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Abstract 

Abstract 

Lake Crescent and Lake Sorell are two adjacent, large, shallow, mesotrophic lakes of 

the Central Plateau, Tasmania, Australia. Both lakes are in the same catchment and 

have similar geological and morphological characteristics. Early limnological work by 

Cheng and Tyler found trophic characteristics to be substantially different, despite 

their physical similarities. Historically, each lake exhibited strongly contrasting 

'stable-states': Lake Sorell was a macrophyte-dominated clear water system, while 

Lake Crescent was turbid and dominated by phytoplankton. Cheng and Tyler dubbed 

this a "limnological paradox". 

Since the late 1990s, the quality of the trout fishery declined, nutrient and algal 

concentrations increased markedly and water clarity declined dramatically. These 

changes coincided with unprecedented low water levels due primarily to severe 

drought and competition for water by various users. The rapid decline in water clarity 

prompted this investigation to determine the underlying processes responsible for the 

degradation and to recommend management strategies to improve water quality. 

Variables limiting light attenuation, turbidity and water clarity were measured from 

April 2000 to August 2002, and modelled using multiple linear regression. Regression 

coefficients were used to estimate the relative importance of each water quality 

component, and this analysis showed that high levels of inorganic suspensoids were 

largely responsible for the decline in water clarity. Although there were increases in 

nutrients and suspended sediment in these lakes in the late 1990s, detailed analysis of 

inputs to and outputs from these lakes suggested that these increases were derived 

from internal sources as inputs from the surrounding catchment were negligible. 

The historical record oflake levels was analysed to quantify the areas oflake bed that 

would be in contact with the wave base under differing wind conditions and water 

levels. This showed that both lakes were more prone to wind effects after 1998 owing 

to the lower water levels. Further, prior to 1999 Lake Crescent was, on average, more 

turbulent and more prone to wind-driven resuspension events than Lake Sorell, which 

suggests a potential mechanism underlying Cheng and Tyler's "limnological 

paradox". 
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The physical disturbance of sediments from wind-driven waves was further 

investigated by calculating shear stress from wave theory, and quantifying 

relationships between shear stress and suspended sediment concentration. Shear stress 

characteristics across the lake basins were modelled under various lake levels and 

wind speeds, and the magnitude of shear stress increased dramatically at lower lake 

levels. 

DYRESM-CAEDYM was used to develop a sediment resuspension model relating 

wind, lake-level and sediment flux that was then calibrated and verified against field 

observations. (The ecosystem model CAEDYM (ComputAtional Ecosystem 

Dynamics Model) is coupled with the hydrodynamic driver DYRESM (DYnamic 

REservoir Simulation Model) to accomplish these simulations). The model was used 

to ascertain the benefits of managing water levels in the lakes to ameliorate the affects 

of sediment resuspension and improve water quality. This modelling suggested that 

the "degraded" state of the lakes from the late 1990s was initiated and sustained by 

low lake levels leading to increased shear stress acting on the sediments. The 

increased nutrient concentrations and algal biomass were also found to result from 

low lake levels because external nutrient loading was insignificant. Conversely, the 

modelling showed that raising water levels would dramatically improve water clarity. 

Alternative, trophically-based explanations of the differences between lakes Crescent 

and Sorell were examined by investigating the biotic interactions that influence water 

quality and ecosystem function. The aim was to determine if trophic cascades and 

stable-state theory would help explain the contrasting phycology of these two lakes. 

The historical biological data from lakes Sorell and Crescent was reviewed and 

reanalysed, and contemporary data collected to compare the trophic structure of the 

"degraded" status at the end of the 1990s with the historical record. The strong 

contrasts in phytoplankton productivity and community composition evident between 

the lakes in the past were still prominent. The algal community of Lake Crescent has 

concentrations up to 100 x those of Lake Sorell, and is still dominated by diatoms 

while green algae dominate Lake Sorell. The zooplankton of Lake Crescent is 
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dominated by small cladocerans and copepods, while Lake Sorell has more frequent 

occurrences of larger cladocerans such as Daphnia. Lake Crescent also has an order 

of magnitude greater biomass of the zooplanktivorous fish, Galaxias auratus, than 

Lake Sorell, which leads to a much greater (up to 30 fold) predation pressure on large 

zooplankters. By contrast the pattern in biomass of the introduced piscivorous brown 

trout (Salmo trutta) between the two lakes is reversed. While some of these patterns 

are consistent with differences in the nature of top-down trophic cascades between the 

lakes, the accumulated evidence suggests that such relationships break down at the 

link between zooplankton and phytoplankton. 

The empirical evidence collected suggests that zooplankton grazing had little effect on 

limiting phytoplankton productivity in either lake for any significant period of time, 

while the greater dominance of meroplanktonic diatoms and the greater susceptibility 

of Lake Crescent to wind-driven resuspension suggests a more parsimonious 

explanation of the persistent phytoplankton dominance in this lake. 

DYRESM-CAEDYM was then employed to investigate plankton and meroplankton 

dynamics in lakes Sorell and Crescent, since this technique can be use to test 'N-P-Z' 

(nutrients-phytoplankton-zooplankton) models. The hypothesis tested was that 

developed above: that differences in resuspension combined with contrasts in the 

proportions of meroplanktonic phytoplankton were sufficient to explain the 

differences between the two lakes. Modelling of plankton and meroplankton dynamics 

in both lakes returned significant contrasts in algal productivity that were driven 

largely by contrasting sediment resuspension dynamics between the lakes. 

It was concluded that the differing phytoplankton communities of the lakes are a 

result of contrasting sediment resuspension dynamics between the lakes, with a 

limited influence from contrasting levels of zooplankton grazing pressure. 
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Introduction 

Chapter 1 Introduction 

1.1 Overview 
Lake Sorell and Lake Crescent are two large, adjacent, shallow, productive lakes of 

the Central Plateau, Tasmania, Australia. They have similar morphometry and similar 

climate, geology, soils and vegetation in their catchments. The two lakes originated 

from natural lakes that have been altered at different times, primarily for supply of 

irrigation water since the 1830s (Cheng and Tyler 1973a). 

In recent times, at high water levels, there has been a distinct contrast between the 

lakes, with Lake Sorell resembling a clear-water, macrophyte-dominated system and 

Lake Crescent showing characteristics of a turbid, phytoplankton-dominated system. 

Lake Sorell supported a highly productive and lucrative recreational trout fishery: an 

Inland Fisheries Commission angler survey of the 1992-1993 season found 

approximately 11 OOO anglers visited Lake Sorell who caught a total of approximately 

123 OOO fish with an average catch rate of about 1.5 fish per angler per day (Gudde 

2004). Catch rates in Lake Sorell had not changed significantly since the 1950s 

despite significant increases in anglers visiting the lakes each year (Gudde 2004). 

Both systems are naturally turbid water bodies by Tasmanian standards with Lake 

Sorell having a 'milky' appearance and a susceptibility to both lake bed and shore 

disturbance during times of high wind. Lake Crescent, in comparison, maintained an 

algal biomass at least an order of magnitude higher than Lake Sorell. The increased 

algal biomass is believed to have maintained a background turbidity of 10 - 20 NTU 

higher on average in Lake Crescent than Lake Sorell (Cheng and Tyler 1973a). 

Anecdotal evidence suggested that wind events reduced water clarity in both lakes but 

such events were short lived, with water clarity returning to background levels within 

days of the wind event ceasing. 

During the late 1990s, water quality in both lakes declined markedly. Turbidity in 

both systems increased and aquatic macrophytes all but disappeared from Lake Sorell. 

The recreational trout fishery began to fail which resulted in serious declines in 

visitation rates to Lake Sorell by recreational fishers. Moreover, there were fears 
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expressed that Lake Sorell would "flip" into an alternative phytoplankton-dominated 

"stable state" if the changes seen in the late 1990s persisted. 

This recent degradation in water quality prompted this research project with the aim 

of investigating the mechanisms responsible for the dramatic decline in water quality 

experienced by the lakes between the period from 1999 to 2002 and to support 

appropriate management initiatives to improve the ecological health of both lakes, in 

particular the return of Lake Sorell to a clear~r water state and the restoration of its 

trout fishery. As a result of these investigations, there was also an opportunity to re­

evaluate the pos~ible reasons for the striking ecological contrasts between the two 

systems which led Cheng and Tyler (1973a) to term the differences between these 

lakes "a limnological paradox". The ultimate goal being the restoration of the aquatic 

macrophyte community in Lake Sorell and an improvement in the biological integrity 

of the system that will ultimately culminate in an improvement in the health of the 

recreational trout fishery. 

Following is a brief outline of each of the chapters presented in this thesis with an 

overview of their sequence and how they fit together. 

The first task was to assemble the existing data on water quality in these two lakes 

and initiate a more intensive, regular sampling program (which spanned 2000 - 2002) 

to quantify the temporal changes in the major water quality variables. This 

information is presented in Chapter 2. Additionally, because concerns have been 

expressed about changes in land use in the catchments, the imports and exports of 

nutrients and sediment were estimated and budgets constructed to help identify the 

likely origin of increased water column loading of nitrogen, phosphorus and 

suspended sediment. 

Chapter 3 further develops the relationships between key variables infl~encing 

turbidity, light attenuation and water clarity with quantitative estimates made of the 

contribution key parameters make to defining the values of turbidity, light attenuation 

and Secchi depth. Chapter 3 subsequently documents interactions between water level 

in both lakes and trends in turbidity and suspended particulate material (SPM), with 

special emphasis on the role of colloidal material. 
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The data assembled in Chapters 2 and 3 suggest strongly that reductions in lake water 

level coupled with wind-driven resuspension of sediments can largely explain the 

observed increases in nutrients, SPM and phytoplankton. Consequently, Chapter 4 

quantifies the level of physical disturbance applied to the lake bed under varying lake 

levels to help determine the degree to which low water levels may influence the 

hydrodynamic environment of the lakes and ascertain if increased rates of sediment 

resuspension may be responsible for the severe reduction in water clarity. This 

component of work is further developed with the application of a coupled 

hydrodynamic-ecological model called DYRESM-CAEDYM (DYnamic REservoir 

Simulation Model and ComputAtional Ecosystem DYnamics Model). DYRESM­

CAEDYM was used to model in detail the process of sediment resuspension in both 

lakes and to identify possible management options to ameliorate it. 

The remaining two chapters address the ecological differences between these lakes, 

and the likely mechanisms that have maintained these differences. Chapter 5 

examines the trophic structure of the two lakes, with particular emphasis on the 

contrasts in top-down interactions. The aim is to assess the possible role of biotic 

interactions in regulating the differences in algal community structure and 

productivity that were a prominent characteristic of the lakes for the period prior to 

1999. 

The information gathered for Chapters 3, 4 and 5 was then used for more detailed 

modelling using DYRESM-CAEDYM in Chapter 6. The aim here was to determine 

whether "bottom up" processes engendered by contrasts between the two lakes in 

their susceptibility to resuspension events were sufficient to explain the strong 

contrast in algal productivity between Lake Sorell and Lake Crescent. 

Chapter 7 forms the concluding chapter and is a synopsis of the main findings of each 

chapter with an emphasis given to the final conclusions made from the study and the 

long-term management implications the findings of this project have on Lake Sorell 

and Lake Crescent. The approach taken during the course of the project and the 

methods developed are also evaluated in their applicability to possible future 

applications to shallow lake systems in Tasmania, Australia and elsewhere. 
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The remainder of this introduction chapter consists of a literature review of the areas 

of shallow lake ecology that were most relevant to this project. Included is an 

overview of the history of lakes Sorell and Crescent, followed by a discussion on 

shallow lake ecology and the special limnological characteristics of shallow lake 

systems. Emphasis is then given to the phenomena of sediment resuspension and the 

influence this process may play on shaping shallow lake ecosystems under differing 

climatic and hydrological conditions. 

1.2 Lake Sorell and Lake Crescent 
Lakes Sorell and Crescent lie on the eastern margin of Tasmania's Central Plateau, an 

extensive dolerite-dominated feature of the island. Both lakes are natural basins with 

small catchments (details in Chapter 2) and land use has mostly revolved around some 

grazing (for sheep and cattle) and minor selective-cut logging of the Eucalyptus 

delegatensis forests. The lakes have had their water levels manipulated since the 

1830s (Cutler, Kinrade et al. 1990) with a combination of deepening of the outflow 

channel and the construction of a weir on the outflow of Lake Crescent resulting in an 

effective operatit?-g range of ~2.0 mat full supply level (FSL). Subsequently, these 

lakes have had their levels regulated to supply irrigation water and a small amount of 

town water to downstream users of the Clyde River during the summer and early 

autumn months (late December through March). Prior to th,e mid-1990s, however, the 

most intensive human activity on the lakes was recreational fishing for introduced 

trout, chiefly in Lake Sorell which was the most popular trout fishery in Tasmania for 

much of the latter half of the 20th Century. 

A significant amount of work has been carried on the ecology oflakes Sorell and 

Crescent with Burrows (1968) and Cheng and Tyler (1973a; 1973b; 1976a; 1976b) 

documenting various aspects of water quality and trophic status from 1967 to 1971. 

Additionally, the Inland Fisheries Service (IFS) of Tasmania has sampled fish and the 

water column for various purposes over the last 10 years, with an increase in the 

frequency and extent of water sampling occurring over 1999 in the face of a rapid 

decline in water quality. 
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Both lakes are polymictic (Cheng and Tyler 1976b) and are highly variable aquatic 

environments due to their large surface area and shallow average depth (Chapter 2, 

Figure 1 and Figure 2, Table 2). Cheng and Tyler (1973a) documented strongly 

contrasting trophic characteristics between the two systems, with the phytoplankton 

differing in species composition, population structure, biomass and seasonal 

phenomena despite the lakes being adjacent and having comparable water chemistry, 

mixis and land use within their catchments. 

The difference between the lakes was significant enough to influence both the 

public's perception of water clarity between the lakes and their ecology. The greater 

macrophyte cover of Lake Sorell was likely being due to lower levels of light 

attenuation that would result from a reduced standing crop of phytoplankton in Lake 

Sorell compared to Lake Crescent (Spence 1982), and one of the littoral wetlands in 

Lake Sorell has been listed as a RAMSAR site. 

Although Cheng and Tyler (1973a) documented the striking contrast in phytoplankton 

dynamics between the lakes, they were unable to unequivocally explain why the lakes 

to behaved in such a manner. They called the contrast "a limnological paradox". 

However, there were other differences in the ecology of the two lakes which resonate 

with late 20th century research on food webs. Compared with the phytoplankton­

dominated Lake Crescent, the clearer-water Lake Sorell had much denser populations 

of the piscivorous trout but fewer of the endemic golden galaxias (which was 

presumed to be zooplanktivorous). There were also anecdotal data suggesting 

differences in the zooplankton between the two lakes which were suggestive of "top­

down" control in Lake Sorell and "bottom-up" control in Lake Crescent. 

In the mid 1990s European Carp were illegally introduced to Lake Crescent, and 

manipulating water levels to minimise the opportunity for spawning was an additional 

management goal. This coincided with increased demand for irrigation water, and a 

series of dry years which culminated in record low water levels and major changes to 

the water clarity of Lake Sorell in particular. The littoral wetlands dried, the trout 

fishery failed, and there was concern for the future of the fish, invertebrates and 

wetland plants that were endemic to these lakes. Following from these changes, 
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legitimate concern was whether both these shallow lakes had changed to a new stable 

configuration of being turbid and dominated by phytoplankton. 

Preceding the 'switch', Lake Sorell had high aquatic macrophyte biomass that 

provided an important resource for aquatic invertebrates and vertebrates. It is believed 

that the high biomass of aquatic macrophytes in Lake Sorell was a significant 

contributor to the lakes highly productive trout fishery, as the weed beds provided a 

significant resource for the aquatic invertebrates in the lake that constituted the main 

dietary item of the trout (Stuart-Smith 2001 ). The degradation in water quality that 

occurred in the late 1990s and the resulting pressure placed on the light climate is 

likely responsible for the whole-scale disappearance of aquatic plants from the main 

lake basin of Lake Sorell (Heffer 2003). The loss of aquatic macrophytes is likely a 

key factor in the decline of the trout fishery in Lake Sorell over recent years. 

1.3 Shallow lake ecology 
The distinction between shallow and deep lakes refer, in large, to significant contrasts 

in specific ecological processes that occur within the systems and result in shallow 

lakes behaving quite differently compared to their deep counterparts (Naselli-Flores 

2003). Scheffer (1998), arbitrarily categorised shallow lakes to have an average depth 

of less than 3 m, although in some instances this may be seen as a simplistic definition 

in distinguishing a shallow lake from a deep lake (Padisak and Reynolds 2003). 

Shallow lakes rarely stratify, at least to the point where they maintain any persistent 

vertical density gradient (Padisak and Reynolds 2003) and this is largely due to their 

turbulent and well-mixed nature (Scheffer 1998). In a deep lake, which stratifies over 

summer, the epilimnion is isolated from the hypolimnion thus reducing interactions of 

the epilimnion with the sediments. In a deep lake, macrophyte growth is usually 

restricted to the littoral zone, and plant biomass and cover is relatively small. 

However, in a shallow lake, the epilimnion is continuously in contact with the 

sediments, and the entire lake bed can be in the littoral zone with macrophyte growth 

possible throughout. The significant sediment-water interactions and the potential 

importance of macrophytes make the functioning of a shallow lake significantly 

different to that of a deeper lake and increase the importance of the littoral 

communities in driving primary productivity (Wetzel 2001 ). 
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Shallow lakes are generally characterised by both abundant submerged macrophytes 

and clear water at low nutrient levels (pristine state), or abundant phytoplankton and 

turbid water at high nutrient levels (degraded state). At intermediate nutrient levels 

they are dominated by either submerged macrophytes or phytoplankton (Jeppesen, 

Jensen et al. 1990). 

In the normal dynamics of a shallow lake, ecosystem processes and stability are 

maintained even in the face of moderate and continuous disturbances that occur 

within the lake and its catchment (Carpenter and Cottingham 1997). This resilience 

results from negative feedback mechanisms that maintain the lake in either one of the 

'two relatively stable, equilibrium states. The result is a system that may exist in two 

alternate states, termed 'alternative stable states' (Scheffer 1990) and have become 

popular over the last decade in the study of shallow lake limnology. 

The hypothesis of alternative stable states stems from the theory that shallow lakes 

typically exist in two states: a clear-water, macrophyte-dominated state, and a turbid­

water phytoplankton-dominated state, with each state possessing negative feedback 

loops capable of keeping the system in a stable 'equilibrium' (Scheffer 1990). 

In the clear-water, macrophyte-dominated state, macrophytes compete for nutrients 

with phytoplankton; they provide cover for zooplankton from zooplanktivorous fish, 

in tum increasing zooplankton biomass which increases grazing pressure on 

phytoplankton (Portielje and Rijsdijk 2003). Macrophytes reduce turbulence at the 

sediment surface from wind driven waves thus reducing resuspension of sediments 

(Jackson and Starrett 1959; James and Barko 1990; James and Barko 1994; Koch and 

Beer 1996). All these factors help maintain the system in a stable 'macrophyte 

dominated' clear-water state. 

The alternative 'stable' state is a turbid, phytoplankton-dominated state. High 

phytoplankton concentrations lead to the shading of macrophytes. Light limitation 

leads to a decline in macrophyte biomass and the feedback loops which maintained 

the clear-water state start to breakdown (Blindow, Hargeby et al. 1998). With a 

decline in macrophyte cover, zooplankton become easy prey for fish. The wave 
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buffering capacity of macrophytes are lost and sediments are more easily disturbed. 

With the loss of aquatic plants, the competition for nutrients between macrophytes 

and phytoplankton is reduced thus increasing the potential for an algal dominated 

system (Moss 1990). 

The theory of alternative stable states, pioneered by Scheffer (1990), is largely 

dependent on aquatic macrophytes playing a critical role in influencing ecological 

processes typical of shallow lake ecosystems, such as an existence of a significant 

competition between phytoplankton and aquatic macrophytes for growth-limiting 

light and nutrients. The theory also appears partly biased towards top-down trophic 

interactions that culminate in a significant limitation of phytoplankton standing crop 

by zooplankton grazing. A system that exhibits classic characteristics of being in 

either a clear-macrophyte or turbid-p~ytoplankton dominated state but does not 

possess the above mentioned controlling factors to limit primary productivity, may 

ultimately need to be investigated and described in a different light with less of a 

reliance on stable-state theory to explain ecosystem function and limitation of primary 

productivity. 

There are several possible reasons for a switch from a clear-water to a turbid state. A 

major physical or biological disturbance, outside the moderate disturbances that a lake 

ecosystem may be resilient to, may 'tip' the balance in favour of the turbid, 

phytoplankton dominated state. The disturbance erodes the stabilising positive feed 

back loops maintaining the lake in a stable equilibrium state (Scheffer 1990) and 

causes the whole ecosystem to become unstable (Kristensen, Sondergaard et al. 1992). 

Such disturbances include increased nutrient loading; changes to the trophic 

characteristics of the system, such as a significant increase in the recruitment of a 

large piscivour; or, in the case of extreme low lake levels, increased predominance of 

sediment resuspension (Blindow, Hargeby et al. 1998; Bachmann, Hoyer et al. 1999). 

All of these may cause a shift between the clear, macrophyte-dominated state to a 

turbid state. Water levels have been recognised as being fundamental in the 

functioning of shallow lakes and have an over-riding effect on the ecology, 

functioning and management of shallow lakes (Coops, Beklioglu et al. 2003). 
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In the face of these changes, the long established equilibrium breaks down and the 

physical process of sediment resuspension may predominate. Phytoplankton 

dominance becomes significant as competition with aquatic macrophytes is removed. 

Additionally, progressive shading by increased phytoplankton and epiphytes may 

further reduce the occurrence of aquatic macrophytes (Lowe, Battoe et al. 2001 ). 

Improvements in the light climate, that could eventuate if lake levels returned to an 

optimum level, may result in an increase in phytoplankton productivity with the 

possibility of high phytoplankton biomass giving rise to a turbid phytoplankton 

dominated state (Hellstrom 1991). In extreme cases significant blue-green algal 

blooms may eventuate, further degrading the environmental integrity of the system. 

Determining the importance of trophic interactions and the relationships between 

physical and biological processes, allows a complete understanding of what drives 

ecosystem function. This knowledge can be used to direct management initiatives to 

reduce the chance of phytoplankton dominance and guide systems towards the desired 

macrophyte dominated, clear-water state. Lakes may switch several times between 

clear and turbid phases with years to decades passing between transition phases 

(Blindow, Andersson et al. 1993). 

1.4 Sediment resuspension 

In numerous cases, sediment resuspension has been regarded as critical in degrading 

water clarity and increasing light attenuation in shallow lakes (Lick 1982; Luettich, 

Harleman et al. 1990; Hellstrom 1991; Hawley and Lesht 1992; Kristensen, 

Sondergaard et al. 1992; Hamilton and Mitchell 1996; Murphy 2001). It has also been 

identified as important in eroding the long-term, equilibrium states that shallow lakes 

may develop over time in the absence of significant disturbance. With the cases of 

Lake Sorell and Lake Crescent, the degradation in water clarity and the large-scale 

loss of aquatic macrophytes in Lake Sorell warrants a detailed investigation into the 

significance that sediment resuspension has on influencing water quality and the light 

climate of both lakes. 

The water quality in lakes and rivers depends on the concentration and distribution of 

dissolved and particulate material (Bailey and Hamilton 1997). Therefore, the process 
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of sediment resuspension has significant ramifications for the biological and chemical 

processes occurring in a water body (Blom, Van Duin et al. 1992; Kristensen, 

Sondergaard et al. 199~; Bloesch 1995; Horppila and Nurminen 2001). Sediment 

resuspension also has implications for sediment accumulation, an important process 

that influences the distribution of fine grained material throughout a water body 

(Hakanson 1982). This is especially important to management as most types of 

nutrients and pollutants have a high affinity for small organic and inorganic particles 

(Hakanson 1981 ). 

The turbulence generated by wave action at the sediment surface of shallow lakes has 

the potential to resuspend lake bed substrate, increasing concentrations of suspended 

sediment, nutrients and algal cells. This in turn decreases water clarity and light 

penetration and limits primary productivity (Hellstrom 1991; Arfi, Guiral et al. 1993) 

as well as increasing the concentration of plant nutrients (Demers, Therriault et al. 

1987; Hamilton and Mitchell 1997) and in some instances chlorophyll (Hamilton and 

Mitchell 1988; Carrick, Aldridge et al. 1993). Wind driven waves may also affect 

aquatic plants directly by physically uprooting the plant or indirectly through erosion 

of sediment (Keddy 1982). 

Wind is the driving force in wave generation in inland lake systems. The stronger the 

intensity of the wind, the greater the size of the wave (C.E.R.C. 1977), and wind 

generated waves are usually the key controlling force influencing sediment 

resuspension in inland lake systems, although sediment surface currents and 

bioturbation may be significant (Scheffer 1998). 

Resuspension of sediments occurs when a wave is said to 'feel' the bottom. Water 

movement generated as a wave travels in one direction influences sediments when the 

depth of water is less than one-half of the wave length. After this point, the orbits of 

the water particles become elliptical rather than circular, and there is an oscillatory 

horizontal motion of water immediately over the bottom sediments which may be 

sufficient to initiate resuspension (Carper and Bachmann 1984). The bigger the wave 

the greater is the depth at which the wave potentially 'feels' the bottom. 
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Sediment entrainment occurs when the force of water movement at the lake bed 

exceeds the stabilising forces of the sediments (Hawley and Lesht 1992; Vlag 1992; 

Flindt and Kamp-Nielsen 1998) and the energy exerted at the lake bed is sufficient to 

overcome the cohesive nature of the sediments (Bloesch 1995). The force exerted at 

the sediment surface is termed shear stress. Shear stress is a function of wind speed, 

water depth and fetch (Hamilton and Mitchell 1997) with the extent and frequency of 

resuspension events being determined by the depth characteristics of the lakes (Carper 

and Bachmann 1984). 

Sediment resuspension only takes place if the current-induced shear stress at the 

sediment surface is greater in force than the cohesive forces holding the sediments 

together (Bloesch 1995). This force is termed the critical shear stress (Scheffer 1998). 

Sheng and Lick (1979) found a critical shear of approximately 0.05 N m-2 to represent 

the threshold force necessary to initiate sediment resuspension in Lake Erie. This is a 

similar value to that identified by Arfi et al. (1993) in Lake Ebrie, and is termed the 

value as the 'characteristic' critical shear stress in evaluating the likelihood of 

sediment resuspension in Lake Pamvotis by Romero et al. (2002). Above this point, 

the rate of sediment resuspension has been shown to be linearly related to the shear 

stress at the lake bed (Hamilton and Mitchell 1996; Hamilton and Mitchell 1997). 

The critical velocity needed for resuspension depends on the type of sediment. Fine 

silts and non-cohesive deposits are more easily resuspended than sand and well­

consolidated deposits._ Consolidation of sediments occurs as sediments are left 

undisturbed. Frequently disturbed sediments remain unconsolidated and are 'more 

easily resuspended (Hawley and Lesht 1992). Due to the frequency and extent of 

resuspension in a shallow water body, consolidation of sediments is rare (Bengtsson 

and Hellstrom 1992). As a consequence, the critical shear stress needed to initiate 

resuspension in a shallow lake is often less than that required for a deeper water body 

(Bengtsson and Hellstrom 1992). 

One of the most important and direct effects of sediment resuspension are _changes to 

the light climate caused by increased turbidity (Kristensen, Sondergaard et al. 1992; 

Vlag 1992; Blom, van Duin et al. 1994). Sediment resuspension can also enhance 

algal growth by keeping algae suspended in the water column that had previously 
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settled out (Hamilton and Mitchell 1997). Several studies have shown that algal 

biomass and phytoplankton community composition are strongly influenced by 

sediment resuspension dynamics (Gabrielson and Lukatelich 1985; de Jonge and van 

Beusekom 1995). Sediment resuspension has also been shown to influence 

phospl:torus concentration in the water column (Kristensen, Sondergaard et al. 1992). 

In order to estimate the rate of resuspension and deposition of sediments it is 

necessary to obtain information on the following (Sheng and Lick 1979): 

1. The bottom shear stress generated by both oscillatory currents and steady currents 
from wind driven waves. 

2. Sediment composition. 

3. The rate of resuspension and sedimentation as function of shear stress and 
sediment composition. 

For a lake without significant inflows or outflows, the concentration of sediments in 

the water column is dependent on rates of sediment resuspension, sedimentation and 

the background concentration of seston and suspended solids present in the water 

column (Bailey and Hamilton 1997). To describe this balance between sedimentation 

and resuspension, Hawley and Lesht (1992) contended that, assuming the water is 

well mixed horizontally and vertically, the depth-integrated change in suspended 

sediment concentration (S) with time can be written as the difference between the two 

vertical fluxes of entrainment (E) and deposition (s): 

dS 
D-=E-s 

dt 
Equation 1.1 

Where D is the total water depth, E is the upward sediment flux due to resuspension, 

and sis the downward flux due to sedimentation. Usually the component of 

sedimentation in the equation is set to the product of the particle settling rate and the 

sediment concentration (Hawley and Lesht 1992): 

s = v ( c - cbak) Equation 1.2 
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Where v is the settling velocity and Cbak is the background concentration of non-
' 

settling suspended solids that may be attributed to material such as motile forms of 

algae and fine colloidal material. The expression therefore takes into account the 

component of suspended solids that is present in the water column that does not 

behave as a free-falling particle but has the ability to remain in suspension under 

quiescent conditions due to forces other than direct settling and entrainment. 

The sinking rate or settling velocity of a particle or v (m s-1
) under quiescent 

conditions may be adequately described by Stokes' Law, where the force of 

downward motion is equal to the drag force resisting motion (Hakanson and Jansson 

1983). Assuming that the shape of the particle approximates a sphere, a general form 

of Stokes' Law is as follows: 

gds2 (p- ps) 
V=-------

18µ Equation 1.3 

where g is the gravitational constant (9 .81 m s-2
); ds is the diameter of a sphere with 

the same volume as the settling particle (m); Ps is the particle density (kg m-3
); p is the 

density of water (kg m-3
); andµ refers to the kinematic viscosity of water (at 20 °C, 

0.001005 kg m-1 s-1
; (Stumm and Morgan 1996)). 

Equation 1.1 of Hawley and Lesht (1992) is similar to the expression of Scheffer 

(1998) who describes the change in concentration of suspended sediment also as a 

simple mass-balance mathematical function of the form: 

dS_r v
8 -----

dt D D 
Equation 1.4 

where dS describes the rate of change of concentration of particles in the water 
dt 

column in units of g m-3 day-1
• r describes the return of sediments to the water column 

through resuspension in g m-2 daf 1• Sedimentation or the loss of particles to the 
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sediments is proportional to the ratio of the fall velocity v (m daf1
) divided by the 

water depth D (m). 

The equilibrium concentration (S*) of suspended sediment in the water column occurs 

when the rate ofresuspension is equal to the rate of deposition. Following from 

equation 1.4 (Scheffer 1998): 

S*= r 
v 

Equation 1.5 

If the influence of wind induced currents on sediment resuspension (r) are known 

then the above equations allow for the development of relationships to determine 

changes in suspended sediment concentration within a water body (Scheffer 1998). 

Two processes of wind-driven waves are responsible for the resuspension of 

sediments. The first is through wind-induced circulation patterns in the lake, which 

cause shear stresse~ at the bottom by which sediments are entrained (Aalderink, 

Lijklema et al. 1984). These currents will be termed 'steady currents' (Herzfeld and 

Hamilton 2000). The second mechanism is through wind induced waves causing 

oscillating water movements which are attenuated with increasing depth (Aalderink, 

Lijklema et al. 1984). These currents will be termed 'oscillating currents' (Herzfeld 

and Hamilton 2000). 

In shallow lakes, the bottom shear stresses associated with horizontal currents or 

steady currents are generally not of the magnitude to initiate sediment resuspension 

(Luettich, Harleman et al. 1990) and would only occur under very extreme wind 

conditions. For example, Bengtsson et al. (1990) found wind speeds exceeding 30 m 

s-1 were necessary to produce steady currents of the magnitude needed to initiate 

sediment resuspension, and then only in very shallow water. A similar result was 

found by Hawley and Lesht (1992) who found bottom shear stress caused by 

oscillatory currents to be 3~ 10 times the shear stress produced by steady currents. 
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Therefore, generally speaking, the dominant force acting on the lake bed is due to the 

oscillatory currents from wind driven waves. However, despite the reduced influence 

of steady currents in regards to direct erosion of the lake bed, these currents have been 

demonstrated to be very important in the redistribution of sediments throughout a 

water body (Bailey and Hamilton 1997). 

The area of sediment resuspension has been defined in previous studies as the point at 

which the wave base comes in contact with the lake bottom (Gons, Veeningen et al. 

1986). At depths greater than this point, the oscillatory currents produced by the 

motion of the wave have no influence on the lake bed. When the wave travels into 

areas where the depth is less than one half the wavelength, the wave base comes into 

contact with the lake bed and sediment entrainment may occur (Carper and Bachmann 

1984; Arfi, Guiral et al. 1993; Scheffer 1998). 
- ' 

Hakanson (1982) defines three areas in a lake which differentiate between areas of 

sediment resuspension and areas of sediment accumulation: 'erosion', 'transportation' 

and 'accumulation'' each of which reflects environments of differing energy, 

turbulence and exposure. The areas of erosion are high energy areas where sedim~nt 

resuspension dominates and there is no deposition of fine material. The sediments in 

the erosional area are usually very resilient to disturbance and are comprised of such 
J 

material as bare rock, sand and well consolidated clays. Areas of transportation occur 

where fine material is deposited, but may be resuspended at times o~high wind 

exposure. Sediments in the transportation area are more diverse, possibly consisting of 

fine sands and coarse silt. The area of accumulation is where fine material is 

continuously deposited and reflects areas oflittle or no exposure. The accumulation 

area is therefore 'outside' the influence of oscillatory currents and sediments are 

usually very fine silts and mud of high organic and water content. 

The transition between the transportation and the accumulation zone therefore defines 

the boundary between sediment resuspension and sediment deposition; or 

alternatively the limit of influence of wind-driven waves. This point has been termed 

the 'critical' limit or 'critical' depth (Hakanson 1981). To determine the transition 

between the deposition and transportation/erosion areas it is necessary to know the 
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threshold water velocity required for an oscillatory wave to resuspend fine particles 

(Rasmussen and Rowan 1997). 

Resuspension of sediments occurs when the force of water movement at the lake bed 

exceeds the stabilising forces of the sediments (Hawley and Lesht 1992; Vlag 1992; 

Flindt and Kamp-Nielsen 1998). Above this critical point, the cohesive nature of the 

sediments is overcome and sediment entrainment into the water column results 

(Bengtsson and Hellstrom 1992). With the initiation of sediment entrainment, the rate 

of sediment resuspension has been shown to be linearly related to the shear stress at 

the lake bed (Hamilton and Mitchell 1996; Hamilton and Mitchell 1997). 

In the absence of direct measurements of water velocities at the lake bed, numerous 

studies have successfully applied wave forecasting models based on the Sverdrup­

Munk-Bretschneider (SMB) method (C.E.R.C. 1977) to inland lakes to model wave 

dynamics (Sheng and Lick 1979; Hamilton and Mitchell 1996; James, Best et al. 

2004). This allows estimates of wave characteristics, mean current velocities and 

shear stress at the sediment surface to be made as a function of wind speed, wind fetch 

and water depth. Having done so, significant relationships have been derived between 

the degree of shear stress under varying conditions and the rate of entrainment of 

sediments (Aalderink, Lijklema et al. 1984; Ostubo and Muraoka 1988; Luettich, 

Harleman et al. 1990; Blom, Van Duin et al. 1992; Hawley and Lesht 1992; Hamilton 

and Mitchell 1996; Bailey and Hamilton 1997). 

Steady currents 

Given information on the magnitude of the mean current velocity U (m s-1
), the time 

averaged shear velocity at the lake bed U * c due-to steady currents can be determined 

by (Herzfeld and Hamilton 2000): 

-2 
2 fcU 

U*c = 8 
Equation 1.6 

where fc is a current friction factor defined as: 
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Equation 1. 7 

when~ D is the mean depth (m) and ks is the bed roughness (m), which assuming is 

under flat bed conditions, is given by: 

ks = 2.5d Equation 1.8 

where dis the diameter of the particle (m). 

The calculation of bed shear stress (tc) for steady currents based on the time averaged 

shear velocity (u*c) is outlined shortly. 

Oscillatory currents 

Approximation of the oscillatory currents produced by waves at the lake bed may be 

determined by (Herzfeld and Hamilton 2000): 

Equation 1.9 

where u*w is the time averaged shear velocity (m s-1
), um is the maximum orbital 

velocity (m s-1
) as calculated by linear wave theory, and fw is the wave friction factor 

defined as: 

[ [
k ]0.194 ] 

fw =exp 5.213 ; -5.977 Equation 1.10 

where a is the maximum bottom amplitude also calculated from linear wave theory. 
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Bed shear stress 

The bed shear stress or the force exerted at the sediment surface may be calculated 

from the shear velocity due to either steady currents or oscillatory currents according 

to Herzfeld and Hamilton (2000): 

2 r=pu Equation 1.11 

where t is the shear stress (kg m-1 s-2
), p is the density of water (kg m-3), and u2 is the 

time averaged shear velocity (ms-1
) for either steady or oscillatory currents. Therefore 

the total applied shear stress at the sediment surface is equal to: 

2 2 
r=p(U +U ) 

*c *w 
Equation 1.12 

In order to calculate a, the maximum bottom amplitude, and um the maximum orbital 

velocity, laminar wave theory is used. From the formulae of (C.E.R.C. 1977), it 

follows that: 

H 
a=-----

2sinh(2~D) 
Equation 1.13 

where His the wave height (m) and L the wavelength (m), and: 

nH 
u =-----

m T sinh( 
2~D) 

Equation 1.14 
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When Airy wave theory is able to be applied, the wavelength, L, may be calculated by 

(Hamilton and Mitchell 1996): 

L = gT2 tanh(2n D) 
2n L 

Equation 1.15 

Where T is the wave period ( s ). As L appears on both sides of the equation, an 

approximation of equation 1.15 is given by (Herzfeld and Hamilton 2000): 

Equation 1.16 

According to C.E.R.C. (1977), wave height and period may be calculated from wind 

speed, fetch and depth by: 

2 [ [ ]075] 0.0125[-g~]o.
42 

H =-
0
-·
2
-
83
-U-tanh 0.530 ~ tanh [ U[ ] 075 ] Equation 1.17 

g tanh 0.530 ~ 

[
gF]o.25 

[ ]

0375] 0.077 -2 

T = 
2·~ D tanh 0.833[ ~ tanh [ [ gD J'"] Equation 1.18 

tanh 0.833 -2 
u 

whereH is the wave height (m), and Tthe wave period (s). Fis the fetch (m), Uthe 

wind speed 10 m above the surface of the water (m s-1
) and D the lake depth (m). g is 

the gravitational constant (9.81 m s-1
). 
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Having determined shear stress under changing environmental conditions with the use 

oflaminar wave theory, it is possible to develop relationships relating the magnitude 

of shear stress to changes in sediment concentration of the water column by modelling 

the process of sediment entrainment and sediment deposition. Following from 

equation 1.4 and 1.5, Bailey and Hamilton (1997) describes a sediment entrainment­

deposition model of the form: 

Cn+I = C(n) +/).Cent(n+I) - /).Cdep(n+I) 1.19 

Where Cn+l is the concentration (kg m-3
) following a time step of /).t seconds, Ccn) is 

the initial concentration (kg m-3), /).Cent(n+l) (kg m-3
) is the change in concentration due 

to sediment entrainment over /).t, and f).Cdep(n+l) (kg m-3
) is the change in concentration 

due to deposition over /).t. 

The change in concentration due to sediment entrainment can be described as a 

function of water depth (D) (m), rate of entrainment and shear stress (Bailey and 

Hamilton 1997): 

f).C = _!_ * K (' - Tcrit J/). 
ent D r ( 

Tref 

1.20 

Where t (N m-2
) is the bottom shear stress and tcru is the critical threshold shear stress. 

The excess shear stress in the equation (t - tcrit) is divided by a reference shear stress 

tref to make the term in parenthesis dimensionless (Luettich, Harleman et al. 1990). Kr 

is the sediment entrainment parameter (kg m-2 s-1
). 

The change in concentration due to sediment deposition (Cdep) is a function of the 

initial SPM concentration (C(n)) (kg m-3), water depth (D) (m) and the depth averaged 

settling velocity (co) (m s-1
) (Bailey and Hamilton 1997): 

1.21 
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Combining equations 1.20 and 1.21 becomes (Bailey and Hamilton 1997): 

C 1 K [" - 'rent JA C ( OJl:!..t) (n+I) =- r Llf+ (n) exp ---
D 'rref D 

1.22 

Therefore, from mass-balance calculations and laminar wave theory, it is possible to 

adequately model the dynamics of sediment entrainment and deposition by combining 

information on readily measurable variables such as sediment characteristics, 

bathymetric data and local meteorological conditions. Due to the nature of the 

information needed for the development and application of sediment resuspension 

models, the models are largely system specific. However, once calibration and model 

validation has been achieved, the dynamics of sediment resuspension in a shallow 

lake system can be largely understood. Such a tool provides the means to forecast 

potential benefits of management scenarios, such as lake level or wind fetch 

manipulation, that may be aimed at limiting the area oflake bed exposed to 

above-critical shear stress created by oscillatory currents derived from wind driven 

waves. 

1.5 Water clarity and the light climate 
A result of an escalation in the extent and frequency of sediment resuspension in a 

shallow lake is the increase of suspended sediment loading to the water column, 

which can lead to significant changes in the light climate. Solar radiation or light 

availability is one of the most ecologically important parameters in a shallow lake. 

Nearly all the energy that drives lake metabolism is derived from light utilised in 

photosynthesis (Wetzel 2001). The viability of phytoplankton and aquatic 

macrophytes is largely governed by the amount oflight available for photosynthesis, 

as growth is only viable if photosynthesis outweighs respiration (Spence 1982). 

Light availability largely determines the area of a lake colonisable by aquatic 

macrophytes (Spence 1982) and therefore has a significant influence on the extent and 

viability of the macrophyte community. Light also influences algal productivity; if 

nutrients are not limiting, light may be the key variable limiting algal growth 

(Scheffer 1998). 
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As light is a critical aspect driving ecosystem productivity and defining ecosystem 

characteristics, understanding the light climate and factors limiting light availability in 

a shallow lake ecosystem is necessary ifmanagement initiatives are to be undertaken 

to improve the ecological health of a water body. 

Two things can happen to a photon oflight when it travels underwater, it can be 

absorbed or it can be scattered. Although water itself contributes to the absorption and 

scattering of light, the optical properties of turbid lakes depend largely on suspended 

particles and dissolved substances (Kirk 1980). 

Inorganic suspensoids do not effectively absorb light and therefore have a reduced 

influence on light attenuation. However, by scattering light they increase the effective 

path length that a light photon travels, in turn increasing the likelihood of the photon 

being absorbed (Kirk 1994). Absorption effectively removes light from the water 

column, and is due to all coloured material, such as dissolved organic substances 

(gilvin and gelbstoff) and algal pigment (chlorophyll) (Scheffer 1998). 

Turbidity in essence is a direct measure of the amount of light scattering in the water 

column (Gippel 1989) and by definition, is largely independent of dissolved colour. 

Water clarity as perceived by the human eye, is dependent on all components present 

in the water column. As a result, turbidity, Secchi depth, and light attenuation are 

influenced by the same types of material, but to differing degrees. 

The components present in the water column that influence the light environment as 

characterised by measuring variables such as turbidity, Secchi depth and light 

attenuation include inorganic suspensoids, detritus, phytoplankton, dissolved colour 

(e.g. humic acids) and colloids. 

Information on each of these fractions and their relative contribution to light 

attenuation is important in understanding the ecological processes that limit light 

availability in a water body. For example, in a lake that has lost its aquatic 

macrophytes through increased shading, management initiatives to promote 

macrophyte growth would be different iflight attenuation was governed by high algal 

biomass compared to a seston-dominated light-limited system. 
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By measuring each fraction over an extended period of time, it is possible to develop 

a model relating the relative contribution or importance of each fraction to observed 

optical properties of the water column. This is achieved by fitting parameter values to 

field data using an optimisation algorithm (Buiteveld 1995), or, more commonly, 

using multiple linear regression analysis (Kirk 1985; Gerbeaux and Ward 1991; Blom, 

van Duin et al. 1994; Buiteveld 1995; Scheffer 1998). 

Multiple linear regression allows the regression coefficient for each independent 

variable (IV) to be determined. For example, in the case of modelling light 

attenuation, the relationship may be written as: 

Light attenuation (m-1
) =a (inorganics) + b (detritus)+ c (algae) 

+ d (dissolved colour and colloids)+ e Equation 1.23 

Where a,b,c and~ are the regression coefficients for each discrete fraction that 

contributes to the obser\red degree oflight attenuation and e is the residual error term. 

The regression coefficients, combined with the value for the IV in ques~ion, are 

proportional to the influence that that variable has on determining the magnitude of 

the dependent variable (DV), with the DV being turbidity, light attenuation or Secchi 

depth. By combining the product of each regression coefficient with observed or 

average concentrations ofits respective IV, many researchers model each :fraction's 

contribution to the magnitude of the observed DV in question (e.g. Kirk 1985; 

Gerbeaux and Ward 1991; Blom, van Duin et al. 1994; Scheffer 1998). 

Having established the variables responsible for reducing water clarity, the next step 

is to determine the mechanisms and pathways that result in the variable(s) having a 

disproportionate affect on the light climate. Each independent variable that limits light 

is, to an extent, dependent on different driving regulatory mechanisms that 

characterise the ecosystem (Scheffer 1998). Increased levels of suspended particulate · 

material, for example, may be influenced by internal and external processes, such as 

entrained sediment from resuspension or inputs of sediment from streams 

(Markensten and Pierson 2003). Similarly, high algal standing crops may result from 

34 



Introduction 

increased phosphorus loading and eutrophication of the water body (Sondergaard, 

Jensen et al. 2003) that may be derived from internal loading (through sediment 

disturbance) or external sources (such as high loads of nutrients from disturbed 

catchments). 

The important role algae and suspended sediment play in light availability and the 

undesirable consequence of increased levels potentially giving rise to a turbid, 

phytoplankton-dominated system makes obtaining information on nutrient and 

sediment cycles in lakes extremely important. Developing nutrient and sediment 

budgets for lakes and their surrounding catchments provides the information needed 

to assess the likely importance of internal and external nutrient and sediment 

dynamics and is of great consequence for successful lake management. 

1.6 Nutrient, sediment loads and lake wide budgets 
Shallow lakes have a high ratio of sediment surface area to water column which 

implies that nutrient cycling from the sediments is more important in shallow lakes 

than in deep lakes (Sondergaard, Jensen et al. 2003). Understanding the processes 

responsible for increased eutrophication and their relative magnitudes is important if 

management initiatives focus on bottom-up control of algal productivity through the 

limitation or removal of nutrients. To achieve this, the estimation of nutrient and 

sediment budgets is necessary in identifying the sources of nutrients in a lacustrine 

system. 

Increased external and internal nutrient loading can be a major reason for the stable 

state of a shallow lake ecosystem to change (Scheffer 1998) with numerous studies 

showing that high phosphorus loading leads to high phytoplankton biomass, turbid 

water and undesirable biological changes (Sondergaard, Jensen et al. 2003). Often, at 

low nutrient levels, the lake is in a stable, clear-water equilibrium, with macrophytes 

predominating. If nutrients are limiting, increased eutrophication may lead to a 

significant increase in pelagic and epiphytic phytoplankton. Algae effectively 

compete with aquatic macrophytes for light, and at a high biomass will lead to 

increased levels of shading and ultimately a decline in macrophyte cover (Blindow 

1992). The loss ofmacrophytes from the system may also lead to a loss in 

biodiversity, changes in fish community structure and a limitation on the effectiveness 
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of top-down grazing control of phytoplankton by zooplankton (Sondergaard, Jensen et 

al. 2003). 

Phosphorus is considered to be the key factor causing eutrophication of our 

waterways (Beaulac and Reckhow 1982; Cosser 1989) as phosphorus has been 

identified as the main nutrient limiting algal growth in many Australian freshwater 

water bodies (Wallbrink, Olley et al. 1996). 

Phosphorus release from sediments, or internal loading, is an important process 

leading to eutrophication of a water body. There are considered to be two dominant 

mechanisms for this. First, diffusion through the water-sediment interface of 

phosphates dissolved in the pore water, and , second, resuspension of particles 

followed by desorption of phosphate from the particles in the water column 

(Aalderink, Lijklema et al. 1984). The latter process will dominate in shallow lakes 

(Blom, Van Duin et al. 1992) owing to a well-oxygenated upper-sediment layer (that 

reduces and eliminates anoxic conditions at the sediment surface) and increased 

turbulence at the lake bed (which entrains sediments and increases particulate 

phosphorus concentrations in the water column). However, in the absence of sediment 

resuspension, it must not be assumed that the nutrient flux from the sediments is 

negligible. At times of calm weather and reduced turbulence, molecular diffusion of 

nutrients from the sediment pore water will become more significant (Scheffer 1998) 

and would likely be an important process in nutrient exchange between the benthos 

and the water column. 

High input of phosphorus into a water body usually indicates disturbances within a 

catchment. This is because phosphorus is typically immobile in all but very sandy 

soils, as it is readily absorbed to clay minerals and other soil components (Force 

1992). Establishing the sources and sinks of nutrients and sediment in a lake, along 

with quantification of nutrient and sediment loads entering from the lake's catchment 

allows identification of where nutrient and sediment loads may be problematic. 

Elimination of high external loads of phosphorus may lead to little change in internal 

nutrient levels as high rates of internal loading drive nutrient dynamics (Sondergaard, 

Jensen et al. 2003). Sondergaard et al. (2003) note that the phosphorus pool in the 
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sediments may be more than 100 x the pool present in the lake water column, further 

highlighting the importance of sediment-water interactions in a shallow lake. 

Increased eutrophication can have significant impacts on the stability of a shallow 

lake ecosystem (Scheffer 1998). The degree of influence increased nutrient loading 

has on primary productivity is dependent on both bottom-up and top-down trophic 

interactions. Understanding the role biotic processes play on influencing primary_ 

productivity is important in determining the impact increased eutrophication has on 

lake productivity. 

1. 7 Ecological modelling 
The modelling framework chosen for this project was the ecological modelling 

software DYRESM-CAEDYM (DYnamic REservoir Simulation Model and 

ComputAtional Ecosystem DYnamics Model) developed by the Centre for Water 

Research (CWR) at the University of Western Australia. DYRESM is a one­

dimensional hydrodynamic mixing model that has successfully been used to predict 

the vertical distribution of temperature, density and salinity in several lentic waters 

around the world (e.g Hejzlar, Balejova et al. 1993; Hamilton and Schladow 1997; 

Schladow and Hamilton 1997; Bo-Ping, Armengol et al. 2000; Gal, Imberger et al. 

2003). The vertical distribution of temperature and salinity is achieved through a 

series of Langrangean layers (Hamilton and Schladow 1997), and it is a process-based 

hydrodynamic model based on well-defined physical relationships and, therefore, 

requires little, if any calibration. 

CAEDYM is a detailed water quality model which is used to describe the biological 

and chemical characteristics at a short or long time step. It is a self-contained 

ecological model that has been designed to link to a suite of hydrodynamic models, 

although it can be used independently when specific ecological processes are to be 

examined and no spatial resolution is required. The model has been set up largely for 

assessments of eutrophication, being of the 'N-P-Z' (nutrients-phytoplankton­

zooplankton) model format. CAEDYM is an advance on the traditional N-P-Z models 

in that it serves both as a general ecosystem model (e.g. for resolving various 

biogeochemical processes) and also as a species- or group-specific model (e.g. 
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resolving the behaviour of various phytoplankton species) (Herzfeld and Hamilton 

2000). 

Thus DYRESM forms the hydrodynamic driver that is coupled to CAEDYM so that 

DYRESM-CAEDYM is potentially capable of integrating both biological and 

physical aspects of lakes, such as trophic interactions between upper level consumers 

(e.g. piscivores and planktivores), alongside physical processes, such as the 

significance of wind and turbulence on disturbing sediments and loading the water 

column with nutrients. The coupled model potentially uses all of the following 

components as inputs: meteorological conditions, lake morphometry (and changes in 

water level), the volume and composition of inflows and outflows, resuspension and 

settling rates of sediment components, the community composition of phytoplankton 

and their responses to changes in light and nutrient regimes, zooplankton and fish 

communities along with their feeding and digestion rates and dietary preferences. 

(The latest information about DYRESM-CAEDYM is available on 

http://www.cwr.uwa.edu.au/). 

Visualisation of the simulation data is by a graphical user interface named 

MODELLER, which has also been developed by the CWR. The type of visualisation 

is extensive. A vertical transect depicting the average variation with depth of an 

extensive array of variables is possible. These ' slices' may be viewed over a selected 

time period from days to years. However, since neither Lake Crescent nor Sorell 

stratify, the detailed outputs from MODELLER have been used only sparingly in this 

thesis. 

DYRESM-CAEDYM is useful for examining fine and broad scale trends of water 

quality within a lake. Simulations over short time scales (days to months) may be run 

to look specifically at event-based phenomena. Alternatively, simulations may be run 

using longer time steps over long time periods (years to decades) to examine long­

term lake-wide averages and the characteristics of a lake's 'evolution' . This form of 

modelling can potentially assess the importance of trophic interactions, fluctuating 

lake levels and the influence of major inflow events from streams. 
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Chapter 2 What are the "drivers" of water quality and 
water clarity in lakes Crescent and Sorell? 

2.1 Introduction 

In the late 1990s, there was an unprecedented and obvious degradation in the clarity 

" of water in lakes Crescent and Sorell. This, coupled with a decline in the trout fishery 

and the broad-scale loss of aquatic macrophytes in Lake Sorell necessitated an 

investigation to determine the factors responsible for these detrimental changes. 

Special attention was given to the change in the light climate of both lakes, as the 

viability of phytoplankton and aquatic macrophytes is largely governed by the amount 

of light available for photosynthesis, as growth is only viable if photosynthesis 

outweighs respiration (Spence 1982), and there was concern that Lake Sorell, 

especially, may be about to 'tip' into an undesirable, phytoplankton-dominated stable 

state. 

A switch from a clear-water to a turbid state may stem from a major physical or 

biological disturbance, outside the moderate disturbances that a lake may be subjected 

to without compromising a given state. This major disturbance erodes the stabilising 

positive feed back loops maintaining the lake in a stable equilibrium (Scheffer 1990) 

and causes the whole ecosystem to beco,me unstable (Kristensen, Sondergaard et al. 

1992). In these two lakes, the major increases in suspended particulate material (SPM) 

in the late 1990s, may indicate incipient changes in their previously stable states, and, 

as outlined in Chapter 1, the potential contributors to increased SPM in these lakes are 

algal blooms, wind-driven resuspension of organic and inorganic sediments, and the 

persistence of resuspended colloids. 

The potential major disturbances in these lakes that may degrade water clarity and 

increase both living and non-living SPM include: increased nutrient loading, changes 

to the trophic structure (e.g. increased recruitment of a large piscivore ), or, in the case 

of extreme low lake levels, increased predominance of sediment resuspension 

(Blindow, Hargeby et al. 1998; Bachmann, Hoyer et al. 1999; Coops, Beklioglu et al. 

2003). This chapter focuses on documenting the changes in water clarity and water 
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quality variables associated with nutrients and algal biomass. Trophic considerations 

are deferred to Chapter 5. 

Increased eutrophication commonly is associated with increased algal standing crop 

and more frequent algal blooms (Harris 1986). Assessing the trends and 

understanding the sources of nutrients is important in gauging the likelihood that 

changes in nutrient levels influence algal productivity. 

Nutrients can be derived from both internal sources (e.g. release from sediments under 

anoxic conditions (Wetzel 2001) or entrainment of sediments by wind driven waves 

(Hamilton and Mitchell 1988)) and external sources (e.g. tributary streams that 

transport nutrients from the surrounding catchment (Holtan, Kamp-Nielsen et al. 

1988)). 

Land use in the catchments of lakes Crescent and Sorell include both forestry 

(selective logging) and farming (grazing cattle and sheep, with some improved 

pasture) and have the potential to significantly change nutrient and sediment values 

entering the lakes. Quantifying the magnitude of nutrient loadings entering the lakes 

from the sub catchments and comparing these with similar studies allow an 

assessment to be made about the likely importance of these inputs. 

Algal productivity may also be governed by internal lake processes that are largely 

independent of increased nutrient imports, such as entrainment of meroplankton 

(Schelske, Carrick et al. 1995), or increased opportunity for growth of phytoplankton 

due to a reduction in the occurrence of aquatic macrophytes, macrophytes that when 

abundant, provide various feedback mechanisms that limit phytoplankton growth 

(Scheffer 1998). 

Finally, having examined the likely factors influencing primary productivity, it is 

necessary to determine the degree to which increased algal standing crop affects water 

clarity and light attenuation. This allows an assessment of the significance of changes 

in algal productivity in reducing water clarity and limiting light availability. 
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To understand the relative roles of these components, it was necessary, first, to collate 

and evaluate the historical record of changes in water quality in these two lakes to 

examine whether the "limnological paradox" noted by Cheng & Tyler (1973, 1976) 

still persisted and to determine if there were any indications of changes to key nutrient 

concentrations and the biomass of algae. Given the patchy nature bf the historical 

rec~rd, however, it was also necessary to conduct ~more consistent descriptive survey 

describing both the light climate and water quality ofthese two lakes ~lVer the study 

period 2000 - 2002. 

There was anecdotal and some quantitative evidenc.e that the concentrations of 

phosphorus and nitrogen ·had increased in lakes Sorell ~d Crescent in recent years, 

along with the obvious periods of elevated turbidity and low water levels during the 

1990s. This warranted a detailed investigation of nutrient and sediment loads entering 

the lakes from their sub-catchments. The aim was to determine if loadings differed 

between subcatchments and thus assess whether differences in land management 

could he contributing to the recent decllp.es in water quality in these lakes. 

Information on sub-catchment nutrient loadings are also beneficial in determining 

potential long-term trends and impacts on internal nutrient and sediment stores. 

Determining the likely faCtors responsible for the degradation can be difficult and 

requires a multi-faceted approach that takes into account both internal and external 

processes that may influence nutrient values, primary productivity and SPM. 

Establishing the magnitude to which key variables influence water clarity is difficult 

and conclusions may be drawn that requir~ significantly different management 

strategies as highlighted by the Bachmann/Lowe debate with lake Apopka 

(Bachmann, Hoyer et al. 2001; Lowe, Battoe et al. 2001) where by both authors have 

identified plausibie reasons .. for the observed degradation in the light climate, 

increasin~ productivity and loss of aquatic macrophytes, but have divergent ideas in 

regards to the suitability of proposed management initiatives to address the problem. 
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2.2 Methods and data sources 

To explore trends in key water quality variables for these two lakes, all relevant, 

reliable water quality data were collated from historical sources. These data were then 

combined with an extensive data set collected from more sites and more frequently in 

each lake over the period of 2000 - 2002. The details of each of these data sets are 

now described in turn, followed by a description of the analytical methods used. 

2.2.1 Collation of historic water quality data 

A thorough literature review was conducted to collate as much data on lakes Crescent 

and Sorell as possible. Relevant sources of information are summarised in Table 1 

along with a brief description of the type and quality of information and data used. 

Quantitative information on turbidity and nutrients was only available from the work 

carried out by the IFS identified in the last three rows in Table 1. The data recorded by 

Cheng and Tyler was useful for establishing that the lakes are well mixed, therefore 

justifying the depth integrated sampling procedures used in this study. By contrast the 

other data sources identified in rows 1, 3 and 4 were only useful for qualitative 

comparisons of phytoplankton and zooplankton community characteristics. 
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Table 1 Information and data sources accessed during the current project along 
with brief descriptions of the type and quality of the available information. 

Reference I Source Data I information TypeofData Level 
used, time period utilised 

(Burrows 1968) Zooplankton Qualitative/quantitative Low 
heterogeneity - 1967 

(Cheng and Tyler Water column mixing, Quantitative Medium 
1973a; Cheng and phytoplankton 
Tyler l 973b; Tyler community 
1974; Cheng and composition, Secchi 
Tyler 1976a; Cheng depth and lake level 
and Tyler 1976b) information: 1967 -

1971. 
(Chilcott 1986) Lake level information, Qualitative - literature Low 

catchment land use review - no additional 
sampling 

(Cutler, Kinrade et Phytoplankton Quantitative - limited - Low 
al. 1990) community 1 sample from each 

composition - April lake - detailed species 
1987 composition 

Work carried out by Lake level, turbidity Quantitative - Medium 
the IFS at a time of and Secchi coincided with a period 
high water and good measurements - ~ of high water levels 
eco-system health - fortnightly September and good water quality 
unpublished data 1992 - September 1993 

Work carried out by Total and dissolved Quantitative - High 

the Hydro Electric nutrient values, bi monthly sampling 

Corporation during turbidity, Secchi depth, over 12 months giving 

1991/92, 1994/95 chlorophyll a, 6 samples for each 

and 1997/98. qualitative time period in question 
phytoplankton and 
zooplankton samples 

Detailed work Lake levels, total and Quantitative - High 

carried out by the filtered turbidity, fortnightly to monthly 

IFS from early 1996 Secchi depth, chla, sampling, 4 sites 

to the start of 2000. qualitative zooplankton within each lake for 
and phytoplankton turbidity and Secchi 
sampling, total and depth; single 'mid' site 
dissolved nutrients, for phyto/zoo and 
phys-chem data. nutrients 

2.2.2 Water quality sampling 2000 - 2002 

2.2.2.1 Site selection 

To gain an estimate of spatial variation and to give a good indication oflake averages, 

8 sites were selected for each lake (Figure 1 and Figure 2). Sample locations were 
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recorded with GPS to allow for wind fetch and shear stress calculations. Four sites 

were marked with buoys to allow for repeated sampling at the same location, and they 

coincided with approximate sampling locations used by the IFS for water sampling 

that was carried out between 1996 and early 2000. An additional 4 sites were included 

in the sampling program to improve estimates oflake wide turbidity, suspended solids 

and algal biomass. Table 2 summarises the morphometric details of the two lakes 

according to the bathymetric maps shown in Figure 1 and Figure 2. Hypsographic 

curves of both lakes are presented in Appendix 1. 

Figure 1 Bathymetric map of Lake Sorell, including approximate locations of 
water sampling sample stations and the wind station. Main isopleths are at 1 m 
intervals. Arrow denotes true North. 
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Figure 2 Bathymetric map of Lake Crescent, including approximate locations of 
water sampling sample stations. Main isopleths are at 1 m intervals. Arrow denotes 
true North. 
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The bathymetric map of Lake Crescent was produced by the Survey and Geographic 

Information Department (1996) of the then Hydro Electric Corporation. The 

bathymetry of Lake Sorell was produced by the Rivers and Water Supply (1902) 

(Peterson and Missen 1979) and validated by the Survey and Geographic Information 

Department at the time Lake Crescent was surveyed in 1996. It was concluded that the 

bathymetric map of Lake Sorell created in 1902 described the lake bed satisfactorily. 

Table 2 Morphometric details of lakes Crescent and Sorell when the lakes are 
at full supply. 

Lake Crescent Lake Sorell 
803.8mASL 804.36mASL 

Surface Area (km2
) 23.1 51.6 

Catchment area (kmL) 32.8 98.4 
Volume (megalitres) 49386 156517 

Mean depth (m) 2.30 3.07 
Max depth (m) 3.80 4.30 
Shore Line (m) 29990 52520 

Shore Line Development 1.76 2.06 

The morphometric data (Table 2) and the hypsographic data (Appendix 1) was 

determined by digitising the bathymetric maps of both lakes Sorell and Crescent 

(Figure 1 and Figure 2) and importing the images into the GIS software package 

Maplnfo V6 for analysis. 

2.2.2.2 Water sampling 

Routine sampling was carried out at fortnightly to three weekly intervals from April 

2000 to August 2002. The frequency of sampling was set by logistical constraints on 

the sampling program and was carried out as regularly as possible. At each site, in­

situ measurements of turbidity, Secchi depth and light attenuation were made using 

the methods and instruments described in Section 2.2.3. A 1-litre depth-integrated 

sample was taken for the measurement of suspended solids (inorganic and organic), 

algal biomass (as non-phaeophytin corrected chlorophyll-a), dissolved colour and 

colloidal turbidity. Depth integrated samples were satisfactory due to the well-mixed, 

predominantly unstratified nature of the water column (Cheng and Tyler 1973a) and 
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are consistent with similar studies in shallow lakes that have found little stratification 

with a generally well mixed water column (Hamilton 1990). 

Samples were refrigerated at 4 °C and processed immediately on return to the 

laboratory, which was always within 24 hours of collection. An additional I L depth­

integrated water sample was taken at the central site of each lake for the measurement 

of total and dissolved nutrients. This sampling regime for nutrients was consistent 

with previous sampling regimes and has proven to be sufficient to detect major 

changes in the concentrations of some of these nutrients. Nutrient samples were 

transported on ice and frozen on return to the laboratory prior to filtration and analysis 

by the State Forensic Laboratory (SFL), an Australian National Authority for 

Accreditation (NAT A)-registered analytical chemical laboratory. 

2.2.3 Analysis of water samples 

2.2.3.1 Light climate: turbidity, water clarity and light attenuation 

Turbidity was measured in-situ with an Analite NEP160 portable turbidity meter 

(McVan Instruments Pty. Ltd., Mulgrave, Victoria, Australia). The in-situ 

measurement was corrected to be comparable to the Hach 2100-P turbidity meter 

(Hach Company, Loveland, Colorado, USA) that had been used to measure turbidity 

prior to 2000 (Appendix 2). Filtered turbidity was determined in the laboratory with a 

Hach 2100-P turbidity meter on filtrate passed through a Whatman GD filter paper 

(1 µm nominal pore size) (Whatman International Ltd., Brentford, Middlesex, UK). 

Measurements of filtered turbidity were made to estimate the contribution that fine 

colloidal suspended particulate material made to measurements of total turbidity. 

Secchi depth was measured with a Secchi disk on the shaded side of the boat. An 

average was taken between where the disk is visible and where it disappears from 

view after raising and lowering through the water column at least 5 times. 

Light attenuation was measured with a LI-COR LI-192 Underwater Quantum Sensor 

(LI-COR Biosciences, Lincoln, Nebraska, USA). Triplicate readings at several depths 

were taken which agreed to within± 5%. Kirk's (1994) relationship was used to 

calculate light attenuation and euphotic depth: 
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where Kd is the vertical light attenuation coefficient, z 1 and z2 are water depths (m) 

from the water surface, and Ed is the measured downward irradiance at depth z. 

2.1 

The euphotic depth has been taken as the depth to which 1 % of surface PAR reaches 

and approximates the lower limit of photosynthesis (Kirk 1994). This is similar to a 

number of other studies that have found strong relationships between turbidity derived 

from suspended sediment and increased light attenuation (Schagerl and Oduor 2003; 

James, Best et al. 2004). 

2.2.3.2 Laboratory determination of suspended solids, dissolved colour and 

colloidal material 

Inorganic and organic suspended solids were determined gravimetrically according to 

Standard Methods (A.P .H.A. 1992). Dissolved colour (or gilvin as g440, i.e. 

absorbance at 440 nm) was measured on filtrate passed through a Millipore 0.45 µm 

membrane filter paper (Millipore Corporation, Billerica, Mass., USA) (Kirk 1976). 

The contribution of colloidal material was determined by reading spectral absorbance 

at 750 nm (turbidity correction as per Standard Methods) (A.P.H.A. 1992). 
\ 

Absorbance readings were initially measured on a Shimadzu UV-120-02 

spectrophotometer (Shimadzu Corporation Ltd., Nakagyo-ku, Kyoto, Japan) in a 4 cm 

cuvette. Later, g440 was measured on a Varian Cary 50 CONC spectrophotometer 

(Varian Inc., Palto Alto, California, USA) in a 10 cm cuvette. Absorbances measured 

on the V ¥ian were corrected so as to be comparable to measurements made on the 

Shimadzu (Appendix 3). 

For the purpose of this study, 'colloidal' was defined, following Whitten and Brooks 

(1972), as being non-filtrable material of extremely small size(< 1 µm) that forms a 

dispersion of extremely fine particles suspended in the water column in the lakes. This 

material, due to its ultra small size, allows the supporting forces to exceed the 

gravitational forces that promote settling such that the material remains in suspension 

indefinitely. This definition accords with that of Whitten and Brooks. The molecular 
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composition and origin of this material was not studied in detail, but the very fine, 

non-filtrable residue likely originates from fine dispersive clays derived from the 

dolerite soils typical of eastern Tasmania (Crooks 1982). 

Measurements of colloidal suspended solids were not possible using standard methods 

of determination; consequently, the following method was devised. The mass of 

colloidal material (less than 1 µm) was quantified by freezing water samples and 

measuring the total mass of suspended solids of the thawed sample. Freezing resulted 

in almost complete flocculation of the colloidal material which then was easily 

retained on a Whatman GFC filter paper. Refer Appendix 4 for an overview of the 

method and an example of the analysis. The material retained was processed 

gravimetrically for suspended solids as per Standard Methods (A.P.H.A. 1992). 

Differences in mass between non-frozen and frozen samples were then used to 

estimate the mass of colloidal material in suspension. 

2.2.3.3 Algal biomass 

Chlorophyll samples were filtered through Whatman GF/F filters within 1-2 hours of 

collection, frozen in liquid nitrogen and later extracted in 90% acetone. Chlorophyll 

and phaeopigment analysis was carried out spectrophotometrically according to 

Standard Methods (A.P.H.A. 1992). Chlorophyll-a measurements used for dry weight 

algal biomass estimates were not adjusted for phaeopigments due to inherent 

problems in phaeopigment corrections in spectrophotometric techniqu~s (Mantoura, 

Jeffrey et al. 1997). These problems have the potential to grossly overestimate 

phaeopigment (Pha) concentration and underestimate chlorophyll-a in Pha corrected 

samples (y+1 ebb, Burnison et al. 1992). Algal biomass was estimated from 

chlorophyll-a concentrations assuming a dry-weight/chlorophyll ratio of70 (Scheffer 

1998). 

Additionally, spectrophotometrically determined non-Pha corrected chlorophyll-a 

were consistent with techniques employed from previous surveys on lakes Sorell and 

Crescent (Table 1 ). 

49 



Drivers of Water Quality 

2.2.3.4 Nutrient samples 

The total and filtered nutrients measured were soluble reactive phosphorus, total 

phosphorus, nitrite, nitrate, ammonia, and total nitrogen. The components chosen 

were comparable to the species measured in previous surveys undertaken by the IFS 

and adequately represented the most significant nutrient fractions of interest. Samples 

were processed by the State Forensic Laboratories according to Standard Methods 

(A.P.H.A. 1992) (refer Section 2.2.2.2). 

2.2.4 Statistical analyses of water quality samples 

Because of the varying sample sizes of the water quality data for the period 1991 -

2002, box-and-whisker plots were initially inspected to determine appropriate 

transformation of water quality variables and to display any coarse trends. Analysis of 

variance (ANOVA) was then conducted for each variable in each lake separately and 

the existence of linear or quadratic trends was tested using a priori contrasts. The 

assumptions of ANOV A were checked by plotting residuals versus estimates and 

examining normal probability plots for untransformed or transformed variables as 

appropriate (Hillman and Quinn 2002). 

The relationship between turbidity, suspended solids and euphotic depth (Zeu) was 

investigated using non-linear regression. A power function was most appropriate for 

these relationships, and the adequacy of the regressions assessed using the usual 

methods of inspecting plots of residuals and leverage and influence diagnostics 

(Harrell 2001; Hillman and Quinn 2002). 

2.2.5 Methods for estimating nutrient budgets 

2.2.5.1 Subcatchments 

The main tributary to the lakes is Mountain Creek to the north of Lake Sorell. There 

also flows west to east several significant creeks in the vicinity of Silver Plains to the 

west of Lake Sorell. The dominant tributary of Lake Crescent (excluding Interlaken 

Canal flowing from Lake Sorell) is Agnews Creek, which flows into the eastern side 

of Lake Crescent. Overall, the ratio of catchment area to lake surface area is low, with 

the total catchment area being 1.75 times the combined surface area of both lakes. 

Table 3 outlines the surface areas of each of the main tributaries. 
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Table 3 Subcatchment surface areas (SA) for each of the tributaries entering 
lakes Crescent and Sorell. 

Catchment SA(km:l) 

Mountain Creek (Lake Sorell) 27.03 
North Silver Plains Creek (Lake Sorell) 6.75 
Silver Plains Creek (Lake Sorell) 9.69 
Kemps Marsh drain (Lake Sorell) 12.97 
Dogs Head Creek (Lake Sorell) 8.60 
Agnews Creek (Lake Crescent) 7.91 
Total catchment area (including lake surface) 205.9 

The Mountain Creek catchment to the north of Lake Sorell is dominated by native 

bushland with some selective logging occurring in the lower end of the catchment in 

the vicinity of the lake. The majority of the Mountain Creek catchment is relatively 

pristine. The Silver Plains Creek catchment which includes a small tributary to the 

north of Silver Plains Creek along with a drain discharging from Kemps Marsh is a 

mixture of native bushland with some sown pasture, native grasslands, grassy 

woodlands and wetland areas used for grazing. Agnews Creek had a significant 

wetland area in the upper catchment which has since been drained to improve grazing 

and is now utilized for limited sheep and cattle grazing. 

Farming has been carried out in the immediate vicinity of the lakes since the 1820s, 

but some areas previously used for agriculture have reverted to native forest. Sown 

pasture, native grasslands, grassy woodlands and wetlands are favoured for grazing, 

with bush runs also being used. Currently approximately 18% of the catchment is 

used for cattle and sheep grazing, all on private land with the exception of a pastoral 

lease on Crown land at Robertsons Bay (Gudde 2004). 

Due largely to the nature of the terrain, forestry activities are limited to selective 

logging and thinning operations with no clear-felling. Some logging has been carried 

out in the past on the State forest on the northern shore of Lake Sorell. Recent forestry 

operations have been located to the south, southeast and northwest of Lake Crescent 

and to the east, west and northwest of Lake Sorell (Gudde 2004). 
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2.2.5.2 Stream discharge 

Major creeks flowing into lakes Crescent and Sorell were identified. For each inflow, 

a suitable weir pool was located as close to the lake as possible (Table 4). A suitable 

weir pool was determined as a pool with as uniform bottom contour as possible with a 

channel contour that was unlikely to overfill at high water levels. In each, a stage 

board was securely fastened to give a reference height that extended below the water 

level under low or base flow conditions. Alongside each stage board, a Dataflow 392 

data recorder (Dataflow Services, Trintech Group Plc., Addison, Texas, USA) 

coupled with a Dataflow capacitance depth probe was installed. Each logger was 

housed in a PVC stilling-well to reduce the influence- of turbulence and waves on 

depth measurements. Resolution of the probes was approximately 1 mm. Depth 

loggers were calibrated against the stage boards so that recorded heights from loggers 

could be ·compared directly to the stage height. Weir pool height was logged at half­

hourly intervals from July 2000 to August 2002. 

Table 4 Coordinate locations for inflow and outflow gauging sites for lakes 
Crescent and Sorell. Co-ordinates as UTM/UPS in Australian Geodetic 1966 
(AGD66) projection. 

Location Easting Northing 
Mountain Creek 515 790 5 341 890 
Unnamed Creek adjacent to Silver Plains Creek 508 810 5 339 140 
Silver Plains Creek 508 490 5 338 010 
Drain Above Kemps Marsh 509 460 5 334 990 
Drain Below Kemps Marsh 511 680 5 335 570 
Lake Sorell Outflow 514 290 5 333 940 
Agnews Creek 515 970 5 332 300 
Lake Crescent Outflow 512 1200 5 331170 

Approximately fortnightly field sampling trips were made during times of significant 

stream discharge with additional 'event-based' trips made when high flows occurred. 

During each trip instantaneous discharge was measured with the use of an Ott-C2 

(OTT Hydrometry, Kempten, Germany) 50 mm diameter propeller flow meter. 

Discharge ratings were developed for each site (Appendix 5) by relating measured 

instantaneous discharge to stage height using linear and non-linear regressions. 

Estimates of total stream discharge were then made from the continuous record of 
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stage height obtained by the loggers following standard procedures (Gordon, 

McMahon et al. 1992). 

Loggers were installed at sites in 4 tributaries entering Lake Sorell: Mountain Creek, 

Silver Plains Creek, a small creek approximately 500 m north of Silver Plains Creek, 

and the drain flowing out of Kemps Marsh. Agnews Creek flowing into Lake 

Crescent was sampled regularly, but due to security reasons and site suitability, was 

not fitted with a logger. Correlation and regression analysis of instantaneous flow with 

the other gauged creeks was used to estimate total discharge for Agnews Creek 

(Appendix 5). 

2.2.5.3 Water sample collection and analysis 

Regular fortnightly sampling trips were undertaken during times of stream flow and 

additional trips were also undertaken at times of high flow. On each sampling 

occasion, water samples were taken to measure total suspended solids, total 

phosphorus and total nitrogen. Samples were treated and analysed the same way as 

lake water samples. 

Four high flow events were sampled using two Sigma 900 automatic water samplers 

(Hach Company, Loveland, Colorado, USA) deployed on Mountain Creek and Silver 

Plains Creek. Each sampler had a 24 by 1 litre sample capacity and were fitted with a 

float switch that tripped at a predetermined stage height. The time that samples were 

taken was related to recorded stage height. Water samples from the sampler were 

analysed for suspended solids, total phosphorus and total nitrogen. The data from 

these event-based samples were used to derive precise loadings for each of these 

events to compare with the routine water sampling so that errors from the routine 

sampling could be estimated. 

2.2.5.4 Loading calculations 

For streams with continuous flow records, instantaneous load (L) was calculated as 

L = QC, where Q is the instantaneous discharge in litres per day and C is the 

concentration of the species in question in grams per litre, thus giving instantaneous 

loads in grams per day. 
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Loading calculations were carried out in two ways. If a significant relationship was 

found between instantaneous discharge and concentration (Appendix 6) then stream 

discharge was used to estimate concentration. The continuous record of stream 

concentration was combined with flow to give a continuous record of stream load. 

Alternatively, if an insignificant relationship was found between stream flow and 

concentration, it was assumed that nutrient and sediment concentrations changed 

linearly between sample dates (Buckney 1979; Cosser 1989; Jeppesen, Jensen et al. 

1999). 

To determine total load for a time period, instantaneous load was plotted against real 

time and the area under the curve integrated using the trapezoidal rule, thus estimating 

the total load for the time period in question (Culley and Bolton 1983). 

2.2.5.5 Catchment loading comparison 

A comparison of exports from sub-catchments was made by comparing both the 

instantaneous nutrient export coefficients and flow-weighted concentrations of each 

sub-catchment (Buckney 1979). Nutrient export coefficients differ from nutrient loads 

in that they take into account catchment surface area and are therefore an areal export 

rate. Areal export rates were then compared with published values from other studies 

to determine the importance and magnitude of sub-catchment loads. 

2.2.5.6 Lake exports 

The volume of water released from Lake Sorell into Lake Crescent was monitored 

during both the 2000 and 2001 summer periods. For water released from Lake Sorell, 

discharge measurements were made by the Inland Fisheries Service Tasmania (IFS), 

using the methods described above. 

Detailed information of the volume of water released from Lake Crescent down the 

Clyde River for the 2000 and 2001 seasons was obtained from the Water Resources 

Division of the Department of Primary Industries, Water and Environment Tasmania 

(DPIWE). DPIWE manage a permanent gauging station on the Clyde River 

approximately lkm downstream from the Lake Crescent outflow (Table 4). The 

gauging station has a continuous record of discharge from Lake Crescent and is 

managed independently from the IFS. 
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An automatic water sampler was deployed at the outflow of each lake to monitor the 

concentrations of exported suspended sediment, nitrogen and phosphorus. 

Comparisons were made between export estimates made from automatic water 

samples taken on two separate occasions at 24 and 48 hour intervals to export 

estimates made using measured mid-lake concentrations from routine lake sampling 

trips. Good agreement was found between export estimates made from lake 

concentration and export estimates made from the automatic water samplers, with 

Lake Sorell having an average error discrepancy of 15% and Lake Crescent having an 

average error discrepancy of 20% for the components of interest. 

For time periods that the automatic water samplers were not installed, measured mid­

lake concentrations from routine lake sampling trips were used to approximate the 

concentrations of the species in outflows. Linear changes in concentration were 

assumed between sample dates (Cosser 1989) and export loadings calculated using 

the methods for tributary stream loadings. This information was used to approximate 

sediment and nutrient exports from both lakes Crescent and Sorell. 

2.2.5. 7 Internal fluxes 

Annual internal fluxes of suspended sediment and nutrients were estimated from 

measurements taken during routine sampling trips. Lake-wide average suspended 

solids concentration and colloidal solids concentration (approximated from the 

relationship of colloidal solids and filtered turbidity (Appendix 4)) and mid-lake 

nutrient concentrations were multiplied by the lake volume for each sample trip to 

determine the total mass of each species in suspension. A range of water column 

'loadings' were determined for the time period in question. The difference between 

the minimum and maximum (range) was used as an indication of the 'maximum' flux 

or internal change in the mass of material in suspension. This flux was used as an 

approximate estimate of the internal loading on the water column. Istvanovics et al. 

(2004) recognised the importance of sediment resuspension in determining nutrient 

dynamics, particularly phosphorus dynamics, and stated conventional studies that 

focussed on phosphorus mobilisation and release from the sediments to be less 

relevant than studies on dynamics of sediment resuspension. It was therefore assumed 
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that changes in nutrient and suspended sediment concentrations within lakes Crescent 

and Sorell due to sediment entrainment would give an estimate of internal loading. 

2.2.5.8 Estimates of errors in loading calculations 

Errors in estimates of loads from inflows and outflows were calculated by comparing 

loads computed from events sampled by the automatic water samplers to loads 

approximated via interpolation between routine water samples for the time period in 

question. On average, an error of± 20% was found. 

2.3 Results 

2.3.J Long-term trends in water quality 

Figure 3 through to Figure 10 summarise changes in annual average values of the 

major water quality variables from 1991 in both lakes. An increasing trend from 1991 

to 2000 is evident in most cases, with 1998 being the year that values began to 

increase rapidly. There is a statistically significant increase in turbidity (total and 

colloidal), chlorophyll-a and total phosphorus and nitrogen (all linear contrasts 

P < 0.0001, except for total phosphorus in Lake Crescent where P = 0.002) for both 

lakes from the early 1990's through to 2000/2001, at which time values peaked. There 

was some evidence of non-linear trends for chlorophyll-a in both lakes and total 

phosphorus in Lake Sorell with significant quadratic and/or cubic terms; non-linear 

behaviour was most marked for turbidity and colloidal turbidity for both lakes with 

highly significant cubic terms (P < 0.0001) (Figure 9 and Figure 10). Interestingly, 

soluble reactive phosphorus (Figure 5), ammonia (Figure 3), and nitrate (Figure 4) did 

not change dramatically throughout the period, except for nitrate concentrations in 

Lake Sorell which increased considerably during 2000 and peaked in 2001 resulting 

in significant linear (P = 0.005) and quadratic (P = 0.02) trends (Figure 4). 

This increase in nitrate in Lake Sorell is ten to twenty times the average 

concentrations present from 1991to1999. The trend of increased concentrations of 

total nitrogen (Figure 6) and total phosphorus (Figure 7) were similar for both lakes, 

with concentrations peaking during 2000/2001 with values substantially higher than 

those recorded during the 1990' s. The mechanism for these increases is unknown, as 

external inputs of these nutrients were negligible (Section 2.3.4) and little has changed 

56 



Drivers of Water Quality 

in the catchment that would have increased inputs. Presumably these increases arose 

from internal sources such as resuspension. 

Increasing trends of chlorophyll-a concentrations in both lakes are quite distinct, with 

strong linear (both P < 0.0001) and weaker quadratic (both P < 0.05) components. 

Concentrations in 2000 and 2001 increased up to four times on average in Lake 

Crescent and three times on average in Lake Sorell from the early 1990s (Figure 8). 

Interestingly, even in the face of increased concentrations in Lake Sorell, the contrast 

between Lake Crescent and Lake Sorell in algal biomass still held, with Lake 

Crescent having approximately ten times the algal biomass of Lake Sorell. 

While there were significant and comparable increases in total phosphorus (Figure 7) 

concentration in both lakes between 1991 and 2002, Lake Sorell did not show the 

same magnitude of increase in algal biomass as Lake Crescent (Figure 8), with a 

highly significant difference in the pattern of annual average concentrations of 

chlorophyll-a existing between the two lakes (ANOV A; lake x year interaction F(9, 

215)=3.193, P = 0.0001). This further highlights the dissimilarities between the two 

lakes, especially considering the extremely high values of algal biomass attained in 

Lake Crescent (Figure 8) despite the reduced light availability (Figure 9) from 2000 

on. 

The dramatic increases in turbidity (Figure 9) and filtered turbidity (Figure 10), 

especially in Lake Sorell, are clear. Historically, both lakes had average turbidities 

~ 10-30 NTU, with Lake Crescent usually being more turbid than Lake Sorell; this 

was attributed to the greater algal biomass in Lake Crescent (Cheng and Tyler 1973a). 

During 2000 turbidity was up to 10 x higher in Lake Crescent and up to 20 x higher 

than average historic values in Lake Sorell. Over 2002, turbidity in Lake Sorell 

declined from the extreme values recorded in 2000/2001 (reflected in a significant 

cubic trend over time, P = 0.02, which was not present in Lake Crescent, P = 0.12), 

although turbidity values for 2002 were still high compared to the values typical of 

Lake Sorell prior to the mid 1990s. The record for filtered or colloidal turbidity is 

shorter, but the patterns are broadly similar to total turbidity, although values appear 

to remain elevated from 2000 on. High colloidal turbidity is important and poses a 
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significant management problem, as colloids remain in suspension for long periods 

which could maintain high background turbidity even with significant reductions in 

both particulate turbidity and algal biomass. 

2.3.2 Light climate 

The increase in turbidity from the early 1990's to the present is extreme (Figure 9). 

This increase, coupled with persistently low water levels, has resulted in catastrophic 

changes in the ecology of both lakes. Figure 11 summarises the highly significant 

inverse power relationship between turbidity and euphotic depth in both lakes. The 

data used for euphotic depth estimates were determined from measurements of light 

attenuation made from April 2000 to August 2002 during the current project (Section 

2.2.3). 

A~ the high, sustained turbidity values characteristic of both lakes over the period 

1999 to 2002, the lowest level of light attenuation reached resulted in a maximum 

euphotic depth of30 cm. This effectively prevents the entire lake bed oflakes 

Crescent and Sorell from obtaining adequate solar radiation to sustain photosynthesis 

and support plant growth at the sediment surface (Spence 1982). 
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Figure 3 Box and whisker plots of 'central lake' ammonia concentrations in 
lakes Crescent and Sorell, 1991 to 2002. Dots are the median concentration, and the 
hinges of the boxes are the first and third quartiles of the data for each year. Width of 
the boxes are proportional to the sample size in each year. No records were collected 
in 1993 or 1996 from either lakes Crescent or Sorell. 
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Figure 4 Box and whisker plots of 'central lake' nitrate concentrations in lakes 
Crescent and Sorell, 1991 to 2002. Dots are the median concentration, and the hinges 
of the boxes are the first and third quartiles of the data for each year. Width of the 
boxes are proportional to the sample size in each year. No records were collected in 
1993 or 1996 from either lakes Crescent or Sorell. 
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Figure 5 Box and whisker plots of 'central lake' soluble reactive phosphorus 
concentrations in lakes Crescent and Sorell, 1991 to 2002. Dots are the median 
concentration, and the hinges of the boxes are the first and third quartiles of the data 
for each year. Width of the boxes are proportional to the sample size in each year. No 
records were collected in 1993 or 1996 from either lakes Crescent or Sorell. 
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Figure 6 Box and whisker plots of 'central lake' total nitrogen concentrations 
in lakes Crescent and Sorell, 1991 to 2002. Dots are the median concentration, and the 
hinges of the boxes are the first and third quartiles of the data for each year. Width of 
the boxes are proportional to the sample size in each year. Note the logarithmic scale 
on the ordinate. No records of total nitrogen were collected in 1993 or 1996 from 
either lakes Crescent or Sorell. 
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Figure 7 Box and whisker plots of 'central lake' total phosphorus concentrations 
in lakes Crescent and Sorell, 1991 to 2002. Dots are the median concentration, and the 
hinges of the boxes are the first and third quartiles of the data for each year. Width of 
the boxes are proportional to the sample size in each year. Note the logarithmic scale 
on the ordinate. No records of total phosphorus were collected in 1993 or 1996 from 
either lakes Crescent or Sorell. 
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Figure 8 Box and whisker plots of lake-wide chlorophyll a concentrations in 
lakes Crescent and Sorell, 1991 to 2002. Dots are the median concentration, and the 
hinges of the boxes are the first and third quartiles of the data for each year. Width of 
the boxes are proportional to the sample size in each year. Note the logarithmic scale 
on the ordinate. No records of chlorophyll-a were collected in 1993 from either lakes 
Crescent or Sorell, nor in 1998 from Lake Crescent. 
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Figure 9 Box and whisker plots of lake-wide turbidity values in lakes Crescent 
and Sorell, 1991 to 2002. Dots are the median concentration, and the hinges of the 
boxes are the first and third quartiles of the data for each year. Width of the boxes are 
proportional to the sample size in each year. 
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Figure 10 Box and whisker plots of lake-wide filtered turbidity (colloidal 
turbidity) values in lakes Crescent and Sorell, 1991 to 2002. Dots are the median 
concentration, and the hinges of the boxes are the first and third quartiles of the data 
for each year. Width of the boxes are proportional to the sample size in each year. No 
records of colloidal turbidity were collected prior to 1996 from either lakes Crescent 
or Sorell. 
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Figure 11 The relationship between euphotic depth (Zeu) in metres, versus 
turbidity (NTU) and suspended solids (SS) (mg L-1

) for both lakes. 

0.8 Lake Sorell 0.8 Lake Crescent 
0.7 • 0.7 

0.6 0.6 

0.5 Zeu = 12.322(NTU)"'" .. 1 I 
Zeu = 31 .984(NTU)"1

·0227 
.<= 0.5 

R2 = 0.93; p « 0.001 Q. R2 = 0.84; p « 0.001 Q) 
0.4 0 0.4 

.II 
0 .3 0 0.3 .<= 

a. 
0.2 

:> 
w 0.2 

0.1 I 0.1 • • 
0 0.0 

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 

Turbidity (NTU) Turbidity (NTU) 

0.8 Lake Sorell 0.8 Lake Crescent 
0.7 0.7 

0.6 0.6 

0.5 
I 

Zeu = 1.9477(SS)"'""'' .<= 0.5 Zeu = 11.819(SS)"'·000
' 

R2 = 0.90 ; p « 0.001 
Q. 

R2 = 0.90; p « 0.001 
0.4 

Q) 
0.4 0 

~ 0.3 0.3 .<= 
a. 

0.2 
:> 

• w 0.2 

• .. . • 
0.1 0.1 • ·-0 0.0 

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 

Suspended Solids ( rrg/1) Suspended Solids ( rrg/I) 

2.3.3 Relationships between turbidity and nutrients, suspended solids and algal 
biomass 

The relationships between turbidity and total nutrients were investigated using all 

available data collected by the IFS summarised in Table 1. Total nitrogen and total 

phosphorus are strongly linearly related to turbidity in both lakes (Table 5, Figure 12, 

Figure 13) with over 80% of variation in total nutrients explained by turbidity. 

Moreover, turbidity is strongly related to the concentration of suspended sediment in 

the water column (Lake Sorell: r2 
= 0.94, P < 0.001 , n = 275 ; Lake Crescent: r2 

= 

0.94, P < 0.001 , n = 280; Appendix 7). However, Lake Crescent differs from Lake 

Sorell in that the slopes of the regressions are an order of magnitude greater for both 

nutrients (Table 5). 
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Table 5 Linear regression results describing the relationships between total 
nitrogen, total phosphorus and turbidity for lakes Crescent and Sorell. N is the total 
number of observations, P is the p-value of the regression. 

Lake Dependent Coefficient Intercept rL N p 
Variable (NTU) 

Lake Crescent Total N 0.0227 0.3006 0.82 85 <0.001 
Lake Crescent Total P 0.0012 -0.0038 0.82 83 <0.001 

Lake Sorell Total N 0.0075 0.8270 0.81 86 <0.001 
Lake Sorell Total P 0.0007 0.0436 0.82 85 <0.001 

Figure 12 Total phosphorus and total nitrogen concentrations versus turbidity for 
Lake Crescent. 
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Figure 13 Total phosphorus and total nitrogen concentrations versus turbidity for 
Lake Sorell. 
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To investigate relationships between phytoplankton biomass and suspended solids, 

information collected during the course of the current project was used (Section 

2.2.2). For each water sample analysed the percent contribution of total algal biomass 

(as dry weight) was calculated as a percentage of total suspended solids and 

summarised in Table 6. Phytoplankton biomass is closely related to suspended solids 

(Table 6, Figure 14), but the percentage contribution of algal biomass (as dry weight) 

to suspended sediment is generally small, especially in Lake Sorell (Table 6). Note 

also that the larger regression coefficient for Lake Crescent means that an order of 

magnitude greater increase in algal biomass results from a comparable increase in 

suspended sediment compared with Lake Sorell (Table 6, Figure 14). 

Table 6 Regression coefficients and the relative contribution of algal biomass 
to suspended solids for lakes Crescent and Sorell. 

Lake Coefficient Intercept % Algal contribution to SS r1· N p 

Min Average Max 
Crescent 0.0376 -0.8434 1.7 6.7 17.3 0.79 38 <0.01 

Sorell 0.0057 0.6122 0.6 1.3 2.3 0.71 37 <0.01 

Figure 14 Relationship between algal biomass (dry weight) and suspended solids 
for lakes Crescent and Sorell. 
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2.3.4 Nutrient budgets 

The results are summarised in Table 7 to Table 11. Table 7 outlines the volume of 

water entering the lakes from each of the sub-catchments. Evident is the increased 

water volume for 2001 , due largely to increased early autumn and late spring rainfall. 
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Appendix 5 contain hydro graphs for each of the sub-catchments for 2000 and 2001. 

Mountain Creek has the greatest discharge per km2
• This may be a result of both 

greater rainfall in tJl_e north of the catchment and greater runoff due to catchment 

characteristics. Catchment characteristics can have a marked influence on runoff 

generation by changing key hydraulic aspects of a catchment. Runoff is generated 

within a catchment through infiltration excess, subsurface storm flow and saturation 

excess overland flow, all of which are influenced by catchment characteristics and 

land use and determine the potential discharge capacity of a catchment (Pfister, 

Kwadijk et al. 2004). 

Stream loading is usually the most critical water quality characteristic (Barr~tt and 

Loh 1982), especially when the impact on receiving waters is of concern. However, 

despite their wide acceptance, the use of nutrient export coefficients (NECs) to 

compare catchment activities rarely take differences in runoff characteristics into 

consideration (Beaulac and Reckhow 1982; Birch 1982; Culley and Bolton 1983). 

NECs are used extensively to compare nutrient and sediment loadings between areas 

of differing land use and also to compare catchment loadings within a localised area 

(Erskine and Saynor 1995). They also allow atrophic status to be assigned to the 

catchment (Buckney 1979). The NECs for each tributary were calculated by dividing 

the total annual load by catchment area, to give export rates as kg km-2 yr-1
• The range 

of export coefficients was substantial, ranging from 250 to 1100 kg km-2 yr-1 for 

suspended sediment (Table 7); 30 to 600 kg km-2 yr-1 for total nitrogen (Table 8); and 

1.5 to 6 kg km-2 yr-1 for total phosphorus (Table 9). 

To be able to use nutrient loads to compare the impact of catchment activities, it is 

necessary to take differing catchment attributes into consideration (Cosser 1989), as 

sub-catchments may vary in their ability and efficiency to catch and transport water. 

For example, Mountain Creek (Table 7) has a higher discharge per unit catchment 

area than the other tributaries. Although not obvious, the increased discharge alone 

may lead to a disproportionate sediment and nutrient export from this subcatchment. 

In order to compare the impact of catchment activities on values of sediment and 

nutrients present within the catchment, it is necessary to take the difference in 

discharge into account (Cosser 1.989). Flow-weighted concentrations achieve this by 

dividing the total catchment load by the total discharge volume, giving an average 
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'flow-weighted' concentration for the time period in question (in mg L-1
). Comparison 

of flow-weighted concentrations between catchments leads to a better understanding 

of differences in proportional contributions between the catchments. 

Table 7 Total discharge (megalitres) from each of the gauged sub-catchments 
oflakes Crescent and Sorell. (Refer Appendix 5 for individual hydrographs). 

Sub-catchment SA Discharge Discharge Discharge Discharge 
(km2) 2000 2001 km-2 2000 km-2 2001 

Mountain Creek 27.03 9924 13609 367 503 
Silver Plains Creek 9.69 1990 4180 205 431 
Nth Silver Plains Creek 6.75 994 2417 147 358 
Kemps Marsh drain 12.97 616 2473 48 191 
Agnews Creek 7.91 950 2010 120 254 
Dogs Head Creek 8.60 NA NA NA NA 

The increased discharge of 2001 resulted in higher total sediment and nutrient loads 

than in 2000 (Table 8 to Table 10). An exception was Mountain Creek, which 

experienced a higher total sediment load during 2000 than 2001, even with the 

increased discharge of 2001 (Table 8). This is likely due to significant earth works 

undertaken in the lower reaches of Mountain Creek on erosion control during 1999, 

which may have mobilised a limited amount of sediment that was entrained and 

discharged during 2000. The level of sediment entering Lake Sorell from Mountain 

Creek is still extremely low for both 2000 and 2001. 

Table 8 shows sediment loadings from tributaries to be very low for both 2000 and 

2001. This is further highlighted with comparison of flow-weighted concentrations 

which fall below 5 mg L-1
, with the exception of suspended solids draining from 

Kemps Marsh for 2000. The sediment export coefficients (NECs) for the 

subcatchments were all< 1000 kg km-2 YI"-l with the exception of the small tributary 

to the north of Silver Plains Creek, which had an estimated load marginally greater 

than 1 OOO kg km-2 YI"-l for 2001. Sediment NECs were very low with an average of 

425 kg km-2 YI"-l for 2000 and 690 kg km-2 YI"-l for 2001. The increased load for 2001 

can be attributed to the increased discharge from each of the sub catchments for 2001 

(Table 7). This is further supported by the flow weighted concentrations which are all 

lower for 2001than2000 (Table 8). 
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The sediment NECs are all extremely low when compared with export coefficients 

from other studies from mainland Australia and Tasmania, with Erskine and Saynor 

(1995) finding an average sediment load of 10 OOO kg.km-2.yr-1 for a number of 

Australian rivers with grazing as the predominant land use. Loughran (1977) 

estimated average annual sediment yields from a small rural catchment in the Hunter 

Valley, NSW to be 28 OOO kg km-2 yr-1
; and Olive (1982) lists sediment yields from 

16 subcatchments of the Murray-Darling basin ranging from 1 500 kg km-2 yr-1 to 

67 OOO kg km-2 yr-1
, with an average of 12 OOO kg km-2 yr-1

• Within Tasmania, Olive 

(1975) found sediment NECs for three catchments in the south-east to range from 

8 700 kg km-2 yr-1 to 10 OOO kg km-2 yr-1 with native forest with limited forest 

harvesting being the dominant land use for the areas studied. 

Interestingly there is substantial fluctuation in sediment NECs between years and 

between catchments. The increased NEC of 1 090 kg km-2 yr-1 calculated for North 

Silver Plains Creek for 2001 may result from this stream being channelised for the 

lower few kilometres before it enters Lake Sorell. Whilst sampling this small stream, 

a significant amount of frost heave was observed during 2001 along the banks along 

with a large amount fine clay sediment that was deposited along the creek bed. This 

material was easily dispersed when disturbed.-This contrasts sharply with Silver 

Plains Creek, located approximately 1 km south, that had a creek bed dominated by 

gravel and pebbles with little evidence of channelisation or disturbance. The increased 

sediment loading from North Silver Plains Creek may be due to a combination of 

increased flows for 2001 and erosion and entrainment of material from the creek bed 

and banks. 

Kemps Marsh drain and, to a lesser extent, Agnews Creek also had comparably high 

sediment export coefficients compared to the other catchments, although as mentioned 

previously, the level of sediment load is extremely low compared to other mainland 

Australia and Tasmanian studies. The increased sediment load from Kemps Marsh 

drain is also reflected in the high flow weighted concentrations, especially in the case 

of 2000. This may be due to Kemps Marsh being exposed for several years preceding 

2000 (Heffer 2003), at which time significant rains resulted in discharge from the 

marsh. It is possible that export of sediment from the marsh increased due to 
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inundation following a prolonged period of desiccation (Baldwin and Mitchell 2000). 

This phenomena may also explain the marginally higher flow weighted concentration 

of nitrogen and phosphorus measured in the Kemps Marsh drain for 2000 and 2001 

(Table 9 and Table 10) (Baldwin and Mitchell 2000). 

Table 8 Total annual sediment loadings (in kg), area-specific loadings (NEC's) 
(kg km-2) and flow weighted concentrations (mg L-1

) from each of the gauged sub­
catchments of lakes Crescent and Sorell. 

Total load Area-specific NEC Flow-weighted 
Sub-catchment loads 2000 2001 2000 2001 2000 2001 

(kg) (kg) (kg km-2) (kgkm-2) (mg L-1
) (mg L-1) 

Mountain Creek 14720 6666 545 247 1.48 0.49 
Silver Plains Creek 2560 4800 260 500 1.29 1.15 
Nth Silver Plains Creek 3120 7390 460 1090 3.14 3.06 
Kemps Marsh drain 5535 11079 427 854 8.99 4.48 
Agnews Creek 3414 6036 431 763 3.59 3.00 
Total Sediment input (kg) 29350 35970 

Nitrogen loadings show an interesting pattern (Table 9) with nitrogen loadings and 

flow weighted concentrations being low for all tributaries except Agnews Creek. 

Using the trophic classification system of Buckney (1979) all tributaries may be 

termed oligotrophic, as they have loads< 500 kg km-2· yr-1
• The higher load from 

Agnews Creek degrades the classification for this tributary to being mildly 

'mesotrophic'. Comparisons of flow weighted concentrations further underline the 

contrast, with nitrogen values in Agnews Creek being significantly higher than the 

Australian and New Zealand Environment and Conservation Council (A.N.Z.E.C.C. 

1992) guideline maximum for rivers and streams of 0. 75 mg L-1
• The higher loading 

of nitrogen from Agnews Creek has the potential to influence internal nitrogen stores 

in Lake Crescent, as a net gain in nitrogen was evident in Lake Crescent during 2001 

(Table 11 ). Elimination of Agnews Creek as a significant source of nitrogen would 

lead to a net loss of nitrogen from Lake Crescent under current conditions. The drain 

discharging from Kemps Marsh also has marginally elevated flow weighted 

concentrations in comparison to the other catchments, although the areal loadings for 

this tributary are relatively low. 
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The water quality for all inputs as measured by NECs can be deemed to be of high 

quality, with the exception of nitrogen loads entering Lake Crescent from Agnews 

Creek (Table 9). Average NECs of nitrogen (Table 9) compare favourably with 

mainland Australian studies. For example, nitrogen export coefficients calculated by 

Buckney (1979) for six small subcatchments of the Onkaparinga River, South 

Australia were between 475 kg km-2 
yr-I and 55 385 kg km-2 

yr-I .If the extreme outlier 

is excluded then the range is between 475 kg km-2 
yr-I and 3 650 kg km-2 

yr-I with an 

average of 2 120 kg km-2 
yr-I. Although Buckney's (1979) work was carried out on 

heavily cultivated soils. Nitrogen export coefficients listed by Beaulac and Reckhow 

(1982) for forested catchments in the USA are comparable with the nitrogen loads of 

tributaries entering lakes Crescent and Sorell. A study by Quinn and Stroud (2002) in 

New Zealand investigated nutrient exports from areas of contrasting land use and lists 

nitrogen export coefficients of 83 kg km-2 
yr-I and 152 kg km-2 

yr-I for two catchments 

dominated by native forest compared to 565 kg km-2 
yr-I and 1 395 kg km-2 

yr-I for 

two catchments dominated by grazing pasture. The nitrogen loads entering lakes 

Crescent and Sorell all compare favourably with Quinn and Stroud's (2002) forested 

New Zealand catchments. 

The exception is Agnews Creek, with over an order of magnitude increase in nitrogen 

loading in some instances compared to the other tributaries entering Lake Sorell. The 

magnitude of the nitrogen load from Agnews Creek compares closely to impacted 

catchments from mainland Australia and overseas. The level of nitrogen entering 

Lake Crescent from Agnews Creek is of concern as it has the capacity to increase 

nitrogen stores in Lake Crescent (Table 11 ). 
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Table 9 Annual nitrogen loadings and flow weighted concentrations from each 
of the gauged sub-catchments of lakes Crescent and Sorell. 

Total load Area-specific NEC Flow-weighted 
Sub-catchment loads 2000 2001 2000 2001 2000 2001 

(kg) (kg) (kg km-2) (kgkm-2) (mg L-1) (mg L-1) 

Mountain Creek 767 1332 28 50 0.08 0.10 
Silver Plains Creek 410 820 40 85 0.21 0.20 
Nth Silver Plains Creek 275 660 40 100 0.28 0.27 
Kemps Marsh drain 1112 2001 86 154 1.81 0.81 
Agnews Creek 4763 4543 602 574 5.01 2.26 
Total Nitro2en input (k2) 7330 9360 

The range of phosphorus export coefficients for subcatchments was relatively low 

ranging from 1.5 to 3.7 kg km-2 yr-1 for2000 to 3.2 to 6.1 kg km-2 yr-1 for 2001 (Table 

10). The increased load for 2001, as observed with both sediment and nitrogen 

loading, maybe attributed to the increased discharge of2001. Cullen and O'Loughlin 

(1982) recognised discharge to be the predominant determinant of phosphorus load 

and to be more important than concentration. Reliable discharge data is therefore 

essential for determining phosphorus exports accurately. 

Estimated phosphorus export coefficients for the tributaries entering lakes Crescent 

and Sorell were extremely low when compared to mainland Australian studies. For 

example, Buckney (1979) calculated phosphorus NEC's for six subcatchments of the 

Onkaparinga River, South Australia, all of which were extensively cultivated and 

reported values ranging from 36 kg km-2 yr-1 to 144 kg km-2 yr-1
, while Cullen and 

O'Loughlin (1982) listed 35 values ofNECs for total phosphorus transport from 

mainland Australian catchments which ranged from 2 kg km-2 yr-1 to 106 kg km-2 yr-1
, 

with an average of39 kg km-2yr-1
• Table 10 shows that all tributary NEC's for total 

phosphorus entering lakes Crescent and Sorell fall at the bottom end of this range. 

Cullen and O'Loughlin (l982) concluded that forested areas export between 

1.0 kg km-2 yr-1 and 20 kg km-2 yr-1
• Native forest and grazing are the dominant land 

uses within the lakes Crescent and Sorell catchment, and the measured phosphorus 

export coefficients are similar to those typical of forested and low impacted 
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catchments in southern Australian. Similarly, Campbell (1978) estimated a 

phosphorus export of 2.4kg1an-2 yr-1 for a relatively pristine, forested catchment in 

Victoria, an export rate comparable to the rates estimated for the current study. 

Table 10 shows that phosphorus loadings are generally low, and would be termed 

oligotrophic using Buckney's (1979) criterion because all loads<< 19.7kg1an-2 yr-1
• 

The flow weighted concentrations are also very low. Using the nutrient status 

classification system from the State of the Environment Report 1988 (Commissioner 

for the Environment, 1989), Mountain Creek would be classed as of 'excellent' 

quality, with the remaining tributaries having 'good' water quality. The exception is 

Kemps Marsh drain during 2000 and Agnews Creek for 2000 and 2001, which have 

'moderate' phosphorus concentrations according to this classification. 

The slightly greater flow weighted phosphorus concentrations for these two 

subcatchments may be due to both draining wetlands which, after a period of 

desiccation, may lead to increased levels of phosphorus in water draining these areas 

(Baldwin and Mitchell 2000). Additionally, both Kemps Marsh and the marsh area at 

the headwaters of Agnews Creek are used for grazing over the drier months of 

October through to April, which would lead to an increase in animal faeces coupled 

with mechanical damage of the area that may further lead to increased transport of 

phosphorus when the wetland areas become inundated sufficiently for overland runoff 

to occur. 

Table 10 Annual phosphorus loadings and flow weighted concentrations from 
each of the gauged sub-catchments of lakes Crescent and Sorell. 

Total load Area-specific NEC Flow-weighted 
Sub-catchment loads 2000 2001 2000 2001 2000 2001 

(kg) (kg) (kg 1an-2) (kg 1an-2) (mg L-1
) (mg L-1) 

Mountain Creek 76 67 2.8 2.5 0.008 0.005 
Silver Plains Creek 21.4 43 2.2 4.4 0.011 0.010 
Nth Silver Plains Creek 14.4 34.3 2.1 5.1 0.014 0.014 
Kemps Marsh drain 20 41 1.5 3.2 0.032 0.017 
Agnews Creek 29 48 3.7 6.1 0.031 0.024 
Total Phosphorus input (kg) 161 233 
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The data collected on nutrient loading from each of the subcatchments was combined 

with information collected on internal fluxes in sediment and nutrient values and used 

to develop lake-wide nutrient and sediment budgets for both lakes for 2000 and 2001 

(Table 11 ). A detailed breakdown of each subcatchments inputs into Lake Sorell and 

Lake Crescent, and exports from both lakes for each of the components listed in Table 

11 is given in Appendix 8. 

Table 11, shows that internal loading driven by sediment resuspension, estimated as 

the flux in minimum and maximum lake-average concentrations for the period in 

question (Section 2.2.5), is the most significant mechanism influencing water quality 

in these lakes. For example, inputs of suspended sediment into Lake Sorell amounted 

to 0.08% and 0.17% of the total flux in internal suspended sediment concentration for 

2000 and 2001respectively,2% and 5% of the total internal flux in nitrogen for 2000 

and 2001, and 1 % and 1. 5% of the total internal flux in phosphorus. For Lake 

Crescent, the contrast was reduced due to increased inputs of material entering Lake 

Crescent from Lake Sorell Appendix 8. The change in mass of internal sediment and 

nutrient concentrations still outweighs the mass of inputs significantly. For example, 

inputs of suspended sediment into Lake Crescent amounted to 11 % and 20% of the 

total flux in internal suspended sediment concentration for 2000 and 2001 

respectively, 10% and 21 % of the total internal flux in nitrogen for 2000 and 2001, 

and 7% and 8% of the total internal flux in phosphorus. It is therefore likely that the 

increased concentrations of suspended sediment, nitrogen and phosphorus in both 

lakes is not due to high loadings from subcatchments and is driven by internal 

processes present in the lakes. 

The low level of material entering the lakes from the tributaries (with the exception of 

water released from Lake Sorell into Lake Crescent), coupled with high values of 

internal loading, resulted in a significant loss of nitrogen, phosphorus and suspended 

sediment from both lakes. As an example, the sum of particulate and colloidal 

sediment (total sediment) exported from Lake Sorell was 30 and 50 x the mass of 

material imported for 2000 and 2001 respectively. Nitrogen exports were 1.8 and 

2.8 x the amount imported for 2000 and 2001, and phosphorus exports 2.7 and 1.8 x 

the mass imported for 2000 and 2001 respectively. Under current conditions of 

77 



Drivers of Water Quality 

increased suspended sediment and nitrogen and phosphorus levels in Lake Sorell, 

there is a net loss of material from the lake through water release. 

For Lake Crescent, a net loss of material for 2000 and 2001 was evident with the 

exception of nitrogen and total suspended sediment for 2001. The magnitude of loss 

from Lake Crescent was less than from Lake Sorell due to high sediment and nutrient 

loadings entering Lake Crescent from Sorell. For example, the sum of particulate and 

colloidal sediment (i.e. tetal sediment) exported from Lake Crescent was twice the 

mass of material imported for 2000 compared to~ 50% retention of inputs for 2001. 

Comparably, nitrogen exports were 1.8 x the input for 2000 compared to a 30% 

retention of nitrogen in Lake Crescent for 2001. 

In the case of phosphorus, a net loss for both 2000 and 2001 was estimated with 

exports being 2.2 and 1.4 x the mass imported for 2000 and 2001 respectively. The 

degradation in water quality in Lake Sorell results in significant sediment and nutrient 

loads entering Lake Crescent from Lake Sorell. Under such conditions, there is the 

potential for a net gain in material in Lake Crescent, particularly in years that 

irrigation release from Lake Crescent is largely supplemented by water release from 

·Lake Sorell, as was the case in 2001. This is particularly the case with nitrogen, as the 

high load entering Lake Crescent from Agnews Creek exacerbates the significant load 

of material entering from Lake Sorell. 
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Table 11 Summary of total sediment and nutrient inputs and exports for Lake 
Sorell and Lake Crescent for 2000 and 2001. For a more detailed overview refer 
Appendix 8. 

Lake (year) Inputs Internal Change Exports Net Change 
(tonnes) (tonnes)(+/-} (tonnes} (tonnes} 

Sorell (2000) 2.6 135.0 4.7 -2.1 

Nitrogen Crescent (2000) 9.4 94.0 16.8 -7.4 
Sorell (2001) 4.8 94.0 12.6 -7.8 

Crescent (2001) 17.1 82.0 12.3 +4.8 

Sorell (2000) 0.13 13.95 0.35 -0.22 

Phosphorus 
Crescent (2000) 0.38 5.65 0.82 -0.44 

Sorell (2001) 0.19 12.65 0.35 -0.16 
Crescent (2001) 0.40 5.00 0.54 -0.14 

Sorell (2000) 26 23150 242 -217 
Particulate Crescent (2000) 246 6350 1062 -816 
Sediment Sorell (2001) 30 12250 280 -250 

Crescent (2001) 286 5100 441 -155 

Sorell (2000) -0 9950 564 -564 
Colloidal Crescent (2000) 564 1100 483 +81 
Sediment Sorell (2001) 0 5400 1180 -1180 

Crescent (2001) 1180 1350 360 +820 

Sorell (2000) 26 33100 800 -774 
Total Crescent (2000) 803 7450 1545 -742 

Sediment Sorell (2001) 30 17650 1461 -1431 
Crescent (2001) 1467 7450 802 +666 
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2.4 Discussion 

2.4.1 Implications of the changed light climate 

The extreme light attenuation in Lake Sorell is likely a key factor in the disappearance 

of aquatic macrophytes as similar levels of light attenuation has been implicated in the 

disappearance and limitation of aquatic macrophytes elsewhere (Carter, Rybicki et al. 

1996), with the underwater light climate determining the distribution, abundance and 

primary production of aquatic macrophytes (Van Duin, Blom et al. 2001) and the 

degree of light penetration limiting the maximum depth to which aquatic macrophytes 

can grow (Best, Buzzelli et al. 2001). Light limitation by increased absorption and 

scattering by suspended particulate material and dissolved colour therefore has the 

potential to reduce the area of a lake colonisable by aquatic macrophytes. 

For example, in Lake Apopka, Florida, increased light attenuation resulting from 

increased sediment resuspension and algal biomass is believed to be responsible for 

the wide scale loss of aquatic macrophytes, ~ith Lowe et al. (2001) using 

measurements of PAR and a compensation depth of 1 % of surface radiation to 

conclude light limitation ofmacrophytes to occur over 95% of the lake bottom. 

Similarly, Chambers and Kalff (1985) found a highly significant correlation between 

Secchi disc depth and the maximum depth to which angiosperms colonised for 90 

lakes located in Quebec and elsewhere the world. 

In the case of lakes Crescent and Sorell, the increase in turbidity that occurred in 1998 

and 1999 (Figure 9) reduced the euphotic depth to < 0.4 m (Figure 11 ), the continued 

increase in turbidity during 2000 resulted in a further reduction of the euphotic depth 

to< 0.2 m. The acute increase in light attenuation experienced by both lakes Crescent 

and Sorell, coupled with increased physical disturbance at the sediment surface from 

increased wave action that resulted from reduced lake levels reached during 1998, 

1999, 2000 and 2001 (Chapter 3, Section 3.3.3) (Jupp and Spence 1977), would be 

sufficient to explain the loss and continued absence of aquatic macrophytes from the 

lakes. The unprecedented levels of sediment erosion and the increase in areas of both 
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lakes Crescent and Sorell in contact with the wave base or wave mixing zone (Chapter 

3, Section 3.3.3, Figure 31 and Figure 32) would limit the minimum depth to which 

macrophytes could colonise by physically uprooting plants, displ~cing seedlings and 

transporting propagules (Chambers and Kalff 1985). This was illustrated by Chambers 

(1985) who found a strong and highly significant correlation between the minimum 

depth that macrophytes colonise and the depth of surface wave mixing in four lakes in 

southern Quebec. 

Taking into account the current level oflight attenuation, re-establishment of aquatic 

macrophytes would be highly dependent on a major improvement in the light climate 

of both lakes. The strong exponential relationship of euphotic depth with turbidity and 

suspended solids reflects the significant influence a small change in turbidity and 

suspended solids has on limiting light availability. Reducing turbidity to values well 

below 50 NTU will be necessary before a significant improvement in light availability 

results (Figure 11 ). 

2.4.2 The relationship between turbidity, algal biomass and nutrients 

The processes leading to increased turbidity and the mechanisms controlling nutrients 

are closely related in these two lakes (Section 2.3.3). Therefore, as the concentration 

of suspended sediment increases, resulting in increased turbidity, the concentrations 

of both total phosphorus and total nitrogen also increase. This suggests that the 

mechanism responsible for increased SPM also results in increased nutrient loading of 

the water column. This is not surprising for phosphorus, as its transport is closely 

related to the transport of suspended sediment (Ahl 1988) because of its strong 

affinity for binding to the surface of inorganic suspensoids (Holtan, Kamp-Nielsen et 

al. 1988). 

Similarly, Hamilton and Mitchell (1988) found increased water column phosphorus 

concentrations to be highly correlated with sediment resuspension from wind driven 

waves in Lake Waipori, New Zealand. This, coupled with Sondergaard et al.'s (2003) 

generalisation that the pool of phosphorus in lake sediments is often more than 100 x 

that of the water column concentration, highlights the significance of sediment-water 

interactions in influencing nutrient concentrations in shallow lakes. 
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The increase in total phosphorus and nitrogen concentrations represents a significant 

increase in the trophic status of both systems. With phosphorus being identified as the 

main limiting nutrient in both lakes (Cheng and Tyler 1976a), its increased 

concentration may be stimulating algal growth. However, it is difficult to be certain of 

this link here because biologically available phosphorous may remain strongly sorbed 

to the sediment surface and unavailable for biological uptake (Laenen and 

LeTourneau 1996). This is especially so in systems with a significant colloidal 

contribution to the SPM, as is the case with lakes Crescent and Sorell. The charged 

nature of the colloidal material (Drever 1997; Langmuir 1997) makes it an effective 

phosphorus scavenger and colloids are therefore closely linked with the transport of 

nutrients (Broberg and Persson 1988). For example, Oliver and Hart (1993) found 

phosphorus bound up in the colloidal fraction (3nm - lµm) to account for 36% to 

40% of total phosphorus. This is directly comparable to the contribution of colloidal 

phosphorus and nitrogen to the total nutrient pool in lakes Crescent and Sorell 

(Appendix 9). 

The low concentrations of measured soluble reactive phosphorus (Figure 5) compared 

to the high concentrations of measured total P (Figure 7) support Laenen's view. 

Alternatively, it is possible that released bio-available phosphorus (SRP) is scavenged 

immediately by algal cells or sorbed back on to inorganic suspensoids so that 

measured values remain relatively low, despite a considerable sink of SRP being 

available (Bostrom, Persson et al. 1988; Nolan, Lawrance et al. 1995). 

Understanding the relevance of increased phosphorus concentrations on stimulating 

algal growth in both lakes Crescent and Sorell would be beneficial in discerning the 

factors responsible for observed increases in algal biomass. Further research would be 

needed to determine the amount of bio-available phosphorus measured in the total 

phosphorus pool and to conclude if increased nutrient levels have reduced nutrient 

limitation of the algae. 

Whatever the precise relationships between SRP and algal biomass, it is clear that in 

these lakes phytoplankton biomass is closely linked to fluctuations in suspended 

solids (Table 6, Figure 14). It might be argued that the increased algal biomass may be 
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responsible for the observed increase in suspended solids and turbidity and hence 

reduction in aquatic macrophytes in the lakes (e.g. Lowe, Battoe et al. 2001), and that 

this increased algal biomass results from the increased concentrations of limiting 

nutrients in the lakes (Section 2.3.1) (e.g. Lowe, Battoe et al. 2001). However, this 

mechanism is unlikely given that algal biomass never contributed more than 18% of 

total suspended solids and averaged less than 7% in both lakes. 

In the case of lakes Crescent and Sorell, despite a strong correlation between algal 

biomass and suspended solids (Figure 14), the contribution of algae to SPM was low. 

Algae in lakes Crescent and Sorell would therefore contribute little to the extreme 

values oflight attenuation routinely measured in both lakes between 2000 and 2002. 

This is supported by Van Duin et al. (2001) who states that the largest contributor to 

light attenuation over a short time scale to be suspended solids, especially in the case 

of wind exposed shallow lakes. 

Thus I conclude that the documented increase in phytoplankton biomass in both lakes 

Crescent and Sorell is more likely to be associated with the extreme increases in 

values of SPM rather than the agent responsible for increased SPM and the observed 

reduction in the euphotic depth. This is similar to the conclusions of Bachmann et al. 

(1999) in Lake Apopka, Florida, who argued that the high concentration of 

phytoplankton evident in the lake since a switch from a clear to turbid state during the 

1940s was not responsible for the high values of turbidity and the reduction in the 

euphotic depth as only about 10% of suspended particles represent living algal cells. 

Bachman et al. (2001) concluded a significant reduction in phytoplankton through 

proposed phosphorus removal in Lake Apopka would fail to significantly effect water 

transparency as phytoplankton made up such a small proportion of the SPM. 

This was contrary to Lowe et al. (2001) who used relationships between algae and the 

light attenuation coefficient in Lake Apopka to predict increases in light availability 

based on reductions in algal standing crop alone. However, their approach failed to 

account for the contribution that inorganic suspensoids, detritus and dissolved colour 

make to light attenuation (Van Duin, Blom et al. 2001). 
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A strong relationship between algal biomass and the light attenuation coefficient may 

occur if the process leading to increased algal standing crop also leads to increased 

SPM, such as may be the case with sediment resuspension and entrainment of 

meroplankton. Other researchers have reached similar conclusions that phytoplankton 

biomass increases as a result of suspension of sediments in the water column 

(Demers, Therriault et al. 1987; Carrick, Aldridge et al. 1993; Ogilvie and Mitchell 

1998) with Schelske et al. (1995) observing a doubling of chlorophyll-a concentration 

during a sediment resuspension event along with demonstrating a significant 

correlation between chlorophyll-a concentration and wind speed. 

Establishing causation between increased algal biomass and the interplay between 

suspended sediment and nutrient loading is important in recognising appropriate 

management initiatives to improve the light climate of both lakes. As discussed, 

turbidity appears little influenced by seston in t:he face of high values of suspended 

sediment loading (Table 6) despite a significant relationship between suspended solids 

and algal biomass (Figure 14). A reduction in tripton values would improve PAR 

availability and, coupled with the loss of aquatic macrophytes, may stimulate primary 

productivity and result in a significant increase in algal standing crop. This may occur 

independent of the mechanisms that currently give rise to high algal biomass and may 

lead to a sustained increase in algal standing crop further limiting light availability 

and coupled with the loss of aquatic macrophytes result in a turbid, algal dominated 

system (Scheffer 1990). 

Comparing changes in total phosphorus (Figure 7), chlorophyll-a concentration 

(Figure 8), turbidity (Figure 9) and light attenuation (Figure 11) over time in lakes 

Crescent and Sorell highlights the dissimilarities between the two lakes in regards to 

controlling processes stimulating and limiting algal productivity. Both lakes have 

comparable increases in total phosphorus, turbidity and light attenuation contrasting 

the extreme increase in algal biomass in Lake Crescent compared to a significant yet 

much lower increases in algal biomass in Lake Sorell. Intuitively, iflight and nutrients 

alone were responsible for limiting algal productivity in both systems then 

comparable increases in algal biomass would likely result. Therefore, the processes 

responsible for limiting and stimulating algal productivity in the two lakes are 

significantly different. 
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2.4.3 Nutrient budgets 

For 2000 and 2001, low nutrient export coefficients for subcatchments draining into 

lakes Sorell and Crescent resulted in a net loss of nitrogen, phosphorus and suspended 

solids :frotp each lake. The exception was nitrogen in Lake Crescent, where inputs 

from Lake Sorell and Agnews Creek combined exceeded exports from the lake in 

water released down the Clyde River. 

The high nitrogen loading of Agnews Creek entering Lake Crescent is compounded 

by the release of water from Lake Sorell that, for the period studied, had increased 

nitrogen levels. The strong correlation between SPM and total nitrogen values in Lake 

Sorell (Figure 13), and the aim of future management of the lakes to reduce SPM 

values and improve water clarity will reduce nitrogen concentration in water released 

from Lake Sorell lowering nitrogen loads entering Lake Crescent. 

In the case of Agnews Creek, the highest recorded nitrogen levels coincide with low 

flows, possibly reflecting a dominance of nitrogen carried in groundwater as opposed 

to dissolved and particulate forms of nitrogen entering the creek by overland flow. 

This would be similar to the mechanism proposed by Grieve and Gilvear (1994) who 

found the principal source of nitrate to be groundwater. It is possible that land use 

practices in the top of the catchment increase nitrogen levels in the groundwater 

which then enters Agnews Creek. Unlike phosphorus (which will not move 

substantially with subsurface flow due to a strong affinity for binding to the clay 

fraction within soils or precipitation as iron phosphate), nitrogen may travel in either 

dissolved or particulate form, and can be transported by subsurface flow and 

groundwater (Cullen 1983). 

It is possible that the increased nitrogen loading of Agnews Creek enters via 

subsurface flow and groundwater intrusion, and this is supported by the low nitrogen 

concentrations measured at increased discharge compared with high nitrogen 

concentrations measured during periods oflow flow (Appendix 6). This likely reflects 

the source of nitrogen to be limited in the catchment with nitrogen transport being less 

dependent on overland flow as the reverse would be expected (Buckney 1979), as 

observed with the other tributaries measured in this study that show a significant 
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positive correlation of increasing nitrogen concentration with increased discharge 

(Appendix 6). 

Alternatively, a significant point source input of nitrogen within the catchment would 

result in a similar phenomena as the nitrogen is limited and is therefore diluted with 

increasing discharge (Cullen and O'Loughlin 1982). With no significant dev~lopment 

within the Agnews Creek catchment, the likelihood of a point-source input high in 

nitrogen is low. At the headwaters of Agnews Creek there exists an extensive marsh 

area which has been channelised and drained in the past to improve grazing. Complete 

desiccation of sediments that would occur over summer in the wetland area at the top 

of the Agnews Creek catchment may promote nitrogen release from the sediments 

when the soils become rewetted and discharge from the area commences (Baldwin 

and Mitchell 2000; Scholz, Gawne et al. 2002). The channelised wetland area may 

therefore significantly influence nitrogen export from Agnews Creek. Promoting 

water retention in the wetland area at the top of the catchment to limit the degree of 

desiccation of sediments and provide partial drying of wet sediments over summer 

months may provide a zone of coupled nitrification-denitrification and lead to a 

reduction of nitrogen through promoting denitrification and loss of nitrogen gas to the 

atmosphere (Baldwin and Mitchell 2000). 

The source of nitrogen is difficult to determine and warrants further investigation. 

Fractionation of the nitrogen component entering Lake Crescent from Agnews Creek 

would help in determining the key hydrological pathways for the transfer of nitrogen 

into Lake Crescent (Heathwaite and Jones 1996) and provide insight into the source of 

high nitrogen in Agnews Creek. 

It may be concluded that the water quality of inflows, with the exception of nitrogen 

in Agnews Creek, is of high quality, with most inflows being relatively 'pristine'. 

From the 2 year monitoring program detailing nutrient and suspended solids loadings 

entering lakes Crescent and Sorell from surrounding subcatchments, coupled with 

knowledge of current land-use practices in the area and comparisons to similar studies 

from mainland Australia and overseas, it is possible to conclude that at current values, 

local agricultural and forestry practices are not having a measurable detrimental 

impact on the water quality of tributaries nor on the receiving waters of lakes Crescent 
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and Sorell. Further work on Agnews Creek is warranted to identify the source of 

increased nitrogen, as Agnews Creek reflects a mild case of increased eutrophication 

and is significantly influencing nitrogen loading in Lake Crescent. 

From routine monitoring work carried out on both lakes, it is possible to conclude that 

the highly significant increase in nitrogen, phosphorus and suspended sediment 

measured between 1998 and 2002 in both lakes Crescent and Sorell is due to internal 

loading via sediment resuspension, and this process reflects the most significant 

source of sediment and nutrients in both lakes. 

With the highly degraded state of water quality experienced by lakes Crescent and 

Sorell during 2000 and 2001, with high values of nitrogen, phosphorus and suspended 

sediment, coupled with low external loadings of these fractions entering the lakes 

from the subcatchments, there was evident a net loss of nitrogen, phosphorus and 

sediment from both Lake Sorell and Lake Crescent, with the exception of nitrogen in 

Lake Crescent for 2001. 

2.4.4 Conclusion 

It may be concluded that observed increases in values of nutrients and suspended 

sediment in both lakes Crescent and Sorell over recent years is due primarily to 

internal processes and is not influenced by external inputs. 

Quantifying the contribution each independent variable, such as seston, inorganic 

suspensoids, detritus and dissolved colour, makes to limiting light availability will 

provide a basis for understanding the processes responsible for the decline in water 

quality. Additionally, understanding sediment resuspension dynamics in both lakes is 

of considerable importance as it appears that sediment entrainment is a key factor 

driving SPM values and degrading the light climate, particularly with increased 

turbidity and SPM concentrations coinciding with successive dry years and low lake 

levels. 

In conclusion, increasing suspended sediment is strongly correlated with a substantial 

increase in algal biomass in both lakes. Given the morphological and physical 

similarities between the lakes (Table 2), it is likely that the processes responsible for 
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· this are similar, and internal loading of nutrients from sediment resuspension is a 

more likely mechanism driving increased algal biomass rather than changes to 

nutrient inputs. from the surrounding catchment. However, the lakes behave quite 

differently as to the magnitude of change in primary productivity which questions the 

reasons for such a contrast. 

The extreme contrast in algal productivity for two systems that adjoin and share such 

physical, chemical and morphological similarities is of considerable interest and 

warrants further investigation. Qualifying and quantifying both top-down and bottom­

up processes that influence primary productivity will be necessary to understand the 

dynamic behaviour of the two lakes and to determine possible management strategies 

to improve water clarity and promote the desired macrophyte-dominated clear water 

state characteristic of Lake Sorell in past years. 
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Chapter 3 The role of colloids and resuspension 

3.1 Introduction 

Chapter 2 presented evidence that during the 1990s the water quality of both lakes 

Crescent and Sorell had deteriorated with increases in turbidity and nutrients which 

coincided with low water levels during this period. Estimates of nutrient loadings 

suggest that most of the increase in nutrients is from "internal loading" from 

resuspended sediments. Sustained and even increased demands for irrigation water 

supply combined with a management imperative to restrict access of introduced carp 

to the littoral wetlands of these lakes could mean that lake levels may stay low for 

some years. Apart from the obvious detraction from the visual and aesthetic appeal of 

these lakes during these drier conditions, such a regime could have serious 

consequences for their long-term conservation status, especially if repeated, 

prolonged episodes of resuspension of nutrients "flips" these lakes into an alternative 

algal "cloudy water" state. Conversely, decreasing nutrient and algal levels, along 

with improving the light climate, is likely to be closely linked to managing turbidity. 

Given the low overall concentrations of inputs (Chapter 2), and high internal loading, 

manipulation of water levels appears to be the only feasible management option for 

these lakes. 

From Chapter 2, it was clear that colloidal material was likely to be important in the 

light climate of these two lakes. Colloidal turbidity is caused by small clay particles 

(< lµm) being suspended in the water column, and these particles often have 

electrostatic, negative surface charges (Langmuir 1997). When two particles approach 

each other, the surface charge of one particle is repelled by the other (Drever 1997), 

and this repulsion between particles counteracts potential aggregation by the van der 

Waals force (Drever 1997). Thus, charged colloids, combined with their extremely 

slow settling velocities (Stumm and Morgan 1996), result in particles that remain 

almost indefinitely in suspension. For example, settling rates for uncharged spheres of 

diameter 1 um to 0.1 µm and a density of 2 g cm-3 in water according to Stokes Law 

(Equation 1.3) would be between 20 cm dai1 and2 mm dai1 (Shaw1983). The 

presence of colloids in freshwater systems therefore contributes significantly to 

'background turbidity'. 
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Background turbidity is caused by material that is present in the water column under 

quiescent conditions, and is independent of material that has been resuspended from 

the lake bed. This material largely consists of buoyant algal cells and colloidal clay 

particles (Hamilton 1990). The issue of increased colloidal loading in both lakes 

Sorell and Crescent is extremely important as this material is contributing 

significantly to degraded water clarity. 

The relationships between water depth, fetch and shear stress (Equations 1.9 -1.18) 

coupled with the linear relationship between shear stress and sediment entrainment 

(Hamilton and Mitchell 1996; Hamilton and Mitchell 1997) show that low water 

levels reached in both lakes in recent years (Appendix 10) would increase the degree 

of sediment entrainment in both high and low energy areas, where low energy areas 

represent zones of sediment accumulation where fine sediments with grain sizes less 

than 6um are focussed and settle out continuously (Hakanson and Jansson 1983). 

Additionally, the low water levels reached after 1998 would increase sediment 

entrainment beyond typical levels in areas of frequent sediment disturbance leading to 

exposure of new, previously undisturbed material. The newly exposed, well 

consolidated material would likely contain more clay colloids than the upper layer of 

sediment top layer, as the fine particulate fraction would have had little opportunity to 

be entrained and transported out of the system. The sediment top layer (Blom, Van 

Duin et al. 1992) represents the layer of sediment frequently resuspended and 

sedimented in moderate to high energy transportation/erosion areas (where 

transportation areas are zones of discontinuous deposition of fine materials where 

both sediment deposition and entrainment periodically occur, and erosion areas are 

zones of relatively continuous sediment disturbance with no deposition of fine 

materials (Hakanson 1982)). Therefore, the large increase in suspended colloids 

observed in lakes Sorell and Crescent likely reflects increased disturbance of well 

consolidated sediments in the lower sediment layer below the less consolidated 

sediment top layer (Blom, Van Duin et al. 1992), along with increased disturbance of 

sediments in sheltered low-energy accumulation areas. 
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These considerations prompted this phase of the project, and there were two aims. 

First, the intensive record of measurements from 2000 - 2002 were plotted as time­

series, and trends and correlations assessed. The data were further analysed using 

descriptive multiple regression models in an attempt to determine which components 

of the suspended materials in the water of each lake were most important in 

explaining measures of turbidity and water clarity. This method has been commonly 

employed in studies of shallow lakes, and has been used to set priorities for 

management (cf. Scheffer 1998). The second aim of this chapter was to investigate 

the relationships between turbidity and other measures of water clarity, and lake level 

in order to better understand how components of the suspended material behave and 

develop some simple descriptive models to assess the risks of resuspension events as 

lake levels are lowered. 

3.2 Methods 

3.2.1 Temporal trends 

Details of the methods and data sources are given in to Chapter 2, Section 2.2. 

Initially time-series plots were inspected to assess any broad-scale trends and changes 

in major water quality variables for the period from April 2000 to August 2002. This 

allowed comparisons to be made between key components that influence turbidity 

over time and also allowed comparisons to be made between lakes. 

To determine which components were responsible for the reduction in water clarity, 

multiple linear regression was used to model the contribution of algae, detritus, 

resuspended inorganic material and dissolved colour and colloids to turbidity, Secchi 

disk transparency and light attenuation (Scheffer 1998). These five water quality 

components are responsible for almost all light scattering and absorption in freshwater 

systems (Kirk 1985). The size of the regression coefficients do not necessarily reflect 

the importance of each variable by themselves (e.g. Quinn and Keough 2002). 

Instead, previous researchers have sought to quantify the relative importance of these 

variables by multiplying the average concentration of each variable by the 

corresponding coefficient and the results are plotted to graphically summarise the 

total and relative contribution of each component (Gerbeaux and Ward 1991; Blom, 

van Duin et al. 1994). For this study, I computed the average concentration of each 
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variable in each of lakes Crescent and Sorell separately for each sample date prior to 

multiplying through by the relevant coefficients from each regression model. The 

resulting plots sought to depict the changes in the relative importance of algae, 

detritus, resuspended inorganic material and dissolved colour and colloids to turbidity, 

Secchi depth and light attenuation (i.e. separate regression models were computed for 

each of the three response variables). 

Thus, for Lake Crescent, data were collected from 8 sites on 39 sample trips starting 

on 19 April 2000 until 27 February 2002, and a subset of 4 of these sites were 

sampled on four further occasions on 13 June, 10 and 25 July and 22 August 2002. 

This yielded 328 records, with a small number of missing values for most of the 

variables as tabulated in Table 12, except for light attenuation because of a lack of 

instrument availability. For Lake Sorell, 8 sites were visited over the same period and 

a subset of 4 sites were visited on a further 7 dates yielding 341 records, again with 

some missing values (Table 12). Since the pattern of missing values was random, and 

the total number of records with a missing value was < 5% (except for light 

attenuation) for each lake, incomplete cases for a given regression model were simply 

omitted (Harrell 2001 p.49). 

Values of each of the response variables (i.e. turbidity, Secchi depth and light 

attenuation), were regressed on the four predictor variables (i.e. inorganic solids, 

detritus, algal biomass and colour & colloids). Regression assumptions were checked 

by plots of residuals versus estimates, normal probability plots, and influence and 

leverage diagnostics (Quinn & Keough 2002). For some models one or two 

potentially influential points were identified, and regressions were repeated omitting 

these values. However, these points made little difference to the regression 

coefficients and hence little difference to the resulting plots. 
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Table 12 Number of data records for which there was a missing value for each 
variable in lakes Crescent and Sorell. 

.. .. 
Variable Crescent Sorell 

.. 

turb1dify · 1 0 
Secchi deoth 10 1 
light attenuation 137 ' 141 
inorganic solids 5 9 
detritus 8 

.. 
21 

algal biomass 4 20 
.. 

colour & colloids 5 7 .. 

3.2.2 Modelling turbidity responses to water levels 

3.2.2.1 Exposure of bed to wave action 
. ' 

To determine ifthe low lake levels experienced by both lakes after 1998 increased the 

area oflake susce}:>tible to wind driven wave disturbance, equatjons 1.15 to 1.18 were 
- ' ' 

used to model wavelengths across the lake surface from information on wfod fetch, 

water depth and wind speed for a maximum o~ 842 points in Lake Sorell at full supply . 

level (FSL) and 325 points in Lake Crescent at FSL. 

The energy parameter with the greate.st influence on bottom dynamics is wavelength 

which controls the depth that the orbital motion from wind driven waves.influences 
' ' 

the sediments (Hakanson 1977). Using the relationship described by Carper and 
. ' 

Bachmann (1'984) that assum~s the point at which the wave base contacts the 

sediment surface to be at a water depth· of Yi the wavelength, a graph was derived 

depicting the changes in lake bottom area influenced by wind driven waves for fake 

levels typical of those before and after 1998 (Appendix 10). 
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Hakanson (1982) derived a formula coined the 'energy-topography factor' which 

approximates the erosion/transportation area of a lake based on basic morphometric 

information on lake area and average depth. The energy-topography factor may be 

written as: 

aE+T = 25x (Fa ID) x 41 °·0061 x(D!..{<i) 3.1 

where aE+T =the percent area of the lake bed subject to erosion and transportation, 

D is the average lake depth (m) and a , the surface area of the lake in km2
• Equation 

3 .1 illustrates the importance of lake depth in determining erosion/transportation areas 

and inturn influencing areas of sediment accumulation. A significant decrease in 

average lake depth would therefore increase the area oflake bottom influenced by 

wind driven waves and reduce the size and existence oflow energy areas of sediment 

accumulation, areas that represent significant sinks (and therefore sources) of fine 

particulate material (Hakanson and Jansson 1983). 

3.2.2.2 Lake volumes, water residence times and flushing 

Analyses were carried out that compared average historical and observed lake 

volumes for the two lakes coupled with water inflow, evaporation and outflow 

volumes to determine theoretical water residence times for both lakes. This was 

undertaken since water exchange may reduce conservative substances such as colloids 

by influencing the retention (and hence the outflow) of suspended material in lakes 

(Hakanson 1995). Moreover, flushing has been identified as a potential management 

tool providing water is available in sufficient quality and quantity (Hosper 1998). 

The large volume difference between the lakes would likely influence the rate of 

water exchange, in turn influencing the export of fine particulate material. Although a 

simplistic analogy, taking a lake volume typical of the lakes for the period from 

January 1970 to December 1997, Lake Sorell, at an average level of 804.09 mASL 

has a volume of 142 OOO ML, compared to Lake Crescent with average lake volume 

of 34 OOO ML (at an average level of 803 .3 0 mASL) for the same period. If an 

equivalent water volume entering Lake Sorell was to be released through Lake 

Cres_cent and down the Clyde River, the exchange rate of Lake Crescent would be 
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approximately 4 times that of Lake Sorell. Obviously this fails to take into account 

evaporative loss from the lakes where Lake Sorell would lose almost twice the 

volume of Lake Crescent due to its increased surface area. 

Inflow volumes entering the lakes estimated for July 2000 to June 2001 and July 2001 

to June 2002 were used to determine theoretical water residence times according to 

Hakanson and Jansson (1983) which, under the assumption of steady state (i.e. the 

inflow volume Qin equals the outflow volume Q0u1), the water residence time (T w) is 

given by: 

3.2 

Average lake volumes (V), for the period running January 1970 to December 1997 

were used to estimate of 'typical' lake volume, as opposed to using full supply 

volume as the lakes are typically held at lower volumes than the full supply volume. 

Additional to inflow volume, estimates of rainfall and evaporative loss were made to 

determine 'net' inflow volume entering the lakes, as rainfall and evaporative loss play 

a significant role in the total amount of water entering and exiting the system. Water 

residence time for both lakes were approximated by dividing 'average' lake volume 

by net inflow volume for the period in question. 

The annual average evaporative loss was estimated from the Bureau of Meteorology's 

Bushy Park weather monitoring station after comparison with daily evaporative loss 

rates from an evaporation pan located on the shores of Lake Sorell, and maintained by 

staff of the Inland Fisheries Service over 2002 and 2003 

To further assess the role of the water budget in mediating colloidal turbidity, 

expected decreases and increases in colloidal turbidity in Lake Sorell were calculated 

assuming dilution and concentration to be the dominant processes controlling colloids 

at high lake levels. Assuming colloids to behave as a conservative substance, a basic 

dilution/concentration formulation was applied to approximate changes in colloidal 

turbidity as determined from changes in lake volume. The equation was of the form 

C(i) x V(i) = C(f) x V(f) where C(i) is the initial colloidal turbidity (NTU), V(i) the 

95 



The Role of Colloids and Resuspension 

initial volume of Lake Sorell (ML), and C(f) being the final 'expected' colloidal 

turbidity with a change in lake volume ofV(f). Changes in lake volume for three 

separate periods were used to determine expected colloidal turbidity levels. 

3.3 Results 

3.3.1 Temporal trends in light climate and its determinants 

Over the period April 2000 to August 2002, the peak in avei:age lake-wide turbidity 

for both lakes was recorded on the 17th July 2000 with 'an average of 280 NTU for 

Lake Crescent (Figure 15) and 330 NTU for Lake Sorell. 

Concentrations of inorganic material and detrital material correlated closely with 

turbidity for both lakes Crescent and Sorell suggesting a dependence of turbidity and 

water clarity on tripton. For both lakes there was a sharp increase in- all components, 

with the exception of colour and colloids, from early to mid 2000, at which point 

levels peaked and plateaued in Lake Sorell (Figure 16). In Lake Crescent, there was 

substantial variation between sampling dates from April 2000 to June 2000 with a 

sharp increase for the on 17th July 2000 at which point inorganics and detritus peaked 

with the corresponding peak in turbidity in both lakes (Figure 15). 

Turbidity rose sharply in Lake Sorell from April 2000 with average levels remaining 

above 200 NTU from late May 2000 to mid October 2000, at which point lake-wide 

average levels of turbidity fell below 200 NTU. Average levels of turbidity in Lafe 

Sorell remained below 200 NTU until October 2001, at which point lake-wide 

average levels of turbidity fell once again, and remained below 100 NTU for the 

period running October 2001 to May 2002. The sampling trips of June, July 'and 

August of 2002 for Lake Sorell recorded a marked rise in lake-wide average turbidity 

levels to peak at 143 NTU on the 22nd of August 2002. 

Turbidity in Lake Crescent showed a marked contrast in behaviour to Lake Sorell. 

Despite the maximum being recorded on the same sampling trip as Lake Sorell, 

turbidity levels in Lake Crescent varied substantially between sampling trips and 

remained high through 2000 and 2001, with average levels exceeding 200 NTU on 
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numerous sampling occasions until the lOth of August 2001, at which point lake-wide 

average turbidity levels began to trend downwards to fall below 100 NTU on the 22nd 

of November, 2001, where they remained through to June 2002. 

Algal biomass and dissolved colour and colloids behaved differently between the two 

lakes. Algal biomass in Lake Crescent remained, on average, an order of magnitude 

higher than Lake Sorell for the period running April 2000 to August 2002. For both 

lakes Crescent and Sorell, trends in algal biomass appear to follow trends in turbidity, 

with a positive correlation between the two. For both lakes, peaks in algal biomass 

closely coincided with increases and peaks in turbidity. In the case of Lake Crescent, 

maxima in algal biomass follow maxima in turbidity, with the magnitude of variation 

between samples increasing with increasing lake-wide average values of algal 

biomass (Figure 15). This suggests that the algal standing crop in Lake Crescent is 

closely aligned with the process leading to increases in turbidity. 

Overall, the amount of dissolved colour and colloids in both lakes has increased 

dramatically. Estimates from the early to mid 1990's of dissolved colour averaged 

2.8 m-1 (standard deviation, s = 0.62; n = 13) for Lake Sorell and 2.8 m-1 (s = 0.95; 

n = 13) for Lake Crescent (Inland Fisheries Service, unpublished data). This has 

increased to an average of 16 m-1 (s=2.8; n = 337) for Lake Sorell and 7 m-1 (s=1.9; 

n = 339) for Lake Crescent over April 2000 to August 2002. Since dissolved colour 

measures the amount ofhumic acids, which often result from the decomposition of 

plant material (Kirk 1994), these increases are consistent with the loss and erosion of 

littoral aquatic macrophyte beds since the late 1990s. 
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Figure 15 Time-series 
plots of turbidity, and 
concentrations of suspended 
inorganic matter, detritus, algal 
biomass and colour and 
colloids for the period April 
2000 to August 2002 in Lake 
Crescent. Symbols are 
measures from each sampling 
station, and the thin line 
connects the mean values on 
each sample date. The dotted 
line is a loess-smoother to 
accentuate longer term trends. 

98 



~ 

g 
8 
N 

8 

8 
" 
g 
8 
N 

8 

Turbidity (mg/L) 

0 0 

r,.. . : . ·'-' 
8 ~-0 ~~~ . . . ' .. -· 

0 

8 8 
0 

0 0 
0 

lnorganics (mg/L) 

0 

0 8 

~l. -~-- --~......! ··· -~ -~-~ 8 .. v - ... '~~ !j .. ~ v ... -~-·-....-.___,_._. 
o·.j__~'..__~_.__~~~~~-=-~_._--;:-~~~~~_::_:=-.__:_~~~~~~---i 

Detritus (mg/L) 

2 

:'ii 

~ 

~ 

0 

" 
"' 
N 

0 
8 

0 

0 
o· 
0 -~~·--n • .... ~.c-i---a ~ 0 0 

1--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-i 

Algal biomass (mg/L) 

0 

0 

0 

8 8 

.... ~f~-11-~~ 0 ---------~ 
o - 8 ,o o 0-~~~ 

0 
N 

~ 

~ 

Gil>in & colloids (m · 1
) 

. 0 :o 8~g 0 

~ ~.· ······ ~~~ 
~ 0 ° 0 

. . . 
0 . • 

0 0 

AprOO JunOO AugOO OctOO DecOO Feb01 Apr1l1 Jun01 Aug01 Oct01 Dec01 Feb02 Apr1l2 Jun02 Aug02 

The Role of Colloids and Resuspension 

Figure 16 Time-series 
plots of turbidity, and 
concentrations of suspended 
inorganic matter, detritus, algal 
biomass and colour and 
colloids for the period April 
2000 to August 2002 in Lake 
Sorell. Symbols are measures 
from each sampling station, 
and the thin line connects the 
mean values on each sample 
date. The dotted line is a loess­
smoother to accentuate longer 
term trends. 
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The regression models fitted very well (all P < 0.001, all R2 > 0.8, except for 1/Secchi 

depth in Lake Crescent; see Table 13 and Table 14), and indicate that inorganic 

suspensoids and dissolved colour and colloids collectively account for much of the 

turbidity, inverse Secchi depth and light attenuation (Figure 17 to Figure 22). 

Dissolved colour and colloids were more important in Lake Sorell than in Lake 

Crescent, while in Sorell the relative contribution of colour and colloids increased at 

the expense of the contribution by inorganic solids in late 2001 through to early 2002, 

during which period the water levels in the lakes rose substantially. Overall, the 

amount of dissolved colour and colloids in both lakes has increased dramatically. 

Prior to 1998 colloidal turbidity was stable and rarely rose above 10-15 NTU 

(Chapter 2, Figure 1 O; Figure 26 and Figure 27), while over the period 2000-2002 it 

has increased to > 60 NTU in Lake Crescent and > 90 NTU in Lake Sorell (Chapter 2, 

Figure 10; Figure 26 and Figure 27; discussed in detail in the following section). 

Table 13 Multiple regression coefficients for Lake Sorell. The coefficients for 
the regressions of each dependent variable (with standard errors in parentheses) are 
given along with the sample size, n, and coefficient of multiple determination, R2

• 

Dependent Intercept Inorganics Detritus Algae Colour RL. 

variable and 
colloids 

Light 1.650 0.412 0.023 0.055 0.258 0.939 
attenuation (l.286) (0.024) (0.020) (0.027) (0.099) 

1/Secchi depth 4.306 0.032 0.024 0.092 0.046 0.841 
(0.512) (0.002) (0.009) (0.141) (0.029) 

Turbidity 45.078 0.689 0.686 6.019 1.242 0.947 
(6.477) (0.020) (0.108) (1.761) (0.367) 

Table 14 Multiple regression coefficients for Lake Crescent. 

Dependent Intercept Inorganics Detritus Algae Colour Rz 
variable and 

colloids 
Light 0.185 0.101 0.096 0.145 0.768 0.862 

attenuation (1.254) (0.014) (0.029) (0.196) (0.212) 
1 /Secchi depth 3.762 1.674 x 2.429 x 0.142 0.148 0.765 

(0.337) 10-2 10-2 (0.041) (0.049) 
(2.749 x 
10-3) 

(5.759 x 
10-3) 

Turbidity 35.25 0.656 0.214 1 0.755 0.905 0.950 
(3.04) (0.252) (0.052) (0.368) (0.445) 
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Figure 17 The contribution (total and relative) of inorganics, detritus, algae and 
colour (including colloids) to total turbidity levels in Lake Sorell from April 2000 to 
July 2002. 
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Figure 18 The contribution (total and relative) of inorganics, detritus, algae and 
colour (including colloids) to total turbidity levels in Lake Crescent from April 2000 
to July 2002. 

Lake Crescent 

300 

200 

100 

Date 

c: 
0 :g 
.c 
·c: 
c 
0 
() 

100 
90 

80 

70 

60 
50 
40 

?f!. 30 
20 
10 
0 

,_r§lo 'J,0-r:F ,,r:F0 ,_r;§)o ,.,,r:;;::.
0 ,,oo' ,.oo' ,_~§::' ,_ot:J' "/..o'<:J' 'J..o""' ,,t::J'\>'), ..,,,r::F'J, '),.t:Jf:J'l. ')..<:f:J'J. 

' ,..et ... ')\)\ ... ~ ... o°',oec., (ce'O, t-'Y\, '),)\ ... \)Q' o"\ oec,, (clb'Q ... t-9' , ').,)\ ,...,)~ 

Date 

lnorganics 
Detritus 

• Algae 
• Colour and colloids 

Figure 19 The contribution (total and relative) of inorganics, detritus, algae and 
colour (including colloids) to inverse Secchi levels in Lake Sorell from April 2000 to 
July 2002. 
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Figure 20 The contribution (total and relative) of inorganics, detritus, algae and 
colour (including colloids) to inverse Secchi levels in Lake Crescent from April 2000 
to July 2002. 
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Figure 21 The contribution (total and relative) of inorganics, detritus, algae and 
colour (including colloids) to light attenuation in Lake Sorell from April 2000 to July 
2002. 
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Figure 22 The contribution (total and relative) of inorganics, detritus, algae and 
colour (including colloids) to light attenuation in Lake Crescent from April 2000 to 
July 2002. 
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Algal biomass appeared to contribute little to the overall light climate, although it is 

strongly correlated with inorganic suspensoids in both lakes (see figure below), which 

may mask its influence in Figure 17 to Figure 22 above. Nevertheless, there is some 

suggestion that algal biomass may be more important at some times, and this is borne 

out by the percentage contribution by algal biomass to total suspended solids 

documented in Table 6 in the previous chapter. Apart from the very large difference in 

overall algal biomass between the two lakes (Figure 23), the relationship between 

algal biomass and inorganics differs. In Lake Crescent algal biomass continues to 

increase roughly linearly as the concentration of inorganics increases, while Lake 

Sorell shows a decrease in the slope of the relationship once inorganics exceed 

100 mg L- 1
• This further suggests that algal standing crop in Lake Crescent may 

depend more on sediment resuspension than in Lake Sorell, and the source of algae in 

Lake Crescent may be closely aligned with the sediments as has been documented in 

lakes with a significant meroplanktonic community (Carrick, Aldridge et al. 1993; 

Schelske, Carrick et al. 1995; Schelske 2002). 

Figure 23 Relationship between algal biomass and the concentration of inorganic 
suspensoids recorded at each sampling station in lakes Crescent and Sorell from April 
2000 to August 2002. The line is a loess smoother; note the different scales for algal 
biomass for each lake. 
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3.3.2 Turbidity and lake levels 

The association of decreasing water level with increasing total turbidity is obvious 

(Figure 24, Figure 25). The autumn of 1998 showed a substantial increase in turbidity 

in Lake Sorell, coinciding with the minimum water level reached for the year. From 

this point, turbidity in both lakes has increased in marked 'steps', coinciding with 

minimum lake levels reached annually from 1998 thus suggesting a strong interaction 

between low water levels and increased sediment entrainment. The highest recorded 

turbidity in both lakes coincides with the lowest recorded water levels (Figure 24, 

Figure 25; Appendix 10). 

Further evidence of the prevalence of wind resuspension is the increased hysteresis in 

turbidity as lake levels decrease. At high lake levels, fluctuations in turbidity are less 

marked and variation in lake-wide average turbidity values decreases significantly 

reflecting a relatively homogenous, clear water (Figure 15 and Figure 16). At this 

stage, turbidity values are likely influenced to a greater extent by primary productivity 

and background turbidity. When w~ter levels are low, the influence of wind events are 

more likely to be important resulting in variable and more frequent high values of 

turbidity, as occurred during the very low lake levels reached in 2000 and 2001. In 

Lake Sorell, the high water level reached at the end of 2001 did not reduce turbidity to 

that recorded in 1997 at a similar lake level, which strongly implicates colloids as a 

likely cause of this persistently high turbidity at the end of 2001. 
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Figure 24 Changes in turbidity and lake level in Lake Sorell from mid 1996 to 
December 2002. 
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Figure 25 Changes in turbidity and lake level in Lake Crescent from mid 1996 to 
December 2002. 
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Colloid levels in both lakes Sorell and Crescent have increased dramatically. In Lake 

Sorell, colloidal turbidity levels during 1996 were around 10 NTU; in 2001, levels 

peaked at 93 NTU (Figure 26). Due to the increased significance of colloidal turbidity 

in Lake Sorell, total turbidity levels have remained high, even with the significant rise 

in water level seen at the end of 2001. At this point, colloids contributed up to 90% of 

total turbidity recorded in Lake Sorell. During this time, if colloidal turbidity was at 

the historic level of 10 NTU, turbidity in Lake Sorell would have been comparable to 

historic levels of around 20 to 30 NTU. 

The role of colloidal turbidity is implicated in Figure 26 and Figure 27 with step-like 

increases coinciding with lake levels falling below 803.2m (AHD) in Lake Sorell and 

802. 7 m in Lake Crescent. This suggests that when the lakes drop below these levels, 

there is increased erosion of consolidated lake bed sediments. 

This process seems most marked in Lake Sorell, where, over the long term, there is a 

marked hysteresis in the relationship between colloidal turbidity and lake level 

(Figure 28). Colloidal turbidity was 4 x greater at water levels around 803.5 in early 

2002 than in 1996. This pattern is not replicated in Lake Crescent and it seems that a 

rise in water level usually results in a substantial drop in colloidal turbidity (Figure 

29). 

It appears that colloidal turbidity has increased in the lakes due to unprecedented 

levels of bed erosion driven by low lake levels reached during 2000 and 2001, with 

the highest recorded turbidity coinciding with the lowest water levels on record. 
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Figure 26 Colloidal turbidity and lake levels for Lake Sorell from July 1996 to 
December 2002. 
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Figure 27 Colloidal turbidity and lake levels for Lake Crescent from July 1996 to 
December 2002. 
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Figure 28 Relationship between lake level and colloidal turbidity in Lake Sorell. 
The line trace starts in 1996 at the far bottom right of the graph and finishes in August 
2002 with the end of the line trace in the top middle of the graph. Open symbols 
denote data collected after the peak in colloidal turbidity in 2001 , and have been 
excluded from the fitted regression trend. 
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The important contribution colloids make to limiting light availability in Lake Sorell 

is obvious with reference to Figure 30. Figure 30 is an extrapolation of the 

relationships summarised in Chapter 2, Figure 11. The data used for the euphotic 

depth modelling presented in Chapter 2, Figure 11 utilises information collected 

during the course of this research project only. The entire data set is therefore 

influenced by the presence of colloids. 

In regards to Figure 30, suspended solids as represented on the graph does not include 

colloidal solids as this material passes through the filter paper during the filtration step 

in the gravimetric estimation of suspended solids. Comparatively, colloidal 

particulates contribute significantly to light scattering in the water column and are 

adequately accounted for in the routine measurement of turbidity. 

From Figure 30, it is seen that even in the face of a significant reduction in suspended 

solids in Lake Sorell, the influence of colloids in limiting light availability and 

reducing the euphotic depth remains highly significant. For example, a significant 

reduction in suspended solids in Lake Sorell to around 10 mg/L results in a euphotic 

depth of around 60 cm. A similar eduction in suspended solids in Lake Crescent 

returns a euphotic depth of approximately l .9m. Comparatively, a reduction in 

turbidity to around 10 NTU in Lake Sorell, a level reached frequently in the past, 

increases the euphotic depth to around 2m, a depth that exposes a large area of the 

lake bed to solar radiation levels capable of sustaining plant growth. 

The presence of high amounts of colloidal material in Lake Sorell is a critical issue 

when addressing the degraded state of the light climate. It is of particular relevance as 

the colloids show little evidence of settling out, even with the return of relatively high 

water levels and calm conditions experienced by the lakes during 2002 that resulted in 

a significant reduction in measured 'particulate' suspended solids. 
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Figure 30 Comparisons of euphotic depth versus turbidity and suspended solids 
in lakes Sorell and Crescent. Curves have been extrapolated from the relationships 
outlined in Chapter 2, Figure 11 . 
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3.3.3 Modelling turbidity responses to water levels 

The graphs derived from Carper and Bachmann' s (1984) methods are presented in 

Figure 31. A significant increase in lake bottom area influenced by wind driven waves 

after 1998 is evident. The increase would result in sediment disturbance and 

entrainment in low energy accumulation areas, along with increasing the magnitude of 

disturbance in transportation and erosion areas of the lakes that were typically 

susceptible to sediment entrainment in the past. 

The ability of sediments to withstand a limited degree of exposure is best illustrated 

by Lake Sorell in Figure 28. The lake bed appears to have an inherent ability to resist 

exposure at low lake levels as colloidal turbidity remains at background levels for an 

extended period of time as lake levels fall below a threshold level. At the threshold 

level, a lake level well below a point typically reached in past times, the well 

consolidated sediment second layer would be increasingly exposed and over time, as 

shear stress increases and the cohesive forces binding the sediments together is 

exceeded, entrainment of the sediment second layer results with the observed release 

of fine colloidal material into suspension. The critical shear stress depends on the 
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properties of the sediments. Newly deposited material typical of the sediment primary 

layer is more easily entrained than material which has been left undisturbed and 

compacted over a long period of time (Bengtsson; Hellstrom et al. 1990) such as is 

typical of the sediment secondary layer. 

Even with lake volume increased well above a level at which colloids have been at 

low 'background' levels in the past, they seem to remain in suspension for an 

indefinite period. This contrasts with the observed lag in increased entrainment and 

release of colloids at low lake levels below a threshold level. The cycle continues as 

lake levels once again fall below the threshold with the sediments exhibiting a similar 

resistance to further disturbance and little resettling or sedimentation once the colloids 

have been suspended. 

Lake Crescent, although showing a marked increase in colloids in recent years, has 

not experienced the same level of increase as Lake Sorell. It is possible that this is due 

to Lake Crescent being more turbulent than Lake Sorell, a point that, although not 

quantified, has been mooted in previous studies (Cheng and Tyler 1976b). This would 

increase the intensity and frequency of sediment entrainment in Lake Crescent 

increasing the opportunity for mobilisation and removal of fine particulates. 

Figure 32 demonstrates that Lake Crescent has, on average, a more energetic 

environment than Lake Sorell. It depicts areas of the lake bed influenced by wind 

driven waves at three different westerly wind speeds for lake levels at the first 

quartile, median and 1 standard deviation below the mean level for the period January 

1970 to December 1997 (lake level data summarised in Appendix 10). Lake Crescent 

clearly has a greater proportion of its bed in contact with the wave base than Lake 

Sorell, especially at higher wind speeds(~ 25 knots) meaning that Lake Crescent 

would be subject to stronger sediment disturbance at the lake levels experienced 

before the mid 1990s. 
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Figure 31 Lake level changes prior to and after 1998 and the increase in exposed lake bed for three wind speeds for commonly occurring 
westerly winds for both Lake Sorell and Lake Crescent. 
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Figure 32 Comparison of areas of lake bed in contact with the wave base for lake 
levels commonly reached in Lake Sorell and Lake Crescent between 1970 and 1998. 
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Approximate water residence times are presented in Table 15 and Table 16. Rainfall 

landing directly on the surface of the lakes accounts for 1.5 to 2 times the total inflows 

of Lake Sorell and 1 to 3 times the total inflows for Lake Crescent. This reflects the 

low yield that the lakes receive from their catchments due to the low ratio of 

catchment area to lake surface area of the lakes (49% for Lake Sorell and 42% for 

Lake Crescent; (Cheng and Tyler 1973a)). Evaporative loss is also large:~ 900 mm 

per annum. Moreover, the water residence times of both lakes are variable. Water 

exchange in Lake Crescent depends strongly on water release from Lake Sorell, and 

these releases fluctuate considerably between years as highlighted by the four fold 

difference in water residence times of Lake Crescent for 2000/2001 compared with 

2001/2002. 

Table 15 Approximate water input volumes and water residence time for Lake 
Sorell for July 2000 to June 2001 and July 2001 to June 2002 assuming lake volume 
to be at an average level typical of the lake (1970-1997; average level 804.09 
mASL = 142 OOO ML). Average evaporative loss for Bushy Park~ 2.Smm per day= 
910 mm per year. 

Rainfall Rainfall Evaporative Inflow 
Net Water 

Volume residence 
Year Volume Loss Volume 

Input time at avg. 
(mm) (ML) (Avg-ML) (ML) 

(ML) level (yrs) 
07/00 

- 733 37750 -45000 17600 10350 13.7 
06/01 
07/01 

- 590 30400 -45000 20700 6100 23.3 
06102 
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Table 16 Approximate water input volumes and water residence time for Lake 
Crescent for July 2000 to June 2001 and July 2001 to June 2002 assuming lake 
volume to be at an average level typical of the lake (1970-1997; average level 
803.30 mASL = 34 OOO ML). Average evaporative loss for Bushy Park~ 2.Smm per 
day= 910mm per year. 

Rainfall Rainfall Evaporative Inflow 
Net Water 

Volume residence 
Year Volume Loss Volume 

Input time at avg. 
(mm) (ML) (Avg-ML) (ML) 

(ML) level (yrs) 
07/00 

- 733 14250 -17460 4400 1190 28.6 
06/01 
07/01 

- 590 11450 -17460 10650 4640 7.3 
06/02 

What may be more informative as an indication of possible export rates of fine 

colloidal material is the comparison of water releases from both lakes as a fraction of 

lake volume for both the 2000/2001and2001/2002 irrigation seasons (Table 17). It is 

evident that relative water release is greater from Lake Crescent than Lake Sorell, 

leading to an increased relative transport of solutes and suspensoids from Lake 

Crescent. 

Table 17 Water release from Lake Sorell and Lake Crescent for the 2000/2001 
and 2001/2002 irrigation seasons and the change relative to lake volumes. 

Average Lake % Volume 
Year ML Release Volume (ML) Released 

Sorell Nov 00 - Apr 01 2300 96000 2% 
Sorell Oct 01 - May 02 7200 122000 6% 

Crescent Nov 00 -Apr 01 4360 18100 24% 
Crescent Oct 01 - May 02 3080 27400 11% 

Additional to this, the maximum allowable water allocation available to downstream 

irrigators for water released from Lake Crescent is 10 OOO ML per season, 

representing an average allowable release of approximately 30% oflake volume per 
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annum, assuming a lake volume typical of the period running 1970 and 1997. A 

comparable release of 10 OOO ML per annum from Lake Sorell would represent a 

release of 7% of total lake volume at a comparable average lake level. 

The importance of dilution and concentration on colloidal turbidity are evident in 

Table 18. The modelling worked well as the expected colloidal turbidity closely 

reflected observed colloidal turbidity for the time periods in question. With Lake 

Sorell maintaining a relatively high lake level for 2002, little evidence of further 

entrainment of colloids was detected (Figure 26), with the observed increase in 

colloidal turbidity over January 2002 being attributable to concentration of surface 

waters through evaporative loss from Lake Sorell (Table 18). Obviously, at low lake 

levels, further sediment disturbance and entrainment of colloidal material would be 

expected. 

Table 18 Changes in colloidal turbidity in Lake Sorell assuming dilution from 
inflow water and con9entration by evaporation to drive colloid levels for the season in 
question. The 'Difference' is equal to the actual measured colloidal turbidity minus 
the expected or predicted colloidal turbidity. 

Initial 
Initial Final 

Expected Actual 

Lake Sorell Season 
Colloidal 

Volume Volume 
Colloidal Colloidal Difference 

Turbidity 
(ML) (ML) 

Turbidity Turbidity (NTU) 
(NTU) (NTU) (NTU) 

Inflow-
May 01 - Dec 01 93.0 90150 127300 65.9 59.0 -6.9 

dillution 
Evaporation -

Dec 01 - June 02 59.0 127300 116500 64.5 65.0 +0.5 
concentration 

Inflow-
May 03 - Oct 03 69.3 99200 140100 49.l 53.l +5.4 

dillution 
Evaporation -

Dec 03 - May 04 53.l 134400 122900 58.1 60.7 +2.6 
concentration 

Inflow-
May 04 - Aug 04 60.7 122900 137500 54.3 53.l -1.2 

dillution 

If, in the absence of further entrainment of colloids at high water levels, and assuming 

the dominant mechanism limiting and reducing colloids is dilution and flushing, there 

is potential for colloidal turbidity to remain at high levels for a considerable period of 

time. To date, observed reductions in colloids are almost directly proportional to lake 

volume change (Table 18). Additionally, increases in colloidal turbidity over the 

summer-autumn period of 2002 and 2003 can be largely accounted for by changes in 

concentration of lake water through evaporative loss which results in an approximate 
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10% reduction in lake volume for a comparable time period. Taking Lake Sorell as an 

example, and assuming the lake to be held at full supply with a possible net loss of 

30% of lake volume being directly proportional to inflow volume as observed over 

2000 and 2001 , and an average decrease in lake volume of approximately 10% 

through evaporative loss, Figure 33 outlines the possible scenarios for changes in 

colloidal turbidity over time. A colloidal turbidity of 60 NTU as observed over 2003 

was used for the initial level. From Figure 33 it is seen that even with a best case 

scenario of a net 30% loss, colloidal turbidity will maintain high background turbidity 

levels for a significant number of years. In all likelihood, the actual net loss of 

colloids from Lake Sorell will be much lower than 30% per annum, and in the case of 

a 20% loss per annu.m, a significantly higher net loss than has been observed over the 

last three years, with no further entrainment of this material, colloidal turbidity could 

remain above historic levels for over 15 years. 

Figure 33 Estimated changes in colloidal turbidity over time in Lake Sorell 
assuming the overriding mechanism for change is dilution, flushing and evaporation. 
The dashed line represents colloidal turbidity levels typical of Lake Sorell for the 
period running 1996 to 1998. 

70 

60 
........ 
:J 
I- 50 z ........ 

~ 40 "O 
:.0 ,_ 
:J 

30 I-
ro 
"O 
·5 20 
0 
u 10 

0 

0 

Per Annum Colloidal Turbidity Loss 

--
2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Year 

117 



The Role of Colloids and Resuspension 

3.4 Discussion 
/ 

3.4.1 Temporal trends in light climate 

It is concluded that inorganic sediment and dissolved colour and colloids are largely 

responsible for the degradation in the light climate of both lakes. These variables have 

been derived internally, as the work undertaken quantifying inputs from 

subcatchments for the same period have shown imports of inorganic sediment to be 

negligible (Section 2.3.4; Appendix 8), with inflows being of extremely good water 

quality. It is widely accepted that inorganic suspended sediment in particular and 

organic sediment to a lesser extent is influenced heavily by the process of s~diment 

resuspension (Scheffer 1998). 

Therefore: 

• Resuspended inorganic material and dissolved colour and colloids are responsible 

for the high levels of turbidity, light attenuation and reduced water clarity. 

• Autochthonous material such as algae and detritus do not influence turbidity 

significantly. 

• At times of reduced levels of suspended sediment, dissolved colour and colloids 

dominate. 

Under· current environmental conditions, the extreme degradation of water clarity can 

be attributed to high levels of inorganic suspended sediment, dissolved colour and 

colloids. Wind induced sediment resuspension appears to be the mechanism leading to 

increased tripton levels. Effective management relies on understanding the extent and 

severity of sediment resuspension and identifying possible ways to alleviate the 

pr9blem. 

3.4.2 Lake levels 

It is evident that the degradation in water quality is largely caused by the entrainment 

of sediment through sediment resuspension events. As mentioned in Chapter 1, the 

frequency, extent and severity of wind resuspension is related directly to water depth, 

wind speed and fetch. Understanding the relationship between lake level, sediment 
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disturbance and water clarity is important in understanding the interactions between 

low water levels and the current degradation in water quality. 

It appears several factors combine to influence colloidal concentrations in these two 

lakes. The increased 'average' bed exposure typical of Lake Crescent results in 

greater sediment disturbance and increased sediment sorting that over an extended 

period of time; would release a significant amount of available colloidal material from 

the primary sediment layer. This, coupled with increased water residence time and 

higher relative volume release of water, combines to remove a greater proportion of 

colloids from the system, resulting in a reduced amount of fine particulate material 

available in Lake Crescent for resuspension. This is reflected in the lower levels of 

colloidal turbidity reached in Lake Crescent compared to Lake Sorell (approximately 

30% lower) over 2000 and 2001, even in the face of extensive bed erosion, reflecting 

a reduced level of 'new' material exposed and resuspended. 

Additionally, lake management practices in Lake Crescent in the period predating 

1998 periodically reduced water levels to levels that compare to low water levels 

reached between 1999 and 2003 (Appendix 10). Therefore, the increase in bed 

exposure and sediment disturbance experienced by Lake Crescent between 1999 and 

2003 have likely been experienced in the past. This would mean that sediment being 

entrained during 1999 to 2003 would likely have been exposed and entrained in the 

past giving the opportunity for the release and export of a significant fraction of the 

fine colloidal fraction that would be present in the sediments. 

In the case of Lake Sorell, a reduced level of bed exposure, even at high sustained 

wind speeds typical of the lake for the period preceding 1998 would give rise to the 

occurrence of low energy areas of sediment accumulation where settlement of fine 

material may result. The sediment primary layer in Lake Sorell in high to medium 

energy areas would also be reduced below which the lake bed would contain a 

significant amount of colloidal material as the sediment would likely have never been 

exposed to the extent that the low lake levels post 1998 resulted in. This coupled with 

low water residence time and low relative volume release of water would help to 

retain fine colloidal material within the lake and retard export of this material from the 

system. 
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Post 1998, in the face of increased sediment exposure in both lakes, resulted in 

different responses of colloidal turbidity in the two systems. The record low lake 

levels reached for sustained lengths of time over 2000 and 2001 resulted in a marked 

increase in the frequency and intensity of sediment entrainment in both systems. The 

significant lag in increasing colloids in Lake Sorell in the face of decreasing lake 

levels reflects erosion and entrainment of material below the sediment primary layer 

into the sediment secondary layer. 

The sediment secondary layer, being well consolidated would take increased and 

sustained exposure to overcome the cohesive forces of the sediments and initiate 

sediment resuspension as the fine clay particles tend to become cohesive and therefore 

much more difficult to re suspend if left undisturbed for a significant period of time 

(Rasmussen and Rowan 1997). This layer, having been little disturbed in the past, 

would contain increased amounts of fine colloidal material compared to the sediment 

primary layer. 

The increase in erosion depth due to increased and sustained shear stress at the 

sediment surface penetrated below the primary layer and released into suspension 

significant colloidal material bound in the sediment secondary layer. This material has 

continued to remain in suspension with little evidence of settling out. Combined with 

low water residence time and low relative volume release in Lake Sorell, colloidal 

turbidity appears likely to maintain significantly high levels of background turbidity 

for a long period of time. Basic empirical modelling, assuming a best case scenario in 

which lake levels remain above a level that will eliminate further exposure of the 

sediment secondary layer and limit further release of colloids, predicts that with a 

generous exchange of water each season that colloidal turbidity will remain well 

above the level of 10 NTU typical of Lake Sorell in the past for 7 to 15 years. 

From the relationships determined between suspended solids, light attenuation and 

euphotic depth, it is shown that even with an extreme decrease in suspended 

'particulate' material down to levels around 10 mg/L, the presence of colloidal 

suspensoids will continue to limit the euphotic depth to around 60 cm. The extreme 

impact colloidal turbidity has on limiting light availability, reducing water clarity and 
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increasing the transport of plant nutrients such as nitrogen and phosphorus in both 

lakes Sorell and Crescent, combined with the dependence on dilution and flushing to 

decrease colloid concentrations, especially in the case of Lake Sorell, reflects the 

utmost importance of reducing the level of bed exposure in the lakes to limit and 

ultimately eliminate the release of this material in the water column. Initial 

observations identified a critical water level in Lake Sorell below which colloid 

concentrations increase. This 'critical' level lies at approximately 803.2 mASL. 

Future management of Lake Sorell should maintain lake levels well above this 

threshold level to reduce the likelihood of further increases in colloidal turbidity. 

The highly significant relationships between decreasing water level and increasing 

turbidity in both lakes Sorell and Crescent coupled with increased hysteresis in 

measured suspended sediment concentrations and release of fine colloidal particulates 

into suspension well beyond levels documented in the past points strongly towards 

increased sediment resuspension as being responsible for the severe degradation in 

water quality. A detailed investigation is therefore warranted to determine the extent 

of sediment resuspension at various lake levels in both systems to determine 

accurately the importance this process has on defining ecosystem behaviour and to 

determine iflake level management may be a solution to a problem that has likely 

resulted in the wide scale loss of aquatic macrophytes from Lake Sorell and a severe 

degradation in the water quality of both lakes. 

Erosional areas are typical of near-shore bottom areas where sediments are frequently 

eroded. These areas, due to resuspension occurring often, have a limited amount of 

material available for resuspension (Bengtsson, Hellstrom et al. 1990). Further from 

shore the bottom is scoured less regularly, and sediments are deposited to and 

entrained at irregular intervals, these areas represent transportation areas. The sum of 

the erosion and transportation areas of a lake represent the total lake area influenced 

by sediment resuspension (Hakanson and Jansson 1983). The remaining areas of the 

lake represent accumulation zones where fine material settles out and sedimentation is 

final (Blais and Kalff 1995) and, if left undisturbed consolidates over time 

(Bengtsson, Hellstrom et al. 1990) and is thus removed from the cycle of resuspension 

and sedimentation. 
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The increase in disturbance of sediments in Lake Crescent would lead to increased 

sediment sorting and a reduction in low energy areas where fine sediments would 

accumulate (Hakanson 1982; James and Barko 1993). The increased turbulence would 

likely increase the depth of the sediment primary layer and lead to a greater degree of 

release of fine particulates into suspension, this material would have a greater 

opportunity to be removed from the system through water release. This would reduce 

the amount of colloidal material available for resuspension and explain why colloid 

levels in Lake Crescent were markedly lower than Lake Sorell, even at the extreme 

low lake levels reached over 2000 and 2001. 

From Table 15 through Table 17, it is evident that Lake Crescent has a significantly 

higher water residence time on average than Lake Sorell along with a higher relative 

outflow volume. This coupled with the more dynamically turbulent environment of 

Lake Crescent that increases the relative frequency and extent 'on-average' of 

sediment resuspension, would result in higher entrainment and flushing of fine 

particulate material from Lake Crescent compared to Lake Sorell 

Additionally, it is worth noting that on a lake loading basis, Lake Sorell water release 

flows into Lake Crescent so for the past few years significant volumes of colloidal 

material would have been discharged into Lake Crescent. However, in years previous 

to the increase in colloidal loading in Lake Sorell, the water flowing into Lake 

Crescent from Lake Sorell would have had a low colloid concentration increasing the 

net export of colloidal material from Lake Crescent. 

The loss of ~olloidal material through sedimentation under current environmental 

conditions appears largely insignificant, with observed reductions that coincided with 

increased lake levels appearing to be dependent on dilution from inflows combined 

with a marginal export from the system through water release. Additionally, at high 

lake levels in the absence of further entrainment, the reduction in lake volume that 

occurs each summer through evaporative loss results in a comparable increase in 

colloidal turbidity, almost directly proportional to the change in lake volume. 
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The lack of evidence of any net sedimentation of colloids in Lake Sorell reflects the 

colloids behaving largely as a conservative substance, and if so, colloid concentrations 

will be dependent on inflow/outflow volumes and the water residence times of the 

lakes (Hakanson and Jansson 1983). For example, the residence time of a chemical or 

fraction may be defined as (Hakanson and Jansson 1983): 

3.3 

Where Tr is the residence time· of the fraction in question in time units, Vis the lake 

volume, C the lake concentration or output concentration, Q the water discharge .and 

Cm the input concentration. From the detailed work carried out on subcatchment 

inputs of colloidal and suspended solids, it is possible to assume the inflow 

concentration to be negligible. Therefore, from equation 3.3, the residence time of the 

colloids, if behaving as a conservative substance will be heavily reliant on the 

discharge to lake volume ratio in exporting material from the system, coupled with 

continued inflows to maintain increased lake levels to retard any further entrainment 

of this material. 

Therefore, reductions in colloidal turbidity will depend largely on high inflow 

volumes diluting colloids coupled with release of significant volumes of water from 

the lakes whilst maintaining lake levels as high as possible to limit further sediment 

disturbance so that colloids do not increase further. 
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Chapter 4 Modelling wind resuspension in lakes Crescent 
and Sorell 

4.1 Introduction 

Evidence from observations on changes in water clarity, nutrients and suspended 

particulate material (SPM) from 1996 to 2001 indicates increasing levels of sediment 

entrainment as being largely responsible for the steep decline in water quality in both 

lakes Sorell and Crescent. The increased turbidity and extreme hysteresis in measured 

SPM concentration coinciding with sustained record low lake levels over 2000 and 

2001, coupled with the release of large amounts of colloidal particulate material from 

the sediments to levels far in excess of previous observations suggests that an increase 

in the frequency, extent and severity of sediment resuspension is the cause for the 

degradation in water clarity. 

A detailed investigation was therefore warranted to explore the dynamics of sediment 

resuspension in lakes Sorell and Crescent and to quantify the interaction between 

sediment resuspension and changing lake depth. Understanding resuspension 

dynamics in the lakes should allow appraisal of realistic management options 

available to reduce sediment resuspension. The aims of such actions are to improve 

water clarity, increase light availability and provide a better environment for the re­

establishment of aquatic macrophytes in both lakes, and these aims are consistent with 

the goals of improving the health and aesthetic value of shallow lakes elsewhere (Van 

Duin, Blom et al. 1992; Blom, van Duin et al. 1994; James, Best et al. 2004). Re­

establishment of aquatic macrophytes through an improved light climate and a 

reduction in physical disturbance (Spence 1982) should, in turn, provide further 

reductions in sediment resuspension (Jackson and Starrett 1959; Dieter 1990; James 

and Barko 1990; James and Barko 1994; Koch 1996; Barko and James 1998; James, 

Barko et al. 2004) . 

. From historical anecdotal evidence, both lakes have been susceptible to episodic 

periods of high turbidity which were attributed to high winds during storms and 

extremes in weather in the area. Although turbid at times, both lakes returned to their 

characteristic states over a short time period of days to weeks. The difference with the 
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situation prevailing in the late 1990s and early 2000s is that high SPM loading has 

been maintained for a significant period of time along with extremes in the values of 

SPM recorded in the lakes. 

Several additional characteristics typical of these lakes indicate the importance of 

sediment resuspension. Evident in Lake Crescent, and in Lake Sorell to a lesser 

degree, is a significant amount of sediment sorting in a west to east direction 

(prevailing winds) reflecting disturbance and sorting of sediments (Hakanson and 

Jansson 1983) with the eastern shores of Lake Crescent having sand moraines present 

along the shoreline and extensive sand flats (Cutler, Kinrade et al. 1990) extending 

into the lake reflecting high energy erosion zones. The contrast is the lee western 

shores which are dominated by fine silts and clays and vegetated wetland areas 

(Cutler, Kinrade et al. 1990) likely reflecting lower energy zones of accumulation and 

transportation (Hakanson and Jansson 1983). The strong supporting evidence detailed 

in Chapter 2 and Chapter 3 showing increased water column loading of suspended 

solids to be derived from internal sinks as opposed to increased sediment loading from 

the catchment, further substantiates increased sediment resuspension to be highly 

significant and the dominant process influencing water qualify in the lakes. 

Sediment resuspension is primarily a function of wave height and water depth 

(C.E.R.C. 1977). In shallow lakes, reducing water depth usually increases the area of 

the lake bed affected by wind generated waves at a given wind speed, and lakes with 

large shallow areas exposed to high winds, such as lakes Sorell and Crescent, are most 

susceptible to sediment resuspension (Jackson and Starrett 1959). Decreasing water 

levels have been identified as being the cause of increased turbidity in studies 

elsewhere, with Nolen et al. (1985) finding changes in average depth alone to explain 

33% of variation in measured turbidity. 

Resuspension of sediments takes place when the shear stress (i.e. the force exerted at 

the sediment surface, measured in Newtons per square metre (N m-2
) or dynes per 

square centimetre (dynes cm-2
)) is greater than the cohesive forces binding the 

sediments together (Bloesch 1995), resulting in sediment entrainment (Douglas Evans 

1994; Bailey and Hamilton 1997). Resuspension is, therefore, partly a function of the 

properties of the sediments which, in tum, depend on numerous factors such as 
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sediment grain size, water content, density and organic content (Bloesch 1995). The 

frequency that sediments are disturbed also influences the critical shear stress because 

sediments that have been left undisturbed consolidate over time and require more 

energy to resuspend than sediments that are more frequently entrained (Bengtsson, 

Hellstrom et al. 1990). These factors combine to detennine the level of cohesion of 

the sediments and the critical shear stress threshold necessary for sediment 

entrainment to occur. The critical shear stress threshold may therefore be system 

specific as the nature of sediments change markedly between water-bodies. 

An additional complexity results from human manipulations of lake levels. These 

changes in level interact with the bathymetry of the lakes to expose different 

quantities of the lake bed to a critical shear stress. These changes inevitably interact 

with prevailing climatic conditions (especially wind speed and direction), which make 

it difficult for managers to make quantitative predictions about different management 

scenarios that might be pursued. Modelling procedures of the type described in 

Chapter 1 promise to make such predictions, and the broad goal of this chapter was to 

evaluate the performance of the purely physical attributes of the DYRESYM­

CAEDYM modelling framework based on a 2-year data set from lakes Crescent and 

Sorell, and then use the model to make some provisional contrasts between potential 

options for managing the levels of these two lakes. 

DYRESM-CAEDYM, the coupled one-dimensional hydrodynamic and ecological 

model summarised in Chapter 1, was used here because it has been designed to model 

two separate size classes of suspended solids to account for the fast and slow settling 

velocities of the coarse and fine fractions of resuspended sediment (Herzfeld and' 

Hamilton 2000). This is important for accurately modelling the variable 

characteristics of particles in suspension (Weyhenmeyer 1998). DYRESM-CAEDYM 

predicts horizontally averaged suspended solids concentration and therefore reflects 

an average 'lake-wide' suspended solids concentration in a shallow turbulent water 

body that do not :undergo significant levels of stratification, such as lakes Sorell and 

Crescent (Cheng and Tyler 1973a). 

The specific steps of this process were as follows. First, local estimates of the value of 

the critical shear stress were made from field data, and these estimates were cross-
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checked with observed resuspension events in the time period of intensive modelling. 

Second, wind and hypsographic data for these lakes was collated to estimate the 

changes in the area of the lake bed subject to shear stresses greater than the critical 

value under different lake levels. Finally, DYRESM - CAEDYM models were 

calibrated using physical data alone, and then used to simulate different scenarios of 

lake level manipulation, and the results evaluated in terms of the observed behaviour 

of these lakes over the past 6 years. If a relationship between increasing shear stress 

and changes in observed SPM concentrations is established, then the role sediment 

resuspension plays in driving ecosystem process can be quantified and investigated 

under various theoretical management regimes, thus allowing possible management 

scenarios to be scrutinised and the benefits of each assessed. 

4.2 Methods 

For both lakes Sorell and Crescent, detailed information was collected over two 

extended time periods that allowed comparisons to be made between changes in SPM 

concentration and estimates of shear stress at the sediment surface calculated from 

information on effective fetch, wind speed and water depth. 

4.2.1 In-situ sediment resuspension measurements 

A Greenspan TS300 (0-500 NTU) (Greenspan Technology Pty. Ltd., Warwick, 

Queensland, Australia) turbidity logger was deployed for extended periods of time in 

both lakes Sorell and Crescent on two separate occasions at extreme low and 

moderately high water levels (Table 19). Measurements of turbidity were made at 

half-hourly intervals. 

An accurate relationship between turbidity and SPM concentration was determined 

for each lake using linear regression analysis (Appendix 7) from data collected during 

routine sampling trips (Chapter 2, Section 2.2.2-2.2.3). Using the regression 

relationships, continuous records of SPM concentration were estimated from turbidity 

logger measurements (Gippel 1989; Hawley and Lesht 1992). 
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Table 19 Time periods of intensive sediment resuspension sampling in lakes 
Sorell and Crescent. 

Lake Level Lake Sorell Lake Crescent 

Extreme Low Water Level 18/8/00 - 619100 919100 - 24/9/00 

Moderately High Water Level 2812102 - 5/4/02 30/11/01 - 12/12/01 

4.2.2 Wind, fetch and depth characteristics 

The location of the turbidity logger was determined by GPS. Wind speed and 

direction measurements were made at hourly intervals from a wind anemometer 

located on a reef offshore in Lake Sorell (Chapter 2, Figure 1). 

Effective fetch (EF) was calculated in preference to fetch (F) as effective fetch takes 

into account the influence of shoreline irregularities on wave generation for angles up 

to 42° from the direction of the wind (C.E.R.C. 1977). Effective fetch is computed by 

measuring the distance from land, .X,, for the main axis of the wind direction and 7 

radials at 6° intervals on either side of this axis and multiplying the length of each 

radial by the square of the cosine of the corresponding angle, A,, and dividing the sum 

of these 15 products by 13.5 (Gons, Veeningen et al. 1986): 

L ( X, (cosA, )
2

) 
EF = ----'------'-

13.5 
4.1 

For each observation of wind direction, the effective fetch of the octant closest to the 

recorded direction was used to approximate the effective fetch of the point of interest 

for the preceding 4 hours. The effective fetch, measured wind speed and water depth 

were used to model shear stress using equations 4.2 to 4.6 for the period of interest. 

Water depth was measured directly and related to daily lake level records for the 

duration of the run. 
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4.2.3 Modelling shear stress 

4.2.3.1 Estimating critical shear stress, Tc 

Bottom shear stress, r, may be estimated from laminar wave theory and is a function 

of wind velocity, effective fetch and wind direction. r may be estimated from the 

following equation (Luettich, Harleman et al. 1990; Bailey and Hamilton 1997; 

James, Barko et al. 2004): 

r = H [p(v (2J£ IT )3 )o.s] 
2sinh(2kD) 4.2 

where r (N m"2
) is the calculated bottom shear stress, His the wave height (m), p is 

the density of water (kg m·3), vis the kinematic viscosity of water (at 20 °C, 0.001005 

kg m-1 s·1; (Stumm and Morgan 1996)), T is the wave period (seconds), k is the wave 

number (2rrJL where L =wavelength, m) and Dis the water depth (m). Wave 

characteristics (H, T and L) may be calculated using the Sverdrup-Munk­

Bretschneider (SMB) shallow water wave equations (C.E.R.C. 1977) using 

information on wind speed and duration, wind fetch and average water depth (Sheng 

and Lick 1979). 

When Airy wave theory is able to be applied, the wavelength, L, may be calculated by 

(Hamilton and Mi~chell 1996): 

L = gT
2 

tanh(2tr D) 
2tr L 

4.3 

Where T is the wave period (s). As L appears on both sides of the equation, an 

approximation of equation 4.3 is given by (Herzfeld and Hamilton 2000): 
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4.4 

And for wave height (If) and wave period (T) (C.E.R.C. 1977): 

and: 

[
gF]o2s 

0 375 0.077 -2 
T = 2.4n D tanh[0.833[gD] ]tanh U 

g u
2 

[ [gD]o31s] tanh 0.833 -2 u 

4.6 

where His the wave height (m), and Tthe wave period (s). Fis the fetch (m), Uthe 

wind speed lOm above the surface of the water (m s-1
) and D the lake depth (m). g is 

the gravitational constant (9.81 m s-1
). 

Having calculated shear stress, the relationship between increasing shear stress and 

SPM concentration was analysed with piecewise linear regression in order to 

determine the critical or threshold shear stress, i-c, needed to initiate sediment 

resuspension. i-c was estimated at the inflection point where SPM concentration 

increased significantly above background conditions (James, Best et al. 2004). Seven 

relatively isolated resuspension events were identified from the empirical record 

where shear stress had remained below 0.03 N m-2 and SPM < 35 mg L-1 for at least 

6 h. These criteria avoided interference and hysteresis effects from antecedent 

resuspension events. SPM lagged by 1 h was then regressed against shear stress, with 
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the lag justified on the grounds that resuspension would not be instantaneous once a 

threshold had been attained. The seven estimates of Tc were then averaged, and the 

95% confidence interval computed using conventional methods (Quinn and Keough 

2002). 

The decision to use an in situ estimate of Tc is further justified by James, Barko et al. 

(2004) who compared laboratory estimates of re to in-situ estimates of re based on T 

calculation from wave theory; they concluded that in-situ estimates were closely 

comparable with controlled laboratory estimates. 

The estimate of Tc was further evaluated by plotting depth of water minus the depth of 

the wave base against modelled shear stress to estimate the point at which the wave 

base interacts with the sediments (Carper and Bachmann 1984). The depth of the 

wave base is a function of wavelength which was calculated from wind speed and 

fetch (Section 4.2.3) and the shallow water wave forecasting models of the Sverdrup­

Munk-Bretschneider (SMB) method (C.E.R.C. 1977; Sheng and Lick 1979; Hamilton 

and Mitchell 1996). The point at which wind driven waves 'touch' the lake bed (i.e. 

the depth of the wave-base) is defined as the point at which the depth of water is less 

than one-half the wavelength (Carper and Bachmann 1984; Arfi, Guiral et al. 1993; 

Scheffer 1998). This was done for 745 points across Lake Sorell at a depth of 803.5 

mASL and 266 points across Lake Crescent at a depth of 802. 7 mASL for a westerly 

wind of an average speed of 20 knots. Where the estimate of water depth minus wave 

base depth intersect the x-axis of these plots shows where water depth and wave base 

are equal and sh~uld correspond with a value close to Tc • 

4.2.3.2 Effects of changes in lake area on shear stress 

Having determined 'tc , coupled with information on changes in SPM concentration 

with increasing shear stress, it was possible to model areal changes in shear stress 

across both lakes Sorell and Crescent for various water depth and wind speed 

scenarios. Based on historical water level records, chosen water depths approximated 

low, medium and high lake levels for the lakes. Included were specific water levels of 

interest such as the "sill" which corresponds to the level to which the lakes may be 

drawn down via water extraction. Modelled wind speeds ranged from light to gusty 

conditions that were typical of the area. From this it was possible to draw conclusions 
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as to the likely impacts modelled shear stress would have on sediment resuspension 

dynamics. 

This was achieved by taking wind speed, fetch and water depth characteristics of745 

points across Lake Sorell and 266 points across Lake Crescent and modelling shear 

stress exerted at the sediment surface for differing water depths and wind speeds. The 

results were then displayed via contour maps. 

4.2.4 Initialisation data for DYRESM-CAEDYM 

DYRESM-CAEDYM requires a number of initialisation files specific to the lakes in 

question. Files include detailed meteorological information, accurate estimates of the 

volume and composition of inflows, data on withdrawal volumes and initial 

conditions in the lakes in regards to composition, lake level and temperature. A 

comprehensive set of initialisation files were constructed for the period running from 

the 1 st of January 2000 to the 31 st of December 2001. 

4.2.4.1 Meteorological information 

DYRESM-CAEDYM requires a detailed ASCII file of meteorological information 

that is applicable to the region in question, for the duration of the simulation run. 

Detailed meteorological information for the Interlaken area was obtained and collated 

for the period between January 2000 and March 2002. The DYRESM meteorological 

data file consists of seven columns including year and day number, short-wave 

radiation (W m-2
), long-wave radiation (either W m-2 if measured directly or as 

decimal fraction of cloud cover), air temperature (°C), vapour pressure (hPa), wind 

speed (m s-1
) and rainfall (m). Meteorological data were obtained from a number of 

sources including the Bureau of Meteorology, Hydro Tasmania and direct 

measurements made by the IFS. A section of the ASCII file of the meteorological 

information for the simulation run is given in Appendix 11. Details of the sources of 

data for each of these variables follow. 

4.2.4.1.1 Short-wave radiation 

Daily estimates of short-wave radiation (W m-2
) were derived from satellite imagery 

processed by the Bureau of Meteorology from the Geostationary Meteorological 
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Satellite GMS-5 of the Japan Meteorological Agency. The satellite data site 

corresponding to the Interlaken area was located at 42° south, 147° east. Satellite 

estimates were compared to a limited number of local measurements made by Hydro 

Tasmania at their Lagoon of Islands weather monitoring station located approximately 

15 kilometers west of lakes Sorell and Crescent. Both data sets correlated well 

(Appendix 12). It was therefore concluded that satellite estimates for the Interlaken 

area were accurate. 

4.2.4.1.2 Long-wave radiation 

Daily values of long wave radiation were estimated by DYRESM from measurements 

of the decimal fraction of cloud cover and the water surface temperature calculated 

during the simulation. The most appropriate and closest station with measurements of 

cloud cover was the Bureau of Meteorology's Liawenee weather station located 

approximately 44 kilometres WNW oflakes Sorell and Cre~cent. Early values (1/1/00 

-17/1/01) were taken from station #96065. Values from 18/1/01 to 30/4/02 were 

taken from station #96033. Average daily values were obtained by taking the average 

between the 9am and 3pm observations. 

4.2.4.1.3 Air temperature 

Average daily values of air temperature were obtained from the Bureau of 

Meteorology's Interlaken weather station serviced by Hydro Tasmania. The weather 

station is located at the Interlaken Canal. For missing values of air temperature, 

estimates were made from values obtained from Hydro Tasmania's Lagoon oflslands 

weather station. A regression relationship was derived between the air temperature at 

Lagoon oflslands and the air temperature at the Interlaken Canal (Appendix 12). This 

relationship was then used to approximate the air temperature at the Interlaken Canal 

for any missing data. 

4.2.4.1.4 Vapourpressure 

Vapour pressure estimates were made from wet and dry bulb temperatures using the 

relationship given in Antenucci (2001) where vapour pressure (ea): 

ea= eas -0.00066 x (1+0.00115 x qW) x P x (qD-qW) 4.7 
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and q W = wet bulb temperature, P = atmospheric pressure, qD = dry bulb air 

temperature, and eas = saturation vapour pressure is calculated from: 

eas ~ex{ 2.303((0 :;~~b )+c J] 4.8 

where a= 7.5, b = 237.3, c = 0.758, and qD =dry bulb air temperature (°C). 

Wet bulb temperatures for the Interlaken area were estimated by taking the average 

between the vapour pressure measured at the Bureau ofMeterology's Tunnack and 

. Liawenee weather stations. The two stations were located approximately 45 km SE 

and 44 km WNW from lakes Sorell and Crescent respectively. The average altitude 

above sea level between the two stations closely approximated the altitude of lakes 

Sorell and Crescent. It was therefore determined that these weather stations gave the 

best available estimate of vapour pressure for lakes Sorell and Crescent. 

4.2.4.1.5 Wind speed 

Daily average estimates of wind speed were obtained from hourly measurements 

made by a wind anemometer deployed on a rocky reef in the middle of Lake Sorell 

(Chapter 2, Figure 1 ). Hourly measurements of average wind speed, maximum wind 

speed and wind direction were recorded from August 2000 to March 2003. For tp.e 

period from January 2000 to August 2000, wind speeds for lakes Sorell and Crescent 

were approximated from recordings made by Hydro Tasmania at their Lagoon of 

Islands weather monitoring station, which was the nearest wind station to these lakes. 

Lagoon of Islands wind speeds were regressed against Interlaken wind speeds, and the 

derived relationship used to approximate Interlaken wind conditions from Lagoon of 

Islands observations (Appendix 12). 

4.2.4.1.6 Rainfall 

Daily rainfall measurements were provided by the Bureau of Meteorology from their 

Interlaken weather station. Missing data values were substituted from records of daily 

rainfall obtained from a rain gauge maintained by the IFS at Lake Crescent. 
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4.2.4.2 Morphometry and bathymetry 

DYRESM-CAEDYM requires detailed morphometry that describes the hypsographic 

curve of the lakes and consists of a table of elevations above a specified datum versus 

the cross-sectional area of the lake at that elevation (Appendix 11). Included in this 

file is information on the number of inflows entering the system, details specific to 

each inflow and the number of outlets from the system and the elevation of the 

outlets. 

The hypsographic data was determined by digitising the bathymetric maps of both 

lakes Sorell and Crescent (Chapter 2, Figure 1 and Figure 2) and importing the images 

into the GIS software package Maplnfo V6 for analysis of the surface areas of each 

contour. The bathymetric map of Lake Crescent was produced by the Survey and 

Geographic Information Department (1996) of the then Hydro Electric Corporation. 

The bathymetry of Lake Sorell was produced by the Rivers and Water Supply (1902) 

(Peterson and Missen 1979) and validated by the Survey and Geographic Information 

Department at the time Lake Crescent was surveyed in 1996. It was concluded that the 

bathymetric map of Lake Sorell created in 1902 described the lake bed satisfactorily. 

It was therefore assumed both maps described the depth characteristics of the lakes 

adequately to estimate lake volume and surface area changes with changes in lake 

level. The wetland areas of both lakes were excluded from the morphometry file so 

that only open water areas were used in the calculation of fetch and shear stress 

(Bachmann, Hoyer et al. 2000). 

4.2.4.3 Inflow volumes and water quality 

Inflows included for Lake Sorell were Mountain Creek, Silver Plains Creek, a small 

unnamed creek north of Silver Plains Creek and the drain discharging from Kemps 

Marsh. Inflows included for Lake Crescent were the Interlaken Canal and Agnews 

Creek. Water volume, temperature, salinity, total nitrogen, total phosphorus and 

suspended solids were the components estimated for each inflow for a period from the 

1 st of January 2000 to the 31 st of December 2001 using the methods detailed in 

Chapter 2, Section 2.2.5. The resulting ASCII inflow file is presented in Appendix 11. 
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4.2.4.4 Outflow volumes 

Accurate monitoring of the volume of water released from Lake Sorell into Lake 

Crescent was made during both the 2000 and 2001 summer periods. Discharge 

measurements were made by the Inland Fisheries Service, using the methods 

described in Chapter 2, Section 2.2.5. Detailed information of the volume of water 

released from Lake Crescent down the Clyde River for the 2000 and 2001 seasons 

was obtained from the Department of Primary Industries, Water and Environment's 

Water Resources Division. The resulting ASCII outflow file is presented in 

Appendix 11. 

Detailed information on the remaining initialisation files for running DYRESM­

CAEDYM can be found in Antenucci (2000). In all cases, field data collected during 

the course of the project was used. 

4.2.5 Calibration of DYRESYM and CAEDYM 

DYRESM was successfully initialised and run for both lakes and its accuracy was 

checked by plotting modelled lake levels and temperatures against observed values for 

the period in question. Because DYRESYM performed very well against these criteria 

(Section 4.3.2), modelling could progress to using CAEDYM. 

For each parameter required by CAEDYM, information was available from the 

literature or calibrated directly from field data. Calibration of each variable progressed 

in a sequential manner with critical shear stress and sediment density being set first, 

and then progressing to calibrations of particle size and resuspension rate as detailed 

below. 

4.2.5.1 Critical shear stress 

Values of the estimated critical shear stress, Tc , determined by methods detailed in 

Section 4.2.3 and presented in Section 4.3.1 were used to set the critical shear stress in 

CAEDYM. 
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4.2.5.2 Sediment density and particle size 

Based on work carried out by Hakanson (1977) a sediment density of2650 kg m"3 was 

defined in CAEDYM as being representative of the density of the largely inorganic 

sediments of lakes Sorell and Crescent. 

It was decided that the best approach to calibrating particle size and sedimentation 

rates in CAEDYM would be to look in detail at 'in-situ' settling velocities as opposed 

to laboratory analysis of the settling velocities of surficial sediments. This follows 

from work of Bailey and Hamilton (1997) who found discrepancies of almost two 

orders of magnitude in the settling characteristics of 'naturally' resuspended 

sediments as opposed to surficial sediments collected from cores. 

To calibrate the particles sizes for the two separate fractions modelled in CAED)'M, 

resuspension events were identified in which modelled shear stress abruptly fell below 

the threshold value and approached zero. At this point, it was assumed that the 

behaviour of the particles in suspension could be adequately described by Stokes Law 

(see Chapter 1) thus leaving the particle size as the most significant factor determining 

settling velocities. Having identified several of these 'passive' sedimentation events 

with minimal applied shear stress it was possible to compare modelled output from 

CAEDYM for a number of different combinations of particle sizes to the measured 

'in-situ' field data in order to calibrate particle sizes for the lakes. 

4.2.5.3 Resuspension rate calibration 

The final stages of calibrating DYRESM-CAEDYM to model sediment resuspension 

involved the calibration of the resuspension rate for the two separate size fractions of 

suspended solids. The sediment entrainment parameter cannot be readily calculated or 

measured directly and, as a re.sult, calibration is achieved through adjustment of the 

entrainment parameter coupled with comparisons of modelled output with observed 

conditions (Bailey and Hamilton 1997). 

Initial investigations were made into the effect of changing the resuspension rate 

(alpS) in CAEDYM on sediment resuspension for an initial 2 month period from 

April 2000. This represents 'the start date of collated meteorological data for these 

lakes. Four separate particle sizes were selected to reflect the major particle sizes in 
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the lakes (Appendix 13). This established initial base resuspension rates for a more 

detailed calibration of sediment resuspension outlined in Section 4.3.2. 

An investigation into measured resuspension rates for several events in lakes Crescent 

and Sorell under low water and high water conditions were made to determine a 

minimum resuspension rate based on measured field data. Areal concentrations of 

suspended solids were calculated for each of four active resuspension events in Lake 

Crescent for a period of both low water level and moderately high water level, and 

five active resuspension events in Lake Sorell at moderately high water level. For 

each, it was assumed that the measured concentration of suspended solids 

approximated the average suspended solids concentration for the lake. Information on 

lake volume and surface area were then used to approximate the sediment 

concentration in g m·2 and, for the ascending limb of a specified resuspension event, 

the concentration was then regressed against time in seconds. The slope of this 

regression therefore approximated the resuspension rate in g m-2 s·1
• 

During a sediment resuspension event, with an applied shear stress above re , both 

sediment resuspension and sedimentation occur simultaneously (Bailey and Hamilton 

1997). The calculated 'resuspension rate' from such a regression analysis therefore 

approximates an absolute minimum rate as it does not take into account sedimentation 

rates. The values used for DYRESM-CAEDYM in practice will therefore need to be 

higher than the rates calculated using this analysis. 

Once these "underestimates" of resuspension rates were derived, fine scale calibration 

was achieved by re-running the model for Lake Crescent at a half-hourly time step for 

a period oflow water running from 919100 to 2919100 and a period of increased water 

level running from 8/12/01 to 14/12/01. Resuspension rates were modified and 

modelled and observed outputs compared graphically to determine the most 

appropriate resuspension rate. Additionally, a model run comparing modelled to 

observed daily averaged data made from fine-scale half-hourly observations in Lake 

~rescent was made for the period running 919100 to 18/10/00. This was done to assess 

the ability of DYRESM-CAEDYM to model sediment resuspension dynamics at a 

coarser time scale that would be more appropriate for running model scenarios of a 

year or longer. 
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Once the best estimates of resuspension rates from these analyses had been chosen, 

the model was run for both lakes over the period April 19th 2000 to December 31 st 

2001, and the correspondence between modelled and observed values plotted and 

analysed using regression. The modelled values were deemed a good fit if this 

regression did not differ significantly from a 1: 1 relationship between observed and 

modelled values. 

4.2.6 Modelling management scenarios with DYRESM - CAEDYM 

After calibrating DYRESM-CAEDYM to simulate sediment entrainment and 

sedimentation, the model was used to investigate the likely benefits of possible 

management options such as water level manipulation with the goal of limiting the 

frequency and magnitude of sediment resuspension events. 

From Chapter 3, Section 3.3.2, it appears there exists an optimum water level for both 

lakes Crescent and Sorell, below which a significant increase in the magnitude and 

hysteresis in turbidity and SPM results. Modelling runs were undertaken in an attempt 

to determine the benefits of maintaining water levels at various heights. The heights 

investigated incorporated the 'optimum' water levels derived in Chapter 3 along with 

water levels above and below this point (Table 20 and Table 21 ). The corresponding 

changes on sediment resuspension dynamics were then summarised. 

Table 20 Lake Crescent lake levels chosen for resuspension modelling runs. 

Lake Level (mASL) and Label Definition 
802.15 - Actual Conditions The actual water level of Lake Crescent at the 

beginning of the time period when modelling 
commenced 

802.7 -Preferred Water Level The water level identified in Chapter 3 below which 
point a significant increase in the magnitude and 
hysteresis in turbidity and SPM results 

803.5 - Marsh Level The water level at which point the marshes 
surrounding the lake begin to be inundated 

803.8-FSL Lake Crescent level at full supply 
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Table 21 Lake Sorell lake levels chosen for resuspension modelling runs. 

Lake Level and Label Definition 
802.8 - Actual Conditions The actual water level of Lake Sorell at the beginning 

of the time period when modelling commenced 
803.2- Critical Water Level The water level identified in Chapter 3 below which 

point values of colloidal turbidity increase 
significantly 

803.5 -Preferred Water Level The water level identified in Chapter 3 below which 
point a significant increase in the magnitude and 
hysteresis in turbidity and SPM results 

804.36-FSL Lake Sorell lake level at full supply 

To investigate the role water levels play in limiting sediment resuspension in both 

lakes, model runs were carried out with an initial water level or stage height being set 

to return higher water levels during the run of the model. Each model run employed 

the same inflow, outflow and meteorological files, but differed in the initial stage 

height. Lake levels were set so that water depths reached during the course of the runs 

differed significantly to allow comparisons to be made across an array of lake levels 

that straddled both the actual conditions, water levels that may correspond to 

'optimum levels' and levels at which the lakes reached full supply. 

4.3 Results 

4.3.1 Critical shear stress 

All seven regressions of in-situ measurements of SPM concentration on r estimated 

from wave theory were highly significant (all P < 0.001, all R2 > 0.75). An example 

of one of these regressions is given in Figure 34. The mean re(± 95% confidence 

interval) was 0.053 ± 0.031 N m·2, which corresponds closely to estimates from 

elsewhere (Lick 1982; Carper and Bachmann 1984; Arfi, Guiral et al. 1993; Hamilton 

and Mitchell 1996). For example, Sheng and Lick (1979) found re of~ 0.05 N m·2 in 

Lake Erie as did Arfi et al. (1993) in Lake Ebrie, while Romero et al. (2002) termed 

this value as the 'characteristic' re when evaluating the likelihood of sediment 

resuspension in Lake Pamvotis. Further support for a value of re~ 0.05 N m·2 is 

provided by Figure 35 where 0.05 N m·2 closely corresponds to the point at which the 
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wave base influences the lake bed for both lakes. Consequently, in all subsequent 

modelling Tc is taken to be 0.05 N m-2
. 

Figure 34 Piecewise linear regression of SPM concentration lagged by 1 h vs 
shear stress for a resuspension event in Lake Sorell in March 2002. The estimate of Tc 

for this event(± 1 standard error) was 0.055 (± 0.020), and is shown by the vertical 
broken line on the graph. (Regression statistics: F(4,11 l = 681.3, P < 0.0001 , 
R2 = 0.944). 
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Figure 35 Modelled shear stress for a 20 knot westerly wind versus the wave base 
depth for 745 points across Lake Sorell and 266 points across Lake Crescent. Where 
the wave base equals water depth (circled portion), Tc occurs. Points at which the lake 
depth minus the wave base depth is negative are where the wave mixing depth is 
greater than the lake depth resulting in resuspension. 
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The disparity in the frequency and severity of sediment entrainment between the two 

extremes of water level was considerable. Figure 36 depicts changes in shear stress 

and SPM concentrations in Lake Sorell for a 2-3 week period in August 2000, at low 

water levels, and during March 2002, at higher water levels. Figure 37 depicts a 

similar data set for Lake Crescent, with the periods being September 2000 and 

December 2001, respectively. Figure 36 and Figure 37 show SPM concentrations 

rising rapidly and almost simultaneously with increasing shear stress resulting in two 

to five fold increases in concentration. When shear stress was reduced, concentrations 

declined sharply which suggests the suspended material had relatively fast settling 

velocities (Lavelle, Mofjeld et al. 1984). 

The frequent occurrence of sediment resuspension events in both lakes Sorell and 

Crescent and the extreme increases in SPM concentration that these events resulted in 

is evident with reference to the Figure 36 and Figure 37. Obvious from these figures is 

the influence higher water levels have on limiting the amount of sediment being 

resuspended, thus reducing the magnitude of SPM concentrations. The reduced 

'background' level of SPM (excluding colloidal solids) present during quiescent 

periods between the low and high water runs is also evident. For both lakes, the 

background concentrations of SPM fell from around 200 mg L-1 to approximately 

30 mg L-1 reflecting a huge drop in the suspended sediment load on the water column, 

in turn reflecting a considerable reduction in bed erosion occurring at marginally 

higher water levels. 

By comparison, the greatest SPM concentration reached during resuspension events at 

higher water levels in early 2002 did not reach the magnitude of background 

concentrations present in both lakes at lower water levels during 2000. This would 

most likely be caused by a reduction in the area of the lake bed exposed to high 

energy erosion coupled with longer time periods during which sediments were left 

undisturbed; this would allow some limited opportunity for consolidation thus 

reducing the magnitude of entrainment reached during sediment resuspension events. 
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Figure 36 Lake Sorell resuspension figures of fluxes in SPM versus shear stress; 
' low water level' (802.88m to 803.08 mASL), and ' high water level ' (803 .65m to 
803.47 mASL) 
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Figure 37 Lake Crescent resuspension figures of fluxes in SPM versus shear 
stress; ' low water level ' 802.30m to 802.28 mASL; 'high water level' 802.70m to 
802.66 mASL 
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In a number of studies, researchers have found the concentration of suspended solids 

to increase linearly with increased shear stress above re (Ostubo and Muraoka 1988; 

Hamilton and Mitchell 1996; Bailey and Hamilton 1997). This is similar to the 

relationships found in Lake Sorell. Table 22 outlines results for regression analysis 

carried out on seven discrete resuspension events in Lake Sorell in early 2002. The 

analyses show SPM concentration to be highly correlated with increasing shear stress. 

143 



Sediment Resuspenszon in Lakes Sorell and Crescent 

It may be concluded that once shear stress surpasses re of0.05 N m·2 in lakes Sorell 

and Crescent, sediment resuspension results. For increasing shear above the threshold, 

SPM concentrations increase linearly reflecting an increase in the amount of sediment 

entrained from the lake bed and an increase in the erosion depth of sediments. 

Increasing shear stress therefore has significant ramifications on water quality 

variables linked with SPM concentrations. 

, 

Table 22 Regression analysis of shear stress versus SPM concentration for seven 
discrete resuspension events in Lake Sorell between the end of January 2002 and the 
start of April 2002. 

Date Coefficient Intercept R:l N p 

25/01/2002 173.1 17.6 0.87 79 < 0.001 
12/02/2002 201.4 21.4 0.77 43 < 0.001 
14/02/2002 201.4 21.4 0.69 36 < 0.001 
05/03/2002 158.7 27.0 0.76 21 < 0.001 
10/03/2002 269.7 22.0 0.74 31 < 0.001 
17/03/2002 167.4 27.7 0.83 20 < 0.001 
02/04/2002 179.5 7.9 0.85 30 < 0.001 

The effects of varying lake area on the extent of the bed exposed to critical shear 

stress are depicted in Figure 38 through Figure 41. Figure 38 and Figure 39 are 

contour plots of shear stress in lakes Crescent and Sorell for several different lake 

levels for an average 15 knot prevailing westerly wind; Figure 40 and Figure 41 show 

the influence that increased wind intensity has on shear stress at a fixed lake level of 

802.7 mASL in Lake Crescent and 803.5 mASL in Lake Sorell. 

Remembering that sediment resuspension increases significantly above a shear of 

0.05 N m·2, and that the scale of erosion and entrainment is proportional to the 

magnitude of shear stress, Figure 38 and Figure 39 show clearly that higher water 

levels markedly reduce the extent and magnitude of sediment resuspension in both 

lakes. Figure 40 and Figure 41 show that at a lake level that historically returned 

acceptable levels of water clarity, episodic wind events would still lead to sediment 

resuspension at high wind speeds. 
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Figure 38 Shear stress contour plots for Lake Crescent at six different lake levels 
for a 15 knot (average) westerly wind. Contour intervals as N m-2

. Purple areas 
correspond to a shear stress < 0.05 N m-2
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Figure 39 Shear stress contour plots for Lake Sorell at five different lake levels 
for a 15 knot (average) westerly wind. Contour intervals as N m-2

• Purple areas 
correspond to a shear stress< 0.05 N m-2 
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Figure 40 Shear stress contour plots for Lake Crescent at a lake level of 
802. 7mASL for four different wind speeds. Contour intervals as N m-2

• Purple areas 
correspond to a shear stress< 0.05 N m-2
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Figure 41 Shear stress contour plots for Lake Sorell at a lake level of 803.5mASL 
for four different wind speeds. Contour intervals as N m-2• Purple areas correspond to 
a shear stress < 0.05 N m-2• 

5 knot westerly 10 knot westerly 

510000 511000 512000 513000 514000 515000 516000 517000 518000 519000 510000 511000 512000 513000 514000 515000 516000 517000 518000 519000 

15 knot westerly 20 knot westerly 

510000 511000 512000 513000 514000 515000 516000 517000 518000 519000 
510000 51 1000 512000 513000 514000 51!5000 516000 517000 518000 519000 

4.3.2 Calibration of D YRESM-CAED YM 

4.3.2.1 Water levels and temperature for DYRESM 

Figure 42 to Figure 45 compare modelled estimates of temperature and lake level to 

measured field data for both lakes Sorell and Crescent. DYRESM predicts changes in 

lake level and temperature for Lake Crescent and Lake Sorell extremely well (Table 

23). This shows that the information used for the meteorological forcing file and the 

input files of tributary inflow volumes and withdrawals from the lakes are accurate. It 

may be concluded that the initialisation and running ofDYRESM was a success and 

therefore allows the incorporation of CAEDYM into the modelling framework. 
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Figure 42 Modelled versus observed lake level change in Lake Crescent, April 
2000 to December 2001. DYRESM Lake Level= modelled lake level. 
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Figure 43 Modelled versus observed temperature changes in Lake Crescent, April 
2000 to November 2001 . DYRESM Temperature= modelled temperature. 
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Figure 44 Modelled versus observed lake level changes in Lake Sorell, April 
2000 to February 2002. DYRESM Lake Level = modelled lake level. 
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Figure 45 Modelled versus observed temperature changes in Lake Sorell, April 
2000 to November 2001 . DYRESM Temperature = modelled temperature. 
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Table 23 Overview of regression analysis of modelled versus observed output 
for the DYRESM simulations. 

Intercept Slope R'- N 
Lake Crescent Temperature 2.19 0.72 0.93 386 
Lake Crescent Lake Level -8.80 1.01 0.99 197 
Lake Sorell Temperature 1.47 0.75 0.93 560 
Lake Sorell Lake Level -2.52 1.00 0.98 216 

4.3.2.2 Estimation of particle size 

Figure 46 shows the four events used to calibrate particle sizes for the modelling. All 

showed an abrupt decline in modelled shear stress to fall well below the value of Tc, 

thus implying that Stokes Law applies. Figure 47, Figure 48 and Figure 49 compare 

modelled output from CAEDYM to measured concentrations of SPM for the four 

separate events identified in Figure 46. The combination of the two SPM fractions 

modelled in CAEDYM allows for a more accurate representation of the behaviour of 

the resuspended particles as identified by Weyhenmeyer (1998) who states that fast 

and slow settling particles (coarse and fine) must be considered to adequately describe 

the flux of sediment in the water column. 

Inclusion of a fine fraction was necessary due to the high contribution of colloids to 

suspended solids in both lakes (refer Chapter 3, Section 3.3.2). A 1 µm particle size 

was set for this fraction as this corresponds closely to the size limit of material 

measured in the analysis of suspended solids (refer Chapter 2, Section 2.2.3). Initial 

modelling runs were made with a 1 µm fraction with the addition of a 5, 6 and 7 µm 

fraction to represent the coarser material in suspension (Figure 47). Visual inspection 

revealed an extremely close fit between modelled and measured SPM concentrations 

for each individual event. The 1 µm and 6 µm combined fractions appeared to best 

represent the average particle sizes to best approximate the sedimentation rate of the 

measured field data (Figure 47). 
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To confirm the inclusion of a 1 µm fraction, model runs were undertaken with 

increased particle sizes for the fine fraction. In all cases, increasing the fine fraction 

from lµm to 2µm (Figure 48) and 3µm (Figure 49) failed to adequately simulate the 

slow settling characteristics of the fine fraction present in the resuspended material. 

Figure 46 Passive sedimentation events for Lake Sorell that correspond to events 
1, 2, 3 and 4 depicted in Figure 47, Figure 48 and Figure 49. 
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Figure 47 Lake Sorell sedimentation rates for a lµm particle size component plus 
a 5, 6 and 7µm component. 
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Figure 48 Lake Sorell sedimentation rates for a 2µm particle size component plus 
a 5, 6 and 7µm component. 
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Figure 49 Lake Sorell sedimentation rates for a 3µm particle size component plus 
a 5, 6 and 7µm component. 

'a, 
E 

:E a.. 
en 

70 

60 

50 

40 

30 

20 

10 

0 

--3um+5um 

Event 2 

2 Day 3 4 5 

--3um+£um --3um+ ?um Event 1 

-- Event 3 -- Event 4 

153 



Sediment Resuspension in Lakes Sorell and Crescent 

A similar investigation was undertaken with data obtained from Lake Crescent during 

December 2001. This was done to confirm that setting particle sizes for the two 

modelled fractions of 1 µm and 6µm would adequately represent the settling 

characteristics of the material in suspension when compared to measured field data. 

Figure 50 identifies the passive sedimentation events used in the modelling analysis 

(Figure 51 ). 

Figure 50 Passive sedimentation events for Lake Crescent that correspond to 
events 1, 2, and 3 depicted in Figure 51. 
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As was found with Lake Sorell, the inclusion of a 1 µm particle component enabled 

CAEDYM to model the slow settling fraction that is evident in the water column after 

the initial coarse component has largely settled out. Also, the inclusion of a 6µm 

component to account for coarse material in suspension appeared to adequately reflect 

the composition of suspended material as measured in the field. 
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Figure 51 Lake Crescent sedimentation rates for a 1 µm particle size component 
plus a 5, 6 and 7µm component. Events 1, 2 and 3 correspond to passive 
sedimentation events labelled in Figure 50. 
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It was concluded that for both lakes Sorell and Crescent, setting the particle sizes for 

the two fractions modelled in CAEDYM to 1 µm and 6µm respectively would 

adequately reflect the actual average sizes of material resuspended. 

4.3.2.3 Resuspension rate 

The active resuspension events are shown in Figure 52, Figure 53 and Figure 54, and 

the estimates of the resuspension rates derived from the regressions are summarised in 

Table 24, Table 25 and Table 26. From this work, it was concluded that for extreme 

events typical of the lakes at low water levels in which the coarse fraction dominates 

(based on the work on in-situ settling velocities), the resuspension rate would be 

> 0.1 g m-2s-1
• For the finer fraction, which from the measured rate of settling in the 

field data appears to dominate, the resuspension rate is > 0.005 g m-2s-1
• 
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Figure 52 Active resuspension events for Lake Crescent that correspond to events 
1, 2, 3 and 4 summarised in Table 24. 
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Table 24 Regression analysis of four active resuspension events for Lake 
Crescent for September 2000 that correspond to events 1, 2, 3 and 4 labelled in Figure 
52. 

Resuspension 
rate (g/m2/s) Intercept R2 n Date 

Event 1 0.109 216.8 0.94 6 I 0/9/00 
Event2 0.091 269.5 0.86 7 14/9/00 
Event 3 0.048 304.5 0.88 5 16/9/00 
Event 4 0.038 565.1 0.83 7 19/9/00 

Figure 53 Active resuspension events for Lake Crescent that correspond to events 
1, 2, 3 and 4 summarised in Table 25. 
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Table 25 Regression analysis of four active resuspension events for Lake 
Crescent for December 2001 that correspond to events 1, 2, 3 and 4 labelled in Figure 
53. 

Resuspension 
rate fa/m2/s) Intercept R1 n Date 

Event 1 0.0033 58.99 0.71 13 
Event 2 0.0030 42.78 0.94 14 
Event 3 0.0012 60.27 0.62 9 
Event 4 0.0016 51.47 0.96 9 

Figure 54 Active resuspension events for Lake Sorell that correspond to events 1, 
2, 3, 4 and 5 summarised in Table 26. 
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Table 26 Regression analysis of five active resuspension events for Lake Sorell 
for January 2002 to March 2002 that correspond to events 1, 2, 3, 4 and 5 labelled in 
Figure 54. 

Resuspension 
rate (g/m2/s) Intercept R2 n Date 

Event 1 0.0047 75.40 0.87 16 28/1/02 
Event 2 0.0009 84.81 0.85 23 29/1/02 
Event 3 0.0015 90.43 0.92 14 5/3/02 
Event 4 0.0029 93.77 0.92 19 10/3/02 
Event 5 0.0025 100.88 0.76 16 18/3/02 

Sub-daily runs of half-hourly time steps were initially made with particle sizes of 

1 µm and 6 µm and resuspension rates of0.005 and 0.1 g m·2s·1
, followed by 

numerous runs incrementally changing these values until the best visual fit between 

modelled and observed values were obtained (Figure 55 and Figure 56). From this, it 
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was concluded that a resuspension rate of0.01 g m-2s-1 for the lµm component and 

0.25 g m-2s-1 for the 6 µm component best approximated the actual resuspension rates 

of this material in the lakes at these timescales, and these estimates were used for the 

detailed comparison of daily DYRESM-CAEDYM output to daily average 

measurements for Lake Crescent between the 8/9/00 and the 18/10/00. The 

resuspension rates used for the daily runs based on model calibration from the sub­

daily runs produced the best fit with observed data (Figure 57). It was therefore 

concluded that a resuspension rate of 0.01 g m-2s-1 for the 1 µm component and 0.25 

g m-2s-1 for the 6 µm component best represented the actual resuspension rates of this 

material in the lakes. The relationship between modelled and observed total 

suspended solids concentration for this period in Lake Crescent is very strong and 

close to 1: 1 (Figure 57). 

Figure 55 Comparison of half-hourly measured SPM concentration (mg/L) and 
modelled SPM concentration (mg/L) for the lµm, 6µm and combined lµm and 6µm 
(total) fractions for Lake Crescent for September 2000. DYCAD SPM = 
DYRESM-CAEDYM modelled SPM. 
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Figure 56 Comparison of half-hourly measured SPM concentration (mg/L) and 
modelled SPM concentration (mg/L) for the lµm , 6µm and combined lµm and 6µm 
(total) fractions for Lake Crescent for December 2001. DYCAD SPM = 
DYRESM-CAEDYM modelled SPM. 
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Figure 57 Comparisons of modelled and daily measured SPM concentration 
(mg/L) for Lake Crescent, September 2000 to October 2000. 
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Using these estimates, the modelled concentrations from April 19th 2000 to December 

31st2001 are depicted in Figure 58 and Figure 59. For both Lake Crescent and Lake 

Sorell, regression analysis of measured versus modelled total suspended solids yielded 

relationships with slopes not significantly different from 1 (Table 27), although Lake 

Sorell is less well fitted by the modelled values than Lake Crescent, with modelled 

values tending to be higher than observed values (Figure 60). Inspection of the time 

series plot for Lake Sorell shows that modelled values tended to be higher than 

measured values in the autumn and early winter months of2001 as the lake level 

started to rise from its summer minimum (Figure 59). These results are encouraging, 

and suggest that DYRESM-CAEDYM returns sufficiently reliable results using the 

values chosen to initialise the model. The final values used in subsequent modelling 

are summarised in Table 28. 

Table 27 Summary statistics for the regressions of observed SPM concentrations 
vs. modelled concentrations for lakes Crescent and Sorell. The slopes(± 1 standard 
error, SE), P-value for the test of the difference of slope from 1, coefficient of 
determination, r2

, and sample size, n, are given. 

Lake slope p rL n 
(±SE) 

Crescent 0.967 0.816. 0.609 33 
.(± 0.139) 

Sorell 0.814 0.062 0.731 32 
(± 0.110) 

Table 28 Values of constants for DYRESM-CAEDYM modelling of sediment 
resuspension in lakes Sorell and Crescent. 

Constant Particle Size Value 
Particle Density lµm 2650 

(kg m·3) 6µm 2650 
Critical Shear Stress 1 µm .0.05 

(Nm-2) 6µm 0.05 
Resuspension Rate 1 µm 0.01 

(g m·2s-1) 6µm 0.25 
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It must be realised that DYRESM-CAEDYM models daily 'average' conditions and 

the meteorological data used in the simulations are 'average' climatic values over the 

time step in question. In the case of resuspension dynamics, both lakes Crescent and 

Sorell exhibit considerable changes in daily suspended solids concentration (Figure 52 

and Figure 53). The field data used for comparisons of modelled and observed 

suspended solids consist of a lake-wide average of 8 samples taken over a short time 

period (1-2 h) for each date and, therefore, does not resolve sub-daily fluctuations in 

suspended solids concentration. 

Figure 58 Plot of modelled SPM concentration vs date (grey solid line) for Lake 
Crescent, with measured values of SPM plotted with symbols .The dotted black line is 
the lake level in m above sea level. 
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Figure 59 Plot of modelled SPM concentration vs date (grey solid line) for Lake 
Sorell, with measured values of SPM plotted with symbols. The dotted black line is 
the lake level in m above sea level. 
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Figure 60 Relationship between measured and modelled SPM concentrations for 
lakes Crescent and Sorell. Solid line is the regression fit, broken grey line is the 1: 1 
relationship. 
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4.3.3 Modelling management scenarios 

Figure 61 and Figure 62 detail modelled output of the lµm fraction, the 6µm fraction 

and the total SPM concentration for the different lake levels in lakes Crescent and 

Sorell. Each modelling run was for the period running from the 19th of April 2000 to 

the 31 st of December 2001. The result is a series of model runs that use the same 

inflow/outflow and meteorological forcing data as the original data file but 

comparisons can be made with the predicted bene~ts of subtle changes in lake level. 

The results illustrate clearly the potential for limiting sediment resuspension by 

maintaining the lakes at higher levels. 

Interestingly, with reference to Figure 61 and Figure 62, at the higher water levels 

approaching full supply, a major reduction in the lµm fine colloidal fraction results in 

both lakes. Limiting the amount of colloidal material being resuspended should be a 

high priority as the fine colloidal fraction, due to its ability to stay in suspension for 

extended periods of time (Chapter 3, Section 3.3.2), would maintain high levels of 

turbidity even during periods of calm weather when the coarse fraction has settled out. 

In all cases, significant reductions in suspended solids and consequent improvements 

in water clarity and light attenuation result from increasing lake level. 

163 



Sediment Resuspension in Lakes Sorell and Crescent 

Figure 61 Overview of the effect of manipulating lake level on sediment 
resuspension in Lake Crescent. 
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Figure 62 Overview of the effect of manipulating lake level on sediment 
resuspension in Lake Sorell. 
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DYRESM-CAEDYM predicts a considerable increase in the severity of sediment 

resuspension in both lakes at low water levels that were typical of those reached 

during 2000 and 2001 (Figure 63). This reflects a massive increase in SPM entering 

the water column due to increased sediment entrainment and an increased erosion 

depth of sediments, which, in turn, exposes material that has long remained 

undisturbed, possibly increasing the release of stored colloids (Chapter 3, Section 

3.3.3). Lake level management appears to be a promising means to reduce sediment 

resuspension in both lakes. 

Figure 63 Box-plot summary of the effect of manipulating lake level on SPM 
concentration in both lakes Crescent and Sorell. Values between the inner and outer 
fences are plotted with asterisks. Values beyond the outer fences, called far outside 
values, are plotted with empty circles. 
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4.4.1 Shear stress and changes in lake area 

The value of Tc estimated from field data accords with that found in several other 

studies. Moreover, the value of 0.05 N m·2 was further supported in the calibration 

runs for CAEDYM by the close agreement with observed and modelled data. It was 

also clear from modelling the changes in the area of lake bed exposed to shear stresses 
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greater than re that changes in the water levels in these lakes have a strong potential to 

affect sediment resuspension and the light climate in these lakes. 

The pattern of distribution of coarse and fme sediments in these lakes further supports 

the results of these initial calculations. Continual sedimentation and resuspension 

leads to a sorting of material in lakes (Hakanson and Jansson 1983). The sediment in 

exposed shallow areas is coarser, because lateral transport causes the fme material to 

concentrate in deeper sheltered areas where resuspension rarely occurs (Douglas 

Evans 1994). Carper and Bachmann (1984) imply that the areas that reflect high 

energy 'erosional areas' are not an important source of suspended solids. It is the 

areas where resuspension rarely occurs that become important when winds or lake 

levels are such that resuspension of this material occurs (Scheffer 1998). In the case of 

Lake Crescent and Lake Sorell, the areas that experience high shear stress depicted in 

Figure 38 and Figure 39 at higher lake levels are areas of well-armoured reef or sandy 

shore. At lower water levels, shear stress increases across areas of the lake basin 

where resuspension rarely occurs. These areas have high levels of fine-grained 

'depositional' sediment. It is resuspension of this material that has resulted in the 

extreme increase in suspended particulate and colloidal material irt both lakes 

(Chapter 3, Section 3.3.2 and 3.3.3). 

To limit sediment erosion and improve water clarity it is necessary to reduce the level 

of shear stress exerted on the lake bed, and manipulation of lake levels is one 

potentially effective management option. 

4.4.2 Model calibration 

The choices of small and large particle sizes is critical since the settling velocities of 

sediment particles determine the length o_f time that particles remain suspended in the 

water column (Hamilton and Mitchell 1996). Additionally, the fine settling fraction 

represented by the lµm SPM component in CAEDYM, contributed significantly to 

nutrient fluxes (Appendix 9) and SPM concentration (Appendix 4), as well as greatly 

increasing light attenuation in the water column (Chapter 3, Section 3.3.2). Hence, in 

lakes Crescent and Sorell, where resuspension processes are clearly important in 

controlling turbidity, light attenuation and nutrient fluxes, the ability to distinguish 

between fme and coarse particulate fractions and their settling characteristics is 
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advantageous in a modelling scenario, improving the representation of how these 

fractions behave in the lake environment along with providing valuable information as 

to how each individual fraction behaves under differing management scenarios. 

The 'in-situ' method of calibration used here was assumed to be more representative 

of natural conditions than measurements made under quiescent conditions in the 

laboratory, as in-situ calibration takes into account the naturally turbulent conditions 

under which particles settle in a lake (Bailey and Hamilton 1997). The final values of 

6 µm and 1 µm appeared to be the best choices to represent the 'average' large and 

small particle size fractions being resuspended in these lakes. 

The final resuspension rates were within the range of values found by Vlag (1992) of 

0.01 - 0.4 g m·2s·1• The values also straddled the resuspension rate estimates made by 

Bailey and Hamilton (1997) of 0.023 to 0.035 g m·2s·1 but were higher than estimates 

made by Murphy (2001) of2 x 10"6 to 4.5 x 10·5 g m·2s·1 when investigating sediment 

resuspension in Lake Mokoan, a large shallow lake in Victoria. This may be due to 

the sediments of Lake Mokoan being more dispersive and resuspendable when 

compared to the sediments of lakes Crescent and Sorell and the lakes studied by Vlag 

(1992) and Bailey and Hamilton (1997). 

In the case of Lake Sorell, modelled SPM concentration was generally higher than 

measured values. This may be due to the substantial contribution colloids make to 

SPM concentration in Lake Sorell (Chapter 2, Table 11; Chapter 3, Section 3.3.2; 

Appendix 4). Importantly, measured SPM often underestimates this material due to 

fine colloidal particles failing to be retained on the surface of the filter paper during 

the gravimetric determination of SPM. This may explain why modelled estimates of 

SPM are slightly higher than measured values. It is possible that DYRESM­

CAEDYM gives a closer approximation of suspended solids concentration by 

including this colloidal material in Lake Sorell because it includes a significant" 

colloidal fraction in its modelled estimate. 

Alternatively, the overestimate ofDYRESM- CAEDYM in modelling SPM values in 

Lake Sorell may be due to the models failure to take account for changes in bottom 
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type with significant areas of Lake Sorell consisting of well armoured rocky reef and 

sandy shore that would provide limited material for entrainment compared to areas 

dominated by fine and coarse silts. DYRESM - CAEDYM assumes the lake bed to be 

of uniform composition. Calibration of the models took place during a time of 

reduced water level and from visual observation of Lake Sorell at low water levels, it 

was observed that an increase in water level would increase the areas of sandy shore 

and rocky reef inundated and likely lead to changes in the overall relative significance 

of these areas in changing average sediment resuspension dynamics within the lake. 

A number of additional factors must be taken into account when comparing modelled 

to measured SPM. Most importantly, DYRESM-CAEDYM estimates horizontally 

averaged SPM concentration as determined from average meteorological conditions, 

while actual measured conditions are likely to be more variable. Additionally, several 

other factors that are not considered in the modelling framework ofDYRESM­

CAEDYM may contribute to variation in observed versus modelled output. These 

include lake circulation currents and changes in sedimentation rate due to changes in 

average particle size through flocculation and deflocculation (Hamilton and Mitchell 

1996); variations in bottom conditions across the lake that influence entrainment such 

as the presence and density of aquatic macrophytes (James, Barko et al. 2004); the 

degree of consolidation (Bengtsson, Hellstrom et al. 1990; Vlag 1992); the general 

composition of sediments su~h as organic content and mineralogy (Sheng and Lick 

1979); and the activity of benthic organisms (Lick 1982). 

All these factors may differ spatially across the lake bed and give rise to variations in 

observed SPM levels under comparable levels of shear stress whereas DYRESM­

CAEDYM, and in fact the majority of sediment resuspension models, assume these 

variables to be relatively constant within a system. The significance and importance of 

variations between observed and modelled data depend largely on the aimed 

application of the models and the interpretation of the results. For the current 

application ofDYRESM-CAEDYM in investigating long term, lake averaged 

changes in sediment resuspension dynamics, such factors would be less relevant and it 

may be concluded that in light of these factors, changes in SPM concentration through 

resuspension and sedimentation as modelled by DYRESM-CAEDYM fit very well to 

observed values of SPM. 
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Due to the complex and heterogenic nature of sediment resuspension as it occurs in a 

natural ecosystem (Blom, Van Duin et al. 1992), applying a one-dimensional model 

has its limitations (Murphy 2001). The bathymetric data utilised by DYRESM is a 

significant simplification of the bathymetry in three dimensions and fails to account 

for variations in wind fetch as influenced by basin shape and local topography. 

Particularly in the case of Lake Sorell, basin shape would influence wind fetch around 

the lake considerably (Chapter 1, Figure 1 and Figure 2; Chapter 2, Section 2.2.2), 

with Lake Sorell possessing two distinct basins. The application ofDYRESM­

CAEDYM to model sediment resuspension in Lake Sorell may be further improved 

by modelling the two basins independently. This problem is less pronounced in Lake 

Crescent with a lower shoreline development than Lake Sorell (Chapter 2, Table 2). 

This is particularly pronounced at low water levels when the marsh area of the lakes 

are exposed (Chapter 2, Figure 2). Therefore winds of varying direction will differ in 

the impact on sediment resuspension and transport and would be more pronounced in 

a sy~tem with a highly variable morphology. This may further help explain the 

improved fit of modelled and observed data in Lake Crescent when compared to Lake 

Sorell. 

Investigating or applying models of greater complexity would be warranted if more 

detailed or finer scale processes of sediment resuspension dynamics were to be 

investigated. In such a scenario, applying a model capable of resolving sediment 

resuspension and transport in three dimensions would be valuable (Bailey and 

Hamilton 1997) and provide insight into horizontal gradients and patchiness in 

sediment resuspension dynamics throughout the lakes. Such an application would 

allow conclusions to be drawn as to the significance of changing bottom type on 

influencing resuspension dynamics in lakes Crescent and Sorell. 

4.4.3 Modelling management scenarios 

From work carried out to date, a highly significant relationship has been found 

between decreasing water levels in lakes Crescent and Sorell and increasing water 

column sediment loading. In general, the available options for reducing sediment 

resuspension and SPM concentrations are limited: water level manipulation, wind 

fetch manipulation or, in the case of very small water bodies, chemical flocculation. 

169 



Sediment Resuspension in Lakes Sorell and Crescent 

Due to the size of both these lakes, the only feasible option is, therefore water level 

management. 

It must be remembered that in the case of both lakes, DYRESM-CAEDYM was 

calibrated during a time of frequent and severe disturbance. The sediments present in 

the lakes would likely have never been eroded to a similar extent previously. This, 

coupled with an increase in the frequency of disturbance driven by the extreme low 

lake levels, would result in largely unconsolidated sediments which would, in turn, 

increase the ease with which sediments are entrained (Blom, Van Duin et al. 1992) as 

the duration between entrainment events is directly proportional to the critical shear 

velocity (Scheffer 1998). Model predictions would represent a 'worst' case scenario 

in regards to sediment resuspension at higher water levels. The modelled estimates 

made at higher water levels would fail to take into account the process of sediment 

consolidation, a process that would be significant at higher levels due to a reduction in 

the total erosion area of the lakes (Hakanson 1981 ), that would lead to increased 

consolidation as sediments would remain undisturbed for increased periods of time. 

Increased consolidation would inturn reduce the pore water content and increase the 

cohesiveness of the sediments (Vlag 1992) thus requiring increased disturbance to 

entrain sediments and reduce the severity of sediment resuspension. 

Rerunning the calibration process at a time of increased and sustained high water 

levels would be beneficial to determine if sediment resuspension dynamics change in 

lakes Crescent and Sorell over an extended time period. Nonetheless, from the 

investigative modelling runs carried out thus far, substantial improvements in water 

clarity can be expected if both lakes were maintained at relatively high levels. If the 

lakes were held close to full supply, a five to eight fold improvement in SPM levels 

would likely be achieved. However, with the lakes maintained at levels comparable to 

the average lake levels of the past, sediment resuspension, although significantly 

reduced from the extreme levels observed recently, would still influence the lakes on 

a regular basis. 

Due to the important role sediment resuspension plays in driving ecological processes 

in lakes Sorell and Crescent, the successful application ofDYRESM-CAEDYM to 

model sediment dynamics has provided the platform for further levels of complexity 
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to be added to the modelling framework. This will allow the influence of sediment 

resuspension on primary productivity to be assessed through changes in nutrients and 

light attenuation, as previous work (Chapter 2, Section 2.3.3) has shown sediment 

entrainment to influence trophic status as indicated by increases in TN, TP and 

chlorophyll -a. 

Having identified lake level management as a key to improving the current state of 

water clarity through a reduction in SPM loading, the next step would be to model the 

possible behaviour of both lakes if water clarity was to improve, as both systems have 

lost their long-established "equilibrium stability" of the past. Improvements in water 

clarity that would result from a reduced frequency and severity of sediment 

resuspension could possibly provide ideal conditions for phytoplankton dominance 

through increased light availability coupled with increased availability of TN and TP 

(Scheffer 1998). Further understanding the interaction between the different trophic 

levels of the lakes and detennining the dominant ecosystem processes would increase 

our understanding of the way the lakes may behave when water clarity improves, 

along with providing further options for possible management strategies aimed at 

manipulating specific aspects of the ecosystem and helping to promote a clear-water 

macrophyte dominated state. 

The successful application ofDYRESM-CAEDYM to model sediment resuspension 

provides a good foundation for investigating more complex ecosystem processes such 

as trophic interactions and the importance sediment resuspension plays in influencing 

primary productivity through changes in light availability and nutrient dynamics. This 

is particularly relevant to lakes Crescent and Sorell in which sediment resuspension 

has proven to be a critical process in influencing the ecology of the lakes. 
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Chapter 5 The limnological paradox of Lakes Sorell and 
Crescent revisited. Stable state theory and the current 
situation: the switch from clear to turbid water. 

5.1 Introduction 

5.1.1 Background 

The contrasting trophic characteristics typical of lakes Sorell and Crescent prior to the 

degradation in water quality in the late 1990s were dramatic. Based on Cheng and 

Tyler's work in the early 1970's (Cheng and Tyler 1973a; Cheng and Tyler 1973b; 

Cheng and Tyler 1976a; Cheng and Tyler 1976b) and unpublished data held by the 

Inland Fisheries Service, Lake Sorell was a clear, macrophyte dominated lake, while 

Lake Crescent was turbid and dominated by phytoplankton. Some of the major 

contrasts between the lakes are summarized in Table 29. Because these striking 

differences persisted in these adjacent lakes with almost identical catchments in terms 

of geology, vegetation and land-use, Cheng and Tyler dubbed these differences a 

"limnological paradox". 

More recently, differences between clear-water and turbid water conditions in shallow 

lakes have been attributed to lakes "flipping" between alternative stable states 

(Scheffer, Bakema et al. 1993; Jeppesen, Jensen et al. 1999), and the kinds oftrophic 

differences that are apparent between Lakes Crescent and Sorell appear consistent 

with trophic cascade models oflake systems (e.g. Carpenter, Kitchell et al. 1985). If 

such mechanisms do prevail in these lakes, remediation of the current poor water 

quality may depend on understanding and managing higher order trophic interactions 

in the lakes to manipulate the food web and limit phytoplankton productivity 

(Carpenter, Kitchell et al. 1985), which, in tum, would promote the desired clear­

water, macrophyte dominated state (Scheffer, Hosper et al. 1993; Sondergaard, 

Jeppesen et al. 2000). 

Sediment resuspension has been identified as the most important driver influencing 

water clarity and light attenuation at low lake levels in lakes Sorell and Crescent 

(Chapters 2, 3 and 4), but the importance of various processes at higher water levels is 

little understood. The return of high water levels should reduce the importance of 
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sediment resuspension in structuring the ecology of both lakes Sorell and Crescent 

(Chapter 3 and Chapter 4) and result in a physical environment more typical of that 

seen prior to 1998 where the lakes appeared to be in a reasonably stable equilibrium 

state that had been sustained, in large, for several decades. Lake Sorell 

characteristically had relatively clear water and maintained a significant cover of 

littoral aquatic macrophytes; Lake Crescent by comparison appeared 'turbid' or 

'cloudy' due to a higher algal standing crop (Cheng and Tyler 1973a; Cheng and 

Tyler 1976b; Cutler, Kinrade et al. 1990). 

The purpose of this chapter is to present a conceptual model for the functioning of 

these lakes, and evaluate the historical data and those collected for this study to 

evaluate which top-down or bottom-up processes are the strongest candidates for 

explaining Cheng and Tyler's "limnological paradox". Understanding the basis for the 

observed contrasting behaviours of the two lakes is important in understanding the 

significance of both bottom-up and top-down processes in defining the characteristic 

state of each lake. 

5.1.2 Conceptual model 

Figure 64 outlines the prominent abiotic and biotic pathways likely to be typical of a 

shallow lake ecosystem of the Central Plateau, Tasmania and is similar to other 

conceptual models outlining the general ecological pathways characteristic of a 

shallow lake ecosystem (Scheffer 1998). On the left side of the diagram are the abiotic 

variables, such as sediment resuspension, light attenuation and internal and external 

loading and nutrient cy~ling. Each represents 'bottom-up' processes influencing 

primary productivity. On the right are the biotic variables influencing primary 

productivity. Figure 65 is a simplification of the biotic processes summarised in 

Figure 64 and forms the basis for the major dominant trophic interactions focussed 

upon later in this chapter. 
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Figure 64 A schematic diagram outlining the abiotic and biotic pathways present 
in a shallow lake ecosystem typical of Tasmania, Australia. 
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Figure 65 A simplification of Figure 64, depicting the dominant biotic 
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Figure 65 abstracts and summarises the :trophic relationships between the four major 

biotic components in these two lakes. Introduced brown trout are the top-level 

piscivore preying on the golden galaxias (Galaxias auratus) (Stuart-Smith, 

Richardson et al. 2004), which is the dominant woplanktivore. It preys heavily on 

large zooplankton (Hardie 2003), such as Daphnia, which may limit phytoplankton 

via grazing (Scheffer 1998), as it is the larger cladocerans, such as Daphnia, that 

typically have the greatest impact on phytoplankton productivity (Carpenter, Kitchell 

et al. 1987) because grazing rates and filtering rates approximately scale to the square 

of body length (Jackson 2003). 

Lakes Sorell and Crescent share similar species assemblages at all trophic levels but 

exhibit significant contrasts in the density and dominance of species between lakes 

(Table 29). This pattern could be consistent with a trophic cascade operating in Lake 

Sorell, where the greater abundance of piscivorous (and introduced) trout depress the 

abundance of zooplanktivorous golden galaxiids sufficiently to allow large-bodied 

grazers such as Daphnia to limit phytoplankton standing stocks. To date, no research 

has investigated the significance and extent of the trophic relationships that exist in 

either lake, and it is possible that the "limnological paradox", as identified and termed 

by Cheng and Tyler (1973a), is explicable by contrasting trophic interactions in the 

two lakes. 

Table 29 Summary of the trophic characteristics of lakes Sorell and Crescent 
prior to 1997. These are based on data and descriptions in Cheng and Tyler (1973a) 
and from quantitative and qualitative unpublished records held by the Inland Fisheries 
Service of Tasmania. 

Lake Sorell Crescent 
Average Turbidity < lSNTU >25NTU 

Percentage macrophyte cover >40% <10% 
Average Chlorophyll a < 10 µg/L > 20 µg/L 

Invertebrate composition Frequent Daphnia Rotifers, copepods, 
small Daphnia 

Zooplanktivore composition Low numbers of Very high numbers of 
Galaxias auratus Galaxias auratus 

Piscivore composition High biomass of Low biomass of 
Salmo trutta Salmo trutta 

175 



Limnological Paradox of Lakes Sorell and Crescent 

While the broad pattern of differences between Lake Sorell and Lake Crescent seem 

consistent with a top-down trophic cascade operating in Sorell, it remains unclear why 

Crescent, which also has trout, remained dominated by phytoplankton. Moreover, 

conformity of a lake to a trophic pattern predicted by an hypothesised mechanism 

does not prove the existence of that mechanism, and further information needed to be 

assembled to appr~ise the potentially competing explanations of how these lakes 

function. 

To further understand the potential role for higher trophic interactions to influence the 

dynamics of these lakes, I sought further, more intensively collected survey data on 

key features of the flora and fauna that have been deemed important "markers" of 

trophic cascades in shallow lakes. Thus, to understand the degree to which trophic 

interactions influence primary productivity, information on zooplankton community 

characteristics, particularly cladoceran species composition, size and biomass allows 

the potential for phytoplankton limitation by zooplankton grazing to be assessed 

(Scheffer 1990). Similarly, the size and species composition of the zooplankton 

community reflect the importance of higher order consumers on influencing 

zooplankton community characteristics as selective feeding by zooplanktivorus fish 

on large-bodied zooplankton may result in a zooplankton community dominated by 

small individuals (Vanni 1986; Northcote 1988; Modenutti, Balseiro et al. 1993; 

Donald, Vinebrooke et al. 2001). Small zooplankton have less impact on 

phytoplankton as grazing rate decreases with decreasing body size (Brooks and 

Dodson 1965; Hall, Threlkeld et al. 1976; Vanni 1987), therefore the loss oflarge­

bodied zooplankton through selective feeding by zooplanktivorous fish may lead to an 

increase in algal biomass (Jeppesen, Jensen et al. 1990). 

Similarly, detailed information on phytoplankton species succession may indicate the 

influence of zooplankton grazing on limiting phytoplankton productivity and 

structuring the phytoplankton community as zooplankton select for both size and type 

of food (McCauley and Briand 1979; Vanni 1986; McQueen and Post 1988). 

To assess the potential significance oftrophic interactions on limiting primary 

productivity in lakes Sorell and Crescent, detailed quantitative data was collected on 

the phytoplankton and zooplankton communities of both lakes between April 2000 
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and August 2002. Additional to this, detailed inforn'lation was collated from parallel 

studies undertaken on the golden galaxias and brown and rainbow trout populations of 

the lakes. Qualitative data and information that dated back to November 1996 were 

also analysed and assessed, and provided a significant and extended data set for 

investigating and characterising zooplankton community dynamics for a period 

preceding the degradation in water quality that occurred in 1998. The goal was to 

evaluate the potential oftrophic interactions to influence primary productivity in 

either Lake Sorell or Crescent. 

5.2 Methods 

5.2.1 Phytoplankton community composition 

5.2.1.1 Sample collection, identification and enumeration 

Phytoplankton samples consisted of 25 mL of homogenised water taken from a depth 

integrated water sample from 4 separate sites spread across both lakes Sorell and 

Crescent. Phytoplankton samples were taken during routine water quality sampling 

trips (Chapter 2) and· made at two to three week intervals between April 2000 and 

August 2002. A total of 42 separate dates during this period were sampled in Lake 

Sorell and 41 separate dates sampled in Lake Crescent. 

The samples from each site for each sampling occasion were pooled giving a total 

sample volume of approximately 100 mL. The pooling of these samples was justified 

on the basis of yielding a lake-wide "average" community composition as there was 

little interest in characterising site-level, within-lake variations in phytoplankton 

density. The changes in community composition that typify trophic cascades are 

usually large, and such pooling has proven adequate in other studies (Jeppesen, Jensen 

et al. 1999). The combined sample was preserved using approximately 1-2 mL of 

glutaraldehyde per 100 mL of sample (A.P .H.A. 1992). This preservation method was 

preferred over the use of buffered formalin (Imojen Pearce, School of Plant Science, 

University of Tasmania, Pers. comm.) after comparison of duplicate samples 

preserved in a 4% solution of buffered formalin and samples preserved with 

glutaraldehyde. 

177 



Limnological Paradox of Lakes Sorell and Crescent 

Phytoplankton enumeration and identification was carried out according to Standard 

Methods (A.P.H.A. 1992) by Imojen Pearce, School of Plant Science, University of 

Tasmania. Each sample was inverted a number of times to ensure homogeneity. lmL 

was then removed and examined under a Zeiss Axiovert 25 light microscope (Carl 

Zeiss AG, Jenna, Thuringia, Germany). Very dense samples were diluted to assist 

counting. Samples were examined at 40 x and 100 x magnification. Species 

identification and cell number were recorded. Total volume of the samples was 

measured and recorded to determine total counts. 

Algal biomass was estimated from chlorophyll-a concentrations assuming a dry­

weight/chlorophyll ratio of 70 (Scheffer 1998). Chlorophyll analysis was carried out 

by acetone extraction according to Standard Methods (A.P .H.A. 1992) on water 

samples collected during routine water quality trips (Chapter 2, Section 2.2.3). , 

5.2.1.2 Analysis of community composition 

To assess whether the community composition of the phytoplankton had changed 

relative to the earlier studies of Cheng and Tyler (1973) and Cutler et al. (1990), the 

data from all studies were converted to presence/absence since there was no easy way 

of ensuring comparable quantitative data owing to different levels of detail in 

quantifying algae in these earlier studies. Community similarity was computed using 

the Bray-Curtis dissimilarity measure and the sample dates were clustered using 

UPGMA clustering implemented with the Lance and Williams (1967) flexible 

clustering algorithm with the intensity parameter, p, set at -0.1 (Belbin, Faith et al. 

1992). Species were clustered using the same algorithm , but with p = -0.25 (Belbin, 

Faith et al. 1992) and using Austin and Belbin's (1982) two-step dissimilarity 

coefficient. The results of these clusterings were displayed in a two-way table which 

efficiently summarises which species groups are associated with which groups of 

samples. These analyses were carried out in PA TN version 3.03 (Belbin and Collins 

2004). 
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5.2.2 Zooplankton community composition 

5.2.2.1 Sample collection, preservation, identification and enumeration 

Quantitative zooplankton samples were taken at the same times and sites as the algal 

samples. At each site, three samples were taken with a 2.2 L Van-Dorn bottle, giving 

a total water volume collected at each site of 6.6 L. The Van-Dorn bottle was lowered 

vertically into the water column so the top of the bottle was at a depth of 300 mm. The 

bottle was then manually released to obtain a depth-integrated sample. The water 

collected was then passed through a 54 µm mesh plankton net and the material 

retained on the mesh was preserved using 1-2 mL of glutaraldehyde per 100 mL of 

filtrate (A.P .H.A. 1992). The samples from each site were pooled giving a total 

filtered water volume of 26.4 L. 

Similar pooling procedures have proven satisfactory in a previous study of changes in 

zooplankton in these lakes (Burrows 1968) and were comparable to methods used by 

Jeppesen et al. (1999) in characterising zooplankton community characteristics in 

their study on trophic dynamics in shallow lakes. Also, Burrows (1968) found no 

evidence of vertical .stratification of zooplankton in lakes Sorell or Crescent. It was 

therefore concluded that the method of sampling was adequate. 

Qualitative zooplankton sampling was carried out by the Inland Fisheries Service 

between January 1996 and April 2000 at approximate monthly intervals. A total of 55 

samples were collected for Lake Sorell and 56 samples were collected for Lake 

Crescent. These samples consisted of 154 µm mesh net tows taken at the mid water 

site of both lakes Sorell and Crescent. Samples were preserved with buffered formalin 

to a final concentration of approximately 4% (A.P .H.A. 1992). 

Each preserved quantitative sample was inverted a number of times to ensure 

homogeneity and sub-sampled if.necessary. Cladocerans (3 species) were counted and 

sorted according to size class. Biom~ss estimations were made using the relationships 

of Dumont (1975). The cladocerans were the only group of animals analysed 

quantitatively for biomass estimates because these are the largest zooplanktonic 

grazers of phytoplankton in these lakes and are the most likely to limit phytoplankton 

standing crop through grazing pressure (Scheffer 1998). 
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Qualitative estimates of zooplankton community composition were determined in a 

similar way. A sub-sample was taken and counts were made using a stereo 

microscope at 20 x magnification. Individual species ofCladocera (3), Copepoda (2), 

and Rotifera (1) were identified and sorted according to size class. Relative estimates 

of species composition and size class were made. The aim of the qualitative analysis 

was to determine if zooplankton community composition had changed with the 'severe 

degradation in water quality (Chapter 2). For the qualitative analysis therefore, all 

zooplankton groups were identified and enumerated. 

5.2.3 Estimating the abundance of golden galaxias (planktivore) 

Quantitative estimates of the abundance of golden galaxias (Galaxias auratus) were 

made on data supplied by Hardie (2003). Six randomly located seine net hauls (100 m 

x 2.8 m of net with a 5 mm stretched mesh length) were made from boat in Lake 

Crescent on the 24th of May 2001. The total surface area oflake sampled was 400 m2
, 

and the geometric mean number per m2 was calculated since geometric means are 

more appropriate for population estimates (Crawley 2002 p. 71-2). This was then 

converted to an estimate of the total fish in Lake Crescent by multiplying up to the 

surface area of the lake on that sampling date (15.61 km2
). A coarse estimate of the 

abundance of this fish in Lake Sorell was then made assuming the average 10-fold 

smaller abundance in Sorell documented by Hardie (2004) held at this time and using 

the surface area of Sorell (38.82 km2
). The total wet biomass of golden galaxias in 

each lake was then estimated using Hardie's (2003) length-weight regressions based 

on a random sample of 807 fish from Crescent and 773 fish from Sorell, where the 

wet weight, y, of a fish can be calculated from the regression equation on the total 

fork length, x (both R2 > 0.96): y = 9x10-7 x3 4129 for Lake Crescent and 

y = 8x10-7 x x3 5211 for Lake Sorell. 
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The mean length of a sample of 4 475 golden galaxiids from Lake Crescent spanning 

the period of this study was 81.8 mm (95% confidence interval:± 0.6 mm), while the 

mean of a sample of 2 558 fish from Lake Sorell was 76.6 ± 0.9 mm for the same 

period. These "average" fish lengths were used to convert the populations estimates to 

wet biomass. These wet biomasses were then converted to concentrations of fish as 

g m-3 using the estimated volumes of each lake (15.09 x 106 m3 for Crescent and 

84.43 x 106 m3 for Sorell). 

5.2.4 Estimating the abundance of brown trout (piscivore) 

Brown trout (Salmo trutta) biomass and abundance estimates were obtained from the 

unpublished data held by the Inland Fisheries Service, Hobart, Tasmania. The brown 

trout (Salmo trutta) are the only significant piscivore present and prey heavily on the 

golden galaxias (Hardie 2003). Brown trout in Lake Sorell have been shown to 

selectively feed on the golden galaxiid at times (Stuart-Smith, Richardson et al. 2004) 

and have the potential to significantly influence galaxiid numbers. 

In the past, Lake Sorell has supported a highly productive and lucrative recreational 

trout fishery with an Inland Fisheries Service angler survey of the 1992-3 season 

recording ~ 11 OOO anglers to have visited Lake Sorell over the season catching a total 

of approximately 123 OOO fish, with an average catch rate of about 1.5 fish per angler 

per day. Catch rates in Lake Sorell had not changed significantly since the 1950s 

despite signific&nt increases in anglers visiting the lakes each year (Gudde 2004). 

With angler catch rates being as high as 123 OOO fish per year, reflecting a possible 

trout population of over 1 million fish to exist in Lake Sorell at times (J. Diggle, 

Inland Fisheries Service, Hobart. Pers. comm.). 

Lake Crescent by comparison has limited natural recruitment and has been managed 

as a 'trophy trout' water. This has led to significantly fewer fish that are larger in size 

than in Lake Sorell. Accurate estimates of brown trout numbers in the past are limited 

for Lake Crescent, but the total number of trout present is believed to have been as 

few as 10 OOO fish in total (Inland Fisheries Service, Hobart, unpublished data). 

Hardie (2003) hypothesises that the contrast in golden galaxiid numbers between 

lakes Sorell and Crescent is a direct result of differing levels of predation and 

competition pressure by brown trout. 
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Recently, brown trout numbers have declined significantly in Lake Sorell. This has 

been attributed to poor levels of recruitment over the last 6 years (Inland Fisheries 

Service, Hobart, unpublished data; T. Farrell, Inland Fisheries Service, Hobart. Pers. 

comm.) and is possibly due to the degradation in environmental conditions and a 

reduction in suitable spawning resources such as low and sporadic water flows in the 

tributaries entering the lake. Accurate estimates of brown trout numbers at present in 

Lake Sorell are as little as 50 OOO fish in total (T. Farrell, Inland Fisheries Service, 

Hobart. Pers. comm.). Therefore, major changes in the trophic dynamics of the lakes 

may have occurred in recent years as the heavy level of predation exerted on the 

galaxiid population in Lake Sorell may have been reduced. 

In June 2002, 3 OOO adult brown trout were translocated from Great Lake to Lake 

Crescent with the aim of improving fish stocks for the eventual re-opening of Lake 

Crescent to the public (J. Diggle, Inland Fisheries Service, Hobart. Pers. comm.). All 

fish were weighed, measured and tagged prior to release and formed the basis of a 

mark-recapture estimate of trout numbers in Lake Crescent using the Petersen 

estimate, with an extensive netting survey conducted in October 2002 by the Inland 

Fisheries Service. A similar mark-recapture survey was undertaken in Lake Sorell in 

1997 and 2001. Fish were trapped in Mountain Creek from May to July during the 

1997 and 2001 spawning migration. The trapped fish were weighed, measured, tagged 

and released. During the period running August to September of 1997 and 2001, after 

which the tagged fish had returned to the main body of the lake, extensive netting 

surveys were undertaken in Lake Sorell and population estimates made in the same 

manner as Lake Crescent. 

Because of the disparate size classes of the recently introduced trout from Great Lake 

and those that had been in Lake Crescent prior to the restocking, wet biomasses for 

the two groups of fish were estimated from weights of 2 991 of the Great Lake fish 

(mean mass= 1 OOO g), 203 of the remnant population of Lake Crescent brown trout 

(mean mass = 2 634 g) and the 330 rainbow trout (mean mass = 1 566 g) that were 

caught during the surveys. The total wet biomass and concentrations of these fish 

were then calculated as for golden galaxias. 
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5.3 Results 

5.3.1 Phytoplankton community composition 

There were two main groups of survey dates in the resulting clustering and eight 

groups oftaxa (Table 30). The survey from 1987 by Cutler et al. (1990) recorded far 

fewer taxa than either this or Cheng and Tyler's surveys and was probably due to the 

much more limited scope of Culter et al.' s consultancy report with phytoplankton 

samples being taken in both lakes on the 20~ of March, 1987 only. Overall, however, 

the phytoplankton community structure has not changed substantially since the work 

carried out between 1969 and 1972 by Cheng and Tyler (1973a), while Cutler et al. 

. (1990) did record many of the common taxa in species groups D and E of Table 30. 

Essentially, species diversity remains comparable, and the features of diatom 

dominance in Lake Crescent and green 'filamentous' dominance in Lake Sorell still 

holds: in Table 30 the diatoms in species groups B and G are generally in higher 

abundance categories in Lake Crescent than in Sorell, while minute Ulotrichaceae and 

Pediastrum species (from species group F) were amongst the most abundant taxa 

found in Sorell. The relative differences between the two lakes is further emphasised 

in the temporal plots of relative composition over 2000 to early 2002 (Figure 66, 

Figure 67). 

Despite a new taxon of cyanobacteria, Arthrospira, being recorded from Lake 

Crescent m 2001, Microcystis remains common as reported by Cheng and Tyler. Both 

taxa remain absent from Lake Sorell. Moreover, the proportion of cyanobacteria is 

usually< 5% of the total phytoplankton abundance (Figure 66) so there is little 

evidence to support a contention that these lakes are undergoing a change towards 

domination by cyanobacteria (cf. Force 1992). 

The main differences between this survey and those of Cheng and Tyler were that 

several taxa were only recorded from these lakes in 2001 (species groups A, Band C), 

including three species ofNaviculaceae and two species of Aulacoseiraceae (Table 

30). These five species of diatom were abundant in Lake Crescent; whereas in Lake 

Sorell, Navicula 'a', Aulacoseira 'a' and Aulacoseira 'b' were found to be abundant, 

with Navicula 'b' recorded as rare. Whether these differences reflect some changes to 

the algal composition of these lakes, or whether they reflect improved taxonomy since 
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the 1970s is difficult to determine without access to the original collections of Cheng 

and Tyler. Notably, however, there were no taxa recorded by them that were not 

recorded in the 2001 survey. The two species of Aulacoseiraceae are likely 

synonymous with the species of Melosira described by Cheng and Tyler 

(http://www.calacademy.org/iesearch/diatoms/genera/aulacoseira/ ; 

http://www.fhsu.edu/biology/Eberle/DiatomListCentrics.html). Taxonomic 

imperfections do not seriously affect the ecological considerations of this study. 

The other marked difference between the phytoplankton of the two lakes is the 

differences in the proportion of taxa classifiable as meroplanktonic or benthic using 

Ogilvie and Mitchell's (1998) classification. Expressed as a proportion of abundance 

( cells/mL ), Lake Crescent averaged more than 'a 3-fold greater proportion of 

meroplankton than Sorell (Table 31 ), with a maximum proportion of 97% on one 

occasion. Lake Crescent also maintained a much higher absolute abundance of 

meroplankton than Lake Sorell(> 24-fold on average: Table 31). The dominance of 

meroplankton in Lake Crescent is further exemplified by Diatoma elongatum (Table 

32), a diatom species known to be meroplanktonic with the capacity to produce 

resting cells (Schelske, Carrick et al. 1995) which allow it to settle out of the euphotic 

zone and survive before resuspension into the water column during a later stage in the 

life-cycle (Reynolds 1984). The benthic inoculum of resting cells preadapts the 

community by providing a reservoir of colonising individuals that seed the water 

column during resuspension and entrainment (Harris 1986) providing a means of 

increasing long-term survival (McQuoid and Hobson 1996). 

Table 30 Two-way table of the taxonomic composition of phytoplankton for 
lakes Sorell and Crescent for surveys taken during 2001 for this study and previous 
surveys reported by Cheng and Tyler (1973) and Cutler et al. (1990). Black lines 
denote divisions between the clustering groups, and the letters under "species groups" 
denote the groups of species referred to in the text; grey shading denotes a non-zero 
record for that species. An asterisk denotes that the species was recorded in the 
relevant survey; numerical abundance categories are given for the 2001 survey: 1 = 

very rare; 2 = rare; 3 = common; 4 = abundant. Taxa in bold are known to be benthic 
or meroplanktonic (Ogilvie and Mitchell 1998). 
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Bacillariophyta Fragillaria A 1 
Chlorophyta (Green Algae) Genicularia A 3 
Bacillariophyta Navicula 'c' A 3 
Chlorophyta (Green Algae) Pseudophaeocysffs A 

~ I Chlorophyta (Green Filaments) Ulothrix A 

Bacillariophyta Aulacoseira 'a' B 3 3 
Bacillariophyta Aulacoseira 'b' B 4 3 
Chlorophyta (Desmids) Desmidium B 2 2 
Bacillariophyta Navicula 'a' B 4 3 
Bacillariophyta Navicula 'b' B 3 2 
Chlorophyta (Green Algae) Scenedesmus 'b' B 2 1 
Chlorophyta (Green Algae) Volvocaceae B 2 2 

Chrysophyta Mallomonas c 1 
Chlorophyta (Green Algae) Oedogonium c 1 

Bacillariophyta Asterionella D * * 1 1 : I Chlorophyta (Green Algae) Dictytosphaerium D * * 2 2 
Cyanobacteria Gomphosphaeria D * * 1 1 * 
Bacillariophyta Melosira D • * 3 3 *l 
Chlorophyta (Green Algae) Oocystis D * * 3 2 * 
Chlorophyta (Green Algae) Botryococcus E * *LJ 1 * 
Chlorophyta (Desmids) Closterium 'a' E * * 3 3 * * 
Chlorophyta (Desmids) Closterium 'b' E * * 3 2 * * 
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Bacillariophyta Rhizoso/enia E • • 1 • : ~ Bacillariophyta Surirella E I · 1 
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Chlorophyta (Green Algae) Gonium F * • 2 1 
Chlorophyta (Green Algae) Kirchneriella F • • 2 2 
Chlorophyta (Green Filaments) Minute Ulotrichaceae F • • 4 4 
Chlorophyta (Green Algae) Pediastrum 'a' F * * 3 3 
Chlorophyta (Green Algae) Pediastrum 'b' F • • 3 2 
Chlorophyta (Desmids) Staurastrum 'a' F • • 3 1 
Chlorophyta (Desmids) Staurodesmus F • • 2 1 

Chlorophyta (Green Algae) Ankistrodesmus G 2 1 ~ 
Bacillariophyta Cymbella G * 3 1 
Bacillariophyta Diatoma elongatum G • 4 2 
Bacillariophyta Pinularia G • 2 1 
Chlorophyta (Green Algae) Scenedesmus 'a' G • 3 2 

Chrysophyta Dinobryon H * * 1 
Cyanobacteria Microcystis H • 3 
Cyanobacteria Oscillatoria H * * 1 
Chlorophyta (Green Algae) Pediastrum 'c' H • • 3 
Dinophyceae Peridinium H * * 1 
Chlorophyta (Green Filaments) Spirogyra H • 1 
Chlorophyta (Desmids) Staurastrum 'b' H • * 1 
Chlorophyta (Desmids) Staurastrum 'c' H • • 2 
Chlorophyta (Green Algae) Tetrahedron H * 2 1 

185 



Limnological Paradox of Lakes Sorell and Crescent 

Figure 66 Relative phytoplankton community composition in Lake Crescent for 
the period 19th April 2000 - 251h July 2002. 
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Figure 67 Relative phytoplankton community composition in Lake Sorell for the 
period 19th April 2000 - 25th July 2002. 
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Table 31 Comparison of proportion and total individual phytoplankton counts of 
meroplankton in lakes Sorell and Crescent for the period 19th April 2000 - 25th July 
2002. ' 

Sorell% Crescent% Sorell Total Crescent Total 
Meroplankton Meroplankton Individuals Individuals 

Mean 23% 77% 850 20580 

N 32 28 32 28 
Minimum 1% 55% 50 1905 
Maximum 56% 98% 2785 60150 

Std. Dev. 16% 13% 700 15050 

Table 32 Overview of Diatoma dominance of the phytoplankton community in 
Lake Crescent for samples taken for the period running 19th April 2000 - 25th July 
2002. 

% Diatoma of total % Diatoma of total 
phytoplankton diatom 

Mean 61% 78% 

N 28 28 ' 

Minimum 20% 31% 
Maximum 95% 98% 

St. Dev. 20% 17% 

In terms of seasonal changes in algal composition, the two lakes remain as different to 

each other as originally reported by Cheng and Tyler: Crescent has much higher 

standing stocks of algae both in terms of concentrations of cells and chlorophyll-a 

(Figure 68 and Figure 69; see also Chapter 2). Temporal changes in composition also 

closely followed those documented by Cheng and Tyler (1973a) with diatoms 

dominating in Lake Crescent throughout the year (Figure 66), while in Lake Sorell 

dominance oscillated between green algae, diatoms and green filamentous taxa 

(Figure 67). 
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Figure 68 Phytoplankton community composition in Lake Crescent for 
19th April 2000 - 25th July 2002. 
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Figure 69 Phytoplankton community composition in Lake Sorell from 
19th April 2000 - 25th July 2002. 
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5.3.2 Zooplankton community structure 

As with the phytoplankton, the zooplankton of the two lakes differ substantially. Lake 

Crescent supports a much greater proportion of small copepods and cladocerans 

(98.7% of individuals< 1 mm) than Lake Sorell (86 % of individuals< 1 mm) (Figure 

70), while Lake Sorell has a greater abundance of larger cladocerans more frequently 

than Lake Crescent (Figure 71 ). Overall, ~ 10% of the 31 990 individuals counted 

from Lake Sorell were Daphnia > 1 mm long while only 0.21 % of the 18 520 

individuals from Lake Crescent were of such large Daphnia. 

Figure 70 and Figure 71 describe the temporal changes in the relative zooplankton 

community composition of lakes Crescent and Sorell for all samples taken between 

November 1996 and August 2002. The larger Daphnia species are all but absent from 

Lake Crescent although, interestingly, its occurrence preceding major changes in 

water quality during 1999/2000 is less frequent than after 2000, possibly reflecting a 

reduction in grazing pressure from the golden galaxiid due to reduced water clarity 

(Stuart-Smith, Richardson et al. 2004) (Figure 70). Although large Daphnia are more 

frequent in Lake Sorell, smaller copepods and cladocerans are still numerically 

important, with Daphnia "blooms" being a sporadic phenomenon (Figure 71). 
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Figure 70 Relative zooplankton community composition for Lake Crescent, 
November 1996 to August 2002. 

Cladocerans : Bosmina, Ceriodaphnia, Daphnia. 
Copepods: Calanoid, Cyclopoid. 
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Figure 71 Relative zooplankton community composition for Lake Sorell, 
November 1996 to August 2002. 

Cladocerans : Bosmina, Ceriodaphnia, Daphnia. 
Copepods: Calanoid, Cyclopoid. 
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Figure 72 and Figure 73 plot changes in cladoceran densities and biomass oyerlaid 

with algal biomass from April 2000 to August 2002. Apart from re-emphasising the 

lack of larger Cladocera in Lake Crescent, the biomass of zooplankton is generally 

higher in Lake Sorell (as might be expected from the exponential relationship between 

body size and biomass for cladoceran species (Dumont, Van de Velde et al. 1975)). 

Since grazing pressure by zooplankton has been shown to be directly related to 

zooplankton biomass (Scheffer 1998), one might expect that grazing pressure on 

phytoplankton in Lake Sorell would be significantly higher than in Lake Crescent. 

Although the lowest recorded levels of algal biomass do closely coincide with peaks 

in cladoceran biomass in Lake Sorell, overall there is little correlation between the 

density or biomass of cladocerans and algal biomass. This is probably due to the 

strong relationship between wind resuspension, increased suspended solids and algal 

productivity (Chapter 2 and Chapter 3; Scheffer, 1998), which may mask any 

influence zooplankton grazing may have in limiting phytoplankton biomass. It is also 

worth re-emphasising that the biomass of algae in Lake Crescent is much greater than 

in Sorell, and it is, therefore, unlikely that phytoplankton would be a limiting resource 

for the zooplankton in Crescent further diminishing the likelihood that grazing would 

be exerting a strong influence on the phytoplankton of this lake. 

Another means of appraising the potential impact of zooplankton grazing is by 

computing the ratio of the dry weight of cladocerans to phytoplankton biomass for 

each sampling occasion. On average this ratio was 10 x greater in Sorell (0.047) than 

Crescent (0.004), although the median values were similar; the difference in mean 

values was driven by a few high values in Lake Sorell (Figure 74). It reached a peak 

of 0.8 in Lake Sorell in November 2001, while the second highest value was~ 0.5 in 

January 2002; otherwise the ratio was generally< 0. Assuming cladocerans consume 

an amount of food equivalent to their body mass per day (Jeppesen, Jensen et al. 

1999), the cladoceran biomass would have the potential to consume between 50% and 

80% of the phytoplankton standing crop per day during these peaks in Lake Sorell. 

While this suggests that zooplankton grazing could be influential in Sorell on these 

dates, this could underestimate the role that zooplankton could be playing in this lake. 
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The 2-3 weekly sampling frequency employed in this survey probably missed some 

"blooms" of Daphnia, since S. Hardie (Inland Fisheries Service) noted qualitative 

high concentrations of Daphnia while sampling fish during December 2000 that fell 

between the sampling trips for this current survey. 

Figure 72 Cladoceran densities (by size class) and algal biomass for lakes 
Crescent and Sorell, April 2000 to August 2002. 
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Figure 73 Cladoceran biomass (by size class) and algal biomass for lakes 
Crescent and Sorell, April 2000 to August 2002. 
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Figure 74 Summary of the ratio of cladoceran dry weight to algal dry weight for 
lakes Crescent and Sorell for the period running April 2000 to August 2002. 41 
samples included for each lake. 
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5.3.3 Golden galaxias (planktivore) 

5.3.3.1 Abundance estimates 

Figure 75 shows that Lake Crescent has at least ten times the abundance of golden 

galaxias than Lake Sorell (Hardie 2003). Consequently, the predation pressure on 

zooplankton in Lake Crescent would be significantly higher than in Lake Sorell. 

Elsewhere size selective feeding on large bodied cladocerans by planktivores has been 

shown to be important in regulating the composition of the zooplanktonic community 

(Vanni 1986; Northcote 1988; Modenutti, Balseiro et al. 1993; Donald, Vinebrooke et 

al. 2001) and this could contribute to the dearth of Daphnia in Lake Crescent. 
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Figure 75 Total monthly catches of adult golden galaxias in Lakes Crescent and 
Sorell, 2000-2002. (Hardie 2003). 
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The geometric mean number of fish found in Lake Crescent was 51.66 per 400 m2 

area sampled(= 0.1292 fish m-2
). (Arithmetic mean: 67.5 fish per 400 m2

, median: 

47.5 fish per 400 m2
). This translates to 2 016 130 fish over the lake. Overall, Lake 

Crescent has approximately 30 x the concentration of this zooplanktivore that Lake 

Sorell has (Table 33). 

Table 33 Calculated values of the number, wet biomass and concentrations of 
golden galaxiids in May 2001 

Number of fish Wet biomass Concentration 
(kg) (g/m3) 

Crescent 2 016 130 9 503 0.6298 
Sorell 501 385 1 729 0.0205 

5.3.3.2 Assessment of the predation pressure exerted on zooplankton 

Stuart-Smith et al. (2004, unpublished paper) followed methods of Elliott and Persson 

(1978) to estimate a daily ration of0.65% of wet body weight per day for golden 

galaxiids feeding on Daphnia. Therefore, in Lake Crescent, galaxiid predation 

pressure on zooplankton may reach levels of up to 80 kg daf1 compared to 

15 kg daf 1 in Lake Sorell. Comparisons of galaxiid grazing rates based on a fish 

biomass per unit of lake volume results in galaxiid predation pressures on 
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zooplankton being approximately 5.5 mg zoop m"3 day"1 in Lake Crescent compared 

to 0.175 mg zoop m-3 day·1 in Lake Sorell, a difference of approximately 30 times. 

Dietary analyses conducted by Hardie (2003) over the period 2000- 2001 showed 

that Daphnia was absent from the diet of these fish during periods when this species 

was scarce (winter and early spring: Figure 72 and Figure 73), and the fish tend to 

target alternative, predominantly benthic species (in the Amphipoda, Isopoda and 

Ephemeroptera). During summer, Daphnia biomass increased and the galaxiids 

switched to planktonic cladocerans as the dominant prey item, in spite of the 

continued availability of the benthic taxa. This suggests that golden galaxias is not 

reliant on zooplankton as a dietary item, but prefers cladocerans when available 

(Hardie 2003). By contrast, similarly-sized juvenile brown trout (Salmo trutta) 

selectively fed on benthic Plecoptera, Ephemeroptera and Amphipoda even during the 

periods of high densities of Daphnia (Hardie 2003). 

Hardie (2003) also found golden galaxiids to strongly prefer Daphnia > 1 mm in size. 

Examining average cladoceran biomass for animals> 1 mm (Figure 72 and Figure 73) 

and comparing concentrations of cladocerans to estimates of galaxiid predation rates 

further underlines the potential for galaxiid predation to influence zooplankton 

community structure in Lake Crescent. For example, the estimated galaxiid predation 

rate in Lake Crescent of 5.5 mg zooplankton m"3 day"1 would remove approximately 

45% of cladocerans > 1 mm (based on average cladoceran biomass estimates made 

between April 2000 and August 2002) compared to Lake Sorell, in which a galaxiid 

grazing rate of 0.175 mg zooplankton m"3 day"1 would remove approximately 0.9% of 

average cladoceran biomass for individuals > 1 mm. From these estimates, it is clear 

that golden galaxiid zooplankton predation has the potential to influence the 

zooplankton community through selective feeding on large bodied zooplankters 

>lmm in size (Brooks and Dodson 1965; Hardie 2003). 
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5.3.4 Brown trout (piscivore) 

5.3.4.1 Population estimates 

The Petersen Mark-Recapture estimate(± 95% confidence interval) was 3 524 ± 169 

trout in Lake Crescent (based on an initial release of 3 OOO marked fish, 269 fish 

captures and 229 marked recaptures). In Lake Sorell the brown trout population in 

1997 was estimated to be approximately 100 OOO± 20 OOO fish (IFS 1997) (Table 34). 

Therefore the population of brown trout in Lake Sorell was concluded to be between 

80 OOO and 120 OOO fish. Unfortunately the survey undertaken in 2001 failed to catch 

a substantial number of tagged fish resulting in an unreliable confidence interval for 

the estimated 50 OOO fish in the lake at this time (IFS unpublished da~). 

The total estimated wet biomass of brown and rainbow trout in Lake Crescent was 

4 043 kg yielding a concentration of 0.153 g m-3 (95% confidence interval± 0.007 

g m-3), while prior to the introduction of Great Lake trout, the remnant Lake Crescent 

trout population consisted of approximately 535 kg of brown trout and 517 kg of 

rainbow trout, giving a total biomass of 1 050 kg of trout which translates to a 

concentration of0.040 g m-3 for the period covered by quantitative surveys of 

phytoplankton, zooplankton and golden galaxias. 

The biomass and concentration estimates for Lake Sorell are summarised in Table 34, 

and it is clear that Sorell has a much greater concentration of trout biomass than 

Crescent, even when Crescent is augmented by translocated fish from elsewhere. The 

concentration of trout in Lake Sorell is between 10 and 20 times that of Lake 

Crescent, inversely comparable in magnitude to the difference in golden galaxias 

concentration between the lakes. In Lake Sorell, the trout population is approximately 

10 - 30 times the concentration of the golden galaxias. In Lake Crescent, the golden 

galaxias is approximately 20 times more concentrated than the remnant Lake Crescent 

trout population. At current levels, the golden galaxias is approximately 5 times more 

concentrated than the Lake Crescent trout population. The introduction of the Great 

Lake brown trout has significantly increased potential predation pressure on the 

golden galaxias by about 5 times in Lake Crescent. 
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Table 34 Approximate abundance and biomass estimates of brown trout for 
Lake Sorell, 1997 and 2001. (IFS unpublished data). 

Abundance Average Total Concentration 
(n) Weight Biomass (g/m3) 

(g) (kg) 
Brown trout August 102 179 906 92 574 0.757 
1997 
Brown trout September 51 717 840 43 442 0.388 
2001 

5.3.4.2 Assessing the predation pressure of trout 

Trout feeding rates can be directly related to fish size and biomass (Ellio~ 1994). 

Assuming trout to have a daily ration between 2% and 6% of wet body weight (Elliott 

1975; Elliott and Persson 1978; Spigarelli, Thommes et al. 1982; Koskela, Pirhonen et 

al. 1997), and assuming they prey exclusively on the golden galaxias, predation 

pressure on golden galaxias in Lake Sorell (using 2001 brown trout biomass 

estimates; Table 34) could reach levels of 870 to 2 600 kg of galaxiids day-I from a 

galaxiid population with a total estimated biomass of2 300 kg. Comparably, for,Lake 

Crescent, using trout biomass estimates of fish present before the introduction of 

brown trout from Great Lake, predation pressure on golden galaxias could reach 

levels of20 to 60 kg of galaxiids day-I taken from a population with a total estimated 

biomass of 12 500 kg. Brown trout in Lake Sorell therefore have a greater potential to 

seriously limit galaxiid biomass and abundance than in Lake Crescent, with the 

contrast in galaxiid biomass between the two lakes being adequately accounted for by 

differing predation pressure from trout. 

198 



Limnological Paradox of Lakes Sorell and Crescent 

5.4 Discussion 

A substantial increase in lake level should lead to a reduction in the extent and 

frequency of sediment resuspension (Chapter 4 ). This should increase water clarity 

and, with the loss of aquatic macrophytes, lead to a less desirable increase in algal 

productivity. This may be due to the loss of negative feedback mechanisms that exist 

between aquatic plants and algae that are present in a lake system with high 

macrophyte biomass (Scheffer 1998). The establishment of a turbid phytoplankton­

dominated system is not desirable as the consequences of continued absence of 

aquatic macrophytes from Lake Sorell is believed to significantly degrade the 

recreational trout fishery. This is because the invertebrates associated with the 

macrophyte beds constitute a significant dietary resource for the trout for most of the 

year (Stuart-Smith, Richardson et al. 2004). Aquatic macrophytes have also been 

found to provide significant habitat for both aquatic invertebrates and the golden 

galaxiid (Hardie 2003; Hardie, Barmuta et al. 2004). 

In spite of the recent changes wrought by low water levels, there is little ~vidence of 

any major changes to the composition of the phytoplankton or zooplankton in either 

lake. The historical differences between these adjacent lakes (i.e. Cheng and Tyler's 

"limnological paradox") remains to be explained, and the data assembled here allows 

closer scrutiny of a potential mechanism: differences in the trophic dynamics between 

these two lakes. 

It may be possible to infer that the processes that characterised phytoplankton 

community structure in both lakes in the past are still significant today, and have a 

strong influence on maintaining the distinction in community characteristics between 

the two lakes. There also lies the possibility that bottom-up control of primary 

productivity is responsible for the contrast in algal standing crop (Sondergaard, 

Jeppesen et al. 2000). Although extensive work by Cheng in lakes Sorell and Crescent 

on nutrient dynamics and primary productivity was unable to unequivocally account 

for the sustained order of magnitude difference in algal biomass (Cheng and Tyler 

1973a; Cheng and Tyler 1976a). Cheng concluded lakes Sorell and Crescent to be 

somewhat of a 'limnological paradox'. 

199 



Limnologica/ Paradox of Lakes Sorell and Crescent 

It is possible that the contrast in algal standing crop between lakes Crescent and Sorell 

is caused by differing top-down cascading trophic interactions (Carpenter, Kitchell et 

al. J 987) with the higher trout concentration in Lake Sorell driving a top-down trophic 

cascade. This difference in piscivore biomass may cascade down through each trophic 

level to ultimately influence primary productivity (Carpenter, Kitchell et al. 1985; 

Carpenter, Kitchell et al. 1987; McQueen, Johannes et al. 1989) and may possibly 

drive the contrasting alternate stable-states shown by these two lakes (Scheffer, 

Hosper et al. 1993). 

5.4.1 The likely effects ofpiscivores and zooplanktivores 

The management aims for the recreational trout fishery of both lakes differs 

significantly. Lake Sorell has been managed as a high output fishery aimed at 

returning the maximum number of fish to the recreational angler. Trout recruitment in 

Lake Sorell is managed to maintain a large number of fish in the system. By contrast, 

Lake Crescent has been managed as a 'trophy trout water' with a low abundance of 

trout reducing competition for food resources and resulting in much larger fish. 

Therefore, partly through active management practices, Lake Sorell typically has a 

trout biomass ten to twenty times that of Lake Crescent. 

Comparisons of golden galaxiid densities and biomass to zooplanktivore biomasses of 

other studies show Lake Sorell to be low whilst galaxiids in Lake Crescent approach 

biomasses that may have the capacity to limit cladoceran abundance. Limnocorral 

studies by McQueen and Post (1988) found a strong correlation between the collapse 

of the Daphnia population and increasing biomasses of planktivorous yellow perch 

when biomasses reached levels of 30 to 50 kg ha-1
• These biomasses are still high 

when compared to Lake Crescent, that had an estimated golden galaxiid biomass of 

8.0 kg ha-1 during 2001 compared to lake Sorell, with an estimated biomass of 

0.6 kg ha"1 for the same time. The golden galaxiid abundance estimates of Lake 

Crescent approach levels that may begin to limit cladoceran biomass when compared 

to zooplanktivore abundance estimates ofMcQueen and Post (1988), with critical 

biomasses from their work being 3 to 4 x that of Lake Crescent and 50 to 80 x that 

of Lake Sorell. 
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Interestingly, Brooks (1968) noted that Bosmina appears as the dominant cladoceran 

along with a few small cyclopoid species in any pond or lake in North America or 

Eurasia where predation is intense. This is a comparable zooplankton community to 

that of Lake Crescent (Figure 70). Brooks (1968) goes on to discuss the preference of 

facultative plantkivores for Daphnia of over 1.3 mm long with the effects of these fish 

being strongest on the Daphnia populations. 

Previous work has shown that the biomass of benthic invertebrates in shallow lakes is 

potentially greater than in deeper lakes, which means that benthi-planktivorous fish 

stocks are less dependent on zooplankton prey than in deep lakes '(Jeppesen, Jensen et 

al. 1997). The ability ofbenthi-planktivorous fish, such as golden galaxias, to shift 

from zooplanktonic to benthic prey allows their density to remain high even during 

periods of limited zooplankton. They thereby maintain a high potential predation 

pressure on zooplankton indefinitely due to their ability to change foraging strategies 

(Jeppesen, Jensen et al. 1997). As a result, the golden galaxiids do not necessarily die 

off after the collapse of Daphnia and hence the "overexploited" zooplankton state 

may be persistent rather than a transient phase (Scheffer 1999). 

The effect of fish predation on Daphnia and other plankton is a major focus of current 

research in lake ecology (Scheffer 1999). Experiments that explore how Daphnia 

populations 'are affected by changes in fish predation pressure show fish have little 

effect on Daphnia density until a certain critical threshold is passed, at which time the 

Daphnia population crashes and algal blooms may develop (McQueen and Post 

1988). Probably as a result of the difference in zooplanktivore predation pressure 

between lakes Crescent and Sorell, large bodied cladocerans are less prevalent in Lake 

Crescent (Hoffman, Smith et al. 2001 ), and this suggests that zooplankton grazing is 

unlikely to restrict phytoplankton productivity in this lake. 

Trout, although selecting Daphnia as a food resource when Daphnia are abundant 

(Stuart-Smith 2001; Stuart-Smith, Richardson et al. 2004), would not have the 

potential to limit zooplankton biomass to the same extent that galaxiids do. This is due 

largely to the inability of trout to selectively target Daphnia when they are scarce, as 

demonstrated by Hardie's (2003) comparative dietary studies. In contrast, the 
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galaxiids continue to graze heavily on Daphnia, even when Daphnia are in extremely 

low abundance (Section 5.3.3). 

5.4.2 Zooplankton grazing 

Grazing zooplankton tend to be selective feeders (Lampert, Fleckner et al. 1986; 

Attayde and Hansson 2001). Therefore, if cladoceran grazing was important in 

reducing phytoplankton biomass in these lakes, it may be expected that certain groups 

ofphyi:oplankton would disappear at times of high cladoceran biomass. The data 

collected during the course of this project, however, does not support this hypothesis, 

with little evidence of change in specific phytoplankton functional groups coinciding 

with increased cladoceran biomass. It is likely that the strong interaction between 

increased primary productivity and increased sediment resuspension acts to confound 

this association (Chapter 2; Chapter3; and Chapter 5, Section 5.3.1). 

Increased suspended sediment may itself adversely affect the biomass of cladocera 

(Arruda, Marzolf et al. 1983; Hart 1988), and this mechanism may have operated 

during the prolonged period of more frequent, severe resuspension events in these 

lakes in the late 1990s and early 2000s. Interestingly, the peaks in zooplankton 

biomass that occurred in Lake Sorell towards the end of 2001 coincided with the 

lowest recorded levels of suspended sediment for the study period. In the past, when 

the lakes were considerably clearer with low suspended sediment levels, zooplankton 

biomass may also have been higher. 

Blindow et al. (2000) concluded in their study that where grazers took less than 10% 

of phytoplankton biomass per day, mechanisms other than zooplankton grazing were 

important in reducing algal standing crop. Comparison of average zooplankton to 

phytoplankton dry weight ratios in lakes Crescent and Sorell (Figure 74) show 

potential zooplankton grazing pressure to be well below this 10% threshold on all 

sample occasions in Lake Crescent and on all but 3 sample occasions in Lake Sorell. 

This coupled with the erratic occurrence of high numbers of Daphnia in both lakes 

(Figure 72), suggests that limitation of phytoplankton by zooplankton grazing is 

unlikely in either lake for any extended period of time. The increased zooplankton to 

phytoplankton ratios sporadically reached in Lake Sorell (Figure 74) of 40-80% of 

phytoplankton biomass potentially grazed per day, reflects zooplankton grazing in this 
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,lake to have the potential to influence phytoplankton biomass. However, the 

infrequent occurrence that ratios approach these levels show zooplankton grazing to 

be unable to account for the low phytoplankton biomass in Lake Sorell and the 

significant contrast in algal standing crop between the lakes. 

Further work examining the size classes of the dominant phytoplankton during 

periods of increased zooplankton biomass would be beneficial in assessing if 

zooplankton grazing influences phytoplankton as cladocerans tend to feed on a 

restricted range of sizes of phytoplankton with a threshold volume 104 µm3 being a 

reasonable upper limit (Harris 1986). Zooplankton can therefore suppress the 

population of nanoplankton and leave the populations of larger plankton largely 

unaffected (Harris 1986). 

5.4.3 Alternative "bottom-up" and "top-down" arguments 

An interesting alternative hypothesis potentially relevant to lakes Sorell and Crescent 

has been presented by McQueen et al. (1989) who offer a "bottom-up top-down" 

theory which, for eutrophic lakes, combines both the influence of top-order predators 

(top-down) and resource availability (bottom-up) in determining 'maximum attainable 

biomass'. The theory predicts that top-down forces are strong at the top of the food 

chain but weaken towards the bottom (with little or no consequent long-term effects 

on phytoplankton biomass), whereas bottom-up forces are strong at the bottom and 

weaken towards the top. Although Lakes Crescent and Sorell are mesotrophic, they 

appear consistent with this model: the piscivores and zooplanktivores strongly affect 

their prey, but the effect of zooplanktonic grazers is unlikely to limit phytoplankton. 

Both these lakes have similar nutrient regimes, so any differences in bottom up effects 

that could contribute to the differences between the lakes result from other causes. 

Work in Ch~pter 3 (Section 3.3.3, Figure 32) demonstrated the physical environments 

of the lakes differed substantially in that the morphology of Lake Crescent and past 

lake management practices leads to a higher susceptibility to sediment resuspension 

than Lake Sorell. Past studies have found significant interactions between sediment 

entrainment and changes to primary productivity through either direct resuspension of 

algae or indirectly through increased nitrogen and phosphorus loading on the water' 

column (Hamilton and Mitchell 1988). 

203 



Limnological Paradox of Lakes Sorell and Crescent 

One obvious suggestion, that increased wind resuspension increases primary 

productivity through increasing nutrient concentrations (Demers, Therriault et al. 

1987), is not supported by the evidence for these lakes. There was no significant 

differences between the lakes for TP (F(l,161) = 0.20, P = 0.66) (Chapter 2, Figure 7), 

and, although Lake Crescent had statistically significantly higher concentrations of 

1N than Lake Sorell, the average annual difference was modest(~ 0.73 mg L-1
) 

(Chapter 2, Figure 6), with nitrate concentrations in Sorell sometimes exceeding those 

in Lake Crescent (Chapter 2, Figure 4). It is unlikely that these differences between 

the lakes in nitrogen are large enough to explain the differences in algal productivity, 

especially in view of the fact that the evidence from nutrient ratios show that nitrogen 

is never limiting in these lakes. 

The direct physical effects on phytoplankton of sediment resuspension can either be 

negative or positive. For example Hellstrom (1991) found that sediment resuspension 

reduced mean light intensity and limited phytoplankton productivity by up to 85% in a 

shallow lake in Sweden, whereas Ogilvie and Mitchell (1998) concluded that 

sediment resuspension may reduce photoinhibition of phytoplankton in shallow lake 

systems with high baseline transparency and therefore favour increased primary 

productivity. In the case of lakes Sorell and Crescent, the strong correlations between 

increased sediment resuspension and increased algal standing crop (Chapter 2, Section 

2.3.3) would limit the applicability ofHellstrom's (1991) hypothesis in this instance. 

It may be that the situation described by Ogilvie and Mitchell (1998) is more relevant 

to lakes Sorell and Crescent. 

A more likely mechanism prevailing in these lakes, and one which may explain the 

'limnological paradox' is the role ofmeroplankton. Carrick et al. (1993), working on 

Lake Apopka, Florida, found that direct entrainment of meroplankton was highly 

significant in determining algal standing crop in this large shallow lake. They found 

that water column chlorophyll-a concentration was highly correlated with average 

daily wind speed, and that the algal community was largely dominated by diatoms, a 

characteristic that is shared with the Lake Crescent phytoplankton community. 
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Algal populations with a meroplanktonic phase are planktonic only during periods of 

relatively high wind-induced turbulence (Schelske 2002), and Lake Crescent is 

frequently dominated by meroplanktonic diatoms (Table 31 ), particularly Diatoma 

elongatum (Table 32), which is known to have resting cells (Schelske, Carrick et al. 

1995) and is therefore adapted to spending extended periods of time out of the 

euphotic zone. Moreover, the empirical modelling presented in Chapter 3 shows that 

Lake Crescent is much more turbulent than Lake Sorell, and more prone to 

resuspension events. These two pieces of evidence combined strongly suggests 

resuspension dynamics in Lake Crescent underlies the greater prominence of 

phytoplankton in this lake compared with Lake Sorell. 

In lakes with substantial meroplanktonic algal populations, pelagic algae can be 

maintained at high levels through entrainment of sediments, such as demonstrated by 

Schelske et al. (1995). The influence on algal standing crop of biotic top-down 

processes, such as grazing by zooplankton, and bottom-up processes, such as nutrient 

and light limitation, may be lessened (Schelske, Carrick et al. 1995), thus providing a 

mechanistic explanation for McQueen et al.'s (1989) model in which top-down and 

bottom-up processes get attenuated at more distant trophic levels. The dominance of 

meroplankton in Lake Crescent coupled with the weak zooplankton - phytoplankton 

interactions, and a temporally sustained heightened level of algal productivity during 

a period of extreme light attenuation (Chapter 2) are likely to be the result of such 

processes. 

5.5 Conclusion 

Both Lakes Crescent and Sorell appear to have strong top-down trophic interactions 

that decouple at the link between zooplankton and phytoplankton. Trout in both lakes 

prey on galaxiids, with the greater effect being expressed in Lake Sorell. In turn, the 

galaxiid abundance in both lakes is sufficient to influence the abundance and size 

structure of the zooplankton, with Hardie (2003) documenting both the ability of 

galaxiids to preferentially eat larger zooplankton, and to switch to alternative prey 

items (e.g. benthic and terrestrial invertebrates) when larger zooplankton become 

scarce. 
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Although galaxiids are more numerous in Lake Crescent, the resulting contrasts in 

zooplankton grazing pressure between the two lakes fails to account for the order of 

magnitude discrepancy in algal standing crop. The relatively infrequent occurrence of 
' 

significant numbers of large bodied cladocerans in Lake Sorell and the sustained low 

ratio of cladoceran dry weight to algal dry weight, although reaching limits high 

enough to impact on phytoplankton standing crop at times, would not be capable of a 

sustained reduction in algal biomass leading to the order of magnitude reduction in 

algal biomass in Lake Sorell compared to Lake Crescent. Consequently, the trophic 

cascade in lakes Sorell and Crescent decouples at the interface between zooplankton 

and phytoplankton and that the increased productivity of Lake Crescent is likely due 

to factors independent of reduced zooplankton grazing pressure. Thus a top-down 

trophic cascade and stable-state theory does not explain Cheng and Tyler's 

"limnological paradox": zooplankton is not capable oflimiting phytoplankton, while 

bottom-up factors such as nutrients and incident light are similar in both lakes. 

Consequently, the historical differences between the two lakes must be due to 

something else, and the information assembled in this chapter implicates 

meroplankton as a likely cause. Meroplanktonic species depend on turbulence for 

resuspension: Lake Crescent has been historically dominated by meroplanktonic 

phytoplankton because it is the lake with the greater exposure.to turbulent conditions, 

which in turn, have favoured meroplanktonic species. By contrast, the reduced 

dominance of diatoms and meroplanktonic forms of algae in Lake Sorell, combined 

with a historically lower incidence of sediment resuspension and clearer water has 

lead to a lake dominated by vascular plants and non-meroplanktonic phytoplankters. 

Whether recorded increases in phytoplankton biomass that correlate closely with 

sediment resuspension events are related to new growth resulting from resuspended 

nutrients (Hamilton and Mitchell 1988) or to direct resuspension ofbenthic or 

meroplanktonic algae or resting propagules (Carrick, Aldridge et al. 1993) is hard to 

unequivocally determine. Increased frequency of sampling of phytoplankton before, 

during and after significant sediment resuspension events (Schelske 2002) coupled 

with detailed enumeration and identification of species composition would help in 

isolating the reason for the highly significant correlation between high tripton levels 

and increased algal biomass. Additionally, carrying out a thorough, detailed 
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experimental study as designed by Schallenberg and Bums (2004) aimed at teasing 

apart the specific effect sediment resuspension has on phytoplankton production, 

would be valuable in determining the degree of influence sediment resuspension plays 

in stimulating algal productivity in Lake Crescent. 

Alternatively, applying a detailed modelling framework capable of simulating 

phytoplankton growth and resuspension, such as employed in Chapter 4 to investigate 

sediment resuspension dynamics between the lakes, would likely help in determining 

more precisely the reasoning for the 'limnological paradox' between lakes Crescent 

and Sorell as identified by Cheng and Tyler (1973a). This is what is attempted in 

Chapter 6 with DYRESM-CAEDYM with a focus on investigating the potential role 

meroplankton resuspension plays in controlling algal standing crop in lakes Sorell and 

Crescent. 
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Chapter 6 The limnological paradox of lakes Sorell and 
Crescent revisited. Meroplankton dominance and 
resuspension dynamics. 

6.1 Introduction 

Chapter 5 suggested that the reasons for the historical differences between Lake Sorell 

and Lake Crescent (i.e. Cheng and Tyler's "limnological paradox") were unlikely to 

be due to a top-down trophic cascade because the zooplankton are not capable of 

limiting phytoplankton for any significant period of time. Consequently, the historical 

differences between the two lakes must be due to something else, and the information 

assembled thus far implicates meroplankton as a likely cause. 

Despite the major contrast in algal productivity and phytoplankton community 

structure that formed the basis for Cheng and Tyler's 'limnological paradox' (Cheng 

and Tyler 1973a), Cheng and Tyler (1973b) found the chemical environments oflakes 

Sorell and Crescent to be extremely similar with the exception of silica 

concentrations, with dissolved silica levels in Lake Sorell averaging around 

12.2 mg L-1 compared to Lake Crescent with average concentrations of 1.3 mg L-1 

(Cheng and Tyler 1973b ). They concluded that this single large difference could be 

attributed to the increased biological utilisation of Si02 by the greater diatom biomass 

that dominates the algal community of Lake Crescent. 

Cheng and Tyler (1976a) hypothesised that the degree of turbulence and exposure 

experienced by the lakes differed on average, with Lake Crescent being more 

susceptible to sediment resuspension due to its typically shallower average depth. 

They used this to argue that the increased algal biomass of Lake Crescent was due to 

increased resuspension of tripton that stimulates algal productivity by increasing the 

availability of limiting nutrients such as phosphorus and nitrogen. This hypothesis 

was supported by laboratory bioassays that studied the effect on primary productivity 

of the independent addition of tripton from Lake Crescent and Lake Sorell to water 

samples from each lakes. They found that adding tripton from Lake Crescent 

significantly increased algal productivity, whereas the addition oftripton from Lake 

Sorell did not, and they attributed these results to the higher concentrations of Si02 in 

the water from Lake Crescent (Cheng and Tyler 1976a). 
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Padisak et al. (2003) recognised the importance of turbulence in shallow polymictic 

lakes for increasing turbidity and making available to phytoplankton the higher 

nutrient content of pore water that would otherwise be released very slowly through 

diffusion (Bachmann, Hoyer et al. 2000). The mechanism proposed is the increased 

importance of sediment-water interactions in shallow lakes because of high sediment 

surface to water column ratios (Sondergaard, Jensen et al. 2003) that leads to an 

increased significance of nutrient cycling from sediments than found in deeper lakes. 

In deeper lakes that stratify, thermal stratification over summer reduces mixing 

between the hypolimnion and the epilimnion leading to reductions in nutrient 

availability in the epilimnion (Wetzel 1983) along with reducing the interaction 

between the epilimnion and the sediments significantly. 

Numerous studies have found positive relationships between increased turbulence and 

resuspension events and increased algal biomass and productivity (Gabrielson and 

Lukatelich 1985; Padisak, G-Toth et al. 1990; Carrick, Aldridge et al. 1993; de Jonge 

and van Beusekom 1995; Hamilton and Mitchell 1997). However, in many cases, the 

exact mechanism leading to increased productivity is hard to establish (Schallenberg 

and Burns 2004) with increases in algal biomass possibly being related to increased 

nutrient concentrations or the result of direct resuspension ofbenthic or 

meroplanktonic algae that are present on the sediment surface (Bachmann, Hoyer et 

al. 2000). 

The resting cells and spores of meroplankton settle or sink to the bottom sediments 

and spend a portion of their lifecycle in the benthos (Schelske, Carrick et al. 1995). 

Meroplankton are often dominated by diatoms (Bacillariophyta) that are capable of 

withstanding extended periods of darkness (Carrick, Aldridge et al. 1993) and have 

the ability to produce resting cells or spores which are able to survive for long periods 

under conditions not conducive to growth (Reynolds 1984). For example, resting cells 

of Aulacoseira (formerly Melosira) granulata are be able to germinate and fix carbon 

photosynthetically within a few hours of being exposed to moderate levels of light 

having spent approximately 20 y in anoxic sediments (Sicko-Goad, Stormer et al. 

1986). Thus, resting propagules that are physiologically dormant in darkness have, on 

contact with light and nutrients in the water column, the ability to become active 
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within a few hours (Schelske, Carrick et al. 1995) thereby ensuring population 

survival until resuspension returns the cells to the water column and a planktonic 

environment conducive to growth (Schelske 2002). 

Originally Cheng and Tyler (1976a) made little mention of the possibility of direct 

inoculation of the water column by resuspended meroplanktonic algae as being 

important in increasing algal productivity in Lake Crescent. Their bioassay method 

(i.e. the transfer of water from one lake to the other in their laboratory tripton 

enrichment experiment) would have transferred meroplanktonic propagules. I contend 

that the differences in the responses in these two lakes to wind-driven resuspension 

events is sufficient to explain the historical differences in algal communities between 

these two lakes. 

Evidence thus far (Chapters 3 - 5) supports the hypothesis that sediment and, 

therefore meroplankton, resuspension is a potential driver for increased phytoplankton 

productivity in Lake Crescent. It appears that the physical environment of Lake 

Crescent differs fundamentally from that of Lake Sorell (Chapter 3) and provides a 

more favourable environment for a meroplanktonic phytoplankton community to 

establish and proliferate. 

To test this hypothesis, DYRESM-CAEDYM was used to model sediment 

resuspension and algal dynamics in both lakes as a "bottom-up" system, i.e. ignoring 

any role that zooplankton grazing or higher tropic levels have on the biomass of the 

various algal taxa in the lakes. The success of this modelling was evaluated in three 

ways. Firstly, ifthe model is capable of predicting and producing acceptable 

correlations between modelled and observed field data for the period of the current 

study; secondly, whether differences in modelled phytoplankt?n biomass between the 

two lakes may be explained by different levels of turbulence engendered by wind; and 

thirdly, in modelling water levels typical of both lakes under 'historic' conditions 

, prior to 1999, do contrasts in algal biomass still hold that may help explain Cheng and 

Tyler's "limnological paradox". Thus, also, if it is found that phytoplankton growth 

dynamics may be adequately modelled excluding zooplankton, then it would further 

strengthen the conclusions made in Chapter 5 that top-down trophic cascades do not 

limit phytoplankton productivity in either lakes Sorell or Crescent. 
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6.2 Methods 

The application ofDYRESM-CAEDYM to model SPM resuspension (Chapter 4) was 

used as the basis for more detailed modelling. Nutrient and light attenuation 

information from Chapters 2 and 3 and algal information from Chapter 5 was used to 

further calibrate and initialise DYRESM-CAEDYM. 

To better understand the role differences in basin morphometry plays in influencing 

algal dynamics in Sorell and Crescent, DYRESM-CAEDYM calibration files between 

the two lakes were identical (except for the algal attenuation coefficient; see Section 

6.2.2) so that any differences in model outcomes between lakes resulted from the 

difference in basin morphometries of the lakes. This was justified by the comparable 

water chemistry of the two lakes (Chapters 2 and 3) (Cheng and Tyler 1973a; Cheng 

and Tyler l 973b ). 

The effectiveness of DYRESM-CAEDYM to model changes in phytoplankton 

biomass and community composition, total phosphorus and total nitrogen, and light 

attenuation, was assessed by comparing model output to field observations by linear 

regression and visual analysis. 

6.2.1 Phytoplankton community composition 

From the information presented in Chapter 5 Section 5.3.1 it was determined that 

diatoms and chlorophytes (termed "green algae" and "green filaments" in Chapter 5) 

were the two dominant algal groups to be focussed upon within the DYRESM­

CAEDYM modelling structure. 

Quantitative cell counts of the dominant phytoplankton species present in Sorell and 

Crescent on the initial date of sampling (19 April 2000) were used to determine initial 

conditions for model runs. For details of the methods used to determine phytoplankton 

community composition refer to Chapter 5, Section 5.2.1. 

6.2.2 Calibration and running of DYRESYM and CAEDYM 

Calibration ofDYRESM was not necessary due to the process-based configuration of 

the model (Murphy 2001). As a result, CAEDYM was the only model component that 

required calibration. 
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CAEDYM modelling of sediment resuspension (Chapter 4, Section 4.3.2) was used as 

the foundation for a more detailed modelling scenario that included model output of 

light attenuation, total nitrogen, total phosphorus and phytoplankton. The successful 

calibration of CAEDYM to model sediment resuspension in lakes Sorell and Crescent 

(Chapter 4, Section 4.3.2) was closely followed and for each additional parameter 

modelled by CAEDYM, information and data for model calibration was approximated 

from the literature or calibrated directly from field data collected between April 2000 

and December 2001. 

Calibrating DYRESM-CAEDYM was carried out by iteratively adjusting input values 

of the variables described below until model output of water quality closely resembled 

that of field data. The methods used to initialise DYRESM-CAEDYM are detailed in 

Chapter 4, Section 4.2.4, with Section 4.2.5 detailing the initialisation for sediment 

resuspension. Specific attenuation coefficients for light attenuation for the inorganic 

suspended particulate matter (SPM) and algal components were determined from 

linear approximations of light attenuation from the multiple regression analysis 

presented in Chapter 3, Section 3.3.1, Table 13 and Table 14, and are further 

summarised in Table 35. 

Table 35 DYRESM-CAEDYM calibration parameter values for specific 
attenuation coefficients for SPM and Chlorophyll-a. 

lµm Inorganic SPM (mg L"1 m"1
) 0.080 

Lake Sorell 6µm Inorganic SPM (mg L"1 m"1
) 0.080 

Algal chlorophyll-a (µg L 1 m"1
) 0.016 

lµm Inorganic SPM (mg L-1 m"1
) 0.099 

Lake Crescent 6µm Inorganic SPM (mg L-1 m"1
) 0.099 

Algal chlorophyll-a (µg L 1 m"1
) 0.002 
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The estimated specific attenuation coefficients for the SPM and algae for Lake Sorell 

and the SPM for Lake Crescent were comparable in magnitude to estimates from 4 

independent studies described by Van Duin et al. (2001) for lakes from the northern 

hemisphere, but the estimated specific attenuation coefficient for algae in Lake 

Crescent was lower than those reported by Van Duin et al. (2001) by almost an order 

of magnitude on average. However, use of the published values from Van Duin et al. 

had little impact on the overall light attenuation, so this peculiarity of Lake Crescent 

had little effect on model performance. 

Calibration ofDYRESM-CAEDYM to model nutrient dynamics in lakes Sorell and 

Crescent followed closely the initialisation values used by Murphy (2001) for Lake 

Mokoan, Victoria, Australia, because this lake has important similarities with lakes 

Crescent and Sorell. It is shallow, fully mixed for the whole year, and the resuspended 

sediments are dominated by clays and other colloidal material. Thus Murphy's (2001) 

initialisation values were used for the following: aerobic and anaerobic mineralisation 

rates of phosphorus and nitrogen; sediment nitrogen and phosphorus flux; settling 

velocities for particulate nitrogen and phosphorus; and nitrogen nitrification and 

denitrification rates. 

The validity of these initialisation values was assessed by examining modelled and 

observed values of the concentrations of total nitrogen, total phosphorus and the 

values of light attenuation for both lakes over the period April 2000 and December 

2001. Time-series plots were examined to determine any periods of sustained under­

or over-estimation by the model, while linear regression of observed values against 

modelled values was used to determine whether the fit deviated significantly from a 

1: 1 relationship, and to estimate the correlation between observed and modelled 

values. Standard regression diagnostics were inspected to detect violations of 

assumptions and potentially influential outliers, but no data were omitted from the 

final analyses presented here. Similarly, the data were mildly skewed and 

heteroscedastic; although diagnostics improved by log-transformation, the overall 

significance of the results remained unchanged, so coefficients from the 

untransformed data are presented here. Finally, differences in variation between 

modelled and estimated values of these three variables was tested using the Ansari­

Bradley test, a non-parametric analogue of the F-test for comparing variances (Myles, 
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Hollander et al. 1973). If the model performed well, it would be expected that it 

would produce a similar "spread" in values to those observed, i.e. there would not be 

a significant difference in the Ansari-Bradley test. The Ansari-Bradley test was 

preferred over the F-test owing to its robustness to violations of normality. 

In modelling the phytoplankton, the chlorophytes and diatoms were the two focal 

algal groups because of their central role in defining algal community characteristics 

in both Sorell and Crescent (Chapter 5, Section 5.2.1). Initial values for model runs of 

algal biomass represented as chlorophyll-a for both groups were approximated from 

the relative contribution made by each to quantitative cell counts (Chapter 5, Section 

5.2.1). Based on the relative abundance and biovolumes (as described by Cheng and 

Tyler (1973a)) of each, estimates of initial chlorophyll-a concentration of each group 

was made and set in the CAEDYM initialisation file. 

Phytoplankton resuspension dynamics were set to be comparable in magnitude to the 

resuspension coefficients for suspended solids. This was justified by the strong 

correlation between suspended solids and algal biomass (Chapter 2, Section 2.3.3, 

Table 6). 

Chlorophyte and diatom cell diameters were set to 8 µm and 13.5 µm respectively, 

and was based on spheroidal diameter estimates made from cell volumes by Cheng 

and Tyler (1973a) of 105 µm3 for their 'minute green filament' (probably Ulothrix) 

and 1284 µm3 for Diatoma, the two dominant chlorophyte and diatom taxa. 

A series of calibration runs were made using a variety of published and unpublished 

values of settling velocities, and the best settling velocity for each group selected by 

comparing modelled output with measured field data. A settling velocity of 

0.17 m dai1 for Diatoma was used and this was comparable to similar diatom groups 

documented in Reynolds (1984), and for the chlorophyte group, resulting in a settling 

velocity of approximately 0.05 m dai1
• This is consistent with the extremely small 

volume and size of the minute green filamentous chlorophyte which should have a 

much slower settling velocity than Diatoma. 
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To effectively model meroplankton dynamics in Sorell and Crescent, the sediment 

survival time of the meroplanktonic dominated diatom group was set to approximately 

120 days in both lakes. This was done to simulate the ability ofmeroplankton and 

meroplanktonic spores and resting cells to remain viable for extended periods of time 

whilst not in contact with the euphotic zone (Sicko-Goad, Stormer et al. 1986; 

Carrick, Aldridge et al. 1993; Schelske, Carrick et al. 1995; Schelske 2002). The 

suitability of including a meroplanktonic form of diatom in the modelling scenarios 

was assessed by comparing correlations between modelled and measured diatom 

biomasses with and without the inclusion of a meroplanktonic form. 

The suitability of these calibration values for the phytoplankton was assessed by 

comparing modelled values of biomass (as chlorophyll-a) for the Diatoma and 

minute green filamentous algal groups with observed values (as cell counts) from the 

period March to December 2001, since this was the period for which all 

phytoplankton from entire water samples were enumerated, whereas data collected 

earlier only recorded net phytoplankton (bigger than approximately 45 µm). 

Scatterplots of observed and modelled values were inspected for any non-linear 

relationships, and, since there were none, the strength of the relationship is reported 

as Pearson's correlation coefficient, r. (Regression slopes are inappropriate here 

owing to the differences in units between modelled and measured values.) Time series 

plots superimposing observed cell counts and modelled estimates of chlorophyll-a for 

the two algal groups were also inspected to determine whether the modelled values 

captured the gross fluctuations shown by the measured data. 

As a final assessment of the model initialisation, paired t-tests were used to assess 

whether modelled values of total chlorophyll-a differed from measured values in each 

lake, and Ansari-Bradley tests assessed ifthere were significant differences in the 

spread of values. Boxplots were also inspected to determine whether modelled output 

replicated the observed order of magnitude difference in chlorophyll-a between the 

two lakes. 
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6.3 Results 

To determine the capacity ofDYRESM-CAEDYM to model nutrient, light and algal 

dynamics in the lakes, model output was compared to measured field data by linear 

regression analysis. 

6.3.1 Nutrients and light attenuation 

Owing to equipment failure, there was one less estimate of total nitrogen and total 

phosphorus concentration from Lake Crescent, and two fewer observations of light 

attenuation from Lake Sorell. As noted in Chapter 3, Section 3.2.1, Table 12, the light 

meter was unavailable over the period 29th November 2000 to 30th of August 2001. 

Table 36 Results of tests of concordance between modelled and measured values 
of total phosphorus (TP), total nitrogen (TN) and light attenuation in lakes Crescent 
and Sorell for the period April 2000 to December 2001. The Pearson correlation 
coefficient, r, was significant (P < 0.01) for all variables. The slope of the regression 
(± 1 standard error) of measured values v. modelled values is reported along the 
t-value of the test for the slope deviating from 1; all slopes did not differ (P > 0.1) 
from 1 except for* (0.01 < P < 0.05) and** (0.001<P<0.01). The value of the 
Ansari-Bradley test statistic(AB), which tests for equality of dispersion, is given with 
P values; a non-significant result supports the null hypothesis of no difference 
between dispersions. 

TP TN Light attenuation 
Crescent Sorell Crescent Sorell Crescent Sorell 

r 0.587 0.650 0.513 0.808 0.804 0.677 
Slope 0.452 0.971 0.594 1.284 0.881 0.708 

±(0.118) ±(0.211) ±(0.188) ±(0.174) ±(0.158) ±(0.199) 
tvalue 4.65** 0.14 2.16* 1.64 0.75 1.47 

n 30 31 30 31 19 17 
Ansari- AB = 525 AB =465 AB=472 AB =405 AB=206 AD= 156 

Bradley test p = 0.08 p = 0.38 P=0.84 P =O.Ol p = 0.35 P= 0.84 

Inspection of the time series plots of modelled and measured values of the nutrients 

showed that the modelled values were generally consistent with the measured values 

in Lake Sorell (Figure 76); they were moderately to strongly correlated, and the 

regression slopes did not differ significantly from 1 : 1, although modelled values 

tended to overestimate measured values after June 2001, when water levels started to 
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rise (Table 36). Modelled values of nutrients tended to be less well correlated in Lake 

Crescent, and the time series plots showed that phosphorus was consistently 

overestimated from May 2000 to October 2000, whereas total nitrogen tended to be 

overestimated by the model later in the sequence from March 2001 (Figure 77). Some 

extreme model overestimates for total phosphorus occurred during the record low lake 

water levels encountered during January and February of2001, and this coincided 

with extremes in modelled SPM resuspension (Chapter 4, Section 4.3.2.3, Figure 58). 

Overall, modelled values for light attenuation correlated well with measured values 

for both lakes, although the lack of availability of the light meter during the extreme 

low water levels of the summer of 2000/2001 was unfortunate. 

To determine whether resuspension rate could have been responsible for the patterns 

in modelled values of phosphorus in Lake Crescent, the resuspension rate constant for 

phosphorus was halved (from 9 x 10"6 g m·2 s·1 to 4.5 x 10-6 g m·2 s"1
). Although this 

reduced the overestimation of total phosphorus, concentrations of soluble reactive 

phosphorus remained low (0.00061 mg L-1 vs 0.00075 mg L"1 for the higher 

resuspension rate) and the manipulations of the rate constant, importantly, had no 

measurable impact on the modelled algal productivity or species assemblage in the 

lake. Therefore, in order to keep the initialisation files as similar as possible to Lake 

Sorell, the resuspension rate constant for total phosphorous was returned to its initial 

value and remained unchanged in subsequent modelling. 

Overall, the modelled values for nutrients and light attenuation reproduced the 

differences between and within the two lakes over time. Lake Crescent had slightly 

higher concentrations of total nitrogen than Lake Sorell, and greater light attenuation, 

with light attenuation in both lakes deteriorating substantially during the low water 
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phase. In addition, as judged from the Ansari-Bradley tests, the spread (i.e. variance) 

of modelled values was similar to the measured values for all these variables except 

for total phosphorus in Lake Sorell (where the modelled values were less variable than 

the measured values). Thus it was deemed reasonable to use Murphy' s (2001) 

calibration values to model nutrients and light attenuation in lakes Crescent and 

Sorell. 

Figure 76 Comparisons of modelled and measured total phosphorus, total 
nitrogen and light attenuation values for Lake Sorell, April 2000 to December 2001. 
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Figure 77 Comparisons of modelled and measured total phosphorus, total 
nitrogen and light attenuation values for Lake Crescent, April 2000 to December 
2001. 
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6.3.2 Phytoplankton 

Correlations of modelled diatom and chlorophyte biomass to measured cell counts 

made between February 2001 and December 2001, a period of reliable estimates of 

Diatoma and the minute green filamentous chlorophyte, are presented in Figure 78 

through to Figure 81. Comparisons of correlations between modelled and observed 

data vary significantly between groups within each lake and between lakes (Table 37). 

For Lake Crescent, modelled diatom biomass closely followed temporal trends in 

changes in Diatoma cell counts, with modelled output explaining approximately 85% 

of the variation in measured field data. This shows DYRESM-CAEDYM to be 

performing well when modelling diatom dynamics in Lake Crescent. The correlations 

between modelled chlorophyte biomass and observed cell counts of the minute green 

filamentous was lower (56%) but still highly significant. 

For Lake Sorell, correlations of modelled diatom biomass to measured Diatoma cell 

counts was poor (Figure 80) with no significant relationship between the two (Table 

37). This compares to the highly significant correlation between modelled chlorophyte 

biomass and 'minute green filament' cell counts for the same period (Figure 81 ), with 

modelled chlorophyte biomass explaining around 73% of the variation in measured 

field data. 

The inclusion of meroplankton was assessed by comparing model runs with 

meroplankton excluded (diatoms with a 2 day sediment survival time) and 

meroplankton included (diatoms with a 120 day sediment survival time) with 

measured field data. Excluding meroplankton from the simulations reduced diatom 

productivity in Lake Crescent by approximately an order of magnitude and dropped 

correlations between modelled and observed data considerably. The inclusion of 

meroplankton in the modelling framework was therefore necessary to adequately 

simulate plankton dynamics in the lakes. 
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Figure 78 Diatoma cell counts versus modelled diatom biomass in Lake 
Crescent, March 2001 to December 2001. 
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Figure 79 'Minute green filament ' cell counts versus modelled chlorophyte 
biomass in Lake Crescent, March 2001 to December 2001 . 
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Figure 80 Diatoma cell counts versus modelled diatom biomass in Lake Sorell, 
March 2001 to December 200 1. 
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Figure 81 'Minute green filament' cell counts versus modelled chlorophyte 
biomass in Lake Sorell, March 2001 to December 2001. 
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Except for the Diatoma group in Lake Sorell, model outputs correlated strongly and 

significantly with observed cell counts in both lakes (Table 3 7), and the variances of 

modelled and measured values were similar in both lakes. The time-series plots 

showed a good correspondence between changes in modelled biomass and observed 

cell counts, again with the exception of the Diatoma group in Lake Sorell. The poor 

correlation for Diatoma in Lake Sorell may also be influenced by low modelled 

biomass estimates and relatively low measured cell counts that may exacerbate errors 

in the data. 

Table 37 Results of tests of concordance between modelled values of biomass 
and cell counts for the Diatoma and minute filamentous chlorophyte groups of algae 
in Lakes Crescent and Sorell. Pearson' s correlation coefficient and its P-value are 
presented with sample sizes, n, and the value of the Ansari-Bradley test statistic(AB), 
which tests for equality of dispersion, is given with P values; a non-significant result 
supports the null hypothesis of no difference between dispersions. 

Minute filamentous 
Diatoma chlorophytes 

Crescent Sorell Crescent Sorell 
0.928 0.134 0.751 0.856 

r (0.679, 0.984) (-0.406, 0.604) (0.231 ,0.938) (0.612, 0.951) 
p value 0.0003 0.633 0.012 <0.0001 

n 10 15 10 15 
Ansari- AB=65 AB = 120 AB=66 AB = 120 

Bradley test p = 0.55 P > 0.9 p = 0.77 P > 0.9 
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Comparisons of the spread of modelled total chlorophyll-a values for the period from 

April 2000 to December 2001 compared closely within each lake (Ansari-Bradley 

tests both P > 0.8) (Figure 82), nor was there any significant difference between the 

mean and measured values for Lake Crescent (t(29) = 0.0712, P = 0.943) or Lake 

Sorell f(JI) = 1.86 P = 0.072, ). Modelled values of chlorophyll-a in Lake Crescent 

were also about an order of magnitude greater than those in Lake Sorell. This shows 

the biomass estimates made by DYRESM-CAEDYM to be realistic and to fall within 

the range of measured field data. This coupled with the close temporal associations 

with cell counts of the dominant phytoplankton groups (Figure 78 to Figure 81) shows 

DYRESM-CAEDYM to perform satisfactorily in modelling temporal changes in the 

key phytoplankton groups of interest in both lakes. 

Figure 82 Box-plot summary of measured and modelled total chlorophyll-a 
(µg/L) for Lake Crescent and Lake Sorell, April 2000 to December 2001 . 
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6.3.3 Influence of sediment resuspension on driving algal productivity in lakes 

Sorell and Crescent 

To investigate how sediment resuspension potentially influences algal biomass in 

each of lakes Crescent and Sorell, plots of modelled algal biomass (as chlorophyll-a) 

and plots of modelled lµm inorganic SPM were compared. Lake Crescent (Figure 83) 

showed a highly significant relationship between increasing SPM and increasing algal 

biomass, with concentrations of chlorophyll-a oscillating synchronously with changes 

in SPM. This demonstrates that algal productivity is intimately linked with sediment 

resuspension in this lake, whereas no such relationship was evident in Lake Sorell ( 

Figure 84), which had no significant relationship between modelled algal 

chlorophyll-a and modelled SPM, with the peaks in chlorophyll-a being largely out of 

phase with peaks in SPM. 

Figure 83 Comparisons of modelled I µm SPM concentration (mg/L) and 
modelled algal biomass (as chlorophyll-a, µg/L) for Lake Crescent, April 2000 to 
December 2001. 
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Figure 84 Comparisons of modelled 1 µm SPM concentration (mg/L) and 
modelled algal biomass (as chlorophyll-a, µg/L) for Lake Sorell, April 2000 to 
December 2001 . 
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The correlation between wind speed (estimated on the day of sampling) and lake­

averaged chlorophyll-a is summarised in Figure 85. The data includes measurements 

made between August 2000 and February 2002, which is the time period that wind 

speed measurements were available from the weather station located in the middle of 

Lake Sorell (Chapter 4, Section 4.2.4). Figure 85 further highlights the increased role 

sediment resuspension plays in driving algal productivity in Lake Crescent as 

demonstrated in Figure 84, with a strong, highly significant relationship between 

average daily wind speed and lake averaged chlorophyll-a in Lake Crescent (r2 
= 

0.67, df= 1, t = 6.52, P < 0.0001 , n = 23) compared to the poor relationship in Lake 

Sorell (r2 
= 0.14, df= 1, t = 1.86, P = 0.077, n = 23). Interestingly, analysis of the 

relationship between average daily wind speed and phaeophytin concentration returns 

an insignificant result for Lake Sorell (r2 
= 0.03, df = 1, t = 1.32, P = 0.201 , n = 23) 

and a slightly significant result for Lake Crescent (r2 
= 0.16, df = 1, t = 2.26, P = 

0.035, n = 23), thus reflecting a poor relationship between phaeophytin concentration 

and sediment resuspension in either lake. 

Figure 85 Comparisons of lake averaged chlorophyll-a, µg/L versus average 
daily wind speed (m/s) for lakes Crescent and Sorell, August 2000 to February 2002. 
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6.3.4 Historic modelled nutrient dynamics in lakes Sorell and Crescent 

Comparisons of concentrations of modelled total phosphorus and total nitrogen in the 

two lakes during the current period of study (' actual ' conditions: from April 2000 to 

December 2001 ), to those of total phosphorus and total nitrogen concentration under 

'historic ' lake level conditions (predating 1999) are presented in Figure 86 and Figure 

87. For both lakes, the low lake levels typical of the period April 2000 to December 
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2001 caused a considerable increase in nutrient concentrations, both on average and in 

absolute magnitude (as realised in field measurements: Chapter 2), over the modelled 

estimates for increased lake levels as typical of the time period predating 1999. This 

strongly implicates low lake levels as being responsible for the increased 

eutrophication of both lakes. 

Figure 86 Modelled total phosphorus and total nitrogen concentrations in Lake 
Sorell. - 'Actual' conditions (as present for the period running April 2000 to 
December 2001); and 'Historic' conditions, reflecting average lake levels typical of 
the period predating 1999. 
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Figure 87 Modelled total phosphorus and total nitrogen concentrations in Lake 
Crescent. - 'Actual' conditions (as present for the period running April 2000 to 
December 2001); and 'Historic ' conditions, reflecting average lake levels typical of 
the period predating 1999. 
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6.3.5 Historic modelled light attenuation in lakes Sorell and Crescent 

Comparisons of changes in modelled light attenuation in Lake Sorell (Figure 88) and 

Lake Crescent (Figure 89) during the current period of study (' actual' conditions), 

running April 2000 to December 2001 , to that of modelled light attenuation levels 
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under 'historic ' lake level conditions (predating l 999) are presented below. For both 

lakes, the low lake levels typical of the period running April 2000 to December 2001 

caused light attenuation levels to increase considerably, both on average and in 

absolute magnitude. An increase in lake level, typical of both lakes for times 

predating 1999, results in a major reduction in light attenuation levels in both lakes. 

Figure 88 Modelled light attenuation in Lake Sorell. - 'Actual ' conditions (as 
present for the period running April 2000 to December 2001); and 'Historic' 
conditions, reflecting average lake levels typical of the period predating 1999. 
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Figure 89 Modelled light attenuation in Lake Crescent. - 'Actual ' conditions (as 
present for the period running April 2000 to December 2001); and 'Historic' 
conditions, reflecting average lake levels typical of the period predating 1999. 
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The conclusion made in Chapters 2 and 3 that low lake levels are the contributing 

factor leading to a severe increase in the levels of light attenuation in both lakes is 

further strengthened by the results of the DYRESM-CAEDYM modelling. An 

increase in lake levels to a ' historic ' point typical of both lakes for the period 

predating 1999 results in a considerable decrease in light attenuation in both lakes, 

with light attenuation values dropping from 23.4 m-1 (St. Dev = 20.7, N = 620) on 

average in Lake Crescent to 7.0 m- 1 (St. Dev= 4.9, N= 620), and average light 
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attenuation levels in lake Sorell dropping from 18.9 m-1 (St. Dev= 13.6, N = 620) to 

8.3 m-1 (St. Dev= 6.6, N = 620). 

6.3. 6 Historic modelled productivity in lakes Sorell and Crescent 

Model runs comparing changes in diatom and chlorophyte biomass under ' historic ' 

and ' actual ' conditions in Lake Sorell (Figure 90) and Lake Crescent (Figure 91) were 

carried out to compare the possible changes in phytoplankton biomass and species 

composition that might occur if lake levels were returned to conditions typical of the 

period predating 1999. 

In the case of Lake Sorell (Figure 90), modelled chlorophyte dominance is reduced 

under historic conditions and the phytoplankton community is made up of an equal 

mix of both chlorophytes and diatoms for approximately the first half of the model 

run, after which diatoms out compete the chlorophytes and become the dominant 

plankton group. As was evident with nutrients and light attenuation, the reduction in 

the water level realised by the actual conditions degraded water quality: the ' actual ' 

conditions stimulated algal productivity, leading to higher concentrations of total 

chlorophyll-a than under ' historic ' conditions. 

Figure 90 Comparisons of modelled plankton biomass in Lake Sorell under 
' actual' conditions (as measured between April 2000 and December 2001) and 
' historic ' conditions. 
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In the case of Lake Crescent, diatom dominance remains under 'historic' conditions 

and chlorophytes are all but lost from the system (Figure 91 ). As was evident with 

nutrients and light attenuation, comparisons of total chlorophyll-a between 'historic' 

and ' actual ' conditions shows that reduced water levels lead to dramatically 

stimulated algal productivity in Lake Crescent. 

Figure 91 Comparisons of modelled plankton biomass in Lake Crescent under 
'actual ' conditions (as measured between April 2000 and December 2001) and 
approximate 'historic' conditions. 
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Comparisons between lakes Sorell and Crescent of modelled total chlorophyll-a under 

'historic ' conditions shows phytoplankton productivity remained much higher in Lake 

Crescent than in Lake Sorell, which is a pattern that conforms with the recorded 

empirical record. Temporal changes in plankton biomass in Lake Crescent exhibited 

marked high amplitude fluctuations that would be due to the strong interaction with 

sediment resuspension that is characteristic of this lake. Interestingly, despite a 

substantial occurrence of diatoms in Lake Sorell, there is much less fluctuation in total 

chlorophyll-a under 'historic ' conditions, further highlighting the contrast in the 

interaction of resuspension and algal productivity between the two lakes. 
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Figure 92 Comparisons of modelled total chlorophyll-a under 'historic ' 
conditions in lakes Crescent and Sorell and Crescent. 
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6.4 Discussion 

For both lakes, model output of key water quality variables compared well with 

measured field observations, with modelled outputs being poorest for total phosphorus 

and nitrogen concentrations in Lake Crescent. Overall, however, DYRESM­

CAEDYM gave accurate predictions for light attenuation and SPM, and reasonable 

predictions for total phosphorus and total nitrogen, in that differences and similarities 

between the lakes were reproduced and the variation in modelled and estimated values 

was similar for most variables. This model thus shows promise in forecasting likely 

changes in key water quality variables such as light attenuation and SPM under 

differing scenarios for managing the water levels in these lakes, but would benefit 

from further calibration if accurate estimates of nutrient concentration was required. 

The correlations between modelled phytoplankton biomass and measured cell counts 

for the two dominant algal taxa were highest for Lake Crescent and for the 

chlorophytes in Lake Sorell. The correlation was poorest (indeed, statistically 

insignificant) for the Diatoma group in Lake Sorell. This pattern might be expected if 

the postulated role of meroplanktonic diatoms is tightly linked to resuspension. Algal 

productivity is clearly closely linked with SPM concentrations and wind speed in 

Lake Crescent, whereas there is little correlation with these variables in Lake Sorell. 

Thus the phytoplankton dynamics in Lake Sorell appears much less linked to 

sediment resuspension which could result in the poor correlation between observed 

and modelled Diatoma values in this lake. To improve the performance of Diatoma 
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estimates for this lake would likely require further calibration or even invoking other 

mechanisms, but this is beyond the scope of the current study. 

For Lake Sorell a more important correlation is that between modelled and observed 

chlorophytes values, because this group dominates the algal community in this lake. 

For example, based on cell counts (Chapter 5), diatoms contribute~ 14% on average 

to the total phytoplankton cell count in lake Sorell compared to chlorophytes that 

contribute ~ 86%. This contrasts with Lake Crescent in which diatoms contribute 

~ 71 % on average to total phytoplankton cell counts while chlorophytes contribute 

~29%. 

The current modelling scenarios used identical calibration input files, with the 

exception of specific attenuation coefficients for SPM and algae, to model both 

freshwater diatoms and chlorophytes. This was justified as the dominant species 

within both lakes are comparable and the main aim of the exercise was to compare the 

influence that the physical characteristics of the systems have on limiting and 

stimulating primary productivity. Also, due to the very similar water chemistry of the 

two the lakes (Cheng and Tyler 1973a; Cheng and Tyler 1973b; Cheng and Tyler 

1976a); Chapters 2 and 3), it is likely that phytoplankton in both systems are 

influenced by water chemistry to a similar degree. 

The simulation of meroplankton by increasing the sediment survival time of diatoms 

increased the degree of variation described by model output when compared to 

measured field data in Lake Crescent significantly. This further supports the 

hypothesis that meroplankton play an important role in shaping and controlling 

primary productivity in Lake Crescent. The use of the same input files in Lake Sorell 

with comparable sediment survival times for diatoms and the resulting continued 

dominance of chlorophytes in this system reflects conditions in Lake Sorell to be less 

conducive to meroplankton growth and proliferation. 

The importance ofbenthic resting stages in diatoms has been recognised in both 

freshwater and marine systems (McQuoid and Godhe 2004) with the resuspension of 

viable spores or cells from sediments having the potential to significantly influence 

phytoplankton community composition and biomass (Carrick, Aldridge et al. 1993). 
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Under optimal growth conditions, meroplankton resuspension may act as a seeding 

mechanism that undergoes selective growth, out-competing other phytoplankton 

species (Millie, Fahnenstiel et al. 2003). Carrick et al. (1993) found meroplankton 

resuspension under conditions of high wind significantly altered phytoplankton 

community composition, biomass and size. 

Interestingly, the time resting spores spend in the sediments isolated from the euphotic 

zone does not decrease the time taken for germination but does decrease the percent 

of spores able to germinate (McQuoid and Hobson 1996). It is therefore possible that 

the more frequently resting cells and spores are resuspended into the water column the 

higher the survival and potential growth rates. Consequently, in Lake Crescent, the 

increased prevalence of sediment resuspension under typical 'historic' conditions may 

have selected for meroplanktonic dominance by favouring this set of adaptations. 

The strong evidence of meroplankton dominance discussed in Chapter 5 is further 

supported by the results presented here in Chapter 6. Of real importance when making 

comparisons of the conditions of the lakes during the current study to that of studies 

undertaken in previous years, such as Cheng and Tyler's work during the early 

seventies, is that patterns of broad algal division dominance, such as the contrasting 

dominance of Chlorophyta in Lake Sorell compared to the dominance of 

Bacillariophyta in Lake Crescent (Figure 66 through to Figure 69, Table 30; Cheng 

and Tyler (1973a)) and relative biomass differences between the lakes has not 

changed significantly between then and now. It would therefore be possible to 

conclude that the mechanisms structuring community characteristics within each lake, 

and the contrast between lakes, still hold under present conditions, even in the face of 

significant changes in the physical ahd chemical water quality characteristics in the 

lakes observed between 2000 and 2002. 

Interestingly, Cheng and Tyler (1973a) found surface production rates in Lake 

Crescent greatly exceeded those of Lake Sorell; by contrast, rates at 1 m depth were 

often greater in Sorell than in Crescent. This resulted in production per unit of surface 

per day and per year in Crescent to be only 2.6 x that of Sorell (Cheng and Tyler 

1976b) despite Lake Crescent maintaining ten times the standing crop of plankton of 
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Lake Sorell. This may further highlight the important role meroplankton plays in Lake 

Crescent with the increased turbidity that is typical of Lake Crescent restricting light 

penetration and inturn limiting primary production (Cheng and Tyler 1976b). The 

meroplanktonic community of Lake Crescent would be well adapted to such an 

environment with the development of resting cells and spores allowing a viable 

plankton community to be maintained even during conditions unfavourable for 

growth (Schelske 2002). 

In both lakes the low lake levels encountered during the current study have increased 

light attenuation considerably. However, the potential impact on reducing algal 

productivity (and hence biomass) (Hellstrom 1991; Arfi, Guiral et al. 1993) has not 

been realised; in fact both modelled and measured algal productivity increased. Thus 

sediment resuspension in these lakes appears crucial to increased overall algal 

productivity in both lakes. Accordingly, minimising the frequency and severity of 

resuspension episodes by increasing lake water levels appears to be the only 

promising management option for improving their water quality. 

There are other examples of lakes elsewhere that share some of these key features. For 
-----

example, Schelske et al. (1995) described the surface sediments of Lake Apopka, 

Florida, as consisting of a nepheloid layer made up of meroplanktonic diatoms 

intermixed with the non-living organic and inorganic materials that are readily 

resuspended-which appears similar to Lake Crescent. Schelske et al. (1995) also 

concluded that the water column chlorophyll-a concentration was capable of doubling 

during the course of a wind event. The available data for Lake Crescent is unable to 

support this, but the strong correlation between SPM and chlorophyll-a strongly 

supports the contention that direct resuspension of meroplanktonic diatoms 

contributes to the chlorophyll-a concentrations in Lake Crescent. 

Ogilvie and Mitchell (1998) also found meroplanktonic species of algae to be 

important in dominating the phytoplankton community, contributing as high as 90% 

of total plankton community composition 6 hours after artificial resuspension events 

in enclosure experiments in Hawksbury, Tomahawk and Tuakitoto Lagoons in the 

South Island of New Zealand. Interestingly, they found that this effect had largely 

disappeared after 24 hours. 
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Lowe et al. (2001) documented declines in concentrations ofTP, TN and chlorophyll­

a as being roughly proportional to reductions in the concentration of SPM and 

concluded that these constituents are more influential on SPM. In the case of lakes 

Sorell and Crescent the opposite mechanism seems more plausible: the mechanisms 

driving SPM are causing the changes in the rest of the species. In this chapter, the 

modelling strongly suggests that increased lake levels result in increased light 

availability by reducing the amount of sediment resuspension; this, in turn, reduces 

the levels all of the above mentioned variables. These changes, which ignore the 

impact of zooplankton grazing, still do not increase algal biomass, despite improved 

water clarity and nutrient levels remaining high, even under historic conditions. Thus 

in the case of lakes Sorell and Crescent, it seems that sediment resuspension is a direct 

stimulus driving increased algal productivity. 

This is similar to Bachmann et al.'s (2005) interpretations; they proposed that wind­

driven waves resuspended the upper portion of the fluid mud in Lake Apopka, 

Florida, resulting in high levels of SPM, total phosphorus and chlorophyll-a (Carrick, 

Aldridge et al. 1993; Bachmann, Hoyer et al. 1999). This seems directly comparable 

with Lake Crescent, with sediment re suspension increasing levels of these variables 

substantially. 

Carrick et al. (1993) used their strong correlations between chlorophyll-a and average 

wind speed as supporting the hypothesis that direct inoculation of meroplanktQn exists 

in Lake Apopka, Florida. However, despite the high positive correlation obtained 

between increased wind speed and increased algal biomass in Lake Crescent, the 

result does not unequivocally prove resuspension and direct inoculation of 

meroplankton from the benthos as being responsible for the observed increases in 

algal productivity. To adequately address this issue, rigorous experiments, such as 

those described and carried out by Schallenberg and Burns (2004) would be required 

to tease apart the interplay between nutrients, light and sediment and meroplankton 

resuspension. Also, detailed real-time logging of chlorophyll-a concentration in the 

lakes would give some indication as to the importance direct inoculation of the water 

column by meroplankton plays in increasing primary productivity in Lake Crescent, 

as estimates of natural maximum growth rates are available in the literature (Harris 
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1986) and measured changes in chlorophyll-a greater than about 1.5 day-1 would 

strongly suggest that biomass increases could not be due to plankton growth alone. 

Additional short-interval sampling of phytoplankton community structure before, 

during and after an event would also be beneficial (Schelske 2002). 

Overall, the results of the modelling exercise strongly support the hypothesis that 

sediment and meroplankton resuspension in Lake Crescent is a fundamental factor 

driving increased algal productivity in this lake over and above that of Lake Sorell. 

This is further supported by the contrasting correlations between measured average 

daily wind speed and algal biomass in the lakes 

6.5 Conclusion 

Overall, this chapter presents evidence that supports the contention that increased 

algal productivity in Lake Crescent relies on and is stimulated by higher turbulence 

and a greater susceptibility to sediment resuspension when compared to Lake Sorell. 

Furthermore, the modelling results strongly support the hypothesis that observed 

increases in plankton biomass in Lake Crescent, on average and during times of 

increased wind stress, result from the inoculation of the water column by epibenthic 

meroplankton coupled with increases in both phosphorus and nitrogen, which would 

further enhance phytoplankton growth. The opposite holds for Lake Sorell with algal 

biomass showing little reliance on sediment resuspension as a stimulus for increasing 

productivity. 

It may therefore be concluded that the morphometry of Lake Crescent which is more 

susceptible to sediment resuspension than Lake Sorell, is conducive to maintaining an 

increased algal standing crop and provides and environment suitable for the 

establishment and maintenance of meroplanktonic species of diatom that drive 

increases in algal biomass during sediment resuspension events. 

Carrick et al. (1993) concluded that the extent to which meroplankton develop in a 

lake and become resuspended by wind is likely determined by specific lake 

characteristics such as local topography, sediment type, lake depth, lake surface area 

, and the presence or absence of macrophytes. The results of the modelling exercise in 
' 
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this chapter support this conclusion and demonstrate that the factors leading to a 

meroplanktonic dominated plankton community are likely quite subtle when the 

closely comparable characteristics of lakes Crescent and Sorell are taken into 

consideration. 

Additionally, modelling of SPM, light and nutrient dynamics have highlighted the 

importance lake level changes play as a key management initiative in the restoration 

of lakes Sorell and Crescent. Maintenance of increased lake level in both lakes will be 

necessary to reduce the level of light attenuation and increase the fraction of the lake 

bed with sufficient light to allow macrophyte colonisation and growth. 

It is worth noting that the assumptions made in the application ofDYRESM­

CAEDYM to model phytoplankton dynamics presented here in Chapter 6, have 

simplified the complex, complicated biological interactions that occur in lakes Sorell 

and Crescent. However, for the purpose of preliminary assessment of the influence 

turbulence may play in stimulating algal biomass in the lakes, it was believed these 

assumptions necessary, and to have little bearing on the final conclusions of the 

chapter. 

As the model currently stands, DYRESM-CAEDYM provides an effective tool in 

modelling key water quality components in lakes Sorell and Crescent capable of 

investigating management options and forecasting the likely effect on key water 

quality variables such as SPM and light attenuation levels. However, for more 

detailed applications that would look further into biological associations within the 

lakes, along with more comprehensive, applied modelling of phytoplankton and 

nutrient dynamics, additional calibration of the model would be required. 
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Chapter 7 General Discussion 

7 .1 Recapitulation of context and aims 

The rapid decline in water quality and the extreme change that occurred in water 

clarity and light availability during the 1990s prompted this investigation. These 

changes in water quality were associated with the decline of a valuable trout fishery, 

while their impacts on endemic and listed flora and fauna remained uncertain. There 

were additional pressures to manipulate water levels further to attempt to eradicate 

introduced European Carp, and increased demand for irrigation water coinciding with 

several consecutive drought years. Therefore, the aims of this research project were 

twofold .. Firstly, to identify the likely driving factors for the decline in water quality, 

and, secondly, to investigate the basis for the strong contrast in trophic state that exists 

between the twp lakes, and evaluµ.te whetl).er ''top-down" trophic cascades could 

explain Lake Sorell' s differences from Lake Crescent. 

Early limnological work by Cheng and Tyler (1973a; 1973b; 1976a; 1976b) found the 

trophic characteristics of lakes Sorell and Crescent to be considerably different, 

despite the lakes laying adjacent to one another within the same catchment and 

sharing similar geological and morphological characteristics. Historically, each lake 

exhibited strongly contrasting 'stable-states': Lake Sorell was a macrophyte.:. 

dominated cl~ar water system, while Lake Crescent was a turbid system dominated by 

phytoplankton. Cheng and Tyler dubbed this a "limnological paradox". 

Lakes Sorell and Crescerit share the same trophic structure with similar species 

assemblages at all trophic levels, but they differ in the densities of individual species. 

The well documented history of lakes Sorell and Crescent and the management aims 

of the recreational trout fishery pointed strongly towards a top-down trophic cascade 

as being a possible causal factor leading to the differences in primary productivity of 

the two systems. 

Furthermore, that the degradation in water quality in both lakes coincided with record 

low lake levels, pointed towards physical factors playing a role in the rapid decline in 

water clarity. The aims of the project required a multidisciplinary approach to 
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investigate both biological and physical processes influencing the ecology of the 

lakes, in order to establish causation behind the lakes exhibiting characteristics 

synonymous to alternative stable states in times predating the massive decline in 

water quality observed in the late 1990s, along with identifying the cause for the 

current degradation in water quality. 

7.2 Summary of results 

The historical water quality data assembled in Chapter 2 detailed temporal trends in 

nutrients, algal biomass and turbidity, and quantified the extremes to which levels of 

the major plant nutrients, chlorophyll-a and turbidity have reached in recent years. 

Alarmingly, the relationships developed between euphotic depth and turbidity 

demonstrated that, at turbidity and SPM levels typical of the period between 2000 and 

2002, the maximum euphotic depth would have been little more than 20 cm. This 

effectively eliminates macrophyte growth at the sediment surface throughout both 

lakes. Strong correlations between algal biomass, nutrients, turbidity and the light 

attenuation coefficient demonstrated how closely these components were linked. The 

marked increase in major plant nutrients and algal biomass in both lakes suggested 

increased eutrophication. However, quantifying nutrient and sediment inputs from 

external sources demonstrated that nutrient and sediment loading from tributaries 

were inconsequential, despite agriculture and forestry activity in the catchment. It was 

therefore concluded that observed increases in nutrients and SPM were chiefly 

derived from internal sources. 

Multiple linear regression analysis carried out in Chapter 3 demonstrated inorganic 

SPM to be the main component responsible for the degradation in water clarity. 

Reductions in lake level were found to be highly significant, leading to increases in 

SPM and turbidity which resulted from increased exposure of the lake bed sediment to 

wind driven waves. This prompted a comparison between modelled energy levels 

exerted on the lake bed prior to 1999 and after 1999 which showed that reduced water 

levels after 1999 dramatically increased the area of the lake beds in contact with the 

base of wind driven waves. 

Concomitant increases in colloid concentrations alongside those of water column 

SPM suggested strongly that sediment erosion had increased beyond levels typically 
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experienced by the lakes in the past, and contributed to the severe degradation in 

water quality. Furthermore, the colloidal material in the lakes was shown to behave 

largely as a conservative substance, with reductions in concentration depending on 

dilution via inflow and rainfall that, in turn, were offset by evaporative concentration 

during dry periods. Chapter 3 concluded colloids to have the capacity to maintain high 

background levels of turbidity that would limit the euphotic depth in both lakes Sorell 

and Crescent and retard macrophyte re-establishment and growth. 

The sediment resuspension investigation initiated in Chapter 4 began by quantifying 

gradients of sediment shear stress across the lake basins 'under varying water level and 

wind speed scenarios. It was demonstrated that high shear stress levels capable of 

resuspending sediments were realised at low to moderate wind speeds at the low water 

levels attained by both lakes during the period 1999 to 2002. A detailed sediment 

resuspension model in DYRESM-CAEDYM was successfully calibrated and 

validated to run on lakes Sorell and Crescent for the period running April 2000 to 

December 2001. The low water levels typical of the lakes for this period resulted in 

massive increases in modelled sediment entrainment. Model manipulations 

investigating the influence increased lake levels had on sediment entrainment showed 

that raising water levels can substantially reduce the amount of sediment 

resuspens1on. 

Chapter 4 confirmed the conclusions in Chapter 2 about the importance of internal 

loading processes and further reinforced the conclusions made in Chapter 3, that 

reductions in lake level between 1999 and 2002 dramatically increased the energy 

exerted at the lake bed thus increasing the rate and extent of sediment erosion. Lake 

level management was, therefore, identified as the most promising effective means to 

limit the impacts of sediment resuspension. 

Recognising and quantifying the processes responsible for the decline in water quality 

failed to account for the contrasting levels of primary production that exists between 

the two systems. The need to increase our understanding of the ecology of both lakes 

and provide the best information possible to adequately manage the lakes initiated the 

study into top-down trophic interactions. The aim of the work was to assess the degree 

to which trophic interactions defined ecosystem function and determine if 
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biomanipulation is a realistic management option for limiting algal standing crop in 

either lake Sorell or Crescent. 

Thus far the importance of biotic interactions and the potential for top-down 

interactions (and, by implication, the potential utility ofbiomanipulation) remained 

unevaluated. Chapter 5 presented a conceptual model of the major trophic pathways 

present in both lakes. Investigation of the top order consumers concluded that 

differing recreational fishery management practices between the two lakes increased 

the abundance and density of the predatory brown trout in Lake Sorell. This increased 

predation pressure on the golden galaxiid in Lake Sorell. Further, the greater galaxiid 

density in Lake Crescent reduced the occurrence of large bodied zooplankton and 

resulted in a zooplankton community dominated by small-bodied cladocerans and 

copepods. In contrast, zooplankton grazing rates by galaxiids were significantly 

reduced in Lake Sorell, resulting in large bodied cladocerans being present with 

increased frequency. However, estimates of potential cladoceran clearance rates of 

phytoplankton in Lake Sorell failed to account for its lesser algal standing crop. Thus, 

despite strong top-down trophic interactions occurring in both lakes, the trophic 

cascade appears effectively decoupled at the zooplankton I phytoplankton link in Lake 

Sorell and was therefore insufficient to explain Cheng and Tyler's "limnological 

paradox". 

Further investigation of the phytoplankton communities of the lakes, past and present, 

showed Lake Crescent to be dominated by meroplanktonic taxa of diatoms. This 

prompted the formation of an alternative hypothesis based on the presence of differing 

energy and turbulence regimes between the two lakes, as quantified in Chapter 3, 

favouring the formation of a more viable, productive meroplankton community in 

Lake Crescent over Lake Sorell. 

Chapter 6 attempted to determine if differences in the morphometry of the two lakes 

alone was capable of stimulating meroplanktonic primary productivity in Lake 

Crescent as opposed to Lake Sorell. A more detailed application ofDYRESM­

CAEDYM was employed that incorporated nutrient, light and phytoplankton 

dynamics. Once the models were calibrated, model runs were undertaken with lake 
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levels representative of conditions encountered during the present study, with 

additional runs made with lake levels typical of those prior to 1999. 

The results showed that phytoplankton productivity was linked to basin morphometry, 

lake level management and sediment resuspension in Lake Crescent, that stimulated 

and favoured the meroplanktonic diatom community both under historic conditions 

and conditions encountered in, the lake during the current study. By contrast Lake 

Sorell showed little if any correlation between algal productivity and sediment 

resuspension, with the physical environment of Lake Sorell favouring a mixed algal 

community of chlorophytes and diatoms, with a marked reduction in algal standing 

crop overall. The results of the DYRESM-CAEDYM modelling exercise were further 

validated by correlating average daily wind speed with field measured algal biomass 

in both lakes; Lake Crescent returned a strong correlation compared to a weak, 

insignificant correlation for Lake Sorell. 

The results strongly support the hypothesis that the increased primary productivity of 

Lake Crescent is driven by physical processes that are more pronounced than in Lake 

Sorell. Furthermore, the dominance of meroplanktonic forms of phytoplankton 

(Chapter 5) in Lake Crescent predisposes it to reaching high levels of phytoplankton 

productivity when under the influence of sediment resuspension. Padisak and 

Reynolds (2003) discuss the evolution ofmeroplanktonic diatoms in shallow lakes 

and concluded that it occurred under sufficiently frequent or continuous wind mixing 

and sediment entrainment. The hydrodynamic conditions of Lake Crescent favour the 

establishment and maintenance of a meroplanktonic phytoplankton community, in 

contrast to Lake Sorell where conditions are more favourable for a mixed plankton 

assemblage of reduced productivity. 

It is likely, therefore, that the characteristic clear-water, macrophyte- dominated state 

of Lake Sorell and the turbid, phytoplankton-dominated state of Lake Crescent results 

from differences in their hydrological environment rather than differing top-down 

trophic influences. Furthermore, increasing lake level is likely to dramatically 

improve the trophic status of the lakes resulting in reductions in nitrogen and 

phosphorus concentration, increased light availability, and potentially reduced algal 

productivity. 
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Lakes Sorell and Crescent provide an example of two lakes in which water level 

fluctuations are fundamental in driving ecosystem process and defining the trophic 

status of the water body. Suspended sediment, phosphorus, nitrogen, light attenuation 

and algal biomass have all been shown to dramatically increase with falling water 

level. Investigation into the effects water level fluctuations have on key water quality 

variables showed that returning lake levels to average levels typical of the period 

predating 1999 would have dramatic effects on improving water quality. 

In a management context, it must be remembered that natural seasonal fluctuations in 

water level are important in structuring wetland communities and maintaining 

ecosystem diversity and the health of shallow lakes (Heffer 2003). However, when the 

amplitude of change increases significantly, the water level fluctuation becomes a 

strong disturbance that has the potential to destabilise the water body, as evidenced 

with lakes Sorell and Crescent. Similar examples are available overseas with Noges et 

al. (2003) fmding water level to be a leading factor controlling nutrient cycling, light 

availability and the phytoplankton community composition in Lake Vortsjarv, 

Estonia. Additionally, Bachmann et al. (2000) note low water levels reached in Lake 

Apopka in the 1950s to be coincident with massive fish kills that occurred in the lake 

during extreme wind events. Coops et al. (2003) also identify water level management 

to be extremely important in lake restoration. 

The persistence of high colloid concentrations in both lakes is of particular concern. It 

appears this material will limit the euphotic depth in both lakes and retard the re­

establishment of aquatic macrophytes for at least another 5 years given the current 

low lake levels. The reliance on dilution and flushing to reduce the concentration of 

colloids, coupled with the potential for climate change to further limit rainfall in the 

catchment, may increase the longevity of this material in the water column. 

Additionally, a sustained reduction in lake level below the points reached in 2000 and 

2001 would increase exposure of sediments that have been little disturbed in the past 

and result in additional release of colloids. 

If climate change reduces average annual rainfall in the catchment, then long-term 

reductions in water levels will likely result. Under such conditions, the frequency and 
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extent of sediment resuspension would increase and Lake Sorell may evolve in a 

similar way as Lake Crescent, with the establishment of a dominant meroplanktonic 

plankton community that reduces light availability and out competes aquatic 

macrophytes. It is also possible that the entrainment oflong-undisturbed, consolidated 

sediments in Lake Sorell has resulted in a new pool of more easily resuspended 

material that may increase the susceptibility of this lake to sediment entrainment, 

along with retarding the growth of macrophytes due to poor substrate composition 

(Bachmann, Hoyer et al. 1999). 

It is possible that the release of colloids from the largely undisturbed, well 

consolidated sediments of Lake Sorell reflects a 'worst case scenario' in that this 

material, once released in the water column, will remain in suspension indefinitely 

until it is exported and lost from the system. It therefore follows that, provided lake 

levels remain above the record low levels reached in March of 2000 and 2001 

(Appendix 10), a comparable release of colloidal material should not eventuate, as 

this material has been lost from the sediment secondary layer, and over time, lost from 

the system. 

An additional factor that should be considered in the future management of the lakes, 

particularly if lake levels remain low, is the potential for fluid mud to develop through 

wave induced liquefication of once consolidated sediments (Bachmann, Hoyer et al. 

2005). The frequent resuspension of sediments in lakes Sorell and Crescent during 

periods of extremely low lake level, may give rise to the development of fluid mud. 

Furthermore, it has been postulated that the existence of fluid mud seriously retards 

the establishment of aquatic macrophytes due to unstable sediments and the inability 

of plant roots to find secure anchorage against wave shear (Bachmann, Hoyer et al. 

1999; Lowe, Battoe et al. 2001). 

7.3 Synthesis and implications 

The theory of alternative stable-states as described by Scheffer (1998) and its 

application to account for shallow lakes alternating between clear and turbid 

conditions has been widely accepted (Jeppesen, Jensen et al. 1999). Lakes Sorell and 

Crescent provided an opportunity to study trophic dynamics and investigate the 

applicability of alternative stable-state theory, as both systems reflect lakes that have 
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been in contrasting alternative 'stable states' in the past, with Lake Sorell maintaining 

a state of relatively clear water, with an expansive cover ofmacrophytes while Lake 

Crescent had a greater algal biomass that led to elevated turbidities (Cheng and Tyler 

1973a), and a limited cover ofmacrophytes. 

The severe decline in water levels experienced by both lakes in the late 1990s 

introduced a major disturbance that eroded the relatively stable equilibrium states of 

both lakes, with the lakes becoming increasingly turbid due to severe increases in the 

magnitude and extent of sediment resuspension. Lake Sorell, in particular, seemed to 

be following the model of a lake 'flipping' from a clear to turbid state. 

A similar change has been documented for Lake Apopka, Florida. Bachmann et al. 

(2005) felt that Lake Apopka was a classic example of a lake switching between 

alternative stable states. One hypothesis for the switch from a macrophyte dominated, 

clear water state to a turbid, phytoplankton dominated state in Lake Apopka was the 

passage of a category 4 hurricane in 194 7 that passed through the area, causing 

extreme winds that destabilised sediments and uprooted macrophytes (Schelske, 

Carrick et al. 1995; Bachmann, Hoyer et al. 2001). This switch may be likened to 

Lake Sorell, with record low lake levels resulting in severe increases in bed shear 

stress, akin to increased storm-induced turbulence experienced by Lake Apopka. 

Interestingly, two mechanisms have been proposed for the maintenance of the turbid, 

phytoplankton dominated state of Lake Apopka, both of which are relevant to lakes 

Sorell and Crescent. One school of thought, proposed by Schelske and Lowe, is that 

chlorophyll-a and increased algal production largely drives light limitation, and 

retards the re-establishment of rooted aquatic macrophytes (Schelske, Carrick et al. 

1995; Schelske, Aldridge et al. 1999; Schelske, Coveney et al. 2000; Lowe, Battoe et 

al. 2001; Schelske and Kenney 2001 ). By contrast, Bachmann, Canfield and Hoyer 

(Canfield, Shireman et al. 1984; Bachmann, Hoyer et al. 1999; Bachmann, Hoyer et 

al. 2000; Canfield, Bachman et al. 2000; Bachmami, Hoyer et al. 2001; Bachmann, 

Hoyer et al. 2001; Bachmann, Hoyer et al. 2005) maintain that high levels of loosely 

flocculated sediments (termed 'fluid mud', a mixture of fine sediments and water that 

has virtually no shear strength (Bachmann, Hoyer et al. 2005)) has developed in the 

lakes, increasing the frequency and extent of sediment resuspension. It is these 
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resuspension events which increase the internal loading of nutrients to the water 

column that lead to the observed eutrophication (Bachmann, Hoyer et al. 1999; 

Bachmann, Hoyer et al. 2000; Bachmann, Hoyer et al. 2000). 

Lakes Crescent and Sorell seem to conform to Bachmann et al.'s (1999; 2000; 2000) 

hypothesis. There is little evidence that the increased nutrient concentrations of the 

late 1990s have been derived from external sources, and the contribution of algae to 

total SPM and the influence on the light climate is minor. The empirical data suggest 

increased productivity to be driven by internal loading exacerbated by resuspension, 

and the modelling with DYRESM-CAEDYM strongly supports this mechanism to be 

plausible. This, coupled with the inorganic and colloidal material being more easily 

resuspended as lake levels drop, resembles the role played by Bachmann et al.'s 'fluid 

mud' and mimics an ecosystem in which sediment resuspension rather than increased 

algal productivity limits light and retards macrophyte growth. 

Failure to recognise the importance sediment resuspension has on influencing 

productivity and trophic status may result in invalid conclusions and mis­

management. Canfield et al. (2000) document how, in recent years, it has become 

common practice for lake managers to try to control phosphorus whenever faced with 

problematic levels of planktonic algae, regardless of what other management actions 

may be considered. This point is supported by Kairesalo et al. (1999) who state that 

generally, a reduction in the external nutrient load is always the primary restoration 

measure followed to provide a basis for the recovery of a eutrophic lake. It is obvious 

that, in lakes Crescent and Sorell, management focussed on reducing nutrient inputs 

alone would have little impact on controlling algal productivity. Additionally, the 

application of biomanipulation by some managers to control algal productivity is 

deemed equally applicable (Auer, Storey et al. 1990; Hanson and Butler 1990; Hosper 

and Jagtman 1990; Jeppesen, Jensen et al. 1999; Meijer, de Boois et al. 1999; 

Sondergaard, Jeppesen et al. 2000). However, work presented in Chapter 5 

demonstrated the weak associations between zooplankton and algal standing crop in 

lakes Sorell and Crescent despite the presence of significant trophic interactions at 

higher trophic levels, and brings into question the applicability of biomanipulation as 

a management tool in these two systems. 
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Although changes in lake water levels appear fundamental to the recent changes in 

these lakes, restoration of 'historically typical' levels may not restore Lake Sorell, in 

particular, to its former state. As asserted by Hosper (1998), a comprehensive 

ecosystem approach may be required to adequately understand ecosystem function 

and provide the necessary information required for effective restoration and 

management of a shallow lake. 

Although the evidence presented in Chapter 5 does not support a classic, top-down 

trophic cascade for Lake Sorell (cf. Carpenter, Kitchell et al. 1985), completely 

disregarding the roles of higher trophic levels may be premature. For example, under 

conditions of increased algal and sediment resuspension, the influence of biotic top­

down processes such as grazing by zooplankton, and bottom-up processes such as 

nutrient and light limitation in influencing algal standing crop may be altered, and 

further research may be needed to forecast the likely trajectories of these lakes should 

the low water levels persist ifthe prolonged drought continues in eastern Tasmania. 

Increased sediment resuspension may become a more frequent and persistent feature 

of these lakes. How will the biota respond? 

Currently, the importance sediment resuspension plays to higher trophic interactions 

in shallow lake communities, and its potential to affect top-down control of 

productivity is poorly researched, especially in Australia. Nonetheless, resuspension 

may have important effects. For example, Levine et al. (2005) quantified the effect 

sediment resuspension had on Daphnia clearance rates and found an increase in 

turbidity from 2.2 NTU to 15 NTU reduced threshold phytoplankton feeding rates by 

25%. Levine et al. (2005) went on to conclude that sediment resuspension has the 

potential to affect energy flow through food webs by reducing the significance of 

zooplankton - phytoplankton interactions. The importance of cladoceran grazing on 

limiting phytoplankton productivity in Lake Sorell would therefore increase during 

times of reduced turbidity, and may have the potential to limit phytoplankton. 

Information on zooplankton - phytoplankton interactions in Lake Sorell during times 

of improved water clarity would be necessary to fully evaluate the importance 

cladoceran grazing has in limiting algal standing crop, as the increased prevalence of 

sediment resuspension in lakes Sorell and Crescent experienced during the current 
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study may confound the degree to which trophic interactions influence primary 

productivity. 

The results of the modelling exercises presented in Chapter 3 and Chapter 6 proved 

the physical environments of the lakes to differ, with the morphology and typical 

water level management scenarios of Lake Crescent leading to a higher susceptibility 

to sediment resuspension that stimulates algal productivity. This result is similar to 

studies elsewhere that found significant interactions between sediment entrainment 

and primary productivity through either direct resuspension of chlorophyll or 

indirectly through increased re suspension and release of nitrogen and phosphorus 

(Hamilton and Mitchell 1988). A further example of the positive effect sediment 

resuspension may have on algal productivity is the work of Carrick et al. (1993) who 

found direct entrainment of meroplankton to be highly significant in increasing algal 

standing crop in Lake Apopka, Florida. But in direct contrast to the situation 

described by Hellstrom (1991) who found sediment resuspension to reduce mean light 

intensity and limit phytoplankton productivity by up to 85% in a shallow lake in 

Sweden. 

This is in contrast to Lake Sorell, where sediment resuspension is less pronounced 

under historic conditions (Chapter 3) and appears to favour a phytoplankton 

community with a reduced dominance of meroplanktonic forms (Chapter 5). The 

increase in sediment 'accumulation' areas (Hakanson 1982) or areas of reduced 

turbulence that would occur in Lake Sorell compared to Lake Crescent (Chapter 3), 

may act as sinks for algal cells and provide a mechanism for the long-term loss of 

meroplankton from the water column. This coupled with a reduction in areal extent to 

which the lake bed is influenced by wind driven waves may help to limit the · 

establishment of a meroplanktonic dominated phytoplankton community in Lake 

Sorell. 

Field-based mapping of accumulation, transportation and erosion areas across both 

lakes would provide further information to interpret the importance loss processes 

may have in limiting meroplankton dominance in Lake Sorell compared to Lake 

Crescent, along with providing detailed information to ground truth and validate a 

more sophisticated, spatially explicit 3-dimensional hydrodynamic mixing model. 
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Such a model would have the capacity to resolve spatial gradients in turbulence and 

sediment exposure throughout the lakes. The successful application of a 

3-dimensional model would help to spatially map the hydrodynamic environments of 

the lakes as well as providing a means to study the interplay between sediment 

resuspension and phytoplankton growth dynamics. 

Additionally, to improve the capacity of DYRESM-CAEDYM to simulate 

phytoplankton growth dynamics in lakes Sorell and Crescent, in-situ and laboratory 

based quantification of parameters specific to modelling phytoplankton growth 

dynamics in the lakes, such as the maximum potential growth rate; the respiration 

rate; settling velocity ; and the half saturation constants for nutrient uptake of the 

phytoplankton group I species of interest would be beneficial (Lewis, Brookes et al. 

2004). Such information would be necessary if a more detailed and applied 

investigation of plankton growth dynamics was pursued. 

To utilise the capacity ofDYRESM-CAEDYM to study more' complex interactions of 

ecosystem function in either lake, such as higher order trophic interactions, additional 

data to calibrate DYRESM-CAEDYM would be required. 

Quantifying and modelling the relationships between turbidity and cladoceran 

clearance rates would be of particular value in modelling zooplankton - phytoplankton 

interactions in systems with frequent and highly variable changes in turbidity and 

SPM. Such an algorithm could be readily integrated into the modelling :framework, 

and coupled with information on the possible impacts increased SPM loading has on 

retarding cladoceran population growth would be a valuable addition to CAEDYM 

and allow for a more realistic representation of zooplankton dynamics in shallow, 

turbulent lentic systems such as lakes Sorell and Crescent. 

Additionally, accurate data on the concentration of golden galaxiids in both lakes 

would be required to determine the potential for limitation of Cladocera through 

predation. It is also likely that the feeding rates of golden galaxiids and the brown 

trout (Stuart-Smith, Richardson et al. 2004) are adversely affected by increased 

turbidity. In a similar fashion as proposed for cladocerans, developing and integrating 

relationships into CAEDYM describing the effects of turbidity on foraging efficiency 
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of these two key fish species should increase the ability of the model to simulate 

higher order trophic interactions in shallow systems such as lakes Sorell and Crescent 

Also, at present. there is little capaci!Y for DYRESM-CAEDYM to model the 

influence of macrophytes on complex ecosystem processes such as sediment 

resuspension, competition with phytoplankton for nutrient uptake or the ability to 

provide refuge for zooplankton. Processes that are important to the functioning of a 

shallow lake ecosystem (Scheffer 1998). For example, developing CAEDYM 

algorithms that model freshwater macrophyte growth and cover and feed back into 

zooplankton - zooplanktivorous fish interactions would be valuable. Also, quantifying 

the level to which macrophytes influence sediment-resuspension (e.g. effects of 

growth form and density) would be beneficial for modelling the role of increased 

macrophytes in improving water quality in shallow lakes. 

DYRESM-CAEDYM also has the capacity to model a 'tracer' with a set decay rate 

that could be employed to model reductions in colloid levels in the lakes. There are no 

management options readily available for reducing the concentration of colloids in 

water bodies the size of lakes Sorell and Crescent, so being able to detail the longevity 

of such substances would be beneficial for predicting the long term impacts colloids 

may have on reducing light availability and effecting macrophyte productivity in the 

lakes. Also, sediment analysis of cores to identify the horizon between the sediment 

primary and secondary layers and the amount of colloidal material present in each 

would help to quantify the potential for further release of colloids from the sediments 

under differing lake level management scenarios relative to those experienced in 

recent years. 

Finally, further, more detailed work would be required to determine the exact process 

that drives increased algal productivity in Lake Crescent and the explicit role 

resuspension plays on influencing primary productivity. The present study failed to 

determine if increased algal productivity was via sediment resuspension and release of 

nutrients occluded to the SPM or present in the interstitial pore water stimulating algal 

productivity, or whether it was via direct water column inoculation of meroplankton 

from the sediments. In order to answer confidently the question of the origin of the 

meroplankton that increase the short term productivity of Lake Crescent, additional 
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experimental and field based trials are required. Experiments such as those conducted 

by Schallenberg and Burns (2004) would have the capacity to identify the source of 

the meroplankton, and determine if increased algal productivity in Lake Crescent is 

due to direct water column inoculation of meroplankton from the sediments; or if 

increased productivity is due to resuspension and release of nutrients that stimulates 

algal growth. Also, additional field trials with real-time chlorophyll and turbidity 

logging equipment deployed during sediment resuspension events, coupled with 

frequent sampling of water column plankton before, during and after the event, would 

further aid our understanding of the complex processes that limit algal productivity in 

Lake Sorell and stimulate algal productivity in Lake Crescent. There also would be 

merit in running algal bioassays to assess the degree of nutrient limitation in the lakes, 

and to see if this has changed significantly since the work of Cheng and Tyler. 

The inaccuracies inherent in the spectrophotometric determination of phaeopigment 

limited accurate determination of the contribution made by Pha to resuspended algal 

biomass (Webb, Burnison et al. 1992; Axler and Owen 1994). In future research, 

particularly with respect to algal resuspension, a more advanced method of 

chlorophyll and phaeopigment measurement, such as high performance liquid 

chromatography (HPLC) (Humphrey and Jeffrey 1997; Mantoura, Jeffrey et al. 1997), 

would be valuable to determine the precise contribution phaeopigment makes to 

resuspended algal samples. 

7 .4 Conclusions 

In light of all available data collected during the current project, it is most likely that 

the process controlling turbidity, nutrient cycling, light attenuation and lake 

productivity in lakes Sorell and Crescent is sediment resuspension. 

Management options for reducing sediment resuspension include increasing lake 

water levels and fetch manipulation. Fetch manipulation for water bodies the size of 

lakes Sorell and Crescent would involve extensive earthworks and have the potential 

to do more harm than good, particularly in the face of ensuring the continued survival 

of the endemics of these two lakes. Therefore, manipulating water levels is the most 

feasible management option, with the modelling showing that it has considerable 

promise. 
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Furthermore, it has been shown in lakes Sorell and Crescent that increasing light 

availability through a reduction in sediment resuspension will result in a reduction in 

algal biomass, this is despite the possibility of an improved light climate favouring 

algal dominance, particularly after a stable equilibrium state has been destabilised 

(Hellstrom 1991; Scheffer and Jeppesen 1998). The reason for algal production 

declining despite increased water clarity is that internal loading by resuspended 

nutrients should decrease as lake levels increase, because higher water levels mean 

less of the lake beds are exposed to above-critical shear stresses. 

At the low lake levels experienced by the lakes in recent times, resuspension of 

sediments occurs at very low wind speeds across large areas of the lake basin. Such 

winds occur frequently and under even relatively calm conditions, there is sufficient 

turbulence to keep sediment in suspension. With resuspension happening so 

frequently, consolidation of sediments is not possible, further compounding the 

problem. The nature of the relationships show turbidity to increase logarithmically 

with decreasing lake level, therefore, a small drop in lake level at low levels can cause 

extreme increases in turbidity. 

Ecologically, it is likely that the contrast in algal productivity between lakes Sorell 

and Crescent is driven by contrasts in the hydrodynamic environments of the lakes. 

Furthermore, a more detailed study on the significance of trophic interactions in the 

lakes may be warranted, particularly at times when water clarity and SPM 

concentrations improve, as the relationships between zooplankton and phytoplankton 

grazing may be confounded by high turbidity levels (Levine, Zehrer et al. 2005). 

Expanding the current application ofDYRESM-CAEDYM to include zooplankton, 

galaxiid and trout interactions would further add to our current understanding of the 

ecosystem processes in lakes Sorell and Crescent and help with evaluating other 

scenarios such as what might happen to the higher trophic levels if prolonged drought 

keeps the water levels in these lakes low. 
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Appendices 

Appendix 1 Hypsographic curves of lakes Sorell and Crescent. 
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Hypsographic curves of lakes Sorell and Crescent were produced by digitising and 
analysing contour areas of the bathymetric maps (Chapter 2, Figure 1 and Figure 2) 
using Maplnfo V6. In the case of Lake Sorell, bathymetric data extended to a 
maximum depth of 801.4 m (ASL ). It was therefore not possible to extend the 
hypsographic analysis beyond this point. 
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Appendix 2 Comparisons of measurements made by four 
independent turbidity meters on Formazin and field samples. 

During the course of the project, four separate turbidity meters were used for in-situ 
measurement and logging of turbidity. Instruments used included: 

Hach 21 OOP Portable Turbidimeter 
Mc Vann Analite NEP 160 turbidity meter with an Analite NEP 290 probe 
Analite Model 156 Portable Nephelometer 
Greenspans TS 300 0-500NTU turbidity logger 

Different meters were used for several reasons. The Hach 21 OOP was used for 
measuring filtered turbidity of 1 µm filtrate, and was the only instrument capable of 
analysing small sample volumes. The 2100P was also used for turbidity 
measurements made pre-April 2000. Access to the 2100P was limited during the 
course of the project, so the Mc Vann NEP 160 was used as a dedicated field 
instrument measuring 'in-situ' turbidity for all routine monitoring trips. The Analite 
156 and the Greenspans TS 300 were both used as dedicated turbidity loggers, and 
were deployed for several weeks at a time, monitoring changes in suspended sediment 
concentration with changing environmental conditions. 

By definition, each turbidity meter should return comparable values when field 
measurements are made, providing meters are calibrated correctly. Comparisons were 
made between total and filtered turbidity, between historic and current turbidity 
levels, and also using turbidity logger measurements to approximate suspended 
sediment concentration. Therefore, it was critical to ensure that all turbidity meters 
returned comparable measurements. 

To verify this, each meters calibration was checked against Formazin standards 
according to the manufacturers specifications, and adjusted if necessary. The, 
Formazin was prepared according to Standard Methods (A.P.H.A, 1992). 
Measurements were made on a variety of different F ormazin concentrations and each 
meters response noted. The meters retUmed comparable measurements when made on 
Formazin suspensions (refer figure 1). 

However, large discrepancies existed when made on samples of lake water from both 
lakes Sorell and Crescent (refer figures 2 and 3). This posed a significant problem, as 
measurements made by independent turbidity meters were not comparable with each 
other. This is similar to work carried out by (Gippel 1988; Gippel 1995) who 
demonstrated that two turbidity meters, when calibrated against a F ormazin standard 
returned comparable readings but when measurements were made on a latex 
suspension, the discrepancy in readings was up to 3 times in comparison. 

Following this, it was hoped to establish accurate relationships between each meter 
and the Hach 21 OOP in regards to measurements made on field samples. If 
comparative measurements between meters could be accurately modelled, then each 
meter's measurments could be standardised so as to be comparable to the Hach 
21 OOP. This would enable accurate turbidity comparisons between measurements 
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made with different meters and allow comparisons to be made to turbidity readings 
from previous studies. 

Figure 4 illustrates the relationship found between measurements made with the 
Mc Vann NEP 160 and the Hach 21 OOP. The relationship was almost perfectly linear 
and the resulting regression equation was used to standardise all field measurements 
made with the Mc Vann NEP 160 so as to be comparable to the Hach 21 OOP. Analysis 
of data for the remaining two meters returned similar results (refer table 1 ). From 
these relationships, all measurements made were adjusted to be comparable to the 
Hach 2100P. 

Figure 1 Comparison ofFormazin readings from the four turbidity meters used 
during the project. 
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Figure 3 
sample. 
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Figure 4 Comparison of measurements made with the Mc Vann NEP 160 
turbidity probe and the Hach 21 OOP nephelometer. 
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Table 1 Linear regression coefficients comparing the Hach 21 OOP and the 
turbidity meters utilised during the project. The relationships were used to standardise 
all turbidity measurements so as to be comparable to the Hach 21 OOP. 

Meter Coefficient Intercept r-squ p 

Analite 1.375 -1.146 0.99 <<0.001 
Mc Vann 0.8081 4.3027 0.98 <<0.001 
Greenspans 1.378 -1.942 0.96 <<0.001 
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Appendix 3 
analysis. 

Comparisons of two spectrophotometers for g440 

Dissolved colour measured as g440, was determined spectrophotometrically 
according to the method outlined by Kirk (1976). The method involved measuring the 
absorbance at 440nm of filtrate passed through a 0.45µm membrane filter paper. 

The analysis was initially carried out on a Shimadzu UV-120-02 spectrophotometer in 
a 4cm cuvette. Later, g440 ' s were measured on a Varian Cary 50 CONC 
spectrophotometer in a 10 cm cuvette. This was due to the Shimadzu being replaced 
during the course of the project. Theoretically, the absorbance of a sample at 440nm 
should be comparable between machines, however, it was found that the Varian 
measured significantly higher absorbance than the Shimadzu. The reasons for this are 
unknown, but to gain comparative readings between sample dates for the course of the 
project, it was necessary to correct readings so that they were comparable between 
instruments. 

Method outline: 
Comparisons of absorbance measurements were made between the two machines for 
a sweet of samples from both lakes. It was found that the comparative response of 
both machines to increasing levels of dissolved colour was almost perfectly linear 
(refer figure 1 ). Using the linear regression equation outlined in figure I, all field 
sample measurements made on the Varian were converted as to be comparable to 
readings made on the Shimadzu. 

Figure 1 Graphical and linear regression analysis of the relationship between 
absorbance of field samples at 440nm for the two spectrophotometers. 
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Appendix 4 Colloidal solids analysis. 

It was evident that the colloidal component present in both lakes Sorell and Crescent 
had the potential to significantly contribute to the total mass of particulate material in 
suspension. The increase in levels of filtered turbidity was highly significant, and 
understanding the relationship between the mass of colloidal solids and filtered 
turbidity would help in understanding the extent of erosion which occurred in both 
lakes. Also the potential contribution, by mass, of colloids to background turbidity 
could be assessed. 

Standard methods for determining suspended solids (A.P .H.A.1992) did not sample 
the colloidal material, as it passed through the filter paper and was not retained. It was 
necessary to devise a methodology that would effectively measure the mass 
contribution of colloids to total suspended sediment. 

It was found that freezing of water samples resulted in almost complete flocculation 
of the colloidal material. Floe formation appeared to occur within the ice crystal 
lattice as the water samples froze. On thawing, the flocculated colloidal material, 
having a greater particle size was easily.retained on a standard lµm (nominal pore 
size) glass-fibre filter paper. By comparing the mass of suspended solids on unfrozen 
samples to the mass of suspended solids of samples that had been frozen and thawed, 
it was possible to accurately determine the mass of colloidal material. 

Figure 1 outlines the relationship between filtered turbidity and the mass of colloidal 
solids. Using the relationship, it was possible to approximate the mass of colloidal 
solids from previous filtered turbidity readings for the duration of the project. Table 1 
is a summary of the ability of the technique to remove colloids, and also illustrates the 
significance of colloids in contributing to the total mass of suspended sediment. What 
is notable is the clarity of the filtrate after the frozen samples were filtered, dropping 
from 46 NTU and 66 NTU for lakes Crescent and Sorell respectively, to below 1.4 
NTU. Water of this clarity is comparable to zero blanks prepared from analytical 
grade deionised water and measured on the Hach 21 OOP. 
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Figure 1 Linear regression analysis of the mass of colloidal solids and filtered 
turbidity for 64 samples taken over several dates from both lakes. 
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Table 1 Overview of the contribution of colloidal and particulate solids to the 
total measured solids and the changes in turbidity before and after freezing. 

Lake n Total Filtered SS before SS after Filtered 
Turbidity Turbidity freezing freezing Turbidity 

before before (mg/L) (mg/L) after 
freezing freezing freezing 
(NTU) (NTU) (NTU) 

Crescent 8 168 46 167.3 248.2 1.34 
Sorell 8 152 66 90.8 282.3 1.09 
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Appendix 5 Stream discharge ratings. 

Table 1 is a summary of the location of each of the logged weir pools and sample sites 
for each of the tributaries sampled during 2000 and 2001. Figures 1 through 4 are the 
gauge ratings of measured instantaneous discharge and stage height. The relationships 
were used to produce the hydrographs (figures 5 through 12) for each of the 
tributaries and approximate discharge for 2000 and 2001. The high level of hysteresis 
present for the drain leaving Kemps Marsh is due to wind forcing occurring on the 
marsh that influenced the degree of discharge independent to inflows. The hydrograph 
for the Kemps Marsh drain for 2000 does not include discharge pre September 2000 
which may influence the overall estimate of the volume entering the lake from this 
tributary. The extent of flow for this period is thought to be minimal due to the low 
level of water that had accumulated in the marsh. 

Table 1 
tributaries. 
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Figure 5 Mountain Creek hydrograph for 2000. 

600 --------------------------,----- ---------------------.,------------------------ -- ----- ------- ---------- --
' ' ' ' ' ' ' ' ' ' 

500 ' ' -------- - ---------- -----·-------------- ___________ .! __________________________ -------------------------

' ' 
Total :9924 megalitres 

' ' ~ 400 ----------------,--------------------------.,-------------------------- ------------------------- ---------------------

"O --~ 
~ 300 
ro 
fill 
E 200 

100 

' ' ' ' 

----- - - ------ ---------'---------- _______________ J ________________________ _ 

' ' ' ' ' ' ' ' 
' ' ' ' ' ' ' ' 

O +-~~~~~+-~~~~~+-~~~~--:~~~~~-----:-~~-=-...__~ 

13-Jul-OO 13-Aug-OO 13-Sep-OO 14-0ct-OO 14-Nov-OO 

278 



Appendix 5 

Figure 6 
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Figure 7 Silver Plains Creek hydrograph for 2000. 
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Figure 8 
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Figure 9 North Silver Plains Creek hydrograph for 2000. 
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Appendix 5 

Figure 10 North Silver Plains Creek hydrograph for 2001. 
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Figure 11 Kemps Marsh drain hydrograph for 2000, excluding flows previous to 
September 1, 2000. 
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Figure 12 Kemps Marsh drain hydrograph 2001. 
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Discharge correlations comparing Agnews Creek to other gauged 
sites 

Agnews Creek was recognised as the main tributary (excluding the Interlaken canal) 
entering Lake Crescent. It was not possible to find a suitable site for the placement of 
a logger in Agnews Creek for reasons of security and weir pool suitability. In light of 
this, it was thought that a significant correlation between instantaneous flow from 
Agnews Creek and one of the other logged catchments would be found, and flow 
from Agnews Creek could be approximated from the hydro graph of one of the other 
sites. 

Table 2 outlines the correlations between instantaneous discharge of Agnews Creek 
and discharge from each of the other monitored tributaries. All correlations are highly 
significant. The most suitable for approximating Agnews Creek flow was found to be 
Silver Plains Creek, as it had the highest correlation coefficient. Figure 13 outlines the 
regression analysis relating discharge of Silver Plains Creek and Agnews Creek. This 
relationship was used to produce the hydro graphs for 2000 and 2001 for Agnews 
Creek (refer figures 14 and 15) and approximate total stream discharge for these time 
periods. 

Table 2 Pearson correlation matrix comparing measured instantaneous 
discharge at Agnews Creek, with instantaneous discharge from the four logged sites. 

Agnews Creek 
Silver Plains Creek 0.940 
Mountain Creek 0.751 
North Silver Plains Creek 0.939 
Kemps Marsh Drain 0.873 
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Figure 13 Regression relationship comparing logged instantaneous discharge 
measured at Silver Plains Creek to instantaneous discharge measured at Agnews 
Creek. 
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Appendix 6 
concentration. 

Stream discharge versus nutrient and sediment 

The following figures outline the regression relationships between total nitrogen 
(TN), total phosphorus (TP), suspended solids (SS), and instantaneous discharge 
( cumecs) for all the monitored tributaries of lakes Sorell and Crescent. The regression 
equations for North Silver Plains Creek and Silver Plains Creek for TN, TP and SS 
were used to approximate nutrient and sediment concentration from instantaneous 
discharge. For Mountain Creek, the relationship for TN was used to approximate TN 
concentration from instantaneous discharge. For the remainder, it was assumed a 
linear change in concentration occurred between sample dates. 
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Silver Plains Creek 
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Appendix 7 Turbidity versus suspended solids concentration of 
routine monitoring samples. 

Turbidity is a measure of light scattering, and is largely dependent on the amount of 
suspended particulate material present in the water column. Due to this, turbidity has 
been used extensively to approximate suspended solids concentration, and offers an 
extremely quick and effective tool for monitoring changes in levels of suspended 
sediment.(Gippel 1989) During the project, turbidity loggers were used to monitor 
changes in suspended sediment levels. This was dependent on developing a robust 
relationship between turbidity and suspended solids concentration. 

Linear regression analysis was carried out on all turbidity and suspended solids 
samples from trips made between April 2000 to January 2002. The resulting 
regression relationships (refer figures 1 and 2) were found to be highly significant, 
and were used to approximate suspended sediment concentration from turbidity 
readings made by the turbidity loggers. 

Figure 1 Graphical representation of the linear relationship between measured 
'in-situ' turbidity and suspended solids for Lake Crescent. 
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Figure 2 Graphical representation of the linear relationship between measured 
' in-situ' turbidity and suspended solids for Lake Sorell. 
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Appendix8 

Appendix 8 Sediment and nutrient budgets for both lakes for 
2000 and 2001. 
Particulate and colloidal (total) sediment budget (tonnes) for 2000: 

Sediment loading of the 
water column (tonnes) m 

Input of sediment (tonnes) entering Lake Lake Sorell. 
Sorell. 

average 37900 
Mountain Creek 14.7 ) min 16150 
Silver Plains Creek 2.6 max 49250 
North Silver Plains Creek 3.1 range 33100 
Kemps Marsh drain 5.5 

! Sorell Exports 

Sediment loading of the 
water column (tonnes) in Lake Crescent inputs 
Lake Crescent. (tonnes). 

average 6900 ( Sorell 800 
min 4350 Agnews Creek 3.4 
max 11800 

range 7450 

Crescent Exports ! 
!Clyde River I 1545 I 

Overview: 

Total sediment Sorell Crescent 
inputs (tonnes) 26 803.4 

internal change (+/-) 33100 7450 
exports (tonnes) 800 1545 
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Particulate sediment budget (tonnes) 2000: 

Sediment loading of the 
water column (tonnes) in 

Input of sediment (tonnes) entering Lake Sorell. Lake Sorell. 

Mountain Creek 14.7 average 18100 
Silver Plains Creek 2.6 

~ 
min 3400 

North Silver Plains Creek 3.1 max 26550 
Kemps Marsh drain 5.5 range 23150 

! Sorell Exports 

Sediment loading of the 
water column (tonnes) in Lake Crescent inputs 
Lake Crescent. (tonnes). 

average 4450 ( Sorell 242.4 
min 2550 Agnews Creek 3.4 
max 8900 

range 6350 

Crescent Exports ! 
!Clyde River 11061.6 I 

Overview: 

Particulate Sediment Sorell Crescent 
inputs (tonnes) 25.9 245.8 

internal change (+/-) 23150 6350 
exports (tonnes 242.4 1061.6 
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Colloidal sediment budget (tonnes) 2000: 

Input of colloids (tonnes) entering Lake Sorell. 

Mountain Creek 
Silver Plains Creek 
North Silver Plains Creek 
Kem s Marsh drain 

Colloid loading of the water 
column (tonnes) in Lake 
Crescent. 

averaqe 2450 
min 1800 
max 2900 

range 1100 

Crescent Exports ! 
I Clyde River 1483.1 I 

ible 
ible 
ible 
ible 

( 

Overview: 

Colloids 
inputs (tonnes) 

internal change (+/-) 
exports (tonnes) 

) 

Sorell 
N/A 

9950 
563.8 

Appendix8 

Colloid loading of the water 
column (tonnes) in Lake 
Sorell. 

avera e 19750 
min 12800 
max 22750 

ran e 9950 

! Sorell Exports 

Lake Crescent inputs 
(tonnes). 

Sorell 563.8 
A news Creek ne Ii ible 

Crescent 
563.8 
1100 
483.1 
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Nitrogen budget (tonnes) 2000: 

Nitrogen loading of the water 
column (tonnes) in Lake 

Input of Nitrogen (tonnes) entering Lake Sorell. Sorell. 

Mountain Creek 0.77 average 20 
Silver Plains Creek 0.41 ::. min 135 
North Silver Plains Creek 0.28 max 270 
Kemps Marsh drain 1.11 range 135 

! Sorell Exports 

Nitrogen loading of the water 
column (tonnes) in Lake Lake Crescent inputs 
Crescent. (tonnes). 

average 74 ( Sorell 4.7 
min 46 Agnews Creek 4.7 
max 140 

range 94 

Crescent Exports ! 
ICl~de River I 16.8 I 

Overview: 

Nitrogen Sorell Crescent 
inputs (tonnes) 2.6 9.4 

internal change (+/-) 135 94 
exports (tonnes) 4.7 16.8 
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Phosphorus budget (kgs) 2000: 

Input of Phosphorus (kgs) entering Lake Sorell. 

Mountain Creek 
Silver Plains Creek 
North Silver Plains Creek 
Kemps Marsh drain 

Phosphorus loading of the 
water column (kgs) in Lake 
Crescent. 

average 3550 
min 2050 
max 7700 

range 5650 

Crescent Exports ! 
!Clyde River 820 

76 
21 
14 
20 

( 

Overview: 

+/-

) 

Sorell 
131 

13950 
350 

Appendix 8 

Phosphorus loading of the 
water column (kgs) in Lake 
Sorell. 

avera e 16200 
min 9400 
max 23350 

ran e 13950 

! Sorell Exports 

Lake Crescent inputs (kgs). 

Sorell 350 
Agnews Creek 29 

Crescent 
379 

5650 
820 
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Particulate and colloidal (total) sediment budget (tonnes) 2001 : 

Sediment loading of the 
water column (tonnes) lil 

Input of sediment (tonnes) entering Lake Sorell . Lake Sorell. 

Mountain Creek 6.7 average 30350 
Silver Plains Creek 4.8 

~ 
min 22900 

North Silver Plains Creek 7.4 max 40550 
Kemps Marsh drain 11.1 range 17650 

! Sorell Exports 

Sediment loading of the 
water column (tonnes) in Lake Crescent inputs 
Lake Crescent. (tonnes). 

average 5650 E Sorell 1461 
min 3100 Agnews Creek 6 
max 9550 
range 6450 

Crescent Exports ! 
jClyde River j 801.51 

Overview: 

Total Sediment Sorell Crescent 
inputs (tonnes) 30 1467 

internal change (+/-) 17650 7450 
exports (tonnes) 1461 801.5 
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Particulate sediment budget (tonnes) 2001 : 

Sediment loading of the 
water column (tonnes) in 

Input of sediment (tonnes) entering Lake Sorell. Lake Sorell. 

Mountain Creek 6.7 average 7900 
Silver Plains Creek 4.8 :. min 3050 
North Silver Plains Creek 7.4 max 15300 
Kemps Marsh drain 11.1 range 12250 

! Sorell Exports 

Sediment loading of the 
water column (tonnes) in Lake Crescent inputs 
Lake Crescent. (tonnes). 

average 3650 ( Sorell 280 
min 1700 Agnews Creek 6 
max 6800 

range 5100 

Crescent Exports ! 
!Cl~de River I 441.21 

Overview: 

Particulate Sediment Sorell Crescent 
inputs (tonnes) 30.0 286 

internal change (+/-) 12250 5100 
exports (tonnes) 280 441.2 
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Colloidal sediment budget (tonnes) 2001: 

Input of Colloids (tonnes) entering Lake Sorell. 

Mountain Creek 
Silver Plains Creek 
North Silver Plains Creek 
Kem s Marsh drain 

Colloid loading of the water 
column (tonnes) in Lake 
Crescent. 

averaoe 2000 
min 1400 
max 2750 

range 1350 

Crescent Exports ! 
!Clyde River 360 

Colloids 

( 

Overview: 

) 

Sorell 
N/A 

5400 
1180 

Appendix8 

Colloid loading of the water 
column (tonnes) in Lake 
Sorell. 

avera e 22450 
min 19850 
max 25250 

ran e 5400 

! Sorell Exports 

Lake Crescent inputs 
(tonnes). 

Sorell 1180 
A news Creek ne Ii ible 

Crescent 
1180 
1350 
360 
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Nitrogen budget (tonnes) 2001 : 

Nitrogen loading of the water 
column (tonnes) in Lake 

Input of Nitrogen (tonnes) entering Lake Sorell. Sorell. 

Mountain Creek 1.33 average 187 
Silver Plains Creek 0.82 

~ 
min 134 

North Silver Plains Creek 0.66 max 228 
Kemps Marsh drain 2.00 range 94 

! Sorell Exports 

Nitrogen loading of the water 
column (tonnes) in Lake Lake Crescent inputs 
Crescent. (tonnes). 

averaae 69 E Sorell 12.6 
min 39 Agnews Creek 4.5 
max 121 

range 82 

Crescent Exports ! 
ICl~de River 112.3 I 

Overview: 

Nitrogen Sorell Crescent 
inputs (tonnes) 4.8 17.1 

internal change (+/-) 94 82 
exports (tonnes) 12.6 12.3 
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Phosphorus (kgs) budget 2001 : 

Input of Phosphorus (kgs) entering Lake Sorell. 

Mountain Creek 
Silver Plains Creek 
North Silver Plains Creek 
Kemps Marsh drain 

Sediment loading of the 
water column (kgs) in Lake 
Crescent. 

averaQe 3350 
min 1700 
max 6700 

range 5000 

Crescent Exports ! 
!Clyde River 536 

67 
43 
34 
41 

( 

Overview: 

+/-

) 

Sorell 
185 

12650 
349 

Appendix8 

Phosphorus loading of the 
water column (kgs) in Lake 
Sorell. 

average 14150 
min 6900 
max 19550 

range 12650 

! Sorell Exports 

Lake Crescent inputs (kgs). 

Sorell 349 
Agnews Creek 48 

Crescent 
397 
5000 
536 
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Appendix 9 
pool. 

Colloidal nutrient contribution to the total nutrient 

Lake Sorell Total Nitrogen -
Date Turbidity Filtered Total N Colloidal Particulate Colloidal 

(NTU) Turbidity (mg/L) JN TN TN!Total TN 
(NTU) (mg/L) (mg/L) 

11/04/02 94 63.6 2.72 1.38 1.34 51% 
16/06/02 142 64.6 4.17 1.32 2.85 32% 
10/07/02 158 69.2 3.46 1.23 2.23 36% 
25/07/02 147 67.2 2.95 1.28 1.67 43% 
Average 135 66.2 3.33 1.30 2.02 
St. Dev 28 2.5 0.64 0.06 0.66 

Lake Sorell Total Phosphorus 
Date Turbidify Filtered Colloidal Particulate Soluble Colloidal 

(NTU) Turbidity Total P TP TP Reactive P TP!Total 
(NTU) (mg/L) (mg/L) (mg/L) (mg/L) TP 

11/04/02 94 63.6 0.128 0.033 0.095 0.004 26% 
16/06/02 142 64.6 0.199 0.042 0.157 0.003 21% 
10/07/02 158 69.2 0.122 0.037 0.085 0.008 30% 
25/07/02 147 67.2 0.101 0.036 0.065 0.003 36% 
Average 135 66.2 0.138 0.037 0.101 0.005 
St. Dev 28 2.5 0.043 0.004 0.040 0.002 

Lake Crescent Total Nitrogen 

Date Turbidity Filtered Total N Colloidal Particulate Colloidal 
(NTU) Turbidity (mg/L) TN TN TN!Total TN 

(NTU) (mg/L) (mg/L) 
11/04/02 119 44.6 2.54 1.42 1.12 56% 
16/06/02 173 44.5 2.22 1.45 0.77 65% 
11/07/02 167 46.6 2.04 1.53 0.51 75% 
26/07/02 169 47.2 1.73 1.32 0.41 76% 
Average 157 45.7 2.13 1.43 0.70 
St. Dev 25 1.4 0.34 0.09 0.32 

Lake Crescent Total Phosphorus 
-

Date Turbidity Filtered Total P Colloidal Particulate Soluble Colloidal 
(NTU) Turbidity (mg/L) TP TP Reactive P TP!Total 

(NTU) (mg/L) (mg/L) (mg/L) TP 
11/04/02 119 44.6 0.128 0.069 0.059 0.003 54% 
16/06/02 173 44.5 0.189 0.080 0.109 0.005 42% 
11/07/02 167 46.6 0.155 0.088 0.067 0.006 57% 
26/07/02 169 47.2 0.142 0.080 0.062 0.004 56% 
Average 157 45.7 0.154 0.079 0.074 0.005 
St. Dev 25 1.4 0.026 0.008 0.023 0.001 
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Appendi.x 10 

Appendix 10 Lake Level Changes for Lake Sorell and Lake 
Crescent, 1970 - 2004. 

Figure 1: Lake level variation (mASL) in Lake Sorell, 1970 to July 2004. 
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Figure 2: Lake level variation (mASL) in Lake Crescent, 1970 to July 2004. 
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Figure 3: Lake level variation (mASL) in Lake Sorell, 1997 to 2004. 
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Figure 4: Lake level variation (mASL) in Lake Crescent, 1997 to 2004. 
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Appendix JO 

Figure 5: Dot-density and box plots depicting the spread in recorded lake level from 
January 1970 to December 1997 (Pre 1998); and January 1998 to July 2004 in lakes 
Crescent and Sorell. 
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Table 1: Descriptive statistics summarising water levels in lakes Sorell and Crescent 
from January 1970 to December 1997 (Pre 1998); and January 1998 to July 2004. 

Lake Sorell Pre 1998 Sorell Post 1998 Crescent Pre 1998 Crescent Post 1998 

Minimum 803.14 802.62 801 .9 801 .77 
Lower hinge 803.88 803.12 802.96 802.32 

Median 804.09 803.39 803.18 802.5 
Upper hinge 804.32 803.65 803.78 802.66 

Maximum 804.78 804.12 804.15 803.05 
N 503 833 804 781 

Mean 804.09 803.36 803.30 802.48 
St. Dev 0.31 0.35 0.49 0.26 
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Appendix 11 

Appendix 11 DYRESM-CAEDYM input files. 

DYRESM-CAEDYMMeteoroloqical file .met 

<#3> 
Interlaken meteorological data. SW [W mA-2], CC (fraction cloud 
cover)., Tair [Celsius], Pvap [hPa], Uwind (ms-1) ., Rainfall (m). 
86400 # Input met data time step (in seconds). Daily. 
CLOUD_COVER # Cloud cover option for LW 
FIXED_HT 14 # wind speed sensor type and height above lake bed 
(assuming metres). 
YrDayNum SW CC(frac). 
2000001 388.65 0.2 
2000002 
2000003 
2000004 
2000005 
2000006 
2000007 
2000008 
2000009 
2000010 
2000011 
2000012 
2000013 
2000014 
2000015 
2000016 
2000017 
2000018 
2000019 
2000020 
2000021 
2000022 
2000023 
2000024 
2000025 
2000026 
2000027 
2000028 
2000029 
2000030 
2000031 

334.49 
282.38 
35 .13 
239.89 
407.94 
229.64 
256.87 
388.32 
299.34 
352.36 
407.64 
396.49 
348.98 
271.15 
399 .11 
391.04 
187.36 
283.89 
232.98 
216.04 
242.26 
238.51 
322.47 
173.36 
95. 96 
209.55 
288.15 
210.4 
356.32 
323.19 

0.5 
0.5 
0.8 
0.7 
0.2 
0.7 
0.5 
0.1 
0 
0.3 
0 
0.1 
0.5 
0.3 
0.1 
0.1 
0.8 
0.6 
0.8 
0.7 
0.7 
0.7 
0.4 
0.7 
0.8 
0.7 
0.5 
0.8 
0.3 
0.7 

Tair 
9.5 
11. 6 
12.2 
9.8 
7.2 
10.6 
11. 6 
13. 3 
12.8 
15.6 
17.1 
14.7 
15.2 
14.7 
15.5 
13.9 
14.1 
14.4 
14 
12.4 
9.1 
6.4 
5.2 
8.5 
10.1 
8.5 
9.8 
10.9 
7.6 
10.1 
11.5 

Pvap 
8.2 
9.42 
10.46 
10.26 
8.35 
8.14 
9.25 
10.32 

Uwind 
4.6 
5.41 
7.34 
6.11 
5. 97 
4.53 
4.36 
4.55 

9. 77 6.34 
11.68 5.43 
12.01 4.24 
11.21 5.84 
10.74 6.29 
10.86 6.81 
12.63 4.74 
11.05 5.05 
8.53 4.2 
10.12 5.68 
12.37 5.77 
11.46 7.72 
9.75 5.98 
7.75 
7.33 
7.41 
8.91 
9.49 

5.54 
5.19 
4. 6 
4.34 
3.98 

10.93 4.94 
9.91 4.7 
9.17 6.09 
7.92 
9.63 

4.31 
4.18 

Rainfall 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0.0002 
0.0002 
0.0002 
0.0002 
0.0018 
0.0010 
0 
0.0004 
0.018 
0.0024 
0 
0 
0 
0 
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Appendix 11 

DYRESM-CAEDYM morphometry file .stg 

<#3> 
Lake Crescent morphometry file 
-42 
800.2 
2 

# latitude 
# height of base? above MSL 
# number of streams 

SURF 70 0.13 0.016 Inter Canal # info of stream (surf/sub-surf, 
half-ang, slope, drag coef., name). 

SURF 70 0.13 0.016 Agnews # info of stream (surf/sub-surf, 
half-ang, slope, drag coef., name). 

0 # base elevation (m) . or elevation of lake bottom 
3.6 # full supply elevation (m). or crest elevation 
1 # number of outlets 
1.3 # outlet heights 
18 # number of bathymetry records 
Height (m) . Area (m2) . 
0.4 1058000 
0.6 6383000 
0.8 9889000 
1.0 12680000 
1.2 14180000 
1.4 14840000 
1.6 15441500 
1.8 15770000 
2.4 16250000 
2.6 16730000 
2.8 17225000 
3.0 17720000 
3.2 18285000 
3.4 18850000 
3.6 19430000 
3.8 20010000 
4.0 21540000 
4.2 23070000 
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Appendix 11 

DYRESM-CAEDYM inflow file .inf 

Lake Sorell Inflow file - 2 years from day 1, 2000 to day 365, 2001 

4 # of inflows 
Mt Ck # Name of inflow 1 
SlvrPlns # Name of inflow 2 
NslvrPlns # Name of inflow 3 
Kemps # Name of inflow 4 
YrDayNum InfNum VOLUME TEMP SAL TN TP SSOLl SSOL2 
2000240 1 133570.92 3.88 0.00 0 .13 0.01 0.90 0.00 
2000240 2 31551.30 3.88 0.00 0.22 0.01 1. 42 0. 00· 

- 2000240 3 16006.00 3.88 0.00 0.29 0.02 3.31 0.00 
2000240 4 0.00 3.88 0.00 0.00 0.00 0.00 0.00 
2000241 1 101817.21 4.39 0.00 0.12 0.01 0.90 0.00 
2000241 2 24290.19 4.39 0.00 0.20 0.01 1.17 0.00 
2000241 3 12321. 63 4.39 0.00 0.26 0.01 2.78 0.00 
2000241 4 0.00 4.39 0.00 0.00 0.00 0.00 0.00 
2000242 1 80070.40 4.66 0.00 0 .11 0.01 0.90 0.00 
2000242 2 19607.12 4.66 0.00 0.18 0.01 1. 01 0.00 
2000242 3 9883.16 4.66 0.00 0.24 0.01 2.44 0.00 
2000242 4 0.00 4.66 0.00 0.00 0.00 0.00 0.00 
2000243 1 67755.43 4.82 0.00 0 .11 0.01 0.90 0.00 
2000243 2 16215.08 4.82 0.00 0.18 0.01 0.89 0.00 
2000243 3 8084.29 4.82 0.00 0.23 0.01 2.18 0.00 
2000243 4 0.00 4.82 0.00 0.00 0.00 0.00 0.00 
2000244 1 57165.64 4.85 0.00 0.10 0.01 0.90 0.00 
2000244 2 13657.30 4.85 0.00 0.17 0.01 0.82 0.00 
2000244 3 6263.24 4. 85 0.00 0.22 0.01 1. 96 0.00 
2000244 4 0.00 4.85 0.00 0.00 0.00 0.00 0.00 
2000245 1 45464.02 4.88 0.00 0.10 0.01 0.90 0.00 
2000245 2 12645.96 4.88 0.00 0.17 0.01 0.77 0.00 
2000245 3 4584.51 4.88 0.00 0.21 0.01 1. 68 0.00 
2000245 4 2681.75 4.88 0.00 0. 72 0.02 5.48 0.00 
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DYRESM-CAED'!M outflow file .wdr 

Lake Crescent withdrawal file 
1 # Number of outlets. Summer release, 2yrs. 
YrDayNum Outflow 
2000320 0 
2000321 0 
2000322 0 
2000323 0 
2000324 0 
2000325 0 
2000326 0 
2000327 0 
2000328 0 
2000329 7782.3936 
2000330 31540.1472 
2000331 
2000332 
2000333 
2000334 
2000335 
2000336 
2000337 
2000338 
2000339 
2000340 

66625.8048 
73361. 7216 
51545.2032 
36676.368 
43543.1808 
47253.1968 
46614.7008 
45749.7504 
54065.232 
55883.3472 
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Appendix 12 

Appendix 12 Interlaken and Lagoon of Islands radiation, 
temperature and wind speed regressions. 

Figure 1: Linear regression analysis of daily average Lagoon of Islands radiation 
versus daily average radiation estimated from satellite at Interlaken. 
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Figure 2: Linear regression analysis of daily average Interlaken air temperature 
versus daily average Lagoon of Islands air temperature. 
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Appendix 12 

Figure 3: Linear regression analysis of daily average Interlaken wind speed versus 
daily average Lagoon of Islands wind speed. 
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Appendix 13 

Appendix 13 Calibration of particle size and resuspension rate. 

Table 1 Overview of the influence of changing particle size and Alpha S 
(resuspension rate constant) on the flux of sediments. The modelling run is for a 
period from April 19th 2000 to June 6th 2000 in Lake Crescent. 
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3.0um 5.0 um 
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