sy < x
and x Ay < y and so {x,y} has at least one lower bound. Let b be any
lower bound of {x,y} . ThenbA x=b and bA } = b so that

bA{xny) = (bAX)AY =bAy = b, Thus b € xAy and so xAy = inf{x,y},

Similarly we can show that sup {x,y} =xvy. 7/

1.2.8 A chain in a poset is a subset with the induced order on it

linear, it is finite if the subset is finite.

We write xo < xl ‘€,.. to denote a chain. Given a finite

chainC:xoéxl‘: <xnuywesaythgtcisachainfmmxtog

with length |c| - 1.

1.2,9 LEMMA. Every chain in the lattice of flats of any pregeometry

&4

is finite.

PROOF. Suppose that C is an infinite chain in the lattice of
flats of G(S). Then C must contain an infinite ascending chain or an

infinite descending chain.




First assume that there exists an infinite ascending chain.

Choose a countably infinite subchain cl : Ay g A]. g A2 g ses » Let

A=&’Ai . Then A is a flat and by (C,) 3 A, c¢ AwithA_=A = A.

‘Since Af is finite and each a; e Af is contained in Ai' there exists n

such that A < A. It then follows that A = A = ﬁf € in = A . Thus

A cAGA , ¥ . This contradicts the fact that C, is infinite.
n+m n’ m 1

. Thus no ascending chain is infinite.

Next assume that C contains an infinite descending chain.
Choose a countably infinite subchain C2: AO 2 Al :q:g AZ% +e.s FoOr each
ilet a

i € Ai_l\ A, and T, , = {ai-l-l' a; o ...} . Now Ti-i-li-Ai and

- c — . -
since a; £ Ai and TS Ai, we.have ay £ Ti-l-l Consider for each i

the set B, = {aj / 3 € Nl\a; . If there exists a, ¢ §i we then choose

a maximum j such that a, € {aj. L T ...} . where

) ) ;
1<j<i-lasT, €

}. Then—.-ai t_B,but a;e Bua‘jso that by

B=dagyr ooe v 3y g0 20 e
{CB) aj eBUa; = Tj+l « A contradiction. Hence a; 4 13i for all i.

This means that no proper subset of '1'1 has closure 51 since a; € '1‘1
for all i and any proper subset of '1‘1 which dces not contain a i is
contained in B i’ contradicting the finite basis property for

{aJ:/jejeN.},
Thus the lemma is proved. //

1.2.10 LEMMA. PFor any flats A, B, C of G(S) we have
(i) A covers B<=> A=BWU a for some a € A ™ B.

(ii) A covers B=> LvCcovers BvCorAvC=BUvVC.



10. .

PROOF. (i) Assume that A covers B, Then 3 a ¢ A~ B and

hanceBgBUa so that BU a = A.

~ Assume A = BW a , for some a € A~ B , where A, B are flats
of G(S). Then B€ A. Let X be any flat such thatﬂgl':&m .
We show that B U a.c X. Pick an element b € Xe B. Thenb £ 35 = B
and b € By a so that by ((:3), a € BU b &€X. Thus mEX.

Therefore A covers B.

(ii:‘_) Let A cover B. Then A = B iy & for some a € A~ B.

If a £ C, then by (1) AUC = Bw Cua so that Av C covers B v C.

IfacC whave AY C = BlUawyC = BUC andsoAvC=BvcC.//

1.2.11 A lattice (L,<) is semimodular if it has no infinite chain and

whenever x,y cover x.A y we havg X v y covering x and y.

1.2,12 LEMMA. The lattice of flats of .G{S) is semimodular.
PROOF. Follows from Lemma:: 1.2.10 -

1.2.13 An atom is an element in any lattice that covers 0.

1.2.14 A geometric lattice is a semimodular lattice in which every

element is a supremum of atoms.

1.2.15 LEMMA., Let (L, <) be a geometric lattice. -Then any x,y in L
satisfy the following.
(i) Any two maximal chain from x to y have same length.

(ii) y covers x <=> y = x v a for some atom a# X.

PROOF. (i) We prove this by induction on chain length.



11.

Sp €8 Ce..xs =y be a maximal chain from x to y.

Consider another meximal chain x = to < tl <...<-'t.m =y from x to y.

Let x =

We can assume_ sl # tl' Now S_l'_ tl both cover x and so 51/\ tl > X. .

If x < slA-tl

then ei'ther s

1l 1

or t, does not cover x. Thus X = 51/\' t)-

and since either s, A t, < sl or slz\ t-.l < tl s the case

1l
Semimodularity implies that s, v tl cover;s Sy and tl. As sy v tl <y
a chain from s,V tl to y exists, Letlsl v 1:1 =u, < u2 <...€ up =y

be maximal. 'I‘hensl<slvt1<u2<...cup=yandtl<slvtl<

u, <i..< “P = y are maximal chains from sy and tl respectively to y.

case 1. If n = 2, then since y covers s, we have p = 0 so that

slvtl = y. Thus x <-tlfalyt1=yzs maximal as required.

case 2, If n > 2, Assume that the lemma holds for any

maximal chain of length < n, 2s s, < Sy < +e. <8 =y is a

1
maximal chain from s, to y of length n - 1 the'chain s, <s, v ¢t, <u,
< PR - . . - =
. upayhaslengthn 1 Sincetlcslvt1<u2_< ¢up Y

is maximal, by the assumption it has length n - 1. Therefooe:r the

chain to <t <..\.i< t, = vy has length n.

1

'

(ii) Assume y covers x. Since (L,< ) is geometric, y = sup A
for some subset A of atoms of L, If ¥a € A, a < x, theny = sup A < x.
A contradiction. Thus Ja € A with a f X. But xva>x

(as x va =x<=>a<x). Hence XV a = y.

Now let y = x v a, where a is an atom such that a ,{ X. We

consider the following two cases.

case 1. If the maximal chain length from 0 to x is 1. Thus

X is an atom so that by the above x A a = 0. By semimedularity x v a



12.
covers x and a as desired.

case 2, If the maximal _chain length from O to x is n > 1,
Assume that the lemma holds for any x with maximal chain length from -
O less than n. Let 0 <...< x' < x be maximal. As x covers x’ we
have x = x'v b for some atom b é xf If x'vb =x'va, then x = x'vb
= x'v a so that a < x. A contradiction. Thus x'v Db # x'v a. and
both cover x' and so x' = (x'v a)A (x'v b). By semimodularitir
(x'v a) v (x'v b) covers both x'v a and x'vb = x. Hencey =xv a=

(xvx')va=xv (x'va) = (x'vb) v (x* v a) which covers x. //

1.2.16 Two lattices (Ll,'f_) and (L,,<) are isomorphic if there exists

a bijection £: L, <+ L, such that for every pair x,y in Ll £(x A y) and

1 2
f{x v y) are meet and join of f(x) and f£(y) respectively in Lz.

We call £ an isomorphism from (Ll'i) to ‘(Lz;f_).

We now characterise pregeometries by these properties of their

lattices of flats.

1.2.17 THEOREM. The lattice of flats of any ‘pregeometryi is geometric.
Conversely any geometric lattice is isomorphic to the lattice of flats

of some pregeometry.

PROOF. Let L (G) be the lattice of flats of G(S). We need to
show that every flat in L(G) is a join of atoms. Let Be UG). If B

covers ¢ there is nothing to prove. Consider a maximal chain ¢ < BJ.

< ...% Bn = B of lengthn >1 from $ to B. Now as B, covers $ we have

1
Bl = ¢ua1 , where a, eBl\d: so that a, is an ammal= ¢va1
= a . i = __ ™~
a, Inductively B, =B, vay for some a 3 € BBy g where

i=2, ... , n~1, Thus ai ‘g ?b and 5.1 is an atom which implies



 Then the chain b, < b

13.

B=B =B _.va =...=aV...Va, as required,
n 1 n

Conversely let (L, < ) be any geometric lattice.Consider the .

set S of atoms of (L,< ) and define ¢losure on 2s as follows.

T A-={laes/7ac<swprl,Acs.

We show that the closure defined satisfies (Cl) - (C4J .

.

(Cl) let A § S. Asagh,aisup:\sothatagi. Hence

AG A.
(C) : Let A S B, where A, B< S. For every X el : we have
X £ sup B so that sup 1'55_ sup B, But sup B < sup B. Thus

sup B = sup B. If a < sup A, then as supag_aup§=supﬁwehave

a < sup D, That is A € B.

'(C3l :Letaenubandagﬁ, where A4 S8, a, b € S.
Then a €e AU Db =>a <sup (Aub) => a_g-»sup'{sup A, sup b} =>
a < sup {sup A,b} => a <supAV)bm=> éupAvaf_snpAvb =>

supA<supAvaslsupAvb (asaga). Thenb_;ésupa (otherwise

a Ssup A v b= sup A) so that by Lemma 1.2.15 sup & v b covers sup A

and hence sup Av a = sup Av b. It then follows that Ada=AaAWVDb

and b € A U a.

(C) : Let Ag S. Well order Aby { a

inductively the set

17 8pr eee } and define

'br = sup__f ay, a,, cee s ar} .

<b, ... is finite. Thus there exists n such

1 2 3
that b . =b for all m. Therefore sup A = sup { ayr eee s an} and

hence A = {a,.coya} .
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Thus the closure defines a pregeometry G(S) on S,

To show that the lattice of flats of G(S) is iso;norphic to

(L, <) we define the function £ : L(G) +~ L by £(a) ='sup A, VA ¢ L(G).

- —  —— Let Al ;!—Az ‘be- fl—aﬁsrof G(S): If sup A, = sup Az, then™

1

Al = A; = A2 = Az. Thus f(Alj = sup Al'# sup Az = f(Az) so that £ is

one to one.

Since (L,< ) is geométric, x = sup B for some B c S, where x ¢ L.

Then B ¢ L(G) and £(B) = sup B = sup B = x. Hence £ is onto.

To show that f preserves meet and join.

Let A, B € L(G). ThenAnB_gA,-An Bec B =>su (AnB) <
sup A and sup (A n B) < sup B‘=> sup (A n B) < (sup A) A (sup B). Put
x=sup (ANB) andy = (sup A) A(supB). Let Y={aesS/ac<y}.
Then y > sup Y. Since (L-i’ is geometric.' y = bl v b2 eea V bn, where

b,'s are atoms. Then b, € ¥ for all i and so y = sup {b ’ bn}

IR
< sup Y. Therefore y = sup Y. Now a ¢ ¥ => aisupAvtgaeE=A

so that Y ¢ A. Similarly Y ¢ B. Hence Yc Au Bandy =sup ¥ <

sup (A v B)“ =x and so £ (a A B) = £(a) A £(B).

| Now £(A v B) =.sup (AU B) = sup (Au B) = sup {sup A, sup B}

= (sup A) v tsup B) = £(n) v £(B) ax;nd the theorem is proved. " Y7

1.2.18 A hyperplane in G(S) is a flat covered by S in L(G).

Thus no hyperplane properly contains another and so an

intersection of distinct hyperplanes is not a hyperplane.
Before we close this section we prove a useful result..

. 1.2. 19 LEMMA. Bvery flat is the intersection of all hyperplanes

containing it.

PROOF. First we show that for any A ¢ T in L(G) and for any xf
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with AG XS T, 3Y e L(G) such that XA Y=Aand XU ¥ = T.

Since aYi s.t. AS Y, & T and XM Y. =RA ifXUY #T,

let b € T\XUYi (as XUYi - T). Let Yi-l-l = "1“ b. Then X U4 Yi-l-l

¢ Tand XU Y covers X Y Y If follows that XN Y = A

i+l i’ i+l
{otherwise J c e XN Yi_l_l"-kA so that Yic. YUucg Yi+1U c = Y1+1‘
‘Since Yi-l-l covers Y:i.' Yiu ¢ = Yi-l»l' Then X U Y:i. =cUXU Y:i. =

xu(cUYi)ax'J}_Y i_'_lf'rwethen

=A XUY, , TadXUY,

i+l ° 1} contx;ad:.ct:.on). If X Y

construct Y, such that X Ny,
i+ i+

2 2
covers X U Y j+1° As any chain in L(G) is finite, after finitely -many
steps we have Yi +n satisfying’' x n Y:i. n = A and X U Yi +n =T as

required.

Let S # X be a flat of G(S). Put Y =/1 H, where H is a
hyperplane containing X. (H exists as a maximal chain from X to S
exists and is finite). Obviously X € Y S S. By the above 3 a flat
Zwith YN Z2=Xand YU 2 = S. Suppose X # Y. Thgnl(=¥ﬂ2#¥
which implies 2z # S. Hence there exists a hyperplane H, qoptaininé

. ~ .__'_-_b"""' " _ ‘% ’
Z and so containing X as well. Thus Y g Hl and Y U 2 =§"=¥.Y U 5

=s=>v¢ Hy. A contradiction. Hence X = Y and the theorem is

proved. /7’

1.3 RANK

We characterise any pregeometry in terms of its rank.

1.3.1 The rank of any subset A of § in G(S), written x(a), is the

maximal chain length from ¢ to A in L(G).

r(s) is the rank of the pregeometry G(S). The points and
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lines are the rank 1 and rank 2 elements respectivelyr a.. .7 . .o. l...l.”

1.3.2 LEMMA. 1In a geometric lattice the length of any chain from y to

X v ¥ is not greater than that of any maximal chain from x 4 y to x.

PROOF. Let XAy = X, < X) Seee<x =X be a maximal chain

from x A ¥y to x. Put yi=yvxi . This gives
y0=(x/iy) v.y=y5yli...£yn=xvy.

Since x, , covers x , by Lemma 1.2.15 there exists an atom a, i x, with

+1

X, = x, va, and hence y, ,.,. = v X,
i i y:|.+1 Y

i+l 1+1=yv(xivai)= (yvxi)vai

=Yivai,i=0,1,...,n-1
If aii_ Y, then ¥;,q CoOversy. .
If ai 1yi , then Y:i.-l-l = yi .
Hence with possible repetition of some elements we have a maximal chain

from y to x v y of length < n. Thus the lemma is proved. /7

1.3.3 LEMMA. The rank function r of any pregeometry G(S) has_the
following properties.

(R)) r(d) + r(B) > r(AUB) + r(ANB), ¥A, B& S. (semimodularity)
(R,)) x(¢) =0 _{normalized)

(R3) r is increasing

4

(R,) r(a U a) = r(a) + {2 -y, YA &GS, Ya e S. (unit increasing)
(R,) For all ACS, 3 A, © c A with r(d,) = r(d). (finite basis

property)

PROOF . (pl)zciven A, B €S. We note that r(d) = r(A) and

r—-—
AUB=2a1(UB by Lemma 1.1.7.Then
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r(AUB) + r(ANB) = r(AUB) + r(ANB)

= r(RUB) + r(aNBp)
| - - - - - o ey - -
2 r(Av B)+ r(ANB) (as AGA, BgB = ANBSANB = AMB)
<r@AvB +r@AB) |
'Now by Lemma 1.3.2 we have x;(i v B) - r(B) < ;(ﬁ) - r(AA B) so that

r(AVB) + r(AAD) < #(R) + r(B) which is as desired.
(Rz) follows from the definition of rank.
(Ry) follows from the fact that AG B = AS B .

(Rq) : Let A< S. We consider the two cases.
IfaclA,thenAUa=A2sothat r (AU a) = r(a),

If a # 2, then by Lemma 1.1.7 A v a covers A . Hence r(a U a) = r(a)+l, .

(Rg) : Let Ag S. By (C,) 3 nf'ccnw‘i.th if = 2 and then

r(a) = r(aJ). v
_We now link closure and rank function.

1.3.4 LEMMA. 1In any pregeometry G(S) we have

A ={aes/r(ava =r (8} , YA & S.

- |- s
PROCOF. Let a e A . Then by Lemma 1.1.7 A = AU a so that
r(a) = r(A( a). Given any a with r(A(f a) = r(A). If there exists
——————— - [ -
beAW aNA , then by Lemma 1.2.10 A U b.covers A and so

x(AU D) > r(A). But as b:'e AU a’ we have r(A ya) = r(A Uayb)

> r{(A Ub) > r(A). A contradiction. Hence A U a = Aandac€ad. - //

The following theorem characterises any pregeometry in terms

of its rank function. -
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1.3.5 THEOREM. Aany function r : 2s + 2 which is semimodular,
ﬁofmalized, increasing, unit increasing and has the finite basis
propérty is the rank function of a unique pregeocmetry on S, having

closure given by

A = {aes/r(Ava) =x@} , vacs.

Conversely the rank function of any pregeometry G(S) is a function’
Y : 2S =+ Z which is semimodular, normalized, increasing, unit
increasing, and has the finite basis property and the closure given by

the above.

PROOF. Let r : 2S % Z be semimodular, normalized, increasing,
unit increasing and have finite basis property with the closure given

by the above. We show that the closure as defined satisfies (Cl) - (Cq).
(Cl) is clear from definition.

(cz)' : Let RSB, A,BS S. For any a € A \,B by
semimodularity we have r(A (Ja) + r(B) > r(B Ua) + r(h). This implies
0<r(BUWa) - r(B) <r(AWa) - r(d) = r(A) -~ x(A) = 0. Thus a € B

and so A& B

To show that A = A, ¥Ag S we first show r(A) = r(a).

Let B, €A with r(B;) = r(A) and let C,cC 3 with r(c,) = r(d).

1
Consider C = B, U C; we have C, € CS A => r(C) < r(A) =>r(C) = r(A)
" (as r(C) > r(c)) = r(A)). Put B=A/C. Then BjS BE A=> |
r(B) = r(p).

If B=C, then r(3d) = r(C) = x(B) = r(a).

If jJa € C\B, then x(B) <r(Bu a) <r(aU a) = r(d) == r(Bp).
Since C"\B":'_- A and C X B is finite, suppose C\ B = { 8yr eee s an} . :

Now by semimodularity we have
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r{(d v al} +r(BUa) 2 r(B) +_r(B ua, uaz)
=> r(B) =r(BUa) > r(B U a, U a,)

Also r{B U a, az) + x(B Ua3)3_ r(B) + r(B u a, ua, uaa}

1
and hence r(B U a; U az)i r(B U a, uau 33).'

Inductively for i = 1, ... , n we have

r(B Ualu ...Ual_l) >r(B Ualu ces Uai)
so that r(B) > r(c). Hence r(a) = x(B) > r(C) = r(A) and therefore
r(a) = r(d). |
R . g fiipiepgrnes.
Now r(A U a) <r(AUa) <r(A Ua) and since

r(AUa) = r(A wa) we -have r(AUa) =r(d U a).

Thus a ¢ §<=>£(A) =r(A U a) <> r(d) = r(i U a) <» ag 3.

(C;) : et ac AUDand a¢ A, AgS, a,beS. Sinceaf A

and hence r(A U a) # r(A), we have .r(A Ja) = xr{d) + 1. Now r(a U a)

< r(AUbua) =r(aUDb) <r(A) +1so thai:r(AUa) =r(AUaUb)

and hence b ¢ A U a.

(c,) : Given A% S. There exists AfCCA with x(A.) = x(a).
For any a € A we have r(a) = r(a) =r(aUa) >r@a .U a) so that

r(AfJ = r(AfU a). .Hence ae Af, and Af = A,

Then the closure defines a pregeometry G(S) on S. We next show
that r is rank function on G(S). That is we have to show that r(a) is

the maximal chain length from ¢ to A. Given any A< S and a maximal '

chain § < Al <...<A = A in L(G). Foreachi=1, ... ,n~-1, By
th = 2, £ € N dah

covers Ai S0 at Ai"'l = Ai L ai+1 Qor some ai+1 Ai+1 Ai an ence

r(a, ) =r(@ U a ) =AU a,,) =ra) +1 (asa,, ¢ a).

Inductively, r(a) = r(nn) = r(An_l) + 1= r(Al) +n=-2+1=n

The converse was proved in Lemma 1.3.3 and 1.3.4. //
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1.3.6 COROLLARY. The pregeometry is a geometry if and only if all

two element subsets have rank 2.

PROOF: If G(S) is a geomety then x £ ; = ri{xy) #r{y) =1

=> r(xy) = 2.

Conversely, if r{xy) = 2, as r is normalized and unit increasing,

r(¢) = 0 and r(x) = 1. /7

1.3.7 EXAMPLE. Recall that a projective plane is a set of points S
and lines, where lines are specified sets of points, satisfying the
following axioms.
Axiom 1. Every two points belbng to exactly one line.
Axiom 2. Every two lines have exactly one point in common.
Axiom 3. There are four points no three of which are in any line.
Pcints on a iine are collinear.
Define r : 25-!- Z as follows :
0 ifa=+¢
1 if A is a singleton
r(np) = .
2 if |a| > 2 and A is contained in a line

3 if A contains 3 non-collinear points

Then r is rank function on a pregeometry on S.

PROOF. T¢ show that r is semimodular let A, B £ S. We can
assume that A # B.

case 1. A and B are singletons. Then r(A) + r(B) = 1 + 1 = 2,
Now there is a line containing A U B so that r(A U B) = 2. Hence
r(AUB) +r(ANB) =2+ 0=2=rx() +x(B).

case 2. Both A and B are not singletons and contained in a line.

-
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If A, B are contained in the same line, then r(A UB) +r(A NB) <2+ 2
= r(A) + r(B). In case A and B are contained in different lines we have
AN B is a singleton or the empty set so that r(AN B) <1l. Now r(AU B)
+r(ANB) <3+1=4=r1x(nh) +r(B).
case 3. Both A and T contain 3 non-ccllinear points. Then
r(a) + r(B) =.3 + 3 =6, Since'i:{X) +r(Y) <é, ¥X, YCS, r(p) + r(B)
> r(auB) +xr(a D).
case 4. A is a singleton x and B is co‘r‘;tained in a line L, where’
iBI >2., If x € L, then r(AUB) +r(ANB) =2 +1 =3= r(n) + xr(B).
If x £ L, we have r(a UB) + r(ANB) =3 + 0 =34r(3) +r (B).
| case 5. A is a singleton x and B contains 3-non~collineaf
. points. Then r(A N B) <1 sothat r(AUB) +r(ANB) <3 + 1 <4
= r(d) + x(B).
case 6. A is contained in a line L, where |A| >2 and B
contains 3 non - collinear point;?.. Then r(A N B) < 2 so that

r(AUB) +xr(ANB) <3+ 2 =1r(B) + r(a).
That r satisfies (sz - (Rs) follows from the definition of r.

Thus r is rank function on a pregeometry on S. //

1.3.8 LEMMA. The conditions (Rl) - (RS) are independent.

~PROOf. We see this by examining five examples in each of which

exactly one of (31}' - (Rs} is not satisfied.

(i) Let s = {1,2,3} .
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Define r : 2S + 2z by
o ifa=9¢,
r(d) = €2 ifa=s ,
1  otherwise,

Then r does not satisfy (Rl) since

r(12) + r(23) = 1+ 1 < r(12 {J 23) + r(2),

(ii) Lets = {1,2)} .

Define r : 2S + 2 by
r{p) =1 ’ ¥a < S,

Then r does not satisfy (Rz).

. (iii) Let S be an infinite set.

Define r : ZS + 2 by

- J 0 if a is finite,
r(a) =

[ min {1,]a|}if A is infinite.
That r satisfias (Rz) follows from the fact that S is infinite.

To show that r satisfies (R;) let A, B < S. We consider thxee
cases.
: c
case 1. a° ana B° are finite. Then (AIJ_D)C = AFK} B is finite

C

- and (ANE)C=ACU B™ is finite so that r(AUB) + r(A/Q1B) =0 + O

= ¥(A) + r(B).

case 2. A° is fin.z. and BC is infinite. Then (A UB)C = a% €
is finite and (AN B)C = 2°( E® is infinite and so r(A U B) + r(a N B)
- 20+ 1=1x(h) + ().

case 3. AC and BC are infinite,and A, B # ¢ . Then r(a) + r(B)

=l+1=2-
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As r(X) +r(Y) £2, ¥X,Y < S we have r(A) + r(B) >r(AUDB) + r(A/1 D).

To see that r is not increasing consider the set S\ x which is
infinite so that r(S\x) = 0. Since S\x is infinite, there exists

X #y € S\x. Nowr(y) =1 which is as desired.

That r is unit increasing follows from the definition of r.

To show that r has finite basis property let A & S. If AC is

finite, we have r(A) = 0. Then A is infinite and ¢ A with r(¢) = r(a).
If Ac is infinite and A is infinite. Pick a € A. Now ac& A and

r{a) =1 =r(a). If Ac is infinite and A is finite we are finished.
Therefore r satisfies {Rl) - (Rsl except (R:i)'

(iv) Let s = {1,2].
Define r : 2° »2Z by r(¢) =0, r(l) = 1, r(2) = 2, r(S) = .3.

Then r satisfies (R,) - (Rg) except (R/).

{(v) Let S be an infinite set.

Define r : 23 + Z by

10 _ ifa=¢
r{a) = ¢1 if A is finite ,
2 if A is infinite .

To show that f'satisfies semimodularity let A,B < S. We consider
the three cases and we may assﬁme that A,B # ¢ .

case 1. A and B are finite. Then A U B is finite and A A B is
finite or empty sﬁ-that r(a) + r(Bi =1+1> r(AUB) +r(a/B).

case 2. A is finite and B is infinite. Then A (4 B is infinite

and AN B is finite or empty and so r(A)' + _r(B) = 14+2 20~ >
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r{(a UB) + x(AN B).
case 3. A and B are infinite. Then r(R) + x(B) = 2 + 2 = 4,

As r(X) + r(Y) < 4, ¥X,Y &S, we have r(a) + r(B) > r(AUB) + r(a N B).

That r satisfies {RQ) - (R4) is clear from the definition of r.
As r(s) = 2 and for every finite subset A of S we have r(a) =1

# 2. Thus r doecs not satisfy {RS). /7
1.4 INDEPENDENT SETS

We characterise any pregeometry in terms of its independent sets.

1.4.1 Ban independent set of a pregeometry G(S) is a set with rank equal

to its cardinality.
As every set has finite rank only finite sets can be independent.

Before we characterise any pregeometry in terms.of;,jr

independent sets we obtain some of their properties.

1.4.2 LEMMA. (i) Any subset of an independent set is independent.
(ii) All maximal independent subsets of any set A have same
cardinality, i.e. r(a).

2
then 3 x € I_~'I. such that I _U x is independent.

(iii) If Il’ I_ are independent sets in G(S) with IIll <‘IZI'

2 71 1

PROOF. (i) Let J be any subset of an independent set A. Then
r(n) = |a| . By semimodularity r(J) + r(awJ) > r(a) +r(¢) = |a] + 0
= |a] = |3| + |a~ g| >la| + r(a\T) we have x(J) > |3] . on the other

hand r(J) < |J] . Thus xr(3) = |J] so that J is independent.

(ii) Let A be any subset of S. Suppose that I is a maximal
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independent subset of A with II| < r(A). Then r(I) < r(a) and hence I % A.

We observe that I %_A {(otherwise by Lemma 1.1.7.I = A) and so there exists
— - ' A - ’ .

X € AI. Then IU xcovers I and r(IU x) =1x(I) +1 = III + 1= IIthI .

Thus I U x is an independent subset of A containing I. This contradicts

the maximality of I. Hence xr(I) = r(d).

(iii) Let I,, I, be independent sets in G(S) with |1,| <|T,] .

 Since I, is an independent subset of I,U I,, any maximal independent
subset of IILJ I, has size at least |I2| . Let I be an independent

subset of I. { I, containing I, (I exists as I, is independent).

1 2 1 1
Then I“uI1 # ¢ (otherwiée ] = |I1I < IIzi ). Thus I contains an

element of I~I

oI which is as desired. //

The following theorem characterises any pregepmetry in terms of its

independent sets.

1.4.3 .THEOREM. Any néﬁempty famiiy érbf finite sghsets of 8 satisfying:
(Ill éF‘is closed with respect to subsets.

(Iz) All elements of ET'contained in any subset 2 of S are contaihed in
maximal elements of ér‘having the same cardinality.

is the_collection of independent sets of a (unigque) pregeometry on S.

having closure given by

i

- 5 (=]
A ={a/SAQIeds.tauI¢J}Ua,VAES.

Cdnversely_the independent sets of any pregecmetry have the above

properties.

I . o ‘
PROOF. Let ¢ be a subset of 25 satisfying the above conditions.
Define r : 2S + 2 as follows:

r(a = max {|I]/a21ed L
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We shall show that r satisfies (Rl) - (Rs).-

To show that r is semimocdularity we note that for any subsets
L, B of S a maximal independent set Il in A" B can be extended to a

maximal independeni set 12 in A U4 B. Thus

|12ﬂ Aﬂlzﬂ 3| + ](Izﬂ A) U(IZ_-’TB)I“

_|12n al + |1,/ 8]

7,1 + |1,

r(a7l B) + r(a U B)

|v .

Now r(a) + r(B) |z, 0 & + |12/] B| so that

r(hr) + r(B) > r(AUB) + xr(a NB)
That r is increasing and unit increasing follows from the

)

definition of r; and it is normalized as ¢ € éf . )

To show that r has finite basis property let A < S. Pick a

maximal element I of ¢/ which is contained in A. Then r(A) =l1] = (1.

Hence r satisfies {Rl) - (RS) so that r is the rank function

-—

of a unique pregeometry G(S) on S.

To show that the closure of G(S) defined as above we observe
that r(I) = |Il <=> I ¢ ér and hence
-

r(AUa) =r(ad), ae ANA<=>a UIZ£J, JA2I € d .

which is as desired.

The converse follows from Lemma 1.4.2 and the uniqueness of
the specification of ahpregeometry from its rank function follows

from the first half .of this theorem. _ /!

1.4.4 COROLLARY. A pregeometry is a geometry if and only if all

2 - point sets are independent. .
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PROOF. Follows from Corollary 1.3.6 and the definition of

independent sets.

1.4.5 LEMMA. Conditions (I].) and (122 are together equivalent to
: L] L]
(II) and (12), where (Iz) is as follows:
(I') If A ; A eg—and IAI= IAI-!- l, then Ix € A»A such
2 1 2 2 1 2 1
that nlu X € J .

PROOF. Suppose that Al,- Az etjr‘are maximal subsetsof X & S |
such that |a |< |a,] . Then there exists A; G A, vith -|1x.;|= la] +1

! "
and so there exists x € A~ A, such that a, U x €¢/. This contradicts

1
the maximality of A, in ¢/ contained in X. Hence ]All > .[_Azl.
similarly |2,| >|a | and therefore |a,| = al o 7/

-

1.4.6 EXAMPLE. Let S be a finite dimensional vector space. If we
define J- to be the family of all linearly independent subsets A of S,

thend is the family of independent sets of a pregeometry on S.
1.4.7 LEMMA. The conditions (Il) and (12) are independent.

PROOF. We see this by examining the following two examples in

each of which exactly one of (Il) - (12) fails.
(i) let S = {1,2} and & = {¢,12} . Then only (I,) fails.

(ii) Let 8 = {1,2,3} . Lete = {4, 1,2,3, 23} .- Then only

(12) fails. _ : //

1.4.8 LEMMA., The following four conditions are equivalent.

(i) A is independent.

(ii) A is minimal among those sets having closure A

(iii) 1In a giving listing a;, a of elements of A we have

2' o-.-
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ai -4 a; ... a:i.-l ’ Vi .

(iv) There exists no a € A with a € A~a.

PROOF. (iv) => (i),

In any G(S) listing elements of A as a1 @y eee

Put Xi = ai s ai_l .
Then a, , # A~a, , 2X; so that xi+1% X; . Consider the chain

¢’$ xlc__'F Xy oee % A in L(G) which is finite, of length n say.

Thus X = A and |Al = n so that A is independent.

(1) => (ii).
Suppose 3C% A with C = A. Let a € A~C, Then a € A and so a € CC
so that there -exists an independent set I G C and I U a is not
independeng._ But I U a& A and A is independent. A contradiction.

" Hence A is a minimal set having closure A.

(1) => (iii).

100 3. & A‘-.ai , then by Lemma 1.1.7 & = Aw.ai so

that A is not a minimal set having closure A. Thus a, £ a, ... a,_,

Iif aaiea

Vi -

(iii) => (iv).
Suppo_se that Ja € A such that a € Aﬁ a . Listing elements of A in a
way that a is the ith element, for some fixed integer i . -

Now a;€ A~ a; . By the finite basis pi:operty 3 Rfc.-:.’.- A~ a; with

- T - e
Af = A\.ai. Choose a minimal B<c g A‘-..ai such that B = A\ai.

Let j be the maximal suffix such that a, € B. Then j > i (otherwise

3
. - gty — —ll—l—l-ll—l—m
Bg By eee B 4 => a;€ A™a, =B & ay vee 5 tfhich contradicts

vt

the assumption). Now ait Bxaj and a e (B\aj)i_,’ ay so that by

(c,) € (B~a,)) .. e, .. A contradicti

4
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Thus there exists no a € ANa.

1.5 BASES

‘We characterise any pregeometry in terms of its ccllection of

bases.

1.5.1 Defining a basis of G(S) as a minimal set having S as closure

we have

1.5.2 LEMMA, The bases of G(S) are exactly the maximal independent-

sets in G(S).

PROOF. We first show that a basis B of G(S) is a maximal
independen£ set. Now B is a minimal set such that B = S.
If 3x € B such that x ¢ B<x , then B = Bwx which is a contradiction.
Thus ¥x € B, x ¢ BxX so that, by Lemma 1.4.I8-', B is independent.

For any x ¢ Bwe have x ¢ S = B and so r(B 4J x) = r(B)< |BU’-x|.
Therefore B U x is not independent and hence B is a maximal independent

set in G(S).

Next suppose that B is a paa-ximal indépendeﬁt set in G(S).
Then'x g B => B.L} x is not independent, => r(B y x) =r(B), => X € B .
=>B=25,

If 3 x e B such that BuX = S = B, then r(B) = r(B) = r(B wx)
< |B] , a contradiction. Thus B is a minimal set having S as closure;

which is as required. /7
.1.5.3 A subset A spans (generates)B in G(S) if B = A.

Thus every basis spans S.
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We say that a depends on A if a € A. Then every element

depends on any basis.

1.5.4 LEMMA. (i) Every independent set extends to a basis and this
property charac.ter:i.ses independent sets.
(ii) If A is an independent subset of a spaning set C, then

there exists a basis B such that A< B 4 C.

PROOF. (i) Given an independent set I in G (S8). If I % s

consider a maximal chain of length n from I to S :

I {'; IUx <L_"'-,__ILJ1~:1x2 cee r%l Ux, ... x =S. Then I UX ... X

is a basis, having rank equal to its sizé.

(ii) As C is spaning we have r(C) = r(S) so that there exists
an independent subset of C of size r{(S). Let B be a maximal
independent subset of C containing A. Then r{(B) = r(S) so that by

Lemma 1.5.2 B is a basis. | //
We characterise any pregeometry in terms of its bases.

1.5.5 THEOREM. A nonempty familyﬁ of finite subsets of S,each. of
the same size, is the collection of bases of a pregeometry on S if
and only if it .satisfies the following:

1’ 32 E_.B and x e B

iBl U yi~x eﬂ.

(B) If B “w. B

1 then jy € BB, su¢h that

2’ 2 1

PROOF. That the family J5 of base of G(S) satisfies (B)

follows from Lemma 1.4.2.

Let_g be a nonempty family 6f finite subsets of S of the

same size satisfying (B).
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put J ={1/1cne B}
Then J # ¢ as B # ¢ and (1,) is satisfied from the definition

of J .

To show that :.T satisfies (I"?) let A., A, € Jwith

1" 2
fAzl = IAI' + 1. Then there exist B,, B, e B such that A, £B,,
'Az €B,. Let
B o= {xl, oo s xn},
B, = {xl, cee o 'xn, -b].' cee s br} .
A, = {yje ey Yy yml} '
Bé = {er--o- v Ype ¥ ogr B cee e cr_l} .

Consider 31,132. By (B), there exists zl € 32 such that
' = A -
131 (Bl\ bl) v zl eﬁ.

If zl € Az, then A, U 2_ € J and (I:_;) is satisfied.

1 1
. . ,
If zy £ Az cons:.a.jler Bl and Bz. By (_B) there exists z, € 132
L] ? : s
such that 32 = (‘Bl\ b2) U z, € B . If z2 € AZ we are finished,
if not remove b_, from B! and so on. Since

3 From By
| {bl""' b } | o> I|{c1..... cr_l}l , we reach step k(k < r),

. ) . - ﬁ
' = ¥ '
where Bk (Bk_l\ bl_ﬁ) u 2, € Ba.nd zk € Az. Thus Bk 2 AJ- 1] zk ed.

There fore by Lemma 1.4.5 J is the family of independent

sets of a pregeometry on S with B its family of bases ' /7

1.5.6 LEMMA. In any G(S) the following statements are equivalent.

(i) H is a hyperplane of G(S).
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(i1) HfSbut HUX=S, ¥x € S ™ H..

(iii) No basis B is contained in H but if x ¢ S~ H, 3 a basis
B' such that x ¢ B c H U x. '

(iv) H is a maximal subset of S which is not spanning.

(v) H is a maximal set of rank r(S) -1,

PROOF. (i) => (ii) follows from the definition of H.

(ii) => (iii) : Suppose that H contains a basis B. The
S =B ¢ Hsothat H=5. Thus H does not contain any basis. Let
X€S H. Then HUX=S so that r(d u x) = r(S) and so H u X

contains a basis B and x € B (otherxrwise H contains a basis).
(iii) => (iv) 1is obvious.

{(iv) => (v) : By the assumption r(H) < r(s). If r(H) <
r(S) ~ 1, then H is not ma.a‘:imal non - spanning set. Thus r(H) =
r(s) - 1. Foranyxe S H, Hux is a spanning set and so it
contains a basis. Hence r(H U x) = r(S). Therefore H is a maximal

set of rank r(s) - 1.

/

(v) => (i) : It suffices to show that H = H. Suppose

3x € HN H. Then r(H U'x) = r(H u‘x) = r(H) r{H) = r(S) - 1,

contradicting the maximality of H of rank r(S) - 1. Thus H = H. /7

1.6 CIRCUITS
We characterise any pregeometry in terms of its circuits.

1.6.1. A subset A of S is dependent in G{(S) if it is not

independent.
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A circuit of G(S) is a minimal dependent subset of S.

-
1.6.2 LEMMA. The collection“K:oE circuits of G(S) has the following

properties.

k) ce K <=> r@© =|c| -1=rxcNa), vaec.
(Kl) Any circuit is nonempty and finite.
(K,) No circuit properly contains another.

2

(Ky) Every infinite subset of S contains a circuit.

-

(K,) IfcC

4 1,(‘:1 # Czej(and ace Clﬂ Cy» then 3C 8,7( s.t.

< 1
c< Cl ch\a.
PROOF. (KD) is clear from the definition of circuits.

(Kl) : Since ¢ is independent, any circuit is nonempty.
As r(C) = |C| - 1 any circuit is finite.

(K2}= Since any circuit is a minimal depependent set, any circuit

properly contains no other circuit.

(K3) : If A is an infinite subset of S in G(S), then A is

dependent. Thus it contains a minimal dependent set which is a circuit.

(K4) ¢t By semimodularity we have
£(C U Cp) Sx(C)) + 1(C)) - 2(C, N Cy) = x(ep) + x(cy) + le, n eyl

is independent.)

(as C?l n c,

and so

r(ClLJ sz.a) f__r(Cl U C2)

{A

Icll -1+ Ic2| -1 - [cl/? c:2|
| <KIU%\J
Thus CltJ Cé\a is dependent and hence contains a circuit which is

as desired. . s
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We link closure and circuits.
- @
1.6.3 LEMMA. A = {a /ae€ecCg AU a, some circuit ¢} U a.

PROOF. Let a € C g A U a, for some circuit C. Then C™a is

independent so that by Theorem 1.4.3 a € A,

Conversely if a € A~ A, then there exists an independent
I & A such that I ¢y a is dependent. Pick a circuit Cga UI.

Then a € C ¢ I a (otherwise C is independent). //

1.6.4 THEOREM. Any r.supset 6 of Zs which satisfies (Kl) - (K4}
is the collection of circuitscfa unique pregeometry on S, having

closure given by
- - ©
a = {a/saeczay a, someCeg}UA,VAés.

Conversely the circuits of any pregeometry on S have the above

properties.

PROOF. Assume that g is a subset of 2S satisfying (Kl) - {K4) .

We first show that the closure defined as above satisfies (Cl) - (C4.).
(Cl) is trivial from the definition of closure.

{CzlzLet A& B, For any a € E\B, aeCgAU afor some

ce B we have a ¢ C& BUa so that a € B. Thus A & B.
To show that A = A, VA< S we first show that C in (Kd) can

be chosen to contain any given b € ‘czxcl, i.e. we shall show

s(f,aeclﬂcz,bec*’b\c =>?1'Csfs.t.'

]
{Kq} Cl,C 2 1

2
becgc U c~a.
If not, there exist Cl, C,ra, b, aecC f)‘Cz, b e Cz"\Cl

such that for any C € gand agc & C U C, we have b # C. Choose
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one such with |Clt_) Czl minimal. Let C ¢ f be such that
-- (- . LY - : -\ . »
aﬂC:ClUCZ. By (K2)C3;C2 and so d b#¥ ceC C,. since

cg:_cluczandca’cz,cec Nowclu C_&Cluc2and

1.
b e (Cl U. Cz)\.(clu C) so that Iclu c| < [Cl v} C2| . Therefore -
3 C3 € tf, C3§ Clu C, containing a but not c (as ]Cl UCz! is

. .
minimal such that (K4) fails).

Observe that C3U ng. C].U cu 02 = ClU (22 and b ¢ C3 as -

L]

bp’Cl,Candsobecz‘\c C. we

3’ X 1 2
have ¢ € (C; U C)\(C; U C,) arlld hence [CBQ C2! < ICIUCZI

?0

As ]Cl U ¢,| is minimal there exists an element C' of [

Since c g C Czbutcec

contained in C.‘3 U C2 containing b and not containing a ¢ C.3I'] CZ'
Thus JC' € Z-f such that a g C' <& ClU C2 and b € C*'. This

. L}
contradicts the assumption of Cl’ c Therefore (K4} is obtained.

2.
Given A< S, If b e fr\ﬁ, then 3-c2 € fs.t. be c2 - AlUb

and C,4 AU Db (as b ¢ A). Hence C, £ AUD = (A-2) U((RUD) so

2
- - LD
that we can choose a € c, Y (A~A). Thus a € A => J (:1 € {5s.t

1

aeclf-_'-_‘; AU a. Henceaeclr"i-c andbecz\\cl (asb¢§=>

- ' J
b g clg»_ AU a < A) so that by (K4) ':":'C3 € é/s.tb e C
and a £ Cy. Now the finite set (A~a) N C

]

;& €W C,SAUD
3 % (A~a) N c,

- ] j o= - - —
(as (i) ey [Gwm) nc] U Ea N Cz] and (B~2) N C, = a,
a € (ANA) N C~(ANA) N cy)-

2
If (A1) 03 # ¢ consider C3 and Cl instead of C2 and Cl and
}g

obtain C,e & s.t (A&~A) N €y & (ANA)N C; and b e C,. Eventually in

<

i-.
) ) -

finitely many steps we obtain C € {5, such that (AN\A)/]1 C = ¢ and

"beC. ThenbeCC AJb=>be A. A contradiction. Therefore

]
il
iy

—u—-ﬁ* — ‘.
(C3) : et aedUband a £ A, AL S, a,b € S. There exists
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C e gs.t aeC< AuUbLl)a, Now C% A (4 a since a,zﬁ. Hence
CCAUUDband b e C so that C € AU a. Thqsbem

fca} : Let AG S. Consider the famiiy of subsets of A which
‘do not contaip an ¢lement of Z_(;and partially order them bf set
inclusion. This family is not empty as it contains ¢ . It contains
only finite sets. If the upper bound of any chain contains an element
of (‘f then some member of the chain will also contain this finite set.
This contradicts the choice of members of the set, so the set contains
an upper bound of each chain. By Zorn's Lemma there exists a maximal ’
element Af in this family. i.}bv'i-:msly"33.f is finite. If(al' [ A\Af,

then 3 C ¢ gs.t. ae CQ_AfU'a (as A_ is maximal). Thus ﬁf‘;?_h and

£

hence Af = ﬁf;g A. Since Ixfc;;;A, I-\f G A and therefore ﬁf = A,

Hence the closure defines a pregeometry G(S) on S. To show
that Zf is the family of circuits we first show that every element

Ce fis a circuit.

CE(_)=>cECQ(C‘“&C)UC”CEC\C")ECoeth't

ce COG (CN\c)Ue = ¢ => Ch & C

X € Cog {Co\x} /) x =>x € Co\x = Ct e Zfs.t'

¥ €C' C(CN\x) Ux=>C'"€C,cC=>C"'=C=C
'I’husCej( .

By interchanging the roles of j< and Zj)in the above we show

0

that every circuit is in Zf .

The unigueness of 'the_pregeometry follows from the definition

of closure in terms of circuits.
The converss has already been proved. //

1.6.5 CORCLLARY. The pregeometry is a geometry if and only if all
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circuits haGE cardinality at least 3.
PROOF. Follows from Corollary 1.4.4 -

We recall that a graph (V,E) is a set V of vertices and a
family E of unordered pairs of vertices, called edges , and a polygon
is 'a finite set of edges {{vl,vz), (Vorvydy vve (V10 V), (v, vl)}

with 1 # j => vi # vj .

1.6.5. EXAMPLE. The polygons of any graph, in which any infinite
collection of edges contains a polygon, are the circuits of a

. pregecmetry on the set of edges of the graph.

PROOF. We need only show that the collection of polygons
satisfy (K4}.
Consider two pdlygons,

ST STACYRNIRT RN AL A PR AV LY

C2 ¢ (wl,wz);, cee g (wh-l'wm)' (wm, wl)
such that le) C, # % . Without loss of generality we assume
(vl,vz) = (wl,wz) and Ve S WV, =,
C?nsider the collection (vz,v3}l... ' (vn-l' vn), (vn, Vl)'
(wl, wm), (wm, wm—l)’ cen g {w3, w2). This is a finite closed

path. Hence it contains a minimal closed path - or polygon - which

does not contain (v, v,). //
1.6.7 LEMMA, The conditions (Kl) - (K4) are independent.

PROOF. We see this by examining the following four examples

in each of which exactly one of (K;) - (K;) is not satisfied.

(i) Let S be any set and Jk: = {4} . Then only (Kl) fails.
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(ii) Let s = {1,2} andrj< = {1,2,12} . Then only (Kz)

fails.

(iii) Let S be an infinite set. Let x # y € S. Put

ék:= {x,y} . Then only (k) fails.

-

(iv) Let's = {1,2,3} and K = (12,23} . Then only (k)

fails. /7
We link bases and circuits of pregeometries.

1.6.8 LEMMA, If B is a basis of G(S) and x € S\B, then there
exists a unique circuit C = C(x, B) such that x e C B Y x .
This circuit is the fundamental circuit of x with respect to

the basis B.

PROOF. First we show that I {J x contains at most one circuit
if I is independent in G(S) and x € S. Suppose that I U x contains
two distinct circuits Cl, Cz. As I is independent C

contain x. Now x e.le7 C

1 and 02 both

2 and hence by'(K4),3 a circuit 03 of G(S)

such that C, < c,u C.,\x. But ¢, u Cz\\x € I. Thus I contains a

circuit C3. A contradiction.

Let B be a basis of G(S) and x € S\B. Then B!J X is
dependent and it contains a circuit C. BRince P is independent,
C% B.and so x € C& B U x. BAs B U x contains at most one circuit,

C is unique. | : 4

As a consequence of Lemma 1.6.8 we have the following
stronger result writing C(x, B) for the unique circuit C such that

X e CCBUKX,
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1.6.9 THEOREM. Consider any basis B of G(S) and any x € SN\B. Then

(B\y) U x is a basis of G(S) if and only if y € C(x, B).

PROOF. Leit (B\y) {U X be a basis of G(5). Then C(x, B)< BUx.
Suppoée y £ C(x, B). Then C(x, B) € (B\y) U x and so (B\y) U x can

not be a basis. Hence y € C(x, B).

. L)
Assume that y € C(x, B). If (B\y)lJ x is not a basis, Then
(BNy) U x cont_:aihs a circuit C'. Hence B U x contains a circuit

C' # C(x, B). A contradiction. Thus (B\v)U x is a basis. /7

1.7 FLATS

. We present a characterisation of any pregeometry in terms of

flats, which is due to Roberts [73] .

1.7.1 THEOREM. Let Fr' r=20,1,2, ... , n, be disjoint families of
subsets of an arbitrary set S, with Fn consistiné of S alone. A
subset A of § isF-ciependent iff A is contained in some member of Fr'
for some r < [Al ; otherwise A isfF -independent. Suppose

(1) Each F-independent r-element subset R of S is contained
in exacf:ly cne member of Fr, -denoted by M(R}, for r =0, 1,..., n;
denoting a typical member of "Fr by F_,

(2) 1f Fr contains an F -independent (r-1)-element subset R of

S, then Fr? M{(R), for r = 1,2, ... , n;

(3) Fr:?-FS =>r > s.

For AL S, we define J(A) to be the intersection of all members of
n
L Fr containing A,

r=0

The above conditions define a pregeometry-on S, with J the
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closure, F} the set of flats of rank r, and fhe F-independent sefs
being exactly the independent sets. Conversely, given a pregeametry
on S with Fr its set of flats of rank r, the above conditions are
fulfilled, with the independent sets being exactly the F-independent
sets, and the closure being J.

The pregeometry is a geometry iff F0 consists of the empty

set alone and.F1 consists of all singleton subsets of S.

PROOF. We require several preliminary lemmas.

1.7.2 LEMMA. If R is an F-independent r-element set and a £ M(R),

then R i) a is an F~independent (r + 1)-element set.

PROOF. By the definition of Fiindepéndence, R, and hence
R U a, is contained in no Ft' for £t < r., Suppose R U a g;Fr. Then

by (1), F, = M(R), contradicting the choice of a. //

1.7.3 LEMMA. If t < r, and Fr contains an F-independent t-element

set T, then Fr?‘ M{(T).

PROOF., If t = r-1, the above is true by (2;. If t < r-1,
M(T)-$ Fr by (3), and M(T) # Fr since the families Fr are disjoint.
Thus there is an al elFr‘\~M(T). "By Lemma 1.7.2, Tl =Ty al is an

F-independent (t+1)-e1emént set. Aéain, if t+1 < r-l, there is an

a, € FrA\\M(T ) such that T, = T (J a, is an F-independent (t+2)-

2 2
element set. We contmnue thus until we have an F-independent (r-1)-

element set Tr-t-l' Then, by repeated use of (2},
¢ - - Voot :
M(T) ¢ g MTP G GM(T )G F //
1.7.4 LEMMA, If A £ S, there exists a maximal F—lndependent

subset of A. If R is any maximal F-independent subset of A, then
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J(n) = M(R).

PRCOF. Every subset of S of cardinality exceeding n is
f-dependent, while the empty set is F-independent. Thus there exists
at least one maximal F-independent subset of A, say R; let R have

cardinality r. Then

Hj
¥
s
i -
v
|
V]
&

=3 t>r,
t%M{R) by Lemma

1.7.3; if t =, F_ = M(R) by (1). Thus F_ 2 A =>F

by the definition of F--independence._ Ift>r, F
¢ QM(R) .
If M(R) D A, let x ¢ ANNM(R). Then R U x is F-independent by Lemma

1.7.2, contradicting our choice of R. Thus J(A) = M(R). //
1.7.5 LEMMA. Any subset of an F-independent set is F-independent.

PROOF. We show that any superset of an F~dependent subset T
of S is F~dependent. Let R Ibe a maximal F-independent subset of T,
and let a € S \T. Then if a € M(R), T U a & M(R) = J(T) by Lemma
1.7.4, and TU a is F-dependent. If a ¢ M(R), R J a is F-independent

by Lemma 1.7.2. Thus, using (2),
T €J(T) = M(R) ¢ M(RU a) ,

and TiJa< M(RUJa); hence T U a is again F-dependent, since R U a
has lesser cardinality than T {J a. Since any infinite subset of S
is F-~dependent, any superset of an F~-dependent subset of S is

" F~dependent. - //

1.7.6 LEMMA. Let R be a maximal F-independent subset of A & S,
and let R U x be F-independent for some x € S\ A. Then R{J x is a

maximal F-independent subset of A U x.
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PROOF., Suppose Ry X U y is anF -independent subset of
AU x, where y € AN R. Then by Lemma 1.7.5, R U y is F—-independent,

contradicting our choice of R, /7

PROOF OF THEOREM 1.7.1 Suppose the families Fr of subsets of
S satisfy the conditions of the theorem. Since S g Fn, if A gs, the
intersection in the evaluation of J(A) is not vacuous. Thus, from
the definition of J, A € J(A), and if Ag B, J(A) & J(B). IfR is a
maximal F-~independent subset of A, J(A) = M(R) by Lemma 1.7.4, g;i.ving
immediately the finite basis property for J (since J(A) = J(R) = M(R))

and the idempotency of J (since J(M(R) = M(R)).

To show.that S is a pregeometry with J as its closure, we still
need to show that J satisfies the exchange property. Suppose
a,b ¢ S such that b ¢ J(&) = M(R), but b ¢ J(A U a), with a and R as
above. If RU a is F-dependent, R is a maximal F -independent subset
of Al a, so that J(A U a) = M(R) = J(A), contradiction. Thus
RU a is F-independent, and, since a ¢ A, RU a is a maximal
F-independent subset of AU'a by Lemma 1.7.6. Then J(A I.JI a) = MR U a)
by Lemma 1.7.4, and b ¢ M(R1J a). MNow b ¢ M(R), so tﬁat RiUbis
F~independent by Lemma 1.7.2, and M(R i/ b) = M(R {J a). From Lemma 1.7.6
and 1.7.4, since b ¢ A and R U b is F-independent, J(a U b) = M(R U} b).

Thus

aeMRUa) =MRYDb) =J(RUD),

and the exchange property for J is verified. Thus the ¢logure J

difines a pregeometry G(S) on S.

Let AC S, and let R be a maximal F-independent subset of A.
n
Then J(A) = M(R) € ) F_ by Lemma 1.7.4; on the other hand
r=0
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n
. Fe U Fr => J(F) = F, by the definition of J, and the flats of G(S)

r=0
_ n
are exactly the members of {J Fr .
r=0

IfT ¢ Ft' let R be a maximal F-independent subset of T.
1f |R| < ¢, TQM{R) by Lemma 1.7.3; then if x € T N M(R), RU x
is F-independent by Lemma 1.7.2, contradicting our choice of R.
Thus |R| = t; let R = Ty oee eere 115 iff_'t,

| SRS Cr
1

esssX,
1 i- i

1
= Jlryee..r, ) = Mlxy.e.exr, o) My .or) =3 ..oox)).
' r ) = =
Then J(4) % J(R,) ‘;_ J(ry,r,) ; seeereiz J(R) =T
is a maximal chain from J(¢) to T in L(G), and F, is the set of flats

of rank t in G(S), for each t.

Let A be a subset of S, and R a maximal F-independent subset of
A. Then the rank of A in G(S) is the (finite) cardinality of R, and A
: isl:-independent iff R = A, iff the rank and cardinality of A are the
same. Thus tﬁe F -independent sets are precisely the independent sets

of G(S), completing the proof of the first part of the theorem.

Conversely, let G(S) be a pregeometry of rank non a set S, and
L(G) its lattice of flats. Let Fr be the family of flats of rank r
in G(S), for r = 0,1, ... ,n ther.'; the fému'.lies Fr are disjoint, and Fn
* consists of S alone, Now any infinite subset of S is both dependent
and F -dependent; hence let A be a finite subset of S, of éardinality t.
If A is dependent, r(A) < t, and A is F-dependent. If A is
fF-dependent, A & Fr for some r < t; then A < Fr by the defintion of closure
and r(A) < r < t, so that A is dependent. Thus the independent sets of

G(S) are exactly the F-independent sets.
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Any independent r-element subset R of S is contained in one
member of Fr' namely R. If RC Fr';! R, R& Fr/) RE Ft' for some
t < r, contradicting the fact that r(R) = r. Thus (1) is true.
If F; contains an independent (r-1)-element subset R of §, Fr‘g R
by the definition of closure; F _ # R because their ranks in G(S)

differ, and so (2) is true. (3) is true by the definition of rank in

G(S). .

The last statement of the theorem is immediate from {Cs} and

(Cs), and the proof of the theorem is complete. /7



2 BASIC PROPERTIES OF PREGEOMETRIES

2.1 ISOMORPHISMS

2.1.1 Two pregeometries G(S) and G(S') are isomorphic if there is a

bijection i: S + S' such that i(A) = i(A) , W¥A < S.

We write G(S) = G(S') and call i an isomorphism from G(S) to

G(s").

Now we examine the relations between isomorphism and the -

various characterisations of pregeometries.

2.1.2 THEOREM. Two pregeometries G(S) and G(S') with rank functions
r and r' respectively are isomorphic if and only if there exists a

bijection i: S+ S' satisfying r(d) = r'(iA), VA < S.

PROOF. First assume that G(S) = G(S'). Then there exists an

isomorphism i : S =+ S', Let A < S. Consider any maximal chai:‘l

$ < ia

1

<...< 'in = A in the lattice of flats of G(S). Then

1 L ﬁn = 3A is a chain in the lattice of flats in G(s').

Suppose 3 j such that 'iﬁj <y <‘ fi'A:i +1

, where i(X) = Y. Now i(X) = iX =Y = Y = iX

for some flat Y of G(S').

He A. <X <A.
nce 5 X 541
so that X = X and hence X is a flat in G(S). A contradiction. Thus

r'(ia) = r(a).

Conversely lét i : S S' be a bijection satisfying
r(A) = r*(iA), VA< &. Let A € S. Then
x € i(d) => x‘ = i(y) for some y € A, => r(A U,y) = r(A), =>
.Ir'(i(A U y)) =x"(ia), => r'(iA v iy) = r'(iA) =>r'(in v .x)

= r'(ip), =>x i iA .
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Thus i(A) € ih .
Y € ih => r*(iAUy) = r'(ia), => r'(i(A U x)) = r'(ia),
where y = ix for some x € §, => r(A U x) = r{d) => x € A,

=>y € i(A).

Therefore iA < i(A) and so i(A) = iA . : //

In fact an isomorphism between two pregeometries preserves.

rank, independence,bases and circuits and vice versa.

2.1.3 THEOREM, A bijection i : S + 8' is an isomorphism from G(S)

to G(S') exactly when any one of the following three conditions holds,
(i) I is independent in G(S) <=$ i(I)is independent in C(S'},
(ii) B is a basis in G(8) <=»> i(B) is a basis in G(8%),

(ii1)C is a circuit in G(8) <=> i(C) is a circuit in G(S8').

If i is an isomorphism then the induced hap on flats is a

lattice isomorphism.
Conversely, if G.8) and G(S') a;e geometrieslthe existence of
the lattice isomorbhism induces a geometric igomorphism;
PROOF. First; i is an isomorphism from G(S) to G(S')
<=> r(a) = r'(id), VA C S, -
<=> |a| = r(a) e=xactly when |iA| = r'(ia),

<=> Condition (i) holds.

Secondly; condition (ii) is equivalent to (i).
Thirdly; the equivalence of (iii) follows from (i} and (KOJ.

Let i be an isomcrphism from G(S) to G(S'). Let L(G) and L(G')
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be the lattices of flats of G(S}) and G(S') respectively .
Define V¢ : L(G) -+ L(G') by
¥ (&) = i(A) , VA e L(G).

Let A, B € L(G). Then ¢(A) v ¢(B) = i(A) v i(B) = 1i(A) v 1i(B)

=T(A)Y ULi(B) =i(A) v i(B) = i(A uB) = i(A uB) =¢A uB) = ¢(R v B)

and $(A AB) = ¢(ANE) = ¢(AnB) =i(AnB) =i(AnB) = i(d) n i(B)

=I(@A)0 I(B) = i(A) A 1(B) = i(A) A i(B) = ¢(A) A ¢(B) .

- n

Thus L{G) and L(G') are isomorphic.

Let G(S) and G(S') be geometries such that L2 T.?, where L, L'
are lattices of flats of G(S), G(S') respectively. Lt ¢ : L > L'

be lattice isomorphism. Since G(S), G(S') are geometriexs, the atoms

inL, L*are {a/aes}, {b/besg'} respectively.

Define i : S +-8' by i = ¢ / atoms .
Then i is one to one and onto as Y / atoms is one to one and

v{a/aest ={b/bes'}.

Let A € S. Then i(A) = i(sup A) = Y(sup A) = sup (YA)

= VA = iA .



2.2 SUBPREGEOMETRIES

We show that in a natural way any pregeometry on S induces

a pregeometry on any subset of S.

2.2.1 THEOREM. Any pregeometry G(S) induces a pregeometry GS(T) , on
any subset T of S, called the subpregeometry on T induced by G(S) with

Ll ~

closure A defined by A = an T, YA S T,
!

PROOF, It is obvious that A% A , VA S T so that (Cl) is

satisfied.

Let AS B. Then AS B/ T so that A€ E and hence A& B.

3 1T = B,

I
jes]]

Thus A = A7 7T

3

P g ~ -
Given a € AUDb ard a g A , where AS T, a,beT. NowayghAl

—————
and a e AUb as a € T. By the exchange property in G(S) we have
. . T
b e AU a. Therefore t £ & Ua.

Let AG T. Since ACS, J A CAwith Eif=1'i. iow

A=3.fﬂ'r=}1nT=:A. /7

Any pregeometry and its subpregeometries have structures

related as in the following lemma.

2.2,2, LEMMA. (i) In any s;ubpregeometry GS(T), 2‘; =Rk, VAS T, if and
only j‘if T is a flat in G(S).

(ii) The independent sets in GS(T) induced on TS S by G(S)
are exactly the subsets of T ﬁhich are independent“"in G(S).

(iii) The rank of A< T in Gg(T) is its rank in G(S).

_(iv) " The _circ_uits of'GS ('i') are exactly the subsets of T which

are the circuits of G(S).
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PROOF. (i) Assume that A=A, VA ST, Thus T=T =T AT = T
so that T is a flat in G(S). -
Assume that T is a flat in G(S). Let A ST. Then K_E,f =T

sothat A=A NT=2,

(ii) Let A be. independent in GS(T). By Lemma 1.4.8 there
. ~~ oee—— .
is no a ¢ A such that a € A\Na=A\a 7T . If there is a c A
such that a e "N\ a , thena e A \a \T. But A ©ST. Therefore
there is no a € A such that a ¢ & \a and hence A is independent
in G(Ss).

Assume that A is independent in G(S) and A € T. Now there
is no a € A such that a e A\Na > A N a so that there is no a € A

>/
such that a € A \ a. Hence A is independent in GB(T)

(iii) follows from (ii) and the fact ‘that rT(A} is the
cardinality of a maximal independent set of GS(T) contained in -

AcT.

(iv) follows from (KO) and (iii). - V74

2.3 CANONICAL GEOMETRIES
We. examine particular subpregeometries,

2.3.1 A subpregeometry (T) is a canonical geometry of G(S)

Cg

if it satisfies the following.
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:(CG;)T(TE = ¢

(€G2) TN GEND| =1 , vags .

Obviously a canonical geometry is a geometry,as the induced

closure of a singleton is the singleton.

The existence of a canonical geometry of any pregeometry is

guaranteed by

2.3.2 THEOREM. A canonical geometry of any pregeometry G(S) exists

and all canonical geometries of G(S) are isomorphic.

PROOF. 1In G(S) consider the equivalence relation = on S“\?
defined by a £ b iff.a = b. Let T be a set of elements each from
one.equivalence class, no two elements of T from the same class,
then T satisfies (CG 1) and (CG 2) so that'GS(T) is a canonical \

geometry of G(S).

Let GS(Tl) and GS(T21 be canonical geometries of G(S).

Define a bijection f: T, =+ T2 by £ : (Tl 1 (aNe)) > T257 (aNd) .

1
To show that f is an isomorphism let A& T. First notice that

t=f(t) , vt e '1‘l since t and f£(t) are in the same equivalence class.

How

{a/aenlt={a/ach }_='{ fla) / a e A }

A

{£(a) Jaeca} =f@a) .

Thus since x € A NT, <=> f(x) € A f?Tz we have

1
f(fu% (A)

I

fh/xsdlmﬂ:

i

f{x/ xeh f?Tl} P

il

{ £(x) / £(x) € & f}Tz} , -
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= A f)Tz ,

= t@NT, ,
= &) .

In a geometry G(S) if GS (T) is a canonical geometry we have

T = S exactly when a € S impliessa/)T=a/)T=a . We then have

proved.

2.3.3 COROLLARY., A pregeometyy is a dgeometry if and only if it is

a canonical geometry of itself.

2.3.4 THEOREM., Any preqeometry‘G(S) canonically determines a

geometry on the equivalence classes of S\§

PROOF. As the equivalence relation = in the proof of
Theorem 2.3.2 partitions §\¢ into equivalence classes S', where
every Qlement of S' is of the forrri % for some X € S\'tt': and
Xxey <=>; = §, ?§,§ € S'. For any A'%E S' define @f{h') ‘as

follows :

e @ ={besS /be Ua' }.

a'en’

We show that €& satisfies {Cl) - (Cg) -

(CIJ : Given A'C S'. Every element of A' is of the form x for
some x € SN$ and x €1/ a' . Hence % € @&A‘).
. aﬂenl
(Cz) : Let A' C ef(B'), where A',B' € S'. Then
acley =>U a0 ¢ U x '
- a'ed' . x'etd(B')

= U ar .‘E—_ U x = Jx'Ulasad B',ae U x'},

a‘ehn’ x'e ff{B') x'eB!' x'eB’
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= ! a' <y x' = {x'/ %" € B'}‘, (by Lemma 1.1.7)
a' e A x' € C’Z(B'}

- Lay ¢ da.

-—

(€y) : Let a e{f(a' U b) and a £ Cf{nw, where A' € S', a,b.€ §'.

Then a € {La'/a' e A'U b tand a ¢ {(Ua'/a' e a'} . puta=VY a
. - a' € i

Now a £ A and a € A U b so that by the exchange property in G(S) we

have beAUa=U attUa= Ua'lia. Hencebefg(h'ua) .
a' e AY a'*e A’

(C,) : Given ' ¢ 8' , Let A=t/ a'* . Then A £S so that

4 a' € A’
] A C Cawith .Txf = A . Consider AL =Y a which is finite. We
ae€ Af

"

Uy,

SeA“,_,--)':’?beA andbea~¢=>behA=>becfor some ¢ € A

show that A'fdc'A' and ‘%(Aé)
f
=> a=b=cea.

That is A'C<A', Now as b € A’ <=>30&:Es;tcehf and ¢ = b we have

£ f
) = (azae Ubl= (8/acUcl=1{i/aciy
' b e Al ceAh
f_ £
={5/ae£}={5/aeu ;}=6£(A').
aea’

(Cs) and (CG) follow at once from the definition of Cg and the

property that a e b<=>a=5b. //

Notice that the geometry obtained in Theorem 2.3.4 is
isormorphic to any canonical geometry of G(S). Rado [ 57] defined
the canonical geometry of G(S) to be the geometry cbtained as in

Theorem 2.3.4,

2.3.5 'THEOREM. For any geometry G(S) a pari:ition of a super set
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Vv of S in such a way that no two elements cof S are in the same
equivalence class of V determines a pregeometrf on V having

Gv(s) = G(S) as a canonical geometry of G(V).

PROOF. For any subset A of V, define CZ(A) as follows

Cé?{A) = (J { equivalence class of V containing b{{}{equivalence

s
be A

class of V containing no element of S } , where

. SA = §/){ U equivalence class of V containing a } .
aeh

We show that ff satisfies (Cl) - (C4}.

(Cl) : Given A - V. For any a € A and a is not in an equivalence
: ini &

class of V containing an element of S we have a ¢ (), Vx < V.

If a ¢ equivalence class containing an element b of S, then b ¢ §A

so that a e C’[{A).

(Cz) : Let A €SB % V. It is clear from the definition of C{that
eﬁ (a) < ﬁf(B]. To show that ﬁf( 'C’Z(A)) = %(A) for every .

A S V we observe that

B' = sf{ U ‘equivalence class containing a } ,

a e/ (n)

= 8N{U equivalence class containing a } .
a€e€al

For any x € Cf( fg-m)) if x € equivalence c¢lass containing b, :

where b € B , then x € &7(1\). Thus M( @(A) = Cg(h) .

(03) : Let a e @(A UDb) and a g a(A), where A< V, a,b € V.
We consider the class containing a. If this class contains no

U et
element of S we have a ¢ (). A contradiction. Hence there

exists an element a‘' of S in this equivalence class. If the
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equivalence class containing b contains no element of S , then
be 62(3 U a). P‘Lssume-that b, b' are 1'1 the same class, where
b' €58,
Now a £ &(A} => a ¢ equivalence class containing x,
VX € EA. As the union of equivalence classes containing an element
of AUDb is the union of equivalence classes containing an element of

AUDb' we have S and ¢ auUb) = & @auUp

. au b~ Sau b
Therefore a ¢ C(AUD) => a'e 4 (a Ub) => a' € XA Ub') =

a' E_SA Ub' * BY the exchange property in G(S) we have '

' S ' =CJ£ ’
b e, s @avan = Laua sothat b e Zava.

Hence b € & (A U a).

(c

4) : Given A' £ V. Let

av= U { equivalence class containing a' } and
a' € A°
A=A"VS. Then A =8 and bﬁ the finite basis property in
G(S) 3 Af C <C A with ﬁf = A. For each a € Af, pick one element
X € equivalence .class containing a and X, € A (xa_exists aé every

element in A is in a class containing an element of A'). Let

[ ' ~nat
Af {xa / ac€ Ag } - Then AfCHA . Now

'68(34;1 (J _ { cquivalence class of a }U{ equivalence class
_ ach _ . Hvatens

containing no element of S } ,

[J _ { equivalence class of a }L!'{equivalence class
aceEA:
containing no element of S },

e (av)

We see from the definition of &/ that GV{S) = G(S).  To show
that G(S) is a canonical geometry we note that (Z(¢) =U {equivalgnce

class containing no clement of § }. Therefore s 1} 6€(¢) = ¢ .
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For any a ¢ 8£(¢)_=> a ¢ equivalerce class containing an element s of

S => sa = g => f?fa}“\.ef(ﬁ) = equivalence class containing

s=>sO(C€{a)\€€(¢)_=s. * o //

2.3.6 THEOREM. Two pregeometries with isomorphic caronical geometries

have isomorphic lattices of flats.

PROOF. We first show that any pregeometry G(S) and its
canonical geometry GS(T) have isomorphic lattices of flats. Let L(S)
and L(T) be lattices of fiats oflG(S) and GS(T) respectively.
Consider the function f : L(S) + L(T) defined by £(A) = AN T, ¥A ¢ L(S).

Obvidusly £ is one to one. To see that £ is onto we observe that

BeL(T) <=> B=B NT, BCT so that B ¢ L(S) and £(B) = B,

We show that £ preserveé meet and join. Let A, B g L(S).

Then £(AN B) = ANE)NT=AENTN(BAT = £(A)N£(B) and
A - - o - I~
f(A) vE®) = ANT) v (BAT)=(ANT) v(BNAT) =AvB=AUB

= AUBMT=f(aUB) = £(A v B),

Let GS' (T') be a cgnonicai geometry of G(S'), where
GS(T);E Gs‘(T'I. The theorem is prove§ if we can show that GS(T) and
GS,{T') havé isomorphic iattices of flats. Let i‘Be an isomorphism
from GS(T) onto GS'(T'). Denote by L(T) and L(T') the lattices of flats

of G, (T) and GS*{T')respectively.

Define ¢ : L(T) = L(T') by ¢(A) = i(A), ¥A e L(T).

Then ¢ is one to one and onto. Let A, B € L(T). Then ¢(A N B) =

(A NB) = i(A) N i(B) = ¢(a)N ¢(B) and $(A UB) = i(a U B) = i(AUB)

=1 Ui® = 4(A) U o).

Thus L(T) and L{T') are isomorphic and the theorem is proved. //
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2.4 TRUNCATION

+

We define the truncation of any pregeometry.

f-h'
2.4.1 THEOREM. Lett) be the family of independent sets of G(S).

Then

J, J
ch ={Iee/ |I] <k}, for some positive integer k < r(s),

is the family of independent sets of a pregeometry on S - the truncation
of G(S) at k.

e .
‘PROOF. It is clear that dk satisfies (Il).

T . .

We show that dk ‘satisfies (12). Let A = S. If Il,. I, are
. T :

maximal elements of ‘Jk contained in A and IIll < |12| . By Lemma

1.4.2 Jxe 12\11 such that Ilu X € . As Il' 12 € k [Ill < k

.and so |IlU x] < k. Thus I].U X € "-)k . A contradiction. Hence

is the the family of independent sets of a

—
. Therefore J X

pregeometry on S. Yes

We note that the k - uniform geometry on a set S is the’

truncation at k of the Boolean geometry.on S. _ V4
2.5 CONTRACTION

We define the contractionof any pregeometry.

—

2.5.1 THEOREM. Let ¢J be the family of independent sets of G(S).
Let TS S and define ¢J (T) to be the family of subsets X of T such

f'-
that there exists a maximal independent subset Y of SN\T with X U Y aJ "

Then J (T) is the family of independent sets of a pregeometry G(S).T
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on S - the contraction of G(S) to T.

PROOF. We see that J(T) is a family of finite subsets of T
if J (T) # ¢ . Since SWT contains a maximal independent subsets of
G(S) and ¢ & T, ¢ & .‘]—;{T) so that :_T{T) # ¢ . The theorem is proved

if we can show that J(T) satisfies (Il) and (I,).

. o '
(Il) : Let B € J (T) and A & B. Then there exists a maximal

(‘-’
independent subset Y of ST with BUy € 0} Now AU Y CBU Y and

soc Al Ye J ThusAe'J}T}.

-~

(I)) : Let AS T. Let X , X, be maximal sets in ¢ (T)

2 1

contained in A. Then there exist maximal independent subsets-Y

2
1’ Yo

of S\T with X, U ¥, ¢J and X, 4 ¥, e J . Put T, = (S\D) () A.

1
Then xlu Yl and. xzu Y2 are maximal independent sets of GS(Tl) _ anc}_
so lhxlu v, = |32U Y| . But |Y1] = |v,| and X, Ny, 5x2n Y, = 4.

Thus 'xll = |J{2| . //
2.5.2 LEMMA. Let r® be the rank function of G(S).T. Then

rT(A) = r(A J(S5NT)) - r(S\T) , VACT.

, T —
In particular r (T) = r(S) - r(S\T).

PROOF. Let A € T. As in the proof of Theorem 2.5.1, X UY is a
maximal independent set of GS (A-U (8™T)) if X is a maximal independent
subset of A in G(S). T and Y is a maximal independent subset of ST in

G(S). Thus r(a U (SwT)) = |X u¥|= |x|+|¥|= r"(A) + r(S\T) as desired. //

_2.5.3 EXAMPLE. Let M(G) be a pregeometry derived from a finite graph
G = (V, E) as in Example 1.6.6. For any T & E, let Gp be a subgraph

of G obtained from G by deleting all edges not in T. Then M(GT) is
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the contraction of M(G) to T.

. .
PROOF. Let J ’ J (T) be the families of independent sets of
M(G), M(GT) respectively. Observe that I is independent in M(G) <=> I

k]

does not contain a polygon of G.

Let I € J' (T). Then I does not contain a polygon cf GT'
There exists a maximal subsct X of S\T such that I U X is not a polygon

of G and so X¢ (J and I UXe (J .

Let I UX ¢ :j‘, whare X is a maximal independent subset of
SNT and IS T. Thus I U X doces not contain a polygon of G and hence

I doas not contain a polygon of G

o SO that I e (T).

-

Hence M(GT) is’' the contraction of M(G) to T. //

2.6 UNION AND DIRECT_ SUM OF PREGECMETRIES
We discuss the union of two pregecmetries.

2.6.1 THEOREM. Let Jl and ()2 be the ceollections of independent

sets of Gltsl) and Gz(sz) respectively. Then the collection

[p—

Jo=trnun /1, e, ,i=1,2
= lU 2/ iedigl"'l'}

is the collection of independent sets of a pregeometry on

Sl v 52 ~ the union of Gl(lsl) and G, (82) - denoted by Gl(sl) v Gzlsz) .

PROOF,  Since Jla!da,S;#‘:) , we have E,T%Q) . We sece

that any set in¢ is a finite subset of 5, US, .

We show that Jsatisfies (Il). Let I € ¢/ and 3J& I. Then
I-= Ilu 12, where Ii € Ji' i=1,2. Put Ji =JN Ii' i=1,2. Then .

~ ' ~
= ]
J; € Jiandd‘ VI, e J.
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We next show that g- satisfies (12-). Let A 9_51 1 S,- Let I,
J be maximal sets in J contained in A. Suppose that | 1| <|J| .
There exis!:s a presentation I= Ilu 12, J = Jl i) J2 with
I N I, =9, N J, =¢ . Choose one of these guch that lIl /')le +
| 1,/ 3, | is minimum. Now |Il] + IIz| = |1] < |3| = [Jl| + |J2|
and so IIll cIJll cr |I2| < |.32|. For definiteness assume

lr,| < |9,| . since 5, and 1

1 p are independent in Gl (Sl),jy € Jl\Il

3 L= i : !
with I1 Il‘J Yy E Jl . .

. .
If y € I, then asygfIl,ys Iz. Put 11=IlUye land

* * * . . % * *

I,=I,\ye ,. TenI=TIUI and T, N1, =¢ . But |1, NI, =
_ " .

I(Ilu VN, = IIan2| (as y # 3,) and |12ﬂ.:¢1| = [(12\y) N Jll

= |12 J1|- 1(asyed, N I,), contradicting the minimality of

}Ilf} J2| + ]Iszll . Hencey g I and I Uy = (IIU VU I, € -

This contradicts the maximality of I.
thus |1} 2 [a] .

similarly |3| > |1| so that |1| = [3] and the theorem is

prm}ed .
Inductively we have

2.6.2 THEOREM. The union of any finite collection of pregeometries
exists and is a pregeometry.

PROOF. Let G]_{Sl) goss ,Gn‘(sn} be pregecmetries. The theorem
is true when n = 2. Assume that the theorem is true for any union
of k pregeometries, when k < n. Let "!"i be the conllection of

o/

independent sets of Gi(si) , L =1,2,...,n. By the¢ assumption

T e .
J =1 LU ... I /I edjrdi=1,...n-1}
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is the collection of independent sets of a pregeometry G(Slu e Usn-l) .
Thus by Theorem 2.6.1 the union of G(s, L) ... US,_}) and G_(S) is

a pregéomet:y on Slu e U Sn as required. V74

2.6.3 EXAMPLE. (i) Union of a k., - unifcrm geometry on € and a

1
k2 - uniform geometry on S is a (kl- + kz) - uniform geometry on S.
provided |s] >k, +k, . It is Boolean if k, +k, > Is] .

(ii) Any k ~ uniform geometry on § is the union of k

1 - uniform geometries on S.
2.6.4 COROLLARY. The union of geometries is a geometry. '

PROOF. It suffices to show that Gl{Slj- v G?(Sz) is a
geometry if Gl(s}.) and G2 (82) are geometries. Let A = {x,y} be

‘any 2 - point _subsetvof'sl U 82. Thus A = Alu Az, wher._'e A1§ Sl'

Az'-’.—_-" 52 . Thus élnil < 2" and since Gi(Si) is a geometry, by Corollary

1.4.4 Ai is independent in Gi(si) , 1i=1,2. Thus A is independent in
Gl(sl) v 62(82).

Hence Gl(sl) v G2(82) is a geometry by Corollary 1.4.4. //

The following example shows that the converse is not true.

]

Let s, = {1,2,3} , s, = {3,4,5}, J, = {¢:1,2,3, 12,13,23}

2

1

, v o~ .S ]
Jz = { ¢24:5:45} :(J = 2 ; where S Slu 52

Then';)_ is the family of independent éet of the géometzy Gl (—Sl) v 02(82) .

By Corollary 1.6.5 G,(S,) is not a geometry since 25’2 = {3} . 7/

2.6.5 A pregeometry G(SIU _52) is the direct sum of Gltsl) and G2(82)

if Gslusz(Si) = Gi(si)’ i= ].".2’ and each independent set I in
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G(Sl U 52) can be written uniquely I = Il u 12' where Ij is unique and

independent in Gj (s j] for j =1, 2.
. ’ P] .
We denote the direct sum of G, (S,) and G,(S,) by G, (S,) @ G,(S,)

Thus the union of Gl(s.i) and G2 {52) is certainly a direct sum

1fslﬂsz=¢.

2.6.6 THEOREM If § N S, = ¢ we have the following.
(i) The independent sets in Gl-(Sl) @G2 {Sz) are the disjoint
union of independent sets, one from Gi (Sl):one from GZ(SZ).

{(ii) The rank function of Gl (sl} ©) Gz(sz) is given by

r(a)

1]

rl(A ﬂSl) + rz(h !’332) ’ VA-—,:SIUSZ ’

" where r,, ¥, are the rank functions of Glisl), G2 (82) respectively.

2
(1ii) The closure A of A in Gl{Sll ® G,(s,) is given by

A = closure of (A -’751) in G, (s,) U closure of (a ﬂsz) in G (s,).

Conversely if the rank, closure or in'dependent structure of

G(s, U s.) is gi i . i
(Sl 2) is given in the above way with respect to GSl U 52 (Sl)
. Q
F
and Gslu sz (sz), then G(SlU Sz) = Gsl U 52 {Sl) +) Gsi U 82(52) .

PROOF. (i) follows directly from the definition of direct sum

(ii) Given a g,sl us, . Let r(a) = |I| ; where I is a maximal
independent subset in G, (s,) @ G,(8,) contained in A. Then

I= Il v I, where Ij is independent in G (Sj), j =1, 2. Thus I, is

3 3

a maximal independent set contained in A /7 Sj. (otherwise I is not maximal).
Hence r ., (A N S.) = |I. = |1| = + 1 = n

\ 5¢ ;) | J] and so r(a) = |1 Iz, |+ 1,] r (a0 s))

+ r, (A n 82) as required.
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(iii) Let 2 & Sl U Sy- We first show that for j = 1,2,
rj((A Ua)n Sj‘) = r:i (A.OSJ') <=> a Ie A. Let I be a maximal independent
gubset contained in A. Then I = Il lj Iz, where Ij is a maximal
independent subset contained in A/} Sj;j =1,2. Thus a ¢ A <=5 i:(A U a)
‘= r(A) <=> 1 is maximal in A [} a <=> Ij is maximal in (& Ja) N Sj'
j=1,2 <=> rjm ﬂsj) = rj(m va) N sjl, j =1,2.

As a € A only one of a € Sl or a € 52 occurs, for definiteness )
su;ppose ace Sl and hencel (AnUdan s, = (a N Sl)'f\U ;a. Thus a € A =>
r(aUa Ns) = @As) = r(@Ns)Ua =z @als) =>ac
closure of A /] s, in N (Sl) . Clearly the closure of A (]Sj in

Gy (sj)g A, j = 1,2, so that (iii) is proved.

Now conversely we show that any independent subset I in
(o] : o
G(Sl {J Sz) can be written uniquely as Il U I, where Ij

. o
. R _ . , ,
in GSIU-S j) . l 2. Let_ I be independent in G(Sl ¥] sz) . Observe

G
_ . o . _ )
that the rank of 4 /) Sj in GslU s, (Sj) is the rank of A ] Sj in G(Slusz) .

is indepandent

Thus |I| = r(I)

ol

r(IfAs) +x(INs). But lz| = .]I/)sll + Iznszl.

since x(11s,) < |z nsjl , x(INs) =l1n s.I , § =1,2. Put

j

I, = . ] = . 4
5 In SJ, j = 1,2. Then I. is independent imnm GSIV 52(53) and

Q T §
I = Il U 12. Surpose I I ] 12 , where IJ is independent in

.

’

G, ¢, (5.), 3 =1,2. .G I .= I..
S]_USZ( Pei=1 'rhenxjg /) s5 =1, But ]xl|+|I2|=

it

1] '
[:msll + |If’1$2l . _‘I‘hus I, =IAS =I andI,=1INs =1

2.6.7 8, is a separator of G(S) if G(S)

1 GS(Sl} k4 GS(S \Sll .

Observe that Sl is a separator if and only if S\Eil is a

separator.

- We have one further characterisation of direct sums in



terms of circuits.

2.6.8 LEMMA, Sl is a separator of G(S) if and only if every circuit of

G(S) is contained in either S, or SN\.8,.

PROOF. Assume that every circuit of -G(S) is contained in either

Sl or S\S1 = Sz. Let I be any independent set of G(S). Consider .

I1NS,, j=1,2. IfI f}sj is dependent in GS(Sj), then it contains

N

a circuit of'GS{Sj) which is also a circuit of G(S). Thus I ﬁ?sj is
. a
independent in Gs(Sj), j =1,2. Also I = (IN5,;) U Dsz}. Let

I1 and 12 be independent in Gs(gL) and Gstsz} respectively. If

I‘-‘IIU I2

We can assume that C €5

is not independent in G(S), then it contains a circuit C.

Thus C < I, which is imposible. Hence I

1’ 1

is independent in G(S).

W

Let A< S. Then by the atove r(A) = r(a N ;) +r(a n s,) .

We show that A = closure of (A /?Sl) in thsllij closure of (A 1) Sz)
Ln_Gs(SZ). Let Rj be closure of (AN ?j) in GS(Sj), j = 1'2f We see

that ﬁlﬂ 52 = ¢ and f\l U 3;2 € A. Let a € AN\\A. Then there exists a

circuit C of G(S) with a e CSA Ua. IfC s, then a e A In case

1°

ng 82 we have a ¢ iza

By theorem 2.6.6, G(S) = GS(sl) ® GS(S‘\SIJ so that s1 is a

separator of G(S).

Let Sl be a separator of G(S). If there is a circuit C of

G(S) with C N §, # ¢ and C N {s‘\sl) #¢ .. Let S

i

> S\\SI. Then

c flsj is independent in Gé(sj). 3 =1,2 and r(C) = r(C f]sl) + r(c f)sz)

= |c flSll + lc f)Szl = |c| . A contradiction. Thus every circuit

is contained in either Sl or S‘\Sl. ' /7
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2.6.9 LEMMA. In any G(S) with ¢ = ¢ if r(s,) + r(s\s,) < r(s) then

any hyperplane contains either Sl or S\S]_'

PROOF Given any G(S) with ¢ = ¢ and r{Sl) + r(S\Sl) < x(s) for

some 81 < S. " Put S2 1

.b > S]‘.\‘Sl => r{Sl U b) + r(§2) > r((Sl .U b) U 82)+ r('(Sl Ub) N Sz_),'

= S\Sl. We first show that S and-s2 are flats.

=> r(s, U b) + r(S;) > r(s) + r(b),
= r(b) < r(s, Ub) + r(s,) - x(s),
=>.r(b) < x(5)) + x(s,) - r(s),

=> r(b) < r(s,) + x(s,) - r(s),,
=>"r(b) <0,

=>b e 5 .

A contradiction. Hence S

1 Sl and similarly 52 = _82. |

Suppose that H is a hyperplane of G(S) such that H ?Sl, H Qsz.

Then as H nsj is a flat we have r(H f'lsj) < r(sj), j = 1,(2 and so

- r(H nsl)_-:- r{H /?Sz) < r(Sl) +x(sy)) - 2. By {Rl) Wt’?.' have
r(H O-Sll + r(H 052) > r(H) + r(¢) so that r(H) < r(s,) + r(s,) -2

< r(s) - 2. A contradiction. Thus either H 285, or H @5, and the

lemma is proﬁed.' _ _ .- _ //

~

~ We now characterise separators.

©2.6.10 THEOREM. In any G(S) with ¢ = ¢ , r(S;) + x(S\s)) < r(s) <=> s,

is a separétor of G(S).

PROCF. Assume r(Sl) + r(S'\Sl) < r(s), where 51§ S. Let
S?.‘ = S\Sl. By theorem 2.6.6 and Lemma 2.2.2 it suffices to show that

- — G ee—— B .
A= (AN Sy U (a 052}, YA & S. Let AC S. Since any hyperplane contains
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!

either S, or 52, any hyperplane contains A /7 Sy either contains A n S

1

and 2 N s, or contains AN $, but not A /7 5,. Let JE be the family of
hyperplanes of G(S).

~Now ANS, =N {1/ edband ﬁ_:._vAns },

=(MNum e F, HDA(}SI,PQAOS Hn (n{H/H e%’agﬁa.ﬂs LPEPANS. Y,
and NS, -(Q{H/H ed{, I.QA/?SI,HDA 7S })f?(ﬂ{ﬂ/ﬂ edl, HDAD.J,,HiJn.-zc H.

If we let 36 ' (?62' ?é; be the families of hyperplanes of G(S) containing
(A N s;) Uk S,), A n-sl but not 2 N S,¢ B It S, but not A N s,

respectively, then by distributive law of sets we have

{Al’)sll.U(Af)sz) (nH)ﬂ[(fJH)U(f)H}Jr

H eé‘fl Hek A H eHﬂ -
=AAfCn_ B Hu( N w )J.
HeJ, sone HPS, H egﬂa,slome H2S,
R . =1A . ’
The converse follows from Theorem 2.6.6. //

2.6.11 LEMMA. Let 5 , S, be disjointseparators of G(S). Then s, Us,

2
and slf) S, are also separators of G(S).

Furthermore Sl is a sepairator of GS(T} , ¥T 251;

PROOF. By semimodularity r((S‘j\Sl) U '(5\52) + r(S‘\.'SlJ N (88,00 <
r(s‘*\sl) + r(S\.Sz} .and r(Sl U 82). + F(Sl g 52} < r(Sl) + r(s,) so that
adding two inequalities yields r((Sws,) U (S\sz')) +x(s, N s,) +

TUSNS)) N SWS,)) + £(5, Y'S,) < r(6™N8)) + £(S)) + x(S~S,) + £(5,) <
r(s) + r(Ss) th.ch gives r(S) + r(¢) + r(s \S U s ) +. r(s J s, ) £ 2r(s).

Thus r(S\.Sl'U 52) + ;:(Sl USZ} < r{S) and so Sl 8] 52 is a separator'qf G(s8).
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C C
Since Sl and 52

= (si{) sg) is a separator of G(s).

are also disjoint separators of G(S),

,Sln S2

Let o be the rank function of GS(T). Then rT(T} = r(T) =

(TN 31) + (T :’? (S\sl) = r(sl) + r('r\sl) = rT(sll + rT(T\.S}_)

so that by Theorem 2.6.10 T is a separator of G (T). 4

2.6.12 LEMMA. The family { Si} of minimal nontrivial separators of
. ) o - :
G(S) is finite and S = Slaj een U sm , where Si‘s are the minimal

nontrivial separators of G(Sg).

PROOF. Let {Si} be tﬁe family of minimél nontrivial separators
of G(S). If S‘i_ﬂ Sj # ¢ ‘ for some i # 3, then_Si n Sj is a s-;epara-ttor
'ané Si/f sj(g S,, contradicting minimality of S, . Thus Sif?_sj =¢ ,
¥i # j. Now r(s) ir(Sl Lj S2 lj .++). Suppose that there exists
k(> r(s)) elements in {s,} - Then x(s,) +....+I r(s,) _>_1Ic_ > r(s).

This  implies r(slé Sétj el ) 3_r(le} s fj'sk} = x(S;) +....+

r_(Sk} >k > r(s). A contradiction. Tl’IIU,S' {Si} - consists of m

clements, where m < r(S). By Lemma 2.6.11 and the finite induction
o

o . : \
Sl[J,;.. L}Sm is a scparator of G(S).

' . - 1]

If S‘\\sltj ean LfSh‘# ¢ , then it is a separator of G(S) and
contains a minimal nontrivial separator, Sj say. Thus sig-s“\sllj...trsm
which is impcsible. Thercfore S = slz} o Us. . _ //

m

!

"As a direct consequence we have

2,6.13 THEOREM. Every G(S) has a unique decomposition into a direct

sum of irreducible direct summands.

That is G(S) = G(s,) @ ... @G.(Sm), vhere S ,...,5 are the

minimal nontrivial separators of G(S).



2.7 CONNECTED PREGEOMETRIES

We give necessary and sufficient conditions for a pregeométry

to 'be connected.

2,7.1 A pregeometry.G(S) is connected if the only separators of G(S)
are ¢ and S, thus G(S) with & = ¢ is connected iff r(a) + r(s~Aa) > r(s),

Vh i S. A pregeometry is disconnected if it is not.connected.

2.7.2 LEMMA +G(8) is connected if and only if ¥¢ # A % S, there

exists a circuit containing elements, of both A and S ™\ A. \
PROOF. Follows from Lemma 2.6.8. ' //

The following useful nec@ssary and sufficient condition for

1
At

connectivity is due to Whitney [35

2.7.3 THECREM. G(S) is connected if and only if every two distinct

elements are contained in a circuit of G(S).

PROOF.  Assume that G(S) is,connected. Let X 0 X, be distinct
elements. in S. By Lemma 2.7.2 there exists a circuit containing Xy
and some elements of S \xl. Suppose that there exists no circuit

'containin,g both Xy and Xy. Let Sl = x, {J all circuits containing :ﬁl.

Then ¢ #'Sl % S. Again by Lemma 2.7.2 there exists a circuit Py

containing elements of both sl and S™ sl' Pick an element

X, € P3 ns Since X, £ P3, X, # X, 's0 that by the definition 6f

4 1°

) there is a circuit P, containing x, 4 Let s, = P, N (8 \ Sl)

and choose X3 € Sz. Now Sl U 82 is a subset of S such that it contains

-andx

/

circuits Pl and P3 centaining x. and X4 respectively and Pl" P3 have a

1

common element,
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K

We choose a smallest subsét S' of S with such property.

. Then §' = Py U P'3, where Pi and Pi are circuits containing xl and

1 respectively and P] s P} have a common

element (otherwise S' is not smallest with the. specified property).

an element ¥y of S8

Let x! be a cofmon element of P! and PL. By (K&) there exist

4 1 3
circuits P4 and PS both containing X, and Xy respectively hut not xé .
| - [ ] ) : .
Thus P4 L] PS §; Pl i) P3 and so Pg, P5 have no common elgment
(as Pi {J Pi is smallest with the specified property). Since

' ' ‘ - LR '
P4\, P3 5{: ?1, P'4 contains an element Xg of P3 \P_1‘ . Alsoc 1'-*5 .
contains an element x. of Py \.P} . Consider the circuits p; and Pg. '

Now P! céntains x, and P_. contains x., and they have a common element

1 1 5 3
i . [ - ' ' £ £
Xge But Xg ¥ P .and-so PJ U Py G Pl u Py. A contradiction.
Thus there exists a circuit containing both x, and x,.

Let q(s} be a pregeometry such that every two distinct elements

¢ ) \ .
are contained in a circuit of G(S). If ¢ # S1 ¢ S is a separator of

p=—rd

G(s), let’x1 E Sl. By the assumpticn Vxl # x € S there exists a

circuit €, containing both x and x By Lemma 2.6.8 C, ¢ S, and

1’ 1

S0 X € Sl' Thus S1 = S. Therefqre G(8) is connected; /S

2.7.4 EXRMPLE. Any k - uniform pregecmetry on a set of size > k is

" connected.

2.7.5 A subset T of S is connected in G(S) if GS(T) is connected.

It then follows that any minimal separator of G(S) is connnected.

2,7.6 LEMMA. 1If C1 and'c2 are circuits of G(S) containing i, y and

il
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X, z réspectively, then there exists a circuit C of G(S) containing

~

y, zand C & Cl U-Cz-.-

PROOF. We proceed first to prove this for finite S by
_induction on |s| . It is true for |s| < 3. Assume that it is true
for any G(T) with ]T] < n, Let G(S) be a pregeometry on a set S of n

elements. Let 'C1 and (':2 be circuits of G(S) containing k,.y and .

X, 2 f:especl:ively.

If ¢, v cz_?f's, let T=S~Na for some a € S N C

Then Cl and 02 are circuits of GS (T) containing x, y and x, z

respectively and so by induction hypothesis there exists a circuit

1 UCz.

C of GS(T) containing y, z as required.

i lf - . . ’ » - » -
If Cl . C‘2 S. By (K4} there exzjst circuits C3, (':4 with
.« ; ; :
y € C;,'.__C1 ) C2 N X, z2 € C4 _g_:,,cl U Cz\.x .. Obviously
€3 NC & € NCandCyNC #¢. IEC3NC ¢ CNC,,

then C3 U c2 #8 and C, N 02 # ¢ . so that by the induction

3
 hypothesis there exists a circuit C, of G, (C; U C,) containing y

and z. Thus we have the resqlt if C:3 ﬂ Cl 3 Cl\. C-2 or

- = . "N .
Suppose C:‘I N Cl Cl ~ C2 and C{‘1 C2 = Cz‘w.cl

I (Cz\ Cl) + ¢ we have

c, N 02 ?‘ c2\c1.

Uuc,sc Uc

4

Now C ~ % and as C

3 2 3
c3 N C4 # ¢ . By the induction hypothesis there exists a circuit
¢ of G;(€; U C,) containing y, z. Hence we have the result for

finite S.

In case S is infinite we apply the above for GS(C1 U Cz) . //
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'As a consequence of Lemma 2.7.6 we note that GS{C1 ) CZJ

is connected if Cl' C, are circuits of G(S) having-a common element.

2
2.7.7. THEOREM., Let A, B be connected in G(S). If A A B#¢,

the A U B is connected.

(In case A /) B =¢ this is not necessérily'true. For
example, the union of two disjoint polygons of a graph is not
connected in the polygon pregeomeﬁry of that graph but both of the

two polygons are connected),

PROOF. Pick an element x € A /1 B. Let vy, 2z be distinct
elements in A U B. We show that there is a circuit of G(S)
containing y and z. If both y and z are in A or B, then y, z are
contained in a circuit of G(S) as A and B afé connected. ‘Suppose
that y‘e'A ~ B, z € B~ A. Then by Theorem 2;7.3 thefe exist
circuits C, or Gs(a) and C

1 2
respectively. By Lemmez 2.7.6 there exists a circuit C ¢C

of GS(B) containing x, y and x, z
1Y S
containing both y and z. The theorem is proved.

‘The following theorem shows that any connected pregeometry
contains subpregeometry or contraction which is connected. The

proof is due to Murty [66) ,

2.7.8 THEOREM. If G(S) is connected, then for every x € § at least

.

one of GS{S ~ x) and G(S).(S ~. X) is connected.

//
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FROOF. The theorem is true when |s] = 1. Let G(S) be

p}

connected and |S| > 2. Let x € S. Suppose that G(S).(s \ x) is not

I3

conhected and so it has a separator Sl # ¢, S ~X. Then

1 is also.a separator of

S G(S).(S N\ x). Let 31, 5_32, vee ‘St be all minimal nontrivial

-S\x\Slsfat:,S ‘;..xands\..x\s

separators of G(S).(S ~ x). Thus t > 2. We show that G (S \ x) is

connected, Let y, z be distinct elements of S~ x.

case 1. If y ¢ Si' z € 8., where 1 # j. .Since G(8) is

3

connected, y and z are contained in a circuit C of G(S). Suppose,
that x € C. Then x is maximally independent in S ~\ (5 \(X) so
that C N x is dependéﬁt in' G(S). (S ~.%X). For any y € C.\;x,

C Ny =({C~\x) Ny} U x is independent in G(S) and hence

(C.\ x) N\, v is independent in G(S).(s N, x}. Thus cC\xis a

circuit of G(S).(S ~_ x). By Lemma 2.6.12, Si N Sj = ¢ . Therefore
X ! _
CN\ x is a circuit of G(£).(8\ x) which is not p-:ntained in Si or

(5 0 X Si' This contradicts the separability of Si. Hence

x £ C and so C is a circuit of Gs (s ~ %) contéininq y and Z.

case 2. Ifvy, z E_Si . Pick a € Sj for some j # i. Then

there: exist circuits C, and C, of G(S) containing a, y and a, 2z

1 2

respectively. By case 1, x £ Cl and x £ C,. Now Cl Na C, £ ¢

and sc there exists a circuit C3 of GS (Cl J C2) cantaining. y and =.

Since €, & C, U ¢, ,x¢gcC is a circuit of GS(S ~ X)

3 1 2 ancll hence C

3 3

as desired. ' . _ /7
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2.8 DUALITY

1

We define the dual of any matroid. (Remembering a mat-roid M(S)
is any pregeométzy G(s), where S is finite and use this concept for a

’

hyperplane characterisation.)

2.8.1 THEOREM. 1In M(S) with rank function r the function-

. . | . .

¥ : A+—> |A] + r (8~A) - r(8) is the rank function of a matroid

. i .
M (S) on S -~ the dual matroid of M(S). Moreover the dual matroid has:

rank |s| - r(s).

i

* r
PROOF. We first show that r is unit increasing. Let A £ S,

+

afgA PutB=Aal'a. Thenr (B) = |B| + r(S\B) =~ r(s) = |a] + 1
+ r((sN\a)xa) - r(s) = |a| + 1 + r(S~Aa) ~ c1) - r(s) = |a| + r(s\A)

-r(S)-l-{l-{g ) = r (a) + {‘i .

4

Since 8 is fiﬁite, for a given A € B we have B'= A U ay ee- an

* ’ *
for some n > 0 so that r (A Ua;) > r (A) by the above and inductively

* * *
r (B) >r (Ad). Thus r is increasing.

: *
We show that r is semimodular. Let A,B <S. Then

£ () + r (8) = |a| + |[B] + £(SNA) + r(S~B) - 2r(s),

jv

[A] + [B] + r [(s~2) U (s\B)] + r [ (5\8) N(s\B)] - 2r(s),

fv

[A UB| + |aNB| + xr(sNANB) + xr(sNaUB) - 2r(s),

* *
> r (AU B) +xr (aNB).

, . ,
Obviously r has finite basis property and r (¢) = |_¢{+ r(s\¢)

- r(s) = 0.

*
Hence r is the rank function of a unique matroid on S. - /7
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* % * *
Now r (&) = [a] + r (s\n) - r (s) = |a] + |s\a| + x(a)

- r(s) - |s| + r(S) = r(a). Thus we have
2.8.2 LEMMA. The dual of the dual of M(E) is the matroid M(S) itself.

- o *
We next link bases, circuits of M(S) and M (S). The word
*
cobases and cocircuits are used for bases and circuits. of M (S)

respectively.:

2.8.3 THEORE‘.M. In any mat;oid M(8) the following are true.
(1) The cobases are exactly the complement of basés of M(S).
(ii) The cocircuits gge exactly the compiement of hyperplanea
of M(S).
(iii) The cocircuitsare exactly the subsets'of S:which minimally

intersect all bases of M(S).

PROOF. (i) For any subset A of S we have r (S\A) = |s~al +
£(d) - E(S) 8o that £ (8) - r' (S\A) = £ (S) + £(8) - |8~ A - r(a) = -
[s] = Is~a| - x(a) = |a] - x(a). Thus a is independ;;nt in M(S) iff
S\A is a spanning set in M*(S}. If we replace A by S\A in M*(S) wﬁ
see that S~A is‘independen£ in M*(S) iff A is a séaﬂnﬁpg set in M(S).
Now .

’ *
A is spanning in M(S) <=> &\ A is independent in M (5),

|s<al + [al - [a] ,

*
<=> r (S-.A)

%
<=>r (Sx1) = [8] - r(s) (as r(s) = [A] ),

]

. * *
<=>r (S\A) r {S).

Py ‘ s . . * . . * .
(ii) C is a circuit of M (S) <=> C is minimal dependent in M (S)
<=> £\C is maximal non - spanning subset in M(S) <=> S C is &

hyperplane of M(S).
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(iii) C is a cocircuit of M(S) <=> S\ C is a hyperplane of
M(S) <=> S\ C is a maximal non-spanning set in M(S) <=> 5\ C is a

maximal set not containing any basis,

If S\ C does not contain any basis, tl_aen C must intersect '
every_basis-. Suppos';e 3c C:ﬁ -C' such fhat_ C' intersects every basis.
Let a € C\C'. Thenl (S‘\C) U a contains a basis B which contains a
and so BN C' = ¢ . A contradiction. Therefore C is a minimal set

‘ i

" intersecting every basis,

Cdnverseiy let C be a minimal set with this property. Then
S\C does not contain any basis. If there exists x € C such that
(SN\C) U x does not contain any basis. Then C' = C\ X intersects

every basis, contradicting the minimality of C. Thus SXC is a

maximal set not containing any basis and the theorem is proved.

. % ' . . * ﬁ_ .
2.8.4 LEMMA. Let A, A be independent in M(S) and M (S) respectively

% N .
with AN A = ¢ . Then there cxists a basis B such that A € B, '

*
A C.S\B.

- , o .
- PROOF. Let r, r be rank functions of M(S) and M (S) .
. * * ' % * *
respectively . Thus r(S~AaA ) = IS[ - |A | 2z () +zr @) =
* ' ’ Lk *
|S| - r (S) = r(S). Extend A to a basis B<C S~ A . Then i <= S~_B

as required.

.
2.8.5 LEMMA. For any circuit C and any cocircuit C of M(S) we have

*
lcnct #1.

PROOF. ‘Let C and C' be any circuit and cocircuit. of M(S)
. K K *
respectively. We may assume that C A C # ¢ . Consider C~C /1C

Lk * *
and C~\C N C which are independent in M(S) and M (S) respectively.

/7

/7
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o *

By Lemma 2.8.4 there exists a basis B with C~\C 7C ¢ B and

* * * ) * _* . -

C~CNC & S~B., Since CNB # ¢ and (CNCNT) OB = ¢ , there
* * i .

exists y € (C /c ) NB. If |c Nc | =1, then C C B which is a

%
contradiction. Thus |C ric l # 1. . 7/

2.8.6 LEMMA. Let B be a basis of M(S). For.any e € B there is a:

* . o %
unique cocircuit C of M(S) with (B~e) 7 C =0o .

*
PROOF. Since (5-.B) is a basis of M (S) and e ¢ S\E, by

* *
Theorem 1.6.8 there exists a unique circuit ¢ of M (5) with

* : * *
e €C € S5~B. Thus (Bxe) 1'C =¢ . Let C, be a cocircuit of

1
- * * * .
M(S) with (B ~e) f?. C]. = ¢ . Then Cl & (S\NB) UV e and e ¢ Cl' By the
* * * . —
uniqueness of C we have C = C. and the lemma is proved. //

1

1

2.8.7 LEMMA. Let a, b be distinct elements of a circuit C of M(S).

. * *
Then there exists a cocircuit C of M (S) with C/1 C = a b.

*
PROOF. Extend C\a to a basis B of M(S). Then B = S\B is
* * * -
a basis of M (S) and a e B . Now b £ B . Consider the fundamental
. * * - * * * C
circuit C (in'M (S)) of bin B . IfagC , thenC/1C =Db and so

* ¥*
[cnc| =1 which is impossible. Thus C /1C = ab. //
‘Duality helps characterise a matroid in terms of its hyperplanes.

2.8.8 THEOREM. A collection 44 of nonempty proper subsets of S is
the set of hyperplanes of M(S) if and only if it satisfies the following.

l,l-l ingﬁ,ﬂléﬂz.

(Hl) For any H 5

[/

(E,) If H), H, € H  and x ¢ H) UH,, then 7 Hje¢  such that

2
2 (Hl 8] Hz) v x.

3

Hy
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. PROOF. Let }f be the family of hyperélanes of M(S). Then (Hl)

follows directly from Lemma 1.5.6 . Observe that (Hz) is equivalent to .

1’ Hz € H and x ¢ (Sxﬂl) fl (S\Hz)'then 3 H3 e F€ such

that x £ (S\Hy) € (S\i)) U (SNH)) which is (X) in M (S). Thus

(Hy) If H

(Hi) follows.

Conversely et 3, be a collection of noneﬁpt:y proper subsets
of S sat:i._sfying (H,) and (H,). We show that & ={ S~H/H ¢ H
~ is the family of eircuitg of_M* FS]. Obvidusly 'g satisfies (Kl) and
tKa) and by (Hl) ¥ satisfies (K2)° That ¢ satisFies (R4) follows

. L
from the fact that (Hz} <=3 (Hz}.

I- - i *
Thus T is the family of circuits of M (S) and hence by

Theorem 2,8.3 % is the family of hyperplanes of Ms). _ //

2.8.9 A Steiner triple systemon a set S of n elements is a
col;ection _bf; of 3 -~ element subse.ts‘of sn' called _triples, having
any two distinct elements of S in a unique triple. (_af' Hall {67],p236)
‘ We note some 'éroperties of any S;t;einer triple system 3 n

which are needed later.

(i) A necessary and sufficient condition for the existence of
soﬁe “'-fn on a set oflsize—:nis that n 21 or 3 (mod6)

(_i:i.) -Any eleménﬁ of Sn occurs in exactly 5_%__1__ tripies of Léfn

(iii) The number of triples in J"n is ntn- 1) .
: . 6

é._B.lO EXAMPLE. ,'{fn is the collection of hyperplanes of a matroid
M gn ) on S with rank 3. The bases of M(° yn ) are all 3 - element

subsets of S, which are not in "fn .

For n = 7 M( é‘fn ) is the well known Fano matxroid.
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PROOF. We first show that :fn satisfies {Hl) and (Hz).- That
:f; satisfies (HI) is clear from its definition. Let A, B be triples
of :fg and x £ A JB. Since any fwo distinct triples intersect in one
element or nc element, (A NB) U x is contained in one triple of éfn’ Thus
HL satisfiés‘{ﬁz)‘and go it is the collection of hypefplanes of a
matroid’M(H;) on Sn ..
Since any element of Sn_occurs in gﬂg_i_triples and the number
of tfiples is n(n - 1) # n,-ll ié n > 3, the intefsection of all triples

. 6 2
is empty and thus ¢ = ¢ . For any X € S, the intersection of all

triples containing x is x and so x = x. Thus M('!;)f:) is a -geometry and
hence every 2 ~ element subset of sn is independeﬁt. We show that if

X = {x,v.2} g éfn , then X is independent. Let & = -{x,y,a} be.the
triple containing x,y. Then a # z. Now S N\ is a cocircuit of M( 9'n) .
Suppose that X is not independent. Since any proper subset of X is

independent, X is a circuit of M(SLJ. But X f?(sﬂx A) = z, contradicting

Lemma 2.8.5. Hence X is independent as required. //

We link submatroids, contractions and duals.

s

2.8.11 THEOREM. In;any matroid M(S) for T € S, we have the following.

* *
(i) (MS(T)) = M (S).T

* *
(ii) (M(s).T) = M ()

’

* * *
PROOF. Let r, r , (r )T, p and p Dbe rank-functions of M(S), -

* * *
M (s),-M (s).T, MS(T) and (MS(T)) respectively.
. ' ' ' . R _ . '
(1) For any subset A of T we have p (TNA) = |TNA| + p(3) - p(T)
= || - o(m) - |a| + 0(a). Dy Lemra 2.5.2 we have (r )T(T\A) =

* . . * Lok * A
r ((TS\NA)'U (SXNT) - r (S\NT) =r (SNA) - r (S\NT) = |s] - r(s)
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-lal + @ - (|s] - x(s) - || + (N =|T| - x() ~|Ba] + (@) = |T|
. * * *
- p(T) - |Al + pld) = p (T\A). Since A is arbitrary, p = (r )

so that (i) is proved.

(i1)- By (i) we have (ﬁ; (T))* = (M*(S}5*.T = M(5).T. Taking

. * *
dual both sides we obtain MS(T) = {M(S).T) /7
We also have information about connectedness of duals

2.8.12 LEMMA. S, is a separator of M(S) if and only if S, is a

*
separator of M (S).

* * .
PROOF. Since (M (S)) = M(S), it suffices to show that a separator

* * *
Sl of M(S) is a separator of M (S). Now r (Sl) + r (S\Sl) = |Sll

+ r(S\s)) - x(s) + Is| - |s1[ +x(s)) - x(s)

r(Sl) + r(S\Sl)
- r(S) - x(S) + |S]< £(8) - x(S) - x(s) + |s| < r (5). Thus by

*
‘Theorem 2.6.10 S, is a separator of M (S) and the lemma is proved. /7

1

As a consequence of Lemma 2.8,12 we 'have
*
2.8.13 LEMMA. M(S) is connected if and only if M (S) is connected.

2.8.14 A loop of M(8) is an element which is a circuit of M(S) and

’ *
a coloop of M(S) is a loop of M (S).

We now obtain a lower bound for the number of bases of a ~

connected matroid. We first note the following .

2.8.15 LEMMA. (i) x is a loop of M(S) if and only if x is not
contained in any basis of M(S). 1
(ii) x is a coloop of M(S) if and only if x is contained in

every basis of M(S).
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{iii) x is a coloop of M(S) if and only if X is not contained

in any circuit of M(S).

2.8.16 THEOREM. Let B ba the family of bases of a connected matroid.

Then |:B| > IS!

PROOF., We prove-the theorenm by inducticn on ]S] .  The Theoren
is true when IS] = 1. Assume that the theorem is true for any connected
matroid M(T), where 1 < fTI < n. Let M(S) be a connected matroid on

a sect S of n elements.

For any x € S there exists x # y € 8 and thus X,y are contained
in a circuit C of M(.S).' Hence X isl not a loop of M(S). Now C\X is
independent and C\ x<a basis B.e ﬁ As C is dependent, x ¢ D.
Therefore x is not a coloop of Ifi[S-) . ;I'hat is M(S) has no loops and

coloops.

be the number of bases of MS(S\xJ P

Let x € 5 and let nl, n2

11(S) . (S ~x) respectively. Observe that MS(S\ x) and M(S).(S\ x) have
no common basis since the bases of Ieis (S »x)are the bases of M(S) not
containing x and the bases of M(S).(S8~\x) are the bases of M(S) |
containing x. As any basis of M(S) either contains x or does not
contain x we have | B.| = n. +n

1 By Theorem 2.7.9 at least one of

M (S~x) and M(S).(S\x) is connected.

27

If MS{S\x) is connected, then n, > ISI- 1. Since x is not a
loop of M(S), x is contained in a basis of M(S) so that n, > 1. Thus

[Bl2lsi -1+1=1s].

> ISI - 1. Also x is

If_ M(S).(S\x) is connected we have n2

not a coloop and hence is not contained in a basis of M(S) so that-
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ny 2 1. Thus |B| >1+ |s| -1=[s] ‘and the theorem is proved. //

In fact Murty [66) showed that |5 |> r(n - r) + 1 if M(S)

is a connected matroid of rank r on a set S of n elements.

2.8.17 LEMMA. A nonempty separator of a matreid without loops and

coloops has cardinality at least 2.

PROOF. Suppose that x is a separator of M(S) which has no
loops and coloops. Thus ¥ is not a. loop and so x is not a circuit.
Hence all circuits of M(S) are contained in S~.x. Therefore x is
not contained iﬁ any circuit of M{IS) so that by Lemma 2-.8.9 x is a
coloop of M(S). This contradicts the assumption. So any . separator

of ‘M(S) has cardinality at least 2. //

2.8.18 LEMMA. Let Sl be a separator of M(S). If B . '31 and B

are the families of bases of M(S), Ms(sl) and MS{S\S],) respectively.

‘men |B] = |B,] I3,

2

PROOF. We first show that ]Bl N 81]' = |B2 n Sll for every

two bases Bl, B2 of M(S). 'Suppbse that Bl' B, are bases of M(8) with
a I = ’ = =
e, N s | < |8, ns | . et I, =B N's, and I, =B, s,. By

Lemma 1.4.2 and finite induction there exists a nonempty subsét I of

I,\ I, such that I, U I is independent and IIl JIl = |1

1 2['

is a maximal subset ofs B, contained in S._.

Obse n
serve that Bl S 1 1

1

Consider any x in I we see that x ¢ B Then C(x, Bl) is contained

1
he C B.) < .
ence C(x , l) - Sl Now

{/ X. A contradiction. Thus

in Sl or S\Sl. But x € Sl'

- [ = 7
C(x, Bl) < {Bl N Sl) U x I

1,1 _>_.|IIzl . similarly |1,| > |1] andso |1 | = |1

Let B ¢ -B . By the above B/} sl is a basis of Ms'(sl) and
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B (s~.5)) is a basis of MS(S\\Sl}. Conversely if By ETBE we can

extend"B1 to a basis B of M(S). Then B N (S\\Sl) is a basis of

M (S \sl)'. Thus a subset B of S is a basis of M(S) if and only if
e g { : S i B/ 5.) i i M S.).
B y is a basis of Ms(ql) and B 1) {ST\bl) is a basis of | S{S\\ l)

Therefore I B | = iBl I |BQ | .

-
2.8.19 THEOREM. Let JS be the family of bases of a disconnected

matroid which has no loops and:célogps. Then | B |> Is|

PROOF. We first show that the theorem is true for |s < 4.

The theorem is obviously true for [SI =1,

For |s{ = 2. Let x, # %, € S. Since x, and x, are not

coloops, X, £ B, and x, ¢ B, for some bases B,, B, of M(s). If

1 2 17 72

Bl = 82 and no other bases, then xl and X, are coloops which is not

so. Thus M(S) has at least two bases.

For |s| = 3. et & = {xl, Xy x33 . ‘As each of x
is containéd‘in a basis every baéis has at least'one element, If
M(S) has only one basisz, then every element is a coloop. Thus M(S)
has at least 2 bases., Suppose that there are only 2 bases. Then
every bagis consists of exactly 2 elements and the two bases have a
common elemént which is a coloop. A contradictioﬁ. Thus M(E) has

at least 3 bases.

For !Sl = 4, We can show that |J9| > 4 by using the same

LY

argument as the case |S| = 3.

Assume that the theorem is true for all M(T) with 4 j_[T] < n.l'

Let M(S) be a disconnected matroid on a sef S of n elements which has

no loops and:coloops. Then there is a separator S1

1’ ¥ *3

//

of S with Sl # ¢, S.
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Also S\SI is a separai:or of M(S) with S~ S1 # & , 8. Let 17 and
_B-'z be the families of bases of MS(Sl) and MS(S\SI') respectively.
Then by Lemma 2.8.12 we have I_B| =.[3l| I_le . By the induction
hypothesis |j’1 | > 'Sll and 132' > I-S\Sl| so that_[’ﬁ‘-]?_ !SIHS'\SII.

Now [Sl| > 2 by Lemma 2.8.11 and so |_B[ >2n - 4> n as required. //



3. TRANSVERSAL PREGEOMETRIES

We define and obtain simple properties of the important class

of transversal pregecmetries.

I

3.1 REPRESENTATIONS

Here we define, and discuss various representations, of

transversal pregeometries.

3.1.1 A family (or listing) of subsets of a set X is a function

£:1 + 2% with I well-ordered.

8
\

We usually denote it by (XI) or {Xi; ie I); I being the

index set of the family.

3.1.2 Given a family (X)), X ©S. We define as a system of,
representatives of {X}I {or choice function ), deﬁotgd by SR any

function ¢ : I » S satisfying ¢(i) ¢ xi, ¥i e I.

If ¢ is injective, it is a system of distinct reprééentatives

of (x)I . denoted by SDR, and its image ¢(I) is a transversal of (X)I.

In general a family (xJI of nonempty sets may not have an

SDR. For example if X, = {ab}, X,

X, = {a,b,c} , then ¢ : I = {1,2,3,4} » {a,b,c} defined by

¢(1) = a, ¢(2) = ¢, ¢(3) =b, ¢(4) = a is an SR of (X}I but (X)x

= {a,c} , Xy = {b,c}-,

has no SDR., cs

3.1.4 A subfamily (X}J of a family (X‘)I is a restriction of

£:I+2>t03 CI.
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We write (/X or /) X to denote the union or intersection of
J J

gets in f(J) and we write (X)J to denote £(J).

3.1.5 .A partial system of (distinct ) representatives of a family (X)I,

denoted by PSR(PSDR), is an SR(SDR) of some subfamily of )

A partial transversal of (XJI is a transversal of some

subfamily of (X) 1

3.1.6 THEOREM., Let (x)I be a finite family of subsets of a set S.
Then the collection J- of all partial transversals of (X)I is the

family of independent sets of a pregeometry on S.

PROOF, For each i € I, let Ji be the collection of empty -.
set and all singletons of Xi. Then J; is the collection of
/
independent sets of a pregeometry G. (x ) on 'x i Let J be the

collection of 1ndependent sets of the union of G (X ), where i € I.

We show that 3- J—

For each PT E = {xi, see xr} of {X)I there exists a subset
J of I such that E is a transversal of (X) J° We can assume that

J= {1, ..., r} and x, € X., V. € J. Thus x aJ.." V. € J and so
! ! 3 i 3 3 s M

/ : ’

E= U x e J .
jeg

, .
Let Ae¢ . Thena= U x for some RE& I and r # s

r € R . : '
=> X, # X, - Define ¢: R* A by ¢(x) = X, . We see that ¢ is

bijective and ¢(R) = A, Hence A is a PT of (x)I. Thus A e{}—- and the

t

theorem is proved, ' | ' //

3.1.7 LEMMA. Let (X); be a finite family of subsets of a set S.
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~ ' ~—
Let ¥ be the collection of subsets of I satisfying : J € Jf if
and only if (X) has a transversal. Then J¢ is the collection of

independent sets of a matroid on I. -

PROOF. Since ¢ is a PT of (x)I and any subset of a PT of (x)I-

is also a PT of (X)_, we need to show that 3-"’ satisfies (I,). Let

I'

J., J, be subsets of I with lJl' < IJ

17 "2

transversals El and E2 respectively. Now El and E2

|E1[ < |E2| . Thus there exists x € EZ\E]. such that Elu x is a PT

Then (x)Jl and (X)J2 have
are PT of (X)I and

|-

of (x}I. Since x € Ez, X € xj for some j € J As El Ux is a PT,

2.
3 g Jl'and the lemma is proved. . //

3.1.8 A pregeometry G(S) is transversal if there exists a finite family
d = (x}I of subsets of S such that the collection of all PT of (X)I

is the collection of independent sets of G(S).

We denote G(S) by ME-A Jorm Xyv one . X 3+ where

I=1{1, ..., n} and call .»}Q a presentation of G(S).

Indeed a presentation of a transversal pregeometry need not
be unique. As an easy example consider the matroid M(S) =
M[14,_234 ,13] on the set S ={1;2,3,4} . Another presentation of M(S)

is {123, 12, 24 ].

3.1.9 LEMMA. Any subpregeometry of a transversal pregeometry is

transversal.

.

PROOF. Let Gs (T) be any subpregeometry of a transversal

G(8) =M [ X P X ] PutI =_{1, ++- » n} andlet (Y) be

1’ * .

the family of subsets of T defined by Y, = X, N T, Vi € I. Let

i
J={ie1/¥ #¢}. Then it is clear that Gg(T) = M;[{Y} /3 ed)
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and so the lemma is proved. o : . /7

3.1.10 LEMMA. If G(S) is a transversal pregeometry of rank r, then

G(S) has a presentation consisting of r sets.

| PROOF. We first show that if G(S) = G,(S,) v G,(S,) and
. — — {-— )

r(G(s)) = ::(G].(Sl)).-F then U’= "Jl , where / and dl are the
collections of independent sets of G(S) and Gl'(S']_) respectively.
Let J 2 be the collection of independent sets of Gz(sz). Clearly
dFJ,. ret1ed . ThenI=1 UTI, for somé I, €4 . and

1l° - 1 2 1 1
I, e 3'2 . Extend I1 to-a basis B1 of Gl(Sl). Since: |
r(G(s)) = x(G (s)), |, W1,l < |31| and so I,& B . Thus

Ilu 12 eJl.. Therefore J = -:]'1 .

Let G(S) = M[Xl, ,'xn] .and I=1{1, ... ,n} . Pick
a maximal PT E of(X) . Then |E| = r. suppose that E is a
transversal of (X)R, where R = '{1,- A S Forleach ie I let
31 and Gi(xi) be defined as in the proof of Theorem 3.1.6. Put

= : = .- = .;I ‘
s UX ands U X. Let 6'(S)) = G (X)) v...v G (X) and

-1 R 2 I™R .
G (52) = Gr;i-l(xr-l-l}v cee v Gn(){n). By the above J-= Jl U .o ‘U‘:J;
so that G(S) = M [xl, ey xr_] as rec;uired. - _ /7

Bondy and Welsh [713 showed that there exists a presentation
of a transversal matroid in which each of the sets of the presentation’

is a cocircuit of the matroid. We now obtain this result.

3.1.11 LEMMA Let M(S) = M[xl, ceey xl;ljbe a transversal matroid of
rank- r. If E is a transversal of (xz, cens Xr) such that A = E nxl

has minimum cardinality. Tliep M(S) = M[xl\a, xz, ooy xr ] -
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PROOF. Clearly any PT of (X N2, X,y ..., X ) is a PT of
{xl., ceos Xr) . We show that any basis B of M(S) is a transversal of
(xl\n, SRRy X:" Let B = {bi, ey br} be any basis of M(§)
vee ,'er}, where

and bie Xi where 15 i <r. Suppose E = { e,

e € xi, 2 £i £ r, The theorem is proved if bls '1&\ A. Assume .

1 _ !
possibilities for l':.‘2 .

that b, ¢ A, Then b € E and b, = e,, say. Consider the two

case 1. If l:o2 € X. ~~ A, then B is a transversal of

_ 1
{H\u a' xz".-oo' Xr).

case 2. If b, £ X, N\ A, Ve show that b, € E. Suppose that

2

U - F' = | :
b2 F Xl_ 3. Then E { bz, €31 seos er] is a transversa;.of:
Ky eeor X)) with [E* nx | < [E nx | which is a contradiction.

Thus b, € X, U E. If b, € X,\E, then b, € X\ A vhich is not so.

1 2 1
Thus b2 € E.
- Now bz # e, since e, =.1;1 # bz. Let b2 = e3 and repeat the
same argument as above for by and we shall have b, = e, € E.

Carrying on in this way we see that there exists i such that'_bi € X\A

and'b 3 € Xj_'_‘l, 1 <3< i. (otherwise we get a contradiction at the

final step and so b, € X,\A). Thus B_= {bi', bysbyseeniby /by 0000 )

V4

1 1
is a transversal of (xlx. A, X

2,...,Xr) and the lemma is proved.

In fact we have the following stronger result

3.1.12 LEMMA. If M(S) = M [xl,...,xn] and E is a maximal partial
transversal of '(xz,.'..,xn) with |E n X, } minimal, then

M(S) = M [xl\(E n xl)' ng_acopxnlv

PROOF. We can assume that xl #¢ . Let x€ j{l, Extend x to
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a basis B ©fM(S). Then BX\x is a maximal PT of (XZ’ veen XD '
Without loss of generality assume that B\x is a transversal of
(X,, +.vy X ). Observe that M fxz, cees xn_] has rank r - 1.
As in the proof of Lemma 3.1.10 M[xz, cees an= M [32,..., xr]
so that M(S) = M [3(1, cees er . Since E is a transversal of
(X,, .., X)) with |EAX | minimal, by Theorem 3.1.11 we have
m{x \(E [ RPN WL M%) .o, X, ] so that

MK NE XD, Xy, ey X J=M[X), oo, % ] The lemma s

proved. o : /7

3.1.13 THEOREM. Let M(S) = M [xl, R er be a transversal
matroid of rank r. Then there exist distinct cocircuits

* ' * * * s

Cl' cees Cr of M(S) such that M(S) = M [Cl’ ceny Cr ]and for some

distinct integeré il, ooy ir ’ Cj < xi , where 1 < j < r.
. ) 5

This presentation is minimal in the sense that for any
. * ' '
i, 1 <i <r and for any x € C, ,

e _— #
’ ci\?‘,' Ci+1""' CrJ

*® o
M(S) f M[Cllaooi ci—l

 PROOF. Let E be a transversal of Kyr wees X)) ‘such that

EN X, has minimum cardinality. Put A = E /) X,. Then _(xl\..m NE=4¢

Since E is a transversal of {xz, ceey xr) , for any x e xl\a, E Ux
is a transversal of {xl, cony xr) and hence is a basis of M(S).

By Lemmp3.1.11 for any basis Bof M{S) we have

B = ‘{xl, ees xr} where x, € xl\A and .xj £ xj, j=2,...,r.

1l
That is x1\1-1 is a set intersecting every basis of M(S). If y ¢ xi\a

then EU y is a basisof M(S) and (X)\ ANy) N (B Uy) =¢ . Therefore

x1\ Ais a minimal set intersécting every basis of M(S). Hence x‘i‘ka

is a cocircpit-of M(S) and M(S) = b_‘l[xz, XI\}_\, oo xr}.; Apply the
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same procedu.fe to (X, X;NA ..., ‘Xr) and so on until we cobtain
. .
M(S) = M[xr\. Ar"_"' XN Alj and Xj\ Aj = Cj is a cocircuit of

*
M(S), L £j <r. Observe that for any x € Ci we have

&® *
feesy Cr}as Ci‘kx has empty

intersection with some basis of M(S) which is a transversal of

M[C; Fooes c:]

. * *® * *
M(8) #M[C) seees Cy 10 C % Cy oy

To ‘.see that C; # C; if i # j. Suppose that there exist
* _ * .4 *
i# j.with Ci = Cj'. We show that M[C,ll',..., CrJ
=M[C_I,...,C:\x, - c:} for any x € C: . For any PT of M(S) such

phat x rgpresehts C; and y represents C; we obtain the same PT by
.

i

of_ (CI gesas c:}. Hence all circuits are distinct and the theorem is

* .
representing C;, by y and cj by x. This contradicts the minimality .

proved. ' ' //

Moreover Theorem 3.1.13 gives an- aigoritm for testing

whether or not a matroid is transversal.

f

As an example we show that the Fano matroid is not transversal.

PROOF. Suppose that M( . ) is transversal. As ,3; is the
set of hyperplanes, M( J.? ) = MIS.,\.AY S_’&AZ. 57\A3J , for

1 3

A—l' Az, A3 E (i) Al n A2 = Al n A3 = 2}2 n_A3. (ii) Al n Az 7‘ Al n A3

# Ay N Ag.

somwe A,, R,, Ay in :f_}, . We consider the two possibilities of

case 1. Alnaz=1\1hna=A2nA3-

Without loss of generality assume that A = { X1 Xyr Xy Yo

A, = {xI, Xy xs} ) Ay = {xl, X1 x.?} . 'I‘Ihe.n.z\1 U A, uUBy =8

7-\113. Hence A = { Xyr Xy x4} d. ,:f.? .

' But A g M [57\A1, S.?\Az, S.?\.A3 ] . A contrad:.ctl_on.

-and X, ¢ S.,xAl, s_,waz, s
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case 2. Al Az#nlnn3#3\2 Aa
We note that any two distinct triples: of % intersect in onfelement.

Without loss of Igenerality assume that A, = {xl, Xy xq} ’

1

A, = {xl, Xyr xs} ’ A3 = {xz. Xy xe} . Then S'?\Al = fxB, Xer X x7}
S.?\ Az {xz, Xyr Xeo x_,} ’ 57\A3 = {xl, Xgo Xgo x7} . Consider the
tripte A = {x, Xy x?} containing X1s Koo Then X = X, OF X, ?r X,
or xslor Xg - As S.’\Al‘\.x? = {x3, X s '3:6} and 57\A2‘~\x7 = {xz, Xy x6}
and x, € S,N\A;, S,\A,. Since X, € SoNAq, it follows that;
Ace H[S.,\Ar S,\B,, S \A3J A contradiction.

Thus M( -3., ) is not transversal. o //

By Hall [67] for any n = 1 or 3 mod 6 andn # Ny = {9, 13, 25,
27, 33, 37, 67, 69, 75, 81, 97, 109, 201, 289, 321} , a Steiner triple
system J’n containing ,.j".; exists and since J?? is unique we note

from Lemma 3.1.9 that a non - transversal matroid M( ,j"n ) exists.

As a consequence of Theorem 3.1.13 we have

* * *
3.1.14 LEMMA. Each ci in any minimal presentation (cl,...,_ Cr) of a

transversal matroid M(S) is a PT of the family of bases of M(S).

PROOF. As in the proof of Theorem 3.1.13 for any ¥ € Ci '

Du 'y is a basis of M(S) for some PT D of (X)I._ éince Yl # Y, € Ci,
) *

Du Yy and D v y2 are distinct bases of M(S). Thus ci is a PT of the

famiiy of bases of M(S) as required. /7
3.1.15 THEOREM. M(S) = M[Xl,..., Xx]=mn [xl URA, X0 eees xn]
-if and only if every element of A \xl is a coloop of

M[xz\ Xpr X3 Xp0 ee xn\xll = MS(S\Xl) .
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PROOF. Observe that if a,b e S~ X, with M(S)
=M X Va, X100 0X ] =\folu b, Xys...,X ], then M(S)

=M [Xl uab, X ,...,Xn;!. Thus to prove the theorem it suffi;:es to ‘show

2
that if a ¢ xl, then M [xl U a, _xz,...,xn] = M [xl, xz,...,xnl if and

only if a is a coloop of :~i[x2x,xl, XN Xpveons XN xl J

Let a be a coloop of M [}{2\ Xl“ ..,xn\, 1{1]. Then every maximal

PT of (xz,..'.,xn) intgrsects xl U a. Choose a maximal PT Bl of

(xz,...,xn) with IB]. n {Xl U a)l minimal. We consider the two

possibilities for a.

case 1. If a ¢ Bl' Then by Lemma 3.1.12 we have

U I = 3 . e :
M[xl‘ a KpseoerX }= M t(xl v a_)s.u.{Bl n(x; va)), X, ,xn]_
= M[xl‘\ B, xz,...,an - But every maximal PT of (X;\Bj,...,X )

L) L] L] . " —
is a maximal PT of (X,,...,X ). Thus M[Xlu a,...,KnJ—M[xl,..,,XnJ.

case 2. If a ¢ B,, then since a belongs to every maximal PT

1
v . o A [l = x I .
of (xz“ xl,...,xn\xl).s le(xl u a) ‘15 a PT of (xz\xl,...,xn\x;).

We see from the choice of B, that B' is a maximal PT of

(xz‘n xl..._.,xn\ Xl).
: ’ s . £ '
Extend B’ to a basis B, of M[x2“"'xn] . Since a € B', a ¢ B,.
f U =
Now |32 (x; a)| lBl n (X v a)| and we apply case 1 to B,

c 1 - e 8 = - o8 -
onversely suppose M [_Xl U a, ,an M [Xl,_. X ]
Consider any maximal PT E of . (1(2-\ Xl,...,xn\. Xl} which is a PT of
(xz,...,xn) and hence E v a is a PT of (xl u a, xz,...,xn).
Then E U a is a PT of (Xl,...,xn) (as a ¢ xl). Since (E u a).n X, = bs
E U a is a PT of (x2\ ireorsX . “'Xl)' ‘But E is a maximal PT of
(xzaxl,v.-..-,xn\xl) and so E = E U a. Thus a € E. Therefore a is

a coloop of M [xz\a. XpreeorXwX) ] and the theorem is proved ‘ //



92

3.1.16 A maximal presentation [xl, . xr] of a transversal mafroid
£ .
M(S) of rank r is a presentation of M(S) such that for any i=1l,..., r

u . .
and each x ¢ xi' M(S) # M [xl,..., xi'-l' Xi. Xyeeoy Xr]

Bondy [ 72 ] showed that a maximal presentation of any

transversal matroid exists and is unique.

3.1.17 THEOREM. A maximal presentation of a transversal matroid

M(S) = M [xl,..., X, ] of rank r is unique.

PROOF. We first show that a maximal presentation of M(S)
L - T
exists. Let A be the set of coloops of M | Xz\ xl,.,., xr‘\ Xl ] .
Then by Theorem 3.1.15 M(S) =M [ X, UA,, Xp,.0., X T
Inductively for each i, 2 < i < r, having A; , we let A, be the set
of coloo_ps of M [xl U Al\xi, X2 U Az\.xi,.\_., xi—l ¥} Ai—]?‘ xi,
X ppreeer X, ] = M (S™X,) so that by Theorem 3.‘_1.15 |
M [xlu Bireees X, UBG, X 0heen, xr] =M leu.le,..., X (U A
X ey xr] = M(S). We clain that M [ X, U A, xU Byreves ¥y U ArJ
is a maximal presentation of ﬁ(s}. Suppose M [ Xl V] Al""' xi tJ AiU X,
R RRRRY Xr U Ar] ‘ = M [ xl UAl""' xrd_ Ar] . Then by Theorem

3.1.15 x is a coloop of MS(S\XJ._) so that x € Ai

To show the uniqueness we suppose that &4 = (Al"-’-" A-r)
and _B = (Bi,..., 'Br) are distinct maximal presentations of M(S).
Thus there exists a subset X of S such that £ of the sets in Jg
and m of the. sets in _B are equal to X, witﬁ j # m. _éhoose such
an X with le minimal. We may assume that £ > m. Let k be such .
that k of the set;s in 694 are properly contained in X . since le
is minimal, k of the sets in B are prcl)perly contaj;ned in X. Put

T = S%X. Order the sets in 54 and F so that
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Aiﬂ'r

p<>1<ic<k+ £,

B/AAT=¢<=>1<ic<k+m.

As in the proof -of Lemma 3.1.9, (Al N Tyeeer Al /AT) and

(Bl NTeue, Br fAT) are presentations of M (T) and so

/
0‘4 = ”‘k+£+1 T,...s B /) T) and B k+m+1f1 ';',...,Brn.'r)
are presentations of 'Vl (T). Now r(M (T) <r-k - -f By Lemma

A

3.1.10 there exists a su.bfanuly _B of B with |B| < LBl and

H :
B is a presentation of MS{T). Let By NTe E\_B . Since
ijﬁ T # ¢ , there exists y ¢ Bj M 'T. Thus every maximal PT of __E’
contains y so that y is a coloop of MS(T) . Thus by Theorem 3.1.15
M(S) = M [Al,..., Ak’ Ak-l-l U vieens Ar J_, contradicting the

maximality of cﬂﬂ . 'I_‘heréfore the theorem is proved. //

We note that every presentation (X)I of a transversal
matroid lies between a minimal presentation (m)I and the maximal

presentation (M)I in the sense that for all i e I, m, = xi Q-Mi.

N

We close this section by' the following theorem due to

Bondy { 72]

3.1.18 THEOREM. Let (Ml,...,' Mr} be the maximal presentation of a
transversal matroid M(S) of rank x. If (Cj,..., C) and (DJ,..y D)
are cocircuit presentations of M(S) with C; U Dy % M . l<ic<r.

Then |c,| = o, | ,1<ic<r.

i

PROOF. Let |c, N p.| = k., |c,;wp,| = *gia Io;~cl = my

* *
Pick x €C Now C, is a circuit of M (S) so that Ci\x Qa basis B

i’ i
* * .
of M (8). Then Ci 'is the fundamental circuit of B in x so that

* o
c4 A (SSNB ) = x. Hence SWB is a basis of M(S) which intersects Ci



- 94

in one element and so (,Ml\ C{,..., Mi—l\ Ci' Mi+1\‘ Ci,..., Mr\ Ci)

has at least one transversgl. Observe that (Ml,..., Mi—l' Ci'Mi +1,...Mr)

and (Ml' ceny Mi-l" C:‘. u Di,-.... Mr} are presentations of M(S). By Theorem
3.1.15 every element in D, N\ Ci is a coloop of 'MS(S ~ Ci). That is

Di‘\ C, is contained in every transversal of

i
(Ml\ ci"”'Miml\ Ci' Mi+1\ ci,...,mr\ci). Similarly c, \Di is |

contained in every transve:isa; of (Ml\Di“"’Hi-l\Di' Mi.d—l \Di,...,Hr"xDi)
But (S« ci) and (S \.Di) and (sti) are hyperplanes of M(S).

Hence r{MS(S&-Ci) = r(MS(s D)) =1 - 1. Thus every transversal of
(M\Dyyeves My (\D;y M, \Dyy..., M\D ) contains at least IR

elements of Ci\ Di and so -

J?i = ley\p, | 2o\ | = my

m. -

Similarly we can show that m > f:. and hence -% N

= ki + f:. =. ki' + m, = IDil and this is true for every i,

1 <i <r. The theorem is proved. N 1/

3.2 MULTIPLICITY

‘

As every transversal pregeometry has a presentation with a
transversal it is interesting to find criteria for the existence of '
transversals of families. Throughout this section the families

discussed are fi.n;lte.
3.2.1 THEOREM. (Hall's Criterion).

Given a finite family {x)I with each X finite. Then (x)I

has a transversal if and only if

lux| > ¢ , wecr o
J !
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PROOF., Let ¢(I) be a transversal of (X)I. Suppose that
. J G I with | U x | < |3] . Then ¢ is not injective on J so that
J -
¢ is not injective on I. A contradiction. Hence l U XI > |J| ’
J

o I,

Assume that | U x| > |J] , ¥J @ I. 1If all X are singletons
g _

the theorem is proved. We may assume that I = {1,2,..., n} and X, o

is not singleton. We shall show that § a € X, such that (x'}I

1
'

=X\a, X, =X, ,2<i<n

]
satisfies (H), where X i

1

. L} N
suppose not. Let a, # a, € xl. Then there exists Jlg{l,...,n}
| 1 '
such that | U, X | < IJl"I- . That is
Iy

I(Xl\.al) 1 ( % X)| < |J1| + 1, where J, = J,%1
’ 1

Also there exists 7, < {2,..., n} such that

la,Na) Ut U x| < ]3] +1
J
2

xR wa) Uy »

Ji

8
Y
|

v}
[

®Na) U U X
I,

ThenAUB=x1U( U x) and
J. U J;

1Y Y2
ANB = (XN\a a)U( U x)
_ 1% %2 N3
1" 2
Now |J1|+'1+|J2‘|+1>|A|+|B|'+1 = lausl + [ans|+1

Ik, Ut U x|+ leNay apU ¢ U x 0+

3V 3, I, v I,

laus| + [ans| +1

v

/' i I. N .
> IJ1U 3l + 1+ |J1n 3| +1

la)l + la,l = la, Dol +1+]a,na,]+1

| v



96

z ol edol v

pence |3,] + 1+ 3,041 > [5[+ |5,] +1+1 unich is a
contradiction. Thus (X.)I satisfies (H) for-some ae Xl. Therefofe
after finitely many steps we can reduce the family {X)I to a family
(Y)I'of singlepons and (Y)Ilstill satiéfies (H) so that %} Y %s a
transversal of (X)._. ‘ o ' //

Even ifwe know that a given family (x)I has a transversal E

‘we may ask how many distinct SDR's give rise to the transversal E.

The next theorem gives a necessary and sufficient condition

for uniqueness.

.

3.2.2 < THEOREM, Lét E be a tfaﬁsversal of a family (3)1. Then-a
necessary and sufficient condition-for the uniquehess of SDR giving
E ;s‘the following. ‘
If (Y)I is a family satisfyihg the two conﬁitions
ki) There exists q;g:x and xj € Xj‘with Yj'= xj for all j € J and

- ' ] . - ' ’ ) .
Yj = Xj\\xj_, for some xj € xj, i g u.. ‘ - . v (T2 )

(i1) (Y Y)U(Uxi] = E,
: J igg

then E is not a transversal of (Y)I .

PROOF. Necessity : Let (Y) be'a family satisfying (Tl}.’

pefine ¢, L : I -+ (J ¥ 'by
1
I
. xi if ieJ ,
¢1{1) . R
xi_ if igJ -

Then ¢1 is injective and @E(I} = E. Suppose that (Y)_ has a

i < X., i
Since Yl xl, ¢2 s alsc

. transversal E. Let'¢2 be an SDR of (¥),. -
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an SDR of (X)I; Thus ¢1(I) = ¢ZII) = E. Now for i ¢ J we have
(b, 4) # x; = ¢l(i) so that ¢i # ¢, which is a contradiction. Thus E

is not a transversal of (Y)I.

Sufficiency : Given . ¢(I) = ¢'(I) = E and suppose that

'¢#¢. Then 3 nonempty set I, & I such that 6(i) # ¢ (1) if

¥ .
and only if i € I We shall show that ¢(11) = ¢ (Il). For each

1.
. \ . .
ie I1 there exists ir # i such that ¢ {ir} = ¢(i) and hence
ir € Ii. Zéimilarly for j ¢ I1 there exists js # 3 such that
L] X L] .
\¢(js)? ¢ (3). Thus ¢(Il) =_¢ (Il}' Put J = INI,
6 (i) ied ,
Define Y, =

i. .- P

CbxoNew iea.

Then (Y)  satisfies the condition (Ty) and so E is not a transversal
' i ’ '

of (Y}I. Now for i £ J we have ¢(i) # ¢ (i) so that ¢ (i) € Yi‘

Since #(1) =6 (L) C U Y, and o M = 6@ & U ¥, , it

V' igatd ied _
] : . ]
follows that ¢ (I) & U Y so that (Y); has a transversal ¢(I) = E. -
_ I :
A contradiction and then the sufficiency is proved. , a4

3.2.3 A family (X) has a transversal [ of rmltiplicity k if every

element in E occurs in exactly k sets of KX)I.

We have another sufficient condition for the uniquengss of

.the SDR giving a particular transversal.
) _ ,

3.2.4 THEOREM. Let (X)  be a family with a transversal E of

multiplicity 2. If there exists no subset { X peees Xy } of E of
' ' ' 1 r

cardina;ify'rg_z such that
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j_=1' see r (T)

{ X, e X } e x 2

R PO B

where the addition of the subscript is modulo r. Then (X}I

has unique SDR giving E.

PROOF. Let ¢(I) = ¢'(I) = E. Suppose ¢ # ¢'. Then there

exists I, £ I such that ¢(Il) = ¢'(Il).and $(i) #.¢'{i) <=>1i ¢ I1

1

Define £ 2 I, > I, by

f(ij) = ik , where ¢‘(ij) = ¢(ik) .

_Then £ is a permutation on I Since f is not the_idéntity

1
permutation , it can be written as a product of disjoint cycles

_ ; ) .
cl' ar e ck + where at least one cycle, Cj say, has length > 2.

Let Cj = (ila iz’o..' is) ¢ s > 2.

Suppose ¢(i) = X; oo ¥i ¢ I. Consider 1 < j < s - 1, we have

£(i.) f i so that ¢'{ij) = ¢{ij+1) = x, . Thus

3 141 .
. c oy = 4 Vi Y = (4
X, o+ X, € xi . Now f(ls] i, so that ¢ (13) ¢(11} and hence

3 i+l 3

j+1

1

x } X € X . Therefore {x. ..., X, } satisfies the condition
1 is is i1 is )

(Tzi.. A contradiction. Hence ¢ = ¢' .

3.2.5 REMARK. The condition (Tz) is not necessary for ‘.. the .

uqiqueness of SDR
L =1 %, =24, X, =345, X, =4
= 64. tx)I has unigue SDR ¢ giving the transversal

As an example consider X
X = 56, X _ .
{1,2,3,4,5,6} -, namely, ¢(1) =1, ¢(2) = 2, ¢(3) =3, ¢(4) = 4,
#45) = 5, §(6) = 6. The set {4,5,6} is such that 4,5 € X, 5,6 ¢ X,
6,4 e.xs and so it satisfies (Tz).

3.2.6 &Any subset C = (xi reeer Xg )} of a transversal E of a
1 " Tr
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fam‘ili} (x)I satisfying the condition (T2) is a cycle of length r with

' ipdek set { i ,u.., i.r} and associate sets Xioveeer X

1

1 1 . r

!

The exact number of SDR's giving a transversal E of (X)I is
known if E is a transversal of multiplicity 2. To prove this we need

the following ten lemmas.

3.2.7 LEMMA. Given a transversal E of (X)  of multiplicity 2.
Let I1 S I. Then there exists at most one cycle of E with index set Il"

PROOF. Let C. , C, be cycles of E with the same index set I

172 1

Cgse 1 Il = I.

Then IClI = .|11| = lIi = |E| and also |C2| = |E| so that ¢, =6, .

-

Case 2 I,& I.

Suppose C, # C, . Since '|C1| = |C2| ' ]C2 \C1|-> 0

I

so that [(U x) i, eyl = e |+ ley,~cl > 1]
Now x e ({JX) n~(CIUC2)'=>x¢ (U x)N E and so
1 o INI '

1 1
lcu xHNel ¢ 1] - [(Ux) N Ucyl
IsI : I
1 : 1
<z} - |1,

Hence ¢ (IN1I)) < 1| ~ |1

1|' . A contradiction . o/

'3.2,8LEMMA. Any proper subset of a cycle of a transveral of

multiplicity 2 is not a cycle of that transversal.

. .
PROOF. Let C be a proper subset of a cycle C = (xi reees Xg )
. - 1 r
) 1
of a transversal E of a family (X);. -Let C = [xi reeer Xy Y, k < r.

| Iy I
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As E is of multiplicity 2, { ijl,..., 1jk} = { igr dgqeeeey ?p}
for some s, 1 <s <rand p=s + (k -~ 1). We can assume that s > 1.

Now x, must occur in exactly 2 associate sets of C' . Also
s ' . . :
X, € xi which is not an associate set of C' so that X belongs to
-] s-1 . s

3 sets of (X}I.

A contradiction . 4
3.2.9 LEMMA. Let Cl' C2 be cycles of a transversal E of multiplicity 2
of a family (X)I with index sets Il' 12 respectively. Then I1 n 12 = ¢
if and only if C, n C, = ¢ .
'PROOF. Assume that I, n I, = ¢ . Then
(x)1_= (X)Il 8 I M (I.\\Il v 12). Let x € Cl. 1hen % belongs to
exactly 2 sets of (x) . . Since x belongs to exactly 2 sets of (X)I,"
. . 1 . -
- x does net belong to any set of {X)I . But C2 € uX . Thus x ¢ C2.
: ' 2 I '
2
Next we assume that C, n C, = ¢ ., Suppose I, 0L, # ¢ .
Then |1 NI v 12| > |z1| - IIll - |12t and since |
x€ (u. X) n (C1 v C2) =>x g (U X ) N E we have
U ' ' U
Il 12 I\II 12
(v X ) nE| <lsl - T x)n (¢, ucy)l
~
INI U I, I, vI,
< - -
<zl -l - 11,
< |IxIl u_le
Thus I¢(I\hI1 u Iz)| < |I‘~.I1 UII2|I and so' ¢ is not injective .
A contradiction. //

3.2.10 LEMMA. Let C1 be a cycle of a transversal E of multiplicity 2

of a family (X)I with index set il’ Let C' be a proper subset of'cl.
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Then the following are true.

(i) Forany ¢ #C, < (U XNE withC, nC' = $,c uc,
INI,
is not a cycle of E. 1 . .

(ii) For any C, S ( YX) NEwithC, nc' =¢, C' UC, is
- I

2
1
not a cycle of E.

| PROOF. Let c:l = (xil,.-.., xir) and I‘1 = {il,..., ir} . _
(i) Let T = {i, e I, / x, €C'} . Then I' §I . Without loss of
| 1 ij 1
“generality assume that I' = {i, , i, ,..., i. } , where
1l f_j1< jzi...ﬁjk < ¥. Suppose that-C' UC_, is a cycle of E. Let

w

2

. ’ !
™ ={i, ,...4i, , i, ,..., i, } be the index set of C' U C2 where
3 N e
Fl
eil; i. ¢I' rm=l,.--'e-

Im

. . ' - 1 - I .
If there exists 1jr§ I' with ijr_l £ I' , where 3y <3, <G
- Then X, is not an associate set of the .cycle C* U ¢, and since
i -1 '
r

X must belong to exactly 2 associate sets of C' U Cz, there exists

i,
3y . :
L] .

:i.p such that x; € X;, -so that Xy belongs to at least 3 sets of (X) 1o

Ir Ir
namely XX 5 Xiv which is a'contradiction.. Hence we can

3y T3

. R [ ] ‘l
assume that I" = {11"“' l'k’ il,..., s.e} s where k <rand e > 1.

k]
A cycle form of C U C, can not have x; in between X, and x;

m ' ' T r-1l
(otherwise Xy belongs to 3 sets of (,X)I..). Then C° u 02
= (xi peven Koy Xy gy %x.? ) and so xik-belongs to at least 3 sets
1 - ° .

1 % :

e
of (X), namely X ) X A contradiction. Hence (i) is proved.

X,y »
e R TR
(ii) Let IC'I =k , k < ¥ and |Cz| =s > 0. Suppose th_at c'u c, is

‘a cycle of E. Then it has -length k + s < r and we have



=

102

/
[¢(1\11)| = Jeuv x0E|<|E| - [Cuw n(c ve)|< | B -
NI 1 '

'(IC;.' +le, b <zl - x|+ le,b < fz| [1;] - which is a

contradiction.’ : //

3.2.11 L1EMMA. It follows from Lemma 3.2.7% - 3.2.10 that two cycles
of a transversd[of multiplicity 2 are either disjoint (with disjoint

index sets) or identical.

/

3.2.12 1EMMA. Let C = (xi peeer Xg ) be a cycle of a transversal
- 1 r ' '

E = ¢{Ij of multiplicity 2 of a family (X)._. Then ¢(i.) = x, or x. .
I 3j ij 1j+1

where‘ij e {ij,...y i} and the addition of the subscript of x, is
' 3
modulo r.
- L
PROOF. Let I = {il'“” i} . It is obvious if ¢(I ) = C.

Supbose that ¢(I ) # C. Since ¢ is one to one and onto and

[} ) .

|1 |= |c| , there exists x, € C such that wi.e I , ¢(i.) # x
o . ] Cd i
and so there exists j € I~ I such that ¢(3) = xik . Then x,

occurs in 3 sets of~{X)I which is impossible. Therefore

; OF X, S, | ‘ ' //

$(i.) = x
J i Y

We define the SDR induced by the cycle C in the following'lemma.

3.2.13 LEMMA. Let C = (X, ;.00, X
il ir

) . . . L}
E = ¢(I) of multiplicity 2 of a family (X)I with index set I .

) be a“cycle of a transversal
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Define ¢C t: I » E by

x:i..-l-l if ¢(1j) = xij and '.Lj eI,
|
¢C (1j) = % if Mij) =X 4 and ij eI,
] 3 T 3
¢(i.) i, e INI ..
J J

Then ¢C i?an SDR of (X}I"the SDR induced by the cycle C-which is

different from ¢ and ¢C(I) = E,

' PROOF. That ¢C # ¢ is clear from the definition of ¢C and
¢C(xi) 3 xi, vi € I . To show that ¢Cis an SDR, let ¢c(1j} = ¢C(1k),

' |
If one of ij' ik’ ij say belongs to I and i, € I~I , then

k
¢c(i-j§ € (U, X)) E. Since ¥x e (U, X) N E we have x £ (UJ X) N E,
. I I ) I~TI
it follows that ¢ (i ) =¢ (i,) ¢ (U X,) /1 E. Thus
. C 'k c 3 .
IT
¢C-(ik) e (U X)N E so0 that ik € I which is a contradiction. Hence
I’ .
L} L}
both ij’ ik must belong to either I or INI . In either case we have
- L} L
:I.j=:i.k. Now ¢C(I)= $(I ) U ¢(INI)=CUI(ENC) =E //

3.2.14 LEMMA. Disjoint cycles of a transversal give rise to different

induced SDR's giving that transversal.

PROOF. Let Cl; C2 be disjoint cycles of a transversal ¢(I) = E
with index sets-Il, I2 respectively. For each i € I1 we have
¢Cl(i) # Ml).\"_BUt ¢C (i) = ¢(i) whenever i ¢ Il' - Thus gbc # ¢C 7

2 : 1 2
We define the SDR induced by the disjoint cycles Cl,. .o C‘k

in the following lemma.

3.2.15 LEMMA. Let Cl"”’ Ck

‘be disjoint cycles of a transversal
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B = ¢(I) of (XI)‘of multiplicity 2 with index sets Il""’Ik respectively.

Define o] + I - E by

Cl...Ck
€L = i if i€ I,
¢c‘f’..;c be, ) . i’
1 k 1 J .
i i i | “.. U -
$ (1) if ie INIU I
Then ¢C c is an SDR of (x)I’-the SDR induced by the cycles
1" "k
Cl""'ck' which is different from each of ¢C ,...,¢C y ¢ , and
1 k
¢ (1) = E.
clooopck

PROOF. By induction on the number of the cycles Cl,.}.,c'.

k

3.2.16 LEMMA. Let ¢ be an SDR of muitiplicity 2 of a family.(x)I.

i |
For another SDR ¢1 # ¢ such that ¢(I) = ¢ (I), the set
| ] 1] -
{o (1) / ¢ (1) # ¢(i) 1}
determines disjoint cycles of E = ¢(I) .
PROOF. Follows from the proof of Theorem 3.2.4.

We are now ready to find the number of different SDR's

giving the same transversal.

-/

//

3.2.17 THEDREML Let E = ¢(;) be a transversal of (::{).I of multiplicity

2 . If E has r disjoint cycles, then the number, n(E), of distinct

SDR's giving the transversal E is ' -

+ e+ ...+ Tc

n(E) = 5 .

1+ T¢

L

1

PROOF. From r disjoint cycles of E we can form -
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I'.c:l +o..t _rcl.: = k ‘combinations of these cycles so that they induce
the k different SDR's and each of these SDR's is different from ¢ .
Thus

n(E) > 1 +k
By Lemma 3.2.16 for a given SDR ¢ # ¢‘! of (X)I we have that

{ ¢r' (i) / ¢' (1) # ¢(1) I} determines diéjoint cycles of E so that

1
¢ is one of the above k SDR's and the theorem is proved. //

. If (15{)I has a transversal of multiplicity 2, it might have
only one SDR.giving the transversal if it has no cycles . We shall
show thaf"{x)I has at least 2 SDR's. That is a cycle of a .

transversal of multiplicity 2 must exist.

3.2.18 THEOREM. Let E = ¢(I) be a transversal of multiplicity 2 of
B L}
(K)I which contains a singleton. Then there exists an SDR ¢ # ¢ of

(X)I giving E .
We need the following lemma to prove the theorem.

3.2.19 LEMMA. Let E = ¢(I) be a transversal of-multip].icity 2
of (X)I and U X =E . Suppose that (X)I contains a singleton.
I .

Let I = {1,..., n} and ¢(i) = x € X, , Vie I. Define the

i
subfamily «‘9_41 of (X)I by
 1 = {Aa /A e (X, and ]All.- 1}
: For any positive integer k, 2 < k <n , if A # ¢ we

k=1
construct 'A.‘:k as follows '

- ‘54]{ = {a ¢ (X)y / A =xA _ for some x & V) (ﬁﬁfl-ugik-l)
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=

and A_ € U (AU Uc'?ﬁl':_ln

.

After finite steps of construction, m say,' the process terminates
whené‘dm_,,l=¢ and_%#d’:k;f_m-men
(i) For each k = 1,2,..., m and each x ¢ U (ﬂiu...,u‘ﬁé,;)
we have ¢(i) # x , VK, 4 U (JGI‘U eaees U ‘54!:)
(ii) xr € dékﬂ => 4(x) g U ({4 U_-.-v--nU Ak)
Wk, £ = 1,00, M . In fact x = x U xk for some
X < deu Vi UA ) anax ¢ uw‘{u ..u&t).
(iii) l{x)I\ 04..1'U ."'U ff‘iml >1 .
PROOF. (i) For k =1, let x €( L)‘d{l)._ Hence {x} ¢ &41'
Without loss of generality assume that $(1) = x. Consider xﬁ_’ ua@l

and so i #1 . By definition of SDR- ¢(i) # ¢(1) = x. Assume that

the hypothesis is &ue for k = 1. Let x e U (CAIU_-».--- U L‘jﬂk).
Supposé 1-:h-at fhere exists X, i v “’41-", ...-;'...Ue4k ) such that
¢(i) = x. Hence x € U C"fk\ U'{AIU-------U Ak-l ) [othemige
the hypothesis is not true for k - 1 ] . Tﬁus there éxiets xk e ‘541;

k

such that xk =x U x;_ for some x-l € (U Alu P v ‘5{(_1 )[ as

;'I:‘exkerﬁik andxk,=x'u-x;,for somex'y.' v (dl see U/ k-1’
"and x;( - u(ad;lu ...... U Ak-lj then x = x'} otherwise
st(c’A (7 P U 'Akl )] . By the assumption ¢(k) £ X

(as xk éi.l_.u(.-}flui..l...'u Aj{-l ) and ﬁence $(k) = X = $(i) so
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that k = i and Xi < U( "41 v... U “’4]: ). A contradiction.

(ii) Since X_ € :;94 . X C‘_;-_ uwﬁflu\.... v °‘4k ) and so
r r 7
by (i) ¢(x) g U (od u ... U-cﬁ{ }. For x € 04R+1 we have
x=xUX forsoma}fj‘ﬂ- U(AU......U:J{)and
r k

xﬂfU(A]_U .o Uﬁdk) Ifxr#x,thenx ka-U(chU... &4) |

which is not so. Thus xr = X.

(iii) We first show that (X) N\ 094‘1 V.o U Am o . ;

Suppose the contrary. Without loss of generality let

§4 v o...udd

- m-1

A

m

{xlfoo.' Xrﬂl} r

{ X reens xn} .

where for each i = Trevey Dy there exists ij, 1< ifl <v#such that
X, =% U X, X < v Alu..... Uaﬁm‘_l ) and

J ] _
x, g U ( c’dlu ceeea U.n’qm_l). If there exist i, j, r <i# j <n

such that a € X, /1 xj. Then since a # one of X, xS0 there exists -

X, € ‘.94 » 1 2t <m~-1such that a € X_which is a contradiction.
t -

Hence xi(‘! xj =¢ wi#je {r,..., n} . Consider x, , where

"
r <i < n we see that x, £ X € {1,..., r = 1} and thus X,

j r
belongs to exactly one set of (X}I. A contradiction. Thus

(X)I\CA u..-..-UA #¢ .
1 m

#

Suppose that there exists only one x € (X) > J{ U......U d'd

Then |X ~ U(cA U ceceen UD#) | > 1 (otherwise
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X, € U(J41U- NV é{a) and by (i) ¢ (i) #xi ) Let
X € xi ~ U 2941 U-eoo U, cfém). Then x belongs to exactly one set

of (x)I namely X.. A contaradiction. Thus | (x)I\ d4 Veaad ) a‘?{ |> 1. //
. . : 1 m

PROOF OF THEOREM 3.2.18. It suffices to prove the theo:;em for
the case |J X =E .
I

If U X g E, letY, =X /1 E, ieI. Then {y Y = E.

If there exist' i # j such that Yi

1

yj .' For each i there is at
most one integer j # i such that ¥, = vy and if so |Yi| = IYjI = 2.

(otherwise. 3 x € E such that ¢ (i) 94. Xvi e I).

B ! : . L]
PutIl={i/gj#isuchthatYi=Yj}andI=I\Il.
] i . .‘
IfI #¢ , let E =EN U Y . We claim that (Y)I' has a
I

L] i L L]

transversal E of multiplicity 2 and U ¥ =E . Let e E .
I'. ,

Then x e E~ U Y = ( U'Y}U‘{ U YW~ U Y sothatxe (U Y).

' L]
I, A I, . I

Since x belongs to exactly 2setsof (X)  and x g any set of (Y)-:'[ ’
1
X belongs to exactly 2 sats of (Y)I'. As i # j we have Yi # Yj

V:i.',j € I . Hence E' is a transversal of (Y)I"- Suppose‘thgt

(i) = X, € Xi for every i € I and ¢(I) = E. .Then ¢ /'I'(I‘} = E..
Put ¢1_ = ¢/ I' . If ¢1 # ¢. isl anothgr SDR of (Y)I' giviné the
transve;sal E', we can define anSDR ¢ # ¢“ of (X)I such that

¢v“(I) = E as follows.

- ' ¢'(i) ifiel
- ¢ (1) ={

6" (1) ifigt

1 . ;
If I =¢ . Without loss of generality assume that Y, = Yo
: _ i
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where i = 1, 3,..., n - 1. Let ¢(i) = X, € Yi = {xi, yi} .

] | L I
Define ¢ : I =~ Eby¢(i}=—-yi, ¥i € I. Then ¢ is an SDR of

(%) giving E and ¢ £ 6.

Hence to prove the theorem we can assume that (J X = E and
I .

i#3 =X #X, ¥iel LetI= {l,...,n} and ¢() =x eX;

Define subfamilies d41 feses cﬁdm as in Lemma 3.2.19. Without loss

of generality assume that (X)_~. d'4 U.......UG‘?J ={x ,...,‘X. }
ot 1 m 11 *x

1
and U(r}qlu e U Am) = X . Observe that X £ X,
- j

ik, 7

0 : . "
We show that for each j, 1 <j sk we have [X, < x| >2.

v J .
U xi , where

! ) T
If there exists no x € XN XU x o, then'xi =X

" ' w 3 3 3 3
X € X . Now xij £.X and so xij € Al“ qu{m-l-l' A‘

. a4 ] - .

contradiction. Thus |xi ~ X | 2 2, 1 23 < k. Hence there exists
L} . B

X, €X.~ X U x, and i, # i, . Without loss of generality assume

ij i 1 i, j 1

ij = :‘.2. We first assume that k >

v
1Y

case 1. xi £ xi
1 2

- L} ¥ 1 L]
Define ¢ :I > E by ¢ (i,) =x,, ¢ (i) =x. , ¢ (3) = ¢(3)
. 1 i 2 i :
2 1 -
L) L .
otherwise. Then ¢ # ¢ and ¢ is an SDR of (X)I giving the

transversal E.

case 2. X, Z xi
, 1 2
L}
By the same arqgument as above there exists x, € X, ~. X U X. X,
o - S i3, o2

where X, € {X. ,..., X. } and i_ # i. .
13 11 1k _ 3 2
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If x. € X, we can define ¢ : I -+ E by
1001

¢ (il) = xiz, ¢ (iz) = xi3 ¢ (is) = xil and ¢ (j) = ¢(j) otherwise

so that ¢ # ¢ is an SDR of (%) and 6 (I) = E.

¥
If xi £ Xi . then there exists xi € xi N X v xi  where

1 3 4 3 3
X, e{xi,...,x. } and i, #i;. For 3 <j <k -1, if x; z‘xi.
4 1 1 j-1
we can choose x, € X, N OX U Xieele X, (See Lemma 3.2,20 below).
ij 1j-1 i 1j-l .

The process must terminate after finite steps since there exists exactly

one set from Xi PR Xi containing X, . Assume that the process stops

+ 2 k . L} 1
- after q steps; that is x, € X, N\ X U X, ceee. X, and
i i i § i
1 q 1 q-1
x, £X, ,2<j<q-1 '
i1 lj

L}
-Define ‘94 : I =+ E as follows

¢ (1) = x, ,

VT,

o (1) = x, , 2<j<g-1,
J Y41

6 i) = x,

. q il |

¢ (3) = $(3) otherwise.

Then ¢ is an SDR of (), such that 6 (I) =Eand ¢ # ¢ .

L}
By Lemma 3.2.19 k > 1, For k = 2 we have x, ¢ X, \ X - x. and
) 11 12 11

x, € X, \ x' U x, . Thus a function '¢. : I + E defined by
i i ™t i :
2 1 1
| L}
¢'(i ) =x, , ¢ (i) =x. and ¢ (i) = ¢(i) ; otherwise, is an
1 12 2 i _
SDR of (X)_ such that ¢ # ¢ and ¢ (D) = E.

For k = 3 . The theorem is obvious when xi €X . 1f
1l T2
L} y °
X, £X, . Then x,; e X, N\ X v x, and x. € X. X X ux, ..
11 12 i, 12 i, : 11 13 ig
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Define ¢' : I +E by ¢.(ii) =x, , ¢'(12) =X ¢'(i3) =X

i.
2 3 1
¢ (i) = ¢(i) otherwise. Hehce ¢’ is an SDR of (X)  such that
i [ )
¢(I) =E and 6 # 6 .
The theorem is tﬁén proved. ‘ /7

3.2.20 LEMMA.Assume the hypothesis and notation as in Theorem 3.2.18
“Then for j = 3,..., k-1, if x, £ X,  We can choose
i ij-l

e X N OXTUXR ... X
i Y31 o ha

X

i

PROOF. True for j = 3. Assume the lemma is true for j < r.

Hence x, ¢ X X' U X, eniis X, 3 <j<r. Thatis
i, . . i i,
J -1 1 j=1

X, € X nx
i, i, i '
3 i i1
Assume Xy SF X, and suppése-that there is no
| A ,
x, € X, X Ux, so0e,%X, . Thus X, € X UX. ..... X, .
‘rel ' h1 *r o ip il ir

3<isr

Since

' ] - ] .
]xi~h‘x l > 2, there exists x € xi‘\ X u xi and so as

r x r
£ X ,x¢€ {x reess X, } . If x e x, s thenx €-X, 0 X, N x_
1 iy 2 i 12 !

which is impossible. Thus there exists s, 3 < s <r - 1 such that

Xy i

X=2x_. Nowx€X Nx 0X whichisa contradiction. Hence
. s s-1 T
the lemma is proved. . S ' . //

_ 3.2,21' THBOQ?&. The conclusion of Theorem 3.2.18 holds even though

(X)i does not contain a singleton.

PROOF. We first show that if (X) does not contain a singleton

€I. LetI= {l,...n} and $(i) =x; e X, i¢ I.

then lxil =2,V s

i

Put ¥ ={(x, i) /xeE xeX] .
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Then 2 distinct elements in E e rise to four different elements in Y.-

foreach i = 1,..., n, let

, v, = {{xi, %}H/ X, € xj}

’ n )
Then Y, SY, ¥, /)Y, = ¢ifi#jandys= 'iii ¥,
: n n
Now Y| = |y v} = I |y, = 2n
i=1 Y i=1 '

f ’ n N
We can write Y= U 2, , where Z, = {(x, i) / x e X,}
i=1 i i , i

Thus Izil - }xil and 2; Nz, =¢ if 173 .

Since |Xi| > 2, ]Zi| > 2. Suppose that there exists k such that

lxkl > 2/ Then

. n '
v = 121 |Zii 22 - 1) + |Zk| >2(n -1 +2=2n
A cohtradiction.f Hence ]x,j = 2 v, e I.
1 “ i .

Now we write X, = { X0 yi} » where x, # Y- Obsefve that
y; # Y if i # j (otherwise there exists k # i, j such that ¢(k) = '
so that y, occurs in 3 setsof (X)I)

' We ‘define ¢' : I » E by’

s

S =y, véer

] T ’ .
_ Then ¢ is an SDRof (X), and ¢ (I) = E. ' //
In general a transversal E of multiplicity m is determined by

at least m SDR's .

3.2.22 THEOREM. Let E = 4(I) be a transversal of multiplicity m of
a family (X);. Then (X) has at least m - 1 distinct SDR's each of

which is different from $ and gives the transversal E.
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PROOF. We prove the theorem by induction on m. The theorem
is true for m = 2, Assume the theorem is true for any- transversal E
of multiplicity k <m., Let ¢(I) = E be a transversal of multiplicity
i

m of a family (X) . Le- I = {1,2,..., n} and ¢(i) = x, € X;0 eI,

We can assume that (j X = E. For each i € I construct inductively
T :

the subset Ei of xi as follows.

/

El = x1\¢(1),
E; - XN¢N U E , 2<ic<n.
- r <1
Put xi = xi~\ Ei . V;.e I. Then we have ‘
. . ’ n
(1) Eif\ Ej = ¢ if 1 # j) (ii) ¢ (i) ¢-EiJ (iii) izl Ei = E

(iv) (X )I has a transversal E = ¢(I) of multiplicity m -~ 1

To show (iii) let a € E. There exists il € I such that
. )

¢{il} = a. Since a occurs in exactly m sets of (X)I, 3 12,..., im

such that a € Xi , 3=2,04.,.m . Then ¢(ij] # a | V5
. . j .

Without loss of generality assume that iz < i3 < ... < im .

= 2’&-0' m .

case 1. il < 12 < iee < iﬁ

Ifi =1, 1 Suppose that at least

*1 2 2°

one of i1 # 1 and 52 # 2 holds. Then for each r, 1 <r« 12 we have

= 2, then a ¢ E1 so that a € E

afg E,since a ¢ X _or a = ¢(il) ifr=1i Now a ¢ U E, but

1.

i< iz
ac xi2 and aﬂ# ¢(12). Thus a € Eiz.
case 2. iy i§ in between ij and i; for some j, k ; {2,..., m} .
We may assume that 12 < ii < 13 < ... < im . ‘If ag Ei#' then since
a e x13 and a #;&(13) this implies that a ¢ iLi . Ei . :hus.a € Ei )

- : . 3 -
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3

case 3 i, < i, <...<i <i
2 m

3 1

If a £ Ei ; then by the same argument as in case 2 we have a ¢ Ei for
_ n _ _

some i < i .
m
To show (iv) we observe that ¢(i) € X; for every i€1Iso

that ¢ is also an SDR of (x") Let a € E. Then there exist

I.
' € € . .
11 # i2 #oees # im éuch that a xij <> ij {11,.. ,im}
Since 0 E, =E, a € E, for a unique i, € {i.,...,i .} . This
ie1 * i, 3 1l m
.3 . .
1 T -
afg xi and a € X, ¥k #3, 1<k <m If ais inmorethanm -1
3 3 : . .

. ] . .
sets of (X ) then a belongs to more than m séts of (X}I.- Thus (iv)

I'
is proved.

"By induction hypothesis there exist m - 2 distinct SDR's
L] 1
¢1:.--c‘¢ -1 each of which is different from ¢ , giving the

transversal E = 9(I) 6f (X.)I .

. For any 1 € I, let

s
i

i = XN\ ¢l (i)

= mf\%)uz

" .
|

and i
n

Then U E
i==1

1

H]

_ ' | SRS
and ¥x ¢ E, x = ¢1(i) belongs to m ~ 1 sets of'(xi):(x;) has a transversal

L] ) "
¢1(I) = [ of multiplicity m - 1 and so by induction hypothesis (X ’I
has at least m - 2 distinct SDR ¢1, ¢2,..., -2 giving the

. . ]
- transversal and each of them is different from ¢1 .

We show that ¢i #'¢ ¥.=1,..., m - 2. Observe that

i
'

' ' e : I
xi = ¢1(i) v Ei U Ei (as xi = Xi U Ei). ¢i # ¢l = 3 r, such that

v " " '
E and @1(1) eX, - ¥, el. NowasX = ¢l (i) v E

i
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' L]
_ ¢i(ri) # ¢1(r:i.).' tSince ¢i(ri} [ xri and_t,*,i(ri) £ Er R ¢i(ri_) € Elr

i i

But ¢{ri) £ Eri. Thus ¢i #o .
" ’ . . - N ‘s .1 ' - - ‘ - H
Hence ¢1,.. ) -2’ 01 7 ¢ arg different SDR'sS of (X)_i giving

the transversal E and the theorem is proved. ‘ //

3.2.23 Theorem - Let E be a transversal of a family (X)I. If a ¢ E,

"then a necessary and sufficient condition for

_¢1(iJ = ¢2(j) =a = i=3j , where ¢yr ¢, are
'SDR's of (X), and ¢,(I) = $,(I) =E is that a ¢ "0 Y for every family
.S INT

fY}I satisfying the condition (Tl) corresponding to E and with a

transversal E.

PROOF. Necessity : Let (Y) be any family satisfying the

condition (Tl) corresponding to E and (Y)I has a transversal E. Thus

. . . 1
there exists J ©1I and X, X with ¥, = x., i'e J, and ¥, = X, x

3 i i’ .
L ]
ieI~dand ( U x)U (U x,) = E. It is obvious that
ied ie INJ
a ﬁ' UL Y if g ='I. Thus we may assume that J % 1 and so INJ # ¢.
IN\J : ' '
Define ¢1 : I - E by
' x,  icyJ,
¢1(i) =4 7
X, . 1€ INT .
1 )
1 ) . ’
Since (UY) U ( U xi) "= E, ¢1 is an SDR of -(_x)I with ¢1“(I} = E.

J ie INJ _
Asl (Y)I has a transversal E, there exists an;SDR ¢2 of (Y)_I giving E.
1;150 ¢2 is an SDR of (X)II.I Now for every if J, ¢1(i) = ¢2(j) but-
for every i € I\J, ¢i(i‘) g ¥, and hence ¢, (i‘) # ¢,(i). Suppose

ael Y. since ¢, (INJ) = (U )N E, 'a'=¢2{3) for some
INJ INT '
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j € INJ. But a eE = ¢1(I). Thus a = ¢1(i) for some i ¢ I. Now
¢l(i) = ¢2(j) = a so that by the assumption i = j € IN\J which is a

contradiction. Hence a ¢ U Y .
I~Jd

Sufficiency : Assume that ¢1,'¢2 are SDR's of {X)I giving the
same transversal E. Let ¢, (i) = 9,(3) = a. We may. assume that
< ] i =5 i I
¢yt ¢y . Let ¢ #F I, SI be,guch that ¢1(1) 7 o,() <=>dieI, .

Define the family (Y) by

¢1(i)- C “ie IN Il'

xi\~¢1(i) ieg Il .

Then (Y)I satisfies (Ti) corresponding to E. By the same argument as
in the proof of Theorem 3.2.4, ¢1(I) = ¢2(I) so that (Y)I has a
transversal E = ¢,(I). Thus by the assumption a ¢ 4J Y and hence

I
¢2(j} = a =‘¢1(i) = ¢2(i). Therefore i = j as requiréd.-

4



4 REPRESENTABLE AND BINARY PREGEOMETRIES::

In this chapter we examine the class of pregeometries

isoﬁorphic to subpregeometfies of finite dimensional vector spaces.
4.1 REPRESENTABLE PREGEOMETRIES

4,1.1 A pregeometry G(S) is representable over the field F if there
exists a vector space V over F and a function f : S > V whose natural

extension to 2S > zv preserves rank.

The function f is a representation of G(S).
As rank of any set in a subpregeometry of G(S) is equal to its

rank in G(S) we have

4,1.2 LEMMA., If G(S) is representable over F, then any subpregeomtry

of G(S)'is also representable over F.
From Mirsky {71} ,
"4.1.3 THEOREM. Any transversal pregeometry is representable.

PROOF. Let é{s) be any transversal pregeometry of rang r with'
a presentation kX)I' wﬁere ]II =y, Let 2 = { Zei / iel, e e_xi} P
where the Z's are. independent indetermiﬁates over the field of rational
numbers., Let F be the field of rational functions in the 2's '
(each function involving onlf'afinite number of indeterminates). For

- each e € S define the'mapping' we : I <+ F as follows.

Z - if ee X

ei. i’
we(i) = '
0 otherwise ..
For =pr Sy € F gnd e;r e, € S, let the mapping
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: I »F be defined by the equation ( « y + = y Y1)
1 2 . el 2 e,

=x_ ¢ (i) +=_ ¢ (i), ¥i e I. Let V be the set of all linear
el 2 32

combinations, with coefficients in F, of the mapping we’ e € S. Then
V is a vector space over F. Consider £ : S > V defined by f(e) = N

ifee UX and f(e) = 0 otherwise. Then f is injective. We show
I

that £ is a representation of G(S).

Let E = {el,..., ek} be a PT of (X}I. Then there exist
i, # 12 #F oeeo # i with ej E Aij, 1 < j < k. Consider the k x k

matrix M whose (r, s) element is we (is), where 1 5:r, s < k. All
. r , _

elements on the main diagonal of M are independent indeterminates and
any other element of M is either o or an indeterminate. But all -
indeterminates occuring in the entries of M are different. Thus M is

non~-singular. Suppose that £(E) = { we feney we } is linearly

1 k
dependent in V. Hence ¢1 ¢el + oee. + “k wek = 0 for some ¢1"°'f “K
in F and all ¢1,..., =, are not zero. Therefore “1 wel(ls) +...+
“ Vo (i) =0, 1 <s <k and so the rows of M are linearly
X .

' dependent over F which is a contradiction.. Thus f(E) is linearly

independent in V.

Suppose that G = { LIy ek} is not a PT of (X) . We show
that £(G) is linearly dependent in V. Since G is not a PT of (X)I,

G contains a maximal PT E.

If |E| < r, there exists a non—empty subset J = { il""' iF}
of I with ej 4 Ai' 1 <3j<k;ieINJ (otherwise E is not a

maximal PT contained in G). Hence ¢e.(i’ =0, i<j<k;ieINd.
J
Consider the k X p matrix N whose (j, s) element is we {is),
3
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1<j<k,1<s <p. Suppose.that the rows of N are linearly
iﬁdependent over F. Then k < p so that N has a non-singular matrix,
say N' = ( Ve (is)), 1 <3, s <k. Thus all elements on the main
diagonal of Na are indeterminates and hence G is a PT of (X)I which
is not so. Hence the rows of N are linearly dependent. Then

3 Slreeer % of F, not all zero such that

(i) +...+ck¢e'{i) =0 , ied.

« ¢
17 X

e

But we (i) =0, 1 <j <k; ie INJ and therefore

Thus £(G) is lincarly dependent in V.

If |E| = r, we consider the k X r matrix N = ( ¢e (i)),
3
1 <3j<k;ieI. Then the rows of N are linearly dependent (as k > r)

so that by the above £(G) is linearly dependent in V. Thus the

" theorem is proved.

We note that a matroid M(S) on S = { Xyreens xn} is
representable over F if and only if there exists a matrix A of n
columns with elements in F such that the function f on S defined by

f(xi) = the ith column vector of A ,
in the vector space of columns of A is a represenﬁation of M(S) over F.

.

Thus if any matroid M(S) of rank r is representable over F,
i s = L = L]
then for any given basis B {bi' , br} S \“ibr+1' ' bn} of M(S)
there exists a standard matrix representation R = [ 1.,D ] » where
Ir is the r X r identity matrix and D is an r X(n - r) matrix with '

entries in F.

//
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4.1.4 EXAMPLE. The 2 uniform matroid u, , on 4 elements is

representable over every field except GF(2).

PROOF. We first show that U is not representable over

2,4
GFfZ). Suppose the contrary. Then there exists a matrix
"L 0 a ¢
with elements in GF(2) such that. any two

0 1 b a4

columns are independent. Now the column vectors lg] and ]::] are

independent and so [g] = (])_ or [11 . Since the two elements
in U© represented by the second a;d third columns of A are

2,4

independent, [ :] [:]L_] + Now \'g] and [1] are independent so

that [g] - [g] or [éJ which is impossible. Thus 'I5'4 is not

representable over GF(2).

For any field F of more than 2 elements consider the matrix

1 0 1 2

=]
il

with elements in F. We see that any two columns,
01 2 2

of A are independent while ény three columns are dependent. Thus

62 4 is representable over F with a standard matrix A.
,

. *
4,1.5 THEOREM. If M(S) is representable over F, then M (S) is also

representable over F.

PROOF. Let M(S) be a matroid of rank r on the set S of n
elements which is representable over a field F.
Let the r x n matrix A = (aij

representation of M(S). Consider the linear transformation ¢ from

), a.. € F be a matrix
1]

the vector space V(n, F) of n-tuples of elements in F to the vector

//
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L]
space V(r, F) defined by ¥(x) = Ax .
Now Ker ¢ = {xevi(n, F) / Bx =01} and dim (Ker ¢y ) = n -r.
Choose n X{n - r) matrix B with entries from F such that the columns

of B span ker ¢ ; Thus

(1) Ax =0 <=> x = By for some y € V(n - r, F)

We show that Bl is a matrix representation of the dual M*(S)

To prove this we need to show that r columns of A are 1inear1y-
independent ovér F if and only if the complementary set of n =~ r
columns of B. are linearly independent over F. Also by reordering the
columns of A (and B) it is suffiéient to show that the first r columms
of A are linearly independent if and only if the last n - r columns
of B' are linearly independent. Again it is sufficient to show that
the first r coiumns of A are linearly dependent if and only if the
last n - r columns of B' are linearly dependeﬁt. We shall show
this. By-tl) ther; exists 0 #F#y = (yl,,yz,.;., Y, 0,00, 0) € V(n, F)
_  with Ay. = ﬁ if and only if there exists C # z ¢ V(n - r, F) such that
y' = Bz'. |

We can‘w?itg B in' the form B = (Bl, Bz)‘, wherg Bl is

(n -r)Xrand B, is (n -~ r) x (n - r). It then follows that

2
T ] ] . B
82 z =0, But z # 0., Hence B2 and so B2 is singular so that its
columns are linearly dependent and the theorem is proved. /7

4,1.6 LEMMA If a2 matroid M(S) of rank r on S = { Xpreees X }

has the standard representation

x - *w x x . o n x
1’ " Ty Tral! " “n
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*
then M (8) has the standard representation

L x x LN ] x
Xy L i " n

n-r

. - [
PROOF It suffices to show that the columns of L -A , In-—r]

1
span the space of solutions of {Ir' AJ x = 0.

L]
Let x = [- A, I ] y, where y € V(n, F). Then

] - = ] : '
[Ir,.A} x = [Ir, A'] K Jy [-IrA + A IrJ y 0
-

. :
Thus x is a solution of [Ir' A ] x =0
L]

Let x = (xl,..., xn) bg a solution of. [Ir' A] x =0.

Put y = (xr+1,\..., xn) € .V{n - r, F). Then

and the lemma is proved.

4.2 BINARY MATROIDS

-

4.2.1 A matroid M(S) is binary if it is representable over GF(2).

It follows easily from Theorem 4.1.6 that M(S) is binary

if an only if M*(S) is binary.

vWelsh [76 Jgave necessary and sufficient conditions for a

’

//
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matroid M(S) to be biﬁary. The following definition and lemma are

needed for these conditions.

4.2.2 The symmetric d’_ference of sets Cl""' Cn’ written

n
cle....acn, is the set |} (Ci\ U c).
i=1 c#C,

Notice that x € C_.A...A Cn if and only if x belongs to

1
. exactly one of Cl"”’ Cn. Thus c1 A...A Cn = (Cl Ao A Cn-l) acn .

4.2.3 LEMMA. If Cy,..., C_are sets such that lc n cil is even,

1 <i<n. Then |(Clﬁ ees AC)) N c| is even.

PROOF. We first show that (cln acn) nc.

: (Cl N C)ﬂ.a.&(cnﬂ C). For n = 2 we have (Cl A C2) ne

ey~ ¢y Uie, N ey Ncs= (c;N¢c) N € U lle,N ¢ o)

(c, N cxczﬂc) G(czm C~c Ny = (clf'l o A (cz'n c).
Assume that (C.4 ... gck) Nnc = (¢, nNcya ... Alc, N ¢), where
2 <k <n. Then (C;8 ... AC )N C= ((CA ... 8q) 8¢ ) c
= ((C;8 ... &c,) N C) & (ckﬂ'n C) #((cln Q)b ... Al N C)) A
(Cpy N O = (C; MCIA ouu B(C, ;7 ). Hence (C)A ... &C) 1 c

= (c1 o .o zzi(cl,1 nNc.

We next show that for any sets A, B if |a|, |B| ‘are even,
then |A A B| is even. Observe that AAB = (A~ANB U (BNANB).
1f |aNB| is odd, then since A = (A~ A N B) v (3 ﬂB); |a~ AN B|
is odd. Also |[B~ AN B| is odd and hence |a 8 B| = |a~a 73
+ |B~ AN B|] is even. 1If |2 N B| is even, by the same argument

we obtain |A A Bl even.

Thus ](Cl A c,) ncl=| (Cln ¢ A (c, N c)| is even by the

above,
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Assume that | (CiA ... 8 C) /YA | is even, where 2 < k < n. Thus

= ’ - 1 ' n 1 o= )
r= |2 ...ac ) "0cl ltc;noa ...ale oy = | te;? o
' n -
B..one Teps(c,,TO)] . Letc = (C T04 ... 8(G 0.
By the assumption IC'I is even and so by the above r = [C'ﬁ ((CK+]:f'-3‘ C))j
is even //

4.2.4 THEOREM. "I'he following statements about M(S) are equivalent.

(i) For any circuit C and any coc;ircuit " of M(S), [c C*|
is even. |

(ii) The symmetric difference of .any finite collection of
distinct circuité of M(S), if not empty, is the union of disjoint
circuits of M(S).

(iii) The symmetric difference of any distinct circuits
Cl' C, of M(S) contains a circuit of M(S). |
| (iv) IfCcNB = { Xyreeer X } , where C is a circuit of M(S)
.and B is a basis of M(S). Then

C = C(xl', B)A ... Ac(xq, B)

(v) M(S) is binary.

~ PROOF. We prove the theorem in 3 steps. Firstly we show
that (i), (ii) and (iii) are equivalent. Secondly we show (i) <=> (iv)

and finally we show (iv) <=> (v).

(1) => (ii) :

" be distinct circuits of M(S). Put A = Clﬁ ere Ack .

Suppose that A is independent and non-empty. Extend A to a basis B.

Let'cl,..., c

*
Let x € A, By Lemma 2.8.6 there is a cocircuit C of M(S) with
* x - * . *
(Bxx) NC =¢andxeC. Then |[C AA] <|c N Bl=1

*
By Lemma 4.2.3 |C N a| is even. Thus we have a contradiction.



125

Hence A is dependent{ in M(S) and so it contains a circuit C.
If A = C we are finished, if A # C we consider
A, =CA cla .o &Ck and apply the above argument with a = A. Since

A is finite and Al = AN.C, this process eventually terminates ining

a finite collection of disjoint circuits whose union is A and (ii) is

proved.
(ii) => (iii) is clear -

(iii) => (i) :

Suppose that M(S) satisfies (iii) but not (i). Then there exist a
circuit C and a cocircuit (:1|r of M(é) such that |C ﬁc*[ ,is not even.
Choose such C and C with |C M C'| minimum. By Lemma . 2.8.5 e f.?c*] #1
and so |C/‘) C*l > 3. Let a, b, ¢ be distinct elements of .C n C*; By

' ‘ .o ok 1
Lemma 2.8.7 there exists a circuit C, with C:1 1 C = ac. .By (K4) there

1l
exists a circuit c, % (C UCl) ~aandb e Cz.' Choose C, so that

: ]
cuec, is minimal. Also by (K4) there exists a circuit C3 < (C UCZ-)\b
with a € C, and so there exists a circuit C, @ (C UC3) N a with

beC,. NWCUC4C_'=CUC3§CUC2‘§.CU'C and b € C Thus

4 1l 4 °
C4 @ (C Uci) ~ a. Since C U02 is minimal, C U.C'2 ccC UC4 sc that

I

cc Ucz.' Thus C U Cy=C UC, and so

CUCZQCUC4QCUC 2

3

I'd : ]
= kY ‘= ¢ . < .
C;\ C C, \ C. Hence c, i 03 : (Cz\ C3) U (CB\ 02) € C. By the

.contains a circuit. Thus C2 A ¢, = C. Observe that

* * .
7c). 1f [c;AC| is even, then

assumption (:2 A C3

|C3 n C*! is positive (as-a € C,
* *, . * * * .
as [cNc|=|wc,acyNc]|= fe,Nec| +lcy;Nnc| -2 lc,ncynel,
Ic2 N c’| is odd (otherwise lc N c"| is even). But lc2 N c*|<‘ e c*],
contradicting minimality of ¢ 7 ¢'| . Thus le; A c'| is oad and this

* . . .
also contradicts the minimality of IC nece ] . Therefore (i) is proved.

(i) => (iv) :
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. Let M(S) saﬁisfy (i). Let C~N B = {el,..., eg} ‘, wheré Cis a

circuit of M(S) and B is a basis of M(S). Put z = C (e;,B)8...0C (e B).
Then {el_,..., et} € Z. Now C A Z g B. Since M(S) also satisfies
(ii), if C A 2 # ¢ , it is the union of disjoint circuits which is

impossible. Thus C A 2 = ¢ and so C = 2 as required.

(iv) => (i)

Let M(S) satisfy (iv). Since (i) <=> (iii), it suffices to show that

M(S) satisfies (iii). Let D , D, be distinct circuits of M(S). We

2

show that D1 A D2 is dependent. Suppose not, and let

D1f7 D2 = {xl,xz,..., xk} . Then D1 A D, = (D1 U D2) ~NX

is independe_nt. Extend_Dl A D2 tc a basis B of M(S). Thus

“-. @ X
1 k

D\ B = D\ B = {xl,..., xq} and so D,

by the aséumption which is a contradiction. Hence Dl A D2 is dependent

= C(xy, B)A ... AC(x, B) =D,

and so it contains a circuit.

(v) => (iv) :

Let M(S) be binary and let B = {by,..., b } =S {e ..., eq} be a

basis of M(S). Then there exists a standard matrix representation of

-

M(S) over GF(2) of the form

bl as s s e v br el e 8 00 eq

|
bt , A
| "r

The elements of A are in GF(2). Let C be a circuit of M(S). We may
assume that C = {bl,..., bt’" XEERY ep} . Then for each j, 1 < 3j <p
we have

c(«_ej, B)\ej ={bi/aij=1}-. .
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‘We show that for any bi eB N C’\bi € C(ej, B) for a unique
j. Suppose that there exists b, € BN Cwith b, £ C{ej, B) ,

j=1,..., p. Then aij =0, J=1/000,p. Now C1 =C~N bi is

independent. Let £ bé the representation given by the columms of the

above matrix. Consider c i x f(ci) + yf(bi) = 0. We see that

i € Ci i

.y must be zero and since C, is independent, X, = 0, ¥i. Hence £(C)

1

is linearly independent over GF(2). This is a contradiction. Thus

bi € C(ej, B).

Since C is a circuit, f(c¢) is linearly dependent over GF(2)

: t
so that f(C) = I f{bi) + f f(ei) is the zero vector, But each
i=1 =1 : :

bi in B N ¢ is in C(ei, B) for some j, thus each row of the matrix

iff(C)] is occupied by 1 in even numbér.oflgimes. Hence each bi in -
B n c, bi is ip odd number of C(el, B)reaes C(ep. B). Suppose that
theré exists, bt say, so that bt is;in at least 3 sets of

C(el, B)reeey C(ep, B). We may assume that bt is iq C{el, B),

c(ez, B) and C(ep, B) Cornsider the vector f{ep). We choose xi =0

if the i th component of f(ep} is 1 and Xy = 1 otherwise. Thus
t-1" | |
i£1 xi(f(bi)) f {f(bt) + f(el) + fle,) +...4 f(ep_l) iz the zero

vector, contradicting the fact that {f(Bl),..., f(bt)’f{el)r*--:ftep

_l)}

is linearly independent over GE(2). Thus any b, ¢ B nC is in exactly

i
' /
one of C(el, B),eoey C(ep, B).

We show that C = C(e1

f(C{ei, B)) =0, 1i=1,...;, p,  we have E f(C(éi, B)) = O,
) i=1 .

;» B)A ... A C(ep, B). Since

kel

Let C' = ( u C (ei, B)) n (B~ C) . We write

i=1
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P
L f(C(e,, B) = L , £(b,) + £(C) = 0. But £(C) = 0 and so
; i i ,
i=1 , b, e ¢
. i .
. )
I ,f(b,) = 0. We see that for any b, € C , b, must occur in even
b € C i - i i
i

number of C{el, BYseass C(ep, B). Therefore bl ' C(el, B)&..._AC_(eP,B)

and hence C = C{el,-B)ﬁ ‘e Ac(ep, B).

v

(iv) = (V) s
Let M(S) satisfy (iv). Let B = {bl,..., br} be a basis of M(S) and

S~.B = iel,i;.., eq} . Define a matrix A by
1 ifb eCley, ® ,l<i<p,lsica,

0 'ifbizc(ej,.B) s, 1<i<p,1<j<q.

Put B [ Ir' A _] . We show that the function f on S defined by

]

'f(bi) the i th column vector of I_ and f(e;) = the j th colum

vector of A is a representation of M(S) over GF(2).

Let C be a circuit of M(S). We show that £(C) is linearly

dependent over GF(2). Let C \\B = {ei yeees ei} . By the assumption

1 k .
C=Cle; , B)A ... AC(e, , B). I£BNC# ¢, then for any b € B/ C,
1 : :
there is unique j with bk € g(ej, B). Thus (B /] C) nC(ej, B) # ¢

for some j. We may assume yithout loss of generality that
(BN C) N(Cle, ,B)) # ¢ . Suppose (BN C) NC(, ,B) =1{b. ,...,b } .
S i s

Thus a . =1, 1 <m<s, anda, =0, s<m<yrx, and so
ml - - miL —
1 1 .
) = £(b)) +...+ £(b_). Hence £(C) is linearly dependent’ over
1l ’ Xk :
GF(2): I£fBNC=¢ , then any bi e U C(ei ., B) occurs in even number
: j=1 3

. f{ei

of Cle, 4 B),..., Cle; , B). Thus £(C) = {Ee, ),..., fle, )} is

1l k 1 k

k
linearly dependent over GF(2) (as I fle, ) = 0) .

RN

i
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Let £( U ) be linearly dependent over GF(2) and such that every

proper subset of £( U ) is linearly indendent over GF(2). Suppose that
A

UI = {bl,..., bt' €qrecer ep} . We show that U is a circuit of M(S).
Firstly we show that U = C(el, B)A ... ﬁC{ep, B). By the same argument

as above for any bi eB n U, b, ¢ C(ei, p) for a unique j. Thus

i
U ¢ C(el, B)A ... 6C(ep, B). We arec left to show that each bk in

P ' )
(B~ Uy N ( U Cle., BY) =C, bk occurs in even number of
=1 ] .
C(el. B),..., Cle_, B). Consider I f(Cle,, B)) = 0 we can write
. P )
I f(Cle.,, B)) = )  £(b) + £(Uu) . But £( U) =0 so that
'.__ J ] k
i=1 ) bkF C
. .
> f(bk} = 0. Thus each bk e C occurs in even number of .
" _
bke c
C{e1' B)’..o’ C(EP, B)o

Since (iv) <=> (iii), C(el, B) A C(ez, B) contains a circuit C1

and so C ﬂﬂ%,mﬁ.uﬁﬂ%,mgu.Cmﬂ@rcﬁcwyBL Then

1

there exists a circuit C_, with C

1

A c(éq, B)A ... aC(ep, B)c U . Carry

2 2

on in this way we reach the step CP_ A C(ep, B)E U , whereC _'is a

2 p-2

circuit of M(S), and so there is a circuit Cp_1 € U. Thus Uis

dependent. Observe that f(A) is linearly independent implies that A is .
independent in M(S). Thus every proper subset of U is independent in

_ M(S) and so-ll is a circuit. Thus (v) is proved.

Hence the theorem is proved. . ' . B4
4.2.5 Exmpie. M( J ) is binary if and only ifn=17.

PROOF . wé first show that M( éf;}'is not binary vhen n # 7.

First we show that n2 - 10n + 21 >0 ifn>7 . Forn-=28
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o]

we have n2 - 10n + 21 = 64. - 80 + 21 > O. Assume k2 - 10k + 21 > o
and k > 7. Then (k + 112_- 10 (k + 1) + 21 = (k2 - 10k + 21) + (2k - 9) >0

(as 2k - 9> 0},

Secondly for, any n = 1 or 3 (mod 6), n > 7 we claim that there

exist two disjoint triples of C}n . If not, suppose 123 ¢ éfn

.

Then any triple intercects 123. As each of 1,2,3 occurs in n - 1 triples

_ 2
and the number of triples in ;fn is n{n - 1) , we have
' 6
3 (n-1) -2 = n@-1)
2 6

which implies n2 -~ 10n + 21 = 0. This is not so. Hence there exist
two disjoint triples. Let Al, az be disjoint triples in ;fn . As

shown in Chapter 2 ., A  is a hyperplanefand hence Sn\\ Al is a

1

cocircuit. - Now A2 is a circuit of M( :fn 5 and ](SRN\ Al)f? Azl =3

which is odd. By Theorem 4.2.4 ﬁ(fﬁ;) is not binary.
be distinct circuits

)

of M( ._‘f7 ) and € /1 C, # ¢ . We shall show by exhaustion that C, 4 C,

contains a circuit. Observe that the set of circuits of M( :f; ) is

To show that M( ,fj’?) is binary let C

the union of éfn and the family Tf; of sets A &S with |a] ='4

and such that A~ x ¢ éf; . ¥x e A.

case 1. Cl' C2 £ if7.

Then lCl A CZI = 4 and any 3 - subset of Cl A 02 can not be a triple.

Thus C1 A C2 is a circuit.

case 2. Cl € éf?,' C, ¢ f?7 ¢ IC],/>C2| =1

Without loss of generality 1et'C1 = {xl, Xy x3} ) C, = {xlf Xyr Xgo x6}

If {xd, Xe x7} is a triple, let C be the triple containing x,, X..
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Then C # {xq, Xt x?} . Thus C contains an element of Cl\, Cz.-

That 1sc-=cléC2 ..

. 1
1t {x,, X s x?} is not a triple, consider the triple C

¥
containing Xpr Xgo Ther we have C < Cl A C:2

e gl
Ca§e3. Cle 5’7,0 € 17/7 ,|C1.f?C2] = 2

Again we can assume that C}. = {xl, Xy x3} » 02 = {xl, Xor Xg0 xs}. .

2

Since the triple C containing x 4t Xy must intersect Cl in exactly one

Hence T CC, AC,.

element, C /1 C 1 5

1= %3 -
case 4. cl' c2 € 6?7 . |
We shall first show that Icl n CZI # 1, if not so let C, = {a,b,c,d}

a, = {a, p, g, r} . Then ClLf c, =8 Consider the triples

2

containing a and b, a and c, a and d, we see that each bf these triples

7 .

must have exactly two elements in A We can assume these triples to

2°
be {a, b, p} , {a, ¢, a} , {a, 4, r} . Then the triples containing
band ¢, b and, d, c and d must be (b, ¢, ¥} , {b, a, q , {e, a, p} .
Now consider the other element x in the triple containing p and g. We
see that x # a, p, g, ¥» But x # b' (othewise b, p are in the two triples).
Also x # ¢, d. Hence no triple contains p and g which is a contradiction.

- Thus |C1 N 02| # 1. We shall show that |C1 n c2| = 2. Suppose that

|cln czl =3, let ¢, N Cy= {x, x,, x;} and's

2 N\Cy UG, = {xé. "5}"

"We can form three distinct 2-subsets from Cl ! C2 and since any two .

elements are contained in exactly one triple, there is one 2-subset
from Cl n C2' {xi, xz} say, which does not form a triple with either

X, or X_.. Thus another element in the triple containing Xy X, is in

a4 °F %5
e €

cl A CZ" contradicting the assumption that'el,c 7

A = 1 = .
|C1 C2| 2 and so Cl A C2| 4, Thus Cl il C2 must contain a

2 . Hence
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circuit,
In fact the Fano matrcid is only representable over GF(2)
(Rado [ S?J ). The standard representation of the Fano matroid over

GF(2) is given by the following.

By Lemma 4.1.6 the dual of the Fano matroid has the following standard

representation

v

4.2.6 EXAMPLE. Let § = {1,2,..., n=2m} , n > 6. Let Bn be the
family of 2-subsets of S excluding 2-subsets of the form {i, i +1} ,
where i = 1,3,..., 2m -1,

Then ‘Bn is the family of bases of the matroid M(ﬁ’ ) on Spand

m(_Bn ) is binary if and only 4f n = 6 .

PROOF. To prove that M(_’Bn ) is a matroid we only need to show
thet for any i # j # k and {i, j} € ‘Bn'- at least one of {i, k} or

{3, k) isin B_. et (i, 5} e B anak#i, .
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case i. k is odd.
Ifk=1-1o0r j -1, without loss of generality assume that k = i - 1,
hence k # j - 1 so that {j, k} E‘Bn' Ifk#4i-1, -1, then

{i, x} ; {3, k} ¢ _E’n .

case- 2. k is even.
If k < i, then {i, k} € Bn. If x > i, then {j, k} ¢ ﬁn in case

i+1=kand {i, k} ¢ _.Bn otherwise.
Hence M( _Bn) is a matroid on S.

For each.i €¢ I = {1,3,..., 2m - 1} , let F, = {i, i + 1} then

F:‘. is a circuit of M( _E )‘. For distinct integers i, j, k in I the set

{x , le ﬁ(} , where x_ € Fr

i ¥r = i, j, k is a circuit of M( B ).
. n .

Let & (n) be the family of {xi, Xy xk} defined as above. Then the

circuits of H(ﬁn yare ( U F) U F).
iel

To show that M( ‘66 ) is binary let Cl' C2 be distinct circuits

of M( ‘36) such that c, OCZ o .

case 1. C =Fi,C

1 2

€ g(n)'

Let C1={xi, y;} andc, = {x X0 x } . Then i # j# k so that

<, dc, = {yi, X0 xk}. e &m).

case 2. C.,, C

10 S € & (n) and |Clﬁczl=1

Then C, = {_xi, xj, xk} and C, = {xi, Yy yk} where Fj = {xj,. yj}

and {xk . yk} = F and i # j # k. Hence c, A C, contains a circuit Fj.

case 3. C,, (:'2 e & (n) and Icllr) c2| =2

Let Cl = {xi, xj, xk} and C2 = {xir xjr Yk} .

Thenclﬂcz-——{xk, yk}=F

e which is a circuit of M(_B6).
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Thus M( 6 ) is binary.
For n > 6 we can choose C, = {xi, x5 xk} and C, {xi, 3y -xr}
where i # j # k # r. Then C, ﬂ c, = {xk, xr} is not a circuit and

so M( n) is not binarv if n > 6.

The next theorem due to Tutte [ 65] .gives a necessary and
sufficient condition for a matroid to be binary. The proof is drawn

from Welsh [76:} . The following two lemmas are needed in the proof.

4.2.7 LEMMA. Let C be a circuit of G(s). If z € C, then C \ z is
a circuit of G(S).(S~\ z). If z £ C, then either C is a circuit of

S

G(S).(S ~2) or C is the disjoint union of two circuits of G(S).(S ~z).

PROOF. We first assume that z € C. We showed in the proof of

Theorem 2.7.8 that C ~_z is a circuit of G(S).(S ~ z).

We next assumel that z ¢ C. Suppose that C is _1161: a circuit
of G(S).(S~z). But C is dependent in G(S).(s~z). Thus there
exists a proper subset D of C such that D is a circuit of G(S).(S z).
If D Uz is independent in G(S), then D is independent in G(S).(S ~ z)

which is not so. Hence D U z is dependent in G(S) so that D Uz is a

=

circuit of GI{S). o S.ui Zaaobl .o o TE U w inom o ola.oky R DB .

Therc exists a circuit Cl c (C ~xD)u =} >, with z € Ci.
A i :

1f there exists a. in (C \\D)\C,. Pick x, €¢ D. Then a # x, and so

1 1 1
- : [ ] 1
there exists a circuit C & (C UD U z)~~ xl with a € C . Since C ~_ X

1
. : e
is independent, (C \.xl) U z contains at most one circuit. Hence C = Cl
and so a € C, which is a contradiction. Thus C, = (c D) U 2z, Hence
C ~D'is a circuit of G(S). (S~ 2) as required ' //

T [ . 1
4.2.8 LEMMA. Let C be a circuit of G(S).(S ~z). Then C is a
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circuit of G(S) or C* v z is a circuit of G(S).

PROOF. Suppose that C' is not a circuit of G(S). But every
proper subset of C' is independent in G(S). (s \ z) and so in G(S).
Thus C' is independent in G(S). If z is dependent in G(S), then C'
must be independent in G(S).(S \ z) which is not so. Thus z is
independent in G(S). Since C' is dependent in G(S).(S \z), C' u z
is dependent in G(S). As (C' \ x) is independent in G(S).(S \ z),

(C'\ x) v z is independent in G(S) and hence C' y z is a circuit of G(S). //

4.2.9 A minor of a matroid M(S) is a matroid on a subset of S obtained

by any combination of submatroids and contractions of M(s).

.

4.2.10 THEOREM. A matroid M(S) is binary if and only if it has no
minor isomorphic to U .

2,4
PROOF. Let M(S) be binary. If there exists a minor of M(S)

which is isomorphic to U a’ then since the minor is also binary,
r ' .

2
02_4_15 also binary. This is a contradiction.  Hence ‘all minors of
r
M(S) are not isomorphic to U2 4"
!

. Let M(S) be a matroid which has no minor isormorphic to Uy 4 -
7
We prove the theorem by induction on |S| . Assume the theorem is true

for any matroid M(T) which has no minor isomorphic to U a

! 2,4 2"
7| < |s| . ret C,s C, be disjoint circuits of M(S), where C; n C, # ¢ -

We shall show that C, A C_ 'is a‘'disjoint union of circuits, that is

1 2
C, & C, contains a circuit.
_We may assume that S = C; u C, (otherwise consider the matroid
C, uCl. = . - = = C = -
M.S(Cl U 2) Let X C1 n C2, Yl Cl\\ Cz, Yé C2 N\ Cl and ¥ Yl U Y2

We show that Y is a union of disjoint circuits of M(S) by considering all

possibilities. .
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case 1. |Y1| = IYZI =1

If |x| = 1, then by (K,) there exists a circuit C< Y, UY, =C, A C,

and we are finished. The result also follows if [X| > 1 and v,V v,

is dependent. If Yl U YZ is independent, then |X] > 1 (otherwise

Lt 4 . i iy, U .
Yl _Y2 is dependent) Exteéa Yl U Yz to a basis Yl v 2 I = B. Then

Igx. If X~.I=a, ‘then B U a contains 2 cércuits C,+ C, which

is not so. Hence |X W.II > 2. In case |X*\ Il > 2 we have

r(B) =2+ |1] <2+ |x] - 2=|x| so that (M) + 1 = x(B) + 1<|x| + 1
='|C1| . A contradiction. Thus Ix NI| =2 and so Y U (X ~ Xy xz) is
a basis of M(S). Let T = {xlf Xor Y0 yz} . Consider M(S).T .

We see that any 3-subset of T is a circuit of M(S).T so that M(S).T is

-U2 4 which is a2 contradiction.
s .

case 2. |Yl| >'l.

Let Y. = {y, z, ... "} . By Lemma 4.2.7 C.~_ Y is a circuit of

1
M(S).(S ~ y). Also by Lamma 4.2.7 C

1

2 is either a circuit of M(S).(S\y)

or c2 is the disjoint union of two circuits of M(S).(S \y). By the

induction hypothesis and by Theorem 4.2.4 the symmetric difference of

C,~ Yy and C_ is a disjoint union of circuits of M(S).(S~y). By

1 2

Lerma 4.2.8 we then can write

= * 2 9 8 'I. - " 88
Y S}.U U SrU USt
where each si is a circuit of M(S) and
[Y} 1ii?‘jir:
s, Ns. =
i 3

¢ - otherwise |,

We show that r is odd. Suppose that r is even . Then we

I
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pair Si and Si+1

is a union of disjoint circuits of MS(S:'. u Si+1] . As any

fori=1, 3,..., x-1. By the induction hypothesis

5; 85in

circuit of M (S, U S, ) is also a circuit of M(S) it follows that

Y = 7T U ...U'J.‘hU-'y ’

where Tl""' Th are disjoint circuits of M(S) which do not contain y.

Now for each i = 1,..., h, T:i. is a circuit of -MS(S \. ¥) and so by
Lemma 4.2.7 if z ¢ Ti" 'I‘i\ z is a disjoint union of at most two
circuits of M (S Ny). (S \yz) and hence of M(S).(S ~ z) and T, is a

.c:l.rctiit of M(S).(S~ z) if z ¢ Ti. Thus

= - U U
YN z R U R U Y,

where R. ,;...; Rk are circuits of M(S).(S ™ z) which do not contain y.

Since Y N\ z is a symmetric difference of cl\ z and.02 and cl\ z is a

circuit of M(S).(S ~ z) and C_, is the disjoint union of at most

2

two circuits of M(S).(S \ 2z), Y\ z is a symmetric difference of at

most three circuits of M(S).(S\ z). ‘Then
yﬁRld... ﬂRkA (Y N 2)
is a symmetric difference of circuits of M(S).(s ~z). Since M(S).(s\.z)

is binary, y is a circuit of M(S).(S™~ z). By Lemma 4.2.8 either y or

Y U 2 is a circuit of M(S) which is a contradiction.

Hence r is odd and thus by the induction hypothesis for each

' A s, is a disjoint union of circuits of M(S).

Si-1 %8
b

Then we can write S.4 ... 4 'S as u C
: 1 S 42 § =1

p
u

i = 2,4,..., r - I;

where all C i

L]
i ' are disjoint-

-

circuits of M(S) and therefore Y = ( Ci}-u Sr U see U st is .a
i=1

disjoint union of circuits of M(S) as required. ' //



5. GAMMOIDS AND BASE ORDERABLE MATROIDS

| s'tri.qé gammoids, that is, matroids arising from directed
gréphé were ihtroduced by Masop [72_‘, . We show their relationship
to transversal mat.roids. : . |
. . The class of gamoids is closed under the taki.ng of ntnors and
uncier dua.li.ty and it also conta!.'ns transversal matroids; Thus tha
class of gammoids is the closures of the class cif transversal
matroids under contraction, restriction and dual. |

Finally a class of base orderable matroids is discussed.
5.1 STRICT GAMMOIDS AND GAMMOIDS

A path in a directed graph (more briefly : digraph) G = (V,E),
where V is t‘he set of vertices and E the set of edges, is a sequence
I_’ = (v ’ vl,..., v ) of a pairwise distinct. vertices of G such that o
k > 0 and (v -1’ v) €E, 1<1i<k ‘I‘heverticasv andvkare
respectively the .initia.l and terminal vertices of P. We say that
(v 1 1Y Je F and vi 1,viare onp.1< i <k. Two paths are d.isjoint if
their vertex sets are ﬂisjoint.

Let A, B S V. D linking of A onto B is a bijection «; A + B
‘such ‘that there are pairwise disjoint pat_hs (p_/x e nf),'where P, has
“initial vertex x and terminal vertex <«(x) € B. Befbre we pregent:
the Linkage Lemma due fo Ingleton and Piff [‘?3} we def;ne for any

z EVthesei

AN B . . .
Z = 2 VU{vevVv/(z, v eE for some ze€ 2},

and for each v € V we denote by Av the set v .
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If ‘94 is the family of sets (A / v € V) we denote by e}'éx

the subfamily A, /vex), where X & V.

‘Throughout this chapter anydigraph considered is finite.

5.1.1 THE LINKAGE LEMMA, Let G = (V, E) be a digraph. If X, Y are
subsets of V then X can be linked onto Y in G if and only if VXXX is

-

a transversal of the family %v\y' .

Pme. First suppose that X is linked onto Y ip G by pairwise
disjoint paths (Pv / v € X). Define a function < : VXX *V\Y by
' v if (v, u) € Px for some x & X,
-={u) = )

u otherwise -.

Then = is well defined, since the paths (e, /v ‘e X) are pairwise
disjoint, and is an injection. For each u £ VX we see that

which beloﬂgs to 54 v

€ . o « if
u :€ é.ﬂ_(u) ¥ Sincg ; (ul} # « (uz) if
ul # u,, V~X is a t.rc:msversal of v~y °
Conversely let V \\ X be a transversal of o)’{ . Then there is

V<Y

s

& bljection. '« : VN X =+ V \Y such that u ¢ ﬁc(u) for all u € V\X.

Consider any v € Y \\ X. We show that there is a path joining a point

in XNYtov., AsveY~X, veV~Xsothat veaAd and hence

«(v)

(=(v), v) e E. If e«(v) g X, then «(v) ¢ VX so that

«(v) € A which implies (x2(v), «(v)) = (x(x(v)), «(v)) € E.

«(=(v))
Thus either there exists k with ck(v) € X and mr(v).p! X, where r < k
or we obtain an infinite sequence { « (v) }:=1 . Now o« (V) € VWY

for all r. Since G is finite we have «¥(v) = «%(v) for some r < s.

Choose the minimal r with «“(v) = r°(v), r <s. Then

a(ar-l_(v)) = «(a5"1 (v)), contradicting the minimality of r. Thus
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°=k(v')- € X for some k ‘and cr(vi £ X for 511 r < k. Thus we.ohtain a
path {¢ (v). ¢k l(v),..., v) from ¢k{v) € X\\Y to v. Since « is
injective, the. paths ((ﬂk(\})...’., v) /v eYNX) are pa._i.rw.i.‘se
disj_oii;t. We adjoin the_triviai paths (v), for v e X N Y to the

above paths to get a linking of X onto Y. . - ' /i

5.1.2 muzgnnn.f'aiven a digraph G = (V, E). Denote by L(G, B) the
collection of all Subsets of V which can be linked into a f.ike_rd
subset Bof v . That is X € L(G, B) if and onlyji'fi there exists
_ ¥ € B such that there is a lir-iking of X 511@0 Y. Then L(G, Bi is the
collection of independent sets of a :natr'.;id- on V, We call this a
Strict gammoid. | |

‘'We always denote a strict gammoid by_L(G, B) wié}: G and B as

above. Observe that B ¢ L(G, B) and so r (L(G, B)) = |B| .

\

PROOF.” By the Linkage Lemma, X e L{(G, B) if and only if

’ L
V XX is a transversal of the family 64 ,» for some B £ B.
- VB '
Then
‘X € L(G, B)<=> VXX is a transversal of the family&4 ,+ for some B £ B,
VB
<=> VNX contains a tra,nsversal of M e
VB

<=> ¥V \X is spanni.ng in the transversal matroid M [“AY -\B]
_ Since the complement of a spanning set of a matroid is an independent set

}

of its dual matroid, L(G, B) is the set of independent sets of the dual of -

M[cf’l‘ B} o | | _//

‘ In fact we have proved.

5.1.3 ,THEOREM. A matroid M(S) is a strict gammoid if and only if M*(S)

is transversal. . , / /
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5.1.4 EXAMPLE. Consider the foilowirig digraph G = (V, E). .

1 2 3 4 5 6

L
™

L 4

Then L(G, {6} ) has as bases all singletons of V while L(c, {3, 6} )

has as bases all sets {x, y} ; where 1 <x<3andl <y <6.

- 5.1.5 Given a digraph G = (V, E) and B £ V; by the strict gammoid
presentation of L(G, B)* we mean the family ( 094 / v £ B) and write
. v
' L(G, B)* for M{uﬂd ]
VB
5.1.6 LEMMA, The strict gammoid presentation of any transversal

matroid exists.

PROOF. Let .M E.&l....g ArJ be any transversal matroid of
rark r on a set V, Choose 2 basis VX B = {.vl,..., vr} of M(V),

ivhere Vi €A

i‘. 1 <i <r. Construct the digraph G = (V, E) as follows:

{vi.x)eE <=> -.x#vi,_xeni, l<ic<r
Then it is clear that L(G, B)* = M L'Al,..., a} o

Thus for ahy strict gammoid we can obtain a presentation of

its dual as a transversal matroid and conversely.
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5.1.7 A ga.nmbid is any restriction (submatroid)of a 'strict gammoid.

'5.1.8 LEMMA. Any transversal matroid is a gammoid.

PROOF. Let M ["Al;...; Ah] be any t;fansver‘sal matroid on S.
pat I = {1,..., n} . Construct the digraph G = (V, E) as follows:
Iet V = §8SUI.
For each x ¢ § join x to iel <=>x¢€ A . ‘Consider L(G, I)., We

easily see that M[Al,..., Ar] is the restriptibn of L(G, I) to S. //

For convenience in notation the restriction of M(S) to any-

gsubset T of S is denoted by M(S) / T.

5.1.92 Iemma. (i) Any minor of a gammoid is a gammoid.

(1) The dual of any gamnmoid is a gammoid.

PROOF. (i) It suffices to show that any restriction and
' any contraction of a gammoid is a gaminoid. Let M(S) be a gammoid..

Then there exists a digraph G = (V, E) with M(S) = L(G, B)/S for some
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subset B of V and some subset S of V. Thus fbr any T €S we havel .
M(S) /T = (L{G, B)/S) /T = L(G BY /T

and so M(S) / T is a gammoid.

To show that a contraction M(S) . T is a gammoid we use the

fact that for any M(S) and A £ B £ S we have

M(S) / B). A = (M(S).(S \\ (B \A)) /A.
Then M(S). T = (N(S') / S). T, where N is a strict gammoid on some
$* 2 S, By the above, M(S). T = (N(S§'). T')/ T , where T* = §' \ (S\T).

*k * § ik . .
Now (N(S').T') = (N(S').T') = (N (S')/ T ) and since N(S') is a
' * ' *

strict gammoid, N (S') is transversal and hence N (S')/T'. Therefore
N(S').T" is a strict gammoid and so its restriction, M(S).T, is a

gammoid.

"

The following theorem which we state without proof is due to

Ingleton and Piff [73] .

5.1.10 THEOREM. (i) Every matroid of rank 1 or 2 is a strict gammoid.
(ii) Evgry gammoid of rank 3 is a strict gammoid.
(iii) Every matroid of rank n - 1 or n - 2 on a set c:f n
elements is transversal. A
(iv) Every gammoid of rank n - 3 on a set of n elements is

transversal.
5.2 }:}ASE ORDERABLE MATROIDS

5.2.1 A matroid M(S) is base orderable if for any two bases B,, B, of

M(S) there exists a bijection 0 : B]. —*Bz such that for each x e Bl'

-
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{Bl\- x) U’ o(x) and (B2 - 0(x)) U x are bases of M (S).
The furnction 0 is an exchange ordering for Bl; }32. :
5.2.2 EXAMPLE, M( ’Bn ) is base orderable.

PROOF. Let Bl' 132 be distinct bases of M( _3“ }. We can

assume that Bl_ﬂ Bz =¢ . Suppose Bl-== {a, b} ana 82 = {c, 4} .

If there exists.a pair of elements one from Bl and one from 132 such

that this pair is F,, {a, ¢} =F, say. Then {a, <Je _Bn and

{b, é}e 3:1 . Hence © : B, = B, defined byl 0fa) =Ic . 2(b) = da

1l 2

is an exchange ordering for Bl' 82. In the other caase any injection

B -

from B, onto B, is an exchange ordering for Bl" 5

1 2
5.2.3 LEMMA. Not every matroid is base ordexable.

' LS

PROOF. We show M(,cf) is not. Iet B, = {xl, Xy x6} and

v ) ' '
=[x

B, { 5r Xg

1] .
that B, = {xz, X0 x4} is the triple containing x2,_x4. Put

B, = {xl, Xy x3'} ' B, =.__{x4, X, X} . ThenB and B, are bases

of M( ‘507)‘. Since ,_‘f; contains 7 triples and ever'y element in S,
is contained in exactly 3 triples of sff; , the only triples that are.

not subsets of Bl v 32 are the three triples containing 7. Hence
' v

L] L}
Bl U 32 contains another triple different from Bl ' 132 and B3 . We

claim that the triple B containing X0 Xgq is a subset of Bl U 132.

. v
Suppose not, then B = {xl, X3 x.?‘} . Thus the triple B containing

x,s X, does not contain x7' so that it is a subset of B, U B,.

N _
Therefore B = {xl, Xy x3} or {xl, Xy .x4} or {xl, Xy x5} or

{ X10 Xy0 Xg } which is impossible. Thus B¢ B, UB_, and B must be

.

//_

, xﬁ} be two triples in % . Then thhere exists Xy such -
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equal to {xl,_ 5:3,_::5 } .
If M( 3;.) is base orderable, then there exists a bijection
f : B, » B, such t.'hat‘(Bl\x) U f(x) and (32 ~f(x)) U x are

1 2

bases of M( ‘:70), ¥x € B
7

Hf(xl))' Ux

Mow f(xl) # Xg and f(xz} # X, {otherwise

1° 4

-

(B

2 2

1= {xi, xa\, xﬁ} € DZ and (Bz\f(xzj} U x

= -(xz, xs, x6} € j; ). Thus f(xl) = x4 }::::':t6 and f(xz) = xs or x6
and s0 we have all three possible bijections fl'f2-' f3 from B, onto B,

defined as follows:

]
"

fl(xl) =X fl{xz) = x ' f1(x3) 4

fz(xl) =X, fz(xz) =% f2(x3) =_x5 *
£3(x)) =%, o E3(x)) =xo , fi(x)) = xg
Th I h ) £ } y
en we have (Bl\xz) v l(xz} = [xl, x40 Xz} € ? )
or (Bl‘\xl) U fz(xl) = {xz, Xy x4} € r_(f-’

or (ByN\x)) Uflx) = xy %y xg) € I
which is not so.

Therefore M( cﬁ} is not base orderable.

i

In fact if n = 1 or 3 (mod 6) and n # No a non - base orderable -

matroid M({ Ji ) exists since c)lf contains y and we have
: ; : _ 7

!

5.2.4 LEMMA. BAny restriction of a base orderable matroid is base

orderéble .

PROOF. Let M(S)/T be any restriction of a base orderable .
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o are bases of M(S) |T, then there

‘exist bases Al, A, of M(S) with B, S A, B, £A,. Let Obe an

. matroid M(S) on a subset T, If B, B

_'exchange ordering for Al' Az'. Suppose that there exists x € Bl with

O(x) € Az ~ Bz. Then (A, ~0 (x)) V x is a basis of M(S) so that

x-ﬁ:i‘Bz. Thus B

.\

, U X is independent in M(s)/T. A contradiction.

o ¥x € B, and so elBi is an exchange ordering for

l | : /7

Hence 0O(x) € B

5.2.5 LEMMA. The dual of any base ordérable matroid is base orderable.

PROOF. ILet M(S) be any base orderable matroid. i.ei_; Bl' B~2

*
be bases of M (S). Thusls \Bl and S \Bz

there exists an exchange ordering 0 for s~ Bl' s \BZ- If there

are bases of M(S) so that

exists x € B, Bl with ©(x) £ Bl' then ©(x) € § \ B, so that

1
- 1. But ((SNB)Nx)) U o)

2

(s ~B N x) Ve = s %Bll

is a basis of M(S) and so ' |((s B A% vetw)| =| sx | . &

conti:,adiction, Hence ¥x & B “w Bl ,9(x) € B, N B,. That is

2 1 2
. . _l . -~
= 8% (@~ .
BwBy= €0 (3N
Defi:'m L B, + B, . .bY
' x . if x.€ B, N B,
Pix) = ? 12
’ ) | . . )
0 T(x) 1fxeBl\Bz.

1

Then for any x & B, ~g B, we have (B, ™ x) U oP(x) = (B~ x) U 0 (x).

wow 6 00 e
Now 0O "{x) € 132 \Bl | 1 b
. (s \.'Bl) \Y) U ©(y) is a basis of M(S). That is ((S \BI) N e-lt-x)) Ux

=> 3y € B\ B, with O(y) = x and so

is a basis of M(S) so that (B, ~ o _9-1(x} = (B; \x) vix) is a

 basis of M (5).

0

. - . . *
Similarly we can.show that (B, ™\ ¥(x) v x is a'basis of M(S)



and the result is prcwved.
As a consequence of two above lemmas we obtain

5.2.6 LEMMA. Any minor of a base orderable matréoid is base

orderable.
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6 PREGEOMETRY PRODUCTS WITH APPLICATIONS

6.1 FIRST PRODUCT -

Given a matroid M(Sl) and a pregeometry G(Sz) . For any

basis B of M(Sl) we consider the collection ‘QB » the col].ect:lén

of setsof the form

D = (U

ee B exBe)U(eLe)S

B € X (B)xD),

1
where for each e ¢ Sl , some basis Be of G(S.z)' is selecte& and

further for each e ¢ Sl\B some element f eB, 1s selected.

We vary the construction of Lim [77] (see section 2) to
obtain a pregeometry from a given matroid H(Si) and a bregeomet_r}f

G(Sz) by proving

6.1.1 THEOREM, :;',]B is the collection of bases of a pregeometry

6(8, X 5,) defined on 5, x S, .

PROOF, We see from the definit:ionl that ‘;QB is a nonempty
colléct:ion of finite subsets of S1 x 82 » each of the same size, .
We show that f) ; satisfies the basis axiom (B) . Let D, D'ed, -

Then

;exB)U(U e x (B~1f)),
e . e .

ec Sl‘.“mB'_

De Yy ex B U (Y s e x.(BéxufS)."

Consider any particular (e, x) € D~ D' . "'-We show that there
exists (e', x') €D'D such that (D~(e, 'x)u (e', x")¢ ';]B .

There are two pbssibilities ; (1) e€e B, (.{1) e B,
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(1) Suppose e ‘¢ B . Because Be and B; are bases of
G(Sé) and x ¢ Bé , from the basis axiom (B) , there exists

g € B'e\_ B, such . that (Bé\ x) U g 1is a basis of G(Sz) .Then

by changing D oniy in selecting (B}x) Ug in place of the original

Be we have another member (D™ e x Be)U (e x ((Be\x)ug)) of J)B‘ i

which differs from D only in that (e, x) 1is rel;'olaced by (e, g) and
(e, 8) €ex (Bé\Be) 1s in D'\.D as required.

(11) Lastly suppose e -;3. Thus (e., X) € ex (Be\f)-'
.énd S0 X + f. Now (B;\f)\x and B;\ f' are both independént in
| G(SZ) and of éize r(Sz)-—z. and r(Sz) —1 respectively, and
_xll 4 (B‘;\f') - Hence there e:lcists.x 7g ¢ B;"\f' such that
.((Be\lf)\,x) {J g is independent in G(Sz) . Then by chang:lng D onlyl
:!.n selec't:l.né ‘((Be\- f),‘-\x)#u g in piace of the original (Be\fs
corresponding to e we héwe another member |
(D (e x- (Be\f)))U(e x ((.(Bé-...f)l\ x) U g)) of.. JDB which differs

~ from D only in that (e, x) is replaced by (e, g) and

(e_, 85 €e x ((B;\.f')\. (B;\f\x)) is-in D'SD as required. _

We r_noi:ed in the proof that ranks r of GB(S.-I x. 52) is

given by

7/

r = 1'*-,.("‘-31;) r (¢ .-;52',;) + “S_ll - "“(‘-'51:')')(1:{ CI{SZ';)-- l). o

—

the common size of each D .
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. 6.1,2 LEMMA . The circuits of GB(SI X Sz) are exactly the sets of

the following forms

1) exC where e ¢ B and C, is a circuit of'G(Sz),

2’
(ii) e x C2’ where e ¢ B and 02 is a circuit of G(Sz) of

rank strictly less than rf (.-'1923 ).

PROOF, We see from the definition of p that any subset
of S1 x 52 of the form (i) or (ii) is a circuit of GB(Slx 32).
Let C be a circuit of GB(Slx SZ) « We show that C has the form (1)

or (ii)

m _ . . _
Suppose C = U (e, x G,), whereallG #% ,m >2,
| i=1 _ -

e:l. = -ej <.'=? 1 = j. Then sihc_e all 0'1 x Gi is indel;endent in

G(.S‘.1 X Sz), all G:l. are independent in G(Sz). But if all éi are
not bases of _G__(Sz), it impliés that C is contained in a basis of
GB(Slx S'z) which is not so. Thus ihere exists Gi which is a basis
of G(Sz) and so C = {ei/Gi is a basis of G(S-z)j $#0.If 'a]...l e,
in C, belong to B, then C in contained in a basis of GB(SleZ).
Thus there exists o, € Cl’ e, say, with e B, Put x = (ez.' 0)‘

for some c¢:€ Gy» Now the dependent set e, X G; 1is contained in

C™~x . This is a contradiction.

Thus C = e x Cz, where 02 & 82. We consider two possibilities :

(1) e€B, (i) e ¢B.
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(1) Suppose e e B, Then c, is dependent in G(Sz) and

Cz must be a circuit of G(Sz) (otherwise C contains a proper

dependent subset). Thus C has the form (i).

2 is a c_ircu:l.t of G(Sz).

(i1) Lastly suppose e £ B, Also C

v

For any x € Cz, e x (szx) is independent in GB(Slx Sz) so that

a>xe B N f. Thus C, has

rank strictly less than r(‘ .S,’) as required. ‘ 7/

there exists a basis B of G(Sz) with C

6.2 SECOND PRODUCT

Given a matroid M(S)) and a pregeometry G(S,) we define
A= Ud, , forall bases B of M(S).
. B ) .

6.2.1 THEOREM, @ ~ 1is the collection of bases of a pregeometry,

'G(Sl X Sz), defined on S, x S

1 2’

PROOF. We see from the definition of o’l) that oa is a nonempty
collection of finite subsets of S]L X 32 of the same size, We show
that 4) satisfies the basis axiom (B). Let f), D'e &. Then there

exist bases B, B' of 'M(Sl) such that

DV exp Ul U ex{s~ £,
e £€B GSSi\B L e e

D'= (U e XD Hu( U, erx(@,NED).
Gre B e e'ESINB . ®

S
Consider any particular (e, x) € DN\ND', We show that there exists

Pl

.(e:' x') € D'~D such that (D - (e,x))U(e!x') € A. There are four
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. . /
possibilities : (i) eeB NB', (il) e & (5;\B) n (8,™B") ,

]

{il) e e (S, BNE  (iv) e ¢ B /S, NB')..

(1) Suppose e € B/B', Since Be' Bé are bases of G(‘Sz)
and x € ll?ae%; B; , there exists g € B;\Be so that (Be\. x)U g
~1s a basis of G(Sz). " Then by- changing D only -:ln selecting (Be\ X)U g
in place of the original Be we have another member
‘(Dw e % Be) (e x ((Be\ x) U g)) of oQ whic:h.differs from D'
oln:_Ly in that (e, x) is replaced by (e,_ g) and (e, g) s (B;\]?fe)

is in D'\ D as required.

(i;.) Now suppose ee_-_-(SI\.B)ﬂ (Sl-\.B'). Thus

(e, x) e e x_(Be\ f) and so x 9‘ f. Now (Be-\ f?\x and (Bé‘-‘sf'_)

are both.' independent in G(SZ) of size rf;C»szl )- 2 and rfufiszj:j -1
-r'espectively and x I;’ (B:\ f ')_. Hencé there e;cis'ts |
.'x-# ge: ((Bé'\ f')\((?e\kf) ~x)) so that ((Be\a'f) ~ X)uv g 1is
independent in G(Sz) of size r:({szf_-) - .1 . Then ny cha_n'.gi.ng' D
~ only in selectiﬁg._((aeﬁ.‘f).\ x) U g 1in place of the originhl (Be\f)
‘ co;:respdnding to e we have aﬁdther member
@~(ex (B,x ) U (ex (B N %) U8 of '@, which

differs from D 6n1y. in that (e, x) is replaced by (e, g),

and (e, g) €ex ((BINf') N(B,N\f\x) is in D'\ D as

required,

(ii1) Now suppose e € (S1 ~ B) 7 B',
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S:I.:_xc'e Bé . Bé\f are both indel;endent in é(sz) of size ri'ﬁ-:jsz})
and_ rf (:;52}) - 1 respectively, there exists ge (Bé\(Be_\ f) so
I,tl-lat (Be'*-. f) U g 1is a basis of G(Sz). But x ¥ B; s S0 X # .g.
and sinie b 4 'et (Be\ f), _((Be\ f) SY)U g _ is indepe-ndent in G(S) of
size rl'cz;éz;-')_ -1 . Then by changing D only 1;1 sele‘cting :

((Be\ £)Nx) U g in place of the original (Be\ f) i:orresponding'to'

e we have another member (D \ (e X (B v 1))V (ex (((BN ) x)Ug)) '

of A which differs from D only in that (e, x) is replaced by (e,g)

and (e, g) € e x(Bé %(Be\ £)) is in D'\ D as required.

- (iv) Lastly suﬁpose e € BN I(Sl\-B‘) Then e € B % B' -
and hence there exists e'e B'> B so that (B ~ e)e' 1is a-

basis of m(Sl). Now- Be.\ f and Bé, are independent in -G(S'z)

~of size'r!C"Szf') - 1 and r{(:’_Sz;) respectively and hence there
exists g ¢ (B;,‘\ (Be“" f) so that (B,ix£) U g is a basis of

G(Sz). Then by changing D'o_nly in selecting the basis (ﬁ Ne) y e
in place of t;be .bas:ls}B, and selecting (Be,"m flu g co;respondiug
_tb e', -and- éelecting Bek. X corresponding to e we have an_other _
member. (D (e x B)) . (e'x (B B)IUCe! x (BN D) U £)

UV (e » (Be‘.\..x)) of A which Idiffeté from D only in that (e; :;) .iB

rgplaced by (e_' y 8) and (e', glee'x (B-é;\ (Be,\f) is in D'~ND as

required,

//
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Theorem 6.2.1 was obtained for matroids by Lim f 77]
" The proof makes no use of the fact that SZ is infinite. We

have based the contruction in section 1 on it. We note that

6.2.2 LEMMA, JJ is the disjoint union of the ‘FOB’ for all bases
B of H(Sl).

PROOF. We are left to show that &, ﬂ,ﬂB = ¢ if
1 2

Bl and 32 are distinct bases of M'(SI)' Suppose that there

exists D e-aB ﬁ@B with B, ¥ B, . Assume r{'((Slf‘Q - r,
1 2 -

LeF B, = {.\;_el,..., e, 1'},- B, = :{e‘l,..., e } . Then

D can be written in the forms

r .
D = (Y exB )u( W e x (BN £))
=17 ey e£8 N3 e
_ 1>
r _ _ _ .
D = (M e xB )M ( U " x(B'>EM)
i 1 T~ e’
e sNB %
For each 1, 1:< 1 % r , choose x, € e, x B_ + If
- i i ey
Tr
3 U v ' =
:{ Xyseees xrj} £ 421 (ej x Be; ), it follows that B,= B,.
Hence there exists x;, and e'e §;™ B, with xi..e e' x (B;.‘\ £')

- and so e, = e' , Pick an element y € '((eix Be

L =G’ x (B, ~EN)).

i

Now either i _Ijl with y & e; x B;| or s e * e!. and et,'-e‘ Sl""Bz

with y € (e" «x (B;,,-‘t £')). Thus we have e5 =¢e' ore'" = e'

which is a contradiction in either case.
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Hence Z]B § 332 = ¢ Aif B, aud-!i2 are distinct bages'of

We note from the definition of A that the rank r of G(S, xS,)
is given by
r=ri(is) T (5-_:'82;) + (Isll - ri({8,7))(x¢ CSZ) - 1), :

‘as for Gp(S, x S,).
6.2.3 LEMMA, The circuits of G(S‘»l xsz) are of the following forms

(1) e » 'Cz , where e £ S

yand C

2 is a circuit of -G(Sz).

(11) Y (e x B)), where C

. e € Cl

each Be is a basis of G(Sz)_.

1 is a circuit of H(Sl) and

PROOF, We see from the definition of & that any subset of_.

S, x 8§

1 of the form (1) or (ii) 1is a circuit of G(S1 sz).- Let C

2

be ény circuit of G(Slx 82)‘ We show that C has the form (1) or _(ii).

case 1. C=¢e xJ for some e € Sl andJ&Sz. If e!:ls not -
a loop of M(Sl)’ then J is dependent in G(Sz) (otherwise C is
indépetjdent in G(S1 X 82)). For any x € J, 1if J X xis erendent, then

e x. (J»x) is a proper dependent subset of C which Iis not so. Thus JNx

| ‘1g independent and so J is a circuit of G(Sz)‘ Hence C has the form (1).

If e is a loop of -M(Sl). We show that J is either a circuit or

a basis of G(Sz). For any x £ J, e X (J ‘jx.x) is independent in

G(s_lx 82).- But e is not contained in any basis of H(SI)' thus
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ex (JNX) & e x (Be‘; f) for some basis B, of G(Sz) and so J ™ x

is independent in G(Sz). Then either J is dependent or independent.
Suppose that J is dependeﬁt in G(Sz). and so C has ﬁhe form (1). 1If
J 1s independent we see that J‘must be a basis of G(Sz) (othérwisé c
is independent in G(Slx'sz)) and so C has the 'form 1),

. _

' = U . :
case 2. C= ¥ (e xG,), whereG# @ for all i, m > 2

and e, = ey @e» 1=3. Then since all e, x G, are independent in

g G(Sl x Sz), all Gy -are independent in G(Sz). By the same argument

as in the proof o_f-Lemma 6.1.2 the set 1o = ;iei /'Gi is a basis =
of G(Sz)}f‘ # § and c, is dependent in M(Sl) (otherwise C is

independent in G(S, % §,)). Suppose that C, properly contains a

dependent subset Cz., Then {J '(ei x Gi) is a proper dependent

. eie (;2

subset of C which is a contradiction. Thous Cl ':ls a circuit of M(Sl)

and so V (e, ¥ G,) 1is circuit of G(S, * S,). But
: i i 1 2
e, € C . .
e | 1 '
. x " 3 . = A
U (ei X, G:I.) @ C, hence Y (gi Gl) C. 7
e, £ C - e, e C

1 1571

Indeed Lim E'ﬂ] proved the following three hereditary
properties of M(Sl * Sz) with bases Q - writing M(S1 X 32)( when 52 |
1s finite) for G(S, x S,) +
6.2.4 THEOREM. M(S, x S,) with S| 5 2 is connected if and

ohly if ﬁ(Sl) is connected.
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6.2.5 THEOREM. M(S, x S,) is base orderable if and only if u(s,)

and M(sz} are each base orderable.

6.2.6 THEOREM. M(Sl x 52) is binary if and only if the following

are satisfied.
. (1) M(s,) and M(S,) are binary.

(ii) 1I1f M(sl) and M(Sz) both have a circuit, then every

circuit of M(52) is of cardinality two.

6.3 APPLICATIONS TO GROUPS

We now apply this last construction to matroids M(Sl) and M(Sz)
defined on subgroups s1 and 82 which are direct summands of the group
s = 8152
for convenience). Thus we obtain a matroid M(Slsz) = M(sl x SZ). We

‘(Although we write the group dpérations we consider additively

show that this example posseses some of the:hereditary properties
discussed in the previous section. We also obtain the size of the the

group of its geometric automorphisms.

For any positive integer m > 1, denote by Zm the cyclic group

of integers 0, 1, ..., m-1 with respect to addition modulo m.

Let B < m > be the collection of 2 - subsets of z of the form

{ r;, r, }, where r, is odd and x, is even.

6.3.1 LEMMA. B < m > is the collection of bases of a loopless

matroid M(Zm) on 2 which is binary and base orderable but not connected.
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. sending the odd integer in B

- 158

PROOF. That .’B(ﬁw} is the collection of bases of a loopless

matroid on zm is clear from its definition.

The circuits of N(zm)_ are the collection of sets of two odd

-

integers or two even integers. Thus a set of an odd integer and an
even integer is not contained in a circuit so that M(Zm) is not
connected. We easily see that the symmetric difference of distinct

circuits contains a circuit. Hence M(Zm) is binary.

For any two bases Bl' B2 of M(Zm) the bijection el : Bl > 32

, to the odd integer in B, is an exchange

ordering for Bl' B Thus H-(zm) is base orderable. _ /7

2.

Given _m'g 2, n> 2 and (m, n) = 1. Consider the subgroups

A

&m) and ¢n) of zm generated by m and n respectively. By Moore

{67, p 118 ] 2., is the internal direct product of &md> and (3.

e

Moreover Z_ ¢:n:) by an isomorphism r - nr. Also 2 =<m>

Then we obtain.

6.3.2 LEMMA. Let B = { nr,, mrz}&@«: m > and mk ¢ ¢m) , where

k < n. Then

¢

(i) mkB € B¢m:> if n is even.

(ii) mkB ¢ B&ad <=> (k + r <nk +r, <n)or

1 2

(k+r1>n,k+r'>n) if n is odd.

2
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PROOF;. (1) We may assume that r is odd and r, is even.

By the Euclidean algorithm 3 r'l, r‘z, 0 < r'i, 1:2 <n with

= ' = !
k + r,=n + ' k + r,=mn + r'2. If k is odd, then ) is even and r'2

is odd. Now m(k + rl)' = n(n I+ r'l) =m r‘l and ﬁ(k + r2) = r‘é 80 that

ukB = {mrf, mty} e B ¢m > . Sinilarly if k is even we can show

-that mkB ef<m Y.

We first show that if either (k + r, <n, k + r, > n) or
(k + r, >. 0y k + r, £n), thenmk B ¢ ﬁ(m ) . Assume that

..k+r <nand k+r, >n., We can assume that r, is odd and r, is even.

1 2
/
If k is odd, then k + r is even. There exists ¢, , 0 < r‘2' < n with

k+7r,=n+7,. Nowk+r,1s odd so that r', is even (as n is odd) and

2 2
hence mkB ={m (k + rl), m r'lz}lg"Bgm ) « Similarly if k is even

we can show that m k B ¢ B(m >,

Ifk+r, >n and k + r, < n we show by the same argument as

1 2
above that m k B ¢ Bim>. ThusmkBe f(m > implies that either |

_,,(k"'r f'.n.k-l-r < n) or (k +r, >n, k+r.>n).

2 - 1 2

1
We next show that either (k + rl <n k+ 1‘2.3.-_' n) or
1=
< n ., Then it is obvious that only one of k + rl and k +,r2 is

(k + r,>mn, k + r, > n) implies m k B ¢ _ﬁ(sm); Assume k + r

k.+r2

odd is the case so that m k B = { m (k + rl), m(k + rz)} e'ﬁ(l:l) .

If k+rl:u n and k+r2‘?n. Thenk+r1=n+r',_

-

+ = (] ' t é ! 1 < .
k r,=n + Y for some Tis T 0 < ris ¥, < n. We may assume that

r, is odd and r, is even, If k is odd, then r'l is odd and r'2 is even,
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If k is even, then r‘l- is even and ré is odd. In either case we have

,mré}e.8<m>. o //

- '

mk B {m ]
By Herstein [?5] , a group S which is an internal direct

product of subgroups Sl and S, is isomorphic to the external direct

product S, X 32 by an isomorphism ab + (a,b), Va € S,, ¥b ¢ S2 -

1l

Thus for given M(SIJ} and G(sz) if we replace the cartesian product

e X Be in D by eBe. then the collection da is the collection of
bases of a pregeometry on S = 8152 which is isomorphic to G(Sl x 52)

in the obvious natural way, and we do not distinguish between them.
We are now ready for the exampleg.

. \
6.3.3 LEMMA. Given m > 2, n > 2 and (mn) = 1. Let M(S)) be the -

matroid on < m > with bases FB<m> and 1let M(Sz) be the matroid on
< n > with bases 3< n > . Then M{Sl X 52) is binary and base
orderable but not connected. Moreover for any
= ] ] } 4 » .
A=nm sl{n ry n rz}um sz{n rirn r2} Um s, {n 1:3} e & and for any

mee€e<m?>, nk e< n > wa have

(i) nk A e d\) ifmisevenandmeAeda if n is even

(ii)nkAl»:.CQ -r§=»(tk+r1_<_m,k+r25m) or.(k+r1>m,
k'+r2>m)) and ((k+ri_<_m,k+ré_<_m) or(k-u-ri:»m,k-l-ré:»m))
if m is odd. “ ‘

(iii) meae X <=> (e+5 <n, e+s,<nor (e+8s >n,
e+ s

2>n) if n is odd.
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1l

(iv) (men-k) Acd <> (e +. 8. <n, e +'sz.in) or

>n, e+ s, >n) if m is even and n is odd.

(e +‘s 2

1

V) (mehk)A'eéfj <=> ((k + r _{m,-k-l-r <m) or

1 2

(k+x. >m k+rx, >m) and((k-l-rig_m,.-k'-i-réf_m)o;

1l 2

(k +r} >m k +r} >m)) if m is odd and n is even.

(vi) (menk)aAa e@ .¢=> R.H.S(:l‘v) and R;H.S(v) if m and n

are odd,
(vii) menk) Ae & if m and n are even.

‘PROOF. That M(Si x Sz) is binary and base orderable but not
connected follows from Lemma q.a_.t.' ‘That M(S, x 8,) satisfies (1) = (vii)

follows from Lemma 6.3.2. | S Y74

6.3.4 An automorphism ¢ of a pregeometry G(S) is a permutation

'on S such that B is a basis if and only if o (B) is a basis.

We note that the set of all automorphisms of G(S) is a group

‘under composition.

6.3.5 LEMMA. The automorphism group A(M) of M{Zn) ‘has size

léiven by
, | 280 G0 if n is even,
- A(M) = : '
(n#l 1) (n-11) - if n is odd.

2 2
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PROOF. First assume thét n is even. Then the nun-lber of ev‘en

| integers in Z and the number of odd integers in Zn are equal and is
e:c,{uea.lvf:.o'-'zl . Put'I = set of all even integers in z,. Thus a permutation
« on I and a pemﬁtation Bon 2\ I define an automorphism © of m(zn)

bY9/I==¢ and o/ =8, Alsoabi.jectionB:I-*_zn\Iand

Zn\I
a bijection vy : Zn\ I - I define an automorphism o of M(zn) by

L n.,,mn
o/, =8 and ¢ /zn\l = Y . Thus we have 2(3'!) (3 !) different

automorphisms defined this way.

Suppose that @ is an automorphism of M(2Z ). We show that
either ©(I) = I or 8(I) = zn\ I. If 0O(1) # I, then there

exists x ¢ I such that 0O(x) =y € zn\ I. For each a € zn\ I

we have { ©(a), vy } ¢ _B < n >so that ©(a) .e I. By the same
argument we can show that for each b.e I, o(b) € Zn\I. Thus

o(I) =2 \Iand 0(z \ 1) =I. Therefore either O(I) = I
or of(I) = Zn\ I . In either case we see that 0O is one of the

automorphisms defined as above. -

We next assume that n is odd. Also a permutation « on the P

set I of even integers in z and a ﬁemutation B on zr";..I define an
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automorphism Q of M(Zn) by o/I = «, B/Zn\ I =8 . Thus we have

(n+11) (n - 11) different automorphisms of M(Z ) defined this way.
2 2 _

Let © be any automorphism of M(Zn) . Suppose that there exists
x € I such that O(x) ¢ zn N I. Then for each a € Zn\ I we have

0(a) £ I and so I-zn\‘ 1| = |1] wh:.ch is not so. Thus 0(I) = I and

O(z >\ I) =2 N\ I . Hence |[AM)| = (n + 11) (n - 11!).
n n ) 3 2 =

6.3.6 The wreath product of a permutation group G on A by a
_permutation group H on B is the group of all permutations © on A x B

of the following kind

ola,b) = t‘rb(a). n(b)) , ae€ A, b € A, where for each
b € B, Yy is a permutation of G on A, but for different b's the
choices of the permutations Y, are independent. The permutation n

is a permutation of H on B. (cf. Hall [76] , p 81).

“The relation of the automorphism group of M(Z .), where
n > 3, to the wreath product of the automorphism group of M(Zm) by
the automorphism group of M(Z ), was obtained, as the following

result, by Lim [77 ] .

6.3.7 THEOREM. The automorphism group of M.(Sl X sz) _i.s the wx;eath
product of the automorphism group of M{sl) by the automorphism group
of M(Sz} if and only if the following conditions hold.

(i) M(82) is 1 - uniform implies that every 2 - element
subset of E is.independent.

(ii) ‘M(sz) is not connected implies 'that M(S,) has the

property that for every two distinct elements el,' e, of si'there
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exists a circuit' C with |C N {e, e2}| .= 1 //
6.4 AUTOMORPHISMS

- We now give an example of a pregeometi:‘y defli.ned on a groﬁp s
so that multiplication is a geometric automorphism i .e., so tﬁat the
collection .";B‘of bases is preserved und.;r the group operation. That
is, B ¢ 3 <=> g B ¢ B . We also show that the products of the

previous sections have such geometric automorphisn.

6.4.1 EXAMPLE. Let H be a non-trivial proper subgroup of a group
S, of finite inde;c r. Denote all distinct left cosets of H in §
by 9, H, ... , g H. Define B to be the collection of all subsets

of S of the form { b 'b;:} » where b, € g.f, i=1, ..., 1.

l’ L
Then Bis the collection of bases of a transversal pPregeometry G(S)

on S such that

Beﬁ <=> gBe_B-, ¥g € S.

Moreover G(S) is a pregeometry which is (i) loopless, (ii) binary

and (iii) base orderable.

PROOF. It follows from the definition otB - that it
satisfies (B) so that JB is the collection of bases of a transversal

pregeometry G(S) with a presentation { ng, cee ng J .

We showthatﬁeﬁ<=> g-B e.B s ¥g € S, I.et.Be_B-andw

g e S. To show that g B ¢ ,B it suffices to show that

L

(ggl-H)U....- U(ggr H) =8, Fori=1, ... , r, put 9; -ggija':_-.
1 1]
We first show that (gi H) N (gj H) = ¢ 4ifi s j. Suppose that

L L] ) . :
Ix ¢ (gi H) N (qj H) .- Then there exist hl, h, inH with

2
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X =gg;h, = ggjhz and hence y = g":_lx (giH) n (ng) which is a

- . r
contradiction. Thus (g;-H) Mgy M =¢ SE1#3. Now

HCS. For any x € S we have q-lx € S so that

g".u T Ug,

1

g-lx\e gi!-! for some i and so x € ggiH . Thus § = (ggiH) U...;:f (ggrﬂ).

Let g B E;B. Sl.l}_).,!y::oseB=={bl reses br} . Thengbiﬁg.ﬂ

]
for some j. Since gb, # gbj and (g,H ngjn) =¢ if i # j, we can
assume that gbi E'giﬁ, i=1 +.. , . Thus bi € q-lgiH . By the

above (g—lgll’-l) U .un {:’(g-lng) = S so that {g”-]‘ng renes g-lng}
= { 9yH seeer g B } and hence B ¢ B . .

r ) .
(1) since s =4 g 4Hs every element of S is contained in a
i=1 . -
basis and so G(S) is loopless.

(ii) Notice that a circuit of G(S) is just any set of two
elements from the same coset. Let C,» €, be distinct circuits of

G(S). Then since |:le = |02| = 2, IC]. ﬁczl >2. 1f Cl' C2 are

in the same coset, ti'nen elearly ci a C2 contains a circuit. But if

A = C c. A
Cl, C2 are in different cosets, then Cl 02 Cl 82 aqd so Cl C2

'contai_ns a circuit. By Theorem 4.2.4 G(S) is binary.

= {b]_"-'" b_ } and B, = {bi feees b;:} be any

(iii) Let Bl

. 7
two bases, where bi € gin’ hi

1 ' .
0 . B, > 132’ defined by © {bi) = bi' vi=1,..., r, is an exchange

ordering for By, B,. Thus G{S) is base orderable. _ 7/

€ giHl i=1 geesy L. Then the function

. 6.4.2 LEMMA., Any automorphism o of the pregeometry in Example

6.4.1 is of the form

R 0/ gH = gg B i=1,..., 1,
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where © is any permutation on { 1 ,..., r} . N

PROOF. First we shog thaﬁ any function ¢ on S which satisfies
(*) is an automorphism of G(S). It is clear that o is a- permutation
on G. Let B = { gi hi reser 9. h }e B . Then forli# j we
have ¢ (gihi) and o (gjhj) in diffgrent cosets _since 0isa |
pei‘nmtation‘ on{1,..., r} . Thus ¢ (B) intersects every Icoset‘ of
H in s.ii.n exactly one element. Thus o(B) & 5. Similarly if ~
o (B) € _3 we can show that B ¢ I3 . Hénce ’.c is an automorphism of

T

G(s). -

.Suppose that = is an automorphism of G(-S) which does not
| satisfy (*)_. 'I‘hen-f 3 é. # b, ale _giH' b_‘,_?"e giH with « (a) € g_jH
and = (b) € ng, where j.#.k;u Thus <«(a) and «{(b) are ;n differentl
c’ose\ﬁ's. Choose a l_:o;sis B containirg = (a) and =: (b). Since «"1
is also an automorphism of G(S), = 1(B) ¢ B . Now ab ge"1(B).

But a, b are in the same coset which is a contradiction. Thus'ahy

e L o
automorphism of G(S) satisfies (*). //
Thus -we have

6.4.3 LEMMA. The automorphism group of the Example 6.4.1 has size

(r!) ¢ ]SI ! ) if §'is finite, where r is the index of H in 5.

@

We finally prove

6.4.4 LEMMA, If 31 is a subgroup of S and multiplication by
h e si is a geometric automorhism of some G(S) then it is also a

geometric automorphism of Gg(s,) .

. , '
PROOF. . Let B and B be the collection of bases of

o
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G(S) and GS (H) respectively. “Then

’
B’ EB => B'=BOH,whereBt-:3,
=> hB' = (hB} 1 Hanth.e_ﬁ,lhB'l =}:B'j, for any he H

' => n' e B . S , 1/

Conversely when we deal with a matroid m(sl X 82) obtained

‘as in_ 6.1 we have

6.4.5 LEMMA. If multiplication h e S, is a geometric automorphism

i
of M(si) , 1=1, 2, then it .is also a geometric automorphism of

1’?(51 x 82)'

PROOF. Let D be any basis of M(S; X §,). Iet g = (g,, g,)

be any element of Sl 2

there exists a basis B of M(Sli such that

x S, . Then by the definition of M(Sl x Sz) .

D= (eLgBe X B) U(ek_g Sl*\'Bex (‘Be\f)
 Thus gD = ( e"e,- p €9y X 9,80 W ( fgSI‘B eg; % (g, (B N\ £)))

Since B is é basis of M(SI),' ng is a basis of M(Sl). Also
g,(B,> £) is independent in M(S,) of rank r (- ‘§,:)- 1.

Hence gD is a basis of M(S; % S,) as required. - V4
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