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Abstract: For many classes of combinato‘rial structures, such as graphs and
matroids, there exists a concept of point removal. Minors are obtained by
various manners of point removal. In this thesis, these ideas are abstracted to
give the definition of minor class. It turns out that minor classes are algebras,
in the sense of universal algebra, which makes much universal algebra theory
available to the study of minor classes. For example, varieties of minor classes
are studied, as well as subalgebras (sub minor classes), homomorphisms, and
direct products. Amongst the theory developed, is a natural connection
between varieties of minor classes and categories. Also it is shown how a
minor class can be described in terms of its so called ¥-structures and natural
excluded minors (which are its excluded minors in the so called c;ompletion of
the minor class). Many well known minor classes are described in this way,
including the minor class of matroids, various minor classes of graphs, and
minor classes of subspaces of certain vector spaces over a field (related to
Tutte's chaiﬂ groups). For any field, the latter minor class has, as a
homomorphic image, the minor class of matroids coordinatisable over that field.

This provides a motivation for further study of minor class homomorphisms.
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SECTION 1: INTRODUCTION

This paper draws from a range of mathematical topics, but no specialist
knowledge is assumed. Of course, it is unavoidable that the introduction
mentions terms which are not defined until later in the text. Section 2
explains some notation and conventions used in this paper.

In the literature there are ﬁmy examples of structures based on their
ground sets. Isomorphisms between structures are induced in a natural way by
bijections between their ground sets. In some cases, for example matroids [18]
and graphs [16], a structure can have poinis (ground set elements) removed in
various manners, yielding another structure whose ground set lacks the removed
points. This structure is a minor of the original structure. A minor class
consists of a collection of structures together with the operations of point .
removal and isomorphism, provided certain desirable conditions are satisfied.
Section 3 presents these ideas formally. Thus minor classes abstract certain
aspects common to various topics in the literature, and the study of minor
classes has consequences for these topics.

Minor classes of a certain form are presented as an example in section 4.
An enlightening visualisation is given for their structures and for the operations
of point removal and isomorphism. In section 8 it is shown that any minor
class can be embedded (see section 5) in a minor class of the form described in
section 4, so that the given visualisation, can be used in general.

Section 5 shows that minor classes are algebras, in the sense of universal
algebra [1,6,5,3], which immediately makes a large-body of universal algebra
theory available to the study of minor classes. The elements of the algebra are
the structures, and the operations of the algebra are the operations of point
removal and isomorphism. The conditions imposed on minor classes are of a
form central to universal algebra, namely equations. Thus we can talk of

varieties of minor classes, as well as sub minor classes, minor class



homomorphisms, and direct products of minor classes. Section 6 presents some
minor class constructions related to more peripheral parts of universal algebra
theory. |

Birkhoff's equivalent characterisations of varieties are presented in section
7, together with similar characterisations for proper varieties and regular unary
varieties. (Varieties of minor classes are proper and regular unary varieties.)
Free algebras, in particular free minor classes, are defined. Section 9 shows
how a category can be associated with a regular unary variety, and describes
this category in the minor class case. There is an intimate connection between
the category, and the free algebras, freely generated by one element. When
the category or the free algebras satisfy certain conditions, the rﬁegula,r unary
variety is a special unary variety (which includes the minor class case).

Comgplete algebras are defined in section 10, and in a special unary variety
the completion of an algebra is defined, which is the “smallest" complete
algebra having the given a.lgébra as a subalgebra. Other results of an algebraic
nature are given. |

The theory ‘of section 10 is specialised to minor classes (in which ground
sets are finite, the case of current, interest) in section 11. It is shown how a
minor class can be described in terms of its so—called ¥-structures and natural
ezcluded minors (which are its excluded minors in the completion of the minor
class). Many well known minor classes are described in this way in sections
12, 13 and 14, and this description is often surprisingly simple. For example,
the minor class of matroids [18] has only two ¢-structures and six natural-
excluded minors. |

Section 12 examines the minor class of matroids, which is a sub minor
class of the minor class of closure operators. Section 13 examines minor classes
of linear dependencies which have as homomorphic images, minor classes of

matroids coordinatisable over a field. It becomes apparent that the study of



minor class homomorphisms could have consequences for some difficult
combinatorial problems. Minor classes of graphs and digraphs [16], in which
the ground sets are either the edge sets or the vertex sets, are examined in
section 14, together with some interesting homomorphisms.

The paper concludes with section 15 presenting some ideas for further

research, as well as some conjectures and counterexamples.



SECTION 2: NOTATION AND CONVENTIONS

Let A and B be sets. The power set of A is denoted 2A and the
cardinality of A is denoted |A|. The set difference A-B denotes {a|acA and
agB}.

Let I be a set. A function f:I~A can be denoted as a family or vector
(f(i) |ieD). If (AiIiEI) is a family of sets, then its cartesian product 'IEIIAi is

i

the set {(a; |i€l)| aiEAi for every i€l}. In particular Al= iIeIIA is the set of all
functions from A to I

Let 2 be a set. A Z-labelled partition, or a S-partition, of a set A is
given by a function f:A-+2 (associating a "label" f(a)e 2 with each acA) and is
denoted <A |s€2> where A ={a]a€A and f(a)=s} for each s€ 2. It is
convenient to write A=<As|se.2 > to indicate that A can be treated as a set,
or when relevant, can be partitioned into disjoint subsets labelled by elements
of 2.

Let B=<BS|se.Z > and C=<CS|SE.2 >. Define BCC to mean BS(_ZCS for
every s€ 2. Define BJC and B=C similarly. Let A:<AS|sE.2 > and suppose

Al=<Al|se 2> and A'CA for every il Define n A’ to be < Aljse2> and

iel i€l
define U A’ to be < U A;]se.z >. Define II <A;|se.2> to be < II A;|sez >.
i€l i€l i€l i€l
(The notation IT A' risks being ambiguous.)
iel

Let A=<A [s€2> and B=<B[se2>. A function 0:A-B is
Z-respecting if a(a)eBS for every se2 and every aEAS. In this case we can
talk of the S-partition <aS:AS—»BS|sE.Z > of a:A-B, where as(a)=a(a) for every
s€4 and every aEAS. This situation is expressed as
(:A-B)=<a ;A ~B [s€ 2>,

Let A=<AS|se.Z >. A relation qCAxA is Z-respecting if (a,b)eq

(denoted agb) implies that a,bEAS for some s€e 2. In this case we can talk of



the Z-partition <q$gAsxAS ,l s€2 > of qCAxA where a,qsb exactly when a,béAS'
and agb.

A complete lattice can be thought of as a partially ordered set with the
property that for any set of elements, there is a unique smallest element greater
than the elements, called their join, and a unique greatest element smaller than
the elements, called their meet. (Often join and meet are defined first and the
partial order derived from them.)

Often a symbol calls for a set to be written in a certain position, for |
example the set X in TZ(X)/eqX(ﬁ ). But if X is the single element set {x} .
then it is more convenient to replace {x} by x in the symbol, for example
T2(x)/eqX(# ) rather than T ({x})/eq®}(# ).

Most papers do not precisely define "set" and neither will this one.
However, it is assumed that "set" is well defined, and each set is a well defined
collection of well defined elements (although not all such collections can be sets,
as Russell's Paradox shows). It is also assumed that the definition of "set"
satisfies certain desirable criteria (such as: any subset of a set is a set, the
power set of a set is a set, the union and cartesian product of a family of sets
are sets). Let "class" and "metaclass" be defined subject to the same criteria,
but with every set (respectively class) being a class (respectively metaclass) and
the collection of all sets (respectively classes) being a class (respectively
metaclass), so that the definitions themselves must be different. Thus, a
theorem using the words "set" and "class" (but not "metaclass") which does
not make use of the particular definition of these words, could have "set"
(respectively "class") changed to "class" (respectively "metaclass") and remain
true. The modified theorem would appear more general, relative to a fixed
definition of "set" and "class" but really it would be saying exactly the same |

thing as the original theorem.



SECTION 3: MINOR CLASS DEFINITIONS

This section develops the definition of minor class in stages. The
elements of a minor class are called structures, and associated with each
structure is a set called its ground set. Isomorphisms between structures are
represented by bijections between their ground sets. Finally there are
operations of point removal, which when applied to one structure, yield another
‘'structure whose ground set is obtained by removing points from the ground set
of the first structure.

A structure is a pair (S,Q) where Q is a set. (If the structure is a well
known mathematical object, its conventional name is used.) When Q is known
from the context, (5,Q) is abbreviated to S. The set Q is the groﬁnd set of S
and is denoted by G(S). While no conditions are imposed on S in the pair
(S,Q), each concrete example of a structure in this paper satisfies the intuitive
notion of being based on its ground set, in the way that a matroid or group or
ring is based on a set.

A structure class consists of a class o/ of structures, together with a class
2 of sets, such that G(S)e2 for every structure S€e#. The elements of 2
are ground sets. This structure class can be denoted by the pair (¢/,2) or
abbreviated to ¢ when £ is clear from the context. Often the symbol 2 is
not mentioned, but rather, the sets which are ground sets are specified. For
the structure class (¢/,2 ) and any ground set Qe2, let of’Q denote
{S|See’ ,G(S)=Q}, that is, the class of structures in ¢ which have ground set
Q. For distinct ground sets P,Qe 42 it is clear that d’Pnof'Q is empty and
hence <JQ|Q€.Z > is a 4 -partition of ¢. It is permissible that efQ be
empty for some ground set Q€2 (so that there are no structures in ¢, on
ground set Q) because when various structure classes are compared, it is
desirable that they have the same class of ground sets.

Consider the following example for which the ground sets are exactly the



finite sets. Let # be the class of all pairs (W,Q) where Q is a finite set and
W§2Q. (Observe that W satisfies the intuitive notion of a structure based on
the set Q.) Clearly # is a structure class with finite ground sets.

If a structure S is genuinely based on its ground set Q, then for any
ground set Pe€2, a bijection w:Q-P induces an isomorphic structure on- ground
set P in a natural way. A description of the isomorphic structure naturally
induced by w is obtained from a description of the structure S, by replacing
every occurrence of each qeQ (in the description of S) by w(q). (For example,
consider this construction applied to the multiplication table of a group whose
elements are the elements of Q.) However, it is desirable to axiomatise the
behaviour of isomorphism for the more abstract definition of structure given
above, as the following definition does.

An isomorphism class consists of a structure class (¢/,2 ) together with
a class J of functions; one function from on to &p for all ground sets
Q,PeZ and every bijection w:Q-P. This function maps each structure Se on
to a structure in o/ denoted w(S), the isomorphic copy of S induced by the
bijection w:Q-P. (It may seem that w(S) is an abuse of notation, since in
general S¢Q, but there is no ambiguity and the notation is convenient.) Also,
the structure w(S) is (structure) isomorphic to the structure S, via the
(structure) isomorphism w. If the structure Teo#, is such that T=w(S) then
T~S.  An isomorphism class is required to satisfy the following two conditions.
(M1) For any ground set Qe 2, if 1:Q-Q is the identity function, then 1(S)=S

for every structure Se efq. |
(M2) For all ground sets Q,P,R€4 and all Bijections w:Q-P and 7:P-R it holds

that 7(w(S))=(row)(S), for every structure SEon.
It is clear that (M1) and (M2) will hold if all structures are genuinely based on
their ground sets, and isomorphism is defined "naturally" as described above.

All the concrete examples in this paper define isomorphism naturally.



For any ground set Q€2 and any structure See’~, a (structure)
automorphism of S is a (structure) isomorphism from S to itself, that is, a
bijection w:Q-Q (a permutation of Q) such that w(S)=S. Let Aut(S\) denote
{w|w:Q-Q is a bijection and w(S)=S}, the set of (structure) automorphisms
of S. Conditions (M1) and (M2) ensure that Aut(S) is a group of
permutations of Q, with respect to composition of functions. For any bijection
7:Q-P, the automorphisms of structure Se on uniquely determine the
automorphisms of structure 7(S)e @’P since if w is a permutation of Q, then
w(S)=S if and only if (rowor1)(7(S))=7(S). (This uses conditions (M1) and
(M2). Observe that rowor 1 is a permutation of P.) Thus
Aut(7(S))={rowor1| weAut(S)}.

Returning to our previous example, the structure class # becomes an
isomorphism class if isomorphism is defined in the natural way, as follows.

For ground sets Q,Pe2, let w:Q-P be a bijection. Any structure We 7I’Q can
be explicitly written out as a set of subsets of Q, and so replacing every
occurrence of each qeQ by w(q), yields w(W) explicitly written out as a set of
subsets of P. More formally, define woQoP by setting w(N)={w(q)|qeN} for
")

Q
every NCQ, and define w22 )22 ) similarly. (Recall that (W,Q)e¥

exactly when WQQQ, that is, We2(2Q).) So the isomorphism w sends (W,Q)
to (w(W),P) as required. Conditions (M1) and (M2) are guaranteed to hold
when isomorphism is deﬁned "naturally", so that # is indeed an isomorphism
class.

The elements of the ground set of a structure are points, except in
specific ca;ses where wvertices or edges are more appropriate names. In the
mathematical literature, there are many examples of structures (for example
matroids [18] or graphs [16]) which can have points "removed" from them in

various manners, yielding another structure whose ground set lacks the removed



points. The definitions below develop this idea.

A class of sets 2 is heredilary if every subset of each element of 2, also
is an element of 4. That is, if Q¢4 and PCQ, then Pe.2. A pre
point-removal class consists of an isomorphism class (¢/,2,.) where 2is a

hereditary class of finite sets, together with a class K and another class £ of

functions; one function from on to on_{ a} for every ground set Q€4 every
point q€Q and every manner (€K (as the elements of K are called). This
function sends each structure Se an to a structure in @"Q_{ a} denoted S[¢,q).
The structure S[¢,q] is obtained from S by removing point q in manner £. In
addition to (M1) and (M2), a pre point-removal class is required to satisfy the
following condition.
(M3') For all ground sets Q,Pe4, every bijection w:Q-P, every point qeQ and
every manner £ € K, it holds that

w| Q-{ q}(S[l?,q])=(w(S))[Z,w(q)] for every structure SEefq.

The bijection w| Q-{ q}:(,2—{q}->P—{u.r(q)} is the restriction of w to Q-{q} and is
used because S[¢,q] has ground set Q—{q}. Condition (M3') simply ensures
that point removal behaves sensibly with respect to isomorphism.- This is
guaranteed if isomorphism is defined naturally (so that (M1) and (M2) hold)
and the definition of point removal is invariant with respect to renaming
ground set elements. This applies to all the concrete examples in this paper,
s0 that (M3'), along with (M1) and (M2), are guaranteed to hold.

Returning agé,in to our example, one way to make ¥ into a pre
point-removal class is as follows. Let K={delete, contract}. For every
ground set (finite set) Q, every structure We 7/’Q and every point q€Q, let W\q
denote W(delete,Q] and let W/q denote W|contract,q]. Define W\gq, the
deletion of q from W, to be {w|weW and q¢w} and define W/q, the
contraction of q from W, to be {w—{q}|weW and gew}. Observe that W\q
and W/q are both subsets of 2Q_{Q} and hence elements of Vq_{ q}



-10 -

required. By earlier comments, condition (M3') clearly holds, so that ¥ is
indeed a pre point-removal class.

The examples of point removal in the mathematical literature generally
have the property that points can be removed "in any order" yielding the same
result. The following definition incorporates this property.

A point-removal class is a pre point-removal class in which the following
condition holds.

(M4') For every ground set Q€ 4, all distinct points q,reQ and all manners
£,meK it holds that

(S[¢,q])[m,r}=(S[m,r])[£,q] for every structure Se of’Q .

(It is necessary that q and r be distinct, since once a point is removed, it is
absent from the ground set and cannot be removed again. However £ and m
need not be distinct.) Condition (M4') says that, starting with a structure

Se e/, the effect of removing point q in manner ¢ and then removing point r in
manner m, is the same as first removing point r in manner m and then point q
in manner ¢. It follows by induction that a sequence of point removals can be
performed in any order yieldi_ng the same result (provided the manner of
removing any particular point is not changed).

Our example, the pre point-removal class ¥, is in fact a point-removal
class, since for any ground set (finite set) Q, any structure We¥y, and all
distinct points q,r€Q, it holds that

(WAr)\q={w|weW and q,rgw}=(W\q)\r ,
(W\r)/q={w-{q} | weW and qew and rgw}=(W/g)\r,
(W/r)/a={w—{q,r}|weW and q,rew}=(W/q)/r ,
as required.
Given a point-removal class ¢ and a ground set Q, it is instructive to

determine all the possibilities for removing some (or no) points from the
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structures in ofq. Since the order of the point removals makes no difference
(as guaranteed by condition (M4')), it suffices to specify for each point qeQ, -
whether or not q is removed, a.ﬁd if it is, in which manner (an element of K) it
is removed. This can be encafisulated in a single symbol as follows.. Let
K=KuU{®} where ®¢K. (This definition remains in place throughout the
paper.) For any prescription 7K@ (that is, 8:Q-K), let G(ﬁ)={q|qu’ and
R(q)=0} and let S[R] be the structure with ground set G(£), obtained from the
structure Se e?’Q by removing point q in manner £(q) for each point qeQ-G(R),
and not removing any point in G(R). It does not matter in which order the
points are removed, and in fact they could be considered to be removed
simultaneously.

So far, in this discussion about point removals, all ground sets have been
finite. One could allow infinite ground sets, but only finitely many points can
be removed by removing only one point at a time. However, in the definition
of S[£] in the previous paragraph, one can consider all points in Q-G(£) to be
removed in a single operation determined by the prescription & So it is
reasonable to allow Q-G(R) to be infinite when Q is, although S[f] could not
then be obtained from S by removing one point at a time. A new
formulation is required, and is given below.

A minor class consists of an isomorphism class (¢/,2,J) where £ is a
hereditary class of sets, together with a class K and another class 2 of
functions; one function from on to "YG( ) for every ground set Q€2 and
every prescription ﬁeKQ. This function sends each structure Se on to a
structure in OfG( f) denoted S[K]. In addition to (M1) and (M2), a minor class
is required to satisfy the three conditions (M3), (M4) and (M5), given below.

Firstly, two definitions are needed. For all ground sets Q,Pe 4 any

,  prescription #eRQ and any bijection w:Q-P, the prescription w(ﬁ)EKQ is given
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by (w(8))(w(q))=RK(q) for all qeQ. (That is, w(R) is actually Rowl.) For all

classes A,B,C,D with BCA, and all functions f:A-C and g:B-D, the function

(fAg):A-CUD is given by setting (fAg)(b)=g(b) whenever beB and

(fAg)(a)=f(a) whenever acA-B. In particular, for prescriptions 3K and

EEKG(;J), it follows that the prescription ﬁeKQ, where R=JAL is such that

£R(q)=£(q) whenever geG(J) and £(q)=J(q) whenever qeQ-G(J).
The three conditions are as follows.

(M3) For all ground sets Q,Pez, every prescription REKQ and every bijection
w:Q~P it holds that
w| G(ﬁ)(S[ﬁ])=(w(S))[w(ﬁ)] for every structure SEJQ.

The bijection w| G(8) is the restriction of w to G(R) and is used because S[£]

has ground set G(K). Condition (M3), like (M3'), simply ensures that point

removal behaves sensibly wit;h respect to isomorphism.

(M4) For every ground set Q€ .2, if the prescription MK is such that
G(M)=Q (that is, J(q)=© for every point q€Q) then S[N]=S for every
structure Se o/Q.

This says that removing no points from S leaves it unchanged.

(M5) For every ground set (,EQE.Z and all prescriptions 3EKQ and SEKG(:;), if

© prescription ﬁ=(3A£)EKQ, then S[R]=(S[J])[£] for every structure Se o}"Q.

_ This says that the effect of removing some points, pres?iribed by J, and then

removing some more points, prescribed by £, is the same as removing them all

at once, as prescribed by A=JAL. (Note that each point qgeQ-G(R) is
removed in manner K(q) in both cases.)
For any structure Se on and any prescription ﬁEKQ, the structure S[f] is

a minor of S. If G(R)#G(S) (that is more than zero points are removed), then

S[R] is a proper minor of S. A structure which is isomorphic to a minor of S

is an isominor of S.

In the case that all ground sets are finite, the definitions of point-removal
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class and minor class are equivalent (up to change of notation), since all the
mappings S-S[¢,q] determine all the mappings S-S[R] and visa versa, and the
conditions on these mappings (and the structure isomorphisms) are equivalent.
This means that one can use either formulation, or even mix the two, whatever
is most convenient. (Also, when necessary, one can verify whichever
conditions are easier to show.)

A minor class can be denoted by the quintuple (¢/,2,J,K,#) often
abbreviated to /. Generally 4,/ and £ (and quite often also K) remain
unnamed, v.vhile their elements are all specified. For an alleged minor class
(¢f,4 J,K,2) it is necessary to verify that conditions (M1)-(M5) hold. As
discussed earlier, conditions (M1)—(M3) are guaranteed when isomorphism is
defined naturally and is respected by point removals, a case that is easily
recognised. Conditions (M4) and (M5) sh(;uld be checked, although (M4) is
generally trivial. Note that the conditions (M1)-(M5) are independent, that is,
it is possible to construct a quintuple (¢/,2,J,K, #) satisfying any subset of
these conditions, and only that subset.

Recall our example of a point-removal class # . It follows that # is a.
minor class. The idea of # is easily generalised to a minor class w2 (for
any hereditary class of sets 2) with 2 being the class of ground sets and
K = {delete, contract}. Adopting a convenient notation let W|R={w—B|w(—:W
and Anw=0 and ng}ng—(AUB ) be the structure on ground set Q—(AUB)
obtained from (W,Q) by deleting all points in A and contracting all points in
B, where A,BCQ and ANB=0@. Defining isomorphism naturally (as done earlier
for #°) conditions (M1), (M2) and (M3) hold. Obviously W|8=W and for
any disjoint subsets A,B,C,D of Q, both (W|K)|g and W| ERH?/; are equal to
{w—(BUD) |weW and (AUC)nw=0 and (BUD)Cw}. Therefore #2is indeed a

minor class.
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SECTION 4: EXAMPLES OF MINOR CLASSES

Let K,C,B be classes with KNnC=§, and let A=KUC, for the duration of
this section. Let 2 be a hereditary class of sets. In this section, a minor
class, denoted & 'Z(K,C,B), is defined, where 2is the class of ground sets and
K is the class of manners (of point removal). This is quite a general example
because any minor class can, in a sense to be defined later, be "embedded" in a
minor class of the form & z(K,C,B).

The definition is developed in stages, starting with & 'Z(K,C,B) as a
structure class. The structures in F ‘Z(K,C,B) with ground set Q€2 are all the

pairs (f,Q) where fEB(AQ), that is, f is a function from AQ to B. Note that
the elements of AQ are themselves functions from Q to A, and can be denoted
as vectors (sgction section 2) x=(x qlqEQ) or (x(q)|qeQ) where x q=x(q)(§A for
all qeQ.

These structures, that is, functions of the form f:AQ—>B, can be
conveniently visualised in the special case that Q,K and C are finite. Say
|Q|=n, K={1,....,k} and A=KUuC={1,...,m} for some integers n,k,m with n>0
and m2k>1, and say B is a set of colours. (Readers can generalise the visual
image given below as much as they like. The situation is conceptually the
same for general K,C,B and Q.) Consider the |Q|-dimensional Euclidean
space IRQ, with coordinate axes labelled by the elements of Q. Then AQ is the
subset of RY consisting of those points whose coordinates are all in A, and these
points form an mxmx...xm (n times) grid in this space. (Note that these are
called points in the usual geometric sense, and should not be confused with the
elements of Q, which can also be called points. The elements of Q label the n
axes, whereas there are m® points in the grid.) To each point xEAQ, in this

grid, the colour f(x)eB is assigned, creating a coloured grid sitting in RC.
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To make & 'Z(K,C,B) an isomorphism class it is necessary to define

structure isomorphism, and this is done "naturally" (see section 3). For all

‘ Q
ground sets Q,Pe2, any function f:AQ->B (that is, feB(A )) and any bijection

P
w:Q-P, the function w(f):AF-B (that is, w(f)eB® )), isomorphic to f via w, is
defined "naturally" as follows. In the above visualisation, the g-axis is simply
renamed as the w(q)-axis for each qeQ, so that the "coloured grid", while itself

unchanged, now sits in RP. More formally (but equivalently) w:AQ-»AP and

P
w:B(‘A‘Q)—»B(A ) are defined as follows. For xeAQ (that is, x:Q-A) let
w(x)EAP (that is, w(x):P-A) satisfy [w(x)](w(q))=x(q) for all qeQ (so that w(x)

is actually xow?). (Recall that w(R) was defined in this way in section 3.)

For fEB(AQ) (that is, f:AQ-»B) let w(f)EB(AP) (that is, w(f):AP—»B) satisfy
[w(D)](w(x))=f(x) for all x€AQ.  Since isomorphism is defined naturally,
conditions (M1) and (M2) automatically hold, (although it is routine to show
this formally).

To make & 'Z(K,C,B) a minor clas (and a point-removal class when all
ground sets are finite), it is n;acessary to define point removal. The
visualisation of point removal is much more illuminating than the formal
definition (as was the case with structure isomorphism) and so it is given first.
Recall the coloured grid in IRQ, associated with f:AQ->B. For any point qeQ
and any manner Z€K, consider the mxmx...xm (n-1 times, where n=|Q|)
coloured subgrid consisting of those gridpoints with qth coordinate £. (This is
the "cross section" of the coloured grid taken by the hyperplane of IRQ,
perpendicular to the g-axis and intersecting this axis at coordinate £.) This
coloured subgrid can be "projected" into IRQ_{q} by sending each gridpoint
(x,|t€Q)eA? with x =2, to the gridpoint (x,teQ-{a})eA9 D, discarding

h

the qt coordinate. With each such gridpoint retaining its colour, this yields a

coloured grid sitting in IRQ_{Q}, which depicts the structure on ground set
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Q-{q} (a function from AQ-d} 4, B) obtained from f by removing point q in
manner ¢. (Multiple point removals are defined soon.) It is clear that this
definition of point removal respects isomorphism so that (M3') holds. Also for
any distinct points q,r€Q and any manners £,heK the coloured grid sitting in
[RQ—{q,r} obtained by removing point q in manner ¢ and point r in manner h
(in either order) is obtained from the coloured grid for f sitting in IRQ, by
taking the mxmx...xm (n-2 times) coloured subgrid consisting of those
gridpoints with qth coordinate £ and rth coordinate h, and projecting it into

ha,ndrth

[RQ—{q,r} (while preserving grid point colour) by discarding the qt
coordinates. (Note that this (n-2)-dimensional subgrid is the intersection of
the two (n-1)-dimensional subgrids associated with the two removals of a single
point.) This shows that (M4') holds.

More generally, for any prescription ﬁEKQ, consider the mxmx...xm
(|G(R)| times) coloured subgrid consisting of those gridpoints with qth
coordinate £(q) for all points qeQ-G(R). (This is the intersection of all the
subgrids associated with removing a single point qeQ-G(R) in manner £(q).)
This coloured subgrid can be projected into IRG('Q) by sending each gridpoint
(x,1t€Q)€A with x,=f(q) for all q€Q-G(K), to the gridpoint
(x,10G(%))eAC®), discarding the o' coordinate for all qeQ-G(). With
each such gridpoint retaining its colour, this yields a coloured grid sitting in
IRG(R), which depicts the structure obtained from f by removing point g in
manner K(q) for all geQ-G(R), (as prescribed by £). iAga.in, point removal
respects isomorphism so that (M3) holds, and it shoultf be clear that (M4) and
(M5) also hold (see the interpretations below the statements of these
conditions), making & 'Z(K,C,B) a minor class. (This is shown formally
below.) /

Here is the formal definition of point removal. For any structure f in

F 'Z(K,C,B), on ground set Q, that is f:AQ—»B, and any prescription ﬁEKQ, the
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structure f[R] on ground set G(£) is the following function from AG() 44 B.
For every x=(x(q)|qeG(8))eAS™®) it holds that (f&])(x)=f(RAx). (See
section 3 for the definition of A.) With prescription 9 as in condition (M4),
it follows that MAx=x for all xeA®Q and hence (f[9])x=F(IMAx)=f(x) so that
f[9]=f and (M4) holds. With prescriptions J,£ as in condition (M3), it is
clear that (JAL)Ax=JA(LAx) for all xeAG®). 1t follows that
(13AL]) (x)=((3AL) Ax)=H(IA(LAX))=({[3) (SAQ =((HIN[E)(x) 50 that
f[3AL]=(1[J])[£] and (M5) holds. Clearly conditions (M1),(M2) and (M3) hold
(it is routine to show this) so that & 'Z(K,C,B) is indeed a minor class.

The "coloured grid" visualisation appears in later sections, including some
proofs, to provide insight into a situation, but it is never a formal part of a

proof.
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SECTION 5: MINOR CLASSES AS ALGEBRAS
Introduction

In this section, it is shown how minor classes can be treated as algebras,
making much of the theory of universal algebra available to them. Some basic
universal algebra definitions are given, along with minor class examples showing
their relevance.

For convenience it will be required, until further notice, that a minor class
(¢/,2,7,K,2) must have ¢,2,K and hence J and £ being sets. I suggest
~ that this involves no loss of generality. (While this appears less general, it is
equivalent (by changing the word "set" to "class") to the case where 2 is a

class of classes, which appears more general. See the discussion in section 2.)

Readers can draw their own conclusions.

Universal algebra originated with Birkhoff's 1935 paper [1], which gives a
general definition of what an "algebra" is, (covering many well known
mathematical entities of the time), and develops a large body of theory.
Higgins' 1963 paper [6] extends this definition (admitting other well known
mathematical entities as algebras), and shows that the theory can be extended
similarly. Higgins' "algebras" are called many-sorted or heterogeneous while
those of Birkhoff are called 1-sorted or homogeneous. By Higgins' deﬁniti(‘)n, a
(many-sorted) algebra A consists of a 2 —partition A=<A|s€2 > (for some set
4) together with a set of functions, each of the form As1x' ‘ -xASn—»AS for some
~ integer n>0 and sorts sy, «+,8n,5€.2. (Birkhof's definition has | 2 [=1.)

When n=1 the function is wnary, and when all the functions are unary, the
algebra is unary.

As shown later, minor classes are algebras (in fact, many-sorted unary
algebras). This means that there is a large body of established theory that can
be applied to them. Unfortunately, most universal algebra is still done for the

1-sorted case, but fortunately, most results generalise to the many sorted case.
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When universal algebraists specialise, minor classes are often among the
algebras to miss out, since they are very different from algebras that are
commonly studied. Nonetheless, unary algebras (including minor classes) are
easier to deal with than algebras in general, making it easier to develop
specialised theory for them.

Given below are some standard universal algebra definitions, with
examples putting minor classes into context. The definitions only cover the
unary case, since that is all that is needed here, and the notation is simpler.
Full definitions appear in [3], while [5] contains more theory (but only for
1-sorted algebras).

Definitions
A unary signature is a pair ¥=(2,0) where £ is a set whose elements are

called soris and =<4 (st)eZx2 > is a 4 xJ—partition of a set whose |

!

elements are called operator symbols. (It is permissible that some ast

may be
empty.)

A (unary) algebra A of signature ¥, or a L-algebra, consists of a
2 -partition of a set A=<A_|s€ 2>, the universe of A, together with a set of
functions; one function f A:As-+At for all sorts s,te 2 and every operator symbol
fe os,t. (It is .permissiblé that some AS, or some os,t, may be empty.) Except
for minor classes (which are denoted by script letters) any algebra is denoted
by the boldface version of the letter used for its universe. (For example, the
universe of B is always B=<B_[s€ 2 >.)

A minor class (¢/,2,J7,K,#) can be formulated as a unary algebra where
the sorts are precisely the ground sets; that is, as a Y-algebra where ¥=(2,0)
with ¢ to be determined. For all sorts (ground sets) Q,Pe2, let 0Q,P consist

R for each prescription

of operator symbols i% for each bijection w:Q-P and p
#eKQ with G(R)=P. (Observe that 0Q p is non-empty only if |Q|=|P| or

PCQ.) So the unary function i;:&Q—»@"P sends each Se'on to w(S)esp and
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p‘g,:dQ-)efP sends each Se efQ to S[R]e@/P. It is convenient to call operator
symbols of the form i*, and also the corresponding unary functions, (structure)
isomorphisms, and to call operator symbols of the form pﬁ, and also the
corresponding unary functions, point removals. (Note that a point removal can
correspond to removing all, some, one or none of the points in the ground set of
a structure.) So as a unary algebra, the minor class (¢/,2,J7,K,#) has -
universe of =< d’QIQE.Z> with functions in J and #. The signature (40 is
determined by £ and K. Observe however, that unary algebras with this
signature need not be minor classes, since they need not satisfy conditions (M1)
to (M5). Fortunately these conditions are of a form which universal algebra

handles best, namely equations. These are defined below.

Equations and Varieties

Let ¥=(2,0) be a unary signature and consider a 2 —partition of a set
X=<Xs|se.2 >. The elements of Xs shall be called variables of sort s, for each
sort sS€2. A Y-term of sort sy in variables X is a (possibly empty) string of
operator symbols followed by a variable, fif2...fax for some integer n>0 such that

operator symbols fieg

L 181 for i=1,---,n and variable xeXS for some sorts
1-1991

n
80,51, * *,Sn€<2 . In particular if n=0, this says that xEXSo is a term of sort so.

Y
Let T S

T(X)=<T¥(X)|s¢2>. For all YCX, define T-(Y) and T>(Y) similarly.

(X) be the set of X-terms of sort s in variables X and let

| For any YCX and any Y-algebra A, an assignment is a 2 -respecting
function a:Y-A. The ertension of a is the 2-respecting function E:TE(Y)—»A
which sends each term fif2. . -fnxeTEO(Y) to 4R (- (PR (a(x))- - ))eAy,. (The
definition of term ensures that this last expression makes sense, that is, the
unary functions are only applied to elements on which they act.)
A Y-equation of sort s is a triple (Y,€,r) where YCX and f,reTg(Y). The

equation (Y,£,r) is valid in a Y-algebra A if for every assignment ozY-A it
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holds that a({)=a(r). Observe that if there were some sort s€ 2 with Y #0
but AS=0, then the equation would automatically be valid, since there would be |
no assignmgnt a:Y-A. It follows that adding extra variables to Y can change
the validity of the equation in some algebras.

Define var(4,r) to be the set of variables which appear in term £ or term r
(there are one or-two of them). The equation (Y,/,r) is a proper equation if
Y=var({,r) and in this case is abbreviated to the pair ({,r), usually written
f=r. Almost all equations in the literature are proper. The proper equaj;ion
{=r is a regular equation if var({,r) has only one element, that is, the same
va,ri.';ble appears on both sides.

An equational specification (respectively proper equational specification,
regular equational specification) is a pair A=(%,0) where O is a set of
Y-equations (respectively proper Y-equations, regular Y-equations). A
Y-algebra A is an algebra of the specification A, or a A—algebra, if every
equation in © is valid in A. (Note that T can be treated as a regular
equational specification in which © is empty.) A class of algebras is a variety
(respectively proper variety, regular variety) if it is the class of all A-algebras
for some equational specification A (respectively proper equational specification
A, regular equational specifications A). The adjective unary can also precede
the word variety, if it is to be emphasised that it is a variety of unary algebras.
It should be noted that all varieties of 1-sorted algebras are proper varieties,
but this does not hold for many—sorted algebras.

For any set of ¥-equations O, let alg(©) be the class of all (X,0)-algebras.
So all (proper, regular) varieties of ¥-algebras are of the form alg(©) for some
set © of (proper, regular) Y-equations. For any class # of ¥-algebras let
eq(¥ ) (respectively peq(¥ ), req(# ) be the set of Y-equations (respectively
proper Y-equations, regular Y-equations) which are valid in every algebra in & .

The smallest variety (respectively proper variety, regular variety) containing #
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is alg(eq(¥ )) (respectively alg(peq(% )), alg(req(# ))). If € is a proper
variety then the equations in eq(¥ ) are exactly those of the form (Y,f,r) for
proper equations (£,r)epeq(# ). If € is a regular unary variety then all
proper equations in peq(# ) are regular, that is peq(¥ )=req(¥ ). Incidentally,
eq(alg(eq(¥ )))=eq(¥ ) for every ¥ and alg(eq(alg(©)))=alg(®) for every O.

A set of Y-equations of the form eq(# ) is deductively closed. There are
rules [3] by which any equation in eq(alg(®)), the deductive closure of ©, can be
derived from equations in ©. (These correspond to the way equations are
ﬁlanipulated in practice.) For all sorts s€ .2, let eqz(if ) be the set of all pairs
(£,r) where the equation (Y,f,r), of sorts, is in eq(# ) (that is, is valid in every
algebra in ¢ ) and let eqY(iS’ ) be <eq§(if )|s€£2>. Then eqY(if ) is a
2 -respecting equivalence relation on TE(Y). So two terms E,rETE(Y), of
sort s, are equivalent by eqY(if ) exactly when the equation (Y,£,r) is valid in
every algebra in ¢. In particular when € =alg(©), the term r can be
obtained from the term ¢ (and visa-versa) by a sequence of formal
manipulations [3] involving the equations in ©. (Again these manipulations
correspond to what is done in practice.)

The truth of conditions (M1)-(M5), imposed on minor classes, is
equivalent to the validity of all of a certain set of regular unary e(iuations of
the appropriate signatufe (which depends on 2 and K). For example, by
simple conversion of notation, condition (M5) is equivalent to the validity of all
equations pJA‘gx:p‘ngx, for every sort Q€4 some variable x of sort Q, and
every J and £ as given in condition (M5). Let EM5 be the set of these
equations. Similarly, with the superscripts below taking all possible values as
given in the corresponding condition, and x being a variable of the appropriate
sort in each case (there is a different variable for each sort), let EM1 consist of

all equations i1x=x, let EM2 consist of all equations iTi“’x=iT°wx, let EM3
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consist of all equations ile(ﬁ)pﬁx=pw(ﬁ)iwx and let EM4 consist of all
equations pmx=x. Let EM be the union of EM1 to EM5. Note that the
universal quantifier "for every structure se .ZQ" is not mentioned when listing
these equations, since it is incorporated in the definition of validity of these
equations. (See the definition of "valid" given earlier.)

It is convenient to call a minor class, with set of ground sets 4 and set/ of
manners K, a (£ ,K) minor class. Then the class of all (2,K) minor classes,
is the class of all algebras of the appropriate signature, in which all the (regular
unary) equations in EM are valid, so that it is a regular unary variety. There
is a separate variety for each distinct pair (£ ,K). Similarly there is a (regular
unary) variety of structure classes, and one of isomorphism classes, for each 2,
and there is a (regular unary) variety of pre point-removal classes, and one of
point-removal classes, for each (2 ,K).

Any minor class term will consist of a variable preceded by a (possibly
empty) string of isomorphisms and point removals. The term manipulations,
mentioned above, allow any such term to be put into a standard form.

Firstly, the equations in EM3 allow all the isomorphisms to be taken to the left
of the point removals. Then the equations in EM1 and EM2 allow any
(possibly empty) string of isomorphisms to be reduced to one isomorphism, and
the equations in EM4 and EM5 do the same for point removals. So any minor
class term of sort P€.2, with variable x of sort Q€2, is equivalent (in the
presence of the equations in EM) to the canonical term inﬁx for some
prescription #eKQ and some bijection w:G(R)~P. (Note that & and w are
uniquely determined by the original term.) So applying any sequence of minor

class functions (isomorphisms and point removals) to a structure, is equivalent

to applying one point removal followed by one isomorphism.
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Subalgebras, Homomorphisms and Direct Products

In [1], Birkhoff gives two equivalent characterisations of when a class of
Y-algebras (for some signature ¥) is a variety. Higgins [6] extends this to
many-sorted algebras. One characterisation is the definition given earlier,
while the other is that the class of algebras is closed under certain constructions
(by which some algebras are constructed from others). These three
constructions, namely, subalgebras, homomorphic images, and direct products,
are given below, together with related theory. The above equivalence ensures
that when these constructions are applied to (2 ,K) minor classes (for some 2

and K) they yield (2 ,K) minor classes (since these form a variety).

Subalgebras

Let ¥=(2,0) be a unary signature and let A and B be Y-algebras. Then
B is a subalgebra of A, and A is an eztension of B if BCA and f, (a)=fp(a) for
all sorts s,te .2, every operator symbol fe 0s,t and every element aEBS. In this
case we write BSA and B<A and say that B is a subuniverse of A.

Equivalently, B is a subuniversé of A if BCA and f A(aJ)EBt for all sorts s,te.2,
every operator symbol fe 03,1; and every element aEBs, and B is the unique
subalgebra (of A) with universe B, where each function fB:BS—»Bt is defined by
setting fp(a)=1 (a) for all such s,t,f and a.

For example, if ¢ is a (£,K) minor class (for some 4 and K) and J is a
set of structures, then J is a subuniverse of ¢ provided that JCe¢¥ and for all
ground sets Q,P€.2, every prescription ﬁeKQ, every bijection w:Q-P, and every
structure S€ J, it holds that the structures S[R] and w(S) (as defined in o)
are also in . That is, J is closed under isomorphism and point removal, or
equivalently, closed under isominors. Alternatively, a (£,K) minor class J is
a subalgebra of ¢/, provided 9Ce¥ and the definition of the functions in

(point removal and isomorphism) on any structure in J, coincides with the
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definition of these functions in o , on structures in J'. In this case, J is a
sub minor class of ¢ .

For any Y-algebra A, the partial order < on subuniverses of A, induces a
complete lattice, so that the meet and join of any set of subuniverses is defined.
(See section 2.) Theé same is true for subalgebras, since there is an obvious
one-to-one correspondence between subalgebras and subuniverses. The meet of
subuniverses is the intersection of subuniverses. For any CCA, there exists a
unique subalgebra of A, denoted AincC, such that the corresponding
subuniverse, denoted AincC, minimally contains C. That is AincC is the
intersection of all subuniverses containing C. If AincC is A, then A is
generated by C (or C generates A).

What appears in the previous paragraph holds for all algebras. However,
a property which rarely holds for algebras in general, but which holds for all
unary algebras, is that the join of subuniverses is the union of subuniverses.
This is the major reason why unary algebras are simpler to study than algebras
in general. For any Y-algebra A (where ¥ is a unary signature) and any CCA,
there exists a unique subalgebra of A, denoted AexcC, such that the
corresponding subuniverse, denoted AexcC, is maximally disjoint from C.

That is, AexcC is the union of all subuniverses disjoint from C.

Define a relation < on elements of A (this cannot be confused with the
partial order < on subuniverses of A) where for all elements a,beA it holds that
a<b exactly when a€Ainc{b} or equivaléntly bgAexc{a}. That is, every
subuniverse containing element b, also contains element a. An equivalent
definition, independent of the previous two paragraphs, is given inductively by
saying that a<a for every element acA and for all elements a,beA, if a<b then
f5(a)<b for any f, which acts on element a, (that is, if aeA, for some sort s
then the operator symbol fe 09.,1; for some sort t). So a<b exactly when element

a can be obtained from element b by repeated application of the unary
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functions of A, and Ainc{b} consists of all such elements a.

This relation <, on elements of A, is a quasi order (that is, it is reflexive
and transitive). Let a~b be defined to mean a<b and béa, so that ~ is clearly
an equivalence relation. Let a<b be defined to mean a<b and bfa (or
equivalently, a<b and a¢b). For any CCA, observe that AincC consists of all
elements acA such that a<b for some beC and that AexcC consists of all
elements a€A such that bfa for every element beC.

If a<b then element a is an isominor of element b. For minor classes,
this is equivalent to the earlier definition; since as shown before, any structure
obtained from another structure by a sequence of minor class functions, can be
obtained by performing a point removal followed by an isomorphism. For any
two structures S and T in a minor class with only finite ground sets, S~T if and
only if S¥T. (Since S~T means that both S and T are isomorphic to a minor
of the other, so that |G(S)|<|G(T)| and |G(T)|<|G(S)| and hence
|G(S)|=|G(T)|. Since ground sets are finite, neither S nor T is isomorphic to
a proper minor of the other, so that S¥T. Also S¥T clearly implies S~T.)

This need not hold when there are infinite ground sets. For example, consider
the minor class ¥ 2 (see section 3) such that there exists a countably infinite
ground set Qe 2. Define structures Wi,Wqe ¥ 2 , on ground set Q, where
Wi={P|PCQ and |P| is odd} and Wo={P|PCQ and |P| is even}. Then
contracting any one point from one of them gives a proper minor, isomorphic to
the other, while W; is not isomorphic to Wo. That is, W{~W3, while WiFWo.

Given a Y-algebra A and a subuniverse B of A, we often wish to find CCA
such that B=AexcC, and to express C economically. An infinite (strictly)
descending chain in A is an infinite sequence of elements a;,as,a3,*++ of A such

that - .-<ag<ap<aj. If such a sequence exists then A has an infinite

descending chain, otherwise A has no infinite descending chain. Suppose A has
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the above infinite descending chain, and that B=Aexc{as,az,a3,+++}. Then for
any C such that B=AexcC, it must be that C has redundant elements which
ca;n be removed from C without changing the subuniverse. (That is, there
exists DCC with D#C and B=AexcD.) This is because any element of C is
strictly above (>) some a; while some other element must be below (<) &
making the former element redundant.

An element b in a quasi ordered set is minimal if for any element a with
a<b it holds that b<a, so that a~b. Now if A has no infinite descending chain
(as is the case for minor classes with only finite ground sets) then every
element of A-B is bounded below by a minimal element of A-B. If element b.
is minimal in A-B then so is every element acA-B such that a~b. Let b~ be
the set {a]a€B-A and a~b} of such elements. If B=AexcC then C must
contain at least one element of b~ (any one will do) but it need not contain
more than one (since the exclusion of any element a€(b~) from A, removes
every element ¢>a and in particular every element c€(b~)). So if C consists of
exactly one element of b~ for each element b, minimal in A-B, then C has no
redundant elements.

A minor class ¢, with only finite ground sets, has no infinite descending
chain --+<S83<S9<89<8;, since this would require an infinite descending chain
+++<|G(S3) | <|G(S2)| <|G(S1)| of positive integers — an impossibility. So for
any sub minor class J of ¢/, any structure in ¢/-J is bounded below by a
minimal structure in ¢/-J. These minimal structures are the ercluded
isominors of I in /. Let CCe/—J contain exactly one of each of these (any
one will do) up to isomorphism, or equivalently, as shown earlier, up to
~-equivalence. Then J=¢ excC and C has no redundant elements. The
elements of C are the ezcluded minors of I in . These excluded minors are
determined up to isomorphism. Often an excluded minor is described, not as a

particular structure, but only in a way which determines it up to isomorphism, .
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which is all that is needed anyway.

Recall the minor class # , defined in section 3, which has only finite
ground sets. Let # U consist of those structures (W,Q)e# (recall that
wc2®) which have the property that if PEW and PCRCQ, then ReW.
Equivalently, if PEW and qeQ-P, then PU{q}€W. It follows that if
(W,Q)e(# -7 U) then there exists PeW and qeQ-P such that PU{q)}¢W.
Contracting every point in P from W, and deleting all other points except q
leaves ({0},{q}) which is also in ¥ -¥% U, This shows that
7/’U=7l’exc{({(b},{q})}, where {q} is an arbitrary one element ground set. So
% U is a sub minor class of # with a single excluded minor (in #°).

Recall the minor class & 2 (K,C,B), defined in section 4. For any DCB
the minor class & 'Z(K,C,D) is a sub minor class of & 2 (K,C,B). However,

we cannot talk of excluded minors when there exist infinite ground sets.

Homomorphisms

Let ¥=(2,0) be a unary signature and let A and B be Y-algebras. A
Y-homomorphism from A to B is a 2 -respecting function o:A-B, with
4 -partition <aS:AS—>BS|sE.2 >, such that a respects f, that is,

o, (f 5 (a))=Tg(e;(a)) for all sorts s,t€.2, every operator symbol fe 'Zs,t and every
element a,EAS. Observe that this condition ensures that if CCA and C
generates A, then specifying the (effect of @ on the elements of C, determines its
effect on all of A.

If & and J are (£,K) minor classes (for some set of ground sets £ and
set of manners 2 )then a:¢/-J is a minor class homomorphism provided that
the following three conditions hold. Firstly, a respects ground sets (sorts),
that is, G(a(S))=G(S) for every structure See#. Secondly, a respects point
removals, that is o(S[R])=(a(S))[R] for every structure See¥ and every
prescription ﬁeK—G(S). (Note that the point removal on the left hand side acts
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on structures in ¢ while the point removal on the right hand side acts on
structures in . The same goes for the structure isomorphism in the next
condition.) Thirdly, & respects (structure) isomorphisms, that is,
a(w(S))=w((S)) for every structure See’, every ground set Pe2 and every
bijection w:G(S)-P.

Let A,B,C be Y-algebras and let a:A~B and $:B-C be ¥-homomorphisms.
The composition of homomorphisms a and f is (foa):A-C, that is,
<(B0a,)|s€2>. Clearly foa is a X-homomorphism from A to C. The
homomorphic image o{A) of A under a is the subalgebra of B with universe
o(A)=<a (A, )|se2 > where a (A )={e (a)|a€A}. The homomorphism
a:A-B is an isomorphism if a is a bijection (that is, a, is a bijection for each
sort s€2). In this case A is isomorphic to B, denoted A¥B. An embedding is
an injective homomorphism a:A-B (that is, o, is injective for each sort se.é )-
In this case, A can be embedded in B. (This is equivalent to saying that A is
isomorphic to a subalgebra of B, namely a(A).)

A congruence on A is a 2 -respecting equivalence relation qCAxA, with
2 -partition <q CA xA_|s€2 >, such that ag.b implies (f A(a,))qt(f (D)) for all
sorts s,t€ 2, every operator symbol fe os,t and all elements a,beAs. For every
sort s€2 and every element aeAS, let ag be {b|bL=As and agb}, let As/q be
{aglacA}, and let A/g=<A_/q[s€e2>. The algebra A/q, with universe A/q,
is defined by setting f, / CI(a,q)=(f A(a,))q for all sorts s,t€ 2, every operator
symbols fe as,t’ and every element aEAS. The conditions on q ensure that this
is well defined. The function which sends each a€A to (aq)€A/q is a
homomorphism, and the homomorphic image of A is A/q.

The kernel of a homomorphism o:A-B is the 2 -respecting equivalence
relation ker(a) on A, for which (a,b)eker(a) exactly when o(a)=a(b), for all
elements a,b€A. A relation on the universe A, of A, is a congruence on A, if

and only if it is the kérnel, ker( @), of some homomorphism a:A-B, for some
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algebra B. Also the homomorphic image a(A) is isomorphic to A/ker(a) via
the isomorphism which sends a(a) to a-ker(a) for every element acA.

Let q and t be congruences on A. Define <t to mean qCt (as subsets of
AxA) or equivalently, agb implies atb for all elements a,beA. The partial
order < on all congruences on A induces a complete lattice (see section 2).

The meet of congruences is the intersection of congruences (as subsets of AxA)
and the join of congruences is the smallest congruence containing their union.

An interesting property, possessed by every unary variety % is the so
called congruence extension property [5]. This says that every congruence t on
a subalgebra B of unary algebra A€# , can be extended to all of A. That is,
there exists a congruence q on A such that agb exactly when actb, for all
elements a,beB. For example if i=<{(a,a)|a€A_}|s€ 2 >, which is trivially a
congruence on A, then one possibility is g=tUi. An equivalent statement of
the congruence extension property is that any subalgebra of any homomorphic
image of any algebra A€# is a homomorphic image of a subalgebra of A.

(The converse is true for all varieties.)

Some congruences on unary algebras can be obtained in the following way.
Let A be a unary algebra and G a group of automorphisms of A. Define a
relation q on A where for all elements a,beA it holds that agb exactly when
a=o(b) for some automorphism o€G. Since G is a group, q is an equivalence.
Also q is 4 -respecting, since each automorphism o€G is. For any sort s€ 2
and any elements a,beA, if agb then there exists automorphism a€G such that
a=a(b), by definition. Since « is a homomorphism it follows that
fo(a)=fy (a(b))=a(f, (b)) for every sort t€2 and every operator symbol fe 0s,t'
Therefore q is a congruence. Not all congruences can be obtained in this way.

We now illustrate some of the above concepts with familiar examples of
minor classes. If g:B-D is a function then there is a (minor class)

homomorphism from & 'Z(K,C,B) to F 'Z(K,C,D) which sends each £:A%-B
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(where A=KUC) to (gof):AQ-»D. (For non-injective g:B-D, the effect of this
homomorphism is like looking at the "coloured grid" for f with a partial colour
blindness, in the visualisation given in section 4.) The homomorphism is an
isomorphism if g is a bijection, and an automorphism if B=D and g is a
permutation of B. If ECC, then there is a homomorphism from & ‘Z(K,C,B) to
F 'z(K,E,B) which sends each £:AQ-B to the restriction of  to (KUE)Q. (This
amounts to discarding some of the "coloured grid" for f.)

The minor class ¥ Zis isomorphic to & 'Z(K,Q),B) where K={delete,
contract} and |B|=2, say B={in,out}. For every ground set Q€2 and every
PCQ let P:Q-K be the function with P(q)=delete whenever q¢P and
P(q)=contract whenever geP. This means that K is {P|PCQ}. For every
wca? let W:K-B be the function with W(P)=in whenever PEW and

W(P)=o0ut whenever P¢W. This means that B(KQ) is {W|WQ2Q}. The
function from ¥ Zto & 'Z(K,@,B) which sends (W,Q) to (W,Q) is an
isomorphism. So we can visualise (W,Q) as the points of a 2x2x...x2 (| Q|
timés) grid, or equivalently, the vertices of a |Q|-dimensional hypercube, each
with one of two possible labels, like in/out, black/white, etcetera. Any
automorphism of this particular & 'Z(K,(O,B) corresponds to an automorphism of
) 4 'z From the previous paragraph it follows that, the identity function # 2
and the function sending each (W,Q)e¥ 210 (29-W,Q), are both
automorphisms of ¥ ’2 The second of these comes from swapping the two
elements of B for each function f:KQ-»B, or for W§2Q, swapping membership
and non-membership of 2Q, giving 2Q—W, the complement of W. These two
automorphisms form a group so there is a congruence q on ¥ 2 where VqW if
and only if G(V)=G(W) (let these equal Q), and either V=W or v=20-w.
This defines the minor class 7/"2/q, and in particular #/q (where the ground

sets are the finite sets). For any set Q, a clutter on ground set Q is a
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structure (W,Q), where Wg2Q and for any P,ReW, if PCR then P=R. The
clutters with finite ground sets form a subset of # which is actually a sub
minor class of #°, (since it is closed under deletion, contraction and clutter
isomorphism). However, Seymour [14] defines a different minor class whose
structures are clutters, and this is not a sub minor class of # . However it is
isomorphic to v U (defined earlier in this section) via the isomorphism which
sends each clutter W, on ground set Q, to the structure {P|RCPCQ for some
ReW}, on ground set Q, in #VU. Ssince # Y is a sub minor class of )/

Se§mour's minor class of clutters can be embedded in # .

Direct Products

Let 2=(2,0) be a unary signature. If I is a set and (Al|i€l) is a family
of ¥-algebras then the algebra P=1II Ai, defined below, is the direct product of

iel
(A'|i€l). The universe of P is P=1II <A;|SE.Z > (see section 2). That is, for
iel

any sort s€2, the elements of P_ are of the form (a'|i€l) where aleA; for all
iel. (The components of (a,i|iEI) all have the same sort.) For all sorts

s,t€ 2 , every operator symbol feg ., and every element (a,i|ieI)eP g it holds that

s,t’
fp((a' |ieI))'=(fAi(al)|ieI). In particular; if T=@ then |P_|=1 for every sort
s€2 and fP:PS—>Pt is defined in the only possible way for every feds t and all
?

s,te 2. \

For example, let I be a set and (ofiliEI) a family of (2 ,K) minor classes
(for some set of ground sets 2 and set of manners K). Then II ofi has

iel

structures of the form ((S'|i€I),Q) where Qe4 and S'ee’ é for every i€l.
That is, the structures in (Si|ieI) all have the same ground set, Q. For every

appropriate prescription £ and bijection w it holds that (Si|i€I)[ﬁ] is (Si[ﬁ] |i€I)
and w((S'|i€D) is («(S})]iel).
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Suppose 1 is a set, (Bi|iEI) is a. family of sets, and let B=1II B.. Then
iel

'Z(K,C,B) via the isomorphism which sends

_IEIIS’ 'Z(K,C,Bi) is isomorphic to &
1

each (filiEI) on ground set Q, (so that if £:AQB! for each i€l) to the function
f:AQ-»B, on ground set Q in F z(K,C,B), where f(x)=(fi(x)|iEI) for every
xeAQ. If |I|=2 and we use our coloured grid visualisation, then

.16115’ ‘Z(K,C,Bi) consists of pairs of coloured grids (with the same ground sets),
1 .

while the elements of & ‘?(K,C,B) are single grids where each gridpoint is
labelled with an ordered pair of colours, as though the two grids were
superimposed. If, for example, one grid was coloured black and white, and the -
other, red and blue, then in the resulting single grid we could "mix" the two
colours at each gridpoint, to colour it dark red, light red, dark blue or light

blue.
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SECTION 6: CONSTRUCTIONS WHICH MODIFY THE SIGNATURE

Usually in universal algebra the signature ¥ is kept fixed throughout some
discussion. However there exist in the theory, constructions to obtain a
Y/-algebra from a Y-algebra, where ¥’ may be different from ¥ but is related to
it in some way. Three such constructions are worth mentioning for minor
classes.

For a minor class (¢/,2,J,K,#) (abbreviated ¢ ) and hereditary
2 'C%, the minor class (¢/,2,7,K,2)| 2’ (abbreviated ¢ | 2 ’) is called ¢/
restricted to 2’. It is the minor class (¢/ |27,2,J7|2',K,2|2’) where
& | 2"={(S,Q)|(S,Q)ee’ ,Qe 2 '} contains only those structures in ¢ with
ground sets in 2’, and J| 4’ and £|2’ contain only those functions in J
and £ (respectively) which involve only structures in ¢/ | 2’. For example
FIK,CB)| 2’ is 2 (K,0,B). The corresponding signature B=(2,0) is
.modified by removing all Qe 2-2 "’ from £ and removing all operator symbols
involving these sorts from 2.

The minor class (¢/,2,J,K,#2)|K’ (abbreviated ¢ |K’ and called ¢’
confined to K’) where K’CK is the minor class (¢/,2,7,K’,# |K’) where
# | K’ contains only those point removals involving only manners of point
removal in K’. For example if # is the minor class of matroids with deletion
and contraction, then 4 |{delete} is the minor class of matroids with deletion
only. The signature ¥=(.2,0) is modified by removing from 2, all point
removals involving manners of point removal in K-K”’.

For a minor class (¢/,2,J,K,#) and a bijection x:K-K’ the minor class
k(e ,2,7,K,2) (abbreviated x(¢)) is the minor class (¢/,2,7,K’ ,k(2))
where k(#) is obtained from £ by renaming "point removal in manner £" as
"point removal in manner x(£)" for every £eK. Similarly, the signature

¥=(2,0) is modified by changing each mention of ¢ to x({) for every /eK.
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For example if ¥ swaps deletion and contraction then (.4 ) is the minor class
of matroids with the usual meaning of deletion and contraction swapped.

A mized homomorphism from (¢/,4,J K, #) to (¢//,2,7' ,K’,2’)
(notice £ is the same in both minor classes) consists of a bijection x:K-K’ and
a (conventional) homomorphism from (¢#,2,J,K’,6(.2)) to
(¢f7,2,7’K’,#2’). Mixed isomorphism and mixed automorphism are defined
analogously. For example, while the minor class of matroids .4 has only one
automorphism (the identity), which can also be treated as a mixed
automorphism, it has one other mixed automorphism, namely the one which

swaps deletion and contraction and which sends each matroid to its dual.
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SECTION 7: EQUIVALENT CHARACTERISATIONS OF VARIETIES

Let ¥=(2,0) be a unary signature and let Y=<Y_[s€.2> be a set of
variables. Recall the definition of T*(Y)=<T(Y)|s€.£> where T-(Y) is the
set of Y-terms of sort s in variables Y. (See section 5.) The Y-algebra
TE(Y), with universe TE(Y) is déﬁned in a natural way [1,6]. That is, for all
sorts s,t€.2, and every operator symbol fe/_ , the function

8,t’ 5

f TE(Y):T‘;J(Y)—»T?(Y) sends each term of sort s, (€T (Y), to the term of sort ¢,

fﬁET%(Y). (The term f£ is a string of symbols obtained by simply appending
the symbol f to the left hand end of L))

For any Y-algebra A and any assignment azY-A, its extension
~Er:TE(Y)—»A is actually the unique homomorphism such that oy)=a(y) for every
yeY. (Note that Y generates TZ(Y).) Also, if ¢ is a class of Y-algebras,
then the 2 -respecting equivalence relation eqY(ig ) is in fact a congruence of
TE(Y). Moreover, eqY(if ) is the meet of congruences ker(a) for all
assignments a:Y-A and all algebras Ac¥ . The significance of the Y-algebra
TE(Y) /eqY(if) becomes apparent below.

Let F be a Y-algebra and let a:Y-F be an assignment whose extension
E’.TE(Y)—»F is a surjective homomorphism. The pair (F,a) is universal for a
class of Y-algebras % , if for every algebra A€¥ and every assignment y:Y-A
(with unique extension 7y:TE(Y)—»A) there exists (uniquely, it turns out) a
homomorphism #:F-A such that 7is foa. (For example, (TE(Y),I), where
1:Y-Y is the identity function, is universal for #.) In general, such a
homomorphism f exists exactly when ker(@)<ker(?) (in the congruence
ordering). Now ker(a) is less than all possible ker(7) exactly when it is less
than their meet, which is eqY(ﬁ ). Therefore, (F,a) is universal for ¢, if and
only if E:TE(Y)aF is surjective (so that FgTE(Y)/ker(E)) and ker(E)SeqY(if ).
In particular, ker(a) can be chosen to be maximal, that is, ker(?z)=eqY(‘€ ), as



-37-

follows. Let F=TE(Y) /eqY(is’ ) and define EcTE(Y)—»F in the natural way,

that is a(€)=Z-eqY(iS" ) for every term feTB(Y).

For convenience, TE(Y) /eqY(%’ ) is abbreviated to Fg(Y), or F(Y) when
# is known from the context.

For 5, class ¥ of L-algebras let S(¥€ ) (respectively H(€ ),P(% )) be the |
class of subalgebras (respectively homomorphic images, direct products) of
algebras in ¥ . If € =S(¥ ) (respectively € =H(¥ ), #=P(¥ )) then ¥ is
closed under subalgebras (respectively homomorphic images, direct products).
Let V(% ) be the smallest variety containing # , namely alg(eq(¥ )).

A fundamental result in universal algebra [1,6], says that the following
are equivalent.

(1) €& is a variety.

(2) & is closed under subalgebras, homomorphic images and direct products.

(3). & is closed under homomorphic images and contains Fg(Y) for every set
of variables Y.

In particular, a variety of minor classes is closed under sub minor classes,

homomorphic images and direct products.

Define the support of a Y-algebra A, denoted supp(A), to be the set of
sorts s€2 such that A is non-empty; that is, supp(A)={s|s€2 and A_#0}.
If supp(A)=24, then A has full support . It is routine to show that the
following are equivalent.

(1’) ¢ is a proper variety.

(2’) € is closed under subalgebras, homomorphic images and direct products,
and every algebra in %, has an extension in ¥ , which has full support.
(That is, for all Ae#¥ , there exists Be# such that A<B and |
supp(B)=2.)
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(3’) ¢ is closed under homomorphic images, and contains

FK(Y)=TE(Y) /eqY(if ) for every set of variables Y, and for ZCY,

qu(if ) contains precisely those pairs (£,r) such that (é,r)eeqY(if ) and

var(¢,r)CZ,

Note that, in an improper variety % , eqz(%’" ) need not contain all these pairs.

The above results hold for all algebras. We now confine our attention to
unary algebras. Let I be a set, let A be a ¥-algebra, and let (Ai |i€l) be a
family of subalgebras of A. If A='LEJIAi, then A is the union of (Ai|iEI). If,

i
in addition, the members of (AiIiEI) are pairwise disjoint, then A is the disjoint
anion of (Al|i€l). More generally, if (B'|i€l) is a family of S-algebras with
BigAi, for every i€l, then A is a disjoint union of (Bi|i€I), and again, if the
members of (Al|i€l) are pairwise disjoint, then A is a disjoint union of (B'|i€l).
For any family (Bi |ieI) of X-algebras, there exists a Y-algebra A which is a
disjoint union of (Bi|iEI), since we can take isomorphic copies AigBi with the
members of (AiIiEI) pairwise disjoint, put A='leJIAi’ and let A be the unique

i

Y-algebra, with universe A, such that Ai=AincAi for every i€el. Since a
disjoint union of (BilieI) is unique up to isomorphism, it is called the disjoint
union of (Bi|ieI). Observe that any union of (BiIiEI) is a homomorphic image
of the disjoint union of (BiliEI).

For a class # of D-algebras, let D(# ) be the class of disjoint unions of
algebras in €. If € =D(¥ ), then & is closed under disjoint unions. A
unary variety ¥ is closed under disjoint unions, if and only if it has the sb
called amalgamation property [5]. It is routine to show that the following are
equivalent. '

(1) ¢ is a regular (unary) variety.
(2”) € is closed under subalgebras, homomorphic images, direct products and

disjoint unions.
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(37 ) ¥ is closed under homomorphic images, and contains Fif(Y) for every

set of variables Y, and also Fg(Y) is the disjoint union of

¥y lyey).
In particular, if # is the class of (£,K) minor classes (for some set of ground
sets 4 and set of manners K), then ¥ is a regular unary variety, and all of
the nine statements (1) to (3" ) hold.

Let € be a regular unary variety of L-algebras, let algebra Fe# , and let
GCF. Let 1:G-F be the identity assignment and let T:TE(G)—»F be its
extension (which is surjective, if and only if F is generated by G). W Tis"
surjective and ker(T)=eqY(i6’ ), then F is a free algebra of €, freely generate(i
by G. In particular, Fg(Y) is a free algebra of ¢, freely generated by.Y (or
strictly speaking by Y/eqY(if ) which can be harmlessly identified with Y).
Every free algebra of &, freely generated by Y, is isomorphic to Fg(Y). By
(3" ), discussion of free algebras can usually be restricted to free algebras freely
generated by a single element.

A useful result is that for any clas:s ¥ of L-algebras,
V(¥ )=H(S(P(¢))). This is proved for the 1-sorted case (| 2|=1) in [5], but
this generalises easily to the many-sorted case. If ¥ is a unary signature then,
as noted earlier, any subalgebra of a homomorphic image of a Y-algebra A, is a
homomorphic image of a subalgebra of A,i and visa-versa. So in the unary

case, V(¥ ) also equals S(H(P(¥ ))), a result used later.
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SECTION 8: TWO EMBEDDING THEOREMS

Often in algebra the question is asked, "When can every algebra in a
variety be embedded in an algebra of a certain type ?" An example is
Cayley's theorem which states that any group can be embedded iﬁ the group of
permutations of some set. Although far from unique for any given variety,
such theorems tell us something about what the algebras in the variety "look
like". The first embedding theorem (8.1) states that any minor class can be
embedded in a minor class of the form & 'Z(K,C,B), so the structures of any
minor class can be visualised as "coloured grids" (see section 4). The second
embedding theorem (8.4) states that any minor class can be embedded in a

minor class of the form & 'Z(K,(O,B) /g, for some congruence q.

Theorem 8.1: If (¢/,2,J,K,#) is a minor class, then there exist sets C and
B such that (¢#,2,,K,#) can be embedded in & {K,C,B).

Note that in the above theorem, ¢,4,.,K and PLare sets (as stated in
section 5). The theorem would still hold if they were classes, provided C and
B were allowed to be classes. Two lemmas are given before the proof of

theorem 8.1.

Lemma 8.2: Let (¢/,2,J) and (9,4, #) be isomorphism classes and let the
(2 —partitioned) set of structures o * be such that ¢ *Cef and every structure
in ¢ is isomorphic to exactly one structure in ¢*. That is, if ¢/ is
partitioned into equivalence classes, where the equivalence is isomorphism, then
¢ * contains exactly one representative from each equivalence class. (Note
that o/ * is almost never a subuniverse of ¢/.) Let a:e/*+J be a

4 —respecting function. Then the following are equivalent.
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(i)  There exists an embedding a:e#+J such that a(S)=a(S) for every
structure See’*. (Note that if « exists, then it exists uniquely, since
o/ * generates ¢. See section 5.)

(i) If structure See¥ * then Aut(S)=Aut(a(S)), and if structures S,Teef * and
S#T then «(S)#o(T).

(Note that See# * implies that See# so that Aut(S) is well defined.)

Proof: Suppose that @ exists and is an embedding. Let structure S€e¥ * and
let w:G(5)~G(S) be a bijection. Then S=w(S) exactly when o(S)=a(w(S)),
since « is injective, and o(w(S))=w(a(S)), since @ is a homomorphism. It
follows that Aut(S)=Aut(e(S))=Aut(e(S)) for every structure Seo’ *.

Let S and T be structures in ¢/ * and suppose that o(S)¥a(T). Then
o(S)~a(T), so that a(S)=w(a(T)) for some bijection w:G(a(T))~G(a(S)).

Since @ is a homomorphism, a(S)=w(a(T))=0(w(T)), and since « is injective,
S=w(T). Thus S¥T, which implies S=T by the definition of & *.
Equivalently, if S#T, then o(S)#¢(T)." Therefore (i) implies (ii).

Conversely, suppose the conditions of (ii) hold. = Every structure Te&
is isomorphic to a structure See’ *, and is therefore of the form w(S) for some
bijection w:G(S)-G(T). In this expression, S is uniquely determined, as the
definition of ¢ * guarantees, but w need not be. (For example, if T=S, then w
could be any automorphism of S.) Define a(w(S)) to be w(a(S)) for all
w(S)e’ (where See” *). Since w may not be uniquely determined, this might
assign more than one value to o(w(S)), for some w(S)ee”, and this is the only
way « could fail to be well defined. Suppose that the bijection
7:G(S)~G(w(S)) is such that w(S)=7(S). Then (7-low)(S)=(S), so that
(Tlow)€Aut(S). But then (7-low)eAut(a(S)), since Aut(S)CAut(a(S)) by (ii).
Thus (7tow)(a(S))=a(S) so that w(a(S))=7(a(S)). Therefore a(w(S)) is well
defined and « exists. In particular, if See¢#* and 1:G(S)-G(S) is the identity
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function, then o(S)=0a(1(S))=1(a(S))=a(S), as required.

Also o is a homomorphism as the following argument shows. Let
w(S)ee” (where See¥ *) and let 7 be a (structure) isomorphism acting on w(S).
Then using the definition of & (twice) it follows that
o T(w(S)))=a((row)(S))=(row)(a(S))=r(w(a(S)))=1(a(w(S))), as required. In
fact ‘@ is the unique homomorphism agreeing with o on ¢ * (since ¢/ *
generates o ).

We now show that « is injective. Let the structures w(S),7(T)ee’
(where S,Te” *) be such that o(w(S))=a(r(T)). By the definition of e,
w(e(S))=7(o(7)) and hence (7-low)(o(S))=a(T). Thus o(S)xa(T) and by (i),
S=T. Therefore (7low)(o(S))=0c(S) which implies (7low)eAut(a(S)), and also
(rlow)eAut(S), since Aut(o(S))CAut(S), by (ii). Hence (7-low)(S)=(S), so
that w(S)=7(S)=7(T). It follows that the homomorphism « is injective, and
hence an embedding, as required. ©

Observe that a minor class (¢/,2,J ,08) with no manners of point
removal is, for all intents and purposes, the isomorphism class (¢/,2,J). In
particular, & '2(0),C,B) is an isomorphism class. Then next lemma is a special

case of theorem 8.1 where K=#.

Lemma 8.3: Let (¢/,4,J) be an isomorphism class. Then there exist sets C

and B such that (&, ,.7) can be embedded in F %9,C,B).

Proof: Let ¢ * be defined as in lemma 8.2. To prove lemma 8.3, it is
sufficient to construct a 2 -respecting function a:e¥ *-+ & '2(0,C,B) satisfying
condition (ii) of lemma 8.2. (For each structure See¢’ *, we construct a
"pattern" on the "coloured grid" o(S)eF z(@,C,B), with the appropriate
automorphisms, and with a sending distinct elements of ¢ *, to non isomorphic

"coloured grids".)
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Let B; and B; be disjoint sets with the same cardinality as ¢/ *, let
B=B;UBy, and let gi:¢# *+B; and g:¢# *+Bj be bijections. Let C be a set with
larger cardinality than that of any ground set in £, and for each structure
SE@P*, let hg:G(S)-C be an injection. If G(5)=Q, define Sym(S)gCQ to be
{hgow| weAut(S)}.

Let ;e *+F 'Z((b,C,B) be deﬁned as follows. For any structure See’ *,
with ground set G(S)=Q, the funcfion a(S):CQ-»B is given by(a(S))(x)=g1(S)
whenever x€Sym(S), and (¢(S))(x)=ga(S) whenever xeCQ—Sym(S). Recall
that, by definition, (7(a(S)))(x)=(a(S))(7Y(x)) and 71(x)=xo7 for every xec®.
(See section 3.) It follows that
Aut(afS))
={r](m:Q-Q is a bijection) and 7(a(S))=a(S)}
={r|(a(S))(xor)=a(S)(x) for every xeCY}
={7|(x07)eSym(S) exactly when xeSym(S) for every xeCQ}
=(r|{bgowor|weAut(S)}=Sym(S)}

If 7eAut(S), then woTeAut(S) exactly when weAut(S), so that
{hSoworlweAut(lS)}={hSowo-r|woreAut(S)}=Sym(S) and hence TeAut(a(S)).

4

Conversely, if 7¢Aut(S), then wor is not the identity function for any
- weAut(S), and since hg is injective, hsg{hsowo—rleAut(S)}, whereas
hg€eSym(S), so that T¢Aut(e(S)). Therefore Aut(a(S))=Aut(S) for all See’*.
Finally, suppose the structures S,Tee¢’ * are such that a(S)¥a(T). The
function a(S):CG(S)-»B only takes the values gi(S)eB; and go(S)€B2 while the
function a(T):CG(T)—»B only takes the values gi(T)eBy and gy(T)€By. If o is
empty, then the lemma holds trivially, and otherwise C is clearly non-empty.
Since a(S) and a(T) are isomorphic, and BinBy=0, it must be that gi(S)=gi(T)
or g2(S)=g2(T). Since g4 and gy are injective it follows tHal; S=T, as required.
Therefore a:of * +F 40,C,B) satisfies (i) and the embedding
E:@P-»?'Z((O,C,B) exists, as required. 0 .
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Proof of theorem 8.1: Let a:e/ -+ ‘z((b,C,B) be the (isomorphism class)

embedding deﬁned in lemma 8.3. Assume, without loss of generality, that
KNC=0 and let A=KUC and K=KuU{®} for some ©¢K, as usual.

For any ground set Qe 2, the "grid point" yeAQ can be expressed
uniquely as RAx (see section 3) where the prescription £:Q-K and "subgrid
point" x:G(R)-~C are defined as follows. For each qeQ, &(q)=y(q) whenever
y(q)€eK, and £(q)=® whenever y(q)eC. This means that
G(R)={q|q€eQ and £(q)=0}={q|qeQ and y(q)eC}. For each
q€G(R),x(q)=y(q). The statement (ﬁAx)eAQ shall mean y(—:AQ and y=RAx,
where y uniquely determines £ and x (and visa versa, of course).

Define a 2 -respecting function f:e/+F 'Z(K,C,B) as follows. For any
ground set Q€2 and any structure Se on let ﬂ(S):AQ—_»B be the function defined
by (6(S))(RAX)=(a(S[R]))(x) for every (RAx)EAQ. (Observe that g is indeed
2 -respecting.)

Recall again the "coloured grid" visualisation (section 4). The "grid
points" in AQ are partitioned into disjoint "subgrids" of various dimensions.
(These subgrids are not the same as those in section 4.) There is a separate
subgrid for each prescription REKQ and the subgrid associated with a particular
£ consists of the gridpoints KAx for every xECG(ﬁ). This subgrid is
"coloured" identically to the “coloured subgrid" E(S[ﬁ]):CG(ﬁ)—»B. So the
coloured grid ﬁ(S):AQ—»B is obtained by "piecing together" in an orderly way,
the coloured subgrids E(S[ﬁ]):CG(ﬁ)—»B, associated by a with each minor S[f]
of S.

To show that 3 is an embedding, it is necessary to show that 3 respects
point removals and (structure) isomorphisms (making 4 a homomorphism) and
that it is injective. Respecting point removals follows only from the way the
"coloured subgrids" are pieced together. Injectivity follows from the injectivity

of (the isomorphism class homomorphism) .@, together with the above "piecing
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together", and similarly for respecting of (structure) isomorphisms. These
facts are proved formally below.

For any ground set Q€2 , any structure Seef, any prescription 3EKQ
and any "gridpoint" (8Ax)eACW) it holds that
(B(S[3)))(RAx)

=(a((S[3D[A))(x) _ (by definition of §)

=(o(S[JAR]))(x) (by condition (M5))

=(B(5))((3AR) Ax) (by definition of )

=(6(S))(JA(RAX)) (since A is associative)

=((8(S))[J])(RAXx) (by definition of point removal in
7 9K,0,B)).

Therefore B(S[J])=(4(S))[J], and B respects point removals.

For all ground sets Q,P€.2, every structure See/y, every bijection w:Q-P
and every "gridpoint" (RAx)EAQ, the following holds. First note that ‘every
element of AT is of the form w(RAX) and, as it is routine to show,

(W RAX))=(w(R))A(w] a( ﬁ)(x)), where w| G(#) is the bijection w restricted to
G(R). The following chain of equalities hold for the reasons given.
(B(e(5)))({RAX))

=B (AR)A(W] g (g) ) (as stated above)

=(e((w(S)RM)(w] g(g)x)) (by definition of 5)
(@0l o) S @] ggy®)  (by condition (M3)
=(w|G( )(a(S[ﬁ])))(w|G( )(x)) (since @ respects structure
isomorphisms)
=(a(S[R]))(x) (by definition of structure isomorphism
in ¥ 4K,C,B))
=(4(S))(RAx) (by definition of f)
=(w(6(S)))(w(RAX)) By definition of structure isomorphism

in ¥ 4K,C,B)).
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Therefore A(w(S))=w(H(S)), and B respects structure isomorphisms. This
'proves that f is a minor class homomorphism.

Finally, if ground set Q€4 and distinct structures S,Te€«/~, then, since o
is injective, a(S)#a(T), so that (a(S))(x)#(a(T))(x) for some xeCR. Let the
prescription “J‘teKQ be such that G(9M)=Q, that is Yq)=© for every qeQ.

Then MAx=x and S[M=S. Now x€C, so that xeA® and
(B(S))()=(B(3))(MAx)=(&(S[))(x)=(a(S))(x). Similarly
(A(T))(x)=(a(T))(x). Therefore (A(S))(XJH(AT))(x) and B(S)}#A(T). So fis
injective and hence an embedding. Therefore the minor class ¢ is

embeddable in & 4K,C,B). o

Theorem 8.1 was proved by constructing an embedding, and then going
through the lengthy, but routine, process of verifying that it is one. A similar
approach is possible for the following theorem. However a different (more

elegant, I believe) proof is given using some universal algebra theory.

Theorem 8.4: If (¢/,2,J,K,#) is a minor class with |K|>2, then there
exists a set B and a congruence g on & 'Z(K,O),B) such that (¢/,4,J,K,#) can
be embedded in & JK,0,B)/q.

Proof: Consider the minor class & 2(K,0,{1,2}), abreviated to &, and the
variety V({F}) generated by it.

As shown in section 7, V({ #})=S(H(P({ #}))). And each minor class
in P({&}) is isomorphic to & 'Z(K,(O,B) for some set B, by the example given
after the definition of direct product. Therefore, any minor class in
S(H(P({F}))) is a subalgebra of a homomorphic image of & 'Z(K,O,B).
Equivalently, any minor class in S(H(P({$}))) is embeddable in & 'Z(K,(D,B) /1

for some set B and some congruence q on & 'Z(K,Q),B). (Recall that the
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homomorphic images of & 'Z(K,Q),B) are exactly the minor classes isomorphic to
F '2(K,¢,B)/ q for some congruence g.)

The theorem will follow if we can show that V({¥}) is the variety of
(£ ,K) minor classes. But V({F})=alg(eq({F})). . Therefore, to show that
V({&}) is indeed the variety of (£ ,K) minor classes, we need only show that
eq({F}) contains exactly the equations valid in every (£ ,K) minor class.
Clea.rl& an equation valid in every (£,K) minor class is valid in &, so that the
theorem can only fail if there is some equation (Y,¢,r) which is valid in &, but
not in every (£ ,K) minor class. Suppose that (Y,f,r) is such an equation.

Now {1,2} is non-empty, so that F has at least one structure on every
ground set, that is, J has full support. By the discussion on equg,ti‘ons in
section 5, the proper equation (var(¢,r),4,r), denoted ¢=r, is also valid in &,
but not in every (£ ,K) minor class.

For i=1,2, let ' be F 4K ,0,{i}). Clearly &1 and F?2 are disjoint
subalgebras of &. Suppose {=r is not a regular equation, that is, the variable
x (say) on the left hand side is different from the variable y (say) on the right
hand side. Choose an assignment a:{x,y}-+F such that o(x)e F! and
o(y)eF2. (This is possible since, while & must be 2 respecting, both F! and
F? have full support, as {1} and {2} are non empty.) Now a(£)eF! and
o(r)e F2, so that a(£)#a(r), meaning that ¢=r is not valid in &. (Recall
from section 5 that « is the extension of a.) This contradicts the original
assumption, so that /=r must be regular.

By the theory of equational deduction is universal algebra [3], there exist
equations which (in the presence of the equations valid in all (2 ,K) minor
classes) are valid in exactly the same (2 ,K) minor classes as £=r. These
equations are obtained from ¢=r by deduction rules [3] and one such equation
will be iwpﬁx=p3x for some ground sets Q,Pe 2, some prescriptions ﬁ,{}EKQ
with G(J)=P and some bijection w:G(R)-P. (This equation is obtained by
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‘ﬁx and i’p

3

putting £ and r into canonical form, say i% x respectively, and

applying i™ to both sides, letting w be 7710g.)
J

The equation iwpﬁx=p x is valid in &, so that for every ground set
Qe2 and every structure fe 5, (that is, £K9{1,2}), it holds that w(f[&])=1[3].
For every fe ‘7Q and zeK? it follows that (w(f[8R]))(2)=(f[J])(z), and by the
definition of point removal and structure isomorphism in & ’Z(K,Q),{l,2}), that
f(RA(w(z)))=f(JAz). This is only possible if for every 26K

(RA(wY(z)))=(JAz), so that (RA(w(z)))(q)=(JAz)(q) for every qeQ. Now

(.ﬁA(w‘l(z)))(q)=[ £A(q) whenever qeQ-G(R) |
z(w(q)) whenever qeG(8) (or equivalently, w(q)eP)

and is equal, for all qeQ, to
J(q) whenever geQ-G(J)=Q-P
(3AZ)(q)={

z(q) whenever qeP.
Suppose w:G(RK)-P is not the identity function. Let qeG(R) be such that

w(q)#q. There are two cases to consider; either qePNG(R) or qeG(RK)-P. If
qePNG(R), then choose 2€KF by letting z(q) and z(w(q)) be different elements
of K (and defining z on the rest of P arbitrarily). This contradicts the above
equality. If qeG(R)-P, then choose z(w(q)) to be an element of K, different
from J(q) (and define z on the rest of P arbitrarily). Again the above equality
is contradicted. (Observe that both these cases use the fact that |K|>2.)
Therefore, w is the identity, as is w!, and G(R)=P=G(J), so that £(q)=0=J(q)
for every qeP. Also (RAz)=(JAz) so that K(q)=J(q) for every qeQ-P, and

J

hence £=J. But then the equation iwpﬁx=p X is equivalent to pﬁx=pﬁx

which is valid in every (£ ,K) minor class, contradicting the assumption that
(Y,€,r) and hence, {=r, iwpﬁx=p3x and pﬁx=pﬁx are not valid in every (2 ,K)
minor class. So every equation valid in & is valid in every (£ ,K) minor

class, and the result follows. ©
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SECTION 9: A CONNECTION WITH CATEGORY THEORY

There is an interesting correspondence between categories and regular
unary varieties. This I;rovides insight into the role of free algebras and their
relation to the operations of the variety.

Let 2 be a set whose elements are called objects. Let
f=< 0s,t | (s,t)€2 x2 > be a 4 x2 —partition of a set whose elements are called

morphisms. The elements of ¢, are morphism from s to t. And for all

s,t
objects r,s,t€ 2, let o be a binary operation which sends each pair of morphisms
veﬂr,s and we as,t’
v and w. The triple (£,0,0) is a category [4] if the following two conditions

hold.

to a morphism in 0r ¢ denoted wov, called the composition of
?

(Cat 1)  For all objects q,r,8,t€ 2, and all morphisms ue 0q,r’ VE (7r’s and
WE as,t it holds that wo(vou)=(wov)ou

(Cat 2)  For all objects s€ 2 there exists a morphism 15¢ 03’8, the identity
morphism on s, such that for all objects r,te.2 and all morphisms
VE ar,s and we %,t it holds that 1%ov=v and wol®=w.

Now ¥=(2,0) is, of course, also a unary signature. The elements of 2
are both objects and sorts, while the elements of ¢ are both morphisms and
operator symbols. Let © be the set of Z-equations wvx=(wov)x and 1"x=x,
where x is a variable of sort re 2, for all sorts (objects) r,s,t€ 2, and all
operator symbols (morphisms) ve dr,s and we as,t. These equations are regular,
so that A=(X,0) is a regular unary specification and alg(A) is a regular unary

variety. (Note again that the objects of the category are the sorts, not the

varieties, algebras in varieties, or elements in algebras.)

An algebra A in the variety can be thought of as a "realisation" of the
category' in the following sense. There is a set A, for each object (sort) se 2,
a function w A:As—vAt for each morphism (operator symbol) we 0s,t’ for all

objects (sorts) s,t€2 (in particular, IX:AS—»AS is the identity function) and
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composition of functions acts the same way as composition of morphisms (that
is, for all morphisms/operator symbols ve 0r,s and we 0s,t’ the function

- (wpov A):Al_—>At is the same as the function (wov),:A -A,, as guaranteed by
the equations). In fact the algebras in the variety are exactly the
"realisations" of the category in this sense.

For example, consider the category whose objects are the elements of 2,
where 2 is a set of sets, and for each pair of sets Q,P€2, the morphisms from
Q to P are the bijections from Q to P, and composition of morphisms is
composition of bijections. Then the regular unary variety corresponding to
this category is the variety of isomorphism classes whose set of ground sets
is 2.

Let (£,0,0) be a category and let & =alg(A) be the regular unary
variety obtained from this category as above. If x is a variable of sort s€ 2,
let us determine what the free algebra of % , freely generated by x, looks like.

- Recall (from section 7) that this algebra is unique up to isomorphism, and one
such algebra is TE(x)/eqx(if ), abbreviated to F (where ¥ is the unary signature
(2,0)). Abbreviate Tz(x) to T. The elements of T are the Y~terms which
have the variable x, and eqx(if ) is an equivalence relation on these, making
the elements of F equivalence classes of elements of T. According to the

abovementioned equations, any term wlwz...wmx is eqfuivalent to the term wx

where the morphism w=wlow20...wm. (For m;O, the term x is equivalent to
1°%.) The definition of "term" (see section 5) ensures that this composition of
morphisms is defined. Clearly each equivalence class contains exactly one term
of the form wx, where w is a morphism from object s€ 2 (since x is of sort s),
and all morphisms from object s arise in this way. Also if wx, and hence the
equivalence class containing it, wx-eqx(if ), are of sort t€2 then w is a

morphism from object s to object t. Thus, for each sort t€ 2, the elements of

F, are exactly the equivalence classes wx-eq (¥ ) where WE{, 4 i8 a morphism
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from s to t. For any sort (object) re2 and any operator symbol (morphism)
ue at,r the function uT:Tt_’Tr sends wx to uwx and this is equivalent, under
eq (% ), to the term (uow)x which has a single operator symbol (uow).
Therefore the function up:F,-F  sends wx-eq (¥ ) to uw:yc-eqx(iﬁ‘ ) which
equals (uow)x-eq (¥ ).

We can discard superfluous symbols by taking the isomorphic copy,
denoted Fg(ls), of the above algebra F, induced by the isomorphism from F to
Fg(ls) which sends each wx-eq™(# ) to w. So the elements of sort te4 of
Ff(ls) are exactly the elements of 0s,t' Note that these are also morphisms
and operator symbols. This causes no problems and in fact highlights the
connection between these three kinds of entities. For any sort (object) re 2

and any operator symbol (morphism) u60t o 1t follows (from the isomorphism

from F to Fif(ss)) that the function u g( s):Ff(ls)aFf(ls) sends each element
F (1

(morphism) weF %(1%)(=¢, ,) to the element (morphism) (uow)eF ¥(1%)(=¢, ).

(That is, u g'( S) has the effect of composing by morphism u on the left.)
F~(1
It is interesting to consider homomorphisms from Fif(ls). For any

algebra A€¥ , any sort s€2, and any element of aeAs define the
homomorphism ¢‘2 (abbreviated to ¢, when A is known) as follows. The
homomorphism ¢:Fg(ls)—»A sends lseFif(lS) to a €A, and this uniquely
determines ¢a'- For any sort t€2 and any element weF f(ls)(= 0S,t) it follows
that ¢a(w)=¢a(w018)=¢a(ng(]S)(ls))=w A(8,(1%))=w, (a); that is, ¢, sends
w 10 W, (a).

It is natural to ask if there is a construction yielding a category from a
regular unary variety, which in a certain sense, is the inverse of the earlier
construction. Not every regular unary variety arises directly from a category
via the earlier construction, and an attempt to use operator symbols as

morphisms need not work, (since the equations may not be of the right form).
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Instead, the free algebras (generated by one element) provide the key, and the
construction is as follows. Let the set of objects for the category be the set of
sorts 4 (say) for ¥ . For each sort s€ 42 let Fif(ls) be a free algebra of €,
freely generated by an element 13 of sort s. It is easily arranged that the
universes Fg(ls) be disjoint for distinct objects s. For each sort (object) te 2

let 0 ., the set of morphisms from s to t, be Ff(ls). Finally, for all objects

8,t’
(sorts) r,s,t€ 2 and all morphisms (elements of free algebras) we ds’t(=Ff(1S))
and ueﬁt,r(=Ff(
¢,(w). (Recall that the homomorphism ¢u:Fg(1r)—»Fg(1t) sends 17¢F
o
r
the category (£,0,0) is uniquely determined except for the names of the

1t)), -composition of morphisms is defined by letting uow be
&
(

T
(1) to

uek lt).) Since the algebras Fg(ls) for s€4 are unique up to isomorphism,
morphisms; that is, it is unique up to a category isomorphism which fixes
objects. Two categories which are isomorphic, with the isomorphism fixing
objects, are object—equal. In particular, if ¥ were constructed from a category
as pér the original construction, then the reverse construction yields a category
which is object-equal to the first, (and can be chosen to be equal). Two
regular unary varieties are equivalent if the above construction can yield the
same category for both (in which case it must yield categories which are
object-equal). ~(Variety equivalence for 1-sorted algebras is defined in [5].)
So, via these constructioné, there is a one-to—one correspondence between
regular unary varieties (up to equivalence) and categories (up to
object-equality).

When two varieties are equivalent, there is a (usually obvious)
one-to-one correspondence between their algebras. Corresponding algebras
have the same universe, and homomorphisms between corresponding pairs of
algebras, as functions between their universes, are exactly the same for the two
equivalent varieties.  So most theory holding for one variety, immediately

follows for the other. Nevertheless, the algebras in one variety may have a



- 53 -

totally different signature to those in the other variety. Theory which is
intrinsically dependent on the signature (for example, algorithms for term
manipulation and equational deduction [3]) does not automatically transfer from
one variety to an equivalent variety, but this paper is not concerned with such
theory.

If 2 is a hereditary set of finite sets and K is a set, then the variety of
(£ ,K) minor classes, is equivalent to the variety of (2,K) point removal
classes (as it is routine to show). As was observed in section 3, a (2 ,K)
minor class is immediately recognisable as a (2 ,K) point removal class, and
visa versa, despite the fact that these algebras have quite different signatures.

Let # be the (regular unary) variety of (£ ,K) minor classes for some
hereditary set of (not necessarily finite) sets and some set K. A category
(£,0,0), unique up to object—equality can be constructed from % , as above,
where the objects are the ground sets (as well as the sorts). The morphisms
(in ¢) are in one-to—one correspondence with all the possible minor class
operations, and these are any sequence of point removals and isomorphisms, or
equivalently a point removal followed by an isoﬁmrphism (see section 5). For.
all objects (ground sets) Q,Pe2, it follows that the morphisms from Q to P are
in one-to—one correspondence with the pairs (w,R) for each prescription #ek9
and each bijection w:G(K)-P. Assume, without loss of generality, that K is
disjoint from every ground set, and let 1:QUK-QUK be the identity function.
Let the morphism corresponding to (w,&) be the function (1ARAw):QUK~PUK
and let composition of morphisms be composition of functions. It is routine to
check that this gives the appropriate category. It is informative to examine
the above function. Each qeQ-G(R) is sent to £(q), signifying that point
is removed in manner £(q), each qeG(R) is sent to w(q), point q is "renamed"

as point w(q), and each manner £eK is sent to itself, since once a point is
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removed (in some manner) it stays removed (in that manner). Observe that
this function is surjective.

It is interesting to look at the case where all the morphisms of a category
are empimorphisms. If r and s are objects, then the morphism v from r to s is
an epimorphism if for all objects t and morphisms u and w from s to t it holds
that uov=wov implies u=w. Let (£,0,0) be a category in which every
morphism is an epimorphism, let ¥ be the regular unary variety constructed
from it and for each sort (object) re.2, let Fg(lr) be the free algebra of &,
freely generated by 17, whose elements are morphism from r, as defined earlier.
Then ¥ is a special unary variety. For any sort (object) s€2 and any
element (morphism) vEFi:(lr)(= g ,s) the homomorphism ¢V:F€(ls)—»F€(1r) is
an embedding, since if ¢ _(u)=¢, (w) then (by definition) uov=wov so that u=w
(since v is an epimorphism). Therefore Fg(lr)inc(v) is a free algebra of ¢,
freely generated by v, since it is isomorphic to Fg(ls). These implications also
hold in the reverse direction making these statements equivalent. Therefore
the regular unary variety € is a special unary variety if and only if, whenever
F(a) is a free algebra of & , freely generated by a, and beF(a), then F(a)inc(b)
is a free algebra of &, freely generated by b, and this occurs exactly when ¢b
is an embedding.

Returning to our example, the variety of (£ ,K) minor classes is a special
unary variety, since every morphism in the corresponding category is an
epimorphism. (This follows immediately from the fact that the
abovementioned functions (1ARAx), which serve as the morphisms, are

surjective.)
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SECTION 10: THE CORE AND COMPLETION OF A UNARY ALGEBRA

Let € be a special unary variety. Without loss of generaiity we assume
that & is derived from a category (2,4 o), where ¥=(2,0) and A=(%,0), as
in the previous section. While some of the material in this section works in a
much more general setting, the séction as a whole requires that & is a special
unary variety. This theory is put into context for minor classes in section 11.

For each object/sort s€ 2, recall that Fs’( 1%) (abbreviated to F(1°), since
¥ is fixed throughout this section) is the free algebra of # , freely generated
by 13, whose elements are the morphisms from object s, as defined in the
previous section. Note that the elements of ¢ are simultaneously morphisms,
operator symbols, and elements of the algebras F(1%) where s€ 4.

For any algebra Ae# , any sort s€2, and any element a,EAS, recall that
o2,
weFt(l (= Z, 4..) to wy(a). In particular, if re2 and vEFS(lr) (=0r,s)’ then

¢, F(1 SY-P(1") sends weF (1 ) (=

or ¢, for short, is the homomorphism ¢a:F(ls)aB which sends each

A t.) to wF r.(v) which is wov.  Also
1

. . t
¢ 00 is ¢WA(a) since ¢W:F(1 )-F(1%) sends 1" to w and ¢a:F(1S)—»A sends w
to wy(a). In particular ¢ o¢ =4 i (v)=¢wov' (Note the order of v and
F(1')

w in the first and third expression.) For every ved, ¢ . I8 an embedding, since
this is equivalent to the condition that € is a special unary variety, (see
section 9).

Let (Ai|iEI) be a family of algebrasin §. For ea,ch sort s€2 let

A = U A; and suppose that A nA =¢ for all dlstmct S, te.Z This ensures
iel

that A=<A_|s€e2>=U <Al|se.2 > is well defined. Let us attempt to define
iel

an algebra A, with universe A, such that A1=AincAl for each i€el. This

requires that w A(a)=wAi(a,) for all sorts s,te 2, every operator symbol WE 1,
?

every element aEAS, and every i€l such that aEA;. Therefore the algebra A
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~ exists exactly when wAi(a) is independent of i. In this case, the algebras

(Ai|ieI) are compatible, and A is denoted by _lEJIAi. By definition, A is a

i
Y-algebra. In fact A is in € as the following argument shows. ‘Suppose Ais
not in #. Then some (regular unary) equation, {=r, in © is not valid in A.
So there is some assignment sending the (single) variable in /=r to (say) acA
such that its extension sends £ and r to distinct elements of A. But acAl for
some i€l, making ¢=r invalid in Al which contradicts Ale# . Therefore A is
indeed in €.

Let (Ai]iEI) and A=.léJIAi be as above. Let Be# and let ¢:Al4B be

i
homomorphisms. Let us attempt to define a homomorphism a:A-B such that
a(a)=ai(a) for every acA and every i€l such that acAl. Clearly a is well
defined exactly when ai(a,)' is independent of i, for every acA. In this case, the
homomorphisms ( ailieI) are compatible and o is denoted 'leJIai. The fact that
i
a is a homomorphism is easily deduced from tﬁe fact that each ai is.

Consider algebras A,B,C,De# , where C<A and D<B, and a
homomorphism a:A-B. The restriction of a to C, denoted a|C:C-»B, satisfies
(a|c)(c)=a(c) for every ceC. The inverse image of D under o, denoted a1(D)
is the subuniverse of A for which aca1(D) exactly when a(a)eD, and o1(D) is
the corresponding subalgebra of A. The homomorphism a confined to D,
denoted a|D:a'1(D)—>D, satisfies (a|D)(a)=a(a.) for every aca}(D). For any
algebras E,Fe#¢ and any homomorphism :E-F, define a=4 to mean that A=E.
and o(a)=p(a) for every acA. (Note that B and F are allowed to be different,
although they are both extensions of the homomorphic images a(A) and S(E),
which are identical.) For example a]D=a| YD)’ For any homomorphism 7y
let dom(4) denote the domain of 4. (For the above o and §, dom(a)=A and

dom(f)=E.) Define a relation < on homomorphisms, as
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follows. If o and # are homomorphisms, then <« exactly when
dom(ﬂ)<dom(a) and f=aqa| dom(g)" (For example, w1th homomorphlsms a:A-B

and o:ALSB as in the previous paragraph, dom(a) A1 a= a|A and o <a for

every i€l.) Clearly < is a partial order on homomorphisms. (Note that it is
unrelated to the partial order on congruences.)

For any algebras A,Be# let h(A,B) be the partially ordered set of all
homomorphisms a:C-B, where C<A, with the partial order on homomorphisms
as above. We now show that every element of h(A,B) is bounded above by a
maximal element. Let (ailiEI) be a chain in h(A,B). Clearly the

homomorphisms (oz |i€I) are compatible, so that a= U o' exists, is in h(A B),
iel

and is an upper bound for the chain. The result then follows by Zorn's
Lemma. Note that if a€h(A,B) and dom(a)=A then ¢ is maximal in h(A,B)
but the converse need not hold.

The following lemma is essential for the development of this section.

Lemma 10.1: (i) If a:C~B is maximal in h(A,B) (so that C<A) and D<A, then
@| onp:CND-B is maximal in h(D,B).

(ii) If B:E-B is maximal in h(D,B) (so that E<D) and »:F-D is an
isomorphism, then fo7.is maximal in h(F,B). (Note that foy is an
unambiguous abbreviation of ﬂo7|dom(ﬂ).)

(iii) If &:C-B is maximal in h(A,B) and &F-A is an embedding, then aod is

maximal in h(F,B).

Proof: (i) Suppose B:E-B satisfies (@|5npp)<B and Seh(D,B) (so that
(CND)<E<D). Then f is compatible with @, since they agree on CNE=CnD, so
that aUB:CUE~B exists, a<(aUf) and (aUf)eh(A,B). Sincé « is maximal in
h(A,B) it follows that CUE=C and hence E=CnD, so that f=(c| CnD)'
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Therefore a|~py is maximal in h(D,B).

(i) For any f,eeh(D,B) it is clear that f<e exactly when foy<eoy (foy and
o7 are in h(F,B)), so if 4 is maximal in h(D,B) then fo7y is maximal in
h(F,B).

(i) Let D=§F), let the isomorphism :F-D be &F-6§(F), let E=CnD, and let
fp=a|E. The result then follows from (i) to (ii). ©

An algebra Ze# is complete if for every sort s€.2 it holds that, if the
homomorphism f is maximal in h(F(1%),Z), then dom(8 )=F(1°). Observe
that such a § must be ¢y,» Where b=ﬁ(1s). So an equivalent condition for Z
to be complete is that, for any sort s€ 2 and any homomorphism aeh(F(lS),Z)
there exists beZ such that a<@,. In this case, for every wedom(a)<F(1%) it
holds that a(w)=¢,(w)=wy(b). (In a sense we are "solving for b".) For an
algebra Ae# it is of interest to find an extension of A which is complete, and
to find a "smallest" such complete‘extension. The theory which leads to this
result is also of interest.

Consider algebras A,Be¥ with A<B. It is informative to examine
homomorphisms of the form ¢b|A (or ¢lb3|A) where beB.  This is beca,usg, for
B to be complete, it is necessary that every homomorphism « which is maximal
in h(F(1%),A)(Ch(F(1°),B)) is bounded above by some ¢, 50 that a=¢b|A. It
turns out that there is a "smallest" complete B>A, with exactly one such b
corresponding to each such @) This motivates the following definition. If
beB, (for some sort s€.2) and ¢b|A is maximal in h(F(1%),A), then b is
upon A. In particular, every element of A is upon A.

For any element bEBS, and any operator symbol we as,t=Ft(ls)’ it holds
that ¢WB(b) | A=(¢bo¢w)|A=(¢b|A)o¢w. Now ¢_ is an embedding, so by

lemma 10.1, if ¢, |* is maximal in h(F(1%),A) then ¢, (b)|A is maximal in
B

h(F(lt),A). That is, if b is upon A, then wB(b) is upon A. Therefore,
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Up(A,B), the set of elements of B which are upon A, is a subuniverse of B.
Let Up(A,B) be the corresponding subalgebra of B. Clearly, if A<C<B, then
Up(A,C)=Up(A,B)nC, and in particular Up(A,Up(A,B))=Up(A,B). If
Up(A,B)=B (that is, every beB is upon A), then B is a vertical extension of A,
and A is a vertical subalgebra of B, denoted A-<B.

Theorem 10.2: (i) If A<B then the following are equivalent.
(a) A-<B.
(b) If beB, (for some sort se€.2) then ¢b|A is maximal in h(F(1%),A).
(c) If Ce¥ and 0:C-B is a homomorphism, then alA is maximal in
h(C,A).
(d) It beB-A (for some sort s€.2), then there does not exist a€A, such
that (¢y| )<,
(€) Let Ce# and ach(C,B). Then if Aeh(C,A) with (a|)<g, then a
and £ are compatible (so that aUf exists).
(ii) The relation —< is a partial order.
(iii) If A,B,Ce¥¢ with A<B<C and A-<C, then A—<B.
(iv) If A,Be¥ and A<B is complete, then Up(A,B) is complete.

. Proof: (i) It is immediate that (a) and (b) are equivalent, and clearly (c)
implies (b). If (b) holds then (d) must hold, since otherwise dom(¢b|.A) is a
proper subset of F(1%) while dom(¢a)=F(ls), contradicting the maximality of
g™ in B(F(15),A).

Suppose (€) does not hold. Then there exist incompatible & and f as in
(e), so that there exists ceCg (for some sort s€2 ) such that a(c)#6(c). Now
cgal(A), since a and [ agree there, so a{c)eB-A whereas §(c)€A. Let b=q(c)
and a=f(c), so that ¢b|A=(a0¢c)|A=(a|A)o¢c, and ¢, =fog,. Since aIASﬂ
it follows that ¢b|AS¢a’ contradicting (d). Therefore (d) implies (e).
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Finally suppose that (e) holds. Let a:C~B be a homomorphism, so in
particular ach(C,B). Let feh(C,A) with a|A<f. Now 8 only takes values in
A, while outside a'1(A),a only takes values in B-A. But by (e), o and § are
compatible so that § must be equal to a|A. Therefore a|A is maximal in
h(C,A) and (c) holds. It follows that (a),(b),(c),(d) and (e) are equivalent.

(i) Clearly A-<B and B-<A if and only if A=B. Suppose A-<B and B-<D
(so in particular A<B<D). Consider condition (e), and let Ce¥ , a€ch(C,D)
and feh(C,A) with (a|)<s. Now (a|B)en(C,B) and (|B)|A=a|A<4, so
that a|B and f are compatible, since A—<B. Therefore (alB)Uﬂ exists,
(alB)Uﬂeh(C,B) and a|B5a|BUﬂ.- Since B—<D, it follows that & and (aIB)Uﬁ
are compatible and aU((a|ﬂ)Uﬂ)=aUﬂ exists. But then o and f are compatible
s0 that A—<D.

(iii) If A<B<C and A-<C then Up(A,B)=Up(A,C)nNB=CnB=B, so that A-<B.
(iv) Suppose A<B and B is complete, and let U=Up(A,B). For any sort
s€2, consider any homomorphism aEh(F(lS),U). Let the homomorphism # be
maximal in h(F(1%),A) with a|Agﬂ. From (e) it follows that « and § are
compatible so that oUf exists. Since B is complete, there qxists bebS such
that (’aUﬁ)Sq)b, and in particular f<¢, and a<¢,. But since f is maximal in
h(F(1%),A) it follows that b is upon A, and hence beU. It follows that, for
any sort s€ 2 and any homomorphism aEh(F(ls);U), there exists beU such that

a<¢,. Therefore U=Up(A,B) is complete. 3]

Part (iv) says that if B is complete and is an extension of A, then a
"smaller" complete extension of A, namely Up(A,B) is obtained by "discarding"
those elements of B which are not upon A. Note that the conditions of part
(iii) do not imply B-<C. For example let B,Ce¥ be such that B<C holds but
B-<C does not. If Ac# is the empty algebra, then A<B, and by (d) (there
does not exist a€A) it follows that A—<B and A—<C.
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If A-<B, then define a relation q(A,B) (abbreviated to q when A and B
are known) on B as follows. For every sort s€ 42 and all elements a,bEBs, let
agb exactly when ¢a.|A=¢b|A' Consider any operator symbol we g, t(=Ft(1S))

A A - : ;
and recall that ¢WB(b)| =(4y,| Jog,, (and similarly with b changed to a).

By the definition of g, agb implies (wg(a))d(ag(b)), making q a congruence.
A congruence t on B preserves A if atb and a€cA implies a=b. Now ¢
preserves A, since if agb and a€A, then ¢a=¢a|A=¢b|A which must be ¢, so
that a=b. In fact q is the unique maximal congruence which preserves A, as
shown below. Consider any congruence' ton B satiéfying t{q, so that there
exist elements a,beB  (for some sort s€2) such that atb while '¢a|A#¢b|A.
But then there exists weFt(ls)(= Os,t) (for some sort t€.2) such that

¢, (W)=wp(a)€A,, is different from ¢, (w)=wp(b), whereas (wg(a))t(wg(b)), so
that v does not preserve A. In a sense, congruences "clump together" elements
of an algebra (respecting sorts and the operations of that algebra) and the
congruence q does this as much as possible while preserving A (by keeping its
elements separate from each other, and from those in B-A). If q is the
minimal congruence (that is, agb implies a=b for all a,beB) then B is a small
extension of A, and A is a big subalgebra of B, denoted A<B. (In this case, the
elements of B are already "clumped together" as much as possible, subject to

preserving A.)

Theorem 10.3: (i) If A<B then A—<B.
(ii) I A<B then the following are equivalent.
(a) A<B.
(b) If beB (for some sort s€2 ) and /4 is maximal in h(F(1%),B) with
(6,12)8, then B=,
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(c) If Ce# and 0:C-B is a homomorphism, and § is maximal in h(C,B)
with (aIA)Sﬂ, then f=o. In this case, given C, a|A uniquely
determines a. ‘

(d) If beBy (for some sort s€2) and the homomorphism 3 :F(1%)-B
satisfies (¢b|A)5ﬂ, then f=¢, .

(i) The relation < is a partial order.
(iv) If A<B<C and A<C, then A<B and B<C.
(v) If B<C and D<C, then (BnD)<D.
(vi) If B<C and D<C, then (BND)<C.

Proof: (i) The definition of A<B assumes A-<B.

(i) ~ Suppose that A<B and consider (d). Let beB  (for some sort s€2) and
let B:F(15)-B satisfy (¢b|A)5ﬂ. Let a=4(1%), so that p=¢,. Clearly

(61 M)<(81™)=(8,1*). But ¢,|* is maximal in h(F(1°),A), since b is upon
A, s0 that (¢b|A)=(¢a|A). Therefore agb, so that a=b (by definition of
A<B) and f=¢,=¢,. Thus (a) implies (d).

Conversely, suppose that (d) holds. This clearly implies condition (d) of
theorem 10.2, so that A—<B. If agb then (¢a|A)=(¢b|A), so that (¢b|A)S¢a
and (d) implies ¢, =¢,, so that a=b. Thus (d) implies (a).

Clearly (c) implies (b) and (b) implies (d). Suppose that (c) does not
hold. That is, there exists a homomorphism a:C-B, @nd a homomorphism £,
maximal in h(C,B), with (alA)sﬂ but a#f8. In particular, ffa so that there
exists cedom(4)(<C) such that a(c)#6(c). Now aIAsﬂ so that
(ba(c)] A)=(a°¢c) 1A=(al A)°¢’c5ﬂ° c=Pp(cy Whereas Go(cy#Pgc)
contradicting (d). Therefore (d) implies (c) and hence (a),(b), (c) and (d) are
equivalent. |
(iii) Clearly A<B and B<A if and only if A=B. If A<B and B<C then A<C
and for any algebra De# and any homomorphis a:D-C, it holds that a|A
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uniquely determines alB which in turn, uniquely determines «f C=a, s0 that
A<C. Therefore < is a partial order.
(iv) Suppose A<B<C and A<C. Consider any algebra De# and any
homomorphism a:D-C. By definition aIA uniquely determine . Clearly any
homomorphism uniquely determines all its restrictions. Immediately, a| A
uniquely determines aIB, so that A<B, and a|B uniquely determines ¢, so that
A<C.
(v) Suppose B<C and D<C, and consider any algebra E€¥ and any
homomorphism a:E-D. Then alB, which is in fact aanD, uniquely
determines a. Therefore (BND)<D.
(vi) Suppose B<C and D<C. Then D<C, so that (BND)<D, and since < is a
partial order, (BnD)<C. ©
If for any Ce# it were the case that the intersection of a}l bng
subalgebras of C, was again a big subalgebra, then we could conclude that there
would be a unique minimal big subalgebra (namely this intersection.) However
part.(vi) only tells us that the intersection of two, and hence by induction, of
finitely many big subalgebras, is again a big subalgebra. In fact there need
not be a minimal big subalgebra. But if there is, it must be unique, by (vi).
If Ac# has a (unique) minimal big subalgebra, then it is called the core
of A, and A has a core. (Some sufficient conditions for this to occur are given
later.)
On the other hand, A always has a maximal small extension, which is
unique in a certain sense, as is shown shortly.
Consider algebras A,Be# with A-<B. Define a function <I>A’B
(abbreviated to ® when A and B are known) sending each element of B to a
homomorphism, where @A’B(b)=¢]g|A for each beB. If beB is of sort s€ 2,
IA

that is, beb,, then ¢, | is maximal in h(F(1%),A), since b is upon A.

Consider the operator symbol weq, t(=Ft(ls)), for some sort te2. Recall that
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¢wB(b)|A=¢b|A°¢w’ s0 that ®(wg(b))=8(b)og, . This suggests an algebraic

structure on the set of homomorphisms which are maximal in h(F(1%),A) for
some s€ 2, for which ® is a homomorphism.

Define an algebra gA (abbreviated to H when A is known) as follows.
For each sort s€ 2, let H_ be the set of maximal homomorphisms in h(F(15),A).
For any sort t€2 and any operator symbol we ds,t(=Ft(ls)) let the function
wyyHH, send each a€H to wH(a)=ao¢w. Note that ao¢_ is indeed in H,, -
since @ is maximal in h(F(1%),A) and ¢, is an embedding so that aog_ is
maximal in h(F(lt),A) by lemma 10.1. Therefore H is a Y-algebra, and if all
the equations in © are valid in H, then HE¥ . The validity of these equations

follows from the fact that ¢ 1,:F(lr)->F(1r) is the identity function, and
1

¢v0¢w= d)w ov (as shown earlier) for all sorts r,s,t€ 2, and all operator symbols

VEQ, and WEL ;. Therefore H is indeed in ¥ . For any algebra Be# with

AB., A

A—<B, the function & :B-H

(I’(WB(b))‘_“I)(b)o¢W=WH(‘I)(b))-
The homomorphism (I)A’A:A—bH sends each a€A to ¢a|A, which equals

| #., and clearly oA i an embedding. Let A=<A_|s€ 2 > where A_CA_ and
a S s="'s

is a homomorphism since

|KS|=|HSI for each sort s€ 2. Then the injection oA A H can be extended
to a bijection g:A-H. Now 7 beco‘mes an isomorphism by letting the algebra
A inherit the algebraic structure of H, that is, by setting wx{(a)=n"(wg(n(a)))
(for all sorts s,t€ 2, every operator symbol we 0s,t’ and every element aEKS).
Consider aﬁy a€A of sort s€2 (that is, aEKS) and let us determine what
n(a)=a, say, can be. The homomorphism « is maximal in h(F(1%),A).
Consider wedom(a)(CF(1%)), so that o(w)eA. Now
) a(w)=ao¢w=wH(a)=wH(n(a))=n(wx(a)). The domain of ¢ o(w)’ and hence
of n(wx(a)) is all of F(1%), so that wx(a)€eA, since 7 is a bijection and only

AA

sends elements of A to such homomorphisms. But 7| A is @ , 80 that
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n(w A(a))=<I>A’A(wK(a,))=¢wK( a)’ Therefore o(w)=w ,(a) which equa,ﬂs

¢,(w), and ¢ _(w)eA. It follows that a<g, | and hence n(a)=a=4,|® by the
maximality of a in h(F(1%),A). In particular this shows that A-<ZA, so that

&MA is defined. Now <I>A’A(a) is also ¢a|A 8o that » must be (and g

is uniquely determined). Since @A’K is an isomorphism (as 7 is), it follows
that for every a€H, there is exactly one a€cA such that a=¢a|A. The algebra
A is the completion of A. It is justified calling A the, rather than a,
completion, since it is unique up to an isomorphism which is the identity on A.

Consider algebras A,Be# with A-<B and let A be the completion of A.

Define the homomorphism oAB g by QA’B=(¢A’K)_10(<I>A’B). Then

AB B A_ A

sends each beB to the unique a€A such that ¢y | =4, |A. Observe

Q
AB,, . . N .
that (277)] 5:A-A is the identity function.
Recall the congruence q(A,B) on B. It follows immediately from its
definition, that q(A,B) is the kernel of <I>A’B QA’B,

pARNL

, and hence the kernel of

since ( is an isomorphism. Now A<B if and only if q(A,B) is the

minimal congruence, which occurs exactly when aAB 5 an embedding. In

particular, oAA LA is an embedding (the identity) so that A<A. This
shows that A is the unique maximal small extension of A (unique up to an
isomorphism which fixes A).

Suppose A-<B and B is complete. If acA is of sort s€2 (so that aEKS)
then ¢a|Aeh(F(1'S),B) and since B is complete, there exists beB, such that
(8,1%)¢¢,,. It follows that ¢p| =] s0 that @B(b)=a. Therefore if B

is complete then QA’B

is surjective. Furthermore &, the completion of A, is
complete. The proof of this is the same as the proof of theorem 10.2(iv) (with
U changed to A) except that the existence of beA such that B<dy, (where B is

as in the earlier proof) now follows from the fact that A contains all such



- 66 —

elements b. This discussion about the relationship between A and A is

summarised in the following theorem.

Theorem 10.4: | The completion A of A is unique up to an isomorphism which
fixes A. Furthermore

(i) A is the unique (up to isomorphism fixing A) maximal small extension
of A.

(i) A is the unique (up to isomorphism fixing A) "smallest" complete
extension of A in the following sense. If Be¥ , A<B and B is complete, then
C=Up(A,B) is complete, and there is a surjective homomorphism from C to A

QA’B, so that the homomorphic image of C is A which is

fixing A, namely
complete. ©

According to part (ii), if B is a complete extension of A, then the
"smallest" complete extension is obtained by "throwing away" redundant
elements of B (namely those which are not upon A) and "clumping together"
the rest as much as possible subject to preserving A.

Consider algebras A,B,C,De¥ , and a homomorphism a:D-B, where A<B
and o'1(A)=C<D. Recall from theorem 10.3(ii)(c) that « is uniqueiy
determined by a|A:C-»A. (That is, if feh(D,B) and a|A5ﬂ, then f<a.) Let
us examine the situation in more detail. If deD then ¢ of d)=ao¢ dq Therefore
¢a(d)|A=(ao¢d)|A=a|Ao¢d=a|Ao¢d|C (since dom(a|A)=C). Hence there
exists beB such that ¢b|A=a,|Ao¢ dlc, for example b=a(d), and this b is
unique since A<B. Equivalently a(C)=(a|A)(C)—<(1Aa|A)(D) where 1:D-D
is the identity function and the algebra (lAaIA)(D)=E, say, with universe
E=(D-C)ua(C) (it is assumed, without loss of generality, that (D-C)ne(C)=0)
is defined as the homomorphic image of D by postulating that the function

(lAalA):D—»E is a homomorphism. Clearly ker(lAa|A)5ker(a) so that there
exists uniquely a homomorphism y:E-B such that a=70(Aa|A). Also
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¥E)=a(D), and by theorem 10.3(v), a(C)=a(D)NA<a(D) so that 7 is uniquely

oC) g, 4 must be O)E g they agree on oC)

determined by 7|
(where they are both the identity). Therefore a=Qa(C)’Eo(1Aa|A).

Given a homomorphism £:C-A, it is natural to ask if there exists a
homomorphism ¢:D-B such that a|A=ﬂ. As shown above, it is necessary that
B(C)-<(1AB)(D)=E, say, in which case the homomorphism a:D~A (where A is
the completion of A, so that B<B=A), must be b (C)’Eo(lAﬂ). Whether or
not this homomorphism « sends all of D into B must be checked by some other
means. (A simple method is given to determine this when the algebras are
minor classes with finite ground sets).

Let us now turn to the subject of describing the core of an algebra when
certain conditions guarantee it3 existence. For any algebra A€# , recall the
quasi order < on its elements. If A has an infinite descending phain
.+ - <ag<ap<ay, where a;€Ag (for some sort s€2 ), there exist operator symbols
213, . - such that ai=f1§(ai_1) for all i=2,3,: - -, but there does not exist an
operator symbol gi such that a, =g j‘(a.) for any i€{2,3,+-}. Let wi=1° and

i
for i=2,3, - - let w'eF(1°) be defined inductively by w'=f" or flowl_l,

F(15)

so that . .<w3<w2¢wl. The homomorphism ¢a1:F(ls)—»A sends each w' to

(w1

W A(al) which equals 2. There does not exist an operator symbol gi such that

wl'1=gi S)(wi) for any i€{2,3,...} since applying ¢a1 to both sides would give

F(1

a,i_1=g1i\(ai), a possibility excluded above. It follows that - - -w3<w2<w! and
F(1%) has an infinite descending chain. Conversely, if F(1°) has an infinite
descending chain, then so does some algebra in # , namely F(1%). Therefore,
no algebra A€# has an infinite descending chain if and only if no algebra F(15)
for any s€ 2 has an infinite descending chain. It turns out that these
equivalent conditions are sufficient for every algebra A€e€ to have a core.

Suppose that € has the above property. = A few definitions are needed
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first. For each sort se.2, let E(1°) be the algebra F(1%)exc(1%). Note that
excluding 15, not only removes 13 from the universe F(ls), but also all the
invertible morphisms (called isomorphisms in the category) since these are
exactly the morphisms ueF(1%) such that u<i®<u (that is, u~1%) in the quasi
order < on F(is). Define a 2 -respecting relation 9 on A, where ayb exactly
when _¢]a,|E(13)=¢b|E(ls) (for every sort se2 and all elements a,beA); that
is, W 5 (a)=w , (b) for every weF(1%) except when we1®.  Note that w<1®
implies w 5 (a)<a since otherwise w  (a)~(a) and there exists an (iso)morphism
vEJ, say u=vow, such that u,(a)=a (so that u is a morphism from s to s) and
u<15, making 15, u,uou,uouou,... an infinite descending chain. Incidentally, ¥
is a congruence on A, as is easily shown, but this fact is not needed here. An
element a€A is a y-element if there exists beA with ayb and a#b (in which case
every c€A with ayc is a ¢~element). Let A¢=Ainc({a|a,€A and a is a
Y-element}). We show that AY is the core of A.

Theorem 10.5: Let ¥ be a special unary variety. If no algebra in € has an
infinite descending ch;;jn, then every algebra in ¥ has a core. If A€#, then
the core of A is A¢.

Proof: Suppose a,bEAS (for some sort s€2) with ayb and a#b, and suppose
that Be# satisfies B<A and agB. Then (¢a)_1(B)5E(ls), so that
¢a|B5¢a|E(ls)=¢b|E(1s)S¢b" This contradicts (ii)(d) in Theorem 10.3.
Therefore, every i-element is in every big subalgebra of A, so that every big
subalgebra contains A¢.

It remains to show that AY<A. Suppose that AY<A does not hold.

(4
Then there exist elements a,beA; (for some sort s€2) such that ¢b|A £4,,

but a#b. Let element a be minimal with this property. If weE(1%), then
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()
w<1® and by an earlier argument w Al@)<a.  Hence (¢>b|A )09 <B,00,, 50
4 o
that 6y, () A by (a) Which implies that w (b)=w,(a) by the minimality

of a. But then bya, so that bEA¢ and hence ¢b|A¢ is ¢y, whose domain is
the same as that of ¢a,’ namely F(ls). Hence ¢b=¢a, and b=a contradicting
the assumption that a#b. Therefore A¢'<A and the result follows. 6

Let ¥ be a special unary variety, none of whose algebras has an infinite
descending chain. Let A be an algebra in ¥ and let A¢ and A be respectively
the core and completion of A. The big subalgebras of A are exactly the
algebras Be# such that AwngA. The small extensions of A are exactly the
algebras Ce# (up to isomorphism fixing A) such that ASC<A. The big
subalgebras of A are exactly the algebras De# such that A¢5D5K, and these
are exactly the algebras (up to isomorphism fixing A'p) that are small
extensions of AY. Now & is the completion of all such algebras D (up to
isomorphism ﬁ);ing D) and AY is the core of them all (and every D has the
same {-elements as A¢). In particular A is the completion of A¢ and Aw is
the core of A.

We now give a method for describing algebras in ¢ . First find the

y-elements of A, thus determining its core AY. Now A is the completion of A

and AY and for each sort s€2, each element acA_ is such that ¢a|A¢ is
maximal in h(F( IS),A¢). The extent to which these elements can be visualised
depends on the nature of F(1°) and the number of y¥-elements (or the nature of
A'p). Nevertheless, A is uniquely determined by A'p, and hence by the
P-elements. Recall from section 5 that if an algebra B has no infinite
descending chain then a subalgebra A<B can be expressed as BexcC with C

minimal. (The elements of C are obtained by choosing from the minimal
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elements of B-A, one of each up to ~-equivalence.) So we can specify the
"excluded elements" of A in A. The yelements and excluded elements of A
in A uniquely determine A up to isomorphism. It turns out that many well
known minor classes have a simple description in the above terms. The

following sections apply this theory to minor classes.
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SECTION 11: THE ¥-DESCRIPTION OF MINOR CLASSES WITH FINITE |
GROUND SETS' |

We confine our attention to minor classes for which all ground sets are
finite (because none of these have an infinite descending chain). Let £ be a
hereditary set of finite sets and let K be a set. Let € be the special unary
variéty of (2 ,K) minor classes, which can be treated, when convenient, as the
variety of (.2 ,K) point removal classes (since these varieties are equivalent).
‘The effect of point removals and structure isomorphisms on all the structures
on ground set Q€2 in a minor class o€ , uniquely determine their effect on
all the structures in of whose ground set has the same cardinality as Q (5,3 the
equations involving structure isomorphisms guarantee). Because of this, there
is no loss of generality in assuming that £ is the set of all finite subsets of
some countably infinite set.

As shown in section 9, there is a category associated with the special
unary variety ¢ . For each sort (ground set, object) Qe 2, let F(IQ) be the
free algebra in ¥, freely generated by an element 1Q of sort Q. For each
object (ground set,sort) Pe £, we can let the elements of FP(IQ) be the
morphisms from Q to P (see section 9). These can be denoted by pairs (w,f)
for any prescription #eKQ and any bijection w:G(R)-P. For any minor class
o €¥ and any structure Seef, on ground set Q, the homomorphism
b F(1 e sends (%) to w(S[&]). Let E1?) be F1Yexc(1D). It was
shown in section 10 that the elements removed from F(IQ) by the exclusion of
1 are the isomorphisms (invertible morphisms) in the category, namely pairs
(w,R) where G(R)=Q. (Such a pair (w,R) corresponds to the removal of no
points followed by a structure isomorphism, or equivalently, just a structure
isomorphism.)

The order of a structure S is the cardinality |G(S)| of its ground set. If

| G(S)|=n then S is an order-n structure or an n—point structure. Sometimes
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the elements of ground sets are called edges 01; vertices, rather than points. In
these cases, the word "point" in the above definition is changed accordingly.

No minor class ¢/ €#¥ has an infinite descending chain so that ¢ has a
core o "b. Consider structures S,Te¥ which have the same ground set Q.
Then S¢T if and only if ¢SlE(1Q)=¢TIE(1Q)' Equivalently, S¢T if and only
if w(S[R)=w(T[R]) for every (w,ﬁ)eE(lQ). That is, performing a given
non-trivial point removal, followed by a given structure isomorphism, to both S
and T, yieldé the same result. If SYT and S#T then S and T are y-structures.
Now w(S[f])=w(T[R]) if and only if S[R]=T][R], so that S¢T if and only if
S[R]=T[R] for every prescription #eRQ with G(R)#Q. Now if removing any
single point in any manner, from both S and T yields the same structure, then
removing more points cannot make them unequal. So in fact, SYT if and only
if S[¢,q]=T[¢,q] for every rhanner {eK and every point qeQ.

For any structure Se¢, with ground selt Q, let yaut(S)={w|w:Q-Q is a
bijection and w(S)¥S}. Then yaut(S)={w|w:Q-Q is a bijection and
(w(S))[A]=S[#] for every prescription £KS with G(R)#Q}. If w(S)=S then
w(S)¥S, so Aut(S)Cyaut(S). It may be that Aut(S) is a proper subset of
Yaut(S). In this case there exists weyaut(S)-Aut(S), so that w(S)¥S while
w(S)#S (although of course, w(S)~S by definition). It is also possible that SyT
while S#T.

Let ¢/ be the completion of . The natural excluded (iso)minors of &
are the excluded (iso)minors of ¢ in /. The use of the definite article "the"
requires qualification. The excluded minors are determined up to structure
isomorphism and ¢’ is unique up to minor class isomorphism fixing . Now
the latter might seem to be a problem since the natural excluded minors of ¢
are elements of ¢/ —¢/, and the elements of ¢/ ~¢f can be "anything".
Nevertheless, the algebraic structure of f is fixed, and this is what is

important. Actually we can locate the natural excluded minors without



-73 -

constructing ¢ as shown below, so the "arbitrariness" of elements of ¢/ -¢/ is
immaterial. ’ )

The description of a minor class in terms of its y-structures and natural
excluded minors, is called its y~description.

Consider minor classes ¢/ ,7€# where ¢/ is a sub minor class of I (for
example J could be ¢ or ¢/ ). Let.the structure S€J, on ground set Q, be
an excluded isominor of ¢ in J. The isominors of S which are in ¢/ are
exactly those which are isomorphic to a proper minor of S. Equivalently, the
elements of F(IQ) that the homomorphism ¢S:F(1Q)—».7 sends into o, are
precisely the elements of E(lQ). Therefore () is E(IQ) and
bl “E(1Y)- o is equal to ¢S|E(1Q):E(1Q)—>o>’.

Consider a homomorphism acE(lQ)—»of (where Qe2). For any minor
class J€¥ , where ¢ is a sub minor class of , let 7, be the set of all
structures Te ‘7Q for v;rhich a is equal of ¢T|E(1Q) (recall th.ﬁt ¢ is a
homomorphism from F(IQ) to J). Every structure isomorphic to a proper
minor of any T€Z,, is in a(E(lQ)) and hence in ¢/, so that each Teﬁ'Q is
either in ¢, or is an excluded isominor of ¢/ in J. Also, for any structures
T,Ueg, it holds that ¢T|E(1Q)=Q=¢U|E(1Q) so that T9YU by definition. If
‘7a has more than one element then @ll these elements are y-structures of J.
Every y-structure TeJ arises in this way, simply by letting a be ¢T|E(1Q)’
so that 3a=(T¢)={U|U69 and TyU}.

Since ¢ is complete, e?’; is non empty for any homomorphism
a:E(lQ)—»o/ , where Qe 2 (since by definition, there exists Te@?’a such that
LAgo and hence a=¢T|E(1Q)). In particular if T is a natural excluded
isominor of ¢/, then of; has exactly one element (since otherwise T would be a
y-structure, so that Te@f'p, contradicting the fact that Tge”). While of; is
non-empty, it is possible that ¢/, is empty. In this case, the unique TEQY;, is

not in ¢, and hence is an excluded isominor of ¢ in o, that is, T is a
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natural excluded minor of ¢¥. Conversely, every natural excluded minor arises
in this way, simply by letting a be ¢T|E(1Q)'

Let us summarise. For all ground sets Q€2 , consider all
homomorphisms a:E(lQ)—mf . I ofa has more than one element, then all its
elements are y-structures (all ¢equivalent to each other, and to no other
structure). Every ¢-structure arises in this way. Whenever efa is
non—-empty, this indicates the existence of a natural excluded isominor, say SO‘, .
the natural excluded isominor indicated by ¢, such that « is equal to

¢ IE 19y (Actually S® need not be named. It is enough to know it
g (1)

exists.) Every natural excluded isominor arises in this way. Natural excluded
minors are obtained by partitioning the natural excluded isominors by structure
isomorphism, and choosing one from each partition. Thus, ¢-structures and
natural excluded (iso)minors are essentially different versions of the same
concept. This method locates every instance of both of these, which is
precisely the information needed for the t~description of ¢/, without
constructing ¢/ . This also gives an independent definition of natural excluded
minor, so that a minor class is complete, if and only if it has no natural
excluded minors. Actually the theory outlined above works for all special
unary varieties # in which no algebra has an infinite descending chain, as does
most of the theory in this section.

For any minor class J€¥ , where ¢ is a sub minor class of J, the
natural excluded (iso)minors of o are very useful for finding the excluded
minors of ¢ in J. For any natural excluded isominor of ¢, which is
indicated by the homomorphism a:E(lQ)-’of , the structures in J are said to
be ¢-equivalent to this natural excluded minor. It follows from the above
discussion that every natural excluded isominor of ¢ in J is yequivalent to

either a structure in ¢ or a natural excluded isominor of ¢”.
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The search for the y~structures and natural excluded minors of ¢ is
made easier by the following simple observation. Any homomorphism
or.E(lQ)—»of is uniquely determined by specifying the effect of @, only on pairs
(w,R) for which w:G(R)~+G(R) is the identity function (since the set of such
pairs generates E(IQ)). In this case of(w,R)) is abbreviated to a(R). This is
equivalent to specifying the pairs (R,a(f)) for all #eRQ with G(R)#Q. When
K is finite, as it typically is, there are only finitely many such pairs, although
this increases exponentially with the cardinality of Q. As shown earlier, all
the structures Se on satisfying S[R]=a(R), for all #eRQ with G(R)#Q, are
P-equivalent, and if there is no such S, then o (or this restricted version of a)
indicates the presence of a natural excluded isominor.

Define a (2,K) pseudo minor class to be a quadruple (¢/,2 ,K,2)
satisfying conditions (M4) and (M5), as for minor classes. (Note that (M3) is
not, and cannot, be imposed in the absence of structure isomorphisms.) By
simple adaption of the discussion about (2,K) minor classes, it is clear that the
class of (£ ,K) pseudo minor classes forms a special unary variety. The
algebra with universe KQ, and with point removal defined by J[£]=JAL (with
J and £ as in condition (M5), section 3) is the free algebra in this variety,
freely generated by an element of sort Q. A (2,K) proper pseudo minor class
(¢f,4 ,K,#) is a pseudo minor class obtained from a minor class
(¢f,2,J7,K,2) by "discarding" the structure isomorphisms (which are
contained in J). The class of (£,K) proper pseudo minor classes does not
form a variety since it is not closed under subalgebras (which need not be
closed under structure isomorphism) nor under (pseudo minor class)
homomorphic images (as the homomorphisms need not respect structure
isomorphism). Nevertheless, the ¢-structures natural excluded, isominors, core
and completion of a proper pseudo minor class, are the same as those for the

corresponding minor class. The motivation for this observation is that pseudo
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minor class homomorphisms are simpler to deal with than minor class
homomorphisms. It must be noted, however, that while the natural excluded
minors of a minor class consist of only one of each natural excluded isominor,
up to isomorphism, it is necessary to exclude all of them for the corresponding
proper pseudo minor class, since excluding a structure no longer removes all
isomorphic structures, because there is no structure isomorphism. So if a
minor class has finitely many (but not zero) natural excluded minors, the
corresponding (proper) pseudo minor class has inifinitely many.

Consider a (£ ,K) minor class o where |K|=2 (the most common case).
A useful visualisation of the structures in ¢ is obtained by modifying the
"coloured grid" visualisa;tion of section 4. Consider a structure See/, with
ground set Q. The Q-hypercube (also called a |Q|-hypercube) is the set of
points in RQ which have all their coordinates in [0,1]={x|x€R and 0<x<1}, that
is, the Q-hypercube is [O,I]Q. Assume that K={0,1}. (Usually K is -
{delete,contract}, so we shall associate delete with 0 and contract with 1.)
For any prescription REKQ, the f-face (also called a |G(R)|-face) consists of
all points (xq|qEQ)E|RQ such that xq=ﬁ(q) whenever qeQ-G(£) and 0<xq<1
whenever geG(R). So the Q-hypercube is the disjoint union, over all .ﬁEK'Q,
of its Rfaces. The K-subhypercube consists of all points (xq|q€Q)€[RQ' such
that xq=ﬁ(q) whenever geQ-G(£) and 0<x q51 whenever qeG(R), and this can
be identified with the G(£)-hypercube obtained by projecting each
(quqEQ)e[RQ to (quqeG(ﬁ))EIRQ. By "drawing patterns" on each K-face,
with the same automorphisms as S[f], and with non-isomorphic patterns for
non-isomorphic structures, then it will follow that these "patterned" hypercubes
will faithfully represent the structures in ¢’, with the f—subhypercubes
representing the appropriate minors, as in the proof of the embedding theorem

10.1. For example, if a patterned (3—dimensional) cube represents a 3-point
{
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structure, then the six (2-dimensional) squares represent the six 2-point minors
obtained by removing one of three points in one of two manners, the twelve
(1-dimensional) edges represent the twelve 1-point ,minors obtained by
removing two of the three points, each in one of two manners, and the eight
(0-dimensional) vertices represent the eight 0-point structures obtained by
removing the three points, each in one of two manners.

The hollow Q-hypercube, is a Q-hypercube with its only |Q|-face (the
R-face where G(R)=Q, or equivalently ﬁE{G}Q), called its central face,
removed. Equivalently the hollow Q-hypercube is the disjoint union of the
f-faces of the Q-hypercube, for .QE(KQ—{G}Q). The pseudo minor class
homomorphism a:KQ—{CD}Q—»o/ can be depicted as a "patterned" hollow
Q-hypercube, by d;awing the pattern for a(£) on the R-face, for every
#eK9-{e}Q,

Here is a scheme to inductively obtain the patterned Q-hypercube for
each structure in . Suppose the patterns are known for all structures of
order less than n. (This is vacuously true for n=0.) For some Q with
|Q|=n (all other ground sets with this cardinality are reached by structure
isomorphism) consider all psuedo minor class homomorphisms a:KQ—{e} Q.
For any such a, let o be the set of all structures S such that ¢S|KQ—{©}Q
equals « (where the pseudo minor class homomorphism aS:KQ—»J sends each
prescription 2eKQ to S[R]). For each Se o, the pattern of the R-face of the
corresponding Q-hypercube is the same as on the hollow Q-hypercube for «,
and these are already known by induction, so it remains to draw a pattern on
the central face. If there is a unique Se o, (so that S is not a y-structure)
then S is uniquely determined by its proper minors, and there is no need to
draw any pattern on the central face at all. If there is more than one

structure in ofa, then the elements of ofa are Y-equivalent to each other, and
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are ystructures. In this case, a pattern is required on the central face which
is non-isomorphic for non-isomorphic structures in d’a, and which has the
required automorphisms for each structure Se of’a. (It is sufficient that the
group of automorphisms of the pattern is Aut(S), but since the hollow
Q-hypercube already has taut(S) as its group of automorphisms, it is only
necessary that the intersection of the pattern's automorphisms with gaut(S) is
Aut(S).) By induction, the patterned Q-hypercube for S only has patterns on
the £ faces for which S[f] is a ¢-structure (the rest are left blank). If there
are only a few y-structures (up to structure isomorphism) then these
Q-hypercubes will be sparsely patterned.

The structures in the completion of, of ¢/, are represented by all the
possible patterned hypercubes subject to two consistency conditions.

(1) For any face which has a pattern corresponding to the y-structure S say,
the patterned subhypercube which has this face as its centre, is the patterned
hypercube representing S. (2) If S is a ¢~structure, on ground set Q, and if
the hollow Q-hypercube corresponding to ¢S|KQ—{@}Q appears, then its centre
has the pattern corresponding to a structure y¥-equivalent to S. Again the
situation is simple if there are not many y-structures.

Now if the pseudo minor class homomorphism a:KQ—{G)}Q-»of is such
that @"a is empty, then « indicates a natural excluded isominor. The
patterned hypercubes depicting structures in ¢ are exactly those depicting
structures in ¢/, for which no patterned hollow hypercube, corresponding to
any « that indicates a natural excluded minor, appears as a hollow
subhypercube. Examples in the following sections clarify this situation.

Let ¢ and J be (2,K) minor classes with ¢ a sub minor class of J.
It is routine to show that ¢/-<J if and only if ¢ is closed under
Y-equivalence in J. (That is, there do not exist structures Se¢# and

TeJ - such that SYT.) In particular, if for some non-negative integer n, o
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contains exactly the structures of 9 with order less than n, then ¢ is clearly
closed under ¥-equivalence in J, so that &-<J.

Suppose J and ¢ are (£,K) minor classes and oz J-+¢ is a minor class
homomorphism. Recall from theorem 10.4, that a is uniquely determined by
specifying the action of & on the inverse image, a'i( & lb)’ of the core, ¢/ ¢,

of &. Conversely if £ is a subminor class of  and 3: % +¢/ is given (for

¥
example ¢| & :al(ef e ¢) then there exists uniquely 7: 9+¢/ such that
7| ¥=4 provided that A(R }-<(1AH)(% ) and § is maximal in h(J,e#) (in

particular 7 is & when §is «| éﬂb). This is guaranteed in the case that #
consists of all the structures in J of order less than n, and the ¢¥-structures of
o have order less than n, for some non-negative integer n. In this case J
can be replaced by J, and there exists a unique homomorphism 7:J-¢# such

that 7| "y=ﬂ . (Usually g: & &/ ¥ is given as a homomorphism into the care

of a minor class, so that 7| & =0 when 7 exists.) To check whether or not ¥y
sends all of  into ¢/, it suffices to check that no structure in J is sent by 7,
to a natural excluded minor of ¢ (assuming these are known, which they often
are).

It is interesting to determine (or attempt to determine) the ydescription
of direct products, sub minor classes, and homomorphic images of minor classes
whose ¢-description is known. For direct products this is easy. Consider a
family (ofilieI) of (£ ,K) minor classes, for which the y-description of each
o1 is known. Let @f:_lglofi. For any family (e:E(1Q)+e#1|i€l) of

i
komomorphisms, let the homomorphism a:E(lQ)—mf send each (w,ﬁ)EE(lQ) to

(ai((w,.ﬁ))|iEI). Then o/ = 1I & i., and in particular, |, |= IIII f iil.

iel o ie o

The natural excluded isominors of ¢ are the structures (S'|i€I) such that S is

a natural excluded isominor of ¢! for some iel, and S! is either in o or a
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natural excluded isominor of ¢, for every i€l. (In particular, if each member
of (of’i[iEI) is complete, and so has no excluded isominors, then neither does
‘o, so that ¢/ is complete. More generally, the product of complete algebras
is complete). The ¢-structures of ¢ are structures (SiIiEI) such that S' is a
P-structure for some i€l, and S'is in o for every iel. Two structures (Si|iEI)
and (Ti|iEI) in ¢/, are 1Y-equivalent exactly when SizﬂI‘i for every i€l

Consider (£ ,K) minor classes ¢/ and J, with ¢f a sub minor class of
J. If the ydescription of J is known, then the main step in finding the
Ydescription of ¢ is to find the excluded minors of ¢ in J, which is not
necessarily easy. (It would be easy if the natural excluded minors of ¢f were
known, but that is one thing we wish to determine.) Suppose the excluded
minors of ¢ in J have been found. The rest is easy. First add these to the
list of natural excluded minors of , and discard those which are not minimal.
This gives the excluded minors of ¢ in &, the completion of . This will
not be the completion of ¢ if some of the excluded minors of ¢ in 7, are in
the core J 1/), of . In this case, some y-structures of J are removed by the
exclusion of these minors. If any excluded minor of ¢ in J happens to be a
P-structure (or possibly several isomorphic y~equivalent y-structures) of 7,
then these "cancel each other out" and both are discarded. Finally, a
y-structure in J, which remains in ¢/, but for which all other structures
yequivalent to it are outside ¢/, is not a y-structure in .

The problem of finding the ydescription of a given homomorphic image
of a minor class whose ¥-description is known, is very difficult if not impossible
at any reasonable level of generality. (Nevertheless it will become apparent,
after reading a few more sections, that this is a problem worth pursuing.)
Consider (£ ,K) minor classes J and ¢, and a homomorphism a:9-¢/, where

the i-description of J is known. Suppose also that the ¥-structures of ¢# are
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known so that a is uniquely determined by af s¥ (or by specifying which
structures in J are sent to which ¢structures in ¢). This gives a canonical
method for describing any homomorphism into ¢, and puts the problem into a
standard form. But while the natural excluded minors of o J’) are uniquely

determined, and in principle they could be derived from the y-description of I

and the homomorphism a| @ﬂb, there superficially appears to be no rhyme or
reason to this situation. Examples in the following sections emphasise this.
Section 15 gives some suggestions which scratch the surface of this problem.

The above three problems are each expressed in a standard form, and so
in principle could have a standard solution. (This was found for two of them.)
However the initial problem of finding the y¥-description of an arbitrary (4 ,K)
minor class ¢ is not in a standard form, since there is no limit to how ¢ can
be described. The only way to solve this problem is "by hook or by crook".
(Most mathematicians are familiar with this method.)

The following three sections find the t~description of many well known
minor classes and a variety of apprdaches is used. The 1/)—structuies are always
found first. (This tends to be the easy part of i;he problem.) Sometimes they |
are found using the definition, and sometimes they are found by observation.
Showing that a given list of ¢-structures of a minor class ¢ is exhaustive, is
usually achieved by demonstrating that any structure S in ¢/, is uniquely
determined by specifying those minors of S that are ¢-structures. This
amounts to showing that ¢S is uniquely determined by its confinement to the
sub minor class of ¢, generated by the (allegedly exhaustive) list of
y-structures of ¢/, so that it must be the core of ¢/ and the list is indeed
exhaustive. Natural excluded minors are trickier because they are not in ¢,
and there is some choice about how to describe them. Finding them uses a

mixture of the two equivalent definitions (either excluded minors of ¢/ in &/,
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or the fact that they are indicated by (pseudo) minor class homomorphisms of a
certain form). Demonstrating that they have all been found involves
exhausting all possibilities "by hook or by crook". Often an upper bound on
the order of y-structures and natural excluded minors is found, at which stage
the problem is close to solved. Of course, any information obtained by
considering related minor classes is used whenever possible.

Particularly worthy of mention is the following. Suppose that a:¢/ ¢/

is a minor class automorphism of ¢#. Then also «f St Vaer ¥ is an
automorphism of the core ¢ ¢', of ¢, and this extends uniquely to an
automorphism a:¢ 2/ of the completion o/, of ¢/. Conversely, any
automorphism of ¢/ restricted (or equivalently, in this case, confined) to ¢ 'p,
is an automorphism of ¢ Y So the automorphisms of ¢ ¥ and & are in
one-to-one correspondence, while in general, ¢ will only have some of these.
The automorphism a permutes the natural excluded minors of ¢#, and
knowledge of this symmetry can greatly reduce the search for natural éxcluded
minors. ‘Conversely, if ‘@ is an automorphism of ¢/ which permutes the
natural excluded minors of ¢, then @| j, is an automorphism of ¢*. Similar
comments apply to mixed automorphisms (see section 6).

Perhaps the simplest (2 ,K) minor class, in terms of the theory of this
section is F '2(‘K,(0,B), where B is a set (see section 4). Assume |B|>2 and
|K|>1 to avoid trivial cases. The 0-point structures in & 'Z(K,O),B) are
functions from the one element sef Kq) to B, and so are in one-to-one
correspondence with the elements of B. The 0-point structures are all
y-equivalent and hence are y-structures, since there are |B| of them. (In fact
the O-point structures, in any minor class, are always y-equivalent.) Let
fes 'Z(K,O),B) be a structure on ground set Q. Now fe & 'Z(K,(D,B) is uniquely
determined by all the values f(y)eB, where yEKQ, and each f(y) can be chosen
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independently as an element of B. But since KQ(_ZKQ; any yeKQ is a
prescription yEKQ with G(y)=0, so that f[y] is well defined, and is the 0-point
structure f[y]:KQ)—»B. Let x be the unique element of K? 50 that
f(y)=f(yAx)=(f[y])(x) for every yEKQ with G(y)=0. Therefore f is uniquely
determined by all the values (f[y])(x), and hence by all 0-point minors f[y],
wyere yEKQ with G(y)=0. That is, f is uniquely determined by its 0-point
minors so that the O—point structures are the only ¢-structures. (The order
zero subgrids of the "coloured grid" for f, namely all the single gridpoint (zero
dimensional) "coloured subgrids" determine the whole coloured grid.) Also
each (f[y])(x) can be chosen independently as an element of B, and hence each
fly] can be chosen independently as a function from K(b to B, for yGKQ with
G(y)=0, so that there are no natural excluded minors and & 'z(K,O,B) is
complete. (The single gridpoint "coloured subgrids" can be coloured
independently of each other.) This reasoning works even when 2 contains
infinite sets, so that F ‘Z(K,O,B) is complete and still has a core (consisting of
the O-point structures) even though it also has an infinite descending chain
when |K|>2 and |B|>2. Readers may like to show that & ‘Z(K,C,B) is a

complete minor class for any sets B and C.
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SECTION 12: THE MINOR CLASS OF MATROIDS AND RELATED MINOR
CLASSES

There are many ways of describing a matroid [18], for example by
independent sets, bases, circuits, rank function, closure operator, flats or
hyperplanes, any one way uniquely determining the others. It is most
convenient here to describe a matroid in terms of its closure operator. Let Q
be a finite set. A closure operator, on ground set Q, is a function 0:2Q->2Q
satisfying the following three conditions [18].

(C1) PCa(P) for all PCQ.

(C2) PCR implies o(P)Co(R) for all P,RCQ.

(C3) o(P)=0(a(P)) for all PCQ.

Now o is the closure operator of a matroid if the following condition also holds.

(C4) If q¢o(P) and gea(PU{r}) then reo(PU{q}) for all PCQ and all distinct
q,reQ-P.

In this case it is convenient to say that o is a mairoid, on ground set Q.

The minor class 4 has functions 0:2Q—>2Q, satisfying (C1), as its
structures on ground set Q, finite sets as ground sets, and two manners of point
removal called deletion and contraction. Let &:2Q->2Q, with ground set Q, be
& structure in 4. For qeQ, let o\q denote the deletion of q from s and let
o/q denote the contraction of q from ¢. Define (a\q);2Q_{q}—»2Q_{q} by
setting (o\q)(P)=0(P)-{q} for all PCQ-{q}. Define (o/q):ZQ_{q}—QQ_{q} by
setting (¢/q)(P)=0(PU{q})—{q} for all PCQ—{q}. Structure isomorphism is
defined naturally. It is routine to verify that 4 is indeed a minor class.
(The proof uses the same reasoning as that for the well known result that
matroids form a minor class.)

For any RCQ, deleting (or contracting) R from o is the same as deleting
(or contracting ) all the elements of R from ¢ (in any order). Thus

(0\R):229R52QR is gefined by (o\R)(P)=0(P)-R and (o/R):2%F2QR j



-85 -

defined by (o/R)(P)=0(PUR)-R, for all PCQ-R. Let o-R denote ¢\(Q-R).
Now £ has a unique 0-point structure since there is only one function

from 29 t6 9Q (and this satisfies (C1)). Let 0:2{q}-»2{q}, on 1-element |
ground set {q}, be a structure in 4. Now o({q}) must be {q}, by (C1), but .
o(®) could be either § or {q}. If o(#)=0 then o is called coloop(q), and if
o(0)={q} then ¢ is called loop(q). Cledrly loop(q) and coloop(q) are
y~equivalent, and hence y-structures of £ . (Note also that they both satisfy
conditions (C1)—(C4).)

' Consider a structure 0:2Q—»2Q, on ground set Q, in & . Every 1-point
minor of ¢ is of the form (¢/P)-q (that is, all points in P are contracted, and
every other point except q is deleted) for some PCQ and qeQ-P. By the

above definitions it follows that, for all PCQ and every qeQ-P,
{ geo(P) exactly when (o/P)-q=loop(q)

q¢o(P) exactly when (o/P)-g=coloop(q).
Clearly ¢ is uniquely determined by specifying whether or not qea(P) for all

PCQ and qeQ-P (since by (C1), o(P)=PU{q|qeQ-P and qeo(P)}). Therefore
o is uniquely determined by specifying (o/P)-q for all PCQ and every qeQ-P,
that is, o is uniquely determined by its 1-point minors. Let 4 ¥ be the sub
minor class of 4 consisting of the 0-point and 1-point structures of 4 .
Then 4 {4 is a big subalgebra of £, and since the 1-point structures are
Y-structures, it is the core of A (and there are no other ¢-structures). Also
the choice as to whether qeo(P) or q¢o(P), can be made independently for all
PCQ and qeQ-P (since 0:2Q—»2Q, where for all PCQ it holds that
o(P)=Pu{q|qeQ-P and qeo(P)}, satisfies all these statements as well as (C1)).
Equivalently the structures in 4 can have their 1-point minors specified
arbitrarily so that .4 is a complete minor class, namely the completion of
4%

The minor class of closure operators KA C is a sub minor class of A,
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consisting of exactly those structures satisfying (C1)-(C3), namely closure
operators. The minor class of matroids A is a sub minor class of & and

M C, consisting of exactly those structures satisfying (C1)-(C4), namely
matroids. It is verified below that 4 C and 4 are indeed minor classes, with
A a sub minor class of C, and 4 © a sub minor class of & Also 4 ¥ is
a sub minor class of 4 and 4 C so that 4 ¥ is the core of 4 and 4 C and

A is the completion of A4 and A4 C. It remains to find the natural excluded

C, namely their excluded minors in 4 .

minors of 4 and A4
As discussed in section 11, the structures in £ on ground set Q, can be
depicted as Q-hypercubes with a "pattern" or "label" on the 1-faces
(1-dimensional "edges") indicating whether the corresponding minor is a loop or
a coloop. (The rest of the hypercube remains blank.) It is instructive to look
at the 2-point structures in 4 , say those on the 2—element ground set {q,r}.
These are depicted by squares in [R{q,r} with their four 1-dimentional edges
(corresponding to the 1-point minors obtainable by removing one of two points
in one of two manners) labelled by either L for loop or C for coloop. The
labelling scheme is given for a structure o on ground set {q,r} in figure 1.
Note that the only possible automorphisms of ¢, and the corresponding
depiction, are that which fixes q and r (and fixes the corresponding square) and
that which swaps q and r (and reflects the square along the dotted line, as in
figure 1). No other symmetries of the square correspond to structure
automorphisms.

4_16 structures on ground set {q,r} in A4, but

There are of course, 2
only 10 up to isomorphism. These 10 have been named 2a,2b,- - -,2j as in
figure 1. (Observe that 2a,2e,2h and 2j have the bijectidn which swaps q and
I, a8 an automorphism.) By observation, only 2a,2e,2f and 2j are matroids, so
that 2b,2¢,2d,2g,2h and 2i are natural excluded minors of . Also, only

2a,2e,2f,2g and 2j are closure operators, so that 2b,2c,2d,2h and 2i are natural
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Figure 1: The 2-point structures of . .
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excluded minors of A C. It turns out that these are the only ones, as is now
shown.

First suppose that a:ZQ—»zQ, with ground set Q, satisfies (C1), but not
(C2). Then there exist P,RCQ with PCR such that o(P){o(R). This means
that there exists reQ such that reo(P), whereas r¢a(R). Without loss of
generality, we can assume that P is a maximal subset of R with this property.
Clearly P#R, so that there exists q€R-P, and hence o(PU{q})Co(R) so that
r¢o(PU{q}). (This shows that q#r.) Let structure p=(o/P)-{q,r}.

Therefore p\q=loop(r), since rea(P), and p/q=coloop(r), since r¢a(PU{q}). It
follows that p is one of 2¢,2d,2h or 2i (see figure 1) and any structure in A
which does not satisfy (C2) has one of these as an isominor. Conversely, by
reversing the above arguments, it follows that any structure in 4 , having one
of 2¢,2d,2h or 2i as a minor, fails to satisfy (C2). So the (unnamed) minor
class of structures in 4 which satisfy (C2) has y-structures, loop and coloop,
and natural excluded minors 2c¢,2d,2h and 2i.

Now suppose that 0:2Q—»2Q, with ground set Q, satisfies (C1) and (C2),
but not (C3). Then there exists PCQ such that o(P)#o(o(P)). By (C1) and
(C2) it follows that o(P)Co(o(P)) and hence o(P) is a proper subset of o(a(P)).
Put R=0(P) and, without loss of generality, assume that P is a maximal subset
of R, having the property that R=¢(P). Clearly P#R , so that there exists
reR-P, and in particular reR=0(P). Now ¢(P)Co(PuU{r})Ca(R) by (C2) and
o(P)#0(PU{r}) by the maximality of P. Hence there exists qes(R)-R such
that ges(PU{r}). But q¢R=0(P). Let p=(a/P)-{q,r}. (Clearly q#r, since
reR and g¢R.) Now p\g=loop(r), since reo(P), p/r=loop(q), since qea(PU{r}),
and p\r=coloop(q), since q¢a(P). Of the two possibilities for p, namely 2b
and 2d, the latter does not satisfy (C2), so that p must be 2b, and any
structure in 4 satisfying (C1) and (C2), but not (C3), has 2b as a isominor.

Reversing the above arguments yields the converse, namely that any structure
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in A satisfying (C1) and (C2) and having 2b as a minor, fails to satisfy (C3).
It follows that the ¢-structures of 4 C are loop and coloop, and the natural
excluded minors are 2b,2¢,2d,2h and 2i.

Finally, suppose a:2Q—»2Q, with ground set Q, satisfies (C1),(C2) and
(C3) but not (C4), that is, ¢ is a closure operator but not a matroid. Then
there exists PCQ and distinct p,qeQ-P such that q¢a(P) and qeo(Pu{r}) and
r¢o(PU{q}). Let p=(p/P)-{q,r}. Then p\r=coloop(q), p/r=loop(q) and
p/a=coloop(r). Of the two possibilities for p, namely 2g and 2d, the latter
does not satisfy (C2) (nor (C3)) so that p must be 2g, and any structure in

‘ﬂc

-4 has 2g as a minor. Reversing the above arguments yields the
converse, namely that any structure in 4 C, which has 2g as a minor, is not in
A . Tt follows that 2g is the only excluded minor of  in 4 C, and the
ystructures of A are loop and coloop, and the natural excluded minors are
2b,2¢,2d,2g,2h and 2i. Therefore a matroid on ground set Q, can be depicted
as a patterned Q-hypercube with 1-faces (edges) given one of two labels
corresponding to loop and coloop, such that none of the square faces looks like
2b,2¢,2d,2g,2h or 2i, as in figure 1.

* The natural excluded minors of any sub minor class of £ can be found
from its excluded minors in 4, and visa versa, as shown in section 11. If the
sub minor class contains loop and coloop (making it non—trivial) then this
involves merely adding to its excluded minors in 4, the six natural excluded
minors of # . In particular, a sub minor class of # has finitely many
excluded minors in 4, if and only if it has finitely many natural excluded
minors.

There are two minor class automorphisms of 4 4 (and hence ) since
loop and coloop can either be fixed or swapped. These have four minor class
mixed automorphisms, since deletion and contraction can either be fixed or

C

swapped. By considering their natural excluded minors, .# and 4 ~ have
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only the identity as an automorphism, but 4 also has the mixed
automorphism which swaps loop and coloop, and swaps deletion and
contraction. This sends each matroid o, to its dual, denoted o*. For any
matroid o€.# and any point qeG(o), it follows that (o*)*=e, (d\q)*=(c*)/q
and (0/q)*=(0*)\q. This mixed automorphism permutes the natural excluded
minors of A , since it swaps 2b with 2g, 2c with 2i, and fixes 2d and 2h. The
patterned hypercube depicting the dual ¢*, is obtained from that depicting the
matroid ¢, by sending each point (x quEQ) of the Q-hypercube, to (l—ququ)
(since deletion and contraction are\swapped) and changing each 1-face labelled.
loop to coloop, and visa versa.

Let ¢ be a minor class with the same ground sets and manners of point
removal as 4 (so that ¢ is in the same variety as 4 ). Any homomorphism
©)

o:ef -+ A (which may send all of ¢ into A& or A ) is uniquely determined

by specifying «f a¥ (see section 10 or 11) or equivalently, by specifying which
structures on a 1-element ground set {q}, say, are sént to loop (q), and which
are sent to coloop (q). Conve§se1y, from sections 10 and 11, this latter
specification can be made arbitrarily, and there always exists, uniquely of
course, such a homomorphism a:e’-+4 . While this only guarantees that «
sends ¢ into J , it can be checked that a sends ¢ into 4 (or A C) by
checking that no structure of ¢ is sent by @, to a natural excluded minor of
M (or A C). This is easy in practice, since these only have order 2.

Recall the minor class # defined in section 3 aI;d % /q (a particular
homomorphic image of # ) defined in section 5. From the fact that #  is
isomorphic to & 'Z(K,(D,B) for |B|=2 and the appropriate 2 and K, and the
discussion about & ‘Z(K,O,B) in the previous section, it follows that ¥ has two

yequivalent 0-point structures and no natural excluded minors. It turns out

that # /q has two equivalent 1-point structures, which can be called loop and
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coloop, and four natural excluded minors, namely 2b,2¢,2g and 2i. (The proof
is left to the reader.) It follows that 4 can be embedded in #/q with the
exclusion of two further minors, namely 2d and 2h. Observe that this is an

example of the embedding theorem 8.4.
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SECTION 13: MINOR CLASSES OF LINEAR DEPENDENCIES
Coordinatisability over a ring

If A is an algebra and BCA, then it is well known that the function from
9B 1o 2B, which sends each CCB to Bn(AincC), is a closure operator. For
various kinds of algebras, there is interest in what such closure operators look
like. In particular, matroid theorists are interested in this problem for vector
spaces over a fixed field. We specialise to this case after starting with the case
of unital modules over a fixed ring with (multiplicative) identity.
(A straightforward agrument shows that this is no less general than modules
over rings, in the context of this discussion.) ‘ |

Let R be a ring with multiplicative identity 1€R. A (lef) unital module
M, over R, consists of an abelian group, also called M for convenience, together
with scalar multiplé'catz'on, multiplying elements of M by "scalars" from R (on
the left), satisfying the following rule. If a,beR and m,neM, then
(a+b)m=am+bm, a(m+n)=am+an, (ab)m=a(bm), and im=m. If R is a field
then, as is well known, M is a vector space over R. From now on, a left
unital module will be simply called a module.

Consider a finite set Q and a function f:Q-M. If PCQ and qeQ, then q
is dependent (in f) on P exactly when f(q) can be expressed in terms of all
f(p)eM where peP, using the operations of the module. Equivalently, q is

dependent on P, exactly when f(q) is equal to a linear combination ¥ apf(p)
peP

for some family (aplpEP) of elements of R. Define a function af:2Q—»2Q such
that qeo(P) exactly when q is dependent (in f) on P, for every PCQ and every
qeQ. Trivially, if qeP, then q is dependent on P, so that o satisfies (C1) and
S A . Observe that op could be equivalently defined by stating that og
satisfies (C1) and considering only qeQ-P.

A closure operator of the form o, where {:Q-M is a function, Q is a



-93 -

ground set, and M is a module over R, is coordinatisable over R. (This
coincides with the usual matroid definition when R i;s a field or division ring.)
Consider RQ, the set of all "vectors" (aqlqu) where aqeR for every
q€Q. Then RQ is a module over R if addition and scalar multiplication are
defined component wise. That is, for all "vectors" a.=(aq|qEQ) and
b=(by|q] Q) in RQ and all "scalars" ceR, let a+b=(a+b, | 4€Q) and
ca=(ca.q|qEQ). Any subset of RY is a submodule of RQ, if it is closed under
addition and scalar multiplication. For the above function f:Q-M, let ngRQ

be defined by (aqlqu)ES if and only if Eqa, qf(q)=0. Thus S; expresses
qe
which linear combinations of the f(q), over qeQ, give zero. Clearly Sf is a

submodule of RQ. Conversely, for any submodule S of RQ, there is a module
M, over R, and a function f:Q-M, such that S=Sf, as the following construction
shows. For each aeRQ, let a+S={a+s|s€S}. The factor module rQ /S has
elements a+S for all acRY.  For all ,beR? and ceR it holds that
(a+S)+(b+S)=(a+b)+S and c(a+S)=(ca)+S. It is well known that this is well
defined exactly when S is a submodule of RQ. For each teQ, let 1t=(1(tl|qEQ)
where 1:;:1 if t=q and 0 otherwise. Define f:Q-»RQ/S by setting f(t)=1t+S for
each t€Q. Then (a, |v'teQ)ESf means that thatf(t)=0' That is (a, [t€Q)€S;

exactly when 0+S= % a,t((lt |aeQ)+S)=(a_|qeQ)+S, or equivalently
teQ * 4 q

(a, |t€Q)€S, as required.

Let a.=(aq|qu) be an element of RQ. Then the support of a, denot_ed
supp(a), is equal to {q]|qeQ and a.q#O}. For any submodule S of RQ define a
function aS:2Q—>2Q, satisfying (C1), as follows. ' If PCQ and qeQ-P, then
qeog(P) exactly when there exists a=(a, |t€Q)eS with supp(a)CPU{q} and
a q=1. If routine to check, for any function f:Q-M where M is a module over

R, that an=crf. Since every submodule S, of RQ, is of the form Sf, it follows

that a closure operator, on ground set Q, is coordinatisable over R, if and only
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if it is of the form og for some submodule Sof RQ. Soin studying such
closure operators, we need not consider functions of the form f:Q-M at all.
This is essentially the approach of Tutte [15] when R is a finite field of the
integers, and all the submodules of RQ for each ground set Q, are called chain

groups. (They.are also called linear codes by coding theorists.)

The Minor Class 9 (R)

The minor class & (R) of (linear) dependencies over R, has finite ground
sets, the submodules of RQ as its structures on ground set’ Q, and two manners
of point removal called deletion and contraction. Let S, on ground set Q, be a
submodule of RQ. As usual, denote the deletion and contraction of each qeQ
from S by S\q and S/q respectively. Now (S\q)gRQ_{q} is defined by
"'intersecting" S with RQ_{q}, that is, the glements of S\q are
(at|teQ—{q})ERQ_{Q} for which there exists (a, [t€Q)€S with a,q=0. And
(S/q)(_ZRQ_{q} is defined by "projecting" S onto RQ—{'Q}, that is, the elements
of S/q are (at|tEQ—{q})ERQ_{q} for which there exists (a,t|tEQ)ES, (regardless
of the value éf aq). Define structure isorﬁorphism naturally. It is routine to
show that & (R) is indeed a minor class. Also, with S as above, and P,NC Q
where PAN=0, the submodule S/P\N of R&PUN) (on ground set Q-(PUN)) is
obtained from S by contracting all points in P and deleting all points in N.
The elements of S/P\N are (a,qlqEQ—(PUN))ERQ_(PUN)
(aqlqEQ)ES with supp((a,qlqu))gQ—N (that is, a,q=0 for all geN). As usual
let SN denote S\(Q-N).

for which there exists

The Homomorphism a: & (R)~A4 C
Let o: 9 (R)»A be the sort (ground set) respecting function which sends
each Se # (R), on ground set Q, to og€ H . We shall show that a is a
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homomorphism. Certainly af il is a homomorphism, which extends uniquely
to a homomorphism from & (R) to 4, which would have to be a, if a is to be
a homomorphism. (See section 12.) Consider a ground set Q, a submodule S
of RQ, a subset PCQ, and a point qeQ-P. Now (((S))/P)-q=loop(q) if and
only if qe(a(S))(P). This means that there exists a=(at|tEQ)ES with
supp(a)CPU{q} and a q=1, or equivalently there exists (a;|te{a})e(S/P)-q with
aq=1, which means that « sends (S/P)-q to loop(q). Therefore
((a(S))/P)-q=a((S/P)-q) (since there are only two possible values) and by the

arbitrariness of S, P and q, it follows that « is the unique homomorphism from

P (R) to A such that o] A ¢$a. In particular & is a homomorphism.

It is instructive to examine the 1-point structures in & (R), and the
effect of @ on these, since this uniquely determines « (see section 12). If {q}
is a 1-element ground set then the structures in & (R) with ground set {q} are
the submodules of R{q}. There is an obvious correspondence between R{q}
and R, and the submodules of R{q} correspond with the left ideals of R (or
ideals of R, if R is commutative), and for convenience we treat the 1-point
structures as left ideals of R. For any left ideal S of R, it holds that
ofS)=loop if and only if 1€S, or equivalently S=R. So the only submodule (or
left ideal) of ridl (or R), which e sends to loop(q), is rld} (or R) and the
rest are sent to coloop(q). When R is a field, the only ideals of R eﬁe {0} and
R, so that the only structures in 9 (R), on ground set {q}, are {0}{Q} and
R{q}, and these shall be called coloop(q) and loop(q) respectively (so that a
sends loop to loop and coloop to coloop).

As stated earlier, but not yet proved here, o:(S)=o'S is a closure operator
for every Se & (R). To check this, it is sufficient to show that a sends no
element of & (R) to a natural excluded minor of 4 C Suppose Se & (R) is

C

such a structure. Since all the natural excluded minors of 4 - have order 2,
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so must S. Hence, without loss of generality, S is a submodule of R{q,r} for
some 2-clement ground set {q,r}. Write the elements of RIDT} a5 ordered
pairs, with the first component labelled by q, and the second by r. Suppose
o(S)\r=loop(q). Then a(S\r)=loop(q) so that S\r is all of Rl By the
definition of deletion and contraction in & (R), it follows that (a,0)eS for every
a€R and hence S/r is all of R{Q}, so that a(S)/r=a(S/r)=loop(q). Therefore
o(S) cannot be 2¢,2d,2h or 2i (see figure 1). Instead now, suppose that
o(S)\r=loop(q) and &(S)/q=loop(r). Thus &(S\r)=loop(q) so that S\r is all of
R{Q}, and o(S/q)=loop(q) so that S/q is all of R{r}. Therefore, for any beR
there exists a€R such that (a,b)€S, but also (a,0)€S so that (a,b)—(a,0)=(0,b)eS
and hence S\q is all of R{r}, so that a(S)\q=a(S\q)=106p(q). This shows
that o(S) cannot be 2b (see figure 1). Therefore a does indeed send all of
F(R) into 4 C, s0 that a: D (R)»4 © is well defined. Although this is well
known, the method of proof is different.

To see whether or not a sends & (R) into 4, it suffices to check
whether or not a sends any Se & (R) on ground set {q,r}, to 2g (see figure 1).
If R is not a division ring, then there exists acR such that ca#l for every ceR.
Let S be the submodule generated by (1,a), that is, S={(c,ca)|ceR}. Thus S/r
is all of R14} and o(S)/r=a(S/r)=loop(q). Now (c,1)¢S for any ceR, in
particular (0,1)¢S, so that neither S\q nor S/q are all of R{r}. Hence
o(S)\q=a(S\q)=coloop(r) and a(S)/q=a(S/q)=coloop(r). Also (1,0)¢S so that
S\r is not all of ria} and o(S)\r=a(S\r)=coloop(q). This shows that &(S) is
2g (see figure 1), a natural excluded minor of 4 , and therefore o does not send
all of & (R) into #. Conversely, suppose that R is a division ring. Suppose
that Se & (R) on ground set {q,r} is such that a(S)/r=loop(q) and
o(S)\r=coloop(q). Then there exists a€R such that (a,0)¢S and so there exists
beR with b#0 such that (a,b)eS. But then for any ceR it follows that
cb1(a,b)=(cba,c)eS. So S/q is all of R} and o(S)/q=e(S/q)=loop(q).
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Therefore oS) cannot be 2g so that a does send & (R) into 4 in this case.
Thus a: P (R)-+A is well defined when R is a division ring.

Some Matroid Theory _ G f L;{]i';\

The y-description of & (R), when R is a ﬁeld,ms gnven later, but first
some preliminary matroid theory is needed. Whlle the 'deﬁmtlons and
statements below are standard matroid theory [18], they are glve;x in a minor
class theoretic fashion. Matroids are taken to be the elements of jthe minor
class A4 with y¥-structures loop and coloop and natural excluded nnnors
2b,2¢,2d,2g,2h and 2i (see figure 1), and the only facts used- about matroids are
that they are uniquely determined by the—l—pomt minors, and that they do not -
have as a minor, any of the six natural excluded minors. (Any isomorphic

§

copy of A could be used, since it is the algebra,lc,\structure pf A which is

7
-

ad

important, not its elements.)

For any ground set Q, if m and n are integers with 0<m<n=|Q|, then let
UIIIII(Q) be the matroid on ground set Q such that for every PCQ and every
q€Q-P it holds that (UIIIII(Q)/P)-q=coloop(q) exa.etly when |P|<m and loop(q) -
exactly when |P|[>m. The matroid UIIIII(Q) is called the uniform matroid of
rank m and order n (on ground set Q). (Observe that the dual of UIIIII(Q) is
Uﬂ_m(Q).) In particular coloop(q)=Ui(q) and loop(q)=U(1)(q). (Brackets are
omitted when this is unambiguous. For example Ug( {p,q,r}) is denoted
Ug(p,q,r)-)

The direct sum p+o of two matroids p and ¢ with disjoint ground sets -
(that is G(p)nG(o)=0) is a matroid with ground set G(p)UG(s), with 1-point
minors (uniquely determining p+o) as follows. If PCQ and qeQ-P, let
((p+a)/P)-q be (p/(PNG(p)))+q whenever q€G(p) and (o/(PNG(0)))-q whenever
qeG(o). Observe that (p+o)*=p*+0*. For example, the matroid 2f (see

figure 1) is Ul(q)+U1(r) The direct sum of two matroids is a matroid, since
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none of the six natural excluded is the direct sum of two matroids. The three
matroids 2a,2e and 2j (see figure 1) are Ug(q,r), U?(q,r) and Ug(q,r)
respectively.

Consider the minér class (A x A )exc((Ui(q),U(l)(q))) for some 1-element
ground set {q}. Its:st-‘i:'fxgtﬁres are pairs (p,0) of matroids p and ¢ (on the
same ground set’ Q*;"‘sajy):gfﬁ%h'tha,t (Ui(q),U(l)(q)) is not an isominor of (p,0).
Equivalently, .for fa,nyi ?PQQ.‘ and any qeQ-P, it is not the case that
(p/P)-q=Ui(q)’ and (a/P)T-~q=_U(1)(q). Define a relation < on matroids where
p<o if and only:if (p,a)e(./{ x./lt )e){c((Ui(q),U(l)(q))). (In particular
G(p)=G(o).) 'The factithat'< is a partial order on matroids follows from the
fact that it is :;\, partial order on 1-point matroids. (Matroid theorists may
recognise this as the strong map partial order [9].) If ¢ is a matroid on
ground set Q and qeQ,.then the exclusion of 2¢,2d,2h and 2i (see figure 1)
implies that (¢/q)<(o\q). If MCNCQ and PCQ-N, it follows by induction that
((¢/N)-P)<((¢/M)-P).

In particular, if qeQ and o/ (Q—{q})=Ui(q)=coloop(q), then for any
PCQ—{q} it follows that (o/P)-q=coloop(q). In this case q is a coloop of 0.
By the exclusion of 2g and 2i (see figure 1) it follows that if q is a coloop of o,
then (d\q)=(a/q) and hence o=(0\q)+coloop(q). If qeQ is such that
o\(Q—{q})=loop(q) then q is a loop of 0. (Observe that q is a loop of ¢
exactly when q is a coloop of ¢*.) In this case (o/P)-q=loop(q) for every
PCQ{q}, and by the exclusion of 2b and 2c (see figure 1) it follows that
(s\q)=(o/q) and hence o=(0\q)+loop(q). Conversely if (s\q)=(0/q), then by
the exclusion of 2b,2¢,2g and 2i (see figure 1) it follows that q is either a loop
or coloop of o.

If q and r are distinct elements of Q, and o/ (Q—{q,r})=U?(q,r), then q
and r are coparallel in 6. (Being coparallel in o is a transitive relation, since if

p,q,r are distinct elements of Q with p and q and also q and r being coparallel
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in o, then o/(Q-{p,q,r}) must be Ug(p,q,r), by the exclusion of 2h,2i,2g and 2d
(see figure 1). Therefore a/(Q—{p,r})=Ug(p,q,r)/q=U%(p,r) and p and r are
coparallel in ¢.) If q and r are coparallel in o, then bijection from Q to Q
which fixes Q—{q,r} and swaps q and r, is an automorphism of g, as the
following argument shows. If PCQ-{q,r} then (¢/P)-{q,r} is equal to either
U%(q,r) or Ug(q,r) (since these are the only matroids that are above U%(q,r) in
the partial order <) and these have the bijection swapping q and r as an
automorphism. Also ¢/q/r=0/r/q and o\q\r=0\r\q, as always. Now ris a
coloop of ¢/q, since (U/q)/(Q—{q,r})=(U/Q—{q,r})/q=U%(q,r)/q=coloop(q), and
similarly q is a coloop of o/r. Therefore o/q\r=0/q/r=0/t/q=0/r\q. This
covers all the 1—poiﬁt minors of o, so that ¢ does indeed have the
abovementioned automorphism. If q and r are distinct elements of Q and
a\(Q—{q,r})=U%(q,r) then q and r are parallel in 0. Observe that q and r are
parallel in o exactly when they are coparallel in ¢*. By "dualising" the
arguments above, it follows that being parallel in o, is a transitive relation, and
also that if q and r are parallel in ¢, then the bijection from Q to Q which

- fixes Q—{q,r}' and swaps q and r, is an automorphism of o.

The rank of the matroid ‘o, denoted rk(o), is defined inductively as
follows. The rank of the 0-point matroid is zero, and for any q€Q, it holds
that rk(o) is either rk(o\q) in the case that o/ (Q—{q})=100p(d) or rk(o\q)+1 in
the case that ¢/(Q-{q})=coloop{q}. (For example, the rank of UIIIII(Q) is m,
and in particular the rank of loop(q) is 0, and the rank of coloop(q) is 1.) The
exclusion of 2b,2c¢,2d,2g and 2i (see figure 1), ensures that this definition is
consistent, that is, independent of the choice of q. For any PCQ, the rank of
P in ¢, denoted rk (P) (or simply rk(P) if ¢ is known from the context), is
defined to be rk(co-P). If PCQ and rk(P)<rk(o) then by the inductive
definition of rank there must exist a 1-point minor of ¢/P, say on ground set

{q}, which is coloop(q). But by the properties of the partial order <, it
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follows that (o/P)-q=coloop(q) and this equals (o-PU{q})/P, so that
rk(PU{q})=rk(P)+1. By induction it follows that, fo‘r any non-negative integer
m<rk( o), there exists PCQ with rk(P)=m and rk(P)=|P|.
The corank, rk*(o), of o, is equal to rk(o*), the rank of the dual of o.

If PCQ, then the corank of P, denoted rk*(P), is defined to be rk(o*-P). By
dualising the above argument, it follows that, for any non-negative integer
m<rk* (o), there exists PCQ with rk*(P)=m and rk*(P)=|P|. An alternative
definition of rk(o) and rk*(o), easily deduced from the inductive definition, is
given by considering the Q-hypercube visualisation of o, although it can be
expressed formally. Consider any |Q| edge path from the vertex representing
0\Q (namely (0]|q€eQ)) to the vertex representing o/Q (namely (1]|q€eQ)).

Then rk(o) (respectively tk*(o¢)) is the number of edges labelled coloop
(respectively loop) in the path. The exclusion of 2b,2¢,2d,2g and 2i (see figure
1) ensures that this is independent of the choice of path. It follows that
‘1k(o)+1k*(0)=|Q|, the order of o.

The ydescription of & (R) When R is a Field

From now on we restrict our attention to the case where R is a field. In
this case, let us find the y¥-description of & (R). This task is simplied by the
fact that & (R) has a duality like that of #. Consider a ground set Q and
any subspace S of the vector space RQ. The dual of S, denoted S*, is the

submodule of RS containing all elements (b_|qeQ) such that ¥ a b =0 for
q €Q 449

every (aqlqu)eS. (Also S* is called the orthogonal subspace of S.) It is
routine to check that & (R) has a mixed automorphism which swaps deletion
and contraction, and which swaps each Se & (R) with its dual S*e¢ & (R).
Also, for any Se & (R) and any qeG(S), it holds that (S*)*=S and
(S\a)*=(S*)/q and (S/q)*=(S*)\q. The homomorphism a: & (R)- A
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"respects" duality in the sense that a(S*)=(o(S))*. The above mixed
automorphism sends y-structures to y-structures, and if it is extended to
‘D (R) (see section 11) then it permutes the natural excluded minors.

Recall the homomorphism a: & (R)-# . As discussed in section 12 and
before, a extends uniquely to a homomorphism from & (R) to 4 , which can
be denoted v F(R)- A . In particular, @ is defined on the natural excluded
minors of & (R). (Note that just because some elements of & (R) are not in
9 (R) and some subsets of R are not in 9 (R), it does not follow that the
structures in & (R) on ground set Q, can be thought of as subsets of RQ,
because they cannot.) The homomorphism « is useful because the 1-point
minors of S are the same as those of o(S), so that « gives a convenient means
of specifying the 1-point minors of S.

Let Se & (R) have ground set Q, so that S is a subspace of RYQ. For
any PCQ, identify-the points (aqlqu—P) in RQ_P, with the points (aq|q€Q)
in RQ, such that a,q=0 for every qeP. It then follows that S\q=SnRQ_{q} for
any q(—:Q‘. Also for any distinct q,reQ, it follows that
rRUAUGRAATI g QHD} 404 hence
(S\@)n(S\r)=(snRe{hnsnReTh—snr@{9T _g\q\r. Let dim(S) denote
the dimension of S as a vector space. If dim(S)=dim(S\q) then S(_ZRQ_{q} )
that there is no a=(a, [t€Q)€S with qesupp(a), and hence S/Q-{q} is the
0-dimensional subspace {0}{q} of R{q}, namely coloop(q), (a 1-point structure
in Z(R)). So in this case &(S)/(Q—{q})=a(S/Q-{q})=coloop(q), (a 1-point
structure in 4 ), and in fact q i8 a coloop of aS). However if
dim(S)=dim(S\q)+1, then there exists a=(a,|t€Q)€S with qesupp(a), so that
(a; |te{a})e(S/Q-{q}) with a.q#O, and hence S/Q-{q} is the 1-dimensional
subspace R4} of R{Q}, namely loop(q) (in & (R)). In this case
o(S)/(Q-{a})=0(S/(Q—-{q})=loop(q) (in #). Comparing this to the inductive
definition of rank, it follows that dim(S)=rk*(«(S)), the corank of ofS).
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It is instructive to determine when Se & (R), on ground set Q, is uniquely
determined by S\q and S\r, for some given distinct q,reQ. That is, if
Te & (R), on ground set Q, and S\q=T\q and S\r=T\r, does it follow that
S=T? Now S\q (respectively S\r) can be treated as subspaces of R? with all
elements having qth (respectively rth) coordinate being zero. Define the
subspace (S\q)+(S\r) (unrelated to direct sums of matroids) to be {ca+db|c,deR
and aES\q and beS\r}. One possibility for T is to be (S\q)+(S\r). In any
case S (and any T with S\q=T\q and S\r=T\r) must have (S\q)+(S\r) as a
subspace. The dimension of (S\q)+(S\r) is dim(S\q)+dim(S\r)-dim(S\q\r),
since S\q\r is (S\q)n(S\r). Now the dimensions of S\q and S\r will each be 0
or 1 more than dim(S\q\r), and will each be 0 or 1 less than dim(S). These
four differences correspond to the four 1-point minors (0 for coloop and 1 for
loop) of the matroid o(S/(Q—{q,r}))=a(S)/(Q-{a,r})=p, say, on ground set
{q,r}. There are five such matroids, namely 2a,2e,2f (and the other matroid
on {q,r}, isomorphic to 2f, depicted just above 2e in figure 1) and 2j (or
Ug(q,r), U%(q,r) U(l)(q)+Ui(r), Ui(q)+U(1)(r) and Ug(q,r), respectively). Now S
is uniquely determined by S\q and S\r if and only if p is unj_quely determined
by p\q and p\r. (If there is only one possibility for p, then there is only one
possibility for the dimension of S (namely, dim(S\q\r)+rk*(p)) so that S must
be (S\q)+(S\r). The converse is clear.) If p is Ug(q,r) or U(l)(q)+Ui’(r) or
Ui(q)+U(1)(r) then p is uniquely determined by p\q and: p\r. Butif pis U%(q,r)
or Ug(q,r) then in both these cases p\q=Ui(r) and p\r=Ui(q), and in neither
case is p uniquely determined by p\q and p\r. This corresponds to the case
when dim(S\q\r)=dim(S\q)=dim(S\r), so that S\q\r=S\q=S\r which therefore
equals (S\q)+(S\r) (as subspaces of RQ). In this case, either
dim(S)=dim(S\q\r)l (corresponding to p=Ug(q,r)) so that S=S\q\r, or else
dim(S)=dim(S\q\r)+1 (corresponding to p=U%(q,r)) so that S\qg\r is a proper

subspace of S and S has
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as a basis, that of S\q\r together with some vector aeR? such that
{q,r}Csupp(a). Also in this case either a(S)\q\r=p=U§(q,r) so that q and r
are coloops of o(S), or else a(S)\q\r=p=U%(q,r), so that q and r are coparallel
in oS). So o is uniquely determined by S\q and S\r unless q and r are
coloops of a(S) or are coparallel in o(S). By duality, S is uniquely determined
by S/q and S/r unless q and r are loops of a(S) or are parallel in ofS).

We now find the y-structures of & (R). rI“he minor class & (R) has a
unique 0-point structure (Rm is the only subspace of R@) so that the two
structures loop(q)=U(1)(q) and coloop(q)=Ui(q), on ground set {q}, are
Y-equivalent. Suppose that Se & (R) on ground set Q, is another y-structure,
so that the order |Q| of S is at least 2. Now S is not uniquely determined by
S\g and S\r, nor by S/q and S/r, for any distinct q,r€Q. Since no loop can be
a coloop and no loop or coloop can be parallel or coparallel to any other
element it follows that all elements of Q are both parallel and coparallel in o(S)
to all other elements of Q. Therefore aS) is U%(q,r) (for some 2-element
ground set {q,r}) (since all 1-element subsets of Q have rank and corank 1 but
no 2-element subset of Q have rank or corank 2, so that rk(o(S))=rk*(oa(S))=1
and hence |Q|=1+1=2). Also, all Se & (R) with a(S)=U%(q,r) are
Y-equivalent to each other, since they all have the same 1-point minors. Now
dim(S)=rk*(a(S))=2-1=1. Write the elements of R{q,r} as ordered pairs with
the first and second component, labelled by q and r respectively, as before.
Therefore S is a one dimensional subspace of R{q,r} and since S\g=loop(r) and
S\r=loop(q), so that R1Uns=R{"}ns={0}, it follows that § is of the form
{(c,ca)|ceR} for some non—zero a€R. Call this structure (a,q,r) the slope with
slope a of t over q. Observe that (a,q,r) is equal to (a'Lr,q). So (a,q,r) is
isomorphic and ¢-equivalent to (a'1,q,r) (but they are unequal unless a=1 or
a=-1). So the y-structures on ground set {q,r} are the slopes (a,q,r) for all

non—zero a€R, and with loop(q) and cbloop(q), these are the only #-structures.
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Actually, when |R|=2, there is only one non—zero a€R, and hence only one
slope (a,q,r), so that in this case there are no 2-point ¥-structures.

Any structure Se & (R), on ground set Q, is uniquely determined by
specifying all its 1-point minors, and for those distinct q,reQ and PCQ—{q,r}
such that (a(S)/P)-{q,r}=a((S/P) -{q,r})=U%(q,r), specifying for which
non—zero a€R it holds that (S/P)-{q,r} is (a,q,r). Visualising this as a
patterned Q-hypercube, as described in section 11, all the 1-faces (edges) are
labelled as loop or coloop, e);actly as for the matroid o(S), and all the (square)
1-faces which look like 2e (that is U?) are labelled to indicate which slope the
corresponding 2-point minor is. (All the other 2-faces, as well as the m-faces
for m=0,34,5,--+,]Q| are left blank.) The patterned Q-hypercube depicting
o(S) is obtained from that depicting S, simply by "blanking" the above
patterned 2-faces and leaving the 1-faces unchanged. Also the dual of (a,q,r)
is (-a'l,q,r) so that the patterned Q-hypercube depicting S* is obtained from
that depicting S, by sending each point (xq|qEQ) of the Q-hypercube to
(1—xq|qu) (since deletion and contraction are swapped as for the matroid case
in section 12), changing each 1-face labelled loop to coloop and visa-versa, and
changing each slope acR-{0} to -aL

The other subspaces of R{q’r} are R{q’r}, R{q}, R{r} and Ro and a
sends these to Ug(q,r), U(l)(q)+Ui(r), U%(q)+U(1)(r) and Ug(q,r) respectively,
which are all the remaining matroids on {q,r}. Naming the two 1-point
structures in & (R) as loop and coloop, as we have, it follows that & (R) has
the same six 2-point natural excluded minors as 4 , namely 2b,2¢,2d,2g,2h and
2i (see figure 1).

Now the homomorphism o: F(R)-.# sends all (and only those) elements
of &' (R)exc(2b,2¢,2d,2g,2h,2i) into A . In particular, a sends any other
natural excluded minor (which must have order at least 3) of & (R) into 4 .

Suppose that Se & (R), with ground set Q, and of order |Q]>3, is a
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natural excluded minor of & (R). Suppose also that the matroid o(S) has a
coloop q€Q. So a(S\q)=(a(5)\a)=(a(S)/q)=0(5/q) but (S\q)#(S/q) as shown
below. (Observe that all the minors of S which are y-structures, are covered
by specifying S\q, S/q and the fact that q is a coloop of a(S), so that these
uniquely determine S.) Now if S\q were equal to S/q then these can be
treated as subspaces of RQ, and S must be S\q. But then Se ' (R)
contradicting the assumption that it was a natural excluded minor of & (R).
Therefore (S\q)#(S/q), as claimed. Since S\q and S/q agree on their 1-point
minors, they must disagree on the slope of a corresponding 2-point minor.
That is, for some distinct p,reQ—{q} and some PCQ-{p,q,r} it holds that
(S\a/P)-{p,r}=(a,p,r) and (S/q/P):{p,r}=(b,p,r) where a and b are distinct
non—zero elements of R, and (S/P)-{p,r} is not in & (R). By the minimality
of S it follows that Q={p,q,r} and S is uniquely specified by saying that
a(S)=Ui(q)+U%(p,r) and S\q=(a,p,r) and S/q=(b,q,r) for some distinct
non—zero a,b€R. All the natural excluded minors S, of & (R), where o(S) is a
matroid with a coloop, are given by considering all pairs of distinct non-zero
a,beR. By duality any natural excluded minor S, of & (R), where ofS) is a
matroid with a loop, are given by a(S)=U(1)(q)+U%(q,r) and S\q=(a,q,r) and
S/q=(b,q,r) for all distinct non—zero a,beR. (Recall that the natural excluded
minors ére obtained from the natural excluded isominors, by partitioning the
latter according to isomorphism and choosing one from each partition. But
above, all the natural excluded isominors (of a certain form) on a particular
ground set are given, so that some are mentioned more than once (at most
twice in this case, and at most 4!=24 time in a later case) up to isomorphism.
Obviously this is not a problem, and will not attract further comment.)
Suppose now that Se & (R), with ground set Q, is a natural excluded
minor of & (R), and that &(S) is a matroid with no loops or coloops, but with

distinct q,reQ being parallel. Observe that if S is given by a(S)=U?(p,q,r)
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and the slopes S\p,S\q and S\r are respectively (a,q,r), (b,r,p) and (c,p,q)
where non—zero a,b,ceR are such that abc#-1, then S is a natural excluded
minor of & (R), as is easily verified. Assume instead, that S is not isomorphic
to a structure of this form. Now a(S-{q,r})=a(S)-{q,r}=U%(q,r) (by the
definition of parallel) so that S-{q,r} is the slope (a,q,r) for some non-zero a€R.
It PCQ-{q,r} s such that a((S/P)- {q,r})=(a(S)/P))- {a.r}=U2(q,r), then by
the properties of the partial order < with respect to deletions and contractions,
it follows that if peP then '(a(S/P—{p})-{q,r})=(a(S)/P—{p})-{q,r}=U%(q,r).
By the exclusion of the natural excluded minors mentioned in the previous
paragraph, it follows by induction that (S/P)-{q,r}=(a,q,r) for every PCQ-{q,r}
such that a(S/P)-{q,r}=U%(q,r). Since q is a loop of a(S)/r=a(S/r) and r is
a loop of o(S)/q=a(S/q) and by the exclusion of the natural excluded minors
mentioned in earlier paragraphs it follows that S/q\r=S/q/r=S/r/q=S/r\q. Of
course S\q\r=S\r\q. As shown earlier, (S) has the bijection from Q to Q,
which fixes Q-{q,r} and swaps q and r, as an automorphism. So the bijection
from Q-{r} to Q-{q}, which fixes Q-{q,r} and sends q to r, is an. isomorphism
from (S)\r to a(S)\q. So for any peQ-{q,r} and any PCQ-{p,q,r} it follows
that (a(S)\r/P)-{p,q} (which equals (a(S)/P)-{p,q}) is U%(p,q) if and only if
(a(S)\a/P)-{p,r} (which equals (a(S)/P)-{p,r}) is U%(p,r). For any p and P
such that these equivalent statements are true, the only possibility for
a((S/P)-{p,q,r})=(a(S)/P)-{p,q,r} is U‘?(p,q,r), by the exclusion of 2b,2h,2¢
and 2d (see figure 1). (The dual of this statement was shown in the paragraph
defining coparallel.) In this case (S/P)-{p,q} is (b,p,q) for some non-zero
beR, and by the exclusion of the natural excluded minors described in this
paragraph, it follows that (S/P)-{p,r} is (~1/ab,r,p) which is (-ab,p,r). All
the minors of S which are y-structures have been specified, and in the absence
of the abovementioned natural excluded minors, they are uniquely determined

by S\r and S-{q,r}=(a,q,r). Interpreting elements (dt|tEQ—{r})E(S\r)(_IRQ_{r}
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as (dtlteQ)ERQ with d =0, and letting (e, [t€Q) be such that eq=1, e =a, and
e,=0 for every teQ—{q,r}, then this unique S is actually
{(d,It€Q)+f(e, | t€Q)| (d, |t€Q)€S\r and feR} which is a subspace of RY. This
contradicts the assumption that S is not in & (R), so there is no such S.
Hence the only natural excluded minors S, on ground set Q, of & (R) such that
o(S) is a matroid with no loops or coloops, but with some distinct q,reQ being
parallel are those mentioned earlier in the paragraph. By duality the only
possibilities for S, with parallel changed to coparallel (in the previous sentence)
are (up to isomorphism) when S is given by a(S)=Ug(p,q,r) and the slopes
S/p,S/q,S/r are respectively (a,q,r\),(b,r,p),(c,p,q) where non-zero a,b,ceR are
such that (-1/a)(-1/b)(-1/c)#-1, that is, abc#l.

Suppose that S€ F (R), with ground set Q, is a natural excluded minor of
P (R) which is not isomorphic to any of those mentioned above. So ofS) is a
matroid with no loops or coloops a,n(i no pairs of elements being parallel or
coparallel, and hence every 2-element subset of Q has rank and corank 2 and
o(S) has rank and corank at least 2. Suppose that the corank of a(S) is at
least 3 so that there exists {1,2,3}CQ with corank 3 and
oS)/(Q-{1,2,3)=U3(1,23). Let TeF (R), with ground set Q, be (S\1)+(5\2)
(as defined earlier) so that S\1=T\1 and S\2=T\2. Now S$\3 is uniquely
determined by S\3\1 and S\3\2, since o($)\3/Q-{1,2,3}=Up(1,2,3)\3=U5(1,2).
But S\3\1=S\1\3=T\1\3=T\3\1 and similarly S\3\2=T)\3\2 and these
uniquely determine T\3 which therefore equals S\3. Also S/3 is uniquely
determined by S/3\1 and 5/3\2 since o(S)/3/Q~{1,2,3}=Uj(1,2,3)/3=U5(1,2).
But S/3\1=S\1/3=T\1/3=T/3\1 and similarly S/3\2=S/3\1 and these
uniquely determine T/3 which therefore equals S/3. Similarly if q€Q, then
since {1,2,3}-{q} has at least the two elements needed in the argument,
S/q=T/q. Also if qeQ—{1,2,3} then S\q is uniquely determined by S\q/1 and
S\a/2, since a(S)\a\Q-{1,2,a}=e(S)\Q-{1,2} is not U3(1,2) or U3(1,2), by
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the assumption that a(S) has no loops or parallel pairs of elements. But
S\q/1=S/1\q=T/1\q=T\q/1 and similarly S\q/2=T\q/2 and these uniquely
determine T\q which thus equals S\q. Therefore S\q=T\q and S/q=T/q for
all geQ and hence ST, contradicting the assumption that S¢ & (R), while
Se & (R). So the assumption that rk*(a(S))>3 is false, so that rk*(o(S))=2
By duality rk(a(S))=2 as well, and the only possibility for a(S) is Uj(1,2,3,4)
for some 4-element ground set {1,2,3,4}. Now U% is obtained as a minor of
U4 by deleting any element and contracting any other. For distinct

k,¢,m,ne{1,2,3 4} let non—zero ak £eR be such that S\k/Z—-(aJk e,m,n) (Note

k? 24 34 31 41 32
that a o 1/ ) Let a,—a,23, b= a31, =19 d—a43, e=2g,, f=a 830: =841,
42 12 43

h—a,13, i=agy, j=ag1, k 342, Z—al 4 BY the exclusion of the natural excluded
minors mentioned in the previous paragraph, it follows that
1=abc=def=ghi=jk{ and -1=aik=bd{=ceg=fhj. Of these eight equations, no '
six determine the others, but any seven determine the eighth. (So when |R|
is finite there are (|R|- 1)12—7 =(|R]| 1) possibilities). Now any Se & (R)
with a(S)=U5(1,2,3,4) is of the form {m(1,0,w,x)+n(0,1,5,) |m,neR} where
non-zero w,x,y,z€R with wz#xy. (When |R| is finite there are

( |R|—1)3( |R|-2) possibilities, so there are clearly many natural excluded
minors.) It is routine to check that in this case a=(yx-wz)/x, b=z/(wz—xy),
c=-x/z, d=y/z, e=z2, f=1/y, g=1/x, h=w, i=x/w, j=-y/w, k = w/(wz-xy) and
{=(xy-wz)/y and, for example, afi=i-ef. (Similar equations to this obtained
by the symmetry of the situation are also obtained from the equation in the
presence of the eight given above.) Conversely the equation afi=i-ef is
sufficient to ensure that S is in & (R) (simply put x=1/g, y=1/f, w=h, z=e).
So S is a natural excluded minor of 9 (R) with o(S)=U3(1,2,3,4) if and only if
the eight equations above hold but afifi-ef. - This exhausts all the possibilities
for natural excluded minors.

So in summary, the ¥-structures of & (R) are loop(q) and coloop(q) for a
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1-element ground set {q} and the slopes (a,q,r) for all non—zero a€R for a
2-element ground set {q,r} (unless |R|=2). The natural excluded minors of
9 (R) have order 2 (these are the same six as for 4 ) and 3 (some structures
in & (R) which o sends to U(1)+U%, Ui+U%, U? and Ug) and 4 (some-structures

in F(R) which a sends to Ug). This holds for any field R, finite or infinite.

The Minor Class .4 (R)

For any ring R let 4 C(R) denote the homomorphic image a(- & (R)) of
9 (R) under @, and if R is a division ring denote it as . (R). The elements
of 4 (R) are the matroids coordinatisable over R. Matroid theorists are
particularly interested in knowing the excluded minors of 4 (R) in 4. (This
immediately yields the ¢-description of 4 (R), and visa versa as shown in
section 12.) A conjecture of Rota [12] states that when R is a finite field,

A (R) has finitely many excluded minors in 4 (or equivalently, . (R) ’has
finitely many natural excluded minors). It is not surprising that 4 (R)
generally has infinitely many natural excluded minors when R is infinite, and
this seems compatible with the fact that, while the order of the y-structures
and natural excluded minors of & (R) is bounded, there are infinitely many of
them. But when R is finite, & (R) has finitely many t-structures and natural
excluded minors, and it is not unreasonable to believe that . (R) also has '
finitely many f-structures (which it does) and natural excluded minors (the
subject of much research).

Consider the visualisation of structures in & (R). They are patterned
hypercubes with patterns on the 1-faces and some of the 2-faces, as described
earlier. In fact they are exactly those in which certain patterned 2—,3- and
4-hypercubes do not appear as patterned subhypercubes. The surjective
homomorphism to 4 (R) simply erases the pattern on the 2-faces, and it does

not seem unreasonable to ask now which patterned hypercubes minimally do
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not appear as patterned subhypercubes. However this is not a simple problem
and it is probably unrealistic to expect an answer for general finite fields R.
But it would seem to be feasible that a theorem about minor class
homomorphisms with certain conditions (or even homomorphisms of algebras
with certain conditions) could yield as a corollary that . (R) has finitely many
natural excluded minors. On the one hand, the latter is a monumental
problem which, despite great effort, has not been solved. On the other hand
we now have(a large body of universal algebra at oﬁr disposal; of course there
are many unsolved problems in algebra.

Let us consider & (R) and 4 (R) when |R|=2,3 or 4, the cases which
have appeared in the literature. Since any finite field R is uniquely
determined up to isomorphism by its cardinality |R|, then & (R) and 4 (R)
can be unambiguously denoted & (|R|) and 4 (|R|). When |R|=2, there
are, as noted earlier, no 2-point y-structures in & (é). So the homomorphism,
o, from 9 (2) to H (2) is actually an isomorphism. Now & (2) has the usual
six 2-point natural excluded minors, but since there do not exist distinct
non-zero a,beR nor non-zero a,b,ceR with abc#1=-1, there are no 3—point
natural excluded minors. On any four element ground set there is (|R|—1)5=1
possible structure which a sends to Ug in # of which all but
(|R|—1)3(|R|—2)=0 are natural excluded minors. (That is, & (2) has one
natural excluded minor of order four, which & sends to Ug.) This provides an
independent proof of the well known theorem of Tutte [14] that ./ (2) has only
Ug as an excluded minor in 4 .

Now & (3) has (up to isomorphism) six 2-point, eight 3-point and two
4-point natural excluded minors, but 4 (3) has ([R. Reid, unpublished, 1970])
[2,13] six 2-point, (those of 4 ) two 5-point (Ug and its dual Ug) and two

7-point (the so called Fano matroid [18] and its dual) natural excluded minors.
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And 2 (4) has six 2-point, twelve 3-point and seventeen 4—point natural
excluded minors, whereas ./ (4) has at least six 2-point (those of ) three
6-point (including Ug and its dual Ug), two 7-point, and one 8-point natural
excluded minors [10], but it is not known if there are others.

These examples demonstrate that the natural excluded minors of a
homomorphic image do not bear an obvious relation to those of its source.

The examples in the next section further emphasise this.

The ¢description & (R) might not be too hard to find for certain kinds
of rings R more general than fields. In particular, if R is a principal ideal
domain, or one of a certain unknown class of non-commutative rings (including
non—commutative division rings) then there is still a sensible notion of
dimension of modules over R. There is no duality in the non-field case, but
some of the arguments used in the field case can be salvaged. The ring of
integers Z is a principal ideal domain and the y-description of & (Z) is
probably relatively simple. Many interesting sub minor classes of # and A C
are homomorphic images of & (Z) or of its sub minor classes. For example
M C(I) and 4 (Q) as well as the minor class of regular matroids (see [15]). In
general, if R is an integral domain and Q(R) is its quotient field (so that
0=Q(Z)), then A (Q(R)) is the homomorphic image of & (R) via the
homomorphism which, for each 1-element ground set {q}, sends O{q} to

coloop(q) and all other structures in & (R) on ground set {q}, to loop(q).
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SECTION 14: MINOR CLASSES OF GRAPHS

A graph G [16] consists of a finite set V(G) whose elements are called
vertices, a finite set E(G) whose elements are called edges, and a relation of
incidence, which associates with each edge, two vertices (not necessarily
distinct), called its ends. Two edges are adjacent if they are incident with the
same vertex (that is, an end of one coincides with an end of the other) and two
vertices are adjacent if they are the two ends of one edge. An edge is a loop if
its two ends are equal, and a link if its two ends are distinct. Two edges are
parallel if they are both links and they have the same ends. A directed graph
or digraph G, like a graph, consists of a finite set of vertices V(G) and a finite
set of edges E(G), but now the two ends of each edge distinguished (giving each
edge a "direction") so that for any edge, the vertex at one end is called its head
and the vertex of the other end is called its tail. (Again these need not be
distinct.) Obviously a graph can be obtained from a digraph by "ignoring the
direction of each edge", that is, letting the head and tail of an edge :t)e simply
its two (undistinguished) ends. A graph or digraph is simple if it has no loops
or parallel edges.

A graph can be depicted by drawing its vertices as points, and each edge
as a smooth curve between the points representing its ends (and touching no
other points). A digraph can be depicted in the same way except that an
arrow is placed on each edge pointing from tail to head.

An isomorphism from graph G to graph H, consists of a bijection from
V(G) to V(H) and a bijection from E(G) to E(H) which preserve incidence. If
such an isomorphism exists, then G and H are isomorphic. If both the
bijections can be chosen to be the identity function then G and H are equal.
We shall be constructing minor classes of graphs in which the ground sets are
either edge sets or vertex sets, but not both. When the ground sets are vertex

sets, it is immaterial how the edges are named. Two graphs are vertez—equal
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if there is an isomorphism between them for which the bijection between the
vertex sets is the identity function, regardless of the bijection between the edge
sets. Vertez—graphs (this term has a different meaning in [16]) or graphs with
anonymous edges, dre graphs for which isomorphism is defined as usual, but
equality is defined to be vertex—equality. An ésolated vertez is a vertex
incident with no edges. When ground sets are edge sets, it is immaterial how
the vertices are named. Two graphs, with no isolated vertices, are edge—equal
if there is an isomorphism between them for which the bijection between the
edge sets is the identity function, regardless of the bijection between vertex
sets. Edge graphs or graphs with anonymous vertices are graphs with no
isolated vertices, with the usual definition of isomorphism, but with equality
defined to be edge—equality. Verter—digraphs and edge—digraphs are defined
similarly.

To save repetition, it will be now said once, thgt all the alleged minor
classes below are indeed minor classes. (They are all standard in the
literature, and those properties which establish them as minor classes are well
known.) The relevant version of structure isomorphism is as defined above for
each type of graph.

The minor class $(VG) has vertex—graphs as its structures, finite sets as
its ground sets (vertéx sets), and one manner of point removal called vertez
deletion. For any vertex-graph Ge#(VG), and any vertex v in its ground set
V(G), the deletion of v from G is denoted G\v, and is obtained from G by
removing v from V(G) and removing all edges incident with v. There is a
unique O-vertex graph (with no vertices and hence no edges) and so all the
1-vertex graphs (with a single vertex and n loops, for any non-negative integer
n) are y-equivalent. Any two 2-vertex graphs, with 2-element vertex set
{v,w} say, are ¢equivalent if they have the same number of loops incident

with v, and the same number incident with w. They can have any
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non-negative integer number of edges (links) incident with both v and w.
These ystructures specify the number of edges incident with any pair of (not
necessarily distinct) vertices and conversely since these numbers can be chosen
arbitrarily, the y-structures can be chosen arbitrarily as minors of a graph. So
the ystructures mentioned are the only ones and there are no natural excluded
minors, so that y(VG) is a complete minor class. It is actually isomorphic to
the direct product of two of its sub minorvcla.ss (which are also complete)
namely that containing all graphs with only loops as edges (this minor class has
1-vertex y-structures), and that containing all graphs with only links as edges
(this minor class has 2-vertex y-structures). The sub minor class %(SVG), of
y(VG), containing only the simple vertex—graphs has only two i~structures,
namely a 2-vertex graph either with or without an edge incident with both
vertices. Sbecifying all 2-point minors of a simple graph determines for each
pair of distinct vertices, whether or not there is an edge between them (that is,
whether or not they are adjacent) thus determining the graph (so there are
indeed only two t-structures). These can clearly be specified arbitrarily, so
that there are no natural excluded minors and %(SVG) is complete.

Similar definitions and comments apply to $(VD) the minor class of
vertex-digraphs with one manner of point removal, namely vertex deletion.
A vertex is deleted from a digraph, exaétly as it is from a graph. This time
the 2-element ¢~structures specify how many links there are in each direction
between any two vertices. Again (VD) is complete and is isomorphic to the
direct product of two of its complete sub minor classes. Also %(SVD),
containing only the simple vertex—digraphs, is a complete sub minor class of
#(VD). It has three 2-vertex ¢-structures (these are the only ones) since a
pair of vertices can have no edge between them or a directed—edge in either
direction. The latter two are isomorphic but not equal (as y-structures

sometimes are). Observe that there are surjective homomorphisms from
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%(VD) to $(VG) and from & (SVD) to $(SVG) which send each
vertex—digraph to the corresponding vertex-graph, by removing the direction of
each edge. '
The minor class %(ED,1) has edge-digraphs as its structures, finite sets
as its ground sets (edge 1sets), and one manner of point removal called edge
deletion. For any edge-digraph Ge%(ED,1) and any edge e in its ground set
E(G), the deletion of e from G is denoted G\e, and is obtained from G by
removing e from E(G) and removing any isolated vertices this may have
created. For any PCE(G), the graph G\P is obtained from G by deleting
every‘ edge in P (in any order) and G-P denotes G\(E(G)-P). Now an’
edge-digraph may be described in terms of an equivalence relation ~ on
E(G)x{h,t} for some two element set {h,t}. For edges e,feE(G) let (e,h)~(f,t)
if and only if the head of edge e in G is the same vertex as the tail of edge
fin G, and define this relation on the rest of E(G)x{h,t} in the obvious way.
Clearly the relation ~ , uniqﬁely determines G, and also, any equivalence on
Qx{h,t} defines (uniquely) an edge-digraph with edge set Q. For any
edge-digraph G, the relation ~ is determined by the 1- and 2-edge minors of G,
since these determine whether or not the equivalence ~ holds between (e,x) and
(f,y) for every e,feE(G) and every x,ye{h,t}. (Note that |{e,f}| is either
1 or2.) Since there is a unique 0-edge digraph (with no edges, and hence no
vertices) it follows that the ¢-structures have order 1 and 2. In searching for
natural excluded minors, we specify the 1- and 2-edge minors of a structure G,
with ground set Q say, in the completion Y(ED,I), of $(ED,1). This will give
a well defined relation ~ on Qx{h,t} which is reflexive and symmetric, so that
the only way G will not be in $(ED,1) is if ~ is not transitive. In this case
there exist e,f,geQ and x,y,ze{H,t} such that (e,x)~(f,y) and (f,y)~(g,z) but
(e,x)~(g,z) does not hold, so that G-{e,f,g} is also not in Y(ED,1). Therefore

the natural excluded minors of %¥(ED,1) have order of most 3, and it is easily
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checked that they do not have order less than 3. The ¢structures are
illustrated in figure 2, with the convention that y¥-equivalent graphs are
illustrated in the same row. (The reason for the dotted line in row 4 becomes
apparent later.) The ground set elements, that is edges, have not been
labelled to avoid cluttering the diagram, but they should be, since it is
necessary to specify an actual edge graph. So a convention is adopted where
all the graphs in the same row have the same edge set, and for all the 2-edge
graphs in the same row, the upper edges are labelled by one element of the
ground set, while the lower edges are labelled by the other. Observe that the
graphs, second and third from the right in row 4 of figure 2, are isomorphic but

not equal

<y O 00O
Q « OO}

E28% %

Figure 2: The y-structures of $(ED,1).
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There are too many natural excluded minors to list, but at least we can
count them (and readers can try to obtain the same result). There are two
possible criteria for counting them. The correct way is to count them up to
isomorphism, using either Polya enumeration, or simply counting by
observation. Alternatively, one can count all the natural excluded isominors
on a fixed (3-element, in this case) ground set, which is sometimes easier. The
latter method gives a result at least as large, since for each structure countéd,
so are all structures isomorphic to it, on the same ground set. First gonsider
structures in %(ED,I) on a particular 3-element ground set, in which éll three
1-point minors are loops. There are 23 possibilities for the 2-point minors/(see
figure 2, row 2) making 8 possible structures, or 4 up to isomorphism (since
either 0 or 1 or 2 or 3 of the three 2-point minors could be the left hand graph
in row 2 of figure 2), and we denqte this as 4:8 possible structures. (The first
figure counts up to isomorphism, the second counts on a fixed ground set.) Of
these, 3:5 are actually graphs, so that 4:8-3:5=1:3 are natural excluded minors.
Similarly, when two (respectively one, none) of the three 1-point minors are
loops there are 12:54-6:24=6:30 (respectively 39:189-17:78=22:111,
73:343-24:84=49:259) natural excluded minors. So there are a total of
1+6+22+49="78 natural excluded minors (or 3+30+111+259=403 on a fixed ground
set). |

The minor class $(EG,1) has edge-graphs as its structures, finite sets as
its ground sets (edge sets), and one manner of point removal called edge
deletion, which is defined and denoted exactly as it is for $(ED,1). So there is
a surjective homomorphism from %(ED,1) to %(EG,1) which sends each
edge-digraph to the corresponding edge—graph, by removing the direction of
each edge. TFigure 3 illustrates some y-structures of $(EG,1). Graphs in the
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same TOW are Yequivalent, and the same convention is used for labelling edges,
as with figure 2. Also the 3-edge graphs in row 5 should be labelled by the

same three elements, but due to their symmetry this can be done arbitrarily

Figure 3: The y-structures of ¥(EG,1).
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It is routine to show that all the edge—graphs in any row in figure 3, are
yequivalent, and that all the ¢-structures of order at most 3, are illustrated.
Suppose edge—graph G, with ground set (edge set) Q, is a y¥-structure in
%(EG,1) with order minimally greater than 3. Suppose all the minors of G
which appear in figure 3 are specified, which uniquely determines all proper
minors of G, by assumption. In particular, choosing some edge e€Q, it follows
that G\e is uniquely determined. We shall examine how the edge e can be
attached to G\e, consistent with the given proper minors of G. The 1-edge
minor G-e determines whether e is a loop or a link and for edge feQ-{e}, the
2-edge minor G-{e,f} determines the way in which the ends of e and f coincide
_ (if at all). If e shares no end in G (that is, is not adjacent) with any other
edge then this is determined by the 2-edge minors of G, and G is constructed
from G\e by adding edge e with its ends being new vertices added for the
purpose. If edge e is parallel to edge f in G, then G- {e,f} shows this, and G is
constructed from G\e by adding edge e with its ends being the ends of f.
Without loss of generality, assume that G has no two edges parallel, but that
every ‘edge is adjacent to some other edge. So edge e shares an end with some
other edge f in G, but the 2-point minors of G do not necessarily determine
which end (unlike the case for directed graphs). If edge f is adjacent only to
edge e then it makes no difference (as far as equality of edge-graphs is
concerned) which end of f is in(;ident with e. If edge f is adjacent to some
other edge g say, then since g is not parallel to f, it is incident with exactly one
end of f and so the 3—point minor G-{e,f,g} determines which end of f (the end
incident with g, or the other one) is incident with e in G. Let one end of edge

e be attached to this end of edge f in G\e. If e is a loop then G has already
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been reconstructed. So suppose e is a link. If heQ-{e,f}, then the 3—point
minor Q- {e,f,h} determines whether or not h is incident with the end of e that
is not incident with f. If there is no such edge h, then this end of edge e can
be a new vertex added for this purpose. Otherwise, this end of e can be
attached to the appropriate end of edge h, determined as for edge f. Thus G
is uniquely determined by its proper minors, contradicting the assumption that
it is a ¢-structure. Therefore, the edge—graphs in figure 3 are the only
y-structures of Y(EG,1).

It is easily seen that there are no natural excluded minors of order
strictly less than 3. Counting reveals that, up to isomorphism, there are 30
order-3 structures in $(EG-I), the completion of $(EG,1), 23 of which are in
%(EG,1) (that is, are 3-edge graphs) leaving 7 order-3 natural excluded minors
of 4(EG,1). Now 7 is not too many to list, provided they can be described
conveniently. (Remember, they are not in $(EG,1), and are not graphs.)
One way to describe a natural excluded minor is to list its immediate minors,
that is, minors obtained by removal of a single point. (The number of these is
the order of the structure multiplied by the number of manners of point
removal.) Figure 4 illustrates the immediate minors of the seven natural
excluded minors of order 3. It is assumed that the ground set (edge set) is
{1,2,3} and in each row are the three immediate minors of a natural excluded
minor, with the graph (with edge set {1,2,3}—{i}) obtained by deleting i, for
each i€{1,2,3}, in column i. Note that in any row, and for any distinct
i,j€{1,2,3}, deleting edge i from the graph in column j yields the same result as
deleting edge j from the graph in column i, as required. Edges are labelled

only when it is necessary to avoid ambiguity.
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Let us find the remaining natural excluded minors. Recall the proof
that all the ¢-structures of $(EG,1) have been found, but now suppose that
GeZ(EG,I), with ground set Q is a natural excluded minor of %(EG,1). Then
G is not a graph, but if e€Q, then G\e is a graph and the minors of G which
are y-structures uniquely determine, for each edge in G\e, which ends of each
such edge, e must be incident with. Since G is not a graph, this will be
requiring that e does something inconsistent with G being a graph. Ifeis a
loop (as determined by the minor G-e) then it either must be incident with
two distinct vertices (involving exactly two other edges) or e must be both
incident and not incident with some vertex (again involving two other edges,
both incident with the vertex, but only one being adjacent to e). If e is
parallel to some edge f say, (as determined by the minor G- {e,f}) then there
must be exactly one other edge g which is connected to f differently to the way
it is connected to e (so that G\e is not isomorphic to G\f via the bijection
sending g to g and f to e). All these cases involve exactly three edges and are
covered by figure 4. In the remaining case (where there are no loops or
parallel edges) then either e must be incident with three vertices (involving
exactly three other edges, not two by the exclusion of parallel edges) or e must
be adjacent to some edge f say, but not adjacent to edges incident with either
end of f (again involving three other edges). These cases all involve exactly
four edges, and an exhaustive search (there are only finitely many order—4
structures in g(EG,I)) yields 8 order—4 natural excluded minors. These are
described by their immediate minors in figure 5. The comments referring to

figure 4, also apply here except that the ground set is now {1,2,3,4}.
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The edge colouring problem is that of colouring the edges of a loopless
edge-graph such that no two adjacent edges have the same colour. Construct
a simple vertex—graph, with the same vertex set as the edge set of the
edge-graph, and with two vertices adjacent (that is, they are the ends of a
single link) exactly when the corresponding two edges are adjacent in the
edge-graph. The edge colouring problem for the edge-graph is equivalent to
the vertez colouring problem of the simple vertex graph, which is to colour the
vertices such that no two adjacent vertices have the same colour. The
function sending each loopless edge—graph in %(EG,1)exc{loop}= yL(EG,l) say,
to the corresponding simple vertex graph in %(SVG) is in fact a
homomorphism. This homomorphism is uniquely determined by specifying
that it sends the two graphs on the left' of row 4 in figure 3; to the 2-vertex
simple vertex-graph with a single edge (link) and that it sends the graph on the
right of row 4 in figure 3, to the 2-vertex simple vertex—graph without any
edges. The only y¥-structures of yL(EG,l) are those.in rows 4 and 5 of figure
2, and there remain three order-3 and eight order4 natural excluded minors, as
is immediate by observation. Let fE(SVG) be the homomorphic image of
yL(EG,l) under this homomorphism. The excluded minors of ?E(SVG) in
#(SVG) illustrated in figure 5. (They are all, of course, simple vertex graphs.)
They are also its natural excluded minors, since ﬁ(SVG) is complete, and
#(SVG) contains its core, so that $(SVG) is the completion of F=(SVG)).
The proof that these are the only ones involves a routine case analysis, but is

too long (about as long as section 11) to include here.
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Figure 6: The natural excluded minors of yE(SVG).

The minor class $(ED,2) has the same structures and ground sets as
%(ED,1), and it has edge deletion as before, but it also has a second manner of
point removal called edge contraction. For any edge-digraph Ge%(ED,2) and
any edge e in its ground set E(G), the contraction of e from G is denoted G/e,
and is obtained from G as follows. If e is a link then its two ends (head and
tail) are identified into a single vertex (so that any edge with its head or tail

béing also an end of edge e, now has the single vertex as its head or tail)
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making edge e a loop (if it has not already one) which is then deleted. One
way to visualise this is to consider the drawing of a graph. If an edge is
contracted, the corresponding curve in the drawing of a graph is shrunk to a
point so that its two ends merge into one, dragging any incident edges with
them. For any PCE(G), the graph G/P is obtained from G by contracting
every edge in P (in any order).

While there is an obvious relationship between %(ED,2) and %(ED,1) it
should be noted that, as unary algebras, they have different unary signatures,
and so are in different varieties. Much, but not all, of universal algebra theory
works within varieties, and cannot be used to connect these two minor classes.
Nevertheless, they are connected by a signature modifying construction defined
in section 6, namely that %(ED,1) is %(ED,2) confined to déletion, denoted
#%(ED,2)|{deletion}. Via this connection, useful information about the
y-structures and natural excluded minors of %(ED,2), is obtained from those of
#(ED,1).

If two edge-digraphs are yequivalent in %(ED,2), then all their
corresponding proper minors are equal, in particular those obtained purely by
deletion, so that they are ¢~equivalent in %(ED,1). Therefore, to find the
| y-structures of ¥(ED,2), it is only necessary to consider those of %(ED,1), (see
figure 2) testing them pairwise for ¢-equivalence. Neither of the two to the
left of the dotted line in row 4 of figure 2 is y-equivalent to any of the five on
the right. Taking the dotted line to split row 4 into two separate rows, figure
2 illustrates all the y-structures ofl #%(ED,2) with y-equivalent graphs in the
same Iow.

Let us find an upper bound for the order of natural excluded minors of

%(ED,2). Let G be a natural excluded minor of f(Ei),2) and let its ground
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set Q have cardinality at least 3. Since Y(ED,I) (note it is 1, not 2) is
complete, there is a structure HEY(ED,1), with ground set Q, such that
G-{e,f}=H:{e,f} for all distinct e,feQ. (Note that every G-{e,f} is indeed a
graph.) There is only one possibility for H, since all the ¥-structures (and
hence, all structures in the core) of %(ED,1) have order at most 2. For every
proper subset P of Q, it follows that G-P=H-P, and these are graphs. Now G
is not a graph, but H could be. If H is not a graph, then H is a natural
excluded minor of ¢ (ED,1) so that |Q|=3, and G is of order 3. If His a
graph, then H is a structure in %(ED,2) so that edges can be contracted from
it. Clearly G#H, and since structures in $(ED,2) are uniquely determined by
their order-2 minors (the t-structures have order at most 2) there must exist
some PCQ, and distinct edges e and f in Q-P such that
(G/P)-{e,f}#(H/P)-{e,f}. Choose P so that |P| is minimal with respect to
this property, and choose peP. (Clearly |P[21.) Let G’=(G/P-{p})-{p,e,f}
and let H'=(H/P-{p})-{p,e,f}. So G’ and H’ are structures in Y(ED,2) with
ground set {p,e,f}‘and H’e%(ED,2). For any distinct q,re{p,e,f} it follows by
the minimality of |P| that G’-{q,r}=H’-{q,r}. If G’ were a graph, then as
above, G’ would be H. But G’ /p=(G/P)- {e}#(H/P)-{e,f}=H' p, so that
G’#H’. Therefore G’ is not a graph, and hence not in %(ED,2). By the
minimality of G, it must be that G=G’ and Q={p,e,f}, so that |Q|=3.
Whether or not H is a graph, it follows that the order of G is 3. Therefore,
every natural excluded minor of %(ED,2) has order at most 3. These are
easily counted, and this is done below.

The two 1-edge digraphs (see row 1 of figure 2) can be named loop and
coloop in the obvious way. It is then easily checked that %(ED,2) has the

same six order-2 natural excluded minors as & . The unique homomorphism
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from y’(ED,2) to A, specified by sending loop to loop and coloop to coloop, is
of great interest. It sends each edge-digraph to a graphic matroid. The
homomorphic image of $¥(ED,2) is 4 G, the minor class of graphic matroids.

G has five excluded minors in 4,

It is well known to matroid theorists that 4
one each of orders 4,9 and 10 and two of order 7 [17). Adding to this list, the
(six order-2) natural excluded minors of . , gives those of A G Returning to
the natural excluded minors of %(ED,2); it is a simple matter to count those
of order 3, but there are too many to list here, although enthusiastic readers
may like to list them. There are 4890. This number is so much greater than
for Y(ED,1) simply because having two manners of point removal creates many
more possibilities. Some more detail can be provided by recalling, see section
12, that the above homomorphism can be extended to all of ?(EDT?'I, (with
homomorphic image 4 ). Of the order-3 natural excluded minors, this
homomorphism sends 17 to U3, 353 to Ug+Ui, 79 to U(1)+U%, 18 to U:I’, 198 to
Ug,,472 to U%+Ui, 1040 to U(1)+U§ and 2713 to Ug. (The number of digraphs
sent to these are 3,7,5,2,2,8,13 and 12 respectively.)

The minor class %(EG,2) has the same structures and ground sets as
%(EG,1), and it has edge deletion as before, but it also has a second manner of
point removal, namely edge contraction, defined and denoted as it is for
%(ED,2). So there is a surjective homomorphism from %(ED,2) to $(EG,2)
which, as usual, sends each edge-digraph to the corresponding edge-graph by
removing the direction of each edge. The homomorphism can be
metaphorically extended to the whole discussion about ¥(ED,2), yielding the
following abbreviated discussion. -

Again %(EG,1) is Y(EG,2)|{deletion}. The ¢-structures of $(EG,2) are
among those of ¥(EG,1), see figure 3. Figure 7 illustrates these with the usual

conventions.-
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Figure 7: The y-structures of $(EG,2).

An argument given earlier deduces that the natural excluded minors of
%(ED,2) have order at most 3, from the fact that those of $(ED,1) have order
at most 3, while the y-structures of $(ED,1) have order at most 2. This can
be adapted, or generalised, to deduce that the natural excluded minors of
%(EG,2) have order at most 4, from the fact that those of ¥(EG,1) have order
at most 4, while the y-structures of %(EG,1) have order at most 3. Again
naming the two 1-edge graphs (see figure 7) loop and coloop, in the obvious

way, it is easily checked that $(EG,2) has the same six order-2 natural
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excluded minors as 4. There is a surjective homomorphism from ¥(EG,2) to
M G, just as there was from %(ED,2). (The one from %(ED,2) to 4 G is the
composition of that from $(ED,2) to $¥(EG,2) with that from $(EG,2) to

M G.) Minor class %(EG,2) has 125 3-point (these are easily counted) and 6
4-point (these have to be "found") natural excluded minors. The above
homomorphism, extended (uniquely) to $(EG,2), sends 17 of these to U3,

35 to Uz+U}, 8 to Ug+U3, 3 to U3, 3 to U, 8 to UZ+U7, 35 to Ug+U3, 16 to
Ug, 1to Ug, 2 to Ug and 3 to Ui. (The number of graphs sent to those is
3,5,2,1,1,2,5.4,0,1 and 8 respectively.)

The next example is of interest because it involves the direct product of
two minor classes in an uncontrived way. It relates to the drawing of graphs
on surfaces. There are several distinct approaches to this problem. The
approach here resembles that (for the plane) in [18], but is quite different to
that in [16]. An embedding of a graph G on a (locally Euclidean) surface T', is
a drawing of G on T for which none of the curves representing edges intersect.
If such an embedding exists, then G is embeddable on I'. Two graphs G and H
are compatible on T' if they have the same edge set, are both embeddable on T',
and they can be drawn on I"' where the only intersections are as follows; for
each edge e, the curve representing e in G, crosses over the curve representing e
in H (and visa versa) at exactly one point. Given a graph G embeddable in T',
a graph H can be constructed, such that G and H are compatible on T', as
follows. A drawing of G on T partitions the points on I', which are not on a
vertex or edge, into faces. Let H have the same edge set as G, and have the
faces as its vertices, where each edge is incident with the two (not necessarily
distinct) faces on either side of it on the surface. Whenever two graphs G and
H are compatible on I, it is easily shown that G\e and H/e are compatible on
T, and G/e and H\e are compatible on I'. (Also G\e and H\e are compatible
on I, but that is not used here.) This inspires the minor class ¥(PEG,2)
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defined below.

Let the minor class ¥*(EG,2) be obtained from %(EG,2) by swapping
deletion and contraction. (See section 6.) That is, edge deletion in ¥*(EG,2)
is the same as edge contraction in % (EG,2), and visa versa. The y-structures
of ¥*(EG,2) and %(EG,2) are the same, and there is an obvious one-to-one
correspondence between their natural excluded minors. Let the minor class of
pairs of edge—graphs, G(PEG,2), be the direct product %(EG,2)x%*(EG,2).
The structures of $(PEG,2) are pairs of edge-graphs (G,H), where G and H
have the same edge set. For each edge e in this edge set, deleting e from
(G,H) yields (G\e,H/e), and contracting e from (G,H) yields (G/e,H\e). This
minor class has one mixed automorphism, other than the identity, namely that
which swaps deletion and contraction, and which sends each pair (G,H) to
(H,G), the dual of (G,H). (Note that the only mixed automorphism of
%(EG,2) is the identity.) The y-description of $(PEG,2) is routinely
determined from the y-descriptions of %(EG,2) and $*(EG,2), as shown in
section 11. On any l—élement ground set tlhere are four structures which are
y-equivalent (since there is a unique order-0 structure.) On any 2-element
ground set, %(EG,2) (and $*(EG,2)) has nine structures which g-equivalence
partitions into 4 lots of 2 and 1 lot of 1 (see figure 7, and consider row 3
turned upside-down) so that %(PEG,2) has 81 structures which ¢-equivalence
partitions into 16 lots of 4, 8 lots of 2, and 1 lot of 1. (Up to isomorphism
there are 52 order-2 gb—sﬁructures, in 10 lots of 4 and 6 lots of 2. This
statement makes sense, since there are no distinct, but isomorphic, y-equivalent
structures.) Also on any 2-element ground set $(EG,2) (and %*(EG,2)) has
11 natural excluded isominors (see figure 1), only one of which has the bijection
swapping the two ground set elements as an automorphism, so that there are
(11+1)/2=6 natural excluded minors, by Polya enumeration. It follows that

#%(PEG,2) has (112+12)/2=61 natural excluded minors of order 2. Similarly,
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since Y(EG,2).(and $*(EG,2)) has (558+60+60+60+6+6)/6=125 natural excluded
minors of order 3, it follows that $(PEG,2) has
(5582+602+602+602+62+62)/6 53706 natural excluded minors of order 3.

For any (locally Euclidean) surface T, let y (PEG,2) be the sub minor
class (as earlier arguments show it is) of %(PEG,2), consisting of exactly those
palrs (G,H) such that G and H are compatible on I Consider the
homomorphlsm from f (PEG,2) into %(EG,2) which sends each pair (G,H) to
G, and let j (EG,2) be the homomorphic image. Earlier argument shows
that yF(EG,2) is the sub minor class of $(EG,2) consisting of exactly those
edge-graphs which are embeddable on I'.  More knowledge about the excluded
minors of yF(PEG,2) in ¥(PEG,2), and about minor class homomorphisms,
could yield information about the excluded minors of ﬁP(EG,2) in $(EG,2).
Clearly yP(PEG,2) has the mixed automorphism described earlier for
%(PEG,2), so that if (G,H) is an excluded minor, then so is (H,G). I
conjecture that there is a bound on the order of these excluded minors,
approximately proportional to the genus [16] of the surface I'.

When T is the plane, then an order-1 excluded minor is the pair of
graphs, where the single edge in each graph is a loop. An excluded minor of

order 3 is given by the pair of graphs depicted in figure 8.

2

1CX)3

Figure 8: An excluded minor of yl“ (PEG,2)
in $(PEG,2) where I' is the plane.
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It is easily seen that this pair is not compatible on the plane, despite the fact
that they are both embeddable on the plane. (Consider the left hand graph
and edges 1 and 3 of the fight hand graph drawn subject to compatibility.
Edge 2 of thé latter graph cannot be added subject to compatibility.) By
observation, there are six pairs of this nature, giving rise to twelve order-3
excluded minors (since the graphs can appear in either order). I conjecture

that there are no other excluded minors.
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SECTION 15: IDEAS FOR FURTHER CONSIDERATION

This final section presents some ideas which could form a basis for
further research. Standards of rigour are dropped for this discussion. (Many
of the claims made are not difficult to prove, but while they are of interest, the
proofs would not justify the space they would occupy at this stage. There are
also conjectures which there is plenty of motivation to attempt to prove.)
Again our attention is restricted to minor classes with finite ground sets, as in
section 11. (Note that minor classes with infinite ground sets enable us to talk
about minor classes of matroids or graphs with such ground sets, which may be
worth considering.)

It should be apparent that a potentially rewarding area of study is the
study of minor class homomorphisms. A desirable result would be one of the
following form. If o is a minor class homomorphism from ¢, and @ and &
satisfy certain conditions, then a{e/) has finitely many natural excluded
minors, or better still, there is a certain upper bound on the order of these
natural excluded minors. Many seemingly intractable combinatorial problems
would be solved by such a tlheorem, (although the proof of such a theorem may
itself seem to be an intractable combinatorial and algebraic problem). Clearly.
the conditions on o and ¢/ should include that certain quantities associated
with o and ¢ are finite, (since otherwise one could probably construct a
counterexample in which ¢(¢/) had infinitely many natural excluded'minors).
The important examples in sections 12 to 14 all satisfy these finiteness
conditions. Firstly |K|, the number of manners of point removal, should be
finite. (It is usually 1 or 2.) Secondly ¢ should have finitely many
¥-structures up to isomorphism. Equivalently, when |K| is finite, the core
4 v is finitely generated (that is, generated by finitely many structures), or
each Y-equivalence class is finite and the order of y-structures is bounded, and

these imply that IeYQI is finite for every ground set Q. Let I=a(¢’).
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Thirdly the core I ¥ should also be finitely generated. (Recall that « is
expressed as the unique homomorphism which extends a| ‘7¢, and af 3'¢ need
only be specified on finitely many values in a}( I ¢), since the above conditions
guarantee that o’}(J ¢) is finitely generated.) Fourthly ¢/ should have
finitely many natural excluded minors. When the second and fourth conditions
hold, ¢ has a finite y—description. However these are not sufﬁcient to ensure
that o(e”) has‘ﬁnitely many natural excluded minors, as the following example
shows.

Let 7/’l be the sub minor class of ¥ whose structures on ground set Q
are (0,Q) and ({0},Q). Let # 1 be the sub minor class of ¥ whose structures
on ground set Q are (0,Q) and ({Q},Q). The core of these is 7/’¢, since the
only y-structures are (0,8) and ({0},8). Observing that # is complete, the
natural excluded minors of ¥ } are ({{q}},{q}) and ({0,{q}},{q}) while those
of # 1 are ({¢},{q}) and ({0,{qa}},{a}) for some 1-element ground set {q}.
Therefore 7/’l and 7/’T both have a finite y-description, and it is routine to
show that their disjoint union also has a finite ¢description. However a
homomorphic image of this disjoint union is the union 7/’l U 7I’T which has a
finitely generated core 7/’¢, but has infinitely many natural excluded minors.
Choosing a ground set Q of cardinality n, for each n € {2,3,-- -}, every natural
excluded minor is of the form ({0,{Q}},Q).

Another condition is needed which excludes the above counterexample,
but not the examples in sections 12 to 14. An (ascending) chain in a minor
class o is a sequence of structures S1,52,53, - - (usually, but not necessarily,
infinite) such that S1<S2<S3<- -« in the quasi order of ¢/. The minor class ¢/
is generated by a chain if f =¢’inc{S;,52,53,* - -} for some chain S4,52,53, - .
(Note that in this case, a(¢”) is generated by the chain a(S;),a(S2),0(S3), - .)
Equivalently when |K| is finite and ¢# has a finite -description, if ¢/ is the
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union of two sub minor classes, then one of them is ¢/, or for any two
structures in ¢/, there is a structure having both of them as isominors, or for
any sub minor class of ¢ whose structures have bounded order, there is a
structure in ¢ which has each structure in the sub minor class as an isominor.
It is easily arranged that each structure S;j in the chain is of order i, and that
S; is obtained from S;,1 by removing a single point in some manner. If some
manner is used only finitely many times in this way, then it is easily arranged
that it is used zero times. For any non-empty subset K’CK define a K’—chain
to be a chain of the latter form where each manner of point removal in K’ is
used infinitely many times. (There are 2|K|—1 possibilities.) One can define
a minor class freely generated by a K’-chain so that its homomorphic images
are exactly the minor classes generated by a K’—chain. The important minor
classes in section 12 and 14 are all generated by a chain, and those with
K={delete, contract} are generated by a deletion—chain, as is easily verified.
To the previous four conditions on & and ¢, add the fifth condition that ¢ is
generated by a chain. I know of no counterexample to the statement that if
|| is finite, ¢ has a finite ¢description and is generated by a chain, and the
core of ae’) is finitely generated, then o) has finitely many natural
excluded minors (and hence o(¢f) has a finite ¢~description). I conjecture
that this statement is true, which is not to say that I necessarily believe the
statement. Many important examples are covered by the case when
K={delete,contract} and ¢’ is generated by a deletion—chain, and it is possible
that the conjecture holds here but not generally. It may be that more
conditions are needed, or worse still, that there is no conveniently stated
theorem of the above form so that each example must be dealt with
individually (and the t¢-description of o(e”) found "by hook or by crook" in
each case).

Let us make some observations about the minor class homomorphisms in
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sections 12 to 14. The homomorphic image usually has less -structures (up
to isomorphism) than the original minor class, and although this is not
necessary, it can always be arranged, as shown later. Generally the minor
class has many natural excluded minors with low order, which are easily found,
Wmle the homomorphic image has fewer natural excluded minors of higher
order, which are more difficult to find. For example %(ED,2) (whose
structures are edge-digraphs) has 6 2-point and 4890 3-point natural excluded
minors, and these are easy to count. In fact it is easy to prove that this list is
complete, and such a proof effectively describes the structures in the list. The
homomorphic image $(EG,2) (whose structures are edge-graphs) has 6 2-point,
125 3-point and 6 4-point- natural excluded minors. Finding those of order 4,
and showing that these are the only ones, is clearly the major part of the task.
The homomorphic image 4 G (whose structures are graphic matroids) of
%(EG,2) (and %(ED,2)), has 6 2-point, 1 4-point, 2 7-point, 1 9-point and 1
10-point natural excluded minor. Finding these and showing they are the only
ones is much harder than the corresponding problem for %(EG,2) and %(ED,2).
These three minor classes all have two order-1 ¢-structures while %(ED,2) has
twelve, %(EG,2) has six, and 4 G has zero order-2 ¢-structures. It is not
surprising that the ¢y~description of a minor class becomes substantially harder
to find and verify when structures of high order are involved (despite there .
being far fewer structures involved) since the difficulty of dealing with
structures increases rapidly with their ofder. _However, the above behaviour
would be highly desirable, were it to occur in general. In fact our handful of
examples make it seem feasible that from @ and ¢/, an upper bound could be
found for the order of natural excluded minors of a(¢”), from which the
ydescription of a(¢”) could be routinely found. Of course, a handful of
examples is no evidence for anything. It is more likely -that our examples have

other desirable properties, yet to be discovered.
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In many of the examples, ¢ and « are such that the only sub minor
class of ¢ whose homomorphic image under « is o¢” ), is ¢ itself. This is

the case for the homomorphism from %(EG,2) to 4 G

by the following
reasoning. The (undirected) graph K, has n vertices, and exactly one edge
between each pair of vertices (so that there are (g) edges). Excluding any
graph from y(EG,2) excludes Ky, for some n, and K, is the unique graph sent
to the corresponding matroid, so that this matroid is excluded from 4 G.
Actually this homomorphism satisfies the stronger property that %(EG,2) is
generated by the chain Kj,K9,K3,- -+ and each K, is the unique graph sent to
the corresponding matroid. The homomorphisms from %(ED,2) to either
9(EG,2) or A G satisfy the weaker property but not the stronger.

The homomorphism from %(ED,2) to $¥(EG,2) has another interersting
property. Recall from section 5 that a congruence on a unary algebra can be
constructed from any group of automorphisms of that algebra. Recall from
section 11 that an automorphism of a minor class ¢, restricts to an
automorphism of its core ¢ ¢, and when it is extendeq to an automorphism of
its completion ¢, the latter automorphism permutes the natural excluded
minors of ¢, (and similarly when o/ is\trea,ted as a (proper) pseudo minor
class). Treating % (ED,2) as a (proper) pseudo minor class, each
automorphism corresponds to a set P of ground set elements (not necessarily
finite, even though each ground set is) such that each edge-digraph is sent to
the edge-digraph with the direction of the edges in P reversed. (This assumes
that the ground sets are exactly the finite subsets of some infinite set, an
assumption made in section 11.) The corresponding congruence clearly respects
isomorphism (so that it is a minor class congruence of %(ED,2)) and is in fact
the kernel of the homomorphism from %(ED,2) to %(EG,2).

It is interesting to consider this construction applied to & (R) when R is

a field. First consider the automorphisms of & (R) considered as a minor class



-139 -

(which, when extended to & (R), permute the natural excluded minors, as well
as the ¢-structures). By consideration of the natural excluded minors, each
automorphism sends loop to loop, coloop to coloop, and for some field
automorphism J of R, sends each slope (a,q,r) (see section 13) to (f(a),q,r), as
is routinely shown. (The fact that § respects field multiplicatibn follows from
the 3-point natural excluded minors, while respecting addition follows from
those of order 4.) Treating & (R) as a (proper) pseudo minor class, each
automorphism is the composition of one of the above automorphisms, and one
which for some function w, from all ground set elements to R, sends loop and
coloop to themselves, and sends each slope (a,q,r) to (w(q)a/w(r),q,r). (The
composite automorphism sends ‘each subspace S of RQ to the subspace
{(w(q)ﬂ(xq)[qEQ) | (quqEQ)ES} of RQ.) The corresponding congruence is
intimately related to the topic of equivalent representations. Two
representations £:Q-S and g:Q-T, where S and T are vector spaces over R and
Q is a ground set, are equivalent if one can be obtained from the other by a
combination of the following four elementary equivalences, (1) if S is a subspace
of T and f(q)=g(q) for every q€Q, (2) if there is a vector space isomorphism
w:S-T such that g=wof, (3) if S=T and there is a field automorphism § of R
such that g :S-S is the identity on some basis of S and extends to S in the
obvious way induced by 8, then g=fof, (4) if there is a function w:Q-R such
that g(q)=w(q)f(q) for every qeQ. The first two are accounted for by
cqnsidering clogure operators (matroids) oy and T and the latter two are
accounted for by the above congruence. It is well known that this congruence
is the kernel of the homomorphism from & (R) to 4 (R), only when |R|=2 or
3, otherwise the congruence is strictly below the kernel in the lattice of
congruences of & (R). It can be deduced from [8] that when |R|=4, the
homomorphic image of & (R) associated with this congruence, has ¥-structures

of order 1 and 8, and another non-trivial homomorphism is required to obtain
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A4 (R). This seeras to worsen the problem of finding the y¥-description of a .
homomorphic image to that of finding the y-description of a homomorphic
image of a homomorphic image. Nevertheless, equivalent representations are
widely studied and so there must be some merit in further considering the
above material.

A desirable property which may be possessed by a minor class is that it
is well quasi ordered, that is, the corresponding quasi order is a well quasi
order, which means that there are no infinite descending chains (see section 5)
and no infinite antichains (sequences S1,52,S3,++ such that there are no
distinct i and j such that S; < S;). Several equivalent conditions on the quasi
order or the corresponding lattice of sub minor classes are given in [7]. For
example, the minor class ¢ is well quasi ordered if and only if every sub minor
class of ¢ has finitely many excluded minors in ¢#. Note that the property
of being well quasi ordered is independent of the property of having finitely
many natural excluded minors. For example, the empty minor class has both
properties, 7/’lU 7/’T has only the first, # has only th;e second, and
# exc({({{a}12eQ}u{{Q}},Q)| Qe 2 and |Q|>2}) has neither property.
Showing that a minor class is well quasi ordered is generally very difficult. In
a lengthy series of bapers previewed in [11], Robertson and Seymour have
shown that %(EG,2) is well quasi ordered. Clearly if a minor class is well
quasi ordered, then so are all its homomorphic images and sub minor classes, so
in particular 4 G is well quasi ordered. In private correspondence, Robertson
has conjectured that 4 (R) is well quasi ordered whenever R is a finite field.
One might conjecture more generally that $(ED,2) is well quasi ordered, as
well as & (R) for every finite field R. To prove such results, one would need
results to construct "larger" well quasi ordered minor classes from "smaller"
ones, as Robertson and Seymour seem to have done. However, any such

results would not be restricted to minor classes, and in fact minor classes
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probably contribute little to the study of well quasi ordering apart from
unifying that part of the latter topic which intersects the former.
Unfortunately, the direct product of two well quasi ordered minor classes need
not be well quasi ordered, since 7l’lx7l’T is not. (Observe that this minor
class is also not generated by a chain, even though 7/’l and 7/’T are.) I know
of no counterexample to the statement that if |K| is finite and ¢ has a
finitely generated core, is generated by a chain, and is well quasi ordered, then
o has finitely many natural excluded minors, so I conjecture it to be true.

Observe that in the variety of (£ ,K) minor class, the free minor classes,
freely generated by one structure, are all well quasi ordered if and only if 2 is
a hereditary set of finite sets and K is finite. In this case, these free minor
classes also have no infinite ascending chain. The conjecture about the
Ydescription of homomorphic images could be extended to algebras in a special
unary variety where all the free algebras, freely generated by one element, are
well quasi ordered and have no infinite ascending chain.

Let us examine minor class homomorphisms more closely. . There is no
loss of generality in considering a congruence q on ¢, and the minor class
¢ [q. For each non—negative integer n, let the congruence q, be such that
Sq,T if and only if S=T or 54T and |G(S)|=|G(T)[<n. Clearly qo<q1<qa<- -
and q is the join of these. The sequence ¢,¢//qo,/d1,H2,*++ converges to
¢ /q in the following sense. First, for any minor class &, let I 'n be the sub
minor class consisting of all structures in J with order at most n. Then
(¢ /q)|™ is identical to (&’ /qm)ln whenever m > n (in particular, when m=n).
It follows that the ¢-structures of order at most n and the natural excluded
minors of order at most n+1 of ¢ /g are the same as those of ¢/ /g, but those
of higher order can be quite different.

Compare the ydescriptions of ¢ /qn_1 and ¢/ d,- Thereis a
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homomorphism g :¢# /q,_;~¢# [, where B (Sq_;)=Sq  for every See*.

(This is well defined since q_;<q .) Now f_is the identity on structures
whose order is not n, but may be non-injective on n—point structures. Suppose
S and T are n—point structures in ¢ /qn_1 with ﬂn(S)=ﬂn(T) (so that,
G(S)=G(T). Then for any prescription S€K® with G(£)#Q it follows that
SIRI=A, (SIR))=(8, (S)IRI=(B, (T))I%]=B,(TIR])=T[A], s0 that SYT (although
SYT need not imply 8 (S)=p_(T)). That is, distinct structures "clumped
together" by ﬂn must be Y-equivalent y-structures of order n. Now ¢’/ q, has
the same y~structures of order less than n,‘ as o/ 1> and those order n are
determined by the fact that for structures S and T of order nin ¢ /q _;,
B,(S)¥B,(T) exactly when SyT (since f is the identity on (¢ /a,4) |n—1).
For structures of order greater than n, ¢equivalence in ¢/ / d, is the same as in
&/ Ay 1 except that some new i-equivalence may be introduced among
structures of order n+l. (Since two order n+l structures S and T in both

¢ [q,_; and ¢ /q  may have immediate minors which are different in o /9,1
but not in ¢ /q,). This new y-equivalence may extend to (n+1)-point natural
excluded minors of &/ q,_1> and those which become Y-equivalent to an
(n+1)-point structure in ¢ /q vanish, while natural excluded minors becoming
P-equivalent, become equal. The only other change to the natural excluded
minors is that new ones of order n+2 in ¢/ / q, Mmay appear. (Since "clumping
together" structures of order n creates new possibilities for homomorphisms
from E(IQ) to ¢ /q, when |Q|=n+2.)

Now consider how the y-description changes as we move along the
sequence. Typically we know the ¢-structures of ¢ /q (it is the natural
excluded minors that need to be found) so that we know which structures each
ﬁn "clumps together". When §_ is applied to obtain ¢ /qn from o /qn_1
some (n+1)-point natural excluded minors are "clumped together" while others

vanish (those remaining, remain in ¢ /q) and some (n+2)-point natural
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excluded minors are created. Typically, most of these (n+2)-point natural
excluded minors promptly vanish again when ﬂn +1 1s applied to give o /qn e
"Most" becomes "all" if ¢ /q has no natural excluded minors of order n+2, (in
particular when all the natural excluded minors of ¢ /q have order less than
n+2.) The difficulty of characterising when this happens provides insight into
why the y-description of ¢ /q is so difficult to find. Even when ¢ and q
satisfy the desirable properties mentioned in the conjecture about homomorphic
images, there seems to be no good reason why there should be finitely many
natural excluded minors. Other approaches to this problem yield a similar
situation, reinforcing the difficulty of the problem.

In attempting to prove the conjecture about homomorphic images, the
above argument, and the argument in section 10 following theorem 10.4, shows
that we can confine our attention to homomorphisms of the form Q‘Zof:of—»f
where J is the (;ore of F. (See section 10.) Such homomorphisms are the
identity on ', and the homomorphic image retains only those ¢-structures of
o, which are in J. (In the patterned hypercube visualisation of section 11,
this simply amounts to "blanking" the patterned faces corresponding to
eliminated i-structures. The homomorphism from & (R) to 4 (R) is already
of this form when R is a field.)

Readers wishing to examine this topic further should not be discouraged
by the difficulty of the abovementioned conjecture. (It is only stated in a
form which avoids known counterexamples, and is likely to need further
refinement.) Rather than attempting such conjectures, it is more rewarding to
examine the situation from different angles, providing insight into various
aspects of the problem. The by—producﬁs of such investigations are usually of

more consequence than the final result itself.
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