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Abstract 

Palladium complexes bearing N-heterocyclic carbene (NHC) ligands, and their 

applications in catalysis have remained topical in the literature for the past two 

decades. Their versatility is due to a vast array of structural modifications possible 

that afford influences on metal complex geometry and reactivity, and alternative 

ligand binding modes. These have been extensively developed due to the wide range 

of catalytic applications for palladium NHC complexes and continue to remain of 

interest. This thesis describes investigations into several aspects of palladium NHC 

complexes with potential or known catalytic applications. 

The synthesis of the novel bis(NHC) dipalladium(I) hydride complex 

[μ-{(MesIm)2CH2}2Pd2H][PF6]  has been reported. 
1
H NMR spectroscopic studies

and preliminary single crystal X-ray and neutron diffraction studies on a THF solvate 

of this complex were indicative of possible solid state hydride dynamics. This 

hypothesis was probed by further variable temperature and low temperature single 

crystal neutron diffraction experiments, and by incoherent inelastic neutron 

scattering (IINS) experiments coupled with DFT-MD simulations. The simulations 

allowed us to approximate the rate of hydride transfer in the solid state. 

Laue single crystal neutron diffraction was also employed to examine the 

propylene-linked bis(NHC) complexes [μ-{(MesIm)2(CH2)3}2Pd2H][PF6] and 

[µ-{(MesIm)2(CH2)3}{(PdH)(MesIm)2(CH2)3}2][PF6]2. 

The synthesis of chelated bis(NHC) palladium(II) dihalide complexes has been 

established to proceed via a pendant imidazolium mono(NHC) palladium(II) dihalide 

acetate intermediate. This intermediate was isolable for the t-butyl N-substituent and 

a series of complexes sharing the motif [{(tBuIm)(tBuImH)CH2}PdX2CO2R] were 
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prepared with variations to the ancillary halide ligands and acetate substituent. The 

hydrogen bonding between the imidazolium C-2 proton and the acetate ligand was 

examined in solution by 
1
H NMR spectroscopy and in the solid state by single

crystal X-ray and Laue neutron diffraction. The N-mesityl pendant imidazolium 

mono(NHC) palladium(II) trihalide complexes of the motif 

[{(MesIm)(MesImH)(CH2)n}PdX3] were prepared and used to access the 

mono(NHC) palladium dihalide acetate intermediates of the form 

[{(MesIm)(MesImH)(CH2)n}PdX2CO2R].  

We expanded previous studies on chelated bis(NHC) palladium(II) complexes to 

include saturated NHC species through the preparation of complexes 

[{(
S
MesIm)2CH2}PdBr2] and [{(

S
MesIm)2CH2}Pd(NCMe)2][PF6]2, and examined

the catalytic activity of the latter towards ethylene and carbon monoxide 

copolymerisation, similar to studies undertaken on the unsaturated analogue. The 

reactivity towards formation of the dipalladium(I) hydride complex from the 

dicationic palladium(II) precursor under basic conditions was also examined.  

Expansion of these saturated NHC complexes to include extended alkyl linkers was 

limited by the formation solely of the pendant imidazolinium mono(NHC) 

palladium(II) tribromide complexes [{(
S
MesIm)(

S
MesImH)(CH2)n}PdBr3] upon

reaction of the diimidazolinium salts with palladium acetate. The bis(NHC) disilver(I) 

complexes [{(
S
MesIm)2(CH2)n}2Ag2][PF6]2 bearing methylene and propylene-linked

imidazoline ligands were prepared, though transmetallation via PdBrMe(COD) to 

form reactive palladium(II) complexes for catalysis was not successful.    

There has been growing interest in the study of abnormal or remote NHC ligands 

(aNHCs and rNHCs, respectively) due to their apparent increase in σ-donor strength 
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and reported improvement in catalytic activity cf. their normal NHC (nNHC) 

counterparts. We prepared an aNHC ligand precursor containing a 

5-(4-pyridinium) substituent which, if aligned coplanar to the NHC ring, could allow 

conjugation through the biaryl C-C bond, and show varying contributions from 

aNHC and “partially normalised” NHC resonance forms. The complexes of the motif 

[{1,2,3-trimethyl-5-(N-methylpyridinium)Im}PdLn][PF6]y were prepared by 

oxidative addition of the 4-brominated ligand precursor to palladium(0) and 

structurally characterised by X-ray crystallography. The degree of contribution from 

the desired resonance form was probed by examination of key C-C bond lengths and 

by the angle between the NHC and pyridinium ring planes. 
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Chapter 1:  Introduction 

1.1  N-Heterocyclic Carbenes 

Carbenes are defined as neutral compounds containing a divalent carbon atom with a 

six-electron valence shell.
1
 The first free carbene was isolated in 1988 by Bertrand

et al. which utilised interactions with adjacent phosphorous and silicon atoms to 

stabilise the inherently unstable carbene.
2
 In 1991 Arduengo et al. reported the first

isolable carbene stabilised by adjacent nitrogen atoms contained in an aromatic 

heterocycle.
3
 Referred to as N-heterocyclic carbenes (NHCs), this family of

compounds have a wide range of uses in areas such as medicinal chemistry, physical 

and surface chemistry and, most commonly, catalysis.
4-9

Carbenes can have either singlet or triplet ground states. In the former case the 

non-bonding electrons are paired in bent systems and both occupy the same 

sp
2
-orbital, leaving an empty p-orbital, which aids stabilisation. In the latter case the

non-bonding electrons are unpaired and adopt a diradical structure, which is 

inherently less stable than the ground state singlet carbene arrangement (Figure 1.1).  

(a)  (b)

Figure 1.1. (a) Singlet and (b) triplet state carbene orbitals for bent geometries. 
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NHCs generally display singlet ground state electron configuration.
7
 Electronic 

stabilisation is provided by the adjacent heteroatoms which have both σ-electron 

withdrawing and π-electron donating properties. The former inductively lowers the 

energy of the σ-orbital while the latter donation into the vacant p-orbital increases 

the mesomeric effect of the system (Figure 1.2). This results in the widening of the 

σ-pπ energy gap, which helps maintain the preferred sp
2
 hybridised geometry for the 

singlet carbene.  

N

N
C

 

Figure 1.2. Carbene stabilisation via electron donation from flanking heteroatoms. 

NHCs cover a broad spectrum of species, with variation of the number, type and 

positioning of the heteroatom(s), ring size and aromaticity, and ring and  

N-substitution, some examples of which are shown in Figure 1.3. 

As well as impacting somewhat on the electronic stabilisation of the carbene the  

N-substituents play a significant role in the steric effects of the NHC, while 

alterations to the backbone of the NHC such as substitution or saturation, as well as 

varied heteroatoms can have a significant effect on the electronic properties. 
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(i) (ii) (iii)

(iv) (v) (vi)

NN

R

R R

R
 

Figure 1.3. General motifs of some NHC classes.  

The first reported free NHC by Aruengo et al. was a symmetrically substituted 

imidazol-2-ylidine type NHC (i) which used bulky adamantyl N-substituents to 

further stablilise the carbene kinetically.
3
   

NHCs containing alternative heteroatoms (ii) such as thiazolylidines or 

oxazolylidines are accessible and can provide useful alternative binding modes 

through the non-nitrogen heteroatom. The varied heteroatoms also offer expanded 

potential for biological applications. NHCs containing a single heteroatom have also 

been reported.
10,11

 

NHCs containing 6, 7 and 8 atom rings have been reported (iii). It has been noted 

that the increased ring size can have significant effects on the electronic and steric 

stability of the NHC. 
12,13

 

Saturated NHCs (iv) lack the added stability of aromaticity that most other NHC 

classes have.
1
 However the increased electron density in the vicinity of the carbene 

results in greater sigma donating properties of these ligands in comparison to their 

unsaturated analogues
14

 making them useful in a range of applications.
11,15
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Recently there has been a lot of interest in abnormal NHCs (v) and remote NHCs 

(vi), denoted aNHCs and rNHCs herein, respectively. These compounds are called 

such as the carbene site is generally not adjacent to both heteroatoms and the ring 

system often requires the assignment of formal charge.
16

 All aNHCs and some 

rNHCs have no neutral resonance form. This enhances the carbanionic character of 

the carbene site, resulting in greater σ-donating power compared to normal NHC 

analogues.
16

  

1.2  Metal Complexes of NHCs 

NHCs have found use in a wide range of applications including organocatalysis
17

 

and medicinal chemistry
4
, though the most explored field is as ligands in 

organometallic complexes. The majority of NHC complexes involve coordination to 

transition metals, though there are also examples of main-group and f-block NHC 

complexes.
1
  

NHCs are often compared to phosphine ligands as they share similar activity and 

purpose.
5
 However NHCs provide some benefits in the form of generally greater  

σ-donating and π-accepting properties, resulting in stronger M-L bonds and therefore 

more stable complexes, as well as greater range of structure activity relationships 

due to the ligand N-substituents being directed more towards the metal centre. They 

also allow separate tuning of the steric and electronic properties of the ligand by 

modification of the N-substituents and backbone of the NHC, respectively.  

Several methods are used to describe and compare the steric and electronic 

properties of NHCs. Buried volume (%Vbur) is often used as a measure to quantify 

the steric properties of a range of ligands, including NHCs. Developed by Cavallo 

and Nolan the value of %Vbur refers to the area of a sphere centred on the metal 
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coordinated to the ligand covered or ‘buried’ by the ligand (Figure 1.4).
11

 Generally 

a radius (r) of 3.5 Å and a distance (d) of 2 Å is used to ensure valid comparison 

between various ligands.  

Nolan and Clavier provide an extensive collection of  %Vbur values for a range of 

coinage metal NHC complexes.
18

 They observe that while this is a useful method in 

understanding how the steric bulk of the ligand can affect reactivity (and therefore 

activity of the metal complexes they form) it does require a consistent method of 

calculation to be used to obtain good comparison between NHCs. It also may not 

provide an accurate measure for flexible ligands whose conformation is subject to 

change.   

N N

R R

M
r

d

 

Figure 1.4. %Vbur representation for NHC steric bulk measurements.  

The electronic properties of NHCs as well as some other ligands are most commonly 

described by the Tolman electronic parameter (TEP). The electron donating effect of 

the ligand is directly measured by the IR stretching frequency of a trans carbonyl 

ligand coordinated to a suitable metal. Comparison to some ‘standard’ complexes 

allows for the measure of the electron donating effect to be determined based on the 

frequency shift of the IR band for CO.  
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However the TEP method is lacking in several ways: Firstly it requires the ability to 

produce a suitable metal complex containing a CO ligand trans to the NHC.  

Secondly the solvent of measurement can greatly affect the experimentally 

determined IR stretch values, which for NHCs are generally only within a narrow 

range (~ 10 cm
-1

 variance). Lastly, the TEP is a good measure of the π-donating 

ability of the metal centre, but does not necessarily take into account the entire 

electron density at the metal centre.
14

 As such, ligands which differ in the nature of 

their M-L bonding might be misrepresented. This is important when comparing the 

electronic properties of ‘normal’ NHCs with saturated NHCs or aNHCs, for 

example. In a recent review Nolan and Nelson collate an extensive range of NHCs 

with their respective observed υCO and TEP values.
14

 

Another method of quantifying the nature of the M-L bonding is the shift of the 

carbene carbon resonance in NMR spectroscopy. The frequency shifts measured by 

13
C NMR (or 

31
P NMR in the case of phosphine ligands) can be compared with the 

free ligand precursor or with other analogous complexes, where an increase in 

electron density at the metal centre is indicated by a subsequent downfield shift of 

the coordinated carbene 
13

C NMR signal. 

In a similar manner, X-ray crystallography can prove a useful tool for considering 

the strength of the M-L interaction by comparing the bond length to similar 

examples. The trans influence of NHCs can also be interpreted somewhat by the 

lengthening or shortening of the bond between the metal and the relevant other 

ligand.
19

 This is especially useful when a series of analogues are considered, or when 

the trans ligand is common to a range of literature examples. 
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NHCs are most commonly used as monodentate ligands, with a wide range of 

applications in both homogeneous and heterogeneous catalysis as well as medicinal 

chemistry. Transition metal-NHC catalysts have received much recognition in the 

last decade, with part of the 2005 Nobel Prize being awarded to Grubbs for 

ruthenium NHCs in the development of metathesis methods.
20

 The 2010 Nobel Prize 

was shared by Heck, Suzuki and Negishi for their work on palladium catalysed C-C 

cross-coupling reactions in organic synthesis, many examples of which use 

palladium-NHC complexes.
21

  

As mentioned above a good example of NHCs in catalysis is Grubbs’ catalysts for 

olefin metathesis, which have gone through several generations of development.
22

 

The first generation Grubbs’ catalyst was reported in 1995 (Figure 1.5).
23

 The second 

generation catalyst (1999) replaced one of the phosphine ligands with a saturated 

NHC, which showed greater catalytic activity as well as increased thermal stability 

and reduced catalyst degradation.
24

 Other generations of these catalysts have 

followed with modifications to the N-substituents and various substitutions of the 

NHC backbone in order to optimise the system. 

Ru
Cl

Cl

PCy3

PCy3

Ph
Ru

Cl

Cl

PCy3

Ph

NN
Mes Mes

(a)                                                        (b)

 

Figure 1.5. Examples of Grubbs’ catalyst for olefin metathesis; (a) first generation
23

 

and (b) second generation
24

. 
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Other metal-NHC complexes introduce supports which allow the tethering of the 

catalyst to a polymer or silica surface. These heterogeneous systems allow for easier 

recycling of catalysts and reduced decomposition, though it does require additional 

synthesis steps to create these tethers and can limit the steric bulk of the system 

used.
5
 

Figure 1.6 shows two examples of heterogeneous catalysts tethered to solid surfaces 

using one of the N-substituents as a linker unit. Lee et al. reported a palladium-NHC 

catalyst tethered to a polystyrene support (Figure 1.6(a)).
25

 This species showed 

good activity for various Suzuki coupling reactions. They indicate that the polymer 

support aids in catalyst recyclability for multiple uses.  

Thieulex and co-workers reported a silica tethered iridium-NHC species designed to 

line a tubular structure which showed some C-H bond activating properties useful for 

H/D exchange (Figure 1.6(b)).
26
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Figure 1.6. Examples of supported transition metal-NHC complexes used in 

catalysis.
25,26

 

As mentioned previously, there is also some use of metal-NHC complexes in the 

field of medicinal chemistry. Roland and Jolivalt et al. reported on a series of silver 

NHC complexes (such as complex (a) in Figure 1.7) which showed significant 

activity against antibiotic resistant strains of both E. Coli and S. Aureus.
27

 

Complex (b) in Figure 1.7 is an example of a series of platinum NHC complexes 

reported by Mailliet and Marinetti et al. based on the well-known anti-cancer drug 

cisplatin.
28

 They report that these NHC complexes provide a new avenue to explore 

in reducing the toxicity and increasing the effectiveness and direct targeting 

properties of such drugs. Specific mention is given to the useful variety in 
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substitution of NHCs as a scaffold to build upon for modular design changes to 

target specific sites.      

 

Figure 1.7. Examples of metal-NHC complexes used in medicinal chemistry.
27,28

  

Bidentate NHCs are an important subclass of NHCs. Complexes of these ligands 

benefit from the increased rigidity of the chelating ligand to help maintain a suitable 

coordination geometry for specific catalytic processes as well as reduced complex 

degradation from M-C bond cleavage. Figure 1.8 shows some examples of bidentate 

NHCs used for (a) C-C bond formation from alcohols
29

, (b) transfer hydrogenation,
30

 

and (c) carbon monoxide-ethylene copolymerisation.
31

  

 

Figure 1.8. Various bidentate NHC catalysts/precatalysts.
29-31
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Recently the potential of abnormal NHC complexes has been explored for catalytic 

applications. The greater σ-donating power of aNHCs has been observed to result in 

enhanced catalytic activity when directly compared to their nNHC analogues  

(Figure 1.9).
32

 However it was also observed that the Pd-C bonds in the aNHC metal 

complexes were more prone to cleavage under conditions where the nNHC analogue 

remained stable. An in-depth discussion of this interesting class of NHCs is provided 

in Chapter 5.  

 

Figure 1.9. Dicationic nNHC and aNHC palladium complexes bearing identical 

steric bulk for studies in catalytic activity.
32

  

Many of the catalytic applications for which transition metal NHC complexes are 

used invoke metal hydride intermediates. However due to the frequent instability of 

such intermediates, these species are rarely isolated, and there have been few  

in-depth studies to provide full structural characterisation of these important 

complexes. This is in part due to the limitations of X-ray crystallography in 

determining hydride locations, especially in systems where multiple hydrides are 

present.   



Chapter 1 

 

12 

 

1.3  Neutron Scattering Techniques for the Examination of 

Hydrides  

Neutron techniques have been used to probe structural and dynamic properties of 

compounds since the 1950s.
33

 Often these techniques are used to study  

hydrogen-containing materials due to the uniquely high incoherent scattering cross 

section of the 
1
H isotope.

34
 However these techniques are not widely available and 

the added expense results in them being used only when other more common 

analysis and characterisation methods have failed to provide the necessary 

information. 

Neutron sources are either reactor based or non-reactor based, such as spallation.
35

 

Reactor sources provide both thermal and cold neutrons in a constant flow, and are 

termed ‘steady state’ sources.
36

 Spallation sources use a particle accelerator to 

collide a proton beam with a heavy metal source to produce a short burst of hot 

neutrons. These neutron pulses are moderated by materials containing large amounts 

of hydrogen, such as water or hydrocarbons, and provide hot, thermal, and cold 

neutrons depending upon the temperature of the moderator.
36

  

Neutron scattering techniques target the interactions between the neutron beam and 

the nuclei of atoms in the molecule, unlike photon-based techniques which interact 

with the electron density surrounding each atom.
37

 Broadly, there are two types of 

scattering: elastic scattering, in which a neutron is scattered with no loss of energy, 

and inelastic scattering, where there is some energy exchange between the sample 

and the scattered neutron.  

The latter of these interactions can further be considered in terms of the grouping of 

inelastic and quasielastic scattering. Inelastic neutron scattering (INS) arises from 
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molecular motions of an oscillatory nature such as vibrations, while quasi-elastic 

neutron scattering (QENS) occurs as a result of diffusive processes. These can be 

considered in terms of a function of P and t, where P is the probability of a given 

atom being in a particular spatial location, and t is time. Thus a diffusive process 

typically results in an exponentially decreasing function as the atom moves 

continually away from its initial location. In contrast, molecular vibrations involve 

atoms moving away from and then returning to their initial spatial location, 

appearing as an oscillatory process as the probability first decreases and then 

increases as the atom returns. 

There is also the effect of incoherent and coherent scattering of the neutrons, where 

the neutrons are considered as plane waves. Coherent scattering occurs when the 

molecular array of the target contains only particles in a regular array. In the case of 

elastic scattering this results in each lattice point producing identical spherical waves 

upon interaction with neutrons. These form patterns of constructive and destructive 

interference known as nodal lines, which create diffraction patterns. In the case of 

inelastic scattering, each identical lattice point can be considered to identically 

scatter portions of the neutron energy, resulting in simultaneous motions.
37

 

Incoherent scattering is a result of interactions with non-identical lattice points. This 

includes disordered crystalline structures and materials where the natural abundance 

of isotopes are present, as two isotopes can have very different scattering cross 

sections.
34

 In this case, the plane wave is scattered spherically, but differently by 

each lattice point, with no interference pattern produced. This allows the dynamics 

local to the irregularity to be measured by spectroscopic methods.
38
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Compounds produce a combination of coherent and incoherent scattering.
39

 Atomic 

scattering cross sections are the sum of the coherent and incoherent scattering cross 

sections for each atomic species. These can be vastly different between similar 

elements and isotopes of an element, with no specific correlation with atomic size or 

number. For example, 
1
H has an incoherent scattering cross section of 80 barn and 

coherent scattering cross section of 2 barn, with an overall scattering cross section of 

82 barn, while 
2
H has an incoherent, coherent and overall scattering cross section of 

2, 6 and 8 barn respectivly. In comparison, 
12

C and 
14

N have overall scattering cross 

sections of 6 and 11 barn, respectively.
34

  

1.4   Neutron Diffraction 

Neutron diffraction relies on coherent elastic neutron scattering to produce 

diffraction from crystalline materials.
40

 Diffraction instruments with reactor based 

sources can be either Laue (white beam) diffractometers which use a band of 

wavelengths, or monochromated diffractometers, which select a narrow band centred 

upon a particular chosen wavelength.
36

 The wavelength distribution from a constant 

flow (reactor) neutron source appears as a Boltzmann distribution such as that in 

Figure 1.10. The neutron flux which interacts with the sample can be calculated by 

integrating the region under the Boltzmann distribution between the minimum and 

maximum wavelengths incident on the sample.  
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Figure 1.10. Boltzmann distribution of the wavelength range used for (a) Laue and 

(b) monochromated neutron diffraction experiments.  

Laue diffraction exploits the vastly enhanced neutron flux incident on the sample 

compared with monochromatic methods, though the technique is of reduced 

precision compared to monochromatic methods. A consequential limitation of Laue 

diffraction is the smaller unit cell sizes that are amenable to study owing to the non-

monochromatic source, which physically limits detection resolution. However, the 

crystal volume required for monochromated instruments is orders of magnitude 

greater than for Laue instruments due to comparatively lower flux.
36

 Thus Laue  

neutron diffraction provides a crystallographic technique applicable to crystalline 

compounds as small as 0.1 mm
3
 and unit cell lengths up to ca. 42 Å and cell volumes 

up to ca. 15000 Å
3
,
41,42

 and this is a major advantage.   

1.5   Inelastic Neutron Scattering (INS) 

Inelastic neutron scattering, or neutron spectroscopy, probes the dynamics of a 

system using incoherent elastic and incoherent inelastic scattering. Experimental 

spectra are recorded in the frequency domain, where the exponential diffusive 

function in time appears as a single Lorentzian peak at a low frequency (elastic line). 
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The oscillatory functions produce a series of peaks based upon the particular 

properties of each oscillation from inelastic interactions (Figure 1.11). 

 

Figure 1.11. Frequency regions for each scattering process. Reproduced from 

Vibrational Spectroscopy with Neutrons (2005).
43

  

Neutron spectroscopy can be considered analogous to other types of vibrational 

spectroscopy such as IR and Raman spectroscopy. However, neutron spectroscopy 

has several key advantages for the study of hydrides: Firstly, neutron spectroscopy is 

not limited by selection rules which prevent certain vibrations from being active in 

photon-based methods.
37

 Therefore all vibrations corresponding to all motions 

undertaken by the molecule will appear in the spectrum. As detection of 
1
H by 

neutron techniques is vastly enhanced compared to other elements, the additional 

vibrations involving only non-hydrogen atoms contribute relatively less to the 

overall signal and this allows a clear view of the entire dynamics of the hydrogen 

atoms present.
44

 This almost constitutes a “hydrogen selection rule”. 
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Another key advantage of neutron spectroscopy is the ability to measure the very 

low energy (low frequency) region which is often inaccessible by photon-based 

techniques. Some instruments are capable of measuring vibrations occurring at 

fractions of a wavenumber, with most instruments at least able to reach as low as  

20 cm
-1

.
37

 This provides a method of studying diffusive processes, which are 

generally seen below 50 cm
-1

. 

Finally, specific hydrogen atoms in a substance can be targeted with this technique 

by selective deuteration of the molecule. The incoherent scattering cross section of 

deuterium is approximately 2.5% of that for hydrogen,
34

 reducing the contributions 

of any bands involving D-labelled atoms to the overall spectrum.  

Experimental spectra are most easily analysed by performing computational 

simulations. These allow calculated spectra to be produced, which can be compared 

with the experimental spectra. This allows each fundamental normal vibrational 

mode to be traced back to the specific molecular motion that gives rise to the signal. 

From this we can infer the possible mechanism by which fluxional processes occur. 

1.6  Project Scope 

It is evident from the above discussions that the field of NHC metal complexes has 

been diversely studied, especially in relation to catalytic applications. Furthermore it 

is evident that neutron diffraction and neutron spectroscopy are useful tools to 

examine the metal hydride species which are necessary intermediates or interesting 

byproducts in many catalytically relevant reactions. 
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The scope of this project is to probe several gaps in these fields: 

1. The examination of a previously reported dipalladium(I) hydride species 

produced under catalytically relevant conditions using neutron techniques to 

probe for solid state hydride dynamics. We will also expand our study to an 

extended linker analogue of this complex which was recently synthesised in 

our group. Preliminary analysis of this complex has been previously reported 

and we will provide more complete structural analysis.  

2. The preparation and examination of a series of NHC palladium(II) dihalide 

acetate reaction intermediates as precursors to a range of bis(NHC) 

palladium(II) catalysts. These intermediates involve hydrogen bonding in the 

formation of the chelate ring which we will probe in solution by NMR 

spectroscopy and in the solid state by neutron diffraction. 

3. The preparation of saturated bis(NHC) palladium(II) complexes, the 

unsaturated analogues of which have been previously examined for catalysis. 

The reactivity of the saturated palladium(II) complex under basic conditions 

towards the synthesis of a dipalladium(I) hydride will also be explored.  

4. The preparation of a series of unusual aNHC metal complexes in which the 

ligand may fall outside of the conventional definitions of aNHC and nNHC.      
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Chapter 2:  Examination of Catalytically Relevant 

Palladium(I) Hydride Complexes 

2.1  Introduction 

Transition metal hydride complexes are used or invoked as intermediates in a wide 

range of roles in catalysis, molecular hydrogen activation and storage. Complexes 

range from mononuclear species with single hydride ligands to large catalyst clusters 

or surfaces designed for hydrogen capture.
1-9

 As well as providing an alternative to 

traditional catalytic cycles based on mononuclear complexes, some clusters are 

known to act as reservoirs for active mononuclear species.
10

 

One important aspect of metal hydride chemistry is the ability of hydride ligands to 

undergo fluxional processes while remaining coordinated to the metal centre, a 

property that is useful to some catalyst activity and selectivity. Catalysts of this type 

may range from long established systems such as Wilkinson’s catalyst for alkene 

hydrogenation
11

 to multinuclear clusters with known or potential use for the catalytic 

hydrogen transfer reactions.
12,13

  

Palladium hydride complexes in particular are often invoked as key participants in a 

range of catalytic processes. One example of this is the Mizoroki-Heck reaction 

which was first described in 1971 for the coupling of aryl halides to alkenes using a 

palladium catalyst.
14,15

 The β-hydride elimination step to release the coupled product 

requires the formation of a palladium hydride species, which is then involved in 

reductive elimination to restore the palladium(0)  catalyst (Scheme 2.1). 
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Scheme 2.1. Generalised catalytic cycle for the Mizoroki-Heck reaction. 

The deliberate synthesis of palladium hydride species can be achieved through a 

range of conditions such as reaction with a strong reducing agent, oxidative addition 

of acids, as well as the aforementioned β-hydride elimination.
16

 It is interesting to 

note that while a number of stable platinum hydride species are reported in the 

literature, their palladium analogues are rarely seen, or found to be highly unstable 

hence often unisolable.
16

 

Brooks and Glockling reported the first isolated palladium hydride species in 1965 

(Figure 2.1(a)),
17,18

 which was structurally characterised in 1973 by Shearer.
19

  

Single crystal X-ray crystallographic analysis confirmed that the complex displayed 

square planar geometry with a T-shaped arrangement of ligands, with the remaining 

site presumed to be occupied by the hydride ligand. The presence of the  

palladium-bound hydride ligand was confirmed by 
1
H NMR and IR spectroscopy. 
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Figure 2.1. Examples of mononuclear palladium hydride species reported by  

Brooks (a)
17

, Shaw (b)
20

 and Cavell (c).
21

  

Shaw reported the preparation of a range of transition metal-hydrides stabilised by a 

bulky PCP pincer ligand.
20

 The palladium hydride species was formed by reaction of 

the palladium halide precursor with sodium borohydride, with initial structural 

characterisation by 
1
H NMR spectroscopy and IR spectroscopy (Figure 2.1(b)). 

Confirmation of the molecular structure by X-ray crystallography was obtained by 

Wendt and co-workers in 2007.
22

   

Cavell reported a tris(NHC) palladium hydride complex formed through the 

oxidative addition of an imidazolium C-H moiety to a bis(NHC) palladium(0) 

complex (Figure 2.1(c)).
21

 In this case the molecular geometry was elucidated via  

X-ray crystallography, where the hydride ligand was reported with a Pd-H bond 

length of 1.57(3) Å.  

Dipalladium hydride complexes have also been observed from a range of synthetic 

methods including the dimerisation of mononuclear palladium hydride complexes, 

reactions with various reducing agents and oxidative addition.
16

 These complexes 
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can display a variety of hydride bonding modes, some of which will be discussed 

below.   

The first unequivocally characterised dipalladium complex featuring bridging 

hydrides were reported by Fryzuk and co-workers in 1991.
23

 The reduction of a 

bidentate phosphine palladium dihalide complex with a strong so-called 

“superhydride” produced a binuclear palladium complex with two bridging hydride 

ligands shown in Figure 2.2(a).  A similar species was reported by Milstein, 

featuring a carbonyl alongside a hydride bridge, which was formed under 

catalytically relevant conditions for the reaction of aryl halides (Figure 2.2(b)).
24
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Figure 2.2. Examples of binuclear palladium complexes with bridging hydrides 

reported by Fryzuk (a)
23

 and Milstein (b). 
24

  

Both of these complexes were structurally characterised using X-ray crystallography 

in which the hydride ligands were located and refined. The Pd-Pd distances of 

2.8245(8) and 2.767(4) Å for (a) and (b), respectively indicated weak metal-metal 

interactions. The bridging hydrides in (a) were asymmetrical with Pd-H bond lengths 

ranging from 1.67(3)-2.13(4) Å. In the second complex reported by Milstein the  

Pd-H distances were indistinguishable, ranging from 1.531(11)-1.540(10) Å, and of 
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a similar length to Pd-H distances observed in terminal mononuclear Pd-H 

complexes.
21,25

 

Milstein provided a proposed mechanism of the formation of the carbonyl- and 

hydride-bridged complex, in which the chloride ligand of the initial complex was 

exchanged by methoxide formed in situ in methanol under basic or neutral 

conditions. Rearrangement and β-hydride elimination of the methoxy ligand, 

concomitant with reductive elimination of benzene would result in a zero-valent 

palladium formaldehyde complex. This complex could undergo two reaction 

pathways, with oxidative addition of formaldehyde followed by hydride migration 

and H2 elimination to form a monopalladium carbonyl complex, while dissociation 

of formaldehyde and subsequent protonation would result in a cationic 

monopalladium hydride complex. The combination of these two species would result 

in the observed cationic dipalladium complex.    



Chapter 2 

 

27 

 

 

Scheme 2.2. Proposed mechanism for the formation of the dipalladium complex 

with bridging hydride and carbonyl ligands reported by Milstein.
24

 

Rimml and Venanzi proposed the formation of an interesting binuclear palladium 

hydride complex with a single bridging hydride ligand between two palladium(II) 

centres, in which the mononuclear palladium hydride was formed first via 

decarboxylation of a precursor and subsequently coordinated to an unreacted 

mononuclear palladium unit to form the binuclear complex (Figure 2.3).
26

 The 

complex lacked a Pd-Pd bond and was proposed to be linearly bridged by only a 

single ligand consistent with the preferred square planar geometry of the  

d
8
 palladium(II) centres.   
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The complex was stable with suitable counteranions, though decomposed to 

palladium metal if these were exchanged. However, like many palladium hydride 

complexes, there was no unequivocal crystallographic characterisation of the hydride 

location for this complex.  

Pd

PPh2

PPh2

Pd

Ph2P

Ph2P

H

 

Figure 2.3. Proposed structure of the binuclear palladium complex with a single 

bridging hydride ligand reported by Rimml and Venanzi.
26

 

In 2011 Ozerov reported two hydride bridged binuclear palladium complexes 

supported by a pincer ligand with alkyl linkers of varying length. The bridging 

hydride ligands were formed under reductive conditions by the addition of sodium 

isopropoxide (Figure 2.4).
27

   

 

Figure 2.4. Examples of bridging pincer ligand supported binuclear palladium 

hydride complexes reported by Ozerov.
27

  

The Pd-Pd distances in these two complexes were 3.2612(12) and 2.9602(8) Å, for 

the ethylene and butylene linked analogues, respectively. Again, the palladium 
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coordination sphere adopted a square planar geometric configuration expected for  

Pd d
8
 metal complexes.  It was noted that the increased flexibility of the longer linker 

enabled a closer Pd-Pd interaction, though neither complex had Pd-Pd distances in 

the range of an unambiguous metal-metal bond. The hydride ligands were located by 

X-ray crystallography for both complexes and shared a similar non-linear bridging 

arrangement.  

An unusual binuclear palladium hydride complex was reported by Stille and  

co-workers in which the hydride ligand is bound in a terminal position while the 

palladium centres are bridged by a chloride ligand (Figure 2.5).
25

 This structure was 

confirmed by X-ray crystallographic structural determination, where the hydride 

ligand was located and refined (Pd-H 1.53(5) Å). Stille discussed the formation and 

reactivity of the binuclear palladium complex, inferring that the hydride could bridge 

the palladium centres under certain conditions. This complex rearranged to a more 

favourable arrangement in this particular analogue when crystallised.   

 

Figure 2.5. Binuclear palladium hydride complex reported by Stille.
25

 

Multinuclear palladium hydride clusters have also been reported, such as those 

shown in Figure 2.6. Baya and co-workers
10

 investigated the reactivity of a 

palladium(II) precatalyst for hydroformylation under various catalytic conditions and 

discussed several binuclear palladium complexes formed, including one which 
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shares a similar bridging hydride/carbonyl core to that reported by Milstein.
24

 The 

tripalladium cluster (Figure 2.6(a) below) was formed when the precatalyst was 

reduced by hydrogen gas and was structurally characterised by X-ray 

crystallography. The presence of two hydride ligands was confirmed by 
1
H NMR 

spectroscopy despite not being located in the crystal structure.  

Harvey and co-workers report a tetranuclear palladium cluster formed from a 

catalytically relevant precursor, in which the presence of a hydride was confirmed 

through 
1
H NMR and 

31
P NMR spectroscopic analysis (Figure 2.6(b)).

28
 Again, this 

cluster was structurally characterised by X-ray diffraction, with the hydride not 

located in the crystal structure. They infer that the central bridging position of the 

hydride between the four palladium atoms was most probable as the Pd-H distances 

would be consistent with other literature examples.
16
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Figure 2.6. Examples of multinuclear palladium hydride clusters reported by  

(a) Baya
10

 and (b) Harvey.
12

 

Binuclear, multinuclear and cluster complexes such as those discussed above are of 

great importance in understanding catalytic systems. By elucidating active catalytic 

species, and the location, binding modes and possible dynamics of hydride ligands 

will allow for improved systems to yield greater activity. Understanding 

decomposition routes of these species will aid the design of more stable systems that 

will ultimately afford more economically viable catalytic processes. 

Our group has reported the synthesis of a binuclear palladium(I) hydride complex 

which is produced under catalytic conditions from a bis(NHC) palladium(II) 

precursor (Scheme 2.3).
29
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Scheme 2.3. Synthesis of dipalladium(I) hydride complex 5a from the catalyst 

precursor 4a. 

The mechanism of this reaction has been probed by DFT calculations, which 

suggested that 4a underwent initial methoxide ligand substitution, followed by loss 

of solvent and ligand rearrangement. Subsequent β-hydride elimination via agostic 

transition states resulted in a palladium(II) hydride formaldehyde adduct, which, 

after loss of formaldehyde, formed the three-coordinate palladium(II) hydride A 

(Scheme 2.4).
30

  

The latter steps of the transformation were explored briefly by DFT, where it was 

assumed that two monomeric units of A underwent bis(NHC) chelate ring opening 

which facilitated the change in binding mode from chelating to bridging. This 

interaction between two mononuclear palladium units to form a dipalladium complex 

was similar to that proposed by Milstein (Scheme 2.2).  Methoxide-assisted proton 

abstraction from D would have resulted in the observed reduction of the metal centre 

and 5a is obtained after rearrangement of the hydride ligand from the calculated 

energy minimum G, which contains a linear bridging hydride, to the terminal 

position determined by single crystal neutron diffraction.
29
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Scheme 2.4. Calculated reaction pathway for latter stage transformations in the 

synthesis of 5a using B3LYP/Pd-LANL2TZ, C, H, O, N-6-31G(d) DFT level of 

theory. 

Solution 
1
H NMR spectroscopic studies of 5a suggested the occurrence of a 

fluxional process, which was thought to involve the hydride ligand migration 

between the palladium centres (Figure 2.7).  
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Figure 2.7. Proposed solution phase dynamics of hydride transfer in 

[{(MesIm)2CH2}2Pd2H][PF6] 5a. 

An analogue of this complex was also prepared containing the bulkier  

2,6-diisopropylphenyl (dipp) N-substituent. X-ray crystallographic analysis of this 

structure showed a significantly greater Pd-Pd distance in this complex, suggesting 

that this analogue contained the computationally proposed linear Pd-H-Pd core 

arrangement. Confirmation of the hydride location has not yet been obtained, 

however.  

Three different crystalline forms of 5a were observed, dependant on the solvent of 

recrystallisation. An unsolvated crystal form was produced from methanol as red 

needles or blocks and the block form was used for single crystal neutron diffraction 

to confirm the terminal hydride position.
29

 Recrystallisation from THF produced the 

solvate as large red blocks, in which two THF molecules per unit of 5a were 

incorporated into the crystal lattice. This THF solvate of 5a underwent a phase 

change at ca. 110 K, observed by X-ray and neutron diffraction, in which each spot 

appeared multiply twinned at or below this temperature (measured to ca. 90 K). At 

150 K, Laue single crystal neutron diffraction was used to resolve a structure in 

which the hydride was disordered with 50 % occupancy at each of the palladium 

centres. 
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We were interested to see if this apparent phase change was due to solid state 

hydride dynamics, in which the hydride ligand was assumed to be transitioning 

between metal centres similarly to the observed solution phase dynamics. As 

discussed in Chapter 1, neutron techniques are well suited to probing hydrogen atom 

location and interactions, especially in complexes containing heavy metals due to the 

enhanced neutron scattering coefficient of 
1
H, in comparison to X-ray methods. 

We were also interested in examining a recently obtained analogue of 5a, in which 

the alkylene linker was extended to propylene.
30

 We will probe whether this 

analogue shares similar structural properties, hydride position and dynamics. 

2.2  Results and Discussion 

 

2.2.1.  Neutron Scattering Experiments of Isotopomers of 5a 

 

Previous experimental studies on palladium hydride clusters have suggested that 

hydride transfer processes between metal centres can occur either with the Pd–Pd 

bond remaining intact, or with cleavage of the Pd–Pd via a Pd–H–Pd geometry.
13

 

These studies were mostly based on the interpretation of solution phase fluxionality 

investigated by variable temperature 
1
H NMR spectroscopy. However, in this 

investigation of hydride transfer in the solid state, the more significant changes to the 

cluster core thought to accompany Pd-Pd bond cleavage to the linear Pd-H-Pd 

bridged arrangement would likely be disfavoured due to crystal packing effects. 

Computational investigations into the possible solid state hydride transfer were 

undertaken by Prof. Gordon Kearley and Dr. Nicolas De Souza at the Bragg institute, 

ANSTO. Initial calculations on H-transfer in 5a revealed that it would be too slow to 

observe the H-transfer process directly, using for example quasielastic neutron 
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scattering. Simulation at high temperatures seemed to be a possible way forward as, 

presuming the model was confirmed to remain valid at this increased temperature, 

the frequency of transfer processes would increase and there would be a significant 

decrease in the required simulation timeframe.  

Using DFT-MD, it was observed that the dynamics of the H-ligand in 5a were 

largely determined by the time-dependent free-energy landscape of neighbouring 

molecular groups. These dynamics could be scaled up by increasing the nominal 

temperature, and probed at an energy of 1500 K, where a hydride transfer event 

could just be seen, within 8 ps, though higher temperatures and longer times lead to 

rupture of the model. It was noted that the amplitude of the fluctuations in the 

hydride transfer free-energy surface increased with temperature rather than a new 

process being activated. In this case validation of the model at low temperature still 

applied reasonably well at high temperature.  

However there were three key difficulties to overcome with applying this method: 

Firstly, 5a, particularly in the full crystal structure, had a formidable number of 

degrees of freedom, though only those that involved the hydride ligand were of 

interest for this study. The associated vibrational dynamics of the hydride ligand in 

5a were conveniently studied almost in isolation by the use of inelastic neutron 

scattering (INS). The hydrogen 
1
H nucleus has a uniquely high incoherent neutron 

scattering cross-section, hence selective deuteration of all hydrogen atoms, except 

the hydride ligand, would make the hydride vibrations more pronounced in the INS 

spectrum. Secondly, due to the transfer process involved in bond-making and 

breaking, and the general lack of a suitable force-field for 5a, it was necessary to use  

DFT-MD. This method has the advantage of removing ambiguity, but is vastly more 

computationally expensive than empirical force-field methods, and consequently the 
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size of the model and the time-scale covered was rather limited. Finally, the unit-cell 

of the crystal was large and it was important to establish how the crystal forces might 

distort the gas-phase molecular conformation. We observed in this case that the 

calculated vibrational dynamics of the isolated molecule and the full periodic crystal 

were very similar. 

Two deuterated isotopomers of 5a were prepared to aid in our investigation. As 

previously discussed in Chapter 1 there is a significant difference in the neutron 

scattering cross-section between 
1
H and 

2
H of approximately an order of 

magnitude.
31

 By substituting all NHC ligand hydrogens for deuterium atoms we 

were theoretically able to minimise the vibrational contributions from all  

non-hydride bending and stretching modes for IINS experiments and simulations of 

the spectra.   

To this end, we provided 20 g of N-mesityl imidazole 1a to the National Deuteration 

Facility (NDF) at ANSTO for chemical deuteration.  The compound was heated at 

150 °C for 3 days under pressure in deuterium oxide in the presence of a mixture of 

Pt/C and Pd/C catalysts and using 20 % v/v THF as a co-solvent.
32

 The hydrothermal 

reaction mixture was purified using silica column chromatography to give the 

deuterated N-mesityl imidazole 1b in 96 % yield, where the two mesityl m-CH 

protons remained essentially un-exchanged. Conversion to the deuterated 

diimidazolium salt 2b was also undertaken at the NDF using a modified literature 

procedure
33

 with deuterated dibromomethane (99 % D) and resulted in an overall 

molecule deuteration of 84 ± 2 %. The deuteration percentages at each location of 

the molecule were calculated by 
1
H and 

13
C{

1
H,

2
H} NMR spectroscopy, along with 

mass spectrometry and isotopic distribution analysis to confirm the specific site, as 

well as the overall isotopic purity, respectively. 
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 The synthesis of the deuterated chelating bis(NHC) palladium(II) dibromide 

complex 3b, ligand exchange to form the deuterated palladium(II) bis(acetonitrile) 

adduct 4b and conversion to the deuterated bridging bis(NHC) dipalladium(I) 

hydride 5b were completed via literature methods (Scheme 2.5).
29,33

 

 

Scheme 2.5. Synthesis of dipalladium hydride complexes 

[{(MesIm)2CH2}2Pd2H][PF6] 5a and [{(
D
MesIm)2CD2}2Pd2H][PF6] 5b . 

A portion of the deuterated dipalladium hydride complex 5b was dissolved in 

CD3OD and heated at 50 °C for 48 hours to undergo H/D exchange of the hydride 

ligand and form the deuterated isotopomer 5c. The overall deuterated structures of 

the three isotopomers 5a-c are shown in Figure 2.8 below. 
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Figure 2.8. Deuterated isotopomers of [{(MesIm)2CH2}2Pd2H][PF6]: 5a , 5b, and 5c. 

The ring H-atoms of the R groups could not be deuterated, but these are the same in 

1b and 1c and contributed equally to the INS spectra. 

The vibrational spectra of the isotopomers 5a, 5b and 5c were collected on the 

TOSCA instrument at the ISIS facility in Oxford, England, and were interpreted 

using two different standard approaches. This provided a validation of the MD 

approach and some justification for being able to extend this to much higher 

temperatures, and therefore gave access to the H transfer process that was observed a 

single time in the high-temperature DFT-MD simulation. The accessible free-energy 

profile was then analysed and extended to include the H-transfer. The experimental 

INS spectra of 5b and 5c were remarkably similar, as illustrated in Figure 2.9.  
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Figure 2.9. Comparison of INS spectra for 5b and 5c obtained on TOSCA. Relative 

intensity of 5b shifted 0.1 arbitrary units to aid comparison. 

It was expected from the matrix-method calculation that the hydride ligand present in 

5b would produce a strong feature in the 50 meV region corresponding to an  

out-of-plane wagging (H–Pd–Pd deformation), that would be absent in the spectrum 

of 5c, as shown in the lower part of Figure 2.10. It is worth noting that in both 

analogues there were 2 un-exchanged hydrogen atoms on each mesityl unit (see 

Figure 2.8) and these contributed additional peaks from vibrations of the NHC 

ligands, but these were identical for both analogues.  

5b 

5c 
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Figure 2.10. Comparison of the calculated spectra of 5b and 5c by MD and 

Matrix simulation methods. Relative intensity of MD spectra shifted 0.1 arbitrary 

units to aid comparison. 

The absence of the strong peak at around 50 meV predicted by the matrix method 

was due to a breakdown of the harmonic approximation for modes of the hydride 

ligand. This was easily demonstrated by using the alternative MD method to produce 

the calculated INS spectrum. Whilst DFT-MD lacks proper treatment of overtones 

and combinations, it has the advantage that it makes no assumption about the form of 

the vibrational potential, or other potentials that may be involved. It was observed 

from the MD spectrum (shown in the upper part of Figure 2.10) that the strong peak 

at 50 meV was indeed absent in the calculated spectrum, and casual examination of 

the MD trajectories for the hydride ligand showed the dynamics to be locally 

diffusive rather than oscillatory. This was unusual as the difference between the INS 

spectra calculated by the two methods is usually small, and even the differences in  

Figure 2.10 between 80 and 100 meV that were in part due to the lack of overtones 

and combinations in the MD, would be considered as significant. To the best of our 

5b 

5c 
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knowledge, the difference at around 50 meV in the current example is much larger 

than any reported so far.
34

 

The purpose of the INS was to validate that DFT-MD could at least reproduce the 

dynamics measured on the low-frequency part of the vibrational spectrum. The 

general agreement between the experimentally observed and calculated spectra of 5b 

and 5c by comparison of Figure 2.9 and Figure 2.10, and in particular the correct 

prediction of the non-oscillatory H-ligand dynamics, was taken as sufficient 

validation of the method. 

Computationally based energy-barrier calculations are generally performed by 

mapping the potential energy of the system as a function of some pre-defined 

reaction coordinate, taking no account of thermal motion. Even in better defined 

systems such as linear hydrogen bonds the involvement of many degrees of freedom 

can play a crucial role.
35

  In 5a, where the hydrogen atom was weakly bound and 

surrounded by molecular groups, each with many degrees of freedom, the choice of 

reaction coordinate was not obvious. MD was used to sample the free energy surface 

in a systematic and physically meaningful way, albeit at lower precision and greater 

computational expense, though the amplitudes sampled were limited by the available 

kinetic energy (simulation temperature). Thus the MD simulation temperature was 

increased, and was considered to be a more realistic approach than mapping 

potential-energies along pre-determined coordinates (at 0 K). 

The simulation temperature was increased until a transfer process occurred once 

within the timescale of the simulation (8 ps). The crucial coordinate for the transfer 

process was identified as the dihedral angle between the plane of one heterocyclic 

ring and the Pd–H vector, which approximated to an extension of the mode that was 
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predicted, but not observed, by the harmonic approximation at  

50 meV in the INS. The actual definition used is shown in Figure 2.11(a), but for 

convenience this will be referred to as the Pd–Pd–H angle, which it approximates.  

 
(a) 

 

(b) 

 

Figure 2.11. (a) Structure of the cation of 5a indicating the plane used to define the 

dihedral torsion coordinate. The Pd–Pd–H angle was not actually used, although it is 

denoted this way in the text as that axis includes motion of both Pd atoms.  

(b) Frequency spectra of the hydride torsion showing comparison between the 

isolated molecule at 1500 K and 50 K, as well as with the periodic structure 

calculation.  

H Pd 

C 
N 
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Clearly, this coordinate was not a normal coordinate of the system and so has a 

distributed spectral profile, which is shown (from the MD simulations) in  

Figure 2.11(b). The crucial point illustrated in this figure is that this frequency 

distribution does not change significantly between 50 K, where this was validated 

against experiment, and 1500 K where the transfer was seen in the MD, although 

there was a large increase in amplitude. A limited MD simulation for the periodic 

crystal at 300 K showed a very similar profile in Figure 2.11(b) to those of the 

isolated molecule. This indicated that the vibrational dynamics were not only 

dominated by intra-molecular interactions, but also the H-transfer mechanism. 

The actual transfer process was assumed to be terminal hydride at one palladium 

centre, to bridging hydride between the two palladium centres to terminal hydride at 

the second palladium centre. Neither this whole process, nor the alternative “bridge 

and return” process was observed, however. 

The resources for the longer simulations required for this were not available for this 

work, and further increase in the simulation temperature destroyed the model before 

any transfer process was seen. Consequently, our analysis was based on the dihedral 

angle shown in Figure 2.11(a). 

The temporal evolution of this Pd–Pd–H coordinate contained the resultant of the 

dynamics of the neighbouring ligands to which it was strongly coupled. To estimate 

the barrier to the transfer process the free energy was calculated from the frequency 

distribution of this angle during the 8 ps simulation at 1500 K as: 

                             FE(Pd-Pd-H)=kTln(
P(Pd-Pd-H)

P(max)
)                                       (1) 
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where T was the temperature of the simulation, P(Pd–Pd–H) was the time average  

population of a particular value of the angle, and P(max) was the maximum value of 

P(Pd–Pd–H). This energy function is shown in Figure 2.12. Because only a single partial 

transfer was seen during the simulation, there were no data points around the peak of 

the barrier, and it would take an extremely long simulation to obtain these. In the 

absence of a known functional form, the angle-dependent data was fitted with a 

sinusoidal function which resulted in an estimate for the energy barrier between  

19 and 23 kcal mol
-1

. By using the Arrhenius equation: 

                               k=Ae
-Ea
RT                                                                                          (2)                                                        

                           

where k was the rate constant, A was the frequency factor determined using the 

observed single transfer in the MD as the rate at 1500 K, Ea was the activation 

energy, R was the  universal gas constant 1.986 x 10
-3

 kcal mol
-1

K
-1

 and T was the 

temperature, a room temperature transfer rate of one transfer per 5.3 seconds was 

calculated. However, because the error in the barrier transformed exponentially to 

the rate, the limiting values were 360 ms and 77 s.  
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Figure 2.12. Free energy from the frequency distribution of the Pd-Pd-H angle 

approximated with a sinusoidal function to estimate the energy barrier.  

 

No attempt has been made at this stage to analyse the correlations between 

torsional motions of the methyl groups, whole-body torsions of the ligands and 

the hydride transfer process. These are clearly central to the hydride transfer 

process and could be chemically tailored to either increase or decrease the rate, 

or indeed to trap the H-ligand in a bridging or terminal position. To date we do 

not have an ideal experiment for measuring transitions at the proposed rate of 

360 ms-77 s, and therefore have no way of observing whether the hydride 

transition we proposed is occurring.  

 

A low temperature neutron diffraction study of the THF solvate of 5a was 

undertaken at the ILL facility in Grenoble, France using the monochromated 

single crystal diffractometer D19. Successful data reduction of the crystal as a 

two-component twin was produced, however the lack of a starting X-ray 

crystallographic model for the structure has prevented further progress on the 
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analysis of the data. Numerous attempts to obtain a suitable low temperature 

X-ray crystal structure of the THF solvate of 5a have been attempted, however 

multiple twinning of the sample below ca. 110 K has, to date, prevented data 

reduction.  

2.2.2.  Variable Temperature Neutron Diffraction of 5a  

 

As discussed previously, three crystal forms of 5a were observed dependant on the 

solvent of recrystallisation. The X-ray and neutron crystal structure of the unsolvated 

block form of 5a at 100 and 150 K did not show any of the apparent phase change 

behaviour seen in the THF solvate.
29

  We endeavoured to probe whether, over a 

range of temperatures approaching room temperature, any structural changes or signs 

of solid state hydride dynamics were observed in this unsolvated form.   

A variable temperature single crystal neutron diffraction study was performed on 

solvent-free crystals of 5a using the Laue diffractometer KOALA at the ANSTO 

facility in Lucas Heights, Australia. Data were obtained at temperatures of 100, 200, 

260 and 300 K, with structure refinement by a least squares fit to the data using 

CRYSTALS.
36

  

The molecular structures did not show any variation in the hydride position over the 

200 K temperature range. Most of the isotropic displacement parameters of the 

atoms (including the hydrogen atoms) refined on a per atom basis showed a general 

increasing trend with temperature as expected. This necessitated the modelling some 

of the methyl hydrogen atoms as toroids to represent the C-C bond torsion disorder 

above 100K, though it was not possible to determine whether this was a static or 

dynamic disorder. The methyl and methylene hydrogen atoms nearest the  

three-coordinate palladium centre (Pd1) had more limited increase in the 
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displacement parameters with respect to the other atoms. This less distributed 

nuclear density at higher temperatures suggested the possibility of a significant 

interaction with the three-coordinated palladium centre (Figure 2.13).  

 

Figure 2.13. Molecular structure of the cation of [{(MesIm)2CH2}2Pd2H][PF6] 5a in 

the unsolvated form at 100 K from neutron diffraction. Displacement ellipsoids are 

shown at the 50 % probability level. Counter anion [PF6]
-
 and hydrogen atoms 

except H35a, H38b and H53 are omitted for clarity. Selected bond lengths (Å) and 

angles (°): Pd1-Pd2 2.725(6), Pd2-H53 1.536(10), Pd1∙∙∙H35a 2.589(13), Pd1∙∙∙H38b 

2.638(11), Pd1-Pd2-H53 152.5(9), C35-H35a∙∙∙Pd1 144.0(9), C38-H38b∙∙∙Pd1 

116.7(7). 

 

An agostic interaction is observed between the non-hydridic palladium and one of 

the mesityl methyl protons, with a Pd1∙∙∙H35a distance of 2.589(13) Å. The 

Pd1∙∙∙H38b distance and bond angle is comparable to anagostic Pd∙∙∙H interactions 

reported by Dyker et al. who observed particularly notable interactions occurring 

where the complex geometry allowed the relevant hydrogen atom(s) to position in 

N1 

N2 

N3 

N4 

N8 
N7 

N5 

N6 
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Pd2 

H53 

H35a 

H38b 
C35 
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roughly axial positions compared to the directly coordinated M-L plane  

(Figure 2.17).
37

 We compared the similar angles and distances between Dyker’s 

complex showing the greatest agostic interactions and the anagostic Pd∙∙∙H38b 

interaction in complex 5a in Table 1 below. The Pd∙∙∙H distances and bond angles for 

these interactions are within the range of other reported agostic and anagostic M∙∙∙H 

interactions.
38,39

 The θ angles approximate 90 ° as would be necessary for  

pseudo-square pyramidal geometry. 

 

Figure 2.14. Partial representations of (a) Dyker complex
37

 and  

(b) [{(MesIm)2CH2}2Pd2H][PF6] 5a showing the axial positioning of H38b against 

the square planar palladium centre.  

Table 1. Contact length and angles from the palladium atom to the interacting 

protons in Dyker’s literature example
37

 and 5a.  

Compound d1 ψ1 θ1 d2 ψ2 θ2 

Dyker  2.581 128.83 82.55 2.299 119.14 70.40 

5a 2.638(11) 116.7(7) 71.8(3) - - - 

 

ψ1 = Pd1∙∙∙H38b-C38 [°]; θ1 = Pd2-Pd1∙∙∙H38b [°]; d1, d2 [Å]. 

d1 d1 

d2 

θ1 

ψ1 

θ2 

ψ2 

 

θ1 

ψ1 
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The interaction between the methylene linker proton H38b and the palladium was 

also observed by 
1
H NMR spectroscopy, with a significant downfield shift of the 

proton from 5.98 ppm for the non-interacting methylene protons to 7.89 ppm  

(Δ 1.91 ppm). This is also consistent with observations from Dyker, who noted that 

the interaction is defined as the more electrostatic anagostic rather than agostic as the 

proton shift is downfield not upfield, though they reported significantly greater  

(Δ 3.35 and 4.10 ppm) downfield shifts for these anagostic interactions. 

It is likely that the anagostic interactions prevent the hydride from undergoing any 

fluxional process in the solid state as the partially filled coordination sites on the 

non-hydridic palladium obstruct any hydride transfer in the solid state.  

2.2.3.  Examination of an Extended Linker Analogue of 5a 

 

Synthesis of an extended linker analogue of 5a, [μ-{(MesIm)2(CH2)3}2Pd2H][PF6] 7 

was achieved in our research group in 2014 by Dr. Curtis Ho.
30

 Compound 7 showed 

similar structural transformations from a chelating bis(NHC) mononuclear 

palladium(II) complex to a bridging bis(NHC) dinuclear palladium(I) hydride 

complex under reducing conditions.  

 

Scheme 2.6. Synthesis of dipalladium(I) hydride complex 

[{(MesIm)2(CH2)3}2Pd2H][PF6] 7. 
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The X-ray crystal structure of 7 is shown in Figure 2.15 and displayed a greatly 

reduced Pd-Pd distance of 2.7058(3) Å compared to both the unsolvated and THF 

solvate forms of 5a (ranging from 2.7530(4)–2.8757(6) Å)
29

, potentially influenced 

by the helical twist of the ligand alkyl linker groups. However, like the unsolvated 

form of 5a, one palladium site (Pd2) was more sterically shielded by the interactions 

with the mesityl methyl and methylene groups of the nearby NHC ligands, resulting 

in agostic and anagostic interactions that would effectively block one palladium 

centre and cause the hydride to preferentially bind at Pd1. The relatively short Pd∙∙∙C 

distances between Pd1 and the nearest linker methylene carbons (3.291(3) and 

3.307(3) Å) was consistent with these proposed anagostic interactions. 
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Figure 2.15. Molecular structure of the cation of [μ-{(MesIm)2(CH2)3}2Pd2H][PF6] 7 

determined by X-ray crystallography. Displacement ellipsoids are shown at the 50 % 

probability level. Counter anion [PF6] and hydrogen atoms omitted for clarity. 

Selected bond lengths (Å) and angles (°): Pd1-Pd2 2.7058(3), Pd1-C1,C28 2.034(3), 

2.025(3), Pd2-C16,C43 2.037(3),2.038(3), Pd1-C1-N1,N2 124.2(2),132.7(2), Pd1-

C28-N5,N6 124.8(2),132.6(2), Pd2-C16-N3,N4 132.5(2),123.8(2), Pd2-C43-N7,N8 

133.2(2),123.5(2).  

The 
1
H NMR spectrum of 7 at 20 °C has been reported, though was incorrectly 

assigned, with an inseparable coproduct also observed (discussed vide infra). The 

hydride resonance of 7 was observed at -15.58 ppm.
30

  

Previous studies of the methylene linked analogue 5a showed key signs of hydride 

fluxionality in solution. In the spectra of 5a, desymmetrisation of the NHC ligands at 

low temperatures was observed by the eight unique resonances for the N-mesityl  

o-Me hydrogen atoms below ˗30 °C, followed by coalescence while warming above 

this temperature.
29

 There was also a shift of the hydride signal, where the initial 
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resonance at ˗16.2 ppm began broadening around ˗30 °C and rapidly sharpened 

below that temperature again to a single hydride peak at ˗16.5 ppm. This was 

consistent with the proposed solid state dynamics in which the hydride ligand was 

fluxional at higher temperatures (as shown by the equivalent ligand signals), but was 

“frozen out” at lower temperatures to a single site, which resulted in a 

desymmetrised complex structure consistent with the proposed hydride fluxionality.  

A variable temperature (VT) 
1
H NMR spectroscopy study was conducted on 7 in 

CD3OD, with spectra obtained for the temperature range ˗50 - 50 °C. The hydride 

region showed only a progression of the signal downfield from -15.37 ppm at -50 °C 

to -15.66 ppm at 50 °C.  The aliphatic and aromatic regions also showed little 

variation across the temperature range examined, though analysis was difficult due to 

overlapping signals and the presence of the aforementioned coproduct. The clear 

indications of solution phase hydride fluxionality that were seen in 5a were not 

observed for complex 7, however.  

Neutron diffraction was performed on a single crystal of 7 as an unsolvated sample. 

A yellow plate crystal measuring 0.70 x 0.70 x 0.15 mm
3
 was grown from a 

saturated methanol solution under an inert atmosphere. The structure was refined 

isotropically with an R1 of 9.94 and the disorder in the [PF6]
-
 counteranion was 

modelled with a ring containing four fluorine atoms.  

Neutron structure analysis indicated a terminal positioning of the hydride ligand 

similar to that observed in the methylene linked analogue 5a, situated on Pd2 as 

expected due to the interactions with the mesityl methyl and methylene groups of the 

NHC ligands with Pd1. The Pd-H bond length of 1.53(6) Å is typical of terminal 

hydrides and similar (within error) to that of 5a.
21
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Figure 2.16. Molecular structure of the cation of [μ-{(MesIm)2(CH2)3}2Pd2H][PF6] 

7 from neutron diffraction. The structure was refined isotropically with spheres 

shown with an arbitrarily fixed radius of 0.2 Å.  Counter anion [PF6]
-
 and all 

hydrogen atoms except H10a, H15a, H42a and H65 are omitted for clarity. Selected 

bond lengths (Å) and angles (°): Pd2-H65 1.53(6), Pd1∙∙∙H10a 2.84(6), Pd1∙∙∙H15a 

2.32(6), Pd1∙∙∙H42a 2.33(5), Pd1-Pd2-H65 178(2), Pd1∙∙∙H15a-C15 149(3), 

Pd1∙∙∙H42a-C42 164(4).  

Similar to 5a, 7 also shows significant anagostic interactions between the non-

hydridic palladium atom and the linker CH2 protons H15a and H42a of 2.32(6) and 

2.33(5) Å, respectively. These are again comparable to those reported by Dyker 

(Figure 2.17),
37

 and we compare the similar angles and distances between the Dyker 

complex showing the greatest agostic interactions and our complex 7 in Table 2.  A 

weaker agostic interaction between the non-hydridic palladium atom and one of the 
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mesityl methylene protons was also observed with a Pd1∙∙∙H10a distance of  

2.84(6) Å 

The 
1
H NMR spectroscopic downfield shift of one of the propylene linker CH2 

protons from ca. 3.6 ppm to 6.20 ppm (Δ ca. 2.60 ppm) was consistent with the 

observed anagostic interaction between these protons and three-coordinate palladium 

site.
37

 This is again a smaller downfield shift observed by Dyker for anagostic 

interactions (Δ 3.35 and 4.10 ppm),
37

 though the different steric environments may 

account for this.  

 

Figure 2.17. Partial representations of (a) Dyker’s complex
37

 and  

(b) [{(MesIm)2(CH2)3}2Pd2H][PF6] 7 showing the axial positioning of the hydride 

against the square planar palladium centre.  

 

 

 

d1 

d2 

θ1 

ψ1 

θ2 

ψ2 

d1 

 

d2 

θ1 

ψ1 

θ2 

ψ2 



Chapter 2 

 

56 

 

Table 2. Contact length and angles from the palladium atom to the anagostic 

interacting protons in Dyker’s literature example and 7. 

Compound d1 ψ1 θ1 d2 ψ2 θ2 

Dyker  2.581 128.83 82.55 2.299 119.14 70.40 

7 2.32(6) 164(4) 80.9(13) 2.33(5) 149(3) 83.0(13) 

 

ψ1 Pd1∙∙∙H42a-C42 [°];= ψ2 = Pd1∙∙∙H15a-C15 [°];θ1 = Pd2-Pd1∙∙∙H42a [°]; 

θ2 = Pd2-Pd1∙∙∙H15a [°];d1, d2, [Å]. 

 

The θ angles again show a similar range close to the 90 ° angle to the  

palladium-NHC plane, which would be expected for the pseudo-octahedral geometry 

of the Pd1 site and these relatively short anagostic interactions likely play a 

significant role in preventing any hydride dynamics in this extended linker complex. 

2.2.4.  Examination of a Trapped Intermediate of 7 

While undertaking the recrystallisation necessary to produce suitable crystals of 7 for 

neutron diffraction, a second product was obtained (Scheme 2.7).  

[µ-{(MesIm)2(CH2)3}{(PdH)(MesIm)2(CH2)3}2][PF6]2 8 was produced as large 

colourless crystals from methanol. Often the products 7 and 8 were observed to 

intergrow with a crystal of one acting as a nucleation site for the other, leading to an 

impure solid. Several crystals mostly free of contamination from 7 were isolated on 

this occasion and examined by 
1
H NMR spectroscopy, X-ray crystallography, and 

neutron diffraction.  
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Scheme 2.7. Synthesis of complex 8 formed alongside 7 under basic reaction 

conditions. 

X-ray crystallographic analysis on a colourless crystal of 8 from methanol 

determined the mixed chelate/bridged structure as well as the likely hydride ligand, 

inferred from the T-shaped palladium(II) centre and the dicationic nature of the 

overall unit (Figure 2.18). The complex has C2 symmetry with the rotation axis 

centred on the disordered bridging propylene linker.  

This tricarbene palladium(II) hydride shares a similar palladium coordination 

environment to that observed by Cavell (Figure 2.1(c)),
21

 with the Pd-C bond trans 

to the hydride lengthened compared to the NHCs cis to the hydride. In complex 8, 

the Pd1-C1 bond trans to the hydride was observed to be 2.096(4) Å. The chelating 

NHC Pd1-C16 bond cis to the hydride was 2.060(4) Å (Δ 0.036Å compared to the 
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trans Pd-C) while the bridging NHC Pd1-C28 bond was 2.025(4) Å (Δ 0.071 Å).  

In the tricarbene complex reported by Cavell, the Pd-C bond trans to the hydride was 

2.111(2) Å, while the Pd-C bonds cis to the hydride were 2.030(2) and 2.031(2) Å  

(Δ 0.081 and 0.080 Å compared to the trans Pd-C, respectively). It is important to 

note, however that the complex reported by Cavell contained only monodentate 

NHC ligands, and that the NHC trans to the hydride had considerably less steric bulk 

than those cis to the hydride. In complex 8, the bridging NHC shows a similar bond 

lengthening effect to that reported by Cavell, though the reduced flexibility of the 

chelate ring forced extension of the Pd1-C16 bond.   
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Figure 2.18. Molecular structure of the dication of  

[µ-{(MesIm)2(CH2)3}{(PdH)(MesIm)2(CH2)3}2][PF6]2 8 from X-ray crystallography. 

Displacement ellipsoids are shown at the 50 % probability level. Lattice solvent 

methanol, [PF6]
-
 counter anions, one of two equally disordered CH2 linker atoms and 

hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): 

Pd1-C1,C16,C28 2.096(4),2.060(4),2.025(4), Pd1-C1-C16,C28 98.03(17),96.18(17), 

Pd1-C1-N1,N2, 133.8(3),122.2(3), Pd1-C16-N3,N4 132.9(3),123.8(3),  

Pd1-C28-N5,N6 125.2(3),129.9(3). 

1
H NMR spectroscopy of 8 in CD3OD indicated the presence of the hydride with two 

signals at ˗10.14 and ˗10.12 ppm. The spectrum also contained numerous 
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inequivalent signals consistent with the mixture of chelating and bridging ligands, as 

well as the two diastereomers which would occur due to slow chelate ring-flipping 

on the NMR timescale. A small amount of the dipalladium hydride species 7 was 

observed (
1
H NMR spectroscopic hydride signal at -15.45 ppm) as an impurity, 

though the compound visually appeared free of the yellow contaminant. 

Neither heating of the 
1
H NMR sample of 8 or addition of sodium methoxide to the 

sample resulted in noticeable conversion of 8 towards the dipalladium hydride 7, 

suggesting that this is a trapped reaction intermediate. Such an intermediate was 

suggested in the computational study for the methylene analogue 5a (Scheme 2.4) as 

an early step transitioning from the chelate to bridging NHC binding modes.  This 

mechanistic pathway also involved methoxide in a later step to reduce the palladium, 

though this reactivity is clearly not observed here.   

Neutron diffraction was performed on a single crystal of 8 grown from methanol 

measuring 2.0 x 1.0 x 0.8 mm
3
. Data was collected from two orientations of the 

crystal, where the sample was manually rotated 90 ° with respect to the instrument  

φ axis, to provide an enhanced sampling of the asymmetric volume of reciprocal 

space. The refined structure (Figure 2.19) confirmed the presence of the expected 

terminal hydride ligands. 
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Figure 2.19. Molecular structure of the dication of  

[µ-{(MesIm)2(CH2)3}{(PdH)(MesIm)2(CH2)3}2][PF6]2 8 from neutron diffraction. 

Structure was refined isotropically with spheres shown at an arbitrarily fixed radius 

of 0.2 Å. Lattice solvent methanol, [PF6]
-
 counter anions, disordered propylene 

linker atoms and all hydrogen atoms except H1 are omitted for clarity.  

Pd1-H1 1.59(3) Å. 

The Pd-H distance of 1.59(3) Å is similar to that reported for the terminal Pd(II) 

hydride reported by Cavell (Figure 2.1(c)). The 
1
H NMR hydride signal reported by 

Cavell at ˗10.17 ppm is also consistent with those of 8 at -10.14 and -10.12 ppm. 

Interestingly, Cavell reported a minor product with a hydride signal at -15.84 ppm, 

which was consistent with values observed for Pd(I) hydrides such as 5a and 7, 
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though they reported no success in this complex being isolated or characterised. As 

the triscarbene palladium hydride reported by Cavell was prepared by oxidative 

addition of palladium(0) rather than by reduction of palladium(II), the mechanism of 

the formation of any palladium(I) hydride species would likely involve markedly 

different mechanistic pathways. 

2.3  Conclusion 

The dipalladium(I) hydride  species 5a, produced under catalytically relevant 

conditions, has been shown to undergo solution hydride dynamics and was examined 

for possible solid state hydride dynamics.    

Using simulations of possible solid state hydride dynamics we have shown it is 

difficult to determine barriers to slow transfer processes in complex systems that 

have many degrees of freedom. We have attempted to circumvent this by using 

approximations that may not be general, but have been demonstrated to be suitable 

for the system under study. In particular, we have used an MD simulation at a 

temperature that is high enough to yield the proposed hydride transfer process within 

our resource-limited time, but even though this is above the decomposition 

temperature, it is low enough that this does not occur within the simulation period. In 

this way the MD probes physically meaningful coordinates and takes account of the 

dynamics of the whole system, albeit somewhat limited close to the actual transfer 

barrier. Additional MD simulations show that it is not the amplitude of the dynamics 

that lead to hydride transfer, but rather a change in their geometry, or the onset of a 

new process. At least for these transfer-coordinates it is reasonable to extrapolate the 

low-temperature INS validation to the higher temperature dynamics.  
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Our examination of dipalladium(I) hydride analogues 5a and 7 by neutron diffraction 

clearly show agostic and anagostic interactions that potentially limit any solid state 

hydride dynamics. Our discovery of the dipalladium(II) dihydride complex 8 as an 

apparent trapped intermediate is partially consistent with those proposed from DFT 

calculations probing the mechanism of the formation of the dipalladium(I) 

complexes as an example of the transition between chelating and bridging NHC 

ligand binding modes. 

2.4  Experimental 

 

2.4.1  General Conditions 

 

All syntheses of imidazolium salts and the ligand exchange reactions for the 

formation of metal complexes 4a-b were carried out in air, while the syntheses of the 

palladium complexes were conducted under an inert atmosphere of high purity argon 

(BOC gases) using standard Schlenk techniques. Compounds 1a-5a
29

 and 6
30

 were 

synthesised using literature methods. Handling of air-sensitive chemicals was carried 

out in a dry glove box (Innovative Technologies) under a nitrogen atmosphere with 

Schlenk type glassware. Anhydrous solvents used were obtained by passage through 

columns on an Innovative Technologies Solvent Purifier. All other reagents were 

purchased from Sigma-Aldrich and used as received. For non-air-sensitive syntheses, 

solvents were analytical grade and used as received. 

2.4.2  Instrumentation 

 

NMR spectroscopic studies were carried out on a 300 MHz Varian Gemini Mercury 

Plus spectrometer or a 400 MHz Bruker Avance 3 HD 400 MHz Wide Bore 

spectrometer with a 5 mm BBFO probe in CD3OD, THF-d8 or DMSO-d6. NMR 
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spectral data were obtained at room temperature (293 K) unless specified otherwise. 

DMSO-d6 and THF-d8 was used as received, while CD3OD was freeze-dried and 

stored over activated 4 Å molecular sieves. 

1
H NMR and 

13
C NMR spectra were obtained at 299.89 or 399.58 MHz and  

100.48 MHz, respectively.  
1
H NMR spectra were referenced to the 

1
H resonance of 

the residual solvent peaks, while 
13

C NMR spectra were referenced to the deuterated 

13
C resonance. Elemental analysis was conducted by the Central Science Laboratory 

at the University of Tasmania using a Carlo Erba EA1108 Elemental Analyser. 

Inelastic neutron scattering spectroscopy was performed using the time-of-flight 

spectrometer TOSCA at the ISIS facility in Chilton, UK.
40

 Approximately 1 g of the 

samples of the isotopomers shown in Figure 2.8 were placed in an aluminium sachet, 

which was cooled in a standard closed-cycle cryostat. Spectral data were 

accumulated until an acceptable statistical quality was obtained at sample 

temperatures of 80 and 7 K. Data correction and transformation to the energy 

spectrum were made using standard local algorithms. 

2.4.3  X-ray Crystallography 

Data for 7 and 8 were collected at -123 and -173 °C, respectively, on a single crystal 

mounted on a Hampton Scientific cryoloop using a Bruker D8 Quest diffractometer 

with copper microfocused tube (λ= 1.54178 Å) with a nominal crystal to detector 

distance of 40 mm. The structures were solved by direct methods with  

SHELXS-97,
41

 refined using full-matrix least-squares routines against F
2
 with 

SHELXL-97, and visualised using X-SEED.
42

 All non-hydrogen atoms were refined 

anisotropically. All hydrogen atoms were placed in calculated positions and refined 

using a riding model with fixed C-H distances of 0.95 Å (sp
2
CH), 0.99 Å (CH2), 
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0.98 Å (CH3). The displacement parameters of all hydrogen atoms were estimated as 

Uiso(H) = 1.2Ueq(C) except for CH3 where Uiso(H) = 1.5Ueq(C). CIF files for X-ray 

crystallographic analysis can be provided upon request. 

2.4.4  Neutron Diffraction 

KOALA VT Experiment of 5a 

Variable temperature single crystal neutron diffraction studies were performed on a 

crystal of the dipalladium(I) hydride complex 5a (unsolvated form from methanol) 

on the Laue diffractometer KOALA at ANSTO, New South Wales. The single 

flawless crystal measuring approximately 2x1x1 mm
3
 was supported on an 

aluminium stand mounted in fluorinated silicon oil. The sample was cooled using a 

Cobra open flow nitrogen cooling system and diffraction data collected using 

Nimura special neutron image plate detectors.
43

 Data sets were collected at 100, 200, 

260 and 300 K and structure models comprising positional and isotropic 

displacement parameters for all atoms were refined by  

full-matrix least-squares in the CRYSTALS
36

 program suite. 

KOALA Experiments of 7 and 8 

 

Single crystal neutron diffraction studies were performed on crystals of dipalladium 

hydride complexes [{(MesIm)2(CH2)3}Pd2H][PF6] 7 (unsolvated form from 

methanol) and [µ-{(MesIm)2(CH2)3}{(PdH)(MesIm)2(CH2)3}2][PF6]2 8 on the Laue 

diffractometer KOALA at ANSTO, New South Wales. The single flawless crystals 

measuring approximately 0.70 x 0.70 x 0.15 mm
3
 (7) and 2.0 x 1.0 x 0.8 mm

3
 (8) 

were supported on an aluminium stand mounted in fluorinated silicon oil. The 

sample was cooled using a Cobra open flow nitrogen cooling system and diffraction 

data collected using Nimura special neutron image plate detectors.
43

 Data sets were 
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collected at 150 K (7) and 100 K (8) and structure models comprising positional and 

isotropic displacement parameters for all atoms were refined by  

full-matrix least-squares in the CRYSTALS
36

 program suite. CIF files for neutron 

crystallographic analysis can be provided upon request. 

2.4.5  Synthesis 

Preparation of selectively deuterated samples for TOSCA 

 

20 g of N-mesitylimidazole 1a was provided to the National Deuteration Facility at 

ANSTO for chemical deuteration.  This was achieved by heating the compound at 

150 °C for 3 days under pressure in deuterium oxide in the presence of a mixture of 

Pt/C and Pd/C catalysts and using 20 % v/v THF as a co-solvent.
32

 The hydrothermal 

reaction mixture was purified using silica column chromatography to give deuterated 

MesIm (96 % yield) where the two m-phenyl protons remained essentially  

un-exchanged. Conversion to the deuterated diimidazolium salt using literature 

procedures
33

 with deuterated dibromomethane (99 % D) resulted in an overall 

molecule deuteration of 84 ± 2 %. The deuteration percentages at each location of 

the molecule were calculated by 
1
H and 

13
C{

1
H,

2
H} NMR spectroscopy, along with 

mass spectrometry and isotopic distribution analysis to confirm the specific site, as 

well as the overall isotopic purity, respectively. 1b (5.00 g, 25.21 mmol) was then 

reacted with CD2Br2 (4.44 g, 25.3 mmol) in identical conditions described earlier for 

2, to give d-2 (7.91 g, 91%). This resulted in overall 84 ± 2 % deuteration, with 

individual position percentages calculated by mass spectrometry and 
1
H and 

2
H 

decoupled 
13

C NMR spectroscopy.   

1
H NMR (299.89 MHz, DMSO-d6):  2.03 (0.39H, s, o-Me), 2.32 (0.24H, s, p-Me), 

6.92 (0.05H, s, CH2), 7.16 (3.72H, s, m-CH(mesityl)), 7.96 (0.10H, s, 
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CH(imidazolium)), 8.43 (0.05H, s, CH(imidazolium)), 9.96 (0.29H, s, 

CH(imidazolium)).   

Synthesis of [{(
D
MesIm)2CDH2}PdBr2] 3b 

In a modified literature procedure,
33

 a Schlenk flask was loaded with deuterated 

imidazolium 2b (2.56 g, 4.48 mmol) and palladium acetate (1.00 g, 4.47 mmol) and 

dried in vacuo at 70 °C. The solids were dissolved in DMSO (20 mL) and heated at 

50 °C for 3 hours, then 110 °C for 2 hours. The solvent was removed in vacuo and 

the residue washed with DCM and collected by filtration as a pale yellow solid  

(2.80 g, 93 % yield).  

1
H NMR (399.58 MHz, CD3OD): 2.02 (~0.29H, bs, o-CH3), 2.23 (~0.28H, bs,  

p-CH3), 6.91 (~4H, d, J = 19.2 Hz, m-CH(mesityl)), 7.29 (~0.08H, bs, 2 x 

CH(imidazolium)), 7.83 (~0.08H, bs, 2 x CH(imidazolium)) (methylene linker 

protons not observed).    

Synthesis of [{(
D
MesIm)2CD2}Pd(NCMe)2][PF6]2 4b 

In a modified literature procedure, complex 3b (1.50 g, 2.22 mmol) and an excess of 

sodium hexafluorophosphate (2.96 g, 17.3 mmol) were dissolved in a 1:1 mixture of 

acetonitrile:water (200 mL each) and heated at 80 °C for 2 hours. The solution was 

cooled and acetonitrile removed in vacuo, and the resultant white precipitate was 

collected by filtration. The crude solid was dissolved in a minimal volume of 

acetonitrile and recrystallised by slow diffusion of diethyl ether to produce 4b as a 

pure colourless crystalline solid (1.24 g, 63 % yield). 

1
H NMR (299.89 MHz, DMSO-d6): 7.12 (~ 4 x m-CH). All remaining signals were 

indistinguishable from baseline.  
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Synthesis of [{(
D
MesIm)2CD2}2Pd2H][PF6] 5b and [{(

D
MesIm)2CD2}2Pd2H][PF6] 

5c 

In a modified literature procedure, a Schlenk flask was charged with 4b (0.60 g,  

0.67 mmol) and an excess of sodium methoxide (0.13 g, 2.46 mmol). The solids 

were dissolved in methanol (20 mL) and the solution was heated at 50 °C for  

2.5 hours. The red solution was filtered into a secondary Schlenk flask, the solution 

volume reduced in vacuo to ca. 10 mL and the solution cooled at -30 °C overnight. 

The resultant red crystalline solid was collected as pure 5b in the desolvated form 

(0.34 g, 43 % yield). The fully deuterated isotopomer 5c was prepared by dissolving 

a portion of 5b in CD3OD and heating at 50 °C for 48 hours to exchange the hydride 

ligand for deuteride.   

Isotopomers 5a-5c were recrystallised from THF-d8 to form the deuterated THF 

solvate crystals suitable for the IINS experiment. 

5b: 

1
H NMR (299.89  MHz, THF-d8): -14.48 (1H, s, Pd-H), 8.72 (~ 8H, bs, m-CH). All 

remaining signals were indistinguishable from baseline. 

5c: 

1
H NMR (299.89  MHz, THF-d8): 8.72 (~ 8H, bs, m-CH). All remaining signals 

were indistinguishable from baseline. 
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Synthesis of [{(MesIm)2(CH2)3}2Pd2H][PF6] 7 and  

[µ-{(MesIm)2(CH2)3}{(PdH)(MesIm)2(CH2)3}2][PF6]2 8 

In a modified literature procedure,
30

 6 (135.7 mg, 0.15 mmol) and sodium methoxide 

(20 mg, 0.37 mnol) were dried in vacuo and dissolved in methanol (10 mL). The 

solution was heated at 60 °C for 1.5 hours, where it took on a deep yellow colour. 

The solution was filtered and reduced in vacuo to 5 mL, yielding yellow crystals of 7 

after slow cooling at – 30 °C which were spectroscopically identical to literature. 

The crystals of 7 were isolated by filtration and recrystallised from a freshly 

prepared methanol solution to produce large crystals suitable for neutron diffraction. 

(32 mg, 18 % yield). 

The mother liquor was filtered again and reduced in vacuo further, and after resting 

at room temperature for ca. 1 week produced a mixture of small yellow crystals of 7 

and large colourless crystals of 8 suitable for neutron diffraction. 

While pure crystals of 7 and 8 suitable for diffraction were selected, the bulk of both 

products contained minor impurities of the other, preventing any 
1
H NMR 

spectroscopic assignment besides the hydride and partial alkyl linker region. 
13

C 

NMR spectroscopic data and reliable elemental microanalysis were also not obtained 

due to the inseparable mixture of products and diastereoisomers of 8.  

[μ-{(MesIm)2(CH2)3}2Pd2H][PF6] 7 

1
H NMR (399.58 MHz, CD3OD, partial assignment): δ -15.58 (1H, s, Pd-H),  

3.67-4.04 (4H, m, 2 x N-CH2), 6.20 (2H, t, J = 12 Hz, CH2).   
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[µ-{(MesIm)2(CH2)3}{(PdH)(MesIm)2(CH2)3}2][PF6]2 8 

1
H NMR (399.58 MHz, CD3OD, partial assignment): δ -10.14 (1H, s, Pd-H), -10.12 

(1H, s, Pd-H), 3.18 (2H, t, J = 13.4 Hz, CH2). 

Found: C, 55.80; N, 8.40; H, 6.30. Calc. for C81H98N12Pd2P2F12.(CH3OH)4: C, 54.57; 

N, 8.94; H, 6.14.  

2.4.6  Computational conditions 

 

DFT calculations 

DFT calculations were undertaken by collaboration with Prof. Gordon Kearley and 

Dr. Nicolas de Souza at the Bragg Institute, ANSTO. All DFT calculations were 

carried out using plane-wave code, Vienna ab initio Simulation Package  

(VASP).
44-46

 Isolated (or gas phase) molecule calculations were performed on an 

isolated [{(MesIm)2CH2}2Pd2H]
+ 

cation composed of 117 atoms contained in a 

periodic cell of dimensions 25 x 18 x 18 Å. This cell is large enough to avoid fictive 

intermolecular interactions. Geometry optimisation, vibrational dynamics, and MD 

simulations were made using the Projector Augmented Wave (PAW) potential 
47

 and 

the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional.
48

 In all cases a 

single k-point was used (Γ-point) and for accurate calculations a 400 eV energy  

cut-off, with an electronic-energy convergence of 1.0 x 10
-5

 eV. For all MD 

simulations the energy cut-off was reduced to 300 eV and the electronic convergence 

to 1.0 x 10
-4

 eV, with a time step of 1 fs being used. The crystallographic unit cell 

volume is almost 7000 Å
3
 and contains over 700 atoms so only a limited number of 

calculations was possible, and then only at low precision to obtain an estimate of the 

solid state effects on the H ligand dynamics. 
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Geometry optimisation 

Geometry optimisation was achieved by allowing the atoms to relax to their 

minimum energy positions. For the crystal simulation the values of the cell constants 

were constrained to the experimental values and the full symmetry of the crystal 

structure was maintained during this optimisation. For the isolated molecule 

optimisation the initial conformation was taken from the crystal and relaxed with no 

symmetry constraints. The final molecular structure was very similar to the initial 

structure, illustrating that the crystal forces only play a minor role in determining the 

molecular conformation. An energy convergence criterion of 1.0 x 10
-4

 eV was used 

for the isolated molecule and 1.0 x 10
-3

 eV for the crystal. 

Matrix method molecular vibrations 

Normal mode vibrational frequencies and amplitudes were calculated for the 

molecule by obtaining the Hessian matrix using VASP with the same criteria as for 

the geometry optimisation. Atoms were displaced in positive and negative Cartesian 

directions from the minimum energy positions by 0.03 Å to determine the second 

derivatives of the energy. The INS spectrum was calculated from the frequencies and 

amplitudes using CLIMAX
49

 applying the instrumental parameters from the TOSCA 

spectrometer. Spectra for all isotopomers were calculated using the same force 

constants, but with the appropriate atomic masses being used in the corresponding 

inverse kinetic energy matrix. 

DFT-MD simulations 

The matrix method used the harmonic approximation, which turned out to be a poor 

model for vibrations of the hydride ligand. Ab initio MD allowed exploration of the 
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form and origin of anharmonicity taking finite temperature of the sample into 

account, which is required not only for spectral agreement, but more importantly for 

the study of the H-transfer process. For all simulations a 4 ps equilibration on the 

energy minimised structure in the isokinetic ensemble at the target temperature was 

performed to distribute the kinetic energy within the system. For the periodic crystal 

model this was followed by 4.2 ps production run in the microcanonical ensemble. 

For the isolated molecule models, an additional 4 ps equilibration in the 

microcanonical ensemble was made followed by an 8.5 ps production run. 

The MD trajectories from the low temperature runs were used to calculate the INS 

spectrum using nMoldyn.
50

 This was achieved via the incoherent intermediate 

scattering function F(Q,t) that was calculated on a regular grid in both momentum 

transfer, Q, and time, t, which was then Fourier transformed to obtain the scattering 

function S(Q,u). The appropriate cut in Q,u was taken to coincide with the 

experimental INS spectrum on TOSCA. This spectrum was then convoluted with the 

instrumental resolution function to obtain the calculated INS spectrum. 
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Chapter 3:  Investigation of Intermediates in the 

Formation of Chelating Palladium(II) Complexes 

3.1  Introduction 

As discussed briefly in Chapter 1, transition metal complexes bearing NHC ligands 

are used in a wide range of applications. The formation of these complexes can be 

achieved via a range of methods, which are often tailored to suit the particular 

system (Scheme 3.1). The most common method involves the deprotonation of an 

azolium precursor with an appropriate base to form a free carbene, which can then 

coordinate to the metal.  

Frequently the free carbene is formed in situ upon reaction with an appropriate metal 

salt containing, or in the presence of base, such as palladium acetate.
1
 This increased 

atom economy leads to more efficient syntheses (Scheme 3.1(a)). Strong bases such 

as potassium bis(trimethylsilyl)amide or potassium t-butoxide have also been used to 

deprotonate the azolium, where the free carbene is isolated or used in situ and 

coordinated to a suitable metal in a subsequent reaction (Scheme 3.1(b)).
2,3

 

Free carbenes are, however, often unstable and frequently necessitate low 

temperatures or inert conditions for the reaction to proceed without decomposition. 

Even when the deprotonation of the azolium occurs in situ the free carbene must be 

transiently stable. Should a more acidic proton be present in the azolium ligand 

precursor, it is possible that multiple sites apart from the targeted carbene site can be 

deprotonated, resulting in various products.  
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On-metal assembly (Scheme 3.1(c)) of NHC-metal complexes is achieved via the 

reaction of a suitable nucleophile with a metal-coordinated isonitrile.
4
 This can limit 

the scope of substituents present on the final NHC species.  

Oxidative addition of a halogenated azolium to low valent metal precursors has been 

used for a range of systems, though this does require additional synthesis to form the 

halogen-substituted compound (Scheme 3.1(d)).
5
 C-H oxidative addition has also 

been shown as a potentially viable method for some select systems.
6
  

Synthesis via transmetallation from a silver NHC complex (Scheme 3.1(e)), is 

especially useful for systems where the free carbene is transiently unstable as the 

silver coordination is thought to occur in a base-mediated proton abstraction.
7
 The 

silver is displaced easily upon reaction with a transition metal precursor to form the 

desired transition metal NHC complex, however reactions and complexes involving 

silver are frequently photosensitive and there is poor atom economy in the 

transmetallation reaction.  

Preparation of bidentate bis(NHC) complexes in particular can be more difficult than 

mono carbene complexes. Often the linker groups joining the azolium moiety can 

contain acidic protons which may exclude the use of some base deprotonation 

methods. On-metal templating is also not generally suitable for chelating ligands, 

while transmetallation via a silver NHC complex is often used to produce chelating 

complexes, there are stoichiometry issues for some systems that can result in poor 

atom economy and low yields. 
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Scheme 3.1. In situ deprotonation of azolium salt precursors (a),
1
 free carbene 

complex synthesis (b),
2
 on-metal template synthesis (c),

4
 C-X oxidative addition to 

low-valent metal precursors (d),
6
 and transmetallation via a silver NHC complex 

(e).
7
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While the majority of NHC complexes used for catalytic applications have 

monodentate ligand systems, a range of bidentate or multidentate NHC complexes 

have been reported.
6,7

 It has been generally noted that the these bidentate ligands 

offer increased complex stability and disfavour the cleavage of the NHC  

carbon-metal bond.
8
 The bidentate coordination mode is ideal for many catalytic 

procedures as it helps minimise catalyst decomposition where harsh reaction 

conditions are necessary. 

One system of particular interest to us are the N,N′-disubstituted methylene linked 

chelated bis(NHC) palladium(II) dihalide complexes first prepared by Herrmann and 

co-workers as catalysts for the copolymerisation of CO and ethylene, and  

carbon-carbon coupling reactions.
1,9

 These complexes were formed via the in situ 

deprotonation of the diimidazolium salt with palladium acetate using a multistage 

heating regime (Scheme 3.2) which was shown to produce significantly higher yields 

of the desired product and reduced decomposition of palladium than utilising a single 

stage heating step. 

For the N-t-butyl substituted bis(NHC) palladium complex, our research group 

confirmed that the reaction proceeded via the formation of a pendant imidazolium 

mono(NHC) palladium dihalide acetate complex, where this intermediate could be 

isolated prior to the secondary heating stage. Hydrogen bonding between the 

imidazolium C-2 proton and the acetate oxygen in the pendant imidazolium 

mono(NHC) palladium dibromide acetate complex was inferred by the significant 

downfield shift of the C-2 proton at 11.16 and 11.41 ppm for the bromide and iodide 

analogues, respectively. It was also observed that longer reaction times  

(> ca. 12 hours) at this first heating stage to form the mono(NHC) complex could 

result in the substitution of the acetate group with a third halide to form a  
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non-reactive mono(NHC) palladium trihalide complex alongside other 

decomposition products. 

 Other analogues containing bulkier substituents such as N-mesityl were also 

investigated and showed better activity in the aforementioned catalytic applications, 

though no pendant imidazolium mono(NHC) intermediates for these were observed.
9
 

 

Scheme 3.2. Synthesis of chelated bis(NHC) palladium dihalide complex via 

pendant imidazolium mono(NHC) palladium dihalide acetate intermediate.  

Recent work in our group has expanded on this ligand motif, focusing especially on 

extending the alkyl linker. In the case of the ethylene linked N-mesityl substituted 

analogue an unexpected secondary reaction pathway was observed. The pendant 

imidazolium mono(NHC) palladium complex was initially formed, however 

progression to the second heating stage resulted in the formation of two products 

(Scheme 3.3). In some instances the expected chelated bis(NHC) complex was 

isolated, however  repetitions under similar conditions resulted in an unusual 

rearrangement of the imidazolium to form an isolable mono(NHC) palladium 
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tribromide complex (denoted I throughout). This complex featured bis(NHC) 

coupling through the C-4 position, resulting in a tricyclic mono(NHC) palladium 

tribromide arrangement. Both the chelated bis(NHC) palladium dibromide and the 

rearranged mono(NHC) palladium tribromide complexes were isolated in yields of 

<15 %.
10

  

 

Scheme 3.3. Synthesis of conventional N-mesityl ethylene linked chelated bis(NHC) 

palladium(II) dibromide and the unexpected mono(NHC) palladium(II) tribromide 

complexes.
10

  

The relatively low yields of extended alkyl linker bis(NHC) palladium(II) complexes 

with bulky N-substituents,
9,10

 and the variability in synthetic outcome for the  

N-mesityl ethylene linked analogue
10

 led us to probe the intermediate obtained after 

the initial heating stage. We sought to examine whether isolation and modification of 

the pendant imidazolium mono(NHC) palladium dihalide acetate species could help 

increase the yields and direct the reaction favourably towards the desired product. 
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For the initial study we used the N-t-butyl methylene linked diimidazolium 

analogues as they have been shown to be isolable under moderate conditions.
1
 We 

proposed modifications to the ancillary halides, and to the basicity of the acetate 

group to investigate whether there were improvements in the hydrogen bonding 

interaction between the acetate oxygen and the imidazolium C-2 proton  

(Scheme 3.4). These modifications may improve yields for this catalytically relevant 

class of compounds, and will allow us to examine a wider range of analogues with 

further variations in the N-substituents and linkers, which may otherwise not be 

accessible.  

 

Scheme 3.4. Proposed variations of pendant imidazolium mono(NHC) palladium 

dihalide acetate intermediate motif. 
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3.2  Results and Discussion 

3.2.1  Effect of Different Halides in Mono(NHC) Pendant Intermediates 

Herrmann and coworkers have previously reported the synthesis of the palladium 

dihalide acetate complexes [{(tBuIm)(tBuImH)CH2}PdBr2CO2CH3] 11b and 

[{(tBuIm)(tBuImH)CH2}PdI2CO2CH3] 11c.
1
 Both complexes were characterised, by 

1
H and 

13
C NMR spectroscopy, elemental analysis and, in the case of the iodide 

analogue 11c, X-ray crystallography. No X-ray crystallographic characterisation has 

been reported for the bromide analogue 11b, however. 

The dibromide acetate complex 11b was prepared via the literature procedure, with 

the reaction of palladium acetate and the diimidazolium dibromide salt 9a in DMSO 

at 50 °C for 4 hours (Scheme 3.5). DMSO was removed in vacuo, and the yellow 

residue was dissolved in a 1:1 mixture of acetonitrile and water at 50 °C. The 

acetonitrile was then removed in vacuo to produce 11b as a yellow precipitate which 

was collected by filtration.  

 

Scheme 3.5. Synthesis of pendant imidazolium mono(NHC) palladium dihalide 

acetate complexes reported by Herrmann.
1
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1
H NMR spectroscopy was used to confirm the product was consistent with 

literature
1
 and crystals suitable for X-ray diffraction studies were produced by slow 

evaporation of a concentrated acetonitrile solution (Figure 3.1).  

 

Figure 3.1. Molecular structure of [{(tBuIm)(tBuImH)CH2}PdBr2CO2CH3] 11b. 

Displacement ellipsoids are shown at the 50 % probability level. All hydrogen atoms 

except H16 are omitted for clarity. Selected bond lengths (Å) and angles (°):  

Pd1-C1 1.972(5), Pd1-Br1,Br2 2.4311(10),2.4430(9) , Pd1-O1 2.067(4), C9∙∙∙O2 

3.103(7), C1-Pd1-Br1,Br2 86.9(2),91.5(2), O1-Pd1-Br1,Br2 89.15(13),92.45(13),  

Pd1-C1-N1,N2 120.1(4),134.6(5). 

X-ray crystallography confirmed that the structures of 11b and the iodide analogue 

11c previously reported by Herrmann were isostructural with the palladium centre 

adopting the expected square planar geometry alongside the pendant imidazolium 

mono(NHC) arrangement of the ligand. Large displacement parameters were 
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observed due to the C-C torsional disorder on one of the t-butyl groups, however 

attempts to model these atoms as a two-site disorder did not improve the refinement. 

The acetate ligand showed the expected η
1
 terminal bonding arrangement which 

allowed the non-bound oxygen to interact with the C-2 proton on the pendant 

imidazolium. As the hydrogen positions were calculated in the X-ray structure, it is 

not possible to accurately determine the O2-H9 distance as a measure of the 

hydrogen bonding from this method. We can however compare the C9∙∙∙O2 distance 

of the various analogues to provide some measure of the strength of the interaction. 

A comparison of the C9∙∙∙O2 distances for all the complexes is provided at the end of 

this section.   

Preparation of a dichloride analogue of the imidazolium salt 9a was not achieved. 

The pendant imidazolium mono(NHC) trichloride complex 10a was prepared by 

heating imidazolium 9a, palladium chloride and one equivalent of sodium acetate at 

50 °C for 4 hours. An excess of sodium chloride was added and the suspension was 

heated for a further hour, after which the solvent was removed in vacuo  

(Scheme 3.6). The complex was isolated by dissolving the residue in a 1:1 mixture 

of acetonitrile:water and heating for 10 minutes at 80 °C, after which the acetonitrile 

was removed in vacuo and the yellow precipitate was collected by filtration.  

 

Scheme 3.6. Synthesis of pendant imidazolium mono(NHC) palladium trichloride 

complex 10a.  
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1
H NMR spectroscopic analysis indicated the presence of one major product and 

multiple similar compounds in smaller amounts, presumably with various 

arrangements of Br/Cl scrambling. X-ray crystallography corroborated this mixture 

with crystals grown from slow evaporation of acetonitrile. The halide ligands cis to 

the NHC were modelled as an approximate 1:1 mixture of bromides and chlorides, 

while the halide trans to the carbene refined well as a chloride (Figure 3.2).  

An alternative route to procure the pure chloride complex was attempted by 

counteranion exchange of 9a from bromide to hexafluorophosphate and subsequent 

reaction of this imidazolium salt under the conditions shown in Scheme 3.6. The  

counteranion exchange of imidazolium 9a was successful, though attempts to 

procure the pure trichloride complex via subsequent reaction with palladium 

chloride, sodium acetate and an excess of sodium chloride was unsuccessful, with 

only minute yields (< 1 %) of impure product produced. 
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Figure 3.2. Molecular structure of [{(tBuIm)(tBuImH)CH2}PdClxBry] 10a. 

Displacement ellipsoids are shown at the 50 % probability level. All hydrogen atoms 

except H9 are omitted for clarity. Selected bond lengths (Å) and angles (°): Pd1-C1 

1.960(3), Pd1-Cl1/Br1,Cl2/Br2,Cl3 2.3924(6),2.3899(6),2.3773(7), C1-Pd1-

Cl1/Br1,Cl2/Br2 86.94(8),91.12(8), Cl3-Pd1-Cl1/Br1,Cl2/Br2 92.00(2),89.87(2), 

Pd1-C1-N1,N2 122.2(2),132.1(2). 

The minor products formed alongside 10a were not separable by recrystallisation so 

the mixture was used to prepare the acetate species 11a using silver acetate, resulting 

in a yellow solid which again was an impure mix of the expected dichloride acetate 

11a and some minor products with Br/Cl scrambling. Consistent microanalysis was 

not obtained for the halide scrambled products 10a and 11a as the Cl:Br ratios of the 

cis halides, while close to 1:1, had minor variations between batches.   

Crystals of 11a suitable for single crystal X-ray diffraction were produced by slow 

evaporation of a concentrated acetonitrile solution and a single crystal containing 

essentially pure 11a was used for structural characterisation (Figure 3.3). The 
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structure is isomorphic to the dibromide acetate analogue 11b and isostructural to the 

other acetate analogues as expected, including the C-C torsional disorder on one of 

the t-butyl ligands shows some disorder of the free-rotating methyl groups. Attempts 

to model these atoms as a two-site disorder did not improve the refinement.  

 

Figure 3.3. Molecular structure of [{(tBuIm)(tBuImH)CH2}PdCl2CO2CH3] 11a. 

Displacement ellipsoids are shown at the 50 % probability level. All hydrogen atoms 

except H9 are omitted for clarity. Selected bond lengths (Å) and angles (°):  

Pd1-C1 1.967(6), Pd1-Cl1,Cl2 2.3337(16),2.3686(15), Pd1-O1 2.066(5), C9∙∙∙O2 

3.098(9), C1-Pd1-Cl1,Cl2 86.8(2),91.7(2), O1-Pd1-Cl1,Cl2 89.91(15),91.60(15), 

Pd1-C1-N1,N2 119.5(5),134.6(5). 

The 
1
H NMR chemical shift of the C-2 protons and the C9∙∙∙O2 distances from the 

X-ray crystal structures of the various halide analogues 11a, 11b and 11c are 

summarised in Table 1. 
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Table 1. Comparison of 
1
H NMR chemical shift of the imidazolium C-2 proton and 

C9∙∙∙O2 distances of analogues 11a, 11b and 11c. 

Compound Halide 
1
H NMR shift (ppm) C9∙∙∙O2 (Å) 

11a Cl 11.59 3.098(9) 

11b Br 11.44 3.103(7) 

11c I 11.17 3.067(6) 

 

There is a significant increase in the downfield shift of the C-2 proton as the halide 

size is reduced, though the C∙∙∙O distances display no obvious trend. This suggests 

that while the smaller halides appear to favour hydrogen bonding in solution, this 

trend is not observed in the solid state structures.  

3.2.2  Effect of Different Acetate Substituents in Pendant Mono(NHC) 

Intermediates  

The pendant imidazolium mono(NHC) palladium diiodide acetate complex 11c was 

previously isolated and characterised by X-ray crystallography.
1
 For convenience, 

the pendant imidazolium mono(NHC) triiodide complex 10c was prepared by the 

reaction of 9a, PdBr2(COD), and one equivalent of sodium acetate in DMSO at 50 

°C for 4 hours, followed by addition of an excess of sodium iodide and further 

heating for 1 hour. The DMSO was removed in vacuo and the residue dissolved in a 

1:1 mixture of acetonitrile:water and heated at 80 °C for  

10 minutes. Acetonitrile was removed in vacuo and the red precipitate collected and 

dried as pure [{(tBuIm)(tBuImH)CH2}PdI3] 10c. This method had the added 

advantage of being amenable to higher temperatures than the literature method, 

allowing for easier isolation and purification of the triiodide complex. 
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Scheme 3.7. Synthesis of [{(tBuIm)(tBuImH)CH2}PdI3]  10c. 

Complex 10c was reacted with a range of silver acetate species to form the series of 

palladium dihalide acetate complexes 11c-11f. The triiodide analogue was used in 

this case due to the increased lability of iodide compared to bromide ligands, which 

helped promote formation of the acetate complex.  

Preparation of [{(tBuIm)(tBuImH)CH2}PdI2CO2R] analogues 11c-11f was achieved 

by reacting the triiodide species 10c with one equivalent of the appropriate silver 

acetate salt in methanol. The solution was stirred for 4 hours with the exclusion of 

light and the resultant silver halide precipitate was removed by filtration. Complexes 

11c-11f were then isolated by removal of solvent in vacuo and crystals of each 

suitable for X-ray diffraction were produced by slow evaporation of a concentrated 

acetonitrile solution. The crystals for the isomers 11c-11f were similar in 

appearance, growing as thin rectangular orange prisms. All four isomers displayed 

dichroic behaviour with a colour change from orange to yellow observed when an 

individual crystal was rotated 90 ° under a polarised microscope.   
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Scheme 3.8. Synthesis of pendant imidazolium mono(NHC) palladium dihalide 

acetate analogues 11c-11f. 

The dihalide acetate complex [{(tBuIm)(tBuImH)CH2}PdI2CO2CH3] 11c was 

produced in moderate yield as an orange solid.  
1
H NMR spectroscopy of 11c was 

consistent with literature,
1
 where the unsymmetrical pendant imidazolium 

mono(NHC) ligand arrangement was confirmed via retention of the five inequivalent 

NHC/imidazolium C-4/5 hydrogens and the inequivalent t-butyl groups. The 

previously noted downfield shift of the C-2 proton on the pendant imidazolium from 

9.63 ppm in the triiodide complex 10c to 11.17 ppm was also observed. X-ray 

crystallographic data was collected on orange crystals of 11c and confirmed the 

structure matched that previously reported (Figure 3.4).
1
   

 



Chapter 3 

 

92 

 

 

Figure 3.4. Molecular structure of [{(tBuIm)(tBuImH)CH2}PdI2CO2CH3] 11c. 

Displacement ellipsoids are shown at the 50 % probability level. All hydrogen atoms 

except H9 are omitted for clarity. Selected bond lengths (Å) and angles (°): Pd1-C1 

1.959(5), Pd1-I1,I2 2.6082(7),2.6335(7), Pd1-O1 2.091(4), C9∙∙∙O2 3.067(6),  

C1-Pd1-I1,I2 85.86(16),90.20(16), O1-Pd1-I1,I2 89.41(11),94.80(11),  

Pd1-C1-N1,N2 119.2(3),135.3(4). 

The analogue with a less basic acetate substituent, 

[{(tBuIm)(tBuImH)CH2}PdI2CO2CF3] 11d was produced from 10c and silver 

trifluoroacetate in moderate yield as an orange solid. 
1
H NMR spectroscopy of 11d 

was consistent with the expected structure. The unsymmetrical pendant imidazolium 

mono(NHC) ligand arrangement was confirmed via retention of the five inequivalent 

NHC/imidazolium C-4/5 hydrogens and the inequivalent t-butyl groups. The 

downfield shift of the C-2 proton on the pendant imidazolium from 9.63 ppm in 10c 

to 9.76 ppm in 11d is significantly less than the shift observed for the more basic 
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acetate 11c. 
13

C NMR spectroscopy showed the resonance for the C-2 carbon was at 

136.6 ppm. X-ray crystallographic data was collected on orange crystals of 11d for 

structural characterisation, shown in Figure 3.5.  

Structural analysis showed the palladium adopting the expected square planar 

geometry with essentially isostructural carbene and acetate bonding arrangements to 

the acetate complex 11c. One of the N-t-butyl groups displayed large displacement 

parameters due to the C-C torsional disorder, however attempts to model these atoms 

as a two-site disorder did not improve the refinement. The Pd1-C1 distance was 

identical within error between the analogues, while Pd1-I1 and Pd1-I2 distances 

were shorter in 11d. The Pd1-O1 distance in 11d appeared to be elongated to 

2.116(4) Å (Δ0.025 Å increase compared to 11c), though this was not a statistically 

significant increase. Surprisingly the C9∙∙∙O2 distance was reduced in 11d by 0.07 Å, 

contrary to our expectation that the less basic acetate species would decrease the 

hydrogen bonding interaction. It appeared that the Pd1-O1 and C9∙∙∙O2 distances 

were affected by a combination of electronic and steric effects. Thus the Pd1-O1 

bond was elongated. The shorter C∙∙∙O distance might imply greater hydrogen 

bonding interaction, which was unexpected for this less basic acetate. A comparison 

of the C9∙∙∙O2 distances for all the complexes with varied acetate substitients will be 

summarised at the end of this section.   
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Figure 3.5. Molecular structure of [{(tBuIm)(tBuImH)CH2}PdI2CO2CF3] 11d. 

Displacement ellipsoids are shown at the 50 % probability level. All hydrogen atoms 

except H9 are omitted for clarity. Selected bond lengths (Å) and angles (°): Pd1-C1 

1.956(5), Pd1-I1,I2 2.5997(7),2.6229(7), Pd1-O1 2.116(4), C9∙∙∙O2 2.998(8),  

C1-Pd1-I1,I2 88.85(18),88.03(18), O1-Pd1-I1,I2 91.60(12),91.51(12),  

Pd1-C1-N1,N2 119.2(4),134.5(4). 

A more basic analogue [{(tBuIm)(tBuImH)CH2}PdI2CO2CH(CH3)2] 11e was 

produced from 10c and silver dimethylacetate in moderate yield as an orange solid.  

1
H NMR spectroscopy of 11e was consistent with the expected structure. The 

unsymmetrical mono(NHC) pendant ligand arrangement was again confirmed to be 

retained from the five inequivalent NHC/imidazolium C-4/5 hydrogens and the 

inequivalent t-butyl groups. The downfield shift of the C-2 proton on the pendant 

imidazolium was increased from 9.63 ppm in the trihalide 10c to 11.36 ppm, a 
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further downfield shift in comparison to that of 11c. The presence of the 

dimethylacetate ligand was confirmed by the appearance of two CH3 resonances at 

0.93 and 0.95 ppm, and a methylene proton at 2.15 ppm. 
13

C NMR spectroscopy 

showed the downfield chemical shift for the C-2 carbon at 140.0 ppm. X-ray 

crystallographic data was collected on orange crystals of 11e for structural 

characterisation shown in Figure 3.6.   

Compound 11e contained two molecules in the asymmetric unit in which the 

palladium atoms shared near-identical square planar geometries with similar carbene 

and acetate bonding arrangements to the previous analogues. The Pd1-C1 distances 

of the two molecules were identical within error to analogues 11c-d and the Pd1-O1 

distance in both molecules of 11e was identical to the shorter distance observed in 

11c. The Pd1-O1 bond was similar in length to 11c. The C9∙∙∙O2 distances in 11e 

were 2.999(9) and 3.015(9) Å, on average 0.067 Å shorter than that observed in the 

original acetate complex 11c and identical within error to that observed in 11d.   

  



Chapter 3 

 

96 

 

 

Figure 3.6. Molecular structure of one of the two crystallographically independent 

molecules of [{(tBuIm)(tBuImH)CH2}PdI2CO2CH(CH3)2] 11e. Displacement 

ellipsoids are shown at the 50 % probability level. All hydrogen atoms except H9 

and lattice acetonitrile and water solvent molecules are omitted for clarity. Selected 

bond lengths (Å) and angles (°) of the above molecule (values for the second 

molecule provided in brackets): Pd1-C1 1.953(6) (1.950(7)), Pd1-I1,I2  

2.5944(8) (2.5989(8)),2.6190(8) (2.6207(8)), Pd1-O1 2.089(5) (2.090(5)), C9∙∙∙O2 

3.015(9) (2.999(9)), C1-Pd1-I1,I2 87.67(17) (87.99(17)),89.86(17) (89.22(17)),  

O1-Pd1-I1,I2 90.40(13) (89.70(12)),92.19(13) (93.13(12)), Pd1-C1-N1,N2 119.8(4) 

(119.4(4)),135.6(5) (136.1(5)). 

The most basic analogue [{(tBuIm)(tBuImH)CH2}PdI2CO2C(CH3)3] 11f was 

produced from 10c and silver trimethylacetate in poor yield as an orange solid.   

1
H NMR spectroscopy of 11f was again consistent with the expected structure. The 
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unsymmetrical mono(NHC) pendant ligand arrangement was confirmed via retention 

of the five inequivalent NHC/imidazolium C-4/5 hydrogens and the inequivalent  

t-butyl groups. The downfield shift of the C-2 proton on the pendant imidazolium 

was increased from 9.63 ppm in the triiodide 10c to 11.42 ppm, a further downfield 

shift compared to the other analogues consistent with the increased basicity. The 

presence of the trimethylacetate ligand was confirmed by the CH3 resonance at  

0.99 ppm which integrated for the expected nine protons. 
13

C NMR spectroscopy 

showed the resonance for the C-2 carbon was similar to 11e at 140.2 ppm. Isolation 

of crystals suitable for X-ray crystallographic analysis was difficult as the orange 

crystalline solid formed from both slow diffusion of diethyl ether into and slow 

evaporation of a saturated acetonitrile solution of 11f contained solvent in the 

crystalline lattice and the crystals were prone to rapid desolvation which impacted 

sample crystal quality. Multiple attempts at recrystallisation and isolation resulted in 

a single dataset of moderate quality for structural confirmation (Figure 3.7).   

Compound 11f was essentially isostructural with 11c-d, with the palladium in the 

expected square planar geometry and similar carbene and acetate bonding 

arrangements to the previous analogues. The low data quality and the C-C torsional 

disorder of the three t-butyl groups resulted in large anisotropic displacement 

parameters, though attempts to model the t-butyl torsions as two site disorders did 

not improve the structure refinement. The lattice solvent was severely disordered and 

the SQUEEZE program was used to remove the electron density in the solvent 

voids.
11

 The Pd1-C1 distance of 11f (1.968(7) Å) was increased slightly compared to 

analogues 11c-e. Conversely there was a small decrease in the Pd1-O1 distance to 

2.063(6) Å, a change of ca. 0.026 Å from analogues 11c and 11e. The C9∙∙∙O2 

distance in 11f was increased (3.130(14) Å) compared to 11c-e, an increase of  



Chapter 3 

 

98 

 

0.063 Å from 11c and ca. 0.123 Å compared to 11e, which only differs by an 

additional methyl group on the acetate substituent.  

 

Figure 3.7. Molecular structure of [{(tBuIm)(tBuImH)CH2}PdI2CO2C(CH3)3] 11f. 

Displacement ellipsoids are shown at the 50 % probability level. All hydrogen atoms 

except H9 are omitted for clarity. Selected bond lengths (Å) and angles (°): Pd1-C1 

1.968(7), Pd1-I1,I2 2.6159(10),2.6408(10), Pd1-O1 2.063(6), C9∙∙∙O2 3.130(14),  

C1-Pd1-I1,I2 87.9(2),92.3(2) O1-Pd1-I1,I2 91.0(2),88.8(2), Pd1-C1-N1,N2 

120.2(5),135.3(5). 

A summary of the various acetate species comparing the pKa of the conjugate acetate 

acids, the 
1
H NMR chemical shift of the pendant imidazolium C-2 proton and the 

C9∙∙∙O2 distances is provided in Table 2. There was good correlation between the 

pKa values and the downfield shift of the C-2 proton, which suggested that the more 

basic acetate analogues were affecting the strength of the hydrogen bonding O∙∙∙H 

interaction in solution. In the solid state the differences in C∙∙∙O distances were not 

consistent with the basicity trend, though we are unsure whether this is due to the 
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C9∙∙∙O2 distances not necessarily providing a good a measure of the hydrogen 

bonding, or whether external effects such as crystal packing, lattice solvent 

interactions and disorder and (in the case of 11f) poor data impacted this measure. 

Table 2. Comparison of pKa values of the conjugate acids of the acetates, 
1
H NMR 

chemical shift and C9∙∙∙O2 distances of analogues 11c-f. 

Compound pKa 
1
H NMR chemical shift (ppm) C9∙∙∙O2 (Å) 

11d 0.23 9.76 2.998(8) 

11c 4.76 11.17 3.067(6) 

11e 4.86 11.36 2.999(9)/3.015(9) 

11f 5.03 11.42 3.130(14) 

 

A limiting factor in this study was the lack of acetate species with significantly 

increased basicity, with a pKa increase of only 0.27 between the unsubstituted acetate 

and the trimethyl analogue. Furthermore, the various acetate derivatives added 

increased steric bulk in the vicinity of the hydrogen bonding interaction which 

potentially has affected the solid state comparison of C∙∙∙O distances.    

Observation of 
1
H NMR samples of complexes 11c-f in DMSO-d6 saw slow 

conversion of 11c, 11e and 11f to the chelated bis(NHC) complex at room 

temperature over ca. 5 days. Complex 11d, which contained the less basic acetate 

group, underwent this conversion at a much slower rate. The pendant imidazolium 

diiodide trifluoroacetate species remained the major product even after 2 weeks in 

solution. This shows that while the slight increase in acetate basicity does not 

obviously increase the rate of reaction from the mono(NHC) intermediate to the 
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chelated bis(NHC) palladium complex, the significantly less basic trifluoroacetate 

does aid the stabilisation of the mono(NHC) pendant diiodide acetate intermediate.   

3.2.3  Neutron Diffraction Studies of Hydrogen Bonding 

We sought to examine the extent of the hydrogen bonding in some of these acetate 

species via single crystal neutron diffraction where feasible depending on sample 

availability. As discussed in Chapter 2, neutron techniques are uniquely suited to the 

study of hydrogen due to the relatively high neutron scattering cross section of the 

1
H nucleus. However this technique requires significantly larger crystals than X-ray 

crystallography, which can limit the scope of compounds that can be studied.  

Crystals of the pendant imidazolium mono(NHC) palladium triiodide complex 10c 

were produced from a saturated acetonitrile solution over ca. 3 days. Single crystal 

neutron diffraction was performed on a large crystal (measuring 1.2 x 0.8 x 0.2 mm
3
) 

of 10c in order to establish the C-H distance of the C-2 proton in the non-hydrogen 

bonding species as a benchmark for comparison to the acetate analogues  

(Figure 3.8). After approximately half the collection time the crystal was manually 

rotated 90 ° to ensure sufficient sampling of reciprocal space. The structure was 

refined with all non-hydrogen atoms and H9 anisotropic, while the remaining 

hydrogen atoms were refined isotropically. A weak intermolecular H9-I3 interaction 

(ca. 2.78 Å) likely contributed to the orientation of the pendant imidazolium group.   
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Figure 3.8. Molecular structure of [{(tBuIm)(tBuImH)CH2}PdI3] 10c from single 

crystal neutron diffraction. All non-hydrogen atoms and H9 were refined 

anisotropically with displacement ellipsoids shown at the 50 % probability level, 

while all remaining hydrogen atoms are refined isotropically. Lattice solvent water 

and all hydrogen atoms except H9 are omitted for clarity. C9-H9 1.02(4) Å. 

Crystals of the pendant palladium diiodide trifluoroactate complex 11d of suitable 

size and quality for single crystal Laue neutron diffraction were grown from a 

saturated solution of acetonitrile in a sealed vessel over ca. 1 week. Initial neutron 

diffraction was performed on a single orange crystal measuring 1.0 x 1.0 x 0.3 mm
3
, 

however the experiment was stopped prematurely due to instrument failure, with 

insufficient data collected. A second crystal measuring 1.5 x 0.6 x 0.2 mm
3
 was 

procured and data collected at a later date, during which the crystal was manually 

rotated 90 ° to ensure sufficient sampling of reciprocal space. This provided an 

opportunity to explore a recent advancement in the instrument data processing 

software designed to merge datasets for different crystals. The software also enabled 

the comparison of the orientation matrices for the two crystals to ensure sufficient 
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rotation so that more unique reflections were obtained. The structure was refined 

with all non-hydrogen atoms and H9 anisotropic, while the remaining hydrogen 

atoms were refined isotropically (Figure 3.9). 

 

 

Figure 3.9. Molecular structure of [{(tBuIm)(tBuImH)CH2}PdI2CO2CF3] 11d from 

single crystal neutron diffraction. All non-hydrogen atoms and H9 were refined 

anisotropically with displacement ellipsoids shown at the 50 % probability level, 

while all remaining hydrogen atoms were refined isotropically. All hydrogen atoms 

except H9 are omitted for clarity. Selected bond lengths (Å) and angles (°): C9-H9 

1.08(5), O2∙∙∙H9 1.98(4), C9∙∙∙O2 3.04(3), C9-H9∙∙∙O2 165(2). 

Comparison of the C9-H16 distance between 10c and 11d shows a small, but 

statistically insignificant increase of 0.06 Å which would be consistent with 

hydrogen bonding, though the high error margins prevent definitive comment.  
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Due to the propensity of other acetate analogues 11c, 11e, and 11f to grow as thin 

stacked plates we have not yet been able to produce crystals of suitable size and 

quality for neutron diffraction. 

3.2.4  Synthesis of N-Mesityl Pendant Imidazolium Palladium(II) Complexes  

We expanded our study to include the N,N’-dimesityl substituent analogues. The 

chelated N-mesityl methylene-linked bis(NHC) palladium(II) complexes have better 

catalytic activity for the copolymerisation of CO and ethylene than the N-t-butyl 

analogue
9
 and an examination of intermediates, which may improve these syntheses, 

is therefore of interest. As previously discussed, the ethylene-linked N-mesityl 

analogue showed variability in synthetic products and access to the pendant 

imidazolium mono(NHC) complex might allow improved yields of, and influence 

the reaction pathway towards the preferred chelated bis(NHC) complex.  

The N-mesityl palladium dihalide acetate complexes were not accessible via the 

direct synthesis route with palladium acetate due to the increased reactivity of the 

complexes with the bulky N-aryl substituent. Monitored reactions showed that the 

reaction of the methylene linked N-mesityl imidazolium salt with palladium acetate 

proceeded to the chelating product upon stirring in DMSO at room temperature for  

1 hour. This is noticeably different to the N-t-butyl analogue, which forms only the 

mono(NHC) pendant palladium complex after heating at 50 °C for 3 hours and 

requires additional heating at 110 °C for 1-2 hours to metallate, then coordinate the 

second carbene.  

Thus an alternative synthetic method was used to form the pendant imidazolium 

mono(NHC) palladium trihalide complexes [{(MesIm)(MesImH)CH2}PdBr3] 12a 

and [{(MesIm)(MesImH)CH2}PdI3] 12b. These were prepared from the reaction of  
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N-mesityl diimidazolium salt 9b, PdBr2(COD) and one equivalent of sodium acetate 

in DMSO, which was heated for 4 hours at 50 °C (Scheme 3.9). For the iodide 

analogue 12b, sodium iodide was added and the solution was heated for an 

additional hour. The solvent was removed in vacuo and the residue was dissolved in 

acetonitrile, and filtered (for 12a) or dissolved in a 1:1 mixture of acetonitrile: water 

and the mixture heated at 80 °C for 10 minutes (for 12b). Acetonitrile was then 

removed in vacuo to produce 12a or 12b as a yellow or red precipitates, respectively.  

 

Scheme 3.9. Synthesis of N-mesityl pendant palladium trihalide complexes 12a and 

12b.  

1
H NMR spectroscopy confirmed the successful synthesis of both analogues, 

showing the desymmetrisation of the ligand with inequivalent mesityl o-methyl and 

m-CH protons, as well as the five inequivalent NHC/imidazolium protons. The 

presence of a single resonance which integrates for one hydrogen for each of the C-2 

protons (9.75 and 9.81 ppm in 12a and 12b respectively) is also consistent with the 

pendant imidazolium mono(NHC) arrangement.  Crystals of 12a and 12b suitable 

for X-ray diffraction were grown by slow evaporation of a concentrated acetonitrile 

solution with the structures of each shown in Figure 3.10. 
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Figure 3.10. Molecular structures of [{(MesIm)(MesImH)CH2}PdBr3] 12a and 

[{(MesIm)(MesImH)CH2}PdI3] 12b. Displacement ellipsoids are shown at the 50 % 

probability level. All hydrogen atoms except H14 and lattice acetonitrile solvent 

molecules are omitted for clarity. Selected bond lengths (Å) and angles (°): Pd1-C1 

1.978(9), Pd1-Br1,2,3 2.4296(15),2.4338(14),2.4749(13), C1-Pd1-Br1,Br2 

90.2(3),88.3(3), Br3-Pd1-Br1,Br2 90.00(5),91.30(5), Pd1-C1-N1,N2 

123.7(7),130.4(7) for 12a and Pd1-C1 1.984(4), Pd1-I1,2,3 

2.6166(5),2.6024(6),2.6510(7), C1-Pd1-I1,I2 88.20(11),87.83(11), I3-Pd1-I1,I2 

92.11(2),92.496(19), Pd1-C1-N1,N2 126.0(3),128.7(3) for 12b. 
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The reaction of compounds 12a and 12b with silver acetate to produce dihalide 

acetate species analogous to 11b-c was unsuccessful. The chelated bis(NHC) 

palladium dihalide complex was the only product observed by 
1
H NMR 

spectroscopy after isolation, following the stirring of the trihalide and silver acetate 

in methanol at room temperature for as little as 30 minutes. A mixture of unreacted 

trihalide and the chelated complex were observed for reaction times shorter than this.  

 

Scheme 3.10. Attempted synthesis of N-mesityl pendant imidazolium mono(NHC) 

palladium dihalide acetate complexes. 

High reactivity was also noted when an excess of sodium acetate was added to a  

1
H NMR sample of 12a, whereupon there was an immediate disappearance of the 

downfield C-2 proton and the originally desymmetrised mesityl o-methyl signals 

were observed as a single resonance. This is consistent with the unsuccessful initial 

attempt to isolate the acetate intermediate from the reaction with palladium acetate at 

room temperature.   

A pendant imidazolium mono(NHC) palladium dihalide intermediate was observed 

upon addition of an excess of the less basic sodium trifluoroacetate to a fresh  

1
H NMR sample of 12a. In our previous investigation of the t-butyl analogues it was 
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noted that the trifluoroacetate analogue showed the least reactivity to C-2 

deprotonation as indicated by 
1
H NMR spectroscopy, and we suspect this lesser 

reactivity allowed us to observe this intermediate. The spectrum was consistent with 

the pendant imidazolium mono(NHC) palladium dibromide acetate arrangement 

featuring hydrogen bonding between the imidazolium C-2 proton and the acetate 

oxygen, with a downfield shift of the C-2 proton to a broad singlet at 10.29 ppm  

(Δ 0.5 ppm) observed, as well as small shifts in the four remaining 

NHC/imidazolium C-4/5 proton signals. The mesityl methyl groups remained 

desymmetrised. Isolation of this product was attempted by removal of the NMR 

solvent in vacuo followed by extraction of the yellow residue in dichloromethane to 

separate the complex from any excess sodium trifluoroacetate. The yellow solid 

obtained from evaporation of dichloromethane was shown to be a mixture of the 

trihalide complex 12a and the trifluoroacetate complex 

[{(MesIm)(MesImH)CH2}PdBr2CO2CF3]  13.  The products could not be separated 

by recrystallisation from vapour diffusion of diethyl ether into a saturated 

dichloromethane solution, though a single crystal of 13 was selected for structural 

characterisation by X-ray diffraction (Figure 3.11). 
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Figure 3.11. Molecular structure of [{(MesIm)(MesImH)CH2}PdBr2CO2CF3] 13. 

Displacement ellipsoids are shown at the 50 % probability level. Lattice 

dichloromethane solvent atom and all hydrogen atoms except H14 are omitted for 

clarity. Selected bond lengths (Å) and angles (°): Pd1-C1 1.97(2), Pd1-Br1,Br2 

2.425(3),2.418(3), Pd1-O1 2.132(16), C14∙∙∙O2 3.04(3), C1-Pd1-Br1,Br2 

86.6(5),91.6(5), O1-Pd1-Br1,Br2 89.0(4),92.6(4), Pd1-C1-N1,N2 

121.5(17),130.9(15). 

The structure of 13 is similar to the t-butyl palladium dihalide acetate complexes 

11a-f, with the C-2 proton oriented towards the acetate ligand to assist with 

hydrogen bonding.  The X-ray crystallography data was low quality, with an Rint of 

0.16 however further attempts to isolate the complex were unsuccessful and 

attempted modelling of the trifluoroacetate fluoride and carbon atoms as disordered 

did not improve the refinement.   The C14∙∙∙O2 distance of 3.04(3) Å is consistent 

with the range found for the N-t-butyl substituted series. Synthesis of 13 via our 
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previous silver trifluoroacetate method was unsuccessful, with only the initial 

material 12a recovered from the reaction.  

The synthesis of the ethylene linked mono(NHC) pendant palladium trihalide 

complex 14 from the imidazolium salt 9c has been previously reported  

(Scheme 3.11).
10

  

 

Scheme 3.11. Synthesis of N-mesityl ethylene linked pendant imidazolium 

palladium tribromide complex 14.
10

  

It was observed by Herrmann and coworkers that for the N-t-butyl methylene linked 

trihalide analogues, the addition of sodium acetate to a 
1
H NMR sample of the pure 

trihalide resulted in clean conversion to the dihalide acetate complex, with only the 

trans-halide exchanging.
1
 Addition of an excess of sodium acetate to the 

1
H NMR 

sample of 14 appeared to result in an immediate conversion to a new product. In 

particular there was a small downfield shift of the pendant imidazolium C-2 proton 

from 9.37 ppm to 9.65 ppm (Figure 3.12) consistent with previously observed 

hydrogen bonding between the imidazolium C-2 proton and the acetate oxygen, 

albeit a smaller shift than seen between the N-t-butyl triiodide and acetate analogues 

10c and 11c. There was also a downfield shift of a similar magnitude for one of the 

pendant imidazolium backbone protons from 8.04 ppm to 8.37 ppm; this is 

noteworthy as the N-t-butyl analogue series had essentially no shift of the 
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NHC/imidazolium backbone protons between the trihalide and dihalide acetate 

species.  

This shift was suggestive of the acetate group showing hydrogen bonding 

interactions with both the C-2 position traditionally involved in carbene formation 

and a C-4/5 imidazolium backbone proton, which could then facilitate reactivity 

towards the coupled complex I (Scheme 3.3) discussed previously. The fact that 

interactions with two different protons were observed potentially implies the 

formation of two isomers containing different hydrogen-bonding arrangements, 

which might be rapidly exchanging in solution.  

 

Figure 3.12. Comparison of the 
1
H NMR spectra of 14 before and after the addition 

of sodium acetate (7-10 ppm region).  

Albrecht and co-workers discuss similar acetate O∙∙∙H interactions involving the C-4 

proton being a factor in the formation of abnormal carbene complexes.
12

 They 

prepared an asymmetric imidazolium salt which had one C-2 position blocked by a 

methyl group to prevent the normal bis(NHC) formation. Reaction of this species 

14 

14 + exc. NaOAc 

C-2 C-4 

C-2 C-4 



Chapter 3 

 

111 

 

with palladium acetate produced a pendant imidazolium mono(NHC) palladium 

diiodide acetate complex which, during workup underwent anion metathesis and 

formed the triiodide complex (Scheme 3.12).   

 

Scheme 3.12. Synthesis of pendant imidazolium mono(NHC) palladium complexes 

reported by Albrecht.
12

 

The diiodide acetate complex reported by Albrecht presumably showed hydrogen 

bonding between the acetate and C-4 bound proton, however no NMR spectroscopic 

or X-ray crystallographic data was available for comparison to our similar species.  

Reaction of 14 with one equivalent of silver acetate under similar conditions used to 

prepare the N-t-butyl palladium acetate complex 11c produced a yellow solid in poor 

yield which was shown by 
1
H NMR to contain one major product and several minor 

products. The major product was identical to that produced by the addition of excess 

sodium acetate to 14 and was assumed to be the dihalide acetate complex 15 

(Scheme 3.13). The complex appears inseparable from the minor products however 

and we have yet been unsuccessful in obtaining crystallographic confirmation of the 

structure.  
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Scheme 3.13. Synthesis of the pendant imidazolium mono(NHC) ethylene linked 

palladium dibromide acetate complex 15.  

3.3  Conclusion 

A series of N-t-butyl pendant imidazolium palladium dihalide acetate complexes 

11a-f were prepared to examine the hydrogen bonding effects influencing formation 

of the chelating bis(NHC) palladium complexes. Variations were made to the 

basicity of the acetate group and the type of ancillary halide, and the  

acetate-imidazolium O∙∙∙H interactions were probed by 
1
H NMR spectroscopy and 

X-ray diffraction. It was observed that in solution there was a notable downfield shift 

of the pendant imidazolium C-2 proton dependant on halide. A less significant 

downfield shift of the pendant imidazolium C-2 proton was observed dependant on 

acetate basicity. X-ray diffraction provided little differentiation in the solid state 

structures between complexes based on O∙∙∙C2 distances involving the H-bonding 

interaction. No significant increases in conversion from the pendant imidazolium 

mono(NHC) diiodide acetate complexes 11c, 11e or 11f to the chelated bis(NHC) 

palladium diiodide complex were observed. The significantly less basic 

trifluoroacetate analogue 11d did show a greatly reduced conversion rate to the 

chelated species, however.  

Neutron diffraction was used to directly probe the C-H bond length of the triiodide 

complex 10c and the O∙∙∙H bonding for the trifluoroacetate analogue 11d. There 
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appeared to be little difference in C-H distance between these two species and to date 

we have not been able to prepare suitably large single crystals of the other acetate 

analogues to compare O∙∙∙H distances.  

The N-mesityl pendant imidazolium palladium trihalide complexes 12a and 12b 

were also prepared and it was observed that reaction of these complexes with silver 

acetate under identical reaction conditions used to prepare the t-butyl analogues 

resulted in immediate formation of the chelated bis(NHC) palladium dihalide 

complexes. Addition of the less basic sodium trifluoroacetate to an NMR sample of 

the tribromide complex 12a did produce the pendant imidazolium palladium 

dibromide trifluoroacetate complex 13, which was structurally authenticated by  

X-ray crystallography.  

1
H NMR spectroscopic studies of the reaction of the ethylene-linked N-mesityl 

pendant imidazolium palladium tribromide complex 14 with sodium acetate 

indicated possible O∙∙∙H interactions between the acetate group and the C-4/5 

imidazolium backbone protons which may facilitate the secondary reaction pathway 

invoked in the formation of the self-coupled palladium complex I. Attempts to 

isolate and structurally authenticate the acetate intermediate 15 are ongoing.    

3.4  Experimental 

3.4.1  General Conditions 

All syntheses of imidazolium salts and ligand exchange reactions of metal trihalide 

complexes to dihalide acetate complexes were carried out in air, while the syntheses 

of the mono(NHC) palladium complexes were conducted under an inert atmosphere 

of high purity argon (BOC gases) using standard Schlenk techniques. Anhydrous 

DMSO was purchased from Sigma-Aldrich and stored over activated 3 Å molecular 
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sieves. Other anhydrous solvents used were obtained by passage through columns on 

an Innovative Technologies Solvent Purifier. 

Palladium(II) acetate was purchased from Precious Metals Online and used as 

received. Silver acetate, silver dimethylacetate and silver trimethylacetate were 

prepared by treating their respective sodium salts with aqueous silver nitrate solution 

and collecting the resultant precipitate by filtration, while silver trifluoroacetate was 

prepared from a literature procedure.
13

 Imidazolium salts 9a,
1
 9b,

9
 and 9c

10
 and 

palladium complex 14
10

 were prepared according to their cited literature procedure. 

All other reagents were purchased from Sigma-Aldrich and used as received. For 

non-air-sensitive syntheses, solvents were analytical grade and used as received. 

3.4.2  Instrumentation 

NMR spectroscopic studies were carried out on a 400 MHz Bruker Avance 3 HD 

Wide Bore spectrometer with a 5 mm BBFO probe in DMSO-d6. NMR spectral data 

was obtained at room temperature (293 K) unless specified otherwise. DMSO-d6 was 

distilled over CaH2 and stored over 4 Å molecular sieves. 

1
H NMR spectra were obtained at 399.58 MHz while 

13
C NMR spectra were 

recorded at 100.47 MHz. 
1
H NMR spectra were referenced to the 

1
H resonance of 

the residual solvent peaks, while 
13

C NMR spectra were referenced to the deuterated 

13
C resonance. Elemental analyses were conducted by the Central Science 

Laboratory at the University of Tasmania using a Carlo Erba EA1108 Elemental 

Analyser. X-ray crystallographic studies were conducted at the Australian 

Synchrotron using the MX1 and MX2 beamlines. 
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3.4.3  X-ray Crystallography  

Data for 10a-14 were collected at -173 °C on crystal mounted on a Hampton 

Scientific cryoloop at the MX1 or MX2 beamline of the Australian Synchrotron.
14,15

 

Data completeness is limited by the single axis goniometer on the MX beamlines at 

the Australian Synchrotron. The structures were solved by direct methods with 

SHELXS-97,
16

 refined using full-matrix least-squares routines against F
2
 with 

SHELXL-97, and visualised using X-SEED or OLEX2.
17,18

 All non-hydrogen atoms 

were refined anisotropically. All hydrogen atoms were placed in calculated positions 

and refined using a riding model with fixed C-H distances of 0.95 Å (sp
2
CH), 0.99 Å 

(CH2), 0.98 Å (CH3). The displacement parameters of all hydrogen atoms were 

estimated as Uiso(H) = 1.2Ueq(C) except for CH3 where Uiso(H) = 1.5Ueq(C). Two-

site atom disorder was modelled in OLEX2. Where solvent disorder was unable to be 

modelled the electron density was removed with PLATON SQUEEZE.
11

 CIF files 

for X-ray crystallographic analysis can be provided upon request. 

3.4.4  Neutron Diffraction 

KOALA Experiments of 10c and 11d 

Single crystal neutron diffraction studies were performed on crystals of pendant 

imidazolium mono(NHC) palladium(II) complexes [{(tBuIm)(tBuImH)CH2}PdI3] 

10c and [{(tBuIm)(tBuImH)CH2}PdI2CO2CF3] 11d on the Laue diffractometer 

KOALA at ANSTO, New South Wales. The single flawless crystals measuring 

approximately 1.2 x 0.8 x 0.2 mm
3
 (10c) and 1.0 x 1.0 x 0.3 mm

3 
and 1.5 x 0.6 x 0.2 

mm
3
 (11d) were supported on an aluminium stand mounted in fluorinated silicon oil. 

The sample was cooled using a Cobra open flow nitrogen cooling system and 

diffraction data collected using Nimura special neutron image plate detectors.
19

 Data 

sets were collected at 100 K and structure models comprising positional and 
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isotropic displacement parameters for all atoms were refined by  

full-matrix least-squares in the CRYSTALS
20

 program suite. CIF files for neutron 

crystallographic analysis can be provided upon request. 

3.4.5  Synthesis 

Preparation of [{(tBuIm)(tBuImH)CH2}PdCl3] 10a 

9a (218.7 mg, 0.52 mmol), palladium chloride (91.9 mg, 0.52 mmol) and sodium 

acetate (42.8 mg, 0.52 mmol) were dried in a Schlenk flask at ca. 70 °C. DMSO  

(10 mL) was added and the orange solution heated at 50 °C for 4 hours. Sodium 

chloride (0.99 g, 16.94 mmol) was added and the orange solution heated for a further 

1 hour. The solvent was removed in vacuo and the yellow solid dissolved in a 

mixture of acetonitrile and water (20 mL/20 mL) and heated at 80 °C for 15 minutes. 

Acetonitrile was removed in vacuo, the resulting yellow precipitate collected by 

filtration, washed with water (5 mL) and dried in vacuo to produce a yellow solid 

that was an inseparable mixture of 10a (major product) and various halide scrambled 

Cl/Br products (minor) (69.7 mg, ~ 22 % yield). Consistent elemental microanalysis 

was not obtained due to the indeterminate mixture of halides. m.p. 284 °C (dec).  

1
H NMR (major product only, 399.58 MHz, DMSO-d6): δ 1.62 (9H, s, C(CH3)3), 

1.92 (9H, m, C(CH3)3), 6.99 (2H, s, CH2) 7.73 (1H, bs, ImCH), 7.88 (1H, bs, ImCH), 

8.05 (1H, m, ImCH), 8.09 (1H, bs, ImCH), 9.89 (1H, m, ImCH). 

13
C NMR (major product only, 100.5 MHz, DMSO-d6): δ 28.7 (C(CH3)3), 31.2 

(C(CH3)3), 61.3 (CH2), 120.8 (CH), 121.9 (CH), 122.3 (CH), 123.0 (CH), 136.2 

(CH), 136.6 (C-Pd). 
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Preparation of [{(tBuIm)(tBuImH)CH2}PdI3] 10c 

From a literature procedure
1
 9a (0.193 g, 0.45 mmol) and palladium acetate (0.103 g, 

0.45 mmol) were dried in a Schlenk flask at ca. 70 °C. DMSO (15 mL) was added 

and the orange solution heated at 50 °C for 4 hours. Sodium iodide (3.9 g, 26 mmol) 

was added and the red-orange solution heated for a further 1 hour. The solvent was 

removed in vacuo and the red solid dissolved in a mixture of acetonitrile and water 

(20 mL/20 mL) and heated at 80 °C for 15 minutes. Acetonitrile was removed in 

vacuo, the resulting red precipitate collected by filtration, washed with water (5 mL) 

and DCM (10 mL) and dried in vacuo to produce a red solid that is spectroscopically 

identical to literature (0.136 g, 40 % yield). 

1
H NMR (399.58 MHz, DMSO-d6): δ 1.59 (9H, s, CH3), 1.83 (9H, s, CH3), 6.81 (2H, 

s, CH2) 7.75 (1H, s, ImCH), 7.88 (1H, s, ImCH), 7.96 (1H, s, ImCH), 8.06 (1H, s, 

ImCH), 9.63(1H, s, ImCH). 

Preparation of[{(tBuIm)(tBuImH)CH2}PdCl2OAc] 11a 

10a (24.0 mg, 0.05 mmol) and silver acetate (8.1 mg, 0.05 mmol) were dissolved in 

methanol (10 mL). The solution was excluded from light and stirred for four hours. 

The precipitated silver halide was removed by filtration through celite and the 

solvent was removed in vacuo to produce a yellow solid (6.2 mg, ~31% yield) that 

was an inseparable mix of complex and a minor byproduct of the Cl/Br halide 

scrambled acetate species. Consistent elemental microanalysis was not obtained due 

to an inconsistent mixture of halides.  
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1
H NMR (major product only, 399.58 MHz, DMSO-d6): δ 1.59 (9H, s, CH3), 1.67 

(3H, s, CO2CH3), 1.91 (9H, m, CH3), 7.15 (2H, s, CH2) 7.57-7.60 (1H, m, ImCH), 

7.91 (1H, bs, ImCH), 7.99-8.02 (2H, m, 2 x ImCH), 11.52-11.59 (1H, m, ImCH). 

13
C NMR (major product only, 100.5 MHz, DMSO-d6): δ 24.1 (CO2CH3), 28.5 

(CH3), 30.8 (CH3), 58.8 (C(CH3)3), 59.2 (C(CH3)3), 60.8 (CH2), 120.4 (CH), 120.9 

(CH), 121.4 (CH), 123.0 (CH), 139.3 (CH), 175.1 (CO2CH3), Pd-C not observed. 

Preparation of [{(tBuIm)(tBuImH)CH2}PdBr2OAc] 11b 

From a literature procedure
1
 9a (187.0 mg, 0.44 mmol) and palladium acetate  

(98.5 mg, 0.44 mmol) were dried in a Schlenk flask at ca. 70 °C. DMSO (5 mL) was 

added and the orange solution heated at 50 °C for 4 hours. The solvent was removed 

in vacuo and the yellow solid dissolved in a mixture of acetonitrile and water  

(20 mL/20 mL) and heated at 80 °C for 15 minutes. Acetonitrile was removed in 

vacuo, the resulting yellow precipitate collected by filtration, washed with water  

(5 mL) and DCM (10 mL) and dried in vacuo to produce a yellow solid that is 

spectroscopically identical to literature (108.7 mg, 42 % yield). 

1
H NMR (399.58 MHz, DMSO-d6): δ 1.62 (9H, s, t-Bu), 1.66 (3H, s, CH3), 1.87 (9H, 

s, t-Bu), 7.01 (2H, s, CH2) 7.71 (1H, s, ImCH), 7.98 (1H, s, ImCH), 7.99 (1H, s, 

ImCH), 8.04 (1H, s, ImCH), 11.17 (1H, s, ImCH). 

General procedure for preparation of [{(tBuIm)(tBuImH)CH2}PdI2R] 11c-f 

10c was dissolved in methanol, and the relevant silver salt added. The solution was 

excluded from light and stirred for four hours. The precipitated silver iodide was 

removed by filtration through celite and the solvent was removed in vacuo to 

produce the pure complex.  
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Preparation of [{(tBuIm)(tBuImH)CH2}PdI2OAc] 11c  

From 10c (136.2 mg, 0.18 mmol) and silver acetate (30.4 mg, 0.18 mmol) in 

methanol (35 mL), product was obtained as an orange solid that could be 

recrystallised from slow evaporation of acetonitrile that is spectroscopically identical 

to literature
1
 (76.6 mg, 62 % yield). 

1
H NMR (399.58 MHz, DMSO-d6): δ 1.62 (9H, s, CH3), 1.66 (3H, s, CH3), 1.87 (9H, 

s, t-Bu), 7.01 (2H, s, CH2) 7.71 (1H, s, ImCH), 7.98 (1H, s, ImCH), 7.99 (1H, s, 

ImCH), 8.04 (1H, s, ImCH), 11.17 (1H, s, ImCH). 

Preparation of [{(tBuIm)(tBuImH)CH2}PdI2CO2CF3] 11d 

From 10c (138.0 mg, 0.18 mmol) and silver trifluoroacetate (40.8 mg, 0.18 mmol) in 

methanol (25 mL), product was obtained as an orange solid that could be 

recrystallised from slow evaporation of acetonitrile (85.1 mg, 63 % yield).  

m.p. 250 °C (dec). 

1
H NMR (299.89 MHz, DMSO-d6): δ 1.61 (9H, s, CH3), 1.85 (9H, s, CH3), 6.81 (2H, 

s, CH2), 7.98 (1H, s, ImCH), 8.02 (1H, s, ImCH), 8.03 (1H, s, ImCH), 8.12 (1H, s, 

ImCH), 9.76 (1H, s, ImCH). 

13
C NMR (100.48 MHz, DMSO-d6): δ 28.8 (CH3), 31.1 (CH3), 59.4 (C(CH3)3), 60.0 

(C(CH3)3), 62.3 (CH2), 121.2 (CH), 121.9 (CH), 123.5 (CH), 124.4 (CH), 136.6 

(CH), 158.1 (Pd-C),185.6 (OC=O) (CF3 carbon not observed).  

19
F NMR (375.94 MHz, DMSO-d6): -73.52 (s, CF3) 

Found: C, 28.02; N, 7.78; H, 3.40. Calc. for C17H25N4O2PdF3I2: C, 27.79; N, 7.63; H, 

3.43.   
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Preparation of [{(tBuIm)(tBuImH)CH2}PdI2CO2CH(CH3)2] 11e 

From 10c (99.6 mg, 0.13 mmol) and silver dimethylacetate (25.9 mg, 0.13 mmol) in 

methanol (30 mL), product was obtained as an orange solid that could be 

recrystallised from slow evaporation of acetonitrile (45.4 mg, 48 % yield).  

m.p. 272 °C (dec). 

1
H NMR (399.58 MHz, DMSO-d6): δ 0.94 (6H, d, J = 7.0 Hz, 2 x CO2CH(CH3)), 

1.62 (9H, s, t-Bu), 1.87 (9H, s, t-Bu), 2.15 (1H, sep. J = 6.9 Hz, CO2CH(CH3)2), 7.03 

(2H, s, CH2), 7.71 (1H, s, ImCH), 7.98 (2H, s, 2 x ImCH), 8.03 (1H, s, ImCH), 11.36 

(1H, s, ImCH). 

13
C NMR (100.48 MHz, DMSO-d6): δ 20.2 (2 x CH3), 28.9 (CH3), 31.2 (CH3), 35.1 

(CH(CH3)2), 58.7 (C(CH3)3), 59.7 (C(CH3)3), 62.0 (CH2), 120.7 (CH), 121.3 (CH), 

122.3 (CH), 123.4 (CH), 140.0 (CH), 148.3 (C-Pd), 181.0 (OC=O). 

Found: C, 30.91; N, 7.48; H, 4.63. Calc. for C19H32N4O2PdI2.(H2O)2: C, 30.64; N, 

7.52; H, 4.87.  

Preparation of [{(tBuIm)(tBuImH)CH2}PdI2CO2C(CH3)3] 11f 

From 10c (99.9 mg, 0.13 mmol) and silver trimethylacetate (27.9 mg, 0.13 mmol) in 

methanol (30 mL), product was obtained as an orange solid that could be 

recrystallised from slow evaporation of acetonitrile (26.3 mg, 27 % yield).  

m.p. 247 °C (dec). 

1
H NMR (399.58 MHz, DMSO-d6): δ 0.99 (9H, s, CO2C(CH3), 1.62 (9H, s, 

C(CH3)3), 1.88 (9H, s, C(CH3)3), 7.04 (2H, s, CH2) 7.70 (1H, s, ImCH), 7.96 (2H, s, 

2 x ImCH), 8.02 (1H, s, ImCH), 11.42 (1H, s, ImCH). 
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13
C NMR (100.48 MHz, DMSO-d6): δ 28.4 (CO2C(CH3), 28.9 (C(CH3)3), 30.7 

(C(CH3)3), 38.2 (CO2CCH3), 58.7 (CCH3), 59.7 (CCH3), 61.9 (CH2), 120.6 (CH), 

121.3 (CH), 122.3 (CH), 123.4 (CH), 140.2 (CH), 148.3 (C-Pd), 182.3 (OC=O). 

Found: C, 33.34; N, 7.27; H, 4.56. Calc. for C20H34N4O2PdI2: C, 33.24; N, 7.75; H, 

4.56.  

Preparation of [{(MesIm)(MesImH)CH2}PdBr3] 12a  

A Schlenk flask was loaded with 9b (0.226 g, 0.41 mmol), PdBr2(COD) (0.155 g, 

0.41 mmol) and sodium acetate (0.034 g, 0.41 mmol) and dried in vacuo at 70 °C. 

DMSO (8 mL) was added and the solution heated at 50 
o
C for 4 hours. The solvent 

was removed in vacuo and the residue was dissolved in a 1:1 mixture of water and 

acetonitrile (20 mL /20 mL) and heated at 80 °C for 15 minutes. The solvent mixture 

was reduced in vacuo to remove the acetonitrile, and the resultant yellow precipitate 

was collected by filtration and washed with a further 10 mL water, then dried in 

vacuo. 12a was produced as a yellow solid (0.173 g, 57 % yield) which could be 

recrystallised for X-ray diffraction by slow evaporation of a saturated solution of 

acetonitrile. m.p. 267 °C(dec). 

1
H NMR (399.58 MHz, DMSO-d6): δ 2.07 (6H, s, o-CH3), 2.13 (6H, s, o-CH3), 2.33 

(6H, s, 2 x p-CH3), 7.06 (2H, s, m-CH), 7.15 (2H, s, m-CH), 7.17 (2H, s, CH2), 7.62 

(1H, s, ImCH),  8.06 (1H, s, ImCH),  8.11 (1H, s, ImCH),  8.39 (1H, s, ImCH),  9.81 

(1H, s, ImCH). 

13
C NMR (100.48 MHz, DMSO-d6): δ 17.2 (o-CH3), 19.2 (o-CH3),  20.6 (2 x p-

CH3),  61.5 (CH2), 122.4 (ImCH), 123.2 (ImCH), 124.5 (ImCH), 127.0 (ImCH), 

129.0  
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(m-CH), 129.3 (m-CH), 130.9 (C), 134.3 (C) 134.4 (C), 135.5 (C), 138.4 (Pd-C), 

138.8 (ImCH), 140.5 (2 x C overlaid).      

Found: C,40.68; N, 8.28; H, 4.07. Calc. for C25H28N4PdBr3.NCMe.(H2O)2: C, 40.15; 

N, 8.67; H, 4.37.  

Preparation of [{(MesIm)(MesImH)CH2}PdI3] 12b 

A Schlenk flask was loaded with 9b (99.7 mg, 0.18 mmol), PdBr2 (48.6 mg,  

0.18 mmol) and sodium acetate (15.2 mg, 0.18 mmol) and dried in vacuo at 70 °C. 

DMSO (15 mL) was added and the solution heated at 50 
o
C for 4 hours. Sodium 

iodide (550 mg, 366 mmol) was added and the solution was heated for a further  

1 hour. The solvent was removed in vacuo and the residue was dissolved in a 1:1 

mixture of water and acetonitrile (25 mL /25 mL) and heated at 80 °C for  

15 minutes. The solvent mixture was reduced in vacuo to remove the acetonitrile, 

and the resultant red precipitate was collected by filtration and washed with further 

10 mL water, then dried in vacuo. 12b was produced as a red solid (64.8 mg,  

41 % yield) which could be recrystallised for X-ray diffraction by slow evaporation 

of a saturated solution of acetonitrile. m.p. 274 °C(dec). 

1
H NMR (399.58 MHz, DMSO-d6): δ 2.09 (6H, s, o-CH3), 2.22 (6H, s, o-CH3), 2.32 

(3H, s, p-CH3), 2.34 (3H, s, p-CH3), 7.04 (2H, s, m-CH), 7.12 (2H, s, CH2), 7.16 (2H, 

s, m-CH), 7.65 (1H, s, ImCH),  8.07 (2H, s, 2 x ImCH), 8.33 (1H, s, ImCH),  9.75 

(1H, s, ImCH).  

13
C NMR (100.48 MHz, DMSO-d6): δ 17.2 (o-CH3), 20.54 (o-CH3), 20.55 (p-CH3), 

21.1 (p-CH3),  62.4 (CH2), 122.6 (ImCH), 122.8 (ImCH), 124.5 (ImCH), 127.9 
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(ImCH), 129.1 (m-CH), 129.3 (m-CH), 130.8 (C), 130.9(C), 134.1 (C), 134.3 (C), 

135.3 (C), 138.6 (ImCH), 138.8 (Pd-C), 140.4 (C).        

Found: C, 34.47; N, 6.56; H, 3.28. Calc. for C25H28N4PdI3: C, 34.45; N, 6.43; H, 

3.24.  

Preparation of [{(MesIm)(MesImH)CH2}PdBr2CO2CF3] 13 

12a (ca. 5 mg) was dissolved in DMSO-d6 in an NMR tube. An excess of sodium 

trifluoroacetate (ca. 10 mg) was added and the sample was agitated to ensure mixing. 

Following confirmation of conversion by 
1
H NMR, the sample was transferred into a 

Schlenk flask, where the solvent was removed in vacuo and the resultant yellow 

glass extracted with dichloromethane (5 mL). The solution was filtered through 

fibreglass and dried under vacuum to produce a mixture of 13 and 12a (ca. 2 mg). 

Crystals suitable for X-ray diffraction were produced by slow diffusion of diethyl 

ether into a concentrated DCM solution. Insufficient pure product was isolated to 

obtain 
13

C NMR spectroscopic data or elemental microanalysis. 

1
H NMR (in situ from addition of NaCO2CF3, 399.58 MHz, DMSO-d6): δ 2.07 (6H, 

s, o-CH3), 2.12 (6H, s, o-CH3), 2.31 (3H, s, p-CH3), 2.32 (3H, s, p-CH3), 7.04 (2H, s, 

m-CH), 7.12 (2H, s, m-CH), 7.23 (2H, s, CH2), 7.59 (1H, s, ImCH),  8.05 (1H, s, 

ImCH), 8.20 (1H, s, ImCH), 8.56 (1H, bs, ImCH),   10.29 (1H, bs, ImCH). 

Preparation of [{(MesIm)(MesImH)(CH2)2}PdBr2CO2CH3] 15 

14 (45.2 mg, 0.06 mmol) and silver acetate (10.5 mg, 0.06 mmol) were dissolved in 

methanol (25 mL) and stirred with exclusion from light for 4.5 hours at room 

temperature. The resultant pale yellow solution was filtered through celite to remove 

the grey precipitate and the solvent removed in vacuo to produce a pale yellow solid 
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which was a mixture of 15 and some inseparable minor products (15.6 mg,  

~36% yield). Elemental microanalysis was not obtained as the compound was not 

successfully isolated as a pure product.  

1
H NMR (major product only, 399.58 MHz, DMSO-d6): δ 1.63 (3H, s, OCCH3), 

2.03 (6H, s, 2 x o-CH3), 2.10 (6H, s, 2 x o-CH3), 2.50 (6H, s, 2 x p-CH3), 5.20 (2H, t, 

J = 6.6 Hz, CH2), 5.65 (2H, t, J = 6.2 Hz, CH2), 7.01 (2H, s, m-CH), 7.13 (2H, s,  

m-CH), 7.27 (1H, s, ImCH),  7.45 (1H, s, ImCH), 7.99 (1H, s, ImCH), 8.38 (1H, s, 

ImCH),   9.63 (1H, s, ImCH). 

13
C NMR (partial assignment due to mixed products, 100.5 MHz, DMSO-d6): δ 10.8 

(CO2CH3), 16.9 (CH3), 19.2 (CH3), 20.5 (CH3), 48.6 (2 x CH2), 123.3 (C), 124.1 (C), 

124.3 (C), 128.9 (CH), 129.2 (CH), 129.3 (CH), 134.1 (C), 134.2 (C), 140.4 (C), 

168.7 (CO2CH3).  
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Chapter 4:  Synthesis of Saturated bis(NHC) 

Palladium(II) Complexes  

4.1  Introduction 

As discussed briefly in Chapter 1, there are several classes of NHCs with differing 

electronic properties.
1,2

 Saturated NHC ligands lack the added stability of 

aromaticity compared to their unsaturated counterparts, but generally have increased 

electron density in the vicinity of the carbene.
2,3

 This results in increased σ-donating 

properties for saturated carbenes, which in turn provides stronger M-C interactions 

and therefore more stable complexes.  

Complexes containing saturated NHCs have been used for a variety of catalytic 

applications, with some examples shown in Figure 4.1. Liu and co-workers reported 

a benzyl-linked saturated NHC diiridium complex which showed good catalytic 

activity for N,N′-dialkylation of diamines with alcohols.
4
 Arnold and co-workers 

prepared a series of magnesium and zinc complexes bearing asymmetrically 

substituted saturated NHC ligands, in which the N-substituents provided additional 

bidentate binding modes.
5
 While these metals are not commonly associated with 

catalysis it was reported by Arnold that these complexes showed good activity for 

lactide polymerisation.  

Grubbs’ second generation catalyst for olefin metathesis utilises a saturated  

N,N′-dimesityl NHC ligand. Variations of this general moiety have been reported by 

several groups with a range of ligand modifications, and many of these studies note 
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the improved catalytic performance of the saturated carbene in comparison to 

unsaturated analogues bearing identical substitution.
6-8

  

 

Figure 4.1. Examples of various saturated NHC complexes used for catalysis.
4-6

  

Chen and co-workers compared bis(NHC) palladium dichloride complexes with 

identically substituted saturated and unsaturated carbene ligands to directly examine 

the differences in structure, stability and catalytic activity (Figure 4.2).
9
 They 

observed that the saturated analogue showed better catalytic activity for  

Suzuki-Miayaura coupling of a range of aryl chlorides than the unsaturated analogue, 

as well as better complex stability in both acidic and iodic conditions.  This is 

consistent with the hypothesis that the increased donating ability of saturated NHCs 

may positively influence metal complexes for catalytic uses.   
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Figure 4.2. Unsaturated and saturated analogues of bis(NHC) palladium complexes 

reported by Chen and co-workers for comparison of activity and stability.
9
 

There have been remarkably few reports of saturated bis(NHC) species which 

contain a linker between the NHC ligands and, to the best of our knowledge, no 

chelating saturated bis(NHC) complexes have been isolated and fully structurally 

characterised.  

Straub and co-workers prepared a propylene linked diimidazolinium dihalide salt 

which, via an unisolated silver intermediate was successfully transmetallated to form 

a bridging dicopper(I) complex.
10

 This was structurally authenticated by X-ray 

crystallography, forming a coordination polymer through Cu-Br interactions, though 

no potential applications of this species were discussed.  

 

Scheme 4.1. Synthesis of saturated bis(NHC) dicopper(I) complex via a silver 

intermediate reported by Straub and co-workers.
10

  

Özdemir and co-workers prepared a series of saturated diimidazolinium dibromide 

salts with alkylene linkers ranging from methylene to butylene (Figure 4.3).
11

 These 
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showed good activity with palladium acetate for the Suzuki cross coupling of aryl 

chlorides, though the palladium complexes of the diimidazolinium salts were 

assumed to form in situ and never isolated for structural confirmation. 

 

Figure 4.3. Diimidazolinium salts produced by Özdemir and co-workers for in situ 

formation of palladium Suzuki cross-coupling catalysts.
11

 

Herein we present the first synthesis of a chelated saturated bis(NHC) palladium 

complex. The unsaturated analogue has previously been reported
12,13

 for catalytic 

applications and we sought to determine whether the increased activity and stability 

of saturated NHC metal complexes observed for monodentate species translates to 

the bidentate system. We also sought to examine whether the reactivity towards the 

formation of a dipalladium(I) hydride species under basic conditions would occur as 

reported for the unsaturated analogue.
14

   

4.2  Results and Discussion 

4.2.1  Saturated bis(NHC) Palladium(II) Complex   

N-mesityl imidazoline 16 (denoted 
S
MesIm throughout) was produced via literature 

methods
15

 and subsequent conversion to the bis(imidazolinium) salt 

[(
S
MesIm)2CH2]Br2 17a utilised our standard conditions for the unsaturated 

analogue.
13

 The imidazoline 16 and 1.5 equivalents of dibromomethane were 

dissolved in toluene and the solution heated at 130 °C for 48 hours. The resultant 

white precipitate was collected by filtration, however 
1
H NMR spectroscopy 
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indicated a mixture of the desired imidazolinium salt 17a and the hydrobromide salt 

of 16, 16a (Scheme 4.2). These were easily separated by washing the white solid 

with chloroform and drying the precipitate in vacuo as pure 17a free from the salt 

16a. The successful synthesis of 17a was confirmed by 
1
H NMR spectroscopy, 

which showed the expected para- and ortho-methyl resonances at 2.29 and  

2.34 ppm, respectively. The eight imidazolinium backbone protons resolved as 

overlapping resonances at 4.31 ppm and the linker was confirmed by the resonance 

at 5.50 ppm. 
13

C NMR spectroscopy and microanalysis were also consistent with the 

intended product.  

 

Scheme 4.2. Synthesis of saturated diimidazolinium salt 17a.  

Our standard method
13

 for the formation of chelated (bis)NHC palladium(II) 

complexes was applied to prepare the chelated bis(NHC) palladium dibromide 

complex [{(
S
MesIm)2CH2}PdBr2] 18a. The diimidazolinium salt 17a and palladium 

acetate were dried in vacuo and dissolved in DMSO. Stirring at 50 °C for 3 hours 

and 110 °C for 2 hours under an atmosphere of argon and subsequent removal of the 

solvent in vacuo at 110 °C resulted in an orange glass which was washed with 

dichloromethane and the resultant grey precipitate collected by filtration  

(Scheme 4.3).  
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Scheme 4.3. Synthesis of the saturated analogue of the chelated (bis)NHC palladium 

dibromide complex.  

Successful synthesis of the chelated bis(NHC) palladium complex 18a was 

confirmed by 
1
H NMR spectroscopy. The absence of the C-2 proton resonances 

supported carbene formation and the inequivalence of the ligand backbone protons 

showed a desymmetrisation in chemical environment when compared to the 

imidazolinium salt precursor. The spectrum showed significant broadening of all 

peaks and the methylene linker protons were observed as separate broad resonances 

at 4.89 and 5.34 ppm, indicative of a fluxional ring-flipping which coalesces at room 

temperature. 
13

C NMR spectroscopy and elemental composition microanalysis were 

also consistent with the proposed structure of 18a. Recrystallisation from slow 

diffusion of diethyl ether into a saturated acetonitrile solution produced colourless 

crystals of 18a suitable for X-ray diffraction (Figure 4.4).  
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Figure 4.4. Molecular structure of [{(
S
MesIm)2CH2}PdBr2] 18a. Displacement 

ellipsoids are shown at the 50 % probability level. All N-substituent hydrogen atoms 

are omitted for clarity. Selected bond lengths (Å) and angles (°): Pd1-C1 2.014(3), 

Pd1-Br1 2.4790(6), C1-Pd1-Br1 91.55(9), Pd1-C1-N1,N2  133.7(2),118.5(2). 

The complex featured square planar geometry expected for palladium(II) complexes, 

and consistent with the previously reported unsaturated analogue.
12

 The increased 

donor ability of the saturated NHCs was displayed in the slight (Δ 0.023(8) Å) 

decrease in the Pd1-C1 distance in 18a compared to its unsaturated analogue, though 

the average Pd1-Br1 distances were identical within error between the saturated and 

unsaturated analogues. 

On some occasions however a secondary orange product was observed which was 

identified by X-ray crystallography as 19, a coordination complex containing the 

imidazoline 16 as N-bound ligands. We are uncertain whether this is due to the 

methylene linker of the imidazolinium having decomposed to reform the original 

imidazoline 16, which was then bound through the unsubstituted nitrogen to 
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palladium (Figure 4.5), or whether minor impurities of the imidazoline 16 remained 

in the synthesis of the diimidazolinium salt 17a.  

Complex 19 could be deliberately synthesised by stirring two equivalents of 16 with 

PdBr2(COD) in tetrahydrofuran at room temperature for 16 hours. The solvent was 

removed and the product precipitated out of acetonitrile as an orange crystalline solid 

suitable for X-ray diffraction. 
1
H NMR spectroscopy of complex 19 was consistent 

with the X-ray structure, where the presence of the C-2 protons at 7.41 ppm 

indicated that carbene formation had not occurred.  

 

Figure 4.5. Molecular structure of [(
S
MesImH)2PdBr2] 19. Displacement ellipsoids 

are shown at the 50 % probability level. All N-substituent hydrogen atoms are 

omitted for clarity. Selected bond lengths (Å) and angles (°): Pd1-N1,N3 

2.009(2),2.003(3), Pd1-Br1,Br2 2.4409(6),2.4370(6), N1-Pd1-Br1,Br2 

90.53(8),90.85(8), N3-Pd1-Br1,Br2 88.14(8),90.44(8), Pd1-N1-C1,C2 

126.6(2),125.6(2), Pd1-N3-C13,C14 123.7(2),127.7(2). 

Conversion of the bis(NHC) palladium dibromide complex 18a to the dicationic 

acetonitrile adduct [{(
S
MesIm)2CH2}Pd(NCMe)2][PF6]2 20a was achieved under 
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identical conditions to the unsaturated analogue.
13

 Complex 18a and a twenty-fold 

excess of sodium hexafluorophosphate were dissolved in a 1:1 mixture of 

acetonitrile and water. The solution was stirred at 80 °C for 1.5 hours and subsequent 

removal of the acetonitrile in vacuo produced 20a as an off-white precipitate which 

was collected via filtration and dried in vacuo (Scheme 4.4). The compound was 

recrystallised by slow diffusion of diethyl ether into a saturated acetonitrile solution 

to produce large colourless crystals of pure 20a suitable for catalysis, further reaction 

and X-ray diffraction. 

 

Scheme 4.4. Synthesis of the dicationic bis(NHC) palladium complex 

[{(
S
MesIm)2CH2}Pd(NCMe)2][PF6]2 20a. 

Synthesis of the dication 20a was confirmed by 
1
H and 

13
C NMR spectroscopy, and 

elemental microanalysis. The symmetrical nature of the species was preserved, with 

the ortho- and para-mesityl methyl groups appearing as singlets at 2.26 and  

2.28 ppm. The NHC ring protons appeared as two multiplets centred at 3.98 and  

4.11 ppm, and the methylene linker and mesityl meta-CH protons were observed as 

singlets at 5.21 and 7.00 ppm, respectively. The signal broadness of the linker 

protons observed in complex 18a was not seen in complex 20a, consistent with other 

previously reported unsaturated analogues, indicating rapid chelate ring flipping on 

the NMR timescale at room temperature.
13,16

 The coordinating acetonitrile ligands 



Chapter 4 

 

136 

 

were observed as a single resonance of suitable integration at 2.07 ppm. The carbene 

carbon was observed by 
13

C NMR at 175.3 ppm. 

 

Figure 4.6. Molecular structure of the dication of 

[{(
S
MesIm)2CH2}Pd(NCMe)2][PF6]2 20a. Displacement ellipsoids are shown at the 

50 % probability level. All [PF6]
-
 counteranions, lattice solvent acetonitrile 

molecule, N-substituent and coordinated acetonitrile hydrogen atoms are omitted for 

clarity. Selected bond lengths (Å) and angles (°): Pd1-C1,C14, 1.987(4),1.996(4),  

Pd1-N5,N6, 2.053(4),2.062(4), C1-Pd1-N5,C14, 93.90(17),87.18(18), C14-Pd1-N6, 

95.68(17), Pd1-C1-N1,N2, 128.1(3),122.9(3),  Pd1-C14-N3,N4 122.6(3),128.7(3). 

The solid state structure of 20a was confirmed by X-ray crystallography, in which 

the palladium had the expected square planar geometry, consistent with the 

unsaturated analogue (Figure 4.6).
17

 The Pd-C bonds are slightly lengthened in 20a 
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compared to the unsaturated analogue (Δ 0.014(4) Å), though the Pd-N bonds are 

identical within error.    

As discussed briefly in Chapter 3, chelated bis(NHC) palladium complexes with 

bulky N-substituents have been studied for catalytic applications.
13

 The analogous 

unsaturated dicationic N-mesityl palladium(II) diacetonitrile complexes of varying 

linker lengths were in particular examined for catalytic activity in the 

copolymerisation of ethylene and carbon monoxide.
16

 

Identical conditions from these trials were used to examine the catalytic activity of 

20a, in which 20.1 mg of 20a was dissolved in 50 mL of methanol under inert 

atmosphere and transferred to a Parr reactor. The reactor was charged with carbon 

monoxide and ethylene (10 bar/10 bar) and stirred at 70 °C for 2 hours. The reactor 

was allowed to cool and the black precipitate (a mixture of assumed copolymer and  

co-precipitated palladium black decomposition)
13

 was collected by filtration to yield 

8.0 mg of solid, or 0.348 g/ mmol Pd used.  This is less than the 0.698 g/mmol Pd 

recorded for the unsaturated analogue, and an indication that the increased electron 

density on the metal from the saturated carbene does not necessarily translate to 

increased catalytic yield for this reaction. It is possible that the reduced activity could 

be due to increased reactivity towards decomposition products compared to the 

unsaturated analogue. 

As previously discussed in Chapter 2, it has been shown that unsaturated N-mesityl 

bis(NHC) palladium(II) diacetonitrile complexes undergo unusual reactivity under 

catalytic conditions to form dipalladium(I) hydride complexes.
14,16

 We sought to 

examine whether this reactivity was also observed for the saturated complex 20a.  
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In a modified literature procedure,
14

 a 10 mg sample of the saturated bis(NHC) 

palladium dication 20a was dissolved in deuterated methanol in a Young’s NMR 

tube. Sodium carbonate was added and the suspension was heated at 60 °C. 
1
H NMR 

spectroscopic data was collected prior to and immediately after the addition of 

sodium carbonate, and after 2 and 4.5 hours of heating, during which time the 

solution turned orange and upfield shifts of all resonances were observed in the  

1
H NMR spectrum.  

 

Scheme 4.5. Proposed synthesis of dipalladium(I) hydride complex 21a. 

 

The solution volume was concentrated to facilitate crystallisation of compound 21a, 

however only precipitation of palladium black was observed. The reaction was 

repeated on an increased scale under Schlenk conditions but similar decomposition 

to palladium black was observed and the complex, to date, has not been successfully 

isolated.   

4.2.2  Extended Linker Analogues of 18a 

The synthesis of the propylene-linked imidazolinium salt analogue of 17a has 

previously been reported.
10

 The ethylene- and propylene-linked imidazolinium salts 

[(
S
MesIm)2C2H4]Br2 17b and [(

S
MesIm)2C3H6]Br2 17c were prepared by a neat 
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reaction of the imidazoline 16 with 0.5 equivalents of the appropriate dibromoalkane 

at 100 °C for 2 hours. The resultant orange glass was dissolved in a minimal volume 

of dichloromethane and diethyl ether was added to precipitate out the product as a 

white solid which was collected by filtration (Scheme 4.6).  

 

Scheme 4.6. Synthesis of ethylene- and propylene-linked imidazolinium salts 17b 

and 17c.
10

  

The propylene-linked imidazolinium salt 17c was produced in good yield as 

previously reported and was spectroscopically identical to literature.
10

 The  

ethylene- linked imidazolinium salt 17b was only produced in 24 % yield however, 

and attempts to prepare it in a method analogous to that of 17a resulted in lower 

yields of approximately 5-10 %, with greatly increased formation of the 

hydrobromide salt 16a. The successful synthesis of 17b was confirmed by 
1
H and 

13
C NMR spectroscopic analysis. The expected symmetry of the signals was 

observed with the linker appearing as a single resonance at 4.48 ppm and the C-2 

protons identifiable by their significant downfield shift at 10.34 ppm.  

Synthesis of the chelated bis(NHC) palladium dibromide analogues with the 

extended linker imidazolinium salts 17b-c was attempted under identical conditions 

to the methylene linked analogue 18a. The relevant imidazolinium salt and 

palladium acetate were dried in vacuo and dissolved in DMSO. Stirring at 50 °C for 
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3 hours and 110 °C for two hours under an atmosphere of argon and subsequent 

removal of the solvent in vacuo at 110 °C resulted in an orange glass (Scheme 4.7). 

This was dissolved in dichloromethane, the orange solution filtered through Celite 

and the solvent allowed to evaporate slowly over 16 hours to produce a small amount 

of a yellow-orange solid which did not redissolve in dichloromethane and was 

collected by filtration.  

 

Scheme 4.7. Proposed synthesis of extended linker analogues of chelated bis(NHC) 

palladium dibromide 18a. 

1
H NMR spectroscopy of these yellow solids was not consistent with the proposed 

chelate structure, however. In both cases there was a downfield resonance which 

integrated for a single proton at 8.87 and 8.88 ppm for the two complexes, 

respectively. Both complexes also showed visible desymmetrisation of the mesityl 

methyl groups; in the ethylene-linked analogue this appeared to be inequivalent 

ortho-methyl groups on each mesityl group, while the 
1
H NMR spectrum of the 

propylene-linked analogue was consistent with inequivalent N-substituents. This data 

was consistent with a pendant imidazolinium mono(NHC) palladium trihalide 

complex similar to those discussed in Chapter 3. The proposed structures of the 

ethylene- and propylene-linked complexes 22b and 22c are shown in Figure 4.7 

below.     
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Figure 4.7. Proposed structures of the products formed by the reaction of 

imidazolinium salts 17b and 17c with palladium acetate. 

4.2.3  Saturated NHC Palladium(II) Pendant Imidazolium Complexes 

In order to further understand the extended linker complexes 22b-c the saturated 

NHC palladium(II) trihalide complexes were prepared in an identical fashion to the 

unsaturated analogues described in Chapter 3. The methylene-linked pendant 

imidazolium mono(NHC) palladium triiodide complex 

[{(
S
MesIm)(

S
MesImH)CH2}PdI3] 22a was also prepared for direct comparison to the 

unsaturated analogue 12b. For complex 22a, imidazolinium salt 17a, PdBr2(COD) 

and sodium acetate were dried in vacuo and dissolved in DMSO. The solution was 

stirred at 50 °C for 4 hours, an excess of sodium iodide was added and the solution 

was heated for an additional hour, after which the solvent was removed in vacuo at 

110 °C and the red-brown glass redissolved in a 1:1 mixture of acetonitrile and 

water. This solution was heated at 80 °C for 10 minutes after which the acetonitrile 

was removed in vacuo to produce 22a as a dark red precipitate which was collected 

by filtration (Scheme 4.8).  
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Scheme 4.8. Synthesis of pendant imidazolinium methylene linked palladium 

triiodide complex 22a.  

Successful synthesis of 22a was confirmed by 
1
H and 

13
C NMR spectroscopy and 

elemental analysis. The desymmetrisation of the mesityl groups was indicated by 

two distinct resonances for the mesityl ortho-methyl protons at 2.28 and 2.30 ppm, 

the separation of the C4/5 NHC/imidazolinium backbone protons at 3.94 and  

4.32 ppm and the two separate resonances of the mesityl meta-CH protons at 6.98 

and 7.07 ppm. The pendant imidazolinium C-2 proton appeared as a single proton 

downfield resonance at 8.93 ppm. 
13

C NMR spectroscopy showed the imidazolinium 

C-H and carbene C-Pd resonances at 140.1 and 160.5 ppm, respectively.       

Multiple recrystallisations were attempted using slow diffusion of diethyl ether into 

and slow evaporation of saturated acetonitrile, methanol and dichloromethane 

solutions of 22a whereupon orange crystals were frequently produced. X-ray 

crystallographic analysis of the majority of these crystals showed them to be the 

iodide analogue of the diimidazole dihalide palladium coordination complex 19, 

which was not further characterised. The presence of this coordination complex was 

observed despite 
1
H NMR spectroscopy indicating pure material of the complex 22a 

immediately prior to recrystallization without imidazoline 16 being present, which 

suggested that the acidic linker CH2 group was moderately prone to decomposition 

in solution. Crystals of 22a suitable for X-ray diffraction were only produced after 
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multiple repetitions by slow evaporation of a saturated acetonitrile solution, 

alongside crystals of the diiodide coordination complex 19a analogue (Figure 4.8).  

 

Figure 4.8. Molecular structure of [{(
S
MesIm)(

S
MesImH)CH2}PdI3], 22a. All  

N-substituent hydrogen atoms, lattice acetonitrile and diethyl ether solvent molecules 

are omitted for clarity. Selected bond lengths (Å) and angles (°): Pd1-C1 1.981(12), 

Pd1-I1,I2,I3 2.6179(13),2.6080(13),2.6622(14), C1-Pd1-I1,I2 89.1(3),87.1(3), I3-

Pd1-I1,I2 91.16(4),92.21(4), Pd1-C1-N1,N2 121.2(8),130.9(8).  

The pendant imidazolinium moiety of 22a and the presence of the three ancillary 

iodide ligands was confirmed by X-ray crystallography.  The palladium coordination 

plane displayed a slightly distorted square planar geometry with the palladium atom 

sitting ca. 0.1 Å above the C1,I1,I2,I3 mean plane.  The Pd1-C1 bond length was 

identical within error to the unsaturated analogue 12b. 

An overlay of the X-ray crystallographic structures of the saturated pendant complex 

22a with its unsaturated analogue 12b showed that there appear to be noticeable 
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effects of the different imidazolinium backbone (Figure 4.9), although crystal 

packing effects and H-I interactions between adjacent molecules may cause some of 

these differences.   

 

Figure 4.9. Overlay of the pendant imidazolinium methylene-linked mono(NHC) 

palladium triiodide complexes with unsaturated (12b, red) and saturated (22a, blue) 

imidazolium backbones (atoms Pd1, C4, N1, C1, N2, C13 overlaid). 

The ethylene- and propylene-linked pendant imidazolinium mono(NHC) palladium 

tribromide complexes [{(
S
MesIm)(

S
MesImH)C2H4}PdBr3] 22b and 

[{(
S
MesIm)(

S
MesImH)C3H6}PdBr3] 22c were directly prepared. The relevant 

imidazolium salt 17b or 17c, PdBr2(COD) and sodium acetate were dried in vacuo 

and dissolved in DMSO. The solution was stirred at 50 °C for 4 hours, after which 

the solvent was removed in vacuo at 110 °C and the orange glass redissolved in 

dichloromethane. The solution was filtered through Celite and allowed to 

concentrate over 16 hours to produce a yellow precipitate. This was collected by 

filtration as pure product in yields of 6 % and 9 % for 22b and 22c, respectively 

(Scheme 4.9). 
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Scheme 4.9. Synthesis of pendant imidazolinium extended linker palladium 

tribromide complexes 22b and 22c. 

Successful synthesis of the pendant imidazolinium mono(NHC) palladium 

tribromide complexes was supported by 
1
H NMR spectroscopy. For the  

ethylene-linked complex 22b the desymmetrisation of the mesityl ortho-methyl 

groups was evident in their appearance as overlapping resonances of correct 

integration in the region 2.26-2.32 ppm rather than as a single resonance. The C4/5 

NHC/imidazolinium protons had distinct separations as broad singlets at 3.87 and 

4.46 ppm and the ethylene linker protons were observed as multiplets at 4.05 and 

4.21 ppm. The imidazolinium C-2 proton appeared as a single resonance at 8.87 

ppm, consistent with the proposed pendant imidazolinium monocarbene structure.  

The propylene-linked compound 22c showed similar signs of desymmetrisation, 

with the splitting of the ortho- and para- mesityl methyl protons as four resonances 

at 2.26, 2.27, 2.30, and 2.37 ppm. The N-CH2 linker protons were observed as a 

broad resonance at 3.76 ppm and a multiplet spanning 4.30-4.39 ppm, while the 

resonance of the central CH2 linker group overlapped the mesityl ortho-CH3 

resonance at 2.30 ppm. The imidazolinium C-2 proton resonance was observed at the 

expected downfield position at 8.88 ppm as a single proton to further confirm the 

pendant arrangement of the ligand. 
13

C NMR spectroscopy was also in agreement 

with the proposed desymmetrised products 22b and 22c with the pendant 
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imidazolinium C-2 peaks observed at 159.5 and 159.9 ppm, respectively. Elemental 

composition microanalysis of compounds 22b and 22c was also consistent with the 

proposed monocarbene pendant imidazolinium palladium tribromide products.  

The 
1
H NMR spectra of complexes 22b and 22c were identical to those observed 

from the products obtained from the reaction between the extended linker 

imidazolinium salts with palladium acetate, confirming that the standard synthesis 

for the chelating bis(NHC) palladium complexes does indeed produce monocarbene 

pendant imidazolinium products for the saturated analogues.  

Recrystallisations of complexes 22b and 22c were attempted with both slow 

diffusion of diethyl ether into and slow evaporation of saturated solutions of 

acetonitrile and methanol. In all cases where orange crystals were produced, X-ray 

diffraction showed them to be the coordination complex 19. As with the  

methylene-linked pendant analogue, it appears that these compounds undergo partial 

decomposition under the recrystallisation conditions as 
1
H NMR spectroscopic data 

of the specific samples indicated pure product immediately prior to recrystallisation 

and only baseline impurities consistent with the 
1
H NMR spectra of 19 after 

recrystallisation. 

The addition of excess sodium acetate to 
1
H NMR samples of both 22b and 22c 

resulted in the formation of multiple species by NMR spectroscopic analysis. After 

24 hours it was observed that the imidazolinium C-2 proton resonances had been 

significantly reduced in proportion to the other resonances. No significant downfield 

chemical shifts appeared for the ethylene-linked analogue 22b, though a small peak 

was observed at 10.19 ppm for the propylene-linked analogue 22c. This was 

consistent with the downfield shift in the C-2 proton due to hydrogen bonding 



Chapter 4 

 

147 

 

observed in the conversion of the unsaturated palladium trihalide complexes to the 

dihalide acetate intermediates discussed in Chapter 2. This suggests that future 

efforts to form saturated extended linker chelating bis(NHC) palladium complexes 

may be possible with modifications to the standard methods utilising additions of 

base. It is worth noting that the low yields and alternative reaction products observed 

for the extended linker unsaturated analogues may also occur in attempts to prepare 

these saturated chelated bis(NHC) palladium dibromide complexes. 

4.2.4  Disilver Complexes with Saturated NHC Ligands 

The formation of both saturated and unsaturated NHC complexes by transmetallation 

with silver NHC species is well established.
10,18,19

 Hahn and co-workers recently 

reported a high-yielding synthesis of bridging disilver dicarbene complexes using a 

modified literature procedure to other reported methods.
20

 This method has 

previously been used by our group to access the unsaturated N-mesityl methylene 

linked disilver complex, of which analogues with different counteranions had been 

prepared prior in poorer yields (Scheme 4.10).
16

 The subsequent reaction of the 

unsaturated disilver complex [{(MesIm)2CH2}2Ag2][PF6]2 with PdBrMe(COD) 

resulted in the formation of a chelated bis(NHC) palladium complex which was 

active in the polymerisation of ethylene and carbon monoxide.
16

  We sought to use 

this methodology to prepare the saturated analogue of this highly active species, and 

to prepare the extended linker chelated palladium complexes via reaction of the 

disilver species with PdBr2(COD) that were not accessible by our conventional 

procedure. 
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Scheme 4.10. Synthesis of unsaturated bis(NHC) disilver complex and subsequent 

transmetallation to form chelating bis(NHC) palladium bromomethyl complex.
16

  

There have been previous reports of silver NHC complexes which contain variable 

(AgxBry)
n-

 counteranions,
19,21

 which impede stoichiometric transmetallation 

reactions. Thus we exchanged the imidazolinium salt halide counteranions by 

dissolution of the dibromide salts 17a and 17c in water, followed by the addition of 

excess potassium hexafluorophosphate. After approximately one minute the 

respective imidazolinium dihexafluorophosphate salts 17d and 17e precipitated as 

white solids, which were collected by filtration and dried in vacuo in essentially 

quantitative yield.  

The disilver complexes [{(
S
MesIm)2CH2}2Ag2][PF6]2 23a and 

[{(
S
MesIm)2C3H6}2Ag2][PF6]2 23c were prepared using a modified literature 

procedure.
20

 The relevant imidazolinium salts 17d and 17e were dissolved in 

acetonitrile with 1.25 equivalents of silver oxide and the resulting suspensions were 
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heated at 55 °C for 18 hours with the exclusion of light. The cooled suspensions 

were filtered through Celite and the filtrates concentrated. Diethyl ether was added to 

precipitate the products as white solids which were collected by filtration and 

washed with diethyl ether (Scheme 4.11). Attempts to prepare the ethylene-linked 

analogue under these conditions resulted in an impure product which was not 

successfully isolated for NMR or X-ray crystallographic analysis.   

 

Scheme 4.11. Synthesis of disilver bis(NHC) complexes 22a and 22c.   

Crystals of the silver complexes 23a and 23c suitable for X-ray diffraction were 

produced by slow diffusion of diethyl ether into saturated acetonitrile solutions as 

colourless needles.  Complex 23a (Figure 4.10) showed the expected P͞1 structure 

similar to that previously observed for the unsaturated N-mesityl bis(NHC) 

methylene linked disilver complex reported by Slaughter and coworkers.
21

 The Ag-C 

bond lengths (2.084(4)-2.109(4) Å) of complex 23a are similar to those of the 

unsaturated NHC disilver analogue and within the normal range of other published 

silver NHC structures.
16,21,22

 It also shares the relatively short Ag∙∙∙Ag distance 

(3.1992(12) Å) with its unsaturated analogue.
21

 Weak silver-hydrogen interactions 

between the methylene-linker protons and the silver centres were observed, ranging 

from ca. 2.88-3.07 Å. 
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Figure 4.10. Molecular structure of the cation of [{(
S
MesIm)2CH2}2Ag2][PF6]2 23a. 

Displacement ellipsoids are shown at the 50 % probability level. All N-substituent 

hydrogen atoms, [PF6]
-
 counteranions and lattice acetonitrile solvent molecules are 

omitted for clarity. Selected bond lengths (Å) and angles (°): Ag1-Ag2 3.1992(12), 

Ag1-C1,C26 2.085(4),2.084(4), Ag2-C14,C39 2.100(4),2.109(4), C1-Ag1-C26 

168.38(15), C14-Ag2-C39 173.35(16), Ag1-C1-N1,N2 124.7(3),127.1(3),  

Ag1-C26-N5,N6 123.4(3),127.3(3), Ag2-C14-N3,N4 126.2(3),124.6(3),  

Ag2-C39-N7,N8 127.3(3),123.3(3). 

The propylene-linked disilver complex 23c contained two molecules in the 

asymmetric unit, each with a C2 symmetric centre. Similar to previously reported 

propylene-linked disilver carbene complexes, there was no silver-silver interaction 

and the Ag-Ag distance of 5.858 (5.942(2)) Å was similar to those reported by Liu 

and co-workers for N-ethyl (5.735(3) Å) and N-benzyl (5.578(2) Å) analogues.
22

 The  

Ag-C distances (2.106(3) (2.093(3)) Å, 2.106(3) (2.100(3)) Å) and relatively linear 
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C-Ag-C angles (177.39(11) (175.96(12)) °) are similar to those in complex 23a and 

with other literature silver NHC complexes.
21,22

  

 

Figure 4.11. Molecular structure of one dication of [{(
S
MesIm)2(C3H6)}2Ag2][PF6]2 

23c. Displacement ellipsoids are shown at the 50 % probability level. All  

N-substituent hydrogen atoms, [PF6]
-
 counteranions and lattice acetonitrile solvent 

molecules are omitted for clarity. Selected bond lengths (Å) and angles (°) (values 

for the second molecule provided in brackets): Ag1-Ag1′ 5.858(2) (5.949(2)),  

Ag1-C1,C16, 2.105(3) (2.092(3)),2.104(3) (2.101(3)), C1-Ag1-C16 177.39(10) 

(175.99(11)), Ag1-C1-N1,N2 109.2(2) (122.2(2)),128.3(2) (128.7(2)),  

Ag1-C16-N3,N4 127.0(2) (130.8(2)),123.0(2) (119.7(2)). 

1
H and 

13
C NMR spectroscopy were also consistent with the proposed structures of 

23a and 23c. The methylene-linked bridging bis(NHC) disilver complex 23a 

displayed a single N-Mes ring environment with restricted N-C bond rotation, 

showing distinct resonances for the ortho-methyl protons on each ring at 1.65 and 
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1.75 ppm, while the mesityl meta-CH proton resonances were singlets at 6.87 and 

7.01 ppm. Thus the twisted nature of the C-Ag-C coordination geometries seen in the 

solid state structure appeared to interconvert. The methylene linker protons appeared 

as an AB spin system, with the two separate doublets at 4.85 and 6.08 ppm, 

consistent with the silver-hydrogen interactions observed by X-ray crystallography, 

similar to those seen in the unsaturated dipalladium hydride complex 5a discussed in 

Chapter 2. The 
13

C NMR spectroscopy showed the Ag-C carbenes as a doublet at 

203.7 ppm, though no 
107,109

Ag-
13

C coupling was observed. This is common for 

silver-NHC complexes, and is a sign of labile Ag-C bonds.
23

 

The propylene-linked bridging bis(NHC) disilver complex 23c appeared to have 

higher symmetry by 
1
H and 

13
C NMR spectra, consistent with X-ray crystallographic 

analysis. The mesityl ortho- and para-CH3 protons appeared as singlets at 1.86 and 

2.34 ppm respectively, while the linker N-CH2 protons appeared as a triplet at 3.57 

ppm. The central linker CH2 group was observed as a triplet at 1.94 ppm.  The Ag-C 

carbene resonance was observed with 
13

C NMR spectroscopy as a doublet at 202.7 

ppm. Again, no 
107,109

Ag-
13

C coupling was observed.   

Transmetallation reactions similar to those reported by Slaughter
21

 were attempted 

with complexes 23a and 23c using PdBr2(COD) and PdBrMe(COD). In all cases the 

silver complex was dissolved in acetonitrile and 1-2 equivalents of the relevant 

palladium complex added. The solution was stirred with exclusion from light for  

3 hours and the resultant silver halide precipitate removed by filtration through 

Celite (Scheme 4.12). The resultant yellow precipitate from each reaction was 

examined by 
1
H NMR spectroscopy.   
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Scheme 4.12. Proposed transmetallation scheme for the synthesis of chelated 

bis(NHC) palladium complexes from disilver complexes 23a and 23c.  

The reaction of the methylene-linked bridging bis(NHC) disilver complex 23a with  

2 equivalents of PdBr2(COD) did produce the chelated dibromide complex 18a as an 

impure product (determined by 
1
H NMR spectroscopy). However there was no 

success in forming the chelated bis(NHC) palladium bromomethyl complex from 

23a, with 
1
H NMR spectroscopic analysis indicating a mixture of impure products, 

all of which lacked the characteristic resonance in the 4-7 ppm range for the 

methylene linker protons.  

The transmetallation reaction of the propylene-linked bridging bis(NHC) disilver 

complex 23c with PdBr2(COD) was also unsuccessful by 
1
H NMR spectroscopic 

analysis, with a mixture of products observed.     

4.2.5  Attempted Synthesis of Asymmetric Saturated/Unsaturated Complex 

The catalytic properties and reactivity of the unsaturated N-mesityl 

bis(NHC)palladium(II) complexes has been explored previously.
13,14

 We sought to 

prepare an asymmetric diimidazolium/inium salt to explore the difference in ligand 

electronic effects for catalytic applications. We also wished to examine the possible 
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formation of palladium(I) species by reduction under basic conditions, as was 

observed for the unsaturated analogue 5a (see Chapter 2). 

The selective synthesis of N,N′-asymmetrically substituted diimidazolium salts has 

been previously reported, in which a monoimidazolium alkylhalide such as  

N-mesityl-N′-methylhalide imidazolium halide 24, was prepared and reacted with a 

different imidazole (Scheme 4.13).
24

  

 

Scheme 4.13. Synthesis of asymmetric imidazolium salts via a monoimidazolium 

alkylhalide.
24

  

The synthesis of asymmetrically substituted monoimidazolinium alkyl halide salts 

has been reported by Straub and co-workers. They describe difficulties with the more 

reactive imidazoline species in these conditions,
10

 showing that the reaction of 

saturated N-diisopropylphenyl imidazole and 1,3-dibromopropane produced the  

N-diisopropylphenyl-N′-propylbromide imidazolinium bromide salt as a major 

product inseparable from the diimidazolinium dibromide salt, which they used 

impure for further reactions (Scheme 4.14) 
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Scheme 4.14. Synthesis of asymmetrically substituted diimidazolinium salt reported 

by Straub.
10

  

In a modified literature procedure,
24

 N-mesityl imidazoline 16 was dissolved in neat 

chloroiodomethane and heated at 80 °C for 18 hours (Scheme 4.15). The resultant 

white precipitate was collected by filtration and dried in vacuo. 
1
H NMR 

spectroscopic analysis of the product showed it was identical to the diimidazolinium 

salt 17a, however. The reaction was repeated at room temperature and the resultant 

white precipitate was shown by 
1
H NMR spectroscopic analysis to be the 

hydrohalide salt of the imidazoline 16a, observed previously observed as a  

by-product in the synthesis of imidazolinium 17a. This hydrohalide salt 16a was also 

obtained from a room temperature reaction of imidazoline 16 and dibromomethane 

under the conditions used by Straub and co-workers.
10
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Scheme 4.15. Proposed synthesis of saturated methylhalide monoimidazolinium 

halide salt.  

An alternative pathway was pursued, in which the unsaturated imidazolium methyl 

halide salt was prepared according to literature methods.
24

 This was suspended in 

toluene with the imidazoline 16 and heated at 140 °C for 72 hours as per the 

modified literature procedure used to prepare asymmetrically substituted 

diimidazolium salts (Scheme 4.16).
24

 The off-white precipitate was collected by 

filtration and examined by 
1
H NMR spectroscopic analysis, which indicated that 

there was a mixture of products. Comparison with previously obtained spectroscopic 

data allowed us to identify the two major products as remaining unsaturated 

imidazolium methyl halide salt alongside the saturated diimidazolinium dihalide salt 

17a.  
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Scheme 4.16. Proposed synthesis of saturated/unsaturated mixed diimidazolium salt 

via the unsaturated imidazolium methyl halide precursor 24.  

We hypothesise that this occurs during the intended substitution reaction, where the 

imidazole is a better leaving group than the halide, thus the imidazolinium methyl 

halide is formed instead. This species, as we have previously established, reacts 

rapidly with a second equivalent of imidazoline 16 to form the diimidazolinium salt.  

 The tendency of the imidazole to act as a good leaving group likely contributed to 

the formation of the coordination complex 19, especially in the case of 

recrystallisations of the pendant complexes 22a-c, where 
1
H NMR spectroscopy 

confirmed pure products prior to recrystallisation. As we have been unsuccessful to 

date in preparing the mixed saturated/unsaturated bis(NHC) ligand precursor, we 

have not been able to examine this analogue further.  

4.3  Conclusion 

We have prepared the first isolated and structurally characterised saturated chelated 

bis(NHC) palladium complex [{(
S
MesIm)2CH2}PdBr2] 18a. We also observed a 
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secondary decomposition product, the coordination complex [(
S
MesImH)2PdBr2]  

19a. Complex 18a was similar to its unsaturated analogue, and underwent the same 

reactivity with sodium hexafluorophosphate to form the dicationic acetonitrile 

adduct [{(
S
MesIm)2CH2}Pd(NCMe)2][PF6]2 20a. This complex was studied for 

catalytic activity in the copolymerisation of ethylene and carbon monoxide, but was 

found to have less activity than the previously examined unsaturated analogue. It is 

possible that this reduced activity could be due to increased reactivity towards the 

formation of decomposition products such as dipalladium(I) hydride species similar 

to that observed for the unsaturated analogue. 

Complex 20a was reacted with sodium carbonate to examine whether it showed 

similar reactivity to the unsaturated analogue in the formation of a dipalladium(I) 

hydride species. Solution colour change was potentially indicative of this oxidation 

state being present, however we have been unsuccessful to date in isolating or 

confirming the presence of [{µ-(
S
MesIm)2CH2}2Pd2H][PF6] 21a.    

Extended linker analogues of the imidazolinium salts [(
S
MesIm)2C2H4]Br2 17b and 

[(
S
MesIm)2C3H6]Br2  17c were prepared with ethylene and propylene linkers. 

Reaction of these with palladium acetate was found to produce the monocarbene 

pendant imidazolinium palladium tribromide complexes 

[{(
S
MesIm)(

S
MesImH)C2H4}PdBr3] 22b and [{(

S
MesIm)(

S
MesImH)C3H6}PdBr3] 

22c. The proposed structures were consistent with NMR spectroscopic and elemental 

microanalysis, though to date no X-ray crystal structure has been obtained. These 

complexes showed particular sensitivity during recrystallisation and partially 

decomposed to form the coordination complex 19a. The methylene-linked 

monocarbene pendant imidazolium palladium triiodide complex was also prepared 

and examined by NMR spectroscopy and X-ray crystallography.  
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The methylene- and propylene-linked bridging bis(NHC) disilver complexes 

[{(
S
MesIm)2CH2}2Ag2][PF6]2 23a and [{(

S
MesIm)2C3H6}2Ag2][PF6]2 23c were 

prepared and structurally characterised. Transmetallation reactions with PdBr2(COD) 

and PdBrMe(COD) to form the chelated bis(NHC) palladium dibromide or 

bromomethyl complexes were trialled and, to date, have been unsuccessful.  

The synthesis of an asymmetric saturated/unsaturated imidazolium/inium salt was 

attempted. Attempts to isolate the necessary imidazolinium methylhalide compound 

were unsuccessful, with various reaction conditions only producing the 

diimidazolinium salt 17a or the hydrobromide salt of imidazoline 16, 16a. Attempts 

to react imidazoline 16 with the reported imidazolium methyl halide salt 24 produced 

a mixture of products including the diimidazolinium salt 17a and unreacted starting 

materials.    

4.4  Experimental  

4.4.1  General Conditions 

All syntheses of imidazolium salts, silver transmetallation reactions and halide 

ligand exchange reactions were carried out in air, while the syntheses of the 

palladium complexes were conducted under an inert atmosphere of high purity argon 

(BOC gases) using standard Schlenk techniques. Anhydrous DMSO, methanol and 

acetonitrile were purchased from Sigma-Aldrich and stored over activated 3 Å 

molecular sieves. Other anhydrous solvents used were obtained by passage through 

columns on an Innovative Technologies Solvent Purifier. 

Palladium(II) acetate was purchased from Precious Metals Online and used as 

received. Imidazoline 16,
10

  the propylene linked diimidazolinium dibromide salt 

17c
10

 and N-mesityl-N′-methylhalide imidazolium halide 24
24

 were prepared 
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according to literature procedures. All other reagents were purchased from  

Sigma-Aldrich and used as received. For non-air-sensitive syntheses, solvents were 

analytical grade and used as received. 

4.4.2  Instrumentation 

NMR spectroscopic studies were carried out on a Bruker Avance 3 HD 400 MHz 

Wide Bore spectrometer with a 5 mm BBFO probe in CDCl3 and  

DMSO-d6. NMR spectral data was obtained at room temperature (293 K) unless 

specified otherwise. CDCl3 was used as received. DMSO-d6 was distilled over CaH2 

and stored over 4 Å molecular sieves. 

1
H NMR spectra were obtained at 399.58 MHz while 

13
C NMR spectra were 

recorded at 100.47 MHz. 
1
H NMR spectra were referenced to the 

1
H resonance of 

the residual solvent peaks, while 
13

C NMR spectra were referenced to the deuterated 

13
C resonance. Elemental analyses were conducted by the Central Science 

Laboratory at the University of Tasmania using a Carlo Erba EA1108 Elemental 

Analyser. X-ray crystallography studies were conducted at the Australian 

Synchrotron using the MX1 and MX2 beamlines.  

4.4.3  Carbon monoxide/ethylene Copolymerisation Trial 

20 mg of catalyst complex 20a was dissolved in methanol (50 mL) under argon 

atmosphere and transferred to a 0.3 L stainless steel Parr 5500 Compact Mini 

Reactor also under an argon atmosphere. The autoclave was charged in turn with  

10 bar of ethylene and 10 bar of carbon monoxide, heated to 70 °C and stirred for 

two hours. The autoclave was cooled to room temperature and the black precipitate 

collected by filtration.  
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4.4.4  X-ray Crystallography 

 

Data for 17a-23c were collected at -173 °C on crystal mounted on a Hampton 

Scientific cryoloop at the MX1 or MX2 beamline of the Australian Synchrotron.
25,26

 

Data completeness is limited by the single axis goniometer on the MX beamlines at 

the Australian Synchrotron. The structures were solved by direct methods with 

SHELXS-97,
27

 refined using full-matrix least-squares routines against F
2
 with 

SHELXL-97, and visualised using X-SEED or OLEX2.
28,29

 All non-hydrogen atoms 

were refined anisotropically. All hydrogen atoms were placed in calculated positions 

and refined using a riding model with fixed C-H distances of 0.95 Å (sp
2
CH), 0.99 Å 

(CH2), 0.98 Å (CH3). The thermal parameters of all hydrogen atoms were estimated 

as Uiso(H) = 1.2Ueq(C) except for CH3 where Uiso(H) = 1.5Ueq(C). CIF files for X-ray 

crystallographic analysis can be provided upon request. 

4.4.5  Synthesis 

Preparation of [(
S
MesIm)2CH2]Br2 17a 

Imidazoline 16 (0.38 g, 2.0 mmol) and dibromomethane (0.53 g, 3.0 mmol) were 

dissolved in toluene (8 mL) and heated at 130 °C in a sealed pressure tube for  

24 hours. The resultant white precipitate was collected by filtration, washed with 

chloroform (2 x 10 mL) and dried in vacuo as pure 17a (0.44 g, 40 % yield).  

m.p. 304 °C. 

1
H NMR (399.58 MHz, DMSO-d6): δ 2.29 (6H, s, p-CH3), 2.34 (12H, s, o-CH3), 

4.31 (8H, s, ImCH2), 5.50 (2H, s, CH2), 7.08 (4H   , s, m-CH), 9.24 (2H, s, 

ImCH). 
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13
C NMR (100.48 MHz, DMSO-d6): δ 17.4 (CH3), 20.5 (CH3), 47.4 (ImCH2), 51.4 

(ImCH2), 59.0 (CH2), 129.4 (m-CH), 130.7 (C), 135.3 (C), 139.6 (C), 160.4 (ImCH).  

Found: C, 52.84; N, 9.95; H, 6.63. Calc. for C25H34N4Br2.H2O: C, 52.83; N, 9.86; H, 

6.38.  

Preparation of [(
S
MesIm)2C2H4]Br2 17b 

In a modified literature procedure
10

 16 (676.2 mg, 3.60 mmol) 1,2-dibromoethane 

(338.9 mg, 1.80 mmol) were heated at 100 °C for 2 hours. The resultant orange glass 

was dissolved in dichloromethane (5 mL) and diethyl ether (2 mL) was added to 

precipitate out pure 17b as an off white solid which was collected by filtration, 

washed with diethyl ether (10 mL) and dried in vacuo (0.26 g, 24% yield).  

m.p. 269 °C. 

1
H NMR (399.58 MHz, CDCl3): δ 2.28 (12H, s, o-CH3), 2.29 (6H, s, p-CH3), 4.26 

(4H, t, J = 10.6 Hz, ImCH2), 4.48 (4H, s, CH2), 4.79 (4H, t, J = 10.7 Hz, ImCH2), 

6.92 (4H, s, m-CH), 10.34 (2H, s, ImCH). 

13
C NMR (100.48 MHz, CDCl3): δ 18.4 (CH3), 21.1 (CH3), 45.7 (CH2), 50.8 

(ImCH2), 51.4 (ImCH2), 130.1 (C), 135.1 (C), 140.5 (C), 159.9 (ImCH). 

Preparation of [(
S
MesIm)2C3H6]Br2 17c 

In a modified literature procedure
10

 a neat mixture of 16 (1.04 g, 5.5 mmol),  

1,3-dibromopropane (0.56 g, 2.8 mmol) were heated at 100 °C for 2 hours. The 

resultant orange glass was dissolved in dichloromethane (5 mL) and diethyl ether  

(2 mL) was added to precipitate out pure 17c as an off white solid which was dried 

in vacuo and determined by 
1
H NMR spectroscopy to be identical to literature  

(1.36 g, 85 % yield). m.p. 288 °C. 
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1
H NMR (399.58 MHz, DMSO-d6): δ 2.15 (2H, quin, J = 6.9 Hz, CH2), 2.27 (18H, s, 

o-CH3, p-CH3), 3.66 (4H, t, J = 6.9 Hz, N-CH2), 4.20 (8H, s, ImCH2), 7.04 (4H, s, m-

CH), 8.88 (2H, s, ImCH). 

Found: C, 54.38; N, 9.37; H, 6.84. Calc. for C27H38N4Br2.(H2O): C, 54.32; N, 9.39; 

H, 6.76.  

Preparation of diimidazolium dihexafluorophosphate salts 

Conversion of the dihalide diimidazolinium salts 17a and 17c to 

dihexafluorophosphate salts 17d and 17e was achieved by dissolving the respective 

diimidazolinium salt in water and treating it with a saturated aqueous solution of 

potassium hexafluorophosphate. The resultant white precipitate was collected by 

filtration and dried in vacuo in essentially quantitative yield and used directly 

without further characterisation.  

Preparation of [{(
S
MesIm)2CH2}PdBr2] 18a 

This is a modified literature procedure.
13

 In a pre-dried Schlenk flask, the 

imidazolinium 17a (151.4 mg, 0.28 mmol) and Pd(OAc)2 (61.9 mg, 0.28 mmol) 

were dried by heating at ca. 70 °C in vacuo prior to the addition of DMSO (8 mL). 

The resulting orange solution was stirred at 50 °C for 3 hours and 110 °C for 2 

hours, whereupon the orange-yellow solution paled slightly. The solvent was 

removed in vacuo and dichloromethane (15 mL) was added. The product precipitated 

from the filtrate within 5 minutes as an off-white solid which was collected by 

filtration and washed with a further 10 mL of dichloromethane (104.8 mg, 58 % 

yield). m.p. 294 °C(dec).   
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1
H NMR (399.58 MHz, DMSO-d6): δ 2.24 (18H, bs, o-CH3, p-CH3), 3.70-4.18 (8H, 

m, ImCH2 x4), 4.89 (1H, bs, CH2), 5.34 (1H, bs, CH2), 6.90 (4H, s, m-CH). 

13
C NMR (100.48 MHz, DMSO-d6): δ 19.4 (CH3), 20.5 (CH3), 48.8 (ImCH2), 53.3 

(ImCH2), 60.8 (CH2), 128.8 (CH), 134.2 (C), 136.8 (C), 137.1 (C), 167.7 (Pd-C). 

Found: C, 45.93; N, 8.65; H, 4.85. Calc. for C25H32N4PdBr2: C, 45.86; N, 8.56; H, 

4.93. 

Preparation of [(
S
MesImH)2PdBr2] 19 

N-mesityl imidazoline 16 (141.7 mg, 0.38 mmol) and PdBr2(COD) (140.9 mg, 0.38 

mmol) were dissolved in tetrahydrofuran (35 mL) and stirred for 16 hours. The 

solvent was removed in vacuo and the orange residue redissolved in acetonitrile 

whereupon compound 19 precipitated out as an orange crystalline solid which was 

collected by filtration (226.1 mg, 0.35 mmol, 93 % yield). m.p. 220 °C(dec). 

Accurate elemental microanalysis not obtained due to an unidentified inorganic 

impurity which appeared inseparable from the complex.  

1
H NMR (399.58 MHz, DMSO-d6): δ 2.14 (12H, s, o-CH3), 2.22 (6H, s, p-CH3), 

3.57 (4H, t, J = 10.5 Hz, ImCH2), 3.86 (4H, t, J = 10.6 Hz, ImCH2), 6.94 (4H, s, m-

CH), 7.41 (2H, s, ImCH).  

13
C NMR (100.48 MHz, DMSO-d6): δ 17.5 (o-CH3), 20.5 (p-CH3), 48.2 (CH2), 55.1 

(CH2), 129.2 (m-CH), 133.5(C), 135.9 (N-C), 137.6 (C), 160.8 (CH).  

Preparation of [{(
S
MesIm)2CH2}Pd(NCMe)2][PF6]2 20a 

In a modified literature procedure,
13

 palladium complex 18a (112.5 mg, 0.17 mmol) 

and NaPF6 (0.77 g, 4.58 mmol)  were  dissolved  in a 1:1 mixture of acetonitrile and 
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water (30 mL each) and stirred for 2 hours at 80 °C. The solution was cooled and the 

acetonitrile removed in vacuo with the resultant white precipitate collected by 

filtration. The solid was dried and recrystallised by slow diffusion of diethyl ether 

into a saturated acetonitrile solution to afford the product 20a overnight as a 

colourless crystalline solid (102.5 mg, 0.12 mmol, 69 %). m.p. 224 °C (dec). 

1
H NMR (399.58 MHz, DMSO-d6): δ 2.07 (6H s, 2 x NCCH3), 2.26 (6H, s, p-CH3), 

2.28 (12H, s, o-CH3), 3.92-4.03 (4H, m, ImCH2), 4.06-4.16 (4H, m, ImCH2), 5.21 

(2H, bs, CH2), 7.00 (4H, s, m-CH). 

13
C NMR (100.48 MHz, DMSO-d6): δ 1.1 (NCCH3), 18.5 (CH3), 20.5 (CH3), 49.2 

(ImCH2), 53.2 (ImCH2), 60.4 (CH2), 118.0 (NCCH3), 129.0 (CH), 134.3 (C), 135.6 

(N-C), 138.1 (C), 175.3 (Pd-C).  

Found: C, 40.87; N, 10.76; H, 4.48. Calc. for C25H32N4PdBr2.NCMe: C, 41.00; N, 

10.80; H, 4.55.   

Attempted preparation of [{µ-(
S
MesIm)2CH2}2Pd2H][PF6] 21a 

In a modified literature procedure,
14

 20a (10 mg, 0.01 mmol) was dissolved in 

deuterated methanol in a Young’s NMR tube. Sodium carbonate (5 mg, 0.05 mmol) 

was added and the suspension was heated at 60 °C. 
1
H NMR spectroscopic data was 

collected prior to and immediately after the addition of sodium carbonate, and after  

2 and 4.5 hours of heating, during which time the solution turned orange and a 

change was observed in the 
1
H NMR spectrum. Isolation of 21a was not successful 

and NMR spectra were recorded in situ. Elemental microanalysis was not obtained 

as no pure product was isolated. 
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1
H NMR (399.58 MHz, CD3OD): δ 2.20-2.25 (36H, m, p-CH3, o-CH3), 3.91-3.99 

(8H, m, ImCH2), 4.05-4.12 (8H, m, ImCH2), 5.02 (4H, s, CH2), 6.86 (8H, s, m-CH). 

13
C NMR (100.48 MHz, CD3OD): δ 18.1 (CH3), 21.1 (CH3), 50.3 (ImCH2), 53.9 

(ImCH2), 62.0 (CH2), 130.2 (CH), 135.3 (C), 137.1 (C), 139.5 (C), 161.5 (Pd-C).  

Preparation of [{(
S
MesIm)(

S
MesImH)CH2}PdI3] 22a 

In a pre-dried Schlenk flask imidazolinium 17a (98.5 mg, 0.18 mmol), PdBr2(COD) 

(66.9 mg, 0.18 mmol) and sodium acetate (14.8 mg, 0.18 mmol) were dissolved in 

DMSO (5 mL) and heated at 50 °C for 4 hours. Sodium iodide (549.4 mg,  

3.67 mmol) was added and the solution heated for an additional 50 minutes. The 

solvent was removed in vacuo and the red-brown glass redissolved in a 1:1 mixture 

of acetonitrile and water (20 mL/ 20mL) and heated at 80 °C for 10 minutes. The 

acetonitrile was removed in vacuo to produce 22a as a dark red precipitate which 

was collected by filtration (92.7 mg, 0.11 mmol, 68 % yield). m.p. 232 °C(dec).   

1
H NMR (399.58 MHz, DMSO-d6): δ 2.28 (6H, s, o-CH3), 2.30 (6H, s, o-CH3), 2.44 

(6H, s, p-CH3 x2), 3.94 (4H, m, ImCH2), 4.32 (4H, m, ImCH2), 5.80 (2H, bs, CH2), 

6.98 (2H, s, m-CH), 7.06 (2H, s, m-CH), 8.92 (1H, s, ImCH). 

13
C NMR (100.48 MHz, DMSO-d6): δ 17.7 (CH3), 21.00 (CH3), 21.02 (CH3), 21.7 

(CH3), 46.9 (ImCH2), 49.2 (ImCH2), 51.8 (ImCH2), 52.6 (ImCH2), 64.4 (CH2), 129.8 

(m-CH), 129.9 (m-CH), 131.3(C), 134.2 (C), 135.9 (C), 136.8 (C), 138.7 (C), 140.1 

(Pd-C), 160.5 (ImCH). 

Found: C, 40.44; N, 7.77; H, 4.43. Calc. for C25H33N4PdBr3: C, 40.81; N, 7.62; H, 

4.52.  
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Preparation of  [{(
S
MesIm)(

S
MesImH)C2H4}PdBr3] 22b 

In a pre-dried Schlenk flask, imidazolinium 17b (133.1 mg, 0.24 mmol), 

PdBr2(COD) (88.8 mg, 0.24 mmol) and sodium acetate (19.4 mg, 0.24 mmol) were 

dried by heating at ca. 70 °C in vacuo prior to the addition of DMSO (10 mL). The 

resulting orange solution was heated at 50 °C for 4 hours. The solvent was removed 

in vacuo and the brown residue was dissolved in dichloromethane (25 mL) and 

filtered through Celite. The product precipitated from the filtrate after partial 

evaporation over 16 hours as a yellow powder which was collected by filtration as 

pure 22b (10.9 mg, 6 % yield). m.p. 245 °C(dec). 

1
H NMR (399.58 MHz, DMSO-d6): δ 2.30 (12H, m, o-CH3 x2), 2.36 (6H, s, p-CH3 

x2), 3.87 (4H, bs, ImCH2 x2), 4.05 (2H, bs, CH2), 4.21 (2H, m, CH2), 4.46 (4H, bs, 

ImCH2 x2), 6.97 (2H, s, m-CH), 7.05 (2H, s, m-CH), 8.87 (1H, s, CH). 

13
C NMR (100.48 MHz, DMSO-d6): δ 17.6 (CH3), 19.6 (CH3), 20.5 (CH3), 20.6 

(CH3), 45.1 (CH2), 47.5 (ImCH2), 48.2 (ImCH2), 49.0 (ImCH2), 50.8 (CH2) 51.2 

(ImCH2), 129.1 (m-CH), 129.4 (m-CH), 131.1 (C), 134.2 (C), 135.5 (C), 135.8 (C), 

136.9 (C), 137.9 (Pd-C), 139.3 (C), 159.5 (ImCH). 

Found: C, 41.52; N, 7.50; H, 4.63. Calc. for C26H35N4PdBr3: C, 41.65; N, 7.47; H, 

4.71.  

Preparation of [{(
S
MesIm)(

S
MesImH)C3H6}PdBr3] 22c 

In a pre-dried schlenk flask, imidazoliunium 17c (193.0 mg, 0.33 mmol) and 

palladium acetate (74.8 mg, 0.33 mmol) were dried by heating at ca. 70 °C in vacuo 

prior to the addition of DMSO (10 mL). The resulting orange solution was heated at 

50 °C for 3 hours, then 110 °C for 2 hours, resulting in a pale orange solution. The 
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solvent was removed in vacuo and the orange residue was dissolved in 

dichloromethane (15 mL) and filtered through Celite. The product precipitated from 

the filtrate after partial evaporation over 16 hours as a yellow powder which was 

collected by filtration as pure 22c (21.7 mg, 9 % yield).  m.p. 264 °C(dec). 

1
H NMR (399.58 MHz, DMSO-d6): δ 2.26 (3H, s, p-CH3), 2.27 (3H, s, p-CH3), 2.30 

(8H, bs, 2 x o-CH3, 1 x CH2), 2.37 (6H, s, o-CH3), 3.73-3.79 (2H, m, CH2), 3.86 (4H, 

bs, 2 x ImCH2), 4.10-4.27 (4H, m, 2 x ImCH2), 4.30-4.39 (2H, m, CH2), 6.96 (2H, s, 

m-CH), 7.04 (2H, s, m-CH), 8.88 (1H, s, ImCH). 

13
C NMR (100.48 MHz, DMSO-d6): δ 17.5 (o-CH3), 19.5 (o-CH3), 20.51 (p-CH3), 

20.54 (p-CH3), 24.2 (CH2), 45.4 (ImCH2), 47.4 (ImCH2), 48.0 (ImCH2), 48.4 

(ImCH2), 50.5 (CH2), 51.0 (CH2), 129.0 (m-CH), 129.3 (m-CH), 131.2 (C), 134.3 

(C), 135.6 (C), 137.0 (C), 137.7 (C), 139.2 (C), 158.9 (ImCH) (Pd-C not observed 

due to low concentration).  

Found: C, 40.19; N, 6.67; H, 4.78. Calc. for C27H37N4PdBr3.(CH2Cl2): C, 39.63; N, 

6.60; H, 4.63.  

Preparation of silver complexes  

General procedure 

In a modified literature procedure,
20

 the appropriate imidazolinium salt was 

dissolved in acetonitrile with 1.25 eq. silver oxide. The resulting suspension was 

heated at 55 °C for 18 hours excluded from light. The cooled suspension was filtered 

through Celite and the solvent reduced to ca. 5 mL. Diethyl ether (20 mL) was added 

to precipitate the product as a white solid which was collected by filtration and 

washed with diethyl ether (2 x 5 mL) and dried in vacuo. Pure disilver complexes 
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were collected by filtration and crystals suitable for X-ray diffraction were produced 

by vapour diffusion of diethyl ether into saturated acetonitrile solutions.   

Preparation of [{(
S
MesIm)2CH2}2Ag2][PF6]2 23a 

With 17e (448.6 mg, 0.66 mmol) and silver oxide (200.8 mg, 0.87 mmol) in 

acetonitrile (50 mL) to produce pure 23a as a white solid (312.4 mg, 37% yield).  

m.p. 260 °C(dec). 

1
H NMR (399.58 MHz, DMSO-d6): δ 1.65 (12H, s, o-CH3), 1.75 (12H, s, o-CH3), 

2.40 (12H, s, p-CH3), 3.69-3.79 (4H, m, 2 x ImCH2), 3.79-3.88 (4H, m, 2 x ImCH2),  

3.92-4.04 (8H, m, 4 x ImCH2), 4.85 (2H, d, J = 14.3 Hz, CH2), 6.08 (2H, d, J = 14.2 

Hz, CH2), 6.87 (4H, s, m-CH), 7.01 (4H, s, m-CH).     

13
C NMR (100.48 MHz, DMSO-d6): δ 16.9 (o-CH3), 17.5 (o-CH3), 20.7 (p-CH3), 

49.5 (ImCH2), 51.7 (ImCH2), 63.5 (N-CH2), 64.9 (N-CH2), 129.2 (m-CH), 129.5 (m-

CH), 134.8 (C), 134.9 (C), 135.0 (C), 137.8 (N-C), 203.7 (d, J = 12.6 Hz, C-Ag). 

Found: C, 46.92; N, 9.41; H, 5.20. Calc. for C54H72N8Ag2P2F12.CH3CN: C, 47.18; N, 

9.52; H, 5.10.  

Preparation of [{(
S
MesIm)2(C3H6)}2Ag2][PF6]2 23c 

With 17e (106.2 mg, 0.15 mmol) and silver oxide (42.9 mg, 0.19 mmol) in 

acetonitrile (20 mL) to produce pure 23c as a white solid (83.4 mg, 42% yield).  

m.p. 256 °C(dec). 

1
H NMR (399.58 MHz, DMSO-d6): δ 1.86 (24H, s, o-CH3), 1.94 (4H, t, J = 6.4 Hz, 

CH2), 2.34 (12H, s, p-CH3), 3.57 (8H, t, J = 7.4 Hz, 2x N-CH2), 3.71-3.88 (16H, m, 

4x Im-CH2), 6.88 (8H, s, m-CH).   



Chapter 4 

 

170 

 

13
C NMR (100.48 MHz, DMSO-d6): δ 17.2 (o-CH3), 20.6 (p-CH3), 26.3 (CH2), 48.0 

(N-CH2), 48.3 (Im-CH2), 50.8 (Im-CH2), 129.1 (m-CH), 135.2 (p-C(CH3)), 135.2  

(o-C(CH3)), 137.4 (N-C), 202.7 (d, J = 12.6 Hz, C-Ag).  

Found: C, 46.64; N, 8.33; H, 5.48. Calc. for C54H72N8Ag2P2F12.CH3CN.(H2O)3: C, 

46.90; N, 8.79; H, 5.69.  

4.5  References 

 

[1] Nelson, D. J.; Nolan, S. P. Chem. Soc. Rev. 2013, 42, 6723. 

[2] Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 

485. 

[3] Droge, T.; Glorius, F. Angew. Chem. Int. Ed. 2010, 49, 6940. 

[4] Kuo, H.-Y.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T. Organometallics 2012, 31, 

7248. 

[5] Arnold, P. L.; Casely, I. J.; Turner, Z. R.; Bellabarba, R.; Tooze, R. B. 

Dalton Trans. 2009, 7236. 

[6] Lord, R. L.; Wang, H.; Vieweger, M.; Baik, M.-H. J. Organomet. Chem. 

2006, 691, 5505. 

[7] Vehlow, K.; Maechling, S.; Blechert, S. Organometallics 2006, 25, 28. 

[8] Hillier, A. C.; Sommer, W. J.; Yong, B. S.; Petersen, J. L.; Cavallo, L.; 

Nolan, S. P. Organometallics 2003, 22, 4322. 

[9] Fu, C. F.; Lee, C. C.; Liu, Y. H.; Peng, S. M.; Warsink, S.; Elsevier, C. J.; 

Chen, J. T.; Liu, S. T. Inorg. Chem. 2010, 49, 3011. 

[10] Straub, B.; Bessel, M.; Rominger, F. Synthesis 2010, 2010, 1459. 

[11] Ozdemir, I.; Cetinkaya, B.; Demir, S.; Gurbuz, N. Catal. Lett. 2004, 97, 37. 



Chapter 4 

 

171 

 

[12] Xiao, X.-Q.; Jia, A.-Q.; Lin, Y.-J.; Jin, G.-X. Organometallics 2010, 29, 

4842. 

[13] Gardiner, M. G.; Herrmann, W. A.; Reisinger, C.-P.; Schwarz, J.; Spiegler, 

M. J. Organomet. Chem. 1999, 572, 239. 

[14] Boyd, P. D. W.; Edwards, A. J.; Gardiner, M. G.; Ho, C. C.; Lemee-Cailleau, 

M.-H.; McGuinness, D. S.; Riapanitra, A.; Steed, J. W.; Stringer, D. N.; 

Yates, B. F. Angew. Chem. Int. Ed. 2010, 49, 6315  

[15] Marshall, C.; Ward, M. F.; Skakle, J. M. Synthesis 2006, 1040. 

[16] Ho, C. C. Structural and Mechanistic Investigations of Systematically 

Modified Bis(NHC) Palladium Complexes (PhD Thesis), University of 

Tasmania, Hobart, 2015. 

[17] Scherg, T.; Schneider, S. K.; Frey, G. D.; Schwarz, J.; Herdweck, E.; 

Herrmann, W. A. Synlett 2006, 18, 2894. 

[18] McGuinness, D. S.; Cavell, K. J. Organometallics 2000, 19, 741. 

[19] Sluijter, S. N.; Warsink, S.; Lutz, M.; Elsevier, C. J. Dalton Trans. 2013, 42, 

7365. 

[20] Han, Y. F.; Jin, G. X.; Daniliuc, C. G.; Hahn, F. E. Angew. Chem. Int. Ed. 

2015, 54, 4958. 

[21] Wanniarachchi, Y. A.; Khan, M. A.; Slaughter, L. M. Organometallics 2004, 

23, 5881. 

[22] Liu, Q.-X.; Yang, X.-Q.; Zhao, X.-J.; Ge, S.-S.; Liu, S.-W.; Zang, Y.; Song, 

H.-b.; Guo, J.-H.; Wang, X.-G. CrystEngComm 2010, 12, 2245. 

[23] Lee, K. M.; Wang, H. M. J.; Lin, I. J. B. J. Chem. Soc., Dalton Trans. 2002, 

2852. 



Chapter 4 

 

172 

 

[24] Gardiner, M. G.; Ho, C. C.; Mackay, F. M.; McGuinness, D. S.; Tucker, M. 

Dalton Trans. 2013, 42, 7447. 

[25] Cowieson, N. P.; Aragao, D.; Clift, M.; Ericsson, D. J.; Gee, C.; Harrop, S. 

J.; Mudie, N.; Panjikar, S.; Price, J. R.; Riboldi-Tunnicliffe, A.; Williamson, 

R.; Caradoc-Davies, T. J. Synchrotron Radiat. 2015, 22, 187. 

[26] Kuhn, P.; McPhillips, T. M.; McPhillips, S. E.; Chiu, H.-J.; Cohen, A. E.; 

Deacon, A. M.; Ellis, P. J.; Garman, E.; Gonzalez, A.; N. K. Sauter; 2002 J. 

Synchrotron Radiat. 2002, 179, 401. 

[27] Sheldrick, G. M., SHELX97, Programs for Crystal Structure Analysis, 

Universität Göttingen, Germany, 1998. 

[28] Barbour, L. J. J. Supramol. Chem. 2001, 1, 189. 

[29] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; 

Puschmann, H. J. Appl. Cryst. 2009, 42, 339. 

 



Chapter 5 

 

173 

 

Chapter 5:  Abnormal Palladium(II) Carbene 

Complexes with a Strong Electron Withdrawing 

Substituent.  

5.1  Introduction 

Abnormal and remote carbenes (aNHCs and rNHCs, respectively) are of great 

interest for their significantly different electronic effects compared to normal NHCs 

(nNHCs) and interesting potential for catalytic applications.
1
 Abnormal carbenes are 

notable for their mesoionic character; unlike nNHCs it is not possible to draw a 

reasonable neutral resonance form (Figure 5.1).
2
 The increased charge separation 

results in a stronger anionic character of the carbene, which in turn enhances the 

donor ability.   

 

Figure 5.1. Example resonance forms of normal NHCs and abnormal NHCs. 

The stability of the free ligand is reduced, however, due to the decreased number of 

heteroatoms adjacent to the carbene carbon, although the inductive effects of the 

heteroatoms are less pronounced which also enhances the donor ability of the ligand 

and increases the electron density on a coordinated metal centre.
3
  

rNHCs are defined as having the carbene carbon not adjacent to any heteroatoms. 

This does not require that they fall into the aNHC definition of the free carbene 
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being mesoionic. The majority of studies into these interesting and important 

carbenes have occurred in the last 15 years.  

The earliest example of a mesoionic NHC complex was reported by Araki and  

co-workers in 1993, in which a diaryltetraazolium salt was reacted with mercury or 

palladium to produce the complexes shown in Figure 5.2.
4
 

 

Figure 5.2. Mesoionic carbene complexes reported by Araki.
4
  

The first true aNHC metal complex was serendipitously accessed by Crabtree and 

co-workers from the reaction of a 2-pyridylmethylimidazolium  salt and an iridium 

hydride precursor to produce a mixture of the nNHC and aNHC products.
5
  

 

Scheme 5.1. Synthesis of nNHC- and aNHC-iridium complexes reported by 

Crabtree. 
5
 

The complexes were described as stable, showing no interconversion and it was 

noted that the aNHC analogue was favoured. This showed that the common 

assumption that the C-2 position would be more reactive than C-5 is not necessarily 

true for all azolium systems.    
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The first free abnormal carbene was isolated by Bertrand and co-workers in 2009, 

who achieved this by blocking the C-2 and C-4 sites with bulky phenyl substituents.
6
 

Deprotonation with a suitable base resulted in the free carbene, which was 

structurally authenticated via X-ray crystallography.  The free carbene was then used 

for further synthesis, forming an aNHC-Au complex and for carboxylation at the 

carbene site. 

 

Scheme 5.2. Preparation of a free aNHC reported by Bertrand.
6
 

Synthesis of metal complexes of aNHCs/rNHCs can be achieved through a range of 

methods. Deprotonation of the C-4/5 proton and subsequent coordination similar to 

the synthesis of nNHCs can be effective in cases where the “abnormal” position is 

more active or if the “normal” C-2 position is blocked. This blocking group can take 

the form of a substituent in the C-2 position such as those reported by Albrecht and  

co-workers, or through steric hindrance of the adjacent N-substituents restricting 

accessibility of the “normal” carbene site.
7
 Both Li and Esteruelas provided 

examples of the latter case in 2008 as shown in Figure 5.3.
8,9
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Figure 5.3. Examples of aNHC-M complexes where the aNHC species was 

selectively formed, aided by steric hindrance of the N-substituents.
8,9

  

There have been some reports of transmetallation via a silver salt to form various 

aNHC-transition metal complexes.
10

 This has been shown to be an unreliable 

method, however, even when the C-2 position is blocked. C-C bond cleavage in an 

aNHC precursor with a methyl substituent at C-2 was observed upon reaction with 

silver oxide to form the nNHC-rhodium complex (Scheme 5.3).
11

    

 

Scheme 5.3. C-C cleavage occurring during transmetallation of an aNHC precursor.  

The synthesis of aNHC-Pd complexes via oxidative addition of halogenated aNHC 

precursors with various palladium(0) sources has been reported. Examples reported 

by Huynh
12

 and Albrecht
3,13

 are shown in Scheme 5.4. However this method does 

require the halogenation of the appropriate position on the aNHC/rNHC ligand 

precursor. 
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Scheme 5.4. Examples of aNHC/rNHC-Pd complexes formed by oxidative addition 

of halogenated precursors with Pd(0).  

Huynh and co-workers described a useful measure of nNHC, aNHC and rNHC 

ligand donor ability by using a carbene probe palladium(II) NHC complex shown in 

Figure 5.4.
14

 Various ligands were coordinated and the 
13

C NMR shift of C1 was 

used as a measure of the trans influence and therefore relative donor strength of the 

other NHC ligand. This scale provides an alternative measure to common methods of 

gauging ligand donor strength such as Tolman electronic parameters (TEP) or Lever 

electron parameters.
15

 

In the case of TEP, there are very few Pd-carbonyl complexes which with to 

compare the determined values, limiting good comparison. Additionally, as 

discussed in Chapter 1, the range of TEP values is quite small for NHC species, 

which further limits differentiation.
15

 LEP are calculated from electrochemistry,
15

 

and while useful for some transition metal complexes, are generally not suitable for 
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palladium(II) species as the redox potential of these complexes is often beyond the 

practical range for common solvents. Direct comparison of the 
13

C NMR shift of 

NHC carbenes in Pd-NHC complexes is not necessarily valid either as different 

steric and electronic environments can have large effects on the NMR shift, limiting 

these comparisons to isostructural species.  

The one major disadvantage to the scale proposed by Huynh and co-workers is that it 

does require the synthesis of the benzimidazol-2-ylidine palladium dibromide 

complex of the desired NHC species. Such complexes can be difficult to prepare, or 

inaccessible however, as many NHC ligand precursors require specific reaction 

conditions for coordination to metal. The steric bulk of the N-substituents on the 

NHC probe can also hinder coordination of the secondary NHC species of interest.  

 

Figure 5.4. Palladium nNHC/aNHC complex used by Huynh to probe aNHC ligand 

donor ability. 

Another possible measure of donor ability was proposed, where the synthesis of 

NHC-Pd(PPh3)2 complexes  allowed the use of 
31

P NMR spectroscopy to compare 

the effect of the carbene ligand. Albrecht and co-workers produced a series of 

isostructural complexes of this motif (an example of such is shown in  

Scheme 5.4(b)) and compared the 
31

P NMR and 
13

C NMR shifts as well as the 

calculated TEP for the ligands.
3
 They noted that their 

31
P NMR shift scale was 

C1 
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consistent with the ordering of ligand donating ability implied by the other scales. 

They were also able to compare the catalytic activity of the series for the  

Suzuki-Miyaura coupling of aryl bromides, where they observed a slight correlation 

between ligand donor ability and catalytic activity.  

This observation was consistent with numerous attributions of greater catalytic 

activity for aNHC complexes, though there is some debate in many of these cases 

whether the difference is due to the increased donor properties or an altered steric 

environment around the metal centre.
16

 As with Albrecht’s study discussed above, 

others have probed this using carefully constructed ligands which share identical 

substituent arrangements around the metal (Figure 5.5). Both Hong
17

 and Lee
18

 

report that there was increased catalytic activity from the aNHC species compared to 

their nNHC analogues for  Suzuki-Miyaura cross coupling of aryl halides with 

arylboronic acids (Figure 5.5(a)) and Mizoroki-Heck cross coupling, direct C-H 

arylation and decarboxylative coupling reactions (Figure 5.5(b)), respectively.  
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Figure 5.5. Examples of sterically similar NHC-Pd analogues produced by Hong (a) 

and Lee (b) to compare catalytic activity of nNHC and aNHC complexes.  

In a review of mesoionic carbenes Crabtree discusses the ambiguity in terminology 

of abnormal versus normal carbenes with an interesting thought experiment.
2
 He 

suggested that an arrangement such as that shown in Figure 5.6, would be considered 

a normal carbene with a neutral resonance form when the rings are planar as in (a). 

Should the pyridinium ring be rotated 90 ° out of the plane the resonance form 

through conjugation would no longer be possible and therefore there would no 

longer be a neutral arrangement. Thus (b) could be considered an abnormal carbene. 

At intermediate dihedral angles this biaryl ligand arrangement would therefore not 

be able to be classed as either an nNHC or aNHC, as the character would fall 

between these two definitions. It was suggested by Crabtree that a new definition 

might be necessary for this class of compound; we suggest describing this 

arrangement as a “partially normalised” abnormal carbene. 
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Figure 5.6. Resonance structures of a biaryl system which could be defined as an 

nNHC or aNHC.  

We have observed a system in which a scenario such as this might be considered. 

The unusual tricyclic product I produced from the reaction of [(MesIm)2C2H4]Br2 

with palladium acetate was discussed previously in Chapter 3 (Scheme 3.3).  

Scheme 5.5 shows the possible resonance forms of I in which this conjugation could 

be considered to occur between the two aryl rings. The C-5 proton of the  

palladium-bound NHC was not observed by 
1
H NMR spectroscopy,

19
 presumably 

undergoing rapid exchange with the deuterated solvent, indicative of high lability at 

that position, to give an aNHC at this position.  

 

Scheme 5.5. Possible resonance forms of the rearranged dicarbene palladium 

tribromide I.  

Preparation of complex I for investigation into the possible aNHC character of the 

deprotonated form is difficult due to the low reaction yield and the potential 

formation of the alternative chelated bis(NHC) palladium dibromide species (See 
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Chapter 3). Thus we sought to explore a more convenient conjugated biaryl ligand 

motif using a suitably substituted aNHC system approximating this arrangement 

(Figure 5.7). This would allow us to probe the structural effects of an abnormal 

carbene which, assuming the desired coplanar ring arrangement and electron 

migration occurred, could be considered a “partially normalised” aNHC.   

 

Figure 5.7. Proposed resonance forms of the target aNHC ligand. 

 

5.2  Results and Discussion 

5.2.1  Synthesis of Methylated aNHC Ligand Precursor 

1,2-dimethyl-5-(4-pyridine)imidazole 25 was prepared by a Mizoroki-Heck coupling 

of 1,2-dimethylimidazole and 4-bromopyridine under basic conditions, as per a 

modified literature method with significantly increased reaction scale.
20

 Methylation 

of 25 with an excess of methyl iodide was found by 
1
H NMR spectroscopy to 

produce 1,2,3-trimethyl-5-(4-pyridine) imidazolium iodide 26 and  

1,2-dimethyl-5-(4-N-methylpyridinium) imidazole iodide 27 as the two major 

products (Scheme 5.6.). This was determined by two sets of signals, each set 

containing three methyl resonances at 2.70, 3.78 and 3.80 ppm for 26 and 2.45, 3.76 

and 4.27 ppm for 27. Small downfield shifts of the pyridine protons and a larger 

downfield shift of the imidazolium C-4 proton to 8.04 ppm were observed in 26 as 
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expected. Likewise, the expected small downfield shift of the imidazolium C-4 

proton to 7.80 ppm and the significantly larger downfield shifts of the pyridinium 

meta- and ortho- protons to 8.18 and 8.84 ppm, respectively, were observed for 27. 

Interestingly, there was essentially no formation of the tetramethylated product  

1,2,3-trimethyl-5-(4-N-methylpyridinium) imidazolium diiodide 28 observed under 

these conditions, which indicates that the electron withdrawing effect of the 

methylation at either of the nitrogen positions was sufficient to prevent reactivity at 

the other. The two products could be easily separated by washing the mixture with 

DCM, in which 26 was essentially insoluble, while 27 displayed moderate solubility.  

 

Scheme 5.6. Synthesis of various cationic imidazolium aNHC ligand precursors.  

Crystals of 26 and 27 suitable for single crystal X-ray diffraction were prepared by 

slow diffusion of diethyl ether into saturated acetonitrile solutions of the respective 

compounds. From the crystal structures we gain information about the nature of the 

bonding. The presence of the dominant resonance form of the biaryl ring system 
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(Figure 5.7) would be evidenced by a relatively short (ca. 1.34 Å) C2-C7 bond 

length and a decrease in the C8-C10/C9-C11 bond lengths compared to typical 

aromatic bonds in pyridine (< ca. 1.39 Å), indicative of double bond character. In 

addition the angle between the imidazolium/NHC ring plane and the pyridine ring 

plane can be measured; in the biaryl aNHC resonance form the rings would be  

near-coplanar.  

The C2-C7 bond length of 1.470(5) Å in 26 is indicative of typical single-bond 

character between sp
2
 hybridised carbon centres, and the essentially identical (within 

error) C-C bonds measuring > 1.39 Å in the pyridinium substituent suggested that 

there was no contribution from the nNHC resonance form in this compound. The 

angle between the ring planes of 38.5(2) ° was also consistent with this observation. 

This is unsurprising as the lack of pyridine N-substituent would prevent the electron 

transfer necessary to the nNHC resonance form.  
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Figure 5.8. Molecular structure of the cation of 1,2,3-trimethyl-5-(4-pyridine) 

imidazolium iodide 26. Displacement ellipsoids are shown at the  

50 % probability level. All pyridinium and methyl hydrogens and iodide 

counteranion were omitted for clarity. Selected bond lengths (Å) and angles (°):  

C2-C7 1.470(5), C7-C8,C9 1.399(5),1.398(5), C8-C10 1.388(5), C9-C11 1.402(5), 

N3-C10,C11 1.360(5),1.292(6),  C2-C3-N2 107.5(3). 

The C2-C6 bond length appeared increased in 27 compared to imidazolium 26  

(Δ 0.025Å), though there was some shortening of the pyridinium C7-C9/C8-C10 

bonds in 27 relative to 26 and the angle between the imidazolium and pyridine ring 

planes was measured to be 8.9(1) °. The resonance forms discussed above  

(Figure 5.7) are not valid for imidazole 27, however, as the C-4 proton is not suitable 

for abstraction.  
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Figure 5.9. Molecular structure of the cation of 1,2-dimethyl-5-(4-N-

methylpyridinium) imidazole iodide 27. The structure was refined isotropically with 

displacement ellipsoids shown at the 50 % probability level. All pyridinium and 

methyl hydrogens and iodide counteranion were omitted for clarity. Selected bond 

lengths (Å) and angles (°): C2-C6 1.50(1), C6-C7,C8 1.43(1),1.41(1), C7-C9 

1.32(1), C8-C10 1.36(1), N3-C9,C10 1.32(1),1.36(1),  C2-C3-N2 110.3(7). 

The tetramethylated product 28 was prepared by stirring the imidazole 25 with an 

excess of dimethyl sulfate for 18 hours in toluene. The resultant red oil was 

dissolved in ethanol and reacted with 2 equivalents of sodium iodide to precipitate 

sodium sulfate and allow isolation of the tetramethylated imidazolium 28 after the 

filtrate was removed in vacuo as a yellow solid. The successful methylation of all 

sites was confirmed with 
1
H NMR spectroscopy by the presence of four methyl 

signals at 2.73, 3.88, 3.89 and 4.39 ppm. There was also a significant downfield shift 

of the imidazolium proton from 7.12 ppm in the unsubstituted imidazole 25 to  

8.41 ppm in 28 and the expected downfield shifts of the pyridinium ortho- and  
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meta-protons to 8.34 and 9.13 ppm, respectively. Crystals of 28 suitable for X-ray 

diffraction were grown from slow diffusion of diethyl ether into a saturated methanol 

solution (Figure 5.10).  

The C2-C7 distance of 1.456(3) Å, while decreased in comparison to imidazolium 

26, was not indicative of a typical sp
2
 hybridised C-C double bond. There was a 

slight decrease in the C8-C10/C9-C11 bonds in the N-methylpyridinium substituent 

as would be expected in comparison to imidazolium 26, similar to that seen in 27. A 

reduction in the angle between the ring planes to 22.1(2) ° compared to imidazolium 

26 was also observed.  
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Figure 5.10. Molecular structure of the dication of 1,2,3-trimethyl-5-(4-N-

methylpyridinium) imidazolium diiodide 28. Displacement ellipsoids are shown at 

the 50 % probability level. All pyridinium and methyl hydrogens, iodide 

counteranions and lattice solvent water molecule are omitted for clarity. Selected 

bond lengths (Å) and angles (°): C2-C7 1.456(3), C7-C8,C9 1.401(3),1.402(3), C8-

C10 1.381(4), C9-C11 1.381(3), N3-C10,C11 1.341(4),1.348(4), C2-C3-N2 

107.4(2).  

5.2.2  Attempted Synthesis of aNHC Palladium(II) Complexes via C-H 

Metallation    Methods 

Synthesis of a palladium complex with imidazolium salt 28 was attempted using a 

variety of literature methods (Scheme 5.7). The synthesis of palladium-NHC 

complexes via in situ deprotonation with palladium acetate is well established in the 

literature for both mono- and bis-NHCs.
7,17,21

 A similar method was reported by 

Mandal and co-workers using palladium acetate in dioxane to produce a sterically 

bulky dinuclear aNHC-Pd complex which showed good activity in Suzuki-Miyaura 
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cross-coupling reactions of aryl chlorides.
1
 Reaction of imidazolium 28 under these 

conditions produced only decomposition products and moderate amounts of starting 

material (by 
1
H NMR spectroscopy) however.  

 

Scheme 5.7. Some of the reaction conditions used to attempt the C-H metallation of 

28.  

Direct deprotonation of NHCs via a strong base to form the free carbene in situ, 

followed by subsequent coordination of a metal is also well established in the 

literature.
21,22

  However this method also proved to be ineffective with essentially 

pure starting material 28 being retrieved as the only product from the synthesis. A 

study of the in situ deprotonation was conducted under inert conditions in a Young’s 

tube with 
1
H NMR spectroscopic analysis showing no decrease in the imidazolium 

C-H signal upon addition of potassium tert-butoxide, nor with subsequent heating. 

Ghosh and co-workers report a similar method of base deprotonation using 

potassium carbonate followed by coordination to palladium chloride to access an 

aNHC-Pd complex with similar substitution to our ligand.
23

 The reaction was 
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conducted in pyridine, a basic solution which can serve as a coordinating ligand that 

was aimed to aid complex formation. Again, the reaction of 28 under these 

conditions produced only starting material and some decomposition products.  

As described previously, transmetallation via silver complexes has not been widely 

used to access aNHC metal complexes, though Huynh and co-workers report using 

the method for the preparation of several rNHC palladium complexes with good 

success.
10

  Under similar conditions with 28 however, no reaction was observed. The 

above synthetic methods were also trialled with imidazolium 26 as an attempt to 

understand the effect of N-methylation of the pyridine substituent and a similar lack 

of reactivity was observed. 

It is worth noting that these literature methods used monocationic ligand species 

without a strong electron withdrawing group affecting the electronic properties of the 

NHC. It is clear that the electron withdrawing nature of both the pyridine and 

pyridinium group have a significant effect on the acidity of the imidazolium proton. 

5.2.3  aNHC Palladium(II) Complexes via Oxidative Addition  

Albrecht and co-workers have reported the synthesis of various aNHC and rNHC 

palladium complexes via oxidative addition.
3,13

 We sought to emulate some of their 

methodology to prepare complexes using our ligand system.  

Imidazole 25 was brominated by stirring it with 1 equivalent of  

N-bromosuccinnimide in THF for 18 hours. After washing with water the product 29 

precipitated as a pure off-white solid in modest yield. Bromination of the C-4 

position was confirmed by the disappearance of the resonance at  

7.12 ppm in the 
1
H NMR spectrum, corresponding to the C-4 proton and the upfield 

shift of the C-4 carbon to 114.8 ppm in the 
13

C NMR spectrum.  
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Methylation of the brominated imidazole 29 was attempted using methyl iodide. 

However the increased steric hindrance adjacent to the unsubstituted imidazole 

nitrogen prevented favourable methylation at that site, resulting in an inseparable 

mixture of the N-Me-pyridinium imidazole (major product) and a small amount of 

the trimethylated imidazolium salt, determined by 
1
H NMR spectroscopy  

(Scheme 5.8).  

Clean trimethylation of the brominated imidazole 29 was achieved by reaction with 

an excess of dimethyl sulfate in toluene at 120 °C in a sealed tube. The resultant 

brown oil was determined by 
1
H NMR spectroscopy to be essentially pure 

imidazolium, theorised as the sulfate salt. Subsequent reaction with sodium iodide to 

obtain the imidazolium dihalide by precipitation of sodium sulfate was unsuccessful, 

producing only decomposition products. Thus the imidazolium was converted to the 

hexafluorophosphate salt 30 by dissolving the imidazolium sulfate salt in water and 

adding an excess of potassium hexafluorophosphate.  
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Scheme 5.8. Synthesis of methylated imidazolium product 30 from the brominated 

imidazole 29. 

The resultant off-white precipitate was confirmed by 
1
H and 

13
C NMR spectroscopy 

and X-ray crystallography to be the desired product 30 with the C-4 position 

substituted as expected (Figure 5.11).  The increased bulk of the bromide substituent 

does result in an increased angle between the imidazolium ring plane and pyridinium 

ring plane, with an angle of 27.2(1) ° (compared to 22.1(2)) and a near-equal  

(Δ 0.010 Å) C2-C7 bond compared to the non-halogenated analogue 28. The 

pyridinium C-C bond lengths were identical within error, however. 
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Figure 5.11. Molecular structure of the dication of [1,2,3-trimethyl-4-bromo-5-(4-N-

methylpyridinium)Im][PF6]2 30. Displacement ellipsoids are shown at the 50 % 

probability level. All hydrogen atoms and [PF6]
-
 counteranions are omitted for 

clarity. Selected bond lengths (Å) and angles (°):  C3-Br1 1.847(3), C2-C3 1.349(4), 

C2-C7 1.466(4), C7-C8,C9 1.388(4),1.388(5), C8-C10 1.380(5), C9-C11 1.379(5), 

N3-C10,C11 1.330(5),1.337(6), C2-C3-N2 108.2(3),1.388(5), C8-C10 1.380(5), C9-

C11 1.379(5), N3-C10,C11 1.330(5),1.337(6), C2-C3-N2 108.2(3).  

Palladium aNHC complexes were formed by oxidative addition of 30 with a slight 

excess of Pd(dba)2 in pyridine at 75 °C. After heating for 1.5 hours a second 

coordinating ligand was added to form complexes 31-33 (Scheme 5.9). Exchange of 

the reaction solvent to acetonitrile or DMSO under these conditions resulted in only 

partial conversion of 30 to the metallated product. This suggested that the basic 

pyridine played some role in promoting the oxidative addition.   
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Scheme 5.9. General reaction scheme for the synthesis of aNHC-Pd complexes 

utilising 30.  

Addition of 1 equivalent of 2,2′-bipyridine (bipy) to the oxidative addition reaction 

produced the complex [{1,2,3-trimethyl-5-(4-N-

methylpyridinium)Im}PdBr(bipy)][PF6]2 31 as a pale brown solid in moderate yield. 

Successful coordination was indicated by the desymmetrisation of the bipyridine 

ligand in the 
1
H NMR spectrum and the significant downfield shift of the C-4 carbon 

from 110.4 ppm in 30 to 139.1 ppm in the 
13

C NMR spectrum. Crystals suitable for 

X-ray diffraction were grown by slow evaporation of diethyl ether into a saturated 

THF solution (Figure 5.12). 
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Figure 5.12. Molecular structure of the dication of [{1,2,3-trimethyl-5-(4-N-

methylpyridinium)Im}PdBr(bipy)][PF6]2 31. Displacement ellipsoids are shown at 

the 50 % probability level. All hydrogen atoms and [PF6]
-
 counteranions are omitted 

for clarity. Selected bond lengths (Å) and angles (°): Pd1-C3 1.979(3), Pd1-Br1 

2.4249(8), Pd-N4,N5 2.083(2),2.034(2), C2-C7 1.460(3), C7-C8,C9 

1.400(4),1.398(4), C8-C10 1.382(4), C9-C11 1.381(4), N3-C10,C11 

1.339(4),1.340(4), C3-Pd1-Br1 87.66(7), Br1-Pd1-N4 97.02(7), N4-Pd1-N5 

80.46(9), N5-Pd1-C3 95.2(1), Pd1-C3-N2 126.7(2), Pd1-C3-C2 128.2(2).     

The metal coordination geometery in complex 31 was square planar, with the aNHC 

ligand bound at an angle of 76.02(7) ° to the metal coordination plane. Markies and 

co-workers report observing a similar effect in a (bipy)PdIPh complex  

(Figure 5.13(a)) where the phenyl ligand was rotated 75.7(2) ° from the Pd-bipy 
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plane.
24

 The trans effect of the aNHC ligand in 31 was observed in the 0.049 Å 

increase in Pd-N4 compared to Pd-N5.   This change was consistent with other 

literature (bipy)PdXL complexes, where X here represents any halide (Table 1). 

Complexes (a)-(c) do show a greater magnitude of trans-effect compared to 31, with 

ΔN-Pd ranging 0.056-0.078 Å. However the aNHC complex 31 does have 

comparatively shorter Pd-N bond distances in general, though the dicationic nature 

of 31 may contribute to this. It is difficult to make any direct comparisons as the 

Cambridge crystal structure database (CCSD) contains no examples of 

(bipy)PdXNHC complexes.  

 

Figure 5.13. Examples of (bipy)PdXL complexes (a)
24

 , (b)
25

, and (c)
26

 showing the 

increased Pd-N bond length trans to L.  
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Table 1. Comparison of bond lengths in (bipy)PdXL complexes (Figure 5.12 and 

Figure 5.13) 

Dist(Å) Pd-C Pd-X Pd-N trans to C Pd-N trans to X Δ Pd-N 

31 1.979(3) 2.4249(8) 2.083(2) 2.034(2) 0.049(2) 

(a) 2.00(1) 2.575(1) 2.144(8) 2.070(8) 0.074(8) 

(b) 1.986(4) 2.4127(6) 2.112(3) 2.056(3) 0.056(3) 

(c) 1.988(2) 2.4255(3) 2.144(2) 2.066(2) 0.078(2) 

 

The C2-C7 bond length of 1.460(3) Å was consistent with sp
2
 hybridised C-C single 

bond character and the pyridinium C-C bond lengths were similar (within error) and 

within the expected ranges for the delocalised aromatic bonds, suggesting that there 

was little contribution from the postulated partially normalised resonance form. The 

angle between the pyridinium ring plane and the NHC ring plane was measured to be 

42.31(11) °, a significant increase compared to the uncoordinated species 28 and 30, 

consistent with the observation that no significant contribution from the conjugated 

ring resonance form was observed.  

Addition of 20-30 equivalents of sodium bromide to the oxidative addition reaction 

of 30 to Pd(dba)2 produced complex [{1,2,3-trimethyl-5-(4-N-

methylpyridinium)Im}PdBr2Py][PF6] 32a as a yellow solid, which was washed with 

water to remove any excess salt. The iodide analogue was also prepared for 

structural comparison to a similarly sterically hindered literature example via 

addition of sodium iodide under otherwise identical conditions. This produced the 

complex [{1,2,3-trimethyl-5-(4-N-methylpyridinium)Im}PdI2Py][PF6] 32b. 

Successful synthesis was indicated by NMR spectroscopy with the downfield shifts 
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of the pyridinium proton signals compared to the imidazolium precursor 30, and the 

significant downfield shift of the C-4 carbon from 110.4 ppm to 136.0 ppm (32a) 

and 133.1 ppm (32b), respectively, in the 
13

C NMR spectrum associated with the 

formation of the carbene. Crystals of each suitable for X-ray diffraction were grown 

by slow evaporation of diethyl ether into a saturated acetonitrile solution (Figure 

5.14 and Figure 5.15).    
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Figure 5.14. Molecular structure of the cation of [{1,2,3-trimethyl-5-(4-N-

methylpyridinium)Im}PdBr2Py)][PF6] 32a. Displacement ellipsoids are shown at the  

50 % probability level. All hydrogen atoms and [PF6]
-
 counteranion are omitted for 

clarity. Selected bond lengths (Å) and angles (°): Pd1-C3 1.964(4), Pd1-Br1,Br2 

2.4362(6),2.4214(7), Pd-N4 2.110(3), C2-C7 1.448(5), C7-C8,C9 1.406(5),1.398(5), 

C8-C10 1.371(6), C9-C11 1.371(6), N3-C10,C11 1.351(5),1.352(5), C3-Pd1-

Br1,Br2 89.7(1),86.2(1), N4-Pd1-Br1,Br2 92.6(1),91.9(1), Pd1-C3-N2 123.5(3), 

Pd1-C3-C2 130.8(3), C2-C3-N2 105.3(4).     
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Figure 5.15. Molecular structure of one cation of [{1,2,3-trimethyl-5-(4-N-

methylpyridinium)Im}PdI2Py)][PF6] 32b. Displacement ellipsoids are shown at the 

50 % probability level. All hydrogen atoms and [PF6]
-
 counteranion are omitted for 

clarity. Selected bond lengths (Å) and angles (°) (values for second molecule 

provided in brackets): Pd1-C3 1.968(5) (1.972(5)), Pd1-I1,I2 2.5956(5) 

(2.6122(5)),2.5942(5) (2.5855(5)), Pd-N4 2.092(4) (2.092(4)), C2-C7 1.452(7) 

(1.475(7)), C7-C8,C9 1.401(7) (1.392(7)),1.394(7) (1.390(8)), C8-C10 1.363(8) 

(1.362(8)), C9-C11 1.366(7) (1.370(8)), N3-C10,C11 1.341(7) (1.348(7)),1.343(7) 

(1.344(7)), C3-Pd1-I1,I2 86.3(2),91.4(2),  N4-Pd1-I1,I2 91.8(1),91.5(1), Pd1-C3-N2 

122.9(4), Pd1-C3-C2 131.8(4), C2-C3-N2 104.4(4).     
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The complexes 32a-b were isostructural, with the palladium centres displaying the 

expected square planar geometries. The iodide analogue 32b contained two 

molecules in the asymmetric unit. The aNHC ligands were trans to the coordinated 

pyridine solvent, with the remaining two sites filled by the relevant halide. This 

arrangement was observed regardless of the excess qunantaties of sodium halide 

added to the reaction mixture and was retained even when the isolated complex was 

reacted with a further excess of sodium halide in acetonitrile. 

The aNHC was oriented near-perpendicular to the palladium coordination plane 

(81.8(1) ° and 82.8(1) (89.2(1) ° for 32a and 32b, respectively). The reduced steric 

bulk and rigidity in the ancillary ligands around the palladium may have resulted in a 

slight decrease in the Pd-C bond length of 0.015(4) and, ca. 0.010(5) Å (average) for 

32a and 32b, respectively, compared to the bipy analogue 31. The  

C2-C7 bond lengths were identical, within error, and consistent with no typical sp
2
 

hybridised C-C double bond character. There was a slight decrease in the  

C8-C10/C9-C11 bond lengths from those expected for the delocalised pyridine bond 

arrangement in the aNHC resonance form, and the angle between the pyridinium 

ring plane and NHC ring plane was measured at 32.8(2) ° and 38.8(2) (41.7(3)) ° 

respectively. This suggested that there was little contribution from the normalised 

resonance form containing coplanar ring systems.  

We were able to compare these compounds to several literature examples that shared 

a similarly bulky aNHC ligand and trans-PdX2Py centre, where X represented any 

halide. Ghosh and Lee both reported on aNHC-Pd complexes of interest in various 

C-C coupling reactions.
18,22
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Figure 5.16. Examples of similarly sterically hindered aNHCPdX2Py complexes 

32a, 32b, (a)
23

 and (b).
18

 

Table 2. Comparison of bond lengths in aNHCPdX2Py complexes (Figure 5.16). 

Bond lengths from both molecules of 32b are provided. 

Dist(Å) Pd-C Pd-X  Pd-N  

32a 1.964(4) 2.4362(6)  2.4214(7) 2.110(3) 

32b 1.968(5) 

1.972(5) 

2.5956(5) 

2.6122(5) 

2.5942(5) 

2.5855(5) 

2.092(4) 

2.092(4) 

(a) 1.98(2) 2.596(2) 2.607(1) 2.13(1) 

(b) 1.960(8) 2.298(2) 2.309(2) 2.103(7) 

  

Ghosh and co-workers provide significant analysis of the trans effect of the strongly 

σ-donating aNHC ligand in (a), which results in the greatly weakened Pd-py 

interaction, causing the pyridine to essentially be considered a “throw-away” ligand 

in catalytic conditions.
22

 They note an effective measure of this σ-donating power is 

to compare the Pd-C and Pd-N distances to the sum of the individual covalent radii 

of the atoms (Pd-C 2.055 Å, Pd-N 1.983 Å).
27

 All of the above complexes indeed 
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show Pd-C bond lengths shorter than, and Pd-N bond lengths greater than these 

values, providing good agreement for the strong σ-donating power of these aNHC 

ligands. In particular, comparison can be made between complexes 32b and (a) 

which share a similar coordination environment and ligand steric bulk. The Pd-C 

distances in these two complexes are identical within error, though the Pd-N 

distances were decreased in complex 32b. This is consistent with the reduced 

electron donating power of our ligand due to the electron withdrawing substituent 

decreasing the trans effect of the aNHC ligand.   

Another possible measure of the electronic environment at the carbene carbon is the 

13
C NMR spectroscopic chemical shift. However different steric environments can 

affect the chemical shift so comparisons are limited to complexes with similar 

coordination environments.
15

 Complex (a) had a Pd-C 
13

C NMR spectroscopic signal 

at 130.2 ppm. Pd-C signal observed for 32b at 133.1 ppm, the downfield shift 

presumably due in part to the electron-withdrawing substituent reducing the 

shielding on the carbon nucleus.   

Complex [{1,2,3-trimethyl-5-(4-N-methylpyridinium)Im}PdBr(PPh3)2)][PF6]2 33 

was formed by extracting the oxidative addition product of 30 with Pd(dba)2 as a 

pyridine adduct and exchanging the ligands of the partially purified compound with 

an excess of triphenylphosphine in acetonitrile at 50 °C. The solvent was removed 

and the resultant yellow solid washed with diethyl ether to remove all remaining 

triphenylphosphine. This alternative synthesis was required due to the high solubility 

of 33 in dichloromethane, a necessary component in the removal of residual dba 

from the oxidative addition reaction. Successful synthesis was indicated by the 

significant downfield shift of the C-4 carbon from 110.4 ppm to 133.2 ppm in the  

13
C NMR spectrum. The complex formed the trans Pd-Br isomer, indicated by the 
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single phosphorous signal in the appropriate region of the 
31

P NMR spectrum. NMR 

spectroscopy also revealed a small amount of triphenylphosphine oxide present, 

presumably a minor byproduct of the synthesis which was not separable from 33. 

Attempts to isolate the iodide analogue of 33 for direct comparison to literature 

examples are ongoing. Crystals of 33 suitable for X-ray diffraction were produced 

from slow evaporation of diethyl ether into a saturated methanol solution  

(Figure 5.17).  

The palladium centre displayed a distorted square planar coordination geometry with 

a trans arrangement of the triphenylphosphine ligands to reduce steric interactions. 

As with the other complexes in this chapter the aNHC was oriented  

near-perpendicular to the palladium coordination plane (82.5(1) °), with a 

significantly larger (in comparison to the previous aNHC compounds) angle between 

the pyridinium and NHC rings of 44.9(1) °. The C2-C7 bond length of 1.466(4) Å is 

not indicative of typical sp
2
 hybridised C-C double bond character and the 

pyridinium C-C bonds are not significantly altered from the typical bond lengths 

expected from the delocalised arrangement. This again suggests that there is 

essentially no contribution from the partially normalised ligand resonance form.  
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Figure 5.17. Molecular structure of [{1,2,3-trimethyl-5-(4-N-

methylpyridinium)Im}PdBr(PPh3)2][PF6]2 33. Displacement ellipsoids are shown at 

the 50 % probability level. All hydrogen atoms, lattice MeOH solvent molecule and 

[PF6]
-
 counteranions are omitted for clarity. Selected bond lengths (Å) and angles 

(°): Pd1-C3 1.998(3), Pd1-Br1 2.475(1), Pd1-P1,P2 2.352(1),2.329(1), C2-C7 

1.466(4), C7-C8,C9 1.394(4),1.398(5), C8-C10 1.380(5), C9-C11 1.374(5),  

N3-C10,C11 1.347(5),1.346(5), C3-Pd1-P1,P2 93.31(9),88.03(9), Br1-Pd1-P1,P2 

92.89(3),87.99(3) Pd1-C3-N2 128.1(2), Pd1-C3-C2 126.8(2).     

Albrecht has reported a range of similar aNHC/rNHC complexes sharing the 

LPd(PPh3)2X core. Examples of these with X-ray crystallographic data are shown in 

Figure 5.18 with the key bond lengths compared in Table 3.
3
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Figure 5.18. Examples of aNHC- or rNHCPdX(PPh3)2 complexes 33, (a)
12

 and (b)
3
 

Table 3. Comparison of bond lengths (Å) in aNHCPdX(PPh3)2 complexes  

(Figure 5.18). 

Å Pd-C Pd-P  Pd-X 

33 1.998(3) 2.329(1) 2.353(1) 2.475(1) 

(a) 2.020(5) 2.327(1) 2.330(1) 2.6727(5) 

(b) 2.04(2) 2.330(5) 2.339(5) 2.647(2) 

 

The Pd-C and Pd-P bond lengths are similar between these complexes, though direct 

comparison is not possible due to the unavailability of literature examples containing 

an ancillary bromide ligand.  

Albrecht also reported an extensive study of the correlation between 
31

P NMR 

chemical shifts and donor strengths of the ligands. The 
13

C and 
31

P NMR chemical 

shifts of the compounds shown in Figure 5.18 and Figure 5.19 were compiled in 

Table 4, though again the variation of the halide from bromide to iodide limits more 

detailed comparison.    
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Figure 5.19. A selection of other NHC-Pd(PPh3)2I complexes reported by Albrecht.
3
 

 

Table 4. NMR chemical shifts of compounds shown in Figure 5.18 and Figure 5.19.    

 

 

The
 13

C and 
31

P NMR spectroscopic chemical shifts of complex 33 fall within the 

range of values for the normal and abnormal NHC complexes (c) and (e), though 

again there is likely some effect from the different halide and the electron 

withdrawing pyridinium group.   

5.2.4  nNHC Palladium(II) Analogue of I 

Consideration of the original complex I which inspired this series of abnormal 

carbene complexes suggested that the acidity of the imidazolium proton might be 

increased with a more direct analogue to the tricyclic palladium tribromide.  

N-methyl-5-(4-pyridine)imidazole 34 was prepared via a modified literature 

procedure using N-methylimidazole in place of the 1,2-dimethyl imidazole.
20

 

Methylation of the remaining nitrogen positions was achieved by heating the 

Ppm 33 (a) (b) (c) (d) (e) 

31
P Pd-P 20.08 22.80 21.28 20.48 18.96 18.76 

13
C Pd-C 150.0 127.8 168.0 137.4 193.7 162.3 
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substituted imidazole 34 with excess methyl iodide in a sealed tube at 120 °C for 18 

hours. All other methylation methods attempted gave a mixture of partially 

methylated products in poor yield.  The imidazolium 35 was deprotonated with 

sodium acetate and reacted with palladium iodide to form the nNHC palladium 

triiodide complex 36, analogous to the tricyclic rearranged dicarbene palladium 

tribromide I, as a dark red solid in moderate yield (Scheme 5.10). 

 

Scheme 5.10. Synthesis of 36, an nNHC analogue of I. 

Characterisation with 
1
H and 

13
C NMR spectroscopy indicated successful formation 

of complex 36 by the disappearance of the C-2 proton at 9.37 ppm and the downfield 

shift of the C-2 
13

C signal from 140.7 ppm to 149.2 ppm. Comparison of this carbene 

resonance to mono(NHC) palladium(II) trihalide complexes bearing a positive 

charge on the NHC ligand such as 10a (136.6 ppm) and 12a-b  

(138.4 and 138.8 ppm, respectively) discussed in Chapter 3 showed the deshielding 

effect of the electron-withdrawing pyridinium substituent on the carbene centre. This 

lends some validity to our proposed ligand system having some of the intended 

electronic effects. Direct comparison cannot be made, however, due to variation in 

the N-substituent steric bulk and a lack of other similar complexes in the literature.   
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Complex I was shown to have high lability of the C-4 proton, determined by the lack 

of the 
1
H NMR resonance for this proton, suggesting the site may be amenable for 

reaction. Metallation of the C-4 position of analogue 36 was attempted via 

deprotonation with sodium acetate and subsequent coordination of palladium iodide, 

though no reaction was observed by 
1
H NMR spectroscopy. It is worth noting that 

there are very few examples of 2,4-dimetallated NHC complexes, however. The C-4 

proton resonance in 36 at 8.37 ppm is comparatively low for an imidazolium was 

unexpected from the observations of I. 

 Recrystallisation of 36 from diffusion of diethyl ether into an acetonitrile solution 

yielded red crystals suitable for X-ray crystallography (Figure 5.20). The palladium 

displayed distorted square planar geometry with the carbene ligand close to 

orthogonal to the metal coordination plane and a “see-saw” geometric distortion 

effect around the palladium centre, with pronounced deviations in the ligands from a 

flat square planar arrangement of 0.196(1)-0.198(1) Å for the trans iodides, and 

0.159(2)-0.251(2) Å for the trans carbene/iodide.  

The C2-C6 bond length of 1.468(8) Å and the identical (within error) pyridinium  

C-C bond lengths were indicative of little contribution from a normalised resonance 

form. The angle between the NHC ring plane and the pyridinium ring plane in 36 

was measured as 35.9(3) °, consistent with this observation.  
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Figure 5.20. Molecular structure of [{1,3-dimethyl-5-(4-N-

methylpyridinium)Im}PdI3], 36. Displacement ellipsoids are shown at the 50 % 

probability level. All hydrogen atoms are omitted for clarity. Selected bond lengths 

(Å) and angles (°): Pd1-C1 1.961(5), Pd1-I1,I2,I3 2.5949(7),2.6198(7),2.6560(7), 

C2-C6 1.468(8), C6-C7,C8 1.394(8),1.387(8), C7-C9 1.379(9), C8-C10 1.376(9), 

N3-C9,C10 1.342(9),1.332(9), C1-Pd1-I1, I2 86.1(2),87.59(16), I1,I2-Pd1-I3 

94.79(2),93.15(2), Pd1-C1-N1,N2 123.3(4),130.8(4).   

5.3  Conclusion 

In conclusion, we have prepared a range of 5-pyridinium substituted imidazolium 

systems to examine whether conjugation between the rings can lead to a “partially 

normalised” abnormal carbene. We have shown that the strong electron withdrawing 
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nature of the C-4 substituent in imidazolium salts 26 and 28 prevented the synthesis 

of aNHC metal complexes via a range of literature C-H metallation methods.  

The biaryl imidazole 25 was brominated using NBS and methylated to produce 

imidazolium 30, which was used in the synthesis of aNHC-palladium complexes  

31-33. This was achieved via oxidative addition of the brominated ligand precursor 

30 with Pd(dba)2. The complexes displayed varying degrees of torsion between the 

NHC and pyridinium ring systems, though none of the complexes showed C-C bond 

lengths consistent with any significant contribution of the partially normalised 

resonance form containing coplanar rings. We have also established that the more 

direct analogue to our self-coupled product I, the nNHC-palladium complex 36, does 

not enhance the reactivity of the C-4 proton to form a new aNHC ligand.  

At this stage our ability to establish the influence of the electron withdrawing C-5 

substituent on aNHC donor strength is limited. We hope to modify the ligand system 

for future work to help force the necessary coplanar ring arrangement. Options for 

this include a ligand system containing a suitably placed unsubstituted heteroatom 

for metal coordination or a rigid linker between the two rings to help hold the planar 

arrangement, though this would likely increase the difficulty of coordination to 

palladium further.  

Another avenue to explore in future work would be the protection of the pyridine 

nitrogen group to allow selective methylation of the imidazolium nitrogen. This 

would allow us more control over the electron withdrawing effects of the pyridine 

substituent. It would also potentially allow imidazole coupling to form bis(aNHC) 

ligand precursors similar to those reported in the literature.
7
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5.4  Experimental  

5.4.1  General Conditions 

All syntheses of halogenated imidazoles, imidazolium salts and anion exchange 

reactions of metal complexes were carried out in air, while the syntheses of the 

imidazoles and palladium complexes were conducted under an inert atmosphere of 

high purity argon (BOC gases) using standard Schlenk techniques. Some analyses 

were performed in a dry glove box (Innovative Technologies) under a nitrogen 

atmosphere. Anhydrous DMSO was purchased from Sigma-Aldrich and stored over 

activated 3 Å molecular sieves. Other anhydrous solvents used were obtained by 

passage through columns on an Innovative Technologies Solvent Purifier. 

Palladium(II) acetate was purchased from Precious Metals Online and used as 

received. Palladium dibenzylideneacetone was prepared from literature procedure
28

 

and used in the Pd(dba)2 form. All other reagents were purchased from Sigma-

Aldrich and used as received. For non-air-sensitive syntheses, solvents were 

analytical grade and used as received. 

5.4.2  Instrumentation 

1
H NMR spectroscopic studies were carried out on a 400 MHz Bruker Avance 3 HD 

Wide Bore spectrometer with a 5 mm BBFO probe in CDCl3 and DMSO-d6. NMR 

spectral data was obtained at room temperature (293 K) unless specified otherwise. 

CDCl3 was used as received. DMSO-d6 was distilled over CaH2 and stored over 4 Å 

molecular sieves. 

1
H NMR spectra were obtained at 399.58 MHz while 

13
C NMR spectra were 

recorded at 100.47 MHz. 
1
H NMR spectra were referenced to the 

1
H resonance of 

the residual solvent peaks, while 
13

C NMR spectra were referenced to the deuterated 
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13
C resonance. Elemental analyses were conducted by the Central Science 

Laboratory at the University of Tasmania using a Carlo Erba EA1108 Elemental 

Analyser. X-ray crystallography studies were conducted at the Australian 

Synchrotron using the MX1 and MX2 beamlines or at the University of Tasmania or 

at the University of Tasmania using a Bruker D8 Quest diffractometer.  

5.4.3  X-ray Crystallography  

Data for 26-32a and 33-36 were collected at -173 °C on crystals mounted on 

Hampton Scientific cryoloops at the MX1 or MX2 beamline of the Australian 

Synchrotron. Data completeness was limited by the single axis goniometer on the 

MX beamlines at the Australian Synchrotron.
29

 Data for 32b was collected at -173 

°C on a crystal mounted on a Hampton Scientific cryoloop using a Bruker D8 Quest 

diffractometer with copper microfocused tube (λ= 1.54178 Å) with a nominal 

crystal to detector distance of 40 mm. The structures were solved by direct methods 

with SHELXS-97,
30

 refined using full-matrix least-squares routines against F
2
 with 

SHELXL-97, and visualised using X-SEED or OLEX2.
31,32

 All non-hydrogen atoms 

were refined anisotropically. All hydrogen atoms were placed in calculated positions 

and refined using a riding model with fixed C-H distances of 0.95 Å (sp
2
CH), 0.99 Å 

(CH2), 0.98 Å (CH3). The thermal parameters of all hydrogen atoms were estimated 

as Uiso(H) = 1.2Ueq(C) except for CH3 where Uiso(H) = 1.5Ueq(C). Disorder in the 

[PF6]
-
 counteranions was modelled using atom splitting in OLEX2. CIF files for X-

ray crystallographic analysis can be provided upon request. 
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5.4.4  Synthesis 

Preparation of 1,2-dimethyl-5-(4-pyridine)imidazole 25 

This procedure is modified from literature.
20

 A Schlenk flask was loaded with  

4-bromopyridine hydrochloride (5.00 g, 26 mmol), potassium acetate (7.57 g,  

77 mmol), 1,2-dimethyl imidazole (2.45 g, 26 mmol) and palladium acetate  

(32.1 mg, 0.14 mmol) and dried in vacuo at 70 °C. N,N-dimethylacetamide (50 mL) 

was added and the resulting mixture stirred at 150 °C for 2.5 days. The solvent was 

removed in vacuo and the resultant brown glass was redissolved with 40% aq. 

potassium hydroxide solution until pH > 9. This was extracted with dichloromethane 

(2 x 30 mL, 1 x 10 mL). The combined extracts were washed with water, dried over 

magnesium sulfate, filtered and the solvent removed in vacuo to obtain a brown 

solid. This solid was heated under vacuum to remove any residual  

1,2-dimethylimidazole and collected once cooled as pure 25 which was 

spectroscopically identical to literature (1.15 g, 26 % yield).  

1
H NMR (399.58 MHz, CDCl3): δ 2.46 (3H, s, CH3), 3.61 (3H, s, N-CH3), 7.12 (1H, 

s, CH(Im)), 7.27 (2H, d, J= 5.9 Hz, m-CH(py)), 8.62 (2H, d, J= 5.8 Hz, o-CH(py)). 

Preparation of 1,2,3-trimethyl-5-(4-pyridine) imidazolium iodide 26 and  

1,2-dimethyl-5-(4-N-methylpyridinium) imidazole iodide 27 

Imidazole 25 (0.4017 g, 2.32 mmol) was dissolved in toluene (15 mL). An excess of 

methyl iodide (0.43 mL, 6.91 mmol) was added and the solution was stirred for  

18 hours at room temperature. The resultant yellow precipitate was collected by 

filtration as a mixture of 26 and 27. Dichloromethane was added to the mixture and 

the undissolved solid was collected by filtration as 26 (0.1552 g, 21 % yield). The 

filtrate solvent was removed in vacuo to give 27 (0.0940 g, 13 % yield).  
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1,2,3-trimethyl-5-(4-pyridine) imidazolium iodide 26 

m.p. 180 °C. 

1
H NMR (399.58 MHz, DMSO-d6): δ 2.70 (3H, s, CH3), 3.78 (3H, s, N-CH3), 3.80 

(3H, s, N-CH3), 7.60 (2H, d, J = 5.4 Hz, py m-CH), 8.04 (1H, s, ImCH), 8.78 (2H, d, 

J = 5.8 Hz, py o-CH). 

13
C NMR (100.48 MHz, DMSO-d6): δ 10.0 (CH3), 33.5 (N-CH3), 35.0 (N-CH3), 

121.6 (py-CH), 123.0 (py-CH), 130.5 (C), 136.4 (C), 146.7 (C), 150.5 (ImCH). 

Found: C, 41.53; N, 13.06; H, 4.20. Calc. for C11H14N3I: C, 41.92; N, 13.33; H, 4.48.  

1,2-dimethyl-5-(4-N-methylpyridinium) imidazole iodide 27 

m.p. 193 °C(dec). 

1
H NMR (399.58 MHz, DMSO-d6): δ 2.45 (3H, s, CH3), 3.76 (3H, s, N-CH3), 4.27 

(3H, s, py N-CH3), 7.80 (1H, s, ImCH), 8.18 (2H, d, J = 6.8 Hz, py m-CH), 8.84 (2H, 

d, J = 6.7 Hz, py o-CH). 

13
C NMR (100.48 MHz, DMSO-d6): δ 11.1 (CH3), 34.0 (N-CH3), 46.8 (py N-CH3), 

122.1 (CH), 127.7 (CH), 136.0 (C), 143.8 (C), 145.1 (CH). 

Found: C, 41.62; N, 13.47; H, 4.20. Calc. for C11H14N3I: C, 41.92; N, 13.33; H, 4.48.  

Preparation of 1,2,3-trimethyl-5-(4-N-methylpyridinium)imidazolium diiodide 

28 

Imidazole 25 (0.75 g, 4.3 mmol) was dissolved in toluene (10 mL). An excess of 

dimethylsulfate (1 mL, 10.5 mmol) was added and the solution was stirred for  

18 hours at room temperature. The toluene was decanted and the red-brown residue 
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was dissolved in ethanol (25 mL). Sodium iodide (1.28 g, 8.5 mmol) was added and 

the solution stirred for 2 hours where an off-white precipitate was formed. The 

solution was filtered through celite and the solvent removed in vacuo to produce 28 

as a yellow solid (0.59 g, 30 % yield). Crystals suitable for X-ray diffraction were 

grown from slow diffusion of diethyl ether into a saturated methanol solution.  

m.p. 291 °C(dec). 

1
H NMR (399.58 MHz, DMSO-d6): δ 2.73 (3H, s, CH3), 3.88 (3H, s, N-CH3), 3.89 

(3H, s, N-CH3), 4.39 (3H, s, pyridine-N-CH3) 8.34 (2H, d, J = 6.9 Hz, CH(m-

pyridinium)), 8.41 (1H, s, CH(Im)), 9.13 (2H, d, J = 6.8 Hz, CH(o-pyridinium)). 

13
C NMR (100.48 MHz, DMSO-d6): δ 10.21 (CH3), 34.2 (N-CH3), 35.4 (N-CH3), 

47.8 (py N-CH3), 125.1 (ImCH), 125.9 (py m-CH), 128.1 (o-CH), 141.4 (C), 146.2 

(C), 148.9 (C).  

Found: C, 31.53; N, 8.94; H, 4.07. Calc. for C12H17N3I2: C, 31.53; N, 8.94; H, 3.75.  

Preparation of 1,2-dimethyl-4-bromo-5-(4-pyridine) imidazole 29 

Imidazole 25 (1.35 g, 7.8 mmol) was dissolved in THF (20 mL) under an inert 

atmosphere. N-bromosuccinimide (1.38 g, 7.8 mmol) was added and the reaction 

was stirred for 18 hours.  The brown precipitate was removed by filtration through 

celite, and the solvent removed by rotary evaporation to produce a golden brown oil. 

Water (25 mL) was added and the mixture stirred until the product precipitated as a 

white solid. This was collected and dried under vacuum. (1.42 g, 73 % yield).  

m.p. 117 °C.  

1
H NMR (399.58 MHz, CDCl3): δ 2.45 (3H, s, CH3), 3.53 (3H, s, N-CH3), 7.34 (2H, 

d, J = 6.0 Hz, CH(m-pyridine)), 8.71 (2H, d, J = 6.0 Hz, CH(o-pyridine)). 
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13
C NMR (100.48 MHz, CDCl3): δ 13.8 (C-CH3), 32.5 (N-CH3), 114.8 (C-Br), 124.0 

(m-CH), 137.0 (C), 146.9 (C), 150.1 (o-CH).  

Found: C, 47.30; N, 16.45; H, 4.00. Calc. for C10H10N3Br: C, 47.64; N, 16.67; H, 

4.00.  

Preparation of 1,2,3-trimethyl-4-bromo-5-(4-N-methylpyridinium) imidazolium 

2[PF6]
-
 30  

Imidazole 29 (0.252 g, 1.00 mmol) was dissolved in toluene (5 mL). An excess of 

dimethylsulfate (0.5 mL, 5.27 mmol) was added and the solution heated at 120 °C 

for 18 hours in a sealed pressure vessel. After cooling the toluene was decanted and 

the red-brown residue was dissolved in water (10 mL). Potassium 

hexafluorophosphate (2.00 g, 10.9 mmol) was added and the resulting off-white 

precipitate was collected by filtration, washed with additional water and dried in 

vacuo to produce 30 (1.119  g, 51 % yield). m.p. 278 °C.  

1
H NMR (399.58 MHz, DMSO-d6): δ 2.80 (3H, s, CH3), 3.76 (3H, s, N-CH3), 3.85 

(3H, s, N-CH3), 4.43 (3H, s, pyridine-N-CH3) 8.33 (2H, d, J = 6.8 Hz,  

CH(m-pyridinium)), 9.19 (2H, d, J = 6.8 Hz,, CH(o-pyridinium)). 

13
C NMR (100.48 MHz, DMSO-d6): δ 11.1 (CH3), 34.5 (N-CH3), 34.6 (N-CH3), 

48.1(Py N-CH3), 110.4 (Br-C), 127.1 (p-Py C), 128.1 (m-Py CH), 140.3 (C-5), 146.5 

(o-Py CH), 148.8 (C-2). 

Found: C, 25.16; N, 7.26; H, 2.81. Calc. for C12H16N3BrP2F12: C, 25.19; N, 7.34; H, 

2.82.  
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Preparation of palladium complexes by oxidative addition 

General procedure 

A Schlenk flask was loaded with imidazolium 30 and Pd(dba)2, and dried in vacuo at 

70 °C. Pyridine was added and the solution was heated at 75 °C for 1.5 hours. The 

appropriate ligand was added and the solution was heated for a further time. The 

solvent was removed in vacuo and the resultant green residue redissolved in 

acetonitrile, filtered through celite and removed in vacuo to obtain a yellow solid. 

This was washed with dichloromethane (2 x 10 mL, 2 x 5 mL) and the remaining 

solid dried to obtain the metal complexes 31-33.  

Preparation of [{1,2,3-trimethyl-5-(4-N-methylpyridinium)Im}PdBr(bipy)] 

2[PF6]
-
 31 

From 30 (148.5 mg, 0.26 mmol) and Pd(dba)2 (164.3 mg, 0.29 mmol) in 10 mL 

pyridine. Bipyridine (40.5 mg, 0.26 mmol) was added after 1.5 hours and the 

solution heated at 75 °C for an additional 30 minutes. The compound was treated as 

described in the general conditions, with complex 31 produced as a pale brown solid 

with crystals suitable for X-ray crystallography produced by slow diffusion of 

diethyl ether into a solution of 31 in THF (57.4 mg, 26% yield). m.p. 224 °C(dec). 

1
H NMR (399.58 MHz, DMSO-d6): δ 2.75 (3H, s, CH3), 3.85 (3H, s, N-CH3), 4.08 

(3H, s, N-CH3), 4.25 (3H, s, pyridine-N-CH3), 7.55 (1H, m, bipy), 7.89 (2 x 1H, m, 

bipy), 8.33 (1H, t, J = 7.9 Hz, bipy), 8.39 (1H, t, J = 7.9 Hz, bipy) 8.59 (2 x 1H, d, J 

= 6.8 Hz, CH(m-pyridinium)), 8.67 (2 x 1H, bd, J = 7.4 Hz, bipy), 8.89 (2H, d, J = 

7.2 Hz, CH(o-pyridinium)), 9.18 (1H, d, J = 6.8 Hz, bipy). 
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13
C NMR (100.48 MHz, DMSO-d6): δ 10.9 (CH3), 34.3 (N-CH3), 38.4 (N-CH3), 

47.3 (pyridinium N-CH3), 123.6 (bipy CH), 124.2 (bipy CH), 125.6 (m-pyridinium 

CH), 127.7 (bipy CH), 128.1 (bipy CH), 129.1(Im C5), 139.1 (C-Pd), 141.2 (bipy 

CH), 141.3 (bipy CH), 145.2 (o-pyridinium CH), 149.1 (bipy CH), 149.8 (Im C2), 

151.1 (bipy CH), 155.0 (bipy C-C), 156.4 (bipy C-C).   

Found: C, 31.85; N, 8.27; H, 2.91. Calc. for C22H24N5PdBrP2F12: C, 31.66; N, 8.39; 

H, 2.90.  

Preparation of [{1,2,3-trimethyl-5-(4-N-methylpyridinium)Im}PdBr2(py)][PF6]
-
 

32a 

From 30 (97.1 mg, 0.17 mmol) and Pd(dba)2 (107.5 mg, 0.19 mmol) in 8 mL 

pyridine. Sodium bromide (502.9 mg, 4.89 mmol) was added after 1.5 hours and the 

solution heated at 75 °C for an additional hour. The compound was treated as 

described in the general conditions, with complex 32a was produced as a yellow 

solid with crystals suitable for X-ray crystallography produced by slow diffusion of 

diethyl ether into a solution of 32a in acetonitrile. (61.6 mg, 52 % yield).  

m.p.  241 °C(dec). 

1
H NMR (399.58 MHz, DMSO-d6): δ 2.69 (3H, s, CH3), 3.80 (3H, s, N-CH3), 4.19 

(3H, s, N-CH3), 4.34 (3H, s, pyridinium-N-CH3), 7.52 (2H, t, J = 6.6 Hz, m-py), 7.96 

(1H, t, J = 7.5 Hz, p-py), 8.87 (2H, d, J = 4.9 Hz, o-py), 8.94 (2H, d, J = 6.5 Hz, 

CH(m-pyridinium)), 9.03 (2H, d, J = 6.8 Hz, CH(o-pyridinium)). 

13
C NMR (100.48 MHz, DMSO-d6): δ 10.6 (CH3), 34.3 (N-CH3), 38.7 (N-CH3), 

47.1 (pyridinium-N-CH3), 124.8 (py m-CH), 125.0 (pyridinium m-CH), 128.2 (Im-
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C5), 136.0 (C-Pd), 138.5 (py p-CH), 144.6 (pyridinium o-CH), 146.0 (pyridinium-C), 

148.1 (Im-C2), 152.0 (py o-CH). 

Found: C, 29.44; N, 8.00; H, 2.80. Calc. for C17H21N4PdBr2PF6: C, 29.48; N, 8.09; H, 

3.06.  

Preparation of [{1,2,3-trimethyl-5-(4-N-methylpyridinium)Im}PdI2(py)][PF6]
-
 

32b 

From 30 (103.3 mg, 0.18 mmol) and Pd(dba)2 (135.5 mg, 0.23 mmol) in 8 mL 

pyridine. Sodium iodide (219.3 mg, 1.46 mmol) was added after 1.5 hours and the 

solution heated at 75 °C for an additional hour. The compound was treated as 

described in the general conditions with an additional final wash of water  

(2 x 10 mL) to remove any remaining sodium iodide, with complex 32b produced as 

a yellow solid with crystals suitable for X-ray crystallography produced by slow 

diffusion of diethyl ether into a solution of 32b in acetonitrile (31.9 mg, 22 % yield). 

m.p. 232 °C(dec).   

1
H NMR (399.58 MHz, DMSO-d6): δ 2.71 (3H, s, CH3), 3.82 (3H, s, N-CH3), 4.13 

(3H, s, N-CH3), 4.34 (3H, s, pyridinium-N-CH3), 7.51 (2H, t, J = 6.2 Hz , m-py), 

7.93 (1H, t, J = 6.2 Hz, p-py), 8.91 (4H, m, 2 x CH(m-pyridinium) , 2 x o-Py), 9.02 

(2H, d, J = 5.8 Hz, CH(o-pyridinium)). 

13
C NMR (100.48 MHz, DMSO-d6): δ 10.7 (CH3), 34.5 (N-CH3), 39.7 (N-CH3), 

47.1 (pyridinium-N-CH3), 124.6 (py m-CH), 124.7 (pyridinium m-CH), 128.6 (Im-

C5), 133.1 (C-Pd), 138.3 (py p-CH), 144.4 (pyridinium o-CH), 146.1 (pyridinium-C), 

148.4 (Im-C2), 153.1 (py o-CH). 
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Found: C, 26.30; N, 7.04; H, 2.63. Calc. for C17H21N4PdI2PF6: C, 25.96; N, 7.12; H, 

2.69.  

Preparation of [{1,2,3-trimethyl-5-(4-N-methylpyridinium)Im}PdBr(PPh3)2)] 

2[PF6]
-
 33 

A Schlenk flask was loaded with imidazolium 30 (62.7 mg, 0.11 mmol) and 

Pd(dba)2 (69.1 mg, 0.12 mmol) and dried in vacuo at 70 °C. Pyridine (10 mL) was 

added and the solution was heated at 75 °C for 1.5 hours. The solvent was removed 

in vacuo and the resultant green residue redissolved in acetonitrile (5 mL), filtered 

through celite and removed in vacuo to obtain a yellow solid. This was washed with 

dichloromethane (2 x 10 mL, 2 x 5 mL) and the remaining solid was redissolved in 

acetonitrile (15 mL). Triphenylphosphine (100.7 mg, 0.38 mmol) was added and the 

solution heated for a further 1 hour at 80 °C. The acetonitrile was removed in vacuo 

and the resultant solid was washed with diethyl ether (2 x 15 mL) to remove excess 

triphenylphosphine. The remaining yellow product was dried and collected (42.0 mg, 

32 % yield). Crystals of 33 suitable for X-ray diffraction were produced by slow 

evaporation of diethyl ether into a saturated acetonitrile solution.  

m.p. 236 °C(dec). Elemental microanalysis was not obtained due to inseparable  

co-crystallisation of an irregular amount of triphenylphosphine oxide. 

1
H NMR (399.58 MHz, DMSO-d6): δ 2.03 (3H, s, CH3), 2.94 (3H, s, N-CH3), 3.53 

(3H, s, N-CH3), 4.36 (3H, s, pyridinium-N-CH3), 7.21-7.66 (30H, m, 6 x P-Ph), 8.12 

(2H, d, J = 6.6 Hz, CH(m-pyridinium)), 8.86 (2H, d, J = 6.6 Hz, CH(o-pyridinium)). 

13
C NMR (100.48 MHz, DMSO-d6): δ 10.4 (CH3), 34.4 (N-CH3), 38.1 (N-CH3), 

47.1 (py N-CH3), 124.5 (m-py CH), 127.9 (C-P), 128.3 (C-P), 128.6 (C-P), 128.7 (2 

x m-Ph CH), 128.8 (m-Ph CH), 131.4 (o-Ph CH), 131.5 (o-Ph CH), 132.0 (o-Ph CH), 
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132.2 (C), 133.1 (p-Ph CH), 133.3 (p-Ph CH), 134.0 (p-Ph CH), 143.8 (C), 144.7(o-

py CH), 148.5 (C), 150.0 (C, Pd-C overlapped). 

31
P NMR (161.7 MHz, DMSO-d6):  δ -143.23 (quint, J = 711 Hz, PF6), 20.08  

(s, PPh3), 26.45 (inseparable contaminant OPPh3).     

Preparation of 1-methyl-5-(4-pyridine) imidazole 34 

This procedure is modified from literature.
20

 A Schlenk flask was loaded with  

4-bromopyridine hydrochloride (6.00 g, 30 mmol), potassium acetate (9.22 g,  

93 mmol), 1-methylimidazole (6.00 g, 73 mmol) and palladium acetate (0.04 g,  

0.17 mmol) and dried in vacuo at 70 °C. N,N-dimethylacetamide (50 mL) was added 

and the resulting mixture stirred at 150 °C for 2 days. The solvent was removed in 

vacuo and the resultant brown glass was redissolved with 40% aq. potassium 

hydroxide solution until pH > 9. This was extracted with dichloromethane  

(3 x 100 mL). The combined extracts were washed with water, dried over 

magnesium sulfate, filtered and the solvent removed in vacuo to obtain a brown 

solid. This solid was heated under vacuum to remove any residual  

1-methylimidazole and collected once cooled as pure 34 which was 

spectroscopically identical to literature
33

 (1.83 g, 37 % yield). 

1
H NMR (399.58 MHz, CDCl3): δ 3.76 (3H, s, N-CH3), 7.27 (1H, s, CH), 7.31 (2H, 

d, J = 4.6 Hz, m-CH), 7.58 (1H, s, CH), 8.64 (2H, d, J = 4.4 Hz, o-CH). 

Preparation of 1,3-dimethyl-5-(4-N-methylpyridinium) imidazolium diiodide
  
35 

Imidazole 34 (0.637 g, 4.0 mmol) was dissolved in toluene (5 mL). An excess of 

methyl iodide (1 mL, 16 mmol) was added and the solution heated at reflux for  

2.5 days in a sealed pressure vessel. The resulting yellow precipitate was collected 
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by filtration, washed with diethyl ether and dried in vacuo to produce 35 (1.2544 g, 

71 % yield). m.p. 228 °C(dec). 

1
H NMR (399.58 MHz, DMSO-d6): δ 3.96 (3H, s, N-CH3), 4.05 (3H, s, N-CH3), 

4.40 (3H, s, pyridine-N-CH3) 8.39 (2H, d, J = 6.7 Hz, CH(m-pyridinium)), 8.52 (1H, 

s, CH), 9.15 (2H, d, J = 6.8 Hz, CH(o-pyridinium)), 9.40 (1H, s, CH). 

13
C NMR (100.48 MHz, DMSO-d6): δ 35.7 (N-CH3), 36.3 (N-CH3), 47.8 (py N-

CH3), 125.5 (py m-CH), 126.2 (Im C-4 CH), 129.1 (Im C5), 140.7 (Im C-2 CH), 

140.8 (py p-C), 146.1 (py o-CH).  

Found: C, 29.89; N, 9.41; H, 3.35. Calc. for C11H15N3I2: C, 29.82; N, 9.48; H, 3.41.  

Preparation of [{1,3-dimethyl-5-(4-N-methylpyridinium)Im}PdI3] 36 

A Schlenk flask was loaded with imidazolium 35 (132.1 mg, 0.30 mmol), palladium 

iodide (107.5 mg, 0.30 mmol) and sodium acetate (25.8 mg, 0.31 mmol), and dried 

in vacuo at 70 
o
C. DMSO (5 mL) was added and the solution was heated at 50 °C for 

4 hours. The solvent was removed in vacuo at elevated temperature and the  

red-brown residue redissolved in a 1:1 mixture of acetonitrile and water  

(25 mL each) and heated at 80 °C for 20 minutes. The mixture was placed under 

reduced pressure to remove the acetonitrile and the resultant red precipitate was 

collected by filtration and washed with additional water (10 mL). The product was 

dried in vacuo to produce a dark red solid which was pure 36 (114.0 mg, 57% yield). 

Crystals suitable for X-ray diffraction were produced by slow diffusion of diethyl 

ether into an acetonitrile solution. m.p. 283 °C(dec). 
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1
H NMR (399.58 MHz, DMSO-d6): δ 3.89 (3H, s, N-CH3), 4.10 (3H, s, N-CH3), 

4.33 (3H, s, pyridine-N-CH3) 8.26 (2H, d, J = 6.8 Hz, CH(m-pyridinium)), 8.37 (1H, 

s, CH), 9.00 (2H, d, J = 6.8 Hz, CH(o-pyridinium)). 

13
C NMR (100.48 MHz, DMSO-d6): δ 38.1 (CH3), 40.4 (CH3), 47.3 (CH3), 124.0 

(CH), 128.3 (CH), 130.0 (C), 141.8 (C), 145.7 (CH), 149.2 (Pd-C). 

Found: C, 19.02; N, 6.04; H, 1.92. Calc. for C11H14N3PdI3.(H2O): C, 19.05; N, 6.06; 

H, 2.33.  
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Chapter 6:  Conclusions 

6.1  General Summary 

This research project has incorporated a number of investigations into palladium 

complexes bearing NHC ligands.  

In Chapter 2 the possible solid state hydride dynamics of a lattice THF solvated 

dipalladium(I) hydride complex [μ-{(MesIm)2CH2}2Pd2H][PF6] 5a were examined 

by two neutron techniques. IINS was employed alongside DFT-MD simulations to 

examine the barrier for hydride migration across the Pd-Pd bond. To enhance 

identification of the normal modes of vibration attributed to the hydride, chemical 

deuteration of the ligand system was undertaken in collaboration with the NDF to 

produce isotopomers of 5a, [μ-{(
D
MesIm)2CD2}2Pd2H][PF6] 5b and  

[μ-{(
D
MesIm)2CD2}2Pd2D][PF6] 5c. Neutron scattering experiments were 

undertaken on these deuterated isotopomers and the experimental spectra were used 

to validate the MD model of the simulation of the hydride transfer, where the 

hydride was shown to display an unexpectedly high degree of anharmonicity.  

Single crystal Laue neutron diffraction studies on the lattice unsolvated form of 5a 

indicated that there was no observed hydride migration or alteration in the  

metal-metal interactions in the complex over a range of 100-300 K. Agostic and 

anagostic interactions between the non-hydridic palladium centre and spatially 

adjacent ligand methyl and methylene protons appeared to influence the complex 

against any hydride transfer in this form. 
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Single crystal Laue neutron diffraction studies were also undertaken for complete 

structural characterisation of an extended linker analogue of 5a, the propylene-linked 

bis(NHC) dipalladium(I) hydride complex [μ-{(MesIm)2(CH2)3}2Pd2H][PF6] 7, and 

on a trapped intermediate formed during the preparation of 7,  

the dinuclear tris(NHC) palladium(II) hydride complex  

[µ-{(MesIm)2(CH2)3}{(PdH)(MesIm)2(CH2)3}2][PF6]2 8. Complex 7 was observed 

to have similar agostic and anagostic interactions between the non-hydridic 

palladium centre and ligand methyl and methylene protons to that of 5a and a 

decreased Pd-Pd bond length enabled by increased ligand flexibility. There were no 

indications of hydride dynamics in 7. 

A study on the N-t-butyl pendant imidazolium mono(NHC) palladium(II) dihalide 

acetate intermediates formed in the synthesis of chelated bis(NHC) palladium(II) 

dihalide species was described in Chapter 3. Alterations to the halide and to the 

basicity of the acetate group were made to form complexes 

[{(tBuIm)(tBuImH)CH2}PdX2CO2R] 11a-f, and the effect on the hydrogen bonding 

was examined in solution (
1
H NMR spectroscopy) and in the solid state (single 

crystal X-ray and neutron crystallography). A trend was observed in solution 

consistent with expected halide size and acetate basicity, however no obvious trend 

was observed in the solid state. The methylene-linked N-mesityl pendant imidazolum 

mono(NHC) palladium(II) trihalide complexes [{(MesIm)(MesImH)CH2}PdX3] 

12a-b were prepared and the pendant imidazolium mono(NHC) palladium(II) 

dibromide trifluoroacetate complex [{(MesIm)(MesImH)CH2}PdBr2CF3] 13 was 

obtained and structurally characterised for comparison of hydrogen bonding to the 

less bulky N-t-butyl substituent analogues. The ethylene-linked N-mesityl pendant 

imidazolium mono(NHC) palladium(II) dibromide acetate complex 
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[{(MesIm)(MesImH)C2H4}PdBr2CO2CH3] 15 was observed in situ by 
1
H NMR 

spectroscopy, though has not yet been isolated.    

Chapter 4 describes the preparation of the N-mesityl diimidazolinium dibromide salt 

[(
S
MesIm)2CH2]Br2 17a, and the bis(NHC) palladium(II) dibromide and 

bis(acetonitrile) complexes [{(
S
MesIm)2CH2}PdBr2] 18a and 

[{(
S
MesIm)2CH2}Pd(NCMe)2][PF6]2 20a, respectively. Complex 20a was tested for 

catalytic activity in the copolymerisation of carbon monoxide and ethylene, under 

conditions identical to those reported for the unsaturated analogue, though was found 

to have less activity for this reaction than the previously reported unsaturated 

species. This was potentially due to increased reactivity of the saturated complex 20a 

towards decomposition products such as dipalladium(I) hydride species, in 

comparison to the unsaturated analogue 4a, though we have not yet isolated any 

saturated bis(NHC) palladium hydride complexes. 

Extended linker bis(imidazolinium) salts containing ethylene and propylene alkyl 

linkers (17b-c) were also prepared, though attempted conversion to the bis(NHC) 

palladium(II) dibromide complexes proceeded only to the formation of the pendant 

imidazolinium mono(NHC) palladium(II) tribromide species 

[{(
S
MesIm)(

S
MesImH)(CH2)n}PdBr3] 22b-22c. The bis(NHC) disilver(I) complexes 

[{(
S
MesIm)2(CH2)n}2Ag2][PF6]2 23a and 23c were prepared, though transmetallation 

reactions with PdBrMe(COD) to form chelated bis(NHC) palladium(II) 

bromomethyl complexes were unsuccessful. Attempts to prepare an asymmetrically 

substituted diimidazolium/inium salt via various imidazolium/inium haloalkyl halide 

salts were also unsuccessful.   
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The preparation of an unusual aNHC ligand precursor 1,2,3-trimethyl-5-(4-N-

methylpyridinium)imidazolium diiodide 28, which contained a substituent with high 

electron withdrawing ability, was discussed in Chapter 5. This arrangement was 

designed to allow conjugation between the ligand carbene and pyridinium rings, 

assuming ring coplanarity. Synthesis of a series of aNHC metal complexes  

[{1,2,3-trimethyl-5-(4-N-methylpyridinium)Im}PdLn][PF6]y
 
31-33 was achieved by 

oxidative addition of the brominated ligand precursor 1,2,3-trimethyl-4-bromo-5-(N-

methylpyridinium)imidazolium [PF6]2  30 to Pd(dba)2. Structural characterisation 

revealed that though steric interference from the carbene N-methyl, and from the 

various ancillary ligands employed to fill the palladium coordination plane prevented 

the desired coplanar ring conjugation arrangement from occurring. Comparison of 

key C-C bond lengths in these complexes was consistent with this observation. 

Comparison of the trends in 
13

C NMR spectroscopic shifts to pendant imidazolium 

mono(NHC) complexes did suggest that the electron withdrawing substituent did 

have some effect on the ligand electronics. 

6.2  Future Outlooks 

In this project we have used Laue single crystal neutron diffraction to determine the 

location of hydride ligands in several palladium hydride complexes. Future efforts 

may involve using this technique to investigate other palladium hydride complexes 

which have been obtained in our group such as the N,N′-asymmetrically substituted 

dipalladium(I) hydride complex [μ-{(MesIm)[2,6-(i-Pr)2PhIm]CH2}2Pd2H][PF6] and 

the tetranuclear palladium hydride cluster currently posited to have the formula  

[μ-{(MesIm)C2H4}3Pd4H2][PF6]2. 
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Further studies may also be warranted on the pendant imidazolium mono(NHC) 

palladium(II) dihalide acetate complexes discussed in Chapter 3. We have yet been 

unable to prepare samples of most of the N-t-butyl complexes suitable for Laue 

single crystal neutron diffraction studies. Future efforts may involve alterations to 

the recrystallisation methods employed, or the use of alternative acetate substituents 

to provide suitable crystals for further examination of hydrogen bonding between the 

pendant imidazolium C-2 proton and the acetate ligand. 

We also hope to isolate the N-mesityl ethylene-linked pendant imidazolium 

mono(NHC) palladium(II) dihalide acetate complex 

[{(MesIm)(MesImH)(CH2)2}PdBr2CO2CH3] 15 for structural characterisation by  

X-ray crystallography. This complex would provide evidence consistent with 

proposed DFT mechanistic studies into the reaction pathways of this ligand system 

with palladium, potentially allowing better control of this reaction pathway and 

providing increased scope for ligand modifications for this class of bis(NHC) 

complexes. 

Our initial investigations in the novel area of saturated chelated bis(NHC) 

palladium(II) complexes have potential scope for further inquiry. A preliminary 

catalysis study using [{(
S
MesIm)2CH2}Pd(NCMe)2][PF6]2 20a to promote the 

copolymerisation of ethylene and carbon monoxide was undertaken. Avenues which 

may be explored include repetitions and modification of this catalytic procedure and 

examination of other potential applications such as C-C cross-coupling reactions. 

Structural modifications of the complex motif such as variation of the N-substituents 

and variation of the alkyl linker group may also be pursued. Further investigation 

into the reactivity of complex 20a under basic conditions towards the formation of 
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an analogous dipalladium(I) hydride species [{µ-(
S
MesIm)2CH2}2Pd2H][PF6] 21a is 

also warranted.  

The synthesis of the aNHC palladium(II) complexes  

[{1,2,3-trimethyl-5-(N-methylpyridinium)Im}PdLn][PF6]y 33-35 was successful, 

however the complexes did not display the desired ligand biaryl conjugation that we 

hypothesised. Modification to this ligand motif to maximise NHC and pyridine ring 

coplanarity is an ongoing effort in our group. Investigation into the catalytic activity 

of these aNHC palladium(II) complexes may also be pursued. 

 

 

 

 

 

 




